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Preface

Ranked set sampling (RSS) gives a new approach to dealing with sample selection. It was proposed

in the seminal paper of McIntyre (1952. A method for unbiased selective sampling using ranked

sets. Australian Journal of Agricultural Research 3, 385�390). His experience in agricultural appli-

cation provoked a challenge to the usual simple random sampling (SRS) design introducing a previ-

ous ordering of the units. The practical studies suggested that it produces more accurate estimators

of the mean. This proposal was taken into account by other practitioners dealing with agricultural

studies. They also obtained better results using RSS. The mathematical validity of the claim was

sustained by the work of Takahasi and Wakimoto (1968. On unbiased estimates of the population

mean based on the sample stratified by means of ordering. Annals of the Institute of Statistical

Mathematics 20, 1�31).

That fact also remained unnoticed by the majority of the statistical community but some inter-

esting results were developed for establishing the mathematical reasons sustaining having better

results when using RSS.

Nowadays, the results obtained by RSS still seem to be somewhat “magical” to some colleagues

and they are doubtful of the accuracy of the reported improvements due to using RSS. They may

be simply explained. Ranking changes the working with “pure” random variables to dealing with

order statistics (OS). OS have nice properties coming from the basics of statistical inferences. This

supports the individual variances of observations (now OSs) being smaller than the variance of the

random variables. Doubts arose in discussions, because in practice the variable of interest is not

possible to rank. The fact that ranking a correlated and known variable allows ranking the units at

a low cost, providing “adequate” ranking, was proved. The original ranking in McIntyre’s experi-

ences was made on the basis of “eye estimation” of pasture availability.

Once a series of theoretical facts was established mathematically, RSS obtained attention and

different statistical problems started to be revisited. Not only is estimation better, but testing of

hypotheses using RSS samples appears to be more powerful.

The number of contributions in RSS is large. Nowadays it is established as a tool for increasing

precision and/or diminishing sampling costs.

This book is concerned not only with the celebration of the first 65 years of having RSS as a

sampling alternative model, but also present new results in the context of estimation and testing in

finite population sampling. The authors are well known in the area. Having a look at the references

or the web permits corroborating their role in conforming the body of important and usable models

in survey sampling using RSS. Most of the papers illustrate their use and some of them come from

real-life applications.

The description is ordered as they appear in the book.

Amiri-Modarre’s chapter, about the bootstrap test of ranked set sampling with different rank

sizes, considers testing and confidence intervals estimation when RSS is used and bootstrap tests

are applied. Studies were developed for illustrating the accurateness of value’s derived using the

proposed bootstrap methods.

Simultaneous estimation of means of two sensitive variables using RSS is the contribution of

Pampana, Sedory, and Singh. They extended the previous results of Ahmed, Sedory, and Singh

(2017. Simultaneous estimation of means of two sensitive quantitative variables. Communications
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in Statistics: Theory and Methods, Online available) and Bouza (2009. Ranked set sampling and

randomized response procedure for estimating the mean of a sensitive quantitative character.

Metrika 70, 267�277) in the case of two sensitive variables.

Calibration is the theme of the chapter by Salinas, Sedory, and Singh. They consider the estima-

tion of the population mean under the existence of a known auxiliary variable and a new calibrated

estimator of the population mean is proposed for RSS.

The chapter by Bouza, Garcı́a, Vishwakarma, and Zeeshan deals with the analysis of the estima-

tion of the variance of a sensitive variable, when it is applied to a randomized response procedure

and the sample is selected using RSS. The performance of the proposal is evaluated through a study

of persons infected with HIV/AIDS.

Bouza, Herrera, Singh, and Mishra developed the chapter on ranked set sampling estimation of

the population mean when the information on an attribute is available concerning the development

of a review in the theme.

The chapter about studying the quality of environmental variables using a randomized response

procedure for the estimation of a proportion through ranked set sampling, by Allende, Alonso,

Bouza, and Herrera, is concerned with the performance of RSS in the study of the quality of the

environment by ranking using measurements of the contaminants in the air and the water.

Extensions of some “randomized response procedures related with Gupta�Thornton method:

the use of order statistics” is a contribution of Bouza and Herrera where new scrambling procedures

are developed and the results studied in terms of the variance of the involved estimators.

Vishwakarma, Zeeshan, and Bouza present the chapter on ratio and product type exponential

estimators for population mean using ranked set sampling. They suggest an improved form of the

exponential ratio and product estimators using RSS. The behavior of the suggested estimators is

evaluated by developing a simulation study.

Haq presents a chapter on modified partially ordered judgment subset sampling schemes, where

modified partially ordered judgment subset sampling schemes are proposed for estimating the popu-

lation mean. Extensive Monte Carlo simulations and a case study using a real data set illustrate the

performance of this proposal.

Estimation of the distribution function using a modification of RSS, called moving extreme

ranked set sampling, is the theme of estimation of the distribution function using moving extreme

ranked set sampling, this chapter is by Al-Saleh and Ahmad.

The chapter on improved ratio-cum-product estimators of the population mean is authored by

Al-Omari. He considers the problem of estimating the population mean using extreme RSS, where

different ratio-cum-product estimators of the population mean are suggested, assuming that some

information of the auxiliary variable is known.

Kushary reviews issues related to RSS with unequal samples for estimating the population mean

and proposes a new median ranked set sampling.

Al-Nasser and Aslam present the chapter on development of a new control chart based on

ranked repetitive sampling. They propose a control chart for the quality characteristic under the

normal distribution. The performance is evaluated using the average run length over the existing

control chart. The application of a proposed control chart is given through simulation and a real

example.

The chapter on statistical inference using stratified ranked set samples from finite populations

by Ozturk and Kavlak develops statistical inference of the population mean and total using
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stratified RSS. Inference is constructed under both randomized design and super population models.

The empirical evidence is used for evaluating the performance of the proposed estimators and is

applied to apple production data in a finite population setting.

Construction of strata boundaries for ranked set sampling is the contribution of Zong, Sedory,

and Singh. They address the problem of constructing strata boundaries in stratified ranked set

sampling.

Bollaboina, Sedory, and Singh have contributed the chapter on the forced quantitative random-

ized response model using ranked set sampling. They consider the problem of estimating the mean

of a sensitive variable by combining the ideas of Bouza (2009. Ranked set sampling and random-

ized response procedure for estimating the mean of a sensitive quantitative character. Metrika 70,

267�277) on the use of ranked set sampling and those of Chaudhuri and Stenger (1992. Sampling

Survey. Marcel Dekker, New York) on the use of a forced quantitative response.

The contribution of Mehta is a new Morgenstern type bivariate exponential distribution with

known coefficient of variation by ranked set sampling. The chapter introduces a new Morgenstern

type bivariate exponential distribution, when coefficients of variation are known, using RSS. To

demonstrate the relative performance of various estimators considered in this chapter, an empirical

study is carried out. Another contribution is on shrinkage estimation of scale parameters toward an

interval of Morgenstern type bivariate uniform distribution using ranked set sampling. The chapter

deals with the problem of estimating the scale parameter of Morgenstern type bivariate uniform dis-

tribution, based on the observations made on the units of RSS. Some improved classes of shrinkage

estimators are proposed in the form of intervals. Numerical illustrations are also given.

Nonparametric estimation in RSS is discussed in the chapter by Ehsan Zamanzade. The author

discusses the problem of nonparametric estimation of the population mean and entropy, based on

RSS selection of units. The chapter describes some estimators and evaluates their performance

using Monte Carlo simulation.

The contributors have done a worthy work and we expect that this book will receive a warm

welcome from statisticians. We thank the referees who anonymously helped develop this work with

the revisions of the chapters.

And last but not least, we appreciate the collaboration of the staff of Elsevier, headed by Susan

Ikeda as Editorial Project Manager, which allowed us to arrive at the final version of this book.

Carlos N. Bouza-Herrera and Amer Ibrahim Falah Al-Omari
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CHAPTER

1STUDYING THE QUALITY OF
ENVIRONMENT VARIABLES USING
A RANDOMIZED RESPONSE
PROCEDURE FOR THE ESTIMATION
OF A PROPORTION THROUGH
RANKED SET SAMPLING

Sira Allende-Alonso and Carlos N. Bouza-Herrera
Faculty of Mathematics and Computation, University of Havana, Havana, Cuba

1.1 INTRODUCTION
Commonly it is required to obtain information on sensitive attributes and a sample is selected for

interviewing a sample of persons. Collecting trustworthy responses on sensitive issues through

direct questioning in personal interviews using various techniques is not often successful because

they do not protect the respondents’ privacy. Therefore in practice the data collected on sensitive

features are affected by the existence of respondent bias.

Randomized response models are used to decrease both nonresponses and answer bias and to

provide privacy protection to the respondents.

Warner (1965) proposed the randomized response (RR) method as a means of avoiding response

bias. The initial model looked for the estimation of the proportion of persons with the stigma. The

model used a randomized trial. The seminal paper of Warner (1965) has 50 years of since created

and still different contributions are being generated. The models are generally based on the selec-

tion of a sample using simple random sampling with replacement.

Consider a population U of size N with two strata UA and UA�. Therefore to conduct an inquiry

is a serious issue. To belong to UA is stigmatizing. Hence the respondents will tend to use random

response (RR). It provides the opportunity of reducing response biases due to dishonest answers to

sensitive questioning. Therefore this technique protects the privacy of the respondent by granting

that his belonging to a stigmatized group cannot be detected. The interest of the inquiry is to

estimate the proportion of individuals carrying a stigma, identified with belonging to A. If jAj
denotes the number of units with the stigma and we are interested in estimating the probability

θ(A)5 jUAj/ jUj5NA/N.

The RR technique has been successfully applied in many areas and different modifications and

extensions to this method have been proposed in the literature on sampling. It is still receiving

1
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attention from the researchers, see for example Gupta et al. (2002), Ryu et al. (2005), and

Saha (2006).

A challenging sampling design is ranked set sampling (RSS). It was suggested by McIntyre

(1952) and appears as a more efficient than simple random sampling with replacement (SRSWR).

Takahashi and Wakimoto (1968) and Dell-Clutter (1972) gave a mathematical support to RSS and

the list of new results is growing rapidly. See Patil (2002) for a review on this theme.

Chen et al. (2008) suggested a randomized response model for ordered categorical variables.

They used an ordinal logistic regression for ranking. We present these results in Section 1.2.

Considering that a sensitive variable is evaluated, we consider the use of RR for collecting the

information. We develop an extension of the RSS estimator of Chen et al. (2008) using Warner’s

model. The proposal is presented in Section 1.3. The derived variance of the proposed estimator is

larger than the variance of Chen’s proposal. Considering that a sensitive question is evaluated we

suspect that its use will reduce answer biases. Section 1.4 develops a study using real-life data. The

experiments sustained our suspicion. The answers to the direct question of the interviewed pro-

duced estimations more different than the real one. The proposed estimator was closer. These facts

support the recommendation of using it to obtain a gain in accuracy with respect to the usual simple

random sampling with replacement model.

1.2 RANKING ORDERED CATEGORICAL VARIABLES
The proposal of Chen et al. (2008) for ordered categorical variables allows the use of RSS. They

used a set of explanatory variables Z5 (Z1,. . .,ZK) for fitting a logistic regression. Take the variable

of interest Xj in an item where

Xj 5 i if item j is classified in the class CðiÞ
Hence the probability distribution function is the multinomial M(1,P1,. . .Pq), Pi5Prob{X5 i},

i5 1,. . .,q. Initially a random sample is selected and in each sample item are measured Z and X�.
The ordinal logistic regression (ORL) is fitted to the data using a statistical package. Considering

ci 5P classifying an item in a category1to ið Þ5
X

t# i
Pt ; i5 1; . . . ; q

The logit function is logit cið Þ5 log ci
12 ci

� �
5 Li. Using the collected data the fitted logit model

is the proportional odds model

Li 5αi 1βTz;i5 1; . . . ; q

The model’s probability of classifying a particular item r in the ith category is denoted πri and
its cumulative probability by cri. The model fitted produces the corresponding estimates π̂ri and ĉri.

The procedure proposed by Chen et al. (2008) considers the selection of a random sample of

size m using SRSWR. The class of the rth judgmental order statistic for X is denoted by X(r). The

ranking is made as follows.

Chen et al. (2008) ranking procedure for ordinal variables:

Step 1 Use the fitted model and compute π̂ri;ĉri
� �

; i5 1; ::; q; r5 1; ::;m
Step 2 Classify item r in the category h such that π̂hi;5Max π̂ri;i5 1; ::; q

� �
; r5 1; . . . ;m:
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Step 3 Rank(r).Rank (r�) if r is assigned to C(i) and r� to C(j) being j, i.

Step 4 An item in C(i) is ranked using the computed ĉri
0s: Rank(r).Rank(r�) if ĉri , ĉr�i.

The procedure is repeated nr times for each X(r)�class, t5 1,..,m. For the experiment j the item

with rank j is interviewed. The RSS sample sets is

X 1ð Þ1? X 1ð Þt? X 1ð Þn1
^ ^ ^

X rð Þ1? X rð Þt X rð Þnt

^ ^ ^
^ ^ ^

X mð Þ1? X mð Þt X mð Þnm

The nt’s are not necessarily equal. The use of an equal number of experiments yields a balanced

RSS sampling design; in another case it is unbalanced.

The rth row is a sample from the stratum defined by the rth order statistic. The probability of

mass function is p(r)i, i5 1,..,q.

Let us consider the particular case in which the interviewed persons are questioned to declare

belonging to a certain group A. The response can be modeled as

I X rð Þj
� �

5
1 if a YES is the answer

0 otherwise

�

We are interested in estimating θ(A), the proportion of persons belonging to A in the population.

θ(A) may be estimated using the RSS proposed by Chen et al. (2008) by

pc 5

Pm
r51

1
nr

Pnr
t51 I X rð Þj

� �
m

Now we have p(r)A5μ(r) and mμ5mP(A)5μ(1)1 . . .1μ(m). Hence

EðpcÞ5
Pm

r51
1
nr

Pnr
t51 p rð ÞA

m
5 θðAÞ

It has been derived; see that the variance of the statistics of order r is

σ2
ðrÞ 5σ2 2 ðμ rð Þ2μÞ2

Therefore we may consider that

V I X rð Þj
� �	 


5 p rð ÞA 12 p rð ÞA
	 


5 θ Að Þ 12 θ Að Þð Þ2 ðp rð ÞA2θðAÞÞ2

and, as result, taking ϑ5
Pnr

t51
1
nr

V pcð Þ5
Xm
r51

p rð ÞA 12 p rð ÞA
	 

m2

Xnr
t51

1

nr
5

θ Að Þð12 θ Að ÞÞ
m

2ϑ
Xm
r51

ðp rð ÞA2θðAÞÞ2
m2

The second sum is positive and represents the gain in accuracy due to the use of the proposal of

Chen et al. (2008) with respect to the use of SRSWR.
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The optimal choice of the sample sizes is given by the expression:

nrðoptÞ 5 n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p rð ÞA 12 p rð ÞA

	 
q
Pm

r51

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p rð ÞAð12 p rð ÞAÞ

p
m

; n5
Xm

r51
nr

It establishes that the order statistics with larger standard deviation should have larger samples

sizes. That is, the order statistics with smaller gains in accuracy measured by ðpðrÞA2θðAÞÞ2.
We will consider the case in which A is a sensitive group and evaluate the behavior of this

sampling design when a randomized response mechanism is introduced for obtaining the

responses.

1.3 A RANDOMIZED RESPONSE STRATEGY
The probability of carrying a stigma θðAÞ is the parameter to be estimated. The usual approach is

to ask a selected individual if he/she belongs to A (to carry the stigma). Warner (1965) proposed

providing a random mechanism to the interviewed who develops an experiment that selects

between the statements:

1. I belong to A, with probability p 6¼0.5 and

2. I do not belong to A, with probability 12 p. The evaluated variable is Y5 1 if the response is

“YES”, 0 otherwise

The individual does not reveal which statement is evaluated. The random sample permits evalu-

ating the number of “Yes” answers

:nY 5
X

I51n
Yi

Commonly, each respondent in the sample is asked to select a card from a deck after shuffling.

The deck has a proportion p of cards with statement 1. After deselection the respondent answers

“Yes” or “No,” without revealing the selected statement. This technique is known as the related

question method. Warner (1965) derived that

pW 5

ny
n

2p2 1
1

p2 1

2p2 1

is the maximum likelihood estimator of θ(A). It is unbiased and its existence is supported by the

use of 6¼ 0:5. Its variance is

V pwð Þ5 θ Að Þð12 θ Að ÞÞ
n

1
pð12 pÞ
nð2p21Þ2

The second term in the above expression is the increase in the variance due to the introduction

of the randomized mechanism.

Let us consider the use of this RR model when RSS is used.

After conforming the RSS sample using Chen et al.’s (2008) procedure the interviewer uses the

RR mechanism for selecting the statement to be evaluated. The response obtained will be again
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I X rð Þj
� �

5
1 if a YES is the answer

0 otherwise

�

but

Prob I X rð Þj
� �

5 1
	 


5 pp rð ÞA 1 12 pð Þð12 p rð ÞAÞ
Now the estimator of the probability of carrying the stigma for the sample of the class of the

rth order statistics is

p̂W rð ÞA 5

Pnr
t51 I X rð Þj

� �
nrð2p2 1Þ 2

12 p

nrð2p2 1Þ
A naı̈ve estimator based on the RSS sample is

pcW 5

Pm
r51 p̂W rð ÞA

m
5

Xm

r51

Pnr
t51 I X rð Þj

� �
mnrð2p2 1Þ 2

12 p

nrð2p2 1Þ

� 

Its unbiasedness follows from the fact that, for any r5 1,. . .,m,

Eðp̂W rð ÞAÞ5
nr pp rð ÞA 1 12 pð Þð12 p rð ÞAÞ
� �

nrð2p2 1Þ 2
12 p

nrð2p2 1Þ 5 pðrÞA

The variance of the estimator is readily obtained as

Vðp̂cW Þ5
Pm

r51 V p̂WðrÞA
	 


m2
5

Xm

r51

pW rð ÞAð12 pW rð ÞAÞ
mnr

1ϑ
pð12 pÞ
m 2p21ð Þ2 2ϑ

Xm

r51

pW rð ÞA2θðAÞ	 
2
m2

The second term represents an increment in the variance due to the use of the randomization

procedure. In practice the nonsampling error produced by providing incorrect answers, for avoiding

being stigmatized, is present when direct questions are asked.

We performed a large study to evaluate the behavior of the proposal when managers are inter-

viewed for establishing the quality of the protection of the environment by their enterprises.

1.4 EVALUATION OF THE PERFORMANCE OF p̂ cW

To test the model proposed we interviewed the directors of different enterprises that produce highly

contaminated garbage. They were asked to report if they send contaminated garbage to municipal

sites. They gave a report. Afterwards they were provided with a set of cards where 60% of the

cards fixed the selection of the sensitive question, p5 0.60

The enterprise contaminates the environment

The cards were shuffled by the interviewed for reporting “yes” or “no.”

The characterization of leaching of elements from solid waste compost was made by evaluating

grab samples. We consider that it provided the real result. That is, a “Yes” or “No” was produced

by analyzing the grab. The grab samples were prepared from multiple grab samples using coning

and quartering methods. The compost was collected from composting facilities which were

screened to reduce the particles mechanically six times separated in a trammel and passed through

51.4 EVALUATION OF THE PERFORMANCE OF p̂cW



a fine. The type of grab came from aliment, metallurgical, textile, and chemical factories. The grab

sample procedure is described in Tissdel and Breslin (1995).

We considered three different sets of variables for fitting the logistic regression. The measure-

ment of contamination in the air and the rivers, of the basin used for sending the residuals of the

industries, produced the explanatory variables. The reports of the closest monitoring station were

used for measuring them in a large research conducted for detecting the highly contaminating enter-

prises. Table 1.1 gives a description. An inspection to the enterprises established whether they were

contaminating the environment. The inquiry took place a year after the auditing performed. The

objective was to check if they changed their status. Presumably the managers would avoid declar-

ing their incompetence to solve the problems detected previously.

Table 1.2 presents the average of the proportions computed with the two estimators for an over-

all sample size n5 20 with m5 2 and constant value of nr’s. It is clear that the managers cheated.

The direct responses produced an underestimation of the true proportion. The use of the RR allows

obtaining a more accurate estimation.

Table 1.3 presents the average of the proportions computed with the two estimators with m5 4,

nr5 4. Comparison of them leads to a similar conclusion. Note that it seems to be better to use RR,

which allows to obtain a closer estimation.

Table 1.1 Logistic Regression Models Used for Estimating the Proportion of Contaminating

Enterprises

Model Explanatory Variables

WQ: main metallic contaminators in the river Percentage of lead, chrome, and nickel

AQ: main contaminators of the quality of the air Percentage of sulfuric acid and carbon dioxide

GQ: main metallic contaminators in the river and

main contaminators of the quality of the air

Percentage of lead is a test of the level of contamination of

“metal” present in the water, chrome, nickel, sulfuric acid,

and carbon dioxide

The population census was performed. The collected population data were sampled. Three sampling fractions were used f5 0.05,

0.10, and 0.20. The evaluation of the behavior of the estimators was made by selecting 1000 samples using each sample fraction.

Table 1.2 Average of 1000 Proportion Estimates for m5 2, nr5 10

Model Aliment Factories Metallurgical Factories Textile Factories Chemical Factories

True Proportion 0.87 0.78 0.90 0.85

Model p̂c p̂cW p̂c p̂cW p̂c p̂cW p̂c p̂cW

WQ 0.74 0.89 0.65 0.72 0.45 0.92 0.55 0.86

AQ 0.75 0.87 0.51 0.73 0.68 0.90 0.67 0.82

GQ 0.76 0.84 0.62 0.71 0.77 0.89 0.3 0.79
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The accuracy of the estimators was analyzed by computing:

εu 5
X1000

h51

p̂u2θðAÞ
�� ��

u

1000θðAÞ ; u5 c; cW

The results are given in Tables 1.4 and 1.5. The direct question is considerably more inaccurate

than the randomized one.
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2.1 INTRODUCTION
Statistical control charts are tools for understanding variation of a product; they are considered to be

one of the most important statistical tools that can be used for monitoring a product and then help in

maintaining the quality of a product based on a given specification criterion. In general, control

charts can be divided into two different types, control charts for attributes and control charts for vari-

ables, depending on the product quality characteristics. The original idea of control charts was intro-

duced by Shewhart (1924) to improve the quality of telephone transmission; by suggesting a control

chart that consists of three components, the chart fences which are also known as control chart lim-

its, namely; upper control limit (UCL) and lower control limit (LCL), in addition to the center line

(CL). The main idea of Shewhart charts is to monitor the process mean; then, if the process mean is

stabile and located between the chart limits, the process will be considered under control. However,

it will be out of control if the value of the process mean deviated from the chart limits in a specific

number of process standard deviations (i.e., say k). For example, in normal product populations, if k

is equal to 2 then only 5% of the product is expected to exceed the control chart limits (Fig. 2.1).

Assuming we are sampling from a normal distribution with mean μ and standard deviation σ,
and let Xij:i5 1; 2; . . .;m

� �
j5 1; 2; . . .; r be r independent simple random samples (SRS) each of

size m are selected from this population; then the sample mean Xj 5
1
m

Pm
i51 xij; j5 1; 2; ::; r is dis-

tributed normally, with mean μ with standard deviation σ=
ffiffiffiffi
m

p
. Then, the Shewhart control charts

limits will be:

UCL5μ1 Z12α
2
σ=

ffiffiffiffi
m

p
CL5μ
LCL5μ2Z12α

2
σ=

ffiffiffiffi
m

p

8<
:

where Z12α
2
is the ð12 α

2
Þth percentile from the standard normal distribution; and ð12αÞ is the prob-

ability that any sample mean will be between the UCL and LCL. Usually, a 3σ rule is implemented

in these limits and we replace Z12α
2
with 3. For normal distributions, the 3σ limits are equivalent to

0.001 probability limits; which means 99.7% of the sample means will fall within the control limits

(Montgomery, 2009).
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Moreover, if the process mean μ and standard deviation σ are unknown, then an unbiased esti-

mator will be used in the limits and the control charts are estimated as:

UCL5X 1 3σ̂X

CL5X

LCL5X 2 3σ̂X

8><
>:

where the unbiased estimators of mean μ and σ are:

X 5
1

r

Xr
j51

Xj

and

σ̂X 5

Γ
m2 1

2

� �

r
ffiffiffiffi
m

p 2

m21

� �2
Γðm2 1Þ

Xr
j51

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

m2 1

Xm
i51

Xij2Xj

� �2s

One of the most important indicators of the control chart is the run length (RL), which is the

sample number when a data point is out of the control chart limits. The average RL (ARL) is a key

indicator used to evaluate the performance of a control chart and represents the expected number of

samples until a control chart has one point of the control limits. There are two types of ARL:

• In-control ARL (ARL0) is the expected number of samples until a control chart signals, under

the condition that the actual process is truly in control; noting that, the ARL is a geometric

random variable with probability of success equal to α which represents also type I error and is

equivalent to “Pr (signal/ in-control process).” Therefore the ARL for the Shewhart control

chart is the expected value of a geometric experiment and equal to ARL05
1
α.

FIGURE 2.1

Shewhart control chart.
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The following table illustrates the possible sequences leading to an “out of control” signal:

Run Length Probability

1 α
2 αð12αÞ
3 αð12αÞ2
: :

R αð12αÞr21

then ARL0 5
PN

j51 RLUProbability5
PN

j51 jαð12αÞ j21 5 1
α

• Out-of-control ARL (ARL1) is the expected number of samples until a control chart signals,

under the condition that the actual process is in fact out-of-control; then the Pr (signal/out-of-

control process)5 12β; therefore ARL15 1
12 β.

Most statisticians consider ARL05 370 to be the desired value for ARL0 as it achieves a

balance between α and β. Shewhart control charts have weaknesses in detecting a small shift in the

process. Therefore extensive researches are found to improve the performance of the Shewhart con-

trol chart (Sindhumol et al., 2016; Amiri et al., 2014; Franco et al., 2014; Chan et al., 2003; Kumar

et al., 2017; Prajapati and Singh, 2016; Woodall, 2000).

One of the most important techniques used to improve the performance of the control chart is

the sampling scheme that is used in selecting the item in a given process. Several sampling techni-

ques were used to improve the performances of Shewhart control charts. Al-Nasser and

Al-Rawwash (2007) developed a Shewhart control chart based on ranked data, the main idea pro-

posed in their work is of using ranked set sampling (RSS) schemes. Al-Omari and Al-Nasser

(2011) used a robust extreme ranked set sampling scheme in developing a new control chart limit

for the mean. Al-Omari et al. (2016) used double acceptance sampling for time truncated life tests

based on transmuted new Weibull�Pareto distribution. Al-Nasser et al. (2013) suggested using

folded ranked set sampling in developing the control chart. Shafqat et al. (2017) discussed the attri-

bute control charts for several distributions.

Resampling or the repetitive sampling scheme is an interesting scheme that could be implemen-

ted to improve the performances of the control chart. Repetitive sampling is similar to the sequen-

tial sampling scheme, which required multiple control chart limits. Moreover, control charts based

on multiple control limits are of interest of many researchers as they are more robust than the clas-

sical Shewhart chart. These charts depend on a resampling criterion to accept or reject a product

under investigation. Repetitive sampling control charts were originally proposed by Sherman

(1965), who suggested using this idea for developing an attributes acceptance sampling plan.

Balamurali and Jun (2006) used repetitive sampling to develop more efficient acceptance sampling

plans. The idea of repetitive sampling is different from the sequential or basically the double-

sampling approach. The double-sampling scheme has four parameters, while repetitive sampling

has only two parameters.

Therefore in using repetitive sampling the control chart is divided more precisely into different

subregions using two pairs of control limits (inner and outer limits) as shown in Fig. 2.2, instead of

one pair of limits as it is in the novel Shewhart control chart.
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When using repetitive sampling, the process is declared out of control using the same rule as

the Shewhart control chart, however, it is declared to be in control only if the process mean hardly

deviates from the center of the chart, and it should be located within the inner control limits. If the

process mean is located between the inner and outer control limits, then a geometric sampling pro-

cedure should be applied by keep inspecting repetitively new samples until we observe a process

mean within the inner limits.

In using the repetitive sampling control charts, the calculations of control limits depend on two

limits (inner and outer limits), multipliers, e.g., k1 and k2 (k2 , k1). In the case that ARL0 is around

370 the value of k1 is close to 3. Recently, Aslam et al. (2014a,b) proposed a t-control chart using

repetitive sampling and Ahmad et al. (2014) designed an X-bar control chart based on the process

capability index using repetitive sampling and proved its efficiency. Azam et al. (2015) designed a

hybrid EWMA chart using repetitive sampling for normal distribution. Lee et al. (2015) proposed a

control chart using an auxiliary variable and repetitive sampling to detect the process mean. Aslam

et al. (2014a,b) designed some attribute and variable control charts using repetitive sampling for

monitoring the process mean. Other published work can be found in Ahmad et al. (2014), Aslam

et al. (2015), and Aslam et al. (2013).

All of the suggested control charts used the idea of drawing a simple random sample from a

given population. The sampling scheme is very important, in the literature many researches have

shown that the precision of the sampling units using ranked set sampling is much better than using

SRS (McIntyre, 1952; Chen et al., 2004; Al-Nasser, 2007).

It is noted that a lot of work is available on repetitive sampling plans use an ordinary single

sampling plan. By exploring the literature and to the best of the authors’ knowledge, there is no

work available on the design of a repetitive sampling plan using rank set sampling. Therefore in

FIGURE 2.2

Repetitive sampling control chart limits.
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this chapter, we will introduce the design of repetitive sampling plan for the rank set sampling by

assuming that the variable of interest follows the normal distribution. In the next section we discuss

the repetitive sampling control charts based on SRS. In Section 2.3 is an overview of the ranked set

sampling scheme. Section 2.4 discusses the control chart for the sample mean based on the idea of

a repetitive sampling scheme. The performance and a comparative study will be given in

Section 2.5 and the chapter ends with some concluding remarks in Section 2.6.

2.2 SHEWHART CONTROL CHART UNDER REPETITIVE SAMPLING
Suppose that the quality characteristics follow a probability density function f(x) that has a distribu-

tion F(x) with mean μ and standard deviation σ. Also, when the process is under control assume

that the target mean is μ0. Then, the repetitive control chart for the sample mean X has the follow-

ing steps:

Step 1: Draw a SRS of size n.

Step 2: Calculate the sample mean X

Step 3: Declare the following decision about the entire process:

Out of Control; if; X .UCL1 or X ,LCL1

In Control; if; LCL2 ,X ,UCL2

Otherwise; Re Sample

8<
:

Where the outer control chart limits are given by:

UCL1 5μ0 1 k1
σffiffiffi
n

p

LCL1 5μ0 2 k1
σffiffiffi
n

p

Similarly, the inner control chart limits are given by:

UCL2 5μ0 1 k2
σffiffiffi
n

p

LCL2 5μ0 2 k2
σffiffiffi
n

p

Then the probability that the process is declared as in control is:

Pin 5
P LCL2 ,X,UCL2jμ5μ0

� �
12Prep

where the probability that repetitive sampling is needed can be obtained by:

Prep 5P UCL2 ,X ,UCL1

� �
1PðLCL1 ,X ,LCL2Þ

Hence, the in-control average run length (ARL) is given by:

ARL0 5
1

12Prep
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Suppose now that the process mean has shifted from m to m 1 δσ. Then, the probability that

the process is declared as out of control is obtained by:

P�
in 5

P LCL2 ,X ,UCL2jμ5μ0 1 δσ
� �

12P�
rep

Similarly, the ARL for an out-of-control process will be

ARL1 5
1

12P�
rep

Moreover, the control limits will be obtained when the process is under control by using a non-

linear programming system where the objective function is the average sample number (ASN)

(ASN5 n
12Prep

):

Minimize ASN

Subject to:

1. ARL0 $ r0
2. k1 . k2

After obtaining the control chart limit’s coefficients k1 and k2, then we will use them to find out

the ARL of the process. Now, if we are sampling from a normal distribution, then

Pin 5
2Φ k2ð Þ2 1

12 2 Φ k1ð Þ2Φðk2Þð Þ

P�
in 5

Φ k2 2 δ
ffiffiffi
n

p� �
1Φ k2 1 δ

ffiffiffi
n

p� �
2 1

Φ k2 1 δ
ffiffiffi
n

p� �
2Φ k1 1 δ

ffiffiffi
n

p� �� �
2 Φ k1 2 δ

ffiffiffi
n

p� �
2Φ k2 2 δ

ffiffiffi
n

p� �� �
Which can be used to compute the ARL of the process for normal distribution.

2.3 RANKED SET SAMPLING SCHEME
Ranked set sampling (RSS) is a visual sampling scheme that has been proposed by McIntyre

(1952). The samples obtained by this scheme depend on drawing several simple random samples,

and each sample is ranked using a free cost method or based on an auxiliary variable that relates to

the variable of interest for actual measurement. The steps in the ranked set sampling scheme can be

described as follows:

Step 1: Randomly select m2 sample units from the population;

Step 2: Allocate the m2 selected units as randomly as possible into m sets, each of size m;

Step 3: Without yet knowing any values for the variable of interest, rank the units within each

set based on personal judgment or with measurements of a covariate that is correlated with the

variable of interest;

Step 4: Choose a sample for actual analysis by including the smallest ranked unit in the first

set, then the second smallest ranked unit in the second set, continuing in this fashion until the

largest ranked unit is selected in the last set.
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To explain more for this method, assuming that three sample sets are randomly selected to col-

lect three RSS, the procedure is repeated r times. This can be visualized as shown in Fig. 2.3.

The selected observations are an RSS of size m denoted by X½i:m� i5 1, 2, . . ., m, which repre-

sents the ith ordered statistic obtained from the ith SRS of size m, and it is denoted by the ith judg-

ment order statistics. It can be noted that the selected elements are independent-order statistics but

not identically distributed. Also, note that we actually need m2 observations selected via SRS to

obtain m RSS units which means that we have to, unfortunately, discard mðm2 1Þ=2 observations.

In practice, the sample size m is kept small to ease the visual ranking, RSS literature suggested that

m 5 3, 4, 5, or 6. Therefore if a sample of larger size is needed, then the entire cycle may be

repeated several times; say r times, to produce an RSS sample of size n 5 rm. Then the element of

the desired sample will be in the form:

X½i:m�j; i5 1; 2; . . .;m; j5 1; 2; . . .; r
� �

where X½i:m�j is the ith judgment order statistics in the jth cycle, which is the ith order statistics of

the ith random sample of size m in the jth cycle. It should be noted that all of X½i:m�j’s are mutually

independent, in addition, the X½i:m�j are identically distributed for all i.

FIGURE 2.3

RSS scheme.
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Let μ and σ2 be the population mean and variance for variable X, respectively. Then the unbi-

ased estimator of the population mean under RSS is defined as:

XRSS 5
1

rm

Xr
j51

Xm
i51

X½i:m�j

which is more efficient than the usual sample mean X under SRS when both estimators are con-

structed on the basis of the same number n of actual measurements (McIntyre, 1952; Takahasi and

Wakimoto, 1968). The variance of XRSS is given by:

VarðXRSSÞ5
1

rm2

Xr
j51

Xm
i51

VarðX½i:m�jÞ

5
1

rm
σ2
X 2

1

m

Xm
i51

EðX½i:m�iÞ2μ
� �2 !

where E X i:m½ �i
� �

is the expected value of the ith order statistics of a sample of size m:

E X i:m½ �i
� �

5

ðN
2N

xf X i:m½ �
� �

dx

where

f X i:m½ �
� �

5m
m2 1

i2 1

� �
FðxÞi21ð12F xð ÞÞm2if ðxÞ

Noting that the relative efficiency (RE) of estimating the population mean using novel RSS with

respect to the traditional estimator by SRS is defined as follows:

REðXRSS;XSRSÞ5
σ2=n

VarðXRSSÞ
Takahasi and Wakimoto (1968) concluded that the RE for all continuous distributions is

between 1 and (m1 1)/2 with equal allocation and by using the same number of quantifications,

where the maximum value holds for the standard uniform distribution. However, unequal allocation

can actually increase the performance of RSS above and beyond that achievable with standard

equal allocations. Actually the RE with unequal allocation will be between 0 and m.

2.3.1 SHEWHART CONTROL CHARTS UNDER THE RSS SCHEME

As mentioned earlier, the quality control charts are determined via the lower and upper control lim-

its as well as the central limit term. The estimates of the three parts are necessary when the popula-

tion mean and variance are unknown. This leads us to present new set of estimates of (μ,σ2) using

RSS so that we may construct the quality control charts. Salazar and Sinha (1997) proposed the

following:

LCL 5μ2 3σXRSS

CL 5μ
UCL 5μ1 3σXRSS
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σXRSS
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n2

Pn
i51 E X½i:n�i2E X½i:n�i

� �� �2q
is the standard deviation obtained via RSS (Chen et al.,

2004). Muttlak and Al-Sabah (2003) proposed an estimator for σXRSS
:

σ̂XRSS
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

m
σ̂2
RSS 2

1

m

Xm
i51

X i½ �2XRSS

� �2 !vuut

where

σ̂2
RSS 5

1

rm2 1

Xm
i51

Xr
j51

ðX½i:m�j2XRSSÞ2 and X½i� 5
1

r

Xr
j51

X½i:m�j

2.4 SHEWHART CONTROL CHART UNDER RANKED REPETITIVE SAMPLING
We propose a Shewhart ranked control chart using repetitive sampling. Under a repetitive sampling

scheme, there are two types of limits, outer (LCL1 and UCL1) and inner (LCL2 and UCL2) control

chart limits. Then, the ranked repetitive control chart for the sample mean has the following steps:

Step 1: Draw an RSS of size n;

Step 2: Calculate the sample mean XRSS;

Step 3: Declare the following decision about the entire process:

Out of Control; if; XRSS .UCL1 or XRSS , LCL1
In Control; if; LCL2 ,XRSS ,UCL2

Otherwise; Re Sample

8<
:

Where the outer control chart limits are given by:

UCL1 5μrss0 1 k1σXRSS

LCL1 5μrss0 2 k1σXRSS

Similarly, the inner control chart limits are given by:

UCL2 5μrss0 1 k2σXRSS

LCL2 5μrss0 2 k2σXRSS

Then the probability that the process is declared as in control is:

Pin RSS 5
P LCL2 ,XRSS ,UCL2jμrss 5μrss0

� �
12Prep

where the probability that repetitive sampling is needed can be obtained by:

Prep RSS 5P UCL2 ,XRSS ,UCL1

� �
1PðLCL1 ,XRSS ,LCL2Þ
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Hence, the in-control average run length (ARL) is given by:

ARLrss0 5
1

12Prep RSS

Suppose now that the process mean has shifted from μrss0 to μrss0 1 δσ. Then, the probability

that the process is declared as out of control is obtained by:

P�
in rss 5

P LCL2 ,XRSS ,UCL2jμrss 5μrss0 1 δσrss

� �
12P�

rep rss

Similarly, the ARL for out-of-control process will be

ARL1 rss 5
1

12P�
rep rss

In general, the steps of the ranked repetitive sampling control chart can be summarized as

follows:

Step 1: Using the assumption that the control chart is under control, specify the value of ARL0;

Step 2: Find the value of the control charts multipliers k1 and k2 (k1 . k2) by minimizing

ASN0 given that ARL0 is more than or equals the target;

Step 3: Find the value of ARL when the process is out of control.

2.5 PERFORMANCES OF THE PROPOSED CONTROL CHART
Monte Carlo simulation experiments were used to study the performance of the ranked control

charts under the following assumptions:

Step 1: Setting up the control chart components: Sample mean and sample variance

• Generate 1,000,000 ranked set sampling each of size m 5 3, 4, 5, and 6 from the standard

normal distribution

• Calculate the mean and the variance for each subgroup

• Compute the grand mean and grand variance from the 1000000 subgroups;

Step 2: Setting up control limits multipliers

• Chose initial values of the ARL0_rss 5 350 and 400

• Select the initial values of k1 and k2
• Using the generating samples from step 1 and an optimization problem to minimize the

ASS0_rss find the optimal values of k1 and k2
• Compute the control chart limits (LCL1, UCL1) and (LCL2, UCL2);

Step 3: Compute the ARL0 and ARL1

• Follow the procedure of the proposed control chart and check if the process is declared as in-

control, out-of-control, or resampling
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• Compute the number of subgroups so far as the in-control run length say (R). Then the

ARL0_rss5R/1,000,000

• Compute ARL1_rss as δ 5 0.1, 0.2, . . ., 3.0.

The results of this Monte Carlo experiment are given in Tables 2.1 and 2.2. The simulation

results indicated that for the same values of m, k1, and k2, we note a decreasing trend in average

run length as δ changes from 0.0 to 2.9.

Table 2.1 ASN and ARL When ro is 350

n 5 3
k1 5 2.99; k2 5 2.471

n 5 4
k1 5 2.98; k2 5 2.245

n 5 5
k1 5 3.03; k2 5 2.303

n 5 6
k1 5 3.001; k2 5 1.875

δ ASN ARL ASN ARL ASN ARL ASN ARL

0 34 350.432 79 350.877 90 350.643 305 350.222

0.1 32 286.533 53 298.508 57 309.598 178 313.480

0.2 24 204.499 26 210.971 41 223.214 146 229.885

0.3 13 153.610 28 170.940 25 142.046 74 146.628

0.4 9 110.375 16 129.199 20 94.697 47 92.593

0.5 9 71.582 11 86.430 15 61.087 49 63.131

0.6 3 50.429 12 59.453 9 40.420 29 44.524

0.7 4 35.448 8 44.543 11 26.532 19 30.321

0.8 3 26.399 6 32.798 5 17.973 10 20.833

0.9 3 18.702 4 24.073 6 12.606 12 15.237

1 3 14.085 4 18.083 7 9.112 9 11.011

1.1 3 10.350 4 13.770 5 6.971 6 8.275

1.2 3 8.131 4 10.733 5 5.295 6 6.332

1.3 3 6.304 4 8.478 5 4.159 6 4.969

1.4 4 5.073 4 6.748 5 3.350 6 3.993

1.5 3 4.091 4 5.444 5 2.746 6 3.263

1.6 4 3.412 4 4.575 5 2.306 6 2.728

1.7 3 2.877 4 3.779 5 1.980 6 2.324

1.8 3 2.443 4 3.225 5 1.742 6 1.994

1.9 3 2.145 4 2.764 5 1.555 6 1.766

2 3 1.893 4 2.407 5 1.412 6 1.589

2.1 3 1.700 4 2.137 5 1.303 6 1.450

2.2 3 1.546 4 1.902 5 1.224 6 1.338

2.3 3 1.420 4 1.720 5 1.159 6 1.254

2.4 3 1.326 4 1.576 5 1.112 6 1.190

2.5 3 1.253 4 1.458 5 1.080 6 1.139

2.6 3 1.190 4 1.363 5 1.054 6 1.100

2.7 3 1.145 4 1.287 5 1.036 6 1.073

2.8 3 1.108 4 1.227 5 1.024 6 1.050

2.9 3 1.078 4 1.177 5 1.015 6 1.036
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2.5.1 COMPARATIVE STUDY: MONTE CARLO EXPERIMENT 2

In this section we use a simulation study to illustrate the quality control mechanism via different

sampling approaches. Three sampling schemes are considered for computing the ARL of the

Shewhart control chart in this experiment: the Shewhart control chart based on simple random sam-

pling (SRS); Shewhart control chart based on ranked set sampling (RSS); and Shewhart control

Table 2.2 ASN and ARL When ro is 400

n 5 3
k1 5 3.005; k2 5 2.595

n 5 4
k1 5 3.009; k2 5 2.40

n 5 5
k1 5 3.02; k2 5 2.92

n 5 6
k1 5 3.10; k2 5 2.13

δ ASN ARL ASN ARL ASN ARL ASN ARL

0 59 400.00 66 400.01 87 400.01 316 400.02

0.1 37 250.00 45 277.77 65 344.828 220 346.783

0.2 29 227.273 37 200.001 31 285.714 131 263.158

0.3 22 175.439 25 192.307 30 169.492 98 196.078

0.4 11 138.889 8 135.135 17 163.934 55 102.041

0.5 13 80.000 12 90.090 10 95.238 40 80.645

0.6 10 51.546 7 59.523 7 65.360 32 40.984

0.7 8 39.526 9 49.261 7 55.556 14 34.130

0.8 5 27.855 5 34.246 5 34.722 11 21.368

0.9 3 19.724 4 25.316 5 27.322 8 14.085

1 3 13.986 4 19.723 6 19.685 8 10.142

1.1 3 10.627 4 14.347 5 15.060 6 7.686

1.2 3 8.117 4 11.481 5 10.965 6 5.794

1.3 3 6.618 4 8.703 5 9.033 7 4.686

1.4 3 5.152 4 6.747 5 6.998 6 3.670

1.5 3 4.225 4 5.803 5 5.828 6 2.998

1.6 3 3.516 4 4.683 5 4.744 6 2.449

1.7 3 2.847 4 3.930 5 4.005 6 2.110

1.8 3 2.421 4 3.290 5 3.356 6 1.800

1.9 3 2.125 4 2.819 5 2.867 6 1.608

2 3 1.925 4 2.513 5 2.562 6 1.458

2.1 3 1.679 4 2.171 5 2.210 6 1.342

2.2 3 1.532 4 1.969 5 1.969 6 1.245

2.3 3 1.437 4 1.740 5 1.755 6 1.185

2.4 3 1.339 4 1.609 5 1.602 6 1.136

2.5 3 1.259 4 1.493 5 1.492 6 1.093

2.6 3 1.197 4 1.387 5 1.384 6 1.063

2.7 3 1.147 4 1.313 5 1.305 6 1.042

2.8 3 1.107 4 1.232 5 1.244 6 1.030

2.9 3 1.081 4 1.196 5 1.197 6 1.018
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chart based on repetitive sampling (Rep-RSS). The simulation study is conducted under the normal-

ity assumption with mean μ0 and variance σ2
0 assuming the ranking is perfect. Note that under

the SRS procedure, the ARL of the X chart will be 370. Therefore we set ARL0_rss equal to 370

to find the optimal multiplier values for the proposed control limits. The ARL is computed for

δ 5 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 1.0, 1.8, 2.6, and 3.4 under the same Monte Carlo step as given in

Experiment 1. The results are given in Tables 2.3�2.6

Table 2.3 ARL Using Different Methods When m 5 3; r0 5 370

Shift SRS RSS
Rep-RSS
k1 5 3.03, k2 5 2.09

0.0 369.68 340.56 370.37

0.1 351.27 321.85 318.58

0.2 305.25 254.77 217.39

0.3 254.71 185.19 163.93

0.4 202.47 128.51 108.67

0.5 153.23 128.50 86.95

1.0 43.31 18.89 14.99

1.8 8.67 3.27 2.96

2.6 2.91 1.38 1.24

3.4 1.52 1.04 1.00

Table 2.4 ARL Using Different Methods When m 5 4; r0 5 370

Shift SRS RSS
Rep-RSS
k1 5 3.05, k2 5 2.12

0.0 369.41 349.04 370.37

0.1 341.71 312.30 303.03

0.2 312.98 229.41 227.27

0.3 256.01 166.75 117.64

0.4 200.79 115.94 81.96

0.5 156.12 76.70 62.11

1.0 45.32 14.15 11.57

1.8 8.88 2.48 2.24

2.6 2.95 1.19 1.16

3.4 1.52 1.01 1.01
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2.6 CONCLUDING REMARKS
A new ranked Shewhart control chart based on repetitive sampling is proposed in this chapter. The

average run length properties are analyzed, and the ARL tables are provided for various parameters.

The proposed control charts provide smaller values of ARL1 as compared to the existing control

charts based on SRS, RSS, and Rep-RSS when ARL0 remains the same for all charts. It may be

concluded that the proposed control charts perform better than the traditional control charts in terms

of the ARL. It may be an interesting future work to design other ranked control charts under repeti-

tive sampling.

Table 2.5 ARL Using Different Methods When m 5 5; r0 5 370

Shift SRS RSS
Rep-RSS
k1 5 3.06, k2 5 2.51

0.0 369.41 356.76 370.37

0.1 341.71 301.93 292.61

0.2 312.98 225.83 185.18

0.3 256.01 152.46 136.98

0.4 200.79 98.42 69.93

0.5 156.12 65.33 51.81

1.0 45.32 11.05 9.38

1.8 8.88 2.01 1.84

2.6 2.95 1.10 1.07

3.4 1.52 1.00 1.00

Table 2.6 ARL Using Different Methods When m 5 6; r0 5 370

Shift SRS RSS
Rep-RSS
k1 5 3.07, k2 5 2.73

0.0 370.52 346.14 370.37

0.1 349.41 300.84 285.71

0.2 309.02 218.77 212.55

0.3 248.04 137.12 107.52

0.4 198.89 87.00 62.50

0.5 154.94 55.95 40.81

1.0 45.57 9.00 7.73

1.8 7.69 1.71 1.58

2.6 2.93 1.05 1.04

3.4 1.52 1.00 1.00
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CHAPTER

3IMPROVED RATIO-CUM-PRODUCT
ESTIMATORS OF THE POPULATION
MEAN

Amer Ibrahim Falah Al-Omari
Department of Mathematics, Faculty of Science, Al al-Bayt University, Mafraq, Jordan

3.1 INTRODUCTION
Assume that the random variables X and Y have a joint probability density function (PDF) f ðx; yÞ,
and a joint cumulative distribution function (CDF) Fðx; yÞ, with population means μX ,μY and popu-

lation variances σ2
X ,σ

2
Y , of X and Y, respectively, and let ρ be the correlation coefficient between X

and Y. Let CX 5
σX

μX
and CY 5

σY

μY
be the population coefficients of variations of X and Y, respec-

tively. Let X1;Y1ð Þ, X2;Y2ð Þ, . . ., Xm;Ymð Þ be a bivariate simple random sample of size m from

f ðx; yÞ, and XSRS 5
1
m

Pm
i51

Xi be the sample mean of the auxiliary variable X with Var XSRS

� �
5

σ2
X

m

and YSRS 5
1
m

Pm
i51

Yi be the sample mean of the study variable Y with Var YSRS

� �
5

σ2
Y

m
. The usual

simple random sampling (SRS) ratio estimator of the population mean μY of the study variable Y is

defined as

μ̂SRS
Y 5μX

YSRS

XSRS

� �
; (3.1)

provided that the mean of X is known. Since this estimator is biased of the population mean, then

the mean square error (MSE) of μ̂SRS
Y is given by

MSE μ̂SRS
Y

� �
D

12 f

m
σ2
Y 1R2σ2

X 2 3R2σ2
Xρ

CY

CX

� �
; (3.2)

where f 5 m
M
, M is the population size, m is the sample size, R is the population ratio defined as

R5
μY

μX
, ρ5 σXY

σXσY
, and σXY 5Cov X; Yð Þ is the covariance between X and Y, for more details see

Cochran (1977). Al-Omari et al. (2009) suggested new ratio estimators of the population mean of

the variable of interest Y using simple random sampling and ranked set sampling methods (RSS).

Their SRS estimator is given by

μ̂SRS1
Y2A 5 μX 1 q1

� � YSRS

XSRS 1 q1
and μ̂SRS3

Y2A 5 μX 1 q3
� � YSRS

XSRS 1 q3
; (3.3)
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where q1 and q3 are the first and third quartiles of the auxiliary variable X, respectively, with MSE

defined as

MSE μ̂SRSj
Y2A

� �
D

1

m

μY

μX 1 qj

� �
μY

μX 1 qj

� �
σ2
X 1σ2

Y 2 2σXσYρ
� 	

j5 1; 3 (3.4)

Singh and Tailor (2003) proposed another ratio estimator of the population mean using the

SRS method given by

μ̂SRS
Y2ST 5 YSRS

μX 1 ρ
XSRS 1 ρ

� �
; (3.5)

with MSE

MSE μ̂SRS
Y2ST

� �
5

12 f

m
μ2
Y C2

Y 1
μX

μX 1 ρ
C2
X

μX

μX 1 ρ
2 2ρ

CY

CX

� �� 	
; (3.6)

and bias given by

Bias μ̂SRS
Y2ST

� �
5

12 f

m
μYC

2
X

μX

μX 1 ρ
μX

μX 1 ρ
2 ρ

CY

CX

� �
; (3.7)

where C2
Y 5

σ2
Y

μ2
Y

, C2
X 5

σ2
X

μ2
X

, ρ5
σXY

σXSY
, σ2

X 5 M21ð Þ21PM
i51

Xi2μX

� �2
, σ2

Y 5 M21ð Þ21PM
i51

Yi2μY

� �2

and σ2
XY 5 M21ð Þ21PM

i51

Xi 2μX

� �
Yi 2μY

� �
.

Kadilar and Cingi (2004), based on SRS, suggested the following ratio estimator of the popula-

tion mean

μ̂SRS
Y2KG 5

Y
SRS

1 b μX 2X
SRS

� �

X
SRS

1 ρ
μX 1 ρ
� �

; (3.8)

where b5 SXY
S2
X

, with MSE given by

MSE μ̂SRS
Y2KG

� �
D

12 f

m
R2σ2

X 1σ2
Y 12 ρ2
� �
 �

: (3.9)

Also, for more about ratio and product method of estimation, see Jemain et al. (2007, 2008) and

Haq and Shabbir (2010, 2013).

3.2 SAMPLING METHODS
In this section, we will define the sampling methods which are used throughout the work, namely;

ranked set sampling and extreme ranked set sampling as well as the commonly used simple random

sampling method.

3.2.1 RANKED SET SAMPLING

The RSS method can be described as follows:

Step 1: Select m random samples each of size m bivariate units from the population of interest.

Step 2: Rank the units within each set with respect to the variable of interest by visual

inspection or any cost-free method.
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Step 3: From the first set of m units, the smallest ranked unit X is selected together with the

associated Y, and from the second set of m units the second smallest ranked unit X is selected

together with the associated Y. The procedure is continued until from the mth set of m units the

largest ranked unit X is selected with the associated Y.

The procedure can be repeated n times to increase the sample size to nm RSS bivariate units.

In this chapter, we assume that the ranking is performed on the variable X for estimating the

population mean of the study variable Y. However, the whole process can be repeated while the

ranking can be formed on the variable Y. Let Xið1Þ;Yi½1�
� �

, Xið2Þ; Yi½2�
� �

, . . ., XiðmÞ; Yi½m�
� �

be the order

statistics of Xi1;Xi2; . . .;Xim and the judgment order of Yi1, Yi2, . . ., Yim, i5 1; 2; . . .;mð Þ. Then

the RSS units are X1ð1Þ;Y1½1�
� �

, X2ð2Þ;Y2½2�
� �

, . . ., XmðmÞ;Ym½m�
� �

, where ( ) and [ ] indicate that the

ranking of X is perfect and the ranking of Y has errors.

McIntyre (1952) proposed that the sample mean based on RSS as an estimator of the population

mean defined as

Y
RSS

5
1

m

Xm
i51

Yi½i� (3.10)

Takahasi and Wakimoto (1968) provided the necessary mathematical theory of RSS and showed

that

f ðyÞ5 1

m

Xm
i51

fi½i�ðyÞ;μY 5
1

m

Xm
i51

μY½i�;σ
2
Y 5

1

m

Xm
i51

σ2
Y½i� 2

1

m

Xm
i51

μY½i�2μY

� �2
;

where fi½i�ðyÞ, μY ½i� 5
ÐN
2N y fi½i�ðyÞdy, and σ2

Y ½i� 5
ÐN
2N

�
y2μY ½i�

�2
fi½i�ðyÞdy, respectively are the proba-

bility density function, mean, and the variance of the ith order statistics.

3.2.2 EXTREME RANKED SET SAMPLING

The extreme ranked set sampling (ERSS) method, as suggested by Samawi et al. (1996), can be

described as follows:

Step 1: Select m random samples, each of size m units, from the target population and rank the

units within each sample with respect to a variable of interest by visual inspection or any other

cost-free method.

Step 2: For actual measurement, if the sample size m is even, from the first m
2
sets select the

smallest ranked unit and from the other m
2
sets select the largest ranked unit. If the sample size

is odd, from the first m2 1
2

sets select the lowest ranked unit and from the other m2 1
2

sets select

the largest ranked unit, and from the remaining set the median is selected. The procedure can be

repeated n times if needed to obtain a sample of size nm units.

If m is even, then the measured ERSSE units are X1ð1Þ; Y1½1�
� �

, X2ð1Þ; Y2½1�
� �

, . . ., Xm
2
ð1Þ;Ym

2
1½ �

� �
,

Xm12
2
ðmÞ; Ym12

2
m½ �

� �
, Xm14

2
ðmÞ;Ym14

2
m½ �

� �
, . . ., XmðmÞ; Ym½m�

� �
, where

X
ERSSE

5
1

m

Xm
2

i51

Xið1Þ 1
Xm
i5m12

2

XiðmÞ

0
@

1
A and Y

ERSSE
5

1

m

Xm
2

i51

Yi½1� 1
Xm
i5m12

2

Yi½m�

0
@

1
A;
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with respective variances

σ2

X
ERSSE 5

1

2m
σ2
Xð1Þ 1σ2

XðmÞ
� �

and σ2

Y
ERSSE 5

1

2m
σ2
Y½1� 1σ2

Y½m�
� �

(3.11)

If m is odd, then the measured ERSSO units are X1ð1Þ;Y1½1�
� �

, X2ð1Þ;Y2½1�
� �

, . . ., Xm21
2
ð1Þ;Ym21

2
1½ �

� �
,

Xm11
2

m11
2ð Þ; Ym11

2
m11
2½ �

� �
, Xm13

2
ðmÞ;Ym13

2
m½ �

� �
, . . ., XmðmÞ; Ym½m�

� �
, where

X
ERSSO

5
1

m

Xm212
i51

Xið1Þ 1Xm11
2

m11
2ð Þ1

Xm
i5m13

2

XiðmÞ

0
@

1
A;

with variance

σ2

X
ERSSO 5

1

m2

m2 1

2
σ2
Xð1Þ 1σ2

XðmÞ
� �

1σ2
X m11

2ð Þ
� 	

; (3.12)

and

Y
ERSSO

5
1

m

Xm
2

i51

Yi½1� 1 Ym11
2

m11
2½ �1

Xm
i5m13

2

Yi½m�

0
@

1
A;

with variance

σ2

Y
ERSSO 5

1

m2

m2 1

2
σ2
Y½1� 1σ2

Y½m�
� �

1σ2
Y m11

2½ �
� 	

(3.13)

3.3 THE SUGGESTED ESTIMATORS
In this section, we will introduce the suggested estimators of the population mean of the study vari-

able Y using SRS and ERSS schemes.

3.3.1 THE FIRST SUGGESTED ESTIMATOR

μ̂ERSS
Y2C 5 Y

ERSS
1C

� �
δ
X
ERSS

1C
μX 1C 1 ð12 δÞ μX 1C

X
ERSS

1C

 !
(3.14)

where C can be considered as the coefficient of variation, coefficient of kurtosis, median,

correlation coefficient, coefficient of skewness of the auxiliary variable X or any auxiliary

information of X.

Using Taylor series expansion to the first order of approximation, this estimator can be

written as

μ̂ERSS
Y2C DY

ERSS
1 12 2δð ÞμY 1C

μX 1C X
ERSS

2μX

� �
(3.15)
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Theorem 1: To the first degree of approximation of the estimator μ̂ERSS
Y2C , we have

1. The estimator is approximately unbiased.

2. If m is even, the MSE of μ̂ERSS
Y2C is

MSE μ̂ERSSE
Y2C

� �
D

1

m

1

2
σ2
Y½1� 1σ2

Y½m�
� �

1
12 2δð Þ μY 1C

� �
μX 1C

1

2

12 2δð Þ μY 1C
� �

μX 1C σ2
Xð1Þ 1σ2

XðmÞ
� �

1 2 σXY 2
1

m

Xm
i51

HXYðiÞ

 !
2
6664

3
7775

8>>><
>>>:

9>>>=
>>>;
; (3.16)

and if m is odd, the MSE is

MSE μ̂ERSSO
Y2C

� �
D

1

m2

m2 1

2
σ2
Y½1� 1σ2

Y½m�
� �

1σ2

Y
m11

2

� 	

1
12 2δð Þ μY 1C

� �
μX 1C

12 2δð Þ μY 1C
� �

μX 1C
m2 1

2
σ2
Xð1Þ 1σ2

XðmÞ
� �

1σ2

X
m11

2

� �
2
664

3
775

1 2 mσXY 2
Xm
i51

HXYðiÞ

 !

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

;

(3.17)

where HXYðiÞ 5 μXðiÞ 2μX

� �
μY ½i� 2μY

� �
.

Proof:

1. The first part of the theorem can be proved by taking the expectation of Eq. (3.12) as

E μ̂ERSS
Y2C

� �
DE Y

ERSS
1 12 2δð ÞμY 1C

μX 1C X
ERSS

2μX

� �� 	
DμY

2. To find the MSE of the estimator μ̂ERSS
Y2C , from Eq. (3.12) we have

μ̂ERSS
Y2C2μY

� �2
5 Y

ERSS
2μY

� �2
1 μY1C
� �2 122δ

μX1C

� �2
X
ERSS

2μX

� �2

1 2 Y
ERSS

2μY

� �
μY 1C
� � 12 2δ

μX 1C

� �
X
ERSS

2μX

� �� 	

Taking the expectation of both sides yields

E μ̂ERSS
Y2C2μY

� �2
5E Y

ERSS
2μY

� �2
1 μY1C
� �2 122δ

μX1C

� �2

E X
ERSS

2μX

� �2

1 2 μY 1C
� � 12 2δ

μX 1C

� �
E Y

ERSS
2μY

� �
X
ERSS

2μX

� �h i

Hence,

MSE μ̂ERSS
Y2C

� �
DVar Y

ERSS
� �

1 μY1C
� �2 122δ

μX1C

� �2
Var X

ERSS
� �

1 2 μY 1C
� � 12 2δ

μX 1C

� �
Cov Y

ERSS
;X

ERSS
� �
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Now, if the sample size is even, the MSE of μ̂ERSS
Y is given by

MSE μ̂ERSSE
Y

� �
D 1

m

(
1
2

σ2
Y ½1� 1σ2

Y ½m�
� �

1
12 2δð Þ μY 1C

� �
μX 1C

1

2

12 2δð Þ μY 1C
� �

μX 1C σ2
Xð1Þ 1σ2

XðmÞ
� �

1 2 σXY 2
1

m

Xm
i51

HXYðiÞ

 !" #)

and if the sample size is odd, the MSE is given as

MSE μ̂ERSSO
Y

� �
D

1

m2

(
m2 1

2
σ2
Y½1� 1σ2

Y ½m�
� �

1σ2
Y m11

2½ �1
12 2δð Þ μY 1C

� �
μX 1C

12 2δð Þ μY 1C
� �

μX 1C
m2 1

2
σ2
Xð1Þ 1σ2

XðmÞ
� �

1σ2

X
m11

2

� �
2
664

3
775

1 2 mσXY 2
Xm
i51

HXYðiÞ

 !

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

)

3.3.2 THE SECOND SUGGESTED ESTIMATOR

μ̂SRS
Y2C 5 Y

SRS
1C

� �
δ
X
SRS

1C
μX 1C 1 ð12 δÞ μX 1C

X
SRS

1C

 !
; (3.18)

Using Taylor series expansion to the first order of approximation, this estimator can be

written as

μ̂SRS
Y2CDY

SRS
1 12 2δð ÞμY 1C

μX 1C X
SRS

2μX

� �
: (3.19)

Theorem 2: To the first degree of approximation of the estimator μ̂SRS
Y2C, we have

1. The estimator is approximately an unbiased estimator of the population mean.

2. MSE μ̂SRS
Y2C

� �
D σ2

Y

m
1 μY1C
� �2 122δ

μX1C

� �2 σ2
X

m
1 2ρσYσXm μY 1C

� �
12 2δ
μX 1C

� �
: (3.20)

Proof: The proof of (1) is directly and the proof of (2) can be obtained as above in Theorem 1

using

MSE μ̂SRS
Y2C

� �
DVar Y

SRS
� �

1 μY1C
� �2 122δ

μX1C

� �2
Var X

SRS
� �

1 2 μY 1C
� � 12 2δ

μX 1C

� �
Cov Y

SRS
;X

SRS
� �
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3.3.3 THE THIRD SUGGESTED ESTIMATOR

Singh and Espejo (2003) suggested a ratio-product estimator of a population mean using simple

random sampling as

μ̂SRS
Y2W 5YSRS w

X
SRS

μX

1 ð12wÞ μX

X
SRS

 !
; (3.21)

with bias given by

B μ̂SRS
Y2W

� �
5

12 f

m
μYC

2
X ρ

CY

CX

1w 12 ρ
CY

CX

� �� 	
;

and the associated MSE is

MSE μ̂SRS
Y2W

� �
5

12 f

m
μ2
Y C2

Y 1C2
X 12 2w½ � 12 2w1 2ρ

CY

CX

� 	� 
; (3.22)

where the optimal value of w, which minimizes the MSE in Eq. (3.22), is wOpt 5
11 ρCY=CX

2
.

Motivated by Singh and Espejo (2003), we propose a new ratio-cum-product type estimator of

the population mean using ERSS technique as

μ̂ERSS
Y2W 5Y

ERSS
w
X
ERSS

μX

1 ð12wÞ μX

X
ERSS

 !
; (3.23)

which can be written to the first degree of Taylor series approximation as

μ̂ERSS
Y2W 5 2μY 2 Y

ERSS
1

wμY 2 ð12wÞ
μX

X
ERSS

2μX

� �
: (3.24)

Theorem 3: To the first degree of approximation of the estimator μ̂ERSS
Y2W, we have

1. The estimator is approximately an unbiased estimator of the population mean.

2. The MSE of μ̂ERSSE
Y2W and μ̂ERSSO

Y2W , respectively, are given by

MSE μ̂ERSSE
Y2W

� �
D

1

2m
σ2
Y ½1� 1σ2

Y ½m�
� �

1
1

2m

wμY2ð12wÞ
μX

� 	2
σ2
Xð1Þ 1σ2

XðmÞ
� �

2 2
wμY 2 ð12wÞ

μX

σXY 2
1

m

Xm
i51

HXYðiÞ

 !
(3.25)

MSE μ̂ERSSO
Y2W

� �
D

1

m2

m2 1

2
σ2
Y½1� 1σ2

Y½m�
� �

1σ2
Y m11

2½ �
� 	

1
1

m2

wμY2ð12wÞ
μX

� 	2
m2 1

2
σ2
Xð1Þ 1σ2

XðmÞ
� �

1σ2
X m11

2ð Þ
� 	

2 2
wμY 2 ð12wÞ

μX

σXY 2
1

m

Xm
i51

HXYðiÞ

 !

(3.26)

Proof: The proof of (1) is directly and the proof of (2) can be obtained by using
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MSE μ̂ERSS
Y2W

� �
DVar Y

ERSS
� �

2 2
wμY 2 ð12wÞ

μX

E X
ERSS

2μX

� �
Y
ERSS

2μY

� �h i
1

wμY2ð12wÞ
μX

� 	2
Var X

ERSS
� �

DVar Y
ERSS

� �
2 2

wμY 2 ð12wÞ
μX

Cov X
ERSS

; Y
ERSS

� �
1

wμY2ð12wÞ
μX

� 	2
Var X

ERSS
� �

Hence, the results can be obtained by substituting the expressions of Var Y
ERSS

� �
and Var X

ERSS
� �

for odd and even sample sizes, respectively.

3.4 SIMULATION STUDY
The suggested ratio-cum-product estimators of the population mean are compared within them-

selves based on simulation study for sample sizes m5 3; . . .; 10 with ρ5 6 0:99; 6 0:90; 6 0:70;
6 0:50; 6 0:30; 6 0:10 and C5 ρ. The samples are generated from the bivariate normal distribu-

tion for μX 5 7, μY 5 5, and σ2
X 5σ2

Y 5 1.

The efficiency of μ̂ERSSE
Y2C with respect to μ̂SRS

Y2C is defined as

Eff μ̂ERSSE
Y2C ; μ̂SRS

Y2C
� �

5
MSE μ̂SRS

Y2C
� �

MSE μ̂ERSSE
Y2C

� �

D
2 μX 1C
� �

σ2
Y 1 2ρmσYσX

� �
1 12 2δð Þ μY 1C

� �
σ2
X


 �

σ2
Y½1� 1σ2

Y½m�
� �

μX1C
� �2

12 2δð Þ μY 1C
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μX 1C σ2
Xð1Þ 1σ2

XðmÞ
� �

1 4 σXY 2
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m

Xm
i51

HXYðiÞ

 !
2
66664

3
77775

(3.27)

And the efficiency of μ̂ERSSO
Y2C with respect to μ̂SRS

Y2C is defined as

Eff μ̂ERSSO
Y2C ; μ̂SRS

Y2C
� �

5
MSE μ̂SRS

Y2C
� �

MSE μ̂ERSSO
Y2C

� �

D
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12 2δð Þ μY 1C
� �σ2
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X 1 2ρσYσXm
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2
σ2
Y½1� 1σ2
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1σ2

Y
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� �

1σ2
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i51

HXYðiÞ
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8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

(3.28)
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The efficiency of μ̂ERSSE
Y2W and μ̂ERSSO

Y2W with respect to μ̂SRS
Y2W is defined as

Eff μ̂ERSSE
Y2W ; μ̂SRS

Y2W

� �
5

MSE μ̂SRS
Y2W

� �
MSE μ̂ERSSE

Y2W

� �
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2 12 fð Þμ2

Y C2
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X 12 2w½ � 12 2w1 2ρ
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24m
wμY 2 ð12wÞ

μX

σXY 2
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Xm
i51

HXYðiÞ

 !
(3.29)

Eff μ̂ERSSO
Y2W ; μ̂SRS

Y2W

� �
5

MSE μ̂SRS
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1σ2

X
m11

2

� �
2
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7752 2m2 wμY 2 ð12wÞ

μX
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m

Xm
i51

HXYðiÞ

 !

(3.30)

The results of the simulation are presented in Tables 3.1�3.4 for all cases considered in

this study.

Remarks:

1. μ̂ERSSE
Y2C is more efficient than μ̂SRS

Y2C if Eff μ̂ERSSE
Y2C ; μ̂SRS

Y2C
� �

. 1.

2. μ̂ERSSO
Y2C is more efficient than μ̂SRS

Y2C if Eff μ̂ERSSO
Y2C ; μ̂SRS

Y2C
� �

. 1.

3. μ̂ERSSE
Y2W is more efficient than μ̂SRS

Y2W if Eff μ̂ERSSE
Y2W ; μ̂SRS

Y2W

� �
. 1.

4. μ̂ERSSO
Y2W is more efficient than μ̂SRS

Y2W if Eff μ̂ERSSO
Y2W ; μ̂SRS

Y2W

� �
. 1.

We observe from Tables 3.1�3.4 that:

• The ratio-cum-product estimator μ̂ERSS
Y2C performs better than μ̂SRS

Y2C for all values of the

correlation coefficient and sample sizes. The same thing can be concluded for μ̂ERSS
Y2W as

compared to μ̂SRS
Y2W .

• Without loss of generality, the efficiency of μ̂ERSS
Y2W with respect to μ̂SRS

Y2W increases in the sample

size for fixed value of the correlation coefficient, especially for ρ52 0:99; 2 0:90; 2 0:70.
• The efficiency of the suggested estimators μ̂ERSS

Y2W is increasing as the sample size increasing for

most cases in Tables 3.3 and 3.4.

• The bias values of all suggested estimators approaches zero for all cases considered in this

study.

333.4 SIMULATION STUDY



Table 3.1 The Efficiency of μ̂ERSS
Y2C With Respect to μ̂SRS

Y2C for m5 3; . . .; 10 With ρ5 0:99; 0:90; 0.70, 0.50, 0.30, 0.10 for

μX 5 7 and μY 5 5

m

μ̂SRS
Y2C μ̂ERSS

Y2C B μ̂SRS
Y2C

� �
B μ̂ERSS

Y2C

� �
V μ̂SRS

Y2C

� �
V μ̂ERSS

Y2C

� �
Eff

ρ5 0:99

3 5.860076 5.665692 2.860076 2.665692 6.327324 3.216656 1.405402

4 5.711220 5.639494 2.711220 2.639494 4.497059 2.288005 1.280157

5 5.716215 5.586388 2.716215 2.586388 3.754843 1.522393 1.355692

6 5.670257 5.575278 2.670257 2.575278 3.029844 1.282059 1.283796

7 5.640729 5.557779 2.640729 2.557779 2.651196 0.948352 1.284899

8 5.642768 5.542131 2.642768 2.542131 2.299761 0.851347 1.269383

9 5.620538 5.537345 2.620538 2.537345 2.022440 0.695794 1.246112

10 5.607014 5.530943 2.607014 2.530943 1.765726 0.621081 1.218521

ρ5 0:90

3 5.831177 5.647893 2.831177 2.647893 5.580202 3.002137 1.357747

4 5.689738 5.625215 2.689738 2.625215 4.088180 2.148276 1.252526

5 5.696826 5.582238 2.696826 2.582238 3.307520 1.461004 1.301568

6 5.654074 5.567641 2.654074 2.567641 2.673719 1.234905 1.241469

7 5.627512 5.552080 2.627512 2.552080 2.338993 0.928616 1.242025

8 5.630264 5.536653 2.630264 2.536653 2.030088 0.831683 1.231491

9 5.609221 5.534355 2.609221 2.534355 1.786739 0.695267 1.207433

10 5.597238 5.530898 2.597238 2.530898 1.559441 0.616440 1.182743

ρ5 0:70

3 5.778805 5.634193 2.778805 2.634193 5.803809 3.194170 1.334785

4 5.663591 5.600695 2.663591 2.600695 2.945515 1.893382 1.159782

5 5.664042 5.566405 2.664042 2.566405 2.468752 1.370683 1.202178

6 5.626662 5.558594 2.626662 2.558594 2.006020 1.147417 1.157471

7 5.605011 5.546434 2.605011 2.546434 1.751260 0.895291 1.156882

8 5.609087 5.532567 2.609087 2.532567 1.523950 0.798513 1.155132

9 5.589609 5.526360 2.589609 2.526360 1.343871 0.692496 1.137803

10 5.580454 5.527079 2.580454 2.527079 1.171936 0.611124 1.119108

ρ5 0:50



3 5.782869 5.610228 2.782869 2.610228 5.291162 2.380849 1.417808

4 5.652202 5.585049 2.652202 2.585049 2.248846 1.716541 1.105251

5 5.645564 5.551397 2.645564 2.551397 1.856226 1.278483 1.137020

6 5.610764 5.546816 2.610764 2.546816 1.516704 1.076820 1.101770

7 5.592014 5.541929 2.592014 2.541929 1.315125 0.888374 1.093048

8 5.596935 5.529544 2.596935 2.529544 1.149641 0.778516 1.099846

9 5.577442 5.521496 2.577442 2.521496 1.015393 0.692639 1.086237

10 5.570446 5.528277 2.570446 2.528277 0.884619 0.602522 1.071069

ρ5 0:30

3 5.767762 5.614585 2.767762 2.614585 12.51099 2.211185 2.229574

4 5.658593 5.581372 2.658593 2.581372 1.959375 1.592738 1.093417

5 5.641453 5.552919 2.641453 2.552919 1.486897 1.228390 1.092746

6 5.606446 5.542686 2.606446 2.542686 1.215599 1.046016 1.066286

7 5.588538 5.535083 2.588538 2.535083 1.035881 0.864945 1.061005

8 5.593790 5.528652 2.59379 2.528652 0.911906 0.766370 1.066924

9 5.572733 5.521059 2.572733 2.521059 0.804242 0.689594 1.053633

10 5.567226 5.524619 2.567226 2.524619 0.700309 0.595986 1.046096

ρ5 0:10

3 5.756092 5.622937 2.756092 2.622937 50.55562 2.188349 6.412739

4 5.640029 5.597807 2.640029 2.597807 45.76353 1.550466 6.354121

5 5.651727 5.563243 2.651727 2.563243 1.380651 1.218637 1.080045

6 5.613796 5.545454 2.613796 2.545454 1.115020 1.019538 1.059752

7 5.594591 5.538331 2.594591 2.538331 0.919467 0.868542 1.046460

8 5.599655 5.526860 2.599655 2.526860 0.816460 0.760321 1.060085

9 5.575500 5.521781 2.575500 2.521781 0.713775 0.690839 1.042092

10 5.570813 5.526857 2.570813 2.526857 0.622306 0.601462 1.035056



Table 3.2 The Efficiency of μ̂ERSS
Y2C With Respect to μ̂SRS

Y2C for m5 3;:::;10 With ρ5 2 0:99, 2 0.90, 2 0.70, 2 0.50, 2 0.30,

2 0.10 for μX 5 7 and μY 5 5

m

μ̂SRS
Y2C μ̂ERSS

Y2C B μ̂SRS
Y2C

� �
B μ̂ERSS

Y2C

� �
V μ̂SRS

Y2C

� �
V μ̂ERSS

Y2C

� �
Eff

ρ5 2 0:99

3 4.261237 4.072545 2 0.73876 2 0.92745 1.362038 0.682503 1.236689

4 4.225636 4.055253 2 0.77436 2 0.94475 0.971821 0.473467 1.150400

5 4.197943 4.045286 2 0.80206 2 0.95471 0.784817 0.317509 1.162022

6 4.183963 4.033338 2 0.81604 2 0.96666 0.651751 0.257177 1.105786

7 4.178395 4.027180 2 0.82161 2 0.97282 0.538343 0.198738 1.059611

8 4.184747 4.024501 2 0.81525 2 0.97550 0.487940 0.174904 1.023146

9 4.167585 4.024336 2 0.83242 2 0.97566 0.422390 0.143096 1.018530

10 4.168594 4.022187 2 0.83141 2 0.97781 0.381368 0.109491 1.006580

ρ5 2 0:90

3 4.289380 4.153400 2 0.71062 2 0.8466 1.184162 0.624515 1.259382

4 4.258207 4.138356 2 0.74179 2 0.86164 0.847502 0.436898 1.185216

5 4.233749 4.129966 2 0.76625 2 0.87003 0.684779 0.298240 1.205383

6 4.221397 4.119352 2 0.77860 2 0.88065 0.569186 0.241805 1.155367

7 4.216908 4.114773 2 0.78309 2 0.88523 0.470516 0.190382 1.112669

8 4.223308 4.112375 2 0.77669 2 0.88762 0.426407 0.166779 1.078563

9 4.207604 4.111922 2 0.79240 2 0.88808 0.369550 0.138518 1.075757

10 4.208877 4.110709 2 0.79112 2 0.88929 0.333386 0.124888 1.047542

ρ5 2 0:70

3 4.374327 4.336182 2 0.62567 2 0.66382 0.850403 0.519920 1.292842

4 4.351122 4.326305 2 0.64888 2 0.67370 0.611744 0.365798 1.260014

5 4.333398 4.323276 2 0.66660 2 0.67672 0.495386 0.260410 1.308170

6 4.324262 4.313616 2 0.67574 2 0.68638 0.412845 0.212798 1.271297

7 4.321563 4.309888 2 0.67844 2 0.69011 0.341618 0.172636 1.235793

8 4.328062 4.309165 2 0.67194 2 0.69084 0.309609 0.152062 1.209426

9 4.315297 4.308127 2 0.68470 2 0.69187 0.269069 0.129935 1.212388

10 4.316936 4.306374 2 0.68306 2 0.69363 0.242211 0.116650 1.185725

ρ5 2 0:50



3 4.493676 4.523603 2 0.50632 2 0.47640 0.598763 0.432934 1.295868

4 4.476022 4.518050 2 0.52398 2 0.48195 0.432340 0.314507 1.292820

5 4.464449 4.516154 2 0.53555 2 0.48385 0.351204 0.232666 1.366873

6 4.457812 4.509214 2 0.54219 2 0.49079 0.293720 0.191054 1.360624

7 4.456252 4.506790 2 0.54375 2 0.49321 0.243155 0.159306 1.338469

8 4.462810 4.507031 2 0.53719 2 0.49297 0.220437 0.140613 1.326819

9 4.452543 4.504319 2 0.54746 2 0.49568 0.192246 0.120476 1.343499

10 4.454318 4.505250 2 0.54568 2 0.49475 0.172407 0.107230 1.335700

ρ5 2 0:30

3 4.651730 4.714919 2 0.34827 2 0.28508 0.428698 0.374810 1.205903

4 4.637355 4.715161 2 0.36265 2 0.28484 0.310153 0.275254 1.239283

5 4.631381 4.711000 2 0.36862 2 0.28900 0.253184 0.212427 1.314638

6 4.626527 4.704871 2 0.37347 2 0.29513 0.212421 0.177098 1.331965

7 4.625525 4.705667 2 0.37448 2 0.29433 0.176219 0.147987 1.348789

8 4.632111 4.704215 2 0.36789 2 0.29579 0.159592 0.131665 1.345792

9 4.623905 4.702919 2 0.37610 2 0.29708 0.139843 0.115616 1.379731

10 4.625616 4.703871 2 0.37438 2 0.29613 0.124576 0.102139 1.394601

ρ5 2 0:10

3 4.852841 4.909030 2 0.14716 2 0.09097 0.342708 0.340355 1.045129

4 4.839578 4.912014 2 0.16042 2 0.08799 0.247764 0.254762 1.041892

5 4.838692 4.905691 2 0.16131 2 0.09431 0.203779 0.197508 1.113353

6 4.834924 4.902314 2 0.16508 2 0.09769 0.170774 0.167812 1.116546

7 4.833942 4.902154 2 0.16606 2 0.09785 0.142890 0.142678 1.119622

8 4.840546 4.899476 2 0.15945 2 0.10052 0.128645 0.126918 1.124417

9 4.833970 4.900888 2 0.16603 2 0.09911 0.113358 0.113174 1.145752

10 4.835435 4.902309 2 0.16457 2 0.09769 0.099980 0.099909 1.160885



Table 3.3 The Efficiency of μ̂ERSS
Y2W With Respect to μ̂SRS

Y2W for m5 3; . . .; 10 with ρ5 0:99; 0:90; 0.70, 0.50, 0.30, 0.10 for

μX 5 7 and μY 5 5

m

μ̂SRS
Y2W μ̂ERSS

Y2W B μ̂SRS
Y2W

� �
B μ̂ERSS

Y2W

� �
V μ̂SRS

Y2W

� �
V μ̂ERSS

Y2W

� �
Eff

ρ5 0:99

3 5.064542 5.023006 0.064542 0.023006 1.344709 0.696868 1.934156

4 5.024869 5.026544 0.024869 0.026544 0.966415 0.424715 2.273129

5 5.039456 5.010530 0.039456 0.010530 0.808842 0.285859 2.833861

6 5.028388 5.012584 0.028388 0.012584 0.673635 0.207290 3.251126

7 5.029887 5.006276 0.029887 0.006276 0.558039 0.154454 3.617835

8 5.018673 5.004735 0.018673 0.004735 0.492149 0.125657 3.918674

9 5.026638 5.005307 0.026638 0.005307 0.432769 0.101960 4.250274

10 5.017080 5.002376 0.017080 0.002376 0.399693 0.084087 4.756497

ρ5 0:90

3 5.053566 5.019704 0.053566 1.97E-02 1.168882 0.632648 1.851001

4 5.018317 5.022626 0.018317 2.26E-02 0.840046 0.394705 2.126379

5 5.033236 5.009191 0.033236 9.19E-03 0.702113 0.271617 2.588195

6 5.025186 5.011302 0.025186 1.13E-02 0.566357 0.203106 2.789844

7 5.017951 5.007660 0.017951 7.66E-03 0.499444 0.155984 3.202763

8 5.024302 5.000972 0.024302 9.72E-04 0.432548 0.124620 3.475639

9 5.019415 5.000088 0.019415 8.84E-05 0.381656 0.103259 3.699745

10 5.017534 4.998483 0.017534 -1.52E-03 0.333697 0.085883 3.888983

ρ5 0:70

3 5.036578 5.013590 0.036578 0.013590 0.841263 0.514557 1.636941

4 5.009103 5.018824 0.009103 0.018824 0.604553 0.338193 1.785971

5 5.022311 5.005556 0.022311 0.005556 0.505071 0.245996 2.054932

6 5.016380 5.008073 0.016380 0.008073 0.408398 0.191313 2.135388

7 5.011105 5.006781 0.011105 0.006781 0.359281 0.150788 2.382789

8 5.017498 4.997649 0.017498 -0.00235 0.311767 0.125316 2.490188

9 5.013195 4.998965 0.013195 -0.00104 0.275313 0.106153 2.595157

10 5.012198 4.998532 0.012198 -0.00147 0.240381 0.090830 2.648076

ρ5 0:50



3 5.025174 5.008099 0.025174 0.008099 0.59504 0.426069 1.397855

4 5.003785 5.016725 0.003785 0.016725 0.427618 0.294637 1.450009

5 5.014516 5.000456 0.014516 0.000456 0.357031 0.221846 1.610311

6 5.010058 5.010139 0.010058 0.010139 0.290181 0.180357 1.608568

7 5.006417 5.002605 0.006417 0.002605 0.253893 0.147404 1.722631

8 5.012899 4.997767 0.012899 -0.00223 0.221233 0.125188 1.768472

9 5.008673 5.000406 0.008673 0.000406 0.195614 0.109881 1.780909

10 5.008476 4.999094 0.008476 -0.00091 0.170487 0.096080 1.775154

ρ5 0:30

3 5.019325 5.006501 0.019325 6.50E-03 0.430747 0.367577 1.172737

4 5.002324 5.011326 0.002324 1.13E-02 0.309795 0.266298 1.162802

5 5.009886 5.003053 0.009886 3.05E-03 0.258169 0.207576 1.244145

6 5.006273 5.006430 0.006273 6.43E-03 0.211744 0.171513 1.234496

7 5.003906 5.001069 0.003906 1.07E-03 0.183291 0.142399 1.287257

8 5.010480 5.001502 0.010480 1.50E-03 0.160988 0.125434 1.284301

9 5.005880 4.997816 0.005880 -2.18E-03 0.142509 0.109651 1.299913

10 5.006371 5.000023 0.006371 2.25E-05 0.124112 0.098722 1.257592

ρ5 0:10

3 5.019020 5.004568 0.019020 4.57E-03 0.349116 0.335439 1.041787

4 5.004694 5.010469 0.004694 1.05E-02 0.251658 0.249393 1.008725

5 5.008439 5.005679 0.008439 5.68E-03 0.208690 0.202758 1.029443

6 5.005055 5.003029 0.005055 3.03E-03 0.173256 0.169076 1.024818

7 5.003578 5.003690 0.003578 3.69E-03 0.147485 0.142915 1.031969

8 5.010230 4.998800 0.010230 -1.20E-03 0.131139 0.124894 1.050833

9 5.004832 4.999874 0.004832 -1.26E-04 0.116018 0.110586 1.049330

10 5.005885 4.999915 0.005885 -8.46E-05 0.101383 0.098591 1.028668



Table 3.4 The Efficiency of μ̂ERSS
Y2W With Respect to μ̂SRS

Y2W for m5 3; . . .; 10 With ρ52 0:99, �0.90, �0.70, �0.50, �0.30,

�0.10 for μX 5 7 and μY 5 5

m

μ̂SRS
Y2W μ̂ERSS

Y2W B μ̂SRS
Y2W

� �
B μ̂ERSS

Y2W

� �
V μ̂SRS

Y2W

� �
V μ̂ERSS

Y2W

� �
Eff

ρ52 0:99

3 5.114716 5.054574 0.114716 0.054574 1.407696 0.720631 1.963567

4 5.083137 5.037643 0.083137 0.037643 1.011697 0.431141 2.354849

5 5.056966 5.026043 0.056966 0.026043 0.819953 0.294125 2.792366

6 5.044314 5.014090 0.044314 0.014090 0.681727 0.208720 3.272524

7 5.040036 5.011940 0.040036 0.011940 0.564998 0.159215 3.555529

8 5.047179 5.009249 0.047179 0.009249 0.511658 0.125837 4.080950

9 5.030384 5.008221 0.030384 0.008221 0.443865 0.102986 4.316081

10 5.031947 5.007732 0.031947 0.007732 0.400697 0.083324 4.817687

ρ52 0:90

3 5.100567 5.047233 0.100567 0.047233 1.220611 0.652837 1.878773

4 5.072716 5.033009 0.072716 0.033009 0.878882 0.398956 2.210169

5 5.049334 5.022204 0.049334 0.022204 0.712290 0.278430 2.562442

6 5.038059 5.012769 0.038059 0.012769 0.592516 0.201121 2.950877

7 5.034629 5.009781 0.034629 0.009781 0.491289 0.156718 3.140585

8 5.041612 5.008053 0.041612 0.008053 0.444823 0.125824 3.547221

9 5.026208 5.006442 0.026208 0.006442 0.386184 0.104558 3.698582

10 5.027924 5.005783 0.027924 0.005783 0.348400 0.086260 4.046441

ρ52 0:70

3 5.060366 5.032169 0.060366 0.032169 0.865062 0.523030 1.657630

4 5.052285 5.025263 0.052285 0.025263 0.640934 0.347427 1.849272

5 5.043939 5.008513 0.043939 0.008513 0.504409 0.248009 2.041026

6 5.036839 5.009845 0.036839 0.009845 0.417407 0.189365 2.210276

7 5.024193 5.010397 0.024193 0.010397 0.361208 0.153748 2.351504

8 5.023876 5.005146 0.023876 0.005146 0.312096 0.124601 2.508801

9 5.020344 5.006023 0.020344 0.006023 0.276069 0.107627 2.568041

10 5.024908 5.003080 0.024908 0.003080 0.251790 0.093096 2.711020

ρ52 0:50



3 5.048287 5.028532 0.048287 0.028532 0.608419 0.437421 1.393659

4 5.035241 5.018845 0.035241 0.018845 0.445889 0.299598 1.490667

5 5.033372 5.008671 0.033372 0.008671 0.364473 0.222659 1.641360

6 5.014972 5.009753 0.014972 0.009753 0.294769 0.183795 1.604181

7 5.024169 5.005677 0.024169 0.005677 0.251048 0.144800 1.737406

8 5.017391 5.002627 0.017391 0.002627 0.218011 0.125026 1.746050

9 5.016349 4.998879 0.016349 -0.00112 0.198993 0.108786 1.831652

10 5.015232 5.000920 0.015232 0.000920 0.177622 0.096384 1.845238

ρ52 0:30

3 5.023274 5.020530 0.023274 0.020530 0.429828 0.372432 1.154261

4 5.021981 5.007382 0.021981 0.007382 0.324528 0.266393 1.219792

5 5.018594 5.008728 0.018594 0.008728 0.263492 0.211454 1.247282

6 5.012574 5.002197 0.012574 0.002197 0.214442 0.172163 1.246457

7 5.006930 5.004702 0.006930 0.004702 0.181800 0.145061 1.253402

8 5.015895 5.000963 0.015895 0.000963 0.160197 0.124147 1.292412

9 5.011022 5.003629 0.011022 0.003629 0.142788 0.112370 1.271623

10 5.010192 4.999806 0.010192 -0.00019 0.127686 0.097507 1.310574

ρ52 0:10

3 5.021547 5.010563 0.021547 0.010563 0.346315 0.340744 1.017378

4 5.020529 5.005282 0.020529 0.005282 0.262093 0.248310 1.057084

5 5.012725 4.999262 0.012725 -0.00074 0.209457 0.202046 1.037478

6 5.009023 5.002840 0.009023 0.002840 0.178853 0.166397 1.075290

7 5.007271 5.001898 0.007271 0.001898 0.150249 0.143952 1.044080

8 5.008075 5.002471 0.008075 0.002471 0.129278 0.126399 1.023243

9 5.008477 4.999239 0.008477 -0.00076 0.114987 0.110568 1.040613

10 5.004838 5.002679 0.004838 0.002679 0.104981 0.099579 1.054405



3.5 CONCLUSION
In this chapter, various ratio-cum-product estimators of the population mean of the study variable

are suggested using SRS and ERSS methods based on information on a single concomitant variable.

Expressions of the mean squared errors of the proposed estimators are derived. Based on theoretical

and simulation comparisons, it is noted that the suggested estimators using ERSS are always better

than their competitors using SRS for all cases considered in this study.
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CHAPTER

4ESTIMATION OF THE
DISTRIBUTION FUNCTION USING
MOVING EXTREME RANKED SET
SAMPLING (MERSS)

Mohammad Fraiwan Al-Saleh, and Dana Majed Rizi Ahmad
Department of Statistics, Yarmouk University, Irbid, Jordan

4.1 INTRODUCTION
Statistics is the science of collecting, organizing, analyzing, and making inference about a popula-

tion using information in a sample taken from it. There are several sampling techniques that can be

used to choose a suitable sample. Simple random sampling (SRS) is the basic sampling technique.

Using this method, a sample of size n is selected from a population of size N, such that all groups

of n elements in the population are equally likely to be selected. SRS is used when each subgroup

within the population needs to be represented in the chosen sample, the population is divided into

nonoverlapping groups; each group is called a stratum, a random sample is taken from each stra-

tum. The ideal situation occurs when strata are very similar within and very different among. In

cluster random sampling, the population consists of groups of elements called clusters; a cluster is

preferred to be as heterogeneous as possible. We choose a random sample of clusters. The ideal sit-

uation occurs when clusters are very similar among and very different within. Systematic random

sampling: In this method, a starting point is chosen from the first k elements in the frame, and then

every kth element thereafter is included in the sample; usually, k5 N=n
� �

. (For more information

about these techniques see “Elementary Survey Sampling” by Scheaffer et al., 1986.)

McIntyre (1952) suggested a new sampling technique, which was called ranked set sampling

(RSS), to estimate more effectively yields of pastures. The technique can be executed as follows:

1. Draw randomly m sets of size m each from the population of interest;

2. Rank the units within each set by judgment, with respect to the variable of interest from

smallest to largest. It is assumed here that each element can be ranked by eyes or by a

relatively cheap method;

3. From the ith set, take for actual quantification the element ranked by judgment as the ith order

statistic, i5 1; 2; . . .;m.
Steps 1�3 give an RSS of size m.

4. The above procedure can be repeated, if necessary, r times to get an RSS of size n5mr.

43
Ranked Set Sampling. DOI: https://doi.org/10.1016/B978-0-12-815044-3.00004-6

Copyright © 2019 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/B978-0-12-815044-3.00004-6


Let fYj
ði:mÞ; i5 1; . . .; m; j5 1; . . .; rg be the set of RSS elements, where under perfect judgment

ranking, Y
j
ði:mÞ is the ith order statistic for a random sample of size m at the jth cycle. Note that for

each i, Y1
ði:mÞ; Y

2
ði:mÞ; . . .; Y

r
ði:mÞ are independent and identically distributed, fði:mÞ, while for each j,

Y
j
ð1:mÞ; Y

j
ð2:mÞ; . . .; Y

j
ðm:mÞ, are only independent. fði:mÞ is the pdf of the ith order statistic of a random

sample of size m.

RSS is applicable whenever a ranking mechanism can be found such that the ranking of sam-

pling units is carried out easily and sampling is much cheaper than the measurement of the variable

of interest. McIntyre (1952) mentioned, without mathematical proof, that the mean of quantified

elements is an unbiased estimator of the population mean regardless of any error in judgment rank-

ing. With perfect ranking for typical unimodal distributions, the mean of such a sample is nearly

ðm1 1Þ=2 times as efficient as the mean of an SRS of the same size; this upper bound is achieved

when the underlying distribution is the uniform.

Takahasi and Wakimoto (1968) established the theory of RSS. Let the population density func-

tion be f ðxÞ with mean μ and variance σ2. Let the ði:mÞth order statistic from the population have

the density function fði:mÞðxÞ with mean μði:mÞ, and variance σ2
ði:mÞ, then from Takahasi and

Wakimoto (1968) the basic identity is:

f ðxÞ5 1

m

Xm
i51

fði:mÞðxÞ:

Based on this identity, they showed that

μ5
1

m

Xm
i51

μði:mÞ & σ2 5
1

m

Xm
i51

σ2
ði:mÞ 1

1

m

Xm
i51

ðμði:mÞ2μÞ2:

Let μ̂RSS be the RSS mean and μ̂SRS be the mean of an SRS of the same size. Takahasi and

Wakimoto (1968) compared the performance of the estimators using the efficiency of μ̂RSS with

respect to μ̂SRS:

Effðμ̂RSS; μ̂SRSÞ5
Varðμ̂SRSÞ
Varðμ̂RSSÞ

:

They showed that

1#Effðμ̂RSS; μ̂SRSÞ#
m1 1

2
:

The lower bound is attained if and only if the underlying distribution is degenerate, while the

upper bound is attained if and only if the underlying distribution is rectangular (uniform).

Stokes and Sager (1988) used RSS to estimate the distribution function F(t). They showed that

the empirical distribution function-based RSS, F̂RSSðtÞ, is unbiased for F(t) and more efficient than

the empirical distribution function based on an SRS of size n. The empirical distribution function

using RSS is given by:

F̂RSSðtÞ5
1

rm

Xr
j51

Xm
i51

IðXðjÞ
ði:mÞ # tÞ;

where, X
ðjÞ
ði:mÞ is the ith order statistics for a random sample of size m at the jth cycle.
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For more work on the RSS technique see Kaur et al. (1995) “Ranked Set Sampling: An

Annotated Bibliography,” Al-Saleh and Al-Kadiri (2000), Al-Saleh & Al-Omari (2002), Abu-

Dayyeh et al. (2002), Al-Saleh and Zheng (2002), Al-Saleh and Samawi (2000), Ozturk and Wolfe

(2000), Ozturk and Wolfe (2000), (2001), Ozturk (2002), Al-Saleh and Ababneh (2015), Zheng and

Al-Saleh (2002), Al-Saleh and Darabseh (2017).

Moving extreme ranked set sampling (MERSS) is a variation of RSS introduced by Al-Odat

and Al-Saleh (2001). The MERSS technique can be described as follows:

1. Select m SRSs of size 1; 2; . . .;m, respectively;
2. Order the elements by tudgment, without actual measurement of the characteristic of interest;

3. Measure accurately the maximum ordered observation from the first set, and the maximum

ordered observation from the second set. The process continues in this way until the maximum

ordered observation from the last mth sample is measured;

4. Steps 1�3 may be repeated if necessary on m samples of size 1; 2; . . .;m, respectively, but here
the minimum ordered observation is measured instead of the maximum ordered observations.

5. The entire cycle can be repeated, if necessary, many times to obtain a sample of larger size.

Al-Odat and Al-Saleh (2001) investigated this method nonparametrically and concluded that

the estimator of the population mean is more efficient than that of SRS in the case of symmetric

populations. Al-Saleh and Al-Hadhrami (2003a,b) studied the method in more detail. They insisted

that MERSS allows for an increase in set size without introducing too much ranking error. They

concluded that the MLE of the mean of the exponential distribution based on MERSS is more effi-

cient than the MLE based on SRS. Also, the information contained in MERSS, measured by Fisher

information number, is always greater than that of the SRS with the same size.

Al-Saleh and Al-Ananbeh (2005) considered the estimation of correlation coefficient in the

bivariate normal distribution based on a modification of the MERSS using a concomitant random

variable. Al-Saleh and Samawi (2010) considered the estimation of the odds using MERSS.

Samawi and Al-Saleh (2013) considered the estimation of odds ratio using MERSS.

Al-Saleh and Ababneh (2015) considered testing for perfect ranking in MERSS. Hanandeh

(2011) considered the estimation of the parameters of Downton’s bivariate exponential distribution

using MERSS. Al-Saleh and Naamneh (2016) studied the performance of “The Five-Number

Summary” obtained using different sampling techniques.

There are other techniques for utilizing some available variables that are easy to measure and

that have a strong relation with the main variable. One popular technique is the ratio estimation

technique. In this method, it is assumed that the obtained sample is X1;Y1ð Þ; X2; Y2ð Þ; . . .; Xn; Ynð Þ; X
is the variable of interest and Y is the auxiliary variable. It is assumed that EðYÞ5μy is known, and

EðXÞ5μx is estimated from μ̂x 5XYμx. This ratio estimator can be compared to other estimators

of μx. For recent work on ratio estimation, see Subzar et al. (2016, 2017a, 2017b, 2017c) and

Sharma et al. (2016).

In this chapter, the use of the MERSS technique to estimate the cumulative distribution function

F(x) is investigated. The suggested estimators are compared with the corresponding estimators

based on RSS and SRS.
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4.1.1 ESTIMATION OF DISTRIBUTION FUNCTION USING METHOD OF MOMENTS

Let X1;X2; . . .;Xn; n5mr be a simple random sample (SRS) of size n, with common absolutely

continuous unknown cdf F(t). For a given t, the well-known SRS estimator of F(t) is the empirical

distribution function given by:

F̂SRSðtÞ5
1

n

Xn
i51

IðXi # tÞ;

where, Yi 5 IðXi # tÞ5 1 if Xi # t

0 if Xi . t:

�
.

Clearly, F̂SRSðtÞ is the method of moments estimator (MME) and the maximum likelihood

estimator (MLE) of F(t). It a suitable estimator when there is no available information about

F. Now,

EðIðXi # tÞÞ5 pðXi # tÞ5FðtÞ; VarðIðXi # tÞÞ5FðtÞð12FðtÞÞ:
ThusEðF̂SRSðtÞÞ5FðtÞ; i.e., F̂SRSðtÞ is an unbiased estimator of F(t) Also,

VarðF̂SRSðtÞÞ5
FðtÞð12FðtÞÞ

n
:

Let X
j
ð1:mÞ;X

j
ð2:mÞ; . . .;X

j
ðm:mÞ, for j5 1,. . .,r, be an RSS of size n5 rm (set size m and r cycles)

from F(t). Stokes and Sager (1988) suggested the following estimator for F(t):

F̂RSSðtÞ5
1

rm

Xr
j51

Xm
i51

IðXðjÞ
ði:mÞ # tÞ:

They showed that F̂RSSðtÞ is an unbiased estimator for F(t) and is more efficient than F̂SRSðtÞ.
The variance of F̂RSSðtÞ is given by

VarðF̂RSSðtÞÞ5
1

r2m2

Xr
j51

Xm
i51

Fði:mÞðtÞð12Fði:mÞðtÞÞ5

Pm
i51

Fði:mÞðtÞð12Fði:mÞðtÞÞ
rm2

The efficiency, for m5 2; 3; 4; 5, of F̂RSSðtÞ relative to F̂SRSðtÞ is given in Table 4.1.

Based on Table 4.1, it can be seen that F̂RSSðtÞ is more efficient than F̂SRSðtÞ. The effi-

ciency is increasing in m for fixed F(t). For very large or very small F(t) (with small m),

Table 4.1 Eff ðF̂RSSðtÞ; F̂SRSðtÞÞ for Some Values of m and F(t)

F(t)

0.05 0.2 0.4 0.5 0.7 0.9 0.95m

2 1.05 1.19 1.31 1.33 1.26 1.10 1.05

3 1.10 1.37 1.56 1.60 1.50 1.20 1.10

4 1.15 1.41 1.79 1.83 1.71 1.29 1.15

5 1.20 1.68 2.00 2.03 1.73 1.41 1.20
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though the efficiency .1, the improvement is not very significant. For fixed m, the effi-

ciency is increasing in F(t) for FðtÞ# 0:5 and decreasing for FðtÞ. 0:5. The best values are

for FðtÞ5 0:5:
Let fXðjÞ

ði:iÞ:i5 1; . . .;m; j5 1; . . .; rg be an MERSS based on a distribution function, F(t). Note

that: For fixed i, X
ð1Þ
ði:iÞ; . . .;X

ðrÞ
ði:iÞ are iid with common distribution FiðtÞ; while for fixed j,

X
ðjÞ
ð1:1Þ; . . .;X

ðjÞ
ðm:mÞ are only independent.

Let IðXðjÞ
ði:iÞ # tÞ5 Y

ðjÞ
i ; i5 1; 2; . . .; m; j5 1; 2; . . .; r; then Y

ðjÞ
i is Berð1;FiðtÞÞ.

A modified MME (MMME) can be obtained using binomial theorem:

Xm
k50

m

k

� �
Fm2kðtÞ5 ð11FðtÞÞm: ðBinomial TheoremÞ

Thus

FðtÞ5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
k50

m

k

� �
Fm2kðtÞ2 1:

m

s

Therefore the MMME is

F̂MMMEðtÞ5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
k50

m

k

� �
Ym2k

m

s
2 1: (4.1)

Now,

EðF̂MMMEðtÞÞ5
Xr
ym50

Xr
ym2150

:::
Xr
y250

Xr
y150

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
k50

m

k

� �
Ym2k

m

s
2 1

 !
L
m

i51

r

yi

� �
ðFiðtÞÞyi ð12FiðtÞÞr2yi

� �

The efficiency of F̂MMMEðtÞ w.r.t. F̂RSSðtÞ is

EffðF̂MMMEðtÞ; F̂SRSðtÞÞ5
MSEðF̂SRSðtÞÞ

MSEðF̂MMMEðtÞÞ
;

where

MSEðF̂MMMEðtÞÞ5E ðFðtÞ2F̂MMMEðtÞÞ2

F̂MMMEðtÞ and F̂SRSðtÞ are compared, for m 5 3, 4, 5. The numerical results, obtained using a

scientific workplace package, are given in Tables 4.2�4.4.

Table 4.2 Eff ðF̂MMMEðtÞ; F̂SRSðtÞÞ, r 5 3

F(t)

0.20 0.40 0.50 0.70 0.75 0.90 0.99m

3 0.58 0.71 0.82 1.07 1.13 1.31 1.46

4 0.48 0.62 0.71 1.06 1.17 1.49 1.67

5 0.41 0.52 0.65 1.03 1.17 1.59 1.92
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Based on these tables we conclude that:

• For fixed F(t) and m, the efficiency is increasing in r for large and moderate values of F(t) and

is decreasing for small values of F(t).

• For fixed values of r and m, the efficiency is increasing in F(t).

• For fixed values of F(t) and r, the efficiency is increasing in m for large values of F(t) and

decreasing for small and moderate values of F(t).

In general, it can be seen that for large values of F(t) the efficiency tends to be larger than 1

and is increasing in m. But for small to moderate values of F(t), the efficiency is less than 1.

4.1.2 ESTIMATION OF DISTRIBUTION FUNCTION USING
MAXIMUM LIKELIHOOD ESTIMATOR

In this subsection, we consider the estimation of F(t) using the maximum likelihood estimator

(MLE) based on all elements of MERSS. Let

Yi 5
Pr
j51

Y
ðjÞ
i ; i5 1; 2; . . .;m

Then Yi is binðr;FiðtÞÞ. The likelihood function is

LðFðtÞjyiÞ5 L
m

i51

r

yi

� �
ðFiðtÞÞyi ð12FiðtÞÞr2yi :

Table 4.3 Eff ðF̂MMMEðtÞ; F̂SRSðtÞÞ, r 5 5

F(t)

0.20 0.40 0.50 0.70 0.75 0.90 0.99m

3 0.57 0.75 0.86 1.11 1.19 1.38 1.49

4 0.47 0.66 0.81 1.13 1.26 1.55 1.72

5 0.48 0.72 0.91 1.38 1.22 2.03 1.91

Table 4.4 Eff ðF̂MMMEðtÞ; F̂SRSðtÞÞ, r 5 10

F(t)

0.20 0.40 0.50 0.70 0.75 0.90 0.99m

3 0.55 0.77 0.89 1.16 1.23 1.45 1.58

4 0.45 0.68 0.86 1.19 1.30 1.59 1.76

5 0.38 0.63 0.79 1.22 1.29 1.71 1.93
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Therefore

L� 5 ðlnðLðFðtÞjyiÞÞ5
Xm
i51

ln½Fiyi ðtÞð12FiðtÞÞr2yi �

5
Xm
i51

½iyilnFðtÞ1 ðr2 yiÞlnð12FiðtÞÞ�:

@L�
@FðtÞ 5

Xm
i51

iyi

FðtÞ 2
iðr2 yiÞFi21ðtÞ
ð12FiðtÞÞ 5

Xm
i51

iyi 2 irFiðtÞ
FðtÞð12FiðtÞÞ :ð�Þ

Note that:
@L�
@FðtÞ is positive when FðtÞ-0 and negative when FðtÞ-1. Therefore @L�

@FðtÞ 5 0 has a root and the

root maximizes L. Thus the root of

Xm
i51

iyi 2 irFiðtÞ
FðtÞð12FiðtÞÞ 5 0

is the MLE of F(t).

Note: If Yi 5 r for all i then F̂MLEðtÞ5 1, while, Yi 5 0 for all i then F̂MLEðtÞ5 0.

Special cases:

• For m5 1, setting equation (�) to zero, we get

F̂MLE1ðtÞ5
Y1

r
5 Y 1:

• For m5 2, setting equation (�) to zero, we get

y1 1 2y2

FðtÞ 5
r2 y1

12FðtÞ 1
2ðr2 y2Þ
12F2ðtÞ

.ðy1 1 2y2Þð12F2ðtÞÞ5 ðr2 y1ÞFðtÞð11FðtÞÞ1 2ðr2 y2ÞF2ðtÞ

.y1 1 2y2 2 ðy1 1 2y2ÞF2ðtÞ5 ðr2 y1ÞFðtÞ1 ðr2 y1ÞF2ðtÞ1 2rF2ðtÞ2 2y2F
2ðtÞ

.y1 1 2y2 5 ð3rÞF2ðtÞ1 ðr2 y1ÞFðtÞ

.ð3rÞF2ðtÞ1 ðr2 y1ÞFðtÞ2 ðy1 1 2y2Þ5 0:

Thus

F̂MLE2ðtÞ5
y1 2 r1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 1 10ry1 1 24ry2 1 y21

p
6r

:

Numerical evaluation is needed for large m. The bias of F̂MLE2ðtÞ and its efficiency w.r.t.

F̂SRSðtÞ when m 5 2 for r 5 3.5 and 10, were obtained using a scientific workplace package and

are given in Table 4.5.

It can be seen that the efficiency of F̂MLE2ðtÞ w.r.t. F̂SRSðtÞ is increasing in F(t) for fixed m. In

general, it can be seen that for large and moderate values of F(t) the efficiency tends to be larger

than 1 and increasing in r. For small values of F(t) the efficiency is less than 1 and is decreasing in

r. F̂MLE2ðtÞ is a negatively biased estimator.

For m 5 3, setting equation (�) to zero, we get

y1 1 2y2 1 3y3

FðtÞ 5
ðr2 y1Þ
12FðtÞ 1

2ðr2 y2ÞFðtÞ
12F2ðtÞ 1

3ðr2 y3ÞF2ðtÞ
12F3ðtÞ
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.y1 1 2y2 1 3y3 5 ðr2 2y1 2 2y2 2 3y3ÞFðtÞ1 ð4r2 2y1 2 2y2 2 3y3ÞF2ðtÞ1 ð7r2 y1ÞF3ðtÞ1 ð6rÞF4ðtÞ
.ð6rÞF4ðtÞ1 ð7r2 y1ÞF3ðtÞ1 ð4r2 2y1 2 2y2ÞF2ðtÞ

1 ðr2 2y1 2 2y2 2 3y3ÞFðtÞ2 y1 2 2y2 2 3y3 5 0

This equation can be solved numerically. We used Minitab Programming to obtain numerical

values for the bias and efficiency.

Table 4.6 gives the bias of F̂MLE3ðtÞ and its efficiency w.r.t. F̂SRSðtÞ when m 5 3 for r 5 3, 5,

and 10.

Table 4.6 shows that the efficiency of F̂MLE3ðtÞ w.r.t. F̂SRSðtÞ is increasing in F(t).

• For fixed values of F(t), the efficiency is increasing in r for large and moderate values of F(t)

and decreasing for small values of F(t). F̂MLE3ðtÞ is more efficient than F̂SRSðtÞ for large and

moderate values of F(t).

Table 4.5 The Bias of F̂MLE2ðtÞ and the Efficiency of F̂MLE2ðtÞ w.r.t. F̂SRSðtÞ for m 5 2

F(t)

Bias Efficiency

r 5 3 r 5 5 r 5 10 r 5 3 r 5 5 r 5 10

0.05 �0.0120 �0.0088 �0.0053 0.91 0.79 0.69

0.20 �0.0296 -0.0191 �0.0098 0.86 0.82 0.81

0.40 �0.0287 �0.0165 �0.0079 0.94 0.98 1.02

0.50 �0.0241 �0.0136 �0.0064 1.01 1.07 1.12

0.70 �0.0138 �0.0077 �0.0037 1.17 1.23 1.28

0.75 �0.0113 �0.0063 �0.0030 1.21 1.27 1.32

0.90 �0.0043 �0.0024 �0.0012 1.31 1.37 1.41

0.99 �0.0004 �0.0002 �0.0001 1.37 1.42 1.46

Table 4.6 The Bias of F̂MLE3ðtÞ and the Efficiency of F̂MLE3ðtÞ w.r.t. F̂SRSðtÞ for m 5 3

F(t)

Bias Efficiency

r 5 3 r 5 5 r 5 10 r 5 3 r 5 5 r 5 10

0.05 �0.0141 �0.0096 �0.0061 0.71 0.59 0.50

0.20 �0.0399 �0.0126 �0.0136 0.73 0.64 0.62

0.40 �0.0370 �0.0199 �0.0096 0.80 0.87 0.93

0.50 �0.0332 �0.0174 �0.0030 0.92 1.02 1.12

0.70 �0.0133 �0.0099 �0.0035 1.32 1.38 1.57

0.75 �0.0103 �0.0066 �0.0010 1.41 1.52 1.58

0.90 �0.0038 �0.0029 �0.0014 1.71 1.77 1.81

0.99 �0.0015 �0.0009 �0.0007 1.78 1.97 2.06
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• For fixed r, F̂MLE3ðtÞ is more efficient than F̂MLE2ðtÞ when FðtÞ$ 0:7, while F̂MLE2ðtÞ is more

efficient then F̂MLE3ðtÞ for FðtÞ, 0:7:
• F̂MLE3ðtÞ is a negatively biased estimator.

4.1.3 FISHER INFORMATION NUMBER IN MERSS ABOUT F(T)

For SRS, the Fisher information number about F(t) is

ISRS 5
mr

FðtÞ 12FðtÞð Þ :

The Fisher information number about F(t) in MERSS, IMERSS is obtained from the following

second derivative:

@2L�

@F2ðtÞ 5
Xm
i51

½ð2 i2rFi21ðtÞÞFðtÞð12FiðtÞÞ�2 ½ðiyi 2 irFiðtÞÞð2 iFiðtÞ1 ð12FiðtÞÞ�
½FðtÞð12FiðtÞÞ�2

5
Xm
i51

2 i2rFiðtÞ1 i2rF2iðtÞ1 i2yiF
iðtÞ2 i2rF2iðtÞ2 iyi 1 iyiF

iðtÞ1 irFiðtÞ2 irF2iðtÞ
½FðtÞð12FiðtÞÞ�2

The Fisher information number is:

2E
Xm
i51

2 i2rFiðtÞ1 i2YiF
iðtÞ2 iYi 1 iYiF

iðtÞ1 irFiðtÞ2 irF2iðtÞ
½FðtÞð12FiðtÞÞ�2

" #

5
Xm
i51

i2rFiðtÞ2 i2rF2i 1 irFiðtÞ2 irF2iðtÞ2 irFiðtÞ1 irF2iðtÞ
½FðtÞð12FiðtÞÞ�2

5
Xm
i51

i2rFiðtÞð12FiðtÞÞ
F2ðtÞð12FiðtÞÞ2 :

Thus the MERSS Fisher information number about F(t) is

IMERSS m; rð Þ5
Xm
i51

i2rFi22ðtÞ
ð12FiðtÞÞ ;

and the corresponding one using SRS is

ISRS 5 IMERSS 1;mrð Þ5 mr

FðtÞ 12FðtÞð Þ :

Table 4.7 gives the Fisher relative efficiency of FMERSSðtÞ w.r.t. FSRSðtÞ when m5 2; . . .; 5.
From Table 4.7 we can see that MERSS has more information about F(t) than SRS for large

and moderate values of F(t). For fixed values of F(t), the Fisher relative efficiency is increasing for

large and moderate values of F(t) and decreasing for small values of F(t). For fixed m, the Fisher

relative efficiency is increasing in F(t).

4.2 MERSS BASED ON MINIMA
In this section, we use MERSS with minima instead of maxima to estimate F(t). Let the elements

of MERSS based on minima be

514.2 MERSS BASED ON MINIMA



fXðjÞ
ð1:iÞ:i5 1; 2; . . .;m; j5 1; 2; . . .; rg

Let Yi 5
Pr
j51

IðXðjÞ
ð1:iÞ # tÞ. ThenYiBbinðr; ð12 ð12FðtÞÞiÞ:

Consider the following likelihood function:

LðFðtÞjyiÞ5 L
m

i51

r

yi

� �
½12ð12FðtÞÞi�yi ½12 ð12ð12FðtÞÞi�r2yi :

Then L� 5 lnðLðFðtÞjyiÞ5
Pm
i51

½yilnð12 ð12FðtÞÞi 1 iðr2 yiÞlnð12FðtÞÞ�

@L�

@FðtÞ5
Xm
i51

iyið12FðtÞÞi21

ð12 ð12FðtÞÞiÞ 2
iðr2 yiÞ
ð12FðtÞÞ

� 	

5
Xm
i51

iyið12FðtÞÞi 2 iðr2 yiÞ1 irð12FðtÞÞi 2 iyið12FðtÞÞi
ð12FðtÞÞð12 ð12FðtÞÞiÞ

�

5
Xm
i51

irð12FðtÞÞi 2 iðr2 yiÞ
ð12FðtÞÞð12 ð12FðtÞÞiÞ :

Also

@L�

@FðtÞ 5
Xm
i51

irð12FðtÞÞi 2 iðr2 yiÞ
ð12 ð12FðtÞÞiÞ :

Let 12FðtÞ5F�ðtÞ and r2 yi 5 yi
�, then Y�

i Bbinðr; 12F�iðtÞÞ. Thus
@L�

@FðtÞ 5
Xm
i51

irF�iðtÞ2 iy�i
ð12F�iðtÞÞ :

Special cases:

• For m 5 1, setting equation @L�
@FðtÞ to zero, we get

F̂
�ðtÞ5 y�1

r
.12 F̂ðtÞ5 r2 y1

r
5 12

y1

r

‘F̂MLE�1ðtÞ5
Y1

r
:

• For m 5 2, we get

•
y�
1
1 2y�

2

F�ðtÞ 5 y1
12F�ðtÞ 1

2y�
2
F�ðtÞ

12F2�ðtÞ,

Table 4.7 Fisher Relative Efficiency 5 IMERSS

ISRS
F(t)

0.05 0.20 0.40 0.50 0.70 0.75 0.90 0.99m

2 0.60 0.83 1.18 1.16 1.32 1.35 1.44 1.49

3 0.40 0.65 1.02 1.21 1.55 1.63 1.86 1.99

4 0.30 0.51 0.92 1.17 1.88 1.84 2.24 2.47

5 0.24 0.42 0.82 1.10 1.79 1.99 2.60 2.96
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Thus

F̂MLE�2ðtÞ5
y�1 2 r1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 1 10ry�1 1 24ry�2 1 y2�1

p
6r

Table 4.8 gives the bias of F̂MLE�2ðtÞ and its efficiency w.r.t. F̂SRSðtÞ when m 5 2 for r 5 3, 5,

and 10. It can be seen that the efficiency of F̂MLE�2ðtÞ w.r.t. F̂SRSðtÞ is increasing in r for small and

moderate values of F(t) (efficiency .1) and decreasing for large values of F(t) (efficiency , 1).

F̂MLE�2ðtÞ is a negatively biased estimator.

• For m 5 3, we get

y�1 1 2y�2 1 3y�3
F � ðtÞ 5

y1

12F�ðtÞ 1
2y2F � ðtÞ
12F2�ðtÞ 1

3y3F
2�ðtÞ

12F3�ðtÞ
.ð6rÞF4�ðtÞ1 ð7r2 y�1ÞF3�ðtÞ1 ð4r2 2y�1 2 2y�2ÞF2�ðtÞ

1 ðr2 2y�1 2 2y�2 2 3y�3ÞF�ðtÞ2 y�1 2 2y�2 2 3y�3 5 0

This equation can be solved numerically. Table 4.9 gives the bias of F̂MLE�2ðtÞ and its efficiency

w.r.t. F̂SRSðtÞ when m 5 3 for r 5 3, 5, and 10. It can be seen that the efficiency of F̂MLE�3ðtÞ w.r.
t. F̂SRSðtÞ is increasing in r for small and moderate values of F(t) (efficiency .1) and decreasing

for large values of F(t) (efficiency , 1). F̂MLE�3ðtÞ is more efficient than F̂MLE�2 when FðtÞ# 0:4
for fixed r and m. However, F̂SRSðtÞ is more efficient when FðtÞ. 0:4:

4.3 ESTIMATION OF F(X) USING MOVING EXTREME RSS BASED ON
MINIMA AND MAXIMA

It is clear from previous sections that the estimators of F using MERSS based on maxima and

MERSS based on minima are not always better than the corresponding estimators based on SRS. In

this section, we compare the estimator of the distribution function based on MERSS with minima

and maxima to the corresponding estimator based on SRS. The MLE of F(t) based on MERSS with

Table 4.8 The Bias Values of F̂MLE�2ðtÞ and the Efficiency of F̂MLE�2ðtÞ w.r.t. F̂SRSðtÞ for m 5 2

F(t)

Bias Efficiency

r 5 3 r 5 5 r 5 10 r 5 3 r 5 5 r 5 10

0.05 �0.0004 �0.0019 �0.0008 1.30 1.39 1.40

0.20 �0.0113 �0.0074 �0.0021 1.21 1.29 1.37

0.40 �0.0178 �0.0105 �0.0057 1.08 1.14 1.20

0.50 �0.0241 �0.0136 �0.0064 1.01 1.07 1.12

0.70 �0.0317 �0.0171 �0.0104 0.90 0.91 0.85

0.75 �0.0313 �0.0182 �0.0092 0.86 0.85 0.86

0.90 �0.0022 �0.0115 �0.0085 0.87 0.76 0.73

0.99 �0.0025 �0.0024 �0.0017 0.91 0.84 0.71
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minima and maxima is derived. Its efficiency with respect to the estimator based on SRS is

obtained.

4.3.1 MERSS BASED ON BOTH MINIMA AND MAXIMA

Let YiBbin ðr; FiðtÞÞ and Y�
i Bbin ðr; ð12 ð12FðtÞÞiÞÞ, i5 1; . . .;m. The likelihood function based

on Yi and Y�
i is

LðFjyi; y�i Þ5Lm

i51

r

yi

� �
ðFiðtÞÞyið12FiðtÞÞr2yi r

y�i

� �
ð12ð12FðtÞÞiÞy�i ð12 ð12ð12FðtÞÞiÞr2y�i

L� 5 lnðLðFjyi; y�i Þ5
Pm
i51

½iyilnFðtÞ1 ðr2 yiÞlnð12FiðtÞÞ1 y�i lnð12 ð12FðtÞÞiÞ1 iðr2 y�i Þlnð12FðtÞÞ�

@L�

@FðtÞ 5
Xm
i51

ð iyi
FðtÞ 2

iðr2 yiÞFi21ðtÞ
12FiðtÞ 1

iy�i ð12FðtÞÞi21

ð12 ð12FðtÞÞiÞ 2
iðr2 y�i Þ
ð12FðtÞÞÞð��Þ

5
Xm
i51

ð iyi 2 irFiðtÞ
FðtÞð12FiðtÞÞ 1

irð12FðtÞÞi 2 iðr2 y�i Þ
ð12FðtÞÞð12 ð12FðtÞÞiÞÞ:ð��Þ

Special cases:

• For m 5 1, setting equation (��) to zero, we get

F̂ðtÞ5 y1 1 y�1
2r

:

• For m 5 2, setting equation (��) to zero, we get

y1

FðtÞ 2
ðr2 y1Þ
12FðtÞ 1

y�1
FðtÞ 2

ðr2 y�1Þ
12FðtÞ 1

2y2

FðtÞ 2
2ðr2 y2ÞF
12F2ðtÞ 1

2y�2ð12FÞ
ð12 ð12FðtÞÞ2Þ 2

2ðr2 y�2Þ
12FðtÞ 5 0

.
y1 1 y�1 1 2y2

FðtÞ 2
ðr2 y1Þ1 ðr2 y�1Þ1 2ðr2 y�2Þ

12FðtÞ

� 	
2

2ðr2 y2ÞF
12F2ðtÞ 1

2y�2 2 2y�2
ð12 ð12FðtÞÞ2Þ 5 0;

Table 4.9 The Bias of F̂MLE�3ðtÞ and Efficiency of F̂MLE�3ðtÞ w.r.t. F̂SRSðtÞ for m 5 3

F(t)

Bias Efficiency

r 5 3 r 5 5 r 5 10 r 5 3 r 5 5 r 5 10

0.05 �0.00215 �0.00157 �0.00052 1.79 1.85 1.91

0.20 �0.00955 �0.00454 �0.00206 1.48 1.59 1.66

0.40 �0.02159 �0.01285 �0.00618 1.10 1.29 1.29

0.50 �0.0332 �0.0174 �0.0030 0.92 1.02 1.12

0.70 �0.04142 �0.02489 �0.01254 0.71 0.72 0.77

0.75 �0.04141 �0.02590 �0.01288 0.68 0.67 0.69

0.90 �0.02421 �0.01877 �0.00967 0.67 0.58 0.54

0.99 �0.00200 �0.00164 �0.00057 0.71 0.59 0.48
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Thus

ð6rÞF3ðtÞ1 ð2y�2 2 12rÞF2ðtÞ2 ð2y2 1 4rÞFðtÞ1 2y1 1 2y�1 1 4y2 1 2y�2 5 0

This equation is solved numerically. We used Minitab programming to solve this equation.

Table 4.10 gives the bias of F̂MLE�4ðtÞ and its efficiency w.r.t. F̂SRSðtÞ when m 5 2 for r 5 3, 5,

and 10. It can be seen that the efficiency of F̂MLE�4ðtÞ w.r.t. F̂SRSðtÞ is increasing in r for all values

of F(t). For very small values of F(t), the efficiency could be smaller than 1. F̂MLE�4ðtÞ is a posi-

tively biased estimator. The bias tends to increase in r for small to moderate values of F(t), but

decrease in r for large values of F(t).

For m 5 3, setting Equation (��) to zero, we have

.
y1

FðtÞ 2
ðr2 y1Þ
12FðtÞÞ 1

y�1
FðtÞ 2

ðr2 y�1Þ
12FðtÞ 1

2y2

FðtÞ 2
2ðr2 y2ÞFðtÞ
12F2ðtÞ 1

2y�2ð12FðtÞÞ
12 ð12FðtÞÞ2

2
2ðr2 y�2Þ
12FðtÞ 1

3y3

FðtÞ 2
3ðr2 y3ÞF2ðtÞ
12F3ðtÞ 1

3y�3ð12FðtÞÞ2
12 ð12FðtÞÞ3 2

3ðr2 y�3Þ
12FðtÞ 5 0

ð12rÞF7ðtÞ2 ðy1 1 y�2 1 41rÞF6ðtÞ1 ð3y1 1 3y�1 2 2y2 1 2y�2 1 29rÞF5ðtÞ
2 ðy1 1 y�1 2 8y2 1 2y�2 1 3y3 1 3y�3 2 26rÞF4ðtÞ2 ð3y1 1 3y�1 1 10y2 1 2y�2 2 12y3 1 5rÞF3ðtÞ
2 ðy1 1 y�1 2 4y2 2 2y�2 1 12y3 2 6y�3 1 33rÞF2ðtÞ1 ð3y1 1 3y�1 2 6y2 1 6y�2 2 9y3 1 9y�3 2 42rÞFðtÞ
1 6y1 1 6y�1 1 12y2 1 6y�2 1 18y3 1 6y�3 5 0

This equation is solved numerically. We used Minitab programming to solve this equation.

Table 4.11 gives the bias of F̂MLE�5ðtÞ and its efficiency w.r.t. F̂SRSðtÞ when m 5 3 for r 5 3, 5,

and 10. The results given in Table 4.11 show that F̂MLE�5ðtÞ is more efficient than F̂SRSðtÞ with

different values of r, the efficiency .1 for all values of F(t). The values of the bias are very

close to zero.

Table 4.10 Bias of F̂MLE�4ðtÞ and Efficiency of F̂MLE�4ðtÞ w.r.t. F̂SRSðtÞ with m 5 2

F(t)

Bias Efficiency

r 5 3 r 5 5 r 5 10 r 5 3 r 5 5 r 5 10

0.05 0.02101 0.02554 0.02625 1.13 0.99 0.83

0.20 0.04758 0.05013 0.05318 1.70 1.56 1.20

0.40 0.04359 0.04220 0.04358 2.31 2.25 1.88

0.50 0.03354 0.03440 0.03599 2.56 2.52 2.20

0.70 0.01655 0.01685 0.01706 2.69 2.58 2.57

0.75 0.01467 0.01156 0.01168 2.58 2.61 2.56

0.90 0.00501 0.00332 0.00269 2.38 2.32 2.39

0.99 0.00036 0.00031 0.00055 2.22 2.24 2.22
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4.4 CONCLUDING REMARKS AND SUGGESTED FUTURE WORK
The estimation of distribution function based on RSS and some of its modifications have been con-

sidered in this chapter. MERSS, with maxima, minima, and with both were investigated. Method of

moments estimation and maximum likelihood estimation were used. It turned out that some of these

estimators can be more efficient than the corresponding counterparts using SRS for some of the

range of F(t). It is important to mention here that MERSS can be easily executed with less chance

of ranking error than RSS. When both minima and maxima are used in MERSS, the MLE is more

efficient than the estimator based on SRS. Taking into account the lower amount of effort needed

to obtain MERSS compared to that needed to obtain RSS, we recommend the use of this estimator.

In this work, it is assumed that the obtained sample is accurate, in the sense that there is no

error in ranking. This rarely happens; some ranking errors may occur in obtaining RSS and

MERSS. Therefore it is of interest to see the performance of RSS and MERSS, when there is some

error in ranking. Also, when the variable of interest has a strong relation with another easier vari-

able, then we can use the other variable (concomitant variable) to rank the values of the variable of

interest. In this case ratio estimation can be used to make an inference about the variable of inter-

est. This topic is a future research work topic.
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5STATISTICAL INFERENCE OF
RANKED SET SAMPLING VIA
RESAMPLING METHODS

Saeid Amiri1 and Reza Modarres2
1Department of Natural and Applied Sciences, University of Wisconsin-Green Bay, Green Bay, WI, United States

2Department of Statistics, The George Washington University, Washington, DC, United States

5.1 INTRODUCTION
Rank-based sampling (RSS) provides powerful inference alternatives to simple random sampling

(SRS) and often leads to large improvements in the precision of estimators. Several variants of RSS

are designed to further improve the performance of RSS. Theoretical underpinnings must be devel-

oped for such RSS designs. However, these results are often nontrivial due to many factors, includ-

ing unknown parent distributions, small sample sizes, and nonidentical order statistics that form the

cornerstones of any RSS design. These difficulties make bootstrap methods more attractive for

RSS. Bootstrap is a well-known resampling method that provides accurate inference for SRS. The

bootstrap method has also been explored in the different RSS contexts: confidence interval estima-

tion (Hui et al., 2005), resampling algorithms (Modarres et al., 2006), one sample test (Amiri et al.,

2014), confidence bands for the CDF (Frey, 2014), empirical likelihood (Amiri et al., 2016),

censored RSS (Mahdizadeh and Strzalkowska-Kominiak, 2017), and tests of perfect ranking

(Amiri et al., 2017).

In this work, we consider the parametric statistical inference of one sample and two samples. RSS

is concerned with small sample sizes and distribution-free methods such as sign, sign ranked, and

Mann�Whitney tests have been investigated by Bohn and Wolfe (1992) and Ozturk and Wolfe

(2000a, 2000b). However, proposed nonparametric RSS tests might be sensitive to the ranking proce-

dure. Fligner and MacEachern (2006) consider the center of the observations to eliminate the impact

of ranking. The sensitivity of these tests to the ranking procedure occurs due to the use of the distri-

bution function of the rth order statistic to test the mean. To overcome the sensitivity, we explore

H0 : μx 5μ0 and its two-sample variant using the t test statistics and show that the bootstrap methods

provide more accurate inference. We will also consider RSS with different ranks sizes.

The reminder of the chapter is organized as follows. Section 5.2 provides an overview of the

data structure of an RSS, and then formally defines the test statistics for one and two samples.

Section 5.3 is devoted to the bootstrap methods. It gives a number of theoretical results that allow

us to use the bootstrap methods. In Section 5.4, we compare the proposed methods using Monte

Carlo simulation. The simulations show that a hybrid method, based on the average of the p-values

of pivotal and nonpivotal bootstrap tests, outperforms the competing tests.
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5.2 STATISTICAL INFERENCE FOR RSS
Suppose a total number of n units are to be measured from the underlying population on the vari-

able of interest. Let n sets of units, each of size k, be randomly chosen from the population using a

simple random sampling (SRS) technique. The units of each set are ranked by any means other

than actual quantification of the variable. Finally, one unit in each ordered set with a prespecified

rank is measured on the variable. Let mr be the number of measurements on units with rank r,

r5 1; . . . ; k, such that n5
Pk

r51 mr. Let XðrÞj denote the measurement on the jth measured unit

with rank r. This results in a URSS of size n from the underlying population as

XðrÞj; r5 1; . . . ; k; j5 1; . . . ;mr. When mr 5m, r5 1; . . . ; k, URSS reduces to the balanced RSS. It

is worth mentioning that, in ranked set sampling designs, Xð1Þj; . . . ;XðkÞj are independent order

statistics (as they are obtained from independent sets) and each XðrÞj provides information about a

different stratum of the population. One can represent the structure of a URSS as follows:

Xr 5 X rð Þ1;X rð Þ2; . . .;X rð Þmr

� �
Bi:i:d:F rð Þ; r5 1; . . .; k1;

where FðrÞ is the distribution function (df ) of the rth order statistic. The second sample can be gen-

erated using the same procedure. We assume the second sample is generated using k2 which can be

different from k5k1

Yr 5 fYðrÞ1; YðrÞ2; . . .; YðrÞmr
g Bi:i:d:GðrÞ; r5 1; . . .; k2:

It is of interest to test H0 : FðxÞ 5d Gðx2ΔÞ. Specifically, we are concerned with the null

hypothesis H0 : μx 5μy 1Δ versus H0 : μx 6¼ μy 1Δ. Two sample tests are commonly used to

determine whether the samples come from the same unknown distribution. In our setting, we

assume X and Y are collected with different ranks sizes. Therefore, even under the same parent

distributions, the variance of the estimator would not be the same.

The following proposition can be used to establish the asymptotic normality of statistic under

the null hypothesis.

Proposition 1: Let F denote the cdf of a member of the family with
Ð
x2dFðxÞ,N and F̂ðrÞ is the

empirical distribution function (edf) of the rth row. If ϑi 5 ðX ðiÞ 2μðiÞÞ, then ðϑ1; . . . ;ϑkÞ converges
in distribution to a multivariate normal distribution with mean vector zero and covariance matrix

diagðσ2
ð1Þ=m1; . . . ;σ2

ðkÞ=mkÞ where σ2
ðiÞ 5

Ð ðx2μ ið ÞÞ2dFðiÞðxÞ and μðiÞ 5
Ð
xdFðiÞðxÞ.

Proposition 1 suggests the following statistic for testing H0: μ5μ0,

Z5
1

k

Xk

r51
X rð Þ 2 μ0σ̂-

d
N 0; 1ð Þ;

where σ̂2 is the plug-in estimator for the V 1
k

Pk
r51 XðrÞ

� �
,

σ̂2 5
1

k2

Xk
r51

σ̂2
ðrÞ
mr

;

and σ2
ðrÞ is the estimate of VðX ðrÞÞ. Using the central limit theorem, one obtains a confidence inter-

val where

P μA
�
X 1 tα=2;n21

σffiffiffi
n

p ;X 1 t12α=2;n21

σffiffiffi
n

p
�� �

� 12α:
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One needs σ2
ðrÞ to estimate the variance of the mean. Hence it is necessary to have mr $ 2. The

estimate of the variance for small sample sizes would be very inaccurate, suggesting that a pivotal

statistic might be unreliable. We show in Section 5.4 that parametric statistics are very conserva-

tive. Bootstrap provides a nonparametric alternative to estimate the variance. The bootstrap method

can be used to obtain the sampling distribution of the statistic of interest and allows for estimation

of the standard error of any well-defined functional. Hence, bootstrap enables us to draw inferences

when the exact or the asymptotic distribution of the statistic of interest is unavailable. A procedure

of generating resamples to calculate the variance is discussed in Section 5.3.

Proposition 1 can be used to obtain a test statistic for two samples X1; . . . ;Xk1 and Y1; . . . ;Yk2 .

One can show that

T X;Yð Þ5 1

k1

Xk1

r51
X rð Þ 2

1

k2

Xk2

r51
Y rð Þ

� �
2 μ1 2μ2

	 

σ̂-

d
N 0; 1ð Þ;

where

σ̂2 5
1

k21

Xk1
r151

σ̂2
ðr1Þ
mr1

1
1

k22

Xk2
r251

σ̂2
ðr2Þ
mr2

:

We can consider the parametric statistical inference for the skewed distribution: let X1; . . . ;Xn

be i.i.d. random variable with the mean μ and finite variance σ2. Since the characteristic function

of Sn converges to e2t2=2, the characteristic function of the standard normal,
ffiffiffi
n

p
Sn 5

ffiffiffi
n

p ðμ2μÞ=σ,
is asymptotically normally distributed with zero mean and unit variance. To take the sample skew-

ness into account, the following proposition obtains the Edgeworth expansion of
ffiffiffi
n

p
Sn:

Proposition 2: If E Y6
i

	 

,N and Cramer’s condition holds, the asymptotic distribution function offfiffiffi

n
p

Sn is

Pð ffiffiffi
n

p
Sn # xÞ5ΦðxÞ1 1ffiffiffi

n
p γðax2 1 bÞφðxÞ1Oðn21Þ;

where a and b are known constants, γ is an estimable constant, and Φ and φ denote the standard

normal distribution and density functions, respectively.

Hall (1992) suggested two functions,

S1ðtÞ5 t1 aγ̂t2 1
1

3
a2γ̂2t31n21bγ̂;

S2ðtÞ5 ð2an21
2γ̂Þ21 exp 2an

21
2γ̂t

� �
2 1

n o
1 n21bγ̂;

where a5 1=3 and b5 1=6. Zhou and Dinh (2005) suggested

S3 tð Þ5 t1 t2 1
1

3
t3 1 n21bγ̂:

Using Si tð Þ; for i5 1; 2; 3; one can construct new confidence intervals for μ as

ðμ̂2 Siðn21=2t12α=2;n21Þσ̂; μ̂2 Siðn21=2tα=2;n21Þσ̂Þ;
where t12α=2;n21 is the 12α=2 quartile of the t distribution. However, use of the sample skewness in

the asymptotic distribution makes the inference less reliable, especially for the parametric methods.

For example, the asymptotic distribution of test for the coefficient of variation depends on the
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skewness. This parameter makes the inference for coefficient of variation inaccurate, see Amiri

(2016). It is of interest to study this problem using a fully nonparametric approach via the bootstrap.

5.3 BOOTSTRAP METHOD
Bootstrap resampling is a well-known statistical method to conduct statistical inference. Bootstrap

mimics the underlying distribution of the observations by resampling from the URSS sample.

Several papers have explored the application of bootstrap in RSS. URSS bootstrap was considered

in Amiri et al. (2014). The idea of URSS bootstrap is to obtain a sample of size n0 from each stra-

tum in order to transform the URSS to an RSS dataset. The RSS dataset is then resampled to provide

inference. Amiri et al. (2017) consider more general resampling techniques that obtain resamples

from the entire dataset instead the resampling each stratum. The procedure is described below.

Algorithm:

1. Select a row randomly and select an observation, continue until k observations have been

collected (obviously any row can appear more than once).

Order them as X}
ð1Þ # . . . #X}

ðkÞ and retain X�
ðrÞ1 5X}

ðrÞ:

2. Perform steps 1�2 mr times and collect X�
ðrÞ1; . . . ;X

�
ðrÞmr

.

3. Perform step 3 for r5 1; . . . ; k.
4. Repeat steps 1�4, B times to obtain the bootstrap samples.

Using step 1 of the algorithm,

X}
1; . . .;X

}
k

� �
BF̂nðtÞ5

1

k

Xk
r51

1

mr

Xmr

j51

IðXðrÞj # tÞ;

and using steps 2 and 3,

X�
r 5 fX�

rð Þ1;X
�
rð Þ2; . . .;X

�
ðrÞmr

gBF̂ðrÞð:Þ; (5.1)

where F̂ðrÞðtÞ5 1
mr

Pmr

j51

IðXðrÞj # tÞ. Let

F̂
�
rð Þ tð Þ5

1

mr

Xmr

j51

I X�
rð Þj # t

� �
; (5.2)

F̂
�
n tð Þ5 1

k

Xk
r51

1

mr

Xmr

j51

I X�
rð Þj # t

� �
: (5.3)

Amiri et al. (2017) proved the following propositions for the proposed bootstrap algorithm.

These properties are essential to draw inference using the resamples.

Proposition 3: Let FðrÞðtÞ denote the cdf of the rth row of a member of the family with the continu-

ous density function, and F̂
�
ðrÞ denote the edf of the rth row given in (Eq. (5.2)), it follows that

F̂
�
ðrÞðtÞ-

a:s:
FðrÞðtÞ:
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Proposition 4: Let F(t) denote the cdf of a member of the family with the continuous density function,

and suppose X�
1; . . . ;X

�
k are samples obtained using the proposed bootstrap algorithm, it follows that

sup
tAℝ

jF̂�
nðtÞ2FðtÞj5 0:

Proposition 4 shows a desirable property for the bootstrap method that can be used to draw sta-

tistical inference. The direct application of bootstrap is in the estimation of variance. Suppose

X�
1; . . . ;X

�
k and we are interested in VðθðFð1Þ; . . .;FðKÞÞÞ5 1

k2

Pk
r51

σ2
ðrÞ
mr
. The plug-in estimation is

VðθðF̂ð1Þ; . . .; F̂ðKÞÞÞ5 σ̂2 5 1
k2

Pk
r51

σ̂2
ðrÞ
mr

where F̂ðrÞ is the edf on the r2 th stratum. Clearly, the plug-in

estimate does not work for mr 5 1. However, one can use the proposed bootstrap to estimate the

variance. Generate the resamples using the proposed algorithm and compute

θðF̂�
ð1Þ; . . .; F̂

�
ðkÞÞ5X

�
5 1

k

Pk
r51 X

�
ðrÞ, and repeat the procedure B times to obtain X

�
b; b5 1; . . . ;B.

The most important property of the bootstrap lies in the conditional independence, given the origi-

nal sample. Hence, we view bootstrap resample as iid random samples and compute the sample

mean and the sample variance with,

X
�
5

1

B

XB
b51

X
�
b;

V̂
�
θ F̂ 1ð Þ; . . .; F̂ Kð Þ
	 
	 


5
1

B

XB
b51

ðX�
b2X

�Þ2:

The confidence interval can be found using the bootstrap estimate of variance as,

1

k

Xk
r51

XðrÞ 6 tα=2;n21

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

B

XB
b51

X
�
b22X

�� �2
vuut :

The nonparametric confidence interval can be obtained using the percentile confidence interval

ðX�
α=2;X

�
12α=2Þ;

where X
�
α=2 is the α=2 percentile of bootstrap resample mean.

5.4 NUMERICAL STUDY
This section is devoted to assessing the accuracy and comparisons of the proposed test statistics for

finite sample sizes. We study the type I error rate and the statistical power. The proposed tests are

based on the same simulated data in order to provide a meaningful comparison. The resampling is

carried out using B5 800 resamples. In order to make a comparative evaluation of the testing pro-

cedures, we seek certain desirable features, such as robustness, power, and small sample test valid-

ity in terms of observed type I error rates. In the following, the significance and the power of the

proposed tests are studied for different sample sizes.

To compare two group means: H0 : μx 5μy 1 δ vs. H0 : μx 6¼ μy 1 δ, the appropriate test statistic is
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T0ðX;YÞ5 1

k1

Xk1

r51
XðrÞ 2

1

k2

Xk2

r51
YðrÞ

� �
2 δσ̂; (5.4)

where, σ̂2 5 1
k2
1

Pk1
r151

σ̂2
ðr1Þ
mr1

1 1
k2
2

Pk2
r251

σ̂2
ðr2 Þ
mr2

. Under the null hypothesis; T0ðX;YÞBtn11n222. We refer to this

test as the parametric test and denote it with PT.

The bootstrap test, referred to as BT, is constructed as follows. Calculate the statistic given in

(Eq. (5.4)), take the resamples according to the algorithm described in Section 5.3, and calculate

the following statistic,

T�ðX�;Y�;X;YÞ5
1
k1

Pk1
r51 X

�
ðrÞ 2

1
k2

Pk2
r51 Y

�
ðrÞ

� �
2 1

k1

Pk1
r51 XðrÞ 2 1

k2

Pk2
r51 YðrÞ

� �
σ̂� ; (5.5)

where σ� is the estimate of variance using the bootstrap samples. Generate B resamples and calcu-

late the test statistics,

T�
1 ðX�;Y�;X;YÞ; . . . ; T�

BðX�;Y�;X;YÞ:
The approximate p-value can be estimated with

p� 5
#T�

bðX�;Y�;X;YÞ#T0ðX;YÞ
B

;

p2 value5min p�; 12 p�
� �

:

Since the RSS often uses small sample sizes and the plug-in estimate of variance is not very

accurate, one may consider a third approach and use nonpivotal test statistics to calculate the

p-value. That is,

T0 X;Yð Þ5 1

k1

Xk1
r51

X rð Þ 2
1

k2

Xk2
r51

Y rð Þ

 !
2 δ;

T� X�;Y�;X;Yð Þ5 1

k1

Xk1
r51

X
�
rð Þ 2

1

k2

Xk2
r51

Y
�
rð Þ

 !
2

1

k1

Xk1
r51

X rð Þ 2
1

k2

Xk2
r51

Y rð Þ

 !
:

(5.6)

This bootstrap test using the nonpivotal statistic is denoted as BNT.

We compare the following test statistics:

1. PT: Parametric two-sample t-test (Eq. (5.4));

2. BT: Bootstrap test (Eq. (5.5));

3. BNT: Nonpivotal bootstrap test (Eq. (5.6));

4. BHT : Hybrid test of BT and BNT.

Table 5.1 includes the simulation of the 10th percentile of p-value for the proposed methods

with different sample sizes ðnX ; nY Þ5 ðk1m; k2mÞ, and the following underlying distributions:

1. X 5
d
YBNð0; 1Þ;

2. X 5
d
YBexpð1:5Þ;

3. X 5
d
YBlogisticð1; 1Þ;

4. X 5
d
YBGammað1; 2Þ:

64 CHAPTER 5 STATISTICAL INFERENCE OF RANKED SET SAMPLING



Table 5.1 Observed α-levels of the Proposed Tests at α 5 0.1

m m

dist. k1; k2 test 3 4 5 6 dist. 3 4 5 6

X 5
d
YBNð0; 1Þ (3,3) PT 0.315 0.226 0.188 0.169 X 5

d
YBexpð1:5Þ 0.317 0.231 0.191 0.165

BT 0.133 0.119 0.115 0.111 0.144 0.127 0.116 0.108

BNT 0.080 0.093 0.099 0.101 0.076 0.099 0.101 0.102

BHT 0.095 0.100 0.104 0.104 0.098 0.105 0.104 0.103

(3,4) PT 0.310 0.226 0.194 0.174 0.316 0.237 0.186 0.178

BT 0.117 0.117 0.115 0.11 0.127 0.116 0.108 0.117

BNT 0.077 0.095 0.097 0.103 0.088 0.100 0.100 0.111

BHT 0.087 0.101 0.104 0.104 0.095 0.104 0.101 0.111

(3,5) PT 0.316 0.236 0.196 0.184 0.333 0.243 0.196 0.177

BT 0.132 0.119 0.110 0.116 0.132 0.117 0.113 0.112

BNT 0.090 0.104 0.094 0.103 0.088 0.102 0.110 0.107

BHT 0.100 0.106 0.098 0.108 0.094 0.105 0.111 0.108

(4,4) PT 0.312 0.225 0.189 0.166 0.316 0.217 0.196 0.182

BT 0.114 0.110 0.106 0.106 0.125 0.105 0.107 0.115

BNT 0.092 0.095 0.100 0.101 0.089 0.097 0.103 0.111

BHT 0.094 0.098 0.103 0.100 0.098 0.096 0.105 0.113

(4,5) PT 0.316 0.218 0.197 0.176 0.307 0.230 0.198 0.161

BT 0.112 0.107 0.109 0.105 0.118 0.112 0.110 0.097

BNT 0.092 0.092 0.098 0.102 0.091 0.101 0.103 0.094

BHT 0.095 0.094 0.102 0.104 0.097 0.102 0.104 0.093

X 5
d
YBlogisticð1; 1Þ (3,3) PT 0.331 0.244 0.204 0.178 X 5

d
YBGammað1; 2Þ 0.338 0.231 0.202 0.185

BT 0.136 0.124 0.127 0.109 0.133 0.118 0.121 0.114

BNT 0.072 0.090 0.111 0.112 0.082 0.090 0.109 0.112

BHT 0.077 0.099 0.116 0.106 0.086 0.098 0.111 0.109

(3,4) PT 0.338 0.240 0.204 0.185 0.337 0.251 0.196 0.179

BT 0.136 0.122 0.123 0.116 0.138 0.126 0.111 0.116

BNT 0.091 0.103 0.112 0.114 0.093 0.105 0.105 0.113

BHT 0.093 0.105 0.116 0.112 0.101 0.111 0.106 0.110

(Continued)



Table 5.1 Observed α-levels of the Proposed Tests at α 5 0.1 Continued

m m

dist. k1; k2 test 3 4 5 6 dist. 3 4 5 6

(3,5) PT 0.353 0.244 0.209 0.191 0.333 0.256 0.203 0.175

BT 0.145 0.124 0.119 0.121 0.131 0.132 0.120 0.113

BNT 0.101 0.100 0.107 0.117 0.093 0.110 0.106 0.106

BHT 0.105 0.103 0.109 0.114 0.095 0.117 0.110 0.105

(4,4) PT 0.323 0.245 0.184 0.180 0.331 0.233 0.197 0.182

BT 0.121 0.121 0.102 0.113 0.121 0.112 0.105 0.111

BNT 0.088 0.104 0.099 0.118 0.095 0.101 0.105 0.114

BHT 0.090 0.107 0.098 0.114 0.092 0.102 0.103 0.108

(4,5) PT 0.337 0.238 0.202 0.189 0.339 0.242 0.197 0.178

BT 0.126 0.115 0.115 0.111 0.124 0.117 0.111 0.102

BNT 0.099 0.100 0.113 0.115 0.093 0.102 0.109 0.108

BHT 0.096 0.101 0.110 0.111 0.091 0.102 0.107 0.104



Since X and Y are generated from the same distributions, it is expected that an accurate test

maintains the nominal level. In the frequentist approach, the appealing property of the p-value is its

(asymptotic) uniformity on Unif ð0; 1Þ under the null hypothesis. When a test statistic is conserva-

tive (or liberal), the actual type I error of the test will be small (large) compared with the nominal

level. For a conservative (or liberal) test, the power values can be misleading. It is easy to see that

a conservative p-value hardly rejects an incorrect null hypothesis and a liberal test easily rejects a

correct null hypothesis too often and both lead to incorrect inferences.

Clearly the PT leads to an overly conservative test, i.e., fails to reject the null hypothesis when

it should. However, this problem tends to diminish with an increase in sample size. Here, BT and

BNP have better performances, and are closer to the actual p-value. It is noteworthy that for m5 3,

ðk1; k2Þ5 ð3; 3Þ; ð3; 4Þ which have very small sample sizes (ðnX ; nY Þ5 ð9; 9Þ; ð9; 12Þ), BT and BNT

are conservative and liberal, respectively. It is of interest to explore the average of the p-values.

We refer to this hybrid test as the BHT method. Clearly BHT has better performance.

To compare the statistical power, we consider

1. XBN 0; 1ð Þ;YBNð0:5; 1Þ,
2. XBexp 1ð Þ;YBexpð1:5Þ,
3. XBlogistic 0; 1ð Þ; YBlogisticð1; 1Þ,
4. XBGamma 1; 1ð Þ;YBGammað1; 2Þ.

Since X and Y are generated from different distributions with different parameters, a powerful

test should reject the null hypothesis with high probability. The result is presented in Table 5.2.

Since the PT is conservative for small sample sizes, we expect a large value for the power.

However, this power value is overly optimistic and not accurate. Among the bootstrap tests, BHT

has better power than BNT. BHT has less power than PT, keeping in mind that PT performs con-

servatively for small sample sizes.

5.5 CONCLUSIONS
A considerable amount of research has been conducted in the past few decades to advance the theo-

retical foundation of RSS and present its applications. RSS draws on additional information from

inexpensive and easily obtained sources to collect a more representative sample. In this work, we

review the statistical tests of means under one and two samples. RSS is often applied with small

sample sizes. Presenting nonparametric methods and exploring the performance of test statistics are

essential in obtaining a better understanding of their behavior. In our empirical study, we mainly

considered small samples and compared the performance of proposed tests using Monte Carlo

investigations under different distributions. We proposed a hybrid method, based on the average of

the p-values of pivotal and nonpivotal bootstrap tests and demonstrate its better performance. The

hybrid method provides a more accurate inference for small sample sizes and enables one to main-

tain the nominal level with comparable power.
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Table 5.2 The Empirical Power of the Proposed Tests

m m

dist. k1; k2 test 3 4 5 6 dist. 3 4 5 6

XBNð0; 1Þ;YBNð0:5; 1Þ (3,3) PT 0.552 0.553 0.605 0.666 XBexpð1Þ; YBexpð1:5Þ 0.590 0.604 0.652 0.703

BT 0.342 0.422 0.502 0.583 0.395 0.481 0.559 0.631

BNT 0.224 0.359 0.457 0.553 0.267 0.403 0.510 0.602

BHT 0.276 0.392 0.485 0.571 0.322 0.444 0.537 0.619

(3,4) PT 0.607 0.626 0.670 0.724 0.640 0.678 0.733 0.789

BT 0.391 0.476 0.568 0.653 0.439 0.556 0.645 0.722

BNT 0.269 0.423 0.522 0.617 0.309 0.488 0.596 0.683

BHT 0.325 0.452 0.547 0.639 0.369 0.524 0.623 0.706

(3,5) PT 0.628 0.657 0.722 0.771 0.676 0.714 0.773 0.819

BT 0.427 0.517 0.613 0.691 0.479 0.598 0.687 0.759

BNT 0.314 0.455 0.576 0.664 0.353 0.521 0.635 0.714

BHT 0.367 0.489 0.596 0.677 0.407 0.562 0.662 0.739

(4,4) PT 0.670 0.702 0.755 0.822 0.702 0.749 0.808 0.859

BT 0.445 0.563 0.655 0.747 0.491 0.624 0.721 0.803

BNT 0.356 0.514 0.630 0.729 0.389 0.567 0.679 0.773

BHT 0.399 0.546 0.647 0.741 0.441 0.596 0.703 0.790

(4,5) PT 0.708 0.740 0.817 0.859 0.754 0.793 0.845 0.893

BT 0.491 0.599 0.725 0.794 0.562 0.685 0.771 0.846

BNT 0.407 0.569 0.702 0.776 0.459 0.628 0.735 0.823

BHT 0.449 0.581 0.716 0.788 0.514 0.661 0.756 0.835
XBlogisticð0; 1Þ;
YBlogisticð1; 1Þ (3,3) PT 0.481 0.440 0.454 0.476

XBGammað1; 1Þ;
YBGammað1; 2Þ 0.640 0.695 0.752 0.808

BT 0.257 0.302 0.347 0.380 0.437 0.563 0.654 0.736

BNT 0.142 0.233 0.314 0.377 0.245 0.452 0.617 0.734

BHT 0.175 0.263 0.327 0.381 0.320 0.510 0.635 0.737

(3,4) PT 0.529 0.500 0.535 0.562 0.668 0.720 0.791 0.844

BT 0.323 0.365 0.438 0.488 0.450 0.581 0.684 0.773

BNT 0.211 0.302 0.398 0.454 0.241 0.468 0.666 0.777

BHT 0.252 0.337 0.421 0.470 0.321 0.531 0.676 0.781



(3,5) PT 0.580 0.567 0.598 0.631 0.706 0.740 0.813 0.861

BT 0.382 0.452 0.508 0.560 0.476 0.597 0.714 0.799

BNT 0.254 0.379 0.448 0.506 0.259 0.479 0.689 0.798

BHT 0.305 0.412 0.475 0.531 0.337 0.540 0.708 0.800

(4,4) PT 0.539 0.548 0.581 0.624 0.780 0.819 0.880 0.927

BT 0.321 0.394 0.456 0.525 0.595 0.721 0.817 0.887

BNT 0.216 0.329 0.440 0.521 0.403 0.634 0.788 0.869

BHT 0.251 0.362 0.449 0.524 0.488 0.686 0.805 0.879

(4,5) PT 0.587 0.598 0.654 0.700 0.798 0.855 0.909 0.946

BT 0.372 0.456 0.553 0.615 0.611 0.752 0.851 0.911

BNT 0.265 0.397 0.517 0.593 0.410 0.667 0.835 0.905

BHT 0.306 0.426 0.539 0.606 0.509 0.716 0.847 0.912
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CHAPTER

6EXTENSIONS OF SOME
RANDOMIZED RESPONSE
PROCEDURES RELATED WITH
GUPTA-THORNTON METHOD: THE
USE OF ORDER STATISTICS

Carlos N. Bouza-Herrera
Faculty of Mathematics and Computation, University of Havana, Havana, Cuba

6.1 INTRODUCTION
We will consider that the interest is in estimating the mean of a sensitive variable Y. Some persons

in the population carry a stigma and tend to give an incorrect value of Y or to refuse to give a

report. The seminal work of Warner (1965a,b) opened a way to deal with this problem by using the

so-called technique of randomized response (RR). The use of RR provides the opportunity of reduc-

ing response biases, as well as nonresponses, due to dishonest answers when questioning on Y. This

technique protects the privacy of the respondent by ensuring that his belonging to a stigmatized

group cannot be detected by the sampler.

Greenberg et al. (1971) extended the theory of RR to the quantitive case. Different extensions

of RR have been introduced since then. A usual approach for estimating the mean of a quantitative

sensitive variable Y is scrambling the responses using some auxiliary variables. Celebrating the

50th anniversary of the publication of Warner�s paper, Chaudhuri et al. (2016) edited a set of recent

research results on this theme. Some important particular new models are due to Gupta and

Thornton (2002), Hussain and Shabbir (2011), Singh and Chen (2009), and Tarray and Singh

(2015).

In this chapter, we introduce the use of order statistics (OS) as an alternative to some scram-

bling procedures reported in the literature in Section 6.2. A detailed discussion on them may be

obtained, for example, in Bouza and Singh (2009), Chaudhuri and Mukherjee (1988), and Gupta

and Thornton (2002).

Section 6.3 is concerned with the development of their counterparts, which use OS of the distri-

bution of the auxiliary variable X.

A comparison of the estimators is developed by comparing their variances. An important result

is that the use of scrambling using the OS of X provides, in general, an improvement in the

accuracy.
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6.2 THE CONSIDERED SCRAMBLING PROCEDURES
In Chaudhuri and Mukherjee (1988) a simple scrambling procedure can be seen. Take the sensitive

variable Y and a variable X with a known distribution with E(X) 5 μX and V Xð Þ5σ2
X . The ith

respondent performs an experiment and obtains a value of X. Then he/she reports

Si 5 Yi 1Xi

Its expectation is EðSiÞ5μY 1μX and its variance VðSiÞ5VðYiÞ1V Xið Þ: We may compute the

sample mean of

Z5
1

n

Xn
i51

Zi 2μX 5
1

n

Xn
i51

Yi 1Xi 2μX

It is unbiased, as

E Z
� �

5
1

n

Xn
i51

EðYiÞ1EðXiÞ2μX 5μY

Its variance is

VðZÞ5 1

n2

Xn
i51

VðYiÞ1VðXiÞ5
σ2
Y 1σ2

X

n

A variation is that each respondent selects randomly a value from U� 5 U1; . . . ;Ukf g with

probability πt. U
� is determined previously by the sampler and the sample he/she makes a selection

Ut. As we know U� and πt

μU 5
Xk
t51

Utπt;σ2
U 5

Xk
t51

Ut2μU

� �2πt ;

It seems that the respondents should think that an extra protection is given to his possible

stigmatization if the report is

SUi 5 Yi 1UiXi

Under this scrambling procedure the expectation of the report is

EðSUiÞ5EðYiÞ1E Uið ÞEðXiÞ5μY 1μUμX :

We are able to compute

ZU 5
1

n

Xn
i51

ZUi 5
1

n

Xn
i51

SUi 2μUμX

As its expectation is

EðZUÞ5
1

n

Xn
i51

EðYiÞ1E Uið ÞEðXi ið ÞÞ5μY 1μU

1

n

Xn
i51

μX ið Þ

 !
2μUμX 5μY

it is an unbiased estimator of μY . The variance of this estimator is:
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VðZUÞ5
1

n

� �2Xn
i51

VðZUiÞ5
1

n

Xn
i51

σ2
Y 1σ2

Uσ
2
X

n
5

σ2
Y 1σ2

Uσ
2
X

n

Note that

V Z
� �

2V ZU

� �
5

ð12σ2
UÞσ2

X

n

Therefore, if the sampler determines U� in such a way that σ2
U . 0 is preferred estimating μY

employing ZU .

Gupta and Thornton (2002) proposed generating a random Bernoulli variable A with parameter

α and obtaining as response

SiG 5
Yi if A5 1

Yi 1Xi if A5 0

�

That is, the report is modeled by

SiG 5AYi 1 ð12AÞðYi 1XiÞ
Let us analyze its expected value.

EðSGÞ5
1

n

Xn
i51

EðSiGÞ5αμY 1 12αð Þ μY 1μX

� �
5μY 1 12αð ÞμX

Take the transformed variable ZiG 5 SiG 2 12αð ÞμX , its expectation is

EðZiGÞ5EðSiGÞ2 12αð ÞμX 5μY

Clearly, for estimating μY unbiasedly a good decision is taking its sample mean

ZG 5
1

n

Xn
i51

ZiG

The sampling errors of the sample means of SG and ZGcoincide :

VðSGÞ5VðZGÞ5
σ2
Y

n
1

12αð Þσ2
X 1αð12αÞμ2

X

n

Comparing the accuracy of Z with that of ZG we have that

V Z
� �

#V ZG

� �
if 12

σ2
X

μ2
X

5 12CVðXÞ2 $α

These results allow the sampler to design the preference of one of the methods with respect to a

convenient distribution function of X. For example, if is used the distribution described below

f xð Þ5
1

9
if xA 3; 12½ �
0 otherwise

(

By preferring the proposal of Gupta and Thornton (2002) as, in this case
σ2
X

μ2
X

5
81
12
225
4

D0:122, is
enough using α. 0, 9.

Consider the difference VðZUÞ2V ZG

� �
: It is equal to
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VðZUÞ2V ZG

� �
5

ðα1σ2
U 2 1Þσ2

X

n
2

αð12αÞμ2
X

n

We have the second-degree equation inequality α2μ2
X 1α σ2

X2μ2
X

� �
1 ( α1σ2

U 2 1Þσ2
X , 0. Its

solution provides an adequate value of α, once the sampler fixes f (x), if he/she decides to use the

Gupta and Thornton (2002) scrambling method.

6.3 USING ORDER STATISTICS (OS) FOR SCRAMBLING
We propose using order statistics (OS) instead of values of an auxiliary variable for scrambling.

Consider that the respondent selected in the ith draw is provided with a mechanism for generating,

using SRSWR, a sequence of positive independent random variables X1; . . . ;Xk;XjAX�. The inter-

viewee, included in the ith drawn, obtains a sequence, ranks it, and determines

Xið1Þ; . . . ;Xi kð Þ;whereXi tð Þ ,Xi hð Þ; if t, h. The report is made as follows:

SðiÞ 5Yi 1XiðiÞ

We have that the expectation of the report is

EðSðiÞÞ5E Yið Þ1E Xi ið Þ
� �

5μY 1μXðiÞ

We may compute from the response

ZðiÞ 5 SðiÞ 2μX

Under the described model, we have that:

VðSðiÞÞ5V Yið Þ1V Xi ið Þ
� �

5σ2
Y 1σ2

XðiÞ

We select, from the population, a simple random sample with replacement of size n, and take

the sample mean:

Zos 5
1

n

Xn
i51

ZðiÞ 5
1

n

Xn
i51

Yi 1XiðiÞ 2μX

We derive its unbiasedness because, see Chen et al. (2004), 1
n

Pn
i51 μXðiÞ 5μX . Therefore

E Zos

� �
5

1

n

Xn
i51

μY 1μXðiÞ 2μX 5μY

The random mechanism used sustains that the OS are mutually independent and they are also

independent of Y. Taking into account these facts, the variance is given by

VðZosÞ5
1

n

� �2Xn
i51

VðZ ið ÞÞ5
1

n

� �2Xn
i51

V Yið Þ1VðXiðiÞÞ5
σ2
Y

n
1

1

n

� �2Xn
i51

σ2
XðiÞ 5

Denoting μXðiÞ 2μX 5ΔXðiÞ we have, see Bouza and Singh (2009) and Chen et al. (2004) for

example, that
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σ2
XðiÞ 5σ2

X 2 μXðiÞ2μX

� �2

Then, the variance of the estimated mean is

VðZosÞ5
σ2
Y 1σ2

X

n
2

1

n

� �2Xn
i51

Δ2
XðiÞ

Let us consider again that each respondent selects also randomly a value from

U� 5 U1; . . . ;Ukf g with probability πt. U
� is determined previously by the sampler and provides a

device for performing the random selection of Ut. We know the expectation and variance of Ut.

They are

μU 5
Xk
t51

Utπt;σ2
U 5

Xk
t51

ðUt2μUÞ2πt;

It will be more reliable for the respondents to report the scrambled variable

SUðiÞ 5Yi 1UiXiðiÞ

Ui is the selection made by respondent I from U�. The expectation of the report is

EðSUðiÞÞ5EðYiÞ1E Uið ÞEðXi ið ÞÞ5μY 1μUμXðiÞ :

We are able to compute

ZðUÞ 5
1

n

Xn
i51

ZUðiÞ 5
1

n

Xn
i51

SUðiÞ 2μUμX

Its expectation is

E Z Uð Þ
� �

5
1

n

Xn
i51

EðYiÞ1E Uið ÞEðXi ið ÞÞ5μY 1μU

1

n

Xn
i51

μX ið Þ

 !
2μUμX 5μY

Hence, it is an unbiased estimators of μY . The variance of this estimator is derived as follows

VðZðUÞÞ5
1

n

� �2Xn
i51

VðZU ið ÞÞ5
1

n

Xn
i51

σ2
Y 1σ2

UVðXiðiÞÞ
n

5
σ2
Y 1σ2

U

Pn
i51 σ

2
XðiÞ

n
5

σ2
Y 1σ2

Uσ
2
X

n
2σ2

U

1

n

� �2Xn
i51

Δ2
XðiÞ

Comparing the variances of Zos with the above expression, we have the preference for ZU

whenever

V Zos

� �
2VðZðUÞÞ5 ð12σ2

UÞ
σ2
X

n
2

1

n

� �2Xn
i51

Δ2
XðiÞ

 !
. 0

We know that
σ2
X

n
2 1

n

� �2Pn
i51 Δ

2
X ið Þ . 0, therefore, this relationship holds unless 1# σ2

U .

Another RR-scrambling method based on OS is derived by using the scrambling procedure of

Gupta and Thornton (2002). We suggest scrambling by using the OS obtained by the ith respon-

dent. A random Bernoulli variable A with parameter α is generated by the respondent and is

obtained as response
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SiG 5
Yi if A5 1

Yi 1XiðiÞ if A5 0

�

That is, the report is modeled by

SðiÞG 5AYi 1 ð12AÞðYi 1XiðiÞÞ
Let us analyze its expected value. It is

EðSðiÞG 5αμY 1 12αð Þ μY 1μX ið Þ

� �
5μY 1 12αð ÞμX ið Þ

The variance of it is given by

V S ið ÞG
� �

5σ2
Y 1 12αð Þσ2

X ið Þ 1α 12αð Þμ2
X ið Þ

We may compute

ZðiÞG 5 SðiÞG 2 12αð ÞμX

In addition, derive as an estimator of μY its sample mean

ZðGÞ 5
1

n

Xn
i51

ZðiÞG

We have that

EðZðGÞÞ5μY 1
12α
n

Xn
i51

μX ið Þ 2μX

 !
5μY

Its sampling error is given by

VðSðGÞÞ5VðZðGÞÞ5
σ2
Y

n
1

12αð ÞPn
i51 σ

2
X ið Þ 1α 12αð ÞPn

i51 μ
2
X ið Þ

n

Note that

Xn
i51

σ2
X ið Þ 5

σ2
X

n
2

1

n

� �2Xn
i51

Δ2
XðiÞ

Hence

VðZðGÞÞ5
σ2
Y

n
1 12αð Þ σ2

X

n
2

1

n

� �2Xn
i51

Δ2
XðiÞ

 !
1

α 12αð ÞPn
i51 μ

2
X ið Þ

n

Comparing Z ðGÞ with Zos we have that Zos is more accurate if is satisfied the relationship

α2
Xn
i51

μ2
XðiÞ 1α σ2

X 2
1

n

Xn
i51

Δ2
X ið Þ 1

Xn
i51

μ2
X ið Þ

 !
1

1

n

Xn
i51

Δ2
X ið Þ , 0

A comparison with ZU is developed by computing

VðZðUÞÞ2VðZðGÞÞ5
ðα2 11σ2

UÞσ2
X

n
2 α2 11σ2

U

� � 1

n

� �2Xn
i51

Δ2
X ið Þ 2

α 12αð ÞPn
i51 μ

2
X ið Þ

n
, 0
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In terms of α this means that

α2
Xn
i51

μ2
X ið Þ 1α σ2

X 2
1

n

Xn
i51

Δ2
X ið Þ 1

Xn
i51

μ2
X ið Þ

 !
1

1

n

Xn
i51

Δ2
X ið Þ , 0

Then a sampler with a preference for the Gupta-Thornton procedure is able to tune the value of

α once f(x) is fixed by solving a second-degree equation.

Let us consider the effect of using XiðiÞ instead of Xi. The paired comparisons of the procedures

of scrambling using X or the OS yields the following criteria:

1. VðZ ÞvsVðZosÞ
As VðZÞ2VðZosÞ5 1

n

� �2Pn
i51 Δ

2
X ið Þ $ 0, we should prefer Zos.

2. VðSGÞvs VðZ ðGÞÞ

VðSGÞ2VðZðGÞÞ5
1αð12αÞ μ2

X 2
Pn

i51 μ
2
X ið Þ

� �
n

1 12αð Þ 1

n

� �2Xn
i51

Δ2
X ið Þ

 !

As α is a probability, 12αð Þ. 0, a sufficient condition for preferring Z ðGÞ is the
positiveness of X because μ2

X 2
Pn

i51 μ
2
X ið Þ 5

P
i 6¼jμXðiÞμXðjÞ .

3. VðSUÞvs VðZ ðUÞÞ
The difference of the variance is always positive: VðSUÞ2V Z Uð Þ

� �
5σ2

U
1
n

� �2Pn
i51

Δ2
XðiÞ

6.4 CONCLUSIONS
From the developed paired comparison, we have that the use of scrambling using OS should be pre-

ferred in all cases.

The introduction of an additional randomization through a set of values U� improves the accu-

racy with respect to the direct use of Y1X.

The procedure of Gupta and Thornton (2002) may be preferred to the other scrambling proposed

with an adequate selection of α previous a fixation of the distribution of the variable X.
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7RANKED SET SAMPLING
ESTIMATION OF THE POPULATION
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7.1 INTRODUCTION
Consider a variable of interest Y and a concomitant variable X, which are correlated and the coeffi-

cient of correlation ρ. The population ratio of the population mean of the two variables is

R5
μy

μx
5 Y

X
, and its usual estimator is R̂5 y

x
, y and x are the sample means.

Textbooks consider that the sample is selected using simple random sampling with replacement

(SRSWR). The ratio estimator is biased and it is negligible under certain conditions. The expression

of the bias is developed using Taylor series expansion, see classic textbooks, such as Cochran

(1977) and Murthy (1967). The approximated variance of R̂, considering such development, is

VarðR̂ÞDR2

n
V2
x 1V2

y 2 2ρxyVxVy

� �
;

where Vx 5
σx

μx
, Vy 5

σy

μy
and ρxy 5

PN
i51

ðxi 2μxÞðμi 2μyÞ=Nσxσy, σx and σy are the standard devia-

tions of the populations of the variables X and Y, respectively.

The available information may be used in different ways and many modified ratio estimators

have been developed in recent years. The information on X, as the coefficient of variation, quar-

tiles, median, coefficient of kurtosis, coefficient of skewness, is used for improving the estimation

of R. Modified ratio estimators have been proposed by Murthy (1967), Cochran (1977), Kadilar

and Cingi (2004), Singh et al. (2008), Al-Omari et al. (2009), and Singh and Solanki (2012).

An alternative to simple random sampling (SRS) is the sample design known as ranked set sam-

pling (RSS). McIntyre (1952) introduced it looking to increase the efficiency of the estimation of

the population mean. The method is useful when the variable of interest is very expensive or

difficult to measure but it can be easily ranked at a negligible cost. The original form of RSS,

conceived by McIntyre (1952), can be described as follows. First, a simple random sample of size

k is drawn from the population and the k sampling units are ranked with respect to the variable of

interest, say X, without measuring Y. Then the unit with rank 1 is identified and taken for the
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measurement. The remaining units of the sample are discarded. Next, another simple random sam-

ple of size k is drawn and the units of the sample are ranked by judgment, the unit with rank 2 is

taken using the measurement of X and the remaining units are discarded. This process is continued

until a simple random sample of size k is taken and ranked and the unit with rank k is taken for the

measurement of X. This whole process is referred to as a cycle. The cycle then repeats m times and

yields a ranked set sample of size n 5 mk. In the recent past a lot of research has been done in

RSS by Samawi et al. (1996), Muttlak (1997), Philip and Lam (1997), Muttlak (1998), Al-Saleh

and Al-Kadiri (2000), Al-Odat and Al-Saleh (2001), Al-Saleh and Al-Omari (2002), Jozani and

Johnson (2011), and Jeelani et al. (2013, 2014a,b,c,d).

Takahasi and Wakimoto (1968) gave mathematical support to their claims. Dell and Clutter

(1972) established that even if the ranking is not perfect the proposed estimator is still unbiased.

The use of RSS is the theme of a growing number of papers. Patil et al. (2002), Bouza (2005), and

Al-Omari and Bouza (2014) gave reviews of the theme as well as a large list of papers.

Different ratio type estimators have been developed for RSS, see for example, Wolfe (2004),

Ganeslingam and Ganesh (2006), Ohyama et al. (2008), Al-Omari et al. (2009), Herrera and

Al-Omari (2011), Al-Omari (2012), Singh et al. (2014), Jeelani and Bouza (2015), Al-Omari et al.

(2016), and Khan and Shabbir (2016).

In the last 65 years the theory of RSS has been extended and is now thoroughly applied. Its pop-

ularity is due to the fact that RSS is expected to improve the accuracy of the estimation of the

population mean of Y.

Take a finite population U5 u1; . . . :; uNf g and a variable X correlated with the variable of inter-

est Y. It may be used for obtaining an accurate ranking of Y cheaply. Consider that in addition to

X each unit is attached to an attribute γ, which is highly correlated to Y in some sense. Denote the

information on U by Z ⃗ 5 Z1; . . . ; ZNð Þ; Z5X;Y ; γ. X and Y are real variables and

γi 5
1 if ui belong to a group ϑ

0 otherwise

�

X and γ are known in advance by the statistician. This is a common situation. Take for example

the study of the response to a treatment of cancer patients. Take X as the size of the tumor, existing

in the patient’s expedient, and γ as the sex. Measuring the size of the tumor after the treatment,

Y, is to be obtained using an expensive method, such as tomography axial computing.

Note that we know in advance the values of the totals γT 5
PN

i51 γi and XT 5
PN

i51 Xi.

Therefore we may compute the proportion of units belonging to ϑ, P5 γT=N as well as the popula-

tion mean of X: X5XT=N.
We are interested in estimating the population mean of Y

Y 5
1

N

XN
i51

Yi

Commonly, a sample s is selected from U using simple random sampling with replacement

(SRSWR) and Y is estimated using the sample mean

y5
1

n

Xn
i51

yi
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The selected sample may be used for estimating the mean of X and P by x5 1
n

Pn
i51 xi and

p5 1
n

Pn
i51 γi. As they are unbiased estimators their mean squared errors (MSE) are their variances.

They are, respectively:

V zð Þ5 1

Nn

XN
i51

Zi2Z
� �2

5
σ2
Z

n
; Z5X; Y

V pð Þ5 σ2
γ

n
5

P 12Pð Þ
n

The ratio of the true proportion and the estimation provides information, which may be intro-

duced in the estimation process to improve the accuracy of the estimate. Different authors have

used attributes for deriving ratio type estimators of Y based on SRSWR. See, for example, Singh

et al. (2008).

In this chapter we will extend some results, when RSS is used for selecting a sample and is

decided estimating Y by means of ratio type estimators, based on an auxiliary attribute γ.
Some exponential ratio type estimators of the finite population mean Y are considered. The pro-

posed RSS-estimators perform better under conditions that generally hold in practice.

Section 7.2 is concerned with presenting some ratio type estimators, based on auxiliary informa-

tion provided by attributes. Section 7.3 is devoted to the development of their RSS counterparts.

An auxiliary variable X is used for ranking the units. The proposed estimators are analyzed and

approximate expressions of their mean squared errors (MSE) are obtained by developing Taylor

series. The expressions of the gains in accuracy of the RSS-estimators are developed and their

meanings are discussed. Finally, in Section 7.4, a numerical study is developed using real-life data

for illustrating the performance of the proposal. We compare the proposed RSS-estimators with the

existing SRSWR-estimators of the population mean in terms of their MSE and a simulation study

of the approximation error (AE).

7.2 RATIO TYPE ESTIMATORS IN SRSWR USING γ
In SRSWR, n units out of N units of a population U5 u1; . . . ; uNf g are drawn independently and

every possible combination of items, for the given sample size, has an equal chance of being

selected.

Ratio estimators are of wide use when looking for increasing the estimation of the precision of

the estimates of the population mean. They take advantages from the existence of a correlation

between an auxiliary variable and the variable of interest. The basic theory of ratio estimation is

presented in standard textbooks, such as Cochran (1977), Murthy (1967), and Hedayat and Sinha

(1992). The common framework takes into account first-order Taylor series developments.

Commonly the concomitant variable is quantitative but some approaches consider that it is an attri-

bute. Then particular ratio estimators have been developed. We will analyze some of the most pop-

ular ones.

The classic ratio estimator is determined by

yr 5 y
X

x

� �
;
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Its MSE is approximately

MSE yr
� �

D
σ2
Y

n
1Y

2 σ2
X

nX
2
2 2

Y

X
ρyγσYσX

Improving estimation using ratio type estimators is giving a new look to the use of additional

information. Some papers on the theme are Sharma et al. (2013) and Kadilar and Cingi (2004).

Among the first proposals of using attributes as an auxiliary variable is the paper by Naik and

Gupta (1996). A seminal paper is the contribution of Prasad (1989). More recently, contributions

are Shabbir and Gupta (2007) and Yadav and Adewara (2013). They considered the use of SRSWR

and proposed as ratio estimator of Y

y1 5 yrp; rp 5
P

p

They obtained that the MSE of y1 is given by

MSE y1
� �

D
σ2
Y

n
1Y

2 σ2
γ

nP2
12 2ρyγ

PσY

Yσγ

� �� �

Note that ρyγ is the point biserial coefficient of correlation. That is ρyγ 5
ffiffiffiffiffiffiffiffiffiffiffiffi
P 12Pð Þ

p
Y ϑ 2 Y

ϑð Þ
σy

,

where

Yϑ 5

P
uiAϑYiPN

i51 Iϑ ið Þ ; Yϑ 5

P
uiAϑYi

N2
PN

i51 Iϑ ið Þ ; Iϑ ið Þ5 1 if uiAϑ
0 otherwise

�

Jhajj et al. (2006) proposed to work within a general class of estimators. Their proposal was

considering the parametric class

ζ2 5 y2


y2 5 g y; τð Þ;τ5 p

P

n o

The parametric function g(a, b) should satisfy a set of regularity conditions. One of them is that

g Y ; 1
� �

5 Y , for any value of the population mean. The optimal estimator in this class is the linear

regression estimator

y2opt 5 y1 b P2 pð Þ; b5 β̂ ;β5
Cov y; pð Þ
V pð Þ 5 ρyγ

σy

σγ

� �
:

as its MSE equals

Min MSEðy2Þ
� �

D
σ2
y

n
12 ρ2yγ
� �

Singh et al. (2007) considered the ratio type exponential estimators

y3t 5 yexp τtð Þ
,

τt 5

P2 p

P1 p
if t5 1

p2P

P1 p
if t5 2

8><
>:
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The MSEs of the estimators obtained considering up to the first order of approximation are:

MSEðy3tÞ5
σ2
y

n
1

Y
2σ2

γ

4n
2

Yρyγσyσγ

nP

σ2
y

n
1

Y
2σ2

γ

nP
1

Yρyγσyσγ

nP
if t5 2

if t5 1

8>>><
>>>:

Another suggested estimator was developed fixing a constant α :

y4 5 y αexp τ1ð Þ1 ð12αÞexp τ2ð Þ½ �
Minimizing MSE (MSEðy4Þ) is obtained that

Min MSE y4
� �

5Min MSEðy2Þ
� �� �

D
σ2
y

n
12 ρ2yγ
� �

7.3 RATIO TYPE ESTIMATORS IN RSS USING γ
7.3.1 SOME BASIC ELEMENTS OF RSS

McIntyre (1952) considered ranking with respect to the prediction of the values of the variable of

interest Y. Hence he considered as valid the hypothesis of having a perfect ranking of Y. By order-

ing in terms of the latent values, we have that the measured values of Y are indeed order statistics.

Then the density function of the ith order statistic (OS) of a simple random sample (SRS) of size

m, f[i]5 f(i), should be derived from distribution of Y: F. We have that from the probability density

function of the OSs, for any y,

f ðyÞ5 1

m

Xm

i51
fðiÞðyÞ:

This equality has an important role in RSS as it gives rise to deriving its statistical merits.

Perfect ranking with respect to the latent values of Y is consistent. When ranking errors exist,

the density function of the ranked statistic with rank i is not f(i),but the corresponding cumulative

distribution function F[r], which is:

F½i� 5
Xm
s51

psiF sð ÞðyÞ

Here psi denotes the probability with which the sth (numerical) order statistic is considered hav-

ing the rank i.

The RSS procedure involves selecting independently m sets of m units from U. In the first set

we evaluate Y in the lowest ranked unit, the remaining units of it are discarded. In the second set of

m units, Y is evaluated in the second lowest ranked unit and the remaining units are discarded. The

procedure is continued until the mth set is evaluated. This completes one cycle and a ranked set

sample s(1) of size m is obtained. The whole process can be repeated k times (cycles) and the

ranked set sample of size n 5 mk is given by the sequence s(1),. . .,s(k). In practical studies m takes

values of 2, 3, or 4.
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The theory considers that Y may be ranked with some error. Lynne Stokes (1977)

derived the effect of ranking using concomitant variables. This fact affects the behavior of

the RSS estimator by reducing the associated gain in accuracy, with respect to the SRSWR-

estimator.

Let us denote by XjðiÞ;Yj½i�
� �

the pair of the ith order statistics of X and the associated element Y

in the jth cycle. Then the ranked set sampling can be explained as follows

First we select m SRS each of size m as

X11; Y11ð Þ; X12; Y12ð Þ; . . .; X1m; Y1mð Þ� �
X21; Y21ð Þ; X22; Y22ð Þ; . . .; X2m; Y2mð Þ� �

^ ^ ^
Xm1; Ym1ð Þ; Xm2; Ym2ð Þ; . . .; Xmm; Ymmð Þ� �

2
664

3
775

Rank the units within each set according to the variable X as

X�
1ð1Þ; Y

�
1½1�

� �
; X1ð2Þ; Y1½2�
� �

; . . .; X1ðmÞ; Y1½m�
� �� 

X2ð1Þ; Y2½1�
� �

; X�
2ð2Þ; Y

�
2½2�

� �
; . . .; X2ðmÞ; Y2½m�

� �� 

^ ^ ^

Xmð1Þ; Ym½1�
� �

; Xmð2Þ; Ym½2�
� �

; . . .; X�
mðmÞ;Y

�
m½m�

� �� 

2
666666664

3
777777775
:

Then the measured RSS units are X�
1ð1Þ;Y

�
1½1�

� �
; X�

2ð2Þ;Y
�
2½2�

� �
; . . .; X�

mðmÞ;Y
�
m½m�

� �n o
. The process

is repeated k times (cycles).

If the error probabilities are the same within each cycle of a balanced RSS, we have that

1

m

Xm
i51

F½i�ðyÞ5
1

m

Xm
i51

Xm
s51

psiFðsÞðyÞ5FðyÞ

Then, X can be used for the ranking of the sampling units; it is measured on each unit in the

selected simple random samples. The units are ranked according to the measured X values. We

have induced order statistics Y(i). Let f(Y|X(i))(y|x) denote the conditional density function of Y given

X(i) 5 x and g(i)(x) the marginal density function of X(i). Hence

f½i� yð Þ5
ð
f
Y



X ið Þ
yxð Þg ið Þ xð Þdx

As a result

f ðyÞ5
ð
1

m

Xm
i51

f
Y



X ið Þ
yjxð ÞgðiÞðxÞdx5

1

m

Xm
i51

fðiÞðyÞ

Let us consider h(y) as a function of y, μh 5E½h Yð Þ�, and the existence of V h Yð Þ½ �5σ2
h.

Denote μ̂h;rss 5
1
mk

Pm
i51

Pk
r51 h Y i½ �r

� �
. The relative efficiency of RSS with respect to SRS for

estimating the mean of Y is based on the well-known fundamental theorem of RSS:

Theorem 1: Suppose that the ranking mechanism in RSS is consistent. Then,

i. The estimator μ̂h;rss is unbiased.
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ii. V μ̂h;rss

� �
#

σ2
h

mk

iii. If m-N then
ffiffiffiffiffiffi
mk

p
μ̂h;rss 2μh

� �
BNð0;Vðμ̂h;rssÞÞ.

7.3.2 RATIO TYPE ESTIMATORS

Extensions of ratio estimators, when RSS is used for selecting the samples, is a theme of theoretical

and practical interest. The ratio estimation based on RSS usually is more efficient compared with

the SRS ratio estimate. The usual SRSWR estimator was extended by Samawi and Muttlak (1996).

Some modified ratio estimators have been developed. See, for example, Kadilar et al. (2009),

Al-Omari and Gupta (2014), Jeelani et al. (2014a, 2014b), and Jeelani et al. (2017).

Basically, the naı̈ve RSS ratio estimator of the mean is

yr2rss 5 yrss
X

xrss

� �

When treating with the ratio G/Q, we can use a certain order representation in Taylor series

(TS). This method is used in the sequel.

Consider that gðx1; ::; xnÞ and qðy1; ::; ynÞ are statistics related to the parametric functions repre-

sented by

tn 5T 1
δT
n

1

Pn
i51 τ0ðZiÞ
n2

1

Pn
i51 τ1ðZiÞ

n
1

P
Cn
2
τ2ðZi; ZjÞ
n2

1

P
Cn
3
τ3ðZi; Zj; ZkÞ

n3

1 oP n
23

2

� �
; t5 g; q; T5G;Q; Z5X;Y

δT is a bias term: We have that Eðτ0ðZiÞÞ5Eðτ1ðZiÞÞ5 0; for the cross terms of second-order

Eðτ2ðZi; ZjÞ ZiÞ5 0


 and for the third-order cross terms τ3 Zi; Zj; Zk Zi;Zj



 �
5 0

�
.

The corresponding expansion in TS of E yr2rss2Y
� �2

, using this development, leads to the

approximate expression of the MSE:

MSEðyr2rssÞD
σ2
y 2

Pm
i51

Δ2
yðiÞ
m

� �
1R2 σ2

x 2
Pm

i51

Δ2
xðiÞ
m

� �
2 2Rρxy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
x 2

Pm
i51

Δ2
xðiÞ
m

� �
σ2
y 2

Pm
i51

Δ2
yðiÞ
m

� �s" #

n

Then we prefer this estimator to the SRSWR one when

Γ r2rss 5
Xm
i51

Δ2
yðiÞ

m
1R2

Xm
i51

Δ2
xðiÞ

m
1 2Rρxy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
x 2

Xm
i51

Δ2
x ið Þ

m

 !
σ2
y 2

Xm
i51

Δ2
y ið Þ

m

 !vuut
2
4

3
5. 0

Let us look at the counterpart of y1. It is

y1rss 5 yrssrp; rp 5
P

p

In this case, the use of RSS is involved only with yrss, as p does not depend on OSs. Now, the

MSE of y1rss is given by
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Eðy1rss2YÞ2 5MSE y1rss
� �

DV yrss
� �

1Y
2 V pð Þ
P2

12 2ρyγ PY

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V yrss
� �
V pð Þ

s0
@

1
A

0
@

1
A

5

σ2
y 2

Pm
i51

Δ2
y ið Þ

m

n
1Y

2 σ2
γ

nP2
12 2ρyγ PY

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
y 2

Pm
i51

Δ2
y ið Þ

m

σ2
γ

vuuuut
0
BBBB@

1
CCCCA

0
BBBB@

1
CCCCA

Let us compare MSE y1rss
� �

and MSE y1
� �

by computing MSE y1
� �

2MSE y1rss
� �

This difference is approximately

Γ 12rssD

Pm
i51

Δ2
y ið Þ
m

n
2 2ρyγ

Yσγ

nP

ffiffiffiffiffi
σ2
y

q
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
y 2

Xm
i51

Δ2
y ið Þ

m

vuut
0
@

1
A

0
@

1
A

Therefore RSS provides a more accurate estimator if Γ12rss . 0. The term in brackets in the sec-

ond term is positive. Then we have that a sufficient condition for preferring y1rss is that ρyγ , 0. As

ρyγ is a point biserial coefficient of correlation, and it is negative only if Y ϑ , Y ϑ . On the other

hand, Γ12rssD0 only if, for any i(51,. . .., m), Δ2
y ið Þ 5 0. This is true iff the ranking is made at

random.

The class of estimators ζ2 5 y2 y2 5 g y; τð Þ; τ5 p
P



 ��
has as RSS counterpart

ζ2:rss 5 y2rss y2ss 5 g yrss; τ
� �

; τ5
p

P




 on

We may use the same parametric function g(a, b) in ζ2:rss and the optimal estimator is

y2rss;opt 5 yrss 1 b P2 pð Þ; b5 β̂ ;β5
Cov y; pð Þ
V pð Þ 5 ρyγ

σy

σγ

� �

as the minimum MSE equals

Min MSEðy2rss;optÞ
� �

D
σ2
y 2

Pm
i51

Δ2
yðiÞ
m

n
12 ρ2yγ
� �

Now the gain in accuracy is

Γ 22rss;optD
Xm
i51

Δ2
y ið Þ

mn
12 ρ2yγ
� �

This expression is positive unless Δ2
y ið Þ 5 0 for any i5 (1,.., m), or if the correlation between Y

and γ is perfect.

Let us develop the RSS counterparts of y3t. They are:

y3t2rss 5 yrssexp τtð Þ;
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τt 5

P2 p

P1 p
ift5 1

p2P

P1 p
ift5 2

8><
>:

The corresponding approximations to the MSEs of these estimators are easily obtained. They

are given by:

MSEðy32rss;tÞ5

σ2
y

n
2
Xm
i51

Δ2
y ið Þ

nm
1

Y
2σ2

γ

4n
2

Yρyγσγ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
y 2

Pm
i51

Δ2
y ið Þ

m

 !vuut
nP

; if t5 1

σ2
y

n
2
Xm
i51

Δ2
y ið Þ

nm
1

Y
2σ2

γ

4n
1

Yρyγσγ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
y 2

Pm
i51

Δ2
y ið Þ

m

 !vuut
nP

if t5 2

8>>>>>>>>>>>><
>>>>>>>>>>>>:

The gain in accuracy differs seriously. Note that

Γ 32rss;1 5
Xm
i51

Δ2
y ið Þ

nm
1

Yρyγσγ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
y 2

Pm
i51

Δ2
y ið Þ
m

� �s

nP

This expression is always positive if ρyγ . 0; but for t 5 2 we have that

Γ 32rss;2 5
Xm
i51

Δ2
y ið Þ

nm
2

Yρyγσγ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
y 2

Pm
i51

Δ2
y ið Þ
m

� �s

nP

is always positive if ρyγ , 0. Therefore the surveyor will prefer one of them after considering the

sign of the correlation coefficient.

The analysis of y4 yields as RSS-estimator

y42rss 5 yrss αexp τ1ð Þ1 ð12αÞexp τ2ð Þ½ �
Its MSE is minimized as in the case of y2 2 rss and the MSEs are equal

Min MSE y42rss

� �
5Min MSEðy22ssÞ

� �� �
D

σ2
y

n
2
Xm
i51

Δ2
y ið Þ

nm

 !
12 ρ2yγ
� �

Therefore

Γ 42rss 5
Xm
i51

Δ2
y ið Þ

nm
12 ρ2yγ
� �
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7.4 A NUMERICAL STUDY OF THE EFFECT OF A VACCINE FOR
LUNG CANCER

Many medical institutions are developing top-level research for the evaluation of so-called person-

alized medicine. The mainstream is to look for adequate vaccines for improving the quality of life

of terminal lung cancer patients. The development of such vaccines is on the front line of research

and development. Clinical facts have shown that target therapies recurrently do not meet their pri-

mary endpoint in open population analysis, but they showed certain benefits in some patients. New

treatments must be validated in terms of their behavior in improving a quality of life index, which

must be sensitive to changes. Life quality depends on several variables, most of which are

categorical.

We obtained data on the evaluation of the success of a new product (vaccine) during 3 years. It

was applied to 132 lung cancer patients in a terminal status. Their life expectancy was 3�6 months.

A treatment with the new vaccine was applied and the improvement of survival time, Y, was

measured.

The ranking variable X was the volume of the tumor when the treatment began. Different cate-

gorical variables from their expedients were used as markers. They were:

1. Being a smoker (yes, no);

2. Sex (male, female);

3. Being diabetic (yes, no);

4. Being more than 60-year-old (yes, no);

5. Anemic (yes, no).

Using the population information, the MSEs were computed and the gain in accuracy, diminu-

tion of the MSE, was analyzed. We measured the gain in percent. The measures were:

ωr2rss 5
Γr2rss

MSE yr
� � ;ω12rss 5

Γ12rss

MSE y1
� �ω22rss;opt 5

Γ22rss;opt

Min MSE y2
� �� �

ω32rss;t 5
Γ32rss;t

� �
MSE y3;t

� � ; t5 1; 2
Γ42rss

Min MSE y4
� �� �

Simulation experiments for evaluating the behavior of the RSS-estimators studied in this paper

were conducted. RSS samples of size 40 were selected using the combinations m, k (52, 20; 4, 10;

5, 8).

One of the aspects of the behavior of the estimators was their accuracy. The difference between

the true value of the population mean and the computed estimators was analyzed. One thousand

samples were generated randomly and we evaluated

DS 5
1

1000

X1000
b51

yS2YY


 



b
; S5 12 rss; 22 rssopt; 32 rss1; 32 rss2; 42 rss

The analysis of the behavior of the RSS estimators appear in the tables presented below.

The results evidence that using yr2rss is generally the best alternative. On many occasions, using

an attribute seems to be more satisfactory for the clients. Hence, the statistician may opt for
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evaluating the effect of using an attribute, and fix which properties make one of them preferred.

P and ρyγ are involved in the formula of the MSEs, and hence in the gain in accuracy.

The results in Table 7.1 establish that y1rss obtains the largest diminution in MSE, but y2rss;opt
and y42rss are more accurate. Note that P may be considered large, while the correlation is negative

and notably different from zero. These facts have as an effect preferring y32rss;2 to y32rss;1.

Table 7.2 gives support to considering again y1rss as having the best behavior in terms of the

percent of gain in accuracy. It is the second best in terms of the average difference of the estimates

with the population mean. P is not considerably high. ρyγ is negative but closer to zero than in the

case of using smoking as an attribute. We may argue that also in the case of not too high a correla-

tion y32rss;2 is to be preferred to y32rss;1. The estimates produced by y2rss;opt and y42rss are the clos-

est to the population mean.

Table 7.3 presents the study of the use of being diabetic as an attribute. y1rss has one of the larg-

est improvements of the percent gain in accuracy, but the average of the difference, of the corre-

sponding estimates with Y , is not notable. P may not be considered as high and ρyγ is almost equal

to zero. Also, in this case y32rss;2 is to be preferred to y32rss;1. Note that y2rss;opt and y42rss have the

second best accuracy in terms of the mean difference of the estimates and the population mean.

Table 7.1 Performance of the RSS-Estimators. γ 5 1 If Being a Smoker, P 5 0.86,

ρyγ 5 2 0:72

S
Percent of Gain in Accuracy Mean Difference

m5 2 m5 4 m5 5 m5 2 m5 4 m5 5

r-rss 11.25 9.97 8.42 4.78 4.84 5.04

1-rss 20.03 19.95 19.78 7.51 7.01 6.78

2-rssopt 7.54 7.28 7.27 3.67 3.14 3.02

3-rss1 0.25 0.16 0.15 7.88 7.66 7.09

3-rss2 2.80 2.36 2.35 7.53 7.50 7.48

4-rss 7.54 7.28 7.27 3.67 3.14 3.02

Table 7.2 Performance of the RSS-Estimators. γ 5 1 if Male, P 5 0.69, ρyγ 5 2 0:35

S
Percent of Gain in Accuracy Mean Difference

m5 2 m5 4 m5 5 m5 2 m5 4 m5 5

r-rss 11.25 9.97 8.42 4.78 4.84 5.04

1-rss 11.71 11.63 11.44 7.35 7.26 7.09

2-rssopt 7.54 7.28 7.27 3.67 3.14 3.02

3-rss1 1.48 1.16 1.15 7.80 7.73 7.68

3-rss2 2.66 2.59 2.45 7.44 7.38 7.34

4-rss 7.54 7.28 7.27 3.67 3.14 3.02
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Table 7.4 permits to evaluate the effect of having a positive correlation. It is not so high but the

performance of y32rss;2, y32rss;1. y2rss;opt and y42rss is relatively better, though P is large. y2rss;opt and

y42rss produced estimates very close to Y .

When having anemia is the attribute (Table 7.5), P is close to 1 and ρyγ may be considered as

close to �1. Now the performance of y32rss;2 is much better than that exhibited by y32rss;1 in terms

Table 7.3 Performance of the RSS-Estimators. γ 5 1 If Diabetic, P 5 0.47, ρyγ 5 2 0:08

S
Percent of Gain in Accuracy Mean Difference

m5 2 m5 4 m5 5 m5 2 m5 4 m5 5

r-rss 11.25 9.97 8.42 4.78 4.84 5.04

1-rss 8.78 8.72 8.64 7.30 7.22 7.05

2-rssopt 7.59 7.50 7.47 3.17 3.08 2.98

3-rss1 1.25 1.14 1.07 7.73 7.70 7.57

3-rss2 4.21 4.17 4.05 7.40 7.35 7.22

4-rss 7.59 7.50 7.47 3.17 3.08 2.98

Table 7.4 Performance of the RSS-Estimators. γ 5 1 If More Than 40 Year Old, P 5 0.79,

ρyγ 5 0:13

S
Percent of Gain in Accuracy Mean Difference

m5 2 m5 4 m5 5 m5 2 m5 4 m5 5

r-rss 11.25 9.97 8.42 4.78 4.84 5.04

1-rss 3.53 3.42 3.34 7.32 7.28 7.16

2-rssopt 7.54 7.28 7.27 3.67 3.14 3.02

3-rss1 7.02 6.97 6.87 7.73 7.70 7.56

3-rss2 2.15 2.10 2.01 7.40 7.35 7.20

4-rss 7.54 7.28 7.27 3.67 3.14 3.02

Table 7.5 Performance of the RSS-Estimators. γ 5 1 if anemic, P 5 0.92, ρyγ 5 2 0:84

S
Percent of Gain in Accuracy Mean Difference

m5 2 m5 4 m5 5 m5 2 m5 4 m5 5

r-rss 11.25 9.97 8.42 4.78 4.84 5.04

1-rss 6.56 6.52 6.39 7.07 6.97 6.86

2-rssopt 7.50 7.30 7.29 3.55 3.50 3.46

3-rss1 2.12 2.02 1.97 7.75 7.70 7.64

3-rss2 6.00 5.93 5.84 7.50 7.42 7.38

4-rss 7.50 7.30 7.29 3.55 3.50 3.46
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of the percent of gain in accuracy. Their mean differences are very similar. y2rss;opt and y42rss are

relatively better though P is large. y2rss;opt and y42rss have the second best behavior in both

measures.
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CHAPTER

8MODIFIED PARTIALLY ORDERED
JUDGMENT SUBSET SAMPLING
SCHEMES

Abdul Haq
Department of Statistics, Quaid-i-Azam University, Islamabad, Pakistan

8.1 INTRODUCTION
Cost-effective sampling schemes are of major concern in surveys of natural resources in biology,

ecology, environmental management, forestry, etc. One of the most commonly used sampling

schemes is simple random sampling (SRS). In environmental, ecological, and biomedical studies,

there are situations where taking the actual measurement of sample observations is not only diffi-

cult, but also costly, destructive, and time-consuming. However, ranking a small set of sample

observations is relatively cheap, easy, and reliable. Ranking of the experimental units may be

accomplished through a visual inspection with respect to the study variable or by using any less-

expensive method or using ranks of a highly correlated auxiliary variable. For example, if one in

interested in estimating the average height of a plant species in a forest, then, a small set of ran-

domly selected plants can be ranked visually with respect to their heights or weights. Likewise, an

ecological assessment of the hazardous waste sites involves expensive radiochemical techniques to

find the value of the study variable. The hazardous waste sites with different levels of contamina-

tion, however, could be ranked by a visual inspection of soil discoloration. In all such situations,

McIntyre (1952) proposed a sampling scheme—later called ranked set sampling (RSS)—that could

be employed as an efficient alternative to SRS. The RSS scheme incorporates inexpensive auxiliary

information related to the study variable as a way of gathering additional information in order to

rank the selected sampling units. This use of the auxiliary information at the sampling stage helps

in selecting better representative samples from the target population.

Takahasi and Wakimoto (1968) were the first to lay the mathematical foundation of the RSS

scheme. They proved that the mean of a ranked set sample is not only an unbiased estimator of the

population mean but it is also more precise than the sample mean of a simple random sample. An

interesting finding was put forward by Dell and Clutter (1972); they showed that, despite the pres-

ence of ranking errors, the mean estimator with RSS is not only unbiased but it also outperforms

the mean estimator with SRS. For a brief introduction, bibliography, literature review, applications,

and monograph on RSS, readers are referred to Patil (1995), Patil et al. (1999), Wolfe (2012), and

Chen (2007), respectively.
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In the last few decades, there have been many new advancements and variations in the classi-

cal RSS scheme. Samawi et al. (1996) and Muttlak (1996, 1997, 2003) introduced extreme RSS

(ERSS), paired RSS (PRSS), median RSS (MRSS), and quartile RSS (QRSS) schemes, respec-

tively, for estimating the population mean. The ERSS, MRSS, and QRSS are called unbalanced

RSS schemes because these schemes select units on some ranks more frequently than the others.

An RSS scheme is called balanced if units on all ranks are selected an equal number of times.

The unbalanced RSS schemes may provide efficient mean estimators when sampling from a sym-

metric population, but efficiency of the mean estimator may depend on the modality (unimodal,

bimodal, or multimodal) of the underlying population (cf., Kaur et al., 1997; Ozturk and Wolfe,

2000). For an asymmetric population, however, these mean estimators are not precise and in

some cases they may get worse than the mean estimator with SRS. Al-Saleh and Al-Kadiri (2000)

introduced double RSS (DRSS) for estimating the population mean. They proved mathematically

that the mean estimator with DRSS is always more efficient than the mean estimator with RSS.

Al-Naseer (2007) suggested an L RSS (LRSS) scheme for estimating the population mean based

on the ideal of L moments. This scheme encompasses RSS, MRSS, and QRSS schemes. A simple

modification of LRSS has been suggested by Al-Omari and Raqab (2013), named truncation-

based RSS (TBRSS), for estimating the population mean. Both RSS and ERSS schemes are spe-

cial cases of TBRSS. Haq et al. (2014) suggested mixed RSS for estimating the population mean.

The mixed RSS is a suitable mixture of SRS and RSS schemes. For some more recent works on

RSS scheme, we refer to Haq et al. (2013, 2015, 2016a,b) and Haq (2017a,b), and the references

cited therein.

In practice, when conducting an RSS scheme, the ranker is forced to rank all units from the

smallest to the largest without actual measurement, this may not be realistic in certain settings

when the ranker lacks in confidence to rank all the selected units accurately. Ozturk (2011)

came up with a wonderful idea that, instead of ranking units, it may be possible to rank the

tied-ranked units. It is more realistic for a ranker to rank all units in a set by allowing ties

among the units when their ranks cannot be identified with full confidence. Following these

ideas, Ozturk (2011) suggested a partially ordered judgment subset sampling (POJSS) scheme

for estimating the population mean. It was shown that, under perfect ranking and with reason-

able assumptions on the partitioning of sets, the mean estimator with POJSS surpasses the mean

estimator with RSS.

In this chapter, we extend the work on the POJSS scheme and propose new modified POJSS

schemes for efficiently estimating the population mean. Using the ideas of PRSS, LRSS, and

DRSS, we propose paired POJSS (PPOJSS), L POJSS (LPOJSS), and ranked POJSS (RPOJSS)

schemes. The mathematical properties of the mean estimators under these sampling schemes are

derived. It turns out that the proposed schemes with both perfect and imperfect rankings are

efficient alternatives to their existing counterparts in terms of providing more precise mean

estimators.

The rest of this chapter is outlined as follows: in Section 8.2, some existing RSS schemes

are briefly reviewed. The modified POJSS schemes are presented in Section 8.3. Under per-

fect and imperfect rankings, the mean estimators with the existing and proposed sampling

schemes are compared theoretically and numerically in Section 8.4. A real data example is

considered in Section 8.5. Section 8.6 summarizes the main findings and concludes the

chapter.
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8.2 SAMPLING SCHEMES
In this section, some recent and existing RSS schemes are briefly reviewed, along with their mathe-

matical setups when estimating the population mean.

Let ðY1; . . .;YnÞ denote a simple random sample of size n drawn from an absolutely continuous

distribution having the cumulative distribution function (CDF) FðyÞ and the probability density

function (PDF) f ðyÞ, with the mean μY and the variance σ2
Y . Let YSRS 5 ð1=nÞPn

r51 Yr be the sam-

ple mean based on a simple random sample of size n. Here, YSRS is an unbiased estimator of μY ,

i.e., EðYSRSÞ5μY , with variance VarðYSRSÞ5 ð1=nÞσ2
Y . Let ðYð1:nÞ; . . .; Yðn:nÞÞ denote the order statis-

tics corresponding to ðY1; . . .; YnÞ, where Yðr:nÞ 5 rth minfY1; . . .; Yng for r5 1;. . .; n. The CDF and

PDF of Yðr:nÞ ð1# r# nÞ are, respectively, given by

Fðr:nÞðyÞ5
Xn
i5r

n

i

� �
fFðyÞgif12FðyÞgn2i; 2N, y,N;

fðr:nÞðyÞ5
n!

ðr2 1Þ!ðn2 rÞ! fFðyÞg
r21f12FðyÞgn2rf ðyÞ:

The mean and variance of Yðr:nÞ ð1# r# nÞ are

μYðr:nÞ 5
ð
yfðr:nÞðyÞdy and σ2

Yðr:nÞ 5
ð
ðy2μYðr:nÞÞ2fðr:nÞðyÞdy;

respectively. Similarly, the covariance between Yðr:nÞ and Yðs:nÞ ð1# r, s# nÞ is

σYðr;s:nÞ 5
ð ð

yr 2μYðr:nÞ
� �

ys 2μYðs:nÞ
� �

fðr;s:nÞðyr ; ysÞdyr dys;

where

fðr;s:nÞðyr ; ysÞ5
n!

ðr � 1Þ!ðs� r � 1Þ!ðn� sÞ! FðyrÞ
� �r�1

FðysÞ � FðyrÞ
� �s�r�1

1� FðysÞ
� �n�s

f ðyrÞ f ðysÞ;�N, yr , ys ,N;

which is the joint PDF of Yðr:nÞ and Yðs:nÞ. The joint CDF of Yðr:nÞ and Yðs:nÞ is

Fðr;s:nÞðyr ; ysÞ5
ðys
2N

ðyr
2N

fðr;s:nÞðyr; ysÞdyrdys:

These results will be used in Section 8.3. More details on the order statistics may be seen in

David and Nagaraja (2003).

8.2.1 RANKED SET SAMPLING

The RSS scheme is an efficient alternative to the SRS scheme in those sampling situations where a

small set of selected units can be ranked visually with respect to the study variable or by using the

ranks of an auxiliary variable.

The RSS scheme works as follows: select a simple random sample of size m2 units from the

underlying population. These m2 units are then partitioned into m sets, each set comprising m units.

The ranking of units within each set is accomplished through a visual inspection and/or personal
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judgment with respect to the study variable or the units can be ranked using any less-expensive

method—the ranks of the study variable could be judged using the ranks of a highly correlated aux-

iliary variable. Then, from the rth set, the rth smallest ranked unit is quantified, for r5 1; :::;m.
This is one complete cycle of a ranked set sample of size m: The whole procedure can be repeated

t times to get t cycles of a ranked set sample of size m with total sample size n5mt units.

Let ðY11j; . . .;Y1mjÞ; . . .; ðYm1j; . . .;YmmjÞ denote m simple random samples, each of size m,

obtained in the jth cycle for j5 1;. . .; t. Apply the RSS scheme on these samples to get a ranked set

sample of size m for the jth cycle, denoted by Yrðr:mÞj, r5 1;. . .;m for j5 1;. . .; t, where

Yrðr:mÞj 5 rth minfYr1j; . . .; Yrmjg. It is to be noted that, having fixed r, Yrðr:mÞj, j5 1; :::;t, are indepen-

dent and identically distributed (IID) random variables, i.e., Yrðr:mÞj � Yðr:mÞ, j5 1;. . .; t. Having
fixed j, however, Yrðr:mÞj, r5 1;. . .;m, are independent but not identically distributed (INID) random

variables, i.e., Yrðr:mÞj � Yðr:mÞ, r5 1;. . .;m. The sample mean and its variance under RSS are

YRSS 5
1

n

Xt
j51

Xm
r51

Yrðr:mÞj and VarðYRSSÞ5
1

nm

Xm
r51

σ2
Yðr:mÞ;

respectively. Takahasi and Wakimoto (1968) showed that YRSS is an unbiased estimator of μY , and

it is more precise than YSRS, i.e.,

VarðYRSSÞ5VarðYSRSÞ2
1

nm

Xm
r51

μYðr:mÞ2μY

� �2
:

8.2.2 PAIRED RANKED SET SAMPLING

The PRSS scheme was first suggested by Muttlak (1996) for estimating the population mean. The

PRSS scheme is a cost-efficient alternative to the RSS scheme, i.e., it requires fewer observations

than the RSS scheme when selecting a sample from the underlying population—thus it helps in

reducing the ranking cost.

The PRSS scheme works as follows: for the even set size m, select mðm=2Þ units from the

underlying population and partition them into m=2 sets, each comprising m units. Now rank the

units within each set. Then select the rth and ðm2 r1 1Þth smallest ranked units from the rth set,

for r5 1;. . .;m=2. Similarly, for the odd set size m, select mðm1 1Þ=2 units from the underlying

population and partition them into ðm1 1Þ=2 sets, each comprising m units. Then select the rth and

ðm2 r1 1Þth smallest ranked units from the rth set, for r5 1;. . .; ðm2 1Þ=2, and the fðm1 1Þ=2th
smallest ranked unit is selected from the fðm1 1Þ=2th set. This completes one cycle of a paired

ranked set sample of size m. The whole procedure could be repeated t times to get a total sample

of size n units.

The sample means under PRSS depending upon even and odd set sizes m are, respectively,

given by

Y
E

PRSS 5
1

n

Xt
j51

Xm=2
r51

Yrðr:mÞj 1
Xm=2
r51

Yrðm2r11:mÞj

 !
and

Y
O

PRSS 5
1

n

Xt
j51

Xðm11Þ=2

r51

Yrðr:mÞj 1
Xðm21Þ=2

r51

Yrðm2r11:mÞj

 !
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with variances

VarðYE

PRSSÞ5VarðYRSSÞ1
2

nm

Xm=2
r51

σYðr;m2r11:mÞ and

VarðYO

PRSSÞ5VarðYRSSÞ1
2

nm

Xðm21Þ=2

r51

σYðr;m2r11:mÞ:

It is clear that the mean estimator based on RSS is always more precise than the mean estimator

based on PRSS—all covariances in the above expressions are always positive. However, the rank-

ing cost associated with PRSS is less than that of RSS [cf., Muttlak, 1996].

8.2.3 L RANKED SET SAMPLING

The LRSS scheme was suggested by Al-Naseer (2007) for estimating the population mean. The

LRSS encompasses some existing RSS schemes, and it is an efficient alternative to the RSS scheme

when estimating the mean of a symmetric population. Here, we modify LRSS so that ERSS and

TBRSS can be made its special cases. Note that the modified LRSS procedure is here referred to as

LRSS.

The LRSS scheme works as follows: select the LRSS coefficient, say k5 ½αm� for 0#α, 0:5,
where ½U� is the largest integer value less than or equal to ðUÞ. Identify m2 units from the underlying

population and partition them into m sets, each comprising m units. Now rank the units within each

set. Then select the vth and ðm2 v1 1Þth smallest ranked units from the first and last k sets, respec-

tively, where vA1;. . .; ½m=2�. Moreover, the rth smallest ranked unit is selected from the rth set, for

r5 k1 1;. . .;m2 k. This completes one cycle of an L ranked set sample of size m. The whole pro-

cedure could be repeated t times to get a total sample of size n units. For different choices of k the

LRSS reduces to balanced and unbalanced RSS schemes. For example, LRSS is equivalent to RSS

and MRSS with k5 0 and k5 ½ðm1 1Þ=2�;v5 k1 1, respectively. Note that, when v5 k1 1, the

above modified LRSS reduces to LRSS suggested by Al-Naseer (2007).

The sample mean and its variance under LRSS are, respectively, given by

YLRSS 5
1

n

Xt
j51

Xk
r51

Yrðv:mÞj 1
Xm2k

r5k11

Yrðr:mÞj 1
Xm

r5m2k11

Yrðm2v11:mÞj

 !
;

VarðYLRSSÞ5
1

nm

Xk
r51

σ2
Yðv:mÞ 1

Xm2k

r5k11

σ2
Yðr:mÞ 1

Xm
r5m2k11

σ2
Yðm2v11:mÞ

 !
:

It is easy to show that YLRSS is an unbiased estimator of μY and it is more precise than YRSS

when the underlying population is symmetric. For an asymmetric population, however, it is biased

and may become less efficient than YSRS and YRSS [cf., Al-Naseer, 2007].

8.2.4 DOUBLE-RANKED SET SAMPLING

The DRSS scheme was suggested by Al-Saleh and Al-Kadiri (2000) for estimating the population

mean. They showed that DRSS is always more efficient than RSS when estimating the population
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mean. Moreover, when conducting the DRSS scheme, ranking the units on the second stage is

much easier than that on the first stage—this makes DRSS an efficient alternative to RSS.

The DRSS scheme works as follows: identify m3 units from the underlying population and parti-

tion them into m sets, each comprising m2 units. The RSS scheme is then applied on each set to get

m ranked set samples, each of size m units. Again apply the RSS scheme to get a double-ranked set

sample of size m. This completes one cycle of a double-ranked set sample of size m. The whole

procedure can be repeated t times to get a total sample of size n units.

Let Y
ðrÞðr:mÞ
rðr:mÞj , r5 1;. . .;m, denote a double-ranked set sample of size m for the jth cycle,

j5 1;. . .; t, where Y
ðrÞðr:mÞ
rðr:mÞj 5 rth min of the rth ranked set sample in the rth set ðY ðrÞ

1ð1:mÞj; . . .;Y
ðrÞ
mðm:mÞjÞ

in the jth cycle. Al-Saleh and Al-Kadiri (2000) showed that the sample mean with DRSS is not

only unbiased, it is also more precise than the sample mean with RSS, i.e.,

EðYDRSSÞ5
1

n

Xt
j51

Xm
r51

EðYrðr:mÞ
rðr:mÞjÞ5μY and

VarðYDRSSÞ5VarðYRSSÞ2
1

nm

Xm
r 6¼s

σðr;s:mÞ
Yðr;s:mÞ;

where σðr;s:mÞ
Yðr;s:mÞ . 0 is the covariance between Y

ðrÞðr:mÞ
rðr:mÞj and Y

ðrÞðs:mÞ
sðs:mÞj . More details on DRSS may be

seen in Al-Saleh and Al-Kadiri (2000).

8.2.5 PARTIALLY ORDERED JUDGMENT SUBSET SAMPLING

A new sampling scheme has been introduced by Ozturk (2011), in which a ranker is allowed to

declare ties among the units within subsets of prefixed sizes. The units within these subsets are par-

tially ranked ordered so that any unit in subset i possesses a smaller rank than any other unit in subset

i0, where i, i0, called partially ordered judgment subsets. A single observation is then quantified

from one of these subsets present in a set. This sampling scheme is named POJSS. Ozturk (2011)

further imposed some restrictions on the number of units within each subset—comprising the whole

set—in order to increase the precision of the mean estimator based on POJSS, i.e., all subsets within

a set should comprise equal number of units.

The POJSS scheme works as follows: identify wm2 units from the underlying population and

partition them into m sets, each comprising wm units. The units within each set are further parti-

tioned into m subsets, each comprising w units. These subsets are then partially ranked ordered as

mentioned by Ozturk (2011). Select one unit from the rth smallest ranked subset of the rth set, for

r5 1; :::;m. This completes one cycle of a partially ordered judgment subset sample of size m. The

whole procedure could be repeated t times to get a total sample of size n units.

Symbolically; under perfect ranking, let ðSðwÞrð1Þj; . . .; S
ðwÞ
rðmÞjÞ denote the rth set that comprises m

partially ordered judgment subsets, each of size w, r5 1; :::;m, in the jth cycle, for j5 1;. . .; t, where
S
ðwÞ
rðrÞj 5 ðYrððr21Þw11:mwÞj; . . .;Yrðrw:mwÞjÞ for w5 1;. . .;m, i.e., each subset contains w elements. Let

Y�
rðr:mÞj 5 Select one element randomly from S

ðwÞ
rðrÞj. Having fixed w, this constitutes one complete

sample of size m for the jth cycle. Clearly, having fixed j, Y�
rðr:mÞj, r5 1;. . .;m, are INID random

variables. However, having fixed r, Y�
rðr:mÞj, j5 1;. . .; t, are IID random variables. For brevity of dis-

cussion, let Y�
rðr:mÞj � Y�

ðr:mÞ for j5 1;. . .; t.
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The sample mean and its variance under POJSS are, respectively, given by

YPOJSS 5
1

n

Xt
j51

Xm
r51

Y�
rðr:mÞj and VarðYPOJSSÞ5

1

nm

Xm
r51

σ�2
Yðr:mÞ;

where VarðY�
rðr:mÞjÞ5 σ�2

Yðr:mÞ. Note that RSS is a special case of POJSS when w5 1. Ozturk (2011)

showed that POJSS is more precise than RSS when estimating the population mean when w. 1.

For more details, we refer to Ozturk (2011).

8.3 PROPOSED SAMPLING SCHEMES
In this section, some modified POJSS schemes are proposed for estimating the population mean.

We develop unbiased estimators of the population mean under the proposed sampling schemes and

study their mathematical properties. Moreover, the unbiased estimators of the variances of these

mean estimators are also derived.

8.3.1 PAIRED PARTIALLY ORDERED JUDGMENT SUBSET SAMPLING

As aforementioned, PRSS is a cost-effective alternative to RSS, i.e., it requires less number of

ranked units than that using RSS when selecting a sample from the underlying population. On simi-

lar lines, we modify POJSS to propose the PPOJSS scheme for estimating the population mean.

The PPOJSS is a cost-effective alternative to POJSS.

The PPOJSS scheme works as follows: for an even set size m, identify wmðm=2Þ units from the

underlying population and partition them into m=2 sets, each comprising m units. The units within

each set are further partitioned into m subsets, each comprising w units. These subsets are then par-

tially ranked ordered. Select one unit from the rth and one from the ðm2 r1 1Þth smallest ranked

subsets of the rth set, for r5 1;. . .;m=2. Similarly, for an odd set size m, identify wmðm1 1Þ=2
units from the underlying population and partition them into ðm1 1Þ=2 sets, each comprising m

units. The units within each set are further partitioned into m subsets, each comprising w units.

These subsets are then partially ranked ordered. Then select one unit from the rth and one from the

ðm2 r1 1Þth smallest ranked subsets of the rth set, for r5 1;. . .; ðm2 1Þ=2, and select one unit

from the fðm1 1Þ=2gth smallest ranked subset of the fðm1 1Þ=2gth set. This completes one cycle

of a paired partially ordered judgment subset sample of size m. The whole procedure can be

repeated t times to get a total sample of size n units.

The sample means under PPOJSS depending upon even and odd set sizes m are, respectively,

given by

Y
E

PPOJSS 5
1

n

Xt
j51

Xm=2
r51

Y�
rðr:mÞj 1

Xm=2
r51

Y�
rðm2r11:mÞj

 !
and

Y
O

PPOJSS 5
1

n

Xt
j51

Xðm11Þ=2

r51

Y�
rðr:mÞj 1

Xðm21Þ=2

r51

Y�
rðm2r11:mÞj

 !

with variances
adksf
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VarðYE

PPOJSSÞ5VarðYPOJSSÞ1
2

nm

Xm=2
r51

σ�
Yðr;m2r11:mÞ and (8.1)

VarðYO

PPOJSSÞ5VarðYPOJSSÞ1
2

nm

Xðm21Þ=2

r51

σ�
Yðr;m2r11:mÞ; (8.2)

where σ�
Yðr;m2r11:mÞ . 0 is the covariance between Y�

rðr:mÞj and Y�
rðm2r11:mÞj. Similar to POJSS, the

mean estimators with PPOJSS also turn out to be unbiased. Moreover, as expected, these mean esti-

mators can never be more precise than the mean estimator with POJSS. However, the ranking cost

of PPOJSS is less than that of POJSS. Thus, it is more economical and practical to employ the

PPOJSS scheme when ranking costs are high or constrained by budgets or it may not be possible to

use POJSS with full confidence.

The following proposition helps in computing the variances and covariances of the random vari-

ables under PPOJSS.

Proposition 1. Having fixed w,

i. the CDF of Y�
ðr:mÞ ð1# r#mÞ is

F�
ðr:mÞðyÞ5

1

w

Xrw
i5ðr21Þw11

Fði:wmÞðyÞ: (8.3)

ii. the joint CDF of Y�
ðr:mÞ and Y�

ðs:mÞ ð1# r, s#mÞ is

F�
ðr;s:mÞðyr ; ysÞ5

1

w2

Xrw
i5ðr21Þw11

Xsw
j5ðs21Þw11

Fði;j:mwÞðyr ; ysÞ: (8.4)

The proofs of (i) and (ii) are trivial.
The mean and variance of Y�

ðr:mÞ are, respectively, given by

μ�
Yðr:mÞ 5

ð
yf �ðr:mÞðyÞdy and σ�2

Yðr:mÞ 5
ð
ðy2μ�

Yðr:mÞÞ2f �ðr:mÞðyÞdy;

where f �ðr:mÞðyÞ5 ðd=dyÞF�
ðr:mÞðyÞ. Similarly, the covariance between Y�

rðr:mÞj and Y�
rðs:mÞj is

σ�
Yðr;s:mÞ 5

ð ð
yr 2μ�

Yðr:mÞ
� �

ys 2μ�
Yðs:mÞ

� �
f �ðr;s:mÞðyr ; ysÞdyrdys;

where f �ðr;s:mÞðyr; ysÞ5 ðd2=dysdyrÞF�
ðr;s:mÞðyr; ysÞ. Using Eqs. (8.3) and (8.4), variances of the mean

estimators given in Eqs. (8.1) and (8.2) can be easily computed.

Lemma 1. Based on even and odd set sizes, the unbiased estimators of VarðYE

PPOJSSÞ and

VarðYO

PPOJSSÞ are

V̂arðYE

PPOJSSÞ5
1

2nmtðt2 1Þ
Xt
j6¼j0

(Xm
r51

ðY�
rðr:mÞj2Y�

rðr:mÞj0 Þ2

1 2
Xm=2
r51

ðY�
rðr:mÞj 2Y�

rðr:mÞj0 ÞðY�
rðm2r11:mÞj 2 Y�

rðm2r11:mÞj0 Þ
)
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and

V̂arðYO

PPOJSSÞ5
1

2nmtðt2 1Þ
Xt
j6¼j0

(Xm
r51

Y�
rðr:mÞj2Y�

rðr:mÞj0
� �2

1 2
Xðm21Þ=2

r51

ðY�
rðr:mÞj 2 Y�

rðr:mÞj0 ÞðY�
rðm2r11:mÞj 2 Y�

rðm2r11:mÞj0 Þ
)
;

respectively.

The proof is trivial.

8.3.2 L PARTIALLY ORDERED JUDGMENT SUBSET SAMPLING

As pointed out by Al-Naseer (2007), the LRSS scheme helps in selecting a more representative

sample from a symmetric population (except uniform) than that using RSS, i.e., the mean esti-

mator based on LRSS turns out to be more efficient than that based on RSS. On similar lines, in

order to increase the efficiency of the POJSS-based mean estimator when sampling from a sym-

metric population, we propose an LPOJSS scheme for efficiently estimating the population

mean.

The LPOJSS scheme works as follows: select the LPOJSS coefficient, say k5 ½αm�. Identify
wm2 units from the underlying population and partition them into m sets, each comprising m

units. The units within each set are further partitioned into m subsets, each of size w units.

These subsets are then partially ranked ordered. Select one unit from the vth and one unit from

the ðm2 v1 1Þth smallest ranked subsets of the first and last k sets, respectively, where

vA1;. . .; ½m=2�. Moreover, select one unit from the rth smallest ranked subset of the rth set, for

r5 k1 1;. . .;m2 k. This completes one cycle of an L partially ordered judgment subset sample

of size m. The whole procedure could be repeated t times to get t cycles with a total sample of

size n units. Note that, given w and m, with different choices of k and v, several POJSS schemes

could be constructed.

The sample mean and its variance under LPOJSS are, respectively, given by

YLPOJSS 5
1

n

Xt
j51

Xk
r51

Y�
rðv:mÞj 1

Xm2k

r5k11

Y�
rðr:mÞj 1

Xm
r5m2k11

Y�
rðm2v11:mÞj

 !
;

VarðYLPOJSSÞ5
1

nm
kðσ�2

Yðv:mÞ 1σ�2
Yðm2v11:mÞÞ1

Xm2k

r5k11

σ�2
Yðr:mÞ

 !
:

Proposition 2. For a symmetric population, ð1# r#mÞ
i. μ�

Yðr:mÞ 1μ�
Yðm2r11:mÞ 5 2μY ,

ii. σ�2
Yðr:mÞ 5σ�2

Yðm2r11:mÞ.
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Proof. To prove (i), using Eq. (8.3), we have

μ�
Yðr:mÞ 1μ�

Yðm2r11:mÞ 5
1

w

Xrw
i5ðr21Þw11

μYði:wmÞ 1
1

w

Xðm2r11Þw

i5ðm2rÞw11

μYði:wmÞ

5
1

w
μYððr21Þw11:wmÞ 1?1μYðrw:wmÞ
� �

1
1

w
μYððm2rÞw11:wmÞ 1?1μYððm2r11Þw:wmÞ
� �

5
1

w
ðμYððr21Þw11:wmÞ 1μYððm2r11Þw:wmÞÞ 1?1 ðμYðrw:wmÞ 1μYððm2rÞw11:wmÞÞ
n o

:

For a symmetric distribution, it is well known that μYði:wmÞ 1μYðwm2i11:mÞ 5 2μY , for

i5 1;. . .;wm. Using this result, we get

μ�
Yðr:mÞ 1μ�

Yðm2r11:mÞ 5
1

w
ð2μY 1?1 2μY Þ5 2μY :

To prove (ii), using Eq. (8.3), we have

σ�2
Yðr:mÞ 5

1

w

Xrw
i5ðr21Þw11

ðμ2
Yði:wmÞ 1σ2

Yði:wmÞÞ2
1

w

Xrw
i5ðr21Þw11

μYðr:wmÞ

 !2

; (8.5)

σ�2
Yðm2r11:mÞ 5

1

w

Xðm2r11Þw

i5ðm2rÞw11

ðμ2
Yði:wmÞ 1σ2

Yði:wmÞÞ2
1

w

Xðm2r11Þw

i5ðm2rÞw11

μYðr:wmÞ

 !2

: (8.6)

Equate Eqs. (8.5) and (8.6), use symmetry relation of mean, to get

Xrw
i5ðr21Þw11

σ2
Yði:wmÞ 5

Xðm2r11Þw

i5ðm2rÞw11

σ2
Yði:wmÞ;

which always holds true for a symmetric distribution since σ2
Yði:wmÞ 5 σ2

Yðmw2i11:wmÞ, for

i5 1;. . .;wm:

Lemma 2. For a symmetric population,

i. EðYLPOJSSÞ5μY .

ii. VarðYLPOJSSÞ#VarðYPOJSSÞ when
Pk

r51 σ
�2
Yðr:mÞ $ kσ�2

Yðv:mÞ.

iii. An unbiased estimator of VarðYLPOJSSÞ is

V̂arðYLPOJSSÞ5
1

2nmtðt2 1Þ
Xt
j6¼j0

"
k ðY�

rðv:mÞj2Y�
rðv:mÞj0 Þ2 1 ðY�

rðm2v11:mÞj2Y�
rðm2v11:mÞj0 Þ2

n o

1 2
Xm=2
r51

ðY�
rðr:mÞj 2Y�

rðr:mÞj0 ÞðY�
rðm2r11:mÞj 2Y�

rðm2r11:mÞj0 Þ
#
:
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Proof. To prove (i), consider the expectation:

EðYLPOJSSÞ5
1

m
kðμ�

Yðv:mÞ 1μ�
Yðm2v11:mÞÞ1

Xm
r51

μ�
Yðr:mÞ 2

Xk
r51

μ�
Yðr:mÞ 2

Xm
r5m2k11

μ�
Yðr:mÞ

 !

5
1

m
2kμY 1 ðm2 2kÞμY

� 	
5μY ;

using (i) symmetry relation of proposition 2 and (ii) identity of lemma 2.

To prove (ii), we have

VarðYLPOJSSÞ5
1

nm

Xm
r51

σ�2
ðr:mÞ 1 kðσ�2

Yðv:mÞ 1σ�2
Yðm2v11:mÞÞ 2

Xk
r51

σ�2
Yðr:mÞ 2

Xm
r5m2k11

σ�2
Yðr:mÞ

( )

5VarðYPOJSSÞ2
2

nm

Xk
r51

σ�2
Yðr:mÞ 2 kσ�2

Yðv:mÞ

 !
;

using (ii) symmetry relation of proposition 2. We conjecture that the conditionPk
r51 σ

�2
Yðr:mÞ $ kσ�2

Yðv:mÞ holds true for nonuniform (unimodal) distributions when v5 k1 1 and for

the uniform distribution when v5 1 [cf., Ozturk and Wolfe, 2000]. The proof of (iii) is trivial.

In the case of an asymmetric population, YLPOJSS is a biased estimator of μY . The mean-squared

error (MSE) of YLPOJSS is

MSEðYLPOJSSÞ5VarðYLPOJSSÞ1 fEðYLPOJSSÞ2μY g2:
In Section 8.4, it is observed that LPOJSS leads to biased and imprecise estimates of the popu-

lation mean when sampling from an asymmetric population. For a symmetric population, however,

the mean estimates with LPOJSS are not only unbiased but more precise too.

8.3.3 RANKED PARTIALLY ORDERED JUDGMENT SUBSET SAMPLING

As figured out by Al-Saleh and Al-Kadiri (2000), the DRSS scheme helps in selecting a more rep-

resentative sample than that using RSS, i.e., the mean estimator based on DRSS is always more

efficient than that based on RSS. On similar lines, in order to increase the efficiency of the POJSS-

based mean estimator, we propose an RPOJSS scheme for efficiently estimating the population

mean.

The RPOJSS scheme works as follows: identify wm3 units from the underlying population and

partition them into m sets, each comprising wm2 units. The POJSS scheme is then applied on each

set to get m partially ordered judgment subset samples, each of size m units. Now apply the RSS

scheme to get a ranked partially ordered judgment subset sample of size m. This completes one

cycle of a ranked partially ordered judgment subset sample of size m. The whole procedure could

be repeated t times to get a total sample of size n units. Note that DRSS is a special case of

RPOJSS when w5 1.

Symbolically, under perfect ranking, let ðY�ðrÞ
1ð1:mÞj; . . .;Y

�ðrÞ
mðm:mÞjÞ denote a partially ordered judg-

ment subset sample of size m obtained from the rth set, r5 1; :::;m. Let Y
�ðrÞðr:mÞ
rðr:mÞj 5 rth min of

ðY�ðrÞ
1ð1:mÞj; . . .;Y

�ðrÞ
mðm:mÞjÞ, r5 1;. . .;m, j5 1;. . .; t, which represent a ranked partially ordered judgment
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subset sample of size n. Clearly, having fixed j, Y
�ðrÞðr:mÞ
rðr:mÞj , r5 1;. . .;m, are INID random variables.

However, having fixed r, Y
�ðrÞðr:mÞ
rðr:mÞj , j5 1;. . .; t, are IID random variables. For brevity of discussion,

let Y
�ðrÞðr:mÞ
rðr:mÞj � Y

�ðr:mÞ
ðr:mÞ , j5 1;. . .; t.

The sample mean and its variance under RPOJSS are, respectively, given by

YRPOJSS 5
1

n

Xt
j51

Xm
r51

Y
�ðrÞðr:mÞ
rðr:mÞj and VarðYRPOJSSÞ5

1

nm

Xm
r51

σ�2ðr:mÞ
Yðr:mÞ ;

where VarðY�ðrÞðr:mÞ
rðr:mÞj Þ5VarðY�ðr:mÞ

ðr:mÞ Þ5 σ�2ðr:mÞ
Yðr:mÞ .

Let F
�ðr:mÞ
ðr:mÞ ðyÞ, f �ðr:mÞðr:mÞ ðyÞ, and μ�ðr:mÞ

Yðr:mÞ be the CDF, PDF, and mean of Y
�ðr:mÞ
ðr:mÞ , respectively. The

identities in the following lemma are an analogue to those of Al-Saleh and Al-Kadiri (2000) for

DRSS.

Lemma 3. For any population,

i. f ðyÞ5 ð1=mÞPm
r51 f

�
ðr:mÞðyÞ5 ð1=mÞPm

r51 f
�ðr:mÞ
ðr:mÞ ðyÞ.

ii. μY 5 ð1=mÞPm
r51 μ

�
Yðr:mÞ 5 ð1=mÞPm

r51 μ
�ðr:mÞ
Yðr:mÞ.

iii. σ2
Y 5 ð1=mÞPm

r51 σ
�2ðr:mÞ
Yðr:mÞ 1 ð1=mÞPm

r51 ðμ�ðr:mÞ
Yðr:mÞ2μY Þ2.

Proof. To prove (i), let us consider

Q5
Xm
r51

Qr and Qr 5
1 if Y�

ðr:mÞ # y

0 otherwise
:




Then

EðQÞ5
Xm
r51

F�
ðr:mÞðyÞ5

Xm
r51

1

w

Xrw
i5ðr21Þw11

Fði:wmÞðyÞ5mFðyÞ;

by Takahasi and Wakimoto (1968).

Similarly, we can write

Xm
r51

F
�ðr:mÞ
ðr:mÞ ðyÞ5

Xm
r51

P Y
�ðr:mÞ
ðr:mÞ # y

� �

5
Xm
r51

P at least r ofðY�
ð1:mÞ; . . .; Y

�
ðm:mÞÞ# y

� �

5
Xm
r51

PðQ$ rÞ5EðQÞ5mFðyÞ

and hence (i) follows. On similar lines, (ii) and (iii) could be proved.

As aforementioned, Y�
ðr:mÞ, r5 1;. . .;m, are INID random variable and we consider order statis-

tics from this sample to get Y
�ðr:mÞ
ðr:mÞ , r5 1;. . .;m. In order to calculate the mean, variances, covar-

iances of these random variables, the permanent function is used.
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Let A5 ððai;jÞÞ be a square matrix of order m. Then the permanent of A is

PerðAÞ5
X
P

Xm
j51

aj;ij ;

where
P

P denotes the sum of over all m! permutations ði1; . . .; imÞ of ð1;. . .;mÞ. The definition of

the permanent is very much similar to that of the determinant except that in the permanent we do

not have the alternating sign whether the permutation is of even or odd order. For more details on

this function, refer to Bapat and Beg (1989).

Following Vaughan and Venables (1972), the CDF of Y
�ðr:mÞ
ðr:mÞ ð1# r#mÞ is

F
�ðr:mÞ
ðr:mÞ ðyÞ5

Xm
i5r

1

i!ðm2 iÞ! PerðA1Þ; 2N, y,N;

where

A1 5
F�
ð1:mÞðyÞ F�

ð2:mÞðyÞ ? F�
ðm:mÞðyÞ

12F�
ð1:mÞðyÞ 12F�

ð2:mÞðyÞ ? 12F�
ðm:mÞðyÞ

 !
gi
gm2 i

;

where the first row is repeated i times and the second row is repeated m2 i times.

Similarly, the PDF of Y
�ðr:mÞ
ðr:mÞ ð1# r#mÞ is

f
�ðr:mÞ
ðr:mÞ ðyÞ5 1

ðr2 1Þ!ðm2 rÞ! PerðA2Þ; 2N, y,N; (8.7)

where

A2 5

F�
ð1:mÞðyÞ F�

ð2:mÞðyÞ ? F�
ðm:mÞðyÞ

f �ð1:mÞðyÞ f �ð2:mÞðyÞ ? f �ðm:mÞðyÞ
12F�

ð1:mÞðyÞ 12F�
ð2:mÞðyÞ ? 12F�

ðm:mÞðyÞ

0
B@

1
CA

gr2 1

g1
gm2 r

: (8.8)

Proceeding similarly, the joint CDF of Y
�ðr:mÞ
ðr:mÞ and Y

�ðs:mÞ
ðs:mÞ ð1# r, s#mÞ is

f
�ðr;s:mÞ
ðr;s:mÞ ðyr ; ysÞ5

1

ðr2 1Þ!ðs2 r2 1Þ!ðm2 sÞ! PerðA3Þ; 2N, yr , ys ,N;

where

A3 5

F�
ð1:mÞðyrÞ F�

ð2:mÞðyrÞ ? F�
ðm:mÞðyrÞ

f �ð1:mÞðyrÞ f �ð2:mÞðyrÞ ? f �ðm:mÞðyrÞ
F�
ð1:mÞðysÞ2F�

ð1:mÞðyrÞ F�
ð2:mÞðysÞ2F�

ð2:mÞðyrÞ ? F�
ðm:mÞðysÞ2F�

ðm:mÞðyrÞ
f �ð1:mÞðysÞ f �ð2:mÞðysÞ ? f �ðm:mÞðysÞ

12F�
ð1:mÞðysÞ 12F�

ð2:mÞðysÞ ? 12F�
ðm:mÞðysÞ

0
BBBBBBB@

1
CCCCCCCA

gr2 1

g1
gs2 r2 1

g1
gm2 s

:

From Eqs. (8.7) and (8.8),

μ�ðr:mÞ
Yðr:mÞ 5

ð
yf

�ðr:mÞ
ðr:mÞ ðyÞdy;

σ�2ðr:mÞ
Yðr:mÞ 5

ð
y2μ�ðr:mÞ

ðr:mÞ
� �2

f
�ðr:mÞ
ðr:mÞ ðyÞdy;

σ�ðr;s:mÞ
Yðr;s:mÞ 5

ð ð
ys 2μ�ðs:mÞ

ðs:mÞ
� �

yr 2μ�ðr:mÞ
ðr:mÞ

� �
f
�ðr;s:mÞ
ðr;s:mÞ ðyr ; ysÞdyrdys:
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Now it is shown that the mean estimator based on RPOJSS is not only unbiased but it is also

more precise than the mean estimators based on SRS and POJSS schemes.

Lemma 4. For any population,

i. EðYRPOJSSÞ5μY .

ii. VarðYRPOJSSÞ#VarðYSRSÞ.
iii. VarðYRPOJSSÞ#VarðYPOJSSÞ.
iv. An unbiased estimator of VarðYRPOJSSÞ is

V̂arðYRPOJSSÞ5
1

2nmtðt2 1Þ
Xt
j6¼j0

Xm
r51

ðY�ðr:mÞ
rðr:mÞj2Y

�ðr:mÞ
rðr:mÞj0 Þ2:

Proof. Here, (i) and (ii) can be easily proved using (i) and (ii) of Lemma 2.

To prove (iii), we have

VarðYPOJSSÞ5Var
1

n

Xt
j51

Xm
r51

Y�
rðr:mÞj

 !
5

1

nm
Var

Xm
r51

Y
�ðr:mÞ
ðr:mÞ

 !

5
1

nm

Xm
r51

Var Y
�ðr:mÞ
ðr:mÞ

� �
1

1

nm

Xm
r 6¼s

Cov Y
�ðr:mÞ
ðr:mÞ ; Y�ðs:mÞ

ðs:mÞ
� �

5
1

nm

Xm
r51

σ�2ðr:mÞ
Yðr:mÞ 1

1

nm

Xm
r 6¼s

σ�ðr;s:mÞ
Yðr;s:mÞ

5VarðYRPOJSSÞ1
1

nm

Xm
r 6¼s

σ�ðr;s:mÞ
Yðr;s:mÞ;

where σ�ðr;s:mÞ
Yðr;s:mÞ . 0 is the covariance between Y

�ðr:mÞ
ðr:mÞ and Y

�ðs:mÞ
ðs:mÞ . The proof of (iv) is trivial.

Based on the above formulas of the mean estimators under different sampling schemes, the rela-

tive efficiencies (REs) of mean estimators can be computed. The efficiency of a mean estimator,

say YD, ðD5 PRSS;RSS; etc:Þ, relative to YSRS is given by

REðYD; YSRSÞ5
VarðYSRSÞ
MSEðYDÞ

:

For an unbiased estimator, the MSE is replaced by the variance.

Remark 1. Note that in the case of imperfect rankings, the round brackets in the above estima-

tors are replaced by square brackets to denote the judgment ranks of the order statistics. For

example, replace ðr:mÞ in either subscript or superscript by ½r:m� when there are errors in the

ranking procedure.
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8.4 EFFICIENCY COMPARISONS
In this section, we compare performances of the mean estimators under perfect and imperfect rank-

ings in terms of their REs.

For a fair comparison of the mean estimators, both symmetric and asymmetric probability dis-

tributions are considered. These distributions include uniform Uð0; 1Þ, normal Nð0; 1Þ, exponential
Gð1; 1Þ, and gamma Gð5; 1Þ distributions. For brevity of discussion, consider different values of m

and w with t5 1. Using the mathematical formulas presented in the previous section, REs of the

mean estimators are computed for the considered distributions and are displayed in Table 8.1. For

some sampling schemes, w, k, and v are the schemes’ parameters. Thus, these schemes are abbre-

viated with their parameter choices in the tables. For example, given w, PPOJSS, POJSS, and

RPOJSS are referred to as PPOJSS ðwÞ, POJSS ðwÞ, and RPOJSS ðwÞ, respectively. Similarly,

given w, v, and k, LRSS and LPOJSS are referred to as LRSS ðv; kÞ and LPOJSS ðv; k;wÞ,
respectively.

From Table 8.1, it is observed that all REs are greater than one—thus showing that the mean

estimates with the proposed sampling schemes are more precise than those with SRS. Having fixed

m, the REs increase as the value of w increases, and vice versa. The LPOJSS scheme provides

most efficient mean estimates when w5 3, v5 1 for uniform distribution and w5 3, v5 k1 1 for

normal distribution. With v5 1 and v5 k1 1, we usually do not recommend the use of LPOJSS

when estimating the mean of an asymmetric distribution. But, given m, with k5 1 and v5 k1 1,

the mean estimates with this scheme outperform those with the existing schemes, when sampling

from an asymmetric distribution. Interestingly, the mean estimates with PPOJSS are more precise

than those with PRSS and RSS. When it is possible to ignore the ranking cost, RPOJSS provides

better mean estimates than those with POJSS.

In usual practice, when using an RSS or POJSS scheme, the experimenter is forced to rank large

set sizes for a greater efficiency of a mean estimator, the ranking errors are thus inevitable.

However, when ranking the experimental units, we may not know when the judgment/ranking error

occurs. Hence, we examine the effect of judgment error on the performances of the proposed mean

estimators when sampling from symmetric and asymmetric populations.

For imperfect ranking, the simulation considered here is based on the method suggested by Dell

and Clutter (1972). In the simulation, we consider m5 3; 5 and w5 2; 3 with different choices of v

and k. For simplicity, the simulation method is explained for POJSS only, the same method implies

for other RSS schemes. Given w, m, generate wm2 values from the underlying distribution, say Yr;i,

r5 1;. . .;wm, i5 1;. . .;m. Also generate random errors, say Er;i, of the same size from a normal

distribution with the mean zero and the variance V , Er;iBNð0;VÞ, where Yr;i is independent of Er;i.

Then, compute Xr;i 5 Yr;i 1Er;i. Using the values of Xr;i, we select a partially ordered judgment

subset sample of size m, denoted by X�
rðr:mÞ, r5 1;. . .;m. In fact, a pair ðY�

r½r:m�;X
�
rðr:mÞÞ, r5 1;. . .;m,

is selected using the ranks of X, where the square bracket indicates that the rank of Y is induced by

the rank of X. The above procedure is repeated t times. Hence, an imperfect partially ordered judg-

ment subset sample of size n is obtained, denoted by Y�
r½r:m�j for r5 1;. . .;m and j5 1;. . .; t. Under

perfect ranking, i.e., V 5 0, Y�
r½r:m�j 5 Y�

rðr:mÞj, representing a perfectly partially ordered judgment
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Table 8.1 REs of the Mean Estimators With Respect to the Mean Estimator Based on SRS

m Scheme Uð0; 1Þ Nð0; 1Þ Gð1; 1Þ Gð5; 1Þ m Scheme Uð0; 1Þ Nð0; 1Þ Gð1; 1Þ Gð5; 1Þ
2 PRSS 1.000 1.000 1.000 1.000 4 LRSS(1,2) 2.083 2.774 2.441 2.678

PPOJSS(2) 1.429 1.381 1.286 1.358 LPOJSS(1,2;2) 3.140 4.553 2.912 4.006

PPOJSS(3) 1.750 1.627 1.439 1.581 LPOJSS(1,2;3) 4.051 6.105 3.080 4.946

RSS 1.500 1.467 1.333 1.434 LRSS(2,1) 3.125 2.034 1.171 1.743

POJSS(2) 1.923 1.785 1.516 1.717 LPOJSS(2,1;2) 5.000 2.579 1.211 2.053

POJSS(3) 2.227 1.980 1.614 1.884 LPOJSS(2,1;3) 6.429 2.899 1.230 2.218

DRSS 1.923 1.785 1.516 1.717 DRSS 4.281 3.526 2.523 3.239

RPOJSS(2) 2.269 2.004 1.625 1.905 RPOJSS(2) 5.596 4.225 2.826 3.806

RPOJSS(3) 2.513 2.141 1.688 2.020 RPOJSS(3) 6.591 4.679 3.005 4.163

3 PRSS 1.667 1.581 1.459 1.553 5 PRSS 2.333 2.219 1.947 2.152

PPOJSS(2) 2.545 2.245 1.865 2.148 PPOJSS(2) 3.929 3.421 2.647 3.213

PPOJSS(3) 3.235 2.684 2.088 2.525 PPOJSS(3) 5.313 4.290 3.062 3.940

RSS 2.000 1.914 1.636 1.843 RSS 3.000 2.770 2.190 2.615

POJSS(2) 2.882 2.547 1.983 2.395 POJSS(2) 4.840 4.027 2.840 3.684

POJSS(3) 3.571 2.958 2.177 2.739 POJSS(3) 6.400 4.901 3.225 4.392

LRSS(1,2) 1.667 2.229 2.250 2.225 LRSS(1,2) 2.561 3.262 2.620 3.074

LPOJSS(1,2;2) 2.333 3.486 2.821 3.288 LPOJSS(1,2;2) 4.060 5.491 3.119 4.643

LPOJSS(1,2;3) 2.895 4.560 3.058 4.071 LPOJSS(1,2;3) 5.375 7.463 3.299 5.738

DRSS 3.026 2.633 2.024 2.467 LRSS(2,1) 3.621 2.407 1.322 2.029

RPOJSS(2) 3.818 3.086 2.232 2.844 LPOJSS(2,1;2) 5.990 3.179 1.392 2.461

RPOJSS(3) 4.403 3.376 2.353 3.078 LPOJSS(2,1;3) 7.907 3.648 1.424 2.692

4 PRSS 1.667 1.677 1.565 1.651 LRSS(2,3) 2.333 3.486 2.230 3.067

PPOJSS(2) 2.727 2.568 2.138 2.458 LPOJSS(2,3;2) 3.667 6.020 2.274 4.337

PPOJSS(3) 3.640 3.211 2.475 3.012 LPOJSS(2,3;3) 4.857 8.294 2.257 5.101

RSS 2.500 2.347 1.920 2.235 DRSS 5.670 4.456 3.016 4.027

POJSS(2) 3.857 3.293 2.422 3.048 RPOJSS(2) 7.574 5.411 3.412 4.787

POJSS(3) 4.971 3.932 2.711 3.573 RPOJSS(3) 9.033 6.037 3.646 5.269



subset sample. In order to examine the effect of judgment error, we choose V 5 0:05; 0:50; 1; 3.
The size of the simulation is 100,000 replications. The REs of the mean estimators are computed

when sampling from symmetric and asymmetric distributions and are reported in Tables 8.2 and

8.3, respectively.

From Tables 8.2 and 8.3, it is observed that the ranking error affects the REs of the mean esti-

mators considered here. As expected, the RE of a mean estimator decreases as the value of V

increases and vice versa. Unlike the REs under normal distribution, the REs with the uniform distri-

bution quickly approach unity. The rest of the trends are the same as we were seen in Table 8.1.

8.5 AN EXAMPLE
A real dataset is considered here to investigate the performances of the mean estimators under the

considered sampling schemes when sampling from a finite population.

The dataset comprises the heights of conifer trees (measured in feet), say Y (study variable),

and the diameters of conifer trees (measured at breast height in centimeters), say X (auxiliary vari-

able). Here, our interest lies in estimating the mean height of 399 trees. For more details and

description on this dataset, we refer to Platt et al. (1988). The summary statistics of the data are

given in Table 8.4, where ρ is the correlation between Y and X.

Using different values of m, w, v, and k, the REs of the mean estimators are computed under

both perfect and imperfect rankings and are presented in Table 8.5. The simulation size is 100,000

replications. Under perfect ranking, the values of Y are ranked using its own ranks, while under

imperfect ranking the values of Y are ranked using the ranks of X. From Table 8.5, we see that the

REs in most cases are greater than one—thus showing the superiority of RSS and POJSS schemes

over SRS. As might be anticipated, the REs under perfect ranking are greater than those with the

imperfect ranking. Moreover, the REs are increasing with the set size m. The proposed schemes

continue to perform better than the existing schemes in terms of giving more precise mean esti-

mates under both perfect and imperfect rankings.

8.6 CONCLUSIONS
In this chapter, we have suggested three modified POJSS schemes for efficiently estimating the

population mean, named PPOJSS, LPOJSS, and RPOJSS. The mean estimators with PPOJSS and

RPOJSS are unbiased for any population, but the mean estimator with LPOJSS is unbiased only

when the underlying population is symmetric. Moreover, it has been shown, both theoretically and

numerically, that the mean estimators with RPOJSS are more precise than those with the SRS,

RSS, and POJSS schemes. Besides, PPOJSS is an alternative to POJSS when the ranking cost is

high or POJSS cannot be conducted with full confidence. Moreover, when sampling from a sym-

metric population, it has been observed that the mean estimator with LPOJSS surpasses the mean

estimators with RSS and POJSS. Thus, when possible, we recommend using the proposed sampling

schemes for precisely estimating the population mean.
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Table 8.2 REs of the Mean Estimators With Respect to the Mean Estimator Based on SRS Under Imperfect Ranking for

Symmetric Distributions

Distribution Uð0; 1Þ Nð0; 1Þ

m Scheme V5 0:05 V5 0:50 V5 1:00 V5 3:00 V5 0:05 V5 0:50 V5 1:00 V5 3:00

3 PRSS 1.347 1.063 1.022 0.997 1.551 1.320 1.230 1.095

PPOJSS(2) 1.635 1.096 1.042 1.010 2.115 1.587 1.390 1.161

PPOJSS(3) 1.803 1.104 1.060 1.011 2.484 1.703 1.457 1.190

RSS 1.465 1.072 1.038 1.011 1.823 1.462 1.309 1.133

POJSS(2) 1.716 1.105 1.047 1.003 2.359 1.673 1.441 1.178

POJSS(3) 1.860 1.109 1.064 1.013 2.698 1.771 1.506 1.197

LRSS(1,2) 1.233 1.037 1.019 1.011 2.113 1.594 1.390 1.147

LPOJSS(1,2;2) 1.376 1.052 1.024 1.002 3.147 1.912 1.549 1.213

LPOJSS(1,2;3) 1.442 1.056 1.018 1.013 3.918 2.081 1.654 1.247

DRSS 1.733 1.100 1.052 1.011 2.437 1.712 1.450 1.189

RPOJSS(2) 1.884 1.113 1.047 1.016 2.817 1.815 1.511 1.199

RPOJSS(3) 1.989 1.118 1.068 1.021 3.040 1.870 1.549 1.219

5 PRSS 1.600 1.092 1.050 1.020 2.090 1.578 1.380 1.164

PPOJSS(2) 1.919 1.112 1.051 1.029 3.099 1.892 1.563 1.222

PPOJSS(3) 2.097 1.132 1.070 1.022 3.715 2.061 1.625 1.236

RSS 1.739 1.104 1.050 1.019 2.537 1.739 1.484 1.197

POJSS(2) 2.065 1.123 1.072 1.024 3.548 1.997 1.614 1.236

POJSS(3) 2.188 1.132 1.081 1.022 4.109 2.140 1.669 1.252

LRSS(1,2) 1.524 1.062 1.031 0.996 2.950 1.869 1.531 1.199

LPOJSS(1,2;2) 1.728 1.076 1.041 1.003 4.568 2.211 1.703 1.266

LPOJSS(1,2;3) 1.827 1.075 1.036 1.017 5.773 2.339 1.783 1.260

LRSS(2,1) 2.062 1.146 1.066 1.013 2.251 1.644 1.423 1.176

LPOJSS(2,1;2) 2.479 1.181 1.081 1.023 2.882 1.837 1.515 1.205

LPOJSS(2,1;3) 2.678 1.182 1.102 1.036 3.214 1.942 1.572 1.221

LRSS(2,3) 1.373 1.047 1.023 1.015 3.109 1.910 1.550 1.222

LPOJSS(2,3;2) 1.544 1.056 1.023 1.021 4.822 2.257 1.713 1.264

LPOJSS(2,3;3) 1.620 1.060 1.028 1.009 6.184 2.427 1.795 1.281

DRSS 2.129 1.120 1.064 1.018 3.799 2.075 1.646 1.250

RPOJSS(2) 2.263 1.127 1.064 1.024 4.460 2.186 1.707 1.261

RPOJSS(3) 2.332 1.151 1.078 1.022 4.858 2.275 1.713 1.256



Table 8.3 REs of the Mean Estimators With Respect to the Mean Estimator Based on SRS Under Imperfect Ranking for

Asymmetric Distributions

Distribution Gð1; 1Þ Gð5; 1Þ

m Scheme V5 0:05 V5 0:50 V5 1:00 V5 3:00 V5 0:05 V5 0:50 V5 1:00 V5 3:00

3 PRSS 1.454 1.255 1.194 1.100 1.551 1.482 1.419 1.284

PPOJSS(2) 1.780 1.436 1.299 1.143 2.144 1.920 1.797 1.493

PPOJSS(3) 1.948 1.499 1.321 1.162 2.514 2.209 2.016 1.595

RSS 1.582 1.343 1.248 1.114 1.847 1.691 1.613 1.398

POJSS(2) 1.887 1.466 1.324 1.152 2.389 2.102 1.923 1.574

POJSS(3) 2.012 1.520 1.358 1.159 2.702 2.331 2.124 1.641

LRSS(1,2) 2.109 1.803 1.657 1.410 2.196 1.978 1.837 1.563

LPOJSS(1,2;2) 2.494 1.995 1.806 1.509 3.170 2.676 2.334 1.795

LPOJSS(1,2;3) 2.583 1.995 1.870 1.569 3.952 3.089 2.616 1.921

DRSS 1.911 1.486 1.340 1.154 2.431 2.165 1.987 1.579

RPOJSS(2) 2.086 1.556 1.376 1.165 2.773 2.415 2.180 1.672

RPOJSS(3) 2.167 1.561 1.365 1.171 3.042 2.579 2.277 1.712

5 PRSS 1.861 1.487 1.342 1.144 2.116 1.951 1.817 1.499

PPOJSS(2) 2.464 1.711 1.455 1.202 3.145 2.654 2.349 1.754

PPOJSS(3) 2.746 1.804 1.524 1.232 3.846 3.069 2.670 1.900

RSS 2.046 1.566 1.372 1.166 2.577 2.253 2.054 1.626

POJSS(2) 2.551 1.774 1.495 1.200 3.559 2.948 2.547 1.833

POJSS(3) 2.895 1.844 1.559 1.234 4.279 3.351 2.790 1.956

LRSS(1,2) 2.351 1.848 1.683 1.417 3.038 2.531 2.247 1.758

LPOJSS(1,2;2) 2.644 1.961 1.771 1.483 4.453 3.376 2.791 1.977

LPOJSS(1,2;3) 2.730 1.948 1.764 1.509 5.446 3.790 3.066 2.041

LRSS(2,1) 1.254 1.048 0.999 0.936 2.009 1.793 1.668 1.379

LPOJSS(2,1;2) 1.293 1.066 0.999 0.930 2.438 2.077 1.875 1.493

LPOJSS(2,1;3) 1.332 1.082 0.978 0.921 2.597 2.265 1.990 1.540

LRSS(2,3) 1.952 1.678 1.631 1.445 2.985 2.493 2.199 1.721

LPOJSS(2,3;2) 1.878 1.638 1.633 1.489 4.125 3.133 2.608 1.859

LPOJSS(2,3;3) 1.860 1.604 1.603 1.524 4.866 3.414 2.775 1.928

DRSS 2.713 1.814 1.509 1.218 3.889 3.141 2.650 1.881

RPOJSS(2) 3.020 1.903 1.552 1.230 4.596 3.535 2.924 1.983

RPOJSS(3) 3.170 1.946 1.598 1.242 5.083 3.785 3.090 2.036



Table 8.4 Summary Statistics of 399 Trees Data

Variable Mean Variance Skewness Kurtosis Median ρ

Y 52.36 325.14 1.619 1.776 29 0.908

X 20.84 310.11 0.844 20.423 14.5

Table 8.5 REs of the mean estimators with respect to the mean estimator based on SRS under

perfect and imperfect rankings

m Scheme Perfect Imperfect m Scheme Perfect Imperfect

2 PRSS 1.000 1.000 4 LRSS(1,2) 1.964 1.752

PPOJSS(2) 1.292 1.252 LPOJSS(1,2;2) 2.137 1.973

PPOJSS(3) 1.431 1.390 LPOJSS(1,2;3) 2.142 2.035

RSS 1.325 1.298 LRSS(2,1) 1.168 1.252

POJSS(2) 1.487 1.449 LPOJSS(2,1;2) 1.131 1.224

POJSS(3) 1.578 1.534 LPOJSS(2,1;3) 1.145 1.209

DRSS 1.501 1.451 DRSS 2.639 2.263

RPOJSS(2) 1.584 1.532 RPOJSS(2) 3.090 2.542

RPOJSS(3) 1.637 1.601 RPOJSS(3) 3.289 2.736

3 PRSS 1.480 1.407 5 PRSS 1.995 1.797

PPOJSS(2) 1.887 1.770 PPOJSS(2) 2.873 2.354

PPOJSS(3) 2.140 1.963 PPOJSS(3) 3.462 2.703

RSS 1.623 1.533 RSS 2.221 1.974

POJSS(2) 2.000 1.824 POJSS(2) 3.027 2.466

POJSS(3) 2.200 2.034 POJSS(3) 3.620 2.826

LRSS(1,2) 1.892 1.658 LRSS(1,2) 2.065 1.839

LPOJSS(1,2;2) 2.220 1.995 LPOJSS(1,2;2) 2.261 2.049

LPOJSS(1,2;3) 2.280 2.119 LPOJSS(1,2;3) 2.290 2.133

DRSS 2.044 1.874 LRSS(2,1) 1.372 1.439

RPOJSS(2) 2.279 2.088 LPOJSS(2,1;2) 1.401 1.497

RPOJSS(3) 2.397 2.216 LPOJSS(2,1;3) 1.416 1.535

4 PRSS 1.585 1.459 LRSS(2,3) 1.663 1.623

PPOJSS(2) 2.247 1.966 LPOJSS(2,3;2) 1.510 1.576

PPOJSS(3) 2.692 2.299 LPOJSS(2,3;3) 1.403 1.511

RSS 1.929 1.747 DRSS 3.251 2.630

POJSS(2) 2.513 2.200 RPOJSS(2) 3.864 2.969

POJSS(3) 2.917 2.454 RPOJSS(3) 4.313 3.170
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CHAPTER

9RANKED SET SAMPLING WITH
UNEQUAL SAMPLE SIZES

Dinesh S. Bhoj and Debashis Kushary
Department of Mathematical Sciences, Rutgers University, Camden, NJ, United States

9.1 INTRODUCTION
Ranked set sampling for estimating a population mean was first proposed by McIntyre (1952) as a

cost-efficient alternative to simple random sampling (SRS) if the observations can be ranked

according to the characteristic under investigation by means of visual inspection or other methods

not requiring actual measurements. Mcintyre indicated that the use of RSS is more powerful and

superior to the RSS procedure to estimate the population mean. Dave and Cutler (1972) and

Takahashi and Wakimoto (1968) provided a mathematical foundation for RSS. Dave and Cutler

(1972) showed that the estimator for population mean based on RSS is at least as efficient as the

estimator based on SRS with the same number of measurements, even when there are ranking

errors. RSS is a nonparametric procedure. However, it has been used recently in parametric settings

(see Bhoj and Ahsanullah, 1996; Bhoj, 1997; Lam et al., 1994; Stokes, 1995). Most of the distribu-

tions considered by these investigators belong to the family of random variables with the cumula-

tive distribution of the form Fððx2μÞ=σÞ, where μ and σ are the location and scale parameters,

respectively. The various methods of estimation of parameters of the distribution with applications

and an extensive list of references are given by Chen et al. (2004).

The selection of a ranked set sample of size m involves drawing m random samples with m units

in each sample. Then units in each sample are ranked by using judgment or other methods not

requiring actual measurements. The unit with the lowest rank is measured from the first sample, the

unit with the second lowest rank is measured from the second sample, and this procedure is contin-

ued until the unit with the highest rank is measured from the last sample. The m2 ordered observa-

tions in m samples produces a data set as follows:

x½1�1 x½1�2 :::: x½1�m
x½2�1 x½2�2 :::: x½2�m
. . . . . .. . . :::: ::::
. . . . . .. . . :::: ::::
:x½m�1 x½m�2 :::: x½m�m

We measure only m ðX½i�i; i5 1; 2;. . .;mÞ observations and they constitute RSS. It should be

noted that m observations are independently but not identically distributed. In RSS, m is usually

small and therefore in order to increase the sample size, the above procedure is repeated k times.

For convenience, without loss of generality we usually assume that k 5 1.
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9.2 SOME RANKED SET SAMPLING PROCEDURES
There are various modifications of RSS to get a better estimator for the population mean, μ. One of

the popular schemes is to use the median ranked set sampling (MRSS) (see Bhoj, 1997; Muttlack,

1997). MRSS performs very well when the distributions are unimodal and symmetric. In the MRSS

procedure we rank m2 observations, as in RSS. However, we measure only the observations with

rank ðm1 1Þ=2 from each sample if m is odd. If m5 2l is even, we use the l th order statistic from

the first l samples and ðl1 1Þ th order statistics from the last l samples. We compare the perfor-

mance of the estimators based on ranked set sampling with unequal samples with those based on

RSS and MRSS procedures.

9.2.1 RANKED SET SAMPLING WITH UNEQUAL SAMPLES

Bhoj (2001) proposed a ranked set sampling procedure with unequal sample sizes (RSSU). In

RSSU we draw m samples where the size of ith sample is mi 5 2i2 1; i5 1; 2;. . .;m: The steps in

RSSU are the same as in RSS. In both sampling procedures we measure accurately m observations.

However, in RSSU we rank only ðm2 2 1Þ observations. When m is even, half the sample sizes are

smaller than m and the other half are greater than m. In the case of odd m, one sample is of size m,

(m � 1)/2 samples are greater than m and other (m � 1)/2 samples are smaller than m. Although

the ranking error due to larger sample size is offset by the ranking error due to smaller sample size,

it is important to keep m small in RSSU and the procedure is repeated to increase the sample size.

9.2.2 RANKED SET SAMPLING WITH UNEQUAL SAMPLES AND UNEQUAL
REPLICATIONS

Bhoj and Kushary (2014) proposed ranked set sampling with unequal samples and unequal replica-

tions (RSSUR). In RSSUR, the ith sample of size mi 5 2i2 1 is repeated ki times i5 1; 2;. . .;m: In
RSSUR

Pm
i51 ki observations are measured and

Pm
i51 miki observations are ranked. It is noted that

there is no ranking with m1 5 1. In order to have fair comparisons of the estimators based on

RSSUR we must have
Pm

i51 ki 5mk and d5m2 k2
Pm

i52 ki 5 0. However, it is not possible

to achieve d 5 0 with the appropriate integer values of ki for m 5 2. The authors chose jdj# 1 for

m 5 2, and d 5 0, for m 5 3, and k 5 2, 3, and 4.

9.2.3 RANKED SET SAMPLING WITH UNEQUAL SAMPLES FOR SKEW
DISTRIBUTIONS

Bhoj (2001) showed that the estimators for the population mean based on RSSU are superior to the

estimators based on RSS and MRSS, when the distributions under consideration are symmetrical

around μ or moderately skewed. However, the proposed estimators based on RSSU do not work

well if the distributions are highly skewed. Therefore, Bhoj and Kushary (2016) proposed the

ranked set sampling procedure with unequal samples for highly positive skew distributions

(RSSUS). The authors proposed the estimators for μ which are weighted linear combinations of

RSSU observations.
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9.3 ESTIMATION OF THE POPULATION MEAN
McIntyre (1952) proposed the nonparametric estimator for a population mean, μ, based on RSS as

μ̂RSS 5
1

m

Xm
i51

x½i�i

with variance Varðμ̂RSSÞ5 1
m2

Pm
i51 σ

2
½i�i where σ2

½i�i is the variance of ith order statistic in a random

sample of size m.

The estimator, μ̂MRSS, for μ based on MRSS defined in Section 9.2 is

μ̂MRSS 5

1

m

Xl

i51
x½i�l 1

Xm

i5l11
x½i�ðl11Þ

h i
; for even m;

1

m

Xm

i51
x½i�p; where p5 ðm1 1Þ=2; for odd m:

8><
>:

The variance of μ̂MRSS is

Varðμ̂MRSSÞ5
ðσ2

½l�l 1σ2
½l11�l11Þ

h i
=2m; for even m;

ðσ2
½p�pÞ=m; for odd m:

(

The estimator μ̂MRSS is an unbiased estimator for μ when the distribution under consideration is

symmetric around μ. When the distribution is skewed, μ̂MRSS is a biased estimator for μ. In this

case, for comparison with other estimators, the mean square error (MSE) of μ̂RSS, where

MSE5Variance1 ðBiasÞ2 was used.
Bhoj (2001) proposed the following set of estimators for μ based on RSSU defined in

Section 9.2:

μ̂r:RSSU 5
Xm
i51

wr Xð½i�i:miÞ; r5 1; 2;. . .; 6:

The variance of the estimator is

Varðμ̂r:RSSUÞ5
Xm
i51

w2
r σ

2
ð½i�i:miÞ

where σ2
ð½i�i:miÞ is the variance of ith order statistic in a random sample of size mi.

He considered various values of the weights that are proportional to ðmi 1 hÞ where 0# h# 1.

The first four weights are derived under the assumption that wr is proportional to

mi;mi 1 1=4;mi 1 1=2;mi 1 3=4:w5 is the average of w1 and w3 while w6 is obtained by taking the

average of the weights that are proportional to mi and mi 1 1. The main reason for the choice of

this class of weights was that for some distributions the near optimal weights belonged to this class.

For example, w1; w2, and w3 are near optimal for Laplace, logistic, and normal distributions.

Now the estimators for μ based on RSSUR defined in Section 9.2 will be considered. In this

case we have to repeat the sample k. 1 times to get the balanced ranked set samples. Bhoj and

Kushary (2014) considered ranked set sampling with unequal samples and unequal replications

where the ith sample is repeated ki, i 5 1, 2, 3. . ., m times, so that sample size
Pm

i51 ki 5mk. The

estimators for μ based on RSS, MRSS, and RSSU with k replications are given by
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μ̂RSS 5
1

mk

Xm
i51

Xk
j51

xð½i�iÞj and

μ̂MRSS 5

 1

m2k

Xl

i51

Xk

j51
xð½i�lÞj 1

Xm

i5l11
xð½i�l11Þj

� �
; for even m;

1

mk

Xm

i51

Xk

j51
xð½i�pÞj; p5 ðm1 1Þ=2; for odd m;

μ̂r:RSSU 5
1

k

Xm
i51

Xk
j51

wr xð½i�iÞjmi
; r5 1; 2;. . .; 6:

The six values of wr are the same as in RSSU with k 5 1. The variances of the above three

estimators are given by

Varðμ̂RSSÞ5
1

m2r

Xm
i51

σ2
½i�i

Varðμ̂MRSSÞ5
 1

m2r

Xl

i51
σ2
½i�l 1

Xm

i5l11
σ2
½i�l11

� �
; for even m

1

m2r

Xm

i51
σ2
½i�p where; p5 ðm1 1Þ=2; for odd m; and

Varðμ̂r:RSSUÞ5
1

k

Xm
i51

w2
r σ

2
ð½i�i:miÞ

Bhoj and Kushary (2014) proposed the following set of estimators for μ based on RSSUR

discussed in Section 9.2.

μ̂r:RSSUR 5
Xm
i51

wru

Xki
j51

x½i�ijmj

ki
; r5 1; 2; :::; 6

The variance of μ̂r:RSSUR is

Varðμ̂r:RSSURÞ5
Xm
i51

w2
ru

σ2
½i�i:mi

ki

Bhoj and Kushary (2014) considered various weights that were proportional to kiðmi 1 hÞ where
0# h# 1:0. The first four values of wru are obtained by using h 5 0, 1/4, 1/2, and 3/4. w5u is

obtained by taking the average of w1u and w3u, and w6u is derived by taking average of the weights

that are proportional to kimi and kiðmi 1 1Þ.
The estimators for μ based on the RSSU scheme do not work well if the distributions under

consideration are highly skewed. Therefore, Bhoj and Kushary (2016) proposed the estimators for

μ, which are weighted linear combinations of xð½i�iÞmi
for heavy right tail probability distributions.

They proposed the following set of estimators for μ based on RSSUS.

μ̂r:RSSUS 5
Xm
i51

wr x½i�imi
r5 1; 2; :::; 6:

Bhoj and Kushary (2016) considered various weights that are based on the ratio wi=w1 and are

given by

wi

w1

5mi 1 ðmi 2mði21Þ 1 di hiÞh;

where di 5
i

ði2 2 1Þ ; h2 5 1;h3 5 1
h
; h4 5 h and 0# h# 1:
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The values of w1 for different values of m are determined so that the new set of estimators for

μ based on RSSUS would perform better than the estimators for μ based on RSS and MRSS proce-

dures for the chosen heavy right tail distributions. They used

w1 5
m1 1 h1

Di

; i5 2; 3 and 4 for m5 2; 3 and 4;

where Di 5m2 1 ð2m2 3Þh1 ði2 2Þ; for i5 2 and 3

D4 5m2 1 11 ð2m2 3Þh1 0:4h2; for m5 4

h1 5
mðm2 2Þ1 jði1 c:hÞ=ði2 2 6Þj

100
;

where c5 0 for i5 2; 3 and c5 4 for i5 4:

In order to keep the number of weights within reasonable limits they used five values of wr

with h 5 0.75, 0.8, 0.85, 0.90, and 0.95. The main reason for the choice of the values of h was, for

some distributions, near optimal ratios of the weights belonged to some values of h. For example,

h 5 0.75 gives near optimum values of the ratios of weights for Weibull distribution for n# 3, and

h 5 0.95 gives near optimal values of the ratios of weights for Pareto (5) and lognormal distribu-

tions for m 5 2.

9.4 COMPARISONS OF ESTIMATORS
In this section, the various estimators for μ based on RSS, MRSS, RSSUR, and RSSUS are com-

pared. First the estimators based on RSS, MRSS, and RSSU are compared. For this purpose, the

following nonparametric relative precisions (RPNs) are defined:

RPNr 5
Varðμ̂RSSÞ=Varðμ̂r:RSSUÞ; if μ̂RSSU is an unbiased estimator

Varðμ̂RSSÞ=MSEðμ̂r:RSSUÞ; if μ̂RSSU is a biased estimator

�

for r5 1, 2, 3,. . .,6 and,

RPN7 5
Varðμ̂RSSÞ=Varðμ̂MRSSUÞ if μ̂MRSS is an unbiased estimator

Varðμ̂RSSÞ=MSEðμ̂MRSSUÞ if μ̂MRSS is a biased estimator:

�

It is noted that RPNr=RPN7 can be used for comparison of the estimators based on RSSU

and MRSS. Then μ̂r:RSSU is better than μ̂MRSS if RPNr .RPN7. Bhoj (2001) calculated the seven

relative precisions for normal, logistic, Laplace, exponential, Weibull (2), Weibull (4), gamma

(3), gamma (5), and extreme value distributions and m 5 2, 3, and 4. . . These computations

showed that μ̂r:RSSU r5 1, 2, 3,..... 6 are all superior to the estimator, μ̂RSS, for all the distribu-

tions. However, all estimators based on RSSU are not better than μ̂MRSS for all distributions and

sample sizes. μ̂r:RSSU for r 5 3, 4, and 6 have substantial gain in relative precisions over μ̂RSS

and μ̂MRSS for all nine distributions considered in the paper. Bhoj (2001) also considered the

errors in ranking and showed the performance of μ̂r:RSSU is superior to the estimators μ̂RSS and

μ̂MRSS.

Now the estimators μ̂r:RSSUR; r5 1, 2, ....., 6 based on RSSUR are compared with the estimators

based on RSS and MRSS. We define seven nonparametric relative precisions in this section which

are similar to the relative precisions in the previous paragraph except μ̂r:RSSU is replaced by

μ̂r:RSSUR. Bhoj and Kushary (2014) calculated these relative precisions for normal, logistic,
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Laplace, exponential, Weibull (2), Weibull (4), gamma (3), gamma(5), and extreme value distribu-

tion, and m 5 2 and 3 and k 5 2, 3, 4, and the values of ki. For given m and k there is one near

optimal solution of ki for all above eight distributions. μ̂r:RSSU is superior to μ̂RSS. w1u;w2u;w3u are

nearly optimal for Laplace, logistic, and normal distributions, respectively. In general, w5u works

quite well for the three symmetrical distributions and w4u performs better for all skewed distribu-

tions. The relative precisions based on μ̂r:RSSUR; r5 1; 2; ::::; 6 are all higher than RPU7 for all the

values of k and m and the eight distributions considered in the chapter. Hence

μ̂r:RSSU; r5 1; 2; ::::; 6; is uniformly superior to μ̂MRSS. Bhoj and Kushary (2014) tabulated the

values of ki for m 5 2 and 3 and k 5 2, 3, and 4. They computed relative precisions RPURr to

compare the estimators for μ based on RSSU and RSSUR for r5 1; 2;. . .; 6; m 5 2 and3, k 5 2, 3,

and 4 for eight distributions. They tabulated the values of ki and they showed that

μ̂r:RSSUR; r5 1; 2;. . .:; 6 is superior to μ̂r:RSSU, for all eight distributions.

Now the estimators for μ based on RSS, MRSS, and RSSUS are compared. The estimator

μ̂r:RSSUS is biased for highly skewed distributions. Therefore the following nonparametric relative

precisions (RPNs) are defined:

RPNr 5Varðμ̂RSSÞ=MSEðμ̂r:RSSUSÞ; for r5 1; 2;. . .; 5

RPN6 5
Varðμ̂RSSÞ=Varðμ̂MRSSÞ; if μ̂MRSS is an unbiased estimator;
Varðμ̂RSSÞ=MSEðμ̂MRSSÞ; if μ̂MRSS is a biased estimator:

�

Bhoj and Kushary (2016) computed RPNr, r 5 1, 2, . . ., 6 for lognormal, Weibull (0.5), Pareto

(2.5), and Pareto (5) distributions and m 5 2, 3, and 4. They also tabulated variances and biases of

the estimators based on RSSUS and MRSS. From the computations of relative precisions they

noted that the estimators μ̂r:RSSUS are all superior to the estimators based on RSS and MRSS for

the four distributions and three sample sizes. The gains in the relative precisions of the estimator of

μ based on RSSUS over the estimators based on RSS are substantial. However, the gains in the pre-

cisions of μ̂r:RSSUS over the estimator based on MRSS are very good to marginal, depending on the

value of m and the distribution. It was noted that the estimators based on RSSUS are adversely

affected by the extreme values of means and variances of the extremely heavy tail distributions

since RSSUS uses m1 5 1. The estimator based on MRSS is not directly affected by the extreme

values of the means and variances of the probability distributions.

9.5 MORE RANKED SET SAMPLING PROCEDURES WITH UNEQUAL
SAMPLES

In this section, some more ranked set sampling procedures with unequal samples are discussed.

Bhoj (2002) showed that the MRSS procedure does not perform well for even m, as compared to

odd m. He computed the relative percentage increases (RPI) in RP where RPI is defined as{(RP for

m � RP for (m � 1)) / RP for (m � 1)} 3 100. These computations showed that the values of

RPI are higher when we move from even to odd values of m, and they are lower when we switch

from odd to even values of m. Therefore, he proposed a new median ranked set sampling

(NMRSS) for even m 5 2l. In this procedure, we draw first l samples of size (m � 1) and the last l

samples of size (m 1 1). Then the median is quantified from each sample to estimate the popula-

tion mean. Bhoj (2002) showed that the relative precisions of the estimator based on the NMRSS
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procedure are better than the estimators based on MRSS when distributions are symmetric and

unimodal for m 5 2, 4, and 6. For moderate skew distributions MMRSS works reasonably well for

m 5 2 and 4. Most importantly the NMRSS procedure performs better than MRSS even for highly

skew distributions when m 5 2.

Biradar and Santosha (2014) proposed the maximum ranked set sampling procedure with

unequal samples mi 5 i; i5 1; 2; 3; :;m to estimate the mean of exponential distribution. In this pro-

cedure, they quantified only the observations with maximum rank. Although they measured m

observations, the number of observations ranked is only m(m1 1)/2. They derived maximum likeli-

hood estimator and modified maximum likelihood estimator for the mean and showed that the rela-

tive precisions of these estimators are better than that based on SRS. By using simulation, they

showed that the efficiency of the proposed estimator is better than the estimator based on RSS

under ranking error.

The balanced RSS approach can not be used when the populations are not available at the time

when the study was conducted. However, the entire population elements can be observed as batches

of different sizes. For such situation, Samawi (2011) proposed varied set size ranked set sampling

(VSRSS). In this procedure c sets of different sizes, say, K2
1 ;K

2
2 ; :;K

2
c ; are randomly selected. Next

the RSS technique is applied to each set separately to obtain c ranked set samples of sizes,

K1;K2; :;Kc; respectively. This produces a sample of size
Pc

i51 Ki. Samawi (2011) showed that the

estimator based on VSRSS is unbiased for the population mean and its variance is less than the var-

iance of the estimator of μ based on SRS.

Sometimes the sets that arise naturally in the RSS applications are of unequal sizes. For exam-

ple, commuters on different public buses or patients that have been waiting in doctors’ waiting

rooms that represent natural sets of different sizes. Germayel et al. (2010) proposed the estimator

for the median of a symmetric population that combines medians of RSS samples of different sizes.

The estimator is robust over a wide class of symmetric distributions, although it is not optimal for

any specific symmetric distribution.

Some authors proposed an RSS procedure with random selection of the units for measurements.

Li et al. (1999), Rahimov and Mutllak (2003a,b), and Amiri et al. (2015) proposed random ranked

set sampling where the set size and/or the number of cycles are allowed to be random and unequal.

Zhang et al. (2014) considered a sign test under ranked set sampling with unequal set sizes

(RSSU), and proposed weighted sign tests associated with judgment ranks. The optimal weight vec-

tor is shown to be distribution-free and RSSU proved to be more efficient than RSS.

9.6 APPLICATIONS TO REAL-WORLD DATA
Bhoj (2001) and Bhoj and Kushary (2014) applied their formulae derived under RSSU and RSSUR

procedures to the longleaf pine data. The data consist of the coordinates and diameters (at breast height)

of all longleaf pine trees at least 2 centimeters in diameter at breast height (dbs) in a 4-ha region on the

Wade Tract in Thomas County, Georgia, in 1979. The data have 584 trees, with observations ranging

from 2 to 75.9 cm dbh, indicating a large variability in the data. The Wade Tract contains all ages of trees

up to 250 years. All observations on dbh are given in Cressie (1993). The data on 584 trees are considered

as the population. The objective is to estimate the mean dbh value of longleaf pine trees in the 4-ha region

by using RSS, MRSS, RSSU, and RSSUR.
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Bhoj (2001) took random samples of size m 5 3 from the given population. The cycle was

repeated k 5 9 times to estimate the variance within each rank. The computed values of the esti-

mates based on mk observations are μ̂RSS 5 21:80, μ̂MRSS 5 29:56, and μ̂r:RSSU 5 28:73, 28.66,

28.59, 28.54, 28.66, and 28.61 for r 5 1, 2, 6 and the estimated corresponding variances of the esti-

mators are, respectively, 6.96, 6.11, 5.25, 5.10, 4.98, 5.11, and 5.01. It is observed that μ̂3:RSSU,

μ̂4:RSSU, and μ̂6:RSSU are closer to the population mean μ5 26:84 and the variances of these estima-

tors are relatively small. We note that the variance of the sample mean X based on mk observations

is σ2=mk5 334:238=275 12:38. The estimated variances of the estimators based on the RSSU pro-

cedure are considerably smaller than variances of X based on the same number of quantified

observations.

Bhoj and Kushary (2014) proposed ranked set sampling with unequal samples and unequal

replications. They estimated the mean dbh value of longleaf pine trees by using various ranked set

sampling procedures with equal replications and RSSU with unequal replications. Bhoj and

Kushary (2014) took the random samples of size m 5 3 from the given population. The cycle was

repeated k 5 4 times to estimate the variance within each rank. The estimators for the mean

were also computed with unequal replications: m1 5 2; m2 5 7 and m3 5 3. The computed values

of the estimators are μ̂RSS 5 25:39, μ̂r:RSSU, with k 5 4, are 25.90, 26.00, 26.09, 26.17, 26.00,

26.07 and, μ̂r:RSSUR 5 27:24, 27.11, 27.00, 26.90, 27.12, 27.03 for r5 1; 2;. . .; 6. The corresponding

variances of the estimators are, respectively, Varðμ̂RSSÞ5 17:25; Varðμ̂r:RSSUÞ5 14:5;
14:63; 14:78; 14:94; 14:62; 14:74 and Varðμ̂r:RSSURÞ5 12:63; 12.73, 12.83, 12.91, 12.73, and

12.8. It can be easily seen that the estimators based on RSSUR are close to μ, with smaller var-

iances as compared to the estimators based on RSSU with equal replications. Bhoj and Kushary

(2016) also computed the MSE of the estimators and showed that the estimators based on RSSUS

are better than those based on RSSU.
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CHAPTER

10A NEW MORGENSTERN TYPE
BIVARIATE EXPONENTIAL
DISTRIBUTION WITH KNOWN
COEFFICIENT OF VARIATION BY
RANKED SET SAMPLING

Vishal Mehta
Department of Mathematics, Jaypee University of Information Technology, Waknaghat, Himachal Pradesh, India

10.1 INTRODUCTION
Cost-effective sampling methods are of major concern in some experiments, especially when the

measurement of the characteristics is costly, painful, or time-consuming. The concept of ranked set

sampling (RSS) was first introduced by McIntyre (1952) as a process of increasing the precision of

sample mean as an unbiased estimator of population mean. The method of RSS provides an effec-

tive way to achieve observational economy or to achieve relatively more precision per unit of sam-

pling. RSS as described by McIntyre (1952) is applicable whenever ranking of a set of sampling

units can be done easily by judgment method. For a detailed discussion on theory and application

of RSS, see Chen et al. (2004). In certain situations one may prefer exact measurements of some

easily measurable variable X associated with the study variable Y to rank the units of samples

rather than ranking them by a crude judgment method. Suppose the variable of interest Y , is diffi-

cult or much more expensive to measure, but an auxiliary variable X correlated with Y is readily

measureable and can be ordered exactly. In this case as an alternative to McIntyre’s (1952) method

of ranked set sampling, Stokes (1977) used an auxiliary variable for the ranking of sampling units.

If X rð Þr is the observation measured on the auxiliary variable X from the unit chosen from the

rth set then we write Y r½ �r to denote the corresponding measurement made on the study variable Y

on this unit, then Y r½ �r; r5 1; 2; . . .; n from the ranked set sample. Clearly Y r½ �r is the concomitant of

the rth order statistic arising from the rth sample.

In many areas, especially in physical science, it is common to find the population standard devi-

ation is proportional to the population mean, that is, the coefficient of variation (CV) is constant

(e.g., Sen, 1978; Ebrahimi, 1984, 1985; Singh, 1986). In such cases it is possible to find a more

efficient estimator of the mean assuming that the coefficient of variation (CV) is known than by

using the sample mean.
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Let X be a random variable having the two-parameter exponential distribution as

fX xð Þ5 1

σ
exp 2

x2 θ
σ

� �
; x$ θ. 0;σ. 0: (10.1)

Here θ is the location parameter (guarantee period) and σ is the scale parameter (measuring the

mean life). Since E Xð Þ5 θ1σ and Var Xð Þ5σ2, therefore the CV 5 σ
θ1σ. Using the fact that the

CV is some known constant we get that σ5 a1θ, where a1 . 0ð Þ is known (see, Samanta, 1984,

1985; Joshi and Nabar, 1991) and therefore Eq. (10.1) reduces to

fX xð Þ5 1

a1θ
exp 2

x2 θ
a1θ

� �
; x$ θ. 0; a1 . 0; (10.2)

which has mean θ a1 1 1ð Þ and variance θ2a21, therefore the CV 5 a1
a1 1 1ð Þ is the same for all θ . 0ð Þ:

The cumulative density function (cdf) of Eq. (10.2) is given by

FX xð Þ5 12 exp 2
x2 θ
a1θ

� �
; x$ θ. 0; a1 . 0: (10.3)

Ali and Woo (2002) considered parametric estimation of a special case of the two-parameter

exponential distribution in which both the threshold (location) and the scale parameters are equal.

For a1 5 1 the probability density function (pdf) fX xð Þ in Eq. (10.2) reduces to:

fX xð Þ5 1

θ
exp 2

x2 θ
θ

� �
; x$ θ; (10.4)

which is due to Ali and Woo (2002).

A general family of bivariate distributions is proposed by Morgenstern (1956) with specified

marginal distributions FX xð Þ and FY yð Þ as
FX;Y x; yð Þ5FX xð ÞFY yð Þ 11α 12FX xð Þð Þ 12FY yð Þð Þ½ �; 2 1#α# 1; (10.5)

where α is the association parameter between X and Y and FX;Y x; yð Þ is the joint distribution func-

tion ðdf Þ and FX xð Þ and FY yð Þ are the marginal distribution function ðdf Þ of X and Y respectively

(see Johnson and Kotz, 1972).

Also, the probability density function (pdf) of the Morgenstern family of distribution can be

given as

fX;Y x; yð Þ5 fX xð ÞfY yð Þ 11α 12 2FX xð Þð Þ 12 2FY yð Þð Þ½ �; 2 1#α# 1: (10.6)

The pdf of the concomitants of order statistics Y r½ �r arising from MTBED is obtained as (see

Scaria and Nair, 1999)

fY r½ �r yð Þ5 fY yð Þ 11α
n2 2r1 1

n1 1

� �
12 2FY yð Þð Þ

� �
; 2 1#α# 1: (10.7)

Now using Eqs. (10.2) and (10.3) in Eq. (10.6) we get a member of this family is Morgenstern

type bivariate exponential distribution (MTBED) with the probability density function (pdf) as

fX;Y x; yð Þ5
exp 2

x2 θ1
a1θ1

� �
1 2

y2 θ2
a2θ2

� �� �
11α 12 2exp 2

x2 θ1
a1θ1

� �� �
12 2exp 2

y2 θ2
a2θ2

� �� �� �

a1a2θ1θ2
;

x$ θ1; y$ θ2; a1; a2 . 0; 2 1#α# 1:

(10.8)
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Now the pdf of Y r½ �r for 1# r# n is given as (see Scaria and Nair, 1999)

fY r½ �r yð Þ5 1

a2θ2
exp 2

y2 θ2
a2θ2

� �
12α

n2 2r1 1

n1 1

� �
12 2exp 2

y2 θ2
a2θ2

� �� �� �
;

y$ θ2; a2 . 0; 2 1#α# 1:

(10.9)

The mean and variance of Y r½ �r for 1# r# n are respectively given by

E Y r½ �r
� 	

5 θ2ξr and Var Y r½ �r
� 	

5 θ22δr ; (10.10)

where

ξr 5 11 a2 12
α
2

n2 2r1 1

n1 1

� �� �� �

and

δr 5 a22 12
α
2

n2 2r1 1

n1 1

� �
2

α2

4

n22r11

n11

� �2
" #

:

Stokes (1995) has considered the estimation of parameters of location-scale family of distribu-

tions using RSS. Lam et al. (1994, 1995) have obtained the BLUEs of location and scale para-

meters of exponential distribution and logistic distribution. Stokes (1980) has considered the

method of estimation of correlation coefficient of bivariate normal distribution using RSS.

Modarres and Zheng (2004) have considered the problem of estimation of the dependence parame-

ter using RSS. A robust estimate of correlation coefficient for bivariate normal distribution has

been developed by Zheng and Modarres (2006). Stokes (1977) has suggested the ranked set sample

mean as an estimator for the mean of the study variate Y ; when an auxiliary variable X is used for

ranking the sample units, under the assumption that ðX;YÞ follows a bivariate normal distribution.

Estimation of a parameter of Morgenstern type bivariate exponential distribution by using RSS was

considered by Chacko and Thomas (2008). Barnett and Moore (1997) have improved the estimator

of Stokes (1977) by deriving the best linear unbiased estimator (BLUE) of the mean of the study

variate Y ; based on ranked set sample obtained on the study variate Y . Lesitha et al. (2010) have

considered application of RSS in estimating parameters of Morgenstern type bivariate logistic dis-

tribution. Tahmasebi and Jafari (2012) have considered upper RSS. For current references in this

context the reader is referred to Sharma et al. (2016), Bouza (2001, 2002, 2005), Samawi and

Muttlak (1996), Demir and Singh (2000); Singh and Mehta (2013, 2014a,b, 2015, 2016a,b,c, 2017),

Mehta and Singh (2014, 2015), and Mehta (2017).

The remaining part of the chapter is organized as follows: Section 10.2.1 proposes an unbiased

estimator θ̂2 of the parameter θ2 involved in Eq. (10.8) using ranked set sample mean along with its

variance. In Section 10.2.2, we have derived BLUE θ�2 of θ2, when the association parameter α is

known. We have also given the variance of BLUE θ�2. Section 10.2.3 deals with the problem of

estimating the parameter θ2 based on unbalanced multistage RSS. We have derived BLUE θ̂
n rð Þ
2 of

θ2 and obtained its variance. In Sections 10.2.4 and 10.2.5, we have discussed the problem of esti-

mating the parameter θ2 based on unbalanced single-stage and steady-state RSS, respectively,

which are particular cases of the studies presented in Section 10.3.1. Section 10.3.2 compares the

performance of the different estimators proposed in the chapter through a numerical illustration. In

Section 10.4 we conclude the chapter with final remarks.
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10.2 EXPERIMENTAL METHODS AND MATERIALS

10.2.1 RANKED SET SAMPLE MEAN AS AN ESTIMATOR OF θ2
Let X;Yð Þ be a bivariate random variable which follows an MTBED with pdf defined by

Eq. (10.8). Suppose RSS in the sense of Stokes (1977) has been carried out. Let X rð Þr be the obser-

vation measured on the auxiliary variate X in the rth unit of the RSS and let Y r½ �r be the measure-

ment made on the Y variate of the same unit r5 1; 2; . . .; n. Then clearly Y r½ �r is distributed as the

concomitant of rth order statistics of a random sample of n arising from Eq. (10.8). By using the

expressions for mean and variances of concomitants of order statistics arising from MTBED

obtained in Eq. (10.10), we propose an estimator θ̂2 of θ2 involved in Eq. (10.8) and proved that it

is an unbiased estimator of θ2.

Theorem 1.1: Let Y r½ �r; r5 1; 2; . . .; n be the ranked set sample observations on a study variate Y

obtained out of ranking made on an auxiliary variate X, when X;Yð Þ follows MTBED as defined in

Eq. (10.8). Then the ranked set sample mean given by

θ̂2 5
1

n a2 1 1ð Þ
Xn
r51

Y r½ �r ; (10.11)

is an unbiased estimator of θ2 and its variance is given by

Var θ̂2

 �

5
a22θ

2
2

n a211ð Þ2 12
α2

4n

Xn
r51

n22r11

n11

� �2
" #

: (10.12)

Proof: Taking expectations of both sides of Eq. (10.11) we have

E θ̂2

 �

5
1

n a2 1 1ð Þ
Xn
r51

E Y r½ �r
� 	

5
θ2

n a2 1 1ð Þ
Xn
r51

11 a2
n2 2r1 1

n1 1

� �� �
: (10.13)

It is clear to note that

Xn
r51

n2 2r1 1ð Þ5 0: (10.14)

Using Eq. (10.14) in Eq. (10.13) we get

E θ̂2

 �

5 θ2:

Thus θ̂2 is an unbiased estimator of θ2.
The variance of θ̂2 is given by

Var θ̂2

 �

5
1

n2 a211ð Þ2
Xn
r51

Var Y r½ �r
� 	

:

Now using Eq. (10.10) and Eq. (10.14) in the above sum we get,
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Var θ̂2

 �

5
a22θ

2
2

n a211ð Þ2 12
α2

4n

Xn
r51

n22r11

n11

� �2
" #

:

Thus the theorem is proved.V

10.2.2 BEST LINEAR UNBIASED ESTIMATOR OF θ2
In this section we provide a better estimator of θ2 than that of θ̂2 by deriving the BLUE θ�2 of θ2 pro-
vided the parameter α is known. Let X rð Þr be the observation measured on the auxiliary variable X in

the rth unit of ranked set samples and let Y r½ �r be measurement made on the Y variable of the same

unit, r5 1; 2; . . .; n. Let Y n½ � 5 Y 1½ �1;Y 2½ �2; . . .;Y n½ �n
� 	0 and if the parameter α involved in ξr and δr is

known, then proceeding as in David and Nagaraja (2003, p.185) the BLUE θ�2 of θ2 is obtained as

θ�2 5 ξ0G21ξ
� 	21

ξ0G21Y n½ � (10.15)

and

Var θ�2
� 	

5 ξ0G21ξ
� 	21θ22; (10.16)

where ξ5 ξ1; ξ2; . . .; ξn
� 	0 and G5 diag δ1; δ2; . . .; δnð Þ. On substituting the values of ξ and G in

Eqs. (10.15) and (10.16) and simplifying we have

θ�2 5

Pn
r51

ξr=δr
� 	

Y r½ �r

Pn
r51

ξ2r=δr
� 	 (10.17)

and

Var θ�2
� 	

5
θ22Pn

r51

ξ2r=δr
� 	 : (10.18)

10.2.3 ESTIMATION OF θ2 BASED ON UNBALANCED MULTISTAGE RANKED SET
SAMPLING

Al-Saleh and Al-Kadiri (2000) have extended first the usual concept of RSS to double-stage ranked

set sampling (DSRSS) with the objective of increasing the precision of certain estimators of the

population when compared with those obtained based on usual RSS or using random sampling.

Al-Saleh and Al-Omari (2002) have further extended DSRSS to multistage ranked set sampling

(MSRSS) and shown that there is an increase in the precision of estimators obtained based on

MSRSS when compared with those based on usual RSS and DSRSS. The MSRSS (in r stages) pro-

cedure is described below:

(1) Randomly select nr11 sample units from the target population, where r is the number of stages

of MSRSS.

(2) Allocate the nr11 selected units randomly into nr21 sets, each of size n2.
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(3) For each set in step (2), apply the procedure of RSS method to obtain a (judgment) ranked set,

of size n; this step yields nr21 (judgment) ranked sets, of size n each.

(4) Arrange nr21 ranked sets of size n each, into nr22 sets of n2 units each and without doing any

actual quantification, apply ranked set sampling method on each set to yield nr22 second stage

ranked sets of size n each.

(5) This process is continued, without any actual quantification, until we end up with the rth stage

(judgment) ranked set of size n.

(6) Finally, the n identified elements in step (5) are now quantified for the variable of interest.

Instead of the judgment method of ranking at each stage if there exists an auxiliary variate on

which one can make measurement very easily and exactly and if the auxiliary variate is highly cor-

related with the variable under study, then we can apply ranking based on these measurements to

obtain the ranked set units at each stage of MSRSS. Then, on the finally selected units, one can

make measurement on the study variable.

In this section we deal with the MSRSS by assuming that the random variable X; Yð Þ has an

MTBED as defined in Eq. (10.8), where Y is the study variable and X is an auxiliary variable. In

Section 10.2.2, we have considered a method for estimating θ2 using the Y r½ �r measured on the study

variate Y on the unit having rth smallest value observed on the auxiliary variable X, of the rth sam-

ple r5 1; 2; . . .; n, and hence the RSS considered there was balanced.

Abo-Eleneen and Nagaraja (2002) have shown that, in a bivariate sample of size n arising from

MTBED, the concomitant of largest-order statistic possesses the maximum Fisher information on

θ2 whenever α. 0 and the concomitant of smallest order statistic possesses the maximum Fisher

information on θ2 whenever α, 0. Hence, in this section, first we considered α. 0 and carry out

an unbalanced MSRSS with the help of measurements made on an auxiliary variate to choose the

ranked set and then estimate θ2 involved in MTBED based on the measurements made on the study

variable. At each stage and from each set we choose a unit of a sample with the largest value on

the auxiliary variable as the units of ranked sets with an objective of exploiting the maximum

Fisher information on the ultimately chosen ranked set sample.

Let U
rð Þ
i ; i5 1; 2; . . .; n be the units chosen by the (r stage) MSRSS. Since the measurement of

an auxiliary variable on each unit U
rð Þ
i ; i5 1; 2; . . .; n has the largest value, we may write

Y
rð Þ
n½ �i; i5 1; 2; . . .; n to denote the value measured on the variable of primary interest on

U
rð Þ
i ; i5 1; 2; . . .; n. Then it is easy to see that each Y

rð Þ
n½ �i is the concomitant of the largest-order statis-

tic of nr independently and identically distributed bivariate random variables with MTBED.

Moreover Y
rð Þ
n½ �i; i5 1; 2; . . .; n are also independently distributed with pdf given by (see Scaria and

Nair, 1999)

f
rð Þ
n½ �i yð Þ5 1

a2θ2
exp 2

y2 θ2
a2θ2

� �
11α

nr 2 1

nr 1 1

� �
12 2exp 2

y2 θ2
a2θ2

� �� �� �
;

y$ θ2; a2 . 0; 2 1#α# 1:

(10.19)

Thus the mean and variance of Y
rð Þ
n½ �i; i5 1; 2; . . .; n are given below

E Y
rð Þ
n½ �i


 �
5 θ2 11 a2 11

α
2

nr 2 1

nr 1 1

� �� �� �
5 θ2ξnr ; (10.20)
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Var Y
rð Þ
n½ �i


 �
5 θ22a

2
2 11

α
2

nr 2 1

nr 1 1

� �
2

α2

4

nr21

nr11

� �2
" #

5 θ22δnr ; (10.21)

where

ξnr 5 11 a2 11
α
2

nr 2 1

nr 1 1

� �� �� �
(10.22)

and

δnr 5 a22 11
α
2

nr 2 1

nr 1 1

� �
2

α2

4

nr21

nr11

� �2
" #

: (10.23)

Let Y
rð Þ
n½ � 5 Y

rð Þ
n½ �1;Y

rð Þ
n½ �2; . . .; Y

rð Þ
n½ �n


 �
0, then by using Eqs. (10.20) and (10.21) we get the mean vector

and dispersion matrix of Y
rð Þ
n½ � as

E Y
rð Þ
n½ �


 �
5 θ2ξnr1 (10.24)

and

D Y
rð Þ
n½ �


 �
5 θ22δnr I; (10.25)

where 1 is the column vector of n ones and I is a unit matrix of order n.

If α. 0 involved in ξnr and δnr is known then Eqs. (10.24) and (10.25) together define a gener-

alized Gass�Markov setup and hence the BLUE of θ2 is obtained as

θ̂
n rð Þ
2 5

1

nξnr

Xn
i51

Y
rð Þ
n½ �i (10.26)

with variance given by

Var θ̂
n rð Þ
2


 �
5

θ22δnr

n ξnr
� 	2 : (10.27)

10.2.4 ESTIMATION OF θ2 BASED ON UNBALANCED SINGLE-STAGE RANKED SET
SAMPLING

If we take r5 1 in the MSRSS method described above, then we get the usual single-stage unbal-

anced RSS. By putting r5 1 in Eqs. (10.26) and (10.27) we get the BLUE θ̂
n 1ð Þ
2 of θ2 based on

single-stage unbalanced ranked set sampling as

θ̂
n 1ð Þ
2 5

1

nξn

Xn
i51

Y n½ �i (10.28)

with variance

Var θ̂
n 1ð Þ
2


 �
5

θ22δn
n ξn
� 	2 ; (10.29)
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where, we write Y n½ �i instead of Y
1ð Þ
n½ �i and it represents the measurement on the study variable of the

unit selected in the RSS. Also ξn and δn are obtained by putting r5 1 in Eqs. (10.22) and (10.23),

respectively i.e.,

ξn 5 11 a2 11
α
2

n2 1

n1 1

� �� �� �
(10.30)

and

δn 5 a22 11
α
2

n2 1

n1 1

� �
2

α2

4

n21

n11

� �2
" #

: (10.31)

10.2.5 ESTIMATION OF θ2 BASED ON UNBALANCED STEADY-STATE RANKED SET
SAMPLING

Al-Saleh (2004) has considered the steady-state RSS by letting r go to 1N. For the steady-state

RSS the problem considered in having the asymptotic distribution of Y
rð Þ
n½ �i is given by

f
Nð Þ
n½ �i yð Þ5 1

a2θ2
exp 2

y2 θ2
a2θ2

� �
11α 12 2exp 2

y2 θ2
a2θ2

� �� �� �
;

y$ θ2; a2 . 0; 2 1#α# 1:

(10.32)

From the definition of unbalanced MSRSS it follows that Y
Nð Þ
n½ �i ; i5 1; 2; . . .; n are independent

and identically distributed random variables each with pdf as defined in Eq. (10.32). Then

Y
Nð Þ
n½ �i ; i5 1; 2; . . .; n may be regarded as an unbalanced steady-state ranked set sample of size n. The

mean and variance of Y
Nð Þ
n½ �i ; i5 1; 2; . . .; n are given below

E Y
rð Þ
n½ �i


 �
5 θ2 11 a2 11

α
2

n oh i
; (10.33)

Var Y
rð Þ
n½ �i


 �
5 θ22a

2
2 11

α
2
2

α2

4

� �
: (10.34)

Let Y
Nð Þ
n½ � 5 Y

Nð Þ
n½ �1 ;Y

Nð Þ
n½ �2 ; . . .;Y

Nð Þ
n½ �n


 �
0. Then the BLUE θ̂

n Nð Þ
2 based on Y

Nð Þ
n½ � and the variance of

θ̂
n Nð Þ
2 is obtained by taking the limits as r-N in Eqs. (10.26) and (10.27), respectively, and are

given by

θ̂
n Nð Þ
2 5

1

n 11 a2 11 α
2

� 	� Xn
i51

Y
Nð Þ
n½ �i (10.35)

and

Var θ̂
n Nð Þ
2


 �
5 θ22

a22 11 α
2
2 α2

4


 �
n 11 a2 11 α

2

� 	�  : (10.36)

Remark 1: As mentioned earlier for MTBED the concomitant of smallest-order statistic possesses

the maximum Fisher information on θ2 whenever α, 0. Therefore when α, 0 we consider an
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unbalanced MSRSS in which at each stage and from each set we choose a unit of a sample with the

smallest value on the auxiliary variable as the units of ranked sets with an objective of exploiting

the maximum Fisher information on the ultimately chosen ranked set sample.

Let Y
rð Þ
1½ �i; i5 1; 2; . . .; n, be the value measured on the variable of primary interest on the units

selected at the rth stage of the unbalanced MSRSS. Then it is easily to see that each

Y
rð Þ
1½ �i; i5 1; 2; . . .; n is the concomitant of the smallest-order statistic of nr independently and identi-

cally distributed bivariate random variables with MTBED. Moreover Y
rð Þ
1½ �i; i5 1; 2; . . .; n are also

independently distributed with pdf given by

f
rð Þ
1½ �i yð Þ5 1

a2θ2
exp 2

y2 θ2
a2θ2

� �
12α

nr 2 1

nr 1 1

� �
12 2exp 2

y2 θ2
a2θ2

� �� �� �
;

y$ θ2; a2 . 0; 2 1#α# 1:
(10.37)

Clearly from Eqs. (10.19) and (10.37) we have

f
rð Þ
1½ �i y;αð Þ5 f

rð Þ
n½ �i y; 2αð Þ (10.38)

and hence E Y
rð Þ
n½ �i


 �
for α. 0 and E Y

rð Þ
1½ �i


 �
for α, 0 are identically equal. Similarly,

Var Y
rð Þ
n½ �i


 �
for α. 0 and Var Y

rð Þ
1½ �i


 �
for α, 0 are identically equal. Consequently, if θ̂

1 1ð Þ
2 is the

BLUE of θ2, involved in MTBED for α, 0, based on the unbalanced MSRSS observations

Y
rð Þ
1½ �i; i5 1; 2; . . .; n then the coefficients of Y

rð Þ
1½ �i; i5 1; 2; . . .; n in the BLUE θ̂

1 1ð Þ
2 for α, 0 is the

same as the coefficients of Y
rð Þ
n½ �i; i5 1; 2; . . .; n in the BLUE θ̂

n rð Þ
2 for α. 0. Further we have

Var θ̂
1 1ð Þ
2


 �
5Var θ̂

n rð Þ
2


 �
and hence Var θ̂

1 1ð Þ
2


 �
5Var θ̂

n 1ð Þ
2


 �
and Var θ̂

1 Nð Þ
2


 �
5Var θ̂

n Nð Þ
2


 �
, where

θ̂
1 1ð Þ
2 are the BLUE of θ2 for α, 0 based on the usual unbalanced single stage RSS observations

Y n½ �i; i5 1; 2; . . .; n and θ̂
1 Nð Þ
2 are the BLUE of θ2 for α, 0 based on the unbalanced steady-state

RSS observations Y
Nð Þ
n½ �i ; i5 1; 2; . . .; n.

Remark 2: If we have a situation with α unknown, we introduce an estimator (moment type) for α
as follows. For MTBED the correlation coefficient between the two variables is given by ρ5 α

4
. If

q is the sample correlation coefficient between X ið Þi and Y i½ �i; i5 1; 2; . . .; n then the moment type

estimator for α is obtained by equating with the population correlation coefficient ρ and is

obtained as (see Chacko and Thomas, 2008):

α̂5

2 1 if q, 2 1=4

4q if 2
1

4
# q#

1

4
1 if q. 1=4

:

8><
>: (10.39)
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10.3 OBSERVATIONS, RESULTS, AND DISCUSSION

10.3.1 RELATIVE EFFICIENCY

We have obtained the relative efficiencies e1 5RE θ�2; θ̂2

 �

5
Var θ̂2ð Þ
Var θ�2ð Þ ; e2 5RE θ̂

n 1ð Þ
2 ; θ̂2


 �
5

Var θ̂2ð Þ
Var θ̂

n 1ð Þ
2

� 	
and e3 5RE θ̂

n Nð Þ
2 ; θ̂2


 �
5

Var θ̂2ð Þ
Var θ̂

n Nð Þ
2

� 	 of θ�2; θ̂
n 1ð Þ
2 and θ̂

n Nð Þ
2 relative to θ̂2 respectively, for

n5 2 2ð Þ20;α5 0:25 0:25ð Þ1:00 and a2 5 1 1ð Þ5 and these are presented in Table 10.1.

Table 10.1 The Values of e
0
is; i5 1; 2; 3

n α

a2 5 1 a2 5 2 a2 5 3

e1 e2 e3 e1 e2 e3 e1 e2 e3

2 0.25 1.0008 1.0005 1.0160 1.0000 1.0138 1.0559 1.0004 1.0210 1.0766

0.50 1.0016 1.0008 1.0581 1.0009 1.0280 1.1383 1.0004 1.0415 1.1793

0.75 1.0041 1.0013 1.1241 1.0023 1.0416 1.2463 1.0014 1.0617 1.3093

1.00 1.0075 1.0016 1.2150 1.0037 1.0537 1.3824 1.0022 1.0803 1.4703

4 0.25 1.0000 1.0034 1.0143 1.0009 1.0281 1.0549 1.0000 1.0401 1.0751

0.50 1.0033 1.0118 1.0521 1.0018 1.0595 1.1316 1.0014 1.0842 1.1729

0.75 1.0083 1.0235 1.1095 1.0047 1.0946 1.2304 1.0037 1.1307 1.2928

1.00 1.0224 1.0388 1.1880 1.0125 1.1311 1.3517 1.0083 1.1782 1.4369

6 0.25 1.0000 1.0052 1.0135 1.0000 1.0343 1.0540 1.0000 1.0489 1.0743

0.50 1.0024 1.0182 1.0487 1.0027 1.0762 1.1296 1.0022 1.1052 1.1704

0.75 1.0126 1.0397 1.1049 1.0070 1.1225 1.2235 1.0044 1.1652 1.2852

1.00 1.0316 1.0628 1.1760 1.0190 1.1730 1.3382 1.0138 1.2299 1.4230

8 0.25 1.0000 1.0060 1.0127 1.0000 1.0375 1.0530 1.0000 1.0536 1.0736

0.50 1.0033 1.0225 1.0470 1.0037 1.0863 1.1285 1.0014 1.1172 1.1687

0.75 1.0135 1.0481 1.1004 1.0075 1.1387 1.2190 1.0045 1.1853 1.2805

1.00 1.0355 1.0771 1.1680 1.0236 1.1992 1.3312 1.0170 1.2615 1.4154

10 0.25 1.0000 1.0079 1.0135 1.0023 1.0417 1.0545 1.0000 1.0571 1.0736

0.50 1.0082 1.0283 1.0487 1.0023 1.0920 1.1270 1.0018 1.1249 1.1674

0.75 1.0127 1.0532 1.0967 1.0071 1.1495 1.2161 1.0056 1.2001 1.2791

1.00 1.0402 1.0890 1.1650 1.0248 1.2151 1.3248 1.0195 1.2812 1.4090

12 0.25 1.0000 1.0063 1.0111 1.0000 1.0431 1.0540 1.0000 1.0603 1.0743

0.50 1.0049 1.0312 1.0487 1.0028 1.0966 1.1265 1.0000 1.1291 1.1653

0.75 1.0152 1.0593 1.0967 1.0114 1.1597 1.2167 1.0067 1.2093 1.2767

1.00 1.0486 1.0987 1.1640 1.0269 1.2271 1.3210 1.0211 1.2974 1.4068

14 0.25 1.0000 1.0101 1.0143 1.0000 1.0436 1.0530 1.0000 1.0614 1.0736

0.50 1.0057 1.0292 1.0445 1.0032 1.1005 1.1265 1.0025 1.1358 1.1674

0.75 1.0179 1.0613 1.0940 1.0099 1.1663 1.2161 1.0052 1.2156 1.2743

1.00 1.0506 1.1048 1.1620 1.0315 1.2394 1.3216 1.0219 1.3085 1.4041
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Table 10.1

n α

a2 5 1 a2 5 2 a2 5 3

e1 e2 e3 e1 e2 e3 e1 e2 e3

16 0.25 1.0065 1.0122 1.0160 1.0036 1.0465 1.0549 1.0000 1.0628 1.0736

0.50 1.0066 1.0300 1.0436 1.0037 1.1034 1.1265 1.0029 1.1374 1.1653

0.75 1.0204 1.0676 1.0967 1.0076 1.1681 1.2122 1.0060 1.2227 1.2748

1.00 1.0507 1.1091 1.1600 1.0280 1.2430 1.3158 1.0252 1.3176 1.4025

18 0.25 1.0000 1.0077 1.0111 1.0000 1.0465 1.0540 1.0000 1.0635 1.0732

0.50 1.0074 1.0314 1.0436 1.0000 1.1027 1.1234 1.0033 1.1415 1.1666

0.75 1.0153 1.0678 1.0940 1.0128 1.1753 1.2150 1.0067 1.2257 1.2725

1.00 1.0574 1.1151 1.1610 1.0362 1.2533 1.3190 1.0248 1.3225 1.3988

20 0.25 1.0000 1.0064 1.0095 1.0000 1.0453 1.0521 1.0000 1.0648 1.0736

0.50 1.0082 1.0376 1.0487 1.0046 1.1056 1.1244 1.0036 1.1425 1.1653

0.75 1.0169 1.0728 1.0967 1.0095 1.1772 1.2133 1.0075 1.2295 1.2720

1.00 1.0545 1.1183 1.1600 1.0302 1.2525 1.3120 1.0236 1.3289 1.3982

n α

a2 5 4 a2 5 5

e1 e2 e3 e1 e2 e3

2 0.25 1.0000 1.0249 1.0887 1.0000 1.0277 1.0970

0.50 1.0003 1.0498 1.2043 1.0003 1.0551 1.2210

0.75 1.0006 1.0737 1.3477 1.0006 1.0818 1.3738

1.00 1.0016 1.0964 1.5244 1.0012 1.1073 1.5611

4 0.25 1.0000 1.0474 1.0873 1.0000 1.0526 1.0957

0.50 1.0006 1.0986 1.1975 1.0006 1.1082 1.2139

0.75 1.0026 1.1523 1.3306 1.0018 1.1668 1.3561

1.00 1.0066 1.2072 1.4896 1.0055 1.2265 1.5250

6 0.25 1.0000 1.0580 1.0870 1.0000 1.0635 1.0948

0.50 1.0010 1.1223 1.1948 1.0009 1.1336 1.2110

0.75 1.0039 1.1915 1.3233 1.0036 1.2094 1.3493

1.00 1.0101 1.2642 1.4744 1.0093 1.2885 1.5107

8 0.25 1.0000 1.0639 1.0866 1.0012 1.0705 1.0951

0.50 1.0013 1.1357 1.1929 1.0012 1.1486 1.2096

0.75 1.0039 1.2150 1.3195 1.0024 1.2333 1.3440

1.00 1.0136 1.2986 1.4661 1.0125 1.3251 1.5019

10 0.25 1.0000 1.0669 1.0856 1.0000 1.0733 1.0935

0.50 1.0016 1.1446 1.1918 1.0015 1.1588 1.2093

0.75 1.0033 1.2291 1.3156 1.0045 1.2507 1.3424

1.00 1.0153 1.3212 1.4602 1.0141 1.3491 1.4959

12 0.25 1.0000 1.0700 1.0859 1.0000 1.0767 1.0938

0.50 1.0019 1.1512 1.1914 1.0018 1.1660 1.2089

0.75 1.0039 1.2405 1.3143 1.0054 1.2625 1.3408

1.00 1.0185 1.3392 1.4582 1.0151 1.3671 1.4926

(Continued)

The Values of e
0
is; i5 1; 2; 3 Continued
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It is observed from Table 10.1 that

• for fixed a2, the values of ei
0s; i5 1; 2; 3 increase as n increase;

• for fixed n, the value of ei
0s; i5 1; 2; 3 increase as α increases;

• the values of ei
0s; i5 1; 2; 3 greater than “unity” for all values of n;α; a2ð Þ, which follows that

the estimators θ�2; θ̂
n 1ð Þ
2 and θ̂

n Nð Þ
2 are more efficient than unbiased estimator θ̂2;

• when n is fixed, larger gain in efficiencies are observed for large values of α and all values

of a2;

• the values of ei
0s; i5 2; 3 increase as the value of a2 increases. It follows that the larger gain in

efficiency by using θ̂
n 1ð Þ
2 and θ̂

n Nð Þ
2 over θ̂2 can be obtained when the population is more

heterogeneous. No trend is observed for e1 as a2 increases.

Therefore we conclude that the BLUE of steady-state RSS θ̂
n Nð Þ
2 of θ2 is a better estimator of

θ̂2; θ�2 and θ̂
n 1ð Þ
2 , respectively.

10.4 CONCLUSION
In this chapter, taking the motivation from Ebrahimi (1984, 1985), we have developed a new

Morgenstern type bivariate exponential distribution (MTBED) with known coefficients of variation

(CV) using the results due to Morgenstern (1956) and Scaria and Nair (1999). The mean and

Table 10.1

n α

a2 5 4 a2 5 5

e1 e2 e3 e1 e2 e3

14 0.25 1.0000 1.0718 1.0856 1.0000 1.0796 1.0945

0.50 1.0022 1.1560 1.1910 1.0000 1.1698 1.2071

0.75 1.0069 1.2503 1.3148 1.0042 1.2710 1.3392

1.00 1.0168 1.3504 1.4543 1.0155 1.3793 1.4889

16 0.25 1.0000 1.0730 1.0853 1.0000 1.0807 1.0938

0.50 1.0026 1.1604 1.1914 1.0000 1.1737 1.2068

0.75 1.0052 1.2539 1.3109 1.0048 1.2771 1.3376

1.00 1.0192 1.3620 1.4543 1.0177 1.3898 1.4871

18 0.25 1.0000 1.0750 1.0859 1.0000 1.0820 1.0938

0.50 1.0029 1.1624 1.1903 1.0026 1.1782 1.2079

0.75 1.0059 1.2617 1.3131 1.0054 1.2840 1.3384

1.00 1.0186 1.3680 1.4509 1.0171 1.3982 1.4857

20 0.25 1.0000 1.0740 1.0839 1.0000 1.0844 1.0951

0.50 1.0000 1.1647 1.1899 1.0029 1.1806 1.2075

0.75 1.0033 1.2627 1.3092 1.0030 1.2852 1.3344

1.00 1.0207 1.3750 1.4504 1.0190 1.4049 1.4843

The Values of e
0
is; i5 1; 2; 3 Continued
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variance of newly developed MTBED with known CV have also been obtained. We have discussed

the problem of estimating parameter θ2 in MTBED in the presence of known CV. For estimating

the parameter θ2 of MTBED, we have derived an unbiased estimator θ̂2 using ranked set sample

mean and the BLUE θ�2 based on RSS and their variances are given. We have further addressed the

problem of estimating θ2 using unbalanced RSS and its special cases known as unbalanced single-

stage and steady-state RSS are also discussed. The reflective performance of the various proposed

estimators of the parameter θ2 are evaluated through numerical illustration and finally obtained that

the BLUE of the steady-state RSS θ̂
n Nð Þ
2 is more efficient among the estimators discussed in the

chapter.
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CHAPTER

11SHRINKAGE ESTIMATORS OF
SCALE PARAMETER TOWARDS
AN INTERVAL OF
MORGENSTERN TYPE BIVARIATE
UNIFORM DISTRIBUTION USING
RANKED SET SAMPLING

Vishal Mehta
Department of Mathematics, Jaypee University of Information Technology, Waknaghat, Himachal Pradesh, India

11.1 INTRODUCTION
Ranked set sampling (RSS) is a method of sampling that can be advantageous when quantification

of all sampling units is costly but a small set of units can be easily ranked, according to the charac-

ter under investigation, without actual quantification. The technique was first introduced by

McIntyre (1952) for estimating mean pasture and forage yields. The theory and applications of RSS

are given by Chen et al. (2004). Suppose the variable of interest, Y, is difficult or much too expen-

sive to measure, but an auxiliary variable X correlated with Y is readily measureable and can be

ordered exactly. In this case, as an alternative to McIntyre’s (1952) method of ranked set sampling,

Stokes (1977) used an auxiliary variable for the ranking of sampling units. If XðrÞr is the observation
measured on the auxiliary variable X from the unit chosen from the rth set then we write Y½r�r to

denote the corresponding measurement made on the study variable Y on this unit, then

Y½r�r; r5 1; 2; . . .; n, from the ranked set sample. Clearly, Y½r�r is the concomitant of the rth order sta-

tistic arising from the rth sample. Stokes (1995) has obtained the estimation of parameters of the

location-scale family of distribution by RSS. Lam et al. (1994) used RSS to estimate the two-

parameter exponential distribution. Al-Saleh and Ananbeh (2005, 2007) estimated the means of the

bivariate normal distribution using moving extremes RSS with a concomitant variable. Al-Saleh

and Diab (2009) considered estimation of the parameters of Downton’s bivariate exponential distri-

bution using an RSS scheme. Barnett and Moore (1997) derived the best linear unbiased estimator

(BLUE) for the mean of Y, based on a ranked set sample obtained using an auxiliary variable X for

ranking the sample units.

In the estimation of an unknown parameter there often exists some prior knowledge about the

parameter which one would like to utilize in order to get a better estimate. The Bayesian approach

is a well-known example in which prior knowledge about the parameter is available in the form of
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prior distribution. For current references in this context the reader is referred to Sharma et al.

(2016), Bouza (2001, 2002, 2005), Samawi and Muttlak (1996), Demir and Singh (2000), Singh

and Mehta (2013, 2014a,b, 2015, 2016a,b,c, 2017), Mehta and Singh (2015, 2014), and Mehta

(2017).

The organization of this chapter is as follows. Section 11.2 introduces the general distribution

theory, properties of Farlie�Gumbel�Morgenstern (FGM) distribution/Morgenstern distribution

and a brief review of the estimators of the scale parameter θ2 envisaged by Tahmasebi and Jafari

(2012). In Section 11.3, some improved shrinkage toward interval estimators are described on the

lines of Singh et al. (1973), Searls and Intarapanich (1960), Searls (1964), Jani (1991), and

Kourouklis (1994), the expressions of bias and mean squared error (MSE) are obtained and com-

pared with usual unbiased estimators. In Section 11.4, we have computed the relative efficiencies

of different estimators numerically to evaluate their performance. Section 11.5 concludes the chap-

ter with some final remarks.

11.2 REVIEW OF RSS IN FGM FAMILY OF DISTRIBUTION
A general family of bivariate distributions is proposed by Morgenstern (1956) with specified mar-

ginal distributions FX xð Þ and FY yð Þ as
FX;Y x; yð Þ5FX xð ÞFY yð Þ 11α 12FX xð Þð Þ 12FY yð Þð Þ½ �; 2 1#α# 1; (11.1)

where α is the association parameter between X and Y.

A member of this family is Morgenstern type bivariate uniform distribution (MTBUD) with the

probability density function (pdf)

fX;Y x; yð Þ5 1

θ1θ2
11α 12

2x

θ1

� �
12

2y

θ2

� �� �
; 0, x, θ1; 0, y, θ2: (11.2)

The pdf of Y r½ �r for 1# r# n is given by [see Scaria and Nair (1999)]

gY r½ �r yð Þ5
ð
fYjX yjxð Þ fr xð Þ dx5 1

θ2
11α

n2 2r1 1

n1 1

� �
12

2y

θ2

� �� �
; 0, y, θ2;

where fr xð Þ is the density function of X rð Þr, i.e.,

fr xð Þ5 n!

r2 1ð Þ! n-rð Þ!
xr21 θ12xð Þn2r

θn1

� �
; 0, x, θ1;

and therefore, the mean and variance of Y r½ �r for 1# r# n are, respectively, given by

E Y r½ �r
� �

5 θ2βr and Var Y r½ �r
� �

5 θ22λr ; (11.3)

where

βr 5
1

2
12

α
3

n2 2r1 1

n1 1

� �� �
and λr 5

1

12
12

α2

3

n22r11

n11

� �2" #

Let Y r½ �r; r5 1; 2; . . .; n, be the RSS observations made on the units of the ranked set sampling

regarding the study variable Y, which is correlated with the auxiliary variable X, when (X,Y) follows
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MTBUD as defined in Eq. (11.2). Then an unbiased estimator for θ2 based on RSS mean in

Eq. (11.3) is given as [see Tahmasebi and Jafari (2012)]

t1 5 θ̂2;RSS 5
2

n

Xn
r51

Y r½ �r ;

and its variance is

Var t1ð Þ5 θ22
3n

12
α2

3n

Xn
r51

n22r11

n11

� �2" #
5 θ22V1; (11.4)

where

V1 5
1

3n
12

α2

3n

Xn
r51

n22r11

n11

� �2" #
:

When the parameter α is known, Tahmasebi and Jafari (2012) have suggested a BLUE θ�2 of θ2,
which is more efficient than the estimator θ̂2;RSS and is given as:

t2 5 θ�2 5
Xn
r51

βr

λr

� � Xn
i51

β2
i

λi

� � !21

Y r½ �r ;

whose variance is

Var t2ð Þ5 θ22
Xn
r51

β2
r

λr

� � !21

5 θ22V2; (11.5)

where

V2 5
Xn
r51

β2
r

λr

� � !21

:

Further, Tahmasebi and Jafari (2012) derived BLUE of θ2 based on the upper ranked set sample

(URSS) as

t3 5 ~θ2 5
1

nβn

Xn
r51

Y n½ �r;

and its variance is given by

Var t3ð Þ5 θ22
λn

nβ2
n

5 θ22V3; (11.6)

where

V3 5
λn

nβ2
n

:

Using the extreme ranked set sampling (ERSS) method, Tahmasebi and Jafari (2012) also

derived different estimators for θ2 with concomitant variable for n. Below we have used the same

notations ERSS1, ERSS2 and ERSS3 as defined in Tahmasebi and Jafari (2012), pp. 134�135).
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If n is even then the estimator of the θ2 using ERSS1 is defined as

t4 5 θ̂2;ERSS1 5
2

n

Xn=2
r51

Y 1½ �2r21 1 Y n½ �2r;

and its variance is given by

Var t4ð Þ5 θ22
3n

12
α2

3

n21

n11

� �2" #
5 θ22V4; (11.7)

where

V4 5
1

3n
12

α2

3

n21

n11

� �2" #
:

If n is odd then the estimators of θ2 using ERSS2 and ERSS3 are obtained as

t5 5 θ̂2;ERSS2 5
2 Y 1½ �1 1 Y n½ �2 1Y 1½ �3 1 . . .1 Y n½ � n21ð Þ 1

Y 1½ �n 1 Y n½ �n
� 	

2

� �

n
;

and

t6 5 θ̂2;ERSS3 5
2 Y 1½ �1 1 Y n½ �2 1Y 1½ �3 1 . . .1Y n½ � n21ð Þ 1Y n11

2½ �n

 �

n
:

The variances of the estimators t5 and t6 are, respectively, given by

Var t5ð Þ5 θ22
3n

12
α2 n21ð Þ3
3n n11ð Þ2 2

1

2n
1

α2 22 nð Þ
6n n1 2ð Þ

� �
5 θ22V5; (11.8)

Var t6ð Þ5 θ22
3n

12
α2 n21ð Þ3
3n n11ð Þ2

� �
5 θ22V6; (11.9)

where

V5 5
1

3n
12

α2 n21ð Þ3
3n n11ð Þ2 2

1

2n
1

α2 22 nð Þ
6n n1 2ð Þ

� �
;

and

V6 5
1

3n
12

α2 n21ð Þ3
3n n11ð Þ2

� �
:

Al-Saleh and Ananbeh (2007) proposed the concept of moving extreme ranked set sampling

(MERSS) with a concomitant variable for the estimation of the means of the bivariate normal dis-

tribution. Now, suppose that the random vector X; Yð Þ has an MTBUD as defined in Eq. (11.2). An

unbiased estimator of θ2 based on MERSS is given by [see Tahmasebi and Jafari (2012)]

t7 5 θ̂2;MERSS 5
1

n

Xn
r51

Y 1½ �r 1 Y n½ �r
� 	

;

and its variance is

146 CHAPTER 11 SHRINKAGE ESTIMATORS OF SCALE PARAMETER



Var t7ð Þ5 θ22
6n

12
α2

3n

n21

n11

� �2" #
5 θ22V7; (11.10)

where

V7 5
1

6n
12

α2

3n

n21

n11

� �2" #
:

11.3 THE SUGGESTED FAMILY OF ESTIMATORS FOR THE SCALE
PARAMETER θ2 BASED ON THE A PRIORI INTERVAL

The arithmetic mean (AM), the geometric mean (GM), and the harmonic mean (HM) are measures

of location, which are used for suggesting different classes of shrinkage estimators for scale param-

eter θ2. Let the prior information of θ2 be available in the form of an interval whose end points are

θ21 and θ22, such that θ21 , θ22. We define the following families of shrinkage estimators

ψðiÞ
θ2 ði5 1; 2; 3Þ of θ2 as

ψ ið Þ
θ2 5 δtj 1 12 δð ÞAGH l; kð Þ5 δ tj 2AGH l; kð Þ� �

1AGH l; kð Þ; (11.11)

where tj; j5 1; 2; . . .; 7 is an unbiased estimator of the parameter θ2,δ is a scalar such that 0# δ# 1,

and AGH l; kð Þ5 θ21θ22ð Þl θ211θ22
2

� 	k
for i5 1; 2; 3 corresponding to l; kð Þ which should be taken as

0; 1ð Þ; 1
2
; 0

� 	
and 1; 2 1ð Þ in AGH l; kð Þ. It is interesting to note that for different values of i we have

formed the following classes of estimators:

i. For i5 1 and l; kð Þ5 0; 1ð Þ, we get the class of estimators as

ψ 1ð Þ
θ2 5 δ tj 2AGH 0; 1ð Þ� �

1AGH 0; 1ð Þ5 δ tj 2
θ21 1 θ22

2

� �� �
1

θ21 1 θ22
2

� �
; (11.12)

ii. For i5 2 and l; kð Þ5 1
2
; 0

� 	
, we obtain the class of estimators as

ψ 2ð Þ
θ2 5 δ tj 2AGH

1

2
; 0

� �� �
1AGH

1

2
; 0

� �
5 δ tj 2

ffiffiffiffiffiffiffiffiffiffiffiffi
θ21θ22

ph i
1

ffiffiffiffiffiffiffiffiffiffiffiffi
θ21θ22

p
; (11.13)

iii. For i5 3 and l; kð Þ5 1; 2 1ð Þ, we get the class of estimators as

ψ 3ð Þ
θ2 5 δ tj 2AGH 1; 2 1ð Þ� �

1AGH 1; 2 1ð Þ5 δ tj 2
2θ21θ22
θ21 1 θ22

� �� �
1

2θ21θ22
θ21 1 θ22

� �
: (11.14)

The bias and MSE of ψ ið Þ
θ2 i5 1; 2; 3ð Þ are, respectively, given by

B ψ ið Þ
θ2

h i
5 θ2 12 δð Þ λ ið Þ 2 1

� 	
(11.15)

MSE ψ ið Þ
θ2

h i
5 θ22 Vjδ2 1 12δð Þ2 λ ið Þ21

� 	2h i
; (11.16)

where λ ið Þ 5
AGH l;kð Þ

θ2
.
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The minimum mean squared error (MMSE) estimators of the parameter θ2 based on

tj; j5 1; 2; . . .; 7 are given as

T�
j 5

θ2
11Vj

� 	 ; j5 1; 2; . . .; 7; (11.17)

in the class of estimator Tj 5 tjAj; j5 1; 2; . . .; 7, where Aj
0
s; j5 1; 2; . . .; 7 are suitably chosen con-

stants such that the MSE of Tj
0
s; j5 1; 2; . . .; 7 are minimum.

The bias and MSE of T�
j s; j5 1; 2; . . .; 7 are, respectively, given by

B T�
J

� 	
52 θ2

Vj

11Vj

� �
; (11.18)

MSE T�
j


 �
5 θ22

Vj

11Vj

� �
: (11.19)

Comparisons of the proposed shrinkage estimators ψ ið Þ
θ2 i5 1; 2; 3ð Þ with that of corresponding

usual unbiased estimators tj
0
s; j5 1; 2; . . .; 7 are given in Theorem 1.1.

Theorem 1.1: The proposed shrinkage estimators ψ ið Þ
θ2 i5 1; 2; 3ð Þ are better than the correspond-

ing usual unbiased estimators tj
0
s; j5 1; 2; . . .; 7 if

λ ið Þ21
� 	2

2Vj

n o

λ ið Þ21
� 	2

1Vj

n o , δ, 1:

Proof: From Eqs. (11.4)�(11.10) and (11.16), we have that

Var tj
� 	

2MSE ψ ið Þ
θ2

h i
. 0; i5 1; 2; 3; j5 1; 2; . . .; 7 if

θ22Vj 2 θ22Vjδ2 2 12δð Þ2 λ ið Þ21
� 	2θ22 . 0;

i.e., if Vj 12 δ2
� 	

. 12δð Þ2 λ ið Þ21
� 	2

, i.e., if Vj 11 δð Þ. 12 δð Þ λ ið Þ21
� 	2

,

Now

12 δð Þ. 0.1. δ.δ, 1 (11.20)

and Vj 1 δ Vj 1 λ ið Þ21
� 	2n o

. λ ið Þ21
� 	2

, or δ Vj 1 λ ið Þ21
� 	2n o

. λ ið Þ21
� 	2

2Vj

n o
, i.e., if

δ.
λ ið Þ21
� 	2

2Vj

n o

λ ið Þ21
� 	2

1Vj

n o : (11.21)

From Eqs. (11.20) and (11.21) we have

λ ið Þ21
� 	2

2Vj

n o

λ ið Þ21
� 	2

1Vj

n o , δ, 1: (11.22)

Hence the theorem.V
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Comparisons of the proposed shrinkage estimators ψ ið Þ
θ2 i5 1; 2; 3ð Þ with that of corresponding

MMSE estimators T�
j s; j5 1; 2; . . .; 7 are given in Theorem 1.2.

Theorem 1.2: The proposed shrinkage estimators ψ ið Þ
θ2 i5 1; 2; 3ð Þ are better than the correspond-

ing MMSE estimators T�
j s; j5 1; 2; . . .; 7 if

λ ið Þ21
� 	2

λ ið Þ21
� 	2

1Vj

2

Vj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 λ ið Þ21

� 	2n or
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11Vj

� 	
λ ið Þ21
� 	2

1Vj

n or
8>><
>>:

9>>=
>>;

, δ,
λ ið Þ21
� 	2

λ ið Þ21
� 	2

1Vj

1

Vj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 λ ið Þ21

� 	2n or
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11Vj

� 	
λ ið Þ21
� 	2

1Vj

n or
8>><
>>:

9>>=
>>;

(11.23)

Proof: From Eqs. (11.16) and (11.19), we have that

MSE T�
j


 �
2MSE ψ ið Þ

θ2

h i
. 0; i5 1; 2; 3; j5 1; 2; . . .; 7 if

θ22
Vj

11Vj

2 θ22Vjδ2 2 12δð Þ2 λ ið Þ21
� 	2θ22 . 0;

i.e., if 2
Vj

11Vj
1Vjδ2 1 11 δ2 2 2δ

� 	
12 δ2
� 	

λ ið Þ21
� 	2

, 0,

i.e., if δ2 2Vj 1 λ ið Þ21
� 	2h i

2 2δ λ ið Þ21
� 	2

2
Vj

11Vj
1 λ ið Þ21
� 	2

. 0,

On solving the above quadratic equation with respect to δ we have

λ ið Þ21
� 	2

λ ið Þ21
� 	2

1Vj

2

Vj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 λ ið Þ21

� 	2n or
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11Vj

� 	
λ ið Þ21
� 	2

1Vj

n or
8>><
>>:

9>>=
>>;

, δ,
λ ið Þ21
� 	2

λ ið Þ21
� 	2

1Vj

1

Vj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 λ ið Þ21

� 	2n or
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11Vj

� 	
λ ið Þ21
� 	2

1Vj

n or
8>><
>>:

9>>=
>>;
:

Hence the theorem.V

11.4 RELATIVE EFFICIENCY
We note here that among these seven estimators tj; j5 1; 2; . . .; 7 discussed above, the estimator t2
is the best as we have observed numerically. Keeping this in view we have made an effort to com-

pare the estimators ψ ið Þ
θ2 i5 1; 2; 3ð Þ formulated based on the BLUE with that of the BLUE t2 and

its MMSE estimator T�
2 by using following the formula:

e
ið Þ
1 5RE ψ ið Þ

θ2 ; t2

 �

5
V2

V2δ2 1 12δð Þ2 λ ið Þ21
� 	2n o ; i5 1; 2; 3; (11.24)

e
ið Þ
2 5RE ψ ið Þ

θ2 ; T
�
2


 �
5

V2

11V2ð Þ V2δ2 1 12δð Þ2 λ ið Þ21
� 	2n o ; i5 1; 2; 3: (11.25)

The values of e
ið Þ
1 and e

ið Þ
2 ; i5 1; 2; 3 are shown in Table 11.1 for n5 5 5ð Þ20,

α5 0:25 0:25ð Þ1:00 and different values of ψ1 5
θ21
θ2

5 0:5 0:1ð Þ0:9; ψ2 5
θ22
θ2

5 1:1 0:1ð Þ1:5 and

δ5 0:25 0:25ð Þ0:75.
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Table 11.1 The Values of e
ið Þ
1 and e

ið Þ0
2 s; i5 1; 2; 3 for Different Values of n; ψ1;ψ2

� 	
; δ and Fixed α5 0:25

ψ1;ψ2

� 	
-

nk
δ

0:5;1:1Þð 0:6;1:2Þð 0:7;1:3Þð 0:8;1:4Þð 0:9;1:5Þð

e
1ð Þ
1 e

2ð Þ
1 e

3ð Þ
1 e

1ð Þ
1 e

2ð Þ
1 e

3ð Þ
1 e

1ð Þ
1 e

2ð Þ
1 e

3ð Þ
1 e

1ð Þ
1 e

2ð Þ
1 e

3ð Þ
1 e

1ð Þ
1 e

2ð Þ
1 e

3ð Þ
1

5 0.25 2.4869 1.5882 1.1211 6.7842 3.8922 2.4869 16.0000 12.4488 7.6179 6.7842 10.9450 15.3735 2.4869 3.5095 5.1297

0.50 2.4942 1.9918 1.6164 3.4754 2.9726 2.4942 4.0000 3.8771 3.5642 3.4754 3.8047 3.9820 2.4942 2.8665 3.2377

0.75 1.6660 1.5987 1.5275 1.7485 1.7120 1.6660 1.7778 1.7715 1.7540 1.7485 1.7677 1.7769 1.6660 1.7030 1.7325

10 0.25 1.3465 0.8344 0.5801 4.3002 2.2128 1.3465 16.0000 10.1822 4.9940 4.3002 8.3114 14.7926 1.3465 1.9684 3.0509

0.50 1.8106 1.3248 1.0117 3.0715 2.3637 1.8106 4.0000 3.7612 3.2132 3.0715 3.6272 3.9640 1.8106 2.2321 2.7181

0.75 1.5672 1.4520 1.3385 1.7200 1.6508 1.5672 1.7778 1.7653 1.7307 1.7200 1.7577 1.7760 1.5672 1.6340 1.6893

15 0.25 0.9231 0.5658 0.3912 3.1475 1.5458 0.9231 16.0000 8.6137 3.7144 3.1475 6.6992 14.2539 0.9231 1.3677 2.1709

0.50 1.4210 0.9924 0.7363 2.7516 1.9618 1.4210 4.0000 3.6520 2.9250 2.7516 3.4654 3.9463 1.4210 1.8276 2.3422

0.75 1.4794 1.3299 1.1911 1.6925 1.5938 1.4794 1.7778 1.7592 1.7080 1.6925 1.7478 1.7751 1.4794 1.5704 1.6482

20 0.25 0.7023 0.4281 0.2952 2.4822 1.1878 0.7023 16.0000 7.4640 2.9569 2.4822 5.6110 13.7531 0.7023 1.0479 1.6850

0.50 1.1695 0.7933 0.5787 2.4921 1.6767 1.1695 4.0000 3.5490 2.6843 2.4921 3.3175 3.9287 1.1695 1.5472 2.0577

0.75 1.4010 1.2268 1.0730 1.6658 1.5406 1.4010 1.7778 1.7530 1.6860 1.6658 1.7380 1.7742 1.4010 1.5115 1.6090

ψ1;ψ2

� 	
-

nk
δ

0:5;1:1ð Þ 0:6;1:2ð Þ 0:7;1:3ð Þ 0:8;1:4ð Þ 0:9;1:5ð Þ

e
1ð Þ
2 e

2ð Þ
2 e

3ð Þ
2 e

1ð Þ
2 e

2ð Þ
2 e

3ð Þ
2 e

1ð Þ
2 e

2ð Þ
2 e

3ð Þ
2 e

1ð Þ
2 e

2ð Þ
2 e

3ð Þ
2 e

1ð Þ
2 e

2ð Þ
2 e

3ð Þ
2

5 0.25 2.3324 1.4895 1.0514 6.3627 3.6504 2.3324 15.0058 11.6753 7.1446 6.3627 10.2649 14.4182 2.3324 3.2915 4.8109

0.50 2.3392 1.8680 1.5160 3.2595 2.7879 2.3392 3.7515 3.6362 3.3428 3.2595 3.5683 3.7345 2.3392 2.6884 3.0365

0.75 1.5625 1.4993 1.4326 1.6398 1.6056 1.5625 1.6673 1.6615 1.6450 1.6398 1.6579 1.6665 1.5625 1.5971 1.6248

10 0.25 1.3033 0.8077 0.5615 4.1625 2.1420 1.3033 15.4877 9.8562 4.8341 4.1625 8.0453 14.3189 1.3033 1.9054 2.9532

0.50 1.7526 1.2823 0.9794 2.9731 2.2880 1.7526 3.8719 3.6408 3.1103 2.9731 3.5110 3.8371 1.7526 2.1606 2.6311

0.75 1.5170 1.4055 1.2957 1.6649 1.5979 1.5170 1.7209 1.7088 1.6753 1.6649 1.7014 1.7191 1.5170 1.5817 1.6352

15 0.25 0.9032 0.5536 0.3828 3.0796 1.5124 0.9032 15.6550 8.4279 3.6343 3.0796 6.5547 13.9465 0.9032 1.3382 2.1241

0.50 1.3904 0.9710 0.7204 2.6922 1.9194 1.3904 3.9137 3.5733 2.8620 2.6922 3.3907 3.8612 1.3904 1.7881 2.2917

0.75 1.4475 1.3012 1.1654 1.6560 1.5594 1.4475 1.7394 1.7212 1.6712 1.6560 1.7101 1.7368 1.4475 1.5365 1.6126

20 0.25 0.6909 0.4211 0.2904 2.4419 1.1684 0.6909 15.7399 7.3427 2.9088 2.4419 5.5197 13.5295 0.6909 1.0309 1.6576

0.50 1.1505 0.7804 0.5693 2.4516 1.6494 1.1505 3.9350 3.4913 2.6407 2.4516 3.2636 3.8648 1.1505 1.5220 2.0242

0.75 1.3782 1.2069 1.0555 1.6387 1.5155 1.3782 1.7489 1.7245 1.6586 1.6387 1.7098 1.7454 1.3782 1.4870 1.5829

(For Fixed α5 0:50)

ψ1;ψ2

� 	
-

nk
δ

0:5; 1:1ð Þ 0:6; 1:2ð Þ 0:7; 1:3ð Þ 0:8; 1:4ð Þ 0:9; 1:5ð Þ

e
1ð Þ
1 e

2ð Þ
1 e

3ð Þ
1 e

1ð Þ
1 e

2ð Þ
1 e

3ð Þ
1 e

1ð Þ
1 e

2ð Þ
1 e

3ð Þ
1 e

1ð Þ
1 e

2ð Þ
1 e

3ð Þ
1 e

1ð Þ
1 e

2ð Þ
1 e

3ð Þ
1

5 0.25 2.4473 1.5612 1.1014 6.7101 3.8365 2.4473 16.0000 12.3960 7.5421 6.7101 10.8790 15.3620 2.4473 3.4577 5.0636

0.50 2.4763 1.9728 1.5981 3.4667 2.9580 2.4763 4.0000 3.8748 3.5568 3.4667 3.8012 3.9816 2.4763 2.8510 3.2259

0.75 1.6640 1.5956 1.5234 1.7479 1.7108 1.6640 1.7778 1.7714 1.7535 1.7479 1.7675 1.7769 1.6640 1.7016 1.7316



Table 11.1

(For Fixed α5 0:50)

ψ1;ψ2

� 	
-

nk
δ

0:5; 1:1ð Þ 0:6; 1:2ð Þ 0:7; 1:3ð Þ 0:8; 1:4ð Þ 0:9; 1:5ð Þ

e
1ð Þ
1 e

2ð Þ
1 e

3ð Þ
1 e

1ð Þ
1 e

2ð Þ
1 e

3ð Þ
1 e

1ð Þ
1 e

2ð Þ
1 e

3ð Þ
1 e

1ð Þ
1 e

2ð Þ
1 e

3ð Þ
1 e

1ð Þ
1 e

2ð Þ
1 e

3ð Þ
1

10 0.25 1.3178 0.8160 0.5671 4.2267 2.1684 1.3178 16.0000 10.0950 4.9137 4.2267 8.2176 14.7661 1.3178 1.9282 2.9933

0.50 1.7873 1.3040 0.9941 3.0546 2.3409 1.7873 4.0000 3.7559 3.1982 3.0546 3.6192 3.9632 1.7873 2.2089 2.6976

0.75 1.5628 1.4457 1.3307 1.7187 1.6480 1.5628 1.7778 1.7650 1.7296 1.7187 1.7572 1.7759 1.5628 1.6308 1.6873

15 0.25 0.9014 0.5523 0.3818 3.0844 1.5110 0.9014 16.0000 8.5136 3.6432 3.0844 6.6014 14.2144 0.9014 1.3366 2.1242

0.50 1.3981 0.9737 0.7213 2.7299 1.9366 1.3981 4.0000 3.6440 2.9051 2.7299 3.4537 3.9449 1.3981 1.8026 2.3177

0.75 1.4732 1.3214 1.1812 1.6904 1.5896 1.4732 1.7778 1.7587 1.7063 1.6904 1.7471 1.7750 1.4732 1.5657 1.6451

20 0.25 0.6850 0.4173 0.2877 2.4281 1.1594 0.6850 16.0000 7.3603 2.8946 2.4281 5.5163 13.7023 0.6850 1.0227 1.6461

0.50 1.1480 0.7769 0.5659 2.4675 1.6514 1.1480 4.0000 3.5385 2.6612 2.4675 3.3026 3.9268 1.1480 1.5225 2.0316

0.75 1.3932 1.2168 1.0619 1.6630 1.5352 1.3932 1.7778 1.7524 1.6837 1.6630 1.7370 1.7741 1.3932 1.5056 1.6050

ψ1;ψ2

� 	
-

nk
δ

0:5; 1:1ð Þ 0:6; 1:2ð Þ 0:7; 1:3ð Þ 0:8; 1:4ð Þ 0:9; 1:5ð Þ

e
1ð Þ
2 e

2ð Þ
2 e

3ð Þ
2 e

1ð Þ
2 e

2ð Þ
2 e

3ð Þ
2 e

1ð Þ
2 e

2ð Þ
2 e

3ð Þ
2 e

1ð Þ
2 e

2ð Þ
2 e

3ð Þ
2 e

1ð Þ
2 e

2ð Þ
2 e

3ð Þ
2

5 0.25 2.2979 1.4659 1.0342 6.3005 3.6023 2.2979 15.0234 11.6394 7.0817 6.3005 10.2150 14.4243 2.2979 3.2467 4.7546

0.50 2.3251 1.8524 1.5006 3.2551 2.7774 2.3251 3.7558 3.6383 3.3397 3.2551 3.5692 3.7386 2.3251 2.6769 3.0290

0.75 1.5624 1.4982 1.4304 1.6412 1.6064 1.5624 1.6693 1.6633 1.6465 1.6412 1.6596 1.6684 1.5624 1.5977 1.6259

10 0.25 1.2765 0.7905 0.5494 4.0944 2.1006 1.2765 15.4992 9.7791 4.7599 4.0944 7.9604 14.3039 1.2765 1.8679 2.8996

0.50 1.7314 1.2632 0.9630 2.9590 2.2676 1.7314 3.8748 3.6383 3.0981 2.9590 3.5059 3.8392 1.7314 2.1397 2.6132

0.75 1.5139 1.4004 1.2891 1.6649 1.5964 1.5139 1.7221 1.7098 1.6755 1.6649 1.7022 1.7204 1.5139 1.5798 1.6345

15 0.25 0.8825 0.5406 0.3737 3.0195 1.4792 0.8825 15.6633 8.3344 3.5665 3.0195 6.4625 13.9153 0.8825 1.3084 2.0795

0.50 1.3687 0.9532 0.7061 2.6724 1.8959 1.3687 3.9158 3.5673 2.8440 2.6724 3.3810 3.8619 1.3687 1.7647 2.2690

0.75 1.4422 1.2936 1.1563 1.6548 1.5561 1.4422 1.7404 1.7217 1.6704 1.6548 1.7103 1.7377 1.4422 1.5328 1.6105

20 0.25 0.6741 0.4107 0.2832 2.3896 1.1410 0.6741 15.7465 7.2437 2.8487 2.3896 5.4289 13.4851 0.6741 1.0065 1.6200

0.50 1.1298 0.7646 0.5570 2.4284 1.6252 1.1298 3.9366 3.4824 2.6191 2.4284 3.2503 3.8646 1.1298 1.4984 1.9994

0.75 1.3711 1.1976 1.0450 1.6367 1.5109 1.3711 1.7496 1.7246 1.6570 1.6367 1.7095 1.7460 1.3711 1.4817 1.5796

(For Fixed α5 0:75)

ψ1;ψ2

� 	
-

nk
δ

0:5; 1:1ð Þ 0:6; 1:2ð Þ 0:7; 1:3ð Þ 0:8; 1:4ð Þ 0:9; 1:5ð Þ

e
1ð Þ
1 e

2ð Þ
1 e

3ð Þ
1 e

1ð Þ
1 e

2ð Þ
1 e

3ð Þ
1 e

1ð Þ
1 e

2ð Þ
1 e

3ð Þ
1 e

1ð Þ
1 e

2ð Þ
1 e

3ð Þ
1 e

1ð Þ
1 e

2ð Þ
1 e

3ð Þ
1

5 0.25 2.3798 1.5155 1.0682 6.5822 3.7413 2.3798 16.0000 12.3033 7.4110 6.5822 10.7637 15.3415 2.3798 3.3693 4.9504

0.50 2.4451 1.9399 1.5667 3.4513 2.9324 2.4451 4.0000 3.8708 3.5437 3.4513 3.7949 3.9810 2.4451 2.8238 3.2051

0.75 1.6605 1.5901 1.5161 1.7469 1.7087 1.6605 1.7778 1.7712 1.7527 1.7469 1.7672 1.7768 1.6605 1.6991 1.7301

10 0.25 1.2687 0.7846 0.5449 4.0995 2.0921 1.2687 16.0000 9.9403 4.7742 4.0995 8.0524 14.7182 1.2687 1.8592 2.8941

0.50 1.7466 1.2680 0.9636 3.0245 2.3007 1.7466 4.0000 3.7462 3.1714 3.0245 3.6047 3.9617 1.7466 2.1679 2.6610

0.75 1.5549 1.4344 1.3167 1.7163 1.6429 1.5549 1.7778 1.7645 1.7276 1.7163 1.7564 1.7759 1.5549 1.6252 1.6836

(Continued)

The Values of e
ið Þ
1 and e

ið Þ0
2 s; i5 1; 2; 3 for Different Values of n; ψ1;ψ2

� 	
; δ and Fixed α5 0:25 Continued



Table 11.1

(For Fixed α5 0:75)

ψ1;ψ2

� 	
-

nk
δ

0:5; 1:1ð Þ 0:6; 1:2ð Þ 0:7; 1:3ð Þ 0:8; 1:4ð Þ 0:9; 1:5ð Þ

e
1ð Þ
1 e

2ð Þ
1 e

3ð Þ
1 e

1ð Þ
1 e

2ð Þ
1 e

3ð Þ
1 e

1ð Þ
1 e

2ð Þ
1 e

3ð Þ
1 e

1ð Þ
1 e

2ð Þ
1 e

3ð Þ
1 e

1ð Þ
1 e

2ð Þ
1 e

3ð Þ
1

15 0.25 0.8643 0.5290 0.3655 2.9750 1.4511 0.8643 16.0000 8.3359 3.5193 2.9750 6.4294 14.1425 0.8643 1.2830 2.0434

0.50 1.3578 0.9413 0.6953 2.6910 1.8921 1.3578 4.0000 3.6292 2.8694 2.6910 3.4323 3.9425 1.3578 1.7586 2.2742

0.75 1.4617 1.3062 1.1634 1.6866 1.5820 1.4617 1.7778 1.7578 1.7032 1.6866 1.7457 1.7749 1.4617 1.5572 1.6395

20 0.25 0.6553 0.3989 0.2749 2.3342 1.1106 0.6553 16.0000 7.1766 2.7864 2.3342 5.3502 13.6097 0.6553 0.9793 1.5790

0.50 1.1105 0.7483 0.5438 2.4235 1.6066 1.1105 4.0000 3.5192 2.6197 2.4235 3.2755 3.9234 1.1105 1.4791 1.9853

0.75 1.3791 1.1989 1.0420 1.6579 1.5253 1.3791 1.7778 1.7512 1.6795 1.6579 1.7351 1.7739 1.3791 1.4947 1.5976

ψ1;ψ2

� 	
-

nk
δ

0:5; 1:1ð Þ 0:6; 1:2ð Þ 0:7; 1:3ð Þ 0:8; 1:4ð Þ 0:9; 1:5ð Þ

e
1ð Þ
2 e

2ð Þ
2 e

3ð Þ
2 e

1ð Þ
2 e

2ð Þ
2 e

3ð Þ
2 e

1ð Þ
2 e

2ð Þ
2 e

3ð Þ
2 e

1ð Þ
2 e

2ð Þ
2 e

3ð Þ
2 e

1ð Þ
2 e

2ð Þ
2 e

3ð Þ
2

5 0.25 2.2390 1.4258 1.0050 6.1927 3.5199 2.2390 15.0531 11.5752 6.9724 6.1927 10.1267 14.4336 2.2390 3.1699 4.6574

0.50 2.3004 1.8251 1.4739 3.2471 2.7589 2.3004 3.7633 3.6417 3.3340 3.2471 3.5703 3.7454 2.3004 2.6567 3.0154

0.75 1.5622 1.4960 1.4264 1.6435 1.6075 1.5622 1.6726 1.6664 1.6490 1.6435 1.6626 1.6717 1.5622 1.5986 1.6277

10 0.25 1.2305 0.7610 0.5285 3.9762 2.0292 1.2305 15.5189 9.6414 4.6306 3.9762 7.8102 14.2756 1.2305 1.8033 2.8070

0.50 1.6941 1.2299 0.9346 2.9335 2.2315 1.6941 3.8797 3.6336 3.0761 2.9335 3.4963 3.8425 1.6941 2.1027 2.5810

0.75 1.5081 1.3913 1.2771 1.6647 1.5935 1.5081 1.7243 1.7114 1.6757 1.6647 1.7036 1.7225 1.5081 1.5763 1.6330

15 0.25 0.8469 0.5183 0.3581 2.9151 1.4219 0.8469 15.6777 8.1680 3.4485 2.9151 6.2999 13.8576 0.8469 1.2572 2.0023

0.50 1.3305 0.9223 0.6813 2.6368 1.8540 1.3305 3.9194 3.5561 2.8116 2.6368 3.3632 3.8631 1.3305 1.7232 2.2284

0.75 1.4323 1.2799 1.1400 1.6526 1.5501 1.4323 1.7420 1.7224 1.6689 1.6526 1.7105 1.7391 1.4323 1.5259 1.6065

20 0.25 0.6453 0.3929 0.2708 2.2989 1.0938 0.6453 15.7578 7.0680 2.7442 2.2989 5.2692 13.4036 0.6453 0.9644 1.5551

0.50 1.0937 0.7370 0.5356 2.3868 1.5823 1.0937 3.9394 3.4660 2.5800 2.3868 3.2260 3.8640 1.0937 1.4567 1.9553

0.75 1.3582 1.1808 1.0262 1.6328 1.5022 1.3582 1.7509 1.7247 1.6540 1.6328 1.7089 1.7471 1.3582 1.4721 1.5734

(For Fixed α5 1:00)

ψ1;ψ2

� 	
-

nk
δ

0:5; 1:1ð Þ 0:6; 1:2ð Þ 0:7; 1:3ð Þ 0:8; 1:4ð Þ 0:9; 1:5ð Þ

e
1ð Þ
1 e

2ð Þ
1 e

3ð Þ
1 e

1ð Þ
1 e

2ð Þ
1 e

3ð Þ
1 e

1ð Þ
1 e

2ð Þ
1 e

3ð Þ
1 e

1ð Þ
1 e

2ð Þ
1 e

3ð Þ
1 e

1ð Þ
1 e

2ð Þ
1 e

3ð Þ
1

5 0.25 2.2820 1.4494 1.0202 6.3926 3.6023 2.2820 16.0000 12.1617 7.2159 6.3926 10.5892 15.3097 2.2820 3.2405 4.7840

0.50 2.3982 1.8908 1.5201 3.4276 2.8935 2.3982 4.0000 3.8645 3.5234 3.4276 3.7851 3.9801 2.3982 2.7826 3.1733

0.75 1.6550 1.5817 1.5050 1.7454 1.7053 1.6550 1.7778 1.7709 1.7515 1.7454 1.7666 1.7768 1.6550 1.6954 1.7278

10 0.25 1.1966 0.7387 0.5125 3.9092 1.9795 1.1966 16.0000 9.6998 4.5645 3.9092 7.7988 14.6414 1.1966 1.7576 2.7468

0.50 1.6845 1.2137 0.9179 2.9769 2.2384 1.6845 4.0000 3.7308 3.1290 2.9769 3.5815 3.9592 1.6845 2.1048 2.6040

0.75 1.5422 1.4165 1.2948 1.7124 1.6348 1.5422 1.7778 1.7636 1.7244 1.7124 1.7550 1.7757 1.5422 1.6161 1.6778

The Values of e
ið Þ
1 and e

ið Þ0
2 s; i5 1; 2; 3 for Different Values of n; ψ1;ψ2

� 	
; δ and Fixed α5 0:25 Continued



Table 11.1

(For Fixed α5 1:00)

ψ1;ψ2

� 	
-

nk
δ

0:5; 1:1ð Þ 0:6; 1:2ð Þ 0:7; 1:3ð Þ 0:8; 1:4ð Þ 0:9; 1:5ð Þ

e
1ð Þ
1 e

2ð Þ
1 e

3ð Þ
1 e

1ð Þ
1 e

2ð Þ
1 e

3ð Þ
1 e

1ð Þ
1 e

2ð Þ
1 e

3ð Þ
1 e

1ð Þ
1 e

2ð Þ
1 e

3ð Þ
1 e

1ð Þ
1 e

2ð Þ
1 e

3ð Þ
1

15 0.25 0.8096 0.4948 0.3417 2.8115 1.3626 0.8096 16.0000 8.0600 3.3336 2.8115 6.1659 14.0261 0.8096 1.2039 1.9236

0.50 1.2967 0.8925 0.6566 2.6295 1.8235 1.2967 4.0000 3.6054 2.8126 2.6295 3.3979 3.9384 1.2967 1.6909 2.2062

0.75 1.4434 1.2819 1.1354 1.6805 1.5696 1.4434 1.7778 1.7564 1.6981 1.6805 1.7434 1.7747 1.4434 1.5436 1.6305

20 0.25 0.6115 0.3719 0.2562 2.1945 1.0385 0.6115 16.0000 6.8933 2.6248 2.1945 5.0973 13.4598 0.6115 0.9152 1.4796

0.50 1.0538 0.7056 0.5109 2.3543 1.5381 1.0538 4.0000 3.4880 2.5540 2.3543 3.2319 3.9178 1.0538 1.4128 1.9135

0.75 1.3564 1.1705 1.0108 1.6497 1.5093 1.3564 1.7778 1.7492 1.6726 1.6497 1.7320 1.7736 1.3564 1.4772 1.5857

ψ1;ψ2

� 	
-

nk
δ

0:5; 1:1ð Þ 0:6; 1:2ð Þ 0:7; 1:3ð Þ 0:8; 1:4ð Þ 0:9; 1:5ð Þ

e
1ð Þ
2 e

2ð Þ
2 e

3ð Þ
2 e

1ð Þ
2 e

2ð Þ
2 e

3ð Þ
2 e

1ð Þ
2 e

2ð Þ
2 e

3ð Þ
2 e

1ð Þ
2 e

2ð Þ
2 e

3ð Þ
2 e

1ð Þ
2 e

2ð Þ
2 e

3ð Þ
2

5 0.25 2.1530 1.3675 0.9626 6.0315 3.3988 2.1530 15.0960 11.4746 6.8082 6.0315 9.9909 14.4447 2.1530 3.0574 4.5137

0.50 2.2627 1.7840 1.4342 3.2340 2.7300 2.2627 3.7740 3.6461 3.3243 3.2340 3.5712 3.7552 2.2627 2.6254 2.9940

0.75 1.5614 1.4924 1.4199 1.6468 1.6090 1.5614 1.6773 1.6708 1.6525 1.6468 1.6668 1.6764 1.5614 1.5996 1.6301

10 0.25 1.1627 0.7178 0.4980 3.7986 1.9235 1.1627 15.5476 9.4255 4.4355 3.7986 7.5783 14.2274 1.1627 1.7079 2.6691

0.50 1.6368 1.1794 0.8920 2.8928 2.1751 1.6368 3.8869 3.6253 3.0405 2.8928 3.4802 3.8472 1.6368 2.0453 2.5304

0.75 1.4986 1.3764 1.2581 1.6640 1.5886 1.4986 1.7275 1.7138 1.6757 1.6640 1.7054 1.7255 1.4986 1.5704 1.6304

15 0.25 0.7943 0.4855 0.3352 2.7586 1.3369 0.7943 15.6988 7.9083 3.2708 2.7586 6.0498 13.7621 0.7943 1.1812 1.8874

0.50 1.2722 0.8757 0.6442 2.5800 1.7892 1.2722 3.9247 3.5375 2.7596 2.5800 3.3339 3.8643 1.2722 1.6591 2.1646

0.75 1.4162 1.2577 1.1140 1.6488 1.5401 1.4162 1.7443 1.7234 1.6662 1.6488 1.7106 1.7413 1.4162 1.5145 1.5998

20 0.25 0.6029 0.3666 0.2525 2.1636 1.0239 0.6029 15.7743 6.7961 2.5878 2.1636 5.0254 13.2699 0.6029 0.9023 1.4587

0.50 1.0389 0.6956 0.5037 2.3211 1.5164 1.0389 3.9436 3.4388 2.5180 2.3211 3.1863 3.8626 1.0389 1.3928 1.8865

0.75 1.3373 1.1540 0.9965 1.6264 1.4880 1.3373 1.7527 1.7246 1.6490 1.6264 1.7076 1.7486 1.3373 1.4564 1.5633

The Values of e
ið Þ
1 and e

ið Þ0
2 s; i5 1; 2; 3 for Different Values of n; ψ1;ψ2

� 	
; δ and Fixed α5 0:25 Continued



11.5 CONCLUSION
It is observed from Table 11.1 that:

• when ψ1;ψ2

� 	
A 0:7; 1:3ð Þ the proposed classes of estimators ψ ið Þ

θ2 i5 1; 2; 3ð Þ is always better
than the usual unbiased estimator t2 and MMSE estimator T�

2 ;

• the gain in efficiency by using ψ ið Þ
θ2 i5 1; 2; 3ð Þ over MMSE estimator T�

2 is fewer than by using

ψ ið Þ
θ2 i5 1; 2; 3ð Þ over the BLUE t2;

• for ψ1;ψ2

� 	
A 0:7; 1:3ð Þ, the developed class of estimators ψ 1ð Þ

θ2 (based on AM) is the best (best in

the sense of having smaller MSE) among ψ ið Þ
θ2 i5 1; 2; 3ð Þ, while for ψ1;ψ2

� 	
A 0:9; 1:5ð Þ the

developed class of estimator ψ 3ð Þ
θ2 (based on HM) is the best among ψ ið Þ

θ2 i5 1; 2; 3ð Þ.
In general the proposed estimator ψ 1ð Þ

θ2 is recommended when ψ1;ψ2

� 	
A 0:5; 1:3ð Þ and ψ 3ð Þ

θ2 is

recommended when ψ1;ψ2

� 	
A 0:8; 1:5ð Þ and the sample size n is small. In practice, when the obser-

vations are expensive such small sizes may be all that are available, particularly in defense weapon

testing problems.
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12.1 INTRODUCTION
In many survey sampling studies, the population is often divided into exclusively disjointed subpo-

pulations using supplementary or auxiliary information on population units. If these subpopulations

have different mean and variance values, one can select a stratified sample to construct more pre-

cise estimators for population quantities. Stratified sampling is well understood and studied in sur-

vey sampling literature. For settings, where auxiliary information is available for all population

units, in addition to stratum structure, one can induce a second layer of structure within each stra-

tum sample by grouping the observations based on their relative positions in small sets. This second

layer structure can be induced by selecting independent ranked set samples across strata popula-

tions. Stratified ranked set sample (SRSS) controls the variation in the sample in a two-stage pro-

cess. The first stage divides the population into disjointed subpopulations and selects ranked set

samples (RSSs) from each stratum. It partitions the total variation in the sample as between- and

within-stratum variation. The construction of the RSS sample from each stratum in the second-

stage further partitions the within-stratum variation into between- and within-ranking group varia-

tions. Due to this two-layer stratification, SRSS controls the total variation better than a stratified

SRS and ranked set sample alone. Hence, stratified RSS yields better informative samples than its

competitor samples.

In a finite population, the construction of a ranked set sample of size n requires a set size H and

cycle size d. Once we determine the set and cycle sizes, we select nH units from the population

without replacement and partition them at random into n sets, each having H units. We rank the

units in each set with respect to the characteristic of interest. In these sets, we measure the units

with rank 1 in the first d sets, the units with rank 2 in the next d sets and so on. This yields samples

of H different sets of judgment order statistics, each of which has d independent and identically

distributed judgment order statistics. These measured observations are called a ranked set sample

from a finite population.

157
Ranked Set Sampling. DOI: https://doi.org/10.1016/B978-0-12-815044-3.00012-5

Copyright © 2019 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/B978-0-12-815044-3.00012-5


In this chapter, we consider the case when the entire population is divided into L layers or

strata. The l-th stratum population is denoted with

PNl 5 fy1l; . . .; yNllg; l5 1;. . .; L;

where yil are unknown nonrandom fixed quantities and Nl is the population size for stratum l. We

assume that Nl; l5 1;. . .; L are all known and N5N1 1 . . .1NL, where N is the total number of

units in the entire population.

Construction of SRSS requires L independent RSS samples, one from each stratum. Let Hl and

dl be the set and cycle sizes for the lth stratum. Stratified RSS then consists of L independent RSS

samples RSSl, where RSSl is selected from the lth stratum, l5 1;. . .;L. Since we are in a finite pop-

ulation setting, the distributional properties of the RSSl sample depend on whether the sample is

constructed with or without replacement and whether we use a design-based or model-based infer-

ence. A detailed description of the construction of RSSl is provided in Section 12.2.

Ranked set sampling was first suggested by McIntyre (1952) to increase the efficiency of the

estimator of the population mean. The theoretical foundation of stratification based on ordering of

sample units is considered in Takahasi and Wakimoto (1968). They showed that if the stratification

is done based on a balanced ranked set sample in which each judgment class has an equal number

of measured observations, the estimators are unbiased. They also showed that the ranked set sample

mean is more efficient than a simple random sample mean of comparable size and provided an

upper and lower bound for its relative efficiency. This upper bound is achieved for uniform distri-

bution. Patil, Sinha, and Taillie (1995) used a without replacement RSS sample to estimate the

mean of a finite population of size N. Deshpande, Frey, and Ozturk (2006) introduced three differ-

ent without replacement sampling policies for RSS designs from finite populations. The first design

constructs a sample with replacement, the second design constructs a sample by replacing only the

measured observations, and the third design constructs a sample by replacing none of the units in

each ranked set regardless of the measurement status. They provide a computational algorithm to

construct confidence intervals for the population quantiles based on these three designs.

Over the last two decades, research effort in RSS sampling in finite populations has concen-

trated in two areas. Many researchers computed inclusion probabilities of sample units and con-

structed Horwitz�Thompson type estimators (Al-Saleh and Samawi, 2007; Frey, 2011; Gokpinar

and Ozdemir, 2010; Ozturk and Jafari Jozani, 2013; Jafari Jozani and Johnson, 2011). In the other

direction, researchers applied RSS methods in well-established survey sampling techniques in finite

populations. Sroka (2008) and Samawi (1996) used ranked set sampling design to stratify popula-

tions. Both researchers used with replacement sampling design to construct ranked set samples

from each stratum. Wang et al. (2016) used ranked set sampling in cluster randomized designs to

estimate the treatment effect in two-sample problems. They fit a mixed effect model to RSS data

assuming the cluster effect is random. Ozturk (2017) developed RSS sampling designs for finite

clustered populations. Nematollahi, Salehi, and Aliakbari Saba (2008) used an RSS sampling design

only in the second stage of a two-stage sampling. Sud and Mishra (2006) used RSS sampling in a

clustered population under the assumption that all cluster populations have the same size. Samawi

and Siam (2003) and Mandowara and Mehta (2014) applied with replacement RSS samples to ratio

estimators. Most of these published papers assume that the population has infinite size or that the

RSS sample is constructed with replacement. Recently, Ozturk (2014, 2016a,b) developed statistical

inference based on without replacement RSS sampling designs in finite populations. He showed
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that without replacement RSS sampling designs provide additional benefits to improve the effi-

ciency due to negative correlations among measured units.

To our knowledge, all published work in RSS in finite population settings, with the exception of

Ozturk and Bayramoglu Kavlak (2017), develops inference using design-based randomized ranked

set samples. In this chapter, we focus on finite stratified population setting and develop inference

using both design- and model-based approaches. In Section 12.2, we clearly explain the construction

of RSS samples from each stratum population. The estimators for the population mean and total are

given using a stratified RSS sample. Section 12.3 investigates the distributional properties of the

SRSS mean estimator under design- and model-based sampling methods. Section 12.4 provides unbi-

ased estimators for the variance and mean square prediction error (MSPE) of the sample mean esti-

mator. These unbiased estimators are used to construct confidence and prediction intervals for the

population mean under design- and model-based inference, respectively. Section 12.5 provides empir-

ical evidence to evaluate the properties of the estimators, confidence, and prediction intervals.

Section 12.6 provides an example. Finally, Section 12.7 provides concluding remarks.

12.2 STRATIFIED RANKED SET SAMPLE
To construct a stratified RSS sample, for each l, we first determine the set size Hl and cycle size dl,

and select a set of size Hl experimental units at random without replacement,Y1l; . . .;YHll, from PNl .

Units in this set are ranked based on the variable of interest Y in an increasing magnitude without

actual measurement, fY½1�l;Y�
½2�l; . . .;Y

�
½H�lg. The ranking process can be performed either using visual

inspection or some auxiliary variables. Hence, it is subjected to ranking error. In the ranked set, we

identify and measure the unit that corresponds to the smallest Y , Y½1�l. The remaining unmeasured

units are marked as Y�
½2�l; . . .; Y

�
½H�l. After Y½1�l is measured, none of the Hl units in the set

fY½1�l;Y�
½2�l;?; Y�

½Hl�lg is returned to the population PNl . Hence, the new population PNl2Hl contains

Nl 2Hl units prior to selection of the next set. We now select another set of size Hl from the popu-

lation PNl2Hl , rank the units, and measure the second smallest unit Y½2�l in fY�
½1�l;Y½2�l; Y

�
½3�l; . . .;Y

�
½Hl�lg.

We continue the process in this way until we select a set from population PNl2HlðHl21Þ and measure

Y½Hl�l in fY�
½1�l;Y

�
½2�l; . . .; Y

�
½Hl21�l; Y½Hl�lg. The measured observations Y½h�l; h5 1;. . .; hl, are called a

cycle in the RSS sample from stratum l. To increase the sample size to nl 5 dlHl, we repeat this

process dl times and obtain an RSS sample Y½h�il; i5 1;. . .; dl; h5 1;. . .;Hl from stratum

l5 1;. . .;L. For notational convenience, a capital letter (Y½h�il) is used to denote the random vari-

ables and a lowercase letter (yil) is used to denote the value of the ith unit in the population PNl .

The estimator of the population mean based on SRSS data can be constructed as follows:

YSRSS 5
XL
l51

Nl

N

1

dlHl

Xdl
i51

XHl

h51

Y½h�il

 !
5
XL
l51

Nl

N
YRSSl

where YRSSl is the mean of the ranked set sample from stratum l. It is immediately observed that

the estimator ðYSRSSÞ is the weighted average of the RSS sample strata means. The estimator for

the population total can easily be established

TSRSS 5NYSRSS:
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The distributional properties of YSRSS and TSRSS depend on whether the inference is developed

based on a randomization theory or super population model. In the next section we investigate these

two models in detail.

12.3 STATISTICAL INFERENCE
Statistical inference in finite population setting can be developed either using a randomization the-

ory or model-based approach. The randomization principal treats the value of each unit in the popu-

lation as a fixed quantity. The variation in the sample is accounted for by the probability that the

unit is included in the sample which is controlled by how the sample units are selected. The bias

and variance of the estimator, and the coverage probability of a confidence interval are computed

over the probability distribution of sampling design that governs the selection of all possible sam-

ples. There is no need to make an assumption on the distribution of random variables. Hence, the

randomization theory provides a nonparametric inference for the finite population. The randomiza-

tion principal is also referred to as a design-based approach since the survey statistician designs

his/her own selection probabilities.

In a design-based approach, the population is divided into L mutually exclusive subpopulations

PNl 5 fy1l; . . .; yNllg; l5 1;. . .;L. In this population yil is a nonrandom fixed value. The mean and

variance of subpopulations are defined by

yl 5
1

Nl

XNl

i51

yil; S2l 5
1

Nl

XNl

i51

ðyil2ylÞ2; l5 1;. . .; L:

The overall population contains all units in all subpopulations

P5 fy11; . . .; yN11; . . .; y1L; . . .; yNLL:

The total and mean of population P is given by:

tN 5
XL
l51

tl; tl 5
XNl

i51

yil; yN 5 tN=N:

Under a design-based approach, SRSS observations Y½h�il are independent only if they are from

different strata. Since sets are constructed without replacements, any two observations Y½h�il; Y½h�i0l
from the same stratum are correlated. We first look at the marginal and joint probability distribu-

tions of Y½h�il and ðY½h�il;Y½h�jlÞ in RSSl obtained from subpopulation PNl . The proof of the following

lemma is given in Ozturk (2016b).

Lemma 1: Let Y½h�il; h5 1;. . .;Hl; i5 1;. . .; dl, be a ranked set sample from population PNl .

1. The marginal and joint probability mass functions of Y½h�1l and ðY½h�1l;Y½h0 �2lÞ, respectively,
given by

βðk; hjlÞ5PðYðhÞil 5 yklÞ5
k2 1

h2 1

� �
Nl 2 k

Hl 2 h

� �

Nl

Hl

� � ; yklAPNl
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and

βðk;k0;h;h0jlÞ5PðYðhÞil5ykl;Yðh0Þjl5yk0lÞ;k,k0; ðykl;yk0lÞAPNl

5
Xk02k21

λ50

k21

h21

� �
k02k21

λ

� �
Nl2k0

Hl �λ� h

� �
k0212h2λ

h
0 � 1

� �
Nl � k0 �Hl1λ1h

Hl � h0

� �

Nl

Hl

� �
Nl2Hl

Hl

� �

2. The mean and variance of YðhÞ1l and covariance of ðYðhÞ1l;Yðh0Þ2lÞ are given by

yðhÞl 5EðYðhÞ1lÞ5
XNl

k51

yklβðk; hjlÞ

S2ðhÞl 5VarðYðhÞ1lÞ5
XN
k51

y2klβðk; hjlÞ2 y2ðhÞl

S2ðh;h0Þl 5CovðYðhÞ1l;Yðh0Þ2lÞ5
XNl

k51

XNl

k051

yklyk0lβðk; k0; h; h0jlÞ2 yðhÞlyðh0Þl:

We note that in Lemma 1 we assume that the ranking process in each set is perfect. Hence, we

replace the square brackets with round ones to indicate that Lemma 1 holds only under perfect

ranking. Under imperfect ranking, we replace the round parentheses in yðhÞl, S
2
ðhÞl and S2ðh;h0Þl with

square brackets and write y½h�l, S
2
½h�l, and S2½h;h0 �l. Under imperfect ranking, there is no closed form

expression for the mean, variance, and covariance of judgment order statistics. For notational con-

venience, SRSS mean under design-based inference will be denoted as YD 5 YSRSS.

Theorem 1: Let Y½h�il; l5 1; 2;. . .;L; h5 1;. . .;Hl; i5 1;. . .; dl be a stratified ranked set sample.

The estimator YD is unbiased for yN and its variance is given by σ2
D 5VarðYDÞ

σ2
D 5

XL
l51

Nl

N

� �2
Nl 2 12 nl

ðNl 2 1Þnl

� �
S2l 2

1

nlHl

XHl

h51

ðy h½ �l2ylÞ2 2
1

nlHl

XHl

h51

S2h;h½ �l

" #
;

where the subscript “D” is used to highlight that the variance is computed under a design-based

approach.

Using Theorem 1 one can easily establish that the estimator TD 5 TRSSS is unbiased for tN and

its variance equals VarðTRSSSÞ5N2σ2
D.

Model-based inference treats the value yil on a finite population unit in PNl as a realization from

a larger population, a super population. In this case the finite population unit i has a random vari-

able Yil that has some probability distribution with mean μl and variance σ2
l . The actual values

y1l; . . .; yNll of the finite population PNl are one realization of the random variables Yil; i5 1;. . .;Nl

from a distribution with mean μl and variance σ2
l . The joint distribution of Yil; i5 1;. . .;Nl provides

the link between the units in the sample and units not in the sample. This link does not exist in a

design-based approach. In model-based inference, we observe the sample from the finite popula-

tion, and use these data and the model to predict the unobserved values in the population. Thus, a

model-based approach can be put in the framework of a prediction model. A model structure of

stratified sample can be framed as a one-way ANOVA model with fixed effects
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Yil 5μl 1 Eil; EðEilÞ5 0; VarðEilÞ5σ2
l ; i5 1;. . .;Nl; l5 1;. . .; L: (12.1)

In a model-based approach, one can easily establish the following equalities

μ½h�l 5EMðY½h�ilÞ; σ2
½h�l 5VarMðY½h�ilÞ; σ2

½h;h0 �l 5CovMðY½h�il; Y½h0 �2lÞ:
We again use subscript "M" to denote that the mean, variance, and covariance are computed

under super population model in Eq. (12.1). Let

YN 5
1

N

XL
l51

NlYl; Yl 5
1

Nl

XNl

i51

Yil; l5 1;?; L:

For notational simplicity, under the super population model, we denote the SRSS mean YSRSS

with YM 5 YSRSS. We can show that the estimator YM is model unbiased

EMðYM 2 YNÞ5
XL
l51

Nl

N
EMðYRSS;l 2 YlÞ5 0:

The last equality in the above equation follows from the fact that YRSS;l is an unbiased estimator

for μl. The mean square prediction error (MSPE) under model (1) is given by

σ2
M 5MSPEðYMÞ5EMðYM2YNÞ2:

Theorem 2: Let Y½h�il; l5 1; 2;. . .;L; h5 1;. . .;Hl; i5 1;. . .; dl be a stratified ranked set sample

from a finite population. Under the super population model in Eq. (12.1), the MSPE of the estima-

tor YM 5 YSRSS is given by

σ2
M 5

XL
l51

Nl

N

� �2
Nl 2 nl

Nlnl

� �
σ2
l 2

1

nlHl

XHl

h51

ðμ½h�l2μlÞ2
" #

:

It is immediately observed that

σ2
M 5σ2

SSRS;M 2
XL
l51

Nl

N

� �2
1

nlHl

XHl

h51

ðμ½h�l2μlÞ2;

where

σ2
SSRS;M 5

XL
l51

Nl

N

� �2
Nl 2 nl

Nlnl

� �
σ2
l

� �

is the MSPE of the estimator of the population mean using stratified simple random sample (SSRS)

under super population model in Eq. (12.1). Thus, it can be concluded that the MSPE of the estima-

tor YM is never greater than the MSPE of the SSRS estimator.

12.4 ESTIMATORS OF VARIANCE AND MSPE
In this section, we construct unbiased estimators for σ2

M and σ2
D. We first rewrite the estimators in

slightly different forms
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σ2
M 5

XL
l51

Nl

N

� �2
Nl 2 nl

Nlnl

� �
σ2
l 2

1

nlHl

XHl

h51

ðμ½h�l2μlÞ2
" #

5
XL
l51

2Nl

N2
σ2
l 1

N2
l

N2Hlnl

XHl

h51

σ2
½h�l

 !

and

σ2
D 5

XL
l51

Nl

N

� �2 Nl 2 12 nl

ðNl 2 1Þnl

� �
S2l 2

1

nlHl

XHl

h51

ðy h½ �l2ylÞ2 2
1

nlHl

XHl

h51

S2h;h½ �l

" #

5
XL
l51

Nl

N

� �2 1

nlHl

XHl

h51

S2h½ �l 2 S2h;h½ �l
� �

2
S2l

ðNl 2 1Þ

" #
:

Let

T�
1l 5
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Using these definitions, one can easily establish the following result.

Theorem 3: Let Y½h�il; i5 1;. . .; dl; h5 1;. . .;H; l5 1;. . .; L; be an SRSS of set size Hl from a finite

population. The unbiased estimator of σ2
M and σ2

D is given by

σ̂2
M 5 σ̂2

D 5
XL
l51

N2
l

N2dl
T�
2l 2 T�

1l 1T�
2l

� 	 Nl

N2

� �
: (12.2)

Theorem 3 indicates that the estimators σ̂2
M and σ̂2

D are unbiased for any sample and set sizes,

regardless of the quality of ranking information, as long as dl . 1 for l5 1;. . .; L. These unbiased

estimators allow us to construct approximate ð12αÞ100% confidence and prediction intervals

under randomization design and super population model in Eq. (12.1), respectively. Using normal

approximation, a ð12αÞ100% confidence interval for the population mean yN is given by

YD 6 tn2L;α=2σ̂2
D; (12.3)

where tdf ;a is the a-th upper quantile of t-distribution with df degrees of freedom. The degrees of

freedom df 5 n2 L are suggested to account for the heterogeneity among L stratum populations. In

a similar fashion, an approximate prediction interval for YN is given by

YM 6 tn2L;α=2σ̂2
M : (12.4)

12.5 EMPIRICAL RESULTS
In this section we investigate the finite sample properties of the SRSS mean to estimate the popula-

tion mean yN from a stratified population with three strata. Strata populations are generated from
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discrete normal populations for population sizes, N1 5 200, N2 5 300, and N3 5 400. The discrete

normal population is generated from yli 5F21ði=ðNl 1 1Þ;μl;σlÞ; i5 1;. . .;Nl, where Fðu;μl;σlÞ is

the cumulative distribution function of a normal distribution with mean μl and standard deviation

σl. Location and scale parameters for the three strata populations are selected to be

μ1 5 5; μ2 5 10; μ3 5 13 and σ1 5 2, σ2 5 5, σ3 5 7, respectively. In the simulation study two dif-

ferent set and cycle sizes are considered. The set sizes Hl are taken to be 2; 3; 5 and 4; 5; 7. The
cycle sizes are selected as dl 5 5; 8; l5 1; 2; 3. Units are ranked based on an auxiliary variable X.

The quality of the ranking information is controlled by the correlation coefficient between Y and X,

ρ5 corrðY ;XÞ. The correlation coefficient ρ5 1 yields perfect ranking, the correlation coefficients

ρ5 0:90; 0:75; 0:50 yield imperfect ranking. For each combination of simulation parameters, we

generated 50,000 SRSS and SSRS. Relative efficiencies of SRSS mean estimators for both design-

and model-based approaches are compared with stratified simple random sample mean estimator of

the population mean. We use the following expressions to obtain the relative efficiencies

REM 5
σ2
SSRS;M

σ2
M

; RED 5
σ2
SSRS;D

σ2
D

;

where σ2
SSRS;M and σ2

SSRS;D are the variance of SSRS mean

σ2
SSRS;M 5σ2

SSRS;D 5
XL
l51

Nl

N

� �2
Nl 2 nl

Nlnl

� �
σ2
l

� �
:

The simulation study also investigated the properties of the estimators σ̂2
M , σ̂

2
D and coverage

probabilities of confidence and prediction intervals in Eqs. (12.3) and (12.4).

Table 12.1 presents empirical results for selected simulation parameters. In Table 12.1, the

headings VarðYMÞ and VarðYDÞ give the variances of 50,000 simulated YD and YM , respectively.

Under perfect ranking, unbiased variance estimates σ̂2
M , σ̂2

D and simulated variance estimates

VarðYMÞ and VarðYDÞ are all close to the theoretical variances σ2
D and σ2

M . Under imperfect rank-

ing, there are no available analytic expressions to compute σ2
D and σ2

M , hence these entries are left

blank in Table 12.1. Under imperfect ranking, simulated and unbiased variance estimates are very

close to each other within the simulation variation.

The efficiencies of the estimators YM and YD with respect to the same estimators based on strat-

ified simple random samples are all greater than one, and increase with ρ and cycle size d as

expected. The coverage probabilities of the confidence (CðYDÞ) and prediction (CðYMÞ) intervals of
population mean are very close to the nominal coverage probability 0.95.

12.6 EXAMPLE
In this section we apply the proposed stratified ranked set sampling design to apple production data

in Turkey. The data set was collected by the Turkish Statistical Institute. Apples in Turkey are pro-

duced in seven different geographical regions: Marmara, Aegean, Mediterranean, Central Anatolia,

Black Sea, Eastern Anatolia, and Southeastern Anatolia regions. These regions have different cli-

mate patterns and apple production varies from region to region. The data set contains two vari-

ables, apple production (Y) (in tons, 1 ton 5 1000 kg) and the number of apple trees (X) in each
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Table 12.1 Variance Estimates, Relative Efficiencies of the Estimators (YM , YM), Coverage Probabilities (CðYDÞ, CðYMÞ)
of 95% Confidence and Prediction Intervals of Population Mean. Data sets are Generated From Discrete Normal

Population With Strata Population Means μ1 5 5; μ2 5 10; μ3 5 15, Strata Population Standard Deviations

σ1 5 2; σ2 5 5; σ3 5 7, and Strata Population Sizes N1 5 200; N2 5 300; N3 5 400

Simulated Unbiased Coverage Efficiency

d ρ σ2
M σ2

D σ2
SSRS VðYMÞ VðYDÞ σ̂2

M σ̂2
D CðYMÞ CðYDÞ REM RED

H1 5 2; H2 5 3; H3 5 5

5 0.50 � � 0.558 0.473 0.473 0.472 0.472 0.947 0.947 1.180 1.180

0.75 � � 0.558 0.376 0.371 0.374 0.374 0.947 0.948 1.481 1.504

0.90 � � 0.558 0.288 0.291 0.287 0.287 0.945 0.945 1.937 1.917

1.00 0.216 0.207 0.558 0.206 0.209 0.208 0.208 0.946 0.945 2.701 2.668

0.50 � � 0.336 0.282 0.282 0.282 0.282 0.949 0.945 1.191 1.189

8 0.75 � � 0.336 0.221 0.224 0.221 0.221 0.948 0.947 1.516 0.500

0.90 � � 0.336 0.167 0.168 0.166 0.167 0.947 0.946 2.004 1.994

1.00 0.122 0.117 0.336 0.117 0.116 0.117 0.117 0.947 0.947 2.869 2.881

H1 5 4; H2 5 5; H3 5 7

5 0.50 � � 0.363 0.294 0.296 0.296 0.296 0.949 0.948 1.235 1.227

0.75 � � 0.363 0.218 0.216 0.217 0.218 0.947 0.948 1.663 1.680

0.90 � � 0.363 0.148 0.147 0.147 0.147 0.946 0.947 2.446 2.473

1.00 0.087 0.083 0.363 0.083 0.083 0.083 0.083 0.943 0.943 4.375 4.379

0.50 � � 0.214 0.172 0.172 0.173 0.172 0.950 0.950 1.246 1.253

8 0.75 � � 0.214 0.124 0.121 0.123 0.123 0.947 0.951 1.725 1.762

0.90 � � 0.214 0.080 0.079 0.079 0.079 0.947 0.946 2.676 2.696

1.00 0.041 0.039 0.214 0.039 0.039 0.039 0.039 0.943 0.941 5.525 5.447



township in each region. The X-values in all townships are available in the data frame prior to sam-

pling. Hence they can be used for ranking the townships for their apple production in sets. In this

population, we treat these seven regions as a stratified population. Table 12.2 gives the parameters

of strata populations. As we observe from Table 12.2, strata populations have different means and

variances. There is a strong positive correlation, ρl, between the X and Y variables. The sets of

small townships can be ranked fairly accurately using the number of apple trees in each locality.

The entire population has N5 854 townships and its mean is 2930.126 tons. Readers are referred

to Kadilar and Cingi (2003) for further details about this population.

To illustrate the use of the proposed sampling design, we generated SRSS and SSRS from the

apple production data. For the SRSS, we use Hl 5 3 and dl 5 4, l5 1;. . .; 7. With these choices

strata sample sizes become nl 5 12; l5 1;. . .; 7. For the SSRS, we constructed simple random sam-

ples of size nl 5 12 from each stratum population, so that both SRSS and SSRS have the same

number of observations. The samples are presented in Table 12.3.

For the data set in Table 12.3, the estimated population means based on SRSS and SSRS are

3106.454 and 4747.012 tons, respectively. Estimates of the standard errors of these estimators are

σ̂D 5 σ̂M 5 763:80 tons and σ̂SSRS 5 2674:714 tons. For these particular samples SRSS estimators

have a smaller standard error as expected.

12.7 CONCLUDING REMARKS
In this chapter, we have constructed a stratified ranked set sample from a finite stratified popula-

tion. Samples are constructed without replacement. Hence, measured observations are correlated. In

a finite population setting, the statistical inference can be drawn either using design-based sampling

techniques or a super population model. We constructed unbiased estimators for the population

mean and total and their estimates using both approaches.

We show that the SRSS estimators are unbiased and they have higher efficiencies than the cor-

responding SSRS estimators. Confidence and prediction intervals for the population mean are rea-

sonably close to nominal coverage probabilities. The proposed sampling scheme and estimators are

applied to apple production data in a stratified populations.

Table 12.2 Population Characteristics of Apple Production (in tons, 1 ton 5 1000 kg) Data

Strata (l) μl σl Nl ρl

Marmara (l5 1) 1536.8 6425 106 0.816

Aegean (l5 2) 2212.6 11551.5 106 0.856

Mediterranean (l5 3) 9384.31 29907.5 94 0.901

Black Sea (l5 4) 967 2389.7 204 0.713

Central Anatolia (l5 5) 5588 28643.4 171 0.986

Eastern Anatolia (l5 6) 625.4 1167 104 0.886

Southeastern Anatolia (l5 7) 71.4 110.9 69 0.917
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Table 12.3 Stratified Ranked Set Sample From Apple Production Data

l5 1 l5 2 l5 3 l5 4 l5 5 l5 9 l5 7

Y½h�i1 h SRS Y½h�i2 h SRS Y½h�i3 h SRS Y½h�i4 h SRS Y½h�i5 h SRS Y½h�i6 h SRS Y½h�i7 h SRS

100 1 540 90 1 201 14 1 110 83 1 115 85 1 21 22 1 497 14 1 50

488 2 495 390 2 8 308 2 22149 2900 2 132 816 2 21 293 2 35 53 2 190

1311 3 76 320 3 637 32340 3 183680 23389 3 668 37244 3 16 999 3 973 210 3 14

290 1 297 45 1 36 800 1 40 70 1 1723 81 1 342 11 1 730 5 1 53

193 2 111 90 2 6488 47183 2 18 1020 2 600 222 2 541 730 2 27 40 2 53

4476 3 152 2250 3 12 21200 3 6960 5070 3 470 1540 3 132 172 3 75 190 3 5

66 1 1800 2 1 67 121 1 1040 668 1 308 378 1 135621 16 1 230 44 1 6

20 2 14 828 2 65 550 2 1666 307 2 234 2625 2 660 63 2 6 115 2 77

297 3 193 15400 3 3671 563 3 2412 1358 3 230 230 3 54 840 3 265 198 3 1

90 1 24 94 1 248 14 1 133 132 1 980 144 1 1092 0 1 84 8 1 90

33 2 107 48 2 88 370 2 4959 130 2 1611 85 2 25 525 2 465 5 2 25

6500 3 275 1330 3 1587 24010 3 237 1411 3 63 4500 3 1668 667 3 50 53 3 5
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APPENDIX
Proof of Theorem 1: The variance of YD can be written as

VarDðYSRSSÞ5ED

XL
l51

Nl

N
YRSS;l2

XL
l51

Nl

N
yl

 !2

5
XL
l51

N2
l

N2

XL
l51

EDðYRSS;l2ylÞ2:

The last equality follows from the fact that samples from different strata are independent.

Adopting our notation in Theorem 4.1 or Eq. 4.5 in Patil et al. (1995), we write

VarD YSRSSð Þ5
XL
l51

N2
l

N2

XL
l51

Nl 2 12 nl

ðNl 2 1Þnl
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S2l 2

1

nlHl

XHl

h51

ðy h½ �l2ylÞ2 2
1
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XHl

h51

S2h;h½ �l

" #

and complete the proof.

Proof of Theorem 2: We write the mean square prediction error (MSPE) as

MSPEðYSRSSÞ5EM YSRSS2YN
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 �2
:

We use Theorem 1 in Ozturk and Bayramoglu Kavlak (2017) to complete the proof

MSPEðYSRSSÞ5
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l51
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N
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Nl 2 nl

Nlnl
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1
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XHl
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ðμ½h�l2μlÞ2
" #

:

Proof of Theorem 3: We first look at the expected values of T�
1l and T�

2l under super population

and design-based models

E T�
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� 	
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Hl 2 1
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and

E T�
2l

� 	
5

1

H2
l

XHl

h51
σ2

h½ �l for model based

1

H2
l

XHl

h51
S2h½ �l 2

1

H2
l

XHl

h51
S2h;h½ �l for design based:

0
BB@

It is now easy to establish that E T�
1l 1 T�

2l

� 	
5 σ2

l for model-based approach and

E T�
1l 1 T�

2l

� 	
5

NlS
2
l

ðNl 2 1Þ for the design-based approach. The proof is then completed by inserting T�
1l

and T�
2l in Eq. (12.2) and computing the expected values.
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CHAPTER

13SIMULTANEOUS ESTIMATION OF
MEANS OF TWO SENSITIVE
VARIABLES USING RANKED SET
SAMPLING

Kumar Manikanta Pampana, Stephen A. Sedory and Sarjinder Singh
Department of Mathematics, Texas A&M University-Kingsville, Kingsville, TX, United States

13.1 INTRODUCTION
The problem of estimating the population mean of a sensitive variable, such as income, under-

reported tax, and number of induced abortions, etc., is well known in the field of randomized

response sampling. Horvitz et al. (1967) and Greenberg et al. (1971) extended the Warner (1965)

model to the case where the responses to the sensitive question are quantitative rather than a simple

“yes” or “no,” as when estimating the proportion of a sensitive attribute. One could refer to Fox

(2016) that Fox and Tracy (1986) used the unrelated question model to estimate the correlation

between two quantitative sensitive attributes. For estimating the mean of a sensitive variable, say

Y, an additive model was introduced by Himmelfarb and Edgell (1980). In the additive model each

interviewee scrambles a response Y by adding it to a random scrambling variable S and only then

reports the scrambled value Z 5 Y1 S to the interviewer. The authors showed that the mean of the

true values can be estimated from a sample of scrambled values by making use of knowledge of

the distribution of the scrambling variable S.

Another variation of scrambled responses, with the name “multiplicative model,” was intro-

duced by Eichhorn and Hayre (1983) to estimate the population mean of a sensitive quantitative

variable. In the multiplicative model each interviewee scrambles a response Y by multiplying it by

a random scrambling variable S and only then reports the scrambled result Z5 Y S to the inter-

viewer. The mean of the true variable given by EðYÞ can be estimated from a sample of scrambled

values Z, again by making the use of knowledge of the distribution of the scrambling variable S.

Ahmed et al. (2018) pointed out that in both the additive and multiplicative models there are

concerns about the choice of scrambling variables used while collecting data from the respondents.

Both the additive and multiplicative models assume that the distribution of S is known, so a good

guess about the maximum and minimum values of the scrambling variable S would also be known.

Thus an interviewee may be suspicious that his/her true value of the sensitive variable can be

discovered.

McIntyre (1952) was the first to introduce the idea of ranked set sampling (RSS) and claimed

that it is more efficient than simple random and with replacement sampling (SRSWR).
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To our knowledge, Bouza (2009) was the first to introduce the ingenious idea of using RSS

while estimating the population mean of a sensitive quantitative variable. The units are ranked

based on a judgment ranking but, for the purpose of analysis, the judgment ranking is assumed to

be accurate.

Recently, Ahmed et al. (2018) considered a different approach which can be used to estimate

the means of two sensitive variables simultaneously by making use of scrambled responses. They

also claimed that a respondent would likely be more cooperative in responding because the

proposed method makes use of one scrambled response and another fake response that is free

from the true sensitive variables. In the next section, we discuss the Ahmed et al. (2018)

procedure in brief.

13.2 AHMED, SEDORY, AND SINGH MODEL
Ahmed et al. (2018) introduced a new ingenious model, which we refer to as the Ahmed et al.

(2018) model, where they consider the simultaneous estimation of means of two sensitive variables

in a population Ω consisting of finite number of N persons. In their model, they consider selecting

a sample s of n persons from the population Ω by using simple random and with replacement sam-

pling (SRSWR). In the population of interest, the ith values of the variables of interest are labeled

as Y1i and Y2i for the two quantitative sensitive variables. Assume population means of the first and

the second variables Y1i and Y2i are μy1
and μy2

which are to be estimated. In the Ahmed et al.

(2018) model, each respondent selected in the simple random and with replacement sample

(SRSWR) is asked to generate two values of scrambling variables S1 and S2 one from each of two

known distributions. Further, they assume that the scrambling variables S1 and S2 are independent,

which helps to maintain the privacy of respondents and EðS1Þ5 θ1, VðS1Þ5 γ20, EðS2Þ5 θ2 and

VðS2Þ5 γ02 are known.

In the Ahmed et al. (2018) randomized response model, each respondent selected in the sample

is asked to report the scrambled response:

Z1i 5 S1Y1i 1 S2Y2i (13.1)

The authors claim that mixing two sensitive variables with two scrambling variables will cer-

tainly makes it difficult for an interviewer to guess the individual values of two sensitive variables.

Further, they assume that there is no restriction on the scrambling variables to take any negative

values, which will certainly increase respondents’ cooperation while doing a face-to-face survey.

Since the main theme of a randomized response survey is to protect a respondent during a face-to-

face survey, the use of simple random sampling is highly recommended. Note that any other, more

complex design making use of a highly correlated auxiliary variable at the selection stage may

threaten the privacy of a respondent.

In the Ahmed et al. (2018) model, each respondent is also requested to rotate a spinner which

consists of two outcomes, similar to the Warner (1965) spinner. If the pointer lands in a shaded

area then the respondent is asked to report the value of the scrambling variable S1, and if the

pointer lands in the nonshaded area then the respondent is asked to report the value of the
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scrambling variable S2. Let P be the proportion of shaded area and ð12PÞ be the proportion of

nonshaded area of the spinner. Thus the second response from the ith respondent is given by:

Zi 5
S1 with probability P

S2 with probability ð12PÞ
�

(13.2)

where

P 6¼ θ1γ02
θ1γ02 1 θ2γ20

:

Taking the expected value on both sides of Eq. (13.1) we have

E Z1ið Þ5E S1Y1i 1 S2Y2i½ �5 θ1μy1
1 θ2μy2

(13.3)

From Eqs. (13.1) and (13.2), we generate the response Z2i as follows:

Z2i 5ZiZ1i 5
S21Y1i 1 S1S2Y2i with probability P

S1S2Y1i 1 S22Y2i with probabilty ð12PÞ

8<
: (13.4)

Taking the expected value on both sides of Eq. (13.4) we have

E Z2ið Þ5P μy1
θ21 1 γ20
� �

1 θ1θ2μy2

h i
1 ð12PÞ θ1θ2μy1

1 θ22 1 γ02
� �

μy2

h i
(13.5)

From Eqs. (13.3) and (13.5), by the method of moments, we have:

θ1μ̂y1
1 θ2μ̂y2

5
1

n

Xn
i51

Z1i (13.6)

and

P θ21 1 γ20
� �

1 ð12PÞθ1θ2
� �

μ̂y1
1 Pθ1θ2 1 ð12PÞ θ22 1 γ02

� �� �
μ̂y2

5
1

n

Xn
i51

Z2i (13.7)

Based on the Ahmed et al. (2018) model, unbiased estimators of μy1
and μy2

are, respectively,

given by

μ̂y1
5

fPθ1θ2 1 ð12PÞðγ02 1 θ22ÞgZ1 2 θ2Z2

ð12PÞθ1γ02 2Pθ2γ20
(13.8)

and

μ̂y2
5

θ1Z2 2 Pðγ20 1 θ21Þ1 ð12PÞθ1θ2
� �

Z1

ð12PÞθ1γ02 2Pθ2γ20
(13.9)

where

Z1 5
1

n

Xn
i51

Z1i and Z2 5
1

n

Xn
i51

Z2i:

The variance of the estimator μ̂y1
is given by

Vðμ̂y1
Þ5 fPθ1θ21ð12PÞðγ021θ22Þg2σ2

Z1
1 θ22σ

2
Z2
2 2θ2fPθ1θ2 1 ð12PÞðγ02 1 θ22ÞgσZ1Z2

nfð12PÞθ1γ022Pθ2γ20g2
(13.10)
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where

σ2
Z1
5 γ20ðσ2

y1
1μ2

y1
Þ1 γ02ðσ2

y2
1μ2

y2
Þ1 θ21σ

2
y1
1 θ22σ

2
y2
1 2θ1θ2σy1y2 (13.11)

σ2
Z2
5 ðσ2

y1
1μ2

y1
Þ Pðγ40 1 4γ30θ1 1 6γ20θ

2
1 1 θ41Þ1 ð12PÞðγ20 1 θ21Þðγ02 1 θ22Þ

� �
1 ðσ2

y2
1μ2

y2
Þ ð12PÞðγ04 1 4γ03θ2 1 6γ02θ

2
2 1 θ42Þ1Pðγ20 1 θ21Þðγ02 1 θ22Þ

� �
1 2ðσy1y2 1μy1

μy2
Þ Pθ2ðγ30 1 3θ1γ20 1 θ31Þ1 ð12PÞθ1ðγ03 1 3θ2γ02 1 θ32Þ
� �

2 μy1
fPðγ201θ21Þ1ð12PÞθ1θ2g1μy2

fPθ1θ21ð12PÞðγ021θ22Þg
h i2

(13.12)

and

σZ1Z2 5 ðσ2
y1
1μ2

y1
ÞfPðγ30 1 3θ1γ20 1 θ31Þ1 ð12PÞθ2ðγ20 1 θ21Þg

1 ðσ2
y2
1μ2

y2
ÞfPθ1ðγ02 1 θ22Þ1 ð12PÞðγ03 1 3θ2γ02 1 θ32Þg

1 2ðσy1y2 1μy1
μy2

ÞfPθ2ðγ20 1 θ21Þ1 ð12PÞθ1ðγ02 1 θ22Þg

2 ðθ1μy1
1 θ2μy2

Þ½μy1
fPðγ20 1 θ21Þ1 ð12PÞθ1θ2g

1μy2
fPθ1θ2 1 ð12PÞðγ02 1 θ22Þg�

(13.13)

The variance of the estimator μ̂y2
is given by

Vðμ̂y2
Þ5 θ21σ

2
Z2
1 fPðγ201θ21Þ1ð12PÞθ1θ2g2σ2

Z1
2 2θ1fPðγ20 1 θ21Þ1 ð12PÞθ1θ2gσZ1Z2

nðð12PÞθ1γ022Pθ2γ20Þ2
(13.14)

where

γab 5E½S12θ1�a½S22θ2�b (13.15)

In the next section, we consider an interesting extension of the Ahmed et al. (2018) model to a

situation where the sample is taken by RSS. It becomes more interesting to consider which sensi-

tive variable, the first or the second variable, should be considered for judgment ranking.

13.3 PROPOSED RANKED SET SAMPLING RANDOMIZED RESPONSE
MODEL

Assume a population of interest Ω has two sensitive quantitative variables, Y1i and Y2i,

i5 1; 2; ::;N. Note that the precise values of both variables Y1i and Y2i, are unobservable for the ith

unit in the population, Ω. Now the judgment ranking could be made either on the basis of the first

sensitive variable Y1i or on the basis of the second sensitive variable Y2i. It may not be practical to

make judgment ranking by considering both variables at the same time. For simplicity, let us con-

sider judgment ranking based on only the first unobserved sensitive variable Y1i while the second

variable Y2i is considered as a ranked auxiliary variable. One could refer to the recent works of

Santiago et al. (2016) and Singh et al. (2014) where they considered the problem of estimation of

mean of a study variable in the presence of an auxiliary variable. We may imagine arranging the
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ranked values of the first sensitive variable Y1i and the second sensitive variable Y2i in the tth cycle,

t5 1; 2; . . .; r, of the proposed RSS as shown in Table 13.1.

Note that the diagonal entries are selected in the sample from the tth and each subsample con-

sists of m units such that n5mr. Further note that there could be a little confusion while reading

the suffixes, so read the above judgment ranking carefully.

In the proposed procedure, the observed ranked response X½1i� can be written as:

X½1i� 5 S1Y½1i� 1 S2Yð2iÞ (13.16)

where the square parentheses indicate that the first variable is arranged based on judgment ranking

and the open parentheses indicate that the second variable is treated as an auxiliary variable and

has not been ranked. It may be worth pointing out that we have considered the simplest case of a

multiplicative model in Eq. (13.16) due to Eichhorn and Hayre (1983). In case of some special

types of sensitive variables one should either follow their remark in Section 6 on page 315 or use

another more general model due to Ahmed et al. (2018).

Again, following Ahmed et al. (2018), each respondent selected in the ranked set sample is also

requested to experience a randomization device, say a deck of cards, and having two possible out-

comes S1 and S2 with probabilities P and ð12PÞ, respectively. We denote the second observed

response in RSS as:

Xi 5
S1 with probability P

S2 with probability ð12PÞ
	

(13.17)

Note that the observed second response cannot be ranked, because it is free from the true values

of the sensitive variables. From Eqs. (13.16) and (13.17), we generate the second observed response

from the ith person in the ranked set sample as

X 2i½ � 5
S1X 1i½ � with probability P

S2X 1i½ � with probability ð12PÞ
	

(13.18)

Taking the expected value on both sides of Eq. (13.16), we have

E X½1i�
� �

5E S1Y½1i� 1 S2Yð2iÞ
� �

5 θ1μY1
1 θ2μY2

(13.19)

Taking the expected value on both sides of Eq. (13.18), we have

E X½2i�
� �

5P μY1
EðS21Þ1EðS1ÞEðS2ÞμY2

� �
1 ð12PÞ μY1

EðS1ÞEðS2Þ1EðS22ÞμY2

� �
5P μY1

ðγ20 1 θ21Þ1 θ1θ2μY2

� �
1 ð12PÞ μY1

θ1θ2 1 ðγ02 1 θ22ÞμY2

� � (13.20)

Table 13.1 Ranked Set Sampling Procedure

tth Cycle

fY½11�t; Yð21Þtg fY½12�t;Yð22Þtg fY½1m�t;Yð2mÞtg
fY½12�t; Yð22Þtg fY½12�t;Yð22Þtg fY½1m�t;Yð2mÞtg

^ ^ ^
fY½1m�t;Yð2mÞtg fY½1m�t ;Yð2mÞtg fY½1m�t;Yð2mÞtg
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On solving Eqs. (13.19) and (13.20) for μY1
and μY2

, and by the method of moments, we have

the following theorems:

Theorem 3.1: Unbiased estimators of μY1
and μY2

using ranked set sampling are, respectively,

given by:

μ̂Y½1� 5
fPθ1θ2 1 ð12PÞðγ02 1 θ22ÞgX½1� 2 θ2X½2�

ð12PÞθ1γ02 2Pθ2γ20
(13.21)

and

μ̂Y½2� 5
θ1X½2� 2 fPðγ20 1 θ21Þ1 ð12PÞθ1θ2gX½1�

ð12PÞθ1γ02 2Pθ2γ20
(13.22)

where

X½1� 5 1
n

Pn
i51

X½1i� and X½2� 5 1
n

Pn
i51

X½2i� are the means of the observed responses using ranked set

sampling.

Proof: Taking the expected value on both sides of μ̂Y½1� we have

E μ̂Y½1�

h i
5E

fPθ1θ2 1 ð12PÞðγ02 1 θ22ÞgX½1� 2 θ2X½2�
ð12PÞθ1γ02 2Pθ2γ20

	 


5
fPθ1θ2 1 ð12PÞðγ02 1 θ22ÞgE X½1�

� �
2 θ2E X½2�

� �
ð12PÞθ1γ02 2Pθ2γ20

5μY1

In the same way, taking the expected value on both sides of μ̂Y½2� we have

E μ̂Y½2�

h i
5E

θ1X½2� 2 fPðγ20 1 θ21Þ1 ð12PÞθ1θ2gX½1�
ð12PÞθ1γ02 2Pθ2γ20

	 


5
θ1E X½2�

� �
2 fPðγ20 1 θ21Þ1 ð12PÞθ1θ2gE X½1�

� �
ð12PÞθ1γ02 2Pθ2γ20

5μY2

which proves the theorem.

Theorem 3.2: The variances of the unbiased estimators of μ̂Y½1� and μ̂Y½2� using ranked set sampling

are, respectively, given by

V μ̂Y½1�

h i
5

fPθ1θ21ð12PÞðγ021θ22Þg2σ2
X½1�

1 θ22σ
2
X½2�

2 2θ2fPθ1θ2 1 ð12PÞðγ02 1 θ22ÞgσX½1�X½2�

½ð12PÞθ1γ022Pθ2γ20�2
(13.23)

and

V μ̂Y½2�

h i
5

θ21σ
2
X½2�

1 fPðγ201θ21Þ1ð12PÞθ1θ2g2σ2
X½1�

2 2θ1fPðγ20 1 θ21Þ1 ð12PÞθ1θ2gσX½1�X½2�

ð12PÞθ1γ022Pθ2γ20
� �2 (13.24)
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where

σ2
X½1�

5
1

n

"
σ2
Z1
2

ðγ20 1 θ21Þ
m

Xm
j51

ðμY1½j�2μY1
Þ2 2 ðγ02 1 θ22Þ

m

Xm
j51

ðμY2ðjÞ2μY2
Þ2

2 2
θ1θ2
m

Xm
j51

ðμY1½j� 2μY1
ÞðμY2ðjÞ 2μY2

Þ
# (13.25)

σ2
X½2�

5
1

n

"
σ2
Z2
2

1

m
Pðγ40 1 4γ30θ1 1 6γ20θ

2
1 1 θ41Þ1 ð12PÞðγ20 1 θ21Þðγ02 1 θ22Þ

� �Xm
j51

ðμY1½j�2μY1
Þ2

2
1

m
Pðγ20 1 θ21Þðγ02 1 θ22Þ1 ð12PÞðγ04 1 4γ03θ2 1 6γ02θ

2
2 1 θ42

� �Xm
j51

ðμY2ðjÞ2μY2
Þ2

2
2

m
Pðγ30 1 3θ1γ20 1 θ31Þθ2 1 ð12PÞðγ03 1 3θ2γ02 1 θ32Þθ1

� �Xm
j51

ðμY1½j� 2μY1
ÞðμY2ðjÞ 2μY2

Þ
#

(13.26)

and

σX½1�X½2� 5
1

n

"
σZ1Z2 2

1

m
Pðγ30 1 3θ1γ20 1 θ31Þ1 ð12PÞðγ20 1 θ21Þθ2

� �Xm
j51

ðμY1½j�2μY1
Þ2

2
1

m
Pðγ02 1 θ22Þθ1 1 ð12PÞðγ03 1 3θ2γ02 1 θ32Þ

� �Xm
j51

ðμY2ðjÞ2μY2
Þ2

2
2

m
Pðγ20 1 θ21Þθ2 1 ð12PÞðγ02 1 θ22Þθ1

� �Xm
j51

ðμY1 ½j� 2μY1
ÞðμY2ðjÞ 2μY2

Þ
#

(13.27)

Proof: Note that the responses are independent, thus the variance of X½1� is given by

σ2
X½1�

5V X½1�
� �

5V
1

n

Xn
i51

X½1i�

" #
5

1

n2

Xn
i51

V X½1i�
� �

(13.28)

Now the variance of X½1i� is given by

V X½1i�
� �

5E X2
½1i�

h i
2 E X½1i�

� �� �2
5 ðγ20 1 θ21ÞE Y2

½1i�
h i

1 ðγ02 1 θ22ÞE Y2
ð2iÞ

h i
1 2θ1θ2 E Y½1i�Yð2iÞ

� �� �
2 θ1μY1

1θ2μY2

� �2

5 ðγ20 1 θ21Þ σ2
Y1
2

1

m

Xm
j51

ðμY1½j�2μY1
Þ2 1μ2

Y1

" #

1 ðγ02 1 θ22Þ σ2
Y2
2

1

m

Xm
j51

ðμY2ðjÞ2μY2
Þ2 1μ2

Y2

" #

1 2θ1θ2 σY1Y22
1

m

Xm
j51

ðμY1½j� 2μY1
ÞðμY2½j� 2μY2

Þ1μY1
μY2

" #
2 θ1μY1

1θ2μY2

� �2

(13.29)
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Note that the responses are independent, thus the variance of X½2� is given by

σ2
X½2�

5V X½2�
� �

5V
1

n

Xn
i51

X½2i�

" #
5

1

n2

Xn
i51

V X½2i�
� �

(13.30)

Now the variance of X½2i� is given by

V X½2i�
� �

5E X2
½2i�

h i
2 E X½2i�

� �� �2

5PE S21Y½1i�1S1S2Yð2iÞ
� �2

1 ð12PÞE S1S2Y½1i�1S22Yð2iÞ
� �2

2 PEfS21Y½1i�1S1S2Yð2iÞg1ð12PÞEfS1S2Y½1i�1S22Yð2iÞ
� �2

5PE S41Y
2
½1i� 1 S21S

2
2Y

2
ð2iÞ 1 2S31S2Y½1i�Y½2i�

h i

1 ð12PÞE S21S
2
2Y

2
½1i� 1 S42Y

2
ð2iÞ 1 2S1S

2
2Y½1i�Y½2i�

h i

2 PEfS21Y½1i�1S1S2Yð2iÞg1ð12PÞEfS1S2Y½1i�1S22Yð2iÞ
� �2

5P

"
γ40 1 4γ30θ1 1 6γ20θ

2
1 1 θ41

� �
σ2
Y1
2

1

m

Xm
j51

μY1½j�2μY1

� �2
1μ2

Y1

( )

1 γ20 1 θ21
� �

γ02 1 θ22
� �

σ2
Y2
2

1

m

Xm
j51

μY2ðjÞ2μY2

� �2
1μ2

Y2

( )

1 2 γ30 1 3θ1γ20 1 θ21
� �

θ2 σY1Y2 2
1

m

Xm
j51

μY1 ½j� 2μY1

� �
μY2ðjÞ 2μY2

� �
1μY1

μY2

( )#

1 ð12PÞ
"

γ20 1 θ21
� �

γ02 1 θ22
� �

σ2
Y1
2

1

m

Xm
j51

μY1 ½j�2μY1

� �2
1μ2

Y1

( )

1 γ04 1 4γ03θ2 1 6γ02θ
2
2 1 θ42

� �
σ2
Y2
2

1

m

Xm
j51

μY2ðjÞ2μY2

� �2
1μ2

Y2

( )

1 2 γ03 1 3θ2γ02 1 θ32
� �

θ1 σY1Y2 2
1

m

Xm
j51

ðμY1½j� 2μY1
ÞðμY2ðiÞ 2μY2

Þ1μY1
μY2

( )#

2 P γ201θ21
� �

μY1
1θ1θ2μY2

� �
1ð12PÞ θ1θ2μY1

1ðγ021θ22ÞμY2

� �� �2

(13.31)
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Note that the responses are independent, thus the covariance between X½1� and X½2� is given by

σX½1�X½2� 5Cov X½1�;X½2�
� �

5Cov
1

n

Xn
i51

X½1i�;
1

n

Xn
i51

X½2i�

" #
5

1

n2

Xn
i51

Cov X½1i�;X½2i�
� �

(13.32)

Now the covariance between X½1i� and X½2i� is given by

Cov X½1i�;X½2i�
� �

5E X½1i�X½2i�
� �

2 E X½1i�
� �� �

E X½2i�
� �� �

5PE S31Y
2
½1i� 1 2S21S2Y½1i�Y½2i� 1 S1S

2
2Y

2
ð2iÞ

h i

1 ð12PÞE S21S2Y
2
½1i� 1 2S1S

2
2Y½1i�Y½2i� 1 S32Y

2
ð2iÞ

h i

2EðS1Y½1i� 1 S2Yð2iÞÞEfPðY½1i�S21 1 S1S2Yð2iÞÞ1 ð12PÞðS1S2Y½1i� 1 S22Yð2iÞg

5P

"
ðγ30 1 3θ1γ20 1 θ31Þ σ2

Y1
2

1

m

Xm
j51

ðμY1½j�2μY1
Þ2 1μ2

Y1

( )

1 2 γ20 1 θ21
� �

θ2 σY1Y2 2
1

m

Xm
j51

ðμY1½j� 2μY1ÞðμY2ðjÞ 2μY2
Þ1μY1

μY2

( )

1 θ1ðγ02 1 θ22Þ σ2
Y2
2

1

m

Xm
j51

ðμY2ðjÞ2μY2
Þ2 1μ2

Y2

( )#

1 ð12PÞ
"
ðγ20 1 θ21Þθ2 σ2

Y1
2

1

m

Xm
j51

ðμY1½j�2μY1
Þ2 1μ2

Y1

( )

1 2 γ02 1 θ22
� �

θ1 σY1Y2 2
1

m

Xm
j51

ðμY1½j� 2μY1ÞðμY2ðjÞ 2μY2
Þ1μY1

μY2

( )

1 ðγ03 1 3θ2γ02 1 θ32Þ σ2
Y2
2

1

m

Xm
j51

ðμY2ðjÞ2μY2
Þ2 1μ2

Y2

( )#

2 θ1μY1
1 θ2μY2

� �
P μY1

γ20 1 θ21
� �

1 θ1θ2μY2

� �
1 ð12PÞ μY1

θ1θ2 1 ðγ02 1 θ22ÞμY2

� �� �
(13.33)

Now the variance of the estimator μ̂Y ½1� is given by

V μ̂Y½1�

h i
5V

fPθ1θ2 1 ð12PÞðγ02 1 θ22ÞgX½1� 2 θ2X½2�
ð12PÞθ1γ02 2Pθ2γ20

	 


5
fPθ1θ21ð12PÞðγ021θ22Þg2VfX½1�g1 θ22VfX½2�g2 2θ2fPθ1θ2 1 ð12PÞðγ02 1 θ22ÞgCovðX½1�;X½2�Þ

fð12PÞθ1γ022Pθ2γ20g2
(13.34)
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and the variance of the estimator μ̂Y ½2� is given by

V μ̂Y½2�

h i
5V

θ1X½2� 2 fPðγ20 1 θ21Þ1 ð12PÞθ1θ2gX½1�
ð12PÞθ1γ02 2Pθ2γ20

	 


5
θ21VfX½2�g1 fPðγ201θ21Þ1ð12PÞθ1θ2g2VfX½1�g2 2θ1fPðγ20 1 θ21Þ1 ð12PÞθ1θ2gCovðX½1�;X½2�Þ

fð12PÞθ1γ022Pθ2γ20g2
(13.35)

On using Eqs. (13.25) to (13.33) in Eqs. (13.34) and (13.35), we have the theorem.

In the next section, we consider the comparison of the RSS based estimators with respect to the

one with simple random sampling.

13.4 EFFICIENCY OF RANKED SET SAMPLING
It is a well-known fact that the use of RSS leads to more efficient estimators than the use of simple

random sampling and with replacement scheme. Also it would be worthwhile investigating the useful-

ness of RSS when estimating means of the two sensitive variables at the same time. For illustration

purposes we considered the population listed in the Appendix of Singh (2003) where we considered

the first sensitive variable Y1i as the amount ($000) of nonreal estate farm loans in different states

during 1997, and the second sensitive variable is Y2i as the amount ($000) of real estate farm loans in

different states during 1997. As mentioned in Singh et al. (2008), a data set could be considered as

sensitive in one situation and nonsensitive in another situation. Thus we consider these variables as

sensitive variables for the purpose of testing the newly proposed methodology. A graphical represen-

tation of such variables associated with each other is shown in Fig. 13.1.

FIGURE 13.1

Scatterplot of the two variables considered as sensitive variables.
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A brief description of the parameters of both variables is given below: N5 50, μY1
5 878:16,

μY2
5 555:43, σY1 5 1084:67;σY2 5 584:82; SkY1 5 1:66; SkY2 5 1:14, KurtY1 5 1:92; and KurtY2 5 0:85.
We wrote the SAS code to investigate the percent relative efficiency values (see Appendix A).

The percent relative efficiency of the RSS over the simple random sampling is defined as:

REð1Þ5 Vðμ̂Y1
Þ

Vðμ̂½1�Þ
3 100% (13.36)

and

REð2Þ5 Vðμ̂Y2
Þ

V μ̂½2�
� � 3 100% (13.37)

Following Singh et al. (2014), we also defined realized ratios of the judgment-based ranked

values to that of true mean values for the first and second variables as:

RD1 i½ �5
μY1½i�
μY1

and RD2 i½ �5
μY2ðiÞ

μY2

for i5 1; 2; 3; ::;m in each cycle. In this simulation study we considered several values of

RD1½i�5A1 1 0:08ei (13.38)

and

RD2½i�5A2 1 0:08ei (13.39)

where eiBNð0; 1Þ. Then different values of

A1 5 0:75; 1:0; 1:25f g and

A2 5 0:25; 0:50; 0:75; 1:00; 1:25; 1:50; 1:75; 2:0; 2:25; 2:50f g
are investigated through a simulation study. The choice of A1 is made that the judgment ranking

could be 75% of the original true value, could be perfect ranking, or could be 25% higher judgment

ranking. More that this variation in judgment ranking is not considered, because then judgment

ranking will introduce a lot of measurement errors in the first sensitive variable Y1i. The value of

A2 is given a wider range from 0.25 to 2.50 with a step of 0.25 because it is not in the hands of the

investigator to control the value of the second sensitive variable Y2i. Recall that judgment ranking

was made only for the first sensitive variable. We used two scrambling variables S1 and S2. The

scrambling variable S1 consists of 5000 random numbers generated from the chi-squared distribu-

tion with five degrees of freedom. The second scrambled variable S2 is generated from the gamma

distribution with shape parameter α5 0:5 and scale parameter β5 1:5. Then, all the required first-,

second-, third-, and fourth-ordered moments for both the scrambling variables were calculated from

those 5000 random numbers. The percent relative efficiency values REð1Þ and REð2Þ for different
choices of A1 and A2 are given in Table 13.2.

It has been observed that the choice of the scrambling variables leads to a sampling scheme

such that RSS is more efficient than simple random sampling with replacement when estimating

the two sensitive variables simultaneously, as noted in Ahmed et al. (2018). For A1 5 0:75, while
the value of A2 varies between 0.25 and 2.50, both with standard deviations of 0.08, the value of

RE(1) varies from 101.00% to 102.30% and the value of RE(2) varies from 100.62% to 102.50%.

18113.4 EFFICIENCY OF RANKED SET SAMPLING



If one has very perfect judgment ranking A1 5 1:0 with a standard deviation of 0.08, and the value

of A2 changes from 0.25 to 2.50 with a step of 0.25, the value of RE(1) changes from 100.04% to

100.25%, and the value of RE(2) changes from 100.04% and 100.28%. In the same way, for the

value of A1 5 1:25 as the value of A2 changes from 0.25 to 2.50, the value of RE(1) changes from

100.88% to 102.83%, and that of RE(2) changes from 100.97% to 103.05%.

It seems that there is potentially a much wider scope of application of this study to other ran-

domized response models, such as that due to Arcos et al. (2015), by making use of RSS along the

lines of Bouza (2009), where he investigates the Chaudhuri and Stenger (1992) randomized

response model. Also, further note that the other situations when the ranking can be made based on

the second sensitive variable, and/or both variables, could also be of worth in future studies.

Table 13.2 Percent Relative Efficiency Values

Obs A1 A2 RE1 RE2

1 0.75 0.25 102.300 102.503

2 0.75 0.50 101.301 101.413

3 0.75 0.75 101.000 101.092

4 0.75 1.00 101.943 102.133

5 0.75 1.25 101.032 101.137

6 0.75 1.50 100.647 100.719

7 0.75 1.75 101.536 101.709

8 0.75 2.00 101.134 101.273

9 0.75 2.25 100.540 100.617

10 0.75 2.50 101.066 101.211

11 1.00 0.25 100.108 100.119

12 1.00 0.50 100.055 100.060

13 1.00 0.75 100.072 100.079

14 1.00 1.00 100.040 100.044

15 1.00 1.25 100.112 100.122

16 1.00 1.50 100.123 100.136

17 1.00 1.75 100.130 100.142

18 1.00 2.00 100.177 100.196

19 1.00 2.25 100.249 100.279

20 1.00 2.50 100.216 100.241

21 1.25 0.25 101.056 101.178

22 1.25 0.50 101.048 101.160

23 1.25 0.75 100.882 100.973

24 1.25 1.00 101.056 101.158

25 1.25 1.25 101.402 101.532

26 1.25 1.50 101.314 101.431

27 1.25 1.75 101.036 101.123

28 1.25 2.00 102.562 102.780

29 1.25 2.25 101.705 101.838

30 1.25 2.50 102.828 103.055
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Nevertheless pending investigations in future studies by following Bouza (2016) for other complex

designs are duly acknowledgeable and it seems that there is potentially a much wider scope of

application of this study, but that is beyond the scope of this chapter.
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CHAPTER

14FORCED QUANTITATIVE
RANDOMIZED RESPONSE MODEL
USING RANKED SET SAMPLING

Vaishnavi Bollaboina, Stephen A. Sedory and Sarjinder Singh
Department of Mathematics Texas A&M University-Kingsville, Kingsville, TX, United States

14.1 INTRODUCTION
Warner (1965) was the first to estimate the proportion of the prevalence of a sensitive attribute

with the use of a randomization device. Warner considered only the situation when the attribute of

interest has only two possible outcomes, one with stigma and another without. His pioneer method

was capable of estimating the proportion of persons in a population who bear a stigmatizing charac-

teristic without disclosing the privacy of the respondents while being interviewed. However, the

problem of estimating the population mean of a sensitive quantitative variable, such as income,

number of induced abortions, and amount of illegal use of drug is also well-known. Horvitz et al.

(1967) and Greenberg et al. (1971) were the first to extend the Warner (1965) pioneer model for

qualitative variables to the situation of quantitative variables. Himmelfarb and Edgell (1980) intro-

duced the idea of an additive scrambled randomized response model, which they used to estimate

the population mean of a sensitive variable by making use of the known distribution of a scram-

bling variable. Eichhorn and Hayre (1983) came up with the idea of a multiplicative randomized

response model which could also be used to estimate the population mean of a sensitive variable.

Later, Chaudhuri and Stenger (1992) proposed an ingenious idea of combining both the additive

and multiplicative model together to estimate the population mean of a sensitive variable. Let us

describe their method, which is also adopted by Bouza (2009), while considering the use of ranked

set sampling. For the ith person selected in the sample, a set of two randomization devices are

given, say two boxes: Box2 I and Box-II. Box-I contains T cards labeled with numbers

fA1;A2; . . .;ATg and Box-II contains S cards labeled with numbers fB1;B2; . . .;BSg. The mean and

variances of the numbers written on the cards in Box-I and Box-II are assumed to be known, and

are computed as:

μA 5
1

T

XT
i51

Ai; σ2
A 5

1

T

XT
i51

ðAi2μAÞ2

μB 5
1

S

XS
i51

Bi; σ2
B 5

1

S

XS
i51

ðBi2μBÞ2
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Assume Yi is the value of the study variable for the ith unit in the population consisting of N

units, say persons. Then the ultimate goal is to estimate the population mean of the sensitive quanti-

tative variable Yi given by

Y 5
1

N

XN
i51

Yi (14.1)

Chaudhuri and Stenger (1992) considered the selection of the n persons by using simple random

and with replacement sampling (SRSWR). The ith selected person in the sample is requested to

draw a card, say Ai from Box-I and another card, say Bi, from Box-II, and report the scrambled

response as:

Zi 5AiYi 1Bi (14.2)

Chaudhuri and Stenger (1992) proposed an unbiased estimator of the population mean Y , based

on n observed responses, as:

yCS 5

1

n

Xn
i51

Zi 2μB

μA

(14.3)

where μA 6¼ 0, with variance

VðyCSÞ5
σ2
y

n
1

ðσ2
y 1 Y

2Þ
n

C2
A 1

μ2
BC

2
B

nμ2
A

(14.4)

where CA 5
σA

μA
and CB 5

σB

μB
are the known values of the coefficient of variations of the numbers in

Box-I and Box-II, respectively.

McIntyre (1952) felt that it could be possible to rank a sample of a few trees taken from an

orchard by eye inspection or judgment ranking. The information used to rank trees before taking

them in a sample could be useful in the estimation process which became popularly known as

ranked set sampling (RSS). Likewise, Bouza (2009) felt that respondents selected in a simple ran-

dom sample can be ranked based on the value of the sensitive variable. Bouza (2009) introduced an

ingenious idea assuming the sensitive variable can be ranked based on some kind of judgment

before collecting information from the respondents. Bouza (2009) considered the use of ranked set

sampling (RSS) which involves first selecting m independent SRSWR samples each of size m.

Then from the ith respondent selected in the ranked set sample, a scrambled response is collected,

which we denote by

ZðiÞ 5AiYðiÞ 1Bi (14.5)

Without use of generality, the process is repeated r times so that the total effective RSS sample

size is given by n5mr: Bouza (2009) considered the following unbiased estimator of the popula-

tion mean

yBouza 5

1

n

Xn
i51

ZðiÞ 2μB

μA

(14.6)
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Let Ed and Vd denote the design expectation and design variance, respectively. Also let ER and

VR denote the randomization expectation and randomization variance, respectively. Then the vari-

ance of the estimator yBouza is given by

VðyBouzaÞ 5EdVR

1

n

Xn
i51

ZðiÞ 2μB

μA

2
6664

3
77751VdER

1

n

Xn
i51

ZðiÞ 2μB

μA

2
6664

3
7775

5Ed

1

n2

Xn
i51

Y2
ðiÞσ

2
A 1σ2

B

n o

μ2
A

2
6664

3
77751Vd

1

n

Xn
i51

YðiÞ

" #

5

1

n2

Xn
i51

Ed Y2
ðiÞ

n o
σ2
A 1σ2

B

n o

μ2
A

2
6664

3
77751Vd yRSS

� �

(14.7)

Now, we have

Vd yRSS
� �

5
1

mr
σ2
y 2

1

m2r

Xm
i51

ðμYðiÞ2YÞ2

5
1

n
σ2
Y 2

1

m

Xm
i51

ðμYðiÞ2YÞ2
" # (14.8)

and we also have

Ed Y2
ðiÞ

h i
5Vd YðiÞ

� �
1 Ed YðiÞ

� �� �2
5σ2

Y 2
1

m

Xm
i51

μYðiÞ2Y
h i2

1Y
2 (14.9)

On substituting Eqs. (14.8) and (14.9) into Eq. (14.7), we have

VðyBouzaÞ 5

1

n2

Xn
i51

Ed Y2
ðiÞ

n o
σ2
A 1σ2

B

n o

μ2
A

1Vd yRSS
� �

5
σ2
A

n2μ2
A

Xn
i51

σ2
Y 2
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m

Xm
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1 Y
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(14.10)
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In the next section, we derive an estimator of the population mean with a forced quantitative

randomized response (FQRR) model and then find its variance expression. The reason for consider-

ing the use of RSS is based on the pioneering idea of Bouza (2009) that the use of RSS sampling is

practical and more efficient than SRS. In the present study, we investigate the same idea of RSS in

the case of the FQRR model. One can also refer to Al-Omari and Bouza (2014) for a detailed

review of ranked set sampling to learn about its simplicity and practicability.

14.2 PROPOSED FORCED QUANTITATIVE RANDOMIZED RESPONSE MODEL
In this section, we combine the thinking of Bouza (2009) and Gjestvang and Singh (2007) as fol-

lows. Each respondent selected in the ranked set sample (RSS) is requested to experience a ran-

domization device, say a spinner, with three possible outcomes. Let P1 be the shaded area of the

spinner with “salmon” color, P2 be the shaded area of the spinner with “thistle” color, and P3 be

the shaded area of the spinner with “firebrick” color. The spinner is rotated by the interviewee

unobserved by the interviewer. If the pointer lands in the “salmon” area, the respondent is

requested to report the scrambled response by using the two boxes of Chaudhuri and Stenger

(1992), if the pointer lands in the “thistle” color, the respondent is requested to report the true

response, and if the pointer lands in the “firebrick” color then the respondent is requested to report

a fixed response which is already printed on the spinner. The names of the colors are chosen such

that it is easy to remember the scrambled response for “salmon,” true response for “thistle,” and

forced response for “firebrick” outcome of the spinner. A graphical representation of such a spinner

is given in Fig. 14.1.

It may be worth pointing out here that the forced randomized response model due to Liu and

Chow (1976a,b) is applicable only for estimating the population proportion of a sensitive character-

istic. In the model considered here, if Yi is a qualitative variable taking a value of 1 or a value of 0

FIGURE 14.1

Spinner for the FQRR model.
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for a sensitive and nonsensitive attribute in the population, set Ai 5 0 and Bi 5 0 as forced “no”

answer, and set F5 1 as forced “yes” answer, then the Stem and Steinhorst (1984) model becomes

a special case of the proposed model for RSS sampling, which are obviously improvements over

the use of SRS sampling as explained in Fox and Tracy (1986). No doubt if P1 5 1 and

P2 5P3 5 0 then the proposed model reduces to the Bouza (2009) model for RSS sampling. If

Bi 5 0, P3 5 0, P1 5P, and P2 5 ð12PÞ then the proposed model leads to the Bar-Lev, Bobovitch,

and Boukai (2004) model for the RSS scheme. Further, note that in the Bar-Lev, Bobovitch, and

Boukai (2004) model, an amendment of change of origin is sometimes needed by adopting the

remark (page 315, Section 6, in Eichhorn and Hayre, 1983) while handling special types of sensi-

tive variables, and the present model will be free from such amendments.

Thus from the ranked set sample (RRS), the observed response from the ith respondent is given

by

Z�
ðiÞ 5

AiYðiÞ 1Bi with probability P1

YðiÞ with probability P2

F with probability P3

8<
: (14.11)

Note that if the ith person reports a fixed response then that value cannot be based on any

ranking.

The expected value of the observed response Z�
ðiÞ in the RSS is given by

E Z�
ðiÞ

h i
5P1E AiYðiÞ 1Bi

� �
1P2EðYðiÞÞ1P3EðFÞ

5P1 μAY1μB

� �
1P2Y1P3F

5 P1μA 1P2

� �
Y 1P1μB 1P3F

(14.12)

Now we propose a new estimator of the population mean Y using the proposed FQRR model

as:

yRSSðFÞ 5

1

n

Xn
i51

Z�
ðiÞ 2P1μB 2P3F

P1μA 1P2

(14.13)

where μA 6¼ 2P2=P1. Now we have the following theorems:

Theorem 2.1: The estimator yRSSðFÞ is an unbiased estimator of the population mean Y .

Proof: Taking the expected value on both sides of yRSSðFÞ, we have

E yRSSðFÞ
� �

5E

1
n

Pn
i51

Z�
ðiÞ 2P1μB 2P3F

P1μA 1P2

2
664

3
7755

1
n

Pn
i51

EfZ�
ðiÞg2P1μB 2P3F

P1μA 1P2

5Y

which proves the theorem.
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Theorem 2.2: The minimum variance of the estimator yRSSðFÞ is given by

MinVðyRSSðFÞÞ 5
1

nðP1μA1P2Þ2
"
ðσ2

y 1Y
2Þ P1ðσ2

A 1μ2
AÞ1P2

� 	
1P1 σ2

B 1μ2
B 1 2μAμBY

� 	

2 P1ðμAY1μBÞ1P2Y
� 	2

2
P1ðσ2

A 1μ2
AÞ1P2

� 	
m

Xm
i51

ðμYðiÞ2YÞ2

2
P3 P2Y1P1ðμAY1μBÞ
� 	2

ð12P3Þ

#
(14.14)

Proof: The variance of the estimator yRSSðFÞ is given by

V yRSSðFÞ
� �

5V

1
n

Pn
i51

Z�
ðiÞ 2P1μB 2P3F

P1μA 1P2

2
664

3
7755

1
n2

Pn
i51

VðZ�
ðiÞÞ

ðP1μA1P2Þ2
5

σ2
Z�

nðP1μA1P2Þ2
(14.15)

Now the variance σ2
Z� is given by

σ2
Z� 5E Z�2

ðiÞ
h i

2 E Z�
ðiÞ


 �h i2

5P1E ðAiYðiÞ1BiÞ2
� �

1P2E Y2
ðiÞ


 �
1P3EðF2Þ2 P1EðAiYðiÞ1BiÞ1P2EðYðiÞÞ1P3EðFÞ

� �2

5P1E A2
i Y

2
ðiÞ 1B2

i 1 2AiBiYðiÞ
h i

1P2E Y2
ðiÞ


 �
1P3F

2 2 P1ðμAY1μBÞ1P2Y1P3F
� �2

5P1 ðσ2
A 1μ2

AÞ σ2
y 2

1

m

Xm
i51

ðμYðiÞ2YÞ2 1 Y
2

( )
1 ðσ2

B 1μ2
BÞ1 2μAμBY

" #

1P2 σ2
y 2

1

m

Xm
i51

ðμYðiÞ2YÞ2 1Y
2

" #
1P3F

2

2 P2
1ðμAY1μBÞ2 1P2

2Y
2
1P2

3F
2 1 2P1P2YðμAY 1μBÞ1 2P2P3FY 1 2P1P3FðμAY 1μBÞ

h i

5 ðσ2
y 1 Y

2ÞfP1ðσ2
A 1μ2

AÞ1P2g1P1ðσ2
B 1μ2

B 1 2μAμBYÞ

2 fP1ðμAY1μBÞ1P2Yg2 1P3ð12P3ÞF2 2 2FfP2P3Y 1P1P3ðμAY 1μBÞg

2
fP1ðσ2

A 1μ2
AÞ1P2g

m

Xm
i51

ðμYðiÞ2YÞ2

(14.16)

On substituting Eq. (14.16) into Eq. (14.15), the variance of the estimator yRSSðFÞ is given by

VðyRSSðFÞÞ 5
1

nðP1μA1P2Þ2
"
ðσ2

y 1 Y
2ÞfP1ðσ2

A 1μ2
AÞ1P2g1P1ðσ2

B 1μ2
B 1 2μAμBYÞ

2 fP1ðμAY1μBÞ1P2Yg2 1P3ð12P3ÞF2 2 2FfP2P3Y 1P1P3ðμAY 1μBÞg

2
fP1ðσ2

A 1μ2
AÞ1P2g

m

Xm
i51

ðμYðiÞ2YÞ2
#

(14.17)
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On differentiating VðyRSSðFÞÞ in Eq. (14.17) with respect to F and equating to zero, we have the

optimum value of F given by

F5
P2Y 1P1ðμAY1μBÞ

ð12P3Þ
(14.18)

On substituting the optimal value of F from Eq. (14.18) into Eq. (14.17), we have the theorem.

14.3 PRACTICABLE ASPECT OF THE PROPOSED FQRR MODEL
Note that the optimum value of F in Eq. (14.18) depends on the unknown parameter, the population

mean Y which we wish to estimate. Following Singh and Gorey (2017), it is advisable to use an

estimate of F, so one can use a spinner with “firebrick” color for the forced response. Note that we

are using ranked set sampling, thus either of the following two possible estimators of F could be

used in the spinner while collecting information from the interviewees.

F̂5
P2YðiÞ 1P1ðμAYðiÞ 1μBÞ

ð12P3Þ
(14.19)

or

^̂
F5

P2YðiÞ 1P1ðAiYðiÞ 1BiÞ
ð12P3Þ

(14.20)

The resulting estimators, after replacing the estimator of F, would be investigated in future

studies.

14.4 RELATIVE EFFICIENCY
It is a well-known fact that the use of RSS leads to more efficient estimators than the use of the

SRSWR scheme. Also, it would be worth investigating the usefulness of ranked set sampling while

using the forced quantitative randomized response model for estimating the mean of a sensitive var-

iable. For illustration purposes we considered the population listed in the appendix of Singh (2003)

where we considered the first sensitive variable Yi as the amount ($000) of nonreal-estate farm

loans in various states during 1997. We consider this variable as a sensitive variable for the purpose

of testing the new proposed methodology. As reported in Singh et al. (2008), one dataset could be

regarded as sensitive in one situation and nonsensitive in another. A boxplot showing the nature of

the dataset nonreal-estate farm loan is shown in Fig. 14.2.

From Fig. 14.2, one can see that the distribution of the dataset is skewed to the right, which is

typical of the distribution of income as well. Thus it is not unreasonable to consider such a dataset

as representing a sensitive variable in real practice. The higher values would be more sensitive than

the other data values. We define the percent relative efficiencies of the proposed FQRR model over

the Chaudhuri and Stenger (1992) and Bouza (2009) estimators, respectively, as:
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REð1Þ5 VðyCSÞ
Min:VðyRSSðFÞÞ

3 100% (14.21)

and

REð2Þ5 VðyBouzaÞ
Min:VðyRSSðFÞÞ

3 100% (14.22)

In the investigation, we considered using two boxes, each consisting of 5000 cards. The values

of Ai and Bi were generated from a gamma distribution with parameters as shown in the SAS codes

(see Appendix A). After executing the SAS code the percent relative efficiency values are given in

Table 14.1.

From Table 14.1, we conclude that the Bouza (2009) estimator is more efficient than the

Chaudhuri and Stenger (1992) estimator, and the proposed FQRR estimator is more efficient than

the Bouza (2009) estimator. Followed Singh et al. (2014), we compute

RDYðiÞ 5
Y ðiÞ
Y

21

� 2
(14.23)

For P1 5 0:65, P2 5 0:325 and the value of C1 in the range from 0.25 and 1.50, the value of RE(1)

varies from 100.21% to 127.82%; and the value of RE(2) varies from 185.79% to 188.95%, with a

maximum of 188.95% for C1 5 0:25: In the same way the rest of the results in Table 14.1 can be

interpreted. Thus, interestingly, the proposed FQRR model is found to be more beneficial if the

values of μYðiÞ are closer to Y than the Bouza (2009) estimator. The efficiency of the proposed estima-

tor provides a statistical reason that if someone has a good guess about the fixed response, it would

be beneficial in producing efficient estimates in the case of RSS in relation to its competitors.

FIGURE 14.2

Box plot showing the distribution of the nonreal-estate farm loan.
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14.5 CONCLUSIONS
In this chapter, we investigate the use of RSS for the case of the forced quantitative randomized

response (FQRR) model introduced by Gjestvang and Singh (2007) for estimating the mean of a

sensitive quantitative variable. We note that the findings match with the observations of Bouza

(2009), in that the use of RSS for a sensitive variable performs better than the use of SRS while

also using the proposed FQRR model.
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CHAPTER

15CONSTRUCTION OF STRATA
BOUNDARIES FOR RANKED SET
SAMPLING

Ruiqiang Zong, Stephen A. Sedory and Sarjinder Singh
Department of Mathematics, Texas A&M University-Kingsville, Kingsville, TX, United States

15.1 INTRODUCTION
The problem of estimating the population mean of a study variable, y, has been widely addressed

in the field of survey sampling. There are numerous sampling schemes, such as simple random

sampling, probability proportional to size, two-phase sampling, two-stage sampling, systematic

sampling, and stratified random sampling. The use of stratified random sampling has gained popu-

larity due to its simplicity and it almost ensures a gain in efficiency of the estimators if used prop-

erly. The main gains in stratified random sampling result from the construction of homogeneous

strata. If strata are homogeneous, then stratified random sampling has been found to be efficient in

so far as the precision of an estimator is considered. In stratified random sampling, there are two

issues: allocation of sample size to each stratum and the construction of strata boundaries which

could as much as possible contribute to forming homogeneous groups. Such strata boundaries,

which lead to homogeneous strata, are also called optimum strata boundaries (OSB). The construc-

tion of OSB for simple random and with replacement sampling for Neyman allocation is a famous

example. In addition, researchers have also approached it as a mathematical programming problem

(MPP), which minimizes the variance of the estimator of the population mean while the total sam-

ple size and the cost of the survey remain the same.

In this project, we consider the construction of OSB while using ranked set sampling within

each stratum.

In the next section, we provide commonly used notation in a study of stratified random

sampling.

15.2 STRATIFIED RANDOM SAMPLING
Consider a population Ω of N units that is divided into l homogeneous groups, called strata, each

of size Nh, h5 1; 2; 3;?l. From the hth stratum of size Nh, assume a simple random and with

replacement (SRSWR) sample of nh units is selected, such that
Pl

l51 nh 5 n, the total fixed sample

size. Let yhi: i5 1; 2; 3;?nh; h5 1; 2; 3?l; be the values of the selected ith unit from the hth

stratum.
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Let

yh 5
1

nh

Xnh
i51

yhi (15.1)

be the unbiased estimator of the hth stratum population mean

Yh 5
1

Nh

XNh

i51

yhi (15.2)

Then an unbiased estimator of the population mean

Y 5
1

N

Xl

h51

XNh

i51

yhi (15.3)

is given by

yst 5
Xl

h51

Whyh (15.4)

when Wh 5
Nh

N
is the population proportion of data value in the hth stratum. Obviously, the variance

of yst is given by

V yst
� �

5
Xl

h51

W2
h

σ2
hy

nh
(15.5)

when

σ2
hy 5

1

Nh

XNh

i51

ðyhi2YhÞ2 (15.6)

is the population variance of the hth stratum.

Under Neyman (1934) allocation, the optimum sample size is given by

nh 5 n
WhσhyPl
h51 Whσhy

(15.7)

and the minimum variance is given by

V yst
� �

5
1

n
ð
Xl

h51

WhσhyÞ2 (15.8)

The set of point of stratification y1; y2; . . . yl21 which minimize the VðystÞN should give the best

stratification for the Neyman allocation. Following Sukhatme and Sukhatme (1970), the optimum

points of stratification with Neyman allocation are obtained by solving a set of ðl2 1Þ simultaneous

equations:

σ2
hy 1 yh2yh

� �2
σhy

5
σ2
h11 1 yh2yh11

� �2
σh11

; h5 1; 2; . . . l2 1 (15.9)
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Under the assumption, σhy 5 constant for all h5 1; 2; . . . l2 1, the optimum points of stratifica-

tion are obtained by solving l2 1 simultaneous equations

yh 5
yh 1 yh11

2
; h5 1; 2;?l2 1 (15.10)

Eq. (15.9) is not easy to solve for yh if the number of strata become large, even when

Eq. (15.10) is free from strata variances.

Dalenius and Hodges (1957) came up with the idea of using the cumulated value of
ffiffiffiffiffiffiffiffi
f ðyÞ

p
. Let

H5
Ð b
a

ffiffiffiffiffiffiffiffi
f ðyÞ

p
dy be the total cumulated value of

ffiffiffiffiffiffiffiffi
f ðyÞ

p
; then the first approximation of the opti-

mum point of stratification is given by

yh 5
hH

l
; l5 1; 2; . . . l2 1 (15.11)

Dalenius (1950) was the first to introduce the process of constructing OSB while using the

same study variable for both estimation and stratification. We are also considering using the same

variable for estimation and for construction of strata boundaries. There are many studies by differ-

ent researchers, such as Mahalanobis (1952), Sethi (1963), Serfling (1968), Singh and Sukhatme

(1969), and Singh (1971) among others, which deal with constructing OSB under different

situation.

Sharma (2017) and Khan et al. (2009) considered a different approach that yields both the OSB

and optimum sample size by making use of MPP. Following this direction, let y0 and y1 be the min-

imum and maximum values of the study variable y. The problem of determining the strata bound-

aries is to divide the range

d5 yl 2 y0 (15.12)

at intermediate points y1 # y2 #?# yl21 and find the optimum sample sizes nh, such that the

variance:

V yst
� �

5
Xl

h51

W2
h

σ2
hy

nh
(15.13)

is minimum.

Thus the problem of determining OSB and the optimum allocation can be formulated as:

Minimize

V yst
� �

5
Xl

h51

W2
h

σ2
hy

nh
(15.14)

Subject to the constraints:

Xl

h51

dh 5 d (15.15)

Xl

h51

nh 5 n (15.16)

and
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dh 5 ðyh 2 yh21Þ$ 0 (15.17)

nh $ 1 is an integer.

In the next section, we consider the use of ranked set sampling.

15.3 STRATIFIED RANKED SET SAMPLING
McIntyre (1952) introduced the idea of ranked set sampling for estimating the population mean

yield of a crop in a field. He provides a clear and insightful introduction to ranked set sampling.

Douglas (2012) has contributed an introductory review article on the use of ranked set sampling

and its modifications since 1952.

The goal is to select nh data values by selecting Rh groups of mh data values. Each group of mh

data comes from mh sets of mh units each. For each set, units are ranked according to estimated

y-values. Note that it would be pure judgmental ranking, which could involve the use of auxiliary

information experience, etc., but the actual data values remain unknown. Here we assume that the

unit that is judged to have the smallest y-value in the ranked set in fact has the smallest value, and

the value of the study variable is actually measured only for this unit. This observation from the

hth stratum is denoted by yh½1�. In other words, we select an SRS sample of mh units with judged

data values yh1; yh2; . . .; yhmh
and then ranked as

yh½1� # yh½2� #?yh½mh �

This is the way the first observation yh½1� is selected from the hth stratum and the rest of the

ðmh 2 1Þ units are discarded.

Now, we select another independent SRS of mh units from the hth stratum, and rank them based

on judgment as

yh½1� # yh½2� #?yh½mh �

and this time yh½2� is retained in the RSS and the other ðmh 2 1Þ units are discarded. Repeat the pro-

cess until mh data values are included in the first group of data value in the RSS from the hth stra-

tum. It is called the first cycle in the hth stratum of the SRSS and generated this over the first

group of mh data values.

Then we use such Rh cycles in the hth stratum such that nh 5mhRh. The ultimate SRSS sample

of nh units can be visualized as in Table 15.1.

Under SRSS, we propose an unbiased estimator of the population mean Y as

ySRSS 5
Xl

h51

Wh

XRh
j51

Xmh

i51

yh i½ �j
mhRh

(15.18)

or equivalently,

ySRSS 5
Xl

h51

Wh

1

nh

XRh

j51

Xmh

i51

yh i½ �j (15.19)

The variance of the estimate ySRSS is given by
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VðySRSSÞ5
Xl

h51
W2

h

σ2
hy

Rhmh

2
1

mhR
2
h

XRh

i51
Yh½i�2Y
� �2( )

5
Xl

h51
W2

h

σ2
hy

nh
2

1

nhRh

XRh

i51
Yh½i�2Y
� �2( )

5
Xl

h51

W2
h

nh
σ2
hy 2

1

Rh

XRh

i51
Yh½i�2Y
� �2� �

(15.20)

for fixed Rh, and where Yh½i� is the expected value of the ith units selected in the sample. The

Neyman allocation in SRSS is

nh 5 n
Wh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
hy 2

1
Rh

PRh

i51 Yh½i�2Yh

� �2q
Pl

h51 Wh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
hy 2

1
Rh

PRh

i51 Yh½i�2Yh

� �2q (15.21)

The minimum variance of ySRSS with Neyman allocation is given by

Min: VðySRSSÞN 5
1

n

Xl

h51
Wh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
hy2

1

Rh

XRh

i51
Yh i½ �2Yh

� �2r� �2
(15.22)

On differentiating VðySRSSÞN with respect to yh and setting it equal to zero, we get

Wh

@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
hy 2

1

Rh

XRh

i51
Yh i½ �2Yh

� �2r

@yh
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
hy 2

1

Rh

XRh

i51
Yh i½ �2Yh

� �2r
@Wh

@yh

1Wh11

@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
ðh11Þy 2

1

Rðh11Þ

XRh11

i51
Y ðh11Þ i½ �2Y ðh11Þ
� �2s

@yh

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
ðh11Þy 2

1

Rðh11Þ

XRh11

i51
Y ðh11Þ i½ �2Y ðh11Þ
� �2s

@Wðh11Þ
@yh

5 0

(15.23)

Now it is very difficult to find the following derivative:

@
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
ðh11Þy 2

1
Rðh11Þ

PRh11

i51 Y ðh11Þ i½ �2Y ðh11Þ
� �2q

@yh
(15.24)

From the above we see that the problem of constructing strata boundaries in the case of ranked

set sampling by following Dalenius (1950) becomes complicated. The other methods due to

Table 15.1 Stratified RSS Scheme

Cycle In hth Stratum, h5 1; 2?l

1 yh 1½ �1yh 2½ �1??yh mh½ �1
2 yh 1½ �2yh 2½ �2??yh mh½ �2
3 yh 1½ �3yh 2½ �3??yh mh½ �3
?? ???
Rh yh 1½ �Rh

yh 2½ �Rh
??yh mh½ �Rh
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Dalenius and Hodges (1957), called the cumulative square root of frequencies approach, would pro-

vide the same strata boundaries for SRSS, and hence is not useful. Thus we consider the MPP

approach to find the OSB and sampling nh as follows:

Min: V ySRSS
� �

5
XL

h51

W2
h

nh
σ2
hy 2

1

Rh

XRh

i51
Yh½i�2Yh

� �2� �
(15.25)

where nh 5mhRh

Subject to:

Xl

h51

dh 5 d (15.26)

Xl

h51

nh 5 n (15.27)

dh 5 yh 2 yh21ð Þ$ 0;

and nh $ is an integer.

Also, we can use mathematical program:

Min: V ySRSS
� �

5
XL

h51

W2
h

nh
σ2
hy 2

1

Rh

XRh

i51
Yh½i�2Yh

� �2� �
(15.28)

Subject to:

Xl

h51

dh 5 d (15.29)

and dh 5 yh 2 yh21ð Þ$ 0

If we define RDY ½i� as the ratio
Y h½i�
Y h

as in Singh et al. (2014), then we can reformulate the prob-

lem as

Min: V ySRSS
� �

5
Xl

h51

W2
h

nh
σ2
hy 2

Y
2

h

Rh

XRh

i51

ðRDY i½ �21Þ2
( )

(15.30)

Subject to:

Xl

h51

dh 5 d (15.31)

and dh 5 yh 2 yh21ð Þ$ 0

For comparing our proposed method to stratified random sampling we consider the percent RE

of ySRSS with respect to yst is given by

R:E:5
min:VðystÞ

min:VðySRSSÞ
3 100% (15.32)

In the next section, we show the performance of the proposed method through numerical

illustrations.
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15.4 NUMERICAL ILLUTRATIONS
In order to find the rank set sampling boundaries and variance, different sets of populations that fol-

low uniform, triangular and exponential distributions are considered.

Population 1: Uniform distribution

The uniform distribution is a continuous distribution that has equal probability of observations

over a given range. Two parameters, maximum and minimum values, define the distribution. Assume

the maximum value is b, minimum value is a, then the density function of the uniform distribution is

f xð Þ5
1

b2 a
; a# x# b

0; otherwise

(
(15.33)

We generated a population of size N 5 1000 units from the uniform distribution with a 5 0.0

and b 5 50 using a random number generator in LINGO/PYTHON. We note that the minimum

value of the study variable is y0 5 0:001 and the largest value is yl 5 49:883. The range of the study

variable in the population is given by d5 yl 2 y0 5 49:882.
We determined the OSB and appropriate sample sizes to minimize the variance by using the

programming language LINGO/PYTHON.

As the study variable y has uniform distribution with density function f ðyÞ in Eq. (15.33), we

obtain Wh (stratum weight), Yh (stratum mean), and σ2
hy (stratum variance), respectively. After inte-

gration of and organizing the results, we obtain the followings equations

Wh 5
dh

b2 a
(15.34)

where

dh 5 yh 2 yh21 (15.35)

Y h 5
yh 1 yh21

2
(15.36)

σ2
hy 5

d2h
12

(15.37)

In the case of ranked set sampling, let F5
Y
2

h

Rh

PRh

i51

ðRDY i½ �21Þ2, where RDY ½i� is as defined in

Singh et al. (2014).

We consider the use of ranked set sampling in each stratum and note the reduction in variance

as given in Table 15.2.

After executing the LINGO/PYTHON code, the stratum sample size does not change much, but

the variance of the estimator of the population mean is reduced. The value of F changes the vari-

ance of the population mean. From Table 15.2 it is noted that the value of percent relative effi-

ciency is between 100% and 100.99% as the value of F changes from 0.0 to 0.508. As soon as the

value of F becomes 0.509 then there is a drastic decrease in the value of percent relative efficiency

to 62.03%. In the case of the uniform distribution the optimum sample sizes remain nearly the

same, i.e., 25, in all four strata as the value of F ranges between 0.0 and 0.508. It is interesting to
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Table 15.2 Uniform Distribution

F Values VðySRSSÞ Stratum Sample Size RE

0 0.1166304 n1 5 25.00009 100%

n2 5 25.00005

n3 5 24.99987

n4 5 25.00000

0.05 0.1165179 n1 5 24.99999 100.1%

n2 5 25.00001

n3 5 24.99999

n4 5 25.00000

0.1 0.1164054 n1 5 24.99998 100.19%

n2 5 25.00002

n3 5 24.99997

n4 5 25.00003

0.2 0.1161804 n1 5 25.00000 100.39%

n2 5 25.00000

n3 5 25.00000

n4 5 25.00000

0.3 0.1159554 n1 5 24.99999 100.58%

n2 5 25.00001

n3 5 24.99999

n4 5 25.00000

0.4 0.1157304 n1 5 25.00000 100.78%

n2 5 25.00001

n3 5 24.99999

n4 5 24.99999

0.5 0.1155054 n1 5 25.00009 100.97%

n2 5 24.99996

n3 5 24.99997

n4 5 24.99998

0.505 0.1154941 n1 5 25.00003 100.98%

n2 5 24.99999

n3 5 24.99998

n4 5 25.00000

0.506 0.1154919 n1 5 25.00000 100.99%

n2 5 25.00000

n3 5 25.00000

n4 5 25.00000

0.507 0.1154896 n1 5 25.00000 100.99%

n2 5 25.00000

n3 5 25.00000

n4 5 25.00000
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note that if F becomes 0.509 then the optimum sample size for the first stratum become 1, while

for the other three strata it becomes 33.

Population 2: Right triangular distribution

The right triangular distribution is defined by two variables, which are its maximum and mini-

mum values, say b and a, respectively. The general formula for the probability density function of

right triangular distribution is given by

f ðyÞ5
2ðb2 yÞ
ðb2aÞ2 ; a# y# b

0; otherwise

8<
: (15.38)

We obtain Wh (stratum weight), Yh (stratum mean), and σ2
hy (stratum variance), respectively.

After integration and organizing the results, we obtain the following equations

Wh 5
dhð2ah 2 dhÞ

ðb2aÞ2 (15.39)

where ah 5 b2 yh21

Y h 5
3b dh 1 2yh21ð Þ2 2ðd2h 1 2dhyh21 1 3y2h21Þ

3ð2ah 2 dhÞ
(15.40)

σ2
yh 5

d2hðd2h 2 6ahdh 1 6a2hÞ
18ð2ah2dhÞ2

(15.41)

where yh 5 dh 1 yh21

We generated a population of size N 5 1000 units from the right triangular distribution, and

predetermined the sample size n 5 100 from the population. We chose the minimum value of the

study variable to be y0 5 0 and the largest value to be yl 5 5. The range of the study variable in the

population is then d5 yl 2 y0 5 5. Table 15.3 shows the results.

Again it is interesting to note that in the case of triangular distribution the value of percent rela-

tive efficiency lies between 100% and 100.009% as the value of F changes from 0.0 to 0.0000012.

Table 15.2 Uniform Distribution Continued

F Values VðySRSSÞ Stratum Sample Size RE

0.508 0.1154874 n1 5 25.00000 100.99%

n2 5 24.99998

n3 5 25.00001

n4 5 25.00000

0.509 0.1880247 n1 5 1.00000 62.03%

n2 5 33.00000

n3 5 33.00000

n4 5 33.00000
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Table 15.3 Results for right triangular distribution

F-values V ySRSS
� �

Stratum Boundaries Stratum Sample Size Stratum Weight RE

0 0.0002893406 y0 5 0.001 100%

y1 5 0.2892344 n1 5 24.00 w1 5 0.2700801

y2 5 0.6208286 n2 5 24.00 w2 5 0.2582297

y3 5 1.030881 n3 5 24.00 w3 5 0.2416786

y4 5 1.980000 n4 5 28.00 w4 5 0.2300117

0.000001 0.0002893383 y0 5 0.001 100.008%

y1 5 0.2892346 n1 5 24.00 w1 5 0.2700802

y2 5 0.6208288 n2 5 24.00 w2 5 0.2582297

y3 5 1.030881 n3 5 24.00 w3 5 0.2416785

y4 5 1.980000 n4 5 28.00 w4 5 0.2300116

0.00000101 0.0002893383 y0 5 0.001 100.008%

y1 5 0.2892345 n1 5 24.00 w1 5 0.2700801

y2 5 0.6208286 n2 5 24.00 w2 5 0.2582297

y3 5 1.030881 n3 5 24.00 w3 5 0.2416786

y4 5 1.980000 n4 5 28.00 w4 5 0.2300116

0.00000104 0.0002893383 y0 5 0.001 100.008%

y1 5 0.2892346 n1 5 24.00 w1 5 0.2700802

y2 5 0.6208288 n2 5 24.00 w2 5 0.2582297

y3 5 1.030881 n3 5 24.00 w3 5 0.2416785

y4 5 1.980000 n4 5 28.00 w4 5 0.2300116

0.00000106 0.0002893382 y0 5 0.001 100.008%

y1 5 0.2892346 n1 5 24.00 w1 5 0.2700802

y2 5 0.6208288 n2 5 24.00 w2 5 0.2582297

y3 5 1.030881 n3 5 24.00 w3 5 0.2416785

y4 5 1.980000 n4 5 28.00 w4 5 0.2300116

0.00000108 0.0002893382 y0 5 0.001 100.009%

y1 5 0.2892345 n1 5 24.00 w1 5 0.2700802

y2 5 0.6208287 n2 5 24.00 w2 5 0.2582297

y3 5 1.030881 n3 5 24.00 w3 5 0.2416786

y4 5 1.980000 n4 5 28.00 w4 5 0.2300116

0.00000109 0.0002893381 y0 5 0.001 100.009%

y1 5 0.2892345 n1 5 24.00 w1 5 0.2700802

y2 5 0.6208287 n2 5 24.00 w2 5 0.2582297

y3 5 1.030881 n3 5 24.00 w3 5 0.2416785

y4 5 1.980000 n4 5 28.00 w4 5 0.2300116

0.0000011 0.0002893381 y0 5 0.001 100.009%

y1 5 0.2892345 n1 5 24.00 w1 5 0.2700802

y2 5 0.6208287 n2 5 24.00 w2 5 0.2582297

y3 5 1.030881 n3 5 24.00 w3 5 0.2416786

y4 5 1.980000 n4 5 28.00 w4 5 0.2300116
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In the first three strata the optimum sample size is 24 and in the fourth strata the sample size is 28.

As soon as the value of F changes to 0.0000013 then there is a drastic decrease in the value of per-

cent relative efficiency to 57.0124% and the optimum sample size in the first and third strata is 31,

in the second stratum it is 1, in the fourth stratum it is 37.

Population 3: Exponential distribution

The exponential distribution is a continuous distribution with density given by

f ðx; yÞ5 λe2λy; y$ 0

0; otherwise

�
(15.42)

For convenience, we set λ5 1 and yA½0; 5�, therefore the density function for population 3 is:

f ðyÞ5
1

12 e25
e2y; y$ 0

0; otherwise

(
(15.43)

Because 1
12 e25 � 1; for convenience, in generating samples, we simplify Eq. (15.43) as:

f ðyÞ5 e2y; y$ 0

0; otherwise

�
(15.44)

We generated a population of size N 5 1000 units from the exponential distribution, and prede-

termined the sample size n 5 100 from the population. We note that the minimum value of the

study variable is y0 5 0:00673795 and the largest value is yl 5 5. The range of the study variable in

the population is given by d5 yl 2 y0 5 4:9932605.
As the study variable y has exponential distribution with density function f ðyÞ in Eq. (15.42),

we obtain Wh (stratum weight), Y h (stratum mean), and σ2
hy (stratum variance), respectively. After

integration and organization, we obtain the following equations

Wh 5
eyh 2 eyh21

eyheyh21
(15.45)

Table 15.3 Results for right triangular distribution Continued

F-values V ySRSS
� �

Stratum Boundaries Stratum Sample Size Stratum Weight RE

0.0000012 0.0002893379 y0 5 0.001 100.009%

y1 5 0.2892346 n1 5 24.00 w1 5 0.2700802

y2 5 0.6208288 n2 5 24.00 w2 5 0.2582297

y3 5 1.030881 n3 5 24.00 w3 5 0.2416785

y4 5 1.980000 n4 5 28.00 w4 5 0.2300116

0.0000013 0.0005075044 y0 5 0.001 57.0124%

y1 5 0.3882379 n1 5 31.00 w1 5 0.3530589

y2 5 0.3894686 n2 5 1.00 w2 5 0.001

y3 5 0.8718532 n3 5 31.00 w3 5 0.3323938

y4 5 1.980000 n4 5 37.00 w4 5 0.3135473
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Y h 5
eyhyh21 2 eyh21yh

eyh 2 eyh21
1 1 (15.46)

σ2
yh 5

eyh y2h21 1 2yh21 1 2
� �

2 eyh21 ðy2h 1 2yh 1 2Þ
eyh 2 eyh21

2Y
2

h (15.47)

where

y0 5 0; y4 5 5 and dh 5 yh 2 yh21

The minimum sample size has been set to 5, meaning nh $ 5 (not like the illustration for popu-

lation 1 and 2), for the purpose of sample distribution in each stratum. Table 15.4 shows the results

for exponential distribution.

The results in Table 15.4 are more promising in the case of exponential distribution as long as

the problem of constructing strata boundaries for ranked set sampling is concerned. The value of

percent relative efficiency value changes from 100% to 1483.08% as the value of F increases from

0.00 to 0.009 with steps of 0.001. For each value of F, there is quite a variation in the sample allo-

cations among the four strata. For example, if F is 0.001 then the optimum allocation to the first

stratum is 28 units, the second stratum is 34 units, the third stratum is 5 units, and the fourth stra-

tum is 33 units. On the other hand, if F is 0.003 then the optimum allocation to the first stratum is

Table 15.4 Results for exponential distribution

F-values

V ySRSS
� �

ð3 1024Þ
Stratum
Boundaries

Stratum Sample
Size Stratum Weight RE

0 0.1324658 y0 5 0.00 100%

y1 5 0.2490131 n1 5 32.00 w1 5 0.2204302

y2 5 0.5311369 n2 5 31.00 w2 5 0.1916336

y3 5 2.280201 n3 5 5.00 w3 5 0.4856725

y4 5 5.00 n4 5 32.00 w4 5 0.031

0.001 0.1186701 y0 5 0.00 111.63%

y1 5 0.2415763 n1 5 28.00 w1 5 0.2146112

y2 5 0.5283637 n2 5 34.00 w2 5 0.1958199

y3 5 2.302915 n3 5 5.00 w3 5 0.486019

y4 5 5.00 n4 5 33.00 w4 5 0.033

0.002 0.1032451 y0 5 0.00 128.3%

y1 5 0.229411 n1 5 22.00 w1 5 0.2049983

y2 5 0.5208214 n2 5 37.00 w2 5 0.2009693

y3 5 2.368153 n3 5 5.00 w3 5 0.5003789

y4 5 5.00 n4 5 36.00 w4 5 0.036

0.003 0.1070703 y0 5 0.00 123.72%

y1 5 0.3243645 n1 5 51.00 w1 5 0.270134

y2 5 0.5142723 n2 5 5.00 w2 5 0.1250155

y3 5 2.429445 n3 5 5.00 w3 5 0.5098499

y4 5 5.00 n4 5 39.00 w4 5 0.039
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51 units, to the second and third strata it is 5 units each, and the fourth stratum allocation is 39

units. It is very interesting to note that as the value of F becomes 0.04 then there is a substantial

jump in the value of percent relative efficiency to 85881.13% with an optimum allocation of 32

Table 15.4 Results for exponential distribution Continued

F-values

V ySRSS
� �

ð3 1024Þ
Stratum
Boundaries

Stratum Sample
Size Stratum Weight RE

0.004 0.07373335 y0 5 0.00 179.66%

y1 5 0.2929248 n1 5 50.00 w1 5 0.2539218

y2 5 0.5122774 n2 5 5.00 w2 5 0.1469486

y3 5 2.449082 n3 5 5.00 w3 5 0.5127569

y4 5 5.00 n4 5 40.00 w4 5 0.04

0.005 0.02888716 y0 5 0.00 458.56%

y1 5 0.2453175 n1 5 5.00 w1 5 0.2175439

y2 5 0.5103681 n2 5 49.00 w2 5 0.1821815

y3 5 2.46834 n3 5 5.00 w3 5 0.5155493

y4 5 5.0 n4 5 41.00 w4 5 0.041

0.006 0.03490493 y0 5 0.00 379.5%

y1 5 0.2362862 n1 5 46.00 w1 5 0.2104453

y2 5 0.5050990 n2 5 5.00 w2 5 0.1861089

y3 5 2.524018 n3 5 5.00 w3 5 0.5233089

y4 5 5.0 n4 5 44.00 w4 5 0.044

0.007 0.02363396 y0 5 0.00 560.4%

y1 5 0.2130424 n1 5 45.00 w1 5 0.1918782

y2 5 0.5034811 n2 5 5.00 w2 5 0.2036989

y3 5 2.541919 n3 5 5.00 w3 5 0.5257079

y4 5 5.0 n4 5 45.00 w4 5 0.045

0.008 0.007393389 y0 5 0.00 1791.68%

y1 5 0.3105857 n1 5 5.00 w1 5 0.2669825

y2 5 0.5034812 n2 5 45.00 w2 5 0.1285946

y3 5 2.541919 n3 5 5.00 w3 5 0.5257078

y4 5 5.0 n4 5 45.00 w4 5 0.045

0.009 0.008931817 y0 5 0.00 1483.08%

y1 5 0.2276341 n1 5 17.00 w1 5 0.2035844

y2 5 0.4752243 n2 5 5.00 w2 5 0.17467

y3 5 2.946215 n3 5 5.00 w3 5 0.5292074

y4 5 5.0 n4 5 73.00 w4 5 0.073

0.04 0.0001542432 y0 5 0.00 85,881.13%

y1 5 0.2682696 n1 5 32.00 w1 5 0.2352985

y2 5 0.746305 n2 5 16.00 w2 5 0.2905863

y3 5 1.383136 n3 5 46.00 w3 5 0.2233243

y4 5 5.0 n4 5 6.00 w4 5 0.006
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units to the first stratum, 16 units to the second stratum, 46 units to the third stratum, and 6 units to

the fourth stratum.

15.5 CONCLUSIONS
We conclude that, when creating optimum stratum boundaries for the uniform distribution, there is

no difference between the use of simple random with replacement sampling and ranked set sam-

pling. The optimum allocation for both sampling schemes also remains the same. However, there is

a slight gain in the relative efficiency due to the use of ranked set sampling. Similar findings are

observed in the case of right triangular distribution. In contrast, when considering the exponential

distribution, we note that there is a change in strata boundaries, and optimum allocations, and that

there is a substantial gain in relative efficiency while making use of ranked set sampling.

In future studies, we suggest the possible extension for the construction of strata boundaries and

optimal allocation by following Mahajan et al. (2007), on similar lines for randomized response

sampling due to Bouza (2009) for ranked set sampling. We also suggest that other RSS schemes

cited in the review by Al-Omari and Bouza (2014) can also be investigated.
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CHAPTER

16CALIBRATED ESTIMATOR OF
POPULATION MEAN USING
TWO-STAGE RANKED SET
SAMPLING

Veronica I. Salinas, Stephen A. Sedory and Sarjinder Singh
Department of Mathematics, Texas A&M University-Kingsville, Kingsville, TX, United States

16.1 INTRODUCTION
The use of auxiliary information in estimating population mean or total is well known in the field of

survey sampling. Various survey sampling schemes such as stratified sampling, cluster sampling, and

multistage sampling are frequently used, among them two-stage sampling has the benefit of saving

time, cost, and effort. As mentioned in Salinas et al. (2018), the two-stage sampling method is an

improvement over cluster sampling when it is not possible or easy to enumerate all the units from

the selected clusters. A solution to this difficulty is to select clusters, called first-stage units (FSUs),

from the given population of interest and select subsamples from the selected clusters called second-

stage units (SSUs). Assuming heterogeneous groups, this technique of sampling helps to increase the

precision of the resultant estimates. It is easy to collect information from a few units within the

selected FSUs, saving the cost of survey. Assume the population of interest Ω5 f1; 2; . . .;Ng consists
of N nonoverlapping clusters, called FSUs. The whole population is divided as Ω5 fΩ1;Ω2; . . .;ΩNg,
where Ωi denotes the ith cluster of size Mi, for i5 1; 2; . . .;N such that Ω5 , N

i51Ωi and

M5
PN
i51

Mi. Särndal et al. (1992) consider three situations with the auxiliary information in two-stage

sampling. For the first situation, the auxiliary variable is available for all the FSUs, the second situa-

tion has the auxiliary variable for all the units in the population. Lastly, the third situation has the

auxiliary variable available for all elements in the selected FSUs. For clarity, assume the simplest

and most practical design where the FSUs are selected by simple random and without replacement

(SRSWOR) and the SSUs are selected by simple random and with replacement (SRSWR) sampling

schemes. Also assume that the population means of the auxiliary variable for the selected FSUs are

known or available. The auxiliary information at the individual level may or may not be known. For

simplicity of results, focus is put on the use of a single auxiliary variable. The application of two-

stage sampling can involve various situations to the interest of the investigator. For example, in the

agricultural sectors selecting villages as FSUs, and farmers at the SSUs; in education, selecting

departments as FSUs, and faculty as SSUs. In politics, selecting blocks as FSUs and dwellings as

219
Ranked Set Sampling. DOI: https://doi.org/10.1016/B978-0-12-815044-3.00016-2

Copyright © 2019 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/B978-0-12-815044-3.00016-2


SSUs. In the health sector, FSUs could be hospitals and SSUs could be doctors. At a city level study,

FSUs could be households and SSUs could be family members.

In the next section, we introduce notations and some basic results related to two-stage sampling.

16.2 NOTATIONS AND BASIC RESULTS
As stated earlier, consider a population Ω with N FSUs where the ith FSU Ωi contains Mi SSUs,

for i5 1; 2; . . .N.
Let yij and xij denote the value of the study variable y and the auxiliary variable x respectively,

for the jth SSU of the ith FSU, for j5 1; 2; . . .Mi.

Let

M5
PN
i51

Mi be the total number of SSUs in the population,

M5
1

N

XN
i51

Mi be the average number of SSUs per FSU in the population, and

μi 5
Mi

M
5

NMi

M
be the expected number of units in the ith FSU.

Let

Yi 5
PMi

j51

yij be the population total of the study variable in the ith FSU,

Yi 5
1

Mi

XMi

j51

yij 5
Yi

Mi

be the population mean of the study variable in ith FSU,

Y 5
PN
i51

Yi be population total of the study variable, and

Y 5
1

N

XN
i51

μiYi 5
1

N

XN
i51

Mi

M
U
1

Mi

XMi

j51

yij 5
1

M

XN
i51

XMi

j51

yij 5
Y

M
be the population mean per SSU of

the study variable, which is the focus of estimation.

Let

Xi 5
PMi

j51

xij be the population total of the auxiliary variable in the ith FSU,

Xi 5
1

Mi

XMi

j51

xij 5
Xi

Mi

be the population mean of the auxiliary variable in ith FSU, which is

assumed to be known,

X5
PN
i51

Xi be the population total of the auxiliary variable, and

X5
1

N

XN
i51

μiXi 5
1

N

XN
i51

Mi

M
U
1

Mi

XMi

j51

xij 5
1

M

XN
i51

XMi

j51

xij 5
X

M
be the population mean per SSU of

the auxiliary variable, which is assumed to be known.

Let

σ2
iy 5

1

Mi

XMi

j51

yij2Yi

� �2
, be the population variance for the ith FSU, and

S2by 5
1

N2 1

PN
i51

μiYi2Y
� �2

be the population variance of between the weighted FSUs population

means.
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Suppose an SRSWOR of n FSUs is selected from N FSUs. A sample of mi SSUs from the ith

selected FSU of size Mi is selected by SRSWR sampling.

Let

yi 5
1
mi

Pmi

j51

yij, be the sample mean of the study variable in ith FSU, and

xi 5
1
mi

Pmi

j51

xij, be the sample mean of the auxiliary variable in ith FSU.

Then we have the following lemmas:

Lemma 16.1: An unbiased estimator of the population mean Y is given by

y5
1

n

Xn
i51

μiyi; (16.1)

Proof: Let E2 denote the expected value over all possible second-stage samples, each of size mi

taken using SRSWR sampling from a given FSU of size Mi.

Let E1 denote the expected value over all possible first-stage samples each of size n taken using

SRSWOR sampling from a given population of N FSUs.

Taking the expected value of the sample mean y, we have

E yð Þ5E1E2

1

n

Xn
i51

μiyi

" #
5E1

1

n

Xn
i51

μiE2 yi
� �" #

5E1

1

n

Xn
i51

μiY i

" #
5

1

N

XN
i51

μiYi 5 Y

which proves the lemma. Now we have the following corollary:

Lemma 16.2: An unbiased estimator of the population mean X is given by:

x5
1

n

Xn
i51

μixi (16.2)

Proof: Following Lemma 16.1, it is obvious that

E xð Þ5E1E2

1

n

Xn
i51

μixi

" #
5E1

1

n

Xn
i51

μiE2 xið Þ
" #

5E1

1

n

Xn
i51

μiXi

" #
5

1

N

XN
i51

μiXi 5X

which proves the lemma.

Lemma 16.3: The variance of the sample mean estimator y is given by

VðyÞ5 1

nN

XN
i51

μ2
i

σ2
iy

mi

 !
1

12 f

n

� �
S2by (16.3)

were f 5 n
N
is the finite population correction factor while n FSUs are selected from the N FSUs by

SRSWOR, where σ2
iy 5

1
Mi

PMi

j51

yij2Yi

� �2
, and S2by 5

1
N2 1

PN
i51

μiYi2Y
� �2

have their usual meanings.
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Proof: Let V2 denote the variance over all possible second-stage samples each of size mi taken using

SRSWR sampling from a given FSU of size Mi. Let V1 denote the variance value over all possible

first-stage samples each of size n taken using SRSWOR sampling from a given population of N FSUs.

By the definition of variance, the variance of the sample mean y is given by:

V yð Þ5E1V2 yð Þ1V1E2 yð Þ

5E1V2

1

n

Xn
i51

μiyi

 !
1V1E2

1

n

Xn
i51

μiyi

 !

5E1

1

n2

Xn
i51

μ2
i V2 yi
� �" #

1V1

1

n

Xn
i51

μiE2 yi
� �" #

5E1

1

n2

Xn
i51

μ2
i

σ2
iy

mi

 !" #
1V1

1

n

Xn
i51

μiY i

" #

5
1

nN

XN
i51

μ2
i

σ2
iy

mi

 !
1

12 f

n

� �
1

N2 1

� �XN
i51

μiY i2Y
� �2

5
1

nN

XN
i51

μ2
i

σ2
iy

mi

 !
1

12 f

n

� �
S2by

which proves the lemma.

Lemma 16.4: The variance of the sample mean estimator x is given by

VðxÞ5 1

nN

XN
i51

μ2
i

σ2
ix

mi

� �
1

12 f

n

� �
S2bx (16.4)

where σ2
ix 5

1

Mi

XMi

j51

xij2Xi

� �2
and S2bx 5

1
N2 1

PN
i51

μiXi2X
� �2

have their usual meanings.

Proof: It follows from the previous lemma.

Lemma 16.5: The covariance between the sample mean estimators y and x is given by

Covðy; xÞ5 1

nN

XN
i51

μ2
i

σixy

mi

� �
1

12 f

n

� �
Sbxy (16.5)

where σixy 5
1

Mi

XMi

j51

yij 2 Yi

� �
xij 2Xi

� �
and Sbxy 5

1
N2 1

PN
i51

μiYi 2 Y
� �

μiXi 2X
� �

have their usual

meanings.

Proof: Let C2 denote the covariance over all possible second-stage samples each of size mi taken

using SRSWOR sampling from a given FSU of size Mi. Let C1 denote the covariance value over

all possible first-stage samples each of size n taken using SRSWOR sampling from a given
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population of N FSUs. By the definition of covariance, the covariance between the sample means y

and x is given by:

Cov y; xð Þ5E1 C2 y; xð Þ½ �1C1 E2 yð Þ;E2 xð Þ½ �

5E1 C2

1

n

Xn
i51

μiyi;
1

n

Xn
i51

μixi

 !" #
1C1 E2

1

n

Xn
i51

μiyi

 !
;E2

1

n

Xn
i51

μixi

 !" #

5E1

1

n2

Xn
i51

μ2
i C2 yi; xi
� �" #

1C1

1

n

Xn
i51

μiYi;
1

n

Xn
i51

μiXi

" #

5
1

nN

XN
i51

μ2
i

1

mi

� �
σixy 1

12 f

n

� �
1

N2 1

� �XN
i51

μiYi 2Y
� �

μiXi 2X
� �

5
1

nN

XN
i51

μ2
i

1

mi

� �
σixy 1

12 f

n

� �
Sbxy

which proves the lemma.

Sukhatme, Sukhatme, Sukhatme, and Asok (1984) suggested a regression-type estimator of the

population mean in two-stage sampling as

ylr 5
1

n

Xn
i51

μiyi 1 β̂ X2 x
� �

5 y1 β̂ X2 x
� �

(16.6)

The variance of the regression-type estimator ylr can be approximated as:

VðylrÞ5V y1 β̂ðX2 xÞ
h i

� VðyÞ1 β2VðxÞ2 2β Covðy; xÞ

5
1

nN

XN
i51

μ2
i

σ2
iy

mi

 !
1

12 f

n

� �
S2by 1β2 1

nN

XN
i51

μ2
i

σ2
ix

mi

� �
1

12 f

n

� �
S2bx

" #

2 2β
1

nN

XN
i51

μ2
i

σixy

mi

� �
1

12 f

n

� �
Sbxy

" #

5
12 f

n

� �
S2by 1β2S2bx 2 2βSbxy
h i

1
1

nN

� �XN
i51

μ2
i

1

mi

� �
σ2
iy 1β2σ2

ix 2 2βσixy

h i

(16.7)

Sukhatme et al. (1984) substituted the value of the true regression coefficient as

β5
Sbxy

S2bx
: (16.8)

The value of minimum variance for the above optimum choice of the regression coefficient β is

given by

Min: VðylrÞ5
12 f

n

� �
S2by 12 ρ2bxy
h i

1
1

nN

� �XN
i51

μ2
i

1

mi

� �
σ2
iy 1β2σ2

ix 2 2βσixy

h i
(16.9)
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where

ρbxy 5
Sbxy

SbxSby
(16.10)

denotes the population correlation coefficient between the population means of the FSUs.

In the next section, we consider the problem of estimation of the population mean using ranked

set sampling (RSS) at the second stage of sampling.

16.3 TWO-STAGE RANKED SET SAMPLING
Suppose an SRSWOR sample of n FSUs is selected from N FSUs. A sample of mi SSUs from the

ith selected FSU of size Mi is selected by a RSS. From the ith FSU of Mi units, we select an

SRSWR of hi units ðyi1; xi1Þ, ðyi2; xi2Þ, . . .,ðyihi ; xihiÞ. Then rank the units based on the study variable

by a judgment ranking as ðyi½1�; xið1ÞÞ, ðyi½2�; xið2ÞÞ, .. . . ., ðyi½ui�; xiðhiÞÞ. Retain only the first ranked

ordered pair ðyi½1�; xið1ÞÞ. Again, select an SRSWR sample of hi units as ðyi1; xi1Þ, ðyi2; xi2Þ,
. . .,ðyihi ; xihiÞ, then rank the study variable based on judgment ranking as ðyi½1�; xið1ÞÞ,
ðyi½2�; xið2ÞÞ,. . .,ðyi½hi�; xiðhiÞÞ. Then retain the second ranked ordered pair ðyi½2�; xið2ÞÞ. Repeat the process

ri times within the ith selected FSU of Mi units such that mi 5 hiri. Details about improvements

and applications can be found and observed from Al-Omari and Bouza (2014).

Let

y½i� 5
1
mi

Pmi

j51

yi½j�, be the RSS mean of the study variable in ith FSU, and

xðiÞ 5 1
mi

Pmi

j51

xiðjÞ, be the RSS mean of the auxiliary variable in ith FSU.

Then we have the following lemmas:

Lemma 16.6: An unbiased estimator of the population mean Y is given by

yRSS 5
1

n

Xn
i51

μiy½i�; (16.11)

Proof: Let E2 denote the expected value over all possible second-stage samples each of size mi

taken using RSS sampling from a given FSU of size Mi.

Let E1 denote the expected value over all possible first-stage samples each of size n taken using

SRSWOR sampling from a given population of N FSUs.

Taking the expected value of the sample mean yRSS, we have

E yRSS
� �

5E1E2

1

n

Xn
i51

μiy½i�

" #
5E1

1

n

Xn
i51

μiE2 y½i�
� �" #

5
1

N

XN
i51

μiY i 5 Y

which proves the lemma.

Now we have the following corollary
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Lemma 16.7: An unbiased estimator of the population mean X is given by:

xRSS 5
1

n

Xn
i51

μixðiÞ (16.12)

Proof: It is obvious that

E xRSSð Þ5E1E2

1

n

Xn
i51

μixðiÞ

" #
5E1

1

n

Xn
i51

μiE2 xðiÞ
� �" #

5E1

1

n

Xn
i51

μiXi

" #
5

1

N

XN
i51

μiXi 5X

which proves the lemma.

Lemma 16.8: The variance of the sample mean estimator yRSS is given by

V yRSS
� �

5
1

nN

XN
i51

μ2
i

σ2
iy

mi

2
1

miri

Xri
t51

Yi t½ �2Yi

� �2 !
1

12 f

n

� �
S2by (16.13)

where f 5 n
N
is the finite population correction factor while selecting n FSUs from the N FSUs by

SRSWOR, where σ2
iy 5

1
Mi

PMi

j51

yij2Yi

� �2
, and S2by 5

1
N2 1

PN
i51

μiYi2Y
� �2

have their usual meanings.

Proof: Let V2 denote the variance over all possible second-stage samples each of size mi taken

using RSS from a given FSU of size Mi. Let V1 denote the variance value over all possible first-

stage samples each of size n taken using SRSWOR sampling from a given population of N

FSUs.

By the definition of variance, the variance of the sample mean yRSS is given by

V yRSS
� �

5E1V2 yRSS
� �

1V1E2 yRSS
� �

5E1V2

1

n

Xn
i51

μiy i½ �

 !
1V1E2

1

n

Xn
i51

μiy i½ �

 !

5E1

1

n2

Xn
i51

μ2
i V2 y i½ �
� �" #

1V1

1

n

Xn
i51

μiE2 y i½ �
� �" #

5E1

1

n2

Xn
i51

μ2
i

σ2
iy

mi

2
1

miri

Xri
t51

ðYi t½ �2YiÞ2
 !" #

1V1

1

n

Xn
i51

μiY i

" #

5
1

nN

XN
i51

μ2
i

σ2
iy

mi

2
1

miri

Xri
t51

ðYi t½ �2YiÞ2
 !

1
12 f

n

� �
1

N2 1

� �XN
i51

μiY i2Y
� �2

5
1

nN

XN
i51

μ2
i

σ2
iy

mi

2
1

miri

Xri
t51

ðYi t½ �2YiÞ2
 !

1
12 f

n

� �
S2by

which proves the lemma.
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Lemma 16.9: The variance of the ranked set sample mean estimator xRSS is given by

V xRSSð Þ5 1

nN

XN
i51

μ2
i

σ2
ix

mi

2
1

miri

Xri
t51

ðXiðtÞ2XiÞ2
 !

1
12 f

n

� �
S2bx (16.14)

where σ2
ix 5

1
Mi

PMi

j51

xij2Xi

� �2
and S2bx 5

1
N2 1

PN
i51

μiXi2X
� �2

have their usual meanings.

Proof: It follows from the previous lemma.

Lemma 16.10: The covariance between the sample mean estimators yRSS and xRSS is given by

Cov yRSS; xRSS
� �

5
1

nN

XN
i51

μ2
i

σixy

mi

2
1

miri

Xri
t51

ðXiðtÞ 2XÞðYi t½ � 2YiÞ
 !

1
12 f

n

� �
Sbxy (16.15)

where σixy 5
1
Mi

PMi

j51

yij 2 Yi

� �
xij 2Xi

� �
and Sbxy 5

1
N2 1

PN
i51

μiYi 2 Y
� �

μiXi 2X
� �

have their usual

meanings.

Proof: Let C2 denote the covariance over all possible second-stage samples each of size mi taken

using RSS from a given FSU of size Mi. Let C1 denote the covariance value over all possible first-

stage samples each of size n taken using SRSWOR sampling from a given population of N FSUs.

By the definition of covariance, the covariance between the sample means yRSS and xRSS is given by

Cov yRSS; xRSS
� �

5E1 C2 yRSS; xRSS
� �� �

1C1 E2 yRSS
� �

;E2 xRSSð Þ� �

5E1 C2

1

n

Xn
i51

μiy i½ �;
1

n

Xn
i51

μixðiÞ

 !" #
1C1 E2

1

n

Xn
i51

μiy i½ �

 !
;E2

1

n

Xn
i51

μixðiÞ

 !" #

5E1

1

n2

Xn
i51

μ2
i C2 y i½ �; xðiÞ
� �" #

1C1

1

n

Xn
i51

μiYi;
1

n

Xn
i51

μiXi

" #

5
1

nN

XN
i51

μ2
i

σixy

mi

2
1

miri

Xri
t51

ðYi t½ � 2 YiÞðXiðtÞ 2XiÞ
 !

1
12 f

n

� �
1

N2 1

� �XN
i51

μiYi2Y
� �

μiXi 2X
� �

5
1

nN

XN
i51

μ2
i

σixy

mi

2
1

miri

Xri
t51

ðYi t½ � 2 YiÞ XiðtÞ 2Xi

� � !
1

12 f

n

� �
Sbxy

which proves the lemma.

In the next section, we define a new calibrated estimator in two-stage RSS.

16.4 CALIBRATED ESTIMATOR IN TWO-STAGE RANKED SET SAMPLING
We consider a new calibrated estimator of the population mean Y in two-stage RSS as

yRSSðcÞ 5
Xn
i51

wiy½i�; (16.16)
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where wi are calibrated weights, and are obtained by minimizing chi-squared distance function

defined as

D5
1

2

Xn
i51

wi2ui=n
� �2
ðqiui=nÞ

; (16.17)

where qi is another set of known weights, subject to the calibration constraints given by

Xn
i51

wi 5
1

n

Xn
i51

μi (16.18)

and

Xn
i51

wixðiÞ 5X: (16.19)

The Lagrange function is given by

L5
1

2

Xn
i51

wi2ui=n
� �2
ðqiui=nÞ

2λ1

Xn
i51

wi 2
1

n

Xn
i51

ui

" #
2λ2

Xn
i51

wixðiÞ 2X

" #
(16.20)

On setting

@L

@wi

5 0

We get

wi 5
ui

n
1λ1

qiui

n
1λ2

qiui

n
xðiÞ (16.21)

On substituting Eq. (16.21) into Eq. (16.18) and into Eq. (16.19), we get

λ1

Xn
i51

qiui 1λ2

Xn
i51

qiuixðiÞ 5 0 (16.22)

and

λ1

n

Xn
i51

qiuixðiÞ 1
λ2

n

Xn
i51

qiuifxðiÞg2 5X2
1

n

Xn
i51

uixðiÞ (16.23)

On solving Eqs. (16.22) and (16.23) for λ1 and λ2, we get

λ1 5

2
Pn
i51

qiuixðiÞ

� �
X2 1

n

Pn
i51

uixðiÞ

� 	

1

n

Xn
i51

qiui

 ! Xn
i51

qiuix
2
ðiÞ

 !
2

1

n

Xn
i51

qiuixðiÞ

 !2
(16.24)

and

λ2 5

Pn
i51

qiui

� �
X2 1

n

Pn
i51

uixðiÞ

� 	

1

n

Xn
i51

qiui

 ! Xn
i51

qiuix
2
ðiÞ

 !
2

1

n

Xn
i51

qiuixðiÞ

 !2
(16.25)
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Substituting the values of λ1 and λ2 into Eq. (16.21), the calibrated weights are given by

wi 5
ui

n
1

qiuixðiÞ
Pn
i51

qiui

� �
2 qiui

Pn
i51

qiuixðiÞ

� �

Pn
i51

qiui

� � Pn
i51

qiuix
2
ðiÞ

� �
2

Pn
i51

qiuixðiÞ

� �2 X2
1

n

Xn
i51

uixðiÞ

" #
(16.26)

Substituting Eq. (16.26) into Eq. (16.16), the calibrated estimator of the population mean in

two-stage RSS is given by

yRSSðcÞ 5
1

n

Xn
i51

uiy i½ � 1 β̂cal X2
1

n

Xn
i51

uixðiÞ

" #
; (16.27)

where

β̂cal 5

Pn
i51

qiui

� �Pn
i51

qiuixðiÞy½i� 2
Pn
i51

qiuiy½i�

� � Pn
i51

qiuixðiÞ

� �

Pn
i51

qiui

� � Pn
i51

qiuix
2
ðiÞ

� �
2

Pn
i51

qiuixðiÞ

� �2 (16.28)

It may be worth mentioning if all the N FSUs are included in the survey, then the new proposed

calibrated estimator in Eq. (16.27) would behave like the stratified sampling estimator recently

studied by Koyuncu (2017).

Since β̂cal is a consistent estimator of the regression coefficient β, the estimator (16.27) can be

approximated as

yRSSðcÞ � yRSS 1β X2 xRSS
� �

1Higher order terms (16.29)

The variance of the calibrated estimator is approximated as

VðyRSSðcÞÞ � VðyRSSÞ1β2VðxRSSÞ2 2β Cov yRSS; xRSS
� �

5
1

nN

XN
i51

μ2
i

σ2
iy

mi

2
1

miri

Xri
t51

Yi t½ �2Yi

� �2 !
1

12 f

n

� �
S2by

1 β2 1

nN

XN
i51

μ2
i

σ2
ix

mi

2
1

miri

Xri
t51

XiðtÞ2Xi

� �2 !
1

12 f

n

� �
S2bx

" #

2 2β
1

nN

XN
i51

μ2
i

σixy

mi

2
1

miri

Xri
t51

ðYi t½ � 2 YiÞ XiðtÞ 2Xi

� � !
1

12 f

n

� �
Sbxy

" #

5
12 f

n

� �
S2by 1β2S2bx 2 2βSbxy
h i

1
1

nN

� �XN
i51

μ2
i

1

mi

� �
σ2
iy 1β2σ2

ix 2 2βσixy

h i

2
1

nN

XN
i51

μ2
i

miri

Xri
t51

Yi t½ �2Yi

� �2
1 β2 XiðtÞ2Xi

� �2
2 2β Yi t½ � 2 Yi

� �
XiðtÞ 2X
� �h i

(16.30)

In the next section, we examine an application of two-stage sampling using a real data set.
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16.5 NUMERICAL ILLUSTRATION WITH REAL DATA
For the purpose of numerical illustration, as in Salinas et al. (2018), we study a population consist-

ing of the faculty from nine departments (as listed in Table 16.1) of the College of Arts and

Sciences at Texas A&M University�Kingsville to investigate the performance of the proposed new

calibrated estimator in two-stage RSS.

We assumed the study variable as the annual salary of a faculty member and the auxiliary variable

as their experience at Texas A&M University�Kingsville, with the first year as the start date, irrespec-

tive of age or previous experience at other institutes. We cleaned the data set by including only those

faculty members with an annual salary greater than $10,000, irrespective of experience. In this numeri-

cal illustration, we have N5 9. Let Yi and Xi denote the average salary and average experience,

respectively, of a faculty member in the ith department. Let S2iy and S2ix denote the population variances

for the salary and experience, respectively, within the ith department. Let Mi be the total number of

faculty members in the ith department. Let ρixy denote the value of the correlation coefficient between

salary and experience in the i-th department. A brief description of the parameters of the population in

each of the above nine departments is given in Tables 16.2(a) and 16.2(b).

Thus S2by 5 132791075:1, S2bx 5 11:20, Sbxy 5 34307:62 and ρbxy 5 0:88956.
A SAS code (see Appendix A) was written to investigate the percent relative efficiency values.

The percent relative efficiency of the RSS over the simple random sampling is defined as

RE5
Min: VðylrÞ
VðyRSSðcÞÞ

3 100%: (16.31)

Following Singh, Tailor, and Singh (2014), realized (RD) ratios of the judgment-based ranked

values to that of true population mean were defined for the study and auxiliary variables as

RD1i t½ �5
Yi½t�
Yi

(16.32)

and

RD2iðtÞ5
XiðtÞ
Xi

(16.33)

for t5 1; 2; 3; . . .; ri in each cycle within the ith FSU.

Table 16.1 Departments as FSUs

1 Arts & Communications

2 Biological & Health Science

3 Chemistry

4 Language & Literature

5 History & Political Science

6 Music

7 Mathematics

8 Physics & Geosciences

9 Psychology & Sociology
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In this simulation study we considered several values of

RD1i½t�5H1 1 0:08et (16.34)

and

RD2i½t�5H2 1 0:08et (16.35)

where etBNð0; 1Þ.
Then different values of H1 5 f0:85; 1:00; 1:15g and H2 5 f0:75; 1:00; 1:25g are investigated

for different situations. The choice of H1 is made so that the judgment ranking could be 85% of the

original true mean value, could be perfect ranking, or could be 15% higher. More variation in judg-

ment ranking is not considered, since judgment ranking will introduce measurement errors in the

study variable, Y . The value of H2 is given a wider range from 0.75 to 1.25, with a step of 0.25,

Table 16.2b Descriptive Parameters at the Departmental and Overall Levels

Dept ui uiYi ðuiYi2YÞ2 uiXi ðuiXi2XÞ2 ðuiYi 2 YÞðuiXi 2XÞ
1 1.0479 54135.80 2593357.28 12.70 1.549 -2004.27

2 0.7397 46461.45 86206391.78 9.43 4.101 18801.60

3 0.6781 42921.92 164461827.25 7.40 16.472 52048.96

4 1.3562 66853.48 123371839.41 12.84 1.922 15398.81

5 1.0479 58799.16 9320599.89 10.10 1.834 -4134.68

6 1.1096 60639.04 23939974.42 11.54 0.007 407.18

7 1.2329 74150.14 338705199.13 18.63 51.441 131997.89

8 0.7397 38404.36 300739262.55 8.08 11.416 58592.84

9 1.0479 59350.38 12990149.02 12.39 0.865 3352.63

Sum 9.0000 501715.72 1062328600.72 103.11 89.61 274460.94

Table 16.2a Descriptive Parameters at the Departmental Level

Dept. Mi Yi Xi S2iy S2ix ρixy

1 17 51659 12.12 410109956 72.74 0.31533

2 12 62809 12.75 349923262 110.93 0.75701

3 11 63299 10.91 279143130 71.49 0.81145

4 22 49296 9.47 351684087 83.51 0.46757

5 17 56109 9.64 465988718 71.19 0.89101

6 18 54650 10.40 240097753 67.83 0.34254

7 20 60144 15.11 359926960 107.16 0.45578

8 12 51917 10.92 606389811 99.90 0.44375

9 17 56635 11.82 556387242 198.65 0.64247
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since it is not in the hands of the investigator to control the value of the auxiliary variable, X.

Recall that judgment ranking is made only for the study variable. We used proportional allocation

to select SSUs from the FSUs with mi 5mMi=ðNMÞ to select a total sample of the required size m

as reflected in Table 16.3.

In the numerical comparisons, we consider two first-stage sample sizes of n5 3; 5 and

total second-stage sample sizes of m5 30; 60 with proportional allocation across all nine

FSUs. For the three values of H1 and H2 considered, it has been observed that the value of

percent RE ranges from 101.80% to 260.59%, with a median value of 110.85%, a mean value

of 131.91%, and a standard deviation of 41.15%. For n5 3, the minimum value of RE is

103.49%, maximum value is 238.76%, median value is 115.95%, mean value is 132.43%,

with a standard deviation of 41.72%. For n5 5, the minimum value of RE is 101.80%, maxi-

mum value is 260.59%, median value is 115.85%, mean value is 131.41%, with a standard

deviation of 41.47%.

Table 16.3 Percent RE of the Two-Stage RSS

n m H1 H2 RE (%) n m H1 H2 RE (%)

3 30 0.9 0.8 104.7 3 60 0.9 0.8 104.7

3 30 0.9 1.0 114.8 3 60 0.9 1.0 122.5

3 30 0.9 1.3 205.5 3 60 0.9 1.3 227.9

3 30 1.0 0.8 112.9 3 60 1.0 0.8 114.6

3 30 1.0 1.0 103.5 3 60 1.0 1.0 105.1

3 30 1.0 1.3 130.1 3 60 1.0 1.3 140.2

3 30 1.0 0.8 123.0 3 60 1.0 0.8 113.7

3 30 1.0 1.0 104.3 3 60 1.0 1.0 105.3

3 30 1.0 1.3 117.1 3 60 1.0 1.3 122.3

3 30 1.2 0.8 238.8 3 60 1.2 0.8 209.7

3 30 1.2 1.0 120.6 3 60 1.2 1.0 127.2

3 30 1.2 1.3 105.8 3 60 1.2 1.3 104.0

5 30 0.9 0.8 101.8 5 60 0.9 0.8 104.6

5 30 0.9 1.0 117.7 5 60 0.9 1.0 129.7

5 30 0.9 1.3 209.6 5 60 0.9 1.3 260.6

5 30 1.0 0.8 113.6 5 60 1.0 0.8 115.4

5 30 1.0 1.0 103.8 5 60 1.0 1.0 105.9

5 30 1.0 1.3 131.1 5 60 1.0 1.3 135.4

5 30 1.0 0.8 120.8 5 60 1.0 0.8 116.3

5 30 1.0 1.0 103.0 5 60 1.0 1.0 103.4

5 30 1.0 1.3 128.1 5 60 1.0 1.3 122.5

5 30 1.2 0.8 200.3 5 60 1.2 0.8 195.1

5 30 1.2 1.0 113.6 5 60 1.2 1.0 113.4

5 30 1.2 1.3 102.5 5 60 1.2 1.3 105.7
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A graphical presentation of the values of percent relative efficiency as a function of H1 and H2

is shown in Fig. 16.1. Overall we conclude that use of RSS while selecting SSUs could be benefi-

cial over the use of simple random sampling.
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CHAPTER

17ESTIMATION OF POPULATION
MEAN USING INFORMATION ON
AUXILIARY ATTRIBUTE: A REVIEW

Rajesh Singh1, Prabhakar Mishra1 and Carlos N. Bouza-Herrera2
1Department of Statistics, Banaras Hindu University, Varanasi, Uttar Pradesh, India 2Faculty of Mathematics and

Computation, University of Havana, Havana, Cuba

17.1 INTRODUCTION
In the sampling literature, auxiliary information is commonly used to improve estimates. Many

authors have suggested estimators based on auxiliary information. However in many practical situa-

tions, instead of the existence of auxiliary variables there exist some auxiliary attributes, e.g., φ,
which are highly correlated with the study variable y, such as:

(i) Sex (φ) and height of persons (y);

(ii) Amount of milk produced (y) and a particular breed of cow (φ);
(iii) Amount of yield of wheat crop and a particular variety of wheat (φ).

Consider a sample of size n drawn by simple random sampling without replacement

(SRSWOR) from a population of size N. Let yi and φi denote the observations on variable y and φ,
respectively, for the ith unit (i 5 1,2,. . .. . .,N). Let

φi 5 1, if ith unit of population possesses attribute φ 5 0, otherwise.

Let A5
PN
i51

φi and a5
Pn
i51

φi denote the total number of units in the population and sample,

respectively, possessing attributes. Let P 5 A/N and p 5 a/n denote the proportion of units in the

population and sample, respectively, possessing attribute φ.

17.2 ESTIMATION OF POPULATION MEAN USING SINGLE AUXILIARY
ATTRIBUTE INFORMATION

Taking into consideration the point biserial correlation coefficient between auxiliary attribute φ and

the study variable y, Naik and Gupta (1996) defined the ratio estimator for population mean

Y 5 1
N

PN
i51

yi

� �
of the study variable y as follows
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t1 5 y P_ Pð Þ (17.1)

where y 5 1
n

Pn
i51

yi

� �
is the sample mean of the study variable y.

The mean square error (MSE) of the ratio estimator t1, up to the first order of approximation is

given by

MSE t1ð Þ5 12 f

n

� �
Y
2
C2
y 1C2

p 12 2kp
� �h i

(17.2)

where,

f 5
n

N
; C2

y 5
S2y

Y
2
; S2y 5

1

N2 1

XN
i51

yi2Y
� �2

;

C2
p 5

S2φ

P2
; S2φ 5

1

N2 1

XN
i51

φi2P
� �2

; kp 5
ρpbCy

Cp

ρpb 5
Syφ

SySφ
Syφ 5

1

N2 1

XN
i51

yi 2Y
� �

φi 2P
� �

It is well known that under SRSWOR, the variance of the usual unbiased estimator is

Var yð Þ5 12 f

n
Y
2
C2
y (17.3)

Jhajj, Sharma and Grover (2006) defined a general class of estimator as t2 5 g y; vð Þ, where
v5 P̂=P and g y; vð Þ is a parametric function of y and v such that g Y ; 1

� �
5 Y , ’Y and the function

g y; vð Þ satisfies certain regularity conditions. The optimum MSE of the estimator t2 is given by

MSE t2ð ÞoptD
12 f

n

� �
S2y 12 ρ2pb
� �

(17.4)

The above expression is equal to variance of the linear regression estimator

t3 5 y1 b P2 P̂
� �

(17.5)

where b is the sample regression coefficient whose population regression coefficient is given by

β5 ρpbSy=Sφ:

Shabbir and Gupta (2007) suggested the ratio type estimator for the population mean Y as

t4 5 y d1 1 d2 P2 P̂
� �� 	

P=P̂
� �

(17.6)

where d1; d2ð Þ are suitably chosen constants whose sum need not be unity.

For the optimum values of d1 and d2 as

d�1 5
1

11 12 f
n

� �
C2
y 12 ρ2pb
� � ;

and

d�2 5
ρpbCy 2Cp

� �

11 θC2
y 12 ρ2pb
� �h i

PCp

;

the minimum MSE of the estimator t4 is given by
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min:MSE t4ð Þ5
12 f
n

� �
S2y 12 ρ2pb
� �

11 12 f
n

� �
C2
y 12 ρ2pb
� � (17.7)

Singh, Cauhan, Sawan, and Smarandache (2007) introduced the following ratio and product

type exponential estimators of Y

t5 5 yexp
P2 P̂

P1 P̂

� �
(17.8)

t6 5 yexp
P̂2P

P̂1P

� �
(17.9)

Singh, Cauhan, Sawan, and Smarandache (2007) further defined the following class of exponen-

tial estimators of Y

t7 5 y αexp
P2 P̂

P1 P̂

 !
1 12αð Þexp P̂2P

P̂1P

� �" #
(17.10)

where α is a suitably chosen constant.

The MSEs of the estimators t5, t6, and t7, up to the first order of approximation, are respectively

given by

MSE t5ð Þ5 12 f

n

� �
Y

2
C2
y 1

C2
p

4
2 ρpbCyCp

" #
; (17.11)

MSE t6ð Þ5 12 f

n

� �
Y
2
C2
y 1

C2
p

P
1 ρpbCyCp

" #
: (17.12)

min:MSE t7ð Þ5 12 f

n
Y
2
C2
y 12 ρ2pb
� �

: (17.13)

Singh, Chauhan, Sawan, and Smarandache (2008) suggested an estimator t8 as

t8 5 y1 b P2 P̂
� �� 	P

P̂
(17.14)

where b is the sample regression coefficient.

Singh, Chauhan, Sawan, and Smarandache (2008) also suggested the following estimator t9 as

t9 5
y1 b P2 P̂

� �
m1P̂1m2

m1P1m2ð Þ (17.15)

where m1 6¼ 0ð Þ, m2 are either real numbers or the functions of the known parameters of the attribute

(see Singh and Kumar, 2011).

Abd-Elfattah, El-Sherpieny, Mohamed, and Abdou (2010) proposed an estimator t10 as

t10 5m1

y1 b P2 P̂
� �
P̂

1m2

y1 b P2 P̂
� �

P̂1B2 φð Þ P1B2 φð Þð Þ (17.16)

where m1 and m2 are weights that satisfy the condition m1 1m2 5 1 and B2 φð Þ is the population

coefficient of kurtosis of auxiliary attribute.
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Adapting Rao’s (1991) idea, Grover and Kaur (2011) defined the following estimator t11

t11 5αy1 β P2 P̂
� �

(17.17)

where α and β are suitably chosen constants. The optimum MSE, up to first order of approxima-

tion, of this estimator is given by

min: MSE t11ð Þ5
12 f
n

� �
Y
2
C2
y 12 ρ2pb
� �

11 12 f
n

� �
12 ρ2pb
� � (17.18)

Grover and Kaur (2011) suggested the following exponential type estimator of Y

t12 5 αy1β P2 P̂
� �� 	

exp
P2 P̂

P1 P̂

� �
(17.19)

where α and β are any constants and their values are suitably chosen. The optimum values of α
and β are respectively

αopt 5
2C2

p 22
12 f
nð ÞM2

2
1 12 f

n

� � C2
p

2
2 ρpbCyCp

� �h i

2 12 f
n

M2
2 2C2

p 11 12 f
n

M1

� �h i

and

βopt 5
Y M2 21 θM2

2
1 θ

2

C2
p

2
2 ρpbCyCp

� �n o
2 11 θM1ð ÞC2

p

h i

2P fM2
2 2C2

p 11 θM1ð Þ
h i

where M1 5C2
p 1C2

y 2 2ρpbCyCp and M2 5C2
p 2 ρpbCyCp.

On substituting these optimum values of α and β, we get the minimum MSE of the estimator

t12 as

min:MSE t12ð Þ5
θY2

C2
y 12 ρ2pb
� �

11 θC2
y 12 ρ2pb
� � - θ

2Y
2
C2
p 4C2

y 12 ρ2pb
� �

1
C2
p

4

h i

16 11 fC2
y 12 ρ2pb
� �h i : (17.20)

Koyuncu (2012) suggested an estimator t13 as

t13 5 w1y1w2 P2 P̂
� �� 	 ηP1λ

ηP̂1λ

� �
(17.21)

where η and λ are either real numbers or functions of the known parameter associated with an aux-

iliary attribute.

Koyuncu (2012) also proposed an improved estimator t14 as

t14 5 w1y1w2

P̂

P

� �γ" #
exp

η P2 P̂
� �

η P1 P̂
� �

1 2λ

 !
(17.22)

where γ is a suitable real number, and w1 and w2 are suitable weights.

Singh and Solanki (2012) suggested estimator t15 as
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t15 5 y d1 1 d2 P2 P̂
� �� 	 ψP1δη

ψP̂1δη

� �α

(17.23)

where ψ and η are either real numbers or function of known parameters of the auxiliary attribute.

The scalar α takes values �1 and 11, δ is an integer which takes values 11 and �1 for designing

the estimators such that ðψP̂1 δηÞ and ðψP1 δηÞ are nonnegative and d1; d2ð Þ are suitably chosen

constants such that the sum of the constants d1; d2ð Þ need not be unity. It was shown that the pro-

posed estimator performs better than many existing estimators.

Sharma, Verma, Sanaullah, and Singh (2013) studied some exponential ratio-product type esti-

mators using information on auxiliary attributes. They studied the properties of the estimators under

second order of approximation.

Singh, Kumar, and Singh (2013) suggested a family of ratio estimators for estimating population

mean Y as

t16 5α1y1α2y
m1P1m2

m1P̂1m2

� �α

(17.24)

where m1 and m2 are either the real number or the functions of the parameters of the attribute and

α1 and α2 are real constants to be determined.

Singh, Kumar, and Singh (2013) suggested another family of estimators as

t17 5 w1y1w2 P2 P̂
� �� � aP1b

aP̂1b

� �α

exp
aP1bð Þ2 aP̂1b

� �
aP1bð Þ1 aP̂1b

� �
( )α

(17.25)

where w1 and w2 are constants whose sum is not necessarily equal to one.

Sharma, Singh, and Kim (2013) proposed the following four estimators for estimating Y as

t18 5 12αð Þy1αy
P

P̂
(17.26)

where α is any real constant.

t19 5 y
P

βP1 12βð ÞP̂

� �g

(17.27)

where g and β are any real constants.

t20 5 y 22
P̂

P

� �w
 !

(17.28)

where w is a constant.

t21 5 y 22
P̂

P

� �λ

exp
δ P̂2P
� �
P̂1P
� �

 !( ) !
(17.29)

where λ is a constant.

Sharma, Singh, and Kim (2013) studied the properties of these four estimators under a second

order of approximation.

Barak and Barak (2013) proposed the following three unbiased estimators

t22 5 y1
P

P̂

� �
2 1 (17.30)
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t23 5 y2 e P̂2Pð Þ1 1 (17.31)

and

t24 5 y2 e P2P̂ð Þ1 1 (17.32)

Yadav and Adewara (2013) suggested the following exponential estimators for estimating Y

t25 5 kyexp
P2 P̂

P1 P̂

� �
(17.33)

t26 5 kyexp
P̂2P

P̂1P

� �
(17.34)

where k is any constant.

t27 5 yexp
P̂
�
2P

P̂
�
1P

 !
(17.35)

where P̂
�
5 11 gð ÞP2 gP̂ and g5 n

N2 n
.

t28 5 y αexp
P2 P̂

P1 P̂

� �
1 12αð Þexp P̂

�
2P

P̂
�
1P

 !" #
(17.36)

where α is a real constant.

Malik and Singh (2015) proposed a class of estimators for the population mean Y in double sampling as

t29 5 y g1 1 g2 P̂0 2 P̂
� �� 	 wP̂01η

wP̂1η


 �α

exp
wP̂01η
� �

2 wP̂1η
� �

wP̂01η
� �

1 wP̂1η
� �

( )β

(17.37)

where g1 and g2 are suitably chosen constants whose sum is not necessarily equal to unity and

w; ηð Þ are either real numbers or function of known parameters of the auxiliary attribute.

Saini and Kumar (2015) proposed a new exponential type product estimator as

t30 5 y2 k t�30 2 1
� �

(17.38)

where k is any constant and

t�30 5 exp
NP2 nP̂

N2 n
2P

� 

They have shown that their proposed estimator t30 is always more efficient than the exponential

type product estimator (Bahl and Tuteja, 1991) and product estimator (Naik and Gupta, 1996).

17.3 ESTIMATION OF POPULATION MEAN USING TWO (OR MORE)
AUXILIARY ATTRIBUTE INFORMATION

The regression estimator of Y based on two auxiliary attributes, is given by

t5 y1 b1 P1 2 P̂1

� �
1 b2 P2 2 P̂2

� �
; (17.39)

where bj 5
Syϕj
S2ϕj

for j5 1,2.
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Malik and Singh (2013a) suggested an improved estimator of Y using two auxiliary attributes

and using point biserial and Phi-correlation given by

t5 yexp
P12P̂1

P11P̂1

� �γ1
exp

P22P̂2

P21P̂2

� �γ2
1 b1 P1 2 P̂1

� �
1 b2 P2 2 P̂2

� �
(17.40)

where γ1 and γ2 are two unknown constants.

Malik and Singh (2013b) proposed following three estimators using two auxiliary attributes

t5 y
P1

P̂1

� �α1 P2

P̂2

� �α2

(17.41)

t5 yexp
P12P̂1

P11P̂1

� �β1

exp
P̂22P2

P̂21P2

� �β2

(17.42)

and

t5w0y1w1y
P1

P̂1

� �α1 P2

P̂2

� �α2

1w2yexp
P12P̂1

P11P̂1

� �β1

exp
P̂22P2

P̂21P2

� �β2

(17.43)

where α1, α2, β1, and β2 are real constants and wi i5 0; 1; 2ð Þ are suitably chosen constants.

Singh and Malik (2013) suggested a class of estimators of the form

t5
X3
i50

witi AHð Þ (17.44)

such that
P3
i50

wi 5 1 and wiAℜ, where t0 5 y, t1 5 y P1

P̂1

� �
, t2 5 y P̂2

P2

� �
and t3 5 y P1

P̂1

� �
P̂2

P2

� �

Following Olkin (1958), Verma, Singh, and Florentin (2013) proposed an estimator

t5 y w1

P1

P̂1

1w2

P2

P̂2

� 
(17.45)

where w1 and w2 are constants, such that w1 1w2 5 1.

Verma, Singh, and Florentin (2013) proposed another estimator t as

t5 ky1 k1 P1 2 P̂1

� �� 	
exp

P2 2 P̂2

P2 1 P̂2

� 
(17.46)

where k and k1 are constants.

They also proposed the following estimator

t5 y1 k2 P1 2 P̂1

� �
1 k3 P2 2 P̂2

� �
(17.47)

where k2 and k3 are constants.

Haq and Shabbir (2014) proposed some improved estimators using two auxiliary attributes.

They proposed a chain-ratio-product type estimator of Y as

t � 5
y

4

P1

P̂1

1
P̂1

P1

� �
P2

P̂2

1
P̂2

P2

� �
: (17.48)

Following Rao (1991), Haq and Shabbir (2014) proposed a difference-type estimator of Y as
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t5 k1y1 k2 P1 2 P̂1

� �
1 k3 P2 2 P̂2

� �
(17.49)

where k1, k2 and k3 are real constants.

Haq and Shabbir (2014) also proposed an improved chain-ratio-product-difference type estima-

tor of Y as

t5w1t � 1w2 P1 2 P̂1

� �
1w3 P2 2 P̂2

� �
(17.50)

where w1, w2 and w3 are suitably chosen constants to be determined.

Haq and Shabbir (2014) have shown that the estimators proposed by them are better than other

estimators considered in the paper in SRS and also in a two-phase scheme.

Singh, Malik, Adewara, and Florentin (2014) proposed some multivariate ratio estimators with

known population proportion of two auxiliary characteristics for finite population. Following Olkin

(1958), they proposed an estimator as

tap 5
Xk
i51

wiriPi (17.51)

where

i. wi
0s are weights such that

Pk
i51

wi 5 1;

ii. Pi
0s are the proportion of the auxiliary attribute and assumed to be known; and

iii. ri 5
y

P̂i
, (i5 1,2,. . .. . .,k), y is the sample mean of the study variable y and P̂i is the proportion

of auxiliary attributes Pi based on a SRS of size n drawn WOR from a population of size N.

Following Naik and Gupta (1996) and Singh, Cauhan, Sawan, and Smarandache (2007), they

proposed another estimator ts as

ts 5 L
k

i51

riPi (17.52)

Singh, Malik, Adewara, and Florentin (2014) also proposed two alternative estimators based on

geometric mean and harmonic mean, respectively, as

tgp 5 L
k

i51

riPið Þwi (17.53)

and

thp 5
Xk
i51

wi

riPi

 !21

(17.54)

such that
Pk
i51

wi 5 1.

They have shown that the MSEs of estimators based on geometric, harmonic mean, and Verma,

Singh and Florentin (2013) type estimator are the same. However, the bias of the ratio-type estima-

tor based on harmonic mean is least.

Kungu and Odongo (2014) proposed a generalized estimator for estimating population mean of

study variable y with the use of multiauxiliary attributes, given by

246 CHAPTER 17 ESTIMATION OF POPULATION



trp 5 y
P1

p1

� �α1 P2

p2

� �α2

2
Pk

pk

� �αk pk11

Pk11

� �βk11 pk12

Pk12

� �βk12

2
pq

Pq

� �βq

(17.55)

where α0s and β0s are arbitrary constants.

Sharma, Verma, and Singh (2015) proposed an improved family of estimators for estimating Y

when information on two auxiliary attributes is available, as:

tN 5 y w1

p1

P1

� �δ

exp
η1 P1 2 p1ð Þ

η1 P1 1 p1ð Þ1 2λ1


 �
1w2

p2

P2

� �β

exp
η2 P2 2 p2ð Þ

η2 P2 1 p2ð Þ1 2λ2


 �" #
(17.56)

where δ and β are constants that can takes values (0, 1, �1) for designing different estimators.

η1, λ1, η2, and λ2 are either real numbers or the function of the known parameters. w1 and w2

are suitably chosen constants to be determined such that the MSE of the class of estimator tN is

minimum.

Saghir and Shabbir (2012) proposed an exponential ratio type estimator in stratified sampling as:

tss 5 y�stexp
P1 2 p1st

P1 1 a2 1ð Þp1st

� �
exp

P2 2 p2st

P2 1 b2 1ð Þp2st

� �
(17.57)

Malik and Singh (2013c) proposed an estimator in stratified sampling as:

tms 5 y�stexp
P12p1st

P11p1st

� �α1

exp
P22p2st

P21p2st

� �α2

1 b1 P1 2 p1stð Þ1 b2 P2 2 p2stð Þ (17.58)

where α1 and α2 are real constants.

17.4 CONCLUSION
In this chapter we have reviewed the work of the authors on the use of auxiliary attributes in con-

struction of improved estimators for estimating unknown population mean. We have incorporated the

work carried out using single and two auxiliary attributes. We hope this work will be helpful for

researchers who are working in the construction of improved estimators using auxiliary information.
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CHAPTER

18RATIO AND PRODUCT TYPE
EXPONENTIAL ESTIMATORS FOR
POPULATION MEAN USING
RANKED SET SAMPLING

Gajendra K. Vishwakarma1, Sayed Mohammed Zeeshan1 and Carlos N. Bouza-Herrera2
1Department of Applied Mathematics, Indian Institute of Technology (ISM), Dhanbad, Jharkhand, India 2Faculty of

Mathematics and Computation, University of Havana, Havana, Cuba

18.1 INTRODUCTION
Ranked set sampling (RSS) is a method of sampling which provides more structure to the collected

sample items and increases the amount of information present in the sample. The method of RSS

was first envisaged by McIntyre (1952) as a cost-efficient substitute to simple random sampling

(SRS) for those circumstances where measurements are inconvenient or expensive to obtain but

(judgment) ranking of units according to the variable of interests, say, Y, is comparatively easy and

cheap. It is known that the estimate of the population mean using RSS is more efficient than that

obtained using SRS. McIntyre (1952) and Takahasi and Wakimoto (1968) considered perfect rank-

ing of the elements, that is, there are no errors in ranking the elements. Yet, in most circumstances,

the ranking may not be done perfectly. Dell and Clutter (1972) demonstrated that the mean using

the RSS is an unbiased estimator of the population mean, whether or not there are errors in ranking.

Stokes (1977) considered the case where the ranking is done on the basis of a concomitant (auxil-

iary) variable X instead of judgment. We would expect the variable of interest will be highly corre-

lated with the concomitant (auxiliary) variable. Stokes (1980) showed that the estimator of the

variance based on RSS data is an asymptotically unbiased estimator of the population variance.

Samawi and Muttlak (1996) deal the problem of estimating the population ratio of the two variables

Y and X using the RSS procedure. In addition, RSS has been investigated by many researchers,

such as Al-Saleh and Al-Omari (2002), Wolfe (2004), Mandowara and Mehta (2013), and

Al-Omari and Bouza (2015).

RSS has many statistical applications in agriculture, biology, environmental science, medical

science, etc. Let m random samples of size m bivariate units each and rank the bivariate units

within each sample with respect to the auxiliary variate X. Next, select the ith smallest auxiliary

variate X from the ith sample for i5 1; 2; 3; . . .m for actual measurement of the associated variate

of interest Y with it. In this way, a total number of m measured bivariate units are obtained, one

from each sample. The cycle may be repeated r times to get a sample of size n5 rm bivariate units.

These n5 rm units build the RSS data. Note that we assume that the ranking of the variate X will
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be perfect, while the ranking of the variate Y will be with errors, or at worst of a random order if

the correlation between YandX is close to zero. Also, note that in RSS, rm2 elements are identified,

but only rm of them are quantified. So, comparing this sample with a simple random sample of

size rm is reasonable. For more details about RSS, see Kaur et al. (1995).

We assume that ranking on the auxiliary variate, X, is perfect. The associated variate, Y , is then

with an error unless the relation between X and Y is perfect. Let us denote ðXj ið Þ;Yj i½ �Þ as the pair of

the ith order statistics of X and the associated element Y in the jth cycle. Then the ranked set sam-

ple is

ðX1 1ð Þ;Y1½1�Þ . . . ; ðX1 mð Þ;Y1½m�Þ; ðX2 1ð Þ;Y2½1�Þ; . . . ; ðX2 mð Þ;Y2½m�Þ,. . ., ðXr 1ð Þ;Yr½1�Þ; . . . ; ðXr mð Þ;Yr½m�Þ,
To obtain biases and mean squared error, we consider

Ty ið Þ 5 μy ið Þ 2μy

� �
; Tx ið Þ 5 μx ið Þ 2μx

� �
; Txy ið Þ 5 μx ið Þ 2μx

� �
μy ið Þ 2μy

� �
;

σ2y ið Þ 5E Y ið Þ2μi

� �2
;σ2x ið Þ 5E X ið Þ2μi

� �2
;

σxy 5E Y ið Þ 2μy

� �
X ið Þ 2μx

� �
;

9>>>>>=
>>>>>;

(18.1)

and

Xn
i51

Tx ið Þ 5 0;
Xn

i51
Ty ið Þ 5 0;

Xn
i51

σ2x ið Þ 5 nσ2
x 2

Xn

i51
T2x ið Þ;

Xn

i51
σ2y ið Þ 5 nσ2

y 2
Xn

i51
T2y ið Þ;

Pn
i51 σxy ið Þ 5 nσxy 2

Pn
i51 TxyðiÞ:

9>>>>>>>>=
>>>>>>>>;

(18.2)

The sample mean of each variate based on RSS data and using the results obtained in Dell and

Clutter (1972) can be defined as follows:

X nð Þ 5
1

mr

Xr

j51

Xm

i51
Xr mð Þ;

Y ½n� 5
1

mr

Xr

j51

Xm

i51
Yr½m�

9>>=
>>;

(18.3)

with variance

Var X
� �

5
σ2
x

m
2

1

rm2

Xm

i51
T2x ið Þ

Var Y
� �

5
σ2
y

m
2

1

rm2

Xm

i51
T2
y½i�

9>>>=
>>>;
; (18.4)

and covariance

Cov X; Y
� �

5
σxy

m
2

1

rm2

Xm

i51
Txy½i� (18.5)

Note that μxðiÞ and μyðiÞ depend on order statistics from some specific distributions and these

values can be found in Arnold et al. (1992).
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18.2 SOME EXISTING ESTIMATORS FOR THE POPULATION MEAN
For estimating the population mean Y , the usual ratio and product estimators for Y , respectively, as

Ŷ R 5 y
X

x
; (18.6)

Ŷ P 5 y
x

X
; (18.7)

and their MSEs up to the first degree of approximation are

MSE Ŷ R

� �
5

Y
2

n
C2
x 1C2

y 2 2ρCxCy

� �h i
; (18.8)

MSE Ŷ P

� �
5

Y
2

n
C2
x 1C2

y 1 2ρCxCy

� �h i
; (18.9)

Samawi and Muttlak (1996) approached ratio and product estimators under RSS as

Ŷ R

rss

5 y ½n�
X

xðnÞ
; (18.10)

Ŷ P

rss

5 y ½n�
xðnÞ
X

; (18.11)

and drived their MSEs to the first degree approximation as

MSEðbYR

rss

Þ5 Y
2

m
C2
x 1C2

y 2 2ρCxCy

� �
2

1

rm

Pm
i51 T

2
x ið Þ

μ2
x

1

Pm
i51 T

2
y½i�

μ2
y

2 2

Pm
i51 Txy½i�
μxμy

 !" #
(18.12)

MSEðbYP

rss

Þ5 Y
2

m
C2
x 1C2

y 1 2ρCxCy

� �
2

1

rm

Pm
i51 T

2
x ið Þ

μ2
x

1

Pm
i51 T

2
y½i�

μ2
y

1 2

Pm
i51 Txy½i�
μxμy

 !" #
(18.13)

For estimating the population mean Y , Bahl and Tuteja (1991) give the ratio and product type

exponential estimators as

Ŷ Re 5 yexp
X 2 x

X 1 x

� �
; (18.14)

Ŷ Pe 5 yexp
x2X

x1X

� �
; (18.15)

and derived their MSEs to the first-degree approximation as

MSE Ŷ Re

� �
5

Y
2

n

C2
x

4
1C2

y 2 ρCxCy

� 	� �
; (18.16)

MSE Ŷ Pe

� �
5

Y
2

n

C2
x

4
1C2

y 1 ρCxCy

� 	� �
; (18.17)

25318.2 SOME EXISTING ESTIMATORS FOR THE POPULATION MEAN



18.3 PROPOSED ESTIMATORS FOR POPULATION MEAN
We define the following ratio and product type exponential estimators for Yunder RSS, respec-

tively, as

Ŷ
rss

Re 5 y ½n�exp
X 2 xðnÞ
X 1 xðnÞ

� �
; (18.18)

Ŷ
rss

Pe 5 y½n�exp
xðnÞ 2X

xðnÞ 1X

� �
; (18.19)

Here we have ranked the auxiliary variate and, thus, there is an induced rank in study variate. The

induced rank on the study variate will be perfect if the correlation between the variate is perfect,

otherwise it will be worse if there is no correlation (the worst case will not affect our problem since

it has already been proven by Dell and Clutter (1972)). Therefore, the MSE of Ŷ
rss

Re and Ŷ
rss

Pe using

bivariate Taylor series expansion is given as

MSE Ŷ
rss

Re

� �
5

Y
2

m

C2
x

4
1C2

y 1 ρCxCy

� 	
2

1

mr

Pm
i51 T

2
xðiÞ

4X
2

1

Pm
i51 T

2
y½i�

Y
2

1

Pm
i51 Txy½i�
XY

 !" #
(18.20)

MSE Ŷ
rss

Pe

� �
5

Y
2

m

C2
x

4
1C2

y 1 ρCxCy

� 	
2

1

mr

Pm
i51 T

2
xðiÞ

4X
2

1

Pm
i51 T

2
y½i�

Y
2

1

Pm
i51 Txy½i�
XY

 !" #
(18.21)

Preposition: Let WxðiÞ 5
μxðiÞ 2μi

μi
and Wy½i� 5

μy½� 2μi

μi
and also using the result from Dell and

Clutter (1972) the above equation may be written as

MSE Ŷ
rss

Re

� �
5

Y
2

m

"
C2
x

4
1C2

y 2 ρCxCy

� 	
2

1

mr

Xm
i51

WxðiÞ2

4
1
Xm
i51

Wy½i�2 2 2
Xm
i51

WxðiÞ
2

Wy½i�

 !#

5
Y
2

m

C2
x

4
1C2

y 2 ρCxCy

� 	
2

1

mr

Xm
i51

WxðiÞ
2 2Wy½i�

� �2" #

5MSE ŶRe

� �
2

Y
2

m2r

Xm
i51

WxðiÞ
2 2Wy½i�

� �2

It is clear that
Pm

i51
WxðiÞ
2

2Wy½i�
� �2

is greater than zero. Hence

MSE Ŷ
rss

Re

� �
#MSE Ŷ Re

� �
: (18.22)

Also, it can be proved in similar ways that

MSE Ŷ
rss

Pe

� �
#MSEðŶ PeÞ: (18.23)

18.3.1 GENERALIZED EXPONENTIAL ESTIMATORS USING RSS

We propose a ratio-cum-product type exponential estimators using RSS as

Ŷ
rss

G 5 y ½n�exp
X
x ðnÞ

� �α
2 1

X
x ðnÞ

� �α
1 1

2
64

3
75; (18.24)
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where α is some suitable real number whose values make the minimum MSE of Ŷ
rss

G . It can also be

noticed that for α5 1 and α5 2 1 the above equation becomes Bahl and Tuteja (1991) usual ratio

and product exponential estimators, respectively.

Again using Taylor series expansion we get the MSE of Ŷ
rss

G as

MSE Ŷ
rss

G

� �
5

Y
2

m

α2C2
x

4
2 ραCxCy 1C2

y

� 	
2

1

mr

Pm
i51 α

2T2
xðiÞ

4X
2

1

Pm
i51 αTxy½i�
XY

1

Pm
i51 T

2
y½i�

Y
2

 !" #
(18.25)

In order to get the minimum MSE we differentiate the above Eq. (18.25) by α and equate it

with 0. Hence we get optimum value of α as

αopt 5 2
ρCxCy 2

Pm

i51
Txy½i�

mrXY

C2
x 2

Pm

i51
T2
xðiÞ

mrX
2

0
B@

1
CA: (18.26)

Using the above result we get the minimum MSE of Ŷ
rss

G as

MSE Ŷ
rss

G

� �
min

5
Y
2

n
C2
Y 2

Pn
i51 T

2
yðiÞ

mrY
2

2
ρCYCX 2

Pn

i51
Txy½i�

mrXY

C2
X 2

Pn

i51
T2
xðiÞ

mrX
2

2
64

3
75: (18.27)

18.4 A SIMULATION STUDY
To illustrate how one can gain an insight into the application or properties of the proposed estima-

tor, a computer simulation was conducted. Bivariate random observations were generated from a

bivariate normal distribution with parameters μy, μx, σx, σy and correlation coefficient ρ. The sam-

pling method explained above is used to pick RSS data with sets of size m and after r repeated

cycles to get an RSS of size mr. A sample of size mr bivariate units is randomly chosen from the

population (we refer to these data as SRS data). The simulation was performed with m 5 3, 4, 5

and with r 5 3 and 6 (i.e., with total sample sizes of 9, 12, 15, 18, 24, and 30) for the RSS and

SRS data sets. Here, we have ranked the auxiliary variate X which induces ranking in study variate

Y (ranking on Y will be perfect if ρ5 1 or will be with errors in ranking if ρ, 1). Using R soft-

ware we have conducted 5,000 replications for estimates of the means and mean square errors. The

results of these simulations are summarized by the percentage relative efficiencies of the estimators

using the formula.

PRE �; Ŷ R

rssh i
5

MSE Ŷ
rss

R

� �
MSE �ð Þ 3 100 (18.28)

PRE �; Ŷ P

rssh i
5

MSE Ŷ
rss

P

� �
MSE �ð Þ 3 100 (18.29)

where, �5 Ŷ
rss

Re ; Ŷ
rss

Pe ; Ŷ
rss

G .
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Table 18.1 Percentage Relative Efficiencies (PREs) of Different Estimators of Y With Respect

to YR

r m ρ5 0:5 ρ5 0:6 ρ5 0:7

Ŷ R

rss

Ŷ
rss

Re Ŷ
rss

G Ŷ R

rss

Ŷ
rss

Re Ŷ
rss

G Ŷ R

rss

Ŷ
rss

Re Ŷ
rss

G

3 3 100.00 180.96 478.69 100.00 176.60 195.60 100.00 86.48 132.17

6 100.00 195.98 197.16 100.00 69.32 127.10 100.00 300.47 360.13

3 4 100.00 88.08 102.37 100.00 159.51 292.034 100.00 134.18 575.96

6 100.00 137.81 148.54 100.00 79.89 177.04 100.00 425.84 133949.50

3 5 100.00 227.19 228.51 100.00 271.15 3401.16 100.00 95.60 209.80

6 100.00 459.04 2552.20 100.00 358.13 611.95 100.00 80.21 231.18

r m ρ5 0:8 ρ5 0:9 ρ5 0:99

Ŷ R

rss

Ŷ
rss

Re Ŷ
rss

G Ŷ R

rss

Ŷ
rss

Re Ŷ
rss

G Ŷ R

rss

Ŷ
rss

Re Ŷ
rss

G

3 3 100.00 111.31 587.32 100.00 60.10 319.82 100.00 16.90 130.38

6 100.00 64.72 102.16 100.00 634.43 763.76 100.00 7.21 163.74

3 4 100.00 135.82 716.66 100.00 323.09 26611.89 100.00 106.97 878.19

6 100.00 74.83 147.67 100.00 48.06 230.65 100.00 211.98 25648.44

3 5 100.00 542.55 887.39 100.00 165.64 771.64 100.00 21.49 135.16

6 100.00 472.05 664.57 100.00 60.40 106.33 100.00 10.58 181.36

Table 18.2 Percentage Relative Efficiencies (PREs) of Different Estimators of Y With Respect

to YP

r m ρ5 2 0:5 ρ5 2 0:6 ρ5 2 0:7

Ŷ P

rss

Ŷ
rss

Pe Ŷ
rss

G Ŷ P

rss

Ŷ
rss

Pe Ŷ
rss

G Ŷ P

rss

Ŷ
rss

Pe Ŷ
rss

G

3 3 100.00 100.70 115.48 100.00 165.76 617.15 100.00 198.68 2148.31

6 100.00 244.90 291.79 100.00 142.33 143.22 100.00 247.09 2241.68

3 4 100.00 96.36 101.24 100.00 68.88 100.66 100.00 449.56 533.31

6 100.00 367.50 39936.55 100.00 148.73 335.87 100.00 305.86 6376.77

3 5 100.00 265.84 739.76 100.00 82.69 100.41 100.00 261.39 1898.54

6 100.00 156.45 302.43 100.00 84.13 100.08 100.00 140.24 432.75

r m ρ5 2 0:8 ρ5 2 0:9 ρ5 2 0:99

Ŷ P

rss

Ŷ
rss

Pe Ŷ
rss

G Ŷ P

rss

Ŷ
rss

Pe Ŷ
rss

G Ŷ P

rss

Ŷ
rss

Pe Ŷ
rss

G

3 3 100.00 225.97 2637.77 100.00 184.83 6134.04 100.00 85.47 6979.82

6 100.00 104.58 364.84 100.00 123.55 775.12 100.00 199.44 34980.65

3 4 100.00 293.40 16504.85 100.00 407.98 49398.26 100.00 175.07 9795.42

6 100.00 151.47 669.86 100.00 111.68 410.73 100.00 151.95 13768.70

3 5 100.00 304.81 15635.19 100.00 124.38 901.03 100.00 172.62 24835.13

6 100.00 165.10 998.60 100.00 214.16 6096.85 100.00 176.63 17588.92
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18.5 CONCLUSIONS
It is observed from Table 18.1 that the PREs of the proposed ratio type exponential estimator using

rank set sampling, Ŷ
rss

Re and the proposed generalized exponential estimators using rank set sampling

Ŷ
rss

G are more efficient compared to the existing Samawi and Muttlak (1996) ratio estimator Ŷ
rss

R .

Also from Table 18.2, it can be observed the PREs of the proposed product type exponential esti-

mator using RSS, Ŷ
rss

Pe and the proposed generalized exponential estimators using RSS, Ŷ
rss

G are

more efficient compared to the existing product estimator Ŷ
rss

Pe .

Finally, from Tables 18.1 and 18.2 we can conclude that the proposed estimators Ŷ
rss

Re , Ŷ
rss

Pe , and

Ŷ
rss

G are more appropriate estimators than the existing popular estimators Ŷ R, Ŷ P, Ŷ
rss

R ; and Ŷ
rss

P has

appreciable efficiency.
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19.1 INTRODUCTION
There are situations in which obtaining exact values of sample units is difficult/expensive but

ranking the sample units in a set of small size without referring to their precise values is easy/

cheap. In such situations, ranked set sampling (RSS) serves as an efficient alternative to simple

random sampling (SRS). RSS was firstly introduced by McIntyre (1952) when he realized that it

is hard and time-consuming to obtain exact measurements of the mean pasture yield because it

requires harvesting the corps, but an expert can fairly rank some adjacent plots using eye inspec-

tion. Although RSS was first motivated by an agricultural problem, it soon found applications in

other fields, including forestry (Halls and Dell, 1966), environmental monitoring (Kvam, 2003),

medicine (Chen et al., 2005; Zamanzade and Mahdizadeh, 2017a), biometrics (Mahdizadeh and

Zamanzade, 2017a), reliability (Mahdizadeh and Zamanzade, 2017b), and educational studies

(Wang et al., 2016).

To draw a ranked set sample, one first determines the set size H and a vector of in-stratum sam-

ple sizes m5 m1; . . .;mHð Þ such that n5
PH
h51

mh is the total sample size. We then draw a simple

random sample of size nH from the population of interest and randomly partitions them into n sets

each of size H. Each set of size H is then ranked from smallest to largest. The ranking process in

this step is done using any cheap method which does not require referring to exact measurements

of the sample units. From the first m1 sets of size H, the sample units with smallest judgment rank

are selected for actual measurements. From the next m2 sets of size H, the sample units with judg-

ment rank 2 are selected for quantification. This process is continued until the sample units with

judgment rank H are selected for quantification from the last mH sets of size H. The resulting

ranked set sample is called unbalanced as the numbers of different judgment order statistics are not

equal. A ranked set sample is called balanced if m1 5 . . .5mH 5m, and the value of m in this case

is called the cycle size.
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A ranked set sample, in its general form, is denoted by X i½ �j:i5 1; . . .;H; j5 1; . . .;mi

� �
, where

X i½ �j is the jth measured unit with judgment rank i. The term “judgment rank” and the subscript ½:�
are used to indicate that the ranking process is done without observing actual values of the units in

the set and thus it may be inaccurate and contains errors (imperfect ranking). If the ranking is per-

fect, then subscript ½:� is replaced with ð:Þ, and the resulting ranked set sample is denoted by

X ið Þj:i5 1; . . .;H; j5 1; . . .;mi

� �
. In this case, the distribution of X ið Þj is the same as the distribution

of the ith order statistic from a sample of size H. Throughout this chapter, we assume that the rank-

ing process is consistent, which means that the same ranking process is applied to all sets of size

H. Under a consistent ranking process, it can be simply shown that the following identity holds

F tð Þ5 1

H

XH
h51

F h½ �;

where F h½ � is the cumulative distribution function (CDF) of a sample unit with judgment rank h.

19.2 EXTROPY ESTIMATION USING A RANKED SET SAMPLE
Let X be the variable of interest which is continuous with probability density function (pdf) f and

cumulative distribution function (CDF) F. As a measure of uncertainty, entropy of the random vari-

able of X is defined by Shannon (1948) as

H fð Þ52

ð1N

2N
log f xð Þð Þf xð Þdx:

Due to numerous applications of entropy in statistics, information theory, and engineering, the

problem of nonparametric estimation of H fð Þ has received considerable attention. Vasicek (1976)

was the first to propose estimating H fð Þ using spacings of order statistics. His estimator is based on

the fact that the entropy of a continuous random variable X with CDF F can be expressed as

H fð Þ5
ð1
0

log
d

dp
F21 pð Þ

� �
dp:

He proposed estimating the entropy by using the empirical distribution function and applying a

difference operator instead of a differential operator. Let X1; . . .;Xn be a simple random sample of

size n from the population of interest, with ordered values X 1ð Þ , . . .,X nð Þ. Then Vasicek (1976)’s

entropy estimator is given by

Hsrs
V 5

1

n

Xn
i51

log
n

2w
X i1wð Þ 2X i2wð Þ
� �n o

;

where w # n=2
� �

is an integer number called windows size, and X ið Þ 5X 1ð Þ for i, 1, and X ið Þ 5X nð Þ
for i. n.

Ebrahimi et al. (1994) improved Vasicek (1976)’s entropy estimator by assigning different

weights to the observations at the boundaries. Their corrected entropy estimator is given by

Hsrs
E 5

1

n

Xn
i51

log
n

ciw
X i1wð Þ 2X i2wð Þ
� �� 	

;
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where

ci 5

11
i2 1

m
i#m

2 m1 1# i# n2m ;

11
n2 i

m
n2m1 1# i# n

8>>><
>>>:

W is the window size defined as before, and X ið Þ 5X 1ð Þ for i, 1 and X ið Þ 5X nð Þ for i. n.

As a complement dual of entropy, Lad et al. (2015) introduced a new measure which is called

extropy, as follows:

J Xð Þ52
1

2

ð1N

2N
f 2 xð Þdx:

Lad et al. (2015) also investigated several interesting properties of extropy and resolved a fun-

damental question of Shannon’s entropy measure. Qui (2017) provided some characteristic results,

monotone properties as well as a lower bound for extropy of order statistics and record values. Qui

and Jia (2018) used extropy for testing uniformity and showed that the resulting test has a good

performance in comparison with its competitors in the literature including those tests based on

entropy due to Zamanzade (2015).

By following the lines of Vasicek (1976) and Ebrahimi et al. (1994), Qui and Jia (2018) devel-

oped two estimators for extropy. Let X1; . . .;Xn be a simple random sample of size n from the popu-

lation of interest, with ordered values X 1ð Þ , . . .,X nð Þ. Then the Qui and Jia (2018)’s extropy

estimators are given by

JsrsQ1 52
1

2n

Xn
i51

2w=n

X i1wð Þ 2X i2wð Þ
; JsrsQ2 52

1

2n

Xn
i51

2ci=n

X i1wð Þ 2X i2wð Þ
;

where

ci 5

11
i2 1

m
i#m

2 m1 1# i# n2m ;

11
n2 i

m
n2m1 1# i# n

8>>><
>>>:

W is the window size defined as before, and X ið Þ 5X 1ð Þ for i, 1 and X ið Þ 5X nð Þ for i. n.

Let X i½ �j:i5 1; . . .;H; j5 1; . . .;m
� �

be a balanced ranked set sample of size n5mH from the

population of interest, with the corresponding ordered value Z1 , . . ., Zn. Mahdizadeh and

Arghami (2009) modified Vasicek’s (1976) entropy estimator to be used in balanced RSS. Their

proposed estimator has the form

Hrss
V 5

1

n

Xn
i51

log
n

2w
Zi1w 2 Zi2wð Þ

n o
;

where Zi 5 Z1 for i, 1, and Zi 5 Zn for i. n.

Zamanzade and Mahdizadeh (2017b) developed some entropy estimators in balanced RSS using

entropy estimators proposed by Ebrahimi et al. (1994). The new estimator is given by

Hrss
E 5

1

n

Xn
i51

log
n

ciw
Zi1w 2Zi2wð Þ

� 	
;
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where

ci 5

11
i2 1

m
i#m

2 m1 1# i# n2m ;

11
n2 i

m
n2m1 1# i# n

8>>><
>>>:

Zi 5 Z1 for i, 1, and Zi 5 Zn for i. n.

By following the lines of Mahdizadeh and Arghami (2009) and Mahdizadeh and Zamanzade

(2017b), we can develop extropy estimators for RSS as follows:

JrssQ1 52
1

2n

Xn
i51

2w=n

Zi1w 2 Zi2w

; JrssQ2 52
1

2n

Xn
i51

ciw=n

Zi1w 2 Zi2w

;

where ci is as defined before, Zi 5 Z1 for i, 1, and Zi 5 Zn for i. n.

We conducted a simulation study to compare different extropy estimators in balanced RSS and

SRS designs in terms of root of mean square error (RME). In doing so, we generated 100,000 sam-

ples of sizes n5 10; 20; 30; 50 from standard normal, standard uniform, and standard exponential

distributions. The values of set size H are taken to be 2 and 5, and the value of window size w is

selected according to Grzegorzewski and Wieczorkowski’s (1999) heuristic formula, i.e.,

w5
ffiffiffi
n

p
1 0:5

� �
, where x½ � is the integer part of x.

The imperfect rankings model that we utilize is the fraction-of-random-rankings model devel-

oped by Frey et al. (2007). Under this model, the distribution of ith judgment order statistic is a

mixture of true ith order statistic and a random draw from the parent distribution, i.e.:

F i½ � 5λF ið Þ 1 12λð ÞF;
where the parameter λA 0; 1½ � determines the quality of the ranking. The values of λ in this simula-

tion study are selected from the set λA 0:5; 0:8; 1f g, which corresponds to moderate, good, and per-

fect ranking, respectively.

Tables 19.1�19.3 show the estimated RMSEs and biases of the extropy estimators. Table 19.3

presents the results when the parent distribution is standard normal. It can be seen that the RSS esti-

mators outperform their SRS counterparts. In both SRS and RSS schemes, JQ2 always works better

than JQ1. The performance of any extropy estimator improves if the total sample size (n), the set

size (H), or the value of (λ) increases, provided that other factors are fixed.

The simulation results for standard exponential and standard uniform distributions are presented

in Tables 19.2 and 19.3, respectively. The general trends are similar to those mentioned for

Table 19.1.

19.3 EXTROPY-BASED TESTS OF UNIFORMITY IN RSS
In this section, we evaluate the performance of extropy-based test of uniformity in RSS and com-

pare it with its SRS counterpart using Monte Carlo simulation. Testing uniformity is a very impor-

tant problem from a practical point of view, because goodness-of-fit test can be expressed as a

problem of testing uniformity. This follows from the probability integral transform theorem which
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states that if the variable of interest X follows a continuous distribution with cumulative distribution

function F, then Y5F Xð Þ follows a standard uniform distribution.

Qui and Jia (2018) showed that the standard uniform distribution maximizes the extropy J fð Þ
among all continuous distributions that possess a density function f and have a given support on

(0,1). Based on this property, they then proposed the following test statistic for testing uniformity

T srs 52 JsrsQ2;

and they proposed the reject the null hypothesis of uniformity of large enough values of Tsrs.

By following the lines of Qui and Jia (2018), one can also perform an extropy-based test of uni-

formity based on a ranked set sample using below test statistic

T rss 52 JrssQ2;

and rejects the null hypothesis of uniformity of large enough values of T rss.

Table 19.1 Estimated RMSE and Bias of Different Extropy Estimators When Parent

Distribution is Standard Normal Distribution With Jðf Þ52 0:141

RSS (λ5 1) RSS (λ5 0:8)

JrssQ1 JrssQ2 JrssQ1 JrssQ2

n H RMSE Bias RMSE Bias RMSE Bias RMSE Bias

10 2 0.13 2 0.10 0.07 2 0.04 0.13 2 0.10 0.07 2 0.04

5 0.11 2 0.09 0.06 2 0.03 0.12 2 0.09 0.06 2 0.03

20 2 0.05 2 0.04 0.03 2 0.02 0.06 2 0.04 0.04 2 0.02

5 0.05 �0.04 0.03 �0.01 0.05 �0.04 0.03 �0.01

30 2 0.04 �0.02 0.03 �0.01 0.04 �0.02 0.02 �0.01

5 0.03 �0.02 0.02 �0.01 0.03 �0.02 0.02 �0.01

50 2 0.02 �0.01 0.02 0.00 0.02 �0.01 0.02 0.00

5 0.02 �0.01 0.01 0.00 0.02 �0.01 0.02 0.00

RSS (λ5 0:5) SRS

JrssQ1 JrssQ2 JsrsQ1 JsrsQ2

n H RMSE Bias RMSE Bias RMSE Bias RMSE Bias

10 2 0.13 �0.10 0.07 2 0.04 0.13 2 0.10 0.07 2 0.04

5 0.12 2 0.10 0.07 2 0.04 0.13 2 0.10 0.07 2 0.04

20 2 0.06 2 0.04 0.03 2 0.02 0.06 2 0.04 0.04 2 0.02

5 0.05 2 0.04 0.03 2 0.02 0.06 2 0.04 0.04 2 0.02

30 2 0.04 2 0.03 0.02 2 0.01 0.04 2 0.02 0.02 2 0.01

5 0.04 2 0.02 0.02 2 0.01 0.04 2 0.02 0.02 2 0.01

50 2 0.02 2 0.01 0.02 0.00 0.02 2 0.01 0.02 0.00

5 0.02 2 0.01 0.02 0.00 0.02 2 0.01 0.02 0.00
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Remark 1. We have not considered the test of uniformity based on JrssQ1 in our comparison set,

because we have observed that JrssQ2 is uniformly better than JrssQ1.

In order to compare the power of different tests of uniformity, the following alternative distribu-

tions are considered

Ak:F xð Þ 5 12 12xð Þk; 0# x# 1; for k5 1:5; 2ð Þ

Bk:F xð Þ 5
(
2xk; 0# x# 0:5;

12 2 12xð Þk; 0:5# x# 1;
for k5 1:5; 2; 3ð Þ

Ck:F xð Þ 5
(
0:52 2 0:52xð Þk; 0# x# 0:5;

0:51 2 x20:5ð Þk; 0:5# x# 1;
for k5 1:5; 2ð Þ

Table 19.2 Estimated RMSE and Bias of Different Extropy Estimators When Parent

Distribution is Standard Exponential Distribution With Jðf Þ5 2 0:25

RSS (λ5 1) RSS (λ5 0:8)

JrssQ1 JrssQ2 JrssQ1 JrssQ2

n H RMSE Bias RMSE Bias RMSE Bias RMSE Bias

10 2 0.24 0.15 0.12 2 0.04 0.27 2 0.16 0.14 2 0.04

5 0.17 2 0.12 0.08 2 0.02 0.20 2 0.13 0.10 2 0.03

20 2 0.13 2 0.09 0.07 2 0.03 0.14 2 0.09 0.08 2 0.03

5 0.11 2 0.08 0.05 2 0.02 0.12 2 0.08 0.07 2 0.02

30 2 0.09 2 0.07 0.06 2 0.02 0.10 2 0.07 0.06 2 0.02

5 0.08 2 0.06 0.04 2 0.01 0.09 2 0.06 0.05 2 0.01

50 2 0.07 2 0.05 0.04 2 0.01 0.07 2 0.05 0.04 2 0.01

5 0.05 2 0.04 0.03 2 0.01 0.06 2 0.04 0.04 2 0.01

RSS (λ5 0:5) SRS

JrssQ1 JrssQ2 JsrsQ1 JsrsQ2

n H RMSE Bias RMSE Bias RMSE Bias RMSE Bias

10 2 0.27 2 0.16 0.15 2 0.05 0.26 2 0.16 0.15 2 0.05

5 0.24 2 0.15 0.13 2 0.04 0.26 2 0.16 0.15 2 0.05

20 2 0.14 2 0.09 0.08 2 0.03 0.15 2 0.09 0.09 2 0.03

5 0.13 2 0.09 0.08 2 0.02 0.15 2 0.09 0.09 2 0.03

30 2 0.10 2 0.07 0.06 2 0.02 0.11 2 0.07 0.07 2 0.02

5 0.10 2 0.07 0.06 2 0.02 0.11 2 0.07 0.07 2 0.02

50 2 0.07 2 0.05 0.05 2 0.01 0.07 2 0.05 0.05 2 0.01

5 0.07 0.05 0.04 2 0.01 0.07 2 0.05 0.05 2 0.01

264 CHAPTER 19 EXTROPY ESTIMATION IN RANKED SET SAMPLING



One can simply verify that as compared with uniform distribution, under alternative A, values

closer to zero are more probable, whereas under alternative B, values near to 0.5 and under alterna-

tive C, values close to 0 and 1 are more probable.

Under each alternative, we have generated 10,000 RSS and SRS samples of sizes 10, 20, 30,

and 50. The value of set size in RSS is taken from HA 2; 5f g and the quality of ranking is controlled

by fraction of random ranking as described in Section 19.2 with λA 1; 0:8; 0:5f g and the value of

window size (m) is selected from Grzegorzewski and Wieczorkowski’s (1999) heuristic formula,

i.e., w5
ffiffiffi
n

p
1 0:5

� �
, where x½ � is the integer part of x.

The power estimates of extropy-based tests of uniformity at significant level α5 0:1 are pre-

sented in Table 19.4.

We observe from Table 19.4 that the extropy-based test of uniformity in RSS outperforms its

counterpart in SRS. It is of interest to note that the power of T rss
Q2 increases if sample size (n),set

size (H), or the value of (λ) increases, provided that other factors are fixed. This is consistent with

what we observed in the previous section.

Table 19.3 Estimated RMSE and Bias of Different Extropy Estimators When Parent

Distribution is Standard Uniform Distribution With Jðf Þ5 2 0:5

RSS (λ5 1) RSS (λ5 0:8)

JrssQ1 JrssQ2 JrssQ1 JrssQ2

n H RMSE Bias RMSE Bias RMSE Bias RMSE Bias

10 2 0.43 2 0.36 0.19 2 0.12 0.46 2 0.37 0.21 2 0.14

5 0.37 2 0.31 0.15 2 0.09 0.40 2 0.34 0.17 2 0.11

20 2 0.24 2 0.21 0.11 2 0.08 0.24 2 0.22 0.11 2 0.08

5 0.21 2 0.19 0.08 2 0.06 0.22 2 0.20 0.10 2 0.07

30 2 0.17 2 0.16 0.07 2 0.06 0.17 2 0.16 0.08 2 0.06

5 0.16 2 0.15 0.06 2 0.05 0.16 2 0.15 0.07 2 0.05

50 2 0.12 2 0.11 0.05 2 0.04 0.12 2 0.11 0.05 2 0.04

5 0.11 2 0.11 0.04 2 0.03 0.11 2 0.11 0.05 2 0.04

RSS (λ5 0:5) SRS

JrssQ1 JrssQ2 JsrsQ1 JsrsQ2

n H RMSE Bias RMSE Bias RMSE Bias RMSE Bias

10 2 0.46 2 0.38 0.21 2 0.14 0.46 2 0.39 0.22 2 0.15

5 0.44 2 0.37 0.20 2 0.13 0.46 2 0.39 0.22 2 0.15

20 2 0.25 2 0.22 0.12 2 0.09 0.25 2 0.22 0.12 2 0.09

5 0.24 2 0.21 0.11 2 0.08 0.25 2 0.22 0.12 2 0.09

30 2 0.18 2 0.16 0.08 2 0.06 0.18 2 0.16 0.08 2 0.07

5 0.17 2 0.16 0.08 2 0.06 0.18 2 0.16 0.08 2 0.07

50 2 0.12 2 0.12 0.05 2 0.04 0.12 2 0.12 0.05 2 0.04

5 0.12 2 0.11 0.05 2 0.04 0.12 2 0.12 0.05 2 0.04
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CHAPTER

20SELECTION AND ESTIMATION
IN RANKED SET SAMPLING
USING R

Antonio Arcos, Beatriz Cobo and Marı́a del Mar Rueda
Department of Statistics and Operational Research, University of Granada, Granada, Spain

20.1 INTRODUCTION
Ranked set sampling (RSS) is an alternative to simple random sampling that has been shown to

outperform simple random sampling (SRS) in many situations. RSS, originally proposed by

McIntyre (1952), has recently attracted a considerable amount of interest and research as an alter-

nate data collection method to SRS.

McIntyre’s study generated a rapidly expanding body of research literature in order to estimate

parameters as means. Dell and Clutter (1972) proved that the sample mean based on the RSS is

unbiased for the population mean regardless of the errors of ranking. Bouza (2002) estimated the

mean in ranked set sampling with nonresponses and in 2009 proposed a procedure for estimating

the mean of a sensitive quantitative character. Pelli and Perri (2017) improved mean estimation in

ranked set sampling using the Rao regression-type estimator. Other authors were responsible for

estimating the variance (Stokes, 1980a; MacEachern et al., 2002; Perron and Sinha, 2004) from a

nonparametric point of view, distribution functions (Stokes and Sager, 1988), and correlation coef-

ficients (Stokes, 1980b). There has been a growing literature in RSS methods in recent years; see,

for example Wolfe (2010, 2012).

Applications of RSS have been limited mostly to ecological, agricultural, and environmental

sampling. Case studies can be found in Halls and Dell (1966), Al-Saleh and Al-Shrafat (2001), and

Murff and Sager (2006). Thorough reviews of the RSS literature can be found in Patil et al. (1999)

and Patil (2002).

There are many statistical softwares for working with complex surveys, but there are few that

have implemented modules to work with ranked set sampling. In this, as in other types of sampling,

two aspects must be highlighted: (1) the process of selecting the sample and (2) the parameter esti-

mation process. We are going to focus on the first, since the number of different estimators pro-

posed for different parameters is so broad.

Therefore in this work we are going to analyze the little software available for the selection of

RSS balanced samples (the basic method) and we provide pseudocode for certain modifications of

the basic method.

We will emphasize language R (R Core Team, 2017) as it is the free software that is most com-

monly used in the scientific community nowadays.
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20.2 NOTATION AND BASIC DEFINITIONS
We will use the same notation as in Chen et al. (2004). An initial simple random sample of k units

from the population is selected and subjected to ordering on the attribute of interest via some rank-

ing process. The item judged to be the smallest is included as the first item in our ranked set sam-

ple and is noted by X½1�. We select the item judged to be the second smallest of the k units in a

second random sample and include it in our ranked set sample for measurement of the attribute of

interest. This second measured observation is denoted by X½2�. This process is continued until we

have selected the unit judgment ranked to be the largest of the k units in the kth random sample,

denoted by X½k�, for measurement and inclusion in our ranked set sample. The observations

X½1�;X½2�; . . . ;X½k� represent a ranked set sample with set size k. In order to obtain a ranked set sam-

ple with a desired total number of measured observations k � m, we repeat the entire cycle process

m independent time, yielding the data X½1�j;X½2�j; . . . ;X½k�j for j5 1; . . . ;m. This is referred to as a

balanced RSS, where balanced indicates that the same number of observations were taken at each

of the judgment ranks.

This is the usual RSS procedure. An alternative method is allocating sample units into ranks in

different proportions; thus obtaining an unbalanced ranked set sample.

20.3 USING R FOR RANKED SET SAMPLING
In this section we describe how to obtain samples by ranked set sampling using the software R and

we provide a code.

In the R web, there is a package, called NSM3, that calculates the ranked set sampling.

Concretely, compute the ranked set sampling given a set size and number of cycles based on a

specified auxiliary variable. This function only considers the option of balanced RSS.

20.3.1 BALANCED RANKED SET SAMPLING

To create ranked sets we must partition the selected first-phase sample into sets of equal size. In

order to plan an RSS design, we must therefore choose a set size that is typically small, around

three or four, to minimize the ranking error. Call this set size k, where k is the number of sample

units allocated to each set. Now proceed as follows:

• Step 1: randomly select k2 units from the population.

• Step 2: allocate the k2 selected units as randomly as possible into k sets, each of size k.

• Step 3: without yet knowing any values for the variable of interest, rank the units within each

set based on a perception of relative values for this variable. This may be based on personal

judgment or done with measurements of a covariate that is correlated with the variable of

interest.

• Step 4: choose a sample for actual analysis by including the smallest ranked unit in the first set,

then the second smallest ranked unit in the second set, continuing in this fashion until the

largest ranked unit is selected in the last set.
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• Step 5: repeat steps 1 through 4 for m cycles until the desired sample size, n5mk, is obtained

for analysis.

R Code
RSS computes the indices of a sample obtained for balanced RSS.

USAGE

RSS(k,m,ranker)

ARGUMENTS

• k: set size;

• m: number of cycles;

• ranker: auxiliary variable used for judgment ranking.

VALUE

Returns a vector of the indices corresponding to the observations selected to be in the RSS.

FUNCTION CODE

library(NSM3)
RSS
function (k, m, ranker)
{

N ,- length(ranker)
num.samples ,- m * k
SRS.index ,- matrix(sample(1:N, num.samples * k), nrow 5 k)
selected.rankers ,- matrix(ranker[SRS.index], nrow 5 k)
sorted ,- apply(selected.rankers, 2, sort)
sample.ranks ,- apply(selected.rankers, 2, order)
output ,- 0
for (i in 1:num.samples) {

index ,- floor((i - 1)/m) 1 1
output[i] ,- SRS.index[sample.ranks[index, i], i]

}
return(sort(output))

}
,environment: namespace:NSM3.

20.3.2 UNBALANCED RANKED SET SAMPLING

We consider two situations.
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20.3.2.1 Case 1
We are interested to obtain an URSS of size n5 kUm1 s; s 6¼ 0. Thus we follow the same proce-

dure as in the previous case RRS, and we include then the elements remaining. The procedure is

explained below.

• Step 1: randomly select k2 units from the population.

• Step 2: allocate the k2 selected units as randomly as possible into k sets, each of size k.

• Step 3: without yet knowing any values for the variable of interest, rank the units within each

set based on a perception of relative values for this variable.

• Step 4: choose a sample for actual analysis by including the smallest ranked unit in the first set,

then the second smallest ranked unit in the second set, continuing in this fashion until the

largest ranked unit is selected in the last set.

• Step 5: let the number of cycles m5 ½n=k�, that is to say, the integer is less than or equal to n=k.
Repeat steps 1 through 4 for m cycles.

• Step 6: If s. 0, we choose integers j1; j2; :::; js; ðj1 6¼ j2 6¼ ::: 6¼ jsÞ from 1; 2; :::; k. Then we select

s independent SRSWR samples, each of size k. Observations from each of the samples are

ranked with respect to their auxiliary variable. From the first sample, we select j1th ranked

observation, j2th observation from the second sample and js ranked observation from the sth

sample

• Step 7. The final sample contains the units obtained in steps 5 and 6.

R Code
ranked1 computes the indices of a sample obtained for balanced or unbalanced (Case1) RSS.

USAGE

ranked1(n,k,ranker)

ARGUMENTS

• n: sample size;

• k: set size;

• ranker: vector which contains an auxiliary variable.

VALUE

Returns a vector which contains the sample indices for balanced or unbalanced (Case 1) RSS.

FUNCTION CODE

ranked15function(k,n,ranker){
N5length(ranker)
m5n%/%k
s5n%%k
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SF5RSS(k,m,ranker)
if(s!50){

mas05sample(N,k*s, replace5T)
x5ranker[mas0]
gr05as.factor(rep(1:s,k))
sf0data15data.frame(mas0,x,gr5gr0)
sf0dataorder,- sf0data1[order(sf0data1$gr,sf0data1$x),]
i5sample(k,s)
SF ,- c(SF, sf0dataorder[i,]$mas0)
SF ,- sort(SF)

}
return(SF)

}

20.3.2.2 Case 2
We are interested in an unbalanced sample in the following way: choose a sample for actual analy-

sis by including the smallest ranked units in the first n1 sets, then the second smallest ranked units

in the n2 second sets, continuing in this fashion until the largest ranked unit is selected in the last

nk sets. The final sample size is n5n1 1 n2?1 nk.

R Code
ranked2 computes the indices of a sample obtained for unbalanced (Case2) RSS.

USAGE

ranked2(k,ss,ranker)

ARGUMENTS

• k: set size;

• ss: vector with the sample size allocations;

• ranker: vector which contains an auxiliary variable.

VALUE

Returns a vector which contains the sample indices for unbalanced (Case 2) RSS.

FUNCTION CODE

ranked25function(k,ss,ranker){
N5length(ranker)
n5sum(ss)
SRS.index ,- matrix(sample(1:N, n*k), nrow 5 k)
selected.rankers ,- matrix(ranker[SRS.index], nrow 5 k)
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sorted ,- apply(selected.rankers, 2, sort)
sample.ranks ,- apply(selected.rankers, 2, order)
ssa,-cumsum(ss)
output,-c()
for (l in 1:ssa[1]) {

SRS.index[,1:ssa[1]][,l][sample.ranks[,l]][1]-.output1
output,-c(output, output1)

}
for (t in 2:length(ss)) {

for (ll in 1:(ss[t])) {
SRS.index[,(ssa[t-1]11):(ssa[t])][,ll]
[sample.ranks[,(ssa[t-1]11):(ssa[t])][,ll]][t]-.outputt
output,-c(output, outputt)
}

SF ,- sort(output)
}

return(SF)
}

20.3.3 THE MEDIAN RANKED SET SAMPLING METHOD

The ranked set sampling (RSS) method as suggested by McIntyre (1952) may be modified to come

up with new sampling methods that can be made more efficient than the usual RSS method. It is

known that there will be a loss in precision due to the errors in ranking the units. One modification

to reduce the errors in ranking, namely median ranked set sampling (MRSS), is considered in this

study; see Muttlak (1997) for details.

In the MRSS procedure, select k random samples of size k units from the population and rank

the units within each sample with respect to a variable of interest. If the sample size k is odd, from

each sample select for measurement the k1 1ð Þ=2� �
th smallest rank (the median of the sample). If

the sample size is even, select for measurement from the first k=2 samples the k=2
� �

th smallest

rank and from the second k=2 samples the k1 2ð Þ=2� �
th smallest rank. The cycle may be repeated

m times to get the n5 k � m units which form the MRSS sample.

R Code
MRSS computes the indices of a sample obtained for RSS using the median method.

USAGE

MRSS(k, ranker)

ARGUMENTS

• k: set size;

• ranker: vector which contains an auxiliary variable.
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VALUE

Returns a vector which contains the sample indices for MRSS,

FUNCTION CODE

MRSS 5 function (k,ranker){
N ,- length(ranker)
num.samples ,- k
SRS.index ,- matrix(sample(1:N, num.samples * k), nrow 5 k)
selected.rankers ,- matrix(ranker[SRS.index], nrow 5 k)
sorted ,- apply(selected.rankers, 2, sort)
sample.ranks ,- apply(selected.rankers, 2, order)
output,-c()
if (k%%2!50) {

(k11)/2-.med
for (col in 1:k) {

SRS.index[,1:k][,col][sample.ranks[,col]][med]-.output1
output,- c(output,output1)
}

}
if (k%%2550) {

outputa,-c()
outputb,-c()
k/2-.med
for (col in 1:(k/2)) {
SRS.index[,1:(k/2)][,col][sample.ranks[,col]][med]-.output1
outputa,- c(outputa,output1)

}
for (col in 1:(k/2)) {

SRS.index[,((k/2)11):k][,col][sample.ranks[,((k/2)11):k][,col]][med11]
-.output2

outputb,- c(outputb,output2)
}

output,- c(outputa,outputb)
}
SF ,- sort(output)
return(SF)
}

20.4 ESTIMATION USING RSS
While this may change as RSS methodology progresses, at this point in time standard software

packages are sufficient to analyze RSS data once they have been collected.
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For example, let h(x) be any function of x. For an RSS sample, the estimator

µ̂hRSS 5
1

mk

Xk
r51

Xm
i51

hðX r½ �iÞ

is unbiased for the expectation of hðXÞ if the ranking mechanism in RSS is consistent (Chen et al.,

2004).

The natural estimates of Vðµ̂hRSSÞ using an RSS sample are given by

s2RSS 5
1

mk2 1

Xk
r51

Xm
i51

hðX r½ �iÞ2µ̂hRSS

� �2

These estimators can easily be calculated from standard software packages.

20.5 EXAMPLES

20.5.1 RANKING WITH AN INEXPENSIVE QUANTITATIVE MEASUREMENT

When auxiliary information is available for the entire population of size N (an inexpensive quanti-

tative measurement), the previous functions can be used for select units included in the RSS sam-

ple. The following lines show how to do it with the different types of RSS previously reported.

set.seed (1)
response,-rnorm(200,20,2)
auxiliary,-rnorm(200,10,1)
#Get the indices for a RSS with set size 3 and 2 cycles
RSS(2,3,auxiliary)
#66 74 133 147 172 183
#Balanced
ranked1(3,12,auxiliary)
#[1] 7 67 68 72 83 88 107 128 142 179 180 200
#Unbalanced Case 1
ranked1(3,13,auxiliary)
#[1] 2 4 10 12 48 51 56 70 99 115 149 173 200
#Using MRSS
MRSS(3,auxiliary)
#[1] 17 66 114
MRSS(4,auxiliary)
#[1] 12 54 147 164
#Unbalanced Case 2
ranked2(3,c(2,3,4,5),auxiliary)
#[1] 14 32 63 93 134 136 151 169 191

In all previous examples, the response observed can be easily show using, for example:

response[MRSS(3,auxiliary)]
#[1] 21.37948 18.86266 17.90403
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20.5.2 RANKING WITH A PROFESSIONAL JUDGMENT

Suppose you want to determine the average production in an olive grove like the one shown in the

figure:

There are N5 2070 olive trees. It is planned to select a sample of size n5 30, taking sets of

size m5 3, which will be sorted by visual inspection. A labeling and object count computer pro-

gram provides the indices i5 1; . . . ; 2070 that identifies the objects in the photograph. The follow-

ing program lines select three simple random samples:

N52070
m53
num.samples ,- m * m
index ,- matrix(sample(1:N, num.samples), nrow 5 m, byrow5T)
index

[,1] [,2] [,3]
[1,] 213 462 333
[2,] 1321 1865 334
[3,] 234 331 5

The user provides the order by visual inspection of the matrix

213 462 333

1321 1865 334

234 331 5

0
@

1
A

so that it is the matrix

213 333 462

334 1865 1321

234 5 331

0
@

1
A;
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from the photographic information of the figure:

Finally, units 213, 331, and 1865 are selected for observation of the main variable. The previous

process is repeated until all the variables of interest in the sample are observed.

20.6 ADDITIONAL SOFTWARE
To our knowledge, there are few programs that perform RSS. One of them is the one described

briefly below.

Visual Sample Plan (VSP) is a software tool developed by Pacific Northwest National

Laboratory (PNNL), initially conceived and sponsored through DOE-Office of Health, Safety and

Security (HHS), that supports the development of a sampling plan and statistical data analysis. VSP

has many sampling design and statistical analysis modules focused on soils, sediments, surface

water, streams, groundwater, buildings, and others. Many statistical sampling designs are available,

including ranked set sampling.

Either professional judgment or an inexpensive quantitative (screening) measurement of the var-

iable of interest can be used to do the ranking when ranked set sampling is used. VSP calculates

the number of samples and field ranking locations needed to estimate the mean using ranked set

sampling and places the field ranking locations on the map using simple random sampling.

Ranked set sampling design for estimating a mean is implemented for a balanced or unbalanced

design. It is possible to determine the number of samples, take into account the sample size, the set

size, the relative precision, and the number of cycles to compute the total number of samples that

should be collected. For ranked set sampling, VSP produces field sample markers on the map that have

different shapes and colors. It is also possible to include cost-effectiveness parameters in the analysis.
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21VARIANCE ESTIMATION OF
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21.1 INTRODUCTION
Ranked set sampling is an alternative sample design, which generally provided gains in accuracy

with respect to simple random sampling with replacement (SRSWR). It was proposed for estimat-

ing the yield of pastures by McIntyre (1952). He established this method to estimate the mean pas-

ture yield using RSS and found its inferences more efficient than selecting the sample using a

simple random sampling (SRS) design. The units may be ranked by means of a cheap procedure

and then an order statistics is selected from each of the independent samples selected using SRS

with replacement (SRSWR). It turned out that the use of ranked set sampling is highly beneficial

and leads to estimators which are more precise than the usual sample mean per unit ones. The

method is now referred to as the ranked set sampling (RSS) method in the literature. Takahasi and

Wakimoto (1968) were the first to prove that the mean estimator from RSS is more efficient than

that from SRS. This led to a lot of research that has been done by various authors including Dell

and Clutter (1972), Stokes (1980), Patil et al. (1995), MacEachern et al. (2002), Chen et al. (2003),

Perron and Sinha (2004), and Frey (2011).

In this chapter, we propose a model using RSS, instead of SRS with replacement (SRSWR), for

studies of variance. The rest of this chapter is organized as follows: Section 21.2 develops the study

of the one-way analysis of variance. Section 21.3 is devoted to the presentation of estimators of the

variance. Section 21.4 is devoted to the development of numerical studies of the behavior of the

analyzed models in testing hypothesis. We discuss the results obtained from the use of SRSWR and

develop alternative RSS models in the next section. Samples of persons infected with the AIDS

virus are analyzed and the behavior of the accuracy of the different alternative estimators are also

discussed.
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21.2 ESTIMATION OF THE TREATMENT EFFECTS IN A ONE-WAY LAYOUT
IN RANKED SET SAMPLING

Consider the one-way layout

Yij 5μi 1 åij 5μ1αi 1 åij; i5 1; . . .; k; j5 1; . . .; n ið Þ: (21.1)

This issue is important in many applications and has been studied extensively. Let Y be the vari-

able of interest. We select independent samples of size n(i), i5 1,. . .,k, using simple random sam-

pling with replacement (SRSWR), for estimating the parameters of interest μ, αi 5 (μi � μ),
i5 1,. . .,k. We assume that for any i5 1,. . .,k and j5 1,. . .,n(i), E(åij)5 0, V(åij)5σ2i and

Cov åijåi0j0
� �

5 0, if i 6¼i0 and/or j6¼j0. The usual estimation of the effects αi is

α�
i 5

PnðiÞ
j51

yij

nðiÞ 2

Pk
i51

PnðiÞ
j51

yij

n
5 yi 2 y
� �

; where n5
Xk
i51

nðiÞ (21.2)

Its variance is given by

Vðα�
i Þ5E yi 6μi 6μ2y

� �2
5

σ2
i

nðiÞ 1
σ2

n
1 μi2μ
� �2

: (21.3)

Muttlak (1998) proposed to use RSS. As usual, the model was based on the selection of n(i)

independent samples of size n(i) using SRSWR and to rank each of them. That is we have hypo-

thetically for each i 5 1,. . .,k si 5 Yi11. . .;Yi1nðiÞ
� �

1
; . . .; YinðiÞ1. . .;YinðiÞnðiÞ

� �
nðiÞ

n o
and by ranking, we

have the ranked samples Yi1ð1Þ. . .;YiðnðiÞÞ
� �

; . . .; YinðiÞð1Þ. . .;YinðiÞðnðiÞÞ
� �� �

. Y is measured in the statistic

of order (SO) t in the tth sample. Then our set of results for treatment “i” is

sðiÞ5 Yi1ð1Þ
� �

; Yi2ð2Þ
� �

; . . .; YitðtÞ
� �

. . .; Yinð1ÞnðiÞ
� �� �

5 Yið1Þ; Yið2Þ; . . .; YiðtÞ. . .; YiðnðiÞÞ
� �

(21.4)

We deal with the linear model

Yi jð Þt 5μi 1 εi jð Þt 5μ1αi 1 εi jð Þt;i5 1; . . .; k; j5 1; . . .; n ið Þ

yðiÞ 5

PnðiÞ
j51

yiðjÞ

nðiÞ ; yRSS 5

Pk
i51

PnðiÞ
j51

yiðjÞj

n
; n5

Xk
i51

nðiÞ

It is unbiased and

VðyðiÞÞ5

PnðiÞ
j51

σ2
iðjÞ

n2ðiÞ ; σ2
iðjÞ 5VðyiðjÞÞ

It was hypothesized that, σ2
iðjÞ 5σ2

ðiÞ, which is the counterpart of the hypothesis used in the

development of the one-way layout ANOVA. σ2
i 5σ2, in the inferences based on SRSWR. Using

the relation established by Takahasi and Wakimoto (1968) we can derive that for any i5 1,. . .,k
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VðyðiÞÞ5
σ2

i

nðiÞ 2

PnðiÞ
j51

Δ2
iðjÞ

n2ðiÞ ; ΔiðjÞ 5μiðjÞ 2μðiÞ; μiðjÞ 5EðyiðjÞÞ;

Let us look for the RSS counterpart of the results in Eqs. (21.2) and (21.3).

Proposition 2.1: α�
ðiÞ 5

PnðiÞ
j51

yiðjÞ

nðiÞ 2

Pk
i51

PnðiÞ
j51

yiðjÞ

n
5 yðiÞ 2 yRSS
� �

is unbiased and more accurate than α�
i .

Proof: Due to the unbiasedness of the RSS estimators

Eðα�
ðiÞÞ5Eðα�

i Þ5EðyðiÞÞ2EðyRSSÞ5μi 2μ

and Vðα�
ðiÞÞ5E yðiÞ 6μi 6μ2yRSS

� �2
5

PnðiÞ
j51

σ2
iðjÞ

n2ðiÞ 1

Pk
i51

PnðiÞ
j51

σ2
iðjÞ

n2
1 μi2μ
� �2

We have that σ2
iðjÞ 5σ2

i 2Δ2
iðjÞ then substituting in the above equation

Vðα�
ðiÞÞ5

σ2
i

nðiÞ 1

Pk
i51

nðiÞσ2
i

n2
1 μi2μ
� �2

2ψð1Þ

where

Ψð1Þ5

PnðiÞ
j51

Δ2
iðjÞ

n2ðiÞ 1

Pk
i51

PnðiÞ
j51

Δ2
iðjÞ

n2
$ 0

represents the gain in accuracy due to the use of RSS.

Remark 1: If ’i5 1; . . .; k; σ2
i 5σ2.

σ2

nðiÞ 1
σ2

n
and the usual relation is obtained.

21.3 ESTIMATION OF THE VARIANCE IN RSS
A basic relationship in RSS is

σ2 5
1

k

Xk
r51

σ2
ðrÞ 1 ðμðrÞ2μðr0ÞÞ2; if r 6¼ r0 (21.5)

Stokes (1980) suggested as an estimator of it, for one cycle,

σ2
S 5

1

k2 1ð Þ
Xk
r51

Y rð Þi2μrss

� �2
where; μrss 5

1

k

Xk
r51

Y rð Þ

and its expectation is E σ2
S

� �
5σ2 1

1

k k2 1ð Þ
Xk
r51

μ rð Þ2μrss

� �2

Considering the structure of the one-way ANOVA the estimator proposed by Stokes (1980) is

given in the next proposition.
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Proposition 3.1: Stokes (1980); σ2
S 5σ2 1

1

ðnk2 1Þ
Xn
i51

Xk
r51

Y rð Þi2μrss

� �2

where μrss 5
1

nk

Xn
i51

Xk
r51

Y rð Þi estimates the RSS variance and if n-Nthen E σ2
S

� �
5σ2:

Stokes derived that this estimator overestimates σ2 and its variance is

V σ2
S

� �
5

n

nk21ð Þ2
(

nk21

nk

� 	2Xk
r51

μ4 rð Þ 1 4
Xk
r51

Δ2
rð Þσ

2
rð Þ 1 4

nk2 1

nk

� 	Xk
r51

Δ rð Þμ3 rð Þ

1
4n

k2n2

XX
r, r0

σ2rð Þσ
2
r0ð Þ 2

2 n2 1ð Þ2 nk21ð Þ2
k2n2

Xk
r51

σ4rð Þ

)

Note that this error depends on moments of the distribution of the order statistics then the vari-

able’s distribution must be known. Hence to derive an explicit formula is very complex.

MacEachern et al. (2002) proposed to use as an estimator

σ2
M 5σ2

M1 1σ2
M2 (21.6)

where

σ2
M1 5

1

2n2k2

Xk
r 6¼r0

Xn
i51

Xn
j51

Y rð Þi2Y r0ð Þj
� �2

(21.7)

and

σ2
M2 5

1

2n n21ð Þ2k2
Xk
r51

Xn
j51

Xn
j51

Y rð Þi2Y r0ð Þj
� �2

(21.8)

It is unbiased. The next proposition gives its properties.

Proposition 3.2: MacEachern et al. (2002); σM
2 is unbiased and its variance, if μ(r) ,N, is

V σ2
M

� �
5A1B1C1D1F

where A5
1

nk2

Xk
r51

μ4 rð Þ, B5
4

nk2

Xk
r51

μ3 rð ÞΔ rð Þ, C5
4

nk2

Xk
r51

σ2
ðrÞΔ

2
rð Þ,

D5
4

n2k4

X
r, r0

σ2rð Þσ
2
r0ð Þ, F5

k2 n2 1ð Þ2 2

n n2 1ð Þk4
Xk
r51

σ2rð Þ

Using the mean square errors (MSEs) and one-way ANOVA decomposition ideas we have that

MST5MS12MS2

taking μrss rð Þ 5
1

n

Xn
i51

Y rð Þi, then

MS15
1

k2 1

Xk
r51

Xn
i51

Y rð Þi2μrss

� �2
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MS25
1

k2 1

Xk
r51

Xn
i51

Y rð Þi2μrss rð Þ
� �2

Then the rank-residual MSE is:

MSR5
1

k n2 1ð Þ
Xk
r51

Xn
i51

Y rð Þi2μrss rð Þ
� �2

The expectations of the MSEs are

E MSTð Þ5 1

k

Xk
r51

σ2rð Þ 1
1

n k2 1ð Þ
Xk
r51

μ rð Þ2μ
� �2

E MSRð Þ5 1

k

Xk
r51

σ2rð Þ:

Then the variance of σ2
M as

σ2
M 5

k2 1ð ÞMST1 nk2 k1 1ð ÞMSR

nk

and its expectations given by

E σ2
M

� �
5

n1 2

nk

Xk
r51

σ2rð Þ 1
1

n2k

Xk
r51

μðrÞ2μ
� �2

The ordering made using an auxiliary variable X is equivalent to the use of SRS in the inferior

of the scenarios. It is well known that RSS is equivalent to it, in terms of accuracy, in such cases.

That is, for any rμ rð Þ 52μ. Hence the statistic

VðnÞ5 MST

MSR
(21.9)

under the hypothesis of random ranking must be close to 1. Therefore, we can evaluate the useful-

ness of the ranking of Y, produced by X, by analyzing V(n), as in regression analysis, through the

coefficient of determination. In this case, large values of V(n) imply that the ranking is more differ-

ent than the ranking produced by pure randomness. That is reasoning similar to the nonparametric

evaluation of the goodness of regression fitting. Under the hypothesis of normality V(n) is distrib-

uted F(k, k(n � 1)) and inferences can be developed using the classic parametric theory using F

tests.

21.4 MONTE CARLO EVALUATION

21.4.1 NORMALITY-BASED TESTS

One thousand runs (samples) were generated using the uniform (0,2), normal (0,1), exponential

(1), gamma with density function f(x)5 x4exp(2x)/Γ (5) ; x. 0, U-shaped with density function f(x)5
3x2/2; xA[0, 1] and the lognormal (0,1) distribution. The sample size parameters were nA{2, 3, 4, 5}
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and kA{2, 3, 4, 5}. The ANOVA was performed using the normal approximation and α5 0.05. An

estimation of the percentage of samples in which we accepted the true hypothesis H0 was computed for

SRS and RSS and the results are presented in Table 21.1.

Remark: When data are not normally distributed, the RSS-ANOVA had a better performance than the

classic SRS procedure. This could be due to the convergence of linear rank statistics to normality.

Tables 21.2�21.7 present the results of 1000 runs (samples) generated, using different bivariate

distributions, with ρA{0.00, 0.05, 0.75, 0.90, 0.95}. We computed the values of V(mean) using the

following formula as

VðmeanÞ5 1

1000

X
1# h# 100

VðnÞh (21.10)

Table 21.1 Percentage of Acceptance of the True Hypothesis H0 Using One-Way ANOVA

[1000 Runs (Samples) Generated and α5 0.05]

Distribution n k SRS RSS Distribution n k SRS RSS

Uniform (0,2) 2 2 0.76 0.72 Normal (0,1) 2 2 0.88 0.87

2 3 0.74 0.71 2 3 0.87 0.87

2 4 0.78 0.71 2 4 0.88 0.87

2 5 0.78 0.77 2 5 0.91 0.88

5 2 0.79 0.77 5 2 0.93 0.89

5 3 0.79 0.76 5 3 0.93 0.92

5 4 0.82 0.78 5 4 0.93 0.93

5 5 0.81 0.78 5 5 0.94 0.92

Exponential(1) 2 2 0.54 0.67 Gamma x4exp(2x)/Γ (5) x. 0 2 2 0.66 0.69

2 3 0.54 0.67 2 3 0.66 0.69

2 4 0.66 0.72 2 4 0.66 0.73

2 5 0.71 0.73 2 5 0.68 0.76

5 2 0.70 0.72 5 2 0.75 0.79

5 3 0.71 0.72 5 3 0.76 0.77

5 4 0.72 0.74 5 4 0.77 0.84

5 5 0.74 0.79 5 5 0.77 0.88

U-shaped f(x)5 3x2/2

xA[0, 1]

2 2 0.54 0.68 Lognormal(0,1) 2 2 0.86 0.83

2 3 0.56 0.69 2 3 0.86 0.82

2 4 0.56 0.69 2 4 0.88 0.85

2 5 0.59 0.69 2 5 0.88 0.85

5 2 0.61 0.74 5 2 0.89 0.87

5 3 0.69 0.74 5 3 0.88 0.87

5 4 0.69 0.82 5 4 0.89 0.90

5 5 0.71 0.84 5 5 0.89 0.90
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Table 21.3 Values of V(Mean) Under Different Values of ρ and a Joint Normal Distribution

Distribution n k ρ5 0 ρ5 0.05 ρ5 0.50 ρ5 0.75 ρ5 0.90 ρ5 0.95

Normal (0,1) 2 2 1.07 1.15 8.63 8.91� 8.88� 9.09�

2 3 1.06 1.15 8.73 8.98� 8.98� 9.17�

2 4 1.07 1.14 8.72� 8.18� 8.78� 9.28�

2 5 1.07 1.11 8.72� 8.78� 8.79� 9.28�

5 2 1.02 1.11 8.74� 8.78� 8.84� 9.39�

5 3 1.02 1.11 8.65� 9.07� 8.95� 9.47�

5 4 1.06 1.13 8.79� 9.16� 9.07� 9.58�

5 5 1.02 1.13 8.81� 9.28� 9.59� 9.75�

Table 21.4 Values of V(Mean) Under Different Values of ρ and a Joint Exponential

Distribution

Distribution n k ρ5 0 ρ5 0.05 ρ5 0.50 ρ5 0.75 ρ5 0.90 ρ5 0.95

Exponential(1) 2 2 1.07 2.25 3.73 5.05 6.18 6.66

2 3 1.06 2.25 3.73 5.18 6.18 6.67

2 4 1.07 2.24 3.72 5.15 6.28 6.68

2 5 1.07 2.22 3.7 7 5.35 6.39 6.68

5 2 1.02 2.22 3.76 5.55 6.44 6.69

5 3 1.02 2.22 3.7 5 5.57 6.55 6.77

5 4 1.06 2.23 3.77 5.56 6.57 6.88

5 5 1.02 2.23 3.78 5.58 6.59 6.85

Table 21.2 Values of V(Mean) Under Different Values of ρ and a Joint uniform Distribution

Distribution n K ρ5 0 ρ5 0.05 ρ5 0.50 ρ5 0.75 ρ5 0.90 ρ5 0.95

Uniform (0,2) 2 2 1.07 1.59 3.43 4.85 5.55 6.77

2 3 1.06 1.59 3.43 4.88 5.59 6.77

2 4 1.07 1.59 3.42 4.89 5.80 7.08

2 5 1.07 1.59 3.4 4 4.94 5.85 7.28

5 2 1.08 1.59 3.46 4.94 5.84 7.39

5 3 1.08 1.59 3.4 5 4.94 5.85 7.42

5 4 1.06 1.65 3.47 4.96 5.87 7.48

5 5 1.08 1.65 3.48 4.98 5.89 7.55
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Table 21.6 Values of V(Mean) Under Different Values of ρ and a Joint U-Shaped Distribution

With Densities Function f(x)5 3x2/2 xA[0, 1]

Distribution n k ρ5 0 ρ5 0.05 ρ5 0.50 ρ5 0.75 ρ5 0.90 ρ5 0.95

U-shaped f(x)5 3x2/2 xA[0, 1] 2 2 1.15 2.27 3.43 3.85 4.44 5.55

2 3 1.16 227 3.43 3.88 4.49 5.57

2 4 1.15 2.27 3.42 3.89 4.30 5.58

2 5 1.15 2.27 3.4 4 3.93 4.34 5.58

5 2 1.18 2.27 3.46 3.93 4.34 5.59

5 3 1.18 2.27 3.4 5 3.93 4.35 5.42

5 4 1.16 2.30 3.47 3.96 4.37 5.48

5 5 1.08 2.30 3.48 3.98 4.39 5.55

Table 21.7 Values of V(Mean) Under Different Values of ρ and a Joint Lognormal

Distribution

Distribution n k ρ5 0 ρ5 0.05 ρ5 0.5 ρ5 0.75 ρ5 0.90 ρ5 0.95

Lognormal(0,1) 2 2 1.17 2.22 3.23 4.55 5.55 6.11

2 3 1.11 2.22 3.23 4.55 5.59 6.10

2 4 1.17 2.22 3.23 4.54 5.58 6.18

2 5 1.17 2.22 3.23 4.44 5.75 6.18

5 2 1.18 2.22 3.22 4.44 5.77 6.26

5 3 1.18 2.24 3.28 4.44 5.75 6.22

5 4 1.17 2.32 3.27 4.46 5.77 6.36

5 5 1.18 2.33 3.28 4.45 5.50 6.40

Table 21.5 Values of V(Mean) Under Different Values of ρ and a Joint Gamma Distribution

Distribution n k ρ5 0 ρ5 0.05 ρ5 0.50 ρ5 0.75 ρ5 0.90 ρ5 0.95

Gamma x4exp(2x)/Γ (5) x. 0 2 2 1.17 2.69 6.06 6.67 6.61 7.44

2 3 1.16 2.69 6.03 6.66 6.67 7.76

2 4 1.17 2.69 6.06 6.69 6.71 7.79

2 5 1.17 2.69 6.00 6.19 6.76 7.73

5 2 1.19 2.76 6.06 6.19 6.77 7.78

5 3 1.19 2.75 6.00 6.61 6.75 7.87

5 4 1.20 2.82 6.00 6.66 6.77 7.86

5 5 1.21 2.79 6.08 6.33 6.77 7.87
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Table 21.2 exhibits that for values of ρ5 0, the value of V(mean) is the smallest and then, its

values are increased seriously for ρ$ 0.50.

The results in Table 21.3 give a better idea of the effect of the correlation in detecting the non-

random ordering of Y. The values of V(mean) which are significant are marked with an "�." For

ρ5 0.50 the significance is accepted for the pairs {(2,4), (2,5), (5,2), (5,3), (5,4), (5,5)}. The non-

randomness of the ranking is accepted in all the cases for ρ$ 0.75.

Table 21.4 gives an idea that for the exponential distribution for highly correlated variables, the

value of V(mean) is expected to be larger than 3.

For the gamma with density function x4exp(2x)/Γ (5) and lognormal distributions (see

Tables 21.5 and 21.7), the values of V(mean) are expected to be close to 2 for ρ, 0.50.

Table 21.6 sustains a similar result for ρ. 0.75 in the case U-shaped distribution with density

function f(x)5 3x2/2 xA[0, 1].

21.4.2 ANALYSIS OF THE TIME TO DEATH OF HIV-INFECTED PERSONS

We have considered a database of the lifetime of a set of 231 persons infected with HIV clustered

by the risk-group. It constituted the following population:

G1—Drug users;

G2—Bisexual-homosexual men;

G3—Bisexual-lesbian women;

G4—Heterosexual men;

G5—Heterosexual women;

G6—Contaminated by blood transfusions;

G7—Sons of HIV-infected women;

G8—Unknown.

We selected 1000 independent (runs) samples from the data set to estimate treatment effects

and compared them with the effect calculated with the population data. The estimated variance of

treatment effects for the models using SRS and RSS for each group (i 5 1,. . .,8) computed as

Table 21.8 Efficiencies of the Estimates of the Treatment Effects in eight Groups of Persons

Infected With HIV (Variable Time to Death in Years) Using SRS and RSS

Group V̂ðα�
i Þ V̂ðα�

ðiÞÞ
1 1.97 1.24

2 1.52 2.78

3 1.20 2.19

4 1.05 2.11

6 1.85 1.72

6 1.45 1.11

7 1.44 1.79

8 1.94 1.30
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V̂ðα�
i Þ5

1

1000

X1000
t51

ðα�
ij2αiÞ2 5Eði; srsÞ (21.11)

V̂ðα�
ðiÞÞ5

1

1000

X1000
t51

ðα�
ðiÞj2αiÞ2 5Eði; rssÞ (21.12)

We computed the ratio of the efficiencies and the results are given in Table 21.8. Note that both

are considerably larger for the use of SRS. These results illustrate the behavior of RSS as an alter-

native for estimating the treatment effects and variability. Due to the nature of the data non-

normality was present, hence the use of ANOVA for fixing the existence of the significance of the

observed differences did not make sense.

21.5 CONCLUSIONS
The use of RSS in ANOVA is at least as good as the SRS methodology. This result supports that

RSS-designed experiments can be analyzed using one-way ANOVA. The estimation of the variance

using RSS allows establishing the closeness of the ranking to the perfect ranking, assumed in the

modeling. V(n) is a nonparametric statistic that can be used for analyzing the quality of the ranking.

Further study is needed to establish rules for evaluating the relative precision of RSS as a function

of the quality of the ranking.

REFERENCES
Chen, Z., Bai, Z., Sinha, B., 2003. Ranked Set Sampling: Theory and Applications, vol. 176. Springer Science

& Business Media, New York.

Dell, T.R., Clutter, J.L., 1972. Ranked set sampling theory with order statistics background. Biometrics 28 (2),

545�555.

Frey, J., 2011. A note on ranked-set sampling using a covariate. J. Stat. Plan. Inference 141 (2), 809�816.
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