
Chapman & Hall/CRC
Computer Science and Data Analysis Series

University of Bath, UK

JULIAN J. FARAWAY

Baruch College, The City University of New York

YU RYAN YUE

Cleveland Clinic, Cleveland, Ohio

XIAOFENG WANG

BAYESIAN REGRESSION
MODELING WITH INLA

Version Date: 20180111

International Standard Book Number-13: 978-1-4987-2725-9 (Hardback)

and the CRC Press Web site at
http://www.crcpress.com

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

© 2018 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

Contents

1 Introduction 1
1.1 Quick Start . 1

1.1.1 Hubble’s Law . 1
1.1.2 Standard Analysis . 2
1.1.3 Bayesian Analysis . 3
1.1.4 INLA . 4

1.2 Bayes Theory . 8
1.3 Prior and Posterior Distributions 9
1.4 Model Checking . 11
1.5 Model Selection . 12
1.6 Hypothesis Testing . 13
1.7 Bayesian Computation . 15

1.7.1 Exact . 15
1.7.2 Sampling . 16
1.7.3 Approximation . 17

2 Theory of INLA 19
2.1 Latent Gaussian Models (LGMs) 19
2.2 Gaussian Markov Random Fields (GMRFs) 21
2.3 Laplace Approximation and INLA 23
2.4 INLA Problems . 31
2.5 Extensions . 35

3 Bayesian Linear Regression 39
3.1 Introduction . 39
3.2 Bayesian Inference for Linear Regression 40
3.3 Prediction . 47
3.4 Model Selection and Checking . 49

3.4.1 Model Selection by DIC 49
3.4.2 Posterior Predictive Model Checking 50
3.4.3 Cross-Validation Model Checking 52
3.4.4 Bayesian Residual Analysis 54

3.5 Robust Regression . 56
3.6 Analysis of Variance . 57
3.7 Ridge Regression for Multicollinearity 59
3.8 Regression with Autoregressive Errors 63

4 Generalized Linear Models 71
4.1 GLMs . 71
4.2 Binary Responses . 73
4.3 Count Responses . 76

4.3.1 Poisson Regression . 77
4.3.2 Negative Binomial Regression 79

4.4 Modeling Rates . 84
4.5 Gamma Regression for Skewed Data 87
4.6 Proportional Responses . 91
4.7 Modeling Zero-Inflated Data . 96

5 Linear Mixed and Generalized Linear Mixed Models 101
5.1 Linear Mixed Models . 101
5.2 Single Random Effect . 102

5.2.1 Choice of Priors . 106
5.2.2 Random Effects . 109

5.3 Longitudinal Data . 111
5.3.1 Random Intercept . 112
5.3.2 Random Slope and Intercept 113
5.3.3 Prediction . 116

5.4 Classical Z-Matrix Model . 119
5.4.1 Ridge Regression Revisited 121

5.5 Generalized Linear Mixed Models 124
5.6 Poisson GLMM . 125
5.7 Binary GLMM . 133

5.7.1 Improving the Approximation 139

6 Survival Analysis 141
6.1 Introduction . 141
6.2 Semiparametric Models . 143

6.2.1 Piecewise Constant Baseline Hazard Models 143
6.2.2 Stratified Proportional Hazards Models 146

6.3 Accelerated Failure Time Models 148
6.4 Model Diagnosis . 151
6.5 Interval Censored Data . 157
6.6 Frailty Models . 160
6.7 Joint Modeling of Longitudinal and Time-to-Event Data 164

7 Random Walk Models for Smoothing Methods 169
7.1 Introduction . 169
7.2 Smoothing Splines . 170

7.2.1 Random Walk (RW) Priors for Equally-Spaced Locations . 170
7.2.2 Choice of Priors on σ2

ε and σ2
f 176

7.2.3 Random Walk Models for Non-Equally Spaced Locations . 179
7.3 Thin-Plate Splines . 185

7.3.1 Thin-Plate Splines on Regular Lattices 185
7.3.2 Thin-Plate Splines at Irregularly-Spaced Locations 188

7.4 Besag Spatial Model . 192
7.5 Penalized Regression Splines (P-Splines) 195
7.6 Adaptive Spline Smoothing . 198
7.7 Generalized Nonparametric Regression Models 201
7.8 Excursion Set with Uncertainty 206

8 Gaussian Process Regression 211
8.1 Introduction . 211
8.2 Penalized Complexity Priors . 216
8.3 Credible Bands for Smoothness 217
8.4 Non-Stationary Fields . 220
8.5 Interpolation with Uncertainty . 222
8.6 Survival Response . 226

9 Additive and Generalized Additive Models 229
9.1 Additive Models . 229
9.2 Generalized Additive Models . 236

9.2.1 Binary Response . 237
9.2.2 Count Response . 240

9.3 Generalized Additive Mixed Models 245

10 Errors-in-Variables Regression 251
10.1 Introduction . 251
10.2 Classical Errors-in-Variables Models 254

10.2.1 A Simple Linear Model with Heteroscedastic Errors-in-
Variables . 254

10.2.2 A General Exposure Model with Replicated Measurements . 257
10.3 Berkson Errors-in-Variables Models 263

11 Miscellaneous Topics in INLA 267
11.1 Splines as a Mixed Model . 267

11.1.1 Truncated Power Basis Splines 267
11.1.2 O’Sullivan Splines . 268
11.1.3 Example: Canadian Income Data 269

11.2 Analysis of Variance for Functional Data 272
11.3 Extreme Values . 278
11.4 Density Estimation Using INLA 283

Appendix A Installation 289

Appendix B Uninformative Priors in Linear Regression 291

Bibliography 297

Index 309

Preface

INLA stands for Integrated Nested Laplace Approximations. It is a method for fitting
a broad class of Bayesian models. Historically, it was difficult to fit anything but the
most simple Bayesian models. Over the last twenty years, a class of Bayesian com-
putational methods based on a simulation method called Markov chain Monte Carlo
(MCMC) has been developed and has seen wide acceptance in statistics. Popular
packages using these methods include BUGS, JAGS and STAN. Despite impres-
sive improvements, these packages suffer from two problems. First, they are slow.
For some more complex and/or larger data problems, MCMC can be infeasibly slow,
even if you are prepared to wait days. But even for more modest problems, the ability
to fit models quickly is crucial to exploratory data analyses. INLA is an approxima-
tion method. Typically, the approximations are more than adequate and remember
that simulation methods are inevitably approximations also if they are to finish in
finite time. INLA takes no more than a few seconds to fit the models found in this
book.

The other practical difficulty with MCMC methods is they take substantial ex-
pertise to use. You need to learn a specialized programming language to specify
the models. You also need to understand the diagnostics that determine whether the
model has been fit correctly or whether the simulation process has failed. Some skill
is necessary to make a success of this. Despite ongoing improvement in this area, this
has been an obstacle to wider adoption of these methods in the scientific community.

There are some drawbacks to INLA too. Although you do not need to learn a
specific programming language as the models can be specified and analyzed using
R, it is still not that straightforward. Indeed, that is why you should read this book.
Furthermore, INLA only applies to a class called latent Gaussian models. If you
browse through the table of contents for this book, you will see that this class is very
broad. Nevertheless, there will be some models that cannot be fit with INLA but can
be done with MCMC.

We make some assumptions about you, the reader. We expect that you have a ba-
sic knowledge of statistical theory and practice. We expect you already know some-
thing about Bayesian methodology. This is not a theoretical book as we focus our
presentation around examples. We hope that scientists, who already use some statis-
tics, will find this book accessible. We also expect you have some knowledge of R.
We do provide fully working code for all the examples so you may be able to adapt
this to your own needs without proficiency in R. Even so, you will need some ex-
perience with R to draw the full benefit. If you need more introductory material, we
direct you to more comprehensive and accessible texts.

This book is about regression models and we have not presented the extensive

spatial data analysis capabilities of INLA. For those specifically interested in spatial
data, we direct you to Blangiardo and Cameletti (2015).

We have gathered the data and additional functions we use in this text as an R
package which you may find currently at:

https://github.com/julianfaraway/brinla

Our first thanks go to Håvard Rue and his coworkers for developing the theory
and producing the software for INLA. Thanks also to Finn Lindgren, Daniel Simpson
and Egil Ferkingstad for helpful advice.

https://github.com/julianfaraway/brinla

1
Introduction

INLA can be quite complex so we warm up with a simple regression example to
illustrate the most basic features. We do not pretend this as a comprehensive intro-
duction to Bayesian methods. Instead we review the Bayesian theory that will arise
later in the book. We also discuss why you might want to use INLA in preference to
the alternatives.

1.1 Quick Start
1.1.1 Hubble’s Law

Let’s get started with INLA using a simple example. Suppose we want to know the
age of the universe. In the beginning, there was the big bang. Galaxies moved away
from the center of the universe at a constant velocity. If we measure the velocity of
other galaxies relative to us and their distance from us, we can estimate the age of
the universe. We use Hubble’s law which states that:

y = βx

where y is the relative velocity between us and another galaxy and x is the distance
from us to the other galaxy. β is called Hubble’s constant. We can estimate the age
of the universe as β−1.

The Hubble Space Telescope has allowed the collection of the data vital to an-
swering this question. We use data on 24 galaxies reported in Freedman et al. (2001).
The same data is also analyzed in Wood (2006). Now refer to Appendix A for how
to install INLA and the R package for this book. The data can be found in our R
package, which is called brinla.

data(hubble, package = "brinla")

We highlight the R code throughout this book in the manner above. You should type
this in at the R console or you may find it easier to copy and paste the code from
R scripts for each chapter. See the appendix for how to obtain these scripts. Al-
ternatively, you can gain access to the data and functions in our package with the
command: library(brinla). We have used the data command instead so that the
source of the data is clear.

We plot the data as seen in Figure 1.1.

2 Bayesian Regression Modeling with INLA

plot(y ~ x, xlab = "Distance(Mpc)", ylab = "Velocity(km/s)",
data = hubble)

•

•

•
•

•

•

•

•

•

•
•

•

•

•

• •
•• •

•

•
•

•

5 10 15 20

50
0

10
00

15
00

Distance(Mpc)

Ve
lo

ci
ty

(k
m

/s
)

FIGURE 1.1
Distance and velocity of 24 galaxies relative to our location.

We see that the observations do not all lie on a line and so there must be some
measurement error. This error is hardly surprising given the difficulty of observing
such distant objects. Even so, we do see an approximately linear relationship between
the variables, consistent with Hubble’s law. We allow for the error by specifying a
model:

yi = βxi + εi, i = 1, . . . ,24.

For now, we assume only that the errors have mean zero and variance σ2.

1.1.2 Standard Analysis

The method of least squares is now almost 200 years old and can be applied to esti-
mate β. We do not have an intercept term in this model so we put a -1 in the model
formula.

lmod <- lm(y ~ x - 1, data = hubble)
coef(lmod)

x
76.581

This is our estimate of β, which is Hubble’s constant. We need to convert the units of
the data to something more convenient. We have 60 seconds, 60 minutes, 24 hours

Introduction 3

and 365.25 days in a year and one megaparsec (Mpc) is 3.09× 1019 km. Here is a
function to transform Hubble’s constant into the age of the universe in billions of
years. We apply it to our estimate:

hubtoage <- function(x) 3.09e+19/(x * 60^2 * 24 * 365.25 * 1e+09)
hubtoage(coef(lmod))

x
12.786

Our point estimate of the age of the universe is 12.8 billion years old. We know
there is some uncertainty in this estimate and so we may want a confidence interval
to express this. Now we need to make a distributional assumption on the errors.
We assume they follow a Gaussian distribution. There are some other assumptions.
We assume the structural form of the model is correct. We take this from Hubble’s
law and the data appear to support this. We have also assumed that the errors have
constant variance. This may not be quite true but we shall let this pass in the interest
of simplicity.

We construct a 95% confidence interval for Hubble’s constant:

(bci <- confint(lmod))

2.5 % 97.5 %
x 68.379 84.783

The interval is quite wide. We can convert this to an interval for the age of the uni-
verse:

hubtoage(bci)

2.5 % 97.5 %
x 14.32 11.549

The inversion needed to calculate the age changes the order of the limits to the inter-
val. We see that the 95% confidence interval runs from 11.5 to 14.3 billion years.

1.1.3 Bayesian Analysis

We may be satisfied with the previous analysis. We have a point estimate and we have
an expression of the uncertainty in this estimate. Yet if we consider the results more
closely, we may feel some dissatisfaction and be willing to consider an alternative
method of analysis.

It is tempting to view the confidence interval as claiming a 95% probability that
the age of the universe lies in the interval 11.5 to 14.3 billion years. But according to
the theory used to make confidence intervals this is not at all what is claimed. This
theory, sometimes called Frequentist and sometimes called classical inference, views
parameters as fixed, but usually unknown, quantities. So it makes no sense to assign
probabilities to parameters according to this theory. The 95% confidence applies to
the interval and not the parameter. It claims a 95% chance that the interval covers the
true value of the parameter.

We might object that the data have now been observed and are known so the in-
terval is no longer random. To answer this objection, we have to construct a rather

4 Bayesian Regression Modeling with INLA

elaborate argument. We envisage an unlimited number of alternative universes where
galaxies are generated according to the linear model above. For each of these alter-
native universes we compute a confidence interval in the same way as above. In 95%
of these alternate universes, the confidence interval will contain the true age of the
universe.

Most users don’t focus on this peculiar nature of the confidence interval and
interpret it as being a probability statement about the age of the universe. Usually it
doesn’t matter too much if they do this from a practical perspective but sometimes it
makes a difference.

In Bayesian statistics, we regard the parameters as random. We express our uncer-
tainty about these parameters before fitting the model in terms of prior probability.
We then use Bayes theorem to compute a posterior probability about the parameters
by combining the prior with the likelihood of the data under the model. We explain
later exactly how this can be done. Using this method, we can make straightforward
probability statements about the age of the universe. We will also see other advan-
tages.

1.1.4 INLA

Bayesian calculations are usually much more difficult than Frequentist calculations.
This is the main reason why classical methods have been historically preferred to
Bayesian methods. Now that computing is powerful and inexpensive, we can do the
Bayesian calculation more easily. For a few simple models (like our Hubble exam-
ple), Bayesian calculations can be done exactly. For anything more complicated, we
must choose between two classes of computational methodology — simulation or
approximation.

INLA, which stands for Integrated Nested Laplace Approximation, is, as you
may guess from the name, an approximation method. Let’s see how it works for the
Hubble example. First we need to load the INLA R package — see Appendix A for
details on the installation:

library(INLA)

To fit a Bayesian model, we must do more than specify the structural form of the
model, which in this case is y ~ x -1. The -1 indicates that the intercept should
be omitted as otherwise it is included by default. We must also specify the prior
distributions on the parameters. In this model, we have two — β and σ. Sometimes,
we can rely on the default choice which strives to be uninformative. We shall do this
for σ. We will discuss the defaults and the choice of prior in great detail later in the
book. For now, we focus on β.

INLA applies to a wide class of models called Latent Gaussian Models. Mem-
bership of this class requires that some parameters in the model have priors with a
Gaussian distribution. We will explain later what parameters have to be Gaussian but
in our model, we need β to have a Gaussian prior. By default this prior has mean
zero — we will stick with that for now. INLA likes to use the precision, which is
the inverse of the variance, to express the spread of this prior. Large values of the

Introduction 5

precision indicate great certainty in the prior. In this case, we know very little, so we
choose a very small value for the precision. The meaning of “very small” depends
on the scale of the data. You may wish to standardize your data to avoid this scaling
problem. In our example, that would require an extra step in the computation of the
age of the universe to undo this standardization. For this reason, we go with the data
as is and just make sure we pick a small enough precision. Let’s fit our first model
with INLA:

imod <- inla(y ~ x - 1, family = "gaussian",
control.fixed = list(prec = 1e-09), data = hubble)

We specify the structural part of the model first using the standard R model nota-
tion. We need to set a distribution for the response. Here we choose Gaussian but this
is not part of the Latent Gaussian requirement. We could pick binomial or Poisson or
any of a quite large set of possibilities here. Next we need to specify the prior on the
fixed parameter β. The term fixed is a little misleading in the Bayesian context be-
cause the parameters are usually not fixed at all. The terminology comes from mixed
effect models, discussed in Chapter 5, which are defined with so-called fixed and
random components. According to the same misleading terminology, σ2 is the ran-
dom component of the model but we rely on the default choice of prior for that. For
the prior on β, we take the default mean of zero but specify a precision of 1×10−9.
Finally, we tell INLA where to find the data.

The model is simple and the dataset small so the computation is virtually instan-
taneous. Much is calculated but we focus on just the posterior distribution of β.

(ibci <- imod$summary.fixed)

mean sd 0.025quant 0.5quant 0.975quant mode kld
x 76.581 3.7638 69.152 76.581 84 76.581 1.406e-11

Various summary statistics are provided. The kld is a diagnostic that measures the
accuracy of the INLA approximation. Small values, as seen here, are good. If you
try this yourself, do not expect to get exactly the same numbers for reasons that
are explained in Section 2.4. We can also plot the posterior density of β as seen in
Figure 1.2. The R commands necessary to extract and plot the elements of INLA
output can be rather complex so we postpone a description of these until later.

plot(imod$marginals.fixed$x, type = "l", xlab = "beta",
ylab = "density", xlim = c(60, 100))

abline(v = ibci[c(3, 5)], lty = 2)

The posterior density for β expresses our uncertainty about Hubble’s constant
with the benefit of the data from the 24 galaxies. We can see it is most likely around
75 and unlikely to be less than 70 or more than 90. Here the mean, median and mode,
as seen in summary output, are identical with the least squares estimate of 76.581.

We can express our uncertainty in terms of an interval containing 95% of the
probability. One easy way to construct this interval is to take the 2.5% and 97.5%
percentiles. This gives the interval as [69.2, 84.0]. This is called a credible interval
to distinguish it from a confidence interval. Now we really do claim there is a 95%
chance that Hubble’s constant lies in this interval.

6 Bayesian Regression Modeling with INLA

60 70 80 90 100

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

beta

de
ns

ity

11 12 13 14 15

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Age in billions of years
de

ns
ity

FIGURE 1.2
Posterior density for β on the left and for the age of the universe on the right. 95%
credible intervals are shown as dashed lines.

The results for Hubble’s constant can be transformed into the age of the universe
scale:

hubtoage(ibci[c(1,3,4,5,6)])

mean 0.025quant 0.5quant 0.975quant mode
x 12.786 14.16 12.786 11.657 12.786

We have omitted the SE as getting the right transformation on this is more work. We
can plot the posterior density with 95% credible interval as seen in Figure 1.2.

ageden <- inla.tmarginal(hubtoage, imod$marginals.fixed$x)
plot(ageden, type = "l", xlab = "Age in billions of years",

ylab = "density")
abline(v = hubtoage(ibci[c(3, 5)]), lty = 2)

The 95% credible interval runs from 11.7 to 14.2 billion years which is slightly dif-
ferent from the previous confidence interval.

We used a non-informative prior in this analysis but we could use prior infor-
mation. For one thing, we know the universe is expanding so we expect Hubble’s
constant to be positive. Before the launch of the Hubble Space Telescope, the age of
the universe was thought to be between 10 and 20 billion years. Let’s translate that
to the scale of Hubble’s constant, noting that our hubtoage works in reverse due to
the inverse nature of the conversion.

hubtoage(c(10, 15, 20))

[1] 97.916 65.277 48.958

This suggests a prior mean of, say, 65. Suppose we assume that when people ex-
press their uncertainty with an interval of the form [a,b], they are thinking, at least

Introduction 7

implicitly, of a 95% confidence/credible interval. That would imply the width of the
interval is about four standard deviations. Since the width of the interval is 49, this
suggests an SD of about 12. Of course, these people may not have been thinking in
terms of 95% intervals, but, in the absence of further information, an SD of 12 is a
reasonable place to start.

imod <- inla(y ~ x - 1, family = "gaussian",
control.fixed = list(mean = 65, prec = 1/(12^2)), data = hubble)

(ibci <- imod$summary.fixed)

mean sd 0.025quant 0.5quant 0.975quant mode kld
x 75.479 3.7292 67.981 75.522 82.729 75.596 1.1216e-11

We convert that to the age of the universe scale.

hubtoage(ibci[c(1, 3, 4, 5, 6)])

mean 0.025quant 0.5quant 0.975quant mode
x 12.973 14.403 12.965 11.836 12.953

The predicted age is a bit greater than before since the prior mean of 15 billion years
is somewhat higher than the LS estimate. Even so, the results are not very different.
We prefer that our results not be very sensitive to the choice of prior. Although we
accept the necessary subjectivity of the prior, it’s nice if we can agree with other
analysts who might have made different choices. If we have a reasonable amount of
the data, the prior will not make much difference. The Bernstein–von Mises theorem
provides some theoretical support to this empirical statement as explained in Le Cam
(2012).

But what if the prior is entirely at odds with the data? According to the Ussher
chronology, the universe was created on 22nd October, 4004BC. Other contemporary
authors, including Isaac Newton, differed with Ussher, but the estimates were within
a few hundred years of this date. Under this chronology, Hubble’s constant would be:

(uhub <- hubtoage((2016 + 4004 - 1)/1e+09))

[1] 162678504

This results in a very large value of Hubble’s constant. Let’s use this value for the
prior mean. Let’s also assume a 5% variation in the estimates of the age of the uni-
verse and use this to set the precision:

imod <- inla(y ~ x - 1, family = "gaussian",
control.fixed = list(mean = 65, prec = 1/(12^2)), data = hubble)

(ibci <- imod$summary.fixed)

mean sd 0.025quant 0.5quant 0.975quant mode kld
x 76.581 3.978 68.697 76.581 84.452 76.581 1.2644e-12

hubtoage(ibci[c(1, 3, 4, 5, 6)])

mean 0.025quant 0.5quant 0.975quant mode
x 12.786 14.233 12.786 11.607 12.786

We see that the results are quite similar to when the uninformative prior was used.
The data is able to overcome the unusual prior. The normal distribution puts some
weight on the whole real line. Although the probabilities assigned to values far from

8 Bayesian Regression Modeling with INLA

the mean are very small, they are not zero. This is sufficient to allow the data to
overcome the prior.

In some cases, the prior can be so inconsistent with the data that difficulties will
arise with computation and strange results may be observed. Such cases are called
data-prior conflicts although one must also consider the possibility that the model
itself is very wrong. See Evans et al. (2006) for discussion of this.

Before exploring the further application of INLA to statistical models, we need
to build up some theory.

1.2 Bayes Theory
We make no attempt here at a full and thorough introduction to Bayesian theory. The
reader is directed to other texts such as Gelman et al. (2014) or Carlin and Louis
(2008). We provide merely a short tour through the ideas and methods we will need
later in the book. Experienced Bayesians may skip to the next chapter.

We start with a parametric model p(y|θ) for the data y with parameters θ. We
propose this model given the structure of the data, information about how the data
was collected and knowledge about the context from which it arises. There is uncer-
tainty about the parameters which we hope the data will reduce but usually there is
also uncertainty about the model itself. We rarely believe the model to be completely
true but we hope that is an effective approximation to reality that will serve the pur-
pose for which we intend it to be used. Given the uncertainty about the model, we
may reasonably consider alternative models and we shall wish to check whether the
model appears adequate for the data that are observed.

Instead of regarding the probability distribution, p(y|θ) as a function of y, we
might view it as a function of θ. This likelihood L(θ) encompasses our uncertainty
about θ. It is important to understand that L(θ) is not a probability density for θ.

In the frequentist approach, we wish to estimate the parameters θ. A natural and
most common way to do this is to compute the most likely values achieved by max-
imizing L(θ). This is called the maximum likelihood estimate (MLE). This estimate
has many favorable properties and one may readily derive useful associated quanti-
ties such as standard errors and confidence intervals. The theory behind such methods
may be found in standard mathematical statistics books such as Bickel and Doksum
(2015). In simpler cases, the MLE may be computed explicitly but usually numerical
optimization methods are required. In many commonly used models, these methods
are well understood and perform efficiently. For some more complex models, com-
puting the MLE can become more problematic. Even so, the main reason we might
prefer to use Bayesian methods is not for computational reasons since these methods
are usually slower. The answers provided by a Bayesian analysis are conceptually
different from the MLE approach.

In the frequentist view, the parameters θ are fixed but unknown. We use the data to
estimate the parameters. In the Bayesian view, the parameters are random variables.

Introduction 9

Before we observe the data, our uncertainty regarding the parameters is expressed
through a prior density π(θ). We update our uncertainty about the parameters using
the data and the model to produce a posterior density p(θ|y). Bayes theorem provides
the means through which this transformation occurs:

p(θ|y) = p(y|θ)π(θ)
p(y)

.

We can write this equation in words as:

Posterior ∝ Likelihood × Prior

which makes it clear how the posterior is derived from combining the likelihood and
the prior. Although this is conceptually simple, we need to compute the normalizing
constant p(y), to obtain the posterior density:

p(y) =
∫

θ

p(y|θ)π(θ)dθ.

This is the marginal probability of the data under the model. Computing integrals
such as these is the reason why the conceptual simplicity of Bayes theorem requires
rather more work than would first appear.

1.3 Prior and Posterior Distributions
Specifying the prior is an important part of a Bayesian analysis. It is perhaps the
weakest part of Bayesian methodology since critics can reasonably question any
choice of prior. When the conclusions of an analysis are contentious, it may be dif-
ficult to defend a particular choice of prior. One can defend against this criticism by
pointing out that the choice of model is usually a subjective choice that cannot be
strongly justified so a frequentist analysis cannot pretend to be entirely objective ei-
ther. It is inevitable that almost any analysis will involve some amount of subjectivity
and the Bayesian is just being honest about what choices have been made.

The best motivation for a choice of prior is substantive knowledge about θ. Some-
times this comes in the form of expert opinion which may require some mathematical
formulation if the expert is not mathematically inclined. In other cases, we may have
past experience regarding similar data which is helpful in the choice of prior. Indeed,
our choice of prior may be the posterior from a previous experiment. Priors such as
these are sometimes called informative or substantive. If this type of information is
available, we should surely use it. But sometimes we are not so blessed and must find
some other basis on which to make a decision.

A particular convenient choice is the conjugate prior. With this choice, the prior
and posterior have the same distribution. Furthermore, there is an explicit formula
for the posterior in terms of the prior parameters and the data. One simple example

10 Bayesian Regression Modeling with INLA

concerns data that consist of a univariate sample from a normal distribution. If one
also chooses a normal density for the prior on the mean (with known variance), we
obtain a normal posterior density. In the days before fast computation was available,
such a choice of prior would be strongly advised. Unfortunately, there are some se-
rious drawbacks. There are only a handful of simple models for which a conjugate
choice of prior is available. Furthermore, although the conjugate choice of prior is
convenient, there is no compelling reason why we should make this choice compared
to other reasonable alternatives.

Sometimes the researcher has no strong information about what prior would be
best and would like to make a safe choice that has no strong consequences for the
conclusion. This is an understandable wish but it is surprisingly difficult to fulfill.
Perhaps the most straightforward choice is the so-called flat prior:

π(θ) ∝ 1.

This apparently gives no preference to any particular choice of θ but there are some
drawbacks, the first being that this is not a proper density as it does not (unless θ has
finite range) integrate to a finite value. Nevertheless, we can often proceed, essen-
tially normalizing the likelihood into a density. Sometimes the results are satisfactory,
but other times, the outcome can be unreasonable. It is difficult to delineate exactly
when these failures might occur so skepticism should be used when considering the
posterior derived from a flat prior.

Furthermore, although the flat prior purports to give no preference to any par-
ticular choice of θ, this is, to some extent, unavoidable. For example, consider σ

the SD and σ2 the variance from a normal distribution. We can choose π(σ) ∝ 1 or
π(σ2) ∝ 1 but these choices are not equivalent. Being flat on one scale would become
informative on the other. This lack of invariance bedevils other attempts at so-called
non-informative priors. One possible solution is the use of the Jeffreys prior:

π(θ) ∝ |I(θ)|1/2.

This prior is invariant to reparameterization. Unfortunately, the Jeffreys prior pro-
duces unreasonable outcomes under some models so it cannot be regarded as a uni-
versal solution to the prior choice problem.

Objective priors are an attempt to reduce the subjectivity in the choice of prior
but it seems eliminating human judgment from the selection is not realistic. There are
several other ideas for generating priors. Sometimes, for some classes of problems,
researchers have grown into the habit of making certain prior choices. Following
these same choices will insulate you from some criticism that your choice of prior
is arbitrary. Nevertheless, one should understand that such choices can simply be
customary and may lack any stronger justification.

INLA has a limited menu of preprogrammed prior choices (although you can
define your own). Furthermore, we shall learn in the next chapter that we are con-
strained to a Gaussian prior for at least some of the parameters. For the parameters
where we do have a choice within INLA, Simpson et al. (2017) state some general
principles regarding prior construction which are implemented within INLA.

Introduction 11

Although a very orthodox Bayesian view states that priors should be chosen once
only in advance of seeing the data, there is a good reason to experiment with alter-
native priors. We perform the analyses under a range of reasonable prior choices. If
the results are qualitatively similar, we can increase our confidence in the statement
of the conclusions. On the other hand, if the results appear particularly sensitive to
the choice of prior, we should be cautious in the strength of our claims. This idea is
called “prior sensitivity” and we would like as little of it as possible.

Posterior distributions are rather less problematic than priors. After all, they are
completely determined by the choice of prior (along with the likelihood). Neverthe-
less, understanding the posterior is not always straightforward. One common prob-
lem is that the posterior p(θ|y) is usually multivariate, sometimes of quite high
dimension. This is difficult to visualize and so we often want to contemplate the
marginal distribution for a single parameter, θi:

p(θi|y) =
∫

θ−i

p(θ|y)dθ−i,

where θ−i means θ without the ith entry. Notice that this requires a multidimensional
integration. For the multivariate normal, this is easily calculated but in other situa-
tions this can be quite demanding.

It is good practice to plot the marginal posterior distributions in order to fully
understand the meaning of the fitted model. The posterior can also be summarized
by familiar measures of center such as mean, median and mode. For relatively sym-
metric distributions there will not be much difference between these measures but
for more skew distributions, it is worth understanding the distinctions and why a
plot of the density may be particularly worthwhile. The spread of a density can be
summarized by its standard deviation or selected quantiles.

We might select the 2.5% and 97.5% quantiles as this would form a 95% credible
interval for the parameter. Although apparently similar, credible intervals differ from
the confidence intervals used in frequentist statistics. A credible interval is a claim
that there is specified probability that the parameter lies within the interval. Although
many interpret a confidence interval in the same way, its real meaning is more con-
voluted. Credible intervals are not uniquely defined given the posterior. Quantiles are
easiest to compute but we might instead ask for the shortest interval that contains the
specified probability level. This is called the highest posterior density (HPD) inter-
val. Somewhat more effort is required to compute these and is implemented using
the inla.hpdmarginal() function.

1.4 Model Checking
The predictive distribution for a future observation z is

p(z|y) =
∫

θ

p(z|θ)p(θ|y)dθ.

12 Bayesian Regression Modeling with INLA

We will need these for making predictions but the idea is also useful for checking
the model we have. The conditional predictive ordinate (CPO) introduced by Pettit
(1990), is defined as:

CPOi = p(yi|y−i).

The notation y−i means all the data except for the ith observation. The CPO statistic
measures the probability (or density) of the observed value of yi. Hence, particularly
small values of this statistic would indicate unusual observations that do not fit the
model well. Some observations can be so influential that they have a large effect on
the fitted model. This is the reason for leaving out the observation itself in fitting
the model used to compute the CPO statistic. It might seem that the computation of
these statistics would be particularly onerous since we would need to refit the model
for every case in the data but there are some effective shortcuts, as discussed in Held
et al. (2010), which greatly reduce this burden.

The probability integral transform (PIT) is similar to the CPO statistic. It was
introduced by Dawid (1984) and is defined as:

PITi = p(Yi < yi|y−i).

Notice that this makes most sense for continuous y. Across the whole data, we would
expect the PIT statistics to be approximately uniformly distributed for a good model.
Values of the PIT statistic close to zero or one would indicate observations which
are much smaller or larger, respectively, than expected. As with the CPO, this would
seem expensive to compute but INLA has ways to economize on this.

1.5 Model Selection
Sometimes we need to choose between several proposed models for the data. For
this purpose, we need a criterion measuring how consistent the data are with a given
model. The most well-known criterion is the Akaike information criterion (AIC)
which is defined as:

AIC =−2log p(y|θ̂mle)+2k

where k is the number of parameters and θ̂mle is the MLE. Smaller values of AIC
are preferred. The first part measures the fit of the model to the data. With only this
part, larger models would always be preferred so we need the second, penalty part of
the criterion, which prefers smaller models. There are two problems from a Bayesian
perspective. Firstly, the criterion is based on the MLE so it is not Bayesian. Secondly,
the number of parameters k is fine for simple models but problematic for hierarchical
models where counting the effective number of parameters is not straightforward.

For Bayesian models, we might prefer the deviance information criterion (DIC)
of Spiegelhalter et al. (2002) which is motivated by the Akaike information criterion.
We define the deviance of the model as:

D(θ) =−2log(p(y|θ)).

Introduction 13

In a Bayesian model, this is a random variable so we use the expected deviance
E(D(θ)) under the posterior distribution as a measure of fit. For counting the param-
eters, we introduce the idea of the effective number of parameters:

pD = E(D(θ))−D(E(θ)) = D̄−D(θ̄),

and the DIC is then:
DIC = D̄+ pD.

We compute the DIC for all the models of interest and choose the one with the small-
est value. For further discussion of the DIC see Spiegelhalter et al. (2014).

An alternative is the Watanabe Akaike information criterion (WAIC) (Watanabe
(2010)) which follows a more fully Bayesian approach to construct a criterion. Gel-
man et al. (2014) claims the WAIC is preferable to the DIC. They also explain why
the so-called Bayes information criterion (BIC) is not comparable to the criteria we
have already discussed.

Finally, we may well question why we need to select one model when we can
use information from all the models we have considered. The idea is to assign a prior
probability to each model which is then updated to a posterior probability for each
model. We can then combine the information from all the models to make infer-
ences or predictions, specifically. This idea is called Bayesian model averaging and
is discussed in Draper (1995).

1.6 Hypothesis Testing
In the frequentist view of hypothesis testing, the null hypothesis H0 is usually a single
point while alternative hypothesis H1 is everything else. We propose a test statistic
suitable for choosing between these two hypotheses. We then compute the probability
that, under the null hypothesis, a test statistic equal to or more extreme than the
observed test statistic would be observed. This is called the p-value. Although it
is frequently misinterpreted as such, the p-value is not the probability that the null
hypothesis is true. The common practice is that, if the p-value is less than 0.05, we
declare the result to be “statistically significant” and reject the null hypothesis. If
p-value is not so small, we fail to reject the null hypothesis.

This procedure is sometimes called “null hypothesis significance testing”
(NHST). There is a vast body of debate about this procedure that we will not re-
iterate here. In spite of the many criticisms, NHST is strongly embedded in scientific
practice and there is no imminent sign of its demise. The practitioner needs to get his
or her results published and/or accepted so it is impossible to ignore NHST. With this
in mind, we should seek to develop comparable answers within the Bayesian frame-
work that address the same questions that NHST attempts to answer. There is a wide
acceptance of the idea of choosing between hypotheses. The Bayesian approach may
reject the NHST formulation but it needs to provide its own answers that skeptics

14 Bayesian Regression Modeling with INLA

will find acceptable. This may mean providing answers which are similar to NHST
answers even if the underlying motivation is different.

Suppose we have two hypotheses, H0 and H1, that we wish to compare. We assign
prior probabilities, p(H0) and p(H1) to these hypotheses. We then find that:

p(H0|y)
p(H1|y)

=
p(y|H0)

p(y|H1)
× p(H0)

p(H1)
.

The term p(y|H0)/p(y|H1) is called the Bayes factor and p(H0)/p(H1) is called the
prior odds. Thus the resulting posterior odds is obtained by multiplying the prior
odds by the Bayes factor. Admittedly, we may find it difficult to specify the prior
odds which determines the relative belief we give to the two hypotheses but the Bayes
factor tells us how much that belief is changed by the data. We can simply report the
Bayes factor and let the reader decide based on their own prior odds. To compute the
Bayes factor, we need the marginal probabilities of each model, p(y), but this is just
the normalizing constant we needed earlier in the computation of the posterior.

The Bayes factor is attractive since it avoids the need to commit about priors on
the hypotheses and yet priors are still required to fit the two models under consider-
ation. So one does not avoid the specification of some priors. Indeed, one must be
quite careful in setting the priors for the two models so as not to favor one model
over the other. Although the Bayes factor has some philosophical appeal, it has never
really caught on in scientific publications.

Very often, H0 represents a restriction of the form θk = 0. Sometimes k is a single
index and sometimes it is a set of indices. This suggests we might want to find the
posterior probability P(θk = 0). We could compute a Bayesian model and find this
probability. The difficulty is that, assuming we have assigned a continuous prior to
θk, we will have a continuous posterior and P(θk = 0) = 0. One possible solution is
to use a prior that assigns positive probability to the event θk = 0, but this is not easy
to do. First we must ask what positive probability should be chosen and secondly,
priors which have combinations of discrete and continuous elements like this result
in very difficult computations. A wider philosophical objection is that we would not
reasonably believe any continuous parameter to be exactly any specific value in many
applications. In other words, the point null hypothesis might be clearly untrue, even
without seeing the data.

One possible solution is to compute the posterior probability P(|θk| < c). The c
is chosen as large as possible but with the proviso that we can still claim that θk is
negligibly small. Provided we have a way of setting c that others will find convincing,
we have a solution. Unfortunately, choosing c may not be easy. We can report the
marginal posterior so that the reader can choose their own c and make their own
calculation but scientific publications usually require us to be more assertive.

We can borrow one idea from frequentist hypothesis testing — in many situa-
tions, we can perform the hypothesis test H0 : θk = 0 by checking whether zero falls
within a 95% confidence interval. If it does, we do not reject the null, but if it falls
outside, we reject the null. Now some people like to have more than just a binary
outcome — they want a measure of how reasonable or unreasonable the null hypoth-
esis is. Although, the p-value is not really what they were asking for, it is the kind

Introduction 15

of answer they want. One way to compute the p-value via confidence intervals is
to find the largest p such that the 100(1− p)% confidence interval does not contain
zero. This is the p-value. We can reproduce the same calculations using the marginal
posterior distribution. We can make the 95% credible interval and check whether it
contains zero. We can also see how large we can make the credible interval without
containing zero. For relatively symmetric posteriors, suppose the posterior mean is
positive. We can then compute our so-called p-value as

p = 2P(θ < 0).

We would use the other tail if the posterior mean is negative. In truth, this is just a
measure of where zero falls on the posterior distribution but it has the advantage of
being like a p-value and it would not be unreasonable to use it in the same manner.

1.7 Bayesian Computation
Bayesian theory is clear but the computation of the posterior and the other quantities
of interest is not always easy. There are three main ways to compute the posterior
which we discuss in this section.

1.7.1 Exact

A conjugate prior results in a posterior density of the same family of distributions.
Usually, this means we can explicitly state the parameters of the posterior in terms of
the parameters of the prior and some function of the data. There is a relatively small
number of conjugate priors that apply to quite simple models, usually without co-
variates. More complex models have parameters of different types and so more than
one prior, often from different families, is required. In such circumstances, conjugacy
cannot be achieved.

Historically, models where conjugate priors could be used provided the only full
kind of Bayesian analysis possible. This seriously limited the uptake of Bayesian
statistics, no matter how philosophically appealing it may have been. Now since we
have powerful computation, we can consider a wide range of models for Bayesian
analysis and conjugacy has become a side issue, convenient for undergraduate exam-
inations but only useful in limited circumstances.

The posterior distribution is proportional to the product of the likelihood and the
prior. To compute the posterior mode, we merely need to find the value of θ that
maximizes this product. We do not need to know the normalization to compute the
mode. This is called the maximum a posteriori (MAP) estimator. Notice that if we use
a flat prior, this is also the MLE. Since this method avoids the need for normalization,
it only requires some numerical optimization at worst. The drawback is that it is only
a point estimate with no assessment of uncertainty. This is only a partial solution at
best.

16 Bayesian Regression Modeling with INLA

1.7.2 Sampling

The goal of sampling-based methods is to generate samples from the posterior dis-
tribution. Although various schemes have been developed for simpler models, the
main contenders in this category generate a Markov chain whose stationary distribu-
tion is the posterior distribution. The idea dates back to the work of Metropolis et al.
(1953) and Hastings (1970), but became more widely used in statistics after Gelfand
and Smith (1990). Collectively, these methods are described as Markov chain Monte
Carlo (MCMC). Since this book is about a competitor to MCMC, we do not pro-
pose to explain how MCMC works. We will just give an overview of the steps of an
MCMC analysis.

Let’s suppose we have decided on our model and prior and have our data read-
ily available. We could derive an MCMC-based method and implement it in code,
but more likely, we would want to use a package in which our choice of prior and
model can be fit. Let’s also suppose that we restrict ourselves to software that is an R
package or can be called from R. We have a wide choice.

The Bayesian task view on CRAN lists a large selection of R packages which im-
plement MCMC for a specific class of models. These packages are typically called in
R but written in a compiled language, usually C. One advantage of these packages is
that they can be called from R without needing to understand an additional language.
The other advantage is that they run faster because the most expensive parts of the
computation are written in a compiled language that can be optimized especially
for the chosen model class. The disadvantage is that they are quite inflexible in that
they only work for a narrow class of models and limited choice of priors. Perhaps
the most general example is the MCMCglmm package of Hadfield (2010) which will
handle a good subset of the models considered in this book.

Moving from the specific to the general, there are several general software pack-
ages that allow the user to fit a wide range of Bayesian models. These are written in a
specialist language that one must understand in order to specify the model and prior.
The programs run separately from R but can be called from R and can send back the
results for processing within R.

The first of these general software packages for Bayesian computing was BUGS
(Bayesian inference Using Gibbs Sampling) introduced in 1989. The book by Lunn
et al. (2012) provides a general introduction. BUGS developed into WinBUGS and
more recently OpenBUGS. Just another Gibbs sampler (JAGS) is another variant of
BUGS. It was introduced by Plummer et al. (2003). More recently, STAN became
available and is described in Stan Development Team (2016). BayesX, described in
Umlauf et al. (2015), is a somewhat more specific Bayesian computing package that
partly uses MCMC.

There are several steps to an MCMC-based analysis of a Bayesian model:

1. You need to write code specifying your chosen model and prior and how
the data can be passed to the program. For users who are more familiar
with fitting a model with a single line command in R, this requires signif-
icantly more learning and expertise.

2. As mentioned earlier, an MCMC method generates a Markov chain whose

Introduction 17

stationary distribution we desire. But the chain has to start somewhere so
initial values need to be specified. Ideally, it should not matter too much
where we start but it is quite possible to specify implausible, or just un-
fortunate, starting values and the chain may never converge. Some exper-
imentation with different starting values is advisable and some wisdom
is necessary to recognize when the chain has gone awry. STAN uses four
sets of random starting values — this is a sensible precaution no matter
what MCMC package you choose.

3. We allow the chain to run for some time. After some point, we need to
recognize when the chain has reached a stationary state. All the observa-
tions before this point are discarded as “burn-in” or “warm-up” values.
Diagnostic methods are available to help us determine when and if a sta-
tionary distribution has been achieved. Even so, it is possible for the chain
never to venture into some plausible reasons of the parameters space but
the diagnostics may appear entirely satisfactory.

4. Observations from the chain are positively correlated so the sample from
the posterior generated by the chain is not as valuable as an independent
sample. This means that the sample needs to be larger. Sometimes, users
“thin” the sample by keeping only every nth observation but this is an
economy measure, saving the cost of storage, rather than a necessity.

5. The end product is a sample from the posterior and not the posterior itself.
In principle, you can estimate any functional of the posterior from this
information. In practice, you’ll need to trade off the cost of generating the
samples against the accuracy of the estimation. For estimating a posterior
mean, you need fewer samples, but for a more extreme quantile, you’ll
need substantially more.

As computing speeds have increased and MCMC methods have improved over
time, the range of models and sizes of dataset that these models can reasonably tackle
has increased. Even so, there remain some combinations of model and data for which
MCMC methods either fail or would take an unreasonable amount of time to run.
Even for the models which can be fit with a little patience, the cost of experimenting
with multiple models is prohibitive. This is an obstacle to the modern style of data
analysis which considers many possible models.

We must recognize the tremendous success of MCMC methods but there are two
main drawbacks: they are difficult to use and they are slow.

1.7.3 Approximation

Exact solutions to Bayes modeling problems are mostly restricted to the narrow and
simple class of models where conjugacy can be used. Approximate solutions require
the use of numerical integration. As we saw earlier, the main difficulty in computing
the posterior is that this requires high dimensional approximation. In the next chapter
we will describe how methods of quadrature and the Laplace approximation in par-
ticular can be used to produce accurate approximations. In statistics, these methods

18 Bayesian Regression Modeling with INLA

started from the seminal paper of Tierney and Kadane (1986). In addition to INLA,
there are other methods based on approximation such as variational Bayes. More
about these other methods can be found within the Bayesian task view at:

cran.r-project.org/web/views/Bayesian.html

The advantage of INLA over MCMC-based methods is that it is much faster. In
larger cases, INLA finds a solution where MCMC methods would take far too long.
For smaller problems, the speed of computation allows us to take a more exploratory
and interactive approach to model construction and testing. In frequentist analyses,
the MLE can usually be computed quickly which means we can devote much more
attention to model diagnostics and exploring the model space. This exploration and
checking is crucial to executing an effective analysis. Getting the model right is more
important than the method of inference used. If the cost of fitting a model is high
enough, we will have to economize on the exploration. This is the main drawback
of slow MCMC methods. In contrast, INLA is fast enough that we can explore with
freedom.

Furthermore, INLA is easier to use. There is no separate programming language
we need to learn and we do not need to navigate the difficult waters of MCMC di-
agnostics. INLA is, for the most part, non-random, meaning that analyses are more
reproducible. For MCMC, the outcome is random. We can make it reproducible by
specifying the random seed but a truly independent replication would come out dif-
ferently. We can mitigate this by taking a large enough sample but the problem cannot
be entirely erased.

Nevertheless, we do not want to exaggerate the case in favor of INLA. The most
general MCMC-based packages cover a wider range of models than INLA ever will.
As we shall see in the next chapter, there is a broad, but limited, class to which INLA
applies. Furthermore, if you really care about your data, it is wise to make sure your
analysis is not sensitive to some peculiarity of the software you have used. Once
you have selected the model using an INLA-based analysis, it is well worthwhile to
repeat the fitting of the model using MCMC. If the results agree, you will have greater
qualitative confidence in your conclusions. If they disagree, it will be interesting to
find out why.

2
Theory of INLA

The integrated Laplace approximation (INLA) methodology was first introduced by
Rue et al. (2009), followed by developments in Martins et al. (2013), and is most
recently reviewed in Rue et al. (2017). It is a deterministic approach to approximate
Bayesian inference for latent Gaussian models (LGMs). In most cases INLA is both
faster and more accurate than MCMC alternatives for LGMs. The INLA R pack-
age (see www.r-inla.org) can be used for quick and reliable Bayesian inference
in practical applications. A list of recent applications of INLA can be found in Rue
et al. (2017).

In this chapter we reveal the “secrets” that make INLA successful. There are three
key components required by INLA: the LGM framework, a Gaussian Markov ran-
dom field (GMRF) and the Laplace approximation. We introduce these components
using a top-down approach, starting with LGMs and the type of statistical models
that may be viewed as LGMs (Section 2.1). We then discuss the concept of a GMRF,
a class of Gaussian processes that are computationally efficient within this formula-
tion (Section 2.2). Finally, we illustrate how INLA makes use of the Laplace approx-
imation, an old technique for approximating integrals, to perform accurate and fast
Bayesian inference on LGMs (Section 2.3).

The theory behind the INLA method is not easy and some readers may wish
to skip Section 2.3 at the first attempt. Even so, it is worth making the effort to
understand LGMs and GMRFs as this will allow you to distinguish which models can
be attempted with INLA from those for which INLA is impossible or just impractical.

2.1 Latent Gaussian Models (LGMs)
The INLA approach is restricted to a specific class of models, so called latent Gaus-
sian models (LGMs). LGMs have a wide-ranging list of applications, and most struc-
tured Bayesian models are in fact of this form (see e.g., Fahrmeir and Tutz, 2001). In
this book we focus on regression models, the most extensively used subset of LGMs.
Other common LGMs include dynamic models, spatial models and spatial-temporal
models (see e.g., Rue et al., 2009; Blangiardo and Cameletti, 2015).

A simple example of an LGM is the Bayesian generalized linear model (GLM)
(described in detail in Chapter 4). It corresponds to the linear predictor

ηi = β0 +β1xi1, i = 1, . . . ,n,

www.r-inla.org

20 Bayesian Regression Modeling with INLA

where β0 is the intercept, xi1 is the covariate and the slope (or linear effect) is β1. The
response yi is assumed to follow a distribution from an exponential family, and its
(conditional) mean µi is associated with ηi via a link function g() such that ηi = g(µi).
There is a variety of likelihood models available in INLA package and the Gaussian
model is the default choice. One may view the list by

library(INLA)
names(inla.models()$likelihood)

For each model a detailed description and an example of usage are provided on
INLA’s website (www.r-inla.org/models/likelihoods). Although the likeli-
hood itself does not have to be Gaussian, each latent ηi must follow a normal
distribution given its hyperparameter(s) in a LGM. It means that we must use
Gaussian priors on β0 and β1, i.e., β0 ∼ N(µ0,σ

2
0) and β1 ∼ N(µ1,σ

2
1), which re-

sults in ηi ∼ N(µ0 + µ1xi1,σ
2
0 +σ2

1x2
i1). With some linear algebra we can show that

η = (η1, . . . ,ηn)
′ is a Gaussian process with mean vector µ and covariance matrix

Σ. The hyperparameters σ2
0 and σ2

1 are to be either fixed or estimated by taking hy-
perpriors on them.

We can also take a more general additive form on ηi:

ηi = β0 +
J

∑
j=1

β jxi j +
K

∑
k=1

fk(zik), (2.1)

by adding more covariates and model components fk(), which can be used to relax
the linear relationship of the covariate, or introduce random effects, or both. For mod-
eling (smooth) nonlinear effects, one may use parametric nonlinear (e.g., quadratic)
terms, or nonparametric models such as random walk models (Fahrmeir and Tutz,
2001; Rue and Held, 2005), P-spline models (Lang and Brezger, 2004), and Gaussian
processes (Besag et al., 1995). To account for overdispersion caused by unobserved
heterogeneity or for correlation in longitudinal data, we may consider using random
effects in the model, which can be introduced by letting fk follow independent zero-
mean normal distributions (Fahrmeir and Lang, 2001). In many applications, the lin-
ear predictor is a sum of various model components, such as random effects, and both
linear and smooth effects of some covariates, as shown in model (2.1). Such models
can be termed generalized additive models (GAMs) (see details in Chapter 9). For
each linear effect and each model component we must take a Gaussian prior that has
either a univariate or multivariate normal density to make this additive η be Gaussian
as required by the LGM. As we will see in the next section and following chapters in
the book, there exists a class of Gaussian models, called Gaussian Markov random
field (GMRF) models, which are quite flexible and efficient with regard to modeling
various possible effects used in an LGM.

Now let’s write a generic three-stage hierarchical model formulation for each
LGM. Letting y = (y1, . . . ,yn)

′, we assume in the first stage each variable in y is
conditionally independent with a certain exponential family distribution

y | η,θ1 ∼
n

∏
i=1

p(yi | ηi,θ1),

www.r-inla.org/models/likelihoods

Theory of INLA 21

given η and hyperparameters θ1. In the second stage we specify η to be a latent
Gaussian random field with density function given by

p(η | θ2) ∝ |Qθ2 |
1/2
+ exp

(
− 1

2
η′Qθ2η

)
,

whereQθ2 is a semi-positive definite matrix that depends on hyperparameters θ2, and
|Qθ2 |+ denotes the product of its non-zero eigenvalues. The matrixQθ2 is called the
precision matrix that describes the underlying dependence structure of the data, and
its inverse (if it exists) is a covariance matrix (see Section 2.2).

In the final stage we assume θ = (θ1,θ2) follow a prior distribution π(θ). It
could be a joint distribution or a product of several distributions. As a result, the joint
posterior distribution of η and θ reads

p(η,θ | y) ∝ π(θ) π(η | θ2) ∏
i

p(yi | ηi,θ1)

∝ π(θ)|Qθ2 |
1/2 exp

(
− 1

2
η′Qθ2η+∑

i
logπ(yi | ηi,θ1)

)
. (2.2)

Bayesian inference on this LGM is derived from this expression. In INLA, the
(nested) Laplace approximation method, as will be described in Section 2.3, is ap-
plied to (2.2) to obtain (approximate) posterior distributions for every unknown pa-
rameter.

Unfortunately, not every LGM can be fitted efficiently by INLA. We (in general)
need the following additional assumptions:

1. The number of hyperparameters θ should be small, typically 2 to 5, but
not exceeding 20.

2. When n is big (104 to 105) η must be a Gaussian Markov random field
(GMRF) (see Section 2.2).

3. Each yi only depends on one component of η, e.g., ηi.

These assumptions are crucial both for computational reasons and to ensure that the
Laplace approximations are accurate. Fortunately, many commonly used in LGMs
literature satisfy these assumptions. Note that the first two assumptions must be
strictly satisfied, while the last one can be somehow relaxed to a certain extent (see
Martins et al., 2013, Section 4.5)

2.2 Gaussian Markov Random Fields (GMRFs)
The latent field η should not only be Gaussian, but also be a Gaussian Markov ran-
dom field (GMRF), in order for INLA to work efficiently. To explain the concept,
let’s consider a simple GMRF case where we let ηi follow a first-order autoregressive

22 Bayesian Regression Modeling with INLA

process, AR(1). Assuming the current value is based on the immediately preceding
value, the AR(1) model can be defined as:{

η1 ∼ N
(
0,σ2

η/(1−ρ2)
)
,

ηi | ηi−1, . . . ,η1 ∼ N(ρηi−1,σ
2
η), i = 2, . . . ,n,

where given other variables each ηi (except η1) follows a normal distribution with
mean ρηi−1 and constant variance σ2

η. The parameter ρ (|ρ| < 1) is the correlation
between ηi and ηi−1. We can prove that the marginal distribution of each ηi is Gaus-
sian with mean 0 and variance σ2

η/(1− ρ2). The covariance between ηi and η j is
σ2

ηρ|i− j|/(1− ρ2), which decays as the distance |i− j| increases. As a result, the
AR(1) η is a Gaussian process with mean vector of zeroes and covariance matrix
Σ, i.e., η ∼ N(0,Σ). Σ is an n× n dense matrix. This is troublesome because the
calculations involving such a matrix are generally expensive, making it apparently
inconvenient to use an AR(1) model for large data, especially under Bayesian frame-
work.

Fortunately, the AR(1) is a special Gaussian process which has a sparse precision
matrix. This can be shown by computing the joint distribution of η = (η1, . . . ,ηn)
using

p(η) = p(η1)p(η2 | η1)p(η3 | η1,η2) · · · p(ηn | ηn−1, . . . ,η1).

This turns out to be multivariate normal with precision matrix

Q= σ
−2
η


1 −ρ

−ρ 1+ρ2 −ρ

.
−ρ 1+ρ2 −ρ

−ρ 1

 ,

a banded matrix that has nonzero elements only on the main diagonal, the first di-
agonal below this, and the first diagonal above the main diagonal. The reason Q has
this sparse structure is that given other variables, ηi only depends on the immedi-
ately preceding ηi−1. In other words, ηi and η j are conditionally independent for all
|i− j|> 1. For example, η2 and η4 are conditionally independent because

p(η2,η4 | η1,η3) = p(η2 | η1)p(η4 | η1,η2,η3)

= p(η2 | η1)p(η4 | η3).

The conditional density of η2 does not depend on η4 and vice versa. Therefore their
joint conditional density can be written as the product of two unrelated conditional
densities. This property of an AR(1) process is reflected in Q by having the element
in the ith row and jth column be Qi j = 0 for |i− j|> 1, knowing that the conditional
correlation between ηi and η j is given by −Qi j/

√
QiiQ j j. The higher order the AR

process is, the less sparse the corresponding precision matrix Q is, because ηi con-
ditionally depends on more preceding variables. In summary, the AR process is a

Theory of INLA 23

Gaussian process with a conditional independence property, making the correspond-
ing precision matrix have a particular sparse structure.

We are now ready for a general definition of GMRF. We say η is a GMRF if
it has a multivariate normal density with additional conditional independence (also
called the “Markov property”). There exists a variety of GMRFs and they have been
extensively used in various fields (see Rue and Held, 2005). In the following chapters
we will present a class of GMRFs that are particularly useful in Bayesian regression
framework. They have different conditional independence structures to reflect our
belief in how the random variables for each field locally depend on each other. How-
ever, there is one thing in common between different GMRFs: they all have a sparse
precision matrix. This provides a huge computational benefit when making Bayesian
inference, as calculating with a sparse n×n matrix costs much less than calculating
with a dense matrix. Let’s take the AR process as an example. Recall that the covari-
ance matrix of AR(1) is an n×n dense matrix and computing its inverse costs O(n3)
time. However, the corresponding precision matrix is tridiagonal and can be factor-
ized in O(n) time (see Rue and Held, 2005, Section 2.4). The memory requirement is
also reduced from O(n2) to O(n), which makes it much easier to run larger models.

When using GMRFs to construct the additive models like the one in (2.1), the
following fact provides some of the “magic” used in INLA: The joint distribution of
η in (2.1) is also a GMRF and its precision matrix consists of sums of the precision
matrices of the covariates and the model components. We will see in the next section
that this joint distribution needs to be formed many times in INLA, as it depends
on the hyperparameters θ. Fortunately, we can treat it as a GMRF with a precision
matrix that is easy to compute. It is one of the key reasons that the INLA approach is
so efficient. Also, the sparse structure of the precision matrix boosts computational
efficiency. See a detailed demonstration in Rue et al. (2017).

2.3 Laplace Approximation and INLA
Laplace approximation is used to approximate integral In =

∫
x exp(n f (x))dx as n→

∞. Letting x0 be the mode of f (x), we do a Taylor expansion on f (x) at x0:

In ≈
∫

x
exp
(

n
(

f (x0)+(x− x0) f ′(x0)+
1
2
(x− x0)

2 f ′′(x0)

))
dx

= exp(n f (x0))
∫

exp
(n

2
(x− x0)

2 f ′′(x0)
)

dx

= exp(n f (x0))

√
2π

−n f ′′(x0)
= Ĩn,

where f ′(x0) and f ′′(x0) denote the first-order and second-order derivatives at x0,
respectively. Note that In is the Gaussian integral and f ′(x0) = 0 since x0 is the mode.
If n f (x) is interpreted as the sum of log-likelihoods and x as the unknown parameter,

24 Bayesian Regression Modeling with INLA

the Laplace approximation will be exact as n→∞, if the central limit theorem holds.
It can be immediately extended to higher dimensional integrals with a good error rate
(Rue et al., 2017).

Let’s see how the Laplace approximation is the foundation stone of INLA with
a very small dataset. Suppose we observe two counts, i.e., y1 = 1 and y2 = 2, from
a Poisson distribution with mean λi (i = 1,2). We use a log link to associate λi with
linear predictor ηi, and model ηi with an AR(1) process. The resulting posterior
distribution is given by

p(η | y) ∝ exp
(
− 1

2
η′Qθη

)
exp
(

η1 +2η2− eη1 − eη2
)
, Qθ = τ

(
1 −ρ

−ρ 1

)
,

where θ = (τ,ρ), τ > 0 is the scale parameter and −1 < ρ < 1 is the autocorrelation
parameter. For easy demonstration let’s assume both τ and ρ to be constants first.
The task now is to approximate posterior marginals for η1 and η2. One may apply
the two-dimensional Laplace approximation directly to p(η | θ,y), and then obtain
the Gaussian approximation for each marginal. However, such approximations fail
to correctly capture both location and skewness in the marginals. The performance
can be much improved by applying a sequence of Gaussian approximations using the
Laplace approximation. More specifically, we approximate the marginal of η1 using
the formula:

p(η1 | y) =
p(η | y)

p(η2 | η1)
≈ p(η | y)

p̃(η2 | η1)
,

where p̃(η2 | η1) is the Gaussian approximation of the full conditional of η2 for each
value of η1. The marginal of η2 can be approximated in a similar way. As shown
in (Rue et al., 2017), the resulting approximated marginal is quite accurate and only
runs into slight trouble where the likelihood changes abruptly. This approach pro-
vides more accuracy because each conditional distribution is much closer to Gaus-
sian than their joint distribution. This is the key idea of the INLA method: Laplace
approximations are only applied to densities that are near-Gaussian, replacing com-
plex dependencies with conditioning.

We now extend the example shown above to a more general LGM framework. In
the first stage, we observe n counts yi that follow independent Poisson distributions
with mean λi for i = 1, . . . ,n. In the second stage, we model λi using a log link and
first-order autoregressive process. The first two stages of this LGM can be written as

p(y | η,θ) ∝

n

∏
i=1

exp
(
ηiyi− eηi

)
/yi!,

π(η | θ) ∝ |Qθ|1/2 exp
(
− 1

2
η′Qθη

)
,

where θ = (τ,ρ) denotes the hyperparameters, and their prior π(θ) needs to be spec-
ified in the third stage. Then, the joint posterior distribution of the unknowns reads:

p(η,θ | y) ∝ π(θ)π(η | θ)p(y | η,θ).

Theory of INLA 25

Our goal is to accurately approximate the posterior marginals p(ηi |y) for i= 1, . . . ,n
and p(θ j | y) for j = 1,2. The direct implementation of Laplace approximations
is problematic here because we have a product of a Gaussian and a (very) non-
Gaussian. The strategy used in INLA is to reformulate the problem as a series of
subproblems and only apply the Laplace approximation to the densities that are al-
most Gaussian. More specifically, the method can be divided into three main tasks:
firstly propose an approximation p̃(θ | y) to the joint posterior of p(θ | y), secondly
propose an approximation p̃(ηi | θ,y) to the marginals of the conditional distribu-
tion of ηi given the data and the hyperparameters p(ηi | θ,y), and finally explore
p̃(θ | y) and use it for numerical integration. As a result, the approximated posterior
marginals of interest returned by INLA have the following form:

p̃(ηi | y) = ∑
k

p̃(ηi | θ(k),y)p̃(θ(k) | y) ∆θ(k), (2.3a)

p̃(θ j | y) =
∫

p̃(θ | y)dθ− j, (2.3b)

where θ− j denotes the vector of θ with its jth element excluded, and p̃(θ(k) | y) are
the density values computed during an exploration on p̃(θ | y). Below we describe
how each task is completed in detail.

Approximating p(θ | y)
The Laplace approximation of a joint posterior of the hyperparameters is given by

p̃(θ | y) ∝
p(η,θ | y)
p̃(η | θ,y)

∣∣∣∣
η=η∗(θ)

, (2.4)

where p̃(η | θ,y) is a Gaussian approximation to the full conditional of η obtained
by matching the modal configuration and the curvature at the mode, and η∗(θ) is the
mode of the full conditional for η for a given value of θ. This Laplace approximation
will be exact if p(η | θ,y) is Gaussian. It is noteworthy that the approximation p̃(η |
θ,y) has the following form

p̃(η | θ,y) ∝ |Rθ|1/2 exp
(
−1

2
(η−µθ)

′Rθ(η−µθ)

)
, (2.5)

where µθ is the location of the mode, Rθ = Qθ + diag(cθ) and the vector cθ on
the diagonal contains the negative second derivatives of the log-likelihood at the
mode with respect to ηi (see Rue and Held, 2005, Section 4.4.1). There are two big
advantages of using (2.5). First, it is a GMRF with the same dependence structure as
from Qθ because the impact from accounting for the observations is only a shift in
the mean and the diagonal of the precision matrix. Therefore, it is easy to evaluate
(2.5) for every value of θ. Second, the Gaussian approximation is likely to be quite
accurate since the impact of conditioning on the observations is only on the diagonal,
which shifts the mean, reduces the variance and might introduce some skewness

26 Bayesian Regression Modeling with INLA

into the marginals. More importantly, it does not change the Gaussian dependence
structure.

We can improve approximation (2.4) using variance-stabilizing transformations
of θ, such as log transformation, the Fisher transform of correlations, etc. For exam-
ple, INLA uses the following transformations for θ = (θ1,θ2) of the AR(1) model:{

θ1 = log(κ), κ = τ(1−ρ2),

θ2 = log
(

1+ρ

1−ρ

)
,

(2.6)

where κ is the marginal precision. Additionally, we can use the Hessian matrix at the
mode to construct almost independent linear combinations (or transformations) of θ
(see Rue et al., 2009). These transformations tend to diminish long tails and reduce
skewness, which gives much simpler and better-behaved posterior densities.

Approximating p(ηi | θ,y)
For approximating p(ηi | θ,y), there are three options available and they vary in
terms of speed and accuracy. The fastest option is to use the marginals of the Gaus-
sian approximation p̃(η | θ,y) already computed by (2.5). The only extra cost to
obtain p̃G(ηi | θ,y) is the computation of the marginal variances from the sparse
precision matrix Rθ (see Rue et al., 2009, for details). Although it often gives rea-
sonable results, the Gaussian approximation can cause errors in the location and/or
the skewness (Rue and Martino, 2007).

A more accurate approach is to perform a Laplace approximation one more time

p̃LA(ηi | θ,y) ∝
p(η,θ | y)

p̃(η−i | ηi,θ,y)

∣∣∣∣
η−i=η∗−i(ηi,θ)

, (2.7)

for i = 1, . . . ,n, where p̃(η−i | ηi,θ,y) is the Gaussian approximation with the modal
configuration η∗−i(ηi,θ). However, this method involves the location of the mode and
the factorization of a (n−1)× (n−1) matrix many times for each i, which is simply
too demanding, especially when n is large.

A third option denoted by p̃SLA(ηi | θ,y) is called the simplified Laplace ap-
proximation, which is obtained by doing a Taylor expansion on the numerator and
denominator of the expression (2.7) up to third order, thus correcting the Gaussian
approximation for location and skewness with a much lower cost when compared to
p̃LA(ηi | θ,y).

We refer to Rue et al. (2009) for a detailed description of the Gaussian, Laplace
and simplified Laplace approximations. These three approximation strategies can be
specified via “strategy=” in control.inla argument in inla() function. They are
termed as “gaussian”, “simplified.laplace” and “laplace”, respectively. For example,
when the Laplace approximation strategy is needed we may specify the argument as
follows:
inla(..., control.inla = list(strategy = ’laplace’), ...)

The default strategy is the simplified Laplace approximation.

Theory of INLA 27

Exploring p̃(θ | y)

When approximating p(ηi | y) we only need p̃(θ | y) to integrate out uncertainty
with respect to θ. Hence there is no need of a detailed exploration of p̃(θ | y) as
long as we are able to select good evaluation points for the numerical integration in
(2.3a). Rue et al. (2009) propose three different exploration schemes depending on
the number of hyperparameters. All schemes, however, require a reparameterization
of θ-space to make the density more regular. Without loss of generality we assume
θ = (θ1, . . . ,θm) ∈ IRm and proceed as follows. First, find the mode θ∗ of p̃(θ | y)
and compute the negative Hessian matrix H at the modal configuration. Then, we
standardize θ to obtain a new variable

z = (V Λ1/2)−1(θ−θ∗),

withH−1 = V ΛV ′ being the eigen-decomposition.
If the dimension of θ is small, say m≤ 2, the z-parameterization is used to build

a grid covering the bulk of the probability mass of p̃(θ | y) (see the left panel of
Figure 2.1). It turns out that a rough grid is enough to give accurate results if our pur-
pose is on p(ηi | y) only. Unfortunately, the computational cost of such a grid search
method grows exponentially with m. For instance, if we only use three evaluation
points in each dimension the computational cost is O(3m), making it inapplicable
to the case where we have even a moderate number of hyperparameters. One alter-
native approach, although it is a little extreme, is empirical Bayes: we only use the
model configuration to integrate over p(θ|y). This “plug-in” method will obviously
underestimate uncertainty, but it will provide reasonable results given the fact that
the variability in the latent field is not dominated by the variability in the hyperpa-
rameters.

An intermediate approach between full numerical integration and the plug-in
method is described in Section 6.5 of Rue et al. (2009). Guided by mode θ∗ and
the negative Hessian matrix H some “points” in the m-dimensional space are found
to approximate the unknown function with a second-order surface and a classical
quadratic design like the central composite design (CCD) is used. A CCD contains an
embedded factorial or fractional factorial design with center points augmented with
a group of points that allow for estimating the curvature. These integration points
are approximately located on an appropriate level set for the joint posterior of θ (see
the right panel of Figure 2.1). This CCD integration requires much less computation
compared to the grid search, and is still able to capture variability in θ-space when it
is too wide to be explored via the grid search.

The three integration strategies: grid search, empirical Bayes and CCD, can be
specified via the “int.strategy=” in the control.inla argument. They are termed
as grid, eb and ccd, respectively. For example, when the grid search is needed we
may specify the argument as follows:
inla(..., control.inla = list(int.strategy = ’grid’), ...)

There is another “auto” option, which is the default choice in the argument. It chooses
between the three integration strategies depending on m, the number of hyperparam-

28 Bayesian Regression Modeling with INLA

-2 -1 0 1 2

-2
-1

0
1

2

-2 -1 0 1 2

-2
-1

0
1

2
FIGURE 2.1
Location of the integration points in a two-dimensional θ-space using the grid (left)
and the CCD (right) strategy.

eters. If m≤ 2 the grid search method is used. If m > 2 the ccd method is used. The
empirical Bayes method is never used unless it is specified in the argument.

Approximating p(θ j | y)

If the dimension of θ is not too high, it is possible to derive marginals for θ j directly
from p̃(θ|y) by summing out the variables θ− j in (2.3b). It is, however, a pretty
costly method because every value of θ would require an evaluation of (2.5) and
the computation of numerical integration grows exponentially with the dimension
of θ. Another intuitive approach is to apply the Laplace approximation as in (2.7),
where the numerator is p̃(θ|y) obtained in (2.4) and the denominator is the Gaussian
approximation to p̃(θ− j|θ j,y) built by matching the mode and the curvature at the
mode. However, this approach suffers from expensive computation as well as some
other issues, making it infeasible for most LGMs of interest (Martins et al., 2013).
Therefore it is desirable to build algorithms that use the density points already eval-
uated in the grid exploration of p̃(θ|y) as described in the above section. Those grid
points have already been computed in order to integrate out the uncertainty of θ us-
ing (2.3a), so the algorithms to compute p̃(θ j|y) using these points will yield little
extra cost. It is quite a challenge to find a quick and reliable approach to deriving all
the marginal distributions from (2.4), while keeping the number of evaluation points
low. We provide below a brief description of the current remedy used in INLA, and
refer to Martins et al. (2013) for technical details.

The joint distribution p(θ|y) can be approximated by a multivariate normal dis-
tribution by matching the mode and the curvature at the mode of p̃(θ|y). This Gaus-
sian approximation for p(θ j|y) comes without extra computational effort since the
mode and the negative Hessian matrix of p̃(θ|y) have already been computed to ap-

Theory of INLA 29

proximate (2.3a). However, the true marginals can be rather skewed so that we have
to correct the Gaussian approximations for the lack of skewness with minimal addi-
tional costs. Such a correction is done by approximating the joint distribution as a
sum of the mixture of normal distributions with scaling parameters allowed to vary
according to different axes and their directions. Then, the marginals can be computed
via numerical integration of the approximated joint distribution. This algorithm was
successfully used in the INLA package for a long time, giving accurate results with
short computational time. However, the multi-dimensional numerical integration be-
comes unstable when fitting models with a higher number of hyperparameters, re-
sulting in approximated posterior marginals densities with undesirable spikes. To fix
this problem, Martins et al. (2013) proposed an integration-free algorithm, where
the posterior marginal of each θ j is directly approximated by a mixture of normal
distributions

p̃(θ j | y) =
{

N(0,σ2
j+), θ j > 0

N(0,σ2
j−), θ j ≤ 0

and the scaling parameters σ2
j+ and σ2

j− are estimated without using numerical inte-
gration. As shown by Martins et al., this algorithm gives sensible results with almost
no extra computation time, although it loses some accuracy compared to the grid
exploration method which is much more computationally intensive. It has become
the default method to compute the posterior marginals for the hyperparameters in
INLA. In order to get more accurate results via the grid search method we may use
inla.hyperpar(result), where result is the output of the inla() function.

Example: Simulated Data

Now let’s use INLA to fit a simple LGM given by

yi | ηi ∼ Poisson(Eiλi), λi = exp(ηi),

where Ei are offset terms and η = (η1, . . . ,η50) follows an AR(1) process with cor-
relation ρ = 0.8 and precision τ = 10. We then simulate data as follows:

set.seed(1)
n <- 50
rho <- 0.8
prec <- 10
E <- sample(c(5, 4, 10, 12), size = n, replace = TRUE)
eta <- arima.sim(list(order=c(1,0,0), ar=rho), n=n, sd=sqrt(1/prec))
y <- rpois(n, E*exp(eta))

To estimate τ and ρ we need to assign them hyperpriors. In INLA the two param-
eters are first reparameterized to θ1 and θ2 as in (2.6), and a log-gamma prior is then
taken on θ1 and a normal prior on θ2. We then fit this LGM by

data <- list(y = y, x = 1:n, E = E)
formula <- y ~ f(x, model = "ar1")
result.sla <- inla(formula, family = "poisson", data = data, E = E)

The formula defines how the response depends on the covariate with the AR(1)

30 Bayesian Regression Modeling with INLA

0.0

0.5

1.0

-4 -2 0 2

de
ns

ity
Rho for x SD for x

0

1

2

3

0

1

2

3

4

-1.0 -0.5 0.0 0.5 1.0 0.2 0.4 0.6 0.8

de
ns

ity
FIGURE 2.2
Posterior densities of η50 (left panel) using simplified Laplace approximation (solid),
the Gaussian approximation (dotted) and the best possible Laplace approxima-
tion (dashed). Posterior densities of the hyperparameters using the integration-free
method (solid) and the grid method (dotted).

model specified in f() function. The inla() function is where we specify likelihood,
data, offset, etc., and implement INLA methodology.

In the left panel of Figure 2.2 we show three estimates for the posterior marginal
of η50. The solid line is the default estimate using the simplified Laplace approxi-
mation as outlined in Section 2.3, given by the R commands above. The dotted line
is yielded by the Gaussian approximation that avoids integration over θ (empirical
Bayes), which is obtained by

result.gau <- inla(formula, family = "poisson", data = data, E = E,
↪→ control.inla = list(strategy=’gaussian’, int.strategy="eb"))

The dashed line represents the Laplace approximation and accurate integration over
θ. It is the best approximation provided by the current software, although it takes a
much longer time. We fit the model as follows:

result.la <- inla(formula, family = "poisson", data = data, E = E,
↪→ control.inla = list(strategy = ’laplace’, int.strategy = "grid"
↪→ , dz = 0.1, diff.logdens = 20))

Here dz is the step-length in the standardized scale for the integration of the hyper-
parameters, and diff.logdens is the difference of the log density for the hyperpa-
rameters to stop numerical integration. It is hard to see the dashed line as it is almost
entirely covered by the solid line, indicating the simplified Laplace approximation is
very close to being exact in this example. We also note that the uncertainty increases
by integrating out θ (as it should), and the skewness is successfully accounted for in
the estimate. The left panel of Figure 2.2 is made by the following code:

i <- 50

Theory of INLA 31

marg.lst <- list(result.sla$marginals.random$x[[i]], result.gau$
↪→ marginals.random$x[[i]], result.la$marginals.random$x[[i]])

names(marg.lst) <- as.factor(c(1,2,3))
pp <- data.frame(do.call(rbind, marg.lst))
pp$method <- rep(names(marg.lst), times = sapply(marg.lst, nrow))
library(ggplot2)
ggplot(pp, aes(x = x, y = y, linetype = method)) + geom_line(show.

↪→ legend = FALSE) + ylab("density") + xlab("") + theme_bw(base_
↪→ size = 20)

Let’s look at how well the hyperparameters are estimated. In the right panel of
Figure 2.2 we present the solid lines which are posterior marginals of ρ and the
marginal SD estimated by the default integration-free method. Note that ρ = 0.8 and
the marginal SD is

marg.prec <- prec*(1 - rho^2)
(marg.sd <- 1/sqrt(marg.prec))

[1] 0.5270463

As we can see, the estimated density curves are centered around the true parameters.
We also tried the grid method for more accurate estimates

res.hyper <- inla.hyperpar(result.sla)

and the results are dotted curves in the right panel of Figure 2.2. Compared to the
solid curves, the uncertainties slightly increase while the overall shapes remain un-
changed. The figure is made by the following code:

library(brinla)
p1 <- bri.hyperpar.plot(result.la)
p2 <- bri.hyperpar.plot(res.hyper)
pp <- rbind(p1, p2)
pp$method <- as.factor(c(rep(1, dim(p1)[1]), rep(2, dim(p2)[1])))
ggplot(pp, aes(x = x, y = y, linetype = method)) + geom_line(show.

↪→ legend = FALSE) + facet_wrap(~parameter, scales = "free") +
↪→ ylab("density") + xlab("") + theme_bw(base_size = 20)

2.4 INLA Problems
Reproducibility: INLA is a computationally intensive method and so we want to get
the most of our hardware. Most modern computers have multiple cores. In standard
operation, INLA makes use of the OpenMP multiple processing interface. In theory,
this could reduce computation time by a factor of the number of cores. In practice,
the improvement will be somewhat less than this but still welcome for extensive
computations. Unfortunately, this increase in speed comes with an unwanted side
effect. Due to the intrinsic nature of OpenMP, small variations in the computation
will be observed in repeated runs. One would not be too concerned about variations
in, say, the seventh decimal place of a statistic but sometimes the variation can be
more substantial than this. Some of the computations are sensitive to perturbations in

32 Bayesian Regression Modeling with INLA

starting values and so the effects can be magnified to a more noticeable level. Even
so, we suggest that the user not be too concerned about this as the variation will
be much smaller than parametric and model uncertainty that is unavoidably present.
Sometimes, statistical results are presented with many significant digits which creates
the false illusion of accuracy. In truth, estimates are rarely accurate beyond the second
or third digit and so worrying about detail beyond this is pointless.

This variation is of a different nature to that generated by simulation methods
such as MCMC. Variation in simulation studies is substantial and can only be reduced
with the substantial cost of increasing the simulation size. The variation caused by
OpenMP is much smaller. In simulation studies, one can ensure reproducibility by
setting the seed of the random number generator. This seed has no relevance to our
problem.

Sometimes exact reproducibility is required. Other people may insist on it or you
may wish to check your computation for other changes at a later date for debugging
or software version purposes. You can achieve this by using the option num.threads
= 1 in the inla() command call. This forces the use of a single processor and en-
sures bit reproducibility. Note that repeating the computation on different hardware
will not necessarily give exactly the same result. Also understand that the single and
multiple threaded answers are equally good and there is no advantage to the single
threaded answer other than the reproducibility.

In this book, we use the default multiprocessing method. This means that if you
run the same commands, you may get slightly different results. The INLA method is
an approximation that could be made more accurate at the expense of longer com-
putation. By using it, we accept this tradeoff as reasonable. Using similar reasoning,
we are willing to trade bit reproducibility for faster computation.

Approximation accuracy: Numerical integration requires many choices regard-
ing the location and number of function evaluations. Optimization also requires many
choices about starting values, step lengths used in iterations, termination criteria and
more. One can improve the accuracy of the computation by adjusting the parame-
ters that control these integrations and optimizations but only at the cost of greater
compute time. You can see many of these parameters with:

inla.set.control.inla.default()

If you are concerned about the accuracy of the approximation, you might try the
following options to your inla() call:
inla(..., control.inla = list(strategy = "laplace",

int.strategy = "grid", dz=0.1, diff.logdens=20), num.threads=1)

This will use a more accurate integration strategy with a finer grid with a bit repro-
ducible result. If the inla() call on the default settings computes quickly, you may
well afford the extra time for this deluxe calculation. In the rest of this book, we will
use the default settings unless there are special reasons to deviate.

Failure: Any statistical procedure can fail. For simpler and well-established
methods, the modes and signs of failure are more familiar. For more complex meth-
ods, such as INLA, there are more things that can go wrong and diagnosing the
problem is more difficult.

Theory of INLA 33

The most gentle form of failure is due to a syntactic error in specifying the INLA
commands. As is sometimes the case in R, the error message is not so helpful because
it reports the immediate rather than the root difficulty. In such circumstances, the
generic advice applies. Search the internet with key words from the error message.
You are probably not the first person to make such a mistake. Check the INLA help
pages and INLA FAQ on the INLA website. An INLA mailing list is archived on the
INLA website — a search of this can be rewarding.

The next level of failure occurs when the INLA commands are correct but the
program terminates with an error. Again, the error message reports what went wrong
immediately before the termination but the real source of the problem may lie with
the specification of the model or the data available. You can obtain more information
about the progress of the INLA procedure by adding the argument verbose=TRUE to
the inla() call. This may suggest the source of the problem. In some cases, the prob-
lem is due to insufficient data to estimate the chosen model. For example, it is rather
difficult to estimate a variance with only one observation. Consider the parameters of
your model and whether the data is sufficiently rich to estimate these parameters. In
some cases, we can succeed in fitting a model by specifying more informative priors.
If the data are inadequate, we need to make stronger assumptions to progress.

Simplification is a debugging strategy that can be revealing. Reduce the com-
plexity of your model by removing elements such as covariates or random effects. If
you can fit a simpler model, you can narrow down which feature of the model is the
source of the problem. For very large problems, you should try a small subsample
of the data to see whether the problem is due to the size of the dataset. Indeed, for
large datasets and complex models, we may start INLA and wait impatiently for an
answer that never seems to come. This is a good reason to start with a smaller dataset
and/or model so you have a realistic expectation of how long the larger problem will
take. Your personal computer may not be adequate to the task but a larger machine
may do the job.

A more insidious form of failure occurs when INLA returns a result without
complaint but this answer is wrong. Here is an example. The INLA methodology
needs the full conditional density for the latent field to be “near” Gaussian. This is
usually achieved by replications, or borrowing strength/smoothing from the GMRF
priors. We present here a simple example which does not meet this requirement.
Suppose yi follows a Bernoulli distribution with success probability pi = eηi/(1+
eηi), and assume ηi ∼ N(µ,σ2) independently with µ = σ2 = 1. Such data can be
simulated as follows:

set.seed(1)
n <- 100
u <- rnorm(n)
eta <- 1 + u
p <- exp(eta)/(1+exp(eta))
y <- rbinom(n, size = 1, prob = p)

For each binary observation there is an i.i.d. Gaussian random effect with unknown
mean and variance. Since there is no smoothing, borrowing strength, or replications,

34 Bayesian Regression Modeling with INLA

the full conditional density of ηi is not near Gaussian. In this situation INLA has a
tendency to underestimate the variance σ2:

data <- data.frame(y = y, x = 1:n)
result <- inla(y ~ 1 + f(x, model = "iid"), data = data, family = "

↪→ binomial", Ntrials = 1)
round(bri.hyperpar.summary(result), 4)

mean sd q0.025 q0.5 q0.975 mode
SD for x 0.012 0.0124 0.0036 0.0084 0.0431 0.0057

We see the posterior mean of σ is 0.012 is much smaller than its true value 1. The
mean of ηi, however, is reasonably well estimated:

round(result$summary.fixed, 4)

mean sd 0.025quant 0.5quant 0.975quant mode kld
(Intercept) 0.9947 0.2253 0.5649 0.9903 1.4499 0.9813 0

The main reason that INLA fails to estimate the variance in the example above is
that the usual assumptions ensuring asymptotic validity of the Laplace approximation
do not hold here (see Section 4 of Rue et al., 2009, for details on asymptotic results).
The independence of the random effects make the effective number of parameters
(Spiegelhalter et al., 2002) on the order of the number of data points, and there is
a lack of strong asymptotic results for the models with a large effective number of
parameters, like what we have here. Moreover, the data simulated here provide little
information about the parameters, with the shape of the likelihood function adding
to the problem. For a single yi = 1, the log likelihood is an increasing function of
increasing ηi, and gets very flat for high values of ηi, making inference very difficult
(Ferkingstad and Rue, 2015).

In this simulated example, we have the advantage of divine knowledge of the
source of the problem, because we are able to compare the INLA result with the
known true value. In practical examples, we cannot compare our results to the truth
for this is unknown and perhaps unknowable. However, there are a number of mea-
sures we can take to increase our confidence in the validity of our results.

Where possible, we recommend that you compute the maximum likelihood esti-
mates (MLE). For the models considered in this text, there is usually an R command
or package that will produce these without significant additional effort. We have
done this in several of our examples. You should compare the MLE with the poste-
rior modes from the INLA output. The MLE is based on a maximum so this is most
analogous to the mode rather than the median or mean. There is no requirement that
these agree exactly but with flat priors, the maximum a posteriori (MAP) estimate
(which is the posterior mode) will be very similar to the MLE. With more informa-
tive priors, one can expect more of a difference. If the results are similar, we will
feel more confident about the INLA result. If there is some difference, we can try
to understand why this has occurred. INLA allows Bayesian inference while max-
imum likelihood provides frequentist conclusions. Computing the MLE is just for
validation of the INLA result — we plan to stick with INLA for the inference.

We can also implement the model using MCMC-based methods such as BUGS,
JAGS or STAN. We are reluctant to do this because this will require greater program-

Theory of INLA 35

ming effort to reproduce the modeling in these packages. Furthermore, it will take
significantly longer to compute (or fail entirely in more difficult cases). Avoiding this
trouble may have motivated us to use INLA over MCMC-based methods in the first
place. Even so, if the results are sufficiently important and we need to be assured of
their validity, this may be a price we must pay. We can also give the same advice to
users who started with MCMC — check your results with INLA.

Simulation is another strategy for validating our results. We can simulate data
from our model with known parameters and check whether INLA is able to match
these known values. We may need to simplify the model or reduce the data size to
do this effectively since some replication will be necessary. Our example above is a
simple demonstration of how this might be done. You will also find that the examples
on the INLA help pages use simulated data to demonstrate the methods. Simulation
can provide additional assurance to our results but it is not foolproof. Unless you can
afford large numbers of replications, there will be some sampling variability. The
true parameters may be quite different from your simulation.

As with any statistical model, the data may be generated from a quite different
model from the one we are using. In such circumstances, INLA cannot be said to fail
but the results will, nevertheless, be misleading. Diagnostic methods can be helpful
in detecting such model failures and in suggesting improved models. We discuss
diagnostic methods for many of the models in this book. Unfortunately, diagnostic
procedures for Bayesian models are generally less well-developed compared to the
corresponding frequentist models. This is partly due to a conceptual reluctance by
some Bayesian to engage in model diagnostics. We, however, have no reticence in
recommending that you check your models thoroughly by any means available.

We hope this section has not discouraged you from using INLA. The advice we
have given here applies to any complex statistical procedure. This is simply the price
you must pay.

2.5 Extensions
Approximating Marginal Likelihood

The marginal likelihood p(y) is a useful quantity for model comparison. For exam-
ple, Bayes factors are defined as ratios of marginal likelihoods of two competing
models; the computation of deviance information criterion (DIC) also involves this
likelihood (see Section 1.6). Based on expression (2.4) an intuitive approximation to
p(y) is given by

p̃(y) =
∫ p(η,θ | y)

p̃(η | θ,y)

∣∣∣∣
η=η∗(θ)

dθ.

It is actually the normalizing constant of p̃(θ|y). This approximation allows for the
departure from being Gaussian because p̃(θ|y) is treated in a “non-parametric” way.

36 Bayesian Regression Modeling with INLA

However, this method could fail if the posterior marginal of θ is multimodal. This
is not specific to the evaluation of the marginal likelihood but applies generally to
the INLA approach. Fortunately, the latent Gaussian models almost always generate
unimodal posterior distributions (Rue et al., 2009).

Model Selection

To compare different models two criteria are available in INLA: the deviance infor-
mation criterion (DIC) (Spiegelhalter et al., 2002) and the Watanabe Akaike infor-
mation criterion (WAIC) (Gelman et al., 2014) (see Section 1.5 for details).

The DIC depends on the deviance defined as −2log(p(y)). We need to compute
its posterior expectation and evaluate it at the posterior expectation. Although it may
seem odd, we evaluate the deviance at the posterior mean of η and the posterior mode
of θ instead of doing it at the posterior mean of all parameters. This is because the
posterior marginals of θ can be highly skewed, making the posterior expectation a
bad representation of location. The WAIC criterion is computed in a similar way.

To compute these two criteria, we need to add the following argument:
result <- inla(..., control.compute = list(dic = TRUE, waic = TRUE))

The estimates become available as result$dic and result$waic.

Model Checking

For model checking, INLA provides two “leave-one-out” predictive measures — the
conditional predictive ordinate (CPO) and the probability integral transform (PIT)
(see also Section 1.4). These two measures are both computed on the basis of the
predictive distribution for the observed yi given all the other observations, that is
p(yi|y−i). Instead of reffiting the model n times, we may approximate this quantity
simply as follows. The marginals of ηi and θ change when we remove yi from the
data:

p(ηi | y−i,θ) ∝ p(ηi | y,θ)/p(yi | ηi,θ),

p(θ | y−i) ∝ p(θ | y)/p(yi | y−i,θ),

where a one-dimensional integral is required to compute:

p(yi | y−i,θ) =
∫

p(yi | ηi,θ)p(ηi | y−i,θ)dηi.

We then integrate out the effect of θ from p(yi | y−i,θ) the same way as in equation
(2.3a). Given the approximated marginal p̃(yi|y−i), we can compute CPO and PIT
statistics for each observation. To enable the computation of these quantities, we need
to add an argument to inla() as follows:
result <- inla(..., control.compute = list(cpo = TRUE), ...)

The predictive measures are available as resultcpocpo for CPO and
resultcpopit for PIT.

Theory of INLA 37

The CPO/PIT measures are computed with the fixed integration-points, and
therefore we may consider improving the grid integration by adding the argument
inla(..., control.inla = list(int.strategy="grid", diff.logdens=4))

In some cases, the tail behavior of the marginals is important for the CPO/PIT cal-
culations. Hence we’d better increase the accuracy of the tails using the Laplace
approximation approach, i.e.,
inla(..., control.inla = list(strategy = "laplace", npoints = 21))

where we add more evaluation points npoints = 21 instead of 9 by default .
One should be also aware that a few implicit assumptions are made in the INLA

program, and there are internal checks about these assumptions when computing
CPO/PIT. These checks are reflected in resultcpofailure, where some assump-
tion is violated for the ith observation if resultcpofailure[i] > 0, and the
higher the value (maximum 1) the more serious the violation. We therefore should
recompute the CPO/PIT values for the observations in violation, which must be
done manually by removing “y[i]” from the dataset, fitting the model and predict-
ing “y[i]”. Fortunately, an efficient implementation of this is available in INLA using
inla.cpo(result), which returns the improved estimates of the measures.

In practice one should always pay attention to the cases with unusually small
CPO/PIT values no matter if they violate the assumptions or not. This is because
the validation with these measures depends on the tail behavior, and it is difficult
for INLA to estimate it. As a result, we suggest you should always verify that the
smallest measures are estimated correctly by setting their rescpofailure values
to be 1, and re-estimate them with inla.cpo(), especially if you plan to call the case
an outlier.

Linear Combinations of the Latent Field

Sometimes, we might be interested in more than just the posterior marginals of the el-
ements in the latent field. We might also want linear combinations of those elements.
Such linear combinations can be written as v =Aη, where A is a k×n matrix with
k being the number of linear combinations and n is the size of the latent field η. For
example, one may be interested in the joint distribution of v= (η1,η2)

T , and the cor-
responding A is a 2× n matrix that only has nonzero entries A[1,1] =A[2,2] = 1.
The functions inla.make.lincomb() and inla.make.lincombs() are used to de-
fine a linear combination and many linear combinations at once, respectively. The
resulting linear combination(s) is then added to lincomb argument in inla().

INLA provides two approaches for dealing with v. In the first approach, we create
an enlarged latent field η̃ = (η,v) and then fit the enlarged model as usual, using the
Gaussian, Laplace or simplified Laplace approximations discussed in Section 2.3.
We therefore have posterior marginals for each element of η̃, including the linear
combinations v. The drawback of this approach is that the addition of many linear
combinations yields more dense precision matrices, which consequently slows down
the computations. To implement this approach, we need the following argument:
inla(..., control.inla = list(lincomb.derived.only = FALSE), ...)

38 Bayesian Regression Modeling with INLA

In the second approach v is not included in the latent field, but a post-processing
of the INLA output is performed and the conditional distribution v|θ,y is approx-
imated by a Gaussian with mean Aµ̃ and covariance matrix AQ̃−1AT , where µ̃
is the mean of the best marginal approximation used for p(ηi|θ,y) (i.e., Gaussian,
simplified Laplace or Laplace approximation) and Q̃ is the precision matrix of the
Gaussian approximation p̃(η|θ,y) as presented in (2.5). We then integrate out θ from
the approximation of p(v|θ,y) in a process similar to equation (2.3a). The advantage
of this approach is that the computation does not enlarge the latent field, leading to
a much faster approximation. Consequently, this is the default method in INLA, but
more accurate approximations can be obtained by switching to the first approach.

When using the faster approach, there is an option to compute the posterior cor-
relation matrix between all the linear combinations using the following argument:
inla(..., control.inla = list(lincomb.derived.correlation.matrix

= TRUE), ...)

This correlation matrix could be used, for example, to build a Gaussian copula to
approximate the joint density of some components of the latent field, as discussed in
Section 6.1 of Rue et al. (2009).

3
Bayesian Linear Regression

Linear regression is one of the most common statistical approaches for modeling
the relationship between a scalar dependent variable (or response) and one or more
explanatory variables (or independent variables). It is the study of linear, additive
relationships between variables. The methodology was the first type of regression
analysis to be studied rigorously, and has been a topic of innumerable textbooks
(Chatterjee and Hadi, 2015). Although it may seem to be too simple compared to
some of the more modern statistical regression techniques described in later chap-
ters of this book, linear regression is still considered as one of the most useful and
powerful tools in practical applications. This chapter can serve as a good starting
point for newer and more complex modeling approaches that we will discuss in the
later chapters. Having a deep understanding of standard linear regression is of im-
portance, since many fancy regression techniques can be viewed as generalizations
or extensions of it.

3.1 Introduction
Let

{xi1, ...,xip,yi}, i = 1, ...,n,

represent n observation units, each of which consists of a measurement of the p-
vector of predictors (x1, ...,xp) and a measurement of the response variable y. The
multiple linear regression model takes the form

yi = β0 +β1xi1 + ...+βpxip + εi. (3.1)

In this linear model (3.1), the relationship between y and (x1, ...,xp) is modeled using
the linear predictor function µ = β0 + β1x1 + ...+ βpxp, and a disturbance term or
error variable ε. The unknown model parameters (β0,β1, ...,βp) are estimated from
the data. The model becomes a simple linear regression when p = 1. Linearity here is
with respect to the unknown parameters. Sometimes the predictor function contains
a nonlinear function of a predictor. For example, a polynomial regression of degree
3 is expressed as yi = β0 +β1xi +β2x2

i +β3x3
i + εi. This model remains linear since

it is linear in the parameter vector.

40 Bayesian Regression Modeling with INLA

The linear model (3.1) can be written in a matrix form,

y = Xβ+ ε, (3.2)

where

y =


y1
y2
...

yn

 , X =


1 x11 · · · x1p
1 x21 · · · x2p
...

...
. . .

...
1 xn1 · · · xnp

 , β =


β0
β1
...

βp

 , ε=


ε1
ε2
...

εn

 .
We begin our discussion by assuming that the errors are independent and nor-

mally distributed with mean zero and constant variance, i.e., the error term ε in (3.2)
is assumed to be distributed as N(0,σ2I) with an unknown variance parameter σ2.

In frequentist statistics, the parameters can be estimated using the maximum like-
lihood estimation (MLE) or the least squares method. Specifically, the likelihood
function for the model (3.2) is,

L(β,σ2|X,y) =
(

1√
2πσ

)n

exp
[
− 1

2σ2 (y−Xβ)T (y−Xβ)
]
, (3.3)

which yields the score equations

S1(β,σ
2) =

∂logL
∂β

=− 1
2σ2 XT (y−Xβ), (3.4)

S2(β,σ
2) =

∂logL
∂σ

=− n
σ
+

1
2σ3 (y−Xβ)T (y−Xβ). (3.5)

Assuming XT X is of full rank and setting (3.4) and (3.5) to zero, we obtain the
maximum likelihood estimators

β̂ = (XT X)−1XT y, (3.6)

and
σ̂

2 =
1
n
(y−Xβ̂)T (y−Xβ̂). (3.7)

Note that β̂ is an unbiased estimator of β, and the least squares estimator of β is also
β̂ (Chatterjee and Hadi, 2015). However, σ̂2 is not an unbiased estimator of σ2. The
more commonly used estimator of σ2, which is unbiased, is

S2 =
1

n− p−1
(y−Xβ̂)T (y−Xβ̂).

3.2 Bayesian Inference for Linear Regression
We now consider Bayesian inference for the model (3.2). In Bayesian analysis, the
inverse of the variance parameter plays an important role and is called the precision,

Bayesian Linear Regression 41

τ = σ−2. We shall use the precision τ in manipulating the distributions. Based on the
assumption of the model, we have

y|β,τ∼ N(Xβ,τ−1I).

We further assumeβ and τ are independent. Therefore, the joint posterior distribution
of the unknown parameters, thus, is

π(β,τ|X,y) ∝ L(β,τ|X,y)p(β)p(τ),

where p(β) and p(τ) are the priors for the parameters β and τ. Closed form of the
posterior distributions of β and τ are only available under certain restricted prior
distributions.

An important problem in Bayesian analysis is how to define the prior distribution.
If prior information about the parameters is available, it should be incorporated in the
prior distribution. If we have no prior information, we want that a prior distribution
can be guaranteed to have a minimal influence on the inference. Noninformative
prior distribution, for example p(β) ∝ 1, has always been appealing, since many real
applications lack information on the parameters. However, the major drawback of
noninformative prior is that it is not invariant for transformation of the parameters.
See more discussions in Appendix B. We also refer to Gelman et al. (2014) for a
comprehensive discussion on prior selection.

In INLA, we assume that the model is a latent Gaussian model, that is, we have to
assign β a Gaussian prior. For the hyperparameter τ, we often assume a diffuse prior,
a probability distribution with an extremely large variance. A typical prior choice for
β and τ is

β ∼ Np+1(c0,V0), τ∼ Gamma(a0,b0).

Here the prior of β is p+ 1-dimensional multivariate normal with known c0 and
V0. We often assume that V0 is diagonal, which is equivalent to specifying sepa-
rate univariate normal priors on the regression coefficients. The precision τ follows
a dispersed gamma distribution with a known shape parameter a0 and a known rate
parameter b0 (that is, we have mean a0/b0 and variance a0/b2

0). In linear regres-
sion, the gamma prior is conditionally conjugate for τ since the conditional posterior
distribution, p(τ|X,y), is also in that class.

Although the posterior is intractable under these priors, it is straightforward to
construct a blocked Gibbs sampling algorithm and be suitable for MCMC imple-
mentation (Gelman et al., 2014). Specifically, the algorithm iterates between the pair
of conditional distributions:{

π(β|X,y,τ) ∝ L(β,τ|X,y)p(β),
π(τ|X,y,β) ∝ L(β,τ|X,y)p(τ).

Instead of MCMC simulations, the INLA approach provides approximations to the
posterior marginals of the parameters which are both very accurate and extremely
fast to compute (Rue et al., 2009). The marginal posterior π(τ|X,y) is approximated
using

π̃(τ|X,y) ∝
π(β,τ,X,y)
π̃(β|τ,X,y)

∣∣∣∣
β=β∗(τ)

, (3.8)

42 Bayesian Regression Modeling with INLA

which is the Gaussian approximation to the full conditional distribution of β evalu-
ated in the mode β∗(τ) for a given τ. Expression (3.8) is equivalent to the Laplace
approximation of a marginal posterior distribution (Tierney and Kadane, 1986), and
it is exact when π(β|τ,X,y) is Gaussian.

Posterior marginals for the model parameters, π̃(β j|τ,X,y), j = 0,1, ..., p, are
then approximated via numerical integration as:

π̃(β j|X,y) =
∫

π̃(β j|τ,X,y)π̃(τ|X,y)dτ

≈∑
k

π̃(β j|τk,X,y)π̃(τk|X,y)∆k,

where the sum is over values of τ with area weights ∆k. For more technical details,
we refer back to Chapter 2.

The approximate posterior marginals obtained from the INLA procedure can then
be used to compute summary statistics of interest, such as posterior means, variances
and quantiles. As a by-product of the main computations, INLA also computes other
quantities of interest like deviance information criterion (DIC), marginal likelihoods,
etc., which are useful to compare and validate models.

Let us look at an example of multiple linear regression of analyzing the air pollu-
tion data. The dataset has been discussed in Everitt (2006). The data were collected
to investigate the determinants of pollution for 41 cities in the United States. Table
3.1 displays the variables being recorded and their descriptions. In this study, SO2
level is considered as the dependent variable and the other six variables are con-
sidered as potential explanatory variables. Among these potential predictors, two of
them are related to human ecology (pop, manuf) and four others are related to cli-
mate (negtemp, wind, precip, days). Note that the variable, negtemp, represents
the negative value of average annual temperature. Using the negative values here is
because all variables are such that high values represent a less attractive environment.

TABLE 3.1
Description of variables in the air pollution data.

Variable Name Description Codes/Values
SO2 sulfur dioxide content of air micrograms per

cubic meter
negtemp negative value of average fahrenheit

annual temperature
manuf number of manufacturing enterprises integers

employing 20 or more workers
pop population size in thousands numbers

(1970 census)
wind average annual wind speed miles per hour
precip average annual precipitation inches
days average number of days with integers

precipitation per year

Prior to performing a regression analysis on the data, it is useful to graph the data

Bayesian Linear Regression 43

in a certain way so that we can have an insight into the overall structure of them.
Figure 3.1 presents a matrix of scatterplots for all variables on the upper triangular,
and the correlation coefficients displayed on the lower triangle, with nonparametric
kernel density plots for each variable on the main diagonal. The figure is created
using the following R code:

library(ggplot2, GGally)
data(usair, package = "brinla")
pairs.chart <- ggpairs(usair[,-1], lower = list(continuous = "cor"),

↪→ upper = list(continuous = "points", combo = "dot")) + ggplot2::
↪→ theme(axis.text = element_text(size = 6))

pairs.chart

SO
2

ne
gt

em
p

m
an

uf
po

p
w

in
d

pr
ec

ip
da

ys

SO2 negtemp manuf pop wind precip days

0.000

0.005

0.010

0.015

0.020

0.025

� � �
�

�

�
�

�
�

�

�

�

�

�

�

�

�

�
�

�

�

��

�

�

�

�

�

�

�

�

�

�

��

��
� ��

�
�� �

�

�

�
�

�
�

�

�

�

�

�

�

�

�

�
�

�

�

��

�

�

�

�

�

�

�

�

�

�

��

�����

�
�� �

�

�

�
�

�
�

�

�

�

�

�

�

�

�

�
�

�

�

��

�

�

�

�

�

�

�

�

�

�

� �

��
� ��

�
� � �

�

�

�
�

�
�

�

�

�

�

�

�

�

�

�
�

�

�

��

�

�

�

�

�

�

�

�

�

�

��

� �
� ��

�
� ��

�

�

�
�

�
�

�

�

�

�

�

�

�

�

�
�

�

�

��

�

�

�

�

�

�

�

�

�

�

� �

� �
���

�
� ��

�

�

�
�

�
�

�

�

�

�

�

�

�

�

�
�

�

�

��

�

�

�

�

�

�

�

�

�

�

� �

� �
� ��

�

−70

−60

−50

Corr:
0.434

�

�

�

�

�

�

�

�

�

�

�
�

�

�
�

�

�

�

�

�
�

�

�

� �

�

�
�

�

��

�
�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�
�

�

�

�

�

�
�

�

�

� �

�

�
�

�

��

�
�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�
�

�

�

�

�

�
�

�

�

� �

�

�
�

�

� �

�
�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�
�

�

�

�

�

�
�

�

�

��

�

�
�

�

� �

�
�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�
�

�

�

�

�

�
�

�

�

� �

�

�
�

�

��

�
�

�

�

�

�
�

�

�

�

0

1000

2000

3000

Corr:
0.645

Corr:
0.19

�
�

���

�

�

��
�

�

�

��
��

�

�

�

�

�

�
��

��

�

�

�

�� ��

� �

���
�

�

�

�
�

���

�

�

��
�

�

�

� �
��

�

�

�

�

�

�
��

��

�

�

�

� ���

��

� ��
�

�

�

�
�

�� �

�

�

� �
�

�

�

��
� �

�

�

�

�

�

�
� �

��

�

�

�

� � ��

� �

� ��
�

�

�

�
�

� � �

�

�

� �
�

�

�

��
��

�

�

�

�

�

�
� �

��

�

�

�

��� �

� �

� ��
�

�

�

0

1000

2000

3000

Corr:
0.494

Corr:
0.0627

Corr:
0.955

�

�

�
�

��

�
�
�
�

�

�

� �

�
�

�

�

�
�

�

�
�
�

��

�
�

�

�

�

�
�

�

�

�
��

�

�

�
�

�

�
�

��

�
�

�
�

�

�

��

�
�

�

�

�
�

�

�
�

�

��

�
�

�

�

�

�
�

�

�

�
��

�

�

�
�

�

�
�

��

�
�

�
�

�

�

��

�
�

�

�

�
�

�

�
�

�

��

�
�

�

�

�

�
�

�

�

�
��

�

�

�

6

8

10

12

Corr:
0.0947

Corr:
0.35

Corr:
0.238

Corr:
0.213

�

�
�

� ��
�

� ��

�

�

�

�

� �

�
�

�

�
�

�

� �

�

�

�

�

��

�

�

�

� �

�

�

�

�

�

�

�

�
�

� ��
�

� ��

�

�

�

�

��

�
�

�

�
�

�

� �

�

�

�

�

� �

�

�

�

� �

�

�

�

�

�

�

20

40

60

Corr:
0.0543

Corr:
−0.386

Corr:
−0.0324

Corr:
−0.0261

Corr:
−0.013

�

�

�

�

�
��

�

�

�

�

�

��

�

�

�

�

�

��

�

�

�
�

�
�

�
�

�

�

�
�

�

�

�

�
�

�
�

�

60

100

140

30 60 90

Corr:
0.37

−70 −60 −50

Corr:
0.43

0 1000 2000 3000

Corr:
0.132

0 1000 2000 3000

Corr:
0.0421

6 8 10 12

Corr:
0.164

20 40 60

Corr:
0.496

40 80 120 160

FIGURE 3.1
Scatterplot matrix of the variables in the air pollution data: The upper triangular
displays the paired scatterplots; the lower triangle shows the paired correlation coef-
ficients; and the main diagonal presents nonparametric kernel density plots for each
variable.

44 Bayesian Regression Modeling with INLA

From Figure 3.1 we notice that manuf and pop are highly correlated. Checking
their sample correlation, we find that it is as high as 0.955. This phenomenon is
known as multicollinearity, in which two or more predictors in a multiple regression
model are highly correlated. In this situation the coefficient estimates of the multi-
ple regression are very sensitive to slight changes in the data and to the addition or
deletion of variables in the equation. The estimated regression coefficients often have
large sampling errors, which affect both inference and prediction that is based on the
model (Chatterjee and Hadi, 2015).

To avoid the multicollinearity issue, we use a simple approach by keeping only
one of the two variables, manuf, in our regression analysis. A more sophisticated
method to deal with multicollinearity is addressed in Section 3.7.

For comparison purposes, we begin the analysis with the conventional maximum
likelihood method. We first fit a regression model with the five predictors, negtemp,
mauf, wind, precip, and days:

usair.formula1 <- SO2 ~ negtemp + manuf + wind + precip + days
usair.lm1 <- lm(usair.formula1, data = usair)
round(coef(summary(usair.lm1)), 4)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 135.7714 50.0610 2.7121 0.0103
negtemp 1.7714 0.6366 2.7824 0.0086
manuf 0.0256 0.0046 5.5544 0.0000
wind -3.7379 1.9444 -1.9224 0.0627
precip 0.6259 0.3885 1.6111 0.1161
days -0.0571 0.1748 -0.3265 0.7460

The estimated residual standard error, σ̂, is given by:

round(summary(usair.lm1)$sigma, 4)

[1] 15.79

The results for this model show that the predictors negtemp and manuf are significant
predictors while the predictors wind, precip, and days are not. We now fit Bayesian
models using INLA with the default priors. In the INLA package, the default choice
of priors for β j, j = 0, ..., p

β j ∼ N(0,106), j = 0, ..., p,

and the prior for the variance parameter is defined internally in terms of logged pre-
cision, log(τ). It follows a log gamma distribution,

log(τ)∼ logGamma(1,10−5).

We fit a Bayesian linear regression using INLA with the following code:

library(INLA)
usair.inla1 <- inla(usair.formula1, data = usair, control.compute =

↪→ list(dic = TRUE, cpo = TRUE))

The inla function returns an object, here named usair.inla1, which has a class
attribute, inla. This is a list containing a lot of objects which can be explored
with names(usair.inla1). For example, the summary of the fixed effects can be
obtained by the command:

Bayesian Linear Regression 45

round(usair.inla1$summary.fixed, 4)

mean sd 0.025quant 0.5quant 0.975quant mode kld
(Intercept) 135.4892 50.0629 36.6158 135.4955 234.1778 135.5116 0
negtemp 1.7690 0.6370 0.5111 1.7690 3.0247 1.7692 0
manuf 0.0256 0.0046 0.0165 0.0256 0.0347 0.0256 0
wind -3.7229 1.9424 -7.5570 -3.7234 0.1080 -3.7241 0
precip 0.6249 0.3888 -0.1429 0.6249 1.3913 0.6249 0
days -0.0567 0.1749 -0.4020 -0.0567 0.2882 -0.0567 0

The summary of the hyperparameter is obtained by

round(usair.inla1$summary.hyperpar, 4)

mean sd 0.025quant 0.5quant 0.975quant mode
Precision
for the Gaussian observations 0.0042 9e-04 0.0026 0.0042 0.0063 0.004

Summaries of these posterior distributions include posterior means and 95%
credible intervals, which can be used as Bayesian alternatives to the maximum like-
lihood estimates and 95% confidence intervals, respectively. For example, the pos-
terior mean of the coefficient for negtemp is 1.7690, and the 95% credible interval
is (0.5111, 3.0247). These indicate that, with very high probability, negtemp is posi-
tively associated with the response, SO2. Unlike confidence intervals, which are cal-
culated by assuming large sample approximations, Bayesian interval estimates are
typically appropriate in small samples. More importantly, the Bayesian 95% credible
interval estimates have an intuitively appealing interpretation as the interval contain-
ing the true parameter with 95% probability. This interpretation is often preferable to
that of the 95% confidence interval, which is the range of values containing the true
parameter 95% of the time in repeated sampling.

Another simple way to look at the result from an inla object is to use summary
function, which produces default summaries of the results of the inla fitting func-
tion:

summary(usair.inla1)

The result summaries, which we do not display here, output the summary statistics
of posteriors distributions of the fixed effects and the hyperparameters for the model
including posterior means, standard deviations, the quartiles and others. Some model
statistics, such as marginal log-likelihood, and the model fitting index, DIC (when
we specify DIC = TRUE in inla), are printed. Users can also selectively print certain
model results by their needs by making use of the $ sign, as we have shown above.
Some other useful information, for example, posterior marginal distributions of the
fixed effects parameters and the hyperparameters can be obtained by the commands,
usair.inla1$marginals.fixed and usair.inla1$marginals.hyperpar.

The INLA library includes a set of functions to operate on marginal distribu-
tions. The commonly used functions include inla.dmarginal, inla.pmarginal,
inla.qmarginal, inla.mmarginal, and inla.emarginal to compute the density,
distribution, quantile function, mode, and expected values of marginals, respectively.
The function inla.rmarginal is used to generate random numbers, and the func-
tion inla.tmarginal can be used to transform a given marginal distribution. Here
we show an example of how to make use of the functions.

46 Bayesian Regression Modeling with INLA

By default, the posterior summaries of the precision τ is outputted from an inla
object. However, we are often interested in the posterior mean of σ. The estimate can
be obtained by using the inla.emarginal function:

inla.emarginal(fun = function(x) 1/sqrt(x), marg = usair.inla1$
↪→ marginals.hyperpar$‘Precision for the Gaussian observations‘)

[1] 15.66331

Comparing the estimated residual standard error from the conventional maximum
likelihood method, we obtain very similar results. For the user’s convenience, we
have written an R function bri.hyperpar.summary for producing the summary
statistics of hyperparameters in terms of σ in our brinla package:

library(brinla)
round(bri.hyperpar.summary(usair.inla1),4)

mean sd q0.025 q0.5 q0.975 mode
SD for the Gaussian observations 15.6617 1.8379 12.5321 15.4871 19.759 15.1513

We want to further look at the plot of the posterior distribution of σ. The function
bri.hyperpar.plot in brinla can be applied to produce this posterior density
directly:

bri.hyperpar.plot(usair.inla1)

0.00

0.05

0.10

0.15

0.20

12.5 15.0 17.5 20.0 22.5

de
ns

ity parameter
SD for error

FIGURE 3.2
Posterior density for the parameter σ in the US air pollution study.

In Figure 3.2, we see a slightly right-skewed posterior distribution for σ.

Bayesian Linear Regression 47

The INLA program allows the user to change the prior for the regression param-
eters. Suppose that we have certain prior information for the intercept β0 and the
coefficients of negtemp and wind. For example, we assume that β0 ∼ N(100,100),
βnegtemp ∼N(2,1), and βwind ∼N(−3,1). The prior specification can be achieved us-
ing the option control.fixed in inla function. By default, a diffuse gamma prior
is assumed on the precision parameter τ. If we want to specify, for instance, a log-
normal prior to τ (equivalent to assuming a normal prior on the logarithm of τ), this
can be specified using the option control.family:

usair.inla2 <- inla(usair.formula1, data = usair, control.compute =
↪→ list(dic = TRUE, cpo =TRUE), control.fixed = list(mean.
↪→ intercept = 100, prec.intercept = 10^(-2), mean = list(negtemp
↪→ = 2, wind = -3, default =0), prec = 1), control.family = list(
↪→ hyper = list(prec = list(prior="gaussian", param =c(0,1)))))

Note that here we change the priors for the intercept as well as two fixed parameters
for negtemp and wind. The statement mean = list(negtemp = 2, wind = -3,
default = 0) assigns prior mean equal to 2 for negtemp, -3 for wind, and zero
means for all other parameters of the remaining predictors, using list. A list has to
be also specified for prec if we have different precision assumptions. Certainly, users
need to be careful in changing priors. The model selection and checking methods
discussed in Section 3.4 can be used for comparing models with different priors.

3.3 Prediction
Suppose we apply the regression model to a new set of data, for which we have
observed the vector of explanatory variables x̃ = (x̃1, x̃2, ..., x̃p)

T , and wish to predict
the outcome, ỹ. Typically, the Bayesian prediction is made based on the posterior
predictive distribution, p(ỹ|y). Here “posterior” means that it is conditional on the
observed y, and “predictive” means that it is a prediction for ỹ. Let θ = (β,τ). We
have

p(ỹ|y) = p(ỹ,y)
p(y)

= p(y)−1
∫

p(ỹ|θ)p(y|θ)p(θ)dθ

= p(y)−1
∫

p(ỹ|θ)p(θ|y)p(y)dθ

=
∫

p(ỹ|θ)p(θ|y)dθ.

The analytic form of the posterior predictive distribution in most regression models
is not available. In conventional Bayesian analysis, the prediction can be done by
posterior predictive simulation, i.e., drawing random samples from p(ỹ|y).

Going back to the air pollution example, suppose that we have the following new
observations:

new.data <- data.frame(negtemp = c(-50, -60, -40), manuf = c(150, 100,

48 Bayesian Regression Modeling with INLA

↪→ 400), pop = c(200, 100, 300), wind = c(6, 7, 8), precip = c
↪→ (10, 30, 20), days = c(20, 100, 40))

To predict SO2 from the MLE fit, usair.lm1, in R, we run:

predict(usair.lm1, new.data, se.fit = TRUE)

$fit
1 2 3

33.72743 18.94993 55.47696

$se.fit
1 2 3

14.936928 5.329492 17.639438

$df
[1] 35

$residual.scale
[1] 15.78998

The R output includes a vector of predictions ($fit), a vector of standard error of pre-
dicted means ($se.fit), the degrees of freedom for residuals ($df), and the residual
standard deviation ($residual.scale).

In the INLA library, there is no function “predict” as for lm in R. However, we
do not need a posterior predictive simulation like in MCMC approaches. Predictions
can be done as a part of the model fitting itself in INLA. As prediction is the same
as fitting a model with some missing data, we need to set the response variables
“y[i] = NA” for those “observations” we want to predict. The prediction in INLA
is implemented through the following R code:

usair.combined <- rbind(usair, data.frame(SO2 = c(NA, NA, NA), new.
↪→ data))

usair.link <- c(rep(NA, nrow(usair)), rep(1, nrow(new.data)))
usair.inla1.pred <- inla(usair.formula1, data = usair.combined,

↪→ control.predictor = list(link = usair.link))
usair.inla1.pred$summary.fitted.values[(nrow(usair)+1):nrow(usair.

↪→ combined),]

mean sd 0.025quant 0.5quant 0.975quant mode
fitted.predictor.42 33.65338 14.938107 4.191079 33.65547 63.09751 33.65951
fitted.predictor.43 18.92744 5.329609 8.416159 18.92807 29.43290 18.92930
fitted.predictor.44 55.40423 17.644354 20.605306 55.40629 90.18455 55.41030

Note that we set the control.predictor option as control.predictor =
list(link = usair.link), where the object usair.link is set to be a vector of
NA if the corresponding response is observed in the original dataset and 1 if the corre-
sponding response is missing (and is to be predicted). The summary statistics of the
predicted responses from INLA show concordance with the results from the MLE
method.

Bayesian Linear Regression 49

3.4 Model Selection and Checking
In Chapter 1, we briefly discussed model selection and checking for a Bayesian
model. Here we show the details on how to implement the analysis in INLA using
the air pollution data example.

3.4.1 Model Selection by DIC

In regression analysis, we often want to find a reduced model with the best subset of
the variables from the full model. The model selection in frequentist analysis is com-
monly based on Akaike information criterion (AIC), a MLE-based criterion. Back to
the air pollution data example, a stepwise model selection procedure using AIC can
be implemented by the function stepAIC in R library MASS:

library(MASS)
usair.step <- stepAIC(usair.lm1, trace = FALSE)
usair.step$anova

Stepwise Model Path
Analysis of Deviance Table

Initial Model:
SO2 ~ negtemp + manuf + wind + precip + days

Final Model:
SO2 ~ negtemp + manuf + wind + precip

Step Df Deviance Resid. Df Resid. Dev AIC
1 35 8726.322 231.7816
2 - days 1 26.57448 36 8752.897 229.9063

It turns out that the variable, days, is dropped from the full model. The final reduced
model includes the four predictors, negtemp, manuf, wind, and precip. Let us fit
the final reduced model:

usair.formula2 <- SO2 ~ negtemp + manuf + wind + precip
usair.lm2 <- lm(usair.formula2, data = usair)
round(coef(summary(usair.lm2)), 4)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 123.1183 31.2907 3.9347 0.0004
negtemp 1.6114 0.4014 4.0148 0.0003
manuf 0.0255 0.0045 5.6150 0.0000
wind -3.6302 1.8923 -1.9184 0.0630
precip 0.5242 0.2294 2.2852 0.0283

In Bayesian analysis, DIC, a generalization of AIC, is one of the most popular
measures for Bayesian model comparison, which is defined as the sum of a measure
of goodness of fit plus a measure of model complexity (Spiegelhalter et al., 2002). In
the INLA library, the dic=TRUE flag makes the inla() function compute the model’s
DIC. The model with the lower DIC provides the better trade off between fit and

50 Bayesian Regression Modeling with INLA

model complexity. Unfortunately, there is no function available for stepwise model
selection by DIC in the INLA library. In this example, there are only five predictors in
the full model. We may perform a backward elimination procedure using DIC (i.e.,
manually eliminating variables based on DIC). In this air pollution study, it turns out
that the final model with four predictors, negtemp, mauf, wind, and precip, has the
lowest DIC (=348.57), which is concordant with the above model selection result
using the frequentist approach:

usair.inla3 <- inla(usair.formula2, data = usair, control.compute =
↪→ list(dic = TRUE, cpo = TRUE))

round(usair.inla3$summary.fixed, 4)

mean sd 0.025quant 0.5quant 0.975quant mode kld
(Intercept) 122.9366 31.2837 61.1617 122.9406 184.5970 122.9507 0
negtemp 1.6102 0.4016 0.8172 1.6102 2.4019 1.6103 0
manuf 0.0255 0.0045 0.0165 0.0255 0.0344 0.0255 0
wind -3.6168 1.8905 -7.3480 -3.6172 0.1111 -3.6179 0
precip 0.5239 0.2296 0.0706 0.5239 0.9766 0.5240 0

The cpo=TRUE flag will be discussed in a later section. Comparing the DICs between
two Bayesian models, we have a smaller DIC for the last model:

c(usair.inla1dicdic, usair.inla3dicdic)

[1] 350.6494 348.5703

From the output, regression coefficients of the variables negtemp, mauf, and precip
are significantly different from zero (in the Bayesian sense). That is, the 95% credible
intervals of these coefficients do not contain zero. They have high posterior proba-
bilities of being positively associated with the response SO2. The variable wind is
negatively associated with SO2, but is not significant. Model coefficients can be in-
terpreted as follows. For example, the posterior mean of precip, 0.5239, means that
for every additional inch of average annual precipitation we expect the sulfur dioxide
content of air to increase 0.5239 micrograms per cubic meter, when other covariates
are fixed. The 95% credible interval for precip, is (0.0706, 0.9766), which contains
the true parameter of precip with 95% probability.

3.4.2 Posterior Predictive Model Checking

Checking the model fit is critical in statistical analysis. In Bayesian analysis, model
assessment is often based on posterior predictive checks or leave-one out cross-
validation predictive checks. Held et al. (2010) compared two approaches for esti-
mating Bayesian models using MCMC and INLA. Bayesian model posterior predic-
tive check was originally proposed by Gelman et al. (1996). The key concept of such
a check is the posterior predictive distribution of a replicate observation y∗i which has
density

p(y∗i |y) =
∫

p(y∗i |θ)p(θ|y)dθ.

The corresponding posterior predictive p-value,

p(y∗i ≤ yi|y),

Bayesian Linear Regression 51

is used as a measure of model fit (Meng, 1994). Extreme posterior predictive p-values
(“extreme” means that p-value is very close to 0 or 1 here) can be used to identify
observations that diverge from the assumed model.

In the INLA package, the posterior predictive p-value can be obtained by the R
function inla.pmarginal, which returns the distribution function of marginals ob-
tained by inla. The following R code generates the histogram of posterior predictive
p-values for the reduced final model in the US air pollution study.

usair.inla3.pred <- inla(usair.formula2, data = usair, control.
↪→ predictor = list(link = 1, compute = TRUE))

post.predicted.pval <- vector(mode = "numeric", length = nrow(usair))
for(i in (1:nrow(usair))) {
post.predicted.pval[i] <- inla.pmarginal(q=usair$SO2[i], marginal =

↪→ usair.inla3.pred$marginals.fitted.values[[i]])
}
hist(post.predicted.pval, main="", breaks = 10, xlab="Posterior

↪→ predictive p-value")

Figure 3.3 shows that many posterior predictive p-values are close to 0 or 1. How-
ever, one drawback about interpreting posterior predictive p-values is that they could
not have a uniform distribution even if the data come from the true model. See Hjort
et al. (2006); Marshall and Spiegelhalter (2007) for the details. From the scatterplot
matrix of the air pollution data (Figure 3.1), the response, SO2, is right-skewed and
the predictor, manuf, has a very large variance and contains some outliers. The pos-
terior predictive p-values could be affected by the nature of the data. So, although the
plot of the posterior predictive p-values is not satisfied, we want to further check the
model using other model assessment methods.

Posterior predictive p−value

Fr
eq

ue
nc

y

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

FIGURE 3.3
Histogram of the posterior predictive p-values for the reduced final model in the US
air pollution study.

52 Bayesian Regression Modeling with INLA

3.4.3 Cross-Validation Model Checking

The other methods based on the predictive distribution are the leave-one-out cross-
validation. Two quantities, conditional predictive ordinate (CPO) and probability in-
tegral transform (PIT), are used for evaluating the goodness of the model:

CPOi = p(yi|y−i),

PITi = p(y∗i ≤ yi|y−i).

Here y−i denotes the observations y with the ith observation omitted. Note that the
only difference between PIT and the posterior predictive p-value is that PIT is com-
puted based on y−i rather than y.

In INLA, these quantities are computed without rerunning the model for each
observation in turn (Held et al., 2010). To obtain CPOs and PITs, we need to sim-
ply add the argument control.compute = list(cpo = TRUE) into inla func-
tion. For example, in our resulting object usair.inla3 for the final reduced model
using INLA, we can find the predictive CPOs and PITs using the commands
usair.inla3cpocpo and usair.inla3cpopit. Held et al. (2010) showed nu-
merical problems may occur when CPOs and PITs are computed using INLA. There
are internal checks in the INLA program for the potential problems, which appears
as usair.inla3cpofailure. It is a vector containing 0 or 1 for each observation.
A value equal to 1 indicates that the estimate of CPO or PIT is not reliable for the
corresponding observation. In our example, we can check if there are any failures by:

sum(usair.inla3cpofailure)

[1] 0

So, there is no issue of the computation of CPOs and PITs in the fit usair.inla3.
The uniformity of the PIT values indicates that the predictive distributions match the
observations from the data and thus it is an indication of a well-fitted model (Diebold
et al., 1998; Gneiting et al., 2007). We now plot the histogram and the uniform Q-Q
plot of PITs.

hist(usair.inla3cpopit, main="", breaks = 10, xlab = "PIT")
qqplot(qunif(ppoints(length(usair.inla3cpopit))), usair.inla3cpo

↪→ pit, main = "Q-Q plot for Unif(0,1)", xlab = "Theoretical
↪→ Quantiles", ylab = "Sample Quantiles")

qqline(usair.inla3cpopit, distribution = function(p) qunif(p), prob
↪→ = c(0.1, 0.9))

Figure 3.4 shows that the distribution of the PITs is close to a uniform distribution,
suggesting that the model reasonably fits the data. Note that the PIT histogram is
much closer to a uniform distribution than the corresponding posterior predictive
histogram shown in Figure 3.3.

If we think of the product of all of the CPO values as a “pseudo marginal likeli-
hood,” this gives a cross-validatory summary measure of fit. The log pseudo marginal
likelihood (LPML), proposed by Geisser and Eddy (1979), is simply the log of this

Bayesian Linear Regression 53

PIT

Fr
eq

ue
nc

y

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

6

0.0 0.2 0.4 0.6 0.8 1.0

0.
2

0.
4

0.
6

0.
8

1.
0

Q−Q plot for Unif(0,1)

Theoretical Quantiles
Sa

m
pl

e
Q

ua
nt

ile
s

FIGURE 3.4
Histogram and uniform Q-Q plot of the cross-validated PIT for the reduced final
model in the US air pollution study.

measure,

LPML = log

{
n

∏
i=1

p(yi|y−i)

}
=

n

∑
i=1

log p(yi|y−i) =
n

∑
i=1

logCPOi,

which is often used as an alternative measure for DIC. Draper and Krnjajic (2007,
Sec. 4.1) have shown that DIC approximates the LPML for approximately Gaussian
posteriors. LPML remains computationally stable (Carlin and Louis, 2008). Unlike
DIC, a model with a larger LPML is better supported by the data. Let us compute the
LPMLs for the full model and reduced model in the air pollution study:

LPML1 <- sum(log(usair.inla1cpocpo))
LPML3 <- sum(log(usair.inla3cpocpo))
c(LPML1, LPML3)

[1] -176.9495 -175.6892

LPML for the reduced model is larger than that for the full model, indicating that the
reduced model is preferred. Oftentimes, we can also perform a graphical analysis of
a point-wise comparison of CPOs to choose a model.

plot(usair.inla1cpocpo, usair.inla3cpocpo, xlab="CPO for the full
↪→ model", ylab="CPO for the reduced model")

abline(0,1)

Figure 3.5 shows a scatterplot of the pointwise comparison of CPOs between
the full model and the reduced model, along with a reference line marking where
the values are equal for the two models, in the US air pollution study. Since larger

54 Bayesian Regression Modeling with INLA

0.000 0.005 0.010 0.015 0.020 0.025

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

CPO for the full model

C
PO

 fo
r t

he
 re

du
ce

d
m

od
el

FIGURE 3.5
Bayesian model choice based on the pointwise comparison of CPOs between the two
models in the US air pollution study.

CPO values are indicative of better model fit, the predominance of points above the
reference line implies a preference for the reduced model. This is in agreement with
our previous findings using DIC and LPML criteria.

3.4.4 Bayesian Residual Analysis

In the linear regression setting, the model is given as yi = xT
i β+ εi, i = 1...,n. Given

the unknown parameters β and the predictors xi for a data point yi, Bayesian residu-
als are defined as

ri = εi(β) = yi− xT
i β, i = 1, ...,n. (3.9)

These are sometimes called “realized residuals” in contrast to the classical or es-
timated residuals, yi− xT

i β̂, which is based on a point estimate β̂ of the unknown
parameters. A priori of these residuals are distributed as N(0,σ2), and the posterior
distribution of them can be obtained from the posterior distributions of β and σ2.

Checking residual plots is a common way for model diagnostics in regression
analysis. In order to obtain a Bayesian residual plot, we generate samples from the
posterior distribution of β and σ2 and then substitute these samples into (3.9) to pro-
duce samples from the posterior distribution of the residuals. The posterior mean or
median of the ri can be calculated and examined. Plotting these residuals versus index
or the fitted values might detect outliers as well as reveal failure in model assump-
tions, such as the normality or the homogeneity of variance assumption. Summing
their squares or absolute values could provide an overall measure of fit. An early ap-
plication of Bayesian residuals analysis can be found in Chaloner and Brant (1988).
See Gelman et al. (2014) for more discussions on this topic.

Back to our air pollution example, we have written a convenience function

Bayesian Linear Regression 55

0 10 20 30 40

−2
0

0
20

40
60

Index

Ba
ye

si
an

 re
si

du
al

−75 −65 −55 −45
−2

0
0

20
40

60
negtemp

Ba
ye

si
an

 re
si

du
al

FIGURE 3.6
Bayesian residual plots in the US air pollution study: the left panel is the Bayesian
residual index plot; the right panel is the plot of the residual versus the predictor,
negtemp.

bri.lmresid.plot for producing the Bayesian residual plot in our brinla pack-
age. The following code generates a Bayesian residual index plot as well as a plot of
the residual versus the predictor, negtemp:

bri.lmresid.plot(usair.inla2)
bri.lmresid.plot(usair.inla2, usair1$negtemp, xlab = "negtemp", smooth

↪→ =TRUE)

Figure 3.6 shows that the Bayesian residuals generally show a random pattern around
zero in both plots. We find that the observation number 31 seems to be an outlier,
where its Bayesian residual is as high as 59.6927. The observation is from the city
of Providence. Its SO2 level, 94, is much higher than all other cities. More investi-
gations could be conducted in terms of this city. The argument smooth = TRUE in
the bri.mresid.plot function is to add the smooth curve with its 95% credible in-
tervals on the residual plot. Here the smooth curves are estimated using the random
walk model of order 2 with INLA, which is discussed in detail in Chapter 7. The
curves do not show a special trend, which indicates that the model assumptions are
valid.

56 Bayesian Regression Modeling with INLA

3.5 Robust Regression
Statistical inference based on the normal distribution is often known to be vulnerable
to outliers. Lange et al. (1989) introduced t distributed errors regression models as a
robust extension of the traditional normal models. The t regression models provide
a useful extension of the normal regression models for the studies involving residual
errors with longer-than-normal tails, as well as for the cases that extreme points exist
in a dataset.

Assume that the response variable Y follows a t distribution, denoted by t(µ,σ,ν).
Its probability density function is given by,

f (y|µ,σ,ν) = νν/2Γ((ν+1)/2)
σ
√

πΓ(ν/2)

{
ν+

(
y−µ

σ

)2
}−(ν+1)/2

,

where µ is location parameter, σ is dispersion parameter, ν is degree of freedom, and
Γ(·) is the gamma function. Note that the distribution t(µi,σ,ν) can be viewed as
a mixture of normal and gamma distributions (Lange et al., 1989; Liu and Rubin,
1995), i.e., if a latent variable ηi ∼ Γ(ν/2,ν/2), and yi|ηi ∼ N(µi,σ

2/ηi), then yi ∼
t(µi,σ,ν).

The t regression model can be expressed as{
yi ∼ t(µi,σ,ν),
µi = β0 +β1xi1 + ...+βpxip, i = 1, ...,n.

In the model, the parameter σ is the unknown dispersion parameter which models
the variance of yi’s. In INLA, we model the precision parameter τ = σ−2.

Let us go back to our air pollution example. In our Bayesian residual analysis, we
find that the observation number 31 is an outlier, which is from the city of Providence.
To avoid this data point influencing the regression equation too strongly, let us fit a
t regression model. In INLA, this analysis is implemented through specifying the
argument family = "T":

usair.inla4 <- inla(usair.formula2, family = "T", data = usair,
↪→ control.compute = list(dic = TRUE, cpo = TRUE))

round(usair.inla4$summary.fixed, 4)

mean sd 0.025quant 0.5quant 0.975quant mode kld
(Intercept) 119.2344 36.4249 47.5236 119.2752 190.6313 119.3441 0
negtemp 1.4588 0.4752 0.5319 1.4564 2.3978 1.4509 0
manuf 0.0266 0.0051 0.0163 0.0267 0.0363 0.0269 0
wind -3.9300 2.2315 -8.3388 -3.9220 0.4322 -3.9039 0
precip 0.4356 0.2653 -0.0722 0.4307 0.9705 0.4198 0

round(usair.inla4$summary.hyperpar, 4)

mean sd 0.025quant 0.5quant 0.975quant mode
precision for the
student-t observations 0.0053 0.0016 0.0030 0.0051 0.0092 0.0046
degrees of freedom for
student-t 10.9839 8.7846 3.5675 8.3886 34.1122 5.6104

Bayesian Linear Regression 57

Comparing the results of the t regression model with those of the normal regression
model, the estimates of intercept, negtemp, and precip are decreased noticeably, and
the standard deviation of the estimated parameters are increased. These are due to the
fact of the heavier tails in the t distribution. The presence of extreme observations,
therefore, has a smaller influence on the regression parameters.

3.6 Analysis of Variance
Analysis of variance (ANOVA) is a collection of statistical models used to determine
the degree of difference or similarity between two or more groups of data. It has
been heavily used in the analysis of experimental data. The experimenter adjusts
factors and measures responses in an attempt to determine an effect. ANOVA and
the design of experiments have been extensively discussed in a number of books
(Montgomery, 2013; Chatterjee and Hadi, 2015). Here, we give a brief discussion of
the main concepts and show an example on solving the ANOVA models using INLA.

In fact, an ANOVA is just a special case of regression with categorical variables.
Let us consider the case of a single factor A with levels i = 1,2, ...,a. Assume that
the response variable Y is normally distributed and the effect of the factor variable
influences the mean of Y . Thus, the model can be summarized by

yi j = µi + εi j, (3.10)

where yi j is the jth (j = 1, ...,ni) observed value for the ith factor level, and the error
εi j ∼ N(0,σ2). Model (3.10) is often rewritten as

yi j = µ0 +αi + εi j, (3.11)

In (3.11), there are a+1 parameters to be estimated. To make the model identifiable,
we need a constraint on the parameters. A commonly used constraint in statistical
literature is the corner constraint. The effect of one level r ∈ {1,2, ...,a} is set equal
to zero: αr = 0. This level r is referred to as the baseline or reference level of factor
A. Typically, we use the first level as the reference level, i.e.,

α1 = 0.

Therefore, µ0 becomes the mean for the first level. The corner constraint is the con-
straint that is used in the INLA library.

The one-way ANOVA model can be easily extended to accommodate additional
categorical variables. Assume that we have a two-by-two factorial design: each level
of the factor A (with a levels) is crossed with each level of the factor B (with b levels).
Suppose that there are n replicates with each of the ab cells. The observation yi jk is
modeled as:

yi jk = µ0 +αi +β j + γi j + εi jk, (3.12)

58 Bayesian Regression Modeling with INLA

for i = 1, ...,a, j = 1, ...,b, and k = 1, ...,n. In this model, µ0 is the grand mean, αi is
the main effect of level i from the factor A, β j is the main effect of level j from the
factor B, γi j is the interaction effect of the ith level of A and the jth level of B, and the
error εi jk ∼ N(0,σ2).

Note that model (3.12) contains 1 + a + b + ab parameters, however the data
supply only ab sample means. Hence, we need the constraints on the parameters. In
the corner-point parameterization we impose the following constraints:

α1 = β1 = γ11 = ...= γ1b = γ21 = ...= γa1 = 0.

In frequentist literature, model (3.11) or model (3.12) could be treated as either
a fixed-effects or random-effects model. For example, in (3.11), if αi’s in the one-
way classification are viewed as non-random, (3.11) is called a fixed-effects ANOVA.
If αi’s are treated as a random sample from a probability distribution, for instance,
αi ∼ N(0,σ2

α), (3.11) is called a random-effects ANOVA. Choosing the fixed-effects
or random-effects models is often based on how the levels are defined or selected.
For example, treatment effects in a clinical trial are considered as fixed effects, while
the effects of patients may be regarded as random effects.

From a Bayesian perspective, the distinction between fixed and random effects
is less distinct because all parameters are viewed as random variables. The fixed-
effects or random-effects can be reflected through the selection of priors. In (3.11),
the “fixed effects” corresponding to the factor A may be assigned independent diffuse
Gaussian prior distributions with known precision, i.e., αi ∼ N(0,σ−1

0) where σ0 is
fixed. The “random effects” corresponding to the factor A may be assigned the prior
αi|σ2

α ∼ N(0,σ2
α) with σ2

α assigned a hyperprior.
An ANOVA model can be easily fitted using the INLA approach. We will only

focus fixed-effects ANOVA models in the following example. For random-effects
models we refer to Chapter 5.

The painrelief dataset was from an experiment examining the effects of
codeine and acupuncture on post-operative dental pain in male subjects (Kutner et al.,
2004). The study used a randomized block design with two treatment factors occur-
ring in a factorial structure. Both treatment factors have two levels. The variable
Codeine has two groups: take a codeine capsule or a sugar capsule. The variable
Acupuncture has two groups: apply to two inactive acupuncture points or two ac-
tive acupuncture points. There are four distinct treatment combinations due to this
factorial treatment structure. The variable PainLevel is the blocking variable. The
response variable Relief is the pain relief score (the higher the score, the more relief
the patient has). Totally, 32 subjects are assigned to eight blocks of four subjects each
based on an assessment of pain tolerance. The description of variables for the data
set is displayed in Table 3.2.

In INLA, the specification of an ANOVA model is analogous to a linear re-
gression analysis. The only difference is that the explanatory variable needs to be
a factor, rather than a numeric vector in R. The following statement invokes inla
function, where the blocking variable and the two treatment factors with their inter-
action appear in the model.

Bayesian Linear Regression 59

TABLE 3.2
Description of variables in the painrelief dataset.

Variable Name Description Codes/Values
Relief pain relief score numeric number
PainLevel pain level level from 1 to 8
Codeine use codeine or other 1: a codeine capsule;

2: a sugar capsule.
Acupuncture acupuncture method 1: apply to 2 inactive acupuncture points;

2: apply to 2 active acupuncture points.

data(painrelief, , package = "brinla")
painrelief$PainLevel <- as.factor(painrelief$PainLevel)
painrelief$Codeine <- as.factor(painrelief$Codeine)
painrelief$Acupuncture <- as.factor(painrelief$Acupuncture)
painrelief.inla <- inla(Relief ~ PainLevel + Codeine*Acupuncture, data

↪→ = painrelief)
round(painrelief.inla$summary.fixed, 4)

mean sd 0.025quant 0.5quant 0.975quant mode kld
(Intercept) 0.0188 0.0706 -0.1210 0.0188 0.1583 0.0188 0
PainLevel2 0.1500 0.0851 -0.0186 0.1500 0.3183 0.1500 0
PainLevel3 0.3250 0.0851 0.1564 0.3250 0.4933 0.3250 0
PainLevel4 0.3000 0.0851 0.1314 0.3000 0.4683 0.3000 0
PainLevel5 0.6750 0.0851 0.5064 0.6750 0.8433 0.6750 0
PainLevel6 0.9750 0.0851 0.8064 0.9750 1.1433 0.9750 0
PainLevel7 1.0750 0.0851 0.9064 1.0750 1.2433 1.0750 0
PainLevel8 1.1500 0.0851 0.9814 1.1500 1.3183 1.1500 0
Codeine2 0.4625 0.0602 0.3433 0.4625 0.5815 0.4625 0
Acupuncture2 0.5750 0.0602 0.4558 0.5750 0.6940 0.5750 0
Codeine2:Acupuncture2 0.1500 0.0851 -0.0186 0.1500 0.3183 0.1500 0

The main effects of both treatment factors, codeine and acupuncture, are highly
significant in the Bayesian sense. However, the interaction between the two factors is
not significant at the 95% credible level, indicating that there is no interaction effect
between them. The blocking effect, painlevel, has multiple levels. To better under-
stand the significance of the effect, we generate a plot of posterior mean estimates
and 95% credible levels for the different pain levels (Figure 3.7; the R code is not
displayed here). The horizontal line is the reference line for pain level 1, which is set
to zero. For the higher pain level, subjects receive larger pain relief scores (except
pain level 4). PainLevel is clearly a significant confounding factor that needs to be
considered into the model.

3.7 Ridge Regression for Multicollinearity

In regression modeling, multicollinearity is a phenomenon of high intercorrelations
or inter-associations among the independent variables. Statistical inferences using

60 Bayesian Regression Modeling with INLA

�

�
�

�

�

�

�

0.0

0.5

1.0

2 3 4 5 6 7 8
Pain Level

Es
tim

at
e

FIGURE 3.7
Posterior estimates and the error bars for the PainLevel effect in the PainRelief
study. The horizontal line is the reference line for pain level 1, which is set to zero.

ordinary least squares may not be reliable if multicollinearity is present in the data.
Multicollinearity can result in many problems in the regression analysis. For in-
stance, the partial regression coefficient due to multicollinearity may not be estimated
precisely. The standard errors are typically very high. Multicollinearity makes it te-
dious to assess the relative importance of the predictors in explaining the variation
caused by the response variable.

There are many possible ways to deal with multicollinearity. Principal component
regression is one of the traditional methods. One performs the multivariate reduction
of the set of correlated predictors to a smaller set of uncorrelated predictors through
principal component analysis. Instead of regressing the dependent variable on the
correlated explanatory variables directly, the principal components of the explanatory
variables are used as regressors (Jolliffe, 1982).

Ridge regression, another popular solution to the multicollinearity problem, ad-
dresses the issues of ordinary least squares by imposing a penalty on the size of
coefficients (Hoerl and Kennard, 1970). The ridge coefficients minimize a penalized
residual sum of squares,

min
β
{(y−Xβ)T (y−Xβ)}+λβTβ,

where λ ≥ 0 is a complexity parameter that controls the amount of shrinkage: the
larger the value of λ, the greater the amount of shrinkage.

Bayesian Linear Regression 61

The resulting ridge regression estimator using the least squares method is

β̂ridge(λ) = (XT X+λI)−1XT y.

This method will induce bias (which increases with λ) however yield more precise
parameter estimates (i.e., smaller variances for the parameters).

Indeed, the ridge regression is closely related to a version of the standard pos-
terior Bayesian regression estimate, but using a specific prior distribution on the
elements of the regression parameters. Assume βi has the prior distribution β j ∼
N(0,σ2

0/λ), j = 1, ..., p independently, where σ0 is known. A large value of λ corre-
sponds to a prior that is more tightly concentrated around zero, and hence leads to
greater shrinkage towards zero.

The mean of the posterior distribution of β given the data (X,y) is then

(XT X+λI)−1XT y,

which is identical to the form of the ridge estimator (Hsiang, 1975). Note that since λ

is applied to the squared norm of the parameter vector β, one wants to standardize all
of the predictors to make them have a similar scale. To implement the Bayesian ridge
regression with INLA, we need some programming tricks, which we will illustrate
in the following case study.

We use an example that concerns import activity in the French economy. The data
have been analyzed in Chatterjee and Hadi (2015). The dependent variable is import
(IMPORT), domestic production (DOPROD), stock formation (STOCK), and domestic
consumption (CONSUM). All variables are measured in billions of French francs for
the years 1949 to 1966. We consider a linear regression model for the data. Let us
first examine the sample correlations among the predictors:

data(frencheconomy, package = "brinla")
round(cor(frencheconomy[,-1]),4)

IMPORT DOPROD STOCK CONSUM
IMPORT 1.0000 0.9842 0.2659 0.9848
DOPROD 0.9842 1.0000 0.2154 0.9989
STOCK 0.2659 0.2154 1.0000 0.2137
CONSUM 0.9848 0.9989 0.2137 1.0000

We notice that the correlation between DOPROD and CONSUM is very high, which is
equal to 0.9989. Collinearity is an issue to fit a standard linear regression model for
the data.

Bayesian ridge regression assumes that the elements of the coefficients of all
predictors, (β1, ...,βp) are drawn from a common normal density. Note that a prelim-
inary standardization of the predictors is often necessary to make this prior assumpa-
tion more plausible. So, we first standardize the predictors:

fe.scaled <- cbind(frencheconomy[, 1:2], scale(frencheconomy[, c
↪→ (-1,-2)]))

To implement ridge regression with INLA, we need to use the “copy” feature in
the INLA library, and change the dataset. The following R commands fit a Bayesian
ridge regression with INLA:

62 Bayesian Regression Modeling with INLA

n <- nrow(fe.scaled)
fe.scaled$beta1 <- rep(1,n)
fe.scaled$beta2 <- rep(2,n)
fe.scaled$beta3 <- rep(3,n)
param.beta = list(prec = list(param = c(1.0e-3, 1.0e-3)))
formula.ridge = IMPORT ~ f(beta1, DOPROD, model="iid", values = c

↪→ (1,2,3), hyper = param.beta) + f(beta2, STOCK, copy="beta1",
↪→ fixed=T) + f(beta3, CONSUM, copy="beta1", fixed=T)

frencheconomy.ridge <- inla(formula.ridge, data = fe.scaled)
ridge.est <- rbind(frencheconomy.ridge$summary.fixed, frencheconomy.

↪→ ridge$summary.random$beta1[,-1])
round(ridge.est,4)

mean sd 0.025quant 0.5quant 0.975quant mode kld
(Intercept) 30.0778 0.5176 29.0498 30.0778 31.1042 30.0778 0
1 5.1608 5.2530 -6.3008 5.3693 15.3948 5.6275 0
2 0.7205 0.5427 -0.3564 0.7203 1.7972 0.7199 0
3 6.9279 5.2557 -3.2703 6.7037 18.4260 6.4066 0

We want to compare the results with the standard Bayesian linear regression analysis
using INLA:

formula <- IMPORT ~ DOPROD + STOCK + CONSUM
frencheconomy.inla <- inla(formula, data = fe.scaled, control.fixed =

↪→ list(prec = 1.0e-3), control.family = list(hyper = param.beta))
round(frencheconomy.inla$summary.fixed, 4)

mean sd 0.025quant 0.5quant 0.975quant mode kld
(Intercept) 30.0778 0.5688 28.9456 30.0778 31.2086 30.0778 0
DOPROD 2.9951 10.8776 -18.4346 2.9553 24.6253 2.8820 0
STOCK 0.7197 0.5995 -0.4737 0.7198 1.9113 0.7200 0
CONSUM 9.1424 10.8734 -12.5047 9.1816 30.5379 9.2557 0

The results show that the estimates are quite different using ridge regression vs. the
standard approach. In our preliminary data exploratory analysis, we note that not
only the correlation DOPROD and CONSUM is high but also both of them are highly
correlated with the response variable, IMPORT. However, in the regression equation
with standard priors, the contribution of DOPROD is much smaller than that of CONSUM
(2.9951 vs. 9.1424). In the ridge estimation, the coefficient of DOPROD increases to
5.1608 while the coefficient of CONSUM decreases to 6.9279. These estimates provide
a different and more plausible representation of the IMPORT relationship than is ob-
tained from the results with standard priors. Noticeably, the standard deviations of
the coefficients of DOPROD and CONSUM are decreased using the ridge method rather
than using the standard approach.

Lastly, we want to compare the results using traditional frequentist ridge regres-
sion analysis and INLA. The R function lm.ridge in MASS library allows us to fit
the model:

library(MASS)
ridge2 <- lm.ridge(IMPORT ~ DOPROD + STOCK + CONSUM, data = fe.scaled

↪→ , lambda = seq(0, 1, length=100))
ridge2.final <- lm.ridge(IMPORT ~ DOPROD + STOCK + CONSUM, data = fe.

↪→ scaled, lambda = reg2$kHKB)
ridge2.final

Bayesian Linear Regression 63

DOPROD STOCK CONSUM
30.0777778 4.9559793 0.7176308 7.1669364

In the above commands, we first fit the model with a sequence of ridge constants.
Then the final model is determined by the Hoerl–Kennard–Baldwin (HKB) criterion
(Hoerl et al., 1975). The results show similar estimates as those using Bayesian ridge
regression with INLA.

3.8 Regression with Autoregressive Errors
In the standard linear regression, we assume that the error term ε in (3.2) follows
N(0,σ2In). However, it can happen that the errors have non-constant variance or are
correlated in many applications. A more general assumption on the error term is that

ε∼ N(0,Σ),

where the error covariance matrix Σ is symmetric and positive definite. Different
diagonal entries in Σ correspond to non-constant error variances, while non-zero
off-diagonal entries in Σ correspond to correlated errors. Suppose that Σ is known.
In frequentist analysis, generalized least squares technique minimizes

(y−Xβ)T Σ−1(y−Xβ),

which is solved by
β̂ = (XT Σ−1X)T XT Σ−1y

with covariance matrix
Cov(β̂) = (XT

Σ
−1X)T.

Certainly, the covariance matrix Σ is generally unknown in applications, and has to
be estimated from the data. However, there are n(n+ 1)/2 distinct elements in the
matrix. It is not possible to estimate the model without any further restrictions. We
often model Σ using a small number of parameters.

A common case in which the errors from a regression model are correlated is
in time series data, where a collection of observations is obtained through repeated
measurements over time. When the observations have a natural sequential order, ad-
jacent observations tend to be similar. This correlation among the observations is
referred to as autocorrelation. Ignoring the presence of autocorrelation could have
several effects on the regression analysis. For instance, the estimate of σ2 and the
standard errors of the regression coefficients are often seriously underestimated and
thus the statistical inferences commonly employed would no longer be strictly valid.

Consider a linear regression model with autoregressive errors:

yt = β0 +β1xt1 + ...+βpxt p + εt , t =,1...,n, (3.13)

where the regression errors, εt ’s, are stationary. That is, E(εt) = 0, Var(εt) = σ2,

64 Bayesian Regression Modeling with INLA

and the correlation between two errors depends only upon their separation s in time:
Cor(εt ,εt+s) = Cor(εt ,εt−s) = ρs, where ρs is called the error autocorrelation at lag
s.

Many models have been proposed and investigated for stationary time-series
(Shumway and Stoffer, 2011). The most common one for autocorrelated regression
errors is the first-order autoregressive process, AR(1):

εt = ρεt−1 +ηt , t = 1, ...,n,

where ηt ∼ N(0,σ2
η) independently. In this situation, the error-covariance matrix has

the following structure:

Σ = σ
2


1 ρ ρ2 ... ρn−1

ρ 1 ρ ... ρn−2

ρ2 ρ 1 ... ρn−3

... ...
ρn−1 ρn−2 ρn−3 ... 1

 ,
where σ2 = σ2

η/(1−ρ2). In this model, the error autocorrelation ρs = ρs,s = 1,2, ...
decay exponentially to 0 as s increases.

Higher-order autoregressive models can be directly generalized from the AR(1)
model. For instance, the second-order autoregressive model is

εt = ρεt−1 + τεt−2 +ηt , t = 1, ...,n.

Other popular time-series models include moving-average (MA) process and ARMA
process. See Shumway and Stoffer (2011) for details.

Let ε̂1, ε̂2, ..., ε̂n be the residuals from a regression model. The sample autocorre-
lation function of the residuals is defined as

ρ̂(s) = γ̂(s)/γ̂(0),

where γ̂(s) = n−1
∑

n−s
t=1(ε̂t+s−∑

n
t=1 ε̂t/n)(εt −∑

n
t=1 ε̂t/n) is the sample autocovari-

ance function.
The partial autocorrelation at lag s for s ≥ 2, ω(s) is defined as the direct cor-

relation between εt and εt−s with the linear dependence between the intermediate
variables εh with t − s < h < t removed. Consider the standard regression model:
εt = α0 +α1εt−1 + ...+αsεt−s + ut . The estimate of the partial autocorrelation is
equal to the estimate of the coefficient, ω̂(s) = α̂s.

An AR(s) process has an exponentially decaying autocorrelation function, and a
partial autocorrelation function with s non-zero spike at the first s lags. So, in regres-
sion analysis, examining the residual autocorrelations and partial autocorrelations
from a standard linear regression (assuming independent error) can help us to iden-
tify a suitable form for the error-generating process.

Several frequentist tests for autocorrelation have been available in the literature.
One traditional method is the Dubin–Watson test, which is based on the statistics,

ds =
∑

n
t=s+1(ε̂t − ε̂t−s)

2

∑
n
t=s+1 ε̂2

t
.

Bayesian Linear Regression 65

In Bayesian statistics, Dreze and Mouchart (1990) suggested using the classical
Durbin–Watson statistic and examining the autocorrelation plot of the residuals as
a quick check. Bauwens and Rasquero (1993) proposed two Bayesian tests of resid-
ual autocorrelation, which check if an approximate highest posterior density region
of the parameters of the autoregressive process of the errors contains the null hypoth-
esis.

In frequentist analysis, the regression with autoregressive errors (3.13) can be fit
using the iteratively reweighted least squares fitting algorithm (Carroll and Ruppert,
1988). This model can be also fit using INLA. We now look at an example of time se-
ries data. The New Zealand unemployment data include the quarterly unemployment
rates for both youth (15 – 19 years old) and adult (greater than 19 years old) from
March 1986 to June 2011. Since June 2008, the New Zealand government has abol-
ished the act of the differential youth minimum wage. Here we would like to study
the relationship of the unemployment rates between adult and youth before and after
the abolition of the act. Table 3.3 displays the variables in the dataset.

TABLE 3.3
Description of variables in the New Zealand unemployment data.

Variable Name Description Codes/Values
quarter quarters from March 1986 to June 2011 characters
adult unemployment rate percent
youth unemployment rate percent
policy type of minimum wage law “Different”; "Equal"

Let us first load the dataset and create a variable for the index of the time series.

data(nzunemploy, package = "brinla")
nzunemploy$time <- 1:nrow(nzunemploy)

We begin our analysis by examining the time series for the unemployment rate of
youth and adult.

qplot(time, value, data = gather(nzunemploy[,c(2,3,5)], variable,
↪→ value, -time), geom = "line") + geom_vline(xintercept = 90) +
↪→ facet_grid(variable ~ ., scale = "free") + ylab("Unemployment
↪→ rate") + theme_bw()

Figure 3.8 shows the time series for the unemployment rate by youth and adult.
The vertical lines in both subplots indicate the time of the abolition of the act of the
differential youth minimum wage. We can see that the unemployment rates fluctuated
substantially but gradually during this historical period. The patterns of two time
series are similar, indicating the rate for youth is correlated with the rate for adult.

In order to make the coefficients easier to understand, we center adult unemploy-
ment rate on its mean over the time series.

nzunemploy$centeredadult = with(nzunemploy, adult - mean(adult))

We shall estimate the regression of youth on centeredadult, policy and their
interaction. A preliminary standard regression with INLA produces the following fit
to the data:

66 Bayesian Regression Modeling with INLA

adult
youth

0 25 50 75 100

4

6

8

10

10

15

20

25

time

U
ne

m
pl

oy
m

en
t r

at
e

FIGURE 3.8
Time series for the unemployment rate by youth and adult. The vertical lines in both
subplots indicate the time of the abolition of the act of the differential youth minimum
wage.

formula1 <- youth ~ centeredadult*policy
nzunemploy.inla1 <- inla(formula1, data= nzunemploy)
round(nzunemploy.inla1$summary.fixed, 4)

mean sd 0.025quant 0.5quant 0.975quant mode kld
(Intercept) 16.2823 0.1536 15.9800 16.2823 16.5843 16.2823 0
centeredadult 1.5333 0.0751 1.3856 1.5333 1.6810 1.5333 0
policyEqual 9.4417 0.5266 8.4056 9.4417 10.4766 9.4418 0
centeredadult:policyEqual 2.8533 0.4622 1.9438 2.8533 3.7617 2.8533 0

Regression coefficients are statistically significant (that is, in the Bayesian sense,
have high posterior probabilities of being positive). We want to check the Bayesian
residuals for the model:

nzunemploy.res1 <- bri.lmresid.plot(nzunemploy.inla1, type="o")

The graph of the Bayesian residuals from the linear regression suggests that they
may be autocorrelated in certain degree (Figure 3.9). Based on Dreze and Mouchart
(1990)’s suggestion, we can quickly check the autocorrelation and partial autocor-
relation functions. The acf function in the R stats package computes and plots

Bayesian Linear Regression 67

0 20 40 60 80 100

−4
−2

0
2

Index

Ba
ye

si
an

 re
si

du
al

FIGURE 3.9
Bayesian residuals from the standard regression of youth’s unemployment rate on
the centered adult’s unemployment rate, policy group, and their interaction.

(frequentist) estimates of the autocorrelation and partial autocorrelation functions of
a time series, here for the Bayesian residuals (Figure 3.10):

acf(nzunemploy.res1$resid, main = "")
acf(nzunemploy.res1$resid, type = "partial", main="")

The dashed horizontal lines on the plots correspond to 95% confidence bands. The
pattern of the autocorrelation function shows an exponential decay, while that of
partial autocorrelation function has a high spike at lag 1. These suggest that an AR(1)
process would be appropriate for the error term in the regression model.

The following code fits a linear regression with AR(1) error using INLA:

formula2 <- youth ~ centeredadult*policy + f(time, model = "ar1")
nzunemploy.inla2 <- inla(formula2, data = nzunemploy, control.family =

↪→ list(hyper = list(prec = list(initial = 15, fixed = TRUE))))

Note that the precision prec of the regression model is fixed at τ = exp(15)
by specifying control.family = list(hyper = list(prec = list(initial
= 15, fixed = TRUE))) in the call of the inla function. This is necessary and im-
portant because the uncertainty of regression error has already modeled in f(time,
model = "ar1") when we define the new formula. We print the result:

round(nzunemploy.inla2$summary.fixed, 4)

mean sd 0.025quant 0.5quant 0.975quant mode kld
(Intercept) 16.3466 0.3097 15.7645 16.3361 16.9932 16.3229 0
centeredadult 1.5196 0.1368 1.2430 1.5211 1.7869 1.5235 0
policyEqual 8.9611 0.9979 6.7815 9.0252 10.7431 9.1124 0
centeredadult:policyEqual 2.5083 0.6050 1.2829 2.5196 3.6685 2.5396 0

68 Bayesian Regression Modeling with INLA

0 5 10 15 20
−0

.2
0.

2
0.

6
1.

0
Lag

AC
F

5 10 15 20

−0
.2

0.
0

0.
2

0.
4

Lag

Pa
rti

al
 A

C
F

FIGURE 3.10
Autocorrelation and partial autocorrelation functions for the Bayesian residuals from
the standard regression of youth’s unemployment rate on several predictors.

round(nzunemploy.inla2$summary.hyperpar, 4)

mean sd 0.025quant 0.5quant 0.975quant mode
Precision for time 0.4542 0.0817 0.3046 0.4516 0.6230 0.4494
Rho for time 0.4953 0.0997 0.3094 0.4916 0.6932 0.4712

Comparing with the previous result assuming independent error, the estimates of
the regression coefficients are close. However, the standard deviation of the param-
eters substantially increase. This confirms that the standard errors of the regression
coefficients often are seriously underestimated when ignoring the presence of auto-
correlation in the dataset. The estimated autocorrelation parameter ρ is 0.4953 with
95% credible intervals (0.3094,0.6932), indicating the time series have a moderate
autocorrelation.

Finally, we want to compare the result using the frequentist approach. The gls
function in the R nlme package fits regression models with a variety of correlated-
error variance structures. The following code fits the regression with AR(1) error
using generalized least squares:

library(nlme)
nzunemploy.gls = gls(youth ~ centeredadult*policy, correlation =

↪→ corAR1(form=~1), data = nzunemploy)
summary(nzunemploy.gls)

Generalized least squares fit by REML
Model: youth ~ centeredadult * policy
Data: nzunemploy

AIC BIC logLik
353.0064 368.5162 -170.5032

Bayesian Linear Regression 69

Correlation Structure: AR(1)
Formula: ~1
Parameter estimate(s):

Phi
0.5012431

Coefficients:
Value Std.Error t-value p-value

(Intercept) 16.328637 0.2733468 59.73598 0
centeredadult 1.522192 0.1274453 11.94389 0
policyEqual 9.082626 0.8613543 10.54459 0
centeredadult:policyEqual 2.545011 0.5771780 4.40940 0

Correlation:
(Intr) cntrdd plcyEq

centeredadult -0.020
policyEqual -0.318 0.007
centeredadult:policyEqual -0.067 -0.155 0.583

Standardized residuals:
Min Q1 Med Q3 Max

-2.89233359 -0.55460580 -0.02419759 0.55449166 2.29571080

Residual standard error: 1.5052
Degrees of freedom: 102 total; 98 residual

The results are fairly close to those using the INLA method.

4
Generalized Linear Models

Generalized linear models (GLMs), originally formulated by Nelder and Baker
(2004), provide a unifying family of linear models that is widely used in practical
regression analysis. The GLMs generalize ordinary linear regression by allowing the
models to be related to the response variable via a link function and by allowing
the magnitude of the variance of each measurement to be a function of its predicted
value. Thus, these models allow for describing response variables that have an error
distribution other than normal. They avoid having to select certain transformations of
the data to achieve the possibly conflicting objects of normality, linearity and/or ho-
mogeneity of variance. Commonly used GLMs include logistic regression for binary
data and Poisson regression or negative-binomial regression for count data.

4.1 GLMs
Let us start from a review of the exponential family of distributions. In statistics, the
distribution of a random variable Y belongs to an exponential family if its probability
density function (or probability mass function for the case of a discrete distribution)
can be written in the form

f (y|θ,φ) = exp
{

yθ−b(θ)
a(φ)

+ c(y,φ)
}
, (4.1)

where θ = g(µ), called the canonical parameter, is a function of the expectation µ≡
E(Y) of Y , and the canonical link function g(·) does not depend on φ. The parameter
φ > 0, called the dispersion parameter, represents the scale of the distribution. The
functions a(·), b(·), and c(·) are known functions that vary from one distribution to
another.

The exponential families include many of the common distributions, including
the normal, inverse Gaussian, exponential, gamma, Bernoulli, binomial, multinomial,
Poisson, chi-squared, Wishart, Inverse Wishart and many others. Here we look at a
few typical distributions in detail.

Let Y be normally distributed with mean µ and variance σ2. Putting the normal
distribution into the form of equation (4.1) requires some algebraic manipulation,

f (y|θ,φ) = exp
{

yθ−θ2/2
φ

− 1
2

[
y2

φ
+ log(2πφ)

]}
,

72 Bayesian Regression Modeling with INLA

where θ = g(µ) = µ, φ = σ2, a(φ) = φ, b(θ) = θ2/2, and c(y,φ) = −(y2/φ +
log(2πφ))/2.

Now let us consider the binomial distribution, where Y is the number of “suc-
cesses” in n independent binary trials, and µ is the probability of success in an indi-
vidual trial. The probability mass function of Y is f (y|µ) =

(n
y

)
µy(1−µ)n−y. Written

as an exponential family, we have

f (y|θ,φ) = exp
{

yθ−n log(1+ expθ)+ log
(

n
y

)}
,

where θ = g(µ) = log
(

µ
1−µ

)
, φ = 1, a(φ) = 1, b(θ) = n log(1+expθ), and c(y,φ) =

log
(n

y

)
.

The third example is Poisson distribution, which is used to model count data.
It is appropriate for applications that involve counting the number of times a ran-
dom event occurs in a given amount of time, distance, area, etc. Its probability mass
function is f (y|µ) = exp(−µ)µy/y!, which can be rewritten as

f (y|θ,φ) = exp(yθ− exp(θ)− logy!).

Here θ = log(µ), φ = 1, a(φ) = 1, b(θ) = exp(θ) and c(y,φ) =− logy!.
A key property of the exponential families is that the distributions have mean

E(Y)≡ µ = b′(θ)

and variance
Var(Y) = a(φ)b′′(θ).

Note that b′(·) is the inverse of the canonical link function. The mean of the distri-
bution is a function of θ only, while the variance of the distribution is a product of
functions of the location parameter θ and the scale parameter φ. In GLM, the b′′(θ) is
called the variance function to describe how the variance relates to the mean. Table
4.1 shows the link functions and their inverses, as well as the variance function for
some common distributions.

TABLE 4.1
Link functions, their inverses, and variance functions for some common
distributions.

Family θ = g(µ) µ = g−1(θ) Variance Function
Normal µ θ 1
Poisson logµ exp(θ) µ
Binomial log(µ/(1−µ)) exp(θ)/(1+ exp(θ)) µ(1−µ)
Gamma µ−1 θ−1 µ2

Inverse Gaussian µ−2 θ−1/2 µ3

A GLM provides a unified modeling framework for many commonly used statis-
tical models. Here we define the model in terms of a set of the observations y1, ...,yn
which are regarded as realizations of random variables Y1, ...,Yn. There are the fol-
lowing three components in a GLM:

Generalized Linear Models 73

Random Component: The dependent variables, Yi’s, are assumed to be generated
from a particular distribution in the exponential family (4.1).

Linear Predictor: That is a linear combination of the predictors

θi = β0 +β1xi1 + ...+βpxip = xT
i β,

where β = (β0,β1, ...,βp)
T , xi = (1,x1i, ...,xip)

T , and xi j, j = 1, ..., p is the value
of the jth covariate for the ith observation, as we have seen in a linear regression in
Chapter 3.

Link Function: The expectation of the response variable, µi ≡ E(Yi) and the linear
predictor are related through a link function g(·):

g(µi) = θi.

Note that in most applications, the so-called natural link function is used, i.e., g(·) =
b′(·).

The GLM covers a large class of regression models, such as normal linear regres-
sion, logistic and probit regression, Poisson regression, negative-binomial regression
and gamma regression. The classical estimation method for GLMs is maximum like-
lihood. There are several excellent textbooks discussing theory and applications for
GLMs from a frequentist point of view; see for example, McCullagh and Nelder
(1989); Lindsey (1997); Dobson and Barnett (2008). These books provide a rich
collection of maximum likelihood estimation methods, hypothesis testing, real case
studies.

For Bayesian analysis, MCMC is the common choice, which requires generating
samples from posterior distributions. INLA treats a wide range of GLMs in a unified
manner, thus allowing for greater automation of the inference process. In the rest of
the chapter, we will discuss a few popular GLMs and demonstrate real case studies
by applying the INLA method.

4.2 Binary Responses
In many applications, the response variable takes one of only two possible values
representing success and failure, or more generally the presence or absence of an
attribute of interest. Logistic regression, as a special case of GLMs, has a long tradi-
tion with widely varying applications to model such data. It is used to estimate the
probability of a binary response based on one or more predictor variables.

Let Y be Bernoulli distributed with success probability P(Y = 1) = π. Its density
is given by

f (y) = exp
{

y log
(

π

1−π

)
+ log(1−π)

}
.

74 Bayesian Regression Modeling with INLA

The distribution belongs to the exponential family, with canonical parameter θ equal
to the logit of π, i.e., log(π/(1−π)), dispersion parameter φ = 1. Its mean is π and
variance function is π(1−π). The canonical link function, the logit link, leads to the
classical logistic regression model:{

Yi ∼ Bernoulli(πi),
logit(πi) = β0 +β1xi1 + ...+βpxip.

Sometimes, the logit link function can be replaced by the probit link, which is the
inverse of the standard normal distribution function, Φ−1(·). It has been shown that
the logit and probit link functions behave similarly except the case for extreme prob-
abilities (Agresti, 2012).

Here we analyze low birth weight data to illustrate the use of logistic regression.
The dataset has been presented in Hosmer and Lemeshow (2004). The dataset con-
tains information on 189 births to women seen in the obstetric clinic, where data were
collected as part of a larger study at Baystate Medical Center in Springfield, Mas-
sachusetts. The response variable LOW is a binary outcome indicating birth weight less
than 2500 grams, which has been of concern to physicians for years. A woman’s be-
havior during pregnancy, such as smoking habits, receiving prenatal care can greatly
change the chances of carrying the baby to term, and thus, of delivering a baby of nor-
mal birth weight. The variables that are potentially associated with low birth weight
are recorded in the study, given in Table 4.2. The goal of this study was to determine
whether some or all of these variables were risk factors in the clinic population being
treated by the medical center.

TABLE 4.2
Code sheet for the variables in the low birth weight data.

Variable Name Description Codes/Values
LOW indicator of low birth weight 0 =≥ 2500g

1 =< 2500g
AGE age of mother years
LWT weight of mother at last menstrual period pounds
RACE race of mother 1 = white

2 = black
3 = other

SMOKE smoking status during pregnancy 0=no
1 = yes

HT history of hypertension 0 = no
1 = yes

UI presence of uterine irritability 0 =no
1 = yes

FTV number of physician visits during the counts
first trimester

Data were collected on 189 women, 59 of whom had low birth weight babies and
130 of whom had normal birth weight babies. Seven variables were considered to be

Generalized Linear Models 75

of importance: AGE, LWT, RACE, SMOKE, HT, UI, and FTV. For comparison purposes, we
begin to fit a logistic regression with conventional maximum-likelihood estimation:

data(lowbwt, package = "brinla")
lowbwt.glm1 <- glm(LOW ~ AGE + LWT + RACE + SMOKE + HT + UI + FTV,

↪→ data=lowbwt, family=binomial())
round(coef(summary(lowbwt.glm1)), 4)

Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.4548 1.1854 0.3837 0.7012
AGE -0.0205 0.0360 -0.5703 0.5684
LWT -0.0165 0.0069 -2.4089 0.0160
RACE2 1.2898 0.5276 2.4445 0.0145
RACE3 0.9191 0.4363 2.1065 0.0352
SMOKE1 1.0416 0.3955 2.6337 0.0084
HT1 1.8851 0.6948 2.7130 0.0067
UI1 0.9041 0.4486 2.0155 0.0439
FTV 0.0591 0.1720 0.3437 0.7311

In the output, the categorical variable RACE has been recoded as the two design
variables, RACE2 and RACE3. In general, if a nominal scaled variable has k possible
values, then k−1 design variables will be needed. Here RACE2 denotes the effect of
a black mother relative to a white mother, and RACE3 denotes the effect of a mother
in other races relative to a white mother. Similar recoding has been done for the
variables, SMOKE, HT, UI. We then fit the logistic regression model using the INLA
method:

lowbwt.inla1 <- inla(LOW ~ AGE + LWT + RACE + SMOKE + HT + UI + FTV,
↪→ data=lowbwt, family = "binomial", Ntrials = 1, control.compute
↪→ = list(dic = TRUE, cpo = TRUE))

round(lowbwt.inla1$summary.fixed, 4)

mean sd 0.025quant 0.5quant 0.975quant mode kld
(Intercept) 0.5672 1.1853 -1.7289 0.5563 2.9235 0.5347 0
AGE -0.0207 0.0360 -0.0921 -0.0204 0.0491 -0.0199 0
LWT -0.0176 0.0069 -0.0317 -0.0174 -0.0047 -0.0169 0
RACE2 1.3405 0.5275 0.3151 1.3370 2.3851 1.3298 0
RACE3 0.9456 0.4362 0.1028 0.9409 1.8151 0.9314 0
SMOKE1 1.0749 0.3954 0.3140 1.0696 1.8664 1.0590 0
HT1 1.9727 0.6946 0.6595 1.9542 3.3909 1.9165 0
UI1 0.9331 0.4485 0.0524 0.9330 1.8130 0.9330 0
FTV 0.0559 0.1720 -0.2891 0.0585 0.3868 0.0635 0

We obtain estimates similar to those obtained when using the frequentist method.
For example, the posterior mean of the parameter for LWT is -0.0176. Its estimated
posterior standard deviation is 0.0069. The 2.5% and 97.5% posterior quantiles are
both negative, which indicates with 95% probability that the effect for LWT is nega-
tive. Among all other predictors, the 95% credible intervals for AGE and FTV contain
zero, while RACE2, RACE3, SMOKE1, HT1, and UI1 are positively associated with the
outcome.

The odds ratios of the predictors can be calculated by exponentiating their esti-
mated coefficients. For instance, the odds ratio for LWT is exp(−0.0176) = 0.9826.
It is interpreted as we expect to see 1.74% (= 1− 0.9826) decrease in the odds of

76 Bayesian Regression Modeling with INLA

having a low birth weight baby for a one-unit increase in mother’s weight, assuming
all other predictors are fixed.

We want to further obtain the reduced model while minimizing the number of pa-
rameters. We may perform a backward elimination procedure using DIC (i.e., manu-
ally eliminating variables based on DIC; see the definition of DIC in Chapter 1). The
reduced model we obtain is the following:

lowbwt.inla2 <- inla(LOW ~ LWT + RACE + SMOKE + HT + UI, data=lowbwt,
↪→ family = "binomial", Ntrials = 1, control.compute = list(dic =
↪→ TRUE, cpo = TRUE))

round(lowbwt.inla2$summary.fixed, 4)

mean sd 0.025quant 0.5quant 0.975quant mode kld
(Intercept) 0.1087 0.9378 -1.6834 0.0915 2.0003 0.0567 0
LWT -0.0175 0.0068 -0.0315 -0.0172 -0.0048 -0.0168 0
RACE2 1.3620 0.5214 0.3476 1.3587 2.3934 1.3522 0
RACE3 0.9486 0.4303 0.1198 0.9431 1.8091 0.9320 0
SMOKE1 1.0619 0.3925 0.3075 1.0563 1.8485 1.0451 0
HT1 1.9342 0.6907 0.6271 1.9163 3.3429 1.8799 0
UI1 0.9250 0.4475 0.0467 0.9249 1.8032 0.9246 0

In this reduced model, LWT has a negative effect with the estimated coefficient
−0.0175; all other predictors have a positive effect on the regression coefficients.
We can compare the DICs for the full model and the reduced model:

c(lowbwt.inla1dicdic, lowbwt.inla2dicdic)

[1] 221.2093 217.7459

DIC for the reduced model is less than that for the full model, which indicates
that the reduced model has the better trade off between fit and model complexity.
So, we prefer to use the reduced model. Its estimated logit is given by the following
expression:

̂logit(π) =0.109−0.018×LWT+1.362×RACE_2+0.949×RACE_3
+1.062×SMOKE+1.934×HT+0.925×UI,

The equation can be used to obtain the fitted values, or make predictions for new
observations.

4.3 Count Responses
In many application studies, the response variable of interest is the counted number
of occurrences of an event. In this type of data, the observations take only the non-
negative integer values {0,1,2,3, ...}, which arise from counting rather than ranking,
or grouping. The distribution of counts is discrete, and typically skewed. Applying
an ordinary linear regression model to these data could present at least two problems.
First, it is quite likely that the regression model will produce negative predicted val-
ues, which are theoretically impossible. Second, many distributions of count data are

Generalized Linear Models 77

positively skewed with many observations in the dataset having a value of 0. When
one considers a transformation of the response variable (such as the log transforma-
tion, log(y+ c), where c is a positive constant), the high number of 0’s in the dataset
prevents the transformation of a skewed distribution into normal.

4.3.1 Poisson Regression

The basic GLM for count data is the Poisson regression. Let Y be Poisson distributed
with mean µ, where its probability mass function is f (y|µ) = exp(−µ)µy/y!. The
distribution has the canonical parameter θ = logµ, the dispersion parameter φ = 1,
and its variance function equals µ. The canonical link function, the logarithm link,
leads to the Poisson regression model,{

Yi ∼ Poisson(µi),
log(µi) = β0 +β1xi1 + ...+βpxip.

Let us consider a classical example for the simple Poisson regression. Whyte et al.
(1987) reported the number of deaths due to AIDS in Australia per 3-month period
from January 1983 to June 1986. The dataset only contains one predictor and one
response with 14 observations, summarized in Table 4.3.

TABLE 4.3
Description for the variables in the AIDS data.

Variable Name Description Values
TIME time measured in multiples of 3 months continuous

after January 1983
DEATHS number of deaths in Australia due to AIDS counts

Figure 4.1 displays the scatterplot of the data (the left panel) and the histogram
for the response variable DEATHS (the right panel). We note that there is a nonlinear
relationship between TIME and DEATHS, and DEATHS show a right-skewed distribu-
tion. A Poisson regression seems to be a reasonable choice to model the data. To fit
the Poisson model using INLA, we use the following command:

AIDS.inla1 <- inla(DEATHS ~ TIME, data = AIDS, family = "poisson",
↪→ control.compute = list(dic = TRUE, cpo = TRUE))

round(AIDS.inla1$summary.fixed, 4)

mean sd 0.025quant 0.5quant 0.975quant mode kld
(Intercept) 0.3408 0.2512 -0.1690 0.3467 0.8183 0.3586 0
TIME 0.2565 0.0220 0.2142 0.2562 0.3008 0.2555 0

The coefficient table shows the posterior summary statistics for the unknown pa-
rameters in the model. We could write down the estimated equation for the mean
response:

µ̂ = exp(0.3408+0.2565×TIME).

The TIME effect can be interpreted as follows: in the period between January 1983 to
June 1986, the number of deaths due to AIDS in a year was on average exp(0.2565×

78 Bayesian Regression Modeling with INLA

2 4 6 8 10 14

0
10

30
50

TIME

D
EA

TH
S

DEATHS

Fr
eq

ue
nc

y

0 10 20 30 40 50

0
1

2
3

4
5

6
7

FIGURE 4.1
The scatterplot between TIME and DEATHS; and the histogram of DEATHS, in the AIDS
data.

4) = 2.7899 times higher than in the year before. Next we generate the plot of the
estimated mean function and its 95% credible interval:

plot(DEATHS ~ TIME, data=AIDS, ylim=c(0,60))
lines(AIDS$TIME, AIDS.inla$summary.fitted.values$mean, lwd=2)
lines(AIDS$TIME, AIDS.inla$summary.fitted.values$"0.025quant", lwd=1,

↪→ lty=2)
lines(AIDS$TIME, AIDS.inla$summary.fitted.values$"0.975quant", lwd=1,

↪→ lty=2)

From Figure 4.2, we note that in the beginning and the end of the time period the
observed responses are less than the fitted values, while in the center period they are
greater than the corresponding fitted values. This points to the fact that the model
seems not entirely appropriate. Now let us consider log(TIME) instead of TIME as the
explanatory variable. We fit the following model:

AIDS.inla2 <- inla(DEATHS ~ log(TIME), data=AIDS, family = "poisson",
↪→ control.compute = list(dic = TRUE, cpo = TRUE))

round(AIDS.inla2$summary.fixed, 4)

mean sd 0.025quant 0.5quant 0.975quant mode kld
(Intercept) -1.9424 0.5116 -2.9899 -1.9272 -0.9792 -1.8963 0
log(TIME) 2.1747 0.2150 1.7675 2.1692 2.6131 2.1581 0

The estimated equation is

µ̂ = exp(−1.9424+2.1747× log(TIME)).

The interpretation of this model is less intuitive: for a 1 unit increase in log(TIME),
the estimated count increases by a factor of exp(2.1747) = 8.7995. Let us look the
estimated mean function and its credible intervals for this model:

Generalized Linear Models 79

2 4 6 8 10 12 14

0
10

20
30

40
50

60

TIME

D
EA

TH
S

FIGURE 4.2
The estimated posterior mean function and its 95% credible interval for DEATHS when
considering TIME as the explanatory variable.

plot(DEATHS ~ log(TIME), data = AIDS, ylim=c(0,60))
lines(log(AIDS$TIME), AIDS.inla2$summary.fitted.values$mean, lwd=2)
lines(log(AIDS$TIME), AIDS.inla2$summary.fitted.values$"0.025quant",

↪→ lwd=1, lty=2)
lines(log(AIDS$TIME), AIDS.inla2$summary.fitted.values$"0.975quant",

↪→ lwd=1, lty=2)

It appears that we obtain a better fit compared with the previous model. We could
further check DICs for the two models:

c(AIDS.inla1dicdic, AIDS.inla2dicdic)

[1] 86.70308 74.10760

The second model has a smaller DIC, which confirms our findings from Figure 4.2
and Figure 4.3.

We may further compare the INLA results with the results using the conventional
maximum likelihood estimation:

AIDS.glm <- glm(DEATHS ~ log(TIME), family=poisson(), data=AIDS)
round(coef(summary(AIDS.glm)), 4)

Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.9442 0.5116 -3.8003 1e-04
log(TIME) 2.1748 0.2150 10.1130 0e+00

Very similar estimates are obtained from both methods.

4.3.2 Negative Binomial Regression

In applied work Poisson regression is restrictive in the analysis of count data. It is
recognized that counts often display substantial extra-Poisson variation, or overdis-

80 Bayesian Regression Modeling with INLA

0.0 0.5 1.0 1.5 2.0 2.5

0
10

20
30

40
50

60

log(TIME)

D
EA

TH
S

FIGURE 4.3
The estimated posterior mean function and its 95% credible interval for (DEATHS)
when considering log(TIME) as the explanatory variable.

persion. Overdispersion refers to the situation when the variance of an observed de-
pendent variable exceeds the nominal variance, given the respective assumed distri-
bution. The assumption in Poisson model that the conditional mean and variance of
Y given X are equal may be too strong and thus fail to account for the overdisper-
sion. Inappropriate imposition of this restriction may result in unreasonably small
estimated standard errors of the parameter estimates. Negative binomial regression
is perhaps the most convenient way to relax the Poisson restriction and deal with the
overdispersion.

More specifically, assume that vi, i = 1, ...,n are unobserved random variables
that follow a gamma distribution with shape parameter α and rate parameter α,
Gamma(α,α); that is, f (v) ∝ xα−1 exp(−αv)I{v > 0}. Conditional on vi, Yi has a
Poisson distribution with mean viµi, i.e., Yi|vi ∼ Poisson(viµi). Then it follows that
marginally Yi has the negative binomial distribution given by

P(Yi = y;α,µi) =
Γ(y+α)

Γ(α)y!

(
α

µi +α

)α(µi

µi +α

)y

, (4.2)

where y ∈ {0,1,2, ...}. The negative binomial distribution (4.2) will be denoted by
Yi ∼ NB(α,µi). It can be shown that the marginal mean and variance of Yi are µi
and µi +µ2

i /α, respectively. Thus, the parameter α quantifies the amount of overdis-
persion. Oftentimes, we define ϕ = 1/α as the dispersion parameter in the negative
binomial model. The parameter ϕ→ 0 corresponds to no overdispersion. In such a
case, the negative binomial model reduced to the Poisson model.

The log link is commonly used in negative binomial regression. Suppose we have
a vector of p explanatory variables, (xi1, ...,xip), that is related to the response Yi. The

Generalized Linear Models 81

model is written as {
Yi ∼ NB(α,µi),
log(µi) = β0 +β1xi1 + ...+βpxip.

Let us use an example of nesting horseshoe crabs (Brockmann, 1996) to illus-
trate negative-binomial regression modeling. Agresti (2012) analyzed the data using
the conventional frequentist GLM approach from Section 4.3 of his book. In this
study, each female horseshoe crab in the study had a male crab attached to her in her
nest. The study investigated factors that affect whether the female crab had any other
males, called satellites, residing near her. Explanatory variables that are thought to
affect this included the female crab’s color (COLOR), spine condition (SPINE), weight
(WEIGHT), and carapace width (WIDTH). The response variable for each female crab is
her number of satellites (SATELLITES). The code sheet for the variables is displayed
in Table 4.4. There are 173 females in this study.

TABLE 4.4
Code sheet for the variables in the crab data.

Variable Name Description Codes/Values
SATELLITES the number of satellites for a female counts

crab
COLOR crab’s color 1 = light medium

2 = medium
3 = dark medium
4 = dark

SPINE crab’s spine condition 1 = both good
2 = one worn or broken
3 = both worn or broken

WEIGHT crab’s weight kilogram (kg)
WIDTH crab’s carapace width centimeter (cm)

It is always a good idea to start with descriptive statistics and plots. We first check
the unconditional mean and variance of the outcome variable:

round(c(mean(crab$SATELLITES), var(crab$SATELLITES)), 4)

[1] 2.9191 9.9120

We note that the sample mean of SATELLITES is much lower than its variance. We
further check the means and variances of SATELLITES by the crab’s color type.

with(crab, tapply(SATELLITES, COLOR, function(x){round(mean(x), 4)}))

1 2 3 4
4.0833 3.2947 2.2273 2.0455

with(crab, tapply(SATELLITES, COLOR, function(x){round(var(x), 4)}))

1 2 3 4
9.7197 10.2739 6.7378 13.0931

It seems that the variable COLOR is a good candidate for predicting SATELLITES,

82 Bayesian Regression Modeling with INLA

since the mean value of the response appears to vary by COLOR. Also, we note that
the variances within each level of COLOR are much higher than the means within each
level. Let us plot the histogram and conditional histograms by COLOR for the response
variable SATELLITES:

(p1 <- ggplot(crab, aes(x=SATELLITES)) + geom_histogram(binwidth=1,
↪→ color="black"))

(p2 <- p1 + facet_wrap(~ COLOR, ncol=2))

0

20

40

60

0 5 10 15
SATELLITES

co
un

t

3 4

1 2

0 5 10 15 0 5 10 15

0

10

20

0

10

20

SATELLITES

co
un

t

FIGURE 4.4
The histogram and conditional histograms (by COLOR) for the response variable,
SATELLITES, in the crab data.

Figure 4.4 shows the histogram of SATELLITES (the left panel) as well as the con-
ditional histograms by crab’s color type (the right panel). The histograms confirm
our findings from summary statistics. These exploratory analysis results suggest that
overdispersion is present and that a negative binomial model would be appropriate
for the data.

By examining the correlation among the predictors, we notice that WEIGHT and
WIDTH are highly correlated:

round(cor(crab$WEIGHT, crab$WIDTH),4)

[1] 0.8869

To avoid the multicollinearity problem, we only include the predictors COLOR, SPINE,
and WIDTH in the model. We first fit a negative binomial regression with conventional
maximum likelihood estimation:

library(MASS)
crab.glm <- glm.nb(SATELLITES ~ COLOR + SPINE + WIDTH, data=crab)
round(coef(summary(crab.glm)), 4)

Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.3213 0.5637 -0.5700 0.5687

Generalized Linear Models 83

COLOR2 -0.3206 0.3725 -0.8607 0.3894
COLOR3 -0.5954 0.4159 -1.4317 0.1522
COLOR4 -0.5788 0.4643 -1.2467 0.2125
SPINE2 -0.2411 0.3934 -0.6130 0.5399
SPINE3 0.0425 0.2479 0.1713 0.8640
WIDTH 0.6925 0.1656 4.1826 0.0000

The following command fits the negative binomial regression with INLA:

crab.inla1 <- inla(SATELLITES ~ COLOR + SPINE + WIDTH, data = crab,
↪→ family = "nbinomial", control.compute = list(dic = TRUE, cpo =
↪→ TRUE))

round(crab.inla1$summary.fixed, 4)

mean sd 0.025quant 0.5quant 0.975quant mode kld
(Intercept) -0.3158 0.5963 -1.4858 -0.3169 0.8592 -0.3187 0
COLOR2 -0.3216 0.3922 -1.1199 -0.3122 0.4244 -0.2941 0
COLOR3 -0.5988 0.4292 -1.4643 -0.5915 0.2257 -0.5775 0
COLOR4 -0.5814 0.4900 -1.5577 -0.5772 0.3708 -0.5691 0
SPINE2 -0.2467 0.3912 -1.0038 -0.2508 0.5346 -0.2587 0
SPINE3 0.0392 0.2527 -0.4661 0.0419 0.5287 0.0471 0
WIDTH 0.7001 0.1839 0.3457 0.6976 1.0691 0.6927 0

The results from the MLE approach and INLA are very close. We see that the pos-
terior mean of the parameter for WIDTH is 0.7001 and its posterior standard deviation
is 0.1839. Its 0.025 and 0.975 quantiles are both positive, which indicates with high
probability that the effect for WIDTH is positive. The 95% credible intervals for all
other predictors contain zero, so one cannot determine whether those effects are pos-
itive or negative based on the data.

In INLA, the size parameter α is represented as α = exp(θ) and a diffuse gamma
distribution is defined on θ. By default, the summary of the posterior estimate of α is
output:

round(crab.inla1$summary.hyperpar, 4)

mean sd 0.025quant
size for the nbinomial observations (1/overdispersion) 0.9289 0.1572 0.6612

0.5quant 0.975quant mode
size for the nbinomial observations (1/overdispersion) 0.915 1.2703 0.883

If we are interested in the overdispersion parameter, ϕ, the reciprocal of α, we could
employ the function inla.tmarginal, which applies a transformation on the entire
posterior distribution:

overdisp_post <- inla.tmarginal(fun=function(x) 1/x, marg=crab.inla1$
↪→ marginals.hyperpar[[1]])

The posterior mean of ϕ can be obtained by the function inla.emarginal, which
computes the expected value of a function fun applied to the marginal distribution
marg:

round(inla.emarginal(fun=function(x) x, marg=overdisp_post), 4)

[1] 1.108

To obtain the posterior credible interval of ϕ, we apply the function inla.qmarginal:

round(inla.qmarginal(c(0.025, 0.975), overdisp_post), 4)

84 Bayesian Regression Modeling with INLA

[1] 0.7610 1.5468

The above posterior summary of ϕ indicates a moderate overdispersion in the data
set. We may want to compare the results using Poisson regression and negative bino-
mial model:

crab.inla2 <- inla(SATELLITES ~ COLOR + SPINE + WIDTH, data = crab,
↪→ family = "poisson", control.compute = list(dic = TRUE, cpo =
↪→ TRUE))

round(crab.inla2$summary.fixed, 4)

mean sd 0.025quant 0.5quant 0.975quant mode kld
(Intercept) -0.0491 0.2535 -0.5499 -0.0481 0.4457 -0.0461 0
COLOR2 -0.2695 0.1678 -0.5916 -0.2720 0.0673 -0.2770 0
COLOR3 -0.5232 0.1941 -0.9003 -0.5246 -0.1384 -0.5275 0
COLOR4 -0.5434 0.2253 -0.9866 -0.5430 -0.1023 -0.5423 0
SPINE2 -0.1615 0.2115 -0.5892 -0.1571 0.2420 -0.1483 0
SPINE3 0.0924 0.1195 -0.1393 0.0913 0.3297 0.0893 0
WIDTH 0.5475 0.0732 0.4028 0.5478 0.6901 0.5485 0

The posterior mean estimates of the predictors do not change too much, though the
estimate of the intercept is very different. However, the posterior standard deviations
from the Poisson regression are much less than those from the negative binomial
regression. For over-dispersed data, Poisson regression underestimates the standard
errors of the coefficients, leading to confidence intervals that are too narrow and,
potentially leading to incorrect inferences (Wang, 2012). We further compare the
DICs for the negative binomial model and the Poisson model:

c(crab.inla1dicdic, crab.inla2dicdic)

[1] 761.2103 918.9907

The DIC of the negative binomial model is much smaller than that of the Poisson
model, indicating that the negative binomial model is preferred in fitting the crab
data.

4.4 Modeling Rates

In many applications, the count of an event is observed over a period or amount of
exposure, for example, traffic accidents per year, or count of deaths per age group.
We often call the type of data, rates. A rate is a count of events divided by some
measure of that unit’s exposure (a particular unit of observation). Unlike a propor-
tion, which ranges from 0 to 1, a rate could have any nonnegative value. Poisson or
negative-binomial regression are often appropriate for modeling rate data. In Poisson
or negative-binomial model, this is handled as an offset, where the exposure vari-
able enters on the right-hand side of the equation, but with a parameter estimate (for
log(exposure)) constrained to 1.

The following is a log-linked model for a rate as a function of the predictor vari-

Generalized Linear Models 85

ables, (x1, ...,xp):
log(µi/ei) = β0 +β1xi1 + ...+βpxip,

where µi is the mean event count and ei is the exposure for the ith observation. Note
that the above equation can be rewritten as

log(µi) = log(ei)+β0 +β1xi1 + ...+βpxip.

The model becomes a Poisson or negative binomial model in which the additional
term on the right-hand side, log(ei), is the offset, the log of the exposure.

Let us take a look at an example of car insurance claims (Aitkin et al., 2005).
The data consist of the numbers of policyholders of an insurance company who were
exposed to risk, and the numbers of car insurance claims made by those policyholders
in the third quarter of 1973. The data include three four-level categorical predictors.
The code sheet for the variables is displayed in Table 4.5.

TABLE 4.5
Code sheet for the variables in the insurance claim data.

Variable Name Description Codes/Values
District the district of residence of policyholder 1 = rural;

2 = small towns;
3 = large towns;
4 = major cities.

Group group of cars based on the engine capacity <1 liter;
1–1.5 liter;
1.5–2 liter;
>2 liter.

Age age group of the policyholders <25;
25–29;
30–35;
> 35.

Holders numbers of policyholders counts
Claims numbers of claims counts

We want to model the relation between the rate of claims and the three explana-
tory variables, District, Group, and Age. We fit the rate data using Poisson re-
gression with offset. Let us start the analysis with conventional maximum likelihood
approach:

library(MASS)
data(Insurance, package = "MASS")
insur.glm <- glm(Claims ~ District + Group + Age + offset(log(Holders)

↪→), data = Insurance, family = poisson)
round(summary(insur.glm)$coefficients, 4)

Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.8105 0.0330 -54.9102 0.0000
District2 0.0259 0.0430 0.6014 0.5476
District3 0.0385 0.0505 0.7627 0.4457
District4 0.2342 0.0617 3.7975 0.0001

86 Bayesian Regression Modeling with INLA

Group.L 0.4297 0.0495 8.6881 0.0000
Group.Q 0.0046 0.0420 0.1103 0.9121
Group.C -0.0293 0.0331 -0.8859 0.3757
Age.L -0.3944 0.0494 -7.9838 0.0000
Age.Q -0.0004 0.0489 -0.0073 0.9942
Age.C -0.0167 0.0485 -0.3452 0.7299

Note that, to specify the model correctly in glm function, we must include
the term log(Holders) as an explanatory variable with a coefficient of 1.
That is, log(Holders) is taken as an offset for the model by specifying
“offset(log(Holders))” in the model formula.

When we fit a Bayesian model using inla function, the offset term needs to be
specified by the argument E = Holders:

insur.inla1 <- inla(Claims ~ District + Group + Age, data = Insurance,
↪→ family = "poisson", E = Holders)

round(insur.inla1$summary.fixed, 4)

mean sd 0.025quant 0.5quant 0.975quant mode kld
(Intercept) -1.8122 0.0330 -1.8774 -1.8120 -1.7479 -1.8117 0
District2 0.0259 0.0430 -0.0588 0.0259 0.1101 0.0261 0
District3 0.0385 0.0505 -0.0612 0.0387 0.1372 0.0391 0
District4 0.2342 0.0617 0.1118 0.2346 0.3541 0.2355 0
Group.L 0.4296 0.0495 0.3320 0.4298 0.5262 0.4301 0
Group.Q 0.0043 0.0420 -0.0787 0.0044 0.0862 0.0047 0
Group.C -0.0294 0.0331 -0.0943 -0.0294 0.0356 -0.0295 0
Age.L -0.3943 0.0494 -0.4900 -0.3947 -0.2961 -0.3956 0
Age.Q -0.0002 0.0489 -0.0964 -0.0001 0.0956 0.0000 0
Age.C -0.0164 0.0485 -0.1116 -0.0164 0.0787 -0.0163 0

From the output above, we note that the effect of major cities, District4, is 0.2342,
with the 95% credible interval (0.1118,0.3541). The results can be interpreted as fol-
lows: the estimated rate of claims for major cities is 26.36% = exp(0.234)− exp(0),
with credible levels (11.83%, 42.49%) = (exp(0.1118)− exp(0), exp(0.3541)−
exp(0)), higher than that of claims for rural areas, assuming the group and age ef-
fects are fixed. Similar statements can be made for the two other significant effects,
Group.L and Age.L.

To check the validation of a Poisson model, Pearson residuals are often used for
model diagnostics in frequentist analysis,

ε̂i = (yi− µ̂i)/
√

µ̂i, i = 1, ...,n,

where µ̂i is the maximum likelihood estimate. The residuals approximately follow
standard normal distribution if the model is correctly specified. By analogy with
classical model checking, we define Bayesian Pearson residuals as

ri = (yi−µi)/
√

µi =
yi−g−1(xi,β)√

g−1(xi,β)
, i = 1, ...,n.

Each ri is just a function of unknown parameters, and its posterior distribution is thus
straightforward to calculate (see more discussions regarding Bayesian residuals in
Chapter 3). Plotting the posterior mean or median of the ri’s versus the index of the
observations or the fitted values might reveal failure in model assumptions.

Generalized Linear Models 87

We have written a convenience function, bri.Pois.resid, to calculate Bayesian
Pearson residuals (posterior means) for Poisson regression in our brinla library.
When the argument plot = TRUE in the function is specified, a residual plot by case
is output:

insur.bresid <- bri.Pois.resid(insur.inla1, plot = TRUE)
abline(1.96, 0, lty=2); abline(-1.96, 0, lty=2)
qqnorm(insur.bresid$resid); qqline(insur.bresid$resid)

0 20 40 60

−2
0

1
2

Index

Ba
ye

si
an

 re
si

du
al

−2 −1 0 1 2

−2
−1

0
1

2

Normal Q−Q Plot

Theoretical Quantiles

Sa
m

pl
e

Q
ua

nt
ile

s

FIGURE 4.5
Bayesian Pearson residual plots of Poisson model for the insurance claim data. The
left panel is the plot of residuals by case, and the right panel is the normal QQ plot
for the residuals.

The left panel in Figure 4.5 shows the plot of residuals by case (index plot). We ob-
serve a horizontal band with points that vary at random. The right panel in Figure
4.5 shows a normal QQ plot for the residuals, indicating the residuals fit to a stan-
dard normal distribution very well. Thus, the assumption of a Poisson model for the
insurance claim data is well supported.

4.5 Gamma Regression for Skewed Data
Poisson and negative binomial models are very popular in practice, but there are a
number of other GLMs which are useful for particular types of data. The gamma
GLM can be used for continuous but skewed responses. The most common way to
analyze such data is to log transform the responses. However, modeling the skewed
data with gamma distribution in GLM framework may give better interpretability,
since gamma regression parameters are interpretable in terms of the mean of the

88 Bayesian Regression Modeling with INLA

response. The density of the gamma distribution is usually given by:

f (y) =
ba

Γ(a)
ya−1 exp(−by), a > 0,b > 0,y > 0,

where a is the shape parameter and b is the scale parameter of the distribution. So,
E(y) = a/b, and Var(y) = a/b2. For the purpose of a GLM, INLA uses the following
reparameterization:

µ = a/b, φ = µ
b2

a
,

where µ is the mean parameter, and φ is the precision parameter (or ϕ = 1/φ is the
dispersion parameter). The corresponding density is

f (y) =
1

Γ(φ)

(
φ

µ

)φ

yφ−1 exp(−yφ/µ) .

The linear predictor η is linked to the mean µ using a default log-link, µ = exp(η).
The hyperparameter is the precision parameter φ, which is represented as φ = exp(θ)
and the diffuse gamma prior is defined on θ.

Myers and Montgomery (1997) presented data from a step in the manufactur-
ing process for semiconductors. Four factors are believed to influence the resistivity
of the wafer and so a full factorial experiment with two levels of each factor was
run. Faraway (2016b) analyzed the data with different frequentist models. Table 4.6
presents the variable code for the wafer data.

TABLE 4.6
Code sheet for the variables in the wafer data.

Variable Name Description Codes/Values
x1 a factor with levels ‘-’ ‘+’ ‘-’ = level 1; ‘+’ = level 2
x2 a factor with levels ‘-’ ‘+’ ‘-’ = level 1; ‘+’ = level 2
x3 a factor with levels ‘-’ ‘+’ ‘-’ = level 1; ‘+’ = level 2
x4 a factor with levels ‘-’ ‘+’ ‘-’ = level 1; ‘+’ = level 2
resist resistivity of the wafer number

We start with a look at the distribution of the response variable, resist:

library(faraway)
data(wafer)
hist(wafer$resist, prob=T, col="grey", xlab= "resist", main = "")
lines(density(wafer$resist), lwd=2)

Figure 4.6 shows that the resist variable has clearly a skewed distribution. Now let
us fit a gamma GLM with conventional maximum-likelihood estimation:

formula <- resist ~ x1 + x2 + x3 + x4
wafer.glm <- glm(formula, family = Gamma(link = log), data = wafer)
round(coef(summary(wafer.glm)), 4)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.4455 0.0586 92.9831 0.0000

Generalized Linear Models 89

resist

D
en

si
ty

150 200 250 300 350

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8

FIGURE 4.6
Histogram and nonparametric density estimate for the response variable, resist, in
the wafer dataset.

x1+ 0.1212 0.0524 2.3129 0.0411
x2+ -0.3005 0.0524 -5.7364 0.0001
x3+ 0.1798 0.0524 3.4323 0.0056
x4+ -0.0576 0.0524 -1.0990 0.2952

The estimate of the dispersion parameter is:

round(summary(wafer.glm)$dispersion, 4)

[1] 0.011

Now let us fit the gamma GLM using INLA:

wafer.inla1 <- inla(formula, family = "gamma", data = wafer)
round(wafer.inla1$summary.fixed, 4)

mean sd 0.025quant 0.5quant 0.975quant mode kld
(Intercept) 5.4465 0.0656 5.3170 5.4461 5.5785 5.4454 0
x1+ 0.1212 0.0571 0.0073 0.1212 0.2349 0.1212 0
x2+ -0.3005 0.0572 -0.4144 -0.3005 -0.1867 -0.3005 0
x3+ 0.1798 0.0573 0.0657 0.1798 0.2938 0.1798 0
x4+ -0.0576 0.0572 -0.1715 -0.0576 0.0562 -0.0576 0

We output the results for the precision parameter:

round(wafer.inla1$summary.hyperpar, 4)

mean sd 0.025quant 0.5quant
Precision parameter for the Gamma observations 90.5665 34.0182 37.3194 86.0918

0.975quant mode
Precision parameter for the Gamma observations 168.9319 76.625

90 Bayesian Regression Modeling with INLA

We can extract the posterior mean for the dispersion parameter ϕ by the following
command:

disp_post <- inla.tmarginal(fun=function(x) 1/x, wafer.inla1$marginals
↪→ .hyperpar[[1]])

round(inla.emarginal(function(x) x, marg = disp_post),4)

0.0129

In this example, the regression coefficient estimates are very similar using both fre-
quentist approach and INLA. The standard errors and dispersion parameter estimates
are also close. An advantage of using INLA is that we can easily compute the credible
interval for the dispersion parameter. It can be done by the following code:

round(inla.qmarginal(c(0.025, 0.975), disp_post), 4)

[1] 0.0058 0.0275

The usual way to model skewed continuous data is the linear regression with
log-transformation. Let us also compare the linear model:

wafer.inla2 <- inla(log(resist) ~ x1 + x2 + x3 + x4, family = "
↪→ gaussian", data = wafer)

round(wafer.inla2$summary.fixed, 4)

mean sd 0.025quant 0.5quant 0.975quant mode kld
(Intercept) 5.4405 0.0598 5.3213 5.4405 5.5595 5.4405 0
x1+ 0.1228 0.0535 0.0162 0.1228 0.2293 0.1228 0
x2+ -0.2999 0.0535 -0.4064 -0.2999 -0.1934 -0.2999 0
x3+ 0.1784 0.0535 0.0719 0.1784 0.2849 0.1784 0
x4+ -0.0561 0.0535 -0.1627 -0.0561 0.0503 -0.0561 0

We see that the posterior estimates of the coefficients are remarkably similar to the
previous two models. However, the interpretation of the linear regression with log-
transformation and that of the gamma GLM are very different. In the linear regression
with log-transformation,

E[log(Y)] = β0 +β1X1 +β2X2 +β3X3 +β4X4.

It is interpretable in terms of the arithmetic mean change on the log scale. For ex-
ample, having x1 = + changes the expected value of log outcome by 0.1228. In the
gamma GLM model

log(E[Y]) = β0 +β1X1 +β2X2 +β3X3 +β4X4.

That means that E[Y] = exp(β0 +β1X1 +β2X2 +β3X3 +β4X4), which assumes mul-
tiplicative effects on the original outcome by the predictors. Having x1 = + in-
creases the log arithmetic mean outcome by 0.1212. The exponentiated coefficient
exp(0.1212) = 1.1289 indicates that the mean outcome on the original scale, when
x1 = +, is 1.1289 times as high as the mean on the original scale when x1 = −,
assuming other predictors are fixed.

Generalized Linear Models 91

4.6 Proportional Responses

Many studies in different fields involve the regression analysis of proportions ob-
served in the open interval (0,1). Such data are often continuous but heteroscedastic
on the unit interval: they display more variation around the mean and less varia-
tion as we approach the lower and upper limits of the interval. The typical approach
to model the data is to transform the response variable and then apply a standard
linear regression analysis. A commonly used transformation is the logit transforma-
tion, ỹ = log(y/(1− y)). However, the logit transfer of rates or proportions are often
asymmetric, and thus Gaussian-based inference for interval estimation and hypoth-
esis testing can be inaccurate in small samples. Also, the regression parameters are
interpretable in terms of the mean of ỹ, and not in terms of the mean of y, like in the
case of gamma GLM.

Beta regression model is in the framework of GLMs, which is a natural way
to model continuous responses that assume values in the open interval (0,1). The
regression parameters in beta regression are interpretable in terms of the mean of
y and the model is naturally heteroscedastic and easily accommodates asymmetries
(Ferrari and Cribari-Neto, 2004; Wang, 2012).

The density function of the beta distribution is given by f (y; p,q) = yp−1(1−
y)q−1/B(p,q), where p,q > 0, and B(p,q) = Γ(p)Γ(q)/Γ(p,q) is the beta function.
If we let µ = p/(p+q) and τ = p+q. The density can be reparameterized as

f (y;µ,τ) =
1

B(µτ,(1−µ)τ)
yµτ−1(1− y)(1−µ)τ−1, (4.3)

where µ∈ (0,1), τ> 0. We denote a random variable Y that follows a beta distribution
with the density form (4.3) by Y ∼ Beta(µ,τ). It can be shown that E(Y) = µ, and
Var(Y) = µ(1−µ)/(1+τ). The parameter τ quantifies the amount of overdispersion,
since the dispersion of the distribution increases as τ decreases.

Figure 4.7 displays a few different beta density functions along with the corre-
sponding values of mean and dispersion parameters. It is noted that the beta distri-
bution family covers quite different shapes depending on the two parameters. The
beta density can be “U-shaped” or “J-shaped,” and same cases are not displayed in
Figure 4.7. Thus, beta regression provides a flexible way to model the continuous
data bounded in (0,1).

There are a few possible choices for the link function in beta regression. The most
common one is the logit link, g(µ) = log(µ/(1− µ)). One could also use the probit
function, g(µ) = Φ−1(µ), where Φ(·) is the standard normal cumulative distribution
function, or the log-log link, g(µ) = − log(− log(µ)). The particularly useful link
function is the logit link, since the coefficients in beta regression could have the
odds ratio interpretation. In the INLA package, the logit link function is used in beta
regression.

Specifically, suppose we have a vector of p explanatory variables, (xi1, ...,xip),

92 Bayesian Regression Modeling with INLA

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

x

de
ns

ity

(0.1,50)

(0.25,5)

(0.5,25)

(0.75,5)

(0.9,50)

FIGURE 4.7
Beta density functions for different combinations of mean and dispersion parameters.

that is related to the response Yi ∈ (0,1). The beta model is given by{
Yi ∼ Beta(µi,τ),
logit(µi) = β0 +β1xi1 + ...+βpxip.

Let us employ the gasoline yield data set taken from Prater (1956). It has been
well-investigated by Ferrari and Cribari-Neto (2004). The dependent variable is
the proportion of crude oil converted to gasoline after distillation and fractionation
(yield). We study here four explanatory variables: crude oil gravity (gravity), va-
por pressure of crude oil (pressure), temperature at which 10 percent of crude oil
has vaporized (temp10), temperature at which all gasoline has vaporized (temp). The
code sheet for the variables in the gasoline yield data is displayed in Table 4.7.

We first look at the distribution of the response variable:

library(betareg)
data(GasolineYield)
hist(GasolineYield$yield, prob=T, col="grey", xlab= "yield", main = ""

↪→ , xlim =c(0,1))
lines(density(GasolineYield$yield), lwd=2)

Figure 4.8 shows the histogram and nonparametric density estimate for yield.
We see that the variable is right-skewed distributed and its range is from 0 to about
0.5. Since the response is a proportion, a beta regression model is rather natural. Let
us fit a beta regression with conventional maximum-likelihood estimation:

Generalized Linear Models 93

TABLE 4.7
Code sheet for the variables in the gasoline yield data.

Variable Name Description Codes/Values
yield proportion of crude oil converted to gasoline proportion

after distillation and fractionation
gravity crude oil gravity API scale
pressure vapor pressure of crude oil lbf/in2
temp10 temperature at which 10 percent of crude oil degrees F

has vaporized
temp temperature at which all gasoline has vaporized degrees F
batch factor indicating unique batch of conditions levels 1 to 10

gravity, pressure, and temp10

gas.glm <- betareg(yield ~ gravity + pressure + temp10 + temp, data =
↪→ GasolineYield)

coef(summary(gas.glm))

$mean
Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.694942189 0.7625693428 -3.5340290 4.092761e-04
gravity 0.004541209 0.0071418995 0.6358545 5.248712e-01
pressure 0.030413465 0.0281006512 1.0823046 2.791172e-01
temp10 -0.011044935 0.0022639670 -4.8785761 1.068544e-06
temp 0.010565035 0.0005153974 20.4988154 2.205984e-93

$precision
Estimate Std. Error z value Pr(>|z|)

(phi) 248.2419 62.0162 4.002856 6.258231e-05

Now, we fit the beta regression with INLA by specifying family = "beta" in inla
call.

gas.inla <- inla(yield ~ gravity + pressure + temp10 + temp, data =
↪→ GasolineYield, family = "beta")

round(gas.inla$summary.fixed, 4)

mean sd 0.025quant 0.5quant 0.975quant mode kld
(Intercept) -2.6607 1.3041 -5.2760 -2.6476 -0.1210 -2.6235 0
gravity 0.0045 0.0122 -0.0195 0.0045 0.0286 0.0045 0
pressure 0.0297 0.0480 -0.0634 0.0290 0.1265 0.0278 0
temp10 -0.0109 0.0039 -0.0184 -0.0110 -0.0031 -0.0110 0
temp 0.0104 0.0009 0.0087 0.0104 0.0121 0.0104 0

round(gas.inla$summary.hyperpar, 4)

mean sd 0.025quant 0.5quant
precision parameter for the beta observations 88.9334 22.1599 50.869 87.077

0.975quant mode
precision parameter for the beta observations 137.2354 83.0305

The estimates of regression coefficients using INLA are almost the same as those
using the maximum likelihood approach. Noticeably, the estimate of the dispersion
parameter using INLA is much smaller than that using the maximum likelihood. The

94 Bayesian Regression Modeling with INLA

yield

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

FIGURE 4.8
Histogram and nonparametric density estimate for the response variable, yield, in
the gasoline yield dataset.

reason for the differences needs to be further investigated. We leave it as an open
problem for the readers.

After fitting the model, it is important to perform diagnostic analyses to check the
goodness-of-fit of the model. We here introduce a Bayesian residual graphical tool
for detecting departures from the postulated model and influential observations. Fer-
rari and Cribari-Neto (2004) defined the standardized residuals for beta regression:

εi =
yi− µ̂i√
V̂ar(yi)

, i = 1, ...,n,

where µ̂i = g−1(xT
i β̂) and V̂ar(yi) = µ̂i(1− µ̂i)/(1+ τ̂). Here (β̂, τ̂) are the maxi-

mum likelihood estimates. Similar to Poisson regression, we can define Bayesian
standardized residuals for beta regression:

ri =
yi−µi√
Var(yi)

=
yi−g−1(xT

i β)√
g−1(xT

i β)
(
1−g−1(xT

i β)
)
/(1+ τ)

, i = 1, ...,n.

The posterior samples of the residuals are obtained by substituting the samples from
the posterior distributions of β and τ. A plot of the posterior means or medians of the
ri’s against the index of the observations can then be examined. We have written a
convenience function, bri.beta.resid, for calculating Bayesian Pearson residuals
for beta regression in our brinla library. When the argument plot = TRUE in this
function is specified, a residual plot by case is output:

Generalized Linear Models 95

gas.inla1.resid <- bri.beta.resid(gas.inla1, plot = TRUE, ylim = c
↪→ (-2,2))

abline(1.96, 0, lty=2); abline(-1.96, 0, lty=2)

0 5 10 15 20 25 30

−2
−1

0
1

2

Index

Ba
ye

si
an

 re
si

du
al

FIGURE 4.9
Bayesian residual plot of the beta model for the gasoline yield data.

Figure 4.9 shows Bayesian residuals versus the index of the observations for the beta
regression. We observe a horizontal band with points that vary at random. There is
only one data point out of the band.

In this fitted model, we note that the 95% credible intervals for temp10 and temp
do not contain zero, while those for gravity and pressure do contain zero. Let us
build a reduced model with the significant variables (in the Bayesian sense), temp10
and temp:

gas.inla2 <- inla(yield ~ temp10 + temp, data = GasolineYield, family
↪→ = "beta", control.compute = list(dic = TRUE, cpo = TRUE))

round(gas.inla2$summary.fixed, 4)

mean sd 0.025quant 0.5quant 0.975quant mode kld
(Intercept) -1.7802 0.3695 -2.5082 -1.7809 -1.0498 -1.7821 0
temp10 -0.0134 0.0015 -0.0164 -0.0134 -0.0105 -0.0134 0
temp 0.0105 0.0008 0.0089 0.0105 0.0121 0.0105 0

round(gas.inla2$summary.hyperpar, 4)

mean sd 0.025quant 0.5quant 0.975quant mode
precision parameter
for the beta observations 92.9781 22.4935 54.1396 91.1616 141.828 87.1999

There is a negative relationship between the mean response (proportion of crude
oil converted to gasoline) and the temperature at which 10 percent of crude oil has

96 Bayesian Regression Modeling with INLA

vaporized, but there is a positive relationship between the mean response and the
temperature at which all gasoline has vaporized. Let us compare the DICs of the
previous model and the current model:

c(gas.inla1dicdic, gas.inla2dicdic)

[1] -126.8995 -131.2635

Thus, we prefer the reduced model because of the smaller DIC. We further examine
the Bayesian residual plot for the reduced model:

gas.inla2.resid <- bri.beta.resid(gas.inla2, plot = TRUE, ylim = c
↪→ (-2,2))

abline(1.96, 0, lty=2); abline(-1.96, 0, lty=2)

0 5 10 15 20 25 30

−2
−1

0
1

2

Index

Ba
ye

si
an

 re
si

du
al

FIGURE 4.10
Bayesian residual plot of the reduced beta model for the gasoline yield data.

Figure 4.10 also shows a random pattern. All residuals are within the horizontal band.
Thus, the assumption of the beta model for the gasoline yield data is valid.

4.7 Modeling Zero-Inflated Data
In statistics, a zero-inflated regression is often used for the problem of modeling data
with excess zeros. The model is based on a zero-inflated probability distribution,
i.e., a distribution that allows for frequent zero-valued observations. Zero-inflated
situation occurs often in modeling count data. For example, the number of insurance

Generalized Linear Models 97

claims within a population for some risk would be zero-inflated by those people who
have not taken out insurance against the risk and thus are unable to claim. INLA
allows users to fit zero-inflated models with Poisson, binomial, negative-binomial
and beta-binomial distributions.

Zero-inflated models provide a mixture-modeling approach to model the excess
zeros in addition to allowing for overdispersion. In particular, there are two possible
data generation processes for each observation, in which the result of a Bernoulli trial
is used to determine the process. For ith observation, the first process generates only
zeros with probability φ, whereas the second process generates the outcomes from
a specific parametric distribution, such as Poisson or negative binomial, with prob-
ability 1− φ (Lambert, 1992). Specifically, a zero-inflated model can be expressed
as

Yi ∼
{

0 with probability φ,
g(Yi|xi) with probability 1−φ,

(4.4)

where g(·) is a certain probability mass or density function. The corresponding prob-
ability of p(Yi = yi|xi) is

p(Yi = yi|xi) = φ · I{yi=0}+(1−φ) ·g(yi|xi).

In INLA, the above zero-inflated models (4.4) are implemented as “Type 1” zero-
inflated models. INLA also provides the options for “Type 0” zero-inflated models,
in which the likelihood is defined as

p(Yi = yi|xi) = φ · I{yi=0}+(1−φ) ·g(yi|yi > 0,xi).

Here we only focus on an example of modeling count data with excess zeros
using “Type 1” zero-inflated Poisson and negative-binomial models, as other cases
are similar. The articles data are taken from Long (1997). This study examines
how factors such as gender (fem), marital status (mar), number of young children
(kid5), prestige of the graduate program (phd), and number of articles published
by a scientist’s mentor (ment) affect the number of articles (art) published by the
scientist. Table 4.8 displays the code sheet for the variables in the articles data.

TABLE 4.8
Code sheet for the variables in the articles data.

Variable Name Description Codes/Values
fem gender 0 = male; 1 = female
ment number of articles published by integers

a scientist’s mentor
phd prestige of the graduate program numbers
mar marital status 0 = No; 1 = Yes
kid5 number of young children integers
art number of articles integers

Let us first take a look at the frequency and proportion of scientists who publish
each observed number of articles. We use the following R commands:

98 Bayesian Regression Modeling with INLA

data(articles, package = "brinla")
table(articles$art)

0 1 2 3 4 5 6 7 8 9 10 11 12 16 19
275 246 178 84 67 27 17 12 1 2 1 1 2 1 1

round(prop.table(table(articles$art)),3)

0 1 2 3 4 5 6 7 8 9 10 11 12
0.301 0.269 0.195 0.092 0.073 0.030 0.019 0.013 0.001 0.002 0.001 0.001 0.002

16 19
0.001 0.001

The observed proportion of scientists who publish no articles is 0.301, indicating
there is a large number of zeros in the response variable. Thus, we fit zero-inflated
Poisson and zero-inflated negative binomial models. In the following statements,
family = "zeroinflatedpoisson1" requests the zero-inflated Poisson model:

articles.inla1 <- inla(art ~ fem + mar + kid5 + phd + ment, data =
↪→ articles, family = "zeroinflatedpoisson1", control.compute =
↪→ list(dic = TRUE, cpo = TRUE))

round(articles.inla1$summary.fixed, 4)

mean sd 0.025quant 0.5quant 0.975quant mode kld
(Intercept) 0.5504 0.1139 0.3262 0.5506 0.7734 0.5509 0
fem1 -0.2315 0.0586 -0.3468 -0.2315 -0.1167 -0.2313 0
mar1 0.1322 0.0661 0.0026 0.1321 0.2619 0.1320 0
kid5 -0.1706 0.0433 -0.2559 -0.1705 -0.0860 -0.1703 0
phd 0.0028 0.0285 -0.0531 0.0028 0.0587 0.0027 0
ment 0.0216 0.0022 0.0173 0.0216 0.0258 0.0216 0

round(articles.inla1$summary.hyperpar, 4)

mean sd 0.025quant 0.5quant
zero-probability parameter
for zero-inflated poisson_1 0.1556 0.0204 0.1156 0.1555

0.975quant mode
zero-probability parameter
for zero-inflated poisson_1 0.196 0.1554

From the results, the variable, phd, is the only variable that is not significant in the
Bayesian sense. The estimated zero-probability parameter is 0.1556 with the 95%
credible interval (0.1156, 0.196).

The zero-inflated negative binomial model can be fit similarly by specifying
family = "zeroinflatednbinomial1":

articles.inla2 <- inla(art ~ fem + mar + kid5 + phd + ment, data =
↪→ articles, family = "zeroinflatednbinomial1", control.compute =
↪→ list(dic = TRUE, cpo = TRUE))

round(articles.inla2$summary.fixed, 4)

mean sd 0.025quant 0.5quant 0.975quant mode kld
(Intercept) 0.2745 0.1391 0.0008 0.2747 0.5470 0.2750 0
fem1 -0.2177 0.0724 -0.3598 -0.2177 -0.0757 -0.2177 0
mar1 0.1493 0.0818 -0.0112 0.1493 0.3099 0.1493 0
kid5 -0.1761 0.0529 -0.2802 -0.1760 -0.0727 -0.1758 0
phd 0.0147 0.0359 -0.0558 0.0146 0.0851 0.0146 0
ment 0.0288 0.0034 0.0221 0.0287 0.0356 0.0287 0

Generalized Linear Models 99

round(articles.inla2$summary.hyperpar, 4)

mean sd 0.025quant 0.5quant
size
for nbinomial zero-inflated observations 2.3923 0.2973 1.8543 2.3773
zero-probability parameter
for zero-inflated nbinomial_1 0.0110 0.0093 0.0010 0.0085

0.975quant mode
size
for nbinomial zero-inflated observations 3.0209 2.3510
zero-probability parameter
for zero-inflated nbinomial_1 0.0353 0.0028

Comparing the results from two models, the posterior mean estimates of the pre-
dictors are close, but their posterior SDs from the zero-inflated negative binomial
model are generally larger than those from the zero-inflated Poisson model. In par-
ticular, the 95% credible interval for the variable, mar, is (0.0025, 0.2619) in the
zero-inflated Poisson model, while it is (-0.0127, 0.3117) in the zero-inflated nega-
tive binomial model. The mar becomes a non-significant variable (in the Bayesian
sense) in the zero-inflated negative binomial model. The estimated zero-probability
parameter becomes 0.0110, which is much smaller than that from the zero-inflated
Poisson model.

As we have discussed in the previous sections, for over-dispersed count data,
the estimated standard errors of the parameters are often too low in Poisson models,
because Poisson distribution assumes that its variance equals its mean. Negative bi-
nomial distribution is often a better choice in practice. Let’s further check the DICs
for the two models:

c(articles.inla1dicdic, articles.inla2dicdic)

3255.584 3137.209

The zero-inflated negative binomial model is favorable based on the DICs. We fur-
ther extract the posterior mean and the 95% credible interval for the overdispersion
parameter of negative binomial distribution:

overdisp_post <- inla.tmarginal(fun = function(x) 1/x, marg = articles
↪→ .inla2$marginals.hyperpar[[1]])

round(inla.emarginal(fun=function(x) x, marg=overdisp_post), 4)

[1] 0.4457

round(inla.qmarginal(c(0.025, 0.975), overdisp_post), 4)

[1] 0.3507 0.5590

The posterior mean is 0.4457, indicating a mild to moderate overdispersion in this
dataset.

In conclusion from the zero-inflated negative binomial modeling results, we find
that female scientists published fewer articles than male scientists, the number of
young children is negatively associated with the number of articles, and the number
of articles published by a scientist’s mentor positively affects the outcomes. However,
the marital status and the prestige of the graduate program are not associated with
the number of articles by the scientist at the 95% credible level.

5

In linear and generalized linear models, we assume that the responses, conditional
on the linear predictor, are independent. When data have a grouping or hierarchical
structure or we have multiple observations on individuals, we will have dependent
responses. This chapter is about how to extend the LMs and GLMs to hande this type
of response. We start by extending LMs with a simple grouping structure that can be
generalized to more complex models. We look at an example where individuals are
measured longitudinally. The GLM also has its extension to generalized linear mixed
models (GLMM).

5.1 Linear Mixed Models
Linear mixed models (LMM) are characterized by a Gaussian response, y, together
with a mix of fixed and random components. They can be written in the form:

y = Xβ+Zu+ ε

where X is a matrix whose columns are predictors, usually including the intercept.
The parameters β are called fixed effects. Without the Zu term, this would be just a
linear model. The Z is also a matrix of predictors, some of which may be in common
with X. The u are the random effects. In the frequentist form of the model, the β are
fixed parameters while the u would be random with a multivariate normal distribution
with zero mean and covariance that we would wish to estimate. This mixture of
fixed and random components suggests the mixed model name. From the Bayesian
perspective, all the parameters have distributions so they are all random and mixed
model terminology is not as appropriate. Nevertheless, we will treat the two sets of
parameters differently so we will keep the fixed and random names.

Usually, it is not convenient to use the Zu form for the random component when
constructing or interpreting the model. Instead, we will use the latent Gaussian model
(LGM) formulation, where EYi = µi, of:

µi = α+∑
j

β jxi j +∑
k

f (k)(ui j). (5.1)

Linear Mixed and
Generalized Linear Mixed Models

102 Bayesian Regression Modeling with INLA

The errors, εi are i.i.d. normal. We can construct the f (k)(ui j) terms in various ways
that introduce different patterns of correlation in the response as appropriate for the
particular application. Common structures are:

• Grouping or clustering: The cases are divided into groups within which the re-
sponses are correlated. Sometimes these represent the same individual being mea-
sured repeatedly or different individuals that belong to some common group.

• Hierarchy: The cases belong to groups. The groups belong to broader groups. For
example, students belong to a class and a school consists of different classes. There
can be several layers of hierarchy as the schools may belong to a district and so on.

• Longitudinal: An individual is followed over time and measured on different oc-
casions. This is an example of grouping already mentioned but longitudinal data
requires a particular specification that we will explore in this chapter.

It is difficult to precisely define scope of the predictor side of a LMM but we can be
definite about the response. This should be Gaussian. If you want a binomial, Poisson
or other distribution for the response, you need to use a generalized LMM or GLMM,
as described later in this chapter. We develop the methodology of INLA for LMMs
with a series of examples, starting with the simplest kind of mixed model.

5.2 Single Random Effect
Hawkins (2005) reports data on the nitrogen content of reeds at three different lo-
cations in Cambridgeshire, England. The reeds are part of an ecosystem supporting
a variety of moth and there is some interest in how the nitrogen content might vary
from location to location. We start by loading the data and summarizing the data:

data(reeds, package="brinla")
summary(reeds)

site nitrogen
A:5 Min. :2.35
B:5 1st Qu.:2.62
C:5 Median :3.06

Mean :3.03
3rd Qu.:3.27
Max. :3.93

There are five observations per site. The sites are labeled, A, B and C, which is
an indication that we do not take much interest in what the nitrogen level is at a
particular site. We are more interested in the variation across the whole region and in
what nitrogen content we might find if we sample from a new site. For this reason,
it makes more sense to regard the site as a random effect than a fixed effect. This
means there is no β term in the LGM from (5.1). We use a model of the form:

yi j = α+ui + εi j i = 1, . . . ,a j = 1, . . . ,n,

Linear Mixed and Generalized Linear Mixed Models 103

where the ui and εi js are normal with mean zero, but variances σ2
u and σ2

ε , respec-
tively. The σ2

u and σ2
ε are the hyperparameters and there is a single “fixed” parameter,

α.
For comparison purposes, we make the standard likelihood-based analysis using

the lme4 R package:

library(lme4)
mmod <- lmer(nitrogen ~ 1+(1|site), reeds)
summary(mmod)

Random effects:
Groups Name Variance Std.Dev.
site (Intercept) 0.1872 0.433
Residual 0.0855 0.292

Number of obs: 15, groups: site, 3

Fixed effects:
Estimate Std. Error t value

(Intercept) 3.029 0.261 11.6

We can see that the estimated variation between sites (σ̂u = 0.433) is somewhat larger
than that seen within sites (σ̂ε = 0.292).

We will need the INLA package throughout this chapter and will also use our
brinla package. From now on, we will assume these have already been loaded. If
you forget, you will get a “function not found” error message.

library(INLA); library(brinla)

There are three parameters, α, σ2
u and σ2

ε for which we must specify prior dis-
tributions. We will discuss the default priors used by INLA but these are essentially
uninformative. We also need to specify that the ui are independent and identically
distributed which we achieve in the model formula using model="iid". Let’s see
what we get with these priors:

formula <- nitrogen ~ 1 + f(site, model="iid")
imod <- inla(formula,family="gaussian", data = reeds)
summary(imod)

Fixed effects:
mean sd 0.025quant 0.5quant 0.975quant mode kld

(Intercept) 3.0293 0.1829 2.6627 3.0293 3.3958 3.0293 0

Random effects:
Name Model
site IID model

Model hyperparameters:
mean sd 0.025quant 0.5quant 0.975quant mode

Precision for the Gaussian obs 13.25 5.205 5.486 12.49 25.55 10.972
Precision for site 20.35 25.119 1.936 12.81 84.52 5.086

Expected number of effective parameters(std dev): 1.912(0.7592)
Number of equivalent replicates : 7.845

Marginal log-Likelihood: -20.88

The posterior mean of α is 3.03 and a 95% credibility interval is [2.66,3.40]. INLA

104 Bayesian Regression Modeling with INLA

works with precision, which is the inverse of the variance. This is convenient for the
theory and computation, but not familiar for interpretation. We would like to obtain
summary statistics on the posteriors of σu and σε by transforming to the SD scale:

invsqrt <- function(x) 1/sqrt(x)
sdt <- invsqrt(imod$summary.hyperpar[,-2])
row.names(sdt) <- c("SD of epsilson","SD of site")
sdt

mean 0.025quant 0.5quant 0.975quant mode
SD of epsilson 0.27468 0.42695 0.28294 0.19785 0.30190
SD of site 0.22169 0.71862 0.27942 0.10877 0.44343

Converting the SD of the precision to the SD of the standard deviation requires a dif-
ferent transformation so we have omitted this from the computation. Unfortunately,
the mean and the mode are not invariant to the transform in scale. Quantiles, such as
the median, are invariant to monotone transformation. This means that the mean and
mode above are incorrect and we must first derive the transformed posterior distribu-
tions and then recompute these summary statistics. We can do this for the means:

prec.site <- imod$marginals.hyperpar$"Precision for site"
prec.epsilon <- imod$marginals.hyperpar$"Precision for the Gaussian

↪→ observations"
c(epsilon=inla.emarginal(invsqrt,prec.epsilon),
site=inla.emarginal(invsqrt,prec.site))

epsilon site
0.29083 0.31355

We can also compute the posterior modes:

sigma.site <- inla.tmarginal(invsqrt, prec.site)
sigma.epsilon <- inla.tmarginal(invsqrt, prec.epsilon)
c(epsilon=inla.mmarginal(sigma.epsilon),
site=inla.mmarginal(sigma.site))

epsilon site
0.26655 0.22174

The posterior distributions of these two components are quite asymmetrical (in con-
trast to α) so the mean, median and mode show some differences. If we compare this
to the lme4 output above, where maximum likelihood estimates are used, the mode is
natural comparison. We see some differences in the outcomes. If we use flat priors,
we expect posterior modes and maximum likelihood estimates to be similar under
most circumstances. The site SD is smaller from the Bayes calculation indicating the
default prior is giving some preference to smaller values.

The INLA package contains a function to make the computation of summary
statistics for SDs easier:

inla.contrib.sd(imod)$hyper

mean sd 2.5% 97.5%
sd for the Gaussian observations 0.29196 0.059868 0.202465 0.44965
sd for site 0.31652 0.162710 0.098207 0.71926

The function works by sampling from the posterior distribution for the precision,
transforming the samples, and then computing the summary statistics. This is less

Linear Mixed and Generalized Linear Mixed Models 105

efficient than directly constructing the posteriors for the SDs, but the technique can be
useful for other quantities. For example, the intraclass correlation coefficient (ICC)
is defined as

ρ =
σ2

u

σ2
u +σ2

ε

.

This is used as a measure of how much the response varies within groups
compared to between groups. We sample from the joint posterior using
inla.hyperpar.sample(), invert to get variances and then compute the ICC for
each sample. We construct summary statistics of the 1000 sampled ICCs.

sampvars <- 1/inla.hyperpar.sample(1000,imod)
sampicc <- sampvars[,2]/(rowSums(sampvars))
quantile(sampicc, c(0.025,0.5,0.975))

2.5% 50% 97.5%
0.096973 0.493498 0.891028

We see the median of the posterior distribution of the ICC is 0.49 but the 95% credi-
ble interval is wide. Note that although an MCMC-based modeling approach would
also naturally use samples, this sampling based on INLA is a quite different mat-
ter as it can be done quickly and easily. The samples are independent and quickly
generated.

Since we often want the hyperparameters summarized as SDs rather than preci-
sions and the results can be computed exactly as shown above, we have written a
convenience function for producing this summary in our brinla package:

bri.hyperpar.summary(imod)

mean sd q0.025 q0.5 q0.975 mode
SD for the Gaussian observations 0.2907 0.057994 0.19832 0.28274 0.42528 0.26654
SD for site 0.3128 0.155914 0.10906 0.27884 0.71091 0.22178

Although summary statistics are useful, there is no good substitute for looking at
plots of the posterior distributions. The fixed component of the model has a single
component, α:

alpha <- data.frame(imod$marginals.fixed[[1]])
library(ggplot2)
ggplot(alpha, aes(x,y)) + geom_line() + geom_vline(xintercept = c

↪→ (2.66, 3.40)) +
xlim(2,4)+xlab("nitrogen")+ylab("density")

The plot, including the 95% credibility interval, is shown in the first panel of Fig-
ure 5.1. We see a symmetric, normally-shaped, posterior distribution. The two ran-
dom components of the model can be extracted and transformed to the SD scale:

x <- seq(0,1,len=100)
d1 <- inla.dmarginal(x,sigma.site)
d2 <- inla.dmarginal(x,sigma.epsilon)
rdf <- data.frame(nitrogen=c(x,x),sigma=gl(2,100,

labels=c("site","epsilon")),density=c(d1,d2))
ggplot(rdf, aes(x=nitrogen, y=density, linetype=sigma))+geom_line()

The resulting plot is seen in the right panel of Figure 5.1. We see that the posterior

106 Bayesian Regression Modeling with INLA

for σε is more concentrated. This is not surprising since we have 15 observations that
provide information about this parameter in contrast to only three sites used for σu.

0

1

2

3

2.0 2.5 3.0 3.5 4.0
nitrogen

de
ns

ity

0

2

4

6

0.00 0.25 0.50 0.75 1.00
nitrogen

de
ns

ity

sigma
site

epsilon

FIGURE 5.1
Posterior densities for single random effect model of nitrogen content in reeds. The
intercept, α, is shown on the left with a 95% credibility interval and the two SDs for
the site and error (σε and σu) are shown on the right.

We might ask whether there is any difference between the sites. In the frequentist
paradigm, this question would be formulated as the null hypothesis that σu = 0. As
it turns out, we can see from Figure 5.1 that the posterior distribution has a support
separated from σu = 0. We are very confident that there is a difference between the
sites. Given the closeness of the two SDs, we might say that the difference between
two sites is about the same as the difference between two samples from the same site.

We have written a convenience function for producing this plot more directly:

bri.hyperpar.plot(imod)

You may need to customize the plot so it is still worth understanding the details of
its construction as shown above.

5.2.1 Choice of Priors

Thus far we have relied on the default priors, but these deserve a closer look. These
are:

• The intercept α has the improper prior N(0,∞). It’s called improper because
N(0,∞) has infinite variance and is not a real distribution. This corresponds to
the prior view that the intercept is equally likely to be anything.

• The fixed-effect parameters β have prior distribution N(0,1000).

• The priors for σ2
u and σ2

ε are defined internally in terms of logged precision. They
follow log gamma distribution. The corresponding gamma distribution Γ(a,b) has

Linear Mixed and Generalized Linear Mixed Models 107

mean a/b and variance a/b2. The values used for the default prior are a = 1 and
b = 10−5.

In this example, we could be more definite in specifying the prior on the fixed
effect. The response is a percentage and so lies in [0,100]. Some basic biological
knowledge will suggest a reasonable range for the nitrogen content of the plant. We
could develop a prior that would encompass this information. Experience suggests,
however, that unless we specify a sharp prior that it is in contradiction with the data,
this will not make much difference to the posterior distribution. One is usually satis-
fied with the default flat prior for the intercept in such models.

In this particular model, we have no fixed effects other than the intercept. If we
did, it is worth noticing that for data where the variables do not have magnitudes
greatly different from one, the prior of N(0,1000) for the coefficients β will be ef-
fectively flat. If the data have widely different magnitudes, large values of β might
not be unreasonable and the default prior would be informative, perhaps in an unde-
sirable way. In such examples, one would either scale the data or modify the prior
appropriately.

The prior specification for σ2
u is important. Each observation contributes to the

information about σ2
ε so the choice of prior for this hyperparameter is less crucial. In

contrast, there may be relatively few groups in the data so there is less information
about σ2

u. This means that the prior for this parameter will have a greater influence on
the outcome and requires our greatest attention among all the priors. The choice of
a = 1 for the shape parameter of the gamma reduces the prior to a simple exponential
distribution. The small value of b means that the prior for the precision has both a
large mean and variance.

Penalized complexity prior: In Simpson et al. (2017), a class of penalized com-
plexity (PC) priors is introduced. These are based on general principles concerning
the construction of priors. For a Gaussian random effect, these take the form of an
exponential distribution on the standard deviation (in contrast to the exponential on
the precision seen in the default). The principle of Occam’s razor, as used in statis-
tics, urges us to prefer the simpler model. In this context, a model without a random
effect, i.e., σu = 0, should be preferred. An exponential prior on the SD puts the
greatest weight on this choice. In contrast, the default prior puts no weight on infinite
precision (which is σu = 0). Also, PC priors require that we specify some scaling.
If we took the default approach of making the prior very flat, we would lose the
principle of a preference for simplicity embodied in the exponential prior on the SD.
We need to use the information about the scale of the response to provide a sensible
scaling for the prior. We wish to be weakly informative — we do not want to strongly
influence the posterior but we should use available information to get an effective
prior.

To calibrate the scaling of the random effects prior, we set U and p so that P(σu >
U) = p. We set p = 0.01 and fix U = 3SD(y). Ideally, we would choose U based on
contextual knowledge but, failing this, we take the residual SD of the model without
fixed effects. In this case, this is the standard deviation of the response. Thus, we
calibrate the prior so that probability that the SD of the random effect is three times
the SD of the response is quite small. Hence, we allow for the possibility that σu

108 Bayesian Regression Modeling with INLA

might be larger than the data suggest but not substantially larger. We can reasonably
call this weakly informative. We implement this:

sdres <- sd(reeds$nitrogen)
pcprior <- list(prec = list(prior="pc.prec", param = c(3*sdres,0.01)))
formula <- nitrogen ~ f(site, model="iid", hyper = pcprior)
pmod <- inla(formula, family="gaussian", data=reeds)

The fixed effects summary is:

pmod$summary.fixed

mean sd 0.025quant 0.5quant 0.975quant mode kld
(Intercept) 3.0293 0.3029 2.4097 3.0293 3.6496 3.0293 2.6993e-08

This is very similar to the output for the default prior model. Now consider the hy-
perparameters:

bri.hyperpar.summary(pmod)

mean sd q0.025 q0.5 q0.975 mode
SD for the Gaussian observations 0.28643 0.055213 0.19808 0.27897 0.41419 0.26369
SD for site 0.46552 0.217727 0.18267 0.41674 1.02417 0.33783

The error component SD is only slightly different from the default prior-based model.
But we see a substantial difference for the site SD. We plot the posteriors as seen in
the first panel of Figure 5.2. The posterior distribution of σu is stochastically larger
than for the default prior case.

bri.hyperpar.plot(pmod)

User defined prior: We can also define our own prior using INLA. A half
Cauchy distribution for the standard deviation is a popular choice but is not among
those coded in INLA. The half Cauchy density, with scale parameter λ, is

p(σ|λ) = 2
πλ(1+(σ/λ)2)

, σ≥ 0.

We need to make a suitable choice of λ. If we use the same reasoning as for the PC
prior, this leads to:

(lambda <- 3*sdres/tan(pi*0.99/2))

[1] 0.022066

INLA works with the precision and the calculation requires the log density of the
precision, τ, which is

log p(τ|λ) =−3
2

logτ− log(πλ)− log(1+1/(τλ
2)).

The half Cauchy prior is then defined using:

halfcauchy <- "expression:
lambda = 0.022;
precision = exp(log_precision);
logdens = -1.5*log_precision-log(pi*lambda)-

log(1+1/(precision*lambda^2));
log_jacobian = log_precision;
return(logdens+log_jacobian);"

Linear Mixed and Generalized Linear Mixed Models 109

The code within the quotes looks like R but is written in muparser. This library
parses mathematical expressions for implementation in C++ within INLA. The set
of expressions it can understand is much more limited than R but is enough for our
purposes. If you want to define another prior, you will need to refer to the muparser
website to discover which functions are available. We also need to hardcode the scale
λ into the expression. The internal representation uses logτ so we must account for
the change of variables by including a Jacobian.

We now use this prior for the random effect SD:

hcprior <- list(prec = list(prior = halfcauchy))
formula <- nitrogen ~ f(site, model="iid", hyper = hcprior)
hmod <- inla(formula, family="gaussian", data=reeds)
bri.hyperpar.summary(hmod)

mean sd q0.025 q0.5 q0.975 mode
SD for the Gaussian observations 0.28763 0.056198 0.19809 0.28006 0.41769 0.26436
SD for site 0.42336 0.231601 0.14712 0.36566 1.03014 0.28080

The results are comparable to the penalized complexity prior.
We cannot claim that this prior, the PC prior, the default prior, or any number

of other priors we might reasonably propose are definitively best. In some cases, we
can argue that the result is insensitive to the choice of the prior. For the intercept and
the error SD, this is a reasonable claim. For the random effect SD, we see that the
prior does make a difference. This is not surprising since we have only three groups
and estimating an SD with so little information is sure to be subject to considerable
uncertainty. The selection of the prior and the likelihood model requires subjective
judgment. This is unavoidable. Since we must choose, we choose the PC prior on the
grounds that it uses information and principles that are defensible. The half Cauchy
is similar to the PC prior and is a good alternative. In contrast, the default prior is
harder to defend.

5.2.2 Random Effects

Although we did not express a particular interest in the three sites, we can extract
the posterior distributions of u1, u2 and u3. These are sometimes called the random
effects and can be extracted from the INLA model object. We compute the densities
on a common grid so that they can be plotted together as seen in Figure 5.2. We can
see that the nitogren content at the sites is in the order B < A <C. We are reasonably
confident of this ordering but there is some overlap in the distributions. We use the
PC prior version of the model.

reff <- pmod$marginals.random
x <- seq(-1.5,1.5,len=100)
d1 <- inla.dmarginal(x, reff$site[[1]])
d2 <- inla.dmarginal(x, reff$site[[2]])
d3 <- inla.dmarginal(x, reff$site[[3]])
rdf <- data.frame(nitrogen=x,density=c(d1,d2,d3),site=gl(3,100,

labels=LETTERS[1:4]))
ggplot(rdf, aes(x=nitrogen, y=density, linetype=site))+geom_line()

Almost the same plot may be obtained as

110 Bayesian Regression Modeling with INLA

0

2

4

6

8

0.5 1.0 1.5 2.0

de
ns

ity

parameter
SD for error

SD for site

0.0

0.5

1.0

1.5

−1 0 1
nitrogen

de
ns

ity

site
A

B

C

FIGURE 5.2
Posterior densities of the SDs for the random components are shown on the left.
Posterior densities of the random effects for the nitrogen content at the three sites are
shown on the right.

bri.random.plot(pmod)

We might be interested in whether site C has more nitrogen content than site A.
We might hope to calculate the probability of this using the marginal distributions of
the random effects as seen in Figure 5.2. But there is some correlation between the
random effect posteriors and so this calculation would be incorrect. We can answer
questions of this nature by drawing samples from the joint posterior. Earlier we used
inla.hyperpar.sample() to obtain samples of the hyperparameters. But now we
need samples from the latent variables as well. We take 1000 samples. It is necessary
to recompute the model to obtain the information necessary for resampling:

sdres <- sd(reeds$nitrogen)
pcprior <- list(prec = list(prior="pc.prec", param = c(3*sdres,0.01)))
formula <- nitrogen ~ f(site, model="iid", hyper = pcprior)
pmod <- inla(formula, family="gaussian", data=reeds,

control.compute=list(config = TRUE))
psamp <- inla.posterior.sample(n=1000, pmod)
psamp[[1]]

$hyperpar
Precision for the Gaussian observations Precision for site

13.5261 8.5909

$latent
sample1

Predictor:01 3.07707
Predictor:02 3.08278
...excised...
Predictor:15 3.26561
site:A 0.19414
site:B -0.31424

Linear Mixed and Generalized Linear Mixed Models 111

site:C 0.37918
(Intercept) 2.88533

The latent variables contain all 15 predictors but we are interested in the sites for our
problem:

lvsamp <- t(sapply(psamp, function(x) x$latent))
colnames(lvsamp) <- row.names(psamp[[1]]$latent)
mean(lvsamp[,’site:C’] > lvsamp[,’site:A’])

[1] 0.987

We see that there is very strong probability that site C contains more nitrogen than
site A. The probability is larger than one might expect from the plot as there is a
positive correlation between the two random effects. This technique can be used to
answer various questions about the hyperparameters and the latent variables.

5.3 Longitudinal Data
Data where observations are collected on individuals over time are called longitudi-
nal. Observations on a particular individual will not be independent but may show
some common pattern of variation over time. The response for an individual may de-
pend on observed characteristics but may also show unexplained variation specific to
that individual. In Singer and Willett (2003), reading scores on a Peabody Individual
Achievement test (PIAT) for 89 children, measured at 6.5, 8.5 and 10.5 years of age,
are reported. We load this data and plot:

data(reading, package="brinla")
ggplot(reading, aes(agegrp, piat, group=id)) + geom_line()

20

40

60

7 8 9 10
agegrp

pi
at

FIGURE 5.3
Reading scores of 89 students as they vary across three ages of measurement.

As can be seen in Figure 5.3, reading scores increase over time. Although there is

112 Bayesian Regression Modeling with INLA

some variation, we see that children who score well initially, continue to score well
and vice versa. This indicates that the observations within an individual are not inde-
pendent. We need a model that reflects this structure. The simplest way to do this is
a model with a random intercept.

5.3.1 Random Intercept

The model is:

yi j = β0 +β1t j +αi + εi j i = 1, . . . ,89. j = 1,2,3.

Time (or age in the example) is measured at three times, t1, t2, t3. The parameters β0
and β1 are the so-called fixed effects and are the common intercept and slope for
all students. A Gaussian prior is used for these. The random components are αi ∼
N(0,σ2

α) and εi j ∼N(0,σ2
ε). The hyperparameters σ2

α and σ2
ε require the specification

of priors.
Before using INLA to fit the model, it is worth considering the corresponding

likelihood-based model:

library(lme4)
lmod <- lmer(piat ~ agegrp + (1|id), reading)
summary(lmod)

Random effects:
Groups Name Variance Std.Dev.
id (Intercept) 29.8 5.46
Residual 44.9 6.70

Number of obs: 267, groups: id, 89

Fixed effects:
Estimate Std. Error t value

(Intercept) -11.538 2.249 -5.13
agegrp 5.031 0.251 20.04

Now, we fit the model using INLA. We use the default priors (and subsequent anal-
ysis suggests these are adequate):

formula <- piat ~ agegrp + f(id, model="iid")
imod <- inla(formula, family="gaussian", data=reading)

The random intercept term is represented using f(id, model="iid") where id dis-
tinguishes the students. We use model="iid" because we believe that the students
are independent and have a common variance. We can look at the fixed effect sum-
mary as:

imod$summary.fixed

mean sd 0.025quant 0.5quant 0.975quant mode kld
(Intercept) -11.5350 2.25815 -15.9727 -11.5351 -7.1013 -11.5350 5.8942e-13
agegrp 5.0306 0.25258 4.5341 5.0306 5.5265 5.0306 7.3789e-13

Because the fixed effect posterior distributions are approximately Gaussian, the
mean, median and mode are identical. We see that the mean and SD are virtually
the same as the likelihood model as would be expected. We see that reading scores

Linear Mixed and Generalized Linear Mixed Models 113

increase about five points a year and we are quite sure about this given the small SD.
The hyperparameters are more interesting. We use the bri.hyperpar.summary()
function from our brinla package which converts the precisions used internally by
INLA onto the SD scale which is interpretable:

bri.hyperpar.summary(imod)

mean sd q0.025 q0.5 q0.975 mode
SD for the Gaussian observations 6.7131 0.35476 6.0481 6.7001 7.4415 6.6752
SD for id 5.2960 0.62761 4.1430 5.2681 6.6050 5.2263

These posterior distributions are not quite symmetrical so there are some differences
with mean, median and mode. Maximum likelihood is a mode so we use this for
comparison to the lme4 output. We see the INLA values are slightly smaller. We have
three observations per individual and hence about three times as much information
for the estimation of σ2

ε than σ2
α. We see the distance between the 2.5th and 97.5th

percentiles is smaller for the former. The posterior mean of σα is about five — similar
to that for β1. So we see that variation between students at a given point in time is
comparable to the amount they might be expected to improve over one year. Finally,
we see that σ2

α is clearly bigger than zero so we cannot claim the 89 students are
all the same with some measurement error thrown in. We can look at the posterior
densities (plot not shown) with:

bri.hyperpar.plot(imod)

We might be interested in individual students. Information about individuals can
be found in the posterior distributions of the αi. These are sometimes called the ran-
dom effects and can be found in imod$summary.random$id. We look at the sum-
mary of the posterior means of these:

summary(imod$summary.random$id$mean)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-7.890 -2.940 -0.145 0.000 2.650 14.000

The mean is zero as would be expected given the specification of the model. From the
quartiles, we see that about half the students have mean scores within about [−3,3]
of the overall mean. One student is 14 points above the mean. We can examine the
whole posterior distributions for the random effects:

bri.random.plot(imod)

The plot (not shown) has too many individuals to separately identify but it will be
difficult to claim differences between most students.

5.3.2 Random Slope and Intercept

We can see from Figure 5.3 that the slopes also vary and we would want to incorpo-
rate this into our model. We can do this as:

yi j = β0 +β1t j +α0i +α1it j + εi j, i = 1, . . . ,89, j = 1,2,3,

where we have added the slope variation as α1i ∼ N(0,σ2
α1
). For comparison pur-

poses, the lme4-based model is:

114 Bayesian Regression Modeling with INLA

reading$cagegrp <- reading$agegrp - 8.5
lmod <- lmer(piat ~ cagegrp + (cagegrp|id), reading)
summary(lmod)

Random effects:
Groups Name Variance Std.Dev. Corr
id (Intercept) 35.72 5.98

cagegrp 4.49 2.12 0.83
Residual 27.04 5.20

Number of obs: 267, groups: id, 89

Fixed effects:
Estimate Std. Error t value

(Intercept) 31.225 0.709 44.0
cagegrp 5.031 0.297 16.9

We have centered the age by its mean value of 8.5. This makes the interpretation of
the intercept more useful since it represents the response at age 8.5 and not age zero
as before. The model contains a correlation between the slope and intercept random
effects, estimated at 0.83. Indeed, we can see from the plot of the data that individuals
with higher intercepts tend also to have greater slopes so this is a necessary compo-
nent of the model. We must ensure that our INLA model has this same feature and
this requires some preparation. We must create another set of student labels, one for
each but with a different label from the original set.

nid <- length(levels(reading$id))
reading$numid <- as.numeric(reading$id)
reading$slopeid <- reading$numid + nid

The students are labelled 1 to 89 which we will use for the intercept component. We
create another set, labelled from 90 to 178, corresponding to the same students in the
same order that we will use for the slope component. Now we are ready to fit the
INLA model:

formula <- piat ~ cagegrp + f(numid, model="iid2d", n = 2*nid) +
f(slopeid, cagegrp, copy="numid")

imod <- inla(formula, family="gaussian", data=reading)

We want to specify (α0i,α1i) as bivariate normal which is achieved using
model="iid2d". The total number of random effect terms is twice the number of stu-
dents as stated by the n=2*nid part. The f(slopeid, cagegrp, copy="numid")
term achieves the linear dependence on cagegrp. The copy part ensures that a cor-
relation is modeled between the two random components. If we omit this part, no
correlation will be included. Note that the term copy is somewhat of a misnomer
since the two random components will be different, just correlated.

First we examine the fixed effects terms:

imod$summary.fixed

mean sd 0.025quant 0.5quant 0.975quant mode kld
(Intercept) 31.2241 0.69742 29.8516 31.2241 32.5950 31.2241 1.1102e-12
cagegrp 5.0305 0.29246 4.4551 5.0305 5.6052 5.0305 1.1838e-12

We can compare this to the result for the random intercept only model. The fixed
effect intercept is different because we have centered on age. The posterior mean is

Linear Mixed and Generalized Linear Mixed Models 115

about the same as is commonly the case when we change only the random struc-
ture. Notice that the posterior distribution is a little more dispersed due to the use
of more parameters in this model. We can also obtain the summary for the random
component:

bri.hyperpar.summary(imod)

mean sd q0.025 q0.5 q0.975 mode
SD for the Gaussian observations 5.5126 0.304548 4.94350 5.5008 6.13965 5.47820
SD for numid (component 1) 5.6930 0.556589 4.67245 5.6657 6.85768 5.61643
SD for numid (component 2) 1.9150 0.258807 1.44888 1.9000 2.46409 1.87329
Rho1:2 for numid 0.9439 0.047314 0.81548 0.9572 0.98661 0.97448

The posterior mean of the SD for the slope variation among individuals is 1.92. We
can compare this to the overall slope of 5.03. This gives us a sense of how much
variation there is between individual students in the rate at which their reading scores
improve. We notice that the credible interval for this SD bounds the distribution well
away from zero so we are sure there is variation between individuals in this respect.

The correlation between the slope and intercept SDs is 0.94. This means that
students who are above average will tend to increase their reading score over time at
a greater rate than students who are less able readers. We see that the credible interval
for this term means we are sure this correlation is strong.

We can find information about the posterior distributions of (α0i,α1i) in
imod$summary.random$numid. It is interesting to combine this with information
found in the posterior distribution of the fixed effects found in imod$summary.fixed
to obtained predicted means for individual students. We extract, combine and plot
these as follows:

postmean <- matrix(imod$summary.random$numid[,2],nid,2)
postmean <- sweep(postmean,2,imod$summary.fixed$mean,"+")
p <- ggplot(reading, aes(cagegrp, piat, group=id)) +

geom_line(col=gray(0.95)) + xlab("centered age")
p+geom_abline(data=postmean,intercept=postmean[,1],slope=postmean[,2])

The resulting plot is shown in Figure 5.4. We see how students who score well ini-
tially tend to improve at a faster rate than those who do not. We could also extract
the full posterior for particular students if we so desired. We can also plot the distri-
butions of the hyperparameters:

library(gridExtra)
sd.epsilon <- bri.hyper.sd(imod$internal.marginals.hyperpar[[1]],

internal=TRUE)
sd.intercept <- bri.hyper.sd(imod$internal.marginals.hyperpar[[2]],

internal=TRUE)
sd.slope <- bri.hyper.sd(imod$internal.marginals.hyperpar[[3]],

internal=TRUE)
p1 <- ggplot(data.frame(sd.epsilon),aes(x,y))+geom_line()+

ggtitle("Epsilon")+xlab("piat")+ylab("density")
p2 <- ggplot(data.frame(sd.intercept),aes(x,y))+geom_line()+

ggtitle("Intercept")+xlab("piat")+ylab("density")
p3 <- ggplot(data.frame(sd.slope),aes(x,y))+geom_line()+

ggtitle("Slope")+xlab("piat")+ylab("density")
p4 <- ggplot(data.frame(imod$marginals.hyperpar[[4]]),aes(x,y))+

geom_line()+ggtitle("Rho")+ylab("density")

116 Bayesian Regression Modeling with INLA

20

40

60

−2 −1 0 1 2
centered age

pi
at

FIGURE 5.4
Posterior predicted mean profiles for individuals are shown as solid lines. The data
are shown as gray lines.

grid.arrange(p1,p2,p3,p4,ncol=2)

Almost the same plot can be obtained more quickly with:

bri.hyperpar.plot(imod, together=FALSE)

The resulting plots are seen in Figure 5.5. The SDs are on different scales so we
have not plotted them together. In this dataset, we have 89 individuals so we are not
surprised to see posteriors which are relatively compact and normally shaped. We
see clearly that the correlation is strong. We have seen that strong students get even
stronger as they age when considering the reading scores in an absolute sense. We
can ask the same question in a relative sense by considering a logged response. We
refit the model and look at the posterior distribution of the correlation:

formula <- log(piat) ~ cagegrp + f(numid, model="iid2d", n = 2*nid) +
f(slopeid, cagegrp, copy="numid")

imod <- inla(formula, family="gaussian", data=reading)
bri.density.summary(imod$marginals.hyperpar[[4]])

mean sd q0.025 q0.5 q0.975 mode
0.059009 0.112198 -0.162033 0.058883 0.275997 0.060206

We see that the 95% credible interval constructed from the two extreme quantiles
includes zero. Although there is some weak suggestion of a positive correlation, we
cannot be sure of this. This is in contrast to the previous unlogged response model
where the correlation was very strong. Based on this, we can reasonably claim that
stronger students maintain a constant relative advantage over weaker students. There
is no sense that the rich get richer.

5.3.3 Prediction

We can generate predictions for new cases by appending the known predictor values,
together with missing values for the response, to the data frame for the original data.

Linear Mixed and Generalized Linear Mixed Models 117

0.0

0.5

1.0

4.5 5.0 5.5 6.0 6.5
piat

de
ns

ity
Epsilon

0.0

0.2

0.4

0.6

4 5 6 7 8
piat

de
ns

ity

Intercept

0.0

0.5

1.0

1.5

1.5 2.0 2.5 3.0
piat

de
ns

ity

Slope

0

5

10

15

20

−0.5 0.0 0.5 1.0
x

de
ns

ity
Rho

FIGURE 5.5
Posterior distributions of the hyperparameters.

Suppose we have a new student who has scored 18 and 25 at the first two points of
measurement and we are interested in what will happen at the final point of measure-
ment. We create a small data frame with this information and append it to the original
dataset (which we reload to clear out the additional variables we created above):

data(reading, package="brinla")
reading$id <- as.numeric(reading$id)
newsub <- data.frame(id=90, agegrp = c(6.5,8.5,10.5),

piat=c(18, 25, NA))
nreading <- rbind(reading, newsub)

Since we are adding a new individual with the label 90, it is easier if we specify the
id for the students as numeric rather than factor. Now we refit the model as before:

formula <- piat ~ agegrp + f(id, model="iid")

118 Bayesian Regression Modeling with INLA

imod <- inla(formula, family="gaussian", data=nreading,
control.predictor = list(compute=TRUE))

pm90 <- imod$marginals.fitted.values[[270]]
p1 <- ggplot(data.frame(pm90),aes(x,y))+geom_line()+xlim(c(20,60))

There are 90× 3 = 270 cases in the data. Only the last of these has an unknown
response. The posterior distribution for this fitted value (the linear predictor) is saved
and plotted (not shown yet as we plan to add another prediction). Notice that the two
new cases are used in the construction of the model. If we believe that the student
is exchangeable with the original set, then this is sensible. But in some situations,
we might wish to base the prediction solely on the original data (without the partial
information from the new individual). We can achieve this by the appropriate use of
the weights argument to the inla() function. In this example, because we have 89
students in the original data and are considering just one more, it will not make much
difference which option we take.

Another kind of prediction would involve a new student for whom we have no
information. We can achieve this by setting all three responses for this student as
missing values:

newsub=data.frame(id=90, agegrp = c(6.5,8.5,10.5), piat=c(NA, NA, NA))
nreading <- rbind(reading, newsub)

We fit the model again and construct the prediction. We put this together with the
previous prediction and show this in Figure 5.6:

formula <- piat ~ agegrp + f(id, model="iid")
imodq <- inla(formula, family="gaussian", data=nreading, control.

↪→ predictor = list(compute=TRUE))
qm90 <- imodq$marginals.fitted.values[[270]]
p1+geom_line(data=data.frame(qm90),aes(x,y),linetype=2)+

xlab("PIAT")+ylab("density")

0.00

0.03

0.06

0.09

20 30 40 50 60
PIAT

de
ns

ity

FIGURE 5.6
Predictive distributions for individual with partial response information (solid) and
no response information (dashed).

Linear Mixed and Generalized Linear Mixed Models 119

We see that for the first individual, who has achieved relatively weak reading scores
at the first two timepoints, the predictive distribution is shifted below the overall
mean of about 41 expected at age 10.5years. In contrast, we see that the predictive
distribution for the individual without known response information is centered on
this expected mean. For the former distribution, we have some information about the
student so the prediction is better (has a more concentrated distribution). We have no
information in the latter case, so the predictive distribution has greater spread.

The predictive distributions above refer only to the linear predictor so we are
expressing only the uncertainty in this component. A future observation will add an
ε to the linear predictor which will require knowledge of the uncertainty in ε. There
are two ways in which we might accomplish this. Conveniently, the future ε should
be independent of the linear predictor and we know its distribution via the posterior
on the corresponding hyperparameter for its precision. In principle, we can combine
the two densities to get the full predictive distribution. In practice, this requires some
effort to implement and so we might resort to sampling. We can sample from the
posteriors for the linear predictor and for ε, add the samples and estimate the density
from these. This is inelegant but effective.

We draw 10,000 samples. This is more than necessary but the computation is fast
so we can be extravagant. We draw samples from the posterior for the precision of
the error: 1/σ2

ε . We convert this to an SD and then sample from normal densities
with these randomly drawn SDs. We combine these randomly generated new εs with
samples from posterior for the mean response that we computed earlier (where we
have partial information about the student). We compute the density and add it to
the plot of the density for the mean response that we computed earlier as seen in
Figure 5.7.

nsamp <- 10000
randprec <- inla.hyperpar.sample(nsamp, imod)[,1]
neweps <- rnorm(nsamp, mean=0, sd=1/sqrt(randprec))
newobs <- inla.rmarginal(nsamp, pm90) + neweps
dens <- density(newobs)
p1 + geom_line(data=data.frame(x=dens$x,y=dens$y),aes(x,y),linetype=2)

We see that there is greater variation in the predictive density for the new response.
In this case, we could approximate the predictive density with a normal distribution
but in general, one needs to be careful. The distribution of the new ε is not normal
since the SD is random.

5.4 Classical Z-Matrix Model
In Section 5.1, we introduced the representation of the model as

y = Xβ+Zu+ ε. (5.2)

In the examples that followed, we did not directly use the Z matrix but used a more
explicit representation of the random effects. Let’s see how we can specify the Z

120 Bayesian Regression Modeling with INLA

0.00

0.03

0.06

0.09

20 30 40 50 60
x

y

FIGURE 5.7
Posterior predictive densities for an individual with partial response information. The
density for the mean response is shown as a solid line and the density for a new
observation is shown with a dashed line.

matrix directly to fit some mixed effect models. We have called it the classical ap-
proach because it dates back to Henderson (1982) who introduced this formulation.
The lme4 package provides a useful way to construct the X and Z matrices which we
demonstrate using the first example of the chapter:

library(lme4)
mmod <- lmer(nitrogen ~ 1+(1|site), reeds)
Z <- getME(mmod, "Z")
X <- getME(mmod, "X")

We need to create an indicator variable for the cases which we call id.z. The Z
model is selected using the model="z" option to f().

n <- nrow(reeds)
formula <- y ~ -1 + X + f(id.z, model="z", Z=Z)
imodZ <- inla(formula, data = list(y=reeds$nitrogen, id.z = 1:n, X=X))

We have used the default setting although more structure can be supplied for the
random effects. The u is a vector of length m which is distributed N(0,τC) where τ is
the precision and C is a fixed m×m matrix. In this example, C is the identity matrix.
As usual, we find it easier to look at the SDs rather than the precisions:

bri.hyperpar.summary(imodZ)

mean sd q0.025 q0.5 q0.975 mode
SD for the Gaussian observations 0.29079 0.05833 0.19817 0.28283 0.42608 0.26647
SD for id.z 0.31313 0.15740 0.10893 0.27909 0.71369 0.22175

which is the same result as seen before in Section 5.1. We can extract summary
information regarding the random effects as:

imodZ$summary.random

Linear Mixed and Generalized Linear Mixed Models 121

$id.z
ID mean sd 0.025quant 0.5quant 0.975quant mode kld

1 1 -0.0041086 0.085306 -0.209637 0.00016443 0.156661 -0.00015857 0.0052616
... ditto ...
6 6 -0.0504086 0.147214 -0.530901 -0.00406940 0.025792 -0.00097854 0.0010167
... ditto ...
11 11 0.0533301 0.154185 -0.027216 0.00339512 0.557732 0.00069156 0.0015510
... ditto ...
16 16 -0.0041052 0.085314 -0.209677 0.00018201 0.156701 -0.00016665 0.0052413
17 17 -0.0503191 0.147077 -0.530555 -0.00406628 0.025763 -0.00099760 0.0010821
18 18 0.0531454 0.153943 -0.027167 0.00337379 0.557112 0.00069253 0.0016927

We have deleted all but the first of each set of five random effects because they are the
same within each group. Internally, INLA uses an “augmented” model where the first
n values are the random effects v∼ Nn(Zu,κI) where κ is a fixed high precision. The
remaining m values are the u. Thus in this example, the last three cases essentially
reiterate the random effects seen previously. In other examples, this may not be so.

We have not achieved anything new over the analysis of this data seen in Sec-
tion 5.1 but we now have a different tool for fitting mixed effects models that al-
lows some new functionality. We can also implement the random intercept model
described in Section 5.3.1 but not the the random slope and intercept model of Sec-
tion 5.3.2 which requires hyperparameters for the intercept and slope along with a
correlation between them. The Z matrix formulation allows only a single hyperpa-
rameter so we are stymied. Nonetheless, we have other uses for this model as we see
in the next section.

5.4.1 Ridge Regression Revisited

In the linear regression model, y = Zu+ ε, least squares estimates of the parameters
u can be unstable when Z has a high degree of correlation. To reduce this instability,
we can penalize the size of u by minimizing:

(y−Zu)T (y−Zu)+λ

p

∑
j=1

u2
j .

The second part is the penalty term which prevents the u from being too large. This
method is called ridge regression. The parameter λ controls the degree of penaliza-
tion and can be chosen using cross-validation in the frequentist framework. We have
already seen one approach to ridge regression in Section 3.7.

We can achieve a similar effect by putting informative priors on the u. In the
mixed effects model seen in (5.2), the Zu is the usual linear model predictor while
Xβ becomes simply an intercept term. We set priors u∼ N(0,σ2

uI) and ε∼ N(0,σ2I)
which corresponds to λ = σ2/σ2

u. Let’s see how this works with an example.
A total of 215 samples of finely chopped meat were measured. For each sample,

we have the fat content as the response with 100 predictors which are absorbances
across a range of frequencies. Since determining the fat content via analytical chem-
istry is time consuming, we would like to build a model to predict the fat content
of new samples using the 100 absorbances which can be measured more easily. See

122 Bayesian Regression Modeling with INLA

Thodberg (1993) for more about the origin of the data and Faraway (2014) for other
analyses of the same data.

The true performance of any model is hard to determine based on just the fit to
the available data. We need to see how well the model does on new data not used
in the construction of the model. For this reason, we will partition the data into two
parts — a training sample consisting of the first 172 observations that we will use to
build and estimate the models and a testing sample of the remaining 43 observations.

data(meatspec, package="brinla")
trainmeat <- meatspec[1:172,]
testmeat <- meatspec[173:215,]
wavelengths <- seq(850, 1050, length=100)

By way of comparison, we fit a standard linear model to the training data and evaluate
the RMSE of prediction on the test data:

modlm <- lm(fat ~ ., trainmeat)
rmse <- function(x,y) sqrt(mean((x-y)^2))
rmse(predict(modlm,testmeat), testmeat$fat)

[1] 3.814

We plot the estimated coefficients of this linear model as seen in the first panel of
Figure 5.8.

plot(wavelengths,coef(modlm)[-1], type="l",ylab="LM Coefficients")

850 900 950 1000

−4
00

00
0

40
00

0

wavelengths

LM
 C

oe
ffi

ci
en

ts

850 900 950 1000

−2
0

−1
0

0
10

20

wavelengths

R
id

ge
 C

oe
ffi

ci
en

ts

FIGURE 5.8
Coefficients for models fitting the meat spectroscopy data. The linear model is shown
on the left and the ridge regression on the right.

We would expect some continuity in the effect as the wavelength varies but the

Linear Mixed and Generalized Linear Mixed Models 123

least squares estimates vary greatly, indicating the instability caused by the strong
collinearity.

We can implement ridge regression using the Bayesian model by creating the
respective X and Z matrices. In this case, X is just a column of ones representing
an intercept. The formula contains a -1 because this intercept is already included.
Z is the matrix of predictors. We assume no knowledge of the response in the test
set so y has missing values for these cases. We need to include the test set in the
computation so that predictive distributions will be generated for these cases using
the option control.predictor = list(compute=TRUE). The test set is not used
in actually fitting the model. The method performs better if the response is scaled
into roughly a [−1,1] range.

n <- nrow(meatspec)
X <- matrix(1,nrow = n, ncol= 1)
Z <- as.matrix(meatspec[,-101])
y <- meatspec$fat
y[173:215] <- NA
scaley <- 100
formula <- y ~ -1 + X + f(idx.Z, model="z", Z=Z)
zmod <- inla(formula, data = list(y=y/scaley, idx.Z = 1:n, X=X),

↪→ control.predictor = list(compute=TRUE))

We now extract the posterior means and compute the RMSE of prediction (taking
into account the scaling):

predb <- zmod$summary.fitted.values[173:215,1]*scaley
rmse(predb, testmeat$fat)

[1] 1.9028

The RMSE is half the size it was for the ordinary linear model. We can also plot the
posterior means for the coefficients as seen in the second panel of Figure 5.8.

rcoef <- zmod$summary.random$idx.Z[216:315,2]
plot(wavelengths, rcoef, type="l", ylab="Ridge Coefficients")

Compared to the linear model, we see the variation has been much reduced (even
allowing for scaling) and there is some continuity in the coefficient as wavelength
varies.

Linear combination of a linear predictor. We can implement ridge regression
using a different approach within INLA. The approach is worth knowing as it can
be used in other situations. Usually we have a response depending on a linear pre-
dictor. But suppose that linear predictor depended on another linear combination.
Concretely,

EY = η
′ and η

′ = Aη,

where Y and η′ are vectors of length n, η is a vector of length m and A is an n×m
matrix. For the ridge regression example, we can set:

A = [X : Z] and η =

(
β0

u

)
.

We need priors for β0, u and ε which we set via the precisions:

124 Bayesian Regression Modeling with INLA

int.fixed <- list(prec = list(initial = log(1.0e-9), fixed=TRUE))
u.prec <- list(prec = list(param = c(1.0e-3, 1.0e-3)))
epsilon.prec <- list(prec = list(param = c(1.0e-3, 1.0e-3)))

For the intercept, the prior is set on the log precision. We set this precision to be
very small indicating very little information about the intercept. By fixing this, we
generate no additional hyperparameter and accept this precision as fixed. For u and ε

we specify weakly informative log-gamma priors.
We now create index sets for β0 and u. η is length 101 with the first element

corresponding to β0 and the remaining 100 corresponding to u.

idx.X <- c(1, rep(NA,100))
idx.Z <- c(NA, 1:100)

We fit the model with:

scaley <- 100
formula <- y ~ -1 + f(idx.X, model="iid", hyper = int.fixed) + f(idx.

↪→ Z, model="iid", hyper = u.prec)
amod <- inla(formula, data = list(y=y/scaley, idx.X=idx.X, idx.Z=idx.Z

↪→),
control.predictor = list(A=cbind(X, Z),compute=TRUE),
control.family = list(hyper = epsilon.prec))

and check the prediction performance with:

predb <- amod$summary.fitted.values[173:215,1]
rmse(predb, testmeat$fat/scaley)*scaley

[1] 1.9019

The performance is very similar to that seen for the mixed effects model based ap-
proach although the priors are not entirely in agreement between the two.

Ridge regression can also be implemented in INLA with a linear regression
model where more informative priors are directly imposed on the coefficients. The
drawback is that we must specify how informative these priors should be, whereas
in the approaches we have taken, the amount of shrinkage in the coefficients is built
into the model fitting process. For another use of the mixed effects Z model, see
Section 11.1.1.

5.5 Generalized Linear Mixed Models
Generalized linear mixed models (GLMM) combine the idea of GLMs as seen in
Chapter 4 with the mixed modeling ideas seen earlier in this chapter. Suppose we
have a response Yi, i = 1, . . . ,n, that follows an exponential family distribution with
E(Yi) = µi. This is connected to the linear predictor η using a link function g by
ηi = g(µi).

Let the random effects, u, have corresponding design matrix Z, then

η = Xβ+Zu.

Linear Mixed and Generalized Linear Mixed Models 125

Provided we assign Gaussian priors to β and assume a Gaussian distribution for the
random effects u, this falls with the latent Gaussian model framework required to
use INLA. GLMM models are not necessarily easy to fit using maximum likelihood
and we may find the Bayesian approach finds acceptable solutions where the purely
likelihood method may struggle.

5.6 Poisson GLMM

In Davison and Hinkley (1997), the results of a study on Nitrofen, a herbicide, are
reported. Due to concern regarding the effect on animal life, 50 female water fleas
were divided into five groups of ten each and treated with different concentrations of
the herbicide. The number of offspring in three subsequent broods for each flea was
recorded. We start by loading the data from the boot package:

data(nitrofen, package="boot")
head(nitrofen)

conc brood1 brood2 brood3 total
1 0 3 14 10 27
2 0 5 12 15 32
3 0 6 11 17 34
4 0 6 12 15 33
5 0 6 15 15 36
6 0 5 14 15 34

It is more convenient to construct a data frame with one response value per line. We
drop the total variable and add an identifier of the flea:

library(dplyr)
library(tidyr)
lnitrofen <- select(nitrofen, -total) %>%

mutate(id=1:nrow(nitrofen)) %>%
gather(brood,live,-conc,-id) %>%
arrange(id)

lnitrofen$brood <- factor(lnitrofen$brood,labels=1:3)
head(lnitrofen)

conc id brood live
1 0 1 1 3
2 0 1 2 14
3 0 1 3 10
4 0 2 1 5
5 0 2 2 12
6 0 2 3 15

We construct a plot of the data as seen in Figure 5.9. We need to offset the concen-
trations horizontally a little to distinguish the broods. Some vertical jittering is also
needed to avoid overplotting cases with the same response. We see that for the first
brood, the number of offspring remains relatively constant while for the second and
third broods, numbers appear to decrease with increasing concentration of Nitrofen.

126 Bayesian Regression Modeling with INLA

lnitrofen$jconc <- lnitrofen$conc + rep(c(-10,0,10),50)
ggplot(lnitrofen, aes(x=jconc,y=live, shape=brood)) +

geom_point(position = position_jitter(w = 0, h = 0.5)) +
xlab("Concentration")

�

�

�
��

�

�

�

�

� �

�

�
�

�

�

�

�

�

�

�
�

�

��
��

�
�
�

�

�

�

�

��

�

�

�

�

��

�

�

��

�

�

�

�

0

5

10

15

0 100 200 300
Concentration

liv
e

brood
� 1

2

3

FIGURE 5.9
The number of live offspring varies with the concentration of Nitrofen and the brood
number.

Since the response is a small count, a Poisson model is a natural choice. We expect
the rate of the response to vary with the brood and concentration level. The plot of the
data suggests these two predictors may have an interaction. The three observations
for a single flea are likely to be correlated. We might expect a given flea to tend to
produce more, or less, offspring over a lifetime. We can model this with an additive
random effect. The linear predictor is:

ηi = xT
i β+u j(i), i = 1, . . . ,150. j = 1, . . .50,

where xi is a vector from the design matrix encoding the information about the ith

observation and u j is the random affect associated with the jth flea. The response has
distribution Yi ∼ Poisson(exp(ηi)).

For comparison purposes, we fit a model using penalized quasi-likelihood (PQL)
using the lme4 package:

library(lme4)
glmod <- glmer(live ~ I(conc/300)*brood + (1|id), nAGQ=25,

family=poisson, data=lnitrofen)
summary(glmod)

Random effects:
Groups Name Variance Std.Dev.
id (Intercept) 0.0911 0.302

Number of obs: 150, groups: id, 50

Linear Mixed and Generalized Linear Mixed Models 127

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.6386 0.1367 11.99 < 2e-16
I(conc/300) -0.0437 0.2193 -0.20 0.84
brood2 1.1688 0.1377 8.48 < 2e-16
brood3 1.3512 0.1351 10.00 < 2e-16
I(conc/300):brood2 -1.6730 0.2487 -6.73 1.7e-11
I(conc/300):brood3 -1.8312 0.2451 -7.47 7.9e-14

We scaled the concentration by dividing by 300 (the maximum value is 310) to avoid
scaling problems encountered with glmer(). This is helpful in any case since it puts
all the parameter estimates on a similar scale. The first brood is the reference level
so the slope for this group is estimated as−0.0437 and is not statistically significant,
confirming the impression from the plot. We can see that numbers of offspring in
the second and third broods start out significantly higher for zero concentration of
the herbicide, with estimates of 1.1688 and 1.3512. But as concentration increases,
we see that the numbers decrease significantly, with slopes of−1.6730 and −1.8312
relative to the first brood. The individual SD is estimated at 0.302 which is noticeably
smaller than the estimates above, indicating that the brood and concentration effects
outweigh the individual variation.

The same model, with default priors, can be fitted with INLA as:

formula <- live ~ I(conc/300)*brood + f(id, model="iid")
imod <- inla(formula, family="poisson", data=lnitrofen)

The fixed effects summary is:

imod$summary.fixed

mean sd 0.025quant 0.5quant 0.975quant mode
(Intercept) 1.639493 0.13601 1.36772 1.640988 1.90288 1.644054
I(conc/300) -0.041413 0.21791 -0.47273 -0.040485 0.38426 -0.038687
brood2 1.164071 0.13757 0.89773 1.162776 1.43766 1.160183
brood3 1.346245 0.13496 1.08541 1.344819 1.61515 1.341962
I(conc/300):brood2 -1.664137 0.24824 -2.15576 -1.662707 -1.18086 -1.659822
I(conc/300):brood3 -1.821494 0.24470 -2.30637 -1.819992 -1.34536 -1.816964

The posterior means are very similar to the PQL estimates. We can also see the
summary for the random effect SD:

bri.hyperpar.summary(imod)

mean sd q0.025 q0.5 q0.975 mode
SD for id 0.29399 0.056598 0.19169 0.29058 0.41462 0.28463

Again the result is very similar to the PQL output although notice that INLA pro-
vides some assessment of uncertainty in this value in contrast to the PQL result. We
can make some conclusions about the strength of these effects from just looking at
the numerical summaries but it is better to check the posterior densities as seen in
Figure 5.10.

library(reshape2)
mf <- melt(imod$marginals.fixed)
cf <- spread(mf,Var2,value)
names(cf)[2] <- ’parameter’

128 Bayesian Regression Modeling with INLA

ggplot(cf,aes(x=x,y=y)) + geom_line()+facet_wrap(~ parameter,
scales="free") + geom_vline(xintercept=0) + ylab("density")

I(conc/300) I(conc/300):brood2 I(conc/300):brood3

(Intercept) brood2 brood3

−2 −1 0 1 2 −4 −3 −2 −1 0 1 −4 −3 −2 −1 0

0 1 2 3 0 1 2 0 1 2
0

1

2

3

0.0

0.5

1.0

1.5

0

1

2

3

0.0

0.5

1.0

1.5

0

1

2

3

0.0

0.5

1.0

1.5

x

de
ns

ity

FIGURE 5.10
Posterior densities of the fixed effects model for the Nitrofen data.

Almost the same plot can be produced by: (plots not shown)

bri.fixed.plot(imod)

or on a single panel as (which works because the scales of the parameters are similar):

bri.fixed.plot(imod,together=TRUE)

We see that, at concentration zero, broods two and three clearly have more offspring.
The densities are well separated from zero so there is no doubt about this. We also
see that the slopes for broods two and three and clearly negative, indicating that the
offspring decrease substantially relative to brood one as concentration increases. We
also see that zero falls right in the middle of the density for the slope for brood one,
indicating that offspring in this brood remain about constant as the concentration
changes.

Since the Poisson model uses the log link by default, it can be helpful to expo-
nentiate the parameters to interpret the scale of the effects:

multeff <- exp(imod$summary.fixed$mean)

Linear Mixed and Generalized Linear Mixed Models 129

names(multeff) <- imod$names.fixed
multeff[-1]

I(conc/300) brood2 brood3 I(conc/300):brood2 I(conc/300):brood3
0.95943 3.20294 3.84296 0.18935 0.16178

We see that there are three to four times as many offspring in the second and third
broods while numbers of offspring for these broods drop more than 80% from no
Nitrofen to the highest used concentration.

We should also examine the posterior for the sole hyperparameter in this model
that is the precision of the flea random effect. As usual, it is more convenient to
express this as an SD as seen in the first panel of Figure 5.11:

sden <- data.frame(bri.hyper.sd(imod$marginals.hyperpar[[1]]))
ggplot(sden,aes(x,y)) + geom_line() + ylab("density") +

xlab("linear predictor")

0

2

4

6

0.2 0.3 0.4 0.5
linear predictor

de
ns

ity

0

2

4

1.2 1.3 1.4 1.5 1.6 1.7
multiplicative

de
ns

ity

FIGURE 5.11
Posterior densities of the hyperparameter. SD on the linear predictor scale is shown
on the left. SD on the rate multiplicative scale is shown on the right.

Or more simply as:

bri.hyperpar.plot(imod)

As with the fixed effects, it can be easier to interpret this by converting it to a mul-
tiplier on the Poisson rate. We can compute and plot this posterior as seen in the
second panel of Figure 5.11:

mden <- data.frame(inla.tmarginal(function(x) exp(1/sqrt(x)),
imod$marginals.hyperpar[[1]]))

ggplot(mden,aes(x,y)) + geom_line() + ylab("density") +
xlab("multiplicative")

We see that a typical flea effect would be about 30% more or less offspring.

130 Bayesian Regression Modeling with INLA

There seems little justification to attempt a simplification of the model given the
salience of the effects we see in the posterior densities. Even so, we might question
the linearity of the concentration effect and consider whether a model using a log
scale for this predictor might be preferable. We can investigate this possibility by
computing the DIC for the competing models:

formula <- live ~ I(conc/300)*brood + f(id, model="iid")
imod <- inla(formula, family="poisson", data=lnitrofen,

control.compute=list(dic=TRUE))
formula <- live ~ log(conc+1)*brood + f(id, model="iid")
imod2 <- inla(formula, family="poisson", data=lnitrofen,

control.compute=list(dic=TRUE))
c(imoddicdic, imod2dicdic)

[1] 785.90 841.97

We see that the original model gives a smaller DIC and so we shall stick with that.
Note that it is necessary to specifically ask for the computation of the DIC as this is
not computed by default.

Are there any observations or fleas which are unusual? Each u j has a complete
posterior distribution which we can examine but for simplicity we can extract the
posterior means. We need to check for values which are unexpectedly large or small.
As we expect these posterior means to be approximately normal, a QQ plot is a
natural graphical check. This is shown in Figure 5.12:

mreff <- imod$summary.random$id$mean
qqnorm(mreff)
qqline(mreff)

�

�

�
�

�

�
�

�

�

�

��

�

�

�

�

�

�
�

�

��

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

−2 −1 0 1 2

−0
.4

−0
.2

0.
0

0.
2

0.
4

Normal Q−Q Plot

Theoretical Quantiles

Sa
m

pl
e

Q
ua

nt
ile

s

�

�

�

�

�
�

�

�

�

�

�
�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

��
�

�

�

�

�

�

�

�
�
�

�

��

�

�
�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

��

�

��

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

������

�

��

�

��
�

�

�

�

��
���

�

��

���

�

��

0 50 100 150

−8
−7

−6
−5

−4
−3

−2

Index

lo
g(

C
PO

)

�
�

�
�

��

�

�
�������

��������
��
����

�
�
���
���
�����

����
�����
�������

��������
����
�����
��������

����
������

������
����
�������

��������
����

���
���
�����������

�

��

�

��

�
�

�

�

�

−4 −2 0 2 4

−6
−4

−2
0

2
4

6
8

uniform quantiles

So
rte

d
PI

T
va

lu
es

FIGURE 5.12
Diagnostic checks on the Nitrofen model: First panel shows a QQ plot of the posterior
mean random effects. The second panel shows an index plot of the CPO statistics on
a log scale. The third panel shows a uniform QQ plot for the PIT statistics on a logit
scale.

We see that there are no particularly unusual fleas. Some produce more or less off-
spring but no point is outstanding.

Linear Mixed and Generalized Linear Mixed Models 131

We can check the individual observations in two ways. First consider the condi-
tional predictive ordinate (CPO) statistics. This is P(yi|y−i) and is a “leave-out-one”
style predictive measure of fit. Low values of this statistic should draw attention.
INLA requires that we specifically ask for the computation of these statistics. We
plot these on a log scale so that values particularly close to zero will be more distin-
guished:

formula <- live ~ I(conc/300)*brood + f(id, model="iid")
imod <- inla(formula, family="poisson", data=lnitrofen,

control.compute=list(cpo=TRUE))
plot(log(imodcpocpo),ylab="log(CPO)")

The plot, shown in the second panel of Figure 5.12, reveals several points with low
probability, the smallest of which is this point:

lnitrofen[which.min(imodcpocpo),]

conc id brood live
134 310 45 2 10

We consider this case among all the other high concentration, second brood observa-
tions:

lnitrofen %>% filter(brood == 2, conc==310)

conc id brood live
1 310 41 2 0
2 310 42 2 0
3 310 43 2 0
4 310 44 2 0
5 310 45 2 10
6 310 46 2 0
7 310 47 2 0
8 310 48 2 0
9 310 49 2 0
10 310 50 2 0

We see that the other nine fleas have zero offspring while this flea has ten. This is
certainly unusual.

We may also compute the Probability Integral Transform (PIT) statistics,
P(ynew

i ≤ yi|y−i). We would expect these values to be approximately uniformly dis-
tributed under the supposed model. We are particularly interested in values close to
zero or one. To magnify the salience of these points of interest, we plot the PIT values
against the uniform order statistics on a logit scale:

pit <- imodcpopit
n <- length(pit)
uniquant <- (1:n)/(n+1)
logit <- function(p) log(p/(1-p))
plot(logit(uniquant), logit(sort(pit)), xlab="uniform quantiles",

ylab="Sorted PIT values")
abline(0,1)

One advantage of the PIT relative to the CPO is that the deviations have a direction.
In this case, we can see that more of the unusual cases occur where there are more
offspring than expected. In particular, the most extreme PIT value is:

132 Bayesian Regression Modeling with INLA

which.max(pit)

[1] 134

This is the same case as for the CPO statistics.
Some care is necessary when using CPO or PIT statistics. When computing

leave-out-one statistics, one wants to avoid refitting the model n times to explicitly
compute these. But this does mean some approximation is necessary. We can check
the quality of these approximations using imodcpofailure where non-zero val-
ues indicate some degree of suspicion. In our example, these statistics are all zero so
we have no worries. In case of a problem, use the inla.cpo() function to improve
the approximation.

We also can investigate the effect of changing the priors. It is usually not worth
the trouble of altering the default flat priors on the fixed effect parameters. We might
consider something other than the default priors on the hyperparameters. Let’s see
the effect of using a penalized complexity prior here:

sdu <- 0.3
pcprior <- list(prec = list(prior="pc.prec", param = c(3*sdu,0.01)))
formula <- live ~ I(conc/300)*brood + f(id, model="iid",

hyper = pcprior)
imod2 <- inla(formula, family="poisson", data=lnitrofen)
bri.hyperpar.summary(imod2)

mean sd q0.025 q0.5 q0.975 mode
SD for id 0.30993 0.056161 0.20885 0.3064 0.42992 0.30017

We have calibrated the prior by putting in a guess for the standard deviation of the
random effect. The exponential prior is then adjusted so that there is 0.01 probability
that the actual SD is more than three times larger. We have chosen our guess of 0.3
based on the likelihood model fit earlier. In practice, it would be better to generate
this guess from expert opinion sought prior to data collection.

As it happens, the posterior density is very similar to the previous result derived
from the default prior. A little experimentation reveals that the posterior is really
quite insensitive to the prior. This is reassuring. The choice of this prior is usually
not too important unless we have a small dataset or when the random effect variation
is relatively small.

We can generalize from the Poisson model by adding some overdispersion. We
modify the linear predictor to:

ηi = xT
i β+u j(i)+ εi, i = 1, . . . ,150, j = 1, . . .50,

where εi ∼ N(0,σ2
ε). Hence each linear predictor term has an added independent

random component ε. We create an index variable for the observation and incorporate
this into the model:

lnitrofen$obsid <- 1:nrow(nitrofen)
formula <- live ~ I(conc/300)*brood + f(id, model="iid") +

f(obsid, model="iid")
imodo <- inla(formula, family="poisson", data=lnitrofen)
bri.hyperpar.summary(imodo)

Linear Mixed and Generalized Linear Mixed Models 133

mean sd q0.025 q0.5 q0.975 mode
SD for id 0.293803 0.056124 0.195348 0.2898453 0.415022 0.2835296
SD for obsid 0.010284 0.006119 0.003764 0.0085126 0.026903 0.0062088

We see that the SD of the added random component is much smaller than the flea SD.
Although we have some assurance that it is not zero, it is small enough that we could
reasonably ignore it. Hence no substantial overdispersion appears to be present.

In 1996, the use of Nitrofen was banned in the USA and the EU because of its
teratogenic effects.

5.7 Binary GLMM
In Fitzmaurice and Laird (1993), data on 537 children aged 7–10 in six Ohio cities are
reported. The response is binary — does the child suffer from wheezing (indication
of a pulmonary problem) where one indicates yes and zero no. This status is reported
for each of four years at ages 7, 8, 9 and 10. There is also an indicator variable for
whether the mother of the child is a smoker. Because we have four binary responses
for each child, we expect these to be correlated and our model needs to reflect this.

We sum the number of smoking and non-smoking mothers:

data(ohio, package="brinla")
table(ohio$smoke)/4

0 1
350 187

We use this to produce the proportion of wheezing children classified by age and
maternal smoking status:

xtabs(resp ~ smoke + age, ohio)/c(350,187)

age
smoke -2 -1 0 1

0 0.160 0.149 0.143 0.106
1 0.166 0.209 0.187 0.139

Age has been adjusted so that nine years old is zero. We see that wheezing appears to
decline with age and that there may be more wheezing in children with mothers who
smoke. But the effects are not clear and we need modeling to be sure about these
conclusions.

A plausible model uses a logit link with a linear predictor of the form:

ηi j = β0 +β1age j +β2smokei +ui, i = 1, . . . ,537, j = 1,2,3,4,

with

P(Yi j = 1) =
exp(ηi j)

1+ exp(ηi j)
.

The random effect ui models the propensity of child i to wheeze. Children are likely
to vary in their health condition and this effect enables us to include this unknown

134 Bayesian Regression Modeling with INLA

variation in the model. Because ui is added to all four observations for a child, we
induce a positive correlation among the four responses as we might naturally expect.
The response is Bernoulli or, in other words, binomial with trial size one.

For reference, here is the model fit penalized quasi-likelihood using the lme4
package:

library(lme4)
modagh <- glmer(resp ~ age + smoke + (1|id), nAGQ=25,

family=binomial, data=ohio)
summary(modagh)

Random effects:
Groups Name Variance Std.Dev.
id (Intercept) 4.69 2.16

Number of obs: 2148, groups: id, 537

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.1015 0.2191 -14.16 <2e-16
age -0.1756 0.0677 -2.60 0.0095
smoke 0.3986 0.2731 1.46 0.1444

As with INLA, this method also requires some numerical integration, so the compu-
tation is not as fast as likelihood methods that need only optimization.

We can fit this model in INLA as:

formula <- resp ~ age + smoke + f(id, model="iid")
imod <- inla(formula, family="binomial", data=ohio)

The id variable represents the child and we use an iid model indicating that the
ui variables should be independent and identically distributed between children. A
summary of the posteriors for the fixed effect components can be obtained as:

imod$summary.fixed

mean sd 0.025quant 0.5quant 0.975quant mode kld
(Intercept) -2.99250 0.201804 -3.409624 -2.98495 -2.618752 -2.96974 1.5266e-13
age -0.16665 0.062817 -0.290565 -0.16646 -0.043913 -0.16607 1.7805e-14
smoke 0.39133 0.239456 -0.077747 0.39069 0.863404 0.38946 1.2226e-12

The posteriors for the fixed effects tend to be approximately normal so there is lit-
tle difference between mean, median and mode. The posterior means are also quite
similar to the PQL output. We see from the 2.5% and 97.5% percentiles that the risk
of wheezing clearly decreases with age. The parameters are on a logit scale so inter-
pretation can be aided by some transformation. For example, the intercept represents
the response for age=0, smoke=0, i.e., a nine year old with a non-smoking mother.
We can invert the logit transform as:

ilogit <- function(x) exp(x)/(1 + exp(x))
ilogit(imod$summary.fixed[1,c(3,4,5)])

0.025quant 0.5quant 0.975quant
(Intercept) 0.031996 0.04811 0.067941

We can compare this to the proportion seen in the data as calculated earlier of 0.143.
It seems our model does not fit particularly well in this instance. A technical concern
here is that a monotone transformation, such as the inverse logit, will preserve the

Linear Mixed and Generalized Linear Mixed Models 135

quantiles of the transformed density. This would not work for the mean or the mode.
We would need to recompute the density first on the transformed scale, then find the
mean or the mode. Typically, there will not be much difference with transforming the
original summary statistics but some caution is advisable.

We can better interpret the regression parameters by exponentiating as:

exp(imod$summary.fixed[-1, c(3,4,5)])

0.025quant 0.5quant 0.975quant
age 0.74784 0.84666 0.95704
smoke 0.92520 1.47800 2.37122

We see that an additional year of age multiplies the odds of wheezing by 0.85 or,
reduces it by 15%. The two outer quantiles provide a measure of uncertainty in this
statement. Nevertheless, we see that the upper quantile is still below one, indicating
that we are reasonably sure that wheezing decreases with age. A mother who smokes
increases the odds of wheezing by a factor of 1.48 or 48%. However, the lower quan-
tile lies below one, indicating we are not entirely sure whether smoking increases the
odds of wheezing. But we also see the upper quantile is quite large, indicating an
increase in odds of 137%. So while we cannot dismiss the possibility that a smoking
mother is not harmful, we should also be concerned that it may be quite damaging.
We need more data. Of course, we should also be cautious about claiming smoking
causes the wheezing as it may simply be associated with other risk factors that are
the true causal variables.

The posterior distribution of σu is also of interest:

bri.hyperpar.summary(imod)

mean sd q0.025 q0.5 q0.975 mode
SD for id 1.9256 0.15987 1.6269 1.92 2.2554 1.9127

As with the fixed effects, this is easier to interpret on an odds scale (only transforming
the quantiles:)

exp(bri.hyperpar.summary(imod)[3:5])

[1] 5.0879 6.8213 9.5395

We see that one standard deviation would multiply the odds by about 7 (or equally
possible divide them by 7). This means that the individual effects are very strong
in this example. We can construct a table of the total number of times recorded as
wheezing over the four timepoints for all 537 individuals:

table(xtabs(resp ~ id, ohio))

0 1 2 3 4
355 97 44 23 18

We see that 355 children never wheeze. The model is consistent with this because
the large random effect means some children will have a consistently low probability
of wheezing while others will have only a modest probability of wheezing.

We can plot all the posteriors on a single display as seen in Figure 5.13.

library(gridExtra)
p1 <- ggplot(data.frame(imod$marginals.fixed[[1]]),aes(x,y)) +

geom_line()+xlab("logit")+ylab("density")+ggtitle("Intercept")

136 Bayesian Regression Modeling with INLA

p2 <- ggplot(data.frame(imod$marginals.fixed[[2]]),aes(x,y)) +
geom_line()+xlab("logit")+ylab("density")+ggtitle("age")

p3 <- ggplot(data.frame(imod$marginals.fixed[[3]]),aes(x,y)) +
geom_line()+xlab("logit")+ylab("density")+ggtitle("smoke")

sden <- data.frame(bri.hyper.sd(imod$marginals.hyperpar[[1]]))
p4 <- ggplot(sden,aes(x,y)) + geom_line() + xlab("logit") +

ylab("density")+ggtitle("SD(u)")
grid.arrange(p1,p2,p3,p4,ncol=2)

0.0

0.5

1.0

1.5

2.0

−5 −4 −3 −2 −1
logit

de
ns

ity

Intercept

0

2

4

6

−0.5 0.0 0.5
logit

de
ns

ity

age

0.0

0.5

1.0

1.5

−2 −1 0 1 2 3
logit

de
ns

ity

smoke

0.0

0.5

1.0

1.5

2.0

2.5

1.4 1.6 1.8 2.0 2.2 2.4
logit

de
ns

ity

SD(u)

FIGURE 5.13
Posterior densities of the fixed effects and the random effect SD.

We can see that all the posterior densities are approximately normal so that the pre-
vious numerical summaries were adequate for interpretation purposes. Nevertheless,
it is worth checking these to verify this. We can see that a small area of the density
for the smoke coefficient extends below zero. We can calculate this area as:

inla.pmarginal(0,imod$marginals.fixed$smoke)

Linear Mixed and Generalized Linear Mixed Models 137

[1] 0.051348

Despite the apparent similarity, this is not a p-value. One objection is that, with the
usual two-sided alternate hypothesis, we would need to double this value. But the
more important objection concerns the meaning of this probability. It is the probabil-
ity that the association between maternal smoking and wheezing status is negative.
This is a more transparent statement than the meaning of a p-value which concerns
the probability of observing this outcome, or one more extreme, under the null hy-
pothesis of no smoking effect.

Given that there is no good reason to emulate a frequentist conclusion under
a Bayesian model, one might wonder why we have computed this probability. A
measure of how far the posterior density is from zero is a useful summary given
the special meaning of zero of “no effect.” In this case, the probability is a useful
summary of our assessment of the association of smoking with wheezing. Indeed,
some have called this a “Bayesian p-value” although definitions differ so it is best to
be clear about what has been computed when communicating this information.

We noticed earlier that the predicted probability for one combination of inputs
did not agree with the observed proportion. Indeed, simply looking at all the ob-
served proportions for the eight combinations of age and smoke makes us suspect
that the effect of age is not linear. We can investigate this by fitting more complex
models and comparing these using criteria such as DIC and WAIC. We consider a
model that treats age as a factor so that the effect of each age level can vary freely.
We also consider a model which allows for an interaction between age and smoke.
This exhausts the possibilities for the fixed effects as anything more complex would
saturate the model. INLA requires that we specifically ask for the computation of
DIC and WAIC:

formula <- resp ~ age + smoke + f(id, model="iid")
imod <- inla(formula, family="binomial", data=ohio,

control.compute=list(dic=TRUE,waic=TRUE))
formula <- resp ~ factor(age) + smoke + f(id, model="iid")
imod1 <- inla(formula, family="binomial", data=ohio,

control.compute=list(dic=TRUE,waic=TRUE))
formula <- resp ~ factor(age)*smoke + f(id, model="iid")
imod2 <- inla(formula, family="binomial", data=ohio,

control.compute=list(dic=TRUE,waic=TRUE))

The first model is the same as our original but we need to recompute to get the DIC
and WAIC. First we consider the DIC for the three models:

c(imoddicdic, imod1dicdic, imod2dicdic)

[1] 1466.2 1463.1 1463.4

and now the WAIC:

c(imod$waic$waic, imod1$waic$waic, imod2$waic$waic)

[1] 1418.9 1416.2 1417.6

We see that, in both cases, the minimum value is obtained for the model which treats
age as a factor but with no smoke interaction. Fortunately, there is no disagreement
between the two criteria but if a choice must be made, Gelman et al. (2014) argues

138 Bayesian Regression Modeling with INLA

that WAIC should be preferred. Let’s examine the output for our chosen model. For
reasons explained earlier, we transform to the odds scale:

exp(imod1$summary.fixed[-1, c(3,4,5)])

0.025quant 0.5quant 0.975quant
factor(age)-1 0.74516 1.08376 1.57721
factor(age)0 0.65627 0.95966 1.40220
factor(age)1 0.38380 0.57798 0.86368
smoke 0.92485 1.48199 2.38534

Age 7 is the baseline and for ages 8 and 9, the median odds relative change is close
enough to one (meaning no change). At age 10, we see a 42% drop in the odds of
wheezing. The result and interpretation for smoke is almost the same as the original
model. This effect is curious and deserves some explanation.

Given that we do not find the age effect to be linear, it makes little sense to con-
sider generalizing the random effect term from the current constant effect to include a
linear effect. Even so, we might wonder whether the subject random effect does vary
much from year to year and we would like a model which investigates this effect. We
can do this introducing an autoregressive model for the subject random effect:

uit = ρui,t−1 + εt , εt ∼ N(0,σ2), t = 2,3,4.

See Section 3.8 for another autoregressive model. For the first time period, we have

ui1 ∼ N(0,σ2/(1−ρ
2)).

Thus each subject will have its own short, independent, time series but will share the
same hyperparameters, σ and ρ. We can fit this model with:

ohio$obst <- rep(1:4,537)
ohio$repl <- ohio$id + 1
formula <- resp ~ factor(age) + smoke + f(obst, model="ar1",

replicate = repl)
imod <- inla(formula, family="binomial", data=ohio)

We need to create the t index for each subject which is held in the variable obst. The
model="ar1" creates the time series indexed by obst. The argument replicate =
repl ensures that the short, four value, time series is replicated. Without this term,
each subject would generate its own independent (σ,ρ) pair. We do not want this.

We can look at the fixed effects, using the odds as before:

exp(imod$summary.fixed[-1, c(3,4,5)])

0.025quant 0.5quant 0.975quant
factor(age)-1 0.74423 1.08460 1.58173
factor(age)0 0.65320 0.95871 1.40587
factor(age)1 0.37913 0.57424 0.86225
smoke 0.92542 1.48603 2.39704

These are very similar to the previous model. Now the random effects:

bri.hyperpar.summary(imod)

mean sd q0.025 q0.5 q0.975 mode
SD for obst 1.97247 0.169661 1.66322 1.96316 2.32947 1.9445
Rho for obst 0.98471 0.014741 0.94559 0.98874 0.99854 0.9966

Linear Mixed and Generalized Linear Mixed Models 139

The SD is about the same as before. The posterior for ρ is close to one. This indicates
that the subject effect does not change too much over the four-year time period. We
could interpret this as saying that the underlying health of a child remains relatively
constant over the time period.

5.7.1 Improving the Approximation

INLA can be inaccurate for binary data as discussed in Fong et al. (2010). Improve-
ments to rectify this problem can be found in Ferkingstad and Rue (2015). The
method uses a copula-based correction to the Laplace approximations used in INLA.
We can apply it to our binary GLMM example:

cmod <- inla(formula, family="binomial", data=ohio,
control.inla = list(correct = TRUE))

cmod$summary.fixed

mean sd 0.025quant 0.5quant 0.975quant mode kld
(Intercept) -3.10775 0.213101 -3.548285 -3.09976 -2.713114 -3.08369 1.1735e-13
age -0.17115 0.063615 -0.296643 -0.17096 -0.046861 -0.17056 1.6932e-14
smoke 0.40486 0.252137 -0.088977 0.40416 0.902016 0.40280 1.2035e-12

We see a small difference in the fixed effects. The effect of the correction is more
noticeable on the posterior of σu where the previous value was 1.93.

bri.hyperpar.summary(cmod)

mean sd q0.025 q0.5 q0.975 mode
SD for id 2.0618 0.16657 1.7498 2.0562 2.4043 2.0486

The correction will only make much of a difference where approximation is diffi-
cult due to sparsity. Binary GLMMs are particularly challenging. But in other cases,
such as the Poisson GLMM example in this chapter, the correction makes very lit-
tle difference. Since the correction bears very little extra computational cost and will
tend to improve the results (though sometimes not by much), we recommend that you
apply the correction for all GLMMs (but not for other models). It is expected that the
correction will be the default in the future, so you may find this advice redundant by
the time you read it.

6
Survival Analysis

Survival analysis is a class of statistical methods for analyzing data where the out-
come variable is the time until the occurrence of an event of interest. It is extremely
useful for studying many different kinds of events in medicine, economics, engi-
neering, sociology, including death, the onset of disease, equipment failures, job ter-
minations, retirements, marriages, etc. One may be interested in characterizing the
distribution of the “time-to-event” data for a given population as well as comparing
the outcome among different groups, or modeling the relationship of the outcome to
other covariates.

In most applications, the survival data are collected over a finite period of time.
For example, in a cancer study, some patients may not have reached the endpoint
of interest (death). Consequently, the exact survival times of these patients are not
known. The only information is that the survival times are greater than the amount
of time the patient has been in the study. The survival times of these patients are said
to be censored, which creates the difficulty in the analysis of such data.

Since having been introduced by Cox (1972), the proportional hazard regression,
also known as Cox regression model, is the default choice when dealing with time-
to-event data. In its basic form, it describes the probability of the endpoint (known
as hazard) as expressed by the baseline hazard function (unspecified) and a set of
covariates that have linear effects. While traditional analysis relies on parameter esti-
mation based on partial likelihood, Bayesian approaches for time-to-event data allow
us to use the full likelihood to estimate all unknown elements in the model.

6.1 Introduction
Assume that the survival time, T , is a continuous random variable. The distribution
of T can be described by the usual cumulative distribution function

F(t) = P(T ≤ t), t ≥ 0,

which is the probability that a subject from the population will die (or a specific
event of interest for a subject has occurred) before time t. The corresponding density
function of T is, f (t) = dF(t)/dt.

In survival analysis, it is common to use the survival function

S(t) = 1−F(t) = P(T > t),

142 Bayesian Regression Modeling with INLA

which is the probability that a randomly selected subject will survive to time t or
beyond. The survival function S(t) is a non-increasing function over time taking on
the value 1 at t = 0. For a random variable T , S(∞) = 0, which means that everyone
will eventually experience the event. Obviously, if T is a continuous random variable,
there is a one-to-one correspondence between S(t) and f (t):

f (t) =−dS(t)
dt

.

It is also of interest, in analyzing survival data, to assess which periods having high
or low chances of the event among those still active at the certain time. A suitable
method to characterize such risks is the hazard function, h(t), defined by the follow-
ing equation

h(t) = lim
s→0

P(t ≤ T ≤ t + s|T ≥ t)
s

.

It is the instantaneous rate of failure (experiencing the event) at the time t given that
a subject is alive at the time t. The definition of the hazard function implies that

h(t) =
f (t)
S(t)

=− d
dt

logS(t).

A related quantity is the cumulative hazard function, H(t), defined by

H(t) =
∫ t

0
h(u)du =− log(S(t)).

And thus,

S(t) = exp{−H(t)}= exp
{
−
∫ t

0
h(u)du

}
.

When the response variable of interest is a possibly censored survival time, the
most widely used regression techniques are Cox’s proportional hazards models (Cox,
1972). In a typical survival study, the data, based on a sample size of n, consist of the
triple (ti,δi,xi), i = 1, ...,n, where ti is the time on the study for the ith subject, δi is
the event indicator for the ith subject (δi = 0 if the time is right-censored, δi = 1 if the
event has occurred), and xi = (xi1, ...,xip)

T is the vector of p-dimensional covariate
values for the ith subject.

Let h(t|x) be the hazard function at time t for a subject given the covariate vector
x = (x1, ...,xp)

T . The basic model proposed by Cox (1972) is as follows:

h(t|x) = h0(t)exp(β1x1 + ...+βpxp) , (6.1)

where h0(t) is the baseline hazard function and βi’s are the unknown regression pa-
rameters to be estimated. It is easy to see that the model (6.1) forces the hazard ratio
between two subjects to be constant over time since

h(t|xa)

h(t|xb)
=

exp(β1xa1 + ...+βpxap)

exp(β1xb1 + ...+βpxbp)
,

Survival Analysis 143

where xa and xb are vectors of covariate values for two subjects, a and b. Hence, the
model (6.1) is called the proportional hazards model.

Depending on the assumptions about the baseline hazard function h0(t), different
kinds of proportional hazard models can be specified.

6.2 Semiparametric Models
6.2.1 Piecewise Constant Baseline Hazard Models

In Bayesian survival analysis, the semiparametric proportional hazard model assigns
a nonparametric prior to the baseline hazard function. One of the most convenient
methods is to construct a piecewise constant baseline hazard model for h0(t) (Bres-
low, 1972).

Consider the proportional hazards model of the form (6.1). Let us construct the
semiparametric model starting from a finite partition of the time axis. We partition
the time axis into K intervals with cutpoints 0 = s0 < s1 < s2 < ... < sK with sK <
max{ti, i = 1, ...,n}. Then we assume that the baseline hazard is constant within each
interval,

h0(t) = λk, t ∈ (sk−1,sk), k = 1, ...,K.

Thus, the hazard rate for subject i with time ti ∈ (sk−1,sk] is:

h(ti) = h0(ti)exp(β1xi1 + ...+βpxip)

= exp(log(λk)+β1xi1 + ...+βpxip) , ti ∈ (sk−1,sk].

Denote ηik = log(λk) + β1xi1 + ...+ βpxip. The log-likelihood function for the ith

observation can be written as

log
[
h(ti)δiS(ti)

]
= δi logh(ti)−

∫ ti

0
h(u)du

= δiηik− (ti− sk)exp(ηik)−
k−1

∑
j=1

(s j+1− s j)exp(ηi j). (6.2)

The INLA approach is not directly applicable to such a model. However, Martino et
al. (2011) pointed out that this semiparametric model still can be fit into the INLA
framework after rewriting it. Note that (6.2) is equivalent to the log-likelihood of k
Poisson-distributed “augmented data points,” where the first two terms on the right-
hand side of (6.2) can be seen as the log-likelihood from a Poisson distribution with
mean (ti− sk)exp(ηik) observed to be 0 or 1 according to δi, and the third term in the
right-hand side of (6.2) can be seen as the log-likelihood from Poisson distribution
with mean (s j+1− s j)exp(ηi j) observed to be zero.

In INLA, each original data point (ti,δi) with ti ∈ (sk−1,sk] is reconstructed by
k Poisson-distributed data points in an augmented dataset at its background process.

144 Bayesian Regression Modeling with INLA

Such data augmentation brings us back to the latent Gaussian models with INLA
algorithms.

To perform a regression analysis for time-to-event data in INLA, we need to
define an object of class “inla.surv”. It creates a survival object, to be used as a
response variable in a model formula for the inla function for a variety of survival
models.

Let us take a look at an example of analyzing the data of 1151 subjects of the
AIDS Clinical Trials study (ACTG 320). The dataset has been distributed and il-
lustrated in detail by Hosmer et al. (2008). The data come from a double-blind,
placebo-controlled trial that compared the three-drug regimen of Indinavir, open la-
bel Zidovudine or Stavudine and Lamivudine (group with IDV) with the two-drug
regimen of Zidovudine or Stavudine and Lamivudine (group without IDV) in HIV-
infected patients (Hammer et al., 1997). Patients were eligible for the trial if they had
no more than 200 CD4 cells per cubic millimeter and at least three months of prior
zidovudine therapy. This study examined several factors, such as treatment, age, sex
and CD4 cell counts, which may influence survival time to AIDS defining event or
death. The specific variables we will use here and their codes for the data are pro-
vided in Table 6.1.

TABLE 6.1
Description of variables in the AIDS clinical trials group study (ACTG 320).

Variable Name Description Codes/Values
id identification code 1-1156
time time to AIDS diagnosis days

or death
censor event indicator for AIDS 1 = AIDS defining diagnosis

defining diagnosis or death or death
0 = otherwise

tx treatment indicator 1 = treatment includes IDV
0 = control group (without IDV)

sex sex 1 = male
2 = female

cd4 baseline CD4 count cells/milliliter
priorzdv months of prior ZDV use months
age age at enrollment years

The primary goal of this study is to examine the effectiveness of the new three-
drug treatment regimen when compared to the standard two-drug regimen in im-
proving survival among HIV-infected patients. For comparison purposes, we begin
the analysis with the conventional partial likelihood method using R survival pack-
age. We fit a model that contains five variables: treament (tx), age (age), sex (sex),
and prior months use of ZDV (priorzdv):

data(ACTG320, package = "brinla")
library(survival)
ACTG320.coxph <- coxph(Surv(time, censor) ~ tx + age + sex + priorzdv,

↪→ data = ACTG320)

Survival Analysis 145

round(coef(summary(ACTG320.coxph)), 4)

coef exp(coef) se(coef) z Pr(>|z|)
tx1 -0.6807 0.5063 0.2151 -3.1652 0.0015
age 0.0218 1.0220 0.0110 1.9843 0.0472
sex2 0.0144 1.0145 0.2837 0.0507 0.9595
priorzdv -0.0033 0.9967 0.0039 -0.8497 0.3955

The results show that tx and age are significant, while sex and priorzdx are not.
Note that age is just marginally significant at level 0.05 (p = 0.047). We now fit the
model using INLA with the default priors:

ACTG320.formula = inla.surv(time, censor) ~ tx + age + sex + priorzdv
ACTG320.inla1 <- inla(ACTG320.formula, family = "coxph", data =

↪→ ACTG320, control.hazard = list(model = "rw1", n.intervals = 20)
↪→ , control.compute = list(dic = TRUE))

In the above commands, inla.surv created a survival object, where the first
argument is the follow-up time for the right censored data and the second argu-
ment is the event indicator (1=observed event, 0=right censored event). To imple-
ment the semiparametric Cox regression, we need to specify the argument family =
"coxph" in the inla function. The model for the piecewise constant baseline hazard
is specified through control.hazard. Here we partition the time axis into K = 20
intervals. For (log(λ1), ..., log(λ20)), we assign a Gaussian prior with an intrinsic
first-order random walk (RW1) model (Rue and Held, 2005, chp3). RW1 models are
built by assuming the increments

log(λk+1)− log(λk)∼ N(0,τ−1), k = 1, ...,K−1.

A diffuse gamma prior is assigned to τ. The INLA package also allows us to specify
a random walk model of order 2 (RW2) for the baseline hazard in the program. More
discussions about the random walk models can be found in Chapter 7 of this book.

Let us display the fitted result of the model:

round(ACTG320.inla1$summary.fixed, 4)

mean sd 0.025quant 0.5quant 0.975quant mode kld
(Intercept) -8.4711 0.4797 -9.4193 -8.4691 -7.5354 -8.4649 0
tx1 -0.6879 0.2151 -1.1181 -0.6852 -0.2730 -0.6798 0
age 0.0214 0.0110 -0.0006 0.0215 0.0426 0.0218 0
sex2 0.0187 0.2836 -0.5664 0.0286 0.5483 0.0487 0
priorzdv -0.0033 0.0039 -0.0115 -0.0031 0.0039 -0.0028 0

The results using INLA show that the posterior mean of the treatment effect is
−0.6879, and its 95% credible interval is (−1.1181,−0.2730). The posterior haz-
ard ratio and its 95% credible interval, thus, are ĤR = exp(−0.6879) = 0.5026 and
(exp(−1.1181),exp(−0.2730)) = (0.3269,0.7611), respectively. The interpretation
for the results is that the rate of progression to AIDS or death among HIV-infected
patients on the three-drug regimen is 0.5026 times as much as that of patients on the
two-drug regimen; this could be as little as 0.3269 times or as much as 0.7611 times
with 95% credibility, assuming other covariates are fixed. The results using INLA are
simliar to those using the conventional partial likelihood analysis. However, one dif-
ference in the results is the age effect. Its 95% credible interval is (−0.0006,0.0426),

146 Bayesian Regression Modeling with INLA

which indicates that age becomes not significant (marginally, in the Bayesian sense,
95% credible set includes 0). There is an estimate for “Intercept” in the INLA
output, while there is not from the coxph function. This is due to the fact that the
random walk model is used for the baseline hazard function in INLA.

6.2.2 Stratified Proportional Hazards Models

When modeling the Cox proportional hazard model the most important assumption
is the proportional hazards. It means that, for any two individuals with certain covari-
ates, the hazard ratio does not depend on time. There are a number of methods for
testing proportionality, including graphical methods and testing procedures (Hosmer
et al., 2008). In many real studies, the proportional hazards assumption is violated for
some covariates. In such a case, one may stratify on that variable and apply a strati-
fied proportional hazards model. Specifically, assume that the subjects are stratified
into S disjoint groups. Each of the groups has a distinct baseline hazard function but
common effects of the covariates. The baseline hazards h0 j, again, are assumed to be
piecewise constant in each time interval t ∈ (sk−1,sk), k = 1, ...,K:

h0 j(t) = λk j, for t ∈ (sk−1,sk), k = 1, ...,K, j = 1, ...,S.

We assume RW1 priors with common precision for (log(λ1 j), ..., log(λK j)), j =
1, ...,S:

log(λk+1, j)− log(λk, j)∼ N(0,τ−1), k = 1, ...,K−1, j = 1, ...,S.

Thus, the hazard of subject i with time ti ∈ (sk−1,sk] that belongs to stratum j =
1, ...,S is:

h(ti) = h0 j(ti)exp(β1xi1 + ...+βpxip) .

Such a stratified model can be easily implemented in INLA. In the ACTG 320
study, the effect of baseline CD4 counts on survival among HIV-infected patients is
well-known. Different patients who have different baseline CD4 counts often have
different baseline hazards (Hammer et al., 1997). Hence, we create a group variable,
based on the observed CD4 quartiles, and stratify on it:

ACTG320$cd4group <- as.numeric(cut(ACTG320$cd4, breaks=c(-Inf,
↪→ quantile(ACTG320$cd4, probs = c(.25,.5,.75)), Inf), labels=c("1
↪→ ","2","3","4")))

We then fit a stratified proportional hazards models in INLA by specifying
strata.name = "cd4group" in control.hazard argument:

ACTG320.formula2 = inla.surv(time, censor) ~ tx + age + sex + priorzdv
ACTG320.inla2 <- inla(ACTG320.formula2, family = "coxph", data =

↪→ ACTG320, control.hazard = list(model = "rw1", n.intervals = 20,
↪→ strata.name = "cd4group"))

round(ACTG320.inla1$summary.fixed, 4)

mean sd 0.025quant 0.5quant 0.975quant mode kld
(Intercept) -8.9584 0.5067 -9.9625 -8.9553 -7.9725 -8.9491 0
tx1 -0.6625 0.2152 -1.0930 -0.6598 -0.2474 -0.6544 0

Survival Analysis 147

age 0.0242 0.0110 0.0021 0.0243 0.0455 0.0245 0
sex2 0.0443 0.2838 -0.5412 0.0542 0.5743 0.0743 0
priorzdv -0.0019 0.0038 -0.0099 -0.0017 0.0051 -0.0013 0

The posterior estimates show slight differences compared with the previous model.
We could generate the plots for the estimated baseline hazard functions. We have
written a convenience function bri.basehaz.plot to produce the baseline hazard
plots in our brinla package:

library(brinla)
bri.basehaz.plot(ACTG320.inla2)

0 50 150 250 350

−2
−1

0
1

Stratified group 1

Time

Ba
se

lin
e

ha
za

rd
 fu

nc
tio

n

0 50 150 250 350

−2
−1

0
1

Stratified group 2

Time

Ba
se

lin
e

ha
za

rd
 fu

nc
tio

n

0 50 150 250 350

−2
−1

0
1

Stratified group 3

Time

Ba
se

lin
e

ha
za

rd
 fu

nc
tio

n

0 50 150 250 350

−2
−1

0
1

Stratified group 4

Time

Ba
se

lin
e

ha
za

rd
 fu

nc
tio

n

FIGURE 6.1
The estimated baseline hazard functions in the stratified proportional hazards models
for the ACTG 320 data.

Figure 6.1 shows that the baseline functions are very different for each of the
stratified groups. Baseline hazard functions for group 1 and group 2 decrease over
time, while those for group 3 and group 4 increase. These findings indicate that strat-

148 Bayesian Regression Modeling with INLA

ifying the CD4 variable seems necessary. Checking the DICs for the two models also
shows the stratified model fits better than the unstratified one:

c(ACTG320.inla1dicdic, ACTG320.inla2dicdic)

[1] 1316.253 1274.168

6.3 Accelerated Failure Time Models
Parametric models play an important role in Bayesian survival analysis. All of the
parametric models we shall consider in this section have an accelerated failure-time
(AFT) model representation and a linear model representation in log time.

The AFT model is defined by

S(t|x,β1, ...,βp) = S0
(
t · exp(β1x1 + ...+βpxp)

)
, (6.3)

where the factor exp[β1x1 + ...+ βpxp] is known as the acceleration factor. This
model states that the survival function of a subject with covariate x at time t is the
same as the survival function of a subject with a baseline survival function at the time
t · exp[β1x1 + ...+ βpxp]. The model implies that the hazard rate for a subject with
covariate x is related to a baseline hazard rate by

h(t|x) = h0
(
t · exp(β1x1 + ...+βpxp)

)
× exp(β1x1 + ...+βpxp).

If we let S0(t) be the survival function of the random variable exp(γ0 +σε), then
the accelerated failure-time model can be rewritten as a linear model for the log of
the time variable, T , that is,

log(T) = γ0 + γ1x1 + ...+ γpxp +σε, (6.4)

where γ = (γ0,γ1, ...,γp)
T is a vector of regression coefficients with γ j = −β j,

j = 1, ..., p, ε is the random error term, and σ is a scale parameter. A variety of
distributions can be used for T or, equivalently for ε. Table 6.2 gives some popular
parametric distributions.

TABLE 6.2
Common parametric distributions for
the survival time T (equivalently for ε)
in accelerated failure-time models.

Distribution of T Distribution of ε

Exponential Extreme value
Weibull Extreme value
Log-normal Normal
Log-logistic Logistic

Survival Analysis 149

Here we shall discuss Weibull regression in detail. The Weibull distribution is a
very flexible model for lifetime data, which gives a hazard rate that is either mono-
tone increasing, decreasing, or constant. It is a parametric model which has both a
proportional hazards representation and an accelerated failure-time representation.
The survival function for the Weibull distribution is given by

S(t|α,λ) = exp(−λtα), α > 0,λ > 0,

its density function is
f (t|α,λ) = αtα−1

λexp(−λtα).

The hazard rate is expressed by

h(t) = λαtα−1,

where the parameter α is a shape parameter. Note that when α = 1, the Weibull
distribution reduces to an exponential distribution.

If we redefine the parameters by letting σ = 1/α, and µ =− 1
α

logλ, then the log
transform of survival time, log(T) follows a log linear model,

log(T) = µ+σε,

where ε is the extreme value distribution with density function fε(x) = exp(x−
exp(x)). To build the Weibull regression model with covariates, we let

µ = γ0 + γ1x1 + ...+ γpxp, (6.5)

which results in the linear model (6.4) for log time.
Note that this is equivalent to introducing covariates through λ with a log link

function in the Weibull distribution, that is,

log(λ) = θ0 +θ1x1 + ...+θpxp,

where θ0 = −γ0/σ, θ j = −γ j/σ, j = 1, ..., p. This leads to a proportional hazards
model for the survival time with a Weibull baseline hazard. The hazard rate given the
covariates x = (x1, ...,xp)

T is

h(t|x) = αtα−1 exp

(
θ0 +

p

∑
j=1

θ jx j

)
= h0(t)exp

(
p

∑
j=1

θ jx j

)
,

where h0(t) = αλ0tα−1, and λ0 = exp(−γ0/σ).
Using the accelerated failure-time representation of the Weibull model, the haz-

ard rate is given by

h(t|x) = exp

(
p

∑
j=1

β jx j

)
·h0

(
t exp

(
p

∑
j=1

β jx j

))
, (6.6)

150 Bayesian Regression Modeling with INLA

where β0 =−γ0 = θ0/α, β j =−γ j = θ j/α, j = 1, ..., p. The factor exp
(

∑
p
j=1 β jx j

)
is the acceleration factor.

Suppose we observe independent survival times t = (t1, t2, ..., tn)T , each having
a Weibull distribution, and D = (t,X,δ) denotes the observed data for the model, X
is the n× (p+1) design matix and δ = (δ1, ...,δn)

T . The likelihood function of the
unknown parameters (α,β) = (α,β0,β1, ...,βp) is

L(α,β|D) =
n

∏
i=1

f (ti|α,β)δiS(ti|α,β)1−δi . (6.7)

In this basic survival model, we have a linear predictor ηi = β0 +β1x1i + ...+βpxpi.
We assign Gaussian priors to all elements of β = (β0,β1, ...βp), so that the model
can easily be seen as a latent Gaussian model with a latent field. The hyperparameter
α may be assigned a diffuse gamma prior. The likelihood (6.7) depends on the latent
field only through the predictor ηi, so the INLA approach can be directly applied to
such a model.

Similarly, other parametric survival models can be solved using the INLA
approach. The R INLA library currently supports four popular parametric sur-
vival regression models, exponential, Weibull, log-normal, and log-logistic models.
They correspond to specifying family = "exponentialsurv", "weibullsurv",
"lognormalsurv", and "loglogistic" in inla call, respectively.

Let us use a data example of male laryngeal cancer as an illustrating example for
AFT models, which has been investigated in Klein and Moeschberger (2005). The
dataset was first reported by Kardaun (1983), including 90 males diagnosed with can-
cer of the larynx during the period 1970 – 1978 at a Dutch hospital. Patient survival
times were recorded between first treatment and either death or the end of the study.
Patients were classified into one of four stages using the American Joint Committee
for Cancer Staging. Other variables also recorded include the patient’s age at the time
of diagnosis, and the year of diagnosis. Table 6.3 shows the description of variables
in the larynx data.

TABLE 6.3
Description of variables in the larynx data.

Variable Name Description Codes/Values
stage Stage of disease 1=stage 1, 2=stage2,

3=stage 3, 4=stage 4
time Time to death or on-study time months
age Age at diagnosis of larynx cancer years
diagyr Year of diagnosis of larynx cancer year
delta Death status 0=alive, 1=dead

We first consider a Weibull model with the independent variables, age and stage.
Before using INLA to fit the model, let us apply the corresponding frequentist ap-
proach:

data(larynx, package = "brinla")

Survival Analysis 151

larynx.wreg <- survreg(Surv(time, delta)~ as.factor(stage) + age, data
↪→ =larynx, dist="weibull")

round(summary(larynx.wreg)$table, 4)

Value Std. Error z p
(Intercept) 3.5288 0.9041 3.9030 0.0001
as.factor(stage)2 -0.1477 0.4076 -0.3624 0.7171
as.factor(stage)3 -0.5866 0.3199 -1.8333 0.0668
as.factor(stage)4 -1.5441 0.3633 -4.2505 0.0000
age -0.0175 0.0128 -1.3667 0.1717
Log(scale) -0.1223 0.1225 -0.9987 0.3179

Now we fit the AFT model using INLA with the default priors.

formula = inla.surv(time, delta) ~ as.factor(stage) + age
larynx.inla1 <- inla(formula, control.compute = list(dic = TRUE),

↪→ family = "weibullsurv", data = larynx)
round(larynx.inla1$summary.fixed, 4)

mean sd 0.025quant 0.5quant 0.975quant mode kld
(Intercept) -3.9348 1.0129 -5.9852 -3.9131 -2.0045 -3.8692 0
as.factor(stage)2 0.1620 0.4608 -0.7827 0.1761 1.0285 0.2046 0
as.factor(stage)3 0.6598 0.3554 -0.0339 0.6584 1.3607 0.6556 0
as.factor(stage)4 1.7059 0.4094 0.8896 1.7101 2.4983 1.7185 0
age 0.0197 0.0142 -0.0077 0.0196 0.0481 0.0192 0

It is important to point out here that there is a sign difference between the estimates
from the output of survreg object and inla object. The estimates of γ j’s in (6.5) are
reported using survreg function, while the estimates of β j’s in (6.6) are reported us-
ing the inla function. So, in the INLA output, a positive value of the risk coefficient
reflects poor survival for Weibull models, which is consistent with the Cox model
using INLA.

From the results, we see that patients with stage 4 disease do significantly (in
the Bayesian sense, 95% credible interval excludes 0) worse than patients with stage
1 disease. The acceleration factor for stage 4 disease compared to stage 1 disease
is exp(1.7059) = 5.5063 with the credible interval (exp(0.8897), exp(2.4983)) =
(2.4344, 12.1618). So, we interpret the result as meaning that the median lifetime for
a stage 1 patient is estimated to be 5.5063 as much as that of a stage 4 patient.

6.4 Model Diagnosis
Checking the adequacy of a fitted model is very important in survival regression anal-
ysis. Examining the residuals of a model is a common way of regression diagnostics.
In the standard linear regression setup, it is quite easy to define a residual for the
fitted model (see Chapter 3). The definition of the residual in survival models is not
as clear-cut. A number of residuals have been proposed to examine different aspects
of the model in survival analysis literature.

The first type of residuals we introduce here is the so-called Cox–Snell residuals.
Assume that Θ is the vector of all unknown parameters in the model. Cox and Snell

152 Bayesian Regression Modeling with INLA

(1968) define the residuals as

r∗Ci
= Hi(ti,Θ̂|xi) =− log(S(ti,Θ̂|xi)), i = 1, ...,n,

where Θ̂ are the maximum likelihood estimates of Θ. That is, the residuals are the
maximum likelihood estimates of the cumulative hazards for the observed survival
time given the covariates.

In Bayesian analysis, Chaloner (1991) defined the Bayesian version of the resid-
uals:

rCi = Hi(ti,Θ|xi) =− log(S(ti,Θ|xi)), i = 1, ...,n. (6.8)

Each rCi is just a function of unknown parameters, and posterior distribution is there-
fore straightforward to calculate. For example, one can draw samples from the poste-
rior distribution of Θ and then substitute these samples into (6.8) to produce samples
from the posterior distribution of the residuals. The posterior mean or median of
the rCi ’s can be calculated and evaluated. More simply, Wakefield (2013) suggested
that one could substitute the posterior mean or median of Θ directly to obtain the
approximate Bayesian residuals.

For the Cox semiparametric model, the Bayesian Cox–Snell residuals are

rCi = H0(ti)exp

(
p

∑
j=1

β jx j

)
, i = 1, ...,n,

where H0(ti) =
∫ ti

0 h(u)du is the estimator of the baseline cumulative hazard rate at
time ti. For the Weibull model, the Bayesian Cox–Snell residuals are

rCi = λ0tα
i exp

(
p

∑
j=1

θ jx j

)
= λ0tα

i exp

(
α

p

∑
j=1

β jx j

)
, i = 1, ...,n.

For the exponential model, the Bayesian Cox–Snell residuals are

rCi = λ0ti exp

(
p

∑
j=1

θ jx j

)
= λ0ti exp

(
p

∑
j=1

β jx j

)
, i = 1, ...,n.

If the model fits well and the posterior mean β̂ j is close to the true value of
β j (j = 1, ..., p), then the posterior mean or median of rCi ’s should look like a cen-
sored sample from a unit exponential distribution. In order to check whether the rCi ’s
behave as a sample from a unit exponential distribution, we could compute the Nel-
son–Aalen estimator of the cumulative hazard rate of rCi ’s, which is defined as

H̃(t) = ∑
rCi≤t

di

mi
,

with di the number of events at rCi and mi the total individuals at risk (i.e., alive and
not censored) just prior to time rCi . If the exponential distribution fits the residuals,

Survival Analysis 153

the estimate should be very close to the true cumulative hazard rate of the unit ex-
ponential model, that is, H(t) = t. Hence, one could check the so-called Cox–Snell
residual plot, a plot of the residual rCi versus its Nelson–Aalan estimate H̃(rCi). If a
model fits well, this plot should follow a straight line through the origin with a slope
of 1.

Let us go back to the example of the larynx data. We want to examine whether
the Weibull model fits the data or not and compare it with other models. We refit the
data with an exponential model and a Cox semiparametric model:

larynx.inla2 <- inla(formula, control.compute = list(dic = TRUE),
↪→ family = "exponential.surv", data = larynx)

round(larynx.inla2$summary.fixed, 4)

mean sd 0.025quant 0.5quant 0.975quant mode kld
(Intercept) -3.7700 0.9901 -5.7761 -3.7483 -1.8845 -3.7043 0
as.factor(stage)2 0.1475 0.4601 -0.7960 0.1617 1.0125 0.1903 0
as.factor(stage)3 0.6505 0.3551 -0.0427 0.6491 1.3509 0.6463 0
as.factor(stage)4 1.6301 0.3985 0.8343 1.6346 2.4001 1.6438 0
age 0.0197 0.0142 -0.0077 0.0196 0.0481 0.0192 0

larynx.inla3 <- inla(formula, control.compute = list(dic = TRUE),
↪→ family = "coxph", data = larynx, control.hazard=list(model="rw1
↪→ ", n.intervals=20))

round(larynx.inla3$summary.fixed, 4)

mean sd 0.025quant 0.5quant 0.975quant mode kld
(Intercept) -3.7693 0.9903 -5.7756 -3.7476 -1.8835 -3.7036 0
as.factor(stage)2 0.1477 0.4601 -0.7958 0.1619 1.0127 0.1905 0
as.factor(stage)3 0.6506 0.3551 -0.0426 0.6491 1.3509 0.6463 0
as.factor(stage)4 1.6310 0.3986 0.8350 1.6355 2.4013 1.6447 0
age 0.0197 0.0142 -0.0077 0.0196 0.0481 0.0192 0

It appears that the coefficient estimates for the covariates are quite close in com-
parison to the three models. Our brinla library provides a convenient R function,
bri.surv.resid, to compute Bayesian Cox–Snell residuals. We now calculate the
residuals for each of the three models:

larynx.inla1.res <- bri.surv.resid(larynx.inla1, larynx$time, larynx$
↪→ delta)

larynx.inla2.res <- bri.surv.resid(larynx.inla2, larynx$time, larynx$
↪→ delta)

larynx.inla3.res <- bri.surv.resid(larynx.inla3, larynx$time, larynx$
↪→ delta)

The arguments are needed in the bri.surv.resid function: the fitted INLA survival
model object, the follow-up time for the right censored data, and the status indicator.
Then we can generate the Cox–Snell residual plots using the bri.csresid.plot
function in brinla library:

bri.csresid.plot(larynx.inla1.res, main = "Weibull model")
bri.csresid.plot(larynx.inla2.res, main = "Exponential model")
bri.csresid.plot(larynx.inla3.res, main = "Cox model")

The resulting plots are displayed in Figure 6.2. These plots suggest that all three
models do not fit badly. However, for the Weibull model, the estimated cumulative
hazard rate lies above the 45◦ line, except in the tail where the variability of the

154 Bayesian Regression Modeling with INLA

0.0 1.0 2.0 3.0

0.
0

1.
0

2.
0

3.
0

Weibull model

Cox−Snell Residual

Es
tim

at
ed

 C
um

ul
at

ive
 H

az
ar

d
R

at
es

0.0 1.0 2.0 3.0
0.

0
1.

0
2.

0
3.

0

Exponential model

Cox−Snell Residual

Es
tim

at
ed

 C
um

ul
at

ive
 H

az
ar

d
R

at
es

0.0 1.0 2.0

0.
0

1.
0

2.
0

Cox model

Cox−Snell Residual

Es
tim

at
ed

 C
um

ul
at

ive
 H

az
ar

d
R

at
es

FIGURE 6.2
Cox–Snell residual plots for the different models that are used to fit the larynx data.

cumulative hazard estimate is large. It seems that exponential model has the best fit
among the three models.

Based on the Bayesian Cox–Snell residuals, two other types of residuals can be
computed. The Bayesian version of the martingale residuals (Barlow and Prentice,
1988) are defined by

rMi = δi− rCi , j = 1, ...,n.

This quantity provides us a measure of the difference between the indicator of
whether a given individual experiences the event of interest and the expected number
of events the individual would experience.

Martingale residuals are a reallocation of the Cox–Snell residuals to a mean of
zero for uncensored observations, so that they follow similar properties as the resid-
uals in linear regression analysis. To assess the model fitting, one could construct a
plot of the martingale residuals versus a certain covariate or a plot of the residuals
by case (index plot). However, martingale residuals for censored observations take
negative values, and the maximum possible value of the residuals is +1 but the min-
imum possible value could go to −∞. So, in practice, martingale residuals are not
often symmetrically distributed around zero which makes the martingale residual
plots difficult to interpret.

The Bayesian version of the deviance residuals (Therneau et al., 1990) are used
to obtain residuals that have a distribution more normally shaped than the martingale
residuals. They are defined by

rDi = sgn(rMi)[−2{rMi +δi log(δi− rMi)}]
1/2, i = 1, ...,n,

where sgn(·) is the sign function. Note that rDi has a value of 0 when rMi is zero.
The logarithm tends to inflate the values of the residuals when rMi is close to 1 and
to shrink large negative values of rMi .

The bri.surv.resid function also outputs Bayesian martingale residuals and

Survival Analysis 155

Bayesian deviance residuals for a fitted INLA survival model object. We now con-
struct a plot of the deviance residuals versus the covariate, age, for each of the three
models. The bri.dresid.plot function in the brinla library generates the de-
viance residual plots:

par(mfrow=c(1,3))
bri.dresid.plot(larynx.inla1.res, larynx$age, xlab = "age", main = "

↪→ Weibull model")
bri.dresid.plot(larynx.inla2.res, larynx$age, xlab = "age", main = "

↪→ Exponential model")
bri.dresid.plot(larynx.inla3.res, larynx$age, xlab = "age", main = "

↪→ Cox model")

40 50 60 70 80

−1
0

1
2

Weibull model

age

D
ev

ia
nc

e
re

si
du

al

40 50 60 70 80

−1
0

1
2

Exponential model

age

D
ev

ia
nc

e
re

si
du

al

40 50 60 70 80

−1
0

1
2

Cox model

age

D
ev

ia
nc

e
re

si
du

al

FIGURE 6.3
Bayesian deviance residual plots for the different models that are used to fit larynx
data.

All residual plots show random patterns (Figure 6.3), which indicate that the three
models all have good fits. The second argument in the bri.dresid.plot function is
the covariate that you want to plot against the residuals. If the argument is missing, a
residual index plot will be generated.

In practice, the martingale residuals are often used to determine the functional
form of a given covariate to best explain its effect on survival through a Cox, Weibull,
or exponential model. Suppose that the covariate vector x = (x1,x2, ...,xp)

T can be
partitioned into a p−1 vector x∗ = (x2, ...,xp)

T , for which we have a known proper
functional form of the Cox model, Weibull, or exponential model, and a single co-
variate x1, for which we are not sure what kind of functional form of x1 to use.
Assume that g(x1) is the best form of x1, and x1 and x∗ are independent. The optimal
Cox, Weibull, or exponential model is

H(t|x∗,x1) = H0(t)exp

(
p

∑
j=2

β jx j

)
exp{g(x1)}.

In order to find an appropriate g function, we construct martingale residual plot

156 Bayesian Regression Modeling with INLA

as follows: First, we fit a Cox, Weibull, or exponential model to the data based on
x∗ and compute the Bayesian martingale residuals, rMi , i = 1, ...,n. Then, we draw
the scatterplot of rMi versus the value of x1 for the ith observation, and overlay it
with a smoothed-fitted curve. Many smoothing techniques can be applied here, such
as the random walk model of second order that we will discuss in Chapter 7, local
polynomial regression, splines etc. The curve gives an indication of the function g.
For example, if the curve is linear, we use x1 directly; if there are some change
points or thresholds, a discretized version of the covariate is indicated. If there is
some nonlinear pattern, a transformation of the covariate, such as log(x1), x2

1 could
be used. Note that the above approach cannot be used for the AFT model with the
log-normal or log-logistic distribution, since the proportional hazards representation
does not exist in those two models.

70 72 74 76 78

−1
.5

−0
.5

0.
5

1.
0

Weibull model

diagyr

M
ar

tin
ga

le
 re

si
du

al

70 72 74 76 78

−1
.5

−0
.5

0.
5

1.
0

Exponential model

diagyr

M
ar

tin
ga

le
 re

si
du

al

70 72 74 76 78

−1
.5

−0
.5

0.
5

1.
0

Cox model

diagyr

M
ar

tin
ga

le
 re

si
du

al

FIGURE 6.4
Bayesian martingale residual plots for the different models that are used to fit the
larynx data. The solid curves are the smoothed-fitted curves and the dashed curves
are their 95% credible intervals.

In the larynx data example, the above three models did not include the variable,
diagyr, as a covariate. Let us examine the best function of diagyr if we want to
include it in the models. The bri.mresid.plot function in the brinla library gen-
erates the Bayesian martingale residual plots:

bri.mresid.plot(larynx.inla1.res, larynx$diagyr, smooth = TRUE, xlab =
↪→ "diagyr", main = "Weibull model")

bri.mresid.plot(larynx.inla2.res, larynx$diagyr, smooth = TRUE, xlab =
↪→ "diagyr", main = "Exponential model")

bri.mresid.plot(larynx.inla3.res, larynx$diagyr, smooth = TRUE, xlab =
↪→ "diagyr", main = "Cox model")

The third argument in the bri.mresid.plot function, smooth = TRUE is to add
the smooth curve with its 95% credible interval on the residual plot. Figure 6.4 dis-
plays Bayesian martingale residual plots for the three survival models that are used to
fit larynx data. The curves are the smoothed-fitted curves (solid lines) with their 95%
credible intervals (dashed lines) using the random walk model of order 2 with INLA.

Survival Analysis 157

The plots indicate that using a linear form for the diagyr variable in the regression
equation is sufficient for the three models.

6.5 Interval Censored Data
Interval censoring arises in many practical settings. For instance, subjects are peri-
odically assessed for disease progression in a clinical study. In case of interval cen-
soring, the survival time T is observed only to lie in an interval [t lo, tup]. Another
feature of lifetime data is that of left truncation. Left truncation in survival analysis
means that some subjects do not enter the risk set until a known period after the time
origin. For example, in a study of disease mortality where the outcome of interest is
survival from the time of diagnosis, many patients may not have been enrolled in the
study until several months or years after their diagnosis. We say, an observation is
left truncated if only values above a known truncation time ttr are reported.

In a more general framework for survival data, an observation can be described
by a quintuple (t lo, tup, ttr,δ,x). The general log-likelihood contribution for the ith

observation is given by:

li = δi log(hi(t
up
i |x))−

∫ tup
i

ttr
i

hi(u|x)du+ log

{
1− exp

(
−
∫ tup

i

t lo
i

hi(u|x)du

)}
. (6.9)

We assign Gaussian priors to all unknown fixed effects. So, the likelihood in (6.9)
depends on a latent Gaussian field only through the linear predictor xT

i β, just as
with right-censored data. Then, it is straightforward to apply INLA algorithms on
the accelerated failure time models with interval-censored data.

However, for the semiparametric model with piecewise constant baseline hazard,
the log-likelihood in the case of interval censoring does not allow us to use the same
trick of data augmentation discussed in Section 6.2.1. Therefore, INLA cannot handle
the case of the semiparametric model with interval censoring.

Let us look at the Signal Tandmobiel study (tooth24), a prospective oral health
study conducted in Belgium from 1996 to 2001. The study contains a cohort of ran-
domly sampled schoolchildren who attended the first year of the primary school at
the beginning of the study. The original dataset has been presented and studied by
Bogaerts and Lesaffre (2004) and Gomez et al. (2009). Here we restrict the analysis
to the age of the emergence time of the permanent upper left first premolars (tooth
24 in European dental notation). Since permanent teeth do not emerge before the
age of 5, the origin time for all analyses is set at 5 years (Gomez et al., 2009). The
covariates of interest include GENDER (0 = boy; 1 = girl) and DMF (the status of the
primary predecessor of this tooth: 0 if the primary predecessor was sound, 1 if it was
decayed, missing due to caries or filled). The variables and their codes for the data
are shown in Table 6.4.

We load the data from the brinla package and compactly display the structure
of the R data frame.

158 Bayesian Regression Modeling with INLA

TABLE 6.4
Description of variables in the Signal Tandmobiel study (tooth24).

Variable Name Description Codes/Values
ID subject’s identification code unique integers
LEFT lower limit of tooth emergence years since age 5
RIGHT upper limit of tooth emergence years since age 5
SEX gender of the child 0 = boy

1 = girl
DMF status of primary predecessor 0 = sound

1 = decayed, missing, or filled

data(tooth24, package = "brinla")
str(tooth24)

’data.frame’: 4386 obs. of 5 variables:
$ ID : int 1 2 3 4 5 6 7 8 9 10 ...
$ LEFT : num 2.7 2.4 4.5 5.9 4.1 3.7 4.9 5.4 4 5.9 ...
$ RIGHT: num 3.5 3.4 5.5 999 5 4.5 5.8 6.5 4.9 6.7 ...
$ SEX : Factor w/ 2 levels "0","1": 2 1 2 2 2 1 1 2 2 2 ...
$ DMF : Factor w/ 2 levels "0","1": 2 2 1 1 2 2 2 2 2 1 ...

The dataset contains 4386 observations of 5 variables. First, a new censoring variable
needs to be added to the dataframe tooth24:

tooth24$cens <- with(tooth24, ifelse(RIGHT == 999, 0, 3))

The variable cens indicating the type of censoring has to be defined as being 0 for
the indicator for right-censoring and 3 for the indicator for interval-censoring.

Let us consider an AFT model with a log-logistic distribution for the interval
censored data. The log-logistic distribution has cumulative distribution function

F(t|α,β) = 1
1+(t/γ)−α

,

where α,γ > 0. The parameter γ is linked to the covariates (x1, ...,xp) as:

log(γ) = β0 +β1x1 + ...+βpxp.

The parameter α is a shape parameter. Sometimes, an alternative parameterization
for the log-logistic distribution is given by s = 1/α.

To fit the model with the conventional maximum likelihood approach, we need to
use the R function survreg in the survival library. The survreg function requires
to create a so-called Surv object, which combines all those vectors containing infor-
mation on the survival times and its censoring status. With our data, the Surv object
can be defined as follows:

library(survival)
sur24 <- with(tooth24, Surv(LEFT, RIGHT, cens, type = "interval"))
sur24[1:5]

[1] [2.7, 3.5] [2.4, 3.4] [4.5, 5.5] 5.9+ [4.1, 5.0]

Survival Analysis 159

The object sur24 contains the observed intervals of emergence times of permanent
tooth24 of 4386 children, five of which are shown above. Note that we model Ti−5
instead of Ti. So, the values [2.7, 3.5] in sur24 correspond to 7.7 and 8.5 years of
age. The sign + indicates a right-censored observation. For example, the value 5.9+
means that the child #4 had not emerged yet by its last dental examination at the age
of 5+5.9 = 10.9 years.

We consider two covariates in the model, SEX and DMF, and fit the model with the
R function survreg:

tooth24.survreg <- survreg(sur24 ~ SEX + DMF, data = tooth24, dist="
↪→ loglogistic")

The model fit is stored in the object tooth24.survreg. Let us have a close look at
the estimated parameters:

round(summary(tooth24.survreg)$table, 4)

Value Std. Error z p
(Intercept) 1.7718 0.0069 257.2276 0
SEX1 -0.0719 0.0082 -8.7980 0
DMF1 -0.0896 0.0082 -10.8993 0
Log(scale) -1.9913 0.0164 -121.1760 0

According to the results, both SEX and DMF are highly significant. The negative sign of
both parameter estimates indicates, on average, shorter times until tooth emergence
for girls (the categories with label 1) and children with a decayed, missing or filled
primary predecessor of permanent tooth24. The Log(scale) in the output reports the
estimate for the logarithm of s. We can extract the estimate of s from the fit directly:

round(summary(tooth24.survreg)$scale, 4)

[1] 0.1365

Now we fit the model using INLA. We first define the model formula:

tooth24.formula = inla.surv(LEFT, cens, RIGHT) ~ SEX + DMF

Note that, in the object inla.surv, we need to specify the starting time for the
interval, LEFT, the status indicator, cens, and the ending time for the interval, RIGHT,
sequentially. The model fit is stored in the object tooth24.inla and we output the
estimates:

tooth24.inla <- inla(tooth24.formula, family = "loglogistic", data =
↪→ tooth24)

round(tooth24.inla$summary.fixed, 4)

mean sd 0.025quant 0.5quant 0.975quant mode kld
(Intercept) 1.7732 0.0071 1.7592 1.7732 1.7872 1.7731 0
SEX1 -0.0726 0.0084 -0.0892 -0.0726 -0.0560 -0.0726 0
DMF1 -0.0903 0.0085 -0.1070 -0.0903 -0.0737 -0.0903 0

Compared with the maximum likelihood approach, the results from INLA are very
close. All values in the 95% credible intervals are on the same side of zero (all nega-
tive) for both covariates.

We could interpret the results in terms of the acceleration factor. For instance,
comparing girls and boys with the same value of DMF, the survival time of tooth

160 Bayesian Regression Modeling with INLA

emergence in girls is “accelerated” by a factor of exp(−0.073) = 0.930 compared to
the boys, that is, the median time (from age 5) until tooth emergence in girls is 0.930
times the median time in boys.

We now extract the result for the hyperparameter:

round(tooth24.inla$summary.hyper, 4)

mean sd 0.025quant 0.5quant 0.975quant mode
alpha parameter for loglogistic 7.0231 0.1063 6.819 7.0224 7.2307 7.021

Note that inla reports the estimate of the parameter α in the log-logistic model,
while survreg outputs the estimate of the scale parameter, the reciprocal of α.

We have applied the log-logistic model here. This model is the only one that
has the proportional odds form among all accelerated failure-time models. And it
is not a proportional hazards model any more. In order to develop the odds-ratio
interpretation, we begin by expressing the survivorship function for the model as

S(ti|xi) =
1

1+
(
t exp(−xT

i β)
)1/σ

, i = 1, ...,n.

With some simple algebra, it can be shown that

log
(

S(ti|xi)

1−S(ti|xi)

)
= β

∗
0 +β

∗
1xi1 + ...+β

∗
pxip−σ

−1 log(ti),

where β∗j = β j/σ for j = 0,1, ..., p. This is nothing but a logistic regression model
with the intercept depending on time. Since S(t) is the probability of surviving to
time t, the ratio S(t)/(1− S(t)) is often called the survival odds, i.e., the odds of
surviving beyond time t; the ratio (1−S(t))/S(t) is often called the failure odds, i.e.,
the odds of getting the event by time t.

With a unit increase in xk while other covariates are being held fixed, the survival
odds ratio is given by

S(t|xk +1)/(1−S(t|xk +1))
S(t|xk)/(1−S(t|xk))

= exp(β∗k), ∀ t ≥ 0,

which is a constant over time. Therefore, we have a proportional odds model, and
exp(β∗k) can be interpreted as the odds ratio for surviving with a unit increase in xk
and exp(−β∗k) can be interpreted as the odds ratio for getting the event with a unit
increase in xk.

Back to our example, we can calculate the estimated failure odds ratio for SEX,
that is, exp(−1× (−0.073)/(1/7.024)) = 1.67. Hence, The odds of girls to have
tooth emergence is 1.67 higher than boys with the same value of DMF.

6.6 Frailty Models
The concept of frailty provides a suitable way to introduce random effects in survival
models to account for association and unobserved heterogeneity. In its simplest form,

Survival Analysis 161

a frailty is an unobserved random factor that modifies multiplicatively the hazard
function of an individual or a group or cluster of individuals.

The standard situation of the application of survival methods to a study assumes
that a homogeneous population is investigated when subject to different conditions
(e.g., treatment vs. control). The appropriate survival model then assumes that the
survival data of the different patients are independent from each other and that each
patient’s individual survival time distribution is the same (independent and identi-
cally distributed failure times) conditional on certain fixed covariates. However, het-
erogeneity in survival data often occurs in practice. For example, in a clinical trial
study, the effect of a drug, a treatment or the influence of various explanatory vari-
ables may differ greatly between subgroups of patients. Vaupel et al. (1979) intro-
duced univariate frailty models into survival analysis for heterogeneous data, where
the random effect (the frailty) has a multiplicative effect on the hazard. The frailty
takes into account the effects of unobserved or unobservable heterogeneity, caused
by different sources.

To be specific, let ti j be the survival time for the jth individual in the ith cluster,
i = 1, ...,n, and k = 1, ...,mi. Here the mi’s represent the number of individuals in
the ith cluster. Consider an AFT frailty model by assuming that tik follows a Weibull
distribution,

tik|λik ∼Weibull(α,λik), α > 0,

where
log(λik) = exp(xT

ikβ+bi).

The bi is the unobserved frailty for the ith cluster, the fixed-effect vector xik =
(1,xik1, ...,xikp)

T and the vector of regression coefficients β = (β0,β1, ...,βp)
T .

Hence, the hazard function for the model is given as

h(tik) = αtα−1
ik exp(xT

ikβ+bi), (6.10)

which reduces to the exponential hazard if α = 1.
If we want to consider the semiparametric proportional frailty model, the hazard

in (6.10) is replaced by

h(tik) = h0(tik)exp(xT
ikβ+bi),

where the baseline hazard h0(t) can be modeled by the piecewise constant model.
Typically, the frailty term bi is assumed to have a Gaussian distribution N(0,τ−1

b).
Diffuse Gaussian priors are assigned to β, while diffuse gamma priors are assigned
to τb and α. Hence, the frailty models reduce to latent Gaussian models, and INLA
methodology can be applied to solve the models.

Let us look at an example of the kidney infection data (McGilchrist and Aisbett,
1991). The study concerns the recurrence times to infection, at the point of inser-
tion of the catheter, for kidney patients using portable dialysis equipment. The data
consist of times until the first and second recurrences of kidney infection in 38 pa-
tients. Each patient has exactly 2 observations. Each survival time is the time until
infection since the insertion of the catheter. The survival times for the same patient

162 Bayesian Regression Modeling with INLA

are likely to be related because of a shared frailty describing the common patient’s
effect. Catheters may be removed for reasons other than infection, in which case the
observation is censored. There are about 24% censored observations in the dataset.
This dataset can be found in the R survival package.

TABLE 6.5
Description of variables in the kidney catheter data.

Variable Name Description Codes/Values
id Patient’s identification code integers
time Time to infection days
status Event status 1 = infection occurs; 0 = censored
age Age years
sex Sex 1 = male; 2 = female
disease Disease type 0=GN; 1=AN; 2=PKD; 3=Other

Table 6.5 displays the description of variables in the kidney catheter data. The
risk variables include age, sex, and disease. We start with fitting a Weibull frailty
model using conventional maximum likelihood method:

data(kidney, package = "survival")
kidney.weib <- survreg(Surv(time,status) ~ age + sex + disease +

↪→ frailty.gaussian(id), dist=’weibull’, data = kidney)
round(summary(kidney.weib)$table, 4)

Value Std. Error z p
(Intercept) 2.1153 0.7612 2.7787 0.0055
age -0.0030 0.0127 -0.2368 0.8128
sex 1.5620 0.3518 4.4393 0.0000
diseaseGN -0.1571 0.4563 -0.3441 0.7307
diseaseAN -0.5586 0.4565 -1.2237 0.2211
diseasePKD 0.6378 0.6346 1.0050 0.3149
Log(scale) -0.5987 0.1278 -4.6842 0.0000

The frailty.gaussian function allows one to add a simple Gaussian random ef-
fects term to a survreg model. We could extract the estimate of standard deviation
of the random effect:

round(kidney.weib$history$‘frailty.gaussian(id)‘$theta, 4)

[1] 0.6279

We now fit the model using the INLA approach:

formula = inla.surv(time, status) ~ age + sex + disease + f(id, model
↪→ = "iid", hyper = list(prec = list(param=c(0.1, 0.1))))

kidney.inla <- inla(formula, family = "weibullsurv", data = kidney)
round(kidney.inla$summary.fixed, 4)

mean sd 0.025quant 0.5quant 0.975quant mode kld
(Intercept) -2.4536 0.9511 -4.4148 -2.4222 -0.6680 -2.3593 0
age 0.0028 0.0146 -0.0256 0.0027 0.0320 0.0024 0
sex -1.8765 0.4616 -2.8145 -1.8672 -0.9920 -1.8506 0
diseaseGN 0.1308 0.5305 -0.9146 0.1298 1.1828 0.1296 0
diseaseAN 0.6031 0.5293 -0.4254 0.5971 1.6672 0.5867 0
diseasePKD -1.0839 0.7883 -2.6456 -1.0822 0.4682 -1.0773 0

Survival Analysis 163

Here the function f() with the argument model="iid" is used to spec-
ify the subject level frailty term. We assign the hyperparameter a diffuse
gamma prior, Gamma(0.1,0.1), by using the argument hyper = list(prec =
list(param=c(1, 0.1))) in f(). The result for the fixed effects shows that the
only covariate whose 2.5% and 97.5% posterior quantiles are on the same side of
zero is sex, which is concordant with the result using the MLE method. This indi-
cates a lower infection rate for female patients, with high probability. The estimates
of the hyperparameters in the model can be obtained as follows:

round(kidney.inla$summary.hyper, 4)

mean sd 0.025quant 0.5quant 0.975quant mode
alpha parameter for weibullsurv 1.1691 0.1582 0.8491 1.1771 1.4570 1.2229
Precision for id 5.9519 11.9417 0.7387 2.8416 30.3126 1.2416

We could calculate the improved estimates of the posterior marginals for the hy-
perparameters in the model. The function inla.hyperpar uses the grid integration
strategy to compute more accurate posterior estimates for the hyperparameters.

kidney.inla.hp <- inla.hyperpar(kidney.inla)
round(kidney.inla.hp$summary.hyper, 4)

mean sd 0.025quant 0.5quant 0.975quant mode
alpha parameter for weibullsurv 1.1630 0.1182 0.9562 1.1548 1.4169 1.1416
Precision for id 3.5552 3.3492 0.7266 2.4378 13.5488 1.4124

Oftentimes, we are interested in the posterior estimate of the standard devia-
tion parameter of the frailty term σb = τ

−1/2
b , instead of the precision τb which

is given by default in the summary of the hyperparameters. The R function
bri.hyperpar.summary in our brinla library produces the summary statistics of
hyperparameters in terms of σb:

round(bri.hyperpar.summary(kidney.inla.hp),4)

mean sd q0.025 q0.5 q0.975 mode
alpha parameter for weibullsurv 1.1630 0.1182 0.9557 1.1540 1.4161 1.1415
SD for id 0.6594 0.2323 0.2724 0.6398 1.1674 0.6105

The posterior mean of σb appears close to the estimate using the conventional MLE
method. We could further check the plots of the approximate posterior distribution
of the alpha parameter for Weibull distribution and the standard deviation parameter
for the frailty term using the function bri.hyperpar.plot in our brinla library:

bri.hyperpar.plot(kidney.inla.hp, together = F)

Figure 6.5 shows the posterior densities of the parameter α and the parameter σb for
frailty term. The distribution of α appears relatively symmetric, while the distribution
of σb is right skewed.

164 Bayesian Regression Modeling with INLA

alpha parameter for weibullsurv SD for id

1 2 3 0.4 0.8 1.2 1.6

0.0

0.5

1.0

1.5

0

1

2

3

de
ns

ity

FIGURE 6.5
Approximate marginal posterior distributions of the alpha parameter for Weibull dis-
tribution and the standard deviation parameter for the frailty term.

6.7 Joint Modeling of Longitudinal and Time-to-Event Data
Many clinical studies produce two types of outcomes, a set of longitudinal response
measurements as well as the time to an event of interest, such as death, or devel-
opment of a disease. A common objective in these studies is to characterize the
relationship between a longitudinal response process and a time-to-event. A com-
mon example of this setting is an AIDS clinical study, where infected patients are
monitored until they develop AIDS or die and they are regularly measured for the
condition of the immune system using markers such as the CD4 lymphocyte count
(Abrams et al., 1994).

Many models exist for analyzing such data separately, including linear mixed-
effects models in Chapter 5 for longitudinal data, and semiparametric proportional
hazards models and AFT models in this chapter for survival data. However, separate
modeling of longitudinal and time-to-event data may be inappropriate when the lon-
gitudinal variable is correlated with the patient’s survival endpoint. A joint modeling
approach is often preferable in such data (Tsiatis and Davidian, 2004).

Henderson et al. (2000) proposed a very flexible joint model that allows a very
broad range of dependencies between the longitudinal responses and the survival
endpoints. The model includes fixed effects, random effects, serial correlation, and
pure measurement error for the longitudinal data, and use a semiparametric propor-
tional hazards model with frailty terms for the survival data. The key idea of the
method is to connect the longitudinal and survival processes with a latent bivariate
Gaussian process. The longitudinal and time-to-event data are then assumed inde-
pendent given the linking latent process and the covariates. Guo and Carlin (2004)

Survival Analysis 165

developed a fully Bayesian version of this approach, implemented via MCMC meth-
ods. Martino et al. (2011) showed how INLA can be adapted and applied to this
complex model. Following their work, in this section, we demonstrate the joint anal-
ysis of longitudinal and time-to-event data using INLA.

Let us assume that a set of m subjects is followed over a time interval [0,ω).
The ith subject provides a set of (possibly partly missing) longitudinal measurements
{yi j, j = 1, ...,ni at times {si j, j = 1, ...,ni}, and a (possibly censored) survival time
ti to a certain endpoint. The joint model is composed of two submodels, one for each
type of data. The longitudinal data yi j are modeled as{

yi j|ηi j,σ
2 ∼ N(ηi j,σ

2)),
ηi j = µi(si j)+W1i(si j),

(6.11)

where µi(s) = xT
1iβ1 is the mean response, and W1i(s) incorporates subject-specific

random effects. The vector x1i and β represent possibly time-varying explanatory
variables and their corresponding regression coefficients, respectively.

The survival data can be modeled by an AFT model or semiparametric propor-
tional model. In an AFT model, for example, we assume that the survival time for
the ith subject follows a Weibull distribution,{

ti|λi(t)∼Weibull(α,λi(t)),
log(λi(t)) = xT

2i(t)β2+W2i(t),
(6.12)

where the vectors x2i(t) and β2 represent (possibly time-dependent) explanatory
variables and their corresponding regression coefficients. The x2i may or may not
have variables in common with x1i in the longitudinal model. The form of W2i(t) is
similar to W1i(s), including subject-specific covariate effects and an intercept (i.e., a
frailty).

Henderson et al. (2000) proposed to jointly model the longitudinal and survival
processes via a latent zero-mean bivariate Gaussian process on (W1i,W2i)

T , which is
independent across different subjects. Specifically, the joint model links (6.11) and
(6.12) by taking

W1i(s) =U1i +U2is, (6.13)

and
W2i(t) = γ1U1i + γ2U2i + γ3(U1i +U2it)+U3i. (6.14)

The parameters γ1, γ2 and γ3 measure the association between the two submodels
induced by the random intercepts, slopes, and fitted longitudinal value at the event
time W1i(t), respectively. The pair of latent variables (U1i,U2i)

T has a mean-zero
bivariate Gaussian distribution N(0,ΣU), while the U3i are independent frailty terms,
assumed to have a Gaussian N(0,σ2

U3
), independent of the (U1i,U2i)

T .
Denote τ = σ−2, τU3 = σ

−2
U3

, and QU = Σ
−1
U . If we assign gamma priors to τ, τU3 ,

α; a Wishart prior to QU ; and diffuse Gaussian priors to β1, β2, γ1, γ2, and γ3, the
above complex joint model reduces to a latent Gaussian field. INLA methodology
can be again applied to solve the model. Note that, in this complex model, not all

166 Bayesian Regression Modeling with INLA

TABLE 6.6
Description of variables in the AIDS clinical trial data.

Variable Name Description Codes/Values
y the square root of the CD4 numbers

count
SURVTIME time to death months
CENSOR death status 1 = death; 0 = censored
TIME time that CD4 counts were months

recorded
DRUG receive either didanosine (ddI) 1 = ddI; 0 = ddC

or zalcitabine (ddC)
TIMEDRUG time and drug interaction numbers ranged from 0 to 12
SEX Sex 1 = male; -1 = female
PREVOI previous opportunistic infection 1 = yes; -1 = no

(AIDS diagnosis) at study entry
STRATUM failure or intolerance of 1 = failure; -1 = intolerance

zidovudine (AZT) therapy
ID patient identification integers

data points have the same likelihood. Some coding tricks are needed to manipulate
the likelihoods in the inla function.

We use the AIDS clinical trial data that has been presented in Guo and Carlin
(2004) and Martino et al. (2011) as the illustrating example. In this AIDS study,
both longitudinal and survival data were collected to compare the efficacy and safety
of two antiretroviral drugs in treating patients who had failed or were intolerant of
zidovudine (AZT) therapy. There were 467 HIV-infected patients who met entry con-
ditions (either an AIDS diagnosis or two CD4 counts of 300 or fewer, and fulfilling
specific criteria for AZT intolerance or failure). The patients were randomly assigned
to receive either didanosine (ddI) or zalcitabine (ddC). CD4 counts were recorded at
study entry, and again at the 2-, 6-, 12-, and 18-month visits. The times to death were
also recorded. Four explanatory variables are also recorded: DRUG (ddI = 1, ddC = 0),
SEX (male = 1, female = -1), PREVOI (previous opportunistic infection (AIDS diag-
nosis) at study entry = 1, no AIDS diagnosis = -1), and STRATUM (AZT failure = 1,
AZT intolerance = -1). Table 6.6 displays the variables and their descriptions in the
dataset.

Following Guo and Carlin (2004)’s suggestion, the longitudinal submodel as-
sumes a Gaussian model with mean

ηi j = β11 +β12T IMEi j +β13T IMEDRUGi j +β14SEXi

+β15PREVOIi +β16ST RATUMi +W1i(T IMEi j),

and the survival submodel assumes an exponential model for survival time with the
log hazard

log(λi j) = β21 +β22DRUGi +β23SEXi

+β24PREVOIi +β25ST RATUMi +W2i(SURT IMEi j).

Survival Analysis 167

Guo and Carlin proposed a variety of joint models with different forms of the la-
tent processes W1(s) and W2(t) and compare them using DIC. Here we only demon-
strate the code using INLA for the model with the smallest DIC. That is, the case
where W1i(s) = U1i +U2is and W2i(t) = γ1U1i + γ2U2i is considered here. More de-
tailed model comparisons for the study can be found in Guo and Carlin (2004) and
Martino et al. (2011).

In order to fit the joint model in INLA, we need to manipulate the data and pre-
pare the fixed and random covariates before using the inla function. Let us first read
the dataset:

data(joint, package = "brinla")
longdat <- joint$longitudinal
survdat <- joint$survival
n1 <- nrow(longdat)
n2 <- nrow(survdat)

Now we need to prepare the response variables:

y.long <- c(longdat$y, rep(NA, n2))
y.surv <- inla.surv(time = c(rep(NA, n1), survdat$SURVTIME), event = c

↪→ (rep(NA, n1), survdat$CENSOR))
Yjoint <- list(y.long, y.surv)

Then we prepare the fixed covariates and random covariates for the model:

linear.covariate <- data.frame(mu = as.factor(c(rep(1, n1), rep(2, n2)
↪→)), l.TIME = c(longdat$TIME, rep(0, n2)), l.TIMEDRUG = c(
↪→ longdat$TIMEDRUG, rep(0, n2)), l.SEX = c(longdat$SEX, rep(0, n2
↪→)), l.PREVOI = c(longdat$PREVOI, rep(0, n2)), l.STRATUM = c(
↪→ longdat$STRATUM, rep(0, n2)), s.DRUG = c(rep(0, n1), survdat$
↪→ DRUG), s.SEX = c(rep(0, n1), survdat$SEX), s.PREVOI = c(rep(0,
↪→ n1), survdat$PREVOI), s.STRATUM = c(rep(0, n1), survdat$STRATUM
↪→))

ntime <- length(unique(longdat$TIME))

random.covariate <- list(U11 = c(rep(1:n2, each = ntime),rep(NA, n2)),
↪→ U21 = c(rep(n2+(1:n2), each = ntime),rep(NA, n2)), U12 = c(rep
↪→ (NA, n1), 1:n2), U22 = c(rep(NA, n1), n2+(1:n2)), U3 = c(rep(NA
↪→ , n1), 1:n2))

We can finalize the joint dataset for the INLA program now:

joint.data <- c(linear.covariate,random.covariate)
joint.data$Y <- Yjoint

INLA allows different likelihoods for different observations. After implementing
the commands of manipulating the orginal data in R, we are ready to fit the joint
model as usual:

formula = Y ~ mu + l.TIME + l.TIMEDRUG + l.SEX + l.PREVOI + l.STRATUM
↪→ + s.DRUG + s.SEX + s.PREVOI + s.STRATUM - 1 + f(U11 , model="
↪→ iid2d", param = c(23,100,100,0), initial = c(-2.7,0.9,-0.22), n
↪→ =2*n2) + f(U21, l.TIME, copy="U11") + f(U12, copy="U11", fixed
↪→ = FALSE, param=c(0,0.01), initial = -0.2) + f(U22, copy="U11",
↪→ fixed = FALSE, param = c(0,0.01), initial = -1.6)

joint.inla <- inla(formula, family = c("gaussian","exponentialsurv"),
↪→ data = joint.data, control.compute=list(dic=TRUE))

round(joint.inla$summary.fixed, 4)

168 Bayesian Regression Modeling with INLA

mean sd 0.025quant 0.5quant 0.975quant mode kld
mu1 8.0493 0.3516 7.3585 8.0494 8.7392 8.0495 0
mu2 -4.0592 0.2081 -4.4830 -4.0537 -3.6663 -4.0424 0
l.TIME -0.2653 0.0487 -0.3612 -0.2653 -0.1699 -0.2652 0
l.TIMEDRUG 0.0288 0.0692 -0.1071 0.0288 0.1648 0.0288 0
l.SEX -0.1060 0.3273 -0.7487 -0.1060 0.5364 -0.1061 0
l.PREVOI -2.3492 0.2412 -2.8230 -2.3492 -1.8758 -2.3491 0
l.STRATUM -0.1089 0.2375 -0.5754 -0.1089 0.3571 -0.1089 0
s.DRUG 0.2582 0.1777 -0.0900 0.2578 0.6080 0.2571 0
s.SEX -0.1310 0.1469 -0.4098 -0.1346 0.1678 -0.1418 0
s.PREVOI 0.7544 0.1302 0.5055 0.7521 1.0165 0.7475 0
s.STRATUM 0.0730 0.0979 -0.1185 0.0727 0.2661 0.0720 0

round(joint.inla$summary.hyper, 4)

mean sd 0.025quant 0.5quant 0.975quant mode
Precision for
the Gaussian observations 0.3480 0.0193 0.3114 0.3476 0.3871 0.3469
Precision for U11
(component 1) 0.0648 0.0047 0.0561 0.0647 0.0745 0.0643
Precision for U11
(component 2) 2.5754 0.1987 2.2010 2.5706 2.9804 2.5635
Rho1:2 for U11 -0.0630 0.0541 -0.1705 -0.0624 0.0414 -0.0602
Beta for U12 -0.1933 0.0289 -0.2514 -0.1928 -0.1381 -0.1910
Beta for U22 -1.6047 0.2504 -2.0888 -1.6082 -1.1050 -1.6187

From the above results of the longitudinal submodel, the estimated posterior
mean of regression coefficient of TIME is -0.2653 with 95% credible interval of (-
0.3612, -0.1699), suggesting a significant decrease (in the Bayesian sense) in CD4
count over the study period. PREVOI is also significant with the estimate -2.3492 and
95% credible interval of (-2.8230, -1.8758). In the survival submodel, only PREVOI
is associated with the survival time with high probability (95% credible interval ex-
cludes 0). Note that, through the joint modeling, the posterior estimates of the asso-
ciation parameters are negative and significantly different from zero, which provides
strong evidence of association between the two submodels. It indicates that a pa-
tient’s survival is related to two characteristics driving the patient’s longitudinal data
pattern, the initial CD4 level and the rate of CD4 decrease. The finding is clinically
reasonable, since high CD4 count represents better health status and patients with
CD4 counts that are in more rapid decline would be expected to have poorer sur-
vival.

7
Random Walk Models for Smoothing Methods

Smoothing methods have been playing an important role in the nonparametric ap-
proach to regression. In this chapter, we introduce a few smoothing models that have
been extensively used in statistical fields, e.g., smoothing splines, thin-plate splines
and penalized regression splines (P-splines). We demonstrate how these models are
linked to random walk (RW) priors under the Bayesian framework, and how to make
Bayesian inference on those models using INLA in simulated and real data examples.

7.1 Introduction
Let’s begin with the general regression problem. Given fixed x1, . . . ,xn ∈ IR, we ob-
serve y1, . . . ,yn and assume the following model

yi = f (xi)+ εi, (7.1)

where εi are identically independently distributed with mean zero and unknown vari-
ance σ2

ε . The problem is to estimate function f . There are two main approaches:
parametric and nonparametric modeling.

The parametric approach is to assume that f (x) belongs to a parametric family of
functions f (x | β) with a finite number of parameters. For example, we can have the
linear function: f (x | β) = β0 +β1x, polynomial function: f (x | β) = β0 +β1x+β2x2

or nonlinear function: f (x | β) = β0 exp(β1x). The parametric modeling approach has
several advantages. It is usually efficient when it is the correct model. It reduces the
information necessary for prediction. The parameters may have intuitive interpreta-
tions. In short, you should prefer a parametric model if you have good information
about an appropriate model family. However, the parametric approach will always
exclude many plausible functions.

The nonparametric approach is to choose f from a specified family of smooth
functions, resulting in a much larger range of potential fits to the data than the para-
metric approach. This is the process also called smoothing data, which aims at cap-
turing important patterns (signals) in the data and leaving out noise. Unfortunately,
such nonparametric regression models do not have a formulaic way of describing the
relationship between the predictors and the response. This often needs to be done
graphically, and therefore more data information is necessary for nonparametric pre-
diction. However, the high flexibility of the nonparametric approach makes you less

170 Bayesian Regression Modeling with INLA

liable to make bad mistakes by using incorrect models, and thus particularly useful
when little information about appropriate models is available.

7.2 Smoothing Splines
Assuming model (7.1), the smoothing spline of degree 2m−1 is given by choosing
f to minimize the penalized least squares criterion:

n

∑
i=1

[yi− f (xi)]
2 +λ

∫ (
f (m)(x)

)2
dx, (7.2)

where f (m) is the mth derivative of f . The value of m is often chosen to be 1 or 2. This
results in linear (degree = 1) and cubic (degree = 3) smoothing splines, respectively.
The first term in (7.2) measures closeness to the data, while the second term, called
the penalty function, penalizes roughness in the function. The smoothing parameter
λ establishes a tradeoff between the two. When λ = 0, f is any function interpolating
the data. When λ = ∞ it is the least squares line fit. From the frequentist point of
view, the solution to minimizing (7.2) can be explicitly derived within a reproducing
kernel Hilbert space, and λ is usually estimated via cross validation procedures (see,
e.g., Wahba, 1990).

7.2.1 Random Walk (RW) Priors for Equally-Spaced Locations

We assume that each yi independently follows a normal distribution with mean f (xi)
and variance σ2

ε . Without loss of generality, we assume observed xi’s are ordered
as x1 < · · · < xn and define di = xi− xi−1 for i = 1, . . . ,n− 1. Let’s begin with the
situation where xi’s are equally spaced, that is di = d, where d is some constant.

Under the Bayesian framework, we need to take a prior on f in order to estimate
it. Following Speckman and Sun (2003) among others, we approximate the penalty
function in (7.2) as follows:∫ (

f (m)(x)
)2

dx≈ d−(2m−1)
n

∑
i=m+1

[∇m f (xi)]
2 ,

given d is small and the mth derivative of f is continuous. The ∇m is the notation for
mth order backward difference operator. For example, ∇1 f (x) = f (xi)− f (xi−1) and
∇2 f (x) = f (xi)−2 f (xi−1)+ f (xi−2) for m = 1 and 2, respectively. We then assume
each difference independently follows a normal distribution, i.e.,

∇
m f (xi)

iid∼ N
(
0,σ2

f
)
, i = m+1, . . . ,n.

Letting f = (f (x1), . . . , f (xn))
T be the vector of all function realizations, we can

Random Walk Models for Smoothing Methods 171

show that f follows a singular multivariate normal distribution with density function√
|Qm|+
2πσ2

f
exp
(
− 1

2σ2
f
fTQmf

)
,

whereQm =DT
mDm and for m = 1 and 2,

D1 =


−1 1

−1 1
.

−1 1

 , D2 =


1 −2 1

1 −2 1
.

1 −2 1

 ,

and |Qm|+ denotes the product of nonzero eigenvalues of Qm. The distribution is
singular becauseQm is singular with a rank of n−m and its null space is spanned by
mth order polynomials. This distribution is one kind of random walk (RW) prior . It
can be shown that with this prior and a Gaussian likelihood, the posterior mean of f
is a (discretized) Bayesian version of the smoothing spline solution defined in (7.2)
with λ = σ2

ε/σ2
f (e.g., Speckman and Sun, 2003).

To understand how this RW prior brings smoothness to the fitted function, we
should take a look at the full conditional distribution p(f (xi) | f−i), where f−i de-
notes all the elements in f except f (xi). The distribution turns out to be normal with
mean that is a weighted average of function values that come from the neighbors of
xi. For example, the full conditionals of first- and second-order RW priors (abbrevi-
ated as RW1 and RW2, respectively) are

RW1: N

(
1
2
[

f (xi−1)+ f (xi+1)
]
,

σ2
f

2

)
,

RW2: N

(
4
6
[

f (xi−1)+ f (xi+1)
]
− 1

6
[

f (xi−2)+ f (xi+2)
]
,

σ2
f

6

)
,

where we can see the conditional independence properties of the two models: mean
of f (xi) only depends on its first- or second-order neighbors, and is conditionally
independent of those outside the neighborhood. This local structure applies smooth-
ness to the estimated function. Moreover, it also makes Qm a highly sparse matrix,
which facilitates Bayesian computation greatly because a fast decomposition can be
done to compute the matrix inverse (see details in Rue and Held, 2005).

As mentioned, Qm in the RW prior is singular and its null space is spanned by
mth order polynomials. As a result, there will be an issue of identifiability if the
model includes both polynomials and RW prior. For example, the RW1 prior is not
identifiable with an intercept term because the null space of Q1 consists of a vector
of ones; the RW2 prior is not identifiable with both intercept and slope terms because
the null space of Q2 is spanned by 1 (vector of ones) and the vector of (x1, . . . ,xn).
To solve the problem we need to add a few linear constraints to the RW priors. They
can be written in general as Af = 0, where A is the m× n matrix of mth order

172 Bayesian Regression Modeling with INLA

polynomials and 0 is the vector of n zeroes. If intercept is included in the model we
need A = 1T , so-called sum-to-zero constraint f (x1)+ · · ·+ f (xn) = 0, to make f
identifiable. If slope is also considered we need one more constraint, making A =
(1,x)T . Such constrained RW priors can be constructed by making easy adjustments
to their unconstrained counterparts (see Rue and Held, 2005, Section 2.3).

Example: Simulated Data

Here we test the performance of RW models when estimating a smooth curve. The
data are simulated from the following model:

yi = sin3(2πx3
i)+ εi, εi ∼ N(0,σ2

ε),

where xi ∈ [0,1] are equally spaced and σ2
ε = 0.04. We simulate n = 100 data points:

library(INLA); library(brinla)
set.seed(1)
n <- 100
x <- seq(0, 1,, n)
f.true <- (sin(2*pi*x^3))^3
y <- f.true + rnorm(n, sd = 0.2)

We set the seed of the random number generator, so you will get the same results if
you repeat this. We fit both RW1 and RW2 models to the same data for comparison
purposes:

data.inla <- list(y = y, x = x)
formula1 <- y ~ -1 + f(x, model = "rw1", constr = FALSE)
result1 <- inla(formula1, data = data.inla)
formula2 <- y ~ -1 + f(x, model = "rw2", constr = FALSE)
result2 <- inla(formula2, data = data.inla)

We use ‘-1’ to exclude the intercept from the model. The constr argument is a
logical option that decides whether or not a sum-to-zero constraint is added to the
fitted function. This option is turned off here, but it should be turned on (which is the
default choice) if the intercept is included in the model.

The posterior summary regarding function estimation using RW1 is saved in
result1$summary.random$x, and it is partially presented below:

round(head(result1$summary.random$x), 4)

ID mean sd 0.025quant 0.5quant 0.975quant mode kld
1 0.0000 -0.0637 0.1147 -0.2883 -0.0641 0.1627 -0.0649 0
2 0.0101 -0.0177 0.0993 -0.2132 -0.0177 0.1775 -0.0177 0
3 0.0202 -0.0177 0.0969 -0.2082 -0.0178 0.1729 -0.0179 0
4 0.0303 0.1023 0.0994 -0.0924 0.1020 0.2982 0.1014 0
5 0.0404 0.0527 0.0953 -0.1348 0.0527 0.2400 0.0526 0
6 0.0505 -0.0061 0.0972 -0.1976 -0.0060 0.1845 -0.0057 0

It includes the value of xi (ID) as well as the posterior mean, standard deviation, quan-
tiles and mode of each f (xi). We then extract the posterior mean and the quantiles
for building 95% credible band:

fhat <- result1$summary.random$x$mean
f.lb <- result1$summary.random$x$’0.025quant’

Random Walk Models for Smoothing Methods 173

-1.0

-0.5

0.0

0.5

1.0

1.5

0.00 0.25 0.50 0.75 1.00
x

y

(a)

-1.0

-0.5

0.0

0.5

1.0

1.5

0.00 0.25 0.50 0.75 1.00
x

y

(b)

-1.0

-0.5

0.0

0.5

1.0

1.5

0.00 0.25 0.50 0.75 1.00
x

y

(c)

-1.0

-0.5

0.0

0.5

1.0

1.5

0.00 0.25 0.50 0.75 1.00
x

y

(d)

FIGURE 7.1
Simulated example: data points (dot), true mean function (dashed), posterior mean
(solid) and 95% credible band (gray) using (a) RW1, (b) RW2, (c) cubic smoothing
spline and (d) low-rank thin-plate spline.

f.ub <- result1$summary.random$x$’0.975quant’

We plot them in Figure 7.1(a), together with the true mean curve and data points:

library(ggplot2)
data.plot <- data.frame(y = y, x = x, f.true = f.true, fhat = fhat, f.

↪→ lb = f.lb, f.ub = f.ub)
ggplot(data.plot, aes(x = x, y = y)) + geom_line(aes(y = fhat)) + geom

↪→ _line(aes(y = f.true), linetype = 2) + geom_ribbon(aes(ymin = f
↪→ .lb, ymax = f.ub), alpha = 0.2) + geom_point(aes(y = y)) +
↪→ theme_bw(base_size = 20)

Similarly, we extract the function estimates using RW2 and plot them in Figure

174 Bayesian Regression Modeling with INLA

7.1(b). We see that the RW1 fit, which corresponds to the linear smoothing spline,
is too wiggly due to its lack of smoothness. The RW2 fit, corresponding to a cubic
smoothing spline, seems to be much better, although it misses the point of inflection
around x = 0.75 and fails to capture the minimum at about x = 0.9. The difficulty
is that the true function has variable smoothness while the model assumes this is
constant. This explains the underfitting for the more variable parts of the function.

The posterior summaries of the hyperparameters in the models using RW1 and
RW2 priors are given by:

result1$summary.hyperpar

mean sd 0.025quant
Precision for the Gaussian observations 43.6093549 10.2886132 26.8688002
Precision for x 0.6434155 0.2154812 0.3142227

0.5quant 0.975quant mode
Precision for the Gaussian observations 42.4460104 67.066242 40.219754
Precision for x 0.6132653 1.149254 0.556862

result2$summary.hyperpar

mean sd 0.025quant
Precision for the Gaussian observations 28.262015420 4.683383372 2.006346e+01
Precision for x 0.002233327 0.001396881 5.741318e-04

0.5quant 0.975quant mode
Precision for the Gaussian observations 27.927836236 38.410270375 27.307608331
Precision for x 0.001905561 0.005837633 0.001348256

Note that they are the precision parameters, denoted by 1/σ2
ε for “Precision for the

Gaussian observations” and 1/σ2
f for “Precision for x” in the output. We can use

bri.hyperpar.summary() to obtain the posterior summaries of σε and σ f , the two
standard deviations (SDs), which are usually easier to interpret:

round(bri.hyperpar.summary(result1), 4)

mean sd q0.025 q0.5 q0.975 mode
SD for the Gaussian observations 0.1545 0.0178 0.1224 0.1534 0.1924 0.1514
SD for x 1.2982 0.2151 0.9350 1.2763 1.7784 1.2321

round(bri.hyperpar.summary(result2), 4)

mean sd q0.025 q0.5 q0.975 mode
SD for the Gaussian observations 0.19 0.0156 0.1616 0.1892 0.2228 0.1875
SD for x 24.06 7.2510 13.1515 22.8833 41.4569 20.7169

The two models give very different estimates on σ f because they have different de-
grees of smoothness. The RW2 model yields a better estimate for σε (recall its true
value is 0.2), indicating that it is a more appropriate prior to use in this case. The low
value for σε in RW1 explains the rough fit as it thinks the errors are too small and
that the true function is rougher than it really is.

We now compare INLA to other spline smoothing methods that can be imple-
mented in R. We first try smooth.spline(), which fits a cubic smoothing spline
using generalized cross-validation (GCV) to select the smoothing parameter λ as
defined in (7.2):

fit.ss <- smooth.spline(x, y)

Random Walk Models for Smoothing Methods 175

To account for the uncertainty in function estimation, we may build a 95% confidence
band based on the following jackknife residuals (Green and Silverman, 1994):

res <- (fit.ss$yin - fit.ss$y)/(1 - fit.ss$lev)

Then we extract the fitted curve and compute the bounds of the confidence band:

fhat <- fit.ss$y
f.lb <- fhat - 2*sd(res)*sqrt(fit.ss$lev)
f.ub <- fhat + 2*sd(res)*sqrt(fit.ss$lev)

and plot them in Figure 7.1(c). Note that we use 2 (instead of 1.96) as a multiplier
in forming in intervals. It is because the relevant quantity is not exactly normally
distributed but might be more like a t distribution with a moderate number of degrees
of freedom. Also, using 1.96 gives the impression that we assume exact normality,
but using 2 makes it obvious that it is an approximation.

The fit given by smooth.spline() is smoother than the RW1 fit as we expect,
but rougher than the RW2 fit. This can be explained by its estimated λ:

(fit.ss$lambda)

[1] 8.579964e-06

which is smaller than its counterpart in RW2:

result2$summary.hyperpar$mean[2]/result2$summary.hyperpar$mean[1]

[1] 7.902222e-05

It therefore outperforms RW2 on more variable parts of the function, while under-
performs on the less variable parts.

Next we try gam() from the mgcv package:

library(mgcv)
fit.gam <- gam(y ~ s(x))
res.gam <- predict(fit.gam, se.fit = TRUE)

It fits a low-rank thin-plate spline, which is constructed by starting with the basis
and penalty for a full thin-plate spline (see Section 7.3), and then truncating this
basis in an optimal manner to obtain a low rank smoother (Wood, 2003). Note that
predict() is used to compute standard errors based on the Bayesian posterior co-
variance matrix of the parameters in fit.gam. We then extract the fitted curve and
compute the 95% credible bounds:

fhat <- res.gam$fit
f.lb <- res.gam$fit - 2*res.gam$se.fit
f.ub <- res.gam$fit + 2*res.gam$se.fit

and plot them in Figure 7.1(d). The fit given by gam() is the smoothest of all: it is
very close to the true function on the flat part, but completely misses the point of
inflection around x = 0.75 and is too far away from the minimum. It seems that the
variable smoothness in the true function gives difficulty to all the methods we tried
here, because they can only apply constant smoothing. In Section 7.6 we introduce a
method to solve this issue by providing adaptive smoothing.

176 Bayesian Regression Modeling with INLA

7.2.2 Choice of Priors on σ2
ε and σ2

f

We want sensible priors on σ2
ε and σ2

f because these parameters together control how
smooth the function fit will be. We need to be aware that INLA assigns the priors on
the precisions δ = 1/σ2

ε and τ = 1/σ2
f instead of the original variances. Both preci-

sions have the same default prior defined internally as a log gamma distribution. The
corresponding gamma distribution gamma(a,b) has mean a/b and variance a/b2.
The values used for the default prior are a = 1 and b = 5×10−5, but these deserve a
closer look.

Non-Informative Priors

The choice of values of a and b is not trivial because it is hard (if not impossible)
to elicit any prior information on those parameters. To allow the data to speak for
themselves, weakly informative or non-informative priors are often used in this sit-
uation. For example, setting a = ε1 and b = ε2, where ε1 and ε2 are small positive
numbers, yields a gamma distribution with large variance (as the default prior); set-
ting a = −1 and b = 0 corresponds to a flat prior, which is the restricted maximum
likelihood REML estimation in an empirical Bayes approach; setting a = −0.5 and
b = 0 is recommended as a standard choice in practical work by Gelman (2006);
setting a = b = 0 results in the so-called Jeffreys prior, a popular choice for objective
Bayesian inference.

Since some priors mentioned above have improper densities, the corresponding
joint posterior distribution may be improper as well, which leads to invalid Bayesian
inference. Sun et al. (1999), Speckman and Sun (2003), Sun and Speckman (2008)
and Fahrmeir and Kneib (2009) investigate the posterior propriety in Bayesian non-
parametric regression models and generalized additive models (see Chapter 9). To
summarize their work, the Jeffreys prior can only be used on δ, otherwise the poste-
rior distribution will be improper. The other priors can be used on both δ and τ, and
will lead to a proper posterior distribution under mild conditions. The gamma(ε1,ε2)
is recommended because it provides a robust performance with respect to the choice
of (ε1,ε2), and yields more stable precision estimates than the other priors.

We can use priors other than the default ones for δ and τ in INLA. Suppose we
want to take a Jeffreys prior (a1 = b1 = 0) on δ:

a1 <- 5e-5
b1 <- 5e-5
lgprior1 <- list(prec = list(param = c(a1, b1)))

and a Gelman recommended prior (a2 =−0.5,b2 = 0) on τ:

a2 <- -0.5
b2 <- 5e-5
lgprior2 <- list(prec = list(param = c(a2, b2)))

Note that we use a tiny number instead of 0 for a1, b1 and b2, as required by INLA.
We then apply these two priors to the RW2 model used in the simulated example in
Section7.2.1:

Random Walk Models for Smoothing Methods 177

formula <- y ~ -1 + f(x, model = "rw2", constr = FALSE, hyper =
↪→ lgprior2)

result <- inla(formula, data = data.inla, control.family = list(hyper
↪→ = lgprior1))

Here control.family is used to specify the prior on δ and hyper in f() on τ. We
find out that the resulting posterior distributions do not differ much from those given
by the default priors, although the prior specification on τ is relatively more important
than that on δ.

Prior Scaling

We start this section with an example. Following the simulated example in Section
7.2.1, we simulate data as follows:

set.seed(1)
n <- 100
t <- 0.1
x <- seq(0, t,, n)
f.true <- (sin(2*pi*(x/t)^3))^3
y <- f.true + rnorm(n, sd = 0.2)

We have changed the range of x from [0, 1] to [0, 0.1], but everything else remains
the same. We then fit the model in INLA:

data.inla <- list(y = y, x = x)
formula1 <- y ~ -1 + f(x, model = "rw2", constr = FALSE)
result1 <- inla(formula1, data = data.inla)

and plot the fitted curve and 95% credible band in Figure 7.2(a):

p <- bri.band.ggplot(result1, name = ’x’, type = ’random’)
p + geom_line(aes(y = f.true), linetype = 2)

where we see the RW2 model completely fails by providing a linear fit. The posterior
summary of the SDs in the Gaussian noise and the RW2 model is given by:

round(bri.hyperpar.summary(result1), 4)

mean sd q0.025 q0.5 q0.975 mode
SD for the Gaussian observations 0.4662 0.0326 0.4062 0.4646 0.5342 0.4612
SD for x 0.0100 0.0059 0.0037 0.0083 0.0261 0.0061

The noise SD is significantly overestimated, compared to its true value 0.2. This
result is based on using the default prior on the precision τ (inverse of SD2) in RW2,
which is logGamma(1, 5e-5).

We now try a much bigger scale with t = 1,000, but use the same data, same
model and same priors. The resulting fit is shown in Figure 7.2(b), where we see it is
more wiggly than it is supposed to be. Let us look at the posterior SDs (the R code is
not displayed here):

mean sd q0.025 q0.5 q0.975 mode
SD for the Gaussian observations 0.1702 0.0145 0.1438 0.1693 0.2009 0.1676
SD for x 0.0027 0.0004 0.0020 0.0027 0.0036 0.0026

and we see the noise SD is now underestimated, and the model SD (0.0027) is much
smaller than the one (0.009) in the case when t = 0.1. We finally try t = 10, a closer

178 Bayesian Regression Modeling with INLA

−1.0

−0.5

0.0

0.5

1.0

0.000 0.025 0.050 0.075 0.100

(a)

−1.0

−0.5

0.0

0.5

1.0

0 250 500 750 1000

(b)

-1.0

-0.5

0.0

0.5

1.0

0.0 2.5 5.0 7.5 10.0

(c)

−1.0

−0.5

0.0

0.5

1.0

0.000 0.025 0.050 0.075 0.100

(d)

FIGURE 7.2
RW models: true mean function (dashed), posterior mean (solid) and 95% credible
band (gray) when (a) t = 0.1 with unscaled prior; (b) t = 1,000 with unscaled prior;
(c) t = 10 with unscaled prior; (d) t = 0.1 with scaled prior.

scale to t = 1, and obtain the same fit as before (see Figure 7.2(c)), but a different
estimate of SD for x as we expected:

mean sd q0.025 q0.5 q0.975 mode
SD for the Gaussian observations 0.1900 0.0156 0.1616 0.1892 0.2228 0.1875
SD for x 0.7609 0.2293 0.4159 0.7238 1.3109 0.6554

Obviously, it is not appropriate to use the default hyperprior on τ when the scale
of x is too small (t = 0.1) or too big (t = 1,000). This is because the RW type models
(not only RW2) penalize local deviation from a certain level, and the chosen hyper-
prior influences how large we allow this local deviation to be. The RW models of
different scales, of course, require different ranges for their own deviations. The de-

Random Walk Models for Smoothing Methods 179

fault prior is able to provide a good range when t = 1 or t = 10, but fails to do so
when t = 0.1 or t = 1,000. Moreover, the hyperprior on τ does not have the same
interpretation for different RW models because they reflect different neighborhood
structures. It is therefore unreasonable to assign the same fixed hyperprior for those
different models.

To solve the issue, Sørbye and Rue (2014) proposed to scale the hyperprior in
such a way that its generalized variance (the geometric mean of the marginal vari-
ances) equals 1. As a result, the scaled hyperprior is invariant to the covariates of
different scales and to the shape and size of the neighborhood structure for a specific
model. It implies that the precision parameters in different models have a similar
interpretation. This useful feature is built into INLA via the scale.model argument:

formula2 <- y ~ -1 + f(x, model = "rw2", constr = FALSE, scale.model =
↪→ TRUE)

result2 <- inla(formula2, data = data.inla)

The posterior summary of SDs when t = 0.1 is given by:

round(bri.hyperpar.summary(result2), 4)

mean sd q0.025 q0.5 q0.975 mode
SD for the Gaussian observations 0.1900 0.0156 0.1616 0.1892 0.2228 0.1875
SD for x 1.0006 0.3015 0.5469 0.9516 1.7240 0.8616

Compared to the result from the unscaled version, we obtain a much better estimate
for the noise SD, and that estimate is the same as the one for t = 10 or t = 1. However,
the estimate of SD for x does not reflect the original scale of x anymore because of
the scaled hyperprior. We plot the corresponding fit in Figure 7.2(d), and we see it
is exactly the same fit as for t = 10 or t = 1. We also tried the scaled model with
t = 1,000 and obtained the same result as with t = 0.1.

The scale.model option is not only available for RW1 and RW2 models, but
also for the RW2D and Besag models that will be introduced later. The downside to
scaling is that the output has parameters in the new scale, but one might want results
in the original scale. Unfortunately, INLA does not provide any information to do
that. Also, there could be a situation that one won’t want to scale a prior because the
original scale is already appropriate. The problem might be better solved by using
the default priors that scale with the data, but it may not be a good idea to use the
data to say anything about the prior.

7.2.3 Random Walk Models for Non-Equally Spaced Locations

The RW models mentioned above only work for the data with equally-spaced lo-
cations. We would like to extend them to the applications where the locations are
non-equally spaced. Wahba (1978) showed that the smoothing spline estimator is the
solution to the following stochastic differential equation (SDE)

dm f (x)/dxm = σ f dW (x)/dx, m = 1,2, (7.3)

where σ f controls the scale of f (x), and W (x) is the standard Wiener process. Note
that in (7.3) the left-hand side is the mth order derivative of f and the right-hand

180 Bayesian Regression Modeling with INLA

side is the Gaussian noise with mean zero and variance σ2
f . The exact solution has

a Bayesian representation to work with a Gaussian process prior. Unfortunately, that
prior is computationally intensive because its covariance matrix is completely dense.
To tackle this issue, we “weakly” solve the SDE in the way suggested in Rue and
Held (2005) and Lindgren and Rue (2008a).

Let x1 < x2 < · · · < xn be a sequence of observed locations, and di = xi+1− xi.
Following Chapter 3 in Rue and Held (2005), the RW1 model can be viewed as the
realization of a Wiener process at xi from the SDE in (7.3) by letting

f (xi+1)− f (xi)
iid∼ N

(
0,diσ

2
f
)
, i = 1, . . . ,n−1.

Then, the prior distribution of f = (f (x1), . . . , f (xn))
′ is (singular) multivariate nor-

mal with mean zeroes and precision matrix σ
−2
f Q1. The matrix Q1 is singular (rank

= n−1) and has a banded structure given by

Q1[i, j] =

 1/di−1 +1/di j = i
−1/di j = i+1
0 otherwise

,

for 1 < i < n, with Q1[1,1] = 1/d1 and Q1[n,n] = 1/dn−1. As a result, the full con-
ditional distribution of f (xi) is

N
(

di

di−1 +di
f (xi−1)+

di−1

di−1 +di
f (xi+1),

di−1di

di−1 +di
σ

2
f

)
,

where the distances between locations affect the mean and variance of the distribu-
tion. The model can be interpreted as a discretely observed Wiener process that is
adjusted for the non-equally spaced locations. We obtain the same result as in the
equally spaced RW1 if di = 1 for all i.

Regarding the RW2 model, it is possible to find a solution to SDE (7.3) that
has the conditional independence on an augmented space, but the computations take
about 9/2 the time as for the RW2 model for equally spaced locations (see Rue and
Held, 2005, Chapter 3.5 for details). To avoid the increased complexity, Lindgren
and Rue (2008a) used a finite element method to derive a Gaussian model that ap-
proximates a continuous time integrated random walk. They first approximate f (x)
using a piecewise linear basis expansion, and then turn the SDE into a system of lin-
ear equations. It results in a RW2 model with a banded matrix Q2, whose non-zero
elements of row i are

Q2[i, i−2] =
2

di−2di−1(di−2 +di−1)
, Q2[i, i−1] =− 2

d2
i−1

(
1

di−2
+

1
di

)
,

Q2[i, i] =
2

d2
i−1(di−2 +di−1)

+
2

di−1di

(
1

di−1
+

1
di

)
+

2
d2

i (di +di+1)
,

with Q2[i, i+ 1] ≡ Q2[i+ 1, i] and Q2[i, i+ 2] ≡ Q2[i+ 2, i] due to the symmetry.
For the elements in the upper left and lower right corner ofQ2, we simply ignore the

Random Walk Models for Smoothing Methods 181

non-existing components, or, equivalently, let d−1 = d0 = dn = dn+1 = ∞. The matrix
Q2 is of rank n− 2, with the null space spanned by (1, . . . ,1)T and (x1, . . . ,xn)

T . It
coincides with the result obtained in Wahba (1978) for cubic smoothing splines. The
consistency of this model has been shown in Lindgren and Rue (2008a) and Simpson
et al. (2012).

Example: Munich Rental Guide

50 100 150

4
6

8
10

12
14

Floor size

R
en

t

(a)

1920 1940 1960 1980 2000

6
7

8
9

10
11

Year

R
en

t

(b)

50 100 150

4
6

8
10

12
14

Floor size

R
en

t

(c)

1920 1940 1960 1980 2000

6
7

8
9

10
11

Year

R
en

t

(d)

FIGURE 7.3
Munich rental guide using RW models: data points (dot), the posterior mean (solid
line) and 95% credible interval (gray band) of the nonlinear effects of floor size (a
and c) and construction year (b and d).

The German tenancy law puts restrictions on the increase of rents and forces
landlords to keep the price in a range defined by apartments which are comparable
in size, location and quality. To make it easier for tenants and owners to assess if

182 Bayesian Regression Modeling with INLA

the rent is appropriate for an apartment, the so-called rental guides are derived based
on large samples of apartments. We here use the 2003 Munich rental dataset that
has been analyzed in Rue and Held (2005). It is a data frame with 17 columns and
2035 rows. Each column represents a predictor and each row a sample of apartments.
There are totally n=2,035 flats from 380 districts in Munich. The response variable
of interest is rent (rent per square meter in Euros) for a flat, and the predictors are
floor.size (floor size from 17 to 185 square meters), year (construction year from
1918 to 2001), spatial location (380 districts) and various indicator variables such as
an indicator for a flat with no central heating, no warm water, more refined kitchen
equipment and so on. Type ?Munich in R for details of these variables.

Based on the data plots (not shown), there appears to be a nonlinear relationship
between rent and floor.size, and between rent and year. We therefore consider
the following nonparametric regression models:

renti = f1(floor.sizei)+ ε1i, ε1i ∼ N(0,σ2
ε1
),

renti = f2(yeari)+ ε2i, ε2i ∼ N(0,σ2
ε2
),

for i = 1, . . . ,n, although an additive model is obviously more appropriate and will
be considered in Chapter 9. Note that both floor.size and year are non-equally
spaced. The models are formulated using the RW2 priors described in Section 7.2.3
as follows:

formula1 <- rent ~ -1 + f(floor.size, model = ’rw2’, constr = FALSE)
formula2 <- rent ~ -1 + f(year, model = ’rw2’, constr = FALSE)

INLA is able to detect the presence of the non-equally spaced predictors, so we do
not need to specify this fact. We then fit the models via INLA:

data(Munich, package = "brinla")
result1 <- inla(formula1, data = Munich)
result2 <- inla(formula2, data = Munich)

To visualize the estimated nonlinear effects, we extract their posterior means and
95% credible bands, and plot them in Figure 7.3(a) for floor.size and Figure 7.3(b)
for year:

bri.band.plot(result1, name = ’floor.size’, alpha = 0.05, xlab = ’
↪→ Floor size’, ylab = ’Rent’, type = ’random’)

points(Munich$floor.size, Munich$rent, pch = 20, cex = 0.2)
bri.band.plot(result2, name = ’year’, alpha = 0.05, xlab = ’Year’,

↪→ ylab = ’Rent’, type = ’random’)
points(Munich$year, Munich$rent, pch = 20, cex = 0.2)

In bri.band.plot() we use ‘name’ to specify the variable to be plotted, ‘alpha’
the significance level, and ‘type’ the model component, which can be random effect
(random), fitted values (fitted) and linear predictor (linear). As we can see, both
floor.size and year show significant nonlinear patterns with rent. Due to the
wars and other problems, there is very little data between 1920 and 1950. The fit
becomes piecewise linear and the credible bands are wide in this period.

Regarding the hyperparameters in the two models, their posterior means, standard
deviations (SDs), quantiles, and modes are calculated as:

Random Walk Models for Smoothing Methods 183

round(bri.hyperpar.summary(result1), 4)

mean sd q0.025 q0.5 q0.975 mode
SD for the Gaussian observations 2.3386 0.0364 2.2681 2.3381 2.4111 2.3373
SD for floor.size 0.0156 0.0053 0.0078 0.0147 0.0284 0.0131

round(bri.hyperpar.summary(result2), 4)

mean sd q0.025 q0.5 q0.975 mode
SD for the Gaussian observations 2.3134 0.0360 2.2437 2.3129 2.3851 2.3121
SD for year 0.0236 0.0093 0.0101 0.0221 0.0461 0.0192

When comparing the two models, the SD for the noise (Gaussian observations)
is directly comparable since the response is the same. In contrast, the SD for the
change in the response as the predictor varies depends on the scale of the predictor.
Hence these two SDs should not be compared.

Prediction in INLA

Both floor.size and year are non-equally spaced. The former has a range from 17
to 185, and the latter from 1918 and 2001. There are gaps in the year observations.
To fill these gaps, we make a vector of all possible integers in the range from 1918
to 2001. Although floor.size is more densely measured, we also demonstrate how
predictions may be constructed in INLA. The points at which predictions will be
made is specified using the ‘values’ option in f():

formula3 <- rent ~ -1 + f(floor.size, model = "rw2", values = seq(17,
↪→ 185), constr = FALSE)

formula4 <- rent ~ -1 + f(year, model = "rw2", values = seq(1918,
↪→ 2001), constr = FALSE)

Note that the vector used in values must contain every observed value in the data.
We then fit the corresponding models:

result3 <- inla(formula3, data = Munich)
result4 <- inla(formula4, data = Munich)

and obtain the posterior results as before. We now have posterior estimates for every
possible value in floor.size and year, even for those that have no observations.
Figures 7.3(c) and 7.3(d) show the resulting fitted curves, together with their 95%
credible bands. Compared to the previous results, the fitted curves are very similar in
the regions of dense observation but much smoother in the sparser areas.

There is an alternative way to make predictions in INLA. Suppose we are inter-
ested in predicting the rents at year 1925, 1938 and 1945. Because making a predic-
tion is the same as fitting a model with some missing data in INLA, we can simply
set the response to be NA for the “locations” we want to predict at:

x.new <- c(1925, 1938, 1945)
xx <- c(Munich$year, x.new)
yy <- c(Munich$rent, rep(NA, length(x.new)))

and fit the model as before:

data.pred <- list(y = yy, x = xx)
formula5 <- y ~ -1 + f(x, model = ’rw2’, constr = FALSE)

184 Bayesian Regression Modeling with INLA

result5 <- inla(formula5, data = data.pred, control.predictor = list(
↪→ compute = TRUE))

To obtain the posterior summary of the three predictions we must first find their
indices in the INLA result:

ID <- result5$summary.random$x$ID
idx.new <- sapply(x.new, function(x) which(ID==x))

and then extract the corresponding output:

round(result5$summary.random$x[idx.new,], 4)

ID mean sd 0.025quant 0.5quant 0.975quant mode kld
3 1925 6.8328 0.3005 6.2184 6.8430 7.3863 6.8626 0
4 1938 6.7568 0.3603 6.0263 6.7652 7.4436 6.7855 0
6 1945 6.9825 0.2463 6.4854 6.9873 7.4516 6.9968 0

The marginal densities of them are stored in result5$marginals.random$x, from
which other posterior quantities can be computed.

The predictive distributions above refer only to the mean rent for a given year
(the linear predictor) so we are expressing only the uncertainty in this component
through its credible interval. Suppose one wants to rent an apartment in a certain
year, and needs a prediction interval such that the probability that the monthly rent
(not mean rent) lies in that interval is, say 95%. This requires adding an error term
ε to the linear predictor and knowledge of the uncertainty in ε. Unfortunately, INLA
does not provide such prediction intervals directly, and we have to do it manually.
One approach is to draw 100,000 samples from the posterior for the error precision
(1/σ2

ε), convert this to an SD, and sample from the normal densities with these SDs.
We then generate samples from posterior for the linear predictor computed earlier,
and combine them with these randomly generated new ε’s:

nsamp <- 10000
pred.marg <- NULL
for(i in 1:length(x.new)){
error.prec <- inla.hyperpar.sample(nsamp, result5)[,1]
new.eps <- rnorm(nsamp, mean = 0, sd = 1/sqrt(error.prec))
pm.new <- result5$marginals.linear.predictor[[which(is.na(data.pred$

↪→ y))[i]]]
samp <- inla.rmarginal(nsamp, pm.new) + new.eps
pred.marg <- cbind(samp, pred.marg)

}

The posterior quantities can be computed manually from these combined samples:

p.mean <- colMeans(pred.marg)
p.sd <- apply(pred.marg, 2, sd)
p.quant <- apply(pred.marg, 2, function(x) quantile(x, probs = c

↪→ (0.025, 0.5, 0.975)))
data.frame(ID = x.new, mean = p.mean, sd = p.sd, ’0.025quant’ = p.

↪→ quant[1,], ’0.5quant’ = p.quant[2,], ’0.975quant’ = p.quant
↪→ [3,], check.names = FALSE)

ID mean sd 0.025quant 0.5quant 0.975quant
1 1925 6.974585 2.331187 2.340086 6.974354 11.52660
2 1938 6.764161 2.353084 2.213512 6.746318 11.41703
3 1945 6.811205 2.332284 2.245040 6.821577 11.34970

Random Walk Models for Smoothing Methods 185

Compared to the predictive distribution for the new linear predictor, the predictive
distribution for the new response contains a much greater variation, reflected by its
much bigger SD and a much wider 95% predictive interval.

7.3 Thin-Plate Splines

Consider a nonparametric regression model with two predictors

yi = f (x1i,x2i)+ εi, i = 1, . . . ,n, (7.4)

where f is an unknown but smooth function on the IR2 domain, and εi is a noise term
with zero mean. Without loss of generality, we scale x1 and x2 to be both in [0,1]
ranges. An intuitive extension of cubic smoothing spline to the IR2 space uses thin-
plate splines. It is the solution to minimizing the following penalized least squares
criterion

n

∑
i=1

(
yi− f (x1i,x2i)

)2
+λP2(f), (7.5)

where P2(f) is the penalty function given by

∫ ∫
IR2

[(
∂2 f
∂x2

1

)2

+2
(

∂2 f
∂x1∂x2

)2

+

(
∂2 f
∂x2

2

)2
]

dx1 dx2, (7.6)

and the smoothing parameter λ controls the tradeoff between fidelity to the data
from sum squared errors and function smoothness from the penalty. The value of the
penalty function is not affected by changing the coordinates by rotation or translation
in IR2. It is always non-negative and equals zero if and only if f (x1,x2) is a linear
function of x1 and x2.

Thin-plate splines have a mechanical interpretation. Suppose that an infinite elas-
tic flat plate interpolates a set of points [xi,yi], i = 1, ...,n. Then the “bending energy”
of the plate is proportional to the penalty (7.6), and the minimum energy solution is
the thin-plate spline.

7.3.1 Thin-Plate Splines on Regular Lattices

We begin with the case where data are observed on regular lattices. Let x11 < x12 <
· · · < x1n1 and x21 < x22 < · · · < x2n2 be two sequences of equally-spaced locations,
which construct an n1× n2 lattice. As shown in Yue and Speckman (2010), a prior
for Bayesian thin-plate splines in this scenario can be derived by, first, defining a few

186 Bayesian Regression Modeling with INLA

second-order difference operators on lattices:

∇
2
(1,0) f (x1i,x2 j) = f (x1i,x2 j)−2 f (x1,i−1,x2 j)+ f (x1,i−2,x2 j),

∇
2
(0,1) f (x1i,x2 j) = f (x1i,x2 j)−2 f (x1i,x2, j−1)+ f (x1i,x2, j−2),

∇
2
(1,1) f (x1i,x2 j) = f (x1i,x2 j)− f (x1,i−1,x2 j)− f (x1i,x2, j−1)+ f (x1,i−1,x2, j−1),

and then letting them independently follow a normal distribution with mean 0 and
variance σ2

f . The resulting prior distribution of f = (f (x11,x21), . . . , f (x1n1 ,x2n2))
′ is

again multivariate normal with mean zeroes and precision matrix σ
−2
f Q. The matrix

Q is the sum of three Kronecker products:

Q= In2 ⊗B
(2)
n1 +B

(2)
n2 ⊗In1 +2B(1)

n1 ⊗B
(1)
n2 , (7.7)

where In denotes n×n identity matrix, B(1)
n =D′1D1, B(2)

n =D′2D2, and D1 and
D2 are as defined for RW1 and RW2 models, respectively, in Section 7.2.1. Letting
n = n1× n2, Q is an n× n sparse and singular matrix of rank n− 3 with null space
spanned by the two-dimensional second-order polynomials. Note that the dimension
ofQ can easily grow large, and therefore its sparsity is crucial for the efficient INLA
computation. We term this prior a two-dimensional second-order RW model (RW2D)
since it is an extension of the RW2 model to the two-dimensional space.

Using graphical notation, the full conditional distribution of f (x1i,x2 j) in the
interior of lattices is normal with mean

1
20

(
8
◦ ◦ ◦ ◦ ◦
◦ ◦ • ◦ ◦
◦ • ◦ • ◦
◦ ◦ • ◦ ◦
◦ ◦ ◦ ◦ ◦

−2
◦ ◦ ◦ ◦ ◦
◦ • ◦ • ◦
◦ ◦ ◦ ◦ ◦
◦ • ◦ • ◦
◦ ◦ ◦ ◦ ◦

−1
◦ ◦ • ◦ ◦
◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦
◦ ◦ • ◦ ◦

)
, (7.8)

and variance σ2
f /20, where the locations denoted by “•” represent the neighbors that

(x1i,x2 j) depends on, and the number in front of each grid denotes the weight given
to the corresponding “•” locations. It shows the conditional independence of RW2D
model: each f (x1i,x2 j) only conditionally depends on its 12 neighbors through dif-
ferent weights, and the closer the neighbor is, the bigger its (absolute) weight is.

Example: Simulated Data

The true mean function is a bimodal two-dimensional function defined by

f (x1,x2) =
0.75

πσx1σx2

exp
[
− 1

σ2
x1

(x1−0.2)2− 1
σ2

x2

(x2−0.3)2
]

+
0.45

πσx1σx2

exp
[
− 1

σ2
x1

(x1−0.7)2− 1
σ2

x2

(x2−0.8)2
]
,

where σx1 = 0.3 and σx2 = 0.4. We write this function in R as

test.fun <- function(x,z,sig.x,sig.z){.75/(pi*sig.x*sig.z)*exp(-(x -
↪→ .2)^2/sig.x^2-(z - .3)^2/sig.z^2) + .45/(pi*sig.x*sig.z)*exp(-(
↪→ x - .7)^2/sig.x^2-(z - .8)^2/sig.z^2)}

Random Walk Models for Smoothing Methods 187

0.0
0.2

0.4
0.6

0.8

1.0 0.0

0.2

0.4

0.6

0.8

1.0

0.5

1.0

1.5

2.0

0.0
0.2

0.4
0.6

0.8

1.0 0.0

0.2

0.4

0.6

0.8

1.0

0.000

0.002

0.004

0.006

0.008

FIGURE 7.4
Thin-plate splines: true mean function (left) and squared errors between the true
mean function and its thin-plate spline estimator (right).

We then simulate data from the following model

y = f (x1,x2)+ ε, ε∼ N(0,σ2
ε),

given σ2
ε = 0.09. Both x1 and x2 are equally spaced within range [0,1], constructing

a 100×100 lattice. We therefore generate function realizations on that lattice:

nrow <- 100
ncol <- 100
s.mat <- matrix(NA, nrow = nrow, ncol = ncol)
for(i in 1:nrow){
for(j in 1:ncol){

s.mat[i,j] <- test.fun(i/100, j/100, 0.3, 0.4)
}

}

The data are simulated by adding Gaussian noises to the realizations:

set.seed(1)
noise.mat <- matrix(rnorm(nrow*ncol, sd = 0.3), nrow, ncol)
y.mat <- s.mat + noise.mat

All indices in INLA are one-dimensional so an appropriate mapping is required
to get the data matrix into the ordering defined internally in INLA. It can be done by
using inla.matrix2vector() function, which transforms a matrix to a vector with
correct ordering:

y <- inla.matrix2vector(y.mat)

We then fit a Bayesian thin-plate spline model using the RW2D prior:

formula <- y ~ -1 + f(x, model="rw2d", nrow=nrow, ncol=ncol, constr=F)
data <- data.frame(y = y, x = 1:(nrow*ncol))
result <- inla(formula, data = data)

188 Bayesian Regression Modeling with INLA

The posterior summary of function estimate is saved in result$summary.random.x.
In Figure 7.4 we plot the true mean function (left panel):

persp(s.mat, theta = 25, phi = 30, expand = 0.8, xlab=’’, ylab=’’,
↪→ zlab=’’, ticktype = ’detailed’)

and the squared errors between the true mean function and its estimator (right panel):

fhat <- result$summary.random$x$mean
fhat.mat <- inla.vector2matrix(fhat, nrow, ncol)
persp((fhat.mat - s.mat)^2, theta = 25, phi = 30, expand = 0.8, xlab =

↪→ ’’, ylab = ’’, zlab = ’’, ticktype = ’detailed’)

Here we need inla.vector2matrix() to transform fhat vector to fhat.mat ma-
trix in order to produce the image plot. We see that the estimated function is close to
the true one in the light of the small scale of the squared errors.

The posterior summary of σε and σ f is given by:

round(bri.hyperpar.summary(result), 4)

mean sd q0.025 q0.5 q0.975 mode
SD for the Gaussian observations 0.3026 0.0021 0.2985 0.3026 0.3069 0.3026
SD for x 0.0251 0.0019 0.0216 0.0250 0.0291 0.0248

We can see the estimate of σε (0.3026) is quite close to the true value (0.3).

7.3.2 Thin-Plate Splines at Irregularly-Spaced Locations

The RW2D model is only appropriate for the data on regular lattices. We would like
a more flexible model that is capable of applying thin-plate spline smoothing to the
data at irregularly-spaced locations.

The thin-plate spline penalty function in (7.6) can be shown to be∫ ∫ [(
∂

2/∂x2
1 +∂

2/∂x2
2
)

f
]2

dx1dx2,

assuming that the integrable derivatives of f vanish at infinity (Wahba, 1990; Yue
and Speckman, 2010). Such a penalty inspires Yue et al. (2014) to obtain a thin-
plate spline estimator by solving the following stochastic partial differential equation
(SPDE) (

∂
2/∂x2

1 +∂
2/∂x2

2

)
f (x) = σ f dW (x)/dx, (7.9)

where σ f is the scale parameter, and dW (x)/dx is the spatial Gaussian white noise.
Note that this SPDE can be viewed as a two-dimensional extension of SDE in (7.3)
for smoothing spline. The SPDE is solved by a finite element method on a triangular
mesh, and the resulting thin-plate spline (TPS) prior has a multivariate normal density
with mean zero and precision matrix σ

−2
f Q, a highly sparse matrix due to the local

nature of basis functions used in the method. This TPS prior is a generalization of the
RW2D prior, and as a matter of fact the two priors are essentially the same when the
locations are on regular lattices. Here we only demonstrate how to implement their
method using INLA with a toy example, and refer readers to Yue et al. (2014) and
Lindgren et al. (2011) for details.

Random Walk Models for Smoothing Methods 189

Example: SPDE Toy Data

Let’s load the data and look at its structure:

data(SPDEtoy)
str(SPDEtoy)

’data.frame’: 200 obs. of 3 variables:
$ s1: num 0.0827 0.6123 0.162 0.7526 0.851 ...
$ s2: num 0.0564 0.9168 0.357 0.2576 0.1541 ...
$ y : num 11.52 5.28 6.9 13.18 14.6 ...

The data are a three column data.frame simulated from a Gaussian process. The
first two columns are the coordinates and the third is the response variable simulated
at these locations. Figure 7.5(a) shows the image plot of the data using the following
commands:

library(fields)
quilt.plot(SPDEtoy$s1, SPDEtoy$s2, SPDEtoy$y)

We can see the locations are irregularly spaced. We observe yi at location (x1i,x2i)
for i = 1, . . . ,n where n = 200 in this example.

To use the TPS prior we first need to build a triangular mesh by subdividing the
IR2 domain into a set of non-intersecting triangles, where any two triangles meet in at
most a common edge or corner. This step, which is similar to choosing the integration
points on a numeric integration algorithm, must be done carefully (see discussion in
Lindgren and Rue, 2015):

coords <- as.matrix(SPDEtoy[,1:2])
mesh <- inla.mesh.2d(loc=coords, max.edge=c(0.15, 0.2), cutoff=0.02)

The loc=coords specifies that the observed locations coords are used as initial
triangulation nodes. The max.edge=c(0.15, 0.2) specifies the maximum triangle
edge length to be 0.15 for the inner domain and 0.2 for the outer extension. The
specified lengths must be on the same scale unit as the coordinates. These two ar-
guments are mandatory. For further control over the shape of the triangles, we use
cutoff=0.02 argument that defines the minimum distance allowed between points.
It means that the points at a closer distance than 0.02 are replaced by a single vertex.
As a result, it avoids building many small triangles around clustered input locations.
Regarding the uses of other arguments, we refer readers to help(inla.mesh.2d) in
R or Chapter 6 in Blangiardo and Cameletti (2015) for details. Let’s take a look at
the resulting mesh displayed in Figure 7.5(b):

plot(mesh, main=’’)

The mesh looks good because its triangles are somewhat regular and they are smaller
where the observations are dense while larger where are more sparse. Note that there
is no requirement that the measurement locations must be included as nodes in the
mesh. The mesh can be designed from different principles, such as lattice points with
no relation to the precise measurement locations.

Given the mesh constructed above, we are then able to define a TPS prior:

tps <- bri.tps.prior(mesh, theta.mean = 0, theta.prec = 0.001)

where the ‘theta.mean = 0’ and ‘theta.prec = 0.001’ specify a default normal

190 Bayesian Regression Modeling with INLA

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

6

8

10

12

14

(a) (b)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

6

8

10

12

(c)

6 8 10 12 14

6
8

10
12

Observed response

Fi
tte

d
va

lu
es

(d)

FIGURE 7.5
SPDE toy example: (a) simulated data; (b) triangular mesh; (c) posterior mean of
function estimates at mesh locations; (d) plot of response against its fitted values.

prior for θ = log(σ−2
f) with mean 0 and precision 0.001. It is also the default choice

for prior. We then fit the model with INLA:

formula <- y ~ -1 + f(x, model = tps, diagonal = 1e-6)
data.inla <- list(y = SPDEtoy$y, x = mesh$idx$loc)
result <- inla(formula, data = data.inla, control.predictor = list(

↪→ compute = TRUE))

Note that we use the diagonal option to add an extra constant to the diagonal of the
precision matrix of the TPS model in order to guarantee the matrix is non-singular.
In Figure 7.5(c) we present the thin-plate spline estimates (posterior means) at the
locations of the mesh vertices:

fhat <- result$summary.random$x$mean

Random Walk Models for Smoothing Methods 191

quilt.plot(mesh$loc[,1:2], fhat)

One should be aware that the mesh locations are usually different from the data
locations. Therefore, we need to extract the posterior estimates at data locations
from result$summary.fitted. In Figure 7.5(d) we plot the response observations
against their estimates:

yhat <- result$summary.fitted$mean
plot(SPDEtoy$y, yhat, ylab=’Fitted values’, xlab=’Observed response’)
abline(0,1)

We see a nice match between the two. The posterior estimates of σ−2
ε (error precision)

and θ from the TPS prior are summarized below:

round(result$summary.hyperpar[,1:5], 3)

mean sd 0.025quant 0.5quant 0.975quant
Precision for the Gaussian observations 2.814 0.499 1.961 2.772 3.915
Theta1 for x -3.545 0.107 -3.757 -3.545 -3.335

Prediction. We would like to predict the response at unobserved locations (e.g.,
a fine grid) when we have spatial data collected at some locations. Suppose we are
interested in the predictions at three target locations: (0.1,0.1),(0.5,0.55),(0.7,0.9),
which are put in matrix form in R as:

loc.pre <- rbind(c(0.1, 0.1), c(0.5, 0.55), c(0.7, 0.9))

In Bayesian inference the prediction of a random function is usually done jointly
with the parameter estimation process. This approach is made by the computation of
the marginal posterior distribution of the random function at target locations. To do
this in INLA, we first need to create y.pre, a vector of “missing” data at the target
locations, and then combine it with the observed data into y2:

y.pre <- rep(NA, dim(loc.pre)[1])
y2 <- c(y.pre, SPDEtoy$y)

We also need to combine the target locations with the observed locations and build a
mesh based on this combination of locations:

coords2 <- rbind(loc.pre, coords)
mesh2 <- inla.mesh.2d(coords2, max.edge = c(0.15, 0.2), cutoff = 0.02)

Then, we make a TPS prior with the new mesh:

tps2 <- bri.tps.prior(mesh2)

and fit this joint model as follows:

formula <- y ~ -1 + f(x, model = tps2)
data2.inla <- list(y = y2, x = mesh2idxloc)
result2 <- inla(formula, data = data2.inla, control.predictor = list(

↪→ compute = TRUE))

To extract the posterior quantities regarding the three predictions, we must first
know their indices in y2:

(idx.pre <- which(is.na(y2)))

[1] 1 2 3

192 Bayesian Regression Modeling with INLA

indicating they are the first three elements in the vector. Then, their posterior sum-
maries are given by:

round(result2$summary.fitted[idx.pre,], 3)

mean sd 0.025quant 0.5quant 0.975quant mode
fitted.Predictor.001 10.389 0.516 9.381 10.387 11.410 10.383
fitted.Predictor.002 12.733 0.835 11.101 12.730 14.384 12.723
fitted.Predictor.003 6.474 1.001 4.503 6.475 8.439 6.477

which are the first three rows of result2$summary.fitted. We may also extract
the posterior samples of each prediction as follows:

pm.samp1 <- result2$marginals.fitted[[idx.pre[1]]]
pm.samp2 <- result2$marginals.fitted[[idx.pre[2]]]
pm.samp3 <- result2$marginals.fitted[[idx.pre[3]]]

Based on those samples, we are able to compute, say 95%, highest posterior density
(HPD) intervals for the predictions:

inla.hpdmarginal(0.95, pm.samp1)

low high
level:0.95 9.37652 11.40327

inla.hpdmarginal(0.95, pm.samp2)

low high
level:0.95 11.09404 14.37404

inla.hpdmarginal(0.95, pm.samp3)

low high
level:0.95 4.503045 8.436388

We can see that the HPD intervals are very similar to the credible intervals given by
the quantiles. It is because the estimated marginal distributions are quite symmetric.

7.4 Besag Spatial Model
An important type of spatial data are so-called areal data, where the observations
are related to geographic regions (e.g., the states of the US) with adjacency informa-
tion. To smooth the data we need to construct a neighborhood structure. We say two
regions are neighbors if they share a common border, but other ways to define neigh-
bors are also possible. In the spirit of RW models, a Gaussian increment is defined
between neighboring regions i and j as

f (xi)− f (x j)∼ N
(
0,σ2

f /wi j
)
,

where xi and x j represent the centroids of the regions, and wi j are the positive and
symmetric weights. We can let wi j = 1 if we believe region i equally depends on its
neighbors, or let wi j be, for example, the inverse Euclidean distance between region
centroids if we think the neighbors somehow contribute differently. Assuming the

Random Walk Models for Smoothing Methods 193

increments are independent, the resulting density of f = (f (x1), . . . , f (xn))
′ is again

multivariate normal with mean zeroes and precision matrix σ
−2
f Q, where Q is the

highly sparse matrix that has entries

Q[i, j] =

 wi+ if i = j
−wi j if i∼ j
0 otherwise

,

where wi+ = ∑ j: j∼i wi j, the summation over neighbors of region i. Since the sum of
each row is zero,Q is singular with rank n−1. We can show that the full conditional
distribution of f (xi) is normal

f (xi) | f (x−i),τ∼ N

(
∑ j∼i wi j f (x j)

wi+
,

σ2
f

wi+

)
,

where the conditional mean of f (xi) depends on its neighboring nodes f (x j) through
weights wi j, and its conditional variance depends on weight sum wi+. We call this
prior a Besag model because it is a special case of the intrinsic autoregressive models
introduced by Besag and Kooperberg (1995).

Example: Munich Rental Guide

It is well known that “location” is an important factor with regard to apartment rent.
We therefore study the potential spatial effect on rent using the model below:

renti = β0 + f (locationi)+ εi, εi ∼ N
(
0,σ2

f
)
, (7.10)

for i = 1,2, . . . ,n. The Besag model is an intuitive prior on the spatial effect since
locationi denotes ith district in this case. Regarding their neighborhood structure
we define any two districts as neighbors if they share the border. It can be defined via
a graph file, which can be directly called in INLA:

data(Munich, package = "brinla")
g <- system.file("demodata/munich.graph", package = "INLA")
g.file <- inla.read.graph(g)
str(g.file)

List of 4
$ n : int 380
$ nnbs: num [1:380] 5 6 4 6 3 2 4 5 5 1 ...
$ nbs :List of 380
..$: int [1:5] 92 136 137 138 298
..$: int [1:6] 3 25 263 264 265 366
..$: int [1:4] 2 263 366 369
.. [list output truncated]

$ cc :List of 3
..$ id : int [1:380] 1 1 1 1 1 1 1 1 1 1 ...
..$ n : int 1
..$ nodes:List of 1
.. ..$: int [1:380] 1 2 3 4 5 6 7 8 9 10 ...

- attr(*, "class")= chr "inla.graph"

194 Bayesian Regression Modeling with INLA

Here n is the size of the graph, nnbs is the vector with the number of neighbors for
each node, and nbs is a list-list with the neighbors for each node. The cc is the auto-
generated list with connected component information, where id is the vector with the
connected component id for each node, n is the number of connected components and
nodes is a list-list of nodes belonging to each connected component. To understand
the graph file above, there are n=380 districts (nodes); the first district has nnbs=5
neighbors, the second has nnbs=6 neighbors and so on; the neighbors of the first
district are those indexed by nbs=92,136,137,138,298.

It is also easy to make a graph file on your own. It can be defined in an ascii file,
with the following format. The first entry is the number of nodes in the graph, n. The
nodes in the graph are labelled 1,2,...,n. The next entries specify for each node
the number of neighbors, followed by the indices of those neighbors. Therefore, the
first few lines of the graph file above should look like

380
1 5 92 136 137 138 298
2 6 3 25 263 264 265 366
3 4 3 25 263 264 265 366
. . .

Instead of storing it in a file, we can also specify the graph as a character string with
one row after another in the file:
g <- inla.read.graph("380 1 5 92 136 137 138 298 2 6 3 25 263 264...")

More details on making the graph file can be found by typing ?inla.graph in R.

−2.2328 1.56930

(a)

0.3353 1.2344

(b)

FIGURE 7.6
Munich rental guide using the Besag model: (a) posterior means of spatial effect; (b)
posterior standard deviations of spatial effect.

Given the graph file we may easily fit model (7.10) using INLA:

formula <- rent ~ 1 + f(location, model = "besag", graph = g)

Random Walk Models for Smoothing Methods 195

result <- inla(formula, data = Munich, control.predictor = list(
↪→ compute = TRUE))

The posterior summary of β0 (intercept) is given by

round(result$summary.fixed, 4)

mean sd 0.025quant 0.5quant 0.975quant mode kld
(Intercept) 8.4973 0.0645 8.3712 8.4971 8.6245 8.4967 0

where we see the posterior mean β̂0 = 8.497 with standard deviation sd = 0.0645
and 95% credible interval (8.371,8.625). The posterior summary of the spatial
effect at each district is saved in result$summary.random$location. Let us plot
the posterior means (Figure 7.6(a)):

fhat <- result$summary.random$location$mean
map.munich(fhat)

and the posterior standard deviations (Figure 7.6(b)):

fhat.sd <- result$summary.random$location$sd
map.munich(fhat.sd)

We see that the rents are high in the center of Munich and some popular districts
along the river Isar and near parks. In contrast, significantly negative effects are found
for some districts on the borders of Munich. Regarding the uncertainty, the districts
on the borders tend to have more variable rents than those at the center.

7.5 Penalized Regression Splines (P-Splines)
Since being introduced by Eilers and Marx (1996), the penalized regression splines
(P-splines) approach has become popular for nonparametric regression due to its
flexibility and efficient computation. In this approach, B-splines (De Boor, 1978) are
combined with difference penalties on the estimated coefficients to give attractive
properties. More specifically, we first approximate unknown function f (x) by a B-
spline of degree d with equally-spaced knots xmin < t1 < · · ·< tr < xmax, that is,

f (x) =
p

∑
j=1

β jB j(x), (7.11)

where B j is the B-spline basis function and p = d + r + 1 is called the degrees of
freedom. Note that B j are constructed from polynomial pieces joined at the knots,
and defined only locally in the sense that they are nonzero only on a domain spanned
by 2+d knots (see Eilers and Marx, 1996, Section 2). Such a function estimation is
sensitive to the choice of the number and location of knots, and unfortunately it is
hard to decide those issues in an automatic way. One solution is to somehow penalize
β j, making the selection of knots far less important than the choice of smoothing
parameter. As suggested in the P-splines approach, an intuitive choice is to use ∇mβ j,
the mth order difference operator on adjacent β j for j = m+ 1, . . . , p, as defined in

196 Bayesian Regression Modeling with INLA

RW models in Section 7.2.1. This leads to a penalized least squares estimator that
minimizes

n

∑
i=1

[
yi−

p

∑
j=1

β jB j(xi)

]2

+λ

p

∑
j=m+1

(∇m
β j)

2. (7.12)

Clearly, the P-splines and smoothing splines are closely related based on the simi-
larities between (7.2) and (7.12). However, they differ from each other in the follow-
ing way. For smoothing splines, the observed unique x values are the knots and λ

alone is used to control the smoothing. For P-splines, the knots of the B-splines used
for the basis are typically much smaller in number than the sample size. Therefore,
it can be computed more efficiently than smoothing splines. In practice one may use
as many knots as needed to ensure the desired flexibility and let the penalty do the
work to avoid overfitting.

The minimization problem in (7.12) has the following Bayesian representation

y | β,σ2
ε ∼ N

(
Bβ,σ2

εI
)
, β | σ2

β
∼ N

(
0,σ2

β
Q−m

)
, (7.13)

where β = (β1, . . . ,βp)
′, B is the n× p design matrix with entry B[i, j] = B j(xi),

Qm is the (singular) matrix as used in RW models, and the smoothing parameter
λ = σ2

ε/σ2
β
. It is actually a Bayesian linear regression model, with B-spline bases

used as covariates and a RW prior taken on the regression coefficients.

Example: Simulated Data

We here use the P-spline models to estimate the nonparametric function from the
simulated example used in Section 7.1. Again we simulate n = 100 data points from
the model with Gaussian errors:

set.seed(1)
n <- 100
x <- seq(0, 1,, n)
f.true <- (sin(2*pi*x^3))^3
y <- f.true + rnorm(n, sd = 0.2)

We then generate cubic B-spline basis functions (intercept included) with p = 25
degrees of freedom:

library(splines)
p <- 25
B.tmp <- bs(x, df = p, intercept = TRUE)

and make the resulting design matrixB as in model (7.13):

attributes(B.tmp) <- NULL
Bmat <- as(matrix(B.tmp, n, p), ’sparseMatrix’)

Note that we here convert Bmat, a sparse matrix of 100×25 dimension, to the partic-
ular sparse format for INLA to use. We then fit a P-spline model with RW1 penalty
and ask INLA to compute the linear predictors using compute = TRUE:

Random Walk Models for Smoothing Methods 197

-1.0

-0.5

0.0

0.5

1.0

1.5

0.00 0.25 0.50 0.75 1.00
x

y

(a)

-1.0

-0.5

0.0

0.5

1.0

1.5

0.00 0.25 0.50 0.75 1.00
x

y

(b)

-1.0

-0.5

0.0

0.5

1.0

1.5

0.00 0.25 0.50 0.75 1.00
x

y

(c)

-1.0

-0.5

0.0

0.5

1.0

1.5

0.00 0.25 0.50 0.75 1.00
x

y

(d)

FIGURE 7.7
P-spline models: true function (dashed), posterior mean (solid), and 95% credible
band (gray) of four scenarios: (a) RW1 penalty with 25 degrees of freedom (df); (b)
RW1 penalty with 80 df; (c) RW2 penalty with 25 df; (d) RW2 penalty with 80 df.

data.inla <- list(y = y, x = 1:p)
formula <- y ~ -1 + f(x, model = ’rw1’, constr = FALSE)
result <- inla(formula, data=data.inla, control.predictor = list(A =

↪→ Bmat, compute = TRUE))

The posterior summary of β as in model (7.13) is saved in summary.random,
while the summary ofBβ is in the rows of summary.linear.predictor with name
that begins with Apredictor. They are the first n = 100 rows, followed by p = 25
rows of predictor for β estimate:

round(head(result$summary.linear.predictor), 3)

198 Bayesian Regression Modeling with INLA

mean sd 0.025quant 0.5quant 0.975quant mode kld
Apredictor.001 -0.081 0.147 -0.369 -0.080 0.207 -0.080 0
Apredictor.002 -0.019 0.096 -0.208 -0.019 0.170 -0.019 0
Apredictor.003 0.020 0.090 -0.157 0.020 0.197 0.020 0
Apredictor.004 0.043 0.083 -0.120 0.043 0.206 0.043 0
Apredictor.005 0.055 0.078 -0.097 0.055 0.208 0.055 0
Apredictor.006 0.062 0.076 -0.088 0.062 0.213 0.062 0

We plot the result in Figure 7.7(a):

p <- bri.band.ggplot(result, ind = 1:n, type = ’linear’)
p + geom_point(aes(y = y, x = 1:n)) + geom_line(aes(y = f.true, x = 1:

↪→ n), linetype = 2)

The ind = 1:n specifies the indices for the part of the function to be plotted. We
can see that the fit is a little too rough for the flat part, but captures maximum and
minimum pretty well.

To find out how sensitive the P-spline fit is to the choice of number of knots,
we fit the same model but with 80 degrees of freedom, and plot the estimates in
Figure 7.7(b). We see an clear overfit, although it captures the minimum better than
the previous model does. This is because the RW1 penalty cannot provide sufficient
shrinkage to the coefficients. For comparison purposes, we also fit a P-spline model
with RW2 penalty using the following formula in INLA:

formula <- y ~ -1 + f(x, model = ’rw2’, constr = FALSE)

Figures 7.7(c) and 7.7(d) present the results with degrees of freedom of 25 and 80, re-
spectively. Compared to those using the RW1 penalty, the fits using the RW2 penalty
are smoother: they perform better at the flat part but worse for extremes. The fits are
also not that sensitive to the number of knots as those using RW1 penalty, although
more knots seem to capture more local features of the function.

7.6 Adaptive Spline Smoothing
Despite their popularity, the smoothing spline and P-spline approaches are well
known to perform mediocrely when estimating highly varying functions with peaks,
jumps or frequent curvature transitions. This significant drawback stems from their
usage of a single smoothing parameter, which applies a constant amount of smooth-
ing across the function domain. Consequently, extensive research has been done
to make those spline smoothing methods “adaptive,” which means that different
amounts of smoothing are applied to the function space as required by data. Although
a variety of approaches exist, we here introduce the one proposed in Yue et al. (2014)
that can be implemented by INLA.

The basic idea is to extend SDE (7.3) using a smoothing function that varies in
space rather than a smoothing parameter. More specifically, we consider

d2
λ(x) f (x)/dx2 = dW (x)/dx, (7.14)

Random Walk Models for Smoothing Methods 199

where the smoothing function λ(x) can be seen as an instantaneous variance or local
scaling. A small value of λ compresses the scale giving quick oscillations, while a
large value stretches the function and decreases roughness. Note that we here only
consider the cubic smoothing spline, that is m = 2 as in (7.3), because it is known to
provide the best overall performance (e.g., Green and Silverman, 1994). As shown
in Yue et al. (2014), the (weak) solution to (7.14) is multivariate normal with mean
zeroes and precision matrixQλ that depends on the unknown function λ.

To implement a fully Bayesian inference, we need a prior taken on the smoothing
function λ(x). The prior is assumed to be continuous and differentiable, and must
have a proper distribution to guarantee a proper posterior distribution (Yue et al.,
2012). Since it is restricted to be positive, we model λ(x) on its log scale: ν(x) =
log(λ(x)), and then take a smooth prior on ν(x). Following Yue et al. (2014), we use
B-spline basis expansion

ν(x) = γk

q

∑
k=1

Bk(x),

at knots t ′1, t
′
2, . . . , t

′
q, and let the random weights γ=(γ1, . . . ,γq)

′ follow a multivariate
normal distribution with mean zero and precision matrix θR, where θ is a fixed scale
parameter. To ensure a proper posterior distribution, R must be a positive definite
matrix. One simple choice isR= I , an identity matrix, which is equivalent to taking
independent Gaussian priors on γk. Unfortunately, this choice makes the function
estimation sensitive to the knots, although it has an easy computation. To relieve the
issue, we may use a more sophisticated SPDE prior introduced in Lindgren et al.
(2011), which setsR to be a sparse matrix (see details in Yue et al., 2014). With such
a double-layer spline prior the model is able to apply data-driven adaptive smoothing
when estimating the function.

Example: Simulated Data

For comparison purposes, we apply our adaptive smoothing model to the same sim-
ulated data used in the previous examples for smoothing splines and P-splines:

set.seed(1)
n <- 100
x <- seq(0, 1,, n)
f.true <- (sin(2*pi*x^3))^3
y <- f.true + rnorm(n, sd = 0.2)

We try four different scenarios with two types of R (independent and SPDE) and
two numbers of knots (5 and 10). Below we present how the scenario of 5 knots and
SPDE model is implemented in INLA. We first build the adaptive smoothing prior:

adapt <- bri.adapt.prior(x, nknot = 5, type = ’spde’)

and then fit the model:

data.inla <- list(y = y, x = adapt$x.ind)
formula <- y ~ -1 + f(x, model = adapt)
result <- inla(formula, data = data.inla)

We extract the posterior mean as well as 95% credible band, and plot them in Figure

200 Bayesian Regression Modeling with INLA

-1.0

-0.5

0.0

0.5

1.0

1.5

0.00 0.25 0.50 0.75 1.00
x

y

(a)

-1.0

-0.5

0.0

0.5

1.0

1.5

0.00 0.25 0.50 0.75 1.00
x

y

(b)

-1.0

-0.5

0.0

0.5

1.0

1.5

0.00 0.25 0.50 0.75 1.00
x

y

(c)

-1.0

-0.5

0.0

0.5

1.0

1.5

0.00 0.25 0.50 0.75 1.00
x

y

(d)

FIGURE 7.8
Adaptive smoothing models: true function (dashed), posterior mean (solid), and 95%
credible band (gray) of four scenarios: (a) independent prior with 5 knots; (b) inde-
pendent prior with 10 knots; (c) SPDE prior with 5 knots; (d) SPDE prior with 10
knots.

7.8. To apply the adaptive smoothing model to the other three scenarios we only
need to change nknot and/or type in bri.adapt.spline() function. Note that
type = indpt specifies the independent prior used in the model. The results are
also presented in Figure 7.8. As we can see, the adaptive smoothing model yields an
overall better performance than smoothing spline and P-spline models. Compared to
the one with an independent prior, the adaptive model with SPDE prior yields a more
accurate and less knot-sensitive estimation.

Random Walk Models for Smoothing Methods 201

7.7 Generalized Nonparametric Regression Models
Generalized nonparametric regression (GNPR) models combine the idea of GLMs
as seen in Chapter 4 with the nonparametric regression modeling seen earlier in this
chapter. Suppose we have a response Yi that follows a distribution from the exponen-
tial family. Letting µi = E(Yi), a GNPR model can be defined as

g(µi) = f (xi), i = 1, . . . ,n,

where f is the unknown but smooth function. If we impose a Gaussian prior on f ,
this falls within the latent Gaussian model framework required to use INLA. GNPR
models are not easy to fit using a maximum likelihood approach while the Bayesian
approach may find more acceptable solutions.

Example: Simulated Data

We begin with a few simulated examples. The true underlying function f (xi) =
sin(xi) for i = 1, . . . ,n, where xi ∈ [0,6] are equally spaced. Two popular non-
Gaussian response distributions are considered: binomial and Poisson distributions.

Binomial Response

We simulate data from the following model

yi ∼ Bin(ni, pi), g(pi) = sin(xi),

for i = 1, . . . ,200, where Bin(n, p) denotes the binomial density with n trials and p
success probability. Three commonly used link functions are considered: logit, probit
and complementary log-log. The corresponding datasets are generated as follows:

set.seed(2)
n <- 200 #sample size
x <- seq(0, 6,, n)
eta <- sin(x)
Ntrials <- sample(c(1, 5, 10, 15), size = n, replace = TRUE)
prob1 <- exp(eta)/(1 + exp(eta)) ## logit link
prob2 <- pnorm(eta) ## probit link
prob3 <- 1 - exp(-exp(eta)) ## complementary log-log link
y1 <- rbinom(n, size = Ntrials, prob = prob1)
y2 <- rbinom(n, size = Ntrials, prob = prob2)
y3 <- rbinom(n, size = Ntrials, prob = prob3)
data1 <- list(y = y1, x = x)
data2 <- list(y = y2, x = x)
data3 <- list(y = y3, x = x)

Using RW2 prior the three GNPMs are fitted by INLA:

formula <- y ~ -1 + f(x, model = "rw2", constr = FALSE)
result1 <- inla(formula, family = "binomial", data = data1, Ntrials =

↪→ Ntrials, control.predictor = list(compute = TRUE))

202 Bayesian Regression Modeling with INLA

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

0 2 4 6

(a) binomial with logit link

-1.0

-0.5

0.0

0.5

1.0

0 2 4 6

(b) binomial with probit link

-1.0

-0.5

0.0

0.5

1.0

0 2 4 6

(c) binomial with complementary log-log link

-1.0

-0.5

0.0

0.5

1.0

0 2 4 6

(d) Poisson with log link

FIGURE 7.9
Simulation results of GNPR models: true function (dashed), posterior mean (solid),
and 95% credible band (gray).

result2 <- inla(formula, family = "binomial", data = data2, Ntrials =
↪→ Ntrials, control.predictor = list(compute = TRUE), control.
↪→ family = list(link = ’probit’))

result3 <- inla(formula, family = "binomial", data = data3, Ntrials =
↪→ Ntrials, control.predictor = list(compute = TRUE), control.
↪→ family = list(link = ’cloglog’))

Here the binomial likelihood is specified by family = "binomial", and the link
function is defined in control.family = list(link = ’name’) given name =
logit, probit or cloglog. Note that by default logit is used. We also use
control.predictor = list(compute = TRUE) to compute the fitted values (es-
timated µi) that we may need later.

Random Walk Models for Smoothing Methods 203

In Figure 7.9(a) we plot the true function (dashed), its posterior mean estimate
(solid), and 95% credible band (gray) for using the logit link:

p1 <- bri.band.ggplot(result1, name = ’x’, alpha = 0.05, type = ’
↪→ random’)

p1 + geom_line(aes(y = eta), linetype = 2)

The results for using probit and complementary log-log link functions are presented
in Figure 7.9(b) and 7.9(c), respectively. As we can see, INLA provides quite rea-
sonable estimates with all three links, considering the sample size is relatively small.
The posterior summary of estimated success probabilities p̂i is given by, for instance,
result1$summary.fitted.values for logit link.

Poisson Response

We consider the following model:

yi ∼ Poisson(λi), ln(λi) = log(Ei)+ sin(xi),

for i = 1, . . . ,200, where xi ∈ [0,6] and are equally spaced, and Ei are known con-
stants. The data are simulated as follows:

set.seed(2)
n <- 200 #sample size
x <- seq(0, 6,, n)
E <- sample(1:10, n, replace = TRUE)
lambda <- E*exp(sin(x))
y4 <- rpois(n, lambda = lambda)
data4 <- list(y = y4, x = x)

We then fit this Poisson GNPR model in INLA:

formula <- y ~ -1 + f(x, model = "rw2", constr = FALSE)
result4 <- inla(formula, family = "poisson", data = data4, E = E,

↪→ control.predictor = list(compute = TRUE))

Here the Poisson likelihood is specified by family="poisson". In Figure 7.9(d) we
show the result, and it looks good. Note that result4$summary.fitted.values
gives the posterior summary of exp [sin(x)], not mean λ, because the Ei are not all
1’s. Since it is a simple linear transformation, we may easily obtain the posterior
estimates (mean, SD, quantiles, etc.) of λ as follows:

lamb.hat <- E*result4$summary.fitted$mean
yhat.sd <- E*result4$summary.fitted$sd
lamb.lb <- E*result4$summary.fitted$’0.025quant’
lamb.ub <- E*result4$summary.fitted$’0.975quant’

Example: Tokyo Rainfall

The Tokyo rainfall data contain daily rainfall indicator counts for a period of two
years. Each day during 1983 and 1984, it was recorded whether there was more than
1 mm rainfall in Tokyo. It is a data frame with 366 observations on three variables: y
is the number of days with rain; n is the total number of days; time is the day of the
year. Let us load the dataset:

204 Bayesian Regression Modeling with INLA

data(Tokyo, package = ’INLA’)
str(Tokyo)

’data.frame’: 366 obs. of 3 variables:
$ y : int 0 0 1 1 0 1 1 0 0 0 ...
$ n : int 2 2 2 2 2 2 2 2 2 2 ...
$ time: int 1 2 3 4 5 6 7 8 9 10 ...

Note that for time = 60, which corresponds to February 29, only one binary obser-
vation is available (n=1), while for all other calendar days there are two (n=2). We
want to estimate the underlying probability of rainfall on a given calendar day.

0 100 200 300

−2
.5

−2
.0

−1
.5

−1
.0

−0
.5

0.
0

0.
5

Day

(a)

0 100 200 300

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Day

Pr
ob

ab
ilit

y

(b)

FIGURE 7.10
Tokyo rainfall data: (a) posterior mean of latent nonparametric function with 95%
credible interval; (b) empirical and model-based binomial probability estimates, with
95% posterior predictive bounds. The empirical probability estimates are the propor-
tion of observed rainfall days for each day of the year.

We assume that the rainfall follows a binomial distributions Bin(ni, pi), and as-
sociate pi with a circular RW2 model (see Rue and Held, 2005) using logit link. This
explicitly connects the end and the beginning of the time series, because we expect
smooth changes between the last week in December and the first week in January.
We then build the model and fit it in INLA:

formula <- y ~ -1 + f(time, model = "rw2", cyclic = TRUE)
result <- inla(formula, family = "binomial", Ntrials = n, data = Tokyo

↪→ , control.predictor = list(compute = TRUE))

Here cyclic = TRUE is used to select circular RW2 prior. We plot fitted curve (pos-
terior mean) and 95% credible band of time effect (Figure 7.10(a)):

bri.band.plot(result, name = ’time’, alpha = 0.05, type = ’random’,
↪→ xlab = ’Day’, ylab = ’’)

A clear seasonal pattern can be seen. We also plot empirical and model-based bino-
mial probability estimates, with 95% posterior predictive bounds (Figure 7.10(b)):

Random Walk Models for Smoothing Methods 205

bri.band.plot(result, alpha = 0.05, type = ’fitted’, ylim = c(0, 1),
↪→ xlab = ’Day’, ylab = ’Probability’)

points(Tokyo$time, Tokyo$y/2, cex = 0.5)

Note that the empirical probability estimates are the proportion of observed rainfall
days for each day of the year. It seems that the typical daily precipitation chance is
no more than 50%, and is relatively high in April, June and August.

Prediction. It is interesting to predict the daily precipitation chances for the next
few days based on what we have already observed. Suppose we want to see how
likely it would rain on the first three days (January 1st, 2nd, and 3rd) in 1985 based
on the data from the previous two years. Such predictions must be done as part of the
fitting process in INLA. We therefore incorporate those three days as missing cases
into the original data to make a new dataset Tokyo.pred:

time.new <- seq(length(Tokyo$time) + 1, length.out = 3)
time.pred <- c(Tokyo$time, time.new)
y.pred <- c(Tokyo$y, rep(NA, length(time.new)))
n.pred <- c(Tokyo$n, rep(1, length(time.new)))
Tokyo.pred <- list(y = y.pred, time = time.pred, n = n.pred)

We then use the same model as before and fit it to the new data:

result <- inla(formula, family = "binomial", Ntrials = n, data = Tokyo
↪→ .pred, control.predictor = list(compute = TRUE, link = 1))

Here we use link = 1 as a shortcut for

link <- rep(NA, length(y.pred))
link[which(is.na(y.pred))] <- 1

where we define “link” to be the first “family” specified in the model (which is bino-
mial here) only for missing cases.

The posterior quantities for the predictions of time effect on those three days are
summarized below:

ID <- result$summary.random$time$ID
idx.pred <- sapply(time.new, function(x) which(ID==x))
round(result$summary.random$time[idx.pred,], 4)

ID mean sd 0.025quant 0.5quant 0.975quant mode kld
367 367 -1.8384 0.3236 -2.4858 -1.8354 -1.2079 -1.8293 0
368 368 -1.8305 0.3236 -2.4772 -1.8277 -1.1995 -1.8222 0
369 369 -1.8231 0.3233 -2.4689 -1.8206 -1.1921 -1.8154 0

The corresponding daily precipitation chances are predicted as:

round(result$summary.fitted.values[which(is.na(y.pred)),], 4)

mean sd 0.025quant 0.5quant 0.975quant mode
fitted.predictor.367 0.1417 0.0392 0.0769 0.1376 0.2300 0.1300
fitted.predictor.368 0.1426 0.0394 0.0775 0.1385 0.2315 0.1308
fitted.predictor.369 0.1435 0.0396 0.0781 0.1394 0.2328 0.1316

We see it is getting more likely to rain as time goes by, although the chances are all
small.

206 Bayesian Regression Modeling with INLA

7.8 Excursion Set with Uncertainty
Suppose we want to find areas where the function studied exceeds a certain level or
is different from some reference level, while accounting for estimation uncertainty.
For example, with observations y from some function f (x) we want to find a set
D such that, with a given probability 1− α, f (x) > u for all x ∈ D for a given
level u. It is easy, and quite common, to compute the marginal posterior probabilities
P(f (x)> u | y) based on the conditional distribution for f (x) | y, and then specify
Dm as the set where the probabilities exceed a threshold

Dm = {x : P(f (x)> u | y)≥ 1−α} . (7.15)

However, the parameter α in this definition is the pointwise type I error rate, which
does not give us information about the familywise error rate, and hence does not
quantify the certainty of the level being exceeded at all points in the set simultane-
ously. From a frequentist point of view, this is the problem of multiple-hypothesis
testing, and can be relieved by making an adjustment to α, e.g., type I error control
thresholding (Adler, 1981).

Unfortunately, the hypothesis testing methods in frequentist settings do not trans-
fer to a Bayesian hierarchical model framework. We therefore desire to formulate
questions regarding excursions as properties of posterior distributions for functions.
It can be done by using joint probability for exceeding or being different from the
level in the entire set.

Fossil Data

Bralower et al. (1997) report data that reflect the global climate millions of years
ago, through ratios of strontium isotopes found in fossil shells. We start by loading
the data and summarizing them:

data(fossil, package = ’brinla’)
str(fossil)

’data.frame’: 106 obs. of 2 variables:
$ age: num 91.8 92.4 93.1 93.1 93.1 ...
$ sr : num 0.734 0.736 0.735 0.737 0.739 ...

The data frame has 106 observations on fossil shells, and two measurements on each
shell: age of shell in millions of years (age) and its ratio of strontium isotopes (sr).
The shells are dated by biostratigraphic methods, so the strontium ratio can be studied
as a function of ages.

It is intuitive to use RW2 model for non-equally spaced ages. However, we ob-
serve that some ages are too close in terms of their range:

min(diff(sort(fossil$age)))/diff(range(fossil$age))

[1] 9.610842e-05

It will make the precision matrix of RW2 ill-conditioned (see Section 7.2.3), leading

Random Walk Models for Smoothing Methods 207

to bizarre behavior when estimating functions. We therefore use inla.group() to
group age into 100 bins, which yields 54 unique values:

age.new <- inla.group(fossil$age, n = 100)
(length(unique(age.new)))

[1] 54

There are replicates for some of the new age values. Then, we take sr as the re-
sponse variable and age.new as the predictor variable to fit a nonparametric regres-
sion model:

inla.data <- list(y = fossil$sr, x = age.new)
formula <- y ~ -1 + f(x, model = ’rw2’, constr = FALSE, scale.model =

↪→ TRUE)
result <- inla(formula, data = inla.data, control.compute = list(

↪→ config = TRUE))

We use control.compute = list(config = TRUE) to store internal INLA ap-
proximations in the result for later computation. Also, we turn on the scale.model
option in f() to make a scale adjustment to the hyperprior on RW2 model. In our
experience this scaling procedure makes no difference in fitting ordinary nonpara-
metric regression models. This example, however, is an exception, probably because
of the replicates. We will find this option more useful in fitting additive models in
Chapter 9 and provide more discussions there.

0.72

0.73

0.74

0.75

100 110 120
Age

S
tro

nt
iu

m
 R

at
io

(a)

0.00

0.25

0.50

0.75

1.00

100 110 120
Age

P
ro

ba
bi

lit
y

(b)

FIGURE 7.11
Fossil data using RW2: (a) fitted curve (solid) and 95% credible band (dashed) with
data (dot); (b) excursion function (solid) and marginal probabilities (dashed) for
mean Strontium ratio > 0.74 and excursion set (gray areas) at 5% level.

The fitted curve, 95% credible band and data points are plotted in Figure 7.11(a).
We can see a clear nonlinear relationship between age and strontium ratio: it in-
creases from 92 to 95 million years ago, and keeps this relatively high ratio until
105 million years ago, then has a substantial dip with a minimum near 115 million

208 Bayesian Regression Modeling with INLA

years ago, followed by an increase for fossils around 120 million years ago. The dip
around 98 million years ago, however, is not significant because its credible interval
is too wide. The features discovered by INLA coincide with those in Chaudhuri and
Marron (1999).

Suppose we are interested in finding the ages where the ratios of strontium iso-
topes are greater than 0.74, accounting for estimation uncertainty. We compute the
probability that each f (agei)> 0.74 based on its marginal posterior distribution:

mar.x <- result$marginals.random$x #marginal posterior
mar.prob <- 1 - sapply(mar.x, function(x) inla.pmarginal(0.74, x))

Then, we find a set of ages, each of which has at least 95% chance for its correspond-
ing strontium ratio to be greater than 0.74:

result$summary.random$x$ID[mar.prob > 0.95]

[1] 95.58932 101.53700 102.10000 102.81000 104.50698 104.78694 105.34000
[8] 106.08018 106.19500 106.94000 120.30846 120.58692 120.99231 121.22769

[15] 121.83231 122.19961 122.46423 122.85615

Such a set of ages is defined as Dm in (7.15) with α = 0.05. As mentioned, this α

is only the pointwise type I error rate, which does not give us information about the
familywise error rate, and hence does not quantify the certainty of the level being
exceeded at all points in the set simultaneously.

The statistical problem here is to find a set D of ages such that f (agei) > 0.74
with probability 0.95 or higher for all agei ∈ D. There might be many such sets, so
we might look for the largest of these. It is a so-called excursion set, a smaller set
than Dm. Finding an excursion set in practice is often difficult because it requires
the high dimensional integration that is computationally intensive, especially for the
applications where the sample size is large. Bolin and Lindgren (2015) introduced
an efficient computational method for latent Gaussian models. It is based on using a
parametric family for the excursion sets in combination with a sequential importance
sampling method for estimating joint probabilities. We here only show how to imple-
ment their method in R, and refer readers to their paper for details on methodology.

The excursion set of ages with probability at least 0.95 can be simply found using
excursions.brinla() as follows:

res.exc <- excursions.brinla(result, name = ’x’, u = 0.74, alpha =
↪→ 0.05, type = ’>’, method = ’NI’)

The result is the returned object from the INLA call, name=’x’ specifies the func-
tion in result for which to compute the joint probabilities, u=0.74 shows the excur-
sion level, alpha=0.05 specifies the significance level, and type=’>’ gives the type
of excursion set. Two other types, ‘>’ and ‘6=’, are also available. The method argu-
ment specifies the computational method, including “EB” = Empirical Bayes, “QC”
= Quantile correction, “NI” = Numerical integration, ‘NIQC’ = Numerical integra-
tion with quantile correction, and “iNIQC” = Improved integration with quantile cor-
rection. The EB method is the simplest and may be sufficient in many situations. The
QC method is based on correcting the limits of the integral, and is as easy to imple-
ment as the EB method and should perform better in most scenarios. The NI method
is more computationally demanding but should also be the most exact method for

Random Walk Models for Smoothing Methods 209

problems with Gaussian likelihoods. For non-Gaussian likelihoods, the NI with QC
and improved NI with QC methods can be used for improved results. The improved
NI with QC is slightly more computationally demanding but should also perform
better in practice for models with non-Gaussian likelihoods. In our case, the sample
size is small and we therefore chose NI to obtain the most accurate possible result.

The resulting excursion set can be extracted from:

res.exc$E

[1] 95.58932 101.53700 102.10000 102.81000 104.50698 104.78694 105.34000
[8] 106.08018 106.19500 120.30846 120.58692 120.99231 121.22769 121.83231

[15] 122.19961 122.46423 122.85615

It shows the values of age that are jointly greater than 0.74 with at least 0.95 prob-
ability. Note that this set is smaller than the one derived from marginal posterior
probabilities, as it is supposed to be. Such an excursion set, however, is not sufficient
because it does not provide any information about the ages that are not contained in
the sets. We’d better have something similar to the p-values, i.e., the marginal prob-
abilities of exceeding the level, but which can be interpreted simultaneously. Bolin
and Lindgren (2015) therefore defined a so-called excursion function to serve this
purpose. The function takes values between 0 and 1, which are saved in res.exc$F.
The first few values are given by:

round(head(res.exc$F), 4)

[1] 0.0001 0.0003 0.0206 0.7921 0.8773 0.9581

The excursion function is not equal to the marginal probability function. The for-
mer is always smaller than the latter. In addition, we may use res.exc$G to return
a propositional variable where TRUE means the corresponding location is in the ex-
cursion set and FALSE otherwise. The marginal probabilities, excursion function and
excursion set at 5% level are plotted in Figure 7.11(b):

bri.excursions.ggplot(res.exc)

Note that we only see two age intervals (101.53, 106.19) and (120.30, 122.85)
marked by gray bars, where mean sr is greater than 0.74 with at least 0.95 joint
probability. There is actually one additional age 95.58 identified in the excursion
set, but we fail to display this single point in the figure. Also, we see the excursion
function (closely) covered by the marginal probability curve, as we expected.

Tokyo Rainfall Data

Suppose we are interested in finding the days whose precipitation chances are more
than 0.3 in a year with uncertainty accounted for. We fit the model as in Section 7.7:

data(Tokyo, package = ’INLA’)
formula <- y ~ -1 + f(time, model = "rw2", cyclic = TRUE)
result <- inla(formula, family = "binomial", Ntrials = n, data = Tokyo

↪→ , control.predictor = list(compute=TRUE), control.compute =
↪→ list(config = TRUE))

Note that the estimated precipitation chances are fitted values in the INLA result. We

210 Bayesian Regression Modeling with INLA

therefore compute for each day the marginal probability that the precipitation chance
on that day is greater than 0.3 as follows:

u.fitted <- 0.3
mar.fitted <- result$marginals.fitted.values
mar.prob<- 1-sapply(mar.fitted,function(x) inla.pmarginal(u.fitted,x))

Let’s find out the days that have the marginal probabilities being at least 0.95:

Tokyo$time[mar.prob >= 0.95]

[1] 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
[20] 182 183 184 185 186 187 188 189 190 191 192 193 194

They are 32 consecutive days between May and June.
The excursion set of days we need is also associated with the fitted values. How-

ever, the excursion function is still computed based on the random effect rather than
the fitted values. So we need to first transform the threshold 0.3 to logit(0.3):

u.pred <- log(u.fitted/(1 - u.fitted))

Then we use this value in the following computation:

res.exc <- excursions.brinla(result, name = ’time’, u = u.pred, type =
↪→ ’>’, method = ’NIQC’, alpha = 0.05)

Here method = ’NIQC’ is used for non-Gaussian data. The resulting excursion set
is given by:

res.exc$E

[1] 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
[18] 182 183 184 185 186 187 188 189 190 191 192

The probability that all the days have more than 0.3 precipitation is at least 0.95.
These are 28 consecutive days between May and June, three days fewer than those
identified by the marginal probabilities.

8
Gaussian Process Regression

As the title suggests, Gaussian process regression (GPR) places priors on the func-
tions describing the relationship between the predictor(s) and the response which are
Gaussian processes. We can implement these methods in INLA but we need to make
some compromises to achieve reasonable computational efficiency. In this chapter,
we introduce the methodology and demonstrate some extensions.

8.1 Introduction
Suppose we have a regression model:

yi = f (xi)+ εi i = 1, . . . ,n.

We specify a Gaussian process on f with mean m(x) and covariance k(x,x′), where
x′ is another point in the predictor space, so that

f (x)∼ GP (m(x),k(x,x′)),

which has the property that any finite number of f (xi)’s have a joint Gaussian distri-
bution with mean and covariance defined by m() and k(). An introduction to Gaussian
processes may be found in Rasmussen and Williams (2006).

At first glance, this problem seems readily solved by INLA. The values f (xi)
have a Gaussian distribution and would satisfy the requirements of a latent Gaussian
model (LGM), but there are two problems. Firstly, we are likely to be interested
in what happens to f at more than just the points of observation xi. Secondly, we
require more than just an LGM for INLA to be effective. For many choices of k(),
the precision matrix on f (x) will be dense. For anything but small data problems,
there will be no shortcut computation. This means we must restrict our choice of k()
to allow fast computation. Fortunately, we still have some good choices that would
result in a sparse precision matrix permitting a rapid computation.

A solution to these problems arises from an unexpected source. Consider the
stochastic partial differential equation (SPDE) defined by:

(κ2−∆)α/2(τ f (x)) = W (x), x ∈ Rd , (8.1)

where κ is a scale parameter, ∆ is the Laplacian, α is a parameter that affects the

212 Bayesian Regression Modeling with INLA

smoothness, and τ relates to the variance of f . W (x) is a Gaussian white noise pro-
cess and d is the dimension of the space. f is the stationary solution to this SPDE.
Surprisingly, Whittle (1954) showed that the stationary solution has a Matérn covari-
ance:

cov(f (0), f (x)) =
σ2

2ν−1Γ(ν)
(κ‖x‖)νKν(κ‖x‖),

where Kν is a Matérn family kernel (also called a modified Bessel function of the
second kind), ν = α−d/2 and σ2 is the marginal variance defined by

σ
2 =

Γ(ν)

Γ(α)(4π)d/2κ2ντ2
.

Standard choices of α are one, which corresponds to the exponential kernel (which
looks like a double exponential distribution) and two, which is the default choice
in INLA. The squared exponential or Gaussian kernel corresponds to α = ∞ but this
choice results in a dense precision matrix because the Gaussian kernel has unbounded
support. This is not practical to compute using INLA. In contrast, any choice in
0≤ α≤ 2 is available in INLA as these result in kernels with a compact support.

Finding the stationary solution requires an approximation. We restrict solutions
to the form:

f (x) =
b

∑
k=1

βkBk(x).

The B-spline basis functions, Bk(x), have a compact support. We choose the coeffi-
cients, βk, to approximate the solution to the SPDE. We need to choose the number
of basis functions b to be sufficiently large so as to obtain a good approximation, but
not so large as to unnecessarily burden the computation. The mechanics of the com-
putation require the use of a finite element method whose details we do not explain
here. See Lindgren and Rue (2015) for more details.

This method requires that we specify three priors: on τ, κ and the precision of ε

(the measurement error). The parameter α controls the shape of the kernel — we just
set this. τ and κ are difficult to visualize so we prefer to use more intuitive parameters.
Let σ be the standard deviation of f and let ρ be the “range.” This is the distance at
which the correlation in the function has fallen to about 0.13. The choice of this
particular value may seem odd but results in the clean formulation shown below.
Informally, one might think about the change in x necessary for the correlation to fall
to a small but not negligible value, i.e., 0.13. We can link these parameters together
with these relations:

logτ =
1
2

log
(

Γ(ν)

Γ(α)(4π)d/2

)
− logσ−ν logκ,

logκ =
log(8ν)

2
− logρ.

We can see that it is convenient to specify the priors in terms of logσ and logρ. It is

Gaussian Process Regression 213

helpful to specify a guess at these two parameters and allow the prior to vary around
these guesses. We can achieve this by:

logσ = logσ0 +θ1,

logρ = logρ0 +θ2. (8.2)

We now have the two initial guesses σ0 and ρ0 and we can assign a mean zero joint
Gaussian prior on (θ1,θ2). We will see how to do this in our example to follow.

The data for our example come from Bralower et al. (1997) who reported the
ratio of strontium isotopes found in fossil shells in the mid-Cretaceous period from
about 90 to 125 million years ago. This data was analyzed using the SiZer method in
Chaudhuri and Marron (1999). They rescaled the strontium ratio which we replicate
here. We load and plot the data as seen in Figure 8.1.

data(fossil, package="brinla")
fossil$sr <- (fossil$sr-0.7)*100
library(ggplot2)
pf <- ggplot(fossil, aes(age, sr)) + geom_point() + xlab("Age") +

ylab("Strontium Ratio")
pf+geom_smooth(method="gam", formula = y ~ s(x, bs = "cs"))

�

�
�

�

���

�

�

�
�

�

�

�

�
�

�

�

��

�

�

�

�

�

� �

�

�

�

�
�
�

�
�

�

�

� �

�

�
�
�

�

�
�

�
�
�
�

�

�
�

�

�

�

�

�
�
�
�

�
�

�

�
�

�

��

�

�

�

�

�

�

�

�
�

�

��

�

�

�

�
�

�
�

�

�

�

�

�
�

�

�

�

��
�

�
�

�

�
�
�

2

3

4

5

100 110 120
Age

St
ro

nt
iu

m
 R

at
io

FIGURE 8.1
The age of a shell in millions of years and its (standardized) ratio of strontium iso-
topes. The grayed area indicates 95% pointwise confidence bands.

We have used a standard B-spline smoother which also generates 95% confidence
intervals. We can see that the shape of the curve is not much in doubt for the older half
of the curve but there is substantially more uncertainty for the more recent period.
This dataset is also modeled using a random walk regression in Chapter 7.

Fitting a GPR model in INLA requires several steps. Once these are understood,

214 Bayesian Regression Modeling with INLA

much of the process can be automated but it is worth understanding these in case we
wish to modify the procedure according to the circumstances.

We will need the INLA package throughout this chapter and will also use our
brinla package. From now on, we will assume these have already been loaded. If
you forget, you will get a “function not found” error message.

library(INLA); library(brinla)

The first step is to set up the B-spline basis. We have chosen b = 25 basis func-
tions:

nbasis <- 25
mesh <- inla.mesh.1d(seq(min(fossil$age), max(fossil$age),

length.out = nbasis),degree =2)

We have chosen a support covering the range of the data. The degree of two for the
B-splines means we will get a smoother fit than the choices of zero or one that are
also available. If we choose too few basis functions, we will lack the flexibility to fit
the function. If we choose more than necessary, the computation will be inefficient.
In some regression spline applications, b is used to control the amount of smoothing.
Here ρ fills that role mostly, while b just needs to be large enough to allow sufficient
flexibility in the fit. If you make b too large, you will waste compute time but the fit
will not change much.

The next step is to create the SPDE object. This is where the priors are set:

alpha <- 2
nu <- alpha - 1/2
sigma0 <- sd(fossil$sr)
rho0 <- 0.25*(max(fossil$age) - min(fossil$age))
kappa0 <- sqrt(8 * nu)/rho0
tau0 <- 1 / (4 * kappa0^3 * sigma0^2)^0.5
spde <- inla.spde2.matern(mesh, alpha=alpha,

B.tau = cbind(log(tau0), 1, 0),
B.kappa = cbind(log(kappa0), 0, 1),
theta.prior.prec = 1e-4)

We make the default choice of α = 2 which is the smoothest kernel available to us.
ν is simply a function of α and the dimension (which is one here). We set σ0 to
the SD of the response. It would be preferable to use only prior knowledge of the
response which with expert opinion would be available to us. Failing that we use
a small amount of information from the data to make this choice. If we have good
prior knowledge, we should override this choice. We set ρ0 to be a quarter of the
range of the predictor. Again, prior knowledge would be better employed. We can
also be assured that the result is not very sensitive to these choices as you can readily
check. Although we set the priors in terms of σ and ρ, we need to convert these to τ

and κ.
We now need to specify a model on logτ taking the form:

logτ = γ0 + γ1θ1 + γ2θ2.

The coefficients for (γ0,γ1,γ2) are set by B.tau as (log(tau0), 1, 0) here (which
is the default choice). A similar model is specified for logκ using B.kappa. More

Gaussian Process Regression 215

complex choices are possible here as we shall see later. Finally, we need to set a pre-
cison for the Gaussian priors on the θ’s using theta.prior.prec. We have chosen a
very small value here expressing our uncertainty about the priors on τ and κ. In some
instances, we might have stronger information in which case a larger choice would
be more appropriate.

Further setup steps are required. We must specify the points at which we require
posterior distributions. Here we choose the points of observation although in some
cases one might want a denser grid or to include particular values of interest. The A
matrix allows the computation at these grid points based on the spline basis we set
up earlier.

A <- inla.spde.make.A(mesh, loc=fossil$age)

In two dimensional problems, there are tedious problems keeping track of the
spatial relationships. This is solved by setting up an index. In one dimension, the
problem is not so difficult but we must still set the index (which we must give a name
- sinc in this case):

index <- inla.spde.make.index("sinc", n.spde = spde$n.spde)

A further housekeeping step whose purpose is to stack matrices as vectors is:

st.est <- inla.stack(data=list(y=fossil$sr), A=list(A),
effects=list(index), tag="est")

For now, we are satisfied to estimate the curve at the points of observation only so
the effects are just the index points which we give the tag est for later reference.
We are now ready to fit the model:

formula <- y ~ -1 + f(sinc, model=spde)
data <- inla.stack.data(st.est)
result <- inla(formula, data=data, family="gaussian",

control.predictor= list(A=inla.stack.A(st.est), compute=TRUE))

The formula is of spde type and we must use the name for the index we set up earlier.
An intercept term would be redundant so we exclude this with a -1. Further stacking
is necessary using inla.stack.data.

We can extract a plot of the posterior mean together with 95% credible bands as
seen in Figure 8.2:

ii <- inla.stack.index(st.est, "est")$data
plot(sr ~ age, fossil)
tdx <- fossil$age
lines(tdx, result$summary.fitted.values$mean[ii])
lines(tdx, result$summary.fitted.values$"0.025quant"[ii], lty = 2)
lines(tdx, result$summary.fitted.values$"0.975quant"[ii], lty = 2)

We see some roughness in the fit where the data are sparse. We also see that the
credible bands are wider in these sparse regions. Compare this to the first panel of
Figure 7.11 for the random walk fit. The function bri.gpr() in the brinla package
gathers the computation into a single call. We can reproduce Figure 8.2 with:

fg <- bri.gpr(fossil$age, fossil$sr)
plot(sr ~ age, fossil, pch=20)
lines(fg$xout, fg$mean)

216 Bayesian Regression Modeling with INLA

�

�
�

�

���

�

�

�
�

�

�

�

�
�

�

�

��

�

�

�

�

�

� �

�

�

�

�
�
�

�
�

�

�

� �

�

�
�
�

�

�
�

�
�
�
�

�

�
�

�

�

�

�

�

�
�

�

�
�

�

�
�

�

��

�

�

�

�

�

�

�

�
�

�

��

�

�

�

�

�

�
�

�

�

�

�

�
�

�

�

�

� �
�

�
�

�

�
�

�

95 100 105 110 115 120

2.
0

3.
0

4.
0

5.
0

age

sr

FIGURE 8.2
Posterior mean shown as solid line with 95% credible bands shown as dashed lines.

lines(fg$xout, fg$ucb,lty=2)
lines(fg$xout, fg$lcb,lty=2)

Even so, one may need to modify the calculation so it is worth understanding the
steps involved in constructing this.

8.2 Penalized Complexity Priors
In Simpson et al. (2017) a principled approach to the setting of priors is presented.
The details of how this applies to GPR models is found in Fuglstad et al. (2015).
These priors are specified by setting four constants based in the relations:

P(ρ < ρ0) = pρ,

P(σ > σ0) = pσ.

To set these, we need some knowledge of the scale of the response and the predictor.
Recall that ρ is the distance such that corr(f (x), f (x+ρ)) ≈ 0.13. We pick pρ as a
small probability and so ρ0 represents a small range — we do not expect that ρ lies
below this but we do not exclude the possibility. Thus ρ0 reflects our prior opinion
about the smoothness of the function. The main purpose is to provide some weak
information about the correlation but there is still much flexibility for the posterior
on ρ to be quite a bit different from this. Our choice of ρ0 is not destiny. The choice
of σ0 is similarly constructed based on our prior knowledge of the variability in f .
Again we just need to get the general scale correct.

Gaussian Process Regression 217

Implementation of this PC prior requires that the SPDE is set up slightly differ-
ently. Everything else is much the same as before. We choose pρ = pσ = 0.05. We set
ρ0 = 5 because this is a relatively small distance on the predictor scale. We’d be sur-
prised if the correlation dropped so quickly after only 5 million years. We set σ0 = 2
because this is quite large and so we would be surprised if the SD of f exceeded this.
The observed response varies from about 2 to 5, so this choice is quite conservative.
We reuse most of the prior setup steps leaving just the following commands which
need to be run:

spde <- inla.spde2.pcmatern(mesh,alpha=alpha,prior.range=c(5,0.05),
prior.sigma=c(2,0.05))

formula <- y ~ -1 + f(sinc, model=spde)
resultpc <- inla(formula, data=data, family="gaussian",
control.predictor= list(A=inla.stack.A(st.est), compute=TRUE))

The plot can be constructed exactly as previously. We do not show it here since it
is extremely similar to Figure 8.2. The function bri.gpr() in the brinla package
has an option pcprior which performs the whole computation like this:

pcmod <- bri.gpr(fossil$age, fossil$sr, pcprior=c(5,2))

8.3 Credible Bands for Smoothness

In Chaudhuri and Marron (1999), the apparent dip seen in Figure 8.2 around 97
million years was deemed insignificant. The credible bands shown in the plot are
not much help in answering this question as a large variety of curves can be drawn
that lie between the two bands — some quite rough and some rather smooth. The
existence of the dip depends crucially on how much we smooth the data. In most
smoothing methods, this choice of smoothness is either chosen by the user or by
some automated method which produces a point estimate of the best choice. With a
GPR model, we can do better than this.

First let us extract the posterior distributions of the hyperparameters. We work
with the error SD:

errorsd <- bri.hyper.sd(result$marginals.hyperpar[[1]])

Many remaining quantities of interest can be extracted with

mres <- inla.spde.result(result,"sinc",spde)

from which we may obtain the posterior for σ (we need to square root the variance):

mv <- mres$marginals.variance.nominal[[1]]
sigmad <- as.data.frame(inla.tmarginal(function(x) sqrt(x), mv))

and that for ρ:

rhod <- mres$marginals.range.nominal[[1]]

All these can be plotted as seen in Figure 8.3:

218 Bayesian Regression Modeling with INLA

plot(y ~ x, errorsd, type="l", xlab="sr", ylab="density")
plot(y ~ x,sigmad, type="l",xlab="sr",ylab="density")
plot(rhod,type="l",xlab="age",ylab="density")

0.20 0.24 0.28

0
5

10
15

20

sr

de
ns

ity

2 4 6 8 10

0.
0

0.
1

0.
2

0.
3

sr

de
ns

ity

20 40 60 80

0.
00

0.
01

0.
02

0.
03

0.
04

age

de
ns

ity

FIGURE 8.3
Posterior densities of the hyperparameters from the fossil data fit. The first plot shows
the error SD, the second the function SD and the third the range.

We see there is not much uncertainty in the error SD but there is considerable uncer-
tainty about the range ρ. We can easily derive a credible interval for κ (and hence ρ)
as:

exp(mres$summary.log.kappa[c(4,6)])

0.025quant 0.975quant
kappa.1 0.06098 0.21686

but it is difficult to interpret this or divine the impact on the shape of the fitted curve.
Let’s fix σ, the function SD at its median posterior value and calculate the pos-

terior mean curves corresponding to the two endpoints of the credible interval for
ρ:

kappa0 <- exp(mres$summary.log.kappa[’0.025quant’])[,]
sigma02 <- exp(mres$summary.log.variance.nominal[’0.5quant’])[,]
tau0 <- 1 / (4 * kappa0^3 * sigma02)^0.5
spde <- inla.spde2.matern(mesh, alpha=alpha, constr = FALSE,

B.tau = cbind(log(tau0)),
B.kappa = cbind(log(kappa0)))

formula <- y ~ -1 + f(sinc, model=spde)
resulta <- inla(formula, data=data, family ="gaussian",

control.predictor = list(A=inla.stack.A(st.est),
compute=TRUE))

The point specification of B.tau and B.kappa mean these hyperparameters are not
allowed to vary and are fixed at the choices we have made. Notice that τ0 depends on
κ0 and σ0 so we must compute this value. We repeat the same calculation but for the
upper end of the κ credible interval:

kappa0 <- exp(mres$summary.log.kappa[’0.975quant’])[,]
sigma02 <- exp(mres$summary.log.variance.nominal[’0.5quant’])[,]

Gaussian Process Regression 219

tau0 <- 1 / (4 * kappa0^3 * sigma02)^0.5
spde <- inla.spde2.matern(mesh, alpha=alpha, constr = FALSE,

B.tau = cbind(log(tau0)),
B.kappa = cbind(log(kappa0)))

formula <- y ~ -1 + f(sinc, model=spde)
resultb <- inla(formula, data=data, family="gaussian",

control.predictor= list(A=inla.stack.A(st.est),
compute=TRUE))

We plot the two posterior means corresponding to the ends of the κ credible interval
as seen in Figure 8.4.

ii <- inla.stack.index(st.est, "est")$data
plot(sr ~ age, fossil, pch=20)
tdx <- fossil$age
lines(tdx, resulta$summary.fitted.values$mean[ii],lty=2)
lines(tdx, resultb$summary.fitted.values$mean[ii],lty=1)

�

�
�

�

���

�

�

�
�

�

�

�

�
�

�

�

��

�

�

�

�

�

� �

�

�

�

�
�
�

�
�

�

�

� �

�

�
�
�

�

�
�

�
�
�
�

�

�
�

�

�

�

�

�

�
�

�

�
�

�

�
�

�

��

�

�

�

�

�

�

�

�
�

�

��

�

�

�

�

�

�
�

�

�

�

�

�
�

�

�

�

� �
�

�
�

�

�
�

�

95 100 105 110 115 120

2.
0

3.
0

4.
0

5.
0

age

sr

FIGURE 8.4
95% Credible bands for smoothness. The solid line is the posterior mean curve cor-
responding to the 97.5% percentile of ρ, while the dashed line is for the 2.5% per-
centile.

We see that uncertainty over the smoothness has little impact on the shape of the
curve on the right half of the plot but makes a substantial difference on the first
part. In particular, we can see that the smoothness has a just perceptable dip at 97
million years whereas the dip is very clear in the rougher end of the fit. Since both
bands contain a dip here, we conclude there really is a dip in the curve at this age.
The function bri.smoothband() in the brinla package gathers these computations
into a single call. We can reconstruct Figure 8.4 with:

fg <- bri.smoothband(fossil$age, fossil$sr)
plot(sr ~ age, fossil, pch=20)
lines(fg$xout, fg$rcb,lty=1)

220 Bayesian Regression Modeling with INLA

lines(fg$xout, fg$scb,lty=2)

The credible bands for smoothness tell us nothing about the position of the curve
at any particular points — for this we need the standard bands shown in Figure 8.2.
But if we are more interested in the uncertainty about the shape of the curve, these
new bands are more helpful. For more discussion see Faraway (2016a).

8.4 Non-Stationary Fields
We may wish to model functions that exhibit variations in amplitude and smoothness
over the domain. We can allow for this by generalizing the equations (8.2) and to:

log(σ(x)) = γ
σ
0 (x)+

p

∑
k=1

γ
σ

k (x)θk,

log(ρ(x)) = γ
ρ

0(x)+
p

∑
k=1

γ
ρ

k (x)θk,

where γσ

k () and γ
ρ

k () are sets of basis functions. The coefficients θ are held in common
between the two sets but could be defined so that both vary freely if required. Let’s
illustrate how this can be applied.

To show that the method works effectively, we need a function with clearly vary-
ing smoothness. We use the same test function as used in Chapter 7:

set.seed(1)
n <- 100
x <- seq(0, 1, length=n)
f.true <- (sin(2*pi*(x)^3))^3
y <- f.true + rnorm(n, sd = 0.2)
td <- data.frame(y = y, x = x, f.true)

The data are simulated from the following model:

yi = sin3(2πx3
i)+ εi, εi ∼ N(0,σ2

ε),

where xi ∈ [0,1] are equally spaced and σ2
ε = 0.04. We simulate n = 100 data points.

For comparison purposes let’s construct the fit with a stationary field. The process
is the same as followed in the introduction although we need to change the scaling
for this data:

nbasis <- 25
mesh <- inla.mesh.1d(seq(0,1,length.out = nbasis),degree =2)
alpha <- 2
nu <- alpha - 1/2
sigma0 <- sd(y)
rho0 <- 0.1
kappa0 <- sqrt(8 * nu)/rho0
tau0 <- 1 / (4 * kappa0^3 * sigma0^2)^0.5

Gaussian Process Regression 221

spde <- inla.spde2.matern(mesh, alpha=alpha,
B.tau = cbind(log(tau0), 1, 0),
B.kappa = cbind(log(kappa0), 0, 1),
theta.prior.prec = 1e-4)

A <- inla.spde.make.A(mesh, loc=td$x)
index <- inla.spde.make.index("sinc", n.spde = spde$n.spde)
st.est <- inla.stack(data=list(y=td$y), A=list(A),

effects=list(index), tag="est")
formula <- y ~ -1 + f(sinc, model=spde)
data <- inla.stack.data(st.est)
result <- inla(formula, data=data, family="gaussian",

control.predictor= list(A=inla.stack.A(st.est), compute=TRUE))

We display this in the first plot of Figure 8.5:

ii <- inla.stack.index(st.est, "est")$data
plot(y ~ x, td, col=gray(0.75))
tdx <- td$x
lines(tdx, result$summary.fitted.values$mean[ii])
lines(tdx,f.true,lty=2)

We see that the fitted function is too rough on the left but too smooth on the right. This
function is difficult to fit because it has varying smoothness. All stationary smoothers
struggle with this test function for this reason. We now introduce non-stationarity:

basis.T <-as.matrix(inla.mesh.basis(mesh, type="b.spline",
n=5, degree=2))

basis.K <-as.matrix(inla.mesh.basis(mesh, type="b.spline",
n=5, degree=2))

spde <- inla.spde2.matern(mesh, alpha=alpha,
B.tau = cbind(basis.T[-1,],0),

B.kappa = cbind(0,basis.K[-1,]/2),
theta.prior.prec = 1e-4)

formula <- y ~ -1 + f(sinc, model=spde)
result <- inla(formula, data=data, family="gaussian",
control.predictor= list(A=inla.stack.A(st.est), compute=TRUE))

We use B-spline bases for both τ and κ. We do not need much flexibility so only five
basis functions are used. Using more than five would just increase the cost of com-
putation here. The division by two in the specification of B.kappa is there because
inla.spde2.matern works with log(κ), whereas inla.spde.create works with
log(κ2). We have used zeroes in the specification of the bases so that each part has its
own set of θ’s. We plot the posterior mean as seen in the second plot of Figure 8.5.

plot(y ~ x, td, col=gray(0.75))
lines(tdx, result$summary.fitted.values$mean[ii])
lines(tdx,f.true,lty=2)

We see that the posterior mean follows the true function very well. In particular, it
is able to follow the initial flat part of the test function while still capturing the two
optima and point of inflexion seen later in the function. Compare this to Figure 7.8
which shows the random walk smoothing method applied to this same problem. The
function bri.nonstat() executes these computations more conveniently although
any modifications will require running through the steps above. We can reproduce
the second panel of Figure 8.5 with:

222 Bayesian Regression Modeling with INLA

�

�

�

�

�

�

�
�
�

�

�

�

�

�

�

��

��
�
��

�

�

�

��

�

�

�

�

�

�

�

�

��
�

�
�

��

��

��

�

�

�

�
�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
��

��
�

�

�

�

��

��

�

�

�

�
�

��

�

�

�

�

0.0 0.2 0.4 0.6 0.8 1.0

−1
.0

−0
.5

0.
0

0.
5

1.
0

1.
5

x

y

�

�

�

�

�

�

�
�
�

�

�

�

�

�

�

��

��
�
��

�

�

�

��

�

�

�

�

�

�

�

�

��
�

�
�

��

��

��

�

�

�

�
�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
��

��
�

�

�

�

��

��

�

�

�

�
�

��

�

�

�

�

0.0 0.2 0.4 0.6 0.8 1.0

−1
.0

−0
.5

0.
0

0.
5

1.
0

1.
5

x
y

FIGURE 8.5
Stationary and non-stationary fits. The posterior mean is shown as a solid line and
the true function as a dashed line.

fg <- bri.nonstat(tdx, tdy)
plot(y ~ x, td, col=gray(0.75))
lines(f.true ~ x, td, lty=2)
lines(fg$xout, fg$mean)

8.5 Interpolation with Uncertainty
Suppose we observe pairs (xi,yi) from the relationship y = f (x) and there is no (or at
least very little) measurement error. At first glance, this may not seem like a statistics
problem at all but rather an exercise in function approximation. The usual methods
of nonparametric regression do not apply. Nevertheless, although we know the value
of y exactly at the points of observation, we would be uncertain about f between
these points. We should like to quantify this uncertainty. This is an example of what
applied mathematicians call uncertainty quantification. In the computer experiments
problem, observations (x, f (x)) require time-consuming computer simulations and
so one obtains limited information about f . We want to estimate f from a limited
sample. We want an expression of our uncertainty about f .

We can solve this problem using GPR by forcing the error in the observations
towards zero. We can also allow a small amount of measurement error if appropriate.
To illustrate how the method works, we generate a small artificial dataset:

x <- c(0,0.1,0.2,0.3,0.7,1.0)
y <- c(0,0.5,0,-0.5,1,0)

Gaussian Process Regression 223

td <- data.frame(x,y)

The first part of the solution follows the same path as previous examples. We
use a large number of basis functions. This will be computationally expensive but
the method will adapt to our extravagance. If you need this to run faster, you might
economize here.

The choice of the prior on f is critical to the outcome. The choice α determines
the shape of the kernel — two is the smoothest available to us. We set up the mesh
with degree two splines which is again the smoothest choice available. We use penal-
ized complexity priors because this makes it easier to specify our prior uncertainty.
We have specified a small chance that the range is quite small indicating a preference
for a smoother fit. We have allowed a small chance that the variance of the function is
much larger than the data would suggest. Finally, we set up the A matrix to compute
the fit at the points of observation:

nbasis <- 100
alpha <- 2
mesh <- inla.mesh.1d(seq(0,1,length.out = nbasis),degree = 2)
spde <- inla.spde2.pcmatern(mesh, alpha=alpha,

prior.range=c(0.05,0.1), prior.sigma=c(5,0.05))
A <- inla.spde.make.A(mesh, loc=td$x)

The purpose of this analysis is to investigate f between the points of observation
so we need estimates in these ranges. We specify a fine grid of 101 points and define
an A to convert between the mesh and these points. This method is useful also in
other examples where we want estimates at more than the points of observation. We
need to keep track of two sets of estimates now — one for the points of observation
and one for the grid. We use the stacking functions to keep track of this:

ngrid <- 101
Ap <- inla.spde.make.A(mesh, loc=seq(0,1,length.out = ngrid))
index <- inla.spde.make.index("sinc", n.spde = spde$n.spde)
st.est <- inla.stack(data=list(y=td$y), A=list(A),

effects=list(index), tag="est")
st.pred <- inla.stack(data=list(y=NA), A=list(Ap),

effects=list(index), tag="pred")
formula <- y ~ -1 + f(sinc, model=spde)
sestpred <- inla.stack(st.est,st.pred)

Now we are ready to fit the function. We specify that the hyperparameter asso-
ciated with the observation error has a very large fixed precision. This forces the
observation error down towards zero.

result <- inla(formula, data=inla.stack.data(sestpred),
family="gaussian",
control.predictor= list(A=inla.stack.A(sestpred), compute=TRUE),
control.family(hyper=list(prec = list(fixed = TRUE, initial = 1e8))))

We now plot the resulting fit. We use the predicted response on the grid. We
display the posterior mean along with the 95% credible bands as seen in the first
panel of Figure 8.6. We are certain of the function at the points of observation but
there is considerable uncertainty between these points.

ii <- inla.stack.index(sestpred, tag=’pred’)$data

224 Bayesian Regression Modeling with INLA

plot(y ~ x, td,pch=20,ylim=c(-2,2))
tdx <- seq(0,1,length.out = ngrid)
lines(tdx, result$summary.linear.pred$mean[ii])
lines(tdx, result$summary.linear.pred$"0.025quant"[ii], lty = 2)
lines(tdx, result$summary.linear.pred$"0.975quant"[ii], lty = 2)

�

�

�

�

�

�

0.0 0.2 0.4 0.6 0.8 1.0

−2
−1

0
1

2

x

y

�

�

�

�

�

�

0.0 0.2 0.4 0.6 0.8 1.0

−0
.5

0.
0

0.
5

1.
0

x

y

FIGURE 8.6
On the left, the solid line shows the posterior mean and the dotted lines show the
95% credible interval for the function. On the right, the solid line again shows the
posterior mean while the dashed line shows the roughest end of the 95% credible
interval on the range. The dotted line shows the smoothest end of that interval.

Should we need it, we can extract the posterior distribution at any point on the grid.
For example, we can get this distribution at x = 0.5 by:

jj <- which(tdx == 0.5)
margpred <- result$marginals.linear[ii]
plot(margpred[[jj]],type="l", ylab="Density")

We have not shown the plot as it is the usual bell-shaped posterior we would expect
here.

With a small dataset, the results are likely to be more sensitive to the prior. Read-
ers may find it helpful to experiment with the choices we have made above. The
choice of α makes a large difference while moderate changes to the prior on the
range and SD have relatively less impact.

We can also construct bands that express our uncertainty regarding the smooth-
ness of the fitted function. We can obtain summary information about the posterior
distribution on the range:

mres <- inla.spde.result(result,"sinc",spde)
exp(mres$summary.log.range.nominal[c(2,4,5,6,7)])

Gaussian Process Regression 225

mean 0.025quant 0.5quant 0.975quant mode
range.nominal.1 0.1327 0.033269 0.14456 0.3462 0.18881

We need to exponeniate since the original summary is on the log scale. It only makes
sense to exponentiate some of the summary statistics as we have selected above. We
see the posterior median for the range is 0.145 but the 95% credible interval is quite
wide. We can obtain similar information about the SD of the function:

sqrt(exp(mres$summary.log.variance.nominal[c(2,4,5,6,7)]))

mean 0.025quant 0.5quant 0.975quant mode
variance.nominal.1 0.52937 0.30277 0.53804 0.857 0.56354

As before, we need to exponentiate and hence the selection of statistics to report.
We have also taken the square root to get the results on the SD scale (row title is
misleadling). We see that this 95% credible interval is relatively narrower since our
six observations do give us some good information about the variance.

It is difficult to visualize the consequences of this uncertainty so, as in the pre-
vious section, we find it helpful to plot the estimated functions corresponding to the
ends of the credibility interval. We fix the hyperparameters for range and SD, first
using the lower end of the range credibility interval. We use the median for the SD.
This will give us the roughest fit within the credibility interval for range:

spde <- inla.spde2.pcmatern(mesh,alpha=alpha,
prior.range=c(0.033269,NA),prior.sigma=c(0.53804,NA))

resultl <- inla(formula, data=inla.stack.data(sestpred),
family="gaussian",
control.predictor= list(A=inla.stack.A(sestpred), compute=TRUE),
control.family(hyper=list(prec = list(fixed = TRUE, initial = 1e8))))

We repeat the calculation but now for the upper end of the interval:

spde <- inla.spde2.pcmatern(mesh,alpha=alpha,
prior.range=c(0.3462,NA),prior.sigma=c(0.53804,NA))

resulth <- inla(formula, data=inla.stack.data(sestpred),
family="gaussian",
control.predictor= list(A=inla.stack.A(sestpred), compute=TRUE),
control.family(hyper=list(prec = list(fixed = TRUE, initial = 1e8))))

We now plot the result as seen in Figure 8.6.

plot(y ~ x, td,pch=20)
tdx <- seq(0,1,length.out = ngrid)
lines(tdx, result$summary.linear.pred$mean[ii])
lines(tdx, resultl$summary.linear.pred$mean[ii],lty=2)
lines(tdx, resulth$summary.linear.pred$mean[ii],lty=3)

We see that the roughest fit means that the correlation between points which are well-
separated must drop towards zero. This is achieved by a constant fit as seen in the
figure. The fitted function represented by the dotted line moves up and down to catch
the observations but quickly returns to the constant. The smoothest fit represented by
the dashed line is clearly smoother than the posterior mean fit. The plot gives us a
different view of the uncertainty from the previous plot. In the first plot, we claim
a 95% probability that the true function lies between the two bands (in a pointwise
sense). In the second plot, the claim is regarding the smoothness of the true function
rather than its position.

226 Bayesian Regression Modeling with INLA

8.6 Survival Response
In the previous examples, the response had a Gaussian distribution. We can general-
ize to other distributions by incorporating the GPR into the linear predictor. Consider
the accelerated failure time models described in Section 6.3 with a Weibull response.
In equation (6.5) a parametric linear relationship between the mean response and the
covariates is described. We can replace this with:

logλ = f (x),

where λ is the rate parameter of the Weibull distribution and f (x) is the GPR term.
We can add parametric or additional GPR terms to accommodate other predictors as
needed.

Consider the larynx cancer example introduced in Section 6.3. We model the
survival time using only the age covariate. The construction of the SPDE solution is
very similar to previous examples. We use penalized complexity priors as described
in Section 8.2. These require some notion of the scaling in the data with the prior
on the range depending on the range of ages seen and the prior on sigma depending
on the survival times. We make conservative choices in both cases. We also need
to set up the survival response in inla.surv which requires both the time and the
censoring variable (where 1=completed observation and 0=censored).

data(larynx, package="brinla")
nbasis <- 25
alpha <- 2
xspat <- larynx$age
mesh <- inla.mesh.1d(seq(min(xspat), max(xspat), length.out = nbasis),

degree = 2)
spde <- inla.spde2.pcmatern(mesh,alpha=alpha,prior.range=c(20,0.1),

prior.sigma=c(10,0.05))
A <- inla.spde.make.A(mesh, loc=xspat)
index <- inla.spde.make.index("sinc", n.spde = spde$n.spde)
st.est <- inla.stack(data=list(time=larynx$time,censor=larynx$delta),

A=list(A), effects=list(index), tag="est")
formula <- inla.surv(time,censor) ~ 0 +f(sinc, model=spde)
data <- inla.stack.data(st.est)
result <- inla(formula, data=data, family="weibull.surv",

control.predictor= list(A=inla.stack.A(st.est), compute=TRUE))

Required quantities such as the hazard and survival function can be computed
via the linear predictor. Here we demonstrate the computation of the mean survival
time along with 95% credible intervals. The index tells us which cases are needed
from the linear predictor object to construct the estimate. The shape parameter α

is a hyperparameter which is needed to compute the survival time in terms of λ.
The resulting estimate along with the credibility bands is shown in the first panel of
Figure 8.7. We can see that the linear term for age used in the parametric model is a
reasonable choice as there is no strong evidence of nonlinearity.

ii <- inla.stack.index(st.est, "est")$data
lcdf <- data.frame(result$summary.linear.predictor[ii,],larynx)

Gaussian Process Regression 227

alpha <- result$summary.hyperpar[1,1]
lambda <- exp(lcdf$mean)
lcdf$exptime <- lambda^(-1/alpha)*gamma(1/alpha + 1)
lambda <- exp(lcdf$X0.025quant)
lcdf$lcb <- lambda^(-1/alpha)*gamma(1/alpha + 1)
lambda <- exp(lcdf$X0.975quant)
lcdf$ucb <- lambda^(-1/alpha)*gamma(1/alpha + 1)
p <- ggplot(data=lcdf,aes(x=age,y=time)) + geom_point()
p + geom_line(aes(x=age,y=exptime)) +

geom_line(aes(x=age,y=ucb),linetype=2) +
geom_line(aes(x=age,y=lcb),linetype=2)

We can also compute and plot the hazard with 95% credible bands. Since we
have no intercept in this model, the baseline hazard is one. The plot is shown in the
second panel of Figure 8.7. We see how the hazard increases with age.

lambda <- exp(lcdf$mean)
lcdf$hazard <- alpha * lcdf$age^(alpha-1) * lambda
lambda <- exp(lcdf$X0.025quant)
lcdf$hazlo <- alpha * lcdf$age^(alpha-1) * lambda
lambda <- exp(lcdf$X0.975quant)
lcdf$hazhi <- alpha * lcdf$age^(alpha-1) * lambda
ggplot(data=lcdf,aes(x=age,y=hazard)) + geom_line() +

geom_line(aes(x=age,y=hazlo),lty=2) +
geom_line(aes(x=age,y=hazhi),lty=2)

�
�

� �
�� ��� �

� � �� �
��

�� � �� �� �� �
� �

� �

�

�

�

�� �
�

� � �
�� �

�

�
�

� �

�

� �� � �� � � ���

� ��
�� ��� �

���

� �

�
�

� � �
� ��

�
��

�
� �

�

0

5

10

15

20

40 50 60 70 80
age

tim
e

0.1

0.2

0.3

0.4

40 50 60 70 80
age

ha
za

rd

FIGURE 8.7
Mean survival time with age is shown on the left and hazard rate varying with age is
shown on the right. Both are shown with 95% credible intervals.

We could add additional terms to the linear predictor to model more covariates.

9
Additive and Generalized Additive Models

The smoothing methods introduced in Chapter 7 can be extended further into higher
dimensions, but they become rather computationally intensive as the dimension ex-
ceeds two. In multiple dimensions, the variance of nonparametric estimators becomes
a real problem. Nonparametric methods often suffer from variance that scales expo-
nentially with the number of predictors, p; This is known as the curse of dimension-
ality. Because of this, it is often desirable to introduce some sort of structure into the
model. Introducing structure will certainly introduce bias if the structure does not
accurately describe reality; however, it can result in a dramatic reduction in variance.
By far the most common approach is to introduce an additive structure, resulting in
so-called additive and generalized additive models. In this chapter, we show how to
make Bayesian inference on these models using INLA.

9.1 Additive Models
Given a response variable y and predictor variables x1, . . . ,xp, a linear regression
model takes the form:

yi = β0 +
p

∑
j=1

β jxi j + εi,

for i = 1, . . . ,n, where the error εi has mean 0 and variance σ2
ε . To make this model

more flexible, we may include transformations and combinations of the predictor
variables. Given the wide choice of possible transformations, it can often be difficult
to find a good model. Alternatively, we may try a systematic approach of fitting a
family of transformations, such as polynomials of the predictor variables. But, the
number of terms will become very large if we particularly include interactions.

Instead, we may try a nonparametric regression approach by fitting the following
model

yi = f (xi1, . . . ,xip)+ εi.

Although it avoids the parametric assumptions about the function f , fitting such a
model is simply impractical for p bigger than two, due to the requirement of a large
sample size. A good compromise between these two extremes is the additive model

230 Bayesian Regression Modeling with INLA

(Friedman and Stuetzle, 1981):

yi = β0 +
p

∑
j=1

f j(xi j)+ εi, (9.1)

where β0 is the intercept. Here f j’s may be the functions with a parametric form (e.g.,
a polynomial), or may be specified simply as “smooth functions” to be estimated by
nonparametric means. The additive models are more flexible than the linear mod-
els, but still interpretable since f j can be plotted to give a sense of the marginal
relationship between the predictor and the response. It is also easy to accommodate
categorical variables in the model using the usual regression approach. However,
when strong interactions exist, the additive models will perform poorly. The terms
like fi j(xix j) or fi j(xi,x j) can be added to the model in that situation. We can also
have an interaction between a factor and a continuous predictor by fitting a different
function for each level of that factor.

In the frequentist paradigm, the additive models can be taken as a form of non-
parametric regression, and be fitted using the backfitting algorithm (Buja et al., 1989;
Hastie and Tibshirani, 1990). The backfitting algorithm allows a variety of smoothing
methods (e.g., smoothing splines) to estimate the functions, and can be implemented
in R via the gam package. Alternatively, we may first represent the smooth arbitrary
functions with a family of spline basis functions, and then estimate the function co-
efficients based on the penalized likelihood method (Wood, 2006). This penalized
smoothing approach allows us to efficiently estimate the degree of smoothness of the
model components using generalized cross validation (Wood, 2008), and can be im-
plemented in R via the mgcv package. To compare the two methods, the backfitting
approach allows for more choice in the smoothers we may use, while the penalized
smoothing approach has an automatic choice in the degree of smoothness as well as
wider functionality.

Bayesian additive models

We assume that in model (9.1) the random error εi ∼ N(0,σ2
ε) and take a prior on

each function f j, i.e., p(f j|τ j), that depends on the unknown hyperparameter(s) τ j.
Then, the joint posterior distribution of this Bayesian additive model is given by

p(f1, . . . ,fp,θ | y) = L
(
f1, . . . ,fp,σ

2
ε ,β0;y

)
×

p(β0)p(σ2
ε)

p

∏
j=1

p(f j | τ j)p(τ j),

where θ denotes all the unknown parameters, L is the Gaussian likelihood function,
and p(β0), p(σ2

ε) and p(τ j) are the priors.
The Bayesian backfitting algorithm (Hastie and Tibshirani, 2000) combined with

MCMC simulations is often used to sample the marginal posterior distributions. It
allows for a wide choice of the smoothing priors for f j and automatically choosing
the amount of smoothing through the data and the priors. However, it is well known

Additive and Generalized Additive Models 231

that the Markov chains in this case tend to converge slowly and have poor mixing
property. It is because the samples of f j(x) depend on those of the rest of fk(x) (k 6=
j). In addition, it is difficult for general users to implement the MCMC algorithms
when the additive models in need are complicated.

INLA, therefore, is a good alternative for fitting the additive models. When taking
on each f j the Gaussian prior introduced in Chapters 7 and 8, the additive models
fall in the class of latent Gaussian models and thus can be fitted by INLA. INLA
does not suffer from the drawbacks in the MCMC method due to its approximation
nature. It is also fairly efficient in computation because all the Gaussian priors used
in the model have sparse precision matrices and can be combined together as another
big but sparse Gaussian prior to facilitate the approximations.

Simulated data

Let’s load the mgcv package and simulate data from the so-called “Gu and Wahba 4
univariate term example”:

library(INLA); library(brinla)
library(mgcv)
set.seed(2)
dat <- gamSim(1, n = 400, dist = "normal", scale = 2)
str(dat)

’data.frame’: 400 obs. of 10 variables:
$ y : num 7.13 2.97 3.98 10.43 14.57 ...
$ x0: num 0.185 0.702 0.573 0.168 0.944 ...
$ x1: num 0.6171 0.5691 0.154 0.0348 0.998 ...
$ x2: num 0.41524 0.53144 0.00325 0.2521 0.15523 ...
$ x3: num 0.132 0.365 0.455 0.537 0.185 ...
$ f : num 8.39 7.52 3.31 10.86 14.63 ...
$ f0: num 1.097 1.609 1.947 1.008 0.351 ...
$ f1: num 3.44 3.12 1.36 1.07 7.36 ...
$ f2: num 3.853084 2.786858 0.000331 8.782269 6.923314 ...
$ f3: num 0 0 0 0 0 0 0 0 0 0 ...

The data frame contains 400 observations of 10 variables, where y is the response
variable, xi (i = 0,1,2,3) are the predictor variables, fi (i = 0,1,2,3) are the true
functions, and f is the true linear predictor. The noise is Gaussian with mean 0 and
SD 2. We then fit the following additive model to the data

y = β0 + f0(x0)+ f1(x1)+ f2(x2)+ f3(x3)+ ε, ε∼ N(0,σ2
ε),

where we take the diffuse normal prior on β0, the diffuse inverse gamma prior on
σ2

ε , and the RW2 prior on each fi function. Those priors are explained in detail in
Chapter 7. The model can be formulated in INLA as

formula <- y ~ f(x0, model = ’rw2’, scale.model = TRUE) + f(x1, model
↪→ = ’rw2’, scale.model = TRUE) + f(x2, model = ’rw2’, scale.model
↪→ = TRUE) + f(x3, model = ’rw2’, scale.model = TRUE)

where we scale the RW2 priors to account for the potential different scales required
by different functions. We also set the sum-to-zero constraint (the default choice) to
each RW2 prior in order to make it identifiable from the intercept. Note that some x

232 Bayesian Regression Modeling with INLA

0.0 0.2 0.4 0.6 0.8 1.0

-1
.0

-0
.5

0.
0

0.
5

(a) f0(x0)

0.0 0.2 0.4 0.6 0.8 1.0

-3
-2

-1
0

1
2

3
4

(b) f1(x1)

0.0 0.2 0.4 0.6 0.8 1.0

-4
-2

0
2

4
6

(c) f2(x2)

0.0 0.2 0.4 0.6 0.8 1.0

-0
.6

-0
.4

-0
.2

0.
0

0.
2

0.
4

0.
6

(d) f3(x3)

FIGURE 9.1
Simulation results of additive models using RW2 priors: true function (dashed), pos-
terior mean (solid), and 95% credible band (gray).

values are too close to be used for building the RW2 priors. We therefore group them
into a few bins first:

n.group <- 50
x0.new <- inla.group(dat$x0, n = n.group, method = ’quantile’)
x1.new <- inla.group(dat$x1, n = n.group, method = ’quantile’)
x2.new <- inla.group(dat$x2, n = n.group, method = ’quantile’)
x3.new <- inla.group(dat$x3, n = n.group, method = ’quantile’)

and then use those bins to fit the model:

dat.inla <- list(y = dat$y, x0 = x0.new, x1 = x1.new, x2 = x2.new, x3
↪→ = x3.new)

result <- inla(formula, data = dat.inla)

Additive and Generalized Additive Models 233

The posterior summary of β0 is given by:

round(result$summary.fixed, 4)

mean sd 0.025quant 0.5quant 0.975quant mode kld
(Intercept) 7.7696 0.0995 7.5741 7.7696 7.965 7.7697 0

We plot the fitted curve (posterior mean) and 95% credible interval for each function
in Figure 9.1. The true function is also plotted for comparison purposes. The R code
for plotting Figure 9.1(a) is shown below, and the other plots can be made similarly:

bri.band.plot(result, name = ’x0’, type = ’random’, xlab=’’, ylab=’’)
lines(sort(dat$x0), (dat$f0 - mean(dat$f0))[order(dat$x0)], lty = 2)

Note that we center each true function to satisfy the sum-to-zero constraint. We can
see that the functions are estimated well, considering most of the fits are within the
credible bands. They are comparable with those obtained using the mgcv package
(not shown). The posterior summary of the SDs is given below:

round(bri.hyperpar.summary(result), 4)

mean sd q0.025 q0.5 q0.975 mode
SD for the Gaussian observations 1.9796 0.0713 1.8443 1.9775 2.1246 1.9733
SD for x0 0.2164 0.1072 0.0754 0.1933 0.4893 0.1541
SD for x1 0.1796 0.0986 0.0530 0.1578 0.4318 0.1191
SD for x2 3.7413 0.9482 2.2800 3.5964 5.9867 3.3188
SD for x3 0.0105 0.0063 0.0039 0.0087 0.0276 0.0063

The estimated SD of the Gaussian noises is close to the true value σε = 2. The es-
timated SD in the RW2 prior for each f function reflects its degrees of smoothness:
the smoother the estimated function is, the higher its estimated SD is.

Munich rental guide

We have fitted a few nonparametric regression models for this dataset in Chapter 7.
We considered the predictors like floor size, construction year and spatial location,
and saw how they individually impacted the rent. However, it would be better to
build an additive model including all of those predictors as well as the categorical
predictors provided in the dataset. We thus consider

rent = f1(location)+ f2(year)+ f3(floor.size)

+ (Gute.Wohnlage)β1 +(Beste.Wohnlage)β2 +(Keine.Wwv)β3

+ (Keine.Zh)β4 +(Kein.Badkach)β5 +(Besond.Bad)β6

+ (Gehobene.Kueche)β7 +(zim1)β8 +(zim2)β9

+ (zim3)β10 +(zim4)β11 +(zim5)β12 +(zim6)β13

+ ε, ε∼ N(0,σ2
ε), (9.2)

where β’s are the regression coefficients of the linear effects, f1 is the unknown
function of the spatial effect in location, and f2 and f3 are the functions of nonlinear
effects in year and floor.size, respectively. Note that no intercept is used in the
model because of the dummy predictors. We take a Besag prior on f1, and RW2
priors on f2 and f3. From the nonparametric regression examples, we see that the

234 Bayesian Regression Modeling with INLA

two nonlinear effects and the spatial effect have quite different estimated precisions.
We therefore must scale their priors in order to make assigning the same gamma prior
for their precisions a reasonable approach. As a result, we express this model and fit
it in INLA as follows:

data(Munich, package = "brinla")
g <- system.file("demodata/munich.graph", package = "INLA")
formula <- rent ~ f(location, model = "besag", graph = g, scale.model

↪→ = TRUE) + f(year, model = "rw2", values = seq(1918, 2001),
↪→ scale.model = TRUE) + f(floor.size, model = "rw2", values = seq
↪→ (17, 185), scale.model = TRUE) + Gute.Wohnlage + Beste.Wohnlage
↪→ + Keine.Wwv + Keine.Zh + Kein.Badkach + Besond.Bad + Gehobene
↪→ .Kueche + zim1 + zim2 + zim3 + zim4 + zim5 + zim6 - 1

result <- inla(formula, data = Munich, control.predictor = list(
↪→ compute = TRUE))

Note that the sum-to-zero constraint is added to each of the Besag and RW2 models
(the default choice in INLA) in order to make them identifiable from the dummy
predictors.

Let’s look at the estimated regression coefficients of the categorical variables:

round(result$summary.fixed, 3)

mean sd 0.025quant 0.5quant 0.975quant mode kld
Gute.Wohnlage 0.621 0.109 0.405 0.621 0.834 0.622 0
Beste.Wohnlage 1.773 0.317 1.151 1.773 2.394 1.773 0
Keine.Wwv -1.942 0.278 -2.488 -1.942 -1.397 -1.942 0
Keine.Zh -1.373 0.191 -1.747 -1.373 -0.999 -1.373 0
Kein.Badkach -0.552 0.115 -0.777 -0.552 -0.327 -0.552 0
Besond.Bad 0.493 0.160 0.179 0.493 0.807 0.493 0
Gehobene.Kueche 1.136 0.175 0.793 1.136 1.478 1.136 0
zim1 7.917 0.290 7.347 7.917 8.487 7.917 0
zim2 8.198 0.223 7.760 8.198 8.635 8.199 0
zim3 8.019 0.201 7.624 8.020 8.413 8.020 0
zim4 7.590 0.207 7.182 7.591 7.997 7.591 0
zim5 7.722 0.319 7.094 7.722 8.348 7.722 0
zim6 7.504 0.565 6.395 7.504 8.611 7.504 0

We see all the variables are statistically useful, because the 95% credible intervals of
their β’s do not cover zero.

There are three random effects in the model: year, floor.size and location.
Their results are all saved in result1$summary.random. Now let’s look at them one
by one. We plot the fitted curves and 95% credible bands for floor.size and year
in Figure 9.2(a) and 9.2(b), respectively:

bri.band.ggplot(result, name = ’floor.size’, type = ’random’)
bri.band.ggplot(result, name = ’year’, type = ’random’)

It appears that the effect of floor.size on rent decreases as it increases to 50,
followed by a flat pattern around 0 to the end. The effect of year has a U-shape
pattern between 1920 and 1960, and then keeps increasing to the end. In Figure
9.2(c) and 9.2(d) we present the posterior mean and SD maps of the spatial effect
based on the R commands:

map.munich(result$summary.random$location$mean)
map.munich(result$summary.random$location$sd)

Additive and Generalized Additive Models 235

-2.5

0.0

2.5

5.0

50 100 150

(a) Floor size

-1

0

1

2

1920 1940 1960 1980 2000

(b) Construction year

−1.6027 0.85360

(c) Mean of the spatial effect

0.2428 0.7739

(d) SD of the spatial effect

FIGURE 9.2
Munich rental guide: (a) estimated nonlinear effect of floor size and its 95% credible
band; (b) estimated nonlinear effect of year of construction and its 95% credible
band; (c) posterior means of the spatial effect; (d) posterior SDs of the spatial effect.

Note that the map.munich is the function created for plotting the maps for this Mu-
nich rental guide dataset only. It will not work for a different dataset. We can see that
the apartment rents are higher on average in the central regions of Munich than those
in the suburban areas. The rent variability, however, shows a reverse pattern: the SDs
are lower in the central regions than those in the suburban areas.

For diagnostics purposes, we show the residual plot in the left panel of Figure 9.3
and the plot of observed response against estimated mean response in the right panel
using:

yhat <- result$summary.fitted.values$mean

236 Bayesian Regression Modeling with INLA

4 6 8 10 12 14

−6
−4

−2
0

2
4

6

Fitted value

R
es

id
ua

l

4 6 8 10 12 14

5
10

15
20

Fitted value

R
en

t

FIGURE 9.3
Munich rental guide: residual vs. fitted value (left); rent vs. fitted value (right).

residual <- Munich$rent - yhat
plot(yhat, residual, ylab = ’Residual’, xlab = ’Fitted value’)
abline(0,0)
plot(yhat, Munich$rent, ylab = ’Rent’, xlab = ’Fitted value’)
abline(0,1)

The residual plot shows no systematic pattern, which is the evidence of a good fit.
However, it seems that the model slightly overestimates low rents but underestimates
high rents. We believe it is because the distribution of rents is skewed to the right, and
the normality assumption used in the model is not quite appropriate. But, generally
speaking, the model provides reasonable results.

9.2 Generalized Additive Models
A generalized additive model (GAM) is a generalized linear model (GLM) (see
Chapter 4), in which the linear predictor depends on the unknown smooth functions
of some predictor variables. Assuming that response variable yi, for i = 1, . . . ,n, fol-
lows a distribution from the exponential family (e.g., binomial or Poisson distribu-
tion) with mean E(yi) = µi, a GAM is given by

g(µi) = ηi, ηi = β0 +
p

∑
j=1

f j(xi j), (9.3)

where g is the link function, connecting µi to the linear predictor ηi. GAMs were
originally developed by Hastie and Tibshirani (1990), in order to blend the properties
of the GLMs with the additive models introduced in the previous section. The GAM
family is quite broad, and most current models belong to that family.

Additive and Generalized Additive Models 237

A GAM, like the additive model, can be fitted using the mgcv and the gam pack-
ages, but with different approaches. The mgcv takes a likelihood approach and the
amount of smoothing applied to each function is decided by some information crite-
rion, e.g., generalized cross validation (Wood, 2008). The gam package uses a back-
fitting approach based on the iterative reweighted least squares (IRWLS) fitting algo-
rithm as used in GLM. It is straightforward to extend the INLA method of fitting the
additive models to the GAMs. Actually, only a Laplace approximation to the non-
Gaussian likelihood needs to be added to the algorithm. In the following sections,
we will use a few real-data examples to demonstrate how to fit GAMs using INLA.

9.2.1 Binary Response

Bell et al. (1994) studied the result of multiple-level thoracic and lumbar laminec-
tomy, a corrective spinal surgery commonly performed on children. The data in the
study consist of retrospective measurements on 83 patients. The specific outcome of
interest is the presence (1) or absence (0) of Kyphosis, defined as a forward flexion
of the spine of at least 40 degrees from vertical. The predictor variables are age in
months at the time of the operation (Age), the starting of vertebrae levels involved
in the operation (StartVert), and the number of levels involved (NumVert). Let us
load the dataset:

data(kyphosis, package = ’brinla’)
str(kyphosis)

’data.frame’: 83 obs. of 4 variables:
$ Age : int 71 158 128 2 1 1 61 37 113 59 ...
$ StartVert: int 5 14 5 1 15 16 17 16 16 12 ...
$ NumVert : int 3 3 4 5 4 2 2 3 2 6 ...
$ Kyphosis : int 0 0 1 0 0 0 0 0 0 1 ...

In the data frame, we see 4 integer variables and each variable has 83 observations.
Because they are binary, we assume the response observations follow Bernoulli

distributions and use the logit link:

Kyphosis_i∼ Bin(1, pi), log
(

pi

1− pi

)
= ηi

where pi is the probability of the presence of Kyphosis for ith patient, and ηi is
the linear predictor related to pi. Because we are not certain about what kind of
relationship each predictor has with the response variable, we first model all three
predictors with nonparametric functions as follows:

ηi = β0 + f1(Agei)+ f2(StartVerti)+ f3(NumVerti). (9.4)

The default normal prior provided by INLA is taken on β0, and an RW2 prior on
each f function. We then formulate the model and fit it using INLA:

formula1 <- Kyphosis ~ 1 + f(Age, model = ’rw2’) + f(StartVert, model
↪→ = ’rw2’) + f(NumVert, model = ’rw2’)

result1 <- inla(formula1, family=’binomial’, data = kyphosis, control.
↪→ predictor = list(compute = TRUE), control.compute = list(waic =
↪→ TRUE))

238 Bayesian Regression Modeling with INLA

-12

-8

-4

0

0 50 100 150 200 250

(a) Age

-2

0

2

5 10 15

(b) StartVert

-5.0

-2.5

0.0

2.5

5.0

5 10

(c) NumVert

0.00

0.25

0.50

0.75

1.00

-5.0 -2.5 0.0 2.5
Linear predictor

P
ro

ba
bi

lit
y

(d) Risk function

FIGURE 9.4
Risk factors for kyphosis: posterior mean (black line) and 95% credible band (gray
band) for (a) Age, (b) StartVert and (c) NumVert; (d) estimated risk function (dot)
and 95% credible band (gray vertical line).

By default the logit link is used for the binomial likelihood, and the sum-to-zero
constraint is added to each RW2 prior to make it identifiable from the intercept. We
also ask INLA to compute the WAIC score for model comparison purposes. Let’s
look at the three nonlinear effects by plotting their fitted curves and 95% credible
bands (Figures 9.4(a), 9.4(b) and 9.4(c)):

bri.band.ggplot(result1, name = ’Age’, type = ’random’)
bri.band.ggplot(result1, name = ’StartVert’, type = ’random’)
bri.band.ggplot(result1, name = ’NumVert’, type = ’random’)

It seems that the risk of kyphosis increases with Age until it reaches maximum around
120 months, and then falls down as the Age continues to increase. After accounting

Additive and Generalized Additive Models 239

for the uncertainty represented by the credible band, the effect of Age is negative be-
fore 30 months, but is positive between 60 and 160 months, because the band does not
cover 0 in those intervals. We also note that the width of the credible band increases
dramatically after 200 months due to the lack of observations. The StartVert and
NumVert, however, simply show linear patterns associated with the risk.

To understand how the linear predictor η affects the risk of kyphosis, we extract
the posterior mean of η:

eta <- result1$summary.linear.predictor$mean

and the posterior mean and the 95% credible interval of pi (probability of presence
of kyphosis for ith patient):

phat <- result1$summary.fitted.values$mean
phat.lb <- result1$summary.fitted.values$’0.025quant’
phat.ub <- result1$summary.fitted.values$’0.975quant’

and then plot them:

data.plot <- data.frame(eta, phat, phat.lb, phat.ub)
ggplot(data.plot, aes(y = phat, x = eta)) + geom_errorbar(aes(ymin =

↪→ phat.lb, ymax = phat.ub), width = 0.2, col = ’gray’) + geom_
↪→ point() + theme_bw(base_size = 20) + labs(x = ’Linear predictor
↪→ ’, y = ’Probability’)

Figure 9.4(d) shows the plot and we can see the risk (dot) increases slowly (p̂ < 0.2)
until η̂ =−2, and then goes up sharply to 1. The credible interval for each risk level
becomes wider as η̂ increases due to the sparse data observed at the high levels.

One of the best things about GAMs is that we can use them to suggest simpler
parametric models, which are better for interpretation, stability, prediction and ease
of use. In this case, the GAM seems to suggest the following quadratic model

ηi = β0 +StartVertiβ1 +NumVertiβ2 +Ageiβ3 +Age2
i β4. (9.5)

Such a model can be fitted using INLA as follows:

kyphosis$AgeSq <- (kyphosis$Age)^2
formula2 <- Kyphosis ~ 1 + StartVert + NumVert + Age + AgeSq
result2 <- inla(formula2, family=’binomial’, data = kyphosis, control.

↪→ predictor = list(compute = TRUE), control.compute = list(waic =
↪→ TRUE))

The posterior summary of the linear effects is given by:

round(result2$summary.fixed, 4)

mean sd 0.025quant 0.5quant 0.975quant mode kld
(Intercept) -5.1887 2.0379 -9.5830 -5.0425 -1.5791 -4.7333 0
StartVert -0.2214 0.0708 -0.3680 -0.2187 -0.0896 -0.2134 0
NumVert 0.5132 0.2191 0.1294 0.4958 0.9899 0.4587 0
Age 0.0899 0.0334 0.0320 0.0870 0.1632 0.0808 0
AgeSq -0.0004 0.0002 -0.0008 -0.0004 -0.0001 -0.0004 0

The point estimates of β1 and β2 are -0.2214 and 0.5132, respectively. Their 95%
credible intervals are (-0.3680, -0.0896) and (0.1294, 0.9899), none of which con-
tains 0. We therefore draw the conclusion that given Age the increase in StartVert
will decrease the risk, but the increase in NumVert will increase the risk. Both linear

240 Bayesian Regression Modeling with INLA

and quadratic coefficients for Age are nonzero because their credible intervals do not
cover 0 either. It indicates that there is a quadratic relationship between Age and the
risk of kyphosis.

To compare quadratic model (9.5) to GAM (9.4), we check their WAIC scores:

c(result1$waic$waic, result2$waic$waic)

[1] 65.91754 65.46884

It shows that the quadratic model slightly outperforms the GAM. It seems that the
simplicity advantages of the quadratic model outweigh the small difference in the fit
given by the GAM. However, without the GAM we might not think of the quadratic
or know that it is the right choice. The GAM analysis was therefore definitely useful.

9.2.2 Count Response

−14 −12 −10 −8 −6 −4 −2

44
46

48
50

52
54

56
58

−14 −12 −10 −8 −6 −4 −2

44
46

48
50

52
54

56
58

FIGURE 9.5
Mackerel egg survey: egg count (left) and egg density (right) at each sampled station.
The size of each circle shows the relative magnitude of each observation.

Most commercially exploitable fish stocks in the world have been over exploited.
To effectively manage stocks we must have sound fish stock assessment, but counting
the number of catchable fish of any given species is almost impossible. One solution
is to assess the number of eggs produced by a stock, and then try to figure out the
number (or the mass) of adult fish required to produce this number. Such egg data
are obtained by sending out scientific cruise ships to sample eggs at each station of
some predefined sampling grid over the area occupied by a stock.

We here consider the data about the distribution of mackerel eggs and were col-
lected as part of the 1992 mackerel survey. At each of a number of stations, mackerel
eggs were sampled by hauling a fine net up from deep below the sea surface to the sea
surface. The egg count data are obtained from the resulting samples, and these have

Additive and Generalized Additive Models 241

been converted to (Stage I) eggs produced per meter squared per day - the egg den-
sity data. Other possibly useful predictor variables have been recorded, along with
identification information. The gamair R package needs to be installed in order to
use the dataset.

Let’s load the dataset and look at its structure:

data(mack, package = ’gamair’)
str(mack, vec.len = 2)

’data.frame’: 634 obs. of 16 variables:
$ egg.count : num 0 0 0 1 4 ...
$ egg.dens : num 0 0 ...
$ b.depth : num 4342 4334 ...
$ lat : num 44.6 44.6 ...
$ lon : num -4.65 -4.48 -4.3 -2.87 -2.07 ...
$ time : num 8.23 9.68 ...
$ salinity : num 35.7 35.7 ...
$ flow : num 417 405 377 420 354 ...
$ s.depth : num 104 98 101 98 101 ...
$ temp.surf : num 15 15.4 15.9 16.6 16.7 ...
$ temp.20m : num 15 15.4 15.9 16.6 16.7 ...
$ net.area : num 0.242 0.242 0.242 0.242 0.242 ...
$ country : Factor w/ 4 levels "EN","fr","IR",..: 4 4 4 4 4 ...
$ vessel : Factor w/ 4 levels "CIRO","COSA",..: 2 2 2 2 2 ...
$ vessel.haul: num 22 23 24 93 178 ...
$ c.dist : num 0.84 0.859 ...

The data frame has 16 columns and 634 rows. Each column represents a predictor
and each row corresponds to one sample of eggs. The egg count and egg density from
each sample are recorded in egg.count and egg.dens, respectively. The location of
each station is defined in lon (longitude) and lat (latitude). We plot the locations
where eggs were sampled, and the relative magnitudes (represented by circle size) of
egg counts and egg densities recorded at that location:

loc.obs <- cbind(mack$lon, mack$lat)
plot(loc.obs, cex = 0.2+mack$egg.count/50, cex.axis = 1.5)
plot(loc.obs, cex = 0.2+mack$egg.dens/150, cex.axis = 1.5)

Figure 9.5 shows the results. The information about the other predictors can be found
by typing ?mack in R.

We would like to predict the number of mackerel eggs produced by a stock. As
we can see in Figure 9.5, there seems to be a spatial effect on the distribution of
eggs. Besides lon and lat, we also consider the predictors of egg abundance, such
as the saltiness of the water (salinity), the water temperature at a depth of 20
meters (temp.20m), and the distance from the 200-meter seabed contour (c.dist).
The c.dist predictor reflects the biologists’ belief that the fish like to spawn near
the edge of the continental shelf, conventionally considered to end at a seabed depth
of 200 meters. Following Wood (2006) we assume that each egg.count follows a
Poisson distribution and model its mean λi as follows:

egg.count_i∼ Poisson(λi), log(λi) = ηi

ηi = log(net.areai)+β1salinityi +β2c.disti

+ f1(temp.20mi)+ f2(loni,lati), (9.6)

242 Bayesian Regression Modeling with INLA

where net.area (area of each net) is used as an offset, β1 and β2 are the coefficients
of the linear effects of salinity and c.dist, respectively, f1 is the nonlinear effect
of temp.20m, and f2 is the spatial effect of (lon,lat).

-5.0

-2.5

0.0

2.5

10.0 12.5 15.0 17.5 20.0

(a) temp.20m

-14 -12 -10 -8 -6 -4 -2
44

46
48

50
52

54
56

58

Longitude

La
tit

ud
e

-2

0

2

4

6

(b) Estimated spatial effect

−14 −12 −10 −8 −6 −4 −2

44
46

48
50

52
54

56
58

Longitude

La
tit

ud
e

−4

−2

0

2

4

(c) log(predicted egg counts)

−14 −12 −10 −8 −6 −4 −2

44
46

48
50

52
54

56
58

Longitude

La
tit

ud
e

0.0

0.2

0.4

0.6

0.8

1.0

(d) Excursion function

FIGURE 9.6
Mackerel egg survey: (a) posterior mean and 95% credible band of the temp.20m
effect; (b) posterior mean of the spatial effect; (c) predicted mean egg counts on log
scale; (d) excursion function showing the probability that there are at least 10 eggs
for a given location.

We take INLA default priors on the linear effects, an RW2 prior on the nonlinear
effect, and a thin-plate spline (TPS) prior on the spatial effect. The triangular mesh
needed for the TPS prior is constructed as follows:

mesh <- inla.mesh.2d(loc.obs, cutoff = 0.05, max.edge = c(.5,1))

Here we set cutoff=0.05 to replace by a single vertex the points that are less than

Additive and Generalized Additive Models 243

0.05 far apart, and allow the largest triangle edge lengths to be 0.5 and 1 to obtain a
smooth triangulation. We then build the TPS prior and fit model (9.6) using INLA:

tps <- bri.tps.prior(mesh)
node <- meshidxloc
formula <- egg.count ~ -1 + salinity + c.dist + f(temp.20m, model = ’

↪→ rw2’) + f(node, model = tps, diagonal = 1e-6)
result <- inla(formula, family = ’poisson’, data = mack, offset = log(

↪→ net.area))

The posterior summary of the linear effects is given by:

round(result$summary.fixed, 4)

mean sd 0.025quant 0.5quant 0.975quant mode kld
salinity 0.0058 0.0025 0.0008 0.0058 0.0107 0.0058 0
c.dist -0.9915 0.5634 -2.1084 -0.9884 0.1068 -0.9821 0

We can see salinity is a significant effect with mean .0058 and 95% credible inter-
val (.0008, .0107), while c.dist is insignificant because its credible interval (-.983,
.106) covers 0. For the nonlinear effect of temp.20m, we plot its fitted curve and 95%
credible band:

bri.band.ggplot(result, name = ’temp.20m’, type = ’random’)

Figure 9.6(a) shows the result and we see that the egg density seems to slowly in-
crease with the temperature until it reaches around 14.5 degrees, then drops sharply
until 16 degrees, followed by another increase until 18 degrees and a big drop to the
end.

Now let’s take a look at the spatial effect. To make an image plot, we need a new
dataset mackp, which provides a regular spatial grid as well as some other predictor
variables within the area covered by the survey. We load the data and project posterior
means of the spatial effect onto that grid:

data(mackp, package = ’gamair’)
proj <- inla.mesh.projector(mesh, loc = cbind(mackp$lon, mackp$lat))
spa.mean <- inla.mesh.project(proj, result$summary.random$node$mean)

and plot them using quilt.plot from the fields package:

library(fields)
quilt.plot(mackp$lon, mackp$lat, spa.mean, nx = length(unique(mackp$

↪→ lon)), ny = length(unique(mackp$lat)))

Figure 9.6(b) shows the result and we see that how the egg abundance depends on
the spatial locations.

Prediction. One main purpose of this study is to assess the total stock of eggs.
Therefore, a simple map of predicted egg densities is useful. It needs us to make
predictions at unobserved locations using the fitted model. INLA can do it jointly
with the estimation process as follows. We define

n.pre <- dim(mackp)[1]
y.pre <- c(mack$egg.count, rep(NA, n.pre))

to be the number of predictions, and the vector of “missing” response variables, re-
spectively. We then combine the variables from mack with those from mackp:

z1.pre <- c(mack$salinity, mackp$salinity)

244 Bayesian Regression Modeling with INLA

z2.pre <- c(mack$c.dist, mackp$c.dist)
x.pre <- inla.group(c(mack$temp.20m, mackp$temp.20m), n = 100)
E.pre <- c(mack$net.area, rep(0.25^2, n.pre))

Note that we group x.pre into n = 100 bins to remove too close values. We also
need to combine the locations from both datasets to build a new mesh, and construct
a TPS prior based on that mesh:

loc.pre <- rbind(cbind(mack$lon,mack$lat), cbind(mackp$lon,mackp$lat))
mesh2 <- inla.mesh.2d(loc.pre, cutoff = 0.05, max.edge = c(.5, 1))
node2 <- mesh2idxloc
tps2 <- bri.tps.prior(mesh2)

As a result, a new GAM is formulated in INLA as follows:

mack.pre <- list(egg.count = y.pre, salinity = z1.pre, c.dist = z2.pre
↪→ , temp.20m = x.pre, node = node2)

formula <- egg.count ~ -1 + salinity + c.dist + f(temp.20m, model = ’
↪→ rw2’) + f(node, model = tps2, diagonal = 1e-6)

Before we fit the model we need to specify the link function that will be used for the
predictions:

link <- rep(NA, length(y.pre))
link[which(is.na(y.pre))] <- 1

Here ‘1’ is the reference to the first ‘family’ specified in inla function. It will thus
be the log link used in the Poisson family. We are now ready to fit this GAM:

result2 <- inla(formula, family = ’poisson’, data = mack.pre, offset =
↪→ log(E.pre), control.predictor = list(link = link, compute =
↪→ TRUE), control.compute = list(config = TRUE))

Here we explicitly ask INLA to compute the marginals of the linear predictor and
the fitted values (compute = TRUE), and store internal approximations for later use
(config = TRUE). Note that this computation is a little demanding, and thus the
result may not appear quickly.

The posterior summary regarding the predictions can be extracted as follows:

idx.pre <- which(is.na(y.pre))
res.pre <- result2$summary.fitted.values[idx.pre,]

where idx.pre is the vector of indices of the prediction locations. We plot the pos-
terior mean on log scale (log(res.pre$mean)) in Figure 9.6(c), where we can see
the egg density is predicted to be high on the western boundary of the survey area,
while relatively low in the southeast corner. It has a pattern similar to that of the spa-
tial effect (see Figure 9.6(b)), which means the egg abundance depends more on the
locations than the other predictors.

Excursion set. Suppose we are interested in finding the squares in the grid (0.25
degree lon-lat squares) where there are 10 or more eggs. We may use the excursion
method described in Section 7.8 to find an excursion set of squares that has that many
eggs with a joint probability of at least 0.95:

res.exc <- excursions.brinla(result2, name = ’Predictor’, ind = idx.
↪→ pre, u = log(10), type = ’>’, alpha = 0.05, method = ’NIQC’)

Additive and Generalized Additive Models 245

Note that the threshold u must be specified on log scale, i.e., u = log(10), due to
the log link used in the model. We plot the excursion function:

quilt.plot(mackp$lon, mackp$lat, res.exc$F, nx = length(unique(mackp$
↪→ lon)), ny = length(unique(mackp$lat)))

Figure 9.6(d) shows the result and we see that the lighter the square is, the more
likely it has 10 or more eggs. The indices of the squares in the resulting excursion set
are given by:

res.exc$E

[1] 262 264 328 330 382 384 386 392 446 451 452 453 459 512 519 570
[17] 572 574 576 636 638 676 720 722 724 772 774 775 776 777 778 780
[33] 782 818 820 822 854 858 938 988 1092 1112

9.3 Generalized Additive Mixed Models
A generalized additive mixed model (GAMM) manages to combine the idea of GAM
seen earlier in this chapter with the mixed modeling ideas as seen in Chapter 5. The
response y can be non-Gaussian, having a distribution from the exponential family,
and the error structure can allow for grouping and hierarchical arrangements in the
data. It is straightforward to extend GAM (9.3) to a GAMM as follows:

g(µi) = β0 +∑
j

f j(xi j)+∑
k

gk(ui j), (9.7)

where the random effects gk(ui j) can be constructed in various ways that introduce
different patterns of correlation in the response as appropriate for the particular ap-
plication. The common correlation structures have been described in Chapter 5. Pro-
vided we assign Gaussian priors on its components, GAMM (9.7) falls in the latent
Gaussian model framework required by INLA.

Sole eggs in the Bristol Channel

Assessing fish stocks is difficult because it is not easy to survey adult fish. Fisheries
biologists therefore try to count fish eggs, and work back to the number of adult fish
required to produce the estimated egg population. The data concerned in this section
are the density measurements of sole eggs per square meter of sea surface in each of
4 identifiable egg developmental stages, at each of a number of sampling stations in
the Bristol Channel on the west coast of England. The samples were taken from 5
research cruises over the spawning season.

Let’s load the dataset and look at its structure:

data(sole, package = ’gamair’)
str(sole)

’data.frame’: 1575 obs. of 7 variables:

246 Bayesian Regression Modeling with INLA

$ la : num 50.1 50.1 50.1 50.2 50.2 ...
$ lo : num -5.87 -6.15 -6.39 -6.15 -5.9 ...
$ t : num 49.5 49.5 49.5 49.5 49.5 49.5 49.5 49.5 49.5 49.5 ...
$ eggs : num 0 0 0 0 0 0 0 0.147 0.524 0 ...
$ stage: int 1 1 1 1 1 1 1 1 1 1 ...
$ a.0 : num 0 0 0 0 0 0 0 0 0 0 ...
$ a.1 : num 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 ...

In this dataset, la and lo are the latitude and longitude, respectively, of sampling
station, t is the time of midpoint of the cruise on which this sample was taken, eggs
is the egg density per square meter of sea surface, stage is one of 4 stages the sample
relates, a.0 is the age of the youngest possible egg in this sample, and a.1 is of the
oldest.

Following Wood (2006), we calculate the width (off) and average age (a) of the
corresponding egg class:

solr <- sole
solr$off <- log(sole$a.1 - sole$a.0)
solr$a <- (sole$a.1 + sole$a.0)/2

and use the former as an offset term and the latter as a predictor in the model. It has
been shown that there exist interactions between the coordinates (lo,la) and time t.
We therefore need to include some polynomial terms in the model and must translate
and scale a few predictors for numerical stability:

solr$t <- solr$t - mean(sole$t)
solr$t <- solr$t/var(sole$t)^0.5
solr$la <- solr$la - mean(sole$la)
solr$lo <- solr$lo - mean(sole$lo)

We also need to consider a “sampling station” effect, because at each station the
counts for the four different egg stages are all taken from the same net sample, and
therefore the data for different stages at a station cannot be treated as independent.
As a result, we make a station variable and take it as random effect in the model:

solr$station <- as.numeric(factor(with(solr, paste(-la, -lo, -t, sep="
↪→ "))))

The response variable eggs is not the raw count, but rather the density per m2 sea
surface. We therefore multiply eggs by 1000 to make integers, and adjust the offset
accordingly:

solr$eggs <- solr$eggs*1000
solr$off <- solr$off + log(1000)

Noting that there are over 70% zeros in the response variable:

length(which(solr$eggs == 0))/length(solr$eggs)

[1] 0.7612698

The overdispersion is probably present. So, we propose the following GAMM based

Additive and Generalized Additive Models 247

on the zero-inflated negative binomial (ZINB) likelihood

eggsi ∼ ZINB(ρ,n, pi), µi = n(1− pi)/pi

log(µi) = log(offi)+β0 +ai +lai ∗ti +lai ∗t2
i +loi ∗ti +loi ∗t2

i +

ai f1(ti)+ f2(loi,lai)+station j(i), (9.8)

where ρ is the zero-probability parameter, n is the overdispersion parameter, pi is the
probability of “success” in ith trial, and µi is the mean of ith egg density.

−0.2

−0.1

0.0

0.1

−1 0 1

(a) Nonlinear effect of Time

−1.5 −0.5 0.5 1.5−1
.0

−0
.5

0.
0

0.
5

1.
0

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

�

�

�

�

� �

�

�

���
�

�

�

�
� � � �

�

����

�
�

�

�
�

� �

�
�

�

�

�

�

� �

�

� �

�

�

�

�

�

�

��

�

��

�

������

�

�

�

�

� �

�

�

���
�

�

�

�
� � � �

�

����

�
�

�

�
�

� �

�
�

�

�

�

�

� �

�

� �

�

�

�

�

�

�

��

�

��

�

������

�

�

�

�

� �

�

�

���
�

�

�

�
� � � �

�

����

�
�

�

�
�

� �

�
�

�

�

�

�

� �

�

� �

�

�

�

�

�

�

��

�

��

�

������

�

�

�

�

� �

�

�

���
�

�

�

�
� � � �

�

����

�
�

�

�
�

� �

�
�

�

�

�

�

� �

�

� �

�

�

�

�

�

�

��

�

��

�

������

� �
� �

�

�

�

�

�

�

�

�

�

���������

�
�

�

�

�

�

�

�
�

� � �

�

�

�

�

� �

��
�

��

�

� � � �

�

�

����
�

���

�

�

�

�

�

�

�

� �

�

�

�

�

�

��
�

�

�

�

�

� �
� �

�

�

�

�

�

�

�

�

�

���������

�
�

�

�

�

�

�

�
�

� � �

�

�

�

�

� �

��
�

��

�

� � � �

�

�

����
�

���

�

�

�

�

�

�

�

� �

�

�

�

�

�

��
�

�

�

�

�

� �
� �

�

�

�

�

�

�

�

�

�

���������

�
�

�

�

�

�

�

�
�

� � �

�

�

�

�

� �

��
�

��

�

� � � �

�

�

����
�

���

�

�

�

�

�

�

�

� �

�

�

�

�

�

��
�

�

�

�

�

� �
� �

�

�

�

�

�

�

�

�

�

���������

�
�

�

�

�

�

�

�
�

� � �

�

�

�

�

� �

��
�

��

�

� � � �

�

�

����
�

���

�

�

�

�

�

�

�

� �

�

�

�

�

�

��
�

�

�

�

�
��

�

� � �

�

�����

�

� �
� �

� �

�
���

��
�

� � �

�

� � � � �

�

���

� � � �

��

�

��

���

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

� �

�

�

�

�

��

�

� � �

�

�

�����

�

� �
� �

� �

�
���

��
�

� � �

�

� � � � �

�

���

� � � �

��

�

��

���

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

� �

�

�

�

�

��

�

� � �

�

�

�����

�

� �
� �

� �

�
���

��
�

� � �

�

� � � � �

�

���

� � � �

��

�

��

���

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

� �

�

�

�

�

��

�

� � �

�

�

�����

�

� �
� �

� �

�
���

��
�

� � �

�

� � � � �

�

���

� � � �

��

�

��

���

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

� �

�

�

�

�

�

�

�

�

�
���

�

� � � � � � � � �
� �

�

�

�

��

�
�

�

�

�

�

�
�

�

�

�

�

� �

�
�

� � �

�

�

�

�

�

�

���

�

� � �

�

�

���

��

�

�

�

�

� �

� �

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�
���

�

� � � � � � � � �
� �

�

�

�

��

�
�

�

�

�

�

�
�

�

�

�

�

� �

�
�

� � �

�

�

�

�

�

�

���

�

� � �

�

�

���

��

�

�

�

�

� �

� �

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�
���

�

� � � � � � � � �
� �

�

�

�

��

�
�

�

�

�

�

�
�

�

�

�

�

� �

�
�

� � �

�

�

�

�

�

�

���

�

� � �

�

�

���

��

�

�

�

�

� �

� �

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�
���

�

� � � � � � � � �
� �

�

�

�

��

�
�

�

�

�

�

�
�

�

�

�

�

� �

�
�

� � �

�

�

�

�

�

�

���

�

� � �

�

�

���

��

�

�

�

�

� �

� �

�

�

�

�

�
�

�

�

�

�

�

�

��

�

�

� � �

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

��

�

�

�

�

����

�

� � � � � � � �
�

�

��

�

�����

�

� � � �

�

�
�

�
�

�

�

�

�

�

�

�

��

�

��

�

�
� � � �

��
�

�

�

�

�

�

� � �

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

��

�

�

�

�

����

�

� � � � � � � �
�

�

��

�

�����

�

� � � �

�

�
�

�
�

�

�

�

�

�

�

�

��

�

��

�

�
� � � �

��
�

�

�

�

�

�

� � �

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

��

�

�

�

�

����

�

� � � � � � � �
�

�

��

�

�����

�

� � � �

�

�
�

�
�

�

�

�

�

�

�

�

��

�

��

�

�
� � � �

��
�

�

�

�

�

�

� � �

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

��

�

�

�

�

����

�

� � � � � � � �
�

�

��

�

�����

�

� � � �

�

�
�

�
�

�

�

�

�

�

�

�

��

�

��

�

�
� � � �

��
�

�

�

(b) Estimated spatial effect

�
�
��

�
�
�
��

�

�

�

�

��
�
�

�

��
�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�
�

�

�

�

�

�

�
��

�

�

�

�

�

�

�

��

�

�
�
�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

��
�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�
�
�

�

�

�

�

��

��

�

�
�

�
�

�
�

�

�

�

�

�

�

�

�

�

�

�

�
�
�

���

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

��
�

�

�

�
�

�

�

�
��

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�
��
�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�
�

�
��

�

�

�

��

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

��
�

�

�

�

��

�

�

�
��

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��
��

�

�
�

�

−20

−15

−10

0 100 200 300

lo
g(

C
PO

)

(c) Diagnostic plot

FIGURE 9.7
Sole eggs survey: (a) fitted curve and 95% credible band of time effect; (b) map of
posterior means of spatial effect (black dots are the sampling stations); (c) an index
plot of the CPO statistics on log scale.

Regarding priors, we assign an iid prior for station, an RW2 prior for f1, a TPS
prior for f2:

loc <- cbind(solr$lo, solr$la)
mesh <- inla.mesh.2d(loc, max.edge = c(0.1, 0.2))
node <- meshidxloc
tps <- bri.tps.prior(mesh, constr = TRUE)

The INLA default priors are used for remaining unknown parameters. We then ex-
press this ZINB GAMM in the INLA formula:

formula1 <- eggs ~ a + I(la*t) + I(la*t^2) + I(lo*t) + I(lo*t^2) + f(t
↪→ , a, model = ’rw2’, scale.model = TRUE) + f(node, model = tps,
↪→ diagonal = 1e-6) + f(station, model = ’iid’)

To see if it is necessary to account for the station effect we also consider the fol-
lowing GAM (without the random effect):

formula0 <- eggs ~ a + I(la*t) + I(la*t^2) + I(lo*t) + I(lo*t^2) + f(t
↪→ , a, model = ’rw2’, scale.model = TRUE) + f(node, model = tps,
↪→ diagonal = 1e-6)

Now let’s fit these two ZINB models:

248 Bayesian Regression Modeling with INLA

result0 <- inla(formula0, family = ’zeroinflatednbinomial0’, offset =
↪→ off, data = solr, control.predictor = list(compute = TRUE),
↪→ control.compute = list(dic = TRUE, waic = TRUE, cpo = TRUE))

result1 <- inla(formula1, family = ’zeroinflatednbinomial0’, offset =
↪→ off, data = solr, control.predictor = list(compute = TRUE),
↪→ control.compute = list(dic = TRUE, waic = TRUE, cpo = TRUE))

Here we ask INLA to compute DIC and WAIC scores for model comparison pur-
poses. To see if the overdispersion exists, we also fit a zero-inflated Poisson GAMM:

result2 <- inla(formula1, family = ’zeroinflatedpoisson0’, offset =
↪→ off, data = solr, control.predictor = list(compute = TRUE),
↪→ control.compute = list(dic = TRUE, waic = TRUE, cpo = TRUE))

We compare it to the first two models with respect to their DIC and WAIC scores:

c(result0dicdic, result1dicdic, result2dicdic)

[1] 7878.029 7814.104 182594.471

c(result0$waic$waic, result1$waic$waic, result2$waic$waic)

[1] 7878.994 7813.335 218587.232

We can clearly see that the ZINB model that includes the station effect outperforms
the other two models in both criteria, indicating that we need to consider the station
effect in the model and account for the overdispersion existing in the data.

We here only present the analysis from result1, because it gives us the best
performance. The posterior summary of the fixed effects is given by:

result <- result1
round(result$summary.fixed, 4)

mean sd 0.025quant 0.5quant 0.975quant mode kld
(Intercept) -0.5701 19.0117 -37.8964 -0.5706 36.7251 -0.5701 0
a -0.1970 0.0335 -0.2610 -0.1975 -0.1323 -0.2012 0
I(la * t) 0.6681 0.2863 0.1063 0.6678 1.2307 0.6672 0
I(la * t^2) 1.4153 0.2928 0.8417 1.4147 1.9906 1.4127 0
I(lo * t) -0.5884 0.2512 -1.0821 -0.5883 -0.0953 -0.5883 0
I(lo * t^2) -1.1310 0.2622 -1.6456 -1.1307 -0.6173 -1.1291 0

We see a has a negative linear effect on eggs, la and t have positive interaction,
and lo and t interact with each other in a negative way. In Figure 9.7(a) we plot the
nonlinear effect of t:

bri.band.ggplot(result, name = ’t’, type = ’random’)

We see a concave pattern having maximum around mean time. We also plot the
estimated spatial effect:

proj <- inla.mesh.projector(mesh)
spa.mean <- inla.mesh.project(proj, result$summary.random$node$mean)
library(fields)
image.plot(proj$x, proj$y, spa.mean, xlim=c(-1.5, 2), ylim=c(-1, 1))
points(loc, pch = 19, cex = 0.2)

In Figure 9.7(b), we see the relatively high egg densities come from the stations in
the southeast of the survey region. The posterior distributions of the hyperparameters
are summarized using:

Additive and Generalized Additive Models 249

tmp <- bri.hyperpar.summary(result)
row.names(tmp) <- c("Overdispersion", "Zero-probability", ’SD for t’,

↪→ ’Theta1 for node’, ’SD for station’)
round(tmp, 4)

mean sd q0.025 q0.5 q0.975 mode
Overdispersion 1.9130 0.1623 1.6123 1.9057 2.2480 1.8949
Zero-probability 0.7610 0.0107 0.7395 0.7610 0.7816 0.7613
SD for t 0.0410 0.0235 0.0110 0.0358 0.1011 0.0260
Theta1 for node -1.1959 0.2890 -1.7800 -1.1909 -0.6482 -1.1685
SD for station 0.5755 0.0701 0.4488 0.5715 0.7239 0.5642

We see the zero-probability estimate ρ̂ = 0.7610, which is quite close to its empirical
estimate 0.7612.

Regarding diagnostics, we can check individual observations using conditional
predictive ordinate (CPO) statistics (see Section 1.4). This is P(yi | y−i), a “leave-
one-out” predictive measure of fit, and we should pay attention to the low values of
this statistic. Although INLA provides CPO statistics in resultcpocpo directly,
we should always check the quality of these values using resultcpofailure,
where non-zero values indicate some degree of suspicion (see details in Section 2.5).
It turns out that there are 68 suspicious CPO measures that violate INLA assumptions
in our case:

length(which(resultcpofailure > 0))

[1] 68

Therefore, we need to recalculate each of those measures with explicit leave-one-out
procedure. It can be efficiently implemented by

improved.result <- inla.cpo(result)

In Figure 9.7(c) we plot the improved CPO statistics on log scale to make them more
distinguished:

idx <- which(solr$eggs != 0)
dat.plot <- data.frame(x = 1:length(idx), y = log(improved.resultcpo

↪→ cpo[idx]))
ggplot(dat.plot, aes(x = x, y = y)) + geom_point()

We can see there is one particular point with very low probability, and it is

round(solr[which.min(improved.resultcpocpo),], 4)

la lo t eggs stage a.0 a.1 off a station
664 -0.4486 -0.1237 -0.8377 17048 1 0 2.4 7.7832 1.2 326

Let’s consider this case among all the other observations in that station:

solr[solr$station==326, c(’eggs’, ’stage’, ’a’, ’t’)]

eggs stage a t
664 17048 1 1.2 -0.8376579
6611 319 2 2.9 -0.8376579
6621 319 3 4.8 -0.8376579
6631 159 4 7.3 -0.8376579

We see it has many more eggs than the other three surveys. This is certainly unusual.

10
Errors-in-Variables Regression

Data measured with errors occur frequently in many scientific fields. Standard re-
gression models assume that the independent variables have been measured exactly,
in other words, observed without error. Those models account only for errors in the
response variable. However, the presence of measurement errors in independent vari-
ables causes biased and inconsistent parameter estimates and leads to erroneous con-
clusions to various degrees using standard statistical analysis. Errors-in-variables re-
gression models refer to regression models that account for measurement errors in
the predictors.

10.1 Introduction
One could think of several examples in which measurement error can be a concern:

• In medicine: The NHANES-I epidemiological study is a cohort study consisting of
thousands of women who were investigated about their nutrition habits and then
evaluated for evidence of cancer. The primary predictor of interest in the study
is the “long-term” saturated fat intake which was known to be imprecisely mea-
sured. Indeed, NHANES-I was one of the first studies where the measurement error
model approach was used (Carroll et al., 2006). Even more comprehensive studies,
NHANES-II and NHANES-III, have been published later.

• In bioinformatics: Gene microarray techniques are very popular in genetics re-
search. A microarray consists of an arrayed series of thousands of microscopic
spots of DNA molecules (genes). A gene present in the RNA sample finds its DNA
counterpart on the microarray and binds to it. The spots then become fluorescent,
and a microarray scanner is used to “read” the intensities in the microarray. The
whole process to obtain the fluorescent intensities in a microarray study is sub-
ject to measurement error. Correction of measurement error is a critical step for
microarray data analysis.

• In chemistry: A Massachusetts acid rain monitoring project was first described by
Godfrey et al. (1985), where water samples were collected from about 1800 water
bodies and chemical analyses were accomplished by 73 laboratories. Measuring
values in chemistry typically involves error, therefore external calibration/valida-

252 Bayesian Regression Modeling with INLA

tion data were collected based on blind samples sent to the lab with “known” val-
ues. In the statistical analysis of the study, one faces the problem of measurement
errors in the predictors. The essential perceptiveness underlying the solution of the
measurement error problem is to recover the parameter of the latent variables using
extraneous information.

• In astronomy: Most astronomical data come with information on their measure-
ment errors. Morrison et al. (2000) studied galaxy formation with a large survey
of stars in the Milky Way. The investigators were interested in the velocities of
stars, which represent the “fossil record” of their early lives. The observed veloc-
ities involved heteroscedastic measurement errors. To verify the galaxy formation
theories, one is to estimate the density function from contaminated data that are
effective in unveiling the numbers of bumps or components.

• In econometrics: Stochastic volatility model has been fairly successful in modeling
financial time series. As a basis for analyzing the risk of financial investments, it
is an important technique used in finance to model asset price volatility over time.
It can be shown that a stochastic volatility model can be rewritten as a regression
model with errors-in-variables (Comte, 2004). Therefore, the techniques in mea-
surement error models are able to be used for solving finance time series problems.

The consequences of ignoring measurement error include, for example, masking
the important features of the data which makes graphical model analysis confusing;
losing the power to detect relationships among variables; and bringing forth bias in
function/parameter estimation (Carroll et al., 2006). In past decades, many statistical
approaches have been proposed to model and correct for measurement error. These
include, for example, method-of-moments corrections (Fuller, 1987), regression cal-
ibration (Carroll and Stefanski, 1990), simulation extrapolation (Cook and Stefanski,
1994), deconvolution methods (Fan and Truong, 1993; Wang and Wang, 2011) and
Bayesian analyses (Richardson and Gilks, 1993; Dellaportas and Stephens, 1995;
Gustafson, 2004). A thorough overview of the current state of these methods can be
found in Carroll et al. (2006) and Buonaccorsi (2010).

In this chapter, we mainly focus on the Bayesian regression models with errors-
in-variables using INLA. Our discussion is based on two types of measurement error:
classical measurement error and Berkson measurement error.

A fundamental issue in specifying a measurement error model is whether an as-
sumption is made on the distribution of the observed values given the true values or
vice versa. In a classical measurement error model, the predictor of interest X cannot
be observed directly but is measured with error. What can be observed is the indepen-
dent sample w1, ...,wn. In general, any type of regression model can be used for how
W and X are related. Historically, the most commonly used model is the classical
measurement error model,

wi = xi +ui, , i = 1, ...,n,

where ui’s are the measurement error with mean zero, xi and ui are independent of
each other. So, E(W |X = x) = x, W is unbiased for the unobserved x.

Errors-in-Variables Regression 253

Berkson measurement error was introduced by Berkson (1950) in cases where
an experimenter is trying to achieve a target value w but the true value achieved is x.
The model assumed that

xi = wi +ui, , i = 1, ...,n,

where wi and ui are independent of each other.
Ignoring measurement error can result in biased estimates and lead to erroneous

conclusions in data analysis. Let us look at a simple linear regression with the vari-
able measured with error. Given the observed sample (wi,yi), i = 1, ...,n, the model
is given by {

yi = β0 +β1xi + εi,
wi = xi +ui,

(10.1)

where ui’s are classical additive measurement errors with ui ∼ N(0,σ2
U), and the εi’s

are the random noise from the regression model εi ∼ N(0,σ2
ε). The regression of Y

on W can be obtained by rewriting the model (10.1),{
yi = β0 +β1wi +ηi,
ηi = εi−β1ui,

The least squares estimator for β1 is

β̂1 =
∑

n
i=1(wi− w̄)(yi− ȳ)

∑
n
i=1(wi− w̄)2 ,

where w̄ = ∑
n
i=1 wi/n, ȳ = ∑

n
i=1 yi/n. Note that W and η are correlated with each

other,
Cov(W,η) = Cov(X +U,ε−β1U) =−β1σ

2
u 6= 0.

So, the least squares estimator β̂1 is inconsistent for β1. Its probability limit is

plimβ̂1 = β1 +
Cov(X ,U)

Var(X)
= β1−

σ2
U

σ2
X +σ2

U
β1 =

σ2
X

σ2
X +σ2

U
β1,

where σ2
X is the variance of X . This bias is known as attenuation bias. The result

could also be extended to a multivariate linear regression model. One should note
that, in a multivariate regression case, even if only a single predictor is error-prone,
the coefficients on all predictors are generally biased.

In this chapter, we discuss the Bayesian analysis of a generalized linear mixed
model (GLMM) with errors-in-variables using INLA. Posterior marginal distri-
butions in such errors-in-variables models have been estimated by employing an
MCMC sampler; see for example Richardson and Gilks (1993). However, model-
specific implementation is typically challenging, and MCMC computation is very
time-consuming. Muff et al. (2015) extended the INLA approach to formulate Gaus-
sian measurement error models within GLMM. They discussed multiple real applica-
tions, and showed how parameter estimates were obtained for different measurement
error models, including the classical and Berkson error models with heteroscedastic
measurement errors. Here we follow Muff et al. (2015)’s modeling framework and
their coding skills and features.

254 Bayesian Regression Modeling with INLA

10.2 Classical Errors-in-Variables Models
Let us consider a general GLMM with errors-in-variables. Suppose the response y =
(y1, ...,yn)

T is of exponential family form with mean µi = E(yi) linked to the linear
predictor ηi via  µi = h(ηi),

ηi = β0 +βxxi + x̃iα+ ziγ,
wi = xi +ui.

(10.2)

Here h(·) is a known monotonic inverse link function, xi is the error-prone (un-
observed) variable, wi is an observed proxy of xi, and x̃i is a vector of error-free
predictors. The zi is also a vector of error-free predictors, some of which could be
in common with x̃i. The parameters (β0,βx,α) are called fixed effects, and the γ
are random effects. Without the term ziγ, the GLMM (10.2) becomes a GLM with
errors-in-variables. In the following, we discuss two commonly used models for data
with classical measurement error.

10.2.1 A Simple Linear Model with Heteroscedastic Errors-in-Variables

Let us go back to the simple linear regression with errors-in-variables. Typically, we
assume that the error-prone variable xi ∼ N(λ,σ2

X), i = 1, ...,n, which can be con-
sidered as a special case of the exposure model that Gustafson (2004) proposed.
Consider the following model

yi = β0 +β1xi + εi, εi ∼ N(0,σ2
ε),

wi = xi +ui, ui ∼ N(0,diσ
2
u),

xi = λ+ξi, ξi ∼ N(0,σ2
X),

(10.3)

Note here we consider a heteroscedastic error structure wi|xi ∼ N(xi,diσ
2
u), i =

1, ...,n, since in practice the distribution of measurement error may vary with each
subject or even with each observation so the errors can be heteroscedastic (Wang
et al., 2010). The weight di, which is known, is proportional to the individual er-
ror variance σ2

u(xi) = diσ
2
u depending on xi, which allows for a heteroscedastic error

model.
This classical linear model with errors-in-variables (10.1) can be fit using INLA

by specifying model = “mec” inside the f() function, when we define an inla
model formula. There are 4 special hyperparameters to be defined in f(): θ =
(θ1,θ2,θ3,θ4), where θ1 = β1, θ2 = log(1/σ2

u), θ3 = λ, and θ4 = log(1/σ2
X). It is

important to select these parameters appropriately in order to achieve the reasonable
results.

Let us look at a simulated example and illustrate the use of the INLA approach
to fit the errors-in-variables linear model. We assume that the true parameters β0 = 1
and β1 = 5, the regression noise εi ∼ N(0,1), the true unobserved predictor xi ∼
N(0,1), and the heteroscedastic error ui ∼ N(0,di) where di ∼ Unif(0.5,1.5). We
first set up the parameters to simulate such a dataset:

Errors-in-Variables Regression 255

set.seed(5)
n = 100
beta0 = 1
beta1 = 5
prec.y = 1
prec.u = 1
prec.x = 1

Then we generate the true unobserved predictor x:

x <- rnorm(n, sd = 1/sqrt(prec.x))

And we generate the observed predictor w with heteroscedastic error:

d <- runif(n, min = 0.5, max = 1.5)
w <- x + rnorm(n, sd = 1/sqrt(prec.u * d))

Finally, we generate the response variables from the true model with the unobserved
x, and create a data frame for data analysis:

y <- beta0 + beta1*x + rnorm(n, sd = 1/sqrt(prec.y))
sim.data <- data.frame(y, w, d)

If we ignore the measurement error in the predictor, the simple linear regression
model can be fit using INLA:

sim.inla <- inla(y ~ w, data = sim.data, family = "gaussian")
summary(sim.inla)
round(sim.inla$summary.fixed, 4)

mean sd 0.025quant 0.5quant 0.975quant mode kld
(Intercept) 0.8500 0.3639 0.1339 0.8500 1.5653 0.8500 0
w 2.2779 0.2801 1.7267 2.2779 2.8284 2.2779 0

The estimate of the slope β1 is 2.2779. The result is clearly biased, and its 95%
credible interval is (1.7267, 2.8284), which does not cover the true slope 5. Now,
let us employ the new mec model in INLA. We need to define a relatively complex
INLA model formula. Let us set the initial values of hyperparameters:

init.prec.u <- prec.u
init.prec.x <- var(w) - 1/prec.u
init.prec.y <- sim.inla$summary.hyperpar$mean

Then we set prior parameters:

prior.beta = c(0, 0.0001)
prior.prec.u = c(10, 10)
prior.prec.x = c(10, 10)
prior.prec.y = c(10, 10)

Now we define the mec model formula:

formula = y ~ f(w, model = "mec", scale = d, values = w,
hyper = list(

beta = list(prior = "gaussian", param = prior.beta,
↪→ fixed = FALSE),

prec.u = list(prior = "loggamma", param = prior.prec.u
↪→ , initial = log(init.prec.u), fixed = FALSE),

mean.x = list(prior = "gaussian", initial = 0, fixed =
↪→ TRUE),

256 Bayesian Regression Modeling with INLA

prec.x = list(prior = "loggamma", param = prior.prec.x
↪→ , initial = log(init.prec.x), fixed = FALSE)))

In the above formula, the mec model contains four hyperparameters:

• beta corresponds to the slope coefficient β1 of the error-prone predictor x, with a
Gaussian prior.

• prec.u corresponds to log(1/σ2
u) with log-gamma prior.

• mean.x corresponds to the mean parameter of x, with a Gaussian prior, but here it
is fixed at 0 due to predictor centering.

• prec.x corresponds to log(1/σ2
X) with log-gamma prior.

The prior settings are defined in the different entries of the list hyper. The option
fixed specifies if the corresponding hyperparameter should be estimated or fixed at
the initial value. The argument param defines the prior parameters of the corre-
sponding prior distribution. When we set up the initial values of hyperparameters, a
reasonable guess is important. One may use some information from the naive fit that
is from the model ignoring the measurement error.

We also need to define the hyperparameter of the Gaussian regression model σ2
ε

and the prior distribution for the intercept β0. These can be specified in the call of the
inla function via the control.family option and the control.fixed option. We
fit the errors-in-variables model using the following code:

sim.mec.inla <- inla(formula, data = sim.data, family = "gaussian",
control.family = list(hyper = list(prec = list(param = prior.

↪→ prec.y, initial = log(init.prec.y), fixed=FALSE))),
control.fixed = list(mean.intercept = prior.beta[1], prec.

↪→ intercept = prior.beta[2]))

Let us output the results:

round(sim.mec.inla$summary.fixed, 4)

mean sd 0.025quant 0.5quant 0.975quant mode kld
(Intercept) 0.8314 0.3601 0.1202 0.8323 1.5366 0.8342 0

round(sim.mec.inla$summary.hyperpar, 4)

mean sd 0.025quant 0.5quant 0.975quant mode
Precision for the
Gaussian observations 0.9820 0.3177 0.4853 0.9415 1.7203 0.8652
MEC beta for w 5.1508 0.4739 4.2648 5.1321 6.1244 5.0759
MEC prec_u for w 1.0530 0.1416 0.7982 1.0453 1.3532 1.0315
MEC prec_x for w 1.2312 0.2399 0.8376 1.2042 1.7758 1.1496

The fitting results show that the corrected estimate for β1 is 5.151 using the mec
model, and its 95% confidence interval is (4.2648, 6.125), which does cover the
true slope 5. The intercept and other precision parameters are estimated quite well,
which are close to the true values. We could plot the estimated regression line and
compare it with the true function and the estimate using the naive model, ignoring
the measurement error:

Errors-in-Variables Regression 257

plot(w, y, xlim=c(-4, 4), col= "grey")
curve(1 + 5*x, -4,4, add=TRUE, lwd=2)
curve(sim.mec.inla$summary.fixed$mean + sim.mec.inla$summary.hyperpar$

↪→ mean[2]*x, -4,4, add=TRUE, lwd=2, lty = 5)
curve(sim.inla$summary.fixed$mean[1] + sim.inla$summary.fixed$mean[2]*

↪→ x, -4,4, add=TRUE, lwd=2, lty = 4)

−4 −2 0 2 4

−1
0

−5
0

5
10

w

y

FIGURE 10.1
The simulated example of a simple linear regression with heteroscedastic errors-in-
variables: the solid line is the true regression function, the dashed line is the estimate
from errors-in-variables regression, the dash-dotted line is the estimate from standard
linear regression ignoring the measurement error.

Figure 10.1 shows the comparison of the results: the dashed line is the estimate
from errors-in-variables regression, the dash-dotted line is the estimate from stan-
dard linear regression that ignores the measurement error, and the solid line is the
true regression function. The errors-in-variables regression successfully recovered
the underlying true function.

10.2.2 A General Exposure Model with Replicated Measurements

In this subsection, we address the model to deal with the case that the same unob-
served variable xi is independently measured several times, but each measurement is
affected by error.

In many applications, repeated measurements wik,k = 1, ...,m of the true value

258 Bayesian Regression Modeling with INLA

xi are available. Data consist of “intrinsic” values that are measured with error a few
times. Typically, we assume that

wki|xi ∼ N(xi,σ
2
u).

Following Gustafson (2004), the distribution of the xi’s, possibly depending on the
error-free predictors x̃i, is specified in the exposure model. In the most general situa-
tion, the error-prone variable xi is Gaussian with mean depending on x̃i, i.e.,

xi|x̃i ∼ N(λ0 + x̃iλ,σ
2
X),

where λ0 is the intercept and λ is a vector of fixed effects in the linear regression of
xi on x̃i. If xi depends only on some components of x̃i, the corresponding fixed effects
in λ are set to zero. In the extreme case of λ= 0, xi is independent of x̃i, which has
been discussed in the previous example.

In the following we show how the above measurement error model fits into the
hierarchical structure required by INLA. Based on the model specification, we can
have a joint modeling representation, which is hierarchical:

E(yi) = h(β0 +βxxi + x̃iα+ ziγ),
wki = xi +uki, uki ∼ N(0,σ2

u),
0 =−xi +λ0 + x̃iλ+ξi, ξi ∼ N(0,σ2

X).
(10.4)

Implementation of this model using the INLA library requires a joint model formula-
tion, where the response variable yi is augmented with pseudo-observation 0, and the
observed values wki.

Let us illustrate the analysis using data from the Framingham Heart Study (Car-
roll et al., 2006). The Framingham study consists of a series of exams taken two
years apart. There are 1615 males aged from 31 to 65 in this dataset, with the out-
come indicating the occurrence of coronary heart disease (CHD) within an eight-year
period following Exam 3. There were 128 total cases of CHD. Table 10.1 shows the
description of variables in the Framingham data.

Predictors employed in this example are the patient’s age, smoking status, and
transformed systolic blood pressure (SBP), log(SBP−50). Following the suggestion
of Carroll et al. (2006), we are interested in the variable X , the long-term average
transformed SBP, which cannot be observed. In this Framingham heart study data,
two SBP measurements from each of two exams were obtained. It was assumed that
the two transformed variates-in-errors

W1 = log((SBP21 +SBP22)/2+50)

and
W2 = log((SBP31 +SBP32)/2+50),

where SBPi j is the jth measurement of SBP from the ith exam, j = 1,2, i = 2,3,
were replicate measurements of the the long-term average transformed SBP, X . The
following R code is used to set up our initial dataset:

Errors-in-Variables Regression 259

data(framingham, package = "brinla")
fram <- subset(framingham, select = c("AGE", "SMOKE", "FIRSTCHD"))
fram$W1 <- log((framingham$SBP21 + framingham$SBP22)/2 - 50)
fram$W2 <- log((framingham$SBP31 + framingham$SBP32)/2 - 50)
fram$W <- (fram$W1 + fram$W2)/2

The other error-free variables, SMOKE (X̃1) and AGE (X̃2), are considered in both
the logistic regression and the exposure model. Thus, the hierarchical model (10.4)
is formulated as a joint model by applying the copy feature in INLA. The full model
can be written as

y1 NA NA
...

...
...

yn NA NA
NA w11 NA
...

...
...

NA w1n NA
NA w21 NA
...

...
...

NA w2n NA
NA NA 0
...

...
...

NA NA 0



= β0



1
...
1
NA
...
NA
NA
...
NA
NA
...
NA



+βX



1
...
n
NA
...
NA
NA
...
NA
NA
...
NA



+



NA
...
NA
1
...
n
1
...
n
−1

...
−n



+βsmoke



x̃11
...

x̃1n
NA
...
NA
NA
...
NA
NA
...
NA



+βage



x̃21
...

x̃2n
NA
...
NA
NA
...
NA
NA
...
NA



+λ0



NA
...
NA
NA
...
NA
NA
...
NA
1
...
1



+λsmoke



NA
...
NA
NA
...
NA
NA
...
NA
x̃11
...

x̃1n



+λage



NA
...
NA
NA
...
NA
NA
...
NA
x̃21
...

x̃2n



+



ε1 NA NA
...

...
...

εn NA NA
NA u11 NA
...

...
...

NA u1n NA
NA u21 NA
...

...
...

NA u2n NA
NA NA ξ1
...

...
...

NA NA ξn



.

From this “artificial-looking” model, outcomes are decomposed in terms of the
mean and an appropriate error term. The components of the error structure have the
appropriate distribution with the variance depending on the mean-variance relation-
ship of the responses. In the left-side matrix of the equation, each column requires
specification of a likelihood function. The first follows a Bernoulli distribution, the
second is assumed to be Gaussian, and the third component is also Gaussian.

For the parameters (β0,βX ,βsmoke,βage,λ0,λsmoke,λage), we can simply assign

260 Bayesian Regression Modeling with INLA

TABLE 10.1
Description of variables in the Framingham data.

Variable Name Description Codes/Values
AGE age at exam 2 Numbers
SBP21 first systolic blood pressure at exam 2 mmHg
SBP22 second systolic blood pressure at exam 2 mmHg
SBP31 first systolic blood pressure at exam 3 mmHg
SBP32 second systolic blood pressure at exam 3 mmHg
SMOKE present smoking at exam 1 0 = No

1 = Yes
FIRSTCHD indicator of first evidence of CHD 0 = No

occurring at exam 3 through 6 1 = Yes

independent N(0,102) priors. To specify the initial values and priors of the hyperpa-
rameters (τu,τX) = (1/σ2

u,1/σ2
X), we could use the information from SBP measure-

ments with error. Note that wki = xi +uki, uki ∼ N(0,σ2
u), so,

vi = (w1i−w2i)∼ N(0,2σ
2
u).

We suggest the following initial estimator of the precision parameter τu = 1/σ2
u,

τ̂u = 1/σ̂
2
u = 2/S2

v ,

where S2
v is the sample variance of vi’s. Similarly,

ri =
w1i +w2i

2
= xi +

u1i +u2i

2
∼ N(λ0 + x̃iλ,σ

2
X +

σ2
u

2
).

We suggest to estimate τX = 1/σ2
X by

τ̂X = 1/(S2
r −S2

v/4),

where S2
r is the sample variance of ri’s. Assuming equal mean and variance for τu

and τX , we specify the priors τu ∼ Gamma(τ̂u,1), and τX ∼ Gamma(τ̂X ,1). We first
set up the prior parameters in R:

prior.beta <- c(0, 0.01)
prior.lambda <- c(0, 0.01)

We then estimate initial values of precision parameters:

prec.u <- 1/(var(fram$W1 - fram$W2)/2)
prec.x <- 1/(var((fram$W1 + fram$W2)/2) - (1/4)*(var((fram$W1 - fram$

↪→ W2)/2)))
prior.prec.x <- c(prec.x, 1)
prior.prec.u <- c(prec.u, 1)

We need to create a new data frame containing the response matrix Y and the data
vectors according to the above joint model equation:

Y <- matrix(NA, 4*n, 3)

Errors-in-Variables Regression 261

Y[1:n, 1] <- fram$FIRSTCHD
Y[n+(1:n), 2] <- rep(0, n)
Y[2*n+(1:n), 3] <- fram$W1
Y[3*n+(1:n), 3] <- fram$W2

beta.0 <- c(rep(1, n), rep(NA, n), rep(NA, n), rep(NA, n))
beta.x <- c(1:n, rep(NA, n), rep(NA, n), rep(NA, n))
idx.x <- c(rep(NA, n), 1:n, 1:n, 1:n)
weight.x <- c(rep(1, n), rep(-1, n), rep(1, n), rep(1,n))
beta.smoke <- c(fram$SMOKE, rep(NA, n), rep(NA, n), rep(NA,n))
beta.age <- c(fram$AGE, rep(NA, n), rep(NA, n), rep(NA,n))
lambda.0 <- c(rep(NA, n), rep(1, n), rep(NA, n), rep(NA, n))
lambda.smoke <- c(rep(NA, n), fram$SMOKE, rep(NA, n), rep(NA, n))
lambda.age <- c(rep(NA, n), fram$AGE, rep(NA, n), rep(NA, n))
Ntrials <- c(rep(1, n), rep(NA, n), rep(NA, n), rep(NA, n))

fram.jointdata <- data.frame(Y=Y,
beta.0=beta.0, beta.x=beta.x, beta.smoke=beta

↪→ .smoke, beta.age=beta.age,
idx.x=idx.x, weight.x=weight.x,
lambda.0=lambda.0, lambda.smoke=lambda.smoke,

↪→ lambda.age=lambda.age,
Ntrials=Ntrials)

Next we need to define the INLA formula. In this example, we have six fixed
effects (β0,βsmoke,βage,λ0,λsmoke,λage). Also, the joint model has no common in-
tercept, thus it has to be explicitly removed using -1 in the formula. We have two
special random effects, which are needed to encode that the values of X in the ex-
posure model and the error model are assigned the same values. The first random
effect term is defined by f(beta.x,...), where the copy=”idx.x” call guarantees
the assignment of identical values to X in all components of the joint model. The
second random effect term is defined by f(idx.x,...), where idx.x contains the
values of the unobserved variable X , encoded as an i.i.d. Gaussian random effect,
and weighted with weight.x to ensure correct signs in the joint model. The values
option contains the vector of all values assumed by the covariate for which the effect
is estimated. The precision prec of the random effect is fixed at exp(−15) (or other
very small number). This is important and necessary since the uncertainty in X has
been modeled in the exposure component of the joint model. More details about the
INLA formula specification can be found in Muff et al. (2015).

The three options also need to be specified in the call of the inla function: the
first option is family. There are three different likelihoods in the joint model, which
correspond to the different columns in the response matrix. Here, we need to specify
family = c("binomial", "gaussian", "gaussian") to correspond to the bi-
nomial likelihood of the regression model, one Gaussian likelihood for the exposure
model, and the other Gaussian likelihood for the error model. The second option is
control.family, which is to specify the hyperparameters for the three likelihoods,
in the same order as given in family. The binomial likelihood does not contain a
hyperparameter, hence the corresponding list is empty. In the second and third like-
lihoods the hyperparameters σX and σu need to be specified, respectively. The third
option is control.fixed, which is to specify priors for the fixed effects. The imple-

262 Bayesian Regression Modeling with INLA

mentation of fitting the complex measurement error models using INLA is given by
the following R code:

fram.formula <- Y ~ f(beta.x, copy = "idx.x", hyper = list(beta =
↪→ list(param = prior.beta, fixed = FALSE)))

+ f(idx.x, weight.x, model = "iid", values = 1:n, hyper = list
↪→ (prec = list(initial = -15, fixed = TRUE)))

+ beta.0 - 1 + beta.smoke + beta.age + lambda.0 + lambda.smoke
↪→ + lambda.age

fram.mec.inla <- inla(fram.formula, Ntrials = Ntrials, data = fram.
↪→ jointdata, family = c("binomial", "gaussian", "gaussian"),

control.family = list(
list(hyper = list()),
list(hyper = list(
prec = list(initial = log(prec.x),

param = prior.prec.x,
fixed = FALSE))),

list(hyper = list(
prec = list(initial=log(prec.u),

param = prior.prec.u,
fixed = FALSE)))),

control.fixed = list(
mean = list(beta.0=prior.beta[1], beta.smoke=prior.beta[1],

↪→ beta.age=prior.beta[1],
lambda.0=prior.lambda[1], lambda.smoke=prior.

↪→ lambda[1], lambda.age=prior.lambda[1]),
prec = list(beta.0=prior.beta[2], beta.smoke=prior.beta[2],

↪→ beta.age=prior.beta[2],
lambda.0=prior.lambda[2], lambda.smoke=prior.

↪→ lambda[2], lambda.age=prior.lambda[2]))
)

We often want to improve the estimates of the posterior marginals for the hyper-
parameters of the measurement error model using the grid integration strategy by the
function inla.hyperpar, since the coefficient of the covariate measured in error is
a hyperparameter in INLA analysis.

fram.mec.inla <-inla.hyperpar(fram.mec.inla)
round(fram.mec.inla$summary.fixed, 4)

mean sd 0.025quant 0.5quant 0.975quant mode kld
beta.0 -13.9799 2.1885 -18.2224 -14.0133 -9.7163 -14.0132 0
beta.smoke 0.5697 0.2479 0.0999 0.5635 1.0744 0.5510 0
beta.age 0.0515 0.0118 0.0285 0.0514 0.0747 0.0513 0
lambda.0 4.1066 0.0310 4.0458 4.1066 4.1674 4.1066 0
lambda.smoke -0.0266 0.0125 -0.0512 -0.0266 -0.0019 -0.0266 0
lambda.age 0.0061 0.0006 0.0049 0.0061 0.0073 0.0061 0

round(fram.mec.inla$summary.hyperpar, 4)

mean sd 0.025quant 0.5quant 0.975quant mode
Precision for the
Gaussian observations[2] 27.4738 1.1244 25.3274 27.4533 29.7357 27.4121
Precision for the
Gaussian observations[3] 78.4611 2.6326 73.3821 78.4328 83.7025 78.3787
Beta for beta.x 1.9574 0.4800 1.0182 1.9580 2.8986 1.9638

Errors-in-Variables Regression 263

From the results, we find that the error free variables, age and smoking status, are
positively associated with the occurrence of CHD. The transformed SBP after cor-
recting the measurement error has the coefficient 1.9574 with 95% credible intervals
(0.4800, 2.8986). For each increase in 1 unit of transformed SBP, the estimated odds
of occurring CHD increases by roughly a factor of 7.0809 (= exp(1.9574)), assuming
that all other covariates are fixed. We could compare the measurement error model
with the naive model by ignoring measurement error:

fram.naive.inla <- inla(FIRSTCHD~ SMOKE + AGE + W, family = "binomial"
↪→ , data = fram)

round(fram.naive.inla$summary.fixed, 4)

mean sd 0.025quant 0.5quant 0.975quant mode kld
(Intercept) -13.2961 1.7984 -16.8379 -13.2925 -9.7776 -13.2851 0
SMOKE 0.5742 0.2484 0.1035 0.5679 1.0802 0.5553 0
AGE 0.0532 0.0116 0.0306 0.0531 0.0761 0.0530 0
W 1.7728 0.4110 0.9662 1.7727 2.5795 1.7724 0

The estimates for the error-free covariates are very close, but the estimate for the SBP
from the naive model is 1.7728. It clearly underestimates the effect due to measure-
ment error.

10.3 Berkson Errors-in-Variables Models
We now consider a GLMM with Berkson errors-in-variables. Similar to the classical
error model, we have the response y = (y1, ...,yn)

T is of exponential family form
with mean µi = E(yi) linked to the linear predictor ηi via

µi = h(ηi),

ηi = β0 +βxxi + X̃iα+Ziγ,
xi = wi +ui.

(10.5)

In the Berkson error model, xi|wi ∼ N(wi,σ
2
u), i = 1, ...,n. One may generalize to the

case of heteroscedastic error, where xi|wi ∼ N(wi,diσ
2
u), i = 1, ...,n. Since xi is de-

fined conditionally on the observation wi, the exposure model discussed in the classi-
cal errors-in-variables problem is not applicable anymore. Again, we can rewrite the
model into the hierarchical structure required by INLA:{

E(yi) = h(β0 +βxxi + x̃iα+Ziγ),
−wi =−xi +ui, ui ∼ N(0,σ2

u).
(10.6)

This Berkson errors-in-variables model is termed “meb” in the INLA package. Let us
use the bronchitis data example to illustrate the Berkson error model. This example
has been discussed in Chapter 8 of Carroll et al. (2006). The bronchitis study was
to assess the health hazard of specific harmful substances in a dust-laden mechani-
cal engineering plant in Munich. The outcome of the study is the indicator that the

264 Bayesian Regression Modeling with INLA

worker has bronchitis. The main covariate of interest is the average dust concentra-
tion in the working area over the period of time. In addition, two other variables,
the duration of exposure, and the smoking status, are also measured. The description
of variables in the bronchitis data is displayed in Table 10.2. Carroll et al. (2006)
discussed the estimation of threshold limiting value (TLV) of average dust concen-
tration. The estimated TLV is 1.28, under which there is no risk due to the substance.
Here we only focus on the subgroup samples that the dust concentration is greater
than the TLV, 1.28.

TABLE 10.2
Description of variables in the bronchitis data.

Variable Name Description Codes/Values
cbr Chronic bronchitis reaction 0 = No

1 = Yes
dust Dust concentration at work place mg/m3

smoking Does worker smoke? 0 = No
1 = Yes

expo Duration of exposure years

data(bronch, package = "brinla")
bronch1 <- subset(bronch, dust >=1.28)

It is impossible to measure the dust concentration exactly, and instead sample
dust concentrations were obtained several times between 1960 and 1977. The re-
sulting measurements are dust in the dataset. Let us start to explore the data by
summarizing the variables:

round(prop.table(table(bronch1$cbr)),4)

0 1
0.6967 0.3033

round(prop.table(table(bronch1$smoking)),4)

0 1
0.2582 0.7418

round(c(mean(bronch1$dust), sd(bronch1$dust)), 4)

[1] 1.9285 0.2118

round(cor(bronch1$dust, bronch1$expo), 4)

[1] 0.0119

round(by(bronch1$dust, bronch1$smoking, mean), 4)

bronch1$smoking: 0
[1] 1.9258
--
bronch1$smoking: 1
[1] 1.9294

Among 488 subjects, 30% of the workers are reported as having chronic bronchitis,

Errors-in-Variables Regression 265

and 74% are smokers. Measured dust concentration had a mean of 1.93 and a stan-
dard deviation of 0.21. The durations are effectively independent of concentrations,
with correlation 0.012. Smoking status is also effectively independent of dust con-
centration, with the smokers having mean concentration 1.926, and the nonsmokers
having mean 1.929. In Carroll et al. (2006)’s analysis, they concluded that a reason-
ably informative prior on σu is necessary through numerical experiments. Here we
take the initial value of σu = 1.3 based on their analysis. Let us first set up the prior
parameters:

prior.beta <- c(0, 0.01)
prec.u <- 1/1.3
prior.prec.u <- c(1/1.3, 0.01)

Then we fit the Berkson errors-in-variables model with the following code:

bronch.formula <- cbr ~ smoking + expo + f(dust, model="meb", hyper =
↪→ list(beta = list(param = prior.beta, fixed = FALSE), prec.u =
↪→ list(param = prior.prec.u, initial = log(prec.u), fixed = FALSE
↪→)))

bronch.meb.inla <- inla(bronch.formula, data = bronch1, family = "
↪→ binomial", control.fixed = list(mean.intercept = prior.beta[1],
↪→ prec.intercept = prior.beta[2], mean = prior.beta[1], prec =
↪→ prior.beta[2]))

bronch.meb.inla <- inla.hyperpar(bronch.meb.inla)
round(bronch.meb.inla$summary.fixed, 4)

mean sd 0.025quant 0.5quant 0.975quant mode kld
(Intercept) -5.6646 1.0079 -7.7397 -5.5994 -3.8632 -5.4020 0
smoking1 1.2257 0.2953 0.6635 1.2195 1.8234 1.2069 0
expo 0.0411 0.0117 0.0186 0.0410 0.0645 0.0407 0

round(bronch.meb.inla$summary.hyperpar, 4)

mean sd 0.025quant 0.5quant 0.975quant mode
MEB beta for dust 1.0401 0.4127 0.3970 0.9936 1.9304 0.8429
MEB prec_u for dust 1.0511 0.9889 0.1277 0.7571 3.6641 0.1189

Let us also compare the naive model, ignoring the measurement error.

bronch.naive.inla <- inla(cbr ~ dust + smoking + expo, data = bronch1,
↪→ family = "binomial",

control.fixed = list(mean.intercept = prior.beta[1], prec.intercept =
↪→ prior.beta[2], mean = prior.beta[1], prec = prior.beta[2]))

round(bronch.naive.inla$summary.fixed, 4)

mean sd 0.025quant 0.5quant 0.975quant mode kld
(Intercept) -4.2577 0.9973 -6.2401 -4.2496 -2.3222 -4.2331 0
dust 0.8420 0.4746 -0.0864 0.8408 1.7762 0.8385 0
smoking1 1.0442 0.2679 0.5344 1.0384 1.5873 1.0267 0
expo 0.0356 0.0096 0.0169 0.0355 0.0546 0.0354 0

We notice that the variable of interest, dust, is not significant (in the Bayesian sense)
in the naive model. With the Berkson errors-in-variables model, the coefficient esti-
mate for dust increases to 1.0511 and its 95% credible interval is (0.3970,1.9304).
After correcting the effect of measurement error, the effect for dust is positive with
very high probability.

As Muff et al. (2015) pointed out, Bayesian methods have provided a very flexible

266 Bayesian Regression Modeling with INLA

framework for measurement error problems in the past decades. However, Bayesian
analysis using MCMC samplers has not become part of standard regression analyses
in solving measurement error problems, due to a wide range of problems in terms
of convergence and computational time. The implementation of model fitting with
MCMC requires careful algorithm construction. It might often be problematic, espe-
cially, for end users who might not be experts in programming. INLA provides more
user friendly approaches to solve the complex problems.

11
Miscellaneous Topics in INLA

This chapter covers a mix of topics including splines, functional data, extreme values
and density estimation.

11.1 Splines as a Mixed Model
Let’s consider the simplest nonparametric regression setting

yi = f (xi)+ εi, εi ∼ N(0,σ2
ε),

where f is the unknown but smooth function. Although a few methods for estimating
f have been given in Chapters 7 and 8, we here introduce two more spline smoothing
methods, which are extensively used in practice and can be connected to the linear
mixed models introduced in Chapter 5.

11.1.1 Truncated Power Basis Splines

Recall that P-splines (Eilers and Marx, 1996) (see Section 7.5) combine a rich B-
spline basis with equally-spaced knots and a simple difference penalty within the
regression framework. Ruppert and Carroll (2000) proposed a smoothing method
using a similar idea: their basis consists of truncated power functions, the knots are
quantiles of xi, and the penalty is on the size of the coefficients. More specifically,
using notation ap

+ = ap if a > 0 or 0 if a≤ 0 we expand the function as follows

f (xi) = β0 +β1xi + · · ·+βpxp
i +

r

∑
j=1

u j (xi− t j)
p
+ ,

for i= 1, . . . ,n, where f is expanded as a combination of the pth order polynomial and
the sum of truncated power basis (TPB) functions given a sequence of r knots t j. Tak-
ing β= (β0, . . . ,βp)

T to be the unknown vector of fixed effects and u= (u1, . . . ,ur)
T

of random effects, this smoothing method can be formulated as a mixed model given
by

y =Xβ+Zu+ε, u∼ N(0,σ2
uI), ε∼ N

(
0, σ

2
εI
)
, (11.1)

268 Bayesian Regression Modeling with INLA

where X is the n× (p+ 1) matrix with ith row (1,xi, . . . ,x
p
i) and Z is the n× r

matrix with ith row
(
(xi− t1)

p
+, . . . ,(xi− tr)

p
+

)
. Note that λ = σ2

ε/σ2
u is the smooth-

ing parameter that controls how smooth the fitted curve is. The best linear unbiased
predictors (BLUPs) of β and u can be explicitly derived under this framework, and
the variance components σ2

u and σ2
ε are estimated by restricted maximum likelihood

(REML). This work has been extended by Ruppert et al. (2003), and also called “P-
splines” by some people. To avoid unnecessary confusion we term it here as TPB
splines.

From the Bayesian point of view, we need to take priors on the unknown pa-
rameters in model (11.1), which are β, u, σ2

u and σ2
ε . To align with mixed model

formulation, we use the following Gaussian priors on β and u:

β ∼ N
(
0, σ

2
β
I
)
, u∼ N

(
0, σ

2
uI
)
,

where σ2
β

is a fixed large number (e.g., 106), but σ2
u must be random and needs a

prior for it. Following the discussion in Section 7.2.2, we may take non-informative
or weakly informative priors on σ2

u and σ2
ε .

Finally, we discuss how to choose the knots. The knot t j is the sample quantile of
xis corresponding to probability j/(r+1). A common default number of knots in the
penalized spline literature is r = min(nu/4,35), where nu is the number of unique
xis (see, e.g., Ruppert et al., 2003). Ruppert (2002) discusses “hi-tech” choices of
r, and suggests choosing a large enough number (typically 5 to 20) for the desired
flexibility. Also, the distribution of the knots, for a given r, may have some effect on
the results, but in most situations this effect will be minor.

11.1.2 O’Sullivan Splines

O’Sullivan splines (O’Sullivan, 1986), abbreviated as O-splines, combine B-splines
with the penalty function used in smoothing splines. Given a sequence of knots
xmin < t1 < · · ·< tr < xmax we represent f (x) as a sum of cubic B-splines using the ex-
pression in (7.11), with B1, . . . ,Bp (p = r+4) basis functions defined by these knots
and the corresponding coefficients β = (β1, . . . ,βp)

T . Then, the integrated squared
second derivative penalty is used, and it can be expressed as a quadratic function of
the coefficients ∫ (

f ′′(x)
)2 dx = βTQβ,

where Q is the p× p (banded) matrix with entry Q[i, j] =
∫

B′′i (x)B
′′
j (x)dx. Finally,

the O-splines estimator is obtained by minimizing

(y−Bβ)T (y−Bβ)+λβTQβ, (11.2)

whereB is the n× p design matrix with entryB[i, j] = B j(xi), and λ is the smooth-
ing parameter. Although it is not trivial to compute Q, Wand and Ormerod (2008)
extended the O-splines to higher orders of the derivative, and derived an exact matrix

Miscellaneous Topics in INLA 269

algebraic expression for the corresponding penalty function. They also showed how
to derive the design matrices X and Z using the spectral decomposition of Q, and
represent the O-splines as a mixed model of form in (11.1). It’s noteworthy that the
simpler specification X = [1,xi] can be used without affecting the fit, because the
originalX is a basis for the space of straight lines.

The O-splines are closely related to the P-splines of Eilers and Marx (1996). If the
knots are taken to be equally spaced, the family of cubic P-splines is given by (11.2)
with Q replaced by DT

2D2, where D2 is the differencing matrix of RW2 model.
Therefore, the P-splines can also be analyzed under mixed model framework (e.g.,
Eilers et al., 2015). Wand and Ormerod (2008) compared those two spline methods
from both theoretical and empirical perspectives. Eilers et al. (2015) conducted a
thorough review on the P-splines, and compared it to the O-splines and the TPB
splines in detail.

11.1.3 Example: Canadian Income Data

We in this section show how to use INLA to fit the TPB splines and the O-splines
to the Canadian income data. The data have 205 pairs of observations on Canadian
workers from a 1971 Canadian Census Public Use Tape. We first load the dataset:

library(INLA); library(brinla)
data(age.income, package = ’SemiPar’)
str(age.income)

’data.frame’: 205 obs. of 2 variables:
$ age : int 21 22 22 22 22 22 22 22 22 23 ...
$ log.income: num 11.2 12.8 13.1 11.7 11.5 ...

where the variable age is worker’s age in years, and log.income is the logarithm
of worker’s income. We would like to see whether there exists a possible nonlinear
relationship between log.income and age.

TPB Splines

To fit TPB splines as a mixed model, we need to first produce two design matrices
X and Z as in (11.1):

X <- spline.mixed(age.income$age, degree = 2, type = ’TPB’)$X
Z <- spline.mixed(age.income$age, degree = 2, type = ’TPB’)$Z

The function spline.mixed() is used to make design matrices for different types
of splines. Here ’TPB’ type matrices are based on p (order of the polynomial) and
r (number of knots). We here let p = 2 specified by degree=2, and use the default
value for r although other values can be used via option Nknots in spline.mixed().
Then, we use the so-called “z” model in INLA to specify this mixed model:

age.income$ID <- 1:nrow(age.income)
formula <- log.income ~ -1 + X + f(ID, model = ’z’, Z = Z, hyper =

↪→ list(prec = list(param = c(1e-6, 1e-6))))

Here ID is the sequence of 1,2, . . . ,n, and hyper is used to specify the hyperprior
on the precision 1/σ2

u. We here use a highly diffuse gamma prior with mean 1 and

270 Bayesian Regression Modeling with INLA

20 30 40 50 60

12
13

14
15

Age (years)

Lo
g(

an
nu

al
 in

co
m

e)

(a) TPB splines

20 30 40 50 60

12
13

14
15

Age (years)

Lo
g(

an
nu

al
 in

co
m

e)
(b) O-splines

FIGURE 11.1
Canadian income data: fitted curve (solid) and 95% credible interval (gray) using
TPB splines (left) and O-splines (right); black dots are data points.

variance 106. Note that we suppress the intercept in formula because it is already
included in X matrix. Finally, let’s fit the model with INLA:

result.tpb <- inla(formula, data = age.income, control.predictor =
↪→ list(compute = TRUE))

The posterior summary of the function estimates can be retrieved from:

result.tpb$summary.fitted.values

In Figure 11.1(a) we show the fitted curve (posterior mean) and its 95% credible
interval, together with the data points

bri.band.plot(result.tpb, x = age.income$age, alpha = 0.05, type = ’
↪→ fitted’, xlab = ’Age (years)’, ylab = ’Log(annual income)’,
↪→ ylim = range(age.income$log.income))

points(age.income$age, age.income$log.income, cex = 0.5)

Although they are not of interest in this case, the posterior quantities of β and u are
given by result.tpb$summary.fixed and
result.tpb$summary.random$ID[-(1:nrow(age.income)),]

respectively.

O-splines

It is very similar to fit O-splines in INLA as we do TPB splines. We only need
different design matrices:

X <- spline.mixed(age.income$age, type = ’OSS’)$X
Z <- spline.mixed(age.income$age, type = ’OSS’)$Z

Miscellaneous Topics in INLA 271

Here we use ’OSS’ to specify the O-splines type of matrices. Then, we may use the
same formula and inla() for fitting O-splines as for TPB splines:

age.income$ID <- 1:nrow(age.income)
formula <- log.income ~ -1 + X + f(ID, model = ’z’, Z = Z, hyper =

↪→ list(prec = list(param = c(1e-6, 1e-6))))
result.oss <- inla(formula, data = age.income, control.predictor =

↪→ list(compute = TRUE))

We present the result in Figure 11.1(b). Compared to the TPB spline fit, the O-spline
fit seems to be a little less smooth although the same knots and priors on the variance
components are used.

We now present an alternative way to fit O-splines with INLA. Based on equation
(11.2), it is intuitive to represent the O-splines as a Bayesian hierarchical model rather
than a mixed model:

y | β,σ2
ε ∼ N

(
Bβ,σ2

εI
)
, β | σ2

β
∼ N

(
0,σ2

β
Q−1

)
, (11.3)

where λ = σ2
ε/σ2

β
is the smoothing parameter. This model is very similar to the P-

splines model, where the only difference is in the precision matrix in the prior of β.
We therefore follow the INLA procedure used for P-splines to fit O-splines. Let’s
produce the B-spline basis matrix B in (11.3) and change it to the sparse matrix
format as required by INLA:

B.tmp <- spline.mixed(age.income$age, type = ’OSS’)$B
n.row <- nrow(B.tmp)
n.col <- ncol(B.tmp)
attributes(B.tmp) <- NULL
Bmat <- as(matrix(B.tmp, n.row, n.col), ’sparseMatrix’)

Although it is not internally coded in INLA, the prior on β in (11.3) can be specified
by first making itsQ matrix:

Q <- as(spline.mixed(age.income$age, type = ’OSS’)$Q, ’sparseMatrix’)

and then using the so-called “generic0" model as follows:

formula <- y ~ -1 + f(x, model = ’generic0’, Cmatrix = Q, hyper = list
↪→ (prec = list(param = c(1e-6, 1e-6))))

Here hyper is used to specify the hyperprior for σ2
β
. We are now ready to fit the

O-splines using INLA:

data.inla <- list(y = age.income$log.income, x = 1:ncol(Bmat))
result.oss2 <- inla(formula, data = data.inla, control.predictor =

↪→ list(A = Bmat, compute = TRUE))

The posterior quantities regarding function estimation are saved in

result.oss2$summary.fitted.values[1:n.row,]

We may visualize the fitted curve and the 95% credible interval using the following
R commands:

bri.band.plot(result.oss2, ind = 1:n.row, x = age.income$age, alpha =
↪→ 0.05, type = ’fitted’, xlab = ’Age (years)’, ylab = ’Log(annual
↪→ income)’, ylim = range(age.income$log.income))

points(age.income$age, age.income$log.income, cex = 0.5)

272 Bayesian Regression Modeling with INLA

We notice that the resulting O-splines fit (not shown) is a little different from that
using the mixed model approach. It is because in the two methods parameters σ2

u and
σ2

β
shrink different coefficients, and therefore apply different amounts of smoothing

to the function fit, although they are put on the same prior (diffuse gamma prior).
It is trivial to apply TPB splines and O-splines to non-Gaussian data using INLA.

The only change we need to make to the above R code is to specify the (non-
Gaussian) likelihood using the family option in inla() function.

11.2 Analysis of Variance for Functional Data
Being associated with continuous time monitoring processes, functional data are usu-
ally smooth curves or surfaces and are often treated as realizations of underlying ran-
dom functions. The basic philosophy of functional data is to consider the observed
curves (or surfaces) as single entities, rather than only as a sequence of individual ob-
servations. Comprehensive surveys of statistical techniques for analyzing functional
data can be found in Ramsay and Silverman (2005) and Ferraty and Vieu (2006).

We here focus on the functional analysis of variance (ANOVA) models, which al-
low us to study how the data differ with certain categorical factors. Let yik(x) denote
the kth functional observation in the ith group, and we define a one-way functional
ANOVA model given factor A as

yik(x) = µ(x)+αi(x)+ εik(x), x ∈ X ⊂ IRd , (11.4)

where µ is the grand mean function, αi is the ith-level main effect function, and εik is
the Gaussian process with mean zeros, for i = 1, . . . ,mA and k = 1, . . . ,n. To identify
αi from µ, we need certain linear constraints, such as ∑i αi(x) = 0 or αmA(x) = 0 for
all x ∈ X . Obviously, this model is an extension of the ordinary one-way ANOVA
model to the function space.

It is straightforward to generalize model (11.4) for two factors and even for non-
Gaussian functional response. For example, let’s consider two factors denoted by A
and B. Let yi jk(x) denote a functional response at the ith level of A and jth level of
B from kth subject, and assume it follows a distribution from the exponential family
with mean E(yi jk) = µi j and a canonical link function g. A (generalized) two-way
functional ANOVA model is given by

g(µi jk) = µ(x)+αi(x)+β j(x)+ γi j(x), (11.5)

for i = 1, . . . ,mA, j = 1, . . . ,mB and k = 1, . . . ,ni j. Here µ is the grand mean function,
αi is the ith-level main effect function of A, β j is the jth-level main effect function
of B, and γi j is the interaction function. For identifiability, we need a set of lin-
ear constraints on αi, β j and γi j, and one possible set is αmA(x) = 0, βmB(x) = 0,
γmA, j(x) = 0 and γi,mB(x) = 0 for all x ∈ X . It is straightforward to extend model
(11.5) for more than two factors.

Miscellaneous Topics in INLA 273

To do ANOVA for functional data, we need to first estimate the effect functions,
and then test whether or not those functions are significantly different from 0. By
taking on each effect function a Gaussian prior mentioned in Chapter 7 or 8, the
functional ANOVA models fall in the class of latent Gaussian models, and hence can
be fitted by INLA. We are also able to use the excursion method described in Section
7.8 to find which part of the function is non-zero with a significantly high probability.
Below we present an example where we use INLA to fit a one-way ANOVA model
to the continuous functional data with one-dimensional domain. However, INLA is
able to deal with more complicated ANOVA models with more factors and/or discrete
functional data (see Yue et al., 2018).

Example: Diffusion Tensor Imaging (DTI)

Goldsmith et al. (2012) study DTI metrics of multiple sclerosis (MS) patients over
multiple clinical visits. The data consist of 100 subjects, aged between 21 and 70
years at first visit. The number of visits per subject ranges from 2 to 8, and a total
of 340 visits were recorded. For each visit the DTI scans were obtained and used
to create tract profiles. The derived outcome is known as fractional anisotropy (FA),
which describes the degree of anisotropy of a diffusion process in a brain and has
been routinely used as an index of white matter integrity. The FA tract profiles of two
particular brain regions are contained in the data: the corpus callosum area (CCA)
and the right cortico-spinal tract (RCST). The damage to either region may be linked
with a decline in cognitive performance in MS patients. The same data have been
analyzed in Yue et al. (2018).

Let’s load the dataset and take a look at its structure:

data(DTI, package = ’refund’)
str(DTI)

’data.frame’: 382 obs. of 9 variables:
$ ID : num 1001 1002 1003 1004 1005 ...
$ visit : int 1 1 1 1 1 1 1 1 1 1 ...
$ visit.time: int 0 0 0 0 0 0 0 0 0 0 ...
$ Nscans : int 1 1 1 1 1 1 1 1 1 1 ...
$ case : num 0 0 0 0 0 0 0 0 0 0 ...
$ sex : Factor w/ 2 levels "male","female": 2 2 1 1 1 1 1 1 1 1 ...
$ pasat : int NA NA NA NA NA NA NA NA NA NA ...
$ cca : num [1:382, 1:93] 0.491 0.472 0.502 0.402 0.402 ...
..- attr(*, "dimnames")=List of 2
.. ..$: chr "1001_1" "1002_1" "1003_1" "1004_1" ...
.. ..$: chr "cca_1" "cca_2" "cca_3" "cca_4" ...

$ rcst : num [1:382, 1:55] 0.257 NaN NaN 0.508 NaN ...
..- attr(*, "dimnames")=List of 2
.. ..$: chr "1001_1" "1002_1" "1003_1" "1004_1" ...
.. ..$: chr "rcst_1" "rcst_2" "rcst_3" "rcst_4" ...

The data frame is made up of ID = subject ID numbers, visit = subject-specific
visit numbers, Nscans = total number of visits for each subject, case = multiple
sclerosis case status (0-control, 1-case), cca = 382× 93 matrix of FA tract profiles

274 Bayesian Regression Modeling with INLA

from the CCA, and rcst = 382×55 matrix of FA tract profiles from the RCST. The
descriptions of other variables can be found in the R document.

0 10 20 30 40 50

0.
2

0.
4

0.
6

0.
8

1.
0

(a) Visit #1

0 10 20 30 40 50

0.
2

0.
4

0.
6

0.
8

1.
0

(b) Visit #2

0 10 20 30 40 50

0.
2

0.
4

0.
6

0.
8

1.
0

(c) Visit #3

0 10 20 30 40 50

0.
2

0.
4

0.
6

0.
8

1.
0

(d) Visit #4

FIGURE 11.2
DTI of MS patients: FA tract profile of RCST for each patient at each visit.

There are two research questions we try to answer in this case study. The first
question is: “Is there a significant functional effect of ‘visit’ on FA measures of MS
patients?”, and the second one is: “How does the significance of ‘visit’ change dy-
namically over the trace locations if it exists?” We therefore restrict our attention to
the 18 patients, who had completed 4 visits within approximately one year:

DTI.sub <- DTI[DTI$Nscans==4 & DTI$case == 1,]

We here only present the analyses of RCST for demonstration purposes. The CCA
can be analyzed similarly. Let’s plot the FA tract profiles of RCST for the first visit,
which is presented in Figure 11.2(a):

dat.v1 <- DTI.sub[DTI.sub$visit==1,]$rcst
plot(dat.v1[1,], type = "n", ylim = c(0.1, 1))
for(i in 1:dim(dat.v1)[1]) lines(dat.v1[i,])

The plots for the other 3 visits are made similarly and shown in Figures 11.2(b),
11.2(b) and 11.2(d). From the discontinuities in the curves we know there are some
missing values in the profiles. We take each FA tract profile as a functional obser-
vation and would like to study whether those functions have different mean patterns
across the visits.

Let yi j(x) denote the FA measure at location x for jth subject on ith visit. Since

Miscellaneous Topics in INLA 275

−0.5

0.0

0.5

1.0

0 20 40

(a) Visit #1

−0.5

0.0

0.5

1.0

0 20 40

(b) Visit #2

−0.5

0.0

0.5

1.0

0 20 40

(c) Visit #3

−0.5

0.0

0.5

1.0

0 20 40

(d) Visit #4

FIGURE 11.3
DTI of MS patients: mean function and 95% credible band of the tract profile of
RCST for each visit.

it is bounded between 0 and 1, we assume yi j(x) follows a beta distribution, denoted
by Beta(pi j,τ), with mean pi j and variance pi j(1− pi j)/(1+ τ). To investigate the
“visit” effect, we use the following one-way ANOVA model:

logit(pi j) = µ(x)+αi(x), i = 1,2,3,4, (11.6)

where µ is the grand mean function and αi is the main effect function of ith visit.
For identifiability we here let α4(x) = 0 for all x, and therefore µ becomes the mean
function for Visit #4. We can write down model (11.6) in matrix form:

logit(p) =Aµµ+Aαα=Af ,

whereA= [Aµ,Aα] and f = [µ′,α′]′. HereAµ andAα are incidence matrices used
to map vectors µ and α to the vector p. Since the locations of each tract profile are
discrete, it is intuitive to assign RW2 priors for µ and αi. Regarding precision τ, we
use the default gamma prior as specified in INLA.

To fit the model let’s first extract necessary information from the data:

ns <- dim(DTI.sub$rcst)[2]
ng <- length(unique(DTI.sub$visit))
n <- length(unique(DTI.sub$ID))

Here ns is the number of locations, ng is the number of visits, and n is the number
of subjects. We produce matricesAµ andAα:

276 Bayesian Regression Modeling with INLA

D1 <- Matrix(rep(1,ng*n),ng*n,1)
A.mu <- kronecker(D1, Diagonal(n=ns, x=1))
D1 <- Diagonal(n = ns, x = 1)
D2 <- Diagonal(n = (ng-1), x = 1)
D3 <- Matrix(rep(0, ng-1), 1, ng-1)
D4 <- kronecker(rBind(D2, D3), D1)
A.a <- kronecker(Matrix(rep(1, n), n, 1), D4)

We combine them into matrixA

A <- cBind(A.mu, A.a)

Then, we make the index vectors for µ, α and α’s replicates required by INLA:

mu <- 1:ns
alpha <- rep(1:ns, ng-1)
alpha.rep <- rep(1:(ng-1), each = ns)

In addition, we need to add a few NA’s to the vectors made above in order to match
their lengths to the dimension ofA:

mu2 <- c(mu, rep(NA, length(alpha)))
alpha2 <- c(rep(NA, length(mu)), alpha)
alpha2.rep <- c(rep(NA, length(mu)), alpha.rep)

Finally, we may collect the vectors we need in a list, and express this one-way func-
tional ANOVA model in INLA as follows:

y <- as.vector(t(DTI.sub$rcst))
data.inla <- list(y=y, mu=mu2, alpha=alpha2, alpha.rep=alpha2.rep)
formula <- y ~ -1 + f(mu, model = ’rw2’, constr = FALSE, scale.model =

↪→ T) + f(alpha, model = ’rw2’, constr = FALSE, scale.model =
↪→ TRUE, replicate = alpha.rep)

The estimated functions from this model are the mean function of Visit #4 (µ),
and main effect functions of Visit #1, #2, and #3 (α1, α2 and α3). If one is also
interested in the mean functions of the first three visits, one may write down such
functions as linear combinations of µ and α, i.e., A1µ+A2α, and build them in
INLA:

A1.lc <- kronecker(Matrix(rep(1,ng-1),ng-1,1), Diagonal(n=ns, x=1))
A2.lc <- Diagonal(n = (ng - 1)*ns, x = 1)
lc <- inla.make.lincombs(mu = A1.lc, alpha = A2.lc)

We then use lincomb option in inla() to estimate the linear combinations lc de-
fined above, as well as functions µ and α:

result <- inla(formula, data = data.inla, family = ’beta’, control.
↪→ predictor = list(A = A, compute = TRUE), control.compute = list
↪→ (config = TRUE), lincomb = lc)

Now let’s display the result. We first plot the fitted mean function and its 95%
credible band for each visit:

bri.band.ggplot(result, ind = 1:ns, type = ’lincomb’)
bri.band.ggplot(result, ind = 1:ns + ns, type = ’lincomb’)
bri.band.ggplot(result, ind = 1:ns + 2*ns, type=’lincomb’)
bri.band.ggplot(result, name = ’mu’, type = ’random’)

Figure 11.3 shows the plots. As we can see, the tract profiles show similar patterns

Miscellaneous Topics in INLA 277

−0.4

−0.2

0.0

0 20 40

(a) Visit #1

0.00

0.25

0.50

0.75

1.00

0 20 40

(b) Visit #1

−0.4

−0.2

0.0

0 20 40

(c) Visit #2

0.00

0.25

0.50

0.75

1.00

0 20 40

(d) Visit #2

−0.4

−0.2

0.0

0 20 40

(e) Visit #3

0.00

0.25

0.50

0.75

1.00

0 20 40

(f) Visit #3

FIGURE 11.4
DTI of MS patients: main effect function and its 95% credible interval for each visit
(left panels) and corresponding joint probabilities (solid) and marginal probabilities
(dashed) that the main effect functions are non-zeroes, and the set of locations where
the joint probabilities are at least 0.95 (gray) for each visit.

across the visits, but seem to shift upward as the number of visits increases. We also
plot the main effect function for each of the first 3 visits to see how different they are
from the last visit:

bri.band.ggplot(result, name=’alpha’, ind=1:ns, type=’random’)
bri.band.ggplot(result, name=’alpha’, ind=1:ns+ns, type=’random’)
bri.band.ggplot(result, name=’alpha’, ind=1:ns+2*ns, type=’random’)

From Figures 11.4(a), 11.4(c) and 11.4(e) we see the functions get more and more
flattened, indicating the difference between each of the first three visits and the last
visit becomes smaller as the patients pay more visits.

278 Bayesian Regression Modeling with INLA

To answer the research questions mentioned earlier, we must understand how the
significance of the “visit” effect on FA dynamically measures changes over the trace
locations if it exists. We can see some evidence in Figures 11.3 and 11.4 that the
main effect is significant. However, it will be more desirable to know the probability
of the significance at each trace location and see how those probabilities dynamically
change. In other words, we need to find for each main effect function a set of loca-
tions D such that the function is not zero with a significant joint probability for all
locations in that region, i.e., P(αi(x) 6= 0) ≥ 0.95 for all x ∈ D and i = 1,2,3. We
therefore implement the excursion method introduced in Section 7.8 to each main
effect function:

res.exc1 <- excursions.brinla(result, name = ’alpha’, ind = 1:ns, u =
↪→ 0, type = ’!=’, alpha = 0.05, method = ’NIQC’)

res.exc2 <- excursions.brinla(result, name = ’alpha’, ind = 1:ns + ns,
↪→ u = 0, type = ’!=’, alpha = 0.05, method = ’NIQC’)

res.exc3 <- excursions.brinla(result, name = ’alpha’, ind = 1:ns + 2*
↪→ ns, u = 0, type = ’!=’, alpha = 0.05, method = ’NIQC’)

And we plot the results (Figures 11.4(b), 11.4(d) and 11.4(f)):

bri.excursions.ggplot(res.exc1)
bri.excursions.ggplot(res.exc2)
bri.excursions.ggplot(res.exc3)

For each visit the gray region shows the set of locations such that the function is not
zero with at least 0.95 probability for all locations in that region. As we can see, the
region keeps shrinking as the patients pay more visits, and the three visits have the
common region between 10 and 40. It concludes that there is a significant functional
effect of “visit.” In terms of its dynamic change, the effect is more significant at the
locations in the middle than those at two ends. It indicates that for MS patients the
middle part of RCST seems to be damaged more quickly than the two end parts.

11.3 Extreme Values
Most statistical modeling is concerned with the mean response but in some applica-
tions, the extreme values of the response are the main interest. For example, when
considering insurance claims, the maximum claim is of particular interest since the
insurance company must have ready access to funds to pay such a claim. Extreme
values, as the name implies, are usually generated from the maximum (or minimum)
of a large collection of random variables. The generalized extreme value distribution
is a flexible way to model extreme values with distribution function:

F(y|µ,τ,ξ) = exp[−(1+
√

τs(y−µ))−1/ξ].

This is defined for values of y such that 1+
√

τs(y− µ) > 0. The µ is a location
parameter which we might link to a linear predictor. τ is the precision and ξ is a
shape parameter. The scale s is not a parameter but is a fixed value which we will

Miscellaneous Topics in INLA 279

need for scaling purposes. The shape parameter ξ determines the particular type of
extreme value distribution:

1. In the limit as ξ→ 0, we have a Gumbel distribution. This distribution
can arise from the maximum of a large number of exponential random
variables.

2. For ξ > 0, we have a Fréchet distribution.

3. For ξ < 0, we have a Weibull distribution. But the shape will be reversed
from the usual Weibull in that there will be no lower bound but there will
be an upper bound.

The Gumbel distribution is unrestricted while the Fréchet distribution has a lower
bound.

Extreme flows in rivers are of special interest since flood defenses must be de-
signed with these in mind. The National River Flow Archive provides data about river
flows in the United Kingdom. For this example, we consider data on annual maxi-
mum flow rates from the River Calder in Cumbria, England, from 1973 to 2014.

data(calder, package="brinla")
plot(Flow ~ WaterYear, calder)

�

�

�
�

�

�

�

�
�

�

�

� �

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

� �
�

�

�

�

�

�

�

�

�

�

1980 1990 2000 2010

50
10

0
15

0

WaterYear

Fl
ow

FIGURE 11.5
Annual maximum flow rates on the River Calder in Cumbria.

The data, as plotted in Figure 11.5, show the maximum flows during the period of
observation. There is some indication that maximum flows may be increasing, per-
haps due to changing land use in the catchment area of the river. It would not be
sensible to use a Gaussian linear model here as extreme values do not follow a Gaus-
sian distribution. In this case, we can see that the response has a skewed distribution.
Furthermore, we want to make predictions about future extreme flows and the Gaus-
sian distribution is unlikely to be suitable for the tail probabilities. The generalized
extreme value distribution can be used for the observed responses yi, i = 1, . . . ,n with

µi = ηi = β0 +β1yeari.

280 Bayesian Regression Modeling with INLA

The default priors for the fixed effects, β, are the standard flat distributions while the
precision τ has a diffuse gamma distribution. The default prior on ξ is N(0,16). An
SD of 4 is appropriate for ξ as we expect this parameter to be moderate in size. We
accept these default priors here. For convenience, we shift the water year predictor
to start from 1973 as year zero. We fit the INLA model, taking care to first load the
packages we will need for this section:

library(INLA); library(brinla)
calder$year <- calder$WaterYear-1973
imod <- inla(Flow ~ 1+year, data=calder, family="gev",scale=0.1)

In this case, the scale, s, needs to be used — we have set scale=0.1. Without this,
the fitting algorithm fails to converge. The generalized extreme value distribution
is problematic to fit so the need for some data conditioning is not surprising. We
recommend you choose the scale to reduce the response to single digits. Some ex-
perimentation may be necessary.

First we consider the fixed effects:

imod$summary.fixed

mean sd 0.025quant 0.5quant 0.975quant mode kld
(Intercept) 36.71617 5.82063 25.18051 36.72028 48.1901 36.71110 6.1575e-13
year 0.75902 0.24656 0.26552 0.76149 1.2404 0.76786 4.6615e-12

The slope parameter has a posterior which is quite clearly positive. We can compute
the probability of it being negative as:

inla.pmarginal(0, imod$marginals.fixed$year)

[1] 0.0019135

So there is strong evidence that maximum flows are increasing for this river over
time.

We can display the posterior distributions for the hyperparameters, as seen in
Figure 11.6:

plot(bri.hyper.sd(imod$marginals.hyperpar$‘precision for GEV
↪→ observations‘), type="l", xlab="SD", ylab="density")

plot(imod$marginals.hyperpar$‘shape-parameter for gev observations‘,
↪→ type="l", xlim=c(-0.2,0.5), xlab="xi", ylab="density")

The shape parameter is most interesting as this has a large impact on the shape of the
distribution. We see that the posterior is mostly concentrated on positive values of ξ

but there is a small chance that ξ is negative.
The maximum flow over the period of observation occurred in the 1997 water

year measuring 173.17 m3/s. Under our fitted model, what was the probability of
observing such a flow (or greater)? This will give us a measure of how unusual this
event was. First we need an R function to compute P(Y < y) for the generalized
extreme value distribution:

pgev <- function(y,xi,tau,eta,sigma=1){
exp(-(1+xi*sqrt(tau*sigma)*(y-eta))^(-1/xi))

}

Now we can make the calculation using the posterior means of the parameters:

Miscellaneous Topics in INLA 281

4 5 6 7 8

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

SD

de
ns

ity

−0.2 0.0 0.2 0.4

0
1

2
3

4
xi

de
ns

ity

FIGURE 11.6
Posterior distribution of the hyperparameters. The SD (derived from the precision τ)
is shown on the left while the shape ξ is shown on the right.

yr <- 1997-1973
maxflow <- 173.17
eta <- sum(c(1,yr)*imod$summary.fixed$mean)
tau <- imod$summary.hyperpar$mean[1]
xi <- imod$summary.hyperpar$mean[2]
sigma <- 0.1
pless <- pgev(maxflow, xi, tau, eta,sigma)
1-pless

[1] 0.0085947

We can see the observed event should be considered quite rare. Hydrologists often
work with the expected time for the event to occur called the recurrence interval. In
this case, the value is:

1/(1-pless)

[1] 116.35

Hence, we would expect such a flood to recur about every 116 years. There is concern
that river flooding is becoming more common in the UK with global warming and
changing land use. For this river, there is an increasing trend in flow rates. If we
recompute the recurrency interval for 2017, we find this drops to 74 years which is
no longer quite so exceptional.

These are point estimates but we should view the recurrency interval as a random
variable whose distribution we can construct from the posterior distribution of the
parameters. The computation of the recurrency interval requires all four parameters
so we must consider the full joint posterior distribution. We cannot get by with just
the marginal distributions because the parameters are likely to be correlated. In prin-

282 Bayesian Regression Modeling with INLA

ciple, the computation could be done exactly using the joint posterior but this cannot
be produced from INLA. An easier solution is to generate samples from the joint
posterior and use these to estimate the distribution of the recurrency interval. The
function inla.posterior.sample() can be used to achieve this. We generate 999
samples:

nsamp <- 999
imod <- inla(Flow ~ 1+year, data=calder, family="gev",scale=0.1,

↪→ control.compute = list(config=TRUE))
postsamp <- inla.posterior.sample(nsamp, imod)
pps <- t(sapply(postsamp, function(x) c(x$hyperpar, x$latent[42:43])))
colnames(pps) <- c("precision","shape","beta0","beta1")

We get a sample of all the latent variables — 41 for each of the cases and two more
which are β0 and β1. We only want the β here. The matrix pps has four columns for
the four parameters. We plot the hyperparameters, ξ and τ only in Figure 11.7. The
multiplication by 0.01 = 0.12 is required due to the internal scaling applied to ξ.

plot(shape*0.01 ~ precision, pps, ylab="shape")

���

��

����������������

������������������������������������ ��������������������������� ����������

����������

������

�������������

���

��������

��

�������

�

��

�����������������������������������

���

����������������������������

�����������������������

����

�����

����

�����

������

�����

�

���

���

��

������������������

�������������������������

�����������

���������������

������������

�����

��

�����������

��

�

��

�

��

���

�������������������

��

��

���

�����������

��

�����

0.02 0.03 0.04 0.05 0.06

−0
.1

0.
0

0.
1

0.
2

0.
3

0.
4

precision

sh
ap

e

��������
�����

������
����

�������

����

������

����

��

����

�������
���

��� ������

���
��

��

������

���
����

���
��

�����

����

���
����

���

�

�����

��

���

� ��

���

��
���

�

�
���

���

�

��

�

����

�����

��

����

��

�����

�

�

��

�

��

�����

���

��

�

�

����

��

�

�����

��

�

��

���
�

��

�

��
�
�

�

�

��

�

��

�

���

�

�

��

���

��

��

�

�

�

�

�

�� �

��

� �

�

�
��

�

�

�

�� �

�

�

�

�

��������
�����

���� ���

������ ���

�����

�

���

�����

�

�����

�

���

��

�����
����

�����������

��

��������

�

�

����

������

�� ��

�������

�� ��

� ���

�

��
����

�

�����

���

����

�

���
����

���

��

�

��

�����

���

��

�����

��

�

���

���

�

�����

��

�

�

��
���

��

����
�

��

��
�

�

��

�

����

�

�

�

���

��

����

��

�

�

�

�

�

�

��

�

��

���

�
�

��

�

�

�

���

�

�

�

�
��

�

�

��
���

��

������

������
��

���

���������

���

��
������ �

������ ���

�

�������
����

�
���

���

������

������
�

�

�

���

����
��

�

���

����

��

�

����

�

�

��

��

�

��

������
�

����

��

�

�

��

������
��

��

���

������

�

�

��

�

��

���

��
��

�

�

�

�

�

��

��

�

�

�

�

�

�

�

�

�
�

�

�

�

��

�

�

�

��

��

�

�

�

��

�

��

�

�

�

�

�

�
�

���

�

�
�

�
�

�
�

����

�����
�������

����

�����

����
���

��������
��

�

��
��

����
����

���

���
������ ���

����

�����

����

�����

���

��

�

�����

�����

���

��

��

�����
���

�����

���

�������

���

�

�

�

���� ��

��

�
���

��

����

�

���

����

��
�

��

�

���

��

��

�
��

��
�

��

�
�

��� �

�

�

��
� �

�

��

� �

��� ����

�

����

�
��

�

��

�
�

�

�

��

�� ��
��

�

�

��

�

���

��

�

�

�

��

��

0.02 0.04 0.06−0
.1

0.
0

0.
1

0.
2

0.
3

0.
4

precision

sh
ap

e

FIGURE 11.7
Samples from the posterior of the hyperparameters. The default is shown on the left
while the shorter step length is shown on the right.

We are surprised to find that the samples are confined to a grid of points. This is
explained by the approximation methods used by INLA. The posteriors for the la-
tent variables are computed on a grid of points in the space of the hyperparameters.
We can obtain a standard sample from the posterior of the hyperparameters using
inla.hyperpar.sample() but this would not allow for the dependence with the
latent variables. Since the gridded sample of the hyperparameters properly reflects
the posterior on the hyperparameters, computations using this sample will not be as
inaccurate as one might fear. Nevertheless, one might hope to do better. We can use a

Miscellaneous Topics in INLA 283

finer grid in the INLA computation. The value dz is the step-length in the standarized
scale for the integration of the hyperparameters. We reduce the default choice of 0.75
to 0.2:

imod <- inla(Flow ~ 1+year, data=calder, family="gev",scale=0.1,
↪→ control.compute = list(config=TRUE),control.inla=list(int.
↪→ strategy=’grid’, dz=0.2))

postsamp <- inla.posterior.sample(nsamp, imod)
pps <- t(sapply(postsamp, function(x) c(x$hyperpar, x$latent[42:43])))
colnames(pps) <- c("precision","shape","beta0","beta1")
plot(shape*0.01 ~ precision, pps, ylab="shape")

The plot shown in the second panel of Figure 11.7 is more dense. We now compute
the recurrency interval for each sample and find some quantiles of interest:

sigma <- 0.1
maxflow <- 173.17
retp <- numeric(nsamp)
for(i in 1:nsamp){
eta <- sum(c(1,yr)*pps[i,3:4])
tau <- pps[i,1]
xi <- 0.01*pps[i,2]
pless <- pgev(maxflow, xi, tau, eta,sigma)
retp[i] <- 1/(1-pless)

}
quantile(retp, c(0.025, 0.5, 0.975))

2.5% 50% 97.5%
20.908 70.351 512.848

We see that 95% credible interval runs from 21 to 513 years which is rather wide.
Nevertheless, the lower end of this interval is quite low, causing some concern if
we are worried about flooding. If we still have some anxiety about the accuracy of
this interval, we have two ways to improve it. We can take more samples — this is
relatively inexpensive. We can further reduce the step length dz, which will increase
the computation time significantly. For a single small dataset like this, we can easily
afford this but in larger problems, this may be an obstacle.

11.4 Density Estimation Using INLA
Nonparametric density estimation can also be implemented using INLA. Brown et al.
(2010) proposed a “root-unroot” density estimation procedure, which turned density
estimation into a nonparametric regression problem. The regression problem was
created by binning the original observations into suitable size of bins and applying a
mean-matching variance stabilizing root transform to the binned data counts. Then, a
wavelet block thresholding regression was used to obtain the density estimate. Here
we adopt Brown et al. (2010)’s root-unroot procedure but use a second-order ran-
dom walk model with INLA for the regression step. The second-order random walk
model is particularly suitable for an equi-spaced nonparametric time series regression

284 Bayesian Regression Modeling with INLA

problem (Fahrmeir and Knorr-Held, 2000). See more discussions about random walk
models in Chapter 7. There are two advantages to use the Bayesian nonparametric
approach. First, we avoid the smoothing parameter selection, where the smoothness
of curve is automatically determined by the Bayesian model fitting. Second, it is
straightforward to construct the credible bound of the regression curve. As a result,
constructing the credible band for the probability density function becomes a natu-
ral by-product in the density estimation. Let {x1, ...,xn} be a random sample from a
distribution with the density function fX . The estimation algorithm is summarized as
follows.

1. Poissonization. Divide {x1, ...,xn} in T equal length intervals. Let
C1, ...,CT be the count of observations in each of the intervals.

2. Root Transformation. Apply the mean-matching variance stabilizing root
transform, y j =

√
C j +1/4, j = 1, ...,T .

3. Bayesian Smoothing with INLA. Consider the time series y = (y1, ...,yT)
to be the sum y j = m j + ε j, j = 1, ...,T of a smooth trend function m(·)
and a noise component ε. Fit a second-order random walk model with
INLA for the equi-spaced time series to obtain a posterior mean estimate
m̂ of m, and α/2 and 1−α/2 quantiles, m̂α/2 and m̂1−α/2.

4. Unroot Transformation and Normalization. The density function fX is
estimated by

f̂X (x) = γ[m̂(x)]2,

and the 100(1−α)% credible bands of f (x) is

(γ[m̂α/2(x)]
2,γ[m̂1−α/2(x)]

2)

where γ = (
∫

f̂X dx)−1 is a normalization constant.

In Step 3, we need to fit a nonparametric smooth function m(·) from the “pseudo”
time series y = (y1, ...,yT). Wahba (1978) showed that the smoothing spline is equiv-
alent to Bayesian estimation with a partially improper prior. m(z) has the prior dis-
tribution which is the same as the distribution of the stochastic process

S(z) = θ0 +θ1z+b1/2V (z),

where θ0,θ1 ∼ N(0,ζ), b = σ2/λ is fixed, and V (z) is the one-fold integrated Wiener
process,

V (z) =
∫ z

0
(z− t)dW (t).

Thus, estimating m(z) becomes to seek the solution to the stochastic differential
equation

d2m(z)
dz2 = λ

−1/2
σ

dW (z)
dz

, (11.7)

as a prior over m. Note that such a differential equation of order two is the continuous-
time version of a second-order random walk. However, the solution of (11.7) does

Miscellaneous Topics in INLA 285

not have any Markov properties. The precision matrix is dense, hence it is computa-
tionally intensive. Lindgren and Rue (2008b) suggested a Galerkin approximation to
m(z), as the solution of (11.7). To be specific, let z1 < z2 < ... < zn be the set of fixed
points, a finite element representation of m(z) is constructed as

m̃(z) =
n

∑
i=1

ψi(z)wi,

for the piecewise linear basis functions ψi’s and random weights wi’s.
In order to estimate the smooth function m(z), one needs to determine the joint

distribution of the weights w = (w1, ...,wn)
T . Using the Galerkin method, w is de-

rived as a GMRF with mean zero and precision matrix G. Let di = zi+1 − zi for
i = 1, ...,n− 1, and d−1 = d0 = dn = dn+1 = ∞. The n× n symmetric matrix G is
defined as

G=



g11 g12 g13
g21 g22 g23 g24 0
g31 g32 g33 g34 g35

.
gn−2,n−4 gn−2,n−3 gn−2,n−2 gn−2,n−1 gn−2,n

0 gn−1,n−3 gn−1,n−2 gn−1,n−1 gn−1,n
gn,n−2 gn,n−1 gn,n


,

where the non-zero elements of row i are given by

gi,i−2 =
2

di−2di−1(di−2 +di−1)
,

gi,i−1 =
−2
d2

i−1

(
1

di−2
+

1
di

)
,

gi,i =
2

d2
i−1(di−2 +di−1)

+
2

di−1di

(
1

di−1
+

1
di

)
+

2
d2

i (di +di+1)
,

with gi,i+1 ≡ gi+1,i and gi,i+2 ≡ gi+2,i due to symmetry. G is a sparse matrix with
rank n−2, making the model computationally effective.

If we assign m̃ as a smoothness prior over m, the cubic smoothing spline m̂(z)
at z coincides with the posterior expectation of m(z) given the data, i.e., m̂(z) ≈
E(m(z)|y). Therefore, the nonparametric regression problem becomes to fit a latent
Gaussian model. It can be accomplished using INLA since w is a GMRF. The im-
plementation of the method needs some extra programming in R to define a user-
specified GMRF.

The R function, bri.density in our library brinla implements the above root-
unroot algorithm. The argument x is a numeric vector of data values, m is the number
of equally spaced points at which the density is to be estimated, from and to are the
left- and right-most points of the grid at which the density is to be estimated. If from

286 Bayesian Regression Modeling with INLA

and to are missing, from equals the minima of the data values minus cut times the
range of the data values and to equals the maxima of the data values plus cut times
the range of the data values. In the following, we show two simulated examples to
compare the INLA method and conventional kernel density estimation. In the first
example data are generated from the standard normal distribution, X ∼ N(0,1), with
sample size n = 500:

library(brinla)
set.seed(123)
n <- 500
x <- rnorm(n)
x.den1 <- bri.density(x, cut = 0.3)
x.den2 <- density(x, bw = "SJ")

curve(dnorm(x, mean = 0, sd = 1), from = -4, to = 4, lwd = 3, lty = 3,
↪→ xlab = "x", ylab = "f(x)", cex.lab = 1.5, cex.axis = 1.5, ylim
↪→ =c(0, 0.45))

lines(x.den1, lty = 1, lwd = 3, ylim = c(0, 0.25))
lines(x.den1$x, x.den1$y.upper, lty = 2, lwd = 3)
lines(x.den1$x, x.den1$y.lower, lty = 2, lwd = 3)
lines(x.den2, lty = 4, lwd = 3)

In the second example data are generated from a normal mixture model, X ∼
0.5N(−1.5,1)+0.5N(2.5,0.752), with sample size n = 1000:

set.seed(123)
n <- 1000
x <- c(rnorm(n/2, mean = -1.5, sd = 1), rnorm(n/2, mean = 2.5, sd =

↪→ 0.75))
x.den1 <- bri.density(z, cut = 0.3)
x.den2 <- density(z, bw = "SJ")

curve(dnorm(x, mean = -1.5, sd = 1)/2 + dnorm(x, mean = 2.5, sd =
↪→ 0.75)/2, from = -6, to = 6, lwd = 3, lty = 3, xlab = "x", ylab
↪→ = "f(x)", ylim=c(0, 0.3), cex.lab = 1.5, cex.axis = 1.5)

lines(x.den1, lty = 1, lwd = 3)
lines(x.den1$x, x.den1$y.upper, lty = 2, lwd = 3)
lines(x.den1$x, x.den1$y.lower, lty = 2, lwd = 3)
lines(x.den2, lty = 4, lwd = 3)

Figure 11.8 displays the estimation results. The estimates using INLA are de-
noted by the solid lines, and the 95% credible bands are denoted by the dashed lines.
The kernel density estimates with Sheather and Jones (1991)’s plug-in bandwidth
are denoted by the dash-dotted lines. The true functions are denoted by the dotted
lines. We note that the INLA estimates are very close to the kernel density estimates.
The INLA approach allows us to compute the credible bands of the density function
without additional computational effort.

Miscellaneous Topics in INLA 287

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

x

f(x
)

(a)

−6 −4 −2 0 2 4 6

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

x

f(x
)

(b)

FIGURE 11.8
Simulated examples for density estimation: (a) X ∼ N(0,1), n = 500; (b) X ∼
0.5N(−1.5,1)+0.5N(2.5,0.752), n = 1000. The estimates (solid lines) using INLA
are compared to the estimates (dash-dotted lines) using kernel density estimation
with Sheather and Jones (1991)’s plug-in bandwidth. The true functions are denoted
by the dotted lines.

Installation

R

In this book, we prepare the data, call INLA and process the results using R. Hence
you need R installed to get started. You can obtain it from:

www.r-project.org

You can also obtain a wide selection of introductory guides to R at the same site.
Although R comes with its own GUI, you may find that the Rstudio interface offers
many more features obtainable from:

www.rstudio.com

R-INLA

The heart of INLA is written in C but these routines are accessed using the INLA
package. The INLA package is not available from CRAN where most R packages
may be found. Instead it must be downloaded from the R-INLA website at:

www.r-inla.org

where installation instructions may be found. A large amount of information regard-
ing the use of R-INLA may be found at this website. In particular, there is a Google
group entitled “R-inla discussion group” in which users may find the answer to many
questions.

brinla

We have packaged the functions we have written and some of the data used in this
book into an R package called brinla. You can install it from within R using:

library(devtools)
install_github("julianfaraway/brinla")

You will need to do this only once per computer but in each R session you run on the
examples in this book, you will need:

library(brinla)

We have prefaced our functions with bri so you know where they come from. If you
receive a message saying that one of these functions has “not been found,” it means
you have not installed brinla or not run the library(brinla) command in the
current session.

www.r-project.org
www.rstudio.com
www.r-inla.org

290 Bayesian Regression Modeling with INLA

Book website

You can find the website for the book at

julianfaraway.github.io/brinla/

There you can find the R scripts and errata (or updates) for the book. If you spot
an error or have a question about the content, please contact us depending on the
chapter. Xiaofeng Wang for Chapters 3, 4, 6, 10 and 11.4; Ryan Yue for Chapters 2,
7, 9, 11.1 and 11.2; Julian Faraway for Chapters 1, 5, 8 and 11.3.

Other R packages

We use a number of other R packages in this book. You may choose to install these
as needed but here is a list: GGally MASS R2jags betareg dplyr faraway
fields ggplot2 gridBase gridExtra lme4 mgcv reshape2 splines tidyr
survival

INLA special features

INLA has a number of features which are not linked to any particular model, likeli-
hood or prior but which can be useful in many different situations.

Define a prior The INLA website lists a good number of priors which are usually
adequate for most situations but it is possible to define your own prior. An example
may be found in Section 5.2.1.

Copy Sometimes you have two random components in a model that need to be
linked together. You can achieve this with the so-called “copy” feature. In truth,
the components are linked not copied. You can find examples in Sections 3.7 and
5.3.2.

Replicate If you have two random components that depend on the same hyperpa-
rameter, you need the “replicate” feature as seen in Section 5.7.

Linear combination of predictor When the linear predictor for the response is
formed from another linear combination of predictors, INLA provides a way for
achieving this. An example is seen in Section 5.4.1.

Uninformative Priors in Linear Regression

Uninformative priors are commonly used in Bayesian linear regression. In this ap-
pendix, we discuss the uninformative priors and compare different modeling ap-
proaches. We begin our discussion by assuming that the errors are normal and ho-
moscedastic, i.e., the error term ε in (3.2) is assumed to be distributed as N(0,σ2I)
with an unknown parameter σ. The likelihood function for the model (3.2) is

L(β,σ2|X,y) =
(

1√
2πσ

)n

exp
[
− 1

2σ2 (y−Xβ)T (y−Xβ)
]
. (B.1)

In the frequentist approach to the model (3.2), the well-known ordinary least squares
estimator of β is

β̂ = (XT X)−1XT y, (B.2)

and the estimator of σ2 is given by

σ̂
2 =

(y−Xβ̂)T (y−Xβ̂)
n− p−1

. (B.3)

We can plug the two estimates (B.2) and (B.3) into (B.1) and process according to:

L(β,σ2|X,y) ∝ σ
−n exp

[
− 1

2σ2

(
yT y−2βT XT y+βT XT Xβ

)]
= σ

−n exp
[
− 1

2σ2

(
yT y−2βT XT y+βT XT Xβ

−2((XT X)−1XT y)T XT y+2((XT X)−1XT y)T (XT X)(XT X)−1XT y
)]

= σ
−n exp

[
− 1

2σ2

(
(y−Xβ̂)T (y−Xβ̂)

+ β̂T XT Xβ̂+βT XT Xβ−2βT XT Xβ̂
)]

= σ
−n exp

[
− 1

2σ2

(
σ̂

2(n− p−1)+(β− β̂)T XT X(β− β̂)
)]

. (B.4)

To conduct Bayesian inference for the linear model, we are required to specify the
prior distributions for the unknown parameters β and σ2. The simple priors are the
improper uninformed priors

p(β) ∝ c, p(σ2) ∝ 1/σ
2.

292 Bayesian Regression Modeling with INLA

Here we assume β and σ2 are independent. Therefore, the joint posterior distribution
π(β,σ2|X,y) is provided by

π(β,σ2|X,y) ∝ L(β,σ2|X,y)p(β)p(σ2)

∝ σ
−n−2 exp

[
− 1

2σ2

(
σ̂

2(n− p−1)+(β− β̂)T XT X(β− β̂)
)]

.

(B.5)

Integrating (B.5) with respect to σ2 to get the marginal distribution for β, we have

π(β|X,y) ∝

∫
σ
−n−2 exp

[
− 1

2σ2

(
σ̂

2(n− p−1)+(β− β̂)T XT X(β− β̂)
)]

dσ
2.

Note that the integrand here is the kernel of an inverse gamma distribution for σ2.
So, after certain simplification, one can obtain

π(β|X,y) ∝ Γ(n/2)
[

1
2

(
σ̂

2(n− p−1)+(β− β̂)T XT X(β− β̂)
)]−n/2

∝

[
1+

(β− β̂)T σ̂2XT X(β− β̂)
n− p−1

]−((n−p−1)+(p+1)
)
/2

. (B.6)

It is easy to recognize that (B.6) is the kernel of a (p+1)-dimensional t distribution
with location β̂, scale matrix σ̂2(XT X)−1, and n− p−1 degrees of freedom, i.e.,

β|X,y∼ Tp+1
(
(XT X)−1XT y,(XT X)−1

σ̂
2,n− p−1

)
.

We see that, under the improper uninformed priors, the Bayesian posterior mean
E(β|X,y) is identical to the ordinary least squares estimate. And 100(1−α)% cred-
ible intervals are also the same as the 100(1−α)% confidence intervals in the least
squares approach, although the two intervals could have quite different interpreta-
tions Tiao and Zellner (1964); Wakefield (2013).

We can also derive the marginal posterior distribution of σ2. Specifically,

π(σ2|X,y) ∝

∫
σ
−n−2 exp

[
− 1

2σ2

(
σ̂

2(n− p−1)+(β− β̂)T XT X(β− β̂)
)]

dβ

= σ
−n−2 exp

[
− 1

2σ2 σ̂
2(n− p−1)

]
×

∫
exp
[
− 1

2σ2 (β− β̂)
T XT X(β− β̂)

]
dβ

∝ σ
−n−2 exp

[
− 1

2σ2 σ̂
2(n− p−1)

]
(2πσ

2)(p+1)/2

∝ (σ2)−
1
2 (n−p−1)−1 exp

[
− 1

2σ2 σ̂
2(n− p−1)

]
. (B.7)

Uninformative Priors in Linear Regression 293

It is obvious that (B.7) is a kernel of a scaled inverse chi-squared distribution. That
is,

σ
2|X,y∼ (n− p−1)σ̂2×χ

−2
n−p−1. (B.8)

We obtain the analytic forms of the marginal posterior distributions of β and σ2,
however the close form for the parameters of interest is still not available. An al-
gorithm of direct sampling from the posteriors could be applied here in the case of
uninformative priors, without involving MCMC iterations Wakefield (2013). Note
that

π(β,σ2|X,y) = π(σ2|X,y)π(β|σ2,X,y),

where σ2|X,y is given by (B.8) and β|σ2,X,y∼Np+1
(
β̂,σ2(XT X)−1

)
. We can gen-

erate independent samples from the pair of distributions,{
σ2(b) ∼ π(σ2|X,y),
β(b) ∼ π(β|σ2(b),X,y),

for b = 1, ...,B. From the samples, one can form various summaries for the model
parameters including point estimates such as posterior means, medians, percentiles,
and interval estimates such as credible intervals.

To illustrate many aspects of Bayesian techniques, let us start exploring the sim-
ple linear regression with one of the standard sets of data available in R. In the 1920s,
braking distances were recorded for cars traveling at different speeds. Analyzing the
relationship between speed and braking distance can influence the lives of great num-
ber of people, via changes in speeding laws, car design, and other factors (McNeil,
1977). The cars data contain two variables with 50 observations:

str(cars)
plot(cars$speed,cars$dist,ylab="Stopping Distance",xlab="Speed")

’data.frame’: 50 obs. of 2 variables:
$ speed: num 4 4 7 7 8 9 10 10 10 11 ...
$ dist : num 2 10 4 22 16 10 18 26 34 17 ...

We shall begin by looking at the scatterplot of the two variables.

plot(cars$speed,cars$dist, xlab = "Speed (mph)", ylab = "Stopping
↪→ distance (ft)", main = "Speed and Stopping Distances of Cars")

The plot is shown in Figure B.1, which indicates that there is a linear trend between
the speed variable and the dist variable. The linear regression with the frequentist
least-squares approach can simply be implemented using the following R code:

cars.lm <- lm(dist ~ speed, data=cars)
round(summary(cars.lm)$coeff, 4)

Estimate Std. Error t value Pr(>|t|)
(Intercept) -17.5791 6.7584 -2.6011 0.0123
speed 3.9324 0.4155 9.4640 0.0000

round(summary(cars.lm)$sigma, 4)

[1] 15.3796

294 Bayesian Regression Modeling with INLA

5 10 15 20 25

0
20

40
60

80
10

0
12

0

Speed and Stopping Distances of Cars

Speed (mph)

St
op

pi
ng

 d
is

ta
nc

e
(ft

)

FIGURE B.1
The scatterplot for the cars data.

The results show the coefficient of speed is 3.93 and is significantly different from
zero. It indicates that for every additional mph in speed of cars we can expect the
stopping distance to increase by an average 3.93 feet.

Let us now consider a Bayesian linear regression with uninformative priors
for the data. The model can be implemented by direct sampling without involving
MCMC iterations. We have written an R function, BayesLM.nprior, implementing
the direct sampling algorithm in our brinla package. The arguments in the function
BayesLM.nprior include “lmfit”, an object of class "lm" which is the output from
Rlm function, and “B”, the size of direct sampling. We fit the model for the car data
with the size B = 10,000:

cars.blm <- BayesLM.nprior(cars.lm,10000)
round(cars.blm$summary.stat, 4)

mean se 0.025quant median 0.975quant
(Intercept) -17.6523 6.9373 -31.4474 -17.7014 -4.3668
speed 3.9359 0.4265 3.1067 3.9400 4.7869
sigma 15.6207 1.6423 12.8480 15.4920 19.2183

The results are very close to the least squared approach. A nice feature of the
Bayesian analysis is that we can easily obtain the standard deviation and confidence
levels for the parameter σ.

The linear regression can also be fitted through MCMC with normal priors. The
following R commands implement the MCMC algorithm using the R2jags package.

Uninformative Priors in Linear Regression 295

cars.inits <- list(list("beta0" = 0, "beta1" = 0, "tau" = 1))
cars.dat <- list(x = cars$speed, y = cars$dist, n = length(cars$speed)

↪→)
parameters <- c("beta0", "beta1", "sigma")

SimpleLinearReg <- function(){
for(i in 1:n){

y[i] ~ dnorm(mu[i], tau)
mu[i] <- beta0 + beta1*x[i]

}
beta0 ~ dnorm(0.0,1.0E-6)
beta1 ~ dnorm(0.0,1.0E-6)
tau ~ dgamma (0.001, 0.001)
sigma <- sqrt(1/tau)

}
cars.blm2 <- jags(data = cars.dat, inits = cars.inits, parameters.to.

↪→ save = parameters, model.file = SimpleLinearReg, n.chains = 1,
↪→ n.iter = 5000, n.burnin = 2000, n.thin = 1)

cars.blm2

mean sd 2.5% 25% 50% 75% 97.5%
beta0 -17.5 7.0 -30.7 -22.2 -17.6 -12.8 -3.1
beta1 3.9 0.4 3.1 3.6 3.9 4.2 4.7
deviance 416.3 2.6 413.4 414.4 415.6 417.4 423.1
sigma 15.6 1.6 12.9 14.5 15.5 16.7 19.1

DIC info (using the rule, pD = var(deviance)/2)
pD = 3.4 and DIC = 419.6
DIC is an estimate of expected predictive error (lower deviance is better).

There is not much difference in the results compared to the two previous methods.
Finally, we fit the linear regression model using INLA:

cars.inla <- inla(dist ~ speed, data=cars, control.predictor = list(
↪→ compute = T))

round(cars.inla$summary.fixed, 4)

mean sd 0.025quant 0.5quant 0.975quant mode kld
(Intercept) -17.5686 6.767 -30.9117 -17.5690 -4.2415 -17.5693 0
speed 3.9317 0.416 3.1113 3.9317 4.7510 3.9318 0

round(cars.inla$summary.hyperpar, 4)

mean sd 0.025quant 0.5quant 0.975quant mode
Precision
for the Gaussian observations 0.0044 9e-04 0.0029 0.0043 0.0063 0.0042

We want the hyperparameter summarized as the SD rather than precision. So, we
apply the bri.hyperpar.summary function in our brinla library for producing this
summary:

bri.hyperpar.summary(cars.inla)

mean sd q0.025 q0.5 q0.975 mode
SD
for the Gaussian observations 15.29788 1.553266 12.61431 15.16697 18.70892 14.90626

We also obtain very similar results. We want a plot of the fitted line and its credible

296 Bayesian Regression Modeling with INLA

interval and the marginal posterior densities for intercept, speed and the precision
parameter:

plot(cars$speed,cars$dist,ylab="Stopping Distance",xlab="Speed")
lines(cars$speed, cars.inla$summary.linear.predictor[,1], lwd=2)
lines(cars$speed, cars.inla$summary.linear.predictor[,3],lty=2, lwd=2)
lines(cars$speed, cars.inla$summary.linear.predictor[,5],lty=2, lwd=2)
plot(inla.smarginal(cars.inla$marginals.fixed[[1]]), type="l", xlab=""

↪→ ,ylab="", main="Marginal posterior: Intercept")
plot(inla.smarginal(cars.inla$marginals.fixed[[2]]), type="l", xlab=""

↪→ ,ylab="", main="Marginal posterior: Speed")
plot(inla.smarginal(cars.inla$marginals.hyperpar[[1]]), type="l", xlab

↪→ ="",ylab="", main="Marginal posterior: Hyperparamter")

5 10 15 20 25

0
20

40
60

80
10

0

Speed

St
op

pi
ng

 D
is

ta
nc

e

−60 −40 −20 0 20

0.
00

0.
02

0.
04

0.
06

Marginal posterior: Intercept

2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Marginal posterior: Speed

0.002 0.006 0.010

0
10

0
20

0
30

0
40

0

Marginal posterior: Hyperparamter

FIGURE B.2
Bayesian regression with INLA for the cars data: the upper left panel shows the
plot of fitted line and its credible interval. The other three panels show the marginal
posterior densities for intercept, speed and the precision parameter.

Figure B.2 shows the INLA method performs very well in fitting the linear model for
the cars data.

Bibliography

Abrams, D., A. Goldman, C. Launer, J. Korvick, J. Neaton, L. Crane, M. Grodesky,
S. Wakefield, K. Muth, S. Kornegay, D. L. Cohn, A. Harris, R. Luskin-Hawk,
N. Markowitz, J. H. Sampson, M. Thompson, and L. Deyton (1994). Comparative
trial of didanosine and zalcitabine in patients with human immunodeficiency virus
infection who are intolerant of or have failed zidovudine therapy. New England
Journal of Medicine 330, 657–662.

Adler, R. J. (1981). The Geometry of Random Fields. New York: Wiley.

Agresti, A. (2012). Categorical Data Analysis (3rd ed.). New York: Wiley.

Aitkin, M. A., B. Francis, and J. Hinde (2005). Statistical Modelling in GLIM 4.
Oxford University Press, New York.

Barlow, W. E. and R. L. Prentice (1988). Residuals for relative risk regression.
Biometrika 75(1), 65–74.

Bauwens, L. and A. Rasquero (1993). Approximate hpd regions for testing residual
autocorrelation using augmented regressions. In Computer Intensive Methods in
Statistics, pp. 47–61. Berlin: Springer.

Bell, D. F., J. L. Walker, G. O’Connor, and R. Tibshirani (1994). Spinal deformity
after multiple-level cervical laminectomy in children. Spine 19, 406–411.

Berkson, J. (1950). Are there two regressions? Journal of the American Statistical
Association 45(250), 164–180.

Besag, J., P. Green, D. Higdon, and K. Mengersen (1995). Bayesian computation
and stochastic systems. Statistical Science 10, 3–41.

Besag, J. and C. Kooperberg (1995). On conditional and intrinsic autoregressions.
Biometrika 82, 733–746.

Bickel, P. J. and K. A. Doksum (2015). Mathematical Statistics: Basic Ideas and
Selected Topics (2nd ed.). Boca Raton: CRC Press.

Blangiardo, M. and M. Cameletti (2015). Spatial and Spatio-Temporal Bayesian
Models with R-INLA. Chichester: John Wiley & Sons.

Bogaerts, K. and E. Lesaffre (2004). A new, fast algorithm to find the regions of
possible support for bivariate interval-censored data. Journal of Computational
and Graphical Statistics 13(2), 330 – 340.

298 Bibliography

Bolin, D. and F. Lindgren (2015). Excursion and contour uncertainty regions for la-
tent Gaussian models. Journal of the Royal Statistical Society: Series B (Statistical
Methodology) 77(1), 85–106.

Bralower, T., P. Fullagar, C. Paull, G. Dwyer, and R. Leckie (1997). Mid-cretaceous
strontium-isotope stratigraphy of deep-sea sections. Geological Society of Amer-
ica Bulletin 109, 1421–1442.

Breslow, N. (1972). Discussion on regression models and life-tables. Journal of the
Royal Statistical Society: Series B (Methodology) 34(2), 216 – 217.

Brockmann, H. J. (1996). Satellite male groups in horseshoe crabs, limulus polyphe-
mus. Ethology 102(1), 1–21.

Brown, L., T. Cai, R. Zhang, L. Zhao, and H. Zhou (2010). The root–unroot al-
gorithm for density estimation as implemented via wavelet block thresholding.
Probability Theory and Related Fields 146(3-4), 401–433.

Buja, A., T. Hastie, and R. Tibshirani (1989). Linear smoothers and additive models.
The Annals of Statistics 17(2), 453–510.

Buonaccorsi, J. P. (2010). Measurement Error: Models, Methods, and Applications.
Boca Raton: Chapman & Hall.

Carlin, B. P. and T. A. Louis (2008). Bayesian Methods for Data Analysis. Boca
Raton: CRC Press.

Carroll, R. J. and D. Ruppert (1988). Transformation and Weighting in Regression.
New York: CRC Press.

Carroll, R. J., D. Ruppert, L. A. Stefanski, and C. Crainiceanu (2006). Measurement
Error in Nonlinear Models: A Modern Perspective (2nd ed.). New York: Chapman
& Hall/CRC Press.

Carroll, R. J. and L. A. Stefanski (1990, September). Approximate quasi-likelihood
estimation in models with surrogate predictors. Journal of the American Statistical
Association 85(411), 652–663.

Chaloner, K. (1991). Bayesian residual analysis in the presence of censoring.
Biometrika 78(3), 637–644.

Chaloner, K. and R. Brant (1988). A bayesian approach to outlier detection and
residual analysis. Biometrika 75, 651–659.

Chatterjee, S. and A. S. Hadi (2015). Regression Analysis by Example (5th ed.). New
York: John Wiley & Sons.

Chaudhuri, P. and J. S. Marron (1999). SiZer for exploration of structures in curves.
Journal of the American Statistical Association 94(447), 807–823.

Bibliography 299

Comte, F. (2004, July). Kernel deconvolution of stochastic volatility models. Journal
of Time Series Analysis 25(4), 563–582.

Cook, J. R. and L. A. Stefanski (1994). Simulation extrapolation estimation in para-
metric measurement error models. Journal of American Statistical Association 89,
1314–1328.

Cox, D. R. (1972). Regression models and life-tables. Journal of the Royal Statistical
Society: Series B (Methodology) 34(2), 187 – 220.

Cox, D. R. and E. J. Snell (1968). A general definition of residuals (with discussion).
Journal of the Royal Statistical Society - Series B (Methodology) 30, 248–275.

Davison, A. C. and D. V. Hinkley (1997). Bootstrap Methods and Their Application.
New York: Cambridge University Press.

Dawid, A. (1984). Present Position and Potential Developments: Some Personal
Views Statistical Theory The Prequential Approach. Journal of the Royal Statisti-
cal Society: Series A (Statistics in Society) 147, 278–292.

De Boor, C. (1978). A Practical Guide to Splines. New York: Springer.

Dellaportas, P. and D. Stephens (1995). Bayesian analysis of errors-in-variables re-
gression models. Biometrics 51(3), 1085–1095.

Diebold, F. X., T. A. Gunther, and A. S. Tay (1998). Evaluating density forecasts with
applications to financial risk management. International Economic Review 39(4),
863–883.

Dobson, A. J. and A. Barnett (2008). An Introduction to Generalized Linear Models.
Boca Raton: CRC press.

Draper, D. (1995). Assessment and propogation of model uncertainty. Journal of the
Royal Statistical Society: Series B (Methodology) 57, 45–97.

Dreze, J. H. and M. Mouchart (1990). Tales of testing Bayesians. In Contributions
to Econometric Theory and Application, pp. 345–366. New York: Springer.

Eilers, P. and B. Marx (1996). Flexible smoothing with B-splines and penalties (with
discussion). Statistical Science 11, 89–121.

Eilers, P. H., B. D. Marx, and M. Durbán (2015). Twenty years of P-splines. SORT-
Statistics and Operations Research Transactions 39(2), 149–186.

Evans, M., H. Moshonov, et al. (2006). Checking for prior-data conflict. Bayesian
Analysis 1(4), 893–914.

Everitt, B. S. (2006). An R and S-PLUS Companion to Multivariate Analysis. Lon-
don: Springer.

300 Bibliography

Fahrmeir, L. and T. Kneib (2009). Propriety of posteriors in structured additive re-
gression models: Theory and empirical evidence. Journal of Statistical Planning
and Inference 139(3), 843–859.

Fahrmeir, L. and L. Knorr-Held (2000). Dynamic and semiparametric models. In
Smoothing and Regression: Approaches, Computation, and Application, pp. 513 –
544. New York: John Wiley & Sons.

Fahrmeir, L. and S. Lang (2001). Bayesian inference for generalized additive mixed
models based on Markov random field priors. Journal of the Royal Statistical
Society: Series C (Applied Statistics) 50(2), 201–220.

Fahrmeir, L. and G. Tutz (2001). Multivariate Statistical Modeling Based on Gener-
alized Linear Models. Berlin: Springer.

Fan, J. and Y. K. Truong (1993). Nonparametric regression with errors in variables.
The Annals of Statistics 21(4), 1900–1925.

Faraway, J. (2014). Linear Models with R (2nd ed.). Boca Raton: Chapman &
Hall/CRC.

Faraway, J. (2016a). Confidence bands for smoothness in nonparametric regression.
Stat 5(1), 4–10.

Faraway, J. (2016b). Extending the Linear Model with R: Generalized Linear, Mixed
Effects and Nonparametric Regression Models (2nd ed.). London: Chapman &
Hall.

Ferkingstad, E. and H. Rue (2015). Improving the INLA approach for approximate
bayesian inference for latent gaussian models. Electronic Journal of Statistics 9(2),
2706–2731.

Ferrari, S. L. P. and F. Cribari-Neto (2004). Beta regression for modelling rates and
proportions. Journal of Applied Statistics 31(7), 799–815.

Ferraty, F. and P. Vieu (2006). Nonparametric Functional Data Analysis: Theory and
Practice. New York: Springer.

Fitzmaurice, G. M. and N. M. Laird (1993). A likelihood-based method for analysing
longitudinal binary responses. Biometrika 80(1), 141–151.

Fong, Y., H. Rue, and J. Wakefield (2010). Bayesian inference for generalized linear
mixed models. Biostatistics 11(3), 397–412.

Friedman, J. H. and W. Stuetzle (1981). Projection pursuit regression. Journal of the
American Statistical Association 76(376), 817–823.

Fuglstad, G.-A., D. Simpson, F. Lindgren, and H. Rue (2015). Construct-
ing Priors that Penalize the Complexity of Gaussian Random Fields. arXiv
preprint arXiv:1503.00256, 1 – 44.

Bibliography 301

Fuller, W. A. (1987). Measurement Error Models. New York: John Wiley & Sons.

Geisser, S. and W. F. Eddy (1979). A predictive approach to model selection. Journal
of the American Statistical Association 74(365), 153–160.

Gelfand, A. E. and A. F. Smith (1990). Sampling-based approaches to calculating
marginal densities. Journal of the American Statistical Association 85(410), 398–
409.

Gelman, A. (2006). Prior distributions for variance parameters in hierarchical mod-
els. Bayesian Analysis 1(3), 515–533.

Gelman, A., J. B. Carlin, H. S. Stern, and D. B. Rubin (2014). Bayesian Data Anal-
ysis (3rd ed.). New York: Chapman & Hall/CRC Press.

Gelman, A., J. Hwang, and A. Vehtari (2014). Understanding predictive information
criteria for Bayesian models. Statistics and Computing 24(6), 997–1016.

Gelman, A., X.-L. Meng, and H. Stern (1996). Posterior predictive assessment of
model fitness via realized discrepancies. Statistica Sinica 6, 733–760.

Gneiting, T., F. Balabdaoui, and A. E. Raftery (2007). Probabilistic forecasts, cali-
bration and sharpness. Journal of the Royal Statistical Society: Series B (Method-
ology) 69(2), 243–268.

Godfrey, P. J., A. Ruby, and O. T. Zajicek (1985). The Massachusetts acid rain
monitoring project: Phase 1. In Water Resource Research Center. University of
Massachusetts.

Goldsmith, J., C. M. Crainiceanu, B. Caffo, and D. Reich (2012). Longitudinal pe-
nalized functional regression for cognitive outcomes on neuronal tract measure-
ments. Journal of the Royal Statistical Society: Series C (Applied statistics) 61(3),
453–469.

Gomez, G., M. L. Calle, R. Oller, and K. Langohr (2009). Tutorial on methods for
interval-censored data and their implementation in R. Statistical Modelling 9(4),
259–297.

Green, P. J. and B. W. Silverman (1994). Nonparametric Regression and Generalized
Linear Models: a Roughness Penalty Approach. Boca Raton: Chapman & Hall.

Guo, X. and B. P. Carlin (2004). Separate and joint modeling of longitudinal
and event time data using standard computer packages. The American Statisti-
cian 58(1), 16–24.

Gustafson, P. (2004). Measurement Error and Misclassification in Statistics and
Epidemiology: Impacts and Bayesian Adjustments. Boca Raton: Chapman & Hall.

Hadfield, J. D. (2010). MCMC methods for multi-response generalized linear mixed
models: The MCMCglmm R package. Journal of Statistical Software 33(2), 1–22.

302 Bibliography

Hammer, S. M., K. E. Squires, M. D. Hughes, J. M. Grimes, L. M. Demeter, J. S. Cur-
rier, J. J. Eron Jr., J. E. Feinberg, H. H. Balfour Jr., L. R. Deyton, et al. (1997). A
controlled trial of two nucleoside analogues plus indinavir in persons with human
immunodeficiency virus infection and CD4 cell counts of 200 per cubic millimeter
or less. New England Journal of Medicine 337(11), 725–733.

Hastie, T. and R. Tibshirani (1990). Generalized Additive Models. New York: Chap-
man & Hall.

Hastie, T. and R. Tibshirani (2000). Bayesian backfitting. Statistical Science 15(3),
196–223.

Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and
their applications. Biometrika 57(1), 97–109.

Hawkins, D. (2005). Biomeasurement. New York: Oxford University Press.

Held, L., B. Schrödle, and H. Rue (2010). Posterior and cross-validatory predictive
checks: a comparison of MCMC and INLA. In Statistical Modelling and Regres-
sion Structures, pp. 91–110. New York: Springer.

Henderson, C. R. (1982). Analysis of covariance in the mixed model: Higher-level,
nonhomogeneous, and random regressions. Biometrics 38, 623–640.

Henderson, R., P. Diggle, and A. Dobson (2000). Joint modelling of longitudinal
measurements and event time data. Biostatistics 1(4), 465–480.

Hjort, N. L., F. A. Dahl, and G. H. Steinbakk (2006). Post-processing posterior
predictive p values. Journal of the American Statistical Association 101(475),
1157–1174.

Hoerl, A. E., R. W. Kannard, and K. F. Baldwin (1975). Ridge regression: Some
simulations. Communications in Statistics: Theory and Methods 4(2), 105–123.

Hoerl, A. E. and R. W. Kennard (1970). Ridge regression: Biased estimation for
nonorthogonal problems. Technometrics 12(1), 55–67.

Hosmer, D. W. and S. Lemeshow (2004). Applied Logistic Regression. New York:
John Wiley & Sons.

Hosmer, D. W., S. Lemeshow, and S. May (2008). Applied Survival Analysis: Regres-
sion Modelling of Time to Event Data (2nd ed.). New York: Wiley-Interscience.

Hsiang, T. (1975). A Bayesian view on ridge regression. The Statistician 24(4),
267–268.

Jolliffe, I. T. (1982). A note on the use of principal components in regression. Journal
of the Royal Statistical Society: Series C (Applied Statistics) 31(3), 300–303.

Kardaun, O. (1983). Statistical survival analysis of male larynx-cancer patients: A
case study. Statistica Neerlandica 37(3), 103–125.

Bibliography 303

Klein, J. P. and M. L. Moeschberger (2005). Survival Analysis: Techniques for Cen-
sored and Truncated Data. New York: Springer.

Kutner, M. H., C. J. Nachtsheim, J. Neter, and W. Li (2004). Applied Linear Statis-
tical Models (5th ed.). New York: McGraw-Hill Irwin.

Lambert, D. (1992). Zero-inflated Poisson regression models with an application to
defects in manufacturing. Technometrics 34(1), 1 – 14.

Lang, S. and A. Brezger (2004). Bayesian P-splines. Journal of Computational and
Graphical Statistics 13(1), 183–212.

Lange, K. L., R. J. Little, and J. M. Taylor (1989). Robust statistical modeling using
the t distribution. Journal of the American Statistical Association 84(408), 881–
896.

Le Cam, L. (2012). Asymptotic Methods in Statistical Decision Theory. New York:
Springer.

Lindgren, F. and H. Rue (2008a). On the second-order random walk model for irreg-
ular locations. Scandinavian Journal of Statistics 35(4), 691–700.

Lindgren, F. and H. Rue (2008b). On the second-order random walk model for
irregular locations. Scandinavian Journal of Statistics 35(4), 691–700.

Lindgren, F. and H. Rue (2015). Bayesian spatial modelling with R-INLA. Journal
of Statistical Software 63(19), 1–25.

Lindgren, F., H. Rue, and J. Lindström (2011). An explicit link between gaussian
fields and gaussian markov random fields: the stochastic partial differential equa-
tion approach (with discussion). Journal of the Royal Statistical Society: Series B
(Methodology) 73(4), 423–498.

Lindsey, J. K. (1997). Applying Generalized Linear Models. New York: Springer.

Liu, C. and D. B. Rubin (1995). ML estimation of the t distribution using EM and
its extensions, ECM and ECME. Statistica Sinica 5(1), 19–39.

Long, J. S. (1997). Regression Models for Categorical and Limited Dependent Vari-
ables. Thousand Oaks: Sage Publications.

Lunn, D., C. Jackson, N. Best, A. Thomas, and D. Spiegelhalter (2012). The BUGS
Book: A Practical Introduction to Bayesian Analysis. Boca Raton: CRC Press.

Marshall, E. C. and D. J. Spiegelhalter (2007). Identifying outliers in Bayesian hier-
archical models: A simulation-based approach. Bayesian Analysis 2(2), 409–444.

Martino, S., R. Akerkar, and H. Rue (2011). Approximate Bayesian inference for
survival models. Scandinavian Journal of Statistics 38(3), 514–528.

304 Bibliography

Martins, T. G., D. Simpson, F. Lindgren, and H. Rue (2013). Bayesian computing
with INLA: New features. Computational Statistics and Data Analysis 67, 68–83.

McCullagh, P. and J. A. Nelder (1989). Generalized Linear Models (2nd ed.). Lon-
don: CRC Press.

McGilchrist, C. and C. Aisbett (1991). Regression with frailty in survival analysis.
Biometrics 47(2), 461–466.

McNeil, D. R. (1977). Interactive Data Analysis. New York: Wiley.

Meng, X.-L. (1994). Posterior predictive p-values. The Annals of Statistics 22(3),
1142–1160.

Metropolis, N., A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller
(1953). Equation of state calculations by fast computing machines. The Journal
of Chemical Physics 21(6), 1087–1092.

Montgomery, D. C. (2013). Design and Analysis of Experiments (8th ed.). New
York: John Wiley & Sons.

Morrison, H. L., M. Mateo, E. W. Olszewski, P. Harding, et al. (2000). Mapping
the galactic halo I: The “spaghetti” survey. The Astronomical Journal 119, 2254–
2273.

Muff, S., A. Riebler, L. Held, H. Rue, and P. Saner (2015). Bayesian analysis of mea-
surement error models using integrated nested laplace approximations. Journal of
the Royal Statistical Society: Series C (Applied Statistics) 64(2), 231–252.

Myers, R. and D. Montgomery (1997). A tutorial on generalized linear models.
Journal of Quality Technology 29(3), 274 – 291.

Nelder, J. A. and R. J. Baker (2004). Generalized linear models. In Encyclopedia of
Statistical Sciences. New York: John Wiley & Sons.

O’Sullivan, F. (1986). A statistical perspective on ill-posed inverse problems. Statis-
tical Science 1(4), 502–527.

Pettit, L. (1990). The conditional predictive ordinate for the normal distribution.
Journal of the Royal Statistical Society: Series B (Methodological) 52, 175–184.

Plummer, M. et al. (2003). JAGS: A program for analysis of Bayesian graphical
models using Gibbs sampling. In Proceedings of the 3rd International Workshop
on Distributed Statistical Computing, Volume 124, pp. 125. Vienna.

Prater, N. (1956). Estimate gasoline yields from crudes. Petroleum Refiner 35(5),
236 – 238.

Ramsay, J. O. and B. W. Silverman (2005). Functional Data Analysis (2nd ed.). New
York: Springer.

Bibliography 305

Rasmussen, C. and C. Williams (2006). Gaussian Processes for Machine Learning.
Cambridge, MA: The MIT Press.

Richardson, S. and W. Gilks (1993). Conditional independence models for epidemi-
ological studies with covariate measurement error. Statistics in Medicine 12(18),
1703–1722.

Rue, H. and L. Held (2005). Gaussian Markov Random Fields: Theory and Applica-
tions. London: Chapman & Hall.

Rue, H. and S. Martino (2007). Approximate Bayesian inference for hierarchical
Gaussian Markov random field models. Journal of Statistical Planning and Infer-
ence 137(10), 3177–3192.

Rue, H., S. Martino, and N. Chopin (2009). Approximate Bayesian inference for
latent Gaussian models using integrated nested Laplace approximations (with dis-
cussion). Journal of the Royal Statistical Society: Series B (Methodological) 71(2),
319–392.

Rue, H., A. Riebler, S. H. Sørbye, J. B. Illian, D. P. Simpson, and F. Lindgren (2017).
Bayesian computing with INLA: a review. Annual Review of Statistics and Its
Application 4, 395–421.

Ruppert, D. (2002). Selecting the number of knots for penalized splines. Journal of
Computational and Graphical Statistics 11, 735–757.

Ruppert, D. and R. J. Carroll (2000). Spatially-adaptive penalties for spline fitting.
Australian and New Zealand Journal of Statistics 42(2), 205–223.

Ruppert, D., M. P. Wand, and R. J. Carroll (2003). Semiparametric Regression. New
York: Cambridge University Press.

Sheather, S. J. and M. C. Jones (1991). A reliable data-based bandwidth selection
method for kernel density estimation. Journal of the Royal Statistical Society:
Series B (Methodological) 53, 683–690.

Shumway, R. H. and D. S. Stoffer (2011). Time Series Analysis and Its Applications:
with R Examples (3rd ed.). New York: Springer.

Simpson, D., F. Lindgren, and H. Rue (2012). Think continuous: Markovian Gaus-
sian models in spatial statistics. Spatial Statistics 1, 16–29.

Simpson, D. P., T. G. Martins, A. Riebler, G.-A. Fuglstad, H. Rue, and S. H. Sørbye
(2017). Penalising model component complexity: A principled, practical approach
to constructing priors. Statistical Science 32(1), 1–28.

Singer, J. D. and J. B. Willett (2003). Applied Longitudinal Data Analysis: Modeling
Change and Event Occurrence. London: Oxford University Press.

Sørbye, S. H. and H. Rue (2014). Scaling intrinsic Gaussian Markov random field
priors in spatial modelling. Spatial Statistics 8, 39–51.

306 Bibliography

Speckman, P. L. and D. Sun (2003). Fully Bayesian spline smoothing and intrinsic
autoregressive priors. Biometrika 90(2), 289–302.

Spiegelhalter, D. J., N. G. Best, B. P. Carlin, and A. Linde (2014). The deviance
information criterion: 12 years on. Journal of the Royal Statistical Society: Series
B (Methodological) 76(3), 485–493.

Spiegelhalter, D. J., N. G. Best, B. P. Carlin, and A. Van Der Linde (2002). Bayesian
measures of model complexity and fit. Journal of the Royal Statistical Society:
Series B (Methodological) 64(4), 583–639.

Stan Development Team (2016). Stan Modeling Language: User’s Guide and Refer-
ence Manual. Stan Development Team.

Sun, D. and P. L. Speckman (2008). Bayesian hierarchical linear mixed models
for additive smoothing splines. Annals of the Institute of Statistical Mathemat-
ics 60(3), 499–517.

Sun, D., R. K. Tsutakawa, and P. L. Speckman (1999). Posterior distribution of
hierarchical models using CAR(1) distributions. Biometrika 86, 341–350.

Therneau, T. M., P. M. Grambsch, and T. R. Fleming (1990). Martingale-based resid-
uals for survival models. Biometrika 77(1), 147–160.

Thodberg, H. H. (1993). Ace of Bayes: Application of neural networks with prun-
ing. Technical report, The Danish Meat Research Institute, Maglegaardsvej 2,
DK-4000.

Tiao, G. C. and A. Zellner (1964). On the bayesian estimation of multivariate regres-
sion. Journal of the Royal Statistical Society: Series B (Methodological) 26(2),
277–285.

Tierney, L. and J. B. Kadane (1986). Accurate approximations for posterior moments
and marginal densities. Journal of the American Statistical Association 81(393),
82–86.

Tsiatis, A. A. and M. Davidian (2004). Joint modeling of longitudinal and time-to-
event data: An overview. Statistica Sinica 14(3), 809–834.

Umlauf, N., D. Adler, T. Kneib, S. Lang, and A. Zeileis (2015). Structured addi-
tive regression models: An R interface to BayesX. Journal of Statistical Soft-
ware 63(1), 1–46.

Vaupel, J. W., K. G. Manton, and E. Stallard (1979). The impact of heterogeneity in
individual frailty on the dynamics of mortality. Demography 16(3), 439–454.

Wahba, G. (1978). Improper priors, spline smoothing and the problem of guarding
against model errors in regression. Journal of the Royal Statistical Society: Series
B (Methodology) 40(3), 364–372.

Bibliography 307

Wahba, G. (1990). Spline Models for Observational Data. Philadelphia: SIAM
[Society for Industrial and Applied Mathematics].

Wakefield, J. (2013). Bayesian and Frequentist Regression Methods. New York:
Springer.

Wand, M. P. and J. T. Ormerod (2008). On semiparametric regression with
O’Sullivan penalized splines. Australian and New Zealand Journal of Statis-
tics 50(2), 179–198.

Wang, X.-F. (2012). Joint generalized models for multidimensional outcomes: A
case study of neuroscience data from multimodalities. Biometrical Journal 54(2),
264–280.

Wang, X.-F., Z. Fan, and B. Wang (2010). Estimating smooth distribution function
in the presence of heteroscedastic measurement errors. Computational Statistics
and Data Analysis 54(1), 25–36.

Wang, X.-F. and B. Wang (2011). Deconvolution estimation in measurement error
models: The R package decon. Journal of Statistical Software 39(10), 1–24.

Watanabe, S. (2010). Asymptotic equivalence of bayes cross validation and widely
applicable information criterion in singular learning theory. Journal of Machine
Learning Research 11, 3571–3594.

Whittle, P. (1954). On stationary processes in the plane. Biometrika 41, 434–449.

Whyte, B., J. Gold, A. Dobson, and D. Cooper (1987). Epidemiology of acquired im-
munodeficiency syndrome in Australia. The Medical Journal of Australia 146(2),
65–69.

Wood, S. N. (2003). Thin plate regression splines. Journal of the Royal Statistical
Society: Series B (Methodological) 65(1), 95–114.

Wood, S. N. (2006). Generalized Additive Models: An Introduction with R. New
York: Chapman & Hall/CRC Press.

Wood, S. N. (2008). Fast stable direct fitting and smoothness selection for general-
ized additive models. Journal of the Royal Statistical Society: Series B (Method-
ological) 70(3), 495–518.

Yue, Y. and P. L. Speckman (2010). Nonstationary spatial Gaussian Markov random
fields. Journal of Computational and Graphical Statistics 19(1), 96–116.

Yue, Y. R., D. Bolin, H. Rue, and X.-F. Wang (2018). Bayesian generalized two-way
ANOVA modeling for functional data using INLA. Statistica Sinica, in press.

Yue, Y. R., D. Simpson, F. Lindgren, and H. Rue (2014). Bayesian adaptive smooth-
ing spline using stochastic differential equations. Bayesian Analysis 9(2), 397–
424.

308 Bibliography

Yue, Y. R., P. Speckman, and D. Sun (2012). Priors for Bayesian adaptive spline
smoothing. Annals of the Institute of Statistical Mathematics 64(3), 577–613.

Index

accelerated failure-time models, 148
adaptive smoothing, 198
additive model, 176, 229
AIC, 12, 49
Akaike Information Criterion, see AIC
analysis of variance, see ANOVA
ANOVA, 57
areal data, 192
attenuation bias, 253
autocorrelation, 64

sample autocorrelation
function, 64

autoregressive, 22, 24, 138
autoregressive errors, 63

AR(1) process, 64

B-spline, 195
backfitting, 230
banded matrix, 22, 180
Bayes factor, 14, 35
Bayes information criterion, see BIC
Bayesian backfitting, 230
Bayesian model averaging, 13
Bayesian Pearson residuals, 86
Bayesian residuals, 54
Bayesian standardized residuals, 94
Berkson errors-in-variables models, 263
Berkson measurement error, 252
Besag model, 179, 193, 233
beta regression, 91
BIC, 13
binary GLMM, 133
brinla package

bri.hyperpar.plot, 46

CCD, 27
censored, 141

central composite design, see CCD
central limit theorem, 24
circular RW2, 204
classical measurement error, 252
clustering, 102
computer experiments, 222
conditional correlation, 22
conditional independence, 23, 171, 186
conditional predictive ordinate, see CPO
confidence interval, 45
conjugate prior, 9
copy method, 114
corner constraint, 57
Cox regression, see proportional hazard

regression
Cox–Snell residual plot, 153
Cox–Snell residuals, 151
CPO, 12, 36, 52, 131
credible interval, 11, 45
cross-validation, 52
cubic smoothing spline, 170, 174, 181,

185, 199
cumulative hazard function, 142

datasets
ACTG320, 144
AIDS, 77, 166
Munich, 182, 193
SPDE toy data, 189
Tokyo rainfall, 204, 209
air pollution, 42
articles, 97
bronch, 264
car insurance, 85
cars, 293
crab, 81
fossil, 206

310 Index

framingham, 258
frencheconomy, 61
gasoline, 92
hubble, 1
kidney, 162
kyphosis, 237
larynx, 150
low birth weight, 74
mackp, 243
mack, 241
nitrofen, 125
ohio, 133
painrelief, 58
reading, 111
reeds, 102
sole, 245
tooth24, 157
unemployment, 65
wafer, 88

default priors, 106
deviance information criterion, see DIC
deviance residuals, 154
DIC, 12, 36, 42, 49, 130, 137
difference operator, 170, 186, 195
diffuse prior, 41

effective number of parameters, 13
eigen-decomposition, 27
empirical Bayes, 27
errors-in-variables regression, 251
excursion function, 209
excursion set, 208
exponential family, 20, 71, 201, 245
exposure, 84
exposure model, 258

failure odds, 160
finite element method, 180, 188
fixed effects, 58, 101
flat prior, 10, 34
Fréchet distribution, 279
frailty, 161
frailty models, 160
frequentist, 9, 34, 170, 206

GAM, 20, 236, 245

GAMM, 245
gamma regression, 87
Gaussian approximation, 24, 26, 28, 30
Gaussian Markov random field, see

GMRF
Gaussian process prior, 180
generalized additive mixed model, see

GAMM
generalized additive model, see GAM
generalized extreme value distribution,

278
generalized least squares, 63
generalized linear mixed models, see

GLMM
generalized linear models, see GLM
generalized nonparametric regression,

see GNPR
GLM, 19, 71

canonical parameter, 71
dispersion parameter, 71, 80,

88
GLMM, 124, 253
GLMM with errors-in-variables, 254
GMRF, 21, 23
GNPR, 201
graph file, 193
grid search, 27, 28
grouping, 102
Gumbel distribution, 279

hazard function, 142
Hessian matrix, 27
heteroscedastic error, 254
hierarchy, 102
highest posterior density interval, 11,

see HPD interval
HPD interval, 192
Hubble’s law, 1
hypothesis testing, 13, 206

identifiability, 171
improper prior, 10
informative prior, 9, 33
INLA package

inla.dmarginal, 45

Index 311

inla.emarginal, 45, 83
inla.hyperpar, 262
inla.mmarginal, 45
inla.pmarginal, 45, 51
inla.qmarginal, 45, 83
inla.rmarginal, 45
inla.tmarginal, 45, 83
inla, 44

INLA packages
inla.surv, 144

inla.hyperpar, 163
integration-free algorithm, 29
interval censoring, 157
intraclass correlation coefficient, 105

Jeffreys prior, 10, 176
joint modeling, 164
joint posterior distribution, 21

knot, 195, 199
Kronecker product, 186

Laplace approximation, 23–26, 30, 37
latent Gaussian model, see LGM
least squares, 40
left truncation, 157
LGM, 19–21, 24, 29
likelihood, 8, 20, 30
linear constraint, 171
linear mixed models, 101
linear predictor, 19
linear regression, 39
link function, 20, 236
log pseudo marginal likelihood, see

LPML
logistic regression, 74
logit, 134, 201
longitudinal, 102, 111, 164
longitudinal and time-to-event data, 164
low-rank thin-plate spline, 175
LPML, 52

MAP, 15, 34
marginal likelihood, 35
marginal probability, 9
Markov chain Monte Carlo, see MCMC

martingale residuals, 154
maximum a posteriori, see MAP
maximum likelihood estimate, 8, see

MLE
MCMC, 16, 34
mesh, 188, 189
mixture of normal distributions, 29
MLE, 34, 40
model checking, 11, 36
model selection, 12, 36
multicollinearity, 44, 59

natural link function, 73
negative binomial regression, 79
Nelson–Aalen estimator, 152
non-informative prior, 10, 176
nonparametric regression, 169, 229
normalizing constant, 9
null space, 171, 181, 186
numerical integration, 25

objective prior, 10
offset, 84
overdispersion, 20, 79, 132, 247

P-spline, 195, 198, 199
packages

GGally, 43
MASS, 62, 82
MCMCglmm, 16
R2jags, 294
betareg, 92
boot, 125
dplyr, 125
fields, 188, 189
gamair, 241, 245
ggplot2, 43, 105
lme4, 103, 112, 120
mgcv, 175, 231
nlme, 68
splines, 196
survival, 144, 158
tidyr, 125

partial autocorrelation, 64
penalized complexity prior, 107
penalized least squares, 170, 185, 196

312 Index

penalized quasi-likelihood, see PQL
penalized regression spline, see P-spline
penalty function, 170, 185, 188
piecewise constant baseline, 143
PIT, 12, 36, 52, 131
Poisson GLMM, 125
Poisson regression, 77
polynomial, 169, 171, 186, 195
posterior, 9
posterior correlation matrix, 38
posterior odds, 14
posterior predictive check, 50
posterior predictive distribution, 47
posterior predictive p-value, 50
PQL, 126, 134
precision, 40
precision matrix, 21
prediction, 47, 116, 183, 191, 205, 243
prediction interval, 184
predictive distribution, 11, 36, 119, 184
prior, 9
prior odds, 14
prior sensitivity, 11
probability integral transform, see PIT
proportional hazards model, 143
proportional odds, 160
proportional responses, see beta

regression

QQ plot, 130

random effects, 20, 34, 58, 101, 109, 245
random intercept, 112
random slope and intercept, 113
random walk prior, see RW prior
rates, 84
REML, 176
restricted maximum likelihood, see

REML
ridge regression, 60, 121
robust regression, 56
RW prior, 169, 171, 178, 186
RW1, 145, 171, 179
RW2, 145, 171, 179, 231, 237, 242, 247
RW2D, 179, 186, 188

SDE, 179, 188, 198
simplified Laplace approximation, 26,

30
single random effect, 102
smoothing, 169
smoothing parameter, 170, 174, 185,

196, 198
smoothing spline, 170, 179, 196, 198,

199
spatial effect, 193
SPDE, 188, 199
stochastic differential equation, see SDE
stochastic partial differential equation,

see SPDE
stratified proportional hazards model,

146
substantive prior, 9
survival analysis, 141
survival function, 141
survival odds, 160

t distribution, 175
t regression, see robust regression
Taylor expansion, 23, 26
testing sample, 122
thin-plate spline, 185, 242
time series, 63
time-to-event data, 141
training sample, 122

uncertainty quantification, 222
uninformative prior, 291

variance function, 72
variance-stabilizing transformation, 26

WAIC, 13, 36, 137
Watanabe Akaike information criterion,

see WAIC
weakly informative prior, 107, 176
Weibull distribution, 279
Weibull regression, 149
Wiener process, 179

zero-inflated model, 247, 248
zero-inflated regression, 96

	Contents
	Preface
	Introduction
	Quick Start
	Bayes Theory
	Prior and Posterior Distributions
	Model Checking
	Model Selection
	Hypothesis Testing
	Bayesian Computation

	Theory of INLA
	Latent Gaussian Models (LGMs)
	Gaussian Markov Random Fields (GMRFs)
	Laplace Approximation and INLA
	INLA Problems
	Extensions

	Bayesian Linear Regression
	Introduction
	Bayesian Inference for Linear Regression
	Prediction
	Model Selection and Checking
	Robust Regression
	Analysis of Variance
	Ridge Regression for Multicollinearity
	Regression with Autoregressive Errors

	Generalized Linear Models
	GLMs
	Binary Responses
	Count Responses
	Modeling Rates
	Gamma Regression for Skewed Data
	Proportional Responses
	Modeling Zero-Inﬂated Data

	Linear Mixed & Generalized Linear Mixed Models
	Linear Mixed Models
	Single Random Effect
	Longitudinal Data
	Classical Z-Matrix Model
	Generalized Linear Mixed Models
	Poisson GLMM
	Binary GLMM

	Survival Analysis
	Introduction
	Semiparametric Models
	Accelerated Failure Time Models
	Model Diagnosis
	Interval Censored Data
	Frailty Models
	Joint Modeling of Longitudinal and Time-to-Event Data

	Random Walk Models for Smoothing Methods
	Introduction
	Smoothing Splines
	Thin-Plate Splines
	Besag Spatial Model
	Penalized Regression Splines (P-Splines)
	Adaptive Spline Smoothing
	Generalized Nonparametric Regression Models
	Excursion Set with Uncertainty

	Gaussian Process Regression
	Introduction
	Penalized Complexity Priors
	Credible Bands for Smoothness
	Non-Stationary Fields
	Interpolation with Uncertainty
	Survival Response

	Additive & Generalized Additive Models
	Additive Models
	Generalized Additive Models
	Generalized Additive Mixed Models

	Errors-in-Variables Regression
	Introduction
	Classical Errors-in-Variables Models
	Berkson Errors-in-Variables Models

	Miscellaneous Topics in INLA
	Splines as a Mixed Model
	Analysis of Variance for Functional Data
	Extreme Values
	Density Estimation Using INLA

	Installation
	Uninformative Priors in Linear Regression
	Biblio
	Index

