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Preface

The 2000s and 2010s have seen huge growth in Bayesian modelling, which
now finds application in fields as diverse as engineering, law, medicine, psy-
chology, astronomy, climate science and philosophy. Much of the increase
in popularity is due to advances in Bayesian computation, most notably
Markov chain Monte Carlo methods. The availability of general and easily
applicable simulation-based computational algorithms has made it easier to
build more realistic models, involving greater complexity and high dimen-
sionality.

Introductory textbook accounts of Bayesian regression inference often
focus on rather inflexible parametric models. When planning this book,
we wanted to bring together, in a single volume, a discussion of Bayesian
regression methods allowing three types of flexibility: flexibility in the re-
sponse location, flexibility in the response-covariate relationship, and flexi-
bility in the error distributions. The aim is to produce a collection of works
accessible to practitioners, while at the same time detailed enough for inter-
ested researchers in Bayesian methods. Software implementing the methods
in the book is also available.

Chapters 1 and 2 cover quantile regression. These are methods where
inferential interest may lie away from the mean, in noncentral parts of
the distribution. Quantile methods do not specify an error model, and
are therefore challenging to implement in the Bayesian setting. Chapters 3
and 4 cover regression using Dirichlet process (DP) mixtures to flexibly
capture the unknown error distribution. In Chapter 3, DP mixtures are
considered in an ordinal regression setting, where the relationship between
the covariates and response is modelled flexibly via density regression. In
Chapter 4, DP mixtures are used for time series. Chapter 5 extends to
regression with multivariate response, using the copula approach to han-
dle mixed binary-continuous responses. Chapters 6 and 7 cover scalable
Bayesian modelling using variational Bayesian inference: in Chapter 6, vari-
ational inference is described in detail for various spline-based models to
flexibly model the covariate-response relationship in the mean. Chapter 7
develops a variational algorithm for count response data, in the presence of
variable selection. Finally, Chapters 8 and 9 showcase some of the flexibility
of the Bayesian methods when models incorporate shape constraints. The
chapters of the book often deal with quite specialised and complex models

xiii



xiv Preface

and data types, but some general themes emerge from the discussion. The
reader will obtain an understanding of the basic modelling and computa-
tional building blocks which are fundamental to successful new applications
of modern and flexible Bayesian regression methods.

Each of the chapters is written in an easy to follow, tutorial style, with
the aim to encourage practitioners to take advantage of powerful Bayesian
regression methodology. Computer codes are available for each chapter at
the website

https://www.elsevier.com/books/
flexible-bayesian-regression-modelling/fan/978-0-12-815862-3

Wherever appropriate, the chapters contain instructions on how to use
the codes.

We are proud to be able to bring together a book containing the lat-
est developments in flexible Bayesian methods. We warmly thank all the
contributors to this project.

Yanan Fan
David Nott

Michael S. Smith
Jean-Luc Dortet-Bernadet

https://www.elsevier.com/books/flexible-bayesian-regression-modelling/fan/978-0-12-815862-3
https://www.elsevier.com/books/flexible-bayesian-regression-modelling/fan/978-0-12-815862-3


CHAPTER 1

Bayesian quantile regression with
the asymmetric Laplace
distribution
J.-L. Dortet-Bernadeta, Y. Fanb, T. Rodriguesc
aInstitut de Recherche Mathématique Avancée, UMR 7501 CNRS, Université de Strasbourg,
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1.1 Introduction

Following the seminal work by Koenker and Bassett [15] quantile regres-
sion has been recognised in recent years as a robust statistical procedure
that offers a powerful alternative to ordinary mean regression. This type of
regression has proven its interest and its effectiveness in many fields where
the data contain large outliers or when the response variable has a skewed
or multimodal conditional distribution. It has been also successfully applied
to regression problems where the interest lies in the noncentral parts of the
response distribution, often found in the environmental sciences, medicine,
engineering and economics.

Let τ , 0 < τ < 1, be a probability value and, for an integer d ≥ 1, let X
be a bounded subspace of Rd. Let X be a d-dimensional vector of covariates
taking values in X . The linear τ th quantile regression model specifies the
conditional distribution of a real response variable Y given the value X = x
Flexible Bayesian Regression Modelling
https://doi.org/10.1016/B978-0-12-815862-3.00007-X
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2 Flexible Bayesian Regression Modelling

as

Y |x ∼ β0
τ + x′βτ + ε, (1.1)

for some unknown coefficients β0
τ ∈R and βτ ∈R

d, and for a noise variable
ε whose τ th conditional quantile is 0, i.e. P(ε ≤ 0|X = x) = τ . Equivalently,
we can write the τ th quantile of the conditional distribution of Y given
X = x as QY (τ |x) = β0

τ + x′βτ . In the case of a single real covariate x, this
linear model (1.1) encompasses the model of the τ th quantile regression
curve

Y |x ∼ fτ (x) + ε (1.2)

when the curve fτ (x) is modelled with spline functions of a given degree
P ≥ 1, so that

fτ (x) = α0 +
P∑

j=1

αjxj +
K∑

k=1

ηk(x − γk)
P
+, (1.3)

where z+ = max(0,z) and γk,k = 1, . . . ,K , represent the locations of K
knot points (see Hastie and Tibshirani [12]). Typically, the degree P is set to
3 here since using cubic splines gives a curve that looks sufficiently smooth
to the human eye.

Let {(yi,xi)}i=1,...,n be n observed values of (Y ,x). If the distribution of
the noise variable ε is left unspecified, then the point estimation of the
coefficients β0

τ and βτ , hence the curve fτ (x) in the case of model (1.2), is
typically carried out by solving the minimisation problem

(β̂0
τ , β̂τ ) = arg min

(β0
τ , βτ )

n∑
i=1

ρτ (yi − β0
τ − x′

iβτ ), (1.4)

where the function ρτ (·) is given by ρτ (ε) = τε, if ε ≥ 0, and ρτ (ε) =
(τ − 1)ε otherwise (see Koenker and Bassett [15]). This so-called ‘check
function’ ρτ (·) replaces the traditional quadratic loss used for mean regres-
sion. In this frequentist semiparametric setting, test procedures are usually
based on asymptotic arguments or resampling techniques; see Koenker [14]
for details and properties of the approach. Bayesian treatment of quantile re-
gression has long appeared as a challenging task, mainly owing to the need
to specify a likelihood. In the 2000s and 2010s, the asymmetric Laplace
(AL) error model has emerged as a popular solution to this problem, largely
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due to its flexibility and simplicity, and the fact that the corresponding
maximum likelihood estimate is the solution of the minimisation problem
(1.4).

In this chapter, we give an overview of the use of the AL distribution for
Bayesian quantile regression. More precisely, we start by briefly presenting
this distribution in Section 1.2, and we describe the estimation of the re-
gression parameters with the help of a simple Gibbs sampler, as proposed in
Kozumi and Kobayashi [17] or Reed and Yu [23]. Then we focus in some
more detail on the quantile curve fitting problem and describe a possible
extension of the sampler that allows random knots and knot selection. We
illustrate all these points on several examples by using R functions that are
publicly available.

In the following sections we discuss two potential problems that arise
with the use of the AL error model. Firstly we present the problem of
the coverage probabilities that has been tackled recently, for example in
Yang et al. [36]. Secondly, since the quantile curves corresponding to sev-
eral τ levels are fitted separately, they may cross, violating the definition of
quantiles. We describe how this problem can be overcome using a simple
postprocessing procedure. Note that we do not consider here the use of a
likelihood that is capable of simultaneously fitting several quantile curves;
this approach is covered by Chapter 2 of this book. Finally we conclude
with a short discussion.

1.2 The asymmetric Laplace distribution for quantile
regression

The centred AL distribution with scale parameter σ , hereafter denoted
ALτ (0, σ ), has density

dALτ (0,σ )(ε) = τ(1 − τ)

σ
exp

{
− 1

σ
ρτ (ε)

}
, (1.5)

where ρτ (·) is the check-function used in the minimisation problem (1.4).
Clearly, for any σ , if we use this AL distribution to model the error ε in
model (1.1), then the maximum likelihood estimator corresponds to the
solution of the minimisation problem (1.4). This motivated for example Yu
and Moyeed [38] to use the corresponding likelihood in a Bayesian set-
ting and to estimate the regression parameters (β0

τ , βτ ) via a random walk
Metropolis–Hastings algorithm. They noticed that, on simulations, the re-
sulting estimation is satisfactory even when the data do not arise from the
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AL distribution. The good behaviour of this Bayes estimate is studied more
theoretically in Sriram et al. [31], who established posterior consistency for
the linear quantile regression estimates and gave the rate of convergence in
the case of AL distribution misspecification.

1.2.1 A simple and efficient sampler
A desirable feature of the AL distribution is that it can be decomposed as a
scale mixture of Normals (Kotz et al. [16]). Let

ε = σ
1 − 2τ

1 − τ
V + σ

√
2V

τ(1 − τ)
U, (1.6)

where V and U are independent, V ∼ Exp(1) and U ∼ N (0,1). Then ε

follows the ALτ (0, σ ) distribution. Here Exp(λ) denotes the exponential
distribution with mean λ−1 and N (μ,σ 2) denotes the normal distribution
with mean μ and variance σ 2. Based on this representation, Kozumi and
Kobayashi [17] or Reed and Yu [23] proposed a simple and efficient Gibbs
sampler.

In short, the sampler uses data augmentation by introducing a random
variable Vi ∼ Exp(1) for each observation i = 1, . . . ,n, where V1, . . . ,Vn are
independent. If the proper prior π(β0

τ , βτ , σ ) is such that

π(β0
τ , βτ , σ ) = π(β0

τ , βτ )π(σ ),

with π(β0
τ , βτ ) taken as a normal distribution and π(σ) an inverse-gamma

distribution, then the full conditional posterior distributions are known dis-
tributions easy to sample from: the full conditional distribution of (β0

τ , βτ )

is normal, the full conditional distribution of each Vi is generalised inverse
Gaussian and the full conditional distribution of σ is inverse gamma. See
Kozumi and Kobayashi [17] for more details on these conditional distribu-
tions and the corresponding Gibbs sampler. They also provide an extension
of the work using double-exponential priors on the regression parame-
ters and to the analysis of Tobit quantile regression. Other extensions of
the sampler include quantile binary regression (Benoit and Van den Poel
[5]), ordinal quantile regression (Rahman [21] or Alhamzawi [1]) and lasso
quantile regression (Alhamzawi et al. [4] or Li et al. [18]). Note also that
Tsionas [33] gives an alternative version of the Gibbs sampler, less appeal-
ing in practice since each component of the regression vector is updated
separately.
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The Gibbs sampler described in Kozumi and Kobayashi [17] or Reed
and Yu [23] is implemented in several publicly available R packages. We can
quote the package Brq (Alhamzawi [2]) or the package bayesQR described
in Benoit and Van den Poel [6], along with an overview of the AL dis-
tribution for quantile regression. As a first example, we use the package
bayesQR here on the famous Immunoglobulin-G data set. This data set,
studied in for example Yu and Moyeed [38], contains the serum concentra-
tion of immunoglobulin-G (IgG) measured in n = 298 preschool children
and has been used to search for reference ranges to help diagnose immun-
odeficiency in infants (Isaacs et al. [13]). More precisely, we consider IgG
as the response variable and the age of the children as the predictor. Fol-
lowing previous studies, a quadratic model is used to fit the data due to the
expected smooth change of IgG with age. If the data are in the file ‘igg.dta’,
we can proceed as follows to fit the quadratic model for each decile, using
chains of length 2000 and a burn-in period of 500, fitting nine equally
spaced quantiles from 0.1 to 0.9:

> library(bayesQR) # for Bayesian quantile regression with ALD

> library(foreign) # to read .dta files

> IGGdata<-read.dta("igg.dta")

> y<-IGGdata[,1]

> x<-IGGdata[,2]

> out <- bayesQR(y~cbind(x,x^2), quantile=seq(0.1,0.9,by=0.1),

ndraw=2000, normal.approx=F)

> su<-summary(out, burnin=500)

> su

We have used the default, noninformative prior here; this quantity can be
specified using the prior function in bayesQR. The summary command pro-
duces posterior mean and 95% credible interval estimates for the regression
parameters βτ , for each level τ = 0.1, . . . ,0.9, and for σ 2. We show below
the output for τ = 0.1.

#Type of dependent variable: continuous

#Lasso variable selection: no

#Normal approximation of posterior: no

#Estimated quantile: 0.1

#Lower credible bound: 0.025

#Upper credible bound: 0.975
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#Number of burnin draws: 500

#Number of retained draws: 1500

#Summary of the estimated beta:

# Bayes Estimate lower upper

#(Intercept) 0.898 0.568 1.238

#cbind(x, x^2)x 1.393 1.062 1.680

#cbind(x, x^2) -0.167 -0.219 -0.107

#Summary of the estimated sigma:

# Bayes Estimate lower upper

#sigma 0.224 0.205 0.246

#*****************************************

The raw Markov chain Monte Carlo (MCMC) samples are contained in
the output of bayesQR, and typing

> out[[1]]$betadraw

> out[[1]]$sigmadraw

produces the MCMC sample from the first quantile level τ = 0.1, with the
following output in R:

> out[[1]]$betadraw

# [,1] [,2] [,3]

# [1,] 0.03953925 0.9024486 -0.17204285

# [2,] 0.86363783 0.4834613 -0.07419609

# [3,] 0.71404299 0.8667774 -0.11435549

# [4,] 0.62527738 1.2187158 -0.16876779

# ...

> out[[1]]$sigmadraw

# [1] 0.2277762 0.2177013 0.2185341 0.2294405 0.2134314 ...

These MCMC draws, for instance, are useful for checking MCMC conver-
gence, choosing burn-in period and calculating credible bounds for other
quantities of interest. To plot the data and the nine estimated quantile curves
we can use
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Figure 1.1 Growth chart of serum concentration of immunoglobulin-G for young chil-
dren. Quantile regression using a quadratic model and bayesQR for τ = 0.1, . . . ,0.9.

> plot(x,y,pch=20,xlab="Age (years)",ylab="IgG")

> for (i in 1:9){

+ beta0<-su[[i]]$betadraw[1]

+ beta1<-su[[i]]$betadraw[2]

+ beta2<-su[[i]]$betadraw[3]

+ estimated<-beta0+beta1*x+beta2*x^2

+ lines(x,estimated)}

where the resulting plot is given in Fig. 1.1.
On the whole, for these intermediate τ levels, the quantile lines result-

ing from this fitted quadratic model appear satisfactory. Nevertheless we
will see later that some problems arise when we fit the quantile lines at
many levels and at more extreme τ levels.

1.2.2 Quantile curve fitting
As noted in the introduction, the quantile regression curve model (1.2)
with spline functions (1.3) can be handled under the framework of linear
quantile regression. It is thus tempting to use in this setting the AL error
model and to fit the quantile regression curve with the help of the previous
Gibbs sampler. Nevertheless, in the curve fitting setting, one also has to
consider the appropriate specifications of parameters such as the number
and position of the knots.

Chen and Yu [8] provide a Bayesian inference on this model, where
the number of knots and their location are automatically selected. Their
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method relies on a reversible jump Markov chain Monte Carlo (RJM-
CMC) algorithm which, under the prior specifications they use, needs
to compute an approximation of the ratio of marginal likelihoods. For a
Bayesian inference using natural cubic splines see Thompson et al. [32]. We
present here an alternative method for quantile curve fitting that allows for
both random knots and knot selection with a strategy that avoids the use of
RJMCMC.

Under the representation (1.3), fitting the curve consists of estimating
the number of knots K , the knot locations γk,k = 1, . . . ,K , the correspond-
ing splines coefficients ηk, k = 1, . . . ,K , and the regression coefficients αj,
j = 0, . . . ,P. Let Kmax represent the (known) maximum number of poten-
tial knots and let γk, k = 1, ...,Kmax, represent the corresponding knots. The
quantile regression curve model (1.2) can be written as the linear model

Y = Xγ β + ε, (1.7)

where Y = (y1, . . . ,yn)
′, β = (α0, α1, . . . , αP, η1, . . . , ηKmax)

′ and ε = (ε1, . . . ,

εn)
′. The design matrix Xγ is defined by

Xγ = (1n,x, . . . ,xP, (x − 1nγ1)
P
+, . . . , (x − 1nγKmax)

P
+), (1.8)

where x = (x1, . . . ,xn)
′ and where 1n = (1, . . . ,1)′ denotes the unit vector of

size n. Following Fan et al. [10] we adopt an auxiliary variable approach for
the spline regression model: we consider I1, . . . , IKmax some nonoverlapping
intervals that are defined on the range of the xi’s, and then we introduce
some binary indicator variables zk,k = 1, . . . ,Kmax, such that

zk =
{

1, if there is a knot point γk in the interval Ik and ηk �= 0,

0, if there is no knot point in the interval Ik and ηk = 0 .

Each interval Ik contains at most one knot with unknown location γk. In
practice, such intervals can be defined by either using prior information on
regions where a knot is suspected or, in the absence of such prior informa-
tion, an equal partition of the range may be adopted.

We denote by γ the vector (γ1, . . . , γKmax)
′ and by z the vector

(z1, . . . ,zKmax)
′. We consider as prior distribution on γ the product of uni-

form distributions on the intervals Ik, k = 1, . . . ,Kmax. Each possible value
for γ gives a model of the form (1.7). Let Xz,γ denote the matrix con-
structed with the columns of Xγ corresponding to nonzero entries in z,
and let βz,γ denote the vector of corresponding regression coefficients. If
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we use the scale mixture of normals decomposition (1.6) of the AL distri-
bution, for each wi = σVi, i = 1, . . . ,n, if W is the diagonal matrix with
entries wi, then the conditional distribution of Y given W is multivariate
normal

f (Y |Xz,γ , βz,γ ,z, σ, γ,W ) = N
(

Xz,γ βz,γ + (1 − 2τ)

τ (1 − τ)
W1n,

2σ

τ(1 − τ)
W

)
.

(1.9)

Conditionally on W , we use the following decomposition of the joint prior
distribution of the unknown parameters:

π(βz,γ ,z, σ, γ |W ) = πβz,γ
(βz,γ |z, σ, γ,W )πσ (σ )πz(z)πγ (γ ),

where we set

πβz,γ
(βz,γ |z, σ, γ,W ) = N

(
0,

2σ

τ(1 − τ)
c(X ′

z,γ W −1Xz,γ )−1
)

.

(1.10)

This conditional prior for βz,γ , related to g-priors (Zellner [40]), has the
advantage of conjugacy in the case of normal errors, in which case the re-
gression and variance parameters can be analytically integrated out. It has
been used in the context of variable selection for quantile linear regres-
sion in Alhamzawi and Yu [3]. We can use a diffuse hyperprior for the
parameter c

π(c) ∝ c−2 exp{−2n/c},
and use the standard uninformative prior πσ (σ ) ∝ 1/σ for the variance pa-
rameter. Finally, to define the prior distribution for z, we consider the
decomposition of this prior given by

πz(z) = π(z | |z|)π(|z|),
where |z| = ∑Kmax

k=1 zk is the number of nonzero entries in z, i.e. the number
of knots that are used in the corresponding model. We use for this term
a Poisson distribution with mean λ that is right-truncated at a specified
maximum value, L. We assume also that, given this quantity, all possible
configurations for z have equal probabilities, so that

πz(z) ∝ λ|z|

|z|! I{|z|≤L}.
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Importantly, under these specifications, the parameters βz,γ and σ can be
integrated out of the full joint posterior distribution π(βz,γ ,z, σ, γ,W , c|Y )

and we get

π(z, γ,W , c|Y ) ∝ π(c)πz(z)πγ (γ )√∏n
i=1 wi(c + 1)(|z|+P+1)/2

×
{

τ(1 − τ)

4
Sz,γ,W ,c(Y ) +

n∑
i=1

wi

}−3n/2

, (1.11)

where

Sz,γ,W ,c(Y ) = Y ′
(W )W

−1Y(W )

− c
c + 1

Y ′
(W )W

−1Xz,γ (X ′
z,γ W −1Xz,γ )−1X ′

z,γ W −1Y(W )

and where

Y(W ) = Y − (1 − 2τ)

τ (1 − τ)
W1n.

A Gaussian random walk Metropolis–Hastings sampler can be used to study
this marginal posterior distribution π(z, γ,W , c|Y ), as detailed in Dortet-
Bernadet and Fan [9]. Once MCMC samples {(z(t), γ (t),W (t), c(t))}t=1,...,T

are obtained, it is possible to estimate the curve fp(x) by a Bayesian model
averaging approach. The posterior expectation for β given z, γ , W and c
being

E(βz,γ |z, γ,W ,Y , c) = c
c + 1

(X ′
z,γ W −1Xz,γ )−1X ′

z,γ W −1Y(W ), (1.12)

an estimate for fτ (x) can be obtained by

f̂ BMA
τ (x) = 1

T

T∑
t=1

Xzt,γ t
c(t)

c(t) + 1
(X ′

zt,γ t (W t)−1Xzt,γ t )−1X ′
zt,γ t (W t)−1Y(W t).

This method for quantile curve fitting using splines and random knots is
implemented as a function called rkquant available at the website accompa-
nying the book,

https://www.elsevier.com/books/
flexible-bayesian-regression-modelling/fan/978-0-12-815862-3

https://www.elsevier.com/books/flexible-bayesian-regression-modelling/fan/978-0-12-815862-3
https://www.elsevier.com/books/flexible-bayesian-regression-modelling/fan/978-0-12-815862-3
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As an example, we use it now on the Global Mean Sea Level Variation
data set studied in Nerem et al. [19]. This data set consists of 762 observa-
tions of MSL, defined as ‘the area-weighted mean of all the sea surface
height anomalies measured by the altimeter in a single, 10-day satellite track
repeat cycle’, dating from 1992 to 2014. We can proceed as follows to fit
cubic splines (P = 3) for τ = 0.5 using a chain of length 2000 plus 200 of
burn-in:

> source("codeRKquant.R") # source the code

> data <- read.table("sl_ns_global.txt", header=T) # read data

> x <- data[,1];y <- data[,2]

> quant05<-rkquant(y,x,tau=0.5,ngibbs=2000,nburnin=200,P=3)

Note that it may take some time to run these simulations under the de-
fault settings, and to gain speed one can run a much shorter chain with
this type of data set and the default settings of the algorithm (for each it-
eration of the Gibbs sampler many moves for z(t) are done; this can be
easily changed by the user). Several other default settings for the algorithm,
such as the maximum number of knots or the number of intervals, can
also be easily changed in the code. The function stores some output files
with the simulated values from the MCMC algorithm. It returns as a list
several features of the MCMC output draws. For example, the component
$postmean gives the posterior mean of the quantile curve and the compo-
nents $CIboundInf and $CIboundSup give the lower and upper bounds of
the credible intervals, respectively (by default these bounds contain 95% of
the posterior mass on the quantile curves, this can also be changed by the
user). To plot the estimate of the quantile curve corresponding to τ = 0.5
we can proceed as follows:

> plot(x, y, pch=20, bg="gray", col=’gray’, cex.lab=1.5,

xlab=’Year’, ylab=expression(paste(Delta,’MSL (mm)’,’’)))

> lines(quant05$x.sorted,quant05$postmean)

To plot the bounds of the credible intervals (we use the sorted values of the
covariate given by quant05$x.sorted) we simply add

> lines(quant05$x.sorted,quant05$CIboundInf,lty=2)

> lines(quant05$x.sorted,quant05$CIboundSup,lty=2)

The resulting plot is given in Fig. 1.2, along with the plot of the three fit-
ted quartile curves corresponding to τ = 0.25, τ = 0.5 and τ = 0.75. Note
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Figure 1.2 Global mean sea level variation. Quantile curve fitting for τ = 0.25,0.5,0.75
(left) and quantile curve fitting for τ = 0.5 with confidence intervals (right).

that the period around the years 1997–1998 looks problematic since these
curves nearly merge; we will come back to this problem later. Generally,
problems with crossing curves manifest when there are fewer data points.
Finally note that this code for quantile curve fitting can be easily adapted to
the problem of quantile regression with variable selection as in Chen et al.
[7]; in this case the terms γk do not appear in the standard regression with
variable selection.

1.2.3 Additive models
When several potential predictors for the response variable are available, a
possible solution to the ‘curse of dimensionality’ is to use an additive model
(Hastie and Tibshirani [12]). In the context of quantile regression, if X is
a d-valued vector of covariates and if x = (x1, . . . ,xd), the additive model
comes down to model the τ th quantile of the conditional distribution of Y
given X = x as the sum

fτ (x) =
d∑

j=1

f j
τ (x

j), (1.13)

where f 1
τ (x1), ..., f d

τ (xd) are univariate functions. Several references that
study this additive quantile regression model are available, including Yu and
Lu [37] which uses a kernel-weighted local linear fitting or Yue and Rue
[39] that describes a Bayesian inference either with an MCMC algorithm
or using INLA (Rue et al. [30]).
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If we use spline functions to model the different curves f 1
τ (x1), ..., f d

τ (xd),
it is still possible to use a linear model of the form (1.7). The only adjust-
ment to make is to now use a design matrix Xγ made up of the columns of
the individual design matrices corresponding to (1.8) with a single common
intercept term for identifiability. Thus inference on the additive quantile
regression model can be performed via the same methodology and algo-
rithm described previously for the single quantile curve fitting problem.
This method is implemented as a function called rkquantAdditive available
at the website of the book.

As an example of real data set that involves additive quantile regression,
we revisit the so-called Boston house price data available in the R package
MASS. This data set has been originally studied in Harrison and Rubinfeld
[11]. The full data set consists of the median value of owner-occupied
homes in 506 census tracts in the Boston Standard Metropolitan Statistical
Area in 1970 along with 13 sociodemographic variables. This data set has
been analysed in many statistical papers, including Opsomer and Ruppert
[20], who used an additive model for mean regression, and Yu and Lu
[37]. Following these two references, we consider the median values of
the owner-occupied homes (in $1000s) as the dependent variable and four
covariates given by

RM = average number of rooms per house in the area,
TAX = full property tax rate ($/$10,000),
PTRATIO = pupil/teacher ratio by town school district,
LSTAT = percentage of the population having lower economic status

in the area.

As noted in Yu and Lu [37], these data are suitable for a quantile regres-
sion analysis since the response is a median price in a given area and the
variables RM and LSTAT are highly skewed. More precisely, we consider
the additive model where the τ th quantile of the conditional distribution
of the response is given by

fτ (x) = α0 + f 1
τ (RM) + f 2

τ (log(TAX)) + f 3
τ (PTRATIO)

+ f 4
τ (log(LSTAT)).

We can proceed as follows to fit cubic splines (P = 3) for τ = 0.5 using a
chain of length 2000 plus 200 of burn-in:
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> source("codeRKquantAdd.R") # source the code

> data<-read.table("bostonDat")

> y<-data[,1];X<-data[,2:5] # X matrix n*d

> quant05<-rkquantAdditive(y,X,0.5,2000,200,3)

The default prior settings correspond to λ = 5 and L = 8 for the truncated
Poisson prior. For each predictor we set the intervals Ik to be 10 equally
sized partition sets over the range of the variable. Excluding the possibility
of knots in the first and the last intervals, we get Kmax = 8 for each variable.
All these settings can be easily changed in the code. Again, it returns a list
of different features of the MCMC simulations. For example, to plot the
curve corresponding to the posterior mean for the covariate RM, similar
to the function described in the previous subsection we use the component
$postmean, now a matrix where each column corresponds to a covariate.
We can proceed as follows:

> ord<-sort.list(X[,1]) # need to sort the covariate values

> plot(X[ord,1],quant05$postmean[ord,1],type="l",

+ xlab="RM",ylab="value")

To plot the posterior credible intervals we use again the components $CI-
boundInf and $CIboundSup, now matrices where each column corresponds
to a covariate. We can proceed as follows:

> lines(X[ord,1],quant05$CIboundInf[ord,1],lty=2)

> lines(X[ord,1],quant05$CIboundSup[ord,1],lty=2)

Other quantities of interest are the component $consttermResult, which
returns the simulated values for the constant term, and $consttermpost,
which returns the corresponding posterior mean. We present in Fig. 1.3
the different estimated curves, along with the posterior credible intervals,
for τ = 0.05,0.5,0.95 (we do not show here the curves corresponding to
τ = 0.25 and τ = 0.75 since they look very similar to the median curves
τ = 0.5). Each curve is represented with some data points corresponding to
the original data minus the effect of all the other variables and the constant
term (so we do not plot on the same graph the curves corresponding to
different values of τ ). The fact that the values of log(TAX) are not well
dispersed over their range and the presence of a few outliers in the data set
did not seem to be a problem for this method.
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Figure 1.3 Boston housing data set; fitted quantile curves (central solid lines) with 95%
posterior credible intervals shaded in grey for τ = 0.05,0.5,0.95, P = 3, for the four
variables that have been considered. On each figure, the data points correspond to the
original data minus the effect of all the other variables and the constant term.
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The results appear consistent with the results provided in previous anal-
yses cited above. Briefly, by looking at the range of the plotted functions,
the variables RM and LSTAT appear as the most important covariates. If
the contribution of LSTAT looks similar for the three represented quantiles
levels, the contribution of RM looks slightly more important for τ = 0.5
and for τ = 0.95 than for τ = 0.05.

1.3 On coverage probabilities

Several authors have noted that the AL working likelihood provides good
parameter estimates even when it is misspecified. Sriram et al. [31] estab-
lished sufficient conditions for posterior consistency under this likelihood.
However, the results do not extend to the validity of the interval estimates
given by the posterior. Therefore, while it is fairly common to see the use
of posterior intervals obtained from MCMC in the literature, these esti-
mates generally do not provide a good frequentist notion of coverage and
often underestimate the variance.

Yang et al. [36] proposed an adjustment to the posterior variance-
covariance based on some asymptotic arguments. Let βτ denote the vector
of regression coefficients for the τ th quantile level regression and let β∗

τ

denote the true value of βτ . Then, assuming σ is known and a flat prior
for βτ , the posterior density is approximately normal with mean β̂τ and
covariance �̂ = σD−1

1 /n, where

D1 = limn→∞
1
n

n∑
i=1

dALτ
(xT

i β∗
τ |xi)xixT

i .

We note that the asymptotic covariance of n1/2β̂τ is known to be τ(1 −
τ)D−1

1 D0D−1
1 (see Koenker [14]). Yang et al. [36] suggest an adjusted pos-

terior variance given by

�̂adj = τ(1 − τ)�̂

(
n∑

i=1

xixT
i

)
�̂/σ 2. (1.14)

Yang et al. [36] acknowledged that the asymptotic theory does not ad-
dress models with high-dimensional covariates or broader classes of models.
Nevertheless, their simulation studies showed that in the partially linear
model where the nonlinear component was modelled by B-spline func-
tions, the adjustment remained useful for the parametric coefficients, while
for the nonparametric component further investigation is required.
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These results suggest that, if we are fitting a standard AL distribution
model of Section 1.2.1 under a flat prior for regression coefficient, we can
obtain the estimate of �̂, the variance-covariance matrix based on MCMC
sample output, and use the adjusted covariance matrix (1.14) for inference,
and use an estimate of σ when this is unknown. However, for the models
described in Sections 1.2.2 and 1.2.3, these corrections may not be suffi-
cient.

The correction in (1.14) is implemented via bayesQR by calling the
normal.approx argument when this is set to be T (default). Recalling the
Immunoglobulin example of Section 1.2.1,

> library(bayesQR) # for Bayesian quantile regression with ALD

> library(foreign) # to read .dta files

> IGGdata<-read.dta("igg.dta")

> y<-IGGdata[,1]

> x<-IGGdata[,2]

> out <- bayesQR(y~cbind(x,x^2), quantile=seq(0.1,0.9,by=0.1),

ndraw=2000, normal.approx=T)

> su<-summary(out, burnin=500)

> su

Again, the output for τ = 0.1 is shown below, with the adjusted 95%
credible interval shown in the columns corresponding to adj.lower and
adj.upper.

#Type of dependent variable: continuous

#Lasso variable selection: no

#Normal approximation of posterior: yes

#Estimated quantile: 0.1

#Lower credible bound: 0.025

#Upper credible bound: 0.975

#Number of burnin draws: 500

#Number of retained draws: 1500

#Summary of the estimated beta:

Bayes Estimate lower upper adj.lower adj.upper

#(Intercept) 0.875 0.0602 1.5930 -1.098 2.847

#cbind(x, x^2)x 1.346 0.6289 2.0582 -0.915 3.607

#cbind(x, x^2) -0.157 -0.2822 -0.0306 -0.613 0.299

#********************************************************
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Figure 1.4 Growth chart of serum concentration of immunoglobulin-G for young chil-
dren. Quantile regression using a quadratic model and bayesQR for several values of τ .

1.4 Postprocessing for multiple fittings

Consider for example Fig. 1.4, which gives the results from the fitting at
many quantile levels τ = 0.005,0.01, . . . ,0.995. For ease of visualisation,
fewer levels are plotted from τ = 0.05 to τ = 0.95 (step size equals 0.05).
The quantile lines resulting from this quadratic model appear satisfactory
for intermediate τ levels, but they are problematic at more extreme levels:
for closely spaced values of τ , the estimated curves can be seen to be very
different, which is not realistic, and this leads in some cases to the quantiles
crossings, which violates the definition of quantiles. Again, the crossing
phenomenon is more severe in the tails of the distribution where data are
scarce.

Rodrigues and Fan [29] proposed a strategy to postprocess MCMC
samples obtained using a standard AL likelihood, as those described in
the previous sections, to correct crossings. Suppose we have obtained pos-
terior estimates via MCMC for quantile levels τj, j = 1, . . . , J , using the
AL distributed error (1.5) in the regression models of the form of ei-
ther (1.1) or (1.3). For the τjth conditional quantile under the AL model
dALτj

, let Q(t)(τj|x,dALτj
), or in short Q(t)(τj|x, τ = τj), t = 1, ...,T , de-

note the tth posterior sample of the quantile estimate given by MCMC.
Thus, the τjth quantile point estimate for a given value of x is given by
Q̂s(τj|x) = 1

T

∑T
t=1 Q(t)(τj|x, τ = τj), where the index s denotes the standard

estimate from fitting the AL model at τj.
For each quantile fitted using dALτj

, we can also find induced quantiles
at any other value τ �= τj, where the τ th quantile can be obtained directly
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from the quantile function of the fitted model at τj,

Q(t)(τ |x, τ = τj) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
μ(t) + σ (t)

1 − τj
log

(
τ

τj

)
, if 0 ≤ τ ≤ τj,

μ(t) − σ (t)

τj
log

(
1 − τ

1 − τj

)
, if τj ≤ τ ≤ 1,

(1.15)

where μ(t) and σ (t) denote the tth MCMC estimate of the mean and σ

parameters. Thus, for each quantile level of interest τj = 1, . . . , J , we can
obtain (J−1)×T additional posterior samples.

A smoother noncrossing quantile estimate can then be obtained by
borrowing strength from these induced samples using Gaussian process re-
gression on all J×T MCMC posterior samples [22],

Q(t)(τj|x, τ = τ1, . . . τJ) = g(τ ) + ε, with g(τ ) ∼ GP(0,K) , ε ∼ N (0,�),

(1.16)

where � is a J ×T , J ×T diagonal covariance matrix whose diagonal entries
are the posterior variances of the corresponding Q(t)(τ |x, τ ′). For the kernel
K of the same dimension, we use the squared exponential kernel, and co-
variance matrix entries between induced quantiles from any two auxiliary
models are given by

k(τ, τ ′) = σ 2
k exp

{
− 1

2b2 (τ − τ ′)2
}
, (1.17)

where b is the bandwidth and σ 2
k is a variance hyperparameter of the prior

set to be around σ 2
k = 100.

The final τ th quantile estimate takes the form of an adjusted posterior
mean from the standard, and it is given by

Q̂a(τ |x) =
J∑

j=1

T∑
t=1

wjQ(t)(τ |x, τj),

where wj is an element of the row vector of weights W = K(·, τ )�(K +
�)−1 and K(·, τ ) is the τ column of the covariance matrix. Therefore the
adjusted quantiles are just a weighted sum of the induced quantiles and can
be guaranteed to be noncrossing if the weights are equal or b → ∞.
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Table 1.1 Postprocessing procedure to estimate quantiles at τ = τ1, ..., τJ .
1. Fit J separate standard models dALτ

, τ = τ1, ..., τJ (Eq. (1.1) or (1.3)).
2. Calculate induced quantile posterior means Q̂s(τ |x, τ ′) for all x and

τ = τ1, ..., τJ (Eq. (1.18)).
3. Initialise b ≈ 0 and while quantile estimates cross, increase b and calculate

regression-adjusted quantile estimates (Eq. (1.19)) for every x and
τ = τ1, ..., τJ .

It was further noted that working directly with the posterior means of
the induced quantiles,

Q̂s(τ |x, τ ′) = 1
T

T∑
t=1

Q(t)(τ |x, τ ′), (1.18)

rather than with the T MCMC samples, would simplify calculation, result-
ing in the adjusted quantile estimate of the form

Q̂a(τ |x) =
J∑

j=1

w′
jQ̂s(τ |x, τj), (1.19)

where W ′ = K ′(·, τ )�(K ′ +�′)−1, with W ′ and K ′ now of dimension J × J .
The variance of the adjusted quantiles is given by

σ 2
∗ = σ ′2 + σ 2(τ |x, τ ),

where σ ′2 = k′(τ, τ ) − W ′K ′(·, τ ), and vanishes to zero with rate 1/T . This
means that the variance of the adjusted estimator is the same as the vari-
ance of the standard estimator as T increases. The postprocessing procedure
described above is summarised in Table 1.1.

We return to the serum concentration of immunoglobulin-G (IgG)
data, fitted with quadratic quantile regression with the bayesQR package
in Section 1.2. Recall the data are in the file ‘igg.dta’. The R source file
GPreg.R (also available at the website accompanying the book) can be used
to fit the two-stage procedure. In the first stage, the function gpqr calls
bayesQR to fit a quadratic model for a sequence of quantiles, and in the
second stage gpqr postprocess the output from bayesQR. We use chains of
length 5000 and a burn-in period of 500, 197 quantiles from 0.01 to 0.99
by 0.005:
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> source("GPreg.R") # source the code

> library(foreign) # to read .dta files

> IGGdata<-read.dta("igg.dta")

> y<-IGGdata[,1]

> x<-IGGdata[,2]

> x.data <- as.data.frame(cbind((x), (x^2)))

> nmc=5000 # length of MCMC chain

> burn=500 # discard burn in

> keep=1 # every kth iteration to keep

> gridtau=seq(0.01, 0.99, by=0.005)

> prior=prior(y~x+I(x^2), beta0=rep(0, 3), V0=diag(3)*10e8)

> out=gpqr(t(y), t(x.data), gridtau, nmcmc=nmc,

burnmcmc=burn, keep=keep, prior)

The gpqr function requires input data y and covariates in a data frame for-
mat. Also required is the grid of quantile levels, MCMC specification, the
prior distribution. By default, the program works for nonlinear regression.
In the case of linear regression, an approximation is used (see Rodrigues
and Fan [29]) and we need to set the linear=T argument. The function
outputs quantile and regression coefficients estimates before and after post-
processing, as well as the corresponding confidence interval estimates.

The left panel of Fig. 1.5 is plotted using the output from gpqr. The
rows of the output initial.quant correspond to separate quantile levels, and
the columns correspond to the estimated quantile at each value of the co-
variate.

> print(out$initial.quant[1:5,], digits=3)

# [,1] [,2] [,3] [,4] [,5] [,6] [,7] ...

#[1,] -0.0619 -0.0619 -0.0619 -0.0619 -0.0619 -0.0619 -0.0619 ...

#[2,] 0.4583 0.4583 0.4583 0.4583 0.4583 0.4583 0.4583 ...

#[3,] 0.6275 0.6275 0.6275 0.6275 0.6275 0.6275 0.6275 ...

#[4,] 0.7916 0.7916 0.7916 0.7916 0.7916 0.7916 0.7916 ...

#[5,] 0.9126 0.9126 0.9126 0.9126 0.9126 0.9126 0.9126 ...

Similarly, the right panel of Fig. 1.5 is plotted using the output quant.fi-
nal.mean, shown below:
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Figure 1.5 Growth chart of serum concentration of immunoglobulin-G for young chil-
dren, using bayesQR for the initial quantile estimates (left) and gpqr for postprocessing
(right).

> print(out$quant.final.mean[1:5,], digits=3)

# [,1] [,2] [,3] [,4] [,5] [,6] [,7] ...

#[1,] -0.0216 -0.0216 -0.0216 -0.0216 -0.0216 -0.0216 -0.0216 ...

#[2,] 0.4261 0.4261 0.4261 0.4261 0.4261 0.4261 0.4261 ...

#[3,] 0.6678 0.6678 0.6678 0.6678 0.6678 0.6678 0.6678 ...

#[4,] 0.7948 0.7948 0.7948 0.7948 0.7948 0.7948 0.7948 ...

#[5,] 0.8784 0.8784 0.8784 0.8784 0.8784 0.8784 0.8784 ...

The figure in the left panel of Fig. 1.5 demonstrates how the quantiles can
cross; this is particularly evident in the higher and lower quantiles. Crossing
also appears to be more severe where curves change more drastically; see
for instance around age 2. The right panel of Fig. 1.5 shows the adjusted
quantiles, which constrains the neighbouring quantiles to be similar and
produces fitted quantiles which changes more gradually as a function of the
quantile level. In other words, postprocessing quantiles have the effect of
producing more smoothly changing quantiles, which is more desirable.

1.5 Final remarks and conclusion

In this chapter, we have provided a detailed description of fitting Bayesian
quantile regression using the AL distribution as the error distribution. We
have highlighted some potential pitfalls with the use of this ‘misspecified’
error distribution, and provided some solutions. While these are not per-
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fect, the AL working likelihood remains attractive due to its simplicity and
computational efficiency, while still providing reasonable estimates. More
advanced Bayesian methods fit multiple quantiles simultaneously, which can
provide more efficient estimation due to the borrowing of information be-
tween neighbouring quantiles; see for example Reich et al. [25], Reich
and Smith [26] and Yang and Tokdar [35], who directly model the quantile
coefficients as a function of τ ; Yang and He [34], who used an empirical
likelihood approach as a working likelihood; Rodrigues et al. [27] and Ro-
drigues et al. [28], who used a Bayesian nonparametric model for the error
distribution; and finally in the frequentist setting, Reich et al. [24], who
provided noncrossing fittings of multiple quantiles, using an asymptotic ar-
gument to derive the confidence intervals.
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2.1 Introduction

At the end of the 1970s, Roger Koenker and Gib Bassett showed how to
formalise statistical inference using quantile regression [11]. Today quantile
regression is widely recognised as a fundamental statistical tool for analysing
complex predictor–response relationships, with a growing list of applica-
tions in ecology, economics, education, public health, climatology, and so
on [5,8,6,1]. In quantile regression, one replaces the standard regression
equation of the mean E[Y | X] = β0 + XTβ with an equation for a quantile
QY (τ | X) = β0τ + XTβτ , where τ ∈ (0,1) is a quantile level of interest and
Q(τ ) denotes the 100τ th percentile. A choice of τ = 0.5 results in the fa-
miliar median regression, a robust alternative to mean regression when one
suspects the response distribution to be heavy-tailed. But the real strength
of quantile regression lies in the possibility of analysing any quantile level
of interest and, perhaps more importantly, contrasting many such analyses
against each other with fascinating consequences.

This strength of quantile regression has also been its liability. Most
modern scientific applications of quantile regression involve a synthesis
of estimates obtained at several quantile levels. Estimates and P-values are
pooled together to build a composite picture of how predictors influence
the response and to analyse how this influence varies from the centre of the
response distribution to its tails. But such a synthesis is flawed! The com-
posite picture is not based on a single statistical model of the data. Instead,
for each single quantile level in the ensemble, a new model has been fitted,
without sharing any information with models fitted at the other τ-values.
It is entirely possible that the quantile lines estimated at different quantile
levels cross each other, thus violating basic laws of probability. Addition-
ally, due to a lack of information borrowing, estimated standard errors and
P-values may fluctuate wildly as functions of τ [17]. This, at best, creates
confusion and, at worst, may encourage selective reporting!

A composite quantile regression analysis can be formalised with the
simultaneous equation

QY (τ | X) = β0(τ ) + XTβ(τ), τ ∈ (0,1), (2.1)

where β0(τ ) and β(τ) = (β1(τ ), . . . , βp(τ ))T are unknown intercept and
slope curves. Because quantiles are linearly ordered in their levels, esti-
mation of β0 and β must be carried out under the ‘noncrossing’ constraint,
i.e., β0(τ1)+xTβ(τ1) < β0(τ2)+xTβ(τ2) for every 0 < τ1 < τ2 < 1 and every
x ∈ X , where X is the domain of the predictor vector X . A largely under-
appreciated, simple observation is that the simultaneous quantile regression
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equations and the noncrossing constraint together offer a fully generative
probability model for the response

Y = β0(U) + XTβ(U), U | X ∼ Unif (0,1), (2.2)

opening up the possibility of obtaining proper statistical inference on the
intercept and slope curves by means of a joint analysis.

Yang and Tokdar [18] offer an estimation framework for the joint
quantile regression model (2.2), subject to the noncrossing constraint, by
introducing a bijective map of the intercept and slope curves to a new pa-
rameter ensemble consisting of scalars, vectors and curves, all but one of
which are constraint-free. The likelihood score, as a function of the new
parameter ensemble, can be efficiently computed through numerical ap-
proximation methods. Parameter estimation can then proceed according to
either a penalised likelihood or a Bayesian approach. An instance of the
latter, where curve-valued parameters are assigned Gaussian process priors,
is further investigated by Yang and Tokdar [18], who establish that the re-
sulting estimation method is consistent and robust to moderate amounts of
model misspecification.

To the best of our knowledge, Yang and Tokdar [18] provide the only
estimation framework that supports quantile regression as a model-based
inference and prediction technique in its full generality. Their reparameter-
isation technique applies to any predictor dimension and to any arbitrarily
shaped predictor domain X that is convex and bounded. Both issues have
proven major vexing points to the earlier attempts at a joint quantile re-
gression analysis, e.g. [10,7,4,14,17,9].

In this chapter we demonstrate that the joint quantile regression method
of Yang and Tokdar [18], as implemented in the R package1 qrjoint, offers
a comprehensive, model-based regression analysis toolbox. We demonstrate
how to fit models, interpret their coefficients, improve and compare mod-
els and obtain predictions under the joint quantile regression setup. Taking
this modelling one step further, we show how utilising the censored-data
options built into the qrjoint package can yield an interpretable yet dis-
tributionally flexible model for nonnegative, continuous data with excess
zeroes. This latter extension fully exploits the generative model interpreta-
tion (2.2) of joint quantile regression.

1 https://CRAN.R-project.org/package=qrjoint.

https://CRAN.R-project.org/package=qrjoint
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2.2 Excess zero regression analysis

Zero inflation, or the frequent occurrence of zeroes, is common in ecolog-
ical data. For instance, when counting the number of species in a region,
some regions may not have any of the target species, resulting in ‘zero’
records. Another example, one that will serve as case study here, involves
measuring the basal area of trees within a site. When trees are present, basal
area is measured as a continuous, positive number, but when trees are not
present, a zero is recorded.

Tobit regression [15] is commonly used to model censored data but can
also be used to model data with excess boundary zeroes. To do so, it uses a
latent construct, namely, y∗

i = β0 +βxi + εi, εi ∼ N(0, σ 2), with observables
yi = max

{
y∗

i ,0
}
. Under this assumption of normality, the mean β0 + Xβ

and variance σ 2 fully specify the response distribution. If the latent Tobit
model is framed in terms of a joint quantile regression it would be written
as QY∗(τ |X) = β0(τ ) + Xβ, where β0(τ ) = σ�−1(τ ). That is, the normality
is captured in the τ-functional intercept by the normal inverse CDF, and all
remaining variability in the response quantiles is explained by τ-constant
slopes and the design matrix X .

Joint quantile regression is also capable of both capturing the probability
of atomic zero-measurements and modelling the remaining positive, con-
tinuous response distribution. Like the Tobit model, it captures the zeroes
via a censored-data or latent-truth construct; however, unlike Tobit, it is
not limited by an assumption of normality. In fact, it makes no assumption
about the distributional form of the response distribution and has only two
other modelling assumptions: (1) data can be explained as linear combina-
tions of covariates expressed in the design matrix X , which incorporates
any desired interactions or nonlinearities (e.g. via splines); and (2) observa-
tions are independent of each other.

Other quantile regression methods [13,12] are capable of distribution-
free estimation in the presence of excess zeroes; however, these other
methods estimate regression quantiles independently and, lacking a com-
prehensive model specification to capture dependence between regression
quantiles, they only make adjustments for and do not actually model the
probability of atomic zero.

We demonstrate how to use the qrjoint package on tree basal area data
from the U.S. Forest Service. Tobit regression models are included, both as
a stepping stone to understanding censored joint quantile regression and as
a foil to the more flexible joint quantile regression.
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Figure 2.1 Red maple basal areas for 608 sites in Massachusetts, Connecticut and Rhode
Island. Those with no red maple trees, i.e. baRedMaple of zero, are displayed in black.

2.3 Case study data and objective

The U.S. Forest Service tracks the biomass of hundreds of species of trees
on thousands of plots of land throughout the United States. We consider a
subset of data from the Forest Inventory Analysis composed of 608 unman-
aged and forested sites in Massachusetts, Connecticut and Rhode Island.2

library(qrjoint) # For joint quantile regression fitting

library(ggplot2) # For plotting results

library(gridExtra) # For arranging side-by-side plots

data(redmaple)

dat <- redmaple

While tree counts and cumulative basal area (ft2/acre) are recorded on
hundreds of species, we focus on basal area for a single species, the red
maple tree (Acer rubrum). Red maple is common among the 608 sites with
59 sites (9.7%) having no red maple trees (i.e. basal area equals zero) and
the remaining sites having a median basal area of 4.7 ft2/acre. A histogram
of all basal areas from the sample is shown in Fig. 2.1.

In addition to basal area, several covariates are available for each site:
• elev. Elevation of site, measured in feet.
• slope. Slope of site, measured in degrees.
• aspect. Aspect of site, measured in degrees proceeding from North

clockwise around a compass. For sites with zero or near-zero slopes,
aspect is recorded as 0. North is recorded as 360.

2 http://apps.fs.fed.us/fiadb-downloads/datamart.html.

http://apps.fs.fed.us/fiadb-downloads/datamart.html
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• region. EPA Level-III geographical region.
The first three covariates are continuous measures, and the fourth,

region, is categorical. We desire to build a model to understand the re-
lationships between these explanatory variables and red maple basal areas.
More specifically, we would like to gain direct inference not only on how
the predictors affect the mean or median response but also on how they
affect the upper and lower quantiles of the response distribution.

2.4 Fitting single covariate basal area models

For pedagogical reasons, we start with a model that uses a single covariate,
elevation (elev), to predict red maple basal area and compare to the more
widely recognised Tobit model. R’s AER package is used to obtain maximum
likelihood estimates for the Tobit model. Note that this tobit function sets
the left limit of the censored dependent variable to zero by default.

library(AER) # for Tobit regression fit

fit.tb1 <- tobit(baRedMaple ~ elev, data = dat)

summary(fit.tb1)

#>

#> Call:

#> tobit(formula = baRedMaple ~ elev, data = dat)

#>

#> Observations:

#> Total Left-censored Uncensored Right-censored

#> 608 59 549 0

#>

#> Coefficients:

#> Estimate Std. Error z value Pr(>|z|)

#> (Intercept) 6.321077 0.462592 13.664 <2e-16 ***
#> elev -0.003316 0.001864 -1.779 0.0752 .

#> Log(scale) 1.911352 0.030748 62.162 <2e-16 ***
#> ---

#> Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

#>

#> Scale: 6.762

#>

#> Gaussian distribution

#> Number of Newton-Raphson Iterations: 2
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#> Log-likelihood: -1889 on 3 Df

#> Wald-statistic: 3.165 on 1 Df, p-value: 0.075246

2.4.1 Joint quantile regression call
The qrjoint package contains an eponymous function which performs
a Bayesian parameter estimation of the generative model (2.2). Poste-
rior computation is done with the help of Markov chain Monte Carlo
(MCMC) over an unconstrained parameter space that offers a complete
reparameterisation of the original model. Likelihood score calculation is
done by discretising the quantile levels to a finite, dense grid of τ-values.
The function-valued parameters of the model, which are assigned indepen-
dent Gaussian process priors, are approximated by closely related finite-rank
predictive processes [16,3]. See [18] for more technical details.

The qrjoint function uses a data-formula specification similar to the lm

function from the stats package to build the design matrix X . The func-
tion performs all necessary data centering so that inference may proceed
anywhere within the convex hull of the data predictor space. The default
incr=0.01 provides estimates over a τ-grid at 0.01 resolution, i.e. 0.01,
0.02, 0.03, . . . , 0.98, 0.99, with slightly more dense grids in the tails; the
same grid is used in likelihood score computation. This resolution is suffi-
cient for our needs. Also sufficient is the default nknots=6, which dictates
the number of knots used in the finite-rank predictive process approxima-
tion. One may consider increasing nknots to allow for more waviness or
multimodality of the response distribution. While the likelihood compu-
tation scales well in nknots, the overall MCMC may take much longer to
mix when a larger nknots is used. The total number of parameters (after
reparameterisation and discretisation) is (p+1)*(nknots+1) + 3, where p is
the number of predictors (excluding intercept).

Several nondefault options are employed in the code that follows for the
basal area model. We explain our use of them here:
• Excess Zero as Censoring. We repurpose the censoring argument to iden-

tify observations that are truncated at zero. Within the vector, cens=2

indicates left censoring or left truncation and cens=0 indicates uncen-
sored observations.

• MCMC Initialisation. The par="RQ" option allows us to initialise our
regression coefficients in the MCMC chain to be close to the traditional
(τ independently estimated) quantile regression estimates.
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• ‘Base’ Distribution. The fbase argument specifies a prior guess for the
shape of the distribution at the centre of the covariate space. That prior
guess will be deformed to match the actual shape of the distribution;
however, the estimated tails are designed to retain the decay behaviour
of the prior guess. The options when modelling on the full real line,
albeit truncated to the nonnegative reals, are "logistic" or "t". We
use the "logistic" option because (1) we are primarily concerned with
estimation in the distribution’s bulk and do not desire to guarantee t-like,
power decay in the tails and (2) because it runs slightly faster than the ‘t’
option.

• MCMC Sampling and Thinning. The nsamp argument tells us how many
total samples to retain, while thin designates how often to retain the
MCMC sample. As the output objects can get large and the MCMC
chains can exhibit some autocorrelation, we choose to retain every 20th
sample. After running nsamp * thin = 500 * 20 = 10000 total iterations,
of which only 500 will be retained and displayed, we pause to assess the
state of the MCMC chain.
Even this simple model may take a minute or two to run.

set.seed(11111)

fit.qrj1 <- qrjoint(baRedMaple ~ elev, data=dat,

cens=ifelse(dat$baRedMaple==0,2,0),

par="RQ", fbase="logistic", nsamp = 500, thin = 20)

#> Initial lp = -3226.81

#> iter = 1000, lp = -1783.68 acpt = 0.21 0.12 0.16 0.16 0.07

#> iter = 2000, lp = -1784.07 acpt = 0.13 0.24 0.14 0.11 0.28

#> iter = 3000, lp = -1782.49 acpt = 0.13 0.15 0.16 0.18 0.22

#> iter = 4000, lp = -1782.23 acpt = 0.12 0.13 0.13 0.11 0.19

#> iter = 5000, lp = -1778.64 acpt = 0.11 0.14 0.16 0.13 0.14

#> iter = 6000, lp = -1778.55 acpt = 0.17 0.15 0.13 0.19 0.16

#> iter = 7000, lp = -1784.54 acpt = 0.16 0.17 0.13 0.12 0.16

#> iter = 8000, lp = -1784.02 acpt = 0.12 0.15 0.16 0.11 0.15

#> iter = 9000, lp = -1781.3 acpt = 0.13 0.14 0.15 0.16 0.13

#> iter = 10000, lp = -1782.77 acpt = 0.16 0.12 0.15 0.15 0.17

#> elapsed time: 49 seconds

2.4.2 MCMC progress and convergence assessment
The output prints, on the fly, the log posterior value at initialisation and
subsequently prints updates to the log posterior after each 10% of total



A vignette on model-based quantile regression: analysing excess zero response 35

iterations completed. The MCMC calculation utilises a blocked adaptive
Metropolis sampler [2] that places the model parameters into p+4 over-
lapping groups. At each update, acceptance rates for each block of the
adaptive metropolis sampler are also printed. Having not changed the de-
fault acpt.target option, we are looking for each block to approach the
default acceptance target of 0.15, which they are beginning to. The final
line of output gives the total run-time.

The summary function provides insight into the convergence of the
MCMC sampler. The more.details=TRUE option gives additional diagnos-
tic plots. The suite of plots created by the summary call are shown in Fig. 2.2.

summary(fit.qrj1, more.details=TRUE)

#> WAIC.1 = 3550.2 , WAIC.2 = 3550.29

Figure 2.2 MCMC diagnostics for qrjoint model fit.
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In Fig. 2.2, the ‘Fit trace plot’ shows that the chain has moved away
from its initial values and may be coming closer to a stable state. Here
and in the subplot labelled ‘Mixing over GP scaling’, we are looking for
‘fuzzy caterpillar’ plots indicating good mixing, as is typical in evaluating
MCMC trace plots. The GP scaling plot shows, for each βj curve, how
much correlation exists between its values at quantile levels 0.1 apart. These
proximity parameters are sampled from a discrete set of values over a fixed
range, so if we see posterior mass building at either an upper or a lower
boundary we may need to adjust the hyper parameters for lam to cover a
better range of values. The horizontal red (mid grey in print version) dashed
lines show prior 95% credible intervals on the proximity parameters.

The ‘Convergence diagnosis’ subplot displays P-values from Geweke
tests for convergence. The diagonal dashed line represents a Benjamini–
Hochberg adjustment for multiple testing across parameters (controlling
false discovery rate at 10%). Seeing parameters with P-values below the di-
agonal line, as we do here, is one indication that the MCMC chain needs
to run longer. The ‘Parameter correlation’ subplot gives a heat map of the
correlation among model parameters.

We use the update function to add an additional 500 draws to our
sample. The sampler maintains the thinning rate (every 20th observation)
specified in the original qrjoint call.

fit.qrj1 <- update(fit.qrj1, nadd=500)

summary(fit.qrj1, more.details=TRUE)

#> WAIC.1 = 3550.71 , WAIC.2 = 3550.75

The MCMC diagnostic plots run on the extended chain, shown in
Fig. 2.3, look better. The summary function prints two versions of the
Watanabe Akaike Information Criterion, which can be used to compare
models (lower WAIC indicates a better fit).

It is possible to run multiple MCMC chains and assess convergence with
associated multichain diagnostics, e.g. Gelman and Rubin, although we do
not do so here. In the qrjoint call, setting par equal to a numeric vector
of length equal to the total number of model parameters can override par’s
supported options and directly specify desired MCMC starting values.

To recap, 20000 total MCMC iterations have been run using the qr-

joint and update functions, and 1000 of those samples have been retained.



A vignette on model-based quantile regression: analysing excess zero response 37

Figure 2.3 Updated MCMC diagnostics for qrjoint model fit.

We will use the auxiliary functions’ default burn-in rates of burn.perc=0.5
to obtain posterior summaries (medians, 95% credible intervals, etc.) from
the second set of 500 retained samples.

2.5 Interpreting quantile regressions

2.5.1 Coefficient plots
The coef function returns posterior samples for intercept and slope pa-
rameters at all quantile levels matching the τ-grid used in model fitting. It
also returns, as estimates, posterior medians and the end points of the 95%
posterior credible intervals of those parameters. By default, the coef func-
tion also plots the regression coefficients across τ . We suppress plotting in
favour of constructing our own plots that also contain the estimated Tobit
parameters (Fig. 2.4).
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Figure 2.4 Coefficient estimates and 95% intervals across quantile levels for simple
basal area model.

tau <- round(fit.qrj1$tau.g[fit.qrj1$reg.ix],2)

coef.qrj1 <- coef(fit.qrj1, nmc = 500, plot = FALSE)

beta.qrj1 <- coef.qrj1$beta.est

finite <- !(tau%in%c(0,1))

p <- dim(beta.qrj1)[2]

beta.tb1 <- array(NA, dim(beta.qrj1), dimnames=dimnames(beta.qrj1))

beta.tb1[,"Intercept","b.med"] <- qnorm(tau, fit.tb1$coef[1],

fit.tb1$scale)

for (i in 2:p){

beta.tb1[,i,"b.lo"] <- confint(fit.tb1)[i,"2.5 %"]

beta.tb1[,i,"b.med"] <- fit.tb1$coef[i]

beta.tb1[,i,"b.hi"] <- confint(fit.tb1)[i,"97.5 %"]

}

varname <- dimnames(coef.qrj1$beta.samp)$beta

par(mfrow=c(1,2))

for(i in 1:p){

getBands(coef.qrj1$beta.samp[,i,], xlab=bquote(tau),

ylab=bquote(beta~.(varname[i])), bty=’n’)

abline(h=0)

matlines(tau[finite], beta.tb1[finite,i,], col="blue",

lty=c(2,1,2), lwd=1.5)

if(i==1) legend("topleft", c("Joint","Tobit"),

col=c("red","blue"), lty=1, lwd=2, bty=’n’)
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}

par(mfrow=c(1,1))

The estimates and intervals at τ = 0.5 correspond to median regressions,
whereas those at τ = 0.8 correspond to the 80th percentile regression, and
so on. When looking at these plots, three types of comparisons are useful.
We illustrate by interpreting the elev plot.

Comparisons to zero. Tobit’s slope estimates are constant for all parts of the
response distribution. Because the 95% confidence interval bands contain
zero, the Tobit regression might lead us to conclude that elev is not linearly
related to baRedMaple. The 95% intervals from the qrjoint fit, however,
do have nonzero coefficients. The positive bands in the τ-region of (0.1,
0.4) means that an increase in elevation is associated with increased basal
areas, but only for those low-to-mid quantile levels. When we consider the
upper quantiles, i.e. τ > 0.8, an increase in elevation is actually associated
with a decrease in red maple basal areas. These interpretations are similar to
traditional interpretations of a regression model; however, here we are able
to make inferential claims for all parts of the response distribution and not
just for the mean or median.

Comparisons between quantile levels, τ . The increasingly negative slopes for
elev across τ in the joint quantile regressions illustrate a differential effect of
elevation on basal area at different places in the response distribution. The
lower quantile levels have positive slopes, whereas the upper quantile levels
have negative slopes. This likely reflects a fanning of the data with larger
variance at small elev values and smaller variance at large elev values. In
this way, quantile regression can capture heterogeneity of variance. Tobit,
with its flat slopes across τ , is not capable of capturing heterogeneity of
variance or other types of differential effects.

Comparisons between methods. Finally, a visual comparison of interval es-
timates between methods at any given τ shows overlap or concordance
between the joint quantile regression and the Tobit regression in parts of
the lowest decile and for τ in (0.4, 0.95).

2.5.2 Quantile line plots
It may be instructive in this single variate case to plot the regression lines
for a few τ values.
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Figure 2.5 Quantile regression lines.

# Retrieve subset of tau-fitted lines

tau.use <- round(c(0.01, 0.05, seq(0.1,0.9,by=.1), 0.95,0.99),2)

tau.factor <- factor(tau.use, levels=rev(tau.use))

beta1 <- beta.qrj1[which(tau %in%tau.use),,"b.med"]

beta1 <- data.frame(Level=factor(rownames(beta1),

levels=levels(tau.factor)), beta1)

# Use quantile-fitted coefficients to add ablines to scatterplot

of data

p.dat <- ggplot() + geom_point(data=dat, aes(x=elev, y=baRedMaple),

col="#999999") + ylab("Red Maple Basal Area")

p.dat + geom_abline(data=beta1, aes(slope=elev, intercept=

Intercept, col=Level))

Fig. 2.5 shows that approximately 1% of the observations lie above the
0.99 quantile line, about 50% of the observations lie above the 0.5 line, etc.
Note that the regression lines do not cross within the range of the elev co-
variate, i.e. they obey the monotonicity constraint. Here the heterogeneity
of variance across elev is visible, and it makes sense that regression slopes
generally progress from positive to negative slopes as τ , the quantile level,
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is increased. Some lines extend below zero because the plotted lines are
estimates for the latent or nontruncated model.

The above comparisons were made for didactic purposes. Prior to inter-
preting coefficients, an assessment of the model assumptions is warranted.

2.6 Assessing model assumptions and making
improvements

After the assumption of independence, joint quantile regression has only
one other assumption: all effects can be explained as linear combinations of
the design matrix X . The Tobit model additionally assumes that the latent
responses are normally distributed with constant variance across all observa-
tions. A first instinct may be to turn to ‘residual’ diagnostics for evaluation
of these model assumptions, where residuals are traditionally defined as the
difference between an observed value and its predicted mean. Diagnostics
based on residuals may be sufficient when the (assumed) response distri-
bution can be summarised by its mean, as in the case of the Tobit model;
however, they are insufficient for joint quantile regression, which outputs a
conditional prediction that is an entire response distribution.

With estimated quantile functions available for the Tobit model and the
joint quantile regression model, diagnostics based on the probability inte-
gral transform are possible for both models. If the models are appropriate,
the estimated quantile levels for the observations, τ̂yi = Q̂−1(yi|xi), should
follow a uniform distribution.

2.6.1 Obtaining estimated quantile levels
Under the Tobit model, τ̂yi for yi > 0 is estimated using the normal
CDF, �((yi − xiβ̂)/σ̂ ). Under the joint quantile regression model, τ̂yi =
Q̂−1(yi|xi). The summary function carries out this inverse calculation by
interpolating the estimated quantile lines between τ-grid points. For ei-
ther model, if yi = 0, then τ̂yi can be taken as a random draw from
Unif (0, Q̂−1(0|xi)). Estimated quantile levels for each observation and each
draw of the MCMC sampler can be retrieved from the summary function for
qrjoint. The function that follows obtains the quantile levels, corrects them
under censoring (or in this case under zero-truncation) and summarises
them across posterior draws. We demonstrate this using the ‘Summary’ op-
tion.
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# Function to summarise posterior draws of tau_Y. When fit includes

# censored values, left-censored tau_Y are replaced with draw from

# Unif(0, tau_Y) and right censored tau_Y are replaced with draw

# from Unif(tau_Y,1)

#

# Inputs

# fit: qrjoint fit object

# plot: If TRUE, plot produces a histogram and qq-plot comparing

# to uniform distribution

# mcmc: Character string describing how to summarise over

# posterior draws. Options are

# "Summary" - takes mean of tau over posterior draws

# "One" - returns tau at a single random MCMC iteration

# "Many" - returns tau at all MCMC iterations

modfit.qrjoint <- function(fit, burn.perc=0.5, mcmc="Summary"){

invisible(capture.output(ql <- summary(fit, plot.dev=FALSE)$ql))

cens <- fit$cens; nsamp <- ncol(ql)

ql <- ql[, 1:nsamp > nsamp * burn.perc]

if(mcmc=="Summary") {

MCMC <- apply(ql, 1, mean)

if(!is.null(cens)){

MCMC[cens==2] <- runif(sum(cens==2),0, MCMC[cens==2])

MCMC[cens==1] <- runif(sum(cens==1), MCMC[cens==1], 1)

}

}

if(mcmc=="One"){

MCMC <- ql[,sample(1:ncol(ql),1)]

if(!is.null(cens)){

MCMC[cens==2] <- runif(sum(cens==2),0, MCMC[cens==2])

MCMC[cens==1] <- runif(sum(cens==1), MCMC[cens==1], 1)

}

}

if(mcmc=="Many") {

if(!is.null(cens)){

ql[cens==2,] <- runif(length(ql[cens==2,]),0, ql[cens==2,])

ql[cens==1,] <- runif(length(ql[cens==1,]), ql[cens==1,], 1)

}
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MCMC <- ql

}

invisible(MCMC)

}

set.seed(22222) # Censoring corrections perform stochastic

operation

dat$pfit.qrj1 <- modfit.qrjoint(fit.qrj1, mcmc="Summary")

dat$pfit.tb1 <- pnorm(dat$baRedMaple, mean=predict(fit.tb1),

sd=summary(fit.tb1)$scale)

dat$pfit.tb1[dat$baRedMaple==0] <- runif(sum(dat$baRedMaple==0),

0,dat$pfit.tb1[dat$baRedMaple==0])

We store them in the data frame containing the original data for conve-
nience when assessing assumptions of linearity.

2.6.2 Assessing overall fit
A PP-plot may be used to compare the estimated quantile levels to their
equivalent uniform probabilities.

p.qqtb1 <- ggplot() +

geom_qq(aes(sample=dat$pfit.tb1), distribution=stats::qunif) +

ylab("actual") + ggtitle("Tobit Model") +

geom_abline(intercept=0, slope=1)

p.qqqrj1 <- ggplot() +

geom_qq(aes(sample=dat$pfit.qrj1), distribution=stats::qunif) +

ylab("actual") + ggtitle("Joint QR Model") +

geom_abline(intercept=0, slope=1)

grid.arrange(p.qqtb1, p.qqqrj1, ncol=2)

In Fig. 2.6, the joint quantile regression lies close to the 45-degree line,
showing similarity to a uniform distribution and indicating good aggregate
model fit, while the Tobit model is decidedly nonuniform, indicating a
poor fit.
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Figure 2.6 Estimated quantile-level plots for assessing overall model fit.

2.6.3 Assessing linearity
The estimated quantile levels, τ̂yi , also provide a way to diagnose design ma-
trix misspecification and assess the assumption of linearity. At any given X ,
we expect the estimated quantile levels to be uniform. Therefore plotting a
covariate against τ̂yi and looking at any vertical cross-section, the estimated
data quantile levels should be uniform within the swath.

We illustrate two options for quantile-level diagnostic plots using the
joint quantile regression model. Scatter plots with mean trend gam/loess
lines are illustrative for diagnosing potential nonlinearities; trend lines
should lie close to a horizontal line at the constant value of 1/2. Violin
plots, which cut the continuous variables into quantile bins (here deciles)
and then display kernel density estimates within each bin can also assist in
diagnosing nonlinearity. These violin plots should look uniform or blocky
within each bin.

library(dplyr) # for binning into deciles

qlplot <- function(data, x, y, plot=TRUE){

if(is.numeric(data[,deparse(x)])){

data$bin <- factor(ntile(data[,deparse(x)],10)) # bin numeric

p.s <- ggplot(data, aes_q(x, y)) +

geom_point() + geom_smooth(se=F, method="loess")

p.v <- ggplot(data, aes_q(quote(bin), y)) + geom_violin() +

xlab(paste("Decile bins of",x))
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Figure 2.7 Covariate by estimated data quantile-levels plots for assessing linearity as-
sumption.

} else{

p.s <- ggplot(data, aes_q(x, y)) + geom_point()

p.v <- ggplot(data, aes_q(x, y)) + geom_violin()}

yax <- list(ylim(0,1), ylab("Estimated quantile level"))

if(plot) {grid.arrange(p.s + yax, p.v + yax, ncol=2)} else{

invisible(arrangeGrob(p.s + yax, p.v + yax, ncol=2))

}

}

qlplot(dat, x=quote(elev), y=quote(pfit.qrj1))

As shown in Fig. 2.7, the estimated data quantile levels plotted against
elev show slight nonlinearity; for low elevations the mean trend line bows
upward, away from zero, and the violin plot is somewhat top-heavy. The
bowing downward at high elevations is likely driven by a few outlying-in-x
elevation values and not a systematic departure from uniformity. The mostly
uniform densities in decile bins 9 and 10 help to confirm this.

While the information in these two plots is similar, the violin plots can
be helpful for consolidating sparse regions of the covariate space, e.g. with
outlying elev values, or for spreading out dense regions. Overall, the mean
trend line for elev does not depart egregiously from 0.5. Lacking some
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physically justified motive for a nonlinear elevation effect, some might rea-
sonably elect to keep this covariate in its linear form. For illustration, we
modify the design matrix by including a third-order b-spline for elev.

2.6.4 Model improvement
Using the quantile-level diagnostic plots of the previous section, we de-
duced that elevation’s effect on red maple basal areas may not be linear
and that our model might be improved by a b-spline transformation. As
was mentioned previously, the linear model can be compared to the spline
model using WAIC, which is calculated in qrjoint’s auxiliary summary func-
tion.

library(splines) # for b-splines

set.seed(33333)

fit.qrj2 <- qrjoint(baRedMaple ~ ns(elev,3), data=dat,

cens=ifelse(dat$baRedMaple==0,2,0),

par="RQ", fbase="logistic", nsamp = 2000, thin = 20)

summary(fit.qrj2, plot.dev=FALSE)

#> WAIC.1 = 3531.35 , WAIC.2 = 3530.85

The spline-model run-time is longer both because of the increase in
number of predictors and because more iterations were needed to reach
convergence; however, it seems to pay off. The WAIC has decreased from
≈ 3550 to ≈ 3531, indicating an improved fit with the elev spline. Also, the
quantile-level plots have less bowing near zero, as can be seen in Fig. 2.8.
If the nonlinear effect of elev were of specific interest, additional degrees
of freedom could be added to the b-spline basis until the practitioner is
satisfied with the uniformity of quantile-level plots or until WAIC indicates
overfitting. As our specific interest lies in the multiple regression model, we
leave off further model modifications for now.

set.seed(44444)

dat$pfit.qrj2 <- modfit.qrjoint(fit.qrj2, mcmc="Summary")

qlplot(dat, x=quote(elev), y=quote(pfit.qrj2))
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Figure 2.8 Covariate by estimated data quantile-levels plots after including b-spline.

2.7 Prediction and interpreting predicted responses

2.7.1 Quantiles for positive reals
We may desire to apply our fitted model to obtain predictions for a new
data set. When doing this, it is important to remember that the joint quan-
tile regression fit is only guaranteed to provide noncrossing quantile planes
within the convex hull of the data upon which the model is fit. The code
that follows uses the predict function to produce quantile line plots similar
to those originally made using coef.

# Define new dataset and perform prediction

pred.grid <- seq(min(dat$elev),max(dat$elev), length=50)

dat.new <- data.frame(elev=pred.grid, baRedMaple=999)

pred1 <- predict(fit.qrj1, newdata=dat.new)

dimnames(pred1) <- list(elev=pred.grid, Level=tau)

library(reshape) # for melting from wide to long for ggplot

pred1.long <- melt(pred1[,tau %in%tau.use])

pred1.long$Lev <- factor(pred1.long$Level,

levels=levels(tau.factor))

p.dat + geom_line(data=pred1.long,

aes(x=elev, y=value, col=Lev, group=Lev)) +

coord_cartesian(ylim=c(0,43)) + labs(col="Level")
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Alternately, we could build a new X matrix and get predictions through
the matrix multiplication Xβ. This method is preferred when predicting on
the spline model because it guarantees that the b-spline bases over the new
data are the same bases upon which the regression is fit.

# Get beta from coef, X from predict on spline object,

prediction from matrix mult

library(splines)

beta2 <- coef(fit.qrj2)$beta.est

splines <- ns(dat$elev,3)

Xnew2 <- cbind(1,predict(splines, dat.new$elev))

pred2 <- Xnew2%*%t(beta2[,,"b.med",drop=TRUE])

dimnames(pred2) <- list(elev=pred.grid, Level=tau)

pred2.long <- melt(pred2[,tau %in%tau.use])

# Plot quantile lines using continuous gradient for tau

our.palette <- hcl(h=seq(375,55,length=9), l=65, c=100)

s.lev <- scale_color_gradientn(limits=c(0,1), colors=our.palette)

p.quants <- p.dat + coord_cartesian(ylim=c(0,43)) + s.lev +

geom_line(data=pred2.long, aes(x=elev, y=value, col=Level,

group=Level))

The first plot of Fig. 2.9, created from the code above, shows that even
when there is more than one predictor, e.g. in this case three b-spline bases,
the quantile planes do not cross.

2.7.2 Probability of zero
We may also desire to know the probability of having no red maple trees at a
given site. These probabilities are equivalent to the probability of censoring
(truncation) and can be obtained under the joint modelling context. Using
the conditional quantile predictions for some x at every MCMC draw, we
obtain τ0 = Q−1(0|x), the quantile level corresponding to when the condi-
tional quantile equals zero, by linear interpolation between estimated grid
points. Summarising these values across draws produces posterior intervals
for the probability of having zero basal area at a site with given covariates,
P(zero). In this case with all predictors derived from a single covariate, we
are able to aggregate into one plot the effects of the three elev b-splines on
the probability of zero using the code that follows.
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Figure 2.9 Predictions for elevation spline model. Left: Quantile lines. Right: Zero prob-
abilities.

nsamp <- 500

coef2 <- coef(fit.qrj2, reduce=FALSE, nmc=nsamp)$beta.samp

tauplus <- round(fit.qrj2$tau.g,8)

# Probability of zero with error bars across elev

Q2 <- sapply(1:nsamp, function(f) Xnew2%*%t(coef2[,,f]),

simplify="array")

tau0 <- apply(Q2,c(1,3), function(f) approx(f, tauplus,0)$y)

prob0 <- as.data.frame(t(apply(tau0, 1, quantile,

prob=c(0.025, 0.5, 0.975))))

prob0$elev <- pred.grid

p.p0 <- ggplot(prob0, aes(x=elev)) + geom_line(aes(y=‘50%‘)) +

geom_ribbon(aes(ymin=‘2.5%‘, ymax=‘97.5%‘), alpha=0.3) +

ylab("P(zero)") +

geom_hline(yintercept=mean(dat$baRedMaple==0))

grid.arrange(p.quants, p.p0, ncol=2)

In the output plot (second plot of Fig. 2.9), we compare the zero
probability bands to the sample prevalence of zeroes, displayed as a black
horizontal line. Bands that are fully above (or fully below) the sample preva-
lence indicate an increase (or decrease) in zero probability for values in that
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range of elev. Here we conclude that lower elevations are less likely to have
red maple trees.

While estimating a given quantile or probability of zero is straight-
forward for any single observation’s set of covariates, creating multiple
regression analogues of the plots in Fig. 2.9 using two or more covariates
is more difficult. The functional-β-coefficient plots and the quantile-level
diagnostic plots translate seamlessly from a single covariate setting to a mul-
tiple regression setting.

2.8 Fitting multiple regression basal area models

2.8.1 Model terms, transformations and interactions
The four covariates that we are interested in exploring simultaneously in
a multiple, quantile regression setting are elev, region, aspect and slope.
Before starting, we compile a list of notes and questions to address during
modelling:
• Dealing with Directional Covariates. The covariate aspect is radial or

wrapping in nature, with values 360 and 1 being adjacent degree mea-
surements. A common way to treat radial data is to include both cos

and sin bases. This transformation makes aspect less unit-interpretable
(i.e. slope can no longer be interpreted as ‘a one unit increase in de-
grees corresponds to an x unit increase in basal area. . . ’) but more
interpretable in terms of cardinal directionality. For these data, a cos

transformation measures southerliness-to-northerliness (−1 to 1, respec-
tively), while a sin transformation measures westerliness-to-easterliness
(−1 to 1, respectively). Depending on sun and shade tolerance, some
trees prefer north or south, east or west facing slopes. Do red maple
trees?

• Partially Deterministic Relations Between aspect and slope. On a related
note, a site cannot face a direction unless it is sloped. The aspect co-
variate records ‘0’ for many sites that have zero or near-zero slopes. To
prevent these values from influencing the directional effect of aspect,
an indicator value can be added to let flat sites have their own adjusting
intercept.

• Interaction Effect. One may well suspect some interaction between slope

and aspect. For instance, the east-westerly effect on red maple basal
areas may be different for moderately sloped sites than for steeply sloped
sites. Is an interaction necessary for describing the quantiles of red maple
basal areas?
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Figure 2.10 Region may share some of the same effects on basal area as elevation.

• Categorical Covariate Encoding. The EPA Level-III region variable tran-
scends state boundaries to categorise sites into roughly similar geophys-
ical regions. In these data, there are only three regions: the Atlantic
Coastal Pine Barrens (13 sites), the Northeastern Coastal Zone (393
sites) and the Northeastern Highlands (202 sites). These regions may
stand as rough proxy for soil covariates such as sand, rock or clay com-
position, which are not included in the data but could potentially be
related to tree growth for a given species. By default, R will use the
Atlantic Coastal Pine Barrens as a reference category and code the other
two regions using indicator variables.

• Dependence Between Region and Elevation. Finally, the variables region and
elev are highly related (see Fig. 2.10), having different though overlap-
ping ranges of elevation per region. It would be interesting to know
if both variables are needed in the regression model or if the effect of
region on red maple basal areas subsumes the need for an elev effect or
vice versa.
We have created a model that includes all covariates along with the

necessary transformations and interactions to test for the effects listed.

set.seed(55555)

fit.qrj3 <- qrjoint(baRedMaple ~ slope*(I(cos(aspect*pi/180)) +

I(sin(aspect*pi/180))) +

I(aspect==0) + region + elev, data=dat,
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Figure 2.11 MCMC diagnostics for full qrjoint model, fit.qrj3.

cens=ifelse(dat$baRedMaple==0,2,0),

par="RQ", fbase="logistic", nsamp = 2000, thin = 20)

summary(fit.qrj3, more.details=TRUE)

#> WAIC.1 = 3455.15 , WAIC.2 = 3455.95

The plots of Fig. 2.11 give us some confidence that the MCMC sampler
is converging and that we are able to continue with our model diagnostics.

dat$pfit.qrj3 <- modfit.qrjoint(fit.qrj3, mcmc="Summary")

p.ql1 <- qlplot(dat, x=quote(slope), y=quote(pfit.qrj3),

plot=FALSE)
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p.ql2 <- qlplot(dat, x=quote(elev), y=quote(pfit.qrj3),

plot=FALSE)

p.ql3 <- qlplot(dat, x=quote(aspect), y=quote(pfit.qrj3),

plot=FALSE)

p.ql4 <- qlplot(dat, x=quote(region), y=quote(pfit.qrj3),

plot=FALSE)

grid.arrange(p.ql1, p.ql2, p.ql3, p.ql4, ncol=1)

2.8.2 Assessing model assumptions
The uniformity across quantile-level plots (Fig. 2.12) is sufficient that we
feel confident in interpreting these regression parameters; however, there
may yet be some room for improvement. The elevation variable exhibits
similar bowing in its mean trend line as that seen in the single variate, el-
evation regression. Perhaps the model could be improved by reintroducing
the b-spline for elevation? We register this modification for future model
iterations but first take a look at the coefficients from the model.

coef(fit.qrj3, nmc = 500, plot=TRUE, show.intercept=FALSE)

2.8.3 Interpreting coefficients
The coefficient plots are shown in Fig. 2.13. A description of the effects
follows here.
• The reference intercept distribution (not plotted) corresponds to an

Atlantic Coastal, sea-level site that has some directional aspect, yet is
supposedly flat. Since this site only exists in theory, the intercept is not
worth interpreting.

• The indicator variable for aspect==0 is nonzero for most τ and thereby
performs an adjustment to the reference intercept distribution. Without
an interpretable reference intercept, this adjusted intercept distribution
will not be interpretable either.

• The two categorical region indicators have 95% interval bands fully
above zero for all τ ; we can say that a northeastern region site has basal
areas about 6 ft2/acre greater than an Atlantic Coastal site with otherwise
equivalent covariates.

• It seems that both region and elev have effects, because the slope func-
tion of elev is constant above zero for all but the highest and lowest τ .
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Figure 2.12 Quantile-level diagnostic plots from full regression model.

For quantile levels with bands fully above zero, we would conclude that
increased elevation corresponds to greater red maple basal areas, at least
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Figure 2.13 Joint quantile regression coefficients from full regression model.

within the range of elev considered (0 ft to 682 ft). Although a coeffi-
cient of 0.004 seems small, the cumulative effect over the sample range
could amount to a 0.004*682 = 2.7 difference in basal areas. Contrast-
ing this positive, τ-flat effect to the effect found in the linear-elevation
model, the quantiles in the upper portion of the response distribution
must be explained by some newly included variable because we no
longer see negative coefficients for large τ .

• The coefficient for slope shows a differential effect, growing increas-
ingly negative as τ increases. One can conclude that steeper sites have
smaller red maple basal areas (bands below zero for τ greater than about
0.3). The decreasing differential effect also points to a decrease in vari-
ance of basal area as slope increases, i.e. heterogeneity of variance.

• Neither the marginal cos nor sin effect for aspect is significantly differ-
ent from zero. Perhaps we should have anticipated this since these terms
correspond to cardinal-direction effects when slope==0, and as we said
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previously, aspect only has meaning when slope is nonzero. In future
model iterations, leaving these marginal variables out will have the effect
of fixing them equal to zero.

• The slope:sin(aspect) term has a negative coefficient, pointing to an
interaction between slope and the west–east variable for quantile levels
τ > 0.3. We would like to understand this interaction better.

2.8.4 Understanding marginal and interaction effects
To understand the direction and magnitude of an interaction effect we
predict over a data set in which the interacting covariates have been varied
over some interpretable range (being careful not to extrapolate out of the
convex hull created by the original data) and the remaining covariates have
been fixed. Plots are then made of the predicted quantiles across the varied
covariates for select τ to visualise their interaction effect. This technique
can also be used to plot a single variable’s marginal effect, but it is especially
helpful when trying to understand interactions.

To tease out the slope-by-aspect interaction, we vary slope between
0 and 50 degrees and aspect between 0 and 360 degrees, while arbitrarily
fixing region=="NE Coastal" and elev==median(elev).

newdat <- expand.grid(slope=seq(0,50,by=5),

aspect=seq(0,360,length=9)[-1],

elev=median(dat$elev),

region=factor("NE Coastal", levels=levels(dat$region)),

baRedMaple=999)

newdat$cos <- round(cos(newdat$aspect*pi/180),2)

newdat$sin <- round(sin(newdat$aspect*pi/180),2)

pred3 <- as.data.frame(predict(newdata=newdat, fit.qrj3))

# default summary is posterior median

tau0 <- apply(pred3, 1,

function(f) approx(f, seq(0,1,length=101), 0)$y)

pred <- cbind(newdat, pred3, tau0)

# Makes nicer radial plots when 0 and 360 in data.

Not true meaning of/prediction for aspect=0

pred.north <- pred[pred$aspect==360,]

pred.north$aspect <- 0
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pred <- rbind(pred.north, pred)

plotrad <- function(y, ylabel){

slp <- quote(slope); asp <- quote(aspect); qsin <- quote(sin);

qcos <- quote(cos)

p1 <- ggplot() +

geom_line(data=pred, aes_q(x=asp, y, group=slp, col=slp)) +

scale_x_continuous(breaks=c(90,180,270,360))

p2 <- ggplot() +

geom_line(data=pred, aes_q(x=asp, y, group=slp, col=slp)) +

coord_polar() +

scale_x_continuous(breaks=c(45,90,135,180,225,270,305,360),

labels=c("NE","E","SE","S","SW","W",

"NW","N"))

p3 <- ggplot() +

geom_line(data=subset(pred, cos>=0),

aes_q(x=qsin, y, group=slp, col=slp)) +

geom_line(data=subset(pred, cos<=0),

aes_q(x=qsin, y, group=slp, col=slp))

p4 <- ggplot() +

geom_line(data=subset(pred, sin>=0),

aes_q(x=qcos, y, group=slp, col=slp)) +

geom_line(data=subset(pred, sin<=0),

aes_q(x=qcos, y, group=slp, col=slp))

tmp <- ggplot_gtable(ggplot_build(p1)) # Only print one

guide box

legend <- tmp$grobs[[which(sapply(tmp$grobs,

function(x) x$name) == "guide-box")]]

addend <- list(theme(legend.position="none"), ylab(ylabel))

grid.arrange(arrangeGrob(p1 + addend, p2 + addend,

ncol=2, widths=c(4,5)),

arrangeGrob(p3 + addend, p4 + addend, legend,

ncol=3, widths=c(4,4,1)))}

plotrad(quote(‘0.5‘), "Median basal area")
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Figure 2.14 Marginal predicted medians over varying slope and aspect.

Fig. 2.14 shows a suite of median regression plots, each intended to
aid in interpreting the slope by radial aspect interaction. Without adding
error bars, which would make these already busy plots even more difficult
to interpret, these plots can only suggest the magnitude and direction of
the effects on red maple basal areas.

In the first plot, by picking a particular slope we generally see that the
median basal area is greater for aspect near 270 (west) than it is for aspect

near 90 (east); however, the differential is more pronounced the steeper the
slope of the site is. Another way to think of the interaction is that there
are bigger decreases in median basal areas when comparing an eastward
facing 50-degree-sloped site to its mostly flat counterpart than there are
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when comparing a westward facing 50-degree-sloped site to its mostly flat
counterpart.

This interaction plays out in the second, radial plot by having near-
circles (no directional effect) for near-flat slopes, but then relatively bigger
basal areas for westerly facing sites as slope increases.

In the third plot, the interaction shows up as differently sloped lines or
‘rings’ for different slope values across the sin(aspect) variable.

The fourth plot does not show differently sloped marginal ‘rings’ across
cos(aspect) because that interaction effect is nonsignificant.

Here we arbitrarily picked the median quantile for illustration. If we
were interested in the interaction effect on the 99th percentile we could
use the code below to get a similar set of plots.

plotrad(quote(‘0.99‘), "99th percentile basal area")

2.8.5 Understanding effects on probability of zero
Perhaps more interesting than looking at additional τ-predicted quantiles
would be to see the effect of the covariates on the probability of having
zero basal area. These can be found as extensions of the marginal or inter-
action predictions from the previous section. We illustrate using the slope

by trig-transformed aspect interaction, repurposing our custom function
for use on the zero probabilities.

For a ‘quick-and-dirty’ approximation, we find the zero probabilities
by interpolation over the already summarised pred3 array. To include error
bands around our zero probabilities, we would need to back up a step and
get predicted values for each iteration of the MCMC sampler, interpolate
to find the zero probabilities and then summarise, as laid out in Section 2.5.

plotrad(quote(‘tau0‘), "Prob(0)")

Directionally, the plots of Fig. 2.15 seem to tell a similar story to the
median interaction plots; east facing sites are more likely to have zero basal
areas than similarly sloped west facing sites. We interpret these cautiously
though, lacking appropriate error bands to quantify our uncertainty and
definitively declare the probabilities different than the sample prevalence of
zeroes.

2.8.6 Further model refinement and comparison
By comparing WAIC, we see that the multiple regression fit fit.qrj3 is a
better fit than fit.qrj2 of the simple quantile regression section. Seeking
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Figure 2.15 Marginal probability of zero over varying slope and aspect.

an even better fit, we make several refinements to the multiple regression
model.

First, we add the b-spline on elevation that we used in the single covari-
ate model, hoping to straighten out the quantile levels for that covariate.
And second, we drop the marginal transformed aspect covariates from the
model. Usually, dropping a nonsignificant main effect from a model when
the interaction is significant and retained is not advocated; however, in this
application we have a scientific justification.

For related but slightly different reasons, dropping part of a radial
transformation is not usually advocated; however, in this application the
covariate that corresponds to the north–south direction does not show a
significant effect, and the inclusion of the east–west covariate could be jus-
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tified under its own ecological moorings. We compare two models: one
that has the nonsignificant cos(aspect):slope effect retained and one that
drops it from the model.

library(splines)

set.seed(66666)

fit.qrj4 <- qrjoint(baRedMaple ~ slope +

slope:I(sin(aspect*pi/180)) +

slope:I(cos(aspect*pi/180)) +

I(aspect==0) + region + ns(elev,3),

data=dat, cens=ifelse(dat$baRedMaple==0,2,0),

par="RQ", fbase="logistic", nsamp = 2000, thin = 20)

summary(fit.qrj4, plot.dev=FALSE)

#> WAIC.1 = 3446.18 , WAIC.2 = 3445.82

library(splines)

set.seed(77777)

fit.qrj5 <- qrjoint(baRedMaple ~

slope + slope:I(sin(aspect*pi/180)) + I(aspect==0) +

region + ns(elev,3), data=dat,

cens=ifelse(dat$baRedMaple==0,2,0),

par="RQ", fbase="logistic", nsamp = 2000, thin = 20)

summary(fit.qrj5, plot.dev=FALSE)

#> WAIC.1 = 3442.22 , WAIC.2 = 3442.57

Here we see that the WAIC is improved by the addition of the elevation
b-spline and by dropping the marginal cos and sin effects. Also we see that
WAIC improves slightly when cos(aspect):slope is also dropped from the
model.

These models, fit on ~600 observations and <10 predictors, can each
take 10 minutes or so to run, depending on computing resources. Mod-
els run on ~2000 observations and a similar number of predictors can
take an hour to reach convergence and collect adequate samples from the
MCMC chain. We see that model building and comparison for joint quan-
tile regression is possible on moderately sized data sets and yields rich,
interpretable and distribution-free results; however, it requires some time
commitment for computing and interpretation. We suggest these methods
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to the practitioner who is willing to invest their time to achieve such rich,
distribution-free results, but not to the casual user.

2.9 Conclusions and final remarks

In this chapter we have illustrated how joint quantile regression, as imple-
mented in the qrjoint R package, can be used to carry out a model-based
regression analysis of a zero-inflated but otherwise positive continuous re-
sponse. Joint quantile regression is able to model the continuous response
distribution with few distributional assumptions, making it more broadly
applicable than Tobit regression. The censoring or latent-variable construct
is only appropriate for modelling excess zero values when the same mech-
anisms that drive small-response values also drive zero-response values. We
believe that to be reasonable in the case of the basal area case study.

We have shown how the quantile planes produced by the joint quantile
regression obey the appropriate monotonicity constraints, something that
cannot be said for traditional quantile regression methods. We have illus-
trated via a case study how to interpret the coefficient estimates obtained
from a joint quantile regression. We also introduced visual diagnostics based
on the probability integral transform that allow us to assess overall model
fit and linearity assumptions, pointing us to areas where our design matrix
could be refined. These diagnostics are not available for independently esti-
mated quantile regressions, and therefore represent a valuable new tool for
model refinement in the quantile regression context.

Additionally, by utilising the generative nature of our joint quantile
regression model, we not only adjust for censoring but also make it a promi-
nent inferential objective. For our case study, observing zero red maple basal
area can be a phenomenon of independent scientific interest. The proba-
bility of this event, measured as τ0(x) = Q−1(0|x), can only be calculated
by inverting the quantile function Q(τ |x) – which necessitates obtaining
noncrossing, joint estimation of the function at all quantile levels. Such es-
timates are hard to obtain from an ensemble of single quantile-level quantile
regressions.

We have approached this problem primarily from the perspective of
inference on regression intercept and slopes, viewed as unknown functions
of the quantile level. However, we have also illustrated elementary tools for
prediction, including how-tos for estimating the probability of zero when
data are left-truncated at zero. If prediction were the primary goal, we
could train models on a subset of data and compare observed basal areas
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to the predictions on the held-out data. Comparison between qrjoint-fit
models can be made on quantile predictions by using the check-loss metric
and/or on the probability of zero by maximising the area under a receiver
operating characteristic curve, depending on the focus of prediction.
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3.1 Introduction

Ordinal data arise frequently in the social sciences, for instance, survey re-
spondents often assign ratings on ordinal scales (such as ‘agree’, ‘neutral’
or ‘disagree’) to a set of questions. The relationship between the ordinal
responses and other respondent characteristics are typically of interest. The
environmental sciences also represents a broad area of application for ordinal
regression models. Physical measurements might be recorded on a discrete
scale, even though they are truly continuous. For example, in the data set
ozone available through R [49], ozone concentration is recorded along
with wind speed, radiation and temperature. While in this example ozone
concentration is continuous, it is possible to imagine it being recorded as
Flexible Bayesian Regression Modelling
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Figure 3.1 Ordinal ozone concentration versus radiation, temperature and wind speed.

simply ‘low’, ‘medium’ and ‘high’, where low might be defined as concen-
trations below 50 parts per billion (ppb) and high as concentrations above
100 ppb. In this application, the relationships between ordinal ozone con-
centration and the other environmental covariates, displayed in Fig. 3.1, are
of interest.

As illustrated by the ozone data example, which we will refer to
throughout this chapter, a natural way to model ordinal data is to envision
the ordinal variable as representing a discretised version of an underlying
latent continuous random variable. When a normal distribution is assumed
for the latent variable this results in the commonly used ordinal probit
model (e.g. [34,1]).

With multiple correlated ordinal variables, which can arise for instance
when survey respondents answer multiple questions on an ordinal scale,
a multivariate normal distribution can be used. This allows for inferring
the relationship between the ordinal variables and results in a multivariate
ordinal probit model [9].

Under the probit model for a single ordinal response Y with C cat-
egories and covariate vector x, Pr(Y ≤ m | x) = �(γm − xTβ), for m =
1, . . . ,C. Here, −∞ = γ0 < γ1 < · · · < γC−1 < γC = ∞ are cut-off points
for the response categories, where typically γ1 = 0 for identifiability, and
�(·) is the standard normal cumulative distribution function (CDF). Work-
ing in a Bayesian framework, [1] have shown that posterior simulation is
greatly simplified by augmenting the model with latent variables. In par-
ticular, assume that the ordinal response Y arises from a latent continuous
response Z, such that Y = m if and only if Z ∈ (γm−1, γm], for m = 1, . . . ,C,
and Z | β ∼ N(xTβ,1), which yields Pr(Y = m | x) = ∫ γm

γm−1
N(z | xTβ,1)dz,

where N(z | μ,σ 2) denotes a normal density function evaluated at z with
mean μ and standard deviation σ .
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The multivariate probit model for binary or ordinal responses gen-
eralises the probit model to accommodate correlated ordinal responses
Y = (Y1, ...,Yk), where Yj ∈ {1, ...,Cj} for j = 1, ...,k, using a multivariate
normal distribution for the underlying latent variables Z = (Z1, ...,Zk). To
obtain an identifiable model, restrictions must be imposed on the covari-
ance matrix � of the multivariate normal distribution for Z; for example,
it may be restricted to be a correlation matrix. This yields challenges in
developing an effective inferential algorithm for estimation of this model.
Additionally, implementing the probit model (with either univariate or
multivariate responses) requires estimation for the cut-off points, which
are typically highly correlated with the latent responses [9,29,8].

The assumption of normality on the latent variables is restrictive, es-
pecially for data which contain a large proportion of observations at high
or low ordinal levels and relatively few observations at moderate levels. As
a consequence of the normal distribution shape, there are certain limita-
tions on the effect that each covariate can have on the marginal probability
response curves. In particular, Pr(Yj = 1 | x) and Pr(Yj = Cj | x) are mono-
tonically increasing or decreasing as a function of covariate x, and they
must have the opposite type of monotonicity. The direction of monotonic-
ity changes exactly once in moving from category 1 to Cj (referred to as the
single crossing property). In addition, the relative effect of covariates r and
s, i.e. the ratio of ∂Pr(Yj = m | x)/∂xr to ∂Pr(Yj = m | x)/∂xs, is equal to the
ratio of the rth and sth regression coefficients for the jth response, which
does not depend on m or x. That is, the relative effect of one covariate to
another is the same for every ordinal level and any covariate value [7].

To relax these assumptions, we turn to Bayesian nonparametric den-
sity regression modelling. In particular, our approach uses a nonparametric
mixture model for the joint distribution of the covariates and latent re-
sponses which yields general inference for ordinal regression relationships
and other functionals of the conditional response distribution. A practi-
cally important feature of this nonparametric modelling framework is that
it can be applied with fixed cut-off points for the response categories, thus
resulting in more flexible inference than parametric probit models, which
can be implemented with simpler and more efficient posterior simulation
methods.

The rest of this chapter is organised as follows. In Section 3.2, we pro-
vide a general overview of Bayesian nonparametric density regression, in
the process introducing basic background on Dirichlet process (DP) pri-
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ors and DP mixture models. Section 3.3 presents the ordinal regression
methodology, including the mixture model formulation (Section 3.3.1),
details on prior specification and posterior inference (Section 3.3.2), il-
lustrations using the ozone data (Section 3.3.3) and a discussion of related
work and extensions of the model (Section 3.3.4). Finally, Section 3.4 sum-
marises the main points of this chapter.

3.2 Bayesian nonparametric density regression

There is by now a rich literature on Bayesian regression modelling that
utilises nonparametric priors. Most of the work in this literature revolves
around the traditional regression setting which focuses on a functional of
the response distribution (mean, median, mode) to incorporate the rela-
tionship with covariates. More specifically, with a univariate continuous
response Z and covariate vector x, the traditional model formulation for
the responses becomes zi = h(xi) + εi, where h(x) is the regression function
and the εi arise, typically conditionally i.i.d., from an error distribution.
The two main trends in the literature involve semiparametric modelling,
either placing a nonparametric prior on the space of regression functions
with a parametric error distribution or specifying the regression function
parametrically (typically, in a linear regression form h(x) = xTβ) and using a
nonparametric prior for the space of error distributions. There is a wide va-
riety of methods for either of these two directions, in terms of the different
nonparametric prior models that have been developed, additional structure
for the regression function (e.g. smoothness or monotonicity) or the error
distribution (e.g. unimodality) and computational techniques for inference
and prediction, as well as with respect to the applications explored. A more
detailed review is beyond the scope of this chapter, but we refer to [19],
[24], [36] and [39] for reviews of some of the methods.

Here, we focus on a different approach to the regression problem which
builds from a nonparametric mixture model for the joint distribution of
response(s) and covariates such that inference for regression relationships
arises from the conditional response distribution. This approach provides
the foundation for the ordinal regression methodology discussed in Sec-
tion 3.3. In this section, we review it in a more generic setting, after
introducing the DP and DP mixture models [18,2], the class of nonpara-
metric priors for random densities underlying the methods reviewed in this
chapter.
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3.2.1 Dirichlet process priors and Dirichlet process mixtures
The DP was developed by [18] as a prior probability model for spaces of
distributions (defined on a particular sample space X ); indeed, it is the
first such prior introduced in the literature. It is defined as a stochas-
tic process with realisations that are (random) probability measures, built
from Dirichlet finite-dimensional distributions with specific structure for
the Dirichlet distribution parameters that ensures consistent extension to
a stochastic process. The DP is characterised by two parameters: a positive
scalar parameter, α, and G0 ≡ G0(ψ), a distribution (on X ) specified up to a
number of parameters ψ . We write G ∼ DP(α,G0) to denote that the ran-
dom distribution G follows a DP prior. For any (measurable) subset B of X ,
E(G(B)) = G0(B) and Var(G(B)) = (α +1)−1G0(B){1−G0(B)}. Therefore,
G0 is a centering distribution for the DP whereas α can be interpreted as a
precision parameter. The larger α is, the closer a DP realisation G is to G0;
as α gets smaller, the variability in the DP realisations increases, and they
also become more discrete, concentrated on fewer effective atoms.

The discreteness of DP realisations is evident from the DP constructive
definition [51], which is also key for the study of other model proper-
ties and for posterior inference. According to this definition, a realisation
G from DP(α,G0) is (almost surely) of the form G = ∑∞

l=1 plδϑ l . Here,
δa denotes a point mass at a, the atoms ϑ l are i.i.d. realisations from G0

and the weights are determined through stick breaking from beta-distributed
random variables: p1 = v1, and pl = vl

∏l−1
r=1(1 − vr), for l = 2,3, . . . , with

vl
i.i.d.∼ Beta(1, α). Moreover, {ϑ l : l = 1,2, ...} and {vl : l = 1,2, ...} are inde-

pendent sequences of random variables.
The DP is more commonly used as a nonparametric prior for distri-

butions in later stages of hierarchical models, for example in DP mixture
models, f (u | G) = ∫

k(u | θ)dG(θ), where k(· | θ) is the density for the mix-
ture kernel family of distributions with parameters θ and G ∼ DP(α,G0).
For data {ui : i = 1, ...,n} assumed to arise i.i.d., given G, from f (u | G),
the model can be expressed hierarchically by introducing a set of latent
mixing parameters, {θ i : i = 1, ...,n}, associated with the ui. More specifi-

cally, the hierarchical model formulation is given by ui | θ i
ind.∼ k(ui | θ i), and

θ i | G
i.i.d.∼ G, for i = 1, ...,n. The model is typically completed with hyper-

priors for the DP precision parameter α and for (some of) the parameters
of the centering distribution G0.

The DP mixture model setting can be very versatile as the kernel dis-
tribution may be univariate or multivariate, including continuous and/or
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discrete components. In this context, the discreteness of the DP is an asset
as it allows ties in the mixing parameters, resulting in a flexible shape for the
DP mixture density f (u | G). In fact, using the DP constructive definition,
the model can be equivalently written as f (u | G) = ∑∞

l=1 plk(u | ϑ l), that is,
a discrete countable mixture of kernel densities with mixture weights given
by the DP stick breaking weights.

DP mixture models combine the appealing features of mixture mod-
elling with strong theoretical properties of nonparametric priors, such as
full support (informally, the capacity to place positive prior probability on
arbitrarily small neighbourhoods of any distribution) and posterior con-
sistency. For a detailed account of theoretical properties for DP and DP
mixture priors, we refer to [21]. Therefore, DP mixtures have become very
popular in the Bayes nonparametrics literature and they have been widely
explored for applications in various fields. It is thus not surprising that
posterior simulation methods for DP mixture models have been exten-
sively investigated. Markov chain Monte Carlo (MCMC) computational
approaches include (i) algorithms that sample from the marginal posterior
distribution of the mixing parameters that arises after marginalising G over
its DP prior (e.g. [17,33,41]), with full inference available by additional
sampling from the conditional posterior distribution of G [20]; (ii) blocked
Gibbs samplers based on truncation approximations to G [26,25]; (iii) retro-
spective sampling techniques [45]; and (iv) slice sampling methods [59,30].
The more recent literature (both in statistics and machine learning) actively
explores computational inference methods to scale DP mixture models to
large amounts of data. Such methods go beyond MCMC and typically in-
volve variational algorithms; two of the earlier examples are [6] and [63].
Details for one of the MCMC methods (the blocked Gibbs sampler) are
given in Section 3.3.2 in the context of the ordinal regression model.

3.2.2 Dirichlet process mixture modelling for density
regression

For simpler notation and to fix ideas, consider a univariate continuous
response, Z, and a p-dimensional vector of covariates, x. (The method-
ology can be applied to multivariate responses and, indeed, this is how it is
discussed in Section 3.3 in the ordinal regression setting.) For problems in-
volving random covariates, a natural approach to nonparametric regression
is to estimate the joint response covariate density, f (z,x), and the marginal
covariate density, f (x), and obtain regression estimates from the conditional
response density, f (z | x). This density regression approach (also referred
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to as ‘implied conditional regression’ or ‘curve fitting’) dates back at least
to [40] and [61], where kernel smoothing estimation methods were used.
Alternatively, a model-based, nonparametric framework can be built us-
ing Bayesian density estimation through nonparametric mixture models for
f (z,x). The first reference in that direction is [38], where DP mixtures of
multivariate normal densities were used. The nonparametric mixture mod-
elling approach to density regression is attractive because of the flexibility
of well-established prior probability models for f (z,x) and the model-based
inferential framework that enables full uncertainty quantification for any
functional of the conditional response distribution.

Consider a generic DP mixture model for the joint response covariate
density,

f (z,x) ≡ f (z,x | G) =
∫

k(z,x | θ)dG(θ), G | α,ψ ∼ DP(α,G0(ψ)),

where k(z,x | θ) is an appropriate kernel density. Using the DP construc-
tive definition with the notation of Section 3.2.1, the conditional response
density can be written as

f (z | x,G) = f (z,x | G)

f (x | G)
=

∑∞
l=1 pl k(z,x | θ l)∑∞

l=1 pl k(x | θ l)
=

∞∑
l=1

ωl(x)k(z | x, θ l)

where ωl(x) = pl k(x | θ l)/{∑∞
r=1 pr k(x | θ r)}. Hence, the conditional re-

sponse density admits a representation as a mixture of the conditional
response kernel densities with covariate-dependent mixture weights. Such
weights allow for local adjustment over the covariate space, thus enabling
general shapes (tail, skewness and modal behaviour) for the response dis-
tribution across covariate values. Similar expressions can be derived for
other linear functionals of the response distribution. In particular, the mean
regression functional is given by E(Z | x,G) = ∑∞

l=1 ωl(x)E(Z | x, θ l). In
general, (almost sure) finiteness of E(Z | x,G) can be verified through suf-
ficient conditions that involve the DP mixture kernel and G0; see e.g. [47].
In the case of a multivariate normal mixture kernel, E(Z | x, θ l) is a lin-
ear regression function, and thus the mixture mean regression function,
E(Z | x,G), is a locally weighted mixture of linear regressions which allows
estimation of nonlinear regression relationships. Here, it is instructive to
draw the contrast with semiparametric mean regression models that target
either the mean regression function or the error distribution. The non-
parametric mixture density regression approach can model both nonlinear
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regression functions and nonstandard shapes for the response distribution,
thus offering a flexible framework for the general regression problem.

The specification of the DP mixture kernel, k(z,x | θ), is typically
driven by the type of response and covariate variables in the particular appli-
cation, as well as by computational considerations. A common choice is the
multivariate normal density, which can handle (possibly after transforma-
tion) continuous variables for the response and covariates. As described in
Section 3.3.1, the normal kernel density can also accommodate ordinal re-
sponses through latent continuous variables, and this modelling strategy can
be further utilised for ordinal covariates. More generally, the kernel can be
built from a density for the covariates, k(x | θ1), and a parametric regression
model, k(z | x, θ2), where θ = (θ1, θ2). The general form can be simplified
by reducing k(z | x, θ2) to a marginal density k(z | θ2) for the response. The
full product kernel form involves the further simplification that assumes in-
dependence in the kernel distribution for the covariates. For problems with
a moderate number of covariates, mixture kernels with partial/full indepen-
dence structure result in more efficient posterior simulation by reducing the
number of mixing parameters, but they may limit inferential flexibility. Al-
though mixing over parameters of a product kernel induces dependence
in the DP mixture distribution, there is an impact on model structure for
regression functionals. For instance, if k(z,x | θ) = k(x | θ1)k(z | θ2), the
mean regression function becomes

∑∞
l=1 ωl(x)E(Z | θ l), where the kernel

response means no longer depend on the covariates. This form can still un-
cover nonlinear regression relationships through the covariate-dependent
weights, although this will typically occur at the expense of estimating a
larger number of effective mixture components.

The density regression approach is based on the notion of a joint model
for the response and the covariates, and it is thus meaningful for problems
with random covariates. As discussed in [38], applying it to nonrandom
covariates introduces artificial terms into the likelihood; in the same spirit,
modelling only the response distribution in the presence of random co-
variates omits relevant likelihood terms. The main practical limitation of
this modelling approach is that it becomes prohibitive for problems with a
relatively large number of covariates (say, more than 20) as the sample sizes
typically available are not sufficient for effective estimation of the rapidly
increasing number of parameters, especially if one insists on general mix-
ture kernels. However, the methodology is appealing for several important
applications in the biological, environmental and social sciences involving
a small to moderate number of random covariates.
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Section 3.3.4 reviews relevant applications of DP mixture models for
problems with categorical responses. In addition, variations and exten-
sions of the DP mixture density regression model discussed here have been
applied to functional data analysis [50], quantile regression [55], Markov
switching regression [54] and mean residual life regression [47]. Moreover,
the modelling framework has been explored for fully nonparametric in-
ference for marked nonhomogeneous Poisson processes [53,56,62]. Finally,
modifications and alternatives to the DP prior for the mixing distribution
have been studied in order to control clustering more effectively; see e.g.
[37], [46], [58] and [48].

3.3 Mixture modelling for ordinal responses

3.3.1 Modelling approach
Suppose that k ordinal categorical variables are recorded for each of n
individuals, along with p continuous covariates, so that for individual i
we observe a response vector yi = (yi1, . . . ,yik) and a covariate vector
xi = (xi1, . . . ,xip), with yij ∈ {1, . . . ,Cj} and Cj > 2. Introduce latent con-
tinuous random variables zi = (zi1, . . . ,zik), i = 1, . . . ,n, such that yij = l if
and only if γj,l−1 < zij ≤ γj,l, for j = 1, . . . ,k and l = 1, . . . ,Cj. For reasons
previously mentioned, we focus on building a model for the joint density
f (z,x), which is a continuous density of dimension k + p, which implies a
model for the conditional response distribution f (y | x).

To model f (z,x) in a flexible way, we use a DP mixture of multivariate
normals model, mixing on the mean vector and covariance matrix. We

assume (zi,xi) | G
iid∼ ∫

N(zi,xi | μ,�)dG(μ,�), and we place a DP prior on
the random mixing distribution G. The hierarchical model is formulated
by introducing a latent mixing parameter θ i = (μi,�i) for each data vector,
i.e.

(zi,xi) | θ i
i.n.d.∼ N(μi,�i), θ i | G

i.i.d.∼ G, i = 1, . . . ,n, (3.1)

where G | α,ψ ∼ DP(α,G0(· | ψ)), with base (centering) distribution
G0(μ,� | ψ) = N(μ | m,V )IW(� | ν,S). The parameter ν is fixed, and the
model is completed with hyperpriors on ψ = (m,V ,S), and a prior on α,
i.e.

m ∼ N(am,Bm), V ∼ IW(aV ,BV ), S ∼ W(aS,BS), α ∼ gamma(aα, bα),

(3.2)
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where W(aS,BS) denotes a Wishart distribution with mean aSBS, and
IW(aV ,BV ) denotes an inverse-Wishart distribution with mean (aV − (k +
p) − 1)−1BV .

The discreteness of the DP prior for G results in ties among the θ i, so
that in practice fewer than n distinct values for the {θ i} are effective in the
hierarchical model. The data are therefore clustered into a typically small
number of groups relative to n, with the number of clusters, n∗, controlled
by parameter α, where larger values favour more clusters.

Based on the DP constructive definition discussed in Section 3.2.1,
the prior model for f (z,x) has an almost sure representation as a count-
able mixture of multivariate normals, and the proposed model can there-
fore be viewed as a nonparametric extension of the multivariate probit
model with random covariates. This implies a countable mixture of nor-
mal distributions (with covariate-dependent weights) for f (z | x,G), from
which the latent z may be integrated out to reveal the induced model for
the ordinal regression relationships. In general, for a multivariate response
Y = (Y1, . . . ,Yk) with an associated covariate vector X, the probability that
Y takes on the values l = (l1, . . . , lk), where lj ∈ {1, . . . ,Cj}, for j = 1, . . . ,k,
can be expressed as

Pr(Y = l | x,G) =
∞∑

r=1

wr(x)

∫ γk,lk

γk,lk−1

· · ·
∫ γ1,l1

γ1,l1−1

N(z | mr(x),Sr)dz, (3.3)

with covariate-dependent weights wr(x) ∝ prN(x | μx
r ,�

xx
r ), mean vectors

mr(x) = μz
r + �zx

r (�xx
r )−1(x − μx

r ) and covariance matrices Sr = �zz
r −

�zx
r (�xx

r )−1�xz
r . Here, (μr,�r) are the atoms in the DP prior constructive

definition, where μr is partitioned into μz
r and μx

r according to random
vectors Z and X, and (�zz

r ,�xx
r ,�zx

r ,�xz
r ) are the components of the cor-

responding partition of covariance matrix �r .
To illustrate, consider a bivariate response Y = (Y1,Y2), with covariates

X. The probability assigned to the event (Y1 = l1)∩ (Y2 = l2) is obtained us-
ing (3.3), which involves evaluating bivariate normal distribution functions.
However, one may be interested in the marginal relationships between indi-
vidual components of Y and the covariates. We may obtain the probability
that Y1 and Y2 take on some combination of values as a function of X,
but also marginally how the first varies as a function of X. The marginal
inference, Pr(Y1 = l1 | x,G), is given by the expression

∞∑
r=1

wr(x)

{
�

(
γ1,l1 − mr(x)

s1/2
r

)
− �

(
γ1,l1−1 − mr(x)

s1/2
r

)}
, (3.4)
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where mr(x) and sr are the conditional mean and variance for z1 conditional
on x implied by the joint distribution N(z,x | μr,�r). Expression (3.4)
provides also the form of the ordinal regression curves in the case of a
single response.

Hence, the implied regression relationships have a mixture structure
with component-specific kernels which take the form of parametric pro-
bit regressions and weights which are covariate-dependent. This structure
enables inference for nonlinear response curves, by favouring a set of para-
metric models with varying probabilities depending on the location in the
covariate space. The limitations of parametric probit models – including
relative covariate effects which are constant in terms of the covariate and
the ordinal level, monotonicity and the single crossing property of the re-
sponse curves – are thereby overcome.

We noted in Section 3.1 that computational difficulties sometimes arise
in fitting parametric ordinal probit models. The reason for this is that to
obtain an identifiable model, restrictions must be imposed on the covari-
ance matrix � of the multivariate normal distribution for Z. One way to
handle this is to restrict the covariance matrix to be a correlation matrix,
which complicates Bayesian inference since there does not exist a conjugate
prior for correlation matrices. Posterior simulation is further complicated
by estimation of the cut-off points which are typically highly correlated
with the latent responses.

In the Bayesian nonparametric model proposed, it can be shown that
the mixture kernel covariance matrix can be left unstructured, and cut-offs
can be fixed to arbitrary increasing values. [13] show that all parameters
of the normal mixture kernel are identifiable provided each ordinal re-
sponse comprises more than two classifications. This methodology focuses
on multivariate ordinal responses with Cj > 2, for all j. However, if one
or more responses is binary, then the full covariance matrix of the normal
mixture kernel for (Z,X) is not identifiable. [13] also demonstrate that,
with fixed cut-offs, the model can approximate arbitrarily well any set of
probabilities on the ordinal outcomes. This large support property of nor-
mal DP mixture models for ordinal responses was suggested earlier by [31],
who provided an informal argument that the normal DP mixture model
for multivariate ordinal responses (without covariates) can approximate ar-
bitrarily well any probability distribution for a contingency table. The basis
for this argument is that, in the limit, one mixture component can be placed
within each set of cut-offs corresponding to a specific ordinal vector, with
the mixture weights assigned accordingly to each cell. This feature repre-
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sents a significant advantage over parametric ordinal regression models in
terms of computation.

3.3.2 Implementation details
3.3.2.1 Prior specification

To implement the model, we need to specify the parameters of the hyper-
priors in (3.2). A default specification strategy is developed by considering
the limiting case of the model as α → 0+, which results in a single normal
distribution for (Z,X). This limiting model is essentially the multivariate
probit model, with the addition of random covariates. The only covariate
information we use here is an approximate centre and range for each co-
variate, denoted by cx = (cx1, . . . , cxp ) and rx = (rx

1 , . . . , rx
p ). Then cxm and rx

m/4
are used as proxies for the marginal mean and standard deviation of Xm.
We also seek to centre and scale the latent variables appropriately, using the
cut-offs. Since Yj is supported on {1, . . . ,Cj}, latent continuous variable Zj

must be supported on values slightly below γj,1, up to slightly above γj,Cj−1.
We therefore use rz

j /4, where rz
j = (γj,Cj−1 −γj,1), as a proxy for the standard

deviation of Zj.
Under (Z,X) | μ,� ∼ N(μ,�), we have E(Z,X) = am, and Cov(Z,

X) = aSBS(ν − d − 1)−1 + BV (aV − d − 1)−1 + Bm, with d = p + k.
Then, assuming each set of cut-offs (γj,0, . . . , γj,Cj) are centred at 0,
we fix am = (0, . . . ,0, cx). Letting D be a diagonal matrix with ele-
ments {(rz

1/4)2, . . . , (rz
k /4)2, (rx

1/4)2, . . . , (rx
p /4)2}, each of the three terms in

Cov(Z,X) can be assigned an equal proportion of the total covariance and
set to (1/3)D, or to (1/2)D to inflate the variance slightly. For dispersed
but proper priors with finite expectation, ν, aV and aS can be fixed to d+2.
Fixing these parameters allows for BS and BV to be determined accordingly,
completing the default specification strategy for the hyperpriors of m, V
and S.

In the strategy outlined above, the form of Cov(Z,X) was diagonal,
such that a priori we favour independence between Z and X within a
particular mixture component. Combined with the other aspects of the
prior specification approach, this generally leads to prior means for the or-
dinal regression curves which do not have any trend across the covariate
space. Moreover, the corresponding prior uncertainty bands span a signifi-
cant portion of the unit interval.
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3.3.2.2 Posterior inference

The MCMC posterior simulation method we utilise is based on a finite
truncation approximation to the countable mixing distribution G, using
the DP stick breaking representation. The blocked Gibbs sampler [26,25]
replaces the countable sum with a finite sum, GN = ∑N

l=1 plδ(μl,�l), with
(μl,�l) i.i.d. from G0, for l = 1, ...,N . Here, the first N − 1 elements of
p = (p1, ...,pN ) are equivalent to those in the countable representation of G,
whereas pN = 1 − ∑N−1

l=1 pl. Under this approach, the posterior samples for
model parameters yield posterior samples for GN , and therefore full infer-
ence is available for mixture functionals.

The truncation level N can be chosen to any desired level of accuracy,
using standard DP properties. In particular, the expectation for the partial
sum of the original DP weights, E(

∑N
l=1 pl | α) = 1 − {α/(α + 1)}N , can be

averaged over the prior for α to estimate the marginal prior expectation,
E(

∑N
l=1 pl), which is then used to specify N given a tolerance level for the

approximation. For instance, N = 50 and a gamma(0.5,0.5) prior for α

yields E(
∑50

l=1 pl) ≈ 0.99994.
To express the hierarchical model for the data after replacing G with

GN , introduce configuration variables (L1, . . . ,Ln), such that Li = l if and
only if θ i = (μl,�l), for i = 1, ...,n and l = 1, ...,N . Then, the model for
the data becomes

yij = l iff γj,l−1 < zij ≤ γj,l, i = 1, . . . ,n, j = 1, . . . ,k,

(zi,xi) | {(μl,�l) : l = 1, ...,N},Li
ind.∼ N(μLi ,�Li), i = 1, . . . ,n,

Li | p
iid∼

∑N

l=1
plδl(Li), i = 1, ...,n,

(μl,�l) | ψ iid∼ N(μl | m,V )IW(�l | ν,S), l = 1, . . . ,N ,

where the prior density for p is given by αN−1pα−1
N (1 − p1)

−1(1 − (p1 +
p2))

−1 × · · · × (1 − ∑N−2
l=1 pl)

−1, which is a special case of the generalised
Dirichlet distribution. The full model is completed with the conditionally
conjugate priors on ψ and α as given in (3.2).

Conditional on the latent responses zi, we have standard updates for
the parameters of a normal DP mixture model. All full posterior condi-
tional distributions are readily sampled, enabling efficient Gibbs sampling
from the joint posterior distribution. The full conditional distributions for
the components of ψ are easily found using standard conjugate updating.
The updates for p and α are generic for any choice of mixture kernel
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(e.g. [26]), the former having a generalised Dirichlet distribution, and the
latter a gamma distribution. Each Li is sampled from a discrete distribu-
tion on {1, . . . ,N}, with probabilities proportional to plN(zi,xi | μl,�l),
for l = 1, . . . ,N .

Let {L∗
j : j = 1, . . . ,n∗} be the vector of distinct values of {L1, . . . ,Ln}.

For l /∈ {L∗
j }, the full conditional for μl is proportional to N(m,V ), and the

full conditional for �l is proportional to IW(�l | ν,S). For l ∈ {L∗
j }, the full

conditional for μl is normal, with mean vector (V−1 + Ml�
−1
l )−1(V−1m +

�−1
l

∑
{i:Li=l}(zi,xi)

T ) and covariance matrix (V−1 +Ml�
−1
l )−1, where Ml =

|{i : Li = l} is the size of mixture component l. For l ∈ {L∗
j }, the full condi-

tional for �l is IW(ν + Ml,S + ∑
{i:Li=l}((zi,xi)

T − μl)((zi,xi)
T − μl)

T .
Conditional on the mixture model parameters, each zij, for i = 1, . . . ,n

and j = 1, . . . ,k, has a truncated normal full conditional distribution sup-
ported on the interval (γj,yij−1, γj,yij ].

The regression functional Pr(Y = l | x,G) (estimated by the truncated
version of (3.3) implied by GN ) can be computed over a grid in x at every
MCMC iteration. This yields an entire set of samples for ordinal response
probabilities at any covariate value x (note that x may include just a por-
tion of the covariate vector or a single covariate). As indicated in (3.4),
in the multivariate setting, we may wish to report inference for individual
components of Y over the covariate space.

In some applications, in addition to modelling how Y varies across X,
we may also be interested in how the distribution of X changes at differ-
ent ordinal values of Y . As a feature of the density regression modelling
approach, we can obtain inference for f (x | y,G), for any configuration
of ordinal response levels y. We refer to these inferences as inverse re-
lationships, an example of which is provided in the data illustration of
Section 3.3.3.

Under the multivariate response setting, the association between the or-
dinal variables may also be a key target of inference. In the social sciences,
when a single multivariate normal distribution is used for the latent re-
sponses, the correlations between pairs of latent responses, corr(Zr,Zs), are
termed polychoric correlations [43]. Under the mixture modelling frame-
work presented here, one can obtain analogous inferences by sampling a
single corr(Zr,Zs) at each MCMC iteration according to the correspond-
ing p, providing posterior predictive inference to assess overall agreement
between pairs of response variables. As an alternative, and arguably more
informative measure of association, we can obtain inference for probability
of agreement over each covariate, or probability of agreement at each or-
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Figure 3.2 Ozone concentration versus radiation, temperature and wind speed.

dinal level. These inferences can be used to identify parts of the covariate
space where there is agreement between response variables, as well as the
ordinal values which are associated with higher levels of agreement. One
common application arises in the social sciences, where the objective is to
assess agreement among multiple raters or judges who are assigning a grade
to the same item.

3.3.3 Illustration: ozone concentration
To illustrate the Bayesian nonparametric approach to ordinal regression, we
work with the data set ozone from the ElemStatLearn package in R.
This example contains four variables: ozone concentration (ppb), wind
speed (mph), radiation (langleys) and temperature (degrees Fahrenheit).
While these environmental characteristics are interrelated, we focus on es-
timating ozone concentration as a function of radiation, wind speed and
temperature. Fig. 3.2 displays continuous ozone concentration as a func-
tion of the other environmental variables. Ozone concentration appears
to be increasing with temperature and decreasing with wind speed, while
its relationship with radiation is clearly nonlinear, taking larger values at
moderate-high levels (in terms of the ozone concentration distribution) of
ozone concentration.

3.3.3.1 Density regression
The density regression approach of [38] (described in Section 3.2) is
used to estimate the distribution of ozone concentration, Z, conditional
on covariates X = (X1,X2,X3) = (radiation, temperature, wind speed).
Specifically, we use a DP mixture of multivariate normals for the con-
tinuous vector (Z,X), from which inference can be obtained for f (z |
x) = ∑N

r=1 wr(x)N(z | mr(x),Sr), where wr(x), mr(x) and Sr are defined after
(3.3). We note that the DPpackage [27,28] provides a function DPcden-
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Figure 3.3 Posterior mean and 95% interval estimates for the regression function for
ozone concentration conditional on radiation, temperature and wind speed.

sity for inference in this setting. Fig. 3.3 displays posterior mean estimates
for the regression function, E(Z | xj) = ∑N

r=1 wr(xj)mr(xj), along with 95%
interval bands, for each covariate Xj, based on results from the DPcden-
sity function. Note that the regression functions are all somewhat nonlinear
and have shapes that would be difficult to capture with a linear regression
model, as approximating these curves would require nonlinear functions
and/or transformations.

We define ozone concentrations greater than 100 ppb as high; this can
be considered an extreme level of ozone concentration, as only about 6%
of the total of 111 observations are this high. Concentrations between
50 ppb and 100 ppb (approximately 25% of the observations) are con-
sidered medium, and values less than 50 ppb are considered low. The DP
mixture of multivariate normals model applied to (Z,X) can be used to ob-
tain inference for the probability that ozone concentration is low, medium
and high, conditional on X , via Pr(γl−1 < Z ≤ γl | x,G), for l = 1,2,3,
where γ = (−∞,50,100,∞), using the expressions for ordinal regression
functions given in (3.3). Posterior means and 95% intervals for these prob-
abilities are displayed in Fig. 3.4.

3.3.3.2 Ordinal regression

We now move to the topic of ordinal regression. Problems in the environ-
mental sciences provide a broad area of application for which the proposed
ordinal regression approach is particularly well suited. For such problems, it
is of interest to estimate relationships between different environmental vari-
ables, some of which may be recorded on an ordinal scale even though they
are, in fact, continuous variables. This is also a setting where it is natural
to model the joint stochastic mechanism for all variables under study from
which different types of conditional relationships can be explored.
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Figure 3.4 Posterior mean estimates and pointwise 95% intervals for the probability
that ozone concentration is below 50 ppb (low, first column), between 50 and 100 ppb
(medium, second column) and above 100 ppb (high, last column), conditional on radia-
tion (first row), temperature (second row) and wind speed (last row).

To illustrate the ordinal regression methodology in this setting, rather
than using directly the observed ozone concentration, we define an or-
dinal response containing three ozone concentration categories, using the
cut-offs for low, medium and high described in the previous section. We
use this to illustrate a practical setting in which an ordinal response may
arise as a discretised version of a continuous response. Fig. 3.1 shows ozone
concentration on an ordinal scale (1 = low, 2 = medium, 3 = high) as a
function of the covariates.
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Figure 3.5 Posterior mean estimates and pointwise 95% intervals for the probability
that ozone concentration is low (first column), medium (second column), high (last col-
umn), conditional on radiation (first row), temperature (second row) and wind speed
(last row).

The ordinal regression model was applied with response variable, Y ,
given by discretised ozone concentration, and covariates, X. We estimate
the ordinal regression curves, Pr(Y = l | x,G), for l = 1,2,3, for each
covariate x. The estimated ordinal regression functions are displayed in
Fig. 3.5. We note the strong similarity to the analogous inferences from
the model that directly uses the continuous ozone concentration (Fig. 3.4).
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Figure 3.6 Posterior mean estimates for the probability that ordinal ozone concentra-
tion Y takes values low (1), medium (2) and high (3), as a function of radiation and wind
speed.

In addition to typical univariate regression functions that describe how
a response variable varies as a function of a single covariate, we can also
estimate bivariate regression surfaces. Fig. 3.6 provides posterior mean es-
timates for the probability that ordinal ozone concentration Y takes values
low, medium and high as a function of both radiation and wind speed. We
see that the probability that Y = 1 is highest for faster wind speeds. The
probability that Y = 2 is concentrated over a relatively small space in the
figure, taking high values for moderate levels of radiation and slow winds.
The probability that Y = 3 is even more sharply concentrated in terms of
moderate-high radiation and slow winds.

One appealing feature of the joint modelling approach to regression
is that inference for the covariate distribution, f (x | G) = ∑∞

r=1 prN(x |
μx,�xx), or for the covariate distribution conditional on a particular value
of Y , f (x | y,G) = ∑∞

r=1 wr(y)N(x | μx,�xx), with wr(y) ∝ pr(�((γy−1 −
mr(x))/s1/2

r ) − �((γy − mr(x))/s1/2
r )), can also be obtained. These inverse

inferences indicate how the covariates change with the ordinal response.
Fig. 3.7 displays inference for the distribution of radiation conditional on
ozone concentration taking values of low, medium and high. When ozone
concentration is low, radiation has a bimodal distribution. This bimodality is
easily accommodated by the mixture model for the joint response covariate
distribution. When ozone concentration is medium or high, the distribu-
tion is unimodal, with left skewness. The distribution is more peaked under
high ozone concentrations; however, the interval estimates are also widest
here, reflecting the small sample size associated with Y = 3.

We have illustrated the Bayesian nonparametric model for ordinal re-
gression on data which are truly continuous, but are transformed to an
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Figure 3.7 Posterior mean estimates and pointwise 95% intervals for the density of ra-
diation conditional on Y = 1 (low ozone concentration), Y = 2 (medium ozone concen-
tration) and Y = 3 (high ozone concentration).

ordinal scale through discretisation. This allows for presentation of the
Bayesian nonparametric density regression approach for continuous data,
which naturally can be extended to accommodate ordinal responses. The
ordinal responses are seen to arise from underlying latent continuous ran-
dom variables, modelled with a DP mixture of multivariate normals. While
this particular ozone example was used for illustration, we refer the reader
to [13] for examples involving truly ordinal responses. One example in-
cludes credit ratings, which are ordinal, and another involves grades assigned
to essays on an ordinal 10-point scale.

3.3.4 Related work and extensions
The joint response covariate modelling approach with categorical variables
has been explored by others, including [52], [15], [23], [12] and [44]. [52]
considered classification of a univariate response using a multinomial logit
kernel, and this was extended by [23] to accommodate alternative response
types with mixtures of generalised linear models. [15] studied DP mixtures
of independent kernels, and [12] developed a joint response covariate mod-
elling approach for binary regression. However, these models would not be
suitable for ordinal data, or for making inference on the association between
the ordinal responses.

Related work on Bayesian nonparametric modelling for ordinal regres-
sion is relatively limited, particularly in the multivariate setting. In the
special case of binary regression, there is only one probability response
curve to be modelled, and this problem has received significant attention.
Existing semiparametric approaches relax the normality assumption for the
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latent response using DP or DP mixture priors [42,5,4], while others have
targeted the linearity assumption for the response function [35,60,11]. For a
univariate ordinal response, [10] assume that the latent response arises from
scale mixtures of normals and the covariate effects are additive upon trans-
formation by cubic splines. This allows nonlinearities to be obtained in the
marginal regression curves, albeit under the restrictive assumption of addi-
tive covariate effects. [22] extend the ordinal probit model by introducing
subject-specific random effects terms modelled with a DP prior.

[8] model the latent variables for correlated ordinal responses with
scale mixtures of normal distributions, with means linear on the covari-
ates. Related, [3] assume the latent variables arise from mixtures of linear
multivariate probit regressions, mixing on the regression coefficients and
covariance matrices in the multivariate normal distribution. The latter
modelling approach is an extension of the work in [31], where, in the
context of multivariate ordinal data without covariates, the latent response
distribution was modelled with a DP mixture of multivariate normals.

When developing the model for ordinal regression we have assumed
that all covariates are continuous. To handle discrete covariates some mod-
ification of the kernel is needed. Ordinal covariates can be handled in the
same way as the ordinal responses, so that some elements of the multivariate
normal kernel are assumed to represent latent continuous covariates instead
of ordinal covariates. [14] uses this approach to accommodate an ordinal
covariate ‘age’, measured in years. To handle unordered categorical covari-
ates, the kernel would need to be modified. For example, one could use
a product of a multivariate normal distribution for the (latent) continuous
variables and a categorical distribution for the discrete covariates.

Throughout this chapter, we have assumed a common vector of co-
variates X = (X1, ...,Xp) for each response vector Y . That is, the covariates
are not specific to particular response variables, but rather (Y,X) arises as
a multivariate vector. An alternative version of the probit model involves
pj covariates (Xj,1, . . . ,Xj,pj) specific to response variable Yj. This regression
setting was described for multivariate continuous responses by [57], and this
is the version of the multivariate binary probit model considered in [9].

Scenarios which make use of response-specific covariates fall broadly
into two categories. The first consists of problems in which only a por-
tion of the covariate vector is thought to affect a particular response, but
there may be some overlap in the subset of covariates which generate the
responses. [9] considered a voting behaviour problem of this kind in which



86 Flexible Bayesian Regression Modelling

the first of two responses was assumed to be generated by a subset of the
covariates associated with the second response. This data structure can also
be accommodated by modelling all covariates X jointly with Y , and con-
ditioning on the relevant subset of X in the regression inferences.

The other type of data structure which is occasionally handled with
a multivariate regression model with response-specific covariates involves
univariate ordinal responses that are related in a hierarchical/dynamic fash-
ion. For instance, [9] illustrate their model with the commonly used Six
Cities data, in which Y = (Y1, . . . ,Y4) represents wheezing status at ages 7
through 10. Such settings are arguably more naturally approached through
hierarchical/dynamic modelling. Indeed, one extension of the method-
ology developed here involves dynamic modelling for ordinal regression
relationships, such that at any particular time point a unique regression
relationship is estimated in a flexible fashion, while dependence is in-
corporated across time. This methodology is presented in [14], where a
dependent DP [32] is used to model dynamically evolving random distri-
butions. The ordinal variable in this application is fish maturity, which is
recorded on an ordinal three-point scale. [44] develop similar models for
spatially indexed mixed categorical count-continuous data, using a probit
stick breaking process [16], another type of dependent nonparametric prior,
to induce dependence across spatial locations.

3.4 Summary

Ordinal data are challenging to model in a way that accounts for the
ordinal nature of the responses and is computationally feasible to make
inference from, and accommodating multiple ordinal responses is especially
complex. Standard parametric models for ordinal responses enforce cer-
tain relationships between the response(s) and covariates, which may be too
restrictive for data applications. We presented a Bayesian nonparametric
mixture modelling approach to ordinal regression, which builds from the
density regression modelling framework. The ordinal regression model can
be used to flexibly estimate more than just the regression functions for the
response conditional on covariates. It can also provide general inference for
the covariate distribution, for the distribution of the covariates given the
response variable, as well as for relationships between the ordinal responses
in multivariate ordinal regression.
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4.1 Introduction

Bayesian nonparametric methods were introduced by [20], who defined
the Dirichlet process and showed how it could be used as a prior over
probability measures. [1] then extended Ferguson’s work to mixtures of
Dirichlet processes and [55] showed how the Dirichlet process can be used
in density estimation as the prior for the underlying mixing measure in a
mixture model. Analytical inference using these models was facilitated by
[18], who popularised the algorithm of [55] by showing how Markov chain
Monte Carlo (MCMC) methods could be used to sample from the poste-
rior distribution. Subsequently, the popularity of Bayesian nonparametric
methods has grown exponentially. This is due to the ability of these meth-
ods to combine the flexibility of nonparametrics with the simplicity of the
Bayesian modelling framework (such as hierarchical structure, automatic
dimension penalisation and simple combination of different models).

In the 2010s alone a plethora of models, priors and related computa-
tional methods have been developed and applied to a range of statistical
modelling problems from density estimation, nonparametric regression and
nonparametric spatial modelling to clustering. For a book length review of
Flexible Bayesian Regression Modelling
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these methods see [37] and [59]. In this chapter we are going to focus on
the use of Bayesian nonparametric methods in time series analysis.

Time series data are at the heart of time series analysis, and the overar-
ching aim is to analyse such data in order to extract meaningful information
about their dynamic structure and use it in forecasting future observations.
We are going to look at both financial and macroeconomic times series, the
former collected at a daily frequency and the latter collected at a monthly
frequency, at the level of national and international economies.

Modelling such data is not an easy task. The models developed for finan-
cial time series, like asset returns, are mostly univariate ones. The challenge
in this case is to adequately capture their distributional characteristics or
‘stylised facts’, such as the unimodality and asymmetry of their uncon-
ditional distribution around zero, the heavy-tailed behaviour of both the
conditional and unconditional distributions, volatility clustering, the neg-
ative correlation between volatility and returns (‘leverage-effect’) and the
slow decay of the autocorrelation function of absolute returns, to simply
name a few. For further details, see [14]. With macroeconomic data, such
as inflation, interest rates and output growth (used to describe the state of
the aggregate economy), the focus is on correctly estimating their joint
dynamic relationship and so the models developed should be multivari-
ate ones. The challenge in this case is to adequately model the transition
mechanism, which is important not only in identifying the dynamic rela-
tionships between the variables, but also in forecasting future values of the
variables involved. A clear understanding of the joint dynamic behaviour of
macroeconomic variables and the ability to predict with a high degree of
accuracy are important to Central Banks for monetary policy decisions and
to Governments when deciding their strategy on fiscal policy.

Whether we are interested in univariate time series models for asset
returns or multivariate time series models for macroeconomic variables,
simple parametric models rarely capture the key ‘stylised facts’ of the for-
mer and rarely describe well the dynamic relationships of the latter. This
has led to the increased use of classical nonparametric procedures which
avoid making strong distributional assumptions. However, there has been
less work in Bayesian nonparametric modelling, reflecting the relative lack
of familiarity of econometricians and financial economists with Bayesian
nonparametric methods and their computational complexity.

The early adopters of Bayesian nonparametric methods focused on uni-
variate models for the analysis of financial and economic time series, and
used the Dirichlet process mixture (DPM) model, introduced in [55]. The



Bayesian nonparametric methods for financial and macroeconomic time series analysis 93

DPM is an infinite mixture model where the Dirichlet process is chosen
as a prior over the parameters of a distribution, with density k(·|θ) and pa-
rameters θ , facilitating the modelling of complex densities f (·). Under the
DPM model

f (·) =
∫

k(·|θ)G(dθ),

where θ is the parameter vector and G is the unknown random distribu-
tion drawn from a Dirichlet process. [33] use a variation of the DPM, the
order-based dependent Dirichlet process (πDDP) to model the volatility
process of a stochastic volatility (SV) model and apply it to daily returns
of the S&P 500 stock market index. [60] and [70] use the DPM for the
analysis of time series data that are subject to regime changes where no
specific economic theory exists about the structure of the series. [36] and
[53] use the DPM to model the innovation distribution of a random-effects
autoregressive model, and a heteroscedastic linear regression model, respec-
tively. Finally, [43] and [15] use the DPM to model the distribution of asset
returns using an SV model. This initial work is reviewed in [32].

We firmly believe that Bayesian nonparametric methods will play an im-
portant role in developing financial and macroeconomic time series models
with excellent forecasting performance. Here we focus on more recent
developments which concentrate on density estimation within a volatil-
ity model, long-memory models and vector autoregressive (VAR) models.
This chapter is structured as follows. In Section 4.2 we concentrate on
volatility models where Bayesian nonparametric methods are used to model
the innovation distribution of financial asset returns. In Section 4.3 we
describe how the Dirichlet process can be used to explain long-range de-
pendence in SV models, and in Section 4.4 we depart from univariate
volatility models and focus on how Bayesian nonparametric methods can
be used to build multivariate models to explain the joint dynamic behaviour
of macroeconomic time series. We conclude in Section 4.5 with our vision
on the future of Bayesian nonparametric methods for financial time series
analysis.

4.2 Bayesian nonparametric methods for the innovation
distribution in volatility models

Modelling of the distribution of financial time series, yt, observed at regu-
larly spaced times t = 1 . . . ,n, is important for measuring risk. The starting
point for volatility models is the following:
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yt = σtεt for t = 1,2, . . . ,n, (4.1)

where yt is the log return, εt is the innovation following some distribution
Fε with mean zero and variance σ 2

ε = 1. The volatility process, σt, observed
at time t can either have a GARCH-type or an SV setup. The choice of
Fε plays a key role in capturing the ‘stylised facts’ of returns, because it
determines their conditional distribution (often used to derive value at risk
thresholds) and impacts on distributions of future returns.

The normal distribution had been the standard choice for Fε but since it
fails to capture the heavy tails and slight asymmetry of the conditional distri-
bution of returns, it has been replaced by other distributional choices such
as a Student t distribution [7], a skewed Student t distribution [35], a gen-
eralised t distribution [74], a mixture of normal distributions [4] and the
asymmetric Laplace distribution [11], to name a few. All of these choices
are parametric and limited by the properties of the chosen distributional
family.

The Bayesian nonparametric approach adds more flexibility in mod-
elling Fε . [14] demonstrated with his detailed empirical analysis of returns
how complex their distributional characteristics are, and this is where
Bayesian nonparametric methods can add value. These methods place a
prior on an infinite-dimensional parameter space and adapt their complex-
ity to the data. This implies that models developed with such methods will
not underfit the data. A more appropriate term for Bayesian nonparametric
models is infinite-capacity models, emphasising the crucial property that
they allow their complexity (i.e. the number of parameters) to grow as
more data are observed; in contrast, finite-capacity models assume a fixed
complexity. The other benefit with Bayesian nonparametric methods is that
we do not have to worry about overfitting the data, because if we have a
well-specified Bayesian model it should not overfit. Correctly specifying
the Bayesian model is important because a well-specified Bayesian model
that grows with the amount of data (like the Bayesian nonparametric mod-
els do) will neither overfit nor underfit the data, and this leads to better
out-of-sample forecasts; see [63].

The majority of volatility models use the DPM to model Fε . Under the
DPM, the unknown distribution is

fε(·) =
∫

k(·|θ)G(dθ),

where θ is the parameter vector and G the unknown random distribution
drawn from a stick breaking prior, such as
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G(·) =
∞∑
j=1

wjδθj(·) , (4.2)

where δθj is the Dirac measure giving mass one at location θj, with
weight wj. The weights must satisfy two conditions in order for G to be a
probability measure: 0 < wj < 1 and

∑∞
j=1 wj = 1 with probability one. The

locations θj are i.i.d. random variables with distribution G0 and are inde-
pendent of the random weights wj. The distribution G0 is often referred to
as the base or centering distribution. This is so because for any measurable set
B of a σ -field B, we have E[G(B)] = G0(B). The random weights wj are
transformations of i.i.d. beta random variables, vj ∼ Be(1,M) (with M > 0),
represented as follows:

w1 = v1 and wj = vj

∏
�<j

(1 − v�). (4.3)

Eq. (4.3) gives rise to the stick breaking representation of the DPM (see [69]),
and we can write fε(·) as an infinite mixture, i.e.

fε(·) =
∞∑
j=1

wjk(·|θj).

Inference is simplified by choosing a conjugate model for θj and often both
k(·|θ) and G0 are chosen to be normal distributions. [43] and [15] use
the DPM in their SV model and find that the out-of-sample predictive
performance of their models is superior to most parametric alternatives.

The stick breaking notion, Eq. (4.3), of constructing infinite-dimen-
sional priors has a very long history and dates back to the work of [34], [22],
[51] and [39]. The Dirichlet process is actually a subclass of more general
stick breaking processes (SBPs). In the general SBP, the vj ∼ Be(aj, bj), and
the Dirichlet process arises when we set aj = 1 and bj = M . The positive
constant M is often referred to as the precision parameter, because it controls
how close realisations of G are to G0. It also controls the rate of decay of
the mixture weights, and thus the number of nonnegligible weights. Since
the conditional distribution of returns plays a key role in risk management,
a good model should be able to account for its heavy-tailed behaviour well.
It is therefore sensible to choose a Bayesian nonparametric prior because
it provides more flexibility, where components with small weights could
be used to account for the heavy tails. Looking at the expectation of the
weights under the Dirichlet process we have
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E[wj] = 1
1 + M

(
1 − 1

1 + M

)j−1

for j > l. (4.4)

It is clear that E[wj] in Eq. (4.4) is decreasing in j and that the value of
M controls the weight decay. This exponential decay can be a disadvan-
tage as more mixture components may be needed to capture the heavy tails
of the conditional returns’ distribution. A more flexible prior is the two-
parameter Poisson Dirichlet process of [66], where the parameters of the
beta distribution of the vj’s are aj = 1 − α with α ∈ [0,1) and bj = M + jα.
This prior is often referred to as the Pitman–Yor process and it is also a sub-
class of the general SBP. [49] construct a more general SBP, which centres
over a distribution for the weights on E[wj].

They choose E[wj] = ξj, where ξj is Pr(X = j) for a random variable
X with a discrete distribution on 1,2,3, . . .. This allows for more control
over the rate of weight decay and therefore the generation of nonnegligible
components. In [49] the random variable X is given a beta-geometric dis-
tribution resulting in a more flexible model as more mixture components
with small weights are used to capture the heavy tail behaviour. For more
details see [49].

[49] also departs from the standard conjugate structure of the DPM.
The continuous density function k(·|θ) and centering distribution G0 are
not chosen to be Gaussian. An infinite mixture (see [8]) of uniform distri-
butions is chosen for the density of the innovations, fε(·) represented by

fε(·) =
∫

υ(ε|ξ, λ)G(dξ), (4.5)

where υ(ε|ξ, λ) is the density function of the scaled uniform distribution
U(−e−λξ, eλξ) with asymmetry parameter λ and scale ξ . The unknown
distribution G is generated from an SBP(aj, bj), and G0 is chosen to be the
standard exponential distribution. The choice of the scaled uniform ker-
nel ensures unimodality of the conditional return distribution and captures
any level of kurtosis while avoiding the risk of artificial modes at extreme
returns, as may be the case under the DPM model.

Take the simplest case of U(−ξ, ξ). This ensures unimodality for the
innovations’ distribution with mode at zero. The random distribution G
ranges over all distribution functions on (0,∞) and therefore fε ranges over
all unimodal and symmetric density functions on (−∞,∞); see [19]. To
capture the slight asymmetry of returns the skewness parameter λ is intro-
duced as per [21].
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The flexible construction of this infinite mixture of uniforms (IUM)
has the following hierarchical setup for the innovations’ distribution:

yt = σt εt, εt ∼ U(−ξdt e
−λ, ξdt e

λ) for t = 1, . . . ,n,

Pr(dt = j) = wj, ξj ∼ G0(·) for j = 1,2, . . . ,

w1 = v1,wj = vj

∏
�<j

(1 − v�) and vj ∼ Be(aj, bj),

where G0 is a standard exponential distribution. The distribution of εt is
therefore

fv,ξ (εt) =
∞∑
j=1

wj υ(−ξje−λ, ξjeλ)

and the conditional return distribution is

fG,λ(yt|σt) =
∞∑
j=1

wj υ(yt| − ξj σt e−λ, ξj σt eλ), (4.6)

where the volatility is modelled using the GARCH(1,1), the GJR-
GARCH(1,1) [26] and the EGARCH(1,1) [62]. The latter two choices
model the ‘leverage effect’. Even though the pair k(·|θ) and G0 is not a
conjugate one, inference is possible by using the slice-efficient sampler of
[46]. For details on the MCMC sampler please refer to [49].

To illustrate the impact of the IUM representation on out-of-sample
predictive performance, we are going to look at the returns of the S&P500
from 3 January 1980 to 30 December 1987 and the returns of the FTSE100
from 3 January 1997 to 12 March 2009. To measure the accuracy of pre-
dictions, we will calculate the log predictive score (LPS) as well as the log
predictive tail score (LPTS) of [15]. The LPTS is a variation of the LPS
used when our aim is to forecast extreme returns (which is the case in risk
management). The LPTS is given as follows:

LPTS = − 1∑T
t=1 1(|y�

t | > zα)

T∑
t=1

1(|y�
t | > zα)logf (yt|y1:(t−1), ϑ̂), (4.7)

where zα, is the upper 100α% of the absolute values of the standardised
returns yt and f (yt|y(1:t−1),ϑ) is the one-step-ahead predictive density, with
ϑ representing the model parameters and ϑ̂ their estimates. We are going
to consider the upper 5% and 1% of values.
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This forecasting example focuses on how the IUM model choice for the
innovations’ distribution compares to the skewed Student t and the DPM
(with normal kernel). Volatility is modelled with a GJR-GARCH(1,1).
In addition we will also compare these models with the SV model with
leverage and Student t innovations and the SV-DPM of [43]. Our aim is
to demonstrate that the flexible IUM model for the innovations’ distribu-
tion leads to better out-of-sample forecasts when compared to the popular
parametric choice of the skewed Student t distribution and the DPM (with
normal kernel).

Table 4.1 displays the LPS and LPTS scores for each model for the
S&P500 and FTSE100 returns. The calculation of LPS and LPTS, t =
1, . . . ,T , in Eq. (4.7) refers to the second half of the data sets, the eval-
uation (out-of-sample) set. The first half is the training (in sample) set
which is used to get the parameter estimates ϑ̂. We can see that for the
FTSE100 returns the GJR-GARCH(1,1) with IUM innovations outper-
forms all other models, whereas for the S&P500 the GJR-GARCH(1,1)

with IUM innovations outperforms all other models in terms of the LPTSs.
This demonstrates that having a very flexible model for the innovations’ dis-
tribution provides better forecasts of extreme returns, something invaluable
to asset and risk managers.

Table 4.1 Log predictive scores and log predictive tail scores at 1% and 5% for S&P 500
and FTSE 100. The first two rows show the scores of the parametric models, and the last
three rows show the scores of the nonparametric models. The smallest LPS and LPTS are
in bold.

S&P 500 FTSE 100
LPS LPTS-01 LPTS-05 LPS LPTS-01 LPTS-05

Bayesian parametric models
GJR-Garch(1,1)-skewed t 1.314 8.039 4.588 1.337 5.402 3.490
SV(1)-t (leverage) 1.325 9.023 4.879 1.343 5.705 3.567
Bayesian nonparametric models
GJR-Garch(1,1)-DPM 1.311 6.017 4.059 1.327 5.831 3.600
GJR-Garch(1,1)-IUM 1.319 5.650 3.598 1.319 4.897 3.094
SV-DPM 1.313 7.231 4.811 1.349 5.963 3.712

4.3 Bayesian nonparametric methods for long-range
dependence in SV models

In the previous section we discussed the use of DPM and SBP to define
the prior of the innovation distribution of a volatility model. Here we are
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going to focus on how a Bayesian nonparametric prior can be incorporated
in an aggregation model to flexibly describe the dynamics of a stationary
SV model given by

yt = β exp{ht/2}εt, t = 1,2, . . . ,T , (4.8)

where yt is the asset return at time t, εt are i.i.d. draws from some distribu-
tion (usually, taken to be normal) and exp{ht/2} is the volatility on the tth
day. In an SV model the log volatility process, ht, is often assumed to follow
an AR(1), i.e.

ht = φht−1 + ηt, t = 1,2, . . . ,T , (4.9)

where ηt is normally distributed with mean 0 and variance σ 2(1 − φ2),
which results in the stationary distribution of ht being normal with mean 0
and variance σ 2. The autoregressive coefficient or persistence parameter φ

controls the behaviour of the autocorrelation function of ht.
Empirical analyses of financial time series, see [17] and [14], show evi-

dence of slow decay of the sample autocorrelation function. This slow decay
is linked to the concept of long-range dependence. [47] focus on the result
of [28] and assume that ht is the aggregate of weakly stationary processes,
with a clearly defined covariance function. Then long-range dependence
occurs when this covariance function is unsummable. Following the work
of [68,29,77] they assume that ht is the aggregate of AR(1) processes to
account for long-range dependence.

Cross-sectional aggregation models are usually defined in the following
way. We have m time series hi,1,hi,2, . . . ,hi,T for i = 1, . . . ,m of the form

hi,t = φihi,t−1 + ηi,t, (4.10)

where ηi,t ∼ N(0, σ 2(1 − φ2
i )) are idiosyncratic shocks, and the persistence

parameter φi
i.i.d.∼ Fφ, with support on (0,1). The aggregate process is

ht = 1
m

m∑
i=1

hi,t, t = 1,2, . . . ,T . (4.11)

Both [28] and [77] prove that long-range dependence is affected by the
choices of a single parameter, let us call it b, which characterises the distri-
bution Fφ. In [28] Fφ is a beta distribution on (0,1) with shape parameters
a and b, and when b → ∞ the autocovariance function of the aggregate
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approximates that of an ARMA process. [77] generalises this result to dis-
tributions with density fφ(φ) ∝ g(φ)(1−φ)b on (0,1) and considers the limit

of the process ht

/√
Var

[
ht

]
showing that the process is stationary if b > 0

but nonstationary if b < 0.
It is clear from [28] and [77] that the choice of Fφ has an effect on

long-range dependence. To provide more flexibility on the choice of Fφ,
[47] use a Bayesian nonparametric prior. They begin by constructing a suit-
able limiting process for a cross-sectional aggregation model as the number
of elements tends to infinity. Using the notation ht(φ,σ 2) to represent an
AR(1) process with persistence parameter φ and stationary variance σ 2,

ht(φ,σ 2) = φht−1(φ,σ 2) + ηt,

where ηt ∼ N
(
0, σ 2(1 − φ2)

)
, so the marginal distribution of ht(φ,σ 2) is

N(0, σ 2). They define the aggregate in (4.11) as follows.

Definition 1. A finite cross-sectional aggregation (FCA) process h(m)
t with

parameters m, σ 2 and Fφ is defined by

h(m)
t = 1

m

m∑
i=1

ht
(
φi, σ

2) , t = 1,2, . . . ,T , (4.12)

where φ1, . . . , φm
i.i.d.∼ Fφ.

[47] chose the Dirichlet process as the prior for Fφ. This implies that
Fφ is discrete with an infinite number of atoms, and it can be written as
Eq. (4.12), i.e.

Fφ =
∞∑
j=1

wjδθj for j = 1, · · · ,∞. (4.13)

Under Eq. (4.13) each φi must take a value in θ1, θ2, . . . . and there can be
ties in these values. This means that we can group all the φi’s that are equal
to θj allowing for arbitrary levels of long-range dependence to exist. We
can therefore model the effect of uneven information flows on volatility
which can be linked to the differences in effects caused by different types
of information. For example, in the study of stock returns one type of in-
formation that can affect their volatility is a profit warning announcement.
Profit warnings may have a longer lasting effect when compared to other
types of announcements like stock splits or rights issues.
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We can now define the infinite cross-sectional aggregation (ICA) pro-
cess as the limit of the FCA when the number of AR(1) processes m → ∞
and with Fφ having the form in Eq. (4.13) as follows:

h(∞)
t =

∞∑
j=1

ht
(
θj, σ

2 wj
)
, t = 1,2, . . . ,T . (4.14)

We will refer to the resulting volatility model as stochastic volatility with
infinite cross-sectional aggregation (SV-ICA).

To proceed to inference we need to address the issue of the infinite sum
of Eq. (4.13). [40,41] showed how to construct a finite-dimensional ran-
dom probability measure with n atoms that limits to the Dirichlet process as
n → ∞. Using this result leads to the following finite approximation of Fφ:

F(n)
φ =

n∑
j=1

w(n)
j δ

θ
(n)
j

, (4.15)

where
(
w(n)

1 , . . . ,w(n)
n

)
∼ Dir (M/n, . . . ,M/n) and θ

(n)
j

i.i.d.∼ Be(1, b). The re-
lationship between the Dirichlet distribution and the gamma distribution
can be used to rewrite Eq. (4.15) as

F(n)
φ =

n∑
j=1

σ 2
j∑n

k=1 σ 2
k

δθj (4.16)

with σ 2
j

i.i.d.∼ Ga(M/n,M/ζ ).
Inference is further complicated by the nonlinear state space form of the

SV-ICA model. This is addressed by using the linearised form of the SV
model for MCMC [50,64,61], and employing the Forward Filtering Back-
ward Sampling (FFBS) algorithm [10,23]. For more details on the SV-ICA
and the related MCMC see [47].

To illustrate how the SV-ICA model can be used to account for long-
range dependence we use the daily returns of HSBC plc from 16 May
2000 to 14 July 2010 and the daily returns of Apple Inc. from 1 January
2000 to 26 July 2010. We chose these two companies because they operate
in different industry sectors, the former in the banking and the latter in
the technology sector. Then it is reasonable to think that they will exhibit
different volatility dynamics, demonstrated by the persistence parameter
distribution, Fφ. The plots of these returns are shown in Fig. 4.1. The re-
turns of HSBC appear more volatile than those of Apple, especially during



102 Flexible Bayesian Regression Modelling

2007/2008, when the U.S. housing market collapsed, leading to a global
financial market crash.

Figure 4.1 The daily returns for Apple and HSBC.

Since Fφ represents the decomposition of the volatility process in terms
of AR(1) processes with different first-lag dependences, we construct plots
of the posterior expectation of F(n)

φ ([0,x]) for x ∈ (0,1), the cumulative
distribution function, at different values of n (where n is the truncation re-
quired for the MCMC). Informally, convergence of the posterior occurs if
there are only small changes in the posterior summaries (posterior expec-
tation and 95% credible interval) for n larger than some n0. [47] choose the
following values for the truncation: n = 30, n = 50 and n = 70. These are
sufficient to judge convergence for both the HSBC and Apple examples.

The plots in Fig. 4.2 show the posterior expectation of F(n)
φ and its 95%

credible intervals for HSBC plc, while Fig. 4.3 provides the same plots for
Apple Inc., for the three different values of n. The last plot in both Fig. 4.2
and Fig. 4.3 shows the posterior distribution of φ under a simple SV model.
For HSBC, there is only a marginal difference in the convergence of F(n)

φ to
Fφ for the three values of n; for Apple it is for the last two values of n that
we observe this. We can therefore say that for Apple convergence occurs
around n = 50 with the 95% credible intervals being wider than those of
HSBC. Regarding n = 70, we can see that for HSBC plc much of φ’s mass
is placed close to one. This is not similar to the fit of the simple SV model
with a single AR(1) process for ht, where the posterior median of φ is
around 0.984 with a 95% credible interval of (0.976, 0.992). A closer look
at the three convergence plots shows that mass is placed at much smaller
and much larger values of φ, implying that values of φi are more spread out
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within the interval (0.5,1), compared to what the simple SV model, which
uses a single value of φ, is able to accommodate. For Apple things are quite
different; much of φ’s mass is placed around the smaller values. This implies
that the behaviour of persistence in volatility is different between the two
sets of returns.

Figure 4.2 HSBC data: Posterior expectation of F(n)φ (solid line) with 95% credible inter-
val (dot-dashed lines) for (A) n = 30, (B) n = 50 and (C) n = 70. The x-axis shows φ and
the y-axis shows the posterior expectation of F(n)φ . Panel (D) displays the posterior den-
sity of φ under the simple SV model.

To fully understand the difference in persistence of volatility between
the two returns series and gain more insight into the decomposition of
their persistence, [47] calculate the proportion of processes for which the
dependence is small by lag κ. This measure is defined as

γκ = F(n)
φ ({λ |λκ < ε })

for some small value ε (we take ε = 0.01). We can then interpret γκ as
the proportion of processes with an autocorrelation less than 0.01 after
k lags. Table 4.2 and Table 4.3 provide the values of γκ when n = 70, for
HSBC and Apple, respectively. The lags displayed in both tables are in terms
of trading weeks and trading years.1 The first entry for γκ in Table 4.2

1 A trading week has five days and a trading year approximately 252.
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Figure 4.3 Apple data: Posterior expectation of F(n)φ (solid line) with 95% credible in-
terval (dot-dashed lines) for (A) n = 30, (B) n = 50 and (C) n = 70. The x-axis shows φ

and the y-axis shows the posterior expectation of F(n)φ . Panel (D) displays the posterior
density of φ under the simple SV model.

indicates that 10% of the variation in volatility is explained by processes
which decay after one week (decay quickly). Moving along the table we
see that 45% of the variation is explained by processes that decay after
one year. The posterior median estimate of the persistence parameter for
the simple AR(1) model suggests that autocorrelation falls below 0.01 by
the 286th lag. This is roughly a little over one trading year. This is an
interesting point because under the SV-ICA model a higher proportion of
the variation in volatility is placed on processes that take two to five years
to decay. This is clearly seen in Table 4.2, where the autocorrelation of 19%
of processes has not decayed below 0.01 after five years, providing evidence
of very long persistence in the data. For Apple (Table 4.3), the values of
γκ are larger for all lags when compared to HSBC. In Apple’s case 85%
of the variation in volatility is explained by processes with autocorrelation
decaying below 0.01 before one year. For HSBC this occurs after five years
(or more). With Apple the autocorrelation of only 4% of the processes has
decayed below 0.01 after five years. This confirms the conclusions about
the difference in volatility persistence between the returns of two different
companies operating in two different industry sectors. This could also be
due to investors’ belief of the riskiness not only of the two sectors but also
of the two stocks.
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Table 4.2 HSBC data: Values of γκ at various lags when n = 70.
1 week 2 weeks 8 weeks 1/2 year 1 year 2 years 5 years
0.10 0.16 0.26 0.38 0.45 0.54 0.81

Table 4.3 Apple data: Values of γκ at various lags when n = 70.
1 week 2 weeks 8 weeks 1/2 year 1 year 2 years 5 years
0.24 0.40 0.65 0.78 0.85 0.90 0.96

We conclude this section by comparing the out-of-sample predictive
performance of the SV-ICA model with that of a simple SV model with an
AR(1) process for the log volatility, and the SV-DPM with normal kernel,
proposed by [43]. Recall that [43] model the return distribution using the
DPM with normal kernel, and the log volatility ht with an AR(1) pro-
cess. Both the SV-ICA and the SV-DPM use the Bayesian nonparametric
approach. The SV-ICA models the dependence in the volatility process
but retains a normal return distribution whereas [43] use a nonparametric
return distribution with a parametric volatility process.

Predictive performance is assessed by the LPS [27] at different prediction
horizons τ . In this case, the LPS is

LPS(τ ) = − 1
T − τ − �T/2� + 1

T−τ∑
i=�T/2�

log p
(
yτ

i

∣∣y1, . . . ,yi−1
)
,

where τ is a positive integer and yτ
i = yi+τ − yi is the log return over τ days.

The results are presented for time horizon up to 150 days, and smaller val-
ues of the LPS identify the model with better forecasts. Fig. 4.4 displays the
LPS as a function of the forecasting horizon. The SV-ICA model domi-
nates the SV-DPM model at all time horizons for the Apple returns and at
longer time horizons for the HSBC returns. This suggests that it is better to
model the volatility dynamics of returns using the Bayesian nonparametric
approach, rather than the return distribution.

4.4 Bayesian nonparametric methods for the analysis of
macroeconomic time series

In Sections 4.2 and 4.3 we focused on the analysis of univariate time se-
ries, where we demonstrated that the Bayesian nonparametric approach
led to better out-of-sample forecasts, both in the case of modelling con-
ditional returns’ distribution using the SBP and in the case of flexibly
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Figure 4.4 Log predictive score (τ ) as a function of forecasting horizon (τ ) for the SV-
ICA model with n = 70 (solid line), the simple SV model (dot-dashed line) and the
Bayesian nonparametric model (dashed line) for HSBC and Apple.

capturing the dynamics of an SV model by using the Dirichlet process
as the prior for the distribution of the persistence parameter in an aggrega-
tion model. Here we are going to concentrate on multivariate time series
models. Such models are used in macroeconomic modelling to understand
the dynamic relationship between different economic variables (such as un-
employment and inflation interest rates) in a particular economy or across
different economies.

The VAR model has been the benchmark for analysing macroeco-
nomic time series. In its basic form, the L-lag VAR model represents a
p-dimensional vector of variables measured at time t, yt = (yt,1, . . . ,yt,p)

′, as
a linear combination of past realisations,

yt = μ + B1yt−1 + . . . + BLyt−L + et, (4.17)

where {Bl}L
l=1 are (p×p)-dimensional matrices of unknown coefficients and

et = (e1,t, . . . , ep,t)
′ is a (p×1)-dimensional multivariate normally distributed

random innovation vector with mean zero and covariance matrix �. This
simple linear representation of the joint dynamics of yt is the reason be-
hind the popularity of VAR models. It facilitates the study of the effects of
shocks (such as monetary and fiscal policy shocks) through computation of
response functions and forecast error variance decompositions; see [56,65,
72,16].

However, this linear representation of the variables’ joint dynamic be-
haviour, with a constant conditional mean and variance, and Gaussian
innovations (which are the key assumptions of VAR models) have come
under heavy criticism and can be considered unrealistic. For example, em-
pirical evidence suggests that macroeconomic variables may have nonlinear
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relationships (see [30]), the nature of shocks may not be Gaussian (see [76])
and the effects of these shocks may not be linear (see [67] and [58] for
monetary policy studies and [5,3,24] for fiscal policy studies).

These limitations of the VAR(p) model are now well understood. The
two prevailing modelling directions are regime switching (RS) models and
time-varying vector autoregressive (TV-VAR) models. RS models can be
seen as a form of a dynamic mixture model which can more accurately
capture the structure of the data (for a comprehensive review see [38]).
TV-VAR models allow the system’s conditional mean and/or variance to
vary over time by modelling the VAR coefficients and innovation covari-
ance matrix with a linear time series model, often a random walk or an
AR(1) process (for a comprehensive review see [52]). Both of these ap-
proaches have been proven to provide better out-of-sample forecasts when
compared to the benchmark VAR model, though it is the TV-VAR that is
now seen as the ‘gold standard’ by Central Banks; see [13] and [12].

[48] take a different approach and directly model the joint stationary
and transition densities of the system using the stick breaking represen-
tation of the DPM. This implies that both densities are infinite mixtures
(with the Dirichlet process as the mixing measure), where the data dictate
if and when a new component is needed. The advantages of this Bayesian
nonparametric approach over classical nonparametric methods are that we
do not need to tune any smoothing parameters, uncertainty about the un-
known stationary and transition densities is expressed through the posterior
and, most importantly, out-of-sample predictive performance is superior to
other models; see [63]. [71] take an alternative approach, where they model
the margins nonparametrically.

To construct their multivariate model, [48] build on [2], where a prior
with full support for the transition density and stationary density (i.e. any
transition density and stationary density can be represented arbitrarily well
by the prior) was defined for the univariate case. [48] call their multivari-
ate stationary time series model Bayesian nonparametric VAR (BayesNP-
VAR).

To derive the transition densities of the BayesNP-VAR, we start from
the joint distribution of yt and its L lags yL

t , which is given an infinite
mixture expressed as follows:

p(yt,yL
t ) =

∞∑
j=1

wj k(yt,yL
t |θj), (4.18)
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where k(yt,yL
t |θj) is an ((L + 1)p)-dimensional probability density func-

tion which does not depend on t and θj are the locations of the mix-

ture components with θj
i.i.d.∼ G0. To ensure that the overall process is

stationary, we assume that k(yt−i, . . . ,yt−i−κ |θj) for i = 0, . . . ,L − κ and
κ = 0, . . . ,L − 1 depends on κ only (which can be achieved by assum-
ing that k(yt,yL

t |θj) is the joint distribution of a stationary process). The
mixture weights wj are defined using the stick breaking representation,

w1 = v1, wj = vj
∏

m<j(1 − vm) and vj
i.i.d.∼ Be(1,M). We complete the mul-

tivariate DPM setup of Eq. (4.18) by assuming that the locations θj are
independent of the weights, wj.

The joint density in Eq. (4.18) leads to a transition density that is also
an infinite mixture with the following form:

p(yt|yL
t ) = p(yt,yL

t )

p(yL
t )

=
∑∞

j=1 wj k(yt,yL
t |θj)∑∞

j=1 wj k(yL
t |θj)

(4.19)

=
∞∑
j=1

ωj(yL
t )k(yt|yL

t , θj),

where k(yt|yL
t , θj) is the transition density of the jth component and

ωj(yL
t ) = wj k(yL

t |θj)∑∞
k=1 wk k(yL

t |θk)
is the weight of the jth component which depends

on previous lags, the key feature of our model. The transition density can
be seen as a multivariate mixture of experts. Mixtures of experts are exten-
sions of smooth regression models and popular within the machine learning
community. They are used in regression to estimate the conditional den-
sity p(y|x) of a univariate y for all values of an (often high-dimensional)
covariate x, using mixtures where the component weights depend on a
covariate x; see [42], [45], [25] and [75]. The weights of the transition
density in Eq. (4.19) depend on the observed lagged values which allows
different component transition densities to be favoured in different periods.
For example, contractionary and expansionary periods could have differ-
ent transition densities. In the BayesNP-VAR model, we can consider each
component (‘expert’) as a regime, with changes of regime determined by
the observed lagged values of yL

t .
To address the risk of overfitting the data, when either p (the number of

time series variables) or the number of components increases, or both, [48]
considered a two-stage approach.
• A structure similar to a factor model for k(yt,yL

t |θj). This choice divides
the variation of the data into a part which describes the dependence
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between variables and a part which is idiosyncratic to each variable. To
shrink to low-rank structures, they use the multiplicative gamma process
shrinkage prior of [6].

• A prior for the precision parameter M , which strikes a balance between
having too few and too many components. Recall from Section 4.2
that M controls the relative values of the weights. The expectation of
the jth weight is E[wj] = Mj−1

(M+1)j
and so, as M increases, the average size

of the jth weight becomes smaller and the number of components with
nonnegligible weights becomes larger.
For more detail on the construction of the BayesNP-VAR model and

the related MCMC for inference refer to [48]. We conclude this section
with the application of the BayesNP-VAR to seasonally adjusted, monthly
macroeconomic time series from the U.S. collected from the Federal Re-
serve Bank of St Louis (FRED). The sample period is from 1 January 1959
to 1 August 2016, and the details of the variables together with the trans-
formations used are displayed in Table 4.4

Table 4.4 U.S. data.
Name Description Growth rates
UNR Unemployment rate none
PCE Personal consumption expenditure index: 2009=100 1200 ln(

yt
yt−1

)

NFP Total nonfarm payroll, thousands of persons 1200 ln(
yt

yt−1
)

FEDR Federal funds rate none
IPRO Industrial production index: 2012=100 1200 ln(

yt
yt−1

)

LTR Long-term interest rate none

Source: FRED.

To illustrate that the BayesNP-VAR correctly identifies economic
regimes where shocks are transmitted in different ways, [48] select the
MCMC sample with the highest posterior density value. This allows for
the approximation of the posterior mode of the BayesNP-VAR mixture
model. We can then identify the most probable component in p(yt|yL

t ) for
the selected MCMC sample. These components are highlighted in time
plots and shown together with their related weights. The idea is to show
that for different time periods, different components are identified, and
this is informed by the weights of the mixture model, which depend on
previously observed lagged values. Figs 4.5, 4.6 and 4.7 display these time
plots, and six distinct components/regimes are identified. The first two
rows show the time series for each variable highlighting the regime with
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Figure 4.5 Plots identifying the first and second components of the U.S. data in growth
rates. The first two rows of each set of nine plots display the time series highlighting, in
cyan (mid grey in print version), the component/regime, and the third row displays the
nonnegligible weight of the respective regime.

the largest mixture weight. The weight for that is displayed in the last row.
The first component covers periods of sustained growth, including ‘The
Great Moderation’ of the mid-1980s to the mid-2000s. This was a period
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Figure 4.6 Plots identifying the third and fourth components of the U.S. data in growth
rates. The first two rows of each set of nine plots display the time series highlighting, in
cyan (mid grey in print version), the component/regime, and the third row displays the
nonnegligible weight of the respective regime.

when the fluctuations in the business cycle were less pronounced. The sec-
ond component is characterised by periods after economic downturns. The
first one was the burst of the 2000 ‘Dot.com’ bubble and the second one the
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Figure 4.7 Plots identifying the fifth and sixth components of the U.S. data in growth
rates. The first two rows of each set of nine plots display the time series highlighting, in
cyan (mid grey in print version), the component/regime, and the third row displays the
nonnegligible weight of the respective regime.

2007 U.S. housing market meltdown. Components three and four represent
the ‘Golden Era’ of U.S. capitalism and the ‘Volcker disinflation’, respectively.
The last two components identify two of the worst recessions in recent U.S.
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Figure 4.8 IRFs to a 1% increase in federal funds rate. (A) Inflation response. (B) Industrial
production growth response. (C) Unemployment response. Blue dash inverted triangle,
component 1; red dash, component 2; green dot dash, component 3; yellow solid, com-
ponent 4; cyan circle dash, component 5; pink plus dash, component 6.

history; the fifth component captures the ‘U.S. housing meltdown’ of 2007,
whereas the sixth component captures the ‘Oil Shock’ of the early 1970s.
The difference between the two is that the latter was characterised by high
inflation.

For the BayesNP-VAR, the transition density within each component
is a VAR. This means that impulse response functions (IRFs) can be con-
structed. IRFs describe the evolution of a macroeconomic time series along
a specified horizon after a specified shock at some time point t. An IRF is
a polynomial function of the estimated VAR coefficients. Fig. 4.8 displays
the IRFs for 60 months ahead following a unit shock in the chosen time
series. Each component is coloured differently, with the following colour
scheme: blue dash inverted triangle for the first component, red dash for the
second, green dot dash for the third, yellow solid for the fourth, cyan circle
dash for the fifth and pink plus dash for the sixth component. The effects of
a 1% increase in the federal funds rate is shown in Fig. 4.8, where panel (A)
displays the IRFs of inflation, panel (B) the IRF output growth and panel
(C) the IRF of the unemployment rate. There are clear differences in the
effects of the monetary policy shock, in periods of economic growth, pe-
riods of contraction and periods of economic stability. For further in depth
discussion of the results, see [48].

Like the examples of the previous sections the out-of-sample predictive
performance is assessed by calculating the LPS. [48] calculate the LPS for
all the variables (using their joint predictive distribution) as follows:

−
T−h∑
i=s

log p(yi+h|y1, . . . ,yi), (4.20)

where T is the size of the time series, s is the time from where the predic-
tion starts and h is the predictive horizon. They also calculate the LPS for
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each variable (using its marginal predictive distribution,

−
T−h∑
i=s

log p(yi+h,j|y1, . . . ,yi). (4.21)

A smaller LPS value indicates better predictive performance. In the paper,
forecasting horizons of h = 1, 2 and 4 months are considered. Table 4.5
displays these LPSs. The BayesNP-VAR(1) is compared to the TVP-SV-
VAR(1), which is the most popular model choice by Central banks. Re-
gardless of the time horizon the BayesNP-VAR(1) model outperforms the
TVP-SV-VAR(1) in both overall and marginal LPSs. For comparisons with
other multivariate models as well as use of other predictive performance
metrics, such as the root mean squared error, see [48].

Table 4.5 Log predictive scores for growth rates of U.S. data.
Model Horizon Joint and marginal scores

Overall FEDR IPRO LTR NFP PCE UNR
BayesNP-VAR(1) 1 322 52 109 39 48 52 22

2 335 51 107 38 47 51 21
4 321 58 102 36 45 49 20

TV-SV-VAR(1) 1 332 48 120 38 50 63 16
2 351 54 119 45 51 64 21
4 367 62 121 50 55 65 26

4.5 Conclusion

In this chapter, we showed how Bayesian nonparametric priors can be used
to estimate the conditional distribution of asset returns, capture long-range
dependence in SV models and explain the joint dynamic behaviour of
macroeconomic time series. For all three cases we showed that the out-
of-sample predictive performance of the resulting Bayesian nonparametric
model was superior to other competitive models.

However, the Dirichlet process, DPM and SBP are not the only
Bayesian nonparametric priors that can be used in the analysis of financial
and macroeconomic time series. In the 2010s other Bayesian nonparametric
priors have been developed using normalisations of complete random mea-
sures (see [54]). We believe that these priors should be used in the analysis
of financial time series, because they provide a more flexible construction
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for the weights of mixture models. For example, they can be used in the
analysis of ultrahigh-frequency data, where evidence of nonstationarity to-
gether with long-range dependence exists.

Since the seminal work of [57] there has been a lot of work in devel-
oping dependent random measures based on stick breaking constructions
but these had not been used in financial time series analysis until recently.
[44] use the hierarchical Dirichlet process (HDP) of [73] to capture the
time dependence of the realised covariance (RCOV) matrix and estimate
its conditional distribution. The HDP is a distribution over multiple corre-
lated probability measures, G1, . . . ,Gr , sharing the same atom locations.
Each probability measure is generated from independent Dirichlet pro-
cesses with shared precision parameter and base measure, which is generated
from a Dirichlet process itself. [9] generalise the HDP to hierarchical con-
structions with normalised random measures, while [31] develop correlated
random measures which do not involve such hierarchical construction. We
believe that these measures are a more flexible alternative to the stick break-
ing constructed ones, as they are not constrained by the stochastic ordering
of the mixture weights. These methods will be useful for modelling more
complex financial and macroeconomic data.
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5.1 Introduction

Many empirical phenomena studied via regression models are multidimen-
sional such that reducing them to one single response variable naturally
leads to a loss of information on the true data generating process. In par-
ticular, regression models with univariate response variables do not allow
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the analyst to study the dependence between the different response vari-
ables. As one example on a multidimensional response variable, we will
investigate determinants of child health in developing countries. This is a
particularly relevant research area since improving child health is among the
most important goals for developing countries and consequently also fig-
ures prominently in the sustainable development goals set out by the United
Nations.

In our application, we make use of the wealth of information provided
by the Demographic and Health surveys, which are nationally represen-
tative surveys covering aspects such as fertility, family planning, maternal
and child health, child survival and child nutrition (www.measuredhs.com).
Currently, information is available on more than 300 surveys conducted in
90 countries, and we chose India as a particularly interesting case since it
is among the countries with the highest rates of childhood undernutrition
[13]. As two important dimensions of child health, we will consider wasting
as a continuous indicator for acute malnutrition as reflected by low weight
for height (in comparison to a reference population) and a binary indicator
for fever within the two weeks preceding the survey interview. More pre-
cisely, wasting is usually reported as a z-score that compares the nutritional
status of a child with a predefined reference population via

z = observed value − median value in reference population
standard deviation in reference population

. (5.1)

Based on the definition of the World Health Organization [43], an in-
dividual is considered to suffer from wasting if the score is two standard
deviations below the median of the reference population.

Both indicators are representatives of adverse health risks and measure
different yet potentially interrelated aspects of child health. As a conse-
quence, it is very likely to observe dependence between the two health
dimensions even after adjusting for explanatory variables. We therefore deal
with the challenge of identifying determinants of child health risks by de-
veloping Bayesian bivariate regression models where the full distribution
of the two response variables can be investigated simultaneously. This will
comprise
• the flexible, modular specification of the joint distribution of a discrete

and a continuous response based on copulas,
• regression predictors on all parameters of the bivariate response distri-

bution including the dependence parameter of the copula but also all
parameters characterising the marginal distributions,

http://www.measuredhs.com
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• flexible regression predictors comprising various types of regression ef-
fects such as nonlinear effects of continuous covariates, spatial effects and
random effects,

• efficient fully Bayesian inference based on Markov chain Monte Carlo
(MCMC) simulations,

• tools for model choice and model checking.
Our model developments can be cast into the framework of generalised

additive models for location, scale and shape (GAMLSS) as originally pro-
posed by Rigby and Stasinopoulos [32] and Stasinopoulos and Rigby [40].
The basic idea of GAMLSS is to assume a parametric type of distribution for
the response variable of interest and to place regression predictors on poten-
tially all parameters characterising the response distribution. This allows one
to leave the restrictive realm of mean regression models where all parame-
ters but the mean are treated as nuisance parameters. The original proposal
of GAMLSS relied on penalised maximum likelihood inference while later
developments have considered functional gradient descent boosting [26] or
Bayesian inference based on MCMC simulations [17].

While originally being associated with univariate responses, GAMLSS
can easily be extended to bivariate (or more generally multivariate) re-
sponses as long as a suitable type of parametric response distribution is
still available. Inspired by seemingly unrelated regression models [48,37,22],
Klein, Kneib, Klasen and Lang [15] developed such multivariate GAMLSS
based on the bivariate normal and/or the bivariate t distribution, while
Marra and Radice [24] proposed recursive bivariate probit models. The
main limitation in these developments was the determination of appro-
priate bivariate or multivariate response distributions. To gain additional
flexibility in this respect, the construction via copulas [27] proved to be
very useful since it allows to separately specify the marginal distributions
and the dependence structure. This construction principle has been used
for bivariate continuous response vectors in Klein and Kneib ([14], based
on MCMC simulations) Marra and Radice [25] and Radice et al. ([31],
penalised maximum likelihood inference), or Yee ([47], in the context of
vector generalised additive models). A similar framework has also been pro-
posed in [4] utilising random walk proposals. However, they only consider
normal marginals with constant variances and a linear predictor for the
marginal expectations. The predictor of the copula parameter is further-
more restricted to cubic splines. Klein et al. [18] extended the approach
of Marra and Radice [25] to allow also for responses of a mixed discrete-
continuous type and developed corresponding penalised maximum likeli-
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hood inference. Additional flexibility is obtained as the marginal and copula
parameters are related to regression predictors of structured additive form
[8,44]. A somewhat different perspective on bivariate response models is
often taken in economics to account for endogeneity of a regressor that is
treated as the response in the second equation. Linear copula specifications
are also gaining in popularity in this area; see for instance Park and Gupta
[29] and references therein for the particular case of marketing-related ap-
plications.

In this chapter, we develop the fully Bayesian analogue to Klein et al.
[18] to provide access to the full posterior distribution via MCMC simu-
lation techniques. Beside what has been developed in Vatter and Chavez-
Demoulin [41] and Klein et al. [18], to the best of our knowledge, other
existing bivariate copula regression approaches and software implementa-
tions (see e.g. [1,10,20,19,34,46]) cover only parts of the flexibility of our
approach. The approach of [41] is based on a two-stage technique where
the parameters of the marginal distributions and of the copula function
are estimated separately. In contrast, we adopt a simultaneous estimation
approach since [25] showed empirically that estimating all parameters si-
multaneously offers computation and efficiency gains. Further simultaneous
copula regression methods in a fully parametric approach to likelihood
estimation are considered in [5,45] albeit restricted to the case of linear
dependence via a Gaussian copula. Alternatively if the dimension of the
response is larger than two, semi/nonparametric extensions where, for in-
stance, the margins and/or copula function are estimated using kernels,
wavelets or orthogonal polynomials may be considered (e.g. [12,21,35,36]).
While such techniques are in principle more flexible in determining the
shape of the underlying bivariate distribution, in practice they are limited
with regard to the inclusion of flexible covariate effects, and may require
large sample sizes to produce reliable results.

The rest of this chapter is structured as follows: Section 5.2 contains
the corresponding model developments including the copula-based con-
struction of mixed discrete-continuous distributions and the specification
of the regression predictors. Section 5.3 develops the Bayesian inferential
scheme while Sections 5.4 and 5.5 discuss the application of the models in
the context of child health. More precisely, Section 5.4 focuses on ques-
tions of model selection and model evaluation while Section 5.5 discusses
the empirical results and their implications. The final Section 5.6 considers
issues for future research.
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5.2 Bivariate copula models with mixed binary-continuous
marginals

5.2.1 Copula-based construction of bivariate
binary-continuous distributions

Copulas provide a flexible, modular possibility for constructing multivariate
(in our case bivariate) distributions that allows for the separation between
the specification for the marginals and the specification of the dependence
structure. The foundation for this construction is Sklar’s theorem that im-
plies that any bivariate, strictly continuous cumulative distribution function
(CDF) F(y1,y2) = P(Y1 ≤ y1,Y2 ≤ y2) related to a pair of response variables
(Y1,Y2) can be uniquely represented as

F(y1,y2) = C(F1(y1),F2(y2)), (5.2)

where C : [0,1]2 → [0,1] denotes a copula (i.e. a bivariate CDF defined on
the unit square with standard uniform marginals) and Fd(yd) = P(Yd ≤ yd),
for d = 1,2, correspond to the marginal CDFs of the two random variables
Y1 and Y2. When assuming a parametric structure for both the marginal
distributions and the copula, representation (5.2) yields a completely para-
metric model for the bivariate CDF which, in turn, allows one to relate
copulas with distributional regression models. In the resulting class of cop-
ula regression models, the parameters from (5.2) are related to regression
predictors via suitable link functions yielding a flexible and versatile way of
defining regression models for bivariate response variables with regression
effects not only on the marginals but also on the dependence structure as
represented by the copula.

If one of the two components Y1 or Y2 is discrete, Eq. (5.2) is still valid
but the copula is in general no longer unique which renders the data-based
identification of parameters challenging. In this chapter, we focus on the
particular case where one of the two components is binary and circumvent
the nonuniqueness of the copula by using the latent variable representation
of binary regression models. For the rest of the chapter we assume, without
loss of generality, that the first response component Y1 is binary (i.e. Y1 ∈
{0,1}) but is related to the (unobserved) latent variable Y ∗

1 via the threshold
mechanism Y1 = 1(Y ∗

1 > 0), where 1(·) denotes the indicator function.
From this it follows that the CDF of the observed response Y1 (F1(y1)) and
the CDF of the latent variable Y ∗

1 (F∗
1(y∗

1)) coincide at y1 = y∗
1 = 0, i.e.

P(Y1 = 0) = P(Y1 ≤ 0) = F1(0) = F∗
1(0) = P(Y ∗

1 ≤ 0).
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Utilising the latent variable, the copula representation (5.2) yields

P(Y1 = 0,Y2 ≤ y2) = P(Y ∗
1 ≤ 0,Y2 ≤ y2) = C(F∗

1(0),F2(y2))

and

P(Y1 = 1,Y2 ≤ y2) = P(Y ∗
1 > 0,Y2 ≤ y2) = F2(y2) − C(F∗

1(0),F2(y2)),

leading to the mixed binary-continuous density

p(y1,y2) =
(

∂C(F∗
1(0),F2(y2))

∂F2(y2)

)1−y1

·
(

1 − ∂C(F∗
1(0),F2(y2))

∂F2(y2)

)y1

· p2(y2),

(5.3)

where p2(y2) = ∂F2(y2)

∂y2
is the marginal density of Y2. Eq. (5.3) will provide

the basis for calculating the likelihood of our copula regression specification
and will therefore be an integral component of the Bayesian inferential
scheme that we are going to develop later.

5.2.2 Specifying the marginal distributions
As a major advantage of the copula approach, we can separately specify the
two marginal distributions and the dependence structure. Concerning the
former, we have to make a specific assumption about the binary response
component Y1 (or the corresponding latent variable Y ∗

1 ) and the continuous
response component Y2.

Since we are interested in imputing the unobserved latent variables Y ∗
1

as a part of our MCMC approach, we will assume a normal distribution
for the latent variable, i.e. Y ∗

1 ∼ N(η1,1), where η1 is a regression predictor
that determines the location parameter of the latent variable, and therefore
implicitly the success probability of the binary response variable. The CDF
of Y ∗

1 is then given by F∗
1(y∗

1) = �(y∗
1 − η1) (with the standard normal CDF

�(·)) and the success probability is π = P(Y1 = 1) = P(Y ∗
1 > 0) = �(η1).

Of course other latent variable specifications are conceivable, e.g. the lo-
gistic distribution leading to a marginal logit model for the binary response
Y1 or the Gumbel distribution leading to a marginal complementary log-
log model, but we will exclusively focus on the probit specification in the
following since it considerably facilitates the imputation of Y ∗

1 .
For the continuous marginal, any strictly continuous CDF F2(y2) can

be employed and the exact choice should be guided by the specific ap-
plication. In our case, we will rely on a normal specification for Y2 with
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CDF F2(y2) = �
( y2−μ

σ

)
, where μ and σ 2 denote the mean and variance

that will be related to regression predictors later. The choice of the normal
distribution is in line with most previous univariate analyses of undernutri-
tion indicators where the normal distribution (in particular with regression
effects also on the variance) provided a very reasonable fit.

5.2.3 Specifying the copula
The most prominent choice for copulas is the Gaussian copula

C(u1,u2) = �2
(
�−1(u1),�

−1(u2)
)
,

where �2(·, ·) corresponds to the CDF of the bivariate normal distri-
bution with expectation zero, unit variances and correlation coefficient
ρ ∈ [−1,1]. In our case, this would imply not only that the copula model
reduces to a bivariate normal model on the latent scale but it also has the
disadvantage that only linear correlation can be modelled while tail depen-
dence (i.e. stronger dependence of extreme events) cannot be accounted
for. In most bivariate regression situations, however, the simultaneous oc-
currence of two extreme events (in our case for example a low nutritional
status and a high probability of fever) are of particular interest and there-
fore relaxing this restrictive assumption would be relevant. We therefore
consider the Clayton copula

C(u1,u2) = (u−θ
1 + u−θ

2 − 1)−1/θ ,

with dependence parameter θ > 0, as a competitor to the Gaussian copula.
The Clayton copula allows for lower tail dependence but is restricted to
positive dependence in its standard form. To overcome this limitation, we
also consider rotated versions of the Clayton copula obtained from

C90(u1,u2) = u2 − C(1 − u1,u2),

C180(u1,u2) = u1 + u2 − 1 + C(1 − u1,1 − u2),

C270(u1,u2) = u1 − C(u1,1 − u2),

where C(·, ·) denotes the standard Clayton copula and the rotation shifts
the tail dependence to either of the four corners of the unit square. This
yields upper tail (rotation by 180◦) or negative tail dependence (rotation
by 90◦ to relate large values of Y2 with small values of Y1 and vice versa
for rotation by 270◦). A visualisation of the resulting four versions of the
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Figure 5.1 Contour lines (in 0.02 steps) of various bivariate distributions, all with stan-
dard normal marginal distributions and linear correlation coefficient of 0.5 (for positive
dependence) and −0.5 (for negative dependence). The distributions are generated by
rotating the Clayton copula by 0, 90, 180 and 270 degrees and where the copula param-
eter is denoted by θ .

Clayton copula can be found in Fig. 5.1, where all marginal distributions
are standard normal and the value of the correlation coefficient is equal to
0.5 for positive and −0.5 for negative dependence.

5.2.4 Embedding copula regression in the distributional
regression framework

The copula-based specification of the distribution for the bivariate response
vector enables us to embed our model structure in the framework of distri-
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butional regression, where potentially all parameters of the joint distribu-
tion can be related to regression predictors formed from covariates collected
in the vector ν i (containing e.g. binary, categorical, continuous and spatial
variables). More precisely, we assume that for observed response vectors
yi = (yi1,yi2), i = 1, . . . ,n (or equivalently yi = (y∗

i1,yi2)), the conditional
density f (yi|ν i) given covariates ν i depends on, in total, K = K1 + K2 + Kc

parameters ϑ i = (ϑi1, . . . , ϑiK)′ comprising
• K1 = 1 parameters for the binary regression model for yi1 (the success

probability),
• K2 parameters for the marginal of yi2 (i.e. K2 = 2 in case of the Gaussian

distribution) and
• Kc parameters for the copula C(·, ·) (in our case, we will always have

Kc = 1).
Each of the parameters ϑik is then related to a corresponding regression
predictor ηik based on a one-to-one response function hk via

ϑik = hk(ηik), ηik = gk(ϑik).

The response functions hk map the real line to the parameter space and
can be inverted to the link functions gk = h−1

k mapping the parameter space
back to the real line. In our model specification, we rely on (i) the probit
response function for the success probability of the binary response yi1,
(ii) the exponential response function for nonnegative parameters such as
the variance of the normally distributed continuous response variable and
the dependence of the Clayton copula and (iii) Fisher’s z-transformation
for parameters from a bounded interval such as the correlation coefficient
of the Gaussian copula.

For each of the predictors ηik we assume a semiparametric, additive
structure (as proposed in [8]),

ηik = β
ϑk
0 +

Jk∑
j=1

sϑk
j (ν i), (5.4)

consisting of an intercept β
ϑk
0 and an additive combination of Jk functional

effects sϑk
j (ν i) depending on (different subsets of) the covariate vector ν i (see

the next subsection for details).

5.2.5 Predictor specification
Dropping the parameter index ϑk for notational simplicity, we assume a rep-
resentation in terms of Dj basis functions Bj,dj(ν i) for the different additive
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effect components in (5.4), yielding

sj(ν i) =
Dj∑

dj=1

βj,djBj,dj(ν i). (5.5)

As a consequence, each vector of function evaluations (sj(ν1), . . . , sj(νn))
′

can be written as Zjβ j with basis coefficient vector β j = (βj1, . . . , βj,Dj)
′ and

design matrix Zj containing the evaluated basis functions, i.e. Zj[i,dj] =
Bj,dj(ν i). In matrix-vector notation the predictor vector η = (η1, . . . , ηn)

′

for all n observations of a given distributional parameter can therefore be
represented as

η = β01n + Z1β1 + . . . + ZJβ J ,

where 1n is a vector of ones of length n. To ensure identifiability of the
model, specific constraints may have to be applied to the parameter vectors
β j, for example to centre certain effect types.

Since the parameter vectors β j are often of considerably high dimension,
we enforce specific properties such as smoothness or shrinkage by assigning
multivariate normal priors

p
(
β j|τ 2

j

)
∝ exp

(
− 1

2τ 2
j
β ′

jK jβ j

)
1(Ajβ j = 0) (5.6)

to the coefficient vectors β j. The positive semidefinite penalty matrix K j

is chosen to achieve the desired type of regularisation and we will discuss
specific choices below. The variance parameter τ 2

j determines the relevance
of the prior distribution relative to the information provided by the data
and is typically assigned a hyperprior to allow for a data-driven amount of
regularisation. A conjugate default choice is to use an inverse gamma prior
for τ 2

j . The constraint matrix Aj is supplemented to the prior to achieve an
identifiable model (for example by implementing a centering constraint).
The prior (5.6) has a close connection to the specification of [28] and also
regularised maximum likelihood inference with quadratic penalty terms
λjβ

′
jK jβ j, where λj = 1/(2τ 2

j ) is the smoothing parameter controlling the
trade-off between fit and smoothness.

Different model components are now obtained by making more specific
choices on the basis functions in (5.5) and the penalty matrix K j in (5.6).
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Linear effects

For parametric, linear effects, the design matrix is formed by stacking in-
dividual covariate vectors zij into Zj such that the basis functions reduce
to the selection of individual entries from the complete vector of covari-
ates. To obtain flat priors for the parameters of the linear effects, we set
K j = 0 and drop the corresponding smoothing variance from the model
specification. If zij is of considerably high dimension or represents cate-
gorical covariates with some factor levels being only weakly identified by
the data, then it can make sense to use the Bayesian analogue of a ridge
penalty where K j = IDj with IDj being the Dj-dimensional identity matrix.
This implies that the regression coefficients are considered as i.i.d. random
effects and τ 2

j represents the variance of the random effects.

Nonlinear effects

For nonlinear effects of continuous variables, we rely on the idea of
Bayesian penalised splines [23] where the basis functions are given by
B-splines of a prespecified degree obtained from an equidistant set of knots.
A moderately large number of basis functions (20 to 40, say) is then usu-
ally sufficient to provide enough flexibility to represent common shapes
of nonlinear effects observed in empirical data. To avoid overfitting and
to enforce smoothness of the nonlinear effect, we specify a random walk
prior on the sequence of B-spline coefficients with flat priors for initial
values. This is equivalent to the frequentist approach of using a difference-
based penalty as introduced by Eilers and Marx [7]. As a consequence, we
obtain K j = D′

jDj, where Dj is a difference matrix with difference order
corresponding to the order of the chosen random walk. To render addi-
tive models comprising multiple nonlinear effects identifiable, we have to
impose a centering constraint on the corresponding effects. This can be
achieved by the constraint matrix Aj and in our case setting Aj = 1Dj (i.e.
specifying Aj as a Dj-dimensional vector of ones) leads to the desired con-
straint.

Spatial effects

For modelling spatial effects based on regional data where observations are
assigned to distinct administrative regions but no exact coordinate informa-
tion is available, we rely on Gaussian Markov random field specifications.
In this case the number of basis functions coincides with the number of
distinct regions while the basis functions are simply indicator functions for
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the different regions. As a consequence, the design matrix corresponds to
a collection of dummy variables coding the assignment of the observations
to the regions, i.e.

Zj[i,d] =
{

1 if the observation belongs to region d,

0 otherwise,

where d = 1, . . . ,Dj. A Gaussian Markov random field prior is then ob-
tained by assuming

βjd|βjd′,d′ ∈ δd ∼ N

⎛
⎝ 1

Nd

∑
d′∈δd

βjd′ ,
τ 2

j

Nd

⎞
⎠ ,

where δd is the set of neighbours of region d and Nd = |δd| is the size of
the neighbourhood. As a consequence, the conditional distribution of the
spatial effect in a given region given its neighbours is normal with the ex-
pectation given by the average of the neighbouring effects and the variance
given as the ratio of a common smoothness variance and the number of
neighbours. One can now show that this assumption of spatial similarity is
equivalent to our general prior structure (5.6) with

K j[d,d′] =

⎧⎪⎨
⎪⎩

−1 if d′ ∈ δd,

0 ifd′ /∈ δd,d 
= d′,
Nd if d = d′;

see Rue and Held [33]. Again a centering constraint is usually applied via
Aj = 1Dj .

Other effect types

Several other specifications can be employed. These include varying coef-
ficient smooths obtained by multiplying one or more smooth components
by some covariate(s) and smooth functions of two or more continuous co-
variates (e.g. [9,44]).

5.3 Bayesian inference

Bayesian inference for conditional copula models can be carried out by
a generic and modular updating scheme based on MCMC simulations via
iteratively updating all model parameters of the joint posterior. To deal with
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the mixed binary-continuous nature of the response vector, we will rely on
a data augmentation scheme where the unobserved, latent responses y∗

i1 are
imputed as a part of the MCMC scheme. Once these imputed responses
are available, we can proceed in analogy to the case of bivariate continuous
responses discussed in detail in Klein and Kneib [14].

After imputing the latent responses y∗
i1, the likelihood contribution of

observation i is given by

pi(y∗
i1,yi2) = ci(F∗

i1(y
∗
i1),Fi2(yi2)) · p∗

i1(y
∗
i1) · pi2(yi2),

where

ci(F∗
i1(y

∗
i1),Fi2(yi2)) = ∂2C(F∗

i1(y
∗
i1),Fi2(yi2))

∂F∗
i1(y

∗
i1)∂Fi2(yi2)

denotes the density of the copula, F∗
i1(y

∗
i1) = �(y∗

i1 − ηi1) and p∗
i1(y

∗
i1) =

ϕ(y∗
i1 − ηi1) are the CDF and the density of the latent responses y∗

i1 and
pi2(yi2) is the density of the continuous response yi2. Already at this point,
it should be noted that parameters related to the marginal distributions are
showing up both in the copula density and the respective marginal density
while parameters related to the copula are not included in the marginal
densities. This gives rise to a modular implementation where updating pa-
rameters of the marginals and the copula requires only limited knowledge
about the exact specifications for the other model components (see below
for details).

Data augmentation for the binary response

The conditional distribution of the first response given the second one can
easily be derived from the copula as

Fi,1|2(y∗
i1|yi2) = ∂C(Fi1(y∗

i1),Fi2(yi2))

∂Fi2(yi2)
. (5.7)

When imputing the latent responses y∗
i1, we additionally condition on the

observed binary response yi1, which leads to

Fy∗
i1|yi2,yi1(y

∗
i1|yi2,yi1) =

⎧⎨
⎩

Fi,1|2(y∗
i1|yi2)−Fi,1|2(0|yi2)

1−Fi,1|2(0|yi2)
if yi1 = 1,

Fi,1|2(y∗
i1|yi2)

Fi,1|2(0|yi2)
if yi1 = 0.

(5.8)

Generating random numbers from these truncated distributions was orig-
inally proposed by Pitt et al. [30], Smith and Khaled [38] and can be
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facilitated by applying the inversion method (or a numerical approximation
thereof) to (5.7) when a specific copula and marginal distribution for the
second response are given and then adjusting the resulting sample according
to (5.8). More precisely, if ui is a sample from a uniform distribution, then
a sample from the conditional distribution of Y ∗

i1|Yi2,Yi1 is given by

F−1
i,1|2(u

∗
i |yi2),

where

u∗
i =

{
ui ·

[
1 − Fi,1|2(0|yi2)

] + Fi,1|2(0|yi2) if yi1 = 1,

ui · Fi,1|2(0|yi2) if yi1 = 0.

For both copulas considered in this chapter, explicit solutions for the
simulation from the conditional distributions (5.7) are available. Let ui be
a realisation from the standard uniform distribution U[0,1]. Then for the
Gaussian copula, we have

y∗
i1 =

√
1 − ρ2

i �−1(ui) + ρi�
−1(Fi2(yi2)),

while for the Clayton copula we obtain

y∗
i1 =

⎛
⎝(−Fi2(yi2)

−θi−1

ui

) θi
1+θi − Fi2(yi2)

−θi + 1

⎞
⎠

θi

.

When working with the rotated version of the Clayton copula, we use the
equations introduced in Section 5.2.3 to adjust the simulation of the latent
responses.

Iteratively weighted least squares proposals

Updating the regression coefficients for the different effects relies on iter-
atively weighted least squares proposals that construct a Gaussian proposal
density matching the mode and the curvature of the full conditional for
a given vector of regression coefficients β j. More precisely, we assume
the working model ỹ ∼ N(η,W−1) with η corresponding to the predic-
tor β j belongs to, working observations ỹ = η + W−1v, score vectors v
with elements vi = ∂

∂ηi
log(pi) and diagonal weight matrices W consisting

of working weights wi = − ∂2

(∂ηi)
2 log(pi). This working model then induces a
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normal proposal with mean and precision matrix given by

μj = P−1
j Z′

jW (ỹ − η−j), Pj = Z′
jWZj + 1

τ 2
j

K j, (5.9)

where η−j is the predictor without the jth component; see Brezger and Lang
[3] or Klein, Kneib and Lang [16] for details in the context of structured
additive regression and distributional regression, respectively.

Updating parameters of the marginal distributions

For a parameter ϑik corresponding to the marginal distribution of the dth
response yid, d = 1,2, the score elements and working weights can be de-
termined via

vi = ∂ log(ci(Fi1(yi1),Fi2(yi2)))

∂Fid(yid)

∂Fid(yid)

∂η
ϑk
i

+ ∂ log(pid)

∂η
ϑk
i

, wi = − ∂vi

∂η
ϑk
i

,

where η
ϑk
i is the predictor corresponding to ϑk. Note that we dropped the ∗

from all quantities related to the first response component to simplify nota-
tion but all derivations in this section in fact relate to the latent, continuous
responses y∗

i1.
Note that the evaluation of the first and second derivatives can be de-

composed into different components reflecting different parts of the copula
regression specification. The derivative of the log-copula density is with
respect to the corresponding marginal CDF Fid(yid) and does not require
any knowledge about the second marginal other than the evaluated CDF.
As a consequence, the derivative can be evaluated without knowing the
exact distributional specification for the other response but only requires
the current values of the CDF. The derivative of the marginal CDF Fid(yid)

with respect to the predictor η
ϑk
i depends on the chosen marginal and the

particular parameter but is independent of the chosen copula and the spec-
ification for the other marginal. Finally, the derivative of the log-density of
the marginal with respect to the predictor coincides with the derivative that
would be required for a univariate distributional regression model and will
therefore be readily available for most of the standard distributions. Similar
expressions can be derived for the working weights wi where again one
component will correspond to ∂2 log(pid)

∂(η
ϑk
i )2

which is already available from the

univariate model specifications.
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Updating parameters of the copula

The log-copula density of the Gaussian copula is given by

log(ci(ui1,ui2)) = − 1
2

log
(
1 − ρ2

i

) + ρi

1 − ρ2
i
�−1(ui1)�

−1(ui2)

− ρ2
i

2
(
1 − ρ2

i

) (
�−1(ui1)

2 + �−1(ui2)
2) ,

where uid = Fid(yid), d = 1,2. Therefore the elements of the score vector are
given by

vi = ρi

√
1 − ρ2

i +
(√

1 + η
2ρi
i + ρiηi

)
�−1(ui1)�

−1(ui2)

− ηi
(
�−1(ui1)

2 + �−1(ui2)
2)

and the working weights can be determined as

wi =
(
1 − ρ2

i

)2 − ρ2
i

(
1 − ρ2

i

) + (
2ρi + ρi

(
1 − ρ2

i

))
�−1(ui1)�

−1(ui2)

− �−1(ui1)
2 − �−1(ui2)

2.

In this case, the working weights can be significantly simplified by replacing
them with their expectations, which are given by

E (wi) = 1 − ρ4
i .

For the Clayton copula, the log-copula density is given by

log(ci(ui1,ui2)) = log(θi + 1) − (1 + θi) (log ui1 + log ui2)

−
(

2 + 1
θi

)
log

(
u−θi

i1 + u−θi
i2 − 1

)
,

such that the score vector contains elements

vi = θi

θi + 1
− θi (log ui1 + log ui2) + 1

θi
log

(
u−θi

i1 + u−θi
i2 − 1

)

+
(

2 + 1
θi

) θi

(
u−θi

i1 log ui1 + u−θi
i2 log ui2

)
u−θi

i1 + u−θi
i2 − 1

and the working weights are given by
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wi = θi

(θi + 1)2 − θi (log ui1 + log ui2) − 1
θi

(
u−θi

1 + u−θi
i2 − 1

)

− (1 − 2θi)
u−θi

i1 log ui1 + u−θi
i2 log ui2

u−θi
i1 + u−θi

i2 − 1

+
(
2 + 1

θi

)
θ2

i

u−θi
1 + u−θi

i2 − 1

⎡
⎢⎣

(
u−θi

i1 log ui1 + u−θi
i2 log ui2

)2

u−θi
i1 + u−θi

i2 − 1

− (log ui1)
2 u−θi

i1 − (log ui2)
2 u−θi

i2

⎤
⎥⎦ .

If rotated versions of the Clayton copula are employed, the copula densities
have to be replaced accordingly by

c90(ui1,ui2) = ∂2

∂ ũi1∂ui2
C(ũi1,ui2),

c180(ui1,ui2) = ∂2

∂ ũi1∂ ũi2
C(ũi1, ũi2),

c270(ui1,ui2) = ∂2

∂ui1∂ ũi2
C(ui1, ũi2),

with ũi1 = 1 − ui1 and ũi2 = 1 − ui2.
Similar to the case of the marginal distributions, updating the regression

coefficients in the copula parameter does not require precise knowledge
about the marginal distributions but rather only relies on the marginal
CDFs evaluated at the observed response values.

Updating the smoothing variances

Since the inverse gamma prior for τ 2
j is conjugate to the multivariate nor-

mal prior (5.6), the smoothing variances τ 2
j can always be updated by a

Gibbs update from τ 2
j |· ∼ IG(a′

j, b′
j), with updated parameters a′

j = rk(K j)

2 + aj,
b′

j = 1
2β ′

jK jβ j + bj.

Implementation

An efficient implementation making use of fast sparse matrix multiplica-
tions is available in a developer version of the software package BayesX [2]
and as part of the supplementary material to this chapter.
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5.4 Model selection and model evaluation

In any application of distributional regression, one faces important model
choice decisions: choosing the most appropriate out of a set of potential re-
sponse distributions and selecting adequate predictor specifications for each
parameter of these distributions. In the case of copula regression mod-
els, one has additionally to determine a reasonable conditional dependence
structure between the outcomes. In order to arrive at the final model, for
which results will be discussed in Section 5.5, we rely on the following
three tools.

Quantile residuals for the marginal fits

The fit of the marginal distributions can be checked visually using the quan-
tile residual plots suggested by Stasinopoulos et al. [39]. For continuous
univariate random variables, it is a well-known result that the cumula-
tive distribution function F(·) evaluated at the random variable yi yields
a uniform distribution on [0,1]. As a consequence, quantile residuals de-
fined as r̂i = �−1(F(yi|ϑ̂ i)), with the inverse CDF of a standard normal
distribution �−1 and F(·|ϑ̂ i) denoting CDF with estimated parameters
ϑ̂ i = (ϑ̂i1, . . . , ϑ̂iK)′ plugged in, should at least approximately be standard
normally distributed if the correct model has been specified [6]. In prac-
tice, the residuals can be assessed graphically in terms of quantile-quantile
plots: the closer the residuals are to the bisecting line, the better is the fit to
the data. Unfortunately the idea of quantile residuals is not easily transferred
to multivariate response models since there is no multivariate analogue to
the probability integral transform. As a consequence, quantile residuals can
only be applied to the marginal distributions separately which will not al-
low us to detect model deviations in the dependence but is still a helpful
device for the marginal specification of the continuous stunting score yi1.
In principle, such residuals can also be computed for the binary compo-
nent yi2. However, note that ui becomes a random variable in the interval
[F(yi − 1|ϑ̂ i),F(yi|ϑ̂ i)].

Fig. 5.2 shows the quantile residuals for both marginal distributions and
suggests an appropriate marginal fit for the wasting model despite slight
deviations from the bisecting line in the upper right corner. For the binary
model for the presence of fever, we do not observe any strong deviations
from the bisecting line but this is likely a result of the discreteness of the
response and the corresponding generation of random values ui as men-
tioned above. As long as the model gets the fractions of successes and
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Figure 5.2 Marginal quantile residuals of fever (left) and wasting (right).

failures in covariate-dependent classes of observations roughly right, one
should not expect strong deviations. By construction, the possibility to de-
tect model misspecification for binary models based on quantile residuals
therefore seems limited.

Model choice via information criteria

The deviance information criterion (DIC) is a commonly used criterion
for model choice in Bayesian inference that has become quite popular due
to the fact that it can easily be computed from the MCMC output. If
θ [1], . . . , θ [T ] is an MCMC sample from the posterior for the complete
parameter vector θ , the DIC is given by D(θ) + pd = 2D(θ) − D(θ) =
2
T

∑
D(θ [t]) − D( 1

T

∑
θ [t]), where D(θ) = −2 log(f (y|θ)) is the model de-

viance and pd = D(θ) − D(θ) is an effective parameter count.
However, the DIC suffers from a number of well-known limitations.

For example, it implicitly requires the assumption of a multivariate normal
posterior and depends on the chosen parameterisation of the model. As
a consequence, the widely applicable information criterion (WAIC), also
referred to as Watanabe information criterion, was introduced in Watan-
abe [42] in the context of singular learning theory and is more and more
replacing the DIC in applied model choice problems based on Bayesian
inference. Both DIC and WAIC are implemented in the software pack-
age BayesX [2] and are readily available from the MCMC output without
additional computational costs.
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Table 5.1 Comparison of DIC and WAIC
values under different copula assump-
tions.

Copula DIC WAIC
Gaussian 92,627 92,980
Clayton 92,900 93,066
Clayton 90◦ 92,761 92,997
Clayton 180◦ 92,905 93,073
Clayton 270◦ 92,524 92,979

To determine the form of the dependence between the two response
variables, we compare the Gaussian copula and the four rotated versions of
the Clayton copula based on the most complex model specification where
predictor (5.10) is applied to all distributional parameters. Table 5.1 shows
the resulting DIC/WAIC values, indicating that a Clayton copula rotated
by 270◦ gives the best fit. This supports the presence of tail dependence
which could not be modelled with the Gaussian copula. It also implies
that the data support a strong association between the presence of fever
(reflected by large values of y∗

i1) and severe forms of malnutrition (reflected
by small values of yi2); compare Fig. 5.1. This intuitively makes sense since
undernourished children will be more vulnerable to diseases and it is also
more likely that diseased children become malnourished.

Given the copula specification, we now turn to the selection of rel-
evant effects in the regression predictors. Since a full model search over
= 2number predictors×number effects = 24×5 models is clearly infeasible, we fix the
full predictor specification for the marginal distributions and only focus
on effect selection in the copula parameter to identify determinants of the
dependence structure which are of particular relevance in our application.
The full predictor specification of the parameters of the marginal distribu-
tions are chosen based on the analyses in Klein, Kneib, Klasen and Lang
[15], i.e.

ηi,k = β0,k + β1,kcsexi + f1,k(cagei) + f2,k(breastfeedingi)

+ f3,k(mbmii) + fmrf ,k(disti), (5.10)

where csex is a binary indicator of the sex of the child, cage, breastfeeding and
mbmi are continuous covariates representing the age of the child in months,
duration of breastfeeding in months and the body mass index of the mother
that we model with cubic Bayesian P-splines based on an equidistant grid
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Table 5.2 Comparison of DIC and WAIC values under different predictor specifications
for the dependence parameter θ .

Predictor for θ DIC WAIC
f1(cage) 92,692 93,012
f2(breastfeeding) 92,742 93,009
f3(mbmi) 92,968 93,008
β1csex 92,645 93,007
fmrf (dist) 92,571 92,982
f1(cage) + fmrf (dist) 92,597 92,988
f1(cage) + f2(breastfeeding) 92,713 93,010
f1(cage) + f2(mbmi) 92,596 93,003
f1(cage) + β1csex 92,711 93,006
f1(breastfeeding) + β1csex 92,645 93,008
f1(cage) + fmrf (dist) + β1csex 92,609 92,983
f1(breastfeeding) + fmrf (dist) + β1csex 92,623 92,982
f1(cage) + f2(breastfeeding) + fmrf (dist) + β1csex 92,583 92,991
f1(cage) + f3(mbmi) + fmrf (dist) + β1csex 92,615 92,992
f1(cage) + f2(breastfeeding) + f3(mbmi) + β1csex 92,619 93,005
f2(breastfeeding) + f3(mbmi) + fmrf (dist) + β1csex 92,585 92,985
f1(cage) + f2(breastfeeding) + f3(mbmi) + fmrf (dist) + β1csex 92,524 92,979

of 20 inner knots (resulting in a total of 22 basis functions), and dist is
one of 438 districts in India the children are living in which we model
this spatial effect with a Gaussian Markov random field prior where the
neighbourhood is defined through common borders of the districts.

For the copula parameter, we tested 16 possible predictor specifications
for the dependence parameter arising from the inclusion/exclusion of dis-
tinct predictor components leading to the DIC/WAIC values in Table 5.2.
The results provide support for the most complex model where all effects
are included and we will use this specification as the basis for further inves-
tigations in the following.

Predictive ability

Gneiting and Raftery [11] propose proper scoring rules as summary mea-
sures for the evaluation of probabilistic forecasts, i.e. to evaluate the predic-
tive ability of a statistical model. In order to check whether a joint model
indeed provides an improvement upon two separate marginal models for
Y1 and Y2, we compute the average logarithmic predictive score based on
ten-fold cross-validation. For this purpose, we randomly split the data set
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in 10 parts of roughly equal size, estimate the model on nine-tenths of the
data and determine estimated predictive log-densities log(p̂i(yi1,yi2)) for the
hold-out data. Let y1, . . . ,ynr

be data in one of the R = 10 hold-out sam-
ples and p̂i,r the predictive distributions with predicted parameter vectors
ϑ̂ r = (ϑ̂i,r,1, . . . , ϑ̂i,r,K)′, r = 1, . . . ,10. Competing forecasts are then ranked
by averaged scores S = 1

10

∑10
r=1

1
nr

∑nr
i=1 log(p̂i,r(yi,r,1,yi,r,2)) such that higher

scores deliver better probabilistic forecasts when comparing different mod-
els. The resulting values for our best copula model and the independent
model are -1.881 and -1.883, respectively, such that the copula model has
a slightly better predictive performance.

5.5 Results
Effects of covariates

In a first step, we examine the raw (centred) nonlinear estimated effects of
f1,k(cage), f2,k(breastfeeding) and f3,k(mbmi) in Figs 5.3 to 5.5 for the predictors
of μ,σ 2 of the normal marginal of Y2 (first row), the predictor for the oc-
currence probability π for fever (second row, left) and the copula parameter
θ of the rotated Clayton copula (second row, right). In each subfigure, the
posterior mean (solid line) is shown together with 95% pointwise credible
intervals (dashed).

From these raw effects we find that the age of the child is only moder-
ately associated with any of the distributional parameters. In contrast, both
the body mass index of the mother and the duration of breastfeeding are
important determinants at least for the parameters related to the marginal
distributions. Surprisingly, longer durations of breastfeeding are associated
with both a higher risk of fever and reduced wasting scores. While this
seems counterintuitive at first sight since breastfeeding is usually considered
a protective factor, increased durations of breastfeeding may also be associ-
ated with the nonavailability of other food sources and may therefore proxy
poverty of the household the children live in.

Another surprising finding is that none of the continuous covariates
has a significant association with the dependence parameter θ when de-
termining significance via the pointwise 95% credible intervals. This is in
contrast to the indication of DIC/WAIC that both favoured the most com-
plex model specification for the dependence parameter. However, it should
be taken into account that in fact DIC and WAIC are evaluating the pre-
dictive ability of a model which is not directly related to the (in)significance
of effects.
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Figure 5.3 Estimated nonlinear effects of f1,k(cage) on the predictors of μ,σ 2 of the
normal marginal of Y2 (first row), the predictor for the probability π of fever (second
row, left) and the copula parameter θ of the rotated Clayton copula (second row, right).
In each subfigure, the posterior mean (solid) together with the 95% pointwise credible
interval (dashed) is depicted.

Fig. 5.6 shows the estimated posterior mean spatial effects of all predic-
tors where we find significant spatial variation in all parameters including
the dependence parameter. As a consequence, there seems to be a consider-
able amount of unobserved spatial heterogeneity which is not too surprising
given the relatively small set of covariates that we are using in our analy-
sis.

Finally, Table 5.3 gives a summary of the posterior of the intercepts β0,k

and the linear coefficients β1,k of the gender of the child; it turns out the
constants are all significantly negative despite the one in the predictor of μ

and that csex is significant only in the predictor of π .

Joint probabilities

While the visualisation of raw effect estimates already provides some in-
teresting insights, it is sometimes hard to interpret these effect estimates
alone. For example, it is tempting to relate the estimated spatial effect on
the dependence parameter with a significant north-south gradient in the
strength of the dependence. However, the exact value of dependence ob-
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Figure 5.4 Estimated nonlinear effects of f2,k(breastfeeding) on the predictors of μ,σ 2

of the normal marginal of Y2 (first row), the predictor for the probability π of fever (sec-
ond row, left) and the copula parameter θ of the rotated Clayton copula (second row,
right). In each subfigure, the posterior mean (solid) together with the 95% pointwise
credible interval (dashed) is depicted.

served in a given region does not only depend on the estimate spatial effect
but also on the covariate characteristics observed for the children in this
region. We therefore study the spatial variation in the joint relative risks (in
%) of having fever and being undernourished by computing corresponding
model-implied probabilities where all covariates are set to the means within
the regions. For these probabilities, a child is said to be moderately wasted
if −3 < Y2 < −2 and severely wasted for scores ≤ −3. Fig. 5.7 shows the
resulting probabilities not only for the copula regression model but also for
two independent marginal models.

The first striking consideration is that there are strong differences be-
tween the joint model and the marginal models. While for moderate wast-
ing both variants agree in identifying the central region of India as being
associated with the highest simultaneous health risks, the exact numbers
assigned to the regions differ considerably. In particular, the copula regres-
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Figure 5.5 Estimated nonlinear effects of f3,k(mbmi) on the predictors of μ,σ 2 of the
normal marginal of Y2 (first row), the predictor for the probability π of fever (second
row, left) and the copula parameter θ of the rotated Clayton copula (second row, right).
In each subfigure, the posterior mean (solid) together with the 95% pointwise credible
interval (dashed) is depicted.

sion model is more selective and identifies a smaller subset of regions that
show an increased health risk. This may be very helpful for policy makers
to design targeted interventions that focus on regions where there is strong
dependence between different health outcomes. When considering severe
wasting, the picture is quite different since the independent marginal mod-
els identify hardly any likelihood for simultaneously observing fever and
severe forms of wasting while the copula specification reveals some regions
with higher health risks.

Since the duration of breastfeeding appeared to be an important deter-
minant of both health dimensions when studying the raw effect estimates,
we also visualise the joint relative risks (in %) of having fever and being un-
dernourished as a function of the breastfeeding duration in Fig. 5.8. Again,
we consider different breastfeeding durations while setting the other covari-
ates to the means at the different observed breastfeeding durations. Here
the deviation between the independent marginal models and the copula
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Figure 5.6 Estimated posterior mean spatial effects of f3,k(mbmi) on the predictors of
μ,σ 2 of the normal marginal of Y2 (first row), the predictor for the probability π of fever
(second row, left) and the copula parameter θ of the rotated Clayton copula (second
row, right).

regression model is stronger for moderate forms of wasting. While both
approaches identify an increased risk associated with moderate durations
of breastfeeding around 12 to 24 months, the risk is evaluated to be way
higher based on the copula specification.
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Table 5.3 Summary statistics of the posteriors of the intercepts β0,k and the linear co-
efficients β1,k of the gender of the child.

coefficient mean std 2.5% 10% 50% 90% 97.5%
Normal μ

β0,1 −0.036 0.025 −0.087 −0.068 −0.036 −0.005 0.007
β1,1 0.005 0.011 −0.018 −0.01 0.005 0.02 0.028

Normal σ 2

β0,2 −0.284 0.04 −0.365 −0.334 −0.284 −0.232 −0.204
β1,2 −0.005 0.018 −0.04 −0.028 −0.005 0.019 0.031

Probit π

β0,3 −0.531 0.035 −0.598 −0.574 −0.532 −0.485 −0.462
β1,3 −0.051 0.017 −0.084 −0.074 −0.052 −0.029 −0.017

Copula θ

β0,4 −2.429 0.241 −2.905 −2.759 −2.426 −2.125 −1.998
β1,4 −0.026 0.202 −0.431 −0.278 −0.022 0.228 0.382

5.6 Summary and discussion

We have developed a Bayesian framework for fitting flexible bivariate cop-
ula regression models with binary and continuous margins motivated and
illustrated by a bivariate analysis of child health in India. Posterior esti-
mation is carried out within a fully Bayesian framework with MCMC
simulations implemented efficiently in the software package BayesX [2].
One advantage of the Bayesian framework is that the complete joint pos-
terior distribution can be computed easily from the MCMC output. In
addition, we provide guidelines for model choice and variable selection
with a focus on selecting and specifying the copula such that predictions
are optimal amongst the candidate models.

In our application, it turns out that the presence of fever is strongly
associated with acute undernutrition measured as wasting, and that the as-
sociation is more complex than what a linear correlation could capture.
Moreover, log-scores favour the joint copula model over separate marginal
models which would assume independence of the two responses. Related
to this, the joint probabilities from the copula model for observing a child
with fever and moderate/severe undernutrition vary considerably, with re-
spect to both spatial allocation and breastfeeding time of the children, and
differ from two of the marginal models. In particular, ignoring the depen-
dence structure would lead to overestimation of the relative risk for children
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Figure 5.7 Joint probabilities (in %) for having fever and being moderately undernour-
ished (left) and severely undernourished (right) by county of residence. The first row
shows the estimated probabilities from the copula model and the second one those
based on the marginal models.

suffering from fever and moderate undernutrition and underestimation of
those having fever and severe undernutrition.

Particular challenges for multivariate distribution regression models such
as the one considered in this chapter remain the checking of model as-
sumptions and model selection. While we provided some guidance in this
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Figure 5.8 Joint probabilities (in %) for having fever and being moderately under-
nourished (left) and severely undernourished (right) by duration of breastfeeding (in
months). The solid line shows the estimated probabilities from the copula model and
the dashed line the one based on the marginal models.

respect, the corresponding methods clearly still have limitations (e.g. the
restriction of quantile residuals to only the marginal fits) or easily get un-
tractable for complex models with several predictors and covariates.
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Chapter Points

• Several nonstandard semiparametric models are considered including robust
semiparametric regression, heteroscedastic semiparametric regression,
semiparametric regression for overdispersed count data and logistic regression
with missing data.

• Mean field variational Bayes (VB) is introduced and various tricks are described for
dealing with situations where VB is not easily applied.
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• Several R scripts are available analysing data sets exhibiting each of the
complications considered using the methods described.

6.1 Introduction

The Bayesian inferential paradigm is a natural framework for fitting com-
plex models and nonstandard problems due to the availability of Markov
chain Monte Carlo (MCMC) software such as JAGS [26] and stan [3].
However, for large data sets or complex problems MCMC methods can
be considered to be too slow to be used in practice. For such problems
mean field variational Bayes (VB) can be used as a computationally effi-
cient albeit approximate alternative to MCMC [1,25]. These VB methods
approximate marginal posterior distributions by convenient (often paramet-
ric) forms using posterior independence between subsets of parameters as
a driving assumption. While direct and fair comparison between MCMC
and VB is difficult in sacrificing some accuracy the VB approach is of-
ten orders of magnitude faster than MCMC methods. However, unlike
MCMC, methods based on VB cannot achieve an arbitrary accuracy in the
estimation of the posterior distribution. Typically VB methods underesti-
mate posterior variances, and as such, their use in the context of inference
is sometimes questionable.

Despite this shortcoming VB has shown to be an effective approach
to several practical problems, including document retrieval [19], functional
magnetic resonance imaging [11,23] and cluster analysis for gene expression
data [33]. We believe that VB can still be useful in the context of statistical
prediction and exploratory data analysis, and where decisions need to be
made within a short time frame.

The models we consider in this chapter largely fall under the umbrella of
semiparametric regression. Semiparametric regression is a rich field which
combines traditional parametric regression models (e.g. [6,9]) and more
modern nonparametric regression methods (e.g. [35,17,15]). This field
spans several fields in statistics: parametric and nonparametric regression,
longitudinal and spatial data analysis, mixed and hierarchical Bayesian mod-
els, expectation maximisation (EM) and MCMC algorithms. Semipara-
metric regression consists of a class of models which includes generalised
additive models, generalised additive mixed models, varying coefficient
models, geoadditive models and subject-specific curve models, among oth-
ers (for a relatively comprehensive summary see [29]).
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Penalised splines form the foundation of semiparametric regression
models and include, as special cases, smoothing splines (e.g. [35]), P-splines
[10] and pseudosplines [16]. A key feature of penalised splines is that the
number of basis functions is much smaller than the sample size. In the gen-
eralised additive (mixed) model R package mgcv [40] the univariate function
estimates use a further variant of penalised splines – low-rank thin-plate
splines [39].

In this chapter we focus on nonstandard semiparametric regression
models. For standard problems typical software packages exist so there
would be no motivation to discuss them in the current work. Hence,
by ‘nonstandard’ we mean semiparametric regression models which deal
with some modelling complication and as such fall outside the conven-
tional setup in which the response distributions are in the one-parameter
exponential family and all data are cleanly observed. Examples of nonstan-
dard situations include, but are not limited to:
1. outliers;
2. heteroscedastic noise;
3. overdispersed count data; and
4. missing data.
In this chapter we give a tutorial style introduction to VB to fit nonstan-
dard flexible regression methods in the above cases. The VB methodology
itself does not stray far from techniques already developed in the literature
[25,37]. However, when the complications above arise standard application
of VB methodology is not straightforward to apply. We show here how
some simple tricks can be brought to bear to handle these complications.

This chapter is arranged as follows. Section 6.2 outlines some prepara-
tory infrastructure for the rest of the chapter including mixed model-based
penalised splines, semiparametric regression, our choice of prior, (mean
field) VB and some tricks when standard VB cannot be easily applied, and
we describe how we make comparisons with a gold standard (MCMC).
Section 6.3 applies the methods described in Section 6.2 to a standard
semiparametric regression model (a generalised additive model) which pro-
vides a basis for the rest of the chapter. Section 6.4 to Section 6.7 describe
our approaches for handing outliers, heteroscedastic noise, overdispersed
count data and missing data, respectively. In Section 6.8 we make some
concluding remarks.
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6.2 Preparatory modelling components

Before we can get into specific models we will introduce modelling com-
ponents which are common for many of the models considered in the
chapter and the associated notation.

6.2.1 Mixed model-based penalised splines
Mixed model-based penalised splines are a convenient way to model non-
parametric functional relationships in semiparametric regression models. In
general the mixed model representations of these have the form

f (x) = β0 + β1x +
K∑

k=1

zk(x)uk, where u|σ 2
u ∼ N(0, σ 2

u �),

the matrix � is some K × K positive definite penalty matrix and the ba-
sis functions {zk( · )}K

k=1 are nonlinear functions. In this chapter we choose
the zk( · ) functions corresponding to O’Sullivan splines as described in [36]
which are constructed to closely approximate smoothing splines. O’Sullivan
splines are constructed in such a way that � = I which eases their imple-
mentation and incorporation using popular computing packages for fitting
linear mixed models. An alternative is the P-splines of [10] which use B-
splines for {zk( · )}K

k=1 and use a penalty matrix � of the form � = DT
k Dk,

where Dk is the kth-order differencing matrix. Geoadditive models specify
the basis using thin-plate splines [29,39] can also be used in this modelling
framework.

O’Sullivan splines are constructed using a B-spline basis which are de-
fined using knots defined on the same space as x. [36] recommend quantile
spaced knots, while [10] use equally spaced knots. This choice has lit-
tle effect on the fitted function provided a sufficiently large number of
knots are used. A simple rule of thumb for the number of knots K is
K = min(nU/4,35), where nU is the number of uniquely observed x’s. Us-
ing a large number of knots leads to increased computational cost without
greatly affecting the quality of the fitted functions. Hence, using too many
knots is computationally wasteful.

6.2.2 Semiparametric regression
A general semiparametric regression model is of the form

ln p(yi|β,u,φ) ≡ �
(
yi, (Xβ + Zu)i,φ

)
, (6.1)
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where yi ⊆ R, X ∈R
n×p and Z ∈R

n×q are design matrices corresponding to
fixed and random effects, respectively, β ∈R

p and u ∈R
q are vectors of coef-

ficients corresponding to fixed and random effects, respectively, φ is a vector
of nuisance parameters and � is an appropriate function. For example, if
yi|β,u,φ ∼ N((Xβ + Zu)i, σ

2), then φ = σ 2 and �(yi, (Xβ + Zu)i,φ) =
− ln(2πσ 2)/2 − [yi − (Xβ + Zu)i]2/(2σ 2).

Often the ‘fixed’ components of the model X and β are of the form

X =

⎡⎢⎢⎢⎢⎣
1 x11 x12 · · · x1d

1 x21 x22 · · · x2d
...

...
...

. . .
...

1 xn1 xn2 · · · xnd

⎤⎥⎥⎥⎥⎦ and β =

⎡⎢⎢⎢⎢⎣
β0

β1
...

βd

⎤⎥⎥⎥⎥⎦ ,

with d being the number of available predictors and p = d + 1.
The random effects components Z and u are of the form

Z = [
Z1, . . . ,ZR

]
, u =

⎡⎢⎣ u1
...

uR

⎤⎥⎦ and

ur |σ 2
r ∼ N(0, σ 2

r P−1
r ), 1 ≤ r ≤ R,

where R is the number of modelling components, Zr ∈ R
n×qr are design

matrices, ur ∈ R
qr , σ 2

r are variance components and Pr are qr × qr positive
definite (often diagonal) matrices. Here q = ∑R

r=1 qr . The above specifica-
tion means we can represent the model for u in the form

u|σ 2 ∼ N(0,blockdiag(σ 2
1 P−1

1 , . . . , σ 2
RP−1

R )), (6.2)

where σ 2 = (σ 2
1 , . . . , σ 2

R).
The above modelling structure is quite rich and includes:

• Penalised splines: Suppose {zk(x)}K
k=1 are the set of basis functions de-

scribed in Section 6.2.1. In the context of generalised additive models
we may want to have several nonlinear smooth fits corresponding to
several predictors. Let {zrk( · )}Kr

k=1 be the set of basis functions for the rth
predictor and let xir denote the ith sample of the rth predictor. Then

Zr =
⎡⎢⎣ zr1(x1r) · · · zrKr (x1r)

...
. . .

...

zr1(xnr) · · · zrKr (xnr)

⎤⎥⎦ and Pr = �r,
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where �r is a penalty matrix for the rth predictor.
• Random intercepts: Suppose that the n samples are partitioned into m

groups of size ni with n =∑m
i=1 ni. Then

Zr =

⎡⎢⎢⎢⎢⎣
1n1 0 · · · 0
0 1n2 · · · 0
...

...
. . .

...

0 0 · · · 1nm

⎤⎥⎥⎥⎥⎦ and Pr = Im,

where 1a is a vector of ones of length a.
Other modelling components that can be used are crossed-random effects
and geoadditive models. For the interested reader details of how these mod-
elling components can be incorporated can be found in [41]. These require
specific specifications of Zr and Pr and can be included without loss of
generality.

We can generalise the random intercept components above to gen-
eral random effects but this will require modelling the ur vectors as
ur |�r ∼ N(0,�r) whose natural conjugate priors for �r are inverse-Wishart
distributions.

6.2.3 Priors
The remaining modelling components require the specification of priors
for β and the σ 2

r ’s. To keep the exposition simple we will use priors

β ∼ N(0, σ 2
β I) and σ 2

r ∼ IG(sr, tr), 1 ≤ r ≤ R, (6.3)

where σ 2
β = 108 and IG(sr, tr) denotes the inverse-gamma distribution with

shape sr and scale tr with sr = tr = 0.01. These are conjugate priors and sim-
plify algebra. In general we recommend the half-Cauchy priors advocated
in [13]. These have a convenient conjugate gamma-gamma representation
(e.g. [24]), but add to notation and expand the complexity of the model
hierarchy without greatly changing the model fits for the data considered
in this chapter.

6.2.4 Mean field variational Bayes
Mean field VB seeks to perform approximate Bayesian inference by seeking
convenient parametric approximations to posterior quantities by an iterative
process seeking to minimise the Kullback–Leibler (KL) divergence between
the parametric approximation and the true posterior distribution.



Nonstandard flexible regression via VB 159

Given a model’s parameter θ and data D, the posterior density of θ may
be expressed as

p(θ |D) = p(D, θ)

p(D)
.

The denominator is known as the marginal likelihood of the data and in-
volves the evaluation of an integral or a sum that may be computationally
infeasible. The end point of a VB approximation algorithm is to choose an
approximation q(θ) to the posterior density p(θ |D) from a set of functions
F that are more computationally feasible by minimising the KL divergence,
i.e.

DKL(q||p) = Eq

[
ln

{
q(θ)

p(θ |D)

}]
, (6.4)

where Eq refers to the expectation with respect to q(θ). Since

Eq

[
ln

{
q(θ)

p(θ |D)

}]
= Eq

[
ln

{
q(θ)p(D)

p(D, θ)

}]
= ln p(D) −Eq

[
ln

{
p(D, θ)

q(θ)

}]
,

minimising (6.4) is also equivalent to maximising the expected lower bound
order (ELBO) given by

ELBO = Eq

[
ln

{
p(D, θ)

q(θ)

}]
. (6.5)

One common choice for F is the set of mean field functions

F =
⎧⎨⎩ q(θ) such that q(θ) =

J∏
j=1

qj(θ j)

⎫⎬⎭ .

This choice of F leads to the optimal approximating densities

qj(θ j) ∝ exp
[
E−qj

{
ln p(D, θ)

}]
, j = 1, . . . , J (6.6)

(for details see [1,25]). The notation E−qj refers to expectation to all param-
eters except qj(θ j), i.e. if all parameters are continuous then

E−qj

[
ln p(D, θ)

]=
∫ ∏

k �=j

qj(θ j) ln p(D, θ)dθ−j, (6.7)

and integrals are replaced with appropriate summands when parameters are
discrete.
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It can be shown that updating qj(θ j) via (6.6) for fixed forms of the
remaining q-densities (i.e. {qk(θk)}k �=j) results in an increase in the lower
bound ELBO. Hence, cycling through the updates j = 1, . . . , J , for each
qj(θ j) can be interpreted as a coordinate ascent method for maximising
ELBO which, under mild regularity conditions, will converge to a local
maximiser of the lower bound [21].

If a Gibbs sampling scheme is available for this model based on the full
conditionals for (θ1, . . . , θ J) the q-densities take the same parametric form
as the full conditionals for each θ j, 1 ≤ j ≤ J . In this chapter we will use
the R-like function convention to denote specific known densities. Sub-
scripts for prior parameters and (approximate) posterior parameters will be
used to identify these hyperparameters, and ‘tildered’ values correspond to
posterior parameters. For example, if α ∼ N(μα,�α) and the approximate
posterior for α is multivariate normal, then the q-density for α will be
denoted q(α) = dmvnorm(α | μ̃α , �̃α ).

6.2.5 Tricks when VB is not easy to apply
Two common complications arise when attempting to use VB. To describe
these complications let

fj(θ j) = E−qj

[
ln p(D, θ)

]
so that we can write

qj(θ j) = Z−1
j exp

[
fj(θ j)

]
and Zj =

∫
exp

[
fj(θ j)

]
dθ j.

The two complications are the following:
1. The function fj(θ j) may not be available analytically since taking expec-

tations of ln p(D, θ) may not be possible for some elements qj(θ j).
2. The normalising constant Zj may not be available analytically.

Here we will explore analytic approximations to these complications.
However, the approaches here do not cover all such approaches to these
problems. There is a growing literature on stochastic VB methods. Key
references include [30,20,28].

The first complication can be handled by a first- or second-order delta
method [32]. To fix ideas suppose q(θ) = q1(θ1)q2(θ2)q3(θ3). Then

f1(θ1) =
∫

q2(θ2)q3(θ3) ln p(D, θ1, θ2, θ3)dθ2dθ3.
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Suppose it is not easy to integrate out θ2 from the above equation. A first-
order delta method approximation uses a first-order Taylor series around
θ2 = Eq(θ2) before taking expectations. The result uses

f1(θ1) ≈
∫

q3(θ3) ln p(D, θ1,Eq(θ2), θ3)dθ3.

Similarly, a second-order delta method approximation to f1 takes a second-
order Taylor series around θ2 = Eq(θ2) before taking expectations. This
results in the approximation

f1(θ1) ≈
∫

q3(θ3)
[
ln p(D, θ1,Eq(θ2), θ3)

+ 1
2 tr

{
covq(θ2)H(θ1,Eq(θ2), θ3)

}]
dθ3,

where

H(θ1, θ2, θ3) = ∂2 ln p(D, θ1, θ2, θ3)

∂θ2∂θT
2

.

In this chapter we only use the first-order delta method approximation.
The second complication can be dealt with using a Laplace approxima-

tion, i.e.

qj(θ j) ≈ dmvnorm(θ j|μ̃j, �̃j),

where μ̃j is the maximiser of fj(θ j) with respect to θ j, and �̃j = [−Hj (̃θ j)]−1,
where Hj(θ j) is the jth Hessian matrix defined by

[
Hj(θ j)

]
k,k′ = ∂2fj(θ j)

∂θk∂θk′
, 1 ≤ k,k′ ≤ dj,

where θ j ∈R
dj . This can be found using Newton–Raphson iterations, i.e.

μ̃
(t+1)
j = μ̃

(t)
j +

[
−Hj(μ̃

(t)
j )

]−1
gj(μ̃

(t)
j ),

where μ̃
(0)
j is a given starting point and

[
gj(θ j)

]
k = ∂ fj(θ j)/∂θk,1 ≤ k ≤ dj.

An alternative to Newton–Raphson iterations is the Broyden–Fletcher–
Goldfarb–Shanno (BFGS) quasi-Newton method [2,12,14,31], which only
requires implementation of fj(θ j) and possibly gj(θ j) (which can also be ap-
proximated numerically) and, as a biproduct, can provide an approximation

to
[
−Hj(μ̃

∗
j )
]−1

, where μ̃∗
j is the maximiser of fj(θ j).
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As an alternative approach to complication 2, if θj ∈ R is a scalar, then
numerical quadrature can be used, i.e.

qj(θj) ≈ exp
[
fj(θj)

]∑N
k=1 wk exp

[
fj(θjk)

] ,
where {wk}N

k=1 and {θjk}N
k=1 are appropriate quadrature weights and abscissa,

respectively. We have found Gaussian quadrature to be quite effective (see
for example Chapter 4 of [27]) for univariate integration. Note that the
numerator and denominator of the above expression should be divided by
the maximum value of exp

[
fj(θjk)

]
to avoid numerical overflow when im-

plemented. Similarly, the mth moment of q(θj) can be approximated using

Eq(θ
m
k ) =

∑N
k=1 θm

jk wk exp
[
fj(θjk)

]∑N
k=1 wk exp

[
fj(θjk)

] . (6.8)

6.2.6 Comparisons
For purposes of comparison of our VB methodology with a gold stan-
dard, we will compare the accuracy of our VB-based method with MCMC
via stan [3]. The stan computer package is a state-of-the-art platform for
statistical modelling and high-performance statistical computation; it im-
plements full Bayesian statistical inference with MCMC sampling (using
Hamiltonian Monte Carlo) [18]. All examples were run on the author’s
laptop computer (64-bit Windows 8 Intel i7-4930MX central processing
unit at 3 GHz with 32 GB of random access memory), where we use 1000
samples for burn-in and 10,000 for inference with no thinning.

While we will not explicitly outline code here, code for all of the ex-
amples in this chapter will be made available from

http://www.maths.usyd.edu.au/u/jormerod/

Note that stan converts a model into C++ code which it compiles before
sampling begins. We do not include this compile time when reporting
computing times for stan to provide a fairer comparison. Our VB imple-
mentation of the algorithms in this chapter is entirely in the R programming
language. Since stan is largely implemented in C++ comparisons are not en-
tirely fair since C++ is well known to be faster than R. Despite this in each
case our VB approach implemented in R is still an order of magnitude faster
than MCMC via stan.

http://www.maths.usyd.edu.au/u/jormerod/
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6.3 A standard semiparametric regression model

Before we consider some nonstandard semiparametric regression model ex-
amples we begin with a standard semiparametric regression model. This
will form the basis for some nonstandard extensions. In place of (6.1) we
will use

y|β,u, σ 2
ε ∼ N(Xβ + Zu, σ 2

ε I), (6.9)

where σ 2
ε > 0 is the residual variance. The model specification is completed

by specifying the prior for σ 2
ε , where we will use

σ 2
ε ∼ IG(sε, tε). (6.10)

Given the above model description we are now in a place to derive the
VB algorithm. We will consider the VB approximation corresponding to
q(θ) = q(ν)q(σ 2

ε ,σ 2), where ν = [βT ,uT ]T . This leads to

q(ν) ∝ exp
[− 1

2νT
Eq
{
σ−2

ε CTC

+blockdiag(σ−2
β I, σ−2

1 P1, . . . , σ
−2
R PR)

}
ν

+Eq
{
σ−2

ε

}
yTCν

]
,

q(σ 2
ε ) ∝ exp

[− (
sε + n

2 + 1
)

ln(σ 2
ε ) − σ−2

ε Eq
{
tε + 1

2‖y − Cν‖2}] and

q(σ 2
r ) ∝ exp

[− (
sr + qr

2 + 1
)

ln(σ 2
r ) − σ−2

r Eq
{
tr + 1

2u
T
r Prur

}]
, 1 ≤ r ≤ R,

(6.11)

where C = [X,Z]. Looking at the forms of the q-densities in (6.11) we can
identify q(ν) as multivariate Gaussian and q(σ 2

ε ), q(σ 2
r )’s as inverse-gamma

densities, i.e.

q(ν) = dmvnorm(ν | μ̃ν , �̃ν ),

q(σ 2
ε ) = dinvgamma( σ 2

ε |̃ sε , t̃ε ) and
q(σ 2

r ) = dinvgamma( σ 2
r |̃ sr , t̃r ), 1 ≤ r ≤ R,

(6.12)

where

�̃ν =
[(

s̃ε
t̃ε

)
CTC + blockdiag

(
σ−2

β Ip,
s̃1
t̃1
P1, . . .

s̃R
t̃R

PR

)]−1
,

μ̃ν =
(

s̃ε
t̃ε

)
�̃νCTy,

s̃ε = sε + n
2 , t̃ε = tε + 1

2‖y − Cμ̃ν‖2 + 1
2 tr(CTC�̃ν),

s̃r = sr + qr
2 and t̃r = tr + 1

2 μ̃T
ur
Prμ̃ur + 1

2 tr(Pr�̃ur ), 1 ≤ r ≤ R,

(6.13)
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and the values μ̃ur and �̃ur correspond to the subcomponents of μ̃ν to the
elements ur . Algorithm 1 concisely summarises the updates below.

Algorithm 1 Fitting a GAM using VB.

Require: t̃ε, t̃r > 0, 1 ≤ r ≤ R
Set s̃ε = sε + n

2 and s̃r = sr + qr
2 , 1 ≤ r ≤ R.

while the change in t̃ε and t̃r , 1 ≤ r ≤ R is not small do

�̃ν ← [
(̃sε/̃tε)CTC + blockdiag

(
σ−2

β Ip, (̃s1/̃t1)P1, . . . , (̃sR/̃tR)PR
) ]−1

μ̃ν ← (̃sε/̃tε)�̃νCTy

t̃ε ← tε + 1
2‖y − Cμ̃ν‖2 + 1

2 tr(CTC�̃ν)

t̃r ← tr + 1
2 μ̃T

ur
Prμ̃ur + 1

2 tr(Pr�̃ur ), 1 ≤ r ≤ R

end while

6.3.1 Generalised additive model for air quality data
For this example we consider the daily air quality measurements in New
York, May to September 1973. The data were obtained from the New York
State Department of Conservation (ozone data) and the National Weather
Service (meteorological data). These data can be found in the datasets

package in R in the data set airquality and contain the following measure-
ments:
• Ozone: Mean ozone in parts per billion from 13:00 to 15:00 hours at

Roosevelt Island;
• Solar.R: Solar radiation in Langleys in the frequency band 4000-7700

Angstroms from 8:00 to 12:00 hours at Central Park;
• Wind: Average wind speed in miles per hour at 7:00 and 10:00 hours at

LaGuardia Airport; and
• Temp: Maximum daily temperature in degrees Fahrenheit at La Guardia

Airport.
We also have the day at which the data was collected (day).

For this example we will use the abovementioned predictors with d = 4.
We will fit a model of the form yi ∼ f (xi) + εi, where yi = Ozonei, εi ∼
N(0, σ 2

ε ), 1 ≤ i ≤ n, and

f (xi) = β0 + Solar.Riβ1 + Windiβ2 + Tempiβ3 + Dayiβ4

+f1(Solar.Ri) + f2(Windi) + f3(Tempi) + f4(dayi).
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Figure 6.1 Fitted functions for the generalised model applied to the airquality

data. Inner lines correspond to fitted additive components. Outer lines correspond to
pointwise 95% credible intervals.

Using the semiparametric framework for penalised splines described in
Section 6.2.3 the matrix X contains an intercept term along with linear
terms for Solar.Ri, Windi, Tempi and Dayi, while the matrices Z1, Z2, Z3

and Z4 are constructed using O-Spline bases for the variables Solar.Ri,
Windi, Tempi and Dayi, respectively.

Figs 6.1 and 6.2 illustrate the fitted functions for each covariate for the
airquality data set, 95% confidence intervals for the mean and MCMC
diagnostics. From these we see that the VB approximation gives a quite
comparable fit to those obtained by MCMC. The approximate 95% cred-
ible intervals obtained using VB are only slightly underestimated. From
Fig. 6.2 we see that posterior variances for the variance components are
underestimated, but that the VB approximate posterior distribution for σ 2

ε

is almost exact.

6.4 Robust nonparametric regression

We now consider the situation where one or more outliers could have a sig-
nificant effect on the quality of the fitted functions. We do so by replacing
a normal distribution for the response with a t-distributed one. This dis-
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Figure 6.2 Summary of MCMC-based inference for parameters in the generalised
model applied to the airquality data. The columns are: parameter, trace plot of MCMC
sample, plot of sample against 1-lagged sample, sample autocorrelation function, ker-
nel estimates of posterior densities, and basic numerical summaries. Blue (dark grey in
print version) densities correspond to posterior density approximations obtained us-
ing VB.

tribution has thicker tails than the normal distribution leading to samples
with large residuals to be downweighted during the fitting process.

Thus we consider the model

yi|β,u, σ 2
ε , ν ∼ t((Xβ + Zu)i, σ

2
ε I, νy), (6.14)

where the parameters of interest are θ = (β,u, σ 2
ε ,σ 2, νy). We adopt the

priors (6.2), (6.3) and (6.10) for u, β and σ 2, and σ 2
ε , respectively. For

νy we will use the prior νy ∼ Uniform(L,U) for two positive constants L
and U .

Noting that (6.14) is difficult to deal with using VB we instead adopt
an auxiliary representation of (6.14). This entails replacing (6.14) with

yi|β,u, σ 2
ε , ai

ind∼ N((Xβ + Zu)i, σ
2
ε a−1

i ),

ai
iid∼ Gamma(νy/2, νy/2), 1 ≤ i ≤ n,
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where a = (a1, . . . , an)
T is a vector of auxiliary variables. The original

representation (6.14) can be recovered by noting that p(yi|β,u, σ 2
ε , νy) =∫∞

0 p(ai|β,u, σ 2
ε , ai)p(ai|νy)dai, 1 ≤ i ≤ n.

We will consider a VB approximation corresponding to the partition

q(θ) = q(ν)q(σ 2
ε ,σ 2)

[
n∏

i=1

q(ai)

]
q(νy),

where again ν = (βT ,uT )T . The parametric forms for the q-densities for ν,
σ 2

ε , σ 2
r , 1 ≤ r ≤ R are given by (6.12) and the terms �̃ν , μ̃ν and t̃ε in (6.13)

are replaced with

�̃ν =
[(

ãε

b̃ε

)
CTWC + blockdiag

(
σ−2

β Ip,
s̃1
t̃1

P1, . . . ,
s̃R
t̃R

PR

)]−1

,

μ̃ν =
(

s̃ε
t̃ε

)
�̃νCTWy and

t̃ε = tε + 1
2 (y − Cμ̃ν)

TW(y − Cμ̃ν) + 1
2 tr(CTWC�̃ν),

with W being the diagonal matrix W = diag(w1, . . . ,wn) whose entries are
given by wi = Eq(ai). We can interpret the above equations as corresponding
to a weighted least squares fit where the weights are given by wi. Note
that in the limit as wi → 0 the ith observation does not contribute to the
computed values of the variational parameters. Furthermore, if all wi’s are
set to 1 the fit from Section 6.3 for a normal response is recovered.

The forms of the q-densities for q(ai) are given by q(ai) = dgamma(ai |̃ c ,
d̃i), where

c̃ = ν̃y + 1
2

and

d̃i = ν̃y

2
+ 1

2

(
s̃ε
t̃ε

)[
(y − Cμ̃ν)

2
i + (C�̃νCT )ii

]
, 1 ≤ i ≤ n,

where ν̃y = Eq(νy). The q-density q(νy) does not have a known normalising
constant and is given by

q(νy) ∝ exp

[
nνy
2 ln(νy) − n ln�

( νy
2

)
− νy

{
n
2 ln(2) + 1

2

n∑
i=1

(wi − ψ(c) + ln(di))
}]

, (6.15)

where ψ(x) = d ln�(x)/dx is the digamma function.
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This means that the normalising constant and the first moment Eq(νy)

need to be estimated. We approximate both these quantities using compos-
ite trapezoidal integration between L and U using 300 quadrature points,
i.e. using (6.8).

Given the above notation,

wi = Eq(ai) = c̃

d̃i
= ν̃y + 1

ν̃y + (̃
sε/̃tε

) [
(y − Cμ̃ν)

2
i + (C�̃νCT )ii

] .
The term (y − Cμ̃ν)i is the ith residual, while the term (C�̃νCT )ii is anal-
ogous to the ith leverage statistic. In the limit as ν̃y → ∞ we have wi → 1.
When ν̃y is small and/or either the ith residual or the ith leverage-like statis-
tic becomes large the corresponding wi will be small. Thus, samples with
large residuals or high leverage points will be downweighted. This means
that the resulting fit is doubly robust in the sense that it is resistant to both
outliers and high leverage points. Algorithm 2 concisely summarises the
updates for the VB approximation developed in this section.

6.4.1 Hauser respiratory experiment
We test the above methodology using a data set on a respiratory experiment
conducted by Professor Russ Hauser at Harvard School of Public Health,
Boston, USA. The data correspond to 60 measurements on one subject
during two separate respiratory experiments. The response variable yi rep-
resents the logarithm of the adjusted time of exhalation for xi equal to the
time in seconds since exposure to air containing particulate matter. The
adjusted time of exhalation is obtained by subtracting the average time of
exhalation at baseline, prior to exposure to filtered air. We interest ourselves
in modelling the mean response as a function of time.

For this model we are fitting

yi
ind∼ t(f (xi), σ

2
ε , νy), 1 ≤ i ≤ n,

where we use L = 1 and U = 20 as the prior hyperparameters for νy. We fit
the equivalent model using stan; the results are plotted in Fig. 6.3.

In Fig. 6.3 we see the difference between the fitted means and 95%
credible intervals. The variance of the posterior approximation for νy is
slightly underestimated although the posterior mean for νy is quite well
approximated.

The VB fit of these data took 0.3 seconds while stan took 84.1 seconds
to produce 10,000 MCMC samples. We note that in [22] fitting this same
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Algorithm 2 Fitting a robust GAM using VB.

Require: t̃ε, t̃r > 0, 1 ≤ r ≤ R, ν̃y > 0 large (say ν̃y = 30)
Set s̃ε = sε + n

2 , s̃r = sr + qr
2 , 1 ≤ r ≤ R, and wi = 1, 1 ≤ i ≤ n.

while the change in t̃ε and t̃r , 1 ≤ r ≤ R is not small do

�̃ν ← [
(̃sε/̃tε)CTWC + blockdiag

(
σ−2

β Ip, (̃s1/̃t1)P1, . . . , (̃sR/̃tR)PR
) ]−1

μ̃ν ← (̃sε/̃tε)�̃νCTWy

t̃ε ← tε + 1
2 (y − Cμ̃ν)

TW(y − Cμ̃ν) + 1
2 tr(CTWC�̃ν)

t̃r ← tr + 1
2 μ̃T

ur
Prμ̃ur + 1

2 tr(Pr�̃ur ), 1 ≤ r ≤ R

c̃ ← ν̃y+1
2

d̃i ← ν̃y
2 + 1

2

(
s̃ε
t̃ε

)[
(y − Cμ̃ν)

2
i + (C�̃νCT )ii

]
, 1 ≤ i ≤ n

wi ← c̃/̃di, 1 ≤ i ≤ n

Let f (νy) = nνy
2 ln(νy) − n ln�

( νy
2

) − νy

[
n
2 ln(2) + 1

2

∑n
i=1(wi − ψ(c) +

ln(di))
]

Approximate ν̃y = Eq(νy) via (6.15) using numerical quadrature via
(6.8).

end while

Figure 6.3 Fits of the Hauser respiratory experiment data using VB and MCMC (via
stan) of the robust nonparametric regression model. Left: Posterior mean and pointwise
95% credible sets for the regression function. Right: Approximate posterior function for
the degrees of freedom parameter νy .

model in Infer.NET took 80.4 seconds and using BUGS it took 22.56 sec-
onds on the same laptop and the same number of MCMC samples. Our R
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implementation of the VB method developed here compares very well to
all of these.

6.5 Generalised additive model with heteroscedastic
variance

In many real situations the assumption of homoscedasticity, i.e. constant
variance, is unrealistic and may lead to false conclusions. Adverse effects of
holding this assumption include incorrect confidence intervals, incorrect
inferences on particular parameter values and calibration inference (pre-
dicting an x based on a y). The converse situation where the variance may
change is called heteroscedasticity and is examined in, amongst others, [8],
[4], [29] and [7]. A model that allows for heteroscedasticity may lead to
more robust results as we can exploit heteroscedasticity to obtain better fits
in regions where there is less noise corrupting the response.

In order to handle heteroscedasticity we will replace σ 2
ε I in (6.9) with

diag(exp(Xεβε + Zεuε)), where Xε, βε, Zε and uε play analogous roles
for modelling the logarithm of the variance to those modelling the mean.
Hence, we model the response as

y|βμ,uμ,βε,uε ∼ N(Xμβμ + Zμuμ,diag(exp(Xεβε + Zεuε))),

where Xμ ∈ R
n×pμ , Xε ∈ R

n×pε , Zμ = [Zμ,1, . . . ,Zμ,Rμ
], Zε = [Zε,1, . . . ,

Zε,Rε
], Zμ,r ∈ R

n×qμ,r , 1 ≤ r ≤ Rμ and Zε,r ∈ R
n×qε,r , 1 ≤ r ≤ Rε. Here Xμ

and Xε play the role of ‘fixed effects’ matrices corresponding to the mean
and variance of elements for y, respectively. Similarly, Zμ and Zε play an
analogous role as design matrices for the random effects. We specify the
distribution of the random effect coefficients uμ and uε as

uμ|σ 2
μ ∼ N(0,blockdiag(σ 2

μ,1P
−1
μ,r, . . . , σ

2
μ,Rμ

P−1
μ,r)),

uε|σ 2
ε ∼ N(0,blockdiag(σ 2

ε,1P
−1
ε,r , . . . , σ

2
ε,Rε

P−1
ε,r ))

and specify the priors for βμ, βε, σ 2
μ and σ 2

ε with

βμ ∼ N(0, σ 2
μ,βIpμ

), σ 2
μ,r ∼ IG(sμ,r, tμr ), 1 ≤ r ≤ Rμ,

βε ∼ N(0, σ 2
ε,βIpε

) and σ 2
ε,r ∼ IG(sε,r, tε), 1 ≤ r ≤ Rε.

For this model we consider a VB approximation corresponding to the
factorisation

q(νμ, νε,σ
2
μ,σ 2

ε ) = q(νμ, νε)q(σ 2
μ,σ 2

ε ).
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Then the optimal densities corresponding to this partition are of the form

q(νμ,νε) ∝ exp
[
− 1

21
TCενε − 1

2 (y − Cμνμ)Tdiag(exp(−Cενε))(y − Cμνμ)

− 1
2νT

μBμνμ − 1
2νT

ε Bενε

]
,

for 1 ≤ r ≤ Rμ we have

q(σ 2
μ,r) ∝ exp

[
− (

sμ,r + qμ,r
2 + 1

)
ln(σ 2

μ,r) − σ−2
μ,r

{
tμ,r + 1

2 tr
(
Pμ,rEq

(
uμ,ruT

μ,r

))}]
,

and for 1 ≤ r ≤ Rε we have

q(σ 2
ε,r) ∝ exp

[− (
sε,r + qε,r

2 + 1
)

ln(σ 2
ε,r) − σ−2

ε,r

{
tε,r + 1

2 tr
(
Pε,rEq

(
uε,ruT

ε,r

))}]
.

We identify the q-densities for the q(σ 2
μ,r)’s and q(σ 2

ε,r)’s as inverse-gamma
densities with

q(σ 2
μ,r) = dinvgamma

[
σ 2

μ,r | sμ,r + qμ,r
2 , tμ,r + 1

2 tr
(
Pμ,rEq

(
uμ,ruT

μ,r

)) ]
,

1 ≤ r ≤ Rμ,

q(σ 2
ε,r) = dinvgamma

[
σ 2

ε,r | sε,r + qε,r
2 , tε,r + 1

2 tr
(
Pε,rEq

(
uε,ruT

ε,r

)) ]
,

1 ≤ r ≤ Rε.

The optimal q-density does not take the form of a recognisable density, so
we approximate q(νμ,νε) by a multivariate Gaussian density using Laplace’s
method. To this end let

Bμ = blockdiag
(
σ−2

μ,βIpμ
, (̃sμ,1/̃tμ,1)Pμ,1, . . . , (̃sμ,Rμ

/̃tμ,Rμ
)PRμ

)
and

Bε = blockdiag
(
σ−2

ε,β Ipε
, (̃sε,1/̃tε,1)Pε,1, . . . , (̃sε,Rε

/̃tε,Rε
)PRε

)
.

Then the gradient function is given by

g(νμ,νε) =
[

CT
μ diag(w)d − Bμνμ

1
2C

T
ε

{
d2 � w − 1

}− Bενε

]
,

where w = exp(−Cενε), d = y−Cμνμ, and � denotes the Hadamard prod-
uct. Next, the Hessian function is given by

H(νμ,νε) =
[ −CT

μ diag(w)Cμ − Bμ −CT
μ diag(d � w)Cε

−CT
μ diag(d � w)Cε − 1

2C
T
ε diag(d2 � w)Cε − Bε

]
.
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Then updates for Laplace’s method are of the form

�̃
(t+1)

ν = [−H(μ̃(t)
μ , μ̃(t)

ε )
]−1

,[
μ̃(t+1)

νμ

μ̃(t+1)
νε

]
=
[

μ̃(t)
νμ

μ̃(t)
νε

]
+ �̃

(t+1)

ν g(̃ν(t)
μ , ν̃(t)

ε )

and upon convergence

q(νμ, νε) ≈ dmvnorm

[(
νμ

νε

)
|
(

μ̃νμ

μ̃νε

)
, �̃ν

]
.

The algorithm for fitting a GAM with heteroscedastic variance using VB is
summarised in Algorithm 3.

6.5.1 Milan air pollution example
This example is based on the Milan air pollution data set from [29]. These
data consists of daily data over 10 years for mortality and several other
meteorological variables for the city of Milan, Italy including ‘total sus-
pended particles in ambient air’ (TSP), ‘number of days since 31 December
1979’ (day.num), ‘mean daily temperature in degrees Celcius’ (mean.temp)
and ‘relative humidity’ (rel.humid).

For this example we will use the abovementioned predictors with d = 4.
We will fit a model of the form yi ∼ f (xi)+ εi, where εi ∼ N(0, σ 2

ε ), 1 ≤ i ≤
n, and

f (xi) = β0 + TSPiβ1 + day.numiβ2 + mean.tempiβ3 + rel.humidiβ4

+f2(mean.tempi) + f3(mean.tempi) + f4(rel.humidi).

Using the semiparametric framework for penalised splines described in
Section 6.2.3 the matrix X contains an intercept term along with linear
terms for TSPi, day.numi, mean.tempi and rel.humidi, while the matrices Z2,
Z3 and Z4 are constructed using O-spline bases for the variables day.numi,
mean.tempi and rel.humidi, respectively. A minor modification of Algo-
rithm 1 is required to fit this model, where the index r ranges from 2 to 4
rather than 1 to R.

Fig. 6.4 illustrates the fitted functions for each covariate for the Mi-
lan air pollution data set and 95% credible intervals for the mean. Fig. 6.5
gives a blown-up plot of the mean function for day along with 95% cred-
ible intervals. From these we see that the VB approximation gives a quite
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Algorithm 3 Fitting a GAM with heteroscedastic variance using VB.

Require: t̃μ,r , 1 ≤ r ≤ Rμ; t̃ε,r , 1 ≤ r ≤ Rε

Set s̃μ,r = sμ,r + qμ,r
2 , 1 ≤ r ≤ Rμ

Set s̃ε,r = sε,r + qε,r
2 , 1 ≤ r ≤ Rε

while changes in t̃μ,r and t̃ε,r are too large do
Bμ ← blockdiag

(
σ−2

μ,βIpμ
, (̃sμ,1/̃tμ,1)Pμ,1, . . . , (̃sμ,Rμ

/̃tμ,Rμ
)PRμ

)
Bε ← blockdiag

(
σ−2

ε,β Ipε
, (̃sε,1/̃tε,1)Pε,1, . . . , (̃sε,Rε

/̃tε,Rε
)PRε

)
t = 0; μ̃(0)

νμ
← μ̃νμ

; μ̃(0)
νε

← μ̃νε

repeat
d ← y − Cμμ̃(t)

νμ
; w ← exp(−Cεμ̃

(t)
νε

)

g(μ̃(t)
μ , μ̃(t)

ε ) ←
[

CT
μ diag(w)d − Bμμ̃

(t)
μ

1
2CT

ε

{
d2 � w − 1

}− Bεμ̃
(t)
ε

]

H(μ̃(t)
μ , μ̃(t)

ε ) ←
[

−CT
μ diag(w)Cμ − Bμ −CT

μ diag(d � w)Cε

−CT
μ diag(d � w)Cε − 1

2CT
ε diag(d2 � w)Cε − Bε

]
�̃

(t+1)

ν ← [−H(μ̃(t)
μ , μ̃(t)

ε )
]−1[

μ̃(t+1)
νμ

μ̃(t+1)
νε

]
←

[
μ̃(t)

νμ

μ̃(t)
νε

]
+ �̃

(t+1)

ν g(μ̃(t)
μ , μ̃(t)

ε )

t ← t + 1

until ‖g(μ̃(t)
μ , μ̃(t)

ε )‖∞ < τ

μ̃νμ
← μ̃(t)

νμ
; μ̃νε

← μ̃(t)
νε

; �̃ν ← �̃
(t)
ν

t̃μ,r ← tμ,r + 1
2 μ̃T

uμ,r
Pμ,rμ̃uμ,r + 1

2 tr(Pμ,r�̃uμ,r ), 1 ≤ r ≤ Rμ

t̃ε,r ← tε,r + 1
2 μ̃T

uε,r
Pε,rμ̃uε,r + 1

2 tr(Pε,r�̃uε,r ), 1 ≤ r ≤ Rε

end while

comparable fit to those obtained by MCMC, except for the mean of the
smoothed function for day where the posterior credible intervals are no-
ticeably underestimated. For all other fitted functions the approximate 95%
credible intervals obtained using VB are only slightly underestimated.

6.6 Generalised additive negative binomial model

Models for count data are quite common in statistics where a natural model
for count data might involve the Poisson distribution. This model however
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Figure 6.4 Fits of the Milan air pollution data using VB and MCMC (via stan) of the
heteroscedastic nonparametric regression model. Top four panels: Posterior mean and
pointwise 95% credible sets for the four smoothed functions corresponding to the
mean. Bottom four panels: Posterior means and pointwise 95% credible sets for the four
variance functions.

Figure 6.5 Fit of the Milan air pollution data using VB and MCMC (via stan) of the het-
eroscedastic nonparametric regression model. An enlarged plot of the posterior means
and pointwise 95% credible sets for the mean fit for day.

implicitly assumes equality of mean and variance, which is often not met
in real data. More commonly data exhibit greater variance than expected
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under the assumed model (called overdispersion). An alternative model for
count data where the response variance is greater than the response mean
uses the negative binomial distribution. For the negative binomial distribu-
tion, if

Y ∼ Negative-Binomial(μ, κ), then E(Y ) = μ and

Var(Y ) = μ + μ2/κ,

where we have used the parameterisation of the density function given by

dnegbin(y|μ,κ) =
(

y + κ − 1
y

)(
μ

μ + κ

)y (
κ

μ + κ

)κ

.

Using penalised spline infrastructure developed we set

μi = exp
[
(Xβ + Zu)i

]
,

with priors (6.2) and (6.3) for u, and both β and σ 2, respectively. For κ we
will adopt the prior κ ∼ Gamma(sκ , tκ).

We will use a VB-Laplace approximation corresponding to the factori-
sation

q(ν, κ,σ 2
u) = q(ν, κ)q(σ 2

u).

Then

q(ν, κ) ∝ exp
[
yTCν − (y + κ1)T ln(κ + exp(Cν))

− 1
2νTBν + 1T ln�(y + κ1)

−n ln�(κ) + nκ ln(κ) + (sκ − 1) ln(κ) − tκκ
]
,

q(σ 2
r ) = dinvgamma

[
σ 2

r |̃sr ,̃ tr
]
, 1 ≤ r ≤ R.

For each 1 ≤ r ≤ R we have

s̃r = sr + qr
2 and t̃r = tr + 1

2 μ̃T
ur
Prμ̃ur + 1

2 tr(Pr�̃ur ),

and B = blockdiag
(
σ−2

β Ip, (̃s1/̃t1)P1, . . . , (̃sR/̃tR)PR
)
.

Direct application of Newton–Raphson optimisation can lead to prob-
lems due to the restriction κ > 0. For this reason we use the transformation
κ = exp(k). Then q(ν, κ) ∝ exp[f (ν,k)], where

f (ν,k) = yTCν − (y + exp(k)1)T ln(exp(k) + exp(Cν)) − 1
2νTBν

+1T ln�(y + exp(k)1) − n ln�(exp(k)) + nk exp(k)

+(sκ − 1)k − tκ exp(k).
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Then

∂ f (ν,k)

∂ν
= CT

{
y − y + exp(k)

exp(k) + exp(Cν)

}
− Bν,

∂ f (ν,k)

∂k
= ∂ f (ν,k)

∂κ

∂κ

k.
= κ

{
1Tψ(y + κ1) − 1T ln(κ + exp(Cν))

−1T
(

y + κ1
κ + exp(Cν)

)
−nψ(κ) + n ln(κ) + n + (sk − 1)κ−1 + tk

}
.

For this problem we use BFGS optimisation to find the maximiser of f and
make the approximation q(ν,k) ≈ N(μ̃, �̃), where μ̃ is the maximiser of f
and �̃ is an approximation of the inverse Hessian matrix evaluated at μ̃. The
marginal posterior distribution of k is normal and after transformation the
marginal posterior distribution of κ is log-normal. Algorithm 4 summarises
our approach.

Algorithm 4 Fitting a Negative Binomial Additive Model using VB.

Require: t̃r , 1 ≤ r ≤ R;
Set s̃r = sr + qr

2 , 1 ≤ r ≤ R
while change in t̃r is too large do

b ← blockdiag
(
σ−2

β Ip, (̃s1/̃t1)P1, . . . , (̃sR/̃tR)PR
)

Maximise f (ν,k) with respect to ν and k via BFGS optimisation using

g(ν,k) =
[

∂ f (ν,k)

∂ν
∂ f (ν,k)

∂k

]

to obtain μ̃ and �̃.
t̃r ← tr + 1

2 μ̃T
ur
Prμ̃ur + 1

2 tr(Pr�̃ur ), 1 ≤ r ≤ R

end while

6.6.1 Lung cancer data
In this example we revisit the data set and model given in [34]. The response
variable data consist of adduct counts (adductCount) for 77 former smokers
in a lung cancer study (source: [38]). Four predictors are available:
• ageInit: Age of smoking initiation.
• yearsSmoking: Number of years of smoking.
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• cigsPerDay: Number of cigarettes smoked per day.
• yearsSinceQuit: Number of years since quitting.
As explained in [34], adductCount is overdispersed and a Poisson additive
model is not realistic. They make a case for a model of the following form:

adductCounti|μi, κ
ind.∼ Negative-Binomial(μi, κ), (6.16)

where

μi = exp
[
f1(ageIniti) + f2(yearsSmokingi) + f3(yearsSinceQuiti)

+ f4(cigsPerDayi)
]
,

where the fj’s are smooth functions.
[34] devised kernel methods to fit negative binomial additive models

such as (6.16). Instead we take a hierarchical Bayesian approach with pe-
nalised spline modelling for the fj’s (Section 6.2.2). Section 6.2.3 describes
the choice of priors for the fixed effects and standard deviation parame-
ters.

Fig. 6.6 illustrates the fitted functions along with 95% confidence inter-
vals on the fitted means. Fig. 6.7 illustrates posterior distribution summaries
for σ 2 and κ. Again we see that the estimated posterior fitted functions and
posterior densities for VB are quite close to those using MCMC, but that
the posterior variances are underestimated. The computational time using
VB is 17 seconds while for stan it is 107 seconds.

6.7 Logistic regression with missing covariates

Missing data are a ubiquitous problem in real data analysis. The most
common approach to dealing with missing data is by simply omitting a
combination of samples/covariates in order to obtain a complete data set
which is then analysed using standard tools. However, depending on the
modelling assumptions made, this can lead to biased estimates of the model
parameters if these modelling assumptions do not hold.

To fix ideas we will focus on the problem where we have a completely
observed binary response y = (y1, . . . ,yn)

T where each yi ∈ {0,1} and ma-
trix of covariate X ∈ R

n×d, where xi denotes the ith row of X and certain
elements of X are observed and others are not observed or missing. We also
assume that we know which elements of X are observed. This knowledge
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Figure 6.6 Fits of the Hauser respiratory experiment data using VB and MCMC (via
stan) of the robust nonparametric regression model. Posterior mean and pointwise 95%
credible sets for the regression function.

is encoded in a matrix R ∈ R
n×d whose elements are

rij =
{

1 if xid is observed,
0 if xid is missing.

Similarly we denote the ith row of R by ri.
We will assume that the joint model for (y,X,R) is of the form

p(y,X,R|θ) =
n∏

i=1

p(yi|xi, θY )p(ri|xi, θR)p(xi|θX),

where we have assumed conditional independence, the components
p(yi|xi, θY ), p(ri|xi, θR), and p(xi|θX) model the response, missing data
mechanism and covariate distributions, respectively, and the parameter vec-
tors θY , θR and θX correspond to these respective modelling components
with θ = (θY , θR, θX). Note that if the distribution of ri does not depend
on any missing values and the priors for (θY , θX) are independent of θR,
then inferences on (θY , θX) can be performed separately from θR since
p(θ |D) = p(θY , θX |D)p(θR|D). In this case the missing data mechanism
p(ri|xi, θR) is said to be ignorable, and nonignorable otherwise.
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From Reptile Communities

Figure 6.7 Summary of MCMC-based inference for parameters in the model of the Lung
cancer data. The columns are: parameter, trace plot of MCMC sample, plot of sample
against 1-lagged sample, sample autocorrelation function, kernel estimates of poste-
rior densities, and basic numerical summaries. Blue (dark grey in print version) densities
correspond to posterior density approximations obtained using VB.

Assuming an ignorable missing data mechanism we will model (yi,xi)

via

yi|β,xi ∼ Bernoulli
[
expit (β0 + β1xi1 + . . . + βdxid)

]
,

xi|μ,� ∼ N(μ,�) and rij|ρj ∼ Bernoulli(ρj),

where expit(x) = [1 + exp(−x)]−1. Then ln p(y|X,β) = yTCβ − 1Tb(Cβ),
where the matrix X is the n × d matrix whose ith row is xi, C = [1,X],
β = (β0, β1, . . . , βd)

T and b(x) = ln(1 + exp(x)).
We will employ the priors

β ∼ N(0, σ 2
β I), μx|�x ∼ N(0, σ 2

μ�x) and �x ∼ IW (
�, ν�),

where σ 2
β = σ 2

μ = 108, 
 = 0.01I and ν = d.
Let C = {j : rij = 0 for some j = 1, . . . ,p} and Mj = {i : rij = 0}, j =

1, . . . ,p. We will consider a VB approximation corresponding to a fac-
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torisation of the form

q(β,μ,�,XM) = q(β)q(μ)q(�)
∏
j∈C

q(xMj,j),

where XM denotes the missing xij’s. Given the form for q(β,μ,�,XM)

the q-densities for β, μx, �x and the missing xij’s are given by

q(β) ∝ exp

[
yT C̃β − 1T

E−q(β)(b(Cβ)) − 1
2σ 2

β

‖β‖2
]

,

q(μx) = dmvnorm
[
μ
∣∣ μ̃μ, �̃μ

]
, q(�x) = diw

[
�
∣∣ 
̃, ν̃

]
,

q(xMj,j) =
∏

i : rij=0

q(xij),

where

μ̃μ = 1T x̃
n + σ−2

μ

, �̃μ = �̃
−1
x

n + σ−2
μ

,


̃ = 
 + n�̃μ +
n∑

i=1

(̃xi − μ̃μ)(̃xi − μ̃μ)T , ν̃ = n + d + ν and

q(xij) ∝ exp
[
− 1

2 �̃x,jjx2
ij + xij

{
(�̃xμ̃x)j − �x,j,−jx̃i,−j + yiμ̃β,j

}
−Eq

{
b(xT

i β)
}]

,

with �̃x = �̃
−1
x , C̃ = [1, X̃],

[̃xi]j = x̃ij =
{

xij if rij = 1,
Eq(xij) if rij = 0,

and similarly

[X̃]ij =
{

xij if rij = 1,
x̃ij if rij = 0.

Calculation of the normalising constant for q(β) is hampered by three
things: (a) Eq(X), (b) Eq(ln(1+exp(Xβ))) and (c) integrating the result with
respect to β. Furthermore we have the problem of finding the normalising
constant for the q(xij)’s for the missing xij’s.

If we use the first-order delta method approximation for q(β) for the
expectations with respect to all densities except q(β) we obtain

q(β)
approx.∝ exp

[
yT C̃β − 1Tb(C̃β) − 1

2σ 2
β

‖β‖2
]

.
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We then apply a Laplace approximation. Let μ̃
(t)
β be the current approximate

posterior mean for β. Then the Newton–Raphson updates are of the form

�̃
(t+1)

β =
[
C̃Tdiag(b′′(C̃μ̃

(t)
β ))C̃ + σ−2

β I
]−1

,

μ̃
(t+1)

β = μ̃
(t)
β + �̃

(t+1)

β

[
C̃T

{
y − b′(C̃μ̃

(t)
β )

}
− μ̃

(t)
β /σ 2

β

]
.

These updates are applied until ‖μ̃(t+1)

β − μ̃
(t)
β ‖∞ < τ , where τ = 10−5. Let

μ̃β and �̃β be the converged values upon completion of this process. Then

q(β) ≈ dmvnorm(β | μ̃β, �̃β).

For the missing xij-values we consider a Laplace approximation to approxi-
mate q(xij). To this end define

fij(xij) = − 1
2 �̃μ,jjx2

ij + dijxij − b(oij + μ̃β,jxij),

gij(xij) = −�̃μ,jjxij + dij − μ̃β,jb′(oij + μ̃β,jxij) and

hij(xij) = −�̃μ,jj − μ̃2
β,jb

′′(oij + μ̃β,jxij),

where dij = (�̃xμ̃x)j − �x,j,−jx̃i,−j + yiμ̃β,j and oij = x̃T
i,−jμ̃β,−j. Next, let μ̃(t)

xij

and σ̃ 2(t)
xij

be the current estimates of the posterior mean and variance for
xij. Then the Newton–Raphson updates can be written as

σ̃ 2(t)
xij

= −1/hij(xij),

μ̃(t+1)
xij

= μ̃(t)
xij

+ σ̃ 2(t)
xij

[
gij(μ̃

(t)
xij

)
]
.

These updates are applied until ‖μ̃(t+1)
xij

− μ̃(t)
xij

‖∞ < τ . If μ̃xij and σ̃ 2
xij

are these
values upon convergence, then q(xij) ≈ dnorm(xij|μ̃xij , σ̃xij).

6.7.1 Pima-Indians diabetes
The Pima-Indians diabetes data set is an immensely popular data set for
demonstrating the effectiveness of various pieces of methodology [5]. The
data set consists of n = 768 samples and p = 8 covariates whose aim is to
predict a binary outcome indicating whether a subject has diabetes or not.
However, most analyses of this data set sidestep the missing values, which
is common in the triceps and insulin covariates, where 29.5% and 48.6%
of the samples contain missing data. All other covariates have less than 5%
missingness, and so for simplicity we remove a sample that contains missing



182 Flexible Bayesian Regression Modelling

Figure 6.8 Posterior density approximations using MCMC (Black) and VB (Grey) for the
regression coefficients.

values in any covariate except triceps and insulin. We use log transfor-
mations for pregnant, glucose, insulin, mass, pedigree and age so that the
marginal densities for these variables are more symmetric.

Fig. 6.8 illustrates the posterior density for the regression coefficients
whereas Fig. 6.9 illustrates the posterior densities for the variable means.
Estimated posterior densities using VB are almost exact except the poste-
rior densities for triceps and insulin, where the posterior variances are
underestimated. Computational times where 7433 seconds for stan and
0.5 seconds for our VB approach.

6.8 Conclusion

In this chapter we gave a tutorial like introduction for mean field VB-based
approximations for nonstandard semiparametric regression models. We gave
several tricks for handling complications when attempting to apply a stan-
dard VB approach. Our framework is extremely flexible and is capable of
fitting models far beyond the examples we gave here. In all of the real data
examples considered in this chapter we achieve reasonable approximations
of posterior means for all model parameters and often achieve reasonable
approximations of posterior variances. However, all VB methods in this
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Figure 6.9 Posterior density approximations using MCMC (Black) and VB (Grey) for the
predictor means.

chapter are at least 5 times faster than stan fits of these models despite stan

being implemented in C++. For this reason we believe that VB can be useful
in the context of statistical prediction and exploratory data analysis, and for
timely analyses.
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Chapter Points

• We consider linear regression models for count data, specifically negative
binomial regression models and Dirichlet-multinomial regression models. We
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address variable selection via the use of spike-and-slab priors on the regression
coefficients.

• We develop efficient variational methods for scalability in the number of
covariates that are based on augmentation techniques and concrete relaxation
methods.

• We provide C/C++ code at https://github.com/marinavannucci/snbvbs for the
negative binomial case and Python code at https://github.com/mguindanigroup/
vbmultdir for the Dirichlet-multinomial case.

7.1 Introduction

Variable selection, also known as feature selection in the machine learning
literature, plays an indispensable role in scientific studies: in cancer research,
biomedical scientists seek to find connections between cancer phenotypes
and a parsimonious set of genes; in finance, economists look for a small
portfolio that can accurately track the performance of stock market indices
such as the S&P 500. In many research areas with massive data, finding a

subset of representative features that best explain the outcome of interest
has become a critical component in any researcher’s workflow.

As evidenced by numerous research papers published in either theory
or practice, variable selection for linear regression models has been an im-
portant topic in the statistical literature for the past several decades. Variable
selection methods can be categorised into roughly three groups: criteria-
based methods including traditional approaches such as AIC/BIC [6,41],
penalised regression methods [45,11,13,55] and Bayesian approaches [28,
15,5]. In this chapter, we focus primarily on Bayesian approaches for vari-
able selection that use spike-and-slab priors. An obvious advantage when
using these priors is that, in addition to the sparse estimation of the regres-
sion coefficients, these methods produce posterior probabilities of inclusion
(PPIs) for each covariate. Moreover, Bayesian approaches have the advan-
tages of being able to aggregate multiple submodels from a class of possible
ones, based on their corresponding posterior probabilities. This approach
is known as Bayesian model averaging and can lead to improved prediction
accuracy over single models [17].

Despite the great features offered by spike-and-slab priors, computa-
tional issues remain a challenge. The posterior distribution for a candidate
model usually does not have a closed-form expression, and its inference
may be computationally intractable even for a moderate number of pre-
dictors. To address the problem, approximate methods that use Markov

https://github.com/marinavannucci/snbvbs
https://github.com/mguindanigroup/vbmultdir
https://github.com/mguindanigroup/vbmultdir
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Chain Monte Carlo (MCMC) stochastic searches have been extensively
used [15,5]. Recently, variational inference methods [7,19,32,50,39] have
attracted attention as a faster and more scalable alternative. These meth-
ods have also been used for model selection in different applied modelling
contexts, particularly in bioinformatics [18] and neuroimaging [30,51].

In this chapter, we focus primarily on regression models for count
data, and specifically on negative binomial linear regression models and on
Dirichlet-multinomial regression models. In both settings, we formulate
a Bayesian hierarchical model with variable selection using spike-and-slab
priors. For posterior inference, we review standard MCMC methods and
also investigate computationally more efficient variational inference ap-
proaches that use data augmentation techniques and concrete relaxation
methods. We investigate performance of the methods via simulation stud-
ies and benchmark data sets.

7.2 Bayesian variable selection via spike-and-slab priors

In ordinary linear regression, a response yi is modelled as

yi = β0 + xT
i β + εi, εi ∼ Normal(0, σ 2), (7.1)

for i = 1, . . . ,n, with xi ∈ R
p being a vector of p known covariates, β =[

β1, . . . , βp
]T a vector of regression coefficients and β0 the baseline or inter-

cept. A Bayesian approach to variable selection in linear regression models
formulates the selection problem via hierarchical priors on the unknown
coefficients βk, k = 1, . . . ,p. In this chapter we examine one of the most
widely used sparsity inducing priors, known as the spike-and-slab prior
[28]. This prior can be written as

βk | γk ∼ γkNormal
(
0, σ 2

β

)+ (1 − γk) δ0, k = 1, . . . ,p, (7.2)

with γk being a latent indicator variable of whether the kth covariate has
a nonzero effect on the outcome, δ0 a point mass distribution at 0 and σ 2

β

the variance of the prior effect size. Typically, independent Bernoulli priors
are imposed on the γk’s, i.e. γk ∼ Bernoulli(π). For reviews on the general
topic of Bayesian variable selection for regression models with continuous
responses we refer interested readers to [31,12]. Alternatively, shrinkage
priors, that do not impose a spike at zero, can be considered, such as the
normal-gamma [16], the horseshoe [34] and the LASSO [33] priors.
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Recently, nonlocal prior densities have been used in Bayesian hypothesis
testing and variable selection, as an attempt to balance the rates of conver-
gence of Bayes factors under the null and alternative hypotheses [22]. The
large sample properties of Bayes factors obtained by local alternative priors
imply that, as the sample size increases, evidence accumulates much more
rapidly in favour of true alternative models than the true null models. Sup-
pose the null hypothesis H0 is β ∈ �0 and the alternative hypothesis H1 is
β ∈ �1. Here, we define a nonlocal density if p (β | H1) = 0 for all β ∈ �0

and p (β | H1) > 0 for all β ∈ �1. In the variable selection settings considered
in this chapter, the hypotheses relate to the significance of the coefficients,
i.e. H0: β = 0 versus H1: β �= 0. Therefore, a nonlocal selection prior is
defined as a mixture of a point mass at zero and a continuous nonlocal
alternative distribution,

βk | γk ∼ γkp
(
βk;σ 2

β

)+ (1 − γk) δ0, k = 1, . . . ,p, (7.3)

where p
(
βk;σ 2

β

)
is a nonlocal density characterising the prior distribution

of βk under the alternative hypothesis. Similarly as in the traditional spike-
and-slab prior formulation, a nonlocal selection prior models the sparsity
explicitly by assigning a positive mass at the origin. However, unlike a
flat Gaussian distribution, the density p

(
βk;σ 2

β

)
does not place a signifi-

cant amount of probability mass near the null value zero, thus properly
reflecting the prior belief that the parameter is away from zero under H1.
In this chapter, we use the product second moment (pMOM) prior [22,42]
and assume that the βk’s are independent of each other and are drawn from

p(β;σ 2
β ) =

p∏
k=1

β2
k

σ 2
β

Normal
(
0, σ 2

β

)
. (7.4)

7.3 Negative binomial regression models

For i = 1, . . . ,n, let now yi indicate observed counts on an outcome vari-
able. Count data can be modelled via a negative binomial distribution,
obtaining the regression model

yi | r,ψi ∼ NB
(

r,
exp(ψi)

1 + exp(ψi)

)
, (7.5)

with ψi = β0 + xT
i β and with r being the overdispersion parameter. Given

the law of total expectation and variance, the expectation and variance of
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yi can be calculated as

E
[
yi | xi

]= exp
(
xT

i β + β0 + log r
)
,

Var
[
yi | xi

]= E
[
yi | xi

]+ 1
r
E

2 [yi | xi
]
,

(7.6)

showing that Var
[
yi | xi

]
> E

[
yi | xi

]
and thus that the negative binomial

model can account for overdispersion. Later on we will introduce auxiliary
variables to facilitate the use of data augmentation techniques that allow
conjugate inference on the parameters β and r. We write the prior model
as follows:

βk | γk ∼ γkNormal
(
0, σ 2

β

)+ (1 − γk) δ0,

γk ∼ Bernoulli (π) ,

β0 ∼ Normal
(
0, σ 2

β0

)
, (7.7)

r ∼ Gamma
(
ar, br

)
,

σ 2
β ∼ Scaled-Inv-χ2 (ν0, σ

2
0

)
.

Typically, a flat normal prior is imposed on the intercept term β0, since
there is usually no reason to shrink it towards zero. Parameters σ 2

β and π

control the sparsity of the model. Performance of variable selection can
be sensitive to these parameter settings. Two popular prior choices for π

are the beta distribution π ∼ Beta
(
aπ , bπ

)
and the uniform distribution on

the log scale log (π) ∼ Uniform (πmin,πmax) [54]. When π is marginalised,
the obtained prior distributions on γ are a beta binomial distribution and a
truncated beta distribution, respectively. We impose a convenient heavy-tail
conjugate prior called scaled inverse chi squared distribution on the slab
variance parameter σ 2

β , where ν0 is the degree of freedom for the scale
parameter σ 2

0 . For stability purpose, it is recommended to use a large ν0 for
sparse models [7].

For posterior inference, with variable selection as the main focus, we
are interested in recovering a small subset of covariates with significant
association to the outcome. In the proposed Bayesian model, the relative
importance of the kth covariate can be assessed by computing its marginal
posterior probability of inclusion (PPI) as

PPI
(
k
)≡ p

(
γk = 1 | y,X

)=
∑

γ −k
p
(
γ −k, γk = 1 | y,X

)
∑

γ −k
p
(
γ | y,X

) , (7.8)
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which involves a sum over 2p possible models marginalised over the other
model parameters. Classical MCMC algorithms can be used to compute
this analytically intractable term. Approaches that use data augmentation
schemes have proven particularly efficient.

7.3.1 Data augmentation
Here we employ the Pólya-Gamma augmentation approach of Polson et al.
[35] to sample β and an additional data augmentation scheme to obtain a
closed-form, tractable update rule for the overdispersion parameter r, which
we adapt from Zhou et al. [53].

A random variable ω following a Pólya-Gamma distribution with pa-
rameters b ∈R+, c ∈R is defined as

ω
D= 1

2π2

∞∑
k=1

gk(
k − 1/2

)2 + c2/
(
4π2

) , (7.9)

where the gk ∼ Gamma
(
b,1

)
are independent gamma random variables and

D= indicates equality in distribution. The main result from Polson et al. [35]
is that given a random variable ω with density ω ∼ PG

(
b,0

)
, b ∈ R+, the

following integral identity holds for all a ∈R:

exp (ψ)a

(1 + exp (ψ))b = 2−b exp (κψ)Eω

[
exp

(−ωψ2/2
)]

, (7.10)

where κ = a − b/2. Additionally, the conditional distribution p (ω | ψ), aris-
ing from treating the above integrand as the unnormalised joint density of
(ω,ψ), is

p (ω | ψ) = exp
(−ψ2ω/2

)
Eω

[
exp

(−ψ2ω/2
)]p (ω | b,0

)
, (7.11)

which is also in the Pólya-Gamma class, i.e. ω | ψ ∼ PG(b,ψ). For more
details regarding the derivation of the result, we refer interested readers
to Polson et al. [35]. Comparing Eq. (7.10) with the negative binomial
regression likelihood given in Eq. (7.5) we can define a = yi and b = yi + r
and therefore write out the likelihood function as

L
(
yi | ψi, r

)= �
(
yi + r

)
�
(
yi + 1

)
� (r)

exp (ψi)
yi

(1 + exp (ψi))
yi+r , (7.12)
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where � (·) is the gamma function. We are ready to appeal to the above
Pólya-Gamma augmentation and write the likelihood function of the ith
observation conditioned on the augmented variable ωi ∼ PG

(
yi + r,0

)
as

L
(
yi | ψi, r

)∝ exp (κiψi)Eωi

[
exp

(−ωiψ
2
i /2

)]
, (7.13)

with κi =
(
yi − r

)
/2 and

[
ωi | ψi

]∼ PG
(
yi + r,ψi

)
.

We adopt an additional data augmentation scheme to obtain a closed-
form, tractable update rule for the overdispersion parameter r. We note that
yi ∼ NB(r,pi) can be expressed as a compound Poisson distribution [36]

yi =
Li∑

l=1

uil where i ∈ {1, . . . ,n} and l ∈ {1, . . . ,Li} ,

Li ∼ Poisson
(−r log

(
1 − pi

))
,

uil
i.i.d.∼ Logarithmic

(
pi
)
,

(7.14)

where Li can be interpreted as the number of groups, uil is the number
of individuals within the lth group and yi is the number of total individ-
uals for the ith observation. Therefore, exploiting conjugacy between the
Gamma and Poisson distributions, a Gamma(ar, br) prior on r leads to the
conditional posterior

[r | . . .] ∼ Gamma

(
ar +

n∑
i=1

Li, br −
n∑

i=1

log
(
1 − pi

))
. (7.15)

The remaining question is how to obtain the conditional posterior of Li.
Zhou et al. [53] show that the probability mass function (PMF) of Li is the
Antoniak equation

P
(
Li = li | yi, r

) def= fL
(
li | yi, r

)= ∣∣s (yi, li
)∣∣ rli� (r)

�
(
r + yi

) , (7.16)

where 0 ≤ li ≤ yi and s
(
yi, li

)
is the Stirling number of the first kind [3,

43]. By definition, |s (0,0)| = 1,
∣∣s (0, l

)∣∣ = 0 for l > 0,
∣∣s (yi, li

)∣∣ = 0 for
li > yi, and the other values are given by the recursion as

∣∣s (yi + 1, l
)∣∣ =∣∣s (yi, l − 1

)∣∣ + yi
∣∣s (yi, l

)∣∣. The Antoniak equation (7.16) can also be in-
terpreted as the probability that yi samples from a Dirichlet process with
concentration parameter r will return li distinct groups, which follows a
Chinese restaurant table (CRT) distribution. Consider a Chinese restaurant
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with an infinite number of tables, each with infinite capacity. Given a con-
centration parameter r, we would like to sit yi customers in this restaurant
using the following rule: a customer w, w = 1, . . . ,yi, will either choose a
new empty table (group) with probability r/ (r + w − 1) or decide to sit at
an occupied table otherwise. Hence we can treat the event of creating new
tables (groups) as an independent Bernoulli trial and count the number of
successful events. The expected mean and variance of table counts, given yi

seated customers, are

E [Li] =
yi∑

w=1

r
r + w − 1

= r
(
�
(
r + yi

)− � (r)
)
,

Var [Li] = r
(
�
(
r + yi

)− � (r)
)+ r2 (� ′ (r + yi

)− � ′ (r)
)
,

(7.17)

where � (·) is the digamma function. Using those analytical moments, we
apply the central limit theorem [10] and utilise the asymptotic approxima-
tions

Li 
 Normal (E [Li] ,Var [Li]) ,

Li 
 Poisson (E [Li])
(7.18)

to sample Li when yi is large.

7.3.2 MCMC algorithm
We integrate out the sparsity prior parameter π . Additionally, to gain fur-
ther computational speed, in our implementation we use the Pólya-Gamma
augmentation to marginalise over β0 and βγ when updating the variable
selection indicators γ and then perform the remaining updates condi-
tional upon a sufficient estimate of those parameters. A generic iteration
of our MCMC therefore consists of two Metropolis–Hasting steps on γ

and τβ = σ−2
β within two Gibbs updates on ω and r:

• To sample the model selection parameter γ , we follow the modified
add-delete-swap algorithm proposed by [7] which selects the vari-
able at a frequency which is proportional to the likelihood. Specif-
ically, we propose an add move with a probability proportional to
p
(
y | X, γk = 1,γ −k,ω, τβ, r

)
and a delete move with probability pro-

portional to p
(
y | X, γk = 0,γ −k,ω, τβ, r

)
. Let us denote the marginal

likelihood of model Mγ with the abbreviated notation � (γ ) as
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� (γ ) ≡ p
(
y | X,γ ,ω, τβ, r

)∝ τ
m
2

β√
ω̄

∣∣Sτβ
γ

∣∣ 1
2 exp

(
1
2

(
SSRτβ

γ + κ̄2

ω̄

))
,

(7.19)

where Sτβ

γ and SSRτβ

γ are
(
XT

γ �̂Xγ + τβIm

)−1
and κ̂

TXγ Sτβ

γ XT
γ κ̂ , re-

spectively. We define � = diag (ω), κ̄ = ∑n
i=1 κi, ω̄ = ∑n

i=1 ωi, κ̂ = κ −
κ̄

ω̄
ω and �̂ = �− ωωT

ω̄
; Im is an identity matrix of dimension m×m and

SSRτβ

γ is often referred to as the sum of squares due to regression (SSR).
We write the acceptance probability for the add and delete move as

A
(
γk = 0, γ̂k = 1

)

= min

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1,
aπ + m

bπ + p − m − 1
�
(
γk = 1,γ −k

)
�
(
γk = 0,γ −k

)
∑

j:γj=0
�
(
γj=1,γ −j

)
�
(
γj=0,γ −j

)
∑

j:γ̂j=1
�
(
γj=0,γ̂ −j

)
�
(
γj=1,γ̂ −j

)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

,

A
(
γk = 1, γ̂k = 0

)

= min

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1,
bπ + p − m
aπ + m − 1

�
(
γk = 0,γ −k

)
�
(
γk = 1,γ −k

)
∑

j:γj=1
�
(
γj=0,γ −j

)
�
(
γj=1,γ −j

)
∑

j:γ̂j=0
�
(
γj=1,γ̂ −j

)
�
(
γj=0,γ̂ −j

)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

,

where γ −k is the set of all indicator variables excluding the kth one.
Computations can be made more efficient by using Cholesky decom-
positions. See [38] for details.

• We perform a Metropolis–Hasting update on the log of the slab preci-
sion τβ ,

log τ̂β = log τβ + u, (7.20)

where u is a random draw from a Normal
(
0, σ 2

ε

)
and σ 2

ε is the
Metropolis–Hasting step size variance. Then we admit this candidate
τ̂β with acceptance probability

A
(
τβ, τ̂β

)= min

⎧⎪⎨
⎪⎩1, exp

(
1
2

(
SSRτ̂β

γ − SSRτβ
γ

))⎛⎝
∣∣∣τ̂βSτ̂β

γ

∣∣∣∣∣τβSτβ
γ

∣∣
⎞
⎠

1/2⎫⎪⎬
⎪⎭ .

(7.21)
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• Using the compound Poisson distribution [52] representation of the
negative binomial distribution, we show the conditional posterior of
r as

[r | . . .] ∼ Gamma

(
ar +

n∑
i=1

Li, br +
n∑

i=1

log (1 + exp (ψi))

)
,

[Li | . . .] ∼ CRT
(
yi, r

)
,

(7.22)

where CRT is a Chinese restaurant table distribution.
• Polson et al. [35] showed that the posterior of ωi given the linear term

ψi and the other remaining parameters follows a Pólya-Gamma distri-
bution. Therefore, the conditional update for each ωi for i = 1, . . . ,n is
given by

[ωi | . . .] ∝ exp
(−ωiψ

2
i /2

)
PG

(
ωi;yi + r,0

)∝ PG
(
yi + r,ψi

)
. (7.23)

7.3.3 Variational inference algorithm
Unlike MCMC methods, variational inference is based on an optimisation
problem [4]. Let us consider the set of parameters (β,γ ) and the conditional
posterior distribution f (β,γ ) given r,ω,π,σ 2

β . The underlying idea of vari-
ational inference is to pick a family of distributions q (β,γ ) ∈ Q, with free
variational parameter θ , and then use the gradient descent algorithm on θ

to minimise the Kullback–Leibler (KL) divergence between the variational
approximation q and the posterior distribution f (β,γ ) as

q∗ = arg min
q∈Q

KL
(
q ‖ f

)=
∫ ∫

q (β,γ ) log
q (β,γ )

f (β,γ )
dβdγ

= log p
(
y | X,ω,ϑ, r

)− {
E

Q [log p
(
y,β,γ | X,ω,ϑ, r

)]+H
[
q (β,γ )

]}
= logp

(
y | X,ω,ϑ, r

)− ELBO,

(7.24)

with ϑ being the set of hyperparameters or ϑ = (
π,σ 2

β

)
and H

[
q (β,γ )

]
denoting the entropy of the variational distribution. Given that the condi-
tional marginal likelihood log p

(
y | X,ω,ϑ, r

)
does not depend on (β,γ ),

one can maximise the remaining term on the right-hand side, often referred
to as the evidence lower bound (ELBO).

For practical reasons the variational family Q is chosen to be a set of
parametric distributions from the exponential family. In particular, in order
to reduce the computational complexity of the optimisation, a common
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approach is to assume that the latent variables are mutually independent
and each is governed by a distinct factor in the variational density. This
class of variational family Q is known as the mean field variational family.
In particular, in the negative binomial regression model case introduced in
this chapter we assume

q (β,γ | θ) =
p∏

k=1

q (βk, γk; θk) , (7.25)

with

q (βk, γk; θk) =
{

αkNormal(βk | μk, s2k) if γk = 1,

(1 − αk) δ0 (βk) otherwise
(7.26)

and variational parameters θk = (
αk,μk, s2k

)
. This factorised approximation

is widely used for variational inference with spike-and-slab priors [24,47,7,
51,19]. The closed form of the ELBO, which we denote as F (ϑ; θ), can be
derived as

F (ϑ; θ)
def= ELBO= log p

(
y | X,ω,π,σ 2

β , r
)≥ −1

2
log ω̄ + κ̄2

2ω̄
+ κ̂

TXAμ

+
n∑

i=1

{
log�

(
yi + r

)− log�
(
yi + 1

)− log� (r) − (
yi + r

)
log 2

}

− 1
2

{ p∑
k=1

(
XT �̂X

)
kk

((
μ2

k + s2k
)
αk − μ2

kα
2
k

)+ μTA
(
XT �̂X

)
Aμ

}

+
p∑

k=1

αk

2

[
1 + log

(
s2k
σ 2

β

)
− s2k + μ2

k

σ 2
β

]
−

p∑
k=1

αk log
(αk

π

)

−
p∑

k=1

(1 − αk) log

(
1 − αk

1 − π

)
,

(7.27)

with A = diag
(
α1, α2, . . . , αp

)
. By taking partial derivatives of the variational

parameters and setting them to zero, we obtain the updating rules for αk,
μk and s2k, i.e.

s2k = 1(
XT �̂X

)
kk

+ τβ

, (7.28)
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Algorithm 1: VIEM algorithm for negative binomial regression.

initialize:
(
μk, αk, s2k

)
for k = {1, . . . ,p}, ω̂, σ̂2

β , π̂, r̂

repeat
Update the variational parameters via coordinate gradient descent:
for k = 1 : p do

1. Update s2k according to Eq. (7.28).
2. Update μk according to Eq. (7.29).
3. Update αk according to Eq. (7.30).

end

Update selection hyperparameters σ̂2
β and π̂ via their MAP estimates.

Update latent variables r̂ and ω̂i, i ∈ {1, . . . ,n} via posterior expectations.
until ELBO Converges

Figure 7.1 Variational inference expectation maximisation (VIEM) scheme.

μk = s2k

⎛
⎝(XT κ̂

)
k −

p∑
i �=k

αiμi

(
XT �̂X

)
ik

⎞
⎠ , (7.29)

Logit (αk) = μ2
k

2s2k
+ log

(
sk
σβ

)
+ Logit (π) . (7.30)

In order to maximise the ELBO, we devise two variational inference
expectation maximisation (VIEM) schemes. The first scheme is described
in Fig. 7.1 and comprises a VI-step, an E-step and an M-step. In the
VI-step, we use coordinate gradient descent which iteratively updates the
variational approximation (7.25). In the E-step, we treat the augmentation
variable ω and overdispersion parameter r as missing latent variables and
use the results from Polson et al. [35] and Zhou et al. [53] to update them
via the corresponding posterior expected values. In the M-step, we solve
for the maximum a posteriori (MAP) estimates of σ 2

β and π . The pos-
terior of σ 2

β is a scaled inverse chi squared distribution with mode (i.e.
the MAP estimator) given by σ̂ 2

β = (∑p
k=1 αk(μ

2
k + s2k) + ν0σ

2
0

)
/ (ν̃0 + 2).

The posterior for π is a beta distribution whose posterior MAP is π̂ =(∑p
k=1 αk + aπ − 1

)
/
(
p + aπ + bπ − 2

)
. Furthermore, the posterior for r is a

gamma distribution with expectation E [r] = ãr/b̃r , with ãr = ar +∑n
i=1 E [Li]

and b̃r = br +∑n
i=1 log (1 + exp (ψi)), where each expectation of Li is given

by Eq. (7.17) and the posterior distribution of ωi is given in Eq. (7.23),
with expectation E [ωi] = (

yi +E [r]
){ tanh(ψi/2)

2ψi

}
. With this scheme, we iter-

ate the three steps until some convergence criterion is met. A commonly
used stopping rule is to terminate the algorithm when changes of the ELBO
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Algorithm 2: VIEM-IS algorithm for negative binomial regression.

initialize:
(
μk, αk, s2k

)
, for k = {1, . . . ,p}, ω̂, ϑ̂ =

(
σ̂2
β , π̂

)
, r̂

given : Sample ϑ(1), . . . ,ϑ(ns) from importance distribution p̃ (ϑ)

for s = 1 : ns do
repeat

Update the variational parameters via coordinate gradient descent:
for k = 1 : p do

1. Update s2k according to Eq. (7.28).
2. Update μk according to Eq. (7.29).
3. Update αk according to Eq. (7.30).

end

Update the latent variables r̂ and ω̂i for i ∈ {1, . . . ,n} via their posterior
expectation.

until ELBO Converges
Compute the unnormalised importance weights w (ϑ)

Set α(i) = α and μ(i) = μ.
end

Compute the normalised importance weights ŵ (ϑ).
Compute the weighted average of α(s) and β(s) = α(s) · μ(s) using ŵ (ϑ).

Figure 7.2 Variational inference expectation maximisation via importance sampling
(VIEM-IS) scheme.

between iterations are less than some prespecified threshold. An alternative
criterion is to use the entropy of the selection parameter γ defined as

H (γ ) = −
p∑

k=1

{
αk log2 (αk) + (1 − αk) log2 (1 − αk)

}
. (7.31)

In the second variational scheme, described in Fig. 7.2, we integrate
out the parameters in ϑ via importance sampling [7] and estimate the PPIs,
defined as in Eq. (7.8), as

PPI
(
k
)≈

∑N
s=1 p

(
γk = 1 | X,y,ω,ϑ (s), r

)
w
(
ϑ (s))∑N

s=1 w
(
ϑ (s)) , (7.32)

with w(ϑ) being the unnormalised importance sampling weight for ϑ , cal-
culated by substituting the unknown marginal likelihood p

(
y | X,ω,ϑ, r

)
with its ELBO. Importance sampling can improve the estimates of the PPIs
as it averages over ϑ . Furthermore, since importance samples are indepen-
dent from each other, one can employ a parallel computing framework such
as OpenMP [8] to take advantage of multicore computers.
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7.4 Dirichlet-multinomial regression models

The second model for count data that we consider is the Dirichlet-
multinomial log-linear regression model. Here, for each observation i,
i = 1, . . . ,n, we assume multivariate count data and write yi = (yi1, . . . ,yiJ)

to indicate the vector of counts on J outcome variables, for j = 1, . . . , J . As
in the previous model, we let xi indicate the vector of measurements on
p covariates. We start by modelling the multivariate count data yi using a
multinomial distribution

yi | φi ∼ Multinomial
(
yi+,φi

)
, (7.33)

with yi+ = ∑J
j=1 yij being the summation of all counts in the vector and

where the parameter φi is defined on the J-dimensional simplex

S J−1 =
⎧⎨
⎩(φi1, . . . , φiJ

) : φij ≥ 0,

J∑
j=1

φij = 1

⎫⎬
⎭ .

We further impose a conjugate Dirichlet prior on φi, that is, φi ∼
Dirichlet(ξ i), where ξ i = (

ξi1, . . . , ξiJ
)

indicates a J-dimensional vector of
strictly positive parameters. An advantage of our hierarchical formulation is
that conjugacy can be exploited to integrate φi out, obtaining the Dirichlet-
multinomial model, yi ∼ DM(ξ i), with PMF

f (yi|ξ i) =
(

yi+
yi

)
�(yi+ + 1)�(ξi+)

�(yi+ + ξi+)

J∏
j=1

�(yij + ξij)

�(ξij)�(yij + 1)
, (7.34)

and ξi+ =∑J
j ξij. First described in [29] as the compound multinomial, the

Dirichlet-multinomial model allows more flexibility than the multinomial
when encountering overdispersion, as it induces an increase in variance by
a factor

(
yi+ + ξi+

)
/ (1 + ξi+).

Next, we incorporate the covariates into the modelling via a log-linear
regression framework where the Dirichlet-multinomial parameters depend
on the available covariates. More specifically, we define ζij = log(ξij) and
assume

ζij = αj +
p∑

k=1

βkj xik. (7.35)
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In this formulation, the intercept term αj corresponds to the log baseline
parameter for outcome j, whereas the regression parameter βkj captures the
association between the kth covariate and the jth outcome. Identifying the
significant associations is then equivalent to determining the nonzero βkj

parameters, a task we can achieve via spike-and-slab priors. Here, we use the
formulation of [44] and introduce a set of latent binary indicators of the
type γ j = (

γ1j, γ2j, . . . , γpj
)

such that γkj = 1 if the kth covariate influences
the jth outcome and γkj = 0 otherwise, and we write the prior on βkj as

βkj | γkj ∼ γkjp
(
βkj;σ 2

β

)+ (1 − γkj) δ0, (7.36)

γkj ∼ Bernoulli (π) , (7.37)

where p(βkj;σ 2
β ) is the nonlocal prior and π again controls the sparsity of

the model. For the nonlocal prior, we consider the pMOM prior described
in (7.4). Finally we assume normal priors on the baseline αj’s, i.e. αj ∼
Normal

(
0, σ 2

α

)
, and use large σ 2

α to encode a diffuse prior on each αj.

7.4.1 MCMC algorithm
We refer readers to [48] for an MCMC stochastic search method for the
Dirichlet-multinomial regression model. Here, instead, we formulate an
alternative, scalable variational Bayes algorithm.

7.4.2 Variational inference with reparameterisation
Unlike the negative binomial regression model, the Dirichlet-multinomial
regression model does not have any known data augmentation schemes that
can be paired with a parametric variational family to exploit conditional
conjugacy. This is often the case for Bayesian hierarchical models where
the corresponding ELBO objective is a function of intractable expectations
with respect to the variational distributions. In such settings, the optimal
variational parameters can be found via the gradient descent algorithm and
the ELBO can be approximated by Monte Carlo samples from the varia-
tional distributions. Reducing the variance of the gradient estimators plays
a significant role in improving model accuracy and scalability of these meth-
ods. Below we review the generalised reparameterisation (G-REP) gradient
method proposed in [40] to obtain a low-variance gradient in the case of
continuous latent variables.
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7.4.2.1 Reparameterisation of the gradient

Given data x and a continuous latent variable z such that p(x,z) is differ-
entiable with respect to z, a reparameterisation transforms z into a new
random variable ε defined by an invertible transformation ε = T −1(z; θ)

and z = T (ε; θ), where ε = T −1(z; θ) can be considered as a standardi-
sation procedure that makes the distribution of ε weakly dependent on
z. By change of variable, the reparameterised model can be written as
p(x, ε; θ) = p (x,T (ε; θ)) × J (ε; θ), where J(ε; θ) = |det�εT (ε; θ)| denotes
the determinant of the Jacobian of the transformation. A noticeable prop-
erty of a valid reparameterisation is the marginal likelihood invariance
property

p(x) =
∫

p(x,z)dz =
∫

p(x, ε)dε =
∫

p(x,T (ε; θ))J(ε; θ). (7.38)

Thus, while θ enters into the above equation as a new model parameter,
the marginal probability p(x) remains unchanged. However, the reparam-
eterised posterior distribution p(ε|x, θ) is dependent on θ and this depen-
dence of the posterior on θ can be exploited to improve accuracy and
computational efficiency [46]. In the variational inference context, we can
consider p(ε|x, θ) to be the first part of the ELBO objective correspond-
ing to the expectation of the log likelihood with respect to the variational
distributions parameterised by θ . When updating θ via stochastic gradient
descent, one can now take advantage of the information provided from the
model likelihood. This will generally lead to a faster convergence of θ and
fewer samples of ε to estimate a low-variance gradient [40].

7.4.2.2 Concrete relaxation

While G-REP can be used to optimise the variational parameters for the re-
gression coefficients β, this approach cannot be used for the discrete model
selection variable γ . Recently, Maddison et al. [26] and Jang et al. [20]
have proposed a reparameterisation for discrete random variables using the
Concrete distribution, which is a continuous relaxation of discrete random
variables. The Concrete distribution is a parametric family of continuous
distributions on the simplex with closed-form densities, parameterised by
a location a > 0 and a temperature λ > 0. A key feature of this class of dis-
tributions is that any discrete distribution can be seen as the discretisation
of a Concrete one. For example, the binary model selection random vari-
able γ ∼ Bernoulli(π) is equivalent to γ ∼ BinConcrete(a, λ), and γ can be
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sampled as

γ = 1
1 + exp (− (log(a) + L) /λ)

, L = u
1 − u

, (7.39)

where u ∼ Uniform(0,1). When λ approaches zero, the concrete distri-
bution qa,λ(γ ) converges to Bernoulli(π = a

1+a ). Because the discretisation
procedure of the Concrete distribution allows for the optimisation of pa-
rameter a via gradient-based methods, we can use this reparameterisation
scheme to optimise π with respect to the ELBO.

7.4.2.3 Hard concrete distribution
A drawback of the Binary Concrete distribution is that a realisation from
the distribution may not be exactly zero and may be susceptible to the tem-
perature value λ. To resolve this problem, Louizos et al. [25] extended the
work of Maddison et al. [26] and Jang et al. [20] and introduced the Hard
Concrete Distribution. Let s be a random variable with probability density
q(s) = BinConcrete(a, λ) and cumulative density Q(s). After sampling s, we
can “stretch” the value to the (c0, c1) interval, with c0 < 0 and c1 > 1, and
apply a hard-sigmoid

s ∼ BinConcrete(a, λ), s̄ = s(c1 − c0) + c0, z = min (1,max (0, s̄)) .

(7.40)

This induces a distribution where the mass of q(s̄) on the negative domain
is “folded” to a delta peak at zero, and mass larger than one is “folded” to a
delta peak at one, such that q(s̄) is truncated to the (0,1) range. Then, z is
a hard-sigmoid rectification of s with support {0,1}, as desired. It can be
shown that the probability of z being nonzero can be computed as

p(z �= 0) = Q(s̄ ≥ 0) = 1

1 + exp
(
−
(

log (a) − λ log
(
− c0

c1

))) . (7.41)

With this reparameterisation, we can sample a discrete Bernoulli ran-
dom variable with the above probability and learn a via gradient descent.
For posterior inference, we follow Louizos et al. [25] and use c0 = −0.1,
c1 = 1.1, λ = 2

3 .

7.4.2.4 Variational inference approximation
Finally, we describe the variational distributions q(β,γ ) ∈ Q, with free vari-
ational parameter θ , for our Dirichlet-multinomial model. For efficient
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computation, we again use a mean field approximation of the joint poste-
rior of (β,γ ) of the type

q (β,γ ) =
p∏

k=1

J∏
j=1

q
(
βkj, γkj

)=
p∏

k=1

J∏
j=1

q
(
βkj | γkj

)
q
(
γkj
)
, (7.42)

where q(βkj | γkj) is defined as

q
(
βkj | γkj; θkj

)
=
⎧⎨
⎩

1
2Normal

(
βkj | μ1kj, σ

2
1kj

)
+ 1

2Normal
(
βkj | μ2kj, σ

2
2kj

)
if γkj = 1,

δ0 if γkj = 0,

(7.43)

with variational parameter θkj = (
μ1kj, σ1kj,μ2kj, σ2kj

)
. Since the pMOM

density has two modes, we propose a mixture of two normal distributions
as the variational approximation when γkj = 1, while the approximation
collapses to a spike at zero when γkj = 0. Samples from the above distri-
bution can be obtained via the reparameterisation u ∼ Uniform(0,1), ε ∼
Normal (0,1) and

βkj | γkj =

⎧⎪⎪⎨
⎪⎪⎩

εσ 2
1kj + μ1kj if u < 0.5 and γkj = 1,

εσ 2
2kj + μ2kj if u ≥ 0.5 and γkj = 1,

0 if γkj = 0.

(7.44)

For each γkj we use a Hard Concrete distribution as the approximation,
i.e. q(γkj) ∼ HardBinConcrete(akj;λ = 2

3 , c0 = −0.1, c1 = 1.1). Thus we can
learn qakj(γkj = 1) by performing gradient descent on akj. For the baseline
terms α′

j s, we use MAP estimates, since we are mainly interested in per-
forming variable selection on β ′

kjs. In summary, the ELBO objective of the
Dirichlet-multinomial model can be written as

ELBO = E
Q [log f (Y | X,α,β,γ )

]− KL
(
q (β,γ ) ‖ p (β,γ )

)
= E

Q [log f (Y | X,α,β,γ )
]−

p∑
k=1

J∑
j=1

KL
(
q
(
γkj
) ‖ p

(
γkj
))

(7.45)

−
p∑

k=1

J∑
j=1

qπ

(
γkj = 1

)
KL

(
qθkj

(
βkj | γkj = 1

) ‖ p
(
βkj | γkj = 1

))
.
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Since our prior on each γkj is Bernoulli (π), the KL term for γkj is

KL
(
qakj

(
γkj
) ‖ p

(
γkj
))

=qakj

(
γkj = 1

)
log

(
qakj

(
γkj = 1

)
π

)
+ qakj

(
γkj = 0

)
log

(
qakj

(
γkj = 0

)
1 − π

)
.

The KL term corresponding to the pMOM prior can be expressed as

KL
(
qθkj

(
βkj | γkj = 1

) ‖ p
(
βkj | γkj = 1

))
= −H

(
βkj | γkj = 1

)−E
qθkj

(
βkj |γkj=1

) (log p
(
βkj | γkj = 1

))
,

(7.46)

where H(βkj | γkj = 1) denotes the entropy under qθkj(βkj | γkj = 1). Both
terms on the right-hand side of (7.46) can be computed using Monte Carlo
approximations. Furthermore, to reduce the variance of the gradient, we
can express the expectation in (7.46) analytically as

1
S

S∑
s=1

[
log

((
β

(s)
kj

)2
)

−
μ2

1kj + σ 2
1kj

4σ 2
β

−
μ2

2kj + σ 2
2kj

4σ 2
β

− log
(√

2π
)

− 3
2

log
(
σ 2

β

)]
,

(7.47)

where S is the number of Monte Carlo samples used in the approximation.

7.4.2.5 Posterior inference using tensorflow

The optimisation procedure to perform posterior inference using the pro-
posed reparameterisation within the variational framework is implemented
in TensorFlow [1] and uses the Adam optimiser proposed by Kingma and
Ba [23] for gradient optimisation. The actual computation for the gradients
is handled using Tensorflow’s API for automatic differentiation. In order to
reduce the complexity of the optimisation scheme, we standardised the
data, both in simulations and real data analyses, and fixed the variance vari-
ational parameters σ 2

1kj, σ
2
2kj of βkj, for k = 1, . . . ,p and j = 1, . . . , J , to 1.

Given that we are interested in the selection of the relevant variable, these
parameters are not the prime interest of our inference and, also, they tend
to be underestimated by variational inference schemes. In case it is of in-
terest to learn these parameters, it is advised to perform a log transform
log(σ 2

kj) = σ̃ 2
kj so that the parameters remain in the positive domain during

gradient updates. More details regarding the implementation can be found
at https://github.com/mguindanigroup/vbmultdir.

https://github.com/mguindanigroup/vbmultdir
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7.5 Simulation study

In this section, we conduct several simulation studies and compare selection
performances among different methods. For comparisons, we calculate ac-
curacy (ACC), precision, recall, the F1 score and the Matthews correlation
coefficient (MCC). Given the number of true positives (TPs), false posi-
tives (FPs), true negatives (TNs) and false negatives (FNs), the accuracy is
calculated as (TP+TN)/(P+N), the precision as (TP)/(TP+FP), the recall
as (TP)/(TP+FN), the F1 score as the geometric mean between precision
and recall and the Matthews correlation coefficient as

MCC = TP × TN − FP × FN√
(TP + FP) (TP + FN) (TN + FP) (TN + FN)

. (7.48)

The Matthews correlation coefficient takes all values of the confusion ma-
trix into account and is generally regarded as a balanced measure that can
be used even if the true classes are imbalanced. We further compute and
plot the receiving operating characteristic (ROC) curve and the area under
the ROC curve (AUC) to show the selection performance of each method
using different thresholds on the PPIs.

Negative binomial – small p large n example
We first simulated synthetic data with n = 100 samples and p = 50
features. The design matrix X was simulated according to a multi-
variate Normal(μ,�), where each μk, k = 1, . . . ,p, was drawn from a
Normal (0,0.1) and where the

(
l,m

)
th entry of the covariance matrix was

set to be �lm = ρ
∣∣l−m

∣∣ for l �= m, with ρ = 0,0.3,0.6,0.9. We sampled the
marginal indicators of inclusion γk independently from a Bernoulli (π) with
π ∈ Uniform (0.1,0.2) and the corresponding nonzero βk uniformly from
the intervals ± [0.5,2.0]. Finally, we sampled the count data from a gamma-
Poisson mixture model of the type

yi ∼ Poisson (λi) ,

λi ∼ Gamma (r,1/ exp (ψi)) ,

ψi = (xi)
T
γ βγ + β0,

(7.49)

where we set r = 1 and β0 = 2. Integrating λi out, yi follows a negative
binomial distribution of the type

yi ∼ NB
(

r,
exp (ψi)

1 + exp (ψi)

)
def= NB

(
r,pi

)
. (7.50)
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We assessed performances of the Bayesian negative binomial regression
model described in this chapter, using MCMC and the variational inference
algorithms for posterior inference. We also considered the LASSO method
[45] using the glmnet R package [14]. Finally, we considered the spike-and-
slab prior versus an adaptive shrinkage horseshoe prior [34]. When fitting
the Bayesian models to the data, we imposed a flat Gamma(0.01,0.01) prior
on the overdispersion r, a Scaled-Inv- χ2 (10,1) on σ 2

β and an improper
uniform prior on the baseline β0. For the VIEM and MCMC methods,
we set the prior expectation of inclusion to be the true value, while for
the VIEM-IS we used 30 equally spaced grids on the prior log odds of
π from −500.0 to −1.0 as the important samples. Results we report here
were obtained by running the MCMC algorithms for 23,000 iterations and
discarding the initial 3000 samples as burn-in. We assessed convergence
of the MCMC algorithms visually via the trace plots of the number of
included variables. For the variational algorithms, we terminated the iter-
ations when the absolute changes of the ELBO was less than 0.0001. We
utilised six threads out of a hexacore CPU to conduct parallel computation
for the VIEM-IS algorithm.

Table 7.1 reports results for precision, recall, MCC, AUC, F1 score,
ACC and computing time in seconds, averaged across 50 replicated data
sets, with standard deviations in parentheses, and Fig. 7.3 shows the cor-
responding ROC curves, for the different values of ρ. When features are
independent (ρ = 0.0) or weakly correlated (ρ = 0.3), we find that the se-
lection performance of the variational methods closely matches that of the
sampling-based methods. Fig. 7.3A and 7.3B also illustrate that the ROC
curves of VIEM (green dotted line) and VIEM-IS (purple solid line) are
close in performance to those of the MCMC-HS (red (dark grey in print
version) dashed line) and MCMC-SS (blue dot-dash line). When the cor-
relation coefficient ρ increases, we notice a decrease in performance of the
VIEM method. This is because the density landscape of the posterior likeli-
hood becomes multimodal as ρ increases and the expectation maximisation
(EM) algorithm is notoriously vulnerable to be trapped in local optima [39].
The VIEM-IS, instead, which utilises different hyperparameters ϑ and also
several variational parameters θ to solve each EM optimisation indepen-
dently in parallel, shows more robust performance. When the variables are
strongly correlated (ρ = 0.9), the fully factorised assumption of the varia-
tional approximation in (7.23) becomes invalid and hence the performance
of both variational methods becomes inferior to those of the sampling-
based methods. Furthermore, as we can see in Table 7.1, the MCC values
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Table 7.1 Negative binomial – small p large n example: Performance comparison of
variational inference EM spike-and-slab (VIEM-SS), variational inference EM spike-and-
slab with importance sampling on π (VIEM-SS-IS), MCMC spike-and-slab (MCMC-SS),
MCMC horseshoe (MCMC-HS) and glmnet (LASSO). Accuracy, recall, precision, F1 score
and Matthews correlation coefficient (MCC) are shown, averaged over 50 replicated sim-
ulated data sets (standard deviation in parentheses).

MCMS-HS MCMC-SS VIEM-SS VIEM-SS-IS LASSO
ρ = 0.0

Precision 0.987 (0.056) 0.966 (0.091) 0.807 (0.215) 0.980 (0.061) 0.184 (0.110)
Recall 0.967 (0.086) 0.959 (0.115) 0.958 (0.095) 0.939 (0.102) 0.997 (0.022)
MCC 0.973 (0.058) 0.956 (0.090) 0.858 (0.163) 0.953 (0.062) 0.300 (0.151)
AUC 0.999 (0.005) 0.976 (0.057) 0.975 (0.044) 0.985 (0.038) 0.209 (0.148)

F1 0.974 (0.057) 0.957 (0.089) 0.862 (0.159) 0.954 (0.061) 0.297 (0.139)
ACC 0.995 (0.011) 0.993 (0.014) 0.969 (0.040) 0.992 (0.010) 0.079 (0.026)

Time (s) 32.270 (1.187) 29.012 (3.559) 0.047 (0.039) 0.325 (0.256) 0.339 (0.091)
ρ = 0.3

Precision 0.983 (0.067) 0.957 (0.088) 0.751 (0.221) 0.960 (0.084) 0.186 (0.095)
Recall 0.963 (0.087) 0.947 (0.116) 0.957 (0.086) 0.937 (0.102) 0.992 (0.037)
MCC 0.969 (0.071) 0.944 (0.096) 0.818 (0.157) 0.940 (0.069) 0.296 (0.139)
AUC 0.999 (0.004) 0.971 (0.059) 0.975 (0.028) 0.992 (0.018) 0.220 (0.139)

F1 0.971 (0.066) 0.947 (0.092) 0.823 (0.154) 0.942 (0.066) 0.302 (0.122)
ACC 0.994 (0.015) 0.990 (0.017) 0.955 (0.047) 0.990 (0.012) 0.085 (0.031)

Time (s) 32.476 (1.352) 29.754 (4.112) 0.043 (0.033) 0.311 (0.230) 0.350 (0.069)
ρ = 0.6

Precision 0.964 (0.103) 0.971 (0.083) 0.727 (0.254) 0.971 (0.067) 0.196 (0.116)
Recall 0.964 (0.091) 0.948 (0.108) 0.921 (0.123) 0.905 (0.120) 0.983 (0.076)
MCC 0.957 (0.077) 0.953 (0.087) 0.782 (0.202) 0.928 (0.073) 0.306 (0.154)
AUC 0.998 (0.014) 0.972 (0.055) 0.956 (0.056) 0.977 (0.038) 0.190 (0.143)

F1 0.958 (0.077) 0.955 (0.081) 0.790 (0.196) 0.931 (0.071) 0.312 (0.142)
ACC 0.992 (0.016) 0.991 (0.018) 0.945 (0.060) 0.988 (0.013) 0.085 (0.034)

Time (s) 33.501 (4.543) 29.291 (4.125) 0.048 (0.034) 0.341 (0.233) 0.452 (0.121)
ρ = 0.9

Precision 0.889 (0.189) 0.887 (0.190) 0.587 (0.280) 0.772 (0.223) 0.234 (0.099)
Recall 0.743 (0.197) 0.705 (0.226) 0.624 (0.218) 0.580 (0.222) 0.901 (0.159)
MCC 0.784 (0.176) 0.766 (0.211) 0.545 (0.247) 0.618 (0.186) 0.342 (0.131)
AUC 0.960 (0.063) 0.848 (0.117) 0.820 (0.123) 0.845 (0.116) 0.192 (0.117)

F1 0.791 (0.167) 0.774 (0.198) 0.591 (0.208) 0.624 (0.187) 0.356 (0.113)
ACC 0.962 (0.037) 0.961 (0.039) 0.910 (0.067) 0.937 (0.043) 0.089 (0.038)

Time (s) 32.456 (1.343) 28.670 (3.468) 0.036 (0.031) 0.269 (0.225) 0.803 (0.160)

of MCMC-HS and MCMC-SS also decrease sharply when ρ increases
from 0.6 to 0.9. Therefore, we conclude that sampling methods also suf-
fer to some extent from severe multicollinearity, which is also illustrated
in Fig. 7.3D. From a computational point of view, as expected, variational
methods (VIEM-SS and VIEM-SS-IS) show a dramatic improvement in
speed over the sampling-based methods (MCMC-SS and MCMC-HS). In
particular, the variational methods are 100 to 1000 times faster than the
sampling methods.
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Figure 7.3 Negative binomial – small p large n example: Comparison of selection per-
formance (ROC curves). Variational Inference EM spike-and-slab (VIEM-SS), Variational
Inference EM spike-and-slab with importance sampling on π (VIEM-SS-IS), MCMC with
spike-and-slab prior (MCMC-SS) and MCMC with horseshoe prior (MCMC-HS). The ROC
curves and the corresponding standard deviations are averaged over 50 replicated data
sets. (A) ρ = 0.0, (B) ρ = 0.30, (C) ρ = 0.6, (D) ρ = 0.9.

Negative binomial – large p small n example
Next, we considered a simulation with p = 1000 and n = 100, which we
obtained from the previous one simply by adding 950 zero coefficients
and adding another 950 columns of independent variables X̃100×950 ∼
Normal (0, I) to the design matrix. We used the same hyperparameter
configuration as in the previous example. We dropped the MCMC-HS al-
gorithm, since the moment matrix is not full rank when p � n. Results are
reported in Table 7.2 and Fig. 7.4. Both variational methods achieve sim-
ilar performance as the MCMC-SS method but still are around 15 to 75
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Table 7.2 Negative binomial – large p small n example: Performance comparison of
variational inference EM spike-and-slab (VIEM-SS), variational inference EM spike-and-
slabwith importance sampling on π (VIEM-SS-IS), MCMC spike-and-slab (MCMC-SS) and
glmnet [14] (LASSO). Values averaged over 50 replicated simulated data sets are shown
(standard deviation in the parentheses).

MCMC-SS VIEM-SS VIEM-SS-IS LASSO

ρ = 0.0
Precision 0.755 (0.227) 0.460 (0.274) 0.945 (0.103) 0.100 (0.054)

Recall 0.840 (0.320) 0.965 (0.071) 0.925 (0.108) 0.912 (0.199)
MCC 0.799 (0.242) 0.639 (0.205) 0.931 (0.075) 0.275 (0.069)
AUC 0.919 (0.160) 0.977 (0.039) 0.970 (0.047) 0.014 (0.014)

F1 0.817 (0.203) 0.584 (0.240) 0.928 (0.079) 0.168 (0.068)
ACC 0.997 (0.003) 0.988 (0.011) 0.999 (0.001) 0.005 (0.002)

Time (s) 1039.920 (94.772) 14.256 (29.387) 82.463 (177.261) 0.815 (0.109)
ρ = 0.3

Precision 0.773 (0.221) 0.424 (0.301) 0.814 (0.284) 0.117 (0.046)
Recall 0.842 (0.308) 0.909 (0.132) 0.854 (0.184) 0.921 (0.124)
MCC 0.812 (0.221) 0.588 (0.240) 0.818 (0.227) 0.310 (0.064)
AUC 0.920 (0.154) 0.947 (0.070) 0.928 (0.093) 0.012 (0.012)

F1 0.801 (0.234) 0.534 (0.271) 0.807 (0.242) 0.203 (0.071)
ACC 0.997 (0.003) 0.985 (0.014) 0.996 (0.009) 0.006 (0.002)

Time (s) 1086.613 (163.832) 14.228 (20.609) 74.665 (107.522) 0.782 (0.110)

Figure 7.4 Negative binomial – large p small n example: Comparison of selection per-
formance (ROC curves). Variational Inference EM spike-and-slab (VIEM-SS), Variational
Inference EM spike-and-slab with importance sampling on π (VIEM-SS-IS), MCMC with
spike-and-slab prior (MCMC-SS) and MCMC with horseshoe prior (MCMC-HS). The ROC
curves and the corresponding standard deviations are averaged over 50 replicated data
sets. (A) ρ = 0.0, (B) ρ = 0.30.
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times faster than the MCMC-SS. For the tuning parameter in the LASSO
method, we used the default cv.glmnet and we report the results for the
parameter with the smallest cross-validation error.

Dirichlet-multinomial example
Finally, we conducted a simulation study to assess performance of the
Bayesian Dirichlet-multinomial regression model for multivariate re-
sponses. We used the approximate variational method described in this
chapter and the MCMC posterior sampling of [48], which employs spike-
and-slab priors. We also considered the penalised likelihood approach of
[9]. We simulated data with n = 100, J = 50 and p = 50. More specif-
ically, for each sample i = 1, . . . ,n, we generated a matrix of covariates
xi ∼ Normal (0,�), where the (l,m)th entry of the covariance matrix was
set to be �lm = ρ |l−m| for l �= m. Here, we set ρ = 0.4. The responses were
sampled from a Multinomial-Dirichlet regression model of the type

yi ∼ Multinomial(yi+,φi), (7.51)

φi ∼ Dirichlet(ξi1, ..., ξi50), (7.52)

with yi+ ∼ Uniform (1000,2000) as the observed total count of each sample
and where φi denotes the 50×1 vector of multinomial parameters. In order
to evaluate the effect of different assumptions about overdispersion in the
data, we set the parameters of the Dirichlet prior by letting ξij = ξij

ξ+
i

× 1−r
r ,

j = 1, . . . ,50, where small values of r lead to more overdispersed data; ξij

was associated to the covariates through a log link of the type

log(ξij) = αj +
p∑

k=1

βkj xik, (7.53)

with intercept αj ∼ Uniform (−2.3,2.3), similarly as in [48] and [9].
Table 7.3 reports the results for precision, recall, MCC, AUC, F1 score,

and accuracy, averaged across 50 replicated data sets, with standard de-
viations in parentheses, and Fig. 7.5 reports the ROC curves. For the
Bayesian methods, in each data set relevant associations were selected to
ensure a Bayesian false discovery rate (FDR) control of 0.1. Results show
that the proposed variational Bayes approach performs comparably with
the MCMC approach, although it is characterised by lower recall values.
The performance of the penalised Group LASSO appears to degrade with
increasing overdispersion.
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Table 7.3 Dirichlet-multinomial example: Performance comparisons of variational in-
ference with nonlocal prior (VI), MCMC spike-and-slab (MCMC) and the penalised Group
LASSO approach (Group LASSO). The selection performance is evaluated using accu-
racy, recall, precision, F1 score and Matthews correlation coefficient (MCC), all averaged
over 50 replicated simulated data sets (standard deviation in parentheses).

r = 0.01 r = 0.1
DMBVS VI Group LASSO DMBVS VI Group LASSO

Precision 0.99 (0.02) 0.95 (0.06) 0.60 (0.07) 0.98 (0.04) 0.76 (0.11) 0.33 (0.07)
Recall 0.48 (0.10) 0.41 (0.13) 0.81 (0.09) 0.28 (0.14) 0.44 (0.10) 0.63 (0.14)
MCC 0.68 (0.08) 0.61 (0.10) 0.69 (0.07) 0.51 (0.14) 0.57 (0.08) 0.48 (0.10)
AUC 0.99 (0.01) 0.99 (0.01) 0.90 (0.04) 0.94 (0.03) 0.91 (0.05) 0.86 (0.10)

F1 0.64 (0.10) 0.56 (0.13) 0.68 (0.07) 0.42 (0.17) 0.55 (0.09) 0.45 (0.09)
ACC 0.99 (0.001) 0.99 (0.001) 0.99 (0.002) 0.99 (0.001) 0.99 (0.001) 0.98 (0.004)

Figure 7.5 Dirichlet-multinomial example: Comparison of selection performance (ROC
curves). DMBVS, variational inference (VI) and Group LASSO. The ROC curves and the
corresponding standard deviations are averaged over 50 replicated data sets. (A) r =
0.01, (B) r = 0.10.

7.6 Benchmark applications

Next, we show performances of the methods on some benchmark appli-
cations and case study data. In particular, we use the well-known Boston
housing data set for an application of the negative binomial model and apply
the Dirichlet-multinomial model to a case study data set on microbiome
data.

Boston housing data
The Boston housing data set, collected by the U.S. Census Service, can
be obtained from the StatLib archive at http://lib.stat.cmu.edu/datasets/
boston, and has been used extensively to benchmark different algorithms.

http://lib.stat.cmu.edu/datasets/boston
http://lib.stat.cmu.edu/datasets/boston
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The data set consists of 506 observations on 14 variables. Here we use the
nonnegative attribute medv (median value of owner-occupied home in
$1000) as the outcome and the remaining 13 features as predictors. We
preprocessed the data by standardising the predictors to account for the
different units of measurement. We also created a larger data set by adding
300 noise random features sampled from a standard Gaussian distribution.

For this data set, we focused in particular on the predictive accuracy
of the method and considered prediction results averaged over 100 random
splits of the whole data set into training (405 observations, 80%) and valida-
tion (101 observations, 20%) sets. To test the goodness-of-fit, we evaluate
the widely used metric in GLMs called Pearson residuals on the training
set,

E =
n∑

i=1

⎛
⎜⎝ yi − μ̂i√

μ̂i
(
1 + κ̂μ̂i

)
⎞
⎟⎠

2

,

where μ̂ and κ̂ are the estimated mean and quasidispersion (κ̂ = 0 for
Poisson and κ̂ = r̂−1 for the negative binomial regression models). We
also compute the root mean squared predictive error (RMSPE) on the
testing set. We compared performances of the two variational-based algo-
rithms (VIEM-SS and VIEM-SS-IS), the two sampling-based algorithms
(MCMC-HS and MCMC-SS) and the LASSO method. For the Bayesian
methods, we used the same hyperparameter setting as in the simulation
study and ran 13,000 Gibbs sampling iterations with the initial 3000 sam-
ples discarded as burn-in. For the variational algorithms, we terminated
them when changes of the ELBO were less than 0.001. For the LASSO
method, we again used the default cv.glmnet function [14] with cross-
validation.

Results are summarised in Table 7.4, where we again observe that the
two variational methods achieve similar performance to the MCMC meth-
ods, but at a much faster computational speed. In terms of goodness-of-fit
measured by Poisson residuals, the LASSO-based Poisson model performs
the worst due to its unrealistic equal-dispersion assumption, while the nega-
tive binomial model significantly improves the performance when assuming
a gamma-distributed multiplicative random effect term r [53]. When look-
ing into the variable selection performances, we notice that all Bayesian
methods would choose lstat as the only important feature, while LASSO
tended to include more covariates in the model (results not shown).
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Table 7.4 Boston housing data: Completion times in second, Pearson residuals and RM-
SPE. Values averaged over 100 random splits of the whole data set into training and
validation sets are shown (standard deviations in parentheses).

Methods Time (s) Pearson residuals RMSPE
Small data set (p = 13)

MCMC-HS 98.280 (13.190) 34.705 (1.518) 6.063 (0.702)
MCMC-SS 68.830 (3.860) 37.670 (3.508) 5.849 (0.807)
VIEM-SS 0.005 (0.002) 38.779 (2.030) 5.730 (0.594)
VIEM-SS-IS 0.036 (0.005) 38.841 (1.885) 5.729 (0.592)
LASSO (1SE) 0.182 (0.026) 356.213 (25.330) 4.413 (0.650)
LASSO (MIN) 0.183 (0.018) 307.235 (17.790) 4.171 (0.576)

Large data set (p = 313)
MCMC-HS 211.260 (21.350) 37.016 (1.916) 5.862 (0.629)
MCMC-SS 486.810 (77.710) 37.815 (2.538) 5.765 (0.595)
VIEM-SS 0.050 (0.010) 39.035 (1.959) 5.752 (0.635)
VIEM-SS-IS 0.400 (0.030) 38.913 (1.803) 5.728 (0.591)
LASSO (1SE) 3.541 (0.344) 418.373 (31.456) 4.831 (0.622)
LASSO (MIN) 3.561 (0.319) 344.157 (26.746) 4.510 (0.645)

Microbiome data
We apply our variational method with nonlocal prior to a human gut mi-
crobiome data set, which has been previously used in [49] to investigate the
association of dietary and environmental variables with the gut microbiota.
Here, the multivariate outcome yi represents the vector of counts obtained
as the taxonomic abundances of q taxa. More specifically, the data set con-
tains microbiome 16S rDNA sequencing data from a cross-sectional analysis
of n = 98 healthy volunteers. The original microbiome abundance table
contained 3068 operational taxonomic units (OTUs) (excluding the sin-
gletons), which were further combined into 127 genera. More specifically,
here we follow [9] and consider a subset of 30 relatively common genera
that appeared in at least 25 subjects. Diet information was also collected on
all subjects, using a food frequency questionnaire and then converting to
nutrient intake values, which were summarised in an n = 98 × p = 117 ma-
trix of representative nutrients. We considered the squared root transformed
values of taxon abundance, similarly as in [9].

We applied the Dirichlet-multinomial model, with nonlocal priors and
variational inference. Our method selected four genera and eight nutrient
types, after controlling for a Bayesian FDR of 0.1, corresponding to a PPI
of 0.745. Selected associations are visualised in a bipartite graph in Fig. 7.6.
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Figure 7.6 Microbiome data: Bipartite graph of selected taxon-covariate associations.
Blue dashed lines, negative associations; red solid lines, positive associations.

Similarly as in [49], Prevotella is found to be highly associated with maltose,
which is a common disaccharide, indicative of a high-carbohydrate diet. At
the same time, Prevotella is found to be negatively associated with nutrients
typical of a high-fibre diet, a finding which has also been confirmed in the
literature (see e.g. [21]). Also, increased Barnesiella has been linked to diets
rich in gluten, characterised by high glycemic index [27]. The penalised
Group LASSO approach selected a larger number of significant associations,
involving 12 nutrient types and 10 genera (results not shown).

7.7 Conclusion

We have developed Bayesian variable selection approaches using varia-
tional inference for the negative binomial and Dirichlet-multinomial re-
gression models. For the negative binomial model, we have introduced two
data augmentation schemes to obtain deterministic update rules for the
parameters of interest via variational EM approaches. For the Dirichlet-
multinomial model, we have proposed a low-variance stochastic gradient
method to optimise the ELBO objective. The variational algorithms we
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have developed can be applied to other Bayesian regression settings, with
variable selection. We have shown on simulated data that the variational
schemes have similar selection performance as the sampling-based MCMC
methods.

Some of the shortcomings of the variational approach can be explained
by the approximating family distributions. While the proposed factorisation
in Eq. (7.25) allows for a tractable closed-form computation, the inde-
pendence assumption can cause the model to underestimate the posterior
variance of the latent variables. In situations with correlated explanatory
variables, the performance is sensitive to initialisation and can be subject to
poor optima. To overcome the problems mentioned above, attempts have
been made to specify an expressive variational distribution while maintain-
ing efficient computation [37] and to make posterior inference robust to
initialisation by constraining the optimisation path [2].
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8.1 Introduction

The Bayesian analysis of nonparametric regression or, more appropriately,
flexible regression is conceptually similar to Bayes [2], who estimates the
probability for Bernoulli trials, except in its details, which concerns three
issues. First, how should one construct a prior distribution on the space
of regression functions? The short answer for this chapter is to use Gaus-
sian processes ([37] and [47]). Second, given that the regression function
is infinite-dimensional, how can we possibly estimate it? All methods use
some kind of discrete approximation when implementing the algorithm,
and we use a finite series approximation of cosine functions. Third, non-
parametric regression can be too flexible and overfit the data. Our solution
is to use a smoothing prior that dampens high-frequency terms in the spec-
tral representation by shrinking them towards zero.

Gaussian processes have three characteristics that make them an attrac-
tive candidate for a probability model on the space of smooth functions.
The mean of the Gaussian process is the prior mean of the regression func-
tion; the correlation function determines the smoothness of the regression
Flexible Bayesian Regression Modelling
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function, and the variance controls the trade-off between the prior mean
and the sample data. The standard analysis of Gaussian process priors makes
heavy use of conditional normal distributions, which can be numerically
taxing because they involve inverting n × n covariance matrices where n is
the sample size, and these matrices may be ill conditioned. Moreover, it can
be challenging to extend the basic model to include shape constraints and
nonnormal likelihoods.

This chapter summarises Bayesian spectral analysis regression (BSAR)
([26] and [28]), which represents the Gaussian process with a finite sum
of cosine functions. BSAR offers multiple benefits. First, the spectral rep-
resentation provides a natural method to describe smoothness. The rate
at which the spectral coefficients converge to zero controls the smooth-
ness of the sample paths of the Gaussian process, and smooth functions do
not have high-frequency oscillations. BSAR uses a hierarchical smooth-
ing prior that shrinks the spectral coefficients to zero, and the amount of
shrinkage increases with the frequency of the coefficient. This specification
dampens spurious, high-frequency oscillations, thus resulting in a smooth
estimate. Second, the method is fully Bayesian, and the smoothing hyper-
parameters are estimated by Bayesian inference and not cross-validation.
Finally, spectral analysis linearises the Gaussian process, which results in
simpler computations and facilitates model extensions, such as shape con-
straints and nonnormal likelihoods. Lenk and Choi [28] propose a number
of shape constraints based on the signs of the first and second derivatives:
• monotonically increasing and decreasing functions with strictly positive

or negative first derivatives and unconstrained second derivatives;
• monotonically increasing and decreasing functions that are also convex

or concave with different combinations of strictly positive or negative
first and second derivatives;

• U-shaped or inverted U-shaped functions where the first derivative
changes signs at the minimum or maximum and the second derivative
is unconstrained; and

• S-shaped functions with first derivatives that are strictly positive or neg-
ative and the second derivative changes signs at single point.

These classes of functions are not mutually exclusive. Shape constraints can
greatly improve inference because uncharacteristic behaviour in the data,
such as decreasing measurements when the regression function should be
increasing, is treated as measurement error or noise and not signal.

The chapter has the following organisation. The next section reviews
the literature about smoothing priors. Section 8.3 presents BSAR. Sec-
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tion 8.4 extends BSAR to include shape constraints by modelling the first
or second derivatives of the regression function with squared, Gaussian
processes. Section 8.5 presents nonnormal extensions to the model in a gen-
eralised linear model framework and mixture of Dirichlet processes (MDP).
Section 8.6 provides several examples using the bsamGP library in R [19],
available at http://cran.r-project.org/package=bsamGP.

8.2 Smooth operators

Nonparametric or flexible regression differs qualitatively from standard,
parametric models because the danger of overfitting the data is real and
present. Overfitting occurs when the model has a remarkably good fit to
the data, which is usually a good outcome with parametric models; how-
ever, its prediction on test data performs poorly because the model mistakes
noise for signal in the training data and has spurious ‘wiggles’ in its attempt
to hit each observation. To protect against overfitting, flexible regression
imposes side constraints on the estimator that penalises rough estimates.
These penalty terms often reflect the analyst’s subjective opinion about the
smoothness of the function, and we term them ‘smoothing priors’.

The first Bayesian analysis for flexible regression is presented in the bril-
liant paper by Whittaker [52]. The paper considers equally spaced, discrete
data, such as the number of female annuitants {yi} at different age classes in
years {xi}. The likelihood assumes that each age class xi has a unique pa-
rameter μi, which is the conditional of mean of Yi given xi or Yi = μi + εi,
where {εi} is a random sample from a normal distribution with mean zero.
Whittaker’s model has as many parameters as data points! If one would use
ordinary least squares (OLS) or maximum likelihood (ML) methods, the es-
timated {μi} would be identical to the observed {yi}, and the error variance
would be zero.

Whittaker’s insight was that neighbouring classes xi should have similar
values for μi and that ‘irregularities’ are due to sampling error. He goes on
to define ‘smooth’: ‘We may make the somewhat vague word “smooth”
more precise to mean that the third differences are to be very small’. First
differences model the local slope of the function; second differences model
local curvature, and third differences model the local rate of change in the
curvature. Whittaker’s smoothing prior anticipates few peaks and valleys in
the regression function since the rate of change of the curvature is believed
to be small. By this means, the small changes in neighbouring values of {yi}

http://cran.r-project.org/package=bsamGP
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are considered to be from sampling variation, and the corresponding {μi}
jointly shrink towards the values of their respective neighbours.

Whittaker uses the third difference criterion to construct a normally
distributed smoothing prior for {μi}, and performs the Bayesian analysis
given the prior variance, which determines the fidelity to the data and the
amount of shrinkage to the smoothing prior. A small prior variance forces
the estimated μi to be closer to the estimates of its neighbours μi−1 and
μi+1, while large prior variance relaxes the smoothing constraint, and the
estimated μi will be closer to yi. The paper would be thoroughly mod-
ern if only it included cross-validation ([43], [48], [5] and [7]) to pick the
prior variance instead of picking a value that works reasonably well by trial
and error. Whittaker’s model assumes discrete, evenly spaced values for {xi}
and fails to make the jump to continuity. However, we could easily imag-
ine using a large number of bins to approximate a continuous function or
replacing the differences with derivatives.

Whittaker [52] marks a change in mindset. One way to think about
statistical models, admittedly an uncommon position, is that they smooth
the data to separate signal from noise. For instance, the empirical distribu-
tion function Fn completely describes a sample of observations, but that is
equivalent to saying the model for the data is the data. The ML estimation
of the density function is Dirac-delta functions at the observations, which
has maximum roughness: spikes that reach infinity at the observations and
zero elsewhere. This is the extreme case of Good [13]’s concern about zero
counts for multinomial data when estimating probabilities. If the analyst
believes that the data are from a parametric family with density f (•|θ), then
the log likelihood smooths the empirical CDF Fn:

L(θ) = n
∫

log[f (y|θ)]dFn(y) =
n∑

i=1

log[f (yi|θ)].

After computing the ML estimation θ̂ , we usually discard the rough Fn for
the much smoother f (y|θ̂ ) in reports and subsequent analysis. A side bene-
fit is data compression: storing the name of the parametric family, θ̂ , n and
other sufficient statistics requires substantially less memory than storing the
empirical distribution or the raw data. Similarly, linear and parametric non-
linear regression smooths the scatter plot by assuming a simple functional
form between the dependent variables and independent variables.

In most of our parametric models, the likelihood function provides the
structure to smooth the data. A downside occurs when the assumed likeli-
hood inadequately describes the phenomenon under consideration. These
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modelling errors persist regardless of the amount of sample data. In fact,
evidence of model inadequacy tends to grow with sample size in most ap-
plications, in which case the analyst needs to go back to the raw data and
construct better models.

In contrast, Whittaker’s regression function is maximally flexible: each
observation yi has its unique conditional mean μi, and the likelihood does
not impose any constraint on the regression function. The ML estimation
for μi is yi, and we overfit the data. If a cell xi is empty, then the ML
estimation for that cell is undefined. Whittaker does not force a functional
form in the likelihood to achieve smoothing. Instead, he uses a smoothing
prior to constrain the estimates of μi. It shifts the model’s development from
specifying likelihood functions to developing prior distributions to express
subjective beliefs about smoothness.

An upside to this approach is that the likelihood eventually dominates
the prior distribution, and the analyst will eventually discover the truth
with enough data. A downside is that different prior specifications can lead
to different conclusions for a given data set. The data alone are silent about
the form of smoothing. Given a criterion for smoothness, such as third
differences are small, the data are informative about the amount of smooth-
ness as defined by the variance parameter in Whittaker’s smoothing prior.
However, the choice of third differences over second or fourth differences
is a subjective decision, and a different analyst is free to make a different
choice. Whittaker picks third differences because actuaries often use first
and second differences in further analyses. By limiting the size of third dif-
ferences, his prior dampens irregularities in first and second differences.
Thus, Whittaker’s choice of third differences is motivated both by the the-
oretical considerations about the behaviour of functions with small third
differences and by practical considerations about how the estimates are used
in subsequent analyses.

Whittle [53] recognised the problem of different definitions of smooth-
ness: ‘The difficulty in constructing smoothing formulae is to express
quantitatively the type of smoothness that one expects of the curve one
is estimating’. He introduces the stochastic process view where the targeted
function is a realisation from a population of curves. This provides a prior
distribution for the ordinates f (x) of the curve. Moreover, he advocates that
smoothness can be expressed as the correlation among neighbouring ordi-
nates. In particular, the correlation of f (x+δ) and f (x) should approach one
as δ goes to zero. This theme is continued in [54] for density estimation.
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Kimeldorf and Wahba [21] build on Whittle’s idea that the true func-
tion is a realisation of a stochastic process to show the connection between
Bayesian estimation using stochastic processes and smoothing splines. They
note that ‘a choice of smoothing criterion L is equivalent to a prior prob-
ability measure for a random function’. In fact, Grace Wahba’s influential
work on splines assumes that the target function belongs to a Sobolev space
where the norm is defined by integrated squares of the derivatives [47].
This approach leads to polynomial splines as the solution to the minimisa-
tion problem

n∑
i=1

[yi − f (xi)]2 + λ

∫
[f (m)(x)]2dx,

where f (m) is the mth derivative of f . This objective function penalises sums-
of-squares errors for rough f . The roughness penalty is the continuous
version of Whittaker’s smoothing prior when m is three.

There is also a large body of literature on flexible regression methods
outside of the Bayesian tradition, which is aptly described in the fol-
lowing books: Simonoff [42] develops non-Bayesian smoothing models;
Efromovich [6] uses orthogonal basis functions; Eubank [9], Gu [15], Rup-
pert et al. [41] and Wang [51] discuss spline models; Härdel [16], Wand and
Jones [49], Fan and Gijbels [10] and Loader [31] present kernel regression;
and Vidakovic [46] and Nason [35] discuss wavelet methods for statistical
modelling. Many modern machine learning and AI methods use smooth-
ing priors to ‘regularise’ estimation of flexible regression models [18] even
if data scientists are not aware of their Bayesian roots from the predigital
age.

The next section presents the spectral analysis of regression functions
by imposing a smoothing prior on the spectral coefficients of a Gaussian
process. In signal processing and time series analysis, the researcher has the
choice of analysing the data either in the time domain or the frequency do-
main. In regression analysis, ‘time domain’ broadly means the independent
x-variable. Analysis in the time domain focuses on how the signal or regres-
sion function f changes with x. The analysis in the references of this section
and most of the work on flexible regression stays in the time domain, and
smoothing priors constrain how rapidly the function changes by limiting
the size of higher-order derivatives (see e.g. [22] and references therein for
further historical perspectives and their use in time series data analysis).
Analysis in the frequency domain represents the signal or regression func-
tion as a series of basis functions, usually sines and/or cosine functions in a
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Fourier series. The frequency domain analysis studies the behaviour of the
basis coefficients as a function of the frequency. Instead of directly imposing
smoothing conditions on the function in the time domain, the next section
imposes a smoothing prior in the frequency domain.

8.3 Bayesian spectral analysis regression

Our semiparametric regression model includes a parametric component
and one or more unknown functions fk, which depend on the scalars xk,
i.e.

Yi = wᵀ
i β +

K∑
k=1

fk(xi,k) + εi for i = 1, . . . ,n.

The parametric model has (p + 1)-dimensional vectors of covariates wi and
coefficients β. The Y-intercept β0 is included in β. The error terms {εi}
are a random sample from a normal distribution, N(0, σ 2). Without loss of
generality, we assume that 0 ≤ xi,k ≤ 1; otherwise, they can be transformed
to the unit interval. We identify the model by assuming that the fk integrate
to zero.

In this section, fk = Zk, where Zk is a second-order Gaussian process
prior. We drop the subscript k to simplify the presentation. The Gaus-
sian process Z has mean function E[Z(x)] = μ(x) and covariance function
Cov[Z(x),Z(u)] = ν(x,u). Further, the marginal distribution of Z at a fi-
nite set of n points {xj} is a multivariate normal distribution with mean
vector [μ(x1), . . . ,μ(xn)]ᵀ and covariance matrix [ν(xi,xj)]ni,j=1. The mean
function μ is the prior mean of f . We will assume that the mean functions
are zero, i.e. μ(x) = 0. This prior assumption is equivalent to saying that
X does not have an effect on Y , and we bias the results towards the null
hypothesis of no effect. If our beliefs of the prior mean are different, then
we could add μ to the model without greatly complicating the analysis.

BSAR expresses the Gaussian process as an infinite series expansion with
the Karhunen–Loève representation, i.e.

Z(x) =
∞∑
j=0

θjϕj(x),

where {ϕj} forms an orthonormal basis on [0,1]:
∫ 1

0
φi(x)φj(x)dx =

{
1 if i = j,
0 if i �= j.
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Using orthonormal basis functions greatly facilitates estimation by reducing
multicollinearity in the design matrix. The spectral coefficients {θj} are

θj =
∫ 1

0
Z(x)ϕ̄j(x)dx,

where ϕ̄j is the complex complement of ϕj if it is a complex function.
The distribution of the spectral coefficients is derived from the Gaussian
process Z. The spectral coefficients are mutually independent because the
basis functions are orthogonal, and they have normal distributions because
Z is Gaussian. The means of the spectral coefficients are zero because μ is
zero, and their variances ν2

j are

ν2
j =

∫ 1

0

∫ 1

0
ν(s, t)ϕj(s)ϕ̄j(t)ds dt.

The covariance function becomes

ν(s, t) =
∞∑
j=0

ν2
j ϕj(s)ϕ̄j(t),

provided
∑∞

j=0 ν2
j < ∞. Thus, in principle, if one has a preferred covariance

function for the Gaussian process, then he or she can derive the variance of
the spectral coefficients. Conversely, the specification of the spectral coef-
ficients’ variances implies a covariance function for the Gaussian process.

Our choice of orthonormal system is the cosine basis on [0,1], so we
have

ϕ0(x) = 1 and ϕj(x) = √
2 cos(π jx) for j ≥ 1.

Kreider et al. [23] show that the cosine basis is complete for the space of
piecewise continuous functions. Note that in the usual Fourier analysis, the
basis functions are sines and cosines; however, this basis forces the end points
to be equal, f (0) = f (1), while the cosine basis does not. The frequency of
the cosine functions is j/2 and the wavelength is 2/j. If the support of
f is not the unit interval, then the problem can be transformed to the
unit interval by using a cumulative distribution function Q with density q,
i.e. ϕ0(x) = √

q(x) and ϕj(x) = √
2q(x) cos[π jQ(x)]. For unrestricted f , θ0 is

confounded with the Y-intercept β0, and we will drop it from the repre-
sentation for f ; thus, f will satisfy the mean centering condition since ϕj is
orthogonal to the constant function.
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The cosine basis has a natural ordering based on their frequencies j/2:
high-frequency cosines have many peaks and valleys. If the spectral coeffi-
cients decay at rate o(jm) for some m > 1, then the f is m times differentiable
almost everywhere [20]. Consequently, variances of the spectral coefficients
control the rate of decay of the coefficients in probability and the smooth-
ness of the sample paths of the Gaussian process. We use the exponential
smoothing prior ([24], [25] and [27] for density estimation and [26] and [3]
for regression). We have

ν2
j = σ 2τ 2 exp(−γ j),

where τ and γ are positive parameters. We include σ 2 in the specification
to make the model scale-invariant: if the dependent variable is multiplied
by a constant, then the prior distribution does not change. Then τ can
be interpreted as a signal-to-noise ratio, and its range is usually between 1
and 10. In the exponential smoother, τ controls the trade-off between the
likelihood function and the prior, while γ controls the smoothness of the
function by forcing high-frequency coefficients to shrink more to zero. The
amount of shrinkage is greater for larger γ . The implied covariance for the
Gaussian process is nonstationary and has a saddle shape. The covariance
when γ = 0.5 and σ = τ = 1 is plotted in Fig. 8.1. Lenk [26] and Lenk and
Choi [28] also consider a geometric smoother where the variance decreases
o(jγ ), i.e. ν2

j = σ 2τ 2 exp[−γ log(j)], but we will not present it here.

Figure 8.1 Exponential Smoothing Covariance with σ = 1, τ = 1, γ = 0.5.

We cannot use an infinite Fourier series when implementing the model
and truncate the series at J , i.e.
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ZJ(x) =
J∑

j=0

θjϕj(x).

We will assume that the user picks a J that is sufficiently large so that the er-
ror in the approximation is small relative to the noise in the data. The mean
integrated square error (MISE) between Z and ZJ decreases exponentially
in J :

MISE(J) = σ 2τ 2 exp[−(J + 1)γ ]
1 − exp(−γ )

.

Our estimation strategy is to use large J and let the exponential smoothing
prior shrink the high-frequency spectral coefficients to zero instead of the
alternative strategy of picking the best J for truncation.

It is interesting to note the relationship of the smoothing priors in the
time domain and frequency domain. The time domain (behaviour of f as
a function of x) penalty function has an analogue in the frequency domain
(behaviour of the spectral coefficient). In spline smoothing the penalised
sums-of-squares error objective function of order m is

n∑
i=1

[yi − f (xi)]2 + λ

∫
[f (m)(x)]2dx,

and the goal is to find the f to minimise the penalised sums-of-squares
error, as also discussed in Section 8.2. If we convert the problem to the
frequency domain, the penalty term becomes

∫
[f (m)(x)dx]2 =

∞∑
j,k=1

θjθk

∫
φ

(m)
j (x)φ

(m)

k (x)dx

=
∞∑
j=1

dj,jθ
2
j , and dj,j =

∫ [
φ

(m)
j (x)

]2
dx,

assuming that we can interchange the integral and derivatives of order m.
The second line follows because the mth derivatives of cosines are either
sines or cosines, which are also orthogonal. For cosine basis functions, dj,j

is of order j2m, so θj needs to converge to zero at a faster rate, i.e. θj = o(jm).
The exponential smoother does not use dj,j, but assumes their variance
declines exponentially fast. Then the joint density is
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logp[y, θ |β, σ 2, τ2, γ ] ∝ − 1
2σ 2

⎧⎨
⎩

n∑
i=1

[yi − wᵀ
i β − f (xi)]2 + 1

τ2

J∑
j=1

θ2
j

exp(−γ j)

⎫⎬
⎭ ,

where we included the parametric term to be consistent with our original
model and only have one function f . The expression in curly brackets is
a penalised sums-of-squares error criterion, and the Bayesian maximum
a posteriori estimator corresponds to the penalised sums-of-squares error
estimator with λ = 1/τ 2. However, the exponential smoothing penalty term
is different from those in the regularisation literature.

Before completing the model by specifying the hierarchical prior dis-
tribution for τ and γ , we give a simple example that illustrates overfitting
with OLS and the benefit of using the exponential smoothing prior. The
true function has nonzero values for the first five θj (including the intercept
at j = 0) and is zero afterward. Their true values are given in Table 8.1.

There are 21 observations where the x-values are equally spaced from
0 to 1, and the error standard deviation is 1.5. The OLS estimator using
the correct model, J = 4, works very well and successfully recovers the true
parameters. When J = 20 the OLS estimator does a reasonable job of esti-
mating the coefficients for frequencies 0 to 4, which is due to the use of
an orthonormal basis. However, it incorrectly estimates higher-frequency
parameters, which results in overfitting. The data, true function and esti-
mated function are plotted in Fig. 8.2. Panel A shows that OLS is spot-on
when the true J is known. Panel B shows that J = 20 overfits the data, and
the estimated function almost perfectly hits the observations. The estimated
error standard deviation is almost zero.

The reader may wonder if LASSO ([44] and [45]) would be a reasonable
alternative since it is easily applied for p >> n problems. LASSO penalises
the sums-of-squares error, i.e.

SSE LASSO =
n∑

i=1

⎡
⎣yi −

J∑
j=1

θjφj(xi)

⎤
⎦

2

+ 1
τ 2

J∑
j=1

|θj|,

which is equivalent to using a double exponential or Laplace prior ([40],
[34] and [39]). We use λ = 1/τ 2 to keep the notation consistent with the
smoothing prior. If the OLS estimate of a coefficient is sufficiently close to
zero, its LASSO estimator will be forced to zero. We set τ = 0.25 so that the
estimated error standard deviation is close to the true value. Larger values of
τ result in rougher estimates, and smaller values provide smoother estimates
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Table 8.1 Estimated parameters for OLS, LASSO and exponential smoothing.
Frequency True OLS

(J = 4)
OLS
(J = 20)

LASSO
(J = 20)

Exponential
(J = 20)

0 10.0 9.786 9.697 9.376 9.790
1 −4.0 −3.832 −3.870 −3.454 −3.809
2 −2.0 −1.910 −2.036 −1.523 −1.847
3 1.0 0.996 0.959 0.575 0.837
4 0.5 0.339 0.214 0.000 0.141

5 0 0 0.478 0.093 0.044
6 0 0 0.406 0.118 0.007
7 0 0 −0.195 0.000 0.000
8 0 0 −0.746 −0.234 0.000
9 0 0 −0.096 0.000 0.000
10 0 0 0.180 0.000 0.000
11 0 0 −0.169 0.000 0.000
12 0 0 0.279 0.000 0.000
13 0 0 −0.171 0.000 0.000
14 0 0 0.615 0.327 0.000
15 0 0 0.467 0.084 0.000
16 0 0 0.405 0.117 0.000
17 0 0 −0.328 0.000 0.000
18 0 0 0.341 0.053 0.000
19 0 0 0.463 0.078 0.000
20 0 0 0.085 0.000 0.000

σ 1.5 1.571 5.14E−06 1.458 1.577
τ 0.250 10
γ 2

that overestimate the true function when x < 0.4 and underestimate the
true function when x > 0.4. Panel C of Fig. 8.2 shows that LASSO is
more smooth than Panel B; however, it does not perform very well. It
has trouble with spectral analysis because it treats all spectral coefficients
equally, while we anticipate that higher-frequency coefficients should have
more shrinkage.

For this example, we implemented the exponential smoother by penal-
ising the sums-of-squares error with the normal prior on the coefficients,
i.e.
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SSE exponential smoother =
n∑

i=1

⎡
⎣yi −

J∑
j=1

θjφj(xi)

⎤
⎦

2

+ 1
τ 2

J∑
j=1

exp(γ j)θ2
j .

Once again, we picked τ and γ so that the estimated error standard de-
viation was close to the true values. The estimated spectral coefficients
aggressively shrink the higher-frequency ones to zero, and Panel D shows
that it recovers the true regression curve almost as well as OLS with J = 4,
which uses knowledge about the true model.

Figure 8.2 Smoothing Examples. Dashed line, true function; dots, data; solid line, the es-
timator. (A) OLS J = 4, (B) OLS J = 20, (C) LASSO J = 20, (D) Exponential Smoother J = 20.

Fitting the functions by trial and error of the smoothing parameters is
less than desirable. We complete our Bayesian model with the following
hierarchical prior specifications:

β|σ ∼ N(m0,β , σ 2V 0,β), the normal distribution,

σ 2 ∼ IG
( r0,σ

2
,
s0,σ

2

)
, the inverse Gamma distribution,

θj|σ, τ, γ ∼ N(0, σ 2τ 2 exp[−jγ ]) for j ≥ 1,

τ 2 ∼ IG
( r0,τ

2
,
s0,τ

2

)
, the inverse Gamma distribution,
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γ ∼ Exp(w0), the exponential distribution.

We call this the ‘T-smoother’ because integrating out τ gives the spectral
coefficients a multivariate T distribution. Lenk [26] gives the fully Bayesian
estimation of the model using Markov chain Monte Carlo (MCMC).

8.4 Shape constraints

Often the analyst has strong prior beliefs about the general shape of the un-
known functions. For example, pressure increases with temperature; the
age of a fossil increases with the ratio of carbon-12 to carbon-14; and
people burn more calories with more strenuous exercise. This additional
information can greatly improve fitting the function. If one knows that
the relationship is increasing, then wiggles in the unconstrained estimate
are due to noise. Monotonic regression will smooth over the wiggles and
increase estimation accuracy if the assumption is correct.

Bayesian models express these a priori shape constraints in the prior dis-
tribution of the unknown function. There have been recent developments
on Bayesian shape constraints for semiparametric models, in particular, us-
ing Gaussian process priors (see e.g. [30], [12], [50] and [28]). This section
reviews the BSAR models with shape constraints from [28]. The modelling
approach forces the signs of the first and second derivatives to be positive
or negative:
1. The sign of the first derivative is positive (negative) for increasing (de-

creasing) functions.
2. In addition to the condition on the first derivatives in (1), the sign of the

second derivative is positive (negative) for convex (concave) functions
that are also monotone.

3. The sign of the first derivative flips from negative (positive) to positive
(negative) at a point for U-shaped (inverted U-shaped) functions.

4. In addition to the condition on the first derivatives in (1), the sign of
the second derivative flips from positive (negative) to negative (posi-
tive) at a point for increasing S-shaped (rotated increasing S-shaped) or
decreasing S-shaped (rotated decreasing S-shaped).

Section 8.4.1 gives the details for the models where the signs of the first and
second derivatives remain constant, and Section 8.4.2 presents the models
when their signs flip at one point. Lenk and Choi [28] give the MCMC
algorithms, which are not presented here.
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8.4.1 Monotonic functions
The main idea is to model the derivatives of the function f as squares of a
Gaussian process Z, i.e.

f (q)(x) = δZ2(x) for δ = 1 or − 1 and q = 1 or 2,

where δ and q are given by the user. When q is 1, f is monotonically
nondecreasing if δ is 1 and monotonically nonincreasing if δ is −1, i.e.

f (x) = δ

[∫ x

0
Z2(s)ds −

∫ 1

0

∫ x

0
Z2(s)ds dx

]
.

We include the last term so that f will integrate to zero, which is an identi-
fication condition that allows us to estimate the intercept. When q is 2, f is
a nondecreasing and convex function when δ = 1 and a nonincreasing and
concave function when δ = −1, i.e.

f (x) = δ

[∫ x

0

∫ s

0
Z2(t)dt ds −

∫ 1

0

∫ x

0

∫ s

0
Z2(t)dt ds dx

]
+ α(x − 0.5),

where the second term and α are constants of integration and make f satisfy
the mean centering condition. To ensure monotonicity, δα ≥ 0. The first
and second derivatives have the same sign in this model. We can reverse
their signs by reversing the range of x in the integrals to produce functions
where the first and second derivatives have opposite signs. The model for
nondecreasing and concave functions (δ = 1) or nonincreasing and convex
functions (δ = −1) is

f (x) = −δ

[∫ 1−x

0

∫ s

0
Z2(t)dt ds −

∫ 1

0

∫ 1−x

0

∫ s

0
Z2(t)dt ds dx

]
+ α(x − 0.5),

where δα ≥ 0.
Recall that BSAR in Section 8.3 for unconstrained functions dropped

the constant function since the intercept is included in the parametric
model. Since we are squaring Z, we can identify θ0 up to its sign, so we in-
clude it in the spectral representation of Z. Also, BSAR uses scale-invariant
priors for the spectral coefficients. Since Z is squared, the scale-invariant
prior becomes

θ0|σ ∼ N(0, σv2
θ0

)I(θ0 ≥ 0), the truncated normal distribution,

θj|σ, τ, γ ∼ N(0, στ 2 exp[−jγ ]).
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8.4.2 S- and U-shaped functions
In this subsection we assume that f (q) for q = 1 or 2 has a unique root at
x = ω and the sign of the derivative flips at ω, i.e.

δf (q)(x) > 0, 0 < x < ω, δf (q)(ω) = 0 and δf (q)(x) < 0, ω < x < 1

for δ = −1 or 1. We use an auxiliary function, h, which we call the ‘squish’
function, to make the sign of the derivatives flip at ω; h is a decreasing
logistic function between 1 and −1 and is zero at ω. The model for f is

f (q)(x) = δZ2(x)h(x) for δ = 1 or − 1 and q = 1 or 2,

h(x) = 1 − exp[ψ(x − ω)]
1 + exp[ψ(x − ω)] for ψ > 0 and 0 < ω < 1,

where ω is a unique zero of h, and the slope ψ controls the steepness of h
at ω. As ψ goes to infinity, h = 1 before ω and h = −1 after ω, and f will be
discontinuous at ω. We treat ω and ψ as unknown parameters. Their prior
distributions are truncated normal, so

ω ∼ N
(
μ0,ω, σ 2

0,ω

)
I(0 < ω < 1),

ψ ∼ N
(
μ0,ψ , σ 2

0,ψ

)
I(0 < ψ).

When q = 1, ω is the maximum for inverted U-shaped functions (δ = 1)
or the minimum for U-shaped functions (δ = −1). The model for f is

f (x) = δ

[∫ x

0
Z2(s)h(s)ds −

∫ 1

0

∫ x

0
Z2(t)h(t)dtds

]
.

The second term is the constant of integration and satisfies the mean cen-
tering constraint for f .

When q = 2, ω is the inflection point of f , and the model for f is

f (x) = δ

∫ x

0

∫ s

0
Z2(t)h(t)dt + c1x + c2,

where c1 and c2 are constants of integration. We select c2 to satisfy the
mean centering constraint. S-shaped functions require a second condi-
tion on the first derivative to ensure monotonicity of f , which imposes
a condition on c1. We consider four cases that are specified by a combi-
nation of δ and a second indicator ζ : increasing and convex-to-concave
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(δ = 1, ζ = 1), decreasing and concave-to-convex (δ = −1, ζ = 1), increas-
ing and concave-to-convex (δ = 1, ζ = −1) and decreasing and convex-to-
concave (δ = −1, ζ = −1). The model for f is

f (x) = δζ

[∫ x

0

∫ s

0
Z2(t)h(t)dt ds −

∫ 1

0

∫ x

0

∫ s

0
Z2(t)h(t)dt ds dx

]
+ (α − δξ)(x − 0.5),

ξ = min

[
0, min

x∈[0,1]
ζ

∫ x

0
Z2(s)h(s)ds

]
,

where δα > 0.

8.5 Nonnormal distributions

This section considers situations where the likelihood function is not de-
rived from normal distributions. The first extension is generalised linear
models (GLMs) ([14], [36], [33] and [17]) where the likelihood function is
from the exponential family and depends on the linear model through the
link function g, i.e.

g(μi) = wᵀ
i β +

K∑
k=1

fk(xi,k),

where μi is the conditional mean of Yi or some other, natural parameter.
See [19] for the implementation of this extension with the gbsar function
in the R package bsamGP. The exponential family of distribution includes
most of the standard distributions such as the normal, binomial, geometric,
hypergeometric, negative binomial, Poisson, exponential and Gamma, but
not the uniform.

A different approach is to use an MDP model [8] for the error terms in
the additive model, i.e.

εi ∼
∫

N
(
εi|μ,σ 2)dG(μ,σ 2),

G(μ,σ 2) ∼ DP(M,G0),

G0(μ,σ 2) ∼ N
(
μ|μ0, κσ 2) IG

(
σ 2| r0

2
,
s0
2

)
.

The mixture distribution G has a Dirichlet process prior DP(M,G0) with
prior scale parameter M and prior mean or centering distribution G0.
To keep the model conditionally conjugate, we assume that the center-
ing distribution is the product of a normal distribution for the mean and an
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inverted Gamma (IG) distribution for the variance. Often, we assume that
μ is zero, and then MDP is a scale mixture and G and G0 only depend on
the variance σ 2. The model is also implemented by the bsardpm function
in the R package bsamGP with the ‘no-gaps’ algorithm of [32].

8.6 R library bsamGP

This section presents three examples using the R Library bsamGP. See [19]
for more details about options and further citations. The first example
explores the relationship between iPhone sales and internet searches to
determine if searches are a leading indicator of sales. Apple provides in-
formation about a new iPhone version before the release date. After the
release date, paid technology writers review the phone, and customers post
reviews on social media. The hypothesis is that potential customers will
search for information about the new version before making a purchase
decision. If so, there should be a spike in searches preceding the sales spike
due to a new release. The dependent variable is quarterly iPhone sales in
millions of dollars as reported by Statista.1 The independent variable that
measures internet search intensity is provided by Google Trends where the
keyword is ‘iPhone’ and is measured relative to the search category Inter-
net and Telecommunications. Google Trends is measured monthly, and we
summed the monthly figures in each quarter to convert them to quarterly
figures.

Revenue and Google Trends are plotted versus time in panel A of
Fig. 8.3. Panel B lags Google Trends by two quarters. The vertical ref-
erence lines are the quarter in which new versions were released, which
occurred about once every four quarters. The original iPhone was released
in 2007Q3. The sales trajectory follows an S-shaped curve with spikes and
valleys that are influenced by new releases. The S-shaped curve is com-
mon for new products, which is based on a contagion differential equation
([1] and [29]). Initial sales are low as innovators, who tend to be more
adventurous, passionate about the category or wealthier than the general
consumer, try the iPhone. Their word-of-mouth and media reports ‘infect’
early adopters, and sales start to take off. Sales continue to accelerate from
2010 to 2012 as the early majority buy the phone. Sales continue to grow,
but at a decreasing rate of change, after 2012 as the late majority enter the
market. Sales may eventually asymptote as the market matures.

1 https://www.statista.com/stats/iphone%20sales.

https://www.statista.com/stats/iphone%20sales
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Figure 8.3 iPhone Revenue and Google Trends versus time. Solid blue line, revenue; dot-
ted red line, Google Trends. (A) No Lag, (B) Lag 2.

The Bass model [1] derives an S-shaped curve for cumulative adopters
assuming a fixed population of potential customers, while quarterly rev-
enue appears to have an S-shaped curve because the sales figures include
first-time adopters and repeat purchases. Repurchases add an interesting
dynamic. Loyal customers often plan upgrades relative to release dates of
new versions after factoring in the condition and performance of their ex-
isting iPhone. Additionally, many of the purchases before 2007 were tied to
a fixed-term contract with a telecommunications service provider. A com-
mon practice was to purchase an iPhone with a two-year contract. After
two years, Apple would have released one or two upgrades, and the cus-
tomer’s current iPhone seems not so great: degraded battery life, slower
performance, dimmer screen, inferior camera, lack of memory and physi-
cal damage. The customer may then time the update of their next purchase
after the contract period and the release of the new version. Sales tend to
slump before the release as customers anticipate the release, and then pick
up in the following quarters after the release, often peaking two quarters
after the release.

One exception is the SE, which provides the exception that proves the
rule. The SE, a budget iPhone, was launched between the highly successful
6S and 7 and was sold concurrently with both. It combined the design of
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the older 5S with upgraded components from 6S. The SE had a 4-inch
screen, while the 6S and 7 had larger screens. More than likely, few iPhone
5, 6 and 6S owners downgraded to the SE. Apple hoped that the SE would
attract price-sensitive customers. The sales data have a peak during the
quarter of the SE release, while most of the other versions have a valley
during their release quarter. The SE’s peak is mostly due to sale of the 6S,
which was released two quarters earlier. Two quarters after its release, SE
sales slump when they normally should be peaking. The slump probably
corresponds to the trough during the release of the iPhone 7.

Google Trends for ‘iPhone’ grow from a very low level in 2007Q3 to a
peak during the iPhone 5 release. They then decline to a steady state, with
peaks around release dates as consumers search for information about the
new product. Panel B lags Google Trends by two quarters in an attempt to
align the peaks in Google Trends with the peaks in iPhone sales. Searches
seem to peak at the time of release of a new version, while sales tend
to peak two quarters hence. The level and size of the search peaks increase
until 2014 and then seem to be stabler after 2014. This pattern may indicate
that iPhone is maturing and that improvements since 2014 are incremental
instead of revolutionary.

Next, we fit various BSAR models with and without shape constraints
for Google Trends lag 2. We also use time as a covariate, where time is a
sequential variable that counts the number of quarters. Our model is

Revenue = β0 + f1(Trends) + f2(Time) + εi.

We fit a series of models where f1 is unconstrained, increasing, increasing
concave (diminishing rate of change), increasing convex (increasing rate of
change) and increasing S, and f2 is always an increasing S curve. We fit the
models with the bsar function from the bsarmGP library in R. First, we
initialise parameters for the algorithm:

nbasis = 20

prior = list(beta_m0 = numeric(1), beta_v0 = diag(1000, 1),

w0 = 2, tau2_m0 = 1, tau2_v0 = 100,

sigma2_m0 = 1, sigma2_v0 = 1000)

mcmc = list(nblow = 50000, nskip = 10, smcmc = 5000, ndisp=50000)

where
1. ‘nbasis’ is the number of basis functions;
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2. ‘prior’ is a list of prior parameters, where the prior means and variances
are indicated by m0 and v0;

3. ‘mcmc’ gives the iterations for the MCMC; ‘nblow’ is the initial number
of iterations that are used in the burn-in period; ‘smcmc’ is the number
of iterations that are saved and used in the analysis; ‘nskip’ is the number
of iterations between saved iterations; and ‘ndisp’ is the number of
iterations displayed in the trace plots.

The call to bsar is

fout = bsar(y ~ fs(Google_Trend_Lag2) + fs(Time),

shape = c(’Free’,’IncreasingS’),

xmin=c(7,1), xmax=c(64,44),

nbasis = nbasis, mcmc = mcmc, prior = prior)

where ‘fs’ is a placeholder for the BSAR function. Its shape is given in
‘shape=’. The function for Google Trend lag 2 is unconstrained (‘Free’),
and the function for Time is increasing S. The minimum value for Google
Trends is 7, and its maximum is 65. Likewise, Time ranges from 1
to 44. The output can be viewed with plot(fout) and summary(fout).
fitted(fout,HDP=TRUE) computes the posterior means of the functions and
95% HPD intervals.

plot(fout)

print(summary(fout))

fit = fitted(fout,HPD=TRUE)

plot(fit,ggplot2=TRUE)

Table 8.2 gives the fit statistics for the different models. The maximum
log integrated likelihood or LIL [11] favours the increasing concave model
for Google Trends. This confirms that internet searches are predictive of
sales, and they also have a diminishing impact.

Table 8.2 Fit statistics for different functional forms for Google Trends.
Model for Trends LIL Newton–Raftery R squared
Free −528.540 −456.772 0.862
Increasing −509.351 −449.207 0.880
Increasing concave −504.336 −454.933 0.834
Increasing convex −506.177 −452.915 0.852
Increasing S −518.363 −457.047 0.853

Selected functions from the model are plotted in Fig. 8.4. The esti-
mated increasing S function for Time did not change much for the different
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models, so we only plot the one that corresponds to the increasing concave
function for Google Trends in panel D. The free function for Google Trends
is plotted in Panel A, while the shape constraints increasing and increasing
concave are plotted in panels B and C. The shape-constrained functions
are smoother than the free function and also have narrower HPD intervals.
Even though the free function is more flexible and has one parameter less,
θ0, the log iterated likelihood, favours the shape constraints because of the
increased estimation accuracy. Panel D confirms that the iPhone is a ma-
turing product and is past its inflection point ω, which is estimated to be
Time = 23.5 or between 2012Q3 and 2012Q4.

Figure 8.4 iPhone Revenue. (A) Free function for Google Trends lag 2. (B) Increasing
function for Google Trends lag 2. (C) Increasing concave function for Google Trends
lag 2. (D) Increasing S Function for time when Google Trends lag 2 has an increasing con-
cave function. Dots, parametric residuals; solid lines, posterior mean of f ; dashed lines,
95% HPD intervals.

Our next example asks the question, ‘When is the solar radiance in Ann
Arbor, Michigan maximum?’ To estimate the maximum, we fit an inverted
U-shaped function. The data are from the National Renewable Energy
Laboratory’s National Solar Radiation Data Base,2 which reports hourly
readings throughout the day. Our dependent variable is the daily maximum
of extraterrestrial radiation on a horizontal surface or ETR, which is mea-
sured in Watthours per square meter. We used 5 years of data, from 2006 to

2 https://rredc.nrel.gov/solar/old_data/nsrdb/.

https://rredc.nrel.gov/solar/old_data/nsrdb/
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2010, to capture year-to-year variation due to cloud cover, solar flares and
other factors. The maximum daily ETR ranged from 581 to 1260. The
ETR on the same day from year-to-year was surprisingly consistent. The
maximum of the daily standard deviations of ERT over the 5 years was only
2.28, and the percent error of the 5-yearly reading on one day from their
average only ranged from −0.38% to 0.41%.

Figure 8.5 Maximum daily solar radiation in Ann Arbor, Michigan. Black line, the poste-
rior mean of the inverted U function; red (grey in print version) dashed lines, the 95% HPD
intervals.

The bsar command for the inverted U shape is

fout = bsar(y ~ fs(x), shape = c(’InvertedU’), xmin=1, xmax=366,

nbasis = nbasis, mcmc = mcmc, prior = prior)

where y is the daily maximum of ERT and x is the day of year. The max-
imum day of year is 366 due to leap years. The estimated, inverted U
function is plotted in Fig. 8.5. Because the year-to-year variation in ETR
is small, the width of the 95% HPD intervals is the same as the lines in the
plot. The day with the maximum, expected ETR is July 2, which is the
posterior mean of ω in the inverted U model. The summer solstice, which
is between June 20 and June 22, precedes the maximum solar radiation by
about 10 days.

The last example illustrates modelling nonnormal random error with
MDP. The data are from the Consumer Expenditures Diary Survey3 that
is conducted by the U.S. Department of Labor, Bureau of Labor Statistics.

3 https://www.bls.gov/cex/.

https://www.bls.gov/cex/
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The example uses data from the 2012Q1 survey. We focus on monthly
grocery expenditures, excluding alcohol. We hypothesise that grocery ex-
penditures should increase with income and family size: wealthier families
buy premium items, and larger families have more people to feed. The rela-
tionship with age of the head of household is less certain. Young households
probably burn more calories than older households, but younger house-
holds may take more meals outside of the house, thus reducing grocery
bills. Middle age households tend to have larger family sizes and hit maxi-
mum spending when children are teenagers.

Empirical data analysis indicated log transformations for grocery expen-
ditures and family income. OLS estimation confirms that grocery expen-
ditures increase with income and family size. Also, the OLS estimate of a
quadratic model in age has a significant coefficient for age squared. How-
ever, the OLS residuals were not normally distributed, even after the log
transformation.

Next, we use MDP to model the nonnormal error distribution. Initial-
ising the algorithm’s parameters is done in a similar fashion to the previous
examples, with the addition of adding prior parameters for the MDP.

nbasis = 30 # Number of basis

prior = list(beta_m0 = numeric(3), beta_v0 = diag(1000, 3),

w0 = 2, tau2_m0 = 1, tau2_v0 = 100,

sigma2_m0 = 1, sigma2_v0 = 1000)

prior = append(prior,

list(kappa_r0=1, kappa_s0=1,tmass_a=2,

tmass_b=4))

mcmc = list(nblow = 50000, nskip = 10, smcmc = 5000)

The estimation is performed with bsardpm:

fout = bsardpm(GroceryLog ~ Size + IncomeLog +

fs(Age),

shape = c(’InvertedU’), xmin=c(19),

xmax=c(87),

nbasis = nbasis, location=FALSE,

mcmc = mcmc, prior = prior)

The model’s output is processed as follows:

print(summary(fout))

fit = fitted(fout,HPD=TRUE)

plot(fit,ggplot2=TRUE)
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The estimated model is

log grocery = 1.587 + 0.092(family size) + 0.067(log income) + f (age).

The inverted U function for age is plotted in Panel A of Fig. 8.6. The
maximum expenditure occurs when the head of household is 55.35 years
old, which is the posterior mean of ω. The posterior mean of ψ is 100.31,
which makes the squish function h steep at ω and results in the apparent
kink at 55.35. The density for the random error from the MDP is plotted
in Panel B. It has longer tails than a normal distribution.

Figure 8.6 Food expenditure. (A) Inverted U for age. (B) Density for random error. Solid
lines, posterior mean of f ; dashed lines, 95% HPD intervals.

8.7 Conclusion

The Bayesian analysis of flexible regression functions using smoothing pri-
ors has a long history. Gaussian process priors provide a natural model for
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flexible functions. The mean is the prior mean; the variances control the
trade-off between the data and the prior mean; and the correlations deter-
mine the smoothness of the sample paths. This chapter reviews the spectral
analysis of Gaussian processes. Spectral analysis projects the Gaussian process
onto a lower-dimensional, linear space by a finite series of cosine functions.
Smooth functions do not have high-frequency oscillations, so we a priori
expect the high-frequency coefficients to be close to zero. A hierarchical
prior on the spectral coefficients expresses these beliefs. It shrinks the co-
efficients to zero with greater shrinkage for higher-frequency coefficients.
BSAR estimates the hyperparameters that control the amount of shrinkage
in a fully Bayesian model without recourse to cross-validation.

BSAR also simplifies the computations by linearising the Gaussian pro-
cess, which enables extensions to shape constraints and nonnormal like-
lihoods. Shape constraints can improve estimation accuracy because the
shape constraint helps to separate signal from noise in the data. BSAR pro-
vides a flexible modelling approach that allows for numerous extensions.
Further details and developments of BSAR can also be found in [26] and
[28] for general methods, theory and computations, in [19] for a software
application in R, in [3] and [4] for model selection consistency and in [38]
for fast variational approximation.
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9.1 Introduction

In this chapter we address regression problems of the form Y = Xβ + ε,
where β is subject to constraints that are easy to check, but difficult to
mathematically enumerate or structurally incorporate. The example of in-
terest in this chapter is the requirement for the fitted regression line Xβ

to be monotonic, however similar derivative-based constraints such as con-
vexity could be substituted, as well as other computationally inexpensive
to check constraints. We will focus specifically on monotonic polynomials,
where the X matrix is a polynomial basis, but the techniques we employ
can be readily adapted to other design matrices and regression problems.
For example, when X contains a B-spline basis, and we require the fitted
spline to be monotonic or convex.

The requirement for the fitted polynomial to be monotonic is diffi-
cult to mathematically enumerate. It typically requires adopting a highly
nonlinear parameterisation, such as that of Elphinstone [2], Hawkins [7] or
Murray et al. [11,12], which can prove computationally challenging (Man-
derson et al. [10] discuss some of the computational challenges of one of
these parameterisations in a Bayesian framework). An alternative method
for estimating monotonic polynomials, based on a particular form of coor-
dinate descent titled penalised constrained orthogonal least squares, is presented
in Bon et al. [1]; however, the methodology therein does not readily admit
a Bayesian approach. In this chapter, we will make use of the ease with
which one can check if a polynomial is monotonic, in order to incorporate
our monotonicity requirement into our prior distribution. When com-
bined with techniques to orthonormalise the design matrix, this allows us
to quickly sample the posterior distribution of the monotonic polynomial,
and we can readily extend this formulation to enable coherent polynomial
degree selection.

This chapter begins by discussing the QR decomposition, and how
regression problems such as monotonic polynomial regression and covari-
ate selection necessitate its use. We then demonstrate how to incorporate
the monotonicity constraint into the prior distribution, and we develop a
Markov chain Monte Carlo (MCMC) sampler for a simple example. We
will demonstrate an implementation of the Metropolis-adjusted Langevin
algorithm (MALA), as many regression problems have readily available gra-
dient information. The focus will then shift to variable selection, where
we will specify a family of possible models and use the reversible jump
Markov chain Monte Carlo (RJMCMC) algorithm in order to select the
appropriate-degree monotonic polynomial, for a variety of data sets.
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9.2 Orthonormal design matrices

Working directly with design matrices with highly correlated columns can
prove numerically challenging for many sampling algorithms and approx-
imating methodologies. For polynomial design matrices of degree q, the
correlated nature of the columns of the n× (q+1) design matrix X induces
a correlated posterior for the (q + 1) × 1 vector β. This is particularly ap-
parent when the columns of X are the typical monomial basis of degree q,
i.e. X = [1,x,x2, . . . ,xq], but is common to many regression problems. To
avoid working directly with X and β, consider an orthonormal basis, i.e.

Y = Qγ + ε,

where X = QR and β = R−1γ . The construction of Q is such that the
columns of Q are orthonormal to each other, i.e. the dot product of any
two columns is zero, and each column has unit magnitude. The R matrix
is an upper triangular matrix, and its inverse is used to transform the new
regression parameters γ back to the regression parameters on the original
space β. This decomposition of the X matrix is called the QR decompo-
sition, and it is commonly used in Bayesian modelling to improve MCMC
performance. By formulating our regression problem in terms of an or-
thonormal design matrix, we are able to fit the same regression model
by sampling the considerably less correlated posterior distribution of γ .
Orthogonalisation steps have been employed in regression settings, partic-
ularly polynomial regression, for some time; see Wong [18], Forsythe [5]
and Emerson [3] for examples. Orthonormality is also invaluable when we
allow the size of γ to vary (see Mallick [8] for another example) as the
values of the other coefficients of γ change minimally when a coefficient
is added/removed. We will elaborate on this in Section 9.4.

In order to construct the Q and R−1 matrices, we make use of the
iterative routine of Thisted [15], which is specific for polynomial design
matrices and avoids directly computing the high-degree polynomial terms.
Alternatively, there is the qr() function found in base R which is also nu-
merically stable, with the minor caveat being that one has to remember to
centre the columns of the design matrix before calling qr() for optimal per-
formance. Our implementation of [15] is available as part of our R package
rjmonopoly, which is available at https://github.com/hhau/rjmonopoly.
We will demonstrate this package’s primary purpose in Section 9.4 of this
chapter.

https://github.com/hhau/rjmonopoly
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9.3 Monotonic polynomial model

We will first consider a straightforward regression problem, where we wish
to fit a monotonic polynomial of degree q to a data set. The aim is to illus-
trate some useful model estimation techniques, specifically the aforemen-
tioned QR decomposition technique and the MALA proposal mechanism
for the regression coefficients.

9.3.1 Model specification and estimation
Consider the n×1 vector of observations Y , which we wish to model via a
monotonic polynomial of degree q. Using the QR decomposition, we can
construct an n × (q + 1) orthonormal polynomial design matrix Q, with a
corresponding (q + 1) × 1 vector of regression coefficients γ . Assuming a
Gaussian distribution for the noise results in the following likelihood:

Y ∼ N
(
Qγ , σ 2

y In

)
. (9.1)

We incorporate our requirement for the fitted polynomial to be monotonic
via the prior distribution for γ . Specifically, we represent the requirement
for the fitted regression line Qγ to be monotonic via an indicator func-
tion, which is 1 if Qγ is monotonic in the (possibly) compact interval of
interest:

[
a, b

] ⊂ R. This divides the posterior distribution for γ into fea-
sible and infeasible regions, and we denote the feasible region by �(a, b).
Combining this prior with a weakly informative normal prior for γ results
in a truncated normal distribution, which we write as

γ ∼ N
(
0q+1,102Iq+1

) · I{γ ∈ �(a, b)}. (9.2)

The independent N(0,102) priors for each component of γ are weakly
informative due to the orthonormal nature of Q, as long as the observa-
tions Y are standardised. Similarly, we consider the positive half-normal
N+(0,12) prior for σ 2

y weakly informative, for standardised Y , and use it
in our model. This results in the log posterior being proportional to the
following expression:

log
(

Pr(γ , σ 2
y | Y)

)
∝

(
− n

2
log

(
σ 2

y

)
− 1

2σ 2
y

(Y − Qγ )� (Y − Qγ )

− 1
2 · 102 γ �γ + log(I{γ ∈ �(a, b)}) − 1

2

(
σ 2

y

)2
)

. (9.3)
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It is preferable to compute the posterior on the log scale, as this compu-
tation is numerically more stable. Note that log(I{γ ∈ �(a, b)}) is negative
infinity when the fitted values of γ result in a nonmonotonic regression
curve. The generic forms of (9.2) and (9.3) permit any indicator style con-
straint, e.g. convexity constraints.

9.3.2 Posterior simulation
We now detail an MCMC sampling scheme to sample from the log pos-
terior in (9.3). In doing so we will illustrate how one can leverage the
gradient of log posterior to accelerate the process of locating the bulk of
the posterior mass, and some of the disadvantages of using the gradient to
do so in the presence of constraints. Specifically, we are going to implement
a Metropolis-adjusted Langevin proposal for γ and a separate random walk
proposal for log(σ 2

y ).
Our motivations for doing so are two-fold. Firstly, the gradients of the

posterior distribution are relatively easy to calculate and compute, which
is ideal for demonstrating how one implements MALA. Secondly, finding
suitable initial values for the monotonic polynomial coefficients, without
actually fitting the monotonic polynomial, can be challenging. We use
MALA to move the Markov chain towards the posterior distribution more
rapidly, reducing the impact of our initial values, which are typically lin-
ear polynomials, on the posterior samples. Using MALA in the constrained
environment does have its drawbacks, primarily that if the posterior is trun-
cated by the constraint in a region of high probability, the gradient will push
the proposal towards the infeasible region. This behaviour can be undesir-
able, and a possible solution may be to randomise the sign of the gradient
term in the MALA update, although we do not explore this here.

Notationally, in this section the current state of the Markov chain is
denoted θ [t], and the proposed state is denoted θ∗.

9.3.2.1 Proposal mechanisms and acceptance probabilities
Proposal for γ

The Metropolis-adjusted Langevin proposal for γ is specified as

γ ∗ = γ [t] + d[t] + εγ z[t], (9.4)

where d[t] is the drift term such that
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d[t] =
(

ε2
γ

2

)
∂ log

(
Pr(γ , σ 2

y | Y)
)

∂γ

∣∣∣∣
γ=γ [t]

, (9.5)

where z[t] is a draw from the (q + 1)-dimensional standard normal random
variable, and the step size parameter εγ is a user-tuned parameter. We have
chosen to update all components of γ at once as there is some theoretical
justification (see Neal et al. [13]) supporting this. This seems to offset some
of the decrease in acceptance rate, due to the increased number of proposals
in the infeasible region in this higher-dimensional space.

The log proposal probability for γ , required for the acceptance proba-
bility calculation, is then proportional to

log
(
Pr(γ ∗ | γ [t])

) ∝ − 1
2σ 2

γ

(γ ∗ − γ [t] − d[t]
)�(γ ∗ − γ [t] − d[t]

). (9.6)

The drift term requires us to compute the derivative of the log posterior
with respect to γ , and the result of this computation is

∂

∂γ
log

(
Pr(γ , σ 2

y | Y)
)

∝ − 1
σy

(
y�Q − γ �) − 1

102 γ �. (9.7)

Although this quantity is a row vector, we use the column vector version
of it when calculating the new proposal for γ .

Proposal for σ 2
y

We use a log-normal random walk proposal for σ 2
y , i.e.

(
σ 2

y

)∗ ∼ Log-normal
(

log
(
(σ 2

y )[t]
)

, ε2
σ

)
, (9.8)

as it seems to perform well in the upcoming example and it allows us
to demonstrate the use of two distinct proposal mechanisms at once. The
innovation variance for this proposal, ε2

σ , is another user-tuned parameter.
The log probability of this proposal, required for the acceptance probability
calculation, is

log
(

Pr((σ 2
y )∗ | (σ 2

y )[t]
)

∝ − log((σ 2
y )∗) − 1

2ε2
σ

(
log((σ 2

y )∗) − log((σ 2
y )[t])

)2
.

(9.9)
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Acceptance probability

For the γ proposals the log acceptance probability is

log(αγ (γ ∗,γ [t])) =
log

(
Pr(γ ∗, (σ 2

y )[t] | Y)
)

− log
(

Pr(γ [t], (σ 2
y )[t] | Y)

)
+ log

(
Pr(γ [t] | γ ∗)

) − log
(
Pr(γ ∗ | γ [t])

)
, (9.10)

and for the σ 2
y proposals the log acceptance probability is

log(ασ ((σ 2
y )∗, (σ 2

y )[t])) =
log

(
Pr(γ [t+1], (σ 2

y )∗ | Y)
)

− log
(

Pr(γ [t+1], (σ 2
y )[t] | Y)

)
+ log

(
Pr((σ 2

y )[t] | (σ 2
y )∗)

)
− log

(
Pr((σ 2

y )∗ | (σ 2
y )[t])

)
. (9.11)

Strictly, (9.10) and (9.11) are taken to be the minimum of themselves and 1,
in order to ensure they remain probabilities.

9.3.2.2 Summary
A summary of the MALA scheme detailed in this section is presented in
Algorithm 1.

9.3.3 Implementation details
We provide below a discussion about the actual implementation in R, to
illustrate a few computational techniques for MCMC that we believe are
noteworthy.

Implementing the monotonicity constraint and calculating the log posterior

The monotonic indicator component of the prior, discussed in Section 9.2,
has a notable implementation. Specifically, the monotonic indicator works
by converting the γ coefficients back to β coefficients and checks the
monotonicity of this set of coefficients using the ismonotone function from
the MonoPoly package. This function works by calculating the roots of the
derivative of the β polynomial, then checks to see if there are any real roots
and, if so, checks what the multiplicity of these real roots is. If there are no
real roots, or if all real roots have even multiplicity, then the polynomial is
monotonic on the interval of interest.

As this constraint is part of the prior, it is natural to check if the
constraint is satisfied when calculating the log posterior. The code that per-
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Input : Y,Q,γ [0], (σ 2
y )[0], εγ , εσ

for t ← 0 to NMCMC − 1 do
Propose γ ∗ by (9.4) and (9.5);
Compute αγ (γ ∗,γ [t]) by (9.10);
Simulate u1 ∼ Unif(0,1);
if u1 < αγ (γ ∗,γ [t]) then

γ [t+1] ← γ ∗;
else

γ [t+1] ← γ [t];
end
Propose (σ 2

y )∗ by (9.8);
Compute ασ ((σ 2

y )∗, (σ 2
y )[t]) by (9.11) using γ [t+1];

Simulate u2 ∼ Unif(0,1);
if u2 < ασ ((σ 2

y )∗, (σ 2
y )[t]) then

(σ 2
y)

[t+1] ← (σ 2
y )∗;

else
(σ 2

y)
[t+1] ← (σ 2

y )[t];
end

end
Algorithm 1: Summary of the MALA sampler.

forms this calculation is shown in Fig. 9.1 and includes some other simple
numerical techniques. In general, it is preferable to calculate x�x as

∑
i

x2
i , as

this is faster than transposing x and performing the matrix multiplication,
and it is also faster than calling crossprod() in any form (at least in our
testing). We have also dropped all multiplicative constants in the posterior,
which are additive constants in the log posterior, as they are unnecessary.

General MCMC scheme

The high-level MCMC scheme can be implemented using the for loop
specified in Fig. 9.2, where each of the functions either generates proposals
for the model parameters or calculates the acceptance probabilities detailed
in (9.10) and (9.11). This permits the code to be broken down into smaller,
more manageable functions. We generally prefer to begin implementing
an MCMC scheme by writing down the key iterative routine, such as the
one detailed in Fig. 9.2. This kind of top-down implementation can assist
in deciding where certain quantities can be calculated, and in this specific



Flexible regression modelling under shape constraints 259

log_post <- function(y_vec, q_mat, r_inv_mat, gamma_vec,

variance, gamma_prior_variance) {

beta <- r_inv_mat %*% gamma_vec

if (!MonoPoly::ismonotone(beta, a = -1, b = 1, EPS = 1e-10)) {

return(-Inf)

}

mu <- q_mat %*% gamma_vec

likelihood_temp_1 <- y_vec - mu

likelihood_temp_2 <- sum(likelihood_temp_1^2)

n <- length(y_vec)

log_post <- - (n * 0.5) * log(variance) -

(0.5 / variance) * (likelihood_temp_2) -

(0.5 / gamma_prior_variance) * (sum(gamma_vec^2)) -

0.5 * (variance)^2

return(log_post)

}

Figure 9.1 The R function that calculates the log posterior, which includes checking to
see if the monotonicity constraint is satisfied on the interval [−1,1].

example it illustrates the use of a Metropolis-within-Gibbs style updating
scheme.

9.3.4 A simulated data example
We focus now on a simple regression example, in which we have n = 50
data points simulated from the polynomial p(x) = 1 + 2x − 1.5x2 + 0.4x3

with X ∼ U[−1,1], which then has N(0,0.32) noise added to it. In our
particular realisation of this data set, the unconstrained fit is not monotonic,
despite the true polynomial being so. We fit a monotonic polynomial of
degree q = 3 to the data, and present the posterior mean estimate of this
polynomial, and the 95% posterior prediction interval, in Fig. 9.3. The
unconstrained polynomial fit has a decreasing section around x ∈ [0.7,1],
arising purely due to noise, which the monotonic fit does not have.

The posterior distribution of γ , which is plotted in a pairwise man-
ner in Fig. 9.4, displays substantial correlation between γ2 and γ3. This is
despite the use of the QR decomposition, and is attributable to the trun-
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for (ii in 2:(n_iterations + 1)) {

gamma_current <- gamma_samples[ii - 1,]

variance_current <- variance_samples[ii - 1]

# generate gamma via MALA update

gamma_prop <- generate_gamma_proposal(

y, q_mat, gamma_current, variance_current,

gamma_prior_variance, eps_gamma_step

)

# calculate acceptance probability, accept new value for gamma

log_gamma_accept <- calculate_log_gamma_acceptance_pr(

y, q_mat, r_inv_mat, gamma_current, gamma_prop,

variance_current, gamma_prior_variance,

eps_gamma_step

)

if (runif(1) < exp(log_gamma_accept)) {

gamma_samples[ii, ] <- gamma_prop

} else {

gamma_samples[ii, ] <- gamma_current

}

# generate variance via RW on log scale

variance_prop <- generate_variance_proposal(

variance_current, eps_variance_step

)

# calculate acceptance probability, accept new value for variance

log_variance_accept <- calculate_log_variance_acceptance_pr(

y, q_mat, r_inv_mat, gamma_current, variance_current,

variance_prop, gamma_prior_variance,

eps_variance_step

)

#

if (runif(1) < exp(log_variance_accept)) {

variance_samples[ii] <- variance_prop

} else {

variance_samples[ii] <- variance_current

}

}

Figure 9.2 Main iterative routine for the Metropolis-within-Gibbs MCMC loop, where γ

is updated via MALA and σ 2
y is updated according to a log random walk.
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Figure 9.3 The true polynomial, unconstrained least squares polynomial fit and the pos-
terior mean and 95% posterior predictive interval of the monotonic polynomial for the
simulated data set. The inset panel highlights how monotonic data generating pro-
cesses can produce data sets with nonmonotonic unconstrained estimates.

cation of the parameter space by the monotonicity constraint. Posterior
distributions with substantial correlation can take longer to approximate
with Metropolis–Hastings MCMC schemes, as the effective sample size per
second of computation time can be quite low. Indeed, in this simple exam-
ple it takes several hundred thousand iterations, which takes a few minutes
of computation, to accrue a minimum of 500 effective samples for each
parameter.

9.4 Covariate selection

As we are using polynomial design matrices, covariate selection is akin to
selecting the appropriate polynomial degree for the data set of interest. In
order to select the appropriate polynomial degree, we specify a family of
possible models, i.e. a set of possible polynomial degrees for the data set,
and estimate the posterior probabilities of each model. We will demonstrate
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Figure 9.4 Pairwise posterior density estimates and correlations for the elements of γ .
Of note is the correlation between γ2 and γ3 despite the use of the QR decomposition
and covariate centring.

this on a variety of simulated data sets, as well as the Berkeley growth data
set [16] in the fda [14] package for R.

Simulating from the posterior distribution of a family of possible models
is made possible by the RJMCMC sampling algorithm [6]. The RJMCMC
algorithm allows for the dimension of the parameter space to change be-
tween each iteration of the MCMC sampler. In the polynomial context this
means the degree of polynomial can change between MCMC samples. The
RJMCMC algorithm enables the selection of an appropriate model, as it
will naturally produce more MCMC samples from the model with greatest
posterior probability. The Bayesian specification of the family of allowable
models also ensures contextual knowledge is made explicit in the form of
the prior distribution over said model space. Our implementation of a re-
versible jump sampler for monotonic polynomials is available at https://
github.com/hhau/rjmonopoly.

Notationally, in this section, the Markov chain is assumed to be at time
point t and in the polynomial model of degree q[t]. The proposed values for

https://github.com/hhau/rjmonopoly
https://github.com/hhau/rjmonopoly
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the following time point are indicated by an asterisk (θ∗, q∗), and a prime
symbol is used to indicate if the proposal exists in a different dimension to
that of the previous value (θ∗′

, q∗′). That is to say that θ∗′
has a higher/lower

number of elements than θ [t], and q∗′ 
= q[t]. Note that θ is a generic pa-
rameter vector that is assumed to contain all the parameters in that model,
excluding the degree of the current and proposed models.

9.4.1 Model specification
Before implementing an RJMCMC sampling scheme, we must explicitly
define the set of models under consideration. In our case, the set of mod-
els of interest are the monotonic polynomials of degree qmin to qmax, and
this section discusses the likelihood, priors, and corresponding posterior
expression for these models.

9.4.1.1 Likelihood expression

As we are fundamentally performing only univariate polynomial regression,
the likelihood term is relatively simple, and we can express it in terms of
the orthonormal design matrix. We write the distributional statement for a
given polynomial degree as

Y ∼ N
(
Qγ , σ 2

y Iq

)
(9.12)

and the likelihood as

Pr
(
Y | θ , q

) = Pr
(
Y | q,γ , σ 2

y

)

=
(√

2πσ 2
y

)−n/2
exp

{
− 1

2σ 2
y

(Y − Qγ )T (Y − Qγ )

}
. (9.13)

Note that we include q in the likelihood term, as the number of columns
of Q and the size of γ depend on it.

9.4.1.2 Prior specification
Regression coefficient prior

The prior for the regression parameters and the noise of the data are the
same as in Section 9.3. We again use the product of a weakly informative
normal prior with a monotonic indicator function as the prior for γ , i.e.

γ ∼ N
(
0q+1,102Iq+1

) · I{γ ∈ �(a, b)}. (9.14)
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Of course, this is not strictly the same prior as in (9.2), as the number of
elements in 0q+1 and Iq+1 can vary across models.

Variance prior

We again use an N+(0,12) prior on the variance σ 2
y , which is weakly in-

formative as long as the data are rescaled. Explicitly,

σ 2
y ∼ N+(0,12). (9.15)

Polynomial degree prior

As the polynomial degree is a parameter of interest, it too must have a prior
distribution. As we limit the support of q to be the inclusive set of integers
between qmin and qmax, our prior must also be defined on this support. In
practice we do this by generating a prior that appropriately represents our
knowledge on {0, . . . , qmax} and then remove the terms corresponding to
degrees less than dmin. A flat prior over the set of permissible polynomial
degrees can be used, although this is typically inappropriate as one usually
has some idea of how much flexibility the regression curve requires. As
such, the rjmonopoly implementation allows for a binomial prior option,
where the probability parameter η of said binomial distribution is used as
a control parameter, which allows us to express our knowledge about the
prior likelihood of higher/lower polynomial degrees. Explicitly,

q ∼ Bin[qmin,qmax](qmax, η), (9.16)

where Bin[qmin,qmax] indicates a truncated binomial distribution over the set
of positive integers {qmin, . . . , qmax}. Normalising this prior distribution is
unnecessary, as the normalising constants drop out in the acceptance prob-
ability calculation. Note that the rjmonopoly implementation currently
assumes that qmax − qmin ≥ 2.

9.4.1.3 Posterior expression

Combining the likelihood with the prior distributions gives us the propor-
tional posterior, i.e.

Pr(q,γ , σ 2
y , | Y) ∝

(
2πσ 2

y

)−n/2
exp

{
− 1

2σ 2
y

(Y − Qγ )� (Y − Qγ )

}

· exp
{
− 1

2 · 1002 γ �γ

}
· I{γ ∈ �(a, b)} (9.17)
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· exp
{
−1

2

(
σ 2

y

)2
}

·
(

qmax

q

)
(η)q (1 − η)qmax−q,

where γ ⊂R
q+1, σ 2

y ⊂R
+ and q ∈ {qmin, . . . , qmax}.

9.4.2 Sampling from the posterior distribution
Given the complete specification of our family of models, we can start to
implement an RJMCMC scheme to sample from the posterior distribution
of interest. We will specify appropriate proposal distributions for each of the
parameters of interest, and discuss the acceptance probability calculation.

9.4.2.1 Dimension proposal

We specify upper and lower bounds for the proposal distribution of the
degree of the polynomial, based on the prior values for qmin and qmax. This
is to ensure that the Markov chain in polynomial-degree space is neither
initialised in an inadmissible region (according to the prior), nor proposes
polynomial degrees with zero prior mass. For example, we should never
propose polynomials of degree smaller than qmin. The existence of a qmax

also allows for straightforward generation of initial values, which will be
discussed in Section 9.4.2.2.

When the Markov chain is in either the maximum or the minimum di-
mension space, the proposal for q∗ is a discrete uniform distribution on that
current dimension and the dimension immediately lower or higher than
it, respectively. When not in the maximum or minimum dimension states,
the proposal is a discrete uniform distribution on its current dimension and
the dimensions immediately above and below it. This distribution is best
explained by the code used to generate proposals from it, which is shown
in Fig. 9.5. This simple proposal distribution admits a straightforward term
to the proposal ratio in the acceptance probability expression. It is 1 if the
previous degree and proposed degree are not qmax or qmin, and it is 3

2 or 2
3

if either the proposed or previous degree are.

9.4.2.2 Regression coefficient proposal

As discussed in Section 9.2, we define our models in terms of the orthogo-
nal regression coefficients γ . This is advantageous as all the coefficients are
orthogonal to each other, and as such a random walk with diagonal covari-
ance matrix can be used to produce acceptable proposals. In the monomial
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dimProposer <- function(q_current, q_min, q_max) {

if (q_current < q_min | q_current > q_max) {

stop("current dimension is outside of allowed bounds")

}

if (q_current == q_min) {

res <- sample(x = c(q_current, q_current + 1), size = 1)

} else if (q_current == q_max) {

res <- sample(x = c(q_current, q_current - 1), size = 1)

} else {

res <- sample(x = c(q_current - 1, q_current, q_current + 1),

size = 1)

}

return(res)

}

Figure 9.5 The R code that proposes a new polynomial degree.

space this would not be true, as the covariance structure for all β coeffi-
cients is hard to determine, and the probable values of β would also change
considerably each time the degree of the polynomial changed.

When the proposed dimension is the same as that of the previous di-
mension, generating the proposal for the regression coefficients is straight-
forward:

γ ∗ ∼ N
(
γ [t], σ 2

γ,innovIq[t]+1
)
, (9.18)

where σ 2
γ,innov is the innovation variance associated with the proposal dis-

tribution of γ , and Iq+1 is the (q + 1) × (q + 1) identity matrix.
When the proposed dimension does not match the current dimension,

things are more difficult. Consider a proposed dimension one greater than
the previous dimension, q∗′ = q[t] +1. We could use a random walk proposal
for the first q[t] +1 components of γ ∗′ ; however, the ((q)∗′ +1)th component
does not exist in γ [t]. As such we need a different proposal distribution for
this specific coefficient. It would be preferable to use a random walk with
mean equal to the value of the last time we were in the q∗′ space, i.e.

γ ∗′
q∗′ ∼ N

(
γ

[s]
q∗′ , σ

2
γ,innov

)
,

where s is the time point where the chain was last in state q∗′ . However,
as this depends upon a time point prior to t − 1 it constructs a sampling
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scheme that is no longer Markovian, and as such breaks the detailed bal-
ance required for the Metropolis–Hastings algorithm. As a result, we use
an independent proposal for γ ∗′

q∗′+1
, with a very particular mean to ensure

it proposes in the right region of the parameter space. To obtain this mean
we first fit a polynomial of degree qmax using either [10] or the R package
MonoPoly by [17]. The estimates for β are then converted to their cor-
responding orthonormal coefficients γ for use as means of independent
proposal distributions. Mathematically,

γ ∗′ ∼ N
([

γ [t],μγ,q∗′+1

]�
, σ 2

γ,innovIq∗′+1

)
, (9.19)

where μγ,q∗′+1 includes the (q∗′ + 1)th component of the aforementioned
initial qmax fit. There is an acceptance probability implication of this choice,
as the independently proposed term no longer cancels in the ratio of pro-
posal distributions. This will be discussed in more detail in Section 9.4.3.

9.4.2.3 Variance proposal

We use a log-normal random walk to propose values for (σ 2)∗, i.e.

(σ 2
y )∗ ∼ Log − normal

(
Log((σ 2

y )[t]), σ 2
σ 2,innov

)
, (9.20)

as we need the value of σ 2
y to remain positive.

9.4.3 Acceptance probability
The generic form of the acceptance probability is a combination of the
standard Metropolis–Hastings algorithm and the necessary reversible jump
terms, presented in [4]. Note that Q(·) here represents the proposal dis-
tribution for the quantity enclosed within it. We use α∗(·) to denote the
acceptance quantity prior to the application of the min{1, ·} operation, af-
ter which we denote the produced acceptance probability with α(·). This
general form can be written as

α∗
((

q∗′
, θ∗′)

,
(
q[t], θ [t])) = L(θ∗′ | Y)

L(θ [t] | Y)
· Pr(θ∗′

)

Pr(θ [t])
· Q(θ [t] | θ∗′

)

Q(θ∗′ | θ [t])
·

Q(q∗′ → q[t])
Q(q[t] → q∗′

)
· 1
Qq[t]→q∗′ (u)

·
∣∣∣∣∣
∂gq[t]→q∗′ (θ∗

1:q[t],u)

∂(θ∗
1:q[t],u)

∣∣∣∣∣ ,
(9.21)
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α
((

q∗′
, θ∗′)

,
(
q[t], θ [t])) = min

{
1, α∗

((
q∗′

, θ∗′)
,
(
q[t], θ [t]))}

, (9.22)

the terms of which we will now elaborate on.
Consider the previous state of the Markov chain (q[t], θ [t]) with a pro-

posed degree and state of (q∗′
, θ∗′

), where q∗′ = q[t] + 1, in line with our
proposal distribution for q∗. Such a proposal would contain a proposed
value for the (q∗′ +1)th coefficient of γ , which we can think of as the extra
random realisation needed to make the number of random objects match
the proposed dimension. This realisation is denoted u in the acceptance
probability. In this manner, u contributes to the acceptance probability not
only in the Metropolis–Hastings proposal term, the third term in (9.21),
but also in the Qq[t]→q∗′ (u) term. We also require a specific definition for
the function that maps the combination of the previous state and u to the
proposed state, i.e.

gq[t]→q∗′ (θ [t],u) =
[
θ [t]

0

]
+

[
0
u

]
. (9.23)

It is for this reason the sixth and final term in the acceptance probability is
written as a function of the first q[t] components of our proposal and the
component corresponding to u.

The remaining terms fall out naturally now, as the term which con-
cerns the dimension proposal is typically 1, and it only differs when we
either are in or propose to be in qmax or qmin. The parameter proposal
term (third term) contains the log-normal σ 2 proposal and the indepen-
dent proposal for u. The prior term and likelihood term are evaluated
with respect to the distributions discussed in previous sections. For im-
plementation details, please see the package source available at https://
github.com/hhau/rjmonopoly.

The above strictly only considers moves where q∗′ = q[t]+1 and q∗′ = q[t].
Moves from q[t] to q∗′ = q[t] − 1 are accepted with probability, i.e.

α
((

q∗′
, θ∗′)

,
(
q[t], θ [t])) = min

{
1, α∗

((
q[t], θ [t]) ,

(
q∗′

, θ∗′))−1
}

, (9.24)

noting the swap in the order of the arguments to α∗(·). Calculating the ac-
ceptance probability in this manner is a very explicit use of the detailed bal-
ance assumption, as it tells us that the probability of moving from q to q − 1
is the same as the inverse of the move from q − 1 to q, i.e. Pr(q → q − 1) =

https://github.com/hhau/rjmonopoly
https://github.com/hhau/rjmonopoly
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Pr(q − 1 → q)−1. However, we must again consider the monotonicity con-
straint, as nonmonotonic proposals will have α∗(·) = 0, which would lead
to α(·) = 1, unless we check our monotonicity indicator after the inversion.

9.4.3.1 Summary

A summary of the RJMCMC scheme detailed in this section is presented
in Algorithm 2.

Input : Y,Q, q[0],γ [0], (σ 2
y )[0], σ 2

γ,innov, σ
2
σ 2,innov

for t ← 0 to NMCMC − 1 do
Propose q∗ according to Section 9.4.2.1;
Propose γ ∗′ using q∗ by (9.19);
Propose (σ 2

y )∗ by (9.20);

Compute α
((

q∗′
, θ∗′)

,
(
q[t], θ [t])) via (9.21) and (9.22);

Simulate u ∼ Unif(0,1);
if u1 < then

q[t+1],γ [t+1], (σ 2
y )[t+1] ← q∗,γ ∗′

, (σ 2
y )∗;

else
q[t+1],γ [t+1], (σ 2

y )[t+1] ← q[t],γ [t], (σ 2
y )[t];

end
end

Algorithm 2: Summary of the RJMCMC sampler.

9.4.4 Simulated data examples
This section contains several simulated data exercises, which are performed
to test the model and implementation to ensure that known quantities can
be appropriately estimated. It also explores the relationship between the
posterior distribution of the polynomial degree and data size and variance.
It should be noted that polynomials have few defining features as their
degree increases. Either the number of turning/inflection points increases,
or the duration at which the polynomial appears ‘flat’ increases. As we are
concerned with monotonicity, polynomials with turning points inside the
region of interest are inappropriate objects of study. Instead we focus on
cases with large ‘flat’ regions, such as in Example 9.4.4.1, or with a distinct
number of inflection points, such as in Example 9.4.4.2.
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9.4.4.1 The relationship between noise and estimated degree

We quantify the relationship between the quantity of noise added to the
true data generating process and the estimated polynomial degree. This
exercise is performed with 1000 x-values between 0 and 1 and uses the
polynomial p(x) = 2 + (2x − 1)11 + 1.5x with a varying amount of noise
added. The motivation for the additional linear term is to move the true
polynomial sufficiently far away from the boundary of monotonic space,
in order to avoid the numerical inefficiencies induced by high posterior
correlation and high rejection rates due to the proximity of the posterior
to the boundary of allowable coefficient values.

Fig. 9.6 shows that as we decrease the magnitude of the added noise,
the polynomial degree increases towards the true polynomial degree. This
is to be expected, as adding noise sufficiently blurs the location of the start
and end of the ‘flat’ sections of the true polynomial, and as such it can
be appropriately modelled by a lower-degree polynomial. We also see the
posterior distribution appropriately favours odd-degree polynomials, par-
ticularly in Fig. 9.6D, where degree 9 and 7 are preferable to degree 8.
This is again unsurprising given the fundamentally different asymptotic be-
haviour in even- and odd-degree polynomials, and the manner in which
that affects the polynomial’s ability to fit the data.

When fitting regression models to comparatively noise-free data, such
as in Figs 9.6G and 9.6H, the choice of tuning parameters, specifically
the innovation variances, becomes paramount. This is because the minimal
noise added to the data manifests itself not only as a relative certainty of a
small estimate for σ 2

y , but also in the relatively precise nature in which we
know γ . As such, we need to considerably reduce the innovation variance
for γ , and not just the innovation variance for σ 2

y , as one might intuitively
expect.

We can compare the polynomial-degree estimates above to the esti-
mates obtained using the ‘m out of n’ bootstrap methodology presented in
[12]. This bootstrap approach proceeds by drawing m samples (with replace-
ment) from the n observations, fitting all permissible polynomial degrees to
the sampled data, and using the nonsampled data as a predictive validation
set. This constitutes one iteration of the bootstrap, and in each iteration
the polynomial degree with the lowest prediction error is selected. The re-
sult, presented in Fig. 9.7, was produced using 100 iterations for each value
of m. Reassuringly, the results from this are broadly similar to those of the
reversible jump sampler. There are minor differences for a given level of
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Figure 9.6 Simulation results using the reversible jump sampler, where the true polyno-
mial is p(x) = 2 + (2x − 1)11 + 1.5x, with N

(
0,σ 2)

noise. (A) Fit for σ = 0.1, (B) Degree
posterior distribution for σ = 0.1, (C) Fit for σ = 0.05, (D) Degree posterior distribution
for σ = 0.05, (E) Fit for σ = 0.01, (F) Degree posterior distribution for σ = 0.01, (G) Fit
for σ = 0.0001, (H) Degree posterior distribution for σ = 0.0001.
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noise, where the ‘m out of n’ bootstrap appears to favour slightly higher-
degree polynomials. For example, in Fig. 9.7C, the bootstrap suggests a
polynomial of at least degree 10, whereas the comparable reversible jump
result in Fig. 9.6F is very good for degree 9. This may be due to the differ-
ence in parameterisations, as the bootstrap methodology makes use of the
parameterisation discussed in [12]. However, this is a very minor difference,
as one would not expect the posterior distribution to perfectly match the
sampling distribution induced by a mean squared error-based prediction
metric. The only considerable difference in the two methodologies is in
the run-time, where the reversible jump sampler has an advantage in this
scenario. Each of the images in Fig. 9.7 took approximately 10 minutes to
generate, using 100 bootstrap iterations for each m. Each row in Fig. 9.6
was produced in approximately 20 seconds on the same hardware using the
reversible jump sampler, using a chain length of 50,000. This is not sur-
prising, as the bootstrap has to fit all possible polynomial degrees at each
iteration, whereas the reversible jump sampler only ends up sampling de-
grees according to the posterior distribution of the polynomial degree. As
such, it can avoid fitting high-degree polynomials in data sets where they
are not required.

9.4.4.2 The relationship between the number of data points and
estimated degree

To explore this relationship, we assume the underlying polynomial is the
following:

p(x) = 12 + 1
500

(−225.24x3 + 89.48x4 − 13.72x5 + 0.93x6 − 0.02x7) ,

(9.25)

which subsequently has normally distributed noise, with zero mean and
standard deviation 0.5, added to it. We generate values for x that range be-
tween 0 and 12. As opposed to having a large ‘flat’ section like the previous
example, this monotonic polynomial has a specific number of inflection
points. The method with which we derive the polynomial in (9.25) is of
note and consists of the following steps. We begin by specifying the second
derivative of the polynomial via its roots, i.e.

p′′(x) = (−x)(x − 2.4)(x − 5.7)(x − 8.9)(x − 11.1),

which we then expand into a monomial basis form, i.e.

p′′(x) = −1351.45x + 1073.80x2 − 274.47x3 + 28.1x4 − x5.
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Figure 9.7 Simulation results using the ‘m out of n’ bootstrap methodology, where the
true polynomial is p(x) = 2 + (2x − 1)11 + 1.5x, with N

(
0,σ 2)

noise. (A) Probabil-
ity of degree selection for σ = 0.1, (B) Probability of degree selection for σ = 0.05,
(C) Probability of degree selection for σ = 0.01, (D) Probability of degree selection for
σ = 0.0001.

Then we integrate twice to arrive at the following final monomial basis
coefficients:

p′(x) = −675.72x2 + 357.93x3 − 68.18x4 + 5.62x4 − 1.67x6,

p(x) = −225.24x3 + 89.48x4 − 13.72x5 + 0.93x6 − 0.02x7.

Finally, the polynomial was rescaled and shifted for use as a comparative
model in the dental application detailed in [12], which also has the added
benefit of rendering the region of interest on a more natural scale.

Repeated X-values

We consider an example with a fixed number of possible x-values, with
either 3 or 9 measurements at each of the 13 distinct integer values. The
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posterior of the polynomial degree and the fit using the posterior mode are
displayed in Fig. 9.8. The trend is as expected, in that our ability to estimate
the appropriate degree, and our corresponding certainty of said estimate,
increases as the number of data points per x-value increases. Fig. 9.8D is a
good example of typical sampler behaviour in the presence of a compara-
tively ‘flat’ posterior for the polynomial degree, and it is reassuring to see
the sampler is capable of exploring a wide variety of possible polynomial
degrees under fixed values for the tuning parameters.

Unique X-values

We now consider the same number of data points as in the previous ex-
ample, but distributed across unique x-values instead. Fig. 9.9 contains the
corresponding output, and the pattern is unsurprisingly similar. Of inter-
est in this exercise is the apparent bimodality of the posterior distribution
for the polynomial degree visible in Fig. 9.9D. This demonstrates the sam-
pler’s ability to move between modes. If such behaviour is observed in a
real-world scenario, the sampler should be run for considerably longer, in
order to ensure the posterior modes have the appropriate number of sam-
ples drawn from them.

9.4.5 Child growth data
In this chapter we have entirely focused on data sets consisting of one in-
dividual, that is, one set of (X,Y)’s. However, in a hierarchical modelling
setting, the data set of interest typically consists of a number of individuals.
The manner in which we should apply our method for model selection to
such a data set is not obvious. We could naively combine all individuals to
form one large pair of (X,Y)’s; however, this typically results in the selec-
tion of a polynomial degree that is too low, as it is fundamentally incorrect
to combine subject-specific measures in this manner. Instead we can rely on
the speed of our implementation, and the functional nature of our R pack-
age, to quickly estimate the appropriate degree for each individual, which
can then be used to select the appropriate degree for hierarchical models,
such as in [1] and Chapter 3 of [9].

We include the following section, which consists of descriptions around
code snippets, to demonstrate the relative ease with which we can switch
from single individuals to whole data sets. It also serves as an illustrative
example of the rjmonopoly package for potential future users. The fact that
the code is available in an R package makes this task considerably easier,



Flexible regression modelling under shape constraints 275

Figure 9.8 Simulation results for a varying number of data points per nonunique x-value

for the polynomial p(x) = 12 + 1
500

(
−225.24x3 + 89.48x4 − 13.72x5 + 0.93x6 −

0.02x7
)

. (A) Fit for 9 points per x-value, (B) Degree posterior distribution for 9 points

per x-value, (C) Fit for 3 points per x-value, (D) Degree posterior distribution (for initial
750,000 posterior samples) for 3 points per x-value.

and we only have to be familiar with the apply family of functions within
base R. Consider the following snippet:

library(rjmonopoly); library(fda)

library(ggplot2); library(gridExtra); library(knitr)

func_applicator <- function(y, x = growth$age, ...) {
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Figure 9.9 Simulation results for a varying number of data points per unique x-value for

p(x) = 12 + 1
500

(
−225.24x3 + 89.48x4 − 13.72x5 + 0.93x6 − 0.02x7

)
. (A) Fit for 195

unique x-values, (B) Degree posterior distribution for 195 unique x-values, (C) Fit for 39
unique x-values, (D) Degree posterior distribution (for initial 250,000 samples) for 39
unique x-values.

res <- rjmonopoly::rjmonopoly(x = x, y = y,

d_min = 5, d_max = 12, # tuning params

prior_prob = 0.5,

starting_var_val = 5e-5,

control = list(

innov_sd_var = 0.001,

innov_sd_beta = 0.001
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)

)

return(res)

}

y_mat <- growth$hgtm

res_list <- apply(y_mat, 2, function(X) func_applicator(y = X))

Here, we have applied our RJMCMC sampler to every male individ-
ual in the growth data set of the fda package [14]. We can then quickly
perform inference at the level of the whole data set. Note that we have
adjusted some of the sampler’s tuning parameters in order to produce sam-
ples with acceptable diagnostics, including, but not limited to, traceplots
and minimum effective sample sizes. In the following snippet, we thin the
output and inspect the fitted curves for every individual1:

res_list <- lapply(res_list, function(X) {

rjmonopoly::thin(X, thin_period = 50, warm_up = 500)

})

fit_plots <- lapply(res_list, rjmonopoly::plotFit)

gridExtra::marrangeGrob(fit_plots, ncol = 4, nrow = 10)

We can also quickly inspect the polynomial-degree posterior for each
individual:

lapply(res_list, function(x) {

rjmonopoly::plotDegreePost(x, only = "barplot")

})

Although this is not always ideal, as 39 barplots might be somewhat
visually overwhelming, it does enable the quick visual identification of any
individuals in our data set whose degree posterior is distinct. Alternatively,
we could take one step back and consider the empirical distribution of the
degree selected for each individual. Here, we use the 99% quantile of each
individual’s polynomial-degree posterior as our selection rule, so that we

1 The plots produced from the following snippets are not presented here, as fixed width and
height noninteractive conglomerates of subplots are not ideal for the printed format.
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do not unnecessarily restrict the flexibility of any models we may choose
to fit subsequently:

selected_degrees <- unlist(lapply(res_list, function(X) {

quantile(X$d_samples, 0.99)

}))

knitr::kable(as.data.frame(table(selected_degrees)))

Table 9.1 The selected polynomial degrees from
all males in the growth data set of the fda pack-
age.

Selected degree Frequency Probability
6 1 0.03
7 4 0.10
8 26 0.67
9 8 0.21

The output of Table 9.1 would lead us to select a degree of 9 for our
hierarchical model in Chapter 3 of [9], or the model detailed in [1], as a
substantial number of individuals in the data set have a selected degree of 9,
and we lose some model flexibility to the hierarchical structure.

9.5 Conclusion

In this chapter we have demonstrated methods to perform shape-con-
strained regression and covariate selection, specifically in the context of
monotonic polynomials. In doing so, we have highlighted some compu-
tational techniques for MCMC, which increase the effectiveness of our
methodology. These techniques include (i) using the QR decomposition
of the design matrix, (ii) proposing possible values for the regression coeffi-
cients using MALA and (iii) using RJMCMC for the purposes of covariate
selection in the presence of shape constraints. These techniques are demon-
strated on a number of simulated and real data sets, and the results could be
further used to inform modelling decisions in larger, hierarchical models.
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