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Preface

Quantile regression is an expanding area in theoretical and applied statistics, as
evidenced from the increased number of papers on the topic in mainstream statistical
journals as well as in many specialized journals devoted to different scientific
disciplines. Such interest has grown quickly as can be seen from the infographic in
Figure 1, where the number of citations for the search key “quantile regression” is
reported (the Web of Science Thomson Citation Index has been used). In particular,
the number of papers on the topic “quantile regression” are grouped in classes of five
years, starting from the appearance of the seminal paper on the topic in 19781. The
first class groups the papers up to 1993, due to the reduced number of referenced
paper in the early years. The size of the bubbles is proportional to the number of
papers in each period. The interest in scientific journals goes hand in hand with the
treatment of quantile regression in chapters or sections of more generalist books
on statistical models and regression. Nevertheless, few are the textbooks entirely
devoted to quantile regression. This book follows up a first volume and complements
it addressing some advanced topics and deepening issues only partially covered in
the earlier volume. This volume follows the same example based approach adopted
for the first book. All the topics are treated both theoretically and using real data
examples. Graphical representations are widely adopted to visually introduce several
issues, and in particular to illustrate the geometric interpretation of the simplex
method, which historically represents the turning point for the diffusion of quantile
regression.

Marilena Furno and Domenico Vistocco

1 Koenker R and Bassett G (1978) Regression quantiles. Econometrica 46, 33–50.
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Figure 1 Evolution of the number of papers on the topic “quantile regression” in
the Web of Science Thomson Citation Index.
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Introduction

Quantile regression, albeit officially introduced by Koenker and Basset in their
seminal paper “Regression quantiles” appeared in Econometrica in 1978, has a long
history, dating back to 1755, earlier than the widespread least squares regression.
Boscovich’s initial study on the ellipticity of the earth is indeed the first evidence
of the least absolute criterion and anticipates by fifty years the official introduction
of least squares by Legendre in 1805. Following Boscovich, Edgeworth proposed
in 1888 a geometric approach to the median regression, naming it plural median,
which can be considered the precursor of the simplex method. The plural median is
the extension of the “methode de situation” proposed by Laplace in 1793 following
Boscovich’s idea. The studies of Boscovich, Laplace, and Edgeworth can be
considered the prelude to the passionate work of Koenker1 on quantile regression:

I have spent a large fraction of my professional energy arguing [… ]
we can take a more comprehensive view of the statistical relationship
between variables by expanding the scope of the linear model to include
quantile regression.

The history of quantile regression is intertwined with that of linear programming
and in particular with one of its main solving methods, the simplex. Albeit the prob-
lem of solving a system of linear inequalities dates back to Fourier in 1826, the first
formulation of a problem equivalent to the general linear programming problem was
given by Leonid Kantorovich, in 1939, with his studies on the optimal allocation of
resources. The main turning point is in 1947, with the proposal of the simplex method
by Dantzig. Even if nowadays there are alternatives in literature, the simplex is the
first method for efficiently tackling linear programming problem. The studies on least
absolute deviation are innumerable, and it would not be possible to mention all of
them. The contribution of Wagner in 1959, published in the Journal of the American
Statistical Society, is, however, of fundamental importance since it links statistics and
linear programming. The formulation of the least absolute deviation problem in terms
of linear programming is indeed the entry point to sound and efficient methods for
solving the least absolute regression problem. An asymmetric loss function, leading
to the definition of quantile regression, is the ensuing step. The main leading figures
in this history are reported in the infographic of Figure 1. It is a little curious that
the same first name, Roger, appears at the beginning and at the end of the proposed
quantile regression timeline.

1 Koenker R (2000) Galton, Edgeworth, Frisch, and prospects for quantile regression in econometrics.
Journal of Econometrics 95, 347–374.
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Figure 1 A quantile regression timeline.

This book complements its first volume on quantile regression with the following
topics: robustness, M-estimators and M-quantile, expectiles and the treatment of
correlated data. Two chapters are devoted to the linear programming formulation
of the quantile regression problem and to the use of elemental sets. Even if recent
literature offers alternative methods to compute quantile regression, we focus only
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on the simplex method for its historical importance in the development and spread
of quantile regression.

Structure of the book

Chapter 1 – Robust regression, focuses on the robustness of quantile regressions,
that is, on the reduced impact of anomalous values on the median regression
estimator. Analogously to the univariate case, where the median is less affected
by outliers than the mean, the conditional median regression is less attracted by
outliers than the conditional mean regression, the OLS estimates. The chapter
starts by pointing out the shortcomings of the OLS estimator in a small data
set. Then the behavior of the median regression is analyzed and compared
with the OLS results. In addition, some diagnostic measures to spot outliers
are discussed.

Chapter 2 – Quantile regression and related methods, compares quantile
regression with alternative estimators such as expectiles, M-estimators, and
M-quantiles. Expectiles allow to estimate the equation in the tails of the error
distribution, introducing an asymmetric weighting system within the OLS
objective function in order to move the estimated equation away from the
conditional mean. Its advantage is the ease of computation, while its drawback
is a lack of robustness. M-estimators consider a weighting system that allows
to control the impact of outliers at the conditional mean, thus introducing
robustness in the OLS framework, but the estimated line can be computed
at the conditional mean and not in the tails. The M-quantiles combine both
of the above mentioned weighting systems, defining an estimator robust to
anomalous values as the M-estimators and apt to estimate the regression at
many points of the error distribution, not only at the mean, as the expectiles.

Chapter 3 – Resampling, subsampling, and quantile regression, considers boot-
strap and elemental sets. The elemental sets are small subsets of data enter-
ing the computational routines of quantile regressions, as will be highlighted
in Chapter 5. Bootstrap is implemented to compute extreme quantile regres-
sions, like the 5-th or the 98-th quantile. The behavior of extreme quantiles
differs from the central quantile regression estimator, and a bootstrap-based
approach allows to correct bias and to implement inference. In addition, quan-
tile treatment-effect estimators heavily rely on the bootstrap approach.

Chapter 4 – A not so short introduction to linear programming, offers a general
introduction to linear programming focusing on the simplex method. The
chapter streamlines the main concepts rather than focusing on mathematical
details, meanwhile seeking to keep the presentation rigorous. The use of
several graphical representations offers the geometrical insights of linear
programming in general and of the simplex method in particular. The presence
of a chapter entirely devoted to linear programming is intended to make the
text self-contained. The chapter contains only the tools to invite the readers
to look behind the scenes of quantile regression in order to understand what
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is behind the software command to compute the quantile regression. Readers
with a background in linear programming may wish to skip to the subsequent
chapter.

Chapter 5 – Linear programming for quantile regression, focuses on the com-
putational aspects of quantile regressions. The chapter first presents the case
of median regression and then moves to the more general quantile regression
setting. The median regression problem is faced using both the standard sim-
plex algorithm and its variant due to Barrodale and Roberts. This variant is
implemented in most statistical software for solving the median regression
problem and it was adapted by Koenker and d’Orey for solving quantile regres-
sion. Finally, the dual plot, which represents the data and the solutions in the
parameter space, is exploited to offer insights for the geometric interpretation
of median and quantile regression. It also relates to the elemental sets discussed
in the second chapter, and introduces the quantile regression process.

Chapter 6 –Correlation, considers quantile regressions for time series. Issues like
non-stationarity, spurious regressions, cointegration, conditional heteroskedas-
ticity are analyzed via quantile regression.

Although the book is the result of the joint work of both authors, each one has indi-
vidually contributed to the chapters. In particular Marilena Furno wrote Chapters 1,
2, 3, and 6. Domenico Vistocco wrote Chapters 4 and 5.



About the companion website

The Stata codes that replicate the results of the textbook examples are here reported.
Different Stata versions provide differing results, particularly in case of artificially
generated data. The differences would not contradict the discussion in the textbook.
However, besides each file generating artificial data there is a companion file includ-
ing the list of the artificial data followed by all the other codes. They would make it
easier to replicate the results and the graphs in the text.

The first three chapters of the book use the same data sets. Therefore, the files
are grouped by type of data and not by chapters: Anscombe, Health, Artificial data.
Within each file, for each group of codes is reported the section of the book where
the results they provide are discussed.

In Chapter 2 some estimators like expectiles, M-quantiles and M-estimators for
the Tukey, Huber, Hampel routines, are more easily computed in R than in Stata. The
R codes for these estimators are reported in the appendix. When needed, like for the
expectiles graphs, the R results are inserted in the Stata data sets so the reader can
plot them in Stata.

For the bootstrap examples of Chapter 3 the Stata codes are reported. The results
change each time these files are implemented.

The last chapter for time series considers different data sets and they are grouped
within the Chapter 6 folder.



1

Robust regression

Introduction

This chapter considers the robustness of quantile regression with respect to outliers.
A small sample model presented by Anscombe (1973) together with two real data
examples are analyzed. The equations are estimated by OLS and by the median
regression estimator, in order to compare their behavior in the presence of outliers.
The impact of an outlying observation on a selected estimator can be measured by
the influence function, and its sample approximation allows to evaluate the robust-
ness of an estimator. The difference between the influence function of the OLS and of
the quantile regression estimators is discussed, together with some other diagnostic
measures defined to detect outliers.

1.1 The Anscombe data and OLS

In the linear regression model yi = 𝛽0 + 𝛽1xi + ei, the realizations of the variables
xi and yi, in a sample of size n with independent and identically distributed (i.i.d.)
errors, allow to compute the p = 2 unknown coefficients 𝛽0 and 𝛽1. The ordinary
least squares (OLS) estimator is the vector 𝛽T = (𝛽0, 𝛽1) that minimizes the sum
of squared errors,

∑
i=1,n e

2
i =

∑
i=1,n (yi − 𝛽0 − 𝛽1xi)2. The minimization process

yields the OLS estimators 𝛽1 = co𝑣(x,y)
𝑣ar(x) and 𝛽0 = y − 𝛽1 x, where y and x are the

sample means. These estimators are the best linear unbiased (BLU) estimators, and
OLS coincides with maximum likelihood in case of normally distributed errors.
However OLS is not the sole criterion to compute the unknown vector of regression
coefficients, and normality is not the unique error distribution. Other criteria are
available, and they turn out to be very useful in the presence of outliers and when

Quantile Regression: Estimation and Simulation, Volume 2. Marilena Furno and Domenico Vistocco.
© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/furno/quantileregression



2 QUANTILE REGRESSION

Table 1.1 Anscombe data sets and its modifications.

original data set modified data set

X1 Y1 Y2 Y3 Y4 X2 Y∗
1 Y∗

3 Y∗
4 X∗

2 Y∗∗
1

10 8.04 9.14 7.46 6.58 8 8.04 7.46 6.58 8 8.04
8 6.95 8.14 6.77 5.76 8 6.95 6.77 5.76 8 6.95
13 7.58 8.74 12.74 7.71 8 7.58 8.5 7.71 8 7.58
9 8.81 8.77 7.11 8 8 15 7.11 8 8 15
11 8.33 9.26 7.81 8.47 8 8.33 7.81 8.47 8 8.33
14 9.96 8.10 8.84 7.04 8 9.96 8.84 7.04 8 9.96
6 7.24 6.13 6.08 5.25 8 7.24 6.08 5.25 8 7.24
4 4.26 3.10 5.39 12.5 19 4.26 5.39 8.5 8 4.26
12 10.84 9.13 8.15 5.56 8 10.84 8.15 5.56 8 14.84
7 4.82 7.26 6.42 7.91 8 4.82 6.42 7.91 8 4.82
5 5.68 4.74 5.73 6.89 8 5.68 5.73 6.89 8 5.68

Note: The first six columns present the Anscombe data sets, where the numbers in bold are
anomalous values. The last five columns present themodified data sets, where few observations
have been altered. These observations are underlined in the table. In Y∗

3 , Y
∗
4 and X

∗
2 the outliers

are brought closer to the other observations. In Y∗
1 and Y

∗∗
1 outliers are introduced in the original

clean data set.

the errors are realization of non-normal distributions. The small data set in Table 1.1
allows to explore some of the drawbacks of OLS that motivate the definition of
different objective functions, that is different criteria defining the estimators of 𝛽,
like in the quantile and the robust regression estimators.

Anscombe (1973) builds an artificial data set comprising n = 11 observations of
four dependent variables, Y1, Y2, Y3, and Y4, and two independent variables, X1 and
X2. This data set is reported in the first six columns of Table 1.1, while the remaining
columns modify some observations of the original variables. The variables in the first
six columns define four simple linear regression models where the OLS estimate of
the intercept is always equal to 𝛽0 = 3 and the OLS estimated slope is always equal
to 𝛽1 = 0.5. These estimates are significantly different from zero, and the goodness
of fit index is equal to R2 = 0.66 in each of the four models. Figure 1.1 presents
the plots of these models: the top-left graph shows a regression model where OLS
well summarizes the data set [Y1 X1]. In the other three models, however, the OLS
estimates poorly describe the majority of the data in the sample.

In the top-right graph, the data [Y2 X1] follow a non-linear pattern, which is incor-
rectly estimated by a linear regression. Here the assumption of linearity is wrong, and
the results are totally unreliable since the model is misspecified.

In the two bottom graphs, the OLS line is attracted by one anomalous value, that
is by one observation that is far from themajority of the data. In the bottom-left graph,
the [Y3 X1] data set is characterized by one observation greater than all the others with
respect to the dependent variable Y3. This is a case of one anomalous observation
in the dependent variable, reported in bold in the table, where the third observation



ROBUST REGRESSION 3

4 6 8 10 12
x1

14

4 6 8 10 12
x1 x2

14 5 10 15 20

4
6

8
10

12
4

6

6
8

10
12

14

8
10

12

4 6 8 10 12
x1

14

2
4

Y
2

Y
4

Y
3

6
8

10

Observations OLS regression Observations OLS regression

observations OLS regression

observations OLS regression OLS regression

observations OLS regression

observations

Figure 1.1 OLS estimates in the four Anscombe data sets [Y1 X1], [Y2 X1], [Y3 X1]
and [Y4 X2]. The four linear regressions yield the same OLS estimated coefficients,
𝛽0 = 3 and 𝛽1 = 0.5, and the same goodness of fit value, R2 = 0.66, in all the four
regressions. The sample size is n = 11.

(Y3 X1)3 = (𝟏𝟐.𝟕𝟒 13) presents the largest value of Y3, the farthest from its median,
Me(Y3) = 7.11, and from its mean Y3 = 7.5. In this case the outlier attracts the OLS
regression, causing a larger OLS estimated slope and a smaller OLS intercept. This
example shows how one outlying observation can cause bias in the OLS estimates. If
this observation is replaced by an observation closer to the rest of the data, for instance
by the point (Y∗

3 X1)3 = (8.5 13) as reported in the eighth column of the table, the
variance of the dependent variable drops from 𝜎2(Y3) = 4.12 of the original series
to 𝜎2(Y∗

3 ) = 1.31 of the modified series, all the observations are on the same line,
the goodness of fit index attains its maximum value, R2 = 1, and the unbiased OLS
estimated coefficients are 𝛽∗0 = 4 and 𝛽∗1 = 0.34. The results for the modified data set
[Y∗

3 X1] are depicted in the top-right graph of Figure 1.2.
In the bottom-right graph of Figure 1.1, instead, OLS computes a non-existing

proportionality between Y4 andX2. The proportionality between these two variables is
driven by the presence of one outlying observation. In this case one observation, given
by (Y4 X2)8 = (𝟏𝟐.𝟓 𝟏𝟗) and reported in bold in the table, is an outlier in both dimen-
sions, the dependent and the explanatory variable. If the eighth observation of Y4 is
brought in line with all the other values of the dependent variable, that is if (Y4 X2)8
is replaced by (Y∗

4 X2)8 = (8.5 𝟏𝟗) as reported in the ninth column of Table 1.1, this
observation is anomalous with respect to the independent variable alone. This case,
for the data set [Y∗

4 X2], is depicted in the bottom-left graph of Figure 1.2. Even
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Figure 1.2 OLS estimates of the modified data sets [Y∗
1 X1] and [Y∗

3 X1] in the top
graphs, [Y∗

4 X2] and [Y∗
4 X

∗
2 ] at the bottom section of the figure. The sample size is

n = 11.

now there is no true link between the two variables; nevertheless OLS computes a
non-zero slope driven by the outlying value in (X2)8. When the eighth observation
(Y4 X2)8 = (𝟏𝟐.𝟓 𝟏𝟗) is replaced by (Y∗

4 X
∗
2 )8 = (8.5 8), so that also the independent

variable is brought in line with the rest of the sample, it becomes quite clear that Y∗
4

does not depend on X∗
2 and that the previously estimated model is meaningless, as

can be seen in the bottom-right graph of Figure 1.2 for the data set [Y∗
4 X

∗
2 ].

These examples show that there are different kinds of outliers: in the dependent
variable, in the independent variable, or in both. The OLS estimator is attracted by
these observations, and this causes a bias in the OLS estimated coefficients.

The bottom graphs of Figure 1.1 illustrate the impact of the so-called leverage
points, which are outliers generally located on one side of the scatterplot of the data.
Their sideway position enhances the attraction, and thus the bias, of the OLS esti-
mated line. The bias can be related to the definition of the OLS estimator, which is
based on the sample mean of the variables. The mean is not a robust statistic, as it
is highly influenced by anomalous values, and its lack of robustness is transmitted to
the OLS estimator of the regression coefficients.

There are, however, cases of non-influential outliers, i.e., of anomalous values
that do not attract the OLS estimator and do not cause bias. This case is presented
in the top-left panel of Figure 1.2. In this graph the data set [Y1 X1] is modified to
include one outlier in Y1. In particular, by changing the fourth observation (Y1 X1)4 =
(8.81 9) into (Y∗

1 X1)4 = (15 9) – as reported in the seventh column of Table 1.1 – the
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Figure 1.3 OLS estimated regressions in the presence of a non-influential outlier,
as in the data set [Y∗

1 X1] characterized by one outlier in the dependent variable. The
anomalous value in Y∗

1 has a central position in the graph and causes a change in
the OLS intercept but not in the OLS estimated slope. The lower line is estimated
in the [Y1 X1] data set, without outliers. The upper line is estimated in the [Y∗

1 X1]
modified data set, with one non-influential outlier in the dependent variable affecting
the intercept but not the slope in the OLS estimates. The sample size is n = 11.

estimated slope remains the same, 𝛽∗1 = 0.5, while the intercept increases to 𝛽∗0 =
3.56. The comparison of these OLS estimates is depicted in Figure 1.3: the lower
line in this graph is estimated in the [Y1 X1] data set without outlier and yields the
values 𝛽0 = 3.0 and 𝛽1 = 0.5. The upper line is estimated in the modified data set [Y∗

1
X1] with one outlier in the fourth observation of Y

∗
1 . The stability of the OLS slope in

this example is linked to the location of the outlying point, which assumes a central
position with respect to the explanatory variable, close to the mean of X1. Thus a
non-influential outlier is generally located at the center of the scatterplot and has an
impact only on the intercept, without modifying the OLS slope.

The bias of the OLS estimator in the presence of influential outliers has prompted
the definition of a wide class of estimators that, by curbing the impact of outliers,
provide more reliable – robust – results. The payout of robust estimators is a reduced
efficiency with respect to OLS in data sets without outlying observations. This is
particularly true in case of normal error distributions, since under normality, OLS
coincides with maximum likelihood and provides BLU estimators. However, in the
presence of anomalous data, the idea of normally distributed errors must be discarded.
Indeed the presence of outliers in a data set can be modeled by assuming non-normal
errors, like Student-t,𝜒2, double exponential, contaminated distributions, or any other
distribution characterized by greater probability in the tails with respect to the normal
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Figure 1.4 Comparison of the histogram of a Student-twith two degrees of freedom
and a standard normal density, represented by the dashed line, in a sample of size
n = 50. With respect to the standard normal, the Student-t histogram presents a small
peak in the left tail, thus yielding values far from the rest of the data with frequency
higher than in the standard normal case.

case. A greater probability in the tails implies a greater probability of realizations far
from the center of the distribution, that is, a greater probability of outliers in the data.
Figure 1.4 compares the realizations of a Student-t distribution with 2 degrees of
freedom and a standard normal, represented by the dashed line, in a sample of n = 50
observations. The realizations of the Student-t distribution present a small peak in the
left tail. This peak shows that data far from the center occur with a frequency greater
than in the case of a normal density. Analogously, Figure 1.5 presents histogram of
the realizations of a contaminated normal distribution f . This distribution is defined
as the linear combination of two normal distributions centered on the same mean,
in this example centered on zero, but having different variances. The outliers are
realizations of the distribution with higher variance. In Figure 1.5 a standard normal
density, fa, generates 95% of the observations while the remaining 5% are realizations
of fb, a contaminating normal distribution having zero mean and a larger standard
error, 𝜎b = 4. In this example the degree of contamination, i.e., the percentage of
observations coming from the contaminating distribution fb, is 5%. In a sample of size
n = 50, this amounts to 2 or 3 anomalous data. The figure reports the histogram of
f = (1 − .05) fa + .05 fb, which is more dispersed than the normal distribution,
depicted by the solid line, skewed and with a small peak in the left tail. It is of course
possible to have all sorts of contaminated distributions, with densities that differ not
only in variance but also in shape, like in the case of the linear combination of a
normal and a 𝜒2 or a Student-t distribution. Figure 1.6 reports the linear combination
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Figure 1.5 Histogram of the realizations of a contaminated normal distribution,
where the observations close to the mean are generated by a standard normal while
the observations in the tails, the outliers in the left tail, to be precise, are generated by
a contaminating normal having zero mean and 𝜎 = 4. The degree of contamination,
i.e., the percentage of observations generated by the distribution characterized by a
larger variance, is 5% in a sample of size n = 50. The dashed line is the Epanechnikov
(1969) kernel density, while the solid line is the normal density.
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Figure 1.6 Histogram of the realizations of a standard normal distribution contami-
nated by a Student-t with 4 degrees of freedom. The degree of contamination is 5% in
a sample of size n = 50. The dashed line is the Epanechnikov (1969) kernel density,
which is skewed and thick tailed when compared to the solid line representing the
normal density.
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Figure 1.7 Histogram of the realizations of a standard normal distribution con-
taminated by a 𝜒2 distribution. The degree of contamination is 5%, in a sample of
size n = 50, and contamination occurs only in the right tail. The dashed line is the
Epanechnikov (1969) kernel density, characterized by two small peaks in the far right,
while the solid line is the normal density.

of a standard normal and a Student-t with 4 degrees of freedom. The latter, depicted
by the dashed line, is characterized by tails larger than normal, particularly on
the right-hand side. Figure 1.7 presents a standard normal contaminated by a 𝜒2

distribution, which is a case of asymmetric contamination since it generates outliers
exclusively in the right tail. The figure shows very large outliers to the right, generated
by the contaminating 𝜒2 distribution.1 In addition, various degrees of contamination
can be considered.

1.2 The Ancombe data and quantile regression

This section considers the behavior of the quantile regression estimator in the pres-
ence of outliers, looking in particular at themedian regression. Themedian regression
can be directly compared to OLS, which in turn coincides with the conditional mean
regression. Table 1.2 reports the OLS and the median regression estimates for the
four different Anscombe models. The first two top columns present the model [Y1
X1] where the median regression estimated coefficients are very close to the OLS
values. In this case the median regression coefficients are within the 95% OLS
confidence intervals: 0.75 < 𝛽0(.5) = 3.24 < 5.25 and 0.26 < 𝛽1(.5) = 0.48 < 0.74.
The weakness of quantile regression is in the standard errors, which at the median
are about twice the OLS standard errors, se(𝛽0(.5)) = 2.043 > se(𝛽0)OLS = 1.125

1 An example of asymmetric contamination, and more in general of asymmetric behavior, is provided by
variables like market prices, which rarely decrease, or stocks, which rapidly increase during an economic
crisis.
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Table 1.2 Comparison of OLS and median regression results in the
four Anscombe data sets.

Y1 Y1 Y2 Y2 Y3 Y3
median OLS median OLS median OLS

X1 0.480 0.500 0.500 0.500 0.345 0.500
se (.199) (.118) (.197) (.118) (.001) (.118)
intercept 3.240 3.000 3.130 3.001 4.010 3.002
se (2.043) (1.125) (1.874) (1.125) (.007) (1.124)

Y4 Y4
median OLS

X2 0.510 0.508
se (.070) (.107)
intercept 2.810 2.857
se (1.323) (1.019)

Note: Standard errors in parenthesis, sample size n = 11.

and se(𝛽1(.5)) = 0.199 > se(𝛽1)OLS = 0.118. This occurs since, as mentioned, under
normality, OLS is the BLUE and thus more efficient than the quantile regression
estimator.

Model [Y2 X1] is incorrect in both OLS and median regression since the true
equation is non-linear and any attempt to describe these observations by a linear
model causes misspecification. The second pair of columns in the top section of
Table 1.2 present these results, with OLS and median regression providing very sim-
ilar estimates. The top-right graph in Figure 1.1 presents this data set together with
the OLS estimated regression, which coincides with the median regression.

The [Y3 X1] data set is characterized by one influential outlier in the depen-
dent variable. Here the median regression improves upon OLS since the median
fitted line is not attracted by the anomalous value in the third observation of Y3.
Furthermore, the precision of the median regression estimator improves upon OLS,
and the standard errors of the quantile regression coefficients are much smaller
than the OLS analogues: se(𝛽0(.5)) = 0.007 < se(𝛽0)OLS = 1.124 and se(𝛽1(.5)) =
0.001 < se(𝛽1)OLS = 0.118. The right-hand side graph in Figure 1.8 presents the
behavior of the median regression in this case, showing that the estimated slope is
unaffected by the anomalous value and that the estimated median regression well
represents the majority of the data.

The case of outliers in both dependent and independent variables, analyzed in the
data set [Y4 X2], yields median regression results comparable to OLS, and quantile
regression in this case is just as unreliable as OLS. This can be seen in the two bottom
columns of Table 1.2 and in the left plot of Figure 1.9, where the presence of one
outlier in (Y4 X2)8 yields very close results in the OLS and the median regression:
none of them is robust with respect to outliers in the explanatory variables.
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Figure 1.8 Median regression estimates in the presence of outliers. In the left graph
is the [Y∗

1 X1] modified data set with one outlier in the dependent variable placed
in a central position. The right panel depicts the [Y3 X1] data set with one outlier
located on the side. In both cases there is no impact of the outlier on the coefficients as
estimated by the median regression. The OLS estimates, instead, present an increase
in the intercept in the [Y∗

1 X1] data set, as shown in Figure 1.3, and an increased slope
in the [Y3 X1] data set, as can be seen in the bottom left panel of Figure 1.1. Sample
size n = 11.

Summarizing, the median regression is robust with respect to outliers in the
dependent variable, as in [Y3 X1], but is not robust to outliers in the explanatory
variables, as in [Y4 X2]. More insights can be gained by the analysis of the modified
data sets.

In [Y∗
1 X1] the location of the outlier in (Y

∗
1 X1)4 is close to the mean of the inde-

pendent variable X1, i.e., the outlier is in a central position and is not a leverage point.
The first two top columns of Table 1.3 present the estimated coefficients. This is a case
of one non-influential outlier, where its central position modifies only the OLS inter-
cept. Indeed in Figure 1.3 the OLS fitted line shifts upward but yields an unchanged
slope. This can be compared with the left-hand side graph of Figure 1.8, which shows
the same median regression in the two data sets, [Y1 X1] and [Y

∗
1 X1]. The second col-

umn in the top section of Table 1.3 shows that the estimated line does not shift at
all, yielding the same intercept and the same slope of Table 1.2, 𝛽0(.5) = 𝛽∗0 (.5) =
3.24 and 𝛽1(.5) = 𝛽∗1 (.5) = 0.48. In addition, the median regression standard errors
are slightly smaller than in the OLS case, se(𝛽∗0 )OLS = 2.441 > se(𝛽∗0 (.5)) = 2.043
and se(𝛽∗1 )OLS = 0.256 > se(𝛽∗1 (.5)) = 0.199, showing that one non-influential outlier
worsens the precision of the OLS estimator.
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Figure 1.9 OLS and median regression estimates in the [Y4 X2] and [Y∗
4 X2]

Anscombe data sets overlap. In the left plot there is one outlier in both the depen-
dent and the independent variable, while the right plot presents one outlier only in
the explanatory variable X2. Sample size n = 11.

Table 1.3 Comparison of OLS and median regression results in the
modified Anscombe data sets.

Y∗
1 Y1,Y

∗
1 Y∗

3 Y3,Y
∗
3 Y∗

4 Y∗
4

OLS median OLS median OLS median

X1 0.500 0.480 0.346 0.345
se (0.256) (0.199) (0.0003) (0.001)
X2 0.144 0.146
se (0.107) (0.070)
intercept 3.563 3.240 4.005 4.010 5.765 5.719
se (2.441) (2.043) (0.003) (0.007) (1.019) (1.323)

Y∗
4 Y∗

4
OLS median

X∗
2 0 (omitted) 0 (omitted)
se 0 0
intercept 7.061 7.04
se (.351) (.628)

Note: Standard errors in parentheses, sample size n = 11.
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The [Y3 X1] data set is characterized by one influential outlier in the dependent
variable that affects the OLS estimates but not the median regression results, as can
be seen in the right plot of Figure 1.8. When the outlier is removed, as in the [Y∗

3 X1]
data set, the OLS results coincide with the median regression estimates, as reported
in the second pair of columns in the top section of Table 1.3. Once accounted for the
anomalous value in the third observation of Y3, the standard errors are equal or very
close to zero since all the observations are on the same line in the [Y∗

3 X1] data set, as
can be seen in the top-right graph of Figure 1.2.

The [Y4 X2] data set has been modified in two steps, first bringing the outlier
closer to the rest of the data in the dependent variable, so that the [Y∗

4 X2] modified data
set presents one outlier only in the independent variable. The estimated coefficients
are 𝛽∗0,OLS = 𝛽∗0 (.5) = 5.7 and 𝛽∗1,OLS = 𝛽∗1 (.5) = 0.14, as reported in the last two top
columns of Table 1.3 and in the right graph of Figure 1.9. In both the [Y4 X2] and [Y

∗
4

X2] data sets the OLS and the median regression estimates are very similar, since the
quantile regression estimator is not robust with respect to outliers in the explanatory
variables just as OLS. Finally, in the data set [Y∗

4 X
∗
2 ], where also the outlier in X2

is brought in line with the other observations, there is no estimated slope at all and
only an estimated intercept, as reported in the two columns at the bottom of Table 1.3
and as depicted in the bottom-right graph of Figure 1.2. The intercept computes the
selected quantile of the dependent variable, the conditional median and, in the OLS
case, the conditional mean.

Summarizing:

• under normality, as in the data set [Y1 X1], the OLS estimator is BLU and
provides the smallest variance;

• in case of non-normality with outliers in the dependent variable, as in [Y3 X1]
and [Y∗

1 X1], the quantile regression estimator is unbiased and has smaller
variance;

• in case of incorrect model specification, as in [Y2 X1], and in case of outliers
in the explanatory variables, as in [Y4 X2] and [Y

∗
4 X2], both OLS and quantile

regression provide unreliable results.

1.2.1 Real data examples: the French data

This section considers a real data set example provided by the 2004 Survey of Health,
Ageing and Retirement in Europe (SHARE).2 SHARE samples the population aged
50 or above in 11 European countries. The survey involved 19286 households and
32022 individuals, covering a wide range of topics, such as physical health, socioe-
conomic status, and social interactions. The data set is quite large, but focusing on
one country at a time and on a specific issue, the sample size becomes more manage-
able and apt to compare the behavior of OLS and median regression in the presence
of outliers. The focus is on body mass index as predictor of walking speed. Pool-
ing together all the 11 European countries of the SHARE data set, the link between
walking speed and body mass index is negative and statistically relevant. When the

2 The website to download the SHARE data set is http://www.share-project.org/
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model is individually estimated in each country, only some of them yield statistically
relevant negative slopes.

Consider for instance French data on walking speed, 𝑤speed, and body mass
index, BMI, which provide a subsample of n = 393 observations, presented in
Figure 1.10. The graph shows the presence of a large walking speed value coin-
ciding with a value of the BMI variable that characterizes decidedly overweight
individuals. This observation describes an individual with BMI = 36.62851 and
𝑤speed = 3.333333, where BMI > 30 signals obesity and the median walking speed
in this sample is Me(𝑤speed) = 0.62. This observation is highly suspicious and
in need of further scrutiny. It provides an example of one anomalous value in the
dependent variable, similar to the Anscombe [Y3 X1] example.

Next consider a linear regression model relating walking speed to the BMI values,
where it is reasonable to expect an inverse proportionality between these two vari-
ables. Figure 1.11 presents the OLS and the median regression, showing that the two
estimated slopes present a discrepancy: 𝛽1,OLS = 0.0033 and 𝛽1(.5) = −0.00056. The
OLS line is attracted by the large anomalous value of𝑤speed located to the top right
of the scatterplot, and the OLS slope becomes positive. This observation is highly
influential. It can be brought in line with the rest of the sample by replacing it with
the median value of walking speed, given by Me(𝑤speed) = 0.62. Actually, since
the sample size is large and the observation is possibly a coding error, it could also
be simply discarded. The OLS regression implemented in the cleaned sample, i.e.,
computed by replacing the outlier 3.333 with the median value of the variable 0.62,
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Figure 1.10 French data on walking speed and body mass index in a sample of size
n = 393. This data set presents one outlier in the dependent variable describing an
individual with the fastest walking speed of the sample and with a quite large BMI
value, well inside the obesity range. This makes the observation quite suspicious,
leading to consider it as a possible coding error.
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Figure 1.11 OLS and median regression in the French data set, sample size
n = 393. The two regressions do not have the same slope: OLS yields a positive
estimate since the upper line is attracted by the influential outlier in the dependent
variable. The median regression, due to its robustness to outliers in the dependent
variable, yields a negative slope.

yields the estimated slope 𝛽∗1,OLS = −0.0009, bringing the OLS results in line with the
median regression computed in the original sample, as can be seen in Figure 1.12. The
estimated slope at the median is 𝛽1(.5) = 𝛽∗1 (.5) = −0.00056 in both the original and
the cleaned sample. The estimated median lines coincide, and the outlier in 𝑤speed
does not modify the median regression estimated slope. This is the case since quantile
regressions are robust to outliers in the dependent variable.

The final results show that in the French data set there is a small negative link
between walking speed and body mass index.

1.2.2 The Netherlands example

Next consider the same regression model, walking speed as a function of BMI, com-
puted for the Dutch data, in a subset of size 307. The scatterplot in Figure 1.13
presents at least one outlier in the explanatory variable, with one individual having
BMI = 73.39 and a reasonably low walking speed. This is not a suspicious observa-
tion, but it could be influential and thus dangerous for the reliability of the estimated
coefficients. TheOLS slope estimated in the original sample, of size n = 307, does not
really differ from the median regression estimated slope, with 𝛽1,OLS = −0.0058 and
𝛽1(.5) = −0.0065. The OLS and the median regression are depicted in Figure 1.14.

If the outlying value in BMI, equal to 73.39, is replaced with the median value
of the variable, Me(BMI) = 25.60, the estimated coefficients do not change much,
yielding 𝛽∗1,OLS = −0.0054 and 𝛽∗1 (.5) = −0.0063. Figure 1.15 reports the estimated



ROBUST REGRESSION 15

1.
5

1
.5

0

10 20 30 40

OLS

cleaned sample

Walking Speed
median regression

50 60
BODY MASS INDEX

Figure 1.12 OLS and median regression in the cleaned French data set, n = 393.
The data are cleaned by replacing the outlier with the median value of the 𝑤speed
variable. The OLS estimated slope becomes small and negative, just as in the median
regression estimated in the original, not cleaned sample.
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Figure 1.13 The Netherlands data set, sample of size n = 307. The data present one
very large value of BMI and provide an example of at least one very large outlier in
the explanatory variable.
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Figure 1.14 Dutch data, OLS and median regression, sample size n = 307. The
OLS and the median regression estimated coefficients do not significantly differ from
one another.
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Figure 1.15 Dutch cleaned data set, OLS and median regression. The data are
cleaned by replacing the outlier with the median of the explanatory variable BMI.
The OLS regression estimates in the cleaned data set does not differ much from the
median regression estimates computed in the original sample.
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lines for the cleaned sample. The results are not very different between the original
and the cleaned sample, and the outlier can be considered as non-influential.

In the Netherlands example the link between walking speed and BMI is small,
negative, and statistically different from zero in the original sample.

1.3 The influence function and the diagnostic tools

In the previous sections, the robustness of quantile regression and of OLS has been
analyzed by looking at their behavior in data sets where the position of one outlier and
its impact on the estimates could be easily spotted. More generally, the appropriate
tool to analyze the robustness of an estimator is provided by the influence function,
IF, introduced by Hampel (1974). The IF measures the impact of one observation on
the selected estimator, in a sample generated by a given distribution Fa. Consider next
Δxi, which assigns probabilitymass one to the additional point xi. The IFmeasures the
impact of xi on the statistic T . It compares T evaluated at the contaminated distribution
(1 − t)Fa + tΔxi with the same statistic T evaluated at the uncontaminated Fa. The IF
is given by

IF(xi,T ,Fa) = limt→0
T((1 − t)Fa + tΔxi) − T(Fa)

t

A large IF signals that the addition of xi greatly modifies the estimator and T is
not robust. Vice versa, a small IF shows a negligible impact of xi on T thus signaling
that T is a robust estimator.

In the case of a linear regression model yi = xTi 𝛽 + ei, where xTi is the p-row
vector comprising the ith observation for all the p explanatory variables, the IF is
given by the ratio between the first-order condition defining the estimator and the
expectation of the second-order condition. In the simple regression model with p = 2
and xTi =

[
1 xi

]
, OLS is characterized by the following IF

IFOLS =
eixi

E(xixTi )

The IFOLS can be split in two different factors, the scalar term of the Influence
of Residuals, IROLS = ei, and the Influence of Position in the factor space, IPOLS =xi
E(xixTi )

. The former singles out the impact on the estimator of each regression resid-

ual, while the latter shows the impact of the position of the ith observation of the
explanatory variables:

IFOLS = ei
xi

E(xixTi )
= IROLSIPOLS

These two components show that a large ei increases by the same amount IROLS
and that an outlier in the explanatory variables increases the IPOLS term. Thus theOLS
estimator is not robust to outliers in the dependent variable, as mirrored by IROLS, nor
to outliers in the explanatory variables as measured by IPOLS.
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For the quantile regression, the IF is defined as

IF𝜃 =
𝜓(ei)xi

∫ f (xTi 𝛽(𝜃))xix
T
i dG(x)

= 𝜓(ei)xiQ−1 = IR𝜃 IP𝜃

where Q = ∫ f (xTi 𝛽(𝜃))xix
T
i dG(x). In this equation IR𝜃 = 𝜓(ei) = (𝜃 − 1(ei < 0)),

while IP𝜃 = xiQ
−1. The most important difference between IFOLS and IF𝜃 is in the IR

term, in the treatment of the residuals. In OLS any large value of êi = yi − 𝛽0 − 𝛽1xi
has an equal impact on IFOLS, since the IROLS term is free to assume any value. In
quantile regression, the impact of a residual on the estimator depends upon its sign,
positive or negative according to its position above or below the estimated line, and
not to its value measuring the distance between the observation and the estimated
line. A very large ei does not influence much the quantile regression estimator since
only its position with respect to the estimated equation matters. The different behav-
ior of IR is what makes the difference between the OLS and the quantile regression
results in the Anscombe example for the [Y3 X1], the [Y∗

1 X1], and in the French
data sets. For instance in the [Y3 X1] sample, the IF for the outlying observation (Y3
X1)3 is function of IROLS,3 = ê3 = 3.241, where êi is the OLS residual. The latter is
larger than IR𝜃,3 = 𝜓(ẽ3) = 𝜓(4.245) = 𝜃, where ẽi is the residual from the median
regression and 𝜃 = .5. Analogously in the [Y∗

1 X1] modified Anscombe data set,
characterized by one outlier in the fourth observation of the dependent variable, the
IROLS,4 = ê4 = 6.936 >> IR𝜃,4 = 𝜓(ẽ4) = 𝜓(7.44) = 𝜃 = .5. Finally, in the French
data, the OLS residual for the outlying observation yields IROLS,i = êi = 2.66, while
for the median regression it is IR𝜃,i = 𝜓(ẽi) = 𝜓(2.72) = 𝜃 = .5. At the median IR𝜃
is always equal to ±.5, while at a selected quantile 𝜃 it is IR𝜃 = 𝜃 − 1(ei < 0).3

It is worth stressing that the value of the quantile regression residuals for the
influential outliers, the third residual in [Y3 X1], the fourth in [Y

∗
1 X1], and the residual

linked to the large walking speed value in the French data are actually larger than their
OLS analogues. This occurs because the OLS residuals are not a good diagnostic
tool to detect outliers. When the OLS estimated line is attracted by an influential
outlier, the corresponding residual is smaller than it should be. Looking at the ith

OLS residual and replacing 𝛽0 and 𝛽1 by the OLS estimators – both of which depend
on the non-robust sample mean – the OLS residual can be written as (Huber, 1981)

êi = yi − ŷi = yi − 𝛽0 − 𝛽1xi = yi − y + 𝛽1x − 𝛽1xi = yi − y − 𝛽1(xi − x)

= yi − y −
co𝑣(x, y)
𝑣ar(x)

(xi − x)

= yi − y −
(xi − x)2(yi − y) +

∑
j≠i(xj − x)(xi − x)(yj − y)∑
(xi − x)2

=
[
1 −

(xi − x)2∑
(xi − x)2

]
(yi − y) −

∑
j≠i(xj − x)(xi − x)(yj − y)∑

(xi − x)2

The last equality shows that the ith OLS residual is small when the term[
1 − (xi−x)2∑

(xi−x)2

]
= 0. This occurs when (xi−x)2∑

(xi−x)2
≃ 1, that is when xi is very far from

3 Since 0<𝜃 < 1, its value can slightly curb the quantile regression IP𝜃 .
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its sample mean x, and its deviation from the mean greatly contributes to the total
deviation of X. When this is the case, the numerator, (xi − x)2 is approximately
equal to the denominator, which represents the dispersion of the entire X. Thus the
farther is xi from its mean, the smaller is the OLS residual, and the OLS fitted line
is attracted by the influential outlier. This is the reason why it is not advisable to
consider the OLS residuals to detect outliers, but it is preferable to use alternative
diagnostic measures.

Various diagnostic tools have been defined in the literature. In order to find
outliers in the explanatory variables, the key statistic is hii= xTi (X

TX)−1xi, which is
closely related to the influence of position IP. To detect outliers in both dependent
and independent variables, the appropriate statistic is given by the standardized
residuals, defined as std(ei) =

ei
𝜎
√
1−hii

.Alternatively, the studentized residuals can be

considered, given by stu(ei) =
ei

𝜎(i)
√
1−hii

. The difference between std(ei) and stu(ei) is
in the denominator, where 𝜎(i) is computed after the exclusion of the ith observation.4

These two statistics are distributed respectively as standard normal and Student-t
distribution so that a formal test on each observation could be implemented. The test
verifies if each data point is or is not a rightful observation, respectively under the
null and the alternative hypothesis. However, it suffices to scrutinize only the very
large standardized or studentized residual.5

Back to the examples, the IP term in the influence function of the quantile
regression estimators explains why this estimator is not robust to outliers in the
explanatory variables: indeed there is no element in IP𝜃 = xiQ

−1 to bound outliers
in the explanatory variables. This is the reason why OLS and median regression
provide similar results in the Anscombe model [Y4 X2] and in its transformed version
[Y∗

4 X2]. Looking at the hii values in both data sets, all the observations in X2 yield
h11 = 0.1 but the eighth, which yields h88 = 1. The large value in the explanatory
variable yields similar results in both the OLS and the median regression estimators
since IP is not bounded.

One simple way to approximate the IF is provided by the change in the estimated
coefficients caused by the exclusion of one observation. This involves the com-
parison of 𝛽 and 𝛽(i), where the subscript in parenthesis signals that the regression
coefficient has been estimated in a sample of size n − 1, where the ith observation
has been excluded. For instance, in the Anscombe data set [Y3 X1], the exclusion of
the largest observation, the third one given by (Y3 X1)3=(12.74 13)3, yields the OLS

estimated slope 𝛽1(3) = 0.34 and the difference is 𝛽1 − 𝛽1(3) = 0.5 − 0.34 = 0.16.
When instead the smallest observation is excluded from the sample, like the data
point in position eight, which is equal to (Y3 X1)8=(5.39 4)8, the OLS slope is
𝛽1(8) = 0.52 and 𝛽1 − 𝛽1(8) = 0.5 − 0.52 = −0.02. This observation has a much
smaller impact than the third one on the OLS estimates, i.e., it is less influential.

4 A subscript within parenthesis implies that the particular observation, or set of observations, in paren-
thesis has been excluded when computing the statistic under analysis.

5 For further references on outlier detection, see Chatterjee and Hadi (1988) or Hoaglin, Mosteller, and
Tukey (1983).
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In the median regression, the drop of the third observation does not cause any
change, 𝛽1(.5) − 𝛽1(3)(.5) = 0, and the exclusion of the smallest observation yields
𝛽1(8)(.5) = .346 with 𝛽1(.5) − 𝛽1(8)(.5) = .345 − .346 = −.001, which is quite small.
The change in coefficient, 𝛽 − 𝛽(i), allows to approximate the IF and to compute
the Sample Influence Function, SIF, defined as SIF=(n − 1)(𝛽 − 𝛽(i)). For the third
observation of the [Y3 X1] data set, SIF(𝛽1,OLS)3 =(n − 1) (𝛽1 − 𝛽1(3)) = 1.6 while for
the eighth one, SIF(𝛽1,OLS)8=(n − 1) (𝛽1 − 𝛽1(8)) = −0.2.

In the Anscombe [Y4 X2] data set, the exclusion of the eighth outlying observa-
tion from the sample yields the estimated slope 𝛽1(8) = 𝛽1(8)(.5) = 0 in both OLS and
the median regression. The impact of this observation is quite large, since its pres-
ence causes the slope coefficient to move from a positive value to zero, 𝛽1 − 𝛽1(8) =
0.5 − 0 = 0.5. For the intercept, the SIF grows even further, since 𝛽0 = 𝛽0(.5) = 2.8
in the full sample turns into 𝛽0(8) = 𝛽0(8)(.5) = 6.9 in the smaller sample, yielding
the difference 𝛽0 − 𝛽0(8) = −4.1. The final value of the sample influence function
is given by SIF(𝛽1,OLS)8 = SIF(𝛽1(.5))8 = (n − 1) (𝛽1 − 𝛽1(8)) = 5 and SIF(𝛽0,OLS)8 =
SIF(𝛽0(.5))8 = (n − 1)(𝛽0 − 𝛽0(8)) = −41 in both OLS and median regression estima-
tors. This signals the eighth observation as highly influential.

In the [Y∗
4 X2] data set, since the outlier is anomalous only in the independent vari-

able, the change in the estimated coefficients due to the exclusion of the eighth obser-
vation is smaller than in the [Y4 X2] case. The estimated slope from 𝛽1 = 𝛽1(.5) = 0.14
turns into 𝛽1(8) = 𝛽1(8)(.5) = 0 in both OLS and median regression. The impact of the
anomalous value is 𝛽1 − 𝛽1(8) = 0.14 for the slope, and 𝛽0 − 𝛽0(8) = 5.7 − 6.9 = −1.2
for the intercept in both OLS and median regression estimators. In this case the sam-
ple influence function is SIF(𝛽1,OLS)8 = SIF(𝛽1(.5))8 = (n − 1)(𝛽1 − 𝛽1(8)) = 1.4 and
SIF(𝛽0,OLS)8 = SIF(𝛽0(.5))8 = (n − 1)(𝛽0 − 𝛽0(8)) = −12.

The Anscombe data sets provide examples for the case of a single outlier, but real
data may have more than one anomalous value. In case of multiple outliers, assuming
there are m of them in a sample of size n, the sample influence function becomes
SIF(𝛽)I =

n−m
m

(𝛽 − 𝛽(I)), where the index (I) refers to the set of m excluded observa-

tions, and the coefficient 𝛽(I)is computed by excluding all of them. For instance, in
the [Y∗

1 X1] modified Anscombe data set, one additional outlier can be introduced.
Besides changing the fourth observation, also the ninth observation of the dependent
variable can be modified from (Y∗

1 X1)9 = (10.84 12)9 into (Y∗∗
1 X1)9 = (14.84 12)9

as reported in the last column of Table 1.1. In the full sample, the estimated regression

coefficients are 𝛽OLS =
[
𝛽0 = 2.94
𝛽1 = 0.61

]
and 𝛽(.5) =

[
𝛽0(.5) = 3.24
𝛽1(.5) = 0.48

]
. Figure 1.16 reports

the OLS and the median regression estimated lines in the sample of size n = 11 com-
prising two outliers. Next both the fourth and the ninth observation are excluded from
the sample. The OLS and the median regression estimated coefficients in the subset

without outliers are very similar to one another, 𝛽OLS(4,9) =

[
𝛽0(4,9) = 3.21
𝛽1(4,9) = 0.43

]
and

𝛽(.5)(4,9) =

[
𝛽0(4,9)(.5) = 3.27
𝛽1(4,9)(.5) = 0.46

]
, with OLS getting closer to the median regression
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Figure 1.16 OLS and median regression when there are two anomalous values in
the dependent variable, the 4th and the 9th observation of the [Y∗∗

1 X1] data set, in
a sample of size n = 11. The scatterplot clearly shows the two outliers, located at
the top of the graph. Together they cause an increase in the OLS estimated slope, as
depicted by the upper line in the graph. This is not the case for the median regression,
which yields the same estimates in the [Y1 X1], [Y

∗
1 X1] and [Y∗∗

1 X1] data sets.

estimates. The OLS sample influence function is

SIF(𝛽OLS)4,9 =
11 − 2

2
(𝛽OLS − 𝛽OLS(4,9))

= 4.5

[
𝛽0 − 𝛽0(4,9) = 2.94 − 3.21 = −0.27
𝛽1 − 𝛽1(4,9) = 0.61 − 0.43 = 0.18

]
=
[
−1.21
0.81

]

while for the median regression, it is

SIF(𝛽(.5))4,9 =
11 − 2

2
(𝛽(.5) − 𝛽(.5)(4,9))

= 4.5

[
𝛽0(.5) − 𝛽0(4,9)(.5) = 3.24 − 3.27 = −0.03
𝛽1(.5) − 𝛽1(4,9)(.5) = 0.48 − 0.46 = 0.02

]
=
[
−0.13
0.09

]

The two outliers are highly influential in OLS. A more than double value of
SIF(𝛽OLS)4,9 compared to SIF(𝛽(.5))4,9 shows once again the robustness of the quan-
tile regression with respect to outliers in the dependent variable.

As a final check, in the [Y∗∗
1 X1] data set, the vector of standardized residuals from

the median regression can be computed:

std(ẽi) =

[
ẽi

𝜎
√
1 − hii

]T

=
[
1.13e−08 −.18 −4.72 9.83 −.26 0 5.46 0 9.42 −3.25 0

]
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The largest standardized residuals are located at the fourth and ninth observations,
signaling that these two data points, which are the ones intentionally modified, are
influential outliers.

1.3.1 Diagnostic in the French and the Dutch data

Starting with the French data, in the original sample, the OLS residual corresponding
to the outlying observation with the highest walking speed and largeBMI is êi = 2.66,
while the standardized and studentized residuals for this observation are much larger,
respectively std(̂ei) = 9.36 and stu(̂ei) = 10.61. There is quite a discrepancy between
the simple OLS residual and its standardized and studentized values. This signals
that the observation is anomalous and influential. The outlier has attracted the OLS
estimated line causing a smaller OLS residual and a positive estimated slope. In
the median regression, for this same observation, the residual is ẽi = 2.71, and the
standardized and the studentized residuals are similar, respectively std(ẽi) = 2.72
and stu(ẽi) = 2.74. There is not much difference among these three values since
the median regression is not attracted by outliers in the dependent variable. For the
slope, the SIFi computing the impact of this observation on the OLS estimator, is
SIF(𝛽OLS)i = (n − 1)(𝛽OLS − 𝛽OLS(i)) = 392(.0033 + .0009) = 1.64, to be compared
with its analogue for the median regression, (n − 1)(𝛽(.5) − 𝛽(i)(.5)) = 0.

Next consider the Dutch data set, which is characterized by one outlier
in the explanatory variable. The best tool to identify this kind of outlier is
hii = xTi (X

TX)−1xi, which reaches the highest value of hii = 0.280 for BMI = 73.39,
followed by hii = 0.12 for BMI = 57.34 and hii = 0.11 for BMI = 55.53. These
are the three data points located to the right of Figure 1.13. The largest value
in hii clearly signals the largest outlier in the explanatory variable. However, the
corresponding SIFi in this example is quite small. Indeed, for the OLS slope it
is SIF(𝛽OLS)i = (n − 1)(𝛽OLS − 𝛽OLS(i)) = 306(−.0058 + .0054) = −0.122, and for
the median regression slope is SIF(𝛽(.5))i = 306(−.0065 + .0069) = 0.122. Thus
the BMI outlier is not particularly influential; indeed the corresponding OLS
residual, together with the standardized and studentized residual, are respectively
êi = −0.048, std(̂ei) = −0.20, and stu(̂ei) = −0.19. These values are all quite small
and become even smaller in the median regression case: ẽi = −6.07e−9, std(ẽi) =
−6.13e−9 and stu(ẽi) = −6.12e−9.

1.3.2 Example with error contamination

This section implements a controlled experiment by analyzing an artificial data set
with outliers generated by a contaminated error distribution. In a sample of size
n = 100, the explanatory variable xi is given by the realizations of a uniform distribu-
tion defined in the [0, 1] interval, and the error term ei is provided by the realizations
of a 10% contaminated normal where a standard normal is contaminated by a zero
mean normal with 𝜎 = 6. Figure 1.17 presents the histogram of the realizations of ei.

Once known xi and ei, the dependent variable yi is defined as yi = 3 + 0.9xi + ei.
Next the OLS and the median regression estimators are implemented in the artificial
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Figure 1.17 Histogram of the realizations of a 10% contaminated normal error
distribution. The dashed line is the normal density while the solid line is the Epanech-
nikov (1969) kernel density of the contaminated normal, sample size n = 100. The
kernel density shows the presence of values far from the mean, generated by the
contaminating distribution.

data set (yi xi), and their behavior in the presence of outliers can be fully evaluated
since the parameters defining yi are known in advance. The mean and the median con-
ditional regressions results are reported in the first two columns of Table 1.4, while
Figure 1.18 presents the scatterplot of the data. The graph clearly shows the presence
of outliers. Although the OLS estimates are close to the true coefficients, 𝛽0 = 3 and
𝛽1 = 0.9, the standard error of the slope is so large that 𝛽1 is not statistically differ-
ent from zero. The standardized OLS residuals, defined as std(̂ei) =

êi
𝜎
√
1−hii

, and the

OLS studentized residuals, stu(̂ei) =
êi

𝜎(i)
√
1−hii

, allow to point out the following out-

liers in the dependent variable: y16 = 7.89, y36 = 10.79, y5 = −4.28, y18 = −7.02,

Table 1.4 OLS and median regression in the case of
contaminated error distribution.

OLS median OLS(I) median(I)

slope .940 1.753 1.263 1.696
se (.71) (.36) (.32) (.41)
constant 2.60 2.372 2.64 2.427
se (.42) (.21) (.19) (.24)

Note: Standard errors in parenthesis, sample size n = 100.
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Figure 1.18 Data generated as yi = 3 + 0.9xi + ei where ei is the contaminated error
distribution depicted in Figure 1.17, sample of size n = 100. The presence of outliers
in the dependent variable, caused by the contaminated error distribution, is clearly
visible.

y48 = −3.83, y52 = −3.46, as detected by values of std(̂ei) outside the ±1.96 interval.
These values are reported in Table 1.5 for both the OLS and the median regression,
respectively, êi and ẽi in the table. This table shows that the standardized and studen-
tized residuals of the median regression point out two additional outliers undetected
in OLS, y45 = 0.25 and y97 = 0.38. Once the anomalous values are detected, it is

Table 1.5 Largest values of the studentized and
standardized residuals in both OLS and median regression,
n = 100.

OLS OLS median median
yi stu(êi) std(êi) stu(ẽi) std(ẽi)

7.89 2.26 2.22 4.54 4.15
10.79 4.08 3.79 12.17 7.69

−4.28 −3.96 −3.69 −13.53 −8.00
−7.02 −5.52 −4.85 −10.06
0.25 −2.36 −2.31

−3.83 −3.63 −3.43 −11.00 −7.37
−3.46 −3.58 −3.38 −11.39 −7.49
0.38 −3.68 −3.47

Note: The empty cells in the table are for the observations that are
not detected as outliers.
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possible to compute their impact on an estimator by means of the sample influence
function, SIF(𝛽)I =

n−m
m

(𝛽 − 𝛽(I)). The last two columns of Table 1.4 report the OLS
andmedian regression estimated coefficients when the outlying values are eliminated,
respectively the six observations detected by the standardized and studentized OLS
residuals and the eight observations detected by the standardized and studentized
residuals of the median regression. For the OLS estimator, the SIF (𝛽)I is

SIF(𝛽OLS)I =
(n − m)
m

(𝛽OLS − 𝛽OLS(I))

= 100 − 6
6

[
𝛽0 − 𝛽0(I) = 2.60 − 2.64 = −0.04
𝛽1 − 𝛽1(I) = 0.94 − 1.26 = −0.32

]
=
[
−0.63
−5.01

]

while for the median regression, it is

SIF(𝛽(.5)I = (𝛽(.5) − 𝛽(.5)(I))

= 100 − 8
8

[
𝛽0(.5) − 𝛽0(.5)(I) = 2.37 − 2.42 = −0.05
𝛽1(.5) − 𝛽1(.5)(I) = 1.75 − 1.69 = 0.06

]
=
[
−0.57
0.69

]

The comparison of SIF(𝛽OLS)I and SIF(𝛽(.5))I shows that the impact of the set
of observations in I is larger in the OLS model than in the median regression case,
and the difference is quite marked for the slope coefficient, although the number of
excluded observations in the OLS regression is smaller than in the median regression
case. Finally, by computing the quantile regression at 𝜃 = .10, .25, .50, .75, .90, all
the eight outliers detected by the standardized and the studentized quantile residu-
als are clearly visible, as shown in Figure 1.19. The estimated coefficients at the 𝜃

0 .2
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Figure 1.19 Estimated quantile regressions for the model with 10% contamination
in the errors, sample of size n = 100.
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Table 1.6 Quantile regression estimates, contaminated
errors.

𝜃 10th 25th 50th 75th 90th

slope 1.21 1.12 1.75 1.08 1.31
se (5.8) (.54) (.36) (.39) (3.7)
constant 1.40 1.99 2.37 3.44 3.81
se (3.4) (.32) (.21) (.23) (2.2)

Note: Standard errors in parenthesis, sample size n = 100.

quantiles are reported in Table 1.6, where both the lower and the higher quantile
regression estimates are not significantly different from zero.

1.4 A summary of key points

Section 1.1 focuses on the shortcomings of the OLS estimator in the linear regression
model by analyzing an artificial data set, discussed by Anscombe (1973), where OLS
yields the same estimated coefficients in four different models, but the result is correct
only in one of them. Section 1.2 considers the behavior of the median regression in
the Anscombe data and in two additional models analyzing real data, in order to
show the robustness of the quantile regression approach. Section 1.3 considers the
influence function, a statistic that measures the impact of outliers on an estimator,
together with its empirical approximation, the sample influence function. Examples
with real and artificial data sets allow to compare the influence function of the OLS
and of the median regression estimators in samples characterized by different kinds
of outliers.
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Appendix: computer codes in Stata

A) generate contaminated distributions

gen norm1=invnorm(uniform()) generate N(0,1)

gen norm4 = 4*invnorm(uniform()) generate N(0,16)

gen conta = cond(norm1
>−1.96,norm1,norm4)

left tail contamination

gen contam = cond(norm1 >
1.96,norm4,conta)

right tail contamination

B) compute diagnostic measures to detect outliers

reg y x (or qreg y x) OLS (or quantile regression)

predict name, resid compute regression residuals

predict name1, hat compute hii
predict name2, rstand compute standardized residuals

predict name3, rstud compute studentized residuals



2

Quantile regression and related
methods

Introduction

The detailed analysis of a regression model at various points of the conditional
distribution, allowed by quantile regressions, can be imported into the least squares
framework. This implies investigating the dependence among variables not only at
the conditional mean but also in the tails, just as occurs in the quantile regression
framework. An asymmetric weighting system is included within the least squares
objective function to define the asymmetric least squares or expectile estimator.
The problem with expectiles is their lack of robustness, since the squared errors in
the objective function enhance instead of curbing the impact of anomalous values,
analogously to what was discussed in the previous chapter for the standard OLS
estimator. To gain robustness in the least squares approach, a weighting system
bounding the outliers defines a class of robust estimators, the M-estimators. The
combination of these two approaches, asymmetric weights to compute expectiles
together with weights to control outliers and gain robustness of the M-estimators,
leads to the definition of the M-quantiles. The M-quantile estimator merges the
weighting system curbing outliers of the M-estimators and the asymmetric weights
defining the location of the expectiles. The purpose is to robustly compute the regres-
sion coefficients at different points of the conditional distribution of the dependent
variable. The M-quantiles estimators are frequently used in small-area estimation.
Examples analyzing real and artificial data sets point out the characteristics of the
above estimators.

Quantile Regression: Estimation and Simulation, Volume 2. Marilena Furno and Domenico Vistocco.
© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/furno/quantileregression
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2.1 Expectiles

Newey and Powell (1987) consider the extension of the quantile regression estimator
to the least squares framework, defining the asymmetric least squares estimator, also
known as expectile. In the linear regression yi = 𝛽0 + 𝛽1xi + ei, the entire class of
measures of location estimated by the quantile regressions can be computed in the
least squares framework as well, by minimizing the following objective function∑

i=1, n
|𝜃 − 1(ei < 0)|e2i

where the parameter 𝜃 sets the expectile, that is, the location of the regression line
away from the mean. The advantage of the above definition with respect to quantile
regression is in its differentiability. The above objective function is based on squared
values – the L2 norm – and is easily differentiable. The normal equations can be
defined as a weighted least squares estimator where the weights select the position
of the estimated line with respect to the conditional distribution of the dependent
variable, away from the center, in the left or the right tail:∑

i=1,n
𝑤exp,ie

2
i

𝑤exp,i = 𝜃 for ei ≥ 0

1 − 𝜃 elsewhere

By choosing 𝜃 = .50, the estimated expectile coincides with the standard OLS
regression passing through the conditional mean. Table 2.1 compares the estimated
coefficients of the expectile and the quantile regression at 𝜃 = .10, .25, .50, .75, .90,
in the Anscombe data set [Y1 X1]. The slopes estimated by the expectiles are slightly
smaller than the quantiles results everywhere but at 𝜃 = .50. Figures 2.1 and 2.2

Table 2.1 Anscombe data set [Y1 X1], expectile and quantile
regressions estimated coefficients.

expectiles 10th 25th 50th 75th 90th

slope 0.44 0.48 0.50 0.52 0.56
se (0.19) (0.18) (0.13) (0.17) (0.21)
constant 2.53 2.68 3.00 3.29 3.49
se (1.20) (1.33) (1.13) (1.50) (1.73)

quantiles 10th 25th 50th 75th 90th

slope 0.46 0.57 0.48 0.67 0.60
se (0.06) (0.21) (0.20) (0.19) (0.14)
constant 1.60 1.98 3.24 2.72 3.63
se (0.64) (1.93) (2.04) (1.47) (1.63)

Note: Standard errors in parenthesis, sample size n = 11.
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Figure 2.1 Estimates of the 10th quantile and of the 10th expectile regressions in the
Anscombe data set [Y1 X1], sample size n = 11. The quantile fitted line goes through
p = 2 observations.
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Figure 2.2 Comparison of the estimated third quartile and the estimated third
expectile regressions in the Anscombe data set [Y1 X1], sample size n = 11. The
quantile fitted line goes through p = 2 observations.
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report the graphs comparing expectiles and quantiles respectively at the values of
𝜃 = .10, .75. In both graphs the quantile regression fitted lines pass through p = 2
observations, providing for these observations a perfect fit.

Table 2.2 compares the fitted values of the quantile and expectile regressions at
𝜃 = .25, .75, showing that while the quantile regression estimated lines go through
exactly p = 2 observations – which are the values highlighted in the table – this is not
the case for the estimated expectiles.

The disadvantage of expectiles is in their interpretation. While quantile regres-
sions are directly interpretable as the exactly computed lines passing through p obser-
vations and splitting the sample according to the selected conditional quantile, 𝜃
below and 1 − 𝜃 above the fitted line, this is not the case in the expectiles for different
reasons:

i) the use of the squared residual instead of the absolute value in the objective
function, that is, of the L2 instead of the L1 norm, implies that the expectile estimated
line does not go through exactly p observations as occurs for the quantile regression
so that the perfect fit interpretation of the quantile regressions is not shared by the
expectiles;

ii) the fitted expectile does not break up residuals into 𝜃 elements below and 1 − 𝜃
above the fitted expectile: 𝜃 does not represent a quantile, but it is basically a skewness
coefficient needed to set the position of the estimated regression. While the quantile
regressions can be interpreted as order statistics in the regression setting, this is not
the case for the expectiles.

Figures 2.3 and 2.4 compare quantiles and expectiles in the univariate case. The
former depicts the quantiles of the realizations of a standard normal distribution in a
sample of size n = 10000, while Figure 2.4 provides the expectiles for the same dis-
tribution. The two figures are not identical, showing that quantiles and expectiles are

Table 2.2 Fitted values of the expectile and the quantile regressions
computed at 𝜃 = .25, .75.

Y1 25th expectile 25th quantile 75th expectile 75 th quantile

8.04 7.46 7.68 8.54 9.48
6.95 6.50 6.54 7.49 8.13
7.58 8.89 9.39 10.11 11.51
8.81 6.98 7.11 8.02 8.81
8.33 7.93 8.25 9.06 10.16
9.96 9.37 9.96 10.64 12.19
7.24 5.54 5.4 6.44 6.78
4.26 4.59 4.26 5.39 5.42
10.84 8.41 8.82 9.59 10.84
4.82 6.02 5.97 6.96 7.45
5.68 5.06 4.83 5.91 6.10

Note: In bold are the fitted values coinciding with the observed values of the dependent
variable in the Anscombe [Y1 X1] data set.
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Figure 2.3 The graph plots the quantiles of the realizations of a standard normal,
sample size n = 10000.
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Figure 2.4 The graph plots the expectiles of the realizations of a standard nor-
mal, sample size n = 10000. The comparison with Figure 2.3 shows the difference
between quantiles and expectiles, particularly marked in the tails.
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Figure 2.5 Estimated expectiles in the Anscombe model [Y1 X1], sample
size n = 11.

indeed different, although closely related. Yang and Zou (2014) show the existence of
a one-to-one mapping between them. Jones (1994) provides the link between expec-
tiles and quantiles, showing that expectiles are quantiles of a distribution related to
the original one.

Next consider the behavior of the expectiles in the presence of outliers. Figure 2.5
depicts the estimated expectiles for the Anscombe data [Y1 X1] in the sample of size
n = 11, while Figures 2.6 and 2.8 present the estimated expectiles in the data sets
[Y∗

1 X1] and [Y∗∗
1 X1], which modify the original [Y1 X1] sample to include respec-

tively one and two outliers in the dependent variable. Figures 2.7 and 2.9 depict the
estimated quantiles for these same data sets. Tables 2.3 and 2.4 report the expectile
and the quantile regressions estimates. Focusing on the [Y∗

1 X1] sample, the com-
parison of the graphs in Figures 2.5 and 2.6 and of the results in the top section of
Table 2.1 with those in Table 2.3 shows that the estimated expectiles do change in
the presence of one outlier, just as occurs in the OLS case of Figure 1.3 in Chapter 1.
One non-influential anomalous value in Y∗

1 , located at the center of the graph, moves
upward the estimates of the intercept at all expectiles in the [Y∗

1 X1] data set, while
the quantile regression estimates of the intercept in Figure 2.7 do not change much
across quantiles. In Table 2.1, the expectile estimated intercept ranges from 2.53 to
3.49 for the [Y1 X1] data set, while in Table 2.3, for the [Y

∗
1 X1] data set, the estimated

constant goes from 2.63 to 6.48. Vice versa, the quantile regression estimates of the
intercept in the [Y∗

1 X1] data set coincide almost everywhere with the results for the
original data [Y1 X1].
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Figure 2.6 Estimated expectiles in the modified Anscombe data set [Y∗
1 X1] with

one outlier in the dependent variable, sample size n = 11. The outlier attracts all the
expectiles causing an increasing change of the intercept across expectiles.
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Figure 2.7 Quantile regressions in the Anscombe [Y∗
1 X1] data set. Contrarily to the

expectile estimates, here the increasing change in the intercept does not occur. It can
be noticed that the first quartile converges to the median at large values of X1.



36 QUANTILE REGRESSION

observations
25th expectile
75th expectile

50th expectile
10th expectile

90th expectile

4 6 8 10 12 14
x1

5
10

15

Figure 2.8 Estimated expectiles in the modified data set [Y∗∗
1 X1], sample size

n = 11. The presence of two outliers modifies all the expectiles causing an increase
in the estimated slopes across expectiles and yielding a fan-shaped graph.
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Figure 2.9 Quantile regression estimates in the Anscombe [Y∗∗
1 X1] data set. Only

the top line is attracted by the outliers. It can be noticed that the median regression
crosses the third quartile at the low values of X1 and converges to the first quartile at
large values of X1. The former is a case of quantile crossing.
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Table 2.3 Estimated expectile and quantile regressions in the
data set with one outlier [Y∗

1 X1].

expectiles 10th 25th 50th 75th 90th

slope 0.44 0.49 0.50 0.51 0.50
se (0.26) (0.24) (0.17) (0.24) (0.47)
constant 2.63 2.94 3.56 4.57 6.48
se (1.63) (1.86) (1.63) (3.11) (5.65)

quantiles 10th 25th 50th 75th 90th

slope 0.46 0.57 0.48 0.60 0.60
se (0.06) (0.20) (0.20) (0.45) (0.29)
constant 1.60 1.98 3.24 3.64 3.64
se (0.64) (1.80) (2.04) (4.55) (3.94)

Note: Standard errors in parenthesis, sample size n = 11.

Table 2.4 Estimated expectile and quantile regressions in the
data set with two outliers [Y∗∗

1 X1].

expectiles 10th 25th 50th 75th 90th

slope 0.48 0.53 0.61 0.76 0.80
se (0.34) (0.16) (0.25) (0.40) (0.49)
constant 2.47 2.70 2.94 3.04 4.36
se (2.05) (1.44) (1.99) (3.55) (5.38)

quantiles 10th 25th 50th 75th 90th

slope 0.46 0.57 0.48 1.26 1.26
se (0.06) (0.20) (0.20) (0.45) (0.17)
constant 1.60 1.98 3.24 −0.36 −0.36
se (0.64) (1.80) (2.04) (4.49) (2.33)

Note: Standard errors in parenthesis, sample size n = 11.

In the [Y∗∗
1 X1] example with two influential outliers located in the top right of

Figure 2.8, the comparison of the results in Table 2.1 with those in Table 2.4 and of the
graphs in Figures 2.5 and 2.8 shows the increase of the slope across expectiles due to
the presence of two influential outliers, extending to the tails what occurs in the simple
OLS of Figure 1.16 in the previous chapter. Indeed the estimated slope ranges from
0.44 to 0.56 across expectiles in Table 2.1 for [Y1 X1], while it goes from 0.48 to 0.80
in Table 2.4 for the [Y∗∗

1 X1] data set. To the contrary, the quantile regression estimated
slope changes only at the top quantiles, as can be seen in Figure 2.9 and in the bottom
section of Table 2.4. While in Figure 2.8 the expectiles are fan shaped, in Figure 2.9
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the lower quantiles up to the median are close to one another and only the upper line is
attracted by the outliers and diverges. As mentioned, the main characteristic of expec-
tiles is the adoption of the L2 norm, and in the L2 norm is relevant not only the position
of the observation with respect to the estimated line, as in the L1 norm, but also its
numerical value. This causes the lack of robustness of the expectile with respect to
the quantile regression estimator, and this is particularly evident at 𝜃 = .50, where the
expectile coincides with the OLS estimates. Indeed the results at the 50th expectile of
Tables 2.1, 2.3, and 2.4 coincide with the OLS results of Tables 1.2 and 1.3 and with
the results for [Y∗∗

1 X1], the two outliers of the Anscombe example, reported at the
end of Section 1.3. When the least squares analysis is extended beyond the mean of
the conditional distribution, the lack of robustness affects all the selected expectiles.
Figures 2.6 and 2.8 show how all the expectiles are attracted by the position of one
or two outliers in the modified data sets [Y∗

1 X1] and [Y∗∗
1 X1] when compared with

the estimated expectiles in Figure 2.5 for the [Y1 X1] sample.
The lack of robustness of the expectiles reduces their capability to signal asym-

metry and heteroskedasticity in the error distribution. While quantile regressions
are attracted by outliers only at the extreme quantiles, expectiles are influenced by
few anomalous values even at the lower values of 𝜃. A set of fan-shaped estimated
quantiles signals heteroskedasticity, but fan-shaped expectiles can be caused by few
anomalous values that attract all the expectiles and cause a changing slope across all
the expectiles, as in the [Y∗∗

1 X1] case. Figure 2.8 shows that in the expectile case
all the estimated lines present an increasing slope, while in the quantile regression
case of Figure 2.9 only the top estimated line is attracted by the two outliers in Y∗∗

1
and the other slopes do not change much. Analogously, while unequal interquantile
differences in the intercept signal skewness, this is not necessarily true for expectiles
in the presence of few outliers. For instance, unequal increments in the intercept at
equally spaced expectiles occur in the [Y∗

1 X1] data set, as shown in Figure 2.6, while
this is not the case with the quantile regression estimates of Figure 2.7.

A final comment on expectiles considers the computational methods. There are
different ways to compute expectiles: using splines (Schnabel and Eilers, 2009) or fit-
ting the mean expectile, that is, OLS and then computing the other expectiles as devi-
ation from the mean expectile (Sobotka et al., 2013). This idea goes back to the work
by He (1997) on quantile regressions. It has the twofold advantage of avoiding cross-
ing of the expectile lines and of reducing the number of fits. The disadvantage is a
possible suboptimal fit in heteroscedastic models. Finally Figures 2.7 and 2.9, depict-
ing the estimated quantiles for the [Y∗

1 X1] and [Y
∗∗
1 X1] data sets, show one drawback

of quantile regressions: since quantile regressions are not computed as deviation from
the median, the fitted lines may intersect. In Figure 2.9, for instance, the first quartile
reaches the median fitted line at high values of X1, and the top quantile intersects the
median regression at low values of X1. Thus, at low values of X1 an observation on
the 75th quantile is below the median, and this is a quite puzzling result. The small
sample size and/or the presence of large outliers can cause this problem.

Efron (1992) extends the asymmetric least squares approach to maximum
likelihood, defining the asymmetric maximum likelihood estimator. The latter is
implemented in case of non-normal distributions, particularly those distributions
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belonging to the exponential family, such as the Poisson. In particular, in the Poisson
case, this estimator provides good approximations of the percentiles, similarly to
the quantile regression estimator. In case of normality, the asymmetric maximum
likelihood coincides with the expectiles, just as symmetric maximum likelihood
coincides with OLS. Computationally, the standard maximum likelihood estimates
provide the starting values, which are updated by weighted least squares. The
estimated coefficients are computed by

𝛽𝑤 = (XTW(𝜃)X)−1XTW(𝜃)Y

where 𝜃 is the asymmetry parameter setting the position of the regression away from
the mean, X is the matrix of explanatory variables, Y is the dependent variable, and
W(𝜃) is the matrix of weights having diagonal elements𝑤 = 1 if the residual from the
previous iteration is negative or equal to zero and 𝑤 > 1 if the residual is positive.
The iterations update 𝛽𝑤 and W(𝜃) until convergence. The final solution coincides
with the standard maximum likelihood implemented in an augmented data set. In the
augmented data set, the observations below the solution have unit weight and appear
only once, while the data points above the solution are repeated 𝑤 times. Obviously,
when 𝑤 = 1 throughout, the results are the standard maximum likelihood estimates
computed in the original data set.

2.1.1 Expectiles and contaminated errors

The small sample size of the Anscombe data allows to point out the characteris-
tics of the expectile estimator. Here its behavior is analyzed in a larger sample,
like the one considered in Section 1.3.2. The dependent variable is generated as
yi = 3 + 0.9xi + ei, the errors are generated by a 10% contaminated normal distri-
bution, while the explanatory variable xi is given by the realizations of a uniform
distribution in the [0, 1] interval in a sample of size n = 100. Figures 2.10 and
2.11 consider the quantile and the expectile plot of the dependent variable. In both
graphs the tails diverge from the straight line – particularly in the quantile plot – thus
signaling the presence of outliers. The model yi = 𝛽0 + 𝛽1xi + ei is estimated at the
10th, 25th, 50th, 75th, and 90th expectiles. The results are reported in Table 2.5 and
in the graph of Figure 2.12. While the quantile regression estimates of this model,
reported in Table 1.6, were all statistically relevant but at the 10th and 90th quantiles,
here only the two top expectiles yield statistically significant estimated slopes.
Figure 2.12, when compared with Figure 1.19, shows that some of the outliers are
not well detected since the expectiles are attracted by them and for 𝜃 <.75, their
slopes are flatter than at the corresponding quantiles.

2.1.2 French data: influential outlier in the dependent variable

As discussed in Section 1.2.1, this data set presents a very implausible observation
characterized by the highest walking speed and a large BMI. This is an outlier in
the dependent variable and is most likely a coding error. To check the normality
of the variables, the quantile plot compares the theoretical quantiles of the normal
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Figure 2.10 Quantile plot of the dependent variable in the data set with 10% con-
taminated error distribution. In the tails, the sample quantiles are quite far from the
theoretical ones, clearly signaling the presence of at least six outliers.
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Figure 2.11 Expectile plot of the dependent variable in the data set with 10% con-
taminated error distribution. In the tails, the sample expectiles are far from the theo-
retical ones. The divergence is smaller than in the quantile plot case.



QUANTILE REGRESSION AND RELATED METHODS 41

Table 2.5 Estimated expectiles, 10% contamination in the errors.

𝜃 10th 25th 50th 75th 90th

slope −0.414 0.578 0.94 1.07 1.32
se (1.97) (0.98) (0.59) (0.45) (0.68)
intercept 1.32 2.06 2.60 3.12 3.55
se (1.18) (0.53) (0.33) (0.28) (0.44)

Note: Standard errors in parenthesis, sample size n = 100.
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Figure 2.12 Estimated expectiles in the data set characterised by 10% contami-
nation in the error distribution, in a sample of size n = 100. The graph shows the
presence of some outlying observations generated by the contaminating normal with
larger variance, 𝜎2 = 36. The lower expectiles are attracted by the outliers and are
flatter than the corresponding quantiles in Figure 1.19. As a result some outliers are
not well detected, such as the observation (y = .38 x = .8), which is quite close to the
10th estimated expectile.

distribution with the empirical quantiles of the variable under analysis. An analogous
plot is computed for the expectiles, comparing the expectiles of a normal variate with
the empirical expectiles of the data. The graphs in Figures 2.13 to 2.16 report the
expectile and the quantile plots for 𝑤speed and BMI in the French data set. It can
be seen that the presence of an outlier in 𝑤speed is by far more evident in the quan-
tile than in the expectile plot. This is the case since while one outlier affects all the
expectiles, only the extreme quantile, the top one in this sample – or the bottom one,
depending on the position of the outlier – is attracted by an outlier, and this makes its
presence more evident.
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Figure 2.13 Expectile plot of 𝑤speed, French data set. The expectiles of this vari-
able are compared to the expectiles of the normal distribution. Both tails diverge from
the straight line.
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Figure 2.14 Quantile plot of the variable𝑤speed in the French data set. Besides the
divergence from normality in the tails, the top quantile is quite far from the others and
from the theoretical normal quantile. This signals the presence of outliers attracting
the top quantile. The comparison with the expectile plot shows how the presence of
an outlier is more evident in the quantile than in the expectile graph.
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Figure 2.15 Expectile plot of BMI in the French data set.
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Figure 2.16 Quantile plot of BMI in the French data set.

The previous chapter has discussed how the outlying data points attract the OLS
but not the median regression. Indeed OLS yields a positive slope, while the median
regression presents a negative slope. This same attraction effect can be found in all
the estimated expectiles. Figure 2.17, depicting the estimated expectiles, shows a
fan-shaped set of estimated lines, where the slopes are all positive, although quite
small, and the 90th expectile presents the largest of all slopes. Figure 2.18, which
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Figure 2.17 Estimated expectiles at 𝜃 = .10, .25, .50, .75, .90, French data set of
size n = 393. The outlier in the dependent variable at the top left of the graph attracts
all the expectiles, thus computing an implausible positive slope between walking
speed and body mass index.
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Figure 2.18 Estimated quantiles at 𝜃 = .10, .25, .50, .75, .90, French data set of size
n = 393. The outlier in the dependent variable at the top left does not attract all the
quantile regressions. The latter provides a negative slope at all but the 90th quantile.
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Table 2.6 Estimated slope at the selected expectiles and quantiles, French
data set.

𝜃 10th 25th 50th 75th 90th

expectile 0.0005 0.0011 0.0033 0.0084 0.0196
quantile −0.0029 −0.0007 −0.00057 −0.00023 0.0059

Note: Sample size n = 393.

collects the estimated quantiles, presents all negatively sloped lines but at the 90th

quantile, thus showing the greater robustness of the quantile estimator with respect
to outliers in the dependent variable. Table 2.6 compares the slope estimated at the
selected expectiles and quantiles.

2.1.3 The Netherlands example: outlier in the explanatory
variable

The expectile and the quantile plots for 𝑤speed and BMI of the Dutch sample,
reported in Figures 2.19 to 2.22, show once again how the presence of outliers is
more evident in the quantile than in the expectile plots. In the Dutch data set there is
one non-influential outlier in the explanatory variable, BMI, and the OLS results do
not differ much from the ones of the median regression. This similar behavior carries
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Figure 2.19 Expectile plot of 𝑤speed in the Dutch data set.
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Figure 2.20 Quantile plot of 𝑤speed in the Dutch data set.
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Figure 2.21 Expectile plot of BMI in the Dutch data set.
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Figure 2.22 Quantile plot of BMI in the Dutch data set. The anomalous value in
BMI is more evident in this graph than in the previous graph depicting the expectile
plot.

Table 2.7 Estimated slope at the selected expectiles and quantiles, Dutch
data set.

𝜃 10th 25th 50th 75th 90th

expectile −0.0024 −0.0042 −0.0058 −0.0070 −0.0078
quantile −0.0001 −0.0052 −0.0065 −0.0089 −0.0093

Note: Sample size n = 307.

on to the expectiles computed at 𝜃 ≠ .50, as can be seen in Table 2.7, which reports
the slopes estimated by the two estimators. Figures 2.23 and 2.24 depict respectively
the estimated expectiles and the estimated quantiles. It should be noted that, due
to the selected method to compute the expectiles, which calculates an expectile as
deviation from the conditional mean, i.e., the OLS regression, crossing of the fitted
lines is avoided in Figure 2.23 while this is not the case in the quantile regressions
of Figure 2.24. Quantile crossing is a problem occurring in case of misspecification,
collinearity in the explanatory variables, small sample size, or, as in this example, in
the presence of large outliers attracting the extreme quantiles.
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Figure 2.23 Estimated expectiles at 𝜃 = .10, .25, .50, .75, .90,Dutch data set of size
n = 307. Due to the selected computational method, the expectile fitted lines do not
cross.
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Figure 2.24 Estimated quantile regressions at 𝜃 = .10, .25, .50, .75, .90, Dutch data
set of size n = 307. In this graph the 10th quantile intersects the 25th estimated line
due to the large outlier in BMI affecting the lower quantile. This is a case of quantile
crossing.
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2.2 M-estimators

Section 1.3 shows how the OLS estimator is characterized by an unbounded influ-
ence function. The IFOLS does not control residuals nor outliers in the explanatory
variables. In the linear regression model yi = 𝛽0 + 𝛽1xi + ei, the influence function of
the OLS estimator is IFOLS =

eixi
Exix

T
i

, where xTi =
[
1 xi

]
is the ith observation for the

p = 2 explanatory variables. Huber (1964, 1981) proposes to induce robustness in the
OLS estimator by bounding large residuals, thus defining the class of M-estimators
for the linear regression model. The purpose is to provide a good fit to the majority
of the data by controlling the impact of outliers. The introduction of a bound implies
to modify the least squares objective function in order to control outliers. The new
objective function is defined as

∑
𝜌

(
yi − 𝛽0 − 𝛽1xi

𝜎

)

where the 𝜌 function is given by

𝜌(ei) =
⎧⎪⎨⎪⎩
1
2
u2i for |ui| ≤ c

c|ui| − 1
2
c2 for |ui| > c

The ui are the standardized errors, ui =
yi−𝛽0−𝛽1xi

𝜎
= ei

𝜎
, and 𝜎 is generally esti-

mated by MAD = median|ei|
.6745

. The above objective function keeps the L2 norm: it
minimizes the sum of squared errors, as OLS, meanwhile controlling their value
through the 𝜌 function. The arbitrary constant c is the term that bounds outliers. A
very large value of c yields the standard OLS estimator, while a very small value of c
drastically curbs outliers. A frequent choice for this tuning constant is c = 1.345. As
in OLS, the M-estimator computes the regression passing through the center of the
conditional distribution of the dependent variable.

The partial derivatives for intercept and slope defining the M-estimators of the
regression coefficients are

∑
𝜓

(
yi − 𝛽0 − 𝛽1xi

𝜎

)
= 0

∑
𝜓

(
yi − 𝛽0 − 𝛽1xi

𝜎

)
xi = 0

where the 𝜓(ui) function is defined as (Huber proposal 2)

𝜓(ui) =
⎧⎪⎨⎪⎩
−c for ui < −c
ui for −c ≤ ui ≤ c

c for ui > c
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The 𝜓(ui) function replaces the too large/small residuals with the c value so that
outliers are not allowed to have a value larger/smaller than ±c, and their impact on
the M-estimator is under control. This provides an influence function bounded in the
residuals, the IR term of IF. Indeed, for the slope coefficient, the IF of theM-estimator
is given by IFM = 𝜓(ui)xi

E𝜓 ′(ui)
, where 𝜓 ′(ui) is the first derivative of 𝜓(ui), while for the

intercept it is IFM = 𝜓(ui)
E𝜓 ′(ui)

. The IFM of the slope shows that outliers in the explana-
tory variables are not curbed, since 𝜓(ui) controls only residuals, the IR term, but not
the IP component of IFM , which remains unbounded. Thus, the slope in the Huber
M-estimator is still influenced by anomalous values in the explanatory variables.

The 𝜌(ui) functions of the M-estimators can be expressed in terms of weights, and
this estimator can be defined as a weighted least squares estimator,

∑
𝜌

(
yi − 𝛽0 − 𝛽1xi

𝜎

)
=
∑

𝑤i

(
yi − 𝛽0 − 𝛽1xi

𝜎

)2

=
∑

𝑤iu
2
i

with partial derivatives for intercept and slope given by

∑
𝑤i

(
yi − 𝛽0 − 𝛽1xi

𝜎

)
= 0

∑
𝑤i

(
yi − 𝛽0 − 𝛽1xi

𝜎

)
xi = 0.

The weighting system in the Huber M-estimator is defined as

𝑤i,H = min

(
1,

c|ui|
)

when |ui| < c, then 𝑤i,H = 1, while for large standardized residuals, 𝑤i,H = c|ui| < 1,

and the ith observation is downweighted. The estimation procedure starts implement-
ing the simple OLS. The OLS residuals are standardized, and the weights are com-
puted. The second round implements a weighted least squares regression, and the
new standardized residuals allow to recompute the weights. These steps are repeated
until convergence is reached.

A different M-estimator, presented by Krasker and Welsh (1982), introduces a
bound not only on the residuals but also on the explanatory variables, in order to
control both the IR and the IP component of IF. The Krasker and Welsh M-estimator
is defined by the following weighting system

𝑤i,KW = min

(
1,

c

(xTi A−1xi)1∕2|ui|
)
.

where the term (xTi A
−1xi) is a robust measure of distance in the xi’s, standardized

by A = E(𝑤2
i,KW (ui)

2xix
T
i ). The residuals, the weights, and the robust measure of

distance in the x’s are iteratively computed. In this estimator, the bound c controls
both outlying residuals and/or outliers in the explanatory variables.
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There are many possible alternative definitions of the 𝜓(ui) function, each iden-
tifying a different M-estimator. The Beaton and Tukey (1974) biweight M-estimator
is defined by the function

𝜓(ui) = ui(c2 − u2i )
21[−c,c](ui)

or by the weights

𝑤i,T = min
⎡⎢⎢⎣0,

(
1 −

(
c|ui|

)2
)2⎤⎥⎥⎦

and a frequently used value of the bound is c = 4.685. The Hampel M-estimator
(Andrews et al., 1972) is defined by

𝜓(ui) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

ui for 0 ≤ |ui| < a

a sgn(ui) for a ≤ |ui| < b

a
c − |ui|
c − b

sgn(ui) for b ≤ |ui| ≤ c

0 for |ui| > c

with 0 < a < b < c < ∞, c − b ≥ 2a, and sgn(.) is the sign function.
By appropriately defining the weighting system, all the 𝜓(ui) functions can be

rewritten in terms of weighted least squares, and the weights provide a very good
diagnostic tool. The smaller weights signal outlying data points that have been heavily
downweighted or even excluded by the sample in order to control their impact on the
estimated coefficients.

Both the Tukey and the Hampel M-estimators, also known as redescending esti-
mators, comprise the possibility of observations having assigned a zero weight, which
implies the exclusion of these observations from the sample. In these estimators, the
weights can assume any value in the [0, 1] interval.

In addition, the simple exclusion of the anomalous values from the sample yields
the trimmed estimator, which coincides with an M-estimator assigning only two val-
ues: unit weight to the majority of the data and zero weight to the large outliers.

As mentioned, the M-estimators are computed iteratively. Convergence is guar-
anteed for convex 𝜌 functions and for redescending estimators. Often the Huber 𝜌
function is considered for the initial iterations while a redescending estimator is
implemented for the final convergence, and this is actually the way the Huber-Tukey
M-estimator results of Table 2.8 have been computed, where the redescending estima-
tor implemented in the final iterations is the biweight function. This allows to assign
a zero weight to those data points that is preferable to exclude from the sample.

Finally, the class of M-estimators comprises the mode regression estimator.
The regression passing through the conditional mode is defined by maximizing
n−1

∑
𝛿−1K(ei∕𝛿), with ei being the regression errors, 𝛿 the bandwidth, and K the

kernel function (Lee, 1993, Kemp and Santos Silva, 2012). The kernel function
assumes the same role of the robust functions 𝜌( ) and 𝜓( ) in the M-estimators,
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Table 2.8 Results in the Anscombe data, n = 11.

[Y1 X1] [Y∗
1 X1] [Y∗∗

1 X1]

Huber-Tukey
slope 0.50 0.49 0.44
se (0.14) (0.14) (0.12)
constant 2.97 2.87 3.17
se (1.34) (1.34) (1.17)

Huber estimator
slope 0.50 0.50 0.50
se (0.15) (0.19) (0.19)
constant 2.98 2.99 2.99
se (1.44) (1.80) (1.80)

Hampel estimator
slope 0.50 0.49 0.46
se (0.12) (0.13) (0.13)
constant 3.00 2.89 3.07
se (1.12) (1.29) (1.33)

median regression
slope 0.48 0.48 0.48
se (0.19) (0.19) (0.19)
constant 3.24 3.24 3.24
se (2.04) (2.04) (2.04)

OLS estimator
slope 0.50 0.50 0.61
se (0.12) (0.25) (0.29)
constant 3.00 3.56 2.94
se (1.12) (2.44) (2.84)

Note: Standard errors in parenthesis, sample size n = 11.

i.e., bounding outliers. In case of truncated data, the conditional mode provides a
consistent estimate of the non-truncated conditional mean.

Next consider the Anscombe model to analyze the behavior of the M-estimators.
Table 2.8 reports the results of some of the M-estimators so far discussed of the
median regression and of OLS for the [Y1 X1] Anscombe data without outliers,
together with the estimates in the modified data sets with one outlier, [Y∗

1 X1], and
with two outliers in the dependent variable [Y∗∗

1 X1]. In this table the median regres-
sion does not change when one and then two outliers are introduced in the original
data set, since the modified observations preserve their original position above the
median. Also the slope computed by the Huber estimator does not change from one
sample to the other. Vice versa, in the OLS, in the Hampel, and in the Huber-Tukey
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estimator the slope does change. In [Y∗∗
1 X1] the OLS slope increases since the

OLS line is attracted by the two outliers. In the Hampel and in the Huber-Tukey
case, instead, the slope decreases as the number of outliers in the sample increases.
In these two M-estimators the bound curbs more severely the outliers, and thus
the slope decreases as their number increases. Figures 2.25 and 2.26 compare
the OLS, the M-estimators, and the median regression fitted lines in the modified
Anscombe data [Y∗

1 X1] and [Y∗∗
1 X1]. In these figures, the Huber-Tukey estimated

slope decreases from one data set to the other to balance the outliers, while the OLS
estimates increase since OLS is attracted by the outliers in the dependent variable.

Table 2.9 reports the weights of the M-estimators introduced to curb out-
liers. They turn out to be a very useful diagnostic tool. The smallest weights,
those close or equal to zero, signal the outlying observations. For instance in the
Anscombe data [Y∗∗

1 X1], modified to include the two outliers at the 4th and the 9th

observation, the Huber M-estimator yields the following less-than-unit weights:
𝑤3,H = .756;𝑤4,H = .206;𝑤9,H = .266;𝑤10,H = .883. The two anomalous data
are heavily downweighted, but also the nearby observations have been somewhat
downweighted. In this same data set the Huber-Tukey M-estimator yields the
following weights: 𝑤4,HT = 0;𝑤9,HT = .015, and the nearby observations are not
much downweighted, 𝑤3,HT = .923;𝑤10,HT = .910. Thus the non-exclusion of large
outliers in the Huber 𝜌 function causes the downweighting of the nearest data points,
which are, instead, legitimate observations. The simple Tukey weights 𝑤T do not

4 6 8 10 12 14

5
10

15

x1

OLS
M-estimatorMedian quantile

observations

Figure 2.25 Comparison of results in the Anscombe model modified to include one
outlier in the dependent variable, data set [Y∗

1 X1], sample size n = 11. The two bottom
lines are the median regression and the Huber-Tukey M-estimator fitted lines. The
OLS estimator provides the greatest intercept since the fitted line is attracted by the
outlier.
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Figure 2.26 Comparison of results in the Anscombe model modified to include two
outliers in the explanatory variable, data set [Y∗∗

1 X1], sample size n = 11. Median
regression and Huber and Hampel estimators yield similar results. The Huber esti-
mator does not change its estimated slope with respect to the [Y∗

1 X1] sample. The
OLS slope is the only one to increase from one sample to the other; the fitted line is
attracted by the two outliers and is steeper than all the others.

differ much from the combined Huber-Tukey weights 𝑤HT . They both downweight
by a small amount the good observations while annihilating the outlying ones.

There is indeed a trade-off in the definition of the weighting systems. The zero
weights exclude outliers, avoiding their impact on the estimates, but they also give
up completely their informative content.1 Alternatively, assigning them a very small
weight to keep them in the sample causes the nearby legitimate observations to be
downweighted. The Hampel weights,𝑤Ha, in the [Y

∗∗
1 X1] sample are capable to pin-

point and downweight only the outliers. However, in the [Y∗
1 X1] case the 4

th outlying
observation is not downweighted at all while the 9th legitimate observation receives
a weight smaller than one.

2.2.1 M-estimators with error contamination

The model yi = 𝛽0 + 𝛽1xi + ei of Section 1.3.2, with errors characterized by a
10% contamination and with a uniformly distributed X, is here robustly estimated
considering the Huber estimator and the combination of the Huber and Tukey
𝜌( ) functions. The results provided by these estimators are reported in the first

1 In a regression with many explanatory variables, p > 2, the ith outlier may be damaging only for some
of the xij’s. By dropping the entire observation, the information of the good components of xi are lost.
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Table 2.9 Robust weights in the [Y1 X1], [Y
∗
1 X1] and [Y∗∗

1 X1] data sets.

Huber-Tukey weights 𝑤i,HT Huber weights 𝑤i,H

[Y1 X1] [Y∗
1 X1] [Y∗∗

1 X1] [Y1 X1] [Y∗
1 X1] [Y∗∗

1 X1]

.999 .997 .991 1 1 1

.999 .999 .997 1 1 1

.673 .750 .923 .752 .755 .756

.853 0 0 1 .206 .206

.995 .999 .996 1 1 1

.999 .999 .984 1 1 1

.865 .847 .915 1 1 1

.949 .969 .979 1 1 1

.723 .699 .015 .836 .879 .266

.751 .809 .910 .874 .883 .883

.997 .991 .996 1 1 1

Tukey weights 𝑤T Hampel weights 𝑤Ha

[Y1 X1] [Y∗
1 X1] [Y∗∗

1 X1] [Y1 X1] [Y∗
1 X1] [Y∗∗

1 X1]

.999 .996 .982 1 1 1

.999 .999 .995 1 1 1

.731 .673 .843 1 1 1

.877 0 0 1 1 .0093

.997 .999 .992 1 1 1

.999 .998 .969 1 1 1

.887 .797 .829 1 1 1

.958 .958 .958 1 1 1

.766 .606 0 1 .912 .136

.794 .748 .820 1 1 1

.997 .988 .992 1 1 1

two columns of Table 2.10, under the heading Huber and Huber-Tukey. The third
column of this table reports the OLS estimates, the second to last column shows the
results provided by the trimmed estimator, and the last column reports the estimated
median regression. The robustly estimated coefficients are statistically relevant in
the M-estimators, as occurs in the median regression computed in Section 1.3.2.
Vice versa, the OLS estimated slope is small and with a large standard error so that
the OLS slope is not statistically different from zero. As mentioned, one relevant
feature of the M-estimators is the set of final weights implemented to compute
the robust regression coefficients. Table 2.11 reports the weights smaller than 0.7,
signaling the outlying observations that have been downweighted in order to reduce
their contribution to the estimated coefficients. For some observations the impact has
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Table 2.10 Comparison of M-estimators and OLS results.

Huber Huber-Tukey OLS 6%-trimmed median

slope 1.183 1.299 .940 1.413 1.753
se (.35) (.33) (.71) (.36) (.36)
constant 2.678 2.661 2.599 2.605 2.372
se (.21) (.20) (.42) (.21) (.21)

Note: Standard errors in parenthesis, sample size n = 100.

Table 2.11 M-estimators, weights smaller than 0.7.

xi yi 𝑤i,HT 𝑤i,H

.80 7.89 .072 .34

.43 10.79 0 .19

.73 −4.28 0 .18

.33 −7.02 0 .14

.08 .250 .540 .57

.64 −3.83 0 .20

.88 −3.46 0 .20

.81 .38 .283 .44

Note: The weights 𝑤i,H define the Huber M-estimator, while 𝑤i,HT

refer to the weights generated by the Huber 𝜌 function in the initial
iterations followed by the Tukey 𝜌 function afterward.

been reduced by less than 30%. As can be seen comparing Table 1.5 and Table 2.11,
the observations downweighted by the M-estimators coincide with the observations
detected as outliers by the standardized and studentized residuals of the median
regression. In particular, the Huber-Tukey M-estimator completely excludes five
observations, assigning them a zero weight, 𝑤i,HT = 0. The remaining three outliers
are very heavily downweighted, contributing by 54%, 28%, or by only 7% to the
final estimates. The Huber weights, 𝑤i,H , would not exclude any of the five data
points but would assign them very low values, generally around .2. In the table, 𝑤i,H
is generally larger than 𝑤i,HT .

The weights of all the M-estimators provide a built-in diagnostic tool, thus
bypassing the need to compute additional diagnostic measures such as the stan-
dardized or the studentized residuals. Figure 2.27 presents the weights of the
Huber-Tukey M-estimator, where five of them are on the zero line, and another one
is very close to it. Figure 2.28 compares the estimates provided by OLS, median
regression and Huber-Tukey M-estimator in the contaminated errors model. Finally,
once the outliers are detected, it is very easy to compute the trimmed regression,
which amounts to implement OLS after the exclusion of the anomalous values.
In this case the exclusions comprise the five observations having zero weight in



QUANTILE REGRESSION AND RELATED METHODS 57

0 .2 .4

−5
0

5
10

.6
x

y Robust Regression Weight

.8 1

Figure 2.27 The triangles represent the weights generated by the Huber-Tukey
M-estimator in the model with contaminated errors, in a sample of size n =100. The
six largest outliers receive a weight equal or very close to zero, while the majority of
the observations receive 𝑤i,HT equal or close to one.
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Figure 2.28 Comparison of median, Huber-Tukey M-estimator, and OLS in the
model with contaminated errors, in a sample of size n = 100. The OLS line is flatter,
and the slope has a larger standard error, while the other two estimated lines are close
to one another.
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𝑤i,HT and the observation with the very small weight 𝑤i,HT = .072. This yields the
estimates reported in the second to last column of Table 2.10. The results are close
to the Huber-Tukey estimates, with slightly larger standard errors. Since six out of
100 observations have been excluded, this is a 6%-trimmed estimator.

2.2.2 The French data

In the French example, the robustly estimated slope is negative, 𝛽1,HT = −0.00233 in
theHuber-Tukey case and 𝛽1,H = −0.0014 in theHuber estimator, just as occurs in the
median regression. Theweights𝑤i,HT smaller than .5 of theHuber-TukeyM-estimator
are reported in the first column of Table 2.12, while in the last column are the Huber
weights,𝑤i,H . In the central columns are the values of the dependent and independent
variables. There is only one observation excluded from the sample by a zero 𝑤i,HT
weight, and this is the data point characterized by the highest walking speed and high
BMI. Besides this possible coding error, two other data points receive a very small
weight,𝑤i,HT = .06. These two observations present the second largest walking speed
of the sample and have been overlooked by the previous analysis in Chapter 1. The
robustweighting systembrings them to the attention of the analyst. These observations
become clearly visible in the top section of the graph of Figure 1.12, once the possible
coding error has been dropped. They were masked by the outlier. In Table 2.12, the
downweighted data are those observations having a walking speed above 1.2, and the
downweight becomes heavier in case of a walking speed above 1.5. The last column
of the table reports the Huber weights, which once again are generally greater than
𝑤i,HT , and assign a nonzero weight even to the largest outliers.

2 Indeed, the possible

Table 2.12 The smallest robust weights 𝑤i,HT
and 𝑤i,H in the French data set.

𝑤i,HT 𝑤speed BMI 𝑤i,H

.1238 1.552795 25.81663 .35

.4561 1.269036 29.70041 .50

.4935 1.25 25.63117 .52

.3684 1.351351 22.94812 .45

.0633 1.612903 30.11621 .33
0 3.333333 36.62851 .12
.4643 1.25 35.2653 .51
.4871 1.25 27.73438 .52
.4168 1.295337 31.2213 .48
.0661 1.612903 28.51563 .33

2 The downweighting of the close-by observations is not reported in the table since these weights are
greater than 0.5.
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coding error, describing an individual obese and with the highest walking speed of the
entire sample, receives a small but positive weight, 𝑤i,H = .12, while it is excluded
by the Huber-Tukey estimator, 𝑤i,HT = 0.

2.2.3 The Netherlands example

The Dutch data set presents a robustly estimated slope coinciding with the OLS
result, 𝛽1,HT = −0.0058 and 𝛽1,H = −0.0060. The weighting system provided by the
Huber-Tukey estimator yields few weights smaller than .5, as reported in the first
column of Table 2.13. The zero weight is assigned to the largest walking speed
value, and the lower weights are assigned to the observations with 𝑤speed > 1.3.
The largest value of the explanatory variable, BMI = 73.39, receives a weight very
close to one,𝑤i,HT = .9987, and is not reported in the table. This is the case since the
M-estimator does not curb outliers in the explanatory variables, just as occurs in OLS,
in the expectile, and in the quantile regression estimators. However, this observation,
although being a large outlier in BMI, is not influential. Indeed, it has a low sam-
ple influence function, SIF(𝛽1,OLS) = −0.122, SIF(𝛽1(.5)) = 0.122, and SIF(𝛽1,HT ) =
306(−0.0058 + 0.0055) = −0.091. The last column in Table 2.13 reports the Huber
estimator weights, which do not comprise any zero weight and which are generally
larger than the Huber-Tukey weights. In this set of weights, 𝑤H , the non-influential
outlier in BMI = 73.39 receives a unit weight𝑤i,H = 1. The Dutch data set draws the
attention to robustness with respect to outliers in the explanatory variables. Among
the M-estimators, the bounded influence estimator defines weights that take into
account both kinds of outliers, in the errors and in the explanatory variables. For
the quantile regression estimator, Neykov et al. (2012) discuss the trimmed quantile
regression, computed in a subset of the sample. By selecting the trimming constant
k, that is the number of excluded observations from the sample, the trimmed quan-
tile regression estimator is defined as min𝛽[minIk

∑
i∈I(k)𝜌(ei)], where 𝜌(ei) is the usual

quantile regression function, 𝜌(ei) = ei[𝜃 − 1(ei < 0)], implemented in the subset I(k).
This allows to exclude outliers in both dependent and explanatory variables.

Table 2.13 The smallest robust weights,
𝑤i,HT and 𝑤i,H , in the Dutch data set.

𝑤i,HT 𝑤speed BMI 𝑤i,H

.4458 1.440922 23.88946 .52
0 1.992032 30.80125 .28
.4715 1.388889 29.38476 .53
.3416 1.533742 21.79931 .46
.2463 1.612903 21.43461 .42
.0487 1.818182 21.29529 .34
.2124 1.633987 22.77319 .41
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2.3 M-quantiles

M-quantiles merge together the M-estimators and the expectiles approach. Both
methods are implemented within the least squares model, in the L2 norm. While
quantile regressions consider the L1 norm, thus taking into account only the sign of
the residuals, that is, the position of an observation above or below the estimated
line, expectiles and M-estimators take into account both the sign and the value of
each residual. This affects the robustness of expectiles but not of the M-estimators,
which preserve robustness by introducing a weighting system to control the out-
lying observations. The M-estimator, which looks for the robust conditional mean
regression, is generalized by Breckling and Chambers (1988) to compute robust
regressions passing through different points of the conditional distribution besides
the conditional mean. This yields the robust regression analogues of the expectiles,
named asymmetric M-estimator or M-quantiles. The M-quantile estimator is defined
by considering a 𝜓𝜃( ) function, which besides bounding outliers is also asymmetric,
thus allowing to compute a robust regression away from the conditional mean.
Although it can be considered as the analogue of a quantile regression within the
least squares framework, it does not provide an alternative measure of quantiles
since, just as in the expectiles approach, the estimated line – or plane – does not
divide the observations in two groups, 𝜃 of them below and 1 − 𝜃 above the estimated
M-quantile line/plane. As for the expectiles, 𝜃 is only a skewness parameter, which
sets the position of the estimated line away from the center. For 𝜃=.5 the M-quantile
coincides with the M-estimator.

In detail, the objective function of the M-quantile estimator computed at 𝜃 is
defined as ∑

i=1,n
𝜌(ui)[(1 − 𝜃)I(ui ≤ 0) + 𝜃I(ui > 0)]

The 𝜌(.) function is any of the robust regression functions defined in Section 2.2.
The first derivative is

∑
i=1,n𝜓𝜃(ui)xi = 0, with xi = [1 xi] and

𝜓𝜃(ui) =

{
(1 − 𝜃)𝜓(ui) for ui ≤ 0

𝜃𝜓(ui) elsewhere

The ui are the standardized residual ui =
ei
𝜎
, 𝜎 is computed by MAD = median|ei|

0.6745
,

and 𝜓𝜃(ui) premultiplies by the asymmetric weights 𝜃 and (1 − 𝜃) the 𝜓(ui) function
defining the Huber M-estimator or any other of the 𝜓( ) functions belonging to the
class of the M-estimators. For instance in the Huber M-estimator case, it is (Pratesi
et al., 2009)

𝜓𝜃(ui) =

⎧⎪⎪⎨⎪⎪⎩

−(1 − 𝜃)c for ui < −c
(1 − 𝜃)ui for − c ≤ ui < 0

𝜃ui for 0 ≤ ui ≤ c

𝜃c for ui > c
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and for 𝜃 = .5, the function 𝜓.5(ui) yields the Huber M-estimator. As for all the
M-estimators, a small c increases robustness, while a very large c yields the OLS
estimator. For 𝜃 ≠.5 and a very large c, the M-quantiles coincide with the expectiles.

Considering the Huber robust weights𝑤i,H = min(1, c|ui| ), their combination with
𝜃 and (1 − 𝜃) location parameters defines the M-quantile weights 𝑤i,M

𝑤i,M =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

−(1 − 𝜃) c|ui| for ui < −c

(1 − 𝜃) for − c ≤ ui < 0

𝜃 for 0 ≤ ui ≤ c

𝜃
c|ui| for ui > c

Table 2.14 reports the M-quantile estimated coefficients in the three Anscombe
data sets, [Y1 X1], [Y

∗
1 X1] and [Y

∗∗
1 X1]. The Huber-Tukey 𝜌( ) function has been here

considered as the central M-estimator that robustly computes the conditional mean
regression. Therefore, the regression model is first robustly computed at 𝜃=.5 by
the simple Huber-Tukey robust estimator of Section 2.2. The regressions away from
the robust conditional mean are estimated as deviations from the center using the
above𝑤i,M weights in the equation

√
𝑤i,MY1i = 𝛽0 + 𝛽1

√
𝑤i,MX1i + ei. Analogously

Table 2.14 Huber-Tukey M-quantile estimates for the Anscombe data
set [Y1 X1] and the modified data [Y∗

1 X1] and [Y∗∗
1 X1].

𝜃 10th 25th 50th 75th 90th

[Y1 X1]
slope 0.51 0.51 0.50 0.52 0.56
se (0.08) (0.09) (0.14) (0.11) (0.10)
constant 2.26 2.56 2.98 3.21 3.17
se (0.81) (0.94) (1.3) (1.2) (1.1)

[Y∗
1 X1]
slope 0.48 0.49 0.49 0.49 0.49
se (0.10) (0.11) (0.14) (0.14) (0.14)
constant 2.36 2.59 2.87 3.38 3.61
se (0.91) (1.1) (1.3) (1.4) (1.3)

[Y∗∗
1 X1]
slope 0.42 0.45 0.44 0.48 0.48
se (0.10) (0.14) (0.12) (0.17) (0.17)
constant 2.60 2.77 3.17 3.46 3.67
se (0.92) (1.3) (1.2) (1.7) (1.7)

Note: Standard errors in parenthesis, sample size n = 11.
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in the data set [Y∗
1 X1], the robust regression passing through the conditional mean

is computed by the Huber-Tukey estimator, while the lines away from the condi-
tional mean are computed as deviations from it in the equation

√
𝑤i,MY

∗
1i = 𝛽0 +

𝛽1
√
𝑤i,MX1i + ei. The same procedure is implemented for the [Y∗∗

1 X1] data set.
3

The selection of a differentM-estimator for the initial robust regression of the con-
ditional mean, which provides the weights bounding outliers, would yield different
M-quantiles estimates.

The results of Table 2.14 are depicted in Figures 2.29 to 2.31. They can be com-
pared with the estimates and the graphs of the expectiles in Section 2.1. Figure 2.29
shows M-quantile estimated lines presenting a pattern very similar to the expectiles
of Figure 2.5, since in [Y1 X1] there are no outliers.

The robustness of the M-quantiles becomes clear when looking at the estimates
of the intercept in the [Y∗

1 X1] data set and at the estimated slope in the [Y∗∗
1 X1]

example. The constant term computed at the different 𝜃 in [Y∗
1 X1] ranges from 2.3 to

3.6 across 𝜃 for the M-quantiles and from 2.6 to 6.5 for the expectiles. In Figure 2.30
the M-quantiles are not much affected by the outlier in the dependent variable, while

Y1
50th M-quantile
10th M-quantile

75th M-quantile
25th M-quantile

90th M-quantile

4

4
6

8
10

12

6 8
x1

10 12 14

Figure 2.29 M-quantile estimates, [Y1 X1] data set, sample size n =11. In this data
set, the M-quantiles are similar to the estimated expectiles of Figure 2.5, since there
are no outliers.

3 Here the M-quantiles are computed as deviation from the robust conditional mean without any iter-
ation. Alternatively, they can be computed by iterative weighted least squares (WLS). Away from the
conditional mean, the first WLS iteration combines the 𝜃 and (1 − 𝜃) parameters with the robust weights
at the conditional mean defined in Section 2.2, then the new set of residuals are used to recompute the
robust weights and the WLS regression is re-estimated. These steps are repeated until convergence. The
M-quantile results discussed in Section 2.3 are computed without iterations. Once estimated the robust
regression at the mean, the asymmetric 𝜃 and (1 − 𝜃) are implemented to diverge from the robust condi-
tional mean.
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Figure 2.30 M-quantiles in the [Y∗
1 X1] data set, sample size n=11. The M-quantile

estimates are computed as deviations from the Huber-Tukey robust conditional mean
estimator. This reduces the impact of the outlier and the M-quantiles have close-by
intercepts with respect to the expectiles of Figure 2.6. Here the intercept ranges from
2.4 to 3.6, while in Section 2.1 it ranges from 2.6 to 6.5.
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50th M-quantile
10th M-quantile

75th M-quantile
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90th M-quantile
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Figure 2.31 M-quantiles, [Y∗∗
1 X1] data set, sample size n=11. The M-quantiles are

not affected at all by the two outliers. This is due to the approach here implemented,
which computes the M-quantiles by shifting toward the tails the robust conditional
mean. While in Figure 2.8 the estimated lines are fan shaped, here this is not the
case. In Section 2.1 the slope ranges from 0.48 to 0.80, while here it ranges from
0.42 to 0.48.
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the intercepts of Figure 2.6 as estimated by the expectiles are increasingly far apart
since the expectiles are attracted by the outlier.

For the data set [Y∗∗
1 X1] the slope ranges from 0.42 to 0.48 in Table 2.14 for the

M-quantiles and from 0.48 to 0.80 in Table 2.4 reporting the expectiles. Figure 2.31
shows how theM-quantiles are not attracted at all by the two outliers in [Y∗∗

1 X1], since
they are computed by shifting up or down the robust conditional mean. Figure 2.31
differs from Figure 2.8, where all the expectiles are instead attracted by the two out-
liers and yield a fan-shaped graph. Due to the robust weights, here the slope does not
change much across 𝜃.

2.3.1 M-quantiles estimates in the error-contaminated model

The model yi = 𝛽0 + 𝛽1xi + ei of Section 2.1.1, characterized by a 10% error con-
tamination, is now estimated at different values of 𝜃 meanwhile downweighting the
data in order to curb outliers. Table 2.15 reports the M-quantiles computed using the
robust weights generated by the Huber-Tukey M-estimator, and the regressions at
the different 𝜃 are computed as deviations from the robustly estimated conditional
mean in the model

√
𝑤i,Myi = 𝛽0 + 𝛽1

√
𝑤i,Mxi + ei. Figure 2.32 depicts the esti-

mated Huber-Tukey M-quantiles. With respect to the simple expectiles, which are
statistically relevant only at the two higher expectiles as reported in Table 2.5, the
estimated coefficients are statistically different from zero at all the selected 𝜃.

2.3.2 M-quantiles in the French and Dutch examples

Figure 2.33 to 2.36 report the quantile plots of the variables𝑤speed and BMI robustly
weighted using𝑤i,HT for the French and the Dutch data sets. These figures, compared
with the quantile plots of the original variables, reported in Figures 2.14, 2.16, 2.20,
and 2.22, show how the robust weights have modified the quantiles of the variables.
For instance, while in Figure 2.14 the 𝑤speed top quantiles were above the straight
line representing the theoretical normal quantiles, in the weighted 𝑤speed variable,
the higher quantiles are below the straight line of Figure 2.33. Table 2.16 reports the
M-quantiles computed using the Huber-Tukey weights to control outliers. In both
samples the slope is negative at all 𝜃. Figures 2.37 and 2.38 present the M-quantiles
for the French and the Dutch samples.

Table 2.15 Huber-Tukey M-quantile estimates, 10% error
contamination.

𝜃 10th 25th 50th 75th 90th

slope 1.013 1.119 1.299 1.156 1.089
se (.40) (.42) (.33) (.34) (.28)
constant 2.130 2.318 2.661 3.091 3.361
se (.23) (.24) (.20) (.21) (.17)

Note: Standard errors in parenthesis, sample size n = 100.
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Figure 2.32 Huber-Tukey M-quantile estimates of the model with 10% contam-
inated normal error distribution in a sample of size n = 100. Compared with
Figure 2.10, where the lower expectiles are attracted by the outliers so that some
of them look like regular observations, here the outliers are all clearly visible.
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Figure 2.33 Quantile plot of the robustly weighted 𝑤speed, France data set. Com-
pared with Figure 2.14, which depicts the quantiles of the original data, the empirical
quantiles of the weighted variable are below the theoretical normal quantile line at the
top quantiles. The downweighting of outliers, particularly of the suspicious case of
high walking speed of an individual with very large BMI, brings the upper quantiles
below normality.
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Figure 2.34 Quantile plot of the robustly weighted BMI, France data set. Compared
with Figure 2.16, which depicts the quantiles of the original data, the empirical quan-
tiles of the weighted variable are below the theoretical normal quantile line in the left
tail. The downweighting has sizably affected the lower values of BMI.
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Figure 2.35 Quantile plot of the robustly weighted 𝑤speed, the Netherlands data
set. Compared with Figure 2.20, which depicts the quantiles of the original data, the
empirical quantiles of the weighted variable are below the straight line both at the
lower and at the higher quantiles.
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Figure 2.36 Quantile plot of the robustly weighted BMI, the Netherlands data set.
Compared with Figure 2.22, which depicts the quantiles of the original data, the
empirical quantiles of the weighted variable are below the theoretical normal quantile
line in the left tail. The plot shows how the large but non-influential BMI value has
not been downweighted.

Table 2.16 M-quantile estimates in the French and Dutch examples.

𝜃 10th 25th 50th 75th 90th

French data, n = 393

intercept 0.542 0.580 0.672 0.735 0.789
slope −0.003 −0.002 −0.002 −0.001 −0.001

Dutch data, n = 307

intercept 0.696 0.776 0.898 1.02 1.09
slope −0.003 −0.004 −0.006 −0.007 −0.007

To conclude, the health data set is considered in its entirety, pooling together
𝑤speed and BMI for all the 11 European countries of the survey, in a sample of
size n = 2959. Figure 2.39 depicts the scatterplot of the variables. The regression
between walking speed and BMI in Europe yields a negative and statistically relevant
slope coefficient whatever estimator is implemented, as shown in Table 2.17, with
the sole exceptions of the 10th quantile estimated slope which is not statistically
significant. Table 2.18 reports the observations receiving a zero weight in the
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Figure 2.37 M-quantiles estimates, France data set, to be compared with
Figure 2.17 depicting the expectiles. The M-quantiles are not attracted by the outlier
as occurs in the fan shaped expectile graph.
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Figure 2.38 M-quantiles estimates, Dutch data set, to be compared with
Figures 2.23 and 2.24, depicting respectively the expectiles and the quantiles fitted
lines. TheM-quantile estimates do not differ much from the expectiles of Figure 2.23,
since the outlier in BMI is not influential. Compared to the quantile regressions of
Figure 2.24, the M-quantile lines do not cross.
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Figure 2.39 European data, sample of size n = 2959. The data set presents an
extremely large outlier inBMI,BMI > 60, and at least three outliers in walking speed,
with 𝑤speed > 3.
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Figure 2.40 M-quantiles, European data, sample of size n = 2959.
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Table 2.17 Comparison of estimators, European data, sample size n = 2959.

𝟏𝟎th 𝟐𝟓th 𝟓𝟎th 𝟕𝟓th 𝟗𝟎th

expectiles
intercept 0.484 0.614 0.755 0.901 1.057
se (0.03) (0.03) (0.03) (0.05) (0.09)
slope −0.0013 −0.0022 −0.0029 −0.0033 −0.0033
se (0.001) (0.001) (0.001) (0.002) (0.003)

quantiles
intercept 0.317 0.534 0.729 0.935 1.25
se (0.03) (0.04) (0.03) (0.04) (0.07)
slope 0.0003 −0.0026 −0.0035 −0.0038 −0.007
se (0.001) (0.001) (0.001) (0.001) (0.002)

M-quantiles
intercept 0.553 0.621 0.737 0.858 0.930
se (0.02) (0.02) (0.03) (0.03) (0.02)
slope −0.002 −0.0026 −0.0033 −0.0037 −0.0039
se (0.0007) (0.0009) (0.001) (0.001) (0.0009)

Note: Sample size n = 2959.

M-quantile regressions. In this table the possible coding error in the French data set
for𝑤speed = 3.3 receives a zero weight, while the anomalous value of BMI = 73.39
in the Dutch data set is not excluded from the sample.

2.3.3 Further applications: small-area estimation

A particularly fruitful implementation of M-quantiles can be found in small- area
estimation problems, since they simplify the computation of inter-area differences
(Chambers and Tzavidis, 2006; Pratesi et al., 2009) when the groups are small and
the sample size of each group is tiny. The presence of a hierarchical structure in the
data, which explains part of the variability of themodel, can be taken into account, and
the group effect can be computed by averaging the M-quantile estimates of the ele-
ments belonging to the same group. An example is provided by a work analyzing the
performance of sixteen- year-old students (Tzavidis and Brown, 2010). M-quantile
regressions on the students’ scores at exams are function of students’ characteristics
such as language, ethnicity, and family background. The analysis focuses on assessing
school performance. The impact of a specific school on students’ achievements, that
is, the group effect, is computed by merging the quantiles of students enrolled in the
same school. The small-group effect (the school impact) can be computed bymerging
the estimates of all the elements belonging to the same group. This avoids the need of
modeling the inter-area differences. For instance, in the European data on health ana-
lyzed in the previous section, the group effects would be the country- specific impact.
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Table 2.18 Observations receiving a
zero weight in the M-quantile estimates,
European data, sample size n = 2959.

𝑤speed BMI country

4.4 20.5 Austria
4.4 22.1 Germany
2.0 23.8 Germany
2.5 20.2 Germany
4 22.4 Sweden
2.3 25.9 Sweden
1.9 30.8 Netherlands
2.2 29.7 Italy
3.3 36.6 France
2.7 29.3 Denmark
2.4 30.0 Greece
2.3 31.4 Greece
2.5 27.2 Greece
2.3 35.1 Belgium
1.9 29.7 Belgium
2.5 22.6 Belgium
2.5 28.2 Belgium
2.5 25.7 Belgium

Since in this example the sample size of each country is not really small, the data for
each country are numerous enough to compute country-specific regressions. When
this is not the case, that is, when the groups are small and the sample size of each
group is inadequate, the group effect can be pulled out from the M-quantile estimates
of the pooled data.

To measure the effect of group j, having sample size nj, the statistic is

m̂j = N−1
j

[∑
j∈s

yij +
∑
j∉s

xTij𝛽

]

where the term
∑

j∈syij considers the nj sample units in the j group, while the term∑
j∉sx

T
ij𝛽 refers to the remaining Nj − nj units of group j.

For instance the French data set has NF = 3071 observations, but the regression
can be implemented only in a smaller sample, of size nF = 393, due to missing
data occurring mostly in the 𝑤speed variable. The first term of the above equation
yields

∑
j∈syij = 249.9 for s = nF = 393, while the second term computes at the 50th

M-quantile the missing𝑤speed values as
∑

j∉sx
T
ij𝛽(.5) = −233.8. Thus at 𝜃 = .50 the

country effect for France is m̂F(.5) =
[249.9−233.8]

3071
= 0.005.
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In the Dutch subset there are ND = 2930 observations, but due to missing data,
the regression can be implemented only in a subset of size nD = 307. In the subset
s = nD = 307, it is

∑
j∈syij = 234.6 while for the missing data at the 50th M-quantile,

it is
∑

j∉sx
T
ij𝛽(.5) = −231.5. Thus at 𝜃 = .50 the Dutch impact is m̂D(.5) = 0.001, and

at 𝜃 = .50 the French country effect is larger than the Dutch one.
This procedure can be repeated at each M-quantile, for 𝜃 = .10, .25, .75, .90, to

compute the country effect at the different points of the conditional distribution. At
the 25th M-quantile the country effect for the Netherlands is m̂D(.25) = 0.018 and for
France is m̂F(.25) = 0.022, while at the 75th M-quantile it is m̂D(.75) = −0.009 in the
Netherlands and m̂F(.75) = −0.004 in France. Thus the country effect is positive at
the lower M-quantiles and decreases to become negative at the top M-quantiles for
both countries. The country impact is generally greater in France than in the Nether-
lands at all quantiles, implying that BMI has a greater impact on𝑤speed in the former
country.

2.4 A summary of key points

Analogously to quantile regressions, expectiles allow to compute a regression model
away from the conditional mean. An asymmetric weighting systemmodifies the least
squares objective function to set the position of the estimated regression away from
the center. Both real and artificial data sets are analyzed, and the results are compared
with the quantile regression estimates to look at the similarities and at the differences
of the two approaches. The main advantage of expectiles is its ease of computation,
while the major drawback is its lack of robustness. Next the M-estimators are con-
sidered. The latter are robust methods defined to control the impact of outliers when
estimating the model at the conditional mean. Their weighting system focuses on
curbing extreme values in the data set and provides an excellent diagnostic tool. The
simple exclusion of the outliers from the sample, assigning weights equal to zero to
the outliers and equal to one elsewhere, provides the trimmed OLS and the trimmed
quantile regression estimators. The combination of M-estimators and expectiles yield
the M-quantiles. The latter estimator allows to compute a model at various points of
the conditional distribution, meanwhile controlling and bounding outliers. Real and
artificial data sets are analyzed implementing the M-estimators and the M-quantiles.
The comparison of the results shows the advantages and the weaknesses of each one
of the above approaches.
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Appendix: computer codes

R codes for quantiles and expectiles:

library(expectreg) load libraries

library(quantreg)

library(BayesX)

library(mboost)

library(splines)

library(quadprog)

dataname <- read.dta("datafile") read data set

qreg7 <- rq(y ∼ x, tau=.7, data=name) compute 70th quantile

summary(qreg7) print results

qreg3 <- rq(y ∼ x, tau=c(.30,.80),
data=name)

compute 30th and 80th

quantiles

summary(qreg3) print results

ex <- expectreg.ls(y ∼ x, compute expectiles

data=name, .10, .25, .75, .90

expectiles=c(.10,.25,.75,.90),
ci=TRUE)

summary(ex) print results

fitted(ex) print expectiles fitted
values

eenorm(dataname$y) expectile plot of y

eenorm(dataname$x) expectile plot of x

qqnorm(dataname$y) quantile plot of y

qqnorm(dataname$x) quantile plot of x
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Stata codes for quantiles and expectiles:

qreg y x, q(.7) compute the 70th quantile

qreg y x, q(.3) compute the 30th quantile

gen q1=1 generate a unit constant

reg y x compute OLS regression

forvalues i=1(1)10 { starts 10 iterations

predict res,resid save residuals

replace q1=.10 if res >=0 generate asymmetric weights

replace q1=.90 if res <0 for the 10th expectile

reg y x [w=q1] 10th asymmetrically weighted least
squaresdrop res

} end of instructions to be iterated

reg y x [w=q1] repeat last estimated regression

predict ex10 fitted values 10th expectile

la var ex10 "10th expectile"

twoway (scatter y x) plot the 10thexpectile

(connect ex10 x)

Stata codes for expectiles without iterations:

gen q1=1 generate a unit constant

reg y x compute OLS regression

predict res,resid save residuals

replace q1=.10 if res>=0 generate asymmetric weights

replace q1=.90 if res<0 for the 10th expectile

reg y x [w=q1] 10th asymmetrically weighted least
squares
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R codes for M-estimators:
library(MASS) load library

mod.huber < − rlm(y ∼x, compute Huber M-estimator
data=dataname,
psi=psi.huber)

mod.hampel < − rlm(y ∼x, compute Hampel
M-estimatordata=dataname,

psi=psi.hampel)
mod.tukey < − rlm(y ∼x, compute Tukey M-estimator

data=dataname,
psi=psi.bisquare)

summary(mod.huber) print results
plot(mod.huber$w, plot weights

ylab="Huber Weight",xlab="x")
list(mod.huber$w) print Huber weights
sqrtw < − (mod.huber$w) ̂ .5 square root weights
wy < − dataname$y*sqrtw weighted y, wy=y

√
𝑤H to

control outliers
wx < − dataname$x*sqrtw weighted x, wx=x

√
𝑤H , to

control outliers

Stata codes for M-estimators, Huber-Tukey weights:
use datafile read the data set
rreg y x, genwt(nameweight) compute M-estimators using

Huber in the initial
iterations and then Tukey
weights

list nameweight print Huber-Tukey weights
twoway (scatter y x) (scatter

nameweight x,msymbol(triangle))
plot weights

gen wy=sqrt(nameweight)*y modify y to control outliers,
wy=y

√
𝑤HT

gen wx=sqrt(nameweight)*x modify each explanatory
variable to control outliers,
wx= x

√
𝑤HT

qnorm y quantile plot of y
qnorm x quantile plot of x
keep wy wx save weighted data
save weightedname save wy and wx in

weightedname
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Stata codes for trimmed OLS and trimmed quantile regressions:

reg y x if y<=k excludes values of y> k in OLS
reg y x if x<=k excludes values of x> k in OLS
qreg y x if y<=k excludes values of y> k in QR
qreg y x if x<=k excludes values of x> k in QR

R codes for M-quantiles, Huber weights:

em < − expectreg.ls(wy ∼ wx, compute expectiles using
data=name, robustly weighted data
expectiles=c(.25,.75,.90),
ci=TRUE)

summary(em) print results

R codes for iterative M-quantiles, starting from Huber regression:

modhub < − rlm(y∼x,
data=name,
psi=psi.huber,
maxit=10)

summary(modhub) robust regression, Huber
weights

rres < − resid(modhub) robust residuals
scale < − median(abs(rres))/0.6745 estimate the scale (MAD)
stres < − rres/scale standardize robust residuals
weightRes < − ifelse(stres < 0, asymmetric weights

0.25, 0.75)
Weighted < − rlm(y1c∼x1, M-quantile

data=name,
weights=weightRes)

summary(Weighted) results of the M-quantile
regression

rres2 < − resid(Weighted) keep residuals for iteration
scale2 < − median(abs(rres2))/0.6745 recompute MAD
stres2 < − rres2/scale2 standardize robust residuals
weightRes2 < − ifelse(stres2 < 0, asymmetric weights

0.25, 0.75)
Weighted2 < − rlm(y1c∼x1, M-quantile

data=name,
weights=weightRes2)

summary(Weighted2) results of the M-quantile
regression
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Stata codes for M-quantiles, Huber-Tukey weights:

rreg y x Huber-Tukey robust
regression

predict rfit5 fitted robust regression
values

predict res,resid save robust residuals
gen abres=abs(res) absolute value of residuals
su abres,d compute the median
scalar mad=r(p50)/.6745 median absolute deviation
gen rres=res/mad standardized residuals ui
gen q1=.10 if rres >= 0 &
rres< 1.345

generate asymmetric weights

replace q1 = (1.345/abs(rres))*.10 for the 10th M-quantile
if rres >1.345

replace q1 = (1.345/abs(rres))*.90
if rres <−1.345

replace q1 = .90
if rres <= 0 & rres>=−1.345

reg y x [w=q1] asymmetrically weighted
least squares for the 10th

M-quantile
predict mq10 fitted values 10th M-quantile
gen q2=.25 asymmetric weights for the

if rres >=0 & rres < 1.345 25th M-quantile
replace q2 = (1.345/abs(rres))*.25

if rres >1.345
replace q2 = (1.345/abs(rres))*.75

if rres <−1.345
replace q2 = .75 if rres <= 0 M-quantile
reg y x [w=q2] asymmetrically weighted

least squares for the 25th

M-quantile
predict mq25 fitted values 25th

la var mq10 "10th M-quantile"
la var mq25 "25th M-quantile"
la var rfit5 "M-estimator"
twoway (scatter y x) plot of the

(connect mq10 x) 10th, 25th, 50th M-quantile
(connect mq25 x)
(connect rfit5 x)
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Stata codes for small area estimation:

rreg wspeed bmi robust regression

predict res, resid save residuals

matrix coef1=e(b) save coefficients

scalar b1=el(coef1,1,1) slope coefficient

scalar b0=el(coef1,1,2) intercept

su wspeed if group==j & res!=. size of group j

scalar smalln=r(N)
scalar aj=r(mean)*smalln compute

∑
j∈syij

gen dumm=1 if group==j select non regression data
j ∉ s

replace dumm=0 if group==j & res!=.
gen meanxbj=(b1*bmi) if xTij𝛽 for j ∉ s

group==j & dumm==1
su meanxbj if group==j & dumm==1
scalar ndif=r(N)
scalar bj=r(mean)*ndif compute

∑
j∉sx

T
ij𝛽

scalar groupj=(aj+bj)/(ndif+smalln) N−1
j [

∑
j∈syij +

∑
j∉sx

T
ij𝛽]

scalar list groupj print result
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Resampling, subsampling, and
quantile regression

Introduction

The chapter focuses on subsampling and resampling methods to further analyze
the characteristics of the quantile regression estimator. The small size of the
Anscombe (1973) model allows to consider the elemental set interpretation of
this estimator. Next the estimates at the extreme quantiles are considered. The
latters focus on the quantiles in the far tails, characterized by nonstandard behavior,
where inference is implemented through a resampling approach. In Section 3.4 a
brief review of the asymptotic distribution of the non-extreme quantile regression
estimator is reported for comparison’s sake. Finally treatment effect estimators
computed on average and at the various quantiles are discussed. The decomposition
of the treatment effect into impact explained by the covariates and unexplained
coefficients effect is considered on average, by the Oaxaca-Blinder approach, and at
the various quantiles, by heavily relying on resampling methods.

3.1 Elemental sets

This section considers the elemental sets approach, which provides a very intuitive
tool to compare OLS and quantile regressions (Farebrother, 1985; Hawkins, 1993;
Heitmann and Ord, 1985; Hussain and Sprent, 1983; Subrahmanyam, 1972). The
elemental sets are subsets of size p, where p is the number of unknown parameters
in the regression. In the simple two- parameter model, yi = 𝛽0 + 𝛽1xi + ei, there are

Quantile Regression: Estimation and Simulation, Volume 2. Marilena Furno and Domenico Vistocco.
© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/furno/quantileregression
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n
p

)
= n!

p!(n−p)! elemental sets each comprising only two data points, where each
set has dimension p = 2. Two points i and j univocally identify only one line, and
its coefficients are exactly computed by b0(i, j) =

1
2
[yi + yj − b1(i, j)(xi + xj)] for

the intercept and b1(i, j) =
(yi−yj)
(xi−xj)

for the slope. The regression coefficients 𝛽0 and

𝛽1 can be expressed in terms of the elemental sets coefficients b0(i, j) and b1(i, j).
While the OLS estimator is given by the weighted average of all the possible b(i,j),

𝛽p,OLS =
∑

ijwijbp(i, j) for p = 0, 1, with weights given by wij =
(xi−xj)2∑
ij(xi−xj)2

, the

median regression summarizes all the bp(i, j) by selecting their median value (Theil,
1950). Analogously, for the quantiles away from the median, the estimator selects the
chosen quantile of the bp(i, j) series. The elemental sets provide the building block
of one of the methods implemented to compute the quantile regression estimator,
the simplex approach (Koenker 2000). The results of the Theil (1950) estimator,
however, may differ from the ones provided by the Koenker and Bassett (1978)
quantile regression estimator since the latter considers elemental sets as the starting
point of an iterative process to select the optimal elemental set (see Section 5.3).1

A reduced version of the Anscombe data set [Y1 X1] provides an easy example. In

a sample of size n = 11 there are a total of
(
11
2

)
= 11!

2!9! = 55 elemental sets, that is, 55
pairs of observations that identify 55 different lines defined by 55 parameters vectors.
In order to reduce the computational burden, only the first six observations of the [Y1
X1] sample are here considered. This shrinks the number of elemental sets to

(
6
2

)
=

6!
2!4! = 15, that is, there are 15 distinct lines passing through all the possible pairs
of data in a sample of n = 6 observations. These lines are computed without errors,
since each pair of observations univocally identifies one straight line. The fifth and
sixth column of Table 3.1 report the bp(i, j) values, while the first four columns in the
table collect the observations to compute them. The column wij provides the weights

of the OLS estimator based on elemental sets, wij =
(x1i−x1j)2∑

ij=1,6(x1i−x1j)2
, while the last two

columns of the table, headed r(b1(i, j)) and r(b0(i, j)), report the rank of the ordered
b1(i, j) and b0(i, j) coefficients needed to find a given quantile in the b(i,j)s series.

The left-hand side graph of Figure 3.1 presents all the 15 lines identified by the
elemental sets. The weighted average of the b1(i, j) and b0(i, j) exactly computed
in the 15 elemental sets provide the OLS estimated coefficients. The results of the
standard OLS regression considering only the first six observations of [Y1 X1] yields
the estimates 𝛽0 = 5.52 and 𝛽1 = 0.25, and they coincide with the weighted averages
of the coefficients computed in the elemental set: 𝛽0OLS =

∑
ij=1,6wijb0(i, j) = 5.52

and 𝛽1OLS =
∑

ij=1,6wijb1(i, j) = 0.25. Figures 3.2 and 3.3 depict the elemental sets
coefficients times the OLS weights and the OLS weights respectively for the slope
and the intercept. By definition, wij, which is given by the ratio of squared terms,
assigns a positive value to each observation in X1. This provides an additional insight

1 When p > 2 the OLS estimator is given by 𝛽OLS =
∑|Xi|2bi∑|Xi|2 where |Xi| is the determinant of Xi, Xi

is a (p × p) submatrix including p observations of the p explanatory variables and bi is a p vector of the
exactly computed coefficients defining the ith hyperplane. The 𝜃 quantile regression estimator selects the
𝜃 order statistic in the set of all the hyperplanes passing through exactly p observations.
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Table 3.1 Elemental sets for the first six observations of the [Y1 X1] data set.

x1i x1j y1i y1j b1(i,j) b0(i,j) 𝑤ij r(b1(i, j)) r(b0(i, j))

10 8 8.04 6.95 .545 2.59 .0248 13 4
10 13 8.04 7.58 −.153 9.573 .0559 5 11
10 9 8.04 8.81 −.77 15.74 .00621 1 15
10 11 8.04 8.33 .29 5.14 .00621 8 8
10 14 8.04 9.96 .48 3.24 .09937 10 6
8 13 6.95 7.58 .126 5.942 .1553 6 9
8 9 6.95 8.81 1.86 −7.93 .00621 14 2
8 11 6.95 8.33 .46 3.27 .0559 9 7
8 14 6.95 9.96 .502 2.936 .2236 11 5
13 9 7.58 8.81 −.307 11.572 .09937 3 13
13 11 7.58 8.33 −.375 12.455 .0248 2 14
13 14 7.58 9.96 2.38 −23.36 .00621 15 1
9 11 8.81 8.33 −.24 10.97 .0248 4 12
9 14 8.81 9.96 .23 6.74 .1553 7 10
11 14 6.95 9.96 .543 2.353 .0559 12 3
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Figure 3.1 The left panel plots all the 15 exactly computed lines passing through
each pair of observations. In the right graph is the scatterplot of the six data points
together with the OLS and the median regression computed using the 15 elemental
sets coefficients. The subsample of size n = 6 selects the first six observations of the
[Y1 X1] Anscombe data set.
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Figure 3.2 The graph plots the OLS elemental sets weights for the slope coefficient.
The connected triangles represent the product wijb1(i,j). Even the extreme elemental
sets receive a nonzero weight in the OLS estimator, causing a lack of robustness. The
sample is given by the first six observations of the Anscombe [Y1 X1] data set, which
yield 15 elemental sets.

on the vulnerability of OLS to outliers in the explanatory variables: the farthest is x1i
from the other observations, the greater is the numerator of the OLS weight assigned
to this observation, wij, and the greater is the capability of this observation to attract
the OLS regression line.

Following Theil (1950), to estimate the median regression coefficients - which
coincide with the median of the b(i,j) series - the b(i,j) are sorted in ascending order
and are ranked in the r(b(i,j)) columns of Table 3.1. The estimates coincide with
the median in these series, that is, those b(i,j) that split the r(b(i,j)) series into two
halves for the median, into one quarter below and three quarters above for the first
quartile, and so forth. In the small example of size n = 6 here considered, the esti-
mates at the median are those b(i,j) having median rank, r(b(i, j)) = .5(15) ≅ 8, and

at position eight there are 𝛽0(.5) = 5.14 and 𝛽1(.5) = 0.29. Analogously for the third
quartile, the estimated coefficients are those having rank r(b(i, j)) = .75(15) ≅ 12, that
is, 𝛽0(.75) = 10.97 and 𝛽1(.75) = 0.54. The median regression estimates, together
with the OLS estimated line, are depicted in the right graph of Figure 3.1.

The ordered elemental sets coefficients of Table 3.1 allow to easily compute
confidence intervals by finding in the r(b(i,j)) series those values occupying the
positions 𝛼 and 1 − 𝛼. For instance, the 95% confidence interval for the median,
𝜃 = .5, can be found by looking at the coefficient at position 0.025 for the lower
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Figure 3.3 The graph plots the OLS elemental sets weights for the intercept. The
connected triangles represent the product wijb0(i, j). Even the extreme elemental sets
receive a nonzero weight in the OLS estimator, thus causing lack of robustness. The
sample is given by the first six observations of the Anscombe data set [Y1 X1], which
yield 15 elemental sets.

bound and at position 0.95 for the upper bound of the confidence interval. In the
example, this defines the confidence intervals ci(𝛽0(.5)) = [−23.3 15.7] for the
intercept and ci(𝛽1(.5)) = [−0.77 2.38] for the slope. The above approach is the
direct percentile method to compute confidence intervals.

A measure of dispersion of the b(i,j) is one of the possible ways to measure
the precision of the quantile regression estimates, that is, the coefficients standard
deviations (Furno, 1997). The dispersion of the b0(i, j) yields the standard deviation
se(b0(i, j)) = 9.47, while the dispersion of the b1(i, j) provides the estimated standard
deviation of the slope, se(b1(i, j)) = 0.819. As usual, the ratio between the estimated
coefficient and the estimated standard deviation is distributed as a Student-t with
(n − p) degrees of freedom under the null hypothesis H0 ∶ 𝛽(.5) = 0. In this very
small example with only n = 6 data points, at the median it is t(𝛽1(.5)) =

0.29
0.819

=
0.354 and t(𝛽0(.5)) =

5.14
9.47

= 0.54, and the null is not rejected in both tests.
The drawback of the elemental sets analysis is in the very quick growth of their

number so that they can be implemented only in very small data sets. The advan-
tage lies in providing an intuitive explanation of quantile regression, in granting an
estimator for confidence intervals and variance of the coefficients, and last but not
least, in supplying an excellent diagnostic tool (Hawkins, 1993). The b(i,j) are indeed
useful to locate outliers, since extreme observations generate extreme b(i,j) values
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(Hawkins, Bradu, and Kass, 1984). This in turn allows to define other robust estima-
tors, for instance by trimming the extreme values of the b(i,j) series before computing∑

ijwijb(i, j) (Wu, 1986). The box plot of the 15 elemental sets estimated coefficients
in Figure 3.4 allows to easily spot the farthest b(i,j). In detail, after excluding the
largest b0(i, j) = −23.36 and b1(i, j) = 2.38 and after modifying accordingly the wij,
in order to keep their sum equal to 1, the weighted sum of the remaining 14 slopes

yields ̂̂𝛽1OLS =
∑

ijwijb1(i, j) = 0.24, while the weighted sum of the 14 intercepts is
̂̂
𝛽0OLS =

∑
ijwijb0(i, j) = 5.71. The estimates of the median regression coefficients

computed after trimming the b(i,j)s are ̂̂𝛽1(.5) = 0.26 and ̂̂𝛽0(.5) = 5.54. The top rows
of Table 3.2 report the estimated coefficients for the [Y1 X1] subset of size n = 6, based
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20

b0ij b1ij

10
20

0

Figure 3.4 Box plot of the 15 elemental set estimated coefficients b0(i, j) and b1(i, j)
provided by the first six observations of the [Y1 X1] Anscombe data set.

Table 3.2 Median and OLS estimates based on elemental sets.

[Y1 X1] OLS median trimmed OLS trimmed median

slope 0.25 0.29 0.24 0.26
intercept 5.52 5.14 5.71 5.54

[Y∗
1 X1] OLS median trimmed OLS trimmed median

slope −0.17 0.29 −0.096 0.37
intercept 11.14 5.14 10.28 4.20
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Figure 3.5 Scatter plot of the first six observations in the sample [Y1 X1]. The two
observations to the right are the ones determining the farthest elemental set coeffi-
cients, b0(i, j) = −23.36 and b1(i, j) = 2.38. These values are dropped when comput-
ing the trimmed OLS and trimmed median estimates.

on the elemental sets approach. These results do not differ much from one another
since this data set does not comprise outliers. Figure 3.5 presents the scatterplot of
the data, and the farthest elemental set coefficients are the ones connecting the last
two data points to the right of the plot. Figure 3.6 reports the elemental sets estimated
lines.

Next consider the first six observations of the data set [Y∗
1 X1] of Table 1.1, which

includes one anomalous value. OLS and median regression results are in the bottom
rows of Table 3.2. As can be seen in Figures 3.7 and 3.8, the elemental sets signal the
presence of outliers, and the farthest elemental set coefficients are:

b0(i, j) = 77.64 and b1(i, j) = −6.96, which are the coefficients of the line passing
through the first and the fourth point, (8.04 10)1 and (15 9)4;

b0(i, j) = −57.45 and b1(i, j) = 8.05, which define the line passing through the
fourth and the second observation, (15 9)4 and (6.95 8)2;

b0(i, j) = 45.015 and b1(i, j) = −3.335, passing through the fourth and the fifth
point, (15 9)4 and (8.33 11)5.

The fourth observation with Y∗
1 = 15 is clearly under scrutiny since it yields all

the three extreme values of the b(i,j)s. The trimmed OLS and the trimmed median
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Figure 3.6 Comparison of the elemental set-based estimated coefficients in the sub-
set of [Y1 X1]. The trimming excludes the values b1(i, j) = 2.38 and b0(i, j) = −23.36,
defined by the observations (7.58 13)3 (9.96 14)6 of Table 1.1. The line connecting
the third and the sixth observations is excluded when computing the trimmed estima-
tors. However, these observations keep a role in computing the final estimates through
the other elemental sets, that is, through the lines connecting the third and in turn the
sixth observation to all the other observations of the sample.
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Figure 3.7 Box plot of the 15 elemental sets estimated coefficients b0(i, j) and
b1(i, j) provided by the first six observations of the [Y∗

1 X1] modified Anscombe data
set. Here the elemental set coefficients are more dispersed when compared to the box
plot of Figure 3.4 depicting the elemental sets coefficients for the clean [Y1 X1] data.
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Figure 3.8 Scatterplot of the first six observations in the sample [Y∗
1 X1], comprising

one outlier in the dependent variable. The lines to the left are defined by the extreme
elemental set coefficients, and all of them include the outlying value in the dependent
variable (Y∗

1 )4 = 15. The coefficients of these three lines are excluded when comput-
ing the trimmed OLS and trimmed median regression coefficients.

regression are computed by excluding the above three elemental set values. The last
two columns in the bottom rows of Table 3.2 report these results. In this data set with
one outlier OLS and trimmed OLS estimates yield a negative slope, while median and
trimmed median results are equal or close to the estimates in the top rows, computed
in the clean data set [Y1 X1].

3.2 Bootstrap and elemental sets

When the number of elemental sets is too large, it is possible to combine the
bootstrap and the elemental sets analysis. Consider the [Y1 X1] sample of size
n = 11. The design matrix bootstrap2 draws with replacement M = 100 samples
of size n = 11, yielding a series of 100 estimated coefficients for the slope and
for the intercept, as computed by OLS and by the median regression. The graphs
in Figure 3.9 present the empirical distribution of these estimates. To measure the
dispersion of the estimated coefficients, the design matrix bootstrap considers as
center of location the mean of the series of the estimated values (Efron, 1979;

2 Details on the design matrix bootstrap can be found in volume 1 (Davino et al. 2014), Section 4.3.2.1.
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Figure 3.9 Histograms of the elemental sets bootstrap computed in samples of size
n = 2 in the left graphs, histograms of the design matrix bootstrap OLS estimates in
the middle graphs, and histograms of the design matrix bootstrap median regression
in the right graphs. Top histograms for the intercept and bottom histograms for the
slope, M = 100 replicates, Anscombe data set [Y1 X1] of size n = 11.

Buchinsky, 1995), 𝛽0(.50) =
1
M

∑
m 𝛽0(.50)m and 𝛽1(.50) =

1
M

∑
m 𝛽1(.50)m, where

m = 1,… ,M is the bootstrap replicate indicator and refers to the mth bootstrap
estimate. The average value of the bootstrap estimated coefficients, reported

in Table 3.3, is equal to 𝛽0(.50) =
1
M

∑
m 𝛽0(.50)m = 2.86 for the intercept and

𝛽1(.50) =
1
M

∑
m 𝛽1(.50)m = 0.526 for the slope.

The variance of the regression coefficients at the median is then estimated by

var(𝛽(.50)) = E

[
𝛽(.50)m − 𝛽(.50)

]2
= 1

M-p

∑
m

[
𝛽(.50)m − 𝛽(.50)

]2
For M = 100 replicates and p = 2 estimated parameters, intercept and slope,

the dispersion of the estimated coefficients around 𝛽(.50) is v̂ar(𝛽0(.50)) = 2.05 and
v̂ar(𝛽1(.50)) = 0.024, and their square root values are reported in the middle rows of
Table 3.3.

The value of 𝛽(.50) allows to measure the bias of the bootstrap estimator, which

is computed as 𝛽(𝜃) − 𝛽(𝜃), where 𝛽(𝜃) is the coefficient estimated in the original
sample, without bootstrap. The [Y1 X1] sample of size n = 11 provides, at the median
regression, the values of 𝛽0(.50) = 3.24 and 𝛽1(.50) = 0.48, as reported in Table 1.2,
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Table 3.3 Summary statistics of the estimated coefficients, design matrix bootstrap
with samples of size n = 11, and elemental sets bootstrap with samples of size
n = 2; M = 100 replicates, Anscombe data set [Y1 X1].

mean design matrix
𝜃 = .25 𝜃 = .50 𝜃 = .75 OLS elem. sets

intercept 2.651 2.860 3.448 3.126 6.432
slope 0.464 0.526 0.536 0.486 0.231

s.d. design matrix
𝜃 = .25 𝜃 = .50 𝜃 = .75 OLS elem. sets

intercept 1.524 1.434 1.686 0.981 12.72
slope 0.167 0.154 0.197 0.104 1.199

bias design matrix
𝜃 𝜃 = .25 𝜃 = .50 𝜃 = .75 OLS elem. sets

intercept 0.671 −0.38 0.728 0.126 3.432
slope −0.105 0.046 −0.140 −.0141 −0.268

and the bias associated with the bootstrap estimates is 𝛽0(.50) − 𝛽0(.50) = 2.86 −
3.24 = −0.38 for the intercept and 𝛽1(.50) − 𝛽1(.50) = 0.526 − 0.48 = 0.046 for the
slope as shown in the bottom rows of Table 3.3. Looking at the histograms of the
M = 100 estimates for the slope and for the intercept as computed at the median
regression, presented to the right of Figure 3.9, at the median the slope is centered at
0.52 and the intercept at 2.86. These values do not exactly coincide with the values
of the parameters estimated in the original sample, and the difference is the bias. The
first four columns of Table 3.3 summarize mean, variance, and bias for the coeffi-
cients estimated at the three quartile regressions and by OLS in the design matrix
bootstrap. The last column reports these results for the elemental sets bootstrap.
Instead of resampling with replacement n observations, the elemental set bootstrap
resamples p observations so that the regression coefficients are exactly computed,
without error. This column presents the largest biases and variances. The left graphs
in Figure 3.9 show the histograms of the bootstrapped elemental set coefficients in
M = 100 iterations.

Consider next the French data set of Section 1.2.1, relating walking speed and
body mass index. In a sample of size n = 393 there are

(
393
2

)
= 77028 elemental

sets, which is a quite large number. In the Dutch case of Section 1.2.2, the number of
elemental sets is

(
307
2

)
= 46971, too large to be applicable. Instead of computing all

of them, a smaller number of elemental sets can be analyzed (Hawkins, 1993; Hall
and Mayo, 2008). The last column of Table 3.4 reports the summary statistics of the
elemental set bootstrap approach for the French data, selecting M = 100 replicates
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Table 3.4 Bootstrapping the elemental sets and the design matrix, OLS, and
median regression results, French data set of size n = 393, M = 100 replicates.

mean design matrix
OLS median regression elem. sets

intercept 0.556 0.640 3.575
slope 0.003 −0.001 −0.012

s.d. design matrix
OLS median regression elem. sets

intercept 0.105 0.089 19.43
slope 0.004 0.003 0.793

bias design matrix
OLS median regression elem. sets

intercept 0.005 0.016 3.025
slope −.0001 −.0009 −0.124

each having size p = 2, while the first two columns report the statistics for OLS
and median regression results in the design matrix bootstrap of size n = 393. The
elemental sets distributions present larger bias and variance when compared to the
results of the standard bootstrap approach, and the standard bootstrap approach is
decidedly preferable.

Table 3.5 considers the elemental sets bootstrap results in samples of size p = 2,
the OLS and the median regression estimates in the design matrix bootstrap, for the
Dutch example replicates, each having sample size equal to n = 307. Figure 3.10 for
the French example and Figure 3.11 for the Dutch case compare the histograms of
intercept and slope computed in the M = 100 replicates bootstrapping elemental sets
in the left histograms, the bootstrap OLS estimates in the middle histograms, and the
bootstrap quantile regression estimates in the right graphs. The greater dispersion in
the estimates of the elemental sets bootstrap is due to the size of each subsample,
which is a key element for the accuracy of the results: the smaller the size, the lower
the precision (Camponovo et al., 2012). Therefore, while the analysis of the entire
group of elemental sets grants robustness, bootstrapping the elemental sets causes a
greater dispersion in the distribution of the estimates.

Besides estimation, subsampling can be of use in quantile regression inference
as well. Chernozhukov and Fernandez-Val (2005, 2011) use bootstrap to implement
inference in extremal quantiles, which is the issue analyzed in the next section, while
Escaciano and Goh (2014) define a bootstrap-based test to verify the correct specifi-
cation of quantile regression models.
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Table 3.5 Bootstrapping the elemental sets and the design matrix, OLS, and
median regression results, Dutch sample of size n = 307, M = 100 replicates.

mean design matrix
OLS median regression elem. sets

intercept 0.556 0.640 27.016
slope 0.003 −0.001 −1.116

s.d. design matrix
OLS median regression elem. sets

intercept 0.088 0.109 41.39
slope 0.003 0.004 1.52

bias design matrix
OLS median regression elem. sets

intercept 0.005 0.001 3.675
slope −.0001 −.0001 0.151
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Figure 3.10 Histograms of the coefficients estimated in M = 100 replicates, French
data set of size n = 393. The top histograms depict the intercept while the bottom ones
refer to the slope. To the left are the elemental sets results, with coefficients exactly
computed in samples of size n = 2; in the middle graphs are the results of bootstrap-
ping the OLS regression; to the right are those of the bootstrap median regression.
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Figure 3.11 Histograms of the bootstrap regression coefficients in M = 100 repli-
cates, Dutch data set of size n = 307. The top histograms refer to the intercept while
the bottom graphs report the slope estimates. To the left are the elemental sets coef-
ficients, exactly computed in samples of size n = 2; in the middle graphs are the
histograms of the OLS estimated coefficients in the design matrix bootstrap; to the
right are the median regression estimates in the design matrix bootstrap.

3.3 Bootstrap for extremal quantiles

The estimation of a model at extreme quantiles is particularly useful in issues related
to risk management, such as stress tests, portfolio performance, or productivity
analysis in adverse conditions, as well as in studies on unemployment duration
and wage inequality. The conventional asymptotic theory of quantile regression,
summarized in the following Section 3.4, applies to the central quantiles but not
to those quantiles far in the tails. As a consequence, standard tests and confidence
intervals cannot be implemented in the extremequantiles. Even bootstrap and classical
resampling methods fail due to the nonstandard behavior of the extremal quantiles.

Chernozhukov and Fernandez-Val (2005) consider three groups of quantiles:
central-, intermediate-, and extreme-order quantiles, where the order is defined by
𝜃n∕p with p being the number of regression coefficients, n the sample size, and 𝜃 the
chosen quantile. The cutoff value, discriminating standard from nonstandard asymp-
totic distribution, is 𝜃 < 0.2 or, alternatively, the value 𝜃n∕p < 30 (Chernozhukov
and Fernandez-Val, 2011). Above these values, the quantiles are of intermediate
or central order, but below this value, the asymptotic behavior of the quantile
regression estimators differs. While central and intermediate quantiles abide by the
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conventional large sample theory, extremal quantiles follow extreme value laws and
converge to extreme type variates so that inference in the far tails requires a different
approach. Consider the centered statistic

Z = A(𝛽(𝜃) − 𝛽(𝜃))

A =
√
k

X
T
(𝛽(m𝜃) − 𝛽(𝜃))

where A is a normalizing term, the constant k > 0 is approximated by 𝜃n, m is such
that k(m − 1) > p, and X is the vector of sample means of the explanatory variables
in X.3 Chernozhukov and Fernandez-Val (2011) present a resampling approach to
compute self-normalized statistics. This avoids the estimation of tail parameters,
which are generally difficult to compute in a reliable way. The method exploits the
different rates of convergence of extreme and intermediate quantile regressions. The
basic assumption is that the dependent variable has Pareto-type tails with tail index
𝜉.4 For instance in the Student-t distribution with g degrees of freedom, the tail index
is 𝜉 = 1∕g.

Median-unbiased estimation and inference in the tails can be implemented as
follows. The first step considers B subsamples, each of size b < n, to compute the
statistics

V̂i,b,n = Âb(𝛽i(𝜃) − 𝛽(𝜃))

Âb =
√
n𝜃

Xi(𝛽i(m𝜃b) − 𝛽i(𝜃b))

where 𝛽i(𝜃) is the 𝜃 quantile regression estimated coefficient in the ith subset of size
b, 𝛽(𝜃) is the same quantile regression coefficient estimated in the entire sample of
size n, Xi is the sample mean of the regressors in the ith subsample of size b,m is set to
m = 𝜃n+p

𝜃n
, and 𝜃b = 𝜃n∕b. The median value of V̂i,b,n and the 𝛼∕2 and (1 − 𝛼∕2)

quantiles of the V̂i,b,n series provide the appropriate elements to compute the
median-unbiased regression coefficients and the critical values for their confidence
intervals, given by:

̂̂
𝛽(𝜃) = 𝛽(𝜃) − V̂1∕2

limn→∞P(
̂̂
𝛽(𝜃) − V̂1−𝛼∕2 < 𝛽(𝜃) <

̂̂
𝛽(𝜃) − V̂𝛼∕2) = 1 − 𝛼

and V1∕2 is a bias-correcting factor. The key point in the above approach is the nor-

malizing term Âb. The classical subsampling approach would recenter the statistics
by 𝛽(𝜃) estimated in the full sample, while this approach considers 𝛽i(𝜃b), that is no
longer an extreme- but an intermediate-order quantile.

3 In the limit, Z is a function of Γ distributions, not necessarily centered at zero and possibly median
biased.

4 A Pareto-type tail implies a tail decaying by a regularly varying function. The Pareto-type tail definition
includes both thick and thin tails distributions.
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In the Anscombe data [Y1 X1] with sample size n = 11, the 5th quantile
regression is an extreme order quantile since 𝜃 = .05 < .2, 𝜃n∕p = .275 < 30. The
5th quantile regression provides the estimates 𝛽1(.05) = 0.46 and 𝛽0(.05) = 1.6.
These coefficients are both statistically different from zero according to the usual
inference approach, with Student-t values t(𝛽1) = 10.84 and t(𝛽0) = 3.87 and 95%
confidence intervals ci[𝛽0(.05)] = [0.664 2.535], ci[𝛽1(.05)] = [0.363 0.556].
Next, the extreme-value approach is implemented. The resampling scheme con-

siders B = 100 samples, each of size b = 7. In each subsample 𝛽i(𝜃), 𝛽i(m 𝜃b),
𝛽i(𝜃b) and Xi are computed, and for 𝜃b = 𝜃n∕b = .078∼.08., m = 𝜃n+p

𝜃n
= 4.6, the

central-intermediate-order quantile regressions for recentering are 𝛽i(𝜃b) = 𝛽i(.08)
and 𝛽i(m 𝜃b) = 𝛽i(.37). Figure 3.12 depicts the histograms of the slope coefficient
𝛽1i(.05), 𝛽1i(.08) and 𝛽1i(.37) as estimated in the B = 100 replicates in samples of
size b = 7. It can be noticed that the top-left histogram in Figure 3.12 is skewed
and longer tailed, while the other two histograms present higher frequencies at the
mode and minor skewness. It is such different behavior between the extreme and
the central-intermediate-order quantiles, that it is exploited in the normalization
of (𝛽i(𝜃) − 𝛽(𝜃)). Once computed V̂ , its median allows to modify the 5th quantile
regression estimated coefficients. However, in the [Y1 X1] data set V̂1∕2 is prac-

tically equal to 0 and does not affect the estimates so that ̂̂𝛽(.05) = 𝛽(.05) since
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Figure 3.12 Histogram of the bootstrap estimates of the slope coefficient at the 5th,
8th, and 37th quantile regression, B = 100 iterations, each with subsamples of size
b = 7. Anscombe data set [Y1 X1], sample size n = 11.
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V̂1∕2(𝛽0(.05)) = 1e−8 and V̂1∕2(𝛽1(.05)) = −5e−9. The 5th and 95th percentiles of the

V̂ series provide the values to compute the 1 − 𝛼 = 90% confidence intervals in the
extreme value approach:

ci[𝛽0(.05)] = [𝛽0(.05) − V̂(.95) 𝛽0(.05) − V̂(.05)]

= [1.6 − 2.119 1.6 + 0.512] = [−0.519 2.11]

ci[𝛽1(.05)] = [𝛽1(.05) − V̂(.95) 𝛽1(.05) − V̂(.05)]

= [0.46 − 0.990 0.46 + 0.383] = [−0.530 0.843]

The extreme-value confidence intervals are larger than the ones computed relying
on the standard asymptotic theory. This mirrors the greater uncertainty characterizing
the far tails.

3.3.1 The French data set

In this data set, n = 393 and p = 2. When 𝜃 = .05 is the selected quantile, 𝜃n
p
= 9.8 is

below the cutoff value of 30, and the extreme-value theory is called for. In the stan-
dard approach, the estimated coefficients are 𝛽0(.05) = 0.259 and 𝛽1(.05) = −0.0005,
with t-values t(𝛽0(.05)) = 2.06 and t(𝛽1(.05)) = −.11, with 95% confidence inter-
vals ci(𝛽0(.05) = [0.0120 0.507] and ci(𝛽1(.05)) = [−0.0099 0.0089]. To imple-
ment the extreme value approach, consider B = 100 subsamples of size b = 70 so
that 𝜃b = 𝜃n∕b = .28, m = 𝜃n+p

𝜃n
= 1.10, and m𝜃b = .30. In each subsample 𝛽i(.05),

𝛽i(.30), 𝛽i(.28), and Xi are computed to provide the V̂ series. Figure 3.13 presents the
histograms of the slope coefficient estimated in the B = 100 subsets of size b = 70
at the 5th, the 28th, and the 30th quantile regressions. Analogously to the Anscombe
example, the histogram of the 5th quantile regression estimated slope is more dis-
persed and has lower frequency at the mode than the histogram of the slope estimated
at the 28th and the 30th quantiles. Once computed the V̂ series, the median values
are V̂1∕2(𝛽0(.05)) = 0.0491 and V̂1∕2(𝛽1(.05)) = 0.0399. The extreme-value estimated
coefficients and their confidence intervals at 1 − 𝛼 = 90% are

̂̂
𝛽0(.05) = 𝛽0(.05) − V̂1∕2(𝛽0(.05)) = 0.2597 − 0.0491 = 0.2106

ci[𝛽0(.05)] = [̂̂𝛽0(.05) − V̂(.95) ̂̂
𝛽0(.05) − V̂(.05)]

= [0.2106 − 0.9765 0.2106 + 0.9408] = [−0.7659 1.151]

̂̂
𝛽1(.05) = 𝛽1(.05) − V̂1∕2(𝛽1(.05)) = −0.00052 − 0.03989 = −0.04041

ci[𝛽1(.05)] = [̂̂𝛽1(.05) − V̂(.95) ̂̂
𝛽1(.05) − V̂(.05)]

= [−0.04041 − 1.027 − 0.04041 + 0.7864]

= [−1.0674 0.7460].
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Figure 3.13 Histogram of the bootstrap estimates of the slope coefficient at the
5th, 28th, and 30th quantile regressions, B = 100 replicates in subsets of size b = 70,
French data set of size n = 393.

Thus, the confidence intervals computed in the extreme tails are wider than those
computed using the standard inference for the central quantiles.

3.3.2 The Dutch data set

In the Dutch data set, with n = 307 and p = 2 explanatory variables, B = 100
subsamples of size b = 70 are selected to compute the 5th quantile regression. In
the standard quantile regression, the estimated coefficients are 𝛽0(.05) = 0.257
and 𝛽1(.05) = 0.0024, with t-values t(𝛽0(.05)) = 1.85 and t(𝛽1(.05)) = 0.51, with
the following 95% confidence intervals ci(𝛽0(.05)) = [−0.0171 0.532] and
ci(𝛽1(.05)) = [−0.0070 0.0119]. The ratio 𝜃n

p
= 7.6 is below the cutoff value

of 30, and the extreme-value theory is implemented. To compute the V̂ series,
set 𝜃b = 𝜃n∕b = .21, m = 𝜃n+p

𝜃n
= 1.13, m𝜃b = .24 so that 𝛽i(.05), 𝛽i(.21), 𝛽i(.24)

and Xi are the elements to be computed in the subsets. Figure 3.14 reports the
histograms of the slope coefficient as estimated respectively at the 5th, the 21st, and
the 24th quantile regression in the B = 100 replicates in subsets of size b = 70. Once
again, the histogram of the slope estimated at the extreme quantile 𝜃 = .05 is more
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Figure 3.14 Histogram of the bootstrap estimates of the slope coefficient at the 5th,
21st, and 24th quantile regressions,B = 100 replicates in subsets of size b = 70, Dutch
data set of size n = 307.

dispersed and has lower frequency at the mode than the other two. The median
values of the V̂ series are V̂1∕2(𝛽0(.05)) = 0.01445 and V̂1∕2(𝛽1(.05)) = 0.03966.
The extreme-value estimated coefficients and their confidence intervals for the 5th

quantile regression at 1 − 𝛼 = 90% are the following

̂̂
𝛽0(.05) = 𝛽0(.05) − V̂1∕2(𝛽0(.05)) = 0.257 − 0.01445 = 0.2425

ci[𝛽0(.05)] = [̂̂𝛽0(.05) − V̂(.95) ̂̂
𝛽0(.05) − V̂(.05)]

= [0.2425 − 1.4014 0.2425 + 0.8622] = [−1.159 1.105]

̂̂
𝛽1(.05) = 𝛽1(.05) − V̂1∕2(𝛽1(.05)) = 0.0024 − 0.03966 = −0.03726

ci[𝛽1(.05)] = [̂̂𝛽1(.05) − V̂(.95) ̂̂
𝛽1(.05) − V̂(.05)]

= [−0.03726 − 1.327 − 0.03726 + 2.0704] = [−1.364 2.033].

Once again these confidence intervals are wider than those provided by the infer-
ence for central quantiles.
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3.4 Asymptotics for central-order quantiles

The asymptotics of intermediate- and central-order quantile regression estimators
could be obtained by modifying the extreme-value approach. However, it is simpler
to consider the standard approach. In the linear regression model yi = 𝛽0 + 𝛽1xi + ei,
with a constant term and one explanatory variable xi, in a sample of size n, the errors
are independent and identically distributed and have common density f strictly pos-
itive at the given quantile F−1(𝜃), f (F−1(𝜃)) > 0. The row vector xi = [1 xi], which
comprises the ith observation, has quadratic form 1∕n

∑
i x

T
i xi, which converges to the

positive definite matrix D.5 The asymptotic distribution of 𝛽(𝜃), the quantile regres-
sion estimator of the coefficients vector 𝛽T (𝜃) = [𝛽0(𝜃) 𝛽1(𝜃)], in the independent
and identically distributed case is√

n[𝛽(𝜃) − 𝛽(𝜃)] → N(0, 𝜔2(𝜃)D−1)

with 𝜔2(𝜃) = 𝜃(1−𝜃)
f (F−1(𝜃))2 (Koenker and Bassett, 1978; Ruppert and Carroll, 1980).

To obtain the above result consider the quantile regression objective function∑
i=1,..n

𝜌(yi − 𝛽0 − 𝛽1xi) = min

The check function is defined as 𝜌(ei) = [𝜃 − 1(ei < 0)]|ei|, and the gradient of
the slope is ∑

i=1,..n
𝜓(yi − 𝛽0 − 𝛽1xi)xi =

∑
i=1,..n

𝜓(ei)xi = 0,

with 𝜓(yi − 𝛽0 − 𝛽1xi) = 𝜃 − 1(ei < 0).
The 𝜓 function is nondifferentiable when ei = 0. The expected value of the gra-

dient, however, is differentiable in 𝛽(𝜃) – 𝛽(𝜃). A stochastic equicontinuity condition
on the sample average of 𝜓(ei), 𝜓n(𝛽) = 1∕n

∑
i=1,..nxi𝜓(yi − 𝛽0 − 𝛽1xi), states that√

n{𝜓n(𝛽) − 𝜓n(𝛽) − E[𝜓n(𝛽) − 𝜓n(𝛽)]}

=
√
n{[𝜓n(𝛽) − E𝜓n(𝛽)] − [𝜓n(𝛽) − E𝜓n(𝛽)]} → 0

for any consistent estimator 𝛽(𝜃) → 𝛽(𝜃), the difference
√
n{[ 𝜓n(𝛽)− E 𝜓n(𝛽)]

evaluated at the consistent estimator 𝛽 is asymptotically equivalent to its value
at 𝛽 = plim 𝛽.

In the above equation, E(𝜓n(𝛽)) = 0 since it is the gradient evaluated at the true
parameters. The term 𝜓n(𝛽) is op(1∕

√
n), and by Taylor expansion (Hayashi, 2000)

the expression becomes

E(𝜓n(𝛽)) = 𝜓n(𝛽) +
𝜕E(𝜓n(𝛽))

𝜕𝛽′

√
n[𝛽(𝜃) − 𝛽(𝜃)]

5 The case of k > 2 explanatory variables, y = X𝛽 + e, comprises the (n, k) matrix X =[1 x1 x2...xk−1 ],
and the (k, 1) vector of coefficients is 𝛽T = [𝛽0 𝛽1 𝛽2...𝛽k−1]. The i

th observation is given by the row vector
xi = [1 x1i x2i … .xk−1i].
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and √
n[𝛽(𝜃) − 𝛽(𝜃)] =

[
𝜕E(𝜓n(𝛽))

𝜕𝛽′

]−1√
n𝜓n(𝛽) + op(1)

By the Lindeberg-Levy central limit theorem
√
n[𝛽(𝜃) − 𝛽(𝜃)] is asymptotically

normal with zero mean and covariance 𝜔2(𝜃)D−1.
In case of non-identically distributed errors, the asymptotic distribution is given

by (Koenker and Bassett, 1982):√
n[𝛽(𝜃) − 𝛽(𝜃)] → N(0, 𝜃(1 − 𝜃)D1(𝜃)−1DD1(𝜃)−1).

and the positive definite matrix D1(𝜃) is the limit of 1∕n
∑

i fi(F−1(𝜃)) xTi xi. In case
of i.i.d. errors, the covariance simplifies to 𝜔2D−1. This occurs because fi(F−1(𝜃))
is constant, fi(F−1(𝜃)) = f (F−1(𝜃)), so it can be pulled out of the D1(𝜃) matrix so
that D and D1(𝜃) coincide and cancel out. Thus, the term D1(𝜃)−1DD1(𝜃)−1 collapses
into D−1.

The case of dependent observations is considered in Weiss (1990). In the
median regression model with a first-order serial correlation, yi = 𝛽0 + 𝛽1xi + ei,
ei = 𝛿ei−1 + ai, the quantile regression estimator is unbiased and asymptotically
normal, with covariance matrix 𝜔2D−1D2D

−1, with D2 = D + 1∕n
∑

i 𝜓(ei)
𝜓(ei−1)(xTi xi−1 + xTi−1xi) . Once again, if the data are independent, the term 1∕n

∑
i

𝜓(ei) 𝜓(ei−1)(xTi xi−1 + xTi−1xi) = 0, D2 and D coincide, and the covariance matrix
collapses to 𝜔2D−1.

3.5 Treatment effect and decomposition

This section analyzes an additional quantile regression approach relying on bootstrap,
the quantile treatment effect (QTE) estimator, which is implemented to evaluate the
impact of a treatment or a policy. Studies concerning the impact of welfare mea-
sures, of education, training programs, medical treatment, and policy intervention
are some of the issues that can be assessed by the treatment effect estimators. They
generally compare two groups of observations, one referring to the treated and the
other to the untreated, the control set. For instance when assessing the effect of
a training program, the trained/treated are compared with the non-trained/control
group.6 In the linear regression model Y = X𝛽 + e the outcome variable Y assumes
values Y1 for the treated, where the treatment variable is Z = 1, and Y0 in the control
group, where treatment does not take place and Z= 0. The values Y0 = X0𝛽0 + e0 and
Y1 = X1𝛽1 + e1 are the observed outcomes within each group. From one group to the
other, both covariates and coefficients may vary and it is relevant to assess which one
drives the change. Two independent regressions are implemented, one in each group,
and the two vectors of coefficients are separately computed.

6 The simple two-group analysis can be generalized to many groups to model different treatment levels,
such as different length of training programs, for instance.
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Then the average difference in outcome between treated and untreated, that is,
the average treatment effect, can be measured as

E(Y1 − Y0) = E(X1𝛽1 − X0𝛽0) = 𝛽1E(X1) − 𝛽0E(X0)

In the above equation, one can add and subtract the term Y1∕0 = X1𝛽0 without
affecting the results. X1𝛽0 evaluates the group 1 covariates at the group 0 coefficients
and measures how the dependent variable would be if the treated had the same coef-
ficients of the control group. This yields the counterfactual, which is obtained by
multiplying the covariates of the treated by the coefficients of the control group. For
instance, in a comparison of gender differences in wages, the Y1∕0 counterfactual
considers women’s covariates X1 evaluated at male coefficients 𝛽0: what would be
the wage if women’s characteristics had the same coefficients/remuneration of the
male group. The introduction of Y1∕0 allows to decompose the difference between
the two groups into difference in the covariates and difference in the coefficients as
follows (Oaxaca, 1973; Blinder, 1973)

E(Y1 − Y1∕0 + Y1∕0 − Y0) = E(X1𝛽1 − X1𝛽0 + X1𝛽0 − X0𝛽0)

= E[X1(𝛽1 − 𝛽0) + 𝛽0(X1 − X0)]

= (𝛽1 − 𝛽0)EX1 + 𝛽0(EX1 − EX0)

The last equality shows how the difference between the two groups can be split in
two factors, where the term 𝛽0(EX1 − EX0) provides the average difference in covari-
ates keeping 𝛽0 constant at the control group values, while the term (𝛽1 − 𝛽0)EX1
yields the difference in the coefficients of the two regressions keeping the covariates
at their average treatment values. While a difference in the covariates would fully
explain the difference in the outcomes of the two groups, the difference in the coeffi-
cients is instead unexplained by the model and can be ascribed to the treatment, the
policy, or the training program implemented. Alternatively, depending on the issue
analyzed, the unexplained difference previously defined as treatment effect can also
be interpreted as a discrimination effect. This is the case, for instance, of a difference
in wages between men and women, or between immigrants versus non-immigrants,
or unionized versus non-unionized workers. If the difference depends on the coeffi-
cients and cannot be ascribed to a difference in the characteristics of the two groups,
then it can be interpreted as discrimination.

Finally, depending on the problem under study, the counterfactual can be defined
as Y0∕1 = X0𝛽1, which provides the group 0 covariates evaluated at group 1 coeffi-
cients. Y0∕1 tells how the outcome would be when changing the coefficients while
keeping the covariates unchanged. In the example on wage comparison between
men and women, the Y0∕1 counterfactual considers male covariates X0 evaluated at
women’s coefficients 𝛽1: what would be the wage if men’s characteristics had the
same coefficients/remuneration of women’s group. This would change the terms in
the decomposition as follows

E(Y1 − Y0) = (𝛽1 − 𝛽0)EX0 + 𝛽1(EX1 − EX0).
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where the change in coefficients is evaluated at group 0 averages of covariates while
the average change in covariates is measured at group 1 coefficients. Sometimes an
additional term is included, to model interaction between coefficients and covariates,
(𝛽1 − 𝛽0)(EX1 − EX0), yielding

E(Y1 − Y0) = (𝛽1 − 𝛽0)EX0 + 𝛽1(EX1 − EX0) + (𝛽1 − 𝛽0)(EX1 − EX0).

As an example, consider the data set on walking speed and BMI in Europe ana-
lyzed in the previous sections (SHARE, year 2004). The sample can be split according
to gender, and the treatment variable Z assumes value Z = 0 in the male group and
Z = 1 for women. The outcome Y is the walking speed within each group while
the explanatory variables in X are BMI and the constant term. The two groups have
respectively sample size n0 = 1282 in the male group and n1 = 1677 in the women’s
subset. Figures 3.15 and 3.16 show the histograms of the dependent and the explana-
tory variable, walking speed and BMI, in each group. Women are characterized by
a lower average speed and by a larger variance in BMI with respect to the male
group. The anthropometric target is to check the statistical significance of a differ-
ence in walking speed between men and women together with its decomposition
into covariates and coefficients effects, that is, into gap explained and unexplained
by BMI.
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Figure 3.15 Histogram of walking speed in the two groups, the male sample size is
n0 = 1282 while women’s subset is of size n1 = 1677. Women are characterized by
a smaller mean, Y1 = 0.63 versus Y0 = 0.73 in the male group, while the variances
are similar, respectively var(Y1) = 0.10 and var(Y0) = 0.09.
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Figure 3.16 Histograms of BMI in the two groups, the male sample size is n0 =
1282 while women’s subset is of size n1 = 1677.Women are characterized by a larger
variance, var(X1) = 22 versus var(X0) = 14 in the male group, while the means are
similar, respectively X1 = 26.2 and X0 = 26.1.

The Oaxaca-Blinder decomposition would look at the difference between men’s
and women’s walking speed on average. If the between-groups difference is due
to the independent variable, body mass index, then the model does explain the
average difference between the two groups. Vice versa, if the difference between
the independent variables of the two groups is statistically irrelevant, then the
average-groups difference is related to the coefficients and is unexplained by the
model, thus providing the treatment/gender effect. The average difference in walking
speed is equal to E(Y1 − Y0) = EY1 − EY0 = 0.637 − 0.731 = −0.094, with men
walking faster than women. This value, representing the total difference in walking
speed, coincides with the OLS coefficient of the dummy variable Z in Table 3.6,
where Z assumes unit value in the women’s subset. The latter computes the impact
of gender on 𝑤speed in the regression 𝑤speed = 𝛼 + 𝛽 BMI + 𝛿 Z + e, estimated
pooling the two subsets, men and women together. These estimates are reported in
the last two rows of Table 3.6. The decomposition allows to split the −0.094 total
difference into covariates and coefficients effects. Focusing on the slope, to compute
E[𝛽0(X1 − X0)] = 𝛽0(EX1 − EX0), the group 0 slope coefficient 𝛽0 is replaced by
its OLS estimated value, which in the male subset is small and not statistically
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Table 3.6 OLS estimates.

group 0 = men intercept BMI

0.7788 −0.0018
se (0.060) (0.0022)

group 1 = women intercept BMI

0.7267 −0.0034
se (0.042) (0.0016)

0 and 1 together intercept BMI Z

0.713 −0.0029 −0.0937
se (0.035) (0.0013) (0.0118)

different from zero, 𝛽0,OLS = −0.0018 with se(𝛽0,OLS) = 0.0022, as reported in the
top rows of Table 3.6. Then the covariate impact evaluated at the group 0 slope can
be computed by 𝛽0,OLS(EX1 − EX0)slope = −0.0018(26.20 − 26.16) = −0.00007,
which is quite small. For the coefficients effect, given by EX1(𝛽1 − 𝛽0), the
OLS slope coefficient in the women’s group has to be computed. The OLS
estimate of 𝛽1 is given by 𝛽1,OLS = −0.0034 with se(𝛽1,OLS) = 0.0016, as reported
in the middle rows of Table 3.6, and it is statistically different from zero.
The coefficient effect for the slope evaluated at group 1 covariates is then
EX1(𝛽1,OLS − 𝛽0,OLS)slope = 26.20(−0.0034 + 0.0018) = −0.042, negative and decid-
edly more sizable than the covariate effect. Finally, the interaction term is very
small, (𝛽1,OLS − 𝛽0,OLS)(EX1 − EX0)slope = (−0.0034 + 0.0018)(26.20 − 26.16) =
−0.00006. Summarizing, in the male subset, BMI is irrelevant in explaining walking
speed, while for women this coefficient is statistically significant. The average total
difference between the two groups is −0.094, and about half of it is related to a
difference in the slopes: men walk faster than women, but this is hardly explained
by a difference in BMI. Figure 3.17 depicts the scatterplot of the data in each subset,
clearly showing the presence of dissimilar patterns in the two subsets. Figure 3.18
depicts the OLS estimated regressions for men and women. These lines differ from
one group to the other in both intercept and slope.

However, in the above decomposition inference has not been implemented, and
nothing so far can be said about the statistical significance of the total average dif-
ference, of the average difference in covariates, and in coefficients. To do so, the
estimated variances are needed. The variance of the sample mean of the dependent
variable for group 0, Y0 = X0𝛽0 where Y andX are the samplemeans, is approximated
by (Jann, 2008)

𝑣ar(𝛽0,OLSX0) ≃ X0𝑣ar(𝛽0)X
T
0 + 𝛽0𝑣ar(X0)𝛽T0
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Figure 3.17 Scatterplot of walking speed and BMI in each subset, men and women.
The two graphs present different patterns.

.8
.7

.6
.5

.4

0 20 40
BODY MASS INDEX

60 80

men women

Figure 3.18 Estimated OLS regressions within each subset. The women’s group
presents smaller intercept and slope so that at large BMI values, women’s walking
speed decreases faster than in the male group.
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Under the assumption of independence between groups, the above equation
defines the dispersion of each component in the decomposition, that is:

𝑣ar[𝛽0,OLS(X1 − X0)] ≃ (X1 − X0)𝑣ar(𝛽0,OLS)(X1 − X0)T

+ 𝛽0,OLS𝑣ar(X1 − X0)𝛽T0,OLS

𝑣ar[(𝛽1,OLS − 𝛽0,OLS)X1] ≃ X1[𝑣ar(𝛽1,OLS) + 𝑣ar(𝛽0,OLS)]X
T
1

+ (𝛽1,OLS − 𝛽0,OLS)𝑣ar(X1)(𝛽1,OLS − 𝛽0,OLS)T

This allows to establish the statistical relevance of each component. The total
difference E(Y1 − Y0) = −0.094, under the assumption of independence between
groups, has standard error se(Y1 − Y0) = 0.012, which allows to state that the
group difference is significantly different from zero. Next, the variance of the
difference in covariates, 𝑣ar[𝛽0,OLS(X1 − X0)], and of the difference in coefficients,
𝑣ar[(𝛽1,OLS − 𝛽0,OLS)X1], are computed according to the above equations. Table 3.7
reports the results of the Oaxaca-Blinder decomposition for the entire equation,
that is, considering both slope and intercept, BMI and constant term. The stan-
dard errors are respectively se[𝛽0,OLS(X1 − X0)] = 0.0003 for the covariates and
se[(𝛽1,OLS − 𝛽0,OLS)X1] = 0.012 for the coefficients effect. This allows to conclude
that the covariates effect, which for both constant term and BMI is given by
𝛽0,OLS(X1 − X0) = −0.00008, is not statistically significant. The coefficients effect
for slope and intercept, which measures the gap unexplained by the model, is equal
to EX1(𝛽1,OLS − 𝛽0,OLS) = −0.093 and is statistically different from zero. When
analyzing intercept and slope together, the coefficients effect accounts for most of
the total difference in walking speed between the two groups. The standard error
of the interaction term is comparatively large, se(𝛽1 − 𝛽0)(EX1 − EX0) = 0.0003,
and this term is not statistically significant. These results confirm the previous
conclusion: on average, men walk faster than women, and the difference cannot be
explained by the average difference in BMI between the two groups.

3.5.1 Quantile treatment effect and decomposition

The Oaxaca-Blinder decomposition so far discussed evaluates the difference between
two groups at the mean. The quantile treatment effect (QTE) allows to asses the
impact of treatment not only on average but also in the tails of the outcome dis-
tribution. It allows to characterize the presence of heterogeneous behaviors of the
outcomes at different points of their distributions. In QTE the focus is on the differ-
ence between treated and untreated not only at the mean but also in the tails of the

Table 3.7 Oaxaca-Blinder decomposition on average European data on walking
speed and BMI.

total coefficients covariates interaction

difference −0.094 −0.0937 −0.00008 −0.00007
se (0.012) (0.012) (0.0003) (0.0003)
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distributions of the two groups, at various quantiles. Far from being a mere technical-
ity, QTE allows to point out discrepancies between treatment and control changing
across quantiles. It may be the case that the discrepancy in the tails sizably dif-
fers from the average difference, since treatment can be more effective at the lower
(higher) quantiles. For instance, a tax cut may induce an increase in consumption
expenditure at lower (higher) incomes and not on average, its impact depending on
the income level: at lower incomes its effect may be larger (smaller) than on average
or than at the higher income levels. The Oaxaca-Blinder analysis of treatment effect
cannot capture these heterogeneities since it relies on average values.

Quantile regressions consider the outcome distribution conditional on the selected
covariates. Unlike the analysis on average, the interpretation of the unconditional
effects is slightly different from the interpretation of the conditional effects in the
quantile framework, due to the definition of the quantile. While the conditional aver-
age E[Y ∣ X] = X𝛽 yields the unconditional average E[Y] = E[X]𝛽, the conditional
quantiles Y(𝜃) ∣ X = X𝛽(𝜃) do not average up to their unconditional quantiles Y(𝜃),
since Y(𝜃) ≠ Y(𝜃) ∣ X for any quantile 𝜃. Thus, unconditional and conditional quan-
tiles, Y(𝜃) and Y(𝜃) ∣ X, do not generally coincide (Frolich andMelly, 2010). Looking
at a low quantile, the conditional quantile will summarize the effect for individu-
als with relatively low outcome given the covariates, even if the level of the out-
come is high. The unconditional quantile, on the other hand, summarizes the effect
at a low outcome regardless of the covariates so that the outcome level is unques-
tionably low. For instance, the analysis at low wages considers the unconditional
distribution, while the analysis at low wages of highly educated workers looks at
the wage distribution conditional to high education. These two wages do not usu-
ally coincide since highly educated workers with low wage earn generally more than
unschooled workers. While conditional QTE allows to analyze the heterogeneity of
the effects with respect to the observables, unconditional QTE aggregates the con-
ditional effects for the entire population. The unconditional quantile functions are
one-dimensional functions and do not depend on the explanatory variables in X,
whereas the conditional quantile functions are multidimensional. However, condi-
tional and unconditional QTE are trivially the same when the impact of the explana-
tory variable is not statistically significant.

Different approaches have been proposed to compute QTE, relying in turn on
quantile regression, influence function, bootstrap, propensity score, and some of
their combinations. The bootstrap-based quantile regression approach in Machado
and Mata (2005) computes the unconditional distributions of treated and untreated.
Then they decompose the total difference between the two groups into coefficients
and covariates differences at various quantiles by introducing the counterfactual
distribution.

In a first step, the conditional distributions of the dependent variable are estimated
by quantile regression at many quantiles, 𝜃 = 1, ..,m, separately in the treated and the
control group. The estimates of m different quantile regressions within each group
yields two sets of size m of estimated coefficients, 𝛽1(𝜃) for the treated and 𝛽0(𝜃) for
the control group. From the m vectors of estimated coefficients, the corresponding
fitted values, Ŷ0(𝜃) ∣ X0 = X0𝛽0(𝜃) and Ŷ1(𝜃) ∣ X1 = X1𝛽1(𝜃) can be computed. The
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fitted values provide the distribution of the outcome within each group conditional
on the covariates X.

Next, the estimated coefficients are separately bootstrapped within each
group, yielding 𝛽0(𝜃) and 𝛽1(𝜃), and the covariates are separately bootstrapped

within each group, yielding X̃0 and X̃1. The unconditional distributions can be com-
puted by Ỹ0(𝜃) = X̃0𝛽0(𝜃) and Ỹ1(𝜃) = X̃1𝛽1(𝜃). By bootstrapping both covariates
and estimated coefficients, the unconditional distributions of the dependent variable
within each group can be computed. The idea behind is the following: for a given
X and a random 𝜃 uniformly distributed in the [0; 1] interval, the term X𝛽(𝜃) has
the same distribution of Y ∣ X. Instead of keeping X fixed, random samples X̃ from
the population are drawn with replacement, and X̃𝛽(𝜃) has the same distribution as
Y (Melly, 2005). This bootstrap procedure is equivalent to integrate the conditional
distribution over the X and 𝛽(𝜃) distributions.

Finally, to decompose the treatment effect into impact of covariates and impact
of coefficients, the counterfactual is obtained by resampling with replacement the
covariates of one group, say X̃1, and multiplying them by the bootstrapped coeffi-
cients of the other group, Ỹ1∕0 = X̃1𝛽0(𝜃), yielding the counterfactual unconditional
distribution.

In the example comparing men’s and women’s walking speed, Table 3.8 reports
the quantile regression estimated coefficients in each group for the first nine out

Table 3.8 Quantile regression estimates within each subset in the first
nine bootstrap replicates European data on walking speed and BMI.

men, Z = 0 women, Z = 1

slope constant slope constant

𝜃 =.87 −0.0077 1.268 −0.0068 1.116
se (0.004) (0.123) (0.003) (0.084)
𝜃 =.55 −0.0040 0.8435 −0.0043 0.7404
se (0.003) (0.089) (0.001) (0.043)
𝜃 =.06 0.0016 0.2718 0.0009 0.2204
se (0.003) (0.094) (0.001) (0.041)
𝜃 =.65 −0.0038 0.9144 −0.0051 0.8348
se (0.002) (0.059) (0.002) (0.049)
𝜃 =.10 −0.0001 0.3711 −0.0002 0.3027
se (0.003) (0.076) (0.001) (0.033)
𝜃 =.70 −0.0040 0.9474 −0.0050 0.8781
se (0.002) (0.069) (0.002) (0.048)
𝜃 =.60 −0.0033 0.8646 −0.0048 0.7871
se (0.003) (0.082) (0.002) (0.045)
𝜃 =.64 −0.0034 0.8965 −0.0050 0.8259
se (0.002) (0.063) (0.002) (0.047)
𝜃 =.13 0.0002 0.3973 0.00001 0.3313
se (0.004) (0.099) (0.001) (0.037)
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Figure 3.19 Quantile regression estimated lines within each subset for the first five
bootstrap replicates reported in Table 3.8. The estimated coefficients in the women’s
group are smaller than the estimates in the male group.

of m = 100 selected quantiles, while Figure 3.19 depicts the first five estimated
regressions. The estimates in the women’s group are generally smaller. Next, by
bootstrapping both covariates and estimated coefficients within each group, the
unconditional distributions of Y0 and Y1 are obtained, and by bootstrapping covari-
ates of one group and coefficients of the other group, the counterfactual distribution
is computed. The top graphs in Figure 3.20 report the unconditional distributions
for each group as computed in one of the m = 100 replicates implemented. The
counterfactual distribution in this same replicate is depicted in the bottom graph of
Figure 3.20.

When the number of bootstrap replicates goes to infinity, the Machado and Mata
results are numerically identical to the approach proposed byMelly (2006). The latter
basically considers the same starting point, quantile regressions to provide the con-
ditional distributions of the outcome in each group, Ŷ0(𝜃) ∣ X0 = X0𝛽0(𝜃) and Ŷ1(𝜃) ∣
X1 = X1𝛽1(𝜃). However, instead of implementing bootstrap, Melly (2006) proposes
to compute the unconditional distributions analytically, by integrating the conditional
distribution Ŷ(𝜃) ∣ X over X and 𝛽(𝜃). This greatly reduces the computational bur-
den. Finally, Chernozhukov et al. (2013) generalize the Machado and Mata (2005)
approach by providing a consistent estimator of the variance.

Through QTE, the decomposition can be now computed at various quantiles.
Table 3.9 reports the QTE decomposition evaluated at all deciles for the walking
speed difference between men and women. The top section of the table reports the



RESAMPLING, SUBSAMPLING, AND QUANTILE REGRESSION 111

40
30

20

D
en

si
ty

10
0

.15 .2 .. .25 .. .. .3

women group men group

.35

80
60

40

D
en

si
ty

20
0

.16 .18 .2.. .22.. .. .24 .26

counterfactual

80
40

D
en

si
ty

20
0

.16 .18 .2.. .
.22.. .. .24 .26

Figure 3.20 Unconditional distributions within each group in the top graphs as
computed in one out of 100 replicates of the Machado and Mata approach, Ỹ1 =
X̃1𝛽1(𝜃) and Ỹ0 = X̃0𝛽0(𝜃). The bottom graph depicts the counterfactual distribution
in the same replicate, Ỹ1∕0 = X̃1𝛽0(𝜃) European data on walking speed and BMI.

results provided by theMachado andMata (2005) approach, while the bottom section
collects the results of the Chernozhukov et al. (2013) method. The two approaches
yield very similar results. The top section of the table shows that there is a slight
increase in the total difference between treated and untreated unconditional distribu-
tions, raising from 6% at the 10th decile to 11% above the median. This signals that at
high quantiles, the walking speed discrepancy is wider. The same increasing pattern
across deciles can be found in the coefficients effect, while the covariates discrep-
ancy is not statistically significant at all quantiles. Thus the total discrepancy cannot
be explained by BMI, that is, it is not explained by the selected model. Figure 3.21
depicts the behavior of the total, the explained and the unexplained gaps across deciles
as computed by the Machado and Mata approach. In the picture, the explained dif-
ference is close to zero while the unexplained gap coincides with the total difference
almost everywhere.

A different QTE approach is proposed by Frolich and Melly (2010). They
compute QTE by implementing a weighted quantile regression, with weights related
to the inverse probability of being treated. The quantile regression objective function
becomes ∑

Y<X𝛽[𝑤𝜃|Y − X𝛽|] +∑
Y>X𝛽[𝑤(1 − 𝜃)|Y − X𝛽|]
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Table 3.9 QTE decomposition of the difference in walking speed.

Machado and Mata (2005) approach

total covariates coefficients
𝜃 difference se difference se difference se

.10 −0.0600 (0.005) −0.0026 (0.006) −0.0627 (0.007)

.20 −0.0850 (0.018) −0.000001 (0.009) −0.0850 (0.004)

.30 −0.0975 (0.006) −0.0002 (0.006) −0.0977 (0.004)

.40 −0.0966 (0.005) −0.0022 (0.002) −0.0988 (0.005)

.50 −0.1040 (0.004) −0.0017 (0.004) −0.1057 (0.005)

.60 −0.1120 (0.006) 0.0015 (0.006) −0.1136 (0.006)

.70 −0.1008 (0.007) −0.0002 (0.007) −0.1011 (0.007)

.80 −0.1142 (0.007) 0.0030 (0.016) −0.1112 (0.016)

.90 −0.1058 (0.011) 0.0080 (0.014) −0.1138 (0.014)

Chernozhukov et al. (2013) approach

total covariates coefficients
𝜃 difference se difference se difference se

.10 −0.0711 (0.013) −0.00007 (0.0008) −0.0710 (0.013)

.20 −0.0836 (0.012) −0.0001 (0.0006) −0.0834 (0.012)

.30 −0.1009 (0.011) −0.0005 (0.0005) −0.1004 (0.011)

.40 −0.0994 (0.010) −0.0004 (0.0006) −0.0989 (0.010)

.50 −0.1044 (0.013) −0.0008 (0.0008) −0.1036 (0.013)

.60 −0.1168 (0.013) 0.0003 (0.0008) −0.1171 (0.013)

.70 −0.1010 (0.012) −0.0006 (0.001) −0.1004 (0.013)

.80 −0.1125 (0.018) 0.0003 (0.001) −0.1129 (0.018)

.90 −0.1096 (0.023) 0.00009 (0.001) −0.1097 (0.023)

The weights𝑤 are function of the probability of being in group 1 given the covari-
ates, the probability of exposure to treatment conditional on the observed covariates.
The 𝑤 depends upon the probability of each observation of being in the treatment
or in the control group. Its definition is related to another popular method to esti-
mate the difference between treatment and control at the mean, the propensity scores
(Rosenbaum and Rubin, 1983).Weighting the observations by the inverse of the prob-
ability of belonging to a given group provides the potential output: within each group,
treated and untreated are weighted by the inverse probability of belonging to that
group. This creates a pseudo-population in which there is no confounding factor.
Then any difference in the comparison of the potential output of treated and control
can be ascribed to the policy/training program under analysis, thus coinciding with
the coefficients effect. This yields the Inverse Probability Weight (IPW) estimator of
the treatment effect, which is generally implemented on average, measuring the effect
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Figure 3.21 Behavior of the total, covariates and coefficients gaps in walking speed
between gender across quantiles as computed by the Machado and Mata approach.
The total difference coincides almost everywhere with the unexplained/coefficients
difference, while the covariates gap is at the top of the graph, close to zero.

of a treatment as a difference between the means: the weighted averages computed
within each group reflects the averages in the true population.7

In practice, the propensity score is estimated by assuming that P(Z = 1 ∣ X) fol-
lows a parametric model, that is, a logistic regression model where the probability of
treatment is function of the covariates and is estimated by maximum likelihood,

P(Z = 1 ∣ X) =
exp(X𝛽)

1 + exp(X𝛽)

The probability of being in group 0 or 1 provides the weights to compute the
potential outcome. The IPW estimates of the average treatment effect is given by the
difference between the potential output of the two groups

n−1
[∑ ZiYi

P(Z = 1 ∣ X)
−
∑ (1 − Zi)Yi

1 − P(Z = 1 ∣ X)

]

7 Another way to interpret the IPW estimator is to consider the estimated probability weights as a cor-
rection for missing data, where the latter are due to the fact that each subject is observed in only one of the
potential outcomes, as belonging to the treated or the untreated group (Cattaneo et al., 2013).
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Figure 3.22 Propensity scores estimates, P(Z = 1 ∣ X) = exp(X𝛽)
1+exp(X𝛽) , where women

provide the reference group.

In the data set on walking speed and BMI (SHARE, year 2004), the IPW average
group difference in walking speed is n−1

[∑ ZiYi
P(Z=1∣BMI) −

∑ (1−Zi)Yi
1−P(Z=1∣BMI)

]
= −0.094

with standard error se = 0.012. These results agree with the values provided by the
Oaxaca-Blinder analysis of Table 3.7, signaling once again a greater walking speed in
the male group, which is statistically significant. Since IPW modifies the two groups
in order to create only one pseudo-population, any statistically significant difference
is due to the coefficients.

To analyze the gender difference at the quantiles, the IPW set of weights are
used to implement the weighted quantile regression in each group. Then, treatment
and control at their unconditional distributions can be compared, as proposed by
Frolich and Melly (2010). In the walking speed example, the histogram of the
estimated propensity scores P(Z = 1 ∣ BMI) is in Figure 3.22. The histogram of
the IPW weights, 𝑤 = Zi

P(Z=1∣BMI) +
(1−Zi)

1−P(Z=1∣BMI) , is in Figure 3.23, where women’s
group 1 receives lower weights since the probability of being in this group is
higher. Figure 3.24 depicts the potential output in the two subsets, 𝑤Y0 and 𝑤Y1.
These distributions are centered at E(𝑤Y1) = 1.12 in the women’s group and at
E(𝑤Y0) = 1.68 in the men’s subset. Table 3.10 reports the QTE estimates of the
difference between treated and control at various quantiles as computed by the
Frolich and Melly approach. It computes the difference between the quantiles of
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Figure 3.23 Inverse propensity scores weights,𝑤i =
Zi

P(Z=1∣BMI) +
(1−Zi)

1−P(Z=1∣BMI) . For

Zi = 1 the weight is 𝑤i =
1

P(Z=1∣BMI) , while for Zi = 0 it becomes 𝑤i =
1

1−P(Z=1∣BMI) .

Women receive a lower weight (around 1.78, strictly less than 2.3 in men’s group)
since P(Z = 1 ∣ X) > 0.5.
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Figure 3.24 Potential output in each subset, with E(𝑤Y1) = 1.12 in the women’s
group and E(𝑤Y0) = 1.68 in the male subset.
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Table 3.10 Gender differences in 𝑤speed across
quantiles, Frolich and Melly approach.

difference in potential output between groups across 𝜃

𝜃 difference se

.10 −0.0735 (.014)

.20 −0.0862 (.013)

.30 −0.1037 (.012)

.40 −0.1003 (.012)

.50 −0.1025 (.012)

.60 −0.1175 (.013)

.70 −0.0948 (.014)

.80 −0.1172 (.018)

.90 −0.1105 (.025)

Table 3.11 Potential output across deciles, Cattaneo approach.

deciles of the potential output distributions

𝜃 men se women se diff. se

.10 0.34 (.009) 0.31 (.007) −0.025 (.011)

.20 0.44 (.010) 0.41 (.007) −0.025 (.012)

.30 0.51 (.012) 0.49 (.005) −0.016 (.013)

.40 0.59 (.008) 0.56 (.007) −0.036 (.010)

.50 0.65 (.009) 0.63 (.005) −0.025 (.009)

.60 0.72 (.009) 0.71 (.007) −0.014 (.010)

.70 0.81 (.009) 0.80 (.012) −0.011 (.013)

.80 0.88 (.010) 0.89 (.022) 0.011 (.021)

.90 1.05 (.020) 1.14 (.060) 0.082 (.061)

Note: In italics are the not statistically significant differences

the unconditional distributions of each group. The coefficients effect across deciles
varies from 7% to 11% and does not diverge much from the coefficients effects
reported in Table 3.9.

In addition, Frolich and Melly (2010) consider the case of endogenous treatment,
which occurs when the treatment is self-selected. This generalization implies the
introduction of instrumental variables to solve the endogeneity.

Finally, Cattaneo (2010), in a multivalued treatment effects model, proposes a
generalized propensity score approach based on nonparametric estimates of the IPW
and focuses on the unconditional distributions within each group. Table 3.11 reports
the estimates of the potential outcome distributions across quantiles computed using
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Figure 3.25 Estimated quantiles for each groups, men and women, and for their dif-
ference in the Cattaneo treatment effect estimator. With this approach the difference
in walking speed between men and women, depicted at the bottom of the graph, is
close to zero.

this approach (see also Cattaneo et al., 2013). The treatment effect is provided by
the difference between the estimates in the two groups. For instance, at the first
decile the treatment effect is given by 0.31−0.34 = −0.03. But in order to check
the statistical relevance of the group difference, standard errors are needed. The
last two columns of the table provide the estimated differences together with their
standard errors, the latter computed by bootstrap. Compared to the previous results,
this approach provides very small estimates of the groups difference, which ranges
from −0.02 to −0.03. However, depending on the issue analyzed, it may be relevant
to look at each unconditional distribution and not at the sole difference between the
two, as provided by the other QTE decomposition approaches. Figure 3.25 depicts
the estimated quantiles for each group and for their difference as computed by the
Cattaneo treatment effect estimator.

3.6 A summary of key points

Sections 3.1 and 3.2 discuss alternative interpretations of the quantile regression esti-
mators, based respectively on the p-dimensional subsets and on the use of bootstrap
when the former approach is unfeasible due to the large size of the sample. Section
3.3 implements bootstrap to the extreme quantile regressions. Indeed, the behavior of



118 QUANTILE REGRESSION

the quantile estimator in the far tails is nonstandard, and a specific bootstrap-based
approach has been presented by Chernozhukov and Fernandez Val (2011) to perform
inference. Section 3.4 summarizes the asymptotic behavior of the quantile regression
estimator for central quantiles. The last section is devoted to the estimate of treatment
effects at the mean and at various quantiles and to its decomposition into explained
and unexplained components.
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Appendix: computer codes

A) elemental sets when p = 2:

input x1i x1j y1i y1j input data as in first
10 8 8.04 6.95 four columns of Table 3.1
10 13 8.04 7.58
10 9 8.04 8.81
10 11 8.04 8.33
10 14 8.04 9.96
8 13 6.95 7.58
8 9 6.95 8.81
8 11 6.95 8.33
8 14 6.95 9.96

13 9 7.58 8.81
13 11 7.58 8.33
13 14 7.58 9.96
9 11 8.81 8.33
9 14 8.81 9.96

11 14 6.95 9.96
end
gen dx=x1i−x1j
gen dy=y1i−y1j
gen bij=dy/dx elemental set slopes
gen yij=y1i+y1j
gen xij=bij*(x1i+x1j)
gen b0ij=(yij-xij)/2 elemental set intercepts
list bij b0ij x1i x1j y1i y1j
su bij,d
scalar bmedian=r(p50) median slope
su b0ij,d
scalar b0median=r(p50) median intercept
centile bij, centile(45 50 52) slope confidence interval
centile b0ij, centile(45 50 52) intercept confidence interval
gen sumdxsq=sum(dx*dx)
scalar denom=sumdxsq[15]
gen wij=(dx*dx)/denom OLS weights
gen bol=wij*bij
gen b0ol=wij*b0ij
gen bols=sum(wij*bij) OLS slope
gen b0ols=sum(wij*b0ij) OLS intercept
list wij print OLS weights
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B) trimmed regression:

reg y x if y<=k exclude values of y ⪖ k in OLS
qreg y x if y<=k exclude values of y ⪖ k in

quantile regression

C) design matrix bootstrap:

use file.dat input data

bootstrap _b, OLS coefficients

reps(100) sa(OLScoef): reg y x

estat bootstrap compute bias and variance

bootstrap _b, elemental sets coefficients

reps(100) si(2) sa(elem): reg
y x

bootstrap "qreg y x,q(.5)" _b, median regression coefficients

reps(100) sa(bootcoeff5)

matrix varian=e(V) save var-cov matrix

matrix list varian print var-cov matrix

matrix confid=e(ci_percentile) percentile confidence intervals

matrix confidn=e(ci_normal) normal confidence intervals

matrix list confid print confidence intervals

* to look at the computed bootstrap median regression coefficients

clear clear to use new data set

use bootcoeff5 input median bootstrap

coefficients file

*or alternatively to look at the OLS bootstrap coefficients

use OLScoef input OLS bootstrap
coefficients file

*or alternatively to look at the elemental set bootstrap coefficients

use elem input elemental set bootstrap
coefficients file

su b_x, d show summary statistics of
bootstrap slope

scalar varian=r(Var) save variance

scalar mean=r(mean) save mean

scalar perc1=r(p5) keep the 5th percentile

scalar perc2=r(p95) keep the 95th percentile

histogram b_x draw histogram of slope coeff.

quantile b_x draw quantile plot of slope
coefficients
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D) extremal quantiles:

clear

use datafile input data

*extreme value

set seed 88

qreg y x, q(.05) compute 5th quantile regression

*bootstrap the 𝜃 = .05 quantile regression, B = 100 n = 7

bootstrap "qreg y x,q(.05)" _b, reps(100) si(7)
sa(coeff05)

*bootstrap the 𝜃b = 𝜃n∕b = .05 ∗ 11∕7 = .078 ∼ .08 quantile regression
bootstrap "qreg y x,q(.08)" _b, reps(100) si(7)

sa(coeff08)

*bootstrap the m𝜃b = ((𝜃n + p)∕𝜃n) ∗ 𝜃b = .37 quantile regression

bootstrap "qreg y x,q(.37)" _b, reps(100)si(7)
sa(coeff37)

*bootstrap the mean of X

bootstrap, reps(100) si(7) sa(mediax05): mean x

*organize coeff05 mediax05 coeff08 coeff37 side by side

clear organize the data by subsample

u coeff05 for the 5th quantile regression

gen id=_n set the iteration number

sort id

save boot05, replace

u mediax05, clear for the mean of X in each subset

ren _b_x medx assign a name to the series
“mean of X”

gen id=_n set the iteration number

sort id

save xxmedia05, replace

u coeff37an,clear for the m𝜃b quantile regression

ren b_x b137 assign a name to the series
“37th quantile slope”
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ren b_cons b037 assign a name to the series “37th

quantile intercept”

gen id=_n set the iteration number

sort id

save boot37, replace

u coeff08,clear for the 𝜃b quantile regression

ren b_x b108 assign a name to the series “8th

quantile slope”

ren b_cons b008 assign a name to the series “8th

quantile intercept”

gen id=_n set the iteration number

sort id

save boot08, replace

u boot05, clear merge the bootstrap results by
subset

merge id using boot37

drop _merge

sort id

merge id using xxmedia05

drop _merge

sort id

merge id using boot08

drop _merge

save bboot05, replace final data set, data organized by
iteration

clear

u bboot05

*numerator of V , differences of each subset from the 5th estimates

gen diff=b_x−.46
gen diff0=b_cons−1.6

*denominator of A, difference of the (m𝜃b) and (𝜃b) estimates

gen difdenb0=medx*(b037−b008)
gen difdenb1=medx*(b137−b108)
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*numerator of A =
√
n𝜃 =

√
11 ∗ .05

gen biga0=.741/difdenb0
gen biga1=.741/difdenb1
gen bigv0=diff0*biga0
gen bigv1=diff*biga1
su bigv0,d

scalar low0=r(p5)
scalar up0=r(p95)
su bigv1,d

scalar low1=r(p5)
scalar up1=r(p95)
scalar list low0 up0 low1 up1 5th and 95th quantiles of V̂ ,

intercept, slope

E) quantile treatment effect

*download at http://www.stata-journal.com/software/sj8-4

*the routine to compute the Oaxaca Blinder decomposition

oaxaca y x, by(gender) Oaxaca-Blinder decomposition

*download at http://www.econ.brown.edu/fac/Blaise_Melly/

*to install Melly routine on decomposition

net install counterfactual,

from("http://www.econ.brown.edu/fac/Blaise_Melly/")

cdeco y x, group(gender) Chernozhukov et al.
decomposition

*download at http://fmwww.bc.edu/RePEc/bocode/m/mmsel.ado

ssc install mmsel to install Machado and Mata
routine

gen pid=_n identification of individuals

*Machado and Mata decomposition

*(in the tmp folder are saved, for all the replicates, the unconditional and the

*counterfactual distributions)

mmsel y x, group(gender) filename(name) reps(#) group1

*download at http://www.stata-journal.com/software/sj13-3

*the routine to compute IPW and Frolich and Melly approach
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*average treatment effect by IPW

teffects ipw (y)(gender x,logit)

compute Frolich weights and propensity scores at 10th decile

ivqte y (gender), c(x) v generate_p(pp) generate_w(ww)
quantile(.1)

*saves propensity scores in pp and weights in ww

*download at http://www.stata-journal.com/software/sj10-3 the routine

*to compute Cattaneo approach

*compute potential output at 10th 50th 90th deciles

poparms (gender y x)(y x), q(.1 .5 .9)

*compute potential output at 10th 50th 90th deciles

margins gender, pwcompare predict(equation(#2))

*estimate difference at second decile with standard errors

margins gender, pwcompare predict(equation(#3))
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A not so short introduction to
linear programming

Introduction

Quantile regression is a statistical method suitable tomodel the whole conditional dis-
tribution of a response variable in terms of a set of explanatory variables. The begin-
ning of wide dissemination was the formulation in terms of a linear programming
problem. Indeed, the availability of sound and efficient methods for solving linear
programming problems offered the opportunity to test and apply quantile regression
on realistic problems and appreciate its added value.

This chapter proposes a (not so short) journey into the world of linear program-
ming. Mathematics is softened in order to focus on geometric intuition and teaching
examples. The general simplex algorithm and its main variants are presented and then
applied to generic problems. The aim is to enable the reader to manage the linear
programming machinery and to apply it to the quantile regression framework.

4.1 The linear programming problem

The decisional structure of an optimization problem consists of several items:

• feature of the available information, essentially classified in certain or
uncertain,

• number of decision makers (one or more),

• number of decision goals (one or more).

Quantile Regression: Estimation and Simulation, Volume 2. Marilena Furno and Domenico Vistocco.
© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/furno/quantileregression
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Different combinations of the previous items lead to different decision problems.
Mathematical programming deals with the simplest setting characterized by a certain
information, a single decision maker, and a unique decision goal. In such a setting,
the decision maker formulates the problem in terms of a set of variables (decisional
variables), defining an objective function suitable to quantitatively rank the different
available choices. The operating principle of the decisional system is described
through a set of conditions defined on the decisional variables, conditions resulting
in a set of constraints typically formulated using equalities and/or inequalities.
Mathematical programming selects the solution that determines the best value of the
objective function (optimal solution) among the set of all possible solutions (feasible
solutions).

In formal terms, denoting by f (.) the objective function and with x the
n–dimensional vector of decisional variables, a mathematical programming problem
is defined as:

minimize z = f (x)

x ∈  . (4.1)

The set  ⊆ ℝn of the solutions satisfying all the constraints is the feasible region.
The solution of the problem (4.1), in case it exists, is the feasible solution x∗ such that
f (x∗) ≤ f (x) for each x ∈  . The value z∗ = f (x∗) is the optimal value. The problem
is known as unfeasible in case a feasible solution does not exist ( = ∅), whereas it
is known as unbounded when the feasible region exists but is not bounded. It is worth
noting that the formulation in terms of a minimization problem is not restrictive, since
any maximization problem, max f (x) ∶ x ∈  , can be easily expressed through the
equivalent minimization problem, min[−f (x)] ∶ x ∈  . Therefore, a mathematical
programming problem consists in the search of a constrained minimum (maximum),
which can be found by resorting to the classical mathematical tools grounded on the
first and second derivative.

In the class of mathematical programming problems, the linear programming one
is a special case where the objective function and all the constraints are linear, and
the decisional variables are continuous and non-negative. Such a problem can be for-
mulated as follows:

minimize z = c⊤x =
n∑
i=1

cixi

subject to Ax ≤ b

x ≥ 𝟎

(4.2)

where c denotes the n–dimensional vector of the objective function coefficients (costs
in case of a minimization problem or returns in case of a maximization problem), A
is them × nmatrix expressing them constraints on the n decisional variables, and b is
the m–dimensional vector of the known coefficients associated with the constraints.

The exclusive use of less–than inequalities in the previous formulation is not
restrictive as it is easy to switch from greater–than inequalities to less–than inequal-
ities and turn equalities in two equivalent inequalities. The conversion exploits
simple manipulations, as the one previously shown for the equivalence between
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a minimization and a maximization problem. In fact, a greater–than–or–equal
inequality constraint:

ai1xi1 + … + aijxij + … + ainxin ≥ bi

is transformed in less–than–or–equal form when multiplying it for -1:

−ai1xi1 − … − aijxij − … − ainxin ≤ −bi.

Likewise, an equality constraint:

ai1xi1 + … + aijxij + … + ainxin = bi

is equivalent to the simultaneous occurrence of the two following inequality
constraints:

ai1xi1 + … + aijxij + … + ainxin ≤ bi

ai1xi1 + … + aijxij + … + ainxin ≥ bi

and therefore to the two less–than–or–equal inequalities:

ai1xi1 + … + aijxij + … + ainxin ≤ bi

−ai1xi1 − … − aijxij − … − ainxin ≤ −bi.

In summary, a linear programming problem consists of a linear objective function,
a set ofm constraints expressed through linear inequalities representing the conditions
of the problem, and a set of n constraints related to the non–negativity of the deci-
sional variables. It is worth highlighting that the non–negative conditions restrict the
solution set to ℝn

+.

4.1.1 The standard form of a linear programming problem

It is useful to introduce an additional representation for all the linear programming
(LP) problems in order to standardize the required steps in a solving algorithm.
This representation is labeled as standard form (Hiller and Lieberman, 2015). It
consists in a minimization problem whose structural constraints, referring to a set of
non–negative decisional variables, are expressed in equational form:

minimize z = c⊤x

subject to Ax = b

x ≥ 𝟎.

(4.3)

The standard form encompasses all possible LP problems, since each LP prob-
lem can be easily transformed in a way to comply with this formulation. The use
of equalities for the constraints permits to exploit a basic property of linear systems
pertaining to the transformation of linear equations:

any (linear) transformation of a system of linear equations does not modify the
solution set (Strang 2005, 2009).
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This property is the core of the simplex algorithm, as shown in section 4.2. In
order to obtain the standard form, a simple trick permits to switch from an inequality
to an equality. The following inequality:

ai1xi1 + … + aijxij + … + ainxin ≤ bi

is indeed equivalent to:

ai1xi1 + … + aijxij + … + ainxin + s = bi

s ≥ 0

which is obtained introducing the artificial non–negative variable s, also called slack
variable. Likewise, a greater–than–or–equal inequality:

ai1xi1 + … + aijxij + … + ainxin ≥ bi

is equivalent to the following equality:

ai1xi1 + … + aijxij + … + ainxin − s = bi

s ≥ 0

in which the artificial variable s, or surplus variable, is subtracted. In the following,
we refer to the s variable as slack variable in both cases, as commonly done in the LP
literature.

A further point that deserves attention is the non–negativity restriction of the stan-
dard form on the decisional variables, since real applications could involve variables
that are negative or unrestricted in sign. By now, it should be obvious that a negative
decisional variable:

xi ≤ 0

can be expressed as:
−xi ≥ 0.

A variable xi, unrestricted in sign, can always be expressed as difference of two
non–negative numbers:

xi = x′i − x′′i

x′i ≥ 0

x
′′
i ≥ 0.

Thus, the transformation of a generic LP problem into its standard form involves
the introduction of further variables (the artificial variables) resulting in an increased
dimensionality. In the following, we continue to denote by x the vector of the vari-
ables: whereas the initial formulation of the problem involves inequalities, the vector
will be then composed both of the natural decisional variables and the artificial vari-
ables useful to achieve the standard form.
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Finally, using the standard form formulation, the optimal solution x∗ is the vector
minimizing z such that:

Ax∗ = b

x∗ ≥ 𝟎

c⊤x∗ ≤ c⊤x

for each x ∈ +. The solution vector x
∗ contains the values for both the natural vari-

ables and the necessary artificial variables.

4.1.2 Assumptions of a linear programming problem

Before introducing the geometry of LP, it is important to stress the effects of the lin-
earity of the objective function and of the structural constraints. Essentially, a function
is linear if a unit increase (decrease) in a variable causes a constant increase (decrease)
in the value of the function itself. Such linearity engenders some assumptions on the
LP problem (Hiller and Lieberman, 2015). The assumptions are related to the deci-
sional variables and to their effects on the problem. They can be briefly summarized
in the following three points:

Divisibility The components of the vector x can assume any value meeting
both the structural and the non–negativity constraints. This hypothesis is also
referred to as continuity assumption. In many real problems, the decisional
variables are restricted to assume only integer values, but divisibility holds for
the applications of the linear programming theory to the quantile regression
setting. Therefore, we focus on the case of divisible variables, referring the
interested reader to the integer programming theory (Matousek and Gartner,
2005; Vanderbei, 2014) where the assumption may be unrealistic;

Proportionality The contribution of each decisional variable xi to the value of
the objective function and to each structural constraint is proportional to the
value of the variable. This is evident from the expression of the objective func-
tion, z = cx =

∑n
i=1 cixi, where the variable xi contributes with weight equal to

cixi. The same for the generic constraint
∑n

i=1 aijxij, with j = 1, … ,m, where
aijxij is the contribution of the variable xi. In both cases, the proportionality
of the contribution of xi is obvious. In practical terms, the contribution of xi
is constant across the different values of the variable and it is not affected by
(dis)economies of scale;

Additivity The different decisional variables xi, with i = 1, … , n, do not inter-
fere with each other in determining the value of the objective function and of
the single constraints. In this case too, the assumption is strictly related to the
underlying linearity of the problem: the objective function is indeed the sum
of the contributions of each decisional variable, and the same holds for each
constraint. As ci and aij are the contributions of the variable xi to the objective
function and to the j–th constraint, respectively, the total contribution of the
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n decisional variables is
∑n

i=1 cixi for the former and
∑n

i=1 aijxij for the latter.
From a practical point of view, the additivity assumption excludes all the syn-
ergies between the decisional variables.

4.1.3 The geometry of linear programming

The use of two decisional variables allows us to visually introduce the geometry of
linear programming, and the basic idea of its solution methods through geometric
figures in a plane. The problem can be represented in the 3–D space in case of three
decisional variables. Starting from these simple cases, we can move to more general
and realistic problems, involving n decisional variables.

The 2–D problem

Let us consider the following LP problem with two decisional variables:

maximize z = 5x1 + 3x2

subject to x1 + x2 ≤ 600 (C1)

2x1 + x2 ≤ 800 (C2)

x1 ≥ 0 (C3)

x2 ≥ 0 (C4).

(4.4)

The 2–D problem can be represented and solved using a graphical approach. Each
linear inequality associated with a constraint divides the plane into two half–planes:
one in which the inequality is satisfied and one in which it is not. The same for the
two non–negativity constraints, which restrict the solutions toℝ2

+. Therefore, consid-
ering the intersection of all the half–planes associated with the technical constraints
and with the non–negativity constraints on the same Cartesian plane, we obtain the
region of feasible solutions, known as feasible set or feasible region. In particular, in
Figure 4.1, the first constraint x1 + x2 ≤ 600 corresponds to the half–plane below the
line C1, while the half–plane below the line C2 is the geometrical equivalent of the
second constraint 2x1 + x2 ≤ 800. The two non–negativity constraints x1 ≥ 0 and
x2 ≥ 0 limit the solution to the first quadrant, the former expressing the half–plane
above the horizontal axis (C3) and the latter, the half–plane to the right of the vertical
axis (C4). The polygon , intersection of the four half–planes, is the geometric
set of all the points that simultaneously meet the four constraints, and therefore is the
feasible set. The optimal solution z∗ is the value belonging to the polygon 
that maximizes the objective function z = 5x1 + 3x2.

In order to complete the geometrical interpretation of the problem (4.4), we need
to represent the two–variable function z in the same Cartesian plane. To this end, it
is useful to resort to the level lines. In fact, the objective function is linear and hence
it corresponds to the plane z represented in Figure 4.2. Let us now consider a set
of planes parallel to the planes x1x2: in particular, the planes 𝛼 ∶ z = 0, 𝛽 ∶ z = 2,
𝛿 ∶ z = 4, 𝛾 ∶ z = 6, 𝜖 ∶ z = 8 are shown in Figure 4.2. The intersections of z with
the set of planes 𝛼, 𝛽, 𝛾, 𝛿, 𝜖, provide the section lines a, b, c, d, e. The projections
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Figure 4.1 Geometrical representation of the constraints in the LP problem (4.4).
The intersection of the four constraints C1, C2, C3 and C4 determines the feasible
region corresponding to the polygon .

of such section lines on the plane x1x2 define the level lines a, b0, c0, d0, e0 of the
objective function z: the level lines of z are then a sheaf of parallel lines, orthogonal
projections of the points of the plane z sharing the same value (in the example z = 0,
z = 2, z = 4, z = 6, and z = 8). The level lines are parallel to the line a|z = 3x + 5y =
0, which is known as the line generating the sheaf. More specifically, in the case of a
linear objective function, the level lines are orthogonal to the vector 𝑣(5, 3), which is
determined by the two coefficients of the decisional variables x1 and x2 in z. It denotes
the direction to follow in order to move along the level lines.

Figure 4.3 depicts some level lines for the 2D–example (4.4), starting with the
case of z = 0 up to z = 2200, which corresponds to the optimal solution, as shown
below. It is obvious that the solution x∗ has to lie on the boundary of the feasible
set: in fact, given a generic interior point  , the value of the objective function z can
be increased while remaining in the feasible region. We can obtain a higher value of
z moving the point  towards a higher level line, and this until  is moved on the
boundary of the feasible region. In the LP example (4.4), the solution is the corner 
where the level line z = 2200 intersects the feasible region. The above line of
reasoning entails a correspondence among corners and optimal solution: the search
for the solution can be limited to the boundary of the feasible region and, more specif-
ically, to its corners. Therefore, the graphical approach simply requires computing the
coordinates of the four corners, and then evaluating the objective function in each of
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Figure 4.2 Geometrical representation of the objective function z in the LP prob-
lem (4.4). The objective function z defines a plane; the intersections of z with
the set of planes (𝛼, 𝛽, 𝛾, 𝛿, 𝜖) corresponding to different values of z, provide a set
of lines (a, b, c, d, e), whose projections on the plane x1x2 define the level lines
(a, b0, c0, d0, e0) of z. Such level lines are orthogonal to the vector 𝑣(5, 3), determined
by the two coefficients of the decisional variables in z.

them. More in detail, the coordinates of each corner are the solutions of a system of
equations, each comprising two equations, since a corner is the intersection of two
lines defined by the problem constraints. The four systems of equations along with
their solutions are:

(0, 0) ∶

{
x1 = 0

x2 = 0
(0,600) ∶

{
x1 + x2 = 600

x2 = 0

(200,400) ∶

{
x1 + x2 = 600

2x1 + x2 = 800
(400, 0) ∶

{
2x1 + x2 = 800

x1 = 0.

From Figure 4.3, it is immediately clear that the corner  , for instance, corresponds
to the intersection of the constraints C1 and C2 of the LP problem. When evaluating
the objective function z in each corner, the optimal solution z∗ is achieved in  :

z = 0 z = 2000

z = 2200 = z∗ z = 1200.

The basic idea underlying the simplex algorithm emerges from the above
example: to find the optimal solution, it is sufficient to inspect the corners of the
feasible region and choose the one associated with the highest value of z.
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Figure 4.3 Geometrical representation of the LP programming problem (4.4). The
optimal solution has to lie on the boundary of the polygon . The choice of
any point  interior to the feasible region is not optimal, since z can be improved
considering a point on a higher level line. The optimal solution corresponds to the
corner  where the feasible region intersects the level line z = 2200. The level lines
are orthogonal to the vector v(5, 3), where 5 and 3 are the two coefficients of the
decisional variables x1 and x2 in the objective function z.

Many LP problems admit a single solution as in the above example. There exist
problems admitting infinite solutions. The approach exploring the corners of the fea-
sible region is valid also when the vector determining the direction of the level lines
is orthogonal to one of the edges of the polygon defining the feasible region: in this
case, there exist infinite equivalent solutions, since the highest admissible level line
overlaps an edge of the polygon, that is, it passes through two corners. An example
is provided by the following LP problem:

maximize z = 5x1 + 5x2

subject to x1 + x2 ≤ 600 (C1)

2x1 + x2 ≤ 800 (C2)

x1 ≥ 0 (C3)

x2 ≥ 0 (C4).

(4.5)

The problem is the same as in (4.4), except for the coefficient c2 of the variable x2,
here equal to 5. Such a variant only causes a change in the slope of the level lines,
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which are now parallel to the line C1, with no effects on the feasible region. From
Figure 4.4 it is evident that any point belonging to the edge is an optimal solution.
Hence, by focusing only on the corners  and  , the problem could be solved.

A simple check only requires to evaluate the new objective function z = 5x1 + 5x2
in the four corners, whose coordinates do not changewith respect to the previous case:

z = 0 z = 3000 = z∗

z = 3000 = z∗ z = 1200.

Every linear combination of the two points  and  :

∗ = 𝛼 + (1 − 𝛼) ,with 𝛼 ∈ [0, 1]

defines a point lying on the edge that joins the two points, and then ensures the same
optimal value of the objective function z∗ = 3000.
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)
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Figure 4.4 Geometrical representation of the LP programming problem (4.5). The
optimal solution is any point belonging to the edge  : since the vector 𝑣(5, 5) is
orthogonal to this edge, the level lines are parallel to . Moving again on the corners
of the feasible region, both the solutions z and z provide the same optimal value
z∗ = 3000, as well as any point lying on the edge joining  and  .
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Next it is worth mentioning the case in which the feasible region is unbounded.
Consider the following maximization problem:

maximize z = 4x1 − 3x2

subject to − 2x1 + x2 ≤ 4 (C1)

x1 − 2x2 ≤ 8 (C2)

x1 − x2 ≤ 11 (C3)

x1 ≥ 0 (C4)

x2 ≥ 0 (C5).

(4.6)

Figure 4.5 depicts the corresponding feasible region and the level lines defined by
z: here, for any level line, it is always possible to improve the solution because a
lower level line always intersects the feasible region. The optimal solution is there-
fore unbounded, since the two variables, x1 and x2, can indefinitely increase, and the
objective function z increases with them.

Finally, it is possible also to face inconsistency when the feasible region is empty.
In such a case, there is no solution that meets all the problem constraints.
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Figure 4.5 Geometrical representation of the LP programming problem (4.6). The
feasible region is unbounded and therefore there does not exist any finite optimal
solution: considering any level line, it is always possible to consider a lower line still
belonging to the feasible region.
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From examples (4.4), (4.5), and (4.6), the close link between the corners of
the feasible region and the optimal solutions (Hiller and Lieberman, 2015) can be
described as follows:

• If a LP problem is solvable with a bounded feasible region, there exists then
one corner and at least one optimal solution.

• If the problem admits exactly one optimal solution, it must be a corner.

• If the problem has multiple optimal solutions, at least two of them must be
corners.

This key result also works in higher-dimensional spaces and is indeed the foun-
dation for solving the LP problems, as will be shown in section 4.2.

The 3–D problem

By adding a further variable, it is still possible to graphically represent the prob-
lem moving to a 3D–space. With three decisional variables, each constraint defines
a half–space (no longer a half–plane). The intersection of all the half–spaces cor-
responding to the technical constraints and non–negativity constraints provides a
polyhedron.

As an example, let us consider the following problem:

maximize z = 300x1 + 200x2 + 350x3

subject to x1 + x2 + x3 ≤ 40 (C1)

4x1 + 2x2 + 3x3 ≤ 120 (C2)

x3 ≤ 20 (C3)

x1 ≥ 0 (C4)

x2 ≥ 0 (C5)

x3 ≥ 0 (C6).

(4.7)

The feasible region, identified by the intersection of the six half–spaces defined by
the Ci constraints, i = 1, … , 6, is the polyhedron depicted in Figure 4.6. The objec-
tive function z = 300x1 + 200x2 + 350x3 is a hyperplane in ℝ4

+. As in the case of
two decisional variables, it is possible to project the intersections of z with the set of
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Figure 4.6 Geometrical representation of the LP programming problem (4.7). Each
constraint Ci, i = 1, … , 6, defines a half–space in the 3D–space; the feasible region
is the polyhedron determined by the intersection of the six half–spaces.

hyperplanes corresponding to different values of z, so to obtain a set of planes. As in
the previous case, such planes are orthogonal to the vector 𝑣(300, 200, 350), which
is defined by the coefficients of the decisional variables x1, x2 and x3 in the objec-
tive function z. The planes for z = 0 (plane generating the sheaf) and for z = 12000
(optimal solution) are depicted in Figure 4.7. The optimal solution is obtained in the
corner  of the feasible region. Also in this case, it is possible to exploit a graphi-
cal method to achieve the solution, reasoning only on the corners of the region. The
eight corners of the feasible region are indeed the solutions of as many systems of
three equations considering three constraints at the same time. In fact, each corner is
the intersection of three planes associated with the problem constraints. In particular,
the eight corners of the polyhedron  are the solutions of the following
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Figure 4.7 Geometrical representation of the LP programming problem (4.7). The
objective function z is a hyperplane in ℝ4

+. The intersections of z with the set of
hyperplanes corresponding to different values of z provide a set of planes. Such level
planes are orthogonal to the vector 𝑣(300, 200, 350). The two planes for z = 0 (plane
generating the sheaf) and z = 12000 (optimal solution) are here depicted.

systems of three linear equations:

(0, 0, 0) ∶
⎧⎪⎨⎪⎩
x1 = 0

x2 = 0

x3 = 0

(30, 0, 0) ∶
⎧⎪⎨⎪⎩
4x1 + 2x2 + 3x3 = 120

x2 = 0

x3 = 0

(20, 20, 0) ∶
⎧⎪⎨⎪⎩
x1 + x2 + x3 = 0

4x1 + 2x2 + 3x3 = 0

x3 = 0

(0, 40, 0) ∶
⎧⎪⎨⎪⎩
x1 + x2 + x3 = 40

x1 = 0

x3 = 0

(0, 0, 20) ∶
⎧⎪⎨⎪⎩
x1 = 0

x2 = 0

x3 = 20

(15, 0, 20) ∶
⎧⎪⎨⎪⎩
4x1 + 2x2 + 3x3 = 120

x2 = 0

x3 = 20

 (10, 10, 20) ∶
⎧⎪⎨⎪⎩
x1 + x2 + x3 = 40

4x1 + 2x2 + 3x3 = 0

x3 = 20

(0, 20, 20) ∶
⎧⎪⎨⎪⎩
x1 + x2 + x3 = 40

x1 = 0

x3 = 20.
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The optimal solution z∗ is obtained by computing the objective function z in the eight
corners of the polyhedron:

z = 0 z = 9000 z = 10000 z = 8000

z = 7000 z = 11500 z = 12000 = z∗ z = 11000

and it takes on the maximum value in corner  , as shown in Figure 4.7.

The multidimensional problem

Starting from the 2–D and 3–D cases, the geometric interpretation of the general
problem (4.2), involving n decisional variables and m constraints, naturally follows
(Strang, 2005). In particular, each linear inequality divides the n–dimensional space
into two half–hyperspaces, one where the inequality is satisfied and the other where
it is not. The feasible region is now the intersection of the m half–hyperspaces
defined by the problem constraints, and of the m half–hyperspaces corresponding
to the non–negativity constraints. Such a region is a hyper–polyhedron in the
n–dimensional space, and the optimal solution corresponds to a corner of this
polytope. That holds when the problem admits a unique solution. In case of more
optimal solutions, these solutions correspond to all the n–dimensional points lying
on a facet. Although it is not possible to provide a graphical representation of the
multidimensional case, and to exploit the graphical approach to obtain the solution,
the leading idea of exploring the corners of the feasible region is still valid: the
method that is mostly used for solving the LP problem, detailed in the following
section, arises from this insight.

4.2 The simplex algorithm

Before plunging into the simplex algorithm, it is useful to introduce the definition
and the meaning of basic solution, concept at the core of the simplex method. It is
also convenient to define a further formulation of a LP problem, the canonical form,
which will be exploited in the solving procedure.

4.2.1 Basic solutions

Let us refer to the generic formulation of a LP problem in standard form introduced
in equation (4.3) and focus on the system constraints:

Ax = b

x ≥ 𝟎

where the vector x is composed of the natural variables as well as of the artificial
variables introduced to obtain the standard form.

Such a system is characterized by m equations (the constraints) and n unknowns
(the decisional variables and the slack variables). It is clear that starting from a system
of m equations in n unknowns, with n > m, we can set n − m unknowns at will, and
determine the other m variables, consequently. A basic solution is defined by setting
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n − m unknowns to 0. In particular, the variables set to 0, labeled xN , are the nonba-
sic variables, and are clearly related to the degrees of freedom of the problem. The
remaining variables greater than 0, denoted by xB, are the basic variables. Therefore,
the number of basic variables is equal in number to the functional constraints of the
problem, whereas the number of nonbasic variables equals the number of variables
minus the number of functional constraints. According to this notation, the vector x
can be partitioned as follows:

x =

[
xN

- - - - - -
xB

]

and the matrix A consequently as:

𝐀 =
[
𝐍 𝐁

]
where the submatrix N contains the nonbasic variables and the submatrix B to the
basic variables. To highlight nonbasic and basic variables, the system constraints can
be formulated as follows:

NxN + BxB = b

xN = 𝟎

xB ≥ 𝟎.

Thus, the system constraints are reduced to:

N xN
⏟⏟⏟

=𝟎

+ BxB = b

and the values of the basic variables are easily obtained solving the system BxB = b.
To this end, the matrix B has to be non–singular, its inverse exists and xB = B−1b,

The notation highlighting the role of basic variables is extended to the vector c of
the objective function coefficients:

c =

[
cN

- - - - - -
cB

]

where cN is the set of coefficients of the nonbasic variables xN , and cB are the coef-
ficients of the basic variables xB.

Therefore, the objective function in terms of nonbasic and basic variables
becomes:

z = c⊤x = c⊤N xN
⏟⏟⏟

=𝟎

+ c⊤BxB

and the value of the objective function for the basic solution is:

z = c⊤BxB = c⊤BB
−1b.
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The number of possible basic solutions equals the number of ways them variables
xB can be chosen among the n variables x, which equals the number of ways that the
n − m variables xN can be chosen among the n variables x. More formally, they are
the number of m–element subsets, or m–combinations, (or, equivalently, the number
of n − m elemental subsets) of an n–element set:( n

m

)
=
( n
n − m

)
= n!
m!(n − m)!

⋅

Since a basic solution is obtained by setting n − m variables to 0 to derive the othersm
variables, this binomial coefficient is an upper bound for the number of feasible basic
solutions. Such an upper bound can be actually achieved only when all the possible
sets of m columns chosen from the matrix A are linearly independent.1

Let us refer again to the 2D problem (4.4). Its corresponding standard form
provides the following system of m = 2 equations (I and II) in n = 4 unknowns
(x1, x2, x3, x4), obtained by adding the two artificial variables x3 and x4 to the two
original variables x1 and x2:

minimize z̃ = −z = −5x1 − 3x2 + 0x3 + 0x4 = −5x1 − 3x2

subject to 1x1 + 1x2 + 1x3 + 0x4 = 600 (I)

2x1 + 1x2 + 0x3 + 1x4 = 800 (II)

x1 ≥ 0

x2 ≥ 0

x3 ≥ 0

x4 ≥ 0.

(4.8)

In particular, the slack variable x3 is added to transform the original constraint (C1)
into equation (I), while the slack variable x4 is added to the original constraint (C2)
to obtain equation (II). The two slack variables enter with coefficients equal to 0 in
the objective function and do not modify it.

A first basic solution is easily obtained by setting the two slack variables as basic
variables. The system constraints according to the above notation are:

1 1 1 0

2 1 0 1

x 1

x 2

x 3

x 4

=
600

800

A

N B

x

b
xN

xB

1 See section 4.4 for the special case of degenerate solutions.
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and the objective function is:

z = −5 −3 0 0

x 1

x 2

x 3

x 4

c⊤

c⊤

N c⊤

B

x

xN

xB

~

Setting x3 and x4 as basic variables permits to immediately obtain the solution, as
matrix B is the identity matrix:

xB =
[
x3
x4

]
= B−1b = I2b = b =

[
600
800

]

The corresponding value of the objective function is:

z̃ = c⊤b xB =
[
0 0

] [600
800

]
= 0.

The solution xB =
[
x3 = 600
x4 = 800

]
is only one of the possible basic solutions. In order

to achieve a geometrical interpretation, it is enlightening to inspect all the possi-
ble

(
n=4
m=2

)
=
(

n=4
n−m=2

)
= 6 solutions, listed in Table 4.1. The different solutions are

obtained by setting m = 2 of the n = 4 variables equal to 0. Each row of the table
presents the values of the four decisional variables and, in case of a feasible solution,
the value of the objective function z̃. The last column associates each solution with a
corner of the constraint region, depicted in Figure 4.8. The graphical representation
of the basic solutions has been obtained by slightly modifying Figure 4.1. Each of

Table 4.1 The six basic solutions for the LP problem (4.4). The last
column associates the solutions with the corners of the feasible region
depicted in Figure 4.8

# x1 x2 x3 x4 feasible z corner

1 0 0 600 800 yes z = 0 
2 0 600 0 200 yes z = 2000 
3 0 800 −200 0 no – 
4 600 0 0 −400 no – 
5 400 0 200 0 yes z = 1200 
6 200 400 0 0 yes z = 0 
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Figure 4.8 Geometrical representation of the constraints in the LP problem (4.4).
This figure is a slight modification of Figure 4.1, which highlights the feasible basic
solutions (, ,  , and ) and their association with the corners of the feasible
region  (polygon ). The corners  and  are not feasible, as they do not
belong to  . Each of the four lines limiting the feasible region is obtained by setting
to 0 a decisional variable, so defining the boundary of the half–plane associated with
a problem constraint. Two adjacent corners share the same boundary.

the four lines in the graph is the set of points for which a decisional variable assumes
the value 0, in particular:

• the horizontal axis is defined by the solutions for which x1 = 0,

• the solutions for which x2 = 0 define the vertical axis,

• the set of points for which x3 = 0 lies on the line that define the boundary of
constraint C2,

• the set of points for which x4 = 0 defines the boundary of constraint C1.

In the graph a basic solution corresponds to the intersection of two of the four lines,
because it is obtained by setting m = 2 variables equal to 0. Furthermore, Table 4.1
and Figure 4.8 also pinpoint that two solutions define two adjacent corners if they
share m − 1 = 1 constraint boundary, that is, if they lie on the same line. This is
verified for corners  and , which share the constraint C4, for corners  and  ,



146 QUANTILE REGRESSION

sharing the constraint C1, for corners  and , both satisfying constraint C2, and
for corners  and , which lie on the horizontal axis, boundary of constraint C3.
Furthermore, only four of the six basic solutions are feasible: solution #3 (corner )
and solution #4 (corner ) are outside the feasible region  , as the first corresponds
to a negative value of x3 = −200, and the second is obtained when x4 = −400. Such
two points do not satisfy constraints C2 and C1, respectively.

It emerges that the number of feasible basic solutions is at most equal to the num-
ber of basic solutions: in fact, the set of feasible basic solutions is a subset of the
set of basic solutions, and both sets consist of a finite number of solutions. A special
case occurs when more than n − m variables are equal to 0 in a basic solution: in such
a case the feasible basic solution is said to be degenerate. A degenerate solution is
due to the presence of a redundant constraint, its elimination would not change the
feasible region  . See section 4.4 for further details about this.

The importance of basic solutions for solving a LP problem is to be attributed to
the relationship between the corners of the feasible region and the optimal solutions
introduced in the previous section. In fact, a problemwith infinite solutions (the points
of the feasible set ) can be solved by examining only a finite number of them (the
feasible basic solutions, i.e., the corners of). This is the core of the simplex method
and exploits the following fundamental theorem of LP (Vanderbei 2014; Hiller and
Lieberman 2015):

Consider a LP problem in standard form.

• If there exists a feasible solution, then there exists a basic feasible solution.

• If there exists an optimal finite solution, then there exists an optimal finite
basic solution.

The 2D–example suggests the method to distinguish a feasible basic solution from a
not feasible basic solution. Each intersection between two lines associated with two
constraints defines a point, and each point can be a corner of the feasible set (corners
,,, and ) or can be external to the feasible set (corners and ). Starting from
the LP problem expressed in standard form, the following steps can be carried out in
the 2D–case to detect the corners of the feasible region:

• two of the variables are set to 0,

• the values of the remaining variables are then computed:

– if such values are not negative, the values of the variables x1 and x2 are the
coordinates of a corner of the feasible region (feasible basic solution),

– if any of the variables is negative, the values of x1 and x2 define a point
external to the feasible region (not feasible basic solution).

The previous method exploits the formulation of a point in terms of equivalence
between two equations. The same idea can be used in a space with more than three
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dimensions, since a point inℝn is the result of a system of n equations. Therefore, the
previous method used to detect the corners can be extended to the case of n dimen-
sions, whereas the LP problem Ax = b is expressed in standard form:

• n − m of the n variables are set to 0 (geometrically, this is equivalent to intersect
the n − m hyperplanes associated with the corresponding constraints),

• the values of the m remaining variables are then computed. If such values are
not negative, the values of the variables x1, … , xn are the coordinates of a
corner of the feasible region (feasible basic solution). If any of the variables is
negative, the values of x1, … , xn define a point external to the feasible region
(not feasible basic solution).

Through such procedure, the number of solutions to explore is restricted to a finite
number, that is, the

(
n
m

)
basic solutions. Although the number of feasible basic solu-

tions is finite and less–or–equal than the above upperbound, it exponentially increases
with n and m. Therefore it is not possible to search for the optimal solution through
the exhaustive enumeration of all the feasible basic solutions. The optimality condi-
tion introduced in the next subsection allows us to obviate this problem. It provides a
rule to check if the current solution is optimal: in case it is not, the rule makes it pos-
sible to move to a new feasible basic solution which ensures a value of the objective
function at least equivalent.

4.2.2 Optimality test

A feasible basic solution:

x∗ =
[
xB
xN

]
=
[
B−1b
𝟎

]

is optimal if and only if c⊤x∗ ≤ c⊤x,∀x ∈  . Starting from the original system for-
mulated in terms of basic and non–basic variables, Ax = BxB + NxN = b, the basic
variables can be expressed as:

xB = B−1b − B−1NxN . (4.9)

Such expression can then be replaced in the objective function as follows:

z = c⊤x = c⊤BxB + c⊤NxN

= c⊤B (B
−1b − B−1NxN)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
xB

+ c⊤NxN

= c⊤BB
−1b − c⊤BB

−1NxN + c⊤NxN

= c⊤BB
−1b + (c⊤N − c⊤BB

−1N)xN
= c⊤B B−1b

⏟⏟⏟
xB

+ c⊤N xN
⏟⏟⏟

𝟎
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

c⊤x∗

+ (c⊤N − c⊤BB
−1N)xN + (c⊤B − c⊤B B−1B

⏟⏟⏟
I

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝟎

xB



148 QUANTILE REGRESSION

= c⊤x∗ + c⊤BxB + c⊤NxN
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

c⊤x

− c⊤BB
−1(BxB + NxN)
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

Ax

= c⊤x∗ + (c⊤ − c⊤BB
−1A)x

= c⊤x∗ + c⊤x.

The vector:
c⊤ = (c⊤ − c⊤BB

−1A)

=
[
cB cN

]
=
[
c⊤B − c⊤BB

−1B c⊤N − c⊤BB
−1N

]
=
[
𝟎 c⊤N − c⊤BB

−1N
]

introduced in the last equation, is called vector of reduced costs, because the original
costs c are decreased by the amount c⊤BB

−1A. From the above algebra, it is easy to
derive the optimality test: since c⊤x∗ has to be less than or at most equal to c⊤x in
order for x∗ to be an optimal solution, and since c⊤x = c⊤x∗ + c⊤x, then c⊤x has to be
non–negative. From the non–negativity conditions, it follows the optimality condition
c ≥ 02. It is worth highlighting that such a condition is sufficient but not necessary.
For further details see Matousek and Gartner (2005) and Vanderbei (2014).

4.2.3 Change of the basis: entering variable and leaving variable

The optimality condition derived above is checked on the current basic solution x(i). If
the condition does not hold, then there exists at least one nonbasic variable xh ∈ xN for
which ch < 0. It is therefore possible to obtain a new basic solution x(i+1) by entering
xh in basis, in place of another variable xk, which leaves the basis. Hence, the change
of the basis from x(i) to x(i+1) consists in determining the variable xh that enters the
basis and the variable xk leaving the basis. To this end, let us consider the objective
function computed in the new basis x(i+1), obtained when xh enters the basis:

z = c⊤x(i+1) = c⊤x(i) + cxN

= c⊤x(i) +
[
c1, … , ch−1, ch, ch+1, … , cn−m

]
⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
⋮
0
xh
0
⋮
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= c⊤x(i) + chxh.

2 The optimality condition requires that c is non-positive in case of a maximization problem if the stan-
dard form introduced in subsection 4.1.1 is not used.
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Hence, when xh enters the basis, the objective function decreases by the amount
chxh < 0 with respect to its value in correspondence of the initial basis x(i). The
improvement in z is therefore proportional to the increase in xh, through a proportion-
ality factor ch. Thus, when there are more nonbasic variables with negative reduced
cost, that is, not satisfying the optimality condition, the variable chosen to enter the
basis is the variable xh whose reduced cost ch is minimum, that is, is greater in mod-
ule3. The leading idea is simple: a smaller value of ch leads to a greater improvement
in the objective function, and the choice of xh appears as the most efficient way to
minimize the objective function to achieve the optimal solution of the problem. How-
ever, it is worth highlighting that this heuristic does not imply a smaller number of
iterations, as the efficiency of choosing the variable xh with the smaller ch as entering
variable is true only locally: therefore there is no guarantee about this choice from a
global point of view. Notwithstanding, the use of a local criterion is still rational, in
that a global viewpoint is not available.

Once the variable xh entering the basis has been chosen, the next step consists in
detecting the variable xk leaving the basis. Such step is based on the computation of
the maximum value that xh can assume. In fact, when xh enters the basis, it moves
from the initial value of 0 (it was initially a nonbasic variable) to a positive value.
Such a change involves a change in the other basic variables, which can be formulated
(according to equation 4.9) as follows:

𝐱B = 𝐁−1𝐛 − 𝐁−1𝐍𝐱N

= 𝐁−1𝐛 − 𝐁−1 [𝐀m+1 𝐀m+2 … 𝐀h … 𝐀m

]
⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
⋮
0
xh
0
⋮
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= 𝐁−1𝐛 − 𝐁−1𝐀h

⏟⏟⏟

=𝐀̄h

xh

where Ah denotes the column of matrix A corresponding to the entering variable
xh. Since xB ≥ 0 for the non-negativity condition, the largest value xh can assume

depends on Ah = B−1Ah. When all the elements of Ah are negative or equal to 0, any
value xh ≥ 0 satisfies the condition xB ≥ 0: in such a case the problem is unbounded,
as xh can always increase leading to an improvement in the objective function. If
some elements of Ah are greater than 0, the largest value of xh that still ensures the

3 The choice is arbitrary in case more than one variable take the same minimum negative cost. See
section 4.4 for further details.
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non negativity condition is the minimum value of B−1b

Ah
, for which:

xB = B−1b − Ahxh

= B−1b − Ahmin
ah>0

B−1b

Ah

=
[
x1, … , xk−1, 0, xk+1, … , xm

]
In other words, the first variable xk that assumes the value 0when the entering variable
xh increases is selected as leaving variable. The value of xh is indeed fixed in order to
keep the non-negativity condition. In summary, the leaving variable xk is determined
through the following rule:

k ∶ argmin
ah>0

B−1b

Ah

⋅

Also in this case, as for the choice of the entering variable, there may be more indexes
that provide the same minimum. See section 4.4 for a rule of thumb to be applied in
this case.

4.2.4 The canonical form of a linear programming problem

It is helpful to introduce a particular standard form, the canonical form. It will be
indeed very useful for the computation of the basic solutions, allowing us to avoid
the inversion of matrix B. Recalling the example in subsection 4.2.1, a proper setting
of the basic variables speeds up the computation of the corresponding basic solution:
in the example, the solution for the corner  has been immediately computed since
the partition B of the constraint matrix A is the identity matrix Im. In detail, a LP
problem in standard form:

minimize z = c⊤NxN + c⊤BxB

subject to NxN + BxB = b

xN = 𝟎

xB ≥ 𝟎

(4.10)

is also in canonical form if, once a basic solution xB is defined, at least the first two
out of the following conditions are fulfilled:

(i) B ≡ Im

(ii) cB = 𝟎

(iii) b ≥ 𝟎.

A weak canonical form is defined when (i) and (ii) are fulfilled, and a strong canonical
form is defined when also (iii) holds.
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Therefore, a canonical form is referred to the set of basic variables xB: starting
from a canonical form, it is straightforward to determine a feasible basic solution,
which corresponds to the values of the vector b. In fact, each equation contains only
one basic variable different from 0, that is, the variable corresponding to the value 1
of the canonical form: x3 for the first equation and x4 for the second equation.

Whereas the system Ax = b is not in canonical form, simple algebraic
manipulations easily transform it. The use of the standard form, that is, the use
of equations both for the objective function and for the constraints, permits to
exploit a fundamental property of the systems of linear equations (Strang 2005,
2009):

Any transformation of a system of linear equations, obtained multiplying an
equation by any real number different from zero or linearly combining any two
equations, does not affect the solution.

The simplex algorithm exploits this type of transformations for exploring the set
of feasible basic solutions and choosing the optimal one. Starting from a corner of 
(a feasible basic solution), the movement toward another corner (a different feasible
basic solution) is obtained through manipulations of the equations suitable to express
them in canonical form with respect to the new basis.

Back to the LP problem (4.8) expressed in standard form, focusing only on the
equations:

1© − 5x1 − 3x2 + 0 x3 + 0 x4 = z̃ = −z

2© + 1x1 + 1x2 + 1 x3 + 0 x4 = 600

3© + 2x1 + 1x2 + 0 x3 + 1 x4 = 800

It is evident that the problem is in canonical form with respect to the basis sequence
(x3, x4), since the conditions (i), (ii), and (iii) hold. Now suppose that we are inter-
ested in expressing the problem in canonical form with respect to the basis sequence
(x2, x4). Variable x3 must exit the basis and move to the vector xN , and variable x2
from the vector xB has to replace x3 in the basis. The system has to be transformed
so to obtain:

• a value 0 for the coefficient c2 in the first equation, in order to move x2 to the
vector xB,

• a value 1 for the coefficient a1,2 in the second equation, as x2 replaces x3 in the
basis,

• a value 0 for the remaining coefficient a2,2 of x2, in the third equation.

Variable x2 enters the basis with value a1,2. This element is known as pivot element
and the operation used for changing the basis of the canonical form is known as
pivoting, since it is carried out pivoting on an element of matrix A. The pivoting
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operation is essentially a linear combination of equations: once the variable to move
to the new basis is chosen, the pivot equation is divided by the pivot element, so
to obtain a value 1 in correspondence of the pivot element. The other equations are
linearly combined with the pivot equation in order to have all values equal to 0 for the
coefficients corresponding to the variable entering the basis. In the example, since the
pivot a1,2 = 1, the second equation does not change, the third equation is transformed
subtracting the second from it, and the first equation is modified adding the second
equation multiplied by 3. In summary, the pivoting operation along with the new
system are the following:

1© + 3 × 2© → −2x1 − 0 x2 + 3x3 + 0 x4 = z̃ + 1800

2© → +1x1 + 1 x2 + 1x3 + 0 x4 = 600

3© − 2© → +1x1 + 0 x2 − 1x3 + 1 x4 = 200 .

The problem is now in canonical form with respect to the basis (x2, x4).
Finally, the change of the basis can also be expressed in matrix form. To express

the system in canonical form with respect to the set xB, consider the matrix B com-
posed of the initial columns of A corresponding to the variables xB. Premultiplying
the constraint equation in the LP problem (4.10) by B−1, we obtain:

B−1NxN + B−1B
⏟⏟⏟

=Im

xB = B−1b

which is a canonical form with respect to xB. Starting from such a canonical form,
and setting xN = 0, the values for the basic variables are then xB = B−1b. Therefore,
to express a system Ax = b in canonical form with respect to a set of variables xB
and determine a basic solution, it is sufficient to premultiply the system by B−1. Such
a matrix, inverse of B, is composed of the column of A corresponding to the relevant
variables to express the system in canonical form.

In this example, we have:

𝐁 =
[ x2 x4
1 0
1 1

]
⇒ 𝐁−1 =

[
1 0

−1 1

]

The new constraint matrix is then obtained premultiplying matrix A by B−1:

𝐁−1𝐀 =
[

1 0
−1 1

] [ x1 x2 x3 x4

1 1 1 0
2 1 0 1

]
=

[ x1 x2 x3 x4

1 1 1 0
1 0 −1 1

]
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and it is now in canonical form with respect to the basis (x2, x4). The values for the
new basic variables are:

xB =
[
x2
x4

]
= B−1b =

[
1 0

−1 1

] [
600
800

]
=
[
600
200

]

Such solutions are tantamount to those obtained manipulating the three equations
through the pivoting operation.

The canonical form and its role for achieving a feasible basic solution are now
defined. Next section details the simplex algorithm.

4.2.5 The simplex algorithm

The simplex algorithm consists of the following three steps:

• initialization: it consists in the detection of a first feasible basic solution. The
system of equations corresponding to the objective function and to the con-
straints is expressed in canonical form with respect to a first set of basic vari-
ables. The presence of a canonical form guarantees an immediate computation
of the values of the basic variables;

• test: in this phase, the optimality of the detected solution is tested. In case of
optimality, the algorithm stops;

• iteration: it consists in moving to a better different feasible basic solution,
i.e. to an adjacent corner that is feasible and that improves the solution. In
this step, the algorithm essentially examines the corners adjacent to the current
basic solution and chooses a new corner that differs from the previous one for
only one basic variable. This leads to determine a variable entering the basis
and a variable exiting the basis.

Figure 4.9 shows the corresponding flowchart. The algorithm starts from a feasible
basic solution and moves toward a new feasible basic solution if the value of the
objective function is improved. The transition from a given solution to a new one is
carried out through a pivoting operation so to move between two different canonical
forms. The last two steps are iterated until the optimal solution is achieved. Accord-
ing to the fundamental theorem of LP (see subsection 4.2.1), if there exists an optimal
solution, then there exists an optimal finite basic solution. Since the number of basic
solutions is finite, the algorithm converges to the optimal solution in a finite number
of iterations, exploring solutions that improve gradually the value of the objective
function. In most cases the algorithm converges to the optimal solution without vis-
iting all the possible basic solutions. To this end, the optimality test plays a crucial
role for limiting the number of iterations.
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Figure 4.9 The general structure of the simplex algorithm.

Using the notation introduced to distinguish basic and nonbasic variables, it is
now possible to detail the simplex algorithm:

1: 𝐁 ← initial basis ⊳ assume B is an initial feasible basic solution
2: optimal ← false ⊳ flag variable for checking optimality
3: unbound ← false ⊳ flag variable for checking unboundness
4: while optimal = false and unbound = false do
5: 𝐱B ← 𝐁−1𝐛 ⊳ current basic solution
6: 𝐜̄⊤ ← (𝐜⊤ − 𝐜⊤B𝐁

−1𝐀) ⊳ vector of reduced costs
7: if 𝐜̄⊤ ≥ 𝟎 then ⊳ optimality test
8: optimal ← true
9: else ⊳ change of the basis
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10: h∶argminc̄i<0 𝐜̄, for a non–basic variable ⊳ index of the entering variable
11: 𝐀̄h ← 𝐁−1𝐀h
12: if (𝐀̄h)i ≤ 0 ∀i = 1,… ,m then
13: unbound ← true
14: else
15: k ∶ argmināh>0

𝐁−1𝐛
𝐀̄h

⊳ index of the leaving variable
16: 𝐁 ← 𝐁 ∪ {𝐀h} ⧵ {𝐀k} ⊳ new basis switching the role of xh and xk
17: xh ←

(𝐁−1𝐛)k
(𝐀̄h)k

⊳ update the value for the entering variable
18: xk ← 0 ⊳ set to 0 the leaving variable
19: end if
20: end if
21: end while

The algorithm is shown in action on the 2D LP problem (4.4).

⬤1 Initialization

Starting from the standard form (4.8) of the LP problem (4.4), the basis (x3, x4) com-
posed of the two slack variables, is a convenient starting point as the system is already
expressed in strong canonical form:

(i) 𝐁 =
[
𝐀3 𝐀4

]
=
[ x3 x4
1 0
0 1

]
= 𝐈2

(ii) 𝐜⊤B =
[ x3 x4
0 0

]
= 𝟎

(iii) b =
[
600
800

]
≥ 𝟎.

The first basic solution is then easily determined:

xB =
[
x3
x4

]
= B−1b =

[
1 0
0 1

] [
600
800

]
=
[
600
800

]

Such solution is feasible because xB ≥ 𝟎 and it corresponds to the corner , origin
of the axes in Figure 4.8. The two nonbasic variables x1 and x2 are indeed equal to 0.
This is always the case when a strong canonical form holds, that is, when b ≥ 𝟎 and
the problem contains only less–than inequalities constraints.

In case of a problemwith equality or greater–than constraints and/or with negative
known coefficients, a preliminary transformation of the system is required to obtain
an initial feasible basic solution. This case will be detailed in subsection 4.3 and will
be exploited in the next chapter to solve the quantile regression problem.
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⬤2 Optimality test - iteration 1

To test the optimality of the current feasible solution xB =
[
x3
x4

]
, we have to verify if

the optimality condition c ≥ 𝟎 is satisfied. The vector of reduced costs is:

c⊤ = (c⊤ − c⊤BB
−1A)

=
[
−5,−3, 0, 0

]
−
[
0, 0

] [1 0
0 1

] [
1 0 1 0
2 1 0 1

]

=
[
−5,−3, 0, 0

]
Therefore the optimal condition is not satisfied.

⬤3 Entering variable - iteration 1

Both the nonbasic variables x1 and x2 are eligible for entering the basis, as their asso-
ciated reduced costs are negative: c1 = −5 and c2 = −3. Using the local criterion
introduced above, x1 is the variable chosen to enter the basis, as the corresponding
improvement in z is the greatest (this is a minimization problem and c1 = −5 is the
smallest).

Once the entering variable is selected, the condition (Ah)i ≤ 0,∀i = 1, … ,m is
used to check if the problem is unbounded:

Ah = B−1Ah =
[
1 0
0 1

] [
1
2

]
=
[
1
2

]
The condition does not hold, and the algorithm proceeds.

⬤4 Leaving variable - iteration 1

To determine the leaving variable, the ratio B−1b

Ah
is computed only considering the

cells ah of the vector Ah which are greater than zero:

B−1b

Ah

=

[
1 0
0 1

] [
600
800

]
[
1
2

] =
[
600
400

]

The entry 400 is the minimum, and it corresponds to the second variable in the basis.
Therefore, x4 is selected to leave the basis. The value 400 is the value assigned to
x1 when it enters the basis. This is indeed the maximum value that x1 can assume
preserving the non-negativity condition. This can be simply verified by expressing
the basic variables in terms of the nonbasic variables, starting from the two equations
associated to the constraints:{

x3 = 600 − x1 − x2
x4 = 800 − 2x1 − x2
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To ensure the two non-negativity conditions, x3 ≥ 0 and x4 ≥ 0, we have:{
x3 = 600 − x1 ≥ 0

x4 = 800 − 2x1 ≥ 0

In fact, x1 has to be chosen to enter the basis, whereas x2 = 0 in that it is a nonbasic
variable. From the two inequalities it follows that x1 ≤ 400.

⬤5 Pivoting - iteration 1

At the end of the first iteration, the value of x1 is set equal to 400 and the value of x4
is set equal to 0. The objective function in the new basis is equal to:

z̃ = c⊤x + chxh =
[
−5,−3, 0, 0

] ⎡⎢⎢⎢⎣
0
0
200
400

⎤⎥⎥⎥⎦
+ (−5 × 400) = −2000.

Matrix B is updated accordingly using column Ah=1 instead of column Ak=4.
Therefore, the following configuration holds:

𝐁 =
[A3 A1

1 1
0 2

]
, 𝐁−1 =

[A3 A1

1 −0.5
0 0.5

]
,

xB =
[
x3
x1

]
=
[
1 −0.5
0 0.5

] [
600
800

]
=
[
200
400

]
, xN =

[
x4
x2

]
=
[
0
0

]

The constraint matrix in canonical form with respect to the new basis (x3, x1)
is then:

𝐁−1𝐀 =
[
1 −0.5
0 0.5

]
.

[ x1 x2 x3 x4

1 1 1 0
2 1 0 1

]
=

[ x1 x2 x3 x4

0 0.5 1 −0.5
1 0.5 0 0.5

]
.

The new basic solution corresponds to the corner in Figure 4.8. Therefore, starting
from the initial feasible solution , the algorithm inspects the adjacent corners 
and , choosing to move toward the one that ensures the greater improvement in
the objective function z. Whereas in step ⬤3 x2 would be selected to enter the basis
instead of x1, the new feasible solution would be.

⬤2 Optimality test - iteration 2

The vector of reduced costs corresponding to the new basis is:

c⊤ =
[
−5,−3, 0, 0

]
−
[
0,−5

] [1 −0.5
0 0.5

] [
1 1 1 0
2 1 0 1

]

=
[
−5,−3, 0, 0

]
−
[
−5,−2.5, 0,−2.5

]
=
[
0,−0.5, 0, 2.5

]
.
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Once again the optimality condition is not satisfied, and therefore the algorithm
moves to a better different feasible solution. If we refer to Figure 4.8, starting from
the current feasible solution , the only adjacent corner still to explore is  , as we
started from  and the basic solution  is not feasible.

⬤3 Entering variable - iteration 2

There is only one negative reduced cost, c2 = −0.5, associated with x2, which is there-
fore selected to enter the basis.

The unboundedness condition does not hold:

Ah = B−1Ah =
[
1 −0.5
0 0.5

] [
0.5
0.5

]
=
[
0.25
0.25

]
.

⬤4 Leaving variable - iteration 2

The ratio B−1b

Ah
is then computed considering both the cells ofAh, as they are positive:

B−1b

Ah

=

[
1 −0.5
0 0.5

] [
200
400

]
[
0.25
0.25

] =
[
800
1600

]
.

The leaving variable, corresponding to index k = 1, is the first variable in basis, that
is, x3. The corresponding ratio

B−1b

(Ah)k
= 800 is the value assigned to x2 for entering the

basis.

⬤5 Pivoting - iteration 2

The objective function in the new basis is equal to:

z = c⊤x + chxh =
[
−5,−3, 0, 0

] ⎡⎢⎢⎢⎣
400
0
200
0

⎤⎥⎥⎥⎦
+ (−0.25 × 800) = −2200.

The new basis matrix and its inverse at the end of the second iteration are:

𝐁 =
[A2 A1

1 1
1 2

]
, 𝐁−1 =

[ A3 A1

2 −1
−1 1

]
,

xB =
[
x2
x1

]
=
[

2 −1
−1 1

] [
600
800

]
=
[
400
200

]
, xN =

[
x4
x3

]
=
[
0
0

]
,

Therefore, the constraint matrix in canonical form with respect to the new basis
(x2, x1) is:
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𝐁−1𝐀 =
[

2 −1
−1 1

] [ x1 x2 x3 x4

1 1 1 0
2 1 0 1

]
=

[ x1 x2 x3 x4

0 1 2 −1
1 0 −1 1

]
.

The new basic solution corresponds to the corner  = (200,400) in Figure 4.8.

⬤2 Optimality test - iteration 3

Finally, the new vector of reduced costs corresponding to the basis (x2, x1) is
computed:

c⊤ =
[
−5,−3, 0, 0

]
−
[
−3,−5

] [ 2 −1
−1 1

] [
1 1 1 0
2 1 0 1

]

=
[
−5,−3, 0, 0

]
−
[
−5,−3,−1,−2

]
=
[
0, 0, 1, 2

]
The optimality condition is now fulfilled, and then the algorithm stops. Therefore the
optimal solution is the corner  with an associated value of the objective function
z = −2200, as already shown in subsection 4.1.3 using the graphical approach.

4.2.6 The tableau version of the simplex algorithm

The above simplex algorithm can be formulated through a particular coding of the
same data, named tableau. This is a table composed ofm + 1 rows and n + 1 columns,
where only the numeric coefficients are included. The rows refer to the m constraints
alongwith the objective function, while the columns refer to the n decisional variables
along with the known coefficients associated with the constraints and contained in the
vector b. The general structure of the tableau object is the following:

b x1 … xn
z −d 𝐜⊤ ←− row 0
C1 ←− row 1
⋮ 𝐛 𝐀 ⋮
Cm ←− row m

The first row (row 0) is related to the objective function z. A known coefficient d
is inserted in the equation z = cx + d pertaining to the objective function, so to treat
this equation in the same way as the equations related to the constraints. This coeffi-
cient is inserted in the tableau on the left side of row 0 with an opposite sign, in order
to have the equation in the form z − d = cx. The values cj related to the variables xj,
j = 1, … ,m are on the right part of row 0. The other rows (row 1 to m) refer
to the problem constraints Ax = b: the known coefficients b are in the first col-
umn, whereas the aij coefficients of the n variables in the m equations are on the
right part.

The tableau is useful for representing and updating all the variables involved in the
problem, since it avoids the wordy repeat of the same symbols in all the equations by
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relegating them to the row and column labels. Using the notation introduced above for
highlighting basic and nonbasic variables, the tableau can also be written as follows:

b x1 … xm xm+1 … xn
z 0 𝐜⊤B 𝐜⊤N
x1
⋮ 𝐛 𝐁 𝐍
xm

where we assume d = 0, as it does not affect the optimization process, and we refer
to the m variables in basis with the labels x1, … , xm.

The same operation to transform the system in canonical form with respect to a
given basis B can be applied to the tableau, so to obtain:

b x1 … xm xm+1 … xn
z −𝐜⊤B𝐁

−1𝐛 0 … 0 𝐜̄⊤N
x1
⋮ 𝐁−1𝐛 𝐈m 𝐁−1𝐍
xm

The tableau in canonical form shows an identity matrix in correspondence of the
variables in basis. For these variables, the reduced costs are null. The value of row
0 in the first column is the opposite of the objective function in the current basic
solution. The remaining values refer to the basic variables xB. The entering variable
xh is determined considering the reduced cost coefficients in row 0. The value the
entering variable assumes is determined using the first column along with columnAh,
which is associated with the entering variable. Such column is one of the columns of
the block B−1N, pertaining the nonbasic variables.

Therefore, referring again to the LP problem (4.4), its corresponding formulation
in standard form, and the initial tableau are:

minimize z̃ = −z = −5x1 − 3x2

subject to x1 + x2 + x3 = 600

2x1 + x2 + x4 = 800

xi ≥ 0, ∀i = 1,… , 4

b x1 x2 x3 x4
z̃ 0 −5 −3 0 0
x3 600 1 1 1 0
x4 800 2 1 0 1

The first row refers to the objective function z, while the other rows refer to the non-
basic variables, x3 and x4 in the initial setting, whose values are contained in the
first column. The boxed elements highlight that the system is expressed in canoni-
cal form with respect to the two slack variables x3 and x4. The presence in row 0 of
two negative coefficients −5 and −3, associated with x1 and x2, respectively, signals
that the current solution is not optimal. Using the empirical rule based on the greater
improvement in z̃, x1 is chosen as entering variable. The entering variable is hence
marked using an arrow (↓) above the corresponding column label. The value to be
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assigned to the entering variable is determined using the ratios of the values on the
first column and the values of the column of the entering variable itself, only for the
positive entries:

min
{600

1
,
800
2

}
= min{600,400}

The value 400 is hence assigned to x1 for entering the basis. As variable x4 is designed
to leave the basis, its row label is marked with an arrow (←). The value 2, correspond-
ing to the leaving variable row and the entering variable column, is the pivot element
and is highlighted in the tableau. The pivot value is used to switch the role of vari-
ables x1 and x4, the former entering the basis and the latter leaving it. Following
the tableau for the first iteration, along with a summary of the iteration in terms of
involved variables/values:

↓
b x1 x2 x3 x4

z 0 −5 −3 0 0
x3 600 1 1 1 0

← x4 800 2 1 0 1

iteration : 1
entering variable : x1
leaving variable : x4
pivot : 2
current solution : x3 = 600, x4 = 800
objective function : 0

Next operation expresses the tableau with respect to the new basis (x3, x1). To this
end the pivoting operation is carried out. The pivot row is updated by dividing it for
the pivot element, so to obtain a value 1 for the corresponding entry:

(800 | 2, 1, 0, 1)
2

=

(
400

||||| 1,
1
2
, 0,

1
2

)
.

The resulting row is multiplied by the value in the pivot column of the other row (1
in this example) and subtracted from the other row. The goal is to obtain a 0 on the
other element of the pivot column:

(0 | 1, 1, 1, 0) − 1 ×

(
400

||||| 1,
1
2
, 0,

1
2

)
=

(
−2000

||||| 0,
1
2
, 1,−1

2

)
.

The same operation is carried out on row 0 in order to have a null reduced cost for
the entering variable:

(−5,−3, 0, 0) − 5 ×
(
1,

1
2
, 0,

1
2

)
=
(
0,−1

2
, 0,

5
2

)
.

At the end of the pivoting operation, x4 and x1 switch their role. The new tableau is:
b x1 x2 x3 x4

z̃ −2000 0 −1∕2 0 5∕2
x3 200 0 1∕2 1 −1∕2
x1 400 1 1∕2 0 1∕2
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This tableau is now in canonical form with respect to the new basis (x3, x1), as high-
lighted by the boxed elements.

The new tableau is used for the second iteration, carrying out the same steps: the
optimal condition is not satisfied and x2 is the only eligible variable to enter the basis,
because its reduced cost is the only one having a negative value. The leaving variable
is now x3, whose ratio

200
1∕2 is minimum. Therefore the pivot element is 1

2
. The tableau

becomes:

↓
b x1 x2 x3 x4

z̃ −2000 0 −1∕2 0 5∕2
← x3 200 0 1/2 1 −1∕2
x1 400 1 1∕2 0 1∕2

iteration : 2
entering variable : x2
leaving variable : x3
pivot : 1∕2
current solution : x3 = 200, x1 = 400
objective function : −2000

The pivoting operation is carried out accordingly:

• the pivot row (first row) is divided by the pivot element (1∕2),

• the new pivot row is multiplied by 1
2
and then subtracted from the second row,

• the new pivot row is multiplied by − 1
2
and subtracted from the row 0.

The resulting vector of reduced costs satisfies the optimality condition, as all the costs
are non-negative, and the algorithm stops:

b x1 x2 x3 x4
z̃ −2200 0 0 1 2
x2 400 0 1 2 −1
x1 200 1 0 −1 1

iteration : 3
entering variable : —
leaving variable : —
pivot : —
current solution : x2 = 400, x1 = 200
objective function : −2200

Using the matrix formulation of the simplex algorithm, the solution xB =
[
x2
x1

]
=[

400
200

]
, corresponding to corner  in Figure 4.8, provides the optimal value z = 2200

for the objective function.
Using the above notation, it is now possible to detail the simplex algorithm in its

tableau formulation:

1: 𝐁 ← initial basis ⊳ assume 𝐁 is an initial feasible basic solution
2: T ← initial tableau ⊳ corresponding tableau
3: optimal ← false ⊳ flag variable for checking optimality
4: unbound ← false ⊳ flag variable for checking unboundedness
5: while optimal = false and unbound = false do
6: if T[0, j] ≥ 0,∀j ∈ 1,… , n then
7: optimal ← true
8: else
9: h ∶ argminT[0,j]<0 T[0, j], ∀j related to nonbasic variables ⊳ index of the entering

variable
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10: if T[i, h] ≤ 0,∀i = 1,… ,m then
11: unbound ← true
12: else
13: k ∶ argminT[i,h]>0

T[i,0]
T[i,h] ,∀i ∈ (1,… ,m) ⊳ index of the leaving variable

14: Pivoting(T, k, h) ⊳ procedure for updating the tableau
15: end if
16: end if
17: end while
18: procedure Pivoting(T , k, h) ⊳ procedure for carrying out the pivoting operation
19: m← nRows(T) ⊳ compute the number of rows of the tableau
20: n← nCols(T) ⊳ compute the number of columns of the tableau
21: pivot← T[k, h] ⊳ pivot element
22: for j = 1 to n do ⊳ compute the new pivot row dividing it for the pivot element
23: T[k, j] ← T[k, j]∕pi𝑣ot
24: end for
25: for i = 0 to m do ⊳ for all the rows (row 0 is related to the objective function)
26: if i ≠ k and T[i, h] ≠ 0 then ⊳ except for the pivot row and when the entry on the pivot

column is already null
27: entryPi𝑣otColumn ← T[i, k] ⊳ store the element on the pivot column
28: for j = 1 to n do ⊳ subtract from each row the new pivot row multiplied

for the element on the pivot column
29: T[i, j] ← T[i, j] − entryPi𝑣otColumn ∗ T[k, j]
30: end for
31: end if
32: end for
33: end procedure

The tableau algorithm in action on the 3-D example

Consider again the 3–D problem (4.7), depicted in Figures 4.6 and 4.7. Its formulation
in standard form follows:

minimize z̃ = −z = −300x1 − 200x2 − 350x3

subject to x1 + x2 + x3 + x4 = 40

4x1 + 2x2 + 3x3 + x5 = 120

x3 + x6 = 20

xi ≥ 0, ∀i = 1, … , 6.

The associated tableau is in canonical form with respect to the basis (x4, x5, x6) com-
posed of the three slack variables introduced to express the three constraints in terms
of equations:

b x1 x2 x3 x4 x5 x6
z̃ 0 −300 −200 −350 0 0 0
x4 40 1 1 1 1 0 0
x5 120 4 2 3 0 1 0
x6 20 0 0 1 0 0 1
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The initial solution xB =
⎡⎢⎢⎣
x4
x5
x6

⎤⎥⎥⎦ =
⎡⎢⎢⎣
40
120
20

⎤⎥⎥⎦ and xN =
⎡⎢⎢⎣
x1
x2
x3

⎤⎥⎥⎦ =
⎡⎢⎢⎣
0
0
0

⎤⎥⎥⎦ clearly corresponds to

the corner  in Figure 4.7. It does not satisfy the optimality condition, because there
are three negative coefficients in the row 0 of the tableau. The entering variable at the
first iteration is x3, whose coefficient c3 = −350 is minimum. Considering the ratios
of each element in the first column to its corresponding non–negative entry in the
column of the entering variable:

min
{40

1
,
120
3
,
20
1

}
= min{40, 40, 20}

x6 is selected as leaving variable. Therefore, the first iteration of the algorithm (and
its representation in the tableau) is:

iteration : 1
entering variable : x3
leaving variable : x6
pivot : 1
current solution : x4 = 40, x5 = 120, x6 = 20
objective function : 0

↓
b x1 x2 x3 x4 x5 x6

z̃ 0 −300 −200 −350 0 0 0
x4 40 1 1 1 1 0 0
x5 120 4 2 3 0 1 0

← x6 20 0 0 1 0 0 1

Being the pivot element equal to 1, the pivot row does not change, while the other
rows are transformed in order to obtain all zeros in the pivot column. In particular,
the pivoting operation is

• the pivot row is multiplied by −350 and then subtracted from row 0,

• the pivot row is subtracted from row 1,

• the pivot row is multiplied by 3 and then subtracted from row 2.

The resulting tableau is now in canonical form with respect to the basis (x4, x5, x6)
and it is used for the second iteration

iteration : 2
entering variable : x1
leaving variable : x5
pivot : 4
current solution : x4 = 20, x5 = 60, x3 = 20
objective function : −7000
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↓
b x1 x2 x3 x4 x5 x6

z̃ −7000 −300 −200 0 0 0 350
x4 20 1 1 0 1 0 −1

← x5 60 4 2 0 0 1 −3
x3 20 0 0 1 0 0 1

The current solution xB =
⎡⎢⎢⎣
x4
x5
x3

⎤⎥⎥⎦ =
⎡⎢⎢⎣
20
60
20

⎤⎥⎥⎦ and xN =
⎡⎢⎢⎣
x1
x2
x6

⎤⎥⎥⎦ =
⎡⎢⎢⎣
0
0
0

⎤⎥⎥⎦ corresponds to the cor-
ner (x1 = 0, x2 = 0, x3 = 20) in Figure 4.7.

The variable x1, whose coefficient on row 0 is minimum, is selected as entering
variable, and it replaces the leaving variable x5, for which the ratio of the element of
the first column to the value in the pivot column, 60∕4 = 15, is minimum. The pivot
element is now 4, and the pivoting operation consists of the following operations:

• the pivot row is divided by the pivot element:

(60 | 4, 2, 0, 0, 1,−3)
4

=

(
15

||||| 1,
1
2
, 0, 0,

1
4
,−3

4

)

• the new pivot row is multiplied by −300 and then subtracted from row 0,

• the new pivot row is subtracted from row 1.

The resulting tableau is now in canonical form with respect to the basis (x4, x1, x3)
and is used in iteration 3:

iteration : 3
entering variable : x2
leaving variable : x4
pivot : 1∕2
current solution : x4 = 5, x1 = 15, x3 = 20
objective function : −11500

↓
b x1 x2 x3 x4 x5 x6

z̃ −11500 0 −50 0 0 75 125
← x4 5 0 1∕2 0 1 −1∕4 −1∕4
x1 15 1 1/2 0 0 1∕4 −3∕4
x3 20 0 0 1 0 1 1
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The current basic solution
⎡⎢⎢⎣
x4
x1
x3

⎤⎥⎥⎦ =
⎡⎢⎢⎣
5
15
20

⎤⎥⎥⎦, with the variable x2 out of the basis and hence
equal to 0, corresponds to the corner (x1 = 15, x2 = 0, x3 = 20) in Figure 4.7.

The only variable with negative coefficient in row 0 is now x2 and is selected as
entering variable. The ratios of the coefficients in the first column to the non–negative
values of the pivot column:

min

{
5

1∕2
,
20
1∕2

}
= min{10, 40}

imply x4 be the leaving variable. The pivot element is now 1∕2, and the pivoting
operation is:

• the pivot row is divided by 1∕2,

(5 | 0, 1∕2, 0, 1,−1∕4,−1∕4)
1/2

=

(
10

||||| 0, 1, 2, 0,−
1
2
,−1

2

)

• the new pivot row is multiplied by −50 and subtracted by row 0,

• the new pivot row is multiplied by 1∕2 and subtracted by row 2.

The new tableau is in canonical form with respect to the basis (x2, x1, x3), and the
algorithm enters iteration 4:

iteration : 4
entering variable : —
leaving variable : —
pivot : —
current solution : x2 = 10, x1 = 10, x3 = 20
objective function : −12000

b x1 x2 x3 x4 x5 x6
z̃ −12000 0 0 0 100 50 100
x2 10 0 1 0 2 −1∕2 −1∕2
x1 10 1 0 0 −1 1∕2 −1∕2
x3 20 0 0 1 0 0 1

The current basic solution
⎡⎢⎢⎣
x2
x1
x3

⎤⎥⎥⎦ =
⎡⎢⎢⎣
10
10
20

⎤⎥⎥⎦, corresponding to the corner  in

Figure 4.7, is optimal, as all the coefficient in row 0 are non–negative. The objective
function in the corner  is z̃ = −12000.
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A special case: an unbounded objective function

Consider the unbounded objective function of the LP problem (4.6) depicted in
Figure 4.5. The standard form requires the introduction of three artificial variables,
x3, x4, x5, to transform the three inequalities into equalities:

minimize z̃ = −z = −4x1 + 3x2

subject to − 2x1 + x2 + x3 = 4

x1 − 2x2 + x4 = 11

x1 − x2 + x5 = 8

xi ≥ 0, ∀i = 1,… , 5

b x1 x2 x3 x4 x5
z 0 −4 3 0 0 0
x3 4 −2 1 1 0 0
x4 11 1 −2 0 1 0
x5 8 1 −1 0 0 1

The resulting tableau is in canonical form with respect to the three artificial vari-
ables, which are the initial solution triggering the simplex algorithm. The initial
solution corresponds to the corner  in Figure 4.5. The first entering variable is
x1, because its cost coefficient in row 0 is minimum. The leaving variable has to
be selected between x4 and x5, because the value in the pivot column associated with
the variable x3 is negative. The ratio between the coefficients of the first and second
column is minimum in correspondence of x5; hence x5 is selected to leave the basis.
The pivot element is therefore equal to 1, corresponding to the value at the cross of the
first column with the last row. The first iteration is summarized through the tableau
as follows:

↓
b x1 x2 x3 x4 x5

z 0 −4 3 0 0 0

x3 4 −2 1 1 0 0

x4 11 1 −2 0 1 0

← x5 8 1 −1 0 0 1

iteration : 1
entering variable : x1
leaving variable : x5
pivot : 1
current solution : x3 = 4

: x4 = 11
: x5 = 8

objective function : 0

The pivoting operation is

• the pivot row (last row) does not change as the pivot value is already equal to 1,

• the pivot row is multiplied by −4 and subtracted from row 0,

• the pivot row is multiplied by −2 and subtracted from row 1,

• the pivot row is subtracted from row 2.
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The resulting tableau, in canonical form with respect to the basis (x3, x4, x1) follows:

↓
b x1 x2 x3 x4 x5

z −32 0 −1 0 0 4

x3 20 0 −1 1 0 2

x4 3 0 −1 0 1 −1
x1 8 1 −1 0 0 1

iteration : 2
entering variable : x2
leaving variable : —
pivot : —
current solution : x3 = 20

: x4 = 3
: x1 = 8

objective function : −32

There is only a negative coefficient in row 0 and hence only one variable, x2,
eligible to enter the basis. The pivot column contains only negative coefficients and
therefore the problem is characterized by an unbounded objective function, as already
shown through the graphical method (see Figure 4.5).

4.3 The two–phase method

All the above examples used to show the simplex algorithm are of the form:

minimize{z = c⊤x ∶ Ax ≤ b,with x ≥ 𝟎},b ≥ 𝟎.

The initial solution to start the simplex algorithm can be easily obtained by trans-
forming the system in standard form:

minimize{z = c⊤NxN + 𝟎⊤xB ∶ NxN + ImxB ≤ b,with xN ≥ 𝟎, xB ≥ 𝟎},b ≥ 𝟎

where xN contains the initial variables and xB the m slack variables introduced to
transform the inequalities constraints into equalities. The new system is in canonical
form with respect to xN . The initial solution for activating the algorithm is immedi-
ately available, and, from a geometrical point of view, it corresponds to the origin: as
the m slack variables are in basis, then xN = 0. This initial basic solution is not avail-
able when the condition b ≥ 𝟎 does not hold, and/or when one or more constraints
contain a greater–than inequality and/or an equality. In the last case, as shown above,
the equality is replaced by two opposite inequalities (see section 4.1).

To this end, consider the following simple LP problem with two decisional vari-
ables, graphically represented in Figure 4.10:

maximize z = 5x1 + 6x2

subject to 0.4x1 + 0.6x2 ≤ 12 (C1)

x1 + x2 ≤ 24 (C2)

x1 + x2 ≥ 6 (C3)

x1 ≥ 0 (C4)

x2 ≥ 0 (C5).

(4.11)
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Figure 4.10 Geometrical representation of the LP programming problem (4.11).
The presence of a greater–than inequality (C3) renders that the axis origin is unsuit-
able as starting solution for activating the simplex algorithm, as it is not a feasible
point.

The 2–D problem can be easily represented and solved using the graphical
approach introduced in section 4.1.3. The coordinates of the five basic solutions are
indeed computable by solving the following five systems of two equations, each
expressing the intersection of two of the problem constraints and determining the
corners of the feasible region:

(0, 6) ∶

{
x1 + x2 = 6

x2 = 0
(0, 20) ∶

{
0.4x1 + 0.6x2 = 12

x2 = 0

(12, 12) ∶

{
0.4x1 + 0.6x2 = 12

x1 + x2 = 6
(24, 0) ∶

{
x1 = 0

x1 + x2 = 24

(6, 0) ∶

{
x1 = 0

x1 + x2 = 6
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The optimal solution z∗ is obtained by computing the objective function z in the
five corners of the polygon  :

z = 36 z = 120 z = 132 = z∗

z = 120 z = 30

and corresponds to the corner , where the objective function assumes the value 132,
as shown in Figure 4.7.

To apply the simplex algorithm to this example, three artificial variables have to
be considered to express the problem in standard form. The presence of a greater–than
inequality (C3) implies that the axis origin  cannot be used as starting solution for
activating the simplex algorithm, as it is not a feasible point. This leads to the presence
of −1 in the last row, which entails that the corresponding tableau is not in canonical
form with respect to the three artificial variables x3, x4, x5:

minimize z̃ = −z = −5x1 − 6x2

subject to 0.4x1 + 0.6x2 + x3 = 12

x1 + x2 + x4 = 24

x1 + x2 − x5 = 6

xi ≥ 0, ∀i = 1,… , 5

b x1 x2 x3 x4 x5
z̃ 0 −5 −6 0 0 0
x3 12 0.4 0.6 1 0 0
x4 24 1 1 0 1 0
x5 6 1 1 0 0 −1

To obviate this problem, the two–phase method resorts to a twofold application
of the simplex algorithm: the first to detect an initial basis, if it exists, and the second
to look for the optimal solution. The method consists in transforming the original
problem in the following artificial problem:

minimize

{
𝑤 =

m∑
i=1

yi ∶ Ax + Imy = b,with x ≥ 𝟎, y ≥ 𝟎
}
,

through the addition of the artificial variables yi. The artificial problem shares the
same constraints of the initial problem. In addition to the slack variables used to
transform inequalities into equalities, a positive artificial variable with unitary coeffi-
cient is inserted for each constraint ≥. The same is done for each equality constraint,
even in case no transformations are required for this type of constraints (and hence
no slack variables have to be inserted). The condition b > 0 is no more impelling, as
it is sufficient to multiply the involved inequalities by −1, to invert their directions.
It is worth stressing the different role of slack variables and artificial variables. The
former do not alter the initial problem, since their only task is to change inequalities
into equalities. The latter, whereas they are different from 0, change the problem into
a different one.

The addition of the artificial variables entails a basis in the matrix of the coeffi-
cients of the slack and of artificial variables. The corresponding system consists of m
equations, one for each constraint, and n1 + n2 + n3 + n4 variables, and in particular:
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• n1 original variables,

• n2 slack variables (0 ≤ n2 ≤ m) with positive coefficients, one for each con-
straint of type ≤,

• n3 slack variables (0 ≤ n3 ≤ m) with negative coefficients, associated with the
constraint of type ≥,

• n4 artificial variables (0 ≤ n4 ≤ m), associated with the constraints of type =
or ≥.

In the following, we continue to denote by n the total number of variables, including
the original variables, the slack variables, and the artificial variables, unless there is
ambiguity.

The transformation of the original system determines a system of equations in
canonical form with respect to the slack and/or artificial variables. The first basic
solution is indeed detected by looking for an identity matrix in the columns of the
n2 + n3 + n4 slack and artificial variables. The original variables, along with the slack
variables with negative sign, are treated as nonbasic variables, while the positive slack
variables and the artificial variables are considered as basic variables. The use of the
artificial variables extends the feasible set to a new feasible set, called the extended
feasible set. As an example, the LP problem (4.11) requires the addition of a sin-
gle artificial variable in correspondence of the third constraint to obtain a canonical
form:

minimize z̃ = −z = −5x1 − 6x2

subject to 0.4x1 + 0.6x2 + x3 = 12

x1 + x2 + x4 = 24

x1 + x2 − x5 + y1 = 6

xi ≥ 0, ∀i = 1, … , 5

y1 ≥ 0.

The artificial objective function minimized in the first phase coincides in this
example with the artificial variable y1. Starting from the third constraint, the artificial
objective function can be easily formulated in terms of the original and slack
variables:

minimize 𝑤 =
m∑
i=1

yi = y1 = −x1 − x2 + x5 + 6.

Since y1 has to be non–negative (recall the LP non–negativity constraint), the
optimal solution of this artificial problem is 𝑤 = 0, obtained when the artificial
variable y1 = 0. With such solution, the problem is again inside the original
feasible set.

In order to apply the two–phase method, the tableau is slightly modified with
the insertion of two rows 0, one for the artificial problem and one for the original
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problem. The former is used for the first phase and the latter for the second phase.
The pivoting operations are carried out on both rows during the first phase. At the
end of the first phase, the objective function of the second phase (second row 0) will
be expressed in canonical form and the basic variables will correspond to the optimal
solution detected in the first phase. Returning to the example, the introduction of the
artificial variable y1 generates a canonical form with respect to the basis (x3, x4, y1),
composed of the two slack variables x3 and x4, along with the artificial variable y1:

b x1 x2 x3 x4 x5 y1
𝑤 −6 −1 −1 0 0 1 0 row 0 (phase 1)
z̃ 0 −5 −6 0 0 0 1 row 0 (phase 2)
x3 12 0.4 0.6 1 0 0 0
x4 24 1 1 0 1 0 0
y1 6 1 1 0 0 −1 1

The extended domain is represented in the space (x1, x2, y1) in Figure 4.11. The

basic solution
⎡⎢⎢⎣
x3
x4
y1

⎤⎥⎥⎦ =
⎡⎢⎢⎣
12
24
6

⎤⎥⎥⎦ corresponds to the corner  (x1 = 0, x2 = 0, y1 = 6) in the

extended feasible set, because both x1 and x2 are out of the basis and therefore equal
to 0. A basic solution in which the artificial variable is out of the basis, and hence
null, has to be detected to force the path of the algorithm to the original feasible set.
Such a solution is indeed a feasible basic solution also for the original feasible set
and it can be exploited as starting point of the second phase. By analyzing row 0 (first
phase), the optimal condition is not satisfied as the coefficients of the variables x1 and
x2 are both negative. Since the two coefficients coincide, it is indifferent which of
the two variables is selected to enter the basis. If we choose x2, the leaving variable
is y1, whose ratio between the elements of the first column and the non–negative
coefficients of the pivot column is minimum:

min
{ 12
0.6

,
24
1
,
6
1

}
= min{20, 24, 6}

Therefore, by choosing x2 as entering variable, the first iteration of the first phase is:

iteration : 1 (first phase)
entering variable : x2
leaving variable : y1
pivot : 1
current solution : x3 = 12, x4 = 24, y1 = 6
objective function : 0

↓
b x1 x2 x3 x4 x5 y1

𝑤 −6 −1 −1 0 0 1 0
z̃ 0 −5 −6 0 0 0 1

x3 12 0.4 0.6 1 0 0 0

x4 24 1 1 0 1 0 0

← y1 6 1 1 0 0 −1 1
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z = 132
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x1

y1

x1 + x2 + y1 = 6
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C1

C3

Figure 4.11 Extended feasible set of the LP programming problem (4.11), obtained
inserting an artificial variable y1 in correspondence of the second constraint (C2), of
the type ≥. The corner  is used as starting point of the two–phase method. The
two–phase method forces the path of the algorithm to return to the original feasi-
ble set.

The pivoting operation consists of the following steps:

• The pivot row does not change as the pivot element is 1,

• The row 0 corresponding to the artificial objective function 𝑤 is added to the
pivot row,

• The pivot row is multiplied by −6 and then subtracted from the row 0 corre-
sponding to the original objective function z̃ = −z,

• The pivot row is subtracted from the second row.
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The resulting tableau satisfies the optimality condition ending the first phase:

b x1 x2 x3 x4 x5 y1
𝑤 0 0 0 0 0 0 1
z̃ −36 1 0 0 0 −6 7

x3 8.4 −0.2 0 1 0 0.6 −0.6
x4 18 0 0 0 1 1 −1
x2 6 1 1 0 0 −1 1

The artificial variable y1 is out of the basis; the artificial objective function 𝑤 = 0
and the current basic solution can be used as starting point of the second phase
of the algorithm. The tableau is indeed in canonical form with respect to the basis
(x3, x4, x2). Since only x2 is in the basis (x2 = 6), the current solution corresponds to
corner (x1 = 0, x2 = 6) in Figures 4.10 and 4.11. Once the first phase is over, the
algorithm returns to explore the original feasible set. By choosing x1 instead of x2 as
entering variable, the algorithm would move to the corner (x1 = 6, x2 = 0). At the
end of the first phase, both row 0 (phase 1) and the column related to the artificial
variable y1 are deleted from the tableau. The second phase starts:

iteration : 1 (second phase)
entering variable : x5
leaving variable : x3
pivot : 0.6
current solution : x3 = 8.4, x4 = 18, x2 = 6
objective function : −36

↓
b x1 x2 x3 x4 x5

z̃ −36 1 0 0 0 −6
← x3 8.4 −0.2 0 1 0 0.6

x4 18 0 0 0 1 1

x2 6 1 1 0 0 −1

This solution does not satisfy the optimality condition, and the only
eligible variable for entering the basis is x5, whose coefficient is negative. The
variable x3, whose ratio 8.4∕0.6 = 14 is minimum, leaves the basis and therefore the
pivot element is 0.6. Next we switch the role of x5 and x3;

• the pivot row is divided by 0.6 in order to have 1 in the pivot position,

(8.4 | − 0.2, 0, 1, 0, 0.6)
0.6

=

(
14

||||| −
1
3
, 0,

5
3
, 0, 1

)

• the new pivot row is multiplied by −6 and subtracted from row 0,

• the new pivot is subtracted from the second row and added to the third row.
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The resulting tableu is:

iteration : 2 (second phase)
entering variable : x1
leaving variable : x4
pivot : 1∕3
current solution : x5 = 14, x4 = 4, x2 = 20
objective function : −120

↓
b x1 x2 x3 x4 x5

z̃ −120 −1 0 10 0 0

x5 14 −1∕3 0 5∕3 0 1

← x4 4 1/3 0 −5∕3 1 0

x2 20 2∕3 1 5∕3 0 0

This solution, with x1 = 0 and x2 = 20, corresponds to the corner  in Figures 4.10
and 4.11. The only variable with negative coefficient is x1, and is then selected to
enter the basis. The variable x4, whose ratio

4
1∕3 = 12 is minimum, leaves the basis.

The pivot element is 1∕3. Next we move x1 in the basis:

• the pivot row is multiplied by 3,

• the new pivot row is added to row 0,

• the new pivot row is multiplied by −1∕3 and subtracted from the first row,

• the new pivot row is multiplied by 2∕3 and subtracted from the last row.

The resulting tableau is optimal, as all the reduced costs are positive:

iteration : 3 (second phase)
entering variable : —
leaving variable : —
pivot : —
current solution : x5 = 18, x1 = 12, x2 = 12
objective function : −132

b x1 x2 x3 x4 x5
z̃ −132 0 0 5 3 0

x5 18 0 0 0 1 1

x1 12 1 0 −5 3 0

x2 12 0 1 5 −2 0

The optimal solution corresponds to corner , as in the graphical method.
In Figure 4.11, the path of the two–phase method is through the corners
 →  →  → . It would have been instead  →  →  →  if the variable x1
becomes the entering variable in iteration 1 in the first phase.

To summarize, in case of presence of≥ inequalities and/or equalities, and/or when
the condition b ≥ 0 is not satisfied, the initial problem is extended with the intro-
duction of an adequate number of artificial variables. The extended problem is in
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canonical form with respect to a basis in which the artificial variables are included,
along with the slack variables associated to the ≤ inequalities. The objective function
can be expressed in canonical form, deriving the expression of each artificial variable
yi in terms of the variables not belonging to the basis. The first phase of the simplex
algorithm minimizes the artificial objective function 𝑤 =

∑m
i=1 yi. Let us denote by

𝑤∗ the optimal value, and by (x∗, y∗) the corresponding solution. The following two
cases are possible:

𝑤∗ ≠ 0: in this case, there does not exist any solution to the artificial problem for
which all the artificial variables are null. Hence the original problem does not
admit solution;

𝑤∗ = 0: in this case y∗ = 0, because y∗ ≥ 0 for the LP non–negativity conditions
and

∑m
i=1 y

∗
i = 𝑤∗ = 0. Therefore, x∗ is a feasible basic solution of the initial

problem and can be exploited as initial solution for the second phase. Two fur-
ther possibilities can occur:

• all the artificial variables are nonbasic variables in the detected solution 𝑤∗:
the artificial variables can be deleted along with the artificial objective func-
tion; x∗ can be used as initial feasible solution for the second phase of the
algorithm. This is the case of the previous example shown above;

• one or more artificial variables are still in basis, with null value. From
a geometrical point of view, in such a case the optimal solution lies in
correspondence of a degenerate corner of the extended feasible set. There
are more feasible basic solutions for this corner: some solutions present null
artificial variables among the basic variables, and some solutions do not.
Once the artificial variables are excluded, the detected corner corresponds to
a corner of the initial feasible set. To obtain a feasible basic solution for the
initial problem, the artificial variables have to leave the basis. To this end,
they have to be replaced by the nonbasic variables. From an algebraic point
of view, the simplex method can be applied taking care that the artificial
variables still in basis do not assume positive values. Therefore, once the
entering variable xh is detected, the leaving variable is determined as follows:

– if at least one element of the column ah, corresponding to the artificial
basic variable in basis, is still negative, then this variable is forced to
leave the basis,

– if some element of the column ah, corresponding to an artificial variable,
is positive, then this variable will automatically leave the basis.

4.4 Convergence and degeneration of the simplex
algorithm

The number of basic solutions in a LP problem is at most equal to
(
n
m

)
, as shown

in subsection 4.2.1. Although such number could be huge in many real applications,
this condition ensures the convergence of the simplex algorithm in a finite number
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of iterations, except when the algorithm visits the same corner more than one time,
triggering cycles and not converging to the optimal solution. If in each iteration the
leaving variable is univocally determined, that is, the ratio B−1b∕Ah is minimum in
correspondence of only one entry, then the objective function decreases in a strictly
monotone way, ensuring that no corners can be visited more than once. When this
condition is not verified, the LP problem, and the corresponding feasible basic solu-
tions, are known as degenerates. In some cases, visiting a degenerate feasible basic
solution does not affect the convergence of the algorithm, although it is possible that
the algorithm cyclically visits the same basis and does not converge.

As an example of a degenerate solution, consider the following problem:

minimize z = x1 + 2x2

subject to x1 + x2 ≤ 5

− x1 + x2 ≤ 3

x1 + 2.5x2 ≤ 11

x1 ≥ 0

x2 ≥ 0.

(4.12)

After the addition of three slack variables, one for each inequality, the system is
in canonical form with respect to the basis (x3, x4, x5), and its tableau representation
is:

↓
b x1 x2 x3 x4 x5

z 0 −1 −2 0 0 0
x3 5 1 1 1 0 0

← x4 3 −1 1 0 1 0
x5 11 1 2.5 0 0 1

Tableau 1

The variable x2 enters the basis, and the variable x4 leaves the basis. The tableau
resulting from the pivot operation is:

↓
b x1 x2 x3 x4 x5

z 6 −3 0 0 2 0
← x3 2 2 0 1 −1 0
x2 3 −1 1 0 1 0

← x5 3.5 3.5 0 0 −3.5 1
Tableau 2

The only variable eligible to enter the basis is x1, and any of x3 and x5 could
be selected as leaving variable, because the two corresponding ratios B−1bi∕Ahi

,
i = (3, 5) are equal (see the two arrows next to the rows of the tableau). The choice
between the two variables is arbitrary; the choice of x3 implies the following tableau:
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b x1 x2 x3 x4 x5
z 9 0 0 1.5 0.5 0
x1 1 1 0 0.5 −0.5 0
x2 4 0 1 0.5 0.5 0
x5 0 0 0 −1.75 −0.75 1

Tableau 3

The solution is optimal even if it is degenerate, because variable x5 is a basic
solution with null value. In fact, a basic solution with a null variable in basis is known
as degenerate basis. From a geometric point of view, a degenerate corner is due to
the presence of a redundant constraint. This is evident from Figure 4.12, showing the
graphical solution for the LP problem (4.12): the redundancy of constraint 3 stands
out, in that it does not affect the feasible region.

The previous example shows that the algorithm still converges to the optimal
solution. An example for cyclicality, proposed in Beale (1955), is:

minimize z = 3
4
x1 − 150x2 +

1
50
x3 − 6x4

subject to
1
4
x1 − 60x2 −

1
25
x3 + 9x4 ≤ 0

1
2
x1 − 90x2 −

1
50
x3 + 3x4 ≤ 0

x3 ≤ 1

xi ≥ 0, ∀i = 1, … , 4.

z = 0

z = 9
C1 C2

C3

v(
1,

 2
)

q

–1–2–3 0

0

1

2

3

4

s

5

6

1 2 3 4 5

Figure 4.12 Graphical solution of the LP programming problem (4.12). The con-
straint 3 is redundant because it does not affect the feasible region.
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The application of the simplex algorithm on this problem triggers a cycle, as shown
in the following tableaus (details for each iteration are omitted):

↓
b x1 x2 x3 x4 x5 x6 x7

z 0 −0.75 150 0.02 6 0 0 0
← x5 0 0.25 −60 −0.04 9 1 0 0
x6 0 0.5 −90 −0.02 3 0 1 0
x7 1 0 0 1 0 0 0 1

Tableau 1

↓
b x1 x2 x3 x4 x5 x6 x7

z 0 0 −30 −0.14 33 3 0 0
x1 0 1 −240 −0.16 36 4 0 0

← x6 0 0 30 0.06 −15 −2 1 0
x7 1 0 0 1 0 0 0 1

Tableau 2

↓
b x1 x2 x3 x4 x5 x6 x7

z 0 0 0 −0.08 18 1 1 0
← x1 0 1 0 0.32 −84 −12 8 0
x2 0 0 1 0.002 −0.5 −0.067 0.03 0
x7 1 0 0 1 0 0 0 1

Tableau 3

↓
b x1 x2 x3 x4 x5 x6 x7

z 0 0.25 0 0 −3 −2 −3 0
x3 0 3.12 0 1 −263 −37.5 25 0

← x2 0 −0.006 1 0 0.25 0.0083 −0.016 0
x7 1 3.12 0 0 263 37.5 −25 1

Tableau 4

↓
b x1 x2 x3 x4 x5 x6 x7

z 0 −0.5 120 0 0 −1 −1 0
← x3 0 62.5 10500 1 0 50 50 0
x4 0 0.25 40 0 1 0.33 −0.67 0
x7 1 62.5 −10500 0 0 −50 150 1

Tableau 5
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↓
b x1 x2 x3 x4 x5 x6 x7

z 0 −1.75 330 0.02 0 0 −2 0
x5 0 −1.25 210 0.02 0 1 −3 0

← x4 0 0.167 −30 0.0067 1 0 0.33 0
x7 1 0 0 1 0 0 0 1

Tableau 6

↓
b x1 x2 x3 x4 x5 x6 x7

z 0 −0.75 150 0.02 6 0 0 0
← x5 0 0.25 −60 −0.04 9 1 0 0
x6 0 0.5 −90 −0.02 3 0 1 0
x7 1 0 0 1 0 0 0 1

Tableau 7 ≡ Tableau 1

This example shows how tableau 7 equates tableau 1, the process is cyclical, and the
algorithm does not converge.

In general, if the LP problem is not degenerate, the simplex algorithm converges
to the optimal solution in a finite number of iterations. Conversely, for degenerate
problems, if the algorithm visits a degenerate solution and a feasible basic variable
with null value leaves the basis, the algorithm could return to the same degenerate
solution in a future step, triggering a cycle and hence not converging.

From a geometric point of view, the hyperplanes of ℝn intersecting in a degen-
erate corner are more than n, that is, more than the minimum number of hyperplanes
necessary to identify a point in the space. In other words, if n + k hyperplanes
intersect in a given point, with k > 0, then

(
n+k
n

)
different combinations of such

hyperplanes identify the same point. On the other hand, in case of a non–degenerate
LP problem, each corner corresponds to a unique basic solution, and exactly n
hyperplanes intersect. Hence, the m components of the feasible basic solution xB
are all nonzero, and switching from one solution to the next corresponds to moving
along the vertices of a simplex. This is not the case for a degenerate solution, where
one or more variables with null values are in basis, that is, one or more components
of xB are null. In this instance, more feasible basic solutions are associated with
each corner: it is possible to move between basic solutions, though remaining in the
same corner. A degenerate corner has p strictly positive components, with p < m,
and n − p null components. Since n − p > n − m, then

(
n−p
n−m

)
is the number of

possible choices of the (n − m) not basic components of the corner with null value.
Therefore, there are

(
n−p
n−m

)
feasible basic solutions associated with different basis

but defining the same degenerate corner. Although the basis changes over iterations,
the algorithm could indefinitely cycle through a sequence of bases, and then through
the corresponding eligible basic solutions, all associated with the same corner.
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The degeneration of a basis is frequent in real LP problems, while the cycli-
cality occurs only occasionally in concrete problems. This is due to finite preci-
sion of the calculations, which is equivalent to introducing a small disturbance in
the data. The use of specific counter-cyclical rules for the selection of the variables
entering and leaving the basis is a very popular solution to face with cyclicality.
The most common is the Bland’s rule (Bland 1977), which chooses as entering/leav-
ing variable the one with the lowest index among the entering/leaving candidates:
the variable with the smaller index i is selected as entering variable if there are more
negative reduced costs with identical minimum values; the same holds for the leav-
ing variable when there are more equivalent minimum ratios. Using such a rule, the
algorithm converges after

(
n
m

)
iterations.

4.5 The revised simplex algorithm

In each iteration, the simplex algorithm presented in the previous sections makes use
of only a part of the available information. The revised simplex is a variant aimed at
limiting the amount of the stored information and the number of calculations to the
minimum required. The standard simplex stores and updates a table of size (m × 1) ×
(n × 1) at each iteration. However, the essential steps of the simplex algorithm are
the computation of the inverse matrix B−1 and of vector c⊤BB

−1. The revised simplex
focuses only on B−1 and c⊤BB

−1, by means of a pivoting operation similar to the one
presented for the tableau version of the algorithm.

To illustrate the revised simplex, consider the initial tableau extended through m
auxiliary columns:

x1 ... xn

0 0 … 0 𝐜⊤

𝐛 𝐈m 𝐀

Using the same notation for basic and nonbasic variables, the extended tableau can
be written as follows:

x1 … xm xm+1 … xn

0 0 … 0 𝐜⊤B 𝐜⊤N

𝐛 𝐈m 𝐁 𝐍
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The rows of the tableau are expressed in canonical form with respect to the basis
B through the premultiplication by B−1, while the reduced costs are obtained through
the operation c⊤ = (c⊤ − c⊤BB

−1A). Therefore, the resulting tableau in canonical
form is4:

x1 … xm xm+1 … xn

−𝐜⊤B𝐁
−1𝐛 𝟎⊤ − 𝐜⊤B𝐁

−1𝐈m = −𝐜⊤B𝐁
−1 𝐜⊤B − 𝐜⊤B𝐁

−1𝐁 = 𝟎⊤ 𝐜⊤N − 𝐜⊤B𝐁
−1𝐍 = −𝐜̄⊤N

𝐁−1𝐛 𝐁−1 𝐈m 𝐁−1𝐍

The auxiliary columns contain B−1 and c⊤B . In particular row 0 of the auxiliary table
contains c⊤BB

−1, that is, the reduced costs corresponding to the nonbasic variables
(reduced costs are null for the basic variables), and the other rows contain the inverse
of matrix B, that is, the matrix composed of the columns of matrix A that pertain to
the basic variables. In the following, we pose 𝚷 = c⊤BB

−1.
The revised simplex stores only these parts relevant to computation, that is, col-

umn 0 and the m auxiliary columns. Therefore, the initial configuration of the table
for the revised simplex is:

0 𝟎⊤

𝐛 𝐈m

At each iteration:

1© the algorithm computes the reduced costs ci = ci − c⊤BB
−1Ai = ci −𝚷Ai for

each xi ∈ xN , that is, for the nonbasic variables. The reduced costs for the
basic variables are indeed null. The entering variable xh corresponds to the
minimum reduced costs ch;

2© the column

c̄h

𝐀̄h
is generated by stacking ch (the reduced cost corresponding

to the entering variable) with Ah = B−1Ah. That is, the focus is limited only

4 See Subsection 4.2.2 for the technical details.
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to the column h of the matrix A corresponding to the entering variable. This
column, associated with the entering variable xh, is then placed side by side
with the table composed of the column 0 and of the m auxiliary columns:

xh

−𝚷𝐛 −𝚷 c̄h

ā1,h

⋮

𝐁−1𝐛 𝐁−1 āk,h

⋮

ām,h

3© the pivot element ak,h (highlighted in the previous table) is selected using the
criteria of the minimum ratio bi∕ ai,h, and considering only the ai,h > 0;

4© the pivoting operation is carried out on the table detected at the previous step.
The column corresponding to the variable xh is deleted. The new table stores
the information corresponding to the new basis, and the procedure is iterated.

As an example, consider again the 3–D LP problem (4.7), solved via the graphical
method in subsection 4.1.3 and via the tableau algorithm in subsection 4.2.6. The
corresponding tableau in canonical formwith respect to the basis (x4, x5, x6), the three
slack variables, is here reported again for convenience:

b x1 x2 x3 x4 x5 x6
z̃ 0 −300 −200 −350 0 0 0
x4 40 1 1 1 1 0 0
x5 120 4 2 3 0 1 0
x6 20 0 0 1 0 0 1

Following the steps of the revised simplex to solve this LP problem (detailed
comments are reported only for the first iteration).

initialization :

𝐀 =
[
𝐀1 𝐀2 𝐀3 𝐀4 𝐀5 𝐀6

]
=
⎡⎢⎢⎣
1 1 1 1 0 0
4 2 3 0 1 0
0 0 1 0 0 1

⎤⎥⎥⎦
𝐜⊤ =

[
𝐜⊤N 𝐜⊤B

]
=
[
c1 c2 c3 c4 c5 c6

]
=
[
−300 − 200 −350 0 0 0

]
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iteration 1 - step 1©

The reduced costs for the three nonbasic variables (x1, x2, x3) are computed:

c1 = c1 − c⊤BB
−1A1 = −300 −

[
0 0 0

] ⎡⎢⎢⎣
1 0 0
0 1 0
0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣
1
4
0

⎤⎥⎥⎦ = −300

c2 = c2 − c⊤BB
−1A2 = −200 −

[
0 0 0

] ⎡⎢⎢⎣
1 0 0
0 1 0
0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣
1
2
0

⎤⎥⎥⎦ = −200

c3 = c3 − c⊤BB
−1A3 = −350 −

[
0 0 0

] ⎡⎢⎢⎣
1 0 0
0 1 0
0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣
1
3
1

⎤⎥⎥⎦ = −350

The variable x3, whose reduced cost is minimum, is chosen as entering variable.

iteration 1 - step 2©

The column A3 corresponding to the entering variable x3 is computed:

A3 = B−1A3 =
⎡⎢⎢⎣
1 0 0
0 1 0
0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣
1
3
1

⎤⎥⎥⎦ =
⎡⎢⎢⎣
1
3
1

⎤⎥⎥⎦
and placed side by side with the initial table composed using the known coefficients
and the auxiliary columns. c3, computed in the previous step, is inserted in the row 0:

x3
z 0 0 0 0 −350
x4 40 1 0 0 1
x5 120 0 1 0 3
x6 20 0 0 1 1

iteration 1 - step 3©

The ratios between the known coefficients and the elements of the vector A3 are
computed for only the positive coefficients:

−350
40∕1
120∕3
20∕1

=

−350
40
40
20

The variable x6, whose ratio is minimum, is then selected as leaving variable.
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iteration 1 - step 4©

The pivoting operation is carried out so to obtain a value 1 at the pivot position
and all 0s in the other position of the side vector x3:

x3�
�

�
�row0 +350×

�
�

	

pivot row → z 7000 0 0 350 0

�
�

�
�row1 −1×

�
�

	

pivot row → x4 20 1 0 −1 0

�
�

�
�row2 −3×

�
�

	

pivot row → x5 60 0 1 −3 0

�
�

	

pivot row =

�
�

�
�row3 / 1 → x6 20 0 0 1 1

The table now contains the information for the current basis (x4, x5, x3). The lit-
mus test is obtained replacing in matrix B the third column, corresponding to the
leaving variable x6, with the column A3, corresponding to the entering variable x3
and computing its inverse:

B =
⎡⎢⎢⎣
1 0 1
0 1 3
0 0 1

⎤⎥⎥⎦ =⇒ B−1 =
⎡⎢⎢⎣
1 0 −1
0 1 −3
0 0 1

⎤⎥⎥⎦
In row 0 the values of 𝚷 = c⊤BB

−1 are directly available for the current basis.
The reduced costs for the new basis can be computed. The procedure is now iterated
deleting the side column of x3, now entered in basis.

iteration 2 - step 1©

Computation of the reduced costs for the three nonbasic variables (x1, x2, x6) and
choice of the entering variable:

c̄1 = −300 −
[
0 0 − 350

] ⎡⎢⎢⎣
1
4
0

⎤⎥⎥⎦ = −300 =⇒ x1 is the entering variable

c̄2 = −200 −
[
0 0 − 350

] ⎡⎢⎢⎣
1
2
0

⎤⎥⎥⎦ = −200

c̄6 = 0 −
[
0 0 − 350

] ⎡⎢⎢⎣
0
0
1

⎤⎥⎥⎦ = 350
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iteration 2 - step 2©

Computation of the column A1 corresponding to the entering variable x1:

A1 =
⎡⎢⎢⎣
1 0 −1
0 1 −3
0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣
1
4
0

⎤⎥⎥⎦ =
⎡⎢⎢⎣
1
4
0

⎤⎥⎥⎦
The column A1 is hence placed side by side with the table obtained in the last

step of iteration 1, inserting c1 in row 0:

x1
z 7000 0 0 350 −300
x4 20 1 0 −1 1
x5 60 0 1 −3 4
x3 20 0 0 1 0

iteration 2 - step 3©

Choice of the leaving variable:

−300
20∕1
60∕4
—

=

−300
20
15
—

=⇒ x5 is the leaving variable

iteration 2 - step 4©

The pivoting operation is carried out so to switch the role of x1 and x5:

x1�
�

�
�row0 +300 ×

�
�

	

pivot row → z 11500 0 75 125 0

�
�

�
�row1 −1×

�
�

	

pivot row → x4 5 1 −1/4 −1/4 0

�
�

	

pivot row =

�
�

�
�row2 ∕4 → x5 15 0 1/4 −3/4 1

�
�

�
�row3 −0×

�
�

	

pivot row → x3 20 0 0 1 0

The table contains now the information for the current basis (x4, x1, x3).

iteration 3 - step 1©

Computation of the reduced costs for the three nonbasic variables (x2, x5, x6) and
choice of the entering variable:
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c̄2 = −200 −
[
0 − 75 − 125

] ⎡⎢⎢⎣
1
2
0

⎤⎥⎥⎦ = −50 =⇒ x2 is the entering variable

c̄5 = 0 −
[
0 − 75 − 125

] ⎡⎢⎢⎣
0
1
0

⎤⎥⎥⎦ = 75

c̄6 = 0 −
[
0 − 75 − 125

] ⎡⎢⎢⎣
0
0
1

⎤⎥⎥⎦ = 125

iteration 3 - step 2©

Computation of the column A2 corresponding to the entering variable x2:

A2 =
⎡⎢⎢⎣
1 −1∕4 −1∕4
0 1∕4 −3∕4
0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣
1
2
0

⎤⎥⎥⎦ =
⎡⎢⎢⎣
1∕2
1∕2

0

⎤⎥⎥⎦
The reduced cost c2 and the column A2 are placed side by side to the table obtained
in the last step of iteration 2:

x2
z 11500 0 75 125 −50
x4 5 1 −1/4 −1/4 1∕2
x1 15 0 1/4 −3/4 1∕2
x3 20 0 0 1 0

iteration 3 - step 3©

Choice of the leaving variable:

−50
5

1∕2
15
1∕2

—

=

−50
10

30

—

=⇒ x4 is the leaving variable

iteration 3 - step 4©

The pivoting operation is carried out so that x2 enters and x4 leaves the basis:
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x2�
�

�
�row0 +50×

�
�

	

pivot row → z 12000 100 50 100 0

�
�

	

pivot row = 2× row1 → x4 10 2 −1/2 −1/2 1

�
�

�
�row2 − 1

2
×

�
�

	

pivot row → x1 10 −1 1/2 −1/2 0

�
�

�
�row3 −0×

�
�

	

pivot row → x3 20 0 0 1 0

The table contains now the information for the current basis (x2, x1, x3).

iteration 4 - step 1©

Computation of the reduced costs for the three nonbasic variables (x4, x5, x6):

c4 = 0 −
[
−100 −50 −100

] ⎡⎢⎢⎣
1
0
0

⎤⎥⎥⎦ = 100

c5 = 0 −
[
−100 −50 −100

] ⎡⎢⎢⎣
0
1
0

⎤⎥⎥⎦ = 50

c6 = 0 −
[
−100 −50 −100

] ⎡⎢⎢⎣
0
0
1

⎤⎥⎥⎦ = 100

The optimality condition is fulfilled because all the reduced costs are non–
negative, and the algorithm stops. The optimal solution corresponds to the point
(x1 = 10, x2 = 10, x3 = 20), which provides the objective function z = 12000, as
previously shown with the other solution methods.

The revised simplex algorithm can be detailed as follows:

1: 𝐁 ← initial basis ⊳ assume 𝐁 is an initial feasible basic solution

2: T ←

0 𝟎⊤

𝐛 𝐈m
⊳ initial configuration of the table

3: optimal ← false ⊳ flag variable for checking optimality
4: unbound ← false ⊳ flag variable for checking unboundedness
5: while optimal = false and unbound = false do
6: 𝚷 = 𝐜⊤B𝐁

−1

7: c̄i = ci −𝚷𝐀i,∀xi ∈ 𝐱N ⊳ compute the reduced costs for
the nonbasic variables

8: if c̄i ≥ 0,∀xi ∈ 𝐱N then ⊳ optimality test
9: optimal ← true

10: else
11: h ∶ argminc̄i<0 c̄i, ∀i related to non–basic variables ⊳ index of the en-

tering variable
12: 𝐀̄h = 𝐁−1𝐀h
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13: if 𝐀̄hi
≤ 0,∀i = 1,… ,m then

14: unbound ← true
15: else ⊳ change of the basis

16: sideColumn ←

c̄h

𝐀̄h

⊳ column used to perform the pivoting operation

17: k ∶ argmin𝐀̄𝐡𝐢>0
bi∕𝐀̄𝐡𝐢 ,∀i ∈ (1,… ,m) ⊳ index of the leaving variable

18: Pivoting(k, T , sideVector) ⊳ procedure for updating the table
19: end if
20: end if
21: end while
22: procedure Pivoting(k, T , sideVector) ⊳ procedure for carrying out the pivoting

operation
23: m← nRows(T) ⊳ compute the number of rows of the table
24: n ← nCols(T) ⊳ compute the number of columns of the table
25: pivot ← T[k] ⊳ pivot element
26: for j = 1 to n do ⊳ compute the new pivot row dividing it for the pivot

element
27: T[k, j] ← T[k, j]∕pi𝑣ot
28: end for
29: for i = 0 to m do ⊳ for all the rows (row 0 is related to the objective

function)
30: if i ≠ k and sideVector[i] ≠ 0 then ⊳ except for the pivot row and when

the entry on the sideVector is
already null

31: for j = 1 to n do ⊳ subtract from each row the new pivot row
multiplied for the element on the pivot column

32: T[i, j] ← T[i, j] − sideVector[i] ∗ T[k, j]
33: end for
34: end if
35: end for
36: end procedure

The improved efficiency of the revised simplex with respect to the standard sim-
plex depends on the fact that the pivoting operation is carried out only on the initial
basis matrix B and on the vector of known coefficients. Essentially, the revised sim-
plex method computes at each iteration only the coefficients needed to identify the
pivot element rather than updating the entire tableau. The involved coefficients are
the reduced costs for the nonbasic variables (used to detect the entering variable),
the current known coefficients, and the updated coefficients of the entering variable
(used to detect the leaving variable). The computational complexity is hence related
to the number m of constraints and not to the number n of unknowns. Therefore,
the larger the number of nonbasic variables with respect to the basic variables, that
is, when n >> m, the greater the efficiency. This is even more accentuated in the
two-phase implementation: the introduction of the artificial variables along with the
slack variables determines a higher convenience of the revised simplex with respect
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to the standard algorithm. This is the reason why the revised simplex is the basis of
most computer codes in software for linear programming.

4.6 A summary of key points

• Linear programming is a special case of amathematical programming problem,
where both the objective function and the constraints are linear. Furthermore,
the decisional variables are non–negative.

• All the linear programming problems can be easily formulated in standard
form, namely in terms of a minimization problem whose structural constraints
are expressed in equational form. This allows us to exploit basic properties of
linear systems in order to search for the optimal solution.

• The simplex algorithm inspects the corners of the feasible region and chooses
the one associated with the highest value of the objective function. It is based
on the relationship between corners and optimal solutions, and on theoretical
results ensuring the optimality of the solution in correspondence of one or more
corners of the feasible region.

• The simplex algorithm restricts the possible solutions to the corners of the fea-
sible region (feasible basic solutions). Although the number of such solutions
is finite, it exponentially increases with the number of variables and constraints
involved. An optimality condition allows us to avoid the full enumeration of
all the feasible basic solutions.

• The revised simplex is a variant which reduces the amount of stored infor-
mation and computations to the minimum. This is why it is the most popular
method for solving linear programming problems, and quantile regression is
one of them, as shown in the next chapter.
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5

Linear programming for
quantile regression

Introduction

It is now time to see the simplex algorithm for solving the quantile regression
problem. This chapter outlines the algorithm using a small data set, detailing the
various steps of the procedure.

The machinery behind the use of linear programming for solving regression
problems is first presented for the case of median regression and then extended to
the more general quantile regression. A geometric interpretation of the minimization
problem characterizing quantile regression is also outlined using the point/line
duality introduced by Edgeworth in 1888 in his pioneer work on median methods
for linear regression.

5.1 LP formulation of the L1 simple regression
problem

The L1 simple linear regression problem, or median regression:

min
a0,a1

n∑
i=1

|yi − (a0 + a1xi)| (5.1)

consists of fitting a straight line to a set of n points (xi, yi), i = 1, … , n, minimizing
the sum of the absolute deviations of the data from the line. The use of least abso-
lute deviations as an alternative criterion to least squares for best fit is a recurring

Quantile Regression: Estimation and Simulation, Volume 2. Marilena Furno and Domenico Vistocco.
© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/furno/quantileregression
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subject in statistical literature. The least absolute criterion is even more ancient than
the most popular least squares technique: median regression was early introduced by
Boscovich in the 18–th century for estimating a bivariate linear model for the elliptic-
ity of the earth. Laplace (1818) first and Edgeworth (1888, 1923) then, characterized
Boscovich’s work as a weighted median. Edgeworth, in particular, proposed a general
formulation of median regression involving a multivariate vector of explanatory vari-
ables naming it plural median. This was the extension of the “methode de situation,”
the geometric approach of Laplace for solving Boscovich’s problem. More recently,
Koenker and Basset (1978) extended the problem to quantiles other than the median.

Stigler (1990) thoroughly presents the early proposals of median regression in
his comprehensive book on the history of Statistics. The historical development of
L1 estimation procedures is also offered by Farebrother (1987), through a review
of the contributions of the main scientists of the eighteenth century. The book of
Farebrother (1999) provides an exhaustive description of the history of fitting linear
relationships by the least squares (L2), least absolute deviations (L1), and minimax
absolute deviations (L∞) procedures. A quantile regression perspective on the topic
is offered in a fascinating paper of Koenker (2000), where the historical issues are
used to motivate recent developments.

Albeit different methods are available for solving the median regression, we focus
on the simplex–based methods, since their use represent the turning point for the
spread of the L1 regression. The seminal work of Wagner (1959) presents the lin-
ear programming techniques for least absolute deviations in the mainstream statisti-
cal literature. Only few years later, Barrodale and Young (1966) first and Barrodale
and Roberts (1970) after, treated the L1 approximation to a real–valued function
through linear programming in the literature on operation research and numerical
mathematics.

To align with the LP treatment introduced in the previous chapter, there is a differ-
ence in notation between the LP problem and the regression problem. While we have
denoted by xi the decisional variables in the LP problem, here the xi correspond to
known coefficients and the yi to known values. In fact, in the regression problem, the
values xi and yi are available. The intercept a0 and the slope a1 of the regression line,
that is, the parameters, are the variables in LP jargon. In line with the LP formulation,
the cost function should be properly rewritten as:

min
a0,a1

n∑
i=1

|yi − (a0 + xia1)| (5.2)

exchanging the position of a1 and xi in order to stress that xi is known and a1 is a deci-
sional variable. The L1 optimization problem is nonlinear and we need to reformulate
it in a linear form to exploit LP. The transformation of the nonlinear cost function into
a linear cost function can be obtained using the two different options presented in the
following two subsections. The small data set reported in Table 5.1, where Y denotes a
generic response variable and X the explicative variable, will be used for the example.
This data, used in the paper of Barrodale and Roberts (1973), suffices to detail the
application of the LP theory to the quantile regression setting, even if comprising
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Table 5.1 The simple data set.

X Y

A 1 1
B 2 1
C 3 2
D 4 3
E 5 2

only 5 observations. A more realistic data set would become unmanageable, due to
the large dimension of the corresponding tableau representation.

5.1.1 A first formulation of the L1 regression problem

The first option for formulating the median regression problem (5.2) consists in treat-
ing the objective function as a sum of n nonnegative variables, through the absolute
residuals e+i = |yi − (a0 + xia1)|. Hence, the corresponding LP formulation is:

minimize
n∑
i=1

e+i

subject to e+i ≥ yi − a0 − xia1 i = 1, … , n

e+i ≥ −(yi − a0 − xia1) i = 1, … , n.

The LP formulation of the L1 regression problem consists of 2 × n constraints, since
two constraints are added for each of the n available observations. The two sets of
constraints guarantee that:

e+i ≥ max{yi − a0 − xia1,−(yi − a0 − xia1)} = |yi − a0 − xia1|
To keep the notation in line with the LP format, the known values yi are hence isolated
on the right side of the inequalities, playing the role of the bi coefficients in the general
LP problem :

minimize
n∑
i=1

e+i

subject to a0 + xi a1 + e+i ≥ yi i = 1, … , n

−a0 − xi a1 + e+i ≥ −yi i = 1, … , n.

Finally, the second set of inequalities is multiplied by −1, to obtain:

minimize
n∑
i=1

e+i

subject to a0 + xi a1 + e+i ≥ yi i = 1, … , n

a0 + xi a1 − e+i ≤ yi i = 1, … , n.
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This prevents negative known coefficients from being on the right side of the
inequalities. Referring again to the LP notation, the vector xi corresponds to the
column of matrix A associated with the decisional variable a1. All the constraint
coefficients associated with the intercept a0 are equal to 1. The coefficients associated
with the ei variables are instead equal to 1 for the first n constraints and to −1 for the
other n constraints.

Even if the n unsigned e+i , i = 1, … , n are nonnegative by definition, both deci-
sional variables a0 and a1 (regression coefficients) are unrestricted in sign, being
allowed to assume both positive and negative values. A further modification is hence
required. By recalling that a variable unrestricted in sign can always be expressed
as difference of two nonnegative numbers (see subsection 4.1.1), the two regression
coefficients are replaced with:

a0 = a′0 − a′′0
a1 = a′1 − a′′1

where a′0, a
′′
0 , a

′
1, a

′′
1 ≥ 0. Therefore, the LP formulation of the L1 regression problem

becomes:

minimize
n∑
i=1

e+i

subject to (a′0 − a′′0 ) + xi (a′1 − a′′1 ) + e+i ≥ yi i = 1, … , n

(a′0 − a′′0 ) + xi (a′1 − a′′1 ) − e+i ≤ yi i = 1, … , n.

(5.3)

All the variables involved are nonnegative and hence comply with the LP require-
ments. It is worth stressing that the e+i have been defined as unsigned residuals. In
order to determine the proper signs of the residuals at the end of the process, it is
sufficient to compute the signed values yi − a0 − xia1 for i = 1, … , n, through the
values obtained for the two decisional variables a0 and a1.

The equational form of the LP problem (5.3) involves the use of 2 × n slack vari-
ables, n with coefficient +1 associated with the less–than–or–equal constraints, and
n with coefficient −1 for the greater–than–or–equal constraint:

minimize
n∑
i=1

e+i

subject to (a′0 − a′′0 ) + xi (a′1 − a′′1 ) + e+i − si = yi i = 1, … , n

(a′0 − a′′0 ) + xi (a′1 − a′′1 ) − e+i + si = yi i = 1, … , n.

Unlike the previous chapter, the slack variables are here denoted by si,
i = 1, … , n, since the xi’s in the regression framework are usually reserved to label
the values of the explicative variables. This LP formulation is not in canonical form
due to the negative coefficients associated with the four slack variables inserted
to deal with the ≤ inequalities. To this end, n additional artificial variables are
necessary in the first set of constraints. The artificial variables are here denoted
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with ti, i = 1, … , n, since the yi have been adopted for the values of the response
variable, as in the standard notation of regression:

minimize
n∑
i=1

e+i

subject to (a′0 − a′′0 ) + xi (a′1 − a′′1 ) + e+i − si + ti = yi i = 1, … , n

(a′0 − a′′0 ) + xi (a′1 − a′′1 ) − e+i + si = yi i = 1, … , n.

(5.4)

The introduction of the additional variables ti determines a system of equations
in canonical form with respect to such n artificial variables along with the last n slack
variables. The use of the artificial variables extends the feasible set to a new feasi-
ble set, characterized by a new artificial objective function. Such artificial problem
shares the same constraint matrix with the initial problem. The objective function to
minimize in the artificial problem is:

𝑤 =
n∑
i=1

ti

The two–phase method in Section 4.3, detects an initial basis common to the artificial
and the original problem and then switches back to the original problem, through a
twofold application of the simplex algorithm. A common solution exists only when
the optimal value of the artificial problem𝑤∗ equals 0. In such a case the correspond-
ing solution can be used to trigger the simplex algorithm on the original problem.

Therefore, the LP formulation (5.3) in canonical form for the small data set is:

minimize z = e+1 + e+2 + e+3 + e+4 + e+5
subject to a′0 − a′′0 + x1 a

′
1 − x1 a

′′
1 − e+1 + s1 = y1 (C1)

a′0 − a′′0 + x2 a
′
1 − x2 a

′′
1 − e+2 + s2 = y2 (C2)

a′0 − a′′0 + x3 a
′
1 − x3 a

′′
1 − e+3 + s3 = y3 (C3)

a′0 − a′′0 + x4 a
′
1 − x4 a

′′
1 − e+4 + s4 = y4 (C4)

a′0 − a′′0 + x5 a
′
1 − x5 a

′′
1 − e+5 + s5 = y4 (C5)

a′0 − a′′0 + x1 a
′
1 − x1 a

′′
1 + e+1 − s6 + t1 = y1 (C6)

a′0 − a′′0 + x2 a
′
1 − x2 a

′′
1 + e+2 − s7 + t2 = y2 (C7)

a′0 − a′′0 + x3 a
′
1 − x3 a

′′
1 + e+3 − s8 + t3 = y3 (C8)

a′0 − a′′0 + x4 a
′
1 − x4 a

′′
1 + e+4 − s9 + t4 = y4 (C9)

a′0 − a′′0 + x5 a
′
1 − x5 a

′′
1 + e+5 − s10 + t5 = y5 (C10)

e+1 , e
+
2 , e

+
3 , e

+
4 , a

′
0, a

′′
0 , a

′
1, a

′′
1 ≥ 0

s1, s2, s3, s4, s5, s6, s7, s8, s9, s10 ≥ 0

t1, t2, t3, t4, t5 ≥ 0

(5.5)
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The canonical form involves the use of ten slack variables and five artificial
variables. The introduction of the latter extends the feasible set to a new feasible set
characterized by the following artificial objective function to minimize:

𝑤 = t1 + t2 + t3 + t4 + t5

To express the artificial objective function𝑤 in terms of the variables of the orig-
inal problem, the ti can be derived from the constraints and the resulting expressions
used to compute 𝑤 is:

t1 = y1 − a′0 + a′′0 − x1 a
′
1 + x1 a

′′
1 − e+1 + s6 ← (C6)

t2 = y2 − a′0 + a′′0 − x2 a
′
1 + x2 a

′′
1 − e+2 + s7 ← (C7)

t3 = y3 − a′0 + a′′0 − x3 a
′
1 + x3 a

′′
1 − e+3 + s8 ← (C8)

t4 = y4 − a′0 + a′′0 − x4 a
′
1 + x4 a

′′
1 − e+4 + s9 ← (C9)

t5 = y5 − a′0 + a′′0 − x5 a
′
1 + x5 a

′′
1 − e+5 + s10 ← (C10)

𝑤=
∑5

i=1 yi−5 a′0+5 a′′0 −
(∑5

i=1 xi
)
a′1+

(∑5
i=1 xi

)
a′′1 −

∑5
i=1 e

+
i +

∑10
i=6 si

Using the values in Table 5.1 for xi and yi, the expression of the artificial objective
function becomes:

𝑤 = 9 − 5 a′0 + 5 a′′0 − 15 a′1 + 15 a′′1 − e+1 − e+2 − e+3 − e+4 − e+5

+ s6 + s7 + s8 + s9 + s10

All the elements are now available for the initial tableau:

y a′0 a
′′
0 a′1 a′′1 e+1 e+2 e+3 e+4 e+5 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 t1 t2 t3 t4 t5

𝑤 −9 −5 5 −15 15 −1 −1 −1 −1 −1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0
z 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

s1 1 1 −1 1 −1 −1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

s2 1 1 −1 2 −2 0 −1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

s3 2 1 −1 3 −3 0 0 −1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

s4 3 1 −1 4 −4 0 0 0 −1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

s5 2 1 −1 5 −5 0 0 0 0 −1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

t1 1 1 −1 1 −1 1 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 1 0 0 0 0

t2 1 1 −1 2 −2 0 1 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 1 0 0 0

t3 2 1 −1 3 −3 0 0 1 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 1 0 0

t4 3 1 −1 4 −4 0 0 0 1 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 1 0

t5 2 1 −1 5 −5 0 0 0 0 1 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 1

The tableau contains two rows 0, one for the artificial problem and one for the
original problem, labeled with 𝑤 and z, respectively. If during the first phase, the
pivoting operation is carried out on both rows 0, row 𝑤 will be automatically ready
for triggering the second phase. The initial tableau is in canonical form with respect
to the slack variables s1, s2, s3, s4, s5, and to the five artificial variables t1, t2, t3, t4,
t5, as highlighted through the boxed elements.
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The first phase of the simplex algorithm starts with the selection of the entering
variable: a′1 is the first variable entering the basis since the corresponding coefficient is
minimum. Using the same notation previously introduced, its column is marked using
the symbol ↓ above the column label. The ratios between the known coefficients (first
column of the tableau) and the column of the entering variable itself are computed
for the positive entries. Both s5 and t5 could be selected as leaving variables:

min
{1
1
,
1
2
,
2
3
,
3
4
,
2
5
,
1
1
,
1
2
,
2
3
,
3
4
,
2
5

}
= min{1, 0.5, 0.67, 0.75, 0.4 , 1, 0.5, 0.67, 0.75, 0.4 }

Since the aim of the first phase is to have all artificial variables as null, we choose t5
for leaving the basis. Its row label is marked with the symbol ←. Therefore, the first
iteration of the first phase is:

iteration : 1 (first phase)
entering variable : a′1
leaving variable : t5
pivot : 5
current solution : s1 = 1, s2 = 1, s3 = 2, s4 = 3, s5 = 2

: t1 = 1, t2 = 1, t3 = 2, t4 = 3, t5 = 2
objective function : 𝑤 = −9

↓
y a′0 a

′′
0 a′1 a′′1 e+1 e+2 e+3 e+4 e+5 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 t1 t2 t3 t4 t5

𝑤 −9 −5 5 −15 15 −1−1−1−1−1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0
z 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

s1 1 1 −1 1 −1−1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

s2 1 1 −1 2 −2 0 −1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

s3 2 1 −1 3 −3 0 0 −1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

s4 3 1 −1 4 −4 0 0 0 −1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

s5 2 1 −1 5 −5 0 0 0 0 −1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

t1 1 1 −1 1 −1 1 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 1 0 0 0 0

t2 1 1 −1 2 −2 0 1 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 1 0 0 0

t3 2 1 −1 3 −3 0 0 1 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 1 0 0

t4 3 1 −1 4 −4 0 0 0 1 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 1 0

← t5 2 1 −1 5 −5 0 0 0 0 1 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 1
Tableau 1, Phase 1

The pivoting operation is carried out to switch the role of the entering variable a′1
with the leaving variable t5. The aim of the pivoting operation is to obtain a column
of 0 for a′1 except for the last entry, and it consists of the following steps:

• the pivot row (t5) is divided by the pivot element (5) in order to have 1 on the
pivot position,
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• the resulting pivot row is multiplied by the value −15 (the value in the first row
0 in the pivot column), and hence subtracted from the row 𝑤,

• the same operation is repeated for all the other rows of the tableau (from the
row z to the row t4), in order to have 0 in all the other positions of the pivot
column.

At the end of the pivoting operation, the column corresponding to the entering
variable a′1 becomes a column of the identity matrix, and a′1 replaces the leaving
variable t5 in the canonical form. The resulting tableau is therefore used for the second
iteration of the first phase:

iteration : 2 (first phase)
entering variable : a′0
leaving variable : t2
pivot : 0.6
current solution : s1 = 0.6, s2 = 0.2, s3 = 0.8, s4 = 1.4, s5 = 0

: t1 = 0.6, t2 = 0.2, t3 = 0.8, t4 = 1.4, a′1 = 0.4
objective function : 𝑤 = −3

↓
y a′0 a′′0 a′1 a

′′
1 e+1 e+2 e+3 e+4 e+5 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 t1 t2 t3 t4 t5

𝑤 −3 −2 2 0 0 −1−1−1−1 2 0 0 0 0 0 1 1 1 1 −2 0 0 0 0 3
z 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

s1 0.6 0.8 −0.8 0 0 −1 0 0 0 −0.2 1 0 0 0 0 0 0 0 0 0.2 0 0 0 0 −0.2
s2 0.2 0.6 −0.6 0 0 0 −1 0 0 −0.4 0 1 0 0 0 0 0 0 0 0.4 0 0 0 0 −0.4
s3 0.8 0.4 −0.4 0 0 0 0 −1 0 −0.6 0 0 1 0 0 0 0 0 0 0.6 0 0 0 0 −0.6
s4 1.4 0.2 −0.2 0 0 0 0 0 −1−0.8 0 0 0 1 0 0 0 0 0 0.8 0 0 0 0 −0.8
s5 0 0 0 0 0 0 0 0 0 −2 0 0 0 0 1 0 0 0 0 1 0 0 0 0 −1
t1 0.6 0.8 −0.8 0 0 1 0 0 0 −0.2 0 0 0 0 0 −1 0 0 0 0.2 1 0 0 0 −0.2

← t2 0.2 0.6 −0.6 0 0 0 1 0 0 −0.4 0 0 0 0 0 0 −1 0 0 0.4 0 1 0 0 −0.4
t3 0.8 0.4 −0.4 0 0 0 0 1 0 −0.6 0 0 0 0 0 0 0 −1 0 0.6 0 0 1 0 −0.6
t4 1.4 0.2 −0.2 0 0 0 0 0 1 −0.8 0 0 0 0 0 0 0 0 −1 0.8 0 0 0 1 −0.8
a′1 0.4 0.2 −0.2 1 −1 0 0 0 0 0.2 0 0 0 0 0 0 0 0 0 −0.2 0 0 0 0 0.2

Tableau 2, Phase 1

The minimum coefficients in row 0 are associated with the variables a′0 and s10.
If we select the former, a′0, as entering variable, both variables s2 and t2 could be
selected to leave the basis. Indeed, the ratios of the known coefficient to the positive
entries in the pivot column are:

min
{0.6
0.8

,
0.2
0.6

,
0.8
0.4

,
1.4
0.2

,
0.6
0.8

,
0.2
0.6

,
0.8
0.4

,
1.4
0.2

,
0.4
0.2

}
= min{0.75, 0.33 , 2, 7, 0.75, 0.33 , 2, 7, 2}

Again, we prefer the artificial variable t2, hoping to close the first phase faster. The
algorithm iterates through nine steps before the first phase stops, when the artificial
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objective function 𝑤 equals 0. The entering and the leaving variables, along with the
values of the objective function 𝑤 in the next steps are:

iteration leaving variable entering variable objective function 𝑤
3 s7 s2 −2.33
4 t1 e+2 −2.33
5 s5 s10 −1.75
6 t3 e+5 −1.75
7 s3 s8 −0.50
8 t4 e+3 −0.50
9 — — 0

The objective function changes only every two iterations. We are in the case of
degenerate solutions (see Section 4.4), determined by null values of the minimum
ratios associated with the leaving variables. Since the selected variables in steps 4,
6, and 8, enter the basis with a null value, the resulting solutions do not determine
a movement toward another corner of the simplex, but only a change of the feasible
solution in the basis. Hence the value of the objective function 𝑤 does not change.
At iteration 8, the last artificial variable t4 exits the basis and the first phase ends,
since the artificial objective function 𝑤 equals 0. The columns associated with the
five artificial variables t1, t2, t3, t4, t5 are now deleted from the tableau, along with
the row 0 associated with the artificial objective function 𝑤. The resulting tableau is
the initial tableau of the second phase:

↓
y a′0 a′′0 a′1 a′′1 e+1 e+2 e+3 e+4 e+5 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

z −2.67 0 0 0 0 0.33 0 0 −1.33 0 0 1 1 0 1 0.67 0 0 2.33 0

s1 0 0 0 0 0 −2 0 0 0 0 1 0 0 0 0 1 0 0 0 0

s7 1.33 0 0 0 0 1.33 0 0 0.67 0 0 −1 0 0 0 −1.33 1 0 −0.67 0

← s8 0.67 0 0 0 0 0.67 0 0 1.33 0 0 0 −1 0 0 −0.67 0 1 −1.33 0

s4 0 0 0 0 0 0 0 0 −2 0 0 0 0 1 0 0 0 0 1 0

s10 3.33 0 0 0 0 −0.67 0 0 2.67 0 0 0 0 0 −1 0.67 0 0 −2.67 1

e+2 0.67 0 0 0 0 0.67 1 0 0.33 0 0 −1 0 0 0 −0.67 0 0 −0.33 0

a′0 0.33 1 −1 0 0 1.33 0 0 −0.33 0 0 0 0 0 0 −1.33 0 0 0.33 0

e+5 1.67 0 0 0 0 −0.33 0 0 1.33 1 0 0 0 0 −1 0.33 0 0 −1.33 0

e+3 0.33 0 0 0 0 0.33 0 1 0.67 0 0 0 −1 0 0 −0.33 0 0 −0.67 0

a′1 0.67 0 0 1 −1 −0.33 0 0 0.33 0 0 0 0 0 0 0.33 0 0 −0.33 0
Tableau 1, Phase 2

Since it is already in canonical form with respect to the ten variables in basis, as
highlighted through the boxed elements, the second phase of the algorithm starts:

iteration : 1 (second phase)
entering variable : e+4
leaving variable : s8
pivot : 1.33
current solution : s1 = 0, s7 = 1.33, s8 = 0.67, s4 = 0, s10 = 3.33

: e+2 = 0.67, a′0 = 0.33, e+5 = 1.67, e+3 = 0.33, a′1 = 0.67
objective function : z = −2.67
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The variable e+4 is the only variable eligible to enter the basis, since the
coefficients of all the other variables in row 0 are null or positive. For selecting
the leaving variable, the ratios of the known coefficients to the positive entries of the
pivot column are computed:

min
{1.33
0.67

,
0.67
1.33

,
3.33
2.67

,
0.67
0.33

,
1.67
1.33

,
0.33
0.67

,
0.67
0.33

}
= min{2, 0.5 , 1.25, 2, 1.25, 0.5 , 2}

Both s8 and e
+
3 present a ratio equal to 0.5 and can be selected to exit the basis. By

choosing s8 as leaving variable, the algorithm stops with the last pivoting operation:

• the pivot row (s8) is divided by the pivot element 1.33 in order to have a value
1 in the pivot position,

• the resulting row is therefore:

– multiplied by −1.33 (the value of the pivot column) and subtracted by the
row 0,

– multiplied by 0.67 and subtracted by the row associated with s7,

– multiplied by −2 and subtracted by the row associated with s4,

– multiplied by 2.67 and subtracted by the row associated with s10,

– multiplied by 0.33 and subtracted by the row associated with e+2 ,

– multiplied by −0.33 and subtracted by the row associated with a′0,

– multiplied by 1.33 and subtracted by the row associated with e+5 ,

– multiplied by 0.67 and subtracted by the row associated with e+3 ,

– multiplied by 0.33 and subtracted by the row associated with a′1.

The resulting tableau fulfills the optimality condition since all the reduced costs
are positive, and the algorithm stops:

iteration : 2 (second phase)
entering variable : —
leaving variable : —
pivot : —
current solution : s1 = 0, s7 = 1, e+4 = 0.5, s4 = 1, s10 = 2

: e+2 = 0.5, a′0 = 0.5, e+5 = 1, e+3 = 0, e+2 = 0.5
objective function : z = −2
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y a′0 a′′0 a′1 a′′1 e+1 e+2 e+3 e+4 e+5 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10
z −2 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 1 0

s1 0 0 0 0 0 −2 0 0 0 0 1 0 0 0 0 1 0 0 0 0

s7 1 0 0 0 0 1 0 0 0 0 0 −1 0.5 0 0 −1 1 −0.5 0 0

e+4 0.5 0 0 0 0 0.5 0 0 1 0 0 0 −0.75 0 0 −0.5 0 0.75 −1 0

s4 1 0 0 0 0 1 0 0 0 0 0 0 −1.5 1 0 −1 0 1.5 −1 0

s10 2 0 0 0 0 −2 0 0 0 0 0 0 2 0 −1 2 0 −2 0 1

e+2 0.5 0 0 0 0 0.5 1 0 0 0 0 −1 0.25 0 0 −0.5 0 −0.25 0 0

a′0 0.5 1 −1 0 0 1.5 0 0 0 0 0 0 −0.25 0 0 −1.5 0 0.25 0 0

e+5 1 0 0 0 0 −1 0 0 0 1 0 0 1 0 −1 1 0 −1 0 0

e+3 0 0 0 0 0 0 0 1 0 0 0 0 −0.5 0 0 0 0 −0.5 0 0

a′1 0.5 0 0 1 −1 −0.5 0 0 0 0 0 0 0.25 0 0 0.5 0 −0.25 0 0
Tableau 2, Phase 2

By discarding the slack variables from the solution, it is possible to focus only
on the decisional variables strictly related to the regression problem, namely the two
regression coefficients a0 and a1, and the n absolute residuals e

+
i , i = 1, … , n. Since

a′0 = 0.5 and a′′0 is out of the basis and hence equals 0, we have a0 = a′0 − a′′0 = 0.5.
The same for the slope: a1 = a′1 = 0.5. With respect to the absolute residuals, from
the tableau we have e+2 = 0.5, e+3 = 0, e+4 = 0.5, and e+5 = 1. The residual related to
the first observation is out of the basis, and hence e+1 = 0. The sum of the absolute
residuals is equal to 2, which is the value of the objective function z.

The e+i must be read as absolute residuals; for determining the proper signs of
the residuals, it is sufficient to exploit the estimated regression coefficients, that is, to
compute: ei = yi − a′0 − xi a

′
1:

yi 1 1 2 3 4 −
a0 + xi a1 1 1.5 2 2.5 3 =

ei 0 −0.5 0 0.5 −1

The above solution is the same provided by any statistical software offering func-
tions for quantile regression estimates. Here is the R code (R Core Team 2017) for
computing the median regression for the small data set listed in Table 5.1. The code
exploits the rq function contained in the quantreg package (Koenker 2017):

# loading the quantreg package
library(quantreg)
# storing the small data set
x <− c(1, 2, 3, 4, 5); y <− c(1, 1, 2, 3, 2)
# QR regression for the conditional median
median_reg <− rq(y ∼ x, tau = 0.5)
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# NOTE: the default value of the tau argument is set to 0.5
# this command is hence equivalent to the previous one
median_reg <− rq(y ∼ x)
# QR estimates for the conditional median
coefficient(median_reg)

(Intercept) x
0.5 0.5

Warning message:
In rq.fit.br(x, y, tau = tau, ...) : Solution may be nonunique
#QR residuals
residuals(median_reg)

1 2 3 4 5
0.0 −0.5 0.0 0.5 −1.0

The warning message in the previous code alerts the user about the non–
uniqueness of the solution. As outlined in the paper of Barrodale and Roberts (1973),
the solution is not unique for this example. The presence of a null variable in the
basis is a clue even if not a sufficient condition for non–uniqueness. For this data set,
we are in the very special case where the optimal solution does not correspond to a
single vertex of the simplex but to an edge (see the geometrical interpretation of the
non–uniqueness in subsection 4.1.3 and next Section 5.3 for the geometry of median
regression).

In the previous example we assigned a higher priority to the artificial variables ti
for leaving the basis in the first phase. If on the contrary we would exploit the Bland’s
rule1 for choosing among entering/leaving candidates, the entering and the leaving
variables, and the values of the artificial objective function 𝑤 in each step of the first
phase of the simplex algorithm, become:

iteration leaving variable entering variable objective function 𝑤
1 s5 a′1 −9
2 t5 e+5 −3
3 s2 a′0 −3
4 t2 e+2 −2.33
5 s1 s7 −2.33
6 t1 e+1 −1.75
7 t3 e+3 −1.75
8 t4 e+4 −1.25
9 — — 0

with the following tableau at the end of the first phase:

1 In case of ambiguity we select the variable with the lowest index among the candidates (see
Section 4.4).
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y a′0 a′′0 a
′
1 a

′′
1 e+1 e+2 e+3 e+4 e+5 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 t1 t2 t3 t4 t5

𝑤 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
z −2 0 0 0 0 0 0 0 0 0 0.5 1 0 0 1 0.5 0 1 1 0 0.5 1 0 0 1

s7 0.5 0 0 0 0 0 0 0 0 0 0.75 −1 0 0 0.25 −0.75 1 0 0 −0.25 0.75 −1 0 0 0.25

a′0 0.75 1 −1 0 0 0 0 0 0 0 0.625 0 0 0 −0.125−0.625 0 0 0 0.125 0.625 0 0 0 −0.125
s3 1 0 0 0 0 0 0 0 0 0 −0.5 0 1 0 −0.5 0.5 0 −1 0 0.5 −0.5 0 1 0 −0.5
s4 2.5 0 0 0 0 0 0 0 0 0 −0.25 0 0 1 −0.75 0.25 0 0 −1 0.75 −0.25 0 0 1 −0.75
a′1 0.25 0 0 1 −1 0 0 0 0 0 −0.125 0 0 0 0.125 0.125 0 0 0 −0.125−0.125 0 0 0 0.125

e+1 0 0 0 0 0 1 0 0 0 0 −0.5 0 0 0 0 −0.5 0 0 0 0 0.5 0 0 0 0

e+2 0.25 0 0 0 0 0 1 0 0 0 0.375 −1 0 0 0.125 −0.375 0 0 0 −0.125 0.375 0 0 0 0.125

e+3 0.5 0 0 0 0 0 0 1 0 0 −0.25 0 0 0 −0.25 0.25 0 −1 0 0.25 −0.25 0 1 0 −0.25
e+4 1.25 0 0 0 0 0 0 0 1 0 −0.125 0 0 0 −0.375 0.125 0 0 −1 0.375 −0.125 0 0 1 −0.375
e+5 0 0 0 0 0 0 0 0 0 1 0 0 0 0 −0.5 0 0 0 0 −0.5 0 0 0 0 0.5

Tableau 9, Phase 1

Since the optimality condition is already satisfied for the row 0 associated with
the initial objective function z, the second phase does not start, and the current solu-
tion is optimal also for the initial problem. Therefore the values a′0 = a0 = 0.75 and
a′1 = a1 = 0.25 provide the same value 2 for the objective function z, obtained
with the previous solution. The same for any couple of values a0 = 0.75 − k and
a1 = 0.25 + k, for 0 ≤ k ≤ 0.25, as it is easy to verify through the following
R code:

# set the values for the two coefficients
a0 <− 0.75
a1 <− 0.25
# compute the sum of absolute residuals for any linear combination
# of the points (a0 = 0.5, a1 = 0.5) and (a0 = 0.75, a1 = 0.25)
# i.e. for any points lying on the segment that join such two points
# in the plane (a0, a1)
for(k in seq(0, 0.25, 0.01))

print(sum(abs(y − ((a0 − k) + (a1 + k) * x))))
you will see the value 2 printed 26 times
(where 26 are the values considered for k)

Section 5.3will further detail this issue, focusing on its geometrical interpretation.
The same warning message concerning the non–uniqueness of the solution may

result also for a different reason when computing quantile regression estimates in R.
This is the case when there is an even number of observations, especially when the
covariates are discrete. As in Koenker (2005, 2017):

All the possible solutions are correct. Just as any number between the two central
order statistics is a median when the sample size is even and the order statistics
are distinct. The main point here is that the differences between solutions are of
order 1∕n, and the inherent uncertainty about the estimates is of order 1∕

√
(n),

so the former variability is essentially irrelevant.



204 QUANTILE REGRESSION

And also:

Should we worry about this? My answer would be no. Viewed from an asymp-
totic perspective, any choice of a unique value among the multiple solutions is
a 1∕n perturbation – with 2500 observations this is unlikely to be interesting.
More to the point, inference about the coefficients of the model, which provides
O(1∕

√
(n)) intervals, is perfectly capable of assessing the meaningful uncer-

tainty about these values.

5.1.2 A more convenient formulation of the L1 regression
problem

An alternative formulation of the L1 problem in terms of LP directly provides the
signed residuals. Such formulation has been proposed by Wagner (1959) in the sta-
tistical literature, and by Barrodale and Roberts (1970) in the LP literature. Barrodale
and Roberts (1973) present an improved algorithm for the L1 approximation that is
implemented in the main software to compute median regression (see next subsection
for details). Although this formulation could seem more verbose due to the handling
of the sign of the residuals, it actually turns out to be more convenient in terms of the
resulting tableau.

Two nonnegative variables, ui and 𝑣i, are introduced to treat the signed residuals
ei = yi − (a0 + xia1). The L1 objective function (5.2) to minimize becomes:

n∑
i=1

|yi − (a0 + xia1)| = n∑
i=1

|ei| = n∑
i=1

|ui − 𝑣i|
The ui’s are associated with points above the regression line while the 𝑣i’s are asso-
ciated with points below the line. In fact, by posing:

ui =
n∑
i=1

yi − (a0 + xi a1)

𝑣i =
n∑
i=1

(a0 + xi a1) − yi

it is evident that ui and 𝑣i are linearly dependent, being one the opposite of the other.
Such linear dependence implies that in calculating a solution through the simplex
method, at most one of either ui and 𝑣i, for any i, will be non–zero at every stage of
the calculations. A theorem in Charnes et al (1953) ensures indeed that the column
vectors selected at any simplex stage are linearly independent, and hence, the two
following objective functions are equivalent:

n∑
i=1

|ui − 𝑣i| = n∑
i=1

(ui + 𝑣i)
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Charnes et al (1955) exploits this trick in the context of a specific industrial applica-
tion, albeit they stress its relevance to extend the use of LP to handle an important
class of nonlinear problems. Through its use, the alternative LP formulation of the L1
regression problem becomes:

minimize
n∑
i=1

(ui + 𝑣i)

subject to yi − (a0 + a1 xi) = ui − 𝑣i i = 1, … , n

The n constraints can be rewritten to isolate the known value on the right side of the
equation:

minimize
n∑
i=1

(ui + 𝑣i)

subject to (a0 + a1 xi) + ui − 𝑣i = yi i = 1, … , n

Then, for dealing with the case of unrestricted in sign coefficient, the two coefficients
are transformed as follows (see Subsection 5.1.1):

minimize
n∑
i=1

(ui + 𝑣i)

subject to (a′0 − a′′0 ) + xi (a′1 − a′′1 ) + ui − 𝑣i = yi i = 1, … , n

and, finally we obtain:

minimize
n∑
i=1

(ui + 𝑣i)

subject to a′0 − a′′0 + xi a
′
1 − xi a

′′
1 + ui − 𝑣i = yi i = 1, … , n

(5.6)

The use of n additional variables for dealing with the signed residuals is more than
balanced by the fact that the last formulation is already expressed in canonical form
with respect to the ui, thus avoiding the introduction of the slack and of the artificial
variables, required in formulation (5.1.2). In fact, this formulation corresponds to the
following condensed tableau consisting of n + 1 rows, 2 n + 2 k columns, where k
is equal to the number of coefficients of the interpolating function, namely 2 for the
simple regression problem:

y a′0 a′′0 a′1 a′′1 u1 𝑣1 u2 𝑣2 … un 𝑣n
z

∑n
i=1 yi n −n

∑n
i=1 xi −

∑n
i=1 xi 0 −2 0 −2 … −2 −2

u1 y1 1 −1 x1 −x1 1 −1 0 0 … 0 0

u2 y2 1 −1 x2 −x2 0 0 1 −1 … 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
un yn 1 −1 xn −xn 0 0 0 0 … 1 −1

The tableau is already in canonical form with respect to the ui, i = 1, … , n, as
highlighted through the boxed elements. The simplex algorithm can hence be directly
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carried out. The tableau representation can be further condensed by exploiting the
relations:

a′0 = −a′′0 a′1 = −a′′1 ui = −𝑣i, i = 1, … , n

and keeping in mind that the sum of the reduced costs of a′0 and a
′′
0 is zero, the same

for a′1 and a
′′
1 , while the sum of the costs of each ui and 𝑣i is always −2. This allows

to reduce the tableau to the columns a′0, a
′
1, u1, … , un, since the dropped columns

are immediately available from the others. However, for an immediate understanding
of the example, the steps detailed below for the small data set listed in Table 5.1
are shown using the full tableaus. In particular, the initial tableau for the median
regression problem is:

y a′0 a′′0 a′1 a′′1 u1 𝑣1 u2 𝑣2 u3 𝑣3 u4 𝑣4 u5 𝑣5
z 9 5 −5 15 −15 0 −2 0 −2 0 −2 0 −2 0 −2
u1 1 1 −1 1 −1 1 −1 0 0 0 0 0 0 0 0

u2 1 1 −1 2 −2 0 0 1 −1 0 0 0 0 0 0

u3 2 1 −1 3 −3 0 0 0 0 1 −1 0 0 0 0

u4 3 1 −1 4 −4 0 0 0 0 0 0 1 −1 0 0

u5 2 1 −1 5 −5 0 0 0 0 0 0 0 0 1 −1
Tableau 1

Since it is already in canonical form with respect to the five variables ui, the
simplex can be carried out:

• a′1 enters the basis, with the largest marginal cost 15;

• u5 leaves the basis, as evident from the ratios of the known coefficients (first
column of the tableau) to the column of the entering variable itself for the
positive entries:

min
{1
1
,
1
2
,
2
3
,
3
4
,
2
5

}
= min{1, 0.5, 0.67, 0.75, 0.4 }

Denoting again the entering variable with the symbol ↓ and the leaving variable
with the symbol ←, the first iteration of the simplex algorithm is:

iteration : 1
entering variable : a′1
leaving variable : u5
pivot : 5
current solution : u1 = 1, u2 = 1, u3 = 2, u4 = 3, u5 = 2
objective function : z = 9
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↓
y a′0 a′′0 a′1 a′′1 u1 𝑣1 u2 𝑣2 u3 𝑣3 u4 𝑣4 u5 𝑣5

z 9 5 −5 15 −15 0 −2 0 −2 0 −2 0 −2 0 −2
u1 1 1 −1 1 −1 1 −1 0 0 0 0 0 0 0 0

u2 1 1 −1 2 −2 0 0 1 −1 0 0 0 0 0 0

u3 2 1 −1 3 −3 0 0 0 0 1 −1 0 0 0 0

u4 3 1 −1 4 −4 0 0 0 0 0 0 1 −1 0 0

← u5 2 1 −1 5 −5 0 0 0 0 0 0 0 0 1 −1
Tableau 1

The pivoting operation to transform the a′1 column in a column of the identity
matrix is:

• the pivot row (u5) is divided by the pivot element 5,

• the resulting pivot row is:

– multiplied by 15 and subtracted from the row 0,

– subtracted from the row associated with u1,

– multiplied by 2 and then subtracted from the u2 row,

– multiplied by 3 and then subtracted from the u3 row,

– multiplied by 4 and then subtracted from the u4 row.

The resulting tableau is used for the second iteration of the algorithm:

iteration : 2
entering variable : a′0
leaving variable : u2
pivot : 0.6
current solution : u1 = 0.6, u2 = 0.2, u3 = 0.8, u4 = 1.4, a′1 = 0.4
objective function : z = 3

↓
y a′0 a′′0 a′1 a′′1 u1 𝑣1 u2 𝑣2 u3 𝑣3 u4 𝑣4 u5 𝑣5

z 3 2 −2 0 0 0 −2 0 −2 0 −2 0 −2 -3 1

u1 0.6 0.8 −0.8 0 0 1 −1 0 0 0 0 0 0 −0.2 0.2

← u2 0.2 0.6 −0.6 0 0 0 0 1 −1 0 0 0 0 −0.4 0.4

u3 0.8 0.4 −0.4 0 0 0 0 0 0 1 −1 0 0 −0.6 0.6

u4 1.4 0.2 −0.2 0 0 0 0 0 0 0 0 1 −1 −0.8 0.8

a′1 0.4 0.2 −0.2 1 −1 0 0 0 0 0 0 0 0 0.2 −0.2
Tableau 2
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The entering variable is now a′0, with an associated reduced cost equal 2,
providing the following values for determining the leaving variable:

min
{0.6
0.8

,
0.2
0.6

,
0.8
0.4

,
1.4
0.2

,
0.4
0.2

}
= min{0.75, 0.33 , 2, 7, 2}

The variable u2 is hence selected as leaving variable and the following pivoting oper-
ation is carried out:

• the row u2 is divided by the pivot element 0.6,

• the resulting pivot row is:

– multiplied for−2, element of the pivot column in row 0, and then subtracted
from the row 0 itself,

– multiplied for 0.8, element of the pivot column in the row u1, and then
subtracted from the latter,

– multiplied for 0.4, element of the pivot column in the row u3, and then
subtracted from the row u3,

– multiplied for 0.2, element of the pivot column in the row u4, and then
subtracted from the row u4,

– multiplied for 0.2, element of the pivot column in the row a′1, and then
subtracted from the last row.

The resulting tableau, where a′0 and u2 have switched their role in the basis, is the
input of the next iteration:

iteration : 3
entering variable : 𝑣2
leaving variable : u1
pivot : 1.33
current solution : u1 = 0.33, a′0 = 0.33, u3 = 0.67, u4 = 1.33, a′1 = 0.33
objective function : z = 2.33

↓
y a′0 a′′0 a′1 a′′1 u1 𝑣1 u2 𝑣2 u3 𝑣3 u4 𝑣4 u5 𝑣5

z 2.33 0 0 0 0 0 −2 −3.33 1.33 0 −2 0 −2 −1.67 −0.33
← u1 0.33 0 0 0 0 1 −1 −1.33 1.33 0 0 0 0 0.33 −0.33
a′0 0.33 1 −1 0 0 0 0 1.67 −1.67 0 0 0 0 −0.67 0.67

u3 0.67 0 0 0 0 0 0 −0.67 0.67 1 −1 0 0 −0.33 0.33

u4 1.33 0 0 0 0 0 0 −0.33 0.33 0 0 1 −1 −0.67 0.67

a′1 0.33 0 0 1 −1 0 0 −0.33 0.33 0 0 0 0 −1.67 −0.33
Tableau 3

The variable 𝑣2 is the only one eligible to enter the basis, taking the place of u1,
selected to leave the basis once inspected the ratios:

min
{0.33
1.33

,
0.33
0.67

,
1.33
0.33

,
0.4
0.33

}
= min{0.25 , 1, 4, 1}
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The pivoting operation is carried out on the pivot element 1.33:

• the row labeled u1 is subtracted from the row 0,

• the row labeled u1 is hence divided by the pivot element,

• the resulting pivot row is:

– multiplied by −1.67 and subtracted from the row a′0,

– multiplied by 0.67 and subtracted from the row u3,

– multiplied by 0.33 and subtracted from the rows u4 and a
′
0.

The algorithm stops since the resulting tableau fulfills the optimality condition,
being all the reduced costs negative:

iteration : 4
entering variable : —
leaving variable : —
pivot : —
current solution : 𝑣2 = 0.25, a′0 = 0.75, u3 = 0.5, u4 = 1.25, a′1 = 0.25
objective function : z = 2

y a′0 a′′0 a′1 a′′1 u1 𝑣1 u2 𝑣2 u3 𝑣3 u4 𝑣4 u5 𝑣5
z 2 0 0 0 0 −1 −1 −2 0 0 −2 0 −2 −2 0

𝑣2 0.25 0 0 0 0 0.75 −0.75 −1 1 0 0 0 0 0.25 −0.25
a′0 0.75 1 −1 0 0 1.25 −1.25 0 0 0 0 0 0 −0.25 0.25

u3 0.50 0 0 0 0 −0.50 0.50 0 0 1 −1 0 0 −0.5 0.5

u4 1.25 0 0 0 0 −0.25 0.25 0 0 0 0 1 −1 0.25 −0.25
a′1 0.25 0 0 1 −1 −0.25 0.25 0 0 0 0 0 0 −1.67 −0.33

Tableau 4

The solution with a′0 = a0 = 0.75 and a′1 = a1 = 0.25, providing an objective
function equals to 2, interpolates the first and fifth data point, being u1 and 𝑣1, u5
and 𝑣5 out of the basis and hence equal 0. The median regression line lies above
the second observations (𝑣2 = 0.25) and below the third and fourth point (u3 = 0.5
and u4 = 1.25). This solution coincides with the second optimal solution obtained
in subsection 5.1.1, with the difference that the sign of the residuals is here directly
provided. The nonnegative variables ui and 𝑣i can be interpreted as positive and
negative deviations associated with the i–th observation. A geometrical interpre-
tation for (one of) the optimal solution(s) a0 = 0.75, and a1 = 0.25 is provided in
Figure 5.1: the median regression line interpolating the first and fifth observation
is depicted using a ticker line, the vertical solid lines refer to the variables in basis
while the vertical dashed lines to the variables out of the basis, and hence equal 0 in
the simplex solution. If we refer, for example, to the 2nd observation, it lies below
the median regression line: therefore only 𝑣2 is not null and is equal to 0.25. Indeed:

e2 = y2 − a0 − a1x2 = −0.25 = 0 − 0.25 = u2 − 𝑣2 = −𝑣2.
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 0

Figure 5.1 Geometrical representation of the two nonnegative variables ui and
𝑣i introduced in the LP problem (5.6) for the optimal solution a0 = 0.75 and
a1 = 0.25.

On the contrary, the 3rd observation is above the line, 𝑣3 is out of the basis, and is
equal to 0, while u3 = 0.5. In such a case:

e3 = y3 − a0 − a1x3 = 0.5 = 0.5 − 0 = u3 − 𝑣3 = u3.

The same happens for the 4th observation, for which e4 = u4 = 1.25. Observations
1 and 5 are instead perfectly interpolated by the median regression line and hence
e1 = e5 = 0.

5.1.3 The Barrodale–Roberts algorithm for L1 regression

Exploiting the special structure of the LP formulation of the L1 regression problem,
Barrodale and Roberts (1973) proposed a slight modification of the simplex algo-
rithm. This variant, implemented in most statistical software, passes through several
neighboring simplex vertices in a single iteration. The original Fortran code is avail-
able in Barrodale and Roberts (1972).

Using the LP formulation (5.6) of the L1 problem, an initial basis is provided
by some n of the vectors ui and 𝑣i. In particular, when each yi is nonnegative, an
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initial basis is provided by u1, u2, … , un. Whenever a yi is negative, the correspond-
ing row in the tableau is multiplied by −1 and the ui is replaced by 𝑣i in the basis.
In fact, ui = −𝑣i. In the following we assume without loss of generality that each
yi is nonnegative. From the last relation, it follows that only n columns can be used
to store the vectors in basis, since the current values of the corresponding negative
vectors are readily available at each step starting from these columns. Recalling that
a′j = −a′′j , only m columns are needed to store the right–hand sides of the equality
constraints of the LP problem (5.6). Thus, in considering any column vector of the
tableau for the simplex algorithm, the corresponding negative vector must also be
considered. Moreover, considering that the sum of the reduced costs associated with
a′j and a

′′
j is zero, as well as the sum of the reduced costs of uj and 𝑣j is −2, Barrodale

and Roberts (1973) proposed a condensed form of the simplex tableau in which the
basis is suppressed and only the a′1, a

′
2, … , a′m columns are initially inserted. For the

simple regression problem with m = 2, the condensed tableau is:

y a′0 a′1
z

∑n
i=1 yi n

∑n
i=1 xi

u1 y1 1 x1
u2 y2 1 x2
⋮ ⋮ ⋮ ⋮
un yn 1 xn

The algorithm is implemented in two stages exploiting a recommendation pro-
vided in Barrodale and Roberts (1970), based on their computational experience. In
particular, for the first m iterations (stage 1 of the algorithm) the choice of the pivotal
column is restricted to the columns associated with the coefficients a′j and a

′′
j . The

choice of the variable entering the basis is always carried out using the standard rule
of the simplex method, that is, looking for the largest nonnegative reduced cost at
each iteration. The first stage consists in the selection of the proper signed regression
coefficients to enter the basis. The basic a′j and a

′′
j are not allowed to leave the basis

during stage 2. Therefore, stage 2 involves interchanging nonbasic ui or 𝑣i with basic
ui or 𝑣i. The main modification to the simplex method is the adoption of a special
pivotal selection rule for choosing the vector ui or 𝑣i to leave the basis in both stage
1 and 2 of the algorithm. To ensure the maximum reduction in the objective func-
tion, the normal rule for determining the leaving variable is modified as follows. The
normal rule to determine the pivotal row among the basic vectors ui and 𝑣i is firstly
applied to locate the pivot. The pivot value is then subtracted twice from the reduced
cost of the pivotal column: in case this operation yields a nonpositive result, this pivot
is used to perform the simplex transformation, because the objective function cannot
be further improved. Otherwise, in order to decrease further the value of the objective
function, the vector ui (or 𝑣i) corresponding to the pivotal row is replaced in the basis
by the vector 𝑣i (or ui). This is accomplished by subtracting twice the pivotal row
from the reduced cost row, thus making the marginal cost of 𝑣i (or ui) zero, and then
by multiplying the pivotal row by −1, in order to change the sign of the pivot. The
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first operation is based on the fact that the sum of each pair ui and 𝑣i is always−2: if ui
(or 𝑣i) is a basic variable, its reduced cost is zero and hence the reduced cost of 𝑣i (or
ui) is −2. The multiplication of the pivotal row by −1 exploits the relation ui = −𝑣i
and interchanges the two variables in the basis. The normal rule for determining the
pivotal row is applied again on the resulting configuration of the condensed tableau
to locate a new pivot. Such procedure is iterated until the determination of a pivot
that cannot be rejected. This pivot is then used to perform a simplex transformation.
This special selection rule for determining the leaving variable allows to pass through
several vertices in a single iteration. From a geometric point of view, this modified
rule for determining the leaving variable usually entails a movement through sev-
eral neighboring simplex vertices (Barrodale and Roberts 1973), as detailed in next
Section 5.3.

It may happen that the chosen pivotal column contains no positive elements in
correspondence of the basic ui and 𝑣i variables, and hence no suitable vector can be
found to leave the basis. This occurs in stage 1 if the rank of the coefficient matrix
is less than m. In such a case the current pivotal column a′j (or a

′′
i ) can be ignored in

all future computations, and no simplex transformation is performed in this iteration.
In stage 2, instead, a suitable pivotal row should be always available for any pivotal
column, since a solution to the L1 problem is guaranteed to exist. If this unexpected
situation occurs, this is typically due to rounding errors or single-precision arithmetic,
especially in presence of wide different magnitudes of the elements of the coefficient
matrix. The implementation of the algorithm in multiple-precision arithmetic, as well
as proper data transformation or the use of a small tolerance limit below which the
magnitude of any quantity is considered to be zero should be applied when dealing
with this case. The interested reader is referred to the Fortran implementation of the
original algorithm (Barrodale and Roberts 1972).

The algorithm normally stops during stage 2 when no suitable vector can be des-
ignated as the next pivotal column, namely when there are no nonbasic variables ui
or 𝑣i with a positive reduced cost. In case the final tableau contains basic vectors
a′j (or a

′′
j ) with negative associated values, any such row must be multiplied by −1,

and the basic vector a′j (or a
′′
j ) must be interchanged with the corresponding nonba-

sic vector a′′j (or a′j) in order to yield a feasible, and hence optimal, solution. The
output information is available on the first column of the final condensed tableau,
which originally contained the yi values. The number of iterations of the algorithm
is related to the total number of simplex transformation performed: the counter is
increased by one when a simplex transformation occurs (stage 1 or stage 2) or when
the simplex transformation is bypassed (stage 2) because no suitable vector can leave
the basis.

Figure 5.2 shows the flowchart of the Barrodale–Roberts algorithm. The proposed
flowchart slightly differs from the original one, highlighting the main differences
between stage 1 and stage 2, namely the set of variables among which the entering
variable is selected and the different management in case no suitable vector is found
as leaving variable. The algorithm is shown in action using the data of Table 5.1, the
same of Barrodale and Roberts (1973).
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Figure 5.2 The general structure of the Barrodale–Roberts algorithm for L1
regression.

Initialization

The initial condensed tableau for starting the algorithm follows:

y a′0 a′1
z 9 5 15
u1 1 1 1
u2 1 1 2
u3 2 1 3
u4 3 1 4
u5 2 1 5

No additional transformation are needed since all the yi are nonnegative.

Stage 1 - iteration 1

The vector a′1 is selected to enter the basis, due to its largest reduced cost 15.
Using the normal rule to determine the pivotal row, that is, by computing the ratios of
the known coefficient to the positive values of the pivotal column for the nonnegative
entries, the first candidate leaving variable is u5:

9
u1 1∕1
u2 1∕2
u3 2∕3
u4 3∕4
u5 2∕5

=

15
1
0.5
0.67
0.75
0.4

=⇒ u5 is the candidate leaving variable
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The use of the pivot value 5 (labeled with ∗ in the condensed tableau below),
should involve a′1 entering the basis with a value 2

5
= 0.4, and u5 leaving the basis,

and hence equals 0. Recalling that the sum of the reduced cost of ui and 𝑣i is always 0,
such solution corresponds to an approximation which interpolates the fifth data point
(x5 = 5, y5 = 2). However, by increasing a′1 beyond the value 2

5
, the objective func-

tion could be further reduced. This makes u5 negative and therefore the solution not
feasible. In order to obtain an additional reduction in the objective function, u5 is
replaced in the basis by 𝑣5. This is accomplished by multiplying the pivot row by
−1. By subtracting twice the candidate pivot row from the row of the reduced costs
(row 0), the marginal cost of a′1 is now 5: a′1 can be increased further so to improve
the objective function. The first pivot (5∗) is hence discarded, and the new condensed
tableau to use for determining the pivotal row through the normal simplex rule is:

↓
y a′0 a′1

z 5 3 5
u1 1 1 1
u2 1 1 2
u3 2 1 3
u4 3 1 4
𝑣5 2 −1 −5*

Condensed tableau 1
(pivot 5* discarded)

Using the normal simplex rule, u2 is the new candidate leaving variable, as results
from the following ratios:

5
u1 1∕1
u2 1∕2
u3 2∕3
u4 3∕4
𝑣5 —

=

5
1
0.5
0.67
0.75
—

=⇒ u2 is the candidate leaving variable

Also this second pivot is discarded, since the objective function can be improved
exchanging u2 with 𝑣2 in the basis. This involves a reduction in the reduced cost of a

′
1

to 1. The new condensed tableau, obtained by subtracting twice the candidate pivot
row from row 0 and multiplying the candidate pivot row by −1 is:

↓
y a′0 a′1

z 3 1 1
u1 1 1 1
𝑣2 1 −1 −2**
u3 2 1 3
u4 3 1 4
𝑣5 2 −1 −5*

Condensed tableau 1
(pivot 2** discarded)
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With 𝑣2 in basis, the pivot 2∗∗ corresponds to a solution which interpolates the
second data point. The third candidate pivot is u3:

3
u1 1∕1
𝑣2 —
u3 2∕3
u4 3∕4
𝑣5 —

=

3
1
—
0.67
0.75
—

=⇒ u3 is the candidate leaving variable

It is actually used as leaving variable. Discarding it and interchanging u3 and 𝑣3,
the marginal cost of a′1 would become indeed negative. The current iteration value
ends with the simplex transformation performed using the pivot value 3∗∗∗. By plac-
ing side by side the condensed tableau and the column corresponding to entering
variable u3:

↓
y a′0 a′1 u3

z 3 1 1 0
u1 1 1 1 0
𝑣2 1 −1 −2 ** 0

← u3 2 1 3 *** 1
u4 3 1 4 0
𝑣5 2 −1 −5 * 0

Condensed tableau 1
(pivot 3 ** selected)

the simplex transformation, which terminates the first iteration, is detailed below:
y a′0 a′1 u3�

�
�
�row0 −1 ×

�
�

	

pivot row → z 2.33 0.67 0 −0.33

�
�

�
�row1 −1 ×

�
�

	

pivot row → u1 0.33 0.67 0 −0.33

�
�

�
�row2 +2 ×

�
�

	

pivot row → 𝑣2 0.33 −0.33 0 0.67

�
�

	

pivot row =

�
�

�
�row3 ∕3 → u3 0.67 0.33 1 0.33

�
�

�
�row4 −4 ×

�
�

	

pivot row → u4 0.33 −0.33 0 −1.33

�
�

�
�row5 +5 ×

�
�

	

pivot row → 𝑣5 1.33 0.67 0 1.67

Stage 1 - iteration 2

The second condensed tableau exploits the column corresponding to the entering
variable obtained after the simplex transformation in place of the column a′1 (leav-
ing variable). The only eligible entering variable is a′0, with a positive reduced cost
equals 0.67 (recall that in stage 1 of the algorithm the choice of the entering variable
is restricted only to the columns a′0, a

′′
0 , a

′
1, and a

′′
1 , the latter already in basis). The

normal rule for choosing the leaving variable signals u1 as candidate leaving variable:
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2.33
u1 0.33∕0.67
𝑣2 —
a′1 0.67∕0.33
u4 —
𝑣5 1.33∕0.67

=

2.33
0.5
—
2
—
2

=⇒ u1 is the candidate leaving variable

No further improvement of the objective function can be obtained interchang-
ing u1 and 𝑣1, and hence 0.67 is the actual pivot. The column corresponding to the
entering variable u1 is placed side by side with the condensed tableau:

↓
y a′0 u3 u1

z 2.33 0.67 −0.33 0
← u1 0.33 0.67 * −0.33 1
𝑣2 0.33 −0.33 0.67 0
u3 0.67 0.33 0.33 0
u4 0.33 −0.33 −1.33 0
𝑣5 1.67 0.67 1.67 0

Condensed tableau 2
(pivot 0.67* * selected)

Therefore the following simplex transformation ends the second iteration of the
algorithm:

y a′0 u3 u1�
�

�
�row0 − 1 ×

�
�

	

pivot row → z 2 −1 0 0

�
�

	

pivot row =

�
�

�
�row1 ∕0.67 → u1 0.5 1.5 1 −0.5

�
�

�
�row2 + 0.33 ×

�
�

	

pivot row → 𝑣2 0.5 0.5 0 0.5

�
�

�
�row3 − 0.33 ×

�
�

	

pivot row → u3 0.5 −0.5 0 0.5

�
�

�
�row4 + 0.33 ×

�
�

	

pivot row → u4 0.5 0.5 0 −1.5

�
�

�
�row5 − 0.67 ×

�
�

	

pivot row → 𝑣5 1 −1 0 2

The Stage 1 of the algorithm ends since m = 2 iterations have been performed.
Here is the resulting condensed tableau, obtained inserting the column u1 (leaving
variable) in place of the column a′0 (entering variable):

y u1 u3
z 2 −1 0
a′0 0.5 1.5 −0.5
𝑣2 0.5 0.5 0.5
a′1 0.5 −0.5 0.5
u4 0.5 0.5 −1.5
𝑣5 1 −1 2

Condensed tableau 3
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It corresponds to an approximation that interpolates the first and third data points:
u1 and u3 are in basis and hence equal zero, as well as their opposite 𝑣1 and 𝑣3. Since
their reduced cost are−1 and 0, respectively, we have that also the reduced costs of 𝑣1
and 𝑣3 are negative (in particular equal to −1 and −2, recalling the condition on the
sum of the costs of ui and 𝑣i). Therefore, the algorithm stops without the need of stage
2. The solution a′0 = 0.5 and a′1 = 0.5 coincides with the first solution of the standard
simplex algorithm in the previous subsection. The presence of a null reduced cost in
correspondence of u3 is a clue, even if not a sufficient condition, for nonuniqueness
of the solution: the algorithm indicates the possibility of nonuniqueness in presence
of a zero reduced cost (Barrodale and Roberts 1972).

5.2 LP formulation of the quantile regression problem

The previous section introduced the median regression problem in case of univari-
ate regression. The extension to the case of more regressors, multiple regression, is
obtained considering a vector of explicative variables x and a vector of coefficients
𝜷 in the minimization problem (5.1). More in detail, the least absolute residuals esti-
mate 𝜷̂ for the conditional median is obtained as the solution of the minimization
problem:

min
𝜷

n∑
i=1

|yi − x⊤i 𝜷|. (5.7)

Let us denote again by [x]+ the nonnegative part of x. By posing:

u = [y − X𝜷]+
v = [X𝜷 − y]+

the original L1 problem can be formulated as:

min
𝜷

{𝟏⊤u + 𝟏⊤v|y = X𝜷 + u − v, (u, v) ∈ ℝ2n
+ }.

Through the decomposition of the regression residual vector into its positive part (u)
and negative parts (v), the original nonlinear problem is hence recast as minimization
problem of a linear function of 2n vector (u, v) subject to n linear equality constraints
along with the 2n linear inequality constraints (nonnegativity).

Koenker and Basset (1978) slightly modified the previous L1 problem placing
asymmetric weights on positive and negative residuals and introduced quantile
regression:

min
𝜷(𝜃)

n∑
i=1

𝜌𝜃(yi − x⊤i 𝜷(𝜃))

where 𝜌𝜃(.) denotes the following asymmetric absolute loss function:

𝜌𝜃(y) = [𝜃 − I(y < 0)]y

= [(1 − 𝜃)I(y ≤ 0) + 𝜃I(y > 0)]|y|.



218 QUANTILE REGRESSION

Such loss function is a weighted sum of absolute deviations, whereas a (1 − 𝜃)weight
is assigned to the negative deviations and a 𝜃 weight is instead used for the positive
deviations. This yields the modified linear program:

min
𝜷

{𝜃 𝟏⊤u + (1 − 𝜃) 𝟏⊤v | y = X𝜷 + u − v, (u, v) ∈ ℝ2n
+ }.

When 𝜃 = 1 − 𝜃 = 0.5 we are in the case of the median regression detailed above.
Koenker and D’Orey (1987) adopted the Barrodale–Roberts algorithm presented in
the previous section to compute regression quantiles. A detailed description of the
involved technical aspects is provided in Koenker (2005) and in Davino et al (2014).

5.3 Geometric interpretation of the median
and quantile regression problem: the dual plot

The dual plot (Edgeworth 1888) yields interesting insights for the geometric inter-
pretation of median and quantile regression. Albeit limited to the case of bivariate
regression, this “antique” graph is extremely valuable not only for its historical role
in the literature on the computation of median regression but also for its aptitude in
conveying the geometry underlying the problems. Since it represents the data and
the solutions in the parameter space, it is also an essential tool for introducing addi-
tional but not less important issues. Among these, the elemental sets (Farebrother
1997; Mayo and Gray 1997) and the quantile regression process (Davino et al 2014;
Koenker 2005). For an extensive discussion of the elemental sets in quantile regres-
sion see also Sections 3.1 and 3.2.

To the end of introducing the dual plot, let us start from the well–known
scatterplot: Figure 5.3 depicts the simple data set used above to illustrate the
estimation procedure of median regression (see Table 5.1). The labels (A, B, C, D,
and E) easily allow to match the five points between the table and the graph. The
two solutions of the median regression problem detected in the previous section,
(a0 = 0.25, a1 = 0.75) and (a0 = 0.5, a1 = 0.5), are plotted using the dashed and
the dotted line, respectively. Both solutions interpolate two data points, A and E
for the first solution and A and C for the second one. In the terminology of linear
programming, they are two basic solutions, while in the terminology of regression,
they are two elements of the elemental sets. Since in the Barrodale–Roberts
algorithm, k of the vectors ui (or 𝑣i) are removed from the basis in the first stage,
and only the switch between an ui and a 𝑣i is allowed in the second stage, each
simplex tableau corresponds to an approximation that interpolates k data points.
In case of a degenerate tableau, the approximation interpolates more than k data
points. Therefore, in terms of residuals, at least k residuals will be null. Recalling
that k denotes the number of coefficients of the interpolating function, k = 2 in case
of simple regression. See Bloomfield and Steiger (1983) and Koenker (2005) for
technical details on such point. Furthermore, taking into account that k = 2 points
lie on the median regression line and being there an odd number of points in the
example, for both solutions, the number of points above the line is not perfectly
equal to the number of points below the line.
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Figure 5.3 Data scatter for the simple data set in Table 5.1, along with two opti-
mal solutions for the unconstrained median regression (solid and dotted line) and the
solution when a0 is forced to 0 (dashed line).

The solid line is instead the median solution when the intercept is constrained
to be equal to 0. This constrained solution is the first historical proof (Boscovich
1757; Stigler 1990) of regression, and it directly involves least absolute deviations,
and hence median regression. In particular Boscovich aimed at estimating the ellip-
ticity of the earth and he suggested to exploit the sum of absolute errors subject to
the constraint that the errors sum to zero, that is, the regression goes through the ori-
gin. Laplace (1818) showed later that this problem could be solved by computing a
weighted median. In particular, the line with mean residuals that minimizes the sum
of absolute residuals is the solution of the problem:

minimize
n∑
i=1

|yi − a0 − a1xi|
subject to y = a0 + a1x

The “Laplace Methode de Situation” consists in ordering the n candidate slopes and
in finding the weighted median of these slopes, namely:

1: bi ←
yi−ȳ
xi−x̄

⊳ compute the n candidate slopes

2: 𝑤i ← |xi − x̄| ⊳ and their associated weights2

3: order the candidate slopes
4: compute the weighted median of the slopes

2 Compare the weights of the elemental sets for OLS regression in Section 3.1 to see the different effect
of outliers in OLS and in median regression.
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Using an asymmetric weighted sum of absolute deviations, the algorithm can be
easily generalized to the quantile regression estimates:

# QR generalization of the Laplace Methode de Situation
# (courtesy of Roger Koenker)
wquantile <− function(x, y, tau = 0.5) {

o <− order(y/x)
b <− (y/x)[o]
w <− abs(x[o])
k <− sum(cumsum(w) < ((tau − 0.5) * sum(x) + 0.5 * sum(w)))
list(coef = b[k + 1], k = o[k+1])

}

The Laplace algorithm for the considered data set provides the solid line in
Figure 5.3:

# the example data set
x <− c(1, 2, 3, 4, 5)
y <− c(1, 1, 2, 3, 2)
# solution for the median regression through the origin
wquantile(x, y)
$coef
[1] 0.6666667
$k
[1] 3

Edgeworth (1888) reverted to the same problem by dropping the zero-mean con-
straints on the residuals. He introduced the method of “double median” proposing
to minimize the sum of absolute residuals in both intercepts and slope parameters.
In particular, Edgeworth proposed a geometric approach on the dual plot that can be
considered the fully fledged historical prelude to the simplex, as evident from the
description of the method provided by Edgeworth:

The method may be illustrated thus: – Let C – R (where C is a constant, [and R
denotes the L1 objective function]) represents the height of a surface, which will
resemble the roof of an irregularly built slated house. Get on this roof somewhere
near the top, and moving continually upwards along some one of the edges, or
arrétes, climb up to the top. The highest position will in general consist of a
solitary pinnacle. But occasionally there will be, instead of a single point, a hor-
izontal ridge or even a flat surface.

The geometric algorithm proposed by Edgeworth (1888) follows the path of
steepest descent through points in the plane determined by the regression coeffi-
cients. This plane is the dual plot. Its axes are labeled a0 and a1, unlike the scatterplot
(primal plot) where the axes (x, y) represent the regressor and the outcome variable.
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Therefore, the dual plot transforms each line of the primal plot in a point, and each
point of the primal plot in a line. That is, considering a generic line 𝓁i=̂y = a0 + a1x,
dualization transform it to the point(𝓁i) = (a0, a1). Conversely, a point  = (xi, yi)
is transformed through dualization in the line (P), with equation a1 = yi − xia0,
that is, the set of all possible lines that pass through the point  in the primal plot.
The elemental sets, that is, the lines joining all the possible pairs of points in the data
scatter, play a remarkable role in the Edgeworth’s proposal. If we consider the five
points in Table 5.1 and in Figure 5.3 there are:

5(4 − 1)
2

= 10

possible different pairs of points. The lines joining such 10 pairs of points are depicted
in Figure 5.4 and labeled as 𝓁i, i = 1, … , 10. The corresponding coefficients are
listed in Table 5.2: the first column reports the 10 possible pairs of points, and the
second column reports the labels used for the corresponding lines. The points B, C,
andD are collinear: the three lines 𝓁5, 𝓁6 and 𝓁8, respectively joining the pairs (B,C),
(B,D), and (C,D), are hence coincident. Finally the two lines 𝓁1 and 𝓁9, respec-
tively joining the two pairs of points (A,B) and (C,E), are parallel to the horizontal
line, since the points share the same y–value. Following the previous Figure 5.3, the
dashed line (𝓁4) is again used to denote the first solution of the median regression
problem and the dotted line (𝓁2), the second solution. We have already discussed the
nonuniqueness of the solution for this data set in Section 5.1. From a geometric point
of view, the nonuniqueness is strictly related to the segment CE. In particular, all the
lines joining the point A with one of the points lying on such segment, that is, with
any linear combination of the two points C and E, provide a sum of absolute residuals
equal to 2.

Table 5.2 Intercepts and slopes (third and fourth
column) for the lines depicted in Figure 5.4 and
joining all the possible pairs of points in Table 5.1.
The first column reports the pairs of points, and the
second column shows the labels used for detecting
the lines.

points lines a0 a1

(A,B) 𝓁1 1 0
(A,C) 𝓁2 0.5 0.5
(A,D) 𝓁3 1∕3 2∕3
(A,E) 𝓁4 3∕4 1∕4
(B,C) 𝓁5 −1 1
(B,D) 𝓁6 −1 1
(B,E) 𝓁7 1∕3 2∕3
(C,D) 𝓁8 −1 1
(C,E) 𝓁9 2 0
(D,E) 𝓁10 7 1
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Figure 5.4 The
(
5
2

)
= 10 lines joining all the possible pairs of points in Table 5.1.

The lines obtained by joining the point A with any of the points on the highlighted
segment CE provide alternative optimal solutions to the median regression problem.

Figure 5.5 depicts the dual plot for the example, whereas the same label
𝓁i, i = 1, … , 10 is used to permit the immediate matching between the primal plot
(lines) and the dual plot (points). The two coefficients of the 10 lines 𝓁i listed in the
third and fourth column of Table 5.2 are computed by taking into account that the
intercept and slope of a line passing through two points i = (xi, yi) and j = (xj, yj)
are, respectively:

yi × xj − xi × yj
xj − xi

→ intercept

yj − yi
xj − xi

→ slope.

Moreover, if a line with a intercept and slope (a0, a1) passes through a point with
coordinates (xi, yi), the following equation holds:

yi = a0 + a1xi.

If we invert the equation in terms of a1, we have that the point with coordinates (a0, a1)
in the dual plane lies on the line:

a1 =
yi
xi

− 1
xi
a0,

namely the line with intercept yi
xi
and slope − 1

xi
. Starting from such relationship, it

is easy to establish a matching between a point in the primal plane (x, y) and a line
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Figure 5.5 The dual plot of the data scatter in Figure 5.3. Each line of the latter
corresponds to a point in the dual plot, and each line in the dual plot corresponds to
a point in the scatterplot. Each point on the highlighted segment 𝓁2𝓁4 corresponds to
a pair (a0, a1) that provides an optimal solution of the median regression problem.

in the dual plane (a0, a1). The five lines in the dual plot (Figure 5.5) correspond to
the five data points in the scatterplot (Figure 5.3). The same labels, from A to E, are
again used to allow the immediate matching between the two plots. Obviously, in
case of observations with the same x value in the primal plot, we will find parallel
lines in the dual plot: this is not the case in the considered example. The highlighted
segment 𝓁2𝓁4 is the set of all the pairs of points (a0, a1) providing equivalent
optimal solutions to the median regression problem, due to nonuniqueness. Namely,
the points on the segment 𝓁2𝓁4 correspond to all the lines in the primal plot
(Figure 5.3), which are obtained joining the point A with any of the points on the
segment CE. Finally, the five lines divide the dual plot into polygonal regions.
The points (a0, a1) in any one of these regions correspond to a family of lines
in the (x, y) plane that divide the points into two sets with the same cardinality.
Geometrically speaking, the number of points above (below) one of such line is the
same number of points above (below) any other line of the same family. Albeit the
function

∑n
i=1 |yi − a0 − a1xi| is not linear from a global point of view, it is linear

in each region. One of such polygonal regions is shaded in Figure 5.5. It is the
projection on the (a0, a1) plane of a facet of the polyhedral surface corresponding
to the objective function to minimize. Meanwhile, the vertices of such 3–D surface
projects to points and the edges to segments in the dual plane. The algorithm for
the minimization of the sum of absolute residuals starts at any one of the points of
the dual plot and iteratively moves from point to point along the segment joining
pairs of points, until attaining the minimum value for the objective function.
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In terms of movement on the correspondent polyhedral surface, the algorithm
proceeds from vertex to vertex moving along its edges. The descent direction
involves the directional derivatives of the objective function: the point that leads to
the minimum sum of absolute residuals is selected until arriving at the lowest vertex
of the 3–D surface.

Figure 5.6 depicts the movements in the dual plot of the classic simplex algorithm
to attain the optimal value. They correspond to the tableau reported in subsection
5.1.2, leading to the optimal solution (a0 = 0.75, a1 = 0.25). In particular, the algo-
rithm starts from of the point labeled 0©, being both the variables a0 and a1 out of the
basis (tableau 1). In the first iteration, a1 enters the basis with a value 0.4: the algo-
rithmmoves in point 1© (see tableau 2). In the second iteration also a0 enters the basis.
The values of a0 and a1 in tableau 3 are both 0.33, leading the algorithm in point 2©.
Finally the optimal solution 3© is attained in the third iteration, with a0 = 0.75 and
a1 = 0.25, as in tableau 4. The Barrodale–Roberts solution to the median regression
problem, introduced in subsection 5.1.3, allows instead to pass through several neigh-
boring points in a single iteration. This is depicted in Figure 5.7: unlike the classic
simplex algorithm, which would attain the equivalent optimal solution a0 = 0.5 and
a1 = 0.5 using several movements from point 0© to point 4©, the Barrodale–Roberts
algorithm passes through several neighboring points in a single iteration, reducing
the total number of iterations. In particular, in the first iteration, the algorithm directly
moves from point 0© to point 3©, as already described numerically through the the
condensed tableau of subsection 5.1.3.

The following box reports an implementation of the Barrodale–Roberts in R. Such
implementation of the double median algorithm consists of the three following steps:
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Figure 5.6 The movement of the classic simplex algorithm in the dual plot: the
algorithm starts with both coefficients a0 and a1 equal to zero, and reaches the optimal
solution a0 = 0.75 and a1 = 0.25 in three iterations. The movements correspond to
the four tableaus reported in subsection 5.1.2.
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Figure 5.7 The movements of the Barrodale–Roberts algorithm in the dual plot: the
algorithm starts with both coefficients a0 and a1 equal to zero, and reaches the optimal
solution a0 = 0.5 and a1 = 0.5. Unlike the classic simplex algorithm, which attain
the optimal solution using several movements, the algorithm passes through several
neighboring points in a single iteration, moving from the initial solution a0 = 0 and
a1 = 0 to the solution a0 = 0 and a1 = 2∕3 in the first iteration. See the condensed
tableaux in subsection 5.1.3.

• random selection of an initial basis,

• search for the direction of steepest descent along one of the edge,

• computation of the step length through Laplace’s “methode de situation”
(wquantile function introduced above).

The default value for the argument tau = 0.5 provides the median regression
solution, a different value can also be used for the quantile regression estimates.

# Barrodale and Roberts -- lite
#(courtesy of Roger Koenker)
rqx <− function(x, y, tau = 0.5, max.it = 50) {

p <− ncol(x); n <− nrow(x)
h <− sample(1:n, size = p)
# Phase I -- find a random (!) initial basis
it <− 0
repeat {
it <− it + 1
Xhinv <− solve(x[h, ])
bh <− Xhinv %*% y[h]
rh <− y − x %*% bh
# find direction of steepest descent along one of the edges
g <− −t(Xhinv)%*%t(x[−h, ])%*%c(tau−(rh[−h]<0))
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g <−c(g+(1−tau), −g+tau)
ming <− min(g)
if(ming >= 0 || it > max.it) break
h.out <− seq(along = g)[g == ming]
sigma <− ifelse(h.out <= p, 1, −1)
if(sigma < 0) h.out <− h.out − p
d <− sigma * Xhinv[, h.out]
# find step length by one-dimensional wquantile minimization
xh <− x %*% d
step <− wquantile(xh, rh, tau)
h.in <− step$k
h <− c(h[ − h.out], h.in)

}
if(it > max.it) warning("non-optimal solution: max.it exceeded")
return(bh)

}

The solution returned from this implementation on the example data coincides
with the one obtained in subsection 5.1.3:

# the example data set
x <− cbind(1, 1:5)
y <− c(1, 1, 2, 3, 2)
# with solution
rqx(x, y)

[,1]
[1,] 0.5
[2,] 0.5

Finally, the dual plot offers an immediate interpretation of the quantile regres-
sion process (Davino et al. 2014, Koenker 2005), which is the set of all the distinct
quantile regression solutions for a given data set. The QR process is computed in the
quantreg package (Koenker 2017) setting a value for the tau argument outside
the unit interval (we use the value −1 below). For the previous example, it consists
of the following four different solutions:

# QR regression process for the Barrodale-Roberts data
qr_process <− rq(y ∼ x, tau = -1)
# the primal QR solution array
qr_process$sol

[,1] [,2] [,3] [,4] [,5]
tau 0.00 0.30 0.5 0.70 1.00
Qbar 1.33 1.50 2.0 2.33 2.33
Obj.Fun 0.00 0.70 1.0 0.80 0.00
(Intercept) 0.33 0.75 0.5 0.33 0.33
x 0.33 0.25 0.5 0.67 0.67
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Figure 5.8 The quantile regression process in the dual plot for the example. The
quantile regression process consists of all the possible distinct solutions which can
be computed at various quantiles for a given data set.

The different solutions of the QR process are highlighted on the dual plot in
Figure 5.8 through the four boxed numbers (from 1© to 4©). If we refer for example
to the segment 𝓁7𝓁4, any point lying on it can be obtained as a linear combination
of 𝓁7=̂(a0 =

1
3
, a1 =

1
3
) and 𝓁4=̂(a0 = 0.75, 0.25) and provides the value 1.5 for the

objective function (the row Qbar in the R code above). Still referring to the segment
𝓁7𝓁4, in terms of quantile regression, the use of a conditional quantile between 0 and
0.3 returns the same estimates for the two coefficients (a0 =

1
3
, a1 =

1
3
). Exploring

the whole path, that is, moving the value of the conditional quantile in the whole
unit interval, it is possible to estimate through parametric linear programming all the
distinct solutions computed in the code above and depicted in Figure 5.8. The lim-
ited number of different quantiles strictly depends on the small size of the data set.
Obviously this number increases with the number of observations (Davino et al 2014;
Koenker 2005).

The simplex approach here discussed is not the only possible approach for solving
the quantile regression problem. In addition to the movement along the corner of
the simplex (exterior–point method), it is indeed possible to exploit interior–point
methods. Suchmethods allow to solve larger linear programming problems as quickly
as least squares. Unlike exterior–point methods, which move along the edges of the
feasible region, interior–point methods detect an initial point inside the feasible set
and at each iteration move from the current solution to a better feasible solution. They
are also referred to as barrier methods, since the constraints determining the boundary
of the feasible region acts as a barrier to limit the search inside the feasible region.
Albeit interior–point methods have their roots in the seminal paper of Karmarkar
(1984), in this case as for the simplex, there exists an historical prelude in an earlier
paper (Frisch 1956):
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My method is altogether different than simplex. In this method we work sys-
tematically from the interior of the admissible region and employ a logarithmic
potential as a guide – a sort of radar – in order to avoid crossing the boundary.

For a detailed treatment of interior–point methods, see Hiller and Lieberman
(2011); Wright (1992). For their application to the QR framework, see instead
Koenker (2000) and the literature mentioned therein.

Finally, several alternative QR estimators have been recently proposed. Among
these, we point out the optimal quantization approach (Charlier et al 2015a,b) and the
Bayesian approach (Yu and Moyeed 2001). The former, implemented in the R pack-
age QuantifQuantile (Charlier et al 2015c), replaces the typical continuous covariate
X with its discretized version obtained by projecting it on a grid of N points. The
resulting conditional quantile estimators compete very well with the classical QR
estimators. The Bayesian approach to QR, implemented in the R package bayesQR
(Benoit and Van den Poel 2017), exploits the asymmetric Laplace distribution (Yu
and Zhang 2005) as likelihood function. The authors show that the use of improper
uniform priors yield in any case a proper joint posterior. This approach has themerit to
embed QR in the likelihood framework. It is exploited by Geraci and Bottai (2014)
for the treatment of linear quantile mixed models and by Bianchi et al (2018) for
M-quantile regression. The approach based on the asymmetric Laplace distribution
offers also a unified framework for quantile, M–quantile (see Section 2.3) and expec-
tile regression (see Section 2.1). It is indeed possible to show that the three loss func-
tions can be obtained by properly setting the coefficients of the asymmetric Laplace
distribution.

5.4 A summary of key points

• L1 regression dates back to 1755, earlier than the widespread least squares
regression. Boscovich, Laplace, and Edgeworth anticipated the simplex
method through a geometric approach to the median regression. Koenker and
Basset in 1978 introduced the use of an asymmetric loss function, leading to
the definition of quantile regression.

• L1 regression can be formulated in a LP problem by expressing the loss function
as a sum of n nonnegative variables through the absolute residuals. The deci-
sional variables associated with the regression coefficients are instead treated
as variables unrestricted in sign. At the end of the process, the proper signs of
the residuals are available through the regression equation.

• An alternative formulation of the L1 problem works with variables unrestricted
in sign both for the regression coefficients and the residuals. Even if it is more
verbose in terms of the variables involved, this formulation is more convenient
in terms of the tableau.
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• Barrodale and Roberts proposed a slight modification of the simplex
algorithm. This variant is implemented in most statistical software for com-
puting the median regression. It is a two-stage algorithm: in the first stage, the
choice of the pivotal column is restricted to the signed regression coefficients,
while in the second stage, the proper signed residuals are selected to enter
the basis. This procedure entails a movement through several neighboring
simplex vertices in one step of the algorithm. Koenker and D’Orey extended
the Barrodale–Roberts algorithm to compute regression quantiles.

• The dual plot proposed by Edgeworth represents the data and the solution in the
parameter space. Each point (line) in the original scatterplot corresponds to a
line (point) in the dual plot. The Laplace “Methode de Situation” is a geometric
approach on the dual plot which can be considered the fully fledged historical
prelude to the simplex. The dual plot offers also an immediate interpretation of
the QR process, namely the set of all the distinct quantile regression solution
for a given data set.
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6

Correlation

Introduction

The chapter considers estimation and inference in case of stationary and
non-stationary autoregressive processes as estimated by quantile regressions.
The logarithm of the annual change in the consumer price index, the three-month
inflation rate, and a few simulated series provide the empirical examples. Tests of
stationarity are implemented together with other closely related tests, although the
latter are not specifically defined for the quantile regression model. The case of
spurious regression and of cointegrated variables are discussed in simulated data sets
and for the consumption function. The test for cointegration brings to the analysis
of changing coefficient models and to the test functions defined to detect them. An
example considers the student performance on an international proficiency test,
the OECD-PISA test, together with the analysis of simulated data. The quantile
regression conditionally heteroskedastic model concludes the chapter by further
analyzing the inflation rate series.

6.1 Autoregressive models

In time series the general autoregressive model is defined as

yt = a0 + a1yt−1 + a2yt−2 + a3yt−3 + … . + aqyt−q + et

which is a q-order autoregressive process, AR(q), where the values of the past q ele-
ments of y influence its actual value, plus an i.i.d. error term et. The simplest version
of this model is the AR(1) process, where only one lagged term, yt−1, influences the
actual value of yt:

yt = a0 + a1yt−1 + et

Quantile Regression: Estimation and Simulation, Volume 2. Marilena Furno and Domenico Vistocco.
© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/furno/quantileregression
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In the quantile regression framework, Koenker and Xiao (2006) discuss the quantile
regression estimator for autoregressive processes. The quantile regression objective
function estimating the unknown parameters a0 and a1 of the quantile autoregres-
sive process QAR(1) is∑

yt>a0+a1yt−1

𝜃|yt − a0 − a1yt−1| + ∑
yt<a0+a1yt−1

(1 − 𝜃)|yt − a0 − a1yt−1|
=

∑
t=1,… ,n

𝜌(yt − a0 − a1yt−1) =
∑

t=1,… ,n

𝜌(et) = min

where the check function 𝜌 is defined as 𝜌(et) = et[𝜃 − 1(et < 0)] and the vector of
gradient is ∑

t=1,..n
𝜓(et) = 0

∑
t=1,..n

𝜓(et)yt−1 = 0

with 𝜓(et) = [𝜃 − 1(et < 0)], in a sample of size n. The QAR(q) model allows to
analyze the process not only on average, as in the AR(q) approach, but also in
the tails, at various quantiles. Koenker and Xiao (2006) show that, for any fixed
𝜃 the quantile regression estimators of aT (𝜃) =

[
a0(𝜃) a1(𝜃)

]
is distributed as

f (F−1(𝜃))Ω1∕2
√
n(â(𝜃) − a(𝜃)) =⇒ B(𝜃), where B(𝜃) is a 2-dimensional Brownian

bridge1, the matrix Ω is defined as Ω = E(xTt xt) and the vector xt is given by
xt =

[
1 yt−1

]
. By definition, for any fixed quantile 𝜃, B(𝜃) is a normal distribution

with parameters N(0, 𝜃(1 − 𝜃)Iq+1), where Iq+1 is a (q + 1)-dimensional identity
matrix. In the QAR(1) case it is I2.

The following example considers the series of the annual change in the con-
sumer price index (Δcpi = cpit − cpit−1) in Italy from 1955 to 2011, comprising n =
57 observations.2 Figure 6.1 presents the pattern of the original series Δcpi, which
approximates the inflation rate, and of its logarithm, logΔcpi. The summary statistics
for logΔcpi = 𝜋 are in Table 6.1. The series is estimated as a QAR(1) process

𝜋t = a0 + a1𝜋t−1 + et

where the actual value of 𝜋 depends on its previous value. Table 6.2 presents the
quantile regression estimates at the quartiles 𝜃 = .25, .50, .75. In the last column, the
table includes the OLS estimates of the AR(1) process as term of comparison. All
the estimated coefficients are statistically different from zero. The slope coefficient
in QAR(1) decreases with the quantile: while at the first quartile the proportionality
between 𝜋t and 𝜋t−1 is 0.89, it becomes 0.73 at the upper quartile. At large values of
𝜋t the past has a lower impact.

Next, the approach to select the order q of the autocorrelation process is analyzed.
In the OLS framework, to define q there are two possible methods which can be both

1 In the general case of a QAR(q) process, B(𝜃) has dimension q + 1.
2 Source ISTAT at http://seriestoriche.istat.it/fileadmin/allegati/Prezzi/tavole/Tavola _21.8.xls
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Figure 6.1 Italian data on changes in the consumer price index, Δcpi =
cpit − cpit−1, and of its logarithm, logΔcpi = 𝜋, annual data from 1955 to 2011, sam-
ple size n = 57. The top graph depicts the variable Δcpi, while the bottom graph
presents its logarithm, 𝜋, characterized by a smoother pattern.

Table 6.1 Descriptive statistics for 𝜋 = logΔcpi.

mean std.dev. 25th 50th 75th skewness kurtosis

𝜋 1.388 0.882 0.693 1.386 1.945 0.250 2.111

Table 6.2 QAR(1) and AR(1) estimates, 𝜋 = logΔcpi.

QAR(1) AR(1)

𝜃 = .25 𝜃 = .50 𝜃 = .75
𝜋t−1 0.890 0.831 0.734 0.838

(0.12) (0.11) (0.07) (0.08)
constant −0.046 0.302 0.693 1.26

(0.24) (0.18) (0.11) (0.39)

Note: Standard errors in parenthesis, sample size n = 57

implemented in the median regression as well, one based on correlations and the
other on overfitted models. The first computes the correlation coefficients at many
lags: the correlation at lag one is given by the covariance between 𝜋t and 𝜋t−1 divided
by the variance of 𝜋t, corr(1)=

co𝑣(𝜋t ,𝜋t−1)
𝑣ar(𝜋t)

; the correlation at lag two considers the
link between the actual value and the value assumed by the series at two previous
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Table 6.3 Estimated correlations and partial
correlations for the AR(q) process 𝜋 = logΔcpi.

correlation partial correlation

corr(1) 0.8068 0.8264
corr(2) 0.7080 0.2346
corr(3) 0.6441 −0.2521
corr(4) 0.5372 0.0068
corr(5) 0.4533 0.0141
corr(6) 0.3791 0.1439
corr(7) 0.3061 −0.0406
corr(8) 0.2670 −0.1089
corr(9) 0.1916 −0.2508
corr(10) 0.1510 0.1445
corr(11) 0.1412 −0.2422
corr(12) 0.0231 −0.2512

periods, and it is defined as corr(2)= co𝑣(𝜋t ,𝜋t−2)
𝑣ar(𝜋t)

, while the correlation at lag three is

given by corr(3) = co𝑣(𝜋t ,𝜋t−3)
𝑣ar(𝜋t)

, and so forth. The first column of Table 6.3 reports the
first twelve correlations and the graph in Figure 6.2 presents the first 25 estimated cor-
relations for 𝜋. The first correlations in the table are large, but afterward, the estimated
correlations get smaller and slowly decline toward zero.
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Figure 6.2 Estimates of correlations at various lags, corr(𝜋t, 𝜋t−h) =
co𝑣(𝜋t ,𝜋t−h)
𝑣ar(𝜋t)

for

h = 1, 2, 3, ..., 25, 𝜋 = logΔcpi, in a sample of size n = 57. The shaded area provides a
confidence interval around zero. The values outside this area are statistically different
from zero. A slowly declining pattern of the correlations is typical of an autoregres-
sive process.
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Figure 6.3 Estimates of partial correlations at various lags, which measure the link
between 𝜋t and 𝜋t−h excluding the influence of all the intermediate lags from t − 1
to t − h + 1, for the variable 𝜋 = logΔcpi, in a sample of size n = 57. The shaded
area provides the confidence interval around zero. The values outside this area are
statistically different from zero, and only the first partial correlation is outside the
shaded area. This signals that the autoregressive process is of the first order.

The graph of Figure 6.3 presents the first 25 estimated values of the partial auto-
correlation. The partial correlations measure the link between 𝜋t and the lagged value
𝜋t−h, excluding the impact of all the intermediate lags 𝜋t−1, 𝜋t−2,.. 𝜋t−h+1. The first
partial autocorrelation coefficient is given by the slope coefficient in the regression
of 𝜋t on 𝜋t−1; the second partial correlation coefficient is obtained by regressing 𝜋t
on the variables 𝜋t−1, 𝜋t−2 and it coincides with the estimated coefficient of 𝜋t−2; the
third partial correlation is the estimated coefficient of 𝜋t−3 in the regression of 𝜋t on
the variables 𝜋t−1, 𝜋t−2, 𝜋t−3; and so forth. The second column of Table 6.3 reports
the estimated partial correlations computed at lags 1 to 12 for 𝜋 = log Δcpi. These
estimates are reported in the graph of Figure 6.3, where the preponderance of the first
value is quite clear. Indeed this is the sole element outside the shaded area that rep-
resents the confidence interval around zero and thus is the only one to be statistically
different from zero. Thus, the autoregressive model is of the first order, q = 1.

The final step consists in a check on the estimated model and looks at the resid-
uals. The correlation at various lags of the residuals allows to verify if there is any
systematic component of the estimated autoregressive model that has been left unex-
plained. Figure 6.4 reports the autocorrelations of the residuals of the estimatedAR(1)
model, computed at the conditional mean. In this graph the estimated error correla-
tions are inside the confidence interval and do not statistically differ from zero. This
implies that the AR(1) estimated model is a valid interpretation of the 𝜋 process and
that it does not forgo any systematic component. This same check can easily be imple-
mented in the QAR(1) model as estimated, for instance, at the median. Figure 6.5
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Figure 6.4 Autocorrelations of the residuals of the AR(1) estimated model. All the
estimated correlations are within the shaded area and do not differ from zero, thus
the AR(1) estimated model does not forgo any systematic component of the 𝜋 series.
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Figure 6.5 Autocorrelations of the residuals of the QAR(1) estimated model. All
the estimated correlations are inside the shaded area and are not statistically relevant.
Thus the QAR(1) estimated model does not forgo any systematic component of the
𝜋 series.
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depicts the estimated correlations in the residuals of the QAR𝜃=.50(1), and these
values are all inside the confidence interval around zero: the QAR𝜃=.50(1) yields
good estimates.

Alternatively, the order of an autoregressive process can be determined via a
general-to-specific sequential rule. This is the second approach to define the order of
autoregression. It basically consists in overfitting the model and then discarding the
statistically irrelevant lags. For instance for the 𝜋 series a QAR(6) can be estimated
as a starting model

𝜋t = a0 + a1𝜋t−1 + a2𝜋t−2 + a3𝜋t−3 + a4𝜋t−4 + a5𝜋t−5 + a6𝜋t−6

which states that six previous periods realizations have an impact on the actual value
of 𝜋. The standard errors will help defining the number of lags statistically relevant.
Table 6.4 reports the estimated coefficients at the conditional median and at the con-
ditional mean of the autoregressive model for 𝜋 = logΔcpi. In the table only the 𝜋t−1
coefficient in QAR𝜃=.50(6), and the 𝜋t−1 and 𝜋t−2 coefficients in the AR(6) case, are
significantly different from zero. The remaining variables can be safely dropped.

For a final check a second order autoregressivemodel is computed. At themedian,
for 𝜃 = .50, the estimates of QAR(2) are 𝜋t = 0.32 + 0.537𝜋t−1 + 0.292𝜋t−2, with
ŝe(â1(.50)) = 0.18 and ŝe(â2(.50)) = 0.19. To compare results, the AR(2) model is
estimated as well yielding 𝜋t = 1.18 + 0.617𝜋t−1 + 0.262𝜋t−2, with ŝe(â1) = 0.14
and ŝe(â2) = 0.15. In both QAR(2) and AR(2) the 𝜋t−2 coefficient does not
significantly differ from zero and the 𝜋t−2 variable can be discarded.

Next, a controlled experiment is considered, where a simulated first-order
autoregressive series is generated as 𝜁t = 0.6 𝜁t−1 + et, with et ∼ N(0, 1). Then the
QAR model is estimated for the artificial data 𝜁t and 𝜁t−1 so that the results can be

Table 6.4 Estimates of QAR𝜃=.50(6)
and AR(6) for 𝜋t = logΔcpi.

QAR𝜃=.50(6) AR(6)

𝜋t−1 0.552 0.625
(0.26) (0.17)

𝜋t−2 0.622 0.423
(0.35) (0.19)

𝜋t−3 −0.364 −0.107
(0.35) (0.19)

𝜋t−4 −0.043 −0.145
(0.30) (0.26)

𝜋t−5 0.065 0.017
(0.34) (0.19)

𝜋t−6 0.044 0.057
(0.28) (0.12)

constant 0.130 1.21
(0.28) (0.47)

Note: Standard errors in parenthesis
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compared with the true model. The original series is depicted in Figure 6.6, while
Figures 6.7 and 6.8 present the correlations. From these figures, it is quite evident
that the order of correlation of the series is q = 1, and a QAR(1) process can be
estimated. At the median it yields

𝜁t = 0.305 + 0.615 𝜁t−1
(se = 0.16) (se = 0.10)

where the slope is significant and very close to the true value while the intercept is
not statistically relevant at the 5% level, and indeed there is no intercept in the true
data-generating process. The dashed line in Figure 6.6 reports the QAR(1) estimated
process. Then, to check the validity of the estimates, the correlations of the residuals
are considered. Figure 6.9 presents the graph of these correlations, and they are
within the confidence interval around zero. One can conclude that the estimated
process does not leave unexplained any systematic component of the process.

So far theQAR(q) process has been estimated at themedian. To analyze an autore-
gressive process away from the median, at 𝜃 ≠ .50, Li et al. (2015) extend the idea
of autocorrelation and partial autocorrelation to define the quantile correlation func-
tion, QACF, and the quantile partial correlation function, QPACF. In the sample these
statistics are computed as

Q̂ACF = 1

n(𝜃 − 𝜃2)𝜎2e,𝜃

n∑
t= k+1

𝜓𝜃 (̂et)[̂et−k − E(̂et)]

Q̂PACF = 1

n(𝜃 − 𝜃2)𝜎2y

n∑
t= k+1

𝜓𝜃 (̂et)yt−k
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Figure 6.6 Simulated autoregressive series of the first order, 𝜁t = 0.6𝜁t−1 + et,
sample size n = 100. This series fluctuates around zero and is stationary. The dashed
line shows the QAR(1) estimated model and is very close to the true process.
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Figure 6.7 Autocorrelations for the simulated data, 𝜁t = 0.6𝜁t−1 + et, sample size
n = 100. The first correlation is large while the others are smaller and fluctuate around
zero, thus signaling a first-order autoregressive process.
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Figure 6.8 Partial correlations of the simulated process 𝜁t = 0.6𝜁t−1 + et, in a sam-
ple of size n = 100. The first partial correlation is well outside the shaded area,
signaling a first- order autoregressive process with q = 1.
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Figure 6.9 Correlations of the residuals of the simulated process 𝜁 as estimated at
the median by QAR(1), in a sample of size n = 100. In this graph all the correlations
are inside the shaded area, signaling that there is no unexplained component in the
estimated model.

where 𝜓𝜃 (̂et) = 𝜃 − 1(̂et < 0). For instance, the simulated process 𝜁t is analyzed at
the 75th quantile and provides the following estimated QAR𝜃=.75(1) model

𝜁t = 0.864 + 0.635 𝜁t−1

(se = 0.20) (se = 0.13)

The QACF at lag one for the residuals of the above estimated equation is
Q̂ACF(et, et−1) =

−2.379
99∗1.18∗(0.75−0.5625) = −0.108, while at lag two Q̂ACF(et, et−2) =

1.159
99∗1.18∗(0.75−0.5625) = 0.053. Both estimates for the Q̂ACF(et, et−1) and the

Q̂ACF(et, et−2) are within the bounds of the 95% confidence interval around
zero. When the estimated QACF at various lags are all within the confidence
interval, the model estimated at the third quartile does not forgo any systematic
component of the true data-generating process.

6.2 Non-stationarity

One crucial assumption in the AR(1) model is that the coefficient a1 is in absolute
value smaller than one. This is the stationarity condition and represents a relevant
issue: it curbs the influence of past values on the present, thus ensuring reliable
estimates. Consider for instance the first- order process yt = a0 + a1yt−1+et.
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The same equation is valid for yt−1 as well, which can be expressed as
yt−1 = a0 + a1yt−2 + et−1. Substituting this in the initial equation yields

yt = a0 + a1(a0 + a1yt−2 + et−1) + et = a0(1 + a1) + a21yt−2 + (a1et−1 + et)

= 𝛼0 + a21yt−2 + 𝜀t
where the constant term is 𝛼0 = a0(1 + a1), and the errors are 𝜀t = (a1et−1 + et). If
a1 = 1 the impact of yt−2 on yt is large and, above all, it does not decrease over time.
More in general, the lagged value yt−2 represents the impact of the past on yt, which
persists instead of decaying with time if a1 = 1. Indeed, by substituting yt−2 with the
right term of the equation yt−2 = a0 + a1yt−3 + et−2, one has

yt = a0(1 + a1) + a21(a0 + a1yt−3 + et−2) + a1et−1 + et

= [a0(1 + a1 + a21)] + a31yt−3 + (a21et−2 + a1et−1 + et)

= 𝛼0 + a31yt−3 + 𝜀t
where now the constant term is 𝛼0 = a0(1 + a1 + a21) and the errors are
𝜀t = (a21et−2 + a1et−1 + et). Then, as a matter of course, yt−3 can be in turn
replaced by its definition, and so forth: the back substitution can go far back to the
starting value of the series, y0, and the exponent of a1 grows accordingly.

When |a1| < 1 the model is stationary since the impact of past values, identi-
fied by the term ah1 yt−h, expires after some time. When a1 = 1 the influence of the
past observations persists, causing the variance of the process to increase over time
since var(𝜀t)=var(a21et−2 + a1et−1 + et). As time goes to infinity the variance goes to
infinity as well.

The presence of an estimated coefficient equal to one suggests the need of a deeper
analysis. Indeed, when the estimated coefficient of autocorrelation is equal to one,
the basic assumption on the stationarity of the model is violated, and the asymptotic
distribution of both OLS and quantile regression estimators is nonstandard. With-
out loss of generality, the intercept can be dropped. In the simple QAR(1) model
without intercept, yt = a1yt−1 + et, Koenker and Xiao (2004) show that when a1 = 1,

the term n(â1(𝜃) − a1(𝜃)) = n(â1(𝜃) − 1) converges to 1
f (F−1(𝜃))

[
∫ 1
0 B2

e

]−1
∫ 1
0 Be dB𝜓 ,

where Be is a demeaned Brownian motion and, for fixed 𝜃 and e, B𝜓 (e) is normally
distributed.

6.2.1 Examples of non-stationary series

The three-month US inflation rate, 𝜋3t =
(cpit−cpit−3)

cpit−3
, is here analyzed in a sample of

n = 462 observations going from February 1950 to July 1988.3 Figure 6.10 presents
the series while the summary statistics can be found in Table 6.5. The graphs in
Figures 6.11 and 6.12 report the correlations and the partial correlations of this
series, while Table 6.6 presents their estimates. In this table and in the graph of
Figure 6.12 the value of the first partial correlation is sizably greater than the others

3 Source: Bureau of Labor Statistics at ftp://ftp.bls.gov/pub/special.requests/cpi/cpiai.txt
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Figure 6.10 Three-month US inflation rate 𝜋3t, in a sample of size n = 462. The
series presents many peaks and does not fluctuate around zero. It is a non-stationary
process where the impact of past shocks does not decay and the variability grows
over time.

Table 6.5 Descriptive statistics of the three-month US inflation 𝜋3t.

mean std.dev. .25 .50 .75 skewness kurtosis

𝜋3t 3.956 3.315 1.439 3.591 5.434 0.707 3.371

and is very close to one. All the other partial correlations are smaller and fluctuate
around zero. Following the overfitting approach, a QAR(6) model is estimated at the
median yielding

𝜋3t = 0.302 +1.184𝜋3t−1 −0.120𝜋3t−2 −0.614𝜋3t−3
(se = 0.09) (se = 0.05) (se = 0.08) (se = 0.07)
+0.559𝜋3t−4 −0.058𝜋3t−5 −0.030𝜋3t−6
(se = 0.07) (se = 0.08) (se = 0.05)

In the above equation only the first four lags are statistically relevant, and the 𝜋3t−1
estimated coefficient is greater than one, which implies that the series is not stationary.
A QAR(4) process can be computed, keeping in mind that the correlation at lag one
is very large. The quantile regression estimates of a QAR(4) model for this series at
the first, second, and third quartile, together with the AR(4) results, are presented in
Table 6.7. The estimated slope of 𝜋3t−1 increases across quartiles and is slightly above
one at all the quartiles here considered, confirming the suggestions gathered from the
graphs of Figures 6.11 and 6.12: the series is characterized by persistence, that is by
a regression coefficient a1 = 1, and the past influence does not decrease over time,
causing an increasing variability in the series. Figure 6.13 reports the original and the
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Figure 6.11 Correlations of the three-month US inflation rate 𝜋3t, in a sample of
size n = 462. The first correlation is very close to one while the other correlations are
smaller and slowly decrease toward zero.
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Figure 6.12 Partial correlations of the three-month US inflation rate 𝜋3t, sample
size n = 462. The first partial correlation is very close to one while all the others are
much smaller.
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Table 6.6 Estimated correlations and
partial correlations for the three- month US
inflation rate 𝜋3t.

correlation partial correlation

corr(1) 0.9129 0.9137
corr(2) 0.7925 −0.2586
corr(3) 0.6757 −0.0033
corr(4) 0.6484 0.4843
corr(5) 0.6433 −0.1318
corr(6) 0.6447 0.0037
corr(7) 0.6389 0.3024
corr(8) 0.6266 −0.1309
corr(9) 0.6177 0.0417
corr(10) 0.6118 0.2121
corr(11) 0.6038 −0.1519
corr(12) 0.5871 0.0256

Table 6.7 Three-month US inflation rate 𝜋3t,
QAR(4) and AR(4) estimates.

.25 .50 .75 AR(4)

𝜋3t−1 1.117 1.142 1.206 1.147
se (0.05) (0.05) (0.06) (0.03)
𝜋3t−2 −0.094 −0.125 −0.177 −0.124
se (0.08) (0.08) (0.08) (0.05)
𝜋3t−3 −0.527 −0.540 −0.574 −0.571
se (0.08) (0.07) (0.07) (0.05)
𝜋3t−4 0.447 0.451 0.495 0.491
se (0.05) (0.05) (0.05) (0.03)
constant −0.464 0.240 0.796 4.00
se (0.10) (0.11) (0.11) (0.91)

Note: Standard errors in parenthesis, n = 462.

estimated series at the median, as a QAR(4) process. The two series are very close
to one another, and the QAR(4) estimates approximate well the 𝜋3t series. At the
lower section of the graph are the residuals. Although the estimated series provides
a good approximation of the original one, the process is not stationary, inference is
not standard, and the graph of the residuals present some sudden peaks. Indeed, by
computing the correlations of the residuals of the QAR(4) estimates, there are some
correlations outside the shaded area that are statistically relevant, as can be seen in
Figure 6.14. This implies that the residuals may embed some systematic component
that has not been modeled by the estimated QAR(4).
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Figure 6.13 Three-month US inflation 𝜋3t. The original and the estimated series,
as computed at the median by a QAR(4) model, coincide almost everywhere. The
bottom line depicts the residuals, which present some sudden higher peaks.
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Figure 6.14 Correlations at many lags of the residuals of the QAR(4) estimates for
the 𝜋3t process. There are a number of values outside the confidence intervals. There
is some systematic component that is not captured by the estimated model reported
in Table 6.7.
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Figure 6.15 The solid line reports the simulated unit root series, 𝜉t = 𝜉t−1 + et, in a
sample of size n = 100. Compared to the simulated process in Figure 6.6, where the
𝜁t series fluctuates around zero, this graph shows an increasing pattern which is due
to the non-stationarity of the process. The dashed line depicts the QAR(1) estimated
series.

As term of comparison, a controlled experiment considers the simulated series
𝜉t = 𝜉t−1 + et,where et ∼ N(0, 1), in a sample of size n = 100. Figure 6.15 reports the
original and the QAR(1) estimated series while Figure 6.16 presents the correlations.
The first correlation is quite large and close to one. The estimated QAR(1) process at
the median is 𝜉t = 0.46 + 0.99𝜉t−1 with ŝe(â0(.50)) = 0.26 and ŝe(â1(.50)) = 0.018.
The intercept does not statistically differ from zero, as it should be, while the slope
is significant and is almost equal to one.

6.3 Inference in the unit root model

The case a1 = 1 yields the so called unit root model. As mentioned, for the QAR(1)
model yt = a1yt−1 + et with a1 = 1, Koenker and Xiao (2004) show that the quantile
regression estimator converges to a demeaned Brownian motion

n(â1(𝜃) − a1(𝜃)) = n(â1(𝜃) − 1) → 1
f (F−1(𝜃))

[
∫

1

0
B2
e

]−1
∫

1

0
BedB𝜓

The presence of unit root modifies inference, and the usual t statistic has a nonstan-
dard distribution, as discussed by Dickey and Fuller (1979) in the OLS case.

The unit root model, yt = yt−1 + et, can be written as yt − yt−1 = et, which
implies that, although yt is not stationary, the difference yt − yt−1 is stationary. Indeed
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Figure 6.16 Correlations of the unit root simulated process 𝜉t = 𝜉t−1 + et, in a sam-
ple of size n = 100. The first correlation is very close to one, and the other correlations
slowly decline. This plot characterizes a first-order autoregressive process with unit
root.

Δyt = yt − yt−1 is function of the sole error term et, which by assumption is i.i.d. and
thus independent from its own past values. The series Δyt is termed first differenced
since only one lag is considered in the difference operator Δ. An alternative way to
indicate persistence in the series is to say that the process is integrated of order one,
I(1). While the original series is non-stationary, taking first differences, that is, by
integrating the series, the differenced series is stationary. Figure 6.17 reports the plots
of the original and of the first differenced series of the US three-month inflation rate
𝜋3t, already analyzed in levels in the previous section. The differenced series fluctu-
ates around zero and is stationary, while the original series presents many peaks and is
non-stationary. Table 6.8 provides a quick check on the stationarity of the differenced
series. It reports the estimated correlations up to five lags of Δ𝜋3t, and these values
are all smaller than one, thus confirming that the Δ𝜋3t series is indeed stationary.

In order to test for unit root, the lagged dependent variable can be subtracted, and
the model is modified as follows

yt = a1yt−1 + et

Δyt = a1yt−1 − yt−1 + et

Δyt = (a1 − 1)yt−1 + et

The usual estimated value of the t statistics can be considered to verify the null H0:
a1 − 1 = 0, although the statistic is no longer distributed as a Student-t. The unit root
null, H0: a1(𝜃) = 1, against the alternative of stationarity, H1: a1(𝜃) < 1, is still tested
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Figure 6.17 The top graph depicts the original series 𝜋3t of the three-month US
inflation rate, while the bottom graph reports the first differenced series Δ𝜋3t =
𝜋3t − 𝜋3t−1. While 𝜋3t is non-stationary and presents various peaks, Δ𝜋3t fluctuates
around zero and is stationary.

Table 6.8 Estimated correlations and
partial correlations for Δ𝜋3t

correlation partial correlation

corr(1) 0.2053 0.2055
corr(2) −0.0188 −0.0637
corr(3) −0.5109 −0.5161
corr(4) −0.1236 0.1079
corr(5) −0.0358 0.0304

by the usual test function t(𝜃) = a1(𝜃)−1
se(a1(𝜃))

, but this ratio has a different, nonstandard
distribution, which is approximated by simulations. The critical values are tabulated
in Hansen (1995) and reported in Koenker and Xiao (2004).

The previous model can be generalized as

yt = a1yt−1 + 𝜑1Δyt−1 + et

where the additional term Δyt−1 = (yt−1 − yt−2) allows to verify if there is further
correlation in the series besides the unit root coefficient. Analogously, by defining
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Δyt−2 = yt−2 − yt−3, Δyt−3 = yt−3 − yt−4, … ., Δyt−h = yt−h − yt−h+1, the model can
comprise more than one lag in the differenced variable

yt = a1yt−1 + 𝜑1Δyt−1 + 𝜑2Δyt−2 + 𝜑3Δyt−3 + … + et

yt = a1yt−1 +
∑
i=1..h

𝜑iΔyt−i + et

When estimated by quantile regression, this model provides the quantile regression
analogue of the Augmented Dickey-Fuller test (Dickey and Fuller, 1979). The num-
ber of lags in Δy to be included in the equation is selected by looking at the partial
correlations or by implementing a general- to-specific sequential rule, the overfit-
ting approach. The test function t(𝜃) = a1(𝜃)−1

se(a1(𝜃))
under the null of unit root converges

to 1√
𝜃(1−𝜃)

[
∫ 1
0 B2

𝑤

]−1∕2
∫ 1
0 B𝑤 dB𝜓 , with 𝑤t = yt − yt−1 = Δyt, and B𝑤 a demeaned

Brownian motion. The critical values depend upon the correlation between B𝜓 and

B𝑤, comprised in the parameter 𝛿2 = co𝑣2(B𝜓 ,B𝑤)
𝑣ar(B𝑤)𝜃(1−𝜃)

. The latter can be approximated by
the covariance between𝑤t = yt − yt−1 = Δyt and𝜓𝜃(et) = [𝜃 − 1(et < 0)] divided by
the standard deviation of Δyt, and can be estimated by a kernel function.4

We can implement inference now in the three-month US inflation rate model.
Table 6.9 presents the estimates of the model 𝜋3t = a1𝜋3t−1 + et to test for unit
root. The t(𝜃) values have to be compared with the critical values in Koenker
and Xiao (2004). Rejection of the null H0: a1(𝜃) = 1 would imply that the model
is stationary and that the alternative H1: |a1(𝜃)| < 1 is true. At the 5% level the
critical values are in the range of −2.81 and −2.12 (Koenker and Xiao (2004),
Appendix, Table 1), depending on the estimated 𝛿 and the null is rejected for
smaller values. In Table 6.9 it is t(.25) = â1(.25)−1

ŝe(â1(.25))
= 0.887−1

0.022
= −5.13 at the first

quartile, t(.50) = â1(.50)−1
ŝe(â1(.50))

= 0.903−1
0.023

= −4.21 at the median and t(.75) = â1(.75)−1
ŝe(â1(.75))

=
0.959−1
0.020

= −2.05 at the third quartile. These results lead to reject the unit root

Table 6.9 Three-month US inflation rate, 𝜋3t, test
for unit root

.25 .50 .75 OLS

𝜋3t−1 0.887 0.903 0.959 0.913
se (0.022) (0.023) (0.020) (0.019)
constant −0.308 0.327 0.932 0.351
se (0.115) (0.119) (0.100) (0.097)

Note: Standard errors in parenthesis, sample size n = 462

4 The computation of 𝛿 can be avoided when the estimated t value is too small (large) to be inside
(outside) the acceptance region.
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Table 6.10 Three months US inflation
rate 𝜋3t, augmented Dickey Fuller test.

.25 .50 .75

𝜋3t−1 0.926 0.927 0.955
se (0.02) (0.02) (0.02)
Δ𝜋3t−1 0.255 0.273 0.309
se (0.07) (0.05) (0.06)
Δ𝜋3t−2 0.108 0.107 0.074
se (0.05) (0.04) (0.05)
Δ𝜋3t−3 −0.472 −0.466 −0.526
se (0.06) (0.04) (0.05)
Δ𝜋3t−4 0.141 0.119 0.095
se (0.06) (0.05) (0.06)

Note: Standard errors in parenthesis

hypothesis at the first two quartiles but not at the upper one, regardless of the
estimated value of 𝛿.

To estimate the augmented version of the unit root test, the lagged values of Δ𝜋3t
should be introduced. Table 6.10 presents the results of the augmented Dickey Fuller
test as estimated at the median and the first and the third quartiles. Following the
overfitting approach, themodel includes terms up to the fourth lagged difference, 𝜋t =
a0 + a1𝜋3t−1 + 𝜑1Δ𝜋3t−1 + 𝜑2Δ𝜋3t−2 + 𝜑3Δ𝜋3t−3 + 𝜑4Δ𝜋3t−4 + et . The t-value of
the 𝜋3t−1 coefficient under the null H0: a1(𝜃) = 1 is t(.25) = 0.926−1

0.022
= −3.36 at the

first quartile, t(.50) = 0.927−1
0.020

= −3.65 at the median, and t(.75) = 0.955−1
0.022

= −2.04.
The latter t-value, when compared to the Koenker and Xiao (2004) critical values,
does not reject the null of unit root at the 5% level for any value of 𝛿, while the t
values at the first and second quartiles reject the null at the 5% level for any value of
𝛿, just as in the previously implemented non-augmented unit root test.

For a controlled experiment, the unit root tests can be implemented in the sim-
ulated unit root process 𝜉t considered in the previous section. The simple unit root
test in the regression 𝜉t = 0.46 + 0.99𝜉t−1 yields t(.50) =

â1(𝜃)−1
ŝe(â1(𝜃))

= 0.99−1
0.018

= −0.555
at the median, and the null of unit root is not rejected. At the first quartile the esti-
mated equation is 𝜉t = −0.39 + 1.003𝜉t−1 and yields t(.25) = 1.0035−1

0.014
= 0.25, while

at the upper quartile 𝜉t = 0.99 + 0.99𝜉t−1 yields t(.75) = 0.99−1
0.017

= −0.588. The null
of unit root is not rejected at all the estimated quantiles.

6.3.1 Related tests for unit root

Consider the simple AR(1) model yt = a1yt−1 + et without intercept. There are addi-
tional tests proposed in the unit root literature for the OLS estimator, which, although
not specifically designed for quantile regressions, are closely related to it.
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Campbell and Dufour (1995) test for unit root analyzes the product between
dependent and explanatory variable. The focus is on the OLS estimator of a1, and the
goal is to improve its robustness. Their test function considers the product between the
first differenced series,Δyt = yt − yt−1, and the lagged value yt−1. The authors look at
the number of nonnegative terms of this product. Under some regularity conditions5

define the function

C =
∑
t=2,..,n

I(Δyt yt−1)

where I(g) is an indicator function assuming value I(g) = 1 for g ≥ 0 and I(g) = 0
otherwise. C follows a binomial distribution regardless of the form of the yt distribu-
tion, its moments, the presence of heteroskedasticity, and even in case of an infinite
variance. The term

∑
t=2,..,nI(Δyt yt−1) is a pivotal quantity and is distributed as a

binomial B(n, 1∕2). The null of unit root is rejected for low values of the C statistic,
in the left tail of the binomial distribution. The link with the median regression is
quite immediate, since the sign of the products Δyt yt−1 defines the normal equation
for the median regression estimator of a1 in the QAR(1) model yt = a1yt−1 + et. In
the median regression, both positive and negative signs of the term Δyt yt−1 are con-
sidered, while the C test focuses only on the number of nonnegative signs of the Δyt
yt−1 products.

In the example of the three-month US inflation, the number of non-negative signs
of the product Δ𝜋3t 𝜋3t−1 is C = 219, which in the binomial distribution B(n = 461;
p=1/2) is close to the mean of 230.5, and the null of unit root cannot be rejected at
the median.

So and Shin (2001) test for unit root is based on the sign transform as well. Under
the null H0: a1 = 1 they define the following test function

S =
∑
t=2,..,n

sgn(yt − yt−1)sgn(yt−1 − medt−1)

where sgn(g) = 1 if g > 0, sgn(g) = 0 if g = 0, sgn(g) = −1 for g < 0, and medt−1 is
the running median, that is, the median of the variable computed up to time t − 1.
With respect to C, the lagged variable is considered in terms of its distance from
the running median, in order to ensure transformation invariance. Under the null of
unit root, assuming some regularity conditions,6 S follows a binomial distribution,
(S + n)/2∼B(n,1/2). The null is rejected for S≤ 2B(𝛼)-n, 𝛼 being the lower 𝛼-quantile
of the binomial distribution. Here the link with themedian regression is even stronger,
since S does not exclude the negative sign elements. However, the yt−1 term in the
gradient of the median regression is replaced by (yt−1 − medt−1) in S, that is, by its
distance from the running median.

5 The assumptions are that yt is symmetric, has no probability mass at zero, and that yt and Δyt have
zero median.

6 The regularity conditions state that yt has no probability mass at zero; that sgn(Δyt) is a martingale
difference sequence; that P(Δyt = 0 ∣ It−1) = 0, with It−1 = (yt−1,… , y0) being the information set at
time t − 1.
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In the example of the US three-month inflation S =
∑

t=2,..,n sgn(𝜋3t − 𝜋3t−1)
sgn(𝜋3t−1 − medt−1) = −49 and (S+n)/2= 206, which is close to the mean of the
binomial B(n=461; p=1/2), equal to 230.5. Once again the null of unit root is not
rejected at the median.

The sign transform is also used in a stationarity test defined by de Jong et al.
(2007), which is a ratio-type test comparing the sum of squares of cumulative terms
and the long term variance 𝜎2:

J = n−2𝜎−2
∑
t=1,.,n

[ ∑
s=1,.,t

sgn(ys − med)

]2

where med is the median in the entire sample. Under the null of stationarity, J can
be compared with the critical values of the tables in Kwiatkowski et al. (1992). In J
the test function drastically differs from the gradient of the median regression and,
although using the sign function, the link with quantile regressions is not as close as
in the S and C tests.

In the US three-month inflation example, this test function assumes the value
J = 1.176, to be compared with the critical values of 0.347 at the 10% level, 0.463 at
the 5% level, and 0.739 at 1%. The null of stationarity is rejected.

6.4 Spurious regression

The presence of unit root, besides causing a nonstandard distribution of the t test,
has an additional relevant implication in a regression model. Granger and Newbold
(1974), in a Monte Carlo experiment, show that in the linear regression model yt =
𝛽0 + 𝛽1xt + 𝜖t the slope coefficient 𝛽1 can be significantly different from zero even if
xt and yt are independent from one another. This occurs when the two independent
series are both characterized by unit root. When this is the case, the slope coefficient
does not mirror the proportionality between X and Y but it simply reflects the unit root
shared by both processes. This is a case of spurious regression, where the regression
coefficients are statistically significant solely because each variable is characterized
by unit root, but there is no true correlation between dependent and independent
variable. An example of spurious regression is provided by the following controlled
experiment. In a sample of size n = 100, two AR(1) processes with roots very close
to 1 are independently generated as follows

yt = 0.99yt−1 + 𝜀t
xt = 0.97xt−1 + et

The terms 𝜀t and et are the realizations of two independent standard normals.
Figure 6.18 depicts the realizations of both processes, and it is quite evident that the
two variables have a similar pattern.
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Figure 6.18 The graphs report two AR(1) processes defined as xt = 0.97xt−1 + et
and yt = 0.99yt−1 + 𝜀t, generated independently from one another, each one with cor-
relation coefficient very close to 1, in a sample of size n = 100. The two processes
have a similar pattern.

Table 6.11 Estimates of a regression model
relating two independent unit root variables.

OLS .25 .50 .75

slope −0.648 −0.605 −0.519 −0.677
se (0.11) (0.23) (0.15) (0.13)
intercept 0.777 −1.445 0.634 2.361
se (0.30) (0.66) (0.43) (0.38)

Note: Standard errors in parenthesis

Next, a regression model where yt is a linear function of xt is computed. The
model yt = 𝛽0 + 𝛽1xt + ut is estimated by OLS and by quantile regressions and the
results are presented in Table 6.11.

The estimated coefficients are statistically relevant in both OLS and quantile
regressions, although the variables have been independently generated. The common
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Figure 6.19 Spurious regression as estimated at the median for the equation yt =
𝛽0 + 𝛽1xt + ut. The presence of a unit root in both dependent and explanatory variable
yields an estimated slope significantly different from zero, although the two variables
have been independently generated. The histogram of these residuals is reported in
the left panel of Figure 6.23. Sample size n = 100.

unit root in each series, as depicted in Figure 6.18, is the sole cause of a statistically
significant slope coefficient in this equation. The failure to reject the null H0: 𝛽1 = 0,
as it should be since the two variables are independent from one another, is caused
by the common unit root that characterizes each variable of the model. Figure 6.19
depicts the estimated median regression.

To eliminate the unit root characterizing both variables of the model, yt and xt
can be considered in first differences: the process yt = a1yt−1 + 𝜀t by taking first dif-
ferences becomes Δyt = yt − yt−1 = 𝜀t, and the series is stationary since 𝜀t is i.i.d.
standard normal. Analogously for xt the differenced variable, Δxt = xt − xt−1 = et, is
stationary since et is an i.i.d. standard normal.

Once the variables of the model are turned into stationary processes, the regres-
sion model is re-estimated. Figure 6.20 presents the estimated median regression and
Table 6.12 reports the results for the modelΔyt = 𝛽0 + 𝛽1Δxt + 𝜂t, defined in terms of
the stationary variablesΔyt = yt − yt−1 andΔxt = xt − xt−1, as estimated by OLS and
quantile regressions. In Figure 6.20 the estimated line is less steep than in Figure 6.19,
and the results in Table 6.12 show that the slope coefficient is not statistically different
from zero in both the OLS and the quantile estimated regressions. Figures 6.21 and
6.22 present respectively the histograms of the original and of the first-differenced
variables. The comparison of these graphs shows that first differencing has greatly
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Figure 6.20 Median regression where the unit root variables have been differenced
to gain stationarity, Δx = xt − xt−1 = dx in the graph, Δy = yt − yt−1 = dy in the
graph. The estimated slope of the model Δyt = 𝛽0 + 𝛽1Δxt + 𝜂t is almost flat and
is not significantly different from zero. The histogram of these residuals is reported
in the right panel of Figure 6.23.

Table 6.12 Estimates of the regression model
relating first-differenced independent variables,
Δyt = 𝛽0 + 𝛽1Δxt + 𝜂t.

OLS .25 .50 .75

slope −0.019 0.127 −0.071 −0.106
se (0.11) (0.22) (0.11) (0.18)
intercept −0.135 −0.599 0.078 0.551
se (0.11) (0.21) (0.10) (0.18)

Note: Standard errors in parenthesis

improved their approximation to normality. Finally, Figure 6.23 compares the
histograms of the residuals of the median regression estimated with the original
variables, in the left graph, and of the residuals of the median regression computed
with first-differenced variables, on the right-hand side graph. The latter distri-
bution is less skewed and provides a better approximation to a normal than the
former.
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Figure 6.21 Histograms of the original unit root variables, yt in the right plot and xt
in the left one, together with the normal density and the Epanechnikov kernel density.
The kernel density in the left graph presents two peaks, while in the right plot, the
histogram shows a right tail with probability greater than normal.
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Figure 6.22 Histograms of the first differenced series Δyt = 𝜀t and Δxt = et
together with the normal density and the Epanechnikov kernel density. Compared
with the graphs in Figure 6.21, it can be seen that first-differencing greatly improves
the approximation of the variables to the normal density. The kernel density of Δy is
not bimodal.
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Figure 6.23 In the left panel is the histogram of the errors ut as estimated at the
median in the regression relating the original unit root variables yt and xt. These resid-
uals have a large peak in the left tail. In the right panel is the histogram of the errors
𝜂t as estimated at the median regression with first-differenced stationary variables,
Δyt and Δxt. This histogram is less skewed than the former and provides a better
approximation to the normal. The curves in the graphs depict the normal density and
the Epanechnikov kernel density.

6.5 Cointegration

The opposite case of a spurious regression is a model where the variables, even
in the presence of unit root, present co-movements. This implies that, although
non-stationary variables tend to diverge and do not display a long- run equilibrium,
their linear combination does conform to a long-run equilibrium, diverging from
it only in the short run. This is the case of cointegrated variables, and when this
occurs the errors of the cointegrating equation are stationary. Xiao (2009) analyzes
the quantile regression cointegrating model. In the presence of a unit root in
xt and of a stationary Δxt variable, Xiao proposes to compute the linear model
yt = 𝛽0 + 𝛽1xt + et by the following cointegrating regression at the selected quantile

yt = 𝛽0 + 𝛽1xt +
h∑

j=−h
𝜑jΔxt−j + et

where, as discussed in Saikkonen (1991) for the OLS model, h lags and
leads of the differenced explanatory variable Δxt are introduced in order to
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avoid possible correlation between residuals and non-stationary explanatory
variables. The asymptotic distribution of the slope 𝛽1 is n(𝛽1(𝜃) − 𝛽1(𝜃)) →

1
f (F−1(𝜃))

[
∫ 1
0 B2

Δx

]−1
∫ 1
0 BΔxdB𝜓 , where BΔx is a demeaned Brownian motion. The

addition of lags and leads in the first-differenced explanatory variable induces
independence between BΔx and B𝜓 .

6.5.1 Example of cointegrated variables

Consider the series on Italian consumption, annual data from 1970 to 2009 expressed
in log of real values in a sample of size n = 40.7 The log of consumption, ct, as a
function of gnpt, at the median yields

ct = 8215 + 0.7851 gnpt

(se = 11949) (se = 0.012)

A test of unit root for each variable of the equation at the median is implemented

ct = 23387 + 0.9872 ct−1

(se = 6574) (se = 0.0084)

gnpt = 45160 + 0.9747 gnpt−1

(se = 11601) (se = 0.012)

and both variables present estimated slopes very close to one. The unit root test for the
QAR(1) consumption process is 0.9872−1

0.0084
= −1.52 and for the QAR(1) gnp process it

is 0.9747−1
0.012

= −2.10, to be compared with the Koenker andXiao table. These values do
not allow to reject the null at the 5% level regardless of the value of 𝛿, since at the 5%
level the tabulated critical values vary between −2.81 and −2.12. To verify whether
the estimated consumption function is a case of spurious regression, the cointegrating
equation can be computed by adding lags of the first differenced explanatory variable.
At the median the estimated cointegrating equation is

ct = 16290 + 0.7829 gnpt − 0.3904 Δgnpt − 0.2984 Δgnpt−1
(se = 17424) (se = 0.013) (se = 0.109) (se = 0.163)

+ 0.0954 Δgnpt−2 + 0.0501 Δgnpt−3
(se = 0.164) (se = 0.182)

where all the lagged coefficients Δgnpt−i for i = 1, 2, 3 are not statistically relevant.
These variables can be dropped, and the more parsimonious version is

ct = 14301 + 0.7860 gnpt − 0.4908 Δgnpt
(se = 8961) (se = 0.008) (se = 0.075)

7 Source: ISTAT at http://timeseries.istat.it/
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Figure 6.24 The left graph plots the residuals from the simple consumption
function, ct = 𝛼 + 𝛽 gnpt + et, while the right graph plots the residuals of the cointe-
grating equation, ct = 𝛼 + 𝛽gnpt + 𝛾Δgnpt + et. The former presents a skewed his-
togram. The curves in the graphs depict the normal density and the Epanechnikov
kernel density.

Contrarily to the example discussed for the spurious regression model in yt and xt, in
this case the estimated coefficients are statistically relevant, and the equation shows
the existence of co-movements between ct, gnpt and Δgnpt. Figure 6.24 compares
the residuals of the initial consumption equation and of the cointegrating equation.
In the latter, the skewness is greatly reduced.

A final quick empirical check can be implemented by repeating the experiment
performed in Section 6.4 on the simulated unit root variables, where y and x were
replaced by the stationary Δy and Δx. Here c and gnp can be replaced by Δc and
Δgnp. The regression between the first-differenced variables measures the impact of
changes in income on changes in consumption. This is not of great interest per se, but
it checks the existence of the link between the stationary variables: if the regression
between differenced variables is statistically relevant, then the correlation is not spu-
rious. At themedian, the regressionΔct = 𝛼 + 𝛽Δgnpt yields a slope of 𝛽(.50) = 0.34
with t(𝛽(.50)) = 4.63. The null H0 ∶ 𝛽(𝜃) = 0 is rejected, and it is possible to con-
clude that the correlation between consumption and income is not spurious.

6.5.2 Cointegration tests

In the above example on the consumption function, the cointegrating model has been
estimated, and cointegration has been verified by checking the statistical relevance of
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the estimated coefficients of the cointegrating regression. Actually a formal test for
cointegration should be implemented. In the quantile regression model Xiao (2009)
considers a cointegration test that looks at the stability of the gradient of the coin-
tegrating equation in a fluctuation-type test. The test function relies on the quantile
regression gradient E𝜓(et(𝜃)) = 0, where 𝜓(et(𝜃)) = [𝜃 − 1(et(𝜃) < 0)]. The valid-
ity of the cointegrating equation may be tested by looking at the partial sum of the
process 𝜓(et(𝜃)), the sign transform of the residuals of the quantile cointegrating
regression, and at its fluctuation as additional observations are included in the partial
sum. In case of cointegration, the residuals should be stable, and their fluctuations
reflect only equilibrium errors. Otherwise, when the variables are not cointegrated,
the fluctuations in the residuals can be expected to be large and the partial sum would
significantly diverge from the total sum, the gradient. Thus, cointegration can be
tested by looking at the partial sum of 𝜓(et(𝜃)), that is, at the term

T = 1

𝜔
√
n

𝜆n∑
t=1

𝜓(et(𝜃))

where 𝜔2 is the variance of 𝜓(et(𝜃)), and 𝜆 defines the proportion of the sample
considered in the partial sum. Under the null of cointegration and under appropriate
regularity conditions, the T test function converges to a standard Brownian motion,
while under the alternative of non-cointegration, T diverges. In the empirical analysis,
the terms 𝜔 and et(𝜃) are replaced by their estimates in the sample. However, Xiao
(2009) does not provide further details, stating that “In principle, any metric that
measures the fluctuation in yn(𝜃) is a natural candidate. The classical Kolmogoroff -
Smirnoff type or Cramer - von Mises type measures are of particular interest.”

6.6 Tests of changing coefficients

The Xiao (2009) fluctuation test for cointegration recalls a test for changing coeffi-
cients defined for stationary variables by Qu (2008) in the quantile regression model
and further generalized by Oka and Qu (2011) to the case of multiple changes. In the
simple linear regression yt = 𝛽0 + 𝛽1xt + et with et being i.i.d. errors, in a sample of
size n, it is possible to relax the assumption that the regression coefficients remain
constant in the entire sample. This amounts to allow the structure of the equation to
change in response, for instance, to a change in economic policy or to a legislative
change, to a generational gap, or to other characteristics of the sample not explicitly
modeled in the equation, such as different funding or type of contracts. Although they
seem two distinct issues, stationarity and stability of the regression coefficients are
related. The presence of changing coefficients affects the behavior of the unit root
tests and failure to discriminate one from the other leads to incorrect inference. For
instance a shift in the stationary coefficients can be erroneously signaled as unit root.
To model changes in the regression coefficients, the equation becomes

I) yt = 𝛽0 + 𝛽1xt + 𝛽2zt + 𝜀t
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where zt = dtxt and dt is a dummy variable having unit value after the change tomodel
the impact, incremental or decremental, of the new policy or of the new legislation
on the regression model. The term 𝛽2 measures the impact of a policy introducing
temporary contracts or of a generational gap on the dependent variable.

As an alternative, instead of introducing the dummy variable in zt, the sample can
be split into two subgroups and two regressions are separately estimated, one before
and another after the policy change:

II) yta = 𝛽0a + 𝛽1axta + 𝜀ta t = 1, .., 𝜆n, 0 < 𝜆 < 1

ytb = 𝛽0b + 𝛽1bxtb + 𝜀tb t = 𝜆n + 1, .., n

where 𝜆 defines the proportion of the sample before the change and the subscripts
“a” and “b” refer to the subsets into which the sample is divided, up to 𝜆n in subset
“a” and after 𝜆n in subset “b.” The two subsets model the behavior of the equation
before and after the legislative change, in the case of temporary versus permanent
contracts, for young versus old generations, and so forth. The linear model yt = 𝛽0 +
𝛽1xt + et estimated in the full sample provides the constrained equation, where the
regression coefficients are not allowed to change. The test of changing coefficients
implies the null hypothesis H0 : 𝛽2 = 0 in model (I), or H0: 𝛽1a = 𝛽1b when model (II)
is considered. Under the alternative, the unconstrained equation allows for changes
in the parameters of the model and the hypothesis is given by H1: 𝛽2 ≠ 0 or H1:
𝛽1a ≠ 𝛽1b, depending on which one of the two models, (I) or (II), is analyzed.

In the simple linear regression yt = 𝛽0 + 𝛽1xt + et, that is, in the constrained
model, the gradient of the quantile regression coefficients is the building block of
the Qu (2008) test. In detail, for the slope coefficient it is:

Sn(𝜃) = n−1∕2
n∑
t=1

xt𝜓(et) = n−1∕2
n∑
t=1

xt𝜓(yt − 𝛽0 − 𝛽1xt)

where as usual 𝜓(et) = 𝜃 − 1(et < 0). Then the gradient is evaluated in a subset of
size 𝜆n, for 0 < 𝜆 ≤ 1, and the functions Sn(𝜆, 𝜃), H𝜆,n(𝜃) are defined as

Sn(𝜆, 𝜃) = n−1∕2
𝜆n∑
t=1

xt𝜓(et)

H𝜆,n(𝜃) = (XTX)−1∕2
𝜆n∑
t=1

xt𝜓(et)

where X is the (n, p) matrix of explanatory variables, and in this equation p = 2. Qu
(2008) compares H𝜆,n(𝜃) and H1,n(𝜃) in the test function

Q𝜃 = sup𝜆||[𝜃(1 − 𝜃)]−1∕2[H𝜆,n(𝜃) − 𝜆H1,n(𝜃)]||
where the sup norm selects the maximum difference between H𝜆,n(𝜃) and H1,n(𝜃)
within the entire vector of coefficients. If the regression coefficients do not change,
H𝜆,n(𝜃) is a good proxy forH1,n(𝜃), while in the opposite case of changing parameters
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this is no longer true, H𝜆,n(𝜃) sizably differ from H1,n(𝜃), and the model (I) or (II)
should be estimated. The test function Q𝜃 converges to a p vector of independent
Brownian bridge processes on [0, 1]. The critical values for the Q𝜃 test function are
computed via simulations and depend on the number of regressors of themodel (Table
1, Qu, 2008). Once the null is rejected, Q𝜃 provides an additional valuable informa-
tion, the location of the change point, 𝜆n, which is generally unknown.

Actually Qu (2008) considers the above statistics to test the presence of a change
across quantiles as well. This implies to search for the sup norm not only across
coefficients, but also across quantiles

QQ𝜃 = sup𝜃sup𝜆||[𝜃(1 − 𝜃)]−1∕2[H𝜆,n(𝜃) − 𝜆H1,n(𝜃)]||
A recent article (Oka and Qu, 2011) extends the Qu test to verify the presence

of multiple changes. It allows to determine the number of changes by repeatedly
implementing the Q𝜃 and QQ𝜃 test functions. The sample is partitioned according
to an assumed number of changes, and then the Q𝜃 and QQ𝜃 tests are implemented
within each subset of the sample to verify the presence of additional shifts. The main
difference relies in the definition of the H𝜆,n(𝜃) function, which is now computed
within each subset. For instance, by implementing Q𝜃 or QQ𝜃 in the full sample one
change is found at pointm. Then Q𝜃 or QQ𝜃 are implemented again in each of the two
subsets, where the first subset goes from 1 to m and the second one from m+1 to n.
The purpose is to verify if within each subset there is an additional change point. If
in one of the two subsets, for example the second one, an additional parameters shift
is signaled at point h, the second subset is split in two parts, the first comprising data
from m+1 to h and the other comprising the observations from h + 1 to n. Within
each of them Q𝜃 or QQ𝜃 are once again implemented until the null of no change in
each subset is not rejected.

Besides the Qu (2008) test for structural shifts, a robust version of the Chow
(1960) test can be considered (Furno, 2007). This test is based on the comparison of
the quantile regression objective functions estimated under the null of constant coef-
ficients and under the alternative of changing coefficients. The null assumes stability
of the equation as provided by the constrained model where the coefficients are not
allowed to change. The alternative allows the regression coefficients to change as in
model (II), which represents the unconstrained model where the coefficients are free
to change from one subset to the other. The test verifies whether the coefficients esti-
mated in the two subsets differ from the parameters computed in the entire sample.
This involves the comparison of the value of the objective function under the null of
stable coefficients , V(𝜃) =

∑
t=1,..n 𝜌(yt − 𝛽0 − 𝛽1xt), with the sum of the two objec-

tive functions computed under the alternative (II), Va(𝜃) =
∑𝜆n

t=1, 𝜌(yt − 𝛽0a − 𝛽1axt)
and Vb(𝜃) =

∑n
t=𝜆n+1 𝜌(yt − 𝛽0b − 𝛽1bxt). The test function is given by:

C𝜃 =
[V(𝜃) − (Va(𝜃) + Vb(𝜃))]∕d1

(Va(𝜃) + Vb(𝜃))∕d2
In case of changes in coefficients, the worsening of the fit due to the unnecessary

constraints causes the increase of the objective function V(𝜃), making it significantly
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different from the objective functions of the unconstrained model, Va(𝜃) + Vb(𝜃). In
the numerator, the degrees of freedom are equal to the number of constraints, that is,
the number of parameters remaining constant, d1 = p. At the denominator, d2 is given
by the sample size minus the number of estimated coefficients under the alternative,
d2 = n − 2p.

C𝜃 is asymptotically distributed as Fd1,d2 since both numerator and denomina-
tor are independently distributed as 𝜒2 (Koenker and Machado, 1999; Koenker and
Bassett, 1982).

The C𝜃 test reveals two different characteristics of the model: 1) a comparison of
C𝜃 across quantiles signals at what level of the dependent variable the change is more
effective; 2) the equations estimated to compute C𝜃 allow to check which coefficient
or group of coefficients are more affected by the shift, thus signaling the occurrence
of a partial or a global change in the coefficients, that is, whether the change affects
some or all the regression coefficients (Furno and Vistocco, 2013).

6.6.1 Examples of changing coefficients

The first example considers the score in an international test on reading proficiency,
the OECD-PISA test, of Italian fifteen-year-old students in a sample of size
n = 59558. The analyzed sample comprises year 2000, 2003, 2006, and 2009. The
score of the test is related to explanatory variables describing school characteristics
such as school size, funding, and student-teacher ratio. The purpose is to relate
student performance to school efficiency. There is a long-lasting debate on the
role of school variables on student proficiency. Growth analysis emphasizes school
attainment and shows its high correlation to differences in economic growth across
countries. Hanushek (2006) relates one standard deviation difference of student
performance to a one percent difference in the annual rate of growth of per-capita
gross domestic product. However, higher spending in school resources does not
necessarily involve higher test scores (Hanushek and Woessmann, 2011).

To implement the Q𝜃 test, the partial sum of the gradient is compared with the
gradient in the full sample. In case of changing coefficients, that is, under the alterna-
tive H1: 𝛽1a ≠ 𝛽1b, theH𝜆,n(𝜃) function will substantially differ from 𝜆H1,n(𝜃). Under
the null of constant coefficients H0: 𝛽1a = 𝛽1b, the difference H𝜆,n(𝜃) − 𝜆H1,n(𝜃) will
be statistically irrelevant.

Consider the following equation explaining students reading proficiency as
estimated at the median regression

reading = − 75.7927 𝑣ocational − 38.6104 boy +

(se = 1.56) (se = 1.36)

+ 3.8993 pri𝑣ate + 3.2536 stratio +

(se = 3.59) (se = 0.229)

+ 0.015746 schlsize + 0.05287 computer + 477.4652

(se = 0.002) (se = 0.0096) (se = 2.619)
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where the reading score, reading, is explained by the variables: 𝑣ocational, a dummy
variable assuming unit value for students enrolled in vocational schools; boy, which
assumes unit value for boys and zero otherwise; pri𝑣ate, having unit value for stu-
dents enrolled in privately funded schools and zero elsewhere; stratio, which is equal
to the student-teacher ratio in the school; schlsize, describing the number of stu-
dents enrolled in the school; computer, which is equal to the number of computers
in the school to mirror school facilities. All the estimated coefficients are statisti-
cally relevant but the one for the privately funded schools variable. Focusing on the
changing coefficients issue, the Qu test is here implemented by looking at the results
for each coefficient, that is, without taking the supremum across coefficients so that
the behavior of partial and total sum of the gradient of each coefficient can be ana-
lyzed. Figure 6.25 shows the plots of the differences between partial and total sum
of the gradient for each regression coefficient. The peak values for each coefficient
at the median are Q.5,student−teacher ratio = 12.13; Q.5,school size = 10.90; Q.5,boy = 6.59;
Q.5,𝑣ocational = 5.91 ; Q.5,intercept = 5.71; Q.5,computer = 4.81; Q.5,pri𝑣ate = 1.69. All of
them are greater than the critical value at the 5% level, equal to 1.650 (Qu, 2008,
Table 1), and reject the null of stable coefficients. This is a case of a global change,
affecting all the regression coefficients.
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Figure 6.25 Difference between partial and total sum of the gradient for each
regression coefficient. The student–teacher ratio and the school size coefficient
present the highest peak, and this peak is located at about one third of the sample.
OECD–PISA data on the reading scores of fifteen years old Italian students, sample
size n = 59558.
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Next consider the C𝜃 test for changing coefficients. The model estimated in the
entire sample can be compared with the same equation independently estimated in
two subsets. Figure 6.25 shows that the Qu test functions present a peak at about
one third of the sample, and the two subsets are selected accordingly, comprising
respectively na = 19858 and nb =39706 observations. Subset “a” comprises data of
year 2000, 2003, and part of 2006, while subset “b” includes the majority of year
2006 and year 2009 data. Basically the test verifies whether there is a change over
time in the impact of the explanatory variables on reading proficiency.

The estimates at the median are reported in Table 6.13, where in the first column is
the constrained model, while in the second and third columns are the estimates in the
two subsets defining the unconstrained model. Comparing the estimated coefficients,
the variables stratio, computer, schlsize, boy present the widest variations in going
from one subset to the other and from the unconstrained to the constrained model, by
and large confirming the findings of the Qu test in Figure 6.25. The C𝜃 test assumes
the value

C.50 =
[V(𝜃) − (Va(𝜃) + Vb(𝜃))]∕d1

(Va(𝜃) + Vb(𝜃))∕d2
=

[18815768 − (10762586 + 7943995)]∕7
(10762586 + 7943995)∕(59558 − 14)

= 49.65

and the null of stable coefficients is rejected. Thus the impact of the covariates on
students proficiency has changed over time

As a counterexample, consider a controlled experiment: simulated data com-
prising n = 100 observations of an independent variable, xi, are drawn from a

Table 6.13 Estimated coefficients at the median to
verify changing coefficients, OECD-PISA data set.

n = 59558 na = 19858 nb = 39706

𝑣ocational −75.79 −73.13 −74.54
se (1.86) (2.57) (2.38)
boy −38.61 −32.99 −43.29
se (1.62) (2.46) (1.89)
pri𝑣ate 3.90 5.22 −6.33
se (3.58) (6.92) (6.86)
stratio 3.25 2.04 7.955
se (0.33) (0.12) (0.43)
schlsize 0.016 0.019 −0.0086
se (0.002) (0.003) (0.003)
computer 0.053 0.033 0.136
se (0.011) (0.018) (0.015)
intercept 477.5 487.3 441.1
se (3.46) (3.18) (4.40)
V(𝜃) 18815768 10762586 7943995
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𝜒2
4
distribution. The dependent variable is computed as yi = 3 + 0.7xi + ei, and

the error term ei follows a standard normal distribution. This is a case of a fixed
coefficients model, and at the median, the estimated equation is yi = 3.19 + 0.67xi,
with se(intercept) = 0.25 and se(slope) = 0.05. The largest value of the Qu test for
the intercept is Q.5,intercept = 0.4 and for the slope is Q.5,slope = 1.15, to be compared
with the critical value of 1.43 at the 5% level. The null of constant coefficients is not
rejected by the Qu test. The C test assumes the value C.50 =

[32.82−(15.02+17.09)]∕2
(15.02+17.09)∕96 =

1.05 to be compared with the critical value F2,100 = 3.09 at the 5% level. Thus in the
C.50 test, the null of stability is not rejected as well.

Next, the experiment is modified to model changing coefficients. The sample is
split in two halves, and the first 50 observations are generated as yi = 3 + 0.7xi + ei,
while the second half of the sample is generated as yi = 3 + 0.1xi + ei. In this case,
which models changing coefficients, the largest value for the Qu test is Q.5,intercept =
3.80 at the intercept and Q.5,slope = 6.90 at the slope, both larger than the 1% critical

value of 1.69, while the C𝜃 test yields the value C.50 =
[66.60−(15.02+17.09)]∕2

(15.02+17.09)∕96 = 51.54,
which is well above the critical value of 3.09. The null of stable coefficients is rejected
by both tests. It is worth noting the worsening of the estimated objective function of
the constrained model in going from the fixed to the changing coefficients example:
V̂(𝜃) = 32.82 in the fixed coefficients model becomes V̂(𝜃) = 66.60 due to the unre-
alistic constraints imposed to the changing coefficients model. Figure 6.26 plots the
difference between partial and total sum of the gradient when the coefficients are
kept constant while Figure 6.27 plots the same statistics when the simulated model
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Figure 6.26 The Qu test computed for each coefficient at the median regression in
a simulated data set with constant coefficients, yi = 3 + 0.7xi + ei . The null of stable
coefficients is not rejected. Sample size n = 100.
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Figure 6.27 The Qu test computed for each coefficient at the median regres-
sion in a simulated data set with changing coefficients. The changing coefficients
model is defined as yi = 3 + 0.7xi + ei in n = 1, ..., 50 and yi = 3 + 0.1xi + ei in
n = 51, ..., 100. The null of stability is rejected. The graph shows a large peak which
correctly signals the change point occurring at the middle of the sample. The scale
of the vertical axis is bigger than in the previous graph of Figure 6.26. Sample size
n = 100.

is characterized by changing coefficients. The latter graph shows quite clearly the
position of the change point, which occurs at the middle of the sample.

6.7 Conditionally heteroskedastic models

While in the unit root example an early peak in a time series would grow and would
not disappear, time series can also be characterized by sudden and temporary peaks
caused by an increase in variability. The main feature of these series is a changing
dispersion, which can be captured by an autoregressive conditional heteroskedastic-
ity model, ARCH, first discussed by Engle (1982). This model describes the error
variance as function of its own past values. Consider the autoregressive process
yt ∼ AR(q) with error term ut, the ARCH(r) conditional variance of ut is defined as

E(u2t ∣ It) = 𝜎2t = 𝛾0 + 𝛾1u2t−1 + 𝛾2u
2
t−2 + .... + 𝛾ru

2
t−r

where It is the information set at time t, and the r past squared errors concur to deter-
mine its actual value. The model can be estimated by a two-step approach. In the first
stage the yt ∼ AR(q) model is estimated and the residuals are saved. In the second
stage, the squared residuals become the dependent variable of an auxiliary regression,
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where the explanatory variables are the r lagged squared residuals. Thus the auxiliary
equation is estimated as

û2t = 𝛾0 + 𝛾1û2t−1 + 𝛾2û
2
t−2 + .... + 𝛾rû

2
t−r

where ût are the residuals of the AR(q) estimated process and ût−1,..., ût−r its lagged
values. The Student- t test of the estimated 𝛾’s verifies the validity of each coefficient,
under the null H0: 𝛾h = 0 for h= 1,..r, while the F test on the entire model verifies the
null that all the 𝛾 coefficients but the intercept 𝛾0 are equal to zero. The F test verifies
the presence of ARCH when the null H0:𝛾1 = 𝛾2 = .. = 𝛾r = 0 is rejected.8

Koenker and Zhao (1996) extend a modified version of the ARCH(r) model to
quantile regressions where, rather than modeling the variance, they focus on the stan-
dard deviation. The quantile regression ARCH(r) model, QARCH(r ), considers the
following definition

𝜎t = 𝛾0 + 𝛾1|ut−1| + 𝛾2|ut−2| + .... + 𝛾r|ut−r|
which explains the conditional standard deviation instead of the conditional variance.
The estimation approach is a two-step procedure analogous to the one previously
described: the QAR(q) model is estimated and the absolute value of the residuals
become the dependent variable of the auxiliary equation

|ũt| = 𝛾0 + 𝛾1|ũt−1| + 𝛾2|ũt−2| + .... + 𝛾r|ũt−r|
where the vector comprising the absolute value of the quantile regression errors at the
various lags, U = (1 |ut−1| ... |ut−r|)T , is approximated by the quantile regression
residuals |ũt−h| for h = 1, ..r, and the dependent variable is given by the absolute
value of the quantile regression residual at time t, |ũt|. The objective function of the
auxiliary quantile regression is∑

𝜌(|ũt| − 𝛾0 − 𝛾1|ũt−1| − 𝛾2|ũt−2| − .... − 𝛾r|ũt−r|)
Under the assumption of bounded and continuous error density f having

f (F−1(𝜃)) > 0, the QARCH(r) estimator of the coefficient vector estimated at the
quantile 𝜃, 𝛾(𝜃) = (𝛾0(𝜃) 𝛾1(𝜃) ... 𝛾r(𝜃))T , is asymptotically normal:

√
n(𝛾̃(𝜃) − 𝛾(𝜃)) → N

(
0; 𝜃(1 − 𝜃)
f 2(F−1(𝜃))

D−1
1 D0D

−1
1

)

where D1 = E[𝜎−11 UUT ] and D0 = E[UUT ].

8 Instead of a two-step approach, Francq and Zakoian (2004) define a quasi-maximum likelihood
approach to compute a generalized ARCHmodel, GARCH. Huang et al. (2008) consider the LAD estima-
tor, that is, the median quantile regression, as a version of the quasi-maximum likelihood for the GARCH
model.
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To verify the presence of conditional heteroskedasticity in quantile regressions,
Koenker and Zhao (1996) apply the heteroskedasticity test for quantile regressions
to the auxiliary equation. Thus the proposed test looks at the coefficients of
the auxiliary equation estimated at k different quantiles. The null of absence of
QARCH(r) implies that the vector 𝛾(𝜃) = (𝛾1(𝜃) . . 𝛾r(𝜃))T does not change across
quantiles, H0: 𝛾(𝜃i) = 𝛾(𝜃j). However, in the single quantile regression, the usual
Student-t statistic is a valid test function to verify the null H0: 𝛾h(𝜃) = 0 for h = 1, ..r,
and h ≠ 0.

A generalization of the ARCH model is given by the GARCH(r, q) process, dis-
cussed by Bollerslev (1986), which is defined as

𝜎2t = 𝛾0 + 𝛾1u2t−1 + 𝛾2u
2
t−2 + ....𝛾ru

2
t−r + 𝛿1𝜎2t−1 + 𝛿2𝜎

2
t−2 + ... + 𝛿q𝜎

2
t−q

In the above equation the lagged values of the variance are added to the lagged
values of the squared errors to define 𝜎2t . In order to solve this model, the lagged
variances on the right-hand side of the equation have to be replaced by a valid proxy.
For instance in a GARCH (1,1) model with 𝜎2t = 𝛾0 + 𝛾1u2t−1 + 𝛿1𝜎

2
t−1, the lagged

variance 𝜎2t−1 can be replaced by 𝜎2t−1 = 𝛾0 + 𝛾1u2t−2 + 𝛿1𝜎
2
t−2, and

𝜎2t = 𝛾0 + 𝛾1u2t−1 + 𝛿1(𝛾0 + 𝛾1u
2
t−2 + 𝛿1𝜎

2
t−2)

𝜎2t = 𝛾0(1 + 𝛿1) + 𝛾1u2t−1 + 𝛾1𝛿1u
2
t−2 + 𝛿

2
1𝜎

2
t−2

which implies that after repeated back substitution, the final definition of the condi-
tional variance does not depend on any lagged variance term, and the definition of
the GARCH (1,1) process becomes ARCH(∞)

𝜎2t =
𝛾0

1 − 𝛿1
+ 𝛾1(u2t−1 + 𝛿1u

2
t−2 + 𝛿

2
1u

2
t−3 + 𝛿

3
1u

2
t−4....)

In the above equation, the two-step approach described for the ARCH(r) model
can be once again implemented. Along these lines, Xiao and Koenker (2009) general-
ize the QARCH(r) model to comprise the lagged dependent variable terms, yielding
the QGARCH(r, q) process. Again, their model does not focus on the variance but on
the standard deviation, which is defined as

𝜎t = 𝛾0 + 𝛾1|ut−1| + 𝛾2|ut−2| + .... + 𝛾r|ut−r| + 𝛿1𝜎t−1 + 𝛿2𝜎t−2 + ... + 𝛿q𝜎t−q
The repeated back substitution of the lagged dependent variables allows to define

QGARCH(r, q) process as a QARCH(∞), 𝜎t = 𝛼0 +
∑∞

h=1 𝛼h|ut−h|. For instance the
QGARCH(1,1) case becomes

𝜎t =
𝛾0

1 − 𝛿1
+ 𝛾1(|ut−1| + 𝛿1|ut−2| + 𝛿21|ut−3| + 𝛿31|ut−4|....)
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where 𝛼0 =
𝛾0

1−𝛿1
and 𝛼h = 𝛾1𝛿

h−1
1 . Following the two-step approach, the QARCH(∞)

process can be estimated by

|ũt| = 𝛼0 +
∞∑
h=1

𝛼h|ũt−h|
6.7.1 Example of a conditional heteroskedastic model

Consider the three-month US inflation rate of Section 6.2.1 and the graph in
Figure 6.13, which describes the behavior of the original series 𝜋3t and of the
residuals of the QAR(4) process as estimated at the median, in a sample of n = 462
observations. In this graph the series of residuals presents sudden jumps. Here the
attempt is to model these jumps by means of a QARCH model. The estimated
coefficients of the QAR(4) model are reported in Table 6.7. The residuals of this
QAR(4) estimated model provide the first of the two steps needed to compute the
QARCH(r) process. Once saved the residuals, their absolute value become the
dependent variable of the auxiliary regression which provides the second step of
the procedure. The explanatory variables are the lagged values of the dependent
variable,

|ũt| = 𝛾0 + 𝛾1|ũt−1| + 𝛾2|ũt−2| + .... + 𝛾r|ũt−r|
Following an overfitting approach, a QARCH(3) model is estimated at the

median, and this yields significant values only for the coefficients 𝛾0 and 𝛾1, as
reported in the first two rows of Table 6.14. The conditional heteroskedasticity can
thus be modeled by a QARCH(1), and these estimates are in the bottom two rows of
Table 6.14.

Summarizing, the QAR(4) process for the three-month US inflation rate presents
conditionally heteroskedastic errors of order r = 1 as estimated at the median.
Figure 6.28 plots the original series and the residuals of the estimated QARCH(1)
process, while Figure 6.29 compares QAR(4) and QARCH(1) residuals, where the
QARCH(1) residuals are much smoother.

Table 6.14 Three-month US Treasury Bill rate,
QARCH(3) and QARCH(1) estimates.

𝛾0 𝛾1 𝛾2 𝛾3

QARCH(3) 0.385 0.225 0.041 0.078
se (0.079) (0.057) (0.056) (0.057)
QARCH(1) 0.498 0.221
se (0.055) (0.049)

Note: Standard errors in parenthesis
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Figure 6.28 Three-month US inflation rate 𝜋3t and, at the bottom, the residuals of
the QARCH(1) process as estimated at the median.
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Figure 6.29 Comparison of QAR(4) and QARCH(1) estimated residuals in the
three- month US inflation rate process 𝜋3t. By modeling the error conditional
heteroskedasticity, the sudden increases in the variability of the QAR(4) residuals
are greatly reduced.
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6.8 A summary of key points

The quantile regression estimates of an autoregressive process is discussed in case
of both stationary and non-stationary series. A test for unit roots together with other
tests closely related to the quantile regression model are considered. The possibility
of a spurious regression is analyzed with simulated data, and the quantile regression
cointegrated model is presented, together with the description of a test for cointegra-
tion. Next, a changing coefficient model is taken into account and two different tests
to verify the presence of changing coefficients are discussed and implemented. The
estimation of conditionally heteroskedastic errors in quantile regression concludes
the chapter.
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Appendix: Stata computer codes

A) QAR process:

gen ylag=y[_n−1] generate lagged value of dep. variable

gen t=m(1950m2)+_n−1 define time frequency(m=monthly)

format t %tm with starting date (1950m2)=february
1950

tsset t, monthly

corrgram y compute correlations and partial
correlations and their graphs

ac y graph of correlations

pac y graph of partial correlations

gen ylag2=y[_n−2] generate yt−2, lag 2

gen ylag3=y[_n−3] generate yt−3, lag 3

gen ylag4=y[_n−4] generate yt−4, lag 4

qreg y ylag ylag2 ylag3 compute QAR(3)
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* QACF:

qreg y ylag, q(.75) compute .75th quartile
regression

predict qres75, resid save residuals

scalar teta=e(q) save quantile 𝜃

scalar tetasq=teta*teta compute 𝜃2

scalar nobs=e(N) save sample size

su qres75,d

scalar meanres=r(mean) save mean of residuals

scalar vares=r(Var) save variance of residuals

*compute denominator

scalar deno=(teta−tetasq)*vares*nobs
gen signres=teta if 𝜓 (̂et)

qres75>=0 &

qres!=.
replace signres=teta−1 if

qres75 <=0 &

qres!=.
gen qreslag=qres75[_n−1] compute lagged residuals

gen num=signres*(qreslag−meanres) 𝜓 (̂et)[̂et−1 − E(̂et)]
gen qacf=sum(num)
su qacf

scalar qacfin=r(max)
scalar qacfinal=qacfin/deno compute QACF at lag 1

gen qreslag2=qres75[_n−2] compute lag two residuals

gen num2=signres*(qreslag2−meanres) 𝜓 (̂et)[̂et−2 − E(̂et)]
gen qacf2=sum(num2)
scalar qacfin2=qacf2 in 100

scalar qacfinal2=qacfin2/deno
scalar list qacfinal qacfinal2 compute QACF at lag 2
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* Augmented QAR processes

gen dy=y−ylag1 generate first difference Δyt = yt − yt−1
gen dy1=ylag1−ylag2 generate first difference Δyt−1 = yt−1 − yt−2
gen dy2=ylag2−ylag3 generate first difference Δyt−2 = yt−2 − yt−3
gen dy3=ylag3−ylag4 generate first difference Δyt−3 = yt−3 − yt−4
corrgram dy

ac dy

pac dy

qreg y ylag1 unit root test

qreg y ylag1 dy1 dy2 dy3, augmented Dickey Fuller test

q(.5)

B) Sign based tests

Campbell Dufour test

gen ylag1=y[_n−1] lagged variable, lag one

gen dy=y−ylag1 first difference Δyt
gen rroo=dy*ylag1 product Δytyt−1
gen dum=1 if rroo >=0 excludes non-positive signs

egen C=sum(dum) sum the # of positive signs

list C in 1/1 prints the result

Campbell Dufour test

su xlag1,d

scalar med=r(p50) median of yt−1
scalar varia=r(Var) variance of yt−1
scalar obs=r(N) # of observations

gen difmed=y−med yt − median

gen dam=1 if difmed >=0 +1 for yt−1 − median > 0

replace dam=−1 difmed<=0 −1 for yt−1 − median < 0

replace dam=0 if difmed==0 0 for yt−1 − median = 0

gen sumsquares=(sum(dam)) ̂ 2 sum of squares

scalar cott=1/(obs*obs*varia) n−2𝜎−2

gen J=cott*sum(sumsquares) test function, the last value of the
series

list J in 460/460 prints the result
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So and Shin test

scalar nobs=obs+1 stopping rule at n

gen constant=1
gen trend=sum(constant) generates a trend

gen ics = 0 if trend==2 initialize ics

cap program drop doit iterations to compute

program def doit the running median

local i=3
while ‘i’ < nobs {

replace ics=ylag1 if

trend==‘i’
quietly su ics if

trend<=‘i’,d
scalar rmed=r(p50)
replace constant=rmed if running median=med t−1

trend==‘i’
local i=‘i’+1

}

end

qui doit end of iterations

gen
difmedbis=ylag1−constant

yt−1 minus the running median

gen product=dy*difmedbis
gen dam=1 if +1 for Δyt(yt−1 − medt−1) > 0

product>=0 & difmed!=.
replace dam=−1 if −1 for Δyt(yt−1 − medt−1) < 0

product<=0 & difmed!=.
replace dam=0 if 0 for Δyt(yt−1 − medt−1) = 0

product==0 & difmed!=.
gen C=sum(dam) sum of signs

gen CC=(C+obs)/2 test function, the last value of the series

list CC in 462/462 prints the result
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C) Cointegration

qreg y x original model

gen lagx=x[_n−1] xt−1
gen lagy=y[_n−1] yt−1
qreg y lagy unit root test on Y

qreg x lagx unit root test on X

gen dy=y−lagy Δyt
gen dx=x−lagx Δxt
gen lagdx=x[_n−1]−x[_n−2] Δxt−1
gen leadx=x[_n+1]−x Δxt+1
gen leadx2=x[_n+2]−x[_n+1] Δxt+2
qreg y x dx lagdx leadx leadx2 cointegrating model

predict res, resid store residuals

gen reslag=res[_n−1] lagged residuals

qreg res reslag to test residuals stationarity

D) Qu changing coefficient test

qreg y x1 x2 x3 x4, q(.5) nolog compute median
regression

scalar obs=e(N) save sample size

predict res, resid save residuals

gen signres=−.5 if res<=0 & res!=.
replace signres=.5 if sign of residuals

res>0 & res!=.
gen const=1 if res!=. constant term

gen trend=sum(cost) if res!=. partial sum of the
constant

gen lambda=trend/obs if res!=. compute lambda

gen partialsum=sum(signres) if res!=. partial sum of
sgn(residual)

egen totalsum=sum(signres) if res!=. total sum of sgn(residual)

matrix accum XX=x1 x2 x3 if res!=. compute matrix XTX

matrix XXinv=syminv(XX) compute (XTX)−1

matrix A=cholesky(XXinv) Cholesky factorization

gen a=el(A,4,4) selects the element in A
for the intercept
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*Qu of intercept

gen qo=(abs(partialsum−lambda*totalsum)*a)/.5 if res!=.
drop a partialsum totalsum drops intermediate

terms

gen gradient=signres*x1 if res!=. gradient of x1

gen partialsum=sum(gradient) if res!=. partial sum

egen totalsum=sum(gradient) if res!=. total sum

gen a=el(A,1,1) selects the element in A
for x1

*Qu of x1

gen qo1=(abs(partialsum−lambda*totalsum)*a)/.5 if res!=.
drop gradient partialsum totalsum a drops intermediate

terms

gen gradient=signres*x2 if res!=. gradient of x2

gen partialsum=sum(gradient) if res!=. partial sum

egen totalsum=sum(gradient) if res!=. total sum

gen a=el(A,2,2) selects the element in A
for x2

*Qu of x2

gen qo2=(abs(partialsum−lambda*totalsum)*a)/.5 if res!=.
drop gradient partialsum totalsum a drops intermediate

terms

gen gradient=signres*x3 if res!=. gradient of x3

gen partialsum=sum(gradient) if res!=. partial sum

egen totalsum=sum(gradient) if res!=. total sum

gen a=el(A,3,3) selects the element in A
for x3

*Qu of x3

gen qo3=(abs(partialsum−lambda*totalsum)*a)/.5 if res!=.
twoway (scatter qo trend) plot Qu for each coefficient

(scatter qo1 trend)

....

(scatter qo3 trend)

graph save filename save the graph

su qo qo1 qo2 qo3 find the max for each
coefficient
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E) robust CHOW test

qreg y x1 x2 x3, q(.5) nolog constrained model

scalar obs=e(N) # of observations

scalar v=e(sum_adev) estimated objective function

qreg y x1 x2 x3 in 1/50, q(.5)
nolog

unconstrained model 1st subset

scalar v1=e(sum_adev) estimated objective function

qreg y x1 x2 x3 in 51/100, unconstrained model 2nd subset

q(.5) nolog

scalar v2=e(sum_adev) estimated objective function

scalar num=(v−v1−v2)/4 numerator of the test

scalar test=num*(obs−8)/(v1+v2) final value of the test

scalar list test prints the results

F) QARCH(r) process

gen ylag=y[_n−1] lag one of the dependent variable

gen ylag2=ylag[_n−1] lag two of the dependent variable

qreg y ylag ylag2, q(.5) estimate QAR(r) with r = 2

predict res, resid save residuals

gen resabs=abs(res) compute absolute value of residuals

gen reslag=resabs[_n−1] lag one of absolute value of residuals

gen reslag2=reslag[_n−1] lag two of absolute value of residuals

gen reslag3=reslag2[_n−1] lag three of absolute value of residuals

gen reslag4=reslag3[_n−1] lag four of absolute value of residuals

qreg resabs reslag reslag2
reslag3 reslag4, q(.5)

estimate QARCH(r), r = 4
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