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Preface

Ranked set sampling (RSS) gives a new approach to dealing with sample selection. It was proposed
in the seminal paper of McIntyre (1952. A method for unbiased selective sampling using ranked
sets. Australian Journal of Agricultural Research 3, 385—390). His experience in agricultural appli-
cation provoked a challenge to the usual simple random sampling (SRS) design introducing a previ-
ous ordering of the units. The practical studies suggested that it produces more accurate estimators
of the mean. This proposal was taken into account by other practitioners dealing with agricultural
studies. They also obtained better results using RSS. The mathematical validity of the claim was
sustained by the work of Takahasi and Wakimoto (1968. On unbiased estimates of the population
mean based on the sample stratified by means of ordering. Annals of the Institute of Statistical
Mathematics 20, 1—-31).

That fact also remained unnoticed by the majority of the statistical community but some inter-
esting results were developed for establishing the mathematical reasons sustaining having better
results when using RSS.

Nowadays, the results obtained by RSS still seem to be somewhat “magical” to some colleagues
and they are doubtful of the accuracy of the reported improvements due to using RSS. They may
be simply explained. Ranking changes the working with “pure” random variables to dealing with
order statistics (OS). OS have nice properties coming from the basics of statistical inferences. This
supports the individual variances of observations (now OSs) being smaller than the variance of the
random variables. Doubts arose in discussions, because in practice the variable of interest is not
possible to rank. The fact that ranking a correlated and known variable allows ranking the units at
a low cost, providing “adequate” ranking, was proved. The original ranking in MclIntyre’s experi-
ences was made on the basis of “eye estimation” of pasture availability.

Once a series of theoretical facts was established mathematically, RSS obtained attention and
different statistical problems started to be revisited. Not only is estimation better, but testing of
hypotheses using RSS samples appears to be more powerful.

The number of contributions in RSS is large. Nowadays it is established as a tool for increasing
precision and/or diminishing sampling costs.

This book is concerned not only with the celebration of the first 65 years of having RSS as a
sampling alternative model, but also present new results in the context of estimation and testing in
finite population sampling. The authors are well known in the area. Having a look at the references
or the web permits corroborating their role in conforming the body of important and usable models
in survey sampling using RSS. Most of the papers illustrate their use and some of them come from
real-life applications.

The description is ordered as they appear in the book.

Amiri-Modarre’s chapter, about the bootstrap test of ranked set sampling with different rank
sizes, considers testing and confidence intervals estimation when RSS is used and bootstrap tests
are applied. Studies were developed for illustrating the accurateness of value’s derived using the
proposed bootstrap methods.

Simultaneous estimation of means of two sensitive variables using RSS is the contribution of
Pampana, Sedory, and Singh. They extended the previous results of Ahmed, Sedory, and Singh
(2017. Simultaneous estimation of means of two sensitive quantitative variables. Communications

XV
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in Statistics: Theory and Methods, Online available) and Bouza (2009. Ranked set sampling and
randomized response procedure for estimating the mean of a sensitive quantitative character.
Metrika 70, 267—277) in the case of two sensitive variables.

Calibration is the theme of the chapter by Salinas, Sedory, and Singh. They consider the estima-
tion of the population mean under the existence of a known auxiliary variable and a new calibrated
estimator of the population mean is proposed for RSS.

The chapter by Bouza, Garcia, Vishwakarma, and Zeeshan deals with the analysis of the estima-
tion of the variance of a sensitive variable, when it is applied to a randomized response procedure
and the sample is selected using RSS. The performance of the proposal is evaluated through a study
of persons infected with HIV/AIDS.

Bouza, Herrera, Singh, and Mishra developed the chapter on ranked set sampling estimation of
the population mean when the information on an attribute is available concerning the development
of a review in the theme.

The chapter about studying the quality of environmental variables using a randomized response
procedure for the estimation of a proportion through ranked set sampling, by Allende, Alonso,
Bouza, and Herrera, is concerned with the performance of RSS in the study of the quality of the
environment by ranking using measurements of the contaminants in the air and the water.

Extensions of some “randomized response procedures related with Gupta—Thornton method:
the use of order statistics” is a contribution of Bouza and Herrera where new scrambling procedures
are developed and the results studied in terms of the variance of the involved estimators.

Vishwakarma, Zeeshan, and Bouza present the chapter on ratio and product type exponential
estimators for population mean using ranked set sampling. They suggest an improved form of the
exponential ratio and product estimators using RSS. The behavior of the suggested estimators is
evaluated by developing a simulation study.

Haq presents a chapter on modified partially ordered judgment subset sampling schemes, where
modified partially ordered judgment subset sampling schemes are proposed for estimating the popu-
lation mean. Extensive Monte Carlo simulations and a case study using a real data set illustrate the
performance of this proposal.

Estimation of the distribution function using a modification of RSS, called moving extreme
ranked set sampling, is the theme of estimation of the distribution function using moving extreme
ranked set sampling, this chapter is by Al-Saleh and Ahmad.

The chapter on improved ratio-cum-product estimators of the population mean is authored by
Al-Omari. He considers the problem of estimating the population mean using extreme RSS, where
different ratio-cum-product estimators of the population mean are suggested, assuming that some
information of the auxiliary variable is known.

Kushary reviews issues related to RSS with unequal samples for estimating the population mean
and proposes a new median ranked set sampling.

Al-Nasser and Aslam present the chapter on development of a new control chart based on
ranked repetitive sampling. They propose a control chart for the quality characteristic under the
normal distribution. The performance is evaluated using the average run length over the existing
control chart. The application of a proposed control chart is given through simulation and a real
example.

The chapter on statistical inference using stratified ranked set samples from finite populations
by Ozturk and Kavlak develops statistical inference of the population mean and total using
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stratified RSS. Inference is constructed under both randomized design and super population models.
The empirical evidence is used for evaluating the performance of the proposed estimators and is
applied to apple production data in a finite population setting.

Construction of strata boundaries for ranked set sampling is the contribution of Zong, Sedory,
and Singh. They address the problem of constructing strata boundaries in stratified ranked set
sampling.

Bollaboina, Sedory, and Singh have contributed the chapter on the forced quantitative random-
ized response model using ranked set sampling. They consider the problem of estimating the mean
of a sensitive variable by combining the ideas of Bouza (2009. Ranked set sampling and random-
ized response procedure for estimating the mean of a sensitive quantitative character. Metrika 70,
267—277) on the use of ranked set sampling and those of Chaudhuri and Stenger (1992. Sampling
Survey. Marcel Dekker, New York) on the use of a forced quantitative response.

The contribution of Mehta is a new Morgenstern type bivariate exponential distribution with
known coefficient of variation by ranked set sampling. The chapter introduces a new Morgenstern
type bivariate exponential distribution, when coefficients of variation are known, using RSS. To
demonstrate the relative performance of various estimators considered in this chapter, an empirical
study is carried out. Another contribution is on shrinkage estimation of scale parameters toward an
interval of Morgenstern type bivariate uniform distribution using ranked set sampling. The chapter
deals with the problem of estimating the scale parameter of Morgenstern type bivariate uniform dis-
tribution, based on the observations made on the units of RSS. Some improved classes of shrinkage
estimators are proposed in the form of intervals. Numerical illustrations are also given.

Nonparametric estimation in RSS is discussed in the chapter by Ehsan Zamanzade. The author
discusses the problem of nonparametric estimation of the population mean and entropy, based on
RSS selection of units. The chapter describes some estimators and evaluates their performance
using Monte Carlo simulation.

The contributors have done a worthy work and we expect that this book will receive a warm
welcome from statisticians. We thank the referees who anonymously helped develop this work with
the revisions of the chapters.

And last but not least, we appreciate the collaboration of the staff of Elsevier, headed by Susan
Ikeda as Editorial Project Manager, which allowed us to arrive at the final version of this book.

Carlos N. Bouza-Herrera and Amer Ibrahim Falah Al-Omari



CHAPTER

STUDYING THE QUALITY OF
ENVIRONMENT VARIABLES USING
A RANDOMIZED RESPONSE
PROCEDURE FOR THE ESTIMATION
OF A PROPORTION THROUGH
RANKED SET SAMPLING

Sira Allende-Alonso and Carlos N. Bouza-Herrera
Faculty of Mathematics and Computation, University of Havana, Havana, Cuba

INTRODUCTION

Commonly it is required to obtain information on sensitive attributes and a sample is selected for
interviewing a sample of persons. Collecting trustworthy responses on sensitive issues through
direct questioning in personal interviews using various techniques is not often successful because
they do not protect the respondents’ privacy. Therefore in practice the data collected on sensitive
features are affected by the existence of respondent bias.

Randomized response models are used to decrease both nonresponses and answer bias and to
provide privacy protection to the respondents.

Warner (1965) proposed the randomized response (RR) method as a means of avoiding response
bias. The initial model looked for the estimation of the proportion of persons with the stigma. The
model used a randomized trial. The seminal paper of Warner (1965) has 50 years of since created
and still different contributions are being generated. The models are generally based on the selec-
tion of a sample using simple random sampling with replacement.

Consider a population U of size N with two strata U, and Uu-~. Therefore to conduct an inquiry
is a serious issue. To belong to Uy, is stigmatizing. Hence the respondents will tend to use random
response (RR). It provides the opportunity of reducing response biases due to dishonest answers to
sensitive questioning. Therefore this technique protects the privacy of the respondent by granting
that his belonging to a stigmatized group cannot be detected. The interest of the inquiry is to
estimate the proportion of individuals carrying a stigma, identified with belonging to A. If |A]
denotes the number of units with the stigma and we are interested in estimating the probability
O(A) = |Up|/|U|=N4/N.

The RR technique has been successfully applied in many areas and different modifications and
extensions to this method have been proposed in the literature on sampling. It is still receiving

Ranked Set Sampling. DOI: https://doi.org/10.1016/B978-0-12-815044-3.00001-0
Copyright © 2019 Elsevier Inc. All rights reserved. 1
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attention from the researchers, see for example Gupta et al. (2002), Ryu et al. (2005), and
Saha (2006).

A challenging sampling design is ranked set sampling (RSS). It was suggested by Mclntyre
(1952) and appears as a more efficient than simple random sampling with replacement (SRSWR).
Takahashi and Wakimoto (1968) and Dell-Clutter (1972) gave a mathematical support to RSS and
the list of new results is growing rapidly. See Patil (2002) for a review on this theme.

Chen et al. (2008) suggested a randomized response model for ordered categorical variables.
They used an ordinal logistic regression for ranking. We present these results in Section 1.2.
Considering that a sensitive variable is evaluated, we consider the use of RR for collecting the
information. We develop an extension of the RSS estimator of Chen et al. (2008) using Warner’s
model. The proposal is presented in Section 1.3. The derived variance of the proposed estimator is
larger than the variance of Chen’s proposal. Considering that a sensitive question is evaluated we
suspect that its use will reduce answer biases. Section 1.4 develops a study using real-life data. The
experiments sustained our suspicion. The answers to the direct question of the interviewed pro-
duced estimations more different than the real one. The proposed estimator was closer. These facts
support the recommendation of using it to obtain a gain in accuracy with respect to the usual simple
random sampling with replacement model.

RANKING ORDERED CATEGORICAL VARIABLES

The proposal of Chen et al. (2008) for ordered categorical variables allows the use of RSS. They
used a set of explanatory variables Z = (Z;,. . .,Zg) for fitting a logistic regression. Take the variable
of interest X; in an item where

X; =i if item j is classified in the class C(i)

Hence the probability distribution function is the multinomial M(1,P;,...P,), P;= Prob{X =i},
i=1,...q. Initially a random sample is selected and in each sample item are measured Z and X*.
The ordinal logistic regression (ORL) is fitted to the data using a statistical package. Considering

Pri=1,....q

=i

¢; = P(classifying an item in a categorylto i) = Z

The logit function is logit(c;) = log(1 ﬁ"C) = L;. Using the collected data the fitted logit model
is the proportional odds model

L,-=a[+ﬁTz,i=l,...,q

The model’s probability of classifying a particular item r in the ith category is denoted 7,; and
its cumulative probability by c,;. The model fitted produces the corresponding estimates 7,; and ¢,;.

The procedure proposed by Chen et al. (2008) considers the selection of a random sample of
size m using SRSWR. The class of the rth judgmental order statistic for X is denoted by X;,,. The
ranking is made as follows.

Chen et al. (2008) ranking procedure for ordinal variables:

Step 1 Use the fitted model and compute {fr,,;é,,-}, i=1,.,q,r=1,.,m
Step 2 Classify item r in the category & such that &, = Max{#,i=1,..q},r=1,...,m.
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Step 3 Rank(r) > Rank (r*) if r is assigned to C(i) and r* to C(j) being j < 1.
Step 4 An item in C(i) is ranked using the computed ¢,;'s: Rank(r) > Rank(r*) if ¢,; <C .

The procedure is repeated n, times for each X,)—class, t = 1,..,m. For the experiment j the item
with rank j is interviewed. The RSS sample sets is

X Xaye Xy
X Xy X (),
X(m)l e X(m)t X(m)nm

The n,’s are not necessarily equal. The use of an equal number of experiments yields a balanced
RSS sampling design; in another case it is unbalanced.

The rth row is a sample from the stratum defined by the rth order statistic. The probability of
mass function is p,, i = 1,..,q.

Let us consider the particular case in which the interviewed persons are questioned to declare
belonging to a certain group A. The response can be modeled as

_ J 1 if a YES is the answer
I[X(r)j} B { 0 otherwise

We are interested in estimating 6(A), the proportion of persons belonging to A in the population.
0(A) may be estimated using the RSS proposed by Chen et al. (2008) by

L Xy

m

c

Now we have p,)4 = 1) and mp =mP(A) = p;)+ ... + ). Hence

E(p.) = M = 0(A)

It has been derived; see that the variance of the statistics of order r is
0ty = 0% = (g — 1)
Therefore we may consider that
V(I [Xey]) =P (1= pea) = 0A)1 = 0(A)) = (pin — 0(A))?
and, as result, taking ¥ = >/~ ni
Vo) = Z r)A( Po) Zni _ G(A)(l,; 0A) _ zm: (Pra ;129(/\))2

r=1 =1

The second sum is positive and represents the gain in accuracy due to the use of the proposal of
Chen et al. (2008) with respect to the use of SRSWR.
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The optimal choice of the sample sizes is given by the expression:

\/Poa(1=pa)
Rr(opr) = n = Zil nr

bl
Zm A/Pa(l = pia)
m

r=1
It establishes that the order statistics with larger standard deviation should have larger samples
sizes. That is, the order statistics with smaller gains in accuracy measured by (p(;a —6(A))>.
We will consider the case in which A is a sensitive group and evaluate the behavior of this
sampling design when a randomized response mechanism is introduced for obtaining the
responses.

A RANDOMIZED RESPONSE STRATEGY

The probability of carrying a stigma 6(A) is the parameter to be estimated. The usual approach is
to ask a selected individual if he/she belongs to A (to carry the stigma). Warner (1965) proposed
providing a random mechanism to the interviewed who develops an experiment that selects
between the statements:

1. 1 belong to A, with probability p#£0.5 and
2. 1do not belong to A, with probability / — p. The evaluated variable is Y = 1 if the response is
“YES”, O otherwise

The individual does not reveal which statement is evaluated. The random sample permits evalu-
ating the number of “Yes” answers
Ny = lel" Y;

Commonly, each respondent in the sample is asked to select a card from a deck after shuffling.
The deck has a proportion p of cards with statement 1. After deselection the respondent answers
“Yes” or “No,” without revealing the selected statement. This technique is known as the related
question method. Warner (1965) derived that

ny
w o p~1
2p—1 2p—1

pw =

is the maximum likelihood estimator of 6(A). It is unbiased and its existence is supported by the
use of # 0.5. Its variance is

_ o - 6) |, p(l=p)

V(p,) . pro

The second term in the above expression is the increase in the variance due to the introduction
of the randomized mechanism.

Let us consider the use of this RR model when RSS is used.

After conforming the RSS sample using Chen et al.’s (2008) procedure the interviewer uses the
RR mechanism for selecting the statement to be evaluated. The response obtained will be again
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| 1 if a YES is the answer
I[X(r)j] B { 0 otherwise

but
Prob(I[Xqy] = 1) =ppma + (1 = p)(1 = ppa)

Now the estimator of the probability of carrying the stigma for the sample of the class of the
rth order statistics is

P SieilXe]  1-p
YOAT T @p =1 m2p—1)

A naive estimator based on the RSS sample is
Z;nzl ﬁW(r)A _ Zm Z’:;l I[X(r)j} _ I-p
m mn(2p—1)  n(2p—1)

Its unbiasedness follows from the fact that, for any r=1,...,m,

Pew = =1

. n:[ppea + (1= p)(1 = pa)] 1—-p
E = - =D«
(Pwira) n2p— 1) n2p— 1) Pna

The variance of the estimator is readily obtained as

>V (ﬁw(,)A) m  pwra(l = pwea) p(1 —p) m (pW(r)A —H(A))2
V(p _—’7_—5 + 9 —95 —
CW) B r=1 mn, L (2 1)2 L r=1 mZ

The second term represents an increment in the variance due to the use of the randomization
procedure. In practice the nonsampling error produced by providing incorrect answers, for avoiding
being stigmatized, is present when direct questions are asked.

We performed a large study to evaluate the behavior of the proposal when managers are inter-
viewed for establishing the quality of the protection of the environment by their enterprises.

EVALUATION OF THE PERFORMANCE OF p,

To test the model proposed we interviewed the directors of different enterprises that produce highly
contaminated garbage. They were asked to report if they send contaminated garbage to municipal
sites. They gave a report. Afterwards they were provided with a set of cards where 60% of the
cards fixed the selection of the sensitive question, p = 0.60

The enterprise contaminates the environment

The cards were shuffled by the interviewed for reporting “yes” or “no.”

The characterization of leaching of elements from solid waste compost was made by evaluating
grab samples. We consider that it provided the real result. That is, a “Yes” or “No” was produced
by analyzing the grab. The grab samples were prepared from multiple grab samples using coning
and quartering methods. The compost was collected from composting facilities which were
screened to reduce the particles mechanically six times separated in a trammel and passed through
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Table 1.1 Logistic Regression Models Used for Estimating the Proportion of Contaminating

Enterprises

Model Explanatory Variables

WQ: main metallic contaminators in the river Percentage of lead, chrome, and nickel

AQ: main contaminators of the quality of the air Percentage of sulfuric acid and carbon dioxide

GQ: main metallic contaminators in the river and Percentage of lead is a test of the level of contamination of

main contaminators of the quality of the air “metal” present in the water, chrome, nickel, sulfuric acid,
and carbon dioxide

The population census was performed. The collected population data were sampled. Three sampling fractions were used f =0.05,
0.10, and 0.20. The evaluation of the behavior of the estimators was made by selecting 1000 samples using each sample fraction.

Table 1.2 Average of 1000 Proportion Estimates for m =2, n, =10

Model Aliment Factories | Metallurgical Factories | Textile Factories | Chemical Factories
True Proportion 0.87 0.78 0.90 0.85

Model ]ac ﬁcW ﬁ(' ﬁ('W ﬁc ﬁ(:W ﬁc ﬁcW

wQ 0.74 0.89 0.65 0.72 0.45 0.92 0.55 0.86

AQ 0.75 0.87 0.51 0.73 0.68 0.90 0.67 0.82

GQ 0.76 0.84 0.62 0.71 0.77 0.89 0.3 0.79

a fine. The type of grab came from aliment, metallurgical, textile, and chemical factories. The grab
sample procedure is described in Tissdel and Breslin (1995).

We considered three different sets of variables for fitting the logistic regression. The measure-
ment of contamination in the air and the rivers, of the basin used for sending the residuals of the
industries, produced the explanatory variables. The reports of the closest monitoring station were
used for measuring them in a large research conducted for detecting the highly contaminating enter-
prises. Table 1.1 gives a description. An inspection to the enterprises established whether they were
contaminating the environment. The inquiry took place a year after the auditing performed. The
objective was to check if they changed their status. Presumably the managers would avoid declar-
ing their incompetence to solve the problems detected previously.

Table 1.2 presents the average of the proportions computed with the two estimators for an over-
all sample size n =20 with m = 2 and constant value of n,’s. It is clear that the managers cheated.
The direct responses produced an underestimation of the true proportion. The use of the RR allows
obtaining a more accurate estimation.

Table 1.3 presents the average of the proportions computed with the two estimators with m =4,
n, = 4. Comparison of them leads to a similar conclusion. Note that it seems to be better to use RR,
which allows to obtain a closer estimation.
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Table 1.3 Average of 1000 Proportion Estimates for m =4, n,=4

Model Aliment Factories | Metallurgical Factories | Textile Factories | Chemical Factories
True Proportion 0.87 0.78 0.90 0.85

Model ﬁc ﬁcW ﬁr ]arW ﬁr ﬁrW ﬁr ﬁcW

wQ 0.75 0.86 0.62 0.70 0.41 0.92 0.57 0.81

AQ 0.74 0.37 0.55 0.71 0.65 0.93 0.69 0.81

GQ 0.72 0.88 0.64 0.70 0.74 0.91 0.62 0.76

Table 1.4 Computed ¢,. For u=c¢,cW and for m =2, n,=10

Model Aliment Factories Metallurgical Factories Textile Factories Chemical Factories
Model E¢ Eew €c EcW Ec Ecw Ec Ecw
wQ 1.87 0.81 1.85 0.89 1.90 091 1.87 0.81
AQ 1.92 0.80 1.91 0.88 1.96 0.92 1.92 0.80
GQ 1.91 0.75 1.91 0.91 1.93 0.92 1.91 0.75

Table 1.5 Computed ¢,. For u =c,cW and for m =4, n,=5

Model Aliment Factories Metallurgical Factories Textile Factories Chemical Factories
Model I Eew Ee EcW Ee Ecw Ec EcW
wQ 1.91 0.87 1.92 0.89 1.93 0.90 1.91 0.87
AQ 1.91 0.88 1.93 0.89 1.93 0.91 1.91 0.88
GQ 1.92 0.87 1.93 0.90 1.94 0.93 1.92 0.87

Note that the estimator based on the randomized response procedure performs better for smaller values of m.

The accuracy of the estimators was analyzed by computing:

Cu= h=1

000 B, —0(A)],
10000(4) °

u=c,cW

The results are given in Tables 1.4 and 1.5. The direct question is considerably more inaccurate
than the randomized one.
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CHAPTER

DEVELOPMENT OF A NEW
CONTROL CHART BASED ON
RANKED REPETITIVE SAMPLING

Amjad D. Al-Nasser' and Muhammad Aslam?
'Department of Statistics, Faculty of Science, Yarmouk University, Irbid, Jordan
2Departmem of Statistics, Faculty of Science King Abdul Aziz University, Jeddah, Saudi Arabia

INTRODUCTION

Statistical control charts are tools for understanding variation of a product; they are considered to be
one of the most important statistical tools that can be used for monitoring a product and then help in
maintaining the quality of a product based on a given specification criterion. In general, control
charts can be divided into two different types, control charts for attributes and control charts for vari-
ables, depending on the product quality characteristics. The original idea of control charts was intro-
duced by Shewhart (1924) to improve the quality of telephone transmission; by suggesting a control
chart that consists of three components, the chart fences which are also known as control chart lim-
its, namely; upper control limit (UCL) and lower control limit (LCL), in addition to the center line
(CL). The main idea of Shewhart charts is to monitor the process mean; then, if the process mean is
stabile and located between the chart limits, the process will be considered under control. However,
it will be out of control if the value of the process mean deviated from the chart limits in a specific
number of process standard deviations (i.e., say k). For example, in normal product populations, if k
is equal to 2 then only 5% of the product is expected to exceed the control chart limits (Fig. 2.1).

Assuming we are sampling from a normal distribution with mean p and standard deviation o,
and let {X,j:iz 1,2,...,m}j= 1,2,...,r be r independent simple random samples (SRS) each of
size m are selected from this population; then the sample mean X; = %ZT: 1 Xijsj = 1,2, ., is dis-
tributed normally, with mean p with standard deviation o//m. Then, the Shewhart control charts
limits will be:

CL=p
LCL:/L—Zlf%O'/\/I’I_’l

where Z; g is the (1— %’)’h percentile from the standard normal distribution; and (1 — «) is the prob-
ability that any sample mean will be between the UCL and LCL. Usually, a 3¢ rule is implemented
in these limits and we replace Z;—s with 3. For normal distributions, the 3o limits are equivalent to
0.001 probability limits; which means 99.7% of the sample means will fall within the control limits
(Montgomery, 2009).

{UCL=,LL+ZI%O'/\/%
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Out of control

| Control

Lower conitrol imit(LCL) == L

Out of control

FIGURE 2.1

Shewhart control chart.

Moreover, if the process mean p and standard deviation o are unknown, then an unbiased esti-
mator will be used in the limits and the control charts are estimated as:

UCL=X + 36
CcL=X_
LCL=X — 365

where the unbiased estimators of mean p and o are:

and

-1
F<m—) r m
n 2 1 —
ox = "\ Z p— Z (X—X)"
r\/ﬁl(m) F(m— 1)j71 i=1

One of the most important indicators of the control chart is the run length (RL), which is the
sample number when a data point is out of the control chart limits. The average RL (ARL) is a key
indicator used to evaluate the performance of a control chart and represents the expected number of
samples until a control chart has one point of the control limits. There are two types of ARL:

* In-control ARL (ARLO) is the expected number of samples until a control chart signals, under
the condition that the actual process is truly in control; noting that, the ARL is a geometric
random variable with probability of success equal to o which represents also type I error and is
equivalent to “Pr (signal/ in-control process).” Therefore the ARL for the Shewhart control
chart is the expected value of a geometric experiment and equal to ARL, = %
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The following table illustrates the possible sequences leading to an “out of control” signal:

Run Length Probability
e

2 ol —a)

3 a(l—a)?

R a(l—a) ™!

then ARLo = 7%, RL-Probability = Y%, ja(1-a)/ ' = 1
* Qut-of-control ARL (ARL1) is the expected number of samples until a control chart signals,
under the condition that the actual process is in fact out-of-control; then the Pr (signal/out-of-
1

control process) = 1 — 3; therefore ARLI = 7

Most statisticians consider ARLO =370 to be the desired value for ARLO as it achieves a
balance between « and . Shewhart control charts have weaknesses in detecting a small shift in the
process. Therefore extensive researches are found to improve the performance of the Shewhart con-
trol chart (Sindhumol et al., 2016; Amiri et al., 2014; Franco et al., 2014; Chan et al., 2003; Kumar
et al., 2017; Prajapati and Singh, 2016; Woodall, 2000).

One of the most important techniques used to improve the performance of the control chart is
the sampling scheme that is used in selecting the item in a given process. Several sampling techni-
ques were used to improve the performances of Shewhart control charts. Al-Nasser and
Al-Rawwash (2007) developed a Shewhart control chart based on ranked data, the main idea pro-
posed in their work is of using ranked set sampling (RSS) schemes. Al-Omari and Al-Nasser
(2011) used a robust extreme ranked set sampling scheme in developing a new control chart limit
for the mean. Al-Omari et al. (2016) used double acceptance sampling for time truncated life tests
based on transmuted new Weibull—Pareto distribution. Al-Nasser et al. (2013) suggested using
folded ranked set sampling in developing the control chart. Shafqat et al. (2017) discussed the attri-
bute control charts for several distributions.

Resampling or the repetitive sampling scheme is an interesting scheme that could be implemen-
ted to improve the performances of the control chart. Repetitive sampling is similar to the sequen-
tial sampling scheme, which required multiple control chart limits. Moreover, control charts based
on multiple control limits are of interest of many researchers as they are more robust than the clas-
sical Shewhart chart. These charts depend on a resampling criterion to accept or reject a product
under investigation. Repetitive sampling control charts were originally proposed by Sherman
(1965), who suggested using this idea for developing an attributes acceptance sampling plan.
Balamurali and Jun (2006) used repetitive sampling to develop more efficient acceptance sampling
plans. The idea of repetitive sampling is different from the sequential or basically the double-
sampling approach. The double-sampling scheme has four parameters, while repetitive sampling
has only two parameters.

Therefore in using repetitive sampling the control chart is divided more precisely into different
subregions using two pairs of control limits (inner and outer limits) as shown in Fig. 2.2, instead of
one pair of limits as it is in the novel Shewhart control chart.
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Out of control

Outer CL UCL1
Repetitive sampling region

Inner CL UCL2

Acceptable sampling unit: in control

Inner CL LCL2

Repetitive sampling region

Quter CL LCL1

Out of control

FIGURE 2.2

Repetitive sampling control chart limits.

When using repetitive sampling, the process is declared out of control using the same rule as
the Shewhart control chart, however, it is declared to be in control only if the process mean hardly
deviates from the center of the chart, and it should be located within the inner control limits. If the
process mean is located between the inner and outer control limits, then a geometric sampling pro-
cedure should be applied by keep inspecting repetitively new samples until we observe a process
mean within the inner limits.

In using the repetitive sampling control charts, the calculations of control limits depend on two
limits (inner and outer limits), multipliers, e.g., k; and k, (k, < k;). In the case that ARL, is around
370 the value of k; is close to 3. Recently, Aslam et al. (2014a,b) proposed a t-control chart using
repetitive sampling and Ahmad et al. (2014) designed an X-bar control chart based on the process
capability index using repetitive sampling and proved its efficiency. Azam et al. (2015) designed a
hybrid EWMA chart using repetitive sampling for normal distribution. Lee et al. (2015) proposed a
control chart using an auxiliary variable and repetitive sampling to detect the process mean. Aslam
et al. (2014a,b) designed some attribute and variable control charts using repetitive sampling for
monitoring the process mean. Other published work can be found in Ahmad et al. (2014), Aslam
et al. (2015), and Aslam et al. (2013).

All of the suggested control charts used the idea of drawing a simple random sample from a
given population. The sampling scheme is very important, in the literature many researches have
shown that the precision of the sampling units using ranked set sampling is much better than using
SRS (Mclntyre, 1952; Chen et al., 2004; Al-Nasser, 2007).

It is noted that a lot of work is available on repetitive sampling plans use an ordinary single
sampling plan. By exploring the literature and to the best of the authors’ knowledge, there is no
work available on the design of a repetitive sampling plan using rank set sampling. Therefore in
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this chapter, we will introduce the design of repetitive sampling plan for the rank set sampling by
assuming that the variable of interest follows the normal distribution. In the next section we discuss
the repetitive sampling control charts based on SRS. In Section 2.3 is an overview of the ranked set
sampling scheme. Section 2.4 discusses the control chart for the sample mean based on the idea of
a repetitive sampling scheme. The performance and a comparative study will be given in

Section 2.5 and the chapter ends with some concluding remarks in Section 2.6.

SHEWHART CONTROL CHART UNDER REPETITIVE SAMPLING

Suppose that the quality characteristics follow a probability density function f{x) that has a distribu-
tion F(x) with mean p and standard deviation o. Also, when the process is under control assume
that the target mean is y. Then, the repetitive control chart for the sample mean X has the follow-

ing steps:

Step 1: Draw a SRS of size n.
Step 2: Calculate the sample mean X
Step 3: Declare the following decision about the entire process:

In Control, if; LCL, <X <UCL,

Out of Control, if; X >UCL; or X <LCL;
Otherwise; Re Sample

Where the outer control chart limits are given by:

UCL] = Mo +k1 %
g
LCL1 = Mo _kl %

Similarly, the inner control chart limits are given by:

o
UCL, = g +kr—
2 = Mo 2«/5

g

LCL, = g — ko —
2 = Ko 2«/5

Then the probability that the process is declared as in control is:

_ P(LCL, <X <UCLa|pt = 1)
1 - Py,

in

where the probability that repetitive sampling is needed can be obtained by:

Prp = P(UCL, <X <UCL,) + P(LCL; <X <LCL,)

Hence, the in-control average run length (ARL) is given by:

ARLg= —
O 1= Py
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Suppose now that the process mean has shifted from m to m + §o. Then, the probability that
the process is declared as out of control is obtained by:

P(LCL, <X <UCL, | = py + 60)
1—Pr

rep

*
Pin_

Similarly, the ARL for an out-of-control process will be

ARL; = - —

rep

Moreover, the control limits will be obtained when the process is under control by using a non-
linear programming system where the objective function is the average sample number (ASN)
(ASN = 1+Prep):

Minimize ASN
Subject to:

1. ARL() = ro
2.k >k

After obtaining the control chart limit’s coefficients k; and k,, then we will use them to find out
the ARL of the process. Now, if we are sampling from a normal distribution, then
poo 28(ky) — 1
= 2P(ky) — P(ky))
P (ky = 6/n) + ®(ky +6/n) — 1
(® (ko + 6/n) — @ (ki + 6y/n)) — (®(ky — 6/n) — @ (ky — 64/n))

Which can be used to compute the ARL of the process for normal distribution.

*
Pini

RANKED SET SAMPLING SCHEME

Ranked set sampling (RSS) is a visual sampling scheme that has been proposed by Mclntyre
(1952). The samples obtained by this scheme depend on drawing several simple random samples,
and each sample is ranked using a free cost method or based on an auxiliary variable that relates to
the variable of interest for actual measurement. The steps in the ranked set sampling scheme can be
described as follows:

Step 1: Randomly select m° sample units from the population;

Step 2: Allocate the m” selected units as randomly as possible into m sets, each of size m;
Step 3: Without yet knowing any values for the variable of interest, rank the units within each
set based on personal judgment or with measurements of a covariate that is correlated with the
variable of interest;

Step 4: Choose a sample for actual analysis by including the smallest ranked unit in the first
set, then the second smallest ranked unit in the second set, continuing in this fashion until the
largest ranked unit is selected in the last set.
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FIGURE 2.3
RSS scheme.

To explain more for this method, assuming that three sample sets are randomly selected to col-
lect three RSS, the procedure is repeated r times. This can be visualized as shown in Fig. 2.3.

The selected observations are an RSS of size m denoted by X[, i =1, 2, ..., m, which repre-
sents the i" ordered statistic obtained from the ith SRS of size m, and it is denoted by the ith judg-
ment order statistics. It can be noted that the selected elements are independent-order statistics but
not identically distributed. Also, note that we actually need m? observations selected via SRS to
obtain m RSS units which means that we have to, unfortunately, discard m(m — 1)/2 observations.
In practice, the sample size m is kept small to ease the visual ranking, RSS literature suggested that
m = 3,4, 5, or 6. Therefore if a sample of larger size is needed, then the entire cycle may be
repeated several times; say r times, to produce an RSS sample of size n = rm. Then the element of
the desired sample will be in the form:

{Xpy, i=12,..0m, j=1,2,..,r}

where X[;:,j; is the ith judgment order statistics in the jth cycle, which is the ith order statistics of
the ith random sample of size m in the jth cycle. It should be noted that all of X[;:,;;’s are mutually
independent, in addition, the X[;:,); are identically distributed for all i.
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Let 4 and o2 be the population mean and variance for variable X, respectively. Then the unbi-
ased estimator of the population mean under RSS is defined as:

. 1 rom
Xgrss = %; ;X[iimlj

which is more efficient than the usual sample mean X under SRS when both estimators are con-
structed on the basis of the same number n of actual measurements (McIntyre, 1952; Takahasi and
Wakimoto, 1968). The variance of Xgss is given by:

Var(?Rss) = EV:Z Var(x[t m]/)

j=1i=

1 1
= _m < _%Z (X[l m]t 4 >

=

3

where E(X[,-,.m]i) is the expected value of the ith order statistics of a sample of size m:

o0

E(Xjjzmy) = J f (Xt ) dx

— 0

where
7)== F o

Noting that the relative efficiency (RE) of estimating the population mean using novel RSS with
respect to the traditional estimator by SRS is defined as follows:

o /n

RE(Xgss, Xsrs) = ——=—
Var(Xgss)

Takahasi and Wakimoto (1968) concluded that the RE for all continuous distributions is
between 1 and (m + 1)/2 with equal allocation and by using the same number of quantifications,
where the maximum value holds for the standard uniform distribution. However, unequal allocation
can actually increase the performance of RSS above and beyond that achievable with standard
equal allocations. Actually the RE with unequal allocation will be between 0 and m.

SHEWHART CONTROL CHARTS UNDER THE RSS SCHEME

As mentioned earlier, the quality control charts are determined via the lower and upper control lim-
its as well as the central limit term. The estimates of the three parts are necessary when the popula-
tion mean and variance are unknown. This leads us to present new set of estimates of (y,0°) using
RSS so that we may construct the quality control charts. Salazar and Sinha (1997) proposed the
following:

LCL =p —30%,

CL =u

UCL = p+30%,
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O = \/ L3V E(Xii—E (X[i;n],«))2 is the standard deviation obtained via RSS (Chen et al.,

2004). Muttlak and Al-Sabah (2003) proposed an estimator for og, _ :

R 1. 1 & — -
O%ess \Jm <"lzzss - EZ (X[i]_XRss)2>

i=1

where

rm— 14 r

R 1 m r o _ _ 1 r
Orss = Z Z(X[iim]j_XRSS)Z and Xp;) = E X(izm)j
=1 =1 =

SHEWHART CONTROL CHART UNDER RANKED REPETITIVE SAMPLING

We propose a Shewhart ranked control chart using repetitive sampling. Under a repetitive sampling
scheme, there are two types of limits, outer (LCL1 and UCL1) and inner (LCL2 and UCL2) control
chart limits. Then, the ranked repetitive control chart for the sample mean has the following steps:

Step 1: Draw an RSS of size n;
Step 2: Calculate the sample mean Xgss;
Step 3: Declare the following decision about the entire process:

In Control, if; LCL, < Xggs < UCL,

Out of Control, if; Xrsgs > UCL; or Xpss < LCL,
Otherwise; Re Sample

Where the outer control chart limits are given by:
UCL] = Hss0 + kla’ikss

LCL1 = piro — k105,
Similarly, the inner control chart limits are given by:

UCL: = piro + koo,

LCL2 = pirp — k20,
Then the probability that the process is declared as in control is:

P(LCL, < Xgss < UCLa | ftrs, = firoo)
1= Prey

Piy_rss =

where the probability that repetitive sampling is needed can be obtained by:

Prep_Rrss = P(UCL2 <)_(RSS < UCLI) + P(LCL, <YRSS <LCL,)
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Hence, the in-control average run length (ARL) is given by:

1

ARL ;0= —————
0 1- Prep_RSS

Suppose now that the process mean has shifted from . to ft o + 60. Then, the probability
that the process is declared as out of control is obtained by:

. P(LCLy <Xgss <UCLa|ftygg = figgo + 601ss)
Pinirss - 1— P+

rep_rss

Similarly, the ARL for out-of-control process will be

1
1— Pz

rep_rss

ARLI _rss

In general, the steps of the ranked repetitive sampling control chart can be summarized as
follows:

Step 1: Using the assumption that the control chart is under control, specify the value of ARL;
Step 2: Find the value of the control charts multipliers k; and k, (k; > k) by minimizing
ASNO given that ARLO is more than or equals the target;

Step 3: Find the value of ARL when the process is out of control.

PERFORMANCES OF THE PROPOSED CONTROL CHART

Monte Carlo simulation experiments were used to study the performance of the ranked control
charts under the following assumptions:

Step 1: Setting up the control chart components: Sample mean and sample variance
Generate 1,000,000 ranked set sampling each of size m = 3, 4, 5, and 6 from the standard
normal distribution
Calculate the mean and the variance for each subgroup
Compute the grand mean and grand variance from the 1000000 subgroups;

Step 2: Setting up control limits multipliers
Chose initial values of the ARLg ,, = 350 and 400
Select the initial values of k; and k,

Using the generating samples from step 1 and an optimization problem to minimize the
ASSO_rss find the optimal values of k; and &,
Compute the control chart limits (LCL1, UCL1) and (LCL2, UCL2);

Step 3: Compute the ARL, and ARL;

Follow the procedure of the proposed control chart and check if the process is declared as in-
control, out-of-control, or resampling
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Compute the number of subgroups so far as the in-control run length say (R). Then the
ARLg s = R/1,000,000
Compute ARL; s as 6 = 0.1,0.2, ..., 3.0.

The results of this Monte Carlo experiment are given in Tables 2.1 and 2.2. The simulation
results indicated that for the same values of m, k;, and k,, we note a decreasing trend in average
run length as 6 changes from 0.0 to 2.9.

Table 2.1 ASN and ARL When r, is 350
n=3 n=4 n=>5 n=6

ky = 2.99; k, = 2.471 ky = 2.98; k, = 2.245 ky = 3.03; k, = 2.303 ky = 3.001; k, = 1.875
) ASN ARL ASN ARL ASN ARL ASN ARL
0 34 350.432 79 350.877 90 350.643 305 350.222
0.1 32 286.533 53 298.508 57 309.598 178 313.480
0.2 24 204.499 26 210.971 41 223.214 146 229.885
0.3 13 153.610 28 170.940 25 142.046 74 146.628
0.4 9 110.375 16 129.199 20 94.697 47 92.593
0.5 9 71.582 11 86.430 15 61.087 49 63.131
0.6 3 50.429 12 59.453 9 40.420 29 44.524
0.7 4 35.448 8 44.543 11 26.532 19 30.321
0.8 3 26.399 6 32.798 5 17.973 10 20.833
0.9 3 18.702 4 24.073 6 12.606 12 15.237
1 3 14.085 4 18.083 7 9.112 9 11.011
1.1 3 10.350 4 13.770 5 6.971 6 8.275
1.2 3 8.131 4 10.733 5 5.295 6 6.332
1.3 3 6.304 4 8.478 5 4.159 6 4.969
1.4 4 5.073 4 6.748 5 3.350 6 3.993
1.5 3 4.091 4 5.444 5 2.746 6 3.263
1.6 4 3412 4 4.575 5 2.306 6 2.728
1.7 3 2.877 4 3.779 5 1.980 6 2.324
1.8 3 2.443 4 3.225 5 1.742 6 1.994
1.9 3 2.145 4 2.764 5 1.555 6 1.766
2 3 1.893 4 2.407 5 1.412 6 1.589
2.1 3 1.700 4 2.137 5 1.303 6 1.450
2.2 3 1.546 4 1.902 5 1.224 6 1.338
2.3 3 1.420 4 1.720 5 1.159 6 1.254
2.4 3 1.326 4 1.576 5 1.112 6 1.190
2.5 3 1.253 4 1.458 5 1.080 6 1.139
2.6 3 1.190 4 1.363 5 1.054 6 1.100
2.7 3 1.145 4 1.287 5 1.036 6 1.073
2.8 3 1.108 4 1.227 5 1.024 6 1.050
2.9 3 1.078 4 1.177 5 1.015 6 1.036
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Table 2.2 ASN and ARL When r, is 400
n=3 n=4 n=>5 n==6

k1 = 3.005; k, = 2.595 k1 = 3.009; k, = 2.40 ky = 3.02; ky = 2.92 k1 = 3.10; ky = 2.13
) ASN ARL ASN ARL ASN ARL ASN ARL
0 59 400.00 66 400.01 87 400.01 316 400.02
0.1 37 250.00 45 277.77 65 344.828 220 346.783
0.2 29 227.273 37 200.001 31 285.714 131 263.158
0.3 22 175.439 25 192.307 30 169.492 98 196.078
0.4 11 138.889 8 135.135 17 163.934 55 102.041
0.5 13 80.000 12 90.090 10 95.238 40 80.645
0.6 10 51.546 7 59.523 7 65.360 32 40.984
0.7 8 39.526 9 49.261 7 55.556 14 34.130
0.8 5 27.855 5 34.246 5 34.722 11 21.368
0.9 3 19.724 4 25.316 5 27.322 8 14.085
1 3 13.986 4 19.723 6 19.685 8 10.142
1.1 3 10.627 4 14.347 5 15.060 6 7.686
1.2 3 8.117 4 11.481 5 10.965 6 5.794
1.3 3 6.618 4 8.703 5 9.033 7 4.686
1.4 3 5.152 4 6.747 5 6.998 6 3.670
1.5 3 4225 4 5.803 5 5.828 6 2.998
1.6 3 3.516 4 4.683 5 4.744 6 2.449
1.7 3 2.847 4 3.930 5 4.005 6 2.110
1.8 3 2.421 4 3.290 5 3.356 6 1.800
1.9 3 2.125 4 2.819 5 2.867 6 1.608
2 3 1.925 4 2.513 5 2.562 6 1.458
2.1 3 1.679 4 2.171 5 2.210 6 1.342
22 3 1.532 4 1.969 5 1.969 6 1.245
2.3 3 1.437 4 1.740 5 1.755 6 1.185
2.4 3 1.339 4 1.609 5 1.602 6 1.136
2.5 3 1.259 4 1.493 5 1.492 6 1.093
2.6 3 1.197 4 1.387 5 1.384 6 1.063
2.7 3 1.147 4 1.313 5 1.305 6 1.042
2.8 3 1.107 4 1.232 5 1.244 6 1.030
29 3 1.081 4 1.196 5 1.197 6 1.018

COMPARATIVE STUDY: MONTE CARLO EXPERIMENT 2

In this section we use a simulation study to illustrate the quality control mechanism via different
sampling approaches. Three sampling schemes are considered for computing the ARL of the
Shewhart control chart in this experiment: the Shewhart control chart based on simple random sam-
pling (SRS); Shewhart control chart based on ranked set sampling (RSS); and Shewhart control
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chart based on repetitive sampling (Rep-RSS). The simulation study is conducted under the normal-
ity assumption with mean g, and variance 0’% assuming the ranking is perfect. Note that under
the SRS procedure, the ARL of the X chart will be 370. Therefore we set ARLO_rss equal to 370
to find the optimal multiplier values for the proposed control limits. The ARL is computed for
6 =0.0,0.1, 0.2, 0.3, 0.4, 0.5, 1.0, 1.8, 2.6, and 3.4 under the same Monte Carlo step as given in

Experiment 1. The results are given in Tables 2.3—2.6

Table 2.3 ARL Using Different Methods When m = 3; ry = 370
Rep-RSS
Shift SRS RSS ky = 3.03, k, = 2.09
0.0 369.68 340.56 370.37
0.1 351.27 321.85 318.58
0.2 305.25 254.77 217.39
0.3 254.71 185.19 163.93
0.4 202.47 128.51 108.67
0.5 153.23 128.50 86.95
1.0 43.31 18.89 14.99
1.8 8.67 3.27 2.96
2.6 291 1.38 1.24
34 1.52 1.04 1.00
Table 2.4 ARL Using Different Methods When m = 4; r, = 370
Rep-RSS

Shift SRS RSS ki = 3.05,k, = 2.12
0.0 369.41 349.04 370.37
0.1 341.71 312.30 303.03
0.2 312.98 22941 227.27
0.3 256.01 166.75 117.64
0.4 200.79 115.94 81.96
0.5 156.12 76.70 62.11
1.0 45.32 14.15 11.57
1.8 8.88 2.48 2.24
2.6 2.95 1.19 1.16
34 1.52 1.01 1.01
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Table 2.5 ARL Using Different Methods When m = 5; ry = 370
Rep-RSS
Shift SRS RSS ky = 3.06, k, = 2.51
0.0 369.41 356.76 370.37
0.1 341.71 301.93 292.61
0.2 312.98 225.83 185.18
0.3 256.01 152.46 136.98
0.4 200.79 98.42 69.93
0.5 156.12 65.33 51.81
1.0 45.32 11.05 9.38
1.8 8.88 2.01 1.84
2.6 2.95 1.10 1.07
34 1.52 1.00 1.00
Table 2.6 ARL Using Different Methods When m = 6; ry = 370
Rep-RSS

Shift SRS RSS ky = 3.07, k, = 2.73
0.0 370.52 346.14 370.37
0.1 349.41 300.84 285.71
0.2 309.02 218.77 212.55
0.3 248.04 137.12 107.52
0.4 198.89 87.00 62.50
0.5 154.94 55.95 40.81
1.0 45.57 9.00 7.73
1.8 7.69 1.71 1.58
2.6 2.93 1.05 1.04
3.4 1.52 1.00 1.00

CONCLUDING REMARKS

A new ranked Shewhart control chart based on repetitive sampling is proposed in this chapter. The
average run length properties are analyzed, and the ARL tables are provided for various parameters.
The proposed control charts provide smaller values of ARL1 as compared to the existing control
charts based on SRS, RSS, and Rep-RSS when ARLO remains the same for all charts. It may be
concluded that the proposed control charts perform better than the traditional control charts in terms
of the ARL. It may be an interesting future work to design other ranked control charts under repeti-

tive sampling.
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CHAPTER

IMPROVED RATIO-CUM-PRODUCT
ESTIMATORS OF THE POPULATION
MEAN

Amer Ibrahim Falah Al-Omari
Department of Mathematics, Faculty of Science, Al al-Bayt University, Mafraq, Jordan

INTRODUCTION

Assume that the random variables X and Y have a joint probability density function (PDF) f(x,y),
and a joint cumulative distribution function (CDF) F(x,y), with population means iy, and popu-
lation variances 0%,0%, of X and Y, respectively, and let p be the correlation coefficient between X
and Y. Let Cx = ;—i and Cy = Z—: be the population coefficients of variations of X and Y, respec-

tively. Let (X1,Y)), (X2,Y2), ..., (Xu, Y,,) be a bivariate simple random sample of size m from

m

f(x,y), and Xsgs = 1 3" X; be the sample mean of the auxiliary variable X with Var(Xsgs) = %
i1

and Ysgs = %Z Y; be the sample mean of the study variable Y with Var(YSRS) = %jy The usual
i=1

simple random sampling (SRS) ratio estimator of the population mean iy of the study variable Y is
defined as

. Ysrs
Py = iy (7 ) 3.1)
Xsrs
provided that the mean of X is known. Since this estimator is biased of the population mean, then
the mean square error (MSE) of ,&iRS is given by
1- C
MSE (7i5%%) = 1=f (a’é +R20% —3R%0%p —Y), (3.2)
m Cx
where f = 7, M is the population size, m is the sample size, R is the population ratio defined as
R= ;f—y p= ””X’;Yy, and oyy = Cov(X,Y) is the covariance between X and Y, for more details see
X

Cochran (1977). Al-Omari et al. (2009) suggested new ratio estimators of the population mean of
the variable of interest Y using simple random sampling and ranked set sampling methods (RSS).
Their SRS estimator is given by

Ysrs Ysrs

~SRSI _ ~SRS3 _
Hy-a = (ﬂx + C]l) =———— and [yy = (Hx + (13> S > (3.3)
Xsrs + g1 Xsrs + q3
Ranked Set Sampling. DOI: https://doi.org/10.1016/B978-0-12-815044-3.00003-4
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where ¢; and g3 are the first and third quartiles of the auxiliary variable X, respectively, with MSE

defined as
MSE (i) l< Ky )K Ly )Ui-i-a%,—ZUxoyp}j: 1,3 (3.4)
m\px +q;) [ \Hx T qj

12

Singh and Tailor (2003) proposed another ratio estimator of the population mean using the
SRS method given by

ﬂ?lisfsr = Ysrs (;Xi—z_f;), 3.5)
with MSE oS
MSE(i%5,) = L2 {Ci - Ci( Fx —2/72)}, (3.6)
m My Tp “\pux tp Cx

and bias given by

Bias (/13" %) = —= 11y C - (3.7)

1-f 2 Mx (,“x pﬁ)
Yuxtp\px+p TCx)

Oxy

oxSy

h sz‘LzY szaif = 2:M_1*IZM X;— iy ) 2:M—1*‘M Yi—piy)
where Cy 2 Cx 7 P , ox = ( ) 1( i ,Ux)’ oy =( ) 231( i Hy)
Y X i= i=

M
and 0%, = (M — n'y (X,» - /,LX) (Y,- - NY)-
i=1
Kadilar and Cingi (2004), based on SRS, suggested the following ratio estimator of the popula-
tion mean

RS b(ltx _ 7SRS) (

iy kG = T P i+ ), (3.8)
where b = Ssx—g, with MSE given by
. 1-f
MSE((13%%6) = —= [R*o% + o3 (1 - p%)]. (3.9

Also, for more about ratio and product method of estimation, see Jemain et al. (2007, 2008) and
Haq and Shabbir (2010, 2013).

SAMPLING METHODS

In this section, we will define the sampling methods which are used throughout the work, namely;
ranked set sampling and extreme ranked set sampling as well as the commonly used simple random
sampling method.

RANKED SET SAMPLING
The RSS method can be described as follows:

Step 1: Select m random samples each of size m bivariate units from the population of interest.
Step 2: Rank the units within each set with respect to the variable of interest by visual
inspection or any cost-free method.
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Step 3: From the first set of m units, the smallest ranked unit X is selected together with the
associated Y, and from the second set of m units the second smallest ranked unit X is selected
together with the associated Y. The procedure is continued until from the mth set of m units the
largest ranked unit X is selected with the associated Y.

The procedure can be repeated n times to increase the sample size to nm RSS bivariate units.

In this chapter, we assume that the ranking is performed on the variable X for estimating the
population mean of the study variable Y. However, the whole process can be repeated while the
ranking can be formed on the variable Y. Let (Xi(l), Yi[l]), (Xi(z), Yi[z]), - (Xl(m), i ) be the order
statistics of X;i,Xp, ..., X, and the judgment order of Yiy, Yi, ..., Y, (i= .,m). Then
the RSS units are (X](l), Yl[l])» (Xz(z), Yz[g]), e (Xm(m), Ym[m]), where () and [ ] indicate that the
ranking of X is perfect and the ranking of Y has errors.

Mclntyre (1952) proposed that the sample mean based on RSS as an estimator of the population
mean defined as

l m
=—> ¥ (3.10)
mi=

Takahasi and Wakimoto (1968) provided the necessary mathematical theory of RSS and showed
that

fo)= *Zfz[x]()’) By = *ZHY[I]JY ZUY[,] %Z (Ny[] MY) >

where fin(y), pyg = [, ¥ fin()dy, and o3, = [ (y—uy[i]) fi1(»)dy, respectively are the proba-
bility density function, mean, and the variance of the ith order statistics.

EXTREME RANKED SET SAMPLING

The extreme ranked set sampling (ERSS) method, as suggested by Samawi et al. (1996), can be
described as follows:

Step 1: Select m random samples, each of size m units, from the target population and rank the
units within each sample with respect to a variable of interest by visual inspection or any other
cost-free method.

Step 2: For actual measurement, if the sample size m is even, from the first 9 sets select the
smallest ranked unit and from the other 7 sets select the largest ranked unit. If the sample size
is odd, from the first "’T_' sets select the lowest ranked unit and from the other 5= L sets select
the largest ranked unit, and from the remaining set the median is selected. The procedure can be
repeated n times if needed to obtain a sample of size nm units.

If m is even, then the measured ERSSE units are (Xl(l), Yl[l]), (Xz(l), Yz[l]), (X%(l), Y%[I]),
(Xesns Yz )+ (Xesns Yt ) -+ (X Yo where

FERSSE _ —ERSSE __ 1
(ZX,(]) + Z X,(m) and Y = Z (

s _mt2

1,_

H‘MMN

Yipy + Z Y[m])

F—mt2

l,_
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with respective variances

1 1
O’f_(gkgsg =m <U§((l) + Ui(m)> and cr?_/msﬁ = om (O’%/[l] + 0%,[,"]> (3.11)
If m is odd, then the measured ERSSO units are (Xl(l), Yl[l]), (Xz(l), Yz[l]), e (XmTﬂ(1>, Y%[I])’
(X%(%), Y%[%]) s (X%(m), Y%[mo, R (Xm(m), Ym[m]), where

m=1
—Ersso _ 1 [ < &
= (Zxﬂw”%(%)* > X |
i=1 =13
with variance

1 m—1
2 _ 2 2
O’XERSSO - m—2 |:—2 <0X(1) + UX(m)) + 02(,+|):| (312)

and

FERSSO 1
= — Yin + Y 1] T+ Y; il 5
m (Z iy on el Z i ])

with variance

1 Im—1
2 — 2 2
O-YERSSO = m_2 |:—2 <l7y[1] + UY[m]) + Ozy[,7,2+]]:| (313)

THE SUGGESTED ESTIMATORS

In this section, we will introduce the suggested estimators of the population mean of the study vari-
able Y using SRS and ERSS schemes.

THE FIRST SUGGESTED ESTIMATOR

ERSS

~ERSS _ ERSS +C _ puy +C
JERSS ( + (C) <5X =@ é)fims o (3.14)

where C can be considered as the coefficient of variation, coefficient of kurtosis, median,
correlation coefficient, coefficient of skewness of the auxiliary variable X or any auxiliary
information of X.

Using Taylor series expansion to the first order of approximation, this estimator can be
written as

~ERSS . ERSS py +C r—prss
A=Y 120 T (x ux> (3.15)
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Theorem 1: To the first degree of approximation of the estimator ,&51558, we have

1. The estimator is approximately unbiased.
2. If mis even, the MSE of [L?gg is

1(1-28)(uy +C) / , 5
~ersSEN o L )1 ( o 2 (1=28)(puy +C) 2 py +C <UX(1) " Ux(m))
MSE(MY—C ); n)2 (Uy[l] + JY[m]) + . +C 1o , (3.16)
" Hx +2| oxy —— Zme)
m i=1
and if m is odd, the MSE is
m—1/ , 5
5 (UY[I] + UY[m]) 7
2
E 1 (1-28)(py +C) |m—1
MSE(:“?/[E{CSO) = Y o + o2 + >
m N (1=26)(puy +C) uy +C 2 ( X X<m>> X(m+1)
px +C 2
+2 (maxy - ZHXY(I')>
i=1
(3.17)

where HXY(i) = (,Ux(,-) - ,ux) (uym - uy).

Proof:

1. The first part of the theorem can be proved by taking the expectation of Eq. (3.12) as

. | oERss py +C —Erss -
E(,uf’ffcs):E{Y +(1—25)ﬂ;—+c<x —ux)}:uy

2. To find the MSE of the estimator ﬂ?fg,fmm Eq. (3.12) we have

. —ERSS 2 1-26\? /- 2
(A=) = (P =y + (uy +CF (ux +<‘c) (X% 1y

+ 2(?’”“5 - uy> {(Hy +C) ( ;X_ff;) (YERSS N “X)}

Taking the expectation of both sides yields

~ ERSS 2 _ . (ERSS 2 2 1-26\? _/—grss 2
E(,u,y_(C —,u,y) = E(Y —/J,Y> + (,uY-HC) —_— E(X _.“’X>
px +C

#2030+ €) (128 [ (77 = ) (R — )

Hence,

. - 1-26\ o 1-26 _ERSS <
MSE (i) = Var (V#) + (s +C) (MXTC) Var (X +2(1, + C) (ux . C) Cov (75, X5)
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Now, if the sample size is even, the MSE of [A?RSS is given by

~ ERSSE\ ~
MSE (jiy ™) = 3 { 2 (U?/[l] + Ui[m])

N (1=28)(uy +C)
px +C

1 (1 - 25)([}, + (C) 1 m
B L+ é: (‘7)2((1) + U)z((m)> +2| oxy — Z;HXW

and if the sample size is odd, the MSE is given as
~Erssoy ., L Jm—1/ 5 2
MSE (jiy>*?) = P > (Uy[l] + Uy[m])

(1-28)(uy +C) |m—1,, v Vi
+w px +C 2 <UX“) UX("“) X(m-i—l) }

[ py +C
m
+2 <m0')(y - Zny(i)>

i=1

+ 0

THE SECOND SUGGESTED ESTIMATOR

SRS
— X +C +C
SRS, = (YSRS + C) §E— (1 - )L , (3.18)
py +C X +C
Using Taylor series expansion to the first order of approximation, this estimator can be
written as
~SRS . <SRS uy +C (—SRS )
=7 4 (1 - — fiy ). .
Py—c=Y (1-20) fiy +C X Hx (3.19)

Theorem 2: To the first degree of approximation of the estimator [Lg,R_SC, we have

1. The estimator is approximately an unbiased estimator of the population mean.
~SRS \ ~ 0% 2/ -5\ o2 _
2. MSE(i%5) = 5 + (y +CP (122) 5 +2p0y0wm(py +C) (1532). (3.20)

Proof: The proof of (1) is directly and the proof of (2) can be obtained as above in Theorem 1
using

~SRS \ SRS 2 1-28° —SRS 1-26 SRS —SRS
MSE (fiy"¢) :Vclr(Y ) + (uy +C) (ll/x"‘(c) Var(X ) +2(py +C) (MX - (C) COV(YS X >
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THE THIRD SUGGESTED ESTIMATOR

Singh and Espejo (2003) suggested a ratio-product estimator of a population mean using simple
random sampling as

SRS
iS5y = Vsgrs (w +(1—w) _SRS) (3.21)
Hx
with bias given by
N 1 - Cy Y
B( ?flisw) = TAU’YC)Z( [PFX + W(l - Pfx)} >
and the associated MSE is
(SRS ) — f 2 201 _ _ Cy
MSE (/1§ )— — 2+ CI1 - 2w] |1 = 2w+ 2p =1}, (3.22)
m Cx
where the optimal value of w, which minimizes the MSE in Eq. (3.22), is wop = %.

Motivated by Singh and Espejo (2003), we propose a new ratio-cum-product type estimator of
the population mean using ERSS technique as

YERSS
~ +ERSS
Ry =Y (w +(1—w) ERSS) (3.23)
Hx
which can be written to the first degree of Taylor series approximation as
. SERSS —(1-w) ERSS
PSS = 2y = P o B (X ), (3.24)
X

Theorem 3: To the first degree of approximation of the estimator [le;lis‘f,, we have

1. The estimator is approximately an unbiased estimator of the population mean.
2. The MSE of [Lﬁlisvf,E nd ,u)b;RSvf,o, respectively, are given by

1

1 [wuy—(1—w) 2
SSEY ~,
MSEGE) 2 (o o) + o[22 (s )
wiy —(1—w 1 &
_ Wiy = ( )<ny__2ny(”> (3.25)
Hx mi=

1 [m—1 1 [wuy—(1—w)]*[m—1
SS() ~
w4250 5 () ] (250 [ ()

Hx

wiy — (1 —w) 1 &

—2————— | oxy —— ) Hxy
Hx m;

(3.26)

Proof: The proof of (1) is directly and the proof of (2) can be obtained by using
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SERSS 1— — ST —(1=w)? e
MSE(ju ERSS)%Var(YEm) oM Z U [( X ux) (YER” —uyﬂ + {Wi“ r— W)} Var<XER”)
Hx Hx
~ Var<?ERSS) o Why — 1—-w) COV()—(ERSS YERSS) 4 |:W,U/y -1 —w)} ZVW()_(ERSS>
; Hx ’ Iy

Hence, the results can be obtained by substituting the expressions of Var <7ERSS> and Var (}_(ERSS>
for odd and even sample sizes, respectively.

SIMULATION STUDY

The suggested ratio-cum-product estimators of the population mean are compared within them-
selves based on simulation study for sample sizes m =3, ..., 10 with p= *£0.99, =0.90, =0.70,
+0.50, =0.30, £0.10 and (C p. The samples are generated from the bivariate normal distribu-
tion for yy =7, puy =5, and 0% = 0% = 1.

ERSSE ~ SRS

with respect to jiy_ is defined as
MSE( SRS)
MSE( ERSSE)

2[(/LX + (C) ((7%, + 2/)mUyOx) + (1 —26) (,LLY + (C)cr?(]
3.27)
, ¢! *26)(uy+(C) (a + 2 )
<‘7%/[1] + U%/[m]) (ux +C) px +C o e

1—-28)(uy +C 1 &
( )(,Uy ) +4 <O'XY — Z;wa)>

with respect to [L?,‘E?c is defined as

The efficiency of fi,~

(RS, 735) =

And the efficiency of MERSSO

Eff( ~ERSSO ~SRS ) MSE( iy )

Hy—c > Hy—c I\W
Ll _ ;;() (J;(i 5 2 L= Z) EFME;L C) o + ZpO'yO'Xm:| .
e [P )
2
(- ii)(fg C) " ! (730 + 7w + ozx(er 1)
i 2

+2 (m(fxy - ZHXYU))

i=1
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The efficiency of fiy~y" and iy*}y° with respect to /iy, is defined as
MSE SRS
Err (RSN, 78S,) = MSEUrw)
MSE (ZERSSF)
C
21 —f)u%{Ci + C3[1 —2w] {1 — 2w+ 2pc—;:| }
= (3.29)

2
2 2 wiy—=(1=w 2 2
(Uy[u + ”Y[m]) + [7’ o )] <(’x(1) + UX(m)>

—4dm——— | oxy — — i
xy = 2 XY(i)

Hx

3 MSE( ~SRS )

BSOS = i)
c

m(1 —f)/ﬂy{cg + C2[1 —2w] [1 — 2w+ ZpC—Y} }
X

m—1¢, 2 iy |
o) 2 e B
v —
2

lle

120'¢

m—1/, ) , wity — (1 —w) 1 &
5 ) | S
2

(3.30)

The results of the simulation are presented in Tables 3.1—3.4 for all cases considered in
this study.

Remarks:
1. [LEE?CSE is more efficient than MSRS if Eff (MER%SE, (iSRS )
2, /llf,liscso is more efficient than uSRS if Eff (ﬂ];:,lfﬁcso, (iSRS )
3. iyR" is more efficient than 5%, if Eff (4555, A3y) >
4. R0 is more efficient than i3y, if BEF (2550, f555) > 1.
We observe from Tables 3.1—3.4 that:
* The ratio-cum-product estimator ,&ERSC performs better than ,u?,RSC for all values of the

correlation coefficient and sample sizes. The same thing can be concluded for MERS“§ as

compared to /ISRS

* Without loss of generality, the efficiency of [LER‘S with respect to /}YESW increases in the sample
size for fixed value of the correlation coefficient, especially for p = —0.99, —0.90, — 0.70.

* The efficiency of the suggested estimators ,&ERSM? is increasing as the sample size increasing for
most cases in Tables 3.3 and 3.4.

» The bias values of all suggested estimators approaches zero for all cases considered in this

study.



Table 3.1 The Efficiency of /5% With Respect to jis<- for m=3,...,10 With p = 0.99, 0.90, 0.70, 0.50, 0.30, 0.10 for
py=7and py =5

s s B(i5%%) B(i) V(i) v(i=s) Eff
m p=0.99
3 5.860076 5.665692 2.860076 2.665692 6.327324 3.216656 1.405402
4 5.711220 5.639494 2.711220 2.639494 4.497059 2.288005 1.280157
5 5.716215 5.586388 2.716215 2.586388 3.754843 1.522393 1.355692
6 5.670257 5.575278 2.670257 2.575278 3.029844 1.282059 1.283796
7 5.640729 5.557779 2.640729 2.557779 2.651196 0.948352 1.284899
8 5.642768 5.542131 2.642768 2.542131 2.299761 0.851347 1.269383
9 5.620538 5.537345 2.620538 2.537345 2.022440 0.695794 1.246112
10 5.607014 5.530943 2.607014 2.530943 1.765726 0.621081 1.218521
p =090
3 5.831177 5.647893 2.831177 2.647893 5.580202 3.002137 1.357747
4 5.689738 5.625215 2.689738 2.625215 4.088180 2.148276 1.252526
5 5.696826 5.582238 2.696826 2.582238 3.307520 1.461004 1.301568
6 5.654074 5.567641 2.654074 2.567641 2.673719 1.234905 1.241469
7 5.627512 5.552080 2.627512 2.552080 2.338993 0.928616 1.242025
8 5.630264 5.536653 2.630264 2.536653 2.030088 0.831683 1.231491
9 5.609221 5.534355 2.609221 2.534355 1.786739 0.695267 1.207433
10 5.597238 5.530898 2.597238 2.530898 1.559441 0.616440 1.182743
p=0.70
3 5.778805 5.634193 2.778805 2.634193 5.803809 3.194170 1.334785
4 5.663591 5.600695 2.663591 2.600695 2.945515 1.893382 1.159782
5 5.664042 5.566405 2.664042 2.566405 2.468752 1.370683 1.202178
6 5.626662 5.558594 2.626662 2.558594 2.006020 1.147417 1.157471
7 5.605011 5.546434 2.605011 2.546434 1.751260 0.895291 1.156882
8 5.609087 5.532567 2.609087 2.532567 1.523950 0.798513 1.155132
9 5.589609 5.526360 2.589609 2.526360 1.343871 0.692496 1.137803
10 5.580454 5.527079 2.580454 2.527079 1.171936 0.611124 1.119108

p=0.50




3 5.782869 5.610228 2782869 2.610228 5.291162 2.380849 1.417808
4 5.652202 5.585049 2.652202 2.585049 2.248846 1.716541 1.105251
5 5.645564 5.551397 2.645564 2.551397 1.856226 1.278483 1.137020
6 5.610764 5.546816 2.610764 2.546816 1.516704 1.076820 1.101770
7 5.592014 5.541929 2.592014 2.541929 1.315125 0.888374 1.093048
8 5.596935 5.529544 2.596935 2.529544 1.149641 0.778516 1.099846
9 5.577442 5.521496 2.577442 2.521496 1.015393 0.692639 1.086237
10 5.570446 5.528277 2.570446 2.528277 0.884619 0.602522 1.071069
p=030
3 5.767762 5.614585 2767762 2.614585 12.51099 2211185 2.229574
4 5.658593 5.581372 2.658593 2.581372 1.959375 1.592738 1.093417
5 5.641453 5.552919 2.641453 2.552919 1.486897 1.228390 1.092746
6 5.606446 5.542686 2.606446 2.542686 1.215599 1.046016 1.066286
7 5.588538 5.535083 2.588538 2.535083 1.035881 0.864945 1.061005
8 5.593790 5.528652 2.59379 2.528652 0.911906 0.766370 1.066924
9 5.572733 5.521059 2.572733 2.521059 0.804242 0.689594 1.053633
10 5.567226 5.524619 2.567226 2.524619 0.700309 0.595986 1.046096
p=0.10
3 5.756092 5.622937 2.756092 2.622937 50.55562 2.188349 6.412739
4 5.640029 5.597807 2.640029 2.597807 4576353 1.550466 6.354121
5 5.651727 5.563243 2.651727 2.563243 1.380651 1.218637 1.080045
6 5.613796 5.545454 2.613796 2.545454 1.115020 1.019538 1.059752
7 5.594591 5.538331 2.594591 2.538331 0.919467 0.868542 1.046460
8 5.599655 5.526860 2.599655 2.526860 0.816460 0.760321 1.060085
9 5.575500 5.521781 2.575500 2.521781 0.713775 0.690839 1.042092
10 5.570813 5.526857 2.570813 2.526857 0.622306 0.601462 1.035056




Table 3.2 The Efficiency of 5<% With Respect to ji;". for m =3,..,10 With p= —0.99, —0.90, —0.70, —0.50, — 0.30,

—0.10 for py =7 and py =5

i 2 B(i~%) B(i2¥) v(imts) V(i) Eff
m p= —0.99
3 4261237 4.072545 —0.73876 —0.92745 1.362038 0.682503 1.236689
4 4.225636 4.055253 —0.77436 —0.94475 0.971821 0.473467 1.150400
5 4.197943 4.045286 — 0.80206 —0.95471 0.784817 0.317509 1.162022
6 4.183963 4.033338 —0.81604 — 0.96666 0.651751 0.257177 1.105786
7 4.178395 4.027180 —0.82161 —0.97282 0.538343 0.198738 1.059611
8 4.184747 4.024501 —0.81525 —0.97550 0.487940 0.174904 1.023146
9 4.167585 4.024336 —0.83242 —0.97566 0.422390 0.143096 1.018530
10 4.168594 4.022187 —0.83141 —0.97781 0.381368 0.109491 1.006580
p= —0.90
3 4.289380 4.153400 —0.71062 —0.8466 1.184162 0.624515 1.259382
4 4.258207 4.138356 —0.74179 —0.86164 0.847502 0.436898 1.185216
5 4.233749 4.129966 —0.76625 —0.87003 0.684779 0.298240 1.205383
6 4221397 4.119352 —0.77860 —0.88065 0.569186 0.241805 1.155367
7 4.216908 4.114773 —0.78309 —0.88523 0.470516 0.190382 1.112669
8 4.223308 4.112375 —0.77669 —0.88762 0.426407 0.166779 1.078563
9 4.207604 4.111922 —0.79240 —0.88808 0.369550 0.138518 1.075757
10 4.208877 4.110709 —0.79112 —0.88929 0.333386 0.124888 1.047542
p=—070
3 4.374327 4.336182 —0.62567 —0.66382 0.850403 0.519920 1.292842
4 4.351122 4.326305 —0.64888 —0.67370 0.611744 0.365798 1.260014
5 4.333398 4.323276 — 0.66660 —0.67672 0.495386 0.260410 1.308170
6 4.324262 4.313616 —0.67574 —0.68638 0.412845 0.212798 1.271297
7 4.321563 4.309888 —0.67844 —0.69011 0.341618 0.172636 1.235793
8 4.328062 4.309165 —0.67194 —0.69084 0.309609 0.152062 1.209426
9 4.315297 4.308127 —0.68470 —0.69187 0.269069 0.129935 1.212388
10 4.316936 4.306374 —0.68306 —0.69363 0.242211 0.116650 1.185725

p=—050




3 4.493676 4.523603 —0.50632 — 0.47640 0.598763 0.432934 1.295868
4 4476022 4.518050 —0.52398 —0.48195 0.432340 0.314507 1.292820
5 4.464449 4516154 —0.53555 —0.48385 0.351204 0.232666 1.366873
6 4457812 4.509214 —0.54219 —0.49079 0.293720 0.191054 1.360624
7 4.456252 4.506790 —0.54375 ~0.49321 0.243155 0.159306 1.338469
8 4462810 4.507031 ~0.53719 —0.49297 0.220437 0.140613 1.326819
9 4.452543 4.504319 —0.54746 —0.49568 0.192246 0.120476 1.343499
10 4454318 4.505250 —0.54568 —0.49475 0.172407 0.107230 1.335700
p=—1030
3 4.651730 4714919 —0.34827 —0.28508 0.428698 0.374810 1.205903
4 4.637355 4715161 —0.36265 —0.28484 0.310153 0.275254 1.239283
5 4.631381 4711000 —0.36862 —0.28900 0.253184 0.212427 1.314638
6 4.626527 4704871 —0.37347 —0.29513 0.212421 0.177098 1.331965
7 4.625525 4705667 —0.37448 —0.29433 0.176219 0.147987 1.348789
8 4632111 4704215 ~0.36789 —0.29579 0.159592 0.131665 1.345792
9 4.623905 4702919 —0.37610 —0.29708 0.139843 0.115616 1.379731
10 4.625616 4703871 —0.37438 —0.29613 0.124576 0.102139 1.394601
p=—0.10
3 4.852841 4.909030 —0.14716 —0.09097 0.342708 0.340355 1.045129
4 4.839578 4912014 —0.16042 —0.08799 0.247764 0.254762 1.041892
5 4.838692 4.905691 —0.16131 —0.09431 0.203779 0.197508 1.113353
6 4.834924 4.902314 —0.16508 ~0.09769 0.170774 0.167812 1.116546
7 4.833942 4.902154 —0.16606 ~0.09785 0.142890 0.142678 1.119622
8 4.840546 4.899476 —0.15945 —0.10052 0.128645 0.126918 1.124417
9 4.833970 4.900888 —0.16603 —0.09911 0.113358 0.113174 1.145752
10 4.835435 4.902309 —0.16457 —0.09769 0.099980 0.099909 1.160885




Table 3.3 The Efficiency of i2%55

puy=7and py =35

With Respect to fi;

S

for m=3,...,10 with p=10.99, 0.90, 0.70, 0.50, 0.30, 0.10 for

i i (i) | B | v(ss) | vss) | e
m p=0.99
3 5.064542 5.023006 0.064542 0.023006 1.344709 0.696868 1.934156
4 5.024869 5.026544 0.024869 0.026544 0.966415 0.424715 2.273129
5 5.039456 5.010530 0.039456 0.010530 0.808842 0.285859 2.833861
6 5.028388 5.012584 0.028388 0.012584 0.673635 0.207290 3.251126
7 5.029887 5.006276 0.029887 0.006276 0.558039 0.154454 3.617835
8 5.018673 5.004735 0.018673 0.004735 0.492149 0.125657 3.918674
9 5.026638 5.005307 0.026638 0.005307 0.432769 0.101960 4250274
10 5.017080 5.002376 0.017080 0.002376 0.399693 0.084087 4.756497
p=0.90
3 5.053566 5.019704 0.053566 1.97E-02 1.168882 0.632648 1.851001
4 5.018317 5.022626 0.018317 2.26E-02 0.840046 0.394705 2.126379
5 5.033236 5.009191 0.033236 9.19E-03 0.702113 0.271617 2.588195
6 5.025186 5.011302 0.025186 1.13E-02 0.566357 0.203106 2.789844
7 5.017951 5.007660 0.017951 7.66E-03 0.499444 0.155984 3.202763
8 5.024302 5.000972 0.024302 9.72E-04 0.432548 0.124620 3.475639
9 5.019415 5.000088 0.019415 8.84E-05 0.381656 0.103259 3.699745
10 5.017534 4.998483 0.017534 -1.52E-03 0.333697 0.085883 3.888983
p=0.70
3 5.036578 5.013590 0.036578 0.013590 0.841263 0.514557 1.636941
4 5.009103 5.018824 0.009103 0.018824 0.604553 0.338193 1.785971
5 5.022311 5.005556 0.022311 0.005556 0.505071 0.245996 2.054932
6 5.016380 5.008073 0.016380 0.008073 0.408398 0.191313 2.135388
7 5.011105 5.006781 0.011105 0.006781 0.359281 0.150788 2.382789
8 5.017498 4.997649 0.017498 -0.00235 0.311767 0.125316 2.490188
9 5.013195 4.998965 0.013195 -0.00104 0.275313 0.106153 2.595157
10 5.012198 4.998532 0.012198 -0.00147 0.240381 0.090830 2.648076

p =050




3 5.025174 5.008099 0.025174 0.008099 0.59504 0.426069 1.397855
4 5.003785 5.016725 0.003785 0.016725 0.427618 0.294637 1.450009
5 5.014516 5.000456 0.014516 0.000456 0.357031 0.221846 1.610311
6 5.010058 5.010139 0.010058 0.010139 0.290181 0.180357 1.608568
7 5.006417 5.002605 0.006417 0.002605 0.253893 0.147404 1.722631
8 5.012899 4.997767 0.012899 -0.00223 0.221233 0.125188 1.768472
9 5.008673 5.000406 0.008673 0.000406 0.195614 0.109881 1.780909
10 5.008476 4.999094 0.008476 -0.00091 0.170487 0.096080 1.775154
p=1030
3 5.019325 5.006501 0.019325 6.50E-03 0.430747 0.367577 1.172737
4 5.002324 5.011326 0.002324 1.13E-02 0.309795 0.266298 1.162802
5 5.009886 5.003053 0.009886 3.05E-03 0.258169 0.207576 1.244145
6 5.006273 5.006430 0.006273 6.43E-03 0.211744 0.171513 1.234496
7 5.003906 5.001069 0.003906 1.07E-03 0.183291 0.142399 1.287257
8 5.010480 5.001502 0.010480 1.50E-03 0.160988 0.125434 1.284301
9 5.005880 4.997816 0.005880 -2.18E-03 0.142509 0.109651 1.299913
10 5.006371 5.000023 0.006371 2.25B-05 0.124112 0.098722 1.257592
p=0.10
3 5.019020 5.004568 0.019020 4.57E-03 0.349116 0.335439 1.041787
4 5.004694 5.010469 0.004694 1.05E-02 0.251658 0.249393 1.008725
5 5.008439 5.005679 0.008439 5.68E-03 0.208690 0.202758 1.029443
6 5.005055 5.003029 0.005055 3.03E-03 0.173256 0.169076 1.024818
7 5.003578 5.003690 0.003578 3.69E-03 0.147485 0.142915 1.031969
8 5.010230 4.998800 0.010230 -1.20E-03 0.131139 0.124894 1.050833
9 5.004832 4.999874 0.004832 -1.26E-04 0.116018 0.110586 1.049330
10 5.005885 4.999915 0.005885 -8.46E-05 0.101383 0.098591 1.028668




Table 3.4 The Efficiency of i<y With Respect to fi;<, for m =3, ...,10 With p= —0.99, —0.90, —0.70, —0.50, —0.30,
—0.10 for py =7 and py =5

s, S () [ B(ER) | v(s) [ vss) |
m p=-—0.99
3 5.114716 5.054574 0.114716 0.054574 1.407696 0.720631 1.963567
4 5.083137 5.037643 0.083137 0.037643 1.011697 0.431141 2.354849
5 5.056966 5.026043 0.056966 0.026043 0.819953 0.294125 2.792366
6 5.044314 5.014090 0.044314 0.014090 0.681727 0.208720 3.272524
7 5.040036 5.011940 0.040036 0.011940 0.564998 0.159215 3.555529
8 5.047179 5.009249 0.047179 0.009249 0.511658 0.125837 4.080950
9 5.030384 5.008221 0.030384 0.008221 0.443865 0.102986 4.316081
10 5.031947 5.007732 0.031947 0.007732 0.400697 0.083324 4.817687
p=-—090
3 5.100567 5.047233 0.100567 0.047233 1.220611 0.652837 1.878773
4 5.072716 5.033009 0.072716 0.033009 0.878882 0.398956 2210169
5 5.049334 5.022204 0.049334 0.022204 0.712290 0.278430 2.562442
6 5.038059 5.012769 0.038059 0.012769 0.592516 0.201121 2.950877
7 5.034629 5.009781 0.034629 0.009781 0.491289 0.156718 3.140585
8 5.041612 5.008053 0.041612 0.008053 0.444823 0.125824 3.547221
9 5.026208 5.006442 0.026208 0.006442 0.386184 0.104558 3.698582
10 5.027924 5.005783 0.027924 0.005783 0.348400 0.086260 4.046441
p=-0.70
3 5.060366 5.032169 0.060366 0.032169 0.865062 0.523030 1.657630
4 5.052285 5.025263 0.052285 0.025263 0.640934 0.347427 1.849272
5 5.043939 5.008513 0.043939 0.008513 0.504409 0.248009 2.041026
6 5.036839 5.009845 0.036839 0.009845 0.417407 0.189365 2.210276
7 5.024193 5.010397 0.024193 0.010397 0.361208 0.153748 2.351504
8 5.023876 5.005146 0.023876 0.005146 0.312096 0.124601 2.508801
9 5.020344 5.006023 0.020344 0.006023 0.276069 0.107627 2.568041
10 5.024908 5.003080 0.024908 0.003080 0.251790 0.093096 2.711020

p=—1050




3 5.048287 5.028532 0.048287 0.028532 0.608419 0.437421 1.393659
4 5.035241 5.018845 0.035241 0.018845 0.445889 0.299598 1.490667
5 5.033372 5.008671 0.033372 0.008671 0.364473 0.222659 1.641360
6 5.014972 5.009753 0.014972 0.009753 0.294769 0.183795 1.604181
7 5.024169 5.005677 0.024169 0.005677 0.251048 0.144800 1.737406
8 5.017391 5.002627 0.017391 0.002627 0.218011 0.125026 1.746050
9 5.016349 4.998879 0.016349 -0.00112 0.198993 0.108786 1.831652
10 5.015232 5.000920 0.015232 0.000920 0.177622 0.096384 1.845238
p=—1030
3 5.023274 5.020530 0.023274 0.020530 0.429828 0.372432 1.154261
4 5.021981 5.007382 0.021981 0.007382 0.324528 0.266393 1.219792
5 5.018594 5.008728 0.018594 0.008728 0.263492 0.211454 1.247282
6 5.012574 5.002197 0.012574 0.002197 0.214442 0.172163 1.246457
7 5.006930 5.004702 0.006930 0.004702 0.181800 0.145061 1.253402
8 5.015895 5.000963 0.015895 0.000963 0.160197 0.124147 1.292412
9 5.011022 5.003629 0.011022 0.003629 0.142788 0.112370 1271623
10 5.010192 4.999806 0.010192 -0.00019 0.127686 0.097507 1.310574
p=—-1010
3 5.021547 5.010563 0.021547 0.010563 0.346315 0.340744 1.017378
4 5.020529 5.005282 0.020529 0.005282 0.262093 0.248310 1.057084
5 5.012725 4.999262 0.012725 -0.00074 0.209457 0.202046 1.037478
6 5.009023 5.002840 0.009023 0.002840 0.178853 0.166397 1.075290
7 5.007271 5.001898 0.007271 0.001898 0.150249 0.143952 1.044080
8 5.008075 5.002471 0.008075 0.002471 0.129278 0.126399 1.023243
9 5.008477 4.999239 0.008477 -0.00076 0.114987 0.110568 1.040613
10 5.004838 5.002679 0.004838 0.002679 0.104981 0.099579 1.054405
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3.5 CONCLUSION

In this chapter, various ratio-cum-product estimators of the population mean of the study variable
are suggested using SRS and ERSS methods based on information on a single concomitant variable.
Expressions of the mean squared errors of the proposed estimators are derived. Based on theoretical
and simulation comparisons, it is noted that the suggested estimators using ERSS are always better
than their competitors using SRS for all cases considered in this study.
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CHAPTER

ESTIMATION OF THE
DISTRIBUTION FUNCTION USING
MOVING EXTREME RANKED SET
SAMPLING (MERSS)

Mohammad Fraiwan Al-Saleh, and Dana Majed Rizi Ahmad
Department of Statistics, Yarmouk University, Irbid, Jordan

INTRODUCTION

Statistics is the science of collecting, organizing, analyzing, and making inference about a popula-
tion using information in a sample taken from it. There are several sampling techniques that can be
used to choose a suitable sample. Simple random sampling (SRS) is the basic sampling technique.
Using this method, a sample of size n is selected from a population of size N, such that all groups
of n elements in the population are equally likely to be selected. SRS is used when each subgroup
within the population needs to be represented in the chosen sample, the population is divided into
nonoverlapping groups; each group is called a stratum, a random sample is taken from each stra-
tum. The ideal situation occurs when strata are very similar within and very different among. In
cluster random sampling, the population consists of groups of elements called clusters; a cluster is
preferred to be as heterogeneous as possible. We choose a random sample of clusters. The ideal sit-
uation occurs when clusters are very similar among and very different within. Systematic random
sampling: In this method, a starting point is chosen from the first k elements in the frame, and then
every kth element thereafter is included in the sample; usually, k = [N / n] (For more information
about these techniques see “Elementary Survey Sampling” by Scheaffer et al., 1986.)

Mclntyre (1952) suggested a new sampling technique, which was called ranked set sampling
(RSS), to estimate more effectively yields of pastures. The technique can be executed as follows:

1. Draw randomly m sets of size m each from the population of interest;

2. Rank the units within each set by judgment, with respect to the variable of interest from
smallest to largest. It is assumed here that each element can be ranked by eyes or by a
relatively cheap method;

3. From the ith set, take for actual quantification the element ranked by judgment as the ith order
statistic, i = 1,2, ...,m.

Steps 1—3 give an RSS of size m.
4. The above procedure can be repeated, if necessary, r times to get an RSS of size n = mr.

Ranked Set Sampling. DOI: https://doi.org/10.1016/B978-0-12-815044-3.00004-6
Copyright © 2019 Elsevier Inc. All rights reserved. 43


https://doi.org/10.1016/B978-0-12-815044-3.00004-6

44 CHAPTER 4 ESTIMATION OF THE DISTRIBUTION FUNCTION

Let {Y]

iy LT
ranking, Y{i:m) is the ith order statistic for a random sample of size m at the jth cycle. Note that for
each i, Y.\, Y-
Y{l:m)’ Y(ZIm)’ .
sample of size m.

RSS is applicable whenever a ranking mechanism can be found such that the ranking of sam-
pling units is carried out easily and sampling is much cheaper than the measurement of the variable
of interest. Mclntyre (1952) mentioned, without mathematical proof, that the mean of quantified
elements is an unbiased estimator of the population mean regardless of any error in judgment rank-
ing. With perfect ranking for typical unimodal distributions, the mean of such a sample is nearly
(m + 1)/2 times as efficient as the mean of an SRS of the same size; this upper bound is achieved
when the underlying distribution is the uniform.

Takahasi and Wakimoto (1968) established the theory of RSS. Let the population density func-
tion be f(x) with mean p and variance . Let the (i:m)th order statistic from the population have
the density function f:y)(x) with mean g and variance a(zl.:m), then from Takahasi and
Wakimoto (1968) the basic identity is:

1,..., m, j=1,...,r} be the set of RSS elements, where under perfect judgment

. Y(’i:m) are independent and identically distributed, f{;.»), while for each j,

. Yfm:m), are only independent. f(;:,,) is the pdf of the ith order statistic of a random

iim)>

0= 25 fim @,
=1

Based on this identity, they showed that

1 5 1< ) 1< 5
H= ;Zu(ilm) &o®= EZ O—(iim) + EZ (,u(ilm) _,“’) .
i=1 i=1 i=1

Let figrgs be the RSS mean and [igrg be the mean of an SRS of the same size. Takahasi and
Wakimoto (1968) compared the performance of the estimators using the efficiency of [igqq With
respect to figps:

Var(figgs)

Eff(figss; flsrs) = Y
RSS> TSRS Var(jigss)

They showed that

m+1

1= Eff(figss; fisrs) = —5—

The lower bound is attained if and only if the underlying distribution is degenerate, while the
upper bound is attained if and only if the underlying distribution is rectangular (uniform).

Stokes and Sager (1988) used RSS to estimate the distribution function F(z). They showed that
the empirical distribution function-based RSS, F rss(?), is unbiased for F(f) and more efficient than
the empirical distribution function based on an SRS of size n. The empirical distribution function
using RSS is given by:

r m

. 1 ;
Frss(t)= —% 0% 1(X(D,y =1,
j=1 i=1

where, Xg:)m) is the ith order statistics for a random sample of size m at the jth cycle.
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For more work on the RSS technique see Kaur et al. (1995) “Ranked Set Sampling: An
Annotated Bibliography,” Al-Saleh and Al-Kadiri (2000), Al-Saleh & Al-Omari (2002), Abu-
Dayyeh et al. (2002), Al-Saleh and Zheng (2002), Al-Saleh and Samawi (2000), Ozturk and Wolfe
(2000), Ozturk and Wolfe (2000), (2001), Ozturk (2002), Al-Saleh and Ababneh (2015), Zheng and
Al-Saleh (2002), Al-Saleh and Darabseh (2017).

Moving extreme ranked set sampling (MERSS) is a variation of RSS introduced by Al-Odat
and Al-Saleh (2001). The MERSS technique can be described as follows:

1. Select m SRSs of size 1,2,...,m, respectively;

2. Order the elements by tudgment, without actual measurement of the characteristic of interest;

3. Measure accurately the maximum ordered observation from the first set, and the maximum
ordered observation from the second set. The process continues in this way until the maximum
ordered observation from the last mth sample is measured;

4. Steps 1—3 may be repeated if necessary on m samples of size 1,2, ..., m, respectively, but here
the minimum ordered observation is measured instead of the maximum ordered observations.

5. The entire cycle can be repeated, if necessary, many times to obtain a sample of larger size.

Al-Odat and Al-Saleh (2001) investigated this method nonparametrically and concluded that
the estimator of the population mean is more efficient than that of SRS in the case of symmetric
populations. Al-Saleh and Al-Hadhrami (2003a,b) studied the method in more detail. They insisted
that MERSS allows for an increase in set size without introducing too much ranking error. They
concluded that the MLE of the mean of the exponential distribution based on MERSS is more effi-
cient than the MLE based on SRS. Also, the information contained in MERSS, measured by Fisher
information number, is always greater than that of the SRS with the same size.

Al-Saleh and Al-Ananbeh (2005) considered the estimation of correlation coefficient in the
bivariate normal distribution based on a modification of the MERSS using a concomitant random
variable. Al-Saleh and Samawi (2010) considered the estimation of the odds using MERSS.
Samawi and Al-Saleh (2013) considered the estimation of odds ratio using MERSS.

Al-Saleh and Ababneh (2015) considered testing for perfect ranking in MERSS. Hanandeh
(2011) considered the estimation of the parameters of Downton’s bivariate exponential distribution
using MERSS. Al-Saleh and Naamneh (2016) studied the performance of “The Five-Number
Summary” obtained using different sampling techniques.

There are other techniques for utilizing some available variables that are easy to measure and
that have a strong relation with the main variable. One popular technique is the ratio estimation
technique. In this method, it is assumed that the obtained sample is (Xi, Y1), (X2, Y2), ..., (X, ¥p); X
is the variable of interest and Y is the auxiliary variable. It is assumed that E(Y) = p,, is known, and
E(X) = p, is estimated from [, = XY p,. This ratio estimator can be compared to other estimators
of u,. For recent work on ratio estimation, see Subzar et al. (2016, 2017a, 2017b, 2017c) and
Sharma et al. (2016).

In this chapter, the use of the MERSS technique to estimate the cumulative distribution function
F(x) is investigated. The suggested estimators are compared with the corresponding estimators
based on RSS and SRS.
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ESTIMATION OF DISTRIBUTION FUNCTION USING METHOD OF MOMENTS

Let Xi,X5,...,X,,n=mr be a simple random sample (SRS) of size n, with common absolutely
continuous unknown cdf F (7). For a given ¢, the well-known SRS estimator of F(¢) is the empirical
distribution function given by:

R 1 n
Fsrs(t) = ;Z I(X;=1),
=1

1 ifXi=t
0 if X;>t.’
Clearly, Fsgs(?) is the method of moments estimator (MME) and the maximum likelihood

estimator (MLE) of F(¢). It a suitable estimator when there is no available information about
F. Now,

where, Y; =I(X; =1) = {

E(IX;=1)=pXi=1)=F(@), Var((X; =1)) = F(t)(1 — F(2)).
ThusE(Fsgs(t)) = F(¢), i.e., Fsrs(?) is an unbiased estimator of F(r) Also,

Var(Fsus ) = T,

Let X1 m)’X('ZZm)’ . (m my> for j=1,...,r, be an RSS of size n =rm (set size m and r cycles)
from F(f). Stokes and Sdger (1988) suggested the following estimator for F(¢):

Frss(t) = —Z Z I(X((f)m) =

They showed that F rss(?) is an unbiased estimator for F(¢) and is more efficient than F srs ().
The variance of Frss(?) is given by

Z F(I m)(t)(] F(lm)(t))

rm?

Var(Frss(t) = = — ZZF(, w1 = Fizy (1)) =
j=1 i=
The efficiency, for m =2,3,4,5, of FRSS(I) relative to FSRS(t) is given in Table 4.1.
Based on Table 4.1, it can be seen that Fgrss(f) is more efficient than Fsrs(r). The effi-
ciency is increasing in m for fixed F(r). For very large or very small F(¢) (with small m),

Table 4.1 Eff(Frss(t); Fsgs(?)) for Some Values of m and F(f)

F@®)

m 0.05 0.2 0.4 0.5 0.7 0.9 0.95
2 1.05 1.19 1.31 1.33 1.26 1.10 1.05
3 1.10 1.37 1.56 1.60 1.50 1.20 1.10
4 1.15 1.41 1.79 1.83 1.71 1.29 1.15
5 1.20 1.68 2.00 2.03 1.73 1.41 1.20
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though the efficiency >1, the improvement is not very significant. For fixed m, the effi-
ciency is increasing in F(¢) for F(f)=0.5 and decreasing for F(f) >0.5. The best values are
for F(r) = 0 5

Let {X(l X =1,...,mj= .,r} be an MERSS based on a distribution function, F(z). Note
that: For flxed i (il.)i),... X(r)) are iid with common distribution Fi(f); while for fixed j,
X((’l) 1y Sm -y are only 1ndependent

Let I(X y=0=Y"i=1,2,...m j=12,...r then Y is Ber(1,Fi(1)).

A modlfled MME (MMME) can be obtained using binomial theorem:

m

Z ( Z)F'"ik(t) = (1+F(2))". (Binomial Theorem)

k=0
F() = \/ Z (km)F’"‘k(t) -1
k=0

Fyve() = 1/ (k’” )Y,H -1 @.1)

k=0

Thus

Therefore the MMME is

Now,

=3 Y .Y ( Z ( )Ym—k - 1) (ﬁ ( ;I,)(F"(r»”(l —F"(r))’*y')

Yn=0yn1=0  y»=0y;= =1

The efficiency of F MMME(?) W.I.t. F rss(?) is

Eff(Fyvme(1), Fsrs (1) = % ’
MMME

where

MSE(Fyvvie(t) = E (F(1) = Fyvvie (1))

ﬁMMME(t) and F srs(?) are compared, for m = 3, 4, 5. The numerical results, obtained using a
scientific workplace package, are given in Tables 4.2—4.4.

Table 4.2 Eff (Fymr (), Fsgs(®), r = 3

F@®

m 0.20 0.40 0.50 0.70 0.75 0.90 0.99
3 0.58 0.71 0.82 1.07 1.13 131 1.46
4 0.48 0.62 0.71 1.06 1.17 1.49 1.67

5 0.41 0.52 0.65 1.03 1.17 1.59 1.92
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Table 4.3 Eff (Fymv(®), Fses(®), r = 5
F()
m 0.20 0.40 0.50 0.70 0.75 0.90 0.99
3 0.57 0.75 0.86 111 1.19 1.38 1.49
0.47 0.66 0.81 1.13 126 1.55 1.72
5 0.48 0.72 091 138 122 2.03 1.91

Table 4.4 Eff (Fypr (), Fsgs(t)), r = 10
F()
m 0.20 0.40 0.50 0.70 0.75 0.90 0.99
3 0.55 0.77 0.89 1.16 1.23 1.45 1.58
0.45 0.68 0.86 1.19 1.30 1.59 1.76
5 0.38 0.63 0.79 1.22 1.29 1.71 1.93

Based on these tables we conclude that:

* For fixed F(¢) and m, the efficiency is increasing in r for large and moderate values of F(¢) and
is decreasing for small values of F().

* For fixed values of r and m, the efficiency is increasing in F(f).

» For fixed values of F(¢) and r, the efficiency is increasing in m for large values of F(¢) and
decreasing for small and moderate values of F(f).

In general, it can be seen that for large values of F(¢) the efficiency tends to be larger than 1
and is increasing in m. But for small to moderate values of F(¢), the efficiency is less than 1.

ESTIMATION OF DISTRIBUTION FUNCTION USING
MAXIMUM LIKELIHOOD ESTIMATOR

In this subsection, we consider the estimation of F(f) using the maximum likelihood estimator
(MLE) based on all elements of MERSS. Let

r .
Y=Y i=1,2,...m
=1

Then Y; is bin(r, F(t)). The likelihood function is

m

LED) =] ( . )(F"(z))«‘"(l —Fi(n)y .

i=1
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Therefore
Lx = (In(L(F()ly) = > _In[F* ()1 —F()) "]
i=1
= livnF (1) + (r = y)ln(1 = F'(1))].
=1
O NN v ir = )P0 NS iy = irFi(0)
=\ , = (%

O 20 A-FO) 2 Foi - P
Note that:
o 1s positive when F(7)—0 and negative when F(1)— 1. Therefore &5 =0 has a root and the

root maximizes L. Thus the root of
i iyi —irF'(n) 0
—~ F@O(1 - F(1)

is the MLE of F (7).
Note: If Y; = r for all i then Fyg(t) = 1, while, Y; = 0 for all i then Fyg(f) =0.
Special cases:

* For m =1, setting equation (*) to zero, we get

R Y, —
Fumie(t) = - = Y.

* For m = 2, setting equation (*) to zero, we get

yit2y, _ r—y 2(r —y2)
F() 1-F@) 1—F

=(y1 + 202)(1 = F2(1)) = (r — y)F())(1 + F(2)) + 2(r — y2)F*(1)

=y +2y2 — (1 + 292)F2(1) = (r — y)F(t) + (r — y1)F2(t) + 2rF(1) — 2y, F*(1)
=y + 2y, = Br)F2(t) + (r — y))F(t)

= (Br)F(t) + (r — y1)F(1) = (y1 + 2y2) =0.

Thus

—r+\/r2+10ry; +24ry, +?
6r ’

Numerical evaluation is needed for large m. The bias of F,,,,(f) and its efficiency w.r.t.
Fgsgrs(f) when m = 2 for r = 3.5 and 10, were obtained using a scientific workplace package and
are given in Table 4.5.

It can be seen that the efficiency of F MLE2(Z) W.r.t. F srs(?) is increasing in F(¢) for fixed m. In
general, it can be seen that for large and moderate values of F(¢) the efficiency tends to be larger
than 1 and increasing in . For small values of F(r) the efficiency is less than 1 and is decreasing in
r F MLE2(?) is a negatively biased estimator.

For m = 3, setting equation (*) to zero, we get

yit20 43y (r—y) | 20— y)F(1) | 30— y3)F(1)
F(t) 1-=F(@) 1—F%(1) 1-F3)

A Y1
Fyviea(t) =
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F()

0.05
0.20
0.40
0.50
0.70
0.75
0.90
0.99

r=3

—0.0120
—0.0296
—0.0287
—0.0241
—0.0138
—0.0113
—0.0043
—0.0004

Bias
r=>5

—0.0088

-0.0191
—0.0165
—0.0136
—0.0077
—0.0063
—0.0024
—0.0002

r=10

—0.0053
—0.0098
—0.0079
—0.0064
—0.0037
—0.0030
—0.0012
—0.0001

Efficiency

Table 4.5 The Bias of Fyz(f) and the Efficiency of Fyy () w.r.t. Fers(f) for m = 2

F(t)

0.05
0.20
0.40
0.50
0.70
0.75
0.90
0.99

r=

—0.0141
—0.0399
—0.0370
—0.0332
—0.0133
—0.0103
—0.0038
—0.0015

Bias
r=>5

—0.0096
—0.0126
—-0.0199
-0.0174
—0.0099
—0.0066
—0.0029
—0.0009

r=10

—0.0061
—0.0136
—0.0096
—0.0030
—0.0035
—0.0010
—0.0014
—0.0007

0.71
0.73
0.80
0.92
1.32
1.41
1.71
1.78

Efficiency
r=5

0.59
0.64
0.87
1.02
1.38
1.52
1.77
1.97

Table 4.6 The Bias of Fy;z3(f) and the Efficiency of Fyy z3(f) w.r.t. Fegs(r) form = 3

_ 2 3 4
X s=(r— _ — 3y, _ _ — 3y, _
=y + 2y, + 3y3 = (r —2y;1 — 2y, — 3y3)F(¢) + (4r — 2y — 2y, — 3y3)F~(t) + (Tr — y)F’(t) + (6r)F (1)

= (6r)F*(1) + (Tr — y)F? (1) + (4r — 2y, — 2y2)F*(1)
+(r—=2y1 =2y, = 3y3)F(t) —y1 —2y2 =3y =0

This equation can be solved numerically. We used Minitab Programming to obtain numerical
values for the bias and efficiency.
Table 4.6 gives the bias of Fygs3(f) and its efficiency w.r.t. Fsgs(f) when m = 3 for r = 3, 5,

and 10.

Table 4.6 shows that the efficiency of Fyes(f) wert. Fsgs(f) is increasing in F (7).

» For fixed values of F(¢), the efficiency is increasing in r for large and moderate values of F(f)

and decreasing for small values of F(?). F MLE3(?) is more efficient than F srs(?) for large and
moderate values of F(t).
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* For fixed r, F MLB(t) is more efficient than F MLE2(f) when F(¢) = 0.7, while F MLE2(?) is more
efficient then Fyyg3(¢) for F(r) <0.7.
»  FMigs(?) is a negatively biased estimator.

FISHER INFORMATION NUMBER IN MERSS ABOUT A7)

For SRS, the Fisher information number about F() is
. m
F)(1—F@)

The Fisher information number about F(f) in MERSS, Iygrss is obtained from the following
second derivative:

cL i [(= 2rF ' (O)F(0)(1 = F(0)] = [(iy; — irF'(0)(= iF'(1) + (1 = F(1))]
oW 5 [F()(1=Fia)
_ E’": — PrFi(0) + PrFY() + Py () — PrFY() — iy + iyiF(e) + irFi(n) — irF (1)
i=1 [F()(1=Fi(1)}

The Fisher information number is:

Isgs =

IS — 2rFU (1) + Y F () — i, + 1Y F () + irF () — irF(r)

—E Z : .

i=1 [F(t)(lfFl(l))]
_ 2’": i*rF(1) — PrF* + irF'(t) — irF*(1) — irF'(1) + irF (1)

=1 [F((1—Fi@)]

_ i 2rFi(f)(1 — Fi())

= FA0(1-F(@1)”

Thus the MERSS Fisher information number about F(?) is

i—2
Ivprss (m, r) = Z l VFF,((:)))

and the corresponding one using SRS is
mr

F()(1 - F(1)

Table 4.7 gives the Fisher relative efficiency of Fygrss(f) w.r.t. Fsgs(f) when m=2,...,5.

From Table 4.7 we can see that MERSS has more information about F(f) than SRS for large
and moderate values of F(¢). For fixed values of F(r), the Fisher relative efficiency is increasing for
large and moderate values of F(f) and decreasing for small values of F(¢). For fixed m, the Fisher
relative efficiency is increasing in F(f).

Isrs = Iverss(1, mr) =

MERSS BASED ON MINIMA

In this section, we use MERSS with minima instead of maxima to estimate F(z). Let the elements
of MERSS based on minima be
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Table 4.7 Fisher Relative Efficiency = IM,SE%

F(@)

m 0.05 0.20 0.40 0.50 0.70 0.75
2 0.60 0.83 1.18 1.16 1.32 1.35
3 0.40 0.65 1.02 1.21 1.55 1.63
4 0.30 0.51 0.92 1.17 1.88 1.84
5 0.24 0.42 0.82 1.10 1.79 1.99

0.90

1.44
1.86
2.24
2.60

0.99

1.49
1.99
2.47
2.96

XD i =12, mj=1,2,...r)

Let ¥; = Y>I(X)., <1). ThenY; ~ bin(r, (1 — (1= F(1))).
j=1

Consider the following likelihood function:

m

LE®) =11 (; ) [1=(=F@O)P[l = (A=(1=F@)T ™.

i=1

Then L* = In(L(F(1)]y;) = i[wln(l — (1=F@)' +i(r — y)In(1 — F(1))]
i=1

aL* :i{iy,-(l—F(r))”‘ _ir=y)
OF(t) “=[1—-(1-F@®)) (1-F(@)

_ i {z‘yi(l —F@)' —i(r—y) +ir(1=F@)' — in(1 = F(0))
(1= F@)(1 = (1=F(©))
ir(1=F@)' —ir =)
= (1= F0)(1 = (1=F (1))’

[

Also

oL ~ir(1—F(t) —i(r —y;)
OF(r) ; (1=(=F@®))

Let | — F(t) = F*(¢) and r — y; = y;*, then Y} ~bin(r, 1 — F*(t)). Thus

Z irF*i(t) — iy}

0F(t) (1= F*(0)

Special cases:

For m = 1, setting equation -2 ﬁF(r) to zero, we get

F(t)* L F(r) =

=y _ 1— 1
Yr r
. 1
SoFMeEn (1) = -
Form = 2, we get

NED g 2P0
F*(1) 1 — Fx(1) 1 —F2(t)’
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Table 4.8 The Bias Values of FMLE* 2(?) and the Efficiency of IA?MLE* 2(f) wr.t. FSRS(t) form = 2
Bias Efficiency

F@) =3 r=>5 r=10 r=3 r=5 r=10
0.05 —0.0004 —0.0019 —0.0008 1.30 1.39 1.40
0.20 —0.0113 —0.0074 —0.0021 1.21 1.29 1.37
0.40 —0.0178 —0.0105 —0.0057 1.08 1.14 1.20
0.50 —0.0241 —0.0136 —0.0064 1.01 1.07 1.12
0.70 —0.0317 —-0.0171 —0.0104 0.90 0.91 0.85
0.75 —0.0313 —0.0182 —0.0092 0.86 0.85 0.86
0.90 —0.0022 —0.0115 —0.0085 0.87 0.76 0.73
0.99 —0.0025 —0.0024 —0.0017 0.91 0.84 0.71

Thus

Vi =1+ /12 + 10yt + 2415 + y

ﬁMLE*Z(t) = 6F

Table 4.8 gives the bias of Fypp(7) and its efficiency w.r.t. Fsgs(f) when m = 2 for r = 3, 5,
and 10. It can be seen that the efficiency of Fypp(f) w.r.t. Fsgs(?) is increasing in r for small and
moderate values of F(¢) (efficiency >1) and decreasing for large values of F(7) (efficiency < 1).
F MLE*2(?) is a negatively biased estimator.

* Form = 3, we get

yT + 2y; + 3y§ _ Y1 2y2F * (l) 3y3F2*([)
Fx(0) 1—=F(t) 1-=F*@t) 1—-F*@)
= (6r)F*(1) + (Tr = y)F¥ (1) + (4r — 2y — 25)F* (1)
+(r = 2y7 =295 = 3y)F(1) —»7 —2y5 = 3y5=0
This equation can be solved numerically. Table 4.9 gives the bias of Fuigs(f) and its efficiency
W.L.L. Fsrs() when m = 3 for r = 3, 5, and 10. It can be seen that the efficiency of Fyyg+3(f) w.r.
t. Fsrs(?) is increasing in r for small and moderate values of F(r) (efﬁciengy >1) and decreasing
for large values of F(7) (efficiency < 1). Fypg#3(¢) is more efficient than Fyy g+, when F(f) =0.4
for fixed r and m. However, Fsgs(?) is more efficient when F(r) > 0.4.

ESTIMATION OF F(X) USING MOVING EXTREME RSS BASED ON
MINIMA AND MAXIMA

It is clear from previous sections that the estimators of F using MERSS based on maxima and
MERSS based on minima are not always better than the corresponding estimators based on SRS. In
this section, we compare the estimator of the distribution function based on MERSS with minima
and maxima to the corresponding estimator based on SRS. The MLE of F(f) based on MERSS with
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Table 4.9 The Bias of Fy; z3(f) and Efficiency of Fyyp3(f) w.r.t. Fegs(t) for m = 3

Bias Efficiency
F(0) r=3 r=>5 r=10 r=3 r=>5 r=10
0.05 —0.00215 —0.00157 —0.00052 1.79 1.85 1.91
0.20 —0.00955 —0.00454 —0.00206 1.48 1.59 1.66
0.40 —0.02159 —0.01285 —0.00618 1.10 1.29 1.29
0.50 —0.0332 —0.0174 —0.0030 0.92 1.02 1.12
0.70 —0.04142 —0.02489 —0.01254 0.71 0.72 0.77
0.75 —0.04141 —0.02590 —0.01288 0.68 0.67 0.69
0.90 —0.02421 —0.01877 —0.00967 0.67 0.58 0.54
0.99 —0.00200 —0.00164 —0.00057 0.71 0.59 0.48

minima and maxima is derived. Its efficiency with respect to the estimator based on SRS is
obtained.

MERSS BASED ON BOTH MINIMA AND MAXIMA

Let Y;~bin (r, F'(1)) and Y} ~bin (r,(1 — (1 —F(1))"), i=1,...,m. The likelihood function based
on Y; and Y} is

L(Flyl,y,)_l_[m < )(F’(t))v’(l Fi(1)™ y’( )(1—(1 F@)Y (1= (=(=F@)) ™"

= In(L(Fly;, y}) = ;[iyflnF(f) +(r=y)In(1 = Fi(1) + yIn(1 = (1=F(@))") + i(r = y})In(1 = F())]

OL' _ i _ir=y)F @) | D (=F@O)" i =)
OF (1) Z;(F(t) 1 — Fi(r) ”:)(1 — (1(_ F(t)()% E] — F)(t)))(**)
_ iy; —irF'(t ir(1=F() — i(r — y?
Z(F O = F@) (1~ Foyt — a—Fiy)

Special cases:

* Form = 1, setting equation (**) to zero, we get

F(r)= ryl .

* Form = 2, setting equation (**) to zero, we get
o r=y) r=y) | 22 20—y)F | 2p(1—F) 20—y _

F(t) 1—-F() F(z) - 1—-F@) F(» 1—-F1) A-01-F@®») 1-F@
NAYi+2y  (oy) e oy) 20—y 20— y)F | 25 =2y

) = F() I=F0)  (1-(-F0)?)
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Table 4.10 Bias of Fyyg-4(r) and Efficiency of Fjz.u(f) w.r.t. Fegs(f) with m = 2
Bias Efficiency

F@) r=3 r=>5 r=10 r=3 r=>5 r=10
0.05 0.02101 0.02554 0.02625 1.13 0.99 0.83
0.20 0.04758 0.05013 0.05318 1.70 1.56 1.20
0.40 0.04359 0.04220 0.04358 2.31 2.25 1.88
0.50 0.03354 0.03440 0.03599 2.56 2.52 2.20
0.70 0.01655 0.01685 0.01706 2.69 2.58 2.57
0.75 0.01467 0.01156 0.01168 2.58 2.61 2.56
0.90 0.00501 0.00332 0.00269 2.38 2.32 2.39
0.99 0.00036 0.00031 0.00055 2.22 2.24 2.22

Thus
(6F3 (1) + (2% — 121)F(t) — 2y, + 4)F(f) + 2y, +2y% + 4y, +2y3 =0

This equation is solved numerically. We used Minitab programming to solve this equation.
Table 4.10 gives the bias of ﬁMLEm(t) and its efficiency w.r.t. FSRS(I) when m = 2 for r = 3, 5,
and 10. It can be seen that the efficiency of F MLEx4(f) W.I.L. F srs(?) is increasing in r for all values
of F(r). For very small values of F(f), the efficiency could be smaller than 1. F MLE*4(?) is a posi-
tively biased estimator. The bias tends to increase in » for small to moderate values of F(¢), but
decrease in r for large values of F(z).

For m = 3, setting Equation (**) to zero, we have

o O=y) oy ry) | 2 20— y)F@) | 2930~ FO)
F(r) 1-— F(t)) F(t) 1—F@) F(@) 1—F2(1) 1-(1- F(z))2
_2r=yd) | 3y 30— y)F(0) | 3= F@) 30—y _
1—F@) F@) 1—F3(®p) 1-(1-F@) 1-F@
(127)F7 (1) = (1 +y5 + 41r)FO(t) + 3y, + 3y% — 2y2 + 2y5 + 291)F3(1)
— (y1 + ] — 8y +2y5 + 3y3 + 3y — 26r)F4(1) — (3y; + 3y} + 10y, + 2y5 — 12y3 + 5r)F3(1)
— 1ty — 4y —2y; + 12y; — 6y} + 33r)F2(1) + By; + 3y} — 6y2 + 6y5 — 9y3 +9y; — 42r)F (1)
+ 6y, + 6y7 + 12y, + 6y5 + 18y + 6y =0

This equation is solved numerically. We used Minitab programming to solve this equation.
Table 4.11 gives the bias of FMLE*s(l) and its efflclency W.I.t. FSRs(t) when m = 3 for r = 3, 5,
and 10. The results given in Table 4.11 show that Fyiess 5(f) is more efficient than F srs(?) with
different values of r, the efficiency >1 for all values of F(¢). The values of the bias are very
close to zero.



56 CHAPTER 4 ESTIMATION OF THE DISTRIBUTION FUNCTION

Table 4.11 Bias of Fyz.5(t) and Efficiency of Fyyp.s(f) w.r.t. Fsgs(f) withm = 3
Bias Efficiency

F(0) r=3 r=>5 r=10 r=3 r=>5 r=10
0.05 0.00067 —0.00028 0.00085 1.78 2.43 2.29
0.20 0.00176 0.00163 0.00005 2.34 2.34 2.37
0.40 0.00095 —0.0004 0.00012 2.41 2.39 2.40
0.50 0.0001 —0.00120 —0.00109 2.40 2.42 2.37
0.70 —0.00238 0.00013 0.00020 2.37 2.39 2.40
0.75 —0.00043 0.00032 0.00035 2.42 2.37 2.40
0.90 —0.00162 0.00023 —0.00002 2.33 2.34 2.36
0.99 —0.00153 —0.00075 —0.00046 2.20 2.44 2.44

CONCLUDING REMARKS AND SUGGESTED FUTURE WORK

The estimation of distribution function based on RSS and some of its modifications have been con-
sidered in this chapter. MERSS, with maxima, minima, and with both were investigated. Method of
moments estimation and maximum likelihood estimation were used. It turned out that some of these
estimators can be more efficient than the corresponding counterparts using SRS for some of the
range of F(#). It is important to mention here that MERSS can be easily executed with less chance
of ranking error than RSS. When both minima and maxima are used in MERSS, the MLE is more
efficient than the estimator based on SRS. Taking into account the lower amount of effort needed
to obtain MERSS compared to that needed to obtain RSS, we recommend the use of this estimator.

In this work, it is assumed that the obtained sample is accurate, in the sense that there is no
error in ranking. This rarely happens; some ranking errors may occur in obtaining RSS and
MERSS. Therefore it is of interest to see the performance of RSS and MERSS, when there is some
error in ranking. Also, when the variable of interest has a strong relation with another easier vari-
able, then we can use the other variable (concomitant variable) to rank the values of the variable of
interest. In this case ratio estimation can be used to make an inference about the variable of inter-
est. This topic is a future research work topic.
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CHAPTER

STATISTICAL INFERENCE OF
RANKED SET SAMPLING VIA
RESAMPLING METHODS

Saeid Amiri' and Reza Modarres®
"Department of Natural and Applied Sciences, University of Wisconsin-Green Bay, Green Bay, WI, United States
2Department of Statistics, The George Washington University, Washington, DC, United States

INTRODUCTION

Rank-based sampling (RSS) provides powerful inference alternatives to simple random sampling
(SRS) and often leads to large improvements in the precision of estimators. Several variants of RSS
are designed to further improve the performance of RSS. Theoretical underpinnings must be devel-
oped for such RSS designs. However, these results are often nontrivial due to many factors, includ-
ing unknown parent distributions, small sample sizes, and nonidentical order statistics that form the
cornerstones of any RSS design. These difficulties make bootstrap methods more attractive for
RSS. Bootstrap is a well-known resampling method that provides accurate inference for SRS. The
bootstrap method has also been explored in the different RSS contexts: confidence interval estima-
tion (Hui et al., 2005), resampling algorithms (Modarres et al., 2006), one sample test (Amiri et al.,
2014), confidence bands for the CDF (Frey, 2014), empirical likelihood (Amiri et al., 2016),
censored RSS (Mahdizadeh and Strzalkowska-Kominiak, 2017), and tests of perfect ranking
(Amiri et al., 2017).

In this work, we consider the parametric statistical inference of one sample and two samples. RSS
is concerned with small sample sizes and distribution-free methods such as sign, sign ranked, and
Mann—Whitney tests have been investigated by Bohn and Wolfe (1992) and Ozturk and Wolfe
(2000a, 2000b). However, proposed nonparametric RSS tests might be sensitive to the ranking proce-
dure. Fligner and MacEachern (2006) consider the center of the observations to eliminate the impact
of ranking. The sensitivity of these tests to the ranking procedure occurs due to the use of the distri-
bution function of the rth order statistic to test the mean. To overcome the sensitivity, we explore
Hy : pt, = 1o and its two-sample variant using the ¢ test statistics and show that the bootstrap methods
provide more accurate inference. We will also consider RSS with different ranks sizes.

The reminder of the chapter is organized as follows. Section 5.2 provides an overview of the
data structure of an RSS, and then formally defines the test statistics for one and two samples.
Section 5.3 is devoted to the bootstrap methods. It gives a number of theoretical results that allow
us to use the bootstrap methods. In Section 5.4, we compare the proposed methods using Monte
Carlo simulation. The simulations show that a hybrid method, based on the average of the p-values
of pivotal and nonpivotal bootstrap tests, outperforms the competing tests.

Ranked Set Sampling. DOI: https://doi.org/10.1016/B978-0-12-815044-3.00005-8
Copyright © 2019 Elsevier Inc. All rights reserved. 59
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STATISTICAL INFERENCE FOR RSS

Suppose a total number of n units are to be measured from the underlying population on the vari-
able of interest. Let n sets of units, each of size k, be randomly chosen from the population using a
simple random sampling (SRS) technique. The units of each set are ranked by any means other
than actual quantification of the variable. Finally, one unit in each ordered set with a prespecified
rank is measured on the variable. Let m, be the number of measurements on units with rank r,
r=1,...,k, such that n= ZI;: . m,. Let X(»); denote the measurement on the jth measured unit
with rank . This results in a URSS of size n from the underlying population as
Xpjprr=1,...,kj=1,...,m.. When m, =m, r=1,...,k, URSS reduces to the balanced RSS. It
is worth mentioning that, in ranked set sampling designs, X(1y;,...,Xq) are independent order
statistics (as they are obtained from independent sets) and each X(,); provides information about a
different stratum of the population. One can represent the structure of a URSS as follows:

, jid.
Xy ={X1, X2+ - Xy, } < Firyy  r=1,..,ki,

where F,) is the distribution function (df) of the rth order statistic. The second sample can be gen-
erated using the same procedure. We assume the second sample is generated using k, which can be
different from k=k,

) iid
‘gr = {Y(r)la Y(r)Zs B Y(r)m,} < G(r)a r= 13 B k2'

It is of interest to test Hy : F(x) < G(x — A). Specifically, we are concerned with the null
hypothesis Ho : p, = p, + A versus Hy : pi, # p, + A. Two sample tests are commonly used to
determine whether the samples come from the same unknown distribution. In our setting, we
assume X and Y are collected with different ranks sizes. Therefore, even under the same parent
distributions, the variance of the estimator would not be the same.

The following proposition can be used to establish the asymptotic normality of statistic under
the null hypothesis.

Proposition 1: Let F denote the cdf of a member of the family with fxzdF (x) < o0 and F (r) IS the
empirical distribution function (edf) of the rth row. If 9; = (X — W) then (D1,...,0k) converges
in distribution to a multivariate normal distribution with mean vector zero and covariance matrix
diag(o%l)/ml, - U%k)/mk) where O'(zi) = f(x—p(i))zdF(,-)(x) and fi;) = | xdF ;(x).

Proposition 1 suggests the following statistic for testing Hy: pt = ft,
1 ko — . d
Z :EZrZI X(r) - MOU d N(O, 1),

where 67 is the plug-in estimator for the V(% E];:I Y(,)>,

and O'(Zr) is the estimate of V(X(,)). Using the central limit theorem, one obtains a confidence inter-
val where

g

— — g
P([LE (X + tu/2,n—1 ﬁ>X + tl—a/2,n—1 ﬁ)) ~1-a.
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One needs a(zr) to estimate the variance of the mean. Hence it is necessary to have m, =2. The
estimate of the variance for small sample sizes would be very inaccurate, suggesting that a pivotal
statistic might be unreliable. We show in Section 5.4 that parametric statistics are very conserva-
tive. Bootstrap provides a nonparametric alternative to estimate the variance. The bootstrap method
can be used to obtain the sampling distribution of the statistic of interest and allows for estimation
of the standard error of any well-defined functional. Hence, bootstrap enables us to draw inferences
when the exact or the asymptotic distribution of the statistic of interest is unavailable. A procedure
of generating resamples to calculate the variance is discussed in Section 5.3.

Proposition 1 can be used to obtain a test statistic for two samples %'y, ..., Zy
One can show that

and @1, .. .,@kz.

T(@t@)z(kilz,l Chs Z ) L= 1) 5 N(O, 1),

where

O—(ro
= E .
k2 = mn,

We can consider the parametric statistical inference for the skewed distribution: let X, ..., X,
be i.i.d. random variable with the mean y and finite variance o. Since the characteristic function
of S, converges to ¢™"/2, the characteristic function of the standard normal, 1S, = /n(p— )/ o,
is asymptotically normally distributed with zero mean and unit variance. To take the sample skew-
ness into account, the following proposition obtains the Edgeworth expansion of /nS,.

Proposition 2: If E (Yf) < oo and Cramer’s condition holds, the asymptotic distribution function of

NS, is
P(/nS, =x)=®(x) + RS y(ax® + b)p(x) + O™ 1),
NG

where a and b are known constants, ~ is an estimable constant, and ¢ and ¢ denote the standard
normal distribution and density functions, respectively.

Hall (1992) suggested two functions,
Si(t) =1+ aji + ;a272t3+n 'bA,
$2(0) = Qan”43) " fexp (2an#r) =1} +n7'b%,
where a =1/3 and b= 1/6. Zhou and Dinh (2005) suggested
S3(t) =1+ + %? +n" b4
Using S;(#), for i =1,2,3, one can construct new confidence intervals for y as

(1= Sin ™ty jpp)6, 1 — Si(nil/zta/Z,n—l)a')a

where 11—, /3, is the 1 — «/2 quartile of the ¢ distribution. However, use of the sample skewness in
the asymptotic distribution makes the inference less reliable, especially for the parametric methods.
For example, the asymptotic distribution of test for the coefficient of variation depends on the
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skewness. This parameter makes the inference for coefficient of variation inaccurate, see Amiri
(2016). It is of interest to study this problem using a fully nonparametric approach via the bootstrap.

BOOTSTRAP METHOD

Bootstrap resampling is a well-known statistical method to conduct statistical inference. Bootstrap
mimics the underlying distribution of the observations by resampling from the URSS sample.
Several papers have explored the application of bootstrap in RSS. URSS bootstrap was considered
in Amiri et al. (2014). The idea of URSS bootstrap is to obtain a sample of size ny from each stra-
tum in order to transform the URSS to an RSS dataset. The RSS dataset is then resampled to provide
inference. Amiri et al. (2017) consider more general resampling techniques that obtain resamples
from the entire dataset instead the resampling each stratum. The procedure is described below.

Algorithm:

1. Select a row randomly and select an observation, continue until k observations have been
collected (obviously any row can appear more than once).

Order them as X)) = ... =X{;) and retain X{); =X,

. Perform steps 1—2 m, times and collect X{,,,,..., X{,),, -
Perform step 3 for r=1,... k.
. Repeat steps 1—4, B times to obtain the bootstrap samples.

FNFREN)

Using step 1 of the algorithm,

. oA I 1 &
(X, X, ~Fo(t) = zZm—rjzzll(x(,)jsz),

r=1
and using steps 2 and 3,
X; = (X, X X )~ ), (5.1
A my
where F (1) = -1 > I(X(,; =1). Let
=

Fo0) = Zl( W=t (5.2)
i,,‘,'"z 1(Xiy=1). 53

Amiri et al. (2017) proved the following propositions for the proposed bootstrap algorithm.
These properties are essential to draw inference using the resamples.

Proposition 3: Let F,(t) denote the cdf of the rth row of a member of the family with the continu-
ous density function, and £ (r) denote the edf of the rth row given in (Eq. (5.2)), it follows that

Fio(0) % Foy(0).
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Proposition 4: Let F () denote the cdf of a member of the family with the continuous density function,
and suppose X, .., %y are samples obtained using the proposed bootstrap algorithm, it follows that

sup |F7 (1) — F(t)] = 0.
teR

Proposition 4 shows a desirable property for the bootstrap method that can be used to draw sta-
tistical inference. The direct application of bootstrap is in the estimation of variance. Suppose

k 2

Z7,..., %% and we are interested in V(8(F(),...,F)) = k% 1% The plug-in estimation is
=

"2

(;‘1'_’ where F(, is the edf on the r — th stratum. Clearly, the plug-in

A~ ~ k
V(G(F(I), . 7F(K))) = 0'2 = kl_z Z
r=1

estimate does not work for m, = 1. However, one can use the proposed bootstrap to estimate the
variance. Generate the resamples wusing the proposed algorithm and compute
po ke = h X R
H(F(l)""’F(k)) =X"= %ZfﬂX;)’ and repeat' the.: procedure' B tlmes to obtain XZ’b = 1,...',Bi.
The most important property of the bootstrap lies in the conditional independence, given the origi-
nal sample. Hence, we view bootstrap resample as iid random samples and compute the sample

mean and the sample variance with,
—x 1 B —x
X =-Y'X,
B b=1
5k > LS 1 B )
\% (Q(F(l),...,F(K))) = EZ(Xb_X ).
b=1

The confidence interval can be found using the bootstrap estimate of variance as,

1 k - 1 B —% =\ 2
— —+ — —_—
k ;:1: X(r) - ta/le*l B E : (Xb X ) .

b=1

The nonparametric confidence interval can be obtained using the percentile confidence interval
*  o*
(X(I/Z’ Xl *(y/Z)’

where X Z 2 is the «/2 percentile of bootstrap resample mean.

NUMERICAL STUDY

This section is devoted to assessing the accuracy and comparisons of the proposed test statistics for
finite sample sizes. We study the type I error rate and the statistical power. The proposed tests are
based on the same simulated data in order to provide a meaningful comparison. The resampling is
carried out using B = 800 resamples. In order to make a comparative evaluation of the testing pro-
cedures, we seek certain desirable features, such as robustness, power, and small sample test valid-
ity in terms of observed type I error rates. In the following, the significance and the power of the
proposed tests are studied for different sample sizes.

To compare two group means: Hy : i, = p, + 6 vs. Ho @ j1, # p1, + 6, the appropriate test statistic is
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1 - —
To(Z, %)= (kiZf Ko~ Z Ym) (5.4)

ko
w4 LS iy . Under the null hypothesis, To(Z', %) ~ t, +n,—2. We refer to this

l‘ﬂ

rn=1 S =
test as the parametric test and denote it with PT.

The bootstrap test, referred to as BT, is constructed as follows. Calculate the statistic given in
(Eq. (5.4)), take the resamples according to the algorithm described in Section 5.3, and calculate
the following statistic,

e P b
<LZ' 0~ &L )—(%Zr‘:lxm—%zrilnr))

T, v, ) = - : : (5.5)
(o

where o* is the estimate of variance using the bootstrap samples. Generate B resamples and calcu-
late the test statistics,

TV (X, YW X, Y), ..., Ty X", W, Z,%).
The approximate p-value can be estimated with
BT, W X, )<= To(X,Y)
B ,
p — value = min{p*, 1 — p*}.

*:

Since the RSS often uses small sample sizes and the plug-in estimate of variance is not very
accurate, one may consider a third approach and use nonpivotal test statistics to calculate the
p-value. That is,

| IR -
To(ﬂ”, @) = (k_ ZX(,) — k—ZY(r)) — 5,
= 2 r=1
1 ki . 1 ki - 1 k> -
T L) = |3 X~ Zm) 2 X052 Yo |-
r=1 r=1 r=1

This bootstrap test using the nonpivotal statistic is denoted as BNT.
We compare the following test statistics:

(5.6)

PT: Parametric two-sample z-test (Eq. (5.4));
BT: Bootstrap test (Eq. (5.5));

BNT: Nonpivotal bootstrap test (Eq. (5.6));
BHT : Hybrid test of BT and BNT.

PN~

Table 5.1 includes the simulation of the 10th percentile of p-value for the proposed methods
with different sample sizes (nx, ny) = (kym, kym), and the following underlying distributions:

1. X £ Y~N(©,1),
2. x £ Y ~exp(1.5),
3. X % Y ~logistic(1, 1),
4. X = Y ~Gamma(l,2).



Table 5.1 Observed a-levels of the Proposed Tests at « =

dist.
X L y~No,1)

x4 Y ~logistic(1, 1)

ki, ka
(3,3)

(34

(3.5

4.4

“4.5)

(3.3)

(3.4)

test

PT
BT
BNT
BHT
PT
BT
BNT
BHT
PT
BT
BNT
BHT
PT
BT
BNT
BHT
PT
BT
BNT
BHT
PT
BT
BNT
BHT
PT
BT
BNT
BHT

0.315
0.133
0.080
0.095
0.310
0.117
0.077
0.087
0.316
0.132
0.090
0.100
0.312
0.114
0.092
0.094
0.316
0.112
0.092
0.095
0.331
0.136
0.072
0.077
0.338
0.136
0.091
0.093

m

0.226
0.119
0.093
0.100
0.226
0.117
0.095
0.101
0.236
0.119
0.104
0.106
0.225
0.110
0.095
0.098
0.218
0.107
0.092
0.094
0.244
0.124
0.090
0.099
0.240
0.122
0.103
0.105

0.188
0.115
0.099
0.104
0.194
0.115
0.097
0.104
0.196
0.110
0.094
0.098
0.189
0.106
0.100
0.103
0.197
0.109
0.098
0.102
0.204
0.127
0.111
0.116
0.204
0.123
0.112
0.116

0.1

0.169
0.111
0.101
0.104
0.174
0.11

0.103
0.104
0.184
0.116
0.103
0.108
0.166
0.106
0.101
0.100
0.176
0.105
0.102
0.104
0.178
0.109
0.112
0.106
0.185
0.116
0.114
0.112

dist.
x< Y ~exp(1.5)

x< Y ~Gamma(1,2)

0.317
0.144
0.076
0.098
0.316
0.127
0.088
0.095
0.333
0.132
0.088
0.094
0.316
0.125
0.089
0.098
0.307
0.118
0.091
0.097
0.338
0.133
0.082
0.086
0.337
0.138
0.093
0.101

0.231
0.127
0.099
0.105
0.237
0.116
0.100
0.104
0.243
0.117
0.102
0.105
0.217
0.105
0.097
0.096
0.230
0.112
0.101
0.102
0.231
0.118
0.090
0.098
0.251
0.126
0.105
0.111

5

0.191
0.116
0.101
0.104
0.186
0.108
0.100
0.101
0.196
0.113
0.110
0.111
0.196
0.107
0.103
0.105
0.198
0.110
0.103
0.104
0.202
0.121
0.109
0.111
0.196
0.111
0.105
0.106

6

0.165
0.108
0.102
0.103
0.178
0.117
0.111
0.111
0.177
0.112
0.107
0.108
0.182
0.115
0.111
0.113
0.161
0.097
0.094
0.093
0.185
0.114
0.112
0.109
0.179
0.116
0.113
0.110

(Continued)




Table 5.1 Observed a-levels of the Proposed Tests at « =

dist.

0.1 Continued

m
ki, ky test 3 4 5 6
(3.5) PT 0.353 0.244 0.209 0.191
BT 0.145 0.124 0.119 0.121
BNT 0.101 0.100 0.107 0.117
BHT 0.105 0.103 0.109 0.114
4.4) PT 0.323 0.245 0.184 0.180
BT 0.121 0.121 0.102 0.113
BNT 0.088 0.104 0.099 0.118
BHT 0.090 0.107 0.098 0.114
4.5) PT 0.337 0.238 0.202 0.189
BT 0.126 0.115 0.115 0.111
BNT 0.099 0.100 0.113 0.115
BHT 0.096 0.101 0.110 0.111

dist.

3 4 5 6

0.333 0.256 0.203 0.175
0.131 0.132 0.120 0.113
0.093 0.110 0.106 0.106
0.095 0.117 0.110 0.105
0.331 0.233 0.197 0.182
0.121 0.112 0.105 0.111
0.095 0.101 0.105 0.114
0.092 0.102 0.103 0.108
0.339 0.242 0.197 0.178
0.124 0.117 0.111 0.102
0.093 0.102 0.109 0.108
0.091 0.102 0.107 0.104
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Since X and Y are generated from the same distributions, it is expected that an accurate test
maintains the nominal level. In the frequentist approach, the appealing property of the p-value is its
(asymptotic) uniformity on Unif(0, 1) under the null hypothesis. When a test statistic is conserva-
tive (or liberal), the actual type I error of the test will be small (large) compared with the nominal
level. For a conservative (or liberal) test, the power values can be misleading. It is easy to see that
a conservative p-value hardly rejects an incorrect null hypothesis and a liberal test easily rejects a
correct null hypothesis too often and both lead to incorrect inferences.

Clearly the PT leads to an overly conservative test, i.e., fails to reject the null hypothesis when
it should. However, this problem tends to diminish with an increase in sample size. Here, BT and
BNP have better performances, and are closer to the actual p-value. It is noteworthy that for m = 3,
(k1,k2) = (3,3),(3,4) which have very small sample sizes ((nx,ny)=1(9,9),(9,12)), BT and BNT
are conservative and liberal, respectively. It is of interest to explore the average of the p-values.
We refer to this hybrid test as the BHT method. Clearly BHT has better performance.

To compare the statistical power, we consider

X~N(0,1),Y~N(0.5,1),
X~exp(1),Y ~exp(1.5),

X ~logistic(0, 1), Y ~logistic(1, 1),
X ~Gamma(1,1),Y ~Gamma(l,?2).

PN~

Since X and Y are generated from different distributions with different parameters, a powerful
test should reject the null hypothesis with high probability. The result is presented in Table 5.2.
Since the PT is conservative for small sample sizes, we expect a large value for the power.
However, this power value is overly optimistic and not accurate. Among the bootstrap tests, BHT
has better power than BNT. BHT has less power than PT, keeping in mind that PT performs con-
servatively for small sample sizes.

CONCLUSIONS

A considerable amount of research has been conducted in the past few decades to advance the theo-
retical foundation of RSS and present its applications. RSS draws on additional information from
inexpensive and easily obtained sources to collect a more representative sample. In this work, we
review the statistical tests of means under one and two samples. RSS is often applied with small
sample sizes. Presenting nonparametric methods and exploring the performance of test statistics are
essential in obtaining a better understanding of their behavior. In our empirical study, we mainly
considered small samples and compared the performance of proposed tests using Monte Carlo
investigations under different distributions. We proposed a hybrid method, based on the average of
the p-values of pivotal and nonpivotal bootstrap tests and demonstrate its better performance. The
hybrid method provides a more accurate inference for small sample sizes and enables one to main-
tain the nominal level with comparable power.



Table 5.2 The Empirical Power of the Proposed Tests

dist.
X~N(0,1),Y ~N(0.5, 1)

X ~logistic(0, 1),
Y ~logistic(1,1)

ki, ka
(3.3)

(3.4

(3.5

4.4)

“4.5)

(3.3)

(3.4)

test

PT
BT
BNT
BHT
PT
BT
BNT
BHT
PT
BT
BNT
BHT
PT
BT
BNT
BHT
PT
BT
BNT
BHT
PT
BT
BNT
BHT
PT
BT
BNT
BHT

0.552
0.342
0.224
0.276
0.607
0.391
0.269
0.325
0.628
0.427
0.314
0.367
0.670
0.445
0.356
0.399
0.708
0.491
0.407
0.449
0.481
0.257
0.142
0.175
0.529
0.323
0.211
0.252

m

0.553
0.422
0.359
0.392
0.626
0.476
0.423
0.452
0.657
0.517
0.455
0.489
0.702
0.563
0.514
0.546
0.740
0.599
0.569
0.581
0.440
0.302
0.233
0.263
0.500
0.365
0.302
0.337

0.605
0.502
0.457
0.485
0.670
0.568
0.522
0.547
0.722
0.613
0.576
0.596
0.755
0.655
0.630
0.647
0.817
0.725
0.702
0.716
0.454
0.347
0.314
0.327
0.535
0.438
0.398
0.421

0.666
0.583
0.553
0.571
0.724
0.653
0.617
0.639
0.771
0.691
0.664
0.677
0.822
0.747
0.729
0.741
0.859
0.794
0.776
0.788
0.476
0.380
0.377
0.381
0.562
0.488
0.454
0.470

dist.
X ~exp(l),Y ~exp(1.5)

X ~Gamma(l,1),
Y ~Gamma(1,2)

0.590
0.395
0.267
0.322
0.640
0.439
0.309
0.369
0.676
0.479
0.353
0.407
0.702
0.491
0.389
0.441
0.754
0.562
0.459
0.514
0.640
0.437
0.245
0.320
0.668
0.450
0.241
0.321

0.604
0.481
0.403
0.444
0.678
0.556
0.488
0.524
0.714
0.598
0.521
0.562
0.749
0.624
0.567
0.596
0.793
0.685
0.628
0.661
0.695
0.563
0.452
0.510
0.720
0.581
0.468
0.531

0.652
0.559
0.510
0.537
0.733
0.645
0.596
0.623
0.773
0.687
0.635
0.662
0.808
0.721
0.679
0.703
0.845
0.771
0.735
0.756
0.752
0.654
0.617
0.635
0.791
0.684
0.666
0.676

0.703
0.631
0.602
0.619
0.789
0.722
0.683
0.706
0.819
0.759
0.714
0.739
0.859
0.803
0.773
0.790
0.893
0.846
0.823
0.835
0.808
0.736
0.734
0.737
0.844
0.773
0.777
0.781




3.5) PT 0.580 0.567 0.598 0.631
BT 0.382 0.452 0.508 0.560
BNT 0.254 0.379 0.448 0.506
BHT 0.305 0.412 0.475 0.531
4.4) PT 0.539 0.548 0.581 0.624
BT 0.321 0.394 0.456 0.525
BNT 0.216 0.329 0.440 0.521
BHT 0.251 0.362 0.449 0.524
4.5) PT 0.587 0.598 0.654 0.700
BT 0.372 0.456 0.553 0.615
BNT 0.265 0.397 0.517 0.593
BHT 0.306 0.426 0.539 0.606

0.706 0.740 0.813 0.861
0.476 0.597 0.714 0.799
0.259 0.479 0.689 0.798
0.337 0.540 0.708 0.800
0.780 0.819 0.880 0.927
0.595 0.721 0.817 0.887
0.403 0.634 0.788 0.869
0.488 0.686 0.805 0.879
0.798 0.855 0.909 0.946
0.611 0.752 0.851 0.911
0.410 0.667 0.835 0.905
0.509 0.716 0.847 0.912
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CHAPTER

EXTENSIONS OF SOME
RANDOMIZED RESPONSE
PROCEDURES RELATED WITH
GUPTA-THORNTON METHOD: THE
USE OF ORDER STATISTICS

Carlos N. Bouza-Herrera
Faculty of Mathematics and Computation, University of Havana, Havana, Cuba

INTRODUCTION

We will consider that the interest is in estimating the mean of a sensitive variable Y. Some persons
in the population carry a stigma and tend to give an incorrect value of Y or to refuse to give a
report. The seminal work of Warner (1965a,b) opened a way to deal with this problem by using the
so-called technique of randomized response (RR). The use of RR provides the opportunity of reduc-
ing response biases, as well as nonresponses, due to dishonest answers when questioning on Y. This
technique protects the privacy of the respondent by ensuring that his belonging to a stigmatized
group cannot be detected by the sampler.

Greenberg et al. (1971) extended the theory of RR to the quantitive case. Different extensions
of RR have been introduced since then. A usual approach for estimating the mean of a quantitative
sensitive variable Y is scrambling the responses using some auxiliary variables. Celebrating the
50th anniversary of the publication of Warner's paper, Chaudhuri et al. (2016) edited a set of recent
research results on this theme. Some important particular new models are due to Gupta and
Thornton (2002), Hussain and Shabbir (2011), Singh and Chen (2009), and Tarray and Singh
(2015).

In this chapter, we introduce the use of order statistics (OS) as an alternative to some scram-
bling procedures reported in the literature in Section 6.2. A detailed discussion on them may be
obtained, for example, in Bouza and Singh (2009), Chaudhuri and Mukherjee (1988), and Gupta
and Thornton (2002).

Section 6.3 is concerned with the development of their counterparts, which use OS of the distri-
bution of the auxiliary variable X.

A comparison of the estimators is developed by comparing their variances. An important result
is that the use of scrambling using the OS of X provides, in general, an improvement in the
accuracy.

Ranked Set Sampling. DOI: https:/doi.org/10.1016/B978-0-12-815044-3.00006-X
Copyright © 2019 Elsevier Inc. All rights reserved. 7 1
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72 CHAPTER 6 EXTENSIONS OF SOME RANDOMIZED RESPONSE

THE CONSIDERED SCRAMBLING PROCEDURES

In Chaudhuri and Mukherjee (1988) a simple scrambling procedure can be seen. Take the sensitive
variable Y and a variable X with a known distribution with E(X) = uy and V(X) = o%. The ith
respondent performs an experiment and obtains a value of X. Then he/she reports

Si:Yi+Xi

Its expectation is E(S;) = uy + 1y and its variance V(S;) = V(Y;) + V(X;). We may compute the
sample mean of

- 1< 1<
Z=- Zi* = - Y,‘+X,'*

It is unbiased, as
_ 1 <&
E(Z) =~ E(Y)+E(X) = jix = iy
i—1

Its variance is

_ 1 & 0% + o2
V(Z =—§ V) + V(X)) = X —X
2) n? 2 (Y) + V(X)) "
A variation is that each respondent selects randomly a value from U* ={Uy,...,U;} with

probability 7,. U* is determined previously by the sampler and the sample he/she makes a selection
U,. As we know U* and 7,

k k
Hy = Z Um,, U%/ = Z (Ur*lh/)zﬂr,
t=1

t=1

It seems that the respondents should think that an extra protection is given to his possible
stigmatization if the report is

SU,' = Y,' + U,‘X,'
Under this scrambling procedure the expectation of the report is
E(Syi) = E(Y:) + E(UDEX) = py + pypix-

We are able to compute

_ 1 n 1 n
Zy = ;ZZUI‘ = ;ZSU:‘ — Byktx
= =1

As its expectation is

_ 1< 1<
EZy) =~ Z: E(Y) + E(UDE(Xiy) = piy + 1y <; Z: ux(,.)) = fyhx = py
i= i=

it is an unbiased estimator of py. The variance of this estimator is:
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B 1271 17!0_2_'_0_202 0'2+O'20'2
V(Zi) = [ - V(Zir) = — Y v9x _ 9y v9x
Zv) (H)Z1 (Zu) nz; - p

Note that

V(Z) - V(Zy) = LT ;’%f)"f(

Therefore, if the sampler determines U* in such a way that a%] >0 is preferred estimating uy
employing Z .

Gupta and Thornton (2002) proposed generating a random Bernoulli variable A with parameter
« and obtaining as response

S = Yiif A=1
G Y +Xif A=0
That is, the report is modeled by

Sic =AY; + (1 —A)(Y; + X))
Let us analyze its expected value.

n

ESq) =~ > E(Sig) = apy + (1= a)(py + i) = py + (1 = @)y
i=1
Take the transformed variable Z;z = S;c — (1 — o)y, its expectation is

E(Zic) = E(Sig) — (1 = )y = pty

Clearly, for estimating ;. unbiasedly a good decision is taking its sample mean

— 1<
Zg= - ZZiG
=
The sampling errors of the sample means of S and Zcoincide :

- = 2 (- +a(l—a)d
Vo) =VZe)= 2 + U0 Lol Z 0

n n

Comparing the accuracy of Z with that of Zs we have that

2
v@)sv@Gﬁfl—igzl—CVWVZa
X

These results allow the sampler to design the preference of one of the methods with respect to a
convenient distribution function of X. For example, if is used the distribution described below

ﬂ@:{équau]

0 otherwise

By preferring the proposal of Gupta and Thornton (2002) as, in this case ;

1

= % ~0.122, is

b
e

enough using o >0, 9.

<1
o
|

Consider the difference V(Zy) — V(Zg). It is equal to
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_ (a+o} =)oy ol —a)uk
(Zo) = " - "

VZy) -V

We have the second-degree equation inequality o + o(0% —p%) + ( o+ 03, — 1oy <O. Its
solution provides an adequate value of «, once the sampler fixes f (x), if he/she decides to use the
Gupta and Thornton (2002) scrambling method.

USING ORDER STATISTICS (0S) FOR SCRAMBLING

We propose using order statistics (OS) instead of values of an auxiliary variable for scrambling.
Consider that the respondent selected in the ith draw is provided with a mechanism for generating,
using SRSWR, a sequence of positive independent random variables X, ..., X, X;eX*. The inter-
viewee, included in the ith drawn, obtains a sequence, ranks it, and determines
Xic1)s - - - » Xiry, WhereXiy < Xy, if t <h. The report is made as follows:

S =Y + X
We have that the expectation of the report is
E(S@) = E(Y) + E(Xi)) = 1y + iy,
We may compute from the response
Zi = Sa) ~ My
Under the described model, we have that:
V(Sw) = V() + V(X)) = oy + a;,_)

We select, from the population, a simple random sample with replacement of size n, and take
the sample mean:

_ 1 n ] n
Zos = ;;Za) = ;;Yi + Xy — by
We derive its unbiasedness because, see Chen et al. (2004), %Z:’l:l tx,, = tx- Therefore
— 1<&
E(Zos) = > iy + iy, ~ by = fy
i=1

The random mechanism used sustains that the OS are mutually independent and they are also
independent of Y. Taking into account these facts, the variance is given by

B 1 2 n 1 2 n 2 1 2 n
V(Zos) = (ﬁ) Z V(Zy) = (;) Z V() + V(Xip) = % + (Z) Z 0%, =
i=1 i=1 i=1

Denoting iy, — pix = Ay, we have, see Bouza and Singh (2009) and Chen et al. (2004) for
example, that
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2
2 _ 2 _
Ox, = Ox (;LX(’) :”’X)
Then, the variance of the estimated mean is

2 n

V(Z().\‘) - JY il JX - ( > E Xy

Let us consider again that each respondent selects also randomly a value from
U*={Uy,..., U} with probability 7,. U* is determined previously by the sampler and provides a
device for performing the random selection of U,. We know the expectation and variance of U,.
They are

ZUtﬂ-[ao-U Z(Ul Hu) Tty

It will be more reliable for the respondents to report the scrambled variable
Svey = Yi + UiXi
U; is the selection made by respondent / from U*. The expectation of the report is
E(Su@) = E(Y) + E(UDE(Xi)) = py + Byhx,,-

We are able to compute

_ ] n 1 n
Zwy = EZZUO) = ZZSU(I‘) ~ Bykix
=y =y

Its expectation is

= 1< 1<
E(Z(U)) = n Z E(Y;) + E(UDEXi) = py + py <;Z Mxl,-)) — Hykx = Ky
i=1

i=1

Hence, it is an unbiased estimators of ji,. The variance of this estimator is derived as follows

2 n n 2 2 n 2 2 2 2 2 n
— o2 + o} V(Xyy) Oy UUZ,-ZIUXI o5 + oo 1
‘r(Z(U)) — ( ) E ‘I(ZU(I)) 2 % U i) _ 0 _ Yy UvXx 0.%] ’_l E ﬁi(,,

n n n o~
i=1

Comparing the variances of Z,, with the above expression, we have the preference for Zy
whenever

V(Zos) - V(Z(U))—(I_C’U)< —( > Z%)

We know that ”n—’z( - (%)2 > Aim > 0, therefore, this relationship holds unless 1 =< o7,.

Another RR-scrambling method based on OS is derived by using the scrambling procedure of
Gupta and Thornton (2002). We suggest scrambling by using the OS obtained by the ith respon-
dent. A random Bernoulli variable A with parameter « is generated by the respondent and is
obtained as response
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5= A

Yi+Xip)if A=0
That is, the report is modeled by

S =AY + (1 — A(Y; + X))
Let us analyze its expected value. It is
E(Sir = apty + (1 =) 1y + iy, ) = iy + (1= @y,
The variance of it is given by
V(Spg) =0y + (1 — a)a)z((i) +o(l — a)u)z(m
We may compute

Ziye = Swe — (1 — a)py
In addition, derive as an estimator of jy its sample mean

_ 1<
Zo = > Zie
i=1
We have that

— l—a (&
EZq) =y + —— (Z fix, ~ /tx) = 1y
i=1

Its sampling error is given by

_ _ o2 (l—a)z{’:la%(i +a(1—a)2'7:1u§(l
V(S(G)) = V(Z(G)) = 7}, + 1 (i) 2 (i)

2 2 n
o 1
> ox =—X—(—) > AR,
4 U] n n . U]
i=1
Hence

- o3 o3 1 & a(l =) 3o /")zf,
wmrfmﬂ%f{JZ%uh——4—#

Note that

n — n
i=1
Comparing Z(G) with Z,, we have that Z,, is more accurate if is satisfied the relationship

n 1 n n 1 n
2 2 > 1 2 2 1 2
o Z 1o + a(ax nZAXM + Z 1y, |+ "ZA
i= i= i= i=

X, <0
A comparison with Z; is developed by computing
= = a—1+02)02
V(Zw) — VZic) = ( 0

1N\ & a(l—a)Yr, i
2 2 i=1 X
(O‘ 1 UU)( ) El AX“) — 0 <0
n nj n
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In terms of « this means that

n n n n
1 1
2 2 2 _ 1 2 2 1 2
W a<ax 183, + Zﬂ> " 1ya3, <0
i= i= i= i=

Then a sampler with a preference for the Gupta-Thornton procedure is able to tune the value of
a once f(x) is fixed by solving a second-degree equation.

Let us consider the effect of using Xj;) instead of X;. The paired comparisons of the procedures
of scrambling using X or the OS yields the following criteria:

1. V(Z2)vsV(Z )
As V(Z) = V(Zy) = (%)2 > AJZ{([) =0, we should prefer Z,,.
2. V(S(;)VS V(Z(G))

+ a1l — 2 _ noo2 2 n
V(Se) — V(Z(G)) = R (/‘z i MX“)) +(1-a ((1) Z A?{m)

nj =

As « is a probability,(1 — a) >0, a sufficient condition for preferring Z (g is the
positiveness of X because 1y — i fix, = Disibhx, Hx,-
3. V(SU)VS V(Z(U)) _ . ) n
The difference of the variance is always positive: V(Sy) — V(Z(U)) =03, (%) > Aim
i=1

6.4 CONCLUSIONS

From the developed paired comparison, we have that the use of scrambling using OS should be pre-
ferred in all cases.

The introduction of an additional randomization through a set of values U* improves the accu-
racy with respect to the direct use of ¥ + X.

The procedure of Gupta and Thornton (2002) may be preferred to the other scrambling proposed
with an adequate selection of « previous a fixation of the distribution of the variable X.
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CHAPTER

RANKED SET SAMPLING
ESTIMATION OF THE POPULATION
MEAN WHEN INFORMATION ON
AN ATTRIBUTE IS AVAILABLE

Carlos N. Bouza-Herrera', Rajesh Singh? and Prabhakar Mishra?
! Faculty of Mathematics and Computation, University of Havana, Havana, Cuba 2Department of Statistics,
Banaras Hindu University, Varanasi, Uttar Pradesh, India

INTRODUCTION

Consider a variable of interest Y and a concomitant variable X, which are correlated and the coeffi-
cient of correlation p. The population ratio of the population mean of the two variables is

L, % . . . 3 vy — —
R= L— = %, and its usual estimator is R = %, y and X are the sample means.
x

Textbooks consider that the sample is selected using simple random sampling with replacement
(SRSWR). The ratio estimator is biased and it is negligible under certain conditions. The expression
of the bias is developed using Taylor series expansion, see classic textbooks, such as Cochran
(1977) and Murthy (1967). The approximated variance of R, considering such development, is

. R?
Var(R)= — <VX2 + V2 prnyVy>,
" )

Tx
K

N
where V, = V, = 77 and p,, = > (5 = )(1; — p1,)/Noyoy, o, and oy are the standard devia-
4 ’ i=1

tions of the populations of the variables X and Y, respectively.

The available information may be used in different ways and many modified ratio estimators
have been developed in recent years. The information on X, as the coefficient of variation, quar-
tiles, median, coefficient of kurtosis, coefficient of skewness, is used for improving the estimation
of R. Modified ratio estimators have been proposed by Murthy (1967), Cochran (1977), Kadilar
and Cingi (2004), Singh et al. (2008), Al-Omari et al. (2009), and Singh and Solanki (2012).

An alternative to simple random sampling (SRS) is the sample design known as ranked set sam-
pling (RSS). Mclntyre (1952) introduced it looking to increase the efficiency of the estimation of
the population mean. The method is useful when the variable of interest is very expensive or
difficult to measure but it can be easily ranked at a negligible cost. The original form of RSS,
conceived by Mclntyre (1952), can be described as follows. First, a simple random sample of size
k is drawn from the population and the k sampling units are ranked with respect to the variable of
interest, say X, without measuring Y. Then the unit with rank 1 is identified and taken for the

Ranked Set Sampling. DOI: https://doi.org/10.1016/B978-0-12-815044-3.00007-1
Copyright © 2019 Elsevier Inc. All rights reserved. 79
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measurement. The remaining units of the sample are discarded. Next, another simple random sam-
ple of size k is drawn and the units of the sample are ranked by judgment, the unit with rank 2 is
taken using the measurement of X and the remaining units are discarded. This process is continued
until a simple random sample of size k is taken and ranked and the unit with rank k is taken for the
measurement of X. This whole process is referred to as a cycle. The cycle then repeats m times and
yields a ranked set sample of size n = mk. In the recent past a lot of research has been done in
RSS by Samawi et al. (1996), Muttlak (1997), Philip and Lam (1997), Muttlak (1998), Al-Saleh
and Al-Kadiri (2000), Al-Odat and Al-Saleh (2001), Al-Saleh and Al-Omari (2002), Jozani and
Johnson (2011), and Jeelani et al. (2013, 2014a,b,c,d).

Takahasi and Wakimoto (1968) gave mathematical support to their claims. Dell and Clutter
(1972) established that even if the ranking is not perfect the proposed estimator is still unbiased.
The use of RSS is the theme of a growing number of papers. Patil et al. (2002), Bouza (2005), and
Al-Omari and Bouza (2014) gave reviews of the theme as well as a large list of papers.

Different ratio type estimators have been developed for RSS, see for example, Wolfe (2004),
Ganeslingam and Ganesh (2006), Ohyama et al. (2008), Al-Omari et al. (2009), Herrera and
Al-Omari (2011), Al-Omari (2012), Singh et al. (2014), Jeelani and Bouza (2015), Al-Omari et al.
(2016), and Khan and Shabbir (2016).

In the last 65 years the theory of RSS has been extended and is now thoroughly applied. Its pop-
ularity is due to the fact that RSS is expected to improve the accuracy of the estimation of the
population mean of Y.

Take a finite population U = {uy,....,uy} and a variable X correlated with the variable of inter-
est Y. It may be used for obtaining an accurate ranking of Y cheaply. Consider that in addition to
X each unit is attached to an attribute ~y, which is highly correlated to Y in some sense. Denote the
information on U by 7= Zy,...,2Zy), Z=X,Y,v. X and Y are real variables and

_ J 1 if u; belong to a group o
i 0 otherwise

X and v are known in advance by the statistician. This is a common situation. Take for example
the study of the response to a treatment of cancer patients. Take X as the size of the tumor, existing
in the patient’s expedient, and ~ as the sex. Measuring the size of the tumor after the treatment,
Y, is to be obtained using an expensive method, such as tomography axial computing.

Note that we know in advance the values of the totals v, = vazl v; and Xy = vazl X;.
Therefore we may compute the proportion of units belonging to 9, P =~y /N as well as the popula-
tion mean of X: X =Xr/N.

We are interested in estimating the population mean of Y

1 N
Y: ZY,
i=1

Commonly, a sample s is selected from U using simple random sampling with replacement
(SRSWR) and Y is estimated using the sample mean

=]

n

y= Vi

S| =
T
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The selected sample may be used for estimating the mean of X and P by x = %Z:Ll x; and

p= %ZLI ;. As they are unbiased estimators their mean squared errors (MSE) are their variances.
They are, respectively:

1 & _o o
V@)= — ) (Z-2Z) =-%,Z=X,Y
@ Nn;:l(l ) ot ,

o2 P(1-P)

Vip) =

n

The ratio of the true proportion and the estimation provides information, which may be intro-
duced in the estimation process to improve the accuracy of the estimate. Different authors have
used attributes for deriving ratio type estimators of ¥ based on SRSWR. See, for example, Singh
et al. (2008).

In this chapter we will extend some results, when RSS is used for selecting a sample and is
decided estimating Y by means of ratio type estimators, based on an auxiliary attribute .

Some exponential ratio type estimators of the finite population mean Y are considered. The pro-
posed RSS-estimators perform better under conditions that generally hold in practice.

Section 7.2 is concerned with presenting some ratio type estimators, based on auxiliary informa-
tion provided by attributes. Section 7.3 is devoted to the development of their RSS counterparts.
An auxiliary variable X is used for ranking the units. The proposed estimators are analyzed and
approximate expressions of their mean squared errors (MSE) are obtained by developing Taylor
series. The expressions of the gains in accuracy of the RSS-estimators are developed and their
meanings are discussed. Finally, in Section 7.4, a numerical study is developed using real-life data
for illustrating the performance of the proposal. We compare the proposed RSS-estimators with the
existing SRSWR-estimators of the population mean in terms of their MSE and a simulation study
of the approximation error (AE).

RATIO TYPE ESTIMATORS IN SRSWR USING ~

In SRSWR, 7 units out of N units of a population U = {u,...,uy} are drawn independently and
every possible combination of items, for the given sample size, has an equal chance of being
selected.

Ratio estimators are of wide use when looking for increasing the estimation of the precision of
the estimates of the population mean. They take advantages from the existence of a correlation
between an auxiliary variable and the variable of interest. The basic theory of ratio estimation is
presented in standard textbooks, such as Cochran (1977), Murthy (1967), and Hedayat and Sinha
(1992). The common framework takes into account first-order Taylor series developments.
Commonly the concomitant variable is quantitative but some approaches consider that it is an attri-
bute. Then particular ratio estimators have been developed. We will analyze some of the most pop-
ular ones.

The classic ratio estimator is determined by
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Its MSE is approximately

2 2

— NUy -2 Oy 7
MSE(y,) = + ﬁ - 2§pywayax

Improving estimation using ratio type estimators is giving a new look to the use of additional
information. Some papers on the theme are Sharma et al. (2013) and Kadilar and Cingi (2004).

Among the first proposals of using attributes as an auxiliary variable is the paper by Naik and
Gupta (1996). A seminal paper is the contribution of Prasad (1989). More recently, contributions
are Shabbir and Gupta (2007) and Yadav and Adewara (2013). They considered the use of SRSWR

and proposed as ratio estimator of Y
L P
Vi =Vt = —
Pl p

They obtained that the MSE of y, is given by

_ 0'2 —2 0-2, PO'y
msE(s)= 7 47 7 (1 ~2p,, (ﬁ))
:

. . Lo - . . P -P)(Yy-Y-
Note that py, is the point biserial coefficient of correlation. That is p,, = w,
where '

- Vi = eoYi if u;
_ Zu,-ed Zu,eﬁ 119(1.):{ 11fu,€19

Yy= o .
v 0 otherwise

SL L0 TN S L0

Jhajj et al. (2006) proposed to work within a general class of estimators. Their proposal was
considering the parametric class

Q= {Y2|Y2 =g, mhT = %}

The parametric function g(a, b) should satisfy a set of regularity conditions. One of them is that
g(?, 1) =Y, for any value of the population mean. The optimal estimator in this class is the linear
regression estimator

N C 8
Fap =3+ 0P = pb == oD = (j—)
Y

as its MSE equals
0'2 B
Min{MSE(y,)} = > (1 - pm)
Singh et al. (2007) considered the ratio type exponential estimators

Y3 = yexp(,)

P_
pift=1
o= P+p
' piPlftZZ

P+p
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The MSEs of the estimators obtained considering up to the first order of approximation are:
_2 —
05 Y 03 _ Ypy0y0,

- n 4 P
MSE(y3,) = TS "
o Y o + YPnovoy vaﬁa} v

nP

ift=1
Fr=2

2
oy
n
Another suggested estimator was developed fixing a constant « :

Y4 = ylaexp(71) + (1 — a)exp(72)]
Minimizing MSE (MSE(y,)) is obtained that

2
Min{MSE(,) = Min{MSE(,)} } = 7} (1- P@)

RATIO TYPE ESTIMATORS IN RSS USING ~
SOME BASIC ELEMENTS OF RSS

Mclntyre (1952) considered ranking with respect to the prediction of the values of the variable of
interest Y. Hence he considered as valid the hypothesis of having a perfect ranking of Y. By order-
ing in terms of the latent values, we have that the measured values of Y are indeed order statistics.
Then the density function of the ith order statistic (OS) of a simple random sample (SRS) of size
m, f;i; = fi), should be derived from distribution of ¥: F. We have that from the probability density
function of the OSs, for any y,

1 m
FO) == 0 fok)

This equality has an important role in RSS as it gives rise to deriving its statistical merits.

Perfect ranking with respect to the latent values of Y is consistent. When ranking errors exist,
the density function of the ranked statistic with rank i is not f;,but the corresponding cumulative
distribution function Fj,;, which is:

m
Fip= ZpsiF ®»O)
s=1

Here p,; denotes the probability with which the sth (numerical) order statistic is considered hav-
ing the rank i.

The RSS procedure involves selecting independently m sets of m units from U. In the first set
we evaluate Y in the lowest ranked unit, the remaining units of it are discarded. In the second set of
m units, Y is evaluated in the second lowest ranked unit and the remaining units are discarded. The
procedure is continued until the mth set is evaluated. This completes one cycle and a ranked set
sample s(1) of size m is obtained. The whole process can be repeated k times (cycles) and the
ranked set sample of size n = mk is given by the sequence s(1),...,s(k). In practical studies m takes
values of 2, 3, or 4.
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The theory considers that Y may be ranked with some error. Lynne Stokes (1977)
derived the effect of ranking using concomitant variables. This fact affects the behavior of

the RSS estimator by reducing the associated gain in accuracy, with respect to the SRSWR-
estimator.

Let us denote by (Xj), Y1) the pair of the ith order statistics of X and the associated element ¥
in the jth cycle. Then the ranked set sampling can be explained as follows
First we select m SRS each of size m as

§(X113Y11)5 (X12,Y12), .., (leaylm)%
(le,.Yzl), (Xzzl, Y2), ..., (sz,.Yzm)

{(Xml "le )a (Xm'Za YmZ)a BT (Xmma Ymm)}

Rank the units within each set according to the variable X as

{ (XT(I), Y1*[1]> (X1, Vi) - - o (Xiomys Yl[m])}

{ (Xt o) (X ¥y ) - » (o YZ[m])}

{ (Xm(l), Ym[l])a (Xm(z)’ Ym[Z]), R (X;kn(m)’ Y;:l[m]) }

Then the measured RSS units are {(Xf(l), Y;k“]), (X;‘(z), Y;‘m), e (X:;(m), Y;;[m]) } The process
is repeated k times (cycles).

If the error probabilities are the same within each cycle of a balanced RSS, we have that

LN Fa) = -3 Y paF0) = FO)
i=1 =1 s=1

Then, X can be used for the ranking of the sampling units; it is measured on each unit in the
selected simple random samples. The units are ranked according to the measured X values. We
have induced order statistics Y;. Let f{Y1X(;)(ylx) denote the conditional density function of Y given
X = x and g(;(x) the marginal density function of X ;. Hence

)= [1,],, 00
As a result
1< 1 &
70 [ b= 1 )
Let us consider /(y) as a function of y, u, = E[A(Y)], and the existence of V[i(Y)] = o3.

Denote fi;, . = mika":l Zle h(Y[i],). The relative efficiency of RSS with respect to SRS for
estimating the mean of Y is based on the well-known fundamental theorem of RSS:

Theorem 1: Suppose that the ranking mechanism in RSS is consistent. Then,

i. The estimator [, . is unbiased.
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e A (72
” V[Mh,rss] = ﬁ
iii. If m— oo then v/mk (i, s = 1) ~N(O, V(fi66))-

RATIO TYPE ESTIMATORS

Extensions of ratio estimators, when RSS is used for selecting the samples, is a theme of theoretical
and practical interest. The ratio estimation based on RSS usually is more efficient compared with
the SRS ratio estimate. The usual SRSWR estimator was extended by Samawi and Muttlak (1996).
Some modified ratio estimators have been developed. See, for example, Kadilar et al. (2009),
Al-Omari and Gupta (2014), Jeelani et al. (2014a, 2014b), and Jeelani et al. (2017).

Basically, the naive RSS ratio estimator of the mean is

_ _ (X
Yr—rss = Vrss )—z

When treating with the ratio G/Q, we can use a certain order representation in Taylor series
(TS). This method is used in the sequel.

Consider that g(xi, ..,x,) and ¢(yi, .., y,) are statistics related to the parametric functions repre-
sented by

o =T+ 6_T n E;’:l TO(Zi) n Z’r.l:l Tl(Zi) n Zc;TZ(Zi,Zj) n chTS(Zia Zj,Zk)
n

n? n n? n3

+0p<n_%),t:g,q;T:G,Q,Z:X,Y

Or is a bias term. We have that E(7(Z;)) = E(71(Z;)) = 0; for the cross terms of second-order
E(Tz(Z,-,Zj)‘Z,-) =0 and for the third-order cross terms 73 (Z,-,Zj,Zk}Zi,Zj) =0.

The corresponding expansion in TS of E (y,,rss—?) , using this development, leads to the
approximate expression of the MSE:

A? A? A? A?
2 _ m V(i) 2 2 _ m o) — 2 _ m (i) 2 _ m V(i)
(Uy ZiZI m ) +R (Ux Zi:l m > 2Rpxy ( X Zi:l m ) (0)7 Zi:l m )

n

MSE(, ) =

Then we prefer this estimator to the SRSWR one when

m AZ m AZ m AZ m Az
Frem 55 w35 ||| (- %) (- 5%
n =1 M ’ e m Yo e m

i=1

Let us look at the counterpart of y,. It is

~

ylrss = yrssrp’ p = —
p

In this case, the use of RSS is involved only with y,, as p does not depend on OSs. Now, the
MSE of y, is given by
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— [V (Viss
EGia =7 = MSE(5) 2V (50) + 7212 (1 20, (PY é{;ﬁ))

2

2 m AW)
GTXE T L0
=—+Y —'2
n nP

Let us compare MSE (y,rss)and MSE(yl) by computing MSE (y,) — MSE (ylms)
This difference is approximately

2

m Y(i) 2
> i YU /
Fl*rss ~ i rll m ’) )()

Therefore RSS provides a more accurate estimator if I'; s > 0. The term in brackets in the sec-
ond term is positive. Then we have that a sufficient condition for preferring y . is that p,, <0. As
Py is a point biserial coefficient of correlation, and it is negative only if Yy < Y On the other
hand, I'i—s =0 only if, for any i(=1....., m), A2 =0. This is true iff the rankmg is made at
random.

The class of estimators ¢, = {y2|y2 =gy, 7); T= %} has as RSS counterpart

- = _ p
C-Z.rss = {erss Yoss = g( JrTH) T); T= F}

We may use the same parametric function g(a, b) in ¢, and the optimal estimator is

= . . Cov(y,p) oy
= + b(P — b= = =p. [
y2rss,0pt Yrss ( P), /65 B V(p) Py Y o,

as the minimum MSE equals

A?
2 _ m Y6
O—v Zi—l m
J s l — p‘,

Min{MSE(erss,opt)} =
Now the gain in accuracy is

m A2‘
FZ*rss,opt; 20 (1 - ﬂ%n’)

=1 mn

This expression is positive unless Aiw =0 for any i =(1,.., m), or if the correlation between Y
and vy is perfect.
Let us develop the RSS counterparts of y5,. They are:

ySt*rss = yrssexp(Tt)s
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P_
P+pifz=1

_ P

Ty = -P
P Titr=2

P+p

The corresponding approximations to the MSEs of these estimators are easily obtained. They
are given by:

AZ
Yp, 00| 02— S, 22
o2 m A% Y02 Y ’ =m
-2 — 20 4+ T if =
B n 4 nm 4n nP ’
MSE(ySfrss,t) = >
Yp, o |02 S 20
2 m AZ Y2 2 py» ( y Zt*l m
U\r V(i) 0—‘» .
- Z_ + R if 1=2
n 4 nm 4n nP

The gain in accuracy differs seriously. Note that

A2
Y 2 _ m. Y0
m AZ Ypy‘) U",' (gy Zi=1 m )

_ Z 0
F3—rss,l - — +
= nm nP

This expression is always positive if p,, >0, but for 7 = 2 we have that

A2
v 2 mo 76
m A2 Y,O),,),U'y (O-y Zi=1 m)
_ 2 : Yo
FS—rss,Z - -
nm

i=1

nP

is always positive if p <0. Therefore the surveyor will prefer one of them after considering the
sign of the correlation coefficient.

The analysis of y, yields as RSS-estimator

Va—rss = Yiss [aexp(Tl) + (1 - a)exp(Tz)]

Its MSE is minimized as in the case of y, — rss and the MSEs are equal

o? m A2
Min{MSE (7, ;) = Min{MSE(,_,)} } = (n‘ - Zn‘W‘L‘> (1 - p;,)
i=1

Therefore
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A NUMERICAL STUDY OF THE EFFECT OF A VACCINE FOR
LUNG CANCER

Many medical institutions are developing top-level research for the evaluation of so-called person-
alized medicine. The mainstream is to look for adequate vaccines for improving the quality of life
of terminal lung cancer patients. The development of such vaccines is on the front line of research
and development. Clinical facts have shown that target therapies recurrently do not meet their pri-
mary endpoint in open population analysis, but they showed certain benefits in some patients. New
treatments must be validated in terms of their behavior in improving a quality of life index, which
must be sensitive to changes. Life quality depends on several variables, most of which are
categorical.

We obtained data on the evaluation of the success of a new product (vaccine) during 3 years. It
was applied to 132 lung cancer patients in a terminal status. Their life expectancy was 3—6 months.
A treatment with the new vaccine was applied and the improvement of survival time, Y, was
measured.

The ranking variable X was the volume of the tumor when the treatment began. Different cate-
gorical variables from their expedients were used as markers. They were:

Being a smoker (yes, no);

Sex (male, female);

Being diabetic (yes, no);

Being more than 60-year-old (yes, no);
Anemic (yes, no).

A

Using the population information, the MSEs were computed and the gain in accuracy, diminu-
tion of the MSE, was analyzed. We measured the gain in percent. The measures were:

1—\r—rss 1—‘] —TISS FZ*rss,opt

MSE(3,)” "™ 7 MSE(y,) ™" " Min{MSE(3,)}

Wr—rss —

(F3—rss,t) 1—‘4—rss

J=1,2— —
MSE (¥s,) Min{MSE (v,) }

W3—rss,t —

Simulation experiments for evaluating the behavior of the RSS-estimators studied in this paper
were conducted. RSS samples of size 40 were selected using the combinations m, k (=2, 20; 4, 10;
5, 8).

One of the aspects of the behavior of the estimators was their accuracy. The difference between
the true value of the population mean and the computed estimators was analyzed. One thousand
samples were generated randomly and we evaluated

1000

1 o
Dg = m;]ys—yy

b,S =1—rss,2 —rssopt,3 —rssl,3 —rss2,4 —rss

The analysis of the behavior of the RSS estimators appear in the tables presented below.
The results evidence that using y,_, is generally the best alternative. On many occasions, using
an attribute seems to be more satisfactory for the clients. Hence, the statistician may opt for
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evaluating the effect of using an attribute, and fix which properties make one of them preferred.
P and p are involved in the formula of the MSEs, and hence in the gain in accuracy.

The results in Table 7.1 establish that y,. obtains the largest diminution in MSE, but ¥, o
and y,_,,, are more accurate. Note that P may be considered large, while the correlation is negative
and notably different from zero. These facts have as an effect preferring y;_ 5 t0 Y3 11

Table 7.2 gives support to considering again y . as having the best behavior in terms of the
percent of gain in accuracy. It is the second best in terms of the average difference of the estimates
with the population mean. P is not considerably high. p,., is negative but closer to zero than in the
case of using smoking as an attribute. We may argue that also in the case of not too high a correla-
tion y3_,, is to be preferred to y3_, ;. The estimates produced by Yo ope @and ¥4 are the clos-
est to the population mean.

Table 7.3 presents the study of the use of being diabetic as an attribute. y,, has one of the larg-
est improvements of the percent gain in accuracy, but the average of the difference, of the corre-
sponding estimates with Y, is not notable. P may not be considered as high and Py 1s almost equal
to zero. Also, in this case Y3, is to be preferred to Y3 ;. Note that Y, o and ¥4 have the
second best accuracy in terms of the mean difference of the estimates and the population mean.

Table 7.1 Performance of the RSS-Estimators. v = 1 If Being a Smoker, P = (.86,

Py = —0.72

a Percent of Gain in Accuracy Mean Difference

m=2 m=4 m=5 m=2 m=4 m=5

r-rss 11.25 9.97 8.42 478 4.84 5.04
1-rss 20.03 19.95 19.78 7.51 7.01 6.78
2-rssopt 7.54 7.28 7.27 3.67 3.14 3.02
3-rssl 0.25 0.16 0.15 7.88 7.66 7.09
3-rss2 2.80 2.36 2.35 7.53 7.50 7.48
4-rss 7.54 7.28 7.27 3.67 3.14 3.02

Table 7.2 Performance of the RSS-Estimators. v = 1 if Male, P = 0.69, Py, = —0.35
“ Percent of Gain in Accuracy Mean Difference
m=2 m=4 m=35 m=2 m=4 m=35

r-I8$ 11.25 9.97 8.42 4.78 4.834 5.04
1-1ss 11.71 11.63 11.44 7.35 7.26 7.09
2-rssopt 7.54 7.28 7.27 3.67 3.14 3.02
3-rssl 1.48 1.16 1.15 7.80 7.73 7.68
3-rss2 2.66 2.59 2.45 7.44 7.38 7.34
4-1ss 7.54 7.28 7.27 3.67 3.14 3.02




90 CHAPTER 7 RANKED SET SAMPLING ESTIMATION

Table 7.3 Performance of the RSS-Estimators. ~y = 1 If Diabetic, P = 0.47, p, = —0.08

e Percent of Gain in Accuracy Mean Difference
m=2 m=4 m=S5 m=2 m=4 m=5

r-188 11.25 9.97 8.42 4.78 4.84 5.04
1-rss 8.78 8.72 8.64 7.30 7.22 7.05
2-rssopt 7.59 7.50 7.47 3.17 3.08 2.98
3-rssl 1.25 1.14 1.07 7.73 7.70 7.57
3-rss2 4.21 4.17 4.05 7.40 7.35 7.22
4-rss 7.59 7.50 747 3.17 3.08 2.98

Table 7.4 Performance of the RSS-Estimators. v = 1 If More Than 40 Year Old, P = 0.79,

Pyy = 0.13
a Percent of Gain in Accuracy Mean Difference
m=2 m=4 m=5 m=2 m=4 m=5

r-IS$ 11.25 9.97 8.42 4.78 4.834 5.04
1-rss 3.53 3.42 3.34 7.32 7.28 7.16
2-rssopt 7.54 7.28 7.27 3.67 3.14 3.02
3-rssl 7.02 6.97 6.87 7.73 7.70 7.56
3-rss2 2.15 2.10 2.01 7.40 7.35 7.20
4-1ss 7.54 7.28 7.27 3.67 3.14 3.02

Table 7.5 Performance of the RSS-Estimators. v = 1 if anemic, P = 0.92, p, = —0.84

a Percent of Gain in Accuracy Mean Difference
m=2 m=4 m=5 m=2 m=4 m=35

r-18$ 11.25 9.97 8.42 4.78 4.84 5.04
1-rss 6.56 6.52 6.39 7.07 6.97 6.86
2-rssopt 7.50 7.30 7.29 3.55 3.50 3.46
3-rssl 2.12 2.02 1.97 7.75 7.70 7.64
3-rss2 6.00 5.93 5.84 7.50 7.42 7.38
4-1ss 7.50 7.30 7.29 3.55 3.50 3.46

Table 7.4 permits to evaluate the effect of having a positive correlation. It is not so high but the
performance of Y314, Y3 151+ Yorss.opt a0d Y4y 18 relatively better, though P is large. Yo, ope and
Y4_rss Produced estimates very close to Y.

When having anemia is the attribute (Table 7.5), P is close to 1 and p,, may be considered as
close to —1. Now the performance of y;_;, is much better than that exhibited by y;_,  in terms
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of the percent of gain in accuracy. Their mean differences are very similar. Yy o and Y, are
relatively better though P is large. V.o and y, . have the second best behavior in both
measures.
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CHAPTER

MODIFIED PARTIALLY ORDERED
JUDGMENT SUBSET SAMPLING
SCHEMES

Abdul Haq

Department of Statistics, Quaid-i-Azam University, Islamabad, Pakistan

INTRODUCTION

Cost-effective sampling schemes are of major concern in surveys of natural resources in biology,
ecology, environmental management, forestry, etc. One of the most commonly used sampling
schemes is simple random sampling (SRS). In environmental, ecological, and biomedical studies,
there are situations where taking the actual measurement of sample observations is not only diffi-
cult, but also costly, destructive, and time-consuming. However, ranking a small set of sample
observations is relatively cheap, easy, and reliable. Ranking of the experimental units may be
accomplished through a visual inspection with respect to the study variable or by using any less-
expensive method or using ranks of a highly correlated auxiliary variable. For example, if one in
interested in estimating the average height of a plant species in a forest, then, a small set of ran-
domly selected plants can be ranked visually with respect to their heights or weights. Likewise, an
ecological assessment of the hazardous waste sites involves expensive radiochemical techniques to
find the value of the study variable. The hazardous waste sites with different levels of contamina-
tion, however, could be ranked by a visual inspection of soil discoloration. In all such situations,
Mclntyre (1952) proposed a sampling scheme—Ilater called ranked set sampling (RSS)—that could
be employed as an efficient alternative to SRS. The RSS scheme incorporates inexpensive auxiliary
information related to the study variable as a way of gathering additional information in order to
rank the selected sampling units. This use of the auxiliary information at the sampling stage helps
in selecting better representative samples from the target population.

Takahasi and Wakimoto (1968) were the first to lay the mathematical foundation of the RSS
scheme. They proved that the mean of a ranked set sample is not only an unbiased estimator of the
population mean but it is also more precise than the sample mean of a simple random sample. An
interesting finding was put forward by Dell and Clutter (1972); they showed that, despite the pres-
ence of ranking errors, the mean estimator with RSS is not only unbiased but it also outperforms
the mean estimator with SRS. For a brief introduction, bibliography, literature review, applications,
and monograph on RSS, readers are referred to Patil (1995), Patil et al. (1999), Wolfe (2012), and
Chen (2007), respectively.

Ranked Set Sampling. DOI: https://doi.org/10.1016/B978-0-12-815044-3.00008-3
Copyright © 2019 Elsevier Inc. All rights reserved. 95


https://doi.org/10.1016/B978-0-12-815044-3.00008-3

96 CHAPTER 8 MODIFIED PARTIALLY ORDERED JUDGMENT SUBSET

In the last few decades, there have been many new advancements and variations in the classi-
cal RSS scheme. Samawi et al. (1996) and Muttlak (1996, 1997, 2003) introduced extreme RSS
(ERSS), paired RSS (PRSS), median RSS (MRSS), and quartile RSS (QRSS) schemes, respec-
tively, for estimating the population mean. The ERSS, MRSS, and QRSS are called unbalanced
RSS schemes because these schemes select units on some ranks more frequently than the others.
An RSS scheme is called balanced if units on all ranks are selected an equal number of times.
The unbalanced RSS schemes may provide efficient mean estimators when sampling from a sym-
metric population, but efficiency of the mean estimator may depend on the modality (unimodal,
bimodal, or multimodal) of the underlying population (cf., Kaur et al., 1997; Ozturk and Wolfe,
2000). For an asymmetric population, however, these mean estimators are not precise and in
some cases they may get worse than the mean estimator with SRS. Al-Saleh and Al-Kadiri (2000)
introduced double RSS (DRSS) for estimating the population mean. They proved mathematically
that the mean estimator with DRSS is always more efficient than the mean estimator with RSS.
Al-Naseer (2007) suggested an L RSS (LRSS) scheme for estimating the population mean based
on the ideal of L moments. This scheme encompasses RSS, MRSS, and QRSS schemes. A simple
modification of LRSS has been suggested by Al-Omari and Ragab (2013), named truncation-
based RSS (TBRSS), for estimating the population mean. Both RSS and ERSS schemes are spe-
cial cases of TBRSS. Haq et al. (2014) suggested mixed RSS for estimating the population mean.
The mixed RSS is a suitable mixture of SRS and RSS schemes. For some more recent works on
RSS scheme, we refer to Haq et al. (2013, 2015, 2016a,b) and Haq (2017a,b), and the references
cited therein.

In practice, when conducting an RSS scheme, the ranker is forced to rank all units from the
smallest to the largest without actual measurement, this may not be realistic in certain settings
when the ranker lacks in confidence to rank all the selected units accurately. Ozturk (2011)
came up with a wonderful idea that, instead of ranking units, it may be possible to rank the
tied-ranked units. It is more realistic for a ranker to rank all units in a set by allowing ties
among the units when their ranks cannot be identified with full confidence. Following these
ideas, Ozturk (2011) suggested a partially ordered judgment subset sampling (POJSS) scheme
for estimating the population mean. It was shown that, under perfect ranking and with reason-
able assumptions on the partitioning of sets, the mean estimator with POJSS surpasses the mean
estimator with RSS.

In this chapter, we extend the work on the POJSS scheme and propose new modified POJSS
schemes for efficiently estimating the population mean. Using the ideas of PRSS, LRSS, and
DRSS, we propose paired POJSS (PPOJSS), L POJSS (LPOJSS), and ranked POJSS (RPOJSS)
schemes. The mathematical properties of the mean estimators under these sampling schemes are
derived. It turns out that the proposed schemes with both perfect and imperfect rankings are
efficient alternatives to their existing counterparts in terms of providing more precise mean
estimators.

The rest of this chapter is outlined as follows: in Section 8.2, some existing RSS schemes
are briefly reviewed. The modified POJSS schemes are presented in Section 8.3. Under per-
fect and imperfect rankings, the mean estimators with the existing and proposed sampling
schemes are compared theoretically and numerically in Section 8.4. A real data example is
considered in Section 8.5. Section 8.6 summarizes the main findings and concludes the
chapter.
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SAMPLING SCHEMES

In this section, some recent and existing RSS schemes are briefly reviewed, along with their mathe-
matical setups when estimating the population mean.

Let (Y1,...,Y,) denote a simple random sample of size n drawn from an absolutely continuous
distribution having the cumulative distribution function (CDF) F(y) and the probability density
function (PDF) f(y), with the mean p, and the variance 0. Let Ysrs = (1/n) >_"_, ¥, be the sam-
ple mean based on a simple random sample of size n. Here, Ysrg is an unbiased estimator of sy,
i.e., E(Ysrs) = puy, with variance Var(Ysgs) = (1/n)o%. Let (Y(1:n), - - -» Y(uzn)) denote the order statis-
tics corresponding to (Y,...,Y,), where Y.,y = rthmin{Y;,...,Y,} for r=1,...,n. The CDF and
PDF of Y(,:n) (1 =r=n) are, respectively, given by

n

Fun®= Y (”) FON-FON™, —o0 <y< o,

i=r

Jorm() = {FON T {1=FO"'f).

n!
(r—=Dn—r)
The mean and variance of Y., (1 =r=n) are

Ky@riny = Jyf(r:n)(y)dy and U%/(/‘In) = J(Y_l‘m:n))zﬁr:n)(y)dy’

respectively. Similarly, the covariance between Y, and Y.y (1 =r<s=n) is

OY(r,sin) = JJ <y) - ,LLy(r:n)> ( s T /UfY(,;:n)>f(r,sZn)(yr, )’s)d)’r d)’s,

where

n'

_ . r—1 _ s—r—1
f(r,s:n)()’ra Vs) = r—Dls—r—Dl(n—s) {F(yr)} {F()’s) F()’r)}
{1 - F(Ys)}nisf()’r)f(ys)a —o0 <y, <y;< 0,
which is the joint PDF of Y., and Y(,). The joint CDF of Y, and Y., is

Vs Vr
F(r,sin)(yr: ys) = J J f(r,sln)(yr, )’s)d)’rdYs
— 0 .

— 0

These results will be used in Section 8.3. More details on the order statistics may be seen in
David and Nagaraja (2003).

RANKED SET SAMPLING

The RSS scheme is an efficient alternative to the SRS scheme in those sampling situations where a
small set of selected units can be ranked visually with respect to the study variable or by using the
ranks of an auxiliary variable.

The RSS scheme works as follows: select a simple random sample of size m? units from the
underlying population. These m? units are then partitioned into m sets, each set comprising m units.
The ranking of units within each set is accomplished through a visual inspection and/or personal
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judgment with respect to the study variable or the units can be ranked using any less-expensive
method—the ranks of the study variable could be judged using the ranks of a highly correlated aux-
iliary variable. Then, from the rth set, the rth smallest ranked unit is quantified, for r =1, ....m
This is one complete cycle of a ranked set sample of size m. The whole procedure can be repeated
t times to get 7 cycles of a ranked set sample of size m with total sample size n = mt units.

Let (Y11j,-- - Yim)s s (Yimijs . o, Yij) denote m simple random samples, each of size m,
obtained in the jth cycle for j = 1,...,¢. Apply the RSS scheme on these samples to get a ranked set
sample of size m for the jth cycle, denoted by Y,,:m;, r=1,..,m for j=1,..t, where
Y 2myy = rthmin{Y,;, . . ., Ysy}. It is to be noted that, having fixed r, Y,:m);, j =1, ....t, are indepen-
dent and identically distributed (IID) random variables, i.e., Yy;:m)j = Y(im), j = 1,...,¢. Having
fixed j, however, Y,:m), ¥ = 1,...,m, are independent but not identically distributed (INID) random
variables, i.e., Y,(-:m)j = Y(r2m), ¥ = 1,...,m. The sample mean and its variance under RSS are

m

Yrss = — Z Z Yo and  Var(Yrss) = —Z Ty(rimy>
j 1 r=
respectively. Takahasi and Wakimoto (1968) showed that Yrgs is an unbiased estimator of by, and
it is more precise than Yggs, i.€.,

m

_ - 1 2
Var(Yrss) = Var(Ysgs) — %Z (uy(,;m) —uy> .

r=1

PAIRED RANKED SET SAMPLING

The PRSS scheme was first suggested by Muttlak (1996) for estimating the population mean. The
PRSS scheme is a cost-efficient alternative to the RSS scheme, i.e., it requires fewer observations
than the RSS scheme when selecting a sample from the underlying population—thus it helps in
reducing the ranking cost.

The PRSS scheme works as follows: for the even set size m, select m(m/2) units from the
underlying population and partition them into m/2 sets, each comprising m units. Now rank the
units within each set. Then select the rth and (m — r + 1)th smallest ranked units from the rth set,
for r =1,...,m/2. Similarly, for the odd set size m, select m(m + 1)/2 units from the underlying
population and partition them into (m + 1)/2 sets, each comprising m units. Then select the rth and
(m — r + 1)th smallest ranked units from the rth set, for r=1,...,(m — 1)/2, and the {(m + 1)/2th
smallest ranked unit is selected from the {(m + 1)/2th set. This completes one cycle of a paired
ranked set sample of size m. The whole procedure could be repeated ¢ times to get a total sample
of size n units.

The sample means under PRSS depending upon even and odd set sizes m are, respectively,
given by

t m/2 m/2
PRSS *Z (Zyr(r my T ZY r(m—r+1: m)j> and
t (m+1)/2 (m—1)/2
PRSS = Z( Z Yr(r:m)]' + Z Yr(mr+l:m)j>
r=1 r=1
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with variances

m/2
SE _
Var(Yprgs) = Var(Yrss) + P ZUY(r,nz—r+l:m) and
r=1

(m=1)/2
_0 p—
Var(YPRSS) = Var(YRSS) + % ; O—Y(r,mfrJrl:m)-
It is clear that the mean estimator based on RSS is always more precise than the mean estimator
based on PRSS—all covariances in the above expressions are always positive. However, the rank-
ing cost associated with PRSS is less than that of RSS [cf., Muttlak, 1996].

L RANKED SET SAMPLING

The LRSS scheme was suggested by Al-Naseer (2007) for estimating the population mean. The
LRSS encompasses some existing RSS schemes, and it is an efficient alternative to the RSS scheme
when estimating the mean of a symmetric population. Here, we modify LRSS so that ERSS and
TBRSS can be made its special cases. Note that the modified LRSS procedure is here referred to as
LRSS.

The LRSS scheme works as follows: select the LRSS coefficient, say k = [am] for 0 = a <0.5,
where [-] is the largest integer value less than or equal to (-). Identify m? units from the underlying
population and partition them into m sets, each comprising m units. Now rank the units within each
set. Then select the vth and (m — v + 1)th smallest ranked units from the first and last k sets, respec-
tively, where ve 1,...,[m/2]. Moreover, the rth smallest ranked unit is selected from the rth set, for
r=k+1,...,m— k. This completes one cycle of an L ranked set sample of size m. The whole pro-
cedure could be repeated ¢ times to get a total sample of size n units. For different choices of k the
LRSS reduces to balanced and unbalanced RSS schemes. For example, LRSS is equivalent to RSS
and MRSS with k=0 and k =[(m + 1)/2],y =k + 1, respectively. Note that, when v =k + 1, the
above modified LRSS reduces to LRSS suggested by Al-Naseer (2007).

The sample mean and its variance under LRSS are, respectively, given by

m—k m
YLRSS - _Z <ZYr(V m)j + Z Yr(r m)j Z Yr(mv+l:m)j) 5

=k+1 r=m—k+1
- 1 k m—k
Var(Yrrss) = — Y(v m T Z Uy(; m T Z ”y(m Vi 1om)
nm
r= r=k+1 r=m—k+1

It is easy to show that Yjgss is an unbiased estimator of fy and it is more precise than Yrss
when the underlying population is symmetric. For an asymmetric population, however, it is biased
and may become less efficient than Ysrs and Yrss [cf., Al-Naseer, 2007].

DOUBLE-RANKED SET SAMPLING

The DRSS scheme was suggested by Al-Saleh and Al-Kadiri (2000) for estimating the population
mean. They showed that DRSS is always more efficient than RSS when estimating the population
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mean. Moreover, when conducting the DRSS scheme, ranking the units on the second stage is
much easier than that on the first stage—this makes DRSS an efficient alternative to RSS.

The DRSS scheme works as follows: identify m* units from the underlying population and parti-
tion them into m sets, each comprising m? units. The RSS scheme is then applied on each set to get
m ranked set samples, each of size m units. Again apply the RSS scheme to get a double-ranked set
sample of size m. This completes one cycle of a double-ranked set sample of size m. The whole
procedure can be repeated ¢ times to get a total sample of size n units.

Let Y r((rz(:n)'j" ) = =1,...,m, denote a double-ranked set sample of size m for the jth cycle,
j=1,...,t, where Y ((rr)(r y = ) = rth min of the rth ranked set sample in the rth set (Y 1(3 - Yr(,;()m my)

in the jth cycle. Al-Saleh and Al-Kadiri (2000) showed that the sample mean with DRSS is not
only unbiased, it is also more precise than the sample mean with RSS, i.e.,

E(YDRSS) = - ZZE(Y:(: ::))j Ky and

jlr

_ _ 1 &
Var(Yprss) = Var(Yrss) = — > 0yior
ar(Yprss) = Var(Yrss) nm; Y(rsim)>
where a)f(f :",)n) >0 is the covariance between Y(r)(r ;") and Yv(s(;;") More details on DRSS may be
seen in Al-Saleh and Al-Kadiri (2000).

PARTIALLY ORDERED JUDGMENT SUBSET SAMPLING

A new sampling scheme has been introduced by Ozturk (2011), in which a ranker is allowed to
declare ties among the units within subsets of prefixed sizes. The units within these subsets are par-
tially ranked ordered so that any unit in subset i possesses a smaller rank than any other unit in subset
i’, where i<, called partially ordered judgment subsets. A single observation is then quantified
from one of these subsets present in a set. This sampling scheme is named POJSS. Ozturk (2011)
further imposed some restrictions on the number of units within each subset—comprising the whole
set—in order to increase the precision of the mean estimator based on POJSS, i.e., all subsets within
a set should comprise equal number of units.

The POJSS scheme works as follows: identify wm? units from the underlying population and
partition them into m sets, each comprising wm units. The units within each set are further parti-
tioned into m subsets, each comprising w units. These subsets are then partially ranked ordered as
mentioned by Ozturk (2011). Select one unit from the rth smallest ranked subset of the rth set, for
r=1,...,m. This completes one cycle of a partially ordered judgment subset sample of size m. The
whole procedure could be repeated ¢ times to get a total sample of size n units.

Symbolically; under perfect ranking, let (S%))j, . S%)q)]) denote the rth set that comprises m
partlally ordered judgment subsets, each of size w, r =1, ...,m, in the jth cycle, for j=1,.. ., ¢, where

;(r), = (Yoir— Dyt Lmw)s - + o> Yewimw)) for w=1,....m, i.e., each subset contains w elements. Let
Yr(, my = Select one element randomly from S(r(r Having fixed w, this constitutes one complete
sample of size m for the jth cycle. Clearly, havmg fixed j, r(r my» = 1,...,m, are INID random
variables. However, having fixed r, (r ) j=1,...,t, are IID random variables. For brevity of dis-

cussion, let Y7, . =Yg, forj=1..1
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The sample mean and its variance under POJSS are, respectively, given by

m

- 1 ,
Yroiss = —Z Z voemy  and Var(Ypojss) = %Z Y (rim)>

j=1 r= r=1
where Var(Y},. m)j) J’;(r:m). Note that RSS is a special case of POJSS when w = 1. Ozturk (2011)

showed that POJSS is more precise than RSS when estimating the population mean when w > 1.
For more details, we refer to Ozturk (2011).

PROPOSED SAMPLING SCHEMES

In this section, some modified POJSS schemes are proposed for estimating the population mean.
We develop unbiased estimators of the population mean under the proposed sampling schemes and
study their mathematical properties. Moreover, the unbiased estimators of the variances of these
mean estimators are also derived.

PAIRED PARTIALLY ORDERED JUDGMENT SUBSET SAMPLING

As aforementioned, PRSS is a cost-effective alternative to RSS, i.e., it requires less number of
ranked units than that using RSS when selecting a sample from the underlying population. On simi-
lar lines, we modify POJSS to propose the PPOJSS scheme for estimating the population mean.
The PPOIJSS is a cost-effective alternative to POJSS.

The PPOJSS scheme works as follows: for an even set size m, identify wm(m/2) units from the
underlying population and partition them into m/2 sets, each comprising m units. The units within
each set are further partitioned into m subsets, each comprising w units. These subsets are then par-
tially ranked ordered. Select one unit from the rth and one from the (m — r + 1)th smallest ranked
subsets of the rth set, for r=1,...,m/2. Similarly, for an odd set size m, identify wm(m + 1)/2
units from the underlying population and partition them into (m + 1)/2 sets, each comprising m
units. The units within each set are further partitioned into m subsets, each comprising w units.
These subsets are then partially ranked ordered. Then select one unit from the rth and one from the
(m — r+ 1)th smallest ranked subsets of the rth set, for r=1,...,(m —1)/2, and select one unit
from the {(m + 1)/2}th smallest ranked subset of the {(m + 1)/2}th set. This completes one cycle
of a paired partially ordered judgment subset sample of size m. The whole procedure can be
repeated ¢ times to get a total sample of size n units.

The sample means under PPOJSS depending upon even and odd set sizes m are, respectively,
given by

E t m/2 m/2

YPPOJSS Z <Z r(rim)j Z r(m—r+1: m)]> nd
o 1 t (m+1)/2 (m—1)/2

YPPOJSS = ZZ < Z Y;k(r m)] Z Yj(mr+1:m)j>

j=1 r=1 r=1

with variances
adksf
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m/2
—E J—
Var(YppOJss):Var(YPOJSS)+ Z Ty rm—rs 1y A0 (8.1)
o (m=1)/2
Var(Ypposs) = Var(Yeosss) + = ; OV ram—r-+ Limy> (3.2)
where 0%, ,,_,41., >0 is the covariance between Y., and Y7, _ ... Similar to POJSS, the

mean estimators with PPOJSS also turn out to be unbiased. Moreover, as expected, these mean esti-
mators can never be more precise than the mean estimator with POJSS. However, the ranking cost
of PPOISS is less than that of POJSS. Thus, it is more economical and practical to employ the
PPOJSS scheme when ranking costs are high or constrained by budgets or it may not be possible to
use POJSS with full confidence.

The following proposition helps in computing the variances and covariances of the random vari-
ables under PPOJSS.

Proposition 1. Having fixed w,

i. the CDF of Y{.,, (1=r=m) is

l w

F(*rim)(y) = ; Z F(i:wm)(y)~ (83)
i=(r—1)w+l
ii. the joint CDF of Y., and Y(;.,, (1 =r<s=m) is
" 1 w sw
FlosomOrsYs) = W2 Z Z Fi jimw)Vrs Vs)- (8.4)

i=(r—lw+1 j=(s—L)w+1
The proofs of (i) and (ii) are trivial.
The mean and variance of Y., are, respectively, given by

u;(rlm) = Jyﬁilln)(y)dy and U;%r:m) = J(y_u;(rlm))zfitim)(y)dy’

and Y*

where f;.,,(v) = (d /dy)F (zm(¥)- Similarly, the covariance between Y7 Ssimy L

(rim)j

O';(ra-“:m) = JJ <y" - M?(r:m)) <y5 - H’;’(.\*Zm)>f(t,x:m)(yra ys)dyrdysa

where [ ..\ (r, ¥s) = (d2/dyydy,)Frv (> Ys). Using Egs. (8.3) and (8.4), variances of the mean
estimators given in Eqs. (8.1) and (8.2) can be easily computed.

Lemma 1. Based on even and odd set sizes, the unbiased estimators of Var(Y PPOJSS) and
Var(YPPOJSS) are

~ —FE 2
Var(Yppojss) 2nmt(t — 1) Z{Z( r(r: m)j r r. m)j’)

JA

m/2
+ ZZ( r(r: m)j r() m)j’ )(Yr(m r+1:m)j Y;n1r+l:m)j’)}
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and

m 2

Var(YPPOJSS) anl(l _ 1) Z Z( r(rim)j r(r m)j’ >
r=
1)/
Y* * *
+2 Z (Y r(r: m)j )‘(r:m)j’)(Yr(rn—)'+I:m)j - Yr(m—r+1:m)j/)}’
r=1

respectively.

The proof is trivial.

L PARTIALLY ORDERED JUDGMENT SUBSET SAMPLING

As pointed out by Al-Naseer (2007), the LRSS scheme helps in selecting a more representative
sample from a symmetric population (except uniform) than that using RSS, i.e., the mean esti-
mator based on LRSS turns out to be more efficient than that based on RSS. On similar lines, in
order to increase the efficiency of the POJSS-based mean estimator when sampling from a sym-
metric population, we propose an LPOJSS scheme for efficiently estimating the population
mean.

The LPOJSS scheme works as follows: select the LPOJSS coefficient, say k = [am)]. Identify
wm? units from the underlying population and partition them into m sets, each comprising m
units. The units within each set are further partitioned into m subsets, each of size w units.
These subsets are then partially ranked ordered. Select one unit from the vth and one unit from
the (m —v+ 1)th smallest ranked subsets of the first and last k sets, respectively, where
vel,. .., [m/2]. Moreover, select one unit from the rth smallest ranked subset of the rth set, for
r=k+1,...,m— k. This completes one cycle of an L partially ordered judgment subset sample
of size m. The whole procedure could be repeated ¢ times to get ¢ cycles with a total sample of
size n units. Note that, given w and m, with different choices of k and v, several POJSS schemes
could be constructed.

The sample mean and its variance under LPOJSS are, respectively, given by

m— k m

r=k+1 r=m—k+1

m—k
Var(YLPOJSS) - I’l_ (k(a}’(v m) + UY(m v+1: m)) + Z UY(r m)>

r=k+1

Proposition 2. For a symmetric population, (1 =r =m)
i lu’#l(/(rim) + lu’*;/(mfr+1:m) = ZIU’Y’

H *2 — %2
W Tyiimy = Ovim—r+1:m):
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Proof. To prove (i), using Eq. (8.3), we have

1 w 1 (m—r+1)w
Bygimy T Bymer+tm)y = w Z HyGiswm T w Z Hy(itvm)
i=(m—rw+1

i=(r—1)w+1

1

= ; (/u‘Y((r—l)w-%-l:wm) +oee Tt 'LLY("W:W’")>
1

+ ; (Ny((m—r)erl:wm) +oet /J/Y((m7r+1)wlwm))

1
{(N’Y((r*l)erlzwm) + /I’Y((mfr+1)w.'wm)) +ot (:u'Y(nvam) + N’Y((mfr)w+1:wm))}-

T w
For a symmetric distribution, it is well known that fiyg:m T Hygum—i+1m) = 2Ky, for

i=1,...,wm. Using this result, we get

py + -+ +20y) =211y

* 4ok 1
IMY(r:m) ILLY(m—r+ 1:m) ;

To prove (ii), using Eq. (8.3), we have
; 2
) 1 Al ) ) 1 w
U;(r:m) = ; Z (:u‘Y(iZwm) + O—Y(iiwm)) - ; Z H’Y(rfwm) ’ (85)
i=(r—1w+1 i=(r—w+l1
1 (m—r+1)w 1 (m—r+1)w 2
2 — 2 2
03;’(m—r+1:m) - ; Z (:uY(iZwm) + UY(inm)) - (; Z MY(rZwm)) . (8.6)
i=(m—rw+1 i=(m—rw+1
Equate Eqgs. (8.5) and (8.6), use symmetry relation of mean, to get
w (m—r+1)w
2 — 2
Z UY(iZwm) - Z UY(iZwm)’
i=(r—lw+1 i=(m—rw+1
2
JY(mw—i+l:wm)’ for

which always holds true for a symmetric distribution since aﬁ(l.:wm) =
i=1,...,wm.
Lemma 2. For a symmetric population,

i. E(Yrrosss) = fy-
ii. Var(Yoposss) = Var(Ypoysss) when Zle U}k,%r:m) = kaﬁv:m).

ili. An unbiased estimator of Var(Ypoyss) is
2
Yj(m—»’+l:m)j’) }

* p—
r(m—v+1:m)j

% Y 1 - * 2
Var(Yirosss) = 2nmi(t — 1) I:k{(Y:(vim)j —Ymy)”
P

m/2
+ ZZ(Yj(er)j - Y:F(rim)j’)(Y:(mfrJrl:m)j - Y:F()nr+l:1n)j’):| .
r=1
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Proof. To prove (i), consider the expectation:

- 1 m k m
E(YLPOJSS) = ; (k(lu;(v:m) + :Lf;(mfv+1:m)) + Zp’)}k’(r:m) - ZH;(rim) - Z ,l[;(r:m)
r=1 r=1 k+1

1
= m (2kﬂy +(m— 2k)ﬂy) = Hy>

using (i) symmetry relation of proposition 2 and (ii) identity of lemma 2.
To prove (ii), we have

v 1 - 2 2 2 : 2 < 2
Var(YLPOJSS) = % {ZGZ":IVI) + k(o';(»m) + OJ;’(m*VJrl:m)) - Zo—f’(r:m) - Z oﬁ{'(":m)
r=1 r=1

r=m—k+1
= Var(Yposss) — <Zay(r my kU;%v:nz)) ,

using (ii) symmetry relation of proposition 2. We conjecture that the condition
er‘ | cry(r my = kam m) holds true for nonuniform (unimodal) distributions when v =k + 1 and for
the uniform distribution when v =1 [cf., Ozturk and Wolfe, 2000]. The proof of (iii) is trivial.

In the case of an asymmetric population, Y| pgjss is a biased estimator of ity. The mean-squared
error (MSE) of YLPO]SS is

MSE(Y1rosss) = Var(Yieosss) + {E(Yposss) — iy}

In Section 8.4, it is observed that LPOJSS leads to biased and imprecise estimates of the popu-
lation mean when sampling from an asymmetric population. For a symmetric population, however,
the mean estimates with LPOJSS are not only unbiased but more precise too.

RANKED PARTIALLY ORDERED JUDGMENT SUBSET SAMPLING

As figured out by Al-Saleh and Al-Kadiri (2000), the DRSS scheme helps in selecting a more rep-
resentative sample than that using RSS, i.e., the mean estimator based on DRSS is always more
efficient than that based on RSS. On similar lines, in order to increase the efficiency of the POJSS-
based mean estimator, we propose an RPOIJSS scheme for efficiently estimating the population
mean.

The RPOJSS scheme works as follows: identify wm?® units from the underlying population and
partition them into m sets, each comprising wm? units. The POJSS scheme is then applied on each
set to get m partially ordered judgment subset samples, each of size m units. Now apply the RSS
scheme to get a ranked partially ordered judgment subset sample of size m. This completes one
cycle of a ranked partially ordered judgment subset sample of size m. The whole procedure could
be repeated r times to get a total sample of size n units. Note that DRSS is a special case of
RPOJSS when w = 1. " 0

Symbolically, under perfect ranking, let (Yl(lzm)j, S dvie m)]) denote a partially ordered judg-

ment subset sample of size m obtained from the rth set, »r=1,....m. Let Yiﬁ’)’;’)jm) = rth min of

(Y] (Lm)jo* * > ;((2 m)s T =1....,m, j=1,....1, which represent a ranked partially ordered judgment
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*(r)(r m)
r(rim)j

,j=1,...,t, are IID random variables. For brevity of discussion,

subset sample of size n. Clearly, having fixed j, Y , r=1,...,m, are INID random variables.
*(r)(rim)

However, having fixed r, Y(r my

#(r)(r: m) *(rim)
let Yoy = Yoimy 7= 1

The sample mean and its variance under RPOJSS are, respectively, given by

- 1O o
Yreosss = — Z Z Y f((,’),(ﬂ’),m) and Var(Yrpojss) = o U;(ifr:)l)’

j 1 r= r=1
2r:
where Var(Y *((r' ),5:)]'")) = Var(Y,; (rm’;’) )= a;(ffm”)’).
Let Fz‘r(rm’)")(y), f(t(’m;")(y) and u;(: :”n) be the CDF, PDF, and mean of Y(r(m) , respectively. The
identities in the following lemma are an analogue to those of Al-Saleh and Al-Kadiri (2000) for

DRSS.

Lemma 3. For any population,
i f0) = (1/m) Y ) = (1/m) S 5000,
i oy = (1/m) 3200 ey = (1/m) 3205, M;((rrﬁ))
UY =(1/m) Z ;%irn’:;) + (1/m) ZT=1 (Ny;((rr:rrnn)) _NY)2~

Proof. To prove (i), let us consider

Q:ZQ’ and Qr:{(l) i Ye,) =y
r=1

otherwise °

Then

w

EQ)= ZF,m)w Z D Finm) =mF(@),

r=1 l (r—=w+l

by Takahasi and Wakimoto (1968).
Similarly, we can write

(rim) yririm
> rio =3 p (v =)
= ZP (at least 7 Of (Y(}.s -« o> Yiuim) §y>
r=1

=Y P(Q=r)=E(Q) =mF(y)
r=1

and hence (i) follows. On similar lines, (ii) and (iii) could be proved.

As aforementioned, Y., r = 1,...,m, are INID random variable and we consider order statis-

tics from this sample to get Y(t(:rm')”), r=1,...,m. In order to calculate the mean, variances, covar-

iances of these random variables, the permanent function is used.
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Let A = ((a;;)) be a square matrix of order m. Then the permanent of A is

Per(A) = Z i ajis
P =1

where >, denotes the sum of over all m! permutations (i1, ...,i,) of (1,...,m). The definition of
the permanent is very much similar to that of the determinant except that in the permanent we do
not have the alternating sign whether the permutation is of even or odd order. For more details on
this function, refer to Bapat and Beg (1989). .
Following Vaughan and Venables (1972), the CDF of Y(*r(:;;’)") (I=r=m)is
s(rim - 1
F(r(ﬁm))(y) = ZWPCT(AI), —oo <y< o,
where

A = F(*l:m)(y) F(*Zm)(y) F(*mim)(y) }l
= F0) 1= Fa ) e 1= Fh () ) Im =i

where the first row is repeated i times and the second row is repeated m — i times.
Similarly, the PDF of Y"*™ (1 =r=m) is

(rim)
. 1
s(rim) _
. = ———— Per(A - <y< .
Jomy ©) = Dlm =] er(Az), oo <y< oo, (8.7)
where
F:l:m)(y) F(*2m)(y) F(*m:m)(Y) }r —1
A2 = fam)(y) fé:m)(y) o f&tnim)(y) }1 . (88)
1= FEkl:m)(y) 1= F(*Z:m)(y) SR F(*mm)(y) }m -r
Proceeding similarly, the joint CDF of Y;"" and Y (1 =r<s=m) is
. 1
(r,s.m) _
. rsYs) — P A; 5 - < r < s < 5
f(”””) O ys) (r=D!(s—r—1D!m—ys)! er(43) QR=Ir=Is =@
where
Fii2mOr) FoumOr) Finzm ) br—1
fﬁ :m)(yr) f&:m)()’r) o f(;:m)(yr) 1
Az = | Fliom09) = Fliom0r) - Flomy09) = Flum@r) - Fluimy0) = FlpeyO0) | Js —r— 1.
R ) o) Foremy ) {1
m-—s
1= FEklZm)(yS) 1- F(*Zim)(yS) 1= F(*mlm)(yS)

From Egs. (8.7) and (8.8),
i = [y o,
2
*2rim) _ *(rim) #(rim)
UY(er) - J(yip’(r:m) )ﬂr:m) ()’)dy,

aiim = [ (=) (= 5 e ore
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Now it is shown that the mean estimator based on RPOJSS is not only unbiased but it is also
more precise than the mean estimators based on SRS and POJSS schemes.

Lemma 4. For any population,

i E(Yrposss) = ty-
ii. Var(Ygpoyss) = Var(Y sgs).
iii. Var(Yrposss) = Var(Yposss).
iv. An unbiased estimator of Var(Y gpoyss) is

5 T *(re m) *(rim)
Farions) = 5t 3 S0 v
J#J r=

Proof. Here, (i) and (ii) can be easily proved using (i) and (ii) of Lemma 2.
To prove (iii), we have

Var(Ypoyss) = Var < ZZ o m») Var( Y(*r('m;") >

j=1r=
*(V m) *(: im) yx(sim)
= _Zvar( (rim) )+ _ZC°V< iy » Ysim) >

— i & *2(r ) + Lig*(r,si.m)
nm — Y(r m) nm g Y(r,sim)
B 1 & .
= Var(Yrpoyss) + i ;Uj(rri);:))’
r#s

where O’;(’;i 'r"n)) >0 is the covariance between Y. (’ m and Y(* (Jm;") The proof of (iv) is trivial.

Based on the above formulas of the mean estimators under different sampling schemes, the rela-

tive efficiencies (REs) of mean estimators can be computed. The efficiency of a mean estimator,
say Yp, (D =PRSS, RSS, etc.), relative to Ysrs is given by

Var(Ysgs)

RE(Yp, Ysrs) = =,
(YD, Ysrs) MSE(Yp)

For an unbiased estimator, the MSE is replaced by the variance.

Remark 1. Note that in the case of imperfect rankings, the round brackets in the above estima-
tors are replaced by square brackets to denote the judgment ranks of the order statistics. For
example, replace (r:m) in either subscript or superscript by [r:m] when there are errors in the
ranking procedure.
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EFFICIENCY COMPARISONS

In this section, we compare performances of the mean estimators under perfect and imperfect rank-
ings in terms of their REs.

For a fair comparison of the mean estimators, both symmetric and asymmetric probability dis-
tributions are considered. These distributions include uniform U(0, 1), normal N(0, 1), exponential
G(1,1), and gamma G(5, 1) distributions. For brevity of discussion, consider different values of m
and w with r = 1. Using the mathematical formulas presented in the previous section, REs of the
mean estimators are computed for the considered distributions and are displayed in Table 8.1. For
some sampling schemes, w, k_and v are the schemes’ parameters. Thus, these schemes are abbre-
viated with their parameter choices in the tables. For example, given w, PPOIJSS, POJSS, and
RPOISS are referred to as PPOJSS (w), POJSS (w), and RPOJSS (w), respectively. Similarly,
given w, v, and k, LRSS and LPOJSS are referred to as LRSS (v,k) and LPOJSS (v,k;w),
respectively.

From Table 8.1, it is observed that all REs are greater than one—thus showing that the mean
estimates with the proposed sampling schemes are more precise than those with SRS. Having fixed
m, the REs increase as the value of w increases, and vice versa. The LPOJSS scheme provides
most efficient mean estimates when w =3, v =1 for uniform distribution and w=3, v=%k + 1 for
normal distribution. With v=1 and v =k + 1, we usually do not recommend the use of LPOJSS
when estimating the mean of an asymmetric distribution. But, given m, with k=1 and v=k + 1,
the mean estimates with this scheme outperform those with the existing schemes, when sampling
from an asymmetric distribution. Interestingly, the mean estimates with PPOJSS are more precise
than those with PRSS and RSS. When it is possible to ignore the ranking cost, RPOJSS provides
better mean estimates than those with POJSS.

In usual practice, when using an RSS or POJSS scheme, the experimenter is forced to rank large
set sizes for a greater efficiency of a mean estimator, the ranking errors are thus inevitable.
However, when ranking the experimental units, we may not know when the judgment/ranking error
occurs. Hence, we examine the effect of judgment error on the performances of the proposed mean
estimators when sampling from symmetric and asymmetric populations.

For imperfect ranking, the simulation considered here is based on the method suggested by Dell
and Clutter (1972). In the simulation, we consider m = 3,5 and w = 2, 3 with different choices of v
and k. For simplicity, the simulation method is explained for POJSS only, the same method implies
for other RSS schemes. Given w, m, generate wm? values from the underlying distribution, say Y,
r=1,..,wm, i=1, ..,m. Also generate random errors, say E,;, of the same size from a normal
distribution with the mean zero and the variance V, E,; ~N(0,V), where Y,; is independent of E, ;.
Then, compute X,; =Y,; + E,;. Using the values of X,;, we select a partially ordered judgment
subset sample of size m, denoted by X7,.,,, r = 1....,m. In fact, a pair (Y}},.,1, X7(,2,), 7 = L. om,
is selected using the ranks of X, where the square bracket indicates that the rank of Y is induced by
the rank of X. The above procedure is repeated ¢ times. Hence, an imperfect partially ordered judg-
ment subset sample of size n is obtained, denoted by Y7 I for r=1,...,m and j=1,...,t. Under

[rim
perfect ranking, ie., V=0, Y., =Yy, representing a perfectly partially ordered judgment



Scheme

PRSS
PPOJSS(2)
PPOJSS(3)
RSS

POJSS(2)
POJSS(3)
DRSS
RPOJSS(2)
RPOJSS(3)
PRSS
PPOJSS(2)
PPOJSS(3)
RSS

POJSS(2)
POJSS(3)
LRSS(1,2)
LPOJSS(1,2;2)
LPOJSS(1,2;3)
DRSS
RPOJSS(2)
RPOJSS(3)
PRSS
PPOJSS(2)
PPOJSS(3)
RSS

POJSS(2)
POJSS(3)

U,1)

1.000
1.429
1.750
1.500
1.923
2227
1.923
2.269
2513
1.667
2.545
3.235
2.000
2.882
3.571
1.667
2.333
2.895
3.026
3.818
4.403
1.667
2.727
3.640
2.500
3.857
4.971

N(0,1)

1.000
1.381
1.627
1.467
1.785
1.980
1.785
2.004
2.141
1.581
2.245
2.684
1.914
2.547
2.958
2.229
3.486
4.560
2.633
3.086
3.376
1.677
2.568
3.211
2.347
3.293
3.932

G(1,1)

1.000
1.286
1.439
1.333
1.516
1.614
1.516
1.625
1.688
1.459
1.865
2.088
1.636
1.983
2.177
2.250
2.821
3.058
2.024
2232
2.353
1.565
2.138
2.475
1.920
2422
2.711

G(5,1)

1.000
1.358
1.581
1.434
1.717
1.884
1.717
1.905
2.020
1.553
2.148
2.525
1.843
2.395
2.739
2.225
3.288
4.071
2.467
2.844
3.078
1.651
2.458
3.012
2.235
3.048
3.573

Scheme

LRSS(1,2)
LPOJSS(1,2;2)
LPOJSS(1,2;3)
LRSS(2,1)
LPOJSS(2,1;2)
LPOJSS(2,1;3)
DRSS
RPOJSS(2)
RPOJSS(3)
PRSS
PPOJSS(2)
PPOJSS(3)
RSS

POJSS(2)
POJSS(3)
LRSS(1,2)
LPOJSS(1,2;2)
LPOJSS(1,2;3)
LRSS(2,1)
LPOJSS(2,1;2)
LPOJSS(2,1;3)
LRSS(2,3)
LPOJSS(2,3;2)
LPOJSS(2,3;3)
DRSS
RPOJSS(2)
RPOJSS(3)

Table 8.1 REs of the Mean Estimators With Respect to the Mean Estimator Based on SRS

U(,1)

2.083
3.140
4.051
3.125
5.000
6.429
4.281
5.596
6.591
2.333
3.929
5.313
3.000
4.840
6.400
2.561
4.060
5.375
3.621
5.990
7.907
2.333
3.667
4.857
5.670
7.574
9.033

N(0,1)

2.774
4.553
6.105
2.034
2.579
2.899
3.526
4.225
4.679
2219
3.421
4.290
2.770
4.027
4.901
3.262
5.491
7.463
2.407
3.179
3.648
3.486
6.020
8.294
4.456
5.411
6.037

G(1,1)

2.441
2912
3.080
1.171
1.211
1.230
2.523
2.826
3.005
1.947
2.647
3.062
2.190
2.840
3.225
2.620
3.119
3.299
1.322
1.392
1.424
2.230
2274
2.257
3.016
3.412
3.646

G(5,1)

2.678
4.006
4.946
1.743
2.053
2.218
3.239
3.806
4.163
2.152
3.213
3.940
2.615
3.684
4.392
3.074
4.643
5.738
2.029
2.461
2.692
3.067
4.337
5.101
4.027
4.787
5.269
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subset sample. In order to examine the effect of judgment error, we choose V =0.05, 0.50, 1, 3.
The size of the simulation is 100,000 replications. The REs of the mean estimators are computed
when sampling from symmetric and asymmetric distributions and are reported in Tables 8.2 and
8.3, respectively.

From Tables 8.2 and 8.3, it is observed that the ranking error affects the REs of the mean esti-
mators considered here. As expected, the RE of a mean estimator decreases as the value of V
increases and vice versa. Unlike the REs under normal distribution, the REs with the uniform distri-
bution quickly approach unity. The rest of the trends are the same as we were seen in Table 8.1.

AN EXAMPLE

A real dataset is considered here to investigate the performances of the mean estimators under the
considered sampling schemes when sampling from a finite population.

The dataset comprises the heights of conifer trees (measured in feet), say Y (study variable),
and the diameters of conifer trees (measured at breast height in centimeters), say X (auxiliary vari-
able). Here, our interest lies in estimating the mean height of 399 trees. For more details and
description on this dataset, we refer to Platt et al. (1988). The summary statistics of the data are
given in Table 8.4, where p is the correlation between Y and X.

Using different values of m, w, v, and k, the REs of the mean estimators are computed under
both perfect and imperfect rankings and are presented in Table 8.5. The simulation size is 100,000
replications. Under perfect ranking, the values of Y are ranked using its own ranks, while under
imperfect ranking the values of Y are ranked using the ranks of X. From Table 8.5, we see that the
REs in most cases are greater than one—thus showing the superiority of RSS and POJSS schemes
over SRS. As might be anticipated, the REs under perfect ranking are greater than those with the
imperfect ranking. Moreover, the REs are increasing with the set size m. The proposed schemes
continue to perform better than the existing schemes in terms of giving more precise mean esti-
mates under both perfect and imperfect rankings.

CONCLUSIONS

In this chapter, we have suggested three modified POJSS schemes for efficiently estimating the
population mean, named PPOJSS, LPOJSS, and RPOJSS. The mean estimators with PPOJSS and
RPOIJSS are unbiased for any population, but the mean estimator with LPOJSS is unbiased only
when the underlying population is symmetric. Moreover, it has been shown, both theoretically and
numerically, that the mean estimators with RPOJSS are more precise than those with the SRS,
RSS, and POJSS schemes. Besides, PPOJSS is an alternative to POJSS when the ranking cost is
high or POJSS cannot be conducted with full confidence. Moreover, when sampling from a sym-
metric population, it has been observed that the mean estimator with LPOJSS surpasses the mean
estimators with RSS and POJSS. Thus, when possible, we recommend using the proposed sampling
schemes for precisely estimating the population mean.



Table 8.2 REs of the Mean Estimators With Respect to the Mean Estimator Based on SRS Under Imperfect Ranking for

Symmetric Distributions

Distribution

m Scheme

3 PRSS
PPOJSS(2)
PPOJSS(3)
RSS

POJSS(2)
POJSS(3)
LRSS(1,2)
LPOJSS(1,2;2)
LPOJSS(1,2;3)
DRSS
RPOJSS(2)
RPOJSS(3)

5 PRSS
PPOJSS(2)
PPOJSS(3)
RSS

POJSS(2)
POJSS(3)
LRSS(1,2)
LPOJSS(1,2;2)
LPOJSS(1,2;3)
LRSS(2,1)
LPOJSS(2,1;2)
LPOJSS(2,1;3)
LRSS(2,3)
LPOJSS(2,3;2)
LPOJSS(2,3;3)
DRSS
RPOJSS(2)
RPOJSS(3)

V =0.05

1.347
1.635
1.803
1.465
1.716
1.860
1.233
1.376
1.442
1.733
1.884
1.989
1.600
1.919
2.097
1.739
2.065
2.188
1.524
1.728
1.827
2.062
2.479
2.678
1.373
1.544
1.620
2.129
2.263
2.332

vV =0.50

1.063
1.096
1.104
1.072
1.105
1.109
1.037
1.052
1.056
1.100
1.113
1.118
1.092
1.112
1.132
1.104
1.123
1.132
1.062
1.076
1.075
1.146
1.181
1.182
1.047
1.056
1.060
1.120
1.127
1.151

U(,1)
V=100

1.022
1.042
1.060
1.038
1.047
1.064
1.019
1.024
1.018
1.052
1.047
1.068
1.050
1.051
1.070
1.050
1.072
1.081
1.031
1.041
1.036
1.066
1.081
1.102
1.023
1.023
1.028
1.064
1.064
1.078

vV =3.00

0.997
1.010
1.011
1.011
1.003
1.013
1.011
1.002
1.013
1.011
1.016
1.021
1.020
1.029
1.022
1.019
1.024
1.022
0.996
1.003
1.017
1.013
1.023
1.036
1.015
1.021
1.009
1.018
1.024
1.022

vV =0.05

1.551
2.115
2.484
1.823
2.359
2.698
2.113
3.147
3.918
2.437
2.817
3.040
2.090
3.099
3.715
2.537
3.548
4.109
2.950
4.568
5.773
2.251
2.882
3.214
3.109
4.822
6.184
3.799
4.460
4.858

vV =0.50

1.320
1.587
1.703
1.462
1.673
1.771
1.594
1.912
2.081
1.712
1.815
1.870
1.578
1.892
2.061
1.739
1.997
2.140
1.869
2.211
2.339
1.644
1.837
1.942
1.910
2.257
2427
2.075
2.186
2.275

N, 1)
V=100

1.230
1.390
1.457
1.309
1.441
1.506
1.390
1.549
1.654
1.450
1.511
1.549
1.380
1.563
1.625
1.484
1.614
1.669
1.531
1.703
1.783
1.423
1.515
1.572
1.550
1.713
1.795
1.646
1.707
1.713

vV =3.00

1.095
1.161
1.190
1.133
1.178
1.197
1.147
1.213
1.247
1.189
1.199
1.219
1.164
1.222
1.236
1.197
1.236
1.252
1.199
1.266
1.260
1.176
1.205
1.221
1.222
1.264
1.281
1.250
1.261
1.256




Table 8.3 REs of the Mean Estimators With Respect to the Mean Estimator Based on SRS Under Imperfect Ranking for

Asymmetric Distributions

Distribution
m Scheme vV =0.05

3 PRSS 1.454
PPOJSS(2) 1.780
PPOJSS(3) 1.948
RSS 1.582
POJSS(2) 1.887
POJSS(3) 2.012
LRSS(1,2) 2.109
LPOJSS(1,2;2) 2.494
LPOJSS(1,2;3) 2.583
DRSS 1.911
RPOJSS(2) 2.086
RPOJSS(3) 2.167

5 PRSS 1.861
PPOJSS(2) 2.464
PPOJSS(3) 2.746
RSS 2.046
POJSS(2) 2.551
POJSS(3) 2.895
LRSS(1,2) 2.351
LPOJSS(1,2;2) 2.644
LPOJSS(1,2;3) 2.730
LRSS(2,1) 1.254
LPOJSS(2,1;2) 1.293
LPOJSS(2,1;3) 1.332
LRSS(2,3) 1.952
LPOJSS(2,3;2) 1.878
LPOJSS(2,3;3) 1.860
DRSS 2.713
RPOJSS(2) 3.020
RPOJSS(3) 3.170

vV =0.50

1.255
1.436
1.499
1.343
1.466
1.520
1.803
1.995
1.995
1.486
1.556
1.561
1.487
1.711
1.804
1.566
1.774
1.844
1.848
1.961
1.948
1.048
1.066
1.082
1.678
1.638
1.604
1.814
1.903
1.946

G(1,1)
V=100

1.194
1.299
1.321
1.248
1.324
1.358
1.657
1.806
1.870
1.340
1.376
1.365
1.342
1.455
1.524
1.372
1.495
1.559
1.683
1.771
1.764
0.999
0.999
0.978
1.631
1.633
1.603
1.509
1.552
1.598

vV =3.00

1.100
1.143
1.162
1.114
1.152
1.159
1.410
1.509
1.569
1.154
1.165
1.171
1.144
1.202
1.232
1.166
1.200
1.234
1.417
1.483
1.509
0.936
0.930
0.921
1.445
1.489
1.524
1.218
1.230
1.242

vV =0.05

1.551
2.144
2514
1.847
2.389
2.702
2.196
3.170
3.952
2.431
2.773
3.042
2.116
3.145
3.846
2.577
3.559
4.279
3.038
4.453
5.446
2.009
2.438
2.597
2.985
4.125
4.866
3.889
4.596
5.083

vV =0.50

1.482
1.920
2.209
1.691
2.102
2.331
1.978
2.676
3.089
2.165
2415
2.579
1.951
2.654
3.069
2.253
2.948
3.351
2.531
3.376
3.790
1.793
2.077
2.265
2.493
3.133
3.414
3.141
3.535
3.785

GG, 1)
V=100

1.419
1.797
2.016
1.613
1.923
2.124
1.837
2.334
2.616
1.987
2.180
2.277
1.817
2.349
2.670
2.054
2.547
2.790
2.247
2.791
3.066
1.668
1.875
1.990
2.199
2.608
2.775
2.650
2.924
3.090

vV =3.00

1.284
1.493
1.595
1.398
1.574
1.641
1.563
1.795
1.921
1.579
1.672
1.712
1.499
1.754
1.900
1.626
1.833
1.956
1.758
1.977
2.041
1.379
1.493
1.540
1.721
1.859
1.928
1.881
1.983
2.036
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Y
X

Mean

52.36
20.84

Table 8.4 Summary Statistics of 399 Trees Data
Variable

Variance

325.14
310.11

Kurtosis

1.776
—0.423

Median

29
14.5

0.908

m

2

Scheme

PRSS
PPOJSS(2)
PPOJSS(3)
RSS

POJSS(2)
POISS(3)
DRSS
RPOJSS(2)
RPOJSS(3)
PRSS
PPOJSS(2)
PPOJSS(3)
RSS

POJSS(2)
POJSS(3)
LRSS(1,2)
LPOJSS(1,2;2)
LPOJSS(1,2;3)
DRSS
RPOJSS(2)
RPOJSS(3)
PRSS
PPOJSS(2)
PPOJSS(3)
RSS

POJSS(2)
POJSS(3)

Perfect

1.000
1.292
1.431
1.325
1.487
1.578
1.501
1.584
1.637
1.480
1.887
2.140
1.623
2.000
2.200
1.892
2.220
2.280
2.044
2.279
2.397
1.585
2.247
2.692
1.929
2513
2917

Imperfect

1.000
1.252
1.390
1.298
1.449
1.534
1.451
1.532
1.601
1.407
1.770
1.963
1.533
1.824
2.034
1.658
1.995
2.119
1.874
2.088
2.216
1.459
1.966
2.299
1.747
2.200
2.454

Scheme

LRSS(1,2)
LPOJSS(1,2:2)
LPOJSS(1,2;3)
LRSS(2,1)
LPOJSS(2,1;2)
LPOJSS(2,1;3)
DRSS
RPOJSS(2)
RPOJSS(3)
PRSS
PPOJSS(2)
PPOJSS(3)
RSS

POJSS(2)
POJSS(3)
LRSS(1,2)
LPOJSS(1,2;2)
LPOJSS(1,2;3)
LRSS(2,1)
LPOJSS(2,1;2)
LPOJSS(2,1;3)
LRSS(2,3)
LPOJSS(2,3;2)
LPOJSS(2,3;3)
DRSS
RPOJSS(2)
RPOJSS(3)

Perfect

1.964
2.137
2.142
1.168
1.131
1.145
2.639
3.090
3.289
1.995
2.873
3.462
2.221
3.027
3.620
2.065
2.261
2.290
1.372
1.401
1.416
1.663
1.510
1.403
3.251
3.864
4313

Table 8.5 REs of the mean estimators with respect to the mean estimator based on SRS under
perfect and imperfect rankings

Imperfect

1.752
1.973
2.035
1.252
1.224
1.209
2.263
2.542
2.736
1.797
2.354
2.703
1.974
2.466
2.826
1.839
2.049
2.133
1.439
1.497
1.535
1.623
1.576
1.511
2.630
2.969
3.170
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RANKED SET SAMPLING WITH
UNEQUAL SAMPLE SIZES

Dinesh S. Bhoj and Debashis Kushary
Department of Mathematical Sciences, Rutgers University, Camden, NJ, United States

INTRODUCTION

Ranked set sampling for estimating a population mean was first proposed by Mclntyre (1952) as a
cost-efficient alternative to simple random sampling (SRS) if the observations can be ranked
according to the characteristic under investigation by means of visual inspection or other methods
not requiring actual measurements. Mcintyre indicated that the use of RSS is more powerful and
superior to the RSS procedure to estimate the population mean. Dave and Cutler (1972) and
Takahashi and Wakimoto (1968) provided a mathematical foundation for RSS. Dave and Cutler
(1972) showed that the estimator for population mean based on RSS is at least as efficient as the
estimator based on SRS with the same number of measurements, even when there are ranking
errors. RSS is a nonparametric procedure. However, it has been used recently in parametric settings
(see Bhoj and Ahsanullah, 1996; Bhoj, 1997; Lam et al., 1994; Stokes, 1995). Most of the distribu-
tions considered by these investigators belong to the family of random variables with the cumula-
tive distribution of the form F((x — u)/o), where u and o are the location and scale parameters,
respectively. The various methods of estimation of parameters of the distribution with applications
and an extensive list of references are given by Chen et al. (2004).

The selection of a ranked set sample of size m involves drawing m random samples with m units
in each sample. Then units in each sample are ranked by using judgment or other methods not
requiring actual measurements. The unit with the lowest rank is measured from the first sample, the
unit with the second lowest rank is measured from the second sample, and this procedure is contin-
ued until the unit with the highest rank is measured from the last sample. The m? ordered observa-
tions in m samples produces a data set as follows:

X[]]] X[l]z X[]]m
Xpn xR cee X[2lm
Km]l  X[m]2 ceee X[mlm

We measure only m (Xp,i=1,2,...,m) observations and they constitute RSS. It should be
noted that m observations are independently but not identically distributed. In RSS, m is usually
small and therefore in order to increase the sample size, the above procedure is repeated k times.
For convenience, without loss of generality we usually assume that k = 1.
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SOME RANKED SET SAMPLING PROCEDURES

There are various modifications of RSS to get a better estimator for the population mean, y. One of
the popular schemes is to use the median ranked set sampling (MRSS) (see Bhoj, 1997; Muttlack,
1997). MRSS performs very well when the distributions are unimodal and symmetric. In the MRSS
procedure we rank m? observations, as in RSS. However, we measure only the observations with
rank (m + 1)/2 from each sample if m is odd. If m = 21 is even, we use the [ th order statistic from
the first / samples and (I + 1) th order statistics from the last / samples. We compare the perfor-
mance of the estimators based on ranked set sampling with unequal samples with those based on
RSS and MRSS procedures.

RANKED SET SAMPLING WITH UNEQUAL SAMPLES

Bhoj (2001) proposed a ranked set sampling procedure with unequal sample sizes (RSSU). In
RSSU we draw m samples where the size of ith sample is m; =2i — 1,i=1,2,...,m. The steps in
RSSU are the same as in RSS. In both sampling procedures we measure accurately m observations.
However, in RSSU we rank only (m2 — 1) observations. When m is even, half the sample sizes are
smaller than m and the other half are greater than m. In the case of odd m, one sample is of size m,
(m — 1)/2 samples are greater than m and other (m — 1)/2 samples are smaller than m. Although
the ranking error due to larger sample size is offset by the ranking error due to smaller sample size,
it is important to keep m small in RSSU and the procedure is repeated to increase the sample size.

RANKED SET SAMPLING WITH UNEQUAL SAMPLES AND UNEQUAL
REPLICATIONS

Bhoj and Kushary (2014) proposed ranked set sampling with unequal samples and unequal replica-
tions (RSSUR). In RSSUR, the ith sample of size m; =2i — 1 is repeated k; timesi=1,2,...,m. In
RSSUR Y™, k; observations are measured and Y .-, m;k; observations are ranked. It is noted that
there is no ranking with m; = 1. In order to have fair comparisons of the estimators based on
RSSUR we must have > /", k;=mk and d=m’k— > /-, k;=0. However, it is not possible
to achieve d = 0 with the appropriate integer values of k; for m = 2. The authors chose |d| =1 for
m=2,andd = 0, form = 3,and k = 2, 3, and 4.

RANKED SET SAMPLING WITH UNEQUAL SAMPLES FOR SKEW
DISTRIBUTIONS

Bhoj (2001) showed that the estimators for the population mean based on RSSU are superior to the
estimators based on RSS and MRSS, when the distributions under consideration are symmetrical
around g or moderately skewed. However, the proposed estimators based on RSSU do not work
well if the distributions are highly skewed. Therefore, Bhoj and Kushary (2016) proposed the
ranked set sampling procedure with unequal samples for highly positive skew distributions
(RSSUS). The authors proposed the estimators for ; which are weighted linear combinations of
RSSU observations.
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ESTIMATION OF THE POPULATION MEAN

Mclntyre (1952) proposed the nonparametric estimator for a population mean, u, based on RSS as

1m
L =_§ X
Hrss m 4 [ii
m

with variance Var(figss) = sz > i~ Oy Where a7y is the variance of ith order statistic in a random
sample of size m.
The estimator, [iygrss. for i based on MRSS defined in Section 9.2 is

1 1 m
R o [Zizlxm; + Zl_:l+1x[i](1+1)], for even m,

FMRSS = 1
—Zi:lx[,«]p, where p = (m +1)/2, for odd m.

m

The variance of fiyrgg iS

[(U[zl]l + U[zl+]]l+1):| /2m, for even m,

Var(fiyiss) {(aﬁ,]p)/m, for odd m.

The estimator firgg is an unbiased estimator for ;4 when the distribution under consideration is
symmetric around p. When the distribution is skewed, [iyres 1S @ biased estimator for p. In this
case, for comparison with other estimators, the mean square error (MSE) of [izqq, Where
MSE = Variance + (Bias)® was used.

Bhoj (2001) proposed the following set of estimators for p based on RSSU defined in
Section 9.2:

m

firssu = ZWrX([i]iZm,), r=1,2,...,6.
i=1
The variance of the estimator is

Var(fi,.rssy) = Z wyo (2[i]ilm,v)
i=1
where 0(2[i]i1m,-) is the variance of ith order statistic in a random sample of size m;.

He considered various values of the weights that are proportional to (m; + k) where 0 =h=1.
The first four weights are derived under the assumption that w, is proportional to
mi,m; + 1/4,m; + 1/2,m; +3/4.ws is the average of w; and w; while wg is obtained by taking the
average of the weights that are proportional to m; and m; + 1. The main reason for the choice of
this class of weights was that for some distributions the near optimal weights belonged to this class.
For example, w;, w,, and ws are near optimal for Laplace, logistic, and normal distributions.

Now the estimators for ;. based on RSSUR defined in Section 9.2 will be considered. In this
case we have to repeat the sample k> 1 times to get the balanced ranked set samples. Bhoj and
Kushary (2014) considered ranked set sampling with unequal samples and unequal replications
where the ith sample is repeated k;, i = 1, 2, 3..., m times, so that sample size Zf": 1 ki = mk. The
estimators for 1 based on RSS, MRSS, and RSSU with & replications are given by
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3

. 1 k
Frss = 0 ;Z: @y and
] m
(X Y Y Xy ), for even m,
1
mk

) )
HMRss = m x
> Z XGipy» P = (m+1)/2, for odd m,

. 1 &
Hrirssu = ¢ ZZ Wi X([ili)jm; > =12,...,6.

The six values of w, are the same as in RSSU with & = 1. The variances of the above three
estimators are given by

N 1K,
Var(jigss) = E; et

1 i

Var(jiygss) = m

e Z a[l]p where,p = (m +1)/2, for odd m, and
m

N I~ 5o
Var(ji,.gssy) = % Z Wi O([ilizm;)
=1

Bhoj and Kushary (2014) proposed the following set of estimators for p based on RSSUR
discussed in Section 9.2.

m ki X(ili
. _ ijm -
Hy:RSSUR = Z Wy Z T L, r=1,2,..,6
i=1 JETE

The variance of [i,-gssyr 18

2
Var(ji,:gssur) = :21: W [,]kll- -

Bhoj and Kushary (2014) considered various weights that were proportional to k;(m; + h) where
0=h=1.0. The first four values of w,, are obtained by using » = 0, 1/4, 1/2, and 3/4. ws, is
obtained by taking the average of wy, and ws,, and wg, is derived by taking average of the weights
that are proportional to k;m; and k;(m; + 1).

The estimators for p based on the RSSU scheme do not work well if the distributions under
consideration are highly skewed. Therefore, Bhoj and Kushary (2016) proposed the estimators for
i, which are weighted linear combinations of x;,, for heavy right tail probability distributions.
They proposed the following set of estimators for i based on RSSUS.

frirssus = Z WrX(igim, 7 =1,2,...,6.

Bhoj and Kushary (2016) considered various weights that are based on the ratio w;/w; and are
given by
Wi

— =m; + (m; — m—1y + dihy)h,
wi

where d; = 1),h =1h3=1,hy=hand 0=h=1.
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The values of w; for different values of m are determined so that the new set of estimators for
1 based on RSSUS would perform better than the estimators for p based on RSS and MRSS proce-
dures for the chosen heavy right tail distributions. They used
+

= mlD M 223 and 4 for m=2.3 and 4.
where D;=m?+ (2m—3)h+({—2), for i=2 and 3

Dy=m?>+1+@2m—3)h+04h*, for m=4

B = m(m —2) + |(i + ¢.h)/(i* — 6)]

1= )

100
where ¢ =0 for i=2,3 and ¢c=4 for i=4.

wi

In order to keep the number of weights within reasonable limits they used five values of w,
with h = 0.75, 0.8, 0.85, 0.90, and 0.95. The main reason for the choice of the values of 4 was, for
some distributions, near optimal ratios of the weights belonged to some values of 4. For example,
h = 0.75 gives near optimum values of the ratios of weights for Weibull distribution for n =3, and
h = 0.95 gives near optimal values of the ratios of weights for Pareto (5) and lognormal distribu-
tions for m = 2.

COMPARISONS OF ESTIMATORS

In this section, the various estimators for x based on RSS, MRSS, RSSUR, and RSSUS are com-
pared. First the estimators based on RSS, MRSS, and RSSU are compared. For this purpose, the
following nonparametric relative precisions (RPNs) are defined:

RPN. — Var(figss)/Var(ft,-gssu)s  if figggy is an unbiased estimator
r Var(figgs)/MSE(f1,-grssu)>  if firssy is @ biased estimator

forr=1, 2, 3,...,6 and,

RPN, = Var(figss)/Var(fiyrssy)  if fimrss 1S an unbiased estimator
! Var(figgs)/MSE(fiyrssu)  if fimrss 1S @ biased estimator.

It is noted that RPN,/RPN; can be used for comparison of the estimators based on RSSU
and MRSS. Then fi,.gqqy is better than fiyrgs if RPN, > RPN;. Bhoj (2001) calculated the seven
relative precisions for normal, logistic, Laplace, exponential, Weibull (2), Weibull (4), gamma
(3), gamma (5), and extreme value distributions and m = 2, 3, and 4... These computations
showed that fi,.xgquy ¥ =1, 2, 3,..... 6 are all superior to the estimator, [izgg, for all the distribu-
tions. However, all estimators based on RSSU are not better than fizgg for all distributions and
sample sizes. fi,.ggsy for r = 3, 4, and 6 have substantial gain in relative precisions over figgg
and [iyrss for all nine distributions considered in the paper. Bhoj (2001) also considered the
errors in ranking and showed the performance of f[i,.g¢q, is superior to the estimators figgq and
[ivrss-

Now the estimators fi,.rssur> ¥ = 1, 2, ....., 6 based on RSSUR are compared with the estimators
based on RSS and MRSS. We define seven nonparametric relative precisions in this section which
are similar to the relative precisions in the previous paragraph except [i,.pssy 1S replaced by
f,-rssur- Bhoj and Kushary (2014) calculated these relative precisions for normal, logistic,
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Laplace, exponential, Weibull (2), Weibull (4), gamma (3), gamma(5), and extreme value distribu-
tion, and m = 2 and 3 and k = 2, 3, 4, and the values of k;. For given m and k there is one near
optimal solution of k; for all above eight distributions. fi,.pqqy 1S SUperior to figgs. Wiy, Wy, W3, are
nearly optimal for Laplace, logistic, and normal distributions, respectively. In general, ws, works
quite well for the three symmetrical distributions and wy, performs better for all skewed distribu-
tions. The relative precisions based on fi,-gssur> 7 = 1,2, ...., 6 are all higher than RPU; for all the
values of k and m and the eight distributions considered in the chapter. Hence
ftyrssus ¥ =1,2,....,6, is uniformly superior to firss- Bhoj and Kushary (2014) tabulated the
values of k; for m = 2 and 3 and k = 2, 3, and 4. They computed relative precisions RPUR, to
compare the estimators for ; based on RSSU and RSSUR for r=1,2,...,6, m = 2 and3, k = 2, 3,
and 4 for eight distributions. They tabulated the values of k; and they showed that
ftr-rssurs T = 1,2,.. .., 6 is superior to fi,-gssy» for all eight distributions.

Now the estimators for p based on RSS, MRSS, and RSSUS are compared. The estimator
ft,-rssus 1is biased for highly skewed distributions. Therefore the following nonparametric relative
precisions (RPNs) are defined:

RPN, = Var(jigss)/MSE(f1,.gssus)s  for r=1,2,...,5

RPN, — Var(figgs)/Var(fiyrss),  if fiyrss 1S an unbiased estimator,
6 Var(figss)/MSE(fiyrss)>  if fimrss 1S @ biased estimator.

Bhoj and Kushary (2016) computed RPN,, r = 1, 2, ..., 6 for lognormal, Weibull (0.5), Pareto
(2.5), and Pareto (5) distributions and m = 2, 3, and 4. They also tabulated variances and biases of
the estimators based on RSSUS and MRSS. From the computations of relative precisions they
noted that the estimators [i,.rqus are all superior to the estimators based on RSS and MRSS for
the four distributions and three sample sizes. The gains in the relative precisions of the estimator of
1 based on RSSUS over the estimators based on RSS are substantial. However, the gains in the pre-
cisions of fi,-ggsus over the estimator based on MRSS are very good to marginal, depending on the
value of m and the distribution. It was noted that the estimators based on RSSUS are adversely
affected by the extreme values of means and variances of the extremely heavy tail distributions
since RSSUS uses m; = 1. The estimator based on MRSS is not directly affected by the extreme
values of the means and variances of the probability distributions.

MORE RANKED SET SAMPLING PROCEDURES WITH UNEQUAL
SAMPLES

In this section, some more ranked set sampling procedures with unequal samples are discussed.
Bhoj (2002) showed that the MRSS procedure does not perform well for even m, as compared to
odd m. He computed the relative percentage increases (RPI) in RP where RPI is defined as{(RP for
m — RP for (m — 1)) / RP for (m — 1)} X 100. These computations showed that the values of
RPI are higher when we move from even to odd values of m, and they are lower when we switch
from odd to even values of m. Therefore, he proposed a new median ranked set sampling
(NMRSS) for even m = 2I. In this procedure, we draw first / samples of size (m — 1) and the last /
samples of size (m + 1). Then the median is quantified from each sample to estimate the popula-
tion mean. Bhoj (2002) showed that the relative precisions of the estimator based on the NMRSS
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procedure are better than the estimators based on MRSS when distributions are symmetric and
unimodal for m = 2, 4, and 6. For moderate skew distributions MMRSS works reasonably well for
m = 2 and 4. Most importantly the NMRSS procedure performs better than MRSS even for highly
skew distributions when m = 2.

Biradar and Santosha (2014) proposed the maximum ranked set sampling procedure with
unequal samples m; =i, i=1,2,3,.,m to estimate the mean of exponential distribution. In this pro-
cedure, they quantified only the observations with maximum rank. Although they measured m
observations, the number of observations ranked is only m(m + 1)/2. They derived maximum likeli-
hood estimator and modified maximum likelihood estimator for the mean and showed that the rela-
tive precisions of these estimators are better than that based on SRS. By using simulation, they
showed that the efficiency of the proposed estimator is better than the estimator based on RSS
under ranking error.

The balanced RSS approach can not be used when the populations are not available at the time
when the study was conducted. However, the entire population elements can be observed as batches
of different sizes. For such situation, Samawi (2011) proposed varied set size ranked set sampling
(VSRSS). In this procedure c sets of different sizes, say, K7, K3, .,K>, are randomly selected. Next
the RSS technique is applied to each set separately to obtain ¢ ranked set samples of sizes,
K, K>, ., K., respectively. This produces a sample of size Zf=1 K;. Samawi (2011) showed that the
estimator based on VSRSS is unbiased for the population mean and its variance is less than the var-
iance of the estimator of p based on SRS.

Sometimes the sets that arise naturally in the RSS applications are of unequal sizes. For exam-
ple, commuters on different public buses or patients that have been waiting in doctors’ waiting
rooms that represent natural sets of different sizes. Germayel et al. (2010) proposed the estimator
for the median of a symmetric population that combines medians of RSS samples of different sizes.
The estimator is robust over a wide class of symmetric distributions, although it is not optimal for
any specific symmetric distribution.

Some authors proposed an RSS procedure with random selection of the units for measurements.
Li et al. (1999), Rahimov and Mutllak (2003a,b), and Amiri et al. (2015) proposed random ranked
set sampling where the set size and/or the number of cycles are allowed to be random and unequal.

Zhang et al. (2014) considered a sign test under ranked set sampling with unequal set sizes
(RSSU), and proposed weighted sign tests associated with judgment ranks. The optimal weight vec-
tor is shown to be distribution-free and RSSU proved to be more efficient than RSS.

APPLICATIONS TO REAL-WORLD DATA

Bhoj (2001) and Bhoj and Kushary (2014) applied their formulae derived under RSSU and RSSUR
procedures to the longleaf pine data. The data consist of the coordinates and diameters (at breast height)
of all longleaf pine trees at least 2 centimeters in diameter at breast height (dbs) in a 4-ha region on the
Wade Tract in Thomas County, Georgia, in 1979. The data have 584 trees, with observations ranging
from 2 to 75.9 cm dbh, indicating a large variability in the data. The Wade Tract contains all ages of trees
up to 250 years. All observations on dbh are given in Cressie (1993). The data on 584 trees are considered
as the population. The objective is to estimate the mean dbh value of longleaf pine trees in the 4-ha region
by using RSS, MRSS, RSSU, and RSSUR.
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Bhoj (2001) took random samples of size m = 3 from the given population. The cycle was
repeated kK = 9 times to estimate the variance within each rank. The computed values of the esti-
mates based on mk observations are figgg =21.80, fygrss =29.56, and [i,.rgsy = 28.73, 28.66,
28.59, 28.54, 28.66, and 28.61 for r = 1, 2, 6 and the estimated corresponding variances of the esti-
mators are, respectively, 6.96, 6.11, 5.25, 5.10, 4.98, 5.11, and 5.01. It is observed that [i;.rssu>
flarssu» and fterssy are closer to the population mean ;= 26.84 and the variances of these estima-
tors are relatively small. We note that the variance of the sample mean X based on mk observations
is 0% /mk = 334.238/27 = 12.38. The estimated variances of the estimators based on the RSSU pro-
cedure are considerably smaller than variances of X based on the same number of quantified
observations.

Bhoj and Kushary (2014) proposed ranked set sampling with unequal samples and unequal
replications. They estimated the mean dbh value of longleaf pine trees by using various ranked set
sampling procedures with equal replications and RSSU with unequal replications. Bhoj and
Kushary (2014) took the random samples of size m = 3 from the given population. The cycle was
repeated k = 4 times to estimate the variance within each rank. The estimators for the mean
were also computed with unequal replications: m; =2, my =7 and ms = 3. The computed values
of the estimators are figgg =25.39, [1,-rssy> With k& = 4, are 25.90, 26.00, 26.09, 26.17, 26.00,
26.07 and, [i,-gssur = 27.24, 27.11, 27.00, 26.90, 27.12, 27.03 for r = 1,2,...,6. The corresponding
variances of the estimators are, respectively, Var(figgs)=17.25, Var(ji,gssy) = 14.5,

14.63, 14.78, 14.94, 14.62, 14.74 and Var(fi,.rgsur) = 12.63, 12.73, 12.83, 12.91, 12.73, and
12.8. It can be easily seen that the estimators based on RSSUR are close to u, with smaller var-
iances as compared to the estimators based on RSSU with equal replications. Bhoj and Kushary
(2016) also computed the MSE of the estimators and showed that the estimators based on RSSUS
are better than those based on RSSU.
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CHAPTER

A NEW MORGENSTERN TYPE
BIVARIATE EXPONENTIAL
DISTRIBUTION WITH KNOWN
COEFFICIENT OF VARIATION BY
RANKED SET SAMPLING

Vishal Mehta
Department of Mathematics, Jaypee University of Information Technology, Waknaghat, Himachal Pradesh, India

INTRODUCTION

Cost-effective sampling methods are of major concern in some experiments, especially when the
measurement of the characteristics is costly, painful, or time-consuming. The concept of ranked set
sampling (RSS) was first introduced by Mclntyre (1952) as a process of increasing the precision of
sample mean as an unbiased estimator of population mean. The method of RSS provides an effec-
tive way to achieve observational economy or to achieve relatively more precision per unit of sam-
pling. RSS as described by Mclntyre (1952) is applicable whenever ranking of a set of sampling
units can be done easily by judgment method. For a detailed discussion on theory and application
of RSS, see Chen et al. (2004). In certain situations one may prefer exact measurements of some
easily measurable variable X associated with the study variable Y to rank the units of samples
rather than ranking them by a crude judgment method. Suppose the variable of interest Y, is diffi-
cult or much more expensive to measure, but an auxiliary variable X correlated with Y is readily
measureable and can be ordered exactly. In this case as an alternative to Mclntyre’s (1952) method
of ranked set sampling, Stokes (1977) used an auxiliary variable for the ranking of sampling units.

If X, is the observation measured on the auxiliary variable X from the unit chosen from the
rth set then we write Y}, to denote the corresponding measurement made on the study variable Y
on this unit, then Y3, =1,2,...,n from the ranked set sample. Clearly Y}, is the concomitant of
the rth order statistic arising from the rth sample.

In many areas, especially in physical science, it is common to find the population standard devi-
ation is proportional to the population mean, that is, the coefficient of variation (CV) is constant
(e.g., Sen, 1978; Ebrahimi, 1984, 1985; Singh, 1986). In such cases it is possible to find a more
efficient estimator of the mean assuming that the coefficient of variation (CV) is known than by
using the sample mean.

Ranked Set Sampling. DOI: https://doi.org/10.1016/B978-0-12-815044-3.00010-1
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Let X be a random variable having the two-parameter exponential distribution as
1 -0
fe(x) = —exp<*x—);x20>0,a>0. (10.1)
(o ag

Here 0 is the location parameter (guarantee period) and o is the scale parameter (measuring the
mean life). Since E(X) =0+ ¢ and Var(X) = o2, therefore the CV = 745 Using the fact that the
CV is some known constant we get that ¢ = a0, where a;(>0) is known (see, Samanta, 1984,
1985; Joshi and Nabar, 1991) and therefore Eq. (10.1) reduces to

fx() = Lexp(*ﬂ);xz 0>0,a, >0, (10.2)
a10 a19
which has mean 6(a; + 1) and variance Hza%, therefore the CV = (al“jr 5 is the same for all §( > 0).
The cumulative density function (cdf) of Eq. (10.2) is given by
FX(x):1—exp(—x7;);x29>o,al>0. (10.3)
aj

Ali and Woo (2002) considered parametric estimation of a special case of the two-parameter
exponential distribution in which both the threshold (location) and the scale parameters are equal.
For a; = 1 the probability density function (pdf) fx(x) in Eq. (10.2) reduces to:

fx(x) = éexp(—)%e);xza, (10.4)

which is due to Ali and Woo (2002).
A general family of bivariate distributions is proposed by Morgenstern (1956) with specified
marginal distributions Fx(x) and Fy(y) as

Fxy(x,y) = Fx()Fy[l + a(l = Fx())(1 = Fy())]l; —1=a=1, (10.5)
where « is the association parameter between X and Y and Fy y(x,y) is the joint distribution func-
tion (df) and Fx(x) and Fy(y) are the marginal distribution function (df) of X and Y respectively
(see Johnson and Kotz, 1972).

Also, the probability density function (pdf) of the Morgenstern family of distribution can be
given as

Sey(6y) =y W[ + a1 = 2Fx(0))(1 =2Fy(y); —1=a=1. (10.6)
The pdf of the concomitants of order statistics Y[}, arising from MTBED is obtained as (see
Scaria and Nair, 1999)

n—2r+1

Sy ) = fr(y) {1 + Oé( P

)(I—ZFY(y))]; —l=a=1. (10.7)

Now using Eqgs. (10.2) and (10.3) in Eq. (10.6) we get a member of this family is Morgenstern
type bivariate exponential distribution (MTBED) with the probability density function (pdf) as

or{ () (o)) -]

ajax010, ’

fX,Y(xsy) =

x=01,y=0,a1,a>0, - 1=a=1.
(10.8)
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Now the pdf of Y,j, for 1 =r=mnis given as (see Scaria and Nair, 1999)

! —0 —2r+1 )
= gzen () [ o () (- () )
aty a0, n+1 420, (109)

y=0,a,>0, —1=a=1.

The mean and variance of Y}, for 1 =r =n are respectively given by

E(Yjy) =60:¢, and Var(Yyy) = 636,, (10.10)

afn—2r+1
=1+ - =(———
o= [rea(-3(50)
s=a2li- 2 n—2r+1 _a_2 n—2r+1\’ .
’ 2 2 n+1 4 n+1

Stokes (1995) has considered the estimation of parameters of location-scale family of distribu-
tions using RSS. Lam et al. (1994, 1995) have obtained the BLUEs of location and scale para-
meters of exponential distribution and logistic distribution. Stokes (1980) has considered the
method of estimation of correlation coefficient of bivariate normal distribution using RSS.
Modarres and Zheng (2004) have considered the problem of estimation of the dependence parame-
ter using RSS. A robust estimate of correlation coefficient for bivariate normal distribution has
been developed by Zheng and Modarres (2006). Stokes (1977) has suggested the ranked set sample
mean as an estimator for the mean of the study variate Y, when an auxiliary variable X is used for
ranking the sample units, under the assumption that (X,Y) follows a bivariate normal distribution.
Estimation of a parameter of Morgenstern type bivariate exponential distribution by using RSS was
considered by Chacko and Thomas (2008). Barnett and Moore (1997) have improved the estimator
of Stokes (1977) by deriving the best linear unbiased estimator (BLUE) of the mean of the study
variate Y, based on ranked set sample obtained on the study variate Y. Lesitha et al. (2010) have
considered application of RSS in estimating parameters of Morgenstern type bivariate logistic dis-
tribution. Tahmasebi and Jafari (2012) have considered upper RSS. For current references in this
context the reader is referred to Sharma et al. (2016), Bouza (2001, 2002, 2005), Samawi and
Muttlak (1996), Demir and Singh (2000); Singh and Mehta (2013, 2014a,b, 2015, 2016a,b,c, 2017),
Mehta and Singh (2014, 2015), and Mehta (2017).

The remaining part of the chapter is organized as follows: Section 10.2.1 proposes an unbiased
estimator 0, of the parameter 6, involved in Eq. (10.8) using ranked set sample mean along with its
variance. In Section 10.2.2, we have derived BLUE 65 of 6, when the association parameter « is
known. We have also given the variance of BLUE 6. Section 10.2.3 deals with the problf’:l{g of
estimating the parameter 6, based on unbalanced multistage RSS. We have derived BLUE 6, ~ of
0, and obtained its variance. In Sections 10.2.4 and 10.2.5, we have discussed the problem of esti-
mating the parameter 6, based on unbalanced single-stage and steady-state RSS, respectively,
which are particular cases of the studies presented in Section 10.3.1. Section 10.3.2 compares the
performance of the different estimators proposed in the chapter through a numerical illustration. In
Section 10.4 we conclude the chapter with final remarks.

where

and
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EXPERIMENTAL METHODS AND MATERIALS
RANKED SET SAMPLE MEAN AS AN ESTIMATOR OF 6,

Let (X,Y) be a bivariate random variable which follows an MTBED with pdf defined by
Eq. (10.8). Suppose RSS in the sense of Stokes (1977) has been carried out. Let X(,) be the obser-
vation measured on the auxiliary variate X in the rth unit of the RSS and let Y},;, be the measure-
ment made on the Y variate of the same unit » =1,2,...,n. Then clearly Y}, is distributed as the
concomitant of rth order statistics of a random sample of n arising from Eq. (10.8). By using the
expressions for mean and variances of concomitants of order statistics arising from MTBED
obtained in Eq. (10.10), we propose an estimator 6, of 6, involved in Eq. (10.8) and proved that it
is an unbiased estimator of 6,.

Theorem 1.1: Let Y}, v =1,2,...,n be the ranked set sample observations on a study variate Y
obtained out of ranking made on an auxiliary variate X, when (X, Y) follows MTBED as defined in
Eq. (10.8). Then the ranked set sample mean given by

Yo 10.11
0. = n(as + I)Z i ( )
is an unbiased estimator of 0, and its variance is given by
P 202 AN (n—2r+1\?
Var(02) = 225 11— O ( ) . 10.12
ar\n2 n(a2+])2 41’!; n+1 ( )

Proof: Taking expectations of both sides of Eq. (10.11) we have

A\ 1 - _ 0, - n—2r+1
E(%:) = m;E(Yw) @D 1); {1 +a (7” 1 )] (10.13)

It is clear to note that

> (n—2r+1)=0. (10.14)

r=1

Using Eq. (10.14) in Eq. (10.13) we get

Thus éz is an unlgiased estimator of 0,.
The variance of 0, is given by

. 1 n
Var(@z) = m; Var(Y[r]r)

Now using Eq. (10.10) and Egq. (10.14) in the above sum we get,
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Var(@ ) _ a0 [ a_2 i (n—2r+1)2
) — .
n(a2+1)2 4n n+1

r=1

Thus the theorem is proved.¢

BEST LINEAR UNBIASED ESTIMATOR OF 6,
In this section we provide a better estimator of 6, than that of 0, by deriving the BLUE 65 of 6, pro-

vided the parameter « is known. Let X, be the observation measured on the auxiliary variable X in
the rth unit of ranked set samples and let Y},3- be measurement made on the Y variable of the same
unit, r=1,2,...,n. Let Yj,; = (Y[l]l, Yop, ... Y[,,],,)’ and if the parameter « involved in £, and 6, is
known, then proceeding as in David and Nagaraja (2003, p.185) the BLUE 6; of 6 is obtained as

0= (€G'¢) '€G Yy (10.15)
and

Var(6;) = (€G'¢) "6, (10.16)
where &= (51,52,...,§n)’ and G = diag(6y,63,...,6,). On substituting the values of £ and G in
Egs. (10.15) and (10.16) and simplifying we have

n

> (&/6:) Yo
= (10.17)
> (¢/8)
and
02
Var(63) = ————. (10.18)
3 (&/00)

ESTIMATION OF 6, BASED ON UNBALANCED MULTISTAGE RANKED SET
SAMPLING

Al-Saleh and Al-Kadiri (2000) have extended first the usual concept of RSS to double-stage ranked
set sampling (DSRSS) with the objective of increasing the precision of certain estimators of the
population when compared with those obtained based on usual RSS or using random sampling.
Al-Saleh and Al-Omari (2002) have further extended DSRSS to multistage ranked set sampling
(MSRSS) and shown that there is an increase in the precision of estimators obtained based on
MSRSS when compared with those based on usual RSS and DSRSS. The MSRSS (in r stages) pro-
cedure is described below:

(1) Randomly select n"*!

of MSRSS.
(2) Allocate the n"*! selected units randomly into n"~

sample units from the target population, where r is the number of stages

I sets, each of size n2.



132 CHAPTER 10 A NEW MORGENSTERN TYPE BIVARIATE

(3) For each set in step (2), apply the procedure of RSS method to obtain a (judgment) ranked set,
of size n; this step yields n”~!' (judgment) ranked sets, of size n each.

(4) Arrange n’~! ranked sets of size n each, into n"~2 sets of n” units each and without doing any
actual quantification, apply ranked set sampling method on each set to yield n"~2 second stage
ranked sets of size n each.

(5) This process is continued, without any actual quantification, until we end up with the rth stage
(judgment) ranked set of size n.

(6) Finally, the n identified elements in step (5) are now quantified for the variable of interest.

Instead of the judgment method of ranking at each stage if there exists an auxiliary variate on
which one can make measurement very easily and exactly and if the auxiliary variate is highly cor-
related with the variable under study, then we can apply ranking based on these measurements to
obtain the ranked set units at each stage of MSRSS. Then, on the finally selected units, one can
make measurement on the study variable.

In this section we deal with the MSRSS by assuming that the random variable (X, Y) has an
MTBED as defined in Eq. (10.8), where Y is the study variable and X is an auxiliary variable. In
Section 10.2.2, we have considered a method for estimating ¢, using the Y[}, measured on the study
variate Y on the unit having rth smallest value observed on the auxiliary variable X, of the rth sam-
ple r=1,2,...,n, and hence the RSS considered there was balanced.

Abo-Eleneen and Nagaraja (2002) have shown that, in a bivariate sample of size n arising from
MTBED, the concomitant of largest-order statistic possesses the maximum Fisher information on
0, whenever >0 and the concomitant of smallest order statistic possesses the maximum Fisher
information on #, whenever a <0. Hence, in this section, first we considered o> 0 and carry out
an unbalanced MSRSS with the help of measurements made on an auxiliary variate to choose the
ranked set and then estimate 6, involved in MTBED based on the measurements made on the study
variable. At each stage and from each set we choose a unit of a sample with the largest value on
the auxiliary variable as the units of ranked sets with an objective of exploiting the maximum
Fisher information on the ultimately chosen ranked set sample.

Let Ui(r), i=1,2,...,n be the units chosen by the (r stage) MSRSS. Since the measurement of

an aux1hary variable on each unit Ufr),i= 1,2,...,n has the largest value, we may write
(él) i=1,2,...,n to denote the value measured on the variable of primary interest on
U;”,i=1,2,...,n. Then it is easy to see that each Y[(,:])l is the concomitant of the largest-order statis-

tic of n’ mdependently and identically distributed bivariate random variables with MTBED.

Moreover Y[n]l,l =1,2,...,n are also independently distributed with pdf given by (see Scaria and
Nair, 1999)
-l o) ol 2]
a0, a0, n+ 1 a26, (10.19)
y=60,a,>0, —1=a=1.
Thus the mean and variance of Y(n])l,z =1,2,...,n are given below

(r) _ g n —1 _
E(7i0) 92{1 +az{1 +3 (n,+ 1) H 026, (10.20)
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r 2 r 2
) po(roy o mmly e
Var(y[n],) 92a2|: 2(nr+1) - (mﬂ” 6, (10.21)
=1

&y = {1 +a2{1 +3 (:lli-i- 1)H (10.22)

n" —1 a? (" —1\?

c=a2 |1+ . . 10.2

8n “2[ 2(n"+l> 4 (n’+l):| (10:23)

) (y0 y0 ")
Let Yi) = (il Yirhs - o Yo

and dispersion matrix of [ ) as

where

and

) then by using Egs. (10.20) and (10.21) we get the mean vector

E(Y()) = 0:¢,1 (10.24)
and

p(¥,

M) = 626, (10.25)

where 1 is the column vector of n ones and I is a unit matrix of order n.
If a>0 involved in &, and 0,r is known then Egs. (10.24) and (10.25) together define a gener-
alized Gass—Markov setup and hence the BLUE of 6, is obtained as

9" = Yo (10.26)

with variance given by

Var(e”“)) _ b (10.27)

ESTIMATION OF 6, BASED ON UNBALANCED SINGLE-STAGE RANKED SET
SAMPLING
If we take r =1 in the MSRSS method described above, then we get the usual single-stage unbal-

~n(1
anced RSS. By putting 7= 1 in Egs. (10.26) and (10.27) we get the BLUE s " of 6, based on
single-stage unbalanced ranked set sampling as

An(1) 1 &
0 =— Yu 10.28
> T ; [n] ( )
with variance
626,
Var<92(1)> = 2% (10.29)
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where, we write Y,;; instead of Y[(nl]z, and it represents the measurement on the study variable of the
unit selected in the RSS. Also &, and 9, are obtained by putting » =1 in Eqgs. (10.22) and (10.23),

respectively i.e.,
)

S PN i B
5n—a2[1+2< 1) 4<n+1)} (10.31)

ESTIMATION OF 6, BASED ON UNBALANCED STEADY-STATE RANKED SET
SAMPLING

Al-Saleh (2004) has considered the steady-state RSS by letting r go to + oo. For the steady-state
RSS the problem considered in having the asymptotic distribution of Y ; s given by

f[a]fl)(y) = 7exp(*y _ 02) [1 + a<1 - 2exp(*y - 92))} ;
a20, a6, a20, (10.32)

y=0,a,>0, —1=a=1.

and

From the definition of unbalanced MSRSS it follows that Y'%’,i =1,2,...,n are independent

nt’

and 1dentlca11y distributed random variables each with pdf as defined in Eq. (10.32). Then

Y[(n]l i=1,2,...,n may be regarded as an unbalanced steady-state ranked set sample of size n. The
mean and variance of Y[n]; i=1,2,...,n are given below
E(Y{;]),) =02[1 +a2{1 + %}] (10.33)
2
Var(Y[("r])i> = 2 {1 + % - Oﬂ (10.34)
Let Y([Z]) = (Y[(n?i)a Y[(”j';), .. Y(w)> Then the BLUE 6’ ) based on Y([ZT) and the variance of
@Z(w) is obtained by taking the limits as r— oo in Egs. (10.26) and (10.27), respectively, and are
given by
an(e0) _ 1 ()
% n[l+ay(1+9)] ; Yo (10.35)
and

(10.36)

Remark 1: As mentioned earlier for MTBED the concomitant of smallest-order statistic possesses
the maximum Fisher information on 0, whenever o <0. Therefore when a<0 we consider an
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unbalanced MSRSS in which at each stage and from each set we choose a unit of a sample with the
smallest value on the auxiliary variable as the units of ranked sets with an objective of exploiting
the maximum Fisher information on the ultimately chosen ranked set sample.

Let Y[(lr])i,iZ 1,2,...,n, be the value measured on the variable of primary interest on the units
selected at the rth stage of the unbalanced MSRSS. Then it is easily to see that each
Y[({])[, i=1,2,...,n is the concomitant of the smallest-order statistic of n" independently and identi-

cally distributed bivariate random variables with MTBED. Moreover Y[(lr])i,i= 1,2,...,n are also

independently distributed with pdf given by

1 -0 n" —1 -0
()= A _(r -1 _ _y-—o .
= 6, eXp( a6, ) {1 a("’ + 1) (1 2exp< a0 )ﬂ (10.37)

y=0,a,>0, —1l=a=1.

Clearly from Egs. (10.19) and (10.37) we have
i) =f06: = a) (10.38)

and hence E (Y[(,:])I) for a>0 and E (Y[(lr])i) for a<0 are identically equal. Similarly,

A1(1
Var(Y[(r:])i) for a>0 and Var(Y[(lr])i> for a <0 are identically equal. Consequently, if 92() is the
BLUE of 0,, involved in MTBED for a<0, based on the unbalanced MSRSS observations

R A1(1
Y[({])i’i: 1,2,...,n then the coefficients of Y[(lr])i,i= 1,2,...,n in the BLUE 92( ) for a <0 is the

same as the coefficients of Y[(nr])i,i= 1,2,...,n in the BLUE éz(r) for a>0. Further we have

Var(é;(l)) = Var(é;m> and hence Var(é;(l)) = Var(ég(l)) and Var(é;(oo)) = Var(a’;(m), where
A1(1
92( ) are the BLUE of 0, for a <0 based on the usual unbalanced single stage RSS observations

~1(o0
Yigiri=1,2,...,n and 92( ) are the BLUE of 6, for a<0 based on the unbalanced steady-state

RSS observations Y(?),i= 1,2,....n.

[n]i
Remark 2: If we have a situation with o unknown, we introduce an estimator (moment type) for o
as follows. For MTBED the correlation coefficient between the two variables is given by p= ¢. If
q is the sample correlation coefficient between X;; and Y;,i=1,2,...,n then the moment type
estimator for o is obtained by equating with the population correlation coefficient p and is
obtained as (see Chacko and Thomas, 2008):

~1 if g< —1/4
1 1
a=14 4q if == (10.39)

1 if ¢>1/4
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OBSERVATIONS, RESULTS, AND DISCUSSION
RELATIVE EFFICIENCY

~ i ~n(1) ~ ar( 0
We have obtained the relative efficiencies e; = RE( i 92) = \::T(gf)),eg = RE(QZ( ), 92) = %
2 ar\ 0,
An(o0) A ) An(l An(0 ~
and e3; =RE (9;(7),92) = \% of 9*,9;( ) and eg(‘” relative to 6, respectively, for
arl 0,

n=2(2)20,a = 0.25(0.25)1.00 and a, = 1(1)5 and these are presented in Table 10.1.

Table 10.1 The Values of ¢;s,i = 1,2,3
ap = 1 ay; = 2 ap = 3

n « e] () es e] (%) es e] (%) es

2 0.25 1.0008 1.0005 1.0160 1.0000 1.0138 1.0559 1.0004 1.0210 1.0766
0.50 1.0016 1.0008 1.0581 1.0009 1.0280 1.1383 1.0004 1.0415 1.1793
0.75 1.0041 1.0013 1.1241 1.0023 1.0416 1.2463 1.0014 1.0617 1.3093
1.00 1.0075 1.0016 1.2150 1.0037 1.0537 1.3824 1.0022 1.0803 1.4703
4 0.25 1.0000 1.0034 1.0143 1.0009 1.0281 1.0549 1.0000 1.0401 1.0751
0.50 1.0033 1.0118 1.0521 1.0018 1.0595 1.1316 1.0014 1.0842 1.1729
0.75 1.0083 1.0235 1.1095 1.0047 1.0946 1.2304 1.0037 1.1307 1.2928
1.00 1.0224 1.0388 1.1880 1.0125 1.1311 1.3517 1.0083 1.1782 1.4369
6 0.25 1.0000 1.0052 1.0135 1.0000 1.0343 1.0540 1.0000 1.0489 1.0743
0.50 1.0024 1.0182 1.0487 1.0027 1.0762 1.1296 1.0022 1.1052 1.1704
0.75 1.0126 1.0397 1.1049 1.0070 1.1225 1.2235 1.0044 1.1652 1.2852
1.00 1.0316 1.0628 1.1760 1.0190 1.1730 1.3382 1.0138 1.2299 1.4230
8 0.25 1.0000 1.0060 1.0127 1.0000 1.0375 1.0530 1.0000 1.0536 1.0736
0.50 1.0033 1.0225 1.0470 1.0037 1.0863 1.1285 1.0014 1.1172 1.1687
0.75 1.0135 1.0481 1.1004 1.0075 1.1387 1.2190 1.0045 1.1853 1.2805
1.00 1.0355 1.0771 1.1680 1.0236 1.1992 1.3312 1.0170 1.2615 1.4154
10 0.25 1.0000 1.0079 1.0135 1.0023 1.0417 1.0545 1.0000 1.0571 1.0736
0.50 1.0082 1.0283 1.0487 1.0023 1.0920 1.1270 1.0018 1.1249 1.1674
0.75 1.0127 1.0532 1.0967 1.0071 1.1495 1.2161 1.0056 1.2001 1.2791
1.00 1.0402 1.0890 1.1650 1.0248 1.2151 1.3248 1.0195 1.2812 1.4090
12 0.25 1.0000 1.0063 1.0111 1.0000 1.0431 1.0540 1.0000 1.0603 1.0743
0.50 1.0049 1.0312 1.0487 1.0028 1.0966 1.1265 1.0000 1.1291 1.1653
0.75 1.0152 1.0593 1.0967 1.0114 1.1597 1.2167 1.0067 1.2093 1.2767
1.00 1.0486 1.0987 1.1640 1.0269 1.2271 1.3210 1.0211 1.2974 1.4068
14 0.25 1.0000 1.0101 1.0143 1.0000 1.0436 1.0530 1.0000 1.0614 1.0736
0.50 1.0057 1.0292 1.0445 1.0032 1.1005 1.1265 1.0025 1.1358 1.1674
0.75 1.0179 1.0613 1.0940 1.0099 1.1663 1.2161 1.0052 1.2156 1.2743
1.00 1.0506 1.1048 1.1620 1.0315 1.2394 1.3216 1.0219 1.3085 1.4041
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Table 10.1 The Values of e;s, i=1,2,3 Continued

18

20

10

12

0.25
0.50
0.75
1.00
0.25
0.50
0.75
1.00
0.25
0.50
0.75
1.00

1

1.0065
1.0066
1.0204
1.0507
1.0000
1.0074
1.0153
1.0574
1.0000
1.0082
1.0169
1.0545

0.25
0.50
0.75
1.00
0.25
0.50
0.75
1.00
0.25
0.50
0.75
1.00
0.25
0.50
0.75
1.00
0.25
0.50
0.75
1.00
0.25
0.50
0.75
1.00

a2=1
(5]

1.0122
1.0300
1.0676
1.1091
1.0077
1.0314
1.0678
1.1151
1.0064
1.0376
1.0728
1.1183

€l

1.0000
1.0003
1.0006
1.0016
1.0000
1.0006
1.0026
1.0066
1.0000
1.0010
1.0039
1.0101
1.0000
1.0013
1.0039
1.0136
1.0000
1.0016
1.0033
1.0153
1.0000
1.0019
1.0039
1.0185

€3

1.0160
1.0436
1.0967
1.1600
1.0111
1.0436
1.0940
1.1610
1.0095
1.0487
1.0967
1.1600

a =4
e

1.0249
1.0498
1.0737
1.0964
1.0474
1.0986
1.1523
1.2072
1.0580
1.1223
1.1915
1.2642
1.0639
1.1357
1.2150
1.2986
1.0669
1.1446
1.2291
1.3212
1.0700
1.1512
1.2405
1.3392

1

1.0036
1.0037
1.0076
1.0280
1.0000
1.0000
1.0128
1.0362
1.0000
1.0046
1.0095
1.0302

a2=2
€2

1.0465
1.1034
1.1681
1.2430
1.0465
1.1027
1.1753
1.2533
1.0453
1.1056
1.1772
1.2525

€3

1.0887
1.2043
1.3477
1.5244
1.0873
1.1975
1.3306
1.4896
1.0870
1.1948
1.3233
1.4744
1.0866
1.1929
1.3195
1.4661
1.0856
1.1918
1.3156
1.4602
1.0859
1.1914
1.3143
1.4582

€3

1.0549
1.1265
1.2122
1.3158
1.0540
1.1234
1.2150
1.3190
1.0521
1.1244
1.2133
1.3120

€l

1.0000
1.0003
1.0006
1.0012
1.0000
1.0006
1.0018
1.0055
1.0000
1.0009
1.0036
1.0093
1.0012
1.0012
1.0024
1.0125
1.0000
1.0015
1.0045
1.0141
1.0000
1.0018
1.0054

1.0151

€l

1.0000
1.0029
1.0060
1.0252
1.0000
1.0033
1.0067
1.0248
1.0000
1.0036
1.0075
1.0236

a2=3
€2

1.0628
1.1374
1.2227
1.3176
1.0635
1.1415
1.2257
1.3225
1.0648
1.1425
1.2295
1.3289

a2=5

€2

1.0277
1.0551
1.0818
1.1073
1.0526
1.1082
1.1668
1.2265
1.0635
1.1336
1.2094
1.2885
1.0705
1.1486
1.2333
1.3251
1.0733
1.1588
1.2507
1.3491
1.0767
1.1660
1.2625
1.3671

€3

1.0736
1.1653
1.2748
1.4025
1.0732
1.1666
1.2725
1.3988
1.0736
1.1653
1.2720
1.3982

€3

1.0970
1.2210
1.3738
1.5611
1.0957
1.2139
1.3561
1.5250
1.0948
1.2110
1.3493
1.5107
1.0951
1.2096
1.3440
1.5019
1.0935
1.2093
1.3424
1.4959
1.0938
1.2089
1.3408
1.4926

(Continued)
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Table 10.1 The Values of e;s,i =1,2,3 Continued
a =4 a =5

n @ ey e e3 el () €3

14 0.25 1.0000 1.0718 1.0856 1.0000 1.0796 1.0945
0.50 1.0022 1.1560 1.1910 1.0000 1.1698 1.2071
0.75 1.0069 1.2503 1.3148 1.0042 1.2710 1.3392
1.00 1.0168 1.3504 1.4543 1.0155 1.3793 1.4889

16 0.25 1.0000 1.0730 1.0853 1.0000 1.0807 1.0938
0.50 1.0026 1.1604 1.1914 1.0000 1.1737 1.2068
0.75 1.0052 1.2539 1.3109 1.0048 1.2771 1.3376
1.00 1.0192 1.3620 1.4543 1.0177 1.3898 1.4871

18 0.25 1.0000 1.0750 1.0859 1.0000 1.0820 1.0938
0.50 1.0029 1.1624 1.1903 1.0026 1.1782 1.2079
0.75 1.0059 1.2617 1.3131 1.0054 1.2840 1.3384
1.00 1.0186 1.3680 1.4509 1.0171 1.3982 1.4857

20 0.25 1.0000 1.0740 1.0839 1.0000 1.0844 1.0951
0.50 1.0000 1.1647 1.1899 1.0029 1.1806 1.2075
0.75 1.0033 1.2627 1.3092 1.0030 1.2852 1.3344
1.00 1.0207 1.3750 1.4504 1.0190 1.4049 1.4843

It is observed from Table 10.1 that

» for fixed a,, the values of ¢;/s,i = 1,2,3 increase as n increase;
e for fixed n, the value of e;s,i = 1,2, 3 increase as « increases;
* the values of ¢/'s,i = 1,2, 3 greater than “unity” for all values of (n, o, a;), which follows that

the estimators 65, 9’2( " and 9;(00) are more efficient than unbiased estimator 6»;
» when n is fixed, larger gain in efficiencies are observed for large values of « and all values
of ay;
 the values of ¢;'s,i = 2,3 increase as the value of a, increases. It follows that the larger gain in

_ . an(l) ~n(o0) - . .
efficiency by using 9; and 6; over 6, can be obtained when the population is more
heterogeneous. No trend is observed for e; as a, increases.

Therefore we conclude that the BLUE of steady-state RSS 12)121(%) of 0, is a better estimator of

. ~n(l
6>, 05 and 0;( ), respectively.

CONCLUSION

In this chapter, taking the motivation from Ebrahimi (1984, 1985), we have developed a new
Morgenstern type bivariate exponential distribution (MTBED) with known coefficients of variation
(CV) using the results due to Morgenstern (1956) and Scaria and Nair (1999). The mean and
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variance of newly developed MTBED with known CV have also been obtained. We have discussed
the problem of estimating parameter 6, in MTBED in the presence of known CV. For estimating
the parameter 6, of MTBED, we have derived an unbiased estimator 6, using ranked set sample
mean and the BLUE 6 based on RSS and their variances are given. We have further addressed the
problem of estimating 6, using unbalanced RSS and its special cases known as unbalanced single-
stage and steady-state RSS are also discussed. The reflective performance of the various proposed
estimators of the parameter 6, are evaluated through numerical illustration and finally obtained that

the BLUE of the steady-state RSS @Z(w) is more efficient among the estimators discussed in the
chapter.
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CHAPTER

SHRINKAGE ESTIMATORS OF
SCALE PARAMETER TOWARDS
AN INTERVAL OF
MORGENSTERN TYPE BIVARIATE
UNIFORM DISTRIBUTION USING
RANKED SET SAMPLING

Vishal Mehta
Department of Mathematics, Jaypee University of Information Technology, Waknaghat, Himachal Pradesh, India

INTRODUCTION

Ranked set sampling (RSS) is a method of sampling that can be advantageous when quantification
of all sampling units is costly but a small set of units can be easily ranked, according to the charac-
ter under investigation, without actual quantification. The technique was first introduced by
Mclntyre (1952) for estimating mean pasture and forage yields. The theory and applications of RSS
are given by Chen et al. (2004). Suppose the variable of interest, Y, is difficult or much too expen-
sive to measure, but an auxiliary variable X correlated with Y is readily measureable and can be
ordered exactly. In this case, as an alternative to Mclntyre’s (1952) method of ranked set sampling,
Stokes (1977) used an auxiliary variable for the ranking of sampling units. If X(,), is the observation
measured on the auxiliary variable X from the unit chosen from the rth set then we write Y, to
denote the corresponding measurement made on the study variable Y on this unit, then
Y- r=1,2,...,n, from the ranked set sample. Clearly, ¥}, is the concomitant of the rth order sta-
tistic arising from the rth sample. Stokes (1995) has obtained the estimation of parameters of the
location-scale family of distribution by RSS. Lam et al. (1994) used RSS to estimate the two-
parameter exponential distribution. Al-Saleh and Ananbeh (2005, 2007) estimated the means of the
bivariate normal distribution using moving extremes RSS with a concomitant variable. Al-Saleh
and Diab (2009) considered estimation of the parameters of Downton’s bivariate exponential distri-
bution using an RSS scheme. Barnett and Moore (1997) derived the best linear unbiased estimator
(BLUE) for the mean of Y, based on a ranked set sample obtained using an auxiliary variable X for
ranking the sample units.

In the estimation of an unknown parameter there often exists some prior knowledge about the
parameter which one would like to utilize in order to get a better estimate. The Bayesian approach
is a well-known example in which prior knowledge about the parameter is available in the form of
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prior distribution. For current references in this context the reader is referred to Sharma et al.
(2016), Bouza (2001, 2002, 2005), Samawi and Muttlak (1996), Demir and Singh (2000), Singh
and Mehta (2013, 2014a,b, 2015, 2016a,b,c, 2017), Mehta and Singh (2015, 2014), and Mehta
(2017).

The organization of this chapter is as follows. Section 11.2 introduces the general distribution
theory, properties of Farlie—Gumbel—Morgenstern (FGM) distribution/Morgenstern distribution
and a brief review of the estimators of the scale parameter 6, envisaged by Tahmasebi and Jafari
(2012). In Section 11.3, some improved shrinkage toward interval estimators are described on the
lines of Singh et al. (1973), Searls and Intarapanich (1960), Searls (1964), Jani (1991), and
Kourouklis (1994), the expressions of bias and mean squared error (MSE) are obtained and com-
pared with usual unbiased estimators. In Section 11.4, we have computed the relative efficiencies
of different estimators numerically to evaluate their performance. Section 11.5 concludes the chap-
ter with some final remarks.

REVIEW OF RSS IN FGM FAMILY OF DISTRIBUTION

A general family of bivariate distributions is proposed by Morgenstern (1956) with specified mar-
ginal distributions Fx(x) and Fy(y) as

Fxy(x,y) = Fx()Fyy)[l + a(1 — Fx(x)) 1 = Fy()); —1=a=1, (11.1)

where « is the association parameter between X and Y.
A member of this family is Morgenstern type bivariate uniform distribution (MTBUD) with the
probability density function (pdf)

1 2x

2y
= — |l+al1-2)(1-2)];0<x<6,,0<y <6, .
feren) = 5 {1 a<1 91><1 ezﬂ,o ¥ <0,,0<y<0; (11.2)

The pdf of Y},3. for 1 =r=mnis given by [see Scaria and Nair (1999)]
1 —2r+1 2
01,00 = [fmomsmas= g |rea(" 2 (1= 2 o<y <o

n+1

where f,(x) is the density function of X, i.e.,

! =100, ="
N
and therefore, the mean and variance of Y5, for 1 =r =n are, respectively, given by
E[Yy,] =6:8, and Var[Y,] =63\, (11.3)
where
2] e g ]
Let Y;3,,7=1,2,...,n, be the RSS observations made on the units of the ranked set sampling

regarding the study variable Y, which is correlated with the auxiliary variable X, when (X,Y) follows
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MTBUD as defined in Eq. (11.2). Then an unbiased estimator for ¢, based on RSS mean in
Eq. (11.3) is given as [see Tahmasebi and Jafari (2012)]

. oL
11 = byrss = ;Z Y
r=1

and its variance is

6> I~ (n=2r+1\?
\YZ =22]1-—_ = )| =6V 11.4
ar() 3n[ 3n ( n+1 ) e ( )

r=1

where

1 I~ (n=2r+1\2
Vi=—|1—— — .
! 3n|: Sn;( n+1 )}

When the parameter « is known, Tahm;ascbi and Jafari (2012) have suggested a BLUE 03 of 0,,
which is more efficient than the estimator 6, rss and is given as:

n n 2 -1
= LREE) w
r=1 r i=1 i

n 2 -1
Var(ty) = 6 (Z (i—)) =62v,, (11.5)

r=1

- (508)

Further, Tahmasebi and Jafari (2012) derived BLUE of 60, based on the upper ranked set sample
(URSS) as

whose variance is

where

n p=

N 1 &
13=0,= Yiugrs
a5, 2 Yol
and its variance is given by
M

Var(t;) = 6>
ar(3) 2}1/62

=RV, (11.6)

where
A

n

V3 = ’12 .
Using the extreme ranked set sampling (ERSS) method, Tahmasebi and Jafari (2012) also

derived different estimators for 6, with concomitant variable for n. Below we have used the same

notations ERSS;, ERSS, and ERSS; as defined in Tahmasebi and Jafari (2012), pp. 134—135).
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If n is even then the estimator of the 6, using ERSS; is defined as

n/2
ty = Oy Erss, = ;Z Yupr—1 + Y

r=1

and its variance is given by

n+1

V. = 1 | — oﬁ n—1\?
Y 3 3 \n+1) |’
If n is odd then the estimators of 6, using ERSS, and ERSS; are obtained as

Y + Y
2 Y[l]l+Y[n]2+Y[1]3+--~+Y[n](n—1)+7( L 3 []))

ts = 02 prss, = ’ ,

62 o? n—1\°
Var(ty) = ﬁ {1 -3 <—> } =03Vy, (11.7)

where

and

2(Yon Yo + Yo -+ Yoy + Yy, )

te = Oy ERrsS, = . .

The variances of the estimators #5 and #4 are, respectively, given by

6% az(n—lf 1 a*(2—n) 5
=21 - =" "7 _ _ 4 - = .
Varlts) = 3, [1 3nn+1¢ 21 6n(n+2) Vs, (11.8)

62 a2(n—1y
Var(fg) = =2 [1— —————| = 02V, 11.9
i) = 52 1 = S0 = v 119
where
20— 19 27 _
VRN PG G0 NS B Gt )
3n 3n(n+1¢ 2n  6n(n+2)
and

e L1 o
3n 3n(n+1Y
Al-Saleh and Ananbeh (2007) proposed the concept of moving extreme ranked set sampling
(MERSS) with a concomitant variable for the estimation of the means of the bivariate normal dis-
tribution. Now, suppose that the random vector (X, Y) has an MTBUD as defined in Eq. (11.2). An
unbiased estimator of ¢, based on MERSS is given by [see Tahmasebi and Jafari (2012)]

n

A 1
t7 = 02 MERSS = ;Z (Yo + Yo )
=1

and its variance is



11.3 THE SUGGESTED FAMILY OF ESTIMATORS 147

02 a? n—1\?
A =211-—(—) | =6 11.1
arn) = 5 [ 3n (n+ 1) } V7, (11.10)

where

THE SUGGESTED FAMILY OF ESTIMATORS FOR THE SCALE
PARAMETER 6, BASED ON THE A PRIORI INTERVAL

The arithmetic mean (AM), the geometric mean (GM), and the harmonic mean (HM) are measures
of location, which are used for suggesting different classes of shrinkage estimators for scale param-
eter 0. Let the prior information of 6, be available in the form of an interval whose end points are
01 and 6, such that 6, <6,,. We define the following families of shrinkage estimators

1/}(9’2 (i=1,2,3) of 6, as

W) = 81, + (1 — )AGH(I, k) = 8[t; — AGH(L,k)] + AGH(1k), (11.11)
where #,j=1,2,...,7 is an unbiased estimator of the parameter 6,,6 is a scalar such that 0 =0 =1,
and AGH(l,k) = (921022)1(92‘2922)16 for i =1,2,3 corresponding to (/,k) which should be taken as

0, 1), (%, 0) and (1, — 1) in AGH(I, k). It is interesting to note that for different values of i we have
formed the following classes of estimators:

i. Fori=1and (Ik)=(0,1), we get the class of estimators as

U4 = 81y — AGH(0, 1)] + AGH(O, 1)=6[t_,- - (921 ;922)} + (9” ;'9”), (11.12)

. Fori=2and (Lk) = ( ) we obtain the class of estimators as

WD =6 [ —AGH(%,O)} +AGHG,0) :6[@—@] + /05100, (11.13)

iii. Fori=3and (k) = (1, — 1), we get the class of estimators as

26,0, 26,0

G —§ _ 21022 21022

t;,—AGH(1, —1)| +AGH(1, —1)=6|t;, — + . 11.14
w [ ( )} ( ) |:J <021 + 022>:| (921 + 922) ( )

The bias and MSE of wgz (i=1,2,3) are, respectively, given by
B{ 5,2)} =0,(1-6) (Mo — 1) (11.15)
MSE[vf]] = 62 [vie? + (=67 (A~ 1) ] (11.16)

where A\ = AGH U k)
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The minimum mean squared error (MMSE) estimators of the parameter 6, based on
t,j=1,2,...,7 are given as

-
T(1+y)

J=12,...7, (11.17)

in the class of estimator T; =tA;,j=1,2,...,7, where Aj/s,j =1,2,...,7 are suitably chosen con-
stants such that the MSE of Tj’s, j=1,2,...,7 are minimum.
The bias and MSE of T7's,j = 1,2,...,7 are, respectively, given by

V.
B(T;) = 792(1 +jv,)’ (11.18)
MSE(Tj*) :93(1 X’V) (11.19)
J

Comparisons of the proposed shrinkage estimators wgz) (i=1,2,3) with that of corresponding
usual unbiased estimators tj’s, j=1,2,...,7 are given in Theorem 1.1.

Theorem 1.1: The proposed shrinkage estimators zlzgz) (i=1,2,3) are better than the correspond-
ing usual unbiased estimators tj/s, j=12,...,71if

{(/\url)z - Vf} sl

{(/\i)*l)z“’/}

Proof: From Egs. (11.4)—(11.10) and (11.16), we have that
Var (1) fMSE[ngZ)] >0, i=1,2,3, j=1,2,...71f
02V, — 62V;6° — (1—6F (\oy— 163 >0,

ie, if Vi(1—8)>1=86F(Ay—1), ke, if V(1 +8)>(1 =8 (A\y—1),
Now
(1-8)>0=>1>6=6<1 (11.20)

and V; + 5{v,~ + (M- 1)2} > (Ao~ 1Y, or 6{vj + (A(i)—1)2} > {(A@— 1) - vj}, ie. if
{(/\<i)—1)2+"/}
From Egs. (11.20) and (11.21) we have
{(/\<i>—1)2—Vj}
{(/\(,»)—1)2+V,~}

(11.21)

<6<1. (11.22)

Hence the theorem. 4
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Comparisons of the proposed shrinkage estimators 1/’(92 (i=1,2,3) with that of corresponding
MMSE estimators Tj*s, j=12,...,7 are given in Theorem 1.2.

Theorem 1.2: The proposed shrinkage estimators 1/);’2) (i=1,2,3) are better than the correspond-
ing MMSE estimators Tfs,j =1,2,...,7if

Co-1) Vi {1_0‘(")_1)2} (\o—1) N Vi {1_(>‘(i)_1)2}

; <6< .
Go=1)+V, \/(1“//‘){(/\(:‘)*1)2“//} Go=)+V; \/(1+X/j){(>\(0—1)2+vj}

(11.23)

Proof: From Egs. (11.16) and (11.19), we have that

MSE(Tj*)_MSE[q/;gj]>0, i=1,2,3, j=1,2,...7if

j 2
% +fv 03V;6* — (1=6) (Ao —1) 63 >0,

e, if =y + V0 + (1+52—26)(1—62)()\(,~)—1)2<0,

. 2
e, if 8 [=V;+ (A= 1] =26(Ag =1 =3 + (Ao =1 >0,
On solving the above quadratic equation with respect to 6 we have

Mo-1F Yi {]_(A(”_])z} (o—1)’ N Vi {1—()\(,-)—1)2}

<6<

Co=1 % vy {017 +v) G-l +% e v){0o-17 + )

Hence the theorem.+

RELATIVE EFFICIENCY

We note here that among these seven estimators #;, j=1,2,...,7 discussed above, the estimator 7,
is the best as we have observed numerically. Keeping this in view we have made an effort to com-

pare the estimators wgz) (i=1,2,3) formulated based on the BLUE with that of the BLUE ¢, and
its MMSE estimator T;‘ by using following the formula:

Vs .
=RE(¢, ¢ ,i=1,2,3, (11.24)
< i 2> {V262+(1—6)2(/\(,-)—1)2}
& *RE(d;(’) T*) = V2 L i=1,2.3. (11.25)

(1 + Vo vas® + (=87 (= 1)}

The values of e(li) and e(zi), i=1,2,3 are shown in Table 11.1 for n=5(5)20,
a=0.25(0.25)1.00 and different values of 1, = 921 =0.5(0.1)0.9, o, = 9—2 =1.1(0.1)1.5 and
6 =10.25(0.25)0.75.



Table 11.1 The Values of ¢’ and ¢{’s, i=1,2,3 for Different Values of 1, (1,,1,),6 and Fixed o = 0.25

(¢1ﬂ/’2)—’
n)
5

10

15

20

(¢1,1/’z) =
nl

20

("Pl ,wz) o
nl

0.25
0.50
0.75
0.25
0.50
0.75
0.25
0.50
0.75
0.25
0.50
0.75

0.25
0.50
0.75
0.25
0.50
0.75
0.25
0.50
0.75
0.25
0.50
0.75

0.25
0.50
0.75

o

2.4869
2.4942
1.6660
1.3465
1.8106
1.5672
0.9231
1.4210
1.4794
0.7023
1.1695
1.4010

o

2.3324
2.3392
1.5625
1.3033
1.7526
1.5170
0.9032
1.3904
1.4475
0.6909
1.1505
1.3782

o

2.4473
2.4763
1.6640

(0.5,1.1)

o2

1.5882
1.9918
1.5987
0.8344
1.3248
1.4520
0.5658
0.9924
1.3299
0.4281
0.7933
1.2268

(0.5,1.1)
&P

1.4895
1.8680
1.4993
0.8077
1.2823
1.4055
0.5536
0.9710
1.3012
0.4211
0.7804
1.2069

(0.5,1.1)

o2

1.5612
1.9728
1.5956

o

1.1211
1.6164
1.5275
0.5801
1.0117
1.3385
0.3912
0.7363
1.1911
0.2952
0.5787
1.0730

&

1.0514
1.5160
1.4326
0.5615
0.9794
1.2957
0.3828
0.7204
1.1654
0.2904
0.5693
1.0555

o

1.1014
1.5981
1.5234

o

6.7842
3.4754
1.7485
4.3002
3.0715
1.7200
3.1475
2.7516
1.6925
2.4822
2.4921
1.6658

o

6.3627
3.2595
1.6398
4.1625
2.9731
1.6649
3.0796
2.6922
1.6560
2.4419
24516
1.6387

o0

6.7101
3.4667
1.7479

(0.6,1.2)

o

3.8922
2.9726
1.7120
2.2128
2.3637
1.6508
1.5458
1.9618
1.5938
1.1878
1.6767
1.5406

0.6,12)
&2

3.6504
2.7879
1.6056
2.1420
2.2880
1.5979
1.5124
1.9194
1.5594
1.1684
1.6494
1.5155

(0.6,1.2)

o2

3.8365
2.9580
1.7108

e

2.4869
2.4942
1.6660
1.3465
1.8106
1.5672
0.9231
1.4210
1.4794
0.7023
1.1695
1.4010

&

2.3324
2.3392
1.5625
1.3033
1.7526
1.5170
0.9032
1.3904
1.4475
0.6909
1.1505
1.3782

(For

o

2.4473
2.4763
1.6640

0.7,1.3)

e;l) e(lz)
16.0000 12.4488
4.0000 3.8771
1.7778 1.7715
16.0000 10.1822
4.0000 3.7612
1.7778 1.7653
16.0000 8.6137
4.0000 3.6520
1.7778 1.7592
16.0000 7.4640
4.0000 3.5490
1.7778 1.7530
0.7,1.3)

e<21> e(zz)
15.0058 11.6753
3.7515 3.6362
1.6673 1.6615
15.4877 9.8562
3.8719 3.6408
1.7209 1.7088
15.6550 8.4279
3.9137 3.5733
1.7394 1.7212
15.7399 7.3427
3.9350 3.4913
1.7489 1.7245

Fixed o= 0.50)

0.7,1.3)

e(ll) 8(12)
16.0000 12.3960
4.0000 3.8748
1.7778 1.7714

o

7.6179
3.5642
1.7540
4.9940
3.2132
1.7307
3.7144
2.9250
1.7080
2.9569
2.6843
1.6860

&

7.1446
3.3428
1.6450
4.8341
3.1103
1.6753
3.6343
2.8620
1.6712
2.9088
2.6407
1.6586

&

7.5421
3.5568
1.7535

o

6.7842
3.4754
1.7485
4.3002
3.0715
1.7200
3.1475
2.7516
1.6925
2.4822
2.4921
1.6658

&

6.3627
3.2595
1.6398
4.1625
2.9731
1.6649
3.0796
2.6922
1.6560
2.4419
24516
1.6387

o

6.7101
3.4667
1.7479

0.8,1.4)

o

10.9450
3.8047
1.7677
8.3114
3.6272
1.7577
6.6992
3.4654
1.7478
5.6110
3.3175
1.7380

0.8,1.4)
&2

10.2649
3.5683
1.6579
8.0453
3.5110
1.7014
6.5547
3.3907
1.7101
5.5197
3.2636
1.7098

(0.8,1.4)

e(lz)

10.8790
3.8012
1.7675

o

15.3735
3.9820
1.7769

14.7926
3.9640
1.7760

14.2539
3.9463
1.7751

13.7531
3.9287
1.7742

e

14.4182
3.7345
1.6665

14.3189
3.8371
1.7191

13.9465
3.8612
1.7368

13.5295
3.8648
1.7454

g

15.3620
3.9816
1.7769

0.9,1.5)
o

2.4869
2.4942
1.6660
1.3465
1.8106
1.5672
0.9231
1.4210
1.4794
0.7023
1.1695
1.4010

o

2.3324
2.3392
1.5625
1.3033
1.7526
1.5170
0.9032
1.3904
1.4475
0.6909
1.1505
1.3782

b

2.4473
2.4763
1.6640

o2

3.5095
2.8665
1.7030
1.9684
22321
1.6340
1.3677
1.8276
1.5704
1.0479
1.5472
1.5115

(0.9,1.5)
&P

3.2915
2.6884
1.5971
1.9054
2.1606
1.5817
1.3382
1.7881
1.5365
1.0309
1.5220
1.4870

(0.9,1.5)

o2

3.4577
2.8510
1.7016

o

5.1297
3.2377
1.7325
3.0509
2.7181
1.6893
2.1709
2.3422
1.6482
1.6850
2.0577
1.6090

(3)

4.8109
3.0365
1.6248
2.9532
2.6311
1.6352
2.1241
2.2917
1.6126
1.6576
2.0242
1.5829

&

5.0636
3.2259
1.7316




Table 11.1 The Values of e(li) and e(zi),s, i=1,2,3 for Different Values of n, (1/)1 R 1/)2), 6 and Fixed o = 0.25 Continued
(For Fixed o= 0.50)

0.5,1.1) 0.6,1.2) 0.7,1.3) (0.8,1.4)
(w; 11/’:) = 5 e ? ® o o ® e & & o o e
10 0.25 13178 | 08160 | 05671 | 42267 | 2.1684 | 13178 16.0000 | 10.0950 | 4.9137 | 4.2267 82176 | 14.7661
0.50 | 1.7873 13040 | 09941 | 3.0546 | 23409 | 1.7873 4.0000 37559 | 3.1982 | 3.0546 3.6192 3.9632
075 | 15628 | 14457 | 1.3307 1.7187 | 1.6480 | 1.5628 1.7778 17650 | 1.7296 | 1.7187 1.7572 1.7759
15 025 | 09014 | 05523 | 03818 | 3.0844 | 1.5110 | 0.9014 | 16.0000 85136 | 3.6432 | 3.0844 6.6014 | 142144
050 | 13981 | 09737 | 07213 | 27299 | 1.9366 | 1.3981 4.0000 3.6440 | 29051 | 2.7299 3.4537 3.9449
0.75 14732 | 13214 | 1.1812 1.6904 | 1.5896 | 1.4732 1.7778 1.7587 1.7063 1.6904 1.7471 1.7750
20 025 | 0.6850 | 04173 | 02877 | 24281 1.1594 | 0.6850 | 16.0000 73603 | 2.8946 | 2.4281 55163 | 13.7023
050 | 1.1480 | 0.7769 | 0.5659 | 2.4675 1.6514 | 1.1480 4.0000 3.5385 | 2.6612 | 2.4675 3.3026 3.9268
075 | 13932 | 1.2168 1.0619 | 1.6630 | 1.5352 | 1.3932 1.7778 1.7524 | 1.6837 | 1.6630 1.7370 1.7741
(0.5,1.1) (0.6,1.2) (0.7,1.3) (0.8,1.4)
(1/2 ,sz) - 5 & 2 & e 2 e e 2 e & 2 &
5 025 | 22979 | 14659 | 1.0342 | 63005 | 3.6023 | 22979 | 15.0234 | 11.6394 | 7.0817 | 6.3005 102150 | 14.4243
050 | 23251 1.8524 | 1.5006 | 32551 | 27774 | 2.3251 3.7558 3.6383 | 3.3397 | 3.2551 3.5692 3.7386
075 | 15624 | 14982 | 14304 | 1.6412 | 1.6064 | 1.5624 1.6693 1.6633 | 1.6465 | 1.6412 1.6596 1.6684
10 025 | 12765 | 0.7905 | 0.5494 | 4.0944 | 2.1006 | 1.2765 15.4992 97791 | 4.7599 | 4.0944 7.9604 | 14.3039
050 | 1.7314 | 1.2632 | 09630 | 29590 | 22676 | 1.7314 3.8748 3.6383 | 3.0981 | 2.9590 3.5059 3.8392
075 | 15139 | 1.4004 | 1.2891 1.6649 | 15964 | 1.5139 1.7221 1.7098 | 1.6755 1.6649 1.7022 1.7204
15 025 | 0.8825 | 05406 | 03737 | 3.0195 | 14792 | 0.8825 15.6633 83344 | 3.5665 | 3.0195 6.4625 | 13.9153
050 | 13687 | 09532 | 07061 | 2.6724 | 1.8959 | 1.3687 3.9158 35673 | 2.8440 | 2.6724 3.3810 3.8619
075 | 14422 | 12936 | 1.1563 | 1.6548 | 1.5561 1.4422 1.7404 17217 | 1.6704 | 1.6548 1.7103 1.7377
20 025 | 0.6741 | 0.4107 | 02832 | 23896 | 1.1410 | 0.6741 15.7465 72437 | 2.8487 | 2.3896 5.4289 | 13.4851
050 | 1.1298 | 0.7646 | 0.5570 | 2.4284 | 1.6252 | 1.1298 3.9366 3.4824 | 2.6191 | 24284 3.2503 3.8646
075 | 13711 1.1976 | 1.0450 | 1.6367 | 15109 | 1.3711 1.7496 17246 | 1.6570 | 1.6367 1.7095 1.7460
(For Fixed o =0.75)
0.5,1.1) 0.6,1.2) 0.7,1.3) (0.8,1.4)
(1#': 1"/’2) = 5 o & & e ® ® e e ® o i ®
5 025 | 2.3798 1.5155 1.0682 | 6.5822 | 3.7413 | 2.3798 16.0000 | 123033 | 74110 | 6.5822 | 10.7637 | 15.3415
050 | 24451 19399 | 15667 | 34513 | 29324 | 24451 4.0000 3.8708 | 3.5437 | 34513 3.7949 3.9810
0.75 1.6605 1.5901 1.5161 1.7469 | 1.7087 1.6605 1.7778 1.7712 1.7527 1.7469 1.7672 1.7768
10 025 | 1.2687 | 0.7846 | 0.5449 | 4.0995 | 2.0921 1.2687 | 16.0000 9.9403 | 47742 | 4.0995 8.0524 | 14.7182
050 | 1.7466 | 1.2680 | 09636 | 3.0245 | 23007 1.7466 4.0000 3.7462 | 3.1714 | 3.0245 3.6047 3.9617
075 | 15549 | 14344 | 13167 | 17163 | 1.6429 | 1.5549 1.7778 1.7645 1.7276 | 1.7163 1.7564 1.7759

e

1.3178
1.7873
1.5628
0.9014
1.3981
1.4732
0.6850
1.1480
1.3932

(1)

2.2979
2.3251
1.5624
1.2765
1.7314
1.5139
0.8825
1.3687
1.4422
0.6741
1.1298
1.3711

(0.9,1.5)

o2

1.9282
2.2089
1.6308
1.3366
1.8026
1.5657
1.0227
1.5225
1.5056

(0.9,1.5)

o

3.2467
2.6769
1.5977
1.8679
2.1397
1.5798
1.3084
1.7647
1.5328
1.0065
1.4984
1.4817

0.9,1.5)

@

3.3693
2.8238
1.6991
1.8592
2.1679
1.6252

o

2.9933
2.6976
1.6873
2.1242
23177
1.6451
1.6461
2.0316
1.6050

i

4.9504
3.2051
1.7301
2.8941
2.6610
1.6836

(Continued)




Table 11.1 The Values of ¢!’ and e, i=1,2,3 for Different Values of 1, (¢;,%,),6 and Fixed a = 0.25 Continued

(For Fixed o =0.75)

0.5,1.1) 0.6,1.2) 0.7,1.3) 0.8,1.4) 0.9,1.5)
("/’1 ﬂl’z) = 5 e(l) e(l) e(3) e(l) e(2) 9(3) e(l) e(l) 8(3) e(l) e(l) 8(3) e(l) e(Z) e(3)
nl 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
15 0.25 0.8643 0.5290 0.3655 2.9750 1.4511 0.8643 16.0000 8.3359 3.5193 2.9750 6.4294 14.1425 0.8643 1.2830 2.0434
0.50 1.3578 0.9413 0.6953 2.6910 1.8921 1.3578 4.0000 3.6292 2.8694 2.6910 3.4323 3.9425 1.3578 1.7586 2.2742
0.75 1.4617 1.3062 1.1634 1.6866 1.5820 1.4617 1.7778 1.7578 1.7032 1.6866 1.7457 1.7749 1.4617 1.5572 1.6395
20 0.25 0.6553 0.3989 0.2749 2.3342 1.1106 0.6553 16.0000 7.1766 2.7864 2.3342 5.3502 13.6097 0.6553 0.9793 1.5790
0.50 1.1105 0.7483 0.5438 2.4235 1.6066 1.1105 4.0000 3.5192 2.6197 2.4235 3.2755 3.9234 1.1105 1.4791 1.9853
0.75 1.3791 1.1989 1.0420 1.6579 1.5253 1.3791 1.7778 1.7512 1.6795 1.6579 1.7351 1.7739 1.3791 1.4947 1.5976
0.5,1.1) 0.6,1.2) 0.7,1.3) 0.8,1.4) 0.9,1.5)
("/’1 ’wz) i 5 eV e? ed eV e? ed e e? e e e? e eV e? e
nl 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
5 0.25 2.2390 1.4258 1.0050 6.1927 3.5199 2.2390 15.0531 11.5752 6.9724 6.1927 10.1267 14.4336 2.2390 3.1699 4.6574
0.50 2.3004 1.8251 1.4739 3.2471 2.7589 2.3004 3.7633 3.6417 3.3340 3.2471 3.5703 3.7454 2.3004 2.6567 3.0154
0.75 1.5622 1.4960 1.4264 1.6435 1.6075 1.5622 1.6726 1.6664 1.6490 1.6435 1.6626 1.6717 1.5622 1.5986 1.6277
10 0.25 1.2305 0.7610 0.5285 3.9762 2.0292 1.2305 15.5189 9.6414 4.6306 3.9762 7.8102 14.2756 1.2305 1.8033 2.8070
0.50 1.6941 1.2299 0.9346 2.9335 2.2315 1.6941 3.8797 3.6336 3.0761 2.9335 3.4963 3.8425 1.6941 2.1027 2.5810
0.75 1.5081 1.3913 1.2771 1.6647 1.5935 1.5081 1.7243 1.7114 1.6757 1.6647 1.7036 1.7225 1.5081 1.5763 1.6330
15 0.25 0.8469 0.5183 0.3581 29151 1.4219 0.8469 15.6777 8.1680 3.4485 29151 6.2999 13.8576 0.8469 1.2572 2.0023
0.50 1.3305 0.9223 0.6813 2.6368 1.8540 1.3305 3.9194 3.5561 2.8116 2.6368 3.3632 3.8631 1.3305 1.7232 2.2284
0.75 1.4323 1.2799 1.1400 1.6526 1.5501 1.4323 1.7420 1.7224 1.6689 1.6526 1.7105 1.7391 1.4323 1.5259 1.6065
20 0.25 0.6453 0.3929 0.2708 2.2989 1.0938 0.6453 15.7578 7.0680 2.7442 2.2989 5.2692 13.4036 0.6453 0.9644 1.5551
0.50 1.0937 0.7370 0.5356 2.3868 1.5823 1.0937 3.9394 3.4660 2.5800 2.3868 3.2260 3.8640 1.0937 1.4567 1.9553
0.75 1.3582 1.1808 1.0262 1.6328 1.5022 1.3582 1.7509 1.7247 1.6540 1.6328 1.7089 1.7471 1.3582 1.4721 1.5734
(For Fixed a=1.00)
(0.5, 1.1) 0.6, 1.2) 0.7, 1.3) 0.8, 14) 0.9, 1.5)
(1/2 1'¢’2) e 5 e(ll) 8(12) 8(13) e(ll) 8(12) 8(13) e(ll) e(12) e(13) e(ll) e(lz) 8(13) e(ll) 8(12) e(13)
5 0.25 2.2820 1.4494 1.0202 6.3926 3.6023 2.2820 16.0000 12.1617 7.2159 6.3926 10.5892 15.3097 2.2820 3.2405 4.7840
0.50 2.3982 1.8908 1.5201 3.4276 2.8935 2.3982 4.0000 3.8645 3.5234 3.4276 3.7851 3.9801 2.3982 2.7826 3.1733
0.75 1.6550 1.5817 1.5050 1.7454 1.7053 1.6550 1.7778 1.7709 1.7515 1.7454 1.7666 1.7768 1.6550 1.6954 1.7278
10 0.25 1.1966 0.7387 0.5125 3.9092 1.9795 1.1966 16.0000 9.6998 4.5645 3.9092 7.7988 14.6414 1.1966 1.7576 2.7468
0.50 1.6845 1.2137 0.9179 2.9769 2.2384 1.6845 4.0000 3.7308 3.1290 2.9769 3.5815 3.9592 1.6845 2.1048 2.6040
0.75 1.5422 1.4165 1.2948 1.7124 1.6348 1.5422 1.7778 1.7636 1.7244 1.7124 1.7550 1.7757 1.5422 1.6161 1.6778




Table 11.1 The Values of ¢!’ and ¢Y’s, i=1,2,3 for Different Values of n, (4;,1,),6 and Fixed a = 0.25 Continued

(For Fixed oo =1.00)

05, 1.1) 0.6, 1.2) 0.7, 13) 08, 1.4)
) — a 2) 3 a 2) 3 1 @ 3 a 2 3)
(wri l"/’z) 8 el) "(1 e(l) el) e(1 e(l) e(l) el) e(l) el) e(l) "(1
15 0.25 0.8096 0.4948 0.3417 2.8115 1.3626 0.8096 16.0000 8.0600 3.3336 2.8115 6.1659 14.0261

0.50 1.2967 0.8925 0.6566 2.6295 1.8235 1.2967 4.0000 3.6054 2.8126 2.6295 3.3979 3.9384
0.75 1.4434 1.2819 1.1354 1.6805 1.5696 1.4434 1.7778 1.7564 1.6981 1.6805 1.7434 1.7747

20 0.25 0.6115 0.3719 0.2562 2.1945 1.0385 0.6115 16.0000 6.8933 2.6248 2.1945 5.0973 13.4598
0.50 1.0538 0.7056 0.5109 2.3543 1.5381 1.0538 4.0000 3.4880 2.5540 2.3543 3.2319 3.9178
0.75 1.3564 1.1705 1.0108 1.6497 1.5093 1.3564 1.7778 1.7492 1.6726 1.6497 1.7320 1.7736
0.5, 1.1) 0.6, 12) 0.7, 13) 0.8, 1.4)
) — 1 2) 3 1 2 3 a @ 3 1) 2 3)
(fi 1) o e(z) eg e(z) e(z) e; ) e(z) ez) ez) ez) e(2 e(z) eg
5 0.25 2.1530 1.3675 0.9626 6.0315 3.3988 2.1530 15.0960 11.4746 6.8082 6.0315 9.9909 14.4447

0.50 2.2627 1.7840 1.4342 3.2340 2.7300 2.2627 3.7740 3.6461 3.3243 3.2340 3.5712 3.7552
0.75 1.5614 1.4924 1.4199 1.6468 1.6090 1.5614 1.6773 1.6708 1.6525 1.6468 1.6668 1.6764
10 0.25 1.1627 0.7178 0.4980 3.7986 1.9235 1.1627 15.5476 9.4255 4.4355 3.7986 7.5783 14.2274
0.50 1.6368 1.1794 0.8920 2.8928 2.1751 1.6368 3.8869 3.6253 3.0405 2.8928 3.4802 3.8472
0.75 1.4986 1.3764 1.2581 1.6640 1.5886 1.4986 1.7275 1.7138 1.6757 1.6640 1.7054 1.7255
15 0.25 0.7943 0.4855 0.3352 2.7586 1.3369 0.7943 15.6988 7.9083 3.2708 2.7586 6.0498 13.7621
0.50 1.2722 0.8757 0.6442 2.5800 1.7892 1.2722 3.9247 3.5375 2.7596 2.5800 3.3339 3.8643
0.75 1.4162 1.2577 1.1140 1.6488 1.5401 1.4162 1.7443 1.7234 1.6662 1.6488 1.7106 1.7413
20 0.25 0.6029 0.3666 0.2525 2.1636 1.0239 0.6029 15.7743 6.7961 2.5878 2.1636 5.0254 13.2699
0.50 1.0389 0.6956 0.5037 2.3211 1.5164 1.0389 3.9436 3.4388 2.5180 2.3211 3.1863 3.8626
0.75 1.3373 1.1540 0.9965 1.6264 1.4880 1.3373 1.7527 1.7246 1.6490 1.6264 1.7076 1.7486

o

0.8096
1.2967
1.4434
0.6115
1.0538
1.3564

&

2.1530
2.2627
1.5614
1.1627
1.6368
1.4986
0.7943
1.2722
1.4162
0.6029
1.0389
1.3373

(0.9, 1.5)
&P

1.2039
1.6909
1.5436
0.9152
1.4128
1.4772

(0.9, 1.5)
&P

3.0574
2.6254
1.5996
1.7079
2.0453
1.5704
1.1812
1.6591
1.5145
0.9023
1.3928
1.4564

o

1.9236
2.2062
1.6305
1.4796
1.9135
1.5857

&

4.5137
2.9940
1.6301
2.6691
2.5304
1.6304
1.8874
2.1646
1.5998
1.4587
1.8865
1.5633
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11.5 CONCLUSION

It is observed from Table 11.1 that:

* when (1/)1, wz) €(0.7,1.3) the proposed classes of estimators 1/1(9’2) (i=1,2,3) is always better
than the usual unbiased estimator #, and MMSE estimator Tz,
¢ the gain in efficiency by using 7,[)(9'2) (i=1,2,3) over MMSE estimator T; is fewer than by using
$) (i=1,2,3) over the BLUE 1,;
e for (wl , wz) €(0.7,1.3), the developed class of estimators w;lz) (based on AM) is the best (best in
the sense of having smaller MSE) among z/ng)(i =1,2,3), while for (1/}5, 1,) €(0.9,1.5) the

developed class of estimator wg) (based on HM) is the best among 1/)(9’ (i=1,2,3).

2

In general the proposed estimator w(b,i) is recommended when (1pl,w2) €(0.5,1.3) and 1#2? is
recommended when (wl, ¢2) €(0.8, 1.5) and the sample size n is small. In practice, when the obser-
vations are expensive such small sizes may be all that are available, particularly in defense weapon

testing problems.
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INTRODUCTION

In many survey sampling studies, the population is often divided into exclusively disjointed subpo-
pulations using supplementary or auxiliary information on population units. If these subpopulations
have different mean and variance values, one can select a stratified sample to construct more pre-
cise estimators for population quantities. Stratified sampling is well understood and studied in sur-
vey sampling literature. For settings, where auxiliary information is available for all population
units, in addition to stratum structure, one can induce a second layer of structure within each stra-
tum sample by grouping the observations based on their relative positions in small sets. This second
layer structure can be induced by selecting independent ranked set samples across strata popula-
tions. Stratified ranked set sample (SRSS) controls the variation in the sample in a two-stage pro-
cess. The first stage divides the population into disjointed subpopulations and selects ranked set
samples (RSSs) from each stratum. It partitions the total variation in the sample as between- and
within-stratum variation. The construction of the RSS sample from each stratum in the second-
stage further partitions the within-stratum variation into between- and within-ranking group varia-
tions. Due to this two-layer stratification, SRSS controls the total variation better than a stratified
SRS and ranked set sample alone. Hence, stratified RSS yields better informative samples than its
competitor samples.

In a finite population, the construction of a ranked set sample of size n requires a set size H and
cycle size d. Once we determine the set and cycle sizes, we select nH units from the population
without replacement and partition them at random into n sets, each having H units. We rank the
units in each set with respect to the characteristic of interest. In these sets, we measure the units
with rank 1 in the first d sets, the units with rank 2 in the next d sets and so on. This yields samples
of H different sets of judgment order statistics, each of which has d independent and identically
distributed judgment order statistics. These measured observations are called a ranked set sample
from a finite population.

Ranked Set Sampling. DOI: https:/doi.org/10.1016/B978-0-12-815044-3.00012-5
Copyright © 2019 Elsevier Inc. All rights reserved. 1 57
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In this chapter, we consider the case when the entire population is divided into L layers or
strata. The /-th stratum population is denoted with

PV =y, oyl 1=1,..,L,

where y;; are unknown nonrandom fixed quantities and N; is the population size for stratum /. We
assume that N;; [=1,...,L are all known and N =N, +...+ N;, where N is the total number of
units in the entire population.

Construction of SRSS requires L independent RSS samples, one from each stratum. Let H; and
d; be the set and cycle sizes for the /th stratum. Stratified RSS then consists of L independent RSS
samples RSS;, where RSS,; is selected from the /th stratum, [ = 1,..., L. Since we are in a finite pop-
ulation setting, the distributional properties of the RSS; sample depend on whether the sample is
constructed with or without replacement and whether we use a design-based or model-based infer-
ence. A detailed description of the construction of RSS, is provided in Section 12.2.

Ranked set sampling was first suggested by Mclntyre (1952) to increase the efficiency of the
estimator of the population mean. The theoretical foundation of stratification based on ordering of
sample units is considered in Takahasi and Wakimoto (1968). They showed that if the stratification
is done based on a balanced ranked set sample in which each judgment class has an equal number
of measured observations, the estimators are unbiased. They also showed that the ranked set sample
mean is more efficient than a simple random sample mean of comparable size and provided an
upper and lower bound for its relative efficiency. This upper bound is achieved for uniform distri-
bution. Patil, Sinha, and Taillie (1995) used a without replacement RSS sample to estimate the
mean of a finite population of size N. Deshpande, Frey, and Ozturk (2006) introduced three differ-
ent without replacement sampling policies for RSS designs from finite populations. The first design
constructs a sample with replacement, the second design constructs a sample by replacing only the
measured observations, and the third design constructs a sample by replacing none of the units in
each ranked set regardless of the measurement status. They provide a computational algorithm to
construct confidence intervals for the population quantiles based on these three designs.

Over the last two decades, research effort in RSS sampling in finite populations has concen-
trated in two areas. Many researchers computed inclusion probabilities of sample units and con-
structed Horwitz—Thompson type estimators (Al-Saleh and Samawi, 2007; Frey, 2011; Gokpinar
and Ozdemir, 2010; Ozturk and Jafari Jozani, 2013; Jafari Jozani and Johnson, 2011). In the other
direction, researchers applied RSS methods in well-established survey sampling techniques in finite
populations. Sroka (2008) and Samawi (1996) used ranked set sampling design to stratify popula-
tions. Both researchers used with replacement sampling design to construct ranked set samples
from each stratum. Wang et al. (2016) used ranked set sampling in cluster randomized designs to
estimate the treatment effect in two-sample problems. They fit a mixed effect model to RSS data
assuming the cluster effect is random. Ozturk (2017) developed RSS sampling designs for finite
clustered populations. Nematollahi, Salehi, and Aliakbari Saba (2008) used an RSS sampling design
only in the second stage of a two-stage sampling. Sud and Mishra (2006) used RSS sampling in a
clustered population under the assumption that all cluster populations have the same size. Samawi
and Siam (2003) and Mandowara and Mehta (2014) applied with replacement RSS samples to ratio
estimators. Most of these published papers assume that the population has infinite size or that the
RSS sample is constructed with replacement. Recently, Ozturk (2014, 2016a,b) developed statistical
inference based on without replacement RSS sampling designs in finite populations. He showed
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that without replacement RSS sampling designs provide additional benefits to improve the effi-
ciency due to negative correlations among measured units.

To our knowledge, all published work in RSS in finite population settings, with the exception of
Ozturk and Bayramoglu Kavlak (2017), develops inference using design-based randomized ranked
set samples. In this chapter, we focus on finite stratified population setting and develop inference
using both design- and model-based approaches. In Section 12.2, we clearly explain the construction
of RSS samples from each stratum population. The estimators for the population mean and total are
given using a stratified RSS sample. Section 12.3 investigates the distributional properties of the
SRSS mean estimator under design- and model-based sampling methods. Section 12.4 provides unbi-
ased estimators for the variance and mean square prediction error (MSPE) of the sample mean esti-
mator. These unbiased estimators are used to construct confidence and prediction intervals for the
population mean under design- and model-based inference, respectively. Section 12.5 provides empir-
ical evidence to evaluate the properties of the estimators, confidence, and prediction intervals.
Section 12.6 provides an example. Finally, Section 12.7 provides concluding remarks.

STRATIFIED RANKED SET SAMPLE

To construct a stratified RSS sample, for each I, we first determine the set size H; and cycle size d,,
and select a set of size H,; experimental units at random without replacement,Yyy, . . ., Yy, from PN,
Units in this set are ranked based on the variable of interest Y in an increasing magnitude without
actual measurement, {¥1y, Yp5y, . .., Y[y }. The ranking process can be performed either using visual
inspection or some auxiliary variables. Hence, it is subjected to ranking error. In the ranked set, we
identify and measure the unit that corresponds to the smallest Y, Y}j;. The remaining unmeasured
units are marked as Y[Z]l, el Y[}i,][. After Yy is measured, none of the H; units in the set
{Ytuy, Yoy =+ Yy} is returned to the population PVNi. Hence, the new population PV~ #i contains
N; — H; units prior to selection of the next set. We now select another set of size H; from the popu-
lation PM'~H rank the units, and measure the second smallest unit Ypy in {Y[*I]l, Yooy, Y[’S],, e Y[*;Ml}.
We continue the process in this way until we select a set from population PV~ 7#i=1) and measure
Yigy in {Yﬁ]l, Y[’g]l, . ijq,,”l, Yiny). The measured observations Yyy; h=1,...,hy, are called a
cycle in the RSS sample from stratum /. To increase the sample size to n; = d;H;, we repeat this
process d; times and obtain an RSS sample Yp; i=1,...,d; h=1,.,H; from stratum
I=1,...,L. For notational convenience, a capital letter (¥j;;) is used to denote the random vari-
ables and a lowercase letter (y;) is used to denote the value of the ith unit in the population P,
The estimator of the population mean based on SRSS data can be constructed as follows:

B Ly (1 Gt L N,
Y = LAY Y, | = i
SRSS ; N le[;; [hlil ; N LRSS

where YRSSI is the mean of the ranked set sample from stratum /. It is immediately observed that
the estimator (Ysgss) is the weighted average of the RSS sample strata means. The estimator for
the population total can easily be established

Tsrss = NYsgss.
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The distributional properties of Ysrss and Tsrss depend on whether the inference is developed
based on a randomization theory or super population model. In the next section we investigate these
two models in detail.

STATISTICAL INFERENCE

Statistical inference in finite population setting can be developed either using a randomization the-
ory or model-based approach. The randomization principal treats the value of each unit in the popu-
lation as a fixed quantity. The variation in the sample is accounted for by the probability that the
unit is included in the sample which is controlled by how the sample units are selected. The bias
and variance of the estimator, and the coverage probability of a confidence interval are computed
over the probability distribution of sampling design that governs the selection of all possible sam-
ples. There is no need to make an assumption on the distribution of random variables. Hence, the
randomization theory provides a nonparametric inference for the finite population. The randomiza-
tion principal is also referred to as a design-based approach since the survey statistician designs
his/her own selection probabilities.

In a design-based approach, the population is divided into L mutually exclusive subpopulations
PNi={yy, .. Yy}, [=1,...,L. In this population y; is a nonrandom fixed value. The mean and
variance of subpopulations are defined by

1Y A )
5= o S =— =), 1=1,...,L
Yi N];YLZ ] Nl;()’d Vi
The overall population contains all units in all subpopulations

P =V s YN s« s VLo - - o YN L-
The total and mean of population 2 is given by:

N

L
In= ZII, 6= Zyiz, yy =tn/N.
=1

i=1

Under a design-based approach, SRSS observations Y};); are independent only if they are from
different strata. Since sets are constructed without replacements, any two observations Y, Yimin
from the same stratum are correlated. We first look at the marginal and joint probability distribu-
tions of Yjuy and (Yppi, i) in RSS; obtained from subpopulation PN The proof of the following
lemma is given in Ozturk (2016b).

Lemma 1: Let Yyy; h=1,...,H;; i=1,...,d;, be a ranked set sample from population PN,

1. The marginal and joint probability mass functions of Yj;ji; and (Ypus, Yjujar), respectively,
given by

(k— 1) (N, - k)
h—1 H —h
Bk; hll) = P(Ygyir = yu) = ,yue PV

()
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and

Bk, &' by B |1) = P(Yiyir = Yias Yooy = i) k <k , i, yir) € PV
k—l) K—k—1\/ N—K \[/K—1—h—A\ (N —k —H +\+h
:"'fl h—1 A H —)\—h W1 H — I
) (M)
H, H,

2. The mean and variance of Y();; and covariance of (Y11, Y(wy21) are given by

N
Yoy = EX ) = ZYkzﬁ(k; hil)
k=1

N
S(zh)] = Var(y(h)ll) = Zyilﬁ(k; hl) — )’(zh)z
k=1
N N

Sty = Cov(Yar, Yary) = Zzykzykvﬁ(k, K i, KD = vy -
=1k=1

We note that in Lemma 1 we assume that the ranking process in each set is perfect. Hence, we
replace the square brackets with round ones to indicate that Lemma 1 holds only under perfect
ranking. Under imperfect ranking, we replace the round parentheses in ¥, S%h)l and S(zh’h,)l with
square brackets and write yyy, S[Zh],, and S[Zh wy- Under imperfect ranking, there is no closed form
expression for the mean, variance, and covariance of judgment order statistics. For notational con-

venience, SRSS mean under design-based inference will be denoted as Yp = Ysgss.

Theorem 1: Let Yy; 1=1,2,...,L; h=1,.. H; i=1,...,d; be a stratified ranked set sample.
The estimator Yp is unbiased for yy and its variance is given by o3, = Var(Yp)

s (NN (N—1=-m\, 1 & P
b= 3 () | (W= m )~ g om0~ g 2
where the subscript “D” is used to highlight that the variance is computed under a design-based
approach.

Using Theorem 1 one can easily establish that the estimator Tp = Trsss iS unbiased for ¢y and
its variance equals Var(Trsss) = NZUZD.

Model-based inference treats the value y; on a finite population unit in PV as a realization from
a larger population, a super population. In this case the finite population unit i has a random vari-
able Y; that has some probability distribution with mean g, and variance o7. The actual values
Yii» - - -, ynu Of the finite population PN are one realization of the random variables Yi;i=1,...,N,
from a distribution with mean y; and variance 012. The joint distribution of Yy; i = 1,..., N; provides
the link between the units in the sample and units not in the sample. This link does not exist in a
design-based approach. In model-based inference, we observe the sample from the finite popula-
tion, and use these data and the model to predict the unobserved values in the population. Thus, a
model-based approach can be put in the framework of a prediction model. A model structure of
stratified sample can be framed as a one-way ANOVA model with fixed effects
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Ya=w +es, E(eq)=0, Var(ey)=o7; i=1,.,N; I=1,.,L (12.1)
In a model-based approach, one can easily establish the following equalities
Py = Ev(Ypga)s 0] [zh][ = Vary(Ypu), o fh,hr]l = Cova(Ypir Yprp2o)-

We again use subscript "M" to denote that the mean, variance, and covariance are computed
under super population model in Eq. (12.1). Let

_ 1 L _ - 1 N;
YN=N;N1Y1, Y’ZEZY‘“ I=1,--,L.

For notational simplicity, under the super population model, we denote the SRSS mean Ysgss
with Y, = Ysrss. We can show that the estimator Y,; is model unbiased

L
_ N _
Ey(Yy —Yn) = E NEM(YRSS,I -Y)=0.
=1

The last equality in the above equation follows from the fact that Ygss; is an unbiased estimator
for ;. The mean square prediction error (MSPE) under model (1) is given by

02, =MSPE(Yy) = Ey (Y — Yy)>.

Theorem 2: Let Yy, 1=1,2,...,L, h=1,.. H;, i=1,...,d; be a stratified ranked set sample
from a finite population. Under the super population model in Eq. (12.1), the MSPE of the estima-
tor Yy = Ysgss is given by

)

=1

Nl_}’l] 2 1 A 2
o7 ——— Y (gy =) |-
( N ) 1 anth; Hime —

It is immediately observed that

AR

2 _ 2 2

Oym =~ OssRS M — Z (ﬁ) anlZ(H[h]z_Nz) ,
h=1

=1

where

L 2
N, N;—n,

2 = o UL )

OSSrRS.M E (N) K N, )01}

=1

is the MSPE of the estimator of the population mean using stratified simple random sample (SSRS)
under super population model in Eq. (12.1). Thus, it can be concluded that the MSPE of the estima-
tor Yy, is never greater than the MSPE of the SSRS estimator.

ESTIMATORS OF VARIANCE AND MSPE

In this section, we construct unbiased estimators for o3, and o7,. We first rewrite the estimators in
slightly different forms
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s
[
(-

N[ 2 N[ —n ) 1 Hi 2
1 (N) ( Ny I wH, Zl(u[h]z )
- N, 2y
< N2 o+ Nan Z [W)

i

PHP

1§

Il
—

and
- 1
;< ) (W) mH, Z(y[h]l = mH, Z (i
ZXL:<> i(sz —s2 )_S_IZ_
=1 mH,; v Stk (N — 1)
Let
H H d 4
Ty = d2H2 ZZZZ(Y[”W o)
L h=1h#l i=1 j=
H, d] d;
T = Yo — Yo
8 2d1(d/— 2d)(d; — )H} ;Z;( i — Youi)”.

Using these definitions, one can easily establish the following result.

Theorem 3: Let Yysi=1,...,d;; h=1,.. ,H;, I=1,...,L, be an SRSS of set size H from a finite
population. The unbiased estimator of o3, and o7 is given by

&;=&§=Z{N12 T} — (T*+T*)& ) (12.2)
N2 d 11 21 N2
Theorem 3 indicates that the estimators 2, and &% are unbiased for any sample and set sizes,
regardless of the quality of ranking information, as long as d; >1 for /= 1,..., L. These unbiased
estimators allow us to construct approximate (1 —«)100% confidence and prediction intervals
under randomization design and super population model in Eq. (12.1), respectively. Using normal
approximation, a (1 — «)100% confidence interval for the population mean yy is given by

Y £ tyr,0/26ps (12.3)

where t4, is the a-th upper quantile of t-distribution with df* degrees of freedom. The degrees of
freedom df =n — L are suggested to account for the heterogeneity among L stratum populations. In
a similar fashion, an approximate prediction interval for Yy is given by

Y = tyer,0/267- (12.4)

EMPIRICAL RESULTS

In this section we investigate the finite sample properties of the SRSS mean to estimate the popula-
tion mean y, from a stratified population with three strata. Strata populations are generated from
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discrete normal populations for population sizes, N; =200, N, =300, and N3 = 400. The discrete
normal population is generated from y; = F’l(i/(Nl + 1),1,01); i=1,...,N;, where F(u, 1, 07) is
the cumulative distribution function of a normal distribution with mean ,; and standard deviation
0;. Location and scale parameters for the three strata populations are selected to be
=35, y =10, puy =13 and oy =2, 0o =5, 03 =7, respectively. In the simulation study two dif-
ferent set and cycle sizes are considered. The set sizes H; are taken to be 2,3,5 and 4,5, 7. The
cycle sizes are selected as d; =5,8; [=1,2,3. Units are ranked based on an auxiliary variable X.
The quality of the ranking information is controlled by the correlation coefficient between Y and X,
p = corr(Y, X). The correlation coefficient p =1 yields perfect ranking, the correlation coefficients
p=10.90,0.75,0.50 yield imperfect ranking. For each combination of simulation parameters, we
generated 50,000 SRSS and SSRS. Relative efficiencies of SRSS mean estimators for both design-
and model-based approaches are compared with stratified simple random sample mean estimator of
the population mean. We use the following expressions to obtain the relative efficiencies

2 2

o o

_ OSsrsm _ OSsrs,D

REw=— 53—, REp=—75=,
Om op

2 2 :
where o5grs y and o5ers p are the variance of SSRS mean

L 2
N, N, —n
2 _ 2 _ 1 1 1 2
OsSrRS,M — 9SSRS,D E (_N) K Ny, )‘7/]-

=1

The simulation study also investigated the properties of the estimators &121/17 &f) and coverage
probabilities of confidence and prediction intervals in Eqs. (12.3) and (12.4).

Table 12.1 presents empirical results for selected simulation parameters. In Table 12.1, the
headings Var(Yy) and Var(Yp) give the variances of 50,000 simulated Yp and Y, respectively.
Under perfect ranking, unbiased variance estimates &12\4, &%, and simulated variance estimates
Var(Y)) and Var(Yp) are all close to the theoretical variances o7, and o3,. Under imperfect rank-
ing, there are no available analytic expressions to compute o2 and o3, hence these entries are left
blank in Table 12.1. Under imperfect ranking, simulated and unbiased variance estimates are very
close to each other within the simulation variation.

The efficiencies of the estimators Y, and Y with respect to the same estimators based on strat-
ified simple random samples are all greater than one, and increase with p and cycle size d as
expected. The coverage probabilities of the confidence (C(Yp)) and prediction (C(Y),)) intervals of
population mean are very close to the nominal coverage probability 0.95.

EXAMPLE

In this section we apply the proposed stratified ranked set sampling design to apple production data
in Turkey. The data set was collected by the Turkish Statistical Institute. Apples in Turkey are pro-
duced in seven different geographical regions: Marmara, Aegean, Mediterranean, Central Anatolia,
Black Sea, Eastern Anatolia, and Southeastern Anatolia regions. These regions have different cli-
mate patterns and apple production varies from region to region. The data set contains two vari-
ables, apple production (Y) (in tons, 1 ton = 1000 kg) and the number of apple trees (X) in each



Table 12.1 Variance Estimates, Relative Efficiencies of the Estimators (Y, Y,7), Coverage Probabilities (C(Yp), C(Y))
of 95% Confidence and Prediction Intervals of Population Mean. Data sets are Generated From Discrete Normal
Population With Strata Population Means 1, =5, p, =10, p; =15, Strata Population Standard Deviations

o1=2, 0,=35, 03 =717, and Strata Population Sizes N; =200, N, =300, N3 =400

Simulated Unbiased Coverage Efficiency
d p o o3 G- V(Yy) V(Yp) &y &2 C(¥y) C(Yp) REy REp
Hy =2, H,=3,H;=5
5 0.50 — - 0.558 0.473 0.473 0.472 0.472 0.947 0.947 1.180 1.180
0.75 - - 0.558 0.376 0.371 0.374 0.374 0.947 0.948 1.481 1.504
0.90 - - 0.558 0.288 0.291 0.287 0.287 0.945 0.945 1.937 1.917
1.00 0.216 0.207 0.558 0.206 0.209 0.208 0.208 0.946 0.945 2.701 2.668
0.50 — — 0.336 0.282 0.282 0.282 0.282 0.949 0.945 1.191 1.189
8 0.75 — - 0.336 0.221 0.224 0.221 0.221 0.948 0.947 1.516 0.500
0.90 - - 0.336 0.167 0.168 0.166 0.167 0.947 0.946 2.004 1.994
1.00 0.122 0.117 0.336 0.117 0.116 0.117 0.117 0.947 0.947 2.869 2.881
Hy=4, H,=5, H3 =
5 0.50 — — 0.363 0.294 0.296 0.296 0.296 0.949 0.948 1.235 1.227
0.75 — — 0.363 0.218 0.216 0.217 0.218 0.947 0.948 1.663 1.680
0.90 — — 0.363 0.148 0.147 0.147 0.147 0.946 0.947 2.446 2.473
1.00 0.087 0.083 0.363 0.083 0.083 0.083 0.083 0.943 0.943 4375 4379
0.50 — — 0.214 0.172 0.172 0.173 0.172 0.950 0.950 1.246 1.253
8 0.75 — — 0.214 0.124 0.121 0.123 0.123 0.947 0.951 1.725 1.762
0.90 — — 0.214 0.080 0.079 0.079 0.079 0.947 0.946 2.676 2.696
1.00 0.041 0.039 0.214 0.039 0.039 0.039 0.039 0.943 0.941 5.525 5.447
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Table 12.2 Population Characteristics of Apple Production (in tons, 1 ton = 1000 kg) Data
Strata (/) y o N; o
Marmara (I =1) 1536.8 6425 106 0.816
Aegean (I=2) 2212.6 11551.5 106 0.856
Mediterranean (I = 3) 9384.31 29907.5 94 0.901
Black Sea (I=4) 967 2389.7 204 0.713
Central Anatolia (I =5) 5588 28643.4 171 0.986
Eastern Anatolia (I = 6) 625.4 1167 104 0.886
Southeastern Anatolia (I =7) 714 110.9 69 0917

township in each region. The X-values in all townships are available in the data frame prior to sam-
pling. Hence they can be used for ranking the townships for their apple production in sets. In this
population, we treat these seven regions as a stratified population. Table 12.2 gives the parameters
of strata populations. As we observe from Table 12.2, strata populations have different means and
variances. There is a strong positive correlation, p;, between the X and Y variables. The sets of
small townships can be ranked fairly accurately using the number of apple trees in each locality.
The entire population has N = 854 townships and its mean is 2930.126 tons. Readers are referred
to Kadilar and Cingi (2003) for further details about this population.

To illustrate the use of the proposed sampling design, we generated SRSS and SSRS from the
apple production data. For the SRSS, we use H;=3 and d;=4, [=1,...,7. With these choices
strata sample sizes become n; = 12; [ =1,...,7. For the SSRS, we constructed simple random sam-
ples of size n; =12 from each stratum population, so that both SRSS and SSRS have the same
number of observations. The samples are presented in Table 12.3.

For the data set in Table 12.3, the estimated population means based on SRSS and SSRS are
3106.454 and 4747.012 tons, respectively. Estimates of the standard errors of these estimators are
0p = 6y =763.80 tons and Gssgs = 2674.714 tons. For these particular samples SRSS estimators
have a smaller standard error as expected.

CONCLUDING REMARKS

In this chapter, we have constructed a stratified ranked set sample from a finite stratified popula-
tion. Samples are constructed without replacement. Hence, measured observations are correlated. In
a finite population setting, the statistical inference can be drawn either using design-based sampling
techniques or a super population model. We constructed unbiased estimators for the population
mean and total and their estimates using both approaches.

We show that the SRSS estimators are unbiased and they have higher efficiencies than the cor-
responding SSRS estimators. Confidence and prediction intervals for the population mean are rea-
sonably close to nominal coverage probabilities. The proposed sampling scheme and estimators are
applied to apple production data in a stratified populations.



Table 12.3 Stratified Ranked Set Sample From Apple Production Data
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APPENDIX

Proof of Theorem 1: The variance of Y can be written as

= =1

LN & )
— 1 =
=> —§ Yrss. — )

222 Ep(Yrss;—¥,)

2
L L
Varp(Ysrss) = Ep <Z N Yrss— Z A;(;’?l)

The last equality follows from the fact that samples from different strata are independent.
Adopting our notation in Theorem 4.1 or Eq. 4.5 in Patil et al. (1995), we write

(Nl—l—nl)sz_ 1 Z”'(y - L Z”’ @
N — b )7 mH, = U mH; (it
and complete the proof.

Proof of Theorem 2: We write the mean square prediction error (MSPE) as

- - - 12
MSPE(Ysrss) = En{Ysrss—Yn }

d; H L N 2
= EM{ ¥ <d1H[ ZZY[W) - %ZZYIJ}
=1 =1 i=1

i=1h

_Z EM{YRSSI Y1}~

We use Theorem 1 in Ozturk and Bayramoglu Kavlak (2017) to complete the proof

(Nl - nl) 2 1 i( )2
o] ——— — ).
Ny LT H, 2 Hiny =

B L NN
MSPE(Ysrss) = Z (N)

=1

Proof of Theorem 3: We first look at the expected values of T}, and T3; under super population
and design-based models

1 H, 2 H—1 H,

( ) EZhlzl (M[h]l_ﬂl) + Tzhl | a[zh], for model based

E(Ty) =1 !
H, 2 Hl -1 H, :

7 Zth Opp=y1)" + “H [h], w Z h’;éh Sy for design based
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and
1 o0 fi del based
72 Ln=1 7l or model base
E(Ty)=| "}
21 1 H o o 1 0o, .
1.712 n=1 Pl Ff ey Sinyy - for design based.
It is now easy to establish that E (T{‘l + T;l) = 012 for model-based approach and
2
E(Ty +T5) = % for the design-based approach. The proof is then completed by inserting 77,

and T3, in Eq. (12.2) and computing the expected values.
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INTRODUCTION

The problem of estimating the population mean of a sensitive variable, such as income, under-
reported tax, and number of induced abortions, etc., is well known in the field of randomized
response sampling. Horvitz et al. (1967) and Greenberg et al. (1971) extended the Warner (1965)
model to the case where the responses to the sensitive question are quantitative rather than a simple
“yes” or “no,” as when estimating the proportion of a sensitive attribute. One could refer to Fox
(2016) that Fox and Tracy (1986) used the unrelated question model to estimate the correlation
between two quantitative sensitive attributes. For estimating the mean of a sensitive variable, say
Y, an additive model was introduced by Himmelfarb and Edgell (1980). In the additive model each
interviewee scrambles a response Y by adding it to a random scrambling variable S and only then
reports the scrambled value Z = Y + § to the interviewer. The authors showed that the mean of the
true values can be estimated from a sample of scrambled values by making use of knowledge of
the distribution of the scrambling variable S.

Another variation of scrambled responses, with the name “multiplicative model,” was intro-
duced by Eichhorn and Hayre (1983) to estimate the population mean of a sensitive quantitative
variable. In the multiplicative model each interviewee scrambles a response Y by multiplying it by
a random scrambling variable S and only then reports the scrambled result Z=7Y S to the inter-
viewer. The mean of the true variable given by E(Y) can be estimated from a sample of scrambled
values Z, again by making the use of knowledge of the distribution of the scrambling variable S.

Ahmed et al. (2018) pointed out that in both the additive and multiplicative models there are
concerns about the choice of scrambling variables used while collecting data from the respondents.
Both the additive and multiplicative models assume that the distribution of S is known, so a good
guess about the maximum and minimum values of the scrambling variable S would also be known.
Thus an interviewee may be suspicious that his/her true value of the sensitive variable can be
discovered.

Mclntyre (1952) was the first to introduce the idea of ranked set sampling (RSS) and claimed
that it is more efficient than simple random and with replacement sampling (SRSWR).

Ranked Set Sampling. DOI: https://doi.org/10.1016/B978-0-12-815044-3.00013-7
Copyright © 2019 Elsevier Inc. All rights reserved. 1 7 1
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To our knowledge, Bouza (2009) was the first to introduce the ingenious idea of using RSS
while estimating the population mean of a sensitive quantitative variable. The units are ranked
based on a judgment ranking but, for the purpose of analysis, the judgment ranking is assumed to
be accurate.

Recently, Ahmed et al. (2018) considered a different approach which can be used to estimate
the means of two sensitive variables simultaneously by making use of scrambled responses. They
also claimed that a respondent would likely be more cooperative in responding because the
proposed method makes use of one scrambled response and another fake response that is free
from the true sensitive variables. In the next section, we discuss the Ahmed et al. (2018)
procedure in brief.

AHMED, SEDORY, AND SINGH MODEL

Ahmed et al. (2018) introduced a new ingenious model, which we refer to as the Ahmed et al.
(2018) model, where they consider the simultaneous estimation of means of two sensitive variables
in a population {2 consisting of finite number of N persons. In their model, they consider selecting
a sample s of n persons from the population €2 by using simple random and with replacement sam-
pling (SRSWR). In the population of interest, the ith values of the variables of interest are labeled
as Yy; and Y»; for the two quantitative sensitive variables. Assume population means of the first and
the second variables Y;; and Y,; are Hy, and Iy, which are to be estimated. In the Ahmed et al.
(2018) model, each respondent selected in the simple random and with replacement sample
(SRSWR) is asked to generate two values of scrambling variables S; and S, one from each of two
known distributions. Further, they assume that the scrambling variables S; and S, are independent,
which helps to maintain the privacy of respondents and E(S;) = 0;, V(S1) =9, E(S2) =6, and
V(82) = 7o, are known.

In the Ahmed et al. (2018) randomized response model, each respondent selected in the sample
is asked to report the scrambled response:

Z]izslyli+S2Y2i (]31)

The authors claim that mixing two sensitive variables with two scrambling variables will cer-
tainly makes it difficult for an interviewer to guess the individual values of two sensitive variables.
Further, they assume that there is no restriction on the scrambling variables to take any negative
values, which will certainly increase respondents’ cooperation while doing a face-to-face survey.
Since the main theme of a randomized response survey is to protect a respondent during a face-to-
face survey, the use of simple random sampling is highly recommended. Note that any other, more
complex design making use of a highly correlated auxiliary variable at the selection stage may
threaten the privacy of a respondent.

In the Ahmed et al. (2018) model, each respondent is also requested to rotate a spinner which
consists of two outcomes, similar to the Warner (1965) spinner. If the pointer lands in a shaded
area then the respondent is asked to report the value of the scrambling variable S;, and if the
pointer lands in the nonshaded area then the respondent is asked to report the value of the
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scrambling variable S,. Let P be the proportion of shaded area and (1 — P) be the proportion of
nonshaded area of the spinner. Thus the second response from the ith respondent is given by:

~_ J S1 with probability P
Zi= { S, with probability (1 — P) (13.2)
where
01702
pr—Je
01702 + 02720
Taking the expected value on both sides of Eq. (13.1) we have
E(Zy;) = E[Si1Y; + $2 Y] = O1puy, + Oapay, (13.3)

From Egs. (13.1) and (13.2), we generate the response Z; as follows:

S%Y]i + 815,Y,; with probability P
Zz,‘ = Z,'Z],‘ = (134)
S18:Y1; + S3Y,; with probabilty (1 — P)

Taking the expected value on both sides of Eq. (13.4) we have
EZ) =P [, (6 +70) + 006a11, | + (1 = P)[010211, + (63 + 901, (13.5)
From Egs. (13.3) and (13.5), by the method of moments, we have:
. . RS
O1fiy, + Oaf1y, = Z;Z” (13.6)
and
R R 1 n
[P(6F +720) + (1= P)0ua] fu,, + [POLO + (1 = PY(03 +702) |y, = D Zoi (13.7)
i=1

Based on the Ahmed et al. (2018) model, unbiased estimators of s, and p,, are, respectively,
given by

~ _ (P06, + (1 = P)(ypp + 0ONZ1 — 6225

13.8
H (1 = P)017v0, = POy ( )
and
i = 0172—{P(720+6’%)+(1—P)0|92}Z (13.9)
& (1 = P)01v, — POy .
where
_ 1 n _ 1 n
Z] = *ZZ],‘ and Z2 = *222,'.
= =
The variance of the estimator [Lyl is given by
PO10,+(1—P)(ypo + 0} 0% + 050% —20,{P016, + (1 — P)(vp, + 65 ,
V(h,) = {P0,6>+(1—P) (o, +03)} 07 + 6507, H{P0,0> +( Y02 + 0)}oz,z, (13.10)

n{(1=P)01v¢, _P92V2()}2



174 CHAPTER 13 SIMULTANEOUS ESTIMATION OF MEANS

where

2 _ 2 2 2 2 2 2 2
0y, = 720(0),1 + ,uyl) + 702((ry2 + ,uyz) + 00 + 050

0 S +201050y,, (13.11)

y
0y, = (U}%, + #3,)[”740 + 43001 + 67,007 + 07) + (1 = P)(vz0 + 07) (00 + 95)]
+ (0%, + ) [(1 = P)(04 + 470302 + 670265 + 63) + P(va9 + 0102 + 63)]

20100 + iy 13, [P0 + 301720 + 07) + (1 = PO (05 + 30270 + 63)] (1312
— [, P+ )+ (1= PYs0) 1y (P01 03+ (1~ P+ )]
and
0212, = (07, + s WP(y30 + 301759 + 0]) + (1 = P)0a(yy + 67)}
+ (0, + )P0 vy + 03) + (1 = P)(yg3 + 30272 + 03))
+ 20y, F y, 1y, POz + 6) + (1 = PYO1 (5, + 63)) (13.13)
= (O, + Oap,)ity, (P(va9 + 67) + (1 = P)01 6}
+ 1y, (P01 63 + (1 = P)(y, + 63)}]
The variance of the estimator fi,, is given by

010%, + {P(7y+67)+(1=P)016,)20% — 201 {P(7y + 67) + (1 = P)016:}02,7,
n((1=P)0 9, = P02759)*

V(i) = (13.14)

where

Yoo = E[S1 —=01]°[S2—62] (13.15)

In the next section, we consider an interesting extension of the Ahmed et al. (2018) model to a
situation where the sample is taken by RSS. It becomes more interesting to consider which sensi-
tive variable, the first or the second variable, should be considered for judgment ranking.

PROPOSED RANKED SET SAMPLING RANDOMIZED RESPONSE
MODEL

Assume a population of interest () has two sensitive quantitative variables, Y); and Y,
i=1,2,..,N. Note that the precise values of both variables Yj; and Y»;, are unobservable for the ith
unit in the population, 2. Now the judgment ranking could be made either on the basis of the first
sensitive variable Y;; or on the basis of the second sensitive variable Y»;. It may not be practical to
make judgment ranking by considering both variables at the same time. For simplicity, let us con-
sider judgment ranking based on only the first unobserved sensitive variable Y;; while the second
variable Y;; is considered as a ranked auxiliary variable. One could refer to the recent works of
Santiago et al. (2016) and Singh et al. (2014) where they considered the problem of estimation of
mean of a study variable in the presence of an auxiliary variable. We may imagine arranging the
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Table 13.1 Ranked Set Sampling Procedure

tth Cycle

(Y111 Yoy} (Y1121, Y22y} {Y11me> Ymy)
{ Y121, Y22y} (Y1121 Y2210} {Y1mpes Yomy}
(Y11, Yoy} {Y1me> Yoy} {Yumpe> Yoy}

ranked values of the first sensitive variable Y}; and the second sensitive variable Y,; in the rth cycle,
t=1,2,...,r, of the proposed RSS as shown in Table 13.1.

Note that the diagonal entries are selected in the sample from the rth and each subsample con-
sists of m units such that n = mr. Further note that there could be a little confusion while reading
the suffixes, so read the above judgment ranking carefully.

In the proposed procedure, the observed ranked response Xjj; can be written as:

X =S¥ + $2Yi) (13.16)

where the square parentheses indicate that the first variable is arranged based on judgment ranking
and the open parentheses indicate that the second variable is treated as an auxiliary variable and
has not been ranked. It may be worth pointing out that we have considered the simplest case of a
multiplicative model in Eq. (13.16) due to Eichhorn and Hayre (1983). In case of some special
types of sensitive variables one should either follow their remark in Section 6 on page 315 or use
another more general model due to Ahmed et al. (2018).

Again, following Ahmed et al. (2018), each respondent selected in the ranked set sample is also
requested to experience a randomization device, say a deck of cards, and having two possible out-
comes S; and S, with probabilities P and (1 — P), respectively. We denote the second observed
response in RSS as:

¥ = {Sl with probability P

S, with probability (1 —P) (13.17)

Note that the observed second response cannot be ranked, because it is free from the true values
of the sensitive variables. From Eqs. (13.16) and (13.17), we generate the second observed response
from the ith person in the ranked set sample as

v [ v el

Taking the expected value on both sides of Eq. (13.16), we have
E[Xua) = E[S1Yug + S2Yy | = 011y, + 6211y, (13.19)

Taking the expected value on both sides of Eq. (13.18), we have
E[Xpa] = Ppy, E(S]) + E(SDE(S2)py, | + (1 = P) [y, E(SDE(S2) + E(S3)ay, | (13.20)

= P[HY, (720 + 9%) + 9192/1}/2} +(1-P) [Hy. 0102 + (v, + "%)HYJ
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On solving Egs. (13.19) and (13.20) for uy, and py,, and by the method of moments, we have
the following theorems:

Theorem 3.1: Unbiased estimators of iy, and [y, using ranked set sampling are, respectively,

given by:
o = PO+ (= Py + )X — 6:Xpy (13.21)
Yin (1 = P)01vp, — P2y .
and
L 01Xp) — {P(yy + 60) + (1 = P)016,)Xy) (13.22)
Y (1 =P)01vp, — Pbrvy .
where " n
Xy = % Xni and Xp) = %ZX[Q,’] are the means of the observed responses using ranked set
sampling. =1 "~

Proof: Taking the expected value on both sides of [LYU] we have

E[ } _ o [{P016> + (1 — P)(y + )} X1 — 02Xz
o (1 = P)0iyp, — Py
_ (P10 + (1 = P)ygp + H)VE [Xpn] — 02 [Xpy]
(1 = P)01vp, — POayyg

= My,
In the same way, taking the expected value on both sides of [Lym we have

P 01X — {P(ya0 + ) + (1 = P)016,}X1y)
E =F
[Mym} { (1 = P)01vp, = PO2vpg

_ OE[Xpy] — (PO + 0] + (1 = P)010:)E Xy
(1 =P)017p, = Pbavx

= Hy,

which proves the theorem.

Theorem 3.2: The variances of the unbiased estimators of /’),Ym and /A‘Y[z] using ranked set sampling
are, respectively, given by

{P016>+(1—P)(7gp +9§)}20§m + 95(;)2?[2] =20{P016> + (1 = P)(vo + )0y, 3,
[(1=P)01v05 = P07

Vi, = (13.23)

and
y [ﬂ ] ~ 9%0%2] +{P(yy+0D)+(1 —P)0102}20§—([1] = 201{P(yy + 6}) + (1 = P01 a)oy,
Yor | =
o [(I—P)eﬂoz_Peﬂzo]z

(13.24)
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where

Ll 5 (’720 2 (Yoo + 9%) < 2
% { Z(/’m 0~ Hr) ——D (=)
=1

0o (13.25)
102
2—m E (Ny,[,] — My, )(Myz(/) - Nyz)

=

1 1 m
cg_(m = [ng - {P(a0 + 473001 + 675907 + 1) + (1= P)(va9 + 01 (Y00 + 63)} > (tay, iy = iy,
: v

1 m
T {P(yy + O)(Y0p + 03) + (1 = P) (g4 + 47030 + 67205 + 9%}2(/%(/) _/1/1@)2 (13.26)
=
2 m
o {P(v3 + 30175 + 010> + (1 = P)(vp3 + 3627, + 63)61 }Z(ﬂy.m =ty My, — Myz)}
=

and

1 1 m
= {072 = —{P(rs0 + 301720 + 6) + (1= P)yag + )02} Gy g =11y’

j=1

1 m
- " {P(’Yoz + 9%)91 + (1 = P)(yp3 + 3627, + 9;)}2(,“)'2(;) _/Lyz)2 (13.27)

=

2 m
o {P(y20 + 6102 + (1 = P)(7p + ‘95)91}2(/1)’1[/] = By ey, — /lyz)}
=

UY[ 1] Y[2]

Proof: Note that the responses are independent, thus the variance of X[jj is given by

0%, = VX = [ me] = > V[Xpa) (13.28)
i=1
Now the variance of Xj;; is given by
V[Xua) = E[X3y] — [E(un)

= (Y20 *+ ‘92)E[ [11]} + (Yoo + ‘9%)E[ (21)] +2010: [E(YnaYen)] — [0y, +02“Yz]2

= (v + ‘92 [Uy, - Z(HYI[/] Hyl) + “Y1:|
(13.29)

m
+ (02 + 63) {‘7%’2 Z(HYZ(,) lly,) + /Ly,:|

m

2
+ 26,6, [UYI Yo— Z(Ny = iy My, — Hy,) T Ky, /~Ly2:| - [91/1)/, +92I~Ly2]
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Note that the responses are independent, thus the variance of Xy is given by

Z Xpiy| =

2
%~ V[X]

= Z} V[Xpa] (13.30)
Now the variance of X; is given by
V [Xea] = E[X3y] — [E(Xen)]
= PE[S2Yug+S$18:Yon | + (1 = PYE[S18: ¥y +S2¥p |
— [PE{S2 Yy + 5152 Yoo} + (1= PYE(S S2 Vi + S2¥ o
=PE [s?y[l,] +8183Y5, + 2S?S2Y[”]Y[zq}
(1= PE[SISYR) + SIY, + 25183 ¥ ¥

2
— [PE(STYpuq+ 5182V} + (1= P)E{S 152 Y17+ 53 Y 21|

1 m 2
=P |:(740 + 473001 + 67007 +0}) {U%q - EZ (/Lyl[j] _/Ly,> + ,“%/1 }
=

1 & 2 (13.31)
+ (Y20 + 01) (702 + 0 ){O’n QZ(NYZ@—M@) +M2§2}

J=1

1 m
+2(730 + 3017 + 9%)92{‘”. (R Z <NY.[,'] - :“Yl) (Nyz(j) - N)@) + py, ty, H
=

m

+(1-P) {(’720 +67) (Yo, + 6 ){UY] *;ZOJY,[,] Ny,>2 +M§q}

J=1

(704 +4yp36r + 6’702‘9 + 94){ - _Z <Nyq(,) Hy2> + HYZ}

=
1 m
3
+2(703 + 302702 + 05) 014 ov,v, — - Z(Hyl[/] = By Ny, = fy,) T Ly, by,
=

— [P{ (a0 + )y, + 010211y, } + (1 = PY{ 0101y, + (o +OR)pay, }



13.3 SAMPLING RANDOMIZED RESPONSE MODEL 179

Note that the responses are independent, thus the covariance between X[ and Xy is given by

IR 1<
- X, — Xio:
22K Yo
Now the covariance between Xjj; and Xpp; is given by

Cov [Xqij, Xpig] = E [XpaXpa] — [E (X)) [E(Xp)]

UY“]Y[Z] = Cov [Y“],Y[zﬂ = Cov

’1 n
- EZCOV[X[H]:X[zi]] (13.32)
i=1

=PE [s? Y2,

2532 Yy + 515373
+(1-P)E [S%Sz Y2, + 25183 ¥ Yoy + 83 Yéi)]
— E(S1 Y1 + S2Yi) E{P(Y175% + S152Yo1y) + (1 = P)(S152 Y1 + S3 Y0}

=P

1 m
(V30 + 301750 + 9?){0%1 - ;Z(HY.U]_NYI )’ + hy, }
=
l m
2
+2(vy0 + 91)92{01/. v~ %Z(HY.[}'] = By (tyyg) = By,) T Ly, By, }
=
NI 2. 2
+01(v02 T 63)4 oy, — ;Z(Nyzg) —hy,)” oy,
=
1 m
+(1—=P) |:(720 + ‘9%)92{0%, - ;Z(/ﬁy,m Ky, )2 + H%ﬁ }
=

1 m
+2(ypp + ‘95)91 {(’YI v~ %Z(/Ly. i~ My (B = Byy) Tty /I’Yz}
=

1 m
(o3 + 302700 @{l’i =D =)+ l&}
=

— (01 pay, + Oapy)) [P 1y, (20 + 07) + 010210y, } + (1 = PY{ 1y, 0105 + (g + 01ty }]
(13.33)

Now the variance of the estimator [y is given by

iy (1 = P)01v9, — Pryy

_ P00+ (1= P) (oo + 31 VX)) + 3 V{X ()} — 262(P016> + (1 — P02 + 03)}Cov(Xpuy, X))
{(1=P)01 v, — POy}’

(13.34)
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and the variance of the estimator [y, is given by

V[/l ] _ VFIY[Z] —{P(759 + 07) + (1 = P)010:}Xy)
i (1= P)017p, — P2y

_ VXD + POy +0D)+ (1= P62}V (X} — 201 {P(yy + 67) + (1 — P)0162)Cov(Xpyy, Xpy)
{(1=P)01y0, = POry20 )

(13.35)

On using Eqgs. (13.25) to (13.33) in Egs. (13.34) and (13.35), we have the theorem.
In the next section, we consider the comparison of the RSS based estimators with respect to the
one with simple random sampling.

EFFICIENCY OF RANKED SET SAMPLING

It is a well-known fact that the use of RSS leads to more efficient estimators than the use of simple
random sampling and with replacement scheme. Also it would be worthwhile investigating the useful-
ness of RSS when estimating means of the two sensitive variables at the same time. For illustration
purposes we considered the population listed in the Appendix of Singh (2003) where we considered
the first sensitive variable Y;; as the amount ($000) of nonreal estate farm loans in different states
during 1997, and the second sensitive variable is Y,; as the amount ($000) of real estate farm loans in
different states during 1997. As mentioned in Singh et al. (2008), a data set could be considered as
sensitive in one situation and nonsensitive in another situation. Thus we consider these variables as
sensitive variables for the purpose of testing the newly proposed methodology. A graphical represen-
tation of such variables associated with each other is shown in Fig. 13.1.

2500
)
o
2000
)
1500
[ ] L
o © ®
°
1000 . s
o)
°®
o
o
o
500
@ L o)
] ' e ©®
® & ®
0 ‘o b ®
0 500 1000 1500 2000 2500 3000 3500 4000 4500

FIGURE 13.1

Scatterplot of the two variables considered as sensitive variables.
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A brief description of the parameters of both variables is given below: N =50, uy, = 878.16,
My, = 555.43, oy, = 1084.67,0y, = 584.82, Syy, = 1.66, Siy, = 1.14, Ky, = 1.92, and Kyyry, = 0.85.

We wrote the SAS code to investigate the percent relative efficiency values (see Appendix A).
The percent relative efficiency of the RSS over the simple random sampling is defined as:

V(fy,)
RE(1) = —1 5 100% 13.36
W V(i) ( )
and
i
RE@) = ) 00, (13.37)

v (i)

Following Singh et al. (2014), we also defined realized ratios of the judgment-based ranked
values to that of true mean values for the first and second variables as:

RD\[] = M1 and RD[1]

Hy, Ky,

_ HFrg

fori=1,2,3,..,m in each cycle. In this simulation study we considered several values of
RDi[i] = A + 0.08¢; (13.38)
and
RD,[i] = A + 0.08¢; (13.39)
where e¢; ~N(0, 1). Then different values of
A =1{0.75, 1.0, 1.25} and
A, =1{0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.0, 2.25, 2.50}

are investigated through a simulation study. The choice of A; is made that the judgment ranking
could be 75% of the original true value, could be perfect ranking, or could be 25% higher judgment
ranking. More that this variation in judgment ranking is not considered, because then judgment
ranking will introduce a lot of measurement errors in the first sensitive variable Y;;. The value of
A, is given a wider range from 0.25 to 2.50 with a step of 0.25 because it is not in the hands of the
investigator to control the value of the second sensitive variable Y5;. Recall that judgment ranking
was made only for the first sensitive variable. We used two scrambling variables S; and S. The
scrambling variable S| consists of 5000 random numbers generated from the chi-squared distribu-
tion with five degrees of freedom. The second scrambled variable S, is generated from the gamma
distribution with shape parameter o = 0.5 and scale parameter 3 = 1.5. Then, all the required first-,
second-, third-, and fourth-ordered moments for both the scrambling variables were calculated from
those 5000 random numbers. The percent relative efficiency values RE(1) and RE(2) for different
choices of A and A, are given in Table 13.2.

It has been observed that the choice of the scrambling variables leads to a sampling scheme
such that RSS is more efficient than simple random sampling with replacement when estimating
the two sensitive variables simultaneously, as noted in Ahmed et al. (2018). For A; =0.75, while
the value of A, varies between 0.25 and 2.50, both with standard deviations of 0.08, the value of
RE(1) varies from 101.00% to 102.30% and the value of RE(2) varies from 100.62% to 102.50%.
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Table 13.2 Percent Relative Efficiency Values

Obs Ay A, RE, RE,

1 0.75 0.25 102.300 102.503
2 0.75 0.50 101.301 101.413
3 0.75 0.75 101.000 101.092
4 0.75 1.00 101.943 102.133
5 0.75 1.25 101.032 101.137
6 0.75 1.50 100.647 100.719
7 0.75 1.75 101.536 101.709
8 0.75 2.00 101.134 101.273
9 0.75 2.25 100.540 100.617
10 0.75 2.50 101.066 101.211
11 1.00 0.25 100.108 100.119
12 1.00 0.50 100.055 100.060
13 1.00 0.75 100.072 100.079
14 1.00 1.00 100.040 100.044
15 1.00 1.25 100.112 100.122
16 1.00 1.50 100.123 100.136
17 1.00 1.75 100.130 100.142
18 1.00 2.00 100.177 100.196
19 1.00 2.25 100.249 100.279
20 1.00 2.50 100.216 100.241
21 1.25 0.25 101.056 101.178
22 1.25 0.50 101.048 101.160
23 1.25 0.75 100.882 100.973
24 1.25 1.00 101.056 101.158
25 1.25 1.25 101.402 101.532
26 1.25 1.50 101.314 101.431
27 1.25 1.75 101.036 101.123
28 1.25 2.00 102.562 102.780
29 1.25 2.25 101.705 101.838
30 1.25 2.50 102.828 103.055

If one has very perfect judgment ranking A; = 1.0 with a standard deviation of 0.08, and the value
of A, changes from 0.25 to 2.50 with a step of 0.25, the value of RE(1) changes from 100.04% to
100.25%, and the value of RE(2) changes from 100.04% and 100.28%. In the same way, for the
value of A; = 1.25 as the value of A, changes from 0.25 to 2.50, the value of RE(1) changes from
100.88% to 102.83%, and that of RE(2) changes from 100.97% to 103.05%.

It seems that there is potentially a much wider scope of application of this study to other ran-
domized response models, such as that due to Arcos et al. (2015), by making use of RSS along the
lines of Bouza (2009), where he investigates the Chaudhuri and Stenger (1992) randomized
response model. Also, further note that the other situations when the ranking can be made based on
the second sensitive variable, and/or both variables, could also be of worth in future studies.
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Nevertheless pending investigations in future studies by following Bouza (2016) for other complex
designs are duly acknowledgeable and it seems that there is potentially a much wider scope of
application of this study, but that is beyond the scope of this chapter.
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APPENDIX A

*SAS CODE USED IN THE SIMULATION STUDY;
PROC IMPORT DATAFILE = "E:\real data.XLS" DBMS=XLS OUT=DATA1
REPLACE;

SHEET='Sheet1";

RUN;

DATA DATA2;

SET DATAT;

Y1IY2=Y1*Y2;

KEEP Y1 Y2 Y1Y2;

RUN;

*PROC PRINT DATA=DATA2;

RUN;

DATA DATA3;

SET DATA2;

PROC MEANS DATA = DATA3 NOPRINT;
VARY1Y2Y1Y2;

OUTPUT OUT = DATA4 MEAN=MEANY1 MEANY2 SUM=SUMY1 SUMY2
SUMY1Y2 VAR = VARY1 VARY2 N=NP;

DATA DATAS;

SET DATA4;

COVY1Y2=NP*SUMY1Y2-SUMY 1*SUMY2)/(NP-1);
KEEP MEANY1 MEANY2 VARY1 VARY2 COVY1Y2 NP;
*PROC PRINT DATA=DATAS;

RUN;

DATA DATAG;

CALL STREAMINIT(1234),

DO1I=1TO 5000,

S1=RAND('CHISQ, 5);

S2 =RAND('GAMMA, 0.5, 1.5);

OUTPUT;

END;

PROC MEANS DATA = DATA6 NOPRINT;

VAR S1 S2;

OUTPUT OUT = DATA7 MEAN=MEANS1 MEANS2;
DATA DATAS;

SET DATA7;

KEEP MEANS1 MEANS2;

*PROC PRINT DATA=DATAS,;

RUN;

DATA DATAO9;

SET DATAG;

IF N =1THEN SET DATAS;

G20 = (SI-MEANS1)**2;

G02 = (S2-MEANS2)**2;
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G30=(SI-MEANSI1)**3;

GO03 = (S2-MEANS2)**3;

G40 = (SI-MEANS1)**4;

G04 = (S2-MEANS2)*#4;

PROC MEANS DATA = DATA9 NOPRINT;
VAR S1 82 G20 G02 G30 G03 G40 G04;
OUTPUT OUT = DATA11 SUM=SUMS1 SUMS2 SUMG20 SUMG02 SUMG30
SUMGO03 SUMG40 SUMG04 N=NITR;
DATA DATA12;

SET DATAI1L;

THI1 = SUMSI1/NITR,;

TH2 = SUMS2/NITR,;

GAM20 = SUMG20/(NITR-1);

GAMO02 = SUMGO2/(NITR-1);

GAMO3 = SUMGO3/(NITR-1);

GAM30 = SUMG30/(NITR-1);

GAMO04 = SUMGO04/(NITR-1);

GAM40 = SUMG40/(NITR-1);

KEEP TH1 TH2 GAM20 GAM02 GAM30 GAM03 GAM04 GAM40;
*PROC PRINT DATA=DATA12;

RUN;

DATA DATAI13;

SET DATAS5;

IF N =1THEN SET DATAI12;

PROC PRINT DATA=DATA13;

RUN;

%MACRO KUMAR(IIL, A1, A2);

DATA DATAI14;

DOI=1TOS5;

RD1 = &A1l + 0.08*RAND('NORMAL');
RD2 = &A2 + 0.08*RAND('NORMAL");
*RD1 = 1.25 + 0.08*RAND('NORMAL');
*RD2 = 1.00 + 0.08*RAND('NORMAL);
OUTPUT;

END;

*PROC PRINT DATA=DATA14;

RUN;

DATA DATAI15;

SET DATA14;

RD1_SQ = (RD1-1)**2;

RD2 SQ = (RD2-1)**2;

RDIRD2 = (RD1-1)*(RD2-1);

PROC MEANS DATA = DATA15 NOPRINT;
VAR RD1_SQ RD2_SQ RDIRD2;

OUTPUT OUT = DATA16 MEAN = MRD1 SQ MRD2 SQ MRDIRD2;
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*PROC PRINT DATA=DATA16;

RUN;

DATA DATAL17,

SET DATAI13;

IF N =1THEN SET DATAI6;

P=0.7;

VARZI = GAM20*(VARY I+MEANY 1 ##2)+ GAMO02*(VARY2+MEANY2*%#2)+
TH1**2*VARY 1+TH2**2*VARY2+2*THI*TH2*COVY1Y2;

VARXI1 = VARZI - (GAM20+TH1#*2)*MRD1_SQ*MEANY1**2-
(GAMO2+TH2**2)* MRD2_SQ*MEANY2**2-2*TH1*TH2* MRDI1RD2*
MEANY1*MEANY?2;

VARZ2 = (VARY+MEANY 1**2)* (P*(GAM40+4*GAM30*TH1+
6*GAM20*TH1**2+TH1**4)+(1-P)*(GAM20+TH1**2)*(GAMO02+TH2*%*2))

+ (VARY2+MEANY2**2)*((1-P)*(GAMO04+4*GAMO3*TH2 +6*GAMO02*
TH2**2+TH2**4)+P*(GAM20+TH1**2)*(GAMO02+TH2*%2))
+2*¥(COVY1Y2+MEANY 1*MEANY2)*(P*TH2*(GAM30+3*TH1*GAM20
+TH1**3)+(1-P)*TH1*(GAMO03+3*TH2*GAMO02+TH2%%*3))

-(MEANY 1*(P*(GAM20+TH1**2)+(1-P)*TH1*TH2)+ MEANY2*(P*TH1*TH2+(1-
P)*(GAMO2+TH2%*2)))**2;

VARX2 = VARZ2 - (P*(GAM40+4*GAM30*TH1+6*GAM20*TH1**2+TH1**4)+(1-
P)*(GAM20+TH1#%2)*(GAM02+TH2**2))*MRD1 SQ*MEANY 1#*2-(P*
(GAM20+TH1**2)*(GAMO02+TH2**2) + (1-P)* (GAMO04+ 4*GAMO03*TH2+
6*GAMO2*TH2**2+TH2**4))* MRD2_SQ*MEANY2**2
2*(P*(GAM30+3*TH1*GAM20+TH1**3)*TH2+(1-P)* (GAMO3+3*TH2*GAM02
+TH2**3)*TH1) *MRD1RD2*MEANY1*MEANY?2;

COVZ1Z2 = (VARY I+MEANY 1 #*2)*(P*(GAM30+3*TH1*GAM20+TH1**3)+(1-
P)*TH2*(GAM20+TH1%*2)) +(VARY2+MEANY2**2)*
(P*TH1*(GAMO2+TH2**2)+(1-P)*(GAMO03+3*TH2*GAMO02+TH2**3))
+2*(COVY1Y2+MEANY 1*MEANY2)*(P*TH2*(GAM20+TH1**2)+(1-
P)*TH1*(GAMO02+TH2**2)) -(THI*MEANY1 +TH2*MEANY2)* (MEANY 1*
(P*(GAM20+TH1**2)+(1-P)*TH1*TH2) + MEANY2* (P*TH1*TH2+(1-
P)*(GAMO02+TH2**2)));

COVX1X2=COVZ1Z2- (P*(GAM30+3*THI1*GAM20+TH1**3)+(1-P)*(GAM20+
+TH1**2)*TH2)*MRD1_SQ*MEANY 1*#*2 -(P*(GAMO02+ TH2**2)*TH1 +(1-
P)*(GAMO03+3* TH2*GAMO02+TH2**3))*MRD2 SQ*MEANY2**2
2*(P*(GAM20+TH1**2)*TH2+(1-P)* (GAMO02+TH2**2) *TH1)* MRD1RD2*
MEANY 1*MEANY?2;

VMUY1 SRS =( ( P*TH1*TH2+(1-P)*(GAMO02+TH2**2) )**2*VARZ1 +
TH2**2*VARZ2-2*TH2*(P*TH1*TH2+(1-P)*(GAMO02+TH2*%2))*COVZ1Z2)
/(1-P)*TH1*GAMO02-P*TH2*GAM20)**2;

VMUY2 SRS = ((TH1**2*VARZ2+(P*(GAM20+TH1##2)+(1-P)*TH1*TH2)**2
*VARZ1-2*TH1*(P*(GAM20+TH1**2)+(1-P)*TH1*TH2)*COVZ1Z2))
/(1-P)*TH1*GAMO2-P*TH2*GAM20)**2;

VMUY1_RSS =( ( P*TH1*TH2+(1-P)*(GAMO2+TH2**2) )**2*VARX]1 +
TH2**2*VARX2-2*TH2*(P*TH1*TH2+(1-P)*(GAMO2+TH2**2))*COVX1X2)
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/((1-P)*TH1*GAMO2-P*TH2*GAM20)**2;
VMUY2_RSS = ((TH1**2*VARX2+(P*(GAM20+TH1**2)+(1-P)*TH1*TH2)**2*
VARX1-2*THI*(P*(GAM20+TH1#*2)+(1-P)*THI*TH2)*COVX1X2))
/(1-P)*TH1*GAMO2-P*TH2*GAM20)**2;
KEEP P VMUY! SRS VMUY2 SRS VMUY!1 RSS VMUY2 RSS;
DATA DATAI8&IIL;

SET DATAL7;

REl = VMUY! SRS*100/VMUY1_RSS;
RE2 = VMUY2_SRS*100/VMUY2_RSS;
AIRDI=&AL;

A2RD2=&A2;

KEEP AIRD1 A2RD2 RE! RE2;

PROC PRINT DATA=DATA 18&II;

RUN;

%MEND KUMAR;

%KUMAR(1, 0.75,0.25)

%KUMAR(2, 0.75,0.50)

%KUMAR(3, 0.75,0.75)

%KUMAR(4, 0.75,1.00)

%KUMAR(5, 0.75,1.25)

%KUMAR(6, 0.75, 1.50)

%KUMAR(7, 0.75,1.75)

%KUMAR(S, 0.75,2.00)

%KUMAR(9, 0.75,2.25)

%KUMAR(10, 0.75,2.50)

%KUMAR(11, 1.00,0.25)

%KUMAR(12, 1.00,0.50)

%KUMAR(13, 1.00,0.75)

%KUMAR(14, 1.00,1.00)

%KUMAR(15, 1.00,1.25)

%KUMAR(16, 1.00, 1.50)

%KUMAR(17, 1.00,1.75)

%KUMAR(18, 1.00,2.00)

%KUMAR(19, 1.00,2.25)

%KUMAR(20, 1.00,2.50)

%KUMAR(21, 1.25,0.25)

%KUMAR(22, 1.25,0.50)

%KUMAR(23, 1.25,0.75)

%KUMAR(24, 1.25,1.00)

%KUMAR(25, 1.25,1.25)

%KUMAR(26, 1.25, 1.50)

%KUMAR(27, 1.25,1.75)

%KUMAR(28, 1.25,2.00)

%KUMAR(29, 1.25,2.25)

%KUMAR(30, 1.25,2.50)
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RUN;

DATA DATA19;

SET DATA181 DATA182 DATA183 DATA184 DATA185 DATA186 DATA187
DATA188 DATA189 DATA1810 DATA1811 DATAI1812 DATA1813 DATA1814
DATA1815 DATA1816 DATA1817 DATA1818 DATA1819 DATA1820 DATA1821
DATA1822 DATA1823 DATA1824 DATA1825 DATA1826 DATA1827 DATA1828
DATA1829 DATA1830

PROC PRINT DATA = DATAI19;

VAR AIRD1 A2RD2 REI RE2;

RUN;

DATA DATA20;

SET DATAZ2;

PROC MEANS DATA=DATA20;

VAR Y1 Y2;

OUTPUT OUT=DATA21 MEAN = MEANY1 MEANY2 STD=SDY1 SDY2
SKEW=SKY1 SKY2 KURT=KURTY1 KURTY2;
RUN;

PROC PRINT DATA=DATAZ21;

RUN;
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INTRODUCTION

Warner (1965) was the first to estimate the proportion of the prevalence of a sensitive attribute
with the use of a randomization device. Warner considered only the situation when the attribute of
interest has only two possible outcomes, one with stigma and another without. His pioneer method
was capable of estimating the proportion of persons in a population who bear a stigmatizing charac-
teristic without disclosing the privacy of the respondents while being interviewed. However, the
problem of estimating the population mean of a sensitive quantitative variable, such as income,
number of induced abortions, and amount of illegal use of drug is also well-known. Horvitz et al.
(1967) and Greenberg et al. (1971) were the first to extend the Warner (1965) pioneer model for
qualitative variables to the situation of quantitative variables. Himmelfarb and Edgell (1980) intro-
duced the idea of an additive scrambled randomized response model, which they used to estimate
the population mean of a sensitive variable by making use of the known distribution of a scram-
bling variable. Eichhorn and Hayre (1983) came up with the idea of a multiplicative randomized
response model which could also be used to estimate the population mean of a sensitive variable.
Later, Chaudhuri and Stenger (1992) proposed an ingenious idea of combining both the additive
and multiplicative model together to estimate the population mean of a sensitive variable. Let us
describe their method, which is also adopted by Bouza (2009), while considering the use of ranked
set sampling. For the ith person selected in the sample, a set of two randomization devices are
given, say two boxes: Box —I and Box-II. Box-I contains T cards labeled with numbers
{A1,A,,...,Ar} and Box-II contains S cards labeled with numbers {B;, B>, ..., Bs}. The mean and
variances of the numbers written on the cards in Box-I and Box-II are assumed to be known, and
are computed as:

T

1< 1
Ha = ?ZAi, Ui:?Z(Ai_NA)Z
i=1

i=1

13 13
l’LB:EZBia 012;:52(31‘_#3)2
i=1

i=1

Ranked Set Sampling. DOI: https://doi.org/10.1016/B978-0-12-815044-3.00014-9
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Assume Y; is the value of the study variable for the ith unit in the population consisting of N
units, say persons. Then the ultimate goal is to estimate the population mean of the sensitive quanti-
tative variable Y; given by

Y= Y; (14.1)

i=1

2=

Chaudhuri and Stenger (1992) considered the selection of the n persons by using simple random
and with replacement sampling (SRSWR). The ith selected person in the sample is requested to
draw a card, say A; from Box-I and another card, say B;, from Box-II, and report the scrambled
response as:

Z;=A;Y; + B; (14.2)

Chaudhuri and Stenger (1992) proposed an unbiased estimator of the population mean Y, based
on n observed responses, as:

1 n
— Zi —
v n; " (14.3)
Yos= —————— -
o Ha

where p, # 0, with variance

2
V(cs) = Py +

2, 2
@7, 3G
A 2
nu;

(14.4)

where Cy = Z—Q and Cg = ”Ti are the known values of the coefficient of variations of the numbers in
Box-I and Box-II, respectively.

Mclntyre (1952) felt that it could be possible to rank a sample of a few trees taken from an
orchard by eye inspection or judgment ranking. The information used to rank trees before taking
them in a sample could be useful in the estimation process which became popularly known as
ranked set sampling (RSS). Likewise, Bouza (2009) felt that respondents selected in a simple ran-
dom sample can be ranked based on the value of the sensitive variable. Bouza (2009) introduced an
ingenious idea assuming the sensitive variable can be ranked based on some kind of judgment
before collecting information from the respondents. Bouza (2009) considered the use of ranked set
sampling (RSS) which involves first selecting m independent SRSWR samples each of size m.
Then from the ith respondent selected in the ranked set sample, a scrambled response is collected,
which we denote by

Zy =AY +B; (14.5)
Without use of generality, the process is repeated r times so that the total effective RSS sample

size is given by n =mr. Bouza (2009) considered the following unbiased estimator of the popula-
tion mean

1<
Z E Ziy — It

- né= (U] B

YBouza = L4 (146)
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Let E; and V,; denote the design expectation and design variance, respectively. Also let Ex and
Vg denote the randomization expectation and randomization variance, respectively. Then the vari-
ance of the estimator yg,,,, 1S given by

l n 1 n
=N 7 — =N 7 —
n; ()~ HB nz ()~ Hp
+ ViEg | ———mm
Ha Ha

i=1

V(Bouza) = EaVr

1 2
—2 {Y(l)O'A'i‘O'B} Lo
= Ed =1 P + Vd *ZY(,‘) (147)
HA =
1 2\ 2 2
—2 {Ed{Y(,-)}UA+aB}
=1 _
= Z +Vy [yRSS}
Now, we have
_ l
Va(rss) = o y o Z(Nm) Y)
(14.8)
_1 7
- |: My(f)_Y) :|
and we also have
2
Eo|¥3| = Va(¥o) + [Ea(¥e)]
(14.9)

1 m iy —
= Uzy - ;lZ[NY(i)*Y} +Y
=1
On substituting Eqs. (14.8) and (14.9) into Eq. (14.7), we have
1 n
n—ZZl:{Ed{Yj)}ai a3}

V(yBouza) = = 5] + Vd [YRSS]
27

or 1 1 _
Tl Z [("Y —Z(MW—Y) ) } + ﬁ + [ai —;Z(M)—Y)Z}
2 2
_ U—Az [ai - ;Z(um— 7y +Y2] n‘z + _{ E(ﬂym 7 } (14.10)
i=1

W

I, 1& — o’ ok — | o2
=—loy—— h—Y 1+4)+ 47 +-%

n {UY m;(uy(') ) I npk nu3

=2

L, 1 72 2 CiY HB 2
= |2 - — TP (1+ )+ A+ LB e
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In the next section, we derive an estimator of the population mean with a forced quantitative
randomized response (FQRR) model and then find its variance expression. The reason for consider-
ing the use of RSS is based on the pioneering idea of Bouza (2009) that the use of RSS sampling is
practical and more efficient than SRS. In the present study, we investigate the same idea of RSS in
the case of the FQRR model. One can also refer to Al-Omari and Bouza (2014) for a detailed
review of ranked set sampling to learn about its simplicity and practicability.

14.2 PROPOSED FORCED QUANTITATIVE RANDOMIZED RESPONSE MODEL

In this section, we combine the thinking of Bouza (2009) and Gjestvang and Singh (2007) as fol-
lows. Each respondent selected in the ranked set sample (RSS) is requested to experience a ran-
domization device, say a spinner, with three possible outcomes. Let P; be the shaded area of the
spinner with “salmon” color, P, be the shaded area of the spinner with “thistle” color, and P3 be
the shaded area of the spinner with “firebrick” color. The spinner is rotated by the interviewee
unobserved by the interviewer. If the pointer lands in the “salmon” area, the respondent is
requested to report the scrambled response by using the two boxes of Chaudhuri and Stenger
(1992), if the pointer lands in the “thistle” color, the respondent is requested to report the true
response, and if the pointer lands in the “firebrick™ color then the respondent is requested to report
a fixed response which is already printed on the spinner. The names of the colors are chosen such
that it is easy to remember the scrambled response for “salmon,” true response for “thistle,” and
forced response for “firebrick” outcome of the spinner. A graphical representation of such a spinner
is given in Fig. 14.1.

It may be worth pointing out here that the forced randomized response model due to Liu and
Chow (1976a,b) is applicable only for estimating the population proportion of a sensitive character-
istic. In the model considered here, if Y; is a qualitative variable taking a value of 1 or a value of 0

Spinner

Ps

FIGURE 14.1
Spinner for the FQRR model.
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for a sensitive and nonsensitive attribute in the population, set A; =0 and B; =0 as forced “no”
answer, and set F' =1 as forced “yes” answer, then the Stem and Steinhorst (1984) model becomes
a special case of the proposed model for RSS sampling, which are obviously improvements over
the use of SRS sampling as explained in Fox and Tracy (1986). No doubt if Py =1 and
P, = P3 =0 then the proposed model reduces to the Bouza (2009) model for RSS sampling. If
B;=0,P;=0, Py =P, and P, = (1 — P) then the proposed model leads to the Bar-Lev, Bobovitch,
and Boukai (2004) model for the RSS scheme. Further, note that in the Bar-Lev, Bobovitch, and
Boukai (2004) model, an amendment of change of origin is sometimes needed by adopting the
remark (page 315, Section 6, in Eichhorn and Hayre, 1983) while handling special types of sensi-
tive variables, and the present model will be free from such amendments.
Thus from the ranked set sample (RRS), the observed response from the ith respondent is given
by
A;Y; + B; with probability P,
Z(*i) = { Y with probability P, (14.11)
F with probability P3

Note that if the ith person reports a fixed response then that value cannot be based on any

ranking.
The expected value of the observed response Z(*l.) in the RSS is given by

E [Z(";)} = P\E[AiYg) + Bi] + PE(Yy) + PsE(F)
= Py [j1,Y + jip] + PoY + P3F (14.12)
= [Pipiy + P2]Y + Pyjug + P3F

Now we propose a new estimator of the population mean Y using the proposed FQRR model
as:

1 n
72 Zi = Pibp — PiF
S

YRss(F) = Priis T Pr (14.13)

where p1, # — P,/P;. Now we have the following theorems:
Theorem 2.1: The estimator ygsg(ry is an unbiased estimator of the population mean Y.
Proof: Taking the expected value on both sides of ygss(r), we have

n n
%; Zl = Pijug — P3F %; E{Z}} — Pipy — P3F

PI/LA+P2 PI/LA+P2

=Y

E[yrssir) =E

which proves the theorem.
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Theorem 2.2: The minimum variance of the estimator ygsgr) is given by

1

. _ _ 2 2 2 2 2 2 v
MinV (Yrssr)) —W[(Uy-i-Y){PI(UA+MA)+P2}+P1{JB+;LB+2,LLA;LBY}
- - Pi(o} +13) + Py} & -
S TR R Sl = i Z}Z(uym—Y)"’ (14.14)

i=1

B P3{P27+P1(MA7+MB)}2
(1—="Ps)

Proof: The variance of the estimator Ygss(p) is given by

n n
P Ly =Py = PsF | 53 VIZG) o2
Vy =y |2 == = Zx 14.15
s Pipy + P (Pipig+P2)*  n(Pipy+Po) ( )

Now the variance O’%* is given by
2
. sl )
2
= P\E[(AY+B)] + P2E<Y(2i)) + PsE(F?) — [PyE(AiYg) +Bi) + PE(Y;) + P E(F))|

= PLE[43Y

2+ B+ 2AL~BiY(i)] + PZE(Y§)> + PsF2 — [Py(uyY + i)+ PyY + PsF |’

:Pl

1< - - -
(03 + #/21){03 - %Z(HY(:‘)_Y)Z +Y } +(op + pp) + ZHA:LLBY:|
=1

14.16
+P, ( )

1 Yy
0% - ;Z(“Y«) Y} +Y } + PyF?
i=1
- [P%(uAﬂ 115) + PIY + P2F? + 2P PyY(1u, Y + 1) + 2P2P3FY + 2P\ PsF(j1, Y + ug)}

= ((T% + 72){P1((7i + p3) + Pa} + Pi(o + p3 4 2p, 1Y)
—{P1(1y Y + pig) + oYY + P3(1 = P3)F2 — 2F{P,P3Y + P\ P3(11,Y + i)}
{P1(05 + 13) + P2} & -
e ML Z(Hy(i) _Y)2
mn i=1
On substituting Eq. (14.16) into Eq. (14.15), the variance of the estimator ygss(r) is given by

1

V(rssr) = m
A

> B
{(0.3 +YOP(0 + p13) + Po} + Pi(o + p + 2pnp 1Y)
—{P1(paY + 1)+ PyYY + P3(1 — P3)F? — 2F{PyP3Y + P1P3(1, Y + i)} (14.17)

{P1(0% + 1) + Py} & -
_ AZ(/"Y(:‘)_Y)Z
mn i=1
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On differentiating V(Ygss(r)) in Eq. (14.17) with respect to F and equating to zero, we have the
optimum value of F given by

F= Pz? + Pl(,U’AY + :UB)
(1—=Ps3)
On substituting the optimal value of F from Eq. (14.18) into Eq. (14.17), we have the theorem.

(14.18)

PRACTICABLE ASPECT OF THE PROPOSED FQRR MODEL

Note that the optimum value of F in Eq. (14.18) depends on the unknown parameter, the population
mean Y which we wish to estimate. Following Singh and Gorey (2017), it is advisable to use an
estimate of F', so one can use a spinner with “firebrick” color for the forced response. Note that we
are using ranked set sampling, thus either of the following two possible estimators of F' could be
used in the spinner while collecting information from the interviewees.

PyYo + Pi(up Yo + 1ip)

F= (1—Py)

(14.19)

or
PyYi + PI(A,-Y(,-) +B;)
(1—-"P3)

The resulting estimators, after replacing the estimator of F, would be investigated in future
studies.

F=

(14.20)

RELATIVE EFFICIENCY

It is a well-known fact that the use of RSS leads to more efficient estimators than the use of the
SRSWR scheme. Also, it would be worth investigating the usefulness of ranked set sampling while
using the forced quantitative randomized response model for estimating the mean of a sensitive var-
iable. For illustration purposes we considered the population listed in the appendix of Singh (2003)
where we considered the first sensitive variable Y; as the amount ($000) of nonreal-estate farm
loans in various states during 1997. We consider this variable as a sensitive variable for the purpose
of testing the new proposed methodology. As reported in Singh et al. (2008), one dataset could be
regarded as sensitive in one situation and nonsensitive in another. A boxplot showing the nature of
the dataset nonreal-estate farm loan is shown in Fig. 14.2.

From Fig. 14.2, one can see that the distribution of the dataset is skewed to the right, which is
typical of the distribution of income as well. Thus it is not unreasonable to consider such a dataset
as representing a sensitive variable in real practice. The higher values would be more sensitive than
the other data values. We define the percent relative efficiencies of the proposed FQRR model over
the Chaudhuri and Stenger (1992) and Bouza (2009) estimators, respectively, as:
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4000

3000

2000

1000

FIGURE 14.2

Box plot showing the distribution of the nonreal-estate farm loan.

RE() = —Y0c) o 100%, (14.21)
Min.V(Frssr))
and
RE(Q2) = VOsouca) X 100% (14.22)

Mi”-V@RSS(F))

In the investigation, we considered using two boxes, each consisting of 5000 cards. The values
of A; and B; were generated from a gamma distribution with parameters as shown in the SAS codes
(see Appendix A). After executing the SAS code the percent relative efficiency values are given in
Table 14.1.

From Table 14.1, we conclude that the Bouza (2009) estimator is more efficient than the
Chaudhuri and Stenger (1992) estimator, and the proposed FQRR estimator is more efficient than
the Bouza (2009) estimator. Followed Singh et al. (2014), we compute

Yo .V
RDY = { )_;” —1} (14.23)

For Py = 0.65, P, = 0.325 and the value of C; in the range from 0.25 and 1.50, the value of RE(1)
varies from 100.21% to 127.82%; and the value of RE(2) varies from 185.79% to 188.95%, with a
maximum of 188.95% for C; =0.25. In the same way the rest of the results in Table 14.1 can be
interpreted. Thus, interestingly, the proposed FQRR model is found to be more beneficial if the
values of fuy; are closer to Y than the Bouza (2009) estimator. The efficiency of the proposed estima-
tor provides a statistical reason that if someone has a good guess about the fixed response, it would
be beneficial in producing efficient estimates in the case of RSS in relation to its competitors.
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Table 14.1 Percent RE Values for the Different Choices of Parameters

Obs Py P, C, RE(1) RE(2)
1 0.650 0.325 0.25 127.82 188.95
2 0.650 0.325 0.50 110.83 186.82
3 0.650 0.325 0.75 102.46 185.79
4 0.650 0.325 1.00 100.21 185.52
5 0.650 0.325 1.25 104.25 186.01
6 0.650 0.325 1.50 111.61 186.92
7 0.600 0.300 0.25 134.18 175.16
8 0.600 0.300 0.50 112.97 172.69
9 0.600 0.300 0.75 103.26 171.59
10 0.500 0.250 1.00 100.20 142.71
11 0.500 0.250 1.25 103.63 143.03
12 0.500 0.250 1.50 113.32 143.95
13 0.500 0.250 0.25 136.62 146.21
14 0.500 0.250 0.50 110.89 143.72
15 0.500 0.250 0.75 103.10 142.98
16 0.500 0.250 1.00 100.77 142.76
17 0.500 0.250 1.25 103.14 142.98
18 0.500 0.250 1.50 109.35 143.57
CONCLUSIONS

In this chapter, we investigate the use of RSS for the case of the forced quantitative randomized
response (FQRR) model introduced by Gjestvang and Singh (2007) for estimating the mean of a
sensitive quantitative variable. We note that the findings match with the observations of Bouza
(2009), in that the use of RSS for a sensitive variable performs better than the use of SRS while
also using the proposed FQRR model.
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APPENDIX A

PROC IMPORT DATAFILE = "E:\real data.XLS" DBMS=XLS OUT=DATAl
REPLACE;

SHEET="'Sheetl"';

RUN;

DATA DATAZ2;

SET DATAl;

KEEP Y1;

RUN;

*PROC PRINT DATA=DATAZ2;

RUN;

DATA DATA3;

SET DATAZ;

PROC MEANS DATA = DATA3 NOPRINT;
VAR Y1;

OUTPUT OUT = DATA4 MEAN=MEANY SUM=SUMY VAR = VARY N=NP;
DATA DATAS5;

CALL STREAMINIT (1234);

DO I =1 TO 500;

A = RAND('GAMMA', 0.3, 2.0);

B = RAND('GAMMA', 0.5, 15);
OUTPUT;

END;

PROC MEANS DATA = DATAS5 NOPRINT;
VAR A B;

OUTPUT OUT = DATA6 MEAN=MEANA MEANB VAR =VARA VARB;
DATA DATA7;

SET DATAG6;

CA = SQRT (VARA) /MEANA;

CB = SQRT (VARB) /MEANB;

KEEP MEANA MEANB VARA VARB CA CB;
*PROC PRINT DATA = DATAS8;

RUN;

$MACRO VAISH(II, P1, C1);

DATA DATAS;

M=5;

*Al = 1.25;

DO I =1 TO M;

RDY = &C1 + 0.08*RAND ('NORMAL') ;
OUTPUT;

END;

DATA DATA9;

SET DATAS;

RDY SQ = (RDY-1)**2;

*PROC PRINT DATA=DATA9;
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RUN;

PROC MEANS DATA = DATA9 NOPRINT;

VAR RDY SQ;

OUTPUT OUT = DATA10 MEAN = MRDY SQ;

DATA DATAll;

SET DATA10;

*PROC PRINT DATA=DATAll;

RUN;

DATA DATAlZ2;

SET DATA4;

IF N = 1 THEN SET DATA7;

DATA DATA13;

SET DATAlZ2;

IF N =1 THEN SET DATAll;

*PROC PRINT DATA=DATALl3;

DATA DATAl4;

SET DATAl13;

Pl = &P1;

P2 P1/2;

P3 = 1-P1-P2;

VARCS = VARY+ (VARY+MEANY**2) *CA**2+MEANB**2*CB**2 /MEANA**2;
VARBOUZA = (VARY-MEANY**2*MRDY SQ)* (1+CA**2)
+ (MEANY**2) *CA* *24+MEANB**2*CB**2 /MEANA**2;
RE1 = VARCS*100/VARBOUZA;

VARNEW = (VARY+MEANY**2)* (P1* (VARA+MEANA**2)+P2)
+P1* (VARB+MEANB* *24+2*MEANA*MEANB*MEANY)

- (P1* (MEANA*MEANY+MEANB) +P2*MEANY) **2

- (P1* (VARA+MEANA**2) +P2) *MRDY SQ*MEANY**2
-P3* (P2*MEANY+P1* (MEANA*MEANY+MEANB) ) **2/ (1-P3) ;
VARNEW1 = VARNEW/ (P1*MEANA+P2) **2;

RE2 = VARBOUZA*100/VARNEWI1;

Cl = &C1;

KEEP P1 P2 Cl1 RE1l RE2;

DATA DATA15&I1I;

SET DATAl4;

*PROC PRINT DATA=DATAl4;

RUN;

$MEND VAISH;

%SVAISH(1, 0.65, 0.25);
SVAISH(2, 0.65, 0.50);
%$VAISH(3, 0.65, 0.75);
SVAISH(4, 0.65, 1.00);
SVAISH(5, 0.65, 1.25);
%VAISH(6, 0.65, 1.50);
SVAISH(7, 0.6, 0.25);
%SVAISH(8, 0.6, 0.50);
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$VAISH(9, 0.6, 0.75);

$SVAISH
SVAISH
$VAISH
SVAISH
$VAISH
SVAISH
$VAISH
SVAISH
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25)
50)
75)
.00) ;
25)

SVAISH (18, 50)

DATA DATAlG6;

SET DATA151 DATA152 DATA153 DATA154 DATA155 DATA156 DATA157

DATA158 DATA159 DATA1510 DATA1511 DATA1512 DATA1513 DATA1l514

DATA1515 DATA1516 DATA1517 DATA1518;

RUN;

PROC PRINT DATA=DATAlG;

VAR P1 P2 Cl RE1 RE2;

RUN;

DATA DATA1l7;

SET DATAZ2;

BY=1;

PROC SORT DATA=DATAl7;

BY Y1;

PROC BOXPLOT DATA=DATAl7;

PLOT Y1*BY;

RUN;
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INTRODUCTION

The problem of estimating the population mean of a study variable, y, has been widely addressed
in the field of survey sampling. There are numerous sampling schemes, such as simple random
sampling, probability proportional to size, two-phase sampling, two-stage sampling, systematic
sampling, and stratified random sampling. The use of stratified random sampling has gained popu-
larity due to its simplicity and it almost ensures a gain in efficiency of the estimators if used prop-
erly. The main gains in stratified random sampling result from the construction of homogeneous
strata. If strata are homogeneous, then stratified random sampling has been found to be efficient in
so far as the precision of an estimator is considered. In stratified random sampling, there are two
issues: allocation of sample size to each stratum and the construction of strata boundaries which
could as much as possible contribute to forming homogeneous groups. Such strata boundaries,
which lead to homogeneous strata, are also called optimum strata boundaries (OSB). The construc-
tion of OSB for simple random and with replacement sampling for Neyman allocation is a famous
example. In addition, researchers have also approached it as a mathematical programming problem
(MPP), which minimizes the variance of the estimator of the population mean while the total sam-
ple size and the cost of the survey remain the same.

In this project, we consider the construction of OSB while using ranked set sampling within
each stratum.

In the next section, we provide commonly used notation in a study of stratified random
sampling.

STRATIFIED RANDOM SAMPLING

Consider a population 2 of N units that is divided into / homogeneous groups, called strata, each
of size Ny, h=1,2,3,---1. From the hth stratum of size N, assume a simple random and with
replacement (SRSWR) sample of ny, units is selected, such that Zf:] n, = n, the total fixed sample
size. Let yy;ri=1,2,3,---np,h=1,2,3---1, be the values of the selected ith unit from the hth
stratum.
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Let
1 nh
=D i (15.1)
Mh =1

be the unbiased estimator of the hth stratum population mean
1 Ni

R 15.2
M;m (15.2)

7}1 =
Then an unbiased estimator of the population mean
. 1 I Ny

7= 155 (153)

Nh:l i=1

is given by

]
Yu= D Wi (15.4)
h=1

when W), = 3¢ is the population proportion of data value in the Ath stratum. Obviously, the variance
of y, is given by

2

V(T) = ZI: W % (15.5)
h=1 h
when
1S -
%=m;mrm2 (15.6)

is the population variance of the Ath stratum.
Under Neyman (1934) allocation, the optimum sample size is given by

WI y
ny= (15.7)
> n=1 Waony
and the minimum variance is given by
1< )
V(@) = - Wiow) (15.8)
h=1

The set of point of stratification y;,y, ...y~ which minimize the V(y,)y should give the best
stratification for the Neyman allocation. Following Sukhatme and Sukhatme (1970), the optimum
points of stratification with Neyman allocation are obtained by solving a set of (/ — 1) simultaneous
equations:

Uﬁy + (yh*yh)z _ Uﬁﬂ + (yh_yhﬂ)z

Ohy Oh+1

, h=1,2,...1—1 (15.9)
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Under the assumption, o, = constant for all h=1,2,...1— 1, the optimum points of stratifica-
tion are obtained by solving / — 1 simultaneous equations
_ Yt Vi

2

Eq. (15.9) is not easy to solve for y, if the number of strata become large, even when
Eq. (15.10) is free from strata variances.

Dalenius and Hodges (1957) came up with the idea of using the cumulated value of 4/f(y). Let
H= f: v/f(¥)dy be the total cumulated value of \/f(y) ; then the first approximation of the opti-
mum point of stratification is given by

Yh , h=1,2,---1—1 (15.10)

yhthH,l=1,2,...l—1 (15.11)

Dalenius (1950) was the first to introduce the process of constructing OSB while using the
same study variable for both estimation and stratification. We are also considering using the same
variable for estimation and for construction of strata boundaries. There are many studies by differ-
ent researchers, such as Mahalanobis (1952), Sethi (1963), Serfling (1968), Singh and Sukhatme
(1969), and Singh (1971) among others, which deal with constructing OSB under different
situation.

Sharma (2017) and Khan et al. (2009) considered a different approach that yields both the OSB
and optimum sample size by making use of MPP. Following this direction, let y, and y; be the min-
imum and maximum values of the study variable y. The problem of determining the strata bound-
aries is to divide the range

d=y/—yo (15.]2)
at intermediate points y; =y, =.-- =y,_; and find the optimum sample sizes n;, such that the
variance:

l

2
V() = ZW,&% (15.13)
h=1 h

is minimum.
Thus the problem of determining OSB and the optimum allocation can be formulated as:
Minimize
2

1
V() = ZWﬁ% (15.14)
h=1 h

Subject to the constraints:

Zdh =d (15.15)

Znh:n (15.16)

and
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dy=On—yn-1)=0 (15.17)

n, = 1 is an integer.
In the next section, we consider the use of ranked set sampling.

STRATIFIED RANKED SET SAMPLING

Mclntyre (1952) introduced the idea of ranked set sampling for estimating the population mean
yield of a crop in a field. He provides a clear and insightful introduction to ranked set sampling.
Douglas (2012) has contributed an introductory review article on the use of ranked set sampling
and its modifications since 1952.

The goal is to select n;, data values by selecting R;, groups of my, data values. Each group of my,
data comes from my, sets of my, units each. For each set, units are ranked according to estimated
y-values. Note that it would be pure judgmental ranking, which could involve the use of auxiliary
information experience, etc., but the actual data values remain unknown. Here we assume that the
unit that is judged to have the smallest y-value in the ranked set in fact has the smallest value, and
the value of the study variable is actually measured only for this unit. This observation from the
hth stratum is denoted by yupj. In other words, we select an SRS sample of my, units with judged
data values yu1, ym2, - .., Yum, and then ranked as

Vi) = Va1 = - Yh[my]

This is the way the first observation yj is selected from the hth stratum and the rest of the
(my — 1) units are discarded.

Now, we select another independent SRS of 1, units from the Ath stratum, and rank them based
on judgment as

Yu[1] = Yh2] = Yh[my]

and this time yjpy is retained in the RSS and the other (m;, — 1) units are discarded. Repeat the pro-
cess until my, data values are included in the first group of data value in the RSS from the Ath stra-
tum. It is called the first cycle in the Ath stratum of the SRSS and generated this over the first
group of my, data values.

Then we use such R, cycles in the hth stratum such that n, = m,R;,. The ultimate SRSS sample
of n;, units can be visualized as in Table 15.1.

Under SRSS, we propose an unbiased estimator of the population mean Y as

Rh  my

Vsrss = ZWhZ ni’:g} (15.18)
ln

or equivalently,

Ry my

Ysrss = ZWh_Zth[l]/ (15.19)

jll

The variance of the estimate yqrgg is given by
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Table 15.1 Stratified RSS Scheme

Cycle In Ath Stratum, h =1,2---1

1 VRV Vfm]t
Yu[1R2Ynp2pR " - Yh[my12

3 Yu[113Yh[213 " - Yhlmy)3

Ry V1R, VH2IR, """ " YVhfmy IRy

2
Uh)

_ ! R, @
VOsrss) = Z":l Wi {Rhmh - mhR2 Z ’ (i~ }
2
A 2 )y 1 [ —
N thl Wi {n_h R, Zi:] (Yii—Y) } (15.20)
1 Ry = —\2
- Zh 1 py, { Ohy EZ,‘:] (Yh[i]_Y) }

for fixed R;, and where 7;,[,-] is the expected value of the ith units selected in the sample. The
Neyman allocation in SRSS is

Wi/ o — &30 (Y~ Y,
- h\/ LA (Vi =) (1520

Ry —
Zh 1 Wh\/ahy Ry Zi;l (Yh[i]_Yh)

The minimum variance of ygps¢ With Neyman allocation is given by

. _ 1 1 1 Ry, = —\2
Min. VOssshv = [Zh:] Wh\/ %~ 7y 2 (T~ 7) } (15.22)

On differentiating V(ysrgs)y With respect to y, and setting it equal to zero, we get

T —
5\/(’%‘@2& (Pua =)’

Ry, — 26Wh

Wi \/ - — Y

Oyn Z n- N

1 R = =
a\/ﬂﬁm)y - R—(hﬂ)Z":l (Y(h+1>[t1—y<h+1)) (15.23)
+ W,
h+1 ayh

1 - - 2 0Wgt1y

+ ok, — Y -Y —— =0
\/O(h+l))' R(HUZ’ ) ( (h+ D[] h+1)) E

Now it is very difficult to find the following derivative:

2 1 R (v Vv 2
6\/a(h+1)y b e > (Y(h+l)[i] - Y(/1+1))
Oyn

(15.24)

From the above we see that the problem of constructing strata boundaries in the case of ranked
set sampling by following Dalenius (1950) becomes complicated. The other methods due to
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Dalenius and Hodges (1957), called the cumulative square root of frequencies approach, would pro-
vide the same strata boundaries for SRSS, and hence is not useful. Thus we consider the MPP
approach to find the OSB and sampling n;, as follows:

. . L W% 1 Ry~ = \2
Min. V (Ysgss) = Eh:l nT]l {gg_‘. R Z,-:l (Y= Yn) } (15.25)
where n, = muRy,
Subject to:
!
> di=d (15.26)
=1
!
n,=n (15.27)
h=1
dy = (yn = yn-1) =0,
and n, = is an integer.
Also, we can use mathematical program:
o L WP 1 =&
Min. V(ysRSS) = h:lnf;{U;%y—thZ ’ (Yh[z]_yh) } (15.28)
Subject to:
l
S di=d (15.29)

h=1

and dy, = (yp, — yn-1) =0 _
If we define RDYY;) as the ratio ”[’] as in Singh et al. (2014), then we can reformulate the prob-
lem as

i 2 Ry
Min. V (Vegss ) Z { —Z(RDY[,]—I) } (15.30)

Subject to:

1
S di=d (15.31)

h=1
and dy = (yp, — yn-1) =0
For comparing our proposed method to stratified random sampling we consider the percent RE
of yqrgs With respect to y, is given by

RE. = YO0 o100y, (1532)
min.V(¥sgss)
In the next section, we show the performance of the proposed method through numerical

illustrations.
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NUMERICAL ILLUTRATIONS

In order to find the rank set sampling boundaries and variance, different sets of populations that fol-
low uniform, triangular and exponential distributions are considered.

Population 1: Uniform distribution

The uniform distribution is a continuous distribution that has equal probability of observations
over a given range. Two parameters, maximum and minimum values, define the distribution. Assume
the maximum value is b, minimum value is a, then the density function of the uniform distribution is

a=x=b

1
f= { b—a’ (15.33)

0, otherwise

We generated a population of size N = 1000 units from the uniform distribution with a = 0.0
and b = 50 using a random number generator in LINGO/PYTHON. We note that the minimum
value of the study variable is yo = 0.001 and the largest value is y; = 49.883. The range of the study
variable in the population is given by d = y; — yp = 49.882.

We determined the OSB and appropriate sample sizes to minimize the variance by using the
programming language LINGO/PYTHON.

As the study variable y has uniform distribution with density function f(y) in Eq. (15.33), we
obtain W), (stratum weight), Y, (stratum mean), and o,%y (stratum variance), respectively. After inte-
gration of and organizing the results, we obtain the followings equations

d
Wy = — (15.34)
b—a
where
dn = Yn = V-1 (15.35)
- + yi—
v, = 2] (15.36)
2
d2
2 _ %h
=1 (15.37)
i ?Rh 2 . " .
In the case of ranked set sampling, let F = £t> (RDYj;—1)", where RDYj; is as defined in
Singh et al. (2014). =l

We consider the use of ranked set sampling in each stratum and note the reduction in variance
as given in Table 15.2.

After executing the LINGO/PYTHON code, the stratum sample size does not change much, but
the variance of the estimator of the population mean is reduced. The value of F changes the vari-
ance of the population mean. From Table 15.2 it is noted that the value of percent relative effi-
ciency is between 100% and 100.99% as the value of F' changes from 0.0 to 0.508. As soon as the
value of F becomes 0.509 then there is a drastic decrease in the value of percent relative efficiency
to 62.03%. In the case of the uniform distribution the optimum sample sizes remain nearly the
same, i.e., 25, in all four strata as the value of F ranges between 0.0 and 0.508. It is interesting to
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F Values
0

0.05

0.1

0.2

0.3

0.4

0.5

0.505

0.506

0.507

Table 15.2 Uniform Distribution

V(srss)
0.1166304

0.1165179

0.1164054

0.1161804

0.1159554

0.1157304

0.1155054

0.1154941

0.1154919

0.1154896

Stratum Sample Size

ni = 25.00009
> = 25.00005
ny = 24.99987
s = 25.00000
n = 24.99999
n, = 25.00001
ny = 24.99999
s = 25.00000
n = 24.99998
n, = 25.00002
ny = 24.99997
ny = 25.00003
ni = 25.00000
n, = 25.00000
n3 = 25.00000
ny = 25.00000
ni = 24.99999
> = 25.00001
ny = 24.99999
s = 25.00000
n = 25.00000
n, = 25.00001
ny = 24.99999
Ny = 24.99999
n = 25.00009
n, = 24.99996
ny = 24.99997
ny = 24.99998
ni = 25.00003
n, = 24.99999
ny = 24.99998
ny = 25.00000
ni = 25.00000
1, = 25.00000
ny = 25.00000
4 = 25.00000
n = 25.00000
n, = 25.00000
n3 = 25.00000

ny = 25.00000

RE
100%

100.1%

100.19%

100.39%

100.58%

100.78%

100.97%

100.98%

100.99%

100.99%
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Table 15.2 Uniform Distribution Continued
F Values V(¥srss) Stratum Sample Size RE
0.508 0.1154874 ny = 25.00000 100.99%
ny = 24.99998
nz = 25.00001
ny = 25.00000
0.509 0.1880247 n; = 1.00000 62.03%
n, = 33.00000
n3 = 33.00000
ng = 33.00000

note that if F' becomes 0.509 then the optimum sample size for the first stratum become 1, while
for the other three strata it becomes 33.

Population 2: Right triangular distribution

The right triangular distribution is defined by two variables, which are its maximum and mini-
mum values, say b and a, respectively. The general formula for the probability density function of
right triangular distribution is given by

20y <y
=% b-ap’ 777 (15.38)
0, otherwise

We obtain W, (stratum weight), Y, (stratum mean), and aﬁy (stratum variance), respectively.
After integration and organizing the results, we obtain the following equations

2 —
e ) (15.39)
(b—a)
where a, = b — y,—;
— _ 3b(dy + 2y4-1) = 2dy + 2dpys—1 +3y;_)
Y,= L 15.4
’ 3Can—dy) (1340
2072 _ + 642
Ugh _ dh(dh 6ahd;, 26ah) (15.41)
18(2ah _dh)

where y, = dj, + y,—1

We generated a population of size N = 1000 units from the right triangular distribution, and
predetermined the sample size n = 100 from the population. We chose the minimum value of the
study variable to be y, = 0 and the largest value to be y; = 5. The range of the study variable in the
population is then d =y; — yg = 5. Table 15.3 shows the results.

Again it is interesting to note that in the case of triangular distribution the value of percent rela-
tive efficiency lies between 100% and 100.009% as the value of F changes from 0.0 to 0.0000012.



212 CHAPTER 15 CONSTRUCTION OF STRATA BOUNDARIES

Table 15.3 Results for right triangular distribution
F-values V(ySRSS) Stratum Boundaries | Stratum Sample Size
0 0.0002893406 | yo = 0.001
y; = 0.2892344 n; = 24.00
y2 = 0.6208286 ny = 24.00
y3 = 1.030881 nz = 24.00
y4 = 1.980000 ny = 28.00
0.000001 0.0002893383 | yo = 0.001
y1 = 0.2892346 n; = 24.00
y2 = 0.6208288 ny = 24.00
y3 = 1.030881 ny = 24.00
y4 = 1.980000 ny = 28.00
0.00000101 | 0.0002893383 | yo = 0.001
y; = 0.2892345 n; = 24.00
y2 = 0.6208286 ny = 24.00
y3 = 1.030881 ny = 24.00
y4 = 1.980000 ny = 28.00
0.00000104 | 0.0002893383 | yo = 0.001
y1 = 0.2892346 n; = 24.00
y2 = 0.6208288 ny = 24.00
y3 = 1.030881 nz = 24.00
y4 = 1.980000 ny = 28.00
0.00000106 | 0.0002893382 | yo = 0.001
y1 = 0.2892346 n; = 24.00
y2 = 0.6208288 ny = 24.00
y3 = 1.030881 nz = 24.00
y4 = 1.980000 ny = 28.00
0.00000108 | 0.0002893382 | yo = 0.001
y; = 0.2892345 ny = 24.00
y2 = 0.6208287 ny = 24.00
y3 = 1.030881 nz = 24.00
y4 = 1.980000 ny = 28.00
0.00000109 | 0.0002893381 | yo = 0.001
y1 = 0.2892345 ny = 24.00
y2 = 0.6208287 ny = 24.00
y3 = 1.030881 nz = 24.00
y4 = 1.980000 ny = 28.00
0.0000011 0.0002893381 | yo = 0.001
y1 = 0.2892345 ny = 24.00
y2 = 0.6208287 ny = 24.00
y3 = 1.030881 nz = 24.00
y4 = 1.980000 ny = 28.00

Stratum Weight

wi
w2
w3

Wq

wi
w2
w3
Wy

wi
w2
w3
Wy

wi
w2
w3

Wy

wi
w2
w3

Wy

wi
w2
w3

Wy

wi
Wwo
w3

Wy

wi
wo
w3

Wy

= 0.2700801
= 0.2582297
= 0.2416786
= 0.2300117

= 0.2700802
= 0.2582297
= 0.2416785
= 0.2300116

= 0.2700801
= 0.2582297
= 0.2416786
= 0.2300116

= 0.2700802
= 0.2582297
= 0.2416785
= 0.2300116

= 0.2700802
= 0.2582297
= 0.2416785
= 0.2300116

= 0.2700802
= 0.2582297
= 0.2416786
= 0.2300116

= 0.2700802
= 0.2582297
= 0.2416785
= 0.2300116

= 0.2700802
= 0.2582297
= 0.2416786
= 0.2300116

RE
100%

100.008%

100.008%

100.008%

100.008%

100.009%

100.009%

100.009%
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Table 15.3 Results for right triangular distribution Continued
F-values V(ySRSS) Stratum Boundaries | Stratum Sample Size | Stratum Weight | RE
0.0000012 0.0002893379 | yo = 0.001 100.009%
y1 = 0.2892346 n; = 24.00 wy = 0.2700802
y2 = 0.6208288 ny = 24.00 wy = 0.2582297
y3 = 1.030881 nz = 24.00 ws = 0.2416785
y4 = 1.980000 ny = 28.00 wy = 0.2300116
0.0000013 0.0005075044 | yo = 0.001 57.0124%
y; = 0.3882379 n; = 31.00 wy = 0.3530589
y2 = 0.3894686 ny = 1.00 wy = 0.001
y3 = 0.8718532 nz = 31.00 ws = 0.3323938
y4 = 1.980000 ng = 37.00 wy = 0.3135473

In the first three strata the optimum sample size is 24 and in the fourth strata the sample size is 28.
As soon as the value of F changes to 0.0000013 then there is a drastic decrease in the value of per-
cent relative efficiency to 57.0124% and the optimum sample size in the first and third strata is 31,
in the second stratum it is 1, in the fourth stratum it is 37.

Population 3: Exponential distribution

The exponential distribution is a continuous distribution with density given by

e, y=0
fey)= { 0, otherwise (1542)
For convenience, we set A =1 and ye[0, 5], therefore the density function for population 3 is:
1 -y
f(y)={—1—e5€ Y, y=0 (15.43)
0, otherwise
Because 1_18,5 ~ 1, for convenience, in generating samples, we simplify Eq. (15.43) as:
_Je?, y=0
f0)= { 0, otherwise (15.44)

We generated a population of size N = 1000 units from the exponential distribution, and prede-
termined the sample size n = 100 from the population. We note that the minimum value of the
study variable is y, = 0.00673795 and the largest value is y; = 5. The range of the study variable in
the population is given by d =y; — yo = 4.9932605.

As the study variable y has exponential distribution with density function f(y) in Eq. (15.42),
we obtain W, (stratum weight), Y, (stratum mean), and U,zly (stratum variance), respectively. After
integration and organization, we obtain the following equations

eYh — e¥h-1

W= (15.45)

eYheyn-1
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_ Vhy, | — gVl
Y, = R e S [ (15.46)
eXn — eYn-1
(Y2 + 21 +2) = (2 +2) -
0_)2% _ (yh 1 Yh—1 ) ()’h Yh ) . Y; (15.47)
eYh — eYn-1

where
yo=0,y4=5 and dj =y, — yn-1

The minimum sample size has been set to 5, meaning n;, =5 (not like the illustration for popu-
lation 1 and 2), for the purpose of sample distribution in each stratum. Table 15.4 shows the results
for exponential distribution.

The results in Table 15.4 are more promising in the case of exponential distribution as long as
the problem of constructing strata boundaries for ranked set sampling is concerned. The value of
percent relative efficiency value changes from 100% to 1483.08% as the value of F increases from
0.00 to 0.009 with steps of 0.001. For each value of F, there is quite a variation in the sample allo-
cations among the four strata. For example, if F is 0.001 then the optimum allocation to the first
stratum is 28 units, the second stratum is 34 units, the third stratum is 5 units, and the fourth stra-
tum is 33 units. On the other hand, if F is 0.003 then the optimum allocation to the first stratum is

Table 15.4 Results for exponential distribution
V (¥srss) Stratum Stratum Sample

F-values | (X107%) Boundaries Size Stratum Weight RE

0 0.1324658 yo = 0.00 100%
y1 = 0.2490131 n; = 32.00 wy = 0.2204302
y, = 0.5311369 n, = 31.00 wy, = 0.1916336
y3 = 2.280201 ny = 5.00 ws = 0.4856725
y4 = 5.00 ny = 32.00 ws = 0.031

0.001 0.1186701 yo = 0.00 111.63%
y1 = 0.2415763 n; = 28.00 wy = 0.2146112
y2 = 0.5283637 n, = 34.00 wy = 0.1958199
y3 = 2.302915 n3 = 5.00 ws = 0.486019
y4 = 5.00 ny = 33.00 wy = 0.033

0.002 0.1032451 yo = 0.00 128.3%
y1 = 0.229411 n; = 22.00 wy = 0.2049983
y2 = 0.5208214 n, = 37.00 wy = 0.2009693
y3 = 2368153 nsy = 5.00 w; = 0.5003789
y4 = 5.00 ny = 36.00 w, = 0.036

0.003 0.1070703 yo = 0.00 123.72%
y1 = 0.3243645 n; = 51.00 wy = 0.270134
yo = 0.5142723 ny, = 5.00 wy = 0.1250155
y3 = 2.429445 ny = 5.00 ws = 0.5098499
y4 = 5.00 ny = 39.00 w, = 0.039
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F-values

0.004

0.005

0.006

0.007

0.008

0.009

0.04

V (Vsrss)
(X107%

0.07373335

0.02888716

0.03490493

0.02363396

0.007393389

0.008931817

0.0001542432

Stratum
Boundaries

yo = 0.00

y1 = 0.2929248
yo = 0.5122774
y3 = 2.449082
y4 = 5.00

yo = 0.00

y1 = 0.2453175
yo = 0.5103681
y3 = 2.46834
y4 =50

yo = 0.00

y1 = 0.2362862
y2 = 0.5050990
y3 = 2.524018
¥4 =50

yo = 0.00

y1 = 0.2130424
v, = 0.5034811
y; = 2.541919
v4=5.0

yo = 0.00

y1 = 0.3105857
vy, = 0.5034812
y; = 2.541919
y4 =50

yo = 0.00

y1 = 0.2276341
vy, = 0.4752243
y; = 2.946215
y4 =50

yo = 0.00

y1 = 0.2682696
vy, = 0.746305
y; = 1.383136
y4=15.0

Table 15.4 Results for exponential distribution Continued

Stratum Sample
Size

n; = 50.00
n, = 5.00
n3 = 5.00
ny = 40.00
n; = 5.00
n, = 49.00
n3y = 5.00
ny = 41.00
n; = 46.00
n, = 5.00
ny = 5.00
ny = 44.00
n, = 45.00
n, = 5.00
nz = 5.00
ny = 45.00
n; = 5.00
n, = 45.00
n3 = 5.00
ny = 45.00
n; = 17.00
n, = 5.00
nz = 5.00
ny = 73.00
n; = 32.00
n, = 16.00
ny = 46.00
ny = 6.00

Stratum Weight

wy = 0.2539218
wy = 0.1469486
ws = 0.5127569
w, = 0.04

wy = 0.2175439
wy = 0.1821815
ws = 0.5155493

wy = 0.041
wy = 0.2104453
ws = 0.1861089
ws = 0.5233089
wy = 0.044

wy = 0.1918782

wy = 0.2036989
ws = 0.5257079
wa = 0.045

wy = 0.2669825
w, = 0.1285946
wy = 0.5257078

wa = 0.045
wy = 0.2035844
w, = 0.17467
wy = 0.5292074
wa = 0.073

w, = 0.2352985

wy = 0.2905863
ws = 0.2233243
wy = 0.006

RE
179.66%

458.56%

379.5%

560.4%

1791.68%

1483.08%

85,881.13%

51 units, to the second and third strata it is 5 units each, and the fourth stratum allocation is 39
units. It is very interesting to note that as the value of F becomes 0.04 then there is a substantial
jump in the value of percent relative efficiency to 85881.13% with an optimum allocation of 32
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units to the first stratum, 16 units to the second stratum, 46 units to the third stratum, and 6 units to
the fourth stratum.

15.5 CONCLUSIONS

We conclude that, when creating optimum stratum boundaries for the uniform distribution, there is
no difference between the use of simple random with replacement sampling and ranked set sam-
pling. The optimum allocation for both sampling schemes also remains the same. However, there is
a slight gain in the relative efficiency due to the use of ranked set sampling. Similar findings are
observed in the case of right triangular distribution. In contrast, when considering the exponential
distribution, we note that there is a change in strata boundaries, and optimum allocations, and that
there is a substantial gain in relative efficiency while making use of ranked set sampling.

In future studies, we suggest the possible extension for the construction of strata boundaries and
optimal allocation by following Mahajan et al. (2007), on similar lines for randomized response
sampling due to Bouza (2009) for ranked set sampling. We also suggest that other RSS schemes
cited in the review by Al-Omari and Bouza (2014) can also be investigated.
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CHAPTER

CALIBRATED ESTIMATOR OF
POPULATION MEAN USING
TWO-STAGE RANKED SET
SAMPLING

Veronica l. Salinas, Stephen A. Sedory and Sarjinder Singh
Department of Mathematics, Texas A&M University-Kingsville, Kingsville, TX, United States

INTRODUCTION

The use of auxiliary information in estimating population mean or total is well known in the field of
survey sampling. Various survey sampling schemes such as stratified sampling, cluster sampling, and
multistage sampling are frequently used, among them two-stage sampling has the benefit of saving
time, cost, and effort. As mentioned in Salinas et al. (2018), the two-stage sampling method is an
improvement over cluster sampling when it is not possible or easy to enumerate all the units from
the selected clusters. A solution to this difficulty is to select clusters, called first-stage units (FSUs),
from the given population of interest and select subsamples from the selected clusters called second-
stage units (SSUs). Assuming heterogeneous groups, this technique of sampling helps to increase the
precision of the resultant estimates. It is easy to collect information from a few units within the
selected FSUs, saving the cost of survey. Assume the population of interest 2 = {1,2,..., N} consists
of N nonoverlapping clusters, called FSUs. The whole population is divided as Q2 = {21,,, ..., O},
where (); denotes the ith cluster of size M;, for i=1,2,...,N such that Q= U f\’:lQi and
N
M = " M;. Sirndal et al. (1992) consider three situations with the auxiliary information in two-stage
i=1
sampling. For the first situation, the auxiliary variable is available for all the FSUs, the second situa-
tion has the auxiliary variable for all the units in the population. Lastly, the third situation has the
auxiliary variable available for all elements in the selected FSUs. For clarity, assume the simplest
and most practical design where the FSUs are selected by simple random and without replacement
(SRSWOR) and the SSUs are selected by simple random and with replacement (SRSWR) sampling
schemes. Also assume that the population means of the auxiliary variable for the selected FSUs are
known or available. The auxiliary information at the individual level may or may not be known. For
simplicity of results, focus is put on the use of a single auxiliary variable. The application of two-
stage sampling can involve various situations to the interest of the investigator. For example, in the
agricultural sectors selecting villages as FSUs, and farmers at the SSUs; in education, selecting
departments as FSUs, and faculty as SSUs. In politics, selecting blocks as FSUs and dwellings as

Ranked Set Sampling. DOI: https://doi.org/10.1016/B978-0-12-815044-3.00016-2
Copyright © 2019 Elsevier Inc. All rights reserved. 2 1 9
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SSUs. In the health sector, FSUs could be hospitals and SSUs could be doctors. At a city level study,
FSUs could be households and SSUs could be family members.
In the next section, we introduce notations and some basic results related to two-stage sampling.

NOTATIONS AND BASIC RESULTS

As stated earlier, consider a population 2 with N FSUs where the ith FSU €); contains M; SSUs,
fori=1,2,...N

Let y; and x;; denote the value of the study variable y and the auxiliary variable x respectively,
for the jth SSU of the ith FSU, forj=1,2,...M,

Let

M = " M, be the total number of SSUs in the population,

i=1

=z

1 &
=N E M; be the average number of SSUs per FSU in the population, and
i=1
M; _ NM; - :
i; = = = —— be the expected number of units in the ith FSU.
Let ]A‘;I M

Y, = 2 vi; be the population total of the study variable in the ith FSU,

\

— Z Vi = be the population mean of the study variable in ith FSU,

l

ZE

Y= Z Y; be population total of the study variable, and

Z w;Y; Z i M Z yi = Z Z yi = be the population mean per SSU of

i=1 j=
the study Varlable Wthh 1s the focus of estimation.

Let 4
X = Z x;; be the population total of the auxiliary variable in the ith FSU,

Zx,] L be the population mean of the auxiliary variable in ith FSU, which is

I

assumed to be known

X= ZX be the population total of the auxiliary variable, and

X= —Z wXi = Nzﬁl . ﬁZx,»j Z Zx,j be the population mean per SSU of
i=1 ij=1

i=1 j=
the auxﬂlary vanable, which is assumed to be known

Let M;
1 i
o= ﬁ E 3 (v =), be the population variance for the ith FSU, and
N

Sy = ﬁ; (uil_/i—Y)z be the population variance of between the weighted FSUs population
means. =
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Suppose an SRSWOR of n FSUs is selected from N FSUs. A sample of m; SSUs from the ith
selected FSU of size M; is selected by SRSWR sampling.

Let .

y; = ml Z vij» be the sample mean of the study variable in ith FSU, and

X = — Z x;j, be the sample mean of the auxiliary variable in ith FSU.
i
Then we have the following lemmas:

Lemma 16.1: An unbiased estimator of the population mean Y is given by

= IZu,y,, (16.1)

" n#
Proof: Let E, denote the expected value over all possible second-stage samples, each of size m;

taken using SRSWR sampling from a given FSU of size M;.

Let E; denote the expected value over all possible first-stage samples each of size n taken using
SRSWOR sampling from a given population of N FSUs.
Taking the expected value of the sample mean y, we have

%Z,u‘iyi %ZMEZ (y,‘) =E [—Z/ Y
i=1 i=1

which proves the lemma. Now we have the following corollary:

EQY)=E\E; =L

Lemma 16.2: An unbiased estimator of the population mean X is given by:
¥ = 12 % (16.2)
x p X .

Proof: Following Lemma 16.1, it is obvious that

l n 1 n
E®) = EE; ;EW_@' =E ;ZuiEz()_c,-) =
i=1 i=1

which proves the lemma.

Lemma 16.3: The variance of the sample mean estimator y is given by

1 u tzv 1-
V() = WZ“[Q (%) + (Tf) Shy (16.3)

i=1 !

were f = & is the finite population correction factor while n FSUs are selected from the N FSUs by

i N -
SRSWOR, where U%y = ML Z ()’u ) and S 171 Zl (,u,- Y,—Y )2 have their usual meanings.
Jj= i=
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Proof: Let V, denote the variance over all possible second-stage samples each of size m; taken using
SRSWR sampling from a given FSU of size M;. Let V| denote the variance value over all possible
first-stage samples each of size n taken using SRSWOR sampling from a given population of N FSUs.

By the definition of variance, the variance of the sample mean y is given by:

V() = E1V2(5) + VIEx(5)
1 n 1 n
BV 2 | VB D

_E]

2 Z/J‘, V2 yl

] n
+Vi|- uEz y,

which proves the lemma.
Lemma 16.4: The variance of the sample mean estimator X is given by
. > 2 (7% [ AT
V() = mz% (ﬁ) + ( - )th (16.4)
N
where 0% Z x;—X;) and 82, = N#Z (1:X;—X)" have their usual meanings.
Proof: It follows from the previous lemma.

Lemma 16.5: The covariance between the sample mean estimators y and X is given by

N p—
Cov(y,X) = %ZH? ((;1’) + (1 nf )bey (16.5)

i=1 !

<

1 i
where o, = M

meanings. J

(vi = Yi) (xj = X;) and Spyy = v El (11:Y; = Y) (11;X; — X) have their usual
1 i=

Proof: Let C, denote the covariance over all possible second-stage samples each of size m; taken
using SRSWOR sampling from a given FSU of size M;. Let C; denote the covariance value over
all possible first-stage samples each of size n taken using SRSWOR sampling from a given
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population of N FSUs. By the definition of covariance, the covariance between the sample means y

and X is given by:
E 1 Zn: Vi |, E l Xn: x
2\ 2 Hai )2 - HiXi

Cov(y,%) = E1[C2(y,X)] + C1[E2(D), E2(X)]
+C |:_ ZM,'?iy % Z/L,‘Yi

:E1 +C]

1< 1 _
(&) (; ;Mi}’f’;;ﬂﬂi>
Z:u‘ C2 yl?'xl

,El

which proves the lemma.

Sukhatme, Sukhatme, Sukhatme, and Asok (1984) suggested a regression-type estimator of the
population mean in two-stage sampling as

1 n . _
= L34 B9 =5+ (- 166
i=1
The variance of the regression-type estimator y,. can be approximated as:
V) =V [y +HE - D)
~ V() + B V(E) — 28 Cov(y, ¥)

1 & o2 1-f
= N2 (’) (SL)sh )
nN 4= m; n

N —
5500 (209
1=1 i

(16.7)
1 al 2 ( Oixy lif
_ _ L Y+ (—L .
s (o)« ()
- (L= [52 + BRS82 248 .]+ L EN: 2( L [g?+ﬁ2a.2—2ﬁa- ]
n by bxy nN iz]iul m; iy ix Xy
Sukhatme et al. (1984) substituted the value of the true regression coefficient as
thv
= — 16.8
B 52 (16.3)

The value of minimum variance for the above optimum choice of the regression coefficient 3 is
given by

1- 1) & 1
Min. V(,) = (Tf) 1) + (m) S (ﬂ (02 + 202, ~ 280, (16.9)
=1 i



224 CHAPTER 16 CALIBRATED ESTIMATOR OF POPULATION

where

(16.10)

denotes the population correlation coefficient between the population means of the FSUs.
In the next section, we consider the problem of estimation of the population mean using ranked
set sampling (RSS) at the second stage of sampling.

TWO-STAGE RANKED SET SAMPLING

Suppose an SRSWOR sample of n FSUs is selected from N FSUs. A sample of m; SSUs from the
ith selected FSU of size M; is selected by a RSS. From the ith FSU of M; units, we select an
SRSWR of A; units (i1, Xi1), (Vi2,Xi2), - - -(Vin;» Xin;)- Then rank the units based on the study variable
by a judgment ranking as (yiu},Xi1)), (Vi) Xi2)> - ---» OVifu> Xi(r))- Retain only the first ranked
ordered pair (yji,Xi1)). Again, select an SRSWR sample of 7; units as (yir,xi1), (Vi2,Xi2),
.. »(Vin;»Xin,), then rank the study variable based on judgment ranking as (i, Xi1))s
(Vip)s Xi2))»- - -ifw» Xih))- Then retain the second ranked ordered pair (v, Xi2)). Repeat the process
r; times within the ith selected FSU of M; units such that m; = h;r;. Details about improvements
and applications can be found and observed from Al-Omari and Bouza (2014).

Let m;

Vi = ml > yir]» be the RSS mean of the study variable in ith FSU, and

j=1

m;

X = -3 xi(j), be the RSS mean of the auxiliary variable in ith FSU.
=
Then we have the following lemmas:

Lemma 16.6: An unbiased estimator of the population mean Y is given by

I PR
Yrss = > i, (16.11)
i=1

Proof: Let E, denote the expected value over all possible second-stage samples each of size m;
taken using RSS sampling from a given FSU of size M;.

Let E; denote the expected value over all possible first-stage samples each of size n taken using
SRSWOR sampling from a given population of N FSUs.
Taking the expected value of the sample mean ypgg, we have

1 n 1 n 1 N B -
ﬁ;#,‘ym =E [ni_zlltiEz()’[i])] = N;/ﬁiYi =Y

E(YRSS) =E\E,

which proves the lemma.
Now we have the following corollary
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Lemma 16.7: An unbiased estimator of the population mean X is given by:
% ! § X (16.12)
x = — x l .
RSS = - HiX(i)

Proof: It is obvious that

1 n
E(xrss) = E\E» [; > /Lix(i):| E, —Z 1Ex (% ]
i=1

which proves the lemma.

Lemma 16.8: The variance of the sample mean estimator yggg is given by

s _ 1 N ) (J’%V B 1 Ti Vo T 2 + ﬁ S2 16.13
(Frss) ~ E i er( =Y p by (16.13)
i=1 i il %

=1

where f = £ is the finite population correction factor while selecting n FSUs from the N FSUs by
i _ N
SRSWOR, where 01.2}, = ﬁ Zl (vij— Y[) , and S,%y =52 (1Yi— Y) have their usual meanings.

j= l*

Proof: Let V, denote the variance over all possible second-stage samples each of size m; taken
using RSS from a given FSU of size M;. Let V| denote the variance value over all possible first-
stage samples each of size n taken using SRSWOR sampling from a given population of N
FSUs.

By the definition of variance, the variance of the sample mean ypgg is given by

V(Vrss) = E1V2(Frss) + ViE2 (Vrss)

1 n 3 1 n B

=2 <n Z“’iy[i]> + ViE; <n Z/L,%‘])
22% V2 (g } W { Zu,Ez i }
1 &, 02 Lo
22 e tZ(Y,m 702 )|+ v ZZ“I'Y"
1 S 2 O—IZV i - 1 f
N ;Nl <mi mr; ;( in—Yi)

1 & ) O’gy 1 Jia . - f
= S22 - 77+ g

nN don <m,- i ;( in—Yi) ( - ) 2

which proves the lemma.

=E

:El
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Lemma 16.9: The variance of the ranked set sample mean estimator Xrss iS given by

—_1N2(752x I Ky v 1\
ViiRss) = > 11 (mi o ;(Xi(r)_xi) + <T) s (16.14)

i=1

M; _ N - —
i 1 (x,-j—X,»)2 and §? = ﬁzl (M,.X,-—X)2 have their usual meanings.
Jj= =

where 07, =
Proof: It follows from the previous lemma.

Lemma 16.10: The covariance between the sample mean estimators yggs and Xgss is given by

_ _ 1 ul Tixy 1-f
Cov (Vgsss Trss) = WZ 2 ( mf S Z(X,(,) X) (Vi — Y)) (T) Shay (16.15)
i=1 4 L=
I - N —
where o, = M% > (ylj )(xij — Xi) and S, = ﬁ (piYi — Y) (uiXi - X) have their usual
meanings. =1 =1

Proof: Let C, denote the covariance over all possible second-stage samples each of size m; taken
using RSS from a given FSU of size M;. Let C; denote the covariance value over all possible first-
stage samples each of size n taken using SRSWOR sampling from a given population of N FSUs.
By the definition of covariance, the covariance between the sample means yrgg and Xgrss is given by

Cov (Vrsss Xrss) = E1[C2 (Frss» Xrss) | + Ci [E2 (Frss ) E2(Frss)]
1 n 1 n 1 n 1 n
G (; ZMJ{;’], p 2##(:‘)) E, (; leuiy[i]) B> (; Z/hx(i))]
i= i= i= =
1 n ) 1 n _ 1 n _
nﬁZM,- C (Y- X)) | + Ci ;ZMiYis;ZN’iXi
i1 =1 i=1
1 & Ciny 1-f
= m;/l,z <n:? - mir; [Z(Yt[t] Y; )(Xl(t) X; )> ( n )
1 & o 1—f
N u2<,;:iv - KZ(Y'W Y)(Xio — X)) + ( " )thy

:El +C1

=K

which proves the lemma.
In the next section, we define a new calibrated estimator in two-stage RSS.

CALIBRATED ESTIMATOR IN TWO-STAGE RANKED SET SAMPLING

We consider a new calibrated estimator of the population mean Y in two-stage RSS as

YRSS() = Z Wi (16.16)
=1
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where w; are calibrated weights, and are obtained by minimizing chi-squared distance function
defined as

—u;/n)’
16.17
22 (qiui/n) ’ ( )

where ¢; is another set of known weights, subject to the calibration constraints given by

Zn:w,-=%zn:ui (16.18)
i=1 i=1

and
> wixy =X. (16.19)
i=1

The Lagrange function is given by

—u; /n oo _
L= ’Z (qiu;/n) {Z Wi ™ ; l} —N {; wixp — X (16.20)
On setting
oL
8w,» =0
We get
wi= e T, q’”’z‘q,) (16.21)
n n
On substituting Eq. (16.21) into Eq. (16.18) and into Eq. (16.19), we get
Mg+ XY qui =0 (16.22)
i=1 i=1
and
)\1 n B )\2 n o 1< B
zlz:l:qiuiX(i) + F;Qiui{X(i)} =X- ;; UiX(j) (16.23)
On solving Egs. (16.22) and (16.23) for A\; and )\, we get
_ <Z Q[uif(i)> [)_( - %Z uf)?(;):|
M = = (16.24)

B 1 n n 1 n 2
" Zl qitt; Zl qiuixg, | — . Zl qiuiX(j)

(Z Qiui) {Y —x Mﬁ(i)}
Ao = = =l . (16.25)

and
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Substituting the values of A\; and ), into Eq. (16.21), the calibrated weights are given by

qiuiXg) (Z q,u,) — qilti (Z qmﬁ(z‘))
i=1

i=1

- )
(Zl qiui> (Zl qiuix(z,‘)> - <Zl qi"if(i)>
i= i= i=

Substituting Eq. (16.26) into Eq. (16.16), the calibrated estimator of the population mean in
two-stage RSS is given by

i

1

o ] n
X—- X 16.26
[ n;ux( )} ( )

_ I P R
YRSS(c) = ;Z uiyp + Bea [X - n Z "‘ix(i):| > (16.27)

i=1

where

n n n
<Z Cltu,) 21 qitiXi) Vg — (21 CIiuiY[i]> (Z qt‘"ifm)
i= i= i=1

2
n n
(E %ML) (Z %'Mif(zi)) - (Z Qiuif(;))
i=1 i=1 =1

It may be worth mentioning if all the N FSUs are included in the survey, then the new proposed
calibrated estimator in Eq. (16.27) would behave like the stratified sampling estimator recently
studied by Koyuncu (2017).

Since [, is a consistent estimator of the regression coefficient [, the estimator (16.27) can be
approximated as

ﬁ cal =

(16.28)

Yrss(e) = Frss T 5[7 - sts] + Higher order terms (16.29)
The variance of the calibrated estimator is approximated as

V(¥rsse)) & V(Vrss) + BV (Frss) — 28 Cov(Trsss Xrss)
1K L fon 1 - 1-f
XN: LS ®o-x) )+ ()s
m; mlrl p i(t) i n bx

_2[))|: Z z(Um _ Z(Y Y)( X)) + (1;]()5 :|

4 m; mr; £ ifr] — i(1) i n bxy

1- 1\ & 1

= <Tf) |:S§y + /82512)76 - 25be)} + <W) ;sz (%) |:0'%V =+ /6’20%( - 2,60',')@}

B %i i rZ[(Y[’] ) + 5 (Xio)— )2 =26(Yq — Vi) (X *X)]

=1 Miti =

(16.30)

In the next section, we examine an application of two-stage sampling using a real data set.
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NUMERICAL ILLUSTRATION WITH REAL DATA

For the purpose of numerical illustration, as in Salinas et al. (2018), we study a population consist-
ing of the faculty from nine departments (as listed in Table 16.1) of the College of Arts and
Sciences at Texas A&M University—Kingsville to investigate the performance of the proposed new
calibrated estimator in two-stage RSS.

We assumed the study variable as the annual salary of a faculty member and the auxiliary variable
as their experience at Texas A&M University—Kingsville, with the first year as the start date, irrespec-
tive of age or previous experience at other institutes. We cleaned the data set by including only those
faculty members with an annual salary greater than $10,000, irrespective of experience. In this numeri-
cal illustration, we have N =9. Let Y; and X; denote the average salary and average experience,
respectively, of a faculty member in the ith department. Let S?V and Sizx denote the population variances
for the salary and experience, respectively, within the ith department. Let M; be the total number of
faculty members in the ith department. Let p,,, denote the value of the correlation coefficient between
salary and experience in the i-th department. A brief description of the parameters of the population in
each of the above nine departments is given in Tables 16.2(a) and 16.2(b).

Thus Sl%y =132791075.1, S, = 11.20, Sy, = 34307.62 and Ppxy = 0.88956.

A SAS code (see Appendix A) was written to investigate the percent relative efficiency values.
The percent relative efficiency of the RSS over the simple random sampling is defined as

_ Min. V(y,,)
V(rss(e)

Following Singh, Tailor, and Singh (2014), realized (RD) ratios of the judgment-based ranked
values to that of true population mean were defined for the study and auxiliary variables as

RE X 100%. (16.31)

Y;
RD1[f] = i1 (16.32)
and
Xi
RDy(1) = Y(’) (16.33)

fort=1,2,3,...,r; in each cycle within the ith FSU.

Table 16.1 Departments as FSUs

Arts & Communications
Biological & Health Science
Chemistry

Language & Literature
History & Political Science
Music

Mathematics

Physics & Geosciences

O 00 N N N R W

Psychology & Sociology
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S

[+]
=

-

O 00 9 N N R WD~

M;
17
12
11
22
17
18
20
12
17

Y;

51659
62809
63299
49296
56109
54650
60144
51917
56635

Xi
12.12
12.75
10.91
9.47
9.64
10.40
15.11
10.92
11.82

Table 16.2a Descriptive Parameters at the Departmental Level

Si

410109956
349923262
279143130
351684087
465988718
240097753
359926960
606389811
556387242

Sk
72.74
110.93
71.49
83.51
71.19
67.83
107.16
99.90
198.65

Pixy

0.31533
0.75701
0.81145
0.46757
0.89101
0.34254
0.45578
0.44375
0.64247

S

[+]
=

-

O 00 9 N N R WD~

Sum

Uj

1.0479
0.7397
0.6781
1.3562
1.0479
1.1096
1.2329
0.7397
1.0479

9.0000

u;Y;
54135.80
46461.45
42921.92
66853.48
58799.16
60639.04
74150.14
38404.36
59350.38

501715.72

(wY; _7)2

2593357.28
86206391.78
164461827.25
123371839.41
9320599.89
23939974.42
338705199.13
300739262.55
12990149.02

1062328600.72

uiX;

12.70

9.43

7.40
12.84
10.10
11.54
18.63

8.08
12.39

103.11

Table 16.2b Descriptive Parameters at the Departmental and Overall Levels

(Mi)_(i_y)2
1.549
4.101

16.472
1.922
1.834
0.007

51.441

11.416
0.865

89.61

(ui?i - ?)(ui)_(i - )_()
-2004.27
18801.60
52048.96
15398.81
-4134.68
407.18
131997.89
58592.84
3352.63

274460.94

In this simulation study we considered several values of

RD]I'[I] = H,; +0.08¢;

and

where ¢, ~N(0, 1).

Then different values of H; = {0.85, 1.00, 1.15} and H, = {0.75, 1.00, 1.25} are investigated
for different situations. The choice of H; is made so that the judgment ranking could be 85% of the
original true mean value, could be perfect ranking, or could be 15% higher. More variation in judg-
ment ranking is not considered, since judgment ranking will introduce measurement errors in the
study variable, Y. The value of H, is given a wider range from 0.75 to 1.25, with a step of 0.25,

RDZI'[I] = H, + 0.08¢;

(16.34)

(16.35)
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Table 16.3 Percent RE of the Two-Stage RSS

n m H, H, RE (%) n m H, H, RE (%)
3 30 0.9 0.8 104.7 3 60 0.9 0.8 104.7
3 30 0.9 1.0 114.8 3 60 0.9 1.0 122.5
3 30 0.9 1.3 205.5 3 60 0.9 1.3 227.9
3 30 1.0 0.8 112.9 3 60 1.0 0.8 114.6
3 30 1.0 1.0 103.5 3 60 1.0 1.0 105.1
3 30 1.0 1.3 130.1 3 60 1.0 1.3 140.2
3 30 1.0 0.8 123.0 3 60 1.0 0.8 113.7
3 30 1.0 1.0 104.3 3 60 1.0 1.0 105.3
3 30 1.0 1.3 117.1 3 60 1.0 1.3 122.3
3 30 1.2 0.8 238.8 3 60 1.2 0.8 209.7
3 30 1.2 1.0 120.6 3 60 1.2 1.0 127.2
3 30 1.2 1.3 105.8 3 60 1.2 1.3 104.0
5 30 0.9 0.8 101.8 5 60 0.9 0.8 104.6
5 30 0.9 1.0 117.7 5 60 0.9 1.0 129.7
5 30 0.9 1.3 209.6 5 60 0.9 1.3 260.6
5 30 1.0 0.8 113.6 5 60 1.0 0.8 1154
5 30 1.0 1.0 103.8 5 60 1.0 1.0 105.9
5 30 1.0 1.3 131.1 5 60 1.0 1.3 1354
5 30 1.0 0.8 120.8 5 60 1.0 0.8 116.3
5 30 1.0 1.0 103.0 5 60 1.0 1.0 103.4
5 30 1.0 1.3 128.1 5 60 1.0 1.3 122.5
5 30 1.2 0.8 200.3 5 60 1.2 0.8 195.1
5 30 1.2 1.0 113.6 5 60 1.2 1.0 113.4
5 30 1.2 1.3 102.5 5 60 1.2 1.3 105.7

since it is not in the hands of the investigator to control the value of the auxiliary variable, X.
Recall that judgment ranking is made only for the study variable. We used proportional allocation
to select SSUs from the FSUs with m; = mM,/(NM) to select a total sample of the required size m
as reflected in Table 16.3.

In the numerical comparisons, we consider two first-stage sample sizes of n=3,5 and
total second-stage sample sizes of m =30, 60 with proportional allocation across all nine
FSUs. For the three values of H; and H, considered, it has been observed that the value of
percent RE ranges from 101.80% to 260.59%, with a median value of 110.85%, a mean value
of 131.91%, and a standard deviation of 41.15%. For n =3, the minimum value of RE is
103.49%, maximum value is 238.76%, median value is 115.95%, mean value is 132.43%,
with a standard deviation of 41.72%. For n =5, the minimum value of RE is 101.80%, maxi-
mum value is 260.59%, median value is 115.85%, mean value is 131.41%, with a standard
deviation of 41.47%.
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3D Scatterplot of RE vs H1 vs H2

RE

FIGURE 16.1

Graphical presentation of RE values versus judgment ranking.

A graphical presentation of the values of percent relative efficiency as a function of H; and H,
is shown in Fig. 16.1. Overall we conclude that use of RSS while selecting SSUs could be benefi-
cial over the use of simple random sampling.
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APPEN

DIX A

*SAS CODES USED IN THE NUMERICAL ILLUSTRATION;
DATA DATAL;

INPUT DEPT MI YIM XIM SIY2 SIX2 RHOIXY;
CARDS;

1 1751659 12.12 410109956 72.74 0.31533
12 62809 12.75 349923262 110.93 0.75701
1163299 10.91 279143130 71.49 0.81145
2249296 9.47 351684087 83.51 0.46757
1756109 9.64 465988718 71.19 0.89101
18 54650 10.40 240097753 67.83 0.34254
20 60144 15.11 359926960 107.16 0.45578
1251917 10.92 606389811 99.90 0.44375
17 56635 11.82 556387242 198.65 0.64247

TN 0N R W

%MACRO VERO(IL H1_IN, H2 IN, MS_IN, NS_IN);
DATA DATA2;

SET DATAI;

N=9;

NS = &NS_IN;

f=NS/N;

M_BAR =16.2222222;

ui = MI/M_BAR;

ms = &MS_IN;

msi = ms*MI/(N*M_BAR);

SIGYI2 = (MI-1)*SIY2/MI;

SIGXI2 = (MI-1)*SIX2/MI;

SYb2 =132791075.1;

SXb2 =11.20;

SXYb =34307.62;

RHOXYb = 0.88956;

BET = SXYb/SXb2;

COVXYI =RHOIXY * SQRT(SIY2*SIX2);
TERM 1 = ((1-f)/ns)*SYb2*(1-RHOXYb**2);
TERM_2I = (ui**2/(NS*N))*(SIGYI2 + BET**2*SIGXI2 - 2 * BET *COVXYI)/msi;
PROC MEANS DATA = DATA2 NOPRINT;

VAR TERM_2];

OUTPUT OUT = DATA3 SUM = SUM_TERM_2I;
DATA DATA4;

SET DATAS3,;

KEEP SUM_TERM_2I;

DATA DATAS;

SET DATA2;

IF _N_=1THEN SET DATA4;

VAR LR =TERM 1+ SUM TERM 2I;
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KEEP VAR LR BET YIM XIM;

DATA VAR LR;

SET DATAS;

IF N =1,

RUN;

DATA DATAG;

SET DATAL;

IF N =1 THEN SET VAR _LR;

DATA DATAT;

SET DATAS;

SET DATAL,;

ri=3;

H1 =&HI1 IN;

H2 = &H2 IN;

DOI=1TOri;

RIT =HI + 0.08*RAND("NORMAL");

R2T = H2 + 0.08*RAND("NORMAL");
OUTPUT;

END;

KEEP DEPT R1T R2T BET H1 H2 YIM XIM ;
DATA DATAS,;

SET DATA7,

V1 =YIM**2¥(RI1T-1)**2 + BET**2*XIM**2*(R2T-1)**2-2*BET* YIM*XIM*(R1T-1)
*(R2T-1);

PROC SORT DATA = DATAS;

BY DEPT;

PROC MEANS DATA = DATA8 NOPRINT;
VAR VI;

BY DEPT;

OUTPUT OUT = DATA9 MEAN = MEAN _VI;
DATA DATAIO;

SET DATAY;

DROP TYPE FREQ ;

PROC SORT DATA=DATAZ2;

BY DEPT;

PROC SORT DATA = DATA10;

BY DEPT;

DATA DATAL11;

MERGE DATA2 DATA10;

BY DEPT;

MINUS_TERM = (ui**2/msi)*MEAN_VI/(NS*N);
PROC MEANS DATA =DATA11 NOPRINT;
VAR MINUS TERM;

OUTPUT OUT =DATA12 SUM = SUM_MINUS TERM;
DATA DATA13;

SET DATAI12;
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DROP TYPE__FREQ ;
DATA DATA14;

MERGE DATA13 DATAS;

IF N =1

DATA DATALIS;

SET DATA14;

VARP = VAR _LR-SUM_MINUS_TERM;

RE = VAR_LR*100/VARP;

KEEP RE;

DATA DATAI6;

SET DATAZ2;

IF N =1 THEN SET DATALIS;

DATA DATAL17,

SET DATAL1S6;

IF_N_=1 THEN SET DATA7;

KEEP NS MS H1 H2 RE;

DATA DATAI8&IIL;

SET DATAI7;

IF N =I;

DATA DATAI19;

SET DATA181 DATA182 DATA183 DATA184 DATA185 DATA186 DATA187
DATA188 DATA189 DATA1810 DATA1811 DATA1812 DATA1813 DATA1814
DATA1815 DATA1816 DATA1817 DATA1818 DATA1819 DATA1820 DATA1821
DATA1822 DATA1823 DATA1824 DATA1825 DATA1826 DATA1827 DATA1828
DATA1829 DATA1830 DATA1831 DATA1832 DATA1833 DATA1834 DATA1835
DATA1836 DATA1837 DATA1838 DATA1839 DATA1840 DATA1841 DATA1842
DATA1843 DATA1844 DATA1845 DATA 1846 DATA 1847 DATA1848;

PROC PRINT DATA = DATAI9;

VAR MS NS HI H2 RE;

RUN;

%MEND VERO(IIL, H1_IN, H2_IN, MS_IN, NS_IN);

%VERO(1, 0.85, 0.75, 30, 3);

%VERO(2, 0.85, 1.00, 30, 3);

%VERO(3, 0.85, 1.25, 30, 3);

%VERO(4, 0.95,0.75, 30, 3);

%VERO(S, 0.95, 1.00, 30, 3);

%VERO(6, 0.95, 1.25, 30, 3);

%VERO(7, 1.00, 0.75, 30, 3);

%VERO(8, 1.00, 1.00, 30, 3);

%VERO(9, 1.00, 1.25, 30, 3);

%VERO(10, 1.15, 0.75, 30, 3);

%VERO(11, 1.15, 1.00, 30, 3);

%VERO(12, 1.15, 1.25, 30, 3);

%VERO(13, 0.85, 0.75, 30, 5);

%VERO(14, 0.85, 1.00, 30, 5);

%VERO(15, 0.85, 1.25, 30, 5);
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%VERO(16, 0.95, 0.75, 30, 5);
%VERO(17, 0.95, 1.00, 30, 5);
%VERO(18, 0.95, 1.25, 30, 5);
%VERO(19, 1.00, 0.75, 30, 5);
%VERO(20, 1.00, 1.00, 30, 5);
%VERO(21, 1.00, 1.25, 30, 5);
%VERO(22, 1.15, 0.75, 30, 5);
%VERO(23, 1.15, 1.00, 30, 5);
%VERO(24, 1.15, 1.25, 30, 5);
%VERO(25, 0.85, 0.75, 60, 3);
%VERO(26, 0.85, 1.00, 60, 3);
%VERO(27, 0.85, 1.25, 60, 3);
%VERO(28, 0.95, 0.75, 60, 3);
%VERO(29, 0.95, 1.00, 60, 3);
%VERO(30, 0.95, 1.25, 60, 3);
%VERO(31, 1.00, 0.75, 60, 3);
%VERO(32, 1.00, 1.00, 60, 3);
%VERO(33, 1.00, 1.25, 60, 3);
%VERO(34, 1.15, 0.75, 60, 3);
%VERO(35, 1.15, 1.00, 60, 3);
%VERO(36, 1.15, 1.25, 60, 3);
%VERO(37, 0.85, 0.75, 60, 5);
%VERO(38, 0.85, 1.00, 60, 5);
%VERO(39, 0.85, 1.25, 60, 5);
%VERO(40, 0.95, 0.75, 60, 5);
%VERO(41, 0.95, 1.00, 60, 5);
%VERO(42, 0.95, 1.25, 60, 5);
%VERO(43, 1.00, 0.75, 60, 5);
%VERO(44, 1.00, 1.00, 60, 5);
%VERO(45, 1.00, 1.25, 60, 5);
%VERO(46, 1.15, 0.75, 60, 5);
%VERO(47, 1.15, 1.00, 60, 5);
%VERO(48, 1.15, 1.25, 60, 5);
RUN;

PROC EXPORT DATA=DATA19 LABEL OUTFILE ='C:\SASDATAFILES\RSS_2.XLS'

DBMS=EXCEL REPLACE;
RUN;




CHAPTER

ESTIMATION OF POPULATION
MEAN USING INFORMATION ON
AUXILIARY ATTRIBUTE: A REVIEW

Rajesh Singh', Prabhakar Mishra' and Carlos N. Bouza-Herrera”
'Department of Statistics, Banaras Hindu University, Varanasi, Uttar Pradesh, India 2Faculzy of Mathematics and
Computation, University of Havana, Havana, Cuba

INTRODUCTION

In the sampling literature, auxiliary information is commonly used to improve estimates. Many
authors have suggested estimators based on auxiliary information. However in many practical situa-
tions, instead of the existence of auxiliary variables there exist some auxiliary attributes, e.g., ¢,
which are highly correlated with the study variable y, such as:

(i) Sex (¢) and height of persons (y);
(ii) Amount of milk produced (y) and a particular breed of cow (¢);
(iii) Amount of yield of wheat crop and a particular variety of wheat (¢).

Consider a sample of size n drawn by simple random sampling without replacement
(SRSWOR) from a population of size N. Let y; and ¢; denote the observations on variable y and ¢,
respectively, for the ith unit (i = 1,2,...... ,N). Let

¢; = 1, if ith unit of population possesses attribute ¢ = 0, otherwise.

N n
Let A=Y ¢, and a= > ¢; denote the total number of units in the population and sample,
i=1 i=1
respectively, possessing attributes. Let P = A/N and p = a/n denote the proportion of units in the

population and sample, respectively, possessing attribute ¢.

ESTIMATION OF POPULATION MEAN USING SINGLE AUXILIARY
ATTRIBUTE INFORMATION

Taking into consideration the point biserial correlation coefficient between auxiliary attribute ¢ and
the study variable y, Naik and Gupta (1996) defined the ratio estimator for population mean

N
17( = %Zl y,-) of the study variable y as follows

Ranked Set Sampling. DOI: https://doi.org/10.1016/B978-0-12-815044-3.00017-4
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f = (P~ P) (17.1)
where y( = %Z y,-) is the sample mean of the study variable y.
i=1

l
The mean square error (MSE) of the ratio estimator #;, up to the first order of approximation is

given by
MSE() = (L) P [c2 + (1 -
D=(—=)Y"|C+C;(1—2k) (17.2)
n
where,
52 1 _
n 2
=_ 2= 52:75 —Y),
f N’ y Yz, y Nfll.zl (y )
s2 N e
ci=22, ko= Py
roop2 TN- 1; PG,
Sy N
Pop = ’
b SyS@ \) 1;

It is well known that under SRSWOR, the variance of the usual unbiased estimator is
Var(y) = J e (17.3)

Jhajj, Sharma and Grover (2006) defined a general class of estimator as #, = g(y,v), where
v=P/P and g(3,v) is a parametric function of y and v such that g(¥,1) =Y, VY and the function
g(y,v) satisfies certain regularity conditions. The optimum MSE of the estimator ¢, is given by

MSE(t> o = (?) s§(1 - pf,b> (17.4)
The above expression is equal to variance of the linear regression estimator
5=y+b(P—P) (17.5)
where b is the sample regression coefficient whose population regression coefficient is given by
8= PphSy/S@-
Shabbir and Gupta (2007) suggested the ratio type estimator for the population mean Y as
ty =y|di + d>(P — P)| (P/P) (17.6)

where (d,, d) are suitably chosen constants whose sum need not be unity.
For the optimum values of d; and d; as

L 1
“= t+(he(1-0,)

and
<ppr.V - Cp>
[1 + ec;(l - p;bﬂpc,,

the minimum MSE of the estimator #4 is given by

&=

s
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(95 (1-73)
1+ (e (1-a)
Singh, Cauhan, Sawan, and Smarandache (2007) introduced the following ratio and product
type exponential estimators of ¥

min. MSE(t4) =

17.7)

P—P
ts = yex ~ 17.8
5=y p(P-i—P) (17.8)
P-P
te = yexp| = 17.9
6 =Y p(P+P> (17.9)

Singh, Cauhan, Sawan, and Smarandache (2007) further defined the following class of exponen-
tial estimators of Y

t7=Y|ae PP +(1 e (ﬁ_P)
= QX ~ — ()€X =
T P\prp

where « is a suitably chosen constant.
The MSEs of the estimators #s, t5, and 7, up to the first order of approximation, are respectively
given by

(17.10)

11—\ — C?
MSE(ts) = (Tf) Y|+ 2 =G

2 : (17.11)

1-N\2| . C
MSE(t6) = (T)Y C+ 2 TG |- (17.12)
. _ l—f—> 2 _ 2
min. MSE(t7) = —+¥°C; (1 P ) (17.13)
Singh, Chauhan, Sawan, and Smarandache (2008) suggested an estimator #g as
ts= [y+b(P—ﬁ)}g (17.14)

where b is the sample regression coefficient.

Singh, Chauhan, Sawan, and Smarandache (2008) also suggested the following estimator #9 as
y+b(P—P

to = yﬁi)(mlp+m2) (17.15)

m;P +mj

where m;(# 0), m; are either real numbers or the functions of the known parameters of the attribute
(see Singh and Kumar, 2011).
Abd-Elfattah, El-Sherpieny, Mohamed, and Abdou (2010) proposed an estimator ¢y as

y+b(P—P) +m2y+b(1>fﬁ)
5 P+ By(9)

fio = my (P + B2(¢)) (17.16)

where m; and m, are weights that satisfy the condition m; +m; =1 and B,(¢) is the population
coefficient of kurtosis of auxiliary attribute.
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Adapting Rao’s (1991) idea, Grover and Kaur (2011) defined the following estimator #;;
th=ay+B(P—P) 17.17)

where « and (3 are suitably chosen constants. The optimum MSE, up to first order of approxima-
tion, of this estimator is given by

(¥)Y2C3 (1 - /’ib)

min. MSE(t;,) = (17.18)
(59 (1-03)
Grover and Kaur (2011) suggested the following exponential type estimator of Y
R P—P
1= [os+ 5(p = P)lewp (%) an.19)

where « and 3 are any constants and their values are suitably chosen. The optimum values of «
and 3 are respectively

— Cg [2 - @ + (%) (CT'Z - Ppbcycpﬂ

Qopt = - -
2[‘ M- C2(1+ l_fMl)]

n n

and

Y P[mafo+ %+ 4(% - p,06) b - 1+ omc]
opt —

2P[fM§ -1+ HMI)}

where M| = C; + C}z, —2p,,CyCp and M, = CI% = P CyCp.
On substituting these optimum values of o and 3, we get the minimum MSE of the estimator
112 as
| wa(i-n) Prafc(-p)+ 9
min. MSE(t},) = ; - : ’ . (17.20)
1roci(1-72,)  16[1+ci(1-02,)]

Koyuncu (2012) suggested an estimator #;3 as

(17.21)

ti3 = [w1y +wa (P~ P)] ("P + A)

P+ A
where 1 and \ are either real numbers or functions of the known parameter associated with an aux-

iliary attribute.
Koyuncu (2012) also proposed an improved estimator ¢4 as

exp <7’(P—_ﬁ)> (17.22)
U

P +P) +2)

ALY

_ P\
Hg = |wiy +wp P

where ~ is a suitable real number, and w; and w, are suitable weights.
Singh and Solanki (2012) suggested estimator #;5 as
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tis =y[d, +do(P— P)] (¢P+5n>“

~ (17.23)
PP+ 6n

where ¢ and 7 are either real numbers or function of known parameters of the auxiliary attribute.
The scalar « takes values —1 and +1, ¢ is an integer which takes values +1 and —1 for designing
the estimators such that ()P + 6n) and (P + 67) are nonnegative and (d;,d>) are suitably chosen
constants such that the sum of the constants (d;, d,) need not be unity. It was shown that the pro-
posed estimator performs better than many existing estimators.

Sharma, Verma, Sanaullah, and Singh (2013) studied some exponential ratio-product type esti-
mators using information on auxiliary attributes. They studied the properties of the estimators under
second order of approximation.

Singh, Kumar, and Singh (2013) suggested a family of ratio estimators for estimating population
mean Y as

P+ @
u) (17.24)

e =y + azY( =
miP+m;

where m; and m; are either the real number or the functions of the parameters of the attribute and
o and o are real constants to be determined.
Singh, Kumar, and Singh (2013) suggested another family of estimators as

. vy [aPED\ (aP+b)— (aP+D) :
fr = (w3 + wa (P P>)<aﬁ+b) eXp{(aP+b)+(al3+b)} (17.29)

where wy and w, are constants whose sum is not necessarily equal to one.
Sharma, Singh, and Kim (2013) proposed the following four estimators for estimating Y as

P
f1s = (1 —a)y+ay5 (17.26)
where « is any real constant.
8
fo = y(iP ) (17.27)
BP+(1—pB)P

where g and (3 are any real constants.

P\"
o = y<2 - (F) ) (17.28)

~Ac A ~
_ [, J(P s(P—P)
oo (&) 1222
where X\ is a constant.

Sharma, Singh, and Kim (2013) studied the properties of these four estimators under a second
order of approximation.
Barak and Barak (2013) proposed the following three unbiased estimators

where w is a constant.

P
ty =+ (ﬁ) —1 (17.30)
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ty=5—ePP) 41 (17.31)
and
by =y —ePP) 41 (17.32)

Yadav and Adewara (2013) suggested the following exponential estimators for estimating Y

P—P
s = kyex ~ 17.33
25 = ky p(P-i—P) ( )
P-P
te = kyexp| = 17.34
26 = kY p(P-i—P) ( )
where k is any constant.
P—p
17 = yexp| — (17.35)
27 =Y P(P +P>

where P* = (1+g)P—gPand g= T

A (P — 13) r-a) Pr—-pr

=7y|aex = —a)exp| —
BEYNOP\p B P\F+p
where « is a real constant.

Malik and Singh (2015) proposed a class of estimators for the population mean Y in double sampling as

A v ~ ~ &)
- 5 s WP+ ‘ (WP’+7])—(WP+77)
1o =¥[g1 +82(P P)]{Wﬁﬂ]} exp{(wﬁ,+n)+(wﬁ+n) (17.37)

(17.36)

where g; and g, are suitably chosen constants whose sum is not necessarily equal to unity and
(w,n) are either real numbers or function of known parameters of the auxiliary attribute.
Saini and Kumar (2015) proposed a new exponential type product estimator as

o=y —k(rj— 1) (17.38)

where k is any constant and

o e[ VPP
30 T 8XP |

They have shown that their proposed estimator t3, is always more efficient than the exponential
type product estimator (Bahl and Tuteja, 1991) and product estimator (Naik and Gupta, 1996).

ESTIMATION OF POPULATION MEAN USING TWO (OR MORE)
AUXILIARY ATTRIBUTE INFORMATION

The regression estimator of Y based on two auxiliary attributes, is given by

t=y+bi(P1 — Py) + by (P, — Py), (17.39)
Sy .
where b; = * for j=1,2.

%
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Malik and Singh (2013a) suggested an improved estimator of Y using two auxiliary attributes
and using point biserial and Phi-correlation given by

_ P —P\" (132—132)7z A N
t =yex = ex ~ + by (P —Py) +by(P, — P 17.40
y p(P1+P1) p Pyt P 1(Py 1) +by(Py—P3) ( )

where 7y, and v, are two unknown constants.
Malik and Singh (2013b) proposed following three estimators using two auxiliary attributes

P\ [P\
zzy(T‘) (—2) (17.41)
P, P,
5 5 5,
P —P Py—P
t=§exp< ! Al) exp<A2 2) (17.42)
P, +P; P,+P,

~ B X 3
P\ [P\ P —P\" Py—P,\”
t=woy+w1y(A—1) (;\_2) -i-wzyexp(1 Al) exp(A2 2) (17.43)
P) \P, P +P Py+P,

where a4, a;, (3, and (3, are real constants and w;(i = 0, 1,2) are suitably chosen constants.
Singh and Malik (2013) suggested a class of estimators of the form

and

3
t= E wit; (EH) (1744)
i=0

3 , X
such that Y w; =1 and w;eR, where 1p =5, 1, =i(%), = y(%) and 3 = y(%) (%)
i=0 ! !

Following Olkin (1958), Verma, Singh, and Florentin (2013) proposed an estimator
| P P
y |:W1 3 w2 PJ ( )

where w; and w, are constants, such that w; +w, = 1.
Verma, Singh, and Florentin (2013) proposed another estimator ¢ as

_ N P, — P,
t=|ky+k (P, —Pp)lex = 17.46
[ky + ki (P 1] p{Pz‘i‘Pj ( )
where k and k; are constants.
They also proposed the following estimator
t=Y+k (P —Py) + ks (P, — P)) (17.47)

where k, and k3 are constants.
Haq and Shabbir (2014) proposed some improved estimators using two auxiliary attributes.
They proposed a chain-ratio-product type estimator of Y as

y(P, P\ [P, P
. =X(A—‘+—1) (A—2+—2). (17.48)
4 P] Pl P2 P2

Following Rao (1991), Haq and Shabbir (2014) proposed a difference-type estimator of Y as
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l:h?“‘kz(f’l—ﬁ1)+k3(P2—ﬁz) (17.49)

where ki, k, and k3 are real constants.
Haq and Shabbir (2014) also proposed an improved chain-ratio-product-difference type estima-
tor of Y as

I =wit* +W2(P1—ﬁ1)+W3(P2—ﬁ2) (17.50)

where wy, wp and w3 are suitably chosen constants to be determined.

Haq and Shabbir (2014) have shown that the estimators proposed by them are better than other
estimators considered in the paper in SRS and also in a two-phase scheme.

Singh, Malik, Adewara, and Florentin (2014) proposed some multivariate ratio estimators with
known population proportion of two auxiliary characteristics for finite population. Following Olkin
(1958), they proposed an estimator as

k
tap = Zw,-r,-P,- (17.51)
i=1

where
k
i. w;s are weights such that > w; = 1;
i=1
ii. Pj's are the proportion of the auxiliary attribute and assumed to be known; and
iii. = P%, i=12,...... ,k), ¥ is the sample mean of the study variable y and P; is the proportion
of auxiliary attributes P; based on a SRS of size n drawn WOR from a population of size N.

Following Naik and Gupta (1996) and Singh, Cauhan, Sawan, and Smarandache (2007), they
proposed another estimator #; as

k
to= [ uP; (17.52)
i=1

Singh, Malik, Adewara, and Florentin (2014) also proposed two alternative estimators based on
geometric mean and harmonic mean, respectively, as

and

k

tep = H (r,‘P,'jNi (1753)

=
k

such that " w; = L.

P -1
Wi
tp = (17.54)
i=1

They have shown that the MSEs of estimators based on geometric, harmonic mean, and Verma,
Singh and Florentin (2013) type estimator are the same. However, the bias of the ratio-type estima-
tor based on harmonic mean is least.

Kungu and Odongo (2014) proposed a generalized estimator for estimating population mean of
study variable y with the use of multiauxiliary attributes, given by
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PA\Y /P, )\ P\ % Brit B2 By
=G G -G G (G2) - () @739
pi P2 Dk P+ Pi+a P,

where s and §'s are arbitrary constants.
Sharma, Verma, and Singh (2015) proposed an improved family of estimators for estimating Y
when information on two auxiliary attributes is available, as:

n=Yy|wi (p—l) ﬁexp{771 P~ p) } +ws <&) A?exp{nz(Pz —p2) } (17.56)
P m(Pr+p1) +2A Py (P2 +p2) +2X .
where ¢ and (3 are constants that can takes values (0, 1, —1) for designing different estimators.
N> Al, M, and X, are either real numbers or the function of the known parameters. w; and w;
are suitably chosen constants to be determined such that the MSE of the class of estimator #y is

minimum.
Saghir and Shabbir (2012) proposed an exponential ratio type estimator in stratified sampling as:

_ Py = pig ) ( Py — pagt )
ts =y ex ex (17.57)
o p(P1 +(@—Dpre) " P\P, + (b — Dpay
Malik and Singh (2013c) proposed an estimator in stratified sampling as:
— Pl “Dist “ P2 —PD2st o
tms = Vyy€Xp (Pl +pm) exp Py ¥ pay + b1(Py — pis) + b2(P2 — pagr) (17.58)

where a; and a, are real constants.

CONCLUSION

In this chapter we have reviewed the work of the authors on the use of auxiliary attributes in con-
struction of improved estimators for estimating unknown population mean. We have incorporated the
work carried out using single and two auxiliary attributes. We hope this work will be helpful for
researchers who are working in the construction of improved estimators using auxiliary information.
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CHAPTER

RATIO AND PRODUCT TYPE
EXPONENTIAL ESTIMATORS FOR
POPULATION MEAN USING
RANKED SET SAMPLING
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Mathematics and Computation, University of Havana, Havana, Cuba

INTRODUCTION

Ranked set sampling (RSS) is a method of sampling which provides more structure to the collected
sample items and increases the amount of information present in the sample. The method of RSS
was first envisaged by Mclntyre (1952) as a cost-efficient substitute to simple random sampling
(SRS) for those circumstances where measurements are inconvenient or expensive to obtain but
(judgment) ranking of units according to the variable of interests, say, Y, is comparatively easy and
cheap. It is known that the estimate of the population mean using RSS is more efficient than that
obtained using SRS. Mclntyre (1952) and Takahasi and Wakimoto (1968) considered perfect rank-
ing of the elements, that is, there are no errors in ranking the elements. Yet, in most circumstances,
the ranking may not be done perfectly. Dell and Clutter (1972) demonstrated that the mean using
the RSS is an unbiased estimator of the population mean, whether or not there are errors in ranking.
Stokes (1977) considered the case where the ranking is done on the basis of a concomitant (auxil-
iary) variable X instead of judgment. We would expect the variable of interest will be highly corre-
lated with the concomitant (auxiliary) variable. Stokes (1980) showed that the estimator of the
variance based on RSS data is an asymptotically unbiased estimator of the population variance.
Samawi and Muttlak (1996) deal the problem of estimating the population ratio of the two variables
Y and X using the RSS procedure. In addition, RSS has been investigated by many researchers,
such as Al-Saleh and Al-Omari (2002), Wolfe (2004), Mandowara and Mehta (2013), and
Al-Omari and Bouza (2015).

RSS has many statistical applications in agriculture, biology, environmental science, medical
science, etc. Let m random samples of size m bivariate units each and rank the bivariate units
within each sample with respect to the auxiliary variate X. Next, select the ith smallest auxiliary
variate X from the ith sample for i = 1,2,3,...m for actual measurement of the associated variate
of interest Y with it. In this way, a total number of m measured bivariate units are obtained, one
from each sample. The cycle may be repeated r times to get a sample of size n = rm bivariate units.
These n = rm units build the RSS data. Note that we assume that the ranking of the variate X will

Ranked Set Sampling. DOI: https://doi.org/10.1016/B978-0-12-815044-3.00018-6
Copyright © 2019 Elsevier Inc. All rights reserved. 25 1
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be perfect, while the ranking of the variate Y will be with errors, or at worst of a random order if
the correlation between YandX is close to zero. Also, note that in RSS, rm? elements are identified,
but only rm of them are quantified. So, comparing this sample with a simple random sample of
size rm is reasonable. For more details about RSS, see Kaur et al. (1995).

We assume that ranking on the auxiliary variate, X, is perfect. The associated variate, Y, is then
with an error unless the relation between X and Y is perfect. Let us denote (Xj;), Yj;;) as the pair of
the ith order statistics of X and the associated element Y in the jth cycle. Then the ranked set sam-
ple is

XY - - s Kan), Yipm)s Koy, Yorp)s - - s Xogn), Yapm))s- - » (Xe), Yor1)s - -+ s Ko, Yrpm)»

To obtain biases and mean squared error, we consider

Iy = (uym - uy), T = (ux(i) - ux), Tow = (ux@ - ux) (uy@ - u)-),

2 2
0%*(i) :E(Y(i)_lh') ’o%c(i) :E(X(i)_.ui) ) (18.1)
Oy = E<Y(i) - uy> (X = 1)

and

ZTxm 0, Z Typ =
Z x(0) "(T)%_ Z 1 X(l)’ Zz 1 %0~ Z:lle.%(i)’

er'l:l Oxy(i) = NOxy — Z;’LI TX,V(i)‘
The sample mean of each variate based on RSS data and using the results obtained in Dell and
Clutter (1972) can be defined as follows:

— 1 r m
Xy = %ijl Z,: Xr(m),

(18.2)

(18.3)
Ylnl—m,Z, LD iy Voo
with variance
2
U¥
Var(X) = % — — Z _ Lo
) : (18.4)
O'}
Var(¥) = = - mZE S T
and covariance
Cov(X,Y) = = rmzZl  Taii (18.5)

Note that ;) and pi;) depend on order statistics from some specific distributions and these
values can be found in Arnold et al. (1992).
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For estimating the population mean Y, the usual ratio and product estimators for Y, respectively, as

~b
=
Il
<l

K> |

~b
~
Il
~I

and their MSEs up to the first degree of approximation are
- V
MSE(YR> =— [(cf_ +C2 - 2pcxcy>],

2
s \_Y 2 2
MSE(7) = - [(c2+c2rapccy)],
Samawi and Muttlak (1996) approached ratio and product estimators under RSS as

? Iss _ Y

R T VYm=>
[ % )

ISS (l’l)

PV

~b

and drived their MSEs to the first degree approximation as

~ 1858 Y ; i= 1 Tori
MSET: )= | (€2 + € - 2p0,6,) — S T | X0 L T 5 2 ot
m m\ % Ity
—2 m 2 m
~ 188 Y i—1 Tiii 1 Tyyi
MSE(V, )= — | (C2+C +2pcxcy) Zi L T | X 1Dy 2ot Lot
m : m\ 2 % Jihly

(18.6)

(18.7)

(18.8)

(18.9)

(18.10)

(18.11)

(18.12)

(18.13)

For estimating the population mean Y, Bahl and Tuteja (1991) give the ratio and product type

exponential estimators as

}_”/ Y—Tc
ex
=Y pX+

IL/ _ x—X
e = YEX < |’
Pe T YXPITTR

and derived their MSEs to the first-degree approximation as

=2
=~ Y C?
MSE(YRE> = (=+c-paq).
n 4 )

-2
2 Y c?
MSE (V) = — KT +C+ pcxcy)},

(18.14)

(18.15)

(18.16)

(18.17)
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PROPOSED ESTIMATORS FOR POPULATION MEAN

We define the following ratio and product type exponential estimators for Yunder RSS, respec-
tively, as

ISS

"<I>

X X(n)
ex 18.18
=¥ p{Xer(nJ ( )
Y { Vﬂ (18.19)
= €X .
= Y exp Xy T X

Here we have ranked the auxiliary variate and, thus, there is an induced rank in study variate. The
induced rank on the study variate will be perfect if the correlation between the variate is perfect,
otherwise it will be worse if there is no correlation (the worst case will not affect our problem since

~ ISS

it has already been proven by Dell and Clutter (1972)). Therefore, the MSE of Y Re and Y p, using
bivariate Taylor series expansion is given as

2

rss Y C2 = Xl i= i " Ty
MSE(YR(,> = (7)‘ +C2+ prCy> (Z 1 () Z 1 v[] + Z’L y[])} (18.20)
’ m 4 ) mr 4%° VA XY
-2 m 2
LIS Y 2 i= xz i= T'i m— Tx’i
MSE(YPe) = (5 +C2+ prCy> YTy | 2 =L TS 2iz1 Loty (18.21)
m 4 ’ mr 4%° Y XY
Preposition: Let W,; = M and W, = “‘“/7’ and also using the result from Dell and

Clutter (1972) the above equation may be wrltten as
-2
ey YO /CE 1
= —x 4 —
MSE(YRe> — [( S0 pCXCy) — (

2 m

=2
= % |:<ifx + C)Z, — prCy) — n;Z(wxsz‘m)2:|

i=1

i

SLACEIES o~ Wiy

x(i 2 x(i
DT T W m2) = Whig
= i=1 i=1

2

_MSE ? _ Y - L) 2
- Re E; Wy

2
It is clear that >, ( 0 — Wy[,-]) is greater than zero. Hence

MSE (YR“) =MSE (?Rg). (18.22)
Also, it can be proved in similar ways that

MSE (Y,,) =MSE(Y ,). (18.23)

GENERALIZED EXPONENTIAL ESTIMATORS USING RSS

We propose a ratio-cum-product type exponential estimators using RSS as

(18.24)
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where «a is some suitable real number whose values make the minimum MSE of 725. It can also be
noticed that for « =1 and a = — 1 the above equation becomes Bahl and Tuteja (1991) usual ratio
and product exponential estimators, respectively. s

Again using Taylor series expansion we get the MSE of Y G as

2 2 m 272 m m 2
C 1 i=1 & T)(l i= Tr'i i= T‘f
( — paCiC, +c2) — (Z 1Ty | Bty 0Ton | 2 = «‘“)} (18.25)
Y

-2
2 Y

MSE (YG) ==
m

4 m 4%° XY

In order to get the minimum MSE we differentiate the above Eq. (18.25) by a and equate it
with 0. Hence we get optimum value of « as

oGy - S
— mrXy
Qopt 2 Cz B le Tfm . (1 826)
* mrX

A ISS
Using the above result we get the minimum MSE of Y, as

n

Ty

2 — L=l P
MsE(7y) =1 |c- YT pCrCx — =g (18.27)
G min n Y mr?2 C2 _ 27:1 Tfm .
S

A SIMULATION STUDY

To illustrate how one can gain an insight into the application or properties of the proposed estima-
tor, a computer simulation was conducted. Bivariate random observations were generated from a
bivariate normal distribution with parameters ., p,, oy, 0, and correlation coefficient p. The sam-
pling method explained above is used to pick RSS data with sets of size m and after r repeated
cycles to get an RSS of size mr. A sample of size mr bivariate units is randomly chosen from the
population (we refer to these data as SRS data). The simulation was performed with m = 3, 4, 5
and with r = 3 and 6 (i.e., with total sample sizes of 9, 12, 15, 18, 24, and 30) for the RSS and
SRS data sets. Here, we have ranked the auxiliary variate X which induces ranking in study variate
Y (ranking on Y will be perfect if p =1 or will be with errors in ranking if p <1). Using R soft-
ware we have conducted 5,000 replications for estimates of the means and mean square errors. The
results of these simulations are summarized by the percentage relative efficiencies of the estimators
using the formula.

PRE {*YR] = %(Y:)) X 100 (18.28)
PRE {*YP] = NI;Z&(:)) X 100 (18.29)

~TISS A~ TSS _~TISS

where, x =Y, YPe, YG .
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to YR
r m
3 3
6

3 4
6

3 5
6

r m
3 3
6

3 4
6

3 5
6

A~ TSS
Yr

100.00
100.00
100.00
100.00
100.00
100.00

A~ ISS
Yr

100.00
100.00
100.00
100.00
100.00
100.00

p=05
_ATSS
Re

180.96
195.98

88.08
137.81
227.19
459.04

p=08
A TSS
Re

111.31
64.72
135.82
74.83
542.55
472.05

ATss

YG
478.69
197.16
102.37
148.54
228.51

2552.20

A TSS

587.32
102.16
716.66
147.67
887.39

664.57

S )
Yr

100.00
100.00
100.00
100.00
100.00
100.00

£~ ISS
Yr

100.00
100.00
100.00
100.00
100.00
100.00

p=0.6
A ISS A ISS
Re Y
176.60 195.60
69.32 127.10
159.51 292.034
79.89 177.04
271.15 3401.16
358.13 611.95
p=09
A TISS A TSS
Re YG
60.10 319.82
634.43 763.76
323.09 26611.89
48.06 230.65
165.64 771.64
60.40 106.33

N
Yr

100.00
100.00
100.00
100.00
100.00
100.00

LTSS
Yr

100.00
100.00
100.00
100.00
100.00
100.00

p=0.7
A TSS
Re

86.48
300.47
134.18
425.84

95.60

80.21

p=1099
A TSS
Re

16.90
7.21
106.97
211.98
21.49
10.58

Table 18.1 Percentage Relative Efficiencies (PREs) of Different Estimators of Y With Respect

ATss
YG
132.17
360.13
575.96
133949.50
209.80
231.18

A TSS

Yg
130.38
163.74
878.19

25648.44
135.16
181.36

to Yp
r m
3 3
6

3 4
6

3 5
6

r m
3 3
6

3 4
6

3 5
6

A 1SS

Yp

100.00
100.00
100.00
100.00
100.00
100.00

A~ ISS
Yp

100.00
100.00
100.00
100.00
100.00
100.00

p=—05
_ATSS
Pe

100.70
244.90

96.36
367.50
265.84
156.45

p=—08
LTSS

Pe
225.97
104.58
293.40
151.47
304.81
165.10

Arss

YG
115.48
291.79
101.24

39936.55
739.76
302.43

A TSS
Y
2637.77
364.84
16504.85
669.86
15635.19
998.60

A~ 1SS

Yp

100.00
100.00
100.00
100.00
100.00
100.00

A TISS
Yp

100.00
100.00
100.00
100.00
100.00
100.00

p=—06
_ATSS
Pe

165.76
142.33
68.88
148.73
82.69

84.13

A TSS

617.15
143.22
100.66
335.87
100.41
100.08

A TSS
Y
6134.04
775.12
49398.26
410.73
901.03
6096.85

A TSS

Yp

100.00
100.00
100.00
100.00
100.00
100.00

A ISS
Yp

100.00
100.00
100.00
100.00
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100.00

Table 18.2 Percentage Relative Efficiencies (PREs) of Different Estimators of ¥ With Respect

p=—07
ATSS _ATSS
Pe Y
198.68 2148.31
247.09 2241.68
449.56 533.31
305.86 6376.77
261.39 1898.54
140.24 432.75
p=—099
A TSS A ISS
Pe YG
85.47 6979.82
199.44 | 34980.65
175.07 9795.42
151.95 | 13768.70
172.62 | 24835.13
176.63 | 17588.92
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18.5 CONCLUSIONS

It is observed from Table 18.1 that the PREs of the proposed ratio type exponential estimator using

rank set sampling, Y , and the proposed generalized exponential estimators using rank set sampling
ATISS A TSS
Y, are more efficient compared to the existing Samawi and Muttlak (1996) ratio estimator Y .

Also from Table 18.2, it can be observed the PREs of the proposed product type exponential esti-
ATSS A ISS
mator using RSS, Y, and the proposed generalized exponential estimators using RSS, Y are

more efficient compared to the existing product estimator Y p, . s ~rss

Finally, from Tables 18.1 and 18.2 we can conclude that the proposed estimators Y, Y p,, and
A TSS s 2 A TSS A TSS
Y are more appropriate estimators than the existing popular estimators Yg, Yp, Y , and Y, has

appreciable efficiency.
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ITS APPLICATION IN TESTING
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INTRODUCTION

There are situations in which obtaining exact values of sample units is difficult/expensive but
ranking the sample units in a set of small size without referring to their precise values is easy/
cheap. In such situations, ranked set sampling (RSS) serves as an efficient alternative to simple
random sampling (SRS). RSS was firstly introduced by Mclntyre (1952) when he realized that it
is hard and time-consuming to obtain exact measurements of the mean pasture yield because it
requires harvesting the corps, but an expert can fairly rank some adjacent plots using eye inspec-
tion. Although RSS was first motivated by an agricultural problem, it soon found applications in
other fields, including forestry (Halls and Dell, 1966), environmental monitoring (Kvam, 2003),
medicine (Chen et al., 2005; Zamanzade and Mahdizadeh, 2017a), biometrics (Mahdizadeh and
Zamanzade, 2017a), reliability (Mahdizadeh and Zamanzade, 2017b), and educational studies
(Wang et al., 2016).

To draw a ranked set sample, one first determines the set size H and a vector of in-stratum sam-

H
ple sizes m = (my,...,my) such that n = > my, is the total sample size. We then draw a simple

h=1
random sample of size nH from the population of interest and randomly partitions them into n sets
each of size H. Each set of size H is then ranked from smallest to largest. The ranking process in
this step is done using any cheap method which does not require referring to exact measurements
of the sample units. From the first m, sets of size H, the sample units with smallest judgment rank
are selected for actual measurements. From the next m; sets of size H, the sample units with judg-
ment rank 2 are selected for quantification. This process is continued until the sample units with
judgment rank H are selected for quantification from the last my sets of size H. The resulting
ranked set sample is called unbalanced as the numbers of different judgment order statistics are not
equal. A ranked set sample is called balanced if m; = ... =my = m, and the value of m in this case
is called the cycle size.

Ranked Set Sampling. DOI: https://doi.org/10.1016/B978-0-12-815044-3.00019-8
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A ranked set sample, in its general form, is denoted by {X[i]]‘:i =1,...,.H;j=1,.. .,mi}, where
X[ is the jth measured unit with judgment rank i. The term “judgment rank” and the subscript [.]
are used to indicate that the ranking process is done without observing actual values of the units in
the set and thus it may be inaccurate and contains errors (imperfect ranking). If the ranking is per-
fect, then subscript [.] is replaced with (.), and the resulting ranked set sample is denoted by
{X(,-)j:i =1,...,H;j=1,.. .,mi}. In this case, the distribution of X(;; is the same as the distribution
of the ith order statistic from a sample of size H. Throughout this chapter, we assume that the rank-
ing process is consistent, which means that the same ranking process is applied to all sets of size
H. Under a consistent ranking process, it can be simply shown that the following identity holds

1 H
F(t)= EZF[h]a
=1

where F; is the cumulative distribution function (CDF) of a sample unit with judgment rank A.

EXTROPY ESTIMATION USING A RANKED SET SAMPLE

Let X be the variable of interest which is continuous with probability density function (pdf) f and
cumulative distribution function (CDF) F. As a measure of uncertainty, entropy of the random vari-
able of X is defined by Shannon (1948) as

H =~ | toegoyas

Due to numerous applications of entropy in statistics, information theory, and engineering, the
problem of nonparametric estimation of H(f) has received considerable attention. Vasicek (1976)
was the first to propose estimating H(f) using spacings of order statistics. His estimator is based on
the fact that the entropy of a continuous random variable X with CDF F can be expressed as

1
H(f) = Jo log <%F71(p))dp.

He proposed estimating the entropy by using the empirical distribution function and applying a
difference operator instead of a differential operator. Let X, ..., X, be a simple random sample of
size n from the population of interest, with ordered values X(;) <...<X. Then Vasicek (1976)’s
entropy estimator is given by

HS = - Z log{ X(H.W) X(i—w)) },

where w( =n/2) is an integer number called windows size, and X(; = X(1) for i <1, and X = X
for i >n.

Ebrahimi et al. (1994) improved Vasicek (1976)’s entropy estimator by assigning different
weights to the observations at the boundaries. Their corrected entropy estimator is given by

H;jrs = Z log{ X(Hw) X(ifw)) }s
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where

i-1

1+ i=m
m

ci=1( 2 ) m+l<=i=n—m,

n—i

1+ n—m+l=i=n
m

W is the window size defined as before, and X(;) = X(1) for i <1 and X, = X, for i > n.
As a complement dual of entropy, Lad et al. (2015) introduced a new measure which is called
extropy, as follows:

JX)=— %K x F2(x)dx.

Lad et al. (2015) also investigated several interesting properties of extropy and resolved a fun-
damental question of Shannon’s entropy measure. Qui (2017) provided some characteristic results,
monotone properties as well as a lower bound for extropy of order statistics and record values. Qui
and Jia (2018) used extropy for testing uniformity and showed that the resulting test has a good
performance in comparison with its competitors in the literature including those tests based on
entropy due to Zamanzade (2015).

By following the lines of Vasicek (1976) and Ebrahimi et al. (1994), Qui and Jia (2018) devel-
oped two estimators for extropy. Let X, ..., X, be a simple random sample of size n from the popu-
lation of interest, with ordered values X(;)<...<X(,). Then the Qui and Jia (2018)’s extropy
estimators are given by

Jsrs:_i - 2W/I’l Jsrs:_i - 261'/”
o MG X —Xaw P 205 X — Xiw)
where
i—1
1+ i=m
m
ci=4¢2 ) m+l=i=n—m,
n—i
1+ n—m+l=si=n

W is the window size defined as before, and X(;) = Xy for i <1 and X;y = X, for i >n.

Let {X[,-]j:i =1,..,H; j=1,.. .,m} be a balanced ranked set sample of size n = mH from the
population of interest, with the corresponding ordered value Z; <...<Z,. Mahdizadeh and
Arghami (2009) modified Vasicek’s (1976) entropy estimator to be used in balanced RSS. Their
proposed estimator has the form

H‘r/ss — %; log{% (Zi+w - Zi—w)}a

where Z; = Z, for i<1, and Z; = Z, for i >n.
Zamanzade and Mahdizadeh (2017b) developed some entropy estimators in balanced RSS using
entropy estimators proposed by Ebrahimi et al. (1994). The new estimator is given by

1< n
TSS __ — .
Hp" = p ;:l log{—CiW (Zi+w Z,,W)},
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where
i—1
1+ i=m
m
ci=<¢2 ) m+l<=i=n—m,
n—i
1+ n—m+l=i=n
m

Z;,=7 fori<l1, and Z;, = Z, for i >n.
By following the lines of Mahdizadeh and Arghami (2009) and Mahdizadeh and Zamanzade
(2017b), we can develop extropy estimators for RSS as follows:

s IS 2w/n s LS cw/n
or E;ZH’W -Z,e E;ZH’W ~Ziow’
where ¢; is as defined before, Z; = Z; for i <1, and Z; = Z, for i >n.

We conducted a simulation study to compare different extropy estimators in balanced RSS and
SRS designs in terms of root of mean square error (RME). In doing so, we generated 100,000 sam-
ples of sizes n = 10,20,30,50 from standard normal, standard uniform, and standard exponential
distributions. The values of set size H are taken to be 2 and 5, and the value of window size w is
selected according to Grzegorzewski and Wieczorkowski’s (1999) heuristic formula, i.e.,
w= [ﬁ + 0.5] , where [x] is the integer part of x.

The imperfect rankings model that we utilize is the fraction-of-random-rankings model devel-
oped by Frey et al. (2007). Under this model, the distribution of ith judgment order statistic is a
mixture of true ith order statistic and a random draw from the parent distribution, i.e.:

Fi= )\F(i) + (1= NF,

where the parameter A0, 1] determines the quality of the ranking. The values of A in this simula-
tion study are selected from the set Ae{0.5,0.8, 1}, which corresponds to moderate, good, and per-
fect ranking, respectively.

Tables 19.1—19.3 show the estimated RMSEs and biases of the extropy estimators. Table 19.3
presents the results when the parent distribution is standard normal. It can be seen that the RSS esti-
mators outperform their SRS counterparts. In both SRS and RSS schemes, Jy, always works better
than Jp;. The performance of any extropy estimator improves if the total sample size (n), the set
size (H), or the value of ()\) increases, provided that other factors are fixed.

The simulation results for standard exponential and standard uniform distributions are presented
in Tables 19.2 and 19.3, respectively. The general trends are similar to those mentioned for
Table 19.1.

EXTROPY-BASED TESTS OF UNIFORMITY IN RSS

In this section, we evaluate the performance of extropy-based test of uniformity in RSS and com-
pare it with its SRS counterpart using Monte Carlo simulation. Testing uniformity is a very impor-
tant problem from a practical point of view, because goodness-of-fit test can be expressed as a
problem of testing uniformity. This follows from the probability integral transform theorem which
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Table 19.1 Estimated RMSE and Bias of Different Extropy Estimators When Parent
Distribution is Standard Normal Distribution With J(f) = — 0.141
RSS (A=1) RSS (A=0.8)
Jo1 Jos Jo1 Jo
n H RMSE Bias RMSE Bias RMSE Bias RMSE Bias
10 2 0.13 —0.10 0.07 —0.04 0.13 —0.10 0.07 —0.04
5 0.11 —0.09 0.06 —0.03 0.12 —0.09 0.06 —0.03
20 2 0.05 —0.04 0.03 —0.02 0.06 —0.04 0.04 —0.02
5 0.05 —0.04 0.03 —0.01 0.05 —0.04 0.03 —0.01
30 2 0.04 —0.02 0.03 —-0.01 0.04 —0.02 0.02 —0.01
5 0.03 —0.02 0.02 —0.01 0.03 —0.02 0.02 —0.01
50 2 0.02 —0.01 0.02 0.00 0.02 —0.01 0.02 0.00
5 0.02 —0.01 0.01 0.00 0.02 —0.01 0.02 0.00
RSS (A=0.5) SRS
Jo1 Jos Joi Jos
n H RMSE Bias RMSE Bias RMSE Bias RMSE Bias
10 2 0.13 —0.10 0.07 —0.04 0.13 —0.10 0.07 —0.04
5 0.12 —0.10 0.07 —0.04 0.13 —0.10 0.07 —0.04
20 2 0.06 —0.04 0.03 —0.02 0.06 —0.04 0.04 —0.02
5 0.05 —0.04 0.03 —0.02 0.06 —0.04 0.04 —0.02
30 2 0.04 —0.03 0.02 —0.01 0.04 —0.02 0.02 —0.01
5 0.04 —0.02 0.02 —0.01 0.04 —0.02 0.02 —0.01
50 2 0.02 —0.01 0.02 0.00 0.02 —0.01 0.02 0.00
5 0.02 —0.01 0.02 0.00 0.02 —0.01 0.02 0.00

states that if the variable of interest X follows a continuous distribution with cumulative distribution
function F, then Y = F(X) follows a standard uniform distribution.

Qui and Jia (2018) showed that the standard uniform distribution maximizes the extropy J(f)
among all continuous distributions that possess a density function f and have a given support on
(0,1). Based on this property, they then proposed the following test statistic for testing uniformity

TS5 = — JS; ,

and they proposed the reject the null hypothesis of uniformity of large enough values of 7°%.
By following the lines of Qui and Jia (2018), one can also perform an extropy-based test of uni-
formity based on a ranked set sample using below test statistic

TS = _JE;;’

and rejects the null hypothesis of uniformity of large enough values of 7.



264

CHAPTER 19 EXTROPY ESTIMATION IN RANKED SET SAMPLING

Table 19.2 Estimated RMSE and Bias of Different Extropy Estimators When Parent
Distribution is Standard Exponential Distribution With J(f) = — 0.25
RSS (A=1) RSS (A=0.8)
Jo1 Jo Jo1 Jo
n H RMSE Bias RMSE Bias RMSE Bias RMSE Bias
10 2 0.24 0.15 0.12 —0.04 0.27 —0.16 0.14 —0.04
5 0.17 —0.12 0.08 —0.02 0.20 —0.13 0.10 —0.03
20 2 0.13 —0.09 0.07 —0.03 0.14 —0.09 0.08 —0.03
5 0.11 —0.08 0.05 —0.02 0.12 —0.08 0.07 —0.02
30 2 0.09 —0.07 0.06 —0.02 0.10 —0.07 0.06 —0.02
5 0.08 —0.06 0.04 —0.01 0.09 —0.06 0.05 —0.01
50 2 0.07 —0.05 0.04 —0.01 0.07 —0.05 0.04 —0.01
5 0.05 —0.04 0.03 —0.01 0.06 —0.04 0.04 —0.01
RSS (A=0.5) SRS
Jo1 Jos Jo1 Jo
n H RMSE Bias RMSE Bias RMSE Bias RMSE Bias
10 2 0.27 —0.16 0.15 —0.05 0.26 —0.16 0.15 —0.05
5 0.24 —0.15 0.13 —0.04 0.26 —0.16 0.15 —0.05
20 2 0.14 —0.09 0.08 —0.03 0.15 —0.09 0.09 —0.03
5 0.13 —0.09 0.08 —0.02 0.15 —0.09 0.09 —0.03
30 2 0.10 —0.07 0.06 —0.02 0.11 —0.07 0.07 —0.02
5 0.10 —0.07 0.06 —0.02 0.11 —0.07 0.07 —0.02
50 2 0.07 —0.05 0.05 —0.01 0.07 —0.05 0.05 —0.01
5 0.07 0.05 0.04 —0.01 0.07 —0.05 0.05 —0.01

Remark 1. We have not considered the test of uniformity based on Jg; in our comparison set,
because we have observed that J35 is uniformly better than J5;.

In order to compare the power of different tests of uniformity, the following alternative distribu-
tions are considered

AcF(x) =1—-(1-x" 0=x=1, (fork=1.5,2)
24K, 0=x=0.5,

Bi:F(x) = (fork=1.5,2,3)
1-21-x* 05=x=1,

0.5—2(0.5—x)F, 0=x=0.25,
Cu:F(x) = (fork =1.5,2)

0.5+2(x—0.5F 05=x=1,
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Table 19.3 Estimated RMSE and Bias of Different Extropy Estimators When Parent
Distribution is Standard Uniform Distribution With J(f)= — 0.5
RSS (A=1) RSS (A=0.8)
Jo1 Jos Jo1 Jo
n H RMSE Bias RMSE Bias RMSE Bias RMSE Bias
10 2 0.43 —0.36 0.19 —0.12 0.46 —0.37 0.21 —-0.14
5 0.37 —0.31 0.15 —0.09 0.40 —0.34 0.17 —0.11
20 2 0.24 —0.21 0.11 —0.08 0.24 —0.22 0.11 —0.08
5 0.21 —-0.19 0.08 —0.06 0.22 —0.20 0.10 —0.07
30 2 0.17 —0.16 0.07 —0.06 0.17 —0.16 0.08 —0.06
5 0.16 —0.15 0.06 —0.05 0.16 —0.15 0.07 —0.05
50 2 0.12 —0.11 0.05 —0.04 0.12 —0.11 0.05 —0.04
5 0.11 —0.11 0.04 —0.03 0.11 —0.11 0.05 —0.04
RSS (A=0.5) SRS
Jor Jos Jo1 Jos
n H RMSE Bias RMSE Bias RMSE Bias RMSE Bias
10 2 0.46 —0.38 0.21 —0.14 0.46 —-0.39 0.22 —0.15
5 0.44 —0.37 0.20 —0.13 0.46 —-0.39 0.22 —0.15
20 2 0.25 —0.22 0.12 —0.09 0.25 —-0.22 0.12 —0.09
5 0.24 —0.21 0.11 —0.08 0.25 —-0.22 0.12 —0.09
30 2 0.18 —0.16 0.08 —0.06 0.18 —0.16 0.08 —0.07
5 0.17 —0.16 0.08 —0.06 0.18 —0.16 0.08 —0.07
50 2 0.12 —0.12 0.05 —0.04 0.12 —0.12 0.05 —0.04
5 0.12 —0.11 0.05 —0.04 0.12 —0.12 0.05 —0.04

One can simply verify that as compared with uniform distribution, under alternative A, values
closer to zero are more probable, whereas under alternative B, values near to 0.5 and under alterna-
tive C, values close to 0 and 1 are more probable.

Under each alternative, we have generated 10,000 RSS and SRS samples of sizes 10, 20, 30,
and 50. The value of set size in RSS is taken from H €{2, 5} and the quality of ranking is controlled
by fraction of random ranking as described in Section 19.2 with Ae{1,0.8,0.5} and the value of
window size (m) is selected from Grzegorzewski and Wieczorkowski’s (1999) heuristic formula,
ie., w=[{/n+0.5], where [x] is the integer part of x.

The power estimates of extropy-based tests of uniformity at significant level o =0.1 are pre-
sented in Table 19.4.

We observe from Table 19.4 that the extropy-based test of uniformity in RSS outperforms its
counterpart in SRS. It is of interest to note that the power of 77 increases if sample size (n),set
size (H), or the value of ()\) increases, provided that other factors are fixed. This is consistent with
what we observed in the previous section.
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Table 19.4 Power Estimates of Extropy-Based Tests of Uniformity for » = 10, 20, 30, 50, and
a=0.1 in SRS and RSS Designs

RSS (k=2) RSS (k=5) SRS
ALt A=1 A=08 A=05 A=1 A=0.8 A=05
AlS 0.23 0.22 0.21 0.27 0.23 0.23 0.21
A2 0.45 0.44 0.41 0.58 0.50 0.45 0.42
B1.5 n=10 0.26 0.25 0.23 0.33 0.27 0.27 0.23
B2 0.49 0.49 0.45 0.64 0.55 0.51 0.45
B3 0.85 0.85 0.83 0.95 0.90 0.86 0.82
ClL5 0.12 0.12 0.12 0.12 0.12 0.13 0.12
C2 0.19 0.20 0.19 0.20 0.20 0.20 0.19
AlS 0.36 0.34 0.33 0.44 0.38 0.36 0.33
A2 0.78 0.74 0.71 0.90 0.81 0.76 0.70
Bl1.5 n=20 0.37 0.35 0.32 0.46 0.39 0.38 0.32
B2 0.77 0.73 0.71 0.87 0.81 0.77 0.71
B3 0.99 0.99 0.99 1.00 1.00 0.99 0.99
ClL5 0.24 0.24 0.23 0.26 0.24 0.25 0.23
C2 0.53 0.51 0.49 0.58 0.53 0.53 0.50
ALS 0.50 0.48 0.47 0.57 0.52 0.48 0.44
A2 0.93 0.91 0.89 0.98 0.95 0.92 0.87
Bl.5 n =30 0.49 0.48 0.46 0.57 0.53 0.50 0.44
B2 0.91 0.90 0.90 0.97 0.95 0.92 0.88
B3 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Cl.5 0.35 0.35 0.34 0.37 0.36 0.37 0.33
c2 0.75 0.74 0.73 0.80 0.78 0.76 0.72
AlS 0.72 0.70 0.69 0.84 0.78 0.68 0.67
A2 1.00 0.99 0.99 1.00 1.00 0.99 0.99
B1.5 0.70 0.69 0.68 0.81 0.76 0.70 0.67
B2 n=50 0.99 0.99 0.99 1.00 1.00 0.99 0.99
B3 1.00 1.00 1.00 1.00 1.00 1.00 1.00
ClL.5 0.55 0.54 0.53 0.61 0.58 0.54 0.52
C2 0.95 0.95 0.94 0.98 0.97 0.95 0.94
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IN RANKED SET SAMPLING
USING R
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INTRODUCTION

Ranked set sampling (RSS) is an alternative to simple random sampling that has been shown to
outperform simple random sampling (SRS) in many situations. RSS, originally proposed by
Mclntyre (1952), has recently attracted a considerable amount of interest and research as an alter-
nate data collection method to SRS.

Mclntyre’s study generated a rapidly expanding body of research literature in order to estimate
parameters as means. Dell and Clutter (1972) proved that the sample mean based on the RSS is
unbiased for the population mean regardless of the errors of ranking. Bouza (2002) estimated the
mean in ranked set sampling with nonresponses and in 2009 proposed a procedure for estimating
the mean of a sensitive quantitative character. Pelli and Perri (2017) improved mean estimation in
ranked set sampling using the Rao regression-type estimator. Other authors were responsible for
estimating the variance (Stokes, 1980a; MacEachern et al., 2002; Perron and Sinha, 2004) from a
nonparametric point of view, distribution functions (Stokes and Sager, 1988), and correlation coef-
ficients (Stokes, 1980b). There has been a growing literature in RSS methods in recent years; see,
for example Wolfe (2010, 2012).

Applications of RSS have been limited mostly to ecological, agricultural, and environmental
sampling. Case studies can be found in Halls and Dell (1966), Al-Saleh and Al-Shrafat (2001), and
Murff and Sager (2006). Thorough reviews of the RSS literature can be found in Patil et al. (1999)
and Patil (2002).

There are many statistical softwares for working with complex surveys, but there are few that
have implemented modules to work with ranked set sampling. In this, as in other types of sampling,
two aspects must be highlighted: (1) the process of selecting the sample and (2) the parameter esti-
mation process. We are going to focus on the first, since the number of different estimators pro-
posed for different parameters is so broad.

Therefore in this work we are going to analyze the little software available for the selection of
RSS balanced samples (the basic method) and we provide pseudocode for certain modifications of
the basic method.

We will emphasize language R (R Core Team, 2017) as it is the free software that is most com-
monly used in the scientific community nowadays.
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NOTATION AND BASIC DEFINITIONS

We will use the same notation as in Chen et al. (2004). An initial simple random sample of k units
from the population is selected and subjected to ordering on the attribute of interest via some rank-
ing process. The item judged to be the smallest is included as the first item in our ranked set sam-
ple and is noted by X[;;. We select the item judged to be the second smallest of the k units in a
second random sample and include it in our ranked set sample for measurement of the attribute of
interest. This second measured observation is denoted by Xpy. This process is continued until we
have selected the unit judgment ranked to be the largest of the k units in the kth random sample,
denoted by X, for measurement and inclusion in our ranked set sample. The observations
X[13, X2, - - - » Xxy represent a ranked set sample with set size k. In order to obtain a ranked set sam-
ple with a desired total number of measured observations k - m, we repeat the entire cycle process
m independent time, yielding the data Xy, X[y, ..., Xy for j=1,...,m. This is referred to as a
balanced RSS, where balanced indicates that the same number of observations were taken at each
of the judgment ranks.

This is the usual RSS procedure. An alternative method is allocating sample units into ranks in
different proportions; thus obtaining an unbalanced ranked set sample.

USING R FOR RANKED SET SAMPLING

In this section we describe how to obtain samples by ranked set sampling using the software R and
we provide a code.

In the R web, there is a package, called NSM3, that calculates the ranked set sampling.
Concretely, compute the ranked set sampling given a set size and number of cycles based on a
specified auxiliary variable. This function only considers the option of balanced RSS.

BALANCED RANKED SET SAMPLING

To create ranked sets we must partition the selected first-phase sample into sets of equal size. In
order to plan an RSS design, we must therefore choose a set size that is typically small, around
three or four, to minimize the ranking error. Call this set size k, where k is the number of sample
units allocated to each set. Now proceed as follows:

+ Step 1: randomly select k* units from the population.

+ Step 2: allocate the k? selected units as randomly as possible into k sets, each of size k.

* Step 3: without yet knowing any values for the variable of interest, rank the units within each
set based on a perception of relative values for this variable. This may be based on personal
judgment or done with measurements of a covariate that is correlated with the variable of
interest.

» Step 4: choose a sample for actual analysis by including the smallest ranked unit in the first set,
then the second smallest ranked unit in the second set, continuing in this fashion until the
largest ranked unit is selected in the last set.
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* Step 5: repeat steps 1 through 4 for m cycles until the desired sample size, n = mk, is obtained
for analysis.

R Code
RSS computes the indices of a sample obtained for balanced RSS.

USAGE
RSS(k,m,ranker)

ARGUMENTS

e k: set size;
* m: number of cycles;
» ranker: auxiliary variable used for judgment ranking.

VALUE

Returns a vector of the indices corresponding to the observations selected to be in the RSS.

FUNCTION CODE

Tibrary(NSM3)
RSS
function (k, m, ranker)
{
N <- length(ranker)
num.samples <- m * k
SRS.index <- matrix(sample(1l:N, num.samples * k), nrow = k)
selected.rankers <- matrix(ranker[SRS.index], nrow = k)
sorted <- apply(selected.rankers, 2, sort)
sample.ranks <- apply(selected.rankers, 2, order)
output <- 0
for (i in l:num.samples) {
index <- floor((i - 1)/m) + 1
output[i] <- SRS.index[sample.ranks[index, i], il
}
return(sort(output))
}
<environment: namespace:NSM3 >

UNBALANCED RANKED SET SAMPLING

We consider two situations.
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20.3.2.1 Case 1

We are interested to obtain an URSS of size n =k-m + 5,5 # 0. Thus we follow the same proce-
dure as in the previous case RRS, and we include then the elements remaining. The procedure is
explained below.

 Step 1: randomly select k? units from the population.

* Step 2: allocate the k? selected units as randomly as possible into k sets, each of size k.

» Step 3: without yet knowing any values for the variable of interest, rank the units within each
set based on a perception of relative values for this variable.

» Step 4: choose a sample for actual analysis by including the smallest ranked unit in the first set,
then the second smallest ranked unit in the second set, continuing in this fashion until the
largest ranked unit is selected in the last set.

» Step 5: let the number of cycles m = [n/k], that is to say, the integer is less than or equal to n/k.
Repeat steps 1 through 4 for m cycles.

» Step 6: If s >0, we choose integers ji, 2, .., Js, (j1 # Jj2 7 ... #Js) from 1,2, ..., k. Then we select
s independent SRSWR samples, each of size k. Observations from each of the samples are
ranked with respect to their auxiliary variable. From the first sample, we select j;th ranked
observation, j>th observation from the second sample and j; ranked observation from the sth
sample

» Step 7. The final sample contains the units obtained in steps 5 and 6.

R Code

rankedl computes the indices of a sample obtained for balanced or unbalanced (Casel) RSS.

USAGE

rankedl(n,k,ranker)

ARGUMENTS

* n: sample size;
e k: set size;
* ranker: vector which contains an auxiliary variable.

VALUE

Returns a vector which contains the sample indices for balanced or unbalanced (Case 1) RSS.

FUNCTION CODE

rankedl = function(k,n,ranker){
N=Tength(ranker)
m=n%/%k
s =n%hk
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SF=RSS(k,m,ranker)

if(s!=0){
masO=sample(N,k*s, replace=T)
x=ranker[mas0]
gr0=as.factor(rep(l:s,k))
sfOdatal =data.frame(mas0,x,gr=gr0)
sfOdataorder <- sfOdatallorder(sfOdatal$gr,sfOdatal$x),]
i=sample(k,s)
SF <- c¢(SF, sfOdataorder[i,]$mas0)
SF <- sort(SF)

}

return(SF)

}

20.3.2.2 Case 2

We are interested in an unbalanced sample in the following way: choose a sample for actual analy-
sis by including the smallest ranked units in the first n; sets, then the second smallest ranked units
in the n, second sets, continuing in this fashion until the largest ranked unit is selected in the last
ny; sets. The final sample size is n=n; + ny--- + ny.

R Code

ranked?2 computes the indices of a sample obtained for unbalanced (Case2) RSS.

USAGE

ranked2(k,ss,ranker)

ARGUMENTS

e k: set size;
* ss: vector with the sample size allocations;
» ranker: vector which contains an auxiliary variable.

VALUE

Returns a vector which contains the sample indices for unbalanced (Case 2) RSS.

FUNCTION CODE

ranked2 = function(k,ss,ranker){
N=Tlength(ranker)
n=sum(ss)
SRS.index <- matrix(sample(1l:N, n*k), nrow = k)
selected.rankers <- matrix(ranker[SRS.index], nrow = k)
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sorted <- apply(selected.rankers, 2, sort)
sample.ranks <- apply(selected.rankers, 2, order)
ssa< -cumsum(ss)
output <-c()
for (1 in 1l:ssall]) {
SRS.index[,1:ssal111[,11[sample.ranks[,111[1]->outputl
output<-c(output, outputl)
}
for (t in 2:length(ss)) {
for (11 in 1:(ss[t])) {
SRS.index[,(ssalt-11+1):(ssalt1])I[,11]
[sample.ranks[,(ssalt-1]+1):(ssalt])I[,11]1]1[t]->outputt
output <-c(output, outputt)
}
SF <- sort(output)
}
return(SF)
}

THE MEDIAN RANKED SET SAMPLING METHOD

The ranked set sampling (RSS) method as suggested by Mclntyre (1952) may be modified to come
up with new sampling methods that can be made more efficient than the usual RSS method. It is
known that there will be a loss in precision due to the errors in ranking the units. One modification
to reduce the errors in ranking, namely median ranked set sampling (MRSS), is considered in this
study; see Muttlak (1997) for details.

In the MRSS procedure, select kK random samples of size k units from the population and rank
the units within each sample with respect to a variable of interest. If the sample size k is odd, from
each sample select for measurement the ((k +1)/ Z)th smallest rank (the median of the sample). If
the sample size is even, select for measurement from the first k/2 samples the (k/ 2)th smallest
rank and from the second k/2 samples the ((k +2)/ 2)th smallest rank. The cycle may be repeated
m times to get the n =k - m units which form the MRSS sample.

R Code
MRSS computes the indices of a sample obtained for RSS using the median method.

USAGE

MRSS(k, ranker)

ARGUMENTS

e k: set size;
* ranker: vector which contains an auxiliary variable.
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VALUE

Returns a vector which contains the sample indices for MRSS,

FUNCTION CODE

MRSS = function (k,ranker){
N <- length(ranker)
num.samples <- k
SRS.index <- matrix(sample(l:N, num.samples * k), nrow = k)
selected.rankers <- matrix(ranker[SRS.index], nrow = k)
sorted <- apply(selected.rankers, 2, sort)
sample.ranks <- apply(selected.rankers, 2, order)
output<-c()
if (k%%2!=0) {
(k+1)/2->med
for (col in 1:k) {
SRS.index[,1:k]J[,colllsample.ranks[,col]][med]->outputl
output<- c(output,outputl)
}
}
if (k%%2==0) {
outputa<-c()
outputb<-c()
k/2->med
for (col in 1:(k/2)) {
SRS.index[,1:(k/2)]1[,col]lsample.ranks[,col]][med]->outputl
outputa<- c(outputa,outputl)
}
for (col in 1:(k/2)) f{
SRS.index[, ((k/2)+1):k1[,col]lsample.ranks[,((k/2)+1):k1[,col]]1[med+
->output?
outputb<- c(outputb,output2)
}
output <- c(outputa,outputb)
}
SF <- sort(output)
return(SF)
}
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ESTIMATION USING RSS

While this may change as RSS methodology progresses, at this point in time standard
packages are sufficient to analyze RSS data once they have been collected.

software
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For example, let 4(x) be any function of x. For an RSS sample, the estimator

m

| &
Fyrss = s Z| Z h(Xpy)

i=1
is unbiased for the expectation of h(X) if the ranking mechanism in RSS is consistent (Chen et al.,
2004).
The natural estimates of V(fi;zss) using an RSS sample are given by

m

[ .
Séss - k— 1 Z Z (h(X[r]i)_lthRss)2

mn /=1 i=1

These estimators can easily be calculated from standard software packages.

EXAMPLES
RANKING WITH AN INEXPENSIVE QUANTITATIVE MEASUREMENT

When auxiliary information is available for the entire population of size N (an inexpensive quanti-
tative measurement), the previous functions can be used for select units included in the RSS sam-
ple. The following lines show how to do it with the different types of RSS previously reported.

set.seed (1)

response < -rnorm(200,20,2)

auxiliary<-rnorm(200,10,1)

#Get the indices for a RSS with set size 3 and 2 cycles
RSS(2,3,auxiliary)

166 74 133 147 172 183

#Balanced

rankedl1(3,12,auxiliary)

#L1] 7 67 68 72 83 88 107 128 142 179 180 200
#Unbalanced Case 1

rankedl1(3,13,auxiliary)

1] 2 4 10 12 48 51 56 70 99 115 149 173 200
J#Using MRSS

MRSS(3,auxiliary)

#L11 17 66 114

MRSS(4,auxiliary)

#L11 12 54 147 164

j#Unbalanced Case 2

ranked2(3,c(2,3,4,5),auxiliary)

#L1]1 14 32 63 93 134 136 151 169 191

In all previous examples, the response observed can be easily show using, for example:

response[MRSS(3,auxiliary)]
#L1] 21.37948 18.86266 17.90403
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20.5.2 RANKING WITH A PROFESSIONAL JUDGMENT

Suppose you want to determine the average production in an olive grove like the one shown in the
figure:

There are N =2070 olive trees. It is planned to select a sample of size n = 30, taking sets of
size m = 3, which will be sorted by visual inspection. A labeling and object count computer pro-
gram provides the indices i = 1,...,2070 that identifies the objects in the photograph. The follow-
ing program lines select three simple random samples:

N=2070
m=3
num.samples <- m * m

index <- matrix(sample(l:N, num.samples), nrow = m, byrow=T)
index

[,11 [.,21 [,3]
[1.] 213 462 333
(2.1 1321 1865 334
(3.1 234 331 5

The user provides the order by visual inspection of the matrix
213 462 333
1321 1865 334
234 331 5

so that it is the matrix

213 333 462
334 1865 1321 |,

234 5 331
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from the photographic information of the figure:

Finally, units 213, 331, and 1865 are selected for observation of the main variable. The previous
process is repeated until all the variables of interest in the sample are observed.

20.6 ADDITIONAL SOFTWARE

To our knowledge, there are few programs that perform RSS. One of them is the one described
briefly below.

Visual Sample Plan (VSP) is a software tool developed by Pacific Northwest National
Laboratory (PNNL), initially conceived and sponsored through DOE-Office of Health, Safety and
Security (HHS), that supports the development of a sampling plan and statistical data analysis. VSP
has many sampling design and statistical analysis modules focused on soils, sediments, surface
water, streams, groundwater, buildings, and others. Many statistical sampling designs are available,
including ranked set sampling.

Either professional judgment or an inexpensive quantitative (screening) measurement of the var-
iable of interest can be used to do the ranking when ranked set sampling is used. VSP calculates
the number of samples and field ranking locations needed to estimate the mean using ranked set
sampling and places the field ranking locations on the map using simple random sampling.

Ranked set sampling design for estimating a mean is implemented for a balanced or unbalanced
design. It is possible to determine the number of samples, take into account the sample size, the set
size, the relative precision, and the number of cycles to compute the total number of samples that
should be collected. For ranked set sampling, VSP produces field sample markers on the map that have
different shapes and colors. It is also possible to include cost-effectiveness parameters in the analysis.
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CHAPTER

VARIANCE ESTIMATION OF
PERSONS INFECTED WITH
AIDS UNDER RANKED SET
SAMPLING
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! Faculty of Mathematics and Computation, University of Havana, Havana, Cuba 2DACEA, Universidad Judrez
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Technology (ISM), Dhanbad, Jharkhand, India

INTRODUCTION

Ranked set sampling is an alternative sample design, which generally provided gains in accuracy
with respect to simple random sampling with replacement (SRSWR). It was proposed for estimat-
ing the yield of pastures by McIntyre (1952). He established this method to estimate the mean pas-
ture yield using RSS and found its inferences more efficient than selecting the sample using a
simple random sampling (SRS) design. The units may be ranked by means of a cheap procedure
and then an order statistics is selected from each of the independent samples selected using SRS
with replacement (SRSWR). It turned out that the use of ranked set sampling is highly beneficial
and leads to estimators which are more precise than the usual sample mean per unit ones. The
method is now referred to as the ranked set sampling (RSS) method in the literature. Takahasi and
Wakimoto (1968) were the first to prove that the mean estimator from RSS is more efficient than
that from SRS. This led to a lot of research that has been done by various authors including Dell
and Clutter (1972), Stokes (1980), Patil et al. (1995), MacEachern et al. (2002), Chen et al. (2003),
Perron and Sinha (2004), and Frey (2011).

In this chapter, we propose a model using RSS, instead of SRS with replacement (SRSWR), for
studies of variance. The rest of this chapter is organized as follows: Section 21.2 develops the study
of the one-way analysis of variance. Section 21.3 is devoted to the presentation of estimators of the
variance. Section 21.4 is devoted to the development of numerical studies of the behavior of the
analyzed models in testing hypothesis. We discuss the results obtained from the use of SRSWR and
develop alternative RSS models in the next section. Samples of persons infected with the AIDS
virus are analyzed and the behavior of the accuracy of the different alternative estimators are also
discussed.

Ranked Set Sampling. DOI: https://doi.org/10.1016/B978-0-12-815044-3.00021-6
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ESTIMATION OF THE TREATMENT EFFECTS IN A ONE-WAY LAYOUT
IN RANKED SET SAMPLING

Consider the one-way layout
Y,‘j = WK +(j,j :/L"I‘Oé[ +d’,-j, i= ],.. .,k, j: 1,.. ,n(l) (211)

This issue is important in many applications and has been studied extensively. Let Y be the vari-
able of interest. We select independent samples of size n(i), i = 1,.. .k, using simple random sam-
pling with replacement (SRSWR), for estimating the parameters of interest p, o; =(p; — p),
i=1,...,k. We assume that for any i=1,...,k and j=1,...n(i), E(ay; =0, V(d;) = 02,- and
Cov(dydyy) = 0, if i’ and/or j#j'. The usual estimation of the effects q; is

n(i) k n(i)

-21 Yij Zl Zlyz:f k
= == L .
of = jn(i) - Jn = (y,- —y); where n = ,-EZI n(i) (21.2)
Its variance is given by
2 2
— —\2 o; g 2
V(ozj.‘):E(y,-t,uii,u—y) = i + o + (ui—p) . (21.3)

Muttlak (1998) proposed to use RSS. As usual, the model was based on the selection of n(i)
independent samples of size n(i) using SRSWR and to rank each of them. That is we have hypo-

thetically for each i = 1,.. .,k s; = {(Y,-M. o Yitn@)s - o (YinGpt- - -» Yi"(i)"(f))n(i)} and by ranking, we
have the ranked samples { (Yii)- - -, Yiu@)), - - -» (Yin()(1)- - -» Yinoai) }- ¥ is measured in the statistic

[Tx

of order (SO) ¢ in the rth sample. Then our set of results for treatment “i” is

s(i) = {(Yim), Yo@)s- - Yiw)- - Yinmi) } = {Yiy, Yi)s - - Yiy- - > Yiwip (21.4)
We deal with the linear model
Yigy = p; + gy =p+ai+tegni=1,.. .k j=1,...,n()
n(i) k n(i)

Z] Yig) D Vigy v
=

- _ - _i=lj=1 _ .
Yo = (i) yRSS_Ta n—Zn(l)

It is unbiased and

n(i)
i)
i=1

— _J
V()’(i)) TR G0
It was hypothesized that, 01.2(].) = 0(21.), which is the counterpart of the hypothesis used in the
development of the one-way layout ANOVA. o7 = ¢, in the inferences based on SRSWR. Using
the relation established by Takahasi and Wakimoto (1968) we can derive that for any i = 1,.. .,k

o’y = VOi)
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n(i)
Z A
V(Y(,)) = n(z) n2(1) Ai(;') = Higy — Hay> Migy = E(yi(/))>
Let us look for the RSS counterpart of the results in Eqgs. (21.2) and (21.3).
n(i) k_n()

ZM» ZEDM
Proposition 2.1: az‘i) () - Fﬂ (y(i) — yRSS) is unbiased and more accurate than o].

Proof: Due to the unbiasedness of the RSS estimators

E(afy) = E(a]) = E(¥V) — EQrss) = 1; — 1
n(i)
Z oy Z Z o5

i=1j=1 _ 2
nZ(L) n? + (Mi M)

2 _ 2 2 N .
We have that o3, = o} — Ai(].) then substituting in the above equation

_ _ 2
and V(Ozz})) = E(y(,») *Tu H_yRSS) =

k
2 E”(i)glz
«y— T =l —uY =1
V(a(i)) - I’l(l) + n2 + (lul ,U,) ¢( )
where
n(i) k n()
Z A% Z > A%
(1) = 20 + fnz =0

represents the gain in accuracy due to the use of RSS.

2 2
Remark 1: [fVi=1,.. k, o?=o02= "+ 0— and the usual relation is obtained.

’ n(i)

ESTIMATION OF THE VARIANCE IN RSS

A basic relationship in RSS is

—_

—Z o+ (g — /L(,J)) ifr £7 (21.5)

»

Stokes (1980) suggested as an estimator of it, for one cycle,

k k
S (k _ 1 Z Y(r)l N’rss Where! Hess = Z (r)
r=1 r=1

. Lo _ ¢ 2
and its expectation is E(os) =0°+ Kk —1) Z (,u(,) —urss>
r=1

Considering the structure of the one-way ANOVA the estimator proposed by Stokes (1980) is
given in the next proposition.
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n k
Proposition 3.1: Stokes (1980); 02 = 02 + & k -5 SN (Y= tis)’

i=1 r=1

1 k
where p. = o Z Z Y(,i estimates the RSS variance and if n — oo then E(ag) =o%

Stokes derived that this estimator overestimates o2 and its variance is

n nk—1
V(o3) = k=17 { ( > Z”4<r) + 4ZA<r>02<»> + 4( >ZA<r 1Ha(r)
— (nk— 1)2
k2 2 Z (r) (r) k2n2 Z (r)}

Note that this error depends on moments of the distribution of the order statistics then the vari-
able’s distribution must be known. Hence to derive an explicit formula is very complex.
MacEachern et al. (2002) proposed to use as an estimator

Th =T+ O 21.6)
where
k n n
2
T = nzkzZ Y(r)i*Yo')j) (21.7)
rér i=1 j=
and
1 k n n )
2
“ PO P Yini =Yooy 21.8
M 2n(n—1)2k2rz:] = (Yo =Yioy) (21.8)

It is unbiased. The next proposition gives its properties.
Proposition 3.2: MacEachern et al. (2002); o, is unbiased and its variance, if Ly < 00,18

v(o,zw)=A+B+c+D+F

1 k
where A = WZ Hagrys B= k2 Z M3(r)A(7’)’ k2 Z U(r) (’)’
r=1

-1)—2
D= 2k4Zr<r/ (r) /)’F_ ( _1)k4 Z

Using the mean square errors (MSEs) and one-way ANOVA decomposition ideas we have that
MST = MS1 — MS2
1 n
takin = - Y(»i, then
ng :U’rss(r) n ; (r)

n

k
2
MS1 = k—1 Z Y(f)l rss

r=1 i=1
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1 2
MS2= mz 2 (Y(V)i_urss(r))

Then the rank-residual MSE is:

3

1 2
MSR = k(l’l _ 1) E (Y(V)i _/'Lrss(r))

r=1 i=l1

The expectations of the MSEs are
1¢E 1 K 2
EST) = %;"2‘” k- 1); (01

k
> %
r=1

E(MSR) =

=

Then the variance of o7, as

,  (k—1)MST + (nk — k + 1)MSR
M= nk

and its expectations given by

k
sy n+2 1 N2
E(0h) =" 2%+ g 2 (0 n)
The ordering made using an auxiliary variable X is equivalent to the use of SRS in the inferior
of the scenarios. It is well known that RSS is equivalent to it, in terms of accuracy, in such cases.
That is, for any ry,) = — . Hence the statistic

MST
V)= (21.9)

under the hypothesis of random ranking must be close to 1. Therefore, we can evaluate the useful-
ness of the ranking of Y, produced by X, by analyzing V(n), as in regression analysis, through the
coefficient of determination. In this case, large values of V(n) imply that the ranking is more differ-
ent than the ranking produced by pure randomness. That is reasoning similar to the nonparametric
evaluation of the goodness of regression fitting. Under the hypothesis of normality V(n) is distrib-
uted F(k, k(n — 1)) and inferences can be developed using the classic parametric theory using F
tests.

MONTE CARLO EVALUATION
NORMALITY-BASED TESTS

One thousand runs (samples) were generated using the uniform (0,2), normal (0,1), exponential
(1), gamma with density function f{x) = x4exp( —x)/I'(5) ; x> 0, U-shaped with density function f{x) =
3x°/2; xe[0, 1] and the lognormal (0,1) distribution. The sample size parameters were ne (2, 3, 4, 5}
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Table 21.1 Percentage of Acceptance of the True Hypothesis Hy, Using One-Way ANOVA
[1000 Runs (Samples) Generated and o = 0.05]
Distribution n k SRS RSS Distribution n k SRS RSS
Uniform (0,2) 2 2 0.76 0.72 Normal (0,1) 2 2 0.88 0.87
2 3 0.74 0.71 2 3 0.87 0.87
2 4 0.78 0.71 2 4 0.88 0.87
2 5 0.78 0.77 2 5 091 0.88
5 2 0.79 0.77 5 2 0.93 0.89
5 3 0.79 0.76 5 3 0.93 0.92
5 4 0.82 0.78 5 4 0.93 0.93
5 5 0.81 0.78 5 5 0.94 0.92
Exponential(1) 2 2 0.54 0.67 Gamma x4exp(—x)/F(5) x>0 2 2 0.66 0.69
2 3 0.54 0.67 2 3 0.66 0.69
2 4 0.66 0.72 2 4 0.66 0.73
2 5 0.71 0.73 2 5 0.68 0.76
5 2 0.70 0.72 5 2 0.75 0.79
5 3 0.71 0.72 5 3 0.76 0.77
5 4 0.72 0.74 5 4 0.77 0.84
5 5 0.74 0.79 5 5 0.77 0.88
U-shaped f(x) = 3x°/2 2 2 0.54 0.68 Lognormal(0,1) 2 2 0.86 0.83
xe[0, 1] 2 3 0.56 0.69 2 3 0.86 0.82
2 4 0.56 0.69 2 4 0.88 0.85
2 5 0.59 0.69 2 5 0.88 0.85
5 2 0.61 0.74 5 2 0.89 0.87
5 3 0.69 0.74 5 3 0.88 0.87
5 4 0.69 0.82 5 4 0.89 0.90
5 5 0.71 0.84 5 5 0.89 0.90

and ke{2, 3, 4, 5). The ANOVA was performed using the normal approximation and « = 0.05. An
estimation of the percentage of samples in which we accepted the true hypothesis Hy was computed for
SRS and RSS and the results are presented in Table 21.1.

Remark: When data are not normally distributed, the RSS-ANOVA had a better performance than the
classic SRS procedure. This could be due to the convergence of linear rank statistics to normality.

Tables 21.2—21.7 present the results of /000 runs (samples) generated, using different bivariate
distributions, with p€{0.00, 0.05, 0.75, 0.90, 0.95}. We computed the values of V(mean) using the
following formula as

1
= — V 21.1
V(mean) 1000 1 S,,ZSIOO (n), ( 0)
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Table 21.2 Values of V(Mean) Under Different Values of p and a Joint uniform Distribution

Distribution

Uniform (0,2)

(NN BV BV S SR S A S

K

DR WD LR W

p=0
1.07
1.06
1.07
1.07
1.08
1.08
1.06
1.08

p=0.05

1.59
1.59
1.59
1.59
1.59
1.59
1.65
1.65

p=0.50

3.43
3.43
3.42
344
3.46
345
3.47
3.48

p=0.75

4.85
4.88
4.89
4.94
4.94
4.94
4.96
4.98

p=10.90

5.55
5.59
5.80
5.85
5.84
5.85
5.87
5.89

p=0.95

6.717
6.77
7.08
7.28
7.39
7.42
7.48
7.55

Table 21.3 Values of V(Mean) Under Different Values of p and a Joint Normal Distribution

Distribution

Normal (0,1)

[V BNV ERV, BNV B SRS A SV

k

W NP B W

[ I

p=0
1.07
1.06
1.07
1.07
1.02
1.02
1.06
1.02

p=0.05

1.15
1.15
1.14
1.11
1.11
1.11
1.13
1.13

p=0.50

8.63

8.73

8.72*
8.72%
8.74*
8.65*
8.79*
8.81*

p=0.75

8.91*
8.98*
8.18*
8.78*
8.78*
9.07*
9.16*
9.28*

p=0.90

8.88*
8.98*
8.78*
8.79*
8.84*
8.95*
9.07*
9.59*

p=095

9.09*
9.17*
9.28*
9.28*
9.39*
9.47*
9.58*
9.75*

Table 21.4 Values of V(Mean) Under Different Values of p and a Joint Exponential

Distribution
Distribution

Exponential(1)

L L O U DD DS

[V I UV S Y I O R S N

p=0
1.07
1.06
1.07
1.07
1.02
1.02
1.06
1.02

p=0.05

225
2.25
2.24
222
222
222
223
223

p=0.50

3.73
3.73
3.72
3717
3.76
375
3.77
3.78

p=0.75

5.05
5.18
5.15
5.35
5.55
5.57
5.56
5.58

p=0.90

6.18
6.18
6.28
6.39
6.44
6.55
6.57
6.59

p=0.95

6.66
6.67
6.68
6.68
6.69
6.77
6.88
6.85
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Distribution

Gamma x4exp(*x)/l“(5) x>0

[V NV, RV, RV I R SR SRR

k

[SVI 8]

(O NS I SRRV N

p=0
1.17
1.16
1.17
1.17
1.19
1.19
1.20
1.21

2.69
2.69
2.69
2.69
2.76
2.75
2.82
2.79

p=0.50

6.06
6.03
6.06
6.00
6.06
6.00
6.00
6.08

p=0.75

6.67
6.66
6.69
6.19
6.19
6.61
6.66
6.33

p=0.90

6.61
6.67
6.71
6.76
6.717
6.75
6.77
6.77

Table 21.5 Values of V(Mean) Under Different Values of p and a Joint Gamma Distribution
p=0.05

p=0.95

7.44
7.76
7.79
7.73
7.78
7.87
7.86
7.87

Table 21.6 Values of V(Mean) Under Different Values of p and a Joint U-Shaped Distribution
With Densities Function f{x) = 3x°/2 x€l0, 1]

Distribution n |k | p=0 | p=0.05 | p=050 | p=0.75 | p=090 | p=10.95
U-shaped f(x) = 32 xef0, 1] | 2 2 1.15 2.27 343 3.85 4.44 5.55
2 3 1.16 227 343 3.88 4.49 5.57
2 4 1.15 2.27 342 3.89 4.30 5.58
2 |15 1.15 2.27 344 3.93 4.34 5.58
5 2 1.18 2.27 3.46 3.93 4.34 5.59
5 3 1.18 2.27 345 3.93 4.35 5.42
5 4 1.16 2.30 3.47 3.96 4.37 5.48
5 5 1.08 2.30 348 3.98 4.39 5.55
Table 21.7 Values of V(Mean) Under Different Values of p and a Joint Lognormal
Distribution
Distribution n k p=0 p=0.05 p=0.5 p=0.75 p=0.90 p=0.95
Lognormal(0,1) 2 2 1.17 222 3.23 4.55 5.55 6.11
2 3 1.11 2.22 3.23 4.55 5.59 6.10
2 4 1.17 2.22 3.23 4.54 5.58 6.18
2 5 1.17 2.22 3.23 4.44 5.75 6.18
5 2 1.18 2.22 3.22 4.44 5.77 6.26
5 3 1.18 2.24 3.28 4.44 5.75 6.22
5 4 1.17 2.32 3.27 4.46 5.77 6.36
5 5 1.18 2.33 3.28 4.45 5.50 6.40
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Table 21.2 exhibits that for values of p =0, the value of V(mean) is the smallest and then, its
values are increased seriously for p = 0.50.

The results in Table 21.3 give a better idea of the effect of the correlation in detecting the non-
random ordering of Y. The values of V(mean) which are significant are marked with an "*." For
p = 0.50 the significance is accepted for the pairs {(2,4), (2,5), (5,2), (5,3), (5,4), (5,5)}. The non-
randomness of the ranking is accepted in all the cases for p =0.75.

Table 21.4 gives an idea that for the exponential distribution for highly correlated variables, the
value of V(mean) is expected to be larger than 3.

For the gamma with density function x*exp(—x)/T"(5) and lognormal distributions (see
Tables 21.5 and 21.7), the values of V(mean) are expected to be close to 2 for p < 0.50.

Table 21.6 sustains a similar result for p>0.75 in the case U-shaped distribution with density
function f{x) = 3x*/2 x€[0, 1].

ANALYSIS OF THE TIME TO DEATH OF HIV-INFECTED PERSONS

We have considered a database of the lifetime of a set of 231 persons infected with HIV clustered
by the risk-group. It constituted the following population:

G1—Drug users;
G2—Bisexual-homosexual men,;
G3—Bisexual-lesbian women;
G4—Heterosexual men;
G5—Heterosexual women;
G6—Contaminated by blood transfusions;
G7—Sons of HIV-infected women;
G8—Unknown.

We selected 1000 independent (runs) samples from the data set to estimate treatment effects
and compared them with the effect calculated with the population data. The estimated variance of
treatment effects for the models using SRS and RSS for each group (i = 1,...,8) computed as

Table 21.8 Efficiencies of the Estimates of the Treatment Effects in eight Groups of Persons
Infected With HIV (Variable Time to Death in Years) Using SRS and RSS
Group V() V(ag)

1 1.97 1.24

2 1.52 2.78

3 1.20 2.19

4 1.05 2.11

6 1.85 1.72

6 1.45 1.11

7 1.44 1.79

8 1.94 1.30
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1000

Vi) = mZ:(oc;;—a,-)z = E(i; srs) (21.11)
po

. 1 1000 )

V(ag) = mZT‘(O{,.)/.—@,-) = E(i; rss) (21.12)
o

We computed the ratio of the efficiencies and the results are given in Table 21.8. Note that both
are considerably larger for the use of SRS. These results illustrate the behavior of RSS as an alter-
native for estimating the treatment effects and variability. Due to the nature of the data non-
normality was present, hence the use of ANOVA for fixing the existence of the significance of the
observed differences did not make sense.

21.5 CONCLUSIONS

The use of RSS in ANOVA is at least as good as the SRS methodology. This result supports that
RSS-designed experiments can be analyzed using one-way ANOVA. The estimation of the variance
using RSS allows establishing the closeness of the ranking to the perfect ranking, assumed in the
modeling. V(n) is a nonparametric statistic that can be used for analyzing the quality of the ranking.
Further study is needed to establish rules for evaluating the relative precision of RSS as a function
of the quality of the ranking.
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