
LINEAR
MODELS

SHAYLE R. SEARLE & MARVIN H. J. GRUBER

S E C O N D  E D I T I O N

y=Xb+e





LINEAR MODELS



WILEY SERIES IN PROBABILITY AND STATISTICS

Established by Walter A. Shewhart and Samuel S. Wilks

Editors: David J. Balding, Noel A. C. Cressie, Garrett M. Fitzmaurice,
Geof H. Givens, Harvey Goldstein, Geert Molenberghs, David W. Scott,
Adrian F. M. Smith, Ruey S. Tsay, Sanford Weisberg

Editors Emeriti: J. Stuart Hunter, Iain M. Johnstone, Joseph B. Kadane,
Jozef L. Teugels

The Wiley Series in Probability and Statistics is well established and authoritative.
It covers many topics of current research interest in both pure and applied statistics
and probability theory. Written by leading statisticians and institutions, the titles
span both state-of-the-art developments in the field and classical methods.

Reflecting the wide range of current research in statistics, the series encompasses
applied, methodological and theoretical statistics, ranging from applications and
new techniques made possible by advances in computerized practice to rigorous
treatment of theoretical approaches. This series provides essential and invaluable
reading for all statisticians, whether in academia, industry, government, or research.

A complete list of titles in this series can be found at
http://www.wiley.com/go/wsps

http://www.wiley.com/go/wsps


LINEAR MODELS

Second Edition

SHAYLE R. SEARLE
Cornell University, Ithaca, NY

MARVIN H. J. GRUBER
Rochester Institute of Technology, Rochester, NY



Copyright © 2017 by John Wiley & Sons, Inc. All rights reserved

Published by John Wiley & Sons, Inc., Hoboken, New Jersey
Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as
permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to
the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax
(978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should
be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ
07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in
preparing this book, they make no representations or warranties with respect to the accuracy or
completeness of the contents of this book and specifically disclaim any implied warranties of
merchantability or fitness for a particular purpose. No warranty may be created or extended by sales
representatives or written sales materials. The advice and strategies contained herein may not be suitable
for your situation. You should consult with a professional where appropriate. Neither the publisher nor
author shall be liable for any loss of profit or any other commercial damages, including but not limited to
special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our
Customer Care Department within the United States at (800) 762-2974, outside the United States at (317)
572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic formats. For more information about Wiley products, visit our web site at
www.wiley.com.

Library of Congress Cataloging-in-Publication Data is available.

ISBN: 978-1-118-95283-2

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

http://www.copyright.com
http://www.wiley.com/go/permission
http://www.wiley.com


CONTENTS

Preface xvii

Preface to First Edition xxi

About the Companion Website xxv

Introduction and Overview 1

1. Generalized Inverse Matrices 7

1. Introduction, 7
a. Definition and Existence of a Generalized Inverse, 8
b. An Algorithm for Obtaining a Generalized Inverse, 11
c. Obtaining Generalized Inverses Using the Singular Value

Decomposition (SVD), 14
2. Solving Linear Equations, 17

a. Consistent Equations, 17
b. Obtaining Solutions, 18
c. Properties of Solutions, 20

3. The Penrose Inverse, 26
4. Other Definitions, 30
5. Symmetric Matrices, 32

a. Properties of a Generalized Inverse, 32
b. Two More Generalized Inverses of X′X, 35

6. Arbitrariness in a Generalized Inverse, 37
7. Other Results, 42
8. Exercises, 44

v



vi CONTENTS

2. Distributions and Quadratic Forms 49

1. Introduction, 49
2. Symmetric Matrices, 52
3. Positive Definiteness, 53
4. Distributions, 58

a. Multivariate Density Functions, 58
b. Moments, 59
c. Linear Transformations, 60
d. Moment and Cumulative Generating Functions, 62
e. Univariate Normal, 64
f. Multivariate Normal, 64

(i) Density Function, 64
(ii) Aitken’s Integral, 64
(iii) Moment Generating Function, 65
(iv) Marginal Distributions, 66
(v) Conditional Distributions, 67
(vi) Independence of Normal Random Variables, 68

g. Central 𝜒2, F, and t, 69
h. Non-central 𝜒2, 71
i. Non-central F, 73
j. The Non-central t Distribution, 73

5. Distribution of Quadratic Forms, 74
a. Cumulants, 75
b. Distributions, 78
c. Independence, 80

6. Bilinear Forms, 87
7. Exercises, 89

3. Regression for the Full-Rank Model 95

1. Introduction, 95
a. The Model, 95
b. Observations, 97
c. Estimation, 98
d. The General Case of k x Variables, 100
e. Intercept and No-Intercept Models, 104

2. Deviations From Means, 105
3. Some Methods of Estimation, 109

a. Ordinary Least Squares, 109
b. Generalized Least Squares, 109
c. Maximum Likelihood, 110
d. The Best Linear Unbiased Estimator (b.l.u.e.)(Gauss–Markov

Theorem), 110
e. Least-squares Theory When The Parameters are Random

Variables, 112



CONTENTS vii

4. Consequences of Estimation, 115
a. Unbiasedness, 115
b. Variances, 115
c. Estimating E(y), 116
d. Residual Error Sum of Squares, 119
e. Estimating the Residual Error Variance, 120
f. Partitioning the Total Sum of Squares, 121
g. Multiple Correlation, 122

5. Distributional Properties, 126
a. The Vector of Observations y is Normal, 126
b. The Least-square Estimator b̂ is Normal, 127
c. The Least-square Estimator b̂ and the Estimator of the Variance �̂�2

are Independent, 127
d. The Distribution of SSE/𝜎2 is a 𝜒2 Distribution, 128
e. Non-central 𝜒2′ s, 128
f. F-distributions, 129
g. Analyses of Variance, 129
h. Tests of Hypotheses, 131
i. Confidence Intervals, 133
j. More Examples, 136
k. Pure Error, 139

6. The General Linear Hypothesis, 141
a. Testing Linear Hypothesis, 141
b. Estimation Under the Null Hypothesis, 143
c. Four Common Hypotheses, 145
d. Reduced Models, 148

(i) The Hypothesis K′b = m, 148
(ii) The Hypothesis K′b = 0, 150
(iii) The Hypothesis bq = 0, 152

e. Stochastic Constraints, 158
f. Exact Quadratic Constraints (Ridge Regression), 160

7. Related Topics, 162
a. The Likelihood Ratio Test, 163
b. Type I and Type II Errors, 164
c. The Power of a Test, 165
d. Estimating Residuals, 166

8. Summary of Regression Calculations, 168
9. Exercises, 169

4. Introducing Linear Models: Regression on Dummy Variables 175

1. Regression on Allocated Codes, 175
a. Allocated Codes, 175
b. Difficulties and Criticism, 176
c. Grouped Variables, 177
d. Unbalanced Data, 178



viii CONTENTS

2. Regression on Dummy (0, 1) Variables, 180
a. Factors and Levels, 180
b. The Regression, 181

3. Describing Linear Models, 184
a. A One-Way Classification, 184
b. A Two-Way Classification, 186
c. A Three-Way Classification, 188
d. Main Effects and Interactions, 188

(i) Main Effects, 188
(ii) Interactions, 190

e. Nested and Crossed Classifications, 194
4. The Normal Equations, 198
5. Exercises, 201

5. Models Not of Full Rank 205

1. The Normal Equations, 205
a. The Normal Equations, 206
b. Solutions to the Normal Equations, 209

2. Consequences of a Solution, 210
a. Expected Value of b◦, 210
b. Variance Covariance Matrices of b◦ (Variance Covariance

Matrices), 211
c. Estimating E(y), 212
d. Residual Error Sum of Squares, 212
e. Estimating the Residual Error Variance, 213
f. Partitioning the Total Sum of Squares, 214
g. Coefficient of Determination, 215

3. Distributional Properties, 217
a. The Observation Vector y is Normal, 217
b. The Solution to the Normal Equations b◦ is Normally

Distributed, 217
c. The Solution to the Normal Equations b◦ and the Estimator of

the Residual Error Variance �̂�2 are Independent, 217
d. The Error Sum of Squares Divided by the Population Variance

SSE/𝜎2 is Chi-square 𝜒2, 217
e. Non-central 𝜒2′s, 218
f. Non-central F-distributions, 219
g. Analyses of Variance, 220
h. Tests of Hypotheses, 221

4. Estimable Functions, 223
a. Definition, 223
b. Properties of Estimable Functions, 224

(i) The Expected Value of Any Observation is Estimable, 224
(ii) Linear Combinations of Estimable Functions are

Estimable, 224



CONTENTS ix

(iii) The Forms of an Estimable Function, 225
(iv) Invariance to the Solution b◦, 225
(v) The Best Linear Unbiased Estimator (b.l.u.e.)

Gauss–Markov Theorem, 225
c. Confidence Intervals, 227
d. What Functions Are Estimable?, 228
e. Linearly Independent Estimable Functions, 229
f. Testing for Estimability, 229
g. General Expressions, 233

5. The General Linear Hypothesis, 236
a. Testable Hypotheses, 236
b. Testing Testable Hypothesis, 237
c. The Hypothesis K′b = 0, 240
d. Non-testable Hypothesis, 241
e. Checking for Testability, 243
f. Some Examples of Testing Hypothesis, 245
g. Independent and Orthogonal Contrasts, 248
h. Examples of Orthogonal Contrasts, 250

6. Restricted Models, 255
a. Restrictions Involving Estimable Functions, 257
b. Restrictions Involving Non-estimable Functions, 259
c. Stochastic Constraints, 260

7. The “Usual Constraints”, 264
a. Limitations on Constraints, 266
b. Constraints of the Form b◦i = 0, 266
c. Procedure for Deriving b◦ and G, 269
d. Restrictions on the Model, 270
e. Illustrative Examples of Results in Subsections a–d, 272

8. Generalizations, 276
a. Non-singular V, 277
b. Singular V, 277

9. An Example, 280
10. Summary, 283
11. Exercises, 283

6. Two Elementary Models 287

1. Summary of the General Results, 288
2. The One-Way Classification, 291

a. The Model, 291
b. The Normal Equations, 294
c. Solving the Normal Equations, 294
d. Analysis of Variance, 296
e. Estimable Functions, 299
f. Tests of Linear Hypotheses, 304

(i) General Hypotheses, 304



x CONTENTS

(ii) The Test Based on F(M), 305
(iii) The Test Based on F(Rm), 307

g. Independent and Orthogonal Contrasts, 308
h. Models that Include Restrictions, 310
i. Balanced Data, 312

3. Reductions in Sums of Squares, 313
a. The R( ) Notation, 313
b. Analyses of Variance, 314
c. Tests of Hypotheses, 315

4. Multiple Comparisons, 316
5. Robustness of Analysis of Variance to Assumptions, 321

a. Non-normality of the Error, 321
b. Unequal Variances, 325

(i) Bartlett’s Test, 326
(ii) Levene’s Test, 327
(iii) Welch’s (1951) F-test, 328
(iv) Brown–Forsyth (1974b) Test, 329

c. Non-independent Observations, 330
6. The Two-Way Nested Classification, 331

a. Model, 332
b. Normal Equations, 332
c. Solving the Normal Equations, 333
d. Analysis of Variance, 334
e. Estimable Functions, 336
f. Tests of Hypothesis, 337
g. Models that Include Restrictions, 339
h. Balanced Data, 339

7. Normal Equations for Design Models, 340
8. A Few Computer Outputs, 341
9. Exercises, 343

7. The Two-Way Crossed Classification 347

1. The Two-Way Classification Without Interaction, 347
a. Model, 348
b. Normal Equations, 349
c. Solving the Normal Equations, 350
d. Absorbing Equations, 352
e. Analyses of Variance, 356

(i) Basic Calculations, 356
(ii) Fitting the Model, 357
(iii) Fitting Rows Before Columns, 357
(iv) Fitting Columns Before Rows, 359
(v) Ignoring and/or Adjusting for Effects, 362
(vi) Interpretation of Results, 363



CONTENTS xi

f. Estimable Functions, 368
g. Tests of Hypothesis, 370
h. Models that Include Restrictions, 373
i. Balanced Data, 374

2. The Two-Way Classification with Interaction, 380
a. Model, 381
b. Normal Equations, 383
c. Solving the Normal Equations, 384
d. Analysis of Variance, 385

(i) Basic Calculations, 385
(ii) Fitting Different Models, 389
(iii) Computational Alternatives, 395
(iv) Interpretation of Results, 397
(v) Fitting Main Effects Before Interaction, 397

e. Estimable Functions, 398
f. Tests of Hypotheses, 403

(i) The General Hypothesis, 403
(ii) The Hypothesis for F(M), 404
(iii) Hypotheses for F(𝛼|𝜇) and F(𝜷|𝝁), 405
(iv) Hypotheses for F(𝛼|𝜇, 𝛽) and F(𝛽|𝜇, 𝛼), 407
(v) Hypotheses for F(𝛾|𝜇, 𝛼, 𝛽), 410
(vi) Reduction to the No-Interaction Model, 412
(vii) Independence Properties, 413

g. Models that Include Restrictions, 413
h. All Cells Filled, 414
i. Balanced Data, 415

3. Interpretation of Hypotheses, 420
4. Connectedness, 422
5. The 𝜇ij Models, 427
6. Exercises, 429

8. Some Other Analyses 437

1. Large-Scale Survey-Type Data, 437
a. Example, 438
b. Fitting a Linear Model, 438
c. Main-Effects-Only Models, 440
d. Stepwise Fitting, 442
e. Connectedness, 442
f. The 𝜇ij-models, 443

2. Covariance, 445
a. A General Formulation, 446

(i) The Model, 446
(ii) Solving the Normal Equations, 446
(iii) Estimability, 447



xii CONTENTS

(iv) A Model for Handling the Covariates, 447
(v) Analyses of Variance, 448
(vi) Tests of Hypotheses, 451
(vii)Summary, 453

b. The One-Way Classification, 454
(i) A Single Regression, 454
(ii) Example, 459
(iii) The Intra-Class Regression Model, 464
(iv) Continuation of Example 1, 467
(v) Another Example, 470

c. The Two-Way Classification (With Interaction), 470
3. Data Having All Cells Filled, 474

a. Estimating Missing Observations, 475
b. Setting Data Aside, 478
c. Analysis of Means, 479

(i) Unweighted Means Analysis, 479
(ii) Example, 482
(iii) Weighted Squares of Means, 484
(iv) Continuation of Example, 485

d. Separate Analyses, 487
4. Exercises, 487

9. Introduction to Variance Components 493

1. Fixed and Random Models, 493
a. A Fixed-Effects Model, 494
b. A Random-Effects Model, 494
c. Other Examples, 496

(i) Of Treatments and Varieties, 496
(ii) Of Mice and Men, 496
(iii) Of Cows and Bulls, 497

2. Mixed Models, 497
(i) Of Mice and Diets, 497
(ii) Of Treatments and Crosses, 498
(iii) On Measuring Shell Velocities, 498
(iv) Of Hospitals and Patients, 498

3. Fixed or Random, 499
4. Finite Populations, 500
5. Introduction to Estimation, 500

a. Variance Matrix Structures, 501
b. Analyses of Variance, 502
c. Estimation, 504

6. Rules for Balanced Data, 507
a. Establishing Analysis of Variance Tables, 507

(i) Factors and Levels, 507
(ii) Lines in the Analysis of Variance Table, 507
(iii) Interactions, 508



CONTENTS xiii

(iv) Degrees of Freedom, 508
(v) Sums of Squares, 508

b. Calculating Sums of Squares, 510
c. Expected Values of Mean Squares, E(MS), 510

(i) Completely Random Models, 510
(ii) Fixed Effects and Mixed Models, 511

7. The Two-Way Classification, 512
a. The Fixed-Effects Model, 515
b. Random-Effects Model, 518
c. The Mixed Model, 521

8. Estimating Variance Components from Balanced Data, 526
a. Unbiasedness and Minimum Variance, 527
b. Negative Estimates, 528

9. Normality Assumptions, 530
a. Distribution of Mean Squares, 530
b. Distribution of Estimators, 532
c. Tests of Hypothesis, 533
d. Confidence Intervals, 536
e. Probability of Negative Estimates, 538
f. Sampling Variances of Estimators, 539

(i) Derivation, 539
(ii) Covariance Matrix, 540
(iii) Unbiased Estimation, 541

10. Other Ways to Estimate Variance Components, 542
a. Maximum Likelihood Methods, 542

(i) The Unrestricted Maximum Likelihood Estimator, 542
(ii) Restricted Maximum Likelihood Estimator, 544
(iii) The Maximum Likelihood Estimator in the Two-Way

Classification, 544
b. The MINQUE, 545

(i) The Basic Principle, 545
(ii) The MINQUE Solution, 549
(iii) A priori Values and the MIVQUE, 550
(iv) Some Properties of the MINQUE, 552
(v) Non-negative Estimators of Variance Components, 553

c. Bayes Estimation, 554
(i) Bayes Theorem and the Calculation of a Posterior

Distribution, 554
(ii) The Balanced One-Way Random Analysis of Variance

Model, 557
11. Exercises, 557

10. Methods of Estimating Variance Components from
Unbalanced Data 563

1. Expectations of Quadratic Forms, 563
a. Fixed-Effects Models, 564



xiv CONTENTS

b. Mixed Models, 565
c. Random-Effects Models, 566
d. Applications, 566

2. Analysis of Variance Method (Henderson’s Method 1), 567
a. Model and Notation, 567
b. Analogous Sums of Squares, 568

(i) Empty Cells, 568
(ii) Balanced Data, 568
(iii) A Negative “Sum of Squares”, 568
(iv) Uncorrected Sums of Squares, 569

c. Expectations, 569
(i) An Example of a Derivation of the Expectation of a Sum of

Squares, 570
(ii) Mixed Models, 573
(iii) General Results, 574
(iv) Calculation by “Synthesis”, 576

d. Sampling Variances of Estimators, 577
(i) Derivation, 578
(ii) Estimation, 581
(iii) Calculation by Synthesis, 585

3. Adjusting for Bias in Mixed Models, 588
a. General Method, 588
b. A Simplification, 588
c. A Special Case: Henderson’s Method 2, 589

4. Fitting Constants Method (Henderson’s Method 3), 590
a. General Properties, 590
b. The Two-Way Classification, 592

(i) Expected Values, 593
(ii) Estimation, 594
(iii) Calculation, 594

c. Too Many Equations, 595
d. Mixed Models, 597
e. Sampling Variances of Estimators, 597

5. Analysis of Means Methods, 598
6. Symmetric Sums Methods, 599
7. Infinitely Many Quadratics, 602
8. Maximum Likelihood for Mixed Models, 605

a. Estimating Fixed Effects, 606
b. Fixed Effects and Variance Components, 611
c. Large Sample Variances, 613

9. Mixed Models Having One Random Factor, 614
10. Best Quadratic Unbiased Estimation, 620

a. The Method of Townsend and Searle (1971) for a Zero Mean, 620
b. The Method of Swallow and Searle (1978) for a Non-Zero

Mean, 622



CONTENTS xv

11. Shrinkage Estimation of Regression Parameters and Variance
Components, 626
a. Shrinkage Estimators, 626
b. The James–Stein Estimator, 627
c. Stein’s Estimator of the Variance, 627
d. A Shrinkage Estimator of Variance Components, 628

12. Exercises, 630

References 633

Author Index 645

Subject Index 649





PREFACE

I was both honored and humbled when, in November 2013, Stephen Quigley, then an
associate publisher for John Wiley & Sons, now retired, asked me whether I would
like to prepare a second edition of Searle’s Linear Models. The first edition was
my textbook when I studied linear models as a graduate student in statistics at the
University of Rochester during the seventies. It has served me well as an important
reference since then. I hope that this edition represents an improvement in the content,
presentation, and timeliness of this well-respected classic. Indeed, Linear Models is
a basic and very important tool for statistical analysis. The content and the level
of this new edition is the same as the first edition with a number of additions and
enhancements. There are also a few changes.

As pointed out in the first edition preface, the prerequisites for this book include a
semester of matrix algebra and a year of statistical methods. In addition, knowledge
of some of the topics in Gruber (2014) and Searle (2006) would be helpful.

The first edition had 11 chapters. The chapters in the new edition correspond
to those in the first edition with a few changes and some additions. A short intro-
ductory chapter, Introduction and Overview is added at the beginning. This chap-
ter gives a brief overview of what the entire book is about. Hopefully, this will
give the reader some insight as to why some of the topics are taken up where
they are. Chapters 1–10 are with additions and enhancements, the same as those of
the first edition. Chapter 11, a list of formulae for estimating variance components
in an unbalanced model is exactly as it was presented in the first edition. There
are no changes in Chapter 11. This Chapter is available at the book’s webpage
www.wiley.com\go\Searle\LinearModels2E.

Here is how the content of Chapters 1–10 has been changed, added to, or enhanced.

xvii

http://www.wiley.com\go\Searle\LinearModels2E


xviii PREFACE

In Chapter 1, the following topics have been added to the discussion of generalized
inverses:

1. The singular value decomposition;

2. A representation of the Moore–Penrose inverse in terms of the singular value
decomposition;

3. A representation of any generalized inverse in terms of the Moore–Penrose
inverse;

4. A discussion of reflexive, least-square generalized, and minimum norm gener-
alized inverses with an explanation of the relationships between them and the
Moore–Penrose inverse.

The content of Chapter 2 is the same as that of the first edition with the omission
of the section on singular normal distributions. Here, the reference is given to the first
edition.

Chapter 3 has a number of additions and enhancements. Reviewers of the first
edition claimed that the Gauss–Markov theorem was not discussed there. Actually,
it was but not noted as such. I gave a formal statement and proof of this important
result. I also gave an extension of the Gauss–Markov theorem to models where the
parameters were random variables. This leads to a discussion of ridge-type estimators.

As was the case in the first edition, many of the numerical illustrations in Chapters
3–8 use hypothetical data. However, throughout the rest of the book, I have added
some illustrative examples using real or simulated data collected from various sources.
I have given SAS and R output for these data sets. In most cases, I did include the
code. The advent of personal computers since the writing of the first edition makes
this more relevant and easier to do than in 1971. When presenting hypothesis tests and
confidence intervals, the notion of using p-values, as well as acceptance or rejection
regions, was used. I made mention of how to calculate these values or obtain critical
regions using graphing calculators like the TI 83 or 84. These enhancements were
also made in the later chapters where appropriate.

Chapter 4 was pretty much the same as in the first edition with some changes in
the exercises to make them more specific as opposed to being open-ended.

In addition to some of the enhancements mentioned for Chapter 3, Chapter 5
contains the following additional items:

1. Alternative definitions of estimable functions in terms of the singular value
decomposition;

2. A formal statement and proof of the Gauss–Markov theorem for the non-full
rank model using a Lagrange multiplier argument;

3. Specific examples using numbers in matrices of tests for estimability;

4. An example of how for hypothesis involving non-estimable functions using
least-square estimators derived from different generalized inverses will yield
different F-statistics.



PREFACE xix

In addition to the material of the first edition, Chapter 6 contains the following
new items:

1. A few examples for the balanced case;

2. Some examples with either small “live” or simulated data sets;

3. A discussion of and examples of multiple comparisons, in particular Bonferonni
and Scheffe simultaneous confidence intervals;

4. A discussion of the robustness of assumptions of normality, equal variances,
and independent observations in analysis of variance;

5. Some non-parametric procedures for dealing with non-normal data;

6. A few examples illustrating the use of the computer packages SAS and R.

These items are also given for the two-way models that are considered in Chapter 7.
In addition, an explanation of the difference between the Type I and Type III sum of
squares in SAS is included. This is of particular importance for unbalanced data.

Chapter 8 presents three topics—missing values, analysis of covariance, and large-
scale survey data. The second edition contains some numerical examples to illustrate
why doing analysis considering covariates is important.

Chapter 9, in addition to the material in the first edition:

1. Illustrates “brute force” methods for computing expected mean squares in
random and mixed models;

2. Clarifies and gives examples of tests of significance for variance components;

3. Presents and gives examples of the MINQUE, Bayes, and restricted Bayes
estimator for estimating the variance components.

New in Chapter 10 are:

1. More discussion and examples of the MINQUE;

2. The connection between the maximum likelihood method and the best linear
unbiased predictor.

3. Shrinkage methods for the estimation of variance components.

The references are listed after Chapter 10. They are all cited in the text. Many
of them are new to the second edition and of course more recent. The format of the
bibliography is the same as that of the first edition.

Chapter 11, the statistical tables from the first edition, and the answers to
selected exercises are contained on the web page www.wiley.com\go\Searle\
LinearModels2E. A solutions manual containing the solutions to all of the exercises
is available to instructors using this book as a text for their course.

There are about 15% more exercises than in the first edition. Many of the exercises
are those of the first edition, in some cases reworded to make them clearer and less
open-ended.

http://www.wiley.com\go\Searle\LinearModels2E


xx PREFACE

The second edition contains more numerical examples and exercises than the first
edition. Numerical exercises appear before the theoretical ones at the end of each
chapter.

For the most part, notations are the same as those in the first edition. Letters
in equations are italic. Vectors and matrices are boldfaced. With hopes of making
reading easier, many of the longer sentences have been broken down to two or three
simpler sentences. Sections containing material not in the first edition has been put
in between the original sections where I thought it appropriate.

The method of numbering sections is the same as in the first edition using Arabic
numbers for sections, lower case letters for sub-sections, and lower case roman
numerals for sub-sub sections. Unlike the first edition, examples are numbered within
each chapter as Example 1, Example 2, Example 3, etc., the numbering starting fresh
in each new chapter. Examples end with □, formal proofs with ■. Formal definitions
are in boxes.

I hope that I have created a second edition of this great work that is timely and
reader-friendly. I appreciate any comments the readers may have about this.

A project like this never gets done without the help of other people. There were
several members of the staff of John Wiley & Sons whom I would like to thank for
help in various ways. My sincere thanks to Stephen H. Quigley, former Associate
Publisher, for suggesting this project and for his helpful guidance during its early
stages. I hope that he is enjoying his retirement. I would also like to express my
gratitude to his successor Jon Gurstelle for his help in improving the timeliness of
this work. I am grateful to Sari Friedman and Allison McGinniss and the production
staff at Wiley for their work dealing with the final manuscript. In addition, I would like
to thank the production editors Danielle LaCourciere of Wiley and Suresh Srinivasan
of Aptara for the work on copyediting. Thanks are also due to Kathleen Pagliaro of
Wiley for her work on the cover. The efforts of these people certainly made this a
better book.

I would like to thank my teachers at the University of Rochester Reuben Gabriel,
Govind Mudolkhar, and Poduri Rao for introducing me to linear models.

Special thanks go to Michal Barbosu, Head of the School of Mathematical Sciences
at the Rochester Institute of Technology for helping to make SAS software available.
I am grateful to my colleague Nathan Cahill and his graduate student Tommy Keane
for help in the use of R statistical software.

I would like to dedicate this work to the memory of my parents Joseph and
Adelaide Gruber. They were always there to encourage me during my growing up
years and early adulthood.
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PREFACE TO FIRST EDITION

This book describes general procedures of estimation and hypothesis testing for linear
statistical models and shows their application for unbalanced data (i.e., unequal-
subclass-numbers data) to certain specific models that often arise in research and
survey work. In addition, three chapters are devoted to methods and results for
estimating variance components, particularly from unbalanced data. Balanced data
of the kind usually arising from designed experiments are treated very briefly, as just
special cases of unbalanced data. Emphasis on unbalanced data is the backbone of
the book, designed to assist those whose data cannot satisfy the strictures of carefully
managed and well-designed experiments.

The title may suggest that this is an all-embracing treatment of linear models.
This is not the case, for there is no detailed discussion of designed experiments.
Moreover, the title is not An Introduction to …, because the book provides more
than an introduction; nor is it … with Applications, because, although concerned
with applications of general linear model theory to specific models, few applications
in the form of-real-life data are used. Similarly, … for Unbalanced Data has also
been excluded from the title because the book is not devoted exclusively to such
data. Consequently the title Linear Models remains, and I believe it has brevity to
recommend it.

My main objective is to describe linear model techniques for analyzing unbalanced
data. In this sense the book is self-contained, based on prerequisites of a semester
of matrix algebra and a year of statistical methods. The matrix algebra required is
supplemented in Chapter 1, which deals with generalized inverse matrices and allied
topics. The reader who wishes to pursue the mathematics in detail throughout the
book should also have some knowledge of statistical theory. The requirements in
this regard are supplemented by a summary review of distributions in Chapter 2,

xxi
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extending to sections on the distribution of quadratic and bilinear forms and the
singular multinormal distribution. There is no attempt to make this introductory
material complete. It serves to provide the reader with foundations for developing
results for the general linear model, and much of the detail of this and other chapters
can be omitted by the reader whose training in mathematical statistics is sparse.
However, he must know Theorems 1 through 3 of Chapter 2, for they are used
extensively in succeeding chapters.

Chapter 3 deals with full-rank models. It begins with a simple explanation of
regression (based on an example) and proceeds to multiple regression, giving a
unified treatment for testing a general linear hypothesis. After dealing with various
aspects of this hypothesis and special cases of it, the chapter ends with sections on
reduced models and other related topics. Chapter 4 introduces models not of full rank
by discussing regression on dummy (0, 1) variables and showing its equivalence to
linear models. The results are well known to most statisticians, but not to many users
of regression, especially those who are familiar with regression more in the form of
computer output than as a statistical procedure. The chapter ends with a numerical
example illustrating both the possibility of having many solutions to normal equations
and the idea of estimable and non-estimable functions.

Chapter 5 deals with the non-full-rank model, utilizing generalized inverse matri-
ces and giving a unified procedure for testing any testable linear hypothesis. Chapters
6 through 8 deal with specific cases of this model, giving many details for the analysis
of unbalanced data. Within these chapters there is detailed discussion of certain topics
that other books tend to ignore: restrictions on models and constraints on solutions
(Sections 5.6 and 5.7); singular covariance matrices of the error terms (Section 5.8);
orthogonal contrasts with unbalanced data (Section 5.5g); the hypotheses tested by F-
statistics in the analysis of variance of unbalanced data (Sections 6.4f, 7.1g, and 7.2f);
analysis of covariance for unbalanced data (Section 8.2); and approximate analyses
for data that are only slightly unbalanced (Section 8.3). On these and other topics,
I have tried to coordinate some ideas and make them readily accessible to students,
rather than continuing to leave the literature relatively devoid of these topics or, at
best, containing only scattered references to them. Statisticians concerned with ana-
lyzing unbalanced data on the basis of linear models have talked about the difficulties
involved for many years but, probably because the problems are not easily resolved,
little has been put in print about them. The time has arrived, I feel, for trying to fill
this void. Readers may not always agree with what is said, indeed I may want to alter
some things myself in due time but, meanwhile, if this book sets readers to thinking
and writing further about these matters, I will feel justified. For example, there may
be criticism of the discussion of F-statistics in parts of Chapters 6 through 8, where
these statistics are used, not so much to test hypotheses of interest (as described
in Chapter 5), but to specify what hypotheses are being tested by those F-statistics
available in analysis of variance tables for unbalanced data. I believe it is important
to understand what these hypotheses are, because they are not obvious analogs of the
corresponding balanced data hypotheses and, in many cases, are relatively useless.

The many numerical illustrations and exercises in Chapters 3 through 8 use hypo-
thetical data, designed with easy arithmetic in mind. This is because I agree with
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C. C. Li (1964) who points out that we do not learn to solve quadratic equations by
working with something like

683125x2 + 1268.4071x − 213.69825 = 0

just because it occurs in real life. Learning to first solve x2 + 3x + 2 = 0 is far more
instructive. Whereas real-life examples are certainly motivating, they usually involve
arithmetic that becomes as cumbersome and as difficult to follow as is the algebra
it is meant to illustrate. Furthermore, if one is going to use real-life examples, they
must come from a variety of sources in order to appeal to a wide audience, but the
changing from one example to another as succeeding points of analysis are developed
and illustrated brings an inevitable loss of continuity. No apology is made, therefore,
for the artificiality of the numerical examples used, nor for repeated use of the same
example in many places. The attributes of continuity and of relatively easy arithmetic
more than compensate for the lack of reality by assuring that examples achieve their
purpose, of illustrating the algebra.

Chapters 9 through 11 deal with variance components. The first part of Chapter
9 describes random models, distinguishing them from fixed models by a series of
examples and using the concepts, rather than the details, of the examples to make
the distinction. The second part of the chapter is the only occasion where balanced
data are discussed in depth: not for specific models (designs) but in terms of proce-
dures applicable to balanced data generally. Chapter 10 presents methods currently
available for estimating variance components from unbalanced data, their proper-
ties, procedures, and difficulties. Parts of these two chapters draw heavily on Searle
(1971). Finally, Chapter 11 catalogs results derived by applying to specific models
some of the methods described in Chapter 10, gathering together the cumbersome
algebraic expressions for variance component estimators and their variances in the
1-way, 2-way nested, and 2-way crossed classifications (random and mixed mod-
els), and others. Currently these results are scattered throughout the literature. The
algebraic expressions are themselves so lengthy that there would be little advantage
in giving numerical illustrations. Instead, extra space has been taken to typeset the
algebraic expressions in as readable a manner as possible.

All chapters except the last have exercises, most of which are designed to encourage
the student to reread the text and to practice and become thoroughly familiar with
the techniques described. Statisticians, in their consulting capacity, are much like
lawyers. They do not need to remember every technique exactly, but must know
where to locate it when needed and be able to understand it once found. This is
particularly so with the techniques of unbalanced data analysis, and so the exercises
are directed towards impressing on the reader the methods and logic of establishing
the techniques rather than the details of the results themselves. These can always be
found when needed.

No computer programs are given. This would be an enormous task, with no
certainty that such programs would be optimal when written and even less chance
by the time they were published. While the need for good programs is obvious, I
think that a statistics book is not the place yet for such programs. Computer programs
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printed in books take on the aura of quality and authority, which, even if valid initially,
soon becomes outmoded in today’s fast-moving computer world.

The chapters are long, but self-contained and liberally sign-posted with sections,
subsections, and sub-subsections—all with titles (see Contents).

My sincere thanks go to many people for helping with the book: the Institute of
Statistics at Texas A. and M. University which provided me with facilities during a
sabbatical leave (1968–1969) to do most of the initial writing; R. G. Cornell, N. R.
Draper, and J. S. Hunter, the reviewers of the first draft who made many helpful
suggestions; and my colleagues at Cornell who encouraged me to keep going. I also
thank D. F. Cox, C. H. Goldsmith, A. Hedayat, R. R. Hocking, J. W. Rudan, D. L.
Solomon, N. S. Urquhart, and D. L. Weeks for reading parts of the manuscript and
suggesting valuable improvements. To John W. Rudan goes particular gratitude for
generous help with proof reading. Grateful thanks also go to secretarial help at both
Texas A. and M. and Cornell Universities, who eased the burden enormously.

S. R. Searle

Ithaca, New York
October, 1970
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INTRODUCTION AND OVERVIEW

There are many practical real-world problems in many different disciplines where
analysis using linear models is appropriate. We shall give several examples of such
problems in this chapter as a motivation for the material in the succeeding chapters.

Suppose we consider personal consumption expenditures (y) in billions of dollars
as a function of gross national product (x). Here are some data taken from the
Economic Report of the President, 2015.

Year x y

2005 13,093.7 8,794.1
2006 13,855.9 9,304.0
2007 14,477.6 9,750.5
2008 14,718.6 10,013.6
2009 14,418.7 9,847.0
2010 14,964.4 10,202.2
2011 15,517.9 10,689.3
2012 16,163.2 11,083.1
2013 16,768.1 11,484.3
2014 17,420.7 11,928.4

Here is a scatterplot.

Linear Models, Second Edition. Shayle R. Searle and Marvin H. J. Gruber.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.
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Scatterplot of y vs. x
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The scatterplot suggests that a straight-line model y = a + bx might be appropriate.
The best fitting straight-line y = –804.9 + 0.73412x accounts for 99.67% of the
variation.

Suppose we have more independent variables, say x2 (personal income in billions
of dollars) and x3 (the total number of employed people in the civilian labor force in
thousands). The appropriate model might take the form (with x1 the same as x before)

y = b0 + b1x1 + b2x2 + b3x3 + e,

where e is an error term.
More generally, we will be considering models of the form

y = Xb + e,

where y is an N-dimensional vector of observations, X is an N × (k + 1) matrix of the
form

[
1N X1

]
where 1N is an n-dimensional vector of 1’s and X1 is an N × k matrix

of values of the independent variables, b is a (k + 1)-dimensional vector of regression
parameters to be estimated, and e is an N × 1 error vector. The estimators of b that
we shall study most of the time will be least square estimators. These estimators
minimize

F(b) = (Y − Xb)′(Y − Xb).

We will show in Chapter 3 that, for full-rank matrices X, they take the form

b̂ = (X′X)−1X′y.

When X is not of full rank, the least-square estimators take the form

b̂ = GX′y,
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where G is a generalized inverse X′X. We shall define generalized inverses and study
their properties extensively in Chapter 1. We shall study the non-full-rank model in
Chapter 5 and use the material presented there in the succeeding chapters.

In order to be able to make inferences about the regression parameters, for exam-
ple, to find confidence intervals or perform hypothesis tests about them, we shall
need the properties of the normal distribution and the distributions of functions of
normal random variables. We shall study these distributions and their properties in
Chapter 2.

Different forms of the X matrix will lead to different kinds of linear models for the
solution of different kinds of problems. We shall now give some examples of these.

Suppose we wish to compare the life lengths of four different brands of light bulbs
to see if there is a difference in their average life. For brands A, B, C, and D, we have
life lengths

A B C D

915 1011 989 1055
912 1001 979 1048
903 1003 1061

992

To represent the life lengths y we use dummy variables. We have x1 = 1 for an
observation from brand A and x1 = 0 for observations from brands B, C, and D.
Likewise, x2 = 1 for observations from brand B and x2 = 0 for observations from
brands A, C, and D. In a similar manner, x3 = 1 for observations from brand C and
x3 = 0 for observations from brands A, B, and D. Also x4 = 1 for observations from
brand D and x4 = 0 for observations from brands A, B, and C. The y’s are y11, y12,
and y13 for brand A; y21, y22, y23, and y24 for brand B; y31 and y32 for brand C; and
y41, y42, and y43 for brand D. If 𝜇 represents the intercept term we have that

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y11
y12
y13
y21
y22
y23
y24
y31
y32
y41
y42
y43

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 0 0 0
1 1 0 0 0
1 1 0 0 0
1 0 1 0 0
1 0 1 0 0
1 0 1 0 0
1 0 1 0 0
1 0 0 1 0
1 0 0 1 0
1 0 0 0 1
1 0 0 0 1
1 0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

𝜇

𝛽1
𝛽2
𝛽3
𝛽4

⎤
⎥
⎥
⎥
⎥
⎦

+ e
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This is the familiar form:

y = Xb + e,

where b′ =
[
𝜇 𝛽1 𝛽2 𝛽3 𝛽4

]
. The normal equations X′Xb = X′y would be

⎡
⎢
⎢
⎢
⎢
⎣

12 3 4 2 3
3 3 0 0 0
4 0 4 0 0
2 0 0 2 0
3 0 0 0 3

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

�̂�

𝛽1
𝛽2
𝛽3
𝛽4

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

y..
y1.
y2.
y3.
y4.

⎤
⎥
⎥
⎥
⎥
⎦

or with numbers in non-matrix form

12�̂� + 3𝛽1 + 4𝛽2 + 2𝛽3 + 3𝛽4 = 11869
3�̂� + 3𝛽1 = 2730
4�̂� + 4𝛽2 = 4007
2�̂� + 2𝛽3 = 1968
3�̂� + 3𝛽4 = 3164

The X matrix here is of non-full rank so the system of equations has infinitely many
solutions. To obtain solutions, we need to obtain a generalized inverse of X′X. There
are infinitely many of them. They will be characterized in Chapters 1, 5, and 6.
To determine which brands of light bulbs are different, we will have to conduct an
analysis of variance to compare the mean life of the brands.

Actually there are two ways this experiment could be performed. One would be
to just take specific brands. In this case, we would compare the mean life of the
brands and make inferences about them. The other way would be to pick four brands
of bulbs at random of each brand at random from many available bands. For this
method, inferences would be about the variance components 𝜎2

𝛽
because now the

parameters would be random variables. We shall study methods of estimating and
making inferences about variance components in Chapters 9 and 10.

We can also have mixed models where some of the effects are fixed effects and
some of the effects are random effects. Such a model would take the form

y = X𝜷 + Z𝜸 + e,

where the 𝛽′s are fixed parameter values and the 𝛾’s are random variables.
There are other situations where we would use a model of the form

y = X𝜷 + Z𝜸 + e,

where X is a matrix of 0’s and 1’s representing different factors and treatments and Z
is numerical values of some quantity. The 𝛽′s and the 𝛾’s are fixed parameter values.
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For example, we could compare the weight loss of three groups of 10 people of three
different reducing diets. The X matrix would consist of 0’s and 1’s using dummy
variables. The Z matrix might contain information like the height and the weight of
the 30 subjects before starting on the diets. Such variables are called covariates. In
Chapter 8, we shall study the tool for analyzing such data, analysis of covariance.

Most of the time we will estimate parameters of linear models by least squares.
However, there are situations where least-square estimators are not the best. This
happens when the independent variables are highly correlated and the X′X matrix is
almost but not quite singular. Such data are called multicollinear and the least-square
estimator may be very imprecise. One way to deal with such data is to use ridge
regression. We shall discuss ridge-regression-type estimators in Chapter 3 and at
other appropriate places in the text.

We begin by summarizing material on generalized inverses to be used in the later
chapters.





1
GENERALIZED INVERSE MATRICES

1. INTRODUCTION

Generalized inverse matrices are an important and useful mathematical tool for under-
standing certain aspects of the analysis procedures associated with linear models,
especially the analysis of unbalanced data for non-full rank models. The analysis of
unbalanced data and non-full rank models is of special importance and thus receives
considerable attention in this book. Therefore, it is appropriate that we summarize
the features of generalized inverses that are important to linear models. We will also
discuss other useful and interesting results in matrix algebra.

We will frequently need to solve systems of equations of the form Ax = y where
A is an m × n matrix. When m = n and A is nonsingular, the solution takes the form
x = A−1y.

For a consistent system of equations where m may not equal n, or for square sin-
gular matrices, there exist matrices G where x = Gy. These matrices are generalized
inverses.

Example 1 Need for Generalized Inverses
Consider the system of equations

5x1 + 3x2 + 2x3 = 50
3x1 + 3x2 = 30
2x1 + 2x3 = 20

Linear Models, Second Edition. Shayle R. Searle and Marvin H. J. Gruber.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.

7
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or in matrix format

⎡
⎢
⎢
⎣

5 3 2
3 3 0
2 0 2

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

x1
x2
x3

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

50
30
20

⎤
⎥
⎥
⎦

Notice that the coefficient matrix is not of full rank. Indeed, the second and third
rows add up to the first row. Solutions of this system include

⎡
⎢
⎢
⎣

x1
x2
x3

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

0 0 0
0 1

3
0

0 0 1
2

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎣

50
30
20

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

0
10
10

⎤
⎥
⎥
⎦

,

⎡
⎢
⎢
⎣

x1
x2
x3

⎤
⎥
⎥
⎦

= 1
54

⎡
⎢
⎢
⎣

5 1 4
1 11 −10
4 −10 14

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

50
30
20

⎤
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

20
3
10
3
10
3

⎤
⎥
⎥
⎥
⎥
⎦

and infinitely many others. Each of the 3 × 3 matrices in the above solutions is
generalized inverses. □

a. Definition and Existence of a Generalized Inverse

In this book, we define a generalized inverse of a matrix A as any matrix G that
satisfies the equation

AGA = A. (1)

The reader may verify that the 3 × 3 matrices in the solutions to the system in
Example 1 satisfies (1) and are thus, generalized inverses.

The name “generalized inverse” for matrices G defined by (1) is unfortunately
not universally accepted. Names such as “conditional inverse,” “pseudo inverse,”
and “g-inverse” are also to be found in the literature. Sometimes, these names refer
to matrices defined as is G in (1) and sometimes to matrices defined as variants
of G. However, throughout this book, we use the name “generalized inverse” of A
exclusively for any matrix G satisfying (1).

Notice that (1) does not define G as “the” generalized inverse of A but as “a”
generalized inverse of A. This is because G, for a given matrix, A is not unique. As
we shall show below there is an infinite number of matrices G that satisfy (1). Thus,
we refer to the whole class of them as generalized inverses of A.

Notice that in Example 1, we gave two generalized inverses of the coefficient
matrix of the system of equations. Lots more could have been found.

There are many ways to find generalized inverses. We will give three here.
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The first starts with the equivalent diagonal form of A. If A has order p × q, the
reduction to this diagonal form can be written as

Pp×pAp×qQq×q = 𝚫p×q ≡

[
Dr×r 0r×(q−r)

0(p−r)×r 0(p−r)×(q−r)

]

or more simply as

PAQ = 𝚫 =
[

Dr 0
0 0

]

(2)

As usual, P and Q are products of elementary operators (see Searle, 1966, 2006,
or Gruber, 2014). The matrix A has rank r and Dr is a diagonal matrix of order r. In
general, if d1, d2,… , dr are the diagonal elements of any diagonal matrix D, we will
use the notation D{di}for Dr; that is,

Dr ≡

⎡
⎢
⎢
⎢
⎣

d1 0 ⋯ 0
0 d2 ⋯ 0

⋱ ⋮
0 ⋯ 0 dr

⎤
⎥
⎥
⎥
⎦

≡ diag{di} = D{di} for i = 1,… , r. (3)

Furthermore, as in Δ, the symbol 0 will represent null matrices with order being
determined by the context on each occasion.

Derivation of G comes easily from Δ. Analogous to Δ, we define Δ− (to be read
Δ minus) as

𝚫− =
[

D−1
r 0
0 0

]

.

Then as shown below

G = Q𝚫−P (4)

satisfies (1) and is thus a generalized inverse. The generalized inverse G as given by
(4) is not unique, because neither P nor Q by their definition is unique, neither is Δ
or Δ−, and therefore G = QΔ−P is not unique.

Before showing that G does satisfy (1), note from the definitions of Δ and Δ−

given above that

𝚫𝚫−𝚫 = 𝚫. (5)

Hence, by the definition implied in (1), we can say that Δ− is a generalized inverse
of Δ. While this is an unimportant result in itself, it enables us to establish that G,
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as defined in (3), is indeed a generalized inverse of A. To show this, observe that
from (2),

A = P−1𝚫Q−1. (6)

The inverses of P and Q exist because P and Q are products of elementary matrices
and are, as a result, nonsingular. Then from (4), (5), and (6), we have,

AGA = P−1𝚫Q−1Q𝚫−PP−1𝚫Q−1 = P−1𝚫𝚫−𝚫Q−1 = P−1𝚫Q−1 = A. (7)

Thus, (1) is satisfied and G is a generalized inverse of A.

Example 2 Obtaining a Generalized Inverse by Matrix Diagonalization
For

A =
⎡
⎢
⎢
⎣

4 1 2
1 1 5
3 1 3

⎤
⎥
⎥
⎦

,

a diagonal form is obtained using

P =
⎡
⎢
⎢
⎣

0 1 0
1 −4 0
− 2

3
− 1

3
1

⎤
⎥
⎥
⎦

and Q =
⎡
⎢
⎢
⎣

1 −1 1
0 1 −6
0 0 1

⎤
⎥
⎥
⎦

.

Thus,

PAQ = 𝚫 =
⎡
⎢
⎢
⎣

1 0 0
0 −3 0
0 0 0

⎤
⎥
⎥
⎦

and 𝚫− =
⎡
⎢
⎢
⎣

1 0 0
0 − 1

3
0

0 0 0

⎤
⎥
⎥
⎦

.

As a result,

G = Q𝚫−P = 1
3

⎡
⎢
⎢
⎣

1 −1 0
−1 4 0
0 0 0

⎤
⎥
⎥
⎦

.

The reader may verify that AGA = A. □

It is to be emphasized that generalized inverses exist for rectangular matrices as
well as for square ones. This is evident from the formulation of 𝚫p×q. However, for
A of order p × q, we define 𝚫− as having order q × p, the null matrices therein being
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of appropriate order to make this so. As a result, the generalized inverse G has order
q × p.

Example 3 Generalized Inverse for a Matrix That Is Not Square
Consider

B =
⎡
⎢
⎢
⎣

4 1 2 0
1 1 5 15
3 1 3 5

⎤
⎥
⎥
⎦

the same A in the previous example with an additional column With P as given in
Example 2 and Q now taken as

Q =
⎡
⎢
⎢
⎢
⎣

1 −1 1 5
0 1 −6 −20
0 0 1 0
0 0 0 1

⎤
⎥
⎥
⎥
⎦

and PBQ = 𝚫 =
⎡
⎢
⎢
⎣

1 0 0 0
0 −3 0 0
0 0 0 0

⎤
⎥
⎥
⎦

.

We then have

𝚫− =

⎡
⎢
⎢
⎢
⎢
⎣

1 0 0

0 − 1
3

0

0 0 0
0 0 0

⎤
⎥
⎥
⎥
⎥
⎦

so that G = Q𝚫−P =

⎡
⎢
⎢
⎢
⎢
⎣

1
3

− 1
3

0

− 1
3

4
3

0

0 0 0
0 0 0

⎤
⎥
⎥
⎥
⎥
⎦

.

□

b. An Algorithm for Obtaining a Generalized Inverse

The algorithm is based on knowing or first finding the rank of the matrix. We present
the algorithm first and then give a rationale for why it works. The algorithm goes as
follows:

1. In A of rank r, find any non-singular minor of order r. Call it M.

2. Invert M and transpose the inverse to obtain (M−1)′.

3. In A, replace each element of M by the corresponding element of (M−1)′.

4. Replace all other elements of A by zero.

5. Transpose the resulting matrix.

The result is a generalized inverse of A. Observe that different choices of the minor
of rank r will give different generalized inverses of A.
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Example 4 Computing a Generalized Inverse using the Algorithm
Let

A =
⎡
⎢
⎢
⎣

1 2 5 2
3 7 12 4
0 1 −3 −2

⎤
⎥
⎥
⎦

.

The reader may verify that all of the 3 × 3 sub-matrices of A have determinant
zero while the 2 × 2 sub-matrices have non-zero determinants. Thus, A has rank 2.
Consider

M =
[

1 2
3 7

]

.

Then

M−1 =
[

7 −2
−3 1

]

and

(M−1)′ =
[

7 −3
−2 1

]

.

Now write the matrix

H =
⎡
⎢
⎢
⎣

7 −3 0 0
−2 1 0 0
0 0 0 0

⎤
⎥
⎥
⎦

Then the generalized inverse

G = H′ =
⎡
⎢
⎢
⎢
⎣

7 −2 0
−3 1 0
0 0 0
0 0 0

⎤
⎥
⎥
⎥
⎦

.

By a similar process, taking

M =
[

12 4
−3 −2

]

,
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another generalized inverse of A is

G̃ =

⎡
⎢
⎢
⎢
⎢
⎣

0 0 0
0 0 0
0 1

6
1
3

0 − 1
4

−1

⎤
⎥
⎥
⎥
⎥
⎦

.

The reader may, if he/she wishes, construct other generalized inverses using 2 × 2
sub-matrices with non-zero determinant. □

We now present the rationale for the algorithm. Suppose A can be partitioned in
such a way that its leading r × r minor is non-singular, that is,

Ap×q =
[

A11 A12
A21 A22

]

,

where A11 is r × r of rank r. Then a generalized inverse of A is

Gq×p =

[
A−1

11 0

0 0

]

,

where the null matrices are of appropriate order to make G a q × p matrix. To see
that G is a generalized inverse of A, note that

AGA =

[
A11 A12

A21 A21A−1
11 A12

]

.

Now since A is of rank r, the rows are linearly dependent. Thus, for some matrix
K [ A21 A22 ] = K[ A11 A12 ]. Specifically K = A21A−1

11 and so A22 = KA12 =
A21A−1

11 A12. Hence, AGA = A and G is a generalized inverse of A.
There is no need for the non-singular minor to be in the leading position. Let R

and S represent the elementary row and column operations, respectively, to bring it
to the leading position. Then R and S are products of elementary operators with

RAS = B =
[

B11 B12
B21 B22

]

(8)

where B11 is non-singular of order r. Then

F =

[
B−1

11 0

0 0

]
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is a generalized inverse of B and Gq×p = SFR is a generalized inverse of A.
From (8),

A = R−1BS−1.

Then

AGA = R−1BS−1SFRR−1BS−1 = R−1BFBS−1 = R−1BS−1 = A.

Now R and S are products of elementary operators that exchange rows and
columns. Such matrices are identity matrices with rows and columns interchanged.
Such matrices are known as permutation matrices and are orthogonal. Thus, we have
that R = I with its rows in a different sequence, a permutation matrix and R′R = I.
The same is true for S and so from (8), we have that

A = R′BS′ = R′
[

B11 B12
B21 B22

]

S′. (9)

As far as B11 is concerned, the product in (9) represents the operations of returning
the elements of B11 to their original position in A. Now consider G. We have

G = SFR = (R′F′S′)′ =

{

R′

[
(B−1

11 )′ 0

0 0

]

S′

}

In this, analogous to the form of A = R′BS′ the product involving R′ and S′ in G′

represents putting the elements of (B−1
11 )′ into the corresponding positions of G′ that

the elements of B11 occupied in A. This is what motivates the algorithm.

c. Obtaining Generalized Inverses Using the Singular Value
Decomposition (SVD)

Let A be a matrix of rank r. Let𝚲 be r × r the diagonal matrix of non-zero eigenvalues
of A′A and AA′ ordered from largest to smallest. The non-zero eigenvalues of
A′A and AA′ are the same (see p. 110 of Gruber (2014) for a proof). Then the
decomposition of

A =
[

S′ T′ ]
[
𝚲1∕2 0

0 0

] [
U′

V′

]

= S′𝚲1∕2U′, (10)

where [ S′ T′ ] and [ U V ] are orthogonal matrices, is the singular value decom-
position (SVD). The existence of this decomposition is established in Gruber (2014)
following Stewart (1963, p. 126). Observe that S′S + T′T = I, UU′ + VV′ = I, SS′ =
I, TT′ = I, S′T = 0, T′S = 0, UU′ = I, U′V = 0, and V′U = 0. Furthermore, A′A =
U𝚲U′ and AA′ = S′𝚲S. A generalized inverse of A then takes the form

G = U𝚲−1∕2S. (11)

Indeed, AGA = S′𝚲1∕2U′U𝚲−1∕2SS′𝚲1∕2U′ = S′𝚲1∕2U′ = A.
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Example 5 Finding a Generalized Inverse using the Singular Value Decomposition
Let

A =
⎡
⎢
⎢
⎢
⎣

1 1 0
1 1 0
1 0 1
1 0 1

⎤
⎥
⎥
⎥
⎦

Then,

A′A =
⎡
⎢
⎢
⎣

4 2 2
2 2 0
2 0 2

⎤
⎥
⎥
⎦

and AA′ =
⎡
⎢
⎢
⎢
⎣

2 2 1 1
2 2 1 1
1 1 2 2
1 1 2 2

⎤
⎥
⎥
⎥
⎦

.

To find the eigenvalues of A′A solve the equation

det
⎡
⎢
⎢
⎣

4 − 𝜆 2 2
2 2 − 𝜆 0
2 0 2 − 𝜆

⎤
⎥
⎥
⎦

= 0

or

𝜆3 − 8𝜆2 + 12𝜆 = 𝜆(𝜆 − 6)(𝜆 − 2) = 0

to get the eigenvalues 𝜆 = 6, 2, 0. Finding the eigenvectors by solving the systems
of equations

−2x1 + 2x2 + 2x3 = 0
2x1 − 4x2 = 0
2x1 − 4x3 = 0

2x1 + 2x2 + 2x3 = 0
2x1 = 0

4x1 + 2x2 + 2x3 = 0
2x1 + 2x2 = 0
2x1 + 2x3 = 0

yields a matrix of normalized eigenvectors of A′A,

[ U V ] =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

2
√

6
0 − 1

√
3

1
√

6
− 1

√
2

1
√

3
1
√

6

1
√

2

1
√

3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.
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By a similar process, the reader may show that the eigenvalues of AA′ are𝜆 = 6, 2, 0, 0
and that the matrix of eigenvectors is

[
S′ T′ ] =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
2

− 1
2

0 − 1
√

2
1
2

− 1
2

0 1
√

2
1
2

1
2

− 1
√

2
0

1
2

1
2

1
√

2
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Then the singular value decomposition of

A =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
2

− 1
2

0 − 1
√

2
1
2

− 1
2

0 1
√

2
1
2

1
2

− 1
√

2
0

1
2

1
2

1
√

2
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

√
6 0 0

0
√

2 0
0 0 0
0 0 0

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

2
√

6

1
√

6

1
√

6

0 − 1
√

2

1
√

2

− 1
√

3

1
√

3

1
√

3

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
2

− 1
2

1
2

− 1
2

1
2

1
2

1
2

1
2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

[√
6 0

0
√

2

]
⎡
⎢
⎢
⎣

2
√

6

1
√

6

1
√

6

0 − 1
√

2

1
√

2

⎤
⎥
⎥
⎦

and, as a result, the generalized inverse

G =

⎡
⎢
⎢
⎢
⎢
⎣

2
√

6
0

1
√

6

1
√

2
1
√

6
− 1

√
2

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎣

1
√

6
0

0 1
√

2

⎤
⎥
⎥
⎦

[ 1
2

1
2

1
2

1
2

− 1
2

− 1
2

1
2

1
2

]

=

⎡
⎢
⎢
⎢
⎢
⎣

1
6

1
6

1
6

1
6

1
3

1
3

− 1
6

− 1
6

− 1
6

− 1
6

1
3

1
3

⎤
⎥
⎥
⎥
⎥
⎦

.

□

These derivations of a generalized inverse matrix G are by no means the only
ways such a matrix can be computed. For matrices of small order, they can be
satisfactory, but for those of large order that might occur in the analysis of “big data,”
other methods might be preferred. Some of these are discussed subsequently. Most
methods involve, of course, the same kind of numerical problems as are incurred
in calculating the regular inverse A−1 of a non-singular matrix A. Despite this, the
generalized inverse has importance because of its general application to non-square
matrices and to square singular matrices. In the special case that A is non-singular,
G = A−1 as one would expect, and in this case, G is unique.
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The fact that A has a generalized inverse even when it is singular or rectangular
has particular application in the problem of solving equations, for example, of solving
Ax = y for x when A is singular or rectangular. In situations of this nature, the use
of a generalized inverse G, as we shall see, leads very directly to a solution in the
form x = Gy. This is of great importance in the study of linear models where such
equations arise quite frequently. For example, when we can write a linear model as
y = Xb + e, finding the least square estimator for estimating b leads to equations
X′Xb̂ = X′y where the matrix X′X is singular. Hence, we cannot write the solution
as (X′X)−1X′y. However, using a generalized inverse G of X′X, we can obtain the
solution directly in the form GX′y and study its properties.

For linear models, the use of generalized inverse matrices in solving linear equa-
tions is the application of prime interest. We now outline the resulting procedures.
Following this, we discuss some general properties of generalized inverses.

2. SOLVING LINEAR EQUATIONS

a. Consistent Equations

A convenient starting point from which to develop the solution of linear equations
using a generalized inverse is the definition of consistent equations.

Definition 1 The linear equations Ax = y are defined as being consistent if
any linear relationships existing among the rows of A also exist among the cor-
responding elements of y. In other words, t′A = 0 if and only if t′y = 0 for any
vector t.

As a simple example, the equations

[
1 2
3 6

] [
x1
x2

]

=
[

7
21

]

are consistent. The second row of the matrix on the left-hand side of the system is
the first row multiplied and on the right-hand side, of course 21 = 7(3). On the other
hand, the equations

[
1 2
3 6

] [
x1
x2

]

=
[

7
24

]

are inconsistent. The linear relationship between the rows of the matrix on the left-
hand side of the system does not hold true between 7 and 24. Moreover, you can
write out the two equations and show that 3 = 0.

The formal definition of consistent equations does not demand that linear rela-
tionships exist among the rows of A. However, if they do, then the definition does
require that the same relationships also exist among the corresponding elements of y
for the equations to be consistent. For example, when A is non-singular, the equations
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Ax = y are always consistent. There are no linear relationships among the rows of A
and therefore none that the elements of y must satisfy.

The importance of consistency lies in the following theorem. Linear equations can
be solved only if they are consistent. See, for example, Section 6.2 of Searle (1966)
or Section 7.2 of Searle and Hausman (1970) for a proof. Since only consistent
equations can be solved, discussion of a procedure for solving linear equations is
hereafter confined to equations that are consistent. The procedure is described in
Theorems 1 and 2 in Section 2b. Theorems 3–6 in Section 2c deal with the properties
of these solutions.

b. Obtaining Solutions

The link between a generalized inverse of the matrix A and consistent equations
Ax = y is set out in the following theorem adapted from C. R. Rao (1962).

Theorem 1 Consistent equations Ax = y have a solution x = Gy if and only if
AGA = A.

Proof. If the equations Ax = y are consistent and have x = Gy as a solution, write aj
for the jth column of A and consider the equations Ax = aj. They have a solution. It is
the null vector with its jth element set equal to unity. Therefore, the equations Ax =
aj are consistent. Furthermore, since consistent equations Ax = y have a solution x =
Gy, it follows that consistent equations Ax = aj have a solution x = Gaj. Therefore,

AGaj = aj and this is true for all values of j, that is, for all columns of A. Hence,
AGA = A.

Conversely, if AGA = A then AGAx = Ax, and when Ax = y substitution gives
A(Gy) = y. Hence, x = Gy is a solution of Ax = y and the theorem is proved.

Theorem 1 indicates how a solution to consistent equations may be obtained. Find
any generalized inverse of A, G, and then Gy is a solution. However, this solution is
not unique. There are, indeed, many solutions whenever A is anything but a square,
non-singular matrix. These are characterized in Theorem 2 and 3.

Theorem 2 If A has q columns and G is a generalized inverse of A, then the
consistent equations Ax = y have the solution

x̃ = Gy + (GA − I)z (12)

where z is any arbitrary vector of order q.

Proof. Since AGA = A, Ax̃ = AGy + (AGA − A)z = AGy = y, by Theorem 1.

There are as many solutions to (12) as there are choices of z and G. Thus, the
equation Ax = y has infinitely many solutions of the form (12).
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Example 6 Different Solutions to Ax = y for a particular A
Consider the equations Ax = y as

⎡
⎢
⎢
⎢
⎣

5 3 1 −4
8 5 2 3

21 13 5 2
3 2 1 7

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

x1
x2
x3
x4

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

6
8

22
2

⎤
⎥
⎥
⎥
⎦

, (13)

so defining A, x, and y. Using the algorithm developed in Section 1b with the 2 × 2
minor in the upper left-hand corner of A, it will be found that

G =
⎡
⎢
⎢
⎢
⎣

5 −3 0 0
−8 5 0 0
0 0 0 0
0 0 0 0

⎤
⎥
⎥
⎥
⎦

is a generalized inverse of A. The solution of the form (12) is

x̃ = Gy + (GA − I)z

=
⎡
⎢
⎢
⎢
⎣

6
−8
0
0

⎤
⎥
⎥
⎥
⎦

+
⎧
⎪
⎨
⎪
⎩

⎡
⎢
⎢
⎢
⎣

1 0 −1 −29
0 1 2 47
0 0 0 0
0 0 0 0

⎤
⎥
⎥
⎥
⎦

− I

⎫
⎪
⎬
⎪
⎭

⎡
⎢
⎢
⎢
⎣

z1
z2
z3
z4

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

6 − z3 − 29z4
−8 + 2z3 + 47z4

−z3
−z4

⎤
⎥
⎥
⎥
⎦

(14)

where z3 and z4 are arbitrary. This means that (13) is a solution to (12) no matter
what the given values of z3 and z4 are. For example putting z3 = z4 = 0 gives

x̃′1 =
[

6 −8 0 0
]

(15)

Setting z3 = –1 and z4 = 2 gives

x̃′2 =
[
−51 84 1 −2

]
. (16)

Both of the results in (15) and (16) can be shown to satisfy (13) by direct substi-
tution.

This is also true of the result in (14) for all z3 and z4.
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Again, using the algorithm in Section 1b, this time using the 2 × 2 minor in the
second and third row and column, we obtain the generalized inverse

Ġ =
⎡
⎢
⎢
⎢
⎣

0 0 0 0
0 −5 2 0
0 13 −5 0
0 0 0 0

⎤
⎥
⎥
⎥
⎦

.

Then (12) becomes

x = Gy + (GA − I)z

=
⎡
⎢
⎢
⎢
⎣

0
4
−6
0

⎤
⎥
⎥
⎥
⎦

+
⎧
⎪
⎨
⎪
⎩

⎡
⎢
⎢
⎢
⎣

0 0 0 0
2 1 0 −11
−1 0 1 29
0 0 0 0

⎤
⎥
⎥
⎥
⎦

− I

⎫
⎪
⎬
⎪
⎭

⎡
⎢
⎢
⎢
⎣

z1
z2
z3
z4

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

−ż1
4 + 2ż1 − 11ż4
−6 − ż1 + 29ż4

−ż4

⎤
⎥
⎥
⎥
⎦

(17)

for arbitrary values ż1 and ż4. The reader may show that this too satisfies (13). □

c. Properties of Solutions

One might ask about the relationship, if any, between the two solutions (14) and
(17) found by using the two generalized inverses G and Ġ. Both satisfy (13) for an
infinite number of sets of values of z3, z4 and ż1, ż4. The basic question is: do the two
solutions generate, though allocating different sets of values to the arbitrary values
z3 and z4 in x̃ and ż1 and ż4 in ẋ, the same series of vectors satisfying Ax = y? The
answer is “yes” because on substituting ż1 = −6 + z3 + 29z4 and ż4 = z4 into (17)
yields the solution in (14). Hence, (14) and (17) generate the same sets of solutions.

Likewise, the relationship between solutions using G and those using Ġ is that
on substituting z = (G − Ġ)y + (I − ̇GA)ż into (12) and noting by Theorem 1 that
GAGy = GAĠy x̃ reduces to ẋ.

A stronger result which concerns generation of all solutions from x̃ is contained
in the following theorem.

Theorem 3 For the consistent equations Ax = y, all solutions are, for any specific
G generated by x̃ = Gy + (GA − I)z for arbitrary z.

Proof. Let x∗ be any solution to Ax = y. Choose z = (GA − I)x∗. Then

x̃ = Gy + (GA − I)z = Gy + (GA − I)(GA − I)x∗

= Gy + (GAGA − GA − GA + I)x∗

= Gy + (I − GA)x∗ = Gy + x∗ − GAx∗

= Gy + x∗ − Gy = x∗

applying Theorem 1.
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The importance of this theorem is that we need to derive only one generalized
inverse of A to be able to generate all solutions to Ax = y. There are no solutions
other than those that can be generated from x̃.

Having established a method for solving linear equations and showing that they
can have an infinite number of solutions, we ask two questions:

(i) What relationships exist among the solutions?

(ii) To what extent are the solutions linearly independent (LIN)? (A discussion of
linear independence and dependence is available in Section 5 of Gruber (2014)
or any standard matrix or linear algebra textbook.)

Since each solution is a vector of order q, there can of course be no more than q
LIN solutions. In fact, there are fewer, as Theorem 4 shows.

Theorem 4 When A is a matrix of q columns and rank r, and when y is a non-null
vector, the number of LIN solutions to the consistent equations Ax = y is q – r + 1.

To establish this theorem we need the following Lemma.

Lemma 1 Let H = GA where the rank of A, denoted by r(A) is r, that is, r(A) = r;
and A has q columns. Then H is idempotent (meaning that H2 = H) with rank r and

r(I − H) = q − r.

Proof. To show that H is idempotent, notice that H2 = GAGA = GA = H. Further-
more, by the rule for the rank of a product matrix (See Section 6 of Gruber (2014)),
r(H) = r(GA) ≤ r(A). Similarly, because AH = AGA = A, r(H) ≥ r(AH) = r(A).
Therefore, r(H) = r(A) = r. Since H is idempotent, we have that (I – H)2 = I – 2H +
H2 = I – 2H + H = I – H. Thus, I – H is also idempotent of order q. The eigenvalues
of an idempotent matrix can be shown to be zero or one. The rank of a matrix cor-
responds to the number of non-zero eigenvalues. The trace of an idempotent matrix
is the number of non-zero eigenvalues. Thus, r(I – H) = tr(I – H) = q – tr(H) =
q – r.

Proof of Theorem 4. Writing H = GA, the solutions to Ax = y are from Theorem 2

x̃ = Gy + (GA − I)z.

From Lemma 1, r(I – H) = q – r. As a result, there are only (q – r) arbitrary
elements in (H – I)z. The other r elements are linear combinations of those q – r.
Therefore, there only (q – r) LIN vectors (H – I)z and using them in x̃ gives (q –
r) LIN solutions. For i = 1, 2,… , q − r let x̃i = Gy + (H − I)zi be these solutions.
Another solution is x̃ = Gy.
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Assume that this solution is linearly dependent on the x̃i. Then, for scalars 𝜆i, i =
1, 2,… , q − r, not all of which are zero,

Gy =
q−r∑

i=1

𝜆ix̃i =
q−r∑

i=1

𝜆i[Gy + (H − I)zi]

= Gy
q−r∑

i=1

𝜆i+
q−r∑

i=1

𝜆i[(H − I)zi]. (18)

The left-hand side of (18) contains no z’s. Therefore, for the last expression on
the right-hand side of (18), the second term is zero. However, since the (H – I)zi are
LIN, this can be true only if each of the 𝜆i is zero. This means that (18) is no longer
true for some 𝜆i non-zero. Therefore, Gy is independent of the x̃i so that Gy and x̃i
for i = 1, 2,… , q − r form a set of (q – r + 1) LIN solutions. When q = r, there
is but one solution corresponding to the existence of A−1, and that one solution is
x = A−1y.

Theorem 4 means that x̃ = Gy and x̃ = Gy + (H − I)z for (q – r) LIN vectors z
are LIN solutions to Ax = y. All other solutions will be linear combinations of these
(q – r + 1) solutions. Theorem 5 presents a way of constructing solutions in terms of
other solutions.

Theorem 5 If x̃1, x̃2,… , x̃s are any s solutions of the consistent equations Ax =
y for which y ≠ 0, then any linear combination of these equations x∗ =

∑s
i=1 𝜆ix̃i is

also a solution of the equations if and only if
∑s

i=1 𝜆i = 1.

Proof. Since

x∗ =
∑s

i=1
𝜆ix̃i,

it follows that

Ax∗ = A
s∑

i=1

𝝀ix̃i =
s∑

i=1

𝝀iAx̃i.

Since x̃i is a solution, for all i, Ax̃i = y. This yields

Ax∗ =
s∑

i=1

𝜆iy = y

(
s∑

i=1

𝜆i

)

. (19)

Now if x∗ is a solution of Ax = y, then Ax∗ = y and by comparison with (19), this
means, y being non-null, that

∑s
i=1 𝜆i = 1. Conversely, if

∑s
i=1 𝜆i = 1, equation (19)

implies that Ax∗ = y, meaning that x∗ is a solution. This establishes the theorem.
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Notice that Theorem 5 is in terms of any s solutions. Hence, for any number of
solutions whether LIN or not, any linear combination of them is itself a solution
provided that the coefficients in that combination sum to unity.

Corollary 5.1 When y = 0, Gy = 0 and there are only q – r LIN solutions to Ax
= 0. Furthermore, for any values of the 𝜆i’s,

∑s
i=1 𝝀ix̃i is a solution to Ax = 0.

Example 7 Continuation of Example 6
For A defined in Example 6, the rank r = 2. Therefore, there are q – r +

1 = 4 – 2 + 1 = 3 LIN solutions to (13). Two are shown in (14) and (15) with
(14) being the solution Gy when the value z = 0 is used. Another solution putting
z′ =

[
0 0 −1 0

]
into (14) is

x̃′3 =
[
−23 39 0 −1

]
.

Thus, x̃1, x̃2, and x̃3 are LIN solutions and any other solution will be a combina-
tion of these three. For example, with z′ =

[
−23 39 0 −1

]
, the solution (14)

becomes

x̃4 =
[

7 −10 1 0
]
.

It can be seen that

x̃4 = 2x̃1 + x̃2 − 2x̃3.

The coefficients on the right-hand side of the above linear combination sums to
unity in accordance with Theorem 5.

A final theorem is related to an invariance property of the elements of a solution.
It is important to the study of linear models because of its relationship with the
concept of estimability discussed in Chapter 5. Without worrying about the details of
estimability here, we give the theorem and refer to it later as needed. The theorem is
due to C. R. Rao (1962). It concerns linear combinations of the elements of a solution
vector. Certain combinations are invariant to whatever solution is used.

Theorem 6 The value of k′x̃ is invariant to whatever solution is of Ax = y is used
for x̃ if and only if k′H = k′(where H = GA and AGA = A).

Proof. For a solution x̃ given by Theorem 2

k′x̃ = k′Gy + k′(H − I)z.
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This is independent of the arbitrary z if k′H = k′. Since any solution can be put in
the form x̃ by the appropriate choice of z, the value of k′x̃ for any x̃ is k′Gy provided
that k′H = k′.

It may not be entirely clear that when k′H = k′, the value of k′x̃ = k′Gy is
invariant to the choice of G. We therefore clarify this point. First, by Theorem 4,
there are (q – r + 1) LIN solutions of the form x̃ = Gy + (H − I)z. Let these solutions
be x̃i for i = 1, 2,… , q − r + 1. Suppose that for some other generalized inverse,
G∗ we have a solution

x∗ = G∗y + (H∗ − I)z∗.

Then, since the x̃i are a LIN set of (q – r + 1) solutions x∗ must be a linear
combination of them. This means that there is a set of scalars 𝜆i for i= 1, 2,…, q – r+ 1
such that

x∗ =
q−r+1∑

i=1

𝝀ix̃i

where not all of the 𝜆i s are zero. Furthermore, by Theorem 5,
∑q−r+1

i=1 𝜆i = 1.
Proving the sufficiency part of the theorem demands showing that k′x̃ is the same

for all solutions x̃ when k′H = k′. Note that when k′H = k′,

k′x̃ = k′Hx̃ = k′HGy + k′(H2 − H)z = k′HGy = k′Gy.

Therefore, k′x̃i = k′Gy for all i, and

k′x∗ = k′
q−r+1∑

i=1

𝝀ix̃i =
q−r+1∑

i=1

𝝀ikx̃i =
q−r+1∑

i=1

𝝀ikGy = k′Gy

(
q−r+1∑

i=1

𝝀i

)

= k′Gy = k′x̃i.

That means that for any solution at all k′x̃ = k′Gy if k′H = k′.
To prove the necessity part of the theorem, choose z∗ = 0 in x∗. Then

k′x∗ = k′Gy = k′
q−r+1∑

i=1

𝝀ix̃i = k′
q−r+1∑

i=1

𝝀i[Gy + (H − I)zi]

= k′Gy

(
q−r+1∑

i=1

𝝀i

)

+ k′
q−r+1∑

i=1

𝝀i(H − I)zi

= k′Gy + k′
q−r+1∑

i=1

𝝀i(H − I)zi.
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Hence, k′∑q−r+1
i=1 𝝀i(H − I)zi = 0.However, the 𝜆i are not all zero and the (H – I)zi

are LIN. Therefore, this last equation can be true only if k′(H − I) = 0, that is, k′H =
k′. Hence, for any solution x∗, k′x∗ = k′Gy if and only if k′H = k′. This proves the
theorem conclusively.

Example 8 Illustration of the Invariance Principle
In deriving (14) in Example 6, we have that

H = GA =
⎡
⎢
⎢
⎢
⎣

1 0 −1 −29
0 1 2 47
0 0 0 0
0 0 0 0

⎤
⎥
⎥
⎥
⎦

and for

k′ =
[

3 2 1 7
]

, (20)

it will be found that k′H = k′. Therefore, k′x̃ is invariant to whatever solution is used
for x̃. Thus, from (15) and (16)

k′x̃1 = 3(6) + 2(−8) + 1(0) + 7(0) = 2

and

k′x̃2 = 3(−51) + 2(84) + 1(1) + 7(−2) = 2.

In general, from (14)

k′x̃ = 3(6 − z3 − 29z4) + 2(−8 + 2z3 + 47z4) + 1(−z3) + 7(−z4) = 2.

Likewise, k′ẋ has the same value. From (17)

k′ẋ = 3(−ż1) + 2(4 + 2ż1 − 11ż4) + 1(−6 − ż1 + 29ż4) + 7(−ż4) = 2.

There are of course many values of k′ that satisfy k′H = k′. For each of these k′x̃
is invariant to the choice of x̃. For two such vectors k′

1 and k′
2 say k′

1x̃ and k′
2x̃ are

different but each has a value that is the same for all values of x̃. Thus, in the example
k′

1H = k′
1, where

k′
1 =

[
1 2 3 65

]

is different from (20) and

k′
1x̃1 = 1(6) + 2(−8) + 3(0) + 65(0) = −10

is different from k′x̃ for k′ of (20). However, for every x̃, k′
1x̃1 = −10. □
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It was shown in Theorem 6 that the invariance of k′x̃ to x̃ holds for any
k′ provided that k′H = k′. Two corollaries of the theorem follow.

Corollary 6.1 The linear combination k′x̃ is invariant to x̃ for k′ of the form k′ =
w′H for arbitrary w′.

Proof. We have that k′H = w′H2 = w′GAGA = w′GA = w′H = k′.

Corollary 6.2 There are only r LIN vectors k′ for which k′x̃ is invariant to x̃.

Proof. Since r(H) = r, there are in k′ = w′H of order q exactly q – r elements that
are linear combinations of the other r. Therefore, for arbitrary vectors w′ there are
only r LIN vectors k′ = w′H.

We will return to this point in Chapter 5 when we discuss estimable functions.
The concept of generalized inverse has now been defined and its use in solving

linear equations explained. Next, we briefly discuss the generalized inverse itself,
its various definitions and some of its properties. Extensive review of generalized
inverses and their applications is to be found in Boullion and Odell (1968) and the
approximately 350 references there. A more recent reference on generalized inverses
is Ben-Israel and Greville (2003).

3. THE PENROSE INVERSE

Penrose (1955) in extending the work of Moore (1920), shows that for every matrix
A, there is a unique matrix K which satisfies the following conditions:

AKA = A (i)
KAK = K (ii)
(KA)′ = KA (iii)
(AK)′ = AK (iv)

(21)

Such generalized inverses K will be referred to as Moore–Penrose inverses. We
will show how to find them and prove that every matrix has a unique Moore–Penrose
inverse.

Condition (i) states that K is a generalized inverse of A. Condition (ii) states that
A is a generalized inverse of K. In Section 4, we will give an example to show that in
general, Condition (i) does not imply condition (ii). Conditions (iii) and (iv) state that
KA and AK, respectively, are symmetric matrices. There are generalized inverses
that satisfy one or more of conditions (ii), (iii), and (iv) but not all of them. We will
give examples of such generalized inverses in Section 4.
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In Section 2, we showed how to obtain a generalized inverse using the singular
value decomposition. These generalized inverses satisfy all four of the above condi-
tions and, as a result, are Moore–Penrose inverses. Although a matrix has infinitely
many generalized inverses it has only one Moore–Penrose inverse. We show this
below.

Theorem 7 Let A be a matrix with singular value decomposition S′Λ1∕2U′. Then
the generalized inverse K = U𝚲−1∕2S is the Moore–Penrose inverse.

Proof. We have already shown that K is in fact a generalized inverse. To establish
the second Penrose condition we have

KAK = U𝚲−1∕2SS′𝚲1∕2U′U𝚲−1∕2S = U𝚲−1∕2S = K.

Now

KA = UΛ−1∕2SS′Λ1∕2U′ = UU′.

and

AK = S′𝚲1∕2U′U𝚲−1∕2S = S′S.

Since UU′ and SS′ are symmetric matrices, conditions (iii) and (iv) are
established.

The generalized inverse in Example 5 is the Moore–Penrose inverse of A there.
We have thus established the existence of the Moore–Penrose inverse. We now

show that it is unique.

Theorem 8 The Moore–Penrose inverse is unique.

Proof. The proof consists of showing that for a given matrix, there can be only one
matrix that satisfies the four conditions. First, from condition (i) and (iii)

A = AKA = A(KA)′ = AA′K′ and by transposition

KAA′ = A′. (22)

Also if AA′K′ = A, then KAA′K′ = KA(KA)′ = KA so that KA is symmetric.
Also AKA = A(KA)′ = AA′K′ = A. Thus (22) is equivalent to (i) and (iii).
Likewise, from condition (ii) and (iv), we can show in a similar way that an

equivalent identity is

KK′A′ = K. (23)
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Suppose that K is not unique. Assume some other matrix M satisfies the Penrose
conditions. From conditions (i) and (iv), we have

AA′M = A′ (24)

and from conditions (ii) and (iii)

A′M′M = M. (25)

We then have that using (22)–(25),

K = KK′A′ = KK′A′AM = KAM = KAA′M′M = A′MM′ = M.

This establishes uniqueness.

We now give another method for finding the Moore–Penrose inverse based on the
Cayley–Hamilton Theorem (see, for example, Searle (1966), C. R. Rao (1973), and
Gruber (2014)). The Cayley–Hamilton theorem states that a square matrix satisfies
its characteristic equation det(A − 𝝀I) = 0. To show this, we need two lemmas.

Lemma 2 If the matrix X′X = 0, then X = 0.

Proof. If the matrix X′X = 0, then the sums of squares of the elements of each row
are zero so that the elements themselves are zero.

Lemma 3 The identity PX′X = QX′X implies that PX′ = QX′.

Proof. Apply Lemma 2 to

(PX′X − QX′X)(P − Q) = (PX′ − QX′)(PX′ − QX′)′ = 0.

We will give an alternative proof that uses the singular value decomposition
of X = S′𝚲1∕2U′. We have that PX′X = QX′X implies that PUΛ1∕2SS′Λ1∕2U′ =
QUΛ1∕2SS′Λ1∕2U′.

Multiply both sides of this equation by U𝚲−1∕2S and obtain PUΛ1∕2SS′S =
QUΛ1∕2SS′S. Since SS′ = I, we have

PUΛ1∕2S = QUΛ1∕2S or PX′ = QX′.

We now assume that

K = TA′ (26)
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for some matrix T. Then (22) is satisfied if T satisfies

TA′AA′ = A′; (27)

and since satisfaction of (22) implies satisfaction of conditions (i) and (iii). Thus,
AKA = A and A′K′A′ = A′. As a result, TA′K′A′ = TA′, or from (26), we

get (23).
However, (23) is equivalent to Penrose conditions (ii) and (iv) so K as defined in

(26) for T that satisfies (27).
We now derive a suitable T. Notice that the matrix A′A and all of its powers are

square. By the Cayley–Hamilton Theorem, for some integer t, there exists a series of
scalars 𝜆1, 𝜆2,… , 𝜆t not all zero, such that

𝜆1A′A + 𝜆2(A′A)2 +⋯ + 𝜆t(A
′A)t = 0.

If 𝜆r is the first 𝜆 in this identity that is non-zero then T is defined as

T = (−1∕𝜆r)[𝜆r+1I + 𝜆r+2(A′A) +⋯ + 𝜆t(A
′A)t−r−1]. (28)

To show that this satisfies (27) note that by direct multiplication

T(A′A)r+1 = (−1∕𝜆r)[𝜆r+1(A′A)r+1 + 𝜆r+2(A′A)r+2 +⋯ 𝜆t(A
′A)t]

= (−1∕𝜆r)[−𝜆1A′A − 𝜆2(A′A)2 −⋯ 𝜆r(A′A)r].

Since by definition 𝜆r is the first non-zero 𝜆 in the series 𝜆1, 𝜆2,…, the above
reduces to

T(A′A)r+1 = (A′A)r. (29)

Repeated use of Lemma 3 reduces this to (27). Thus, K = TA′ with T as defined
in (28) satisfies (27) and hence is the unique generalized inverse satisfying all four of
the Penrose conditions.

Example 9 Finding a Moore–Penrose Inverse using the Cayley–Hamilton Theorem
For

A =
⎡
⎢
⎢
⎢
⎣

1 0 2
0 −1 1
−1 0 −2
1 2 0

⎤
⎥
⎥
⎥
⎦

, we have A′A =
⎡
⎢
⎢
⎣

3 2 4
2 5 −1
4 −1 9

⎤
⎥
⎥
⎦

.

Finding the characteristic equation 66𝜆 − 17𝜆2 + 𝜆3 = 0 and employing the
Cayley–Hamilton theorem, we have

66(A′A) − 17(A′A)2 + (A′A)3 = 0.
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Then,

T = (−1∕66)(−17I + A′A) = (1∕66)
⎡
⎢
⎢
⎣

14 −2 −4
−2 12 1
−4 1 8

⎤
⎥
⎥
⎦

and K = TA′ = (1∕66)
⎡
⎢
⎢
⎣

6 −2 −6 10
0 −11 0 22

12 7 −12 −2

⎤
⎥
⎥
⎦

is the Penrose inverse of A satisfying

21. □

Graybill et al. (1966) suggests an alternative procedure for deriving K. Their
method is to find X and Y such that

AA′X′ = A and A′AY = A′ (30)

and then

K = XAY. (31)

Proof that K satisfies all four Penrose axioms depends on using (30) and Lemma
3 to show that AXA = A = AYA. (See Exercise 28.)

4. OTHER DEFINITIONS

It is clear that the Penrose inverse K is not easy to compute, especially when A
has many columns or irrational eigenvalues because either finding the singular value
decomposition or using the Cayley–Hamilton theorem can be quite tedious. As has
already been shown, only the first Penrose condition needs to be satisfied to have
a matrix useful for solving linear equations. Furthermore, in pursuing the topic of
linear models, this is the only condition that is really needed. For this reason, a
generalized inverse has been defined as any matrix that satisfies AGA = A. This
definition will be retained throughout the book. Nevertheless, a variety of names will
be found throughout the literature, both for G and for other matrices satisfying fewer
than all four of the Penrose conditions. There are five such possibilities as detailed in
Table 1.1.

In the notation of Table 1.1 A(g) = G, the generalized inverse already defined
and discussed, and A(p) = K, the Moore–Penrose inverse. This has also been called
the pseudo inverse and the p-inverse by various authors. The Software package
Mathematica computes the Moore–Penrose inverse of A in response to the input
PseudoInverse[A]. The suggested definition of normalized generalized inverse in
Table 1.1 is not universally accepted. As given there it is used by Urquhart (1968),
whereas Goldman and Zelen (1964), call it a “weak” generalized inverse. An example
of such a matrix is a left inverse L such that LA = I. Rohde (1966) has also used
the description “normalized” (we use reflexive least square) for a matrix satisfying
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TABLE 1.1 Suggested Names for Matrices Satisfying Some or All of the Penrose
Conditions

Conditions Satisfied (Eq. 21) Name of Matrix Symbol

i Generalized inverse A(g)

i and ii Reflexive generalized inverse A(r)

i and iii Mininum norm generalized inverse A(mn)

i and iv Least-square generalized inverse A(ls)

i, ii, and iii Normalized generalized inverse A(n)

i, ii, and iv Reflexive least square A(rls)

Generalized inverse
i, ii, iii, and iv Moore–Penrose inverse A(p)

conditions (i), (ii), and (iv). An example of this kind of matrix is a right inverse R for
which AR = I.

The generalized inverses obtained in Section 1 by diagonalization or the algorithm
are reflexive. See Exercise 27.

Let x = Gy be a solution to Ax = y. The minimum norm generalized inverse is
such that min

Ax=y
‖x‖ = ‖Gy‖. Such a generalized inverse satisfies Penrose conditions

(i) and (iii). The least-square generalized inverse is the one that yields the solution
x̃ such that ‖Ax̃ − y‖ = inf

x
‖Ax − y‖ . It satisfies Penrose conditions (i) and (iv).

Proofs of these results are available in Gruber (2014), and Rao and Mitra (1971).
The following relationships can be established between the generalized inverses.

A(r) = A(g)AA(g)

A(n) = A′(AA′)(g)

A(rls) = (A′A)(g)A′

A(p) = A(n)AA(rls)

(32)

Some general conditions for generalized inverses to be reflexive, minimum norm
or least square are developed in Gruber (2014).

Example 10 Finding Different Kinds of Generalized Inverses
As in Example 9,

A =
⎡
⎢
⎢
⎢
⎣

1 0 2
0 −1 1
−1 0 −2
1 2 0

⎤
⎥
⎥
⎥
⎦

, A′A =
⎡
⎢
⎢
⎣

3 2 4
2 5 −1
4 −1 9

⎤
⎥
⎥
⎦

, and AA′ =
⎡
⎢
⎢
⎢
⎣

5 2 −5 1
2 2 −2 −2
−5 −2 5 −1
1 −2 −1 5

⎤
⎥
⎥
⎥
⎦

.

These three matrices have rank 2. Using the algorithm in Part 1,

A(g) =
⎡
⎢
⎢
⎣

1 0 0 0
0 −1 0 0
0 0 0 0

⎤
⎥
⎥
⎦

.
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Since this is a reflexive generalized inverse A(r) = A(g). Now,

(AA′)(g) =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1
3

− 1
3

0 0

− 1
3

5
6

0 0

0 0 0 0

0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

and A(n) = A′(AA′)(g) =

⎡
⎢
⎢
⎢
⎢
⎣

1
3

− 1
3

0 0

1
3

− 5
6

0 0

1
3

1
6

0 0

⎤
⎥
⎥
⎥
⎥
⎦

.

Furthermore,

(A′A)(g) =
⎡
⎢
⎢
⎢
⎣

5
11

− 2
11

0

− 2
11

3
11

0

0 0 0

⎤
⎥
⎥
⎥
⎦

and A(rls) = (A′A)(g)A′ =
⎡
⎢
⎢
⎢
⎣

5
11

2
11

− 5
11

1
11

− 2
11

− 3
11

2
11

4
11

0 0 0 0

⎤
⎥
⎥
⎥
⎦

.

Then

A(p) = A(n)AA(rls) = (1∕66)
⎡
⎢
⎢
⎣

6 −2 −6 10
0 −11 0 22
12 7 −12 −2

⎤
⎥
⎥
⎦

.

□

5. SYMMETRIC MATRICES

The study of linear models frequently leads to equations of the form X′Xb̂ = X′y
that have to be solved for b̂. Special attention is given therefore to the properties of a
generalized inverse of the symmetric matrix X′X.

a. Properties of a Generalized Inverse

The facts summarized in Theorem 9 below will be useful. We will denote the Moore–
Penrose inverse by (X′X)+ and any generalized inverse by (X′X)−

Theorem 9 Assume that the singular value decomposition of X = S′𝚲1∕2U′. Then

(i) X′X = UΛU′ and (X′X)+ = U𝚲−1U′.

(ii) For any generalized inverse of X′X, U′(X′X)−U = 𝚲−1 and therefore
(X′X)+ = UU′(X′X)−UU′.
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(iii) Any generalized inverse G of X′X may be written in terms of the Moore–
Penrose inverse as follows

G = (X′X)+ + VC1U′ + UC′
1V′ + VC2V′

=
[

U V
]
[
Λ−1 C1
C′

1 C2

] [
U
V

]

,

where C1 = V′GU and C2 = V′GV

Proof. For (i) X′X = UΛ1∕2SS′Λ1∕2U′ = UΛU′ because SS′ = I. The expression
U𝚲−1U′ can be shown to satisfy the Penrose conditions.

For (ii) we have that X′X(X′X)−X′X = X′X.
Then this implies that

U𝚲U′(X′X)−U𝚲U′ = U𝚲U′. (33)

Multiply both sides of equation (33) on the left by 𝚲−1U′ and on the right by
U𝚲−1. The result follows.

To establish (iii), notice that

G = (UU′ + VV′)G(UU′ + VV′)

= UU′GUU′ + VV′GUU′ + UU′GVV′ + VV′GVV′

= (X′X)+ + VC1U′ + UC′
1V′ + VC2V′

=
[

U V
]
[
𝚲−1 C1
C′

1 C2

] [
U
V

]

.

Theorem 10 below gives some more useful properties of generalized inverses
of X′X.

Theorem 10 When G is a generalized inverse of X′X then

(i) G′ is also a generalized inverse of X′X;

(ii) XGX′X = X; that is, GX′ is a generalized inverse of X;

(iii) XGX′ is invariant to G;

(iv) XGX′ is symmetric whether G is or not.

Proof.

(i) By definition, X′XGX′X = X′X. Transposition yields X′XG′X′X = X′X.
(ii) Observe that XGX′X = S′𝚲1∕2U′GU𝚲U′ = S′𝚲1∕2𝚲−1𝚲U′ = S′𝚲1∕2

U′ = X.
The result may also be obtained by application of Lemma 3.



34 GENERALIZED INVERSE MATRICES

(iii) Notice that XGX′ = S′𝚲1∕2U′GU𝚲1∕2S = S′𝚲1∕2𝚲−1𝚲1∕2S = S′S.

(iv) If M is a symmetric generalized inverse of X′X then XMX′ is symmetric.
(For example, the Moore–Penrose inverse of X′X is symmetric.) From (iii)
XGX′ = XMX′ and is thus, symmetric whether or not G is.

Corollary 10.1 Applying part (i) of Theorem 10 to the other parts shows that

XGX′X = X, X′XGX′ = X′ and X′XG′X = X′.

Furthermore,

XG′X′ = XGX′ and XG′X′ is symmetric.

It is to be emphasized that not all generalized inverses of a symmetric matrix are
symmetric. This is illustrated in Example 11 below.

Example 11 The Generalized Inverse of a Symmetric Matrix Need not be Sym-
metric

We can demonstrate this by applying the algorithm at the end of Section 1 to the
symmetric matrix using the sub-matrix from the first two columns of the first and
third rows

A2 =
⎡
⎢
⎢
⎣

2 2 6
2 3 8
6 8 22

⎤
⎥
⎥
⎦

to obtain the non-symmetric generalized inverse

G =
⎡
⎢
⎢
⎣

2 − 3
2

0
0 0 0
− 1

2
1
2

0

⎤
⎥
⎥
⎦

.

□

Theorem 10 and Corollary 10.1 very largely enable us to avoid difficulties that this
lack of symmetry of generalized inverses of X′X might otherwise appear to involve.
For example, if G is a generalized inverse of X′X and P is some other matrix,

(PXGX′)′ = XG′X′P′ = XGX′P′

not because G is symmetric (which in general is not) but because XGX′ is symmetric.
□
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Example 12 Illustration of Symmetry of XGX′

If

X =
⎡
⎢
⎢
⎣

1 1 3
1 1 3
0 1 2

⎤
⎥
⎥
⎦

,

then X′X = A2 from Example 11. Then

XGX′ =
⎡
⎢
⎢
⎣

1 1 3
1 1 3
0 1 2

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

2 − 3
2

0

0 0 0
− 1

2
1
2

0

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎣

1 1 0
1 1 1
3 3 2

⎤
⎥
⎥
⎦

= 1
2

⎡
⎢
⎢
⎣

1 1 0
1 1 0
0 0 2

⎤
⎥
⎥
⎦

and

XG′X′ =
⎡
⎢
⎢
⎣

1 1 3
1 1 3
0 1 2

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

2 0 − 1
2

− 3
2

0 1
2

0 0 0

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎣

1 1 0
1 1 1
3 3 2

⎤
⎥
⎥
⎦

= 1
2

⎡
⎢
⎢
⎣

1 1 0
1 1 0
0 0 2

⎤
⎥
⎥
⎦

.

□

b. Two More Generalized Inverses of X′X

In addition to the methods studied already, two other methods discussed by John
(1964) are sometimes pertinent to linear models. They depend on the ordinary inverse
of a non-singular matrix:

S−1 =
[

X′X H′

H 0

]

=
[

B11 B12
B21 B22 = 0

]

. (34)

The matrix H being used here is not the matrix H = GA used earlier. It is being
used to be consistent with John’s notation. The matrix X′X is of order p and rank p –
m. The matrix H is any matrix of order m × p. It is of full row rank and its rows also
LIN of those of X′X. In other words, the rows of H cannot be a linear combination
of rows of X′X. (The existence of such a matrix is assured by considering m vectors
of order p that are LIN of any set of p – m LIN rows of X′X. Furthermore, if these
rows constitute H in such a way that the m LIN rows of H correspond in S to the m
rows of X′X that are linear combinations of the set of p – m rows then S−1 of (34)
exists.) With (34) existing the two matrices

B11 and (X′X + H′H)−1 are generalized inverses of X′X. (35)

Three useful lemmas help in establishing these results.

Lemma 4 The matrix T =
[

Ir U
]

has rank r for any matrix U of r rows.
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Proof. Elementary operations carried out on T to find its rank will operate on Ir.
None of these rows or columns can be made null by such operations. Therefore, r(T)
is not less than r. Consequently r(T) = r.

Lemma 5 If XN×p has rank p – m for m > 0, then there exists a matrix Dp×m such
that XD = 0 and r(D) = m.

Proof. Let X =
[

X1 X2
]

where X1 is N × (p − m) of full column rank. Then the
columns of X2 are linear combinations of the columns of X1 and so for some matrix C,
of order (p − m) × m, the sub-matrices of X satisfy X2 = X1C. Let D′ =

[
−C′ Im

]
.

By Lemma 4 D′ has rank m. We then have XD = 0 and r(D) = m. The Lemma is thus
proved because a matrix D exists.

Lemma 6 For X and D of Lemma 5 and H of order m × p with full-row rank, HD
has full-row rank if and only if the rows of H are LIN of those of X.

Proof. (i) Given r(HD) = m, assume that the rows of H depend on those of X (are
not LIN of X). Then, H = KX for some K, and HD = KXD = 0. Therefore, the
assumption is false and the rows of H are LIN of those of X.

(ii) Given that the rows of H are LIN of those of X, the matrix

[
X
R

]

, of order

(N + m) × p has full column rank. Therefore, it has a left inverse
[

U V
]
, say

(Section 5.13 of Searle (1966)), and so UX + VH = I, that is, UXD + VHD = D; or
VHD = D using Lemma 5. However, r(Dp×m) = m and D has a left inverse, E, say,
and so EVHD = Im. Therefore, r(HD) ≥ m and so because HD is m × m, r(HD) =
m, and the lemma is proved.

Proof of (35). First it is necessary to show that in (34), B22 = 0. From (34), we have
that

X′XB11 + H′B21 = I and X′XB12 + H′B22 = 0 (36)

HB11 = 0 and HB12 = I. (37)

Pre-multiplying (36) by D′ and using Lemmas 5 and 6 leads to

B21 = (D′H′)−1D′ and B22 = 0. (38)

Then from (36) and (38),

X′XB11 = I − H′(D′H′)−1D′. (39)
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Post-multiplication of (39) by X′X and application of Lemma 5 shows that B11
is a generalized inverse of X′X. Furthermore, using (37), (39), and Lemmas 5 and 6
gives

(X′X + H′H)[B11 + D(D′H′HD)−1D′] = I. (40)

From (40),

(X′X + H′H)−1 = B11 + D(D′H′HD)−1D′. (41)

Since from Lemma 5, D is such that XD = 0 we have that

X′X(X′X + H′H)−1X′X = X′XB11X′X = X′X

since B11 is a generalized inverse of X′X and (X′X + H′H)−1 is a generalized inverse
of X′X. This completes the proof.

It can be shown that B11 satisfies the second of Penrose conditions and is thus
a reflexive generalized inverse of X′X. However, (X′X + H′H)−1 only satisfies the
first Penrose condition. Neither generalized inverse satisfies conditions (iii) or (iv).

John (1964) refers to Graybill (1961, p. 292) and to Kempthorne (1952, p. 79)
in discussing B11 and to Plackett (1960, p. 41) and Scheffe (1959, p. 19) in dis-
cussing (X′X + H′H)−1, in terms of defining generalized inverses of X′X as being
matrices G for which b = GX′y is a solution of X′Xb = X′y. By Theorem 1, they
then satisfy condition (i), as has just been shown. Rayner and Pringle (1967) also
discuss these results, indicating that D of the previous discussion may be taken as
(X′X + H′H)−1H′. This, as Chipman (1964) shows, means that HD = I and so (39)
becomes

X′XB11 = I − H′H(X′X + H′H)−1, (42)

a simplified form of Rayner and Pringle’s equation (7). The relationship between the
two generalized inverses of X′X shown in (35) is therefore that indicated in (42).
Also note that Lemma 6 is equivalent to Theorem 3 of Scheffe (1959, p. 17).

6. ARBITRARINESS IN A GENERALIZED INVERSE

The existence of many generalized inverses G that satisfy AGA = A has been
emphasized. We examine here the nature of the arbitrariness of such generalized
inverses as discussed in Urquhart (1969a). We need some results about the rank of
the matrix. These are contained in Lemmas 7–9.

Lemma 7 A matrix of full-row rank r can be written as the product of matrices,
one being of the form

[
Ir S

]
for some matrix S of r rows.
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Proof. Suppose Br×q has full-row rank r and contains an r × r non-singular minor,
M, say. Then, for some matrix L and some permutation matrix Q (see the paragraph
just before (9)), we have BQ =

[
M L

]
, so that

B = M
[

I M−1L
]

Q−1 = M
[

I S
]

Q−1 for S = M−1L.

Lemma 8 I + KK′ has full rank for any non-null matrix K.

Proof. Assume that I + KK′ does not have full rank. Then its columns are not LIN
and there exists a non-null vector u such that

(I + KK′)u = 0, so that u′(I + KK′)u = u′u + u′K(u′K)′ = 0.

However, u′u and u′K(u′K)′ are both sums of squares of real numbers. Hence,
their sum is zero only if their elements are zero, that is, only if u = 0. This contradicts
the assumption. Therefore, I + KK′ has full rank.

Lemma 9 When B has full row rank, BB′ is non-singular.

Proof. As in Lemma 7 write B = M
[

I S
]

Q−1 where M−1 exists. Then because
Q is a permutation matrix and thus orthogonal BB′ = M(I + SS′)M′. By virtue of
Lemma 8 and the existence of M−1, BB′ is non-singular.

Corollary 9.1 When B has full-column rank, BB′ is non-singular.

Proof. When B has full column rank B′ has full-row rank. Now

BB′ = (B′B)′ = (B′(B′)′)′

From Lemma 9, B′(B′)′ is non-singular and so is its transpose.

Consider now a matrix Ap×q of rank r, less than both p and q. The matrix A
contains at least one non-singular minor of order r. We will assume that this is the
leading minor. There is no loss of generality in this assumption because, if it is not
true, the algorithm of Section 1b will always yield a generalized inverse of A. This
generalized inverse will come from a generalized inverse of B = RAS where R and
S are permutation matrices so that B has a non-singular r × r leading minor. We
therefore confine the discussion of inverses of A to the case where its leading r × r
minor is non-singular. Accordingly, A is partitioned as

A =
[

(A11)r×r (A12)r×(q−r)
(A21)(p−r)×r (A22)(p−r)×(q−r)

]

. (43)
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Then since A−1
11 exists, A can be written as

A =
[

I
A21A−1

11

]

A11

[
I A−1

11 A12
]
= LA11M (44)

with L =
[

I
A21A−1

11

]

and M =
[

I A−1
11 A12

]
. From Lemma 4, L has full-column

rank and M has full-row rank. Lemma 9 shows that both (L′L)−1 and (M′M)−1 exist.
The arbitrariness in a generalized inverse of A is investigated by means of this

partitioning. Thus, on substituting (44) into AGA = A, we get

LA11MGLA11M = LA11M. (45)

Pre-multiplication by A−1
11 (L′L)−1L′ and post-multiplication by M′(M′M)−1A−1

11
then gives

MGL = A−1
11 . (46)

Whatever the generalized inverse is, suppose it is partitioned as

G =
[

(G11)r×r (G12)r×(p−r)
(G21)(q−r)×r (G22)(q−r)×(p−r)

]

(47)

of order q × p, conformable for multiplication with A. Then substituting (47) and
(44) into (46) gives

G11 + A−1
11 A12G21 + G12A21A−1

11 + A−1
11 A12G22A21A−1

11 = A−1
11 . (48)

This is true whatever the generalized inverse may be. Therefore, on substituting
from (48) for G11, we have

G =
⎡
⎢
⎢
⎣

A−1
11 − A−1

11 A12G21 − G12A21A−1
11 − A−1

11 A12G22A21A−1
11 G12

G21 G22

⎤
⎥
⎥
⎦

(49)

as a generalized inverse of A for any matrices G12, G21, and G22 of appropriate order.
Thus, the arbitrariness of a generalized inverse is characterized.

Example 13 Illustration of the Characterization in (49)

Let A =
⎡
⎢
⎢
⎣

4 2 2
2 2 0
2 0 2

⎤
⎥
⎥
⎦

and G =

⎡
⎢
⎢
⎢
⎢
⎣

1
4

0 0

− 1
4

1
2

0

− 1
4

0 1
2

⎤
⎥
⎥
⎥
⎥
⎦

. This generalized inverse only

satisfies Penrose condition (i). Partition A so that A11 =
[

4 2
2 2

]

, A12 =
[

2
0

]

,
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A21 =
[

2 0
]

, and A22 = [2] . Also G11 =

[ 1
4

0

− 1
4

1
2

]

, G12 =
[

0
0

]

, G21 =

[

− 1
4

0
]

, and G22 =
[

1
2

]

. Now A−1
11 =

[ 1
2

− 1
2

− 1
2

1

]

. Using Formula 49, we can

see that

G11 =

[ 1
2

− 1
2

− 1
2

1

]

−

[ 1
2

− 1
2

− 1
2

1

][
2
0

] [

− 1
4

0
]

−
[

0
0

]
[

2 0
]
[ 1

2
− 1

2

− 1
2

1

]

−

[ 1
2

− 1
2

− 1
2

1

][
2
0

] [
1
2

] [
2 0

]
[ 1

2
− 1

2

− 1
2

1

]

□

Certain consequences of (49) can be noted.

1. By making G12, G21, and G22 null, G =
[

A−1
11 0
0 0

]

, a form discussed earlier.

2. When A is symmetric, G is not necessarily symmetric. Only when G12 =
G′

21 and G22 is symmetric will G be symmetric.

3. When p ≥ q, G can have full row rank q even if r < q. For example, if
G12 = −A−1

11 A12G22, G21 = 0 and G22 has full row rank the rank of G can
exceed the rank of A. In particular, this means that singular matrices can have
non-singular generalized inverses.

The arbitrariness evident in (49) prompts investigating the relationship of one
generalized inverse to another. It is simple. If G1 is a generalized inverse of A, then
so is

G = G1AG1 + (I − G1A)X + Y(I − AG1) (50)

for any X and Y. Pre- and post-multiplication of (50) by A shows that this is so.
The importance of (50) is that it provides a method of generating all generalized

inverses of A. They can all be put in the form of (50). To see this, we need only
show that for some other generalized inverse G2 that is different from G1, there exist
values of X and Y giving G = G2. Putting X = G2 and Y = G1AG2 achieves this.

The form of G in (50) is entirely compatible with the partitioned form given in

(49). For if we take G1 =
[

A−1
11 0
0 0

]

and partition X and Y in the same manner as

G, then (50) becomes

G =

[
A−1

11 − A−1
11 A12X21 − Y12A21A−1

11 −A−1
11 A12X22 + Y12

X21 − Y22A21A−1
11 X22 + Y22

]

. (51)
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This characterizes the arbitrariness even more specifically than does (49). Thus,
for the four sub-matrices of G shown in (47) we have

Sub-matrix Source of Arbitrariness

G11 X21 and Y12

G12 X22 and Y12

G21 X21 and Y22

G22 X22 and Y22

This means that in the partitioning of

X =
[

X11 X12
X21 X22

]

and Y =
[

Y11 Y12
Y21 Y22

]

implicit in (50), the first set of rows in the partitioning of X does not enter into G,
and neither does the first set of columns of Y.

It has been shown earlier (Theorem 3) that all solutions to Ax = y can be generated
from x̃ = Gy + (GA − I)z, where z is the infinite set of arbitrary vectors of order q.
We now show that all solutions can be generated from x̃ = Gy where G is the infinite
set of generalized inverses indicated in (50). First, a Lemma is needed.

Lemma 10 If zq×1 is arbitrary and yp×1 is known and non-null, there exists an
arbitrary matrix X such that z = Xy.

Proof. Since y ≠ 0 at least one element yk say, will be non-zero. Writing z = {zj}
and X = {xij} for i = 1,…, q and j = 1,…, p, let xij = zi/yk for j = k and xij = 0
otherwise. Then Xy = z and X is arbitrary.

We use this lemma to prove the theorem on generating solutions.

Theorem 11 For all possible generalized inverses G of A, x̃ = Gy generates all
solutions to the consistent equations Ax = y.

Proof. For the generalized inverse G1, solutions to Ax= y are x̃ = G1y + (G1A − I)z
where z is arbitrary. Let z = –Xy for some arbitrary X. Then

x̃ = G1y − (G1A − I)Xy

= G1y − G1AG1y + G1AG1y + (I − G1A)Xy

= [G1AG1 + (I − G1A)X + G1(I − AG1)y

= Gy,

where G is exactly the form given in (50) using G1 for Y.
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In Theorem 9 (iii), we showed how to represent any generalized inverse of X′X
in terms of the Moore–Penrose inverse. Theorem 12 shows how to do this for a
generalized inverse of any matrix A.

Theorem 12 Let G be any generalized inverse of A. Then

(i) UU′GS′S = A+.

(ii) G = X+ + UC1T + VC2S + VC3T =
[

U V
]
[
𝚲−1∕2 C1

C2 C3

] [
S
T

]

,

where C1 = V′GS′, C2 = U′GT′ and C3 = V′GT′.

Proof. (i) Since AGA = A, we have, using the singular value decomposition
of A,

S′𝚲1∕2U′GS′𝚲1∕2U′ = S′𝚲1∕2U′. (52)

Pre-multiply (52) by 𝚲−1∕2S and post-multiply by U𝚲−1∕2. Then we get

U′GS′ = 𝚲−1∕2. (53)

Pre-multiply (53) by U and post-multiply by S to obtain

UU′GS′S = A+.

(ii) Notice that

G = (UU′ + VV′)G(S′S + T′T)

= UU′GS′S + VV′GS′S + UU′GT′T + VV′GT′T

= A+ + VC1S + UC2T + VC3T.

7. OTHER RESULTS

Procedures for inverting partitioned matrices are well-known (e.g., Section 8.7 of
Searle (1966), Section 3 of Gruber (2014)). In particular, the inverse of the partitioned
full-rank symmetric matrix

M =
[

X′

Z′

]
[

X Z
]
=
[

X′X X′Z
Z′X Z′Z

]

=
[

A B
B′ D

]

, (54)

say, can for

W = (D − B′A−1B)−1 = [Z′Z − Z′X(X′X)−1X′Z],
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be written as

M−1 =
[

A−1 + A−1BWB′A−1 −A−1BW
−WB′A−1 W

]

=
[

A−1 0
0 0

]

+
[
−A−1B

I

]

W
[
−B′A−1 I

]
. (55)

The analogy for (55) for generalized inverses, when M is symmetric but singular,
has been derived by Rhode (1965). In defining A− and Q− as generalized inverses of
A and Q, respectively, where Q = D − B′A−B, then a generalized inverse of M is

M− =

[
A− + A−BQ−B′A− −A−BQ−

−Q−B′A− Q−

]

=
[

A− 0
0 0

]

+
[
−A−B

I

]

Q− [
−B′A− I

]
. (56)

It is to be emphasized that the generalized inverses referred to here are just as have
been defined throughout, namely satisfying only the first of Penrose’s four conditions.
(In showing that MM−M = M, considerable use is made of Theorem 7.)

Example 14 A Generalized Inverse of a Partitioned Matrix
Consider the matrix with the partitioning,

M =
⎡
⎢
⎢
⎢
⎣

2 2 1 1
2 2 1 1
1 1 2 2
1 1 2 3

⎤
⎥
⎥
⎥
⎦

, A =
[

2 2
2 2

]

= D,B = B′ =
[

1 1
1 1

]

.

A generalized inverse of A is

A− =

[
1
2

0

0 0

]

,

Q =
[

2 2
2 2

]

−
[

1 1
1 1

][ 1
2

0

0 0

][
1 1
1 1

]

=

[ 3
2

3
2

3
2

3
2

]

and

Q− =

[
2
3

0

0 0

]

.
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Then,

M− =

⎡
⎢
⎢
⎢
⎢
⎣

1
2

0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎣

− 1
2

− 1
2

0 0
1 0
0 1

⎤
⎥
⎥
⎥
⎥
⎦

[ 2
3

0
0 0

][− 1
2

0 1 0

− 1
2

0 0 1

]

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

2
3

0 − 1
3

0

0 0 0 0

− 1
3

0 2
3

0

0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

We could have used different generalized inverses for A and Q. If we had done
so, we would get a valid but different generalized inverse for M.

The regular inverse of the product AB is B−1A−1. However, there is no analogous
result for generalized inverses. When one matrix is non-singular, B, say, Rohde
(1964) indicates that B−1A− is a generalized inverse of AB. Greville (1966) considers
the situation for unique generalized inverses A(p) and B(p), and gives five separate
conditions under which (AB)(p) = B(p)A(p)

. However, one would hope for conditions
less complex that those of Greville for generalized inverses A−and B− satisfying just
the first of Penrose’s conditions. What can be shown is that B−A− is a generalized
inverse of AB if and only if A−ABB− is idempotent. Furthermore, when the product
AB is itself idempotent, it has AB, AA−, BB−, and B−BAA− as generalized inverses.
Other problems of interest are the generalized inverse of Ak in terms of that of A, for
integer k, and the generalized inverse of XX′ in terms of that of X′X.

8. EXERCISES

1 Reduce the matrices

A =
⎡
⎢
⎢
⎣

2 3 1 −1
5 8 0 1
1 2 −2 3

⎤
⎥
⎥
⎦

and B =
⎡
⎢
⎢
⎢
⎣

1 2 3 −1
4 5 6 2
7 8 10 7
2 1 1 6

⎤
⎥
⎥
⎥
⎦

to diagonal form and find a generalized inverse of each.

2 Find generalized inverses of A and B in Exercise 1 by inverting non-singular
minors.
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3 For A and B of Exercise 1, find general solutions to

(a) AX =
⎡
⎢
⎢
⎣

−1
−13
11

⎤
⎥
⎥
⎦

(b) Bx =
⎡
⎢
⎢
⎢
⎣

14
23
32
−5

⎤
⎥
⎥
⎥
⎦

4 Find the Penrose inverse of

⎡
⎢
⎢
⎢
⎣

1 0 2
2 −1 5
0 1 −1
1 3 −1

⎤
⎥
⎥
⎥
⎦

.

5 Which of the remaining axioms for a Moore–Penrose inverse are satisfied by the
generalized inverse in Example 2?

6 (a) Using the Algorithm in Section 1b, find generalized inverses of

A1 =
⎡
⎢
⎢
⎣

4 1 2 0
1 1 5 15
3 1 3 5

⎤
⎥
⎥
⎦

derived from inverting the 2 × 2 minors

M1 =
[

1 5
1 3

]

, M2 =
[

1 15
1 5

]

, and M3 =
[

4 0
3 5

]

.

(b) Using the Algorithm in Section 1b find a generalized inverse of

A2 =
⎡
⎢
⎢
⎣

2 2 6
2 3 8
6 8 22

⎤
⎥
⎥
⎦

derived from inverting the minor

M =
[

3 8
8 22

]

.

7 Let

A =
[
−1 1
1 −1

]



46 GENERALIZED INVERSE MATRICES

(a) Find the Moore–Penrose inverse of A.
(b) Classify the following generalized inverses of A as named in Table 1.1 by

determining which of the Penrose conditions are satisfied.

(i)

[ 3
4

9
4

1
4

3
4

]

(ii)

[ 5
4

3
4

7
4

1
4

]

(iii)

[ 1
4

3
4

1 1
2

]

(iv)

[ 3
4

5
4

5
4

3
4

]

8 Given X =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 0
1 1 0
1 1 0
1 0 1
1 0 1
1 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Find

(a) A minimum norm generalized inverse of X
(b) A least-square generalized inverse of X
(c) The Moore–Penrose inverse of X

9 Find a generalized inverse of each of the following matrices.

(a) PAQ, when P and Q are non-singular

(b) GA, when G is a generalized inverse of A
(c) kA, where k is a scalar

(d) ABA, when ABA is idempotent

(e) J, when J is square with every element unity

10 What kinds of matrices

(a) are their own generalized inverses?

(b) have transposes as a generalized inverse?

(c) have an identity matrix as a generalized inverse?

(d) have every matrix of order p × q for a generalized inverse?

(e) have only non-singular generalized inverses?

11 Explain why the equations (a) Ax = 0 and (b) X′Xb = X′y are always consistent.

12 If z = (G – F)y + (I – FA)w, where G and F are generalized inverses of A, show
that the solution x̃ = Gy + (GA − I)z to Ax = y reduces to x̃ = Fy + (FA − I)w.
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13 If Ax = y are consistent equations, and F and G are generalized inverses of A,
find in simplest form, a solution for w to the equations

(I − GA)w = (F − G)y + (FA − I)z.

14 (a) If A has full-column rank, show that its generalized inverses are also left
inverses satisfying the first three Penrose conditions.

(b) If A has full-row rank, show that its generalized inverses are also right inverses
satisfying the first, second, and fourth Penrose conditions.

15 Show that (29) reduces to (27).

16 Give an example of a singular matrix that has a non-singular generalized inverse.

17 Prove that B−A− is a generalized inverse of AB if and only if A−ABB− is
idempotent.

18 Show that the rank of a generalized inverse of A does not necessarily have the
same rank as A and that it is the same if and only if it has a reflexive generalized
inverse. See Rhode (1966), also see Ben-Israel and Greville (2003), and Harville
(2008).

19 When PAQ =
[

D 0
0 0

]

with P and Q non-singular show that G =

Q
[

D−1 X
Y Z

]

P is a generalized inverse of A. Under what conditions does

GAG = G? Use G to answer Exercise 15.

20 Using AGA = A
(a) Find a generalized inverse of AB where B is orthogonal.

(b) Find a generalized inverse of LA where A is non-singular.

21 What is the Penrose inverse of a symmetric idempotent matrix?

22 If G is a generalized inverse of Ap×q, show that G + Z – GAZAG generates

(a) all generalized inverses of A, and

(b) all solutions to consistent equations Ax = y as Z ranges over all matrices of
order q × p.

23 Show that the generalized inverse of X that was derived in Theorem 12

G = X+ + UC1T + VC2S + VC3T =
[

U V
]
[
Λ−1∕2 C1

C2 C3

] [
S
T

]

(a) Satisfies Penrose condition (ii)(is reflexive) when C3 = C2𝚲1∕2C1;

(b) Satisfies Penrose condition (iii)(is minimum norm) when C2 = 0;
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(c) Satisfies Penrose Condition (iv)(is a least-square generalized inverse when
C1 = 0.)

24 Show that M = (X′X)+X′ and W = X′(X′X)+ are expressions for the Moore–
Penrose inverse of X
(i) by direct verification of the four Penrose conditions.

(ii) using the singular value decomposition.

25 Show that if N is a non-singular matrix, then (UNU′)+ = UN−1U′.

26 Show that if P is an orthogonal matrix, (PAP′)+ = PA+P′.

27 Show that

(a) X+(X′)+ = (X′X)+;

(b) (X′)+X+ = (XX′)+.

28 Show that the generalized inverses that would be produced by the algorithms in
Sections 1a and 1b are reflexive.

29 Show that K as defined in equation (30) satisfies the four Penrose axioms.

30 Show that if X− satisfies Penrose’s condition (iv) then b = X−y is a solution to
X′Xb = X′y. [Hint: use Exercise 22 or Theorem 12.]

31 Show that M− of (56) is a generalized inverse of M in (54).

32 If Pm×q and Dm×m have rank m show that D−1 = P(P′DP)−P′.

33 Show by direct multiplication that

M− =
[

0 0
0 (Z′Z)−

]

+
[

I
−(Z′Z)−Z′X

]

Q− [
I −X′Z(Z′Z)−

]
,

where Q = X′X − X′Z(Z′Z)−Z′X is a generalized inverse of

M =
[

X′X X′Z
Z′X Z′Z

]

.



2
DISTRIBUTIONS AND QUADRATIC
FORMS

1. INTRODUCTION

Analysis of variance techniques involve partitioning a total sum of squares into
component sums of squares whose ratios (under appropriate distributional conditions)
lead to F-statistics suitable for testing certain hypothesis. When discussing linear
models generally, especially where unbalanced data (data having unequal subclass
numbers) are concerned, it is convenient to think of sums of squares involved in this
process as quadratic forms in the observations. In this context, we can establish very
general theorems, for which familiar analysis of variance and the associated F-tests
are then just special cases. An introductory outline1 of the general procedure is easy
to describe.

Suppose yn×1 is a vector of n observations. The total sum of squares is y′y =
∑n

i=1 y2
i . In an analysis of variance, the total sum of squares is partitioned into

component sums of squares. Let P be an orthogonal matrix. Recall that an orthogonal
matrix is one where

P′P = PP′ = I. (1)

1 Kindly brought to the notice of S. R. Searle by D. L. Weeks.

Linear Models, Second Edition. Shayle R. Searle and Marvin H. J. Gruber.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.
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Partition P row-wise into k sub-matrices Pi of order ni × n for i = 1, 2,…, k with
∑k

i=1 ni = n; that is,

P =
⎡
⎢
⎢
⎢
⎣

P1
P2
⋮
Pk

⎤
⎥
⎥
⎥
⎦

and P′ =
[
P′

1 P′
2 ⋯ P′

k

]
(2)

Then

y′y = y′Iy = y′P′Py =
k∑

i=1

y′P′
iPiy. (3)

In this way, y′y is partitioned into k sums of squares

y′P′
iPiy = z′izi =

ni∑

j=1

z2
ij for i = 1,… , ni,

where

zi = Piy = {zij} for j = 1, 2,… , ni.

Each of these sums of squares corresponds to the lines in an analysis of variance table
(with, as we shall see, degrees of freedom equal to the rank of Pi), having y′y as the
total sum of squares. We can demonstrate the general nature of the results we shall
develop in this chapter for the k terms of y′P′

iPiy of equation (3). First, for example,
in Corollary 2.1 of Theorem 2, we show that if elements of the y vector are normally
and independently distributed with zero mean and variance 𝜎2, then y′Ay∕𝜎2, where
A has rank r, has a 𝜒2-distribution with r degrees of freedom if and only if A is
idempotent. This is just the property that the matrix P′

iPi has in equation (3). Observe
that P′

iPiP
′
iPi = P′

i(PiP
′
i)Pi = P′

iIPi = P′
iPi because P′P = I in equation (1). Since

each P′
iPi in equation (3) is idempotent, each term y′P′

iPiy∕𝜎2 has a 𝜒2-distribution.
Second, in Theorem 6, we prove that when the elements of y are normally distributed
as just described, y′Ay and y′By are independent if and only if AB = 0. This is
also true for the terms in equation 3. If i ≠ j, PiP

′
j = 0 from equations (1) and (2).

Consequently,

P′
iPiP

′
jPj = 0.

As a result, the terms in equation (3) are independent. Moreover, since they all have
𝜒2-distributions, their ratios, suitably modified by degrees of freedom, can be F-
distributions. In this way, tests of hypothesis may be established. We now give an
illustrative example.
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Example 1 Development of an F-test Corresponding to a vector of four observa-
tions consider the orthogonal matrix

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
√

4

1
√

4

1
√

4

1
√

4
− − − − − − − − − − − −

1
√

2

1
√

2
0 0

1
√

6

1
√

6
− 2
√

6
0

1
√

12

1
√

12

1
√

12
− 3
√

12

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

P1
−−
P2

⎤
⎥
⎥
⎦

(4)

partitioned as shown. The reader may verify, using equation (1) that P is orthogonal
and that

P1y = 1
√

4

4∑

i=1

yi =
√

4
4

4∑

i=1

yi =
√

4ȳ.

From equation (3)

q1 = y′P′
1P1y = 4ȳ2.

We also have that

q2 = y′P′
2P2y =

4∑

i=1

y2
i − 4ȳ2 =

4∑

i=1

(yi − ȳ)2.

Therefore, when the elements of y are normally and independently distributed with
mean zero and unit variance q1 and q2, each has 𝜒2-distributions. From the orthog-
onality of P, it follows that P′

1P2 = 0. Thus, q1 and q2 are also distributed indepen-
dently. As a result, the statistic

F =
4ȳ2∕1

(
4∑

i=1
y2

i − 4ȳ2

)

∕3

provides an F-test for the hypothesis that the mean of the y-variable is zero. □

The matrix P in (4) is a fourth order Helmert matrix. We now give the general
characteristics of an nth order Helmert matrix. We may write an nth order Helmert
matrix as

Hn×n =
[

h′

H0

]
1 × n

(n − 1) × n.
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For the first row, we have

h′ = 1
√

n
1′n

where

1′n =
[

1 1 ⋯ 1
]

,

a vector on n ones. Now, H0 consists of the last n – 1 rows with the rth row

[
1

√
r(r + 1)

1′r
−r

√
r(r + 1)

0(n−r−1)×1

]

for r = 1, 2,… , n − 1.

We have that Hn×n is an orthogonal matrix. Furthermore, y′hh′y = nȳ2. Using math-
ematical induction, it is readily shown that y′H′

0H0y =
∑n

i=1 y2
i − nȳ2. Further prop-

erties of Helmert matrices are available in Lancaster (1965), for example.

2. SYMMETRIC MATRICES

An expression of the form x′Ay is called a bilinear form. It is a homogeneous second-
degree function of the first degree in each of the x’s and y’s. For example,

x′Ay =
[

x1 x2
]
[

4 8
−2 7

] [
y1
y2

]

= 4x1y1 + 8x1y2 − 2x2y1 + 7x2y2.

When x is used in place of y, the expression becomes x′Ax. It is then called a quadratic
form and is a quadratic function of the x’s. Then we have

x′Ax =
[

x1 x2
]
[

4 8
−2 7

] [
x1
x2

]

= 4x2
1 + (8 − 2)x1x2 + 7x2

2

= 4x2
1 + (3 + 3)x1x2 + 7x2

2

=
[

x1 x2
]
[

4 3
3 7

] [
x1
x2

]

.

In this way, we can write any quadratic form x′Ax as x′Ax = x′Bx where B =
1
2
(A + A′) is symmetric. While we can write every quadratic form as x′Ax for an

infinite number of matrices, we can only write x′Bx one way for B symmetric.
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For example

4x2
1 + 6x1x2 + 7x2

2 =
[

x1 x2
]
[

4 3 + a
3 − a 7

] [
x1
x2

]

for any value of a. However, the matrix is symmetric only when a = 0. This means
that for any particular quadratic form, there is only one unique matrix such that the
quadratic form can be written as x′Ax with A symmetric. Because of the uniqueness
of this symmetric matrix, all further discussion of quadratic forms x′Ax is confined
to the case of A being symmetric.

3. POSITIVE DEFINITENESS

A property of some quadratic forms used repeatedly in what follows is that of positive
definiteness. A quadratic form is said to be positive definite if it is positive for all
values of x except x = 0; that is, if

x′Ax > 0 for all x, except x = 0,

then x′Ax is positive definite. And the corresponding (symmetric) matrix is also
described as positive definite.

Example 2 A Positive Definite Quadratic Form Consider

x′Ax =
[

x1 x2 x3
] ⎡
⎢
⎢
⎣

13 1 4
1 13 4
4 4 10

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

x1
x2
x3

⎤
⎥
⎥
⎦

= 13x2
1 + 13x2

2 + 10x2
3 + 2x1x2 + 8x1x3 + 8x2x3.

Using the singular value decomposition of A, we have

x′Ax =
[

x1 x2 x3
]

⎡
⎢
⎢
⎢
⎢
⎣

1
√

3
− 1
√

2
− 1
√

6
1
√

3

1
√

2
− 1
√

6
1
√

3
0 2

√
6

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎣

18 0 0
0 12 0
0 0 6

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

1
√

3

1
√

3

1
√

3

− 1
√

2

1
√

2
0

− 1
√

6
− 1
√

6

√
6

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎣

x1
x2
x3

⎤
⎥
⎥
⎦

= 18y2
1 + 12y2

2 + 6y2
3,

where

y1 = 1
√

3
(x1 + x2 + x3), y2 = 1

√
2

(−x1 + x2), y3 = 1
√

6
(−x1 − x2 + 2x3). □
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We have that x′Ax > 0 if x ≠ 0 because we have a sum of squares with positive coef-
ficients and y1 = y2 = y3 = 0 if and only if x1 = x2 = x3 = 0. Thus x′Ax is positive
definite (p.d.).

A slight relaxation of the above definition concerns x′Ax when its value is either
positive or zero for all x ≠ 0. We define an x′Ax of this nature as being positive
semi-definite (p.s.d.) when

x′Ax ≥ 0 for all x ≠ 0, with x′Ax = 0 for at least one x ≠ 0.

Under these conditions, x′Ax is a p.s.d. quadratic form and the corresponding sym-
metric matrix A is a p.s.d. matrix. This definition is widely accepted (see, for example,
Graybill (1976) and Rao (1973)). For example, Scheffe (1959, p. 398) defines a p.s.d.
matrix as one where x′Ax ≥ 0 for all x ≠ 0 without demanding that x′Ax = 0 for
at least one non-null x. This definition includes p.d. and p.s.d matrices. We will call
such matrices non-negative definite (n.n.d.) matrices in keeping, for example, with
Rao (1973, p. 35). Thus, n.n.d. matrices are either p.d. or p.s.d.

Example 3 A Positive Semi-definite Quadratic Form Consider

x′Ax =
[

x1 x2 x3
] ⎡
⎢
⎢
⎣

12 0 6
0 12 6
6 6 6

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

x1
x2
x3

⎤
⎥
⎥
⎦

=
[

x1 x2 x3
]

⎡
⎢
⎢
⎢
⎢
⎣

1
√

3
− 1
√

2
− 1
√

6
1
√

3

1
√

2
− 1
√

6
1
√

3
0 2

√
6

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎣

18 0 0
0 12 0
0 0 0

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

1
√

3

1
√

3

1
√

3

− 1
√

2

1
√

2
0

− 1
√

6
− 1
√

6

√
6

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎣

x1
x2
x3

⎤
⎥
⎥
⎦

= 18y2
1 + 12y2

2,

where y1 and y2 are as defined in Example 2. Clearly x′Ax is non-negative definite.
However x′Ax = 0 for x1 = 1, x2 = 1, x3 = –2. Thus x′Ax and A are positive
semi-definite but not positive definite. □

As another example, observe that

y′y = y′Iy =
n∑

i=1

y2
i

is positive definite because it is zero only when y = 0. However, notice that

y′y − nȳ2 = y′(I − n−1Jn)y =
n∑

i=1

y2
i − nȳ2
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is a positive semi-definite matrix that is not positive definite because it is zero when
every element of y is the same.

We will now establish some results about non-negative definite matrices that we
will use in the sequel. The first one about the determinants of the principal minors
(the minors that contain part of the main diagonal) will be stated without proof.

Lemma 1 The symmetric matrix A is positive definite if and only if its principal
leading minors have positive determinants. (See Seelye (1958) for a proof.)

Positive definite matrices are non-singular. However, not all non-singular matrices
are positive definite. For example, the matrix

M =
[

1 2
2 1

]

is symmetric and non-singular but not positive definite or positive semi-definite.

The next Lemma is often useful.

Lemma 2 For P non-singular, P′AP is or is not positive (semi-) definite according
as A is or is not p.(s.)d.

Proof. Let y = P−1x. Consider x′Ax = y′P′APy. When x = 0, y = 0 and x′Ax =
y′P′APy = 0. For x ≠ 0 and y ≠ 0, y′P′APy ≥ 0 according as x′Ax ≥ 0.

Hence P′AP is p.(s.)d. according as A is p.(s.)d.

Notice that in Examples 2 and 3 the eigenvalues of the matrices were non-negative.
This fact is generally true for positive semi-definite matrices as shown by the next

lemma.

Lemma 3 The eigenvalues of a positive (semi-) definite matrix are all positive
(non-negative).

Proof. Suppose that 𝜆 and u ≠ 0 are an eigenvalue and eigenvector of A, respectively
with Au = 𝜆u. Then consider u′Au = u′λu = λu′u for u ≠ 0. When A is p.d. u′Au >
0. Thus, λu′u > 0 so λ > 0.Thus, we have that all eigenvalues of a p.d. matrix are pos-
itive. When A is p.s.d., u′Au ≥ 0 with u′Au = 0 for at least one u≠ 0. That means that
𝜆 = 0 for at least one u ≠ 0. As a result, all eigenvalues of a p.s.d. matrix are zero or
positive.

Positive semi-definite matrices are singular. At least one of the eigenvalues is
zero resulting in a zero determinant. However, not all singular matrices are positive
semi-definite. All positive definite matrices are non-singular.

The next lemma gives a representation of a positive definite matrix in terms of a
non-singular matrix.
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Lemma 4 A symmetric matrix is positive definite if and only if it can be written as
P′P for a non-singular P.

Proof. If A = P′P for P non-singular, then A is symmetric and x′Ax = x′P′Px, the
sum of the squares of the elements of Px. Thus, x′Ax > 0 for all Px ≠ 0 and x′Ax = 0
for all Px = 0. However, since P is non-singular, P−1 exists so x = P−1Px = 0. Thus,
x′Ax > 0 for all x ≠ 0 and x′Ax = 0 only when x = 0. Therefore A is p.d.

On the other hand, suppose that A is p.d. Since A is symmetric, there exists a matrix
Q such that QAQ′ is a diagonal matrix with 0’s and 1’s in its diagonal. Since A is
p.d., it has full rank. Then QAQ′ = I and because Q is non-singular A = Q−1Q′−1

which is of the form P′P.

The matrix A′A is always non-negative definite as will be shown in Lemma 5.

Lemma 5 The matrix A′A is positive definite when A has full-column rank and is
positive semi-definite otherwise.

Proof. The quadratic form x′A′Ax is equal to the sum of squares of the elements of
Ax. When A has full-column rank, Ax = 0 only when x = 0. Thus, x′A′Ax > 0 for
all x ≠ 0 and A′A is p.d. If A has less than full-column rank, Ax = 0 for some x ≠ 0
and A′A is p.s.d.

Corollary 1 The matrix AA′ is positive definite when A has full-row rank and is
positive-semi-definite otherwise.

Proof. Let B = A′. The row rank of A is the column rank of B. Then AA′ = B′B.
The result now follows from Lemma 5.

The next result concerns the sum of positive (semi-) definite matrices.

Lemma 6 The sum of positive (semi) definite matrices is positive (semi-) definite.

Proof. Consider x′Ax = x′
(∑

i Ai

)
x.

We now obtain a representation of a non-full rank symmetric matrix.

Lemma 7 A symmetric matrix A of order n and rank r can be written as LL′

Where L is n × r of rank r, that is, L has full-column rank.

Proof. For some orthogonal P

PAP′ =
[

D2
r 0

0 0

]

=
[

Dr
0

]
[

Dr 0
]
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where D2
r is diagonal of order r. Hence

A = P′
[

Dr
0

]
[

Dr 0
]

P = LL′,

where L′ =
[

Dr 0
]

P of order r × n and full-row rank so that L is n × r of
full-column rank. Notice that although LL′ = A, L′L = D2

r . In addition L′ is real
only when A is n.n.d., for only then are the non-zero elements guaranteed to be
positive.

We now show that a matrix all of whose eigenvalues are zero or one is idempotent.

Lemma 8 A symmetric matrix having eigenvalues zero and one is idempotent.

Proof. The singular value decomposition of such a matrix

A =
[

U V
]
[

Ir 0
0 0

] [
U′

V′

]

= UU′.

However, A2 = UU′UU′ = UIrU
′ = UU′ = A so A is idempotent.

Another result about when matrices are idempotent is the following.

Lemma 9 If A and V are symmetric and V is positive definite, then if AV has
eigenvalues zero and one, it is idempotent.

Proof. The characteristic equation det(AV − λV) = 0 has roots zero and one. Then
by Lemma 4, V = P′P for some non-singular matrix P. It follows that the equation
det(P) det(AV − λI) det(P−1) = 0 has roots zero and one and, as a result, det(PAP′ −
λI) = 0 also has roots zero and one. By Lemma 8, PAP′ is idempotent.

But AV = AP′P. Then

(AV)2 = AVAV = AP′PAP′P = P−1PAP′PAP′P = P−1PAP′P = APP′ = AV

and AV is idempotent.

We are going to develop a criterion for comparing the “size” of two non-negative
definite matrices. This will be called the Loewner ordering. It will be useful to us
later for comparing the efficiency of estimators.

Definition 1 Matrix A will be said to be greater than or equal to matrix B in the
sense of the Loewner ordering if A – B is positive semi-definite. Matrix A will be
said to be greater than matrix B if A – B is positive definite.

Two non-negative definite matrices may or may not be comparable under the
Loewner ordering. The following Theorem will be useful for the comparison of
estimators later on.
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Theorem 1 If A and B are positive definite matrices and if B – A is a positive
(semi-) definite matrix, then A−1 − B−1 is a positive (semi)-definite matrix.

Proof. The proof is based on that in Gruber (2014). It should be clear that A−1 − B−1

is symmetric. We first establish that if I – A is a positive (semi)-definite, then A−1 − I
is positive (semi-) definite. The matrix A may be written as A = PΔP′ where Δ is the
diagonal matrix of eigenvalues ordered from highest to lowest and P is an orthogonal
matrix of eigenvectors. This is called the spectral decomposition (see p. 94 of Gruber
(2014)). Define A1∕2 = P𝚫1∕2P′ where 𝚫1∕2 consists of the positive square roots of
the elements of Δ. Since I – A is positive (semi-) definite, we have for all vectors p,

p′(I − A)p = p′A1∕2(A−1 − I)A1∕2p ≥ 0.

For every vector q, there exists a p such that q = A1∕2p. Thus, we have that I −
B−1∕2AB−1∕2 is positive semi-definite. Furthermore,

q′(A−1 − I)q ≥ 0.

Hence, A−1 − I is positive (semi-) definite. Since B – A is positive (semi-) definite
We have that p′(B − A)p = p′B1∕2(I − B−1∕2AB−1∕2)B1∕2p ≥ 0 for all p. Since

for each p there exists a q where q = B1∕2p, we have that I − B−1∕2AB−1∕2 is positive
(semi-) definite so that B1∕2A−1B1∕2 − I is positive (semi-) definite. Applying Lemma
2, we see that A−1 − B−1 is positive (semi-) definite.

4. DISTRIBUTIONS

For the sake of reference and establishing notation, some important properties of
commonly used distributions will be summarized. No attempt is made at completeness
or full rigor. Pertinent details that we will assume the reader is familiar with are
available in many textbooks. See, for example, Hogg, Mc Kean, and Craig (2014)
and Miller and Miller (2012). What follows will serve only as a reminder of these
things.

a. Multivariate Density Functions

For a set of n continuous random variables X1, X2,…, Xn for which x1, x2,…, xn
represents a set of realized values, we write the cumulative density function as

Pr(X1 ≤ x1, X2 ≤ x2,… , Xn ≤ xn) = F(x1, x2,… , xn). (5)
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Then, the density function is

f (x1, x2,… , xn) = 𝜕n

𝜕x1𝜕x2 ⋯ 𝜕xn
F(x1, x2,… , xn). (6)

A density function must satisfy these conditions:

1. f (x1, x2,… , xn) ≥ 0 for −∞ < xi < ∞ for all i;

2. ∫ ∞
−∞⋯ ∫

∞
−∞ f (x1, x2,… , xn)dx1dx2 ⋯ dxn = 1.

The marginal density function of a subset of the variables is obtained by integrating
out the remaining variables in the density function. For example, if we integrate out
the first k variables, we obtain the marginal density of xk, xk+1,…,xn. Thus we have

g(xk+1,… , xn) =
∫

∞

−∞
⋯

∫

∞

−∞
f (x1,… , xk, xk+1,… , xn)dx1 ⋯ dxk. (7)

The conditional distribution of one subset of variables given the set of remaining
variables is the ratio of the density function to the marginal density function of the
remaining variables. For example, the conditional distribution of the first k variables
given the last n – k variables is given by

f (x1,… , xk|xk+1,… , xn) =
f (x1, x2,… , xn)

g(xk+1,… , xn)
. (8)

b. Moments

The kth moment about zero of the ith variable of the expected value of the kth power
of xi is denoted by either 𝜇(k)

xi
or E(xk

i ). The expectation is obtained by calculating

𝜇(k)
xi
= E(xk

i ) =
∫

∞

−∞
xk

i g(xi)dxi = ∫

∞

−∞
⋯

∫

∞

−∞
xk

i f (x1, x2,… , xn)dx1dx2 ⋯ dxn (9)

When k = 1, the superscript (k) is usually omitted and 𝜇i is written for 𝜇(1)
i .

The covariance between the ith and jth variables for i ≠ j is

𝜎ij = E(xi − 𝜇i)(xj − 𝜇j)

=
∫

∞

−∞ ∫

∞

−∞
(xi − 𝜇i)(xj − 𝜇j)g(xi, xj)dxidxj (10)

=
∫

∞

−∞
⋯

∫

∞

−∞
(xi − 𝜇i)(xj − 𝜇j)f (x1, x2,… , xn)dx1 ⋯ dxn.
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Likewise, the variance of the ith variable is

𝜎ii = 𝜎2
i = E(xi − 𝜇i)

2

=
∫

∞

−∞
(xi − 𝜇i)

2g(xi)dxi (11)

=
∫

∞

−∞
⋯

∫

∞

−∞
(xi − 𝜇i)

2f (x1, x2,… , xn)dx1 ⋯ dxn.

Variances and covariances between the variables in the vector x′ =[
x1 x2 … xn

]
are given in (10) and (11). Arraying these variances and covari-

ances as the elements of a matrix gives the variance covariance matrix of the
x’s as

var(x) = V = {𝜎ij} for i, j = 1, 2, ..., n.

Diagonal elements of V are variances and off-diagonal elements are covariances.
Notation. The variance of a scalar random variable x will be written as v(x).

The variance-covariance matrix of a vector of random variables x will be denoted by
var(x).

The vector of means corresponding to x′ is

E(x′) = 𝜇′ =
[
𝜇1 𝜇2 … 𝜇n

]
.

By the definition of variance and covariance,

var(x) = E[(x − μ)(x − μ)′]. (12)

Furthermore, since the correlation is between the ith and jth variables is 𝜎ij∕𝜎i𝜎j, the
matrix of correlations is

R =
{
𝜎ij

𝜎i𝜎j

}

= D{1∕𝜎i}VD{1∕𝜎j} for i, j = 1,… , n (13)

where, using (3) of Section 1.1 of Chapter 1, the D’s are the diagonal entries with
elements 1∕𝜎i for i = 1, 2,… , n. The diagonal elements of R are all unity and R is
symmetric. The matrix R is known as the correlation matrix.

The matrix V is non-negative definite. The variance of t′x for any t is the quadratic
form t′Vt ≥ 0 that is positive by the definition of a variance unless t is the zero vector.

c. Linear Transformations

When the variables x are transformed to variables y by a linear transformation y =
Tx, it is easy to derive the moments. We have, for example,

𝜇y = T𝜇x and var(y) = TVT′. (14)
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When making this kind of transformation with T non-singular, an integral involving
the differentials dx1, dx1,…, dxn is transformed by substituting for the x’s in terms
of the y’s and by replacing the differentials by ‖J‖ dy1dy2 ⋯ dyn where ∥J∥ is the
Jacobian of the x’s with respect to the y’s. The Jacobian matrix is defined as J ={
𝜕xi∕𝜕yj

}
for i, j = 1, 2,… , n and ∥J∥ is the absolute value of the determinant |J|.

Since x = T−1y, J = T−1 and ∥J∥ = 1/∥T∥. Hence, when the transformation from x
to y is y = Tx, the product of the differentials

dx1dx2...dxn is replaced by (dy1dy2...dyn)∕||T||. (15)

For more information about the results in the above discussion, see, for example,
Courant (1988).

The discussion above outlines the procedure for deriving the density function of
y = Tx from that of x. First, substitute from x = T−1y for each xi in f(x1, x2,…, xn).
Suppose that the resulting function of the y’s is written as f(T−1y). Then, because

∫

∞

−∞
⋯

∫

∞

−∞
f (x1, x2,… , xn)dx1 ⋯ dxn = 1

the transformation gives

∫

∞

−∞
⋯

∫

∞

−∞
f
(
T−1y

)
(1∕ ‖T‖) dy1 ⋯ dyn = 1.

Suppose that h(y1, y2,…, yn) is the density function of the y’s.
Then

∫

∞

−∞
⋯

∫

∞

−∞
f (y1, y2,… , yn)dy1 ⋯ dyn = 1.

By comparison,

h(y1, y2,… , yn) =
f (T−1y)
||T||

. (16)

Example 4 If

[
y1
y2

]

=
[

3 −2
5 −4

] [
x1
x2

]

is the transformation y = Tx, then ∥T∥ = 2. Since

T−1 =
[

2 −1
5
2

3
2

]

h(y1, y2) = 1
2

f (2y1 − y2,
1
2

(5y1 − 3y2)). □
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d. Moment and Cumulative Generating Functions

Moments and relationships between distributions are often derived using moment
generating functions. In the univariate case, the moment generating function (m.g.f.)
is written as a function of t. For a more complete discussion of the m.g.f., see, for
example, Hogg, Mc Kean, and Craig (2014) or Miller and Miller (2012).

The moment generating function of a random variable X is defined as the expec-
tation of ext. We have that, assuming certain conditions are satisfied in order to move
summation outside of the integral,

MX(t) = E(ext)

=
∫

∞

−∞
extf (x)dx =

∫

∞

−∞

∞∑

i=0

tnxn

n!
f (x)dt =

∞∑

i=0

𝜇
(i)
X

n!
tn. (17)

The moment generating function gives a method of obtaining the central moments of
a density function by differentiation. Evaluating the kth partial derivative of MX(t) at
t = 0, we get that

m(k)
x =

dkMx(t)

dtk

|
|
|
|
|t=0

. (18)

Likewise, for some function of x, we have that

Mh(x)(t) = E(eth(x)) =
∫

∞

−∞
eth(x)f (x)dx. (19)

The kth moment about zero of the function is

𝜇k
h(x) =

dkMh(x)(t)

dtk

|
|
|
|
|t=0

. (20)

Similar results hold for multivariate situations. The m.g.f. of the joint distribution of
n variables utilizes a vector of parameters t′ =

[
t1 t2 … tn

]
. We have that

Mx(t) = E(et′x) =
∫

∞

−∞
⋯

∫

∞

−∞
et′xf (x1, x2,… , xn)dx1 ⋯ dxn. (21)

The m.g.f. of a scalar function of the elements of x, the quadratic form x′Ax, for
example, is

Mx′Ax(t) = E(etx′Ax) =
∫

∞

−∞
⋯

∫

∞

−∞
etx′Axf (x1, x2,… , xn)dx1 ⋯ dxn. (22)

As well as yielding the central moments of density function, the m.g.f. has other
important uses, two of which will be invoked repeatedly. First, if two random variables
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have the same m.g.f., they also have the same density function. This is done under
wide regularity conditions whose details are omitted here (see, for example, Mood,
Graybill, and Boes (1974)). Second, two random variables are independent if their
joint m.g.f. factorizes into the product of their two separate m.g.f.’s. This means that
if M(X1,X2)(t1, t2) = MX1

(t1)MX2
(t2), then X1 and X2 are independent.

Another useful property of the m.g.f. is

MaX+b(t) = ebtMX(at). (23)

To see this, observe that

MaX+b(t) = E(et(aX+b)) = E(ebteatX) = ebtMX(at).

Sometimes, it is easier to obtain moments using the natural logarithm of the
moment generating function. This is the culmulant generating function

KX(t) = logMX(t). (24)

Unless stated otherwise, log will always refer to natural logarithms with base e. A
particularly noteworthy fact about the culmulant generating function is that its first
two derivatives at zero are the mean and the variance of a density function. We have
that

K′
X(t) =

M′
X(t)

MX(t)

so that

K′
X(0) =

M′
X(0)

MX(0)
= 𝜇X.

furthermore

K
′′

X (t) =
MX(t)M

′′
X(t) − (M′

X(t))2

(MX(t))2

and

K
′′

X (0) =
MX(0)M

′′
X(0) − (M′

X(0))2

(MX(0))2
= E(X2) − 𝜇2 = 𝜎2.
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e. Univariate Normal

When the random variable X has a normal distribution with mean 𝜇 and variance 𝜎2,
we will write x is N(𝜇, 𝜎2) or x ∼ N(𝜇, 𝜎2). The density is given by

f (x) = 1

𝜎
√

2𝜋
e−

1
2

(x−𝜇)2∕𝜎2
, for−∞ < X < ∞

Consider the standard normal random variable z = (x − 𝜇)∕𝜎. For this case, the m.g.f.
of z is

MZ (t) = 1
√

2𝜋 ∫

∞

−∞
ezte−z2∕2dz = 1

√
2𝜋 ∫

∞

−∞
e−

1
2

(
z2−2zt+t2

)
+ 1

2
t2 dz

= 1
√

2𝜋 ∫

∞

−∞
e−

1
2

(z−t)2
e

1
2

t2 dz = e
1
2

t2
.

Now, KZ(t) = 1
2
t2, K′

z(t) = t, K′′
z (t) = 1, so that for t = 0, K′

z(0) = 0 and K′′
z (0) = 1.

Thus, the standard normal random variable has mean 0 and variance 1. Now since
z = (x − 𝜇)∕𝜎, x = z𝜎 + 𝜇.

From (23),

MX(t) = e𝜇tMz(𝜎t) = e𝜇t+ 1
2
𝜎2t2 and Kx(t) = 𝜇t + 1

2
𝜎2t2

are the moment generating function and cumulant generating function, respectively
of a normal random variable with mean 𝜇 and variance 𝜎2. Observe that the first two
derivatives of KX(t) at t = 0 are 𝜇 and 𝜎2.

f. Multivariate Normal

(i) Density Function. When the random variables in x′ =
[

x1 x2 … xn

]
have

a multivariate normal distribution with a vector of means 𝝁 and variance-covariance
matrix V, we write “x is N(μ, V)” or “x ∼ N(μ,V)”. When E(xi) = 𝜇 for all i, then 𝜇
= 𝜇1. If the xi’s are mutually independent with the same variance 𝜎2, we write “x ∼
N(𝜇1, 𝜎2I)”.

We assume that V is positive definite. The multivariate normal density function is
then

f (x1, x2,… , xn) = e−
1
2

(x−𝜇)′V−1(x−𝜇)

(2𝜋)
1
2

n
|V|

1
2

. (25)

(ii) Aitken’s Integral. We shall use Aitken’s integral to show that the multivariate
normal density in (25) is a bona fide probability density function. It is as follows.
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For A being a positive definite symmetric matrix of order n

∫

∞

−∞
⋯

∫

∞

−∞
e−

1
2

x′Axdx1 ⋯ dxn = (2𝜋)
1
2

n
|A|−

1
2 . (26)

We will obtain the result in (26) by means of a transformation that reduces the integral

to products of single integrals of e−
1
2

y2
i . Notice that because A is positive definite, there

exists a non-singular matrix P such that P′AP = In. Hence the determinant |P′AP| =
|P|2|A| = 1. Thus |P| = |A|−1∕2. Letting x = Py gives x′Ax = y′P′APy = y′y.

From (15),

∫

∞

−∞
⋯

∫

∞

−∞
e−

1
2

x′Axdx1 ⋯ dxn =
∫

∞

−∞
⋯

∫

∞

−∞
e−

1
2

y′ydy1 ⋯ dyn∕||P−1||

= |P|
∫

∞

−∞
⋯

∫

∞

−∞
exp

(

−1
2

n∑

i=1

y2
i

)

dy1 ⋯ dyn = |A|−
1
2

n∏

i=1

{

∫

∞

−∞
e−

1
2

y2
i dyi

}

= (2𝜋)
1
2

n
|A|−

1
2 .

Application of this result to (25) yields

∫

∞

−∞
⋯

∫

∞

−∞
f (x1, x2,… , xn)dx1dx2 ⋯ dxn = (2𝜋)

1
2

n
(

|V−1|
− 1

2 ∕
(√

2𝜋
)n)

|V|
1
2 = 1

establishing that the multivariate normal distribution is indeed a bona fide probability
distribution.

(iii) Moment Generating Function. The m.g.f. for the multivariate normal distri-
bution is

MX(t) = (2𝝅)−
1
2

n
|V|−

1
2
∫

∞

−∞
⋯

∫

∞

−∞
exp

[

t′x − 1
2

(x − 𝝁)′V−1(x − 𝝁)
]

dx1 ⋯ dxn

Rearranging the exponent, this becomes

MX(t) = (2𝝅)−
1
2

n
|V|−

1
2
∫

∞

−∞
⋯

∫

∞

−∞
exp[− 1

2
(x − 𝝁 − Vt)′V−1(x − 𝝁 − Vt) + t′𝝁 + 1

2
t′Vt]dx1 ⋯ dxn

= et′𝝁+ 1
2

t′Vt

(2𝝅)
1
2

n
|V|

1
2
∫

∞

−∞
⋯

∫

∞

−∞
exp[− 1

2
(x − 𝝁 − Vt)′V−1(x − 𝝁 − Vt)]dx1 ⋯ dxn
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We make the transformation y = x − 𝝁 − Vt from x to y. The Jacobian is unity. The
integral reduces to Aiken’s integral with matrix V−1. Hence

MX(t) = et′𝝁+ 1
2

t′Vt(2𝝅)
1
2

n
|V−1|

− 1
2

(2𝝅)
1
2

n
|V|

1
2

= e
t′𝜇+ 1

2 t′Vt
. (27a)

The culmulant generating function

KX(t) = t′μ + 1
2

t′Vt. (27b)

Finding the first and second partial derivatives of KX(t) at t = 0 gives a mean vector
𝝁 and variance covariance matrix V.

(iv) Marginal Distributions. The definition of the marginal distribution of
x1, x2,… , xk, namely the first k x’s is in accord with (7)

g(x1, x2,… , xk) =
∫

∞

−∞
⋯

∫

∞

−∞
f (x1, x2,… , xn)dxk+1 ⋯ dxn.

The m.g.f. of this distribution is by (21)

Mx1⋯xk
(t) =

∫

∞

−∞
⋯

∫

∞

−∞
et1x1+⋯+tnxk g(x1,… , xk)dx1 ⋯ dxk

and upon substituting for g(x1, x2,… , xk), this becomes

Mx1⋯xk
(t) =

∫

∞

−∞
⋯

∫

∞

−∞
et1x1+…+tnxk f (x1,… , xn)dx1 ⋯ dxn

= m.g.f x1, x2,… , xn with tk+1 = ⋯ = tn = 0 (28)

= et′𝜇+ 1
2

t′Vt with tk+1 = ⋯ = tn = 0.

To make the substitutions tk+1 = … tn = 0, we partition x, μ, V, and t by defining

x′1 =
[

x1 x2 ⋯ xk

]
and x′2 =

[
xk+1 xk+2 ⋯ xn

]
.

Putting t2 = 0 in (28) so that x′ =
[

x′1 x′2
]
.

Conformable with the above, we have

μ′ =
[
μ′

1 μ′
2

]
, t′ =

[
t′1 t′2

]
and V =

[
V11 V12
V′

12 V22

]

.

Putting t2 = 0 in (28) gives

Mx1…xk
(t1) = et′1𝜇1+

1
2

t′1V11t1 .
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We therefore see that g(x1) and g(x2) are multivariate normal distributions. The
marginal density functions are

g(x1) = g(x1,… , xk) =
exp

[

− 1
2
(x1 − 𝜇1)′V11(x1 − 𝜇1)

]

(2𝜋)
1
2

k
|V11|

1
2

(29a)

and

g(x2) = g(xk+1,… , xn) =
exp

[

− 1
2
(x2 − 𝝁2)′V22(x2 − 𝝁2)

]

(2𝝅)
1
2

k
|V22|

1
2

. (29b)

Since V is taken as being positive definite, so are V11 and V22. Furthermore, in
these expressions, use can be made of the partitioned form of V (see equation (54) of
Chapter 1).

Thus, if

V−1 =
[

V11 V12
V′

12 V22

]−1

=
[

W11 W12
W′

12 W22

]

,

then V−1
11 = W11 − W12W−1

22 W′
12 and V−1

22 = W22 − W12W−1
11 W′

12

(v) Conditional Distributions Let f(x) denote the density function of all n x’s. Then
equation (8) gives the conditional distribution of the first k x’s as

f (x1|x2) =
f (x)

g(x2)
.

On substituting from (25) and (29),

f (x1|x2) =
exp{− 1

2

[
(x − μ)′V−1(x − μ) − (x2 − μ2)′V−1(x2 − μ2)

]

(2𝝅)
1
2

k(|V|∕|V22|)
1
2

. (30)

In terms of the partitioned form of V and its inverse given above, we have

W11 = (V11 − V12V−1
22 V′

12)−1 (31a)

and

V−1 =
[

W11 −W11V12V−1
22

−V−1
22 V′

12W11 V−1
22 + V−1

22 V′
12W11V12V−1

22

]

. (31b)
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Therefore, the exponent in (30) becomes

[
(x1 − μ1)′ (x2 − μ2)′

]
[

W11 −W11V12V−1
22

−V−1
22 V′

12W11 V−1
22 + V−1

22 V′
12W11V12V−1

22

]

×
[

(x1 − μ1)
(x2 − μ2)

]

− (x2 − μ2)′V−1
22 (x2 − μ2).

The above expression simplifies to

[
(x1 − μ1)′ (x2 − μ2)′

]
[

I
−V−1

22 V′
12

]

W11[I − V12V−1
22 ]

[
(x1 − μ1)
(x2 − μ2)

]

= [(x1 − μ1) − V12V−1
22 (x2 − μ2)]′W11[(x1 − μ1) − V12V−1

22 (x2 − μ2)]. (32)

Furthermore, using the result for the determinant of a partitioned matrix (e.g., Searle
(1966, p. 96)) from (31a)

|V| = |V22||V11 − V12V−1
22 V′

12| = |V22||W
−1
11 |.

Hence

|V|
|V22|

= |W−1
11 |. (33)

Substituting (32) and (33) into (30) gives

f (x1|x2) =
exp{− 1

2
[(x1 − 𝝁1) − V12V−1

22 (x2 − 𝝁2)]′W11[(x1 − 𝝁1) − V12V−1
22 (x2 − 𝝁2)]′}

(2π)
1
2

k|W−1
11 |

1
2

.

(34)

This shows that the conditional distribution is also normal. In fact, from (34),

x1|x2 ∼ N[𝝁1 + V12V−1
22 (x2 − 𝝁2), W−1

11 ]. (35)

(vi) Independence of Normal Random Variables A condition for the inde-
pendence of sub-vectors of vectors of normal random variables is given in
Theorem 2.

Theorem 2 Suppose that the vector x′ =
[

x1 x2 … xn

]
is partitioned into p

sub-vectors x′ =
[

x′1 x′2 … x′p
]
.

Then a necessary and sufficient condition for the vectors to be mutually indepen-
dent is, in the corresponding partitioning of V = {Vij} for i, j = 1, 2,…, p, that Vij =
0, for i ≠ j.
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Proof. The m.g.f. is by (27a)

Mx (t) = et′μ+ 1
2

t′Vt = exp

(
p∑

i=1

t′iμi +
1
2

p∑

i=1

p∑

j=1

t′iVijtj

)

If Vij = 0 for i ≠ j this reduces to

MX(t) = exp
p∑

i=1

(

t′iμi +
1
2

t′iViiti

)

=
p∏

i=1

exp
(

t′iμi +
1
2

t′iViiti

)

.

Since the m.g.f. of the joint distribution of independent sets of variables is the product
of their several m.g.f.’s, we conclude that the xi’s are independent.

On the other hand, suppose the p sub-vectors are independent each with variance
covariance matrix Kii . The m.g.f. of the joint distribution is

p∏

i=1

exp
(

t′iμi +
1
2

t′iKiiti

)

= exp
p∑

i=1

(

t′iμi +
1
2

t′iKiiti

)

= exp
(

t′μ + 1
2

t′Vt
)

where V =
⎡
⎢
⎢
⎢
⎣

K11 0 ⋯ 0
0 K22 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ Kpp

⎤
⎥
⎥
⎥
⎦

. Hence Vij = 0 for i ≠ j.

Note that while uncorrelated normal random variables are independent, this property
does not hold for random variables in general. See, for example, Miller and Miller
(2012).

g. Central 𝝌2, F, and t

Certain functions of independent normal random variables follow these distributions.
In order to give the probability density functions, we will need the gamma distribution,
which for a parameter 𝛼 is defined by the improper integral

Γ(𝛼) =
∫

∞

0
x𝛼−1e−xdx.

The gamma function is a generalization of the factorial function defined on the
integers. We have that Γ(n) = (n − 1)! (see Exercise 4).

When x ∼ N(0,I) then
∑n

i=1 x2
i has the central 𝜒2-distribution with n degrees of

freedom. Thus when x ∼ N(0,I) and u =
∑n

i=1 x2
i then u ∼ 𝜒n

2.
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The density function is

f (u) = un−1e−
1
2

u

2
1
2

nΓ( 1
2
n)

, u > 0. (36)

The m.g.f. corresponding to (36) is given by (see Exercise 5)

Mu(t) = (1 − 2t)−
1
2

n
. (37)

This may be obtained directly from (17) using (36) or as Mx′x(t) using the density
function of the standard normal distribution. The mean and the variance are n and
2n, respectively. These may be obtained by direct calculation using (36) and the
properties of the gamma function or from the first two derivatives of (37) at t = 0.

The commonest application of the𝜒2
-distribution is that when x ∼ N(𝜇1,𝜎2I) then

∑n−1
i=1 (xi − x̄)2∕𝜎2 ∼ 𝜒2

n−1. This result can be established by making the transforma-
tion y = H0x where H0 is the last n – 1 rows of the Helmert matrix in Section 1 (see
pp. 51–52 of Gruber (2014)).

The ratio of two independent random variables each having central𝜒2
-distributions

divided by the number of degrees of freedom has an F-distribution. Thus if

u1 ∼ 𝜒2
n1

and u2 ∼ 𝜒2
n2

, then v =
u1∕n1

u2∕n2
∼ Fn1,n2

,

the F-distribution with n1 and n2 degrees of freedom. The density function is

f (v) =
Γ
(

1
2
(n1 + n2)

)

n
1
2

n1

1 n
1
2

n2

2 v
1
2

n1−1

Γ
(

1
2
n1

)

Γ
(

1
2
n2

) (
n2 + n1v

) 1
2

n1+
1
2

n2

, v > 0. (38)

The mean and the variance are

𝜇 =
n2

n2 − 2
and 𝜎2 =

2n2
1[1 + (n2 − 2)∕n1]

(n2 − 2)2(n2 − 4)
.

Finally, the ratio of a normally distributed random variable to the square root of
one that has a chi-square distribution is the basis of the Student t-distribution. Thus
when x ∼ N(0, 1) and u ∼ 𝜒2

n independent of x, we have that

z = x
√

u
n

∼ tn,
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the t-distribution with n degrees of freedom. Its density function is

f (x) =
Γ
(

1
2
(n + 1)

)

√
n𝜋Γ

(
1
2
n
)

(

1 + z2

n

)− 1
2

(n+1)

, for −∞ < t <∞. (39)

A frequent application of the t-distribution is that if x ∼ N(𝜇1, 𝜎2I) and if s2 =
∑n

i=1 (xi−x̄)2

n−1
, then x̄−𝜇

s∕
√

n
has the Student tn-1-distribution.

The relationship between tn and F1,n can easily be described. For x that follows a
standard normal distribution, consider

z2 = x2

u∕n
.

The random variable x2 has a chi-square distribution with one degree of freedom and
u is chi-square with n degrees of freedom. Thus z2 ∼ F1,n . Thus, when a variable is
distributed as tn its square is distributed as F1,n.

For the derivation of the density functions of the chi-square, t, and F-distributions,
see, for example, Hogg, Mc Kean and Craig (2014).

h. Non-central 𝝌2

We have already seen that when x∼N(0,In) distribution the distribution of x′x =
∑

x2
i

is what is known as the central 𝜒2-distribution. We now consider the distribution of
u = x′x when x ∼ N(μ, I). The sole difference is that the mean of random variable x
is 𝜇 ≠ 0. The resulting distribution of u = x′x is known as the non-central 𝜒2.

Like the central 𝜒2-distribution, it is the sum of the squares of independent normal
random variables and involves degrees of freedom. It involves the parameter

𝜆 = 1
2
μ′μ = 1

2

∑
𝜇2

i .

This distribution will be referred to by the symbol 𝜒2′(n, 𝜆), the non-central chi-
square distribution with n degrees of freedom and non-centrality parameter 𝜆. When
𝜇 = 0, 𝜆 = 0, it reduces to a central chi-square distribution.

The density function of the non-central chi-square distribution 𝜒2′(n, 𝜆) is

f (u) = e−𝜆
∞∑

k=0

𝜆k

k!
u

1
2

n+k−1e−
1
2

u

2
1
2

n+kΓ( 1
2
n + k)

. (40)

This is an infinite weighted sum of central chi-square distributions because the term

u
1
2

n+ke−
1
2

u∕2
1
2

n+kΓ( 1
2
n + k) in (40) is by (36) the density function of a central 𝜒2

1
2

n+k
-
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distribution. The derivation of the density function of the non-central chi-square
distribution may be found in C. R. Rao (1973, p. 182).

The m.g.f. of the non-central chi-square distribution may be derived using the
definition of the m.g.f. in (17) and the m.g.f. of the central chi-square distribution
given by

Mu(t) = e−𝜆
∞∑

k=0

(𝜆k∕k!)
(

m.g.f.of𝜒2
1
2

n+k

)

= e−𝜆
∞∑

k=0

(𝜆k∕k!)(1 − 2t)−( 1
2

n+k) (41)

= e−𝜆e𝜆(1−2t)−1
(1 − 2t)−

1
2

n

= (1 − 2t)−
1
2

ne−𝜆[1−(1−2t)−1].

The culmulant generating function

Ku(t) = logMu(t) = −1
2

n log(1 − 2t) − 𝜆 + 𝜆

1 − 2t
. (42)

The mean and variance may be obtained by finding the first two derivatives of (42)
at t = 0. They are n + 2𝜆 and 2n + 8𝜆, respectively.

As one would expect, the properties of the non-central chi-square distribution
reduce to those of the central chi-square distribution when 𝜆 = 0.

The following theorem gives another important property of both the central and the
non-central chi-square distribution, namely that the sum of independent chi-square
random variables is also chi-square.

Theorem 3 If for i = 1, 2,… , k, ui ∼ 𝜒2′(ni, 𝜆i) and independent then
∑

ui ∼
𝜒2′

(∑
ni,
∑
𝜆i

)
.

Proof. We use the moment generating function and the independence of the ui’s.
Observe that

M(u1,…uk)(t) =
∏

Mui
(ti) =

∏
E(etiui).

Putting ti = t for all i, this becomes
∏

Mui
(t) =

∏
E(etui ) = E(et

∑
ui) = M∑

ui
(t)

where the products and sums are over i = 1, 2, … , k. Hence

M∑
ui

(t) =
∏

Mui
(t) =

∏
(1 − 2t)−

1
2

nie−𝜆i[1−(1−2t)−1]

= (1 − 2t)−
1
2

∑
ni e−

∑
𝜆i[1−(1−2t)−1].

Comparison with (41) yields
∑

ui ∼ 𝜒2′
(∑

ni,
∑
𝜆i

)
.
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i. Non-central F

Just as there is a non-central analogy of the central chi-square distribution, so also
there is a non-central F-distribution. It is specified as follows. If u1 and u2 are
independent random variables and if

u1 ∼ 𝜒2′(n1, 𝜆) and u2 ∼ 𝜒2
n2

,

then,

v =
u1∕n1

u2∕n2
is distributed as F′(n1, n2, 𝜆).

This is the non-central chi-square distribution with n1 and n2 degrees of freedom and
non-centrality parameter 𝜆. The density function is

f (v) =
∞∑

k=0

e−𝜆𝜆k

k!

n
1
2

n1+k

1 n
1
2

n2

2 Γ
[

1
2
(n1 + n2) + k

]

Γ
(

1
2
n1 + k

)

Γ
(

1
2
n2

)
v

1
2

n2+k−1

(n2 + n1v)
1
2

(n1+n2)+k
.

When 𝜆 = 0, this reduces to (38), the density function of the central F-distribution.
The mean and variance of the distribution are

𝜇 =
n2

n2 − 2

(

1 + 2𝜆
n1

)

and

𝜎2 =
2n2

2

n2
1(n2 − 2)

[
(n1 + 2𝜆)2

(n2 − 2)(n2 − 4)
+

n1 + 4𝜆

n2 − 4

]

.

When 𝜆 = 0 these reduce, of course, to the mean and the variance of the central
Fn1,n2

-distribution.

j. The Non-central t Distribution

If x ∼ N(𝜇, 1) and if independently of x u ∼ 𝜒2
n , then t = x∕

√
u∕n has the non-central

t-distribution with, t′(n,𝜇), with n degrees of freedom and non-centrality parameter
𝜇. The density function is

f (t) = n
1
2

n

Γ( 1
2
n)

e−
1
2
𝜇2

(n + t2)
1
2

(n+1)

∞∑

k=0

Γ[ 1
2
(n + k + 1)]𝜇k2

1
2

ktk

k!(n + t2)
1
2

k
.

Its derivation is given in C. R. Rao (1973, pp. 171–172).
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5. DISTRIBUTION OF QUADRATIC FORMS

We discuss here the distribution of a quadratic form x′Ax when x ∼ N(μ, V). For the
most part, we will confine ourselves to the case where V is non-singular. In dealing
with the general case of x being N(μ, V) the results we shall obtain will also be true
for important special cases such as x being N(0,I), N(μ1, I), or N(μ, I). The main
results will be presented in a series of five theorems. The first relates to culmulants
of quadratic forms. The second is about the distribution of quadratic forms. The last
three are about the independence properties of quadratic forms.

All of the theorems make considerable use of the trace of a matrix. The trace of a
matrix is the sum of its diagonal elements. The important properties of the trace of a
matrix include the following:

1. It is the sum of its eigenvalues.

2. It is equal to the rank of an idempotent matrix.

3. Products are cyclically commutative, for example,

tr(ABC) = tr(BCA) = tr(CAB).

4. For a quadratic form, we have

x′Ax = tr(x′Ax) = tr(Axx′).

For more information about the trace of a matrix, see Sections 4.6 and 8.4 of Gruber
(2014). The above properties of the trace are used many times in what follows without
explicit reference to them. We shall assume that the reader is familiar with them.

For all of the theorems, with the exception of Theorem 4, we shall assume that
x ∼ N(μ, V). The first part of Theorem 4 will hold true when the mean E(x) = μ

and the variance covariance matrix or dispersion D(x) = V regardless of whether x is
normally distributed or not.

The following lemma is used to prove one result for the normal case.

Lemma 10 For any vector g and any positive definite symmetric matrix W

(2𝜋)
1
2

n
|W|

1
2 e

1
2

z′Wz =
∫

∞

−∞
⋯

∫

∞

−∞
exp

(

−1
2

x′W−1x + g′x
)

dx1 … dxn. (43)

Proof. From the integral of a multivariate normal density N(μ, W), we have

(2π)
1
2

n
|W|

1
2 e

1
2

z′Wz =
∫

∞

−∞
⋯

∫

∞

−∞
exp

[

−1
2

(x − μ)′W−1(x − μ)dx1 … dxn

=
∫

∞

−∞
⋯

∫

∞

−∞
exp

(

−1
2

x′W−1x + μ′W−1x − 1
2
μ′W−1μ

)

dx1 … dxn.

On writing g′ for μ′W−1 this gives (43).
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a. Cumulants

Recall that the cumulant generating function was the natural logarithm of the moment
generating function. It can be represented by the series

KX(t) =
∞∑

r=0

Kr

r!
tr (44)

where

Kr =
dr

dtr
KX(t)

|
|
|
|t=0

is the rth cumulant.
The first theorem about cumulants is as follows.

Theorem 4 Without any assumptions about the distribution of x

(i)

E(x′Ax) = tr(AV) + μ′Aμ; (45)

If x ∼ N(μ, V),

(ii) the rth cumulant of x′Ax is

Kr(x′Ax) = 2r−1(r − 1)![tr(AV)r + rμ′A(VA)r−1μ]; (46)

and

(iii) the covariance of x with x′Ax is

cov(x, x′Ax) = 2VAμ.

Proof. (i) With E(x) = μ and var(x) = V, we have

E(xx′) = V + μμ′.

Hence,

E(x′Ax) = Etr(Axx′) = trE(Axx′) = tr(AV + Aμμ′) = tr(AV) + μ′Aμ.

Notice that the steps of the above proof only depended on the moments of x,not on
any other assumptions about its distribution.

(ii) The m.g.f. of x′Ax is

Mx′Ax(t) = (2𝜋)−
1
2

n|V|−
1
2
∫

∞

−∞
⋯

∫

∞

−∞
exp

[

tx′Ax − 1
2

(x − 𝜇)′V−1(x − 𝜇)
]

dx1 … dxn.
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On rearranging the exponent, the m.g.f. becomes

Mx′Ax(t) = e−
1
2
μ′V−1μ

(2π)
1
2

n
|V|

1
2
∫

∞

−∞
⋯
∫

∞

−∞
exp

[

−1
2

x′(I − 2tAV)V−1x + μ′V−1x
]

dx1 … dxn.

(47)

In Lemma 10, put g′ = μ′V−1 and W = [(I − 2tAV)V−1]−1 = V(I − 2tAV)−1. The
right-hand side of (43) then equals the multiple integral in (47). Then (47) becomes

Mx′Ax(t) = e−
1
2
μ′V−1

μ
|V|−

1
2
|
|
|
V(I − 2tAV)−1||

|

1
2 exp

[1
2
μ′V−1V(I − 2tAV)−1V−1μ

]

.

This simplifies to

Mx′Ax(t) = |(I − 2tAV)|−
1
2 exp

{

−1
2
μ′[I − (I − 2tAV)−1V−1μ]

}

. (48)

Recall that the cumulant generating function is the natural logarithm of the moment
generating function. From (44), we have

∞∑

r=1

Krt
r

r!
= log[Mx′Ax(t)

= −1
2
log |I − 2tAV| − 1

2
μ′[I − (I − 2tAV)−1]V−1μ. (49)

The two parts of the last expression in (48) are evaluated as follows. Use “𝜆i of X”
to denote the “ith eigenvalue of X”. Then for sufficiently small |t|,

−1
2
log |I − 2tAV| = −1

2

n∑

i=1

log[𝜆i of (I − 2tAV)]

= −1
2

n∑

i=1

log[1 − 2t(𝜆i of AV)]

= −1
2

n∑

i=1

∞∑

r=0

−
[2t(𝜆i of AV)]

r

r

=
∞∑

r=1

2r−1tr

r

n∑

i=1

(𝜆i of AV)r

=
∞∑

r=1

2r−1tr

r
(trAV)r
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Using the formula for the sum of an infinite geometric series, for sufficiently small
|t|,

I − (I − 2tAV)−1 = −
∞∑

r=1

2rtr(AV)r.

Making these substitutions in (48) and equating the coefficients gives (46).
(iii) Finally, the covariance between x and x′Ax is

cov(x, x′Ax) = E(x − μ)[x′Ax − E(x′Ax)]

= E(x − μ)[x′Ax − μ′Aμ − tr(AV)]

= E(x − μ)[(x − μ)′A(x − μ) + 2(x − μ)′Aμ − tr(AV)]

= 0 + 2VAμ − 0

= 2VAμ.

because odd moments of (x − μ) are zero by the normality assumption.

The following corollaries are easy to establish.

Corollary 4.1 When μ = 0

E(x′Ax) = trAV.

Under normality

Kr(x
′Ax) = 2r−1(r − 1)!tr(AV)r

and

cov(x, x′Ax) = 0.

These are results given by Lancaster (1954) and others.

Corollary 4.2 An important application of the theorem is the value of its second
part when r = 2 because then it gives the variance of x′Ax. We have that

v(x′Ax) = 2tr(AV)2 + 4μ′AVAμ. (50)

Corollary 4.3 When x ∼ N(0,V)

v(x′Ax) = 2tr(AV)2.
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b. Distributions

The following theorem gives conditions for a quadratic form of normally distributed
random variables to be a non-central chi-square distribution.

Theorem 5 When x is N(μ, V) then x′Ax is 𝜒2′[r(A), 1
2
μ′Aμ] if and only if AV is

idempotent.

Proof (sufficiency). Given that AV is idempotent we will show that x′Ax ∼
𝜒2′[r(A), 1

2
μ′Aμ].

From (48), the m.g.f. of x′Ax is

Mx′Ax(t) = |(I − 2tAV)|−
1
2 exp

{

−1
2
μ′[I − (I − 2tAV)−1]V−1μ]

}

=
n∏

i=1

(1 − 2tλi)
− 1

2 exp

{

−1
2
μ′

[

−
∞∑

k=1

(2t)k(AV)k

]

V−1μ

}

,

where the 𝜆i for i= 1, 2,…, n are the eigenvalues of AV. We have that AV is idempotent
so its eigenvalues are zero or one. If it has rank r, then r of those eigenvalues are one
and n – r of the eigenvalues are zero. Furthermore, (AV)r = AV.

Mx′Ax(t) =
r∏

i=1

(1 − 2t)−
1
2 exp

{

−1
2
μ′

[

−
∞∑

k=1

(2t)k

]

AVV−1μ

}

= (1−2t)−
1
2

r exp
{

−1
2
μ′[1 − (1−2t)−1]Aμ

}

= (1−2t)−
1
2

r exp
{

−1
2
μ′Aμ[1 − (1 − 2t)−1]

}

. (51)

By comparison with (41), we see that x′Ax is 𝜒2′[r, 1
2
μ′Aμ] where r = r (AV).

Since V is non-singular r (AV) = r (A). Hence, x′Ax is 𝜒2′(r(A), 1
2
μ′Aμ).

Proof (necessity). We will now show that if x′Ax is 𝜒2′(r(A), 1
2
μ′Aμ) then AV is

idempotent of rank r.
Since we know the distribution of x′Ax its m.g.f. is given by (51) and also in

the form given by (48). These two forms must be equal for all values of 𝝁 and in
particular for 𝝁 = 0. Substituting 𝝁 = 0 into (48) and (51) and equating gives

(1−2t)−
1
2

r = |I − 2tAV|−
1
2 .

Replacing 2t by u and rearranging gives

(1 − u)r = |I − uAV| .
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Let 𝜆1, 𝜆2,… , 𝜆n be the eigenvalues of AV. We then have

(1 − u)r =
n∏

i=1

(1 − u𝜆i).

Since the above equation is an identity in u its right-hand side has no powers of u
exceeding r. Repeated use of this argument shows that (n –r) of the eigenvalues are
zero.

Thus, we can write

(1 − u)r =
r∏

i=1

(1 − u𝜆i).

Taking logarithms of both sides of the above equation and equating coefficients gives
r equations in r unknown 𝜆’s. All sums of the powers of the 𝜆’s equal r. These have
a solution 𝜆i = 1 for i = 1, 2, …, r. Thus, n – r latent roots are zero and r of them are
unity.

Therefore, by Lemma 9, AV is idempotent and the theorem is proved.

Operationally the most important part of this theorem is the sufficiency condition,
namely that if AV is idempotent, then x′Ax has a non-central chi-square distribution.
However, there are also occasions when the necessity condition is useful.

The theorem does, of course, have an endless variety of corollaries depending
on the values of μ and V and the choice of A. For example, using it is one way to
establish an important and widely used result.

Example 4 The Distribution of a Corrected Sum of Squares of Normal Random
Variables Consider

n∑

i=1

(xi−x̄)2 = x′H′
0H0x.

where H0 is the last n – 1 rows of the Helmert matrix discussed in Section 1 and
used for n = 4 in Example 1. Then H0H′

0 = I and H′
0H0 is idempotent. Hence, if x ∼

N(𝜇1, 𝜎2I) Theorem 5 tells us that

∑n
i=1 (xi − x̄)2

𝜎2
∼ 𝜒2′

(

n − 1,
1
2
𝜇1′H′

0H01𝜇
)

= 𝜒2(n − 1, 0)

because 1′H′
0H01 = 0. □
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Certain more direct corollaries of Theorem 5 of special interest will now be stated.
These are all special cases.

Corollary 5.1 If x is N(0, I) then x′Ax is 𝜒2
r if and only if A is idempotent of

rank r.

Corollary 5.2 If x is N(0, V) then x′Ax is 𝜒2
r if and only if AV is idempotent of

rank r.

Corollary 5.3 If x is N(𝜇1, 𝜎2I) then x′x∕𝜎2is𝜒2′(n, 1
2
𝜇′𝜇∕𝜎2).

Corollary 5.4 If x is N(μ, I) then x′Ax is 𝜒2′(r, 1
2
μ′Aμ) if and only if A is

idempotent of rank r.

Additional special cases are easily established.
The proof of Theorem 5 is based on moment generating functions. The expressions

for the cumulants of x′Ax are given in (48). It shows that when x′Ax has a non-central
chi-square distribution, that is, when AV is idempotent of rank r, the kth cumulant of
x′Ax(with A being symmetric) is

Kk(x′Ax) = 2k−1(k−1)![r(A) + kμ′Aμ].

c. Independence

Under this heading, we consider independence of:

1. a quadratic form and a linear form (Theorem 6);

2. two quadratic forms (Theorem 7);

3. sets of quadratic forms (Theorem 8a).

As was indicated above, we have a theorem for each case. Remember that two
independent random variables have zero covariance but that two random variables
with zero covariance might not be independent (See Miller and Miller (2012) for a
counter example.). However, uncorrelated normal random variables are independent.

As promised, we first consider independence of a quadratic and a linear form.

Theorem 6 When x ∼ N(μ, V), then x′Ax and Bx are distributed independently if
and only if BVA = 0.

Two things should be noted:

1. The quadratic form x′Ax does not have to follow a non-central chi-square
distribution for the theorem to hold.

2. The theorem does not involve AVB, a product that does not necessarily exist.
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Proof of sufficiency. The equality BVA = 0 implies independence.
From Lemma 7, because A is symmetric, we have that A = LL′ for some L of

full-column rank. Therefore, if BVA = 0, BVLL′ = 0. Since L has full-column rank,
(L′L)−1 exists (Corollary 9.1 Chapter1). Thus,

BVLL′ = 0 implies BVLL′L(L′L)−1 = 0, that is, BVL = 0.

Therefore,

cov(Bx, x′L) = BVL = 0.

Hence, because x is a vector of normally distributed random variables, Bx and x′L
are distributed independently. Consequently, Bx and x′Ax = x′LL′x are distributed
independently.

Proof of necessity. The independence of x′Ax and Bx implies BVA = 0.
The independence property gives cov(Bx, x′Ax) = 0. Theorem 4(iii) gives

cov(Bx, x′Ax) = 2BVAμ. Hence, 2BVAμ = 0. Since this is trnue for all μ, BVA = 0
and the proof is complete.

The next theorem deals with the independence of two quadratic forms. It is similar
to Theorem 6 just considered. Its proof follows the same pattern.

Theorem 7 When x ∼ N(μ, V), the quadratic forms x′Ax and x′Bx are distributed
independently if and only if AVB = 0 (or equivalently BVA = 0).

Note that the form of the distributions of x′Ax and x′Bx is not specified in this
theorem. It applies regardless of the distribution that these quadratic forms follow,
provided only that x is a vector of normal random variables.

Proof. The conditions AVB = 0 and BVA = 0 are equivalent because A, V, and B
are symmetric. Each condition therefore implies the other.
Sufficiency: The condition AVB = 0 implies independence.

By Lemma 7, we can write A = LL′ and B = MM′ where each of L and
M has full-column rank. Therefore, if AVB = 0, L′LL′VMM′M = 0. Since
(L′L)−1 and (M′M)−1 exist, L′VM = 0. Therefore, cov(L′x, x′M) = L′VM = 0.
Hence, because x is a vector of normally distributed random variables, L′x and x′M
are distributed independently. Consequently, x′Ax = x′LL′x and x′Bx = x′MM′x
are distributed independently.2

Necessity: Independence implies AVB = 0.

2 S. R. Searle is grateful for discussions with D. L. Solomon and N. S. Urquhart about the proofs of
sufficiency in Theorems 6 and 7. Proofs can also be established, very tediously, using moment generating
functions.
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When x′Ax and x′Bx are distributed independently, cov(x′Ax, x′Bx) = 0 so that

v(x′(A + B)x) = v(x′Ax + x′Bx) = v(x′Ax) + v(x′Bx) (52)

Applying equation (50) to the first and last expression in equation (52) after some
simplification we obtain (Exercise 23)

tr(VAVB) + 2μ′AVBμ = 0. (53)

Equation (53) is true for all μ, including μ= 0, so that tr(VAVB) = 0. On substituting
back in (53) we have 2μ′AVBμ = 0. This in turn is true for all μ and so AVB = 0.
Thus, the theorem is proved.

Before turning to the final theorem concerning independence, Theorem 8a, recall
that Theorems 6 and 7 are concerned with independence properties only, and
apply whether or not the quadratic forms have chi-square distributions. This is
not the case with Theorem 8a. It relates to the independence of quadratic forms
in a sum of quadratics and is concerned with conditions under which such forms
have a non-central chi-square distribution. As such it involves idempotent matrices.
Corollary 8.1, a special case of Theorem 8a, is Cochran’s (1936) theorem, a very
important result for the analysis of variance. The theorem follows. Its statement is
lengthy.

Theorem 8a Let the following be given:
X, order n × 1, distributed as N(μ, V);

Ai,n × n, symmetric, of rank ki, for i = 1, 2,… , p;

and

A =
p∑

i=1

Ai which is symmetric with rank k.

Then,

x′Aix is𝜒2′
(

ki,
1
2
μ′Aiμ

)

,

and the x′Aix are pairwise independent and

x′Ax is𝜒2′
(

k,
1
2
μ′Aμ

)
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if and only if
I: any 2 of (a) AiV idempotent for all i

(b) AiVAj = 0 for all i < j
(c) AV idempotent

are true; or
II: (c) is true and (d) k =

∑n
i=1 ki; or

III: (c) is true and (e) A1V,… , A(p−1)V are idempotent and ApV is
non-negative definite.

The proof of this theorem in statistics rests upon a theorem in matrices which in
turn depends on a lemma. The matrix Theorem 8a given below as Theorem 8b is an
extension of Graybill (1961, Theorems 1.68 and 1.69). The proof given by Graybill
and Marsaglia (1957) is lengthy. The proof that will be given here follows the much
shorter proof of Banerjee (1964) as improved by Loynes (1966) based upon a lemma.
Accordingly, we first state and prove the lemma given by Loynes.

Loynes’ Lemma. If B is symmetric and idempotent, if Q is symmetric and non-
negative definite, and if I – B – Q is non-negative definite, then BQ = QB = 0.

Proof of Loyne’s Lemma. Let x be any vector and let y = Bx. Then

y′By = y′B2x = y′Bx = y′y.

Then

y′(I − B − Q)y = −y′Qy.

Furthermore, since I – B – Q is non-negative definite,

y′(I − B − Q)y ≥ 0.

Hence −y′Qy ≥ 0 and so because Q is non-negative definite, we have that y′Qy =
0. In addition, since Q is symmetric, Q = L′L for some L and therefore y′Qy =
y′L′Ly = 0 implies Ly = 0 and hence L′Ly = 0; that is, Qy = QBx = 0. Since this
is true for any x, QB = 0 and so

(QB)′ = B′Q′ = BQ = 0.

The Lemma is thus proved.
We will now state and prove the matrix theorem.
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Theorem 8b Let the following be given:

Xi, n × n, symmetric, rank ki, i = 1, 2,… p.

X =
p∑

i=1

Xi, which is symmetric, with rank k.

Then of the conditions
(a) Xi, idempotent for all i,
(b) XiXj = 0 for i ≠ j,
(c) X idempotent

(d) k =
p∑

i=1
ki

it is true that

I. any two of (a), (b) and (c) imply (a), (b), (c), and (d);

II. (c) and (d) imply (a) and (b); and

III. (c) X1, X2, …, Xp–1 being idempotent with Xp being non-negative definite,
imply that Xp is idempotent also and hence (a); and therefore (b) and (d).

Theorems 8a and 8b are analogous. Once 8b is proved, the proof of Theorem 8a
is relatively brief. The part played by Theorem 8b is that it shows that in situations
in which any one of section I, II, and III of Theorem 8a holds true, all of the
conditions (a), (b), and (c) of section I will hold. The consequences of Theorem 5,
the independence of quadratics and their chi-square distributions, then arise directly
from Theorems 5 and 7.

Proof of Theorem 8b. We first prove section I, doing it in four parts.
I(i): Given (c), I – X is idempotent and hence non-negative definite. Furthermore
X − Xi − Xj =

∑
r≠i≠j Xr is non-negative definite. Then by Loynes’ Lemma,

XiXj = 0 which is (b). Hence (a) and (c) imply (b).
I(ii): Let 𝜆 be an eigenvalue and u the corresponding eigenvector of X1. Then

X1u = λu and for 𝜆≠ 0, u = X1u/𝜆. Hence given (b) X1u = XiX1u∕𝜆 = 0. Therefore
Xu =X1u = 𝜆u and 𝜆 is an eigenvalue of X. However, given (c), X is idempotent and
hence 𝜆 = 0 or 1. In a like manner, it can be shown that the other Xi’s are idempotent
establishing (c). Hence (b) and (c) imply (a).

I(iii): Given (b) and (a) X2 =
∑

X2
i =

∑
Xi = X which is (c).

I(iv): Given (c), r(X) = tr(X). Then

k = r(X) = tr(X) = tr(
∑

X) =
∑

tr(Xi).

From (a),
∑

tr(Xi) =
∑

ki. Hence k =
∑

ki which is (d). Thus (a) and (c) imply (d).
II: The proof of this section follows Loynes (1966). Given (c), I – X is idempotent.

Therefore X – I has rank n – k. This means that X – I has n – k linearly independent
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(LIN) rows. Therefore

in (X − I)x = 0 there are n − k LIN equations;

and in X2x = 0 there are k2 LIN equations;

⋮ ⋮

and in Xpx = 0 there are kp LIN equations.

However, these LIN sets of equations are not all mutually LIN. For example, the
k2 LIN equations in X2x = 0 may not be LIN of the kp LIN equations in Xpx = 0.
Therefore in

⎡
⎢
⎢
⎢
⎣

X − I
X2
⋮

Xp

⎤
⎥
⎥
⎥
⎦

x = 0

the maximum number of LIN equations is given (d),

n − k + k2 +⋯ + kp = n − k1;

and the equations reduce to X1x = x. Thus, the minimum number of LIN solutions
to X1x = x is n – (n – k1) = k1. That means that for at least k1 LIN vectors x, X1 x =
x = 1x.

Hence, 1 is an eigenvalue of X1 with multiplicity at least k1. However, r(X1) =
k1. Then X1 has only k1 non-zero eigenvalues and thus by Lemma 8 is idempotent.
In a like manner, it can be shown that the other Xi’s are idempotent and thus is
(a) established. Thus, (c) and (d) imply (a) and hence by I(i), (b). Thus, II is proved.

III: Given (c), X is non-negative definite and then so is I – X. With X1, …, Xp-1
being idempotent and hence positive semi-definite, and Xp also then

p∑

r≠i≠j

Xr = X − Xi − Xj is non-negative definite.

Therefore,

I − X + X − Xi − Xj = I − Xi − Xj is non-negative definite.

Then by Loynes’ Lemma, XiXj = 0 so (b) is true. Therefore, (a) and (d) are implied
also, and both this section and the whole theorem is proved.

We now have to show how Theorem 8b leads to proving Theorem 8a.

Proof of Theorem 8a. Since V is symmetric and positive definite, by Lemma 4,V =
T′T for some non-singular T. Then since Ai is symmetric, so is TAiT

′ and r(Ai) =
r(TAiT

′).
Furthermore, AiV is idempotent if and only if TAiT

′ is. Also AiVAj = 0 if and
only if TAiT

′TAjT
′ = 0. Hence Theorem 8b holds true using TAiT

′ in place of Xi.
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and TAT′ in place of X. Then sections I, II, and III of Theorem 8b applied to TAiT
′

and TAT′ show that when sections I, II, and III of Theorem 8a exist, conditions (a),
(b), and (c) always exist. However, by Theorem 5, x′Aix is𝜒2′(ki,

1
2
μ′Aiμ) if and

only if (a) is true. Also, x′Ax is𝜒2′(k, 1
2
μ′Aμ) if and only if (c) is true. By Theorem 7

x′Aix and x′Ajx are independent if and only if condition (b) is true. And so Theorem
8a is proved.

The following corollary is fundamental for analysis of variance. It is the well-
known theorem first proved by Cochran in 1934.

Corollary 8.1 (Cochran’s Theorem). When x is N(0, In) and Ai is symmetric of
rank n for i = 1, 2,…, p with

∑p
i=1 Ai = n, the x′Aix are distributed independently as

𝜒2
ri

if and only if
∑n

i=1 ri = n.

Proof. Put μ = 0 and V = In = A in Theorem 8a.

Example 5 An Illustration of the Ideas in Theorem 8a and 8b Let

A =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

3
4

− 1
4

− 1
4

− 1
4

− 1
4

3
4

− 1
4

− 1
4

− 1
4

− 1
4

3
4

− 1
4

− 1
4

− 1
4

− 1
4

3
4

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, A1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1
4

1
4

− 1
4

− 1
4

1
4

1
4

− 1
4

− 1
4

− 1
4

− 1
4

1
4

1
4

− 1
4

− 1
4

1
4

1
4

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

A2 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1
4

− 1
4

1
4

− 1
4

− 1
4

1
4

− 1
4

1
4

1
4

− 1
4

1
4

− 1
4

− 1
4

1
4

− 1
4

1
4

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, and A3 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1
4

− 1
4

− 1
4

1
4

− 1
4

1
4

1
4

− 1
4

− 1
4

1
4

1
4

− 1
4

1
4

− 1
4

− 1
4

1
4

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

It is easily shown that A = A1 + A2 + A3, A1A2 = 0, A1A3 = 0, A2A3 = 0, A, A1,
A2, and A3 are idempotent matrices and A has rank 3, A1, A2 and A3 have rank 1. Thus,

if y ∼ N(μ, I4) y′Ay ∼ 𝜒2′ (3, 1
2
μ′Aμ). Furthermore, y′Aiy ∼ 𝜒2′(1, 1

2
μ′Aiμ), i =

1, 2, 3 and are distributed independently. □

For the case where V is singular, some similar theorems hold true. See Searle
(1971) and Anderson (2003).
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6. BILINEAR FORMS

Knowing the distributional properties of quadratic forms enables us to discuss the
properties of bilinear forms. We consider the general bilinear form x′1A12x2, where
x1 and x2 are of order n1 and n2 and distributed as N (μ1, C11) and N (μ2, C22),
respectively. The matrix of covariances between x1 and x2 is C12 of order n1 × n2;
that is,

E(x1 − μ1)(x2 − μ2)′ = C12.

Properties of the bilinear form are readily derived from those of quadratic forms
because x′1A12x2 can be expressed as a quadratic form:

x′1A12x2 = 1
2

[
x′1 x′2

]
[

0 A12
A21 0

] [
x1
x2

]

with A21 = A′
12

Hence,

x′1A12x2 = 1
2

y′By.

where

B = B′ =
[

0 A12
A21 0

]

with A21 = A′
12

and

y ∼ N(μ, V) with μ =
[
μ1
μ2

]

, V =
[

C11 C12
C21 C22

]

, where C21 = C′
12.

These properties of x′1A12x2 are equivalent to 1
2
(y′By) which for some purposes is

better viewed as y′( 1
2
B)y.

Similar to Theorem 4, we have that the mean of x′1A12x2, whether the distribution
of the x’s are normal or not, is

E(x′1A12x2) = tr(A12C21) + μ′
1A12μ2. (54)

This may be proved either in the same manner as part (i) of Theorem 4 or by applying
Theorem 4 to the quadratic form y′( 1

2
B)y. From part (ii) of Theorem 4, we have the

rth cumulant of x′1A12x2 as

Kr(x
′
1A12x2) = 1

2
(r − 1)![tr(BV)r + rμ′B(VB)r−1μ]. (55)
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From Theorem 4, x′1A12x2 ∼ 𝜒2′[r(B), 1
4
μ′Bμ] if and only if 1

2
BV is idempotent.

With

BV =
[

A12C21 A12C22
A21C11 A21C12

]

,

notice in general, idempotency of 1
2
BV does not imply(nor is it implied by) idem-

potency of BV. In substituting BV into (55), use is made of (A21)′ = A12 and
(C21)′ = C12 and also the cyclic commutativity of matrix products under the trace
operation. Thus,

tr(A21C12) = tr(C12A21) = tr(A12C21)′ = tr(A12C21). (56)

A special case of (55) when r = 2:

v(x′1A12x1) = 1
2

[
tr(BV)2 + 2μ′BVBμ

]
.

Substituting for BV and μ and using (56) reduces this to

v(x′1A12x2) = tr(A12C21)2 + tr(A12C22A21C11) + μ′
1A12C22A21μ1

+μ′
2A21C11A12μ2 + 2μ′

1A12C21A12μ2. (57)

We now derive the covariance between two bilinear forms x′1A12x2 and x′3A34x4
based on procedures developed by Evans (1969). Let x1, x2, x3, and x4 have orders
n1, n2, n3, and n4, respectively and be normally distributed with respective means 𝜇1,
𝜇2, 𝜇3, and 𝜇4 and covariance matrices Cij of order ni × nj for i, j = 1, 2, 3, 4:

Cij = E(xi − μi)(xj − μj)
′. (58)

Also define

x′ =
[

x′1 x′2 x′3 x′4
]

and μ′=
[
μ′

1 μ′
2 μ′

3 μ′
4

]
(59)

with

C = {Cij} for i, j = 1, 2, 3, 4 (60)

for Cij of (58). Thus, x ∼ N(μ, C). Then with A43 = A34

W = 1
2

⎡
⎢
⎢
⎢
⎣

0 A12 0 0
A21 0 0 0

0 0 0 A34
0 0 A43 0

⎤
⎥
⎥
⎥
⎦

, (61)

x′Wx = x′1A12x2 + x′3A34x4
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so that

2 cov(x′1A12x2, x′3A34x4) = v(x′Wx) − v(x′1A12x2) − v(x
′

3A34x4). (62)

Corollary 4.2 applied to the first term of (62) gives

v(x′Wx) = 2tr(WC)2 + 4μ′WCWμ,

for μ, C, and W of (60), (61), and (62), respectively. Using (57) for v(x′1A12x2) and
its analogue for v(x′3A34x4), we find that (62) reduces, after repetitive use of the
properties illustrated in (56), to

cov(x′1A12x2, x′3A34x4) = tr(A12C23A34C41 + A12C24A43C31)

+μ′
1A12C23A34μ4 + μ′

1A12C24A43μ3

+μ′
2A21C13A34μ4 + μ′

2A21C14A43μ3. (63)

This result does, of course, yield results obtained earlier when used for special cases.
For example, to obtain var(x′Ax) put all Aij’s equal to A, all Cij’s equal to V and all
μ𝜄’s equal to μ. Then if x ∼ N(μ, V), we have that

v(x′Ax) = 2tr(AV)2 + 4μ′AVAμ (64)

as in (50). Also to obtain the covariance of two quadratic forms in the same variables
say x′Px and x′Qx, put all of the μ’s in (63) equal to μ, all the C’s equal to V, put
A12 = A21 = P and A34 = A43 = Q to give

cov(x′Px, x′Qx) = 2tr(PVQV) + 4μ′PVQ𝝁. (65)

7. EXERCISES

1 Suppose the data for five observations in a row-by column analysis are as follows

Row Column
1 2

1 6 4
2 6, 42 12

The analogy for unbalanced data of the interaction sum of squares is

r∑

i=1

c∑

j=1

y2
ij.

nij
−

r∑

i=1

y2
i..

ni.
−

c∑

j=1

y2
.j.

n.j
+

y2
..

n..
.
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Use the above data to show that this expression is not a positive definite form.
Why then can it not be described as a sum of squares?

2 Let A =
[

2 1
1 1

]

, B =
[

2 1
1 2

]

. Show by direct computation that

(a) B – A is non-negative definite.

(b) A−1 − B−1 is non-negative definite.

(c) B2 − A2 is not non-negative definite.

3 Let

B1 = 1
6

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2 2 −1 −1 −1 −1
2 2 −1 −1 −1 −1

−1 −1 2 2 −1 −1
−1 −1 2 2 −1 −1
−1 −1 −1 −1 2 2
−1 −1 −1 −1 2 2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, B2 = 1
6

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 −1 1 −1 1 −1
−1 1 −1 1 −1 1

1 −1 1 −1 1 −1
−1 1 −1 1 −1 1

1 −1 1 −1 1 −1
−1 1 −1 1 −1 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

B3 = 1
6

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2 −2 −1 1 −1 1
−2 2 1 −1 1 −1
−1 1 2 −2 −1 1

1 −1 −2 2 1 −1
−1 1 −1 1 2 −2

1 −1 1 −1 −2 2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, B4 = 1
6

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Establish that the above matrices satisfy the hypothesis of Cochran’s Theorem. If
x ∼ N(0,I6) what are the distributions of X′Aix, i = 1, 2, 3, 4. Are they indepen-
dent?

4 Show that

(a) Γ(𝛼) = (𝛼 − 1)Γ(𝛼 − 1)

(b) Γ(n) = (n − 1)!

5 (a) Derive the moment generating function of the 𝜒2
n -distribution two ways:

(i) from its density function;

(ii) from the density function of the N(0, 1)-distribution.

(b) Use your result to obtain the mean and variance of the 𝜒2
n -distribution.

6 (a) Using the result of Exercise 5a derive the cumulant generating function of the
𝜒2

n -distribution.

(b) Use the result of (a) to obtain the mean and variance of the 𝜒2
n -distribution

again.

7 Find the first two moments of 1/u when

(a) u ∼ 𝜒2
n

(b) u ∼ 𝜒2′(n, 𝜆)
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8 Using the moment generating function of the 𝜒2′(n, 𝜆)-distribution, derive its
mean and variance.

9 This exercise is another way to obtain the mean and variance of a 𝜒2′(n, 𝜆)-
distribution.

(a) Let xi ∼ N(𝜇i, 1),𝜆 = 1
2

∑n
i=1 𝜇

2
i . Show that E

(∑n
i=1 x2

i

)
= n + 2𝜆.

(b) Observe that xi − 𝜇i ∼ N(0, 1) and verify that

x2
i = (xi − 𝜇i)

2 + 2𝜇i(xi − 𝜇i) + 𝜇2
i

(c) Use the moment generating function to show that the fourth central moment
of a standard normal distribution is 3.

(d) Show that the variance

v(x2
i ) = 2 + 4𝜇2

i

(Hint: The first and third central moments of a standard normal distribution
are zero.)

(e) Using the result in (d) show that

v

(
n∑

i=1

x2
i

)

= 2n + 8𝜆

10 Derive the mean and variance of the F′(n1, n2, 𝜆) distribution.

11 (a) Let u1 ∼ 𝜒2′(n1, 𝜆), u2 ∼ 𝜒2
n2

and u1 and u2 are independent. Show that the
joint distribution of u1 and u2 is

f (u1, u2) =
∞∑

k=0

𝛼ku
1
2

n1+k−1

1 u
1
2

n2−1

2 e−
1
2

(u1+u2)

where

𝛼k = e−𝜆𝜆k

k!
1

2
1
2

(n1+n2)+kΓ( 1
2
n1 + k)Γ( 1

2
n2)

(b) Let u1 = n1vz
n1v+n2

and u2 = n2z
n1v+n2

. Find the joint distribution of v and z.

(c) Find the marginal distribution of v and show that the result is the non-central
F-distribution with degrees of freedom n1 and n2 and non-centrality parameter
𝜆.

12 (a) Derive the mean and the variance of the tn and the central Fn1,n2
-distribution.
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(b) If the random variable r is such that r∕(n𝜆 + 1) has a central F-distribution
with a – 1 and a(n – 1) degrees of freedom show that

⌢

𝜆 = 1
n

[

r

(

1 − 2
a(n − 1)

)

− 1

]

is an unbiased estimator of 𝜆. (Note: In certain analysis of variance problems
r is a calculated F-statistic and 𝜆 is a variance ratio.)

13 Using Helmert’s matrix of Section 1 show why
∑n

i=1 (xi − x̄)2∕𝜎2 has a 𝜒2
n−1-

distribution when x is N(𝜇1, 𝜎2I).

14 From the given definition of the tn and 𝜒2
n -distributions show why

x̄−𝜇
1∕
√

n

√
n−1

∑n
i=1 (xi−x̄)2 ∼ tn−1.

15 When x is N(μ1, I) and y is N(μ2, I) and the correlation matrix between x and y
is R, what are the mean and variance of x′Ay?

16 A characterization of the multivariate normal distribution is that x ∼ N(μ, V) if
and only if 𝝀′x has a univariate normal distribution. Using this as a definition of
the multivariate normal distribution, derive its moment generating function from
that of the univariate normal. (Hint: MX(t) = Mt′x(1))

17 If u and v have a bivariate normal distribution with zero means, show that

cov(u2, v2) = 2[cov(u, v)]2.

18 Suppose that x ∼ F(n1, n2) and Pr{x ≥ Fn1,n2,𝛼} = 𝛼. Prove that Fn2,n1,1−𝛼 =
1∕Fn1,n2,𝛼 .

19 Show that if t has a non-central t-distribution with n degrees of freedom and
non-centrality parameter 𝜆 then t2 has a non-central F-distribution with degrees
of freedom 1 and n and non-centrality parameter 𝜆.

20 Show that for a square symmetric n-dimensional matrix A,
∑n

i=1 (𝜆i of A)r = trAr.

21 Let y ∼ N(0,I). Show that y′Ay and y′(I − A)y are independent if and only if A is
an idempotent matrix.

22 Let y ∼ N(0,In). Let J be and n × n matrix of ones. Show that

s2 = 1
n−1

n∑

i=1

(xi − x̄)2 and x̄ are independent

(Hint: Represent x̄ and s2 as quadratic forms using matrices I and J.)
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23 Use equation (50) to show that equation (52) implies equation (53).

24 (a) Verify (54) using the expression of bilinear forms as quadratic forms.

(b) Verify (57).

25 Show that for non-singular V, AV is idempotent if and only if V1/2A V1/2 is
idempotent. Thus, we have an alternative necessary and sufficient condition for
Theorem 5 to hold true.

26 This exercise is based on Exercise 17.2, p. 235 of Gruber (2014). Using the singular
value decomposition find a transformation to express each of these quadratic forms
as a sum of squares and write the quadratic form as a sum of squares.

Refer to Example 2 to see what is required.

(a) 5x2
1 − 4x1x2 + 2x2

2

(b) 4x2
1 + 2x2

2 + 2x2
3 + 4x1x2 + 4x1x3





3
REGRESSION FOR THE
FULL-RANK MODEL

1. INTRODUCTION

a. The Model

Regression analysis is designed for situations where a researcher thinks that a variable
is related to one or more other measurements made, usually on the same object. A
purpose of the analysis is to use data (observed values of the variables) to estimate
the form of this relationship. An example would be to use information on income
and the number of years of formal schooling (beyond the sixth grade) to estimate
the extent to which a person’s annual income is related to his/her years of schooling.
One possibility is that for a person with zero years beyond sixth grade, a researcher
would anticipate an income of a dollars. For each year of schooling beyond sixth
grade, a person has the researcher would expect that his/her income would be larger
by b dollars. Thus, for a person with x years of schooling beyond sixth grade, the
researcher would expect an annual income of a + bx dollars. When we say that the
researcher would expect an annual income of a + bx dollars, we refer to the average
income of all people that have had x years of school beyond sixth grade. Some might
make more and some might make less money but the researcher would expect the
incomes to average out to a + bx dollars. If y denotes income and x denotes years of
schooling beyond sixth grade, we write E(y) for expected income. This leads to the
relationship

E(y) = a + bx. (1)

Linear Models, Second Edition. Shayle R. Searle and Marvin H. J. Gruber.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.
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The attempted description of how we think one variable is related to another
variable is an example of what is called model building. The model here that a person’s
income is expected to be a + bx where x is his/her number of years of schooling
beyond sixth grade is a linear model because we envisage E(y) as being a linear
combination of the unknowns a and b. These unknowns are called parameters. There
are of course endless other models, nonlinear in a and b, that might be postulated.
Some examples include E(y) as a function of ax or (log x)b or perhaps bx. One way
to guess what form of model might be reasonable would be to plot data points of
income versus years of schooling beyond sixth grade on a graph where income is the
vertical (y-axis) and years of schooling beyond sixth grade is the horizontal (x-axis).
For the data points in Example 1 to be described in Section 1c, see the scatterplot in
Figure 3.1.

The points appear to lie reasonably close to a straight line. The line in the diagram
is the “best fitting” line for these data points. In Section 1c, we shall explain how to
find this line and why it is the best fitting.

The linear model is the one that has received greatest attention in theory and
practice. From the theoretical point of view, it is mathematically tractable. It has
shown itself to be of great value in a wide variety of practical applications to diverse
areas of knowledge. Many nonlinear models can be rearranged in a linear form,

6 7 8 9 10 11 12

30
35

40
45

50
55

60

Years

In
co
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e

FIGURE 3.1 A Scatterplot of Income vs. Years of School Beyond Sixth Grade with Best
Fitting Line
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usually by making a transformation on either the x or y variable or both. Modern
computing methods make analyses of data using linear models ever more attainable.

Equation (1) is the equation of our model, in this case the model of how expected
income and years of schooling are related. The equation is not the whole model. Its
other parts have yet to be described. Since the model is something being conjectured,
a and b can never be known. The best that can be done is to obtain estimates from data
that we assume to be a random sample from some population to which we believe our
equation applies. The model is called a regression model. Since its equation is linear,
it is more correctly called linear regression. The variable denoted by y is called the
dependent variable. Correspondingly, x is called the independent variable.

b. Observations

In gathering data, the income of every person with x years of schooling beyond sixth
grade will not be exactly a+ bx (with a and b being the same for each person). Indeed,
this fact was recognized by writing the equation of the model as E(y) = a + bx rather
than y = a + bx. Thus, if yi is the income of a person with xi years of schooling,
we write

E(yi) = a + bxi, (2)

where E(yi) is not the same as yi. The difference yi – E(yi) represents the deviation of
the observed value yi from its expected value E(yi) and is written as

ei = yi − E(yi) = yi − a − bxi. (3)

Hence

yi = a + bxi + ei, (4)

which we now take as the equation of the model.
The deviation ei defined in (3) represents the extent to which an observed yi differs

from its expected value given in equation (2). Moreover equations (2), (3), and (4)
apply to each of our N observations y1, y2,…, yN. Thus the ei’s include all manner
of discrepancies between observed y’s and their expected values. For example, they
include measurement errors in yi. Its recorded value might not be exactly what the
person’s income is. They include deficiencies in the model itself, the extent to which
a + bxi is in fact not the person’s income. Variables other than years of schooling
might affect it, the person’s age, for example. As a result, the e’s are considered
random variables. They are usually called random errors or random residuals.

In order to complete the description of the model in terms of equation (4) the
characteristics of the e’s must be specified. Customary specifications are

1. The expected value of ei are zero;

2. The variance of ei is 𝜎2 for all i;

3. The covariance between any pairs of the e’s is zero.
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Expressing this information in terms of equations we have that

E(ei) = 0, (5)

as is obvious from the definition in (3),

v(ei) = E[ei − E(ei)]
2 = 𝜎2, for all i, (6)

and

cov(eiej) = E[(ei − E(ei))(ej − E(ej))] = 0, for all i ≠ j. (7)

Equations (2)–(7) now constitute the model. They form the basis for the procedure
used for estimating a and b.

c. Estimation

There are several well-recognized methods that can be used for estimating a and b.
A frequently used method is known as least squares.

Least-squares estimation involves minimizing the sum of the squares of the devi-
ations of the observed yi’s from their expected values. In Figure 1 the points on the
line right above the observed values are the expected values for yi. In view of (3) this
sum of squares is,

e′e =
N∑

i=1

e2
i =

N∑

i=1

[yi − E(yi)]
2 =

N∑

i=1

(yi − a − bxi)
2. (8)

Although a and b are fixed (but unknown values), for the moment, think of them as
mathematical variables. Those values of a and b that minimize (8) are the least-square
estimators of a and b. They will be denoted by â and b̂. To minimize (8) we differentiate
it with respect to a and b and equate the derivatives to zero. Thus from (8)

𝜕(e′e)
𝜕a

= −2
N∑

i=1

(yi − a − bxi) = −2

(
N∑

i=1

yi − Na − b
N∑

i=1

xi

)

= 0 (9)

and

𝜕(e′e)
𝜕b

= −2
N∑

i=1

xi(yi − a − bxi) = −2

(
N∑

i=1

xiyi − a
N∑

i=1

xi − b
N∑

i=1

x2
i

)

= 0. (10)

Rewriting (9) and (10), we obtain the normal equations

Nâ + b̂
N∑

i=1

xi =
N∑

i=1

yi and â
N∑

i=1

xi +
⌢

b
N∑

i=1

x2
i =

N∑

i=1

xiyi (11)

Using the dot notation

x. =
N∑

i=1

xi and y. =
N∑

i=1

yi, (12)
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and the corresponding bar notation for observed means,

x̄ = x.
N

and ȳ =
y.

N
, (13)

the least-square estimators obtained as the solution to (11) may be written

b̂ =

N∑

i=1

(xi − x̄)(yi − ȳ)

N∑

i=1

(xi − x̄)2

=

N
N∑

i=1

xiyi − x.y.

N
N∑

i=1

x2
i − x2

.

(14)

and

â = ȳ. − b̂x̄ =
(y. − b̂x.)

N
. (15)

Although the two expressions in (14) and (15) are algebraically equivalent, it is better
to use the last expression in (14) and (15) because division does not happen until
the end of the calculation. This lessens the possibility of a round off error. In many
regression computations, b̂ is included in the formula so it is important to include at
least four decimal places in the answer. Otherwise, false inferences can result based
on the least-square estimators.

Example 1 An Example of a Least-square Fit Suppose that in a sample of five
persons, their incomes (in thousands of dollars) and years of schooling are as follows:

i Person yi (Income, $1000) xi (Years of Schooling
Beyond Sixth Grade)

1 30 6
2 60 12
3 51 10
4 36 8
5 33 9

N = 5 y. = 210 x. = 45
ȳ. = 42 x̄. = 9

5∑

i=1

y2
i = 9486

5∑

i=1

x2
i = 425

5∑

i=1

xiyi = 1995.

From (11), the normal equations for obtaining â and b̂ are

5â + 45b̂ = 210 and 45â + 425b̂ = 1995.
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From (14) and (15) the solutions are

b̂ = 5(1995) − (45)(210)

5(425) − 452
= 5.25

and

â = 210 − 5.25(45)
5

= −5.25.

Hence the estimated regression equation is

Ê(yi) = â + b̂xi = −5.25 + 5.25xi,

where the “hat” over E(yi) denotes “estimator of” E(yi) just as does â of a.
A simple program to do the regression using R would be

> years=c(6,12,10,8,9)
> income=c(30,60,51,36,33)
> lm(income~years)

The output would be

Call:
lm(formula = income ~ years)

Coefficients:
(Intercept) years

-5.25 5.25
□

d. The General Case of k x Variables

Suppose that in the study of annual income and years of schooling, we also consider
the person’s age as a factor affecting income. The model envisaged in (1) is now
extended to be

E(yi) = a + b1x1 + b2x2,

where x1 represents years of schooling and x2 is age. Thus, for the ith person in our
data who has had xi1 years of schooling and whose age is xi2, equation (4) could be
replacing a with b0

yi = b0 + b1xi1 + b2xi1 + ei, (16)

for i = 1, 2,…, N.
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Now define the following matrix and vectors:

X =
⎡
⎢
⎢
⎢
⎣

1 x11 x12
1 x21 x22
⋮ ⋮ ⋮
1 xN1 xN2

⎤
⎥
⎥
⎥
⎦

, y =
⎡
⎢
⎢
⎢
⎣

y1
y2
⋮

yN

⎤
⎥
⎥
⎥
⎦

, e =
⎡
⎢
⎢
⎢
⎣

e1
e2
⋮

eN

⎤
⎥
⎥
⎥
⎦

and b =
⎡
⎢
⎢
⎣

b0
b1
b2

⎤
⎥
⎥
⎦

.

Then the complete set of equations represented by (16) is

y = Xb + e with E(y) = Xb. (17)

Extension to more than just 2 x variables is clear. For k variables

X =
⎡
⎢
⎢
⎢
⎣

1 x11 ⋯ x1k
1 x21 ⋯ x2k
⋮ ⋮ ⋮
1 xN1 ⋯ xNk

⎤
⎥
⎥
⎥
⎦

, b =
⎡
⎢
⎢
⎢
⎣

b0
b1
⋮
bk

⎤
⎥
⎥
⎥
⎦

(18)

and y and e defined as above are unchanged. Equation (17) is also unchanged. It
represents the model no matter how many x variables there are so long as the number
k of x variables are less than the number of observations N. More formally, k < N.
The model in (17) will be studied throughout this book. There will be many different
variations of it depending on the X matrix. When k ≥ N, the values of the bi can be
derived so that y = Xb exactly, and there is no estimation problem.

Complete specification of the model demands that we define the distributional
properties of the vector e. For the moment, we only need its expected value and its
variance. In accord with (5), (6), and (7) we have that

E(e) = 0 and var(e) = E[e − E(e)][e − E(e)]′ = E(ee′) = σ2IN . (19)

The derivation of the least-square estimators does not require us to specify the
mathematical form of the distribution of e, for example, whether it is normal, expo-
nential, or some other distribution. However, we will need to specify this sort of
information later in order to consider hypothesis testing and confidence intervals.

Derivation of the least-square estimator of b follows the same procedure used
in establishing (11), namely minimization of the sum of squares of observa-
tions from their expected values. Similar to (8), this sum of squares with E(e) =
0 and hence E(y) = Xb, is

e′e = [y − E(y)]′[y − E(y)] = (y − Xb)′(y − Xb)
= y′y − 2b′X′y + b′X′Xb.



102 REGRESSION FOR THE FULL-RANK MODEL

In order to obtain the estimator b̂, that value of b that minimizes e′e, we must
differentiate e′e with respect to the elements of b and setting the result equal to zero
[See, for example, Section 8.5 of Searle (1966) or Section 4.7 of Gruber (2014)].
We get

𝜕(e′e)
𝜕b

= −2X′y + X′Xb = 0.

−2X′y + X′Xb = 0.

and then

X′Xb = X′y. (20)

The equations (20) are known as the normal equations. Provided that (X′X)−1 exists,
they have a unique solution for b̂,

b̂ = (X′X)−1X′y. (21)

Here is where the description “full-rank model” applies. When X′X is non-singular
(of full rank) the unique solution of (20) can be written as (21). On the other hand,
when X′X is singular, the solution will take the form

b̂ = GX′y, (22)

where G is a generalized inverse of X′X. This solution is not unique because gener-
alized inverses are not unique as was pointed out in Chapter 1. Finding least-square
estimators for the non-full-rank case will be taken up in Chapter 5.

By the nature of X, as shown in (18), X′X is square of order k + 1 with elements
that are sums of squares and products and X′y is the vector of sums of products of
the observed x’s and y’s. As a result, we have,

X′y =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

N∑

i=1

yi

N∑

i=1

xi1yi

⋮
N∑

i=1

xikyi

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (23)
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and

X′X =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

N x.1 x.2 ⋯ x.k

x.1
N∑

i=1

x2
i1

N∑

i=1
xi1xi2 ⋯

N∑

i=1
xi1xik

x.2
N∑

i=1

xi1xi2

N∑

i=1
x2

i2 ⋯
N∑

i=1
xi2xik

⋮ ⋮ ⋮ ⋮

x.k
N∑

i=1

xi1xik

N∑

i=1
xi2xik ⋯

N∑

i=1
x2

ik

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (24)

Example 2 Suppose that in Example 1 the ages of the persons supplying the data
had been available.

i (Person) yi (Income, $1000)
xi1 (Years of Schooling
Beyond Sixth Grade) xi2 (Age)

1 30 6 28
2 60 12 40
3 51 10 32
4 36 8 36
5 33 9 34
N = 5 y. = 210 x.1 = 45 x.2 = 170

ȳ. = 42 x̄.1 = 9 x̄.2 = 34

5∑

i=1

y2
i = 9486

5∑

i=1

x2
i1 = 425

5∑

i=1

x2
i2 = 5860

5∑

i=1

xi1xi2 = 1562
5∑

i=1

xi1yi = 1995
5∑

i=1

xi2yi = 7290

Putting these values into (24), we have

X =

⎡
⎢
⎢
⎢
⎢
⎣

1 6 28
1 12 40
1 10 32
1 8 36
1 9 34

⎤
⎥
⎥
⎥
⎥
⎦

, X′X =
⎡
⎢
⎢
⎣

5 45 170
45 425 1562

170 1562 5860

⎤
⎥
⎥
⎦

(25)
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and

(X′X)−1 = 1
2880

⎡
⎢
⎢
⎣

50656 1840 −1960
1840 400 −160
−1960 −160 100

⎤
⎥
⎥
⎦

. (26)

From (23),

X′y =
⎡
⎢
⎢
⎣

210
1995
7290

⎤
⎥
⎥
⎦

. (27)

Equation (21) gives

b = (X′X)−1X′y

= 1
2880

⎡
⎢
⎢
⎣

50656 1840 −1960
1840 400 −160
−1960 −160 100

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

210
1995
7290

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

7
6.25

−0.625

⎤
⎥
⎥
⎦

.

(28)

A simple program in R to do this problem would be

> income=c(30,60,51,36,33)
> school=c(6,12,10,8,9)
> age=c(28,40,32,36,34))
> lm(income~school+age)

The resulting output is

lm(formula = income ~ years + age)

Coefficients:
(Intercept) years age

7.000 6.250 -0.625

Thus, from these data, the estimated form of the relationship between y and x1 and
x2 is

Ê(y) = 7.000 + 6.250x1 − 0.625x2.
□

e. Intercept and No-Intercept Models

When all of the x’s are zero in the above models, E(y0) = b0 with estimator b̂0. Thus,
for x1 = x2 = 0 in Example 2, the estimated value of E(y) is b0 = 7.000. Models of
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this kind are called intercept models. The intercept is b0, the value of E(y) when all
x’s are zero.

Sometimes, it is appropriate to have no term b0 in the model. In this case, the
model is called a no-intercept model. The matrix X has no vector of 1’s in it as does
X of (25), for example, and X′X is then the matrix of sums of squares and products
of the observations without the first row and column of totals as seen in (24).

Example 3 A No-Intercept Model For the data of Example 2 for the no-intercept
model,

X′X =
[

425 1562
1562 5860

]

and X′y =
[

1995
7290

]

.

The least-square estimators are given by

b̂ =
[

b1
b2

]

= (X′X)−1X′y

= 1
50656

[
5860 −1562
−1562 425

] [
1995
7290

]

=
[

5.9957
−0.3542

]

.

(29)

Thus, the no-intercept model leads to Ê(y) = 5.9957x1 − 0.3542x2.

Redoing this computation using R we have

> Income=c(30,60,51,36,33)
> School=c(6,12,10,8,9)
> Age=c(28,40,32,36,34)
> lm(Income~-1+School+Age)

The resulting output is

Call:
lm(formula = income ~ years + age - 1)

Coefficients:
years age
5.9957 -0.3542 □

2. DEVIATIONS FROM MEANS

The matrix X′X and matrix X′y as shown in (23) and (24) have as elements the
sums of squares and products of the observations. However, it is well known that the
regression coefficients b1, b2,… , bk can be estimated using a matrix and vector that
are just like X′X and X′y, only involving sums of squares and products corrected for
their means. We establish this formulation. Some additional notation is needed.
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If we define

1N =
⎡
⎢
⎢
⎢
⎣

1
1
⋮
1

⎤
⎥
⎥
⎥
⎦

and X1 =
⎡
⎢
⎢
⎢
⎣

x11 x12 ⋯ x1k
x21 x22 ⋯ x2k
⋮ ⋮ ⋮

xN1 xN2 ⋯ xNk

⎤
⎥
⎥
⎥
⎦

, (30)

X can be written

X =
[

1 X1
]

, (31)

where the order of 1 is N × 1 and as in (30), X1 is the N × k matrix of the observed
x’s. In addition, define

x̄′ =
[

x̄.1 x̄.2 … x̄.k
]

(32)

as the vector of means of the observed x’s. These definitions imply

1′N1N = N, 1′y = Nȳ and 1′X1 = Nx̄′, (33)

where for convenience we write ȳ in place of ȳ. for the mean.
Using (33) we may express the solution b̂ as

b̂ = (X′X)−1X′y

=
[[

1′

X′
1

]
[

1 X1
]
]−1 [ 1′

X′
1

]

y

=
[

N Nx̄′

Nx̄ X′
1X1

]−1 [
Nȳ
X′

1y

]

.

Using the procedure for inverting a partitioned symmetric matrix given in equation
(55) of Section 1.7 or in Section 3.5 of Gruber (2014), this becomes

b̂ =
⎡
⎢
⎢
⎣

1
N

+ x̄′S−1x̄ −x̄′S−1

−S−1x̄ S−1

⎤
⎥
⎥
⎦

[
Nȳ

X′
1y

]

, (34)

where

S = X′
1X1 − Nxx′. (35)

Then on partitioning

b̃ =
⎡
⎢
⎢
⎢
⎣

b0
b1
⋮
bk

⎤
⎥
⎥
⎥
⎦

=
[

b0
𝓫

]

,



DEVIATIONS FROM MEANS 107

(34) can be written as

[
b0

�̂�

]

=
⎡
⎢
⎢
⎣

⎡
⎢
⎢
⎣

1
N

0

0 0

⎤
⎥
⎥
⎦

+

[
−x̄′

I

]

S−1
[
−x̄ I

]⎤
⎥
⎥
⎦

[
Nȳ

X′
1y

]

=

[
ȳ − x̄′S−1(X′

1y − Nȳx̄)

S−1(X′
1y − Nȳx̄)

]

so that

�̂� = S−1(X′
1y − Nȳx̄) (36)

and

b̂0 = ȳ − x̄′ ̂̃b. (37)

Now consider S given in (35). First,

X′
1X1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

k∑

i=1

x2
i1

k∑

i=1

xi1xi2 ⋯
k∑

i=1

xi1xik

k∑

i=1

xi1xi2

k∑

i=1

x2
i2 ⋯

k∑

i=1

xi2xik

⋮ ⋮ ⋮

k∑

i=1

xi1xik

k∑

i=1

xi2xik

k∑

i=1

x2
ik

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (38)

the matrix of sums of squares and products of the k observed x variables. Second, by
the nature of x̄ in (32), the matrix Nxx′ is

Nxx′ = {Nx̄.p x̄.q} for p, q = 1, 2,… , k.

Thus

S =

{
k∑

i=1

xipxiq − Nx̄.px̄.q

}

, for p, q = 1, 2,… , k.

Define

𝓧 = X1 − 1Nx̄′ (39)
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as the matrix of observed x’s expressed as deviations from their means. Then it is
easily shown that S as just derived is

S = 𝓧′𝓧. (40)

Thus, the matrix S in (36) is that of the corrected sums of squares and products of the
x’s. In a like manner, the other term in (36) is

X′
1y − Nȳx̄ =

{
k∑

i=1

xipyi − Nx̄.pȳ

}b

, for p = 1, 2,… , k,

= �̃�′y.

This is the vector of corrected sums and products of the x’s and y’s. Hence, just as
b̂ = (X′X)−1X′y in (21), we can now write from (36),

�̂� = (𝓧′𝓧)−1𝓧′y. (41)

The (X̃′X̃)−1 is the inverted matrix of corrected sums of squares and products of
the x’s pre-multiplying the vector of corrected sums of products of the x’s and the
y’s. Then as in (37), b̂0 is given by

b̂0 = ȳ − �̂�′x̄. (42)

The results (41) and (42) are the familiar expressions for calculating the regression
estimators using corrected sums of squares.

Example 4 Regression Calculations Using the Corrected Sums of Squares and
Products From the data of Example 2, we have

𝓧′ =

⎡
⎢
⎢
⎢
⎢
⎣

−3 −6
3 6
1 −2

−1 2
0 0

⎤
⎥
⎥
⎥
⎥
⎦

,

𝓧′𝓧 =
[

20 32
32 80

]

,

(43)

(𝓧′𝓧)−1 = 1
144

[
20 −8
−8 5

]

, (44)

and 𝓧′y =
[

105
150

]

. (45)

Then

�̂� = 1
144

[
20 −8
−8 5

] [
105
150

]

=
[

6.250
−0.625

]
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as in (28). From (42),

b̂0 = 42 − [6.250 − 0.625]

[
9

34

]

= 7.000

as in (28). Derivation of b̃ in this manner does not apply for the no-intercept model
which contains no b0 term. For then the partitioning of b′ as

[
b0 b̃′ ] does not exist.

This is because b′ is itself the vector of the b’s corresponding to the k x variables

and b̂ =
(
X′X
)−1

X′y is based on the uncorrected sum of squares and products as
exemplified in (24).

3. SOME METHODS OF ESTIMATION

In this section, we summarize four different ways to obtain the least-square estimator
and a method of obtaining an alternative to the least-square estimator that is useful for
certain types of data that arise in applications. In obtaining the least-square estimator,
we shall assume a model of the form y = Xb + e where X has full column rank,
E(y) = Xb, and E(e) = 0. The non-full-rank case will be considered in Chapter 5. To
obtain an alternative to the least-square estimator, we shall assume that b is a random
variable with a known mean and covariance matrix.

a. Ordinary Least Squares

This involves choosing b̂ as the value of b which minimizes the sum of squares
of observations from their expected values. More formally, chose b̃ as that b that
minimizes

N∑

i=1

[yi − E(y)]2 = (y − Xb)′(y − Xb).

The resulting estimator is as we have seen

b̂ = (X′X)−1X′y

b. Generalized Least Squares

This is also called weighted least squares. Assume that the variance covariance
matrix of e is var(e) = V. Now minimize (y − Xb)′V−1(y − Xb) with respect to b.
The resulting estimator is

b̂ = (X′V−1X)−1X′V−1y.

When it is assumed that the components of var(e) are equal and uncorrelated,
that is, V = 𝜎2I, the generalized or weighted least-square estimator reduces to the
ordinary least-square estimator.
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c. Maximum Likelihood

The derivation of the least-square estimator made no assumption about the form of
the distribution of the error term. The likelihood is the joint distribution of the errors.
We shall assume that this distribution is multivariate normal with zero mean and
covariance matrix V. Then y − Xb ∼ N(0, V). The likelihood function is

L = (2π)−
1
2

N
|V|−

1
2 exp

{

−1
2

(y − Xb)′V−1(y − Xb
}

.

The maximum likelihood estimator is the b that maximizes the likelihood. We can
maximize the log(L) where

logL = −1
2

N log(2π) − 1
2
log |V| − 1

2
(Y − Xb)′V−1(Y − Xb).

by minimizing (Y − Xb)′V−1(Y − Xb), thus obtaining the generalized least-square
estimator,

b̂ = (X′V−1X)−1X′V−1y.

If we assume that V = 𝜎2I, this reduces to the ordinary least-square estimator.
Two well-known points are worth emphasizing about these estimators

(i) Least-square estimation does not pre-suppose any distributional properties
about the e’s other than zero means and finite variances.

(ii) Maximum likelihood estimation under normality assumptions leads to the
generalized least-square estimators and, when V = 𝜎2I, the ordinary least-
square estimators.

d. The Best Linear Unbiased Estimator (b.l.u.e.)(Gauss–Markov Theorem)

We shall show that the least-square estimator is the linear unbiased estimator of
the parameters of a regression that has minimum variance (the best linear unbiased
estimator b.l.u.e). This is the content of the Gauss–Markov theorem.

For any row vector t′ with the same number of columns as there are rows of b, the
scalar t′b is a linear function of the elements of the vector of parameters b.

Three characteristics of the estimator under study are linearity, unbiasedness, and
being the best estimator (the one with the smallest variance). We shall clarify these
characteristics.

(i) Linearity: The estimator is to be a linear function of the observations y. Let
this estimator be λ′y where λ′ is a row vector of order N. We shall show that
λ is uniquely determined by the other two characteristics of the estimator.
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(ii) Unbiasedness: The estimator λ′y is to be unbiased for t′b. Therefore, we
must have that E(λ′y) = t′b. However, E(λ′y) = λ′Xb so that λ′Xb = t′b.
Since this must be true for all b, we have that

λ′X = t′. (46)

(iii) A “best” estimator: Here, “best” means that in the class of linear, unbiased
estimators of t′b, the best is the one that has minimum variance. This is the
criterion for deriving λ′.

We now state and prove the Gauss–Markov theorem.

Theorem 1 Assume that for the linear model

y = Xb + e,

var(e) = V. Then the best linear unbiased estimator of t′b is

t′b̂ = t′(X′V−1X)X′V−1y.

Proof. Since var (e) = V, var (y) = V. Then var(λ′y) = λ′Vλ. We must minimize
this quantity with respect to the constraint (λ′X = t′) in (46). To do this, we use the
method of Lagrange multipliers (See Sections 22 and 23 of Gruber (2014) or any
book on multivariable calculus.). Using 2θ as a vector of Lagrange multipliers, we
therefore minimize

w = λ′Vλ − 2θ′(X′λ − t)

with respect to the elements of λ′ and θ′. We differentiate w with respect to θ, set it
equal to zero and get (46). Differentiation of w with respect to 𝜆 gives

Vλ = Xθ or λ = V−1θ,

since V-1 exists. Substitution in (46) gives t′ = λ′X = θ′X′V−1X and so θ′ =
t′(X′V−1X)−1.

Hence,

λ′ = θ′X′V−1 = t′(X′V−1X)−1X′V−1. (47)

From (45) we have that the b.l.u.e. of t′b is

t′b̂ = t′(X′V−1X)−1X′V−1y.
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We have shown that the b.l.u.e. is the weighted or generalized least-square esti-
mator. Its variance is

var(t′b̂) = t′(X′V−1X)−1t. (48)

Since (47) is the sole solution to the problem of minimizing var(λ′y) = λ′Vλ

subject to the constraint (46), the b.l.u.e. λ′y of t′b is the unique estimator of t′b
having the properties of linearity, unbiasedness, and “bestness”—minimum variance
of all linear unbiased estimators. Thus, the b.l.u.e. of t′b is unique λ′y for λ′ as given
in (47). Furthermore, this result is true for any vector t′. Thus, for some other vector,
say p′, the b.l.u.e of p′b is p′(X′V−1X)−1X′V−1y and its variance is p′(X′V−1X)−1p.
it may readily be shown that that the covariance of p′b̂ with t′b̂ is p′(X′V−1X)−1t
(see Exercise 8).

Suppose that t′ takes the value u′
i , the i’th row of IK. Then u′

ib = bi, the
i’th element of b. The b.l.u.e. of bi is u′

i(X
′V−1X)−1X′V−1y, the i’th element of

(X′V−1X)−1X′V−1y.
Its variance is u′

i(X
′V−1X)−1ui, the i’th diagonal term of (X′V−1X)−1. Thus, by

letting t′ be in turn each row of IK the b.l.u.e. of b is

b̂ = (X′V−1X)−1X′V−1y (49a)

with variance

var(b̂) = (X′V−1X)−1. (49b)

This expression for b̂ is the same as that given earlier. The generalized least-square
estimator, the maximum likelihood estimator under normality assumptions and the
b.l.u.e. are all the same b̂.

It has been shown above that (b̂) = (X′X)−1X′y is the b.l.u.e. of b when V =
I𝜎2. More generally, Mc Elroy (1967) has shown that b̂ is the b.l.u.e. of b whenever
V = [(1 − ρ)I + 11′ρ]σ2 for 0 ≤ 𝜌 <1. This form of V demands equality of the
variances of the ei’s and equality of the covariances between them, with the correlation
between any two ei’s being 𝜌. The case V = I𝜎2 is obtained by setting 𝜌 = 0.

e. Least-squares Theory When The Parameters are Random Variables

In this section, we assume that the parameters of the regression models are random
variables with a known mean and variance. We then show how to find the best linear
estimator of a random variable p′b. The methodology used is that of Rao (1973,
p. 274) using notation consistent with what we have used so far in this book.

Consider the linear model

Y = Xb + e (50a)
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together with the assumptions

E(b) = θ and var(b) = F (50b)

where θ is a k-dimensional vector and F is a k × k positive definite matrix.
Also assume that

E(e|b) = 0 and var(e|b) = V. (50c)

The following formulae connect the conditional and unconditional means and vari-
ances.

E(Y) = E(E(Y|e), (51a)

var(Y) = E[var(Y|b)] + var[E(Y|b)

= V + XFX′ (51b)

and

cov(Y, p′b) = E[C(Y, p′b)|b] + C[E(Y|b)|p′b]
= XFp.

(51c)

The objective is to determine a linear function a + L′Y such that

E(p′b − a − L′Y) = 0 (52a)

and

var(p′b − a − L′Y) is a minimum. (52b)

Theorem 2 The optimum estimator that satisfies (52) takes the form

p′b̂(b) = p′θ + p′FX′(V + XFX′)−1(Y − Xθ)
= p′θ + p′(F−1 + X′V−1X)−1X′V−1(Y − Xθ).

(53)

Proof. The expectation in (52a) yields

a = (p′ − L′X)θ. (54)

Employing (51a) and (51b), the quantity to be minimized is

v = p′Fp + L′(XFX′ + V)L − 2L′XFp. (55)
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Then, differentiating v with respect to L and setting the result equal to zero, we obtain

(XFX′ + V)L = XFp

and the optimizing L is

L = (XFX′ + V)−1XFp. (56)

Substitution of (54) and (56) into a + L′Y yields the first expression of (53). The
equivalence of the two expressions in (53) is established by using the Woodbury
(1950) matrix identity

(A + BCD)−1 = A−1 − A−1B(C−1 + DA−1B)−1DA−1, (57)

where A = V, B = X, C = F and D = X′ (see, for example, Gruber (1990) equation
(4.1.7)).

Fill in the details in Exercise 20.

Substitution into (55) gives the minimum variance of (52b) as

vmin = p′Fp − p′FX′(XFX′ + V)−1XFp
= p′(X′V−1X)−1p − (X′V−1X)−1(F + (X′V−1X)−1)−1(X′V−1X)−1p.

(58)

Notice that vmin is less than the variance of the least-square estimator.
When F = 𝜎2G−1, V = 𝜎2I and 𝜃 = 0 the estimator in (53) reduces to

p′b̂(r) = p′(X′X + G)−1X′Y, (59)

the generalized ridge regression estimator of C. R. Rao (1975). When G = kI, (59)
reduces to the ridge regression estimator of Hoerl and Kennard (1970).

Ridge regression estimators are useful for data where the X′X matrices have very
small eigenvalues and some of the independent variables are highly correlated. Such
data are called multicollinear. In such cases, the total variance of the least-square
estimator can be very large and the estimates of the regression parameters very
imprecise. One possible solution is to use ridge regression estimators instead. For
more about ridge estimators, see Gruber (1998, 2010).

The estimators derived in this section from Theorem 2 are linear Bayes estimators.
When the prior distribution and the population are normal, they are the same as the
Bayes estimators derived using Bayes theorem and are the mean of the posterior
distribution.
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4. CONSEQUENCES OF ESTIMATION

Properties of b̂ = (X′X)−1X′y and the resulting consequences are now discussed. The
topics dealt with in this section are based solely on the two properties so far attributed
to e, that E(e) = 0 and var(e) = 𝜎2I. In Section 5, we consider distributional properties
of the estimators based on the normality of the e’s. However, that assumption is not
made here. The general case of var(e) = V is left largely to the reader.

We shall also mention a few of the interesting properties of the ridge estimator and
compare and contrast them with those of the least-square estimator where appropriate.

a. Unbiasedness

Since b̂ is the b.l.u.e. of b for V = 𝜎2I, it is unbiased. This can also be shown directly.
We have

E(b̂) = E[(X′X)−1X′y] = (X′X)−1X′Xb = b. (60)

Since the expected value of b̂ is b, the estimator b̂ is unbiased. Of course, this implies
that in b̂′ = [b̂0 �̂�] the estimator �̂� is also unbiased.

However, the ridge estimator is a biased estimator. Indeed

E(b̂(r)) = (X′X + G)−1X′Xb

and

Bias(b̂(r)) = b − (X′X + G)−1X′Xb = (X′X + G)−1Gb. (61)

b. Variances

The variance covariance matrix of b̂ = (X′X)−1X′y is given by

var(b̂) = E[b̂ − E(b̂)][b̂ − E(b̂)]′

= E((X′X)−1X′[y − E(y)][y′ − E(y′)]X(X′X)−1

= (X′X)−1X′E(ee′)X(X′X)−1

= (X′X)−1𝜎2.

(62)

A similar result holds for �̂� using the partitioned form of (X′X)−1 shown in (34).
With S =  ′ the result (62) becomes

var

[
b̂o

�̂�

]

=
[ 1

N
+ x̄′( ′)−1x̄ −x̄′( ′)−1

−( ′)−1x̄ ( ′)−1

]

𝜎2.

Hence analogous to (62)

var(�̂�) = ( ′)−1𝜎2, (63)

var(b0) = 𝜎2

N
+ x̄′var(�̂�)x̄ =

[ 1
N

+ x̄′( ′)−1x̄
]

𝜎2 (64)
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and

cov(b̂0, �̂�) = −x̄′var(�̂�) = −x̄′( ′)−1𝜎2. (65)

The ridge regression estimator (59) has variance given by

var(b̂(r)) = (X′X + G)−1X′X(X′X + G)−1𝜎2. (66)

Its variance is less than that of the least-square estimator in the sense of the
Loewner ordering meaning that for all p var(p′b̂(r)) ≤ var(p′b̂).

Another measure of efficiency of an estimator is the matrix mean square error.
Given a vector θ with estimator θ̂

MSE(θ̂) = E(θ̂ − θ)(θ̂ − θ)′

= E[θ̂ − E(θ̂)][θ̂ − E(θ̂)]′ + E[θ − E(θ̂)][θ − E(θ̂)]′

= var(θ̂) + [Bias(θ̂)]2.

(67)

The MSE of the least-square estimator is equal to its variance because it is unbiased.
For the ridge estimator using (61), (66), and (67), we have

MSE(b̂(r)) = (X′X + G)−1(Gbb′G + σ2X′X)(X′X + G)−1. (68)

It can be shown that in the sense of the Loewner ordering (see Section 2.3)

MSE(b̂(r)) ≤ MSE(b̂) or equivalently for every vector p MSE(p′b̂(r)) ≤ MSE(p′b̂)

if and only if

b′(2G−1 + (X′X)−1)−1b ≤ σ2. (69)

See Gruber (2010) for a proof.

c. Estimating E(y)

The estimator b̂ can be used for estimating E(y). Analogous to the model

E(y) = b0 + b1x1 +⋯ + bkxk

we have

Ê(y) = b̂0 + b̂1x1 +⋯ + b̂kxk,

as was illustrated at the end of each of the examples in Section 1. If

x′0 =
[

x00 x01 x02 ⋯ x0k

]
(70)
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is a set of x values with x00 = 1 for which we wish to estimate the corresponding
value of E(y) that estimator is

Ê(y0) = b̂0 + b̂1x01 +⋯ + b̂kx0k = x′0b̂. (71)

Example 5 An Estimate of E(y) In Example 2, we had

Ê(y) = 7.000 + 6.250x1 − 0.625x2

For x′0 = [ 1 12 32 ], we would have

Ê(y0) = 7.000 + 6.250(12) − 0.625(32) = 62.
□

The result in (71) and the illustration in Example 5 above is called the estimated
expected value of y corresponding to the set of x values x00, x01,… ., x0k. When this
set of x’s is one of those in the data, x′0 is a row of X in (18), in which case (71) is an

element of Xb̂. Corresponding to E(y) = Xb of (17), we have

Ê(y) = Xb̂. (72)

These are the estimated expected values of y corresponding to the N observed values
of y in the data. They are sometimes called fitted y values, or estimated y values.
These names can be misleading because (71) and (72) are both estimates of expected
values of y. They correspond in (71) to any set of predetermined x’s in x′0 of (70),
and in (72) to the observed x’s in X.

Variances of the estimators (71) and (72) are readily obtained using (63). Thus,
for any x0

v(Ê(y0)) = x′0(X′X)−1x0. (73)

Example 6 Computation of the Variances Using the data of Example 2,

v(Ê(y0)) =
[

1 12 32
] σ2

2880

⎡
⎢
⎢
⎣

50656 1840 −1960
1840 400 −160
−1960 −160 100

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

1
12
32

⎤
⎥
⎥
⎦

= 2.2556𝜎2.

For the observed x’s we have

var[Ê(y)] = X(X′X)−1X′σ2. (74)
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After substituting X =
[

1 X1
]

from (31) and using  from (39), equation (74)
reduces to

var[Ê(y)] = σ2

N
11′ + var(�̂�) ′

= σ2

N
11′ + ( ′)−1 ′σ2.

(75)

Corresponding to x′0, the expected y value is E(y0), estimated by Ê(y0) of (71).
In contrast, we consider a future observation, yf , say, corresponding to some vector
of x values xf , say. Then, by the model yf = x′f b + ef , where ef is a random error
term that is neither observed or estimated. Hence, the best available prediction of yf ,

which we shall call ỹf , is ỹf = x′f b̂. Thus, x′f b̂ can be used both as a prediction of

a future observation corresponding to x′f as well as for its more customary use, that

of an estimator of the expected value E(yf ) corresponding to x′f . The first of these
uses prompts inquiring how some future observation yf varies about its prediction

ỹf = x′f b̂. To do so, we consider the deviation of any yf from ỹf :

yf − ỹf = yf − x′f b̂ = x′f (b − b̂) + ef .

The variance of this deviation is derived by noting that, because yf is thought of

as an observation obtained independently of those used in deriving b̂, we have b̂ and
ef being independent and so cov(b̂, ef ) = 0. Hence,

v(yf − ỹf ) = x′f v(b̂ − b)xf + v(ef ) = [x′f (X′X)−1xf + 1]𝜎2. (76)

Thus, the estimated value of y corresponding to xf is E(yf ) = x′f b̂ as in (71)

with variance x′f (X′X)−1xf𝜎
2 similar to (73). The predicted value of an observation

corresponding to xf is the same value x′f b̂ = ỹf with the variance of the deviations of

the y values (corresponding to xf ) from this prediction being [x′f (X′X)−1xf + 1]𝜎2 of

(76). These results are true for any value of xf . The variance of ỹf is of course 𝜎2 at
all times.

Example 7 Prediction from a Future Observation and Its Variance In Example

2, let x′f =
[

1 15 40
]
. Then ỹf =

[
1 15 40

] ⎡
⎢
⎢
⎣

7.000
6.250
−0.625

⎤
⎥
⎥
⎦

= 75.75.

Also

v(yf − 75.75) =
⎡
⎢
⎢
⎣

[
1 15 40

] 1
2880

⎡
⎢
⎢
⎣

50656 1840 −1960
1840 400 −160
−1960 −160 100

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

1
15
40

⎤
⎥
⎥
⎦

+ 1
⎤
⎥
⎥
⎦

𝜎2.

= 3.45𝜎2
□



CONSEQUENCES OF ESTIMATION 119

d. Residual Error Sum of Squares

It is convenient to use the symbol ŷ for Ê(y), the vector of estimated expected values
of y corresponding to the vector of observations y. Thus, we have

ŷ = Ê(y) = Xb̂. (77)

The vector of deviations of the observed yi’s from their corresponding predicted
values, the vector of residuals, is therefore

y − ŷ = y − Xb̂ = y − X(X′X)−1X′y = [I − X(X′X)−1X′]y. (78)

Observe that the matrix used in (78) is idempotent. We shall use this fact repeatedly
in the sequel. Indeed.

I − X(X′X)−1X′ (79)

is symmetric and idempotent and

[I − X(X′X)−1X′]X = 0. (80)

Example 8 A Residual In Example 2, we had y3 = 51, x13 = 10, x23 = 32. We get
that

ŷ3 = 7 + 6.250(10) − (0.625)(32) = 49.5.

Then the residual is

y3 − ŷ3 = 51 − 49.5 = 1.5. □

The sum of squares of the deviations of the observed yi’s from their estimated
expected values is usually known as the residual error sum of squares, combining
the traditional name “error” with “residual,” which is perhaps more appropriately
descriptive in view of the definition of ei given in (3). The symbol SSE is used. It is
given by

SSE =
N∑

i=1

(yi−ŷi)
2 = (y − ŷ)′(y − ŷ). (81)

Computing procedures for the SSE are derived from substituting (78) into (81) and
using (79) and (80). This gives

SSE = y′[I − X(X′X)−1X′]y (82)

= y′y − y′X(X′X)−1X′y = y′y − b̂′X′y (83)

because b̂ = (X′X)−1X′y. This is a convenient form for computing SSE. The term y′y
in (83) is the total sum of squares of the observations. The term b̂′X′y is the sum of
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the products of the elements of the solution b̂ with their corresponding elements of the
right-hand side, X′y, of the equations from which b̂ is derived, namely X′Xb = X′y.

Note, however, that in so describing (83), these right-hand side elements must
be exactly as they are in the normal equations. Thus, if, when solving X′Xb = X′y,
some or all of the normal equations are amended by factorizing out some common
factors, then it is not the right-hand sides of the equations so amended that are used
in b̂′X′y of (83) but the X′y of the original normal equations.

An expression for SSE involving �̂� and  ′y can also be established. Let ỹ = y − ȳ.
Equation (83) is equivalent to

SSE = y′y − [y − �̂�′x b̃′]

[
Ny
X′

1y

]

= y′ỹ − Nȳ2 − �̂�′(X′
1y − Nȳx̄) (84)

= 𝔂′𝔂 − �̂� ′y. (85)

The term 𝔂′𝔂 denotes the corrected sum of squares of the y’s. The form of (85)
is completely analogous to that of (83) and it is equally, if not more, useful for
computing purposes. We have that 𝔂′𝔂 is the corrected sum of squares of the y’s
and �̂�𝓧′y is the sum of products of elements of the solution of the corresponding
elements of the right-hand side,  ′y, of the equations from which �̂� is derived,
namely  ′�̂� =  ′y. Observe that  ′y =  ′ �̃� because  ′ y =  ′(y − ȳ1N) and by
(33) and (39)  ′1N = 0.

e. Estimating the Residual Error Variance

In (82), SSE is written as a quadratic form in y:

SSE = y′[I − X(X′X)−1X′]y

Therefore, with y having mean Xb and variance I𝜎2, the expected value of SSE is
from Theorem 4 of Chapter 2.

E[SSE] = tr[I − X(X′X)−1X′]I𝜎2 + b′X′[I − X(X′X)−1X′]Xb
= r[I − X(X′X)−1X′]𝜎2

= [N − r(X)]𝜎2,

making use of (79) and (80) and the fact that the trace of an idempotent matrix equals
its rank. Hence, an unbiased estimator of 𝜎2 is

�̂�2 = SSE
N − r(X)

= SSE
N − r

(86)

using r for r(X), the rank of X. We use r even though we know that in this full-rank
situation

r = r (X) = k + 1
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This is to emphasize that it is the rank of X and not just the number of x variables
plus one. It also makes for an easier transition to the non-full-rank case, to be studied
in Chapter 5, where it is essential to use r(X).

f. Partitioning the Total Sum of Squares

The total sum of squares, which we shall call SST, is

SST = y′y =
N∑

i=1

y2
i

The sum of squares of deviations of observed yi’s from their predicted values is

SSE = y′y − b̂′X′y = y′y − Nȳ2 − �̂�′ ′y

as in (83) and (84). The difference

SSR = SST − SSE = b̂′X′y = b̂′X′Xb̂ = Nȳ2 + �̂�′ ′ y

represents that portion of SST that is attributed to having fitted the regression, and
so it is called the sum of squares due to regression, SSR. It is also often called
the reduction in sum of squares. The partitioning of SST can be summarized in a
manner that serves as a foundation for developing the traditional analysis of variance
(ANOVA) table.

SSR = b̂′X′y = b̂′X′Xb̂ = Nȳ2 + �̂�′ ′y
SSE = y′y − b̂′X′y = y′y − Nȳ2 − �̂�′ ′y

SST = y′y = y′y.
(87)

Now suppose the model had no x variables in it but had simply been yi = b0 + ei.Then
b̂0 would be ȳ and SSR would become Nȳ2. This we recognize as the usual correction
for the mean which is written

SSR = Nȳ2

Then in (87) we see that

SSR = SSM + �̂�′  ′y

and so we can call

SSRm = SSR − SSM = �̂�′ ′y = �̂�′ ′X�̂�
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the regression sum of squares corrected for the mean. In this way, (87) becomes

SSM = Nȳ2

SSRm = �̂�′ ′y = �̂�′ ′�̂�
SSE = y′y − Nȳ2 − �̂�′ ′y

SST = y′y

(88)

Similar to SSRm, we have

SSTm = SST − SSM = y′y − Nȳ2 = 𝔂′𝔂 (89)

With (89), SSRm and SSE of (88) can be summarized as

SSRm = �̂�′ ′y = �̂�′ ′y
SSE = 𝔂′𝔂 − b̂′ ′y = y′y − Nȳ2 − b̂′ ′y

SSTm = 𝔂′𝔂 = y′y − Nȳ2
(90)

This format is identical to that of (87). In one, (87), uncorrected sum of squares
are used with total SST, and in the other, (90), corrected sums of squares are used
with total SSTm. The error terms are the same in the two cases, namely SSE.

The summary shown in (90) is the basis of the traditional analysis of variance
table for fitting linear regression. Distributional properties of these sums of squares
are considered in Section 5.

g. Multiple Correlation

The multiple correlation coefficient is a measure of the goodness of fit of a regression
line. It is estimated as the product moment correlation between the observed yi’s
and the predicted ŷi’s. It is denoted by R and can be calculated as R2 = SSR

SST
for the

no-intercept model and as

R2 =
SSRm

SSTm
for the intercept model. (91)

This we now show.
In the no-intercept model, we ignore the mean ȳ. The product moment correlation

between the yi’s and the ŷi’s is defined by

R2 =

N∑

i=1
yiŷi

(
N∑

i=1
y2

i

)(
N∑

i=1
ŷ2

i

) =
(y′ŷ)2

(y′y)(ŷ′ŷ)
(92)
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With ŷ = Xb̂ = X(X′X)−1X′y, it can be shown (see Exercise 9) that (92) reduces to
R2 = SSR/SST as in (91).

For the intercept model, the definition of R2 is

R2 =

[
N∑

i=1

(yi − ȳ)(ŷi − ̄̂y)

]

N∑

i=1

(yi − ȳ)2
N∑

i=1

(ŷi − ̄̂y)2

(93)

To simplify this expression, we use

ȳ =
1′Ny

N
and 1′NX(X′X)−1X′ = 1′N . (94)

The second equation in (94) holds true because

X′X(X′X)−1X′ =

[
1′N

X′
1

]

X(X′X)−1X′ =

[
1′NX(X′X)−1X′

X′
1X(X′X)−1X′

]

= X′ =

[
1′N

X′
1

]

.

These results together with (89) lead (see Exercise 9) to (93) reducing to R2 =
SSR2

m∕SSTm(SSRm) = SSRm∕SSTm as in (91).
Intuitively, the ratio SSR/SST or SSRm/SSTm has appeal because it represents that

fraction of the total sum of squares which is accounted for by fitting the regression
model. Thus, although R has traditionally been thought about and used as a multiple
correlation coefficient in some sense, its more frequent use nowadays is in the form
of R2 where it represents the fraction of the total sum of squares accounted for by
fitting the model.

Care must be taken in using these formulae for R2, for, although SSRm and SSTm
have been defined in the intercept model as SSR−Nȳ2 and SST−Nȳ2, the value of
SSR used in the intercept model is not the same as its value in the corresponding no-
intercept model resulting in different values of R2. This will be illustrated in Example
9 which follows.

Example 9 Computation of Predicted Values, Their Variances, Residuals, and
Sums of Squares In (28), we found for the data of Example 2 that the least-square
estimates were

b̂ ==
⎡
⎢
⎢
⎣

7.000
6.250
−0.625

⎤
⎥
⎥
⎦

.
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Then the vector

Ê(y) = ŷ = Xb̂ =

⎡
⎢
⎢
⎢
⎢
⎣

1 6 28
1 12 40
1 10 32
1 8 36
1 9 34

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎣

7.000
6.250
−0.625

⎤
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

27
57

49.5
34.5
42

⎤
⎥
⎥
⎥
⎥
⎦

.

Hence from (74) using (X′X)−1 of (26)

var(ŷ) = X(X′X)−1X′𝜎2

=

⎡
⎢
⎢
⎢
⎢
⎣

1 6 28
1 12 40
1 10 32
1 8 36
1 9 34

⎤
⎥
⎥
⎥
⎥
⎦

𝜎2

2880

⎡
⎢
⎢
⎣

50656 1840 −1960
1840 400 −160
−1960 −160 100

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

1 1 1 1 1
6 12 10 8 9

28 40 32 36 34

⎤
⎥
⎥
⎦

.

From (75), using  of (43) and ( ′)−1 of (44),

var(ŷ) = 1
5

11′σ2 + ( ′)−1 ′σ2

= 1
5

⎡
⎢
⎢
⎢
⎢
⎣

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

⎤
⎥
⎥
⎥
⎥
⎦

σ2

+

⎡
⎢
⎢
⎢
⎢
⎣

−3 −6
3 6
1 −2
−1 2
0 0

⎤
⎥
⎥
⎥
⎥
⎦

σ2

144

[
20 −8
−8 5

] [
−3 3 1 −1 0
−6 6 −2 2 0

]

.

After carrying out the arithmetic, it will be found that both forms reduce to

var(ŷ) =

⎡
⎢
⎢
⎢
⎢
⎣

0.7 −0.3 0.2 0.2 0.2
−0.3 0.7 0.2 0.2 0.2
0.2 0.2 0.7 −0.3 0.2
0.2 0.2 −0.3 0.7 0.2
0.2 0.2 0.2 0.2 0.2

⎤
⎥
⎥
⎥
⎥
⎦

σ2.

An estimate of this is obtained by replacing σ2 by σ̂2 as will be shown below.
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From y and ŷ, we obtain the vector of residuals

(y − ŷ) =

⎡
⎢
⎢
⎢
⎢
⎣

30
60
51
36
33

⎤
⎥
⎥
⎥
⎥
⎦

−

⎡
⎢
⎢
⎢
⎢
⎣

27
57

49.5
34.5
42

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

3
3

1.5
1.5
−9

⎤
⎥
⎥
⎥
⎥
⎦

.

Recall that SSE is the sum of the squares of the residuals or (y − ŷ)′(y − ŷ). Hence,

SSE = 32 + 32 + (1.5)2 + (1.5)2 + (−9)2 = 103.5.

The alternative form of SSE, given in (83) is

SSE = y′y − b̂′X′y.

With y′y =
∑5

i=1 y2
i = 9486 in the data of Example 2, b̂ from (28), and X′y from

(27), we obtain

SSE = 9486 − ( 1
24

)
[

168 150 −15
] ⎡
⎢
⎢
⎣

210
1995
7290

⎤
⎥
⎥
⎦

= 9486 − 9382.5 = 103.5 as before.

Likewise, using the form given in (85),

SSE = 9486 − 5(422) − 1
24

[
150 −15

]
[

105
150

]

= 9486 − 8820 − 562.5 = 103.5 again.

Hence, in (86), our estimate of σ2 becomes

σ̂2 = 103.5
(5 − 3)

= 51.75.

From the calculations for SSE, the summaries in (87), (88), and (90) are as shown
in Table 3.1. From the last of these, R2 is SSRm∕SSTm = 562.5∕666 = 0.845, since
the model being used is the intercept model. If a no-intercept model were to be used
on these data, the formal expression for R2 would be SSR/SST, although not with the
value of SSR shown in Table 3.1, because that is the value of SSR for the intercept
model. For the no-intercept model, these data normal equations for b̂ and X′y are
given in (29). Thus,

SSR = b̂′X′y =
[

5.9957 −0.3542
]
[

1995
7290

]

= 9379.3.
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TABLE 3.1 Partitioning of Sum of Squares: Intercept Model

Eqs.(87) Eqs.(89) Eqs.(90)

SSM = 8820
SSR = 9382.5 SSRm = 562.5 SSRm = 562.5
SSE = 103.5 SSE = 103.5 SSE = 103.5

SST = 9486 SST = 9486 SSTm = 666

This value of SSR is different from that obtained for the intercept model from (87)
given in Table 3.1. The corresponding value of R2 is 9379.3/9486 = 0.989.

Notice that the two R2 are different. The intercept model accounts for 84.5% of
the variation while the no-intercept model accounts for 98.9% of the variation.We
can use the software package R to obtain residuals and fitted values.

> income=c(30,60,51,36,33)
> years=c(6,12,10,8,9)
> age=c(28,40,32,36,34)
> lm.r=lm(income~years+age)

We give the least-square coefficients, the residuals and the fitted values using R. The
output follows.

>coef(lm.r)
(Intercept) years age

7.000 6.250 -0.625
> resid(lm.r)
1 2 3 4 5
3.0 3.0 1.5 1.5 -9.0

> fitted(lm.r)
1 2 3 4 5

27.0 57.0 49.5 34.5 42.0

A plot of the residuals vs. the fitted values is given in Figure 3.2.

5. DISTRIBUTIONAL PROPERTIES

Up to now, we made no assumptions about the distribution of e. We will assume
that e is normally distributed in order to develop confidence intervals and tests of
hypothesis about the regression parameters. In what follows, we assume that

e ∼ N(0, 𝜎2I).

This will enable us to derive the distributions of y, b̂, �̂�2, and the various sums of
squares using the results of Chapter 2.

a. The Vector of Observations y is Normal

From y = Xb + e we have y – Xb = e and therefore,

y ∼ N(Xb, 𝜎2IN).
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FIGURE 3.2 Plot of Residuals vs. Fitted Values

b. The Least-square Estimator b̂ is Normal

The least-square estimator b̂ is normally distributed because it is a linear function of
y. The mean and variance were derived in (60) and (62). Thus,

b̂ = (X′X)−1X′y ∼ N(b, (X′X)−1𝜎2).

Using the same reasoning, we have that ̂̃b is normally distributed. From (60) and (63)

�̂� = ( ′)−1y ∼ N(𝓫, ( ′)−1𝜎2)

c. The Least-square Estimator b̂ and the Estimator of the Variance �̂�2 are
Independent

We have

b̂ = (X′X)−1X′y

and

SSE = y′[I − X(X′X)−1X′]y.

However, by (80),

(X′X)−1X′[I − X(X′X)−1X′] = 0.

The independence of b̂ and �̂�2 follows from Theorem 6 of Chapter 2.
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d. The Distribution of SSE/𝝈2 is a 𝝌2 Distribution

From (82), SSE is a quadratic form in y with matrix P = I − X(X′X)−1X′.
Then SSE∕𝜎2 = y′(1∕𝜎2)Py. By (79), P is idempotent and var(y) = 𝜎2I. There-

fore, (1∕𝜎2)P𝜎2I is idempotent. From Theorem 5 of Chapter 2,

SSE∕𝜎2 ∼ 𝜒2′[r[I − X(X′X)−1X′], b′X′[I − X(X′X)−1X′]Xb∕2𝜎2] (95)

From (79) and (80), (95) reduces to SSE∕𝜎2 ∼ 𝜒2
N−r, where r = r(X). Thus,

(N − r)�̂�2∕𝜎2 ∼ 𝜒2
N−r.

e. Non-central 𝝌2′ s

We have shown that SSE/𝜎2 has a central 𝜒2-distribution. We will now show that
SSR, SSM, and SSRm have non-central 𝜒2-distributions. Furthermore, these terms
are independent of SSE. Thus we are led to F-statistics that have non-central F-
distributions. These in turn are central F-distributions under certain null hypothesis.
Tests of these hypotheses are established.

From (87), we have

SSR = b̂′X′y = y′X(X′X)−1X′y.

The matrix X(X′X)−1X′ is idempotent and its product with I − X(X′X)−1X′ is the
null matrix. Applying Theorem 7 of Chapter 2, SSR and SSE are independent. By
Theorem 5 of the same chapter,

SSR∕𝜎2 ∼ 𝜒2′{r[X(X′X)−1X], b′X′X(X′X)−1X′Xb∕2𝜎2} = 𝜒2′(r, b′X′Xb∕2𝜎2.

Similarly, in (88),

SSM = Nȳ2 = y′N−111′y,

where N−111′ is idempotent and its product with I − X(X′X)−1X′ is the null matrix.
Therefore, SSM is distributed independently of SSE and

SSM∕𝜎2 ∼ 𝜒2′[r(N−111′), b′X′N−111′Xb∕2𝜎2] = 𝜒2′[1, (1Xb)2∕2N𝜎2].

Also in (90),

SSRm = �̂�′ ′y = �̂�′ ′ ′�̂�.

Since b̂ ∼ N[b, ( ′)−1]𝜎2,

SSRm∕𝜎2 ∼ 𝜒2′[r( ′),𝓫 ′𝓫∕2𝜎2] = 𝜒2′(r − 1,𝓫 ′𝓫∕2𝜎2).
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Furthermore, SSRm can be expressed as y′Qy where Q = ( ′ ′)−1 ′ where Q
is idempotent and its products with I − X(X′X)−1X′ and N−111′ are the null matrix.
By Theorem 7 of Chapter 2, SSRm is independent of both SSE and SSM.

Finally, of course

y′y∕𝜎2 ∼ 𝜒2′(N, b′X′Xb∕2𝜎2).

f. F-distributions

Applying the definition of the non-central F-distribution to the foregoing results, it
follows that the F-statistic

F(R) =
SSR∕r

SSE∕(N − r)
∼ F′(r, N − r, b′X′Xb∕2𝜎2). (96)

Similarly

F(M) =
SSM∕1

SSE∕(N − r)
∼ F′[1, N − r, (1′Xb)2∕2N𝜎2] (97)

and

F(Rm) =
SSRm∕(r − 1)

SSE∕(N − r)
∼ F′[r − 1, N − r,𝓫 ′𝓫∕2𝜎2]. (98)

Under certain null hypotheses, the non-centrality parameters in (96)–(98) are zero
and these non-central F’s then become central F’s and thus provide us with statistics
to test these hypotheses. This is discussed subsequently.

g. Analyses of Variance

Calculation of the above F-statistics can be summarized in analyses of variance 4s.
An outline of such tables is given in (87), (88), and (90). For example, (87) and the
calculation of (96) are summarized in Table 3.2.

TABLE 3.2 Analysis of Variance for Fitting Regression

Source of Variation d.f.a Sum of Squares Mean Square F-Statistic

Regression r SSR = b̂′X′y MSR = SSR
r

F(R) = MSR
MSE

Residual error N − r SSE = y′y − b̂′X′y MSE = SSE
N − r

Total N SST = y′y

ar = r(X) = k + 1 when there are K regression variable (x′s).
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TABLE 3.3 Analysis of Variance, Showing a Term for the Mean

Source of Variationa d.f.b Sum of Squares Mean Square F-Statistics

Mean 1 SSM = Nȳ2 MSM = SSM∕1 F(M) = MSM
MSE

Regression (c.f.m.) r − 1 SSRm = �̂�′ ′y MSRm =
SSRm

r − 1
F(Rm) =

MSRm

MSE

Residual error N − r SSE = y′y − Nȳ2 − �̂�′ ′y MSE = SSE
N − r

N SST = y′y

ac.f.m. = corrected for the mean.
br = r(X) = k + 1 when there are K regression variables (x′s).

This table summarizes not only the sums of squares-already summarized in (87)
but also degrees of freedom (d.f.) of the associated 𝜒2-distributions. In the mean
squares, the sum of squares divided by the degrees of freedom, the table also shows
calculation of the numerator and the denominator of F. It also shows the calculation
of F itself. Thus, the analysis of variance table is simply a convenient summary of
the steps involved in calculating the F-statistic.

In a manner similar to Table 3.2, (88) and the F-ratios of (97) and (98) are
summarized in Table 3.3.

The abbreviated form of this, based on (90) and showing only the calculation of
(98) is as shown in Table 3.4.

Tables 3.2, 3.3, and 3.4 are all summarizing the same thing. They show devel-
opment of the customary form of this analysis, namely 3.4. Although it is the form
customarily seen, it is not necessarily the most informative. Table 3.3 has more infor-
mation because it shows how SSR of table 3.2 is partitioned into SSM and SSRm
the regression sum of squares corrected for the mean (c.f.m.). Table 3.4 is simply an
abbreviated version of Table 3.3 with SSM removed from the body of the table and
subtracted from SST to give SSTm = SST – SSM = y′y − Nȳ2, the corrected sum
of squares of the y observations. Thus, although Table 3.4 does not show F(M) =
MSM/MSE, it is identical to Table 3.3 insofar as F(Rm) = MSRm/MSE is concerned.

TABLE 3.4 Analysis of Variance (Corrected for the Mean)

Source of Variationa d.f.b Sum of Squares Mean Square F-Statistics

Regression (c.f.m) r − 1 SSRm = �̂�′ ′y MSRm =
SSRm

r − 1
F(Rm) =

MSRm

MSE

Residual error N − r SSE = y′y − Nȳ2 − �̂�′ ′y MSE = SSE
N − r

Total N − 1 SSTm = y′y − Nȳ2

ac.f.m. = corrected for the mean.
br = r(X) = k + 1 when there are K regression variables.
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h. Tests of Hypotheses

Immediately after (96)–(98), we made the comment that those results provide us with
statistics for testing hypothesis. We illustrate this now. In Section 6, we will take up
the general linear hypothesis.

In Table 3.2, the statistic F(R), as shown in (96), is distributed as a non-central
F with non-centrality parameter b′X′Xb∕2𝜎2. The non-centrality parameter is zero
under the null hypothesis H0: b = 0. In this case, F(R) has a central F-distribution
Fr,N−r. The statistic F(R) may be compared to the tabulated values to test the hypoth-
esis. We may specify a level 𝛼, any level we want. In statistical practice, popular 𝛼
levels are 0.10, 0.05, and 0.01.

When F(R) ≥ tabulated Fr,N−r at the 100𝛼% level, we reject the null hypothesis
H0: b = 0 at that level of significance. Otherwise, we fail to reject H0. We may find
the tabulated value from tables, using a handheld calculator, the Texas Instrument
TI 84, for example, or a statistical software package. We may also calculate the
p-value which is the lowest level of significance where the null hypothesis is rejected
by finding the probability that Fr,N−r is greater than the calculated statistic F(R)
and reject H0 at level 𝛼 when 𝛼 > p-value. To find the p-value, we need either
a statistical handheld calculator (TI 83 or 84, for example) or statistical software
package.

Apropos assuming the model E(y) = Xb, we might then say, borrowing a phrase
from Williams (1959), that when F(R) is significant, there is “concordance of the
data with this assumption” of the model. That means that the model accounts for
a significant portion of the variation. This does not mean that this model for the
particular set of x’s is necessarily the most suitable model. Indeed, there may be
a subset of those x’s that are as significant as the whole. There may be further
x’s which when used alone or in combination with some or all of the x’s already
used that are significantly better than those already used. Furthermore, there may be
nonlinear functions of those x’s that are at least or more suitable than using linear
functions of the x’s. None of these contingencies is inconsistent with F(R) being
significant and the ensuing conclusion that the data are in concordance with the model
E(y) = Xb.

In addition to what was discussed in the previous paragraph, a statistically signif-
icant model might only account for a small percentage of the variation. To judge the
suitability of a model, other facts must be taken into consideration besides statistical
significance.

The non-centrality parameter of the F-statistic F(M) of Table 3.3 is, as in (97),
(1′Xb)2∕2N𝜎2. For the numerator of this expression

1′Xb = 1′E(y) = E(1′y) = E(Nȳ) = NE(ȳ).

Hence the non-centrality parameter in (97) is N[E(ȳ)]2∕2𝜎2, which is zero under the
hypothesis H0: E(ȳ) = 0. The statistic F(M) is distributed as F1,N−r. Thus, it can be
used to test H0 meaning that it can be used to test the hypothesis that the expected
value of the mean of the observed values is zero. This is an interpretation of the
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phrase “testing the mean” sometimes used for describing the test based on F(M).
Equivalently,

√
F(M) has the t-distribution with N – r degrees of freedom because

F(M) =
Nȳ2

�̂�2
=

[
ȳ

�̂�∕
√

N

]2

is the square of a t random variable.
Another way of looking at the test provided by F(M) is based on the model

E(yi) = b0. The reduction sum of squares for fitting this model is SSM, and the non-
centrality parameter in (97) is then Nb2

0∕2𝜎2.Hence F(M) can be used to test whether
the model E(yi) = b0 accounts for variation in the y variable.

In using a test based on F(R), we are testing the hypothesis that all the bi’s
including b0, are simultaneously zero. However, for the null hypothesis H0 : b̃ = 0,
that is, that just the b’s corresponding to the x variables are zero, then the test is
based on F(Rm) in Tables 3.3 and 3.4. This is so because, from (98), we see that the
non-centrality parameter in the non-central F-distribution of F(Rm) is zero under the
null hypothesis H0 : 𝓫 = 0. In this case, F(Rm) has a central F-distribution on r –1
and N – r degrees of freedom. Thus F(Rm) provides a test of hypothesis H0 : b̃ = 0.
If F(Rm) is significant, the hypothesis is rejected. This is not to be taken as evidence
that all the elements of b̃ are non-zero. It simply means that at least one of them may
be. If F(M) has first been found significant, then F(Rm) being significant indicates
that a model with the x’s explains significantly more of the variance in the y variable
than does the model E(yi) = b0.

Tests using F(M) and F(Rm) are based on the numerators SSM and SSRm. As
shown earlier in Section 5e, these random variables are statistically independent.
The F’s themselves are not independent because they have the same denominator
mean square. The probability of rejecting at least one of the hypotheses b0 = 0, b̃ = 0
each at level 𝛼 would be between 𝛼 and 2𝛼. One way to insure a simultaneous test
of both hypotheses F(M) and F(Rm) did not have a significance level greater than
𝛼 would be to perform each individual test at level 𝛼∕2. This is an example of a
multiple comparisons procedure. For more information on this important topic, see,
for example, Miller (1981).

Another possibility is the case where F(M) is not significant but F(Rm) is.1 This
would be evidence that even though E(ȳ) might be zero, fitting the x’s does explain
variation in the y variable. An example of a situation where this might occur is when
the y variable can have both positive and negative values, such as weight gains in
beef cattle, where in fact some gains may be in fact losses, that is, negative gains.

Example 10 Analysis of Variance Results for Regression in Example 2 The
results are presented in Table 3.5 below. Using the summaries shown in Table 3.1,
the analyses of variance in Tables 3.2–3.4 are shown in Table 3.5. The first part of
Table 3.5 shows F(R) = 60.4, with 3 and 2 degrees of freedom. Since the tabulated
value of the F3,2-distribution is 19.15 at 𝛼 = .05 and F(R)= 60.5> 19.15, we conclude
that the model accounts for a significant (at the 5% level) portion of the variation of

1 S.R. Searle is grateful to N.S.Urquhart for emphasizing this possibility.
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TABLE 3.5 Tables 3.2, 3.3, and 3.4 for Data of Example 2

Source of Variation d.f. Sum of Squares Mean Square F-Statistic

Table 3.2
Regression 3 SSR = 9382.5 3127.5 F(R) = 3073.5∕51.75 = 60.43
Residual error 2 SSE = 103.5 51.75

Total 5 SST = 9486

Table 3.3
Mean 1 SSM = 8820 8820 F(M) = 8820∕51.75 = 170.4
Regression c.f.m. 2 SSRm = 562.5 281.25 F(Rm) = 281.25∕51.75 = 5.4
Residual error 2 SSE = 103.5 51.75

Total 5 SST = 9486

Table 3.4
Regression c.f.m. 2 SSRm = 562.5 281.25 F(Rm) = 281.25∕51.75 = 5.4
Residual error 2 SSE = 103.5 51.75

Total 4 SSTm = 666

the y variable. However, since the p-value is 0.016, the model does not account for a
significant portion of the y variable at the 1% level. Likewise, F(M) of the Table 3.3
portion of Table 3.5 has 1 and 2 degrees of freedom and since F(M) = 170.4 > 18.51,
the tabulated value of the F1,2-distribution at the 5% level, we reject the hypothesis
that E(ȳ) = 0. In this case, the p-value is 0.0059. We would also reject the hypothesis
E(ȳ) = 0 at 𝛼 = .01. The value of F1,2 for the 1% level of significance is 98.5. Finally,
since F(Rm) = 5.4 < 19.0, the tabulated value of the F2,2-distribution, we fail to
reject the hypothesis that b1 = b2 = 0. The p-value in this case is 0.16 > 0.05. This
test provides evidence that the x’s are contributing little in terms of accounting for
variation in the y variable. Most of the variation is accounted for by the mean, as is
evident from the sums of squares values in the Table 3.3 section of Table 3.5. As is
true generally, the Table 3.4 section is simply an abbreviated form of the Table 3.3
section, omitting the line for the mean. Just how much of the total sum of squares has
been accounted for by the mean is, of course, not evident in the Table 3.4 section.
This is a disadvantage to Table 3.4, even though its usage is traditional. □

i. Confidence Intervals

We shall now develop confidence intervals for regression coefficients. On the basis
of normality assumptions discussed in Section 5b, we know that b̂ has a normal
distribution. As a result

b̂i − bi
√

aii𝜎2
∼ N(0, 1), (99)

for i = 0,1,2,…, or k where in accord with the development of (63) and (64)

a00 = 1
N

+ x̄′( ′)−1x̄ (100)
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and for i = 1, 2,…, k

aii = ith diagonal element of ( ′)−1. (101)

With these values of aii, and in (99) replacing 𝜎2 by �̂�2 of (86), we have

b̂i − bi
√

aii�̂�2
∼ tN−r, (102)

where tN−r represents the t-distribution on N – r degrees of freedom.
Define tN−r,𝛼,L and tN−r,𝛼,U as a pair of lower and upper limits respectively of the

tN-r-distribution such that

Pr
{

t ≤ tN−r,𝛼,L

}
+ Pr
{

t ≥ tN−r,𝛼,U

}
= 𝛼

As a result, we have

Pr
{

tN−r,𝛼,L ≤ t ≤ tN−r,𝛼,U

}
= 1 − 𝛼

for t ∼ tN-r. Then by (102),

Pr

{

tN−r,𝛼,L ≤
b̂i − bi
√

aii�̂�2
≤ tN−r,𝛼,U

}

= 1 − 𝛼. (103)

Rearrangement of the probability statement in the form

Pr
{

b̂i − �̂�tN−r,𝛼,U

√
aii ≤ bi ≤ b̂i − �̂�tN−r,𝛼,L

√
aii
}

= 1 − 𝛼

provides

(

b̂i − �̂�tN−r,𝛼,U

√
aii, b̂i − �̂�tN−r,𝛼,L

√
aii
)

(104)

as a 100(1 − 𝛼)% confidence interval. Usually symmetric confidence intervals are
utilized. For this confidence interval to be symmetric with respect to bi, we need

− tN−r,𝛼,L = tN−r,𝛼,U = tN−r, 1
2
𝛼
, where Pr

{

t ≥ tN−r, 1
2
𝛼

}

= 1
2
𝛼 (105)

and the interval (104) becomes

b̂i ± �̂�tN−r, 1
2
𝛼

√
aii, (106)

of width 2�̂�tN−r, 1
2
𝛼

√
aii.



DISTRIBUTIONAL PROPERTIES 135

When the degrees of freedom are large (N – r >100 say) the distribution in (102)
is approximately N(0, 1). Define 𝜈𝛼,L and 𝜈𝛼,U such that

Pr{𝜈𝛼,L ≤ 𝜈 ≤ 𝜈𝛼,U} = 1 − 𝛼, for 𝜈 ∼ N(0, 1). (107)

The values 𝜈𝛼,L and 𝜈𝛼,U can be used in (104) in place of tN−r,𝛼,L and tN−r,𝛼,U . In
particular, for a symmetric confidence interval,

𝜈𝛼,L = −𝜈𝛼,U = z 1
2
𝛼
, where (2𝜋)−

1
2
∫

∞

z 1
2 𝛼

e−
1
2

x2
dx = 1

2
𝛼.

The resulting confidence interval is

b̂i ± �̂�z 1
2
𝛼

√
aii. (108)

Tabulated values of z 1
2
𝛼

for a variety of values of 1
2
𝛼 are available in Table I of the

statistical tables online.
Confidence intervals for any linear combination of the b’s, q′b, say, can be estab-

lished in a like manner. The argument is unchanged, except that at all stages bi and b̂i
are replaced by q′b and q′b̂, respectively, and aii�̂�2 is replaced by q′(X′X)−1q�̂�2.

Thus, from (106) and (108), the symmetric confidence interval for q′b is

q′b̂ ± �̂�tN−r, 1
2
𝛼

√

q′(X′X)−1q (109)

with z 1
2
𝛼

replacing tN−r, 1
2
𝛼

when N – r is large.

In equation (71), we developed x′0b̂ as the estimator of E(y0) corresponding to a
set of x’s in x′0. Result (109) now provides a confidence interval on x′0b, namely

x′0b̂ ± �̂�tN−r, 1
2
𝛼

√

x′0(X′X)−1x0. (110)

In the case of simple regression involving only one x variable (where k = 1 and r =
2 as in the footnote to Table 3.4), x′0 =

[
1 x0

]
and (110) becomes

[
1 x0

]
[

ȳ − b̂x̄
b̂

]

± �̂�tN−2, 1
2
𝛼

√
√
√
√
√
√
√

[
1 x0

]
⎡
⎢
⎢
⎢
⎣

N Nx̄

Nx̄
N∑

i=1

x2
i

⎤
⎥
⎥
⎥
⎦

[
1
x0

]

.
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This simplifies to

ȳ + b(x0 − x̄) ± �̂�tN−2, 1
2
𝛼

√
√
√
√
√
√
√

1
N

+
(x̄ − x0)2

N∑

i=1

x2
i − Nx̄2

, (111)

the familiar expression for the confidence interval on E(y) in a simple regression
model (see, for example, p. 170 of Steel and Torrie (1960)). Plotting the values of
this interval for a series of values of x0 provides the customary confidence belt for
the regression line

y = b0 + bx.

Example 11 Confidence Intervals for Predicted Values in Example 1

Fit lwr upr

1 26.25 0.9675721 51.53243
2 57.75 32.4675721 83.03243
3 47.25 25.2444711 69.25553
4 36.75 14.7444711 58.75553
5 42.00 20.4390731 63.56093

x = years of schooling beyond sixth grade, y = income □

Confidence bands for the predicted values in Example 1 are plotted in Figure
3.3. A confidence interval for an estimated observation is called a tolerance or a
prediction interval. In keeping with the variance given in (76), the prediction interval
comes from using x′0(X′X)−1x0 + 1 instead of x′0(X′X)−1x0 in (110). In line with
(110), it reduces for simple regression to

ȳ + b(x0 − x̄) ± �̂�tN−2, 1
2
𝛼

√
√
√
√
√
√
√

1 + 1
N

+
(x̄ − x0)2

N∑

i=1

x2
i − Nx̄2

. (112)

j. More Examples

First, we give an example of a non-symmetric confidence interval.

Example 12 A Non-symmetric 95% Confidence Interval for b1 The non-
symmetric interval will be calculated using (104) for a regression coefficient from
the data of Example 2. We have the point estimates b1 = 6.250, from (28) �̂� = 7.20
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FIGURE 3.3 Confidence Band for Predicted Values in Example 2

and N – r = 2 from Table 3.5. From (101) and (44) we have a11 = 20∕144 = 0.139.
Then in (104), a non-symmetric confidence band for b1 is given by

(6.25 − 7.20t2,𝛼,U

√
0.139, 6.25 − 7.20t2,𝛼,L

√
0.139)

or

(2.08 − 2.68t2,𝛼,U , 2.08 − 2.68t2,𝛼,L).

We shall set this confidence interval up so that the left-hand tail of the t2-distribution
has probability 0.04 and the right-hand tail has probability 0.01. We could use any
tail probabilities that add up to 0.05 and get a different confidence interval for each
case. Using a TI 83 or TI 84 calculator, we need to find L and U so that

P(t ≥ t2,.05,L) = 0.96 and P(t ≥ t2,.05,U) = 0.01.

We get that t2,.05,L = –3.32 and t2,.05,U = 6.96. Then the confidence interval becomes

(6.25 − 2.68(6.96), (6.25 − 2.68(−3.32)), or (−12.4, 15.15). (113)
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Of course it is questionable that there would be a situation that would lead to
a non-symmetric confidence interval with the t-distribution. However, Example 11
illustrates how such intervals may be calculated and emphasizes the fact that there are
many such intervals because there are many values tN−r,𝛼,L and tN−r,𝛼,U that satisfy
(103). There is only one symmetric confidence interval.

Example 13 A Symmetric 95% Confidence Interval From Table 2 (see web
page) or calculator t2,.975 = −t2,.025 = −4.30. Hence, our confidence interval will be
6.25 ± 2.68(4.30) = (−5.274, 17.774). This confidence interval contains zero so if
we were to test the hypothesis H0:b1 = 0 versus the two-sided alternative hypothesis
H1 : b1 ≠ 0, we would fail to reject H0. □

Example 14 A Simultaneous 95% Confidence Interval on b1 and b2 We need to
find 97.5% confidence intervals on b1 and b2 to guarantee that the confidence level
of the simultaneous confidence interval is at most .05. To do this, we need t.0125 =
6.205. The confidence intervals are for b1

6.25 ± 6.205(2.68) or (−10.38,22.88)

and for b2

−0.2083 ± 6.205(.45) or (−3,2.58).

Since both confidence intervals contain zero, a test of H0: b1 = 0, b2 = 0 versus an
alternative that at least one of the regression coefficients was not zero would fail to
reject H0 at a significance level of at most 0.05. □

Example 15 Summary of Results for Example 2 using R

Call:
lm(formula = income ~ years + age)

Residuals:
1 2 3 4 5

3.0 3.0 1.5 1.5 -9.0

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.000 30.170 0.232 0.838
years 6.250 2.681 2.331 0.145
age -0.625 1.341 -0.466 0.687
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Confidence intervals on predicted values

predict(lm.r,level=0.95,interval="confidence")
fit lwr upr

1 27.0 1.103535 52.89647
2 57.0 31.103535 82.89647
3 49.5 23.603535 75.39647
4 34.5 8.603535 60.39647
5 42.0 28.157757 55.84224
> □

k. Pure Error

Data sometimes have the characteristic that the set of x’s corresponding to several y’s
are the same. For example, in the case of an experiment with data taken from Chen
et al. (1991) in Montgomery, Runger and Hubele (2007), the relationship between
noise exposure and hypertension was investigated. The independent variable x rep-
resented sound pressure level in decibels while the dependent variable y represented
blood pressure rise in millimeters of mercury. The data were as follows:

y 1 0 1 2 5 1 4 6 2 3
x 60 63 65 70 70 70 80 90 80 80

y 5 4 6 8 4 5 7 9 7 6
x 85 89 90 90 90 90 94 100 100 100

It was reproduced with the kind permission of John Wiley & Sons.
Observe that there are three x observations of 70, 3 of 80, 4 of 90, and 3 of 100

and one each of 60, 63, 85, 89, and 95. These are called repeated x’s. Their presence
provides a partitioning of SSE into two terms, one that represents “lack of fit” of
the model and the other that represents “pure error.” Description is given in terms of
simple regression involving one x variable. Extension to several x’s is straightforward.

Suppose x1, x2,… , xp are the p distinct values of the x’s where xi occurs in the
data ni times, that is, with ni y values yij for j = 1, 2,… , ni and for i = 1, 2,… , p. For
all i, ni ≥ 1, we will write

n. =
p∑

i=1

ni = N.

Then

SSE =
p∑

i=1

ni∑

j=1

y2
ij − �̂�′X′y

=
p∑

i=1

ni∑

j=1

y2
ij − Nȳ2

..
− �̂�′

(
p∑

i=1

ni∑

j=1

xijyij − Nx̄..ȳ..

)

,
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with N – r degrees of freedom can be partitioned into SSPE =
p∑

i=1

[ ni∑

i=1
y2

ij − ni(ȳi.)
2

]

with N – p degrees of freedom and

SSLF = SSE − SSPE with p − r degrees of freedom.

In this form, SSE/(N – p), known as the mean square due to pure error, is an estimator
of 𝜎2. The mean square SSLF/(p – r) is due to lack of fit of the model. It provides a
test of the lack of fit by comparing

F(LF) =
SSLF∕(p − r)

SSPE∕(p − r)

against Fp−2,N−p. Significance indicates that the model is inadequate. Lack of signif-
icance as Draper and Smith (1998) pointed out means that there is no reason to doubt
the adequacy of the model. In this case, SSE/(N – 2) provides a pooled estimator
of 𝜎2.

Example 16 SAS Output Illustrating Lack of Fit Test for Sound Data
The SAS System

The GLM Procedure
Class Level Information

Class Levels Values
lackofit 10 60 63 65 70 80 85 89 90 94 100
Number of Observations Read 20
Number of Observations Used 20

The SAS System
The GLM Procedure

Dependent Variable:y

Source DF Sum Squares Mean Square F Value Pr > F
Model 9 100.0666667 11.1185185 4.61 0.0128
Error 10 24.1333333 2.41333333

Corrected Total 19 124.200000

R-square Coeff Var Root MSE y Mean
0.805690 36.12769 1.552491 4.300000

Source DF Type I SS Mean Square F Value Pr > F
x 1 92.93352510 92.93352510 38.51 0.0001

lackofit 8 7.13314156 0.89164270 0.37 0.9142

The slope of the regression equation is highly significant. However, there is no
significant lack of fit, so there is no reason to doubt the adequacy of the model.
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A simple SAS program that would generate the above output and some additional
information is

data sound;
input y x lackofit;
datalines;
1 60 60
.
.
.
proc glm;
class lackofit;
model y=x lackofit;
run;

6. THE GENERAL LINEAR HYPOTHESIS

a. Testing Linear Hypothesis

The literature of linear models abounds with discussions of different kinds of hypothe-
ses that can be of interest in widely different fields of application. Four hypothesis of
particular interest are:

(i) H: b = 0, the hypothesis that all of the elements of b are zero;

(ii) H: b = b0, the hypothesis that bi = bi0 for i = 1, 2,… , k, that is, that each bi
is equal to some specified value bi0;

(iii) H: 𝜆′b = m, that some linear combination of the elements of b equals a
specified constant;

(iv) H: bq = 0, that some of bi’s, q of them where q < k are zero.

We show that all of the linear hypothesis above and others are special cases of a
general procedure even though the calculation of the F-statistics may appear to differ
from one hypothesis to another.

The general hypothesis we consider is

H: K′b = m,

where b, of course, is the (k + 1)-order vector of parameters of the model, K′ is any
matrix of s rows and k + 1 columns and m is a vector of order s of specified constants.
There is only one limitation on K′; it must have full row rank, that is, r(K′) = s.
This simply means that the linear functions of b must be linearly independent. The
hypothesis being tested must be made up of linearly independent functions of b and
must contain no functions that are linear functions of others therein. This is quite
reasonable because it means, for example, that if the hypothesis relates to b1 – b2 and
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b2 – b3, then there is no point in having it relate explicitly to b1 – b3. This condition
on K′ is not at all restrictive in limiting the application of the hypothesis H: K′b = m
to real problems. It is not necessary to require that m be such that the system of
equations K′b = m is consistent because this is guaranteed by K′ being of full rank.

We now develop the F-statistic to test the hypothesis H: K′b = m. We know that

y ∼ N(Xb, 𝜎2I), b̂ = (X′X)−1X′y and b̂ ∼ N[b, (X′X)−1𝜎2].

Therefore,

K′b̂ − m ∼ N[K′b − m, K′(X′X)−1K𝜎2]

By virtue of Theorem 5 in Chapter 2, the quadratic form

Q = (K′b̂ − m)′[K′(X′X)−1K]−1(K′b̂ − m)

in (K′b̂ − m) with matrix [K′(X′X)−1K]−1 has a non-central 𝜒2-distribution. We
have that

Q

𝜎2
∼ 𝜒2′

{

s,
(K′b − m)′[K′(X′X)−1K]−1(K′b − m)

2𝜎2

}

. (114)

We now show the independence of Q and SSE using Theorem 7 of Chapter 2. We
first express Q and SSE as quadratic forms of the same normally distributed random
variable. We note that the inverse of K′(X′X)−1K used in (114) exists because K′ has
full row rank and X′X is symmetric. In equation (114), we replace b̂ with (X′X)−1X′y.

Then equation (114) for Q becomes

Q = [K′(X′X)−1X′y − m]′[K′(X′X)−1K]−1[K′(X′X)−1X′y − m].

The matrix K′ has full-column rank. By the corollary to Lemma 5 in Section 3 of
Chapter 2, K′K is positive definite. Thus (K′K)−1 exists. Therefore,

K′(X′X)−1X′y − m = K′(X′X)−1X′[y − XK(K′K)−1m].

As a result, Q may be written

Q = [y − XK(K′K)−1m]′X(X′X)−1K[K′(X′X)−1K]−1K′(X′X)−1X′

[y − XK(K′K)−1m].

The next step is to get the quadratic form for SSE into a similar form as Q. Recall
that

SSE = y′[I − X(X′X)−1X′]y.
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Since X′[I − X(X′X)−1X] = 0 and [I − X(X′X)−1X]X = 0, we may write

SSE = [y − XK(K′K)−1m]′[I − X(X′X)−1X′][y − XK(K′K)−1m].

We have expressed both Q and SSE as quadratic forms in the normally distributed
vector y − XK(K′K)−1m. Also the matrices for Q and SSE are both idempotent, so
we again verify that they have 𝜒2′-distributions. More importantly, the product of the
matrices for Q and SSE are null. We have that

[I − X(X′X)−1X′]X(X′X)−1K[K′(X′X)−1K]−1K′(X′X)−1X′ = 0.

Therefore by Theorem 7 of Chapter 2, Q and SSE are distributed independently. This
gives us the F-distribution needed to test the hypothesis H : K′b = m. We have that

F(H) =
Q∕s

SSE∕[N − r(X)]
= Q

s�̂�2

∼ F′
{

s, N − r(X),
(K′b − m)′[K′(X′X)−1K]−1(K′b − m)

2𝜎2

}

.

(115)

Under the null hypothesis H : K′b = m F(H) ∼ Fs,N−r(X).Hence, F(H) provides a test
of the null hypothesis H : K′b = m and the F- statistic for testing this hypothesis is

F(H) = Q

s�̂�2
= (K′b̂ − m)′[K′(X′X)−1K]−1(K′b̂ − m)

s�̂�2
(116)

with s and N – r degrees of freedom.
The generality of this result merits emphasis. It applies for any linear hypothesis

K′b = m. The only limitation is that K′ has full-row rank. Other than this, F(H) can
be used to test any linear hypothesis whatever. No matter what the hypothesis is, it
only has to be written in the form K′b = m. Then, F(H) of (116) provides the test.
Having once solved the normal equations for the model y = Xb + e and so obtained
(X′X)−1, b̂ = (X′X)−1X′y and �̂�2, the testing of H : K′b = m can be achieved by
immediate application of F(H). The appeal of this result is illustrated in Section
6c for the four hypothesis listed at the beginning of this section. Notice that �̂�2 is
universal to every application of F(H). Thus, in considering different hypotheses, the
only term that changes is Q/s.

b. Estimation Under the Null Hypothesis

A natural question to ask when considering the null hypothesis H : K′b = m is
“What is the estimator of b under the null hypothesis?” This might be especially
pertinent following non-rejection of the hypothesis by the preceding F test. The
desired estimator, b̂c, say, is readily obtainable using constrained least squares.
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Thus, b̂c is derived so as to minimize (y − Xb̂c)′(y − Xb̂c) subject to the constraint
K′b = m.

With 2θ′ as a vector of Lagrange multipliers, we minimize

L = (y − Xb̂c)′(y − Xb̂c) + 2θ′(K′b̂c − m)

with respect to the elements of b̂c and θ′. Differentiation with respect to these elements
leads to the equations

X′Xb̂c + Kθ = X′y
K′b̂c = m.

(117a)

The equations in (117) are solved as follows. From the first,

b̂c = (X′X)−1(X′y − Kθ) = b̂ − (X′X)−1Kθ. (117b)

Substitution of this result into the second equation yields

K′b̂c = K′b̂ − K′(X′X)−1Kθ = m.

Hence,

θ = [K′(X′X)−1K]−1(K′b̂ − m). (117c)

Substitution of θ in (117c) into (117a) gives the constrained least-square estimator

b̂c = b̂ − (X′X)−1K[K′(X′X)−1K]−1(K′b̂ − m). (118)

The expression obtained in (118) and the F-statistic derived in (116) apply directly
to �̂� when the hypothesis is L′𝓫 = m (see Exercise 12).

We have estimated b under the null hypothesis H : K′b = m. We now show that
the corresponding residual sum of squares is SSE + Q where Q is the numerator
sum of squares of the F- statistic used in testing the hypothesis in (116), F(H). We
consider the residual (y − Xb̂c)′(y − Xb̂c), add and subtract Xb̂ and show that we get
SSE + Q.

Thus

(y − Xb̂c)′(y − Xb̂c) = [y − Xb̂ + X(b̂ − b̂c)]′[y − Xb̂ + X(b̂ − b̂c)]
= (y − Xb̂)′(y − Xb̂) + (b̂ − b̂c)′X′(y − Xb̂)
+ (y − Xb̂)′X(b̂ − b̂c)′ + (b̂ − b̂c)′X′X(b̂ − b̂c)

= (y − Xb̂)′(y − Xb̂) + (b̂ − b̂c)′X′X(b̂ − b̂c).

(119)

The two middle terms in (119) are zero because x′(y − Xb̂) = X′y −
X′X(X′X)−1X′y = 0.
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Substituting the constrained least-square estimator (118) into (119), we get

(y − Xb̂c)′(y − Xb̂c)
= SSE + (K′b̂ − m)′[K′(X′X)−1K]−1K′(X′X)−1X′X(X′X)−1

K[K′(X′X)−1K]−1(K′b̂ − m)
= SSE + (K′b̂ − m)′[K′(X′X)−1K]−1(K′b̂ − m)
= SSE + Q

(120)

from (114).
In deriving the constrained least-square estimator, we used an exact constraint

K′b = m. We could have used a stochastic constraint of the form m = K′b + τ

where τ is a random variable and have obtained a different estimator. We shall derive
these estimators and see why they are interesting in Section 6e.

c. Four Common Hypotheses

In this section, we illustrate the expressions for F(H) and b̂c for four commonly
occurring hypotheses. We derive the F-statistic as special cases of that in (116).

(i) First consider H: b= 0. The test of this hypothesis has already been considered
in the analysis of variance tables. However, it illustrates the reduction of F(H)
to the F-statistic of the analysis of variance tables. To apply F(H) we need
to specify K′ and m for the equation K′b = m. We have that K′ = I, s =
k + 1 and m = 0. Thus, [K′(X′X)−1K]−1 becomes X′X. Then, as before,

F(H) = b̂X′Xb̂

(k + 1)σ̂2
= SSR

r
⋅

N − r
SSE

.

Under the null hypothesis F(R)∼Fr, N–r, where r = k + 1.
Of course, the corresponding value of b̂c is

b̂c = b̂ − (X′X)−1[(X′X)−1]−1b̂ = 0.

(ii) We now consider H: b = b0, that is, bi = bi0 for all i. Rewriting b = b0 as
K′b = m gives

K′ = I, s = k + 1, m = b0 and [K′(X′X)−1K]−1 = X′X. Thus,

F(H) =
(b̂ − b0)′X′X(b̂ − b0)

(k + 1)�̂�2
. (121)

An alternative expression for the numerator of (121) may be obtained.
Observe that

(b̂ − b0)′X′X(b̂ − b0) = (y − Xb0)′X(X′X)−1X′X(X′X)−1X′(y − Xb0)
= (y − Xb0)′X(X′X)−1X′(y − Xb0).
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However, the form shown in (121) is probably most suitable for computing
purposes. Under the null hypothesis F(H) ∼ Fr,N-r where r = k + 1.

In this case, the estimator of b under the null hypothesis is

b̂c = b̂ − (X′X)−1[(X′X)−1]−1(b̂ − b0) = b0.

(iii) Now, consider H: λ′b = m. In this case, we have K′ = λ′, s = 1 and m = m.
Since λ′ is a vector ,

F(H) = (λ′b̂ − m)′[λ′(X′X)−1λ]−1(λ′b̂ − m)

σ̂2
= (λ′b̂ − m)2

λ′(X′X)−1λσ̂2
.

Under the null hypothesis, F(H) has the F1,N-r-distribution. Hence,

√
F(H) = λ′b − m

σ̂
√

λ′(X′X)−1λ
∼ tN−r.

This is as one would expect because λ′b̂ is normally distributed with variance
λ′(X′X)−1λ.

For this hypothesis, the value of b̂c is

b̂c = b̂ − (X′X)−1λ[λ′(X′X)−1λ]−1(λ′b̂ − m)

= b̂ −
{

λ′b̂ − m

λ′(X′X)−1λ

}

(X′X)−1λ.

Observe that

λ′b̂c = λ′b̂ − λ′(X′X)−1λ[λ′(X′X)−1λ]−1(λ′b̂ − m)
= λ′b̂ − (λ′b̂ − m) = m.

Thus, b̂c satisfies the null hypothesis H: λ′b = m.
At this point, it is appropriate to comment on the lack of emphasis being

given to the t-test in hypothesis testing. The equivalence of t-statistics with F-
statistics with one degree of freedom in the numerator makes it unnecessary
to consider t-tests. Whenever a t-test might be proposed, the hypothesis to
be tested can be put in the form H: 𝜆′b = m and the F-statistic F(H) derived
as here. If the t-statistic is insisted upon, it is then obtained as

√
F(H). No

further discussion of using the t-test is therefore necessary.

(iv) We now consider the case where the null hypothesis is that the first q coor-
dinates of b is zero, that is, H : bq = 0, i.e., bi = 0 for i = 0, 1, 2,… q −
1, for q < k. In this case, we have K′ =

[
Iq 0

]
and m = 0 so that s = q.

We write

b′
q =
[

b0 b1 ⋯ bq−1
]
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and partition b, b̂ and (X′X)−1 accordingly. Thus,

b =
[

bq
bp

]

, b̂ =
[

b̂q

b̂p

]

and (X′X)−1 =
[

Tqq Tqp
Tpq Tpp

]

,

where p + q = the order of b = k + 1. Then in F(H) of (116)

K′b̂ = b̂q

and

[K′(X′X)−1K]−1 = T−1
qq ,

giving

F(H) =
b̂′

qT−1
qq b̂q

qσ̂2
. (122)

In the numerator, we recognize the result (e.g., Section 9.11 of Searle (1966)) of
“invert part of the inverse”. That means, take the inverse of X′X and invert that part of
it that corresponds to bq of the hypothesis H : bq = 0. Although demonstrated here
that for a bq that consists of the first q b’s in b, it clearly applies to any subset of q
b’s. In particular, for just one b, it leads to the usual F-test on one degree of freedom,
equivalent to a t-test (see Exercise 17).

The estimator of b under this hypothesis is

b̂c = b̂ − (X′X)−1

[
Iq

0

]

T−1
qq (b̂q − 0)

= b̂ −

[
Tqq

Tpq

]

T−1
qq b̂q =

[
b̂q

b̂p

]

−

[
b̂q

TpqT−1
qq b̂q

]

=

[
0

b̂p − TpqT−1
qq b̂q

]

.

Thus, the estimators of the b’s not in the hypothesis are b̂p − TpqT−1
qq b̂q.

The expressions obtained for F(H) and b̂c for these four hypotheses concerning b

are in terms of b̂. They also apply to similar hypotheses in terms of ̂̃b (see Exercise
14), as do analogous results for any hypothesis L′𝓫 = m (see Exercise 12).
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d. Reduced Models

We now consider, in turn, the effect of the model y = Xb + e of the hypotheses
K′b = m, K′b = 0, and bq = 0.

(i) The Hypothesis K′b = m In estimating b subject to K′b = m, it could be said
that we are dealing with a model y=Xb+ e on which has been imposed the limitation
K′b = m. We refer to the model that we start with, y = Xb + e, without the limitation
as the full model. The model with the limitation imposed y = Xb + e with K′b = m
is called the reduced model. For example, if the full model is

yi = b0 + b1xi1 + b2xi2 + b3xi3 + ei

and the hypothesis is H : b1 = b2, the reduced model is

yi = b0 + b1(xi1 + xi2) + b3xi3 + ei.

We will now investigate the meaning of Q and SSE + Q in terms of sums of squares
associated with the full and the reduced models. To aid description, we introduce
the terms reduction(full), residual(full) and residual(reduced) for the reduction and
residual after fitting the full model and the residual after fitting the reduced model.
We have

reduction(full) = SSR and residual(full) = SSE.

Similarly,

SSE + Q = residual(reduced) (123)

as established in (120). Hence,

Q = SSE + Q − SSE = residual(reduced) − residual(full). (124)

Furthermore,

Q = y′y − SSE − [y′y − (SSE + Q)]
= SSE − [y′y − (SSE + Q)]
= reduction(full) − [y′y − (SSE + Q)].

(125)

Comparison of (125) with (124) tempts one to conclude that y′y − (SSE + Q) is
reduction(reduced), the reduction sum of squares due to fitting the reduced model.
The temptation to do this is heightened by the fact that SSE + Q is residual(reduced)
as in (123). However, we shall show that y′y − (SSE + Q) is the reduction in the sum
of squares due to fitting the reduced model only in special cases. It is not always so.
The circumstances of these special cases are quite wide, as well as useful. First, we
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show that y′y − (SSE + Q), in general, is not a sum of squares. It can be negative. To
see this, observe that in

y′y − (SSE + Q) = SSR−Q
= b̂′X′y − (K′b̂ − m)′[K′(X′X)−1K]−1(K′b̂ − m),

(126)

the second term is a positive semi-definite quadratic form. Hence it is never negative.
If one or more of the elements of m is sufficiently large, that term will exceed

b̂′X′y and (126) will be negative. As a result, y′y − (SSE + Q) is not a sum of squares.
The reason that y′y − (SSE + Q) is not necessarily a reduction in the sum of

squares due to fitting the reduced model is that y′y is not always the total sum of
squares for the reduced model. For example, if the full model is

yi = b0 + b1xi1 + b2xi2 + ei

and the hypothesis is b1 = b2 + 4, then the reduced model would be

yi = b0 + (b2 + 4)xi1 + b2xi2 + ei

or

yi − 4xi1 = b0 + b2(xi1 + xi2) + ei. (127)

The total sum of squares for this reduced model is (y − 4x1)′(y − 4x1) and not
y′y and so y′y − (SSE + Q) is not the reduction in the sum of squares. Furthermore,
(127) is not the only reduced model because the hypothesis b1 = b2 + 4 could just as
well be used to amend the model to be

yi = b0 + b1xi1 + (b1 − 4)xi2 + ei

or

yi + 4xi2 = b0 + b1(xi1 + xi2) + ei. (128)

The total sum of squares will now be (y + 4x2)′(y + 4x2). As a result, in this
case, there are two reduced models (127) and (128). They and their total sum of
squares are not identical. Neither of the total sum of squares equal y′y. Therefore,
y′y − (SSE + Q) is not the reduction in the sum of squares from fitting the reduced
model. Despite this, SSE + Q is the residual sum of squares for all possible reduced
models. The total sums of squares and reductions in sums of squares differ from
model to model but the residual sums of squares are all the same.
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The situation just described is true in general for the hypothesis K′b = m. Suppose

that L′ is such that R =
[

K′

L′

]

has full rank and R−1 =
[

P S
]

is its inverse. Then

the model y = Xb + e can be written

y = XR−1Rb + e

= X
[

P S
]
[

K′b
L′b

]

+ e

= XPm + XSL′b + e

so that

y − XPm = XSL′b + e. (129)

This is a model in the elements of L′b which represents r – s LIN functions of
the elements of b. However, since L′ is arbitrarily chosen to make R non-singular,
the model (129) is not unique. In spite of this, it can be shown that the residual sum
of squares after fitting any one of the models implicit in (129) is SSE + Q. The
corresponding value of the estimator of b is b̂c given in (118).

(ii) The Hypothesis K′b = 0 One case where y′y − (SSE + Q) is a reduction in
the sum of squares due to fitting the reduced model is when m = 0. In this instance,
(129) becomes

y = XSL′b + e.

The total sum of squares for the reduced model is then y′y, the same as that for the
full model. Hence in this case,

y′y − (SSE + Q) = reduction(reduced). (130)

We show that (130) is positive semi-definite and, as a result, a sum of squares. To do
this, substitute m = 0 into (126). We have that

y′y − (SSE + Q)
= b̂X′y − b̂K[K′(X′X)−1K]−1K′b̂
= y′
{

X(X′X)−1X′ − X(X′X)−1K[K′(X′X)−1K]−1K′(X′X)−1X′} y.
(131)

The matrix of the quadratic form in (131) in curly brackets is idempotent and is thus
positive semi-definite so that y′y − (SSE + Q) is a sum of squares. From (130)

Q = y′y − SSE-reduction(reduced).

However,

y′y − SSE = SSR = reduction(full)

and so

Q = reduction (full) − reduction(reduced).
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TABLE 3.6 Analysis of Variance for Testing the Hypothesis K′b = 0

Source of Variation d.f. Sum of Squares

Regression(full model) r SSR
Hypothesis s Q
Reduced model r − s SSR−Q
Residual Error N − r SSE

Total N SST

Therefore, since the sole difference between the full and reduced models is just the
hypothesis, it is logical to describe Q as the reduction in the sum of squares due to
the hypothesis. With this description, we insert the partitioning of SSR as the sum of
Q and SSR – Q into the analysis of variance of Table 3.2 to obtain Table 3.6. In doing
so, we utilize (114), that when m = 0,

Q

σ2
∼ χ2′

{

s,
b′K[K′(X′X)−1K]−1K′b

2σ2

}

.

Then, because

y′y − SSE

σ2
∼ χ2′

{

r,
b′X′Xb

2σ2

}

,

an application of Theorem 8, Chapter 2, shows that

SSR − Q

σ2
∼ χ2′

{

r − s,
b′[X′X − K[K′(X′X)−1K]−1K′]b

2σ2

}

and is independent of SSE∕σ2. This, of course, can be derived directly from (131).
Furthermore, the non-centrality parameter in the distribution of SSR – Q can in terms
of (129) be shown to be equal to b′L(S′X′XS)L′b∕2σ2 (see Exercise 15). Hence,
under the null hypothesis, this non-centrality parameter is zero when L′b = 0. Thus,
SSR – Q forms the basis of an F-test for the sub-hypothesis L′b = 0 under the null
hypothesis K′b = 0.

We now have the following F-tests:

1. To test the full model, we have

F =
SSR∕r

SSE∕(N − r)
;

2. A test of the hypothesis K′b = 0 is

F =
Q∕s

SSE∕(N − r)
;
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TABLE 3.7 Analysis Of Variance for Testing the Hypothesis bq = 0

Source of Variation d.f. Sum of Squares

Full model r SSR = b̂′X′y
Hypothesis bq = 0 q Q = b̂′

qT−1
qq bq

Reduced model r − q SSR − Q
Residual error N − r SSE = SST − SSR

Total N SST = y′y

3. For the reduced model y = XSL′b + e

F =
(SSR−Q)∕(r − s)

SSE∕(N − r)

tests the sub-hypothesis L′b = 0.

(iii) The Hypothesis bq = 0 This is the most useful case of the reduced model when
m = 0. For this case, we have K′ =

[
Iq 0

]
for some q ≤ k. The null hypothesis

K′b = m then reduces to bq = 0 where b′
q =
[

b0 b1 ⋯ bq−1
]
, say, a subset of

q of the b’s. We discussed this situation earlier in Section 6c. We found in (122) that

F(H) = Q

q�̂�2
with Q = b′

qT−1
qq bq,

involving the “invert part of the inverse” rule. Hence, a special case of Table 3.6 is
the analysis of variance for testing the hypothesis H : bq = 0 shown in Table 3.7.

Table 3.7 shows the most direct way of computing its parts. They are SSR =
b̂′X′y, Q = b̂′

qT−1
qq bq, SSR – Q by differencing, SST = y′y, and SSE by differencing.

Although SSR – Q is obtained most readily by differencing, it can also be expressed
as b̂′

cpx′pXpbcp (see Exercise 16). The estimator b̂cp is derived from (118) as

b̂cp = b̂p − TpqT−1
qq b̂q (132)

using K′(X′X)−1K = Tqq as in (122).

Example 17 Analysis of Variance for a Test of the Hypothesis bq = 0 Consider
the data for Example 3. We shall test the hypothesis H: b0 = 0, b1 = 0 and make an
analysis of variance table like Table 3.7 using the results in Table 3.2. From Table 3.2,
we have, SSR = 1042.5, SSE = 11.5, and SST = 1054. We have,

Q =
[

2.3333 2.0833
]
[

17.5889 0.6389
0.6389 0.1389

] [
2.3333
2.0833

]

= 102.5732
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and SSR – Q = 1042.5 –102.5732 = 939.9268. The analysis of variance table is
below.

Source of Variation d.f. Sum of Squares Mean Square F-Statistic

Full model 3 1042.5 347.5 60.43
Hypothesis b0 = 0, b1 = 0 2 102.57 51.285 8.92
Reduced model (b2) 1 939.93 939.93 163.466
Residual error 2 11.5 5.75

Total 5 1054

For the full model, we reject H:b = 0 at α = .05 but not at α = .01. The p-value
is 0.016.

We fail to reject the hypothesis b0 = 0, b1 = 0 at α = .05. The p-value is 0.10.
For the reduced model yi = b2x2i, we reject the hypothesis b2 = 0 at α = .05 and at
α = .01, the p-value being 0.006. □

Example 18 Illustrations of Tests of Hypothesis for H:K′b = m Consider the
following data

y x1 x2 x3

8 2 1 4
10 −1 2 1

9 1 −3 4
6 2 1 2

12 1 4 6

We consider no-intercept models. The X matrix thus consists of the last three
columns of the above table. The y vector is the first column. We have that

(X′X)−1 =
⎡
⎢
⎢
⎣

11 3 21
3 31 20
21 20 73

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

0.2145 0.0231 −0.0680
0.0231 0.0417 −0.0181
−0.0680 −0.0181 0.0382

⎤
⎥
⎥
⎦

.

Furthermore,

y′y = 425 and X′y =
⎡
⎢
⎢
⎣

39
55
162

⎤
⎥
⎥
⎦

.

Then

b′ =
[
−1.3852 0.2666 2.5446

]
.
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The analysis of variance is

Source Degrees of Freedom Sum of Squares Mean Square F

Full model 3 372.9 124.3 4.77
Residual error 2 52.1 26.05

Total 5 425.0

We would fail to reject the hypothesis b = 0 at α = .05. The p-value of the
F-statistic is 0.177.

We now test the hypothesis H : b1 − b2 = 4 using (114). We have K′ =[
1 −1 0

]
so

K′b̂ − 4 = −.6517 and(K′(X′X)−1K)−1 = 4.7641

and, as a result, Q = 152.174. The F-statistic is 152.174/(52.1/2) = 5.84. The p-value
is 0.136, so we fail to reject the null hypothesis at α = .05.

A reduced model where b1 is replaced by b2 + 4 would be

y − 4x1 = b2(x1 + x2) + b3x3 + e (133)

The data for this model would be

y – 4x1 x1 + x2 x3

0 3 4
14 1 1
5 –2 4
–2 3 2
8 5 6

The total sum of squares (y − 4x1)′(y − 4x1) = 289. The residual sum of squares,
using SSE from the analysis of variance and Q from the F-statistic is

Source d.f. Sum of Squares Mean Square F

Regression (reduced model) 2 84.7 42.35 0.622
Residual error 3 204.3 68.1

Total 5 289.0

The F-statistic being less than unity is not significant.

The value of 84.7 for the reduction sum of squares may also be obtained by using
the normal equations for (133). In matrix form the normal equations are

[
48 41

41 73

][
b̂c

2

b̂c
3

]

=

[
38

78

]

.
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Hence,

[
b̂c

2

b̂c
3

]

= 1
1823

[
73 −41

−41 48

][
38

78

]

=

[
−0.2326

1.1991

]

.

Then the reduction sum of squares is

[
−0.2326 1.1991

]
[

38
78

]

= 84.691,

which is the same as the 84.7 in the analysis of variance table rounding to the nearest
tenth.

These calculations are shown here purely to illustrate the sum of squares in the
analysis of variance. They are not needed specifically because, for the reduced model,
the residual is always SSE + Q. The estimator of b may be found from (118) as

b̂c =
⎡
⎢
⎢
⎣

−1.3852
0.2666
2.5446

⎤
⎥
⎥
⎦

−
⎡
⎢
⎢
⎣

0.2145 0.0231 −0.0680
0.0231 0.0417 −0.0181
−0.0680 −0.0181 0.0382

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

1
−1
0

⎤
⎥
⎥
⎦

.

⎡
⎢
⎢
⎣

[
1 −1 0

] ⎡
⎢
⎢
⎣

0.2145 0.0231 −0.0680
0.0231 0.0417 −0.0181
−0.0680 −0.0181 0.0382

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

1
−1
0

⎤
⎥
⎥
⎦

⎤
⎥
⎥
⎦

−1

.

⎛
⎜
⎜
⎝

[
1 −1 0

] ⎡
⎢
⎢
⎣

−1.3852
0.2666
2.5446

⎤
⎥
⎥
⎦

− [4]
⎞
⎟
⎟
⎠

=
⎡
⎢
⎢
⎣

3.7674
−0.2326
1.1991

⎤
⎥
⎥
⎦

,

where b̂c
1 − b̂c

2 = 4 and b̂c
2 and b̂c

3 are as before.
For testing the hypothesis b1 = 0, we have that K′ =

[
1 0 0

]
so

[K′(X′X)−1K]−1 = 1
0.2145

and Q = (−1.3852)2

0.2145
= 8.945. The analysis of variance of

Table 3.6 is

Source d.f. Sum of Squares Mean Square F

Full model 3 372.9 124.3 4.77
Hypothesis 1 8.9 8.9 0.342
Reduced model 2 364.0 182 6.99
Residual error 2 52.1 26.05

Total 5 425



156 REGRESSION FOR THE FULL-RANK MODEL

None of the effects are statistically significant. The p-values for the F-statistic are
for the full model 0.178, the hypothesis 0.617, and the reduced model 0.125. The
restricted least-square estimator is

b̂c =
⎡
⎢
⎢
⎣

1.3852
0.2666
2.5466

⎤
⎥
⎥
⎦

−
⎡
⎢
⎢
⎣

0.2145
0.0231
−0.0680

⎤
⎥
⎥
⎦

(−1.3852)
0.2145

=
⎡
⎢
⎢
⎣

0
0.4158
2.1074

⎤
⎥
⎥
⎦

.

These results may be verified using the normal equations of the reduced model. In
this case, we have

[
31 20
20 73

] [
b̂2c
b̂3c

]

=
[

55
162

]

.

As a result,

[
b̂2c
b̂3c

]

= 1
1863

[
73 −20
−20 31

] [
55

162

]

=
[

0.4160
2.1052

]

.

the same result with a slight error due to rounding off. Also,

SS(ReducedModel) =
[

0.4160 2.1052
]
[

31 20
20 73

] [
0.4160
2.1052

]

= 363.9,

rounded to 364. □

We now consider another example where we will use SAS software to fit a
regression model and test a hypothesis about the regression coefficients. These data
will also be used to illustrate multicollinearity in Section 6e.

Example 19 Growth Rates in Real Gross Domestic Product for the United States
and Several European Countries, 2004–2013

Country 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

United States 3.5 3.1 2.7 1.9 −0.3 −3.1 2.4 1.8 2.3 2.0
Germany 0.7 0.8 3.9 3.4 0.8 −5.1 4.0 3.1 0.9 0.6
France 2.5 1.8 2.5 2.3 −0.1 −3.1 1.7 1.7 0.2 0.3
Italy 1.7 0.9 2.2 1.7 −1.2 −5.5 1.8 0.4 −2.1 −1.0
Spain 3.3 3.6 4.1 3.5 0.9 −3.7 −0.3 0.4 −1.4 −1.5

Using SAS, we fit a regression line with response variable the United States and
predictor variables the four European countries and tested the hypothesis H : b2 +
2(b1 + b3 + b4) = 0. The output follows:
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The SAS System
The GLM Procedure

Number of Observations Read 10
Number of Observations Used 10

The SAS System
The GLM Procedure

Dependent Variable United

Source DF Sum of Squares Mean Square F Value Pr > F
Model 4 30.67825467 7.66956367 10.95 0.0109
Error 5 3.50274533 0.70054907
Corrected Total 9 34.18100000

R − Square Coeff Var Root MSE United Mean
0.897524 51.34896 0.836988 1.630000

Source DF Type I SS Mean Square F Value Pr > F
Germany 1 18.64234395 18.64234395 26.61 0.0036
France 1 9.28469640 9.28469640 13.25 0.0149
Italy 1 1.087872276 1.087872276 1.54 0.2697
Spain 1 1.67249157 1.67249157 2.39 0.1830

Source DF Type III SS Mean Square F Value Pr > F
Germany 1 0.66619311 0.66619311 0.95 0.3743
France 1 6.34162434 6.34162434 9.05 0.0298
Italy 1 0.42624103 0.42624103 0.61 0.4707
Spain 1 1.67249157 1.67249157 2.39 0.1830

Contrast DF Contrast SS Mean Square F Value Pr > F
france+2(germany +
italy + spain) = 0

1 0.33229619 0.33229619 0.47 0.5216

Parameter Estimate Standard Error t Value Pr > |t|
Intercept −0.184349768 0.90824799 −0.20 0.8472
Germany −0.253669749 0.26012847 −0.98 0.3743
France 2.463058021 0.81864133 3.01 0.0298
Italy −0.473991811 0.60766257 −0.78 0.4707
Spain −0.358740247 0.23217605 −1.55 0.1830
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The code to generate this output was

data growth;
input United Germany France Italy Spain;
datalines;
proc glm;
model United=Germany France Italy Spain;
contrast ‘france +2(Germany +Italy +spain)=0’france 1
germany 2 italy 2 spain 2;
run;

The best fitting model was

y = −0.1843 − 0.2537x1 + 2.4631x2 − 0.4740x3 − 0.3587x4.

It accounts for 89% of the variation. The type I sum of squares is the sum of
squares when the variables are added sequentially. For example, the type I sum of
squares for France is the difference between the sum of squares for the model with
Germany and France and the sum of squares for France alone. All of these type I
sums of squares add up to the model sum of squares. Had the variables been fitted in
a different order, the type I sums of squares would have been different but would have
still added up to the model sum of squares. The type III sum of squares is the sum of
squares of the variables given that of the other variables. It is as if that variable was
added to the model last. The type III sums of squares will be the same regardless of
the order that the variables were added. For this example, the type I sum of squares is
statistically significant for Germany and France but not the other variables, given the
order in which they were added Germany, France, Spain, Italy. The only significant
sum for type III is France. There are 24(4!) different orders in which the variables
could have been added. The reader might like to compare the results for some of
them. □

e. Stochastic Constraints

In Section 6d, we considered exact constraints of the form K′b = m. We will now
let K′ = R and m = r and consider stochastic constraints of the form r = Rb + η,
where the elements of the vector η are independent with mean zero and variance 𝜏2.
We now consider the augmented model

[
y
r

]

=
[

X
R

]

b +
[

e
𝜏

]

, (134)

where, as before, the elements of e are independent with mean zero and variance 𝜎2.
Finding the weighted least-square estimator by minimizing,

m = (Y − Xb)′(Y − Xb)

σ2
+ (r − Rb)′(r − Rb)

τ2
.
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Differentiation with respect to b yields the normal equations in matrix form

(τ2X′X + σ2R′R)b̂m = τ2X′y + σ2R′r

with solution the mixed estimator of Theil and Goldberger (1961),

b̂m = (τ2X′X + σ2R′R)−1(τ2X′y + σ2R′r). (135)

The constraint r = Rb + η may be thought of as stochastic prior information or as
taking additional observations. Notice that

b̂m = (τ2X′X + σ2R′R)−1(τ2X′y + σ2R′r)
= (τ2X′X + σ2R′R)−1(τ2X′X(X′X)−1X′y + σ2R′R(R′R)−1R′r)
= (τ2X′X + σ2R′R)−1(τ2X′Xb̂1 + σ2R′Rb̂2),

where b̂1 = (X′X)−1X′y and b̂2 = (R′R)−1R′r, the least-square estimators for each
of the two models in the augmented model (134).

Example 20 A Mixed Estimate We will fit regression models for the data of
Example 19 using only the variables for France and Germany and obtain a mixed
estimator. We use the first 5 years as prior information and the last 5 years as sample
information. Thus, we have

y′ =
[
−3.1 2.4 1.8 2.3 2.0

]
and r′ =

[
3.5 3.1 2.7 1.9 −0.3

]
.

We also have that

X =

⎡
⎢
⎢
⎢
⎢
⎣

1 −5.1 −3.1
1 4.0 1.7
1 3.1 1.7
1 0.9 0.2
1 0.6 0.3

⎤
⎥
⎥
⎥
⎥
⎦

and R =

⎡
⎢
⎢
⎢
⎢
⎣

1 0.7 2.5
1 0.8 1.8
1 3.9 2.5
1 3.4 −2.3
1 0.8 −0.1

⎤
⎥
⎥
⎥
⎥
⎦

.

Furthermore, as a result,

b̂′
1 =
[

0.8999 0.0096 1.08373
]

and b̂′
2 =
[

1.3315 0.2302 0.4620
]
.

Since 𝜎2 and 𝜏2 are unknown, we estimate them by using the formulae

σ̂2 =
(y − Xb̂1)′(y − Xb̂1)

N − r
and τ̂2 =

(r − Rb̂2)′(r − Rb̂2)

N − r
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with N= 5, r= 3. Then σ̂2 = 1.0755 and τ̂2 = 2.8061. Using these estimates together
with (135), we get

b̂′
m =
[

0.8931 0.3262 0.5182
]
.

Computing the least-square estimator using all 10 observations, we have

b̂′ =
[

0.9344 0.3267 0.5148
]
.

The reason for the slight difference in the two estimators is the mixed estimator is
a weighted least-square estimator using the estimates of the variance as weights.

f. Exact Quadratic Constraints (Ridge Regression)

In Section 6b, we considered finding the least-square estimator subject to a linear
constraint. We now consider the problem of finding the least-square estimator sub-
ject to a quadratic constraint. We shall minimize (y − Xb)′(y − Xb) subject to the
constraint b′Hb = φo, where H is a positive definite matrix. As was done in Section
6b, we employ Lagrange multipliers. To this end, we write

L = (y − Xb)′(y − Xb) + λ(b′Hb − φ0),

obtain its derivative and set it equal to zero and solve for b̂r. Thus, we have

𝜕L
𝜕b

= −2X′y + 2X′Xb + 2λHb = 0

and

b̂r = (X′X + λH)−1X′y.

Let G = λH and we obtain the generalized ridge regression estimator of Rao
(1975)

b̂r = (X′X + G)−1X′y. (136)

When G = kI, the estimator in (136) reduces to the estimator of Hoerl and Kennard
(1970)

b̂r = (X′X + kI)−1X′y.

Ridge regression estimators are especially useful for data where there is a linear
relationship between the variables. Such data are called multicollinear data. When
an exact linear relationship exists between the variables, the X′X matrix has less
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than full rank and a possible solution is to use the least-square estimator b = GX′y,
where G is a generalized inverse. On the other hand, the X′X may have very small
eigenvalues. In this instance, the total variance

TV = σ2Tr(X′X)−1 = σ2
m∑

i=1

1
λi
.

may be very large. We now give an example.

Example 21 Improving the Precision by Using Ridge Estimators We shall use
the data from Example 18. One reason to suspect that ridge estimators might be
useful is the fact that there is a high correlation between the growth rates of France
and Italy, 0.978. The correlation matrix is

R =
⎡
⎢
⎢
⎢
⎣

1 0.868 0.880 0.607
0.868 1 0.978 0.846
0.880 0.978 1 0.836
0.607 0.846 0.826 1

⎤
⎥
⎥
⎥
⎦

.

Ridge estimators are usually obtained using standardized data. This is obtained for
each country by subtracting the mean and dividing by the standard deviation. These
are

United States Germany France Italy Spain

0.95956 −0.22845 0.87829 0.75439 0.90411
0.75430 −0.19100 0.47831 0.42096 1.01666
0.54905 0.96997 0.87829 0.96279 1.20423
0.13855 0.78272 0.76272 0.75439 0.97914

−0.99034 −0.19100 −0.62405 −0.45430 0.00375
−2.42711 −2.40058 −2.35751 −2.24651 −1.7294

0.39511 1.00742 0.41603 0.79607 −0.44643
0.08723 0.67037 0.41603 0.21256 −0.18382
0.34380 −0.15355 −0.45070 −0.82941 −0.85909
0.18986 −0.26590 −0.39292 −0.37094 −0.89661

The least-square fit would be

y = −0.3476x1 + 2.1673x2 − 0.5836x3 − 0.4907x4.

The total variance of the least-square estimator would be 7.135σ2.
To give a good ridge regression estimator, we need to estimate the parameter k.

We would like to get the ridge estimator with the smallest possible mean square
error. Many ways of doing this are proposed in the literature. One method is to plot
the coefficients of the ridge estimator for different values of the parameter k and see
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FIGURE 3.4 The Ridge Trace

where it appears to stabilize. This is called the ridge trace shown in Figure 3.4. It
appears to stabilize around k = 0.15.

Another method is to use the point estimate k̂ = mσ̂2∕b′b suggested by Hoerl and
Kennard (1970). The rationale for this method is to use a generalized ridge estimator
with a diagonal matrix K, reparameterize the model by orthogonal transformations
to one where the X′X matrix is diagonal and show that the mean square error of
the individual coefficients is smallest for σ2∕(coefficient)2 and find reciprocal of
the mean. See Hoerl and Kennard (1970) or Gruber (1998) for more details. In this
instance, the estimate of k is 0.112. The fit using the ridge estimator for this estimate
of k would be

y = −0.2660x1 + 1.6041x2 − 0.1666x3 − 0.3904x4.

The total variance of the ridge estimator for this value of k would be 4.97984𝜎2, a
substantial reduction.

More information about ridge type estimators is available in Gruber (1998, 2010).

7. RELATED TOPICS

It is appropriate to briefly mention certain topics related to the preceding developments
that are customarily associated with testing hypothesis. The treatment of these topics
will do no more than act as an outline to the reader showing him or her their application
to the linear models procedure. As with the discussion of distribution functions, the
reader will have to look elsewhere for a complete discussion of these topics. A
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comprehensive treatment of hypothesis testing is available, for example, in Lehmann
and Romano (2005).

a. The Likelihood Ratio Test

Tests of linear hypotheses K′b = m have already been developed from the starting
point of the F-statistic. This, in turn, can be shown to stem from the likelihood ratio
test.

For a sample of N observations y, where y ∼ N(Xb, σ2I), the likelihood function
is

L(b, 𝜎2) = (2𝜋𝜎2)−
1
2

N exp
{

−
[

(y − Xb)′(y − Xb)

2𝜎2

]}

.

The likelihood ratio test utilizes two values of L(b, 𝜎2):

(i) The maximum value of L(b, 𝜎2) maximized over the complete range of param-
eters, 0 < 𝜎2 <∞ and −∞ < bi < ∞ for all i, max(Lw);

(ii) The maximum value of L(b, 𝜎2) maximized over the range of parameters
limited restricted or defined by the hypothesis H,max(LH).

The ratio of the two maxima,

L =
max(LH)

max(Lw)
,

is called the likelihood ratio. Each maximum is found in the usual manner.

(i) Differentiate L(b, 𝜎2) with respect to 𝜎2 and the elements of b.

(ii) Equate the differentials to zero.

(iii) Solve the resulting equations for b and 𝜎2.

(iv) Use these equations in place of b and 𝜎2 in L(b, 𝜎2).

For the case of LH, carry out the maximization within the limits of the hypothesis.
We demonstrate the procedure outlined above for the case of the hypothesis H:

b = 0.
First, as we have seen, 𝜕L(b, 𝜎2)∕𝜕b = 0 gives b̂ = (X′X)−1X′y and

𝜕L(b, 𝜎2)∕𝜕𝜎2 = 0 gives �̂�2 = (y − Xb̂)′(y − Xb̂)∕N. Thus,

max(Lw) = L(b̂, �̂�2) = (2𝜋�̂�2)−
1
2

N exp
{

−
[

(y − Xb̂)′(y − Xb̂)

2�̂�2

]}

= e−
1
2

NN
1
2

N

(2𝜋)
1
2

N[(y − Xb̂)′(y − Xb̂)]
1
2

N
.
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This is the denominator of L. The numerator comes by replacing b by 0 in the
likelihood function. We obtain

L(0, �̂�2) = (2𝜋𝜎2)−
1
2

Nexp−
(

y′y

2𝜎2

)

.

Maximize this with respect to 𝜎2 by solving the equation 𝜕L(0, 𝜎2)∕𝜕𝜎2 = 0. We
obtain �̂�2 = y′y∕N. Thus,

max(LH) = L(0, �̂�2) = (2𝜋�̂�2)−
1
2

N exp−
(

y′y

2�̂�2

)

= e−
1
2

NN− 1
2

N

(2𝜋)
1
2

N(y′y)
1
2

N
.

With these values for the maxima, the likelihood ratio is

L =
max(LH)

max(Lw)
=
[

(y − Xb̂)′(y − Xb̂)
y′y

] 1
2

N

=
[ SSE

SSR + SSE

] 1
2

N

=
[

1
1 + SSR∕SSE

] 1
2

N

.

Observe that L is a single-valued function of SSR/SSE that is monotonic decreas-
ing. Therefore, SSR/SSE may be used as a test statistic in place of L. By the same
reasoning, we can use (SSR/SSE)[(N–r)/r] which follows the F-distribution. Thus,
we have established the use of the F-statistic as an outcome of the likelihood ratio
test. In a like manner, we can establish the basis of F(H).

b. Type I and Type II Errors

When performing a test of hypothesis, there are two ways we can make a mistake.
We can reject a null hypothesis when it is true. This is called the type I error. We
can accept a false hypothesis. This is called the type II error. The probability of
committing a type I error is called the 𝛼-risk. The probability of committing a type
II error is called the 𝛽-risk. We consider these risks in the context of testing the null
hypothesis H:K′b = m.

Under the null hypothesis, H:K′b = m, F(R) = (N − r)Q∕sSSE has the Fs,N−r-
distribution. If u is any variable having the Fs,N−r-distribution, then F𝛼,s,N−r is the
value where Pr{u ≥ F𝛼,s,N−r} = 𝛼. For a significance test at the 100 𝛼 % level the
rule of the test is to not reject H whenever F ≤ F𝛼,s,N−r and to reject H whenever
F > F𝛼,s,N−r.

The probability 𝛼 is the significance level of the significance test. As has already
been pointed out, popular values of 𝛼 are 0.05, 0.01, and 0.10. However, there is



RELATED TOPICS 165

nothing sacrosanct about these values. Any value of 𝛼 between zero and one can be
used. The probability of a type I error is the significance level of the test, frequently
specified in advance. When we perform a test at 𝛼 = .05, say, we are willing to take
a chance of one in 20 of falsely rejecting a true null hypothesis.

Consider the situation where H : K′b = m is false but instead some other hypoth-
esis Ha : K′

aba = m is true. As in (115)

F(H) ∼ F′(s, N − r, 𝜆) (137)

with non-centrality parameter

𝜆 = (K′b − m)′[K′(X′X)−1K]−1(K′b − m)

2𝜎2

= 1
2

(K′b − m)′[var(K′b̂)]−1(K′b − m)

(138)

using (62) for var(b̂). Observe that 𝜆 ≠ 0 because K′b − m but K′
ab = ma. Suppose

that, without our knowing it, the alternative hypothesis Ha was true at the time the
data were collected. Suppose that with these data, the hypothesis H : K′b = m is
tested using F(H) as already described. When F(H) ≤ F𝛼,s,N−r we fail to reject H. By
doing this, we make an error. The error is that we fail to reject H not knowing that Ha
was true and H was not true. We fail to reject H when it was false and thus commit a
type II error. The 𝛽-risk denoted by 𝛽(𝜆) for different values of the parameter 𝜆 is

𝛽(𝜆) = P(II) = Pr{Type II error occuring}
= Pr{not rejecting H when H is false}
= Pr{F(H) ≤ F𝛼,s,N−r where F(H) ∼ F′(s, N − r, 𝜆)}.

(139)

From (136) and (137), we write (139) as

𝛽(𝜆) = P(II) = Pr{F′(s, N − r, 𝜆) ≤ F𝛼,s.N−r}. (140)

Equation (140) gives the probability that a random variable distributed as F′(s, N −
r, 𝜆) is less than F𝛼,s.N−r, the 100𝛼% point in the central Fs,N-r-distribution. The two
kinds of errors are summarized in Table 3.8 below.

As we have already seen to obtain the probabilities of the type II error, we need
to obtain values of the non-central distribution. Values are tabulated to help obtain
these probabilities in Tang (1938), Kempthorne (1952), and Graybill (1961). For an
illustrative example using these tables, see the first edition Searle (1971). We will do
a similar example using Mathematica to obtain the desired probabilities.

c. The Power of a Test

From the expression for the non-centrality parameter 𝜆, it can be seen that the beta risk
𝛽(𝜆) of (140) depends upon K′

a and ma of the alternative hypothesis Ha : K′
ab = ma.
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TABLE 3.8 Type I and Type II Errors in Hypothesis Testing

Result of Test of Hypothesis

Null hypothesis F(H) ≤ F𝛼,s,N−r F(H) > F𝛼,s,N−r

H : K′b = m Conclusion
Do not reject H Reject H

True No error Type I errora

False(H : Kab = ma is true) Type II errorb No error

The probabilities of type I and type II errors are, respectively,
aPr{type I error} = 𝛼 = Pr{F(H) > F𝛼,s,N−r} when H : K′b = m is true}; 𝛾(𝜆) = 1 − 𝛽(𝜆).
bPr{type II error} =𝛽 = Pr{F(H) ≤ F𝛼,s,N−r}when Ha:K′

ab = mais true}.

The probability 𝛾(𝜆) = 1 − 𝛽(𝜆) is similarly dependent. It is known as the power of
the test with respect to the alternative hypothesis. From (139) it is seen that

Power = 1 − Pr(type II error)
= 1 − Pr{not rejecting H when H is false}
= Pr{rejecting H when H is false}.

(141)

In other words, the power of the test is the probability you do what you are supposed
to when a given alternative hypothesis is the true one; reject the null hypothesis! A
test is better than another test if for all values of the parameter 𝜆 the power is larger.
For more information about the power of a test, see Lehmann and Romano (2005).

d. Estimating Residuals

Residuals are used to determine whether the assumptions that the error terms are
independent, have a constant variance, and follow a normal distribution are true. The
vector of residuals is the estimated error vector

ê = y − Xb̂. (142)

Some elementary but important properties of residuals are worth mentioning.
Recall from (80) that P = I − X(X′X)−1X′. The matrix P is symmetric and idempo-
tent. Furthermore,

ê = y − Xb̂ = y − X(X′X)−1X′y = [I − X(X′X)−1X′]y = Py.

We also have that PX = 0. An important and useful property of residuals is that
they sum to zero. Recall from (94) that 1′P = 0′. Another important fact is that their
sum of squares is SSE as mentioned in (81). Notice that

N∑

i=1

êi = ê′ê = y′P′Py = y′Py = y′y − y′X(X′X)−1X′y = SSE.
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FIGURE 3.5 Plot of Residuals vs. Predicted Values for Growth Data

Residuals have expected value zero and variance covariance matrix P𝜎2. Indeed

E(ê) = E(Py) = PXb = 0

and

var(ê) = var(Py) = P2𝜎2 = P𝜎2.

Additional results will be obtained in the exercises.
The properties just described hold true for the residuals of any intercept model.

For example, in assuming normality of the error terms in the model, we have that
ê ∼ N(0, P𝜎2). To determine if there is reason that the normality assumption is not
satisfied, one can make a normal probability plot of the êi. See for example Figure 3.5.
If the values lie far from a straight line, there may be reason to doubt the normality
assumption. In doing this, we ignore the fact that var(ê) = P𝜎2 which means the êi are
correlated. Anscombe and Tukey (1963) indicate, for at least a two-way table with
more than three rows and columns, “the effect of correlation in graphical procedures
is usually negligible.” Draper and Smith (1998) provide further discussion of this
point.

Other procedures for residual analysis include plotting the residuals against the
predicted values of the dependent variables and against the x’s. See for example
Figure 3.6. Such plots might indicate that the variances of the error terms are not
constants or that additional terms, not necessarily linear, are needed in the model.
See Draper and Smith (1998) and the references therein for more information.
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FIGURE 3.6 Normal Probability Plot for Residuals vs.Growth Data

We now give an illustration of some residual plots.

8. SUMMARY OF REGRESSION CALCULATIONS

The more frequently used general expressions developed in this chapter for estimating
the linear regression on k x variables are summarized and listed below.

N: number of observations on each variable.

k: number if x variables.

y: N × 1 vector of observed y values.

X1: N × k vector of observed y values.

X =
[

1 X1
]
.

ȳ: mean of the observed y values.

x̄′ = (1∕N)1′X1: vector of means of observed x’s.

b =

[
b0

�̃�

] : b0 is the intercept;
: �̃� is vector of
regression coefficients.

 = X1 − 1x̄′: matrix of observed x’s expressed as deviations from their means.

 ′ : matrix of corrected sums of squares and products of observed x’s.

 ′y : vector of corrected sums of products of observed x’s and y’s.
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r = k + 1: rank of X.

SSTm = y′y − Nȳ2: total sum of squares corrected for the mean.

�̂� = ( ′)−1 ′y: estimated regression coefficients.

SSE = SSTm − �̂� ′y: error sum of squares.

�̂�2 = SSE∕(N − r): estimated residual error variance.

vâr(�̂�) = ( ′)−1�̂�2: estimated covariance matrix of b̂.

SSRm = �̂�′ ′y: sum of squares due to fitting the model over and above the mean.

R2 = SSR/SST: coefficient of determination.

Fr−1,N−r = SSRm∕(r − 1)�̂�2: F-statistic for testing H : �̃� = 0.

aii = ith diagonal element of ( ′)−1.

ti = �̃�i∕�̂�
√

aii: t-statistic on N – r degrees of freedom for testing hypothesis
H : �̃�i = 0.

�̂�i ± tN−r, 1
2
𝛼

√
aii�̂�2: symmetric 100(1 − 𝛼)% confidence interval for b̃i.

Fq,N−r = b̂′
q�̃�

−1
qq b̂q∕q�̂�2: F-statistic for testing H : �̃�q = 0.

b̂0 = ȳ − x̄�̂�: estimated intercept.

cov(b̂0, �̂�) = −( ′)−1x̄′�̂�2: estimated vector of covariances of b̂0 with �̂�.
v̂(b̂0) = [1∕N + x̄′( ′)−1x̄]�̂�2: estimated variance of b̂0.

t0 = b̂0∕
√

v̂(b̂0): t-statistic, on N – r degrees of freedom for testing hypothesis
H : b0 = 0.

b̂0 ± tN−r, 1
2
𝛼

√

v̂(b̂0): symmetric 100(1 − 𝛼)% confidence interval for b0.

No-intercept model. Modify the above expressions as follows.
Use X1in place of  :

X′
1X1 = matrix of uncorrected sums of squares and products of observed x’s.

X′
1y = vector of uncorrected sums of products of observed x’s and y’s.

Put r = k (instead of k + 1).

Use SST = y′y(instead of SSTm = y′y − Nȳ2).

Ignore b0 and b̂0.

9. EXERCISES

1 For the following data

i : 1 2 3 4 5 6 7 8 9 10
yi 12 32 36 18 17 20 21 40 30 24
xi 65 43 44 59 60 50 52 38 42 40
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with the summary statistics

10∑

i=1

xi = 493,
10∑

i=1

x2
i = 25103,

10∑

i=1

yi = 250,
10∑

i=1

xiyi = 11654,
10∑

i=1

y2
i = 6994

(a) Write the normal equations (11)

(b) Calculate b̂ and â as in (14) and (15).

(c) Find SSTm, SSRmand SSE.

(d) Find the coefficient of determination.

(e) Make the analysis of variance table and determine whether the regression is
statistically significant.

2 For the growth rate data in Example 19, given that

( ′)−1 =
⎡
⎢
⎢
⎢
⎣

0.0966 −0.0688 −0.0885 0.0457
−0.0688 0.9566 −0.5257 −0.0880
−0.0885 −0.5257 0.5271 −0.0541
0.0457 −0.0880 −0.0541 0.0769

⎤
⎥
⎥
⎥
⎦

(a) Find a 95% confidence interval on the regression coefficients for France and
Germany.

(b) Find a 95% confidence interval for the difference in the regression coefficients
between France and Germany, that is, b̂1 − b̂2.

3 (a) Show that if, in Example16, we do not consider lack of fit, the regression
equation is

y = 0.17429x − 10.132 and that the analysis of variance table is

Source d.f. Sum of Squares Mean Square F

Model 1 92.9335 92.9335 67.8347
Error 18 31.2664 1.7370

Total 19 124.2

(b) Find a 95% prediction interval on the predicted value when x = 75.

4 Suppose

�̂�2 = 200 and b̂′ =
[

3 5 2
]

where

v̂(b̂1) = 28 v̂(b̂2) = 24 v(b̂3) = 18

côv(b̂1, b̂2) = −16 côv(b̂1, b̂3) = 14 côv(b̂2, b̂3) = −12.
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Show that the F-statistic for testing the hypothesis b1 = b2 + 4 = b3 + 7 has a
value of 1. Calculate the estimate of b under the null hypothesis.

5 Show that if, in Example 18, the reduced model is derived by replacing b2 by
b1 –4 the analysis of variance is as follows:

Source Degrees of Freedom Sum of Squares Mean Square F

Reduced model 2 1156.7 578.35 8.49
Error 3 204.3 68.1
Total 5

Is the reduced model statistically significant at 𝛼 = 0.05 or 𝛼 = 0.1?

6 Since SSM = y′N−111′y, show that N−111′ is idempotent and that its product
with I − X(X′X)−1x′ is 0. What are the consequences of these properties of
N−111′?

7 Derive the matrix Q such that SSRm = y′Qy. Show that Q is idempotent and that
its product with I − X(X′X)−1X′ is the zero matrix. What are the consequences
of these properties of Q? Show that SSRm and SSM are independent.

8 When y has the variance covariance matrix V, prove that the covariance of the
b.l.u.e.’s of p′b and q′b is p′(X′V−1X)−1q.

9 Prove that the definitions in (92) and (93) are equivalent to the computing formula
given in (91).

10 Prove the following results for ê for an intercept model. What are the analogous
results in a no-intercept model?

(a) cov(ê, y) = P𝜎2and cov(ê, ŷ) = 0N×N ;

(b) cov(ê, b̂) = 0N×(k+1)but cov(e, b̂) = X(X′X)−1𝜎2;

(c)
N∑

i=1
êiyi = SSE and

N∑

i=1
êiŷi = 0.

11 When k = 1 show that (41) and (42) are equivalent to (14) and (15) and also
equivalent to (21).

12 Show that the F-statistic for testing the hypothesis L′𝓫 = m takes essentially the
same form as F(H). Derive the estimator of b under the null hypothesis L′𝓫 = m.

Show that b̃0 = b̂0 + x̄′(�̂� − �̂�c).

13 Show that the non-centrality parameters of the non-central 𝜒2-distribution of
SSM, SSRm, and SSE add up to SST.

14 Using the notation of this chapter, derive the F-statistics and the values of b̂c
shown below. In each case, state the distribution of the F-statistic under the null
hypothesis.
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Hypothesis F-Statistic b̃

(i) 𝓫 = 0
SSRm

k�̂�2
b̃′ =
[

ȳ 0′ ]

(ii) 𝓫 = b0

(b̂ − 𝓫0)′ ′(b̂ − 𝓫0)

k�̂�2
b̃′ =
[

ȳ − x̄′𝓫0 𝓫′
0

]

(iii) 𝜆′𝓫 = m
(𝜆′�̂� − m)2

𝜆′( ′)−1𝜆�̂�2
b̃′ = b̂ +

(
𝜆′�̂� − m
𝜆′( ′)−1𝜆

)[
x̄′

−I

]

( ′)−1𝜆

(iv) 𝓫q = 0
b̂q�̃�qqb̂q

q�̂�2
b̃′ =
⎡
⎢
⎢
⎢
⎣

ȳ − x̄′
p�̂�p + x̄′

p�̃�pq�̃�
−1

qq b̂q

0

�̂�p − �̃�pq�̃�
−1

qq b̂q

⎤
⎥
⎥
⎥
⎦

15 (a) By using Expression (131) prove directly that [y′y − (SSE + Q)]∕𝜎2 has a
non-central 𝜒2-distribution, independent of SSE when m = 0.

(b) Show that under the null hypothesis, the non-centrality parameter is
b′L(S′X′XS)L′b∕2𝜎2.

16 Prove that in Table 3.7 SSR–Q = b̂′
pcx′pXpb̂pc. Hint: Use (132), (X′X)−1 defined

before (122) and the formula for the inverse of a partitioned matrix.

17 If b̂k+1 is the estimated regression coefficient for the (k+ 1)th independent variable
in a model having just k+ 1 such variables, the corresponding t-statistic for testing

the hypothesis bk+1 = 0 is t = b̂k+1∕
√

vâr(b̂k+1) where vâr(b̂k+1) is the estimated

variance of b̂k+1. Prove that the F-statistic for testing the same hypothesis is
identical to t2.

18 Assume X is of full rank. For λ′ and b̂ in (48) and (49), t′b̂ = λ′y is the unique
b.l.u.e. of t′b. Prove this by assuming that t′b̂ + q′y is a b.l.u.e. different from t′b̂
and showing that q′ is null.

19 Consider the linear model

y =
⎡
⎢
⎢
⎣

15 0 0
0 15 0
0 0 15

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

b1
b2
b3

⎤
⎥
⎥
⎦

+ e

where

y′ =
[

y11 y12 y13 y14 y15 y21 y22 y23 y24 y25 y31 y32 y33 y34 y35
]

(a) Show that bi = ȳi., i = 1, 2, 3.

(b) Show that SSRm =
y2

1.
5
+

y2
2.
5
+

y2
3.
5
− y2

..

15
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(c) For each of the hypothesis H : b1 − b2 = 0, H : b1 + b2 − 2b3 = 0 find:

1. The F-statistic.

2. b̂c.

20 Show how to establish the algebraic equivalence of the two expressions in (53)
making use of the matrix identity (57).

21 (a) Assume that the assumptions on b in Section 3e with V = 𝜎2I hold true.
Show that the estimator of the form b̂(b) = a + c′b̂ that minimizes

v = Var(p′b − a − c′b̂)

subject to

E(p′b − a − c′b̂) = 0

is

p′b̂(b) = p′𝜃 + p′F[F + 𝜎2(X′X)−1]−1(b̂ − 𝜃).

(b) Show that the estimator in (a) is algebraically equivalent to (53) when V =
𝜎2I.

(c) Show that the minimum variance for the estimator derived in (a) is

v = p′Fp − p′F[F + 𝜎2(X′X)−1]Fp.

22 Show that when in 21a

𝜃 = 0, F = 𝜎2

(1 − d)k
[I + dk(X′X)−1], 0 < d < 1,

p′b̂(b) = dp′b̂ + (1 − d)p′[X′X + kI]−1X′y.





4
INTRODUCING LINEAR MODELS:
REGRESSION ON DUMMY
VARIABLES

This chapter begins by describing, in terms of an example, a type of regression
analysis that is not recommended. However, it gives a motivation for the use of
an alternative analysis already mentioned in Chapter 0, regression on dummy (0, 1)
variables. Sections 1a, 1b, and 1c will propose other coding methods and explain their
disadvantages as compared to the use of dummy variables. Dummy (0, 1) variables
will be very useful for the study on non-full-rank linear models, the subject of
Chapter 5.

1. REGRESSION ON ALLOCATED CODES

a. Allocated Codes

The Bureau of Labor Statistics Consumer Survey July 2013–June 2014 reports
detailed data about household expenditure habits and the characteristics of each
household sampled. One of many questions that could be asked about such data is,
“To what extent is a household’s investment in consumer durables associated with
the occupation of the head of the household?” Investment behavior is, of course,
related to many factors other than occupation. However, for purposes of illustration,
we consider this question just as it stands.

The survey data contain figures on investment in consumer durables (hereafter
simply referred to as investment) for some 126,420,000 consumer units. A consumer

Linear Models, Second Edition. Shayle R. Searle and Marvin H. J. Gruber.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.
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unit is either a family or a single consumer. In addition, for each unit, the occupation
of the principal breadwinner is recorded, in one of four categories. These are

1. Laborer

2. Skilled technical

3. Professional, manager, or service

4. Self-employed

Suppose that a regression has been proposed of investment on occupation, as a means
of answering the question posed in quotes above? The problem that immediately
arises is that of how can occupation be measured. One possibility is to measure it by
the code numbers 1, 2, 3, and 4 listed above. In some sense, one might rationalize that
these numbers correspond to a measure of occupational status. One might also ask
how else can one “measure” occupation recorded in this way in order to investigate
the effect of occupation on investment. Accepting these numbers 1, 2, 3, and 4,
the procedure would be to carry out a regression analysis of y, investment on x,
which would be 1, 2, 3, or 4 depending on which occupational category the principal
breadwinner belonged to. Details of the regression analysis would proceed in the
usual fashion using a model

E(yi) = b0 + b1xi. (1)

A test of the hypothesis b1 = 0 could easily be made.

b. Difficulties and Criticism

As an analysis procedure, what we have just described is okay. However, an inherent
difficulty occurs with the definition of x, the independent variable occupational sta-
tus. Although the four categories of occupation present different kinds of occupation,
allocation of the numbers 1, 2, 3, and 4 to these categories as “measures of occupa-
tional status” may not accurately correspond to the underlying measure of whatever
is meant by occupational status. The allocation of the numbers is in this sense, quite
arbitrary. For example, does a professional man have three times as much status as
a laborer? If the answer is “no” and a different set of numbers is allocated to the
categories, the same kind of criticism may be leveled. In fact, whatever the allocation
is, it is essentially arbitrary.

This allocation of codes causes problems relative to the suggested models (1). By
giving a self-employed person an x-value of 4, we are not really saying he has twice
as much status as an artisan (for whom x = 2). What we are saying in terms of the
model is that

E(investment of a laborer) = b0 + b1,

E(investment of a skilled worker) = b0 + 2b1,

E(investment of a professional) = b0 + 3b1
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and

E(investment of a self-employed) = b0 + 4b1.

This means, for example, that

E(investment of a self-employed) − E(investment of an skilled worker)
= E(investment of a professional) − E(investment of a laborer)
= 2[E(investment of a professional) − E(investment of a skilled worker)
= 2b1.

(2)

This, in terms of the real world, may be quite unrealistic. Yet, even without data,
allocation of the numbers 1, 2, 3, and 4 forces this consequence on the analysis. The
only estimation the analysis will yield will be that of b1 and b0. This will also be the
case if a set of numbers different from 1, 2, 3, and 4 is allocated to the categories.
Relationships akin to (2) will still apply and, so far as they are concerned, estimation
of b1 will be the only achievement from the regression analysis.

The inherent difficulty with the analysis suggested above is the allocation of codes
to non-quantitative variables such as “occupation.” Yet, such variables are frequently
of interest. Examples include religion and nationality in the behavioral sciences;
species, fertilizer, and soil type in agriculture; source of raw material, treatment,
and plant location in an industrial process; and many others. Allocating codes to
these variables involves at least two difficulties. First, often it cannot be made a
reasonable procedure (e.g., allocating codes to “measure” geographical regions of
the United States). Second, by making any such allocation, we automatically impose
value differences on the categories of the variables in the manner illustrated in
equation (2).

c. Grouped Variables

The same difficulties also arise with variables that are more measurable than those
just considered. Education is an example. It can be measured as the number of years
if formal. An immediate question is, when does formal education start? Measurement
difficulties of this sort can, of course, be avoided by defining education as a series of
categories, such as high school incomplete, high school graduate, college graduate,
and advanced degree. These are not unlike the categories of occupation discussed
earlier. However, they do have a clear-cut sense of ordinality about them and hence
some sense of “measure.” This sense of ordinality would disappear at once, upon
addition of a fifth category “foreign education.” The matter is also complicated by
subjectivity of decisions that have to be made in classifying people within such cate-
gories. For example, how would a person with a foreign education, but an American
doctorate, be classified? What would be the classification of a college dropout who
had subsequently passed the Institute of Flycatchers examination?
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Many instances could be cited where variables are grouped into categories in a
manner similar to the education example just given. Income is a common example,
with such categories as high, medium, low, and poor. Another example is city size,
such as metropolis, large city, town, and village, and so on. In all these cases and
many others, it is possible but for the reasons just described, not very rational to
impose codes on the categories of independent variables of this nature. This problem
is avoided by the technique of regression on (0, 1) dummy variables. As an analysis
procedure, it is also more informative than regression on allocated codes because it
leads to a larger multiple correlation coefficient. Recall that the multiple correlation
coefficient was defined in Section 4g of Chapter 3. Furthermore, it provides from the
data, estimated values to be associated with categories of the independent variables,
rather than allocating codes arbitrarily, regardless of the data. Searle and Udell (1970)
carried out both regression on allocated codes and regression on dummy variables
for the same set of data. By doing this, they were able to give examples of estimated
values and larger R2 values that were available using dummy variables.

d. Unbalanced Data

Despite the limitations of using allocated codes, an investigator with data to ana-
lyze with limited training and experience in statistics might well be tempted to use
these codes. Armed with the knowledge of regression and of analysis of variance
as depicted from the point of view of carefully designed experiments (albeit a good
knowledge of these topics), an investigator could easily feel that regression on allo-
cated codes was an appropriate analysis. For example, for 100 people in a hypothetical
(pilot) survey designed to investigate the effect of both occupation and education on
investment, suppose that the number of people reporting data were distributed as
in Table 4.1. Faced with data from people so classified, the choice of an analysis
procedure may not be easy for some investigators. A patent difficulty with such data
is that the numbers of observations in the subclasses of the data are not all the same.
Data where these numbers are the same are known as equal numbers data or more
frequently balanced data. In contrast, those like Table 4.1 with unequal numbers of
observations in the subclasses, including perhaps some that contain no observations

TABLE 4.1 Number of People, Classified According to Occupation and Education,
Who Reported Investment Data

Education

Occupation High School Incomplete High School Graduate College Graduate

Laborer 14 8 7
Artisan 10 — —
Professional — 17 22
Self-employed 3 9 10
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at all (empty subclasses, or empty cells), are called unequal-numbers data or, more
usually, unbalanced data, or sometimes “messy” data.

Traditional analysis of variance methods, in terms of well-designed experi-
ments, are generally only applicable to balanced data. (Exceptions are the specified
patterns of Latin square designs, balanced incomplete block designs, and derivatives
thereof.) Hence, for unbalanced data like those of Table 4.1, analysis of variance
in its traditional framework is inapplicable. On the other hand, regression can be
used with some degree of propriety by allocating codes to “education” and “occupa-
tion.” Disadvantages implicit in doing this are incurred. These have been described
already. However, at least some analysis can be conducted. A computer can do the
arithmetic, and interpretation is straightforward. The possibility that regression on
allocated codes may be used must therefore not be ignored. Indeed, in the presence
of powerful computer programs for regression analysis, the possibility of its being
used is greatly increased.

In light of the advantages already discussed, the preferred analysis is regression
on dummy (0, 1) variables. Furthermore, this technique is identical to the established
analysis of variance procedures that are available for unbalanced data. In addition to
being called regression on dummy variables, or analysis of variance of unbalanced
data, it is also known as the method of fitting constants. This means fitting the
constants or the terms of a linear model. For this method of analysis, the computations
for unbalanced data are usually more complicated than those of traditional analysis
of variance for balanced data. As a result, before the modern computer era, there
was a limited demand for the analysis of unbalanced data. Due to the ability of the
modern computer to store and process information, there is a greater demand for
analysis of unbalanced data that cannot be made by minor adjustments to traditional
analyses of variance for balanced data. Unbalanced data have their own analysis of
variance techniques. Those for balanced data are merely special cases of the analysis
of variance methods for unbalanced data. As we shall see, unbalanced data analysis
can be couched in matrix expressions, many of which simplify very little in terms
of summation formulae. However, when the number of observations in each of the
subclasses is the same, the matrix expressions simplify considerably. In fact, they
reduce to the well-known summation formulae of traditional analysis of variance
of designed experiments. These designed experiments include randomized blocks,
factorial experiments, and many others.

Therefore, one can think of analysis of variance for balanced data as special cases
of analysis of variance for unbalanced data. This is the attitude taken in this book.
In Chapter 5, we develop general analysis procedures. We apply them to specific
situations in Chapters 6, 7, and 8 but always for unbalanced data. Reference will be
made to simplification of the results for balanced data.

The remainder of this chapter serves as a preface to the general linear model
theory in the chapters that follow. Regression on dummy variables is identical for
a wide class of linear models. Thus, we can introduce linear models by presenting
regression on dummy variables. Despite the widespread use of regression on dummy
variables in many fields of applications, its equivalence to linear models is not
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always appreciated. As a result, the users of regression on (0, 1) dummy variables
do not always adopt ramifications of linear models. Therefore, we plan to do the
following:

(i) Present regression on (0, 1) dummy variables;

(ii) Demonstrate the equivalence of regression on (0, 1) dummy variables to
linear models;

(iii) Characterize the description of linear models;

(iv) Confine our attention to linear models thereafter.

2. REGRESSION ON DUMMY (0, 1) VARIABLES

a. Factors and Levels

We shall enhance the discussion of regression on dummy variables by making use of
the notion of factors and levels. We adapt this useful descriptive terminology from
the literature on experimental design.

In studying the effect of the variables “occupation” and “education” on investment
behavior, as in Table 4.1, we are interested in the extent to which each category of
each variable is associated with investment. Thus, we are interested in seeing to what
extent a person’s being a skilled worker affects his/her investment and to what extent
someone else’s being self-employed affects his/her investment. In particular, we are
interested in investigating the difference between the effects of these two categories in
the population of people of whom our data are considered to be a random sample. The
terms “factor” and “level” are introduced to acknowledge the immeasurability of the
variables and the associated arbitrariness or subjectivity in deciding their categories as
discussed in the previous section. The word factor denotes what heretofore was called
a variable. Thus, occupation is one factor and education is another. The categories
into which each factor (variable) has been divided are called levels of that factor.
Thus, laborer is one level of the factor occupation and professional is another level of
that factor. There are four levels of the factor occupation and three levels of the factor
education (see Table 4.1). The reason the term “factor” is used instead of variable
is that a factor cannot be measured by cardinal values whereas a variable can be.
We reserve the term “variable” for items that can be measured by cardinal values.
Given this interpretation of the term “variable,” the only variable in our investigation
is investment. Other elements of the investigation are factors, each with a number of
levels. The term “levels” emphasizes that the groupings of a factor are just arbitrary
divisions with no imposition on allocated values. It is these that we seek to estimate
from data. In this context, the ordinal numbers 1, 2, 3, and 4 shown in the list of
observations are no longer values given to the category of a variable. They are used
solely to identify levels of factors. For example, level 2 of the occupation factor is
skilled worker.
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Thinking in terms of levels of factors rather than groupings of variables overcomes
many of the difficulties inherent in using allocated codes. Even when groupings of a
non-quantitative variable have no sense of ordinality, they can still be thought about
as levels of a factor. Whenever value differences cannot be placed rationally on the
groupings, the concept of levels enables us to estimate differences between the effects
that the levels of the factor have on the variable being studied, without any a priori
imposition of values. This estimation of differences is brought about by regression
on dummy (0, 1) variables.

b. The Regression

Our aim is to consider the effects of the levels of each factor on investment. We begin
by estimating just the effect of education on investment. In particular, we estimate
the effect on investment of each of the three levels of the factor education shown in
Table 4.1. To accomplish this, we set up a regression on three independent variables
x1, x2, and x3:

yi = b0 + bi1x1 + bi2x2 + bi3x3 + ei. (3)

In this context, yi is investment, and b0 and ei are respectively the constant and
error terms found in regression analysis. Corresponding to the independent variables,
the x’s yet to be defined are the regression coefficients b1, b2, and b3. As a result
of how the x’s will be defined, these b’s will turn out to be terms that lead to
estimates of the differences between the effects of investment on the levels of the factor
education.

To define the x’s, note that each person falls into one and only one educational
level. For whichever level he/she is in, let the corresponding x take the value unity.
Let all other x’s for that person have a value of zero. Thus, a high school graduate is
in level 2 of the education factor. For him or her, we have that xi2 = 1 with xi1 = 0
and xi3 = 0. In this way, the numerical values (0’s and 1’s) can be assigned to all
three x’s for each person in the data. A regression analysis is carried out on these
values.

It is because each x-value is unity when someone belongs to the corresponding
level of education, and zero otherwise, that the x’s are described as (0, 1) variables.
They are called “dummy variables” because they are not true variables in the sense
previously defined. Despite this, the formal procedures of regression can be carried
out, with consequences of great interest.

Example 1 Linear Models Representation with Dummy Variables Assume that
we have investment data on three people who did not finish high school, on two
who did, and one college graduate. These six observations (investment indices) are
shown in Table 4.2, where yij is the observation on the jth person in the ith level
of educational status. Then with eij = yij − E(yij), just as in regression (except for
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TABLE 4.2 Investment Indices of Six People

Educational Status Investment Index

1 (High school incomplete) y11, y12, y13

2 (High school graduate) y21, y22

3 (College graduate) y31

having two subscripts rather than one), we write the observations in terms of (3) as
follows:

y11 = b0 + b1(1) + b2(0) + b3(0) + e11
y12 = b0 + b1(1) + b2(0) + b3(0) + e12
y13 = b0 + b1(1) + b2(0) + b3(0) + e13
y21 = b0 + b1(0) + b2(1) + b3(0) + e21
y22 = b0 + b1(0) + b2(1) + b3(0) + e22
y31 = b0 + b1(0) + b2(0) + b3(1) + e31.

The 1’s and 0’s in parentheses are the values of the dummy (0, 1) variables. Their
pattern can be seen more clearly when the equations are written in matrix form as

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y11
y12
y13
y21
y22
y31

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 0 0
1 1 0 0
1 1 0 0
1 0 1 0
1 0 1 0
1 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

b0
b1
b2
b3

⎤
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

e11
e12
e13
e21
e22
e31

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4)

By writing

y =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y11
y12
y13
y21
y22
y31

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, e =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

e11
e12
e13
e21
e22
e31

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, b =
⎡
⎢
⎢
⎢
⎣

b0
b1
b2
b3

⎤
⎥
⎥
⎥
⎦

and X =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 0 0
1 1 0 0
1 1 0 0
1 0 1 0
1 0 1 0
1 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (5)

the equations become the familiar form

y = Xb + e (6)

that has been dealt with so fully in Chapter 3. □

There are some noteworthy things about the model (6) in Example 1 above. If
we define the properties of the e term exactly as in regression, namely e ∼ (0, 𝜎2I),
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application of least squares to model (6) yields the same normal equations as before,
X′Xb̂ = X′y. However, X does not have full-column rank. As can be seen in (5) the
sum of the last three columns equals the first. This model is described as a “model
not of full rank”. Its property is that X does not have full-column rank. The important
consequence is that (X′X)−1 does not exist. As a result, X′Xb̂ = X′y cannot be solved
as b̂ = (X′X)−1X′y. Solutions can be found by using a generalized inverse G in place
of X′X, that is, b̂ = GX′y. We will discuss these solutions in Chapter 5. Before doing
this, we shall give another example and discuss other aspects of linear models.

Example 2 Another Linear Model with Dummy Variables Countless experi-
ments are undertaken each year in agriculture and the plant sciences to investigate the
effect of growth and yield of various fertilizer treatments applied to different varieties
of a species. Suppose we have data from six plants, representing three varieties being
tested in combination with two fertilizer treatments. Although the experiment would
not necessarily be conducted by growing the plants in varietal rows, it is convenient
to visualize the data in Table 4.3. The entries of the table are such that yijk represents
the yield of the kth plant of the variety i that received the treatment j.

We will now write these out, using five dummy (0, 1) variables and five regression
coefficients corresponding to the three varieties and two treatments. The regression
coefficients for the three varieties will be denoted by 𝛼1, 𝛼2, and 𝛼3 and those for
the treatments will be 𝛽1 and 𝛽2. Furthermore, the intercept term in the regression,
previously denoted by b0 will now be written as 𝜇. Thus, the vector of parameters
will be

b′ = [𝜇 𝛼1 𝛼2 𝛼3 𝛽1 𝛽2 ].

This notation clearly distinguishes between regression coefficients for varieties (𝛼’s)
and those for treatments (𝛽’s). In contrast to using b’s as elements of b, it avoids
double subscripting which could then provide that clarity. With this notation, the
regression equation for yijk is

yijk = 𝜇 + 𝛼1xijk,1 + 𝛼2xijk,2 + 𝛼3xijk,3 + 𝛽1x∗ijk,1 + 𝛽2x∗ijk,2 + eij

TABLE 4.3 Yields of Six Plants

Treatment

Variety 1 2

1 y111, y112 y121

2 y211 y221

3 y311
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where the x’s and the x∗’s are the dummy variables. Thus, the regression equations
for the yields in Table 4.3 are

y111 = 𝜇 + 𝛼1(1) + 𝛼2(0) + 𝛼3(0) + 𝛽1(1) + 𝛽2(0) + e111
y112 = 𝜇 + 𝛼1(1) + 𝛼2(0) + 𝛼3(0) + 𝛽1(1) + 𝛽2(0) + e112
y121 = 𝜇 + 𝛼1(1) + 𝛼2(0) + 𝛼3(0) + 𝛽1(0) + 𝛽2(1) + e121
y211 = 𝜇 + 𝛼1(0) + 𝛼2(1) + 𝛼3(0) + 𝛽1(1) + 𝛽2(0) + e211
y221 = 𝜇 + 𝛼1(0) + 𝛼2(1) + 𝛼3(0) + 𝛽1(0) + 𝛽2(1) + e221
y311 = 𝜇 + 𝛼1(0) + 𝛼2(0) + 𝛼3(1) + 𝛽1(1) + 𝛽2(0) + e311.

(7)

Using y and e to denote the vectors of observations and error terms in the usual way,
these equations become

y =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 0 0 1 0
1 1 0 0 1 0
1 1 0 0 0 1
1 0 1 0 1 0
1 0 1 0 0 1
1 0 0 1 1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜇

𝛼1
𝛼2
𝛼3
𝛽1
𝛽2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+ e. (8)

Now write

X =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 0 0 1 0
1 1 0 0 1 0
1 1 0 0 0 1
1 0 1 0 1 0
1 0 1 0 0 1
1 0 0 1 1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and b =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜇

𝛼1
𝛼2
𝛼3
𝛽1
𝛽2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (9)

The matrix X is not of full column rank. The sum of columns 2, 3, and 4 equals that
of column 1, as does that of columns 5 and 6. With this proviso, equations (8) is y =
Xb + e just as before, the equation of a model that is not of full rank. □

In general, the matrix X, having elements that are all 0 or 1, is called an incidence
matrix, because the presence of the 1’s among the elements describes the incidence
of the terms in the model (𝜇, the 𝛼’s and the 𝛽’s) in the data.

3. DESCRIBING LINEAR MODELS

a. A One-Way Classification

Equations (4) and (8) in Examples 1 and 2 of Section 2b have been developed from
the point of view of regression on dummy (0, 1) variables. Consider equations (4)
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again. They relate to investment indices of six people in three different levels of
educational status, as shown in Table 4.2. Suppose the equations (4) are rewritten as

y11 = 𝜇 + b1 + e11,
y12 = 𝜇 + b1 + e12,
y13 = 𝜇 + b1 + e13,
y21 = 𝜇 + b2 + e21,
y22 = 𝜇 + b2 + e22

(10)

and

y31 = 𝜇 + b3 + e31,

where the x’s are no longer shown explicitly and 𝜇 is written for b0. Observe that in
each equation of (10) the subscript of the b corresponds exactly to the first subscript
of the y. For example, b1 is found y11, y12, and y13 and b2 is in y21 and y22. Hence,
each equation of (10) can be written as

yij = 𝜇 + bi + eij (11)

for the various values that i and j take in the data. In this case i = 1, 2, 3 and the upper
limit on j in the ith class is the number of observations in that ith class. Denoting
this by ni, we have j = 1, 2,… , ni where n1 = 3, n2 = 2 and n3 = 1. Thus, we have
developed (11) as the equation of the general linear model for three classes. For a
classes it applies for i = 1, 2,… , a.

Although (11) is the general form of a linear model equation, its specific values are
still as shown in (4), exactly as developed in the regression context. Now, however,
there is no need to view the elements of b as regression coefficients, nor the 0’s and
1’s of X as dummy variables. The elements of b can be given meanings in their own
rights and the 0’s and 1’s of X relate to “absence” and “presence” of levels of factors.

Since 𝜇 enters into every element of (10), it is described as the general mean of
the population of investment indices. It represents some overall mean regardless of
educational status.

To give meaning to the b’s consider b1. In equations (10) (or (4), they are equiv-
alent) b1 occurs only in those equations pertaining to investment indices of people
of educational status (high school incomplete) namely y11, y12, and y13. Likewise, b2
occurs only in the equations for people of educational status 2 (high school graduate),
y21 and y22. Likewise, b3 is in the equation for y31 and nowhere else. Thus, b1 gets
described as the effect on investment of a person being in educational status 1. Similar
descriptions apply to b2 and b3. In general, in terms of (11), bi is described as the
effect on investment due to educational status i.

Description of a linear model is incomplete without specifying distributional
properties of the error terms, the eij’s evident in equations (4), (10), and (11). Usually,
this is done by attributing them with the same kinds of properties as in regression
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analysis (see equations (5), (6), and (7) in Section 1b of Chapter 3). Thus, eij is
defined as eij = yij − E(yij).

Then E(eij) = 0, giving

E(yij) = 𝜇 + bi.

The variance of each eij is defined as 𝜎2 and so

v(eij) = E[eij − E(eij)]
2 = 𝜎2, for all i and j.

Furthermore, covariances between all pairs of different e’s are taken to be zero. Thus,

cov(eij, ei′j′) = 0 unless i = i′ and j = j′

in which case the covariance becomes the variance 𝜎2. As a result,

var(e) = 𝜎2I.

The general description of the one-way classification model can therefore be
summarized as follows. For yij being the jth observation in the ith class, the equation
of the model is (11) given by

yij = 𝜇 + bi + eij.

The term 𝜇 is the general mean, bi is the effect on yij due to the ith class and eij is a
random error term peculiar to yij with

e ∼ (0, 𝜎2I).

For a classes, we have that i = 1, 2,… , a and j = 1, 2,… , ni for the ith class. The
additional assumption of normality is made when hypothesis testing and confidence
intervals are considered. We then assume that e ∼ N(0, 𝜎2I).

b. A Two-Way Classification

Suppose equations (7) are rewritten with the x’s no longer explicitly shown, just as
were equations (4) from Example 1 in (10). Then (7) becomes

y111 = 𝜇 + 𝛼1 + 𝛽1 + e111
y112 = 𝜇 + 𝛼1 + 𝛽1 + e112
y121 = 𝜇 + 𝛼1 + 𝛽2 + e121
y211 = 𝜇 + 𝛼2 + 𝛽1 + e211
y221 = 𝜇 + 𝛼2 + 𝛽2 + e221
y311 = 𝜇 + 𝛼3 + 𝛽1 + e311

(12)
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Here, in each equation, the subscripts on the 𝛼 and 𝛽 correspond to the first two on
y. Notice that 𝛼1 and 𝛽1 are found in y111 and y112, and 𝛼2 and 𝛽1 are in y211. Hence,
each equation in (12) can be written as

yijk = 𝜇 + 𝛼i + 𝛽j + eijk. (13)

The values taken by i, j, and k in the data are in this case, i = 1, 2, 3 with the
upper limit of k being the number of observations in the ith variety receiving the
jth treatment. Denoting this by nij, we have k = 1, 2,… , nij, where n11 = 2, n12 = 1,
n22 = 1, n31 = 1, and n32 = 0. Thus, (13) is the equation of the general linear model
involving varieties and treatments.

As with the one-way classification of the preceding section, so here, the elements
of b (in this case 𝜇, the 𝛼’s and 𝛽’s) do not need to be viewed as regression coefficients
but can be given meanings in their own rights. First, 𝜇 is described as the mean of
the whole population of yields, representing some overall mean regardless of variety
or treatment. Second, in (12) or equivalently (7), 𝛼1 occurs only in those equations
pertaining to yields of variety 1, namely y111, y112, and y121. Likewise, 𝛼2 occurs only
in those equations of yields of variety 2, y211 and y221. Similarly, 𝛼3 is in the equation
for y311 and nowhere else. Thus, 𝛼1 gets described as the effect on yield of a plant
being of variety 1. Similar descriptions apply to 𝛼2 and 𝛼3. In general, 𝛼i is described
as the effect due to variety i.

For the 𝛽’s, 𝛽1 occurs only in equations in yields that received treatment 1,
y111, y112, y211, and y311 and 𝛽2 is only in the equations pertaining to treatment 2,
those for y121 and y221. Thus, 𝛽j is described as the effect due to treatment j. Hence,
general description of the 𝛽’s is similar to that of the 𝛼’s. Both are effects on yield.
However, the 𝛼’s are effects due to variety while the 𝛽’s are effects due to treatments.

The error terms in this model, the eijk, are assumed to have the same properties
as before. If e is the vector of the eijk, we assume that e ∼ (0, 𝜎2I). For formulating
hypothesis tests and confidence intervals, we also assume normality of the error
terms.

Apart from 𝜇 and eijk, equation (13) has terms for just two factors. These can
be referred to as an 𝛼-factor and a 𝛽-factor. The model with equation (13) could be
called a two-factor model, although the name two-way classification is more firmly
established.

Its general description is as follows. For yijk being the kth observation on the ith
level of the 𝛼-factor and the jth level of the 𝛽-factor, the equation of the model is
(13):

yijk = 𝜇 + 𝛼i + 𝛽j + eijk.

The general mean is 𝜇. The effect on yijk due to the ith level of the 𝛼-factor is 𝛼i. The
effect on yijk due to the jth level of the 𝛽-factor is 𝛽j. The random error term peculiar
to yijk is eijk with e ∼ (0, 𝜎2I).
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Of course, for hypothesis testing and confidence intervals we assume

e ∼ N(0, 𝜎2I).

The example of this model is from agriculture. Historically, the analysis of variance
that we will study in the succeeding chapters was developed for agriculture. However,
it has found application in many other fields of human endeavor. There can be many
applications that make use of the same statistical methodology. Indeed the two-factor
model we have just formulated can apply to many other situations. For the example of
Table 4.1 concerning the effect of occupation and education on investment, equation
(13) could act equally as well as it could for the agricultural example. The 𝛼i would
then be the effect on investment of the ith occupation category (the ith level of the
occupation factor). The 𝛽j would be the effect of the jth level of the education factor.

Similarities between the above description of the two-way classification and the
one-way classification at the end of Section 3 a will be clearly apparent. They extend
quite naturally to many-factored models. The following outline of the three-way
classification illustrates this.

c. A Three-Way Classification

Suppose that for the data of Table 4.1 the hometown region of the United States
(Northeast, South, Midwest, Southwest, Rockies or West Coast) was also recorded
for each person. A study of the effects on investment of occupation, education, and
region could then be made using a model whose equation is

yijkh = 𝜇 + 𝛼i + 𝛽j + 𝛾k + eijkh (14)

In equation (14), the terms have the following interpretations. The yijkh is the invest-
ment index of the hth person in the ith occupation and the jth level of education in the
kth region. The general mean is 𝜇. The effect on investment due to the ith occupation
is 𝛼i.

The 𝛽j is the effect due to the jth level of education. The effect due to the kth
region is 𝛾k. As before, eijkh is an error term peculiar to yijkh. Again, we assume that
e ∼ (0, 𝜎2I). If in the data there are a levels of occupation, then i = 1, 2,… , a. If there
are b levels of education, then j = 1, 2,… , b. For c regions, we have k = 1, 2,… , c.
For nijk observations, in the subclass of the data representing the ith occupation, the
jth level of education and the kth region, we have h = 1, 2,… , nijk.

Extension of models of this nature to four-way and higher order classifications
should be clear.

d. Main Effects and Interactions

(i) Main Effects. The 𝛼’s, 𝛽’s, and 𝛾’s of Examples 1 and 2 each represent the
effect of y of one level on one factor. Thus, in the two-way classification of Table 4.3,
𝛼i of equation (13) refers to the yield of the ith level of the factor variety, specifically
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variety i. Likewise, 𝛽j in the same equation refers to the yield of treatment j. Effects
of this nature that pertain to a single level of the factor are called main effects. This
is logical because the effects of variety and treatment on yield are where our main
interest lies. Hence, the elements of the model that correspond to them are called the
main effects of the model.

By its very nature, the equation of the model implies that the effect 𝛼i is added to
the effect 𝛽j in conjecturing the value of yijk as being

E(yijk) = 𝜇 + 𝛼i + 𝛽j. (15)

This means that the total effect of variety i and treatment j on expected yield is
considered as being the sum of the two individual effects 𝛼i and 𝛽j. For this reason,
the effects are described as being additive. The model also means that the effect of
variety i on expected yield is considered the same no matter what treatment is used
on it. For all treatments, the effect of variety i is assumed to be 𝛼i and the combined
effect of variety i and treatment j over and above 𝜇 is taken to be 𝛼i + 𝛽j.

Suppose hypothetical values of the 𝜇, the 𝛼i’s and the 𝛽j’s are taken to be

𝜇 = 4, 𝛼1 = 1 and 𝛽1 = 4
𝛼2 = 3 𝛽2 = 7.
𝛼3 = 2

(16)

The values of the 𝜇, the 𝛼i’s and the 𝛽j’s are not observed values. They are introduced
for purposes of illustration. In fact, these elements can never be observed. In practice
they are never known because they are population values that can only be estimated
from observed data. However, for purposes of illustrating, certain aspects of linear
models it is instructive to give numerical values to these elements and portray the
results graphically. For example, with the assumed values of (16),

E(y11k) = 𝜇 + 𝛼1 + 𝛽1 = 4 + 1 + 4 = 9. (17)

This is not an observed value of E(y11k) or of y11k itself. It is an assumed value of
E(y11k) based on the assumed values of the parameters given in (16).

First note that (15) for a given i and j is the same for all k. Since the subscript
k is merely the identifier of the individual observations in the (i, j) subclass, (15)
means that the expected value of every observation in that subclass is the same.
Thus, by (17), the expected value of every observation in the (1, 1) cell is, in our
hypothetical example 9. That means that for all k = 1, 2,… , n11, E(y11k) = 9. With
this interpretation, the expected values for the other subclasses derived from (16) are
those shown in Table 4.4 and plotted in Figure 4.1.

In Figure 4.1, note that the “variable” of the abscissa, the variety number, is not a
continuous variable. Lines joining the values of E(yijk) do not indicate a continuous
change in E(yijk) from one variety to the next. The lines are shown merely to emphasize
the trend of the change. They are used in a similar way in Figures 4.2, 4.3, and 4.4.
Furthermore, the ordinates plotted in these figures are values of E(yijk) and not of
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TABLE 4.4 Expected Values in a No-Interaction Model
Equations (16) Substituted in (15) (See Figures 4.1 and 4.3)

Treatment

Variety 1 2

1 E(y11k) = 4 + 1 + 4 = 9 E(y12k) = 4 + 1 + 7 = 12
2 E(y21k) = 4 + 4 + 4 = 11 E(y22k) = 4 + 3 + 7 = 14
3 E(y31k) = 4 + 2 + 4 = 10 E(y32k) = 4 + 2 + 7 = 13

actual observations yijk. With this in mind, it is clear from Figure 4.1 that in the
hypothetical example of the model given in (15), the effect of variety is the same
regardless of treatment. For both treatments, variety 2 has an expected yield two
units larger than does variety 1. For both treatments, variety 3 is one unit lower than
variety 2.

(ii) Interactions. In some other hypothetical example, suppose that the plots of
expected yields are those shown in Figure 4.2. Observe that in Figure 4.1, the lines
for the two treatments were parallel and that in Figure 4.2, they are not. This indicates
that the effect of variety is different for different treatments. For treatment 1, variety
2 has an expected yield, that is, three units larger than that of variety 1 for the
same treatment. However, for treatment 2, the expected yield of variety 2 is four
units smaller than that of variety 1. Thus, in this second hypothetical example, the
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FIGURE 4.1 Expected Values of Table 4.4
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FIGURE 4.2 Expected Values for an Interaction Model (See Table 4.5)

14

E(yijk)

12

10

8

6

4

2

Treatment 1 Treatment 2

Variety 1

Variety 3

Variety 2

No interaction

FIGURE 4.3 Expected Values of Table 4.4 (See Also Figure 4.1)



192 INTRODUCING LINEAR MODELS: REGRESSION ON DUMMY VARIABLES

14
E(yijk)

12

10

8

6

4

2

Treatment 1 Treatment 2

Variety 1

Variety 2

Variety 3

Interaction

FIGURE 4.4 Expected Values for an Interaction Model (See Table 4.5 and Figure 4.2)

varieties are acting differently for the different treatments. We say that the varieties
are “interacting” with treatments. The extent to which they are not acting in the same
manner for each treatment is termed an “interaction.”

We can look at this in another way. In Figure 4.1, the difference between treatments
is the same for each variety. It does not change from variety to variety. It is constant
over all varieties. We can see this from the parallelism of the lines in Figure 4.1. On
the other hand, the lack of parallelism in Figure 4.2 indicates that the differences
between treatments are in fact different from variety to variety. Thus, the difference
“treatment 1 minus treatment 2” is –5, +2, and –2 for the three varieties, respectively.
However, in Figure 4.1, the same difference is –3 for every variety. This difference is
well illustrated by plotting them in Figures 4.3 and 4.4.

The parallel lines in Figure 4.3 (corresponding to those in Figure 4.1) illustrate for
the first hypothetical example (Table 4.4), the uniform difference between treatments
of all varieties. However, the non-parallel lines in Figure 4.4 illustrate, for the second
hypothetical example, the lack of uniformity in the differences between treatments
over all varieties.

It is evident, from this discussion, that in Figures 4.1 and 4.3 (Table 4.4), the
effect of variety on expected yield is the same for all treatments and that the effect of
treatments is the same for all varieties. This also follows from the form of equation
(15) used as a basis for Table 4.4 and Figures 4.1 and 4.3. However, in Figures 4.2 and
4.4, the effect of treatment is not the same for all varieties, and the effect of varieties
is not the same for all treatments. This indicates that there are some additional effects
accounting for the way those treatments and varieties are interacting. These additional
effects are called interaction effects. They represent the manner in which one level of
each main effect (variety) interacts with each level of the other main effect (treatment).
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We take these effects into account in the equation of the model by adding another
term. Thus, if the interaction effect between the ith level of the 𝛼-effect and the jth
level of the 𝛽-effect is 𝛾ij, the equation of the model is

E(yijk) = 𝜇 + 𝛼i + 𝛽j + 𝛾ij (18)

or equivalently

yijk = 𝜇 + 𝛼i + 𝛽j + 𝛾ij + eijk. (19)

All other elements have the same meaning as before.
The second hypothetical example (plotted in Figures 4.2 and 4.4) is based on the

same hypothetical values for 𝜇, the 𝛼’s and the 𝛽’s given in (16) together with the
following hypothetical values for the interaction effects 𝛾ij.

𝛾11 = 1 𝛾21 = 1
𝛾12 = 0 𝛾22 = −5
𝛾13 = −2 𝛾31 = −3.

(20)

In this way, the expected values derived from (18) are those shown in Table 4.5 and
plotted in Figures 4.2 and 4.4.

Notice that this description of interactions is entirely in terms of expected yields,
that is, in terms of models having interactions in them. Such models may be used
whenever we think that the data being dealt with behave in the manner illustrated.
However, the simple numbers used in the example do not refer to data. They merely
exemplify a model.

Note that whenever nij = 1 for all cells, the model with interaction (19) becomes
indistinguishable from the model without interaction, (13). The 𝛾ij and eijk terms of
(19) get combined, 𝛾ij + eijk = 𝜀ij, say, and so (19) becomes

yij = 𝜇 + 𝛼i + 𝛽j + 𝜀ij,

equivalent to (13). This means that when nij = 1, we generally can study only the
no-interaction model and not the interaction model.

TABLE 4.5 Expected Values of an Interaction Model. Equations (16)
and (20) Substituted in (18). (See Figures 4.2 and 4.4)

Treatment

Variety 1 2

1 E(y11k) = 4 + 1 + 4 − 1 = 8 E(y12k) = 4 + 1 + 7 + 1 = 13
2 E(y21k) = 4 + 3 + 4 + 0 = 11 E(y22k) = 4 + 3 + 7 − 5 = 9
3 E(y31k) = 4 + 2 + 4 − 2 = 8 E(y32k) = 4 + 2 + 7 − 3 = 10
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For a specific kind of interaction when nij = 1, Tukey (1949) developed a test
for non-additivity. For a discussion of this test, see, for example, Rao (1973),
pp. 249–251.

The interactions that have been discussed may be generalized. The 𝛾ij is an inter-
action between two factors and is known as a first-order interaction. An interaction
between three factors is called a second-order interaction. Third, fourth, and higher
order interactions follow in like manner. The interpretation becomes more difficult
as the order of interactions increase. For example, a third-order interaction (which
involves the interaction between four main effects) can be interpreted as the inter-
action between a main effect and a second-order interaction or as the interaction
between two first-order interactions.

Notation. A frequently used notation that helps clarify the interpretation of inter-
actions is based on using the symbol (𝛼𝛽)ij in place of 𝛾ij. This indicates that (𝛼𝛽)ij
is the interaction effect between the ith level of the 𝛼-factor and the jth level of the
𝛽-factor. The symbol (𝛼𝛽)ij in no way indicates the product of any 𝛼 with any 𝛽 even
if it is written without parenthesis as 𝛼𝛽ij. It is a combined symbol that indicates more
clearly than 𝛾ij that it represents an interaction between a 𝛼-factor and a 𝛽-factor.
By this means a higher order interaction (𝛼𝛽𝛾𝛿)hijk, for example, may be readily
interpreted. It may be thought of as the interaction between 𝛼h and (𝛽𝛾𝛿)ijk. It could
also be interpreted as the interaction between (𝛼𝛽)hi and (𝛾𝛿)jk. There are many other
interpretations of this interaction. This notation also clarifies that the writing of a
model

yijkm = 𝜇 + 𝛼i + 𝛽j + 𝛾k + 𝜏ij + 𝜌ik + 𝜃jk + 𝜑ijk + eijkm

is not as easily understood as when the model is written as

yijkm = 𝜇 + 𝛼i + 𝛽j + 𝛾k + (𝛼𝛽)ij + (𝛼𝛾)ik + (𝛽𝛾)jk + (𝛼𝛽𝛾)ijk + eijkm.

Finally, even when a model has interactions, its order is still described by the
number of main effects it has. Thus, (18) is an equation for a two-way classification
model, just as is (13). However, (18) includes interactions and (13) does not.

e. Nested and Crossed Classifications

In the example of Table 4.3, every treatment is applied to every variety. Even though
there are no observations on the use of treatment 2 with variety 3, this combination
would be feasible if there were data available. This kind of situation is called a crossed
classification. In a crossed classification, every level of every factor can be used with
every level of every other factor. In this way, the factors “cross” each other. Their
“intersections” are the subclasses or the cells of the situation, wherein data arise.
Absence of data from a cell does not imply non-existence of that cell. It only implies
that that cell has no data. The total number of cells in a crossed classification is the



DESCRIBING LINEAR MODELS 195

product of the number of product of the number of levels of the various factors. For
example, if we had two treatments and three varieties, there would be six cells. Not
all of the cells need to have observations in them. If, say, s cells have observations
in them, then the total number of observations would be the sum of the number of
observations in the s cells.

We have already had an example of a crossed classification. We now give an
example to introduce nested classifications.

Example 3 A Nested Classification Suppose at a university, a student survey is
carried out to ascertain the reaction to instructor’s use of the computer in teach-
ing different courses. Suppose that all freshmen have to take English, Geology, or
Chemistry their first semester and one other of these courses their second semester.
All three first semester courses are large and are divided into sections with different
instructors. The sections need not have the same number of students. In the survey,
the response provided by each student measures his opinion of his instructors use of
the computer on a scale of 1 to 10. The questions of interest are

1. Do instructors differ in their use of the computer?

2. Is the use of the computer affected by the subject matter being taught?

A possible model for the situation would include a general mean 𝜇 and main
effects 𝛼1, 𝛼2, and 𝛼3 for the three types of courses. It would also include terms for
the sections of each course. Assume that there are 10 sections for each course. We
try to use a model of the form yijk = 𝜇 + 𝛼i + 𝛽j + eijk for i = 1, 2, 3, j = 1, 2,… , 10,
and k = 1, 2,… , nij. The number nij represents the number of students in section j of
course i. Consider 𝛽j; it represents the effect of section j.

For j = 1, say, it would be the effect of section 1 of the English course, the Geology
course, and the Chemistry course. This is meaningless, because these three sections
composed of different groups of students, have nothing in common other than they
are all numbered as 1 in their respective courses. However, assuming students in all
courses have been allocated randomly to their sections, this numbering is purely for
identification purposes. It indicates nothing in common about the three sections that
are numbered 1. Neither is there anything in common about the three sections that
are numbered 5, or 6, or any other number. They are not like the treatments in the
agricultural example, where treatment 1 on variety 1 was the same as treatment 1 on
variety 2 and on variety 3. The sections are not related in this way. They are identities
in their own courses. Thus, we refer to them as sections within courses, and describe
them as being nested within courses. Thus, sections are a nested factor, or a nested
classification, sometimes also referred to as a hierarchical classification.

The difference between a crossed classification and a nested classification is
exemplified in Table 4.6, in terms of the variety and treatment example described
earlier, and the sections-within-courses example just discussed.
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TABLE 4.6 Schematic Representation of a Crossed Classification and a Nested
Classification

A Crossed Classification A Nested Classification

Treatment Course

Variety 1 2 English Geology Chemistry

1 Section 1 Section 1 Section 1
2 Section 2 Section 2 Section 2
3 Section 3 Section 3

Section 4

In the crossed classification, variety 1 is used in combination with both treat-
ment 1 and treatment 2, and it is the same variety on both occasions. In the nested
classification, section 1 of English is in no way related to section 1 of Geology. The
only thing in common is the number 1, which is purely an identifier. In the crossed
classification, every level of the one factor is used in combination with every level of
the other factor. However, in the nested classification the levels of the nested factors
(sections) are unrelated to one another and are nested within a level of the other
factor. Further as illustrated in Table 4.6, there may be different numbers of levels of
the nested factor within each level of the other factor (different numbers of sections
in the different courses).

The equation of the model accounts for the nesting of sections within courses by
giving to the effect 𝛽j for the jth section the subscript i, for course, so that 𝛽ij is then
the effect for the jth section nested within the ith course. This signifies that the jth
section cannot be defined alone but only in context of which course it belongs to.
Thus, the model is

yijk = 𝜇 + 𝛼i + 𝛽ij + eijk (21)

where yijk is the opinion of student k in the jth section of course i. The limits of k
are k = 1, 2,… , nij where there are nij students in the jth section of the ith course,
and j = 1, 2,… , bi where there are bi students in course i, and i = 1, 2, 3. Table 4.7
summarizes a situation of a total of 263 students in 3 sections in English, 2 in Geology,
and 4 in Chemistry.

TABLE 4.7 A Nested Classification

English (i = 1) Geology (i = 2) Chemistry (i = 3)
3 Sections, b1 = 3 2 Sections, b2 = 2 4 Sections, b3 = 4

n11 = 28 n21 = 31 n31 = 27
n12 = 27 n22 = 29 n32 = 32
n13 = 30 n33 = 29

n34 = 30
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The situation illustrated in Table 4.7 is described as a two-way nested classification:
sections within courses. Now, consider asking a student his opinion on two different
occasions, say right after the midterm examinations and after he/she completes the
course. If yijkh is the hth reply (h = 1 or 2) of the kth student in section j of course i,
a suitable model might be

yijkh = 𝜇 + 𝛼i + 𝛽ij + 𝛾ijk + eijkh. (22)

Now we have not only sections listed within courses but also students nested within
sections. Students are nested within sections for exactly the same reason that sections
are nested within courses. In general, there is no limit to the degree of nesting that can
be handled. The extent of its use depends entirely on the data and the environment
from which they came.

Notation. The meaning of the term 𝛾ij in (19) might, at first sight, be confused with
the meaning of 𝛽ij in (21), although the context of each does make their meaning
clear. By the presence of 𝛼i and 𝛽j in (19), 𝛾ij is clearly an interaction effect. By the
lack of a term with just a subscript j from (21), it is clear that 𝛽ij is a term for a
nested factor. However, additional clarity can be brought to the situation by using the
(𝛼𝛽)ij-notation for interactions (as already described), for then 𝛽ij is clearly a main
effect. Similar clarity is gained by using 𝛽(i)j instead of 𝛽ij for a nested effect. This
makes it clear that 𝛽(i)j is not an interaction effect like 𝛾ij. Either or both of these
notations can be used to insure against confusion.

Interaction effects are effects peculiar to specific combinations of the factors
involved. Thus, (𝛼𝛽)ij is the interaction effect peculiar to the combination of the ith
level of the 𝛼-factor and the jth level of the 𝛽-factor. Interactions between a factor
and one nested within it cannot, therefore exist. This is so because, for example,
when sections are nested within courses they are defined only within that context.
There is no such thing as a section factor in which exactly the same level occurs in
combination with the levels of the course factor. For example, section 1 as defined for
English never occurs in combination with Chemistry that has its own section 1. As
a result, there is no such thing as an interaction between courses and sections within
courses. The notation of (21) makes this quite clear. The interaction between 𝛼i and
𝛽ij would be (𝛼𝛽)ij which cannot be identified separately from 𝛽ij. Therefore, there is
no interaction.

Nested and crossed classifications are by no means mutually exclusive. Both can
occur in the same model. For example, in using (22) as the model for the repeated
surveying of the students, we are ignoring the fact that the two surveys (assumed to
be conducted from the same questionnaire) will have to be made at different times.
If the time element were to be included a suitable model would be

yijkh = 𝜇 + 𝛿h + 𝛼i + (𝛼𝛿)ik + 𝛽ij + 𝛾ijk + eijkh (23)
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where all terms are the same as those previously with the addition of the term 𝛿h, the
effect of time h. The 𝛿-factor (time) and the 𝛼-factor (courses) are crossed factors
because each level of one occurs with every level of the other. As before, the 𝛽-factor
(sections within courses) and the 𝛾-factor (students within sections) are nested factors.
Interactions could be included in a model for this situation too. The model

yijkh = 𝜇 + 𝛿h + 𝛼i + (𝛼𝛿)ih + 𝛽ij + 𝛾ijk + eijkh (24)

includes a term for the interaction between time and course.
We can see that the variations that may be rung on the same theme are very

numerous. Just what goes into a model depends, of course, on the nature of the data
to be analyzed, the things of interest to the researcher and the assumptions that he
is prepared to make. For example, if time is to be ignored, either by assumption
or because it is known to be of no importance, then (22) would be an acceptable
model. Even so, it might be questioned whether or not we truly know that something
is of no importance, and in this light maybe model (23) or (24) should be used.
On the other hand, if the second student survey had been carried out following a
major modification to the computer system designed to improve its efficiency and
attractiveness to instructors, there is no question that (22) would be an unsuitable
model compared to (23) and (24). This is because 𝛿1 and 𝛿2 would then represent the
effects of the two computer systems modified and unmodified.

On all occasions, the environment in which the data were gathered determines the
model.

In conclusion, it is to be emphasized that all these kinds of models can be written
as y = Xb + e just as they were in equations (4) or (8). For all of them X will have 0’s
and 1’s for its elements and not be of full column rank. However, for all these models,
the estimation procedure of Chapter 3 can be used to derive the normal equations
X′Xb̂ = X′y. In these, X′X does not have full rank. Nevertheless, the equations can
be solved using a generalized inverse of X′X. This and its consequences are discussed
in detail in Chapter 5. As a prelude, we consider a numerical example to illustrate
some points involved.

4. THE NORMAL EQUATIONS

The equation of the general linear model y = Xb + e is identical to that used for
regression analysis in Chapter 3. There the normal equations for estimating b were
written as X′Xb̂ = X′y, where b̂ was the estimator of b. The same kind of normal
equations can be used here. However, we will write them as X′Xb◦ = X′y. This is
done because there is no single solution for b◦. The matrix X′X is singular and so
the normal equations have infinitely many solutions. None of these solutions is an
estimator of b in the sense that b̂ is in regression analysis, and so we introduce the
symbol b◦. It represents a solution to the normal equations but is not an estimator of b.
This point is emphasized repeatedly in Chapter 5 and is illustrated by the introduction
therein.
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Suppose the values of the six observations in Table 4.2 are, in some appropriate
unit of measurement.

y′ = [ 16 10 19 11 13 27 ].

Comparable to b in (5) we now use

b′ = [𝜇 𝛼1 𝛼2 𝛼3 ],

where 𝜇 is a general mean and the 𝛼’s are effects due to educational status. Then with
X of (5) the normal equations are

⎡
⎢
⎢
⎢
⎣

6 3 2 1
3 3 0 0
2 0 2 0
1 0 0 1

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

𝜇◦

𝛼◦1
𝛼◦2
𝛼◦3

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

96
45
24
27

⎤
⎥
⎥
⎥
⎦

. (25)

These are equivalent to

6𝜇◦ + 3𝛼◦1 + 2𝛼◦2 + 𝛼◦3 = 96
3𝜇◦ + 3𝛼◦1 = 45
2𝜇◦ + 2𝛼◦2 = 24
𝜇◦ + 𝛼◦3 = 27

The derivation of equations such as these will be discussed in Chapter 5. All we note
here is that the sum of the last three equals the first and hence they have infinitely
many solutions. Four of these are shown in Table 4.8.

The differences between the same elements of the four solutions shown in Table 4.8
make it crystal clear why no solution b◦ can be considered as an estimator of b. For
this reason, b◦ is always referred to as a solution to normal equations and never as
an estimator. The notation b◦ emphasizes this, distinguishing it from b̂ and b̂c of
equations (21) and (118) of Chapter 3.

An investigator having data to be analyzed will clearly have no use for b◦ as
it stands, whatever its numerical value is. However, what about linear functions of

TABLE 4.8 Four Solutions b◦
1
, b◦

2
, b◦

3
, and b◦

4
to Equations (25)

Solution

Element of Solution b◦
1 b◦

2 b◦
3 b◦

4

𝜇◦ 16 14 27 −2982
𝛼◦1 −1 1 −12 2997
𝛼◦2 −4 −2 −15 2994
𝛼◦3 11 13 0 3009
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TABLE 4.9 Values of 1
2

(
𝜶◦

2
+ 𝜶◦

3

)
and

(
𝝁◦ + 𝜶◦

1
+ 𝜶◦

1
+ 𝜶◦

1

)
∕3

Solution (See Table 4.8)

Linear function b◦
1 b◦

2 b◦
3 b◦

4

1

2

(
𝛼◦2 + 𝛼

◦
3

)
3.5 5.5 −7.5 3001.5

(
𝜇◦ + 𝛼◦1 + 𝛼

◦
2 + 𝛼

◦
3

)
∕3 7.333 8.667 0 2006

the elements of b◦? Suppose, for example, there is interest in estimating the mean
effect on investment of high school and of college education? Recall from Table 4.2
that corresponding to 𝛼1, 𝛼2, and 𝛼3 in the model are the three levels of educational
status, high school incomplete, high school graduate, and college graduate, and the
y-variable is investment in consumer durables. This suggests the following question.
Even if b◦ is of no use in itself what does it do for values such as 1

2
(𝛼◦2 + 𝛼◦3 ) or for

(𝜇◦ + 𝛼◦1 + 𝛼◦1 + 𝛼◦1 )∕3? The answer is seen in Table 4.9. Exactly as with the elements
of b◦ itself in Table 4.8, the values in Table 4.9 vary greatly from solution to solution.

Fortunately, this is not the case for all linear functions. There are linear functions
of the solutions to normal equations that an investigator might be interested in that
have the same numerical value regardless of which set of solutions is used. Examples
are given in Table 4.10.

Notice that each of the linear functions is invariant to the solution b◦ that is used.
Since this is so for all of the infinitely many solutions b◦, these expressions are of
value to the investigator. Moreover, by their nature, these expressions are often those
of specific interest to the investigator because they can be described as follows:

𝛼◦1 − 𝛼◦2 : estimator of difference between effects of two levels.

𝜇◦ + 𝛼◦1 : estimator of general mean plus mean effect of a level.

𝜇◦ + 1
2

(
𝛼◦2 + 𝛼◦3

)
: estimator of general mean plus mean effect of two levels.

1
2

(
𝛼◦2 + 𝛼◦3

)
− 𝛼◦1 : estimator of superiority of main effect of two levels over the

effect of another level.

TABLE 4.10 Estimates of Four Estimable Functions

Solution (See Table 4.8)

Linear function b◦
1 b◦

2 b◦
3 b◦

4

𝛼◦1 − 𝛼
◦
2 3 3 3 3

𝜇◦ + 𝛼◦1 15 15 15 15

𝜇◦ + 1

2

(
𝛼◦2 + 𝛼

◦
3

)
19.5 19.5 19.5 19.5

1

2

(
𝛼◦2 + 𝛼

◦
3

)
− 𝛼◦1 4.5 4.5 4.5 4.5
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Of course, these are only four of the many such linear functions of elements of b◦

having the property demonstrated in Table 4.10. Other similar linear functions include
𝛼◦3 − 𝛼◦1 ,𝜇◦ + 𝛼◦2 ,𝜇◦ + 1

2
(𝛼◦1 + 𝛼◦2 ) and infinitely many others. Functions such as these

are known as estimators of estimable functions. They all have the property that they
are invariant to whatever solutions are obtained to the normal equations. Because of
this invariance property, they are the only functions that can be of interest, so far as
estimation of the parameters of a linear model is concerned. Distinguishing this class
of functions from functions such as those illustrated in Table 4.9 that do not have
the invariance property is important as is deriving their other properties. This will be
taken up in Chapter 5.

5. EXERCISES

The following statement and Table 4.11 apply to Exercises 1–10.

Suppose an oil company gets its crude oil from four different sources, refines it in three
different refineries using the same two processes in each refinery. In one part of the
refining process, a measurement of efficiency is taken as a percentage and recorded
as an integer between 0 and 100. Table 4.11 shows the available measurement of
efficiency for different samples of oil.

1 Write the equation of the linear model for each of the following cases

y = Xb + e

for considering the effect of refinery and process on efficiency giving the explicit
forms of y, X, b, and e.
(a) The eight observations on Texas.

(b) The six observations on Oklahoma.

(c) The five observations for the Gulf of Mexico.

(d) The six observations for the Iran data.

TABLE 4.11 Results of Efficiency Tests

Source

Refinery Process Texas Oklahoma Gulf of Mexico Iran

Galveston 1 31, 33, 44, 36 38 26 —
2 37, 59 42 — —

Newark 1 — — 42 34, 42, 28
2 39 36 32, 38 —

Savannah 1 42 36 — 22
2 — 42, 46 26 37, 43
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2 Repeat Exercise 1 including interactions between refinery and process.

3 For Exercise 1a,

(a) Write the normal equations.

(b) Show that two solutions to these normal equations are

b◦
1 =

[
246
11

93
11

−6
11

159
11

57
11

189
11

]′
and b◦

2 =
[

0 0 −9 6 36 48
]′
.

(c) Show that for these two solutions that 𝛼◦1 − 𝛼◦2 , 𝛼◦1 − 𝛼◦3 , 𝛼◦2 − 𝛼◦3 , 𝛽◦1 − 𝛽◦2
are the same but that 𝜇◦ + 𝛼◦i , i = 1, 2, 3,𝜇◦ + 𝛽◦j , j = 1, 2 are not.

4 Consider a linear model with

X =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 0 0
1 1 0 0
1 1 0 0
1 1 0 0
1 0 1 0
1 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, Y =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

31
33
44
36
38
26

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, b =
⎡
⎢
⎢
⎢
⎣

𝜇

𝛼1
𝛼2
𝛼3

⎤
⎥
⎥
⎥
⎦

(a) Write the normal equations.

(b) Using the methods of Chapter 1, find two generalized inverses of X′X.

(c) Use your answer to (b) to find two estimates b◦.

(d) Find two linear combinations of the elements of b◦ that are the same for
both estimates and two that are different.

5 Write down the linear model y = Xb + e giving the explicit forms of X, b, and
e for each of the following refineries.

(a) Galveston (nine observations)

(b) Newark (eight observations)

(c) Savannah (eight observations)

6 Write down the linear model y = Xb + e giving the explicit forms of X, b, and
e for each of the two processes. Let the 𝛼i’s be the sources and the 𝛽j’s be the
refineries.

7 (a) For all 25 observations in Table 4.11, write down the equations of the
linear model for considering the effect of source, refinery, and process on
efficiency. Do not include interactions.

(b) Write down the normal equations.

8 For the Texas data.

(a) Write the linear model assuming that process is nested within refinery.

(b) What are the normal equations?
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9 Use the data for Texas–Galveston, Texas–Savannah, Oklahoma–Galveston, and
Oklahoma–Savannah omitting process. Just consider the data from two different
processes as replications. Write down the linear models in matrix form for the
following situations.

(a) The two-way model without interaction.

(b) The two-way model with interaction.

(c) The model with refineries nested within the source.

10 For Exercise 9a

(a) Obtain the normal equations

(b) Find two solutions using generalized inverses.

(c) Give two linear combinations where results are the same and two where
they are different.





5
MODELS NOT OF FULL RANK

Chapter 3 discussed regression analysis for a model having equation y = Xb + e,
where X has full-column rank. Chapter 4 illustrated how the same equation can apply
to linear models when X may not have full-column rank. We shall now consider
estimation and hypothesis testing for the non-full-rank case. We will follow the
same sequence of development as in Chapter 3. In Chapter 4, we gave an informal
demonstration of estimable functions. In this chapter, we will formally define them
and study their important properties.

1. THE NORMAL EQUATIONS

As before, we deal with the model,

y = Xb + e.

Again, y is an N × 1 vector of observations yi, b is a p × 1 vector of parameters, X
is an n × p matrix of known values (in most cases 0’s and 1’s) and e is a vector of
random error terms. As before, e is defined as

e = y − E(y).

Then E(e) = 0 and E(y) = Xb. Every element in e is assumed to have variance 𝜎2

and zero covariance with every other element. More formally, we have

var(e) = E(ee′) = 𝜎2IN .

Linear Models, Second Edition. Shayle R. Searle and Marvin H. J. Gruber.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.
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Thus,

e ∼ (0, 𝜎2I) and y ∼ (Xb, 𝜎2I).

Normality will be introduced later when we consider hypothesis testing and confi-
dence intervals.

a. The Normal Equations

As was done in Chapter 3, the normal equations corresponding to the model y = Xb +
e is derived using least squares. As before, when var(e) = 𝜎2I, the normal equations
turn out to be

X′Xb̂ = X′y. (1)

We shall discuss the more general case where var(e) = V, whether V be singular or
non-singular in Section 8.

Before solving equations (1), we look at their form, initially in terms of an illus-
trative example.

Example 1 Finding the Normal Equations Deoxyribonucleic acid (DNA) is the
hereditary material found in most organisms. A genome is an organism’s complete
set of DNA, including all of its genes. Each genome contains all the information
needed to build and maintain that organism.

Macdonald (2015) presents an example with genome size measured in pictograms
(trillionths of a gram) of DNA per haploid cell in several large groups of crustaceans.
The data are taken from Gregory (2015). For purposes of illustration, we shall consider
six points for three kinds of crustaceans. We shall also use these data for subsequent
examples to give numerical illustrations of the computations. Searle (1971) presents
similar examples for data on rubber tree plants, taken from Federer (1955).

For the entries in Table 5.1, let yij denote the DNA content of the jth crustacean of
the ith type, i taking values 1, 2, and 3 for amphipods, barnacles, and branchiopods,
respectively, and j = 1, 2,… , ni, where ni is the number of observations of the ith

TABLE 5.1 Amount of DNA

Type of Crustacean

Amphipods Barnacles Branchiopods

27.00 0.67 0.19
50.91 0.90
64.62

– – –

Total 142.53 1.57 0.19
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type. The objective is to estimate the effect of the type of crustacean DNA content.
To do this, we assume that the observation yij is the sum of three parts

yij = 𝜇 + 𝛼i + eij,

where 𝜇 represents the population mean of the DNA content of the crustaceans, 𝛼i
is the effect of type i DNA content, and eij is a random error term peculiar to the
observation yij.

To develop the normal equations, we write down the six observations in terms of
the equation of the model

27.00 = y11 = 𝜇 + 𝛼1 + e11

50.91 = y12 = 𝜇 + 𝛼1 + e12

64.62 = y13 = 𝜇 + 𝛼1 + e13

0.67 = y21 = 𝜇 + 𝛼2 + e21

0.90 = y22 = 𝜇 + 𝛼2 + e22

0.19 = y31 = 𝜇 + 𝛼2 + e31.

We may rewrite these equations in matrix form y = Xb + e as

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

27.00

50.91

64.62

0.67

0.90

0.19

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y11

y12

y13

y21

y22

y31

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 0 0

1 1 0 0

1 1 0 0

1 0 1 0

1 0 1 0

1 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

𝜇

𝛼1

𝛼2

𝛼3

⎤
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

e11

e12

e13

e21

e22

e31

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(2)

where y is the vector of observations, X is the matrix of 0’s and 1’s, b is the vector
of parameters to be considered,

b′ = [𝜇 𝛼1 𝛼2 𝛼3],

and e is the vector of error terms. □

The vector b in y = Xb + e is the vector of parameters. It is the vector of
all of the elements of the model. In this case, the elements are 𝜇, 𝛼1, 𝛼2, and 𝛼3.
This representation holds true in general for all linear models. For example, if data
can be arranged in rows and columns according to two different classifications, the
vector b will have as its elements the term 𝜇, the terms representing row effects,
those representing column effects, and those representing interaction effects between
rows and columns. For r rows and c columns, the vector b can have as many as
1 + r + c + rc = (1 + r)(1 + c) elements.

The matrix X in y = Xb + e is called the incidence matrix, or sometimes the
design matrix. This is because the location of the 0’s and 1’s throughout its elements
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TABLE 5.2 The Design Matrix X as a Two-Way Table

Parameters of Model

Observations 𝜇 𝛼1 𝛼2 𝛼3

y11 1 1 0 0
y12 1 1 0 0
y13 1 1 0 0
y21 1 0 1 0
y22 1 0 1 0
y31 1 0 0 1

represents the incidence of the terms of the model among the observations and hence
of the classifications in which the observations lie. This is particularly evident if one
writes X as a two-way table with the parameters as headings for the columns and the
observations as labels for the rows, as illustrated in Table 5.2.

Consider the normal equations (1). They involve X′X a square and symmetric
matrix. Its elements are the inner products of the columns of X with each other. We
have that

X′X =

⎡
⎢
⎢
⎢
⎢
⎣

6 3 2 1

3 3 0 0

2 0 2 0

1 0 0 1

⎤
⎥
⎥
⎥
⎥
⎦

. (3)

Since X does not have full-column rank, X′X is not of full rank.
The normal equations also involve the vector X′y. Its elements are the inner

products of the columns of X with the vector y. Since the only non-zero elements of
X are 1’s, the elements of X′y are certain sums of elements of y. From (2),

X′y =

⎡
⎢
⎢
⎢
⎢
⎣

1 1 1 1 1 1

1 1 1 0 0 0

0 0 0 1 1 0

0 0 0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y11

y12

y13

y21

y22

y31

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

y11 + y12 + y13 + y21 + y22 + y31

y11 + y12 + y13

y21 + y22

y31

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

y..
y1.

y2.

y3.

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

144.29

152.53

1.57

0.19

⎤
⎥
⎥
⎥
⎥
⎦

.

(4)

In linear models, X′y is frequently a vector of various subtotals of the y-observations.
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As has already been mentioned in Chapter 4, when X′X is not of full rank, as in (3),
the normal equations (1) cannot be solved with one solitary solution b̂ = (X′X)−1X′y
as in Chapter 3. To emphasize this, we write the normal equations as

X′Xb◦ = X′y. (5)

We use the symbol b◦ to distinguish the many solutions of (5) from the solitary
solution that exists when X′X is of full rank. We shall also use b◦ to denote a solution
GX′y to (5), where G is a generalized inverse X′X.

The normal equations of the crustacean example are, from (3) and (4),

⎡
⎢
⎢
⎢
⎢
⎣

6 3 2 1

3 3 0 0

2 0 2 0

1 0 0 1

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

𝜇◦

𝛼◦1
𝛼◦2
𝛼◦3

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

y..
y1.

y2.

y3.

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

144.29

142.53

1.57

0.19

⎤
⎥
⎥
⎥
⎥
⎦

. (6)

By retaining the algebraic form of X′y as well as its arithmetic form, we see that if
X′X is written in a two-way table, the row headings of the table will be the totals in
X′y and the column headings will be the parameters. Indeed, the elements of X′X
are the number of times that a parameter of a model occurs in a total. For example,
𝜇 occurs six times in y.. and 𝛼1 occurs three times. Likewise, 𝛼2 does not occur
at all in y1. and so on. Another way of looking at X′X is that its elements are the
coefficients of the parameters of the model in the expected values of the totals in
X′y. In this sense, we might write the normal equations as E(X̂′y) = X′y replacing
b implicit in the left-hand side by b◦. However, the easiest way of deriving X′y and
X′X other than carrying out the matrix products explicitly is to form X′y as the vector
of all class and sub-class totals of the observations (including the grand total) and to
form X′X as the number of times that each parameter arises in each total that occurs
in X′y.

b. Solutions to the Normal Equations

Since X does not have full-column rank, X′X has no inverse and the normal equations
(5) have no unique solution. They have many solutions. To get any one of them, we
find any generalized inverse G of X′X and write the corresponding solution as

b◦ = GX′y. (7)

The ability to do this is a consequence of Theorem 11 in Chapter 1. We will use
the results of Chapter 1 repeatedly in what follows, especially those of Section 5 of
Chapter 1.

The notation b◦ in equation (7) for a solution to the normal equation (5) emphasizes
that what is derived in solving (5) is only a solution to the equation and not an estimator
of b. This point cannot be over-emphasized. In a general discussion of linear models
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that are not of full rank, it is important to realize that what is obtained as a solution of
the normal equations is just that, a solution and nothing more. It is misleading and,
in most cases, quite wrong for b◦ to be termed an estimator, particularly an estimator
of b. It is true that b◦ is, as shall be shown, an estimator of something, but not of b.
Indeed the expression it estimates depends entirely upon which generalized inverse
of X′X is used in estimating b◦. For this reason, b◦ is always referred to as a solution
and not as an estimator.

Example 2 Solutions to Normal Equations Two generalized inverses of the X′X
matrix in (6) are

G1 =

⎡
⎢
⎢
⎢
⎢
⎣

0 0 0 0

0 1
3

0 0

0 0 1
2

0

0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎦

and G2 =

⎡
⎢
⎢
⎢
⎢
⎣

1 −1 −1 0

−1 4
3

1 0

−1 1 3
2

0

0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎦

.

The generalized inverse G1 is obtained using the inverse of the 3 × 3 sub-matrix in the
rows and columns 2–4 while G2 is obtained using the inverse of the 3 × 3 sub-matrix
in rows and columns 1–3. Then

(b◦
1)′ = (G1X′y) = [ 0 47.51 0.785 0.19 ]

and

(b◦
2)′ = (G2X′y) = [ 0.19 47.32 0.595 0 ]

Notice that for both solutions 𝜇 + 𝛼i and 𝛼i − 𝛼j, i, j = 1, 2, 3 are equal. □

2. CONSEQUENCES OF A SOLUTION

The solution b◦ to the normal equations is clearly a function of y, the observations,
even though it is not an estimator of b. The expected value, the variance, and other
results about b◦ are therefore not identical to those of b̂ of Chapter 3.

a. Expected Value of b◦

For any generalized inverse G,

E(b◦) = GX′E(y) = GX′Xb = Hb. (8a)

The solution b◦ has expected value Hb where H = GX′X. Thus, b◦ is an unbiased
estimator of Hb but not of b.



CONSEQUENCES OF A SOLUTION 211

Consider the solution b◦
mp = (X′X)+X′y where (X′X)+ is the Moore–Penrose

inverse of X′X. From Theorem 9 in Chapter 1, H = (X′X)+X′X = UΛ−1U′UΛU′ =
UU′. Thus, from (8a) we have

E(b◦
mp) = UU′b. (8b)

Thus b◦
mp is an unbiased estimator of UU′b but not of b.

b. Variance Covariance Matrices of b◦ (Variance Covariance Matrices)

Let var(b◦) denote the variance covariance matrix of b◦. Likewise, var(y) is the
variance covariance matrix for y. From (7),

var(b◦) = var(GX′y) = GX′var(y)XG = GX′XG′𝜎2. (9)

This is not an analogue of its counterpart (X′X)−1𝜎2 as would be G𝜎2.
However, when the choice of G is such that it is a reflexive generalized inverse,

we have that var(b◦) = G𝜎2 and if G is the Moore–Penrose inverse (X′X)+ var(b◦) =
(X′X)+𝜎2. A reflexive generalized inverse can always be obtained using the algorithm
in Chapter 1. The Moore–Penrose inverse can be obtained using the singular value
decomposition as explained in Chapter 1.

Example 3 Variances of Linear Combinations of Parameters In Example 2, the
individual solutions to the normal equations would have different variances depending
on the generalized inverse used to find them. For example, if G1 was used, then 𝛼◦1
would have variance (1∕3)𝜎2, while if G2 were used, it would have variance (4∕3)𝜎2.
However, some of the linear combinations (the estimable ones) will have the same
variances. For example, consider 𝛼◦1 − 𝛼◦2 . We have using G1,

var
(
𝛼◦1 − 𝛼◦2

)
= [ 0 1 −1 0 ]

⎡
⎢
⎢
⎢
⎢
⎣

0 0 0 0

0 1
3

0 0

0 0 1
2

0

0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

0

1

−1

0

⎤
⎥
⎥
⎥
⎥
⎦

𝜎2 = 5
6
𝜎2.

Using G2, we have

var
(
𝛼◦1 − 𝛼◦2

)
= [ 0 1 −1 0 ]

⎡
⎢
⎢
⎢
⎢
⎣

1 −1 −1 0

−1 4
3

1 0

−1 1 3
2

0

0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

0

1

−1

0

⎤
⎥
⎥
⎥
⎥
⎦

𝜎2 = 5
6
𝜎2.

□
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c. Estimating E(y)

Corresponding to the vector of observations y, we have the vector of estimated values
Ê(y), just as in Section 4c of Chapter 3.

Ê(y) = ŷ = Xb◦ = XGX′y. (10)

This vector is invariant to the choice of the generalized inverse of X′X that is used
for G by Theorem 10 in Chapter 1. Hence (10) is the vector of estimated expected
values corresponding to the vector of observations. This means that no matter what
solution of the normal equations is used for b◦, the vector ŷ = XGX′y will always
be the same.

This result and others that will be developed are of great importance. It means that
we can get a solution to the normal equations in any way we please, call it b◦, and
no matter what solution it is, ŷ = Xb◦ will be the correct value of ŷ.

Example 4 Different Solutions to Normal Equations Predict the Same Values
for y Consider the two solutions b◦

1 and b◦
2 to the normal equations in Example 2.

Observe that

ŷ = Xb◦
1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 0 0

1 1 0 0

1 1 0 0

1 0 1 0

1 0 1 0

1 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

0

47.51

0.785

0.19

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

47.51

47.51

47.51

0.785

0.785

0.19

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and

ŷ = Xb◦
2 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 0 0

1 1 0 0

1 1 0 0

1 0 1 0

1 0 1 0

1 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

32

68

54

0

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

47.51

47.51

47.51

0.785

0.785

0.19

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

□

d. Residual Error Sum of Squares

As before, the residual error sum of squares is defined as

SSE = (y − Xb◦)′(y − Xb◦)

= y′(I − XGX′)(I − XGX′)y

= y′(I − XGX′)y

(11)



CONSEQUENCES OF A SOLUTION 213

because I − XGX′ is idempotent and it is symmetric by Theorem 10 of Chapter 1.
Furthermore, SSE is invariant to G because X′GX is. Thus, SSE is invariant to
whatever solution of the normal equations is used for b◦. Thus, equation (11)
for SSE is another result invariant to the many solutions there are to the normal
equation.

As was the case for the full-rank model, a computing formula for SSE may be
derived. Observe that

SSE = y′(I − XGX′)y = y′y − y′XGXy = y′y − b◦′X′y. (12)

This is exactly the same result that was obtained for the full-rank case (recall equation
(83) in Section 4d of Chapter 3). We have that y′y is the total sum of squares of
the observed y’s and b◦′X′y is the sum of the products of the solutions in b◦′,
multiplied by the corresponding elements of the right-hand sides of the normal
equations X′Xb◦ = X′y from which b◦ is derived.

e. Estimating the Residual Error Variance

Since y is distributed with mean Xb and variance matrix 𝜎2I, equation (45) of
Chapter 2 yields

E(SSE) = E[y′(I − XGX′)y] = tr[(I − XGX′)I𝜎2] + b′X′(I − XGX′)Xb.

Using the properties of XGX′ of Theorem 10, Chapter 1, the above expression reduces
to

E(SSE) = 𝜎2r(I − XGX′) = [N − r(X)]𝜎2.

Hence an unbiased estimator of 𝜎2 is

�̂�2 = SSE
N − r(X)

. (13)

We again see a similarity with the full-rank case. However, it is now clear why we
should use r(X) in the expectation. Now the matrix X is not of full-column rank.
Therefore, its rank is not equal to the number of columns. In fact, the rank of X
depends on the nature of the data available.
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Example 5 Estimating the Residual Error Variance We use the data from Exam-
ples 1–4. We have that

XG1X′ = XG2X′ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
3

1
3

1
3

0 0 0
1
3

1
3

1
3

0 0 0
1
3

1
3

1
3

0 0 0

0 0 0 1
2

1
2

0

0 0 0 1
2

1
2

0

0 0 0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

I − XG1X′ = I − XG2X′ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2
3

− 1
3

− 1
3

0 0 0

− 1
3

2
3

− 1
3

0 0 0

− 1
3

− 1
3

2
3

0 0 0

0 0 0 1
2

− 1
2

0

0 0 0 1
2

− 1
2

0

0 0 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and

y′(I − XG1X′)y = y′(I − XG2X′)y = 724.999.

Now r(X) = 3 and N – r(X) = 3. Thus,

�̂�2 = 724.999
3

= 241.666.

□

f. Partitioning the Total Sum of Squares

Partitioning the total sum of squares as shown in Section 4f of Chapter 3 for the
full-rank model occurs in exactly the same fashion for the non-full-rank model. The
only difference is that there is no utility in corrected sums of squares and products
of the x-variables. Therefore, matrices of the form  ′ do not arise. However, use is
still made of SSTm = y′y − Nȳ2, the corrected sum of squares of the y-observations.
The three forms of partitioning the sum of squares are shown in Table 5.3.

The three columns in Table 5.3 correspond to the three partitionings shown in
(87), (88), and (90) of Chapter 3. The first column shows

SSR = SST–SSE = y′XGX′y = b◦′X′y, (14)
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TABLE 5.3 Partitioning the Sum of Squares

SSM = Nȳ2 = y′N−111′y
SSR = y′XGX′y SSRm = y′(XGX′ − N−111′)y SSRm = y′(XGX′ − N−111′)y
SSE = y′(I − XGX′)y SSE = y′(I − XGX′)y SSE = y′(I − XGX′)y

SST = y′y SST = y′y SSTm = y′y − Nȳ2

the sum of squares attributable to fitting the model y = Xb + e similar to the sum of
squares due to regression in Chapter 3. In the second column,

SSM = Nȳ2 (15)

is the sum of squares due to fitting the general mean and

SSRm = SSR–SSM = SSR–Nȳ2 (16)

is the sum of squares for fitting the model, corrected for the mean. The third column
is identical to the second, except that SSM has been deleted from the body of the
table and subtracted from SST to give

SSTm = SST–SSM =
N∑

i=1

y2
i − Nȳ2 (17)

as the total sum of squares corrected for the mean. In all three columns, the residual
error sum of squares is the same, SSE of (12).

In Section 3, we will show that Table 5.3 forms the basis of the traditional analysis
of variance tables.

g. Coefficient of Determination

The elements of ŷ given in (10) are the estimated expected values of y corresponding
to the observations y. The square of the product moment correlation between the
observed y’s and the corresponding elements of ŷ is commonly referred to as the
coefficient of determination. Since the usual linear model has a mean in it, we define

R2 = coefficient of determination

=

[
N∑

i=1
(yi − ȳ)(ŷi − ̄̂y)

]

N∑

i=1
(yi − ȳ)2

N∑

i=1
(ŷi − ̄̂y)2

2

.
(18)
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To simplify (18), we utilize X′XGX′ = X′ (Theorem 10, Chapter 1). The first row of
X′ is 1′. Thus,

1′XGX′ = 1′. (19)

As a result,

̄̂y = N−11ŷ = N−11′Xb◦ = N−11′XGX′y = N−11′y = ȳ.

Hence as in equations (91) of Chapter 3,

R2 =
(SSRm)2

SSTm(SSRm)
=

SSRm

SSTm
. (20)

The expression in (20) above represents the proportion of the variation that is
accounted for by the regression model.

Example 6 Sums of Squares in Examples 1–5 We have that either

SSR = b◦′
1 X′y = (47.51)(142.53) + (0.785)(1.57) + (0.19)(0.19) = 6772.87

(21)

or

SSR = b′◦
2 X′y = (0.19)(144.29) + (47.32)(142.53) + (1.57)(0.595) = 6772.87.

(22)

Notice that the use of both solutions of the normal equations derived from different
generalized inverses gives the same result for the sums of squares. Recall that the
vector of observations is

y′ = [ 27 50.91 64.62 0.67 0.9 0.19 ].

Thus,

SST =
6∑

i=1

y2
i = y′y = 7497.87 (23)

and

SSM = Nȳ2 = 3469.93 (24)

Hence the partitioning of sums of squares shown in Table 5.3 is, for the example as
given in Table 5.4.

The value of R2, calculated from (20), is R2 = 3302.94∕4027.94 = 0.82.
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TABLE 5.4 Partitioning Sums of Squares (Data of Table 5.1)

SSM = 3469.93
SSR = 6772.87 SSRm = 3302.94 SSRm = 3302.94
SSE = 724.999 SSE = 724.999 SSE = 724.999

SST = 7497.87 SST = 7497.87 SSTm = 4027.94

□

3. DISTRIBUTIONAL PROPERTIES

We now assume normality for the error terms. Thus, we have that

e ∼ N(0, 𝜎2IN).

Using the normality assumption, we shall derive the distributional properties of y in
a manner similar to the full-rank case (see Section 5 of Chapter 3).

a. The Observation Vector y is Normal

Since y = Xb + e and E(y) = Xb, we have that y ∼ N(Xb, 𝜎2I).

b. The Solution to the Normal Equations b◦ is Normally Distributed

Since b◦ is a linear function of y, it is normally distributed with mean and variance
derived in (8) and (9). Thus,

b◦ = GX′y ∼ N(Hb, GX′XG𝜎2).

Notice that the covariance matrix of b◦ is singular.

c. The Solution to the Normal Equations b◦ and the Estimator of the
Residual Error Variance �̂�2 are Independent

We apply Theorem 6 of Chapter 2 to

b = GX′y and SSE = y′(I − XGX′)y.

We see that, GX′I𝜎2(I − XGX′) = G(X′ − X′XGX′)𝜎2 = 0 because X′ = X′XGX′

(Theorem 10, Chapter 1). Therefore, b◦ and �̂�2 are independent.

d. The Error Sum of Squares Divided by the Population Variance SSE/𝝈2 is
Chi-square 𝝌2

We have that

SSE
𝜎2

=
y′(I − XGX′)y

𝜎2
.
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Applying Theorem 5 of Chapter 2, we have

I𝜎2(I − XGX′)

𝜎2
= I − XGX′,

an idempotent matrix. Therefore, by Theorem 5 of Chapter 2,

SSE
𝜎2

∼ 𝜒2′
[

r(I − XGX′),
b′X′(I − XGX′)Xb

2𝜎2

]

.

Using Theorem 10 of Chapter 1 and r(X) = r this reduces to

SSE
𝜎2

∼ 𝜒2
N−r. (25)

e. Non-central 𝝌2′s

With SSE/𝜎2 being 𝜒2
N−r, we now show that the other terms in Table 5.3 have

non-central 𝜒2-distributions independent of SSE. This leads to F-statistics that have
non-central F-distributions that, in turn, are central F-distributions under certain null
hypothesis. Tests of hypothesis are thus established.

From (14), SSR = y′XGX′y. The matrix XGX′ is idempotent and its products
with I − XGX′ are null. Therefore, by Theorems 5 and 7 of Chapter 2, SSR/𝜎2 is
distributed independently of SSE with

SSR
𝜎2

∼ 𝜒2′
[

r(XGX′),
b′X′XGX′Xb

2𝜎2

]

∼ 𝜒2′
(

r,
b′X′Xb

2𝜎2

)

. (26)

Similarly,

SSM
𝜎2

=
y′N−111′y

𝜎2

where N−111′ is idempotent. From (19),

N−111′XGX′ = N−111′. (27)

Thus, the products of N−111′ and (I − XGX′) are null. Hence, SSM is distributed
independently of SSE and

SSM
𝜎2

∼ 𝜒2′
[

r(N−111′),
b′X′N−111′Xb

2𝜎2

]

∼ 𝜒2′
(

r,
b′X′Xb

2𝜎2

)

, (28)

just as in the full-rank case.
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A similar argument applies to

SSRm = y′(XGX′ − N−111′)y.

The matrix XGX′ − N−111′ is idempotent (using (27)) and has null products with
both N−111′ and (I − XGX′). Hence, by Theorems 5 and 7 of Chapter 2, SSRm is
independent of SSM and SSE. Furthermore,

SSRm

𝜎2
∼ 𝜒2′

[

r(XGX′ − N−111′),
b′X′(XGX′ − N−111′)Xb

2𝜎2

]

∼ 𝜒2′
[

r − 1,
b′X′(I − N−111′)Xb

2𝜎2

]

.

(29)

Now, for any X whose first column is 1 we can write X = [ 1 X1 ]. Then

X′(I − N−111′)X =

[
0 0′

0 X′
1(I − N−111′)X1

]

=
[

0 0′

0  ′

]

. (30)

The matrix  ′ is the same as that defined in Chapter 3. It represents the sums of
squares and products of the deviations of elements of the columns (other than the
first column) of X from their means. Symbolically, it is simpler than its equivalent
form X′

1(I − N−111′)X1 but offers little advantage computationally, in distinction to
the full-rank model where it is advantageous. Nevertheless, writing

b =
[

b0

𝓫

]

(31)

just as in the full-rank case with b0 representing a general mean, we have from (29)
and (30),

SSRm

𝜎2
∼ 𝜒2′

[

r − 1,
𝓫′X′

1(I − N−111′)X1𝓫
2𝜎2

]

∼ 𝜒2′
[

b′ ′𝓫
2𝜎2

]

. (32)

f. Non-central F-distributions

We obtain the following F-statistics from the results in (26), (28), and (35) using the
definition of the non-central F-distribution. Recall that random variables that follow a
non-central F-distribution are the ratio of random variables that follow a non-central
chi-square distribution and a central chi-square distribution. We find that

F(R) =
SSR∕r

SSE∕(N − r)
∼ F′

(

r, N − r,
b′X′Xb

2𝜎2

)

, (33)
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F(M) =
SSM∕1

SSE∕(N − r)
∼ F′

[

1, N − r,
(1′Xb)2

2N𝜎2

]

(34)

and

F(Rm) =
SSRm∕(r − 1)

SSE∕(N − r)
∼ F′(r − 1, N − r,𝓫 ′𝓫). (35)

Under certain null hypotheses, these non-central F’s become central F’s and so
provide us with tests of hypothesis. We shall discuss these in Section 3h and in
Section 5.

g. Analyses of Variance

Calculation of the above F-statistics can be summarized in analysis of variance tables
just as was done in Tables 5.2, 5.3, and 5.4 of Section 5h of Chapter 3. The sums of
squares are those of Table 5.3.

Table 5.5 summarizes not only the sums of squares but also the degrees of freedom
associated with the𝜒2-distributions. It also shows, in the mean squares, the calculation
of the numerator and denominator of F(R) of equation (33) as well as F(R) itself.
Therefore, the table is a convenient summary of the calculations.

Table 5.6 shows the same thing for F(M) and F(R) of (34) and (35). Table 5.6b
shows the abbreviated form of the complete analysis of variance table shown in Table
5.6a. The derivation of this abbreviated form consists of removing SSM from the
body of the table and subtracting it from SST to give SSTm as in Table 5.3. Thus,
Table 5.6b does not contain F(M). However, it is identical to Table 5.6a as far as
F(Rm) = MSRm∕MSE is concerned. Thus, the two sections of Table 5.6 are similar
to Tables 3.3 and 3.4 of Section 5h of Chapter 3.

Although Table 5.6b is the form in which this analysis of variance is most usually
seen, it is not the most informative. Table 5.6a has more information because it shows
how SSR of Table 5.4 gets partitioned into SSM and SSRm, and thus summarizes
F(M) and F(Rm).

TABLE 5.5 Analysis of Variance for Fitting the Model y = Xb + e

Source of Variation d.f. Sum of Squares Mean Square F-Statistic

Model r = r(X) SSR =b◦′X′y MSR =SSR
r

F(R) = MSR
MSE

Residual Error N − r SSE = y′y − b◦′X′y MSE = SSE
N − r

Total N SST = y′y
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TABLE 5.6 Analysis of Variance for Fitting the Model y = Xb + e

(a) Complete form

Source of Variation d.f. Sum of Squares Mean Square F-Statistics

Mean 1 SSM = Nȳ2 MSM =SSM
1

F(M) = MSM
MSE

Model (a.f.m.) r − 1 SSRm = b◦′X′y − Nȳ2 MSRm =
SSRm

r − 1
F(Rm) =

MSRm

MSE

Residual error N − r SSE = y′y − b◦′X′y MSE = SSE
N − r

Total N SST = y′y

a.f.m. = after fitting the mean. Also r = r(X).

(b) Abbreviated form

Source of Variation d.f. Sum of Squares Mean Square F-Statistics

Model (a.f.m.) r − 1 SSRm = b◦′X′y − Nȳ2 MSRm =
SSRm

r − 1
F(Rm) =

MSRm

SSE

Residual error N − r SSE = y′y − b◦′X′y MSE = SSE
N − r

Total N − 1 SST = y′y

h. Tests of Hypotheses

The results in equations (33)–(35) provide statistics suitable for testing certain
hypotheses. We will now discuss this. Later in Section 5, we will consider the general
linear hypothesis. The general linear hypothesis will contain the results discussed
here as special cases.

The F(R)-statistic of (33), whose calculation is summarized in Table 5.5, has
a non-central F-distribution with non-centrality parameter b′X′Xb∕2𝜎2. This non-
centrality parameter is zero under the null hypothesis H: Xb = 0. The statistic F(R)
then has a central Fr,N−r-distribution. The calculated value of the F-statistic can be
compared with tabulated values to test the null hypothesis H. When F(R) is significant,
we might say just as we did in Section 5h of Chapter 3 that there is concordance if the
data with the model E(y) = Xb. In other words, the model accounts for a significant
portion of the variation in the y variable. This does not mean that the model used is
necessarily the most suitable model. The following are possible contingencies.

(i) There may be a subset of the elements that is as significant as the whole set.

(ii) There may be other elements (factors) which, when used alone, or in combina-
tion with some or all of those already used, are significantly better than those
used.

(iii) There may be nonlinear models that are at least as suitable as the model used.
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None of the above contingencies is inconsistent with F(R) being significant and the
ensuing conclusion that the data are in concordance with the model E(y) = Xb.

Notice that, in contrast to the full-rank case in Section 5h of Chapter 3 that the test
based on F(R) cannot be described formally as testing H: b = 0 because as we shall
show in Sections 4 and 5 that b is not what we call an “estimable function”. This
means H: b = 0 cannot be tested, but H: Xb = 0 can be tested. We will soon show
that F(R) is the appropriate statistic.

The non-centrality parameter of F(M) in Table 5.6a is, by (34), (1′Xb)2∕2N𝜎2. Just
as in the full-rank case (Section 5h of Chapter 3) this parameter equals N[E(ȳ)]2∕2𝜎2.
Under the null hypothesis, H: E(ȳ) = 0 it is zero. Then, the statistic F(M) is distributed
as F1,N−r. Hence, F(M) provides a test of the hypothesis H: E(ȳ) = 0. The test is
based on comparing F(M) with the tabulated values of the F1,N−r-distribution. An

equivalent test is to compare
√

F(M) against tabulations of the t-distribution having
N – r degrees of freedom. This hypothesis H: E(ȳ) = 0 is one interpretation of what
is meant by “testing the mean”. Another interpretation, just as in the full-rank case is
that F(M) can be used to test whether the model E(yij) = b0 accounts for variation in
the y-variable.

Just as F(R) provides a test of the model E(y) = Xb, so does F(Rm) provide a test of
the model over and above the mean. For the same reason that F(R) cannot be described
as testing H: b = 0, also F(Rm) cannot be described as testing H:𝓫 = 0. Again 𝓫
is not, in general, what is called an “estimable function” and so H:𝓫 = 0 cannot be
tested (see Sections 4 and 5). In general, therefore, F(Rm) must be looked upon as
providing a test of the model E(y) = Xb over and above the mean. When F(Rm) is
significant, we conclude that the model significantly accounts for the variation in
the y-variable. This is not to be taken as evidence that all of the elements of b are
non-zero, but only that at least one of them, or one linear combination of them, may
be. If F(M) has first been found significant, then F(Rm) being significant indicates
that a model with terms in it additional to a mean explains significantly more of the
variation in the y-variable than does the model E(y) = b0.

Similar to regression, the tests using F(M) and F(Rm) are based on numerators that
are statistically independent although their denominators, the residual mean square,
are identical. The F-statistics are therefore not independent.

The case of both F(M) and F(Rm) being significant has just been discussed and
illustrated in Table 5.6a. Another possibility is that F(M) is not significant but F(Rm)
is. This would be evidence that the mean is zero, but that fitting the rest of the model
explains variation in the y variable. As in regression, a likely situation when this
might occur is when the y variable can have both positive and negative values.

Example 7 Interpretation of the Results in Table 5.7 The analysis of variance
of Tables 5.5 and 5.6 are shown in Table 5.7. They use the sums of squares in
Table 5.4. In this case, all three F-statistics F(R), F(M), and F(Rm) are significant.
This indicates respectively that:

(i) The model almost accounts for a significant portion of the variation in y.

(ii) The mean is unlikely to be zero.

(iii) The model needs something more than the mean to explain variation in y.
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TABLE 5.7 Tables 5.5 and 5.6 for Example 6

Source of Variation d.f Sum of Squares Mean Square F-Statistic

Table 5.5

Model 3 SSR = 6772.87 2257.62 F(R) = 9.3419
Residual error 3 SSE = 724.999 241.666

Total 6 SST = 7497.87

Table 5.6a

Mean 1 SSM = 3469.93 3469.93 F(M) = 14.3584
Model 2 SSRm = 3,302.94 1651.47 F(Rm) = 6.8337
Residual error 3 SSE = 724.999 241.666

Total 6 SST = 7497.87

Table 5.6b

Model (a.f.m.) 2 SSRm = 3,302.94 1651.47 F(Rm) = 6.8337
Residual error 3 SSE = 724.999 241.666

Total 5 SSTm = 4027.94

□

4. ESTIMABLE FUNCTIONS

The underlying idea of an estimable function was introduced at the end of Chapter 4.
Basically, it is a linear function of the parameters for which an estimator can be found
from b◦ that is invariant to whatever solution to the normal equations that is used for
b◦. There were a number of exercises and examples that illustrated this property. We
will not discuss such functions in detail. We confine ourselves to linear functions of
the form q′b where q′ is a row vector.

a. Definition

A linear function of the parameters is defined as estimable if it is identically equal to
some linear function of the expected value of the vector of observations. This means
that q′b is estimable if q′b = t′E(y) for some vector t′. In other words, if a vector t′

exists such that t′E(y) = q′b, then q′b is said to be estimable. Note that in no way is
there any sense of uniqueness about t′. It simply has to exist.

Example 8 An Estimable Function Consider the model used for Examples 1–7.
Consider the function 𝛼1 − 𝛼2. We have that q′ = [ 0 1 −1 0 ]. Then,

⎡
⎢
⎢
⎢
⎣

0
1

−1
0

⎤
⎥
⎥
⎥
⎦

= [ t1 t2 t3 t4 t5 t5 ]

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 0 0
1 1 0 0
1 1 0 0
1 0 1 0
1 0 1 0
1 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,
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because q′b = E(t′y) = t′Xb for all b so the condition for a linear function to be
estimable reduces to the existence of a t, where q′ = t′X. The system of equations

0 = t1 + t2 + t3 + t4 + t5 + t6
1 = t1 + t2 + t3

−1 = t4 + t5
0 = t6

has infinitely many solutions. Two of them are t1 = t2 = t3 = 1
3
, t4 = t5 = − 1

2
, t6 = 0

and t1 = t2 = 1
4
, t3 = 1

2
, t4 = − 2

3
, t5 = − 1

3
, t6 = 0. On the other hand, the system of

equations

0 = t1 + t2 + t3 + t4 + t5 + t6
1 = t1 + t2 + t3
0 = t4 + t5
0 = t6

is inconsistent and has no solution. Therefore, the individual parameter 𝛼1 is not
estimable.

The value of t′ is not as important as its existence. In this sense, all that needs
to be done to establish estimability of q′b is to be satisfied that there is at least one
linear function of the expected values of the y’s, t′E(y), whose value is q′b. Since
t′E(y) = E(t′y), this is equivalent to establishing some linear function of the y’s,
t′y, whose expected value is q′b. There are usually many such functions of the y’s.
Establishing existence of any one of them is sufficient for establishing estimability.

b. Properties of Estimable Functions

(i) The Expected Value of Any Observation is Estimable The definition of an
estimable function is that q′b is estimable if q′b = t′E(y) for some vector t′. Consider
a t′ which has one element unity and the others zero. Then, t′E(y) will be estimable.
It is an element of E(y), the expected value of an observation. Hence, the expected
value of any observation is estimable. For example, for the linear model of Examples
1–8, E(y1j) = 𝜇 + 𝛼1 and so 𝜇 + 𝛼1 is estimable.

(ii) Linear Combinations of Estimable Functions are Estimable Every estimable
function is a linear combination of the elements of E(y). This is also true about a
linear combination of estimable functions. Thus, a linear combination of estimable
functions is also estimable. More formally, if q′

1b and q′
2b are estimable, there exists

a t′1 and a t′2 such that q′
1b = t′1E(y) and q′

2b = t′2E(y). Hence, a linear combination
c1q′

1b + c2q′
2b = (c1t′1 + c2t′2)E(y) and so it is estimable.
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(iii) The Forms of an Estimable Function If q′b is estimable using its definition,
we have that for some vector t′

q′b = t′E(y) = t′E(Xb) = t′Xb. (36)

Since estimability is a concept that does not depend on the value of b, the result in
(36) must be true for all b. Therefore,

q′ = t′X (37)

for some vector t′. This is equivalent to saying that q is in the column space of X,
the vector space generated by the linear combinations of the columns of X. For any
estimable function q′b, the specific value of t′ is unimportant. What is important is
the existence of some t′. We shall use (37) repeatedly in the sequel. We have that q′b
is estimable whenever q′ = t′X. Conversely, estimability of q′b implies q′ = t′X for
some t′.

Another equivalent condition for estimability q′b is that there exists a vector d′

such that

q′ = d′U′ (38)

where U is from the singular value decomposition of X, X = S′Λ1∕2U′. From (37), we
have that q′ = t′X = t′S′Λ1∕2U′. Thus, the existence of t′ implies the existence of d′

because d′ = t′S′Λ1∕2. On the other hand, if (38) holds true since X = S′Λ1∕2U′, U′ =
Λ−1∕2SX, so t′ = d′Λ−1∕2S. Thus, existence of a d′ implies existence of a t′.

(iv) Invariance to the Solution b◦ When q′b is estimable, q′b◦ is invariant to
whatever solution of the normal equations X′Xb◦ = X′y is used for b◦. This is true
because from (37), q′b◦ = t′Xb◦ = t′XGX′y and XGX′ is invariant to G (Theorem
10, Chapter 1). Therefore, q′b◦ is invariant to G and hence to b◦, when q′b is
estimable. This is why estimability is very important. If q′b is estimable, then q′b◦

has the same value for all solutions b◦ to the normal equations.
Alternatively, using the singular value decomposition, (38), and Theorem 9 from

Chapter 1, we have that

q′b◦ = d′U′GX′y = d′U′GUΛ1∕2Sy = d′Λ−1∕2Λ1∕2Sy = d′Sy. (39)

The last expression in (39) is invariant to G.

(v) The Best Linear Unbiased Estimator (b.l.u.e.) Gauss–Markov Theorem In
Chapter 3, we established for the full-rank model, that the least-square estimator
was the best linear unbiased estimator of the parameters b in the regression model
y=Xb+ e. We now establish that for estimable linear combinations of the parameters,
the estimable linear combinations of solutions to the normal are best linear unbiased
estimators for the less than full-rank case.
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Theorem 1 (Gauss–Markov Theorem). The best linear unbiased estimator of the
estimable function q′b is q′b◦; that is,

q̂′b = q′b◦, (40)

where by the “hat” notation we mean “b.l.u.e. of”.

Proof. To establish (41), we demonstrate properties of linearity, unbiasedness, and
“bestness” (having minimum variance). First, q′b◦ is a linear function of the observa-
tions, because q′b◦ = q′GX′y. Second, q′b◦ is an unbiased estimator of q′b because

E(q′b◦) = q′E(b◦) = q′GX′Xb = t′XGX′Xb = t′Xb = q′b. (41)

In establishing (41), we invoke (39) and from Theorem 10 of Chapter 1,

X = XGX′X which also implies X′ = X′XGX. (42)

Alternatively, using Theorem 9 from Chapter 1,

E(q′b◦) = q′E(b◦) = q′GX′Xb = d′U′GUΛU′b = d′Λ−1ΛU′b = d′U′b = q′b.

To demonstrate that q′b◦ is a best estimator, we need its variance. We then show
that the variance of any other linear unbiased estimator of q′b is larger. We have that

𝜈(q′b◦) = q′GX′XG′q𝜎2 form (9)

= q′GX′XG′X′t𝜎2 form (37)

= q′GX′t𝜎2 form (42)

= q′Gq𝜎2 form (37).

(43)

Using the result derived in (43), following C.R. Rao (1962), we now show that q′b◦

has the minimum variance among all the linear unbiased estimators q′b and hence
is the best. Suppose that k′y is some other linear unbiased estimator of q′b different
from q′b◦. Then, because k′y is unbiased, E(k′y) = q′b so k′X = q′. Therefore,

cov(q′b◦, k′y) = cov(q′GX′y, k′y) = q′GX′k𝜎2 = q′Gq𝜎2.

Consequently,

v(q′b◦ − k′y) = v(q′b◦) + v(k′y) − 2cov(q′b◦, k′y)

= v(k′y) − q′Gq𝜎2

= v(k′y) − v(q′b◦) > 0.

(44)
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Since v(q′b◦ − k′y) is positive, from (44) v(k′y) exceeds v(q′b◦). Thus, q′b◦ has
a smaller variance than any other linear unbiased estimator of q′b and hence is
the best.

The importance of this result must not be overlooked. If q′b is an estimable
function, its b.l.u.e. is q′b◦ with variance q′Gq𝜎2. This is so for any solution b◦

to the normal equations using any generalized inverse G. Both the estimator and
its variance are invariant to the choice of G and b◦. However, this is true only for
estimable functions and not for non-estimable functions.

The covariance between the b.l.u.e.’s of two estimable functions is derived in a
manner similar to (43). It is

cov(q′
1b◦, q′

2b◦) = q′
1Gq2𝜎

2. (45)

Hence if Q′b◦ represents the b.l.u.e.’s of several estimable functions, the variance–
covariance matrix of these b.l.u.e.’s is

var(Q′b◦) = Q′GQ𝜎2. (46)

c. Confidence Intervals

The establishment of confidence intervals is only valid for estimable functions because
they are the only functions that have estimators (b.l.u.e.’s) invariant to the solution to
the normal equations. Similar to equation (108) of Chapter 3, we have, on the basis
of normality, that the symmetric 100(1 − 𝛼)% confidence interval on the estimable
function q′b is

q′b◦ ± 𝜎t
N−r,

1
2
𝛼

√
q′Gq. (47)

The probability statement Pr{t ≥ t
N−r,

1
2
𝛼
} = 1

2
𝛼 defines the value t

N−r,
1
2
𝛼

for t having

the t-distribution with N – r degrees of freedom. As before, when N – r is large (N – r

≥ 100, say), z 1
2
𝛼

may be used in place of t
N−r,

1
2
𝛼

where (2𝜋)
− 1

2 ∫
∞

z 1
2
𝛼

e
− 1

2
x2

dx = 1
2
𝛼.

Example 9 Finding a Confidence Interval for an Estimable Function For the
data of Examples 1–8 using the results of Examples 2 and 3 we have

𝛼1 − 𝛼2 = 46.725

and

v(𝛼1 − 𝛼2) = 5
6
𝜎2.

This holds true for estimators derived from generalized inverses G1 and G2.
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From these results and using �̂�2 = 241.666 from Table 5.7, the symmetric 100(1 −
𝛼)% confidence interval on 𝛼1 − 𝛼2 is, from (47)

46.725 ±
√

241.666t
6−3,

1
2
𝛼

√
5
6
.

46.725 ±
√

241.666(3.18245)
√

5
6

46.725 ± 45.1626

(1.5624, 91.8876)
□

d. What Functions Are Estimable?

Whenever q′ = t′X for some t or q′ = d′U′ for some d, then q′b is estimable and
has variance q′Gq𝜎2. We now consider some special cases.

Any linear function of Xb is estimable. Thus, for any vector m′, say m′Xb, is
estimable. Its b.l.u.e. is

m̂′Xb = m′Xb◦ = m′XGX′y (48a)

with variance

𝜈(m̂′Xb) = m′X′GX′m𝜎2. (48b)

Any linear function of X′Xb is also estimable because it is a linear function of
Xb, s′X′Xb, say. Replacing m′ in (48) by s′ X gives

̂s′X′Xb = s′X′y (49a)

with variance

v( ̂s′X′Xb) = s′X′Xs𝜎2. (49b)

Notice that X′Xb is the same as the left-hand side of the normal equations with b◦

replaced by b. In addition, the b.l.u.e. of s′X′Xb is s′X′y where X′y is the right-hand
side of the normal equations. Based on these observations, we might in this sense, say
that the b.l.u.e. of any linear function of the left-hand sides of the normal equations
is the same function of the right-hand sides.

Linear functions of E(b◦) are also estimable, because u′E(b◦) = u′GX′Xb.Using
u′G in place of s′ in (49) shows that

û′E(b◦) = u′GX′y = u′b◦ (50a)

and

v[û′E(b◦)] = v(u′b◦) = u′GX′Xu𝜎2 (50b)
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TABLE 5.8 Estimable Functions and Their b.l.u.e.’s

Estimable Function

Description Function b.l.u.e. Variance of b.l.u.e.

General case: q′ = t′X q′b q′b◦ q′Gq𝜎2

Linear function of Xb (m′ arbitrary) m′Xb m′Xb◦ m′XGX′m
Linear function of X′Xb (s′ arbitrary) s′X′Xb s′X′Xb◦ = s′X′y s′X′Xs𝜎2

Linear function of E(b◦) (u′ arbitrary) u′E(b◦) u′b◦ u′GX′XGu𝜎2

Vector Hb having b◦ as b.l.u.e. Hb b◦ var(b◦) = GX′XG𝜎2

from (9). A special case of this result is when u′ takes in turn the values of the rows
of I. In this instance, b◦ is the b.l.u.e. of GX′Xb. These results are summarized in
Table 5.8.

In view of the discussion of the F-statistics F(R) and F(Rm) in Section 3, it is
worth emphasizing two vectors that are not estimable, namely b and its sub-vector 𝓫.
They are not estimable because no value of t′ where q′ = t′X can be found where q′b
reduces to an element of b. Thus, no individual element of b is estimable. Therefore,
b nor b is estimable.

e. Linearly Independent Estimable Functions

From Table 5.8, it is evident that there are infinitely many estimable functions. How
many linearly independent (LIN) estimable functions are there? The answer is that
there are r linearly independent estimable functions where r is the rank of X; that is,
there are r(X) LIN estimable functions.

Since q′b with q′ = t′X is estimable for any t′, let T′
N×N be a matrix of full rank.

Then, with Q′ = T′X, the functions Q′b are N estimable functions. However, r(Q) =
r(X). Therefore, there are only r(X) LIN rows in Q′ and hence only r(X) LIN terms in
Q′b; that is, only r(X) LIN estimable functions. Thus, any set of estimable functions
cannot contain more than r LIN such functions.

f. Testing for Estimability

A given function q′b is estimable if some vector t′ can be found such that t′X = q′.
However, for q′ known, derivation of a t′ satisfying t′X = q′ may not always be
easy especially if X has large dimensions. Instead of deriving t′, it can be determined
whether q′b is estimable by seeing whether q′ satisfies the equation q′H = q′, where
H = GX′X. We restate this as Theorem 2 below.

Theorem 2 The linear function q′b is estimable if and only if q′H = q′.

Proof. If q′b is estimable for some t′, q′ = t′X so q′H = t′XH = t′XGX′X =
t′X = q′.
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On the other hand, if q′H = q′ then q′ = q′GX′X = t′X for t′ = GX′ so that q′b
is estimable.

Whether or not q′b is estimable is easily established using Theorem 2. If q′b is
estimable, q′ satisfies the equation q′H = q′. Otherwise, it is not. Thus, we have
a direct procedure for testing the estimability of q′b. Simply ascertain whether
q′H = q′. When q′H does equal q′, not only is q′b estimable but from the last line
of Table 5.8, the b.l.u.e. of q′b = q′Hb is q′b◦. This corresponds to the invariance
property of q′b◦ for q′H = q′ derived in Theorem 6 of Chapter 1.

In developing the test, the generalized inverse G is completely arbitrary. An
interesting condition can be obtained for estimability that uses the matrices from the
singular value decomposition of X. Suppose that G is the Moore–Penrose inverse.
Then,

H = (X′X)+X′X = UΛ−1U′UΛU′ = UU′

and the condition q′H = q′ reduces to

q′UU′ = q′ (51a)

or

q′VV′ = 0 (51b)

since UU′ + VV′ = I.
Thus, one way to determine if a linear combination is estimable is to obtain the

eigenvector of 0 for X′X, normalize it to obtain V and then find VV′ and apply
condition (51b). See Example 11 below.

Example 10 Testing For Estimability In Example 1, we had the generalized
inverses

G1 =

⎡
⎢
⎢
⎢
⎢
⎣

0 0 0 0

0 1
3

0 0

0 0 1
2

0

0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎦

and G2 =

⎡
⎢
⎢
⎢
⎢
⎣

1 −1 −1 0

−1 4
3

1 0

−1 1 3
2

0

0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎦

.

Then,

H1 = G1X′X =

⎡
⎢
⎢
⎢
⎢
⎣

0 0 0 0

1 1 0 0

1 0 1 0

1 0 0 1

⎤
⎥
⎥
⎥
⎥
⎦

, H2 = G2X′X =

⎡
⎢
⎢
⎢
⎢
⎣

1 0 0 1

0 1 0 −1

0 0 1 −1

0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎦

.
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We may use an H obtained from any generalized inverse. Consider the linear functions
−2𝛼1 + 𝛼2 + 𝛼3 and 𝛼2 + 𝛼3. Now,

[ 0 −2 1 1 ]

⎡
⎢
⎢
⎢
⎢
⎣

0 0 0 0

1 1 0 0

1 0 1 0

1 0 0 1

⎤
⎥
⎥
⎥
⎥
⎦

= [ 0 −2 1 1 ]

and

[ 0 −2 1 1 ]

⎡
⎢
⎢
⎢
⎢
⎣

1 0 0 1

0 1 0 −1

0 0 1 −1

0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎦

= [ 0 −2 1 1 ].

However,

[ 0 0 1 1 ]

⎡
⎢
⎢
⎢
⎢
⎣

0 0 0 0

1 1 0 0

1 0 1 0

1 0 0 1

⎤
⎥
⎥
⎥
⎥
⎦

= [ 2 0 1 1 ]

and

[ 0 0 1 1 ]

⎡
⎢
⎢
⎢
⎢
⎣

1 0 0 1

0 1 0 −1

0 0 1 −1

0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎦

= [ 0 0 1 −1 ].

Hence, −2𝛼1 + 𝛼2 + 𝛼3 is estimable but 𝛼2 + 𝛼3 is not.
From Example 2,

(b◦
1)′ = (G1X′y) = [ 0 47.51 0.785 0.19 ]

and

(b◦
2)′ = (G2X′y) = [ 0.19 47.32 0.595 0 ]

Thus, the b.l.u.e. of −2𝛼1 + 𝛼2 + 𝛼3 is –94.045.
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More generally, let q′ = [ q1 q2 q3 q4 ]. Then,

q′H1 = [ q1 q2 q3 q4 ]

⎡
⎢
⎢
⎢
⎢
⎣

0 0 0 0

1 1 0 0

1 0 1 0

1 0 0 1

⎤
⎥
⎥
⎥
⎥
⎦

= [ q2 + q3 + q4 q2 q3 q4 ].

Then, q′b is estimable if and only if q1 = q2 + q3 + q4. □

Example 11 Using condition 51 to Determine Whether a Linear Function Is
Estimable Using X′X from Example 1, we need to find the eigenvectors corre-
sponding to the eigenvalue zero. If X′X is k × k, the multiplicity of the zero eigen-
values would be k − r(X′X). In this case, r(X′X) = 3, k = 4, so there is one zero
eigenvalue. Let v′ = [ v1 v2 v3 v4 ]. Then,

X′Xv = 0 gives the system of equations

6v1 + 3v2 + 2v3 + v4 = 0

3v1 + 3v2 = 0

2v1 + 2v3 = 0

v1 + v4 = 0

A solution is v′ = [ 1 −1 −1 −1 ]. A normalized solution gives the desired matrix

V′ =
[

1
2
− 1

2
− 1

2
− 1

2

]

so that

VV′ = 1
4

⎡
⎢
⎢
⎢
⎢
⎣

1 −1 −1 −1

−1 1 1 1

−1 1 1 1

−1 1 1 1

⎤
⎥
⎥
⎥
⎥
⎦

.

Then,

q′VV′ = [ q1 q2 q3 q4 ]
1
4

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 −1 −1 −1

−1 1 1 1

−1 1 1 1

−1 1 1 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= 1
4

[
q1 − q2 − q3 − q4 −q1 + q2 + q3 + q4 −q1 + q2 + q3 + q4 −q1 + q2 + q3 + q4

]

and again the condition for estimability is q1 = q2 + q3 + q4. □
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g. General Expressions

In Table 5.8 and equations (48), m′Xb is estimable with b.l.u.e. m′Xb◦ for any vector
m′ of order N. Thus, if we define xj as the jth column of X, then

X = [ x1 x2 ⋯ xp ]

and

m′Xb = (m′x1)b1 + (m′x2)b2 +⋯ + (m′xp)bp (52)

with b.l.u.e.

m̂′Xb = m′Xb◦ = (m′x1)b◦1 + (m′x2)b◦2 +⋯ + (m′xp)b◦p. (53)

For any values given to the mi’s, the elements of m, these same values, when used in
(52), yield an estimable function, and when used in (52), they yield the b.l.u.e.’s of
that estimable function.

Hence (52) and (53) constitute general expressions for an estimable function and
its b.l.u.e.

Similar results hold for s′X′Xs of (49) where s′ is any vector of order p, in
distinction to m′ of (52) and (53) which has order N. Defining zj as the jth column of
X′X,

s′X′Xb = (s′z1)b1 + (s′z2)b2 + .... + (s′zp)bp (54)

with b.l.u.e.

ŝ′X′Xs = s′X′Xb◦ = (s′z1)b◦1 + (s′z2)b◦2 +⋯ + (s′zp)b◦p. (55)

The expressions in (54) and (55) hold for any elements in s′ of order p just as (52)
and (53) hold for any elements of m′ in order N.

From the last line of Table 5.8, we also have that w′Hb is estimable with b.l.u.e.
w′b◦. Thus, if

w′ = [ w1 w2 ⋯ wp ]

and

H = [ h1 h2 ⋯ hp ],

then an estimable function is

w′Hb = (w′h1)b1 + (w′h2)b2 +⋯ + (w′hp)bp (56)
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with b.l.u.e.

ŵ′Hb = w′b◦ = w1b◦1 + w2b◦2 +⋯ + wpb◦p.. (57)

Expressions (56) and (57) have advantages over (52) and (53) based on m′Xb because
of fewer arbitrary elements p instead of N, and over (54) and (55) because of greater
simplicity. This is evident in (57) which is just a linear combination of the elements
of b◦ where each element is multiplied by a single arbitrary w. Equation (55) often
has a simple form too, because when X′X is a design matrix, H often has p – r null
rows [r = r(X)], with its other r rows having elements that are either 0, 1, or –1. The
estimable function in (56) accordingly takes on a simple form and involves only r
elements of w. Furthermore, in such cases, b◦ can have only r non-zero elements too,
and so the b.l.u.e. in (57) then only involves r terms.

We shall now establish that when X′X is a design matrix, H can often be obtained
as a matrix of 0’s, 1’s, and –1’s. Suppose that

X′X =

[
X′

1X1 X′
1X2

X′
2X1 X′

2X2

]

and G =
[

(X′
1X1)−1 0

0 0

]

,

where X′
1X1 has full-row rank equal to r(X), and G is a generalized inverse of X′X.

Since X = [ X1 X2 ], where X1 has full-column rank, X2 = X1M for some matrix M,
and because all elements of X are 0 or 1, those of M can often be 0, 1 or –1. Hence

H = GX′X =
[

I (X′
1X1)−1X′

1X2

0 0

]

=
[

I M

0 0

]

and so p – r rows of H are null and the elements in the r null rows are often 0, 1, or
–1.

Example 12 Numerical Illustration of Expressions for Estimable Functions
Recall from Examples 1–11 that the values of X, X′X, and H are

X =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 0 0

1 1 0 0

1 1 0 0

1 0 1 0

1 0 1 0

1 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, X′X =

⎡
⎢
⎢
⎢
⎢
⎣

6 3 2 1

3 3 0 0

2 0 2 0

1 0 0 1

⎤
⎥
⎥
⎥
⎥
⎦

H1=

⎡
⎢
⎢
⎢
⎢
⎣

0 0 0 0

1 1 0 0

1 0 1 0

1 0 0 1

⎤
⎥
⎥
⎥
⎥
⎦
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with

b =

⎡
⎢
⎢
⎢
⎢
⎣

𝜇

𝛼1

𝛼2

𝛼3

⎤
⎥
⎥
⎥
⎥
⎦

and b◦
1 =

⎡
⎢
⎢
⎢
⎢
⎣

0

47.51

0.785

0.19

⎤
⎥
⎥
⎥
⎥
⎦

.

With these values m′Xb of (52) is

m′Xb = (m1 + m2 + m3 + m4 + m5 + m6)𝜇 + (m1 + m2 + m3)𝛼1

+(m4 + m5)𝛼2 + m6𝛼3
(58)

with b.l.u.e. from (53)

m̂′Xb = m′Xb◦
1 = (m1 + m2 + m3)47.51 + (m4 + m5)0.785 + m60.19. (59)

Thus for any values m1, m2,… , m6, (58) is an estimable function and (59) is its b.l.u.e.
Similarly from (54) and (55) using X′X,

s′X′Xb = (6s1 + 3s2 + 2s3 + s4)𝜇 + 3(s1 + s2)𝛼1 + 2(s1 + s3)𝛼2 + (s1 + s4)𝛼3 (60)

is estimable with b.l.u.e.

ŝ′X′X = s′X′Xb◦
1 = 142.53(s1 + s2) + 1.57(s1 + s3) + 0.19(s1 + s4). (61)

Expressions (60) and (61) hold true for any arbitrary values of the s’s. There are only
p = 4 arbitrary s’s while there are N = 6 arbitrary m’s in (58) and (59). Expressions
with fewer arbitrary values would seem preferable. Likewise, from (56) and (57),
using H1, an estimable function is

w′
1H1b = (w11 + w13 + w14)𝜇 + w12𝛼1 + w13𝛼2 + w14𝛼3 (62)

having b.l.u.e.

ŵ′
1H1b1 = w′

1b◦
1 = 47.51w12 + 0.785w13 + 0.19w14. (63)

For any values of w12, w13, and w14, (62) is estimable and (63) is its b.l.u.e.
Note that in using (56) and (57), of which (62) and (63) are examples, the H used

in w′Hb in (56) must correspond to the b◦ used in w′b◦ of (57). In (56), one cannot
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use an H based in a generalized inverse that is different from the one used in deriving
b◦

1 = G1X′y. This point is obvious, but important. Of course (56) and (57) apply for
any b◦ and its corresponding H. Thus, for b◦

2 and H2 equations (56) and (57) indicate
that

w′
2H2b = w21𝜇 + w22𝛼1 + w23𝛼2 + (w21 − w22 − w23)𝛼3 (64)

is estimable with b.l.u.e.

ŵ′
2H2b = w′

2b◦
2 = 0.19w21 + 47.32w22 + 0.595w23. (65)

The results in (65) hold for any values w21, w22, and w23. Expressions (64) and (65) are
not identical to (62) and (63). However, for different values of w12, w13, and w14 and
of w21, w22, and w23 both pairs of expressions will generate the same set of estimable
functions and their b.l.u.e.’s. For example, with w12 = 0, w13 = 1, and w14 = 0 equa-
tions (62) and (63) give 𝜇 + 𝛼2 estimable with b.l.u.e. 0.785. Likewise, with
w21 = 1, w22 = 0, and w23 = 1 equations (64) and (65) give 𝜇 + 𝛼2 estimable with
b.l.u.e.

0.595(1) + 47.32(0) + 0.19(1) = 0.0785. □

5. THE GENERAL LINEAR HYPOTHESIS

In Section 6 of Chapter 3, we developed the theory for testing the general linear
hypothesis H: K′b = m for the full-rank case. We shall now develop this theory for
the non-full-rank case. In the non-full-rank case, we can test some hypotheses. Others,
we cannot. We shall establish conditions for “testability” of a hypothesis.

a. Testable Hypotheses

A testable hypothesis is one that can be expressed in terms of estimable functions.
In Subsection d, we shall show that a hypothesis that is composed of non-estimable
functions cannot be tested. It seems reasonable that a testable hypothesis should be
made up of estimable functions because the results for the full-rank case suggest that
K′b◦ − m will be part of the test statistic. If this is the case, K′b◦ will need to be
invariant to b◦. This can only happen if K′b consists of estimable functions.

In light of the above considerations, a testable hypothesis H: K′b = m is taken as
one, where K′b ≡ {k′

ib} for i = 1, 2,… , m such that k′
ib is estimable for all i.

Hence k′
i = t′iX for some t′i . As a result

K′ = T′X (66)

for some matrix (T)s×N . Furthermore, any hypothesis is considered only in terms of
its linearly independent components. Therefore (K′)s×p is always of full-row rank.
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Since K′b is taken to be a set of estimable functions their b.l.u.e.’s are

K̂′b = K′b◦ (67a)

with expectation

E(K′b◦) = K′b. (67b)

The b.l.u.e.’s have variance

var(K̂′b) = K′var(b◦)K

= K′GX′XG′K𝜎2, from (9)

= K′GX′XG′X′T𝜎2, from (66)

= K′GK𝜎2,

(68)

making use of Theorem 10 of Chapter 1 and (66) again.
We shall now show that K′GK is non-singular. The functions K′b are estimable.

Thus K′ can be represented not only as T′X but also as S′X′X for some S′ of full-row
rank m. Then, with

K′ = S′X′X of order s × p and r(K′) = s ≤ r(X),

since K′ is of full-row rank S′ and S′X′ have full-row rank m. Furthermore,

K′GK = S′X′XGX′XS = S′X′XS.

Thus r(K′GK) = r(S′X′) = s, the order of K′GK. Hence, K′GK is non-singular.

b. Testing Testable Hypothesis

The test for the testable hypothesis H: K′b = m is developed just as in the full-rank
case (Section 6a of Chapter 3). We assume that e ∼ N(Xb, 𝜎2I). From Sections 3a
and 3b, we have,

y ∼ N(Xb, 𝜎2I),

and

b◦ ∼ N(GX′Xb, GX′XG′).

Furthermore, from (67) and (68),

Kb◦ − m ∼ N(K′b − m, K′GK).
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Therefore using Theorem 5 of Chapter 2, the quadratic form,

Q = (K′b◦ − m)′(K′GK)−1(K′b◦ − m) (69)

is such that

Q

𝜎2
∼ 𝜒2′

[

s,
(K′b − m)′(K′GK)−1(K′b − m)

2𝜎2

]

.

Furthermore,

Q = [y − XK(K′K)−1m]′XG′K(K′GK)−1K′GX′[y − XK(K′K)−1m],

with (K′K)−1 existing because K′ has full-row rank, and

K′GX′XK(K′K)−1m = T′XGX′XK(K′K)−1m

= T′XK(K′K)−1m

= K′K(K′K)−1m = m.

In addition,

SSE = [y − XK(K′K)−1m]′(I − XGX′)[y − XK(K′K)−1m],

because

X′(I − XGX′) = 0. (70)

Applying (70), we see that Q and SSE are independent because the quadratic forms
have null products. Therefore,

F(H) =
Q∕s

SSE∕(N − r)
∼ F′

[

s, N − r,
(K′b − m)′(K′GK)−1(K′b − m)

2𝜎2

]

,

Under the null hypothesis H: Kb = m, the non-centrality parameter is zero. Thus,
F(H) ∼ Fs,N−r. Thus, F(H) provides a test of the hypothesis H: Kb = m with

F(H) = (K′b − m)′(K′GK)−1(K′b − m)

s�̂�2
(71)

with s and N – r degrees of freedom.
Suppose that we now seek a solution for b◦ under the hypothesis H: K′b = m.

Denote it by b◦
H . The solution will come from minimizing (y − Xb◦

H)′(y − Xb◦
H)
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subject to K′b◦
H = m. Using a Lagrange multiplier 2𝜃′ this leads exactly as in equation

(117) of Chapter 3 to

X′Xb◦
H + K′𝜃 = X′y

K′b◦
H = m.

(72)

From the first equation in (72), a solution is

b◦
H = GX′y − GK𝜃. (73)

Substitution of (73) into the second equation of (72) and following the derivation
of equation (118) in Chapter 3 with the generalized inverse replacing the ordinary
inverse we get

b◦
H = b◦ − GK(K′GK)−1(K′b◦ − m). (74)

The error sum of squares after fitting this, denoted by SSEH, is

SSEH = (y − Xb◦
H)′(y − Xb◦

H)

= [y − Xb◦ + X(b◦ − b◦
H)]′[y − Xb◦ + X(b◦ − b◦

H)]

= (y − Xb◦)′(y − Xb◦) + (b◦ − b◦
H)′X′X(b◦ − b◦

H).

(75)

In deriving (75), the cross-product term vanishes because X′(y − Xb◦) = 0. Substi-
tuting from (74) for b◦ − b◦

H , this gives

SSEH = SSE + (K′b◦ − m)′(K′G′K)−1K′G′X′XGK(K′G′K)−1(K′b◦ − m).

Now K′ = T′X and so

K′G′X′XGK(K′GK)−1 = T′XG′X′XGK(K′GK)−1 = T′XGK(K′GK)−1 = I

and

K′G′K′ = T′XG′X′T = T′XGX′T = K′GK.

Hence,

SSEH = SSE + (K′b◦ − m)′(K′GK)−1(K′b◦ − m)

= SSE+Q
(76)

for Q of (69).
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TABLE 5.9 Analysis of Variance for Testing the Hypothesis K′b = 0

Souce of variation d.f. Sum of Squares

Full model r SSR = b◦′X′y
Hypothesis s Q = b◦′K(K′GK)−1K′b◦

Reduced model r − s SSR − Q
Residual error N − r SSE

Total N SST = y′y

c. The Hypothesis K′b = 0

For the non-full-rank model, we cannot apply the results in Section 5b to certain
special cases as was done in Section 6c of Chapter 3 because (76) is limited to cases
where K′b is estimable. For example, we cannot test the hypotheses H: b = b0 and
H: bq = 0 because b and bq are not estimable. Neither is b̃. This is why as indicated in
Section 3, tests based on F(R) and F(Rm) cannot be described as testing hypotheses
of this nature. Nevertheless, as discussed in Section 2f(iii) of Chapter 6, the test
based on F(Rm) can sometimes be thought of as appearing equivalent to testing
b̃ = 0.

One special case of the general hypothesis K′b = m is when m = 0. Then Q and
b◦

H become

Q = b◦K(K′GK)−1K′b◦ and b◦
H = b◦ − GK(K′GK)−1K′b◦

with Q = SSR – reduction in sum of squares due to fitting the reduced model.
Hence corresponding to Table 3.6 we have the analysis of variance shown in

Table 5.9.
In Table 5.9, r = r(K) and s = r(K′), with K′ having full row rank.

As before, we have three tests of hypothesis:

SSR∕r

SSE∕(N − r)
tests the full model,

Q∕s

SSE∕(N − r)
tests the hypothesis H: K′b = 0

and under the null hypothesis,

(SSR − Q)∕(r − s)

SSE∕(N − r)
tests the reduced model.

The first and last of these tests are not to be construed as testing the fit of the models
concerned but rather as testing their adequacy in terms of accounting for variation in
the y variable.
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TABLE 5.10 Analysis of Variance for Testing the Hypothesis K′b = 0
After Fitting the Mean

Souce of Variation d.f. Sum of Squares

Full Model r − 1 SSRm = SSR − Nȳ2

Hypothesis s Q = b◦′K(K′GK)−1K′b◦

Reduced Model (a.f.m.) r − s − 1 SSRm − Q
Residual error N − r SSE

Total (a.f.m.) N − 1 SSTm = y′y − Nȳ

We can, of course, rewrite Table 5.9 to make it terms of “after fitting the mean”
(a.f.m.). We do this by subtracting Nȳ2 from SSR and SST to get SSRm and SSTm as
shown in Table 5.10. Again r = r(K) and s = r(K′), with K′ having full row rank.
The tests of hypotheses are then

SSRm∕(r − 1)

SSE∕(N − r)
tests the full model (a.f.m.),

Q∕s

SSE∕(N − r)
tests the hypothesis H: K′b = 0

and under the null hypothesis,

(SSRm − Q)∕(r − s − 1)

SSE∕(N − r)
tests the reduced model (a.f.m.).

As was stated in the preceding paragraph, the first and the last of these tests relate to
the adequacy of the model in explaining variation in the y variable.

All of these results are analogous to those obtained for the full-rank model. In the
non-full-rank case, we use G and b◦ in place of (X′X)−1 and b̂ of the full-rank case.
In fact, the full-rank model is just a special case of the non-full-rank model. When
X′X is non-singular, G = (X′X)−1 and b◦ = b̂. All results for the full-rank model
follow from those of the non-full-rank model.

d. Non-testable Hypothesis

We noted earlier that a testable hypothesis is one composed of estimable functions.
Our motivation was that we needed Kb◦ to be invariant to b◦ in order to be able to
test H: K′b = m. What would happen if we tried to test a hypothesis that was not
estimable? We illustrate with an example.

Example 13 Attempt at Hypothesis Test With Non-Estimable Function Con-
sider the data from Examples 1–12. We shall attempt to test the non-estimable
function H: 𝛼2 = 0 by calculating Q in Table 5.10 for G1 and G2, and observing
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that the answers are not the same. Using b◦
1, b◦

2, G1, and G2 as in Example 10, we
have,

Q1 = [ 0 47.51 0.785 0.19 ]

⎡
⎢
⎢
⎢
⎢
⎣

0

0

1

0

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

[ 0 0 1 0 ]

⎡
⎢
⎢
⎢
⎢
⎣

0 0 0 0

0 1
3

0 0

0 0 1
2

0

0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

0

0

1

0

⎤
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎦

−1

.

[ 0 0 1 0 ]

⎡
⎢
⎢
⎢
⎢
⎣

0

47.51

0.785

0.19

⎤
⎥
⎥
⎥
⎥
⎦

= 1.232

and

Q2 = [ 0.19 47.32 0.595 0 ]

⎡
⎢
⎢
⎢
⎢
⎣

0

0

1

0

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

[ 0 0 1 0 ]

⎡
⎢
⎢
⎢
⎢
⎣

1 −1 −1 0

−1 4
3

1 0

−1 1 3
2

0

0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

0

0

1

0

⎤
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎦

−1

.

[ 0 0 1 0 ]

⎡
⎢
⎢
⎢
⎢
⎣

0.19

47.32

0.595

0

⎤
⎥
⎥
⎥
⎥
⎦

= 0.236

Thus, the sum of squares due to the hypothesis and the reduced model would not be
invariant to the choice of b◦ and G. Furthermore, for non-estimable hypotheses, the
corresponding value of SSEH is SSE and as a result, we cannot test the hypothesis
H: K′b = m. We now show this explicitly. □

The equations that result from minimizing (y − Xb◦)′(y − Xb◦) subject to K′b◦ =
m are just as in (72),

X′Xb◦
H + K𝜃 = X′y and K′b◦

H = m, (77)

where 2𝜃′ is a vector of Lagrange multipliers. Consider the equations

K′(H − I)z1 = m − K′GX′y (78)

in z1b. As indicated in the proof of Theorem 4 of Chapter 1, (H − I)z1 contains p – r
arbitrary elements. Since K′b is not estimable, K′ ≠ T′X for any T′. Thus, because
X = X′GX′X (Theorem 10, Chapter 1), K′ ≠ (T′XG)X′X, for any T′. As a result,
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the rows of K′ are LIN of those of X′X. However, X′X has order p and rank r.
Furthermore, the rows of K′ have order p and are to be LIN of each other. Therefore,
if they are also to be LIN of the rows of X′X there can be no more than p – r of them.
This means that K′ has no more than p – r rows. Hence (78) represents no more than
p – r equations in the p – r unknowns of (H − I)z1. Using it for z in

b◦ = GX′y + (H − I)z (79)

to obtain

b◦
H = GX′y + (H − I)z1 (80)

we find that 𝜃 = 0 and that b◦
H of (80) satisfies (77). Consequently, because (80) is

just a subset of the solutions (79) to X′Xb◦ = X′y,

SSEH = (y − Xb◦
H)′(y − Xb◦

H) = SSE

and so we cannot test the hypothesis H: K′b = m.
The sole difference between equations (72) and (76) is that in (72), K′b is estimable

while in (76), it is not. When solving (72), the estimability condition K′ = T′X for
some T′ leads to the solution (73). On the other hand, as shown in equations (79)
and (80), the solution for b◦

H in (77) is also a solution to X′Xb = X′y. The lack
of estimability of K′b allows this. In contrast, in (72) where K′b is estimable,
K′ = S′X′X for some S′. Then for b◦ of (79), K′b◦ = S′X′Xb◦

H = S′X′y for all
values of z. Therefore, no value of z in (79) can be found such that K′b◦ = m. Thus,
no value of b◦ in (79) exists that satisfies (72).

Suppose we try to test a hypothesis that consists partly of estimable functions and
partly of non-estimable functions? Assume H: Kb = m can be written as

H :

[
K′

1b

k′b

]

=
[

m1

m2

]

(81)

where K′
1b is estimable but k′b is not. Then, using two Lagrange multipliers, the same

development as above will lead to the conclusion that testing (81) is indistinguishable
from just testing H: K′

1b = m1. Hence, in carrying out a test of hypothesis that consists
partly of estimable functions and partly of non-estimable functions, all we are doing
is testing the hypothesis made up of just estimable functions.

e. Checking for Testability

The logic of deriving Q = (K′b◦ − m)′(K′GK)−1(K′b◦ − m) depends on K′b being
estimable. Nevertheless, when K′b is not estimable, Q can be calculated as long as
K′GK is non-singular. This holds true, because estimability is a sufficient condition
for the existence of Q, in particular, for the existence of (K′GK)−1, but is not a
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necessary condition. Hence, whenever (K′GK)−1 exists, Q can be calculated even
when K′b is not estimable. Checking to see that K′b is estimable is therefore essential
before calculating Q and F(H). We have seen that there are a number of ways to do
this including

1. ascertaining the existence of a matrix T′ where K′ = T′X;

2. seeing if K′ satisfies K′ = K′X;

3. ascertaining the existence of a matrix C′, where K′ = C′U′, where U is the
column orthogonal matrix in the singular value decomposition of X′X;

4. checking that K′ satisfies either K′UU′ = K′ or K′VV′ = 0.

Suppose, however, a researcher calculates Q because he/she does not bother to
check the estimability of K′b. If, in fact, K′b is not estimable, what hypothesis, if
any, is F(H) testing? The answer is H: K′Hb = m. We show this as follows. Since
H: K′Hb = m is always testable, the value of Q, call it Q1, is from (69),

Q1 = (K′Hb◦ − m)′(K′HGH′K)−1(K′Hb◦ − m). (82)

In this expression K′Hb◦ = K′GX′XGX′y = K′GX′XG′X′y = K′G1X′y because
XGX′ = XG′X′ (Theorem 10 of Chapter 1) and where G1 = GX′XG′ is a gener-
alized inverse of X′X. Therefore, K′Hb◦ = K′G1X′y = K′b◦

1, where b◦
1 = G1X′y

is a solution of X′Xb◦ = X′y. Furthermore, K′HGH′K = K′GX′XGX′XG′K =
K′GX′XGK = K′G1K.

Thus, from (82) we obtain

Q1 = (K′b◦
1 − m)′(K′G1K)−1(K′b◦

1 − m).

Thus, Q1 is identical to the numerator sum of squares that would be calculated from
(69) for testing the non-testable hypothesis K′b = m using the solution b◦

1 = G1X′y.
Hence, the calculations that might be made when trying to test the non-testable
hypothesis K′b = m are indistinguishable from those entailed in testing the testable
hypothesis K′Hb = m. In other words, if F(H) of (71) is calculated for a hypothesis
K′b = m that is non-testable, the hypothesis actually being tested is K′Hb = m.
Example 14 below illustrates what has just been discussed.

Example 14 Attempt at Testing the Non-estimable Function 𝜶2 = 0 from Exam-
ple 13 According to what has been said already, an attempt to test H: 𝛼2 = 0 by
calculating Q1 in Example 13 would be equivalent to testing the hypothesis𝜇 + 𝛼2 = 0
because

[ 0 0 1 0 ]

⎡
⎢
⎢
⎢
⎢
⎣

0 0 0 0

1 1 0 0

1 0 1 0

1 0 0 1

⎤
⎥
⎥
⎥
⎥
⎦

= [ 1 0 1 0 ]
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Then,

Q =

⎡
⎢
⎢
⎢
⎢
⎣

[ 1 0 1 0 ]

⎡
⎢
⎢
⎢
⎢
⎣

0

47.51

0.785

0.19

⎤
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎦

′
⎡
⎢
⎢
⎢
⎢
⎣

[ 1 0 1 0 ]

⎡
⎢
⎢
⎢
⎢
⎣

0 0 0 0

0 1
3

0 0

0 0 1
2

0

0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

1

0

1

0

⎤
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎦

−1

.

⎡
⎢
⎢
⎢
⎢
⎣

[ 1 0 1 0 ]

⎡
⎢
⎢
⎢
⎢
⎣

0

47.51

0.785

0.19

⎤
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎦

= 1.232

The generalized inverse G1 = G in this case because G is reflexive. □

f. Some Examples of Testing Hypothesis

First, let us refresh ourselves on the results of some calculations in previous examples.
We have

G1 =

⎡
⎢
⎢
⎢
⎢
⎣

0 0 0 0

0 1
3

0 0

0 0 1
2

0

0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎦

, H1 =

⎡
⎢
⎢
⎢
⎢
⎣

0 0 0 0

1 1 0 0

1 0 1 0

1 0 0 1

⎤
⎥
⎥
⎥
⎥
⎦

and b◦
1 =

⎡
⎢
⎢
⎢
⎢
⎣

0

47.51

0.785

0.19

⎤
⎥
⎥
⎥
⎥
⎦

. (83)

From (21)–(24)

SSR = 6772.87, SST = 7497.87, and SSM = 3469.93. (84)

Thus,

�̂�2 = (7497.87 − 6772.87)
3

= 241.667. (85)

Example 15 A Testable Hypothesis Consider H: 𝛼1 = 𝛼2 + 10 or 𝛼1 − 𝛼2 = 10. It

can be written [ 0 1 −1 0 ]

⎡
⎢
⎢
⎢
⎣

𝜇

𝛼1
𝛼2
𝛼3

⎤
⎥
⎥
⎥
⎦

= 10.
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Since

[ 0 1 −1 0 ]

⎡
⎢
⎢
⎢
⎢
⎣

0 0 0 0

1 1 0 0

1 0 1 0

1 0 0 1

⎤
⎥
⎥
⎥
⎥
⎦

= [ 0 1 −1 0 ],

the hypothesis is testable. We now calculate the F-statistic (71). We have that

k′b◦ − m = 47.51 − .785 − 10 = 36.725,

k′Gk = 5
6

(86)

and

F(H) =
36.725(5∕6)−136.725

1(241.667)
= 4.6533

We fail to reject the hypothesis at 𝛼 = .05. □

We give another example of these computations for a testable hypothesis.

Example 16 Another Testable Hypothesis Consider H : 𝜇 + 𝛼1 = 𝜇 + 𝛼2 = 50.
We may write this hypothesis as

K′b =
[

1 1 0 0

1 0 1 0

]
⎡
⎢
⎢
⎢
⎢
⎣

𝜇

𝛼1

𝛼2

𝛼3

⎤
⎥
⎥
⎥
⎥
⎦

=
[

50

50

]

.

We have that K′H′ = K′. Hence, the hypothesis is testable. Now

K′b◦ − m =
[

47.51

0.785

]

−
[

50

50

]

=
[ −2.49

−49.215

]

,

K′GK =
[

1 1 0 0

1 0 1 0

]
⎡
⎢
⎢
⎢
⎢
⎣

0 0 0 0

0 1
3

0 0

0 0 1
2

0

0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

1 1

1 0

0 1

0 0

⎤
⎥
⎥
⎥
⎥
⎦

=

[
1
3

0

0 1
2

]
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and

F(H) =
[−2.49 −49.215 ]

[
3 0

0 2

] [ −2.49

−49.215

]

2(241.667)
= 10.061.

We may write the same hypothesis as

K′b =
[

1 1 0 0

0 1 −1 0

]
⎡
⎢
⎢
⎢
⎢
⎣

𝜇

𝛼1

𝛼2

𝛼3

⎤
⎥
⎥
⎥
⎥
⎦

=
[

50

0

]

.

Then,

K′b◦ − m =
[

47.51

46.725

]

−
[

50

0

]

=
[ −2.49

46.725

]

and

K′GK =
[

1 1 0 0

0 1 −1 0

]
⎡
⎢
⎢
⎢
⎢
⎣

0 0 0 0

0 1
3

0 0

0 0 1
2

0

0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

1 0

1 1

0 −1

0 0

⎤
⎥
⎥
⎥
⎥
⎦

=

[ 1
3

1
3

1
3

5
6

]

.

Hence,

F(H) =

[
−2.49 46.725

]
[

5 −2

−2 2

] [ −2.49

46.725

]

2(241.667)
= 10.061,

the same result. In this instance, we would reject H at the .05 level of significance,
the p-value being 0.047. □

Example 17 A Hypothesis Test of the Form K′b = 0 with Illustrations of
Tables 5.9 and 5.10 We test the hypothesis H: 𝛼1 = 𝛼2 written as [ 0 1 −1 0 ]b = 0.

It is testable as seen in Example 15. As shown by (86), k′Gk = 5
6

and k′b◦ − m =
36.725. Then, Q = 36.752( 5

6
)−1 = 1620.68. Table 5.9 then has the values from

Table 5.11. If fitting the mean is to be taken into account as in Table 5.10 SSM
is subtracted from SSR and SST to get SSRm and SSTm as shown in Table 5.12. □
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TABLE 5.11 Example of Table 5.9

Source d.f. Sum of Squares

Full model 3 SSR = 6772.87
Hypothesis 1 Q = 1620.68
Reduced model 2 SSR – Q = 5152.19
Residual error 3 SSE = 724.999

Total 6 SST = 7497.86

g. Independent and Orthogonal Contrasts

For a balanced linear model, linear combinations like 𝛼1 + 𝛼2 − 2𝛼3 where the coef-
ficients add up to zero are called contrasts. Given two contrasts, for example, the one
above and 𝛼1 − 𝛼2 where the inner product of the coefficients are zero are said to be
orthogonal. We shall now explore analogous notions for unbalanced data.

Recall that the numerator sum of squares for testing H: K′b = 0

Q = b◦′K(K′GK)K′b◦
. (87)

We shall see how to decompose Q into a sum of squares involving individual orthog-
onal contrasts. Assume that K′b is estimable. Then for some S′, K′ = S′X′X. With
b◦ = GX′y, using Theorem 10 of Chapter 1, we have that

Q = y′XG′X′XS(S′X′XGX′XS)−1S′X′XGX′y

= y′XS(S′X′XS)−1S′X′y.

Furthermore K′ has full-row rank s. When s = r = r(X) it can be shown that XS =
X1PX′X, where X1, a sub-matrix of X, is N × r of full-column rank, with P and
X′

1X1, both non-singular. This leads to S(S′X′XS)−1S′ being a generalized inverse
of X′X (see Exercise 11). Then,

Q = y′XGX′y = SSR when s = r = r(X). (88)

TABLE 5.12 Example of Table 5.10

Source d.f. Sum of Squares

Full model (a.f.m.) 2 SSRm = 3302.94
Hypothesis 1 Q = 1620.68
Reduced model 1 SSRm – Q = 1682.68
Residual error 3 SSE = 724.999

Total (a.f.m.) 6 SSTm = 4027.94
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Now r = r(X) is the maximum number of LIN estimable functions (see Section
4e). Hence (88) shows that the sum of squares SSR due to fitting the model E(y) =
Xb is exactly equivalent to the numerator sum of squares for testing the hypothesis
H: K′b = 0 when K′b represents the maximum number of LIN estimable functions,
namely r = r(X). This means that if k′

j is a row of K′, then the numerator sum of

squares for simultaneously testing k′
ib = 0 for i = 1, 2,… , r equals SSR. However,

it does not necessarily mean that for testing the r hypotheses k′
ib = 0, individually

the sums add up to SSR. This will be true only in certain cases that we will now
discuss.

Suppose that k′
i and k′

j are two rows of K′. Then,

qi = b◦′ki(k
′
iGki)

−1k′
ib

◦ = y′XGki(k
′
iGki)

−1k′
iGX′y (89a)

and

qj = b◦′kj(k
′
jGkj)

−1k′
jb

◦ = y′XGkj(k
′
jGkj)

−1k′
jGX′y (89b)

are the numerator sums of squares for testing k′
ib = 0 and k′

jb = 0, respectively.
Assume that y ∼ N(Xb, 𝜎2I). By Theorem 6 of Chapter 2, these sums of squares will
be independent when XG′ki(k

′
iGki)

−1k′
iGX′XG′kj(k

′
jGkj)

−1k′
jGX′ = 0.

A necessary and sufficient condition for this is that k′
iGX′XG′kj = 0.

Since k′
jb is estimable, k′

j = t′jX, for some t′j. Thus, the condition becomes

k′
iGX′XG′Xtj = k′

iGXtj = k′
iGkj = 0. (90)

Thus, (90) is a condition that makes qi and qj of (89), independent. Another important
result follows from (90). Due to the independence of qi and qj,

(K′GK)−1 = diag{(k′
iGki} for i = 1, 2,… , r.

Then (87) becomes

Q =
r∑

i=1

b◦′ki(k
′
iGki)

−1k′
ib

◦ =
r∑

i=1

(k′
ib

◦)2

k′
iGki

=
r∑

i=1

qi. (91)

By (45), condition (90) is also the condition that k′
ib

◦ and k′
jb

◦ are independent.

Hence, K′b consists of r = r(X) LIN functions k′
ib for i = 1, 2,… , r. When, for

i = 1, 2,… , r,

k′
i = k′

iH, (92)

k′
iGkj = 0 for i ≠ j (93)

the k′
i are LIN, (94)
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then,

F(H) = Q

r�̂�2
tests H: K′b = 0,

and

F(Hi) =
qi

�̂�2
tests Hi: k′

ib = 0,

and

Q = SSR =
r∑

i=1

qi, (95)

and the q′is are mutually independent with

qi =
(k′

ib
◦)2

k′
iGki

.

Under their respective null hypotheses F(H) ∼ Fr,N−r and F(Hi) ∼ F1,N−r. Using the
latter of these two F-statistics is equivalent to performing a t-test with N – r degrees
of freedom. The t-statistic that is used to test Hi is

√
qi

�̂�2
=

k′
ib

◦

√

k′
iGki�̂�

2
.

For balanced data, these conditions lead to sets of values for the k′
i such that the

k′
ib are often called orthogonal contrasts. They are “orthogonal” because G is such

that (93) reduces to k′
ikj = 0. They are called “contrasts” because the k′

ib can be
expressed as sums of differences between the elements of b. We retain the name
“orthogonal contrasts” here for unbalanced data meaning orthogonal in the sense of
(93). Examples are given below and in Chapter 6.

h. Examples of Orthogonal Contrasts

First, let us consider an example for the balanced case.

Example 18 Orthogonal Contrasts for a Balanced Model Consider the linear
model y = Xb + e of the form

y =
⎡
⎢
⎢
⎢
⎣

13 13 0 0

13 0 13 0

13 0 0 13

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

𝜇

𝛼1

𝛼2

𝛼3

⎤
⎥
⎥
⎥
⎥
⎦

+ e.



THE GENERAL LINEAR HYPOTHESIS 251

Then

X′X =

⎡
⎢
⎢
⎢
⎢
⎣

9 3 3 3

3 3 0 0

3 0 3 0

3 0 0 3

⎤
⎥
⎥
⎥
⎥
⎦

has a generalized inverse

G =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0

0 1
3

0 0

0 0 1
3

0

0 0 0 1
3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

and

H = GX′X =

⎡
⎢
⎢
⎢
⎢
⎣

0 0 0 0

1 1 0 0

1 0 1 0

1 0 0 1

⎤
⎥
⎥
⎥
⎥
⎦

.

Let q′ = [ q1 q2 q3 q4 ]. Then q′b is estimable if q′H = q′ or when q1 = q2 + q3 +
q4. Examples of estimable functions include 𝜇 + 𝛼i, i = 1, 2, 3 and 𝛼i − 𝛼j, i ≠ j. Let
p′ = [ p1 p2 p3 p4 ] and let p′b be an estimable function. Contrasts are differences
or sums of differences like 𝛼1 − 𝛼2 and (𝛼1 − 𝛼3) + (𝛼2 − 𝛼3) = 𝛼1 + 𝛼2 − 2𝛼3. The
orthogonality condition (93) reduces to

∑4
i=2 piqi = 0. The two contrasts mentioned

above are clearly orthogonal. □

We now consider an example for the unbalanced case.

Example 19 Orthogonal Contrasts for Unbalanced Data For the X matrix con-
sidered in Examples 1–17, we have that r(X) = r = 3. To illustrate Q and SSR in (88),
we consider the hypothesis H: K′b = 0 for

K′ =
⎡
⎢
⎢
⎢
⎣

3 1 1 1

0 2 −1 −1

0 0 1 −1

⎤
⎥
⎥
⎥
⎦
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The rows of K′ are LIN. Furthermore, because K′H = K′, the elements of K′b are
estimable. Using b◦ and G of (83) from (87), the numerator sum of squares is

Q = [ 48.485 94.045 0.595 ]

⎡
⎢
⎢
⎢
⎣

1
6

⎡
⎢
⎢
⎢
⎣

11 −5 −3

−5 17 3

−3 3 9

⎤
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎦

−1
⎡
⎢
⎢
⎢
⎣

48.485

94.045

0.595

⎤
⎥
⎥
⎥
⎦

= 6772.87 = SSR

in Table 5.11. Simultaneous testing of the hypotheses

H1: 3𝜇 + 𝛼1 + 𝛼2 + 𝛼3 = 0

H2: 2𝛼1 − 𝛼2 − 𝛼3 = 0

H3: 𝛼2 − 𝛼3 = 0

uses a numerator sum of squares equal to SSR. However, adding the numerator sum
of squares for testing these hypotheses individually does not give SSR as shown
below.

Hypothesis Numerator Sum of Squares

3𝜇 + 𝛼1 + 𝛼2 + 𝛼3 = 0
48.4852

11∕6
= 1282.25

2𝛼1 − 𝛼2 − 𝛼3 = 0
94.0452

17∕6
= 3121.57

𝛼2 − 𝛼3 = 0
0.5952

9∕6
= 0.24

Total 4404.06 ≠ 6772.87

For balanced data, the individual hypotheses of K′b = 0, given above, would be
considered orthogonal contrasts. This is not the case for unbalanced data because
the b.l.u.e.’s of the estimable functions involved in the hypotheses are not distributed
independently. Their covariance matrix does not have zero-off diagonal elements as
seen below. We have that

var(K′b◦) = K′GK𝜎2 = 1
6

⎡
⎢
⎢
⎢
⎣

11 −5 −3

−5 17 3

−3 3 9

⎤
⎥
⎥
⎥
⎦

𝜎2

For balanced data, K′GK would be diagonal giving rise to independence.
We shall derive a set of orthogonal contrasts that satisfy (93). To do this, we need

to obtain K′ so that its rows satisfy (92)–(94). Suppose that one contrast of interest
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is 𝛼1 − 𝛼3. In order to find two other contrasts that are orthogonal to it, we take K′ to
have the form

K′ =
⎡
⎢
⎢
⎢
⎣

a b c d

0 1 0 −1

0 f g h

⎤
⎥
⎥
⎥
⎦

Using H in (83) in order to have K′H = K′, the condition for estimability, (92)
demands that

b + c + d = a and f + g + h = 0.

The conditions in (93) gives

1
3
b − d = 0, 1

3
f − h = 0, 1

3
bf + 1

2
cg + dh = 0.

For any values of d and h solutions to these two sets of equations are

1
6
a = 1

3
b = 1

2
c = d and 1

3
f = − 1

4
g = h.

For example, putting d = 1 and h = 1 gives

K′ =
⎡
⎢
⎢
⎢
⎣

6 3 2 1

0 1 0 −1

0 3 −4 1

⎤
⎥
⎥
⎥
⎦

Then,

K′b◦ =
⎡
⎢
⎢
⎢
⎣

144.29

47.32

139.58

⎤
⎥
⎥
⎥
⎦

and K′GK=
⎡
⎢
⎢
⎢
⎣

6 0 0

0
4
3

0

0 0 12

⎤
⎥
⎥
⎥
⎦

.

Notice that K′GK above has off-diagonal elements zero. Thus, K satisfies (93)
and the contrasts are orthogonal. Furthermore, the rows of K′ are LIN and
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thus satisfy (94). We test the hypothesis K′b = 0 using (87). Calculating Q, we
have

Q = [ 144.29 47.32 139.58 ]

⎡
⎢
⎢
⎢
⎣

1
6

0 0

0 3
4

0

0 0 1
12

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

144.29

47.32

139.58

⎤
⎥
⎥
⎥
⎦

= 144.292

6
+ 47.322( 3

4
) + (139.58)2

12
= 3469.93 + 1679.39 + 1623.55

= 6772.87.

which is equal to SSR of Table 5.11.
From this development, we see that estimable and LIN contrasts

c1 = 6𝜇 + 3𝛼1 + 2𝛼2 + 𝛼3

c2 = 𝛼1 − 𝛼3

c3 = 3𝛼1 − 4𝛼2 + 𝛼3

are orthogonal in the manner of (93). Furthermore, the numerator sums of squares
for testing each of them add up to that for testing them simultaneously, namely SSR.
This illustrates (95).

Notice that for testing H: 6𝜇 + 3𝛼1 + 2𝛼2 + 𝛼3 = 0, the numerator sum of squares
is 144.292∕6 = 3469.93 = Nȳ2 = SSM. Furthermore, the sums of squares for the
contrasts orthogonal to this, 1679.39 and 1623.55, sum to 3302.94, SSRm, the sum of
squares due to fitting the model correcting for the mean (see Table 5.12). In general,
consider any contrast k′b that is orthogonal to 6𝜇 + 3𝛼1 + 2𝛼2 + 𝛼3. By (92) with H
of (83), the form of k′ must be

k′ = [ k2 + k3 + k4 k2 k3 k4 ].

The condition in (93) requires that k′ must satisfy

k′G

⎡
⎢
⎢
⎢
⎢
⎣

6

3

2

1

⎤
⎥
⎥
⎥
⎥
⎦

= [ k2 + k3 + k4 k2 k3 k4 ]

⎡
⎢
⎢
⎢
⎢
⎣

0 0 0 0

0 1
3

0 0

0 0 1
2

0

0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

6

3

2

1

⎤
⎥
⎥
⎥
⎥
⎦

= k2 + k3 + k4 = 0.

Thus k′ = [ 0 k2 k3 k4 ] with k2 + k3 + k4 = 0. Thus, any contrast k′b with k2 +
k3 + k4 = 0 that satisfies (92) and (93) is orthogonal in the manner of (93) to 6𝜇 +
3𝛼1 + 2𝛼2 + 𝛼3 and, because the first term is zero, does not involve 𝜇.
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One such contrast is 2𝛼1 − 𝛼2 − 𝛼3. Any r – 1 such contrasts that are orthogonal
to each other will have numerator sums of squares that sum to SSRm. For example,
if

K′ =
[

0 2 −1 −1

0 a b c

]

K′b will be a pair of orthogonal contrasts, orthogonal to each other and to 6𝜇 +
3𝛼1 + 2𝛼2 + 𝛼3, if a + b + c = 0 and

[ 0 2 −1 −1 ]G

⎡
⎢
⎢
⎢
⎢
⎣

0

a

b

c

⎤
⎥
⎥
⎥
⎥
⎦

= 2
3
a − 1

2
b − c = 0.

One solution to this system of equations is a = 3, b = –10, c = 7. For this solution,

K′ =
[

0 2 −1 −1

0 3 −10 7

]

.

Then,

K′b◦ =
[

94.045

136.01

]

and K′GK =

[
17
6

0

0 102

]

.

Then in (87), we have,

Q = 94.0452

17∕6
+ 136.012

102
= 3302.93 = SSRm

of Table 5.12 with a slight round off error. □

The above examples illustrate the several ways in which (92)–(95) can be used for
establishing independent and orthogonal contrasts for unbalanced data and testing
hypotheses about them. We shall give more examples in Chapter 6.

6. RESTRICTED MODELS

We have observed that sometimes a linear model may include restrictions on the
parameter vectors. Such restrictions are quite different from the “usual constraints”.
The “usual constraints” are frequently introduced for the sole purpose of obtaining a
solution to the normal equations. We will discuss this in Section 7. In contrast, we
shall consider the restrictions that we present here to be an integral part of the model.
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As such, these restrictions must be taken into account in the estimation and testing
processes.

So far, the discussion has been in terms of models whose parameters have been
very loosely defined. Indeed, no formal definitions have been made. When writing
the equation of the model y = Xb + e, we simply described b as being the vector
of parameters of the model and left it at that. Thus, in the examples, 𝜇 is described
simply as a general mean and 𝛼1, 𝛼2, and 𝛼3 as the effect on yield arising from
three different plant varieties. We imply no further definition. Sometimes, however,
more explicit definitions inherent in the model result in relationships (or restrictions)
existing among the parameters of the model. They are considered part and parcel
of the model. For example, the situation may be such that the parameters of the
model satisfy 𝛼1 + 𝛼2 + 𝛼3 = 0. We take this not as a hypothesis but as a fact without
question. We will call these kinds of relationships that exist as an integral part of
the model restrictions on the model. Their origin and concept are not the same as
those of relationships that we sometimes impose on the normal equations in order to
simplify, obtaining their solution. Those relationships will be called constraints on
the solutions. We shall discuss these in Section 7. Here we concern ourselves with
an aspect of the model. It includes relationships among its parameters. One simple
example might be a model involving three angles of a triangle.
Another might involve the total weight and its components, such as fat, bone, muscle,
and lean meat in a dressed beef carcass.

The models already discussed, those that contain no restrictions of the kind just
referred to, will be referred to as unrestricted models. Models that do include restric-
tions of this nature will be called restricted models. The question then arises as to how
the estimation and testing hypothesis processes developed for unrestricted models
apply to restricted models. In general, we consider the set of restrictions

P′b = δ (96)

as part of the models, where P′ has row rank q. The restricted model is then y =
Xb + e subject to the restriction P′b = δ. Fitting this restricted model leads, just as
in (72), to

X′Xb◦
r + P𝜃 = X′y (97a)

and

P′b◦
r = δ. (97b)

Again 2𝜃 is a vector of Lagrange multipliers. The subscript r on b◦
r denotes that b◦

r
is a solution to the normal equations of the restricted model. To solve (97), we must
make a distinction as to whether in the unrestricted model P′b is estimable or not
estimable because the solution is not the same in the two cases. We first consider the
case where P′b is estimable.
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a. Restrictions Involving Estimable Functions

When P′b is estimable, we have by analogy with (73) that a solution to (97) is

b◦
r = b◦ − GP(P′GP)−1(P′b◦ − δ). (98)

Its expected value is

E(b◦
r ) = Hb − GP(P′GP)−1(P′Hb − δ) = Hb. (99)

To obtain (99), we use E(b◦) = Hb of (8), P′H = P′ because P′b is estimable
and (96).

After some simplification (see Exercise 14), the variance of b◦
r is

var(b◦
r ) = var{[I − GP(P′GP)−1P′]b◦} = G[X′X − P(P′GP)−1P′]G′𝜎2. (100)

The error sum of squares after fitting this restricted model is

SSEr = (y − Xb◦
r )′(y − Xb◦

r ).

From (75) and (76), we see that

SSEr = SSE + (P′b◦ − δ)′(P′GP)−1(P′b◦ − δ) (101a)

with

E(SSEr) = (N − r)𝜎2 + Eb◦′P(P′GP)−1P′b◦ − δ′(P′GP)−1δ. (101b)

We apply Theorem 4 of Chapter 2 to the middle term of (101b). Using (8) and (86)
and (96) again, (101b) reduces to

E(SSEr) = (N − r + q)𝜎2.

Hence, in the restricted model, an unbiased estimator of the error variance is

�̂�2
r =

SSEr

N − r + q
. (102)

(There should be no confusion over the letter r used as the rank of X and as a subscript
to denote restricted.)

Observe that b◦
r and SSEr of (98) and (101) are not the same as b◦ and SSE.

This indicates that estimable restrictions on the parameters of the model affect the
estimation process. However, this does not affect the estimability of any function that
is estimable in the unrestricted model. Thus, if k′b is estimable in the unrestricted
model, it is still estimable in the restricted model. The condition for estimability, that
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is for some t′, E(t′y) = k′b, remains unaltered. However, although the function is still
estimable, it is a function of the parameters and therefore subject to the restrictions
P′b = δ. These may change the form of k′b. Consider, for example the function
k′b = 𝜇 + 1

2
(𝛼1 + 𝛼2). It is estimable. However, in a restricted model having the

restriction 𝛼1 − 𝛼2 = 0, k′b becomes 𝜇 + 𝛼1 or equivalently 𝜇 + 𝛼2.
Given the restriction P′b = δ, in general, the estimable function is changed to

k′b + λ′(P′b − δ). In order that this just be a function of the b’s, λ′ must be such
that λ′δ = 0. (When δ = 0, λ′ can be any vector.) Then k′b becomes k′b + λ′P′b =
(k′ + λ′P′)b.Of course, this is estimable for the unrestricted model because both k′b
and P′b are.

In the restricted model, the hypothesis H: K′b = m can be considered only if it is
consistent with P′b = δ. For example, if P′b = δ is 𝛼1 − 𝛼2 = 0, one cannot consider
the hypothesis 𝛼1 − 𝛼2 = 4. Within this limitation of consistency, the hypothesis
K′b = m is tested in the restricted model by considering the unrestricted model y =
Xb + e subject to both the restrictions P′b = δ and the testable hypothesis K′b = m.
The restricted model reduced by the hypothesis K′b = m can be called the reduced
restricted model. On writing

Q′ =
[

P′

K′

]

and 𝓁 =
[

δ

m

]

we minimize (y − Xb)′(y − Xb) subject to Q′b = 𝓁.
Since both P′ and K′ have full-row rank and their rows are mutually LIN, Q′ has
full-row rank and Q′b is estimable. The minimization leads to the solution b◦

r,H . From
(74) this is

b◦
r,H = b◦ − GQ(Q′GQ)−1(Q′b◦ − 𝓁).

The corresponding residual sum of squares is

SSEr,H = SSE + (Q′b◦ − 𝓁)′(Q′GQ)−1(Q′b◦ − 𝓁).

The test of hypothesis K′b = m is based on

F(Hr) =
(SSEr,H − SSEr)

s�̂�2
r

(103)

where �̂�2
r = SSEr∕(N − r + q) as in (102).

Recall that a function that is estimable in an unrestricted model is estimable in the
restricted model. Likewise, a hypothesis that is testable in an unrestricted model is
also testable in the restricted model. The form of the hypothesis may be changed as
a result of the restrictions. Nevertheless, the modified form of the hypothesis will be
tested under both the restricted and the unrestricted model.
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Example 20 Hypotheses that are Testable under Restricted and Unrestricted
Models The hypothesis H:𝜇 + 1

2
(𝛼1 + 𝛼2) = 20 is testable in the unrestricted

model. In a restricted model having 𝛼1 − 𝛼2 = 4 as a restriction, the hypothesis
is modified to be

H:𝜇 + 𝛼2 = 18 or H:𝜇 + 𝛼1 = 22. These are testable in the restricted model. They
are also testable in the unrestricted model. □

In general, if K′b = m is testable in the unrestricted model, then, for any matrix
Ls×q, (K′ + LP′)b = m + Lδ will be testable in the restricted model. It will also be
testable in the unrestricted model.

b. Restrictions Involving Non-estimable Functions

When the restrictions are P′b = δ and P′b is not estimable, the solutions to (97) are
similar to (80),

b◦
r = b◦ + (H − I)z1 (104)

where, following (78), z1 satisfies

P′(H − I)z1 = δ − P′GX′y. (105)

Hence, b◦ is just one of the solutions to the normal equations X′Xb = X′y. Therefore,
in this case, SSEr = SSE. The restrictions do not affect the residual sum of squares.

Just as before, the inclusion of restrictions in the model does not alter the estima-
bility of a function that is estimable in the unrestricted model. It is still estimable
in the restricted model. However, it will be amended because of the restrictions.
Since the restrictions do not involve estimable functions, the amended form of an
estimable function may be such that even though it is estimable in the restricted
model, it is not estimable in the unrestricted model. Consider the model used for
Examples 1–17. The function 𝜇 + 1

2
(𝛼1 + 𝛼2) is estimable in the unrestricted model.

However, for a restricted model that includes the restriction 𝛼1 = 0, we amend the
function 𝜇 + 1

2
(𝛼1 + 𝛼2) to be 𝜇 + 1

2
𝛼2. This amended function, although estimable

in the restricted model, is not estimable in the unrestricted model.
Thus, functions that are not estimable in unrestricted models may be estimable

in restricted models. In general, if k′b is estimable in the unrestricted model, then
k′b + λ′(P′b − δ) is estimable in the restricted model provided that either δ = 0 or
λ′ is such that λ′δ = 0. Then, the function k′b + λ′P′b is estimable in the restricted
model.

Just as SSEr = SSE, when the restrictions involve non-estimable functions so too,
when testing the hypotheses K′b = m will SSEr,H = SSEH. Hence, the F-statistic
for testing the hypothesis is identical to that of the unrestricted model. Thus, so far
as calculation of the F-statistic is concerned, the imposition of restrictions involving
non-estimable functions makes no difference at all. Both SSE and SSEH are calculated
in the usual manner. Thus, the F-statistic is calculated just as in (71).
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The fact that the model has restrictions on its parameters involving non-estimable
functions does not affect the calculation of the F-statistic. However, these restrictions
do apply to the hypothesis being tested, just as they do to estimable functions discussed
above. Thus, hypotheses that are testable in the unrestricted model are also testable in
the restricted model. However, application of the restrictions may change their form so
that although they are testable in the unrestricted model. Again, consider Examples
1–17. The hypothesis H: 𝛼1 − 2𝛼2 + 𝛼3 = 17 is testable in the unrestricted model.
In a restricted model having the restriction 𝛼1 + 𝛼3 = 3, the hypothesis becomes
H: 3𝛼1 + 𝛼3 = 23. This hypothesis is testable in the restricted model, but is not
testable in the unrestricted model.

In general, if K′b = m is testable in the unrestricted model then, for any matrix
Ls×q (K′ + LP′)b = m + Lδ will be testable in the restricted model. It will not be
testable in the unrestricted model.

The results of this section so far as estimable functions and tests of hypotheses are
concerned are summarized in Tables 5.13A and 5.13B.

c. Stochastic Constraints

In Section 6e of Chapter 3, we considered stochastic constraints of the form r =
Rβ + η where the elements of the vector η are independent with mean zero and
variance τ2. Again, we consider an augmented model

[
y

r

]

=
[

X

R

]

b +
[

e

τ

]

(106)

Where the elements of e are independent with mean zero and variance 𝜎2. However,

this time, the matrices X and R and, as a result,

[
X
R

]

need not be of full rank. Again,

we obtain the least-square estimator by minimizing

m = (Y − Xb)′(Y − Xb)

𝜎2
+ (r − Rb)′(r − Rb)

𝜏2
.

The normal equations are

(𝜏2X′X + 𝜎2R′R)b̂◦
m = 𝜏2X′y + 𝜎2R′r.

Then the mixed estimator of Theil and Goldberger (1961) takes the form

b̂◦
m = (𝜏2X′X + 𝜎2R′R)−(𝜏2X′y + 𝜎2R′r), (107)
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where the superscripted “–” means a generalized inverse of the matrix. Using Theorem
10 of Chapter 1, we have,

b̂◦
m = (𝜏2X′X + 𝜎2R′R)−(𝜏2X′y + 𝜎2R′r)

= (𝜏2X′X + 𝜎2R′R)−(𝜏2X′X(X′X)−X′y + 𝜎2R′R(R′R)−R′r)

= (𝜏2X′X + 𝜎2R′R)−(𝜏2X′Xb̂◦
1 + 𝜎

2R′Rb̂◦
2)

= (𝜏2X′X + 𝜎2R′R)−(𝜏2X′Xb̂1 + 𝜎2R′Rb̂2)

(108)

where b◦
1 = (X′X)−X′y and b◦

2 = (R′R)−R′r. In order to have unique estimators of
parametric functions p′b, we need to define some different kinds of estimability.

Definition 1 Given an augmented model in the form of (106) p′b

(i) is X estimable if it is estimable for the model y = Xb + e;

(ii) is R estimable if it estimable for the model r = Rb + 𝜏;

(iii) is (X, R) estimable if it is estimable for the model (106).

An (X, R) estimable function need not be X estimable or R estimable. However, an
X or R estimable function is (X, R) estimable. This is analogous to the idea that if a
hypothesis is testable in a restricted model, it may not be testable in an unrestricted
model.

Observe that if a function is X estimable there is a t′ where p′ = t′X =
[
t′0

]
[

X
R

]

so that the function is (X, R) estimable. A similar argument applies to R estimable
functions. Example 21 gives an example if an (X, R) estimable function that is not X
estimable.

Example 21 An (X, R) Estimable Function that is not X Estimable or R Estimable
Consider the augmented model

[
y

r

]

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 0

1 1 0

1 0 1

1 0 1

0 1 0

0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

b1

b2

b3

⎤
⎥
⎥
⎥
⎦

+ e

where

X =

⎡
⎢
⎢
⎢
⎢
⎣

1 1 0

1 1 0

1 0 1

1 0 1

⎤
⎥
⎥
⎥
⎥
⎦

and R =
[

0 1 0

0 0 1

]

.

Assume that 𝜎2 = 𝜏2 = 1.
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Now,

X′X =
⎡
⎢
⎢
⎢
⎣

4 2 2

2 2 0

2 0 2

⎤
⎥
⎥
⎥
⎦

, R′R =
⎡
⎢
⎢
⎢
⎣

0 0 0

0 1 0

0 0 1

⎤
⎥
⎥
⎥
⎦

and X′X + R′R=
⎡
⎢
⎢
⎢
⎣

4 2 2

2 3 0

2 0 3

⎤
⎥
⎥
⎥
⎦

.

The matrix X′X + R′R is non-singular so every linear function is (X, R) estimable.
However b1 + b2 + b3 is neither X estimable or R estimable. A generalized inverse
of

X′X is (X′X)− =
⎡
⎢
⎢
⎢
⎣

0 0 0

0 1
2

0

0 0 1
2

⎤
⎥
⎥
⎥
⎦

, H = (X′X)−X′X =
⎡
⎢
⎢
⎢
⎣

0 0 0

1 1 0

1 0 1

⎤
⎥
⎥
⎥
⎦

and

[ 1 1 1 ]

⎡
⎢
⎢
⎢
⎣

0 0 0

1 1 0

1 0 1

⎤
⎥
⎥
⎥
⎦

= [ 2 1 1 ] ≠ [ 1 1 1 ].

Furthermore,

R′R =
⎡
⎢
⎢
⎣

0 0 0
0 1 0
0 0 1

⎤
⎥
⎥
⎦

is idempotent so it is its own generalized inverse and

[ 1 1 1 ]

⎡
⎢
⎢
⎢
⎣

0 0 0

0 1 0

0 0 1

⎤
⎥
⎥
⎥
⎦

= [ 0 1 1 ] ≠ [ 1 1 1 ].

Hence b1 + b2 + b3 is neither X estimable or R estimable. In a similar manner, we can
show that b1 + b2 is X estimable but not R estimable and that b2 is not X estimable
but is R estimable. (See Exercise 15.) □

7. THE “USUAL CONSTRAINTS”

A source of difficulty with a non-full-rank model is that the normal equations X′Xb◦ =
X′y do not have a unique solution. We have skirted this situation by using a generalized
inverse of X′X. Another way to obtain a solution to the normal equations is to impose
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the “usual constraints” or usual restrictions. For example, one way to solve the normal
equations for the linear model

y =
⎡
⎢
⎢
⎢
⎣

12 12 0 0

12 0 12 0

12 0 0 12

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

𝜇

𝛼1

𝛼2

𝛼3

⎤
⎥
⎥
⎥
⎥
⎦

+ e,

6𝜇◦ + 2𝛼◦1 + 2𝛼◦2 + 2𝛼◦3 = y..
2𝜇◦ + 2𝛼◦1 = y1.

2𝜇◦ + 2𝛼◦2 = y2.

2𝜇◦ + 2𝛼◦3 = y3.

(109)

is to impose the constraint 𝛼◦1 + 𝛼◦2 + 𝛼◦3 = 0. Using this constraint, adding the last
three equations yields 6𝜇◦ = y..and, as a result, 𝜇◦ = ȳ.., 𝛼

◦
i = ȳi. − ȳ.., i = 1, 2, 3 as a

solution. This corresponds to the solution that would be obtained using the generalized
inverse

G =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1
6

0 0 0

− 1
6

1
2

0 0

− 1
6

0 1
2

0

− 1
6

0 0 1
2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

When choosing constraints to impose, we should keep the following in mind:

1. The constraints cannot be any conditions.

2. Constraints of the form
∑
𝛼◦i = 0 are generally not the simplest for unbalanced

data.

3. Constraints are not necessary to solve normal equations. They are only
sufficient.

4. They can be used regardless of whether a similar relationship holds for the
elements of the model.

5. In order for the solutions of the normal equations to be estimates of the param-
eters, there must be enough relationships to make it a full-rank model.

We will now expand on these points.
We have already seen that with any solution b◦ to the normal equations, we

can derive most things of interest in linear model estimation. These include SSE =
y′y − b◦′X′y, the analysis of variance, the error variance estimate �̂�2 = SSE∕(N − r),
and the b.l.u.e. of any estimable function k′b as k̂′b = k′b◦. We can obtain these things
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provided that we have a solution b◦, no matter how it has been derived. However, for
some things, we need the generalized inverse of X′X that yielded b◦. For example,
the generalized inverse is, if not absolutely necessary, very helpful to ascertain the
estimability of a function or to test a testable hypothesis. We shall show that applying
constraints to the solutions is probably the easiest way to obtain solutions to the
normal equations. However, if we want the generalized inverse corresponding to a
solution to the normal equations, we must apply the constraints in a way that readily
yields the generalized inverse and recognize the implications of doing this.

a. Limitations on Constraints

First, the constraints need apply only to the elements of the solution vector b◦. They
are imposed solely for deriving a solution. They do not have to have anything to do
with the model. Second, if the constraints are of the form C′b◦ = 𝛾 , we know from
(72) that minimizing (y − Xb◦)′(y − Xb◦) subject to C′b◦ = 𝛾 leads to the equations

X′Xb◦ + Cλ = X′y

C′b◦ = 𝛾.

These equations are equivalent to

[
X′X C

C′ 0

] [
b◦

λ

]

=
[

X′y

𝛾

]

, (110)

where λ is a vector of Lagrange multipliers. For the equations in (110) to have one
solitary solution for b◦ and λ, the matrix C′ must have full-row rank and sufficient

rows to make

[
X′X C
C′ 0

]

non-singular. Applying Lemma 6 in Chapter 1 to (34), the

rows of C′ must be LIN of those of X. That means that C′ cannot be of the form
C′ = L′X. Thus, the constraints C′b◦ = 𝛾 must be such that C′b is not estimable.
Therefore, they cannot be any constraints. They must be constraints for which C′b
is not estimable, and there must be p – r of them where X has p columns and rank
r. Under these conditions, the inverse given in Section 5b of Chapter 1 can be used
to obtain the unique solution of (110). This can be shown to be equivalent to the
solutions obtainable by (104) and (105).

b. Constraints of the Form b◦i = 0

For balanced data that lead to normal equations like (109), for example, constraints of
the form

∑
𝛼◦i = 0 are indeed the easiest to use. However, for unbalanced data, they

are not the easiest to use. For unbalanced data, the constraints that are easiest to use
are the simple ones of putting p – r elements of b◦ equal to zero. They cannot be any

p – r elements. They must be judiciously chosen to make

[
X′X C
C′ 0

]

non-singular.
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We shall discuss ways of doing this in the chapters on applications (Chapters 6
and 7).

Using constraints that make some of the elements of b◦ be zero is equivalent
to putting those elements equal to zero in the normal equations or more exactly
in (y − Xb◦)′(y − Xb◦) which is minimized, subject to such constraints. This has
the effect of eliminating from the normal equations, all those terms having the
zeroed b◦′i s and also the equations corresponding to the same b◦′i s. This, in turn, is
equivalent to eliminating from X′X, the rows and columns corresponding to those
b◦′i s and eliminating from X′y, the corresponding elements. What remains of X′X is
a symmetric non-singular matrix of order r. Hence, these equations modified by the
constraints of putting some b◦′i s zero can be solved. The solutions together with the
zeroed b◦′i s of the constraints, then constitute b◦, a solution to the normal equations.
We now describe the details of this procedure and the derivation of the corresponding
generalized inverse.

Putting (p – r) b◦′i s equal to zero is equivalent to C′b◦ = 0 with C′ having
p – r rows each of which is null except for a single unity element. Suppose R is the
identity matrix of order p with its rows in a different sequence. Such matrices are
called permutation matrices. We have that R′R = I. Suppose that the permutation
matrix R is such that

C′R = [ 0(p−r)×r Ip−r ]. (111)

Then, remembering R is orthogonal, the equations to be solved (110) can be rewritten
as

[
R′ 0

0 I

] [
X′X C

C′ 0

] [
R 0

0 I

] [
R′ 0

0 I

] [
b◦

λ

]

=
[

R′ 0

0 I

] [
X′y

𝛾

]

.

This reduces to

[
R′X′XR R′C

C′R 0

] [
R′b◦

λ

]

=
[

R′X′y

0

]

. (112)

We partition R′X′XR, R′b◦, and R′X′y to conform with C′R in (111). Then,

R′X′XR =
[

Z11 Z12

Z21 Z22

]

, R′b◦ =

[
b◦

1

b◦
2

]

, and R′X′y =
[

(X′y)1

(X′y)2

]

. (113)

We then have,

Z11, of full rank, = (X′X)m. (114)
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We also have that

b◦
1 = solutions of modified equations

and

b◦
2 = zeroed b◦′i s.

Equations (112) become

⎡
⎢
⎢
⎢
⎣

Z11 Z12 0

Z21 Z22 I

0 I 0

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

b◦
1

b◦
2

λ

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

(X′y)1

(X′y)2

0

⎤
⎥
⎥
⎥
⎦

.

Since b◦
2 = 0, the solution may be written in the form

⎡
⎢
⎢
⎢
⎣

b◦
1

b◦
2

λ

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

Z−1
11 0 −Z−1

11 Z12

0 0 I

−Z21Z−1
11 I 0

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

(X′y)1

(X′y)2

0

⎤
⎥
⎥
⎥
⎦

. (115)

The important part of this solution is

b◦
1 = Z−1

11 (X′y)1. (116)

We may derive equation (116) by multiplying the inverse of the modified X′X matrix
by the modified X′y vector. A complete solution b◦ now consists of the b◦

1 and the
b◦′i zeroed by the constraints.

We can derive the generalized inverse of X′X corresponding to a solution (116)
as follows. From (115),

[
b◦

1

b◦
2

]

=
[

Z−1
11 0

0 0

] [
(X′y)1

(X′y)2

]

=
[

Z−1
11 0

0 0

]

R′X′y.

Using the orthogonality of R and (113), we obtain

b◦ = R(R′b◦) = R
[

Z−1
11 0

0 0

]

R′X′y. (117)

From Section 1b of Chapter 1 with the definition of Z11 given in (114), the generalized
inverse of X′X is given by

G = R
[

Z−1
11 0

0 0

]

R′ (118)
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Thus, from equation (117), G of (118) is the generalized inverse of X′X corresponding
to the solution b◦ found by using (116) and (117). This leads to the following
procedure.

c. Procedure for Deriving b◦ and G

1. Find the rank of the matrix X′X of order p. Call it r.

2. Delete p − r rows and corresponding columns from X′X, to leave a symmetric
sub-matrix of full rank r. Call the modified matrix (X′X)m.

3. Corresponding to the rows deleted from X′X delete elements from X′y. Call
the modified vector (X′y)m.

4. Calculate b◦
m = [(X′X)m]−1(X′y)m.

5. In b◦, all elements corresponding to rows deleted from X′X are zero. The other
elements are those of b◦

m in sequence.

6. In X′X, replace all the elements of (X′X)m. by those of its inverse. Put the other
elements zero. The resulting matrix is G its generalized inverse corresponding
to the solution b◦. Its derivation is in line with the algorithm of Section 1b of
Chapter 1.

Example 22 Illustration of the Procedure Consider the linear model

y =
⎡
⎢
⎢
⎢
⎣

14 14 0 0

14 0 14 0

14 0 0 14

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

𝜇

𝛼1

𝛼2

𝛼3

⎤
⎥
⎥
⎥
⎥
⎦

+ e

Then,

X′X =

⎡
⎢
⎢
⎢
⎢
⎣

12 4 4 4

4 4 0 0

4 0 4 0

4 0 0 4

⎤
⎥
⎥
⎥
⎥
⎦

Step 1: The order of the matrix is p = 4. Its rank r = 3.
Steps 2 and 3: We can use any sub-matrix of rank 3 we want to. It does not have to
be the one in the upper left-hand corner.

(X′X)m =
⎡
⎢
⎢
⎢
⎣

4 0 0

0 4 0

0 0 4

⎤
⎥
⎥
⎥
⎦

, (X′y)m =
⎡
⎢
⎢
⎢
⎣

y1.

y2.

y3.

⎤
⎥
⎥
⎥
⎦

.
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Step 4:
We find that

bm =

⎡
⎢
⎢
⎢
⎢
⎣

1
4
y1.

1
4
y2.

1
4
y3.

⎤
⎥
⎥
⎥
⎥
⎦

.

Step 5: Putting the zero in we get

b◦ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

1
4
y1.

1
4
y2.

1
4
y3.

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Step 6: A generalized inverse is

G =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0

0 1
4

0 0

0 0 1
4

0

0 0 0 1
4

⎤
⎥
⎥
⎥
⎥
⎥
⎦

There are other correct solutions for this model. See how many of them you
can find. □

d. Restrictions on the Model

Throughout the preceding discussion of constraints, no mention has been made of
restrictions on the parameters of the model corresponding to constraints imposed on
a solution. This is because constraints on the solution are used solely for obtaining a
solution and need have no bearing on the model whatever. However, if the model is
such that there are restrictions on its parameters, these same restrictions can be used
as constraints on the solutions, provided that they relate to non-estimable functions.
More formally, this means that for restrictions P′b = δ, P′b is not estimable. If P′

were of full-row rank p – r, then the solutions would be given by

[
X′X P

P′ 0

] [
b◦

λ

]

=
[

X′y

δ

]

(119)

and the solution would in fact be the b.l.u.e. of b. Of course, the solution to (119)
could also be obtained by using the solution derived from simple constraints of the
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form b◦i = 0 discussed in subsection b, namely equation (117). This can be amended
in accord with (104) and (105) to give a solution satisfying (119). The solution will
be from (104)

b◦
r,0 = b◦

0 + (H − I)z1, (120)

using b◦ of (117) as b◦
0, G of (118). From (105), the z1 of (120) will be such that

P′(H − I)z1 = δ − P′GX′y (121)

as in (105). This procedure will be especially useful when the restrictions in the
model P′b = δ involves P′ of less than p – r rows.

We have already pointed out that the important thing about restrictions in the model
is their effect on estimable functions and testable hypotheses. Equally as important
is the fact that constraints on the solutions do not necessarily imply restrictions
on the model. Therefore, constraints do not affect estimable functions or testable
hypotheses. Furthermore, since constraints are only a means of obtaining a solution
b◦, they do not affect sums of squares. Confusion on these points often arises because
of certain kinds of restrictions that often occur. These same restrictions applied as
constraints to the solution greatly aid in obtaining a solution. For example, the model
equation yij = 𝜇 + 𝛼i + eij is often written as yij = 𝜇i + eij with 𝜇 and 𝛼i defined as
𝜇 =

∑c
i=1 𝜇i∕c and 𝛼i = 𝜇i − 𝜇, respectively. In this way, a restriction on the model

is
∑c

i=1 𝛼i = 0. Suppose for c = 3, the normal equations were for such a model

6𝜇◦ + 2𝛼◦1 + 2𝛼◦2 + 2𝛼◦3 = y..
2𝜇◦ + 2𝛼◦1 = y1.

2𝜇◦ + 2𝛼◦2 = y2.

2𝜇◦ + 2𝛼◦3 = y3..

In order to help solve the equations and because 𝛼1 + 𝛼2 + 𝛼3 = 0, we impose the
constraint

𝛼◦1 + 𝛼◦2 + 𝛼◦3 = 0. (122)

On the other hand, suppose that the normal equations were

6𝜇◦ + 3𝛼◦1 + 2𝛼◦2 + 𝛼◦3 = y..
2𝜇◦ + 3𝛼◦1 = y1.

2𝜇◦ + 2𝛼◦2 = y2.

2𝜇◦ + 𝛼◦3 = y3..

(123)

For these normal equations, the constraint (122) is of no particular help in solving
them.
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A helpful constraint would be

3𝛼◦1 + 2𝛼◦2 + 𝛼◦3 = 0. (124)

However, this is no reason for making 3𝛼1 + 2𝛼2 + 𝛼3 = 0 be part of the model. Not
only might it be quite inappropriate, but also there is no need for it. Suppose in fact
that 𝛼1 + 𝛼2 + 𝛼3 = 0 is a meaningful restriction in the model. Then (124) could still
be used for solving equations (123). Furthermore, provided that the corresponding
generalized inverse of X′X was found, the solution could be amended to satisfy (122)
by using (120) and (121). Thus, if b◦ is the solution satisfying (124), then that sat-
isfying (122) is (120) with (121) using P′ = [ 0 1 1 1 ], δ = 0 and G corresponding
to b◦

0.

e. Illustrative Examples of Results in Subsections a–d

We shall use data from Examples 1–17. Recall that from (6), the normal equations
were

⎡
⎢
⎢
⎢
⎢
⎣

6 3 2 1

3 3 0 0

2 0 2 0

1 0 0 1

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

𝜇◦

𝛼◦1
𝛼◦2
𝛼◦3

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

y..
y1.

y2.

y3.

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

144.29

142.53

1.57

0.19

⎤
⎥
⎥
⎥
⎥
⎦

.

We now give three illustrations of the procedure outlined in subsection c. In each case,
we give the six steps from Subsection c. Step 1 is the same for all three illustrations,
so it will not be repeated in Examples 24 and 25.

Example 23 The First Illustration Step 1: p = 4 and r = 3.

Steps 2 and 3: (X′X)m =
⎡
⎢
⎢
⎣

6 3 2
3 3 0
2 0 2

⎤
⎥
⎥
⎦

and (X′y)m =
⎡
⎢
⎢
⎣

144.29
142.53
1.57

⎤
⎥
⎥
⎦

.

Step 4: b◦
m = (X′X)−m(X′y)m =

⎡
⎢
⎢
⎢
⎣

1 −1 −1
−1 4

3
1

−1 1 3
2

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎣

144.29
142.53
1.57

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

0.19
47.32
0.595

⎤
⎥
⎥
⎦

.

Step 5:

b◦′ = [ 0.19 47.32 0.595 0 ]. (125)

Step 6: G =

⎡
⎢
⎢
⎢
⎢
⎣

1 −1 −1 0

−1 4
3

1 0

−1 1 3
2

0

0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎦

.
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The value of b◦ obtained above is the same as that of b◦
2 in Example 2.

Notice that

(0.19)(144.2) + (47.32)(142.53) + (1.57)(0.595) = 6772.87 = SSR.

The next example uses a different choice of (X′X)m. □

Example 24 The Second Illustration Steps 2 and 3: (X′X)m =
⎡
⎢
⎢
⎢
⎣

6 2 1

2 2 0

1 0 1

⎤
⎥
⎥
⎥
⎦

and (X′y)m =
⎡
⎢
⎢
⎢
⎣

144.29

1.57

0.19

⎤
⎥
⎥
⎥
⎦

.

Step 4: b◦
m = 1

6

⎡
⎢
⎢
⎢
⎣

2 −2 −2

−2 5 2

−2 2 8

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

144.29

1.57

0.19

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

47.51

−46.725

−47.32

⎤
⎥
⎥
⎥
⎦

.

Step 5: b◦′ = [ 47.51 −46.751 −47.32 ].

Step 6: G = 1
6

⎡
⎢
⎢
⎢
⎢
⎣

2 0 −2 −2

0 0 0 0

−2 0 5 2

−2 0 2 8

⎤
⎥
⎥
⎥
⎥
⎦

.

One check on this result is

SSR = b◦′X′y = (47.51)(144.29) + (−46.725)(1.57) + (−47.32)(0.19) = 6772.87

as before. □

The next example is the easiest computationally.

Example 25 The Third Illustration Step 2 and 3: (X′X)m =
⎡
⎢
⎢
⎣

3 0 0
0 2 0
0 0 1

⎤
⎥
⎥
⎦

,

(X′y)m =
⎡
⎢
⎢
⎣

142.53
1.57
0.19

⎤
⎥
⎥
⎦

Step 4: b◦
m =

⎡
⎢
⎢
⎢
⎣

1
3

0 0

0 1
2

0

0 0 1

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

142.53

1.57

0.19

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

47.51

0.785

0.19

⎤
⎥
⎥
⎥
⎦

Step 5: b◦′ = [ 0 47.51 0.785 0.19 ]
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Step 6: G =

⎡
⎢
⎢
⎢
⎢
⎣

0 0 0 0
0 1

3
0 0

0 0 1
2

0
0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎦

Observe that (47.51)(142.53) + (0.785)(1.57) + (0.19)(0.19) = 6772.87. □

The b◦ in Example 25 above is the same as b◦
1 in Example 2. The sums of squares for

Examples 23 and 25 are obtained in Example 6, equations (21) and (22), respectively.
They are the same as that for Example 24 as the theory we are developing would
predict.

Example 26 Solution of Normal Equations with a Restriction Suppose that the
restrictions on the model are 𝛼1 + 𝛼2 + 𝛼3 = 0. Then, the equations (119) are

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

6 3 2 1 0

3 3 0 0 1

2 0 2 0 1

1 0 0 1 1

0 1 1 1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜇◦

𝛼◦1
𝛼◦2
𝛼◦2
λ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

144.29

142.53

1.57

0.19

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(126)

Inverting the 5 × 5 matrix the solution is

[
b◦

λ

]

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜇◦

𝛼◦1
𝛼◦2
𝛼◦3
λ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 1
54

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

11 −5 −2 7 −18

−5 17 −4 −13 18

−2 −4 20 −16 18

7 −13 −16 29 18

18 18 18 18 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

144.29

142.53

1.57

0.19

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Then,

b◦′ = [𝜇◦ 𝛼◦1 𝛼◦2 𝛼◦3 ] = [ 16.1617 31.3483 −15.3767 −15.9717 ]. (127)

An alternative way to obtain a solution is that of (120). Use a solution based on
the constraint 𝛼◦3 = 0 and amend it to satisfy 𝛼◦1 + 𝛼◦2 + 𝛼◦3 = 0. To do this, use
b◦′ = [ 0.19 47.32 0.595 0 ] of (125) where the corresponding H matrix is

H = GX′X =

⎡
⎢
⎢
⎢
⎢
⎣

1 0 0 1

0 1 0 −1

0 0 1 −1

0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎦

.
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Hence, as in (120) the solution to (126) is

b◦
r,0 = b◦′ =

⎡
⎢
⎢
⎢
⎢
⎣

0.19

47.32

0.595

0

⎤
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎣

0 0 0 1

0 0 0 −1

0 0 0 −1

0 0 0 −1

⎤
⎥
⎥
⎥
⎥
⎦

z1. (128)

Then (121) is

[ 0 1 1 1 ]

⎡
⎢
⎢
⎢
⎢
⎣

0 0 0 1

0 0 0 −1

0 0 0 −1

0 0 0 −1

⎤
⎥
⎥
⎥
⎥
⎦

z1 = −[ 0 1 1 1 ]

⎡
⎢
⎢
⎢
⎢
⎣

0.19

47.32

0.595

0

⎤
⎥
⎥
⎥
⎥
⎦

.

Therefore,

z′1 = [ z1 z2 z3 15.971 ].

Substitution in (128) gives

b◦
r,0 =

⎡
⎢
⎢
⎢
⎢
⎣

0.19

47.32

0.595

0

⎤
⎥
⎥
⎥
⎥
⎦

+ 15.9717

⎡
⎢
⎢
⎢
⎢
⎣

1

−1

−1

−1

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

16.1617

31.3483

−15.3767

−15.9717

⎤
⎥
⎥
⎥
⎥
⎦

as in (127).
Suppose we use 3𝛼◦1 + 2𝛼◦2 + 𝛼◦3 = 0. The solution to

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

6 3 2 1 0

3 3 0 0 1

2 0 2 0 1

1 0 0 1 1

0 3 2 1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜇◦

𝛼◦1
𝛼◦2
𝛼◦2
λ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

144.29

142.53

1.57

0.19

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

yields

b◦ = [ 24.0483 23.4617 −23.2633 −23.8583 ]. (129)
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The corresponding generalized inverse is

G = 1
6

⎡
⎢
⎢
⎢
⎢
⎣

1 0 0 0

−1 2 0 0

−1 0 3 0

−1 0 0 6

⎤
⎥
⎥
⎥
⎥
⎦

and H = 1
6

⎡
⎢
⎢
⎢
⎢
⎣

1 0 2 1

−1 2 −2 −1

−1 0 4 −1

−1 0 −2 5

⎤
⎥
⎥
⎥
⎥
⎦

.

To amend this solution to satisfy 𝛼◦1 + 𝛼◦2 + 𝛼◦3 = 0, we solve (121). For this case that
is

[ 0 1 1 1 ]
1
6

⎡
⎢
⎢
⎢
⎢
⎣

0 3 2 1

0 −3 −2 −1

0 −3 −2 −1

0 −3 −2 −1

⎤
⎥
⎥
⎥
⎥
⎦

z1 = −[ 0 1 1 1 ]

⎡
⎢
⎢
⎢
⎢
⎣

24.0483

23.4617

−23.2633

−23.8583

⎤
⎥
⎥
⎥
⎥
⎦

or

−(3z2 + 2z3 − z4) = 47.3866.

Using (129) for b◦
0 in (120), the solution satisfying 𝛼◦1 + 𝛼◦2 + 𝛼◦3 = 0 is

br,◦
0 =

⎡
⎢
⎢
⎢
⎢
⎣

24.0483

23.4283

−23.2633

−23.8583

⎤
⎥
⎥
⎥
⎥
⎦

+ 1
6

⎡
⎢
⎢
⎢
⎢
⎣

0 3 2 1

0 −3 −2 −1

0 −3 −2 −1

0 −3 −2 −1

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

z1

z2

z3

z4

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

24.0483

23.4283

−23.2633

−23.8583

⎤
⎥
⎥
⎥
⎥
⎦

+ 1
6

⎡
⎢
⎢
⎢
⎢
⎣

−47.3866

47.3866

47.3866

47.3866

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

16.1605

31.326

−15.3655

−15.9605

⎤
⎥
⎥
⎥
⎥
⎦

as in (127). □

8. GENERALIZATIONS

We have now discussed both the full-rank model and the model not of full rank. The
non-full-rank model is, of course just a generalization of the full-rank model. As has
already been pointed out the full-rank model is a special case of the non-full-rank
model with G and b◦ taking the forms (X′X)−1and b̂, respectively. Therefore, in
general, the non-full-rank model covers all the cases.



GENERALIZATIONS 277

Estimability and testability, however, only enter into the non-full-rank model.
For the full-rank case, all linear functions are testable and all linear hypotheses are
testable. Therefore, there is merit in dealing with the two models separately, as we
have done.

However, in both models, only one special case has been considered concerning
the variance of the error terms in the linear model. This is the case where the error
terms have var(e) = 𝜎2I. We now briefly consider the general case of var(e) = 𝜎2V,
both where V is non-singular and where V is singular.

a. Non-singular V

When var(e) = 𝜎2V with V non-singular, the normal equations are as indicated in
Section 3 of Chapter 3.

X′V−1Xb◦ = X′V−1y. (130)

For the full-rank model, the normal equations in (130) have the single solution

b̂ = (X′V−1X)−1X′V−1y (131)

as given in Section 3 of Chapter 3. For the non-full-rank model, a generalized inverse
of X′V−1X must be used to solve (130). If we denote this by F, we obtain

b̂ = FX′V−1y with X′V−1XFX′V−1X = X′V−1X. (132)

The result in (131) is a special case of that in (132). We thus see that estimation in the
model using var(e) = 𝜎2V for non-singular V is identical to that when var(e) = 𝜎2I
with the following exceptions. First, we use a generalized inverse of X′V−1X instead
of an ordinary inverse. Second, we use X′V−1y in place of X′y.

Furthermore, since V is a symmetric positive definite matrix, there exists a non-
singular L such that V−1 = LL′. Putting x = L′y transforms the model y = Xb + e
into x = L′Xb + ε, where ε = L′e and var(ε) = 𝜎2I. Estimating b from this model
for x gives b̂ or b◦ from (131) or (132), respectively. The corresponding error sum
of squares is

x′x − b◦′X′Lx = y′V−1y − b◦X′V−1y. (133)

In the full-rank case, we use b̂ for b◦. Thus, we use the weighted sum of squares
y′V−1y in place of y′y in the corresponding analysis of variance.

b. Singular V

At least two conditions among data can lead to var(y) = V being singular. One
condition is when any elements of y are linear functions of other elements. Another
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is if any elements of y are a constant plus linear functions of other elements. For
example, if,

v(y1) = v(y2) = 𝜎2 and cov(y1, y2) = 0

then,

var

⎡
⎢
⎢
⎢
⎣

y1

y2

y1 + y2

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

1 0 1

0 1 1

1 1 2

⎤
⎥
⎥
⎥
⎦

𝜎2; (134)

and for any constant 𝜃,

var

⎡
⎢
⎢
⎢
⎣

y1

y2

y1 + 𝜃

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

1 0 1

0 1 0

1 0 1

⎤
⎥
⎥
⎥
⎦

𝜎2. (135)

Suppose we write w′ for the vector [ y1 y2 ], and let the equation of the model be

w =
[

y1

y2

]

= Tb + ε. (136)

Then the equation for

y =
⎡
⎢
⎢
⎢
⎣

y1

y2

y1 + y2

⎤
⎥
⎥
⎥
⎦

of (134) can be written as

y =
⎡
⎢
⎢
⎢
⎣

1 0

0 1

1 1

⎤
⎥
⎥
⎥
⎦

[
y1

y2

]

=
⎡
⎢
⎢
⎢
⎣

1 0

0 1

1 1

⎤
⎥
⎥
⎥
⎦

w =
⎡
⎢
⎢
⎢
⎣

1 0

0 1

1 1

⎤
⎥
⎥
⎥
⎦

(Tb + ε),

that is, as y = Mw for w of (136). On the other hand, the equation for

y =
⎡
⎢
⎢
⎢
⎣

y1

y2

y1 + 𝜃

⎤
⎥
⎥
⎥
⎦
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of (135) cannot be written as y = Mw for w of (136). We only consider the case where
y can be written in the form y = Mw like (134). Zyskind and Martin (1969) consider
the more general case where V is singular but y cannot necessarily be written in the
form y = Mw. The situation where y = Mw is a special case of their results. We
consider it, briefly, because it is the way a singular V frequently arises. The normal
equations, their solutions, and the ensuing results are most easily described for this
case.

Whenever some elements of y can be described as functions of other elements, y
can be written as

y = Mw, (137)

where no element of w is a linear function of the others. Thus, M has full-column
rank. Furthermore, on taking the equation of the model for w as being

w = Tb + ε, (138)

we have

y = Mw = MTb + Mε.

As a result, if the model for y is y = Xb + e, we can take

X = MT (139)

and e = Mε. Furthermore, if var(ε) = 𝜎2I and var(y) = V𝜎2, we have

V𝜎2 = var(y) = var(e) = var(Mε) = MM′𝜎2

so that

V = MM′. (140)

From (136), the normal equations for b◦ are

T′Tb◦ = T′w. (141)

However, since M has full-column rank it can be readily shown that M′(M′M)−2M′

is the unique Moore–Penrose generalized inverse of V of (140) by checking that it
satisfies all four of the defining axioms. Furthermore, by Theorem 10 of Chapter 1,
M′(MM′)−M is unique for all generalized inverses V− = (MM′)−of V = MM′.
Using the Moore–Penrose inverse for this shows that

M′V−M = M′(MM′)−M = M′M(M′M)−2M′M = I. (142)
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Rewrite (141) as T′ITb◦ = T′Iw. Using (142), this becomes T′M′V−MTb◦ =
T′M′V−Mw.

From (137) and (139), this is equivalent to

X′V−Xb◦ = X′V−y. (143a)

Hence,

b◦ = (X′V−X)−X′V−y, (143b)

where (X′V−X)− is any generalized inverse of X′V−X and V− is any generalized
inverse of V. The results obtained in (143) are identical to those for non-singular V,
(130) and (131), only with a generalized inverse V− of V used in place of V−1.

For the singular case from fitting (138) is

SSE = w′w − b◦′T′w. (144)

With the aid of (137), (139), and (142), in the same way that (143) was derived, (144)
reduces to

SSE = y′V−y − b◦′X′V−y.

This is the same result as (133) using V− in place of V−1. From (144), its expected
value is

E(SSE) = E(w′w − b◦′T′w)

= [(number of elements in w) − r(T)]𝜎2

= [r(M) − r(T)]𝜎2

Since M has full-column rank using (140) and (139), we see that this is equivalent to
E(SSE) = [r(V) − r(X)]𝜎2.

Hence an unbiased estimator of 𝜎2 is

𝜎2 = SSE
r(V) − r(X)

=
y′V−y − b◦′X′V−y

r(V) − r(X)
.

Another somewhat different treatment of this topic is available in C.R. Rao (1973).

9. AN EXAMPLE

Throughout this chapter, we have illustrated the ideas that we presented using six
data points for DNA content of three different crustaceans. We now present 31 data
points and do some analyses using SAS and at the same time illustrate a few of the
ideas presented in this chapter.
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Example 27 DNA content of Three Different Crustaceans The data are presented
in Table 5.14.

Amphipods Barnacles Branchiopods

0.74 0.67 0.19
0.95 0.90 0.21
1.71 1.23 0.22
1.89 1.40 0.22
3.80 1.56 0.28
3.97 2.60 0.30
7.16 0.40
8.48 0.47
13.49 0.63
16.09 0.87
27.00 2.77
50.91 2.91
64.62

The linear model is

y =
⎡
⎢
⎢
⎢
⎣

113 113 0 0

16 0 16 0

112 0 0 112

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

𝜇

𝛼1

𝛼2

𝛼3

⎤
⎥
⎥
⎥
⎥
⎦

+ e

We have that

X′X =

⎡
⎢
⎢
⎢
⎢
⎣

31 13 6 12

13 13 0 0

6 0 6 0

12 0 0 12

⎤
⎥
⎥
⎥
⎥
⎦

, G =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0

0 1
13

0 0

0 0 1
6

0

0 0 0 1
12

⎤
⎥
⎥
⎥
⎥
⎥
⎦

and H = GX′X=

⎡
⎢
⎢
⎢
⎢
⎣

0 0 0 0

1 1 0 0

1 0 1 0

1 0 0 1

⎤
⎥
⎥
⎥
⎥
⎦

.

The function q′b is estimable if for q′ = [ q1 q2 q3 q2 ], q′H = q or q1 = q2+
q3 + q4.

Consider the estimable function 𝛼1 − 𝛼3. To find an estimable function that is
orthogonal to it, we solve the equation

[ 0 1 0 −1 ]

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0

0 1
13

0 0

0 0 1
6

0

0 0 0 1
12

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

a

b

c

d

⎤
⎥
⎥
⎥
⎥
⎦

= 0.
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One case where this is true and the function is estimable is when a= 0, b= 12, c=−25,
and d = 13. The orthogonal estimable parametric function is 12𝛼1 − 25𝛼2 + 13𝛼3.

In the SAS output below, we do the analysis of variance to determine whether
there is a significant difference in the average DNA content of the three types of
crustaceans. We shall also test the hypotheses

H01: 𝛼1 − 𝛼2 = 0

H02: 13𝛼1 − 25𝛼2 + 12𝛼3 = 0

H03: 𝛼2 − 𝛼3 = 0

H04: 𝛼1 − 𝛼3 = 0

and interpret the results where appropriate.

Class Level Information F
Class Levels Values
crust 3 1 2 3

Number of
Observations
Read

31

Number of
Observations Used

31

Source DF Sum of Squares Mean Square F Value Pr > F
Model 2 1580.104795 790.052397 4.42 0.0215

Error 28 5009.667102 178.916682

Corrected Total 30 6589.771897

R-Square Coeff Var Root MSE amt Mean
0.239781 189.7388 13.37597 7.049677

Source DF Type I SS
Mean

Square F Value Pr > F
crust 2 1580.104795 790.052397 4.42 0.0215

Source DF Type III SS
Mean

Square F Value Pr > F
crust 2 1580.104795 790.052397 4.42 0.0215

Contrast DF Contrast SS
Mean

Square F Value Pr > F
1 vs 3 1 1340.662895 1340.662895 7.49 0.0106

orthogonal to
1 vs 3

1 239.441899 239.441899 1.34 0.2571

1 vs 2 1 812.727632 812.727632 4.54 0.0420

2 vs 3 1 1.380625 1.380625 0.01 0.9306
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From the SAS output we see that there is a significant difference amongst the DNA
content of the three crustaceans. The DNA content of amphiboids is significantly
different from both barnacles and branchiopods. However, there is not a statistically
significant difference between barnacles and branchiopods. The contrast orthogonal
to 𝛼1 − 𝛼3 is not significantly different from zero.

The code used to generate the above output follows:

data dna;
input crust amt;
cards;
1 .74
………….
3 2.91
proc glm;
class crust;
model amt=crust;
contrast '1 vs 3' crust 1 0 -1;
contrast 'orthogonal to 1 vs 3' crust 13 -25 12;
contrast '1 vs 2' crust 1 -1 0;
contrast '2 vs 3' crust 0 1 -1;
run; □

10. SUMMARY

The basic results of this chapter are summarized at the beginning of the next, before
using them on applications in that and succeeding chapters. Additional summaries
are to be found as follows:

Procedure for deriving G : Section 7c.
Analysis of variance for fitting model : Tables 5.5 and 5.6, Section 3g.
Estimable functions : Table 5.8, Section 4d.
Analysis of variance for testing

hypothesis K′b = 0 : Tables 5.9 and 5.10, Section 5c.
Restricted models : Tables 5.13A and 5.13B, Section 6.

11. EXERCISES

1 The matrices

G3 = 1
96

⎡
⎢
⎢
⎢
⎢
⎣

11 −3 1 13

−3 27 −9 −21

1 −9 35 −25

13 −21 −25 59

⎤
⎥
⎥
⎥
⎥
⎦

and G4 = 1
6

⎡
⎢
⎢
⎢
⎢
⎣

1 0 0 0

−1 2 0 0

−1 0 3 0

−1 0 0 6

⎤
⎥
⎥
⎥
⎥
⎦

are generalized inverses of X′X in (3). For the data of Table 5.1
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(a) Find the solutions to the normal equations.

(b) Find two linear combinations of these solutions that are the same and two
that are different.

(c) Show that ŷ and SSR are the same. For both generalized inverses show that ŷ
and SSR are the same as those obtained in Example 3.

(d) Show that 𝛼◦2 − 𝛼◦3 has the same variance when derived from G3 and G4.

(e) For the data of Example 1, obtain �̂�2 by using G3 and G4.

2 For the examples that pertain to data in Table 5.1, derive the contrasts specified
below and find the numerator sum of squares for testing the hypotheses that these
contrasts are zero. Define orthogonal as in (93).

(a) A contrast orthogonal to both 6𝜇 + 3𝛼1 + 2𝛼2 + 𝛼3 and 𝛼1 − 2𝛼2 + 𝛼3.

(b) Two contrasts orthogonal to one another and 𝛼1 − 𝛼2.

(c) For each of the contrasts in (a) and (b), find the sum of squares due to each
hypothesis that they are zero and the reduced sum of squares of Table 5.9.
Show that the sum of squares due to the orthogonal contrasts add up to the
regression sum of squares.

3 For the data for Example 27, find a contrast orthogonal to each of 𝛼2 − 𝛼3 =
0 and 𝛼1 − 𝛼2 = 0. Find the sums of squares associated with these contrasts and
test for statistical significance. Show that the sum of squares associated with
the given contrast and the one orthogonal to it add up to the regression sum of
squares.

4 The life lengths of four different brands of light bulbs are being compared. The
results follow.

A B C D

915 1011 989 1055
912 1001 979 1048
903 1003 1004 1061
893 992 992 1068
910 981 1008 1053
890 1001 1009 1063
879 989 996

1003 998
997

(a) Set up the linear model and find the normal equations.

(b) Solve the normal equations by using the constraint 𝛼1 + 𝛼2 + 𝛼3 + 𝛼4 = 0.
What generalized inverse corresponds to the use of this constraint?

(c) Formulate the ANOVA table.

(d) By formulating appropriate contrasts and testing hypotheses about them,
determine
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whether there is a statistically significant difference between the average life
length for

(1) A and B

(2) B and C

(3) C and D

(4) The average of A, B and the average of C and D.

5 If T has full-row rank, prove that T(T′T)−1T′ = I.

6 Show, formally, that testing the hypothesis λK′b = 0 is identical to testing K′b =
0 for 𝜆 being a scalar.

7 Show using the notation for the singular value decompositions of X from Chapter
1 that SSR = y′S′Sy and SSE = y′T′Ty.

8 Show that for estimable functions p′b, where H istestable, p′b◦
H is independent

of the generalized inverse G.

9 Consider the reparametization of the model y = Xb + e to the full-rank model
y = XUU′b + e = XUg + e, where g = U′b, Show that

(a) The least-square estimator for the reparametized model is ĝ = Λ−1U′X′y.

(b) When H: K′b = m is testable, there exists a C′ such that K′ = C′U′. Show
that the hypothesis reduces to C′g = m.

(c) In terms of the reparametized model, show that the equivalent of equation
(117) of Chapter 3 is ĝH = ĝ − Λ−1C(C′Λ−1C)−1(C′ĝ − m).

(d) Using K′ = C′U′ and the fact that for any generalized inverse G of
X′X, U′GU = Λ−1, show that ĝH = U′b◦

H where b◦
H is that obtained

in (74). Then for estimable functions, we have that p′b◦
H = p′b◦ −

p′GK(K′GK)−1(K′b◦ − m) independent of the choice of G.

10 Let K′b = m be a testable hypothesis. Reformulate the optimization problem in
(72) as that of finding b◦

H and 𝜃 as the solution to the matrix equation.

[
X′X K

K′ 0

] [
bH

𝜃

]

=
[

X′y

m

]

.

Show how the results in equations (73) and (74) may be obtained using the formula
for the generalized inverse of a partitioned matrix.

11 For X of order N × p and rank r, and S′ and S′X′ of full-row rank r, show that
S(S′X′XS)−1S′ is a reflexive generalized inverse of X′X.

12 Suppose a model can be expressed as

yijk = 𝛼i + 𝜀ijk,
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where yijk is an observation and i = 1,… , c, j = 1,… , Ni, and k = 1,… , nij. The
vector of observations can be written as

y′ = [ y111 y112 ⋯ y11n11
⋯ y1N11 ⋯ y1,N1,n1N1

⋯ yc,Nc,1 ⋯ yc,Nc,ncNc
],

where the observations are ordered by k, within j within i. If V is the variance–
covariance matrix of y, it is a diagonal matrix of matrices Aij , for i = 1,… , c
and j = 1,… , Ni, where Aij = eInij

+ bJnij
, and 1′nij

is a vector of nij 1’s and

Jnij
= 1nij

1′nij
. The normal equations for estimating 𝛼, the vector of the 𝛼i’s are

then X′V−1X𝛼 = X′V−1y, where X′V−1X exists.

(a) For c = 2 with n11 = 2, n12 = 3, n21 = 4, n22 = 1, and n23 = 2, write down y′

and V in full.

(b) For the general case write down X and V.
(c) Solve the normal equations for �̂�, showing that

�̂�i =

Ni∑

j=1

ȳij

b + e∕nij

Ni∑

j=1

1
b + e∕nij

.

13 Using

[
X′X K

K′ 0

]−1

=
[

B11 B12

B21 0

]

given in Section 5b of Chapter 1, show that the resulting solutions of equations
(77) are 𝜃 = 0 and b◦

H of (80) as obtained in this chapter. (We represent the matrix
H of Section 5b of Chapter 1 by K′ of the non-testable hypothesis K′b = m with
K′ of full-row rank p – r; and m of Section 5b of Chapter 1 is p – r here.)

14 Verify the result of equation (100).

15 In Example 21, show that b1 + b2 is X estimable but not R estimable and that b2
is not X estimable but is R estimable.



6
TWO ELEMENTARY MODELS

We now demonstrate the methods of the preceding chapter for specific applications.
We shall consider unbalanced data in detail with passing reference to the simpler
cases of balanced data. The applications we shall discuss do by no means exhaust
the great variety available. However, they cover a sufficiently wide spectrum for the
reader to gain an adequate understanding of the methodology. He/she may apply what
he/she has learned to other situations.

Throughout this and the next two chapters, we shall assume that the individual
error terms have mean zero and variance 𝜎2 and are pairwise uncorrelated. In symbols,
we assume that E(e) = 0 and var(e) = 𝜎2I. For purposes of point estimation, these
are the only assumptions that we need. However, for hypothesis testing and confi-
dence interval estimation, we assume in addition that the error terms are normally
distributed. Thus, for point estimation, we assume that e ∼ (0, 𝜎2I). For hypothe-
sis testing and confidence intervals, we assume that e ∼ N(0, 𝜎2I). A more general
assumption would be var(e) = 𝜎2V for V symmetric and positive definite (or perhaps
positive semi-definite). Although there is a brief discussion of this in Section 8 of
Chapter 5, we will postpone examples of the use of the more general assumption to
Chapters 9 and 10 under the heading of “mixed models.”

Some of the numerical illustrations will be based on hypothetical data with num-
bers chosen to simplify the arithmetic. This is particularly useful for illustrating the
use of formulae that arise in presenting the methodology. We shall also use some real
data illustrating the results with computer outputs using either R or SAS.

Linear Models, Second Edition. Shayle R. Searle and Marvin H. J. Gruber.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.
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1. SUMMARY OF THE GENERAL RESULTS

For ready reference, we summarize the main results of Chapter 5 that are used in this
and the next two chapters.

The equation of the model is

y = Xb + e. (1)

The normal equations for this model are

X′Xb◦ = X′y (2)

The solution to the normal equations takes the form

b◦ = GX′y, (3)

where G is a generalized inverse of X′X. Recall that this means that G satisfies

X′XGX′X = X′X.

Development of the general theory in Chapter 5 has, as its starting point, the
finding of the matrix G. However, Section 7b of Chapter 5 describes a procedure
for solving the normal equations by putting some elements of b◦ equal to zero and
then finding the G that corresponds to this solution. In certain cases, this is an easy
procedure. Putting some elements of b◦ equal to zero so greatly simplifies the normal
equations that their solution becomes “obvious,” and the corresponding G (by the
methods of Section 5c) equally so. The basis of this procedure when X′X has order
p and rank r is to

set p − r elements of b◦equal to zero (4)

and to strike out the corresponding equations of the normal equations, leaving a set
of r equations of full rank. Details are given in Section 7 of Chapter 5.

Once we obtain a value for b◦, we see that the predicted value of y corresponding
to its observed value is

ŷ = XGX′y (5)

The residual sum of squares is

SSE = y′y − b◦′X′y.

The estimated error variance is

�̂�2 = MSE = SSE
N − r

, where r = r(X). (6)
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The sum of squares due to fitting the mean is

SSM = Nȳ2, (7)

where ȳ is the mean of all observations. The sum of squares due to fitting the model
is

SSR = b◦′X′y. (8)

The total sum of squares is

SST = y′y =
∑

y2 (9)

where
∑

y2 represents the sum of squares of the individual observations. Hence

SSE = SST − SSR. (10)

Furthermore, SSR and SST both corrected for the mean are

SSRm = SSR − SSM (11)

and

SSTm = SST − SSM (12)

with

MSRm =
SSRm

(r − 1)
.

These calculations are summarized in the “Analysis of Variance” Tables 5.5 and
5.6 of Section 3 of Chapter 5. From them comes the coefficient of determination

R2 =
SSRm

SSTm
(13)

In addition, on the basis of normality,

F(Rm) =
MSRm

MSE
(14)
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compared to the tabulated values of the Fr−1,N−r-distribution tests whether the model
E(y) = Xb over and above the general mean, accounts for variation in the y variable.
Similarly,

F(M) = SSM
SSE

=
Nȳ2

�̂�2
(15)

compared to tabulated values of F1,N−r tests the hypothesis H: E(ȳ) = 0.An identical

test is the comparison of
√

F(M) against the tN−r-distribution.
In Section 4 of Chapter 5, we saw that

1. The expected value of any observation is estimable. This means that every
element of Xb is estimable.

2. The b.l.u.e. (best linear unbiased estimator) of any element of Xb (best linear
unbiased estimator) is the same element of Xb◦.

3. Any linear combination of elements of Xb is estimable. Its b.l.u.e. is the same
linear combination of elements of Xb.

More generally,

q′b is estimable when q′ = t′X for any t′. (16)

As a result,

q̂′b = q′b◦ is the b.l.u.e. of q′b (17)

with

var(q̂′b) = q′Gq𝜎2. (18)

The 100(1 − 𝛼) % symmetric confidence interval on q′b is

q′b◦ ± �̂�tN−r, 1
2
𝛼

√
q′Gq. (19)

Table 5.7 in Chapter 5 shows a variety of special cases of estimable functions. A test
of the general linear hypothesis

H: K′b = m, for K′b estimable and K′ having full-row rank s (20)

is to compare

F(H) = Q

s𝜎2
, (21)
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where,

Q = (K′b◦ − m)′(K′GK)−1(K′b◦ − m),

against tabulated values of the Fs,N−r-distribution. The solution to the normal equa-
tions under the null hypothesis is then, if needed,

b◦
H = b◦ − GK(K′GK)−1(K′b◦ − m).

Of particular interest are hypotheses of the form K′b = 0 where m of the general case
in (20) is null. Such hypotheses are discussed in Section 5c of Chapter 5. This section
also contains the analysis of variance table and the appropriate F-tests. Section 5g
of Chapter 5 deals with orthogonal contrasts k′

ib among the elements of b. These
contrasts have the property

k′
iGkj = 0 for i ≠ j. (22)

When (22) is true for i, j = 1, 2,… , r, the test of the hypothesis H: K′b = 0 has a
numerator sum of squares that not only equals SSR. It also equals the sum of the
numerator sums of squares for testing the r hypotheses Hi: k′

ib = 0, where K′ =
{k′

i} for i = 1, 2,… , r.
Chapter 5 also deals with models that include restrictions on the parameters. Their

analyses are summarized in Table 5.13 of Chapter 5.

2. THE ONE-WAY CLASSIFICATION

Chapter 4 contains discussion of data about the investment in consumer durables of
people with different levels of education. Assume that investment is measured by
an index number. Suppose that available data consist of seven people as shown in
Table 6.1. This is a very small example. However, it is adequate for purposes of
illustration.

a. The Model

Section 3 of Chapter 4 suggests the following suitable model for these data,

yij = 𝜇 + 𝛼i + eij (23)

TABLE 6.1 Investment Indices of Seven People

Level of Education No. of People Indices Total

1. High school incomplete 3 74, 68, 77 219
2. High school graduate 2 76, 80 156
3. College graduate 2 85, 93 178

7 553
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The dependent variable yij is the investment index of the jth person in the ith education
level. The term 𝜇 is a general mean. The effect of the ith level of education is
represented by 𝛼i. The eij represents the random error term peculiar to yij. For the
data of Table 6.1, there are three education levels. Thus, i takes values i = 1, 2, 3.
For a given i, the subscript j takes values j = 1, 2,… , ni, where ni is the number of
observations in the ith education level. For this example, from Table 6.1, we have
n1 = 3, n2 = 2, and n3 = 2.

The model (23) is the model for the one-way classification. In general, the group-
ings such as education levels are called classes. In (23), yij is the effect of the response
of the ith class, 𝜇 is a general mean, 𝛼i is the effect of the response of the ith class
and eij is the error term. When the number of classes in the data is a, i = 1, 2,… , a,
with j = 1, 2,… , ni. Although described here in terms of investment as the response
and level of education as the classes, this type of model can apply to many situations.
For example, the classes may be varieties of a plant, makes of a machine, or different
levels of income in the community. The word “treatment” is sometimes used instead
of “classes.” For example, if we wish to compare the effects of different fertilizers
on the yield of corn, say, we might consider the fertilizer used as a treatment and use
the same kind of model. Analysis of this model has already been used in Chapter 5,
interspersed with the development of the general methods of that chapter. We give a
further example here and indicate some results that apply to the model generally.

The normal equations come from writing the data of Table 6.1 in terms of equation
(23). We have that

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

74
68
77
76
80
85
93

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y11
y12
y13
y21
y22
y31
y32

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜇 + 𝛼1 + e11
𝜇 + 𝛼1 + e12
𝜇 + 𝛼1 + e13
𝜇 + 𝛼2 + e21
𝜇 + 𝛼2 + e22
𝜇 + 𝛼3 + e31
𝜇 + 𝛼3 + e32

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(24)

or

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

74
68
77
76
80
85
93

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= y =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 0 0
1 1 0 0
1 1 0 0
1 0 1 0
1 0 1 0
1 0 0 1
1 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

𝜇

𝛼1
𝛼2
𝛼3

⎤
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

e11
e12
e13
e21
e22
e31
e32

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= Xb + e.
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Thus,

X =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 0 0
1 1 0 0
1 1 0 0
1 0 1 0
1 0 1 0
1 0 0 1
1 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and b =
⎡
⎢
⎢
⎢
⎣

𝜇

𝛼1
𝛼2
𝛼3

⎤
⎥
⎥
⎥
⎦

, (25)

with y being the vector of observations and e the corresponding error terms.
General formulation of the model (1) for the one-way classification is achieved by

writing:

1. the vector of responses as

y =
[

y11 y12 ⋯ y1n1
⋯ yi1 yi2 ⋯ yini

⋯ ya1 ya2 ⋯ yana

]
;

(26)

2. the vector of parameters as

b′ =
[
𝜇 𝛼1 𝛼2 ⋯ 𝛼n

]
. (27)

As a result, the matrix X has order N × (a + 1), where

N = n. =
a∑

i=1

ni.

The symbols N and n. are used interchangeably.

The form of X in (25) is typical of its general form. Its first column is 1N and of its

other columns, the ith one has 1ni
in its

(∑i−1
k=1 nk + 1

)

th to
(∑i

k=1 nk

)
th rows, and

zeros elsewhere. Thus, in these a columns, the 1ni
vectors lie down the “diagonal,”

as in (25), and so can be written as a direct sum using the following notation.
Notation. The direct sum of three matrices A1, A2, and A3 is defined (e.g., Searle

(1966), Section 8.9) as

3∑

i=1

+Ai =
⎡
⎢
⎢
⎣

A1 0 0
0 A2 0
0 0 A3

⎤
⎥
⎥
⎦

.
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The symbol Σ+ for a direct sum is introduced here for subsequent convenience. Using
Σ+, the form of X in the general one-way classification is, as in (25)

X =
[

1N

a∑

i=1

+1ni

]

. (28)

b. The Normal Equations

The normal equations X′Xb◦ = X′y of (2) are, from (26) and (28),

X′Xb =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

n. n1 n2 n3 ⋯ na
n1 n1 0 0 ⋯ 0
n2 0 n2 0 ⋯ 0
n3 0 0 n3 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋮
na 0 0 0 ⋯ na

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜇

𝛼◦1

𝛼◦2

𝛼◦3

⋮
𝛼◦a

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y..
y1.
y2.
y3.
⋮

ya.

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= X′y. (29)

We see that X′X has n. = N as its leading element. The rest of the first row and
column consists of the ni’s. The ni’s are also the remaining elements of the diagonal.
The right-hand side of the equation, X′y, is the vector of response totals, that is, totals
of the yij’s. The first is the grand total. The others are the class totals. For the data in
Table 6.1, from (24) and (25), the normal equations are

⎡
⎢
⎢
⎢
⎣

7 3 2 2
3 3 0 0
2 0 2 0
2 0 0 2

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

𝜇◦

𝛼◦1

𝛼◦2

𝛼◦3

⎤
⎥
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

y..
y1.
y2.
y3.

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

553
219
156
178

⎤
⎥
⎥
⎥
⎦

. (30)

The normal equations above clearly have the form of (29), with the right-hand vector
X′y having as elements the totals shown in Table 6.1.

c. Solving the Normal Equations

Solving the normal equations (29) by means of (4) demands ascertaining the rank
of X (or equivalently of X′X). In both (25) and (28), it is clear that the first column
equals the sum of the others. This is also the case for X′X of (29) and (30). The order
of X is p = a + 1. Then the rank of X, r(X) = a + 1 − 1 = a. Thus, p − r = 1. Hence,
by (4), we can solve the normal equations by putting one element of b◦ equal to zero,
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and crossing out one equation. In (29) and (30), we equate 𝝁◦ to zero and delete the
first equation. As a result, a solution to (29) is

b◦ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜇◦

𝛼◦1

𝛼◦2

⋮

𝛼◦a

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

0
ȳ1.
ȳ2.
⋮

ȳa.

⎤
⎥
⎥
⎥
⎥
⎦

. (31)

Thus, a set of solutions to the normal equations is 𝜇◦ = 0 and 𝛼◦i = ȳi. for i =
1, 2,… , a. The corresponding generalized inverse of X′X is

G =

[
0 0

0 D
{

1
ni

}

]

, (32)

where D
{

1
ni

}

is the diagonal matrix of elements 1/ni for i = 1, 2,… , a. Multiplying

G of (32) and X′X of (29), we see that

H = GX′X =
[

0 0′

1a Ia

]

. (33)

For the numerical example b◦ of (31) is

b◦ =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
219
3

156
2

178
2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

0
73
78
89

⎤
⎥
⎥
⎥
⎦

. (34)

From (32),

G =

⎡
⎢
⎢
⎢
⎢
⎣

0 0 0 0
0 1

3
0 0

0 0 1
2

0

0 0 0 1
2

⎤
⎥
⎥
⎥
⎥
⎦

(35)
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and

H =

⎡
⎢
⎢
⎢
⎢
⎣

0 0 0 0
0 1

3
0 0

0 0 1
2

0

0 0 0 1
2

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

7 3 2 2
3 3 0 0
2 0 2 0
2 0 0 2

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

0 0 0 0
1 1 0 0
1 0 1 0
1 0 0 1

⎤
⎥
⎥
⎥
⎦

. (36)

d. Analysis of Variance

In all cases, it is easy to compute SSM of (7) and SST of (9). The other term basic to
the analysis of variance is SSR of (8). From (29) and (31), this is

SSR = b◦′X′y =
a∑

i=1

ȳi.yi. =
a∑

i=1

y2
i.

ni
. (37)

For the data of Table 6.1, the calculation of these terms proceeds as follows. First,

SSM = Nȳ2 = N
(y..

N

)2
=

y2
..

N
= (553)2

7
= 43, 687. (38)

Second,

SST =
∑

y2 = 74 + 682 + 772 + 762 + 802 + 852 + 932 = 44, 079. (39)

Third, from (37),

SSR = 2192

3
+ 1562

2
+ 1782

2
= 43, 997. (40)

Hence from (10),

SSE = SST – SSR

=
∑

y2 −
a∑

i=1

y2
i.

ni
= 44, 079 − 43, 997 = 82.

From (11) and (12),

SSRm = SSR – SSM = 43, 997 − 43, 687 = 310
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TABLE 6.2 Analysis of Variance of Data in Table 6.1

Term d.f. Sum of Squares Mean Square F-Statistic

Model (after mean) a − 1 = 2 SSRm = 310 MSRm = 155 F(Rm) = 7.56
Residual error N − a = 4 SSE = 82 MSE = 20.5
Total (after mean) N − 1 = 6 SSTm = 392

and

SSTm = SST – SSM = 44, 079 − 43, 687 = 392.

Using these values, we formulate the Table 6.2 that shows the analysis of variance. It
is based on Table 5.6b of Chapter 5. From this, the estimated error variance is

�̂�2 = MSE = 20.5. (41)

The coefficient of determination, as in (13), is

R2 =
SSRm

SSTm
= 310

392
= 0.79.

Thus, fitting the model yij = 𝜇 + 𝛼i + eij accounts for 79% of the total sum of squares.
The statistic F(Rm) of (14) is

F(Rm) =
MSRm

MSE
= 155

20.5
= 7.56

with r − 1 = 2 and N − r = 4 degrees of freedom. On the basis of normality,
comparison of this with the tabulated values of the F2,6-distribution provides a test
of whether the model over and above a mean accounts for statistically significant
variation in y. Since the 5% critical value is 6.94 which is exceeded by F(Rm) = 7.56,
we conclude that the model accounts for statistically significant variation in y. Using
a TI83 calculator, we find that the p-value is 0.0438. Thus, while this F-statistic is
significant at 𝛼 = .05, it is not significant at 𝛼 = .01. Similarly, calculating (15) from
(38) and (41) gives

F(M) = 43, 687
20.5

= 2131.1.

Since the 5% critical point of the F1,4-distribution is 7.71, we reject the hypothesis
H: E(ȳ) = 0. This can also be construed as rejecting the hypothesis H: 𝜇 = 0 when
ignoring the 𝛼’s. Actually, based on the large size of the F-statistic, we could reject
the hypothesis H: E(ȳ) = 0 at any reasonable level of significance.

Computer outputs and programs in R and SAS to obtain the information in
Table 6.2 are given below.
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R Program and output:

> index=c(74,68,77,76,80,85,93)
> edu=c(rep("hsi",3),rep("hsg",2),rep("cg",2))
> result=data.frame(index,edu)
> result
index edu

1 74 hsi
2 68 hsi
3 77 hsi
4 76 hsg
5 80 hsg
6 85 cg
7 93 cg
> res=aov(index~edu,data=result)
> summary(res)

Df Sum Sq Mean Sq F value Pr(>F)
edu 2 310 155.0 7.561 0.0438 ∗
Residuals 4 82 20.5
—
Signif. codes: 0 ‘∗∗∗’ 0.001 ‘∗∗’ 0.01 ‘∗’ 0.05 ‘.’ 0.1 ‘ ’ 1

SAS program and output:

>
data investment;
input index educationlevel;
cards;
74 1
68 1
77 1
76 2
80 2
85 3
93 3
proc glm;
class educationlevel;
model index=educationlevel;
run;

The SAS System
The GLM Procedure

Class Level Information
Class Levels Values
educationlevel 3 1 2 3
Number of Observations Read 7
Number of Observations Used 7
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The SAS System
The GLM Procedure

Dependent Variable: index
Source DF Sum of Squares Mean Square F Value Pr > F
Model 2 310.0000000 155.0000000 7.56 0.0438
Error 4 82.0000000 20.500000
Corrected Total 6 392.0000000
R-Square Coeff Var Root MSE index Mean
0.790816 5.731256 4.527693 79.00000
Source DF Type I SS Mean Square F Value Pr > F
Education level 2 310.0000000 155.0000000 7.56 0.0438
Source DF Type III SS Mean Square F Value Pr > F
Education level 2 310.0000000 155.0000000 7.56 0.0438

e. Estimable Functions

The expected value of any observation is estimable. Thus 𝜇 + 𝛼i is estimable. Corre-
spondingly, the b.l.u.e. of 𝜇 + 𝛼i is 𝜇◦ + 𝛼◦i .

We use ̂ over an expression to denote the b.l.u.e. of that expression. Noting the
values of 𝜇◦ and 𝛼◦i from (31) gives

𝜇 + 𝛼i = 𝜇◦ + 𝛼◦i = ȳi. (42)

The variance of the b.l.u.e. of an estimable function is obtained by expressing that
function as q′b. Its b.l.u.e. is then q′b◦. The variance of the b.l.u.e. is q′Gq𝜎2. For
example, with b′ of (27)

𝜇 + 𝛼1 =
[

1 1 0 ⋯ 0
]

b.

Then with

q′ =
[

1 1 0 ⋯ 0
]

, (43)

𝜇 + 𝛼1 of (42) is q′b◦. Thus,

𝜇 + 𝛼i = ȳi. = q′b◦.

Hence,

v(𝜇 + 𝛼1) = v(ȳ1.) =
𝜎2

n1
= q′Gq. (44)

Using G of (37) it is easy to verify that q′Gq = 1∕n1 for q′ of (42), using G
of (32).
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The basic result about estimable functions is (42). It provides b.l.u.e.’s of all of
the estimable functions. Any linear combination of the 𝜇 + 𝛼i is estimable. Its b.l.u.e.
is the same linear combination of the 𝜇 + 𝛼i, that is, of the ȳi.. Thus for scalars 𝜆i,

a∑

i=1

𝜆i(𝜇 + 𝛼i) is estimable, with b .l.u.e.
a∑

i=1

𝜆iȳi.. (45)

Equivalently,

a∑

i=1

𝜆i(𝜇 + 𝛼i) =
a∑

i=1

𝜆i(𝜇 + 𝛼i) =
a∑

i=1

𝜆iȳi.. (46)

Although the variance of this b.l.u.e. can be obtained as q′Gq𝜎2 by expressing the
estimable function as q′b, it follows from (46) that the variance depends solely on
the variances and covariances of ȳi.. These are

v(ȳi.) =
𝜎2

ni
and cov(ȳi., ȳk.) = 0 for i ≠ k.

Thus, from (46),

v

[
a∑

i=1

𝜆i(𝜇 + 𝛼i)

]

= v

(
a∑

i=1

𝜆iȳi.

)

=

(
a∑

i=1

𝜆2
i

ni

)

𝜎2. (47)

From (47), the 100(1 − 𝛼)% symmetric confidence interval
∑a

i=1 qi(𝜇 + 𝛼i) is from
(19),

a∑

i=1

qi(𝜇 + 𝛼i) ± �̂�tN−r, 1
2

√
√
√
√

a∑

i=1

q2
i

ni
=

a∑

i=1

qiȳi. ± �̂�tN−r, 1
2

√
√
√
√

a∑

i=1

q2
i

ni
(48)

For example,

𝛼1 − 𝛼2 = (𝜇 + 𝛼1) − (𝜇 + 𝛼2) (49)

is estimable, with 𝜆1 = 1, 𝜆2 = −1, and𝜆3 = 0 in (45). Hence using (34) in (36),

𝛼1 − 𝛼2 = (𝜇 + 𝛼1) − (𝜇 + 𝛼2) = ȳ1. − ȳ2. = 73 − 78 = −5.

From (47), the variance of

𝛼1 − 𝛼2

is

v(𝛼1 − 𝛼2) =
[

12

3
+ (−1)2

2

]

𝜎2 = 5
6
𝜎2.
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From (48), the 100(1 − 𝛼)% symmetric confidence interval on 𝛼1 − 𝛼2 is

−5 ± �̂�t4, 1
2
𝛼

√
5
6
.

Then, a 95% symmetric confidence interval on 𝛼1 − 𝛼2 is

−5 ± 4.528(2.78)

√
5
6

or

(−16.491, 6.491).

Since this confidence interval contains zero, we fail to reject the hypothesis H: 𝛼1 =
𝛼2 at 𝛼 = .05. There does not seem to be a statistically significant difference in the
investment indices of people who have and have not completed high school on the
basis of these data. On the other hand, a 95% confidence interval on 𝛼1 − 𝛼3 would be

−16 ± 4.528(2.78)

√
5
6

or

(−27.532,−4.468).

Thus, we would reject the hypothesis H: 𝛼1 = 𝛼3 at 𝛼 = .05. We would conclude
that there is a statistically significant difference between the investment indices of
people who have not completed high school and people who were college graduates.

To give another example, we observe that

3𝛼1 + 2𝛼2 − 5𝛼3 = 3(𝜇 + 𝛼1) + 2(𝜇 + 𝛼2) − 5(𝜇 + 𝛼3) (50)

is estimable with 𝜆1 = 3, 𝜆2 = 2, and 𝜆3 = −5. Thus,

3𝛼1 + 2𝛼2 − 5𝛼3 = 3(𝜇 + 𝛼1) + 2(𝜇 + 𝛼2) − 5(𝜇 + 𝛼3)

= 3(73) + 2(78) − 5(89)

= −70.

From (47),

v(3𝛼1 + 2𝛼2 − 5𝛼3) =
(

32

3
+ 22

2
+ 52

2

)

𝜎2 = 17.5𝜎2

Again, using �̂�2 = 20.5 the 100(1 − 𝛼)% on 3𝛼1 + 2𝛼2 − 5𝛼3 is

−70 ±
√

20.5t4, 1
2
𝛼

√
17.5
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A 95% confidence interval would be

−70 ± 4.528(2.78)
√

17.5

or

(−122.659,−17.341).

Thus at 𝛼 = .05, we would reject H: 3𝛼1 + 2𝛼2 − 5𝛼3 = 0.
Certain implications of (45) are worth noting. To be able to better explain these

implications, we rewrite it in a slightly different but equivalent form. Observe that

a∑

i=1

𝜆i(𝜇 + 𝛼i) = 𝜇

a∑

i=1

𝜆i +
a∑

i=1

𝜆i𝛼i is estimable. (51)

Observe that r(X) = a. Thus, from Section 4f of Chapter 5, the maximum number of
LIN estimable functions is a. Since there are a functions 𝜇 + 𝛼i, that are estimable,
they constitute a LIN set of estimable functions. Hence, all other estimable functions
are linear combinations of the 𝜇 + 𝛼i. They are of the form (51). In more formal
mathematical language, we can say that the a estimable functions 𝜇 + 𝛼i constitute a
basis for the vector space of estimable functions of dimension a. Some very important
results about estimability for the one-way classification follow from this. They are
presented in Theorem 1 below.

Theorem 1 The following are properties of some estimable functions.

(i) The individual function 𝜇 is not estimable.

(ii) The individual functions 𝛼i are not estimable.

(iii) The linear function
(∑a

i=1 𝜆i

)
𝜇 +
∑a

i=1 𝜆i𝛼i is estimable.

(iv) The linear combination
∑a

i=1 𝜆i𝛼i, where
∑a

i=1 𝜆i = 0 is estimable.

(v) The differences 𝛼i − 𝛼k are estimable for every i ≠ k.

Proof.

(i) Suppose that 𝜇 is estimable. Then for some set of 𝜆i values, (51) must reduce
to 𝜇. For these 𝜆i, we would then have

𝜇 = 𝜇

a∑

i=1

𝜆i +
a∑

i=1

𝜆i𝛼i identically.

For this to hold true, the 𝜆i must satisfy two conditions. They are

a∑

i=1

𝜆i = 1 and
a∑

i=1

𝜆i𝛼i = 0 for all 𝛼i.
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The second of these conditions can only be true if for all i, 𝜆i = 0. Then
∑a

i=1 𝜆i ≠ 1, so the first condition is not true. Hence no 𝜆i exist such that (51)
reduces to 𝜇. Thus 𝜇 is not estimable.

(ii) Suppose 𝛼k is estimable for some subscript k. Then in the second term of
(51), we must have 𝜆k = 1 and 𝜆i = 0 for all i ≠ k. Then (51) becomes 𝜇 + 𝛼k.
Hence 𝛼k is not estimable.

(iii) This is simply a restatement of (51). It is made for purposes of emphasizing the
estimability of any linear combination of 𝜇 and the 𝛼i’s in which the coefficient
of 𝜇 is the sum of the coefficients of the 𝛼i. From (46), its b.l.u.e. is

(
a∑

i=1

𝜆i

)

𝜇 +
a∑

i=1

𝜆i𝛼i =
a∑

i=1

𝜆iȳi.

For example, 13.7𝜇 + 6.8𝛼1 + 2.3𝛼2 + 4.6𝛼3 is estimable and its b.l.u.e. is
6.8ȳ1. + 2.3ȳ2. + 4.6ȳ3.. Two other estimable functions of more likely interest
are

𝜇 + 1
N

a∑

i=1

ni𝛼i with b.l.u.e.ȳ.. (52)

and

𝜇 + 1
a

a∑

i=1

𝛼i with b.l.u.e.
a∑

i=1

ȳi.

a
. (53)

These are (45) – or, equivalently (51) − and (46) with 𝜆i = ni∕n in (52) and
𝜆i = 1∕a in (53). For balanced data, ni = n for all i and then (52) and (53) are
the same.

(iv) This is just a special case of (51), where
∑a

i=1 𝜆i = 0. It is (51) with 𝜇 elimi-
nated. This shows that that any linear combination of the 𝛼i’s where the sum
of the coefficients is zero is estimable. From (46), its b.l.u.e. is

∑𝛼

i=1
𝜆i𝛼i with

a∑

i=1

𝜆i = 0. (54)

An example of an estimable function of the type in (54) is 3.6𝛼1 + 2.7𝛼2 −
6.3𝛼3 with b.l.u.e. 3.6ȳ1. + 2.7ȳ2. − 6.3ȳ3.. Another example is 𝛼1 + 𝛼2 −
2𝛼3 or 1

2
𝛼1 +

1
2
𝛼2 − 𝛼3.
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(v) This arises as a special case of the result in (iv). Putting 𝜆i = 1 and 𝜆k =
−1 and all other 𝜆′s zero shows that

𝛼i − 𝛼k is estimable for every i ≠ k. (55)

The difference between any pair of 𝛼’s is estimable. By (46), its estimator is

𝛼i − 𝛼k = ȳi. − ȳk..

The variance of these differences is

var(𝛼i − 𝛼k) =
(

1
ni

+ 1
nk

)

𝜎2.

A 100(1 − 𝛼)% symmetric confidence interval on 𝛼i − 𝛼k is

ȳi. − ȳk ± tN−r, 1
2
𝛼
�̂�

√
1
ni

+ 1
nk
.

The differences 𝛼i − 𝛼k are frequently called contrasts (see subsection g that follows).
All linear combinations of these differences are often called contrasts. They are
estimable in accord with the principles of (46), (47), and (48). For example,

𝛼1 + 𝛼2 − 2𝛼3 = (𝛼1 − 𝛼3) + (𝛼2 − 𝛼3)

is estimable.

Of course, estimability of the above functions could be established from the basic
property common to all estimable functions, that they are functions of expected values
of observations. For example,

𝛼1 − 𝛼2 = E(y1j) − E(y2j) = (𝜇 + 𝛼1) − (𝜇 + 𝛼2).

However, the detailed derivations show how particular cases are all part of the general
result (42) to which all estimable functions belong.

f. Tests of Linear Hypotheses

(i) General Hypotheses. The only hypotheses that can be tested are those that
involve estimable functions. In all cases, they are tested using the statistic given by
(21) of Section 1. We give an example using the data of Table 6.1. For these data, we
have,

b◦′ = [ 0 73 78 89 ].



THE ONE-WAY CLASSIFICATION 305

We consider the hypothesis

H:
𝛼2 − 𝛼1 = 9
2𝛼3 − 𝛼1 − 𝛼2 = 30.

This is equivalent to

[
0 −1 1 0
0 −1 −1 2

]

b =
[

9
30

]

.

We test this hypothesis by using

K′ =
[

0 −1 1 0
0 −1 −1 2

]

, K′b◦ =
[

5
27

]

and

(K′GK)−1 =

[ 5
6

− 1
6

− 1
6

17
6

]−1

= 1
14

[
17 1
1 5

]

. (56)

We have that

K′b◦ − m =
[

5
27

]

−
[

9
30

]

=
[
−4
−3

]

.

As a result, Q of (21) is

Q =
[
−4 −3

] 1
14

[
17 1
1 5

] [
−4
−3

]

= 24.357.

Using s = r(K′) = 2 and �̂�2 = 20.5 of (41),

F(H) = 24.357
2(20.5)

= .594 < 6.94

The value 6.94 is the upper 5% value of the F2,4-distribution. Hence, we fail to reject
the hypothesis.

(ii) The Test Based on F(M). We test the hypothesis H : E(ȳ) = 0 by using F(M)
of (15).
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Since, from the model (23), NE(ȳ) = N𝜇 +
∑a

i=1 ni𝛼i, this hypothesis is identical
to

H: N𝜇 +
∑a

i=1 ni𝛼i = 0. To see that this is a testable hypothesis, we rewrite it as

H: 𝜆′b = 0 with 𝜆′ =
[

N n2 n2 ⋯ na

]
. (57)

From (52), 𝜆′b is estimable. To show that (21) reduces to SSM for (57), we use (31)
and (32) to derive

𝜆′b =
a∑

i=1

niȳi = Nȳ.., 𝜆′G =
[

0 1′
]
, and 𝜆′G𝜆 =

a∑

i=1

ni = N.

Hence, the numerator sum of squares for testing H is, from (21),

Q = b◦′𝜆(𝜆′G𝜆)−1𝜆′b◦ = Nȳ2
..
= SSM.

Furthermore, s in (21) is defined as s = r(K′). Here s = r(𝜆′) = 1. Thus (21) is

F(H) = Q

s�̂�2
= SSM

�̂�2
= SSM

SSE
= F(M)

of (15). Hence, the F-test using F(M) does test H: N𝜇 +
∑a

i=1 ni𝛼i = 0 or equivalently

𝜇 +
a∑

i=1

ni𝛼i∕N = 0.

Example 1 Testing H: 7𝝁+3𝜶1+2𝜶2+2𝜶3= 0 for the Data of Table 6.2 We have
that

𝜆′b◦ =
[

7 3 2 2
]
⎡
⎢
⎢
⎢
⎣

0
73
78
89

⎤
⎥
⎥
⎥
⎦

= 553 and 𝜆′G𝜆 =
[

0 1 1 1
]
⎡
⎢
⎢
⎢
⎣

7
3
2
2

⎤
⎥
⎥
⎥
⎦

= 7.

As a result,

Q = (553)2

7
= 43, 687 = SSM

of (38). Hence,

F(H) = Q

s�̂�2
= 43, 687

20.5
= 2131.1 = F(M)

as was calculated earlier. □
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(iii) The Test Based on F(Rm). The test based on F(Rm) shown in (14) is equivalent
(for the one-way classification) to testing

H: all 𝛼′s equal.
This in turn is equivalent to testing that all the 𝛼’s are zero.

Example 2 Test of Hypothesis of Equality of the 𝜶’s for Data of Table 6.2 For
the model in (24), there are only three 𝛼’s. The above hypothesis H: 𝛼1 = 𝛼2 = 𝛼3 is
identical to H: 𝛼1 − 𝛼2 = 𝛼1 − 𝛼3 = 0. This can be written as

H:

[
0 1 −1 0
0 1 0 −1

] ⎡
⎢
⎢
⎢
⎣

𝜇

𝛼1
𝛼2
𝛼3

⎤
⎥
⎥
⎥
⎦

=
[

0
0

]

(58)

Writing this as K′b = 0 we have,

K′ =
[

0 1 −1 0
0 1 0 −1

]

, K′b◦ =
[
−5
16

]

and (K′GK)−1 =

[ 5
6

1
3

1
3

5
6

]−1

= 1
7

[
10 −4
−4 10

]

using b◦ and G of (34) and (35). Hence in (21), where s = r(K′) = 2,

Q =
[
−5 −16

] 1
7

[
10 −4
−4 10

] [
−5
−16

]

= 310 = SSRm

of Table 6.2. Therefore,

F(H) = Q

s�̂�2
= 310

2(20.5)
= 7.56 = F(Rm)

of Table 6.2. □

We now generalize the result of Example 2. We can write the hypothesis of equality
of all the 𝛼’s as

H: K′b = 0 with K′ =
[

01a−1 1a−1 −Ia−1
]

, (59)

where K′ has full-row rank s = a − 1. We can then show that Q of (21) reduces to

Q =
a∑

i=1

niȳ
2
i. − Nȳ2 = SSR − SSM = SSRm,
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using SSR defined in (37). Thus,

F(H) = Q

s�̂�2
=

SSRm

(a − 1)MSE
=

MSRm

MSE
= F(Rm)

as illustrated above. (See Exercise 20, Chapter 7.) Thus, the test statistic F(Rm)
provides a test of the hypothesis H: all 𝛼′s equal.

We now consider the apparent equivalence of the preceding hypothesis to one
in which all the 𝛼i’s are zero. First, we note that because 𝛼i is not estimable the
hypothesis

H: 𝛼i = 0 cannot be tested. Therefore, H: all 𝛼′i s = 0 cannot, formally, be tested.
However, we can show that there is an apparent equivalence of the two hypotheses.
Consider Q, the numerator sum of squares for testing H : K′b = 0. The identity

Q = SSR – (SSR – Q)

is from Tables 3.8 and 5.9 equivalent to
Q = SSR − sum of squares due to fitting the reduced model.
Now, for the one-way classification based on

yij = 𝜇 + 𝛼i + eij, (60)

we have just seen that the hypothesis H: all 𝛼′s equal can be expressed in the form
H: K′b = 0 and tested. To carry out this test, we derive the underlying reduced model
by putting all 𝛼i’s equal (to 𝛼 say) in (60), thus getting

yij = 𝜇 + 𝛼 + eij = 𝜇′ + eij

as the reduced model (with 𝜇′ = 𝜇 + 𝛼). The sum of squares for fitting this model
is the same as that for fitting yij = 𝜇 + eij derived from putting 𝛼i = 0 in (60).
Thus, the reduced model for H: all 𝛼′i s equal appears indistinguishable from that
for H: all 𝛼′i s zero. Hence, the test based on F(Rm) sometimes gets referred to as
testing H: all 𝛼′i s zero. More correctly, it is testing H: all 𝛼′i s equal.

g. Independent and Orthogonal Contrasts

The general form of a contrast among effects 𝛼i is a linear combination

a∑

i=1

ki𝛼i = k′b with k′ =
[

0 k1 ⋯ ka

]
and

a∑

i=1

ki = 0. (61)

All such contrasts are orthogonal to N𝜇 +
∑a

i=1 ni𝛼i that was considered in (57)
because (22) is then satisfied. We have that for 𝜆′ of (57), G of (32) and

∑a
i=1 ki

of (61),

𝜆′Gk =
[

0 1′
]

k =
a∑

i=1

ki = 0. (62)
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Thus, as a result of (62), (22) is satisfied. Furthermore, when testing a hypothesis that
(a − 1) LIN such contrasts are zero Q = SSRm. For example, when testing

H:

[
0 −1 1 0
0 −1 −1 1

]

b = 0,

the values in (56) give Q of (21) as

Q =
[

5 27
] 1

14

[
17 1
1 5

] [
5

27

]

= 310 = SSRm

of Table 6.2. □

The simplest forms of contrasts are differences between pairs of the 𝛼i’s. Such
differences are the basis of the hypotheses considered in (58) and (59), which also
satisfy (62). Hence the numerators of F(M) and F(Rm) are independent—as already
established in Section 3 of Chapter 5 for the general case.

Example 3 Finding an Orthogonal Contrast Although, for example,
𝛼1 − 𝛼2 and 𝛼1 − 𝛼3 are both orthogonal to 7𝜇 + 3𝛼1 + 2𝛼2 + 2𝛼3, they are not
orthogonal to each other. To find a contrast

∑3
i=1 ki𝛼i orthogonal to 𝛼1 − 𝛼2, it is

necessary that (22) is satisfied for
∑3

i=1 ki𝛼i and 𝛼1 − 𝛼2. That means that

[
0 k1 k2 k3

]
G

⎡
⎢
⎢
⎢
⎣

0
1
−1
0

⎤
⎥
⎥
⎥
⎦

=
k1

3
−

k2

2
= 0

and
∑3

i=1 ki = 0
Any k’s of the form k1 = −0.6k3, k2 = −0.4k3, and k3 will suffice. For example,

k′ =
[

0 −3 −2 5
]

gives k′b = −3𝛼1 − 2𝛼2 + 5𝛼3. This contrast is orthogonal
to both 𝛼1 − 𝛼2 and 7𝜇 + 3𝛼1 + 2𝛼2 + 2𝛼3. Testing

[
0 1 −1 0
0 −3 −2 5

]

b = 0

then involves

K′b◦ =
[
−5
70

]

and (K′GK)−1 =

[
5
6

0

0 35
2

]−1

=

[
6
5

0

0 2
35

]

.

Thus, Q of (21) is

Q = [−5 70 ]

[ 6
5

0

0 2
35

][
−5
70

]

= 30 + 280 = 310 = SSRm.
□
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We can verify that the terms that make up the sum in the above equation are
the numerator sums of squares for testing 𝛼1 − 𝛼2 = 0 and − 3𝛼1 − 2𝛼2 + 5𝛼3 = 0,
respectively.

The fact that the off-diagonal elements of K′GK are zero provides further evidence
of the truth of the proceeding statement and shows that the elements of K′b◦ are
independent.

h. Models that Include Restrictions

As was emphasized in Section 6 of Chapter 5, linear models do not need to include
restrictions on their elements. However, if restrictions are included, estimable func-
tions and testable hypotheses may take different forms from those they have in the
unrestricted model. In particular, functions of interest that are not estimable in the
unrestricted model may be estimable in the restricted model.

In considering restrictions, we limit ourselves to those relating to non-estimable
functions. The reason we impose this limitation is that restrictions relating to
estimable functions do not alter the form of estimable functions and testable hypothe-
ses available in the unrestricted model. Table 5.13 shows this. We also see there that
the only changes from an unrestricted model incurred by having a restricted model
are those wrought in estimable functions by the restriction that is part of the restricted
model. These are particularly interesting in the one-way classification. We now illus-
trate some of them in this context.

Suppose the restricted model has the restriction
∑a

i=1 ni𝛼i = 0. The function 𝜇 +
∑a

i=1 ni𝛼i∕n., which is estimable in the unrestricted model (as in (52)), becomes 𝜇
in the restricted model. By (52), 𝜇 has b.l.u.e. ȳ... Note that 𝜇 is not estimable in the
unrestricted model. However, in the restricted model with the restriction

∑a
i=1 ni𝛼i =

0, 𝜇 is estimable with b.l.u.e. ȳ... Furthermore, the hypothesis considered in (57)
and tested by means of F(M) then becomes H: 𝜇 = 0. Thus, under the restriction
∑a

i=1 ni𝛼i = 0, the F-statistic F(M) can be used to test the hypothesis H: 𝜇 = 0.
Suppose the model included the restriction

∑a
i=1 𝛼i = 0. In the unrestricted model,

𝜇 +
∑a

i=1 𝛼i∕a is estimable with b.l.u.e.
∑a

i=1 ȳi.∕a as in (53). This means that in
the restricted model with

∑a
i=1 𝛼i = 0, 𝜇 is estimable with b.l.u.e.

∑a
i=1 ȳi.∕a. In this

case, the hypothesis H: 𝜇 = 0 is tested by the F-statistic derived in the unrestricted
model for testing H: 𝜇 +

∑a
i=1 𝛼i∕a = 0. This is H: k′b = 0 for k′ =

[
1 a−11′

]
,

for which k′b◦ =
∑a

i=1 ȳi.∕a and k′Gk = a−2∑a
i=1 (1∕ni). Hence the F-statistic for

testing H: 𝜇 = 0 in this restricted model is

F(H) =
(∑a

i=1 ȳi.

)2

�̂�2
∑a

i=1
1
ni

.

The preceding two paragraphs illustrate how different restrictions can lead to the same
parameter being estimable in different restricted models even though that parameter
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may not be estimable in the unrestricted model. Furthermore, even though it is
formally the same parameter in the different restricted models (i.e., the same symbol),
its b.l.u.e. in those models may not be the same. Its b.l.u.e. is the b.l.u.e. of the estimable
function in the unrestricted model from which the estimable function in the restricted
model has been derived by application of the restriction. Thus in a model having
∑a

i=1 ni𝛼i = 0, the b.l.u.e of 𝜇 is ȳ.., the b.l.u.e. of 𝜇 +
∑a

i=1 ni𝛼i∕n. in the unrestricted
model. However, in a model having

∑a
i=1 𝛼i = 0, the b.l.u.e. of 𝜇 is

∑a
i=1 ȳi.∕a, the

b.l.u.e. of 𝜇 +
∑a

i=1 𝛼i∕a in the unrestricted model. As a third example, consider a
model having

∑a
i=1 wi𝛼i = 0 for some weights wi. In this case, 𝜇 is estimable with

b.l.u.e.
∑a

i=1 wiȳi.∕
∑a

i=1 wi, this being the b.l.u.e. of 𝜇 +
∑a

i=1 wi𝛼i∕
∑a

i=1 wi in the
unrestricted model. Here, the F-statistic for testing H: 𝜇 = 0 comes from testing

H: k′b = 0 with k′ =
[

1
w1

w.
⋯

wa

w.

]

for w. =
a∑

i=1

wi.

Thus,

k′b◦ =
∑a

i=1 wiȳi.

w.
and k′Gk =

(∑a
i=1 w2

i ∕ni

)

w2
.

.

As a result, the F-statistic for testing H: 𝜇 = 0 is

F(H) =
(∑a

i=1 wiȳi

)2

�̂�2
∑a

i=1
w2

i

ni

.

Table 6.3 summarizes the three cases mentioned above. Of course, the first two rows
of Table 6.3 are special cases of the last row. We have that wi = ni for the first row and
wi = 1 for the second. In all three rows, 𝜇 is estimable. Since 𝜇 + 𝛼i is also estimable
(anything estimable in the unrestricted model is estimable for the restricted model),
it follows that in the restricted models, 𝛼i is estimable with b.l.u.e. being ȳi. minus
the b.l.u.e. of 𝜇.

The choice of what model to use, the unrestricted model, one of those in Table 6.3
or some other depends on the nature of the data. For unbalanced data, we often
find
∑a

i=1 ni𝛼i = 0 used. Having the same restrictions on the solutions
∑a

i=1 ni𝛼
◦
i = 0

leads to an easy procedure for solving the normal equations, as is evident from (29):
𝜇◦ = ȳ.. and 𝛼◦i = ȳi. − ȳ.... This is perfectly permissible for finding a solution b◦,
it being of course, the oft-referred-to method of applying the “usual constraints”
as discussed in Section 7 of Chapter 5. Although

∑a
i=1 ni𝛼

◦
i = 0 provides an easy

solution for b◦, the same restriction applied to the parameters
∑a

i=1 ni𝛼i = 0 may not
always be appropriate. For example, suppose an experiment to estimate the efficacy of
a feed additive for dairy cows is done on 7 Holsteins, 5 Jerseys, and 2 Guernseys. The
“constraint” 7𝛼◦1 + 5𝛼◦2 + 2𝛼◦3 = 0 would lead to solutions for 𝜇◦, 𝛼◦1 , 𝛼◦2 , and 𝛼◦3 very
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TABLE 6.3 Estimators of 𝝁 and F-Statistics for Testing H: 𝝁 = 0, in Three Different
Restricted Models

Restriction on
Model

Estimable Function in
Unrestricted Model
Which Reduces to 𝜇 in
Restricted Model

b.l.u.e. of 𝜇 in Restricted
Model = Blue of
Function in Preceding
Column in Unrestricted
Model

F-Statistic for
Testing H: 𝜇 = 0

a∑

i=1
ni𝛼i = 0 𝜇+

a∑

i=1

ni𝛼i

n.
ȳ.. F(M) = nȳ2

..

�̂�2

a∑

i=1
𝛼i = 0 𝜇+

a∑

i=1

𝛼i

a

a∑

i=1
ȳi.

a

( a∑

i=1
ȳi.

)2

�̂�2
a∑

i=1

1

ni

a∑

i=1
wi𝛼i = 0 𝜇+

a∑

i=1

wi𝛼i

w.

a∑

i=1
wiȳi.

w.

( a∑

i=1
wiȳi.

)2

�̂�2
a∑

i=1

w2
i

ni

easily. However, if the proportion of these three breeds in the whole population of
dairy cows (assumed to consist of these three breeds and no others) was 6:2:2, it would
be more meaningful to use 6𝛼◦1 + 6𝛼◦2 + 2𝛼◦3 = 0 rather than 7𝛼◦1 + 5𝛼◦2 + 2𝛼◦3 = 0,
if any such restriction was desired. In this case, we would use the third row of
Table 6.3 rather than the first.

i. Balanced Data

We now show how the results in the above discussion and Table 6.3 specialize for
balanced data. With balanced data, ni = n for all i. Then the first two rows of Table 6.3
are the same. The “constraint”

∑a
i=1 𝛼

◦
i = 0 provides an easy solution to the normal

equations 𝜇◦ = ȳ.. and 𝛼◦i = ȳi. − ȳ.... This solution is the one frequently found in the
literature. Apart from this, all other results stand fast. For example, 𝜇 + 𝛼i and 𝛼i − 𝛼k
are estimable, with b.l.u.e.’s ȳi. and ȳi. − ȳk., respectively. Furthermore, as usual,
SSE =

∑a
i=1

∑n
j=1 y2

ij −
∑n

i=1 y2
i.∕n.

Sometimes, the restriction
∑a

i=1 𝛼i = 0 is used as part of the model. This is in
accord with the “constraint”

∑a
i=1 𝛼

◦
i = 0, useful for solving the normal equations.

As a restriction, it can also be opportunely rationalized in terms of defining the
𝛼i’s as deviations from their mean, and hence having their mean be zero, that is,
∑a

i=1 𝛼i = 0. The effect of the restriction is to make 𝜇 and 𝛼i estimable with b.l.u.e.
�̂� = ȳ.. and �̂�i = ȳi. − ȳ.., and hypotheses about individual values of 𝜇 and 𝛼i are then
testable.
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3. REDUCTIONS IN SUMS OF SQUARES

a. The R( ) Notation

Consideration of models more complex than that for the one-way classification will
lead us to comparing the adequacy of different models for the same set of data. Since
in the identity SSE = SST − SSR, we have SSR as the reduction in the total sum
of squares due to fitting any particular model, SSR is a measure of the variation in
y accounted for by that model. Comparing the values of SSR that result from fitting
the different models can therefore make comparison of different models for a set of
data. To facilitate discussion of these comparisons, we refer, as previously, to SSR
as a reduction in sum of squares. We now denote it by R( ) with the contents of the
brackets indicating the model fitted. For example, when fitting yij = 𝜇 + 𝛼i + eij, the
reduction in the sum of squares is R(𝜇, 𝛼). This indicates a model that has parameters
𝜇 and those of an 𝛼-factor. Likewise, R(𝜇, 𝛼, 𝛽) is the reduction in the sum of squares
for fitting yijk = 𝜇 + 𝛼i + 𝛽j + eijk. Furthermore, R(𝜇, 𝛼, 𝛽 : 𝛼) is the reduction due to
fitting the nested model yijk = 𝜇 + 𝛼i + 𝛽ij + eijk. The symbol 𝛽 : 𝛼 in R(𝜇, 𝛼, 𝛽 : 𝛼)
indicates that the 𝛽-factor is nested within the 𝛼-factor. Extension to more complex
models is straightforward. At all times, the letter R is mnemonic for “reduction” in
sum of squares and not for “residual” as used by some writers. In this book, R( ) is
always a reduction in the sum of squares.

The model yi = 𝜇 + ei has normal equation N𝜇 = y.. The corresponding reduction
in the sum of squares, R(𝜇), is readily found to be Nȳ2. However, for all models, Nȳ2

is SSM. Therefore,

R(𝜇) = Nȳ2 = SSM.

For the one-way classification model, yij = 𝜇 + 𝛼i + eij, the reduction in the sum of
squares, now written as R(𝜇, 𝛼) is, by (37)

SSR = R(𝜇, 𝛼) =
a∑

i=1

y2
i.

ni
.

Therefore from (11),

SSRm = SSR − SSM = R(𝜇, 𝛼) − R(𝜇). (63)

Thus for the one-way classification, SSRm is the difference between the reductions
in the sums of squares due to fitting two different models, one containing 𝜇 and an
𝛼-factor, and the other just containing 𝜇. Therefore, we can view SSRm of (63) as the
additional reduction in the sum of squares due to fitting a model containing a 𝜇 and
an 𝛼-factor over and above fitting one just containing 𝜇. Hence R(𝜇, 𝛼) − R(𝜇) is the
additional reduction due to fitting 𝜇 and 𝛼 over and above fitting 𝜇. More succinctly,
it is the reduction due to fitting 𝛼 over and above 𝜇. An equivalent interpretation is
that, once having fitted 𝜇, the difference R(𝜇, 𝛼) − R(𝜇) represents the reduction in the



314 TWO ELEMENTARY MODELS

sum of squares due to fitting an 𝛼-factor additional to 𝜇. In this way, R(𝜇, 𝛼) − R(𝜇)
is the reduction due to fitting “𝛼 after having already fitted 𝜇” or fitting “𝛼 after 𝜇.”
In view of this, we use the symbol R(𝛼|𝜇) for (63) and write

R(𝛼|𝜇) = R(𝜇, 𝛼) − R(𝜇). (64)

It is easy to extend this notation. For example,

R(𝛼|𝜇, 𝛽) = R(𝜇, 𝛼, 𝛽) − R(𝜇, 𝛽)

is the reduction in the sum of squares after fitting “𝛼 after 𝜇 and 𝛽.” That means
the reduction due to fitting a model containing 𝜇, an 𝛼-factor and a 𝛽-factor. It is a
measure of the extent that a model can explain more of the variation in y by having
in it, in a specified manner, something more than just 𝜇 and a 𝛽-factor.

Every R( ) term is by definition the SSR of some model. Therefore, its form is
y′X(X′X)−X′y for X appropriate to that model. The matrix X(X′X)−X′ is idempotent.
Therefore for y ∼ N(𝜇, 𝜎2I), for any vector μ, the distribution of R()∕𝜎2 is a non-
central 𝜒2 independent of SSE. Suppose R(b1, b2) is the reduction for fitting y =
Xb1 + Zb2 + e and R(b1) is the reduction for fitting y = Xb1 + e. It can then be shown
that (see Exercise 13) R(b2|b1)∕𝜎2 has a non-central 𝜒2-distribution independent of
R(b1) and of SSE. Hence, whenever the reduction in the sum of squares R(b1, b2) is
partitioned as R(b1, b2) = R(b2|b1) + R(b1), we know that both R(b2|b1) and R(b1)
have non-central 𝜒2-distributions and that they are independent of each other and
of SSE.

The succinctness of the R( ) notation and its identifiability with its corresponding
model is readily apparent. This, and the distributional properties just discussed,
provide great convenience for considering the effectiveness of different models. As
such, it is used extensively in what follows.

b. Analyses of Variance

Table 6.2 is an example of the analysis of variance given in Table 5.6b of Chapter 5.
Its underlying sums of squares can be expressed in terms of the R( ) notation as
follows:

SSM = R(𝜇) = 43, 687, SSR = R(𝜇, 𝛼) = 43, 997,
SSRm = R(𝛼|𝜇) = 310, SSE = SST − R(𝜇, 𝛼) = 82.

These are summarized in Table 6.4. There, the aptness of the R( ) notation for
highlighting the sum of squares is evident. We have that

1. The term R(𝜇) is the reduction due to fitting the mean 𝜇.

2. The term R(𝛼|𝜇) is the reduction due to fitting the 𝛼-factor after 𝜇.

3. The term R(𝜇, 𝛼) is the reduction due to fitting the model consisting of an
𝛼-factor and 𝜇.
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TABLE 6.4 Analysis of Variance Using R( ) Notation. (See Also Tables 6.2 and 5.5)

Source of Variation d.f. Sum of Squares Mean Square F-Statistic

Mean 1 = 1 R(𝜇) = 43,687 43,687 2131.1
𝛼-factor after mean a − 1 = 2 R(𝛼|𝜇) = 310 155 7.56
Residual error N − 𝛼 = 4 SSE = SST − R(𝜇,𝛼) = 82 20.5
Total N = 7 SST = 44,079

The attendant residual sum of squares is SSE = SST − R(𝜇, 𝛼). Of course, as in
(64) we have that,

R(𝜇, 𝛼) = R(𝜇) + R(𝛼|𝜇).

The clarity provided by the R( ) notation is even more evident for models that
involve several factors. The notation is therefore used universally in all analysis
variance tables that follow. Furthermore, all such tables have a format similar to that of
Table 6.4 in that they show:

1. a line for the mean R(𝜇);

2. a total sum of squares SST =
∑n

i=1 y2
i not corrected for the mean.

The only quantity that such a table does not yield at a glance is the coefficient of
determination R2 = SSRm∕SSTm of equation (13). However, since this can always
be expressed as

R2 = 1 − SSE
SST − R(𝜇)

, (65)

it too can readily be derived from the analysis of variance tables such as Table 6.4.

c. Tests of Hypotheses

In Section 2f(iii), we saw how F(M) is a suitable statistic for testing H: n.𝜇 +
∑a

i=1 ni𝛼i = 0. However,

F(M) = SSM
MSE

= R(𝜇)

�̂�2
.
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This gives us a dual interpretation of R(𝜇). On the one hand, we see that it is the
numerator sum of squares for testing H: n.𝜇 +

∑a
i=1 ni𝛼i = 0. On the other hand, it is

the reduction in the sum of squares due to fitting the model yij = 𝜇 + eij.
We also have a dual interpretation of R(𝛼|𝜇). As we have already mentioned, it is

the reduction in the sum of squares due to fitting 𝛼 after 𝜇. Section 2f(iii) explains
why F(Rm) is referred to as testing H: all 𝛼′i s equal. However,

F(Rm) =
MSRm

MSE
=

SSRm

(a − 1)MSE
= R(𝛼|𝜇)

(a − 1)�̂�2
.

Thus, we see that R(𝛼|𝜇) is also the numerator sum of squares for testing
H: all 𝛼′i s equal. The association of R(𝛼|𝜇) = R(𝜇, 𝛼) − R(𝜇) with the effective test-
ing of H: all 𝛼′i s equal is particularly convenient. Putting 𝛼 = 0 in the symbol R(𝜇, 𝛼)
reduces the symbol to R(𝜇). The difference between these two, R(𝜇, 𝛼) − R(𝜇), is the
required numerator sum of squares.

In terms of R(𝛼|𝜇) being the numerator sum of squares for testing the hypothesis
H: all 𝛼′i s equal, Table 6.4 is an application of Table 5.9. Writing H: all 𝛼′i s equal in
the form H : K′b = 0 as in (59), we see in Table 5.9 that R(𝛼|𝜇) is the numerator sum
of squares for testing H : K′b = 0, and R(𝜇) is the sum of squares for the reduced
model yij = 𝜇 + 𝛼 + eij = 𝜇′ + eij.

4. MULTIPLE COMPARISONS

The results of an analysis of variance only tell us that some but not necessarily all of
the effects differ from one another. We can perform t-tests on individual differences
or linear combinations. However, if we have several such confidence intervals, the
probability that each coordinate of a vector of means will lie in all of them will be
greater than 1 − 𝛼. In Example 14 of Chapter 3, we gave one method of constructing a
simultaneous confidence interval on two regression coefficients by halving the levels
of significance for each of two individual confidence intervals. If we had m such
regression coefficients or linear combinations of the same, we could find individual
1 − 𝛼∕m confidence intervals. This is known as the Bonferroni method of finding
simultaneous intervals.

Another method of finding simultaneous confidence intervals is due to Scheffe
(see Scheffe (1959) or Hogg and Craig (2014)). We will present this method and give
an outline of its derivation along the lines of Scheffe (1959).

Confidence sets are generalizations of confidence intervals. Suppose that
{y1,… , yn} is a set of observations whose distribution is completely determined
by the unknown values of the parameters {𝜃1,… , 𝜃m} and that {𝜓1,… ,𝜓q} are
specified functions of the 𝜃 parameters. For example, in the context of linear models,
the 𝜓’s could be estimable functions of the 𝜃 parameters. The set of all the 𝜓’s may
be thought about as a q-dimensional space. Suppose that for every possible y in the
sample space, we have a region R(y) of the q-dimensional space. Suppose that 𝜓 is
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thought of as a point determined by the value of 𝜃. If a region R(y) has the property
that the probability that it covers the true point 𝜓 is a pre-assigned constant 1 − 𝛼, no
matter what the unknown true parameter point 𝜃 is, we say that R(y) is a confidence
set for 𝜓 with confidence coefficient 1 − 𝛼. If, for example, 𝛼 = .05 and we take 100
samples a very large number of times the proportion of confidence sets that actually
contain the true point 𝜓 should average out to about 95. When q = 1 and R(y) is an
interval on the real line, the confidence set is a confidence interval.

Assume that 𝜓1,𝜓2,… ,𝜓q denote q linearly independent estimable functions.
Let �̂� be an unbiased estimator of 𝜓 . We have that 𝜓 = Cb where the b are the
parameters of the regression model and �̂� = Ay. Scheffe finds a confidence set for
{𝜓1,… ,𝜓q} in a q-dimensional space. The confidence set takes the form of the
ellipsoid

(𝚿 − �̂�)′B(𝚿 − �̂�) ≤ qs2F𝛼,q,n−r (66)

Scheffe then states the following Theorem.

Theorem 2 For a regression model, the probability is 1 − 𝛼 that simultaneously for
all estimable functions 𝜓 ,

�̂� − S�̂��̂� ≤ 𝜓 ≤ �̂� + S�̂��̂� , (67)

where S = (qF𝛼;q,n−r)
1∕2.

Sketch of Proof. The proof is based on the fact that for a point to lie inside the
ellipsoid it must lie on a line connecting the points of contact with the ellipsoid of
two parallel tangent planes.

Example 4 Some Simultaneous Confidence Intervals The data below were com-
piled by the National Center for Statistics and Analysis, United States. Some of the
data points are missing. For five states in different parts of the country, the data
represent the number of speeding-related fatalities by road type and speed limit in
miles per hour during 2003 on non-interstate highways.

State/Speed Limit 55 50 45 40 35 < 35
California 397 58 142 107 173 –
Florida – – – – 80 75
Illinois 226 3 22 47 69 88
New York 177 10 23 30 23 –
Washington 16 – 15 18 53 43
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The results of a one-way ANOVA are below.

The SAS System
The GLM Procedure

Dependent Variable: fatality
Source DF Sum of Squares Mean Square F Value Pr > F
Model 5 78240.9449 15648.1890 2.53 0.0694
Error 17 105300.5333 6194.1490
Corrected Total 22 183541.4783
R-Square Coeff Var Root MSE fatality Mean
0.426285 95.52333 78.70292 82.39130

Level of speed N fatality
Mean Std. Dev.

< 35 3 68.666667 23.158872
35 5 79.600000 56.451749
40 4 50.500000 39.501055
45 4 50.500000 61.103737
50 3 23.666667 29.938827
55 4 204.000000 156.850247

We shall find a 95% simultaneous confidence interval for the differences of adjacent
means by both the Scheffe and Bonferonni method.

For the Scheffe method, the formula would be

ȳi. − ȳj. ±
√

(I − 1)F𝛼,I−1,n−Is

(
1
ni

+ 1
nj

)1∕2

We have that I = 6, N − I = 17, s = 78.7029, F.05,5,17 = 2.81
For Bonferonni, we would have

ȳi. − ȳj. ± t𝛼∕2(I−1)s

(
1
ni

+ 1
nj

)1∕2

.

For a 95% simultaneous confidence interval, we would use a t-value of 2.898.
< 35 versus 35
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Scheffe

68.667 − 79.600 ±
√

5(2.81)
(

1
3
+ 1

5

)

(6194.149)

−10.933 ± 215.44
(−226.37, 204.51)

Bonferonni

68.667 − 79.600 ± 2.898

√(
1
3
+ 1

5

)

(6194.149)

−10.933 ± 166.567
(−177.5, 155.634)

35 versus 40
Scheffe

79.6 − 50.5 ±
√

5(2.81)
(

1
5
+ 1

4

)

(6194.149)

29.1 ± 197.895
(−168.8, 227)

Bonferonni

79.6 − 50.5 ± 2.898

√(
1
5
+ 1

4

)

(6194.149)

29.1 ± 153.001
(−123.901, 182.101)

40 versus 45
Scheffe

50.5 − 50.5 ±
√

5(2.81)
(

1
4
+ 1

4

)

(6194.149)

0 ± 208.6
(−208.6, 208.6)

Bonferonni

50.5 − 50.5 ± 2.898

√(
1
4
+ 1

4

)

(6194.149)

0 ± 161.278
(−161.278, 161.278)

45 versus 50
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Sheffe

50.5 − 23.667 ±
√

5(2.81)
(

1
4
+ 1

3

)

(6194.149)

26.833 ± 225.314
(−198.48, 252.15)

Bonferonni

50.5 − 23.667 ± 2.898

√(
1
4
+ 1

3

)

(6194.149)

26.833 ± 174.2
(−147.367, 201.033)

50 versus 55
Scheffe

23.667 − 204 ±
√

5(2.81)
(

1
4
+ 1

3

)

(6194.149)

−180.33 ± 225.314
(−405.64, 44.98)

Bonferonni

23.667 − 204 ± 2.898

√(
1
4
+ 1

3

)

(6194.149)

−180.33 ± 174.2
(−354.33,−6.13)

Bonferonni intervals are generally narrower than those of Scheffe.

Example 5 Illustration of Geometry of Scheffe Confidence Intervals The point
(1, 1) lies on the line connecting the points of contact of the tangent lines to the ellipse
x2

16
+ y2

9
= 1. The points of contact are (12/5, 12/5) and (−12/5, −12/5). The parallel

tangent lines are y = −(9∕16)x − 15∕4 and y = −(9∕16)x + 15∕4. This illustrates in
two dimensions, the principle used by Scheffe in deriving simultaneous confidence
intervals, the fact that a point inside an ellipsoid or ellipse must lie on a line connecting
points of contact of parallel tangent lines. □
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For more information about multiple comparisons, see, for example, Hochberg
and Tamhane (1987), Miller (1981), and Hsu (1996).

5. ROBUSTNESS OF ANALYSIS OF VARIANCE TO ASSUMPTIONS

Analysis of variance is performed assuming three basic assumptions are true. They
are:

1. The errors are normally distributed.

2. The errors all have the same variance.

3. The errors are statistically independent.

The problem is how valid is the analysis when one or more of these assumptions are
violated and what, if anything, can be done about it. We shall devote one subsection
to the violation of each of the assumptions mentioned above.

a. Non-normality of the Error

As Scheffe (1959) points out, two measures that may be used to consider the effects
of non-normality are the measures 𝛾1 of skewness and 𝛾2 of kurtosis of a random
variable x. Using the standard notation 𝜇 for the mean and 𝜎2 for the variance of a
distribution, we may define the skewness as

𝛾1 = 1
𝜎3

E[(x − 𝜇)3] (68)
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and kurtosis

𝛾2 = 1
𝜎4

E[(x − 𝜇)4] − 3. (69)

The skewness and kurtosis are indicators of the departure of the distribution of a
random variable from normality. A positive skewness, that is, 𝛾1 > 0 indicates that on
the right-hand side, the tail of the distribution appears to be flatter than on the left-
hand side. Likewise, a negative skewness, that is, 𝛾1 < 0 indicates that the tail of the
distribution is flatter on the left-hand side. However, for large samples, the skewness
of functions of the sample data generally approaches zero because of the central
limit theorem and inferences about means are not greatly affected by departures from
normality.

However, as Scheffe (1959) explains in his discussion on page 336, inferences
about variances can be affected a great deal by departures from normality. In
particular, this can happen if the kurtosis 𝛾2 is significantly different from zero.
Under normal theory, inferences about 𝜎2 are usually based on the distribution of
(n − 1)s2∕𝜎2 ∼ 𝜒2

n−1. When the distribution is normal and the kurtosis is zero, we
have that

E

(
s2

𝜎2

)

= 1, E

(
s2

𝜎2

)

= 1 (70)

and

var

(
s2

𝜎2

)

= 2
n − 1

(71)

If the kurtosis differs from zero, we have,

var

(
s2

𝜎2

)

= 2
n − 1

+
𝛾2

n
. (72)

Observe that the ratio of (72) to (71) is

1 + n − 1
2n

𝛾2

and that

lim
n→∞

(

1 + n − 1
2n

𝛾2

)

= 1 + 1
2
𝛾2.

Furthermore, by the central limit theorem, s2 is normal. As a result,

(n − 1
2

)−1∕2
(

s2

𝜎2
− 1

)

∼ N
(

0, 1 + 1
2
𝛾2

)
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for large n instead of N(0, 1). This causes a serious error in any confidence level,
significance level or power computation under normal theory when the kurtosis 𝛾2 is
significantly different from zero. This will be of special importance in the study of
variance component models in Chapter 9 where the hypotheses being tested will be
about variances instead of means.

For data that may not come from a normal population, Conover and Iman (1981)
suggest doing analysis of variance on the relative ranks instead of the actual data
points. This procedure is also applicable to the other analysis of variance procedures
that we will study later. It may be used regardless of the population distribution.
However, for data from normal populations, analysis of variance on the observations
themselves will probably have higher power than analysis of variance on the relative
ranks.

To find the relative ranks, simply order the observations from lowest to highest
and assign ranks 1, 2, etc. If there are ties, assign the average of the ranks to each one
of them. For example, if we have four observations, one greater than the other and
then three ties, we would assign the ranks 1, 2, 3, 4, 6, 6, and 6. The next observation
would have rank 8. We now give an example.

Example 6 Analysis of Variance on Ranks The data below are taken from those
compiled by the National Center for Statistics and Analysis, United States. For five
states in different parts of the country, the data represent the number of speeding
related fatalities by speed limit in miles per hour during 2003 on non-interstate
highways.

State/Speed Limit 55 50 45

California 397 58 142
Florida 80 13 150
Illinois 226 3 22
New York 177 10 23
Washington 16 38 15

The corresponding table for the relative ranks is

State/Speed Limit 55 50 45

California 15 9 11
Florida 10 3 12
Illinois 14 1 6
New York 13 2 7
Washington 5 8 4
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The analysis of variance table for these relative ranks is

Source d.f. Sum of Squares Mean Square F p-value

Speeds 2 115.6 57.8 4.22 0.041
Error 12 164.4 13.7
Total 14 280.0

At 𝛼 = .05, there is a significant difference in the number of fatalities at different
speeds. □

Another non-parametric test based on the ranks is the Kruskal–Wallis Test. For
this test of equality of the medians of the distribution functions for each of k random
samples, the test statistic is

H = 12
N(N + 1)

k∑

i=1

1
ni

[

Ri −
ni(N + 1)

2

]2

(73)

where for the ith sample, ni is the number of observations and Ri is the sum of the
ranks. An equivalent, computationally more convenient form of (73) is

H = 12
N(N + 1)

k∑

i=1

R2
i

ni
− 3(N + 1). (74)

The reader may show the equivalence of formulae (73) and (74) in Exercise 15. A
reasonable approximation to the distribution of H for sample sizes 5 or larger is the
chi-square distribution on k − 1 degrees of freedom. Daniel (1990) notes that the
power of the Kruskal–Wallis test compares quite favorably with that of the F-test for
analysis of variance.

Example 7 Illustration of Kruskal–Wallis Test For the data of Example 6, we
have that R1 = 57, R2 = 23, and R3 = 40.

Then using (74),

H = 12
(15)(16)

[
572

5
+ 232

5
+ 402

5

]

− 3(16) = 5.78.

The 95 percentile of the 𝜒2-distribution is 5.99, so we would fail to reject the
hypothesis of equal medians. The p-value is .0556. □
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Although the test in Example 6 rejects the null hypothesis and the test in Example 7
fails to reject it, the p-values in both cases are close to 0.05. By way of comparison
for the analysis of variance on the observations, we get the results below.

Source d.f. Sum of Squares Mean Square F p-value

Speeds 2 63194 31597 3.53 0.062
Error 12 107337 8945
Total 14 170531

Again, we would fail to reject the null hypothesis of equal means at the .05
significance level. A big difference in the results of a parametric and non-parametric
test might indicate lack of normality. Other tests for normality include making a
normal probability plot and determining whether the points are close to a straight
line, indicating normality. The normal probability plot below indicates that these data
might not be normally distributed.
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For more on the Kruskal–Wallis test, please see Daniel (1990) and Conover
(1998). □

b. Unequal Variances

Scheffe (1959) observes that “Inequality of variances in the cells of a layout has little
effect on the inferences about means but serious effects on inferences about variances
of random effects whose kurotosis differs from zero.” In particular, for unbalanced
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data, it can cause an increase in the type I error and badly invalidate individual
confidence intervals. One remedy that sometimes works is to take logarithms of the
observations. This may, in certain cases, stabilize the variance. This appears to be the
case for the data in Section a.
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Bartlett and Kendall (1946), Levene (1960), and Brown and Forsyth (1974a) give
tests for the equality of variances. Welch (1951), Brown and Forsyth (1974b), Lee
and Ahn (2003), and Rice and Gaines (1989) give modifications of the F-test for data
with unequal group variances.

We shall give illustrations of Bartlett and Levene’s tests for equality of variance.
Then, we will illustrate the modified F-test of Brown and Forsyth (1974b) for

equality of means where the variances may not be equal, and of Welch (1951).

(i) Bartlett’s Test. We are testing the hypothesis that all of the variances are equal
versus the alternative that at least one pair of variances is significantly different. The
test statistic is

T =
(N − k) ln s2

p −
∑k

i=1 (Ni − 1) ln s2
i

1 + 1∕3(k − 1)((
∑k

i=1 1∕(Ni − 1)) − 1∕(N − k))
,

where s2
i is the variance of the ith group and s2

p is the pooled variance given by

s2
p =
∑k

i=1 (Ni − 1)s2
i

N − k
.
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The distribution of T is approximately chi-square on k − 1 degrees of freedom.

Example 8 Illustration of Bartlett’s Test We use the data from Example 4. We
have that

s2
p = 2(23.16)2 + 4(56.45)2 + 3(39.50)2 + 3(61.10)2 + 2(29.94)2 + 3(156.85)2

17
= 6194.01

and

T = 17 ln(6194.01) − 4 ln(23.16) − 8 ln(56.45) − 6 ln(39.5) − 6 ln(61.1) − 4 ln(29.94) − 6 ln(156.85)
1 + (1∕15)(1∕2 + 1∕4 + 1∕3 + 1∕3 + 1∕2 + 1∕3 − 1∕17)

= 12.9348
1.14608

= 11.286 > 11.1

We reject the hypothesis of equal variances at 𝛼 = .05. The p-value is .046. □

Unfortunately, Bartlett’s test is very heavily dependent on the data being normally
distributed.

(ii) Levene’s Test. This consists of doing an analysis of variance on the absolute
values of the differences between the observations and either the mean, the median,
or the trimmed mean. It is less dependent on whether the data are from a normal
population than Bartlett’s test. However, if the data come from a normal population
Bartlett’s test is more powerful. Thus, it is the preferred test when there is strong
evidence of a normal population. We shall demonstrate Levene’s test for the data of
Example 4 using the medians. The original Levene’s test used means. The modifi-
cation for medians and trimmed means is due to Brown and Forsyth (1974a) and is
more robust.

Example 9 Illustration of Levene Test Using Data from Example 4 The trans-
formed data that we need to do the analysis of variance of are below.

State/Speed Limit 55 50 45 40 35 < 35

California 195.5 47 119.5 68.5 104 –
Florida – – – – 11 0
Illinois 24.5 7 0.5 8.5 0 13
New York 24.5 0 0.5 8.5 46 –
Washington 185.5 – 7.5 20.5 16 32
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The resulting analysis of variance table is given below.

Source d.f. Sum of Squares Mean Square F p

Speeds 5 22625 4525 1.57 0.223
Error 17 49142 2892
Total 22 71768

In this instance, we fail to reject the hypothesis of equal variances. When a parametric
test that assumes that the data come from a normal population gives different results
from a non-parametric test, there is suspicion that the data are not normal. □

(iii) Welch’s (1951) F-test. The statistic used for the Welch F-test is

Fw =
MSW

M

1 + 2𝚲(a − 2)∕3
, (75)

where

MSw
M =
∑a

i=1 wi(ȳi. − ȳw
..

)2

a − 1

with wi = ni∕s2
i , ȳw

..
=
∑a

i=1 wiȳi.∕
∑a

i=1 wi, and

𝚲 =
3
∑a

i=1

(

1 − wi∑a
i=1 wi

)2
∕(ni − 1)

a2 − 1
.

The model degrees of freedom are a − 1 and the residual degrees of freedom are 1∕𝚲.

Example 10 Welch F-ratio for Data of Example 4 We have that

w1 = 3
(23.16)2

= 0.00559299, w2 = 5
(56.45)2

= 0.00156907, w3 = 4
(39.50)2

= 0.00256369,

w4 = 4
(61.10)2

= 0.00107146, w5 = 3
(29.94)2

= 0.00334671, w6 = 4
(156.85)2

= 0.00162589

and

w = 0.00559299 + 0.00156907 + 0.00256369 + 0.00107146 + 0.00334671

+ 0.00162589 = 0.057698
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Then, by substitution in ȳw
..
=
∑a

i=1 wiȳi.∕
∑a

i=1 wi, we have that ȳw
..
= 30.1524 and

MSw
M =

∑a
i=1 wi(ȳi.−ȳw

..
)2

a−1
= 36. 2406. The degrees of freedom,

d.f. = 1/Λ = 1/0.129663 = 7.71231. Finally, from (75), our F-statistic is

F = 26.9263.

Comparing this to F.05,5,7 = 3.971, we reject the hypothesis of equal variances. □

(iv) Brown–Forsyth (1974b) Test. The test statistic is given by

F =
∑a

i=1 ni(ȳi. − ȳ..)
2

∑a
i=1 (1 − ni∕N)s2

i

, (76)

where N =
∑a

i=1 ni and s2
i =
∑ni

j=1 (
↼
yij − ȳi.)

2∕(ni − 1). This approximate F-
distribution has degrees of freedom given by

d.f. = 1
∑a

i=1 c2
i ∕(ni − 1)

,

with

ci =
(1 − ni∕N)s2

i
∑a

i=1 (1 − ni∕N)s2
i

The numerator of (76) is the usual between sum of squares for one-way analysis of
variance.

Example 11 Brown–Forsyth (1974b) F-test for Data of Example 4 From the
SAS output, the sum of squares for the numerator of (76) is 78,240.9449.

The denominator is ( 1
23

)(20(23.1589)2 + 18(56.4517)2 + 19(39.5055)2+
19(61.1037)2 + 20(29.9388)2 + 19(156.8502)2) = 28436.8.

The resulting F-statistic is

F = 78240.9499
28436.8

= 2.7514.

We need to approximate the degrees of freedom. We have,

c1 = 20(23.1589)2

654046
= 0.0164005, c2 = 18(56.4517)2

654046
= 0.0877038,

c3 = 19(39.5011)2

654046
= 0.0453277, c4 = 19(61.1037)2

654046
= 0.108463,

c5 = 20(29.9388)
654046

= 0.0274088, c6 = 19(156.8502)
654046

= 0.714696.
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Then,

d.f. = 1

c2
1∕2 + c2

2∕4 + c2
3∕3 + c2

4∕3 + c2
5
∕2 + c2

6∕3
= 5.64 ≃ 6.

We would fail to reject the hypothesis of equal means at𝛼 = .05 because F.05,5,6 = 4.4.
The approximate p-value is 0.125.

c. Non-independent Observations

For the three basic assumptions for analysis of variance, violation of the indepen-
dence observation is the most serious. To illustrate this, following the discussion in
Scheffe (1959), we consider n observations yi from a normal population that are seri-
ally correlated. Consideration of this special case will illustrate the issues involved
while simplifying the discussion. Assume that E(yi) = 𝜇 and var(yi) = 𝜎2, the corre-
lation coefficient if yi and yi+1 is 𝜌 for i = 1,… , n − 1 and that all other correlation
coefficients are zero. Then, we have that

E(ȳ) = 𝜇, (77a)

var(ȳ) = 𝜎2

n

[

1 + 2𝜌
(

1 − 1
n

)]

(77b)

and

E(s2) = 𝜎2
(

1 − 2𝜌
n

)

(77c)

See Exercise 11.
If in (74b), we drop the term 1/n2, we observe that the random variable

t =
(ȳ − 𝜇)

s∕
√

n

which follows a Student t-distribution for small n is asymptotically N(0, 1 + 𝜌). Then,
the probability of a large sample confidence interval with confidence coefficient 1 − 𝛼
not covering the true mean 𝜇 is given by the integral

I = 2
√

2𝜋 ∫

∞

z𝛼∕2∕(1+2𝜌)
exp
(

− t2

2

)

dt

As 𝜌 → − 1
2
, I → 0. As 𝜌→ 1

2
, I → 0.17 for 𝛼 = .05. This illustrates how the effect

of serial correlation on inferences about means can be quite serious.
Schauder and Schmid (1986) investigate one-way analysis of variance assuming

that within each group the correlation between any two observations is the same. They
observe that it is highly non-robust with respect to positive within group correlation.
Positive-within-group correlation strongly increases the level of significance of the
test. Negative-within-group correlation renders the test conservative.
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Adke (1986) observes that for the most part, analysis of variance is invalid when
their observations within groups are correlated. Independence is needed.

To determine whether the observations are independent or not, you can make a
plot of the residuals in the order in which the observations are collected and see if
there are any patterns. The Durbin–Watson test can also be performed.

The test statistic for the Durbin–Watson test is for residuals ri

d =
∑n

i=2 (ri − ri−1)2

∑n
i=1 r2

i

(78)

assuming that the observations are in the time order in which they occurred. The
values are tabulated according to the number of regressors as lower and upper values
dL and du for different levels of significance. When the computed value of the Durbin–
Watson statistic is less than dL, the hypothesis of independence may be rejected and
there may be a serial correlation between successive observations. If on the other
hand, the computed Durbin–Watson statistic is greater than du, there is insufficient
evidence of non-independence. If the statistic falls between du and dL, the test is
inconclusive. Tables are readily available online. One website is http://www.stat.
ufl.edu/˜winner/tables/DW_05.pdf.

The p-values of the Durbin–Watson test may be obtained using SAS and R.

6. THE TWO-WAY NESTED CLASSIFICATION

This section will consider the two-way nested classification. We shall give the form
of the linear model, the normal equations and their solutions, the analysis of variance,
the estimable functions, and show how to formulate tests of hypotheses. As a case in
point, we will use an example from Chapter 4 that describes a student opinion poll of
instructions use of a computing facility in courses in English, Geology, and Chemistry.
Table 6.5 contains partial data from such a poll. The data are from a two-way nested
classification. We now describe its analysis in the subsections that follow.

TABLE 6.5 Student Opinion Poll of Instructor’s Classroom Use of Computer Facility

Observations

Course Section of Course Individual Total Number Mean

English 1 5 5 (1) 5
2 8, 10, 9 27 (3) 9

Total 32 (4) 8

Geology 1 8, 10 18 (2) 9
2 6, 2, 1, 3 12 (4) 3
3 3, 7 10 (2) 5

(8) 5
(12) 6

http://www.stat.ufl.edu/~winner/tables/DW_05.pdf.
http://www.stat.ufl.edu/~winner/tables/DW_05.pdf.
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a. Model

As suggested in Chapter 4, a suitable model is

yijk = 𝜇 + 𝛼i + 𝛽ij + eijk. (79)

The yijk is the kth observation in the jth section of the ith course. The term 𝜇 is a
general mean. The effect due to the ith course is 𝛼i. The 𝛽ij is the effect due to jth
section of the ith course. The usual error term is eijk.

There are a levels of the 𝛼-factor (courses). For the data of Table 6.5, i = 1, 2,… , a
with a = 2. For bi levels for the 𝛽-factor nested within the 𝛼-factor (sections nested
within courses), j = 1, 2,… , bi, with b1 = 2 and b2 = 3 in the example. Further-
more, for nij observations in the jth section of the ith course, k = 1, 2,… , nij. The
values of the nij in Table 6.5 are those in the penultimate column thereof. This

column also shows the values of ni. =
∑bi

j=1 nij and n.. =
∑a

i=1 ni. We have that
n11 = 1, n12 = 3, n1. = 4, and n.. = 12. The table also contains the corresponding
totals and means of yijk.

b. Normal Equations

For the 12 observations of Table 6.6, the equations of the model (79) are

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

5
8
10
9
8
10
6
2
1
3
3
7

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y111
y121
y122
y123
y211
y212
y221
y222
y223
y224
y231
y232

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 0 1 0 0 0 0
1 1 0 0 1 0 0 0
1 1 0 0 1 0 0 0
1 1 0 0 1 0 0 0
1 0 1 0 0 1 0 0
1 0 1 0 0 1 0 0
1 0 1 0 0 0 1 0
1 0 1 0 0 0 1 0
1 0 1 0 0 0 1 0
1 0 1 0 0 0 1 0
1 0 1 0 0 0 0 1
1 0 1 0 0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜇

𝛼1

𝛼2

𝛽11

𝛽12

𝛽21

𝛽22

𝛽23

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

e111
e121
e122
e123
e211
e212
e221
e222
e223
e224
e231
y232

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(80)

TABLE 6.6 Analysis of Variance for the Data of Table 5.5

Source of Variation d.f. Sum of Squares Mean Square F-Statistic

Mean 1 = 1 R(𝜇) = 432 432 F(M) = 1163
Model, after mean b − 1 = 4 R(𝛼,𝛽:𝛼|𝜇) = 84 21 F(R𝜇) = 5.65
Residual N − b = 7 SSE = 26 3.714
Total SST = 542
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Writing X for the 12 × 8 matrix of 0’s and 1’s, it follows that the normal equations
are X′Xb◦ = X′y are

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

12 4 8 1 3 2 4 2
4 4 0 1 3 0 0 0
8 0 8 0 0 2 4 2
1 1 0 1 0 0 0 0
3 3 0 0 3 0 0 0
2 0 2 0 0 2 0 0
4 0 4 0 0 0 4 0
2 0 2 0 0 0 0 2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜇◦

𝛼◦1

𝛼◦2

𝛽◦11

𝛽◦12

𝛽◦21

𝛽◦22

𝛽◦23

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

72

32
40

5
27

18
12
10

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y...
y1..
y2..

y11.
y12.

y21.
y22.
y23.

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(81)

The general form of these equations is

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

n.. n1. n2. n11 n12 n21 n22 n23

n1. n1. 0 n11 n12 0 0 0
n2. 0 n2. 0 0 n21 n22 n23

n11 n11 0 n11 0 0 0 0
n12 n12 0 0 n12 0 0 0

n21 0 n21 0 0 n21 0 0
n22 0 n22 0 0 0 n22 0
n23 0 n23 0 0 0 0 n23

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜇◦

𝛼◦1

𝛼◦2

𝛽◦11

𝛽◦12

𝛽◦21

𝛽◦22

𝛽◦23

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y...
y1..
y2..

y11.
y12.

y21.
y22.
y23.

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(82)

The partitioning shown in (82) suggests how more levels of factors would be incor-
porated into the normal equations.

c. Solving the Normal Equations

The square matrix X′X in equations (81) and (82) has order 8 and rank 5. To see
that its rank is 5, observe that rows 2 and 3 sum to row 1, rows 4 and 5 sum to row
2, and rows 6, 7, and 8 sum to row 3. Hence r(X′X) = 8 − 3 = 5. For the general
two-way nested classification, X′X has rank b, the number of subclasses. This holds
true because its order p is, for a levels of the main classification (courses in our
example), p = 1 + a + b.

However, the rows corresponding to the 𝛼-equations add to that of the 𝜇-equations
(1 dependency) and the rows corresponding to the 𝛽-equations in each 𝛼-level add
to the row for that 𝛼-equation (a dependencies, linearly independent of the first
one). Therefore, r = r(X′X) = 1 + a + b. − (1 + a) = b. Hence by (4), the normal
equations can be solved by putting p − r = 1 + a elements of b◦ equal to zero. From
the nature of (81) and (82), it appears that the easiest 1 + a elements of b◦ to set equal
to zero are 𝜇◦ and 𝛼◦1 , 𝛼◦2 ,… , 𝛼◦a . As a result, the other elements of b◦ are

𝛽◦ij = ȳij. for all i and j. (83)
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Thus, a solution to the normal equations is

b◦′ =
[

0′1×(1+a) ȳ′
]

, (84)

where ȳ′ is the row vector of cell means. Note that the solution in (84) is not unique.
For the case of the example, we see from Table 6.5 that

ȳ′ =
[

5 9 9 3 5
]

(85a)

and the corresponding solution to the normal equation is

b◦′ =
[

0 0 0 5 9 9 3 5
]
. (85b)

The corresponding generalized inverse of X′X is

G =
[

0 0
0 D(1∕nij)

]

for i = 1,… , a, j = 1, 2,… , bi, (86)

where D(1∕nij) for the example is diagonal, with non-zero elements 1, 1
3
, 1

2
, 1

4
, and 1

2
.

d. Analysis of Variance

The sums of squares for the analysis of variance for this model for the example of
Table 6.5 are as follows:

R(𝜇) = SSM = n..ȳ
2
...
= 12(6)2 = 432;

R(𝜇, 𝛼, 𝛽 : 𝛼) = SSR = b◦′X′y =
a∑

i=1

bi∑

j=1

y2
ij.

nij

= 52

1
+ 272

3
+ 182

2
+ 122

4
+ 102

2
= 516;

R(𝛼, 𝛽 : 𝛼) = R(𝜇, 𝛼, 𝛽 : 𝛼) − R(𝜇) = 516 − 432 = 84;

SST = 52 + 82 +⋯ + 32 + 72 = 542;

SSE = SST − R(𝜇, 𝛼, 𝛽 : 𝛼) = 542 − 516 = 26.

Hence the analysis of variance table, in the style of Table 6.4 is that shown in
Table 6.6. Since F(M) = 116.3, we reject the hypothesis H: E(ȳ) = 0 at 𝛼 = .05
because F(M) > F.05,1,7 = 5.59. Likewise, we also reject the hypothesis at 𝛼 = .05
that the model E(yijk) = 𝜇 + 𝛼i + 𝛽ij of (79) does not account for more variation in
the y variable than does the model E(yijk) = 𝜇 because F(Rm) > F.05,4,7 = 4.12.

Suppose that we fit the one-way classification model

yijk = 𝜇 + 𝛼i + eijk
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to the data of Table 6.5. Then, as in (37) and (76), the reduction for fitting this model
is

R(𝜇, 𝛼) =
a∑

i=1

yi..

ni.
= 322

4
+ 402

8
= 456.

Hence,

R(𝛽 : 𝛼|𝜇, 𝛼) = R(𝜇, 𝛼, 𝛽 : 𝛼) − R(𝜇, 𝛼) = 516 − 546 = 60,

and

R(𝛼|𝜇) = R(𝜇, 𝛼) − R(𝜇) = 456 − 432 = 24.

As a result, we can divide R(𝛼, 𝛽 : 𝛼|𝜇) of Table 6.6 into two portions. Observe that

84 = R(𝛼, 𝛽 : 𝛼|𝜇) = R(𝜇, 𝛼, 𝛽 : 𝛼) − R(𝜇)

= R(𝜇, 𝛼, 𝛽 : 𝛼) − R(𝜇, 𝛼) + R(𝜇, 𝛼) − R(𝜇)

= R(𝛼, 𝛽 : 𝛼|𝜇) + R(𝛼|𝜇)

= 60 + 24.

We see the result of doing this in Table 6.7 where the F-statistic is

F(𝛼|𝜇) = R(𝛼,𝜇)
(a − 1)MSE

= 6.46 > F.05,1,7 = 5.59. (87)

This tests the significance of fitting 𝛼 after 𝜇. Furthermore,

F(𝛽 : 𝛼|𝜇, 𝛼) = R(𝛽 : 𝛼|𝜇, 𝛼)
(b. − a)MSE

= 5.39 > F.05,3,7 = 4.35 (88)

tests the significance of fitting 𝛽 : 𝛼 after 𝛼 and 𝜇. From (87) and (88), we conclude
that fitting 𝛼 after𝜇 as well as 𝛽 : 𝛼 after 𝛼 and 𝜇 accounts for the variation in the y
variable.

TABLE 6.7 Analysis of Variance for Data of Table 6.5 (Two-Way Nested Classification)

Source of Variation d.f. Sum of Squares Mean Square F-Statistic

Mean, 𝜇 1 = 1 R(𝜇) = 432 432 116.3
𝛼 after 𝜇 𝛼 − 1 = 1 R(𝛼|𝜇) = 24 24 6.46
𝛽:𝛼 after 𝜇 and 𝛼 b − 𝛼 = 3 R(𝛽:𝛼|𝜇,𝛼) = 60 20 5.39
Residual N − b = 7 SSE = 26 3.714

Total N = 12 SST = 542
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e. Estimable Functions

Applying the general theory of estimability to any design models involves many of
the points detailed in Section 2e for the one-way classification. We will not repeat
these details in what follows.

The expected value of any observation is estimable. Thus, from (83) and (85),
𝜇 + 𝛼i + 𝛽ij is estimable with b.l.u.e. 𝜇 + 𝛼◦i + 𝛽◦ij = ȳij.. Table 6.8 contains this result
and linear combinations thereof. An illustration of one of them is, using (85),

̂𝛽11 − 𝛽12 = 5 − 9 = −4.

Its variance is

v( ̂𝛽11 − 𝛽12) = 𝜎2
(1

1
+ 1

3

)

= 4𝜎2

3
.

From Table 6.6, an unbiased estimate of this variance is 4�̂�2∕3 = 4(MSE)∕3 =
4(3.714)∕3 = 4.952. Typically, one uses the values 1∕bi or nij∕ni. for wij in the last
two rows of Table 6.8. For example, using 1/bi using (85) again, we have, for example,
that the b.l.u.e. of

𝛼1 − 𝛼2 +
1
2

(𝛽11 + 𝛽12) − 1
3

(𝛽21 + 𝛽22 + 𝛽23) (89)

for the data in Table 6.5 has the estimate of
1
2

(5 + 9) − 1
3

(9 + 3 + 5) = 4
3
.

An estimate of the variance of the b.l.u.e. is

𝜎2
[(1

2

)2 (1
1
+ 1

3

)

+
(1

3

)2 (1
2
+ 1

4
+ 1

2

)]

= 17
36
𝜎2.

Note that in Table 6.8, none of the linear functions 𝜇,𝜇 + 𝛼i, and 𝛼i are estimable.

TABLE 6.8 Estimable Functions in the Two-Way Nested Classification
yij = 𝝁+ 𝜶i + 𝜷ij + eijk

Estimable Function b.l.u.e. Variance of b.l.u.e.

𝜇 + 𝛼i + 𝛽ij yij.
𝜎2

nij

𝛽ij − 𝛽ij′ for j ≠ j′ ȳij. − ȳij′ . 𝜎2

(
1

nij
+ 1

nij′

)

𝜇 + 𝛼i +
bi∑

j=1

wij𝛽ij

bi∑

j=1

wijȳij 𝜎2

(
bi∑

j=1

w2
ij

nij

)

for
bi∑

j=1
wij = 1

𝛼i − 𝛼i′ +
bi∑

j=1

wij𝛽ij −
bi′∑

j=1

wi′j𝛽i′j

for
bi∑

j=1

wij = 1 =
bi′∑

j=1

wi′j

bi∑

j=1

wijȳij −
bi∑

j=1

wi′jȳi′ j 𝜎2

(
bi∑

j=1

w2
ij

nij

+
bi′∑

j=1

w2
i′j

ni′j

)
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f. Tests of Hypothesis

The estimable functions of Table 6.8 form the basis of testable hypotheses. The F-
statistic for testing the null hypothesis that any one of the functions in Table 6.8 is
zero is the square of its b.l.u.e. divided by that b.l.u.e.’s variance with �̂�2 replacing 𝜎2.

Under the null hypothesis, such a statistic has the F1,N−b-distribution. Its square root
has the tN−b-distribution. Thus, we can use the statistic

F =
(ȳij. − ȳij′.)

2

�̂�2(1∕nij + 1∕nij′ )

or equivalently
√

F to test the hypothesis that 𝛽ij = 𝛽ij′ .
The hypothesis H: 𝛽i1 = 𝛽i2 = ⋯ = 𝛽ibi

is of special interest. It is the hypothesis
of equal 𝛽’s within each 𝛼 level. By writing it in the form H: K′b = 0, it can be shown
that the resulting F-statistic of (21) is F(𝛽 : 𝛼|𝜇, 𝛼) that was given in (88) and used in
Table 6.8. Recall that in (88), F(𝛽 : 𝛼|𝜇, 𝛼) was given as the statistic for testing the
significance of 𝛽 : 𝛼 after 𝜇 and 𝛼. Equivalently, this statistic can be used to test the
hypothesis of equalities of the 𝛽’s within each 𝛼 level.

Example 12 Test of the Equalities of the 𝜷’s Within Each 𝜶 Level for the Data
of Table 6.5 Carrying out this test for the data of Table 6.5 involves using

K′ =
⎡
⎢
⎢
⎣

0 0 0 1 −1 0 0 0
0 0 0 0 0 1 −1 0
0 0 0 0 0 1 0 −1

⎤
⎥
⎥
⎦

. (90)

Using b◦′ of (85) and G implicit in (86) gives

K′b◦ =
⎡
⎢
⎢
⎣

−4
6
4

⎤
⎥
⎥
⎦

and (K′GK)−1 =
⎡
⎢
⎢
⎢
⎣

4
3

0 0

0 3
4

1
2

0 1
2

1

⎤
⎥
⎥
⎥
⎦

−1

=
⎡
⎢
⎢
⎣

3
4

0 0
0 2 −1
0 −1 3

2

⎤
⎥
⎥
⎦

.

Then Q of (21) is

Q =
[
−4 6 4

] ⎡
⎢
⎢
⎣

3
4

0 0
0 2 −1
0 −1 3

2

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

−4
6
4

⎤
⎥
⎥
⎦

= 60 = R(𝛽 : 𝛼, |𝜇, 𝛼)

of Table 6.7. Thus the F-value is 60∕3�̂�2 = 60∕3(3.714) = 5.39. □
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Example 13 Another Hypothesis Test for an Estimable Function of the Type in
the Last Line of Table 6.8 Consider the hypothesis

H: k′b = 0 for k′ =
[

0 1 −1 1
4

3
4

− 2
8

− 4
8

− 2
8

]

. (91)

We have that

k′b = 𝛼1 − 𝛼2 +
1
4

(𝛽11 + 3𝛽12) − 1
8

(2𝛽21 + 4𝛽22 + 2𝛽23).

This is an estimable function of the type found in the last line of Table 6.8 with
wij = nij∕ni.. From (91), (85), and (86), we have that,

k′b = 3 and k′Gk = 3
8
.

Thus, by (21) the numerator sum of squares for testing the hypothesis in (91) is

Q = 32
(8

3

)

= 24 = R(𝛼|𝜇) of Table 6.7. (92)

□

The result obtained in (92) is no accident. Although R(𝛼|𝜇) is as indicated in (87),
the numerator sum of squares for testing the fit of 𝛼 after 𝜇, it is also the numerator
sum of squares for testing

H: 𝛼i +
bi∑

j=1

nij𝛽ij

ni.
= 𝛼i′ +

bi∑

j=1

ni′j𝛽i′j

ni′.
for all i ≠ i′. (93)

Furthermore, in the sense of (62), the hypothesis in (93) is orthogonal to

H: 𝛽ij = 𝛽ij′ for j ≠ j′, within each i. (94)

The hypothesis H: k′b = 0 that uses k′ in (91) and the hypothesis H: K′b = 0 that
uses K′ of (90) are examples of (93) and (94). Every row of k′ and every row of
K′ satisfy (62) (k′GK = 0). Furthermore, when we test (93) by using (21), we will
find that F(H) will reduce to F(𝛼|𝜇) as exemplified in (92). Hence, F(𝛼|𝜇) tests
(93) with numerator sum of squares R(𝛼|𝜇). Likewise, F(𝛽 : 𝛼|𝜇, 𝛼) tests (94) with
numerator sum of squares R(𝛽 : 𝛼|𝜇, 𝛼). The two numerator sums of squares R(𝛼|𝜇)
and R(𝛽 : 𝛼|𝜇, 𝛼) are statistically independent. This can be established by expressing
each sum of squares as quadratic forms in y and applying Theorem 7 of Chapter 2
(see Exercise 13).
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We can also appreciate the equivalence of the F-statistic for testing (93) and F(𝛼|𝜇)
by noting in (93) if 𝛽ij did not exist then (93) would represent

H: all 𝛼′s equal (in the absence of 𝛽′s).

This, indeed, is the context of earlier interpreting F(𝛼|𝜇) as testing 𝛼 after 𝜇.

g. Models that Include Restrictions

The general effect of having restrictions as part of the model has been discussed in
Section 6 of Chapter 5 and illustrated in detail in Section 2h of the present chap-
ter. The points made there apply equally as well here. Restrictions that involve
non-estimable functions of the parameters affect the form of functions that are
estimable and hypotheses that are testable. The restrictions of particular interest here
are
∑bi

j=1 wij𝛽ij = 0 with
∑bi

j=1 wij = 1 for all i because then we see from Table 6.8 that
𝜇 + 𝛼i and 𝛼i − 𝛼i′ are estimable and hypotheses about them are testable. Suppose
that the wij of the restrictions are nij∕n, so that the restrictions are

∑b
j=1 nij𝛽ij = 0

for all i. For this case, (93) becomes H: all 𝛼′i s equal. Then, as we have just shown
(93) is tested by F(𝛼|𝜇). This F-statistic is independent of F(𝛽 : 𝛼|𝜇, 𝛼) that tests
H: all 𝛽′s equal within each 𝛼 level. On the other hand, suppose that the wij of the

restrictions are not nij∕n but instead take some other form where
∑bi

j=1 wij = 1 for
all i.

For example, suppose we have wij = 1∕bi. For this case, we can still test the
hypothesis H: all 𝛼′i s equal. However, the F-statistic will not be equal to F(𝛼|𝜇), nor
will its numerator be independent of F(𝛽 : 𝛼|𝜇, 𝛼).

h. Balanced Data

The position with balanced data (nij = n for all i and j and bi = b for all i) is akin to that
of the one-way classification discussed in Section 2i earlier. Applying “constraints”
∑bi

j=1 𝛽
◦
ij = 0 for all i and

∑a
i=1 𝛼

◦
i = 0 to the normal equations lead to easy solutions

thereof: 𝜇◦ = ȳ..., 𝛼
◦
i = ȳi.. − ȳ..., and 𝛽◦ij = ȳij. − ȳ..., as is found in many texts. Other

results are unaltered. For example, the estimable functions and their b.l.u.e.’s are the
same.

When restrictions paralleling the constraints are taken as part of the model,
∑a

i=1 𝛼i = 0 and
∑bi

j=1 𝛽ij = 0 for all i, the effect is to make 𝜇, 𝛼i, and 𝛽ij individ-

ually estimable with b.l.u.e.’s �̂� = ȳ..., �̂�i = ȳi.. − ȳ..., and 𝛽ij = ȳij. − ȳ.... As was the
case with the one-way classification, rationalization of such restrictions is oppor-
tune. The 𝛼i’s are defined as deviations from their mean. Likewise, the 𝛽ij’s are the
deviations from their within 𝛼-level means.
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7. NORMAL EQUATIONS FOR DESIGN MODELS

Models of the type described here, in Chapter 4 and later on in this book are sometimes
called design models (see, for example, Graybill (1976)). We will now characterize
some general properties of the normal equations X′Xb◦ = X′y of design models
using (81) as a case in point.

The following are some general properties of normal equations.

1. There is one equation corresponding to each effect of a model.

2. The right-hand side of any equation (the element of X′y) is the sum of all
observations that contain in their model, a specific effect. For example, the
right-hand side of the first equation in (81) is the sum of all observations that
contain 𝜇.

3. The left-hand side of each equation is the expected value of the right-hand side
with b replaced by b◦.

As a result of the above observations, the first equation in (82) corresponds to 𝜇.
Its right-hand side is y.... Its left-hand side is E(y...) with b therein replaced by b◦.

Hence, the equation is as implied in (81),

12𝜇◦ + 4𝛼◦1 + 8𝛼◦2 + 𝛽◦11 + 3𝛽◦12 + 2𝛽◦21 + 4𝛽◦22 + 2𝛽◦23 = y... = 72. (95)

Likewise, the second equation of (81) relates to 𝛼1. Its right-hand side is the sum of
all observations that have 𝛼1 in their model, namely y1... Its left-hand side is E(y1..)
with b replaced by b◦. Thus the equation is

4𝜇◦ + 4𝛼◦1 + 𝛽◦11 + 3𝛽◦12 = y1.. = 32. (96)

Suppose that in a design model 𝜃i is the effect (parameter) for the ith level of the 𝜃
factor. Let y𝜃.i be the total of the observations in this level of this factor. Then, the
normal equations are

[E(y𝜃.i ) with b replaced by b◦] = y𝜃.i (97)

with i ranging over all levels of all factors 𝜃 including the solitary level of the 𝜇-factor.
The coefficient of each term in (95) is the number of times that its corresponding

parameter occurs in y.... For example, the coefficient of 𝜇◦ is 12 because 𝜇 occurs 12
times in y..., the coefficient of 𝛼◦1 is 4 because 𝛼1 occurs four times in y1.. and so on.

Likewise, the term in 𝛽◦11 in (96) is 𝛽◦11 because 𝛽11 occurs once in y1…. The term
in 𝛽◦12 is 3𝛽◦12 because 𝛽12 occurs thrice in y1…. In general, the coefficients terms in
the normal equations (i.e., the elements of X′X) are the nij’s of the data, determined
as follows.

Equation (97) may be called the 𝜃i equation, not only because of its form as
shown there but also because of its derivation from the least-square procedure when
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differentiating with respect to 𝜃i. The coefficient of 𝜑◦
j (corresponding to the param-

eter 𝜑j in (97)) is as follows:

Coefficient of 𝜑◦
j

in the 𝜃i equation

}

=
⎧
⎪
⎨
⎪
⎩

No. of observations in the
ith level of the 𝜃-factor
and the jth level of the 𝜑-factor

≡ n(𝜃i,𝜑j).

For example, (96) is the 𝛼1-equation and the coefficient of 𝛽0
12 is n(𝛽12, 𝛼1) = n12 = 3

as shown. These n’s are the elements of X′X. The property

n(𝜃i,𝜑j) = n(𝜑j, 𝜃i),

arising from the definition of n(𝜃i,𝜑j) just given, accords with the symmetry of X′X.
The fact that

n(𝜇, 𝜃i) = n(𝜃i,𝜇) = n(𝜃i, 𝜃i) = n𝜃i
=
⎧
⎪
⎨
⎪
⎩

No of observations
in the ith level
of the 𝜃-factor

is what leads to X′X having in its first row, in its first column, and in its diagonal,
all of the n’s (and their various sums) of the data. This is evident in (81) and will be
further apparent in subsequent examples. In addition, partitioning the form shown in
(81) helps to identify the location of the n’s and their sums in X′X. For the illustrative
example considered, the 𝜇-equation is first, followed by two 𝛼-equations, and then
by sets of 2 and 3 𝛽-equations corresponding to the level of the 𝛽-factor within each
level of the 𝛼-factor. Partitioning X′X in this manner is always helpful in identifying
its elements.

8. A FEW COMPUTER OUTPUTS

We consider the data from Table 4.11 in Chapter 4. We compare refineries neglecting
the source and consider the processes nested within refineries. The SAS output is as
follows.

The SAS System
The GLM Procedure

Class Level Information
Class Levels Values
refinery 3 1 2 3
process 2 1 2
Number of observations read 25
Number of observations used 25
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The SAS System
The GLM Procedure

Dependent Variable: percentage
Source DF Sum of Squares Mean Square F Value Pr > F
Model 5 334.010000 66.802000 1.17 0.3588
Error 19 1082.550000 56.976316
Corrected Total 24 1416.560000
R-Square Coeff Var Root MSE percentage Mean
0.235790 20.26924 7.548266 37.24000
Source DF Type I SS Mean Square F Value Pr > F
refinery 2 20.9627778 10.4813889 0.18 0.8334
process (refinery) 3 313.0472222 104.3490741 1.83 0.1757
Source DF Type III SS Mean Square F Value Pr > F
refinery 2 89.3935579 44.6967790 0.78 0.4706
process (refinery) 3 313.0472222 104.3490741 1.83 0.1757

The code used to generate this output was

data efficiency;
input refinery process percentage;
cards;
1 1 31
1 1 33
…….
3 2 37
3 2 43
proc glm;
class refinery process;
model percentage=refinery process(refinery);
run;

Galveston, Newark, and Savannah are denoted by 1, 2, and 3, respectively. The source
is denoted by 1, and 2.

Note that neither factor was significant.
The R output is

Analysis of Variance Table
Response: percent

Df Sum Sq Mean Sq F value Pr(>F)
refine 2 20.96 10.481 0.1840 0.8334
refine:process 3 313.05 104.349 1.8314 0.1757
Residuals 19 1082.55 56.976
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The code used to generate this output was

percent<-
c(31,33,44,36,38,26,37,59,42,42,34,42,28,39,36,32,38,42,36,
22,42,46,26,37,43)
> refinery<-c(rep("g",9),rep("n",8),rep("s",8))
> process<-c(1,1,1,1,1,1,2,2,2,1,1,1,1,2,2,2,2,1,1,1,2,2,2,2,2)
> res1 lm(percent~refinery/process)
> anova(res1)

9. EXERCISES

1 Suppose that the population of a community consists of 12% who did not complete
high school and 68% who did, with the remaining 20% having graduated from
college.

Using the data of Table 6.1, find

(a) the estimated population average index;

(b) the estimated variance of the estimator in (a);

(c) the 95% symmetric confidence interval on the population average;

(d) the F-statistic for testing the hypothesis H: 𝜇 + 𝛼1 = 70 and 𝛼1 = 𝛼3 − 15;

(e) a contrast that is orthogonal to 4𝛼1 − 3𝛼2 − 𝛼3;

(f) test the hypothesis that the contrast obtained in (e) and 4𝛼1 − 3𝛼2 − 𝛼3 are
zero.

(g) find 95% simultaneous confidence intervals on the contrast found in (e) and
4𝛼1 − 3𝛼2 − 𝛼3 using

(i) the Bonferonni method;

(ii) the Scheffe method.

2 An opinion poll yields the scores of each of the following for some attribute:

(i) four laborers as 37, 25, 42, and 28;

(ii) two artisans as 23 and 29;

(iii) three professionals as 38, 30, and 25; and

(iv) two self-employed people as 23 and 29.

For the population from which these people come, the percentages in the four
groups are respectively 10%, 20%, 40%, and 30%. What are the estimates and
the estimated variances of each of the following?

(a) the population score?

(b) the difference in score between professionals and an average of the other three
groups?

(c) the difference between a self-employed and a professional?
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3 (Exercise 2 continued). Test the following hypothesis.
A laborer’s score equals an artisan’s score equals the arithmetic average of a

professional’s and a self-employed’s score.

4 (Exercise 2 continued). (a) Find two mutually orthogonal contrasts (one not
involving self-employed people) that are orthogonal to the difference between a
laborer’s and an artisan’s score.

5 (Exercise 2 continued) Suppose that we have yet another professional group with
scores 14, 16, 18, 21, 25, and 14. Is the mean score of this group the same as the
average of the scores of the other four groups? Perform an appropriate test of the
hypothesis.

6 Suppose that the data of a student opinion poll similar to that of Section 6 of this
chapter are as shown below. (Each column represents a section of a course and
sections are nested within subjects.)

English Geology Chemistry

2 7 8 2 10 8 6 1 8
5 9 4 6 8 2 3 6
2 3 9 3 2

4 1

(a) Write down the normal equations and find a solution to them.

(b) Calculate an analysis of variance table similar to Table 6.7.

(c) Test the following hypotheses, one at a time.

(i) Sections within courses have the same opinions.

(ii) Courses, ignoring sections, have similar opinions.

(d) Formulate and test the hypotheses below both simultaneously and indepen-
dently.

(i) Geology’s opinion is the mean of English and Chemistry.

(ii) English’s opinion equals Chemistry both simultaneously and indepen-
dently. [Hint: Do this for the one-way classification model, that is, set all
of the 𝛾’s equal to zero.]

(e) Test independently and simultaneously that (section i is the ith column):

(i) Sections 1 and 3 for English have the same opinion.

(ii) Sections 2 and 4 for Chemistry have the same opinion.

(f) Find Bonferonni and Scheffe simultaneous 95% confidence intervals on the
contrasts in (d) and (e). For the contrasts in (d), use the one-way model. Are
the results consistent with those of the hypothesis tests?

7 For Exercise 6, make a rank transformation and do analysis of variance on the
ranks. Compare your results to those in Exercise 6.
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8 Wilson (1993) presents several measurements of the maximum hourly concen-
trations (in 𝜇g∕m3) of sulfur dioxide (SO2) for each of four power plants. The
results with two outliers deleted are as follows:

Plant 1: 438 619 732 638
Plant 2: 857 1014 1153 883 1053
Plant 3: 925 786 1179 786
Plant 4: 893 891 917 695 675 595

(a) Perform an analysis of variance to see if there is a significant difference in
sulfur dioxide concentration amongst the four plants.

(b) Test the hypothesis H : 𝛼1 − 𝛼4 = 0, 𝛼2 − 𝛼3 = 0, 𝛼1 + 𝛼4 − 𝛼2 − 𝛼3 = 0.

(c) For the contrasts in (b), find:

(i) a Bonferonni simultaneous 97% confidence interval.

(ii) a Scheffe 99% confidence interval.

9 Karanthanasis and Pils (2005) present pH measurements of soil specimens taken
from three different types of soil. Some measurements are as follow:

Soil Type pH Measurements

Alluimum 6.53 6.03 6.75 6.82 6.24
Glacial Till 6.07 6.07 5.36 5.57 5.48 5.27 5.80 5.03 6.65
Residuum 6.03 6.16 6.63 6.13 6.05 5.68 6.25 5.43 6.46 6.91 5.75 6.53

Determine whether there is a difference in the average pH of the three soil types
by performing the Kruskal–Wallis test.

10 In the model yij = 𝜇i + eij, i = 1, ..., a, j = 1, ..., ni, show that 𝜇i is estimable and
find its b.l.u.e.

11 Consider n observations yi from a normal population that are serially corre-
lated. This means that E(yi) = 𝜇 and var(yi) = 𝜎2, the correlation coefficient if
yi and yi+1 is 𝜌 for i = 1,… , n − 1 and that all other correlation coefficients are
zero. Show that

(a) E(ȳ) = 𝜇,

(b) var(ȳ) = 𝜎2

n

[

1 + 2𝜌
(

1 − 1
n

)]

(c) E(s2) = 𝜎2
(

1 − 2𝜌
n

)
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12 Derive:

(a) The expression for a non-symmetric (1 − 𝛼)% confidence interval for the
contrast

∑a
i=1 𝜆i𝛼i of the one-way classification.

(b) The expression for the symmetric confidence interval.

13 (a) Suppose y = Xb1 + Zb2 + e with y ∼ N(Xb1 + Zb2, 𝜎2I) and that R(b1, b2)
is the reduction in the sum of squares in fitting this model. Prove that
R(b2|b1)∕𝜎2 has a non-central 𝜒2-distribution independent of R(b1) and of
SSE.

(b) Show that R(𝛼|𝜇)∕𝜎2 and R(𝛽 : 𝛼|𝛼,𝜇)∕𝜎2 are independently distributed as
non-central 𝜒2 random variables.

14 Consider the one-way classification model with three treatments. For the tests of
hypothesis H: all alphas equal show that the numerator of the F statistic is

Q =
3∑

i=1

ni(ȳ
2
i. − ȳ..)

2

15 Show that the two forms of the Kruskal–Wallis statistic in (73) and (74) are indeed
equivalent.



7
THE TWO-WAY CROSSED
CLASSIFICATION

This chapter continues with the applications of Chapter 5 that were started in Chap-
ter 6. It will deal at length with the two-way crossed classification (with and without
interaction).

1. THE TWO-WAY CLASSIFICATION WITHOUT INTERACTION

A course in home economics might include in its laboratory exercises an experiment
to illustrate the cooking speed of three makes of pan used with four brands of stove.
The students use pans of uniform diameter that are made by different manufacturers
to collect data on the number of seconds, beyond three minutes, that it takes to bring
two quarts of water to a boil. The experiment is designed to use each of the three
makes of pan with each of the four stoves. However, one student carelessly fails to
record three of her observations. Her resulting data are shown in Table 7.1. The data
include totals for each brand of stove and make of each pan, the number of readings
for each, and their mean time. As we have done before, we show the number of
readings in parenthesis to distinguish them from the readings themselves.

The observations that the student failed to record are in some sense, “missing
observations.” We could, if we wanted to, analyze the data using one of the many
available “missing observations” techniques available in many books on design of

Linear Models, Second Edition. Shayle R. Searle and Marvin H. J. Gruber.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.
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TABLE 7.1 Number of Seconds (Beyond 3 Minutes) Taken to Boil 2 Quarts of Water

Make of Pan

Brand of Stove A B C Total No. of Observations Mean

X 18 12 24 54 (3) 18
Y – – 9 9 (1) 9
Z 3 – 15 18 (2) 9
W 6 3 18 27 (3) 9
Total 27 15 66 108
No. of observations (3) (2) (4) (9)
Mean 9 7.5 16.5 12

experiments (e.g., see p. 133 of Federer (1955), or pp. 131–132 of Montgomery
(2005)). Most of these techniques involve:

1. estimating the missing observations in some way;

2. putting these estimates into the data;

3. proceeding as if the data were balanced, except for minor adjustments in the
degrees of freedom.

We can recommend such procedures on many occasions (see Section 2 of Chap-
ter 8). However, they are of greatest use only when very few observations are missing.
This might be the case with Table 7.1, even though 25% of the data have been lost.
The data will serve to illustrate techniques for cases where the “missing observations”
concept is wholly inappropriate. These include data sets where large numbers of cells
may be empty, not because observations were lost but because none were available.
Data of this kind occur quite frequently (e.g., Table 4.1). We turn our attention to the
analysis of such data using Table 7.1 as an illustration.

The data of Table 7.1 come from a two-way crossed classification. There are two
factors with every level of one occurring in combination with every level of the other.
We considered models of such data in Section 3 of Chapter 4, paying particular
attention to the inclusion of interaction effects in the model. However, it was also
pointed out there that, when there is only one observation per cell, the usual model
with interactions could not be used.

This is also true of the data in Table 7.1 where there are some cells that do not
even have one observation but are empty.

a. Model

A suitable equation of the model for analyzing the data of Table 7.1 is therefore,

yij = 𝜇 + 𝛼i + 𝛽j + eij. (1)

The yij is the observation of the ith row (brand of stove) and jth column (make of
pan). The mean is 𝜇. The effect of the ith row is 𝛼i. The effect of the jth column is 𝛽j.
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The error term is eij. Equivalently,𝛼i is the effect due to the ith level of the 𝛼-factor
and 𝛽j is the effect of the jth level of the 𝛽-factor. In general, we have a levels of
the 𝛼-factor with i = 1, 2,… , a and b levels of the 𝛽-factor with j = 1, 2,… , b. In the
example, a = 4 and b = 3.

For balanced data, every one of the ab cells of a table like Table 7.1 would have one
observation or n > 1 observations. The only symbol needed to describe the number
of observations in each cell would be (n ≥ 1). However, in Table 7.1, some cells have
zero observations and some have one. Therefore, we need nij to denote the number
of observations in the ith row and the jth column. In Table 7.1, all nij = 0 or 1. The
numbers of observations shown in that table are then the values of

ni. =
b∑

j=1

nij, n.j =
a∑

i=1

nij and N = n.. =
a∑

i=1

b∑

j=1

nij.

Table 7.1 also shows the corresponding totals and means of the observations. In the
next section, we shall also use this convenient nij notation for data where there are
none, one or many observations per cell.

Equation (2) shows the equations of the model y = Xb + e for the observations in
Table 7.1. We show the elements of b, namely 𝜇, 𝛼1,… , 𝛼4, 𝛽1, 𝛽2, and 𝛽3 both as a
vector and as headings to the columns of the matrix X. This is purely for convenience
in reading the equations. It clarifies the incidence of the elements in the model, as does
the partitioning, according to the different factors 𝜇, 𝛼, and 𝛽. The model equations
for the data in Table 7.1 are

𝜇 𝛼1 𝛼2 𝛼3 𝛼4 𝛽1 𝛽2 𝛽3

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

18

12

24

9

3

15

6

3

18

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y11

y12

y13

y23

y31

y33

y41

y42

y43

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 0 0 0 1 0 0

1 1 0 0 0 0 1 0

1 1 0 0 0 0 0 1

1 0 1 0 0 0 0 1

1 0 0 1 0 1 0 0

1 0 0 1 0 0 0 1

1 0 0 0 1 1 0 0

1 0 0 0 1 0 1 0

1 0 0 0 1 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜇

𝛼1

𝛼2

𝛼3

𝛼4

𝛽1

𝛽2

𝛽3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

e11

e12

e13

e23

e31

e33

e41

e42

e43

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (2)

b. Normal Equations

For the given X and observations y, Equations (2) are in the form of y = Xb + e. We
can write the corresponding normal equations X′Xb◦ = X′y, in a manner similar to
(2). They are
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𝜇◦ 𝛼◦1 𝛼
◦
2 𝛼

◦
3 𝛼

◦
4 𝛽◦1 𝛽

◦
2 𝛽

◦
3

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

9 3 1 2 3 3 2 4
3 3 0 0 0 1 1 1

1 0 1 0 0 0 0 1

2 0 0 2 0 1 0 1

3 0 0 0 3 1 1 1
3 1 0 1 1 3 0 0

2 1 0 0 1 0 2 0

4 1 1 1 1 0 0 4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜇◦

𝛼◦1
𝛼◦2
𝛼◦3
𝛼◦4
𝛽◦1
𝛽◦2
𝛽◦3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

108
54

9

18

27
27

15

86

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
(3)

We gave some general properties of these equations in Section 4 of Chapter 6. These
are further evident here. In this case, the first row and column and the diagonal of
X′X have n.., the ni.’s, and the nj.’s in them. The only other non-zero off-diagonal
elements are those in the a × b matrix of 1’s and 0’s (and its transpose) corresponding
to the pattern of observations. The partitioning indicated in (3) highlights the form of
X′X and suggests how we would accommodate more levels of the factor.

c. Solving the Normal Equations

In the examples of Sections 2 and 6 of Chapter 6, solutions of the normal equations
were easily derived by the procedure indicated in equation (4) of Chapter 6. Now,
however, even after making use of that procedure, there is no neat explicit solution.
We can obtain a numerical solution but algebraically we cannot represent it succinctly.

In (3), the sum of the a rows of X′X immediately after the first (the 𝛼-equations)
equals the first row. The sum of the last b rows (the 𝛽-equations) also equals the first
row. Since X′X has order q = 1 + a + b, its rank is r = r(X′X) = 1 + a + b − 2 =
a + b − 1. Thus p – r = 2. We may solve (3) by setting an appropriate two elements
of b◦ equal to zero and deleting the corresponding equations. One of the easiest
ways to do this is to put 𝜇◦ = 0 and either 𝛼◦1 = 0 or 𝛽◦b = 0, according to whether
a < b or a > b. When a = b, it is immaterial. Thus, when there are fewer 𝛼-levels
than 𝛽-levels, put 𝛼◦1 = 0 and when there are fewer 𝛽-levels than 𝛼-levels, put 𝛽◦b = 0.
In our example, there are fewer 𝛽-levels than 𝛼-levels. Thus with 𝜇◦ = 0 = 𝛽◦3 , we
get from (3),

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

3 0 0 0 1 1

0 1 0 0 0 0

0 0 2 0 1 0

0 0 0 3 1 1
1 0 1 1 3 0

1 0 0 1 0 2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝛼◦1
𝛼◦2
𝛼◦3
𝛼◦4
𝛽◦1
𝛽◦2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y1.

y2.

y3.

y4.
y.1
y.2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

54

9

18

27
27

15

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (4)
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Written in full, these equations are

3𝛼◦1 + 𝛽◦1 + 𝛽◦2 = 54

𝛼◦2 = 9

2𝛼◦3 + 𝛽◦1 = 18

3𝛼◦4 + 𝛽◦1 + 𝛽◦2 = 27

(5)

and

𝛼◦1 +𝛼◦3 + 𝛼◦4 + 3𝛽◦1 = 27

𝛼◦1 +𝛼◦4 2𝛽◦2 = 15.
(6)

From (5), the 𝛼◦’s are expressed in terms of the 𝛽◦’s. Substitution in (6) then leads
to the solutions for the 𝛽◦’s. Thus (5) gives

𝛼◦1 = 54∕3 − 1
3
(𝛽◦1 + 𝛽◦2 ) = 18 − 1

3
[1(𝛽◦1 ) + 1(𝛽◦2 )]

𝛼◦2 = 9∕1 = 9 − 1
1
[0(𝛽◦1 ) + 0(𝛽◦2 )]

𝛼◦3 = 18∕2 − 1
2
𝛽◦1 = 9 − 1

2
[1(𝛽◦1 ) + 0(𝛽◦2 )]

𝛼◦4 = 27∕3 − 1
3
(𝛽◦1 + 𝛽◦2 ) = 9 − 1

3
[1(𝛽◦1 ) + 1(𝛽◦2 )].

(7)

The reason for including the coefficients 1 and 0 on the right-hand sides of (5) will
become clear when we consider the generalization of the procedure. For this reason,
we retain the 1’s and the 0’s. Substituting (7) into (6) gives

{3 − [1(1)∕3 + 0(0)∕1 + 1(1)∕2 + 1(1)∕3]}𝛽◦1
−[1(1)∕3 + 0(0)∕1 + 1(0)∕2 + 1(1)∕3]𝛽◦2
= 27 − [1(18) + 0(9) + 1(9) + 1(9)].

(8)

−[1(1)∕3 + 0(0)∕1 + 0(1)∕2 + 1(1)∕3]𝛽◦1
+{2 − [1(1)∕3 + 0(0)∕1 + 0(0)∕2 + 1(1)∕3]}𝛽◦2
= 15 − [1(18) + 0(9) + 0(9) + 1(9)]

.

Equations (8) reduce to

(11∕6)𝛽◦1 − (4∕6)𝛽◦2 = −9 and (−4∕6)𝛽◦1 + (8∕6)𝛽◦2 = −12. (9)

The solutions to Equations (8) are

𝛽◦ =

[
𝛽◦1
𝛽◦2

]

=
[−10

−14

]

. (10)

Substituting the values obtained in (10) into (7), we get

𝛼◦1 = 26, 𝛼◦2 = 9, 𝛼◦3 = 14, and 𝛼◦4 = 17.
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The resulting solution to the normal equations is

b◦′ =
[

0 26 9 14 17 −10 −14 0
]
. (11)

d. Absorbing Equations

Development of (11) as a solution to (3) illustrates what is sometimes called the
absorption process. This is because in going from (4) to (8), the 𝛼-equations of (5) are
“absorbed” into the 𝛽-equations of (6). Here, we see the reason given in Sub-section c
above for the rule about deciding whether to put 𝛼◦1 = 0 or 𝛽◦b = 0. The objective is
for (8) to have as few equations as possible. Hence, if there are fewer 𝛽-levels than 𝛼-
levels, we put 𝛽◦b = 0, absorb the 𝛼-equations and have equations (8) in terms of (b −
1)𝛽◦’s. On the other hand, if a < b, we put 𝛼◦1 = 0, absorb the 𝛽-equations, and have
equations like (8) in terms of (a − 1)𝛼’s. It is of no consequence in using the ultimate
solution, which one is obtained. The important thing is the number of equations in
(8), either a – 1 or b – 1, whichever is less. In many instances, the number of equations
is, in fact, of little importance because, even if one of a and b is much larger than the
other, the solution of (8) will require a computer. However, in Chapter 9, we discuss
situations in which one of a or b is considerably larger than the other (a = 10 and
b = 2000, say), and then the method of obtaining (8) is of material importance.

We now describe the absorption process in general terms. Akin to (3), the normal
equations are

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

n.. n1. ⋯ na. n.1 ⋯ n.a
n1. n1. 0

⋮ ⋱ {nij}

na. 0 na.
n.1 n.1 0

⋮ {nij} ⋱

n.a 0 n.b

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜇◦

𝛼◦1
⋮

𝛼◦a
𝛽◦1
⋮

𝛽◦b

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y..
y1.

⋮

ya.
y.1
⋮

y.a

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(12)

Analogous to (4), if we put 𝜇◦ = 0 and 𝛽◦b = 0, equations (12) reduce to

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

n1. 0 n11 ⋯ n1,b−1

⋱ ⋮ ⋮

0 na. na1 ⋯ na,b−1
n11 ⋯ na1 n.1 0

⋮ ⋮ ⋱

n1,b−1 ⋯ na,b−1 0 n.b−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝛼◦1
⋮

𝛼◦a
𝛽◦1
⋮

𝛽◦b−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y1.

⋮

ya.

y.1
⋮

y.b−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (13)



THE TWO-WAY CLASSIFICATION WITHOUT INTERACTION 353

Solving the first a equations of (13) gives

𝛼◦i = yi. −
1
ni.

b−1∑

j=1

nij𝛽
◦
j for i = 1, 2,… , a, (14)

as in (7). Substitution of these values of 𝛼◦i in the last b – 1 equations of (13) gives

(

n.j −
a∑

i=1

n2
ij

ni.

)

𝛽◦j −
b−1∑

j≠j′

(
a∑

i=1

nijnij′

ni.

)

𝛽◦j′ = y.j −
a∑

i=1

nijyi.

for j, j′ = 1, 2,… , b − 1

(15)

C𝜷◦
b−1 = r with solution 𝜷◦

b−1 = C−1r (16)

where,

C = {cjj′} and r = {rj} for j = 1,… , b − 1

with

cjj = n.j −
a∑

i=1

n2
ij

ni.
, cjj′ = −

a∑

i=1

nijnij′

ni.
for j ≠ j′ (17)

and

rj = y.j −
a∑

i=1

nijyi. for j = 1,… , b − 1. (18)

We can check these calculations by also calculating cbb, cjb, andrb and confirming
that

b∑

j′=1

cjj′ = 0 for all j, and
b∑

j=1

rj = 0.

The solution 𝜷◦
b−1 in (16) is subscripted to emphasize that it has b – 1 and not b

elements. To express the solutions 𝛼◦i in matrix form, we write

𝛼◦ =
⎡
⎢
⎢
⎢
⎣

𝛼◦1
⋮

𝛼◦a

⎤
⎥
⎥
⎥
⎦

, ya =
⎡
⎢
⎢
⎢
⎣

y1.

⋮

ya.

⎤
⎥
⎥
⎥
⎦

,
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and D𝛼 = D{ni.}, for i = 1, 2,… , a, a diagonal matrix (See Section 1 of Chap-
ter 1) of order a of the ni. values. We also define

Na×(b−1) =
⎡
⎢
⎢
⎢
⎣

n11 ⋯ n1,b−1

⋮ ⋮

na1 ⋯ na,b−1

⎤
⎥
⎥
⎥
⎦

,

Ma×(b−1) = D−1
a N =

{nij

ni.

}

for i = 1,… , a and j = 1,… , b − 1,

and

ya = D−1
a ya = {yi.} for i = 1,… , a. (19)

Then, from (13),

𝜶◦ = D−1
a − M𝜷◦

b−1 = ya − M𝜷◦
b−1.

Thus,

b◦ =

⎡
⎢
⎢
⎢
⎢
⎣

0

𝜶◦

𝜷◦
b−1

0

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

0

ya − MC−1r

C−1r

0

⎤
⎥
⎥
⎥
⎥
⎦

. (20)

Section 4 of this chapter deals with the condition of “connectedness” of unbalanced
data. Although most modestly sized sets of data are usually connected, large sets of
survey-style data are sometimes not connected. The condition of connectedness is
important because only when data are connected do C−1 and the solution in (20) exist.
Further discussion therefore relates solely to data that are connected. This condition
must be satisfied before we can undertake this analysis. Section 4 indicates how to
ascertain if data are connected.

Corresponding to the solution (20), the generalized inverse of X′X of (12) is

G =

⎡
⎢
⎢
⎢
⎢
⎣

0 0 0 0

0 D−1
a + MC−1M′ −MC−1 0

0 −C−1M′ C−1 0

0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎦

. (21)

The non-null part of the matrix is of course the regular inverse of the matrix of
coefficients in equations (13). Thus, G is in accord with Section 7 of Chapter 5.
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Example 1 Generalized Inverse of X′X in (4) From (9),

C−1 =

[ 11
6

− 4
6

− 4
6

8
6

]−1

= 1
12

[
8 4

4 11

]

.

From (4),

Da =

⎡
⎢
⎢
⎢
⎢
⎣

3 0 0 0

0 1 0 0

0 0 2 0

0 0 0 3

⎤
⎥
⎥
⎥
⎥
⎦

,

and

N =

⎡
⎢
⎢
⎢
⎢
⎣

1 1

0 0

1 0

1 1

⎤
⎥
⎥
⎥
⎥
⎦

, so that M = D−1
a N =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1
3

1
3

0 0
1
2

0
1
3

1
3

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

Therefore, for use in G,

MC−1 = 1
12

⎡
⎢
⎢
⎢
⎢
⎣

4 5

0 0

4 2

4 5

⎤
⎥
⎥
⎥
⎥
⎦

and MC−1M′ = 1
12

⎡
⎢
⎢
⎢
⎢
⎣

3 0 2 3

0 0 0 0

2 0 2 2

3 0 2 3

⎤
⎥
⎥
⎥
⎥
⎦

.

Substitution of the various sub-matrices into (21) gives

G = 1
12

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0 0 0

0 7 0 2 3 −4 −5 0

0 0 12 0 0 0 0 0

0 2 0 8 2 −4 −2 0

0 3 0 2 7 −4 −5 0

0 −4 0 −4 −4 8 4 0

0 −5 0 −2 −5 4 11 0

0 0 0 0 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Post-multiplication of the right-hand side of equation (3) gives the solution of GX′y =
b◦ as shown in (11). □
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e. Analyses of Variance

(i) Basic Calculations. The reduction of sum of squares is R(𝜇, 𝛼, 𝛽) = b◦′X′y.
In preceding examples, b◦X′y is simplified. The simplification is not possible here
because of the way b◦ has been derived. However, if we define

y′
𝛽
=

[
y.1 ⋯ y.,b−1

]
, (22)

then from (20), we find that

R(𝜇, 𝛼, 𝛽) = (ya − MC−1r)′ya + (C−1r)′y𝛽 .

However, since it follows from (18) that

r = y𝛽 − M′ya,

and the expression for R(𝜇, 𝛼, 𝛽) further simplifies to

R(𝜇, 𝛼, 𝛽) = y′aya + r′C−1r. (23)

As usual, we have

R(𝝁) = n..y
2
..
=

y2
..

n..
. (24)

In line with Section 3a of Chapter 6, using (19),

R(𝜇, 𝛼) =
a∑

i=1

ni.y
2
i. =

a∑

i=1

y2
i.

ni.
= y′aya. (25)

Hence, in (23),

R(𝝁,𝜶,𝜷) = R(𝝁,𝜶) + r′C−1r

=
a∑

i=1

ni.y
2
i. + 𝜷◦′r

(26)

with the terms of r′C−1r = 𝜷◦′r defined in (16), (17), and (18).
We now calculate the terms in (24), (25), and (26) for the data in Table 7.1. The

results are

R(𝜇) = 1082

9
= 1296, (27)

R(𝜇, 𝛼) = 542

3
+ 92

1
+ 182

2
+ 272

3
= 1458 (28)
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and, using (10) for 𝜷◦′ and (9) for r,

R(𝝁,𝜶, 𝜷) = 1458 + (−10)(−9) + (−14)(−12) = 1716. (29)

(ii) Fitting the Model. The first analysis of variance that we shall consider is that
for fitting the model. This partitions R(𝝁,𝜶,𝜷), the sum of squares for fitting the
model in two parts. They are R(𝜇) for fitting the mean and R(𝜶,𝜷|𝝁) for fitting the
𝛼- and 𝛽-factors after the mean. The latter is

R(𝛼, 𝛽|𝜇) = R(𝜇, 𝛼, 𝛽) − R(𝜇)

=
a∑

i=1

ni.y
2
i. + r′C−1r − Ny2

..

(30)

from (24) and (26). We note what is obvious here.

R(𝜇) + R(𝛼, 𝛽|𝜇) = R(𝜇, 𝛼, 𝛽)

by the definition of R(𝛼, 𝛽|𝜇). The values for the terms for the data of Table 7.1 are
R(𝜇) = 1296 from (27) and

R(𝛼, 𝛽|𝜇) = 1716 − 1296 = 420

from (27) and (29). These and the other terms of the analysis,

SST =
a∑

i=1

b∑

j=1

y2
ij = 182 +⋯ + 182 = 1728

and

SSE = SST − R(𝛼, 𝛽|𝜇) = 1728 − 1716 = 12

using (29) are shown in Table 7.2a. Table 7.2a also contains the corresponding F-
statistics (based on the normality of the e’s). These are F(M) = 324 and F(Rm) = 21.
They are significant at the 5% level. The tabulated values of F1,3 and F5,3 at the 5%
level are 10.13 and 9.01, respectively. Therefore, we reject the hypothesis that E(y) is
zero. We further conclude that the model needs something more than just 𝜇 in order
to satisfactorily explain variation in the y variable.

(iii) Fitting Rows Before Columns. The significance of the statistic F(Rm) in
Table 7.2a leads us to enquire whether it is the 𝛼’s (rows, or brands of stoves), or
the 𝛽’s (columns, or makes of pan), or both that are contributing to this significance.
First, consider the 𝛼’s in terms of fitting the model

yij = 𝜇 + 𝛼i + eij.
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TABLE 7.2 Analyses of Variance for Two-Way Classification, No Interaction (Data of
Table 7.1)

(a) For fitting 𝜇, and 𝛼 and 𝛽 after 𝜇

Source of variation d.f. Sum of Squares Mean Square F-Statistic

Meana 1 = 1 R(𝜇) = 1296 1296 F(M) = 324
𝛼 and 𝛽 after 𝜇 a + b − 2 = 5 R(𝛼,𝛽|𝜇) = 420 84 F(Rm) = 21
Residual error N′ = 3 SSE = 12 4

Total N = 9 SST = 1728

(b) For fitting 𝜇, 𝛼 after𝜇, and 𝛽 after 𝜇 and 𝛼
Source of Variation d.f. Sum of Squares Mean Square F-Statistic

Mean 1 = 1 R(𝜇) = 1296 1296 F(M) = 324
𝛼 after 𝜇 a − 1 = 3 R(𝛼|𝜇) = 162 54 F(𝛼|𝜇) = 13.5
𝛽 after 𝜇 and 𝛼 b − 1 = 2 R(𝛽|𝜇,𝛼) = 258 129 F(𝛽 |𝜇,𝛼) = 32.25
Residual error N′ = 3 SSE = 12 4

Total N = 9 SST = 1728

(c) For fitting 𝜇, 𝛽 after 𝜇, and 𝛼 after 𝜇 and 𝛽
Source of Variation d.f. Sum of Squares Mean Square F-Statistic

Mean 1 = 1 R(𝜇) = 1296 1296 F(M) = 324
𝛽 after 𝜇 b − 1 = 2 R(𝛽 |𝜇) = 148.5 74.25 F(𝛽|𝜇) = 18.5625
𝛼 after 𝜇 and 𝛽 a − 1 = 3 R(𝛼|𝜇,𝛽) = 271.5 90.5 F(𝛼|𝜇,𝛽) = 22.625
Residual error N′ = 3 SSE = 12 4

Total N = 9 SST = 1728

aN′ = N − a − b + 1

Since this is just the model for the one-way classification, the sum of squares for
fitting it is just R(𝜇, 𝛼) as given in (25). Therefore, the sum of squares attributable to
fitting 𝛼 after 𝜇 is from (24) and (25).

R(𝛼|𝜇) = R(𝜇, 𝛼) − R(𝜇)

=
a∑

i=1

ni.y
2
i. − n..y2

..
.

(31)

Furthermore, from (26), the sum of squares attributable to fitting the 𝛽’s after 𝜇 and
the 𝛼’s is

R(𝛽|𝜇, 𝛼) = R(𝜇, 𝛼, 𝛽) − R(𝜇, 𝛼)

= 𝛽◦′r = r′C−1r.
(32)

The sums of squares in (31) and (32) are shown in Table 7.2b. Of course, they are a
portioning of R(𝛼, 𝛽|𝜇) shown in Table 7.2a, since

R(𝛼|𝜇) + R(𝛽|𝜇, 𝛼) = R(𝜇, 𝛼) − R(𝜇) + R(𝜇, 𝛼, 𝛽) − R(𝜇, 𝛼)

= R(𝜇, 𝛼, 𝛽) − R(𝜇) = R(𝛼, 𝛽|𝜇).
(33)
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Likewise, all three R’s shown in Table 7.2b sum to R(𝜇, 𝛼, 𝛽) because

R(𝜇) + R(𝛼|𝜇) + R(𝛽|𝜇, 𝛼) = R(𝜇) + R(𝛼, 𝛽|𝜇) = R(𝜇, 𝛼, 𝛽). (34)

Calculation of R(𝛽|𝜇, 𝛼),R(𝛼|𝜇), and R(𝛽|𝜇, 𝛼) for Table 7.2b is as follows. Substi-
tuting in (31) from (27) and (28) yields

R(𝛼|𝜇) = 1458 − 1296 = 162.

Substituting in (32) from (9) and (10) gives

R(𝛽|𝜇, 𝛼) = −9(−10) − 12(−14) = 258. (35)

The validity of (33) follows because

R(𝛼|𝜇) + R(𝛽|𝜇, 𝛼) = 162 + 258 = 420 = R(𝛼, 𝛽|𝜇) of Table 7.2a

Table 7.2b shows the F-statistics corresponding to the R’s. Comparing F(𝛼|𝜇) = 13.5
and F(𝛽|𝜇, 𝛼) = 32.25 to the tabulated values of the F3,3 and F2,3-distributions,
respectively, namely 9.28 and 9.55 at the 5% level, we conclude that having both
𝛼-effects and 𝛽-effects in the model adds significantly to its adequacy in terms of
explaining the variation in y.

(iv) Fitting Columns Before Rows. Table 7.2b is for fitting 𝜇, 𝜇 and 𝛼, and then
𝜇, 𝛼, and 𝛽. However, we could just as well consider the 𝛼’s and 𝛽’s in the reverse
order and contemplate fitting 𝜇,𝜇 and 𝛽, and then 𝜇, 𝛼, and 𝛽. To do this, we would
first fit the model

yij = 𝜇 + 𝛽j + eij.

This leads to

R(𝜇, 𝛽) =
b∑

j=1

n.jy
2
.j (36)

similar to (25). Then, analogous to (31), we have

R(𝛽|𝜇) = R(𝜇, 𝛽) − R(𝜇)

=
b∑

j=1

n.jy
2
.j − n..y2

..
.

(37)

We also have, similar to the first part of (32),

R(𝛼|𝜇, 𝛽) = R(𝜇, 𝛼, 𝛽) − R(𝜇, 𝛽) (38)
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for the sum of squares due to fitting the 𝛼 after fitting 𝜇 and 𝛽. However, we do not
have an expression for R(𝛼|𝜇, 𝛽) analogous to 𝛽◦′r of (32). By means of (34), we can
avoid needing such an expression, because using (34) in (38) gives

R(𝛼|𝜇, 𝛽) = R(𝜇, 𝛼) + R(𝛽|𝜇, 𝛼) − R(𝜇, 𝛽)

=
a∑

i=1

ni.y
2
i. + r′C−1r −

b∑

j=1

n.jy
2
.j

(39)

on substituting from (25), (32), and (36), respectively. Hence, having once obtained
r′C−1r, we have R(𝛼|𝜇, 𝛽) directly available without further ado. Of course, analogues
of (33) and (34) are also true. We have that

R(𝛽|𝜇) + R(𝛼|𝜇, 𝛽) = R(𝛼, 𝛽|𝜇) (40a)

and

R(𝜇) + R(𝛽|𝜇) + R(𝛼|𝛽,𝜇) = R(𝜇, 𝛼, 𝛽). (40b)

With the data of Table 7.1, equation (36) is

R(𝜇, 𝛽) = 272

3
+ 152

2
+ 662

4
= 1444.5. (41)

Using (41) and (27) in (37) gives

R(𝛽|𝜇) = 1444.5 − 1296 = 148.5

Then in (39),

R(𝛼|𝛽,𝜇) = 1458 + 258 − 1444.5 = 271.5

from (28), (35), and (41), respectively. We note that as indicated in (40),

R(𝛽|𝜇) + R(𝛼|𝜇, 𝛽) = 148.5 + 271.5 = 420 = R(𝛼, 𝛽|𝜇)

as shown in Table 7.2a.
The F-statistics corresponding to R(𝛽|𝜇) and R(𝛼|𝜇, 𝛽) in Table 7.2c are both

significant at the 5% level. (The tabulated values are 9.55 and 9.28 for comparing
F(𝛽|𝜇) and F(𝛼|𝜇, 𝛽), respectively.) We therefore conclude that including both 𝛽-
effects and 𝛼-effects in the model adds significantly to its interpretive value.

Table 7.2 shows the analyses of variance for the data of Table 7.1. In contrast,
Table 7.3 shows the analysis of variance (excluding mean squares and F-statistics)
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TABLE 7.3 Analyses of Variance for Two-Way Classification, No Interaction

Table 7.3 (a) For fitting 𝜇, and 𝛼 and 𝛽 after 𝜇
Source of Variation d.f.a Sum of Squaresb Equation

Mean, 𝜇 1 R(𝜇) = nȳ2
..

(24)

𝛼 and 𝛽 after 𝜇 a + b − 2 R(𝛼, 𝛽|𝜇) =
a∑

i=1

ni.ȳ
2
i. + r′C−1r − n..ȳ2

..
(30)

Residual errorc N′ SSE =
a∑

i=1

b∑

j=1

y2
ij −

a∑

i=1

ni.ȳ
2
i. − r′C−1r

Total N SST =
a∑

i=1

b∑

j=1

y2
ij

Table 7.3 (b) For fitting 𝜇,𝛼 after𝜇, and 𝛽 after 𝜇 and 𝛼
Source of Variation d.f.a Sum of Squares Equation

Mean, 𝜇 1 = 1 R(𝜇) = n..ȳ2
..

(24)

𝛼 after 𝜇 a − 1 R(𝛼|𝜇) =
a∑

i=1

ni.ȳ
2
i. − n..ȳ2

..
(31)

𝛽 after 𝜇 and 𝛼 b − 1 R(𝛽|𝜇, 𝛼) = r′C−1r (32)

Residual error N′ SSE =
a∑

i=1

b∑

j=1

y2
ij −

a∑

i=1

ni.ȳ
2
i. − r′C−1r

Total N SST =
a∑

i=1

b∑

j=1

y2
ij

Table 7.3 (c) For fitting 𝜇, 𝛽 after 𝜇, and 𝛼 after 𝜇 and 𝛽
Source of Variation d.f.a Sum of Squaresb Equation

Mean, 𝜇 1 R(𝜇) = n..ȳ2
..

𝛽 after 𝜇 b − 1 R(𝛽|𝜇) =
b∑

j=1

n.jȳ
2
.j − n..ȳ2

..

𝛼 after 𝛽 and 𝜇 a − 1 R(𝛼|𝜇, 𝛽) =
a∑

i=1

ni.ȳ
2
i. + r′C−1r −

b∑

j=1

n.jȳ
2
.j

Residual error N′ SSE =
a∑

i=1

b∑

j=1

y2
ij −

a∑

i=1

ni.ȳ
2
i. − r′C−1r

Total N = 9 SST =
a∑

i=1

b∑

j=1

y2
ij

aN ≡ n and N′ = N − a − b + 1
br′C−1r is obtained from equations (16)–(18)
cSummations are for i = 1, 2,… , a and j = 1, 2,… , b.
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for the general case. It also shows the equations from which the expressions for the
sum of squares have been derived.

(v) Ignoring and/or Adjusting for Effects. In Tables 7.2b and 7.3b, the sums of
squares have been described as

R(𝜇): due to fitting a mean 𝜇,

R(𝛼|𝜇): due to fitting 𝛼 after 𝜇,

and

R(𝛽|𝜇, 𝛼): due to fitting 𝛽 adjusted for 𝜇 and 𝛼.

This description carries with it a sequential concept, of first fitting 𝜇, then 𝜇 and 𝛼,
and then 𝜇, 𝛼, and 𝛽. An alternative description, similar to that used by some
writers, is

R(𝜇): due to fitting 𝜇, ignoring 𝛼 and 𝛽,

R(𝛼|𝜇): due to fitting 𝛼, adjusted for 𝜇 and ignoring 𝛽,

and

R(𝛽|𝜇, 𝛼) due to fitting 𝛽 adjusted for 𝜇 and 𝛼.

On many occasions, of course, Tables 7.2 and 7.3 are shown without the R(𝜇) line,
and with the SST line reduced by R(𝜇) so that it has N – 1 degrees of freedom,
and the sum of squares SSTm = y′y − Ny2

..
. In that case, the mention of 𝜇 in the

descriptions of R(𝛼|𝜇) and R(𝛽|𝜇, 𝛼) is then often overlooked entirely and they get
described as

R(𝛼|𝜇): due to fitting 𝛼, ignoring 𝛽,

and

R(𝛽|𝜇, 𝛼):due to fitting 𝛽, adjusted for 𝛼.

The omission of 𝜇 from descriptions such as these arises from a desire for verbal
convenience. The omission is made with the convention that 𝜇 is not being ignored,
even though it is not being mentioned. However, inclusion of 𝜇 in the descriptions
is somewhat safer, for then there is no fear of its being overlooked. Furthermore,
although in describing R(𝛼|𝜇), the phrase “ignoring 𝛽” is clear and appropriate,
the phrase “adjusted for 𝛼” in describing R(𝛽|𝜇, 𝛼) is not appealing because it may
conjure up the idea of adjusting or amending the data in some manner. Since the
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concept involved is clearly that of fitting 𝛽 over and above having fitting 𝜇 and 𝛼,
the description “𝛽 after 𝜇 and 𝛼” seems more appropriate. However, the relationship
of such descriptions to those involving “ignoring 𝛼” and “adjusted for 𝛽” should be
borne in mind when encountering them in other texts. For example, just as R(𝛼|𝜇) of
Tables 7.2b and 7.3b could be described as the sum of squares for fitting 𝛼, adjusted
for 𝜇 and ignoring 𝛽, so also could R(𝛽|𝜇) of Tables 7.2c and 7.3c be called the sum
of squares for fitting 𝛽, adjusted for 𝜇, and ignoring 𝛼. However, the description of
fitting 𝛽 after 𝜇 is preferred.

(vi) Interpretation of Results. From the preceding discussion, we see that F(𝛼|𝜇)
and F(𝛼|𝜇, 𝛽) are not used for the same purpose. This is also true about F(𝛽|𝜇) and
F(𝛽|𝜇, 𝛼). Distinguishing between these two F’s is of paramount importance because
it is a distinction that occurs repeatedly in fitting other models. Furthermore, the
distinction does not exist with the familiar balanced data situation because then, as
we shall see subsequently, F(𝛼|𝜇) = F(𝛼|𝜇, 𝛽), and F(𝛽|𝜇) = F(𝛽|𝜇, 𝛼). The two F’s
are not equal only for unbalanced data. They are always unequal for unbalanced data!
These F-tests are not the same. The test based on the statistic F(𝛼|𝜇) is testing the
effectiveness (in terms of explaining variation in y) of adding 𝛼-effects to the model
over and above 𝜇. The statistic F(𝛼|𝜇, 𝛽) tests the effectiveness of adding 𝛼-effects to
the model over and above having 𝜇 and 𝛽-effects in it. These tests are not the same,
and neither of them should be described albeit loosely as “testing 𝛼-effects.” We must
describe these tests more completely. The test associated with the statistic F(𝛼|𝜇)
must be described the one “testing 𝛼 after 𝜇.” Likewise, the test associated with the
statistic F(𝛼|𝜇, 𝛽) must be described as the one “testing 𝛼 after 𝜇 and 𝛽.” Similarly,
F(𝛽|𝜇) and F(𝛽|𝜇, 𝛼) are not the same. The statistic F(𝛽|𝜇) tests “𝛽 after 𝜇.” The
statistic F(𝛽|𝜇, 𝛼) tests “𝛽 after 𝜇 and 𝛼.” Further distinction between F-statistics of
this nature will become evident when we consider tests of linear hypotheses to which
they relate.

In Table 7.2, all of the F-statistics are judged significant at the 5% level. As a result,
we conclude that the 𝛼-effects and the 𝛽-effects add materially to the exploratory
power of the model. However, with other data, we may not be able to draw conclusions
as easily. For example, suppose that in some set of data analogous to Table 7.2b,
F(𝛼|𝜇) and F(𝛽|𝜇, 𝛼) were both significant but that, analogous to Table 7.2c, neither
F(𝛽|𝜇) nor F(𝛼|𝜇, 𝛽) were. Admittedly, this may happen with only very few sets
of data. However, since computed F-statistics are functions of data, it is certainly
possible for such an apparent inconsistency to occur. There then arises the problem of
trying to draw conclusions from such a result. To do so is not always easy. As a result,
the ensuing discussion of possible conclusions might not receive universal approval.
The problems of interpretation that we shall discuss here receive scant mention in most
texts. The reason is that they are not definitive, perhaps subject to personal judgment
and certainly to knowledge of the data being analyzed. Furthermore, they are not
amenable to exact mathematical treatment. Nevertheless, since they are problems
of interpretation, they arise, in one way or another whenever data are analyzed. For
this reason, it is worthwhile to reflect on what conclusions might be appropriate
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in different situations. In attempting to do so, we are all too well aware of leaving
ourselves wide open for criticism. However, at the very worst, exposition of the
problems might be of some assistance.

The general problem we consider is what conclusions can be drawn from the
various combinations of results that can arise as a result of the significance or non-
significance of F(𝛼|𝜇), F(𝛽|𝜇, 𝛼), F(𝛽|𝜇), and F(𝛼|𝜇, 𝛽) implicit in Tables 7.3b
and 7.3c and illustrated in Tables 7.2b and 7.2c. First, these F-statistics should be
considered only if F(Rm) = F(𝛼|𝜇, 𝛽) of Table 7.3a is significant. This is so because
it is only the significance of F(Rm) which suggests that simultaneous fitting of 𝛼
and 𝛽 has exploratory value for the variation in y. However, it does not necessarily
mean that both 𝛼 and 𝛽 are needed in the model. It is the investigation of this aspect
of the model that arises from looking at F(𝛼|𝜇), F(𝛽|𝜇, 𝛼), F(𝛽|𝜇), and F(𝛼|𝜇, 𝛽).
Table 7.4 shows that there are 16 different situations to consider. There are four
possible outcomes for F(𝛼|𝜇) and F(𝛽|𝜇, 𝛼). They are:

1. both F’s significant;

2. the statistic F(𝛼|𝜇) non-significant and F(𝛽|𝜇, 𝛼) significant;

3. the statistic F(𝛼|𝜇) significant and F(𝛽|𝜇, 𝛼) non-significant;

4. both F’s non-significant.

These are shown as row headings in Table 7.4. With each of these outcomes, four
similar outcomes can occur for F(𝛽|𝜇) and F(𝛼|𝜇, 𝛽). They are shown as column
headings in Table 7.4. For each of the 16 resulting outcomes, the conclusion to be
drawn is shown in the body of the table.

TABLE 7.4 Suggested Conclusions According to the Significance (Sig) and
Non-Significance (NS) of F-Statistics in Fitting a Model with Two Main Effects (𝜶’s and
𝜷’s)—See Table 7.3

Fitting 𝛽 and Then 𝛼 After 𝛽

Fitting 𝛼 and
then 𝛽 after 𝛼

F(𝛽|𝜇) :
F(𝛼|𝛽,𝜇)

Sig
Sig

NS
Sig

Sig
NS

NS
NS

Effects to be included in the model
F(𝛼|𝜇) :

F(𝛽|𝛼,𝜇) :
Sig
Sig

𝛼 and 𝛽 𝛼 and 𝛽 𝛽 Impossible

F(𝛼|𝜇) :

F(𝛽|𝛼,𝜇) :
NS
Sig

𝛼 and 𝛽 𝛼 and 𝛽 𝛽 𝛼 and 𝛽

F(𝛼|𝜇) :

F(𝛽|𝛼,𝜇) :
Sig
NS

𝛼 𝛼 𝛼 and 𝛽 𝛼

F(𝛼|𝜇) :

F(𝛽|𝛼,𝜇) :
NS
NS

Impossible 𝛼 and 𝛽 𝛽 Neither
𝛼 nor 𝛽
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We now indulge in the verbal convenience of omitting 𝜇 from our discussion.
Instead, we use phrases like “𝛼 being significant alone” for F(𝛼|𝜇) being significant
and “𝛼 being significant after fitting 𝛽” for F(𝛼|𝜇, 𝛽) being significant. We do not use
phrases like “𝛼 being significant” which does not distinguish between F(𝛼|𝜇) and
F(𝛼|𝜇, 𝛽) being significant.

The first entry in Table 7.4 (row 1 column 1) corresponds to the case dealt within
Table 7.2. There, both 𝛼 and 𝛽 are significant when fitted alone or one after the other.
Thus, the conclusion is to fit both. The entries in the first row and second column, or
second column and first row are cases of both 𝛼 and 𝛽 being significant when fitted
after each other with one of them being significant when fitted alone, the other not.
Again, the conclusion is to fit both. For the second diagonal entry (row 2 column 2),
neither 𝛼 nor 𝛽 is significant alone, but each is significant when fitted after the other.
Hence, we fit both. Similarly, the entries in the third row and first column, or first
column and third row are cases where one factor (𝛽 in the third row and 𝛼 in the third
column) is significant only when fitted alone, but the other is significant either when
fitted alone or after the first. Hence that other factor—𝛼 in the third row (first column)
and 𝛽 in the third column (first row)—is the factor to fit. In the third row and second
column, 𝛼 and 𝛼 after 𝛽 is significant but 𝛽 and 𝛽 after 𝛽 is not significant, so 𝛼 is
fitted. For the third column and second row, 𝛽 and 𝛽 after 𝛼 is significant but 𝛽 and
𝛼 after 𝛽 is not significant, so 𝛽 is fitted. For the third diagonal entry (row 3, column
3), both 𝛼 and 𝛽 are significant alone but not after one another. Hence, we fit both 𝛼
and 𝛽. If the model sum of squares is significant, it is impossible for both 𝛼 and 𝛼
after 𝛽, and 𝛽 and 𝛽 after 𝛼 to not be significant. Hence, the fourth row first column,
or first row fourth column is impossible to fit. For the fourth row second column, we
have that only 𝛼 after 𝛽 is significant, so we fit both 𝛼 and 𝛽. Likewise, for the fourth
column second row, we see that only 𝛽 after 𝛼 is significant, so again, we fit both 𝛼
and 𝛽. For the fourth row third column, only 𝛽 alone is significant, so 𝛽 is fitted. For
the fourth column third row, only 𝛼 alone is significant, so 𝛼 is fitted. Finally, for the
fourth diagonal entry (row 4 column 4), neither 𝛼 nor 𝛽 is significant alone or after
the other variable, so neither variable is fitted in the model.

In the case of the third diagonal entry, the decision to include both variables might
be overridden; for example, if determining levels of the 𝛼-factor was very costly,
one might be prepared to use just the 𝛽-factor. Of course, this is a consideration that
might arise with other entries in Table 7.4 too. The first two entries in the last row
and column are difficult to visualize. Both pairs of entries are situations where fitting
the factors in one sequence gives neither F-statistic significant, but fitting them in the
other sequence gives the F-statistic for fitting the second factor significant. Intuitively,
one feels that this kind of thing should happen somewhat infrequently. When it does,
a reasonable conclusion seems to be to fit both factors as shown.1

In the widely used statistical package SAS, the sums of squares that result when
variables are added sequentially to a model are called type I sum of squares. When one

1 Grateful thanks go to N. S. Urquhart for lengthy discussions on this topic.
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considers only the factors given all other factors in the model, the sums of squares are
called type III sum of squares. The two sums of squares are different for unbalanced
data but the same for balanced data. We illustrate this distinction in Example 2
below.

Example 2 Type I and Type III Sum of Squares Consider the SAS output below
for the data of Table 7.1.

The SAS System
The GLM Procedure

Class Level Information
Class Levels Values
stove 4 1 2 3 4
pan 3 1 2 3
Number of Observations Read 9
Number of Observations Used 9

The SAS System
The GLM Procedure

Dependent Variable: time

Source DF Sum of Squares Mean Square F Value Pr > F
Model 5 420.0000000 84.0000000 21.00 0.0153
Error 3 12.0000000 4.0000000
Corrected Total 8 432.0000000
R-Square Coeff Var Root MSE time Mean
0.972222 16.66667 2.000000 12.00000
Source DF Type I SS Mean Square F Value Pr > F
stove 3 162.0000000 54.0000000 13.50 0.0301
pan 2 258.0000000 129.0000000 32.25 0.0094
Source DF Type III SS Mean Square F Value Pr > F
stove 3 271.5000000 90.5000000 22.63 0.0146
pan 2 258.0000000 129.0000000 32.25 0.0094

In this instance, the 𝛼-factor (brand of stove) was fitted first. The output cor-
responds to the results in in Table 7.2a and b. Under type I SS, we have R(𝛼|𝜇)
and R(𝛽|𝜇, 𝛼), the associated F-statistics and p-values. Under type III SS, we have
R(𝛼|𝜇, 𝛽) and R(𝛽|𝜇, 𝛼). As expected, R(𝛼|𝜇) ≠ R(𝛼|𝜇, 𝛽). Unlike Table 7.2, SAS
omits the sum of squares due to the mean and computes the total sum of squares
corrected for the mean.

We now look at the case where the 𝛽-factor (make of pan) is fitted first. This time,
under type I SS, we have R(𝛽|𝜇) and R(𝛼|𝜇, 𝛽). For the type III SS, we have R(𝛽|𝜇, 𝛼)
and R(𝛼|𝜇, 𝛽), the associated F-statistics and p-values. Again, as expected, R(𝛽|𝜇) ≠
R(𝛽|𝜇, 𝛼)
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Here is the SAS output fitting the 𝛽-factor first.

The SAS System
The GLM Procedure

Class Level Information
Class Levels Values
stove 4 1 2 3 4
pan 3 1 2 3
Number of Observations Read 9
Number of Observations Used 9

The SAS System
The GLM Procedure

Dependent Variable: time

Source DF Sum of Squares Mean Square F Value Pr > F
Model 5 420.0000000 84.0000000 21.00 0.0153
Error 3 12.0000000 4.0000000
Corrected Total 8 432.0000000
R-Square Coeff Var Root MSE time Mean
0.972222 16.66667 2.000000 12.00000
Source DF Type I SS Mean Square F Value Pr > F
pan 2 148.5000000 74.2500000 18.56 0.0204
stove 3 271.5000000 90.5000000 22.62 0.0146
Source DF Type III SS Mean Square F Value Pr > F
pan 2 258.0000000 129.0000000 32.25 0.0094
stove 3 271.5000000 90.5000000 22.62 0.0146

The above output corresponds to that of Table 7.2a and c. It was generated by these
commands.

Data boil;
Input stove pan time;
Cards;
1 1 18
1 2 12
……………
4 2 3
4 3 18
proc glm;
class stove pan;
model time =pan stove;
proc glm;
class stove pan;
model time =pan stove;
run;
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The corresponding R output and program follows.

time<-c(18,12,24,NA,NA,9,3,NA,15,6,3,18)
> brand<-c("x","x","x","y","y","y","z","z","z","w","w","w")
> make<-c("a","b","c","a","b","c","a","b","c","a","b","c")
> resl<-lm(time~brand+make)
> anova(resl)
Analysis of Variance Table

Response: time
Df Sum Sq Mean Sq F value Pr(>F)

brand 3 162 54 13.50 0.03010 *
make 2 258 129 32.25 0.00937 **
Residuals 3 12 4
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
> resl1<-lm(time~make+brand)
> anova(resl1)
Analysis of Variance Table

Response: time
Df Sum Sq Mean Sq F value Pr(>F)

make 2 148.5 74.25 18.562 0.02044 *
brand 3 271.5 90.50 22.625 0.01459 *
Residuals 3 12.0 4.00
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 □

f. Estimable Functions

The basic estimable function for the model (1) is

E(yij) = 𝜇 + 𝛼i + 𝛽j. (42)

Its b.l.u.e. is

𝜇 + �̂�i + 𝛽j = 𝜇◦ + 𝛼◦i + 𝛽◦j . (43)

Note that although individual 𝛼’s and 𝛽’s are not estimable, since linear functions
of estimable functions are estimable, differences between pairs of 𝛼’s and between
pairs of 𝛽’s are estimable. Linear functions of these differences are also estimable.
Thus, 𝛼i − 𝛼h is estimable with b.l.u.e.

𝛼i − 𝛼h = 𝛼◦i − 𝛼◦h , (44a)

and 𝛽j − 𝛽k is estimable with b.l.u.e.

𝛽j − 𝛽k = 𝛽◦j − 𝛽◦k . (44b)
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The variances of these b.lu.e.’s are found from the general result for an estimable
function q′b that the variance of its b.l.u.e. is v(q′b◦) = q′Gq𝝈2. Hence, if gii and
ghh are the diagonal elements of G corresponding to 𝛼i and 𝛼h, respectively, and gih
is the element at the intersection of the row and column corresponding to 𝛼i and 𝛼h,
then

v(𝛼i − 𝛼h) = v(𝛼◦i − 𝛼◦h ) = (gii + ghh − 2gih)𝜎2. (45)

A similar result holds for v(𝛽◦j − 𝛽◦k ). Furthermore, any linear combination of the
estimable functions in (44) is estimable with b.l.u.e., the same linear combination
of the b.l.u.e.’s shown in (44). We can find variances of such b.l.u.e.’s in a manner
similar to (45).

More generally, if b = {bs} for s = 1, 2,… , a + b + 1 and G = {gs,t} for s, t =
1, 2,… , a + b + 1 then, provided that bs − bt is estimable (i.e., the difference of two
𝛼’s or two 𝛽’s),

b̂s − bt = b◦s − b◦t , with v(b̂s − bt) = (gss + gtt − 2gst)𝜎
2. (46)

Example 3 The Variance of a Specific Estimable Function In (11), we have
𝛼◦1 = 26 and 𝛼◦3 = 14. Thus, from (44),

𝛼1 − 𝛼3 = 𝛼◦1 − 𝛼◦3 = 26 − 14 = 12.

We earlier derived

G = 1
12

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0 0 0

0 7 0 2 2 −4 −5 0

0 0 12 0 0 0 0 0

0 2 0 8 2 −4 −2 0

0 3 0 2 7 −4 −5 0

0 −4 0 −4 −4 8 4 0

0 −5 0 −2 −5 4 11 0

0 0 0 0 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (47)

Thus,

v(𝛼1 − 𝛼3) = 1
12

[7 + 8 − 2(2))]𝜎2 = 11
12
𝜎2.

With 𝜎2 estimated as �̂�2 = 4 = MSE in Table 7.2, the estimated variance is

v(𝛼1 − 𝛼3) == 11
12

(4) = 2.6667. □
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g. Tests of Hypotheses

As usual, the F-statistic for testing testable hypotheses H: K′b = 0 is

F(H) = Q

s�̂�2
= (K′b◦)′(K′GK)−1K′b◦

s�̂�2

where,

Q = (K′b◦)′(K′GK)−1K′b◦,

using (21) for G, s being the rank and number of rows of K′.
In previous sections, we dealt at length with the meaning of the sums of squares

in Table 7.2 and 7.3, interpreting them in terms of reductions in sums of squares
due to fitting different models. We now consider their meaning in terms of testing
hypotheses. In this context, there is no question of dealing with different models.
We are testing hypotheses about the elements of the model (1). First, we show that
F(𝛽|𝛼,𝜇) of Table 7.2b is the F-statistic for testing the hypothesis that all the 𝛽’s
are equal. If we state the hypothesis as H: 𝛽j − 𝛽b = 0 for j = 1, 2,… , b − 1, the
hypothesis can be written as

H: K′b = 0 with K′ =
[

01b−1 0 Ib−1 −1b−1
]

,

wherein, K′ is partitioned conformably for the product K′G. Then, with G of (21)

K′G =
[

0 −C−1M′ C−1 0
]

and

K′GK = C−1.

Furthermore,

K′b◦ = K′GX′y = (−C−1M′ya + C−1C−1y𝛽 ),

where ya is as in (19), the vector of totals for the a levels of the 𝛼-factor and
y𝛽 = {y.j} for j = 1,… , b − 1 is the vector of totals for the first b – 1 levels of the
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𝛽-factor as in (22). Then, the numerator sum of squares of F(H) is

Q = (K′b◦)′(K′GK)−1K′b◦

= (−C−1M′ya + C−1y𝛽)′(C−1)−1(−C−1M′ya + C−1y𝛽)

= (y𝛽 − N′D−1
a ya)′C−1(y𝛽 − N′D−1

a ya)

= r′C−1r, by the definition of r in (18)

= 𝛽◦′r, by (16)

= R(𝛽|𝜇, 𝛼) by (32).

Example 4 Testing the Equality of the 𝜷’s The hypothesis of equality of the 𝛽’s
for the data in Table 7.1 can be written

H: 𝛽1 − 𝛽3 = 0

𝛽2 − 𝛽3 = 0.

Using matrices it can be written as

K′b =
[

0 0 0 0 0 1 0 −1

0 0 0 0 0 0 1 −1

]

b = 0.

With b◦ of (11) and G of (47),

K′b◦ =
[−10

−14

]

and

K′G = 1
12

[
0 −4 0 −4 −4 8 4 0

0 −5 0 −2 −5 4 11 0

]

.

Thus,

K′GK = 1
12

[
8 4

4 11

]

and (K′GK)−1 = 1
6

[
11 −4

−4 8

]

.

Hence, the numerator sum of squares of F(H) is

Q = (K′b◦)′(K′GK)−1K′b◦ =
[
−10 −14

] 1
6

[
11 −4

−4 8

] [−10

−14

]

= 258 = R(𝛽|𝜇, 𝛼) of Table 7.2b. □

The result of Example 4 can be obtained by stating the hypothesis in another, different
but equivalent way. We illustrate this in Example 5.
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Example 5 Another Way to Test the Equality of the 𝜷’s Another way to state
the hypothesis that was tested in Example 4 is

H: 𝛽1 − 𝛽2 = 0

𝛽1 − 𝛽3 = 0

Now the matrix

K′ =
[

0 0 0 0 0 1 −1 0

0 0 0 0 0 1 0 −1

]

.

Hence,

K′b =
[

4

−10

]

, K′GK = 1
12

[
11 4

4 8

]

, and (K′GK)−1 = 1
6

[
8 −4

−4 11

]

.

Then the numerator sum of squares for F(H)

Q =
[

4 −10
] 1

6

[
8 −4

4 11

] [
4

−10

]

= 258

as in Example 4. □

Thus R(𝛽|𝜇, 𝛼) is the numerator sum of squares for the F-statistic for testing H:
all 𝛽’s equal. Similarly, R(𝛼|𝜇, 𝛽) is the numerator sum of squares for the F-statistic
for testing H: all 𝛼’s equal.

We can show by a similar argument that R(𝛽|𝜇) is a numerator sum of squares for
testing

H: equality of 𝛽j +
1
n.j

a∑

j=1

nij𝛼i for all j = 1, 2,… , b. (48a)

In Example 6 below, we demonstrate the test of this hypothesis for the data of
Table 7.1.

Example 6 Test of the Hypothesis in (48) for the Data of Table 7.1 The hypothesis
can be conveniently stated as

H: 𝛽1 +
1
3
(𝛼1 + 𝛼3 + 𝛼4) − [𝛽3 +

1
4
(𝛼1 + 𝛼2 + 𝛼3 + 𝛼4)] = 0

𝛽2 +
1
2
(𝛼1 + 𝛼4) − [𝛽3 +

1
4
(𝛼1 + 𝛼2 + 𝛼3 + 𝛼4)] = 0.
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In matrix format we can write H as

K′b =

[
0 1

12
− 1

4
1

12
1

12
1 0 −1

0 1
4

− 1
4

− 1
4

1
4

0 1 −1

]

b = 0.

With b◦ of (11) and G of (47) 23 have

K′b◦ =
[−7.5

−9

]

, K′GK = 1
12

[
7 3

3 9

]

and (K′GK)−1 = 2
9

[
9 −3

−3 7

]

.

Hence,

Q = (K′b◦)′(K′GK)−1K′b◦ =
[
−7.5 −9

] 2
9

[
9 −3

−3 7

] [−7.5

−9

]

= 148.5 = R(𝛽|𝜇) of Table 7.2c. □

In Example 6, we have demonstrated that F(𝛽|𝜇) = R(𝛽|𝜇)∕(b − 1)�̂�2. This is
true in general. The F-statistic having R(𝛼|𝜇) of Table 7.2b as its numerator sum of
squares, F(𝛼|𝜇), tests a hypothesis analogous to that in (48a), namely,

H: 𝛼i +
1
ni.

b∑

j=1

nij𝛽j equal for all i. (48b)

The importance of these results is that F(𝛼|𝜇) is not a statistic for testing the
equality of the 𝛼’s. The statistic to be used for this test is F(𝛼|𝜇, 𝛽). The hypothesis
that is tested by F(𝛼|𝜇) is the equality of the 𝛼’s plus weighted averages of the 𝛽’s,
the weights being the nij. Similarly, F(𝛽|𝜇) does not test the equality of the 𝛽’s. It
tests equality of the 𝛽’s plus weighted averages of the 𝛼’s, as in (48a).

When using SAS, the relevant p- values for testing equality of the 𝛼’s or the 𝛽’s
are with the type III sum of squares. To test the hypothesis in (48a), use the type I
sum of squares fitting 𝛽 first. Likewise, to test the hypothesis in (48b), again, use the
type I sum of squares fitting 𝛼 first.

h. Models that Include Restrictions

Since 𝜇 + 𝛼i + 𝛽j is estimable, so is 𝜇 + 1
a

∑a

i=1
𝛼i + 𝛽j. Therefore, if the model

includes the restriction that
∑a

i=1
𝛼i = 0, then 𝜇 + 𝛽j is estimable with b.l.u.e. 𝜇◦ +

1
a

∑a

i=1
𝛼◦i + 𝛽◦j , the same as the b.l.u.e. of 𝜇 + 1

a

∑a

i=1
𝛼i + 𝛽j in the unrestricted

model. Whether the restriction
∑a

i=1
𝛼i = 0 is part of the model or not, the estimable

functions and their b.l.u.e.’s given in (44) still apply. Thus, 𝛼◦i − 𝛼◦h is still the b.l.u.e.
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of 𝛼i − 𝛼h and 𝛽◦j − 𝛽◦k is the b.l.u.e. of 𝛽j − 𝛽k. Similar results hold if the model

includes the restriction
∑b

j=1
𝛽j = 0.

The hypothesis of equality of 𝛽j +
1
n.j

∑a

i=1
nij𝛼i for all j = 1, 2,… , b discussed

in Section 1g might hint at the possibility of using a model that included the restriction

a∑

i=1

nij𝛼i = 0 for all j = 1, 2,… , b. (49)

Any value to this suggestion is lost whenever b ≥ a. Then, equations (49) can
be solved for the 𝛼’s. In fact, 𝛼i = 0 for all i, regardless of the data. When b <

a, equations (49) could be used as restrictions on the model. However, then only
a – b linear functions of the 𝛼’s would be estimable from the data. Furthermore, since
equations (49) are data-dependent, in that they are based on the nij, they suffer from
the same deficiencies as do all such restrictions as explained at the end of Section 2h
of Chapter 6.

i. Balanced Data

The preceding discussion uses nij as the number of observations in the ith row (level
of the 𝛼 factor) and the jth column level (level of the 𝛽 factor) with all nij = 0 or 1.
Later, we will show that much of that discussion applies in toto to discussions where
nij can be any non-negative integers and hence to nij = n. However, here we consider
the simplest case of balanced data where nij = 1 for all i and j. These data are like
that of Table 7.1, only without missing observations.

As one might expect, there is great simplification of the foregoing results when
nij = 1 for all i and j. Of course, the simplifications lead exactly to the familiar
calculations in this case (e.g., see p. 72 of Kempthorne (1952), pp. 244–248 of Gruber
(2014)). One may obtain a variety of solutions to the normal equations under these
conditions. Using the procedure already given for unbalanced data which involves
solving equations (14) and (15) (See Exercises 21 and 22), we obtain

𝜇◦ = 0, and 𝛼◦i = yi. − y.. + y.b for all i;

and

𝛽◦b = 0, and 𝛽◦j = y.j − y.b for j = 1, 2,… , b − 1.

By use of the “usual constraints”

a∑

i=1

𝛼◦i = 0 =
b∑

j=1

𝛽◦j ,
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we obtain another set of solutions. They are

𝜇◦ = y..,

𝛼◦i = yi. − y.. for all i

and

𝛽◦j = y.j − y.. for all j.

In either case, the b.l.u.e.’s of differences between 𝛼’s and 𝛽’s are

𝛼i − 𝛼h = yi. − yh., with v(𝛼i − 𝛼h) = 2𝜎2

b

and

𝛽j − 𝛽k = y.j − y.k, with v(𝛽j − 𝛽k) = 2𝜎2

a
.

Differences of this nature are always estimable. If the model includes restrictions
∑a

i=1
𝛼i = 0 =

∑b

j=1
𝛽j paralleling the usual constraints, then 𝜇, the 𝛼i and 𝛽j are

also estimable with �̂� = y.., �̂�i = yi. − y.., and 𝛽j = y.j − y...
The most noteworthy consequence of balanced data (all nij = 1) is that Tables

7.3b and 7.3c become identical for all data. This is the most important outcome
of balanced data. It means that the distinction between R(𝛼|𝜇) and R(𝛼|𝜇, 𝛽) made
in Tables 7.2 and 7.3 no longer occurs, because these two terms both simplify to
be the same. Likewise, in these tables, there is no longer a distinction between
R(𝛽|𝜇) and R(𝛽|𝜇, 𝛼). They too simplify to be identically equal. The type I and
type III sum of squares in SAS are equal for balanced data. Thus, when all nij = 1,

R(𝛼|𝜇) = R(𝛼|𝛽,𝜇) =
a∑

i=1

y2
i.

b
−

y2
..

ab
= b

a∑

i=1

y2
i. − aby2

..
=

a∑

i=1

b∑

j=1

(yi. − y..)
2 (50a)

and

R(𝛽|𝜇) = R(𝛽|𝜇, 𝛼) =
b∑

j=1

y2
.j

a
−

y2
..

ab
= a

b∑

j=1

y2
.j − aby2

..
=

a∑

i=1

b∑

j=1

(y
.j − y..)

2. (50b)

The analysis of variance table becomes as shown in Table 7.5. When computing
the sums of squares using a hand-held calculator, it is best to use the first of the three
equivalent formulae in (50a) or (50b) to reduce round-off error. The sums of squares in
(50a) and (50b) are well-known familiar expressions. Furthermore, they each have a
simple form. They are easily calculated. They do not involve any matrix manipulations
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TABLE 7.5 Analysis of Variance for a Two-Way Classification with No Interaction
with Balanced Data, all nij = 1. (Tables 7.3b and 7.3c Both Simplify to This Form When
All nij = 1)

Source of Variation d.f. Sum of Squares

Mean 1 R(𝜇) = R(𝜇) = aby2
..

𝛼 after 𝜇 a − 1 R(𝛼|𝜇) = R(𝛼|𝜇, 𝛽) =
a∑

i=1

b∑

j=1

(yi. − y..)
2

𝛽 after 𝜇 b − 1 R(𝛽|𝛼,𝜇) = R(𝛽|𝜇) =
a∑

i=1

b∑

j=1

(y.j − y..)
2

Residual error (a − 1)(b − 1) SSE = SSE =
a∑

i=1

b∑

j=1

(yij − yi. − y.j + y..)
2

Total ab SST = SST =
a∑

i=1

b∑

j=1

y2
ij

like those previously described for unbalanced data (e.g., for R(𝛽|𝜇, 𝛼)). In addition,
because there is no longer any distinction between, for example, R(𝛼|𝜇) and R(𝛼|𝜇, 𝛽),
there is no need to distinguish between fitting “𝛼 after 𝜇” and “𝛼 after 𝜇 and 𝛽.” Our
sole concern is with fitting “𝛼 after 𝜇” and similarly “𝛽 after 𝜇.” There is only one
analysis of variance table, as shown in Table 7.5 where R(𝛼|𝜇) measures the efficacy
of having the 𝛼-effects in the model and R(𝛽|𝜇) measures the efficacy of having the
𝛽 effects in it.

The convenience of a single analysis of variance table (Table 7.5) compared to
having two analyses (Tables 7.3b and 7.3c) is obvious. For example, Table 7.4 is no
longer pertinent. Unfortunately, however, this convenience that occurs with balanced
data can easily result in a misunderstanding of the analysis of unbalanced data.
Usually students encounter balanced data analysis first, such as that in Table 7.5.
Explanation in terms of sums of squares of means yi. (and y.j) about the general
mean y.. has much intuitive appeal.However, unfortunately it does not carry over
to unbalanced data. It provides, for example, no explanation as to why there are
two analyses of variance for unbalanced data for a two-way classification. These
two analyses have different meanings and are calculated differently (see Tables 7.3b
and 7.3c). Furthermore, the calculations are quite different from those for balanced
data. The manner of interpreting results is also different. In one analysis, we fit
“𝛼 after 𝜇 and 𝛽.” In the other, we fit “𝛼 after 𝜇.” Small wonder that a student may
experience disquiet when he views this state of affairs in the light of what has been
arduously learned about balanced data. The changes to be made in the analysis and
its interpretation appear so large in relation to the cause of it all—having unbalanced
instead of balanced data—that the relationship of the analysis for unbalanced data to
that for balanced data might, at least initially seem at all clear. The relationship is
that balanced data are special cases of unbalanced data, and not vice versa.

Example 7 A Two-Way Analysis of Variance for Balanced Data The data below
consist of the number of speeding-related fatalities, divided by the number of licensed
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drivers in each of the listed states. These statistics were obtained from the Department
of Transportation Highway Statistics.

State/Speed limit (mph) 55 50 45 40 35 < 35

California 17.52 2.56 6.27 4.72 7.74 6.89
Florida 6.20 1.01 11.62 3.80 6.20 5.81
Illinois 28.1 0.372 2.73 5.84 8.57 10.93
New York 15.59 0.881 2.03 2.64 2.03 7.04
Washington 3.63 8.92 3.40 4.08 12.03 9.76

We have that,

y1. = 45.7, y2. = 34.64, y3. = 56.543, y4. = 30.211, y5. = 41.52, y.. = 208.613,

y.1 = 71.04, y.2 = 13.443, y.3 = 26.05, y.4 = 21.08, y.5 = 36.57, y.6 = 40.43,

SSM = 208.6132

30
= 1450.646

and the total sum of squares corrected for the mean is 981.43. Furthermore,

SS(States) = 45.72 + 34.642 + 56.5422 + 30.2112 + 41.522

6
− 1450.646 = 69.693

and

SS(Speeds) = 71.042 + 13.4432 + 26.052 + 21.082 + 36.572 + 40.432

5
− 1450.646

= 413.817.

The residual error is SSE = 981.430 – 413.817 – 69.693 = 497.920.
The analysis of variance table is below.

Source d.f. Sum of Squares Mean Square F-Statistic

States 4 69.693 17.4231 0.70 < 3.38
Speed limits 5 413.817 82.7634 3.32 > 2.71
Residual error 20 497.920 24.8960
Total 29 981.430
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We conclude that there is not a significant difference in fatalities/per million drivers
between states but there is amongst speed limits at the 5% level of significance.

Notice, in the R output below, that the order of fitting the two factors is unimportant
for this balanced model.

Analysis of variance table

Response: fatal
Df Sum Sq Mean Sq F value Pr(>F)

speed 5 413.82 82.763 3.3244 0.02399 *
state 4 69.69 17.423 0.6998 0.60111
Residuals 20 497.92 24.896
-Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1--
Response: fatal

Df Sum Sq Mean Sq F value Pr(>F)
state 4 69.69 17.423 0.6998 0.60111
speed 5 413.82 82.763 3.3244 0.02399 *
Residuals 20 497.92 24.896
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 □

Example 8 Using the Rank Transformation for Speeding Fatalities Example If
we suspect the data are not normally distributed, we may use a rank transformation.
The numbers in the table below in parenthesis are the relative ranks.

State/Speed
Limit (mph) 55 50 45 40 35 <35

California 17.52 (29) 2.56 (6) 6.27 (18) 4.72 (13) 7.74 (21) 6.89 (19)
Florida 6.20 (16.5) 1.01 (3) 11.62 (26) 3.80 (11) 6.20 (16.5) 5.81 (14)
Illinois 28.1 (30) 0.372 (1) 2.73 (8) 5.84 (15) 8.57 (22) 10.93 (25)
New York 15.59 (28) 0.881 (2) 2.03 (4.5) 2.64 (7) 2.03 (4.5) 7.04 (20)
Washington 3.63 (10) 8.62 (23) 3.40 (9) 4.08 (12) 12.03 (27) 9.76 (24)

The R output for analysis of variance on the ranks follows.

Analysis of Variance Table

Response: rank
Df Sum Sq Mean Sq F value Pr(>F)

state 4 190.33 47.583 0.8104 0.53323
speedy 5 881.80 176.360 3.0035 0.03505 *
Residuals 20 1174.37 58.718
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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The results and conclusions are similar to those obtained above using analysis of
variance on the observations. □

Example 9 Analysis of Variance for Data of Table 4.11 (Two-Way Without
Interaction)

The SAS System
The GLM Procedure

Class Level Information
Class Levels Values
refinery 3 1 2 3
source 4 1 2 3 4
Number of Observations Read 25
Number of Observations Used 25

The SAS System
The GLM Procedure

Dependent Variable: percent

Source DF Sum of Squares Mean Square F Value Pr > F
Model 5 287.086338 57.417268 0.97 0.4631
Error 19 1129.473662 59.445982
Corrected Total 24 1416.560000
R-Square Coeff Var Root MSE percent Mean
0.202664 20.70387 7.710122 37.24000
Source DF Type I SS Mean Square F Value Pr > F
refinery 2 20.9627778 10.4813889 0.18 0.8397
source 3 266.1235602 88.7078534 1.49 0.2486
Source DF Type III SS Mean Square F Value Pr > F
refinery 2 25.5346713 12.7673357 0.21 0.8087
source 3 266.1235602 88.7078534 1.49 0.2486

The SAS System
The GLM Procedure

Class Level Information
Class Levels Values
refinery 3 1 2 3
source 4 1 2 3 4
Number of Observations Read 25
Number of Observations Used 25
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The SAS System
The GLM Procedure

Dependent Variable: percent

Source DF Sum of Squares Mean Square F Value Pr > F
Model 5 287.086338 57.417268 0.97 0.4631
Error 19 1129.473662 59.445982
Corrected Total 24 1416.560000
R-Square Coeff Var Root MSE percent Mean
0.202664 20.70387 7.710122 37.24000
Source DF Type I SS Mean Square F Value Pr > F
source 3 261.5516667 87.1838889 1.47 0.2553
refinery 2 25.5346713 12.7673357 0.21 0.8087
Source DF Type III SS Mean Square F Value Pr > F
source 3 266.1235602 88.7078534 1.49 0.2486
refinery 2 25.5346713 12.7673357 0.21 0.8087

Analysis of Variance Table

Response: percent
Df Sum Sq Mean Sq F value Pr(>F)

refinery 2 20.96 10.481 0.1763 0.8397
source 3 266.12 88.708 1.4922 0.2486
Residuals 19 1129.47 59.446
> anova(res2)
Analysis of Variance Table

Response: percent
Df Sum Sq Mean Sq F value Pr(>F)

source 3 261.55 87.184 1.4666 0.2553
refinery 2 25.53 12.767 0.2148 0.8087
Residuals 19 1129.47 59.446 □

As can be seen from the computer printouts, neither the source nor the refinery is
statistically significant.

2. THE TWO-WAY CLASSIFICATION WITH INTERACTION

Suppose a plant-breeder carries out a series of experiments with three different
fertilizer treatments on each of four varieties of grain. For each treatment-by-variety
combination of plants, he plants several 4′ × 4′ plots. At harvest time, he finds out
that many of the plots have been lost due to having been wrongly plowed up. As a
result, all he is left with is the data of Table 7.6. With four of the treatment-variety
combination, there are no data at all. With the others, there are varying numbers
of plots, ranging from one to four, with a total of 18 plots in all. Table 7.6 shows
the yield of each plot, the total yields, the number of plots in each total, and the
corresponding mean, for each treatment variety combination having data. Totals,
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TABLE 7.6 Weighta of Grain (Ounces) from 4′ × 4′ Trial Plots
Variety

Treatment 1 2 3 4 Total
1 8

13

9

30 (3) 10b

y11. (n11) y11.

12

1̄2̄ (1) 12

y13. (n13) y13.

7

11

1̄8̄ (2) 9

y14. (n14) y14.

60 (6) 10b

y1.. (n1.) y1..

2 6

12

18 (2) 9

y21. (n21) y21

12

14

26 (2) 13

y22. (n22) y22

44 (4) 11

y2.. (n2.) y2..

3 9

7

1̄6̄ (2) 8

y32. (n32) y32.

14

16

3̄0̄ (2) 15

y33. (n33) y33.

10

14

11

48 (4) 12

y34. (n34) y34.

94 (8) 11.75

y3.. (n3.) y3..

Total 48 (5) 9.6

y.1. (n.1) y.1.

42 (4) 10.5

y.2. (n.2) y.2.

42 (3) 14

y.3. n.3 y.3.

66 (6) 11

y.4. n.4 y.4.

198 (18) 11

y... n.. y...

(a) nij-values of Table 7.6
i j = 1 j = 2 j = 3 j = 4 Total: ni.

1 3 0 1 2 6
2 2 2 0 0 4
3 0 2 2 4 8
Total: nj 5 4 3 6 n = 18

aThe basic entries in the table are weights from individual plots.
bIn each triplet of numbers, the first is the total weight, the second (in parentheses) is the number of plots
in the total, and the third is the mean.

numbers of observations (plots), and means are shown for the three treatments, the
four varieties, and for all 18 plots. The symbols for the entries in the table in terms
of the model (see below) are also shown.

a. Model

The equation of a suitable linear model for analyzing data of the kind in Table 7.6 is,
as discussed in Chapter 4.

yijk = 𝜇 + 𝛼i + 𝛽j + 𝛾ij + eijk. (51)

The yijk represents the kth observation in the ith treatment and jth variety. In (51), 𝜇
is a mean, 𝛼i is the effect of the ith treatment, 𝛽j is the effect of the jth variety, 𝛾ij is
the interaction effect, and eijk is the error term. In general, we have 𝛼i as the effect
due to the ith level of the 𝛼-factor, 𝛽j is the effect due to the jth level of the 𝛽-factor,
and 𝛾ij is the interaction effect due to the ith level of the 𝛼-factor and the jth level of
the 𝛽-factor.
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In the general case, there are a levels of the 𝛼-factor with i = 1,… , a and b levels
of the 𝛽-factor, with j = 1,… , b. In the example of Table 7.6, a = 3 and b = 4.With
balanced data, every one of the ab cells in a table such as Table 7.6 would have n
observations. Furthermore, there would be ab levels of the 𝛾-factor (interaction factor)
in the data. However, in unbalanced data, where some cells have no observations,
as is the case in Table 7.6, there are only as many 𝛾-levels in the data as there are
non-empty cells. Let the number of such cells be s. In Table 7.6 s = 8. Then, if nij
is the number of observations in the (i, j)th cell (treatment i and variety j), s is the
number of cells for which nij ≠ 0 meaning that nij > 0 or nij ≥ 1. For these cells,

yij. =
nij∑

k=1

yijk

is the total yield in the (i, j)th cell, and

yij. =
yij.

nij

is the corresponding mean. Similarly,

yi.. =
b∑

j=1

yij. and ni. =
b∑

j=1

nij

are the total yield and the number of observations in the ith treatment. Corresponding
values for the jth variety are

y.j. =
a∑

i=1

yij. and n.j =
a∑

i=1

nij.

The total yield for all plots is given by

y... =
a∑

i=1

yi.. =
b∑

j=1

y.j. =
a∑

i=1

b∑

j=1

yij. =
a∑

i=1

b∑

j=1

nij∑

k=1

yijk.

The number of observations (plots) therein are

n.. =
a∑

i=1

ni. =
b∑

j=1

n.j =
a∑

i=1

b∑

j=1

nij.

Examples of these symbols are shown in Table 7.6. The nij notation used here is
entirely parallel with that of the previous section, except that there nij = 1 or 0. Here
nij ≥ 1 or nij = 0.

The model equation y = Xb + e for the data of Table 7.6 is given in (52).
Equation (52) follows.
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𝜇 𝛼1 𝛼2 𝛼3 𝛽1 𝛽2 𝛽3 𝛽4 𝛾11 𝛾13 𝛾14 𝛾21 𝛾22 𝛾32 𝛾33 𝛾34

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

8

13

9

12

7

11

6

12

12

14

9

7

14

16

10

14

11

13

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y111

y112

y113

y131

y141

y142

y211

y212

y221

y222

y321

y322

y331

y332

y341

y342

y343

y344

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0

1 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0

1 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0

1 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0

1 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0

1 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0

1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0

1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0

1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0

1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0

1 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0

1 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0

1 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0

1 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0

1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1

1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1

1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1

1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜇

𝛼1

𝛼2

𝛼3

𝛽1

𝛽2

𝛽3

𝛽4

𝛾11

𝛾13

𝛾14

𝛾21

𝛾22

𝛾32

𝛾33

𝛾34

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

e111

e112

e113

e131

e141

e142

e211

e212

e221

e222

e321

e322

e331

e332

e341

e342

e343

e344

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(52)
b. Normal Equations

The normal equations X′Xb◦ = X′y corresponding to y = Xb + e are shown in (53).

𝜇◦ 𝛼◦1 𝛼
◦
2 𝛼

◦
3 𝛽◦1 𝛽

◦
2 𝛽

◦
3 𝛽

◦
4 𝛾

◦
11 𝛾

◦
13 𝛾

◦
14 𝛾

◦
21 𝛾

◦
22 𝛾

◦
32 𝛾

◦
33 𝛾

◦
34

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

18 6 4 8 5 4 3 6 3 1 2 2 2 2 2 4
6 6 0 0 3 0 1 2 3 1 2 0 0 0 0 0

4 0 4 0 2 2 0 0 0 0 0 2 2 0 0 0

8 0 0 8 0 2 2 4 0 0 0 0 0 2 2 4
5 3 2 0 5 0 0 0 3 0 0 2 0 0 0 0

4 0 2 2 0 4 0 0 0 0 0 0 2 2 0 0

3 1 0 2 0 0 3 0 0 1 0 0 0 0 2 0

6 2 0 4 0 0 0 6 0 0 2 0 0 0 0 4
3 3 0 0 3 0 0 0 3 0 0 0 0 0 0 0

1 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0

2 2 0 0 0 0 0 2 0 0 2 0 0 0 0 0

2 0 2 0 2 0 0 0 0 0 0 2 0 0 0 0

2 0 2 0 0 2 0 0 0 0 0 0 2 0 0 0

2 0 0 2 0 2 0 0 0 0 0 0 0 2 0 0

2 0 0 2 0 0 2 0 0 0 0 0 0 0 2 0

4 0 0 4 0 0 0 4 0 0 0 0 0 0 0 4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜇◦

𝛼◦1
𝛼◦2
𝛼◦3
𝛽◦1
𝛽◦2
𝛽◦3
𝛽◦4
𝛾◦11
𝛾◦13
𝛾◦14
𝛾◦21
𝛾◦22
𝛾◦32
𝛾◦33
𝛾◦34

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y...
y1..

y2..

y3..
y.1.
y.2.
y.3.
y.4.
y11.

y13.

y14.

y21.

y22.

y32.

y33.

y34.

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

198
60

44

94
48

42

42

66
30

12

18

18

26

16

30

48

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(53)
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Properties of normal equations described in Section 4 of Chapter 6 are evident
here. The first row of X′X corresponding to the 𝜇-equation, has n.. and the ni.-, n.j-,
and nij-values as does the first column and the diagonal. The remaining elements of
X′X, other than zeros are the nij-elements. The elements of X′y on the right-hand side
are all the totals y..., yi.., y.j., and yij. shown in Table 7.6. As before, the partitioning
of X′X highlights its form.

c. Solving the Normal Equations

The normal equations typified by (53) are easily solved. In (53), the number of
equations is p = 1 + a + b + s = 1 + 3 + 4 + 8 = 16. The sum of the 𝛼-equations
(the three after the first) is identical to the 𝜇-equation. The sum of the 𝛽-equations
enjoys the same property. Thus, there are two linear relationships among the rows
of X′X. Furthermore, in the 𝛾-equations, the sum of those pertaining to 𝛾i′j summed
over j equals the 𝛼i′ -equation. For example, the 𝛾11-, 𝛾13-, and 𝛾14-equations sum
to the 𝛼1-equation. This holds true for all i′ = 1, 2,… , a, representing further linear
relationships, a of them, among rows of X′X. Similarly, in summing the 𝛾ij′-equations
over i, the 𝛽j′-equation is obtained for all j′ = 1,… , b. However, of the b relationships
represented here, only b – 1 are linearly independent of those already described.
Thus, the total number of linearly independent relationships is 1 + 1 + a + b − 1 =
1 + a + b. Hence the rank of X′X is r = 1 + a + b + s − (1 + a + b) = s.Therefore, in
terms of solving the normal equations by the procedure described in (4) of Chapter 6,
we set p − r = 1 + a + b + s − s = 1 + a + b elements of b◦ equal to zero. The easiest
elements for this purpose are 𝜇◦, all 𝛼◦i (a of them) and all 𝛽◦j (b of them). Setting
these equal to zero leaves, from (53), the s = 8 equations

3𝛾◦11 = 30, 2𝛾◦22 = 26

𝛾◦13 = 12, 2𝛾◦32 = 16

2𝛾◦14 = 18, 2𝛾◦33 = 30

2𝛾◦21 = 18, 4𝛾◦34 = 48.

In general, the reduced equations are

nij𝛾
◦
ij = yij.

with solution

𝛾◦ij = yij., (54)

for all the (i, j) cells for which nij ≠ 0, all s of them. Then, the solution for b◦ has the
first 1 + a + b elements zero and the rest of the elements given by (54). Thus, we
have the solution expressed as

b◦′ =
[

01×(1+a+b) y′
]

(55)

where (y′)1×s = a vector of all yij.
′s for which nij ≠ 0.
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In our example, writing out all of the components of the vector (55),

b◦′ =
[

0 0 0 0 0 0 0 0 y11. y13. y14. y21. y22. y32. y33. y34.
]

=
[

0 0 0 0 0 0 0 0 10 12 9 9 13 8 15 12
]

(56)

from Table 7.6.
The simplicity of this solution means that it is virtually unnecessary to derive

the generalized inverse of X′X that corresponds to b◦. From (55) and the normal
equations (53),

G =

[
0(1+a+b)×(1+a+b) 0(1+a+b)×s

0s×(1+a+b) D{1∕nij}

]

(57)

where D{1∕nij} is a diagonal matrix of order s of the values 1∕nij for the
non-zero nij.

d. Analysis of Variance

(i) Basic Calculations. The analysis of variance for the two-way classification
model with interaction is similar to that for the two-way classification without inter-
action discussed in Section 1. Indeed, the analysis of variance tables are just like those
of Tables 7.2 and 7.3, except for the inclusion of an interaction line corresponding to
the sum of squares R(𝛾|𝜇, 𝛼, 𝛽). Calculation of R(𝜇), R(𝜇, 𝛼), R(𝜇, 𝛽), and R(𝜇, 𝛼, 𝛽)
is the same except for using y..., yi.., y.j., andyij. respectively in place of
y.., yi., y.j, andyij used in the no-interaction model. Thus, similar to (24), (25),
and (36),

R(𝜇) = n..y
2
...
=

y2
...

n..
, (58)

R(𝜇, 𝛼) =
a∑

i=1

ni.y
2
i.. =

a∑

i=1

y2
.i.

n.i
, (59)

and

R(𝜇, 𝛽) =
b∑

j=1

n.jy
2
.j. =

b∑

j=1

y2
.j.

n.j
. (60)
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The model (51) involves the terms 𝜇, 𝛼i, 𝛽j, and𝛾ij. The sum of squares for fitting it
is therefore denoted by R(𝜇, 𝛼, 𝛽, 𝛾). Its value, as usual, is b◦′X′y. With X′y of (53)
and b◦′ of (55), this gives

R(𝜇, 𝛼, 𝛽, 𝛾) = b◦′X′y

= y′(column vector ofyij total)

=
a∑

i=1

b∑

j=1

yij.yij.

=
a∑

i=1

b∑

j=1

nijy
2
ij. =

a∑

i=1

b∑

j=1

y2
ij.

nij
.

(61)

In the last expression of (61), the terms y2
ij∕nij are defined only for non-zero values

of nij in the data. The other term that we need for the analysis is R(𝜇, 𝛼, 𝛽). This is
the sum of squares due to fitting the reduced model

yijk = 𝜇 + 𝛼i + 𝛽j + eijk. (62)

This is derived exactly as in equation (26). Thus,

R(𝜇, 𝛼, 𝛽) =
a∑

i=1

ni.y
2
i.. + r′C−1r (63)

where,

C = {cjj′} for j, j′ = 1, 2,… , b − 1 (64)

with cjj = n.j −
a∑

i=1

n2
ij

ni.
, cjj′ = −

n∑

i=1

nijnij′

ni.
for j ≠ j′, and

r = {rj} =

{

y.j. −
a∑

i=1

nijyi..

}

for j = 1, 2,… , b − 1. (65)

These are the same calculations as in (16)–(18) using yi.. and y.j. in place of yi. and y.j.
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Example 10 Sums of Squares for Data in Table 7.6 Calculation of (58)–(61) for
the data of Table 7.6 is as follows

R(𝜇) = 1982

18
= 2178,

R(𝜇, 𝛼) = 602

6
+ 442

4
+ 942

8
= 2188.5,

R(𝜇, 𝛽) = 482

5
+ 422

4
+ 422

3
+ 662

6
= 2215.8,

R(𝜇, 𝛼, 𝛽, 𝛾) = 302

3
+ 122

1
+⋯ + 302

2
+ 482

4
= 2260.

(66)

As usual, the total sum of squares is

∑
y2 =

a∑

i=1

b∑

j=1

nij∑

k=1

y2
ijk = 82 + 132 +⋯ + 112 + 132 = 2316. (67)

To facilitate calculation of R(𝜇, 𝛼, 𝛽), we use the table of nij’s shown in Table 7.6a.
Using the values given there, C of (64) is

C =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

5 −
(

32

6
+ 22

4

)

−2(2)
4

−1(3)
6

−2(2)
4

4 −
(

22

4
+ 22

8

)

−2(2)
8

−1(3)
6

−2(2)
8

3 −
(

12

6
+ 22

8

)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 1
6

⎡
⎢
⎢
⎢
⎣

15 −6 −3

−6 15 −3

−3 −3 14

⎤
⎥
⎥
⎥
⎦

.

Its inverse is

C−1 = 1
126

⎡
⎢
⎢
⎢
⎣

67 31 21

31 67 21

21 21 63

⎤
⎥
⎥
⎥
⎦

.

From Table 7.6 and (65),

r =
⎡
⎢
⎢
⎢
⎣

48 − 3(10) − 2(11)

42 − 2(11) − 2(11.75)

42 − 1(10) − 2(11.75)

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

−4

−3.5

8.5

⎤
⎥
⎥
⎥
⎦

.

□



388 THE TWO-WAY CROSSED CLASSIFICATION

TABLE 7.7 Analyses of Variance for Two-Way Classification with Interaction (Data of
Table 7.6)

Source of Variation d.f. Sum of Squares
Mean
Square F-Statistic

(a) For fitting 𝝁, and 𝜶,𝜷, 𝜸|𝝁
Mean: 𝜇 1 = 1 R(𝜇) = 2, 178 2178 F(M) = 388.9
𝛼, 𝛽, and 𝛾 after
𝜇: 𝛼,𝛽,𝛾|𝜇

s – 1 = 7 R(𝛼, 𝛽, 𝛾|𝜇) = 82 11.71 F(Rm) = 2.1

Residual error N – s = 10 SSE = 56 5.60
Total N = 18 SST = 2316

(b) For fitting 𝝁, then 𝜶, then 𝜷 and then 𝜸: that is, for fitting 𝝁, (𝜶|𝝁), (𝜷|𝝁,𝜶) and
(𝜸|𝝁,𝜶,𝜷).
Mean: 𝜇 1 = 1 R(𝜇) = 2, 178 2178 F(M) = 388.9
𝛼 after 𝜇: 𝛼|𝜇 a – 1 = 2 R(𝛼|𝜇) = 10.5 5.25 F(𝛼|𝜇) = 0.9
𝛽 after 𝜇 and 𝛼: 𝛽|𝜇, 𝛼 b – 1 = 3 R(𝛽|𝛼,𝜇) = 36.79 12.26 F(𝛽|𝛼,𝜇) = 2.2
𝛾 after 𝜇,𝛼, and
𝛽:𝛾|𝜇, 𝛼, and 𝛽

s – a – b + 1
= 2

R(𝛾|𝜇, 𝛼, 𝛽) =
34.71

17.36 F(𝛾|𝛼,𝜇, 𝛽) = 3.1

Residual error N – s = 10 SSE = 56 5.60
Total N = 18 SST = 2316

(c) For fitting 𝝁, then 𝜷, then 𝜶, and then 𝜸: that is, for fitting 𝝁, (𝜷|𝝁), (𝜶|𝝁,𝜷) and
(𝜸|𝝁,𝜶,𝜷).
Mean: 𝜇 1 = 1 R(𝜇) = 2, 178 2178 F(M) = 388.9
𝛽 after 𝜇: 𝛽|𝜇 b – 1 = 3 R(𝛽|𝜇) = 37.8 12.60 F(𝛽|𝜇) = 2.3
𝛼 after 𝜇 and 𝛽: 𝛼|𝜇, 𝛽 a – 1 = 2 R(𝛼|𝜇, 𝛽) = 9.49 4.75 F(𝛼|𝜇, 𝛽) = 0.8
𝛾 after 𝜇, 𝛽, and 𝛼:
𝛾|𝜇, 𝛼, and 𝛽

s – a – b + 1
= 2

R(𝛾|𝜇, 𝛼, 𝛽) =
34.71

17.36 F(𝛾|𝛼,𝜇, 𝛽) = 3.1

Residual error N – s = 10 SSE = 56 5.6
Total N = 18 SST = 2316

Therefore, (63), using R(𝜇, 𝛼) from (66), gives

R(𝜇, 𝛼, 𝛽) = 2188.5 +
[
−4 −3.5 −8.5

] 1
126

⎡
⎢
⎢
⎢
⎣

67 31 21

31 67 21

21 21 63

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

−4

−3.5

−8.5

⎤
⎥
⎥
⎥
⎦

= 2225.29

(68)

If, quite generally, one wishes to fit the model (62) from the beginning to data of
the type illustrated in Table 7.6, the procedure just outlined yields the sum of squares
for doing so, namely R(𝜇, 𝛼, 𝛽). Thus, the procedure as described in Section 1 for
calculating R(𝜇, 𝛼, 𝛽) for the no-interaction model with nij = 0 or 1, is also the basis
for calculating R(𝜇, 𝛼, 𝛽) whenever the data are unbalanced. This is the case both
when R(𝜇, 𝛼, 𝛽) is needed as part of the analysis of variance for the interaction model
and when the prime interest lies in R(𝜇, 𝛼, 𝛽) itself as the reduction in the sum of
squares due to fitting the no-interaction model (62).
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(ii) Fitting Different Models. Analyses of variance derived from the sums of
squares in (66), (67), and (68) are shown in Table 7.7. Their form is similar to
that of Table 7.2. Table 7.7a shows the partitioning of the sum of squares R(𝜇, 𝛼, 𝛽, 𝛾)
into two parts. They are R(𝜇) and R(𝛼, 𝛽, 𝛾|𝜇) for fitting the 𝛼-, 𝛽-, and 𝛾-factors after
the mean. For the data of Table 7.6, R(𝜇) is as shown in (66). This yields

R(𝛼, 𝛽, 𝛾|𝜇) = R(𝜇, 𝛼, 𝛽, 𝛾) − R(𝜇) = 2260 − 2178 = 82.

In the usual manner, the residual sum of squares is

SSE =
∑

y2 − R(𝜇, 𝛼, 𝛽, 𝛾) = 2316 − 2260 = 56.

These are the terms shown in Table 7.7a. The corresponding F-statistics are also shown
in Table 7.7a. We have that F(M)= 388.9 is significant because it exceeds 4.96, the 5%
value of the F1,10-distribution. Hence we reject the hypothesis H: E(y) = 0. On the
other hand, F(Rm) = 2.1 is less than the value of the F7,10- distribution, namely, 3.14.
As a result, we conclude that the 𝛼-, 𝛽-, and 𝛾-factors in the model are not effective
in explaining the variation in the y’s over and above that explained by fitting a mean.

The data in Table 7.6 are hypothetical. In the analysis of variance in Table 7.7a,
F(Rm)= 2.1 is not significant. Therefore, calculation of the analyses of variance shown
in Tables 7.7b and 7.7c is therefore, not necessary. Nevertheless, it is instructive to
examine the format of the analyses to see how similar they are to Tables 7.2b and 7.2c.
Were F(Rm) of Table 7.7b significant, we would be led to examine whether it was the
𝛼-factor, 𝛽-factor, 𝛾-factor, or some combination thereof that was contributing to this
significance. After fitting 𝜇, we could do this in one of two ways. We could either
fit 𝜇 and 𝛼, and then 𝜇, 𝛼, and 𝛽, or fit 𝜇 and 𝛽, and then fit 𝜇, 𝛼, and 𝛽. Either way,
𝛾 would be fitted after having fitted 𝜇, 𝛼, and 𝛽. The choice lies in the first fitting
after 𝜇, either 𝛼 or 𝛽. This is exactly the situation discussed when describing Tables
7.2. Therefore, Tables 7.7b and 7.7c are similar in format to Tables 7.2b and 7.2c.
Table 7.7b shows the partitioning of R(𝜇, 𝛼, 𝛽, 𝛾) for fitting 𝜇, then 𝛼, then 𝛽 and
then 𝛾 , with lines in the analysis of variance for 𝜇, 𝛼 after 𝜇, 𝛽 after 𝜇 and 𝛼, and
finally 𝛾 after 𝜇, 𝛼, and 𝛽. The only difference between Table 7.2 and Table 7.7b is
that Table 7.7b contains the sum of squares R(𝛾|𝜇, 𝛼, 𝛽). Of course, this corresponds
to the 𝛾-factor which is additional in the interaction model to the 𝛼-and 𝛽-factors that
are present in both the interaction and the no-interaction models. Using (68) and (69),
we see that the sums of squares of Table 7.7b are

R(𝜇) = R(𝜇) = 2178 = 2178,

R(𝛼|𝜇) = R(𝜇, 𝛼) − R(𝜇) = 2188.5 − 2178 = 10.5

R(𝛽|𝜇, 𝛼) = R(𝜇, 𝛼, 𝛽) − R(𝜇, 𝛼) = 2225.29 − 2188.5 = 36.79

and

R(𝛾|𝜇, 𝛼, 𝛽) = R(𝜇, 𝛼, 𝛽, 𝛾) − R(𝜇, 𝛼, 𝛽) = 2225.29 − 2188.5 = 34.79.
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With a slight error due to rounding off,2 these sums do indeed add to 2260. Thus, they
are a partitioning of this sum of squares. These results are shown in Table 7.7b. Nat-
urally, R(𝜇) = 2178 and SSE =

∑
y2 − R(𝜇, 𝛼, 𝛽, 𝛾) = 56 are the same throughout

Table 7.7. Moreover, the middle three entries of Table 7.7b add up to R(𝛼, 𝛽, 𝛾|𝜇) = 82,
the middle entry of Table 7.7a, as do the middle entries of Table 7.7c. In this way,
Tables 7.7b and 7.7c are partitionings not only of R(𝜇, 𝛼, 𝛽, 𝛾) but also of R(𝛼, 𝛽, 𝛾|𝜇),
the sum of the squares due to fitting the model over and above the mean.

The analogy between Tables 7.7b and Table 7.2b is repeated in Tables 7.7c and
7.2c. Thus, Table 7.7c has lines in the analysis of variance for 𝜇, (𝛽|𝜇), (𝛼|𝜇, 𝛽),
and (𝛾|𝜇, 𝛼, 𝛽). The only difference from Table 7.7b is that R(𝛼|𝜇) and R(𝛽|𝜇, 𝛼) in
Table 7.7b are replaced by R(𝛽|𝜇) and R(𝛼|𝜇, 𝛽) in Table 7.7c. Observe that

R(𝛽|𝜇) = R(𝜇, 𝛽) − R(𝜇) = 2215.8 − 2178 = 37.8

and

R(𝛼|𝜇, 𝛽) = R(𝜇, 𝛼, 𝛽) − R(𝜇, 𝛽) = 2225.29 − 2215.8 = 9.49.

Of course, the sum of these, except for a slight round-off error, is the same as the sum
of R(𝛼|𝜇) and R(𝛽|𝜇, 𝛼) in Table 7.7b. Observe that

R(𝛽|𝜇) + R(𝛼|𝜇, 𝛽) = R(𝜇, 𝛼, 𝛽) − R(𝜇, 𝛽) = R(𝛼|𝜇) + R(𝛽|𝜇, 𝛼).

Using values from Table 7.7 we have 37.8 + 9.49 = 2225.29 – 2178 = 10.5 + 36.79 =
47.29. The sum in the above equation both for symbols and substituted numbers is
R(𝜇, 𝛼, 𝛽) − R(𝜇) = R(𝛼, 𝛽|𝜇).We now give an R output and program for computation
of Tables 7.7b and 7.7c.

weight<-c(8,13,9,12,7,11,6,12,12,14,9,7,14,16,10,14,11,13)
> treatment<-c("ta","ta","ta","ta","ta","ta","tb","tb","tb","tb",
"tc","tc","tc","tc","tc","tc","tc","tc")
> variety<-c("va","va","va","vc","vd","vd","va","va","vb","vb","vb",
"vb","vc","vc","vd","vd","vd","vd")
> result1<-lm(weight~treatment*variety)
> result2<-lm(weight~variety*treatment)
> anova(result1)
Analysis of Variance Table

Response: weight
Df Sum Sq Mean Sq F value Pr(>F)

treatment 2 10.500 5.250 0.9375 0.42348
variety 3 36.786 12.262 2.1896 0.15232
treatment:variety 2 34.714 17.357 3.0995 0.08965.
Residuals 10 56.000 5.600
---

2 In the first edition, the first author used fractions. The second author chose to use decimals in revising
the manuscript.
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Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
> anova(result2)
Analysis of Variance Table

Response: weight
Df Sum Sq Mean Sq F value Pr(>F)

variety 3 37.800 12.6000 2.2500 0.14507
treatment 2 9.486 4.7429 0.8469 0.45731
variety:treatment 2 34.714 17.3571 3.0995 0.08965.
Residuals 10 56.000 5.6000
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The SAS output and program follows.

The SAS System
The GLM Procedure

Class Level Information
Class Levels Values
treatment 3 1 2 3
variety 4 1 2 3 4
Number of Observations Read 18
Number of Observations Used 18

The SAS System
The GLM Procedure

Dependent Variable: weight

Source DF Sum of Squares Mean Square F Value Pr > F
Model 7 82.0000000 11.7142857 2.09 0.1400
Error 10 56.0000000 5.6000000
Corrected Total 17 138.0000000
R-Square Coeff Var Root MSE weight Mean
0.594203 21.51302 2.366432 11.00000
Source DF Type I SS Mean Square F Value Pr > F
treatment 2 10.50000000 5.25000000 0.94 0.4235
variety 3 36.78571429 12.26190476 2.19 0.1523
treatment*variety 2 34.71428571 17.35714286 3.10 0.0897
Source DF Type III SS Mean Square F Value Pr > F
treatment 2 12.47058824 6.23529412 1.11 0.3659
variety 3 34.87213740 11.62404580 2.08 0.1672
treatment*variety 2 34.71428571 17.35714286 3.10 0.0897
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The SAS System
The GLM Procedure

Class Level Information
Class Levels Values
treatment 3 1 2 3
variety 4 1 2 3 4
Number of Observations Read 18
Number of Observations Used 18

The SAS System
The GLM Procedure

Dependent Variable: weight

Source DF Sum of Squares Mean Square F Value Pr > F
Model 7 82.0000000 11.7142857 2.09 0.1400
Error 10 56.0000000 5.6000000
Corrected Total 17 138.0000000
R-Square Coeff Var Root MSE weight Mean
0.594203 21.51302 2.366432 11.00000
Source DF Type I SS Mean Square F Value Pr > F
variety 3 37.80000000 12.60000000 2.25 0.1451
treatment 2 9.48571429 4.74285714 0.85 0.4573
treatment*variety 2 34.71428571 17.35714286 3.10 0.0897
Source DF Type III SS Mean Square F Value Pr > F
variety 3 34.87213740 11.62404580 2.08 0.1672
treatment 2 12.47058824 6.23529412 1.11 0.3659
treatment*variety 2 34.71428571 17.35714286 3.10 0.0897

The code to generate this output is
data grain;
input treatment variety weight;
cards;
1 1 8
1 1 13
1 1 9
……………
3 4 11
3 4 13
proc glm;
class treatment variety;
model weight =treatment variety treatment*variety;
proc glm;
class treatment variety;
model weight = variety treatment variety*treatment;
run;
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An R output and program for Table 4.11 where process is taken as replication and
interaction between refinery and source is included is given below.

> percentage<-c(31,33,44,36,38,26,37,59,42,42,34,42,28,39,36,32,38,
42,36,22,42,46,26,37,43)
> refinery<-c("g","g","g","g","g","g","g","g","g","n","n","n","n",
"n","n","n","n","s","s","s","s","s","s","s","s")
> source<-c("t","t","t","t","o","m","t","t","o","m","i","i","i","t",
"o","m","m","t","o","i","o","o","m","i","i")
> result1<-lm(percentage~refinery*source)
> result2<-lm(percentage~source*refinery)
> anova(result1)
Analysis of Variance Table
Response: percentage

Df Sum Sq Mean Sq F value Pr(>F)
refinery 2 20.96 10.481 0.1507 0.8615
source 3 266.12 88.708 1.2751 0.3212
refinery:source 5 155.47 31.095 0.4469 0.8086
Residuals 14 974.00 69.571
> anova(result2)
Analysis of Variance Table

Response: percentage
Df Sum Sq Mean Sq F value Pr(>F)

source 3 261.55 87.184 1.2532 0.3282
refinery 2 25.53 12.767 0.1835 0.8343
source:refinery 5 155.47 31.095 0.4469 0.8086
Residuals 14 974.00 69.571

Observe that source, refinery, and interaction are not significant. A SAS output is
given below.

The SAS System
The GLM Procedure

Class Level Information
Class Levels Values
refinery 3 1 2 3
source 4 1 2 3 4
Number of Observations Read 25
Number of Observations Used 25

The SAS System
The GLM Procedure

Dependent Variable: percent

Source DF Sum of Squares Mean Square F Value Pr > F
Model 10 442.560000 44.256000 0.64 0.7616
Error 14 974.000000 69.571429
Corrected Total 24 1416.560000
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R-Square Coeff Var Root MSE percent Mean
0.312419 22.39782 8.340949 37.24000

Source DF Type I SS Mean Square F Value Pr > F
refinery 2 20.9627778 10.4813889 0.15 0.8615
source 3 266.1235602 88.7078534 1.28 0.3212
refinery*source 5 155.4736620 31.0947324 0.45 0.8086

Source DF Type III SS Mean Square F Value Pr > F
refinery 2 10.7659314 5.3829657 0.08 0.9259
source 3 282.6326238 94.2108746 1.35 0.2972
refinery*source 5 155.4736620 31.0947324 0.45 0.8086

The SAS System
The GLM Procedure

Number of Observations Read 25
Number of Observations Used 25

The SAS System
The GLM Procedure

Dependent Variable: percent

Source DF Sum of Squares Mean Square F Value Pr > F
Model 10 442.560000 44.256000 0.64 0.7616
Error 14 974.000000 69.571429
Corrected Total 24 1416.560000

R-Square Coeff Var Root MSE percent Mean
0.312419 22.39782 8.340949 37.24000

Source DF Type I SS Mean Square F Value Pr > F
source 3 261.5516667 87.1838889 1.25 0.3282
refinery 2 25.5346713 12.7673357 0.18 0.8343
source*refinery 5 155.4736620 31.0947324 0.45 0.8086

Source DF Type III SS Mean Square F Value Pr > F
source 3 282.6326238 94.2108746 1.35 0.2972
refinery 2 10.7659314 5.3829657 0.08 0.9259
source*refinery 5 155.4736620 31.0947324 0.45 0.8086

The code that generated the above output is

data tests;
Input refinery source percent;
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cards;
1 1 31
1 1 33
………………
3 4 37
3 4 43
proc glm;
class refinery source;
model percent=refinery source refinery*source;
proc glm;
class source refinery;
model percent=source refinery source*refinery;
run;

(iii) Computational Alternatives. Equation (63) for R(𝜇, 𝛼, 𝛽) is based upon solv-
ing the normal equations for the model (62) by “absorbing” the 𝛼-equations and
solving for (b – 1) 𝛽’s. This is the procedure described in detail for the no-interaction
model in Section 1d. We pointed out there, without explicit presentation of details,
that R(𝜇, 𝛼, 𝛽) can also be calculated by solving the normal equations by “absorbing”
the 𝛽-equations and solving for (a – 1) 𝛼’s. The calculation of R(𝜇, 𝛼, 𝛽) is then as
follows. We have that

R(𝜇, 𝛼, 𝛽) =
b∑

j=1

n.j.y
2
.j. + u′T−1u (69)

where,

T = {tii′} for i, i′ = 1, 2,… , a − 1

with

tii = ni. −
b∑

j=1

n2
ij

n.j
,

tii′ = −
b∑

j=1

nijni′j

n.j
for i ≠ i′, (70)

and

u = {ui} =

{

yi.. −
b∑

j=1

nijy.j.

}

for i = 1, 2,… , a − 1.

Table 7.6 involves 3 𝛼’s and 4 𝛽’s. For these data, it is therefore, computationally
easier to use (69) instead of (63) for calculating R(𝜇, 𝛼, 𝛽) because in (69), T has
order 2 whereas in (63) C has order 3. The difference in effort here is negligible.
However, the choice of procedure might be more crucial if, say, there were many
more 𝛽’s than 𝛼’s or vice versa. (Thus (see Chapter 10), where there may be, say,
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TABLE 7.8 Equivalent Expressions for Sums of Squares in the Analysis of Variance of
the Two-Way Classification with Interaction

Method

Sum of
Squares d.f.a

Absorbing 𝛼’s (Use When More
𝛼’s Than 𝛽’s) See (63) for r′C−1r

Absorbing 𝛽’s (Use When More
𝛽’s Than 𝛼’s)See (69) for u′T−1u

Fitting 𝛼 before 𝛽 (Table 7.7b)

R(𝜇) 1 n..y
2
...

n..y
2
...

R(𝛼|𝜇) a – 1
∑

i

ni.y
2
i. − n..y

2
..

∑

i

ni.y
2
i. − n..y

2
..

R(𝛽|𝜇, 𝛼) b – 1 r′C−1r
∑

j

n.jy
2
.j. + u′T−1u −

∑

i

ni.y
2
i..

R(𝛾|𝜇, 𝛼, 𝛽) s – a – b + 1
∑

i

∑

j

nijy
2
ij. −

∑

i

ni..y
2
i.. − r′C−1r

∑

i

∑

j

nijy
2
ij. −

∑

i

n.jy
2
.j. − u′T−1u

SSE N – s
∑

i

∑

j

∑

k

y2
ijk −

∑

i

∑

j

nijy
2
ij.

∑

i

∑

j

∑

k

y2
ijk −

∑

i

∑

j

nijy
2
ij.

SST N
∑

i

∑

j

∑

k

y2
ijk

∑

i

∑

j

∑

k

y2
ijk

Fitting 𝛽 before 𝛼 (Table 7.7c)

R(𝜇) 1 n..y
2
...

n..y
2
...

R(𝛽|𝜇) b – 1
∑

j

n.jy
2
.j. − n..y

2
...

∑

j

n.jy
2
.j. − n..y

2
...

R(𝛼|𝜇, 𝛽) a – 1
∑

i

ni.y
2
i.. + r′C−1r −

∑

j

n.j.y
2
.j. u′T−1u

R(𝛾|𝜇, 𝛼, 𝛽) s – a – b + 1
∑

i

∑

j

nijy
2
ij. −

∑

i

ni..y
2
i.. − r′C−1r

∑

i

∑

j

nijy
2
ij. −

∑

i

n.jy
2
.j. − u′T−1u

SSE N – s
∑

i

∑

j

∑

k

y2
ijk −

∑

i

∑

j

nijy
2
ij.

∑

i

∑

j

∑

k

y2
ijk −

∑

i

∑

j

nijy
2
ij.

SST N
∑

i

∑

j

∑

k

y2
ijk

∑

i

∑

j

∑

k

y2
ijk

as = number of fitted cells.

2000 𝛽’s and only 12 𝛼’s. Then, (69) requiring inversion of a matrix of order 11, is
clearly preferable to (63) which demands inverting a matrix of order 1999!)

The two alternative procedures for calculating R(𝜇, 𝛼, 𝛽) provide identical numer-
ical results, but different symbolic expressions for certain of the sums of square in
Table 7.7. We show these expressions in Table 7.8 under the headings “Absorbing 𝛼’s”
and “Absorbing 𝛽’s”, which describe the method for solving the normal equations
implicit in the procedures. For any given set of data, only one of the procedures need
to be used. However, the other always provides a check on the arithmetic involved.
The choice of which to use depends on whether there are more or fewer 𝛼’s than 𝛽’s.
We can avoid this choice by always denoting the factor with the larger number of
effects by 𝛼. Then, the “Absorbing 𝛼’s” procedure will be the one to use. Nevertheless,
it is of interest to lay out two sets of expressions. We do this in Table 7.8.
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(iv) Interpretation of Results. Other than F(M), the F-statistics in Tables 7.7b and
7.7c are not significant. We would expect this because F(Rm) of Table 7.7a is not
significant (see the end of Section 1e). In general, interpretation of the test statistics
F(𝛼|𝜇), F(𝛽|𝜇, 𝛼), F(𝛽|𝜇), and F(𝛼|𝜇, 𝛽) in Tables 7.7b and 7.7c is exactly as given
in Table 7.4. The possibilities concerning the significance and the non-significance
of the F’s are the same here and there. Therefore, the interpretation is the same.
Furthermore, Tables 7.7b and 7.7 both have the statistic F(𝛾|𝜇, 𝛼, 𝛽). This provides
a test the effectiveness (in terms of accounting for the variation in y) of fitting the
model (51) in comparison with fitting the model (1). Since the difference between
the two models is the fitting of the interaction effect 𝛾ij in (51), we often refer the
test as a test for interaction after fitting the main effects. However, like Table 7.2, the
interpretation of F-statistics can be thought of in two ways:

1. as we have already considered, testing the effectiveness of fitting different
models;

2. testing linear hypotheses about elements of the model.

The context of the second interpretation of the F-statistics makes us better able
to consider the meaning of the tests provided by Table 7.7. First, however, we deal
with a limitation of the R( ) notation and then, in order to discuss tests of hypothesis,
consider estimable functions.

(v) Fitting Main Effects Before Interaction. We have defined and freely used
notation of the form R(𝜇, 𝛼) − R(𝜇). Formally, it might seem plausible to define

R(𝛽|𝜇, 𝛼, 𝛾) = R(𝜇, 𝛼, 𝛽, 𝛾) − R(𝜇, 𝛼, 𝛾).

However, before trying to do this, we must take a careful look at the meaning of the
interaction 𝛾-factor. In doing so, we will find that R(𝛽|𝜇, 𝛼, 𝛾), as formally defined by
the notation, is identically equal to zero. Evidence of this comes from the models (and
corresponding sums of squares) that the notation R(𝜇, 𝛼, 𝛽, 𝛾) − R(𝜇, 𝛼, 𝛾) implies.
For R(𝜇, 𝛼, 𝛽, 𝛾), the model is (51) and

R(𝜇, 𝛼, 𝛽, 𝛾) =
a∑

i=1

b∑

j=1

nijy
2
ij.

as in (61). Similarly, in the context of the 𝛼’s and 𝛾’s of (51), the implied model
for R(𝜇, 𝛼, 𝛾) is yijk = 𝜇 + 𝛼i + 𝛾ij + eijk. However, this is exactly the model for the
two-way nested classification discussed in Section 4 of Chapter 6. Hence, the corre-
sponding reduction in the sum of squares is

R(𝜇, 𝛼, 𝛾) =
a∑

i=1

b∑

j=1

nijy
2
ij.. (71)
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Consequently,

R(𝛽|𝜇, 𝛼, 𝛾) = R(𝜇, 𝛼, 𝛽, 𝛾) − R(𝜇, 𝛼, 𝛾) ≡ 0.

Similarly,

R(𝜇, 𝛽, 𝛾) =
a∑

i=1

b∑

j=1

nijy
2
ij. = R(𝜇, 𝛾). (72)

Thus, we also have

R(𝛼|𝜇, 𝛽, 𝛾) ≡ 0 ≡ R(𝛼, 𝛽|𝜇, 𝛾).

From (61), (71), and (72), we see that the reduction in sum of squares due to fitting

any model that contains the interaction 𝛾-factor is
a∑

i=1

b∑

j=1

nijy
2
ij.. More particularly, in

(71) and (72), the reduction of any model which, compared to (51), lacks either 𝛼, or

𝛽, or both, is equal to R(𝜇, 𝛼, 𝛽, 𝛾) =
a∑

i=1

b∑

j=1

nijy
2
ij.. Indeed, as in (72), fitting just (𝜇

and) the 𝛾-factor alone leads to the same reduction in the sum of squares. We return
to this fact later. Meanwhile, the emphasis here is that in the R( ) notation, there is
no such thing as R(𝛽|𝜇, 𝛼, 𝛾) when 𝛾 is the interaction factor between the 𝛼- and 𝛽-
factors. This is the underlying reason for there being only two subsections of Table 7.7
after 7.7a. There in 7.7b, we have R(𝜇), R(𝛼|𝜇), R(𝛽|𝜇, 𝛼), and R(𝛾|𝜇, 𝛼, 𝛽) based on
fitting 𝜇, 𝛼, 𝛽, and 𝛾 in that order. Likewise, in Table 7.7c, we have R(𝜇),R(𝛽|𝜇),
R(𝛼|𝜇, 𝛽), and R(𝛾|𝜇, 𝛼, 𝛽) for fitting 𝜇, 𝛽, 𝛼, and 𝛾 in that order. Notationally, one
might be tempted from this to consider other sequences such as 𝜇, 𝛼, 𝛾 , and 𝛽, for
example. This would give rise to the notation R(𝜇), R(𝛼|𝜇), R(𝛼, 𝛾|𝜇), and R(𝛾|𝜇, 𝛼, 𝛽).
However, the latter symbol is, as we have seen identically equal to zero, is not a sum
of squares. As a result, in the fitting of 𝛼-, 𝛽-, and 𝛾-factors with 𝛾 representing
𝛼- by 𝛽-interactions, we can fit 𝛾 only in combination with both 𝛼 and 𝛽. We cannot
fit 𝛾 unless both 𝛼 and 𝛽 are in the model. Generally, it is true that in the context of the
kind of models being considered here, interaction factors can only be fitted when all
their corresponding main effects are in the model too. Moreover, only R( ) symbols
adhering to this policy have meaning.

e. Estimable Functions

The basic estimable function for the two-way classification model with interaction is

E(yijk) = 𝜇 + 𝛼i + 𝛽j + 𝛾ij.
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We shall frequently refer to this expression. Hence, we give it the symbol 𝜇ij. Thus,

𝜇ij = 𝜇 + 𝛼i + 𝛽j + 𝛾ij. (73)

Its b.l.u.e. is

�̂�ij = 𝜇 + 𝛼i + 𝛽j + 𝛾ij. = 𝜇◦ + 𝛼◦i + 𝛽◦j + 𝛾◦ij .

Since the only non-zero elements in b◦ of (55) are 𝛾◦ij = yij., we have that

�̂�ij = yij.. (74)

Moreover,

v(�̂�ij) =
𝜎2

nij
, (75a)

and

cov(�̂�ij, �̂�i′j′) = 0 unless i = i′ and j = j′. (75b)

These results are fundamental to the ensuing discussion.
By its definition in (73), 𝜇ij corresponds to the cell in row i and column j of the grid

of rows and columns in which the data may be displayed (e.g., Table 7.6). Therefore,
𝜇ij is estimable only if the corresponding (i, j) cell contains observations. This also
follows from (74) wherein, �̂�ij the b.l.u.e. of 𝜇ij exists only for cells that have data,
that is, for which there is a yij. value. Therefore, when we say that 𝜇ij is estimable, we
implicitly refer only to those 𝜇ij’s that correspond to cells that have data. The other
𝜇ij’s are not estimable.

Any linear function of the estimable 𝜇ij’s is estimable. However, because of the
presence of 𝛾ij in 𝜇ij, differences between the rows (𝛼’s) or columns (𝛽’s) are not
estimable. For example, in Table 7.6, y11. and y21. exist. As a result 𝜇11 and 𝜇21 are
estimable. Therefore,

𝜇11 − 𝜇21 = 𝛼1 − 𝛼2 + 𝛾11 − 𝛾21

is estimable. However, 𝛼1 − 𝛼2 is not estimable. Similarly, 𝛼1 − 𝛼3 + 𝛾13 − 𝛾33 and
𝛽1 − 𝛽3 + 𝛾11 − 𝛾13 are estimable but 𝛼1 − 𝛼3 and 𝛽1 − 𝛽3 are not. In general,

𝛼i − 𝛼i′ +
b∑

j=1

kij(𝛽j + 𝛾ij) −
b∑

j=1

ki′j(𝛽j + 𝛾i′j) (76)
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for i ≠ i′ is estimable provided that

b∑

j=1

kij = 1 =
b∑

j=1

ki′j (77)

with kij = 0 when nij = 0 and ki′j = 0 when ni′j = 0. Then the b.l.u.e. of (76) is

b∑

j=1

kijyij. −
b∑

j=1

ki′j,yi′j, (78)

with variance

b∑

j=1

(
k2

ij

nij
+

k2
i′j

ni′j

)

𝜎2.

A similar result holds for the 𝛽’s. The parametric function

𝛽j − 𝛽j′ +
a∑

i=1

hij(𝛼i + 𝛾ij) −
a∑

i=1

hij′ (𝛼i + 𝛾ij′), (79)

is estimable provided that

a∑

i=1

hij = 1 =
a∑

i=1

hij′ (80)

where hij = 0 when nij = 0 and hij′ = 0 when nij′ = 0. The b.l.u.e. of (79) is

a∑

i=1

hijyij. −
a∑

i=1

hij′yij′ . (81)

It is not possible to derive an estimable function from the 𝜇ij’s which is solely a
function of the 𝛼’s and 𝛽’s. On the other hand, it is possible to derive an estimable
function that is a function of only the 𝛾’s. Provided that the (ij), (i′j), (ij′), and (i′j′)
cells have data in them, the parametric function

𝜃ij,i′j′ ≡ 𝜇ij − 𝜇i′j − 𝜇ij′ + 𝜇i′j′

= 𝛾ij − 𝛾i′j − 𝛾ij′ + 𝛾i′j′
(82)

is estimable. Its b.l.u.e. is

�̂�ij,i′j′ = yij. − yi′j. − yij′. + yi′j′.. (83)
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The variance of (83) is

v(�̂�ij,i′j′ ) =
(

1
nij

+ 1
ni′j

+ 1
nij′

+ 1
ni′j′

)

𝜎2.

Expressions (76), (79), and (82) are the nearest we can come to obtaining estimable
functions of intuitively practical value. We cannot estimate differences between row
effects devoid of interaction effects. They are not estimable. They can be estimated
only in the presence of average column and interaction effects. For example, with
kij = 1∕mi, where mi is the number of filled cells in the ith row (i.e., nij ≠ 0 for mi
values of j = 1, 2, …, b), (77) is satisfied and

𝛼i − 𝛼i′ +
∑

j for
nij≠0

(𝛽j + 𝛾ij)

mi
−

∑

j for
nij′≠0

(𝛽j + 𝛾i′j)

mi′
(84a)

is estimable with b.l.u.e.

∑

j for
nij≠0

yij.

mi
−

∑

j for
ni′j≠0

yi′j.

mi′
.

Similarly, because kij = nij∕ni. also satisfies (77), the parametric function

𝛼i − 𝛼i′ +
b∑

j=1

nij(𝛽j + 𝛾ij)

ni.
−

b∑

j=1

ni′j(𝛽j + 𝛾i′j)

ni′.
(84b)

is also estimable. Its b.l.u.e. is

∑

j

nijyij.

ni.

−
∑

j

ni′jyi′j.

n
i′.

= yi.. − yi′...

Example 11 Some Estimable Functions and their b.l.u.e.’s Table 7.6 provides
the following examples. First, from (76)–(78)

𝛼1 − 𝛼2 + (𝛽1 + 𝛾11) − (𝛽1 + 𝛾21) = 𝛼1 − 𝛼2 + 𝛾11 − 𝛾21 (85a)

is estimable with b.l.u.e.

y11. − y21. = 10 − 9 = 1.

Similarly,

𝛼1 − 𝛼2 + (𝛽1 + 𝛾11) − 1
2
(𝛽1 + 𝛽2 + 𝛾21 + 𝛾22) (85b)
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is estimable with b.l.u.e.

y11. −
1
2
(y21. + y22.) = 10 − 1

2
(9 + 13) = −1.

As far as 𝛼1 − 𝛼2 is concerned, the two estimable functions in (85a) and (85b) are
the same. Of course, they involve different functions of the 𝛽’s and the 𝛾’s. In (85a),
there are no 𝛽’s because for both rows (treatments) 1 and 2, there are observations in
column (variety) 1. (See Table 7.6). An example of (84b) is that

𝛼1 − 𝛼2 +
[3(𝛽1 + 𝛾11) + (𝛽3 + 𝛾13) + 2(𝛽4 + 𝛾14)]

6

−
[2(𝛽2 + 𝛾32) + 2(𝛽3 + 𝛾33) + 4(𝛽4 + 𝛾44)]

8

is estimable with b.l.u.e.

y1.. − y3. = 10 − 11.75 = −1.75. □

Certain other estimable functions deserve mention because they arise in the dis-
cussion of tests of hypotheses corresponding to the F-statistics of Table 7.7. The
first is

𝜑i =

(

ni. −
b∑

j=1

n2
ij

n.j

)

𝛼i −
a∑

i′≠i

(
b∑

j=1

nijni′j

n.j

)

𝛼i′ +
b∑

j=1

(

nij −
n2

ij

n.j

)

𝛾ij

−
a∑

i′≠i

(
b∑

j=1

nijni′j

n.j

)

𝛾i′j. (86)

Recall that a linear combination of estimable functions is estimable. The expression
in (86) may be rewritten as

𝜑i =
b∑

j=1

[

nij(𝜇 + 𝛼i + 𝛽j + 𝛾ij) −
a∑

k=1

nijnkj

n.j

(
𝜇 + 𝛼k + 𝛽j + 𝛾kj

)
]

.

It is an estimable function because it is the linear combination of two basic estimable
functions. Another similar expression in terms of 𝛽’s and 𝛾’s that is also estimable
is

𝜓j =

(

n.j −
a∑

i=1

n2
ij

ni.

)

𝛽.j −
b∑

j′≠j

(
a∑

i=1

nijnij′

ni.

)

𝛽j′ +
a∑

i=1

(

nij −
n2

ij

ni.

)

𝛾ij

−
b∑

j′≠j

(
a∑

i=1

nijnij′

ni.
𝛾ij′

)

. (87)
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Naturally, for 𝜃ij,i′j′ as defined in (82), functions of estimable 𝜃’s are also estimable.
However, certain functions of non-estimable 𝜃’s are also estimable. For example,
with the data of Table 7.6

𝜃11,22 = 𝜇11 − 𝜇21 − 𝜇12 + 𝜇22 and 𝜃12,33 = 𝜇12 − 𝜇32 − 𝜇13 + 𝜇33

are not estimable, because 𝜇12 is not. (There are no observations for treatment 1 and
variety 2.) However, the sum of these two 𝜃’s does not involve 𝜇12 and is estimable.
Thus, we have that

𝛿 = 𝜃11,22 + 𝜃12,33 = 𝜇11 − 𝜇21 + 𝜇22 − 𝜇32 − 𝜇13 + 𝜇33

= 𝜇11 − 𝜇13 − 𝜇21 + 𝜇22 − 𝜇32 + 𝜇33
(88)

is estimable. For each of the 𝜇ij in (88), there is at least one observation in treatment
i and variety j so that all of the 𝜇ij are estimable. Hence 𝛿 is estimable. In general, if
each of the two non-estimable 𝜃’s involves only a single non-estimable 𝜇ij which is
common to both 𝜃’s, then the sum or difference of those 𝜃’s will not involve that 𝜇ij
and will be estimable. An example of this situation is given by (88).

f. Tests of Hypotheses

(i) The General Hypothesis. As has already been well-established, the F-statistic
for testing H : K′b = 0, is for K′ of full rank s∗,

F = Q

s∗�̂�2
with Q = (K′b)′(K′GK)−1K′b◦

. (89)

Furthermore, hypotheses are testable only when they can be expressed in terms of
estimable functions—in this case in terms of the 𝜇ij’s. Thus, any testable hypothesis
concerning K′b will involve linear functions of the 𝜇ij’s. By the nature of the 𝜇ij, no
matter what functions of the 𝛼’s and 𝛽’s are involved in K′b, the functions of the 𝛾ij’s
will be the same as those of the 𝜇ij’s. Thus, if

𝜇 = {𝜇ij} and 𝛾 = {𝛾ij}, for nij ≠ 0, (90)

then, when K′b = L′𝜇, that part of K′b that involves 𝛾 is L′𝛾 . In (55), the only
non-zero elements of b◦ are

𝛾◦ = {𝛾◦ij} = y = {yij} for nij ≠ 0. (91)

Similarly, in (57), the only non-null sub-matrix in G is the diagonal matrix D{ 1
nij

}

corresponding to 𝛾◦. Therefore, to test the hypothesis

H : K′b = 0 equivalent to L′𝜇 = 0, (92)
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Q of (89) becomes

Q = y′L
[

L′D
{

1
nij

}

L
]−1

Ly. (93)

Example 12 Testing the Hypothesis L′𝝁 = 0 for Data of Table 7.6 For Table 7.6,

𝛾 ′ =
[
𝛾11 𝛾13 𝛾14 𝛾21 𝛾22 𝛾32 𝛾33 𝛾34

]
(94)

and

y′ =
[

y11. y13. y14. y21. y22. y32. y33. y34.
]

=
[

10 12 9 9 13 8 15 12
]
.

(95)

In (85), 𝛼1 − 𝛼2 + 𝛾11 − 𝛾21 is estimable, for which L′𝛾 = 𝛾11 − 𝛾12 has

L′ =
[

1 0 0 −1 0 0 0 0
]
.

In addition, from (53),

D = D
{

1
nij

}

= diag
[

1
3

1 1
2

1
2

1
2

1
2

1
2

1
4

]

, (96)

so that

L′D =
[

1
3

0 0 − 1
2

0 0 0 0
]

and

L′DL =
(

1
3
+ 1

2

)

= 5
6
.

Therefore, for testing the hypothesis 𝛼1 − 𝛼2 + 𝛾11 − 𝛾21 = 0 we have

Q = (10 − 9)
(

5
6

)−1
(10 − 9) = 1.2.

In this way, we need only look at the 𝛾ij elements of a hypothesis in order to derive
L′ and so calculate Q of (89). □

(ii) The Hypothesis for F(M). In earlier discussing Table 7.7, we interpreted the
sum of squares therein as reductions in the sum of squares due to fitting different
models. We now consider their meaning in terms of testing hypotheses. In this
context, we only deal with hypotheses about the two-way classification interaction
model, (51). In particular, we establish the linear hypotheses corresponding to each
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of the six different F-statistics in Tables 7.7b and 7.7c. The first of these F-statistics
is F(M).

Results for the general case (e.g., equation (15) of Chapter 6) indicate that F(M) can
be used to test the hypothesis H: E(y) = 0. In the present case, this is equivalent to

H:
a∑

i=1

b∑

j=1

nij𝜇ij = 0 for nij ≠ 0. (97)

In terms of (92), the hypothesis in (97) can be expressed as L′𝝁 = 0 for L′ being the
vector

L′L′ =
[

n11 ⋯ nab

]
for those nij ≠ 0. (98)

Hence,

L′D = 1′ with L′DL = N. (99)

For (93), we can show that L′y = y.... As a result, (93) becomes Q = R(𝝁). This
confirms the numerator of F(M).

(iii) Hypotheses for F(𝜶|𝝁) and F(𝜷|𝝁). We will show that R(𝜶|𝝁) is the numer-
ator sum of squares for testing

H:
1
ni.

∑

i

nij𝝁ij equal for all i. (100a)

This hypothesis may also be stated as

H: 𝜶i +
1
ni.

∑

j

nij(𝜷 j + 𝜸ij) equal for all i. (100b)

The hypothesis in (100a) and (100b) can be expressed as a – 1 independent
differences

H:
1

n1.

∑

j

n1j𝜇1j −
1
ni.

∑

j

nij𝜇ij = 0 for i = 2, 3,… , a. (100c)

We can then see that for (93) that the (i – 1)th row of L′ is for i = 2, 3,… , a,

𝓁′
i−1 =

[
n11

n1.
⋯

n1b

n1.
0′ −

ni1

ni.
⋯ −

nib

ni.
0′

]

.

corresponding

to n1j ≠ 0

corresponding

to nij ≠ 0

(101)
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We can show from this that the (i – 1)th element of L′y is y1.. − yi.. and
that L′DL = (1∕n1.)J + D{ni.} for i = 2, 3,… , a. Algebraic simplification based on
results in Exercise 20 leads to Q of (93) reducing to R(𝜶|𝝁). Hence (100b) is the
hypothesis tested by F(𝜶|𝝁).

Example 13 The Numerator of the Test Statistic for R(𝜶|𝝁) in Table 7.6 For the
data of Table 7.6, consider

H: 𝛼1 +
1
6
[3(𝛽1 + 𝛾11) + (𝛽3 + 𝛾13) + 2(𝛽4 + 𝛾14)]

−{𝛼2 +
1
4
[2(𝛽1 + 𝛾21) + 2(𝛽2 + 𝛾22)]} = 0

𝛼1 +
1
6
[3(𝛽1 + 𝛾11) + (𝛽3 + 𝛾13) + 2(𝛽4 + 𝛾14)]

−{𝛼3 +
1
8
[2(𝛽2 + 𝛾32) + 2(𝛽3 + 𝛾33) + 4(𝛽4 + 𝛾34)]} = 0.

We then have,

L′ =
⎡
⎢
⎢
⎣

3
6

1
6

2
6

− 2
4

− 2
4

0 0 0

3
6

1
6

2
6

0 0 − 2
8

− 2
8

− 4
8

⎤
⎥
⎥
⎦

, (102)

L′y =
[

y1.. − y2..

y1.. − y3..

]

=
[

10 − 11

10 − 11.75

]

=
[ −1

−1.75

]

and

L′D =
⎡
⎢
⎢
⎣

1
6

1
6

1
6

− 1
4

− 1
4

0 0 0

1
6

1
6

1
6

0 0 − 1
8

− 1
8

− 1
8

⎤
⎥
⎥
⎦

(103)

where D is given by (96). Furthermore,

L′DL =
⎡
⎢
⎢
⎣

5
12

1
6

1
6

7
24

⎤
⎥
⎥
⎦

with (L′DL)−1 = 4
9

[
7 −4

−4 10

]

.

Hence,

Q =
[
−1 −1.75

] 4
9

[
7 −4

−4 10

] [ −1

−1.75

]

= 10.5 = R(𝛼|𝜇)

of Table 7.7b. □
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Analogous to the above, R(𝛽|𝜇) is the numerator sum of squares for testing

H: 𝛽j +
1
n.j

∑

i

nij(𝛼i + 𝛾ij) equal for all j.

Exercise 11 provides an example.

(iv) Hypotheses for F(𝜶|𝝁, 𝜷) and F(𝜷|𝝁,𝜶). These F-statistics test the hypothe-
ses

H: 𝜑i = 0 for all i and H: 𝜓j = 0 for all j,

respectively, where 𝜑i and 𝜓j are given by (86) and (87). First, observe that
∑a

i=1
𝜑i = 0. To see this, notice that

a∑

i=1

𝜑i =
a∑

i=1

𝛼i

[

ni. −
b∑

j=1

n2
ij

n.j
−

a∑

i′≠i

b∑

j=1

nijni′j

n.j

]

+
a∑

i=1

b∑

j=1

𝛾ij

[

nij −
n2

ij

n.j
−

∑

i′≠i

nijni′j

n.j

]

=
a∑

i=1

𝛼i

[

ni. −
b∑

j=1

n2
ij

n.j
−

b∑

j=1

nij(n.j − nij)

n.j

]

+
a∑

i=1

b∑

j=1

𝛾ij

[

nij −
n2

ij

n.j
−

nij(n.j − ni′j)

n.j

]

≡ 0.

Therefore, the hypotheses in H: 𝜑i = 0 for all i are not independent. Restating them
as a set of independent hypotheses, we have

H: 𝜑i = 0 for i = 1, 2,… , a − 1. (104)

Writing these hypotheses in the form L′𝜇 = 0 the ith row of L′ is, for i = 1,… , a − 1,
given by

𝓁′
i =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

{

−
nijnkj

n.j

}

for j = 1,… , b and k = 1,… , i − 1, and nkj ≠ 0

{

nij −
n2

ij

n.j

}

for j = 1,… , b and nij ≠ 0

{

−
nijnkj

n.j

}

for j = 1,… , b and k = i + 1,… , a, and nkj ≠ 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

′

. (105)
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We may then show that, for (93), the ith element of L′y is

∑

k≠j

∑

j

(

−
nijnkj

n.j

)

ykj +
∑

j

(

nij −
n2

ij

n.j

)

yij. = yi.. −
∑

j

nijy.j..

Thus,

L′y =

{

yi.. −
b∑

j=1

nijy.j.

}

for i = 1,… , a − 1.

In a like manner, we can show that the diagonal elements of L′DL are

ni. −
b∑

j=1

n2
ij

n.j
for i = 1, 2,… , a − 1

and that the off-diagonal elements of L′DL are

−
b∑

j=1

nijni′j

n.j
for i ≠ i′ = 1, 2,… , a − 1.

By analogy for testing

H: 𝜓j = 0 for j = 1,… , b − 1

we have,

L′y =

{

y.j. −
a∑

i=1

nijyi..

}

for j = 1, 2,… , b − 1.

The matrix L′DL has diagonal elements

n.j −
a∑

i=1

n2
ij

ni.
for j = 1, 2,… , b − 1

and off-diagonal elements

−
a∑

i=1

nijnij′

ni.
for j ≠ j′ = 1, 2,… , b − 1.
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However, in this case, we see from (64) and (65) that

L′y = r and L′DL = C.

Therefore, in (93), from (63)

Q = r′C−1r = R(𝛽|𝜇, 𝛼).

Hence, F(𝛽|𝜇, 𝛼) of Table 7.7b tests H : 𝜓 ′ = 0, that is,

H :

(

n.j −
a∑

i=1

n2
ij

ni.

)

𝛽j −
b∑

j≠j′

(
a∑

i=1

nijnij′

ni.

)

𝛽j′ +
a∑

i=1

(

nij −
n2

ij

ni.

)

𝛾ij −
b∑

j≠j′

a∑

i=1

(nijnij′

ni.

)

𝛾ij′ = 0

for j = 1, 2,… , b − 1, (106)

equivalent to the same hypothesis for i = 1, 2,… , a. Correspondingly, F(𝛼|𝜇, 𝛽) of
Table 7.7c tests H: 𝜑i = 0, that is,

H:

(

ni. −
b∑

j=1

n2
ij

n.j

)

𝛼i −
a∑

i′≠i

(
b∑

j=1

nijni′j

n.j

)

𝛼i′ +
b∑

j=1

(

nij −
n2

ij

n.j

)

𝛾ij −
a∑

i′≠i

b∑

j=1

(nijni′j

n.j

)

𝛾i′ j = 0

for i = 1, 2,… , a − 1. (107)

The hypothesis in (107) is equivalent to the same hypothesis for i = 1, 2,… , a.
Observe that in (106), the coefficients of the 𝛽’s are the elements cjj′ of C in (64) and
the coefficients of the 𝛾’s, if summed over i, are also the cjj′ ’s. Analogous properties
hold for the coefficients of the 𝛼’s and the 𝛾’s in (107).

Example 14 Calculating the Test Statistics for Testing Hypothesis for F(𝜶|𝝁,𝜷)
According to (92), the L′ matrix for the hypothesis in (107) is obtained for the
coefficients of the 𝛾’s whose terms are

b∑

j=1

(

nij −
n2

ij

n.j

)

𝛾ij −
a∑

i′≠i

b∑

j=1

(nijni′j

n.j

)

𝛾i′j for i = 1, 2,… , a − 1.

For the data of Tables 7.6 and 7.6a, the value of L′ for the hypothesis (107) is

L′ =
⎡
⎢
⎢
⎣

3 − 32

5
1 − 12

3
2 − 22

6
− 3(2)

5
0(2)

4
0(2)

4
− 1(2)

3
− 2(4)

6

− 2(3)
5

0 0 2 − 22

5
2 − 22

4
− 22

4
0 0

⎤
⎥
⎥
⎦

= 1
15

[
18 10 20 −18 0 0 −10 −20

−18 0 0 18 15 −15 0 0

]

.

(108)
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Thus,

L′D = 1
15

[
6 10 10 −9 0 0 −5 −5

−6 0 0 9 7.5 −7.5 0 0

]

(109)

As a result,

L′DL = 1
5

[
16 −6

−6 11

]

with (L′DL)−1 = 1
28

[
11 6

6 16

]

.

Furthermore,

L′y = 1
5

[−24

19

]

.

Therefore, in (93),

Q = 1
5

[
−24 19

] 1
28

[
11 6

6 16

]
1
5

[−24

9

]

= 9.49 = R(𝛼|𝜇, 𝛽) of Table 7.7c.

□

(v) Hypotheses for F(𝜸|𝝁,𝜶,𝜷). The hypothesis tested by F(𝛾|𝜇, 𝛼, 𝛽) takes the
following form, where s – a – b + 1 is the degrees of freedom of the numerator of the
F-statistic, R(𝛾|𝜇, 𝛼, 𝛽).

H:

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Any column vector consisting of s − a − b + 1

linearly independent function of the

𝜃ij,i′j′ = 𝛾ij − 𝛾i′j − 𝛾ij′ + 𝛾i′j′ where such

functions are either estimable 𝜃′s or estimable

sums or differences of 𝜃′s.

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= 0. (110)

As used here 𝜃ij,i′j′ is as defined in (82). The estimable sums and differences of 𝜃′s
are those defined in (88). Writing the hypotheses as

L′𝛾 = 0,

where L′ has order s – a – b + 1 by s and rank s – a – b + 1, it follows from the
nature of the 𝜃′s that L′1 = 0. Furthermore, the equations L′𝛾 = 0 have a solution
𝛾ij = 𝛾 for all i and j for which nij ≠ 0. Therefore, the reduced model corresponding
to the hypothesis is E(yijk) = (𝜇 + 𝛾) + 𝛼i + 𝛽j for which the reduction in the sum of
squares is R(𝜇, 𝛼, 𝛽). Therefore, in accord with Section 6d(ii) of Chapter 3,

Q = R(𝜇, 𝛼, 𝛽, 𝛾) − R(𝜇, 𝛼, 𝛽) = R(𝛾|𝜇, 𝛼, 𝛽).

As a result, F(𝛾|𝜇, 𝛼, 𝛽) tests the hypothesis in (110).
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Example 15 Test of a Specific Hypothesis About the 𝜸’s For the data of Table 7.6,
we can test the hypothesis

H:

{
𝜇13 − 𝜇33 − 𝜇14 + 𝜇34 = 0

𝜇11 − 𝜇21 − 𝜇12 + 𝜇22 + (𝜇12 − 𝜇32 − 𝜇13 + 𝜇33) = 0.
(111)

In keeping with (82), the first relationship in (111) is 𝜃13,34 = 0. As in (88), the second
relationship in (111) is 𝜃12,34 = 0. Rewriting (111) in terms of the elements of the
model, this hypothesis is

H:

{
𝛾13 − 𝛾33 − 𝛾14 + 𝛾34 = 0

𝛾11 − 𝛾21 + 𝛾22 − 𝛾13 − 𝛾32 + 𝛾33 = 0.
(112)

The second function of the 𝛾’s in (112) is (88). Writing the hypothesis in (112) as
L′𝛾 = 0 gives

L′ =
[

0 1 −1 0 0 0 −1 1

1 −1 0 −1 1 −1 1 0

]

. (113)

Then,

L′y =
[

0

9

]

and

L′D =

[
0 1 − 1

2
0 0 0 − 1

2
1
4

1
3

−1 0 − 1
2

1
2

− 1
2

1
2

0

]

. (114)

As a result,

L′DL = 1
12

[
27 −18

−18 40

]

and (L′DL)−1 = 1
63

[
40 18

18 27

]

.

Hence, in (93),

Q =
[

0 9
] 1

63

[
40 18

18 27

] [
0

9

]

= 34.71 = R(𝛾|𝜇, 𝛼, 𝛽)

of Tables 7.7b and 7.7c. Hence (111) is the hypothesis tested by F(𝛾|𝜇, 𝛼, 𝛽). □

Note that hypotheses of this nature involve not only functions of the form 𝜃ij,i′j′ =
𝜇ij − 𝜇i′j − 𝜇ij′ + 𝜇i′j′ = 𝛾ij − 𝛾i′j − 𝛾ij′ + 𝛾i′j′ , as is the first in (111). They also involve
sums and differences of such functions, as is the second in (111). As has already been
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explained in the description of 𝛿 in (88), we choose these sums and differences to
eliminate a 𝜇ij that is not estimable. Thus, the second function in (111) is not only

𝛾11 − 𝛾21 + 𝛾22 − 𝛾13 − 𝛾32 + 𝛾33 = 𝜇11 − 𝜇21 − 𝜇12 + 𝜇22

+(𝜇12 − 𝜇32 − 𝜇13 + 𝜇33). (115)

It is also,

𝛾11 − 𝛾21 + 𝛾22 − 𝛾13 − 𝛾32 + 𝛾33 = 𝜇22 − 𝜇32 − 𝜇23 + 𝜇33

−(𝜇21 − 𝜇11 − 𝜇23 + 𝜇13). (116)

Equation (116) eliminates the non-estimable 𝜇23. The exact form of these functions
corresponding to any particular R(𝛾|𝜇, 𝛼, 𝛽) also depends entirely on the available
data. The pattern of non-empty cells is the determining factor in establishing which
functions of the 𝛾’s make up the hypotheses tested by F(𝛾|𝜇, 𝛼, 𝛽) and which do not.
For example, for Table 7.6, one function that is not estimable is

𝜇11 − 𝜇31 − 𝜇13 + 𝜇33 − (𝜇21 − 𝜇31 − 𝜇24 + 𝜇34) = 𝜇11 − 𝜇13 + 𝜇33 − 𝜇21

+𝜇24 − 𝜇34.

This function is not estimable because although it eliminates the non-estimable 𝜇31,
it still retains the non-estimable 𝜇24.

(vi) Reduction to the No-Interaction Model. We would anticipate that the hypothe-
ses tested by F(𝛼|𝜇) and F(𝛽|𝜇, 𝛼) in the interaction model reduce to those tested by
the same statistics in the no-interaction model. We establish this result here.

In the interaction model, F(𝛼|𝜇) tests the hypothesis (100b):

H: 𝜶i +
1
ni.

∑

j

nij(𝜷 j + 𝜸ij) equal for all i.

Putting all 𝛾ij = 0 converts the interaction model into the no-interaction model and
transforms the above hypothesis into

H: 𝜶i +
1
ni.

∑

j

nij𝜷 j equal for all i.

This is identical to that tested by F(𝛼|𝜇) in the no-interaction model as discussed after
Example 6. Similarly, in the interaction model, the hypothesis tested by F(𝛽|𝜇, 𝛼) is
that given in (106). Putting all 𝛾ij = 0 in (106) reduces the hypothesis to

H:

(

n.j −
a∑

i=1

n2
ij

ni.

)

𝛽j −
b∑

j≠j′

(
a∑

i=1

nijnij′

ni.

)

𝛽j′ = 0 for all j. □
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This represents b – 1 linearly dependent equations in b parameters 𝛽1, 𝛽2,… , 𝛽b.
They only hold when all of the 𝛽j’s are equal. In this situation, the hypotheses in
(106) reduces to H: equality of all 𝛽j’s. This is the hypothesis tested by F(𝛽|𝜇, 𝛼) in
the no-interaction model as indicated in Section 1g.

(vii) Independence Properties. As indicated in Section 5g of Chapter 5, the sums of
squares for testing hypotheses k′

ib = 0 and k′
jb = 0 are, on the basis of underlying

normality assumptions, independent if k′
iGk′

j = 0. This property can be used to
show that the sums of squares in Tables 7.7a, b, and c are independent. To see this,
consider 𝓁′

i D𝓁∗
j where 𝓁′

i is a row of L′ for one sum of squares and 𝓁∗′
j is a row of L′

for some other sum of squares in the same section of Table 7.7. For example, from
(99), 𝓁′

i D of R(𝜇) is 1′ and from (102) an 𝓁∗′
j of R(𝛼|𝜇) is

𝓁∗′
j =

[
3
6

1
6

2
6

− 2
4

− 2
4

0 0 0
]

.

Hence, 𝓁′
i D𝓁∗

j = 1′𝓁∗
j = 0.

We will find that the same result is true for the other row of L′ in (102). We
thus conclude that R(𝜇) and R(𝛼|𝜇) are independently distributed. In this way, the
independence of the R( )’s is readily established for Tables 7.7a, b, and c. Expressions
for L′D are given in equations (99), (103), (109), and (114), and for L′ in (98), (102),
(108), and (113).

g. Models that Include Restrictions

Since, as in (76),

𝛼i − 𝛼i′ +
b∑

j=1

kij(𝛽j + 𝛾ij) −
b∑

j=1

ki′j(𝛽j + 𝛾i′j)

is estimable, for the k’s satisfying (77), it follows that if the model includes
restrictions

k∑

j=1

kij(𝛽j + 𝛾ij) = 0 for all i, for nij ≠ 0, (117)

it follows that 𝛼i − 𝛼i′ is estimable. A particular case of this might be when kij =
nij∕ni., as in (84). In this case, (117) becomes

k∑

j=1

nij(𝛽j + 𝛾ij) = 0 for all i, for nij ≠ 0. (118)
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Then the corresponding b.l.u.e. of 𝛼i − 𝛼i′ is then yi.. − yi′... However, there seems
to be little merit in having either (117) or (118) as part of a model because both of
them are data-dependent. The same thing applies to restrictions that reduce the F-
statistics of Table 7.7 to hypotheses that have meaningful interpretation, for example,
a hypothesis of equality of the 𝛼’s. As inherent parts of a model, these restrictions
suffer from the same deficiencies, as do all such restrictions, as discussed in Sections
1h and 2h of Chapter 6.

h. All Cells Filled

For data having empty cells such as those of Table 7.7, the nature of which functions
are estimable depends entirely on which nij’s are not zero. For example, with the
Table 7.6 data, 𝛼2 + 𝛾22 − (𝛼3 + 𝛾32) is estimable but 𝛼1 + 𝛾12 − (𝛼3 + 𝛾32) is not. In
contrast, when all cells contain at least one observation,

𝜂ii′ = 𝛼i − 𝛼i′ +

(
b∑

j=1

𝛾ij −
b∑

j=1

𝛾i′j

)

b
(119)

is estimable for all i ≠ i′. The function in (119) is a special case of that in (76), where
kij = ki′j = 1∕b. Its b.l.u.e. is

�̂�ii′ =

(
b∑

j=1

yij. −
b∑

j=1

yi′j.

)

b
. (120)

We can test hypotheses about (119). The statistic that tests

H: 𝛼i − 𝛼i′ +

(
b∑

j=1

𝛾ij −
b∑

j=1

𝛾i′j

)

b
= 0

is

F =

[
b∑

j=1

(yij. − yi′j.)

]2

b∑

j=1

(1∕nij + 1∕ni′j)�̂�
2
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with 1 and s – a – b + 1 degrees of freedom. Furthermore, we can also test the joint
hypothesis

H: 𝛼i +
b∑

j=1

𝛾ij

b
all equal, for i = 1,… , a. (121)

The F-statistic for doing so is

F =

a∑

i=1

(
b∑

j=1

yij.

)2

b∑

j=1

1∕nij

−

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a∑

i=1

b∑

j=1

yij.

b∑

j=1

1∕nij

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∕
a∑

i=1

1
b∑

j=1

1∕nij

(a − 1)�̂�2
. (122)

If the model includes the restrictions
∑b

j=1
yij. = 0 for all i = 1, 2, …, a, then (119)

reduces to 𝛼i − 𝛼i′ . It is estimable with b.l.u.e. given by (120). The hypothesis (121)
becomes H: equality of all 𝛼i’s. We then test this hypothesis using (122). We can
obtain results paralleling (119) through (122) for 𝛽’s in a similar fashion.

i. Balanced Data

There is great simplification of the preceding results when nij = n for all j,
just as in the no-interaction case and I. The calculations become those of the
familiar two-factor analysis with replication (e.g., see p. 110 of Scheffe (1959) and
pp. 255–256 of Gruber (2014)). As before, the solutions to the normal equations are
𝛾◦ij = yij.. These are the only non-zero elements of b◦. If the model includes restric-

tions
∑a

i=1
𝛼i = 0,

∑b

j=1
𝛽j = 0,

∑a

i=1
𝛾ij = 0 for all j and

∑b

j=1
𝛾ij = 0 for all i,

then both 𝛼i − 𝛼i′ and 𝛽j − 𝛽j′ are estimable. Their respective b.l.u.e.’s are

𝛼i − 𝛼i′ = yi.. − yi′.. and 𝛽j − 𝛽j′ = y.j. − y.j′..

Their respective variances are 2𝜎2∕bn and 2𝜎2∕an. The analysis of variance tables
of Table 7.7 and 7.8 also simplify, just as did Tables 7.2 and 7.3 in the no-
interaction case. Thus, R(𝛼|𝜇) and R(𝛼|𝜇, 𝛽). become identical. The same is true
of R(𝛽|𝜇) and R(𝛽|𝜇, 𝛼). We have that

R(𝛼|𝜇) = R(𝛼|𝜇, 𝛽) = bn
a∑

i=1

(yi.. − y...)
2 (123a)
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TABLE 7.9 Analysis of Variance for a Two-Way Classification with Interaction, with
Balanced Data (all nij = n) (Both Parts of Table 7.8 Simplify to this When nij = n)

Source of Variation d.f. Sum of Squares

Mean 1 R(𝜇) = abny2
...

𝛼 after 𝜇 a – 1 R(𝛼|𝜇) = R(𝛼|𝜇, 𝛽) = bn
a∑

i=1

(yi.. − y...)
2

𝛽 after 𝜇 b – 1 R(𝛽|𝛼,𝜇) = R(𝛽|𝜇) = an
b∑

j=1

(y.j. − y...)
2

𝛾 after 𝜇, 𝛼, and 𝛽 (a – 1)(b – 1) R(𝛾|𝜇, 𝛼, 𝛽) = n
a∑

i=1

b∑

j=1

(y
ij.
− yi.. − y.j. + y...)

2

Residual error ab(n – 1) SSE =
a∑

i=1

b∑

j=1

c∑

k=1

(yijk − yij.)
2

Total abn SST =
a∑

i=1

b∑

j−1

n∑

k=1

y2
ijk

and

R(𝛽|𝜇, 𝛼) = R(𝛽|𝜇) = an
b∑

j=1

(y.j. − y...)
2. (123b)

This is the same as in (50).When using the statistical software package SAS for
balanced data, the type I sum of squares corresponding to R(𝛼|𝜇) and R(𝛽|𝜇, 𝛼) and
the type III sum of squares corresponding to R(𝛼|𝜇, 𝛽) and R(𝛽|𝜇, 𝛼) are the same.

Table 7.9 shows the familiar analysis of variance. It is similar to Table 7.5. As was
the case there, here distinction between fitting “𝛼 after 𝜇” and “𝛼 after 𝛽 and 𝜇” is
no longer necessary. They are both “𝛼 after 𝜇” with reduction in the sum of squares
R(𝛼|𝜇) as shown in Table 7.9. As we would expect, for the case of balanced data,
the numerator of (122) also reduces to R(𝛼|𝜇) of (123a).When doing the analysis of
variance with a hand-held calculator to minimize round-off error, we recommend the
computing formulae listed below. They are,

R(𝛼|𝜇) = 1
bn

a∑

i=1

y2
i.. −

1
abn

y2
...

,

R(𝛽|𝜇) = 1
an

b∑

j=1

y2
.j. −

1
abn

y2
...

,

and

R(𝛾|𝜇, 𝛼, 𝛽) = 1
n

a∑

i=1

b∑

j=1

y2
ij. −

y2
...

abn
− R(𝛼|𝜇) − R(𝛽|𝜇)
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Furthermore,

SSTm =
a∑

i=1

b∑

j=1

n∑

k=1

y2
ijk −

y2
...

abn

and

SSE = SSTm − R(𝛼|𝜇) − R(𝛽|𝜇) − R(𝛾|𝜇, 𝛼, 𝛽).

These formulae may be shown to be algebraically equivalent to those in Table 7.9.

Example 16 Sums of Squares Computation for Balanced Data These data are
from Chapter 14, Problem 14-2 of Montgomery Runger (2007), reproduced with the
permission of John Wiley & Sons. The discussion and solution is a slight modification
of that in Gruber (2014), also used with the permission of John Wiley & Sons.

An engineer suspects that the type of paint used and the drying times influences the
surface finish of metal paint. He selected three drying times: 20, 25, and 30 minutes,
and used two types of paint. Three parts were tested with each combination of paint
and drying time. The data are as follows:

Drying Time Minutes

Paint 20 25 30
1 74 73 78

64 61 85
50 44 92

2 92 98 66
86 73 45
68 88 85

Source: Montgomery, D.C. and G.C.

Factor A is the paint so a = 2. Factor B is the drying time so b = 3. There are
three replications so that c = 3. Assign i = 1 to paint 1 and i = 2 to paint 2. Assign
j = 1 to 20 minutes, j = 2 to 25 minutes, and j = 3 to 30 minutes. Then, x1.. = 621
and x2.. = 701. Also x.. = 1322. Then,

R(𝛼|𝜇) = SSA = 6212

9
+ 7012

9
− 13222

18
= 355.556.

To compute SSB= R(𝛽|𝜇) = R(𝛽|𝜇, 𝛼), observe that x.1. = 434, x.2. = 437, and x.3. =
451. Then,

R(𝛽|𝜇) = SSB = 4342

6
+ 4372

6
+ 4512

6
− 13222

18
= 27.4444.
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For interaction, we need to calculate the cell sums. We have x11. = 188, x12. = 178,
x13. = 255, x21. = 246, x22. = 259, and x23. = 196. Now,

SSM = 1882

3
+ 1782

3
+ 2552

3
+ 2462

3
+ 2592

3
+ 1962

3
− 13222

18
= 2261.78

and

R(𝛾|𝜇, 𝛼, 𝛽) = SSI = SSM − SSA − SSB = 2261.78 − 355.556 − 27.4444

= 1878.78

The total sum of squares corrected for the mean is

TSS = 101598 − 13222

18
= 4504.44

and the error sum of squares is

SSE = SST − SSA − SSB − SSI = 4504.44 − 355.556 − 27.444 − 1878.78

= 2242.66.

Summarizing this in the ANOVA table

Source df Sum of Squares Mean Square F

Paint 1 355.556 355.556 1.90251
Drying Time 2 27.4444 13.7222 0.07342
Interaction 2 1878.78 939.39 5.02649∗

Error 12 2242.66 186.888
Total 17 4504.44

It appears that the finish is not affected by either the paint or the drying time. However,
there is a significant interaction between the choice of paint and the drying time.An
R program and output is below.

> finish<-c(74,73,78,64,61,85,50,44,92,92,98,66,86,73,45,68,88,85)
> paint<-c("a","a","a","a","a","a","a","a","a","b","b","b","b","b",
"b","b","b","b")
> time<-c("d","e","f","d","e","f","d","e","f","d","e","f","d","e",
"f","d","e","f")
> result<-lm(finish~paint*time)
> anova(result)
Analysis of Variance Table
Response: finish
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Df Sum Sq Mean Sq F value Pr(>F)
paint 1 355.56 355.56 1.9025 0.19296
time 2 27.44 13.72 0.0734 0.92962
paint:time 2 1878.78 939.39 5.0265 0.02596 *
Residuals 12 2242.67 186.89
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The SAS output is

The SAS System
The GLM Procedure

Class Level Information
Class Levels Values
PAINT 2 1 2
TIME 3 20 25 30

Number of Observations READ 18
Number of Observations Used 18

The SAS System
The GLM Procedure

Dependent Variable: finish

Source DF Sum of Squares MEAN Square F Value Pr > F
Model 5 2261.777778 452.355556 2.42 0.0973
Error 12 2242.666667 186.888889
Corrected Total 17 4504.444444

R-Square Coeff Var Root MSE finish Mean
0.502121 18.61370 13.67073 73.44444

Source DF Type I SS Mean Square F Value Pr > F
paint 1 355.555556 355.555556 1.90 0.1930
time 2 27.444444 13.722222 0.07 0.9296
paint∗time 2 1878.777778 939.388889 5.03 0.0260

Source DF Type III SS Mean Square F Value Pr > F
paint 1 355.555556 355.555556 1.90 0.1930
time 2 27.444444 13.722222 0.07 0.9296
paint∗time 2 1878.777778 939.388889 5.03 0.0260

The code used to generate the above output was

Data metal;
Input paint time finish;
Cards;
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1 20 74
1 25 73
………………
2 25 88
2 30 85
proc glm;
class paint time;
model finish=paint time paint*time;
run;

3. INTERPRETATION OF HYPOTHESES

None of the hypotheses (97), (100), (106), (107), or (110) are particularly appealing
so far as interpretability is concerned. They all involve the data themselves—not their
magnitudes but the numbers of them, the values of the nij. For example, (100) is

H : 𝜶i +
1
ni.

∑

j

nij(𝜷 j + 𝜸ij) equal for all i. (124)

The corresponding hypothesis for the no-interaction case is

H: 𝜶i +
1
ni.

∑

j

nij𝜷 j equal for all i (125)

analogous to (48). These hypotheses involve the nij’s in two ways:

1. in terms of the weight in which, for example, the 𝛽j’s enter the hypothesis;

2. whether some of the 𝛽j’s enter the hypothesis at all.

Thus, for example, in (124), if nip = 0, 𝛽p will not occur in the expression containing
𝛼i. As a result, the pattern of the data, specifically the pattern of which nij are zero and
which are not, governs the form of the hypotheses tested by the F-statistics in Tables
7.2 and 7.7. In Table 7.2, F(𝛼|𝜇, 𝛽) and F(𝛽|𝜇, 𝛼) test, respectively, the differences
between 𝛼’s and the differences between 𝛽’s. Otherwise, all hypotheses tested by the
F’s in Tables 7.2 and 7.7 involve data through the values of the nij. For F(M) in both
tables, the hypothesis is H: E(y) = 0. This is

H:
a∑

i=1

b∑

j=1

nij(𝜇 + 𝛼i + 𝛽j + 𝛾ij)

N
= 0.

This hypothesis involves weighted means of the elements of the model as they occur
in y. For F(𝛼|𝜇), the hypothesis involves the 𝛼’s in the presence of a weighted mean
of those 𝛽’s and 𝛾’s with which the 𝛼’s occur in the data. Likewise, in F(𝛽|𝜇), the
hypothesis involves the 𝛽’s in the presence of the weighted means of the 𝛼’s and
𝛾’s. For F(𝛼|𝜇, 𝛽) and F(𝛽|𝜇, 𝛼) of Table 7.7, the hypotheses involve the nij’s in the
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somewhat complex manner shown in (106) and (107). In Table 7.7, the only case
where the nij’s are not explicitly involved is the hypothesis (110) for F(𝛾|𝜇, 𝛼, 𝛽).
However, here the effect of the nij’s is implicit, because whether or not they are zero
or non-zero, determines which functions of the 𝛾’s make up the hypothesis.

This dependence of hypotheses on the structure of available data throws doubt on
the validity of such hypotheses. Usually an experimenter wishes to test hypotheses
that arise from the context of his/her work and not hypotheses that depend on the
pattern of nij’s in his/her data. However, in general, the F-statistics of the analyses
in Table 7.2, 7.3 and 7.7 do rely on the nij-values of the data. The only way that
some of the hypotheses corresponding to the analysis of variance F-statistics might
be valid would be if the nij’s, as they occur in the data, are in direct proportion to
the occurrence of the elements if the model in the population. This is the case of
proportionate subclass numbers. For this case, for example, (125) becomes

H: 𝛼i +
b∑

j=1

pj𝛽j equal for all i.

This is equivalent to

H: 𝛼i equal for all i.

A feature of the hypothesis (110) tested by F(𝛾|𝜇, 𝛼, 𝛽) warrants attention. It involves
what hypotheses are actually being tested when testing for interaction. Consider the
following measure of the extent to which the difference between the expected value
of the ith and the i′th treatments, in terms of Table 7.6, when used on variety j′. The
measure is given by

𝜃ij,i′j′ = 𝛾ij − 𝛾i′j − 𝛾ij′ + 𝛾i′j′

= 𝜇ij − 𝜇i′j − 𝜇ij′ + 𝜇i′j′

= E(yij.) − E(yi′j.) − E(yij′.) + E(yi′j′.)

= [E(yij.) − E(yi′j.)] − [E(yij′.) + E(yi′j′.)].

This is just the measure of interaction discussed in Section 3d(ii) of Chapter 4. Hence,
we can say that F(𝛾|𝜇, 𝛼, 𝛽) test interactions. What does this really mean? It does not
necessarily mean that we are testing the hypotheses that the interactions are zero.
It would, if the hypotheses were 𝜃ij,i′j′ = 0 for sets of various values of i, j, i′, and j′.
However, this is not always so. For example, in (111), part of the hypothesis is
𝜃11,22 + 𝜃12,33 = 0 or equivalently, from (116), 𝜃22,33 − 𝜃21,13 = 0. As hypotheses,
these two statements are not equivalent to hypotheses of 𝜃′s being zero. This is
an important fact! It means, for example, that in testing 𝜃22,33 − 𝜃21,13 = 0, each
of 𝜃22,33 and 𝜃21,13 could be non-zero with the hypotheses still being true. In fact,
𝜃22,33 and 𝜃21,13 could both be very large but nevertheless equal, and as a result the
hypothesis H: 𝜃22,33 − 𝜃21,13 = 0 would still be true. The upshot of this discussion is
that for unbalanced data, F(𝛾|𝜇, 𝛼, 𝛽) is not testing that interactions are zero. Some
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TABLE 7.10 Presence or Absence of Data for Discussing
Connectedness (× Indicates One or More Observations; − Indicates no
Observations)

Level of 𝛽-Factor

Level of 𝛼-Factor 1 2 3 4

1 × × − −
2 × × − −
3 − − × ×

interactions can be non-zero, although equal in magnitude, of the same or opposite
sign, with the hypothesis tested by F(𝛾|𝜇, 𝛼, 𝛽) still being true.

4. CONNECTEDNESS

Suppose available data occur as indicated in Table 7.10. If each cell that contains data
has only a single observation, the normal equations are as follows.

𝜇◦ 𝛼◦1 𝛼◦2 𝛼◦3 𝛽◦1 𝛽◦2 𝛽◦3 𝛽◦4

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

6 2 2 2 2 2 1 1

2 2 0 0 1 1 0 0

2 0 2 0 1 1 0 0

2 0 0 2 0 0 1 1

2 1 1 0 2 0 0 0

2 1 1 0 0 2 0 0

1 0 0 1 0 0 1 0

1 0 0 1 0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜇◦

𝛼◦1
𝛼◦2
𝛼◦3
𝛽◦1
𝛽◦2
𝛽◦3
𝛽◦4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y..
y1.

y2.

y3.

y.1
y.2
y.3
y.4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(126a)

Subtracting the fourth equation from the first, changes (126a) to

𝜇◦ 𝛼◦1 𝛼◦2 𝛼◦3 𝛽◦1 𝛽◦2 𝛽◦3 𝛽◦4

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

4 2 2 0 2 2 0 0

2 2 0 0 1 1 0 0

2 0 2 0 1 1 0 0

2 0 0 2 0 0 1 1

2 1 1 0 2 0 0 0

2 1 1 0 0 2 0 0

1 0 0 1 0 0 1 0

1 0 0 1 0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜇◦

𝛼◦1
𝛼◦2
𝛼◦3
𝛽◦1
𝛽◦2
𝛽◦3
𝛽◦4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y1. + y2.

y1.

y2.

y3.

y.1
y.2
y.3
y.4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
(126b)
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Equations (126b) can be rewritten as two separate sets of equations. They are

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

4 2 2 2 2

2 2 0 1 1

2 0 2 1 1

2 1 1 2 0

2 1 1 0 2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜇◦

𝛼◦1
𝛼◦2
𝛽◦1
𝛽◦2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y1. + y2.

y1.

y2.

y.1
y.2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(127)

and

⎡
⎢
⎢
⎢
⎣

2 2 1 1

1 1 1 0

1 1 0 1

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

𝜇◦

𝛼◦3
𝛽◦3
𝛽◦4

⎤
⎥
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

y3.

y.3
y4

⎤
⎥
⎥
⎥
⎦

. (128)

Thus, even though the normal equations for the data pattern of Table 7.10 are
(126a), we can separate them into two sets of equations (127) and (128). Apart from
𝜇, equations (127) and (128) involve quite separate sets of parameters. The parameters
in (127) are 𝛼1, 𝛼2, 𝛽1, and𝛽2. The parameters for (128) are 𝛼3, 𝛽3, and𝛽4. Furthermore,
the data involved in the two sets of equations are also separate. In (127), we have
y11, y12, y21, and y22. In (128), we have y33 and y34. This separation of the normal
equations is the result of the way that certain cells of the two-way classification have
data and others do not. When this separation occurs, we say that the data are not
connected, or disconnected. When it does not occur, the data are connected. When
data are disconnected, the separate sets of data corresponding to the separate sets of
normal equations, such as (127) and (128) will be called disconnected sets of data.
Thus, data in the pattern of Table 7.10 are disconnected. There are two disconnected
sets of data. One consists of y11, y12, y21, and y22. The other consists of y33 and y34.

The underlying characteristic of disconnected data is that each of its disconnected
sets of data can be analyzed separately from the other such sets. Each data set has
its own normal equations that can be solved without reference to those of the other
data sets. Indeed, this is the case for equations (127) and (128). Certainly, each set of
normal equations contains 𝜇◦. However, since each group of normal equations is of
less than full rank, they can all be solved with a common 𝜇◦, if desired. One possible
choice for 𝜇◦ is 0.

Disconnectedness of data means not only that each of its disconnected sets of data
can be analyzed separately. It also means that all the data cannot be analyzed as a
single group of data. For example, as mentioned in Section 1d, in the “absorption
process” for obtaining R(𝜇, 𝛼, 𝛽), the matrix C−1 does not exist for disconnected
data. Another reason that we cannot analyze disconnected sets of data as a single
data set is due the degrees of freedom that would result if we tried it. For example,
data in the pattern of Table 7.10 would give degrees of freedom for R(𝛾|𝛼,𝜇, 𝛽)
as s − a − b + 1 = 6 − 3 − 4 + 1 = 0. For some patterns of data, this value can be
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TABLE 7.11 Pooling of Analyses of Variance of Disconnected Sets of Data in a
Two-Way Classification

tth Disconnected Set of Data Pooling of d Disconnected Sets of Data

Source of
Variation d.f.

Sum of
Squares

Source of
Variation d.f. Sum of Squares

𝜇 1 Rt(𝜇) 𝜇: for each
set

d
d∑

t=1

Rt(𝜇)

𝛼|𝜇 at − 1 Rt(𝛼|𝜇) 𝛼|𝜇, within
sets

a∑

t=1

at − d = a − d
d∑

t=1

Rt(𝛼|𝜇)

𝛽|𝜇, 𝛼 bt − 1 Rt(𝛽|𝜇, 𝛼) 𝛽|𝜇, 𝛼,
within sets

d∑

t=1

bt − d = b − d
d∑

t=1

Rt(𝛽|𝜇, 𝛼)

𝛾 ,𝜇, 𝛼, 𝛽 pt = st −
at − bt + 1

Rt(𝛾|𝜇, 𝛼, 𝛽) 𝛾|𝜇, 𝛼, 𝛽,
within sets

d∑

t=1

pt = p + d − 1
d∑

t=1

Rt(𝛾|𝜇, 𝛼, 𝛽)

Residual Nt − st SSEt Residual,
within sets

d∑

t=1

(Nt − st) = N − s
d∑

t=1

SSEt

Total Nt

(∑
y2
)

t
Total

d∑

t=1

Nt

d∑

t=1

(∑
y2
)

t

negative. For instance, if there were no data in the (1, 1)-cell of Table 7.10 s − a −
b + 1 = 5 − 3 − 4 + 1 = −1. This would be meaningless!

Disconnected data have to be analyzed on a within-set basis. This holds true
whether there is one observation or more than one observation per filled cell. We
can make the appropriate analysis (Table 7.3 or 7.8) within each disconnected set
of data. Then, from these analyses, we can establish a pooled analysis. However,
such pooling may be of little practical value because of the complexity of some of the
hypotheses that are tested by the F-statistics implicit in Tables 7.3 or 7.8. Nevertheless,
it is instructive to demonstrate the degrees of freedom for these analysis, as distinct
from those that would be given by analyzing the complete data by taking their
disconnectedness into account. We show the pooling in Table 7.11. We assume that
there are d sets of disconnected data and that the ith set has Ni observations, at rows,
bt columns, and st filled cells. The corresponding sums of squares are also subscripted
by t. The nature of the disconnectedness ensures that

N =
d∑

t=1

Nt, a =
d∑

t=1

at, b =
d∑

t=1

bt and s =
d∑

t=1

st.

In Table 7.11, we also write

p = s − a − b + 1 and pt = st − at − bt + 1,
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with

p =
d∑

t=1

pt − d + 1. (129)

Table 7.11 is based on Table 7.8, for fitting 𝛼|𝜇 and 𝛽|𝜇,𝛼. We can also construct a
similar table for fitting 𝛽|𝜇 and 𝛼|𝜇,𝛽.

In Table 7.11, the residual sum of squares for the pooled analysis provides an
estimator of 𝜎2 as

�̂�2 =

d∑

t=1

SSEt

d∑

t=1

(Nt − st)

.

We can use this estimator in tests of hypothesis. Furthermore, we may partition the
first line of the pooled analysis, that for means, into two terms. Let

m = mean of all data =

d∑

t=1

√
NtRt(𝜇)

d∑

t=1

Nt

.

Then the partitioning of
∑d

t=1
Rt(𝜇) with d degrees of freedom is

m2
d∑

t=1

Nt with 1 degree of freedom

and

d∑

t=1

Rt(𝜇) − m2
d∑

t=1

Nt with d − 1 degrees of freedom.

We can use the second of these two expressions divided by (d − 1)�̂�2 to test the
hypothesis of equality of the E(y)’s corresponding to the disconnected sets of data.

Table 7.12 gives an example of Table 7.11 showing degrees of freedom only for
the data pattern of Table 7.10.

Disconnectedness has a great effect on estimability of functions. For example,
in the case of the no-interaction model of equations (127) and (128) derived from
Table 7.10, 𝛽1 − 𝛽3 is not estimable. The reason for this is that 𝛽1 is a parameter in one
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TABLE 7.12 Degrees of Freedom in Analysis of Variance for Data Pattern of
Table 7.10

Degrees of freedom

Analyzed as disconnected data

2 disconnected sets

Source of
Variation

Set I
Cells 11, 12,
21, and 22

Set II
Cells 33
and 34

Pooled
Analysis

Analyzed Wrongly, As
one Set of Data Ignoring
Disconnectedness

𝜇 1 1 2 1
𝛼|𝜇 1 0 1 2
𝛽|𝜇, 𝛼 1 1 2 3
𝛾|𝜇, 𝛼, 𝛽 1 0 1 0
Residual N1 − 4 N2 − 2 N − 6 N − 6
Total N1 N2 N N

disconnected set of data and 𝛽3 in the other. In general, functions of parameters that
involve parameters relating to different disconnected sets of data are not estimable. On
the other hand, functions involving parameters relating to any single set of connected
data, including such sets that are subsets of disconnected data, can be estimable. For
the example in Table 7.10, where the data are from a no-interaction model, 𝛽2 − 𝛽3 is
not estimable, but 𝛽1 − 𝛽2 and 𝛽3 − 𝛽4 are. For the interaction model, 𝜇ij is estimable
for all nij ≠ 0. However, functions of 𝜇ij that involve 𝜇ij from different disconnected
sets of data are not estimable.

For connected data, the rank of X, or equivalently of X′X, in the normal equations
is a + b − 1 in the no-interaction case. Thus, if the data corresponding to Table 7.10
were connected, the rank of X′X in (126) would be 3 + 4 – 1 = 6. However, since
the data are not connected, the rank is a + b − 1 − (d − 1) = 5 where d is the number
of disconnected sets of data. equations (127) and (128) illustrate this. Their ranks are
2 + 2 – 1 = 3 and 1 + 2 – 1 = 2, respectively, summing to 5 the rank of (126). This

accounts for the relationship p =
∑d

i=1
pt − (d − 1) shown in (129) and Table 7.11.

In order for us to be able to analyze a complete data set by the methods of Table 7.3
or 7.8 the data set must be connected. Weeks and Williams (1964) discuss connect-
edness of data for the general k-way classification without interaction. They give a
procedure for determining whether or not data are connected. We shall discuss this
in Chapter 8. For data in a two-way classification, it simplifies to the following.
Take any cell containing data—the (p, q)th cell, say. From that cell, move along
the pth row (in either direction), or up or down the qth column until another filled
cell is encountered. If by moving in this direction, all filled cells can be encoun-
tered, then the data are connected. Otherwise, they are disconnected. If data are
disconnected, the process will isolate the disconnected set of data containing the
original (p, q)th cell. Restarting the process in some cell not in that set will gen-
erate another disconnected set. Continued repetition in this manner yields all the
disconnected sets.
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Example 17 Isolating Disconnected Sets of Data In the following array of dots
and ×’s, a dot represents an empty cell and an × represents a filled cell. The lines
joining the ×’s isolate the disconnected sets of data.

□

More information about connectedness of experimental designs is available in
Shah and Khatri (1973), Shah and Dodge (1977), Park and Shah (1995), Raghavarao
and Federer (1975), Eccleston and Russell (1975), and Godolphin (2013), and the
references given in these articles.

Nowadays, people are analyzing big data sets. For such data sets, it would be
important to locate all of the disconnected sets of data, analyze them and pool them
as we have discussed or by some other method. The ins and outs of how to do this
could be an important area of research.

5. THE 𝝁ij MODELS

In discussing estimable functions in both the no-interaction and interaction mod-
els of Sections 1 and 2, great use was made of the fact that both 𝜇 + 𝛼i + 𝛽j and
𝜇 + 𝛼i + 𝛽j + 𝛾ij were estimable. In both cases, all of the estimable functions were
linear combinations of these. In neither case were 𝜇, the 𝛼i, nor the 𝛽j individually
estimable, nor the 𝛾 ij in the interaction case. For special cases of restricted mod-
els, usually with balanced data, these individual elements can become estimable (as
discussed in Sections 1h and 2g) but in general, they are not. However, if we write
𝜇ij = 𝜇 + 𝛼i + 𝛽j in the no-interaction model, we can say that in each model, the basic
underlying estimable function is 𝜇ij (appropriately defined for nij ≠ 0). This fact leads
to considering what may be called 𝜇ij models for nij ≠ 0.

A nij ≠ 0 model consists of simply writing in the interaction case

yijk = 𝜇ij + eijk,

where the eijk have the same properties as before. Then, for nij ≠ 0, 𝜇ij is estimable.
Its b.l.u.e. is yij.. Its variance is v(𝜇ij) = 𝜎2∕nij. Any linear function of the estimable
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𝜇ij’s is estimable. For example, k′𝝁 is estimable with b.l.u.e. k′y and variance
k′D{1∕nij}k𝝈2. Furthermore, any hypothesis relating to linear functions of the 𝜇’s
is testable. Moreover, the reduction in the sum of squares for fitting the model is

R(𝜇) =
∑a

i=1

∑b

j=1
nijyij. =

∑a

i=1

∑b

j=1
yij.∕nij.

This is the same reduction in the as that in fitting any of the models containing 𝛾 ij. See
equations (71) and (72). Gruber (2014) uses a similar approach to the above when
deriving the interaction model for the balanced case.

The simplicity of such a model is readily apparent. There is no confusion over
which functions are estimable, what their b.l.u.e.’s are and what hypotheses can be
tested. This results from the fact that the 𝜇ij-model is always of full rank with the
corresponding values of X′X being D{nij} for nij ≠ 0. Therefore, the normal equations
are quite straightforward. They have simple solutions �̂� = y, where 𝝁 is the vector of
𝜇’s and y the corresponding vector of observed cell means.

The 𝜇ij-models have the property that the number of parameters in the model
equals the number of filled cells. This gives rise to the full-rank nature of the normal
equations. This is because that a model specified this way is not over-specified as it is
when using the customary 𝜇, 𝛼i’s, and 𝛽j’s. For example, in the no-interaction model
there are, with a rows and b columns 1 + a + b parameters, but only a + b – 1 linearly
independent means with which to try to estimate them. For the interaction model,
there are with s filled cells, 1 + a + b + s parameters but only s linearly independent
means. In both cases, therefore, there are more parameters in the model than there
are linearly independent means in the estimation process. Hence, it is impossible to
estimate every parameter individually. Therefore, the 𝜇ij model is conceptually much
easier because there are exactly as many 𝜇ij’s to be estimated as there are observed
cell means, with a one-dimensional correspondence.

This is appropriate from the sampling viewpoint, because to the person whose data
are being analyzed, the important thing is the s populations corresponding to the s
observed sample means yij.. Each of these is an estimator of the mean of the population
from which the yijk’s are deemed to be a random sample. These populations are the
factor of underlying interest. Therefore, the yij., the sample means as estimators
(b.l.u.e.’s) of the population means, are the foundation of the estimation procedure.
So far as estimating functions of these population means and testing hypotheses about
them, it is up to the person whose data they are, presumably in consultation with a
statistician, to specify in terms of the 𝜇ij’s, the functions and hypotheses that are
of interest to him. This, of course, is done within the context of the data and what
they represent. In short, the situation is no more than estimating population means
and functions of them and testing hypotheses about them. Just what functions and
hypotheses we study, are determined by the contextual situation of the data. Speed
(1969), and Hocking and Speed (1975) give a very complete discussion of the whole
topic. Urquhart et al. (1970, 1973), in considering certain aspects of it, trace the
historical development of linear models as we use them today.



EXERCISES 429

As an example, the experimenter, or person whose data are being analyzed can
define row effects as

𝜌i =
b∑

j=1

tij𝜇ij for nij ≠ 0

by giving to tij any value he/she pleases. Then, the b.l.u.e. of 𝜌i is �̂�i =
b∑

j=1

tijyij.with

v(�̂�i) = �̂�2
b∑

j=1

t2ij
nij
.

The hypothesis H: all 𝜌i equal can be tested using

F =

a∑

i=1

�̂�2
i ∕v(�̂�i) −

[
a∑

i=1

�̂�2
i ∕v(�̂�i)

]2/
a∑

i=1

[1∕v(�̂�i)]

(a − 1)
(130)

as given by Henderson (1968). Proof of this result is established in the same manner
as equation (122).

Novel as this simplistic approach might seem, it is of essence not new. In fact,
it long preceded the development of the analysis of variance itself. Urquhart et al.
(1970) have outlined how Fisher’s early development of analysis of variance stemmed
from ideas on intra-class correlation. Establishment of models with elements 𝜇, 𝛼i, 𝛽j,
and so on, such as developed in this text followed the analysis of variance and did
not precede it. Prior to it, there is a plentiful literature on least squares (354 titles in a
bibliography dated 1877 in Urquhart et al., 1970) based essentially on the estimation
of cell means. Any current or future adoption of this handling of linear models would
therefore represent no new basic concept. Success in doing this does demand of
today’s readers, a thorough understanding of current procedures.

6. EXERCISES

1 Four men and four women play a series of bridge games. At one point in their
playing, their scores are as shown below.

Bridge Scores (100’s)

Men

Women A B C D

P 8 – 9 10
Q 13 – – –
R – 6 14 –
S 12 14 10 24
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The blanks are the scores lost by the scorekeepers. Carry out an analysis of
variance procedure to investigate differences by players of the same sex. In so
doing, calculate the sums of squares fitting men before women and women before
men, and make both analysis of variance tables.

2 Make a rank transformation for the data of Exercise 1 and do the analysis of
variance.

3 For the data of Table 7.1:

(a) Set 𝜇◦ = 0, 𝛼◦1 = 0 and then find b◦.

(b) Find R(𝛼|𝜇, 𝛽) and R(𝜇, 𝛼, 𝛽). Compare your answers to the results obtained
for the data in the text.

4 In Table 7.1, change the observation for stove W and pan A from 6 to 12 and
repeat the analysis of Table 7.2. What conclusions do you draw?

5 In Table 7.1, change the observation for stove W and pan A from 6 to 15 and
repeat the analysis of Table 7.2. What conclusions do you draw?

6 Repeat Exercise 3 for the data of Exercises 4 and 5.

7 Suppose that the lost observations of Table 7.1 are found to be 13 and 5 for pans
A and B, respectively on stove Y and 12 for pan B on stove Z.

(a) Solve the normal equations for the complete set of (now balanced data) by
the same procedure as used in equations (3)–(11).

(b) Do the analysis of Table 7.2. What conclusions do you draw?

8 The data for this exercise are taken from Montgomery (2005) with permission
from John Wiley & Sons. A golfer recently purchased new clubs in the hope of
improving his game. He plays three rounds of golf at three different golf courses
with the old and the new clubs. The scores are given below.

Course

Club Ahwatukee Karsten Foothills

Old 90 91 88
87 93 86
86 90 90

New 88 90 86
87 91 85
85 88 88

Perform analysis of variance to determine if

(a) The score is different for the old and the new clubs.

(b) There is a significant difference amongst the scores on the three different golf
courses.

(c) There is significant interaction between the golf courses and the age of the
clubs.
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9 For the data of Table 7.6, establish which of the following functions are estimable
and find their b.l.u.e.’s.

(a) 𝛼2 − 𝛼3 + 𝛽1 + 𝛾21 −
1
2
(𝛽3 + 𝛽4 + 𝛾33 + 𝛾34)

(b) 𝛽2 − 𝛽1 +
1
2
(𝛼2 − 𝛼1) + 1

2
(𝛾22 + 𝛾32 − 𝛾13 − 𝛾33)

(c) 𝛼1 − 𝛼2 +
1
3
(𝛽1 − 𝛽2) + 1

3
(𝛾11 − 𝛾12)

(d) 𝛽2 − 𝛽3 +
1
2
(𝛾22 + 𝛾32) − 1

3
(𝛾13 + 2𝛾33)

(e) 𝛾11 − 𝛾12 − 𝛾21 + 𝛾22

(f) 𝛾11 − 𝛾14 − 𝛾21 + 𝛾22 − 𝛾32 + 𝛾34

10 Set up a linear hypothesis that F(𝛽|𝜇) tests in Table 7.7c. Show that its numerator
sum of squares is 37.8.

11 Set up a linear hypothesis that F(𝛽|𝜇, 𝛼) tests in Table 7.7b. Show that its numer-
ator sum of squares is 36.7857.

12 The following is an illustration of unbalanced data used by Elston and Bush
(1964).

Level of 𝛽-factor

Level of 𝛼 factor 1 2 3 Total

Observations
1 2,4 3,5 2,3 19
2 5,7 – 3,1 16
Total 18 8 9 35

(a) Calculate Table 7.8 for these data.

(b) An analysis of variance given for these data shows the following sums of
squares.

A 3.125

B 12.208

Interaction 6.125

Error 8.500

(c) Show that the sum of squares designated A is R(𝛼|𝜇, 𝛽) and that denoted by
B is R(𝛽|𝜇, 𝛼).

(d) Write down hypotheses tested by the F-statistics available from your calcu-
lations and verify their numerator sum of squares.

13 (a) Calculate analyses of variance for the following data. Which of the effects
are statistically significant?
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𝛽-factor

𝛼-factor Level 1 Level 2 Level 3

Observations
Level 1 13,9,8,14 9,7 –
Level 2 1,5,6 13,11 6,12,7,11

(b) Establish the hypothesis tested by F(𝛾|𝛼, 𝛽,𝜇).

14 Suppose a two-way classification has only two rows and two columns.

(a) Prove that

(i) R(𝜶|𝝁) =
n1.n2.(y1.. − y2..)

2

n..
,

(ii) R(𝜷|𝝁,𝜶) =
(y.1. − n11y1.. − n21y2..)

2

(n11n12∕n1. + n21n22∕n2.)
and

(iii) R(𝜸|𝝁,𝜶,𝜷) =
(y11. − y12. − y21. + y22.)

2

(1∕n11 + 1∕n12 + 1∕n21 + 1∕n22)
(b) Write down the analogous expressions for R(𝜷|𝝁) and R(𝜶|𝝁,𝜷)

(c) Using the expressions in (a) and (b), calculate the analysis of variance tables
for the data below. Which factors, if any, are statistically significant?

𝜷-factor

𝜶-factor Level 1 Level 2

Level 1 9,10,14 2,4,2,3,4
Level 2 63 10,12,15,14,15,18

(d) Suppose there was a typo and at 𝜶 Level 2 and 𝜷 Level 1, we should have
6, 3 in place of 63. Do the analysis of variance over again and compare your
results to those in (c). Would there be any difference in your conclusions?

15 For the data of Table 7.6, find u and T and verify the value of R(𝛼|𝜇, 𝛽) in
Table 7.7.

16 For the data of Example 7, find 95% simultaneous confidence intervals on the
mean number of traffic fatalities for adjacent speed limits using both Bonferonni
and Scheffe’s method.

17 Show that the data in Table 7.1, 7.6, Exercises 1, 13, and 14 are connected.

18 Suppose that data occur in the following cells of a two-way classification.
(1,1), (2,3), (2,6), (3,4), (3,7), (4,1), (4,5), (5,2), (5,4), (5,7), (6,5), and (7,6).

(a) Establish which sets of data are connected.
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(b) Make a table similar to Table 7.12 that includes the degrees of freedom for
an analysis of variance for each set of data, a pooled analysis and the degrees
of freedom you would get for incorrectly analyzing the data by ignoring the
disconnectedness.

(c) Give examples of estimable functions and non-estimable functions for a no-
interaction model.

19 Define

n′
a =

[
n1. ⋯ na.

]
, m′

a =
[

n1b ⋯ nab

]
,

n𝛽 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

n.1
⋅

⋅

⋅

n.b−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, y𝛽 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y.1
⋅

⋅

⋅

y.b−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and D𝛽 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

n.1
⋅

⋅

⋅

n.b−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Using these definitions, those given in (19) and n.., n.b, y.., andy.b:

(a) Rewrite the normal equations (12).

(b) Show that D𝛽 − M′D𝛼M = C.

(c) Using the result in (b), the formula for the inverse of a partitioned matrix
given in Section 7 of Chapter 1 and the method of finding a generalized
inverse given in Chapter 1 show that (21) is a generalized inverse of X′X.

20 (a) Show that the inverse of

A = xJ + D{yi}

is

A−1 = {aij} for i, j = 1, 2,… , n

with

aii = 1
yi

− x

y2
i

(

1 + x
n∑

i=1

1∕yi

)

and

aij = −x

yiyj

(

1 + x
n∑

i=1

1∕yi

) for i ≠ j.
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Hint: Use Woodbury’s (1950) identity.

(A + BCB′)−1 = A−1 − A−1B(C−1 + B′A−1B)−1B′A−1

(See p. 37 of Gruber (2014), p. 51 of Golub and Van Loan (1996))

(b) With xi. =
ni∑

j=1

xij∕ni and x.. =
a∑

i≠i′

ni∑

i≠1

xij∕n., show that

a∑

i=2

(x1. − xi.)
2

(

ni −
n2

i

n.

)

−
a∑

i≠i′

a∑

i≠1

(x1. − xi.)(x1. − xi′
.
)
nini′

n.
=

a∑

i=1

ni(xi − x..)
2.

(c) Consider the one-way classification model for the test of hypothesis
H: all 𝛼′s equal. Show that the numerator of the F-statistic is

Q =
a∑

i=1

ni(y
2
i. − y..)

2.

(d) For the hypothesis

H: equality of 𝛽j +
a∑

i=1

nij𝛼i

n.j
for all j

in the no-interaction two-way classification model, show that the F-statistic
reduces to

F(𝛽|𝜇) =

(
b∑

j=1

n.jy
2
.j − n..y2

..

)

(b − 1)�̂�2
.

21 When nij = 1 for all i and j, show that the method of solving the normal equations
for the no-interaction model that uses equations (14) and (15) leads to solutions

𝛼◦i = yi. − y.. + y.b for all i

and

𝛽◦j = y.j − y.b for j = 1, 2,… , b − 1

with 𝜇◦ = 0 = 𝛽◦b .
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22 Show that when nij = 1, the equation C𝜷◦ = r in (16) has

C = aI − a
b

J and r = a(y𝜷 − y..1b−1).

Show that hence

𝜷◦ = C−1r = y𝜷 − y.b1b−1.

You may have already shown this if you did Exercise 21. Using the above
information show that

R(𝜷|𝜶,𝝁) = 𝜷◦′r = a
b∑

j=1

y2
.j − aby2

..
=

a∑

i=1

b∑

j=1

(y.j − y..)
2

of Table 7.5. As a result, it follows that when nij = 1 for all i and j, Tables 7.3b and
7.3c simplify to Table 7.5. (Note: All matrices and vectors are of order b – 1. The
matrix J has unity for all of its elements. Furthermore, y′

𝜷
=

[
y.1 ⋯ y.b−1

]
.)

23 Show that when nij = n for all i and j, equation (122) reduces to
a∑

i=1

bn(yi.. − y...)
2∕(a − 1)�̂�2.





8
SOME OTHER ANALYSES

Chapter 6 and 7 illustrate applications of the general results of Chapter 5 (models of
full rank) to specific models that often arise in the analysis of unbalanced data. We
discuss three additional topics in the present chapter. They include

1. The analysis of large-scale survey-type data;

2. The analysis of covariance;

3. Some approximate analyses for unbalanced data.

There is no attempt at completeness in discussion of these topics. They are included
to refer the reader to some of the other analyses available in the literature. The intent
is to provide a connecting link between those expositions and procedures developed
earlier in the book.

1. LARGE-SCALE SURVEY-TYPE DATA

Behavioral scientists from many different disciplines often conduct surveys. These
surveys often involve the personal interviewing of individuals, heads of households
and others. The data collected from such surveys are frequently very extensive.
Many people may have been interviewed. Each of them may have been asked lots
of questions. Consequently, the resulting data consist of observations of numerous

Linear Models, Second Edition. Shayle R. Searle and Marvin H. J. Gruber.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.
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TABLE 8.1 Some of the Factors Available on the Description of a Household in the
Bureau of Labor Statistics Survey of Customer Expenditures, 2014
(http://www.bls.gov/cex/)

Factor Number of Levels

1. Consumer unit 3
2. Income 10
3. Education of “reference person” 3
4. Race of “reference person” 2
5. Hispanic Latino origin or not 2
6. Family status (married, single, age of children, etc.) 7
7. Occupation of “reference person” 9
8. Geographical region 4

Total number of levels in eight factors 40

variables and factors for a large number of people. We now discuss some of the
problems of analyzing such data by the procedures of Chapter 5. The following
example serves as an illustration.

a. Example

The Bureau of Labor Statistics Survey of Consumer Expenditures 2014 provides
an opportunity for studying patterns of family investment that include, but are not
limited to, expenditures on equities, durables, and human components of the nature
of medical expenses, education, and so on. The survey gathered data on many
characteristics of each household interviewed. Table 8.1 shows some of these char-
acteristics, coded as factors with different numbers of levels. The basic survey, based
on a stratified sampling plan, included some 127,006 thousand-consumer units. One
of the many questions of interest one might ask is, “To what extent is expenditure on
durables affected by the factors listed in Table 8.1?” One way of attempting to answer
this question might be fitting a linear model to the variable “expenditure of durables.”

b. Fitting a Linear Model

Of course, before attempting to fit a linear model involving as many as eight factors
like those of Table 8.1 to data of the kind just described, the researcher should perform
a careful preliminary examination. The examination could include various frequency
counts and plots of the data. Assume that such an examination has been made and
the goal is to fit a linear model along the lines of Chapter 5–7 to take account of the
factors shown in Table 8.1. We shall now discuss some of the difficulties involved in
trying to fit such a model.

Suppose we wish to fit this model based on a sample of, say, 5000. Let us consider
what problems we might run into.

A model that would have main effects for each of the eight factors of Table 8.1
could also include all possible interactions among these factors. These would include

let &hbox {char '046}http://www.bls.gov/cex/
http://www.bls.gov/cex/
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664 first-order interactions, 5962 second-order interactions, and 90,720 (= 3 × 10 ×
3 × 2 × 2 × 7 × 9 × 4) seventh-order interactions (interactions between a level of each
of eight factors—see Chapter 4 Section 3d(ii)).

Two immediately apparent questions are

1. What is the meaning of a high-order interaction such as one of order 7?

2. How can we handle large numbers of interactions of this nature?

The answer to the second of these questions allows us to avoid, in large measure,
answering the first. We can handle all the interactions only if the data consist of
at least one observation in every sub-most cell of the data. In this case, there are
90,720 sub-most cells. Since there are only 5000 observations in the data, all of the
interactions cannot be considered. In general, this state of affairs is likely to prevail
with multi-factor survey data. This is because the number of sub-most cells in the
model equals the product of the number of levels of all of the factors. Furthermore,
having data in every sub-most cell requires having data in certain cells that are
either empty by definition or, by the nature of the factors, are almost certain to be
empty, even in the population. Even when all cells are filled, and the data could be
analyzed using a model that included all interactions, the interpretation of high order
interactions is usually difficult. It is rarely feasible to consider all of the interactions.
For example, can we give a reasonable description in terms of the source of our data
of what we mean by an eighth-order interaction? We doubt it. Indeed, it is probably
fair to say that we would have difficulty in meaningfully describing interactions of
order greater than 1, certainly of order greater than 2. First-order interactions can be
described and understood reasonably well (see Section 3d of Chapter 4). However,
interpretation of higher order interactions can present some difficulty. Therefore,
we suffer no great loss if the sparseness of data prevents including the higher
order interactions in our model. Fortunately, whereas survey data seldom enable
all interactions to be included in a model, they often contain sufficient observations
to consider first-order interactions. The first-order interactions are the ones that we
can interpret most readily. This is the case for the data of 5000 observations in
our hypothetical survey. There are enough observations to consider the 40 main
effects of Table 8.1, together with the corresponding 664 first-order interactions.
However, there are not enough observations to consider the 5962 second-order
interactions.

Even when data are sufficient in number to consider first-order interactions, we
may not want to include all of them in the model. For example, for the eight factors
of Table 8.1, there are 36 different kinds of first-order interactions ( 1

2
n(n − 1) kinds

for n factors). The choice of which interactions to include in the model is always
that of the person whose data are being analyzed. He/she should know his/her data
well enough to decide which interactions should be considered and which should not.
The choice may not be easy even with just first-order interactions. Moreover, we will
see that multifactor models without any interactions are difficult enough to interpret.
Having interactions only further compounds the difficulty.
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c. Main-Effects-Only Models

We can avoid the quandary of which interactions to include in a model by omitting
them all. The model then involves just the main effects—effects for each of the
40 levels of the eight factors in Table 8.1. Clearly, such a model is a great deal
easier conceptually than one involving numerous interactions. The choice of which
interactions to include in a model may be a matter of question. However, even though
the main-effects-only model appears easier, it still has some difficulties. The first is
an extension of the duality apparent in Tables 7.7b and 7.2c where only two factors
are present. There, for the two-way classification, we can consider reductions in the
sum of squares two ways, namely R(𝛼|𝜇) and R(𝛽|𝛼,𝜇) or R(𝛽|𝜇) and R(𝛼|𝜇, 𝛽).
There are sequences for fitting the mean effects. They are either 𝛼 then 𝛽 or 𝛽 then 𝛼.
However, for the eight factors in Table 8.1 there are 8! = 40,320 sequences for fitting
the main effects. The choice of which sequence to use in the two-way classification
of Chapter 7 may be immaterial. There are only two sequences. It is relatively easy
to look at both. However, with 40,320 sequences in the eight-way classification, it is
essential to decide which few of them to consider. This is a decision that rests with
the person whose data are being analyzed. Again, it is a decision that is often not
easy to make. An n-way classification has n! sequences for fitting the main effects of
the n factors. Table 8.2 shows 3! = 6 sets of reductions in sums of squares that could
be calculated for a three-way classification.

Searle (1971a) gives a similar discussion of the difficulties involved in linear
model fitting for the Bureau of Labor Statistics Survey of Customer Expenditures,
1960–1961, using the results of an analysis by Brown (1968).

Reductions in the sums of squares such as are shown in Table 8.2 are sometimes
said to “add up.” They add up to SST = y′y, the total uncorrected squares of the
observations. Of course, often the R(𝜇) term is not shown in the body of the table.
Instead, it is subtracted from SST to have the other reductions in sums of squares add
up to SSTm = SST − R(𝜇) =

∑
y − Nȳ2. The F-statistics that are implicit in any of

the sets of reductions of sums of squares illustrated in Table 8.2 can be used in either
of two ways as they are in Chapter 7 for the two-way classification.

There, as discussed in Section 1e(vi) of Chapter 7, they are used for testing the
effectiveness—in terms of explaining variation in y—of having certain main effect
factors in the model. However, just as in Table 7.2, there are two possible ways of

TABLE 8.2 Sets of Reductions in Sums of Squares for a Three-Way Classification,
Main-Effects-Only Model, with Main Effects 𝜶, 𝜷, and 𝜸

R(𝜇) R(𝜇) R(𝜇) R(𝜇) R(𝜇) R(𝜇)
R(𝛼|𝜇) R(𝛼|𝜇) R(𝛽|𝜇) R(𝛽|𝜇) R(𝛾|𝜇) R(𝛾|𝜇)
R(𝛽|𝜇, 𝛼) R(𝛾|𝜇, 𝛼) R(𝛼|𝜇, 𝛽) R(𝛾|𝜇, 𝛽) R(𝛼|𝜇, 𝛾) R(𝛽|𝜇, 𝛾)
R(𝛾|𝜇, 𝛼, 𝛽) R(𝛽|𝜇, 𝛼, 𝛾) R(𝛾|𝜇, 𝛼, 𝛽) R(𝛼|𝜇, 𝛽, 𝛾) R(𝛽|𝜇, 𝛼, 𝛾) R(𝛼|𝜇, 𝛽, 𝛾)
SSEa SSE SSE SSE SSE SSE
SST1 SST SST SST SST SST

aSSE = y′y − R(𝜇, 𝛼, 𝛽, 𝛾) and SST = y′y =
∑

y2.
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testing the exploratory power of having 𝛼 in the model (𝛼 before 𝛽 and 𝛼 after 𝛽),
so in Table 8.2, there are, for the three-way classification, four ways of testing the
effectiveness of 𝛼. They are based on R(𝛼|𝜇), R(𝛼|𝜇, 𝛽), R(𝛼|𝜇, 𝛾), and R(𝛼|𝜇, 𝛽, 𝛾).
For the n-way classification, there are 2n−1 ways of testing the effectiveness of a
factor in this manner. For the eight-way classification of Table 8.1, this would be
27 = 128. This is a direct outcome of there being n! sequences in which n main effect
factors can be fitted, that is, n! sets of reductions in sums of squares of the nature
illustrated in Table 8.2. The tests of the exploratory power of having any particular
main effect in model therefore depend, very naturally, on the sequence chosen for
fitting the main effects.

The F-statistics can also be used as in Section 1g of Chapter 7, for testing hypothe-
ses about the elements of a main-effects-only model. Here, however, just as in Sec-
tion 1g of Chapter 7, the only hypotheses that relate to these elements in a clear and
simple fashion are those based on fitting one factor after all of the others. If the statis-
tical software package SAS is used, the F-tests would be based on the type III sum of
squares. The hypothesis tested is that the effects of all levels of that factor are equal.
For example, in Table 8.2, the hypothesis tested by F(𝛼|𝜇, 𝛽, 𝛾) based on R(𝛼|𝜇, 𝛽, 𝛾)
is H: 𝛼’s all equal. Similarly, F(𝛽|𝜇, 𝛼, 𝛾) tests H: 𝛽’s all equal. This holds true in
general. The statistic F (𝛼|𝜇, 𝛽, 𝛾 , 𝛿,… , 𝜃) tests H: 𝛼’s all equal where 𝛽, 𝛾 , 𝛿,… , 𝜃
represents all the other main effects of a model. The other F-statistics that can be
calculated provide tests of hypothesis that involve a complex mixture of the effects of
the model, just as R(𝛽|𝜇) tests the hypothesis of (48) given in Section 1g of Chapter 7.
For example, F(𝛼|𝜇, 𝛽) from Table 8.2 will test a hypothesis that involves 𝛽’s and 𝛾’s
as well as 𝛼’s.

We have just highlighted the difficulties that are involved in testing hypotheses by
means of reductions in sums of squares that add up. They include

1. the choice of sequence for fitting the factors;
and

2. the complex nature of the hypothesis tested by the F-statistics, other than
F (𝛼|𝜇, 𝛽, 𝛾 , 𝛿,… , 𝜃) (the F-statistic based on the type III sum of squares).

However, this in no way affects the use of the general formula

F(H) = (K′b◦ − m)′(K′GK)−1(K′b◦ − m)

s�̂�2

for testing any testable hypothesis K′b = m (see equation (71) of Chapter 5). The
general formula above is as applicable to situations like that of Table 8.1 as it is to
anything discussed in Chapters 5, 6, and 7. As always, of course, one must ascertain
the estimability of K′b. However, within the confines of estimability, we can always
use F(H). Its use is not necessarily related to any of the sums of squares that add up
to SST.
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d. Stepwise Fitting

When using multiple regressions there may, on occasion, be serious doubt about
which x-variates from a large available set of x’s should be used in the regression
model. This difficulty has led to the development of several procedures for letting the
data select a “good” set of x-variates, good in the sense of accounting for the variance
in y in some manner. The main difference in the various procedures is in the criterion
for selecting a good set. For example, one procedure fits one x-variate, then includes
another, and so on.

One criterion is to choose an x-variate from one not already chosen, which leads
to the greatest reduction in the residual sum of squares. Another adds and deletes
variables according to their level of significance. There is a huge literature on different
variable selection methods. Some good references include Draper and Smith (1998),
Draper (2002), Smith (1988), and La Motte and Hocking (1970). We do not give
details of these selection procedures here. We simply point out their application to
multi-factor models. Instead of applying any one of these procedures to single x-
variates, it can be applied to sets of dummy (0, 1) variables corresponding to each
factor in the model. Then, rather than having to decide, a priori, in which sequence
the factors should be fitted, we could use what might be called “stepwise fitting
of factors.” This would determine, from the data, a sequential fitting of the factors,
which in some sense, ranked the factors in decreasing order of importance insofar as
accounting for variation in y, is concerned.

In this way, for example, rather than our selecting one of the sequences implicit
in Table 8.2, the data would select one for us. As a result of the stepwise regression
technique, the basis of selection would be using reduction in sums of squares R( )
terms, as indicators of the extent to which different models account for the variation
in y. Some references on dummy variables in stepwise regression include Cohen
(1991), Brorsson, Ilver and Rydgren (1988), and Mannheim and Cohen (1978).

e. Connectedness

It may sometimes be taken for granted that the difference between the effects of
every pair of levels of the same factor is estimable in a main-effects-only model.
Indeed, this is often so, but it is not universally the case. Sufficient conditions for
such differences to be estimable are those set out by Weeks and Williams (1964) for
data to be connected. Suppose there are p factors (and no interactions) in the model
and we denote the levels of the factors for an observation by the vector,

i′ = [i1 i2 … ip]

Then two such vectors are defined as being nearly identical if they are equal in all
except one element. The data sets in which the i-vector of each observation is nearly
identical to at least one other observation form connected sets of data. Weeks and
Williams (1964) give a procedure for establishing such sets. Their procedure is an
extension of that given in Section 4 of Chapter 7 for the two-factor model.
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As Weeks and Williams (1964) point out in their errata (1965), their conditions
for data to be connected are sufficient but not necessary. Data can be connected (in
the sense of intra-factor differences between main effects being estimable) without
being nearly identical in the manner described. Fractional factorial experiments are
a case in point. For example, suppose for the model

yijk = 𝜇 + 𝛼i + 𝛽j + 𝛾k + eijk

with i, j, and k = 1, 2, we have the data y112, y211, y121, and y222. No pair of these four
observations is nearly identical in the manner just described. However,

E 1
2
(y112 − y211 + y121 − y222) = 𝛼1 − 𝛼2.

Similarly, 𝛽1 − 𝛽2 and 𝛾1 − 𝛾2 are also estimable. Thus, all intra-factor differences
between the main effects are estimable. This exemplifies why the general problem of
finding necessary conditions for main effect differences to be estimable is difficult.

More recent work on the relationships between estimability and connectivity may
be found in Godolphin (2013) and the references therein.

f. The 𝝁ij-models

What has been said about the difficulties of using a main-effects-only model for
analyzing large-scale survey-type data applies even more to the analysis of such data
using models that include interactions. The sequences in which the factors can be
fitted, using reductions in sums of squares that add up to SST are then more numerous.
The hypotheses tested by the resulting F-statistics are more complicated (e.g., see
Section 2f of Chapter 7). The problem of connectedness in terms of the definition given
in Section 4 of Chapter 7 is even more acute. The example in Table 8.1 illustrates this.
There we have 90,720 cells in the data. That means that we can describe a household
in the survey, 90,720 ways using the eight factors of Table 8.1. Yet the sample size is
only 5000. Such data will almost assuredly not be connected.

In view of these difficulties with models that include interactions, the main-effects-
only models appear more feasible, despite their own difficulties discussed in Section
1c of this chapter. The main-effects-only models have one further problem, that of
complete neglect of interactions. This may be a very serious omission in practice! In
situations involving many factors, as is the case in Table 8.1, one frequently feels that
interactions between the factors do, most assuredly exist. Assuming that this is so, it
would not be very appropriate to ignore them and proceed to make an analysis as if
interactions did not exist. One way out of this predicament is to use the 𝜇ij-models
discussed in Section 5 of Chapter 7.

In this, we look at the means of the sub-most cells of the data. By “sub-most”
cells, we mean those cells of the data defined by one level of each of the factors.
In the two-way classification of Chapter 7 a sub-most cell is the cell defined by a
row and a column. In the eight-way classification of Table 8.1, a sub-most cell is
that defined by one level (kind) of, consumer unit, one level of income, one level of
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education of the reference person, and so on. The total number of possible sub-most
cells is the product of the number of levels in the classes—90,720 in Table 8.1. The
number of sub-most cells in the data is the number of sub-most cells that have data in
them. Call this number s. Then, no matter how many factors there are or how many
levels each has, the mean of the observations in each sub-most cell is the b.l.u.e. of
the population mean for that cell. Thus, if ȳr is the mean of the nr observations in the
rth sub-most cell, for r = 1, 2,… , s, then ȳr is the b.l.u.e. of 𝜇r, the population mean
of that cell. Furthermore, the b.l.u.e. of any linear function

∑s
r=1 kr𝜇r is

∑s
r=1 krȳr

with variance 𝜎2∑s
r=1 k2

r∕nr. Moreover, any hypothesis concerning a linear function
of the 𝜇r’s is testable. Thus,

H:
s∑

r=1

kr𝜇r = m (1)

can be tested by comparing

F(H) =

( s∑

r=1
krȳr − m

)2

�̂�2
s∑

r=1
k2

r∕nr

(2)

against the value of the F-distribution with 1 and (n – s) degrees of freedom for a given
level of significance, for example, 𝛼 = .05. The estimator of 𝜎2 in this expression is
the simple within sub-most cell mean square, namely,

�̂�2 =

s∑

r=1

nr∑

i=1
(yri − ȳr)2

(n. − s)
. (3)

The numerator in (3) is, of course, identical to the SSE that would be derived by
fitting a model that had in it all possible interactions.

The statistic F(H) of (2) provides a means of testing the hypothesis about any
linear function of the population sub-most cell means. Just what hypotheses get to
be tested is the prerogative of the person whose data they are. All he or she need
do is formulate his/her hypotheses of interest in terms of the sub-most cell means.
Whilst this may be no easy task in many cases, at least is not complicated by the
confusions of estimability and interactions. Furthermore, hypotheses about sub-most
cell population means can be tested simultaneously by and extension of the standard
results for testing K′b = m in Chapters 3 and 5. Thus, if 𝝁 is the vector of sub-most
cell populations and ȳ is the corresponding vector of observed means, then we
can test

H: K′𝝁 = m, (4)
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consisting of s LIN functions K′𝝁, by using

F(H) =
(K′ȳ − m)′

[
K′D
{ 1

nr

}
K
]−1

(K′ȳ − m)

s�̂�2
, (5)

where D{ 1
nr

} is the diagonal matrix of the reciprocals of the number of observations

in the sub-most cells containing data.
Repeated use of (2) and/or (5) does not provide tests whose F-statistics have

numerator sums of squares that are independent, as is the case when using sums
of squares that “add up,” in the manner of Table 8.2. However, as we have seen,
hypotheses tested by use of the latter do not involve simple functions of the parameters
of the model. In contrast, the hypotheses in (1) and (4) which are tested by means of (2)
and (5) are in terms of straightforward linear functions of sub-most cell population
means. Further discussion of these procedures can be found in Speed (1969) and
Urquhart et al. (1970).

2. COVARIANCE

We will now combine ideas from Chapters 3, 4, 5, 6, and 7 to formulate linear models
where some of the elements of the X matrix are observed x’s and others are dummy
(0, 1) variables. Such models might arise when we wish to compare different treat-
ments, say the amount of weight loss on five different reducing diets. We need to
take into account the initial weight of the subjects. These would be observed x’s. The
diets could be specified using dummy variables.

In Chapter 3, the elements of the X matrix in the equation y = Xb + e are observed
values of the x’s corresponding to the vector of observation y. In Chapter 4, we saw
how we can use the same equation for linear models involving factors and interaction
by using dummy variables that take the values 0 and 1 for the x’s. Chapter 5 gives
the general theory, and Chapters 6 and 7 give examples of it. We now consider
the case where some of the elements of X are observed x’s and others are dummy
(0, 1) variables. Such a situation represents a combining, into one model, of both
regression and linear models involving factors and interactions. We generally refer to
such a model as a covariance analysis. The basic analysis is that of the factors-and-
interaction part of the model suitably amended by the presence of the x variates—the
covariables of the analysis.

General treatment of the model y = Xb + e is given for X of full-column rank
in Chapter 3 and for X not of full-column rank in Chapter 5. These two chapters
cover regression and what we may call the factors-and-interactions models. Since
X being of full-column rank is just a special case of X not being of full-column
rank, the procedures of Chapter 5 apply in general to all kinds of X matrices. In
particular, they are applicable to the analysis of covariance. Conceptually, there is no
distinction between the analysis of covariance and what we have already considered.
The sole difference is in the form of the elements of X. In regression (Chapter 3),
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the elements of X (apart from the column 1 corresponding to 𝜇) are observed x’s. In
factors and interaction models (Chapters 5, 6, and 7), the elements of X are 0 or 1
corresponding to dummy variables. In analysis of covariance, some of the elements
of X are dummy variables 0’s and 1’s and some are observed values of x variables.
Thus, conceptually, nothing is new in the analysis of covariance. It involves fitting a
model y = Xb + e where some elements of b are effects corresponding to the levels
of factors and interactions, in the manner of Chapter 5–7 and some are regression-
style coefficients of x-variates, in the manner of Chapter 3. Within this context,
the procedures for solving normal equations, establishing estimable functions and
their b.l.u.e’s, testing hypotheses and calculating reductions in sums of squares all
follow the same pattern established in Chapter 5 and summarized at the beginning
of Chapter 6. No additional concepts are involved. Furthermore, the “recipes” for
covariance analysis for balanced data that are to be found in many texts (e.g., Federer
(1955 Chapter XVI), Steel and Torrie (1960, Chapter 15), Rao (1973, Section 4h)),
and Montgomery (2005, Section 15-3)) are just the consequence of simplifying the
general results for unbalanced data.

a. A General Formulation

(i) The Model. We will distinguish between the two kinds of parameters that occur
in b when using the model y = Xb + e. We partition b into two parts. They are

1. The vector a for the general mean 𝜇 and the effects corresponding to levels of
factors and their interactions,
and

2. The vector b for the regression-style coefficients of the covariates.

The corresponding incidence matrices will be X for the dummy (0, 1) variables and
Z for the values of the covariates. We write the model as

y = Xa + Zb + e (6)

where e = y − E(y) with E(e) = 0 and var(e) = 𝜎2I in the customary manner. In this
formulation, X does not necessarily have full rank. However, we will assume that Z
does have full rank. This will usually be the case. Thus, X′X may not have an inverse
while (Z′Z)−1 usually exists. Furthermore, we make the customary and realistic
assumption that the columns of Z are independent of those of X.

(ii) Solving the Normal Equations. The normal equations for a◦ and b◦ are,
from (6),

[
X′X X′Z
Z′X Z′Z

] [
a◦

b◦

]

=
[

X′y
Z′y

]

. (7)
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Suppose (X′X)− is a generalized inverse of X′X. Then the first equation of (7)
gives

a◦ = (X′X) (X′y − X′Zb◦)
= (X′X) X′y − (X′X) X′Zb◦

= a∗ − (X′X) X′Zb◦
(8)

where

a∗ = (X′X)−X′y

is the solution to the normal equation without the covariate. Substituting for a◦ into
(7) gives the solution for b◦,

b◦ = {Z′[I − X(X′X)−X′]Z}−Z′[I − X(X′X)−X′]y. (9)

Again, the superscripted minus sign designates a generalized inverse. Substitution of
(9) into (8) gives a◦ explicitly. Solutions (8) and (9) are exactly the same results, as
would be obtained by using the expression for a generalized inverse given in Section 7
of Chapter 1 (see Exercise 13).

We should note several features of (9). First, although (X′X)− is not unique, it
enters into b◦ only in the form X(X′X)−X′. This is invariant to whatever generalized
inverse of X′X is used for (X′X)−. Thus the non-full-rank property of X does not of
itself, lead to more than one solution for b◦. Suppose we use P for

P = I − X(X′X)−X′ (10)

By Theorem 10 of Chapter 1, P is symmetric and idempotent. Then (9) can be written
as b◦ = (Z′PZ)−Z′Py. Symmetry and idempotency of P ensure that Z′PZ and PZ
have the same rank. Furthermore, the properties of X and Z given below (6) guarantee
that PZ has full-column rank and hence Z′PZ is non-singular (see Exercise 13).
Therefore, b◦ is the sole solution.

b◦ = b̂ = (Z′PZ)−Z′Py. (11)

(iii) Estimability. Consideration of the expected value of b̂ of (11) and of a◦ of (8)
show that b is estimable and that 𝝀′a is estimable when 𝝀′ = t′X for some t′. That
means that b is always estimable and 𝝀′a is estimable whenever it is estimable for
the model that has no covariates. (See Exercise 13.)

(iv) A Model for Handling the Covariates. The estimator b̂ shown in (11) is the
b.l.u.e. of b in the model (6). By the form of (11), it is also the b.l.u.e. of b in the
model having the equation

y = PZb + e. (12)

This, we shall see provides a convenient method for estimating b.
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Recall that in fitting a model of the form y = Xa + e, the vector of esti-
mated expected values ŷ corresponding to the vector of observed values y is
ŷ = X(X′X)−1X′y (equation (10), Chapter 5). Therefore, the vector of residuals,
that is, the vector of deviations of the observed values from their corresponding
estimated values is

y − ŷ = y − X(X′X)−X′y.

This becomes, using (10),

y − ŷ = Py.

Thus, Py is the vector of y-residuals after fitting the model y = Xa + e. Similarly, if
the jth column of Z is zj, the jth column of PZ in (12) is Pzj, the vector of zj residuals
after fitting the model1 zj = Xa + e. Thus with

Z = {zj} for j = 1, 2,… , q,

we write Rz for PZ and have Rz as the matrix of residuals. Thus,

Rz = PZ = {Pzj} = {zj − ẑj} = {zj − X(X′X)−X′zj}. (13)

Hence, the model (12) is equivalent to the model

y = RZb + e, (14)

and b̂ of (11) is

b̂ = (R′
zRz)−1R′

zy.

The matrix Rz has the same order as Z. Its columns are columns of residuals given in
(13). The matrix of sums of squares and products of z-residuals is R′

zRz. The vector
of sums and products of z-residuals and the y-observations is R′

zy.

(v) Analyses of Variance. The reduction in sum of squares for fitting a linear model
is the inner product of a solution vector and the vector of the right-hand sides of the
normal equations (e.g., equation (14) of Chapter 5). Thus, from (7), (8), and (11), the
reduction in the sum of squares for fitting the model is

R(a, b) = a◦
′
X′y + b̂Z′y.

1 S. R. Searle is grateful for discussions with N. S. Urquhart.
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In the notation R (a, b), b emphasizes the fitting of a vector of coefficients pertain-
ing to the covariates and a represents the factor and interactions part of the model,
including 𝝁. Upon substitution for a◦ and b̂ from (8) and (11) making use of (10),
R (a, b) reduces to

R(a, b) = y′X(X′X)−X′y + y′PZ(Z′PZ)−1Z′Py

= y′X(X′X)−X′y + y′RZ(R′
zRZ)−1R′

Zy

This is the sum of two reductions. The first one is

R(a) = y′X(X′X)−X′y, due to fitting y = Xa + e.

The second one is

SSRB = y′Rz(R′
zRz)−1R′

zy = b̂R′
zy, due to fitting y = Rzb + e.

Putting these two expressions together, we have

R(a, b) = R(a) + SSRB.

Consequently,

R(b|a) = R(a, b) − R(a) = SSRB = b̂′R′
zy.

Thus, SSRB is the reduction in the sum of squares attributable to fitting the covariates,
having already fitted the factor and interactions part of the model.

Distributional properties of R(a) and R(b|a), based on the usual normality assump-
tions, come from Theorems 5 and 6 of Chapter 2. The idempotency of X(X′X)−X′

and of Rz(R′
zRz)−1R′

z give

R(a)

𝜎2
∼ 𝝌2′[r(X),𝝀a]

with

𝝀a = a′X′Xa + 2a′X′Zb + b′Z′X(X′X)−X′Zb
2𝜎2

and

R(b|a)

𝜎2
∼ 𝝌2′

[

r(Z),
b′R′

zRzb

2𝜎2

]

.
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TABLE 8.3a Analysis of Variance for Fitting Covariates (b) After Factors and
Interactions (a) in the Covariance Model y = Xa + Zb + e

Source of Variation d.f. Sum of Squaresa

Factors and Interaction r(X) R(a) = y′X(X′X)−1X′y
Mean 1 R(𝜇) = Nȳ2

Factors and interactions
(after the mean)

r(X) − 1 R(a|𝜇) = R(a) − R(𝜇)

Covariates (after factors
and interactions)

r(Z) R(b|a) = SSRB = y′RZ(R′
ZRZ)−1R′

Zy

Residual error N − r(X) − r(Z) SSE = y′y − R(a) − SSRB

Total N SST = y′y

aRZ is the matrix of residuals in (13).

We show that R(a) and R(b|a) are distributed independently. Recall that
RZ = PZ. Furthermore, by the definition of P in (10), X′P = 0. It follows that
X(X′X)−X′RZ(R′

zRZ)−1R′
z = 0.

Hence, R(a) and R(b|a) are independent random variables. The reader can show
in Exercise 11 that R(a) and R(b|a) is also independent of

SSE = y′y − R(a, b) = y′y − R(a) − SSRB.

The statistic SSE also has a 𝝌2-distribution SSE
𝜎2 ∼ 𝝌2

N−r(X)−r(z).
These sums of squares are summarized in Table 8.3a. Mean squares and F-statistics

follow in the usual way.
The unbiased estimator of 𝜎2 which we can derive from Table 8.3a is

�̂�2 = SSE
N − r(X) − r(Z)

.

An alternative to the analysis of variance shown in Table 8.3a is to fit the covariates
before the factors and interactions instead of after them, as is done there. This
necessitates calculating R(b|𝜇) = R(𝜇, b) − R(𝜇). to do this, we need R(𝜇, b), the
reduction in the sum of squares due to fitting the model

y = 𝜇1 + Zb + e.

Of course, this is simply an intercept regression model. The estimators of the param-
eters 𝜇 and b are

b̃ = ( ′)−1 ′y and �̂� = ȳ − b̃z̄

as in (41) and (42) of Chapter 3. In b̃,  ′ is the matrix of corrected sums and squares
and products of the observed z’s. Furthermore,  ′y is the vector of corrected sums
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of products of the z’s and the y’s. Then, R(b|𝜇) that we need here is SSRm of (87) in
Section 4f of Chapter 3. As a result,

R(b|𝜇) = y′ ( ′
 )−1


′y.

This reduction sum of squares is for fitting covariates after the mean.
In addition, we need that for fitting the factors and interactions after the mean and

covariates:

R(a|𝜇, b) = R(a, b) − R(𝜇, b),

remembering that a in this notation includes 𝜇. On using R(a) + SSRB for R(a, b) as
derived in establishing Table 8.3a and R(b|𝜇) + R(𝜇) = R(𝜇, b), we have

R(a|𝜇, b) = R(a) + SSRB − R(b|𝜇) − R(𝜇)
= R(a|𝜇) + SSRB − R(b|𝜇).

These calculations are summarized in Table 8.3.
In both Tables 8.3a and 8.3b, the terms R(𝜇) and R(a|𝜇) are those familiarly

calculated in the no-covariate model y = Xa + e.

(vi) Tests of Hypotheses. The distributional properties of R(b|a) and SSE indicate,
from (14), that in Table 8.3a,

F(b|a) =
R(b|a)∕r(Z)

SSE∕[N − r(X) − r(Z)]

tests the hypothesis H: b = 0.
The hypothesis H: K′a = m is testable provided that K′a is testable. If this is

the case, we can test the hypothesis in the usual manner given by equation (71)
of Chapter 5. To use that equation with the solutions a◦ and b◦ given in (8) and
(9), we need the generalized inverse of the partitioned matrix shown in (7). From

TABLE 8.3b Analysis of Variance for Fitting Factors and Interactions (a) After
Covariates (b) in the Covariance Model y = Xa + Zb + e

Source of Variation d.f. Sum of Squaresa

Mean 1 R(𝜇) = Nȳ2

Covariates (after mean) r(Z) R(b|𝜇) = y′ ( ′
 )−1

′y
Factors and Interactions

(after mean and covariates)
r(X) − 1 R(a|𝜇, b) = R(a|𝜇) + SSRB − R(b|𝜇)

Residual error N − r(X) − r(Z) SSE = y′y − R(a) − SSRB
Total N SST = y′y

aR(a|𝜇) and SSRB are given in Table 8.3a.
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equation (56) of Chapter 1, this generalized inverse is (see Exercise 33 in Chapter 1).

G =
[

X′X X′Z
Z′X Z′Z

]−
=
[

(X′X)− 0
0 0

]

+
[
−(X′X)−X′Z

I

]

(Z′PZ)−1[−(X′X)−X′Z I].

(15)

Writing the hypothesis H: K′a = m as

H: [K′ 0]

[
a
b

]

= m

it will be found that the numerator of F(H) reduces to

Q = (K′a◦ − m)′[K′(X′X)−K + K′(X′X)−X′Z(Z′PZ)−1Z′X(X′X)−K]−1

× (K′a◦ − m).

We now show that testing H: K′a = 0 in the no-covariance model has the same
numerator sum of squares as does testing H: K′[a + (X′X)−X′Zb] = 0 in the covari-
ance model. The solution vector for a in the no-covariance model is a∗ = (X′X)−X′y.
From Q of Table 5.9, the numerator sum of squares for testing H: K′a = 0 in the
no-covariance model is therefore,

Q = a∗
′
K[K′(X′X)−K]−K′a∗. (16)

In the covariance model, consider the hypothesis

H: K′[a + (X′X)−X′Zb] = 0. (17)

This can be written as

H: K′[I (X′X)−X′Z]

[
a
b

]

= 0 or as M′
[

a
b

]

= 0

with

M′ = K′[I (X′X)−X′Z] (18)

We may test this hypothesis using an F-statistic having numerator sum of squares
(see Table 5.9)

Qc = [a◦
′

b̂′]M(M′GM)−1M′
[

a◦

b̂

]

.

However, from (15) and (18), M′GM = K′(X′X)−K, and from (8) [a◦′ b̂′]M =
a∗′K.
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Thus, Qc becomes

Qc = (K′a∗)′(K′(X′X)K]−1K′a∗

= Q of (16).

Hence, the numerator sum of squares for testing H: K′a = 0 in the no-covariance
model is also the numerator sum of squares for testing

H: K′[a + (X′X)−X′Zb] = 0

in the covariance model. This hypothesis appears to be dependent on (X′X)−. This
is not the case, because K′ = T′X for some T, since we assume that H: K′a = 0 is
testable.

(vii) Summary. We can summarize the preceding development of the analysis of
covariance model

y = Xa + Zb + e

as follows. First fit

y = Xa + e.

Calculate

a∗ = (X′X)−X′y and R(a) = a∗
′
X′y. (19)

Then for each column of Z, zj say, fit

zj = Xa + e.

Calculate the zj-residual vector

zj − ẑj = zj − X(X′X)−X′zj

and the matrix of these residuals

Rz = {zj − ẑj} for j = 1, 2,… , q. (20)

Fit

y = Rzb + e (21)
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and calculate

b̂ = (R′
zRz)−1R′

zy (22)

and

R(b|a) = b̂′R′
zy.

The solution vector for the covariance matrix is then

[
a◦

b̂

]

=
[

a∗ − (X′X)−X′Zb̂
b̂

]

. (23)

From (15), the dispersion matrices of these solutions are

var(a◦) = [(X′X)− + (X′X)−X′Z(R′
zRz)−1Z′X(X′X)−]𝜎2,

var(b̂) = (R′
zRz)−1𝜎2 (24)

and

cov(a◦, b̂) = −(X′X)−X′Z(R′
zRz)−1𝜎2.

In contrast to fitting an ordinary factors-and-interaction model, the clue to the
calculations for a covariance model is the derivation of Rz. Furthermore, the calcu-
lation of each column of Rz, from the corresponding column of Z depends solely on
the particular factor-and-interactions model being used. No matter what the nature
of the covariates, X is the same for any specific factors-and-interactions model. The
matrix X is what determines the derivation of Rz from Z. When considering the same
covariates in different ways for the same factors-and-interactions model, the corre-
sponding Z matrices will be different, but the mode of calculating Rz is always the
same. The columns of Rz are always the vectors of residuals obtained after fitting
the no-covariates model to each column of Z. This is illustrated in the examples that
follow.

b. The One-Way Classification

(i) A Single Regression. An adaption of equation (23) in Chapter 6 gives the
equation for a covariance model in the one-way classification as

yij = 𝜇 + 𝛼i + bzij + eij (25)

for i = 1, 2,… , c and j = 1, 2,… , ni. In this model, 𝜇 and the 𝛼i’s are the elements of
a of (6). The scalar b is the sole element of b of (6). The matrix Z of (6) is a column
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vector of observed values zij of the covariate, with

z′ = [z11 z12 ⋯ z1n1
⋯ zi1 zi2 ⋯ zini

⋯ zc1 zc2 ⋯ zcnc
],

(26)

corresponding to the vector of y observations defined in (26) of Chapter 6.
Fitting the no-covariate form of (25) amounts to fitting the one-way classification

model yij = 𝜇 + 𝛼i + eij discussed in Section 2 of Chapter 6. There in equation (31),
we see that a solution vector for a∗ of (19) is

a∗ =
[
𝜇∗

{𝛼∗i }

]

=
[

0
{ȳi.}

]

for i = 1,… , c. (27)

From (37) of Section 2d of Chapter 6, it follows that

R(a) =
c∑

i=1

y2
i.

ni
. (28)

Furthermore, the residual corresponding to yij is

yij − ŷij = yij − 𝜇∗ − 𝛼∗i = yij − ȳi..

Then the vector of residuals is

y − ŷ = {yi − ȳi.1ni
} =
⎧
⎪
⎨
⎪
⎩

⎡
⎢
⎢
⎢
⎣

yi1 − ȳi.
yi2 − ȳi.

⋮
yini

− ȳi.

⎤
⎥
⎥
⎥
⎦

⎫
⎪
⎬
⎪
⎭

for i = 1,… , c. (29)

In fitting (25), Z of the general model (6) is z of (26). Then Rz of (20) is a vector.
Analogous to (29), we have

Rz = z − ẑ = {zi − z̄i.1ni
} for i = 1, 2,… , c.

Therefore, for b̂ of (22)

R′
zRz =

c∑

i=1

ni∑

j=1

(zij − z̄i.)
2 =

c∑

i=1

( ni∑

j=1

z2
ij − niz̄

2
i.

)

(30a)

and

R′
zy =

c∑

i=1

ni∑

j=1

(zij − z̄i.)yij =
c∑

i=1

( ni∑

j=1

yijzij − niȳi.z̄i.

)

. (30b)
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Thus,

b̂ =

c∑

i=1

(
ni∑

j=1
yijzij − niȳi.z̄i.

)

c∑

i=1

(
ni∑

j=1
z2

ij − niz̄2
i.

) . (31)

With the value of b̂ in (31), we can calculate a◦ from (23) as

a◦ = a∗ − b̂(X′X)−X′z;

that is,

[
𝜇◦

{𝛼◦i }

]

=
[

0
{ȳi.}

]

− b̂

[
0

{z̄i.}

]

=
[

0
{ȳi. − b̂z̄i.}

]

for i = 1,… , c. (32)

The solution a◦i = ȳi − b̂z̄i is often referred to as an adjusted mean. It is the class
mean ȳi. adjusted by the class mean of the covariate, using the estimate b̂ to make the
adjustment.

Examination of (31) and (32) reveals the relationship of these results to ordinary
regression analysis. In (31), the numerator of b̂ is a sum of terms, each of which
is the numerator for estimating the within class regression of y on z. Likewise, the
denominator of b̂ is the sum of the denominators of these within class regression
estimators. Thus, b̂ is usually referred to as the pooled within-class regression esti-
mator. Moreover, each element of (32)—other than the initial zero—is the within
class intercept estimator using b̂ of (31).

The basic calculations for the analysis of variance for fitting the model E(y) = Xa
in the case of a one-way classification are, as in Section 2d of Chapter 6

SSRyy =
c∑

i=1

niȳ
2
.
, SSEyy = SSTyy − SSRyy and SSTyy =

c∑

i=1

ni∑

j=1

y2
ij.

We can also calculate

SSMyy = Nȳ2, SSRm,yy = SSRyy − SSMyy

and

SSTm,yy = SSTyy − SSMyy.



COVARIANCE 457

The subscript yy in these expressions emphasizes that they are functions of squares
of the y-observations. We can also calculate similar functions of the z-observations,
and of cross products of the y’s and z’s. The basic calculations include

SSRyz =
c∑

i=1

niȳi.z̄i., SSEyz = SSTyz − SSRyz, and SSTyz =
c∑

i=1

ni∑

j=1

y2
ij.

We also have that

SSMyz = Nȳz̄, SSRm,yz = SSRyz − SSMyz,

and

SSTm,yz = SSTyz − SSMyz.

(We do not show explicit expressions for the z’s because they are exactly of the same
form as the y’s.) We find these expressions useful in what follows.

First, R(a), which for (25) is the reduction due to fitting 𝜇 and the 𝛼’s is from (28)

R(𝜇, 𝛼) = R(a) = SSRyy.

Second, from (31),

b̂ =
SSEyz

SSEzz
. (33)

From (22), (30), and (33), we have

R(b|𝜇, 𝛼) = R(b|a) =
(SSEyz)

2

SSEzz
. (34)

Hence, the analysis of variance of Table 8.3 can be rewritten in the form of Table 8.4.
In Table 8.4, the estimated residual variance is

�̂�2 = SSE
N − c − 1

.

We test the hypothesis that the regression slope is zero, that is, H: b = 0 using the
F-statistic,

F(b) = R(b|𝜇, 𝛼)

�̂�2
, (35)
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TABLE 8.4a Analysis of Variance for Fitting the Covariate after the Class Effects in
the One-Way Classification Covariance Model yij = 𝝁+ 𝜶i + bzij + eij

Source of Variation d.f. Sum of Squares

Mean 1 R(𝜇) = SSMyy

𝛼-classes (after mean) c − 1 R(𝛼|𝜇) = SSRm,yy

Covariate (pooled within-class regression) 1 R(b|𝜇, 𝛼) =
(SSEyz)

2

SSEzz
Residual error N − c − 1 SSE = SSEyy − R(b|𝜇, 𝛼)

Total N SSTyy

with 1 and N – c –1 degrees of freedom. For the no-covariate model the F-statistic with
R(𝛼|𝜇) in its numerator tests the hypothesis H: all 𝛼’s equal (See Section 2f(iii) of
Chapter 6). From (17), the corresponding F-statistic in Table 8.4a tests the hypothesis

H: 𝛼i + bz̄i. equal for all i. (36)

The bz̄i. in (36) are derived from (X′X)−X′Zb of (17) in the same that a◦ of
(32) was derived. This hypothesis represents equality of the 𝛼’s adjusted for the
observed z’s.

To derive the equivalent of Table 8.3b for the one-way classification covariance
model, notice first that whenever there is only a single vector as Z, then in Table 8.3b

y′ = SSTm,yz and  ′ = SSTm,zz.

Hence,

R(b|𝜇) =

(
SSTm,yz

)2

SSTm,zz
.

As a result, Table 8.3b simplifies to Table 8.4b.

TABLE 8.4b Analysis of Variance for Fitting the Class Effects After the Covariate in
the One-Way Classification Covariance Model yij = 𝝁+ 𝜶i + bzij + eij

Source of Variation d.f. Sum of Squares

Mean 1 R(𝜇) = SSMyy

Covariate (after mean) 1 R(b|𝜇) =
(
SSTm,yz

)2

SSTm,zz

𝛼-classes (after mean
and covariates)

c − 1 R(𝛼|𝜇, b) = SSRm,yy +
(
SSEy,z

)2

SSEzz

−
(
SSTm,yz

)2

SSTm,zz

Residual error N − c − 1 SSE = SSEyy − R(b|𝜇, 𝛼)

Total N SSTyy
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We can derive F-statistic for testing

H: 𝛼i equal for all i

by writing the hypothesis as K′a = 0 and using the general result for Q given below
(15). A possible value for K′ would be K′ = [01c−1 1c−1 − Ic−1].

An easier development would be to consider the reduced model arising from the
hypothesis itself, namely

yij = (𝜇 + 𝛼) + bzij + eij. (37)

This is a model for simple regression, for which the estimator of b is, from equation
(14) of Chapter 3

b̃ =

c∑

i=1

ni∑

j=1
yijzij − Nȳz̄

c∑

i=1

ni∑

j=1
z2

ij − Nz̄2

=
SSTm,yz

SSTm,zz
. (38)

The reduction in the sum of squares for fitting (37) is therefore, using Table 3.3 of
Chapter 3

R(𝜇, b) = Nȳ2 + b̃SSTm,yz

= SSMyy +

(
SSTm,yz

)2

SSTm,zz
.

(39)

The full model is (25), with the reduction in sum of squares being, from Table 8.4a

R(𝜇, 𝛼, b) = SSMyy + SSRm,yy + R(b|𝜇, 𝛼). (40)

The F-statistic for testing H: all 𝛼’s equal in the model (25) has numerator

Q = R(𝜇, 𝛼, b) − R(𝜇, b). (41)

Using (34), (38), and (39), this becomes Q = R(𝛼|𝜇, b) of Table 8.4b. Tables similar
to 8.4a and 8.4b are to be found in many places; for example, Federer (1955, p. 486),
Graybill (1961, pp. 385 and 393), and Montgomery ((2005) pp. 577–578).

(ii) Example.

Example 1 Relationship between Number of Children and Investment Index for
Men of Different Levels of Education In Section 2 of Chapter 6, we considered
an example that compared the investment indices for men of three different levels of
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TABLE 8.5 Investment Index and Number of Children for Seven Men

High School Incomplete High School Graduate College Graduate

Index, y1j Children, z1j Index, y2j Children, z2j Index, y3j Children, z3j

74 3 76 2 85 4
68 4 80 4 93 6
77 2

219 9 156 6 178 10

education. The levels were high school incomplete, high school graduate and college
graduate. We consider this example again introducing a covariate, the number of
children in each family. We consider hypothetical data in Table 8.5 where the y-
values (investment index) are the same as in Table 6.1.

We may calculate the following basic sums of squares from Table 8.5.

SSRyy = 43,997 SSRzz = 95 SSRyz = 2015
SSEyy = 82 SSEzz = 6 SSEyz = 3
SSTyy = 44,079 SSTzz = 101 SSTyz = 2018
SSMyy = 43,687 SSMzz = 89.2857 SSMyz = 1975

We shall use these numbers in the ensuing calculations.
From (33), we obtain the pooled regression estimate

b̂ = 3
6
= 1

2
= 0.5 (42)

For a◦ of (32), we need a∗ of (27). From (34) of Chapter 6, we have

a∗′ = [0 73 78 89]. (43)

Hence from (32) and Table 8.5,

a◦ =
⎡
⎢
⎢
⎢
⎣

0
73
78
89

⎤
⎥
⎥
⎥
⎦

− 0.5

⎡
⎢
⎢
⎢
⎣

0
3
3
5

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

0
71.5
76.5
86.5

⎤
⎥
⎥
⎥
⎦

. (44)

The analysis of variance in Table 8.4a uses

R(𝜇) = SSMyy = 43,687
R(𝜇, 𝛼) = SSRyz = 43,997

R(b|𝜇, 𝛼) = SSRB = 32

6
= 1.5

(45)
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TABLE 8.6a Example of Table 8.4a: Data of Table 8.5

Source of Variation d.f. Sum of Squares

Mean 1 R(𝜇) = 43,687
𝛼-classes (after mean) 2 R(𝛼|𝜇) = 310
Covariate (pooled within-class regression) 1 R(b|𝜇, 𝛼) = 1.5
Residual error 3 SSE = 80.5

Total 7 SSTyy = 44,079

from (34). Hence, the results in Table 8.4a become those in Table 8.6a. It can be
checked that R(a, b) of the general case, R(𝜇, 𝛼, 𝛽) here, is

R(𝜇, 𝛼, b) = R(a, b) = a◦
′
X′y + b̂Z′y

= 71.5(219) + 76.5(156) + 86.5(178) + 0.5(2018)

= 43,998.5

= 43,687 + 310 + 1.5 of Table 8.6a

= SSMyy + SSRm,yy + SSRB of Table 8.4a

as should be the case.
We can use F-statistics available in Table 8.6a for testing hypotheses. From (35),

F1,3 =
1.5∕1

80.5∕3
= 0.06 tests H: b = 0.

From (36),

F2,3 =
310∕2

80.5∕3
= 5.8 tests H: 𝛼1 + 3b = 𝛼2 + 3b = 𝛼3 + 5b.

Since neither of these F-values exceeds the corresponding 5% critical values of 10.13
and 9.55, respectively, we fail to reject both hypotheses.

To calculate Table 8.4b, we get using the basic sums of squares and sums of
products,

R(b|𝜇) = (2018 − 1975)2

(101 − 89.2857)
= 157.8

Hence, by subtraction from the sum of the two terms in Table 8.6a,

R(𝛼|𝜇, b) = 310 + 1.5 − 157.8 = 153.7.

Then the results in Table 8.4b become those of Table 8.6b. Since

F2,3 = R(𝛼|𝜇, b)
2(80.5)∕3

= 153.7(3)
161

= 2.86

is less than the corresponding 5% critical value of 9.55, we fail to reject the hypothesis
H: 𝛼1 = 𝛼2 = 𝛼3 in the covariate model.
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TABLE 8.6b Example of Table 8.4b: Data of Table 8.5

Source of Variation d.f. Sum of Squares

Mean 1 R(𝜇) = 43,687
Covariate (after mean) 1 R(b|𝜇) = 157.8
𝛼-classes (after mean and covariate) 2 R(𝛼|𝜇, b) = 153.7
Residual error 3 SSE = 80.5

Total 7 SST = 44,079

The following is R output for the above example.

> index<-c(74,68,77,76,80,85,93)
> kids<-c(3,4,2,2,4,4,6)
> edu<-c("a","a","a","b","b","c","c")
> result1<-lm(index~kids+edu)
> result2<-lm(index~edu+kids)
> anova(result1)
Analysis of Variance Table

Response: index
Df Sum Sq Mean Sq F value Pr(>F)

kids 1 157.84 157.841 5.8823 0.09372 .
edu 2 153.66 76.829 2.8632 0.20157
Residuals 3 80.50 26.833
- - -
Signif. codes: 0 ‘∗∗∗’ 0.001 ‘∗∗’ 0.01 ‘∗’ 0.05 ‘.’ 0.1 ‘ ’ 1
> anova(result2)
Analysis of Variance Table

Response: index
Df Sum Sq Mean Sq F value Pr(>F)

edu 2 310.0 155.000 5.7764 0.0936 .
kids 1 1.5 1.500 0.0559 0.8283
Residuals 3 80.5 26.833
—
Signif. codes: 0 ‘∗∗∗’ 0.001 ‘∗∗’ 0.01 ‘∗’ 0.05 ‘.’ 0.1 ‘ ’ 1
> summary(result1)
SAS output follows.

The SAS System
The GLM Procedure

Class Level Information
Class Levels Values
edu 3 1 2 3
Number of Observations Read 7
Number of Observations Used 7
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The SAS System
The GLM Procedure

Dependent Variable: index

Source DF Sum of Squares Mean Square F Value Pr > F
Model 3 311.5000000 103.8333333 3.87 0.1479
Error 3 80.5000000 26.8333333
Corrected Total 6 392.0000000
R-Square Coeff Var Root MSE index Mean
0.794643 6.557076 5.180090 79.00000
Source DF Type I SS Mean Square F Value Pr > F
kids 1 157.8414634 157.8414634 5.88 0.0937
edu 2 153.6585366 76.8292683 2.86 0.2016
Source DF Type III SS Mean Square F Value Pr > F
kids 1 1.5000000 1.5000000 0.06 0.8283
edu 2 153.6585366 76.8292683 2.86 0.2016

The SAS System
The GLM Procedure

Class Level Information
Class Levels Values
edu 3 1 2 3
Number of Observations Read 7
Number of Observations Used 7

The SAS System
The GLM Procedure

Dependent Variable: index

Source DF Sum of Squares Mean Square F Value Pr > F
Model 3 311.5000000 103.8333333 3.87 0.1479
Error 3 80.5000000 26.8333333
Corrected Total 6 392.0000000
R-Square Coeff Var Root MSE index Mean
0.794643 6.557076 5.180090 79.00000
Source DF Type I SS Mean Square F Value Pr > F
edu 2 310.0000000 155.0000000 5.78 0.0936
kids 1 1.5000000 1.5000000 0.06 0.8283
Source DF Type III SS Mean Square F Value Pr > F
edu 2 153.6585366 76.8292683 2.86 0.2016
kids 1 1.5000000 1.5000000 0.06 0.8283



464 SOME OTHER ANALYSES

Code

Data investment;
Input index kids edu;
Cards;
74 3 1
68 4 1
77 2 1
76 2 2
80 4 2
85 4 3
93 6 3
proc glm;
class edu;
model index=kids edu;
proc glm;
class edu;
model index =edu kids;
run;

□

(iii) The Intra-Class Regression Model. In (25), we applied the general procedure
for covariance analysis to the one-way classification with a solitary covariate and
a single regression coefficient b. We now show how the general procedure applies
when the covariate occurs in the model in some fashion other than the simple case
of (25). We consider one alternative (an easy one). In all three cases, a∗ and R(a) are
the same for the model (25).

The model based on (25) assumes the same regression slope for all classes. This
need not necessarily be the case. One possible alternative is the model

yij = 𝜇 + 𝛼i + bizij + eij (46)

where there is a different regression for each class. We call this an intra-class regres-
sion model.

The general procedure proceeds quite straightforwardly for this model. Compared
to (25), a∗ and R(a) remain the same but b and Z are changed. The vector b is that of
the regression slopes and Z is an N × c matrix. We have that

Z =

⎡
⎢
⎢
⎢
⎢
⎣

z1 0 ⋯ 0

0 z2 ⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ zc

⎤
⎥
⎥
⎥
⎥
⎦

= D{zi} =
c∑

i=1

+zi, (47)

for zi being the vector of ni observed z’s in the ith class.
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Applying to each column of Z in (47) the derivation of the corresponding vector
of residuals shown in (29) for y, it follows that Rz of (20) is

Rz =
⎡
⎢
⎢
⎢
⎣

z1 − z̄1.1n1
0 ⋯ 0

0 z2 − z̄2.1n2
⋯ 0

⋮ ⋮ ⋱ ⋮
0 0 ⋯ zc − z̄c.1nc

⎤
⎥
⎥
⎥
⎦

=
c∑

i=1

+(zi − z̄i.1ni
). (48)

Hence for b̂ of (22), R′
zRz is the diagonal matrix

R′
zRz = D{(zi − z̄i.1ni

)′(zi − z̄i.1ni
)}

= D

{ ni∑

j=1

z2
ij − niz̄

2
i.

}

for i = 1, 2,… , c.

Similarly,

R′
zy = {(zi − z̄i.1ni

)′yi}

=

{ ni∑

j=1

yijzij − niȳi.z̄i.

}

for i = 1, 2,… , c.

Define

(SSEzz)i =
ni∑

j=1

z2
ij − niz̄

2
i. and (SSEyz)i =

ni∑

j=1

yijzij − niȳi.z̄i.. (49)

Using the two expressions between (48) and (49), we then have

R′
zRz = D{(SSEzz)i} and R′

zy = D{(SSEyz)i} (50)

so that

b̂ = (R′
zRz)−1R′

zy =
{ (SSEyz)i

(SSEzz)i

}

.

Coordinate-wise, we have

b̂i =
(SSEyz)i

(SSEzz)i
, for i = 1, 2,… , c. (51)

Then with a∗ of (27), we get a◦ from (23) as

a◦ =
[
𝜇◦

{𝛼◦i }

]

=
[

0
{ȳi. − b̂iz̄i.}

]

for i = 1, 2,… , c (52)
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Thus, from (51), we see that b̂i is the within-class regression estimator of y on z
within the ith class and 𝛼◦i in (52) is the corresponding intercept estimator for that
class. Notice, too, from the definitions in (49) and the result in (51), that the sums
of the numerators and denominators of the b̂i are, respectively, the numerator and
denominator of the pooled within-class estimator of (33).

For the model (46), we have

R(𝜇, 𝛼) = R(a) =
c∑

i=1

y2
i.

ni
= SSRyy

as before in (28). From (22), using (50) and (51) we have

R(b|𝜇, 𝛼) = b̂′R′
zy =

c∑

i=1

(SSEyz)
2
i

(SSEzz)i
. (53)

We may use these reductions in the analysis of variance to fit the model (46), along
the lines of Table 8.3a. However, it is more instructive to also incorporate Table 8.4a
and establish a test of hypothesis H: all bi’s equal for the model (46). This is achieved
by subtracting R(b|𝜇, 𝛼) of Table 8.4a from R(b|𝜇, 𝛼) of (53). Thus,

R(b|𝜇, 𝛼) − R(b|𝜇, 𝛼)

is the numerator for testing H: all bi’s equal in the model (46). The complete analysis
is shown in Table 8.7.

If we estimate 𝜎2 by

�̂�2 = SSE
N − 2c

TABLE 8.7 Analysis of Variance for Fitting the Model yij = 𝝁+ 𝜶i + bizij + eij for the
One-Way Classification

Source of Variation d.f. Sum of Squares

Mean 1 R(𝜇) = SSMyy

𝛼-classes (after mean) c − 1 R(𝛼|𝜇) = SSRm,yy

Covariate (within-class) c R(b|𝜇, 𝛼) =
c∑

i=1

(SSEyz)
2
i

(SSEzz)i

Pooled 1 R(b|𝜇, 𝛼) =
(SSEyz)

2

SSEzz
Difference (H: bi’s equal) c − 1 R(b|𝜇, 𝛼) − R(b|𝜇, 𝛼)
Residual error N − 2c SSE = SSEyy − R(b|𝜇, 𝛼)

Total N SSTyy
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we can use the F-statistic

F = R(b|𝜇, 𝛼) − R(b|𝜇, 𝛼))

(c − 1)�̂�2
(54)

to test H: all bi’s equal. Failure to reject this hypothesis can lead to estimating the
pooled b as in (33). The F-statistic based on (40) then provides a test, under the
assumption of equal bi’s of the hypothesis that the 𝛼i’s are equal. The statistic

F = R(b|𝜇, 𝛼)

�̂�2
(55)

is also available for testing that this pooled b is zero. Of course, using it conditionally
in this manner, conditional of (54) not being statistically significant changes the
nominal probability level of any critical value used for (55) from that customarily
associated with it.

When the hypothesis H: all bi’s equal is rejected, one can develop a test of
hypothesis H: all 𝛼i’s equal. However, the interpretation of equal 𝛼’s and unequal
b’s, that is, of equal intercept and unequal slopes, is often not easy. It implies a
model in the form of a pencil of regression lines through the common intercept.
Development of the test is left to the reader. In this case, hypothesis in (17) takes the
form

H: 𝛼i + biz̄i. equal for all i.

The F-statistic for testing this hypothesis is

F = R(𝛼|𝜇)

(c − 1)�̂�2
.

(iv) Continuation of Example 1.

Example 2 Estimates for Intra-class Regression Model We can estimate the
within-class regression slopes from (51) using the Table 8.5 data. We obtain

b̂1 = −4.5, b̂2 = 2 and b̂3 = 4.

From substitution into (49) and (53), we get

R(b|𝜇, 𝛼) = (−9)2

2
+ 42

2
+ 82

2
= 80.5

Hence,

SSE = SSEyy − R(b|𝜇, 𝛼) = 82 − 80.5 = 1.5.
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TABLE 8.8 Example of Table 7.7: Data of Table 8.5 (See Table 8.6a Also)

Source of Variation d.f. Sum of Squares

Mean 1 R(𝜇) = 43,687
𝛼-classes (after mean) 2 R(𝛼|𝜇) = 310
Covariate (within class) 3 R(b|𝜇, 𝛼) = 80.5
Pooled 1 R(b|𝜇, 𝛼) = 1.5
Difference 2 Difference = 79
Residual error 1 SSE = 1.5
Total 7 SST = 44,079

Table 8.7 therefore becomes Table 8.8 (based on Table 6.6a). The residual error sum
of squares is very small in this example. This is because two of the classes for which
the within-class regressions have been estimated have only two sets of observations
(see Table 8.5). As a result, the estimation for these two classes is a perfect fit. The
only contribution to the residual error is from the one class having three observations.
Table 8.5, of course, is not a statistically interesting example. Its sole purpose is to
illustrate the derivation of the analysis.

Here are R and SAS outputs showing the sum of squares breakdown for the three
covariates.

> index<-c(74,68,77,76,80,85,93)
> edu<-c("a","a","a","b","b","c","c")
> kids1<-c(3,4,2,0,0,0,0)
> kids2<-c(0,0,0,2,4,0,0)
> kids3<-c(0,0,0,0,0,4,6)
> result<-lm(index~edu+kids1+kids2+kids3)
> anova(result)
> summary(result)
Analysis of Variance Table

Response: index
Df Sum Sq Mean Sq F value Pr(>F)

edu 2 310.0 155.0 103.3333 0.06939 .
kids1 1 40.5 40.5 27.0000 0.12104
kids2 1 8.0 8.0 5.3333 0.26015
kids3 1 32.0 32.0 21.3333 0.13574
Residuals 1 1.5 1.5
- - -
Signif. codes: 0 ‘∗∗∗’ 0.001 ‘∗∗’ 0.01 ‘∗’ 0.05 ‘.’ 0.1 ‘ ’ 1

data investment;
input index edu kids1 kids2 kids3;
cards;
74 1 3 0 0
68 1 4 0 0
77 1 2 0 0



COVARIANCE 469

76 2 0 2 0
80 2 0 4 0
85 3 0 0 4
93 3 0 0 6
proc glm;
class edu;
model index=edu kids1 kids2 kids3;
estimate 'kids1=0' kids1 1;
estimate 'kids2=0' kids2 1;
estimate 'kids3=0' kids3 1;
run;

The SAS System
The GLM Procedure

Class Level Information
Class Levels Values
edu 3 1 2 3
Number of Observations Read 7
Number of Observations Used 7

The SAS System
The GLM Procedure

Dependent Variable: index
Source DF Sum of Squares Mean Square F Value Pr > F
Model 5 390.5000000 78.1000000 52.07 0.1048
Error 1 1.5000000 1.5000000
Corrected Total 6 392.0000000
R-Square Coeff Var Root MSE index Mean
0.996173 1.550310 1.224745 79.00000
Source DF Type I SS Mean Square F Value Pr > F
edu 2 310.0000000 155.0000000 103.33 0.0694
kids1 1 40.5000000 40.5000000 27.00 0.1210
kids2 1 8.0000000 8.0000000 5.33 0.2601
kids3 1 32.0000000 32.0000000 21.33 0.1357
Source DF Type III SS Mean Square F Value Pr > F
edu 2 28.34210526 14.17105263 9.45 0.2242
kids1 1 40.50000000 40.50000000 27.00 0.1210
kids2 1 8.00000000 8.00000000 5.33 0.2601
kids3 1 32.00000000 32.00000000 21.33 0.1357
Parameter Estimate Standard Error t Value Pr > |t|
kids1=0 −4.50000000 0.86602540 −5.20 0.1210
kids2=0 2.00000000 0.86602540 2.31 0.2601
kids3=0 4.00000000 0.86602540 4.62 0.1357

The estimates of the bi are given above in the SAS output. □
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Class 1

Class 2

y

z
z0

FIGURE 8.1 Estimated Regression Lines of y on z for Two Classes

(v) Another Example.2 Consider the case of just two classes in a one-way clas-
sification. Then R(𝛼|𝜇) reduces to n1n2(ȳ1. − ȳ2.)

2∕n. and tests the hypothesis
H: 𝛼1 + b1z̄1 = 𝛼2 + b2z̄2. Suppose that the observed means of the two classes are
the same, ȳ1. = ȳ2., or nearly so.

Then R(𝛼,𝜇) = 0 and we fail to reject the hypothesis. However, we must not draw
the conclusion that there is no significant difference between the classes at other
values of z.

Differences between 𝛼1 + b1z and 𝛼2 + b2z may be very real for certain values of
z. Suppose, for example, that the estimated regression lines have the appearance of
Figure 8.1. For certain values of z greater than z0, the adjusted value of y for class 2
might be significantly greater than that for class 1. Similarly, for certain values of z
less than z0, the mean adjusted y-response for class 2 may be significantly less than
class 1. A numerical illustration of this is provided in Exercise 3.

c. The Two-Way Classification (With Interaction)

The purpose of this section is to briefly indicate how to apply the results of the
preceding sub-sections 2a and 2b of the present chapter to the two-way classifications
(with interaction). We do this in a similar manner to the application for the one-way
classification.

The starting point will be a∗ and R(a) for the no-covariate two-way classification
(with interaction) model. Recall the discussion of this model in Section 2 of Chapter 7.
From equations (55) and (61) of Chapter 7

a∗ =
[

0
ȳ

]

and R(a) =
c∑

i=1

b∑

j=1

y2
ij

nij
, (56)

2 S. R. Searle is grateful to E. C. Townsend for bringing this to his notice.
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where ȳ is the vector of cell means ȳij.. We also have

yijk − ŷijk = yijk − ȳij. (57)

as a typical element in the vector of residuals for fitting the no-covariate model. It
defines the basis for defining Rz, whose columns are the vectors of residuals that we
obtain from the column of Z.

A frequently seen model for covariance in the two-way classification is

yijk = 𝜇 + 𝛼i + 𝛽j + 𝛾ij + bzijk + eijk. (58)

Often, we just consider the no-interaction case with 𝛾ij omitted. Sometimes the
covariate takes the form b(zij − z̄) rather than bzijk. (See, for example, Federer (1955,
p. 487) and Steel and Torrie (1960, p. 309).) The form bzijk seems preferable because
then the equation of the model does not involve a sample (i.e., observed) mean. This
is appropriate because models should be in terms of population parameters and not
observed samples. Moreover, the form bzijk is more tractable for the general procedure
considered earlier, especially if we consider models more complex than (58).

Although (58) is the most commonly occurring model for handling a covariate
in the two-way classification, we can also consider other models. The model (58)
assumes the same regression slope for all of the cells. The model

yijk = 𝜇 + 𝛼i + 𝛽j + 𝛾ij + bizijk + eijk (59)

assumes different slopes for each level of the 𝛼-factor. Likewise, the model

yijk = 𝜇 + 𝛼i + 𝛽j + 𝛾ij + bjzijk + eijk (60)

assumes a different slope for each level of the 𝛽-factor. Both of the models

yijk = 𝜇 + 𝛼i + 𝛽j + 𝛾ij + (bi + bj)zijk + eijk (61)

and

yijk = 𝜇 + 𝛼i + 𝛽j + 𝛾ij + bijzijk + eijk (62)

assume different slopes for each (i, j)-cell.
We can handle each of the five models (58)–(62) by the general method based on

a∗ and R(a) of (56), and on deriving each column of Rz from the procedure indicated
in (57). We determine the exact form of Z in the general model (6) from the form of
the b-coefficients in (58)–(62). For example, in (58) Z is an N × 1 vector, of all the
observed z’s. In (59) for c levels of the 𝛼-factor, it is an N × c matrix of the same form
as (48). We can determine the form of Z for the other models for the b-coefficients
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(see Exercise 4). We can use the analyses of variance of Tables 8.3a and 8.3b for all
of the models (58)–(62).

We can fit the different models in (58)–(62) by using Table 8.4a in the same way
that it was used to develop Table 8.7 when fitting yij = 𝜇 + 𝛼i + bizij + eij after having
fitted yij = 𝜇 + 𝛼i + bzij + eij. For each of (58)–(62), we calculate R(a) as in (56). It
represents R(𝜇, 𝛼, 𝛽, 𝛾). We can partition this in either of the two ways indicated in
Table 7.8. We derive the hypotheses corresponding to these partitionings, using (17),
from the hypotheses tested in the no-covariate model discussed in Sections 2f(ii)–
2f(v) of Chapter 7. (In no-interaction analogues of (58)–(62), R(a) of Table 8.3a is
R(𝜇, 𝛼, 𝛽) of (26) in Chapter 7 and can be partitioned as indicated in Table 7.3.)
Details, although lengthy, are quite straightforward. We provide a numerical example
in Exercise 4.

Covariance procedures for multiple covariates are simple extensions of the meth-
ods for one covariate and follow the general procedures discussed above.

The example below indicates why including a covariate may be important in some
analyses.

Example 3 An Illustration of the Importance of the Covariate for Some Analyses
An experiment was conducted to evaluate the effects of environmental enrichment
on intellectual development. The researcher manipulated two levels of an environ-
mental complexity variable (A), and three levels of an age variable (B). Randomly
sampled groups of rats were exposed to either a1 or a2 at three ages (b1, b2, and b3,
respectively).

As adults, they were tested in a discrimination-learning task (Y). The researcher
was concerned that alertness to visual stimulation might be a covariate of influence
in the learning task. For this reason, the researcher took a measure (X) of visual
attentiveness prior to the treatment. The data below are from page 839 of Winer,
Brown and Michels (1991) with kind permission of Mc Graw Hill.

Age

b1 b2 b3

Complexity X Y X Y X Y

45 100 35 90 55 95
40 85 45 105 45 90

a1 45 100 50 90 45 95
55 110 45 95 35 85
50 105 45 95 45 90

55 105 55 105 50 100
35 100 35 95 35 90

a2 40 100 45 100 30 80
50 115 50 95 55 110
35 90 45 100 40 90
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An SAS output follows.

The GLM Procedure
Class Level Information
Class Levels Values
complex 2 1 2
age 3 1 2 3
Number of Observations Read 30
Number of Observations Used 30

The GLM Procedure
Dependent Variable: y

Source DF Sum of Squares Mean Square F Value Pr > F
Model 6 1295.775058 215.962510 7.90 0.0001
Error 23 628.391608 27.321374
Corrected Total 29 1924.166667
R-Square Coeff Var Root MSE y Mean
0.673421 5.397919 5.226985 96.83333
Source DF Type I SS Mean Square F Value Pr > F
complex 1 67.5000000 67.5000000 2.47 0.1297
age 2 361.6666667 180.8333333 6.62 0.0054
complex∗age 2 5.0000000 2.5000000 0.09 0.9129
x 1 861.6083916 861.6083916 31.54 <.0001
Source DF Type III SS Mean Square F Value Pr > F
complex 1 136.2838655 136.2838655 4.99 0.0355
age 2 267.8252313 133.9126156 4.90 0.0169
complex∗age 2 12.4182904 6.2091452 0.23 0.7985
x 1 861.6083916 861.6083916 31.54 <.0001

Notice that the complexity is not statistically significant, whereas the age and the
covariate are highly significant. Interaction is not significant. Fitting the covariate
first, we get

The GLM procedure
Class Level Information
Class Levels Values
complex 2 1 2
age 3 1 2 3
Number of Observations Read 30
Number of Observations Used 30
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The GLM Procedure
Dependent Variable: y

Source DF Sum of Squares Mean Square F Value Pr > F
Model 6 1295.775058 215.962510 7.90 0.0001
Error 23 628.391608 27.321374
Corrected Total 29 1924.166667
R-Square Coeff Var Root MSE y Mean
0.673421 5.397919 5.226985 96.83333
Source DF Type I SS Mean Square F Value Pr > F
x 1 875.2924217 875.2924217 32.04 <.0001
complex 1 138.3768433 138.3768433 5.06 0.0343
age 2 269.6875029 134.8437514 4.94 0.0165
complex∗age 2 12.4182904 6.2091452 0.23 0.7985
Source DF Type III SS Mean Square F Value Pr > F
x 1 861.6083916 861.6083916 31.54 <.0001
complex 1 136.2838655 136.2838655 4.99 0.0355
age 2 267.8252313 133.9126156 4.90 0.0169
complex∗age 2 12.4182904 6.2091452 0.23 0.7985

Given the covariate, we see that both complexity and age are statistically significant.
Thus, the results of the analysis are affected by the covariate. □

3. DATA HAVING ALL CELLS FILLED

Analysis of unbalanced data is more difficult than that of balanced data, for the very
reason that such data are unbalanced. Often interpretation of the analyses is more
difficult. Sometimes, if the unbalanced data are not too far from being balanced, the
difficulties may be avoided. In such cases, it is sometimes possible to make minor
modifications in the data so as to be able to use a balanced data analysis. The decision
whether or not to do this depends on the answer to the following question. When
are unbalanced data “not too far removed” from being balanced data? It is highly
unlikely that a satisfactory answer to this question can be given. Nevertheless, the
advantages of using a balanced data analysis are so great that one would like to use
then whenever feasible. Balanced data analyses are much more easily carried out and
interpreted in comparison with analogous unbalanced data analyses.

The disadvantage of modifying unbalanced data so as to be able to use a bal-
anced data analysis is that in doing so it introduces a measure of approximation into
the analysis. The degree of the approximation depends on the extent to which the
unbalanced data have been modified to permit the balanced analysis. However, with
the advantages of balanced data analysis being so attractive they may, on occasion
outweigh the disadvantage of some degree of approximation if this approximation
may be deemed small. We outline instances in which this might be so, below. To
simplify presentation, we use examples for the two-way crossed classification.
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TABLE 8.9 nij-Values

6 6 5
6 6 6

a. Estimating Missing Observations

If all the nij’s except a few are the same, it is often reasonable to estimate missing
observations. For example, suppose with two rows and three columns, the number
of observations are as shown in Table 8.9. Data of this nature often arise from what
set out to be a planned experiment (in Table 8.9 of six observations per cell) and
ended up with a few observations missing. Such data are unbalanced, but so slightly
as to render the temptation of making them balanced irresistible. We can accomplish
this by estimating the missing observations. In this case, we need to estimate one
observation for the cell in the first row and the third column. One way to do this is to
suppose that u, say, represents the missing observation and choose u so as to minimize
the residual sum of squares. If there were no missing values, n13 would have been
six instead of five. For an interactions model (see equation (61) of Chapter 7) would
have then been

SSE =
2∑

i=1

3∑

j=1

6∑

k=1

y2
ijk −

1
6

2∑

i=1

3∑

j=1

y2
ij..

For the missing value data with u representing the missing value, we would have for
the residual,

SSE =
2∑

i=1

2∑

j=1

6∑

k=1

y2
ijk +

6∑

k=1

y2
23k +

5∑

k=1

y2
13k + u2

− 1
6

[
2∑

i=1

2∑

j=1

y2
ij. + y2

23. + (y13. + u)2

]

.

In order to minimize this quantity, we obtain 𝜕(SSE)∕𝜕u, set it equal to zero, and
solve for u in terms of the observations in SSE.

𝜕(SSE)
𝜕u

= 2u − 1
3

(y13. + u) = 0.

The solution to the above equation is

u = 1
5

5∑

k=1

y13k = ȳ13..

The second derivative of SSE is 5/3 > 0 so that SSE is indeed minimized. As a result,
the missing observation in the (1, 3) cell is estimated by the mean of the observations
that are there.
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Of course, the form of the results arising from such a process depends on the
model used. This determines the residual sum of squares. Had the model for the data
of Table 8.9 been that of no interaction, the error sum of squares would have been
(see Section 1 of Chapter 7)

2∑

i=1

2∑

j=1

6∑

k=1

y2
ijk +

6∑

k=1

y2
23k + u2 − 1

18

[
(y1.. + u)2 + y2

2..

]

− 1
12

[
y2
.1 + y2

.2 + (y.3. + u)2] + 1
36

(y... + u)2.

Minimization with respect to u of the analogous quantity for the general case of a
rows, b columns, and n observations per cell in all cells except one the (i, j)th cell to

uij =
axi.. + bx.j. − x...

ab(n − 1) + (a − 1)(b − 1)
. (63)

Equation (63) is equivalent to the result given by Federer (1955, p, 134, equation
V-52) for n = 1. Federer also gives results for more than one missing observation
when n = 1. (These are the procedures referred to at the beginning of Section 1 of
Chapter 7.)

Bartlett (1937) presents a generalization of the above procedure that depends on
a covariance technique. For the model y = Xa + Zb + e, this involves doing the
following:

(i) in y, include each missing observation as an observation of zero;

(ii) in b, include, negatively, a parameter for each missing observation;

(iii) in Z, have one column for each parameter mentioned in (ii), all entries
being zero except for a single unity corresponding to the y-value of zero
specified in (i).

One will find that the normal equations of this covariate model are satisfied by
the estimated missing observations derived by minimizing residual sums of squares
as derived earlier. For example, for the data of Table 8.9 (without row-by-column
interactions) has the following normal equations:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

36 18 18 12 12 12 1
18 18 0 6 6 6 1
18 0 18 6 6 6 0
12 6 6 12 0 0 0
12 6 6 0 12 0 0
12 6 6 0 0 12 1
1 1 0 0 0 1 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜇◦

𝛼◦1
𝛼◦2
𝛽◦1
𝛽◦2
𝛽◦3
−u◦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y..
y1..
y2..
y.1.
y.2.
y.3.
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(64)
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The reader may show in Exercise 5 that the appropriate form of (63) is a solution to
(64). This procedure leads to the same results as minimizing residual sums of squares.
However, it is often computationally much easier because it can be applied directly
by means of analysis of covariance procedures (see Section 2).

Rao and Toutenburg (1999) call attention to a procedure suggested by Yates (1933).
Suppose we have what would be a balanced model with t missing observations.

He suggests that we reorganize the data matrix according to

[
yobs
ymis

]

=
[

Xub
X∗

]

𝛽 +
[
𝜀ub
𝜀∗

]

The Xub would represent the levels of the missing values for the unbalanced model we
would use without the missing observations. The X∗ would correspond to the entries
in the design matrix for the balanced model that would correspond to the missing
y values. Now find the least-square estimator for the unbalanced model using any
generalized inverse of X′

ubXub. Then,

bub = (X′
ubXub)−X′

ubyobs.

We may now replace the missing value by

ŷmis = X∗bub.

The reader may establish the equivalence of this method to the one considered above.
Rao and Toutenburg (1999) also suggest using a shrinkage estimator of the James–

Stein type (see Gruber (1998)). It takes the form

ŷmis =

(

1 −
k�̂�2

ub

(Nub − m + 2)b′
ubX′

ubXubbub

)

X∗bub.

We use estimates of missing observations just as if they were data. There is,
however, one change that must be made in the balanced data analysis of the combined
data (observed and missing). The degrees of freedom for the residual error sum of
squares are calculated as for balanced data and then reduced for the number of missing
observations that have been estimated. Thus in an interaction analysis of data like
those in Table 8.9, the residual sum of squares for six observations in every cell would
be 6(5) = 30. However, with one estimated missing observation, it is reduced to 29.

Example 4 A Word of Caution Sometimes the method of minimizing the residual
sum of squares can lead to replacement values that are not in keeping with the physical
nature of the problem being solved. We give an example of this.

Consider the data in Table 7.1. We denote the missing observation for pan make A
and brand of stove Y by u, for pan make B and stove brand Y by v, and for pan make
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B and brand of stove Z by w. Now consider minimizing the residual sum of squares.

r(u, v, w) = 1728 + u2 + v2 + w2 + 1
12

(108 + u + v + w)2

− 1
3

[3645 + (9 + u + v)2 + (18 + w)2]

− 1
4

[4356 + (27 + u)2 + (15 + v + w)2]

After differentiation and algebraic simplification, we get the equations

1
6

(−9 + 6u − 3v + w) = 0

9
2
− u

2
+ v − w

3
= 0

1
6

(−9 + u − 2v + 6w) = 0.

The solution to this system of equations is u = –1, v = –5, and w = 0. However,
the data values are the number of seconds beyond three minutes taken to boil two
quarts of water. A negative value would indicate that the water boiled in less than
three minutes. Observe that v = –5 does not fit the physical nature of the problem
if we assume that we started at the same temperature for each pan make and stove
brand. □

b. Setting Data Aside

If the numbers of observations in the sub-most cells differ from each other by only a
few, it might not be unreasonable to randomly set aside data from appropriate cells in
order to reduce all cells to having the same number of observations in each. Data so
reduced can then readily be analyzed as balanced data. For example, in data having
the nij values of Table 8.10, it might be reasonable to randomly set aside observations
in order to reduce each cell to 11 observations. This method has some disadvantages.
There is inevitable indecisiveness implicit in the suggestion of doing this only when
the nij differ “by only a few.” It begs the question “What is a few?” There is no clear-
cut answer to this question. All one can say is that the method might be tolerable
for nij-values like those in Table 8.10, but not for some like those in Table 8.11. To
employ this method for data in Table 8.11, too many data points would have to be set
aside. Of course, we have the argument that we should never set any data aside. That
is so, except that all good rules have their exceptions. If we believe that balanced
data analyses are preferred over those for non-balanced data, it appears to us that
randomly setting aside data in cases having nij like those of Table 8.10 is probably

TABLE 8.10 nij-Values

14 11 13
11 13 15
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TABLE 8.11 nij-Values

10 17 21
19 22 9

not unreasonable—especially if the within-cell variation is small. Even though we
cannot give a clear-cut definition of when to do this and when not to, there will surely
be occasions when doing so seems reasonably safe.

At least on these occasions, it would seem to be an acceptable procedure. After all,
for the person whose data they are, the case of a balanced data analysis is certainly
worthwhile.

This method does not involve discarding data—nor is it described as such—only
setting it aside. After setting the data aside and making the balanced data analysis,
we can return the data and repeat the process. We can make a different random
selection of the data, set it aside and do another balanced analysis. It will of course
not be statistically independent of the first analysis. If the conclusions stemming
from it are different from those of the first analysis, the result is confusion and
not enlightenment. If, when we do further analysis and get additionally different
conclusions, we compound the confusion. This confusion might not arise very often
for cases where only “a few” observations are set aside and within cell variability is
small. Indeed, if such confusion does arise one might suspect that some of the set
aside observations might be outliers and be treated as such. Indeed, outliers should
probably be set-aside in the first place. Nevertheless, this method should be used with
caution. In the worst-case scenario, one can always retreat to the unbalanced data
analysis. Perhaps, after a lot of computer simulation, one might be able to put forth
some “rules of thumb” as to when this method might be appropriate.

c. Analysis of Means

(i) Unweighted Means Analysis. When all sub-most cells are filled, an easily
calculated analysis is to treat the means of those cells as observations and subject
them to a balanced data analysis. This procedure is due to Yates (1934). Of course, this
is only an approximate analysis. As usual, the degree of the approximation depends
on the extent to which the unbalanced data are not balanced.

The calculations for this analysis are straightforward. The method is known as the
unweighted means analysis and proceeds as follows:

Suppose the model for yijk is as in equation (51) of Section 2a of Chapter 7,

yijk = 𝜇 + 𝛼i + 𝛽j + 𝛾ij + eijk.

For each cell, calculate the mean

xij = ȳij. =
nij∑

k=1

yijk

nij
.

Table 8.12 shows the unweighted means analysis.
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TABLE 8.12 Unweighted Means Analysis for a Two-Way Crossed Classification

Source of Variation d.f. Sum of Squares Mean Square

Rows a − 1 SSAu = b
a∑

i=1

(x̄i. − x̄..)
2 MSAu

Columns b − 1 SSBu = a
b∑

j=1

(x̄.j. − x̄..)
2 MSBu

Interaction (a − 1)(b − 1) SSABu =
a∑

i=1

b∑

j=1

(xij − x̄i. − x̄.j. + x̄..)
2 MSABu

Residual Error N − ab SSE =
a∑

i=1

b∑

j=1

n∑

k=1

(yijk − ȳij.)
2 MSE

Several facets of Table 8.12 are worth noting.

1. The means of the xij’s are calculated in the usual manner, for example, x̄i. =
∑b

j=1 xij∕b.

2. The residual error sum of squares, SSE, is exactly as calculated in the model
for yijk of Section 2 of Chapter 7.

3. The sum of squares does not add up to SST =
∑

y2. The first three add to SSAu,
and SSBu, and SSABu add to

∑a
i=1
∑b

j=1 x2
ij − x2

..
∕ab, but all four do not add to

SST.

4. The sums of squares SSAu and SSBu do not have𝜒2-distributions nor are they
independent of SSE.

Expected values of the mean squares are as follows.

E(MSAu) = b
a − 1

a∑

i=1

[𝛼i + �̄�i. − (�̄�. + �̄�..)]2 + nh𝜎
2
e

E(MSBu) = a
b − 1

a∑

i=1

[𝛽j + �̄�.j − (𝛽. + �̄�..)]2 + nh𝜎
2
e

E(MSABu) = 1
(a − 1)(b − 1)

a∑

i=1

b∑

j=1

(𝛾ij − �̄�i. − �̄�.j + �̄�..)2 + nh𝜎
2
e

E(MSE) = 𝜎2
e

(65)

with

1
nh

= 1
ab

a∑

i=1

b∑

j=1

1
nij

,

nh being the harmonic mean of all ab nij’s.
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TABLE 8.13 nij-Values

192 250 175
320 168 270

Since the mean squares of (65) do not have 𝜒2-distributions, their ratios do not
provide F-statistics for testing hypotheses. However, Gosslee and Lucas (1965) sug-
gest that they provide reasonably satisfactory F-statistics using amended degrees of
freedom for the numerator mean squares. For example, the numerator degrees of
freedom suggested for MSAu/MSE is

f ′a =
(a − 1)2

( a∑

i=1
1∕hi.

)2

( a∑

i=1
1∕hi.

)2

+ (a − 2)
a∑

i=1
1∕h2

i.

, (66)

where

hi. =
1
b

b∑

j=1

1
nij

with 1∕hi. being the harmonic mean of the nij’s of the cells of the ith row. The origin
of (66) in Goslee and Lucas (1965) is that of equating the first two moments of
MSAu to the first two moments of a 𝜒2-distribution, in the manner of Section 4i of
Chapter 2. Although these amended degrees of freedom modify MSAu/MSE to be
an approximate F-statistic, we see from (65) that the hypothesis it tests is equality of
𝛼i + �̄�i. for all i. Alternatively, and indeed very reasonably, we can interpret the test as
testing equality of the row effects in the presence of the average interaction effects.
This hypothesis may often be of interest.

The question attaching to any approximate analysis suggested as a substitute
for exact unbalanced analysis remains: when can the unweighted means analysis
be used? As usual there is no decisive answer (apart from requiring trivially that
nij > 0). Since the unweighted means analysis uses cell means as if they were
observations with uniform sampling error, a criterion for using the analysis is to
require that these sampling errors be approximately the same. This demands that
since the sampling error of a cell mean is proportional to 1∕√nij that the values of

1∕√nij are approximately equal. What “equal” in this context means is necessarily

vague. For example, the values of 1∕√nij are approximately equal for the cells of
Table 8.11 and for those of Table 8.13, but not for Table 8.14. Unweighted means

TABLE 8.14 nij-Values

10 17 200
130 22 9
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TABLE 8.15 An Example of Two Rows and Three Columns

Column

Row 1 2 3 Total
1 7 2 3

11 4 9
6

– – –
18(2)9 12(3)4 12(2)6 42(7)6

2 11 15 38
14 16 46
17 19

22
– – –
42(3)14 72(4)18 84(2)42 198(9)22

Total 60(5)12 84(7)12 240(16)15

analyses would therefore seem appropriate for data having the values of Table 8.11

or 8.13 but not for Table 8.14. In Table 8.14, we observe that 1∕
√

9 is more than four

times as large as 1∕
√

200. Maybe a ratio of 2:1 could be tolerated in the values of
1∕√nij, for using an unweighted data analysis, but probably not a ratio as large as
4:1. The appropriate analysis for Table 8.14 is the unbalanced data analysis.

(ii) Example.

Example 5 Numerical Illustration of Unweighted Analysis of Means Suppose
data for two rows and three columns are as shown in Table 8.15. The layout of
data follows the same style as Table 7.6. Each triplet of numbers represents a total
of observations, the number of observations in that total in parenthesis, and the
corresponding mean.

The unweighted analysis of means of this data is based on the cell means, sum-
marized in Table 8.16. Fitting the model

xij = 𝜇 + 𝛼i + 𝛽j + eij

TABLE 8.16 Cell Means of Table 8.15

Column Total

Row 1 2 3
1 9 4 6 19
2 14 18 42 74
Total 23 22 48 93
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TABLE 8.17 Example of Table 8.12: Unweighted Means Analysis of Data of Table 8.15

Source of Variation d.f Sum of Squares

Rows 1 SSAu = 1945.667 − 1441.5 = 504.167
Columns 2 SSBu = 1658.5 − 1441.5 = 217
Interaction 2 SSABu = 2417 − 1945.667 − 1658.5 + 1441.6 = 254.333
Residual error 10 SSE = 114

to the values of Table 8.16 gives

R(𝜇) = 932

6
= 1441.5

R(𝜇, 𝛼) = 192 + 742

3
= 1945.667

R(𝜇, 𝛽) = 232 + 222 + 482

2
= 1658.6

and
R(𝜇, 𝛼, 𝛽) = 92 + 42 +⋯ 422 = 2417.

From these, we calculate the first three terms of Table 8.12 as shown in Table 8.17.
The last term, SSE comes directly from the data of Table 8.15 as

SSE =
(

72 + 112 − 182

2

)

+⋯ +
(

382 + 462 − 842

3

)

= 114,

the sum of the within-cell sum of squares.
We can calculate F-statistics in the usual fashion. Observe that equation (66)

simplifies to unity when a = 2. Thus, by (66) the amended degrees of freedom for
MSAu/MSE are f ′a = 1. To illustrate the calculation of (66), we derive the comparable
value of f ′b as follows. We have

1
h.1

= 1
2

(1
2
+ 1

3

)

= 5
12

,
1

h.2
= 1

2

(1
3
+ 1

4

)

= 7
24

, and
1

h.3
= 1

2

(1
2
+ 1

2

)

= 1
2
.

Then,

3∑

j=1

1

h2
.j

= 100 + 49 + 144
242

= 293
242

and

3∑

j=1

1
h.j

= (10 + 7 + 12)
24

= 29
24
.

By substitution,

f ′b =
(3 − 1)2(29∕24)2

(29∕24)2 + (3 − 2)3(293∕242)
= 3364

1720
= 1.96.

□
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(iii) Weighted Squares of Means. Yates (1934) also suggested an alternative anal-
ysis of means known as the weighted squares of means. This is due to Yates (1934).
An important advantage of the weighted analysis is that it provides mean squares that
do have 𝜒2-distributions. Hence, F-statistics will be available for hypothesis testing.

The analysis is based on sums of squares of the means xij = ȳij defined in 3c(i). In
this analysis, we weight the terms in those sums of squares in inverse proportion to
the variance of the term concerned. Thus in place of

SSAu = b
a∑

i=1

(x̄i. − x̄..)
2

of Table 8.12, we use

SSAw =
a∑

i=1

wi(x̄i. − x̄[1])
2,

where wi is 𝜎2∕v(x̄i.) and x̄[1] is the weighted mean of the x̄i’s weighted by the
wi’s. See Table 8.18 for details. Like the sum of squares in Table 8.12 the sums of
squares in Table 8.18 do not add up to

∑
y2. However, when the sums of squares are

divided by 𝜎2 they do have 𝜒2-distributions. As a result the F-statistics MSAw/MSE,
MSBw/MSE and MSABw/MSE do provide exact tests of the hypotheses concerning

TABLE 8.18 Weighted Means Analysis for a Two-Way Crossed Classification

Source of Variation d.f. Sum of Squaresa Mean Square

Rows a − 1 SSAw =
a∑

i=1

wi(x̄i. − x̄[1])
2 MSAw

Columns b − 1 SSBw =
b∑

j=1

vj(x̄.j − x̄[2])
2 MSBw

SSABw = SSABu of Table 8.12

Interaction (a − 1)(b − 1) =
a∑

i=1

b∑

j=1

(xij − x̄i. − x̄.j + x̄..)
2 MSABw = MSABu

Residual error N − ab SSE =
a∑

i=1

b∑

j=1

n∑

k=1

(yijk − ȳij.)
2 MSE

awi =

(

1
b2

b∑

j=1

1
nij

)−1

and x̄[1] =

a∑

i=1
wix̄i.

a∑

i=1
wi

. vj =

(

1
a2

a∑

i=1

1
nij

)−1

and x̄[2] =

b∑

j=1
vjx̄.j

b∑

j=1
vj

.
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the 𝛼’s, 𝛽’s and 𝛾’s. We ascertain the exact form of the hypotheses by considering
expected values of the mean squares. They are

E(MSAw) = 1
a − 1

a∑

i=1

wi

⎡
⎢
⎢
⎢
⎢
⎣

𝛼i + �̄�i. −

a∑

i=1
wi(𝛼i + �̄�i.)

a∑

i=1
wi

⎤
⎥
⎥
⎥
⎥
⎦

2

+ 𝜎2
e (67a)

and

E(MSBw) = 1
b − 1

b∑

j=1

vj

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝛽j + �̄�.j −

b∑

j=1
vj(𝛽j + �̄�.j)

b∑

j=1
vj

⎤
⎥
⎥
⎥
⎥
⎥
⎦

2

+ 𝜎2
e . (67b)

Hence,

F = MSAw∕MSE

tests the hypothesis

H: (𝛼i + �̄�i.) all equal. (68)

As was the case for the unweighted analysis of means [Table 8.12] and the expected
values in (65) here, the hypothesis (68) involves the �̄�i’s. If, as a restriction on the
model, we assume that �̄�i. = 0 for all i, the hypothesis is then one of testing the equality
of the 𝛼i’s where the weights are the wi’s. Alternatively, without any restriction, the
hypothesis is that of testing equality of the row effects in the presence of the average
interaction effects. The important difference from the un-weighted analysis is, though,
that the F-statistics of Table 8.18 have exact F-statistics whereas those of Table 8.12
have only approximate F-distributions.

We shall return to Tables 8.12 and 8.18 when we discuss variance components in
Chapter 10.

(iv) Continuation of Example.

Example 6 Calculation of Table 8.18 for the Data of Tables 8.14 and 8.16 We
have that the w’s are

w1 =
[1

9

(1
2
+ 1

3
+ 1

2

)]−1
= 27

4
and w2 =

[1
9

(1
3
+ 1

4
+ 1

2

)]−1
= 108

13
.
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The v’s are

v1 =
[1

4

(1
2
+ 1

3

)]−1
= 24

5
, v2 =

[1
4

(1
3
+ 1

4

)]−1
= 48

7

and v3 =
[1

4

(1
2
+ 1

2

)]−1
= 4.

Now,

x̄[1] =
27
4

(
19
3

)

+ 108
13

(
74
3

)

27
4
+ 108

13

= 477
29

and thus,

SSAw = 27
4

(19
3

− 477
29

)2
+ 108

13

(74
3

− 477
29

)2
= 1251.72.

Furthermore,

x̄[2] =
24
5

(
23
2

)

+ 48
7

(
22
2

)

+ 4
(

48
2

)

24
5
+ 48

7
+ 4

= 1983
7

and

SSBw = 24
5

(
23
2

− 1,983
137

)2

+ 48
7

(
22
2

− 1,983
137

)2

+ 4

(
48
2

− 1,983
137

)2

= 66,882
137

= 488.19.

Table 8.18 therefore becomes as shown in Table 8.19.

TABLE 8.19 Example of Table 8.18: Weighted Squares of Means Analysis of Data in
Table 8.15

Source of Variation d.f. Sum of Squares

Rows 1 SSAw = 1,251.72
Columns 2 SSBw = 488.19
Interaction 2 SSABw = 254.33 = SSABu of Table 8.17
Residual error 10 SSE = 114

□
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TABLE 8.20 nij-Values

(A) 27 32 0 3 1 (B)
11 12 2 0 2

(C) 1 0 27 16 24 (D)
0 8 15 21 22

d. Separate Analyses

Suppose data had the nij values shown in Table 8.20. For purposes of discussion,
dashed lines divide the data into four sets A, B, C, and D. The only appropriate way
of analyzing the complete set of data represented by the nij-values of Table 8.20 would
be to use unbalanced data analysis. This is because of the empty cells and widely
disparate values of the non-zero nij’s. Such an analysis, using the interaction model
of Section 2 of Chapter 7, would provide no testable hypothesis concerning row (or
column) effects unencumbered by interactions. Keeping this in mind, observe that in
the four cells labeled A, and the six labeled D, all cells are filled. Moreover, in B and
C, there are few data and several empty cells. This prompts the suggestion of making
two separate analyses, one of the cells A and one of the cells D using an analysis of
means in both cases. In analyzing A, comparison between rows 1 and 2 and columns
1 and 2 can be made. Likewise, from analyzing D, comparisons among rows 3 and 4
and columns 3, 4, and 5 could be made. Of course, comparisons that cut across these
groups of rows and columns are precluded by such an analysis. However, then the only
alternative is an unbalanced data analysis that provides no satisfactory information
on such comparisons anyway in the interaction model. Therefore, it would seem just
analyzing A and D would cause little to be lost.

When data of the nature alluded to in Table 8.20 occur, one might immediately
question the process by which nij-values of such disparate sizes and groupings have
arisen. Be that as it may, in analyzing large-scale survey-size data such as are discussed
in Section 1, the suggestion has sometimes been made of analyzing just the all-cells-
filled subsets of cells that occur throughout the data. Although such a suggestion
might be open to criticism, it might not be unreasonable in a small situation such as
that envisaged in Table 8.20—should it ever arise. It amounts to analyzing sets of
data that are what might be called “weakly connected.” In Table 4.20, cells labeled B
and C do have data in them, but very small amounts compared to A and D. If B and
C did not contain any data at all then the sets A and D would be disconnected sets
of data and they would have to be analyzed separately. As it is, analyzing A and D
separately and ignoring B and C would be easy both to compute and interpret. For
these reasons, it may be preferable to analyzing the complete data as one analysis.

4. EXERCISES

1 (a) Use equation (22) to confirm (42).

(b) Write down the normal equations for the data of Table 8.5 using (25) as the
model.

(c) Derive the solution given in (42) and (44).
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TABLE 8.21 Two Groups of Students

Totals Received Lecture Received Programmed Text

n 31 31
∑

x1 2139 2149
∑

x2 3100 3100
∑

x2
1 148,601 157,655

∑
x2

2 318,990 319,920
∑

x1x2 216,910 224,070

2 For the data of Table 8.5 fit each of the following models and calculate the analyses
of variance of Tables 8.4a and 8.4b. Suggest appropriate hypotheses and test them.

(a) The covariate affects y linearly, in the same manner for all high school gradu-
ates as it does college graduates, but differently for those who did not complete
high school.

(b) The covariate affects y in both a linear and quadratic manner, the same for
everyone.

3 Townsend (1969) gives data about an experiment designed to determine if the
usual lecture-type presentation could be replaced by a programmed text (See
Table 8.21.). A class of 62 students was randomly divided into two groups, with
one group receiving the usual lectures while the other was given a programmed
textbook for independent study. At the end of the semester, both groups were given
the same examination. In addition to the final exam score (x1), a measurement of
IQ (x2) was recorded for each student. (Other educational studies indicate that the
performance may be linearly related to IQ.) Using the basic calculations shown
in Table 8.21 carry out a covariance analysis testing any hypothesis you think
suitable.

4 The following table shows milligrams of seed planted, corresponding to the yield
data in Table 7.6.

Variety

Treatment 1 2 3 4

1 2 – 7 3
4 5
3

2 5 6 – –
3 4

3 – 6 6 4
2 8 6

5
7
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Using this data and the data of Table 7.6 for covariance models (58)–(62), find
the b’s and give the ANOVA Tables 8.3a and 8.3b.

5 Consider equations (64) with the constraints 𝛼◦1 + 𝛼◦2 = 0 and 𝛽◦1 + 𝛽◦2 = 0. Show
that the solution for u◦ is

u◦ =
2y1.. + 3y.3. − y...

32
.

This would be the form of equation (63).

6 Calculate the exact unbalanced data analyses for the data of Table 8.15 and
compare them with Tables 8.17 and 8.19.

7 The following data from Wright and Wilson (1979) gives the silt and clay content
for three contiguous sites in Murcia, Spain. Two values are missing.

Site Silt or Clay

1 Silt 46.2 36.0 47.3 x 30.9
Clay 30.3 27.6 40.9 32.2 33.7

2 Silt 40.0 48.9 48.7 44.5 30.3
Clay y 32.8 36.5 37.7 34.3

3 Silt 41.9 40.7 44.0 32.3 37.0
Clay 34.0 36.6 40.0 30.1 38.6

Think of the two substances as nested within sites. Estimate the missing values
and perform the ANOVA.

8 Four different formulations of industrial glue are being tested. The tensile strength
of the glue when it is applied to join parts is also related to the application
thickness. Five observations on strength in pounds y and thickness z in 0.01
inches are obtained for each formulation. The data shown in the table below are
taken from Montgomery (2005), and reproduced with kind permission from John
Wiley & Sons.

Glue Formulation

1 2 3 4

y z y z y z y z

46.5 13 48.7 12 46.3 15 44.7 16
45.9 14 49.0 10 47.1 14 43.0 15
49.8 12 50.1 11 48.9 11 51.0 10
46.1 12 48.5 12 48.2 11 48.1 12
44.3 14 45.2 14 50.3 10 48.6 11
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(a) Do the analysis of covariance and determine if at the 10% level of significance
there is a significant difference in the tensile strength of the glue formulations.
Estimate the pooled within-class regression estimator.

(b) Estimate the adjusted treatment means m̂iadj = ȳi. − b̂(z̄i. − z̄..) for the tensile
strengths for each of the four formulations.

(c) The standard error of the difference between two adjusted treatment means is
given by

se =

[

MSE

(

2
n
+

(ȳi. − ȳj.)
2

SSEzz

)]1∕2

Find 90% Bonferonni simultaneous confidence intervals on the difference
between formulations 1 and 2 and 3 and 4.

9 The data below is due to Cameron and Pauling (1976). It is taken from Anderson
and Herzberg (1985) and reproduced with kind permission of Springer Verlag. It
compares the survival time, in days, of individual cancer patients who received
vitamin C with the mean survival time of controls in days consisting of 10 patients
who did not receive vitamin C. The survival time is that from first hospital
attendance after the cancer reached the terminal stage. Three kinds of cancer are
considered. The age of the patient in years is the covariate.

Stomach Bronchus Colon

Age Vitamin C Control Age Vitamin C Control Age Vitamin C Control

76 248 292 61 124 264 74 81 72
58 377 492 69 42 62 74 461 134
49 189 462 62 25 149 66 20 84
69 1843 235 66 45 18 52 450 98
70 180 294 63 412 180 48 246 48
68 537 144 79 51 142 64 166 142
50 519 643 76 1112 35 70 63 113
74 455 301 54 46 299 77 64 90
66 406 148 62 103 85 71 155 30
76 365 641 69 876 69 70 859 56
56 942 272 46 146 361 39 151 260
65 776 198 57 340 269 70 166 116
74 372 37 59 396 130 70 37 87
58 163 199 55 223 69
60 101 154 74 138 100
77 20 649 69 72 315
38 383 162 73 245 188

(a) Perform an analysis of covariance to determine whether

1. There is a significant difference in the survival time for patients who
received vitamin C amongst the three types of cancer.
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2. There is a significant difference in the survival time for patients in the
control for the three types of cancer.

In each case, does the age of the patient affect the result?

(b) For each kind of cancer perform a paired t-test to determine whether patients
who receive the vitamin C survive longer than the patients who do not. Also,
do a t-test when the results for all three kinds of cancer are combined.

10 The data below are concerned with the initial weights and growth rates of 30 pigs
classified according to pen, sex, and type of food given. It is taken from Rao
(1973, p. 291) and reproduced with the kind permission of John Wiley & Sons.

Initial Growth Rate in
Pen Treatment Sex Weight (w) Pounds per Week (g)

I A G 48 9.94
B G 48 10.00
C G 48 9.75
C H 48 9.11
B H 39 8.51
A H 38 9.52

II B G 32 9.24
C G 28 8.66
A G 32 9.48
C H 37 8.50
A H 35 8.21
B H 38 9.95

III C G 33 7.63
A G 35 9.32
B G 41 9.34
B H 46 8.43
C H 42 8.90
A H 41 9.32

IV C G 50 10.37
A H 48 10.56
B G 46 9.68
A G 46 10.98
B H 40 8.86
C H 42 9.51

V B G 37 9.67
A G 32 8.82
C G 30 8.57
B H 40 9.20
C H 40 8.76
A H 43 10.42
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(a) Perform the analysis of variance including the interaction between treatment
and sex.

(b) Perform the analysis of covariance where the covariate (the initial weight of
the pigs) is fitted first.

(c) What is the difference in terms of significance of the factor with and without
considering the initial weight of the pigs?

11 (a) Derive the distributions of R(a) and SSRB shown in Table 8.3b.

(b) Show that R(a), SSRB and y′y − R(a) − SSRB are pairwise independent.

12 (a) For the general covariance model of Section 2a(i) and P of equation (10),
prove that Z′PZ is non-singular.

(b) Using the result of (a), prove that b◦ is estimable with respect to the model
(6).

(c) Show that 𝜆′a is estimable under the same conditions that it is estimable for
the model without covariates.

13 Show that

(a) The estimator b◦ = b̂ = (Z′PZ)−1Z′Py is unbiased for b.

(b) For estimable parametric functions, the estimator p′a◦ = p′((X′X) X′y −
(X′X) X′Zb◦) is unbiased for p′a.

(c) If (X′X)− is reflexive, the variance covariance matrix of a◦ and b◦ is

[
var(a◦) cov(a◦, b◦)

cov(a◦, b◦)′ var(b◦)

]

=
[

X′X X′Z
Z′X Z′Z

]−
𝜎2

What can you do if (X′X)− is not reflexive?

14 Graybill (1961, p. 392) gives the F-statistic for testing H: all 𝛼’s equal in the
one-way classification, with one covariate (in our notation)

1
(c − 1)�̂�2

{

SSRm,yy + SSEyy −
(SSRm,yz + SSEyz)

2

SSRm,zz + SSEzz
−

[

SSEyy −
(SSEyz)

2

SSEzz

]}

.

Show the equivalence of this to R(𝛼,𝜇|b) of Table 8.4b.

15 Derive an expression for SSE of Tables 8.3a and 8.3b which suggests that it is the
residual sum of squares for fitting a linear model to Py. Describe the model.

16 Show that the error sum of squares in Tables 8.4a and 8.4b is the same as that of
fitting the model y − b̂z = Xa + e for b̂ of (33) where the solution for a◦ is that
given before equation (32).

17 Show that in Table 8.7, the statistic for testing the hypothesis H: 𝛼i + biz̄i. equal
for all i is R(𝛼|𝜇)∕(c − 1)�̂�2. [Hint: Use the result of the discussion in Sub-section
2a(vi) and Exercise 19 of Chapter 7.]



9
INTRODUCTION TO VARIANCE
COMPONENTS

The main interest in the models of Chapters 5–8 is estimation and tests of hypothesis
about linear functions of the effects in the models. These effects are what we call
fixed effects. The models are called fixed-effect models. However, there are situations
where we have no interest in fixed effects. Instead, because of the nature of the data
and the effects we are studying, our main interest would be in the variance. These
kinds of effects are called random effects. The models involving them are called
random-effects models. Models that involve a mixture of fixed effects and random
effects are called mixed models.

The first major topic of this chapter is how to distinguish between fixed effects
and random effects. We take this up by giving examples that illustrate the differences
between these two kinds of effects. We emphasize the meaning and the use of these
models in different situations without giving the mathematical details.

The variances associated with random effects are called variance components.
The second major topic of this chapter is the estimation of variance components from
balanced data. Chapter 10 deals with the more difficult topic of estimating variance
components from unbalanced data.

1. FIXED AND RANDOM MODELS

Although the models of Chapters 5–8 are fixed-effects models, this is the first time
we have referred to them as such. Therefore, our discussion of fixed and random
effects begins with a fixed-effects model to confirm the use of this name.

Linear Models, Second Edition. Shayle R. Searle and Marvin H. J. Gruber.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.
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a. A Fixed-Effects Model

A classic experiment in agricultural research concerns testing the efficacy of nitrogen
(N), potash (P), and potassium (K) on crop yield. Suppose an experiment of this kind
involves 24 plants, with six plants receiving nitrogen, six plants getting potash, six
plants potassium, and six plants getting no fertilizer at all, these being considered as
control (C). A suitable model for analyzing the results of this experiment would be the
one-way classification model (see Section 2 of Chapter 6). The model would then be

yij = 𝜇 + 𝛼i + eij, (1)

where yij is the jth observation on the ith treatment, with 𝜇 being a mean, 𝛼i being
the effect of the treatment i and eij an error term in the usual way.

Analysis of this experiment can lead to estimating 𝛼1 − 𝛼4, for example, and
to testing the hypothesis H: 𝛼1 − 𝛼4 = 0. When studying differences of this nature,
consider the treatments that we are dealing with. They are four very specific treatments
of interest. In using them, we have no thought for any other kinds of fertilizer. Our
sole interest is the study of N, P, and K in relation to each other and to no fertilizer.
This is the concept of fixed effects. We fix our attention upon just the treatments of
the experiment, upon these and no others. Thus, the effects are called fixed effects.
Furthermore, because all the effects in the model are fixed effects (apart from the
error terms which are always random), the model is called the fixed-effects model. It
is often referred to as Model I, so named by Eisenhart (1947).

The inferences that we draw from data always depend on how we obtain the data.
Therefore, we consider a sampling process that is pertinent to this fixed-effects model
where the 𝛼’s are the fixed effects of the four treatments, N, P, K, and C. We think of
the data as one possible set of the data that we derive by repetitions of the experiment.
On each occasion in these repetitions, the e’s are a random sample from a population
of error terms distributed as (0, 𝜎2

e I). From this point on, we shall use 𝜎2
e in place of

𝜎2 for the residual error variance. The randomness associated with the obtaining the
e’s is what provides the means for making inferences about the functions of the 𝛼i’s
and about 𝜎2

e .

b. A Random-Effects Model

Suppose a laboratory experiment is designed to study the maternal ability of mice uses
litter weights of 10-day-old litters as a measure of maternal ability, after the manner
of Young et al. (1965). Six litters from each of the four dams (female parents), all of
one breed, constitute the data. A suitable model for analyzing the data is the one-way
classification model

yij = 𝜇 + 𝛿i + eij. (2)

For this model, yij is the weight of the jth litter from the ith dam. The effect due to
the ith dam is 𝛿i and eij is the customary error term.
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Consider the 𝛿i’s and the dams they represent. The data relate to maternal ability.
This is a variable that is certainly subject to biological variation from animal to
animal. Therefore, the prime concern of the experiment will probably not center on
specifically the four female mice used in the experiment. After all, they are only
a sample from a large population of mice, the females of the breed. Each of these
females has some ability in a maternal capacity. Therefore, the animals that are in
the experiment are thought of as a random sample of four from a population of
females.

In the fertilizer experiment previously described, each fertilizer is of specific
importance and interest, with no thought of it being a sample from a population of
fertilizers. However, in the mouse experiment, each mouse is merely a sample (of
one) from a population of female mice. Nothing important has conditioned our choice
of one mouse over the other. We have no specific interest in the difference between
any one of our four mice and any other of them. However, interest does lie in the
extent to which maternal ability varies throughout the population of mice. It is to this
end that our model is directed.

The sampling process involved in obtaining the mouse data is taken as being such
that any one of the many possible sets of data could be derived from repetitions
of the data gathering process. By concentrating attention on repetitions, we do not
confine ourselves to always having the same four mice. We imagine getting a random
sample of four on each occasion from the population of mice. In addition, whatever
four mice we get on any occasion, we think about getting a random sample of e’s
from a population of errors as was the case with the fixed-effects model. Our concept
of error terms is the same for both the fixed-effects model and the random-effects
model. The important difference between the two models is that in the fixed-effects
model, we conceive of always having the same 𝛼’s, the same treatments, while in the
random-effects model, the mice data, we think of taking a random sample of mice
on each occasion. Thus, the 𝛿i’s of our data are a random sample from a population
of 𝛿’s. Insofar as the data are concerned, the 𝛿i’s therein are random variables. In
this context, we call them random effects. Correspondingly, the model is called the
random-effects model or, sometimes, the random model. Eisenhart (1947) called it
Model II. This name continues to receive widespread use.

In each model, the error terms are a random sample from a population distributed
as (0, 𝜎2

e I). However, for the fixed-effects model, the 𝛼’s represent the effects of
specific treatments while in the random model the 𝛿’s are also a random sample from
a population that is distributed as (0, 𝜎2

𝛿
I). In addition, sampling of the 𝛿’s is assumed

to be independent of that of the e’s and so covariances between the 𝛿’s and the e’s
are zero. Furthermore, if the distribution of the 𝛿’s was to have a non-zero mean 𝜇𝛿 ,
we could rewrite the model (2) as

yij = (𝜇 + 𝜇𝛿) + (𝛿i − 𝜇𝛿) + eij. (3)

Thus, if we define 𝜇 + 𝜇𝛿 as the mean and 𝛿i − 𝜇𝛿 as the dam effect, the latter would
have zero mean. Therefore, there is no loss of generality in taking the mean of the
𝛿’s to be zero.
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With the 𝛿’s and the e’s of (2) being random variables with variances 𝜎2
𝛿

and 𝜎2
e ,

respectively, from (2), the variance of an observation is 𝜎2
y = 𝜎2

𝛿
+ 𝜎2

e . Accordingly,

the variances 𝜎2
𝛿

and 𝜎2
e are called variance components. The model is sometimes

referred to as a variance component model. The objectives of using such a model are
the estimation of the variance components and inferences about them.

c. Other Examples

(i) Of Treatments and Varieties. The fixed-effects model of equation (1) relates to
four fertilizer treatments. Suppose we expand this experiment to using each of four
treatments on six different plants of each of three varieties of the plant. A suitable
model would be the two-way classification model with interaction. The observations
yijk represent the yield of the kth plant of the jth variety receiving the ith treatment.
The model is

yijk = 𝜇 + 𝛼i + 𝛽j + 𝛾ij + eijk. (4)

For this model, 𝜇 is a general mean, 𝛼i is the effect of the ith treatment on the yield,
𝛽j is the effect of the jth variety, 𝛾ij is the interaction, and eijk is the usual error term.
Just as the treatment effects 𝛼i were earlier described as fixed effects, so they are now.
Likewise, the variety effects 𝛽j are also fixed effects. In this experiment, interest in
varieties centers solely on the three varieties that we use. There is no thought that
they are a random sample from some population of varieties. Thus, we consider both
the 𝛼i and 𝛽j and their interactions as fixed effects and we have a fixed-effects model.

(ii) Of Mice and Men. Suppose the mouse experiment had been supervised by
three laboratory technicians, one for each successive pair of litters that the mice had.
One possible model for the resulting data would be

yijk = 𝜇 + 𝛿i + 𝜏j + 𝜃ij + eijk. (5)

The observation yijk represents the weight of the kth litter from the ith dam being
cared for by the jth technician. The effect on litter weight of the ith dam is 𝛿i. The
interaction is 𝜃ij. Earlier, we explained how 𝛿i is a random effect, representing the
maternal capacity of the ith dam chosen randomly from a population of (female)
mice. It is not difficult to imagine 𝜏j as being a random effect of similar nature. A
laboratory experiment has to be cared for. Usually, there is little interest as far as the
experiment itself is concerned in who the technician tending to it is. Reasonably, one
can think of him/her as a random sample of one from some population of laboratory
technicians. Thus, in the whole experiment, we have a random sample of three tech-
nicians. Correspondingly, the 𝜏j are random effects with zero mean and variance 𝜎2

𝜏
.

Likewise, the interaction effects are also random, with zero mean and variance
𝜎2
𝜃
. All covariances are taken as zero. Thus, all elements of the model (5)—save

𝜇—are random effects and we have a random model. Apart from 𝜇, the parameters
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of interest are 𝜎2
𝛿
, 𝜎2

𝜏
, and 𝜎2

𝜃
. These represent the influence of dam, technician,

and dam by technician, respectively, on the variance of y. The part of the variance
that is not accounted for by these effects is 𝜎2

e , the residual variance, in the usual
manner.

(iii) Of Cows and Bulls Another example of the random model arises in dairy cow
breeding. With the advent of artificial insemination, a bull can sire offspring in many
different places simultaneously and have progeny in numerous different herds. When
the females among these progeny themselves calve and start to give milk, analyses
of their milk yields can be made. A suitable model for yijk, the milk yield of the kth
daughter in herd i sired by bull j, is

yijk = 𝜇 + 𝛼i + 𝛽j + 𝛾ij + eijk. (6)

The effect of the cow’s being in herd i is 𝛼i, 𝛽j is the effect of bull j, 𝛾ij is the interaction
effect, and eijk is the customary random error term. In this case, all of the effects are
considered random. The herds involved in the data are assumed to be a random sample
from a population of herds. The bulls are taken to be from a random sample of bulls.
The interaction effects are also assumed to be random. These effects are assumed to
be mutually independent, with variances 𝜎2

𝛼
, 𝜎2
𝛽
, 𝜎2
𝛾
, and 𝜎2

e , respectively. The animal
breeder is interested in estimating these variances so that he/she can estimate the ratio
4𝜎2

𝛽
∕(𝜎2

𝛼
+ 𝜎2

𝛽
+ 𝜎2

𝛾
+ 𝜎2

e ). This ratio is important in bringing about increased milk
production through selective breeding.

2. MIXED MODELS

A general mean 𝜇 (a fixed effect) and error terms e (random) occur in all the preceding
examples, as they do in most models. Apart from these, all effects in each of the
preceding models are either fixed or random. We now consider models where some
of the effects (other than 𝜇 and e) are fixed and some are random. Such models are
called mixed models. Of course, any model containing a fixed effect 𝜇 and random
error terms is truly a mixed model. However, the description of mixed models is
usually reserved for situations where effects other than 𝜇 and e are a mixture of fixed
and random effects. In some situations as we shall see (Section 8 of Chapter 10), it is
convenient to treat all models as if they are mixed models. Generally, however, the
distinction is made between fixed, random, and mixed models as described here. We
now give some examples of mixed models.

(i) Of Mice and Diets. Suppose in the mouse experiment that instead of the mice
being cared for by three different technicians, one man supervised the whole experi-
ment. Suppose, further, that three specially prepared diets were used, with the purpose
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of the experiment being to compare the three diets. Then, if yijk is the kth litter weight
of the ith dam when receiving diet j,

yijk = 𝜇 + 𝛿i + 𝜑j + 𝛾ij + eijk. (7)

Now, though, because the diets are three specific diets of interest, the 𝜑j effects
representing those diets are fixed effects. As before, the 𝛿j—the dam effects—are
random. Thus, (7) is a model containing fixed effects 𝜑j and random effects 𝛿j. This
is a mixed model, a mixture of fixed and random effects.

Notice that (7) contains interaction effects 𝛾ij for interactions between dams and
diets. Since dams are being taken as random effects, it is logical that these interactions
are random also. Thus, the model has 𝜑j as fixed effects and the 𝛿j and 𝛾ij as random,
having zero means and variances 𝜎2

𝛿
and 𝜎2

𝛾
, respectively.

(ii) Of Treatments and Crosses In an experiment concerning fertilizers, suppose
that six plants of each of 20 replicate crosses of two varieties of the crop (early and
late-ripening tomatoes, say) are used. Each cross would be a random sample from
the infinite number of times the two varieties could be crossed. The equation for the
model could still be equation (4). However, 𝛽j would now be a random effect for the
jth replicated cross. The 𝛾ij would be the (random) interaction effect between the ith
fertilizer treatment and the jth cross. Thus, equation (4), formerly appropriate to a
fixed-effects model, is now suited to a mixed model. The equation of the model is
unchanged but the meanings of some of its terms have changed.

(iii) On Measuring Shell Velocities Thompson (1963), following Grubbs (1948),
discusses the problem of using several instruments to measure the muzzle velocity of
firing a random sample of shells from a manufacturer’s stock. A suitable model for
yij the velocity of the ith shell measured by the jth measuring instrument, is

yij = 𝜇 + 𝛼i + 𝛽j + eij.

In this model, 𝛼i is the effect of the ith shell and 𝛽j is the bias in instrument j. Since
the shells fired are a random sample of shells the 𝛼i’s are random effects. The 𝛽j are
fixed effects because the instruments used are the only instruments of interest.

(iv) Of Hospitals and Patients The following experiment was discussed by Igor
Ruczinski, an Associate Professor in The Department of Biostatistics at The Johns
Hopkins University School of Public Health. The results are the basis for Exercise 19.2
of Gruber (2014, p. 263). Suppose we have three specific hospitals, four randomly
chosen patients within each hospital and two independent measurements of blood
coagulation in seconds. The model is

yijk = 𝜇 + 𝛼i + 𝛽ij + eijk, i = 1, 2, 3, j = 1, 2, 3, 4, and k = 1, 2..
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The yijk represents the kth measurement of blood coagulation time for the jth patient
in the ith hospital. The 𝛼i represents the effect of the ith hospital. The 𝛽ij represents
the effect of the jth patient within the ith hospital. The factor patient is nested within
the hospitals, so this is a nested model. Since we have three specific hospitals, 𝛼i
is a fixed effect. Since within each hospital the patients are chosen at random, 𝛽ij
is a random effect and again we have a mixed model. The variance components are
𝜎2
𝛼
, 𝜎2
𝛽(𝛼), and 𝜎2

e . The subscript 𝛽(𝛼) on the second term indicates that the patients
are nested within the hospitals.

3. FIXED OR RANDOM

Equation (4) for the treatments and varieties example is indistinguishable from (6)
for the bull and herds example. However, the models involved in the two cases are
different because of the interpretation attributed to the effects. In the treatments and
varieties example, they are fixed. In the bulls and herds example, they are random.
In these and other examples that we discuss, most of the effects are categorically
fixed or random. Fertilizer treatments are fixed effects, as are diets and measuring
instruments. Likewise, mice, bulls, and artillery shells are random effects. How about
the laboratory technicians, where three of them cared for the mice; or the herds where
the bull’s progeny were being milked? In each case, we assumed that these effects
were random. However, this might not always be the case. For example, each one of
the technicians may not have come from a random sample of employees. Maybe all
of them were available and we wanted to assess differences between three specific
technicians. In that case, the technician effects in equation (5) would be fixed effects,
not random. The same might be true about the herd effects in equation (6). Typically,
analyses of such data usually involve hundreds of sales that are considered a random
sample from a larger population. However, if the situation was one of analyzing just
a few herds, five or six, say wherein the sole interest lay in just those herds, then
the herd effects in (6) would be more appropriately fixed and not random. Thus, the
deciding factor that determines whether the effects of a factor are fixed or random is
the situation to which the model applies.

There are situations where deciding whether certain effects are fixed or random is
not immediately obvious. For example, consider the case of year effects in studying
wheat yields. Are the effects of years on yields to be considered fixed or random? The
years themselves are unlikely to be random because they probably will be a group
of consecutive years over which the data may have been gathered or the experiments
run. However, the effects on the yield may reasonably be considered random—unless,
perhaps, one is interested in comparing specific years for some purpose.

When attempting to decide whether effects are fixed or random in the context of
the data, the determining factors are the manner in which the data were gathered and
the environment it came from. The important question is for what levels of the factors
under consideration are inferences to be drawn? If the inferences were to be just for
the specific factors being thought about, then the effects would be considered fixed.
On the other hand, if the inferences are being made not just about the levels occurring
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in the data but about some population from which the data are considered to be a
random sample, then the effects would be considered as random.

We emphasize that the assumption of randomness does not include with it the
assumption of normality. This assumption is frequently made for random effects.
However, it is a separate assumption, made after assuming that the effects are ran-
dom. Although most estimation procedures for variance components do not require
normality, the normality of random effects is often assumed when distributional
properties of the estimators are investigated.

4. FINITE POPULATIONS

We assume that random effects occurring in data are from a population of effects.
Usually, we assume that the populations have infinite size like, for example, the
population of all possible crosses between two varieties of tomato. They could be
crossed an infinite number of times. However, the definition of random effects does
not demand infinite populations of such effects. They can be finite. Furthermore,
finite populations can be very large, so large that they can be considered infinite for
all practical purposes. For example, consider the population of all mice in New York
State on July 4, 2015! Hence, random effects factors can have conceptual populations
of three kinds insofar as their size is concerned: infinite, finite but so large as to be
deemed infinite and finite.

We shall concern ourselves with random effects coming solely from populations
that we assume are infinite either because this is the case or because, although finite,
the population is large enough to be taken as infinite. These are the situations that
occur most often in practical problems. Discussion of finite populations, in particular,
variance components, may be found in several places. See for example, Bennett and
Franklin (1954, p. 404), Gaylor and Hartwell (1969), and Sahai (1974). Searle and
Fawcett (1970) give rules for converting the estimation procedure of any infinite-
population situation into one of finite populations.

5. INTRODUCTION TO ESTIMATION

We consider an important and frequently used method for the estimation of variance
components in balanced data. For unbalanced data, there are a number of methods
available that simplify to the method that we are about to present for balanced data.
For this reason, we consider balanced data first. The method of estimating variance
components for any random or mixed model relies on the mean squares of the analysis
of variance for the corresponding fixed-effects model. The general procedure consists
of calculation of the analysis of variance as if the model were a fixed-effects model
and then deriving the expected values of the mean squares under the random or
mixed model. Certain of the expected values will be linear functions of the variance
components. Equating these expected mean squares to their calculated (observed)
values leads to linear equations in the variance components. The solutions to these
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linear equations are taken to be the estimators of the variance components. This
method of estimating variance components is known as the analysis of variance
method.

Mean squares in analysis of variance are quadratic forms in the observations.
Therefore, we can derive their expected values from Theorem 4 of Chapter 2, wherein
V is the variance–covariance matrix of the observations. Although for balanced data,
this is not the easiest method for calculating the expected values for mean squares, it
is instructive to demonstrate the form of the V-matrix for a simple random model. It is
the basis of such matrices for unbalanced data for which Theorem 4 of Chapter 2 is of
utmost importance. We illustrate this by means of the mouse example of Section 1b.

a. Variance Matrix Structures

In all the fixed-effects models of Chapters 5–8, the covariance matrix of the observa-
tions var(y) has been of the form 𝜎2

e IN . However, the form of the covariance matrix
for random and mixed models is different because the covariance structure of the
random effects is what determines the variance–covariance matrix of the vector of
observations.

Suppose we rewrite the model for the mouse example, equation (2) as

yij = 𝜇 + 𝛼i + eij, (8)

where 𝜇 and eij are the same as in (2) and 𝛼i is now used in place of 𝛿i. Thus, 𝛼i is a ran-
dom effect with zero mean and variance 𝜎2

𝛼
. It is independent of the e’s and the other

𝛼’s. Thus, we have that E(𝛼i𝛼k) = 0 for i ≠ k and E(𝛼iei′j′) = 0 for all i, i′, and j′.
From this we have,

cov(yij, yi′j′) =
⎧
⎪
⎨
⎪
⎩

𝜎2
𝛼
+ 𝜎2

e for i = i′ j = j′

𝜎2
𝛼

for i = i′ j ≠ j′

0 for i ≠ i′.

Hence, for example, the variance–covariance matrix for the matrix of six observations
on the first dam is

var

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y11
y12
y13
y14
y15
y16

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜎2
𝛼
+ 𝜎2

e 𝜎2
𝛼

𝜎2
𝛼

𝜎2
𝛼

𝜎2
𝛼

𝜎2
𝛼

𝜎2
𝛼

𝜎2
𝛼
+ 𝜎2

e 𝜎2
𝛼

𝜎2
𝛼

𝜎2
𝛼

𝜎2
𝛼

𝜎2
𝛼

𝜎2
𝛼

𝜎2
𝛼
+ 𝜎2

e 𝜎2
𝛼

𝜎2
𝛼

𝜎2
𝛼

𝜎2
𝛼

𝜎2
𝛼

𝜎2
𝛼

𝜎2
𝛼
+ 𝜎2

e 𝜎2
𝛼

𝜎2
𝛼

𝜎2
𝛼

𝜎2
𝛼

𝜎2
𝛼

𝜎2
𝛼

𝜎2
𝛼
+ 𝜎2

e 𝜎2
𝛼

𝜎2
𝛼

𝜎2
𝛼

𝜎2
𝛼

𝜎2
𝛼

𝜎2
𝛼

𝜎2
𝛼
+ 𝜎2

e

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 𝜎2
e I + 𝜎2

𝛼
J. (9)
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We meet this form of matrix repeatedly: 𝜆1I + 𝜆2J, where 𝜆1 and 𝜆2 are scalars,
usually variances, and J is a square matrix with every element unity. In the present
case, it is the covariance matrix of the set of six litter weights from each dam. Since
the weights are independent, as between one dam and another, the covariance matrix
of all 24 weights can be partitioned as

var(y) =
⎡
⎢
⎢
⎢
⎣

𝜎2
e I + 𝜎2

𝛼
J 0 0 0

0 𝜎2
e I + 𝜎2

𝛼
J 0 0

0 0 𝜎2
e I + 𝜎2

𝛼
J 0

0 0 0 𝜎2
e I + 𝜎2

𝛼
J

⎤
⎥
⎥
⎥
⎦

,

where I and J have order equal to the number of observations in the classes, in this
case 6. Using Σ+ to denote the operation of direct sum, as in Section 2a of Chapter 6,
we write

var(y) =
4∑

i=1

+(𝜎2
e I + 𝜎2

𝛼
J). (10)

We will make frequent use of the notation in (10), especially with unbalanced data,

in the form
a∑

i=1

+(𝜎2
e Ii + 𝜎2

𝛼
Ji) where Ii and Ji have order ni.

b. Analyses of Variance

The one-way classification model of Section 2d of Chapter 6 is suitable for the
fertilizer experiment discussed in Section 1a. We show its analysis of variance in
Table 9.1 based on Table 6.4.

The basic use of Table 9.1 is to summarize calculation of the F-statistic
MSRm/MSE for testing H: all 𝛼’s equal. The lower section of the table contains
the expected value of the mean squares. We usually do not show this for the fixed-
effects model. Nevertheless, its presence emphasizes the hypothesis that can be tested
by the F-statistic.

This is true because, for F = Q∕s�̂�2 used so much in the earlier chapters,

F ∼ F′
[

s, N − r,
[E(Q) − s𝜎2]

2𝜎2

]

.

We can show this by applying Theorems 4 and 5 of Chapter 2 to Q. Therefore, the
hypothesis concerning s LIN estimable functions that makes [E(Q) − s𝜎2] zero is
tested by comparing F = Q∕s�̂�2 against the central F(s, N − r) distribution.
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TABLE 9.1 Analysis of Variance for Four Fertilizer Treatments Each Used on Six
Plants

Source of
Variation d.f. Sum of Squares Mean Squares

Mean 1 SSM = R(𝜇) = 24y2
..

MSM = SSM/1
Treatments 3 MSRm = SSRm / 3SSRm = R(𝛼|𝜇)

=
4∑

i=1

6(ȳi. − ȳ..)2

Residual error 20 MSE = SSE/20SSE = SST − R(𝜇, 𝛼)

=
4∑

i=1

6∑

j=1

(yij − yi.)
2

Total 24 SST =
4∑

i=1

6∑

j=1

y2
ij

Expected mean squares

E(MSM) = 24

(

𝜇 + 1

4

4∑

i=1

𝛼i

)2

E(MSRm) = 6

3

4∑

i=1

(

𝛼i −
1
4

4∑

i=1

𝛼i

)2

+ 𝜎2
e

E(MSE) = 𝜎2
e

Example 1 Test of Hypothesis in Table 9.1 In Table 9.1

E(SSRm) = 6
4∑

i=1

(𝛼i − �̄�.)2 + 3𝜎2
e .

Hence F = SSRm∕3𝜎2
e tests the hypothesis that makes 6

∑4
i=1 (𝛼i − �̄�.)2 zero,

namely,

H: 𝛼1 = 𝛼2 = 𝛼3 = 𝛼4. □

Expected mean squares are useful in indicating the hypotheses tested by the
corresponding F-statistic. However, the reason we show them in Table 9.1 is for
comparison with the random model case of the mouse experiment in Section 1a. The
fixed effects analogue of the model for the mouse experiment is the same as that
of the fertilizer experiment. The variance components for the mouse experiment are
estimated from the analysis of variance in Table 9.2. Except for the expected values
on mean squares, Table 9.1 and 9.2 are identical. In both cases, we can obtain these
expected values from Theorem 4 of Chapter 2. For Table 9.1, V = var(y) = 𝜎2I. For
Table 9.2, V is given by (10). An alternative (and often easier) derivation is the “brute
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TABLE 9.2 Analysis of Variance of Four Dams Each Having Six Litters

Source of
Variation d.f. Sum of Squares Mean Squares

Mean 1 SSM = R(𝜇) = 24y2
..

MSM = SSM/1
Treatments 3 MSRm = SSRm / 3SSRm = R(𝛼|𝜇)

=
4∑

i=1

6(ȳi. − ȳ..)2

Residual error 20 MSE = SSE/20SSE = SST − R(𝜇, 𝛼)

=
4∑

i=1

6∑

j=1

(yij − yi.)
2

Total 24 SST =
4∑

i=1

6∑

j=1

y2
ij

Expected mean squares

E(MSM) = 24𝜇2 + 6𝜎2
𝛼
+ 𝜎2

e

E(MSRm) = 6𝜎2
𝛼
+ 𝜎2

e

E(MSE) = 𝜎2
e

force” one of substituting the equation of the model into the mean squares and then
taking expectations using the appropriate model in each case. In practice, we do not
have to use either of these methods for balanced data. Simple rules of thumb apply,
as we shall see in Section 6. We do not illustrate either method here. We give an
illustration for the two-way balanced data in Section 7 and for unbalanced data in
Chapter 10.

c. Estimation

The residual error variance in the fixed-effects model of Table 9.1 is estimated in the
usual way by �̂�2

e = MSE. This is tantamount to the analysis of variance method of
estimating variance components by equating mean squares to their expected values.
We continue it in Table 9.2 to obtain not only

�̂�2
e = MSE but also 6�̂�2

𝛼
+ �̂�2

e = MSRm.

The solutions to these equations are

�̂�2
e = MSE and �̂�2

𝛼
=

(MSRm − MSE)

6
.

These are the estimators of 𝜎2
e and 𝜎2

𝛼
.

The preceding example is the simplest illustration of estimating variance compo-
nents from balanced data of a random (or mixed) model. It extends easily to other
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balanced data situations. In the analysis of variance, there will be as many mean
squares whose expectations do not involve fixed effects, as there are variance compo-
nents to be estimated. Equating each of these mean squares to their expected values
gives a set of linear equations in the variance components. The solution to these linear
equations is the estimators of the variance components. For example, in Table 9.2,
E(MSM) involves 𝜇. The other expected mean squares do not and so they yield the
estimators of the variance components of the model. For random models, the only
expected mean square that involves fixed effects is E(MSM), that for means. In mixed
models, there will also be others. However, there will also be sufficient expected mean
squares that do not involve fixed effects to provide equations that yield estimators
of the variance components. This is the analysis of variance method of estimating
variance components.

Example 2 An Example of Estimating Variance Components The data for
this example are taken from a large industrial experiment performed at Eastman
Kodak Company, Rochester, New York. It was obtained by courtesy of Dr. James
Halavin, Professor Emeritus, School of Mathematical Sciences, Rochester Institute
of Technology. These data and example is also discussed in Gruber (2010).

Six different units are chosen at random from a large number of units of a certain
type of camera. For each unit, the time from the first flash of the camera until the
camera’s ready light went back on was measured. Six readings were taken for each
camera. The data are below.

Camera 1 2 3 4 5 6

4.39 4.16 4.89 5.00 6.53 5.71
4.34 4.88 4.78 4.45 5.38 4.94
4.61 6.81 5.16 5.00 6.21 5.71
4.56 6.53 5.94 4.50 5.77 5.71
5.89 5.22 5.44 5.54 6.97 6.26
4.12 4.16 4.67 4.56 5.54 4.66

We wish to determine whether there is significant variability amongst camera units
in the time from first flash until the ready light comes back on. Consider the SAS
output below.

The SAS System
The GLM Procedure

Class Level Information
Class Levels Values
camera 6 1 2 3 4 5 6
Number of Observations Read 36
Number of Observations Used 36
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The SAS System
The GLM Procedure

Dependent Variable: time
Source DF Sum of Squares Mean Square F Value Pr > F
Model 5 9.79948889 1.95989778 6.27 0.0004
Error 30 9.38300000 0.31276667
Corrected Total 35 19.18248889
R-Square Coeff Var Root MSE time Mean
0.510856 10.68414 0.559255 5.234444
Source DF Type I SS Mean Square F Value Pr > F
camera 5 9.79948889 1.95989778 6.27 0.0004
Source DF Type III SS Mean Square F Value Pr > F
camera 5 9.79948889 1.95989778 6.27 0.0004

The SAS System
The GLM Procedure

Source Type III Expected Mean Square
camera Var(Error) + 6 Var(camera)

The program to generate this output is similar to that used before with the additional
command random camera; after the model statement.

We see from the computer output that at the 1% level of significance, there is
indeed a significant variability, that is, we reject the hypothesis H: 𝜎2

𝛼
= 0 at 𝛼 = .01,

the p-value being 0.0004 < .01. To estimate the variance components, we have the
equations

�̂�2
e = .3128

6�̂�2
𝛼
+ �̂�2

e = 1.960.

Then,

�̂�2
𝛼
= 1.960 − 0.313

6
= 0.2745. □

The procedure of “equating mean squares to their expected values” is a special
case of the more general procedure of equating quadratic forms to their expected
values, as used in a variety of ways with unbalanced data. These are discussed in
Chapter 10. For balanced data, the “obvious” quadratic forms to use are the analysis of
variance mean squares. It turns out that the resulting estimators have several optimal
properties. Since derivation of the estimators depends on the availability of expected
mean squares, we turn first to these and the rules that enable them to be written down
on sight. Subsequently, we consider the properties of the estimators.
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6. RULES FOR BALANCED DATA

We confine discussion to factorial designs, consisting of crossed and nested classi-
fications and combinations thereof, where the number of observations in all of the
sub-most subclasses is the same. We exclude situations of partially balanced data,
such as in Latin squares, balanced incomplete blocks and their extensions. Otherwise,
the rules of thumb for setting up analysis of variance tables apply to any combination
or any number of crossed and/or nested classifications. These rules lay out procedures
for determining:

(i) the lines in the analysis of variance;

(ii) their degrees of freedom;

(iii) formulae for calculating sums of squares;

(iv) expected values of mean squares.

Most of the rules are based on Henderson (1959, 1969). Rule 9 is an exception. It
comes from Millman and Glass (1967). They rely heavily on the Henderson paper
for a similar set of rules.

The description of the rules is purposefully brief with no attempt at substantiation.
However, justification of the rules is available in Lum (1954) and Schultz (1955).

a. Establishing Analysis of Variance Tables

(i) Factors and Levels. The analysis of variance table is described in terms of
factors A, B, C,…, with the number of levels in them being na, nb, nc,…, respectively.
When one factor is nested within another, the notation will be C: B for factor C
within B, C: BA for C within AB subclasses, and so on. A letter on the left of the colon
represents the nested factor and those on the right of the colon represent the factors in
which the nested factor is found. For example, for a nested factor C, nc is the number
of levels of factor C within each of the factors in which it is nested. Factors that are
not nested, namely those forming cross-classifications will be called crossed factors.

Within every sub-most class of the data, we assume that there are the same number
of observations nw, either one or more than one. In either case, these observations
can, as Millman and Glass (1967) point out, be referred to as replications within
all other subclasses. Following Henderson (1959), we refer to these as the “within”
factor using the notation W: ABC…, the number of levels of the “within” (i.e., number
of replicates) being nw. The total number of the observations is then the product of
the n’s; to be specific

N = nanbnc … nw.

(ii) Lines in the Analysis of Variance Table
Rule 1. There is one line for each factor (crossed or nested), for each interaction

and for “within.”
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(iii) Interactions. Interactions are obtained symbolically as the product of factors,
both factorial and nested. We consider all products of 2, 3, 4,… factors. For the sake
of generality, we assume that all crossed factors have a colon on the right of the
symbol; for example, A:, B:, and so on.

Rule 2. Every interaction is of the form ABC…: XYZ…, where ABC… is the
product on the left of the colon of the factors being combined and XYZ… is the
product on the right of the colon of the factors so associated with A, B, and C…

Rule 3. Repeated letters on the right of the colon are replaced by one of their kind.
Rule 4. If any letter occurs on both sides of a colon, that interaction does not exist.

Example 3 Illustrations of Rules 2–4

Factors Interaction

A and B AB (Rule 2)
A and C: B AC: B (Rule 2)
A: B and C: B AC: BB = AC: B (Rule 3)
A: B and B: DE AB: BDE nonexistent (Rule 4)

The symbolic form W: ABC… for replicates does, by Rule 4, result in no inter-
actions involving W. Furthermore, the line in the analysis of variance labeled W:
ABC…, being the “within” line, is the residual error line. □

(iv) Degrees of Freedom Each line in an analysis of variance table refers either
to a crossed factor (such as A:), to a nested factor (such as C: B) or to an interaction
(e.g., AC: B). Therefore, any line may be typified by the general expression given for
an interaction in Rule 2, namely ABC…: XYZ…

Rule 5. Degrees of freedom for the line are denoted by

AB: XY are (na − 1)(nb − 1)nxny.

The rule is simple. Degrees of freedom are the product of terms like (na – 1) for every
letter A on the left of the colon and of terms like nx for every letter X on the right of
the colon.

Rule 6. The sum of all degrees of freedom is N – 1, with N = nanbnc …

(v) Sums of Squares We use the symbols that specify a line in the analysis of
variance to establish the corresponding sum of squares. We take the basic elements
to be the uncorrected sum of squares with notation:

1 = CF = Nȳ2

and a, ab, abc ≡ uncorrected sums of squares for the A factor, the AB, and the ABC
subclasses, respectively.
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Rule 7. The sum of squares for the line denoted by

AB: XY is (a − 1)(b − 1)xy = abxy − axy − bxy + xy.

The rule is again simple. Symbolically, a sum of squares is the product of terms like
(a – 1) for every letter A on the left of the colon and of terms like x for every letter
X on the right of the colon. This rule is identical to Rule 5 for degrees of freedom.
If in the expression for degrees of freedom every nf is replaced by f, the resulting
expression is, symbolically, the sum of squares. For example,

(na − 1)(nb − 1)nxny becomes (a − 1)(b − 1)xy = abxy − axy − bxy + xy.

After expansion, interpretation of these products of lower case letters is as uncorrected
sums of squares.

Observe that all sums of squares are expressed essentially in terms of crossed
factors. Even when a factor is nested, sums of squares are expressed in terms of
uncorrected sums of squares calculated as if the nested factor were a crossed factor.
For example, the sum of squares for A:B (A within B) is (a − 1)b = ab − b, where ab
is the uncorrected sum of squares of the AB subclasses.

Rule 8. The total of all sums of squares is
∑

y2 − CF where
∑

y2 represents the
sum of squares of the individual observations, wabc… in the above notation, and
where CF is the correction factor.

Example 4 Illustrations of Rules 1–8 Table 9.3 shows the analysis of variance
that we derive from these rules for the case of two crossed classifications A and
B, a classification C nested within B, namely C: B and the within factor W: ABC.
Application of these rules is indicated at the appropriate points in the table.

TABLE 9.3 Example of Rules 1–8: Analysis of Variance for Factors A, B, C: B, and W:
AB

Line
(Rules 1–4)

Degrees of Freedom
(Rule 5) Sum of Squares (Rule 7)

A na − 1 (a − 1) = a − 1
B nb − 1 (b − 1) = b − 1
C: B (nc − 1)nb (c − 1)b = bc − b
AB (na − 1)(nb − 1) (a − 1)(b − 1) = ab − a − b + 1
AC: B (na − 1)(nc − 1)nb (a − 1)(c − 1)b = abc − ab − bc + b
W: ABC (nw − 1)nanbnc (w − 1)abc = wabc − abc

Total N − 1 (Rule 6)
∑

y2 − CF = wabc (Rule 8)

□
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b. Calculating Sums of Squares

So far the uncorrected sums of squares denoted by lower case letters such as a and ab
have been defined solely in words. For example, ab is the uncorrected sum of squares
for AB subclasses. Henderson (1959, 1969) has no formal definition of these terms. In
some sense it is not necessary to give a formal definition because “everybody knows”
what is meant. For example, the uncorrected sum of squares for the AB subclasses is
the sum over all such subclasses of the square of each subclass total, the sum being
divided by the number of observations in such a subclass (the same number in each).
However, Millman and Glass (1967) give a neat procedure for formalizing this. It
starts from an expression for the total of all the observations. We state the rule using
as an example the uncorrected sum of squares bc in a situation where xhijk is the
observation in levels h, i, j, and k of factors A, B, C, and W, respectively.

Rule 9.
(a) Write down the total of all the observations obtaining

na∑

h=1

nb∑

i=1

nc∑

j=1

nw∑

k=1

xhijk.

(b) Re-order the summation signs so that those pertaining to the letters in the
symbolic form of the uncorrected sum of squares of interest (bc in this case)
come first, and enclose the remainder of the sum in parenthesis obtaining

nb∑

i=1

nc∑

j=1

( na∑

h=1

nw∑

k=1

xhijk

)

.

(c) Square the parenthesis and divide by the product of the n’s therein. The result
is the required sum of squares. We have that

bc =

nb∑

i=1

nc∑

j=1

( na∑

h=1

nw∑

k=1
xhijk

)2

nanw
.

As a workable rule, this is patently simple.

c. Expected Values of Mean Squares, E(MS)

Mean squares are sums of squares divided by degrees of freedom. We obtain expected
values of mean squares, which we denote by E(MS), by the following rules.

(i) Completely Random Models
Rule 10. Denote variances by 𝜎2 with appropriate subscripts. There will be as

many 𝜎2’s with corresponding subscripts as there are lines in the analysis of variance
table. The variance corresponding to the W-factor is the error variance: 𝜎2

w:abc = 𝜎2
e .
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Example 5 Illustration of Variance Notation When there is an AC: B interaction,
there is a variance 𝜎2

ac:b. □

When nw = 1, there is no W-line in the analysis of variance, although it may be
appropriate to think of 𝜎2

w as existing.
Rule 11. Whenever a 𝜎2 appears in any E(MS), its coefficient is the product of all

n’s whose subscripts do not occur in the subscript of that 𝜎2.

Example 6 Illustration of Rule 11 The coefficient of 𝜎2
ac:b is nw when the factors

are A, B, C: B, and W: ABC. □

This rule implies that the coefficient of 𝜎2
w:abc is always unity.

Rule 12. Each E(MS) contains only those 𝜎2’s (with coefficients) whose subscripts
include all letters pertaining to that of the MS.

Example 7 Illustration of Rule 12 For the AC: B line, E[MS(AC: B)] = nw𝜎
2
ac:b +

𝜎2
w:abc.

The above examples of Rules 10–12 are part of the expected values that we show
in Table 9.4. These are the expected values, under the random model, of the mean
squares of the analysis of variance. □

(ii) Fixed Effects and Mixed Models
Rule 13. Treat the model as completely random, except that the 𝜎2 terms corre-

sponding to fixed effects and interactions of fixed effects get changed into quadratic
functions of these fixed effects. All other 𝜎2 terms remain including those pertaining
to interactions of fixed and random effects.

TABLE 9.4 Example of Rules 10–12: Expected Values Under the Random Model of
Mean Squares of Table 9.3

Variances (Rule 10) and Coefficients (Rule 11)

Mean Square nbncnw𝜎
2
a nancnw𝜎

2
b nanwnw𝜎

2
c:b ncnw𝜎

2
ab nw𝜎

2
ac: b 𝜎2

w:abc = 𝜎2
e

Terms included (Rule 12)
MS(A) ∗ ∗ ∗ ∗

MS(B) ∗ ∗ ∗ ∗ ∗

MS(C: B) ∗ ∗ ∗

MS(AB) ∗ ∗ ∗

MS(AC: B) ∗ ∗

MS(W: ABC) ∗

∗denotes a 𝜎2 term that is included; for example, nbncnw𝜎
2
a is part of E[MS(A)]
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Rule 13 is equivalent to that given by Henderson (1969) but differs from Henderson
(1959), where it is stated that some 𝜎2 terms “disappear” from some of the expecta-
tions of mean squares. Explanation of this difference is included in the discussion of
the two-way classification that now follows.

7. THE TWO-WAY CLASSIFICATION

Chapter 7 deals fully with the analysis of unbalanced data from the fixed-effect model
of the two-way classification. We repeat the analysis of variance for balanced models
in Table 9.5, using new symbols for the sums of squares. For example, SSA is the
sum of squares for the A-factor (after 𝜇), with

SSA = R(𝛼|𝜇) = R(𝛼|𝜇, 𝛽) = bn
a∑

i=1

(ȳi.. − ȳ...)
2,

as in Table 7.9. We now develop expected values of these sums of squares for the
fixed, random and mixed models. We do this both as an illustration of the “brute

TABLE 9.5 Analysis of Variance for a Two-Way Classification Interaction Model,
with Balanced Data (see Table 7.9)

Source of Variation d.f. Sum of Squares

Mean 1 SSM = Nȳ2
...

A-factor a − 1 SSA = bn
a∑

i=1
(ŷi... − ŷ...)

2.

B-factor b − 1 SSB = an
b∑

j=1
(ȳ.j. − ȳ...)

2

AB interaction (a − 1)(b − 1) SSAB = n
a∑

i=1

b∑

j=1
(ȳij. − ȳi.. − ȳ.j. + ȳ...)

2

Residual Error ab(n − 1) SSE =
a∑

i=1

b∑

j=1

n∑

k=1
(yijk − ȳij.)

2

Total N = abn SST =
a∑

i=1

b∑

j=1

n∑

k=1
y2

ijk

Mean Squares

MSM = SSM

MSA = SSA
(a − 1)

MSB = SSB
(b − 1)

MSAB = SSAB
(a − 1)(b − 1)

MSE = SSE
ab(n − 1)
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force” method of deriving such expectations and for discussing certain aspects of the
mixed model.

As in Chapter 7, the equation of the model is

yijk = 𝜇 + 𝛼i + 𝛽j + eijk (11)

with i = 1, 2, …, a, j = 1,2, …, b and since we are considering balanced data, k = 1,
2, …, n. To establish expected values of the sums of squares in Table 9.5, first write
down the various means. They involve using

�̄�. =

a∑

i=1
𝛼i

a
, 𝛽. =

b∑

j=1
𝛽j

b

and �̄�i., �̄�.j, and �̄�.. defined in the analogous manner. Hence from (11),

ȳi.. = 𝜇 + 𝛼i + 𝛽. + �̄�i. + ēi...,
ȳ.j. = 𝜇 + �̄�. + 𝛽j + �̄�.j + ē.j.,
yij. = 𝜇 + 𝛼i + 𝛽j + 𝛾ij + ēij.,

(12)

and

ȳ... = 𝜇 + �̄�. + 𝛽. + �̄�.. + ē...

Substituting (11) and (12) into Table 9.5 gives

SSM = N(𝜇 + �̄�. + 𝛽. + �̄�..)2

SSA = bn
a∑

i=1
(𝛼i−�̄�. + �̄�i. − �̄�.. + ēi.. − ē...)

2,

SSB = an
a∑

i=1
(𝛽j−𝛽. + �̄�.j − �̄�.. + ē.j. − ē...)

2,

SSAB = n
a∑

i=1

b∑

j=1
(𝛾ij − �̄�i.−�̄�.j + �̄�.. + ēij. − ēi.. − ē.j. + ē...)

2

(13)

and

SSE =
a∑

i=1

b∑

j=1

n∑

k=1

(eijk − ēij.)
2.

Now, no matter what model we use, fixed, random or mixed, we take the error terms
as having zero mean and variance 𝜎2

e and being independent of one another. Further-
more, the expected value of the product of an error term with𝜇, an 𝛼, a 𝛽, ora 𝛾 is zero.
(If the effects are fixed the products have zero expectation because E(eijk) = 0 and,
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when any of the effects are random products with the e-terms have zero expectation
because of assuming independence.) Finally, expected values of squares and products
of means of the e’s are such that, for example,

E(ē2
i..) =

𝜎2
e

bn
,

E(ēi..ē...) = E(ē.j.ē...) = E(ēij.ē...) =
𝜎2

e

abn

and

E(ēi..ē.j.) =
𝜎2

e

abn
.

Hence for the terms in (13),

E(ēi.. − ē...)
2 = (a−1)𝜎2

e

abn
,

E(ē.j. − ē...)
2 = (b−1)𝜎2

e

abn
,

E(ēij. − ēi.. − ē.j. + ē...)
2 = (a−1)(b−1)𝜎2

e

abn
,

(14)

and

E(eijk − eij.)
2 =

(n − 1)𝜎2
e

n
.

Consequently, on taking expected values of (13) and by dividing by degrees of
freedom to convert them to mean squares we get

E(MSM) = EN(𝜇 + �̄�. + 𝛽. + �̄�..)2 + 𝜎2
e

E(MSA) = bn
a−1

a∑

i=1
E(𝛼i−�̄�. + �̄�i. − �̄�..)2 + 𝜎2

e ,

E(MSB) = an
b−1

a∑

i=1
E(𝛽j−𝛽. + �̄�.j − �̄�..)2 + 𝜎2

e ,

E(MSAB) = n
(a−1)(b−1)

a∑

i=1

b∑

j=1
E(𝛾ij − �̄�i.−�̄�.j + �̄�..)2 + 𝜎2

e ,

(15)

and

E(MSE) = 𝜎2
e .

These results hold whether the model is fixed, random, or mixed. Each model deter-
mines the consequence of the expectation operations shown in the right-hand side of
(15).
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TABLE 9.6 Expected Mean Squares of a Two-Way
Classification Interaction Model, with Balanced Data (see
Table 9.5)

Fixed-Effects Model

E(MSM) = N(𝜇 + �̄�. + 𝛽. + �̄�..)2 + 𝜎2
e

E(MSA) = bn
a − 1

a∑

i=1

(𝛼i − �̄�. + �̄�i. − �̄�..)2 + 𝜎2
e

E(MSB) = an
b − 1

b∑

j=1

(𝛽j − 𝛽. + �̄�,j−�̄�..)2 + 𝜎2
e

E(MSAB) = n
(a − 1)(b − 1)

a∑

i=1

b∑

j=1

(𝛾ij − �̄�i. − �̄�,j + �̄�..)2 + 𝜎2
e

E(SSE) = 𝜎2
e

a. The Fixed Effects Model

In the fixed-effects model, all the 𝛼’s, 𝛽’s, and 𝛾’s are fixed effects. Therefore, the
expectation operations on the right-hand sides of (15) just involve dropping the E
symbol. We show the results in Table 9.6. Their derivation does not make use of the
“usual restrictions” on the elements of the model.

Suppose we consider a model

yijk = 𝜇′ + 𝛼′i + 𝛽
′
j + 𝛾

′
ij + eijk (16)

where the “usual restrictions” are part of the model. These restrictions are

a∑

i=1

𝛼′i = 0,
b∑

j=1

𝛽′j = 0, (17a)

and

a∑

i=1

𝛾 ′ij = 0, for all j,
b∑

j=1

𝛾 ′ij = 0, for all i. (17b)

Before using these restrictions, the expected mean squares will be those of Table 9.6
with primes on the 𝛼’s, 𝛽’s, and 𝛾’s. After using the restrictions in (17a) and (17b),
the expectations reduce to those of Table 9.6 because (17a) and (17b) implies �̄�′

.
=

0, 𝛽′
.
= 0, �̄� ′

.j = 0 for all j and �̄� ′i. = 0, for all i.
We can show that the apparent difference between Tables 9.6 and 9.7 is just that

apparent and not real. Suppose we rewrite the model as

yijk = 𝜇 + eijk (18)

= �̄�.. + (�̄�i. − �̄�..) + (�̄�.j − �̄�..) + (𝜇ij − �̄�i. − �̄�.j + �̄�..) + eij. (19)
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TABLE 9.7 Expected Mean Squares of a Two-Way
Classification Interaction Model, with Balanced Data.
(See Table 9.5)

Fixed-effects model, that includes the restrictions
a∑

i=1

𝛼′i = 0 =
b∑

j=1

𝛽′j =
a∑

i=1

𝛾 ′ij for all j, and
b∑

j=1

𝛾 ′ij = 0 for all i.

E(MSM) = N𝜇
′2 + 𝜎2

e

E(MSA) = bn
a − 1

a∑

i=1

𝛼
′2
i + 𝜎2

e

E(MSB) = an
b − 1

b∑

j=1

𝛽
′2
j + 𝜎2

e

E(MSAB) = n
(a − 1)(b − 1)

a∑

i=1

b∑

i=1

(𝛾
′2
ij + 𝜎2

e

E(MSE) = 𝜎2
e

Then, on defining,

𝜇′ = �̄�.., 𝛼
′
i = �̄�i. − �̄�.., 𝛽′j = �̄�.j − �̄�.., and 𝛾 ′ij = 𝜇ij − �̄�i. − �̄�.j + �̄�... (20)

Equation (19) is identical to (16). Furthermore, by their definition in (20),
𝛼′i , 𝛽

′
j , and 𝛾 ′ij satisfy the constraint equations in (17). We have, for example,

a∑

i=1
𝛼′i =

a∑

i=1
(�̄�i − �̄�..) = 0.

Therefore, the definitions in (20) are consistent with the expected mean squares
of Table 9.7. As a result, we have, for example,

E(MSA) = bn
a − 1

a∑

i=1

𝛼
′2
i + 𝜎2

e .

However, observe that when comparing (18) and (11),

𝜇ij = 𝜇 + 𝛼i + 𝛽j + 𝛾ij. (21)

As a result, with

𝛼′i = �̄�i. − �̄�..

we have from (20),

𝛼′i = 𝜇 + 𝛼i + 𝛽. + �̄�i. − (𝜇 + �̄�. + 𝛽. + �̄�..)
= 𝛼i − �̄�. + �̄�i. − �̄�...

(22)
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TABLE 9.8 Expected Mean Squares of a
Two-Way Classification Interaction Model
with Balanced Data (see Table 9.5)

Random-Effects Model

E(MSM) = abn𝜇2 + bn𝜎2
𝛼
+ an𝜎2

𝛽
+ n𝜎2

𝛾
+ 𝜎2

e

E(MSA) = bn𝜎2
𝛼

+ n𝜎2
𝛾
+ 𝜎2

e

E(MSB) = an𝜎2
𝛽
+ n𝜎2

𝛾
+ 𝜎2

e

E(MSAB) = n𝜎2
𝛾
+ 𝜎2

e

E(MSE) = 𝜎2
e

Thus,
∑n

i=1 𝛼
′2
i of E(MSA) in Table (9.7) has the same meaning as does

a∑

i=1

(𝛼i − �̄�. + �̄�i. − �̄�..)2

of E(MSA) in Table 9.6. Hence, interpretation of the F-statistic MSA/MSE is the
same whether one uses Table 9.6 or 9.7. The F-statistic MSA/MSE tests the signifi-
cance of 𝛼-effects in the presence of (or, plus the average of) interaction effects. In
Table 9.7 the symbols are defined, as in (17) so that these averages are zero whereas
in Table 9.6, they are not so defined. We demonstrated the equivalence of the expres-
sions for E(MSA) in Tables 9.6 and 9.7 via equation (22). In like manner, we can
also demonstrate equivalence of other entries in the two tables by basing them on

𝛽′j = 𝛽j − 𝛽. + 𝛾.j − �̄�..,
𝛾 ′ij = 𝛾ij − �̄�i. − �̄�.j + �̄�..

(23)

and

𝜇′ = 𝜇 + �̄�. + 𝛽. + �̄�...

Defining effects that satisfy “the usual restrictions” in the manner of (20) results in
the simplification of Table 9.6 to the form of Table 9.7. However, this simplification
only occurs for balanced data. It does not occur for unbalanced data because sums
of squares used with such data (e.g., Table 9.8) have expected values that do not
involve the means of the effects in such a simple manner as with balanced data (see
Table 9.6). Sometimes for unbalanced data, restrictions that are in terms of weighted
sums of the effects are suggested. However, these have no simplifying effect when
there are empty cells, as is often the case with unbalanced data.

A special case of the simplifying effect of the “usual restrictions” (20) that is of
some interest is E(MSM). In Table 9.6

E(MSM) = N(𝜇 + �̄�. + 𝛽. + �̄�..) + 𝜎2
e = N[E(ȳ)] + 𝜎2

e , (24)
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consistent with the hypothesis H: E(ȳ) = 0 that can be tested by the F-statistic. In
Table 9.7, the expected value is

E(MSM) = N𝜇′2 + 𝜎2
e

consistent with testing, in that model H: E(ȳ) = 𝜇′ = 0. This is the origin of the
concept of “testing the mean” by the F-statistic F(M) = MSM/MSE., referred to in
earlier chapters. There, with unbalanced data, we saw how the meaning of this phrase
was best described in terms of testing H: E(ȳ) = 0. For balanced data, that description
is still appropriate when the model has “no usual restrictions,” as is evident in (24).
However, when the model does include such restrictions, the hypothesis H: E(ȳ) = 0
reduces to H:𝜇′ = 0 and thus gets described as “testing the mean.”

b. Random-Effects Model

All the 𝛼-, 𝛽-, and 𝛾-effects are random in the random-effects model, with zero means
and variances 𝜎2

𝛼
, 𝜎2
𝛽
, and 𝜎2

𝛾
. Thus, for example,

E(𝛼i) = 0 and E(𝛼2
i ) = 𝜎2

𝛼
. (25)

The effects are also assumed to be uncorrelated with each other. Hence,

E(𝛼i𝛽j) = 0 = E(𝛼i𝛾ij) and E(𝛼i𝛼i′) = 0 for i ≠ i′. (26)

Furthermore, similar to (14),

E(𝛼i − �̄�.)2 =
(a − 1)𝜎2

𝛼

a
. (27)

Similar results hold for the 𝛽’s and the 𝛾’s. Using them in (15) gives the expectations
shown in Table 9.8.

Estimation of the variance components from Table 9.8 is achieved by equating
mean squares to expected values, the resulting solutions for the components being
the estimators. This gives

�̂�2
e = MSE, �̂�2

𝛽
= (MSB − MSAB)

an
,

�̂�2
𝛾
= (MSAB − MSE)

n
, �̂�2

𝛼
= (MSA − MSAB)

bn
.

(24)

Example 8 Analysis of a Two-Way Model with Both Factors Random Houf
and Berman (1988) describe an experiment conducted to investigate the capability
of measurements on thermal impedance (C◦∕w × 100) on a power module for an
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induction motor starter. There are 10 parts selected at random and three randomly
selected inspectors. Each inspector takes three observations. The data follow:

Inspector 1 2 3

Test Test Test

Part no. 1 2 3 1 2 3 1 2 3

1 37 38 37 41 41 40 41 42 41
2 42 41 43 42 42 42 43 42 43
3 30 31 31 31 31 31 29 30 28
4 42 43 42 43 43 43 42 42 42
5 28 30 29 29 30 29 31 29 29
6 42 42 43 45 45 45 44 46 45
7 25 26 27 28 28 30 29 27 27
8 40 40 40 43 42 42 43 43 41
9 25 25 25 27 29 28 26 26 26

10 35 34 34 35 35 34 35 34 35

A two-way analysis of variance produced the following output using SAS.

Class Level Information
Class Levels Values
part 10 1 2 3 4 5 6 7 8 9 10
inspector 3 1 2 3

Number of Observations Read 90
Number of Observations Used 90

Source DF Sum of Squares Mean Square F Value Pr > F
Model 29 4023.733333 138.749425 271.47 <.0001
Error 60 30.666667 0.511111
Corrected Total 89 4054.400000

R-Square Coeff Var Root MSE result Mean
0.992436 1.996984 0.714920 35.80000

Source DF Type I SS Mean Square F Value Pr > F
part 9 3935.955556 437.328395 855.64 <.0001
inspector 2 39.266667 19.633333 38.41 <.0001
part∗inspector 18 48.511111 2.695062 5.27 <.0001
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Source DF Type III SS Mean Square F Value Pr > F
part 9 3935.955556 437.328395 855.64 <.0001
inspector 2 39.266667 19.633333 38.41 <.0001
part∗inspector 18 48.511111 2.695062 5.27 <.0001

source Type III Expected Mean Square
part Var(Error) + 3 Var(part∗inspector) + 9 Var(part)
inspector Var(Error) + 3 Var(part∗inspector) + 30 Var(inspector)
part∗inspector Var(Error) + 3 Var(part∗inspector)

Tests of Hypotheses Using the Type III MS for part∗inspector
as an Error Term

Source DF Type III SS Mean Square F Value Pr > F
part 9 3935.955556 437.328395 162.27 <.0001
inspector 2 39.266667 19.633333 7.28 0.0048

First, observe from the p-values that part, inspector and interaction are significant at
the 1% level. For evaluating significance of part and inspector, we use the interaction
term as the denominator for the F-test instead of the error term. The reason for this
will be made clear in Section 9c. In our notation based on the Type III expected mean
square above, the system of equations for estimating the variance components by the
analysis of variance method is

9�̂�2
𝛼

+ 3�̂�2
𝛾
+ �̂�2

e = 437.33

30�̂�2
𝛽
+ 3�̂�2

𝛾
+ �̂�2

e = 19.63

3�̂�2
𝛾
+ �̂�2

e = 2.70

�̂�2
e = 0.51

Solving for the estimates of the variance components, we have,

�̂�2
e = 0.51

�̂�2
𝛾
= 2.70 − 0.51

3
= 0.73

�̂�2
𝛽
= 19.63 − 2.70

30
= 0.560

�̂�2
𝛼
= 437.33 − 2.70

9
= 48.292.



THE TWO-WAY CLASSIFICATION 521

TABLE 9.9 Expected Mean Squares of a Two-Way
Classification Interaction Model with Balanced Data

Mixed Model 𝛼’s Fixed, and 𝛽’s and 𝛾’s Random

E(MSM) = abn(𝜇 + �̄�.)2 + an𝜎2
𝛽
+ n𝜎2

𝛾
+ 𝜎2

e

E(MSA) = bn
a − 1

a∑

i=1

(𝛼i − �̄�.)2 + n𝜎2
𝛾
+ 𝜎2

e

E(MSB) = an𝜎2
𝛽
+ n𝜎2

𝛾
+ 𝜎2

e

E(MSAB) = n𝜎2
𝛾
+ 𝜎2

e

E(MSE) = 𝜎2
e

c. The Mixed Model

Suppose the 𝛼-effects are fixed effects and the 𝛽’s and 𝛾’s are random. Then the
expectation operations on the right-hand side of (15) involve dropping the E symbol
insofar as it pertains to the 𝛼’s and using properties like those of (25), (26), and (27)
for 𝛽’s and 𝛾’s. This leads to the results shown in Table 9.9.

The difference between the random and mixed models is that the 𝛼’s are random
effects in the random model and are fixed effects in the mixed model. Since only the
first two equations in (15) involve 𝛼’s, only the first two entries in Table 9.9 differ
from the corresponding entries in Table 9.8 and then only in having quadratic terms
in the 𝛼’s instead of terms in 𝜎2

𝛼
.

The expectations in Table 9.9 are arrived at without making any use of the “usual
restrictions” on elements of the model, just as are the expectations in Table 9.6 for
the fixed-effects model. However, if the restriction

∑a
i=1 𝛼i = 0 is taken as part of the

mixed model, then, E(MSA) of Table 9.9 reduces to

E(MSA) = bn
a − 1

a∑

i=1

𝛼2
i + n𝜎2

𝛾
+ 𝜎2

e ,

the quadratic in the 𝛼’s being similar to that of Table 9.8.
An often-used alternative mixed model is

yijk = 𝜇′′ + 𝛼′′i + 𝛽′′j + 𝛾 ′′ij + eijk (29)

with the restriction

a∑

i=1

𝛾 ′′ij = 𝛾 ′′
.j = 0 for all j. (30)

In (29), the 𝛼′′’s are fixed effects and the 𝛽′′’s and 𝛾 ′′’s are random effects with zero
means and variances 𝜎2

𝛽′′
and 𝜎2

𝛾′′
, respectively. The 𝛽′′’s and 𝛾 ′′’s are uncorrelated

with each other and the e’s. Except for (30), this is all exactly the same as in the
mixed model described earlier. This restriction implies a covariance between certain
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of the 𝛾 ′′’s, namely between 𝛾 ′′ij and 𝛾 ′′
i′j

for i ≠ i′. Suppose this covariance is the
same,

cov(𝛾 ′′ij , 𝛾 ′′i′j) = c for all i ≠ i′ and j. (31)

Then from (30),

v

(
a∑

i=1

𝛾 ′′ij

)

= 0.

Thus,

a𝜎2
𝛾′′ + a(a − 1)c = 0,

giving

c = −
𝜎2
𝛾′′

(a − 1)
. (32)

Note that this covariance pertains only to 𝛾 ′′’s within the same level of the 𝛽-factor,
arising as it does from (30). The covariance between 𝛾 ′′’s in the same level of the
𝛼-factor is zero as usual. Thus, we have

cov(𝛾 ′′ij , 𝛾 ′′ij′) = 0 for all i and j ≠ j′. (33)

Prior to utilizing (30), we can derive the expected mean squares for the model (29)
from equations (15) with double prime subscripts on 𝜇, the 𝛼’s, 𝛽’s, and 𝛾’s. Using
�̄� ′′
.j = 0 from (30), we get that �̄�.. = 0. Then equations (15) become

E(MSM) = N(𝜇′′ + �̄�′′
.

)2 + NE(𝛽
′′2
.

) + 𝜎2
e ,

E(MSA) = bn
a − 1

[
a∑

i=1

(𝛼′′i − �̄�′′
.

)2 +
a∑

i=1

E(�̄� ′′i. )
2

]

+ 𝜎2
e ,

(34a)

E(MSB) = an
b − 1

b∑

j=1

E(𝛽′′j − 𝛽′′
.

)2 + 𝜎2
e ,

E(MSAB) = n
(a − 1)(b − 1)

a∑

i=1

b∑

j=1

E(𝛾 ′′ij − �̄�
′′
i. )

2 + 𝜎2
e

(34b)

and

E(MSE) = 𝜎2
e .
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TABLE 9.10 Expected Mean Squares of a Two-Way
Classification Interaction Model, with Balanced Data

Mixed Model, with Restrictions on Interaction Effects 𝛾.j = 0 for all j.

E(MSM) = N(𝜇′′ + �̄�′′
.

)2 + an𝜎2
𝛽′′

+ 𝜎2
e

E(MSA) = bn
a − 1

a∑

i=1

(𝛼′′i − �̄�′′
.

)2 + n
( a

a − 1

)

𝜎2
𝛾′′ + 𝜎

2
e

E(MSB) = an𝜎2
𝛽′′

+ 𝜎2
e

E(MSAB) = n
( a

a − 1

)

𝜎2
𝛾′′

+ 𝜎2
e

E(MSE) = 𝜎2
e

In carrying out the expectation operations in E(MSA) and E(MSAB), we make use
of (31), (32), and (33) to obtain

E(�̄� ′′i. )
2 = 𝜎2

𝛾′′

[
1
b
+ b(b − 1)0

b2

]

=
𝜎2
𝛾′′

b

and

E(𝛾 ′′ij − �̄�
′′
i. )

2 = 𝜎2
𝛾′′

(

1 + 1
b
− 2

b

)

= (b − 1)
b

𝜎2
𝛾′′ .

As a result, expressions (34) reduce to those of Table 9.10.
The results in Table 9.10 differ from those in Table 9.9 in two important ways. The

expectations E(MSB) and E(MSM) do not contain 𝜎2
y′′

. Furthermore, the term in 𝜎2
y′′

that does occur in E(MSA) and E(MSAB) includes the fraction a∕(a − 1). The first
of these differences, the absence of 𝜎2

y′′
from, particularly E(MSB), is the reason for

Rule 13 at the end of Section 6 differing from the first edition of Henderson (1959,
1969) but being the same as the second. The first edition specifies a general rule
that leads to the absence of 𝜎2

y′′
from E(MSB) on the basis of 𝛾 ′′

.j = 0 as in (30). The
second edition specifies a general rule that retains 𝜎2

y′′
in E(MSB) as in Table 9.9,

using a model that has no restriction like (30). This dual approach to the mixed model
is evident in many places. For example, Mood (1950, p. 344) and Kirk (1968, p. 137)
use the Table 9.9 expectations. Anderson and Bancroft (1952, p. 339), Scheffe (1959,
p. 269), Graybill (1961, p. 398), and Snedecor and Cochran (1967, p. 367) use those
akin to Table 9.10. Mood and Graybill (1963) do not discuss the topic. Results like
Table 9.10 predominate in the literature. However, Hartley and Rao (1967) point out
that a strong argument for using the results of Table 9.9 is that they are consistent
with the results for unbalanced data.

The second difference between Tables 9.9 and 9.10 is the occurrence of a∕(a − 1)
in terms of the interaction variance component in Table 9.10. This is a consequence
of the restriction �̄� ′′

.j = 0 of (30). Steel and Torrie (1960, pp. 214, 246), for example,
also show this.
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We now establish a relationship between Tables 9.9 and 9.10. The model for
Table 9.9 is

yijk = 𝜇 + 𝛼i + 𝛽j + 𝛾ij + eijk,

with the 𝛼’s as fixed effects and the 𝛽’s and the 𝛾’s random. We rewrite it as

yijk = 𝜇 + 𝛼i + 𝛽j + �̄�.j + 𝛾ij − �̄�.j + eijk.

On defining 𝜇′′ = 𝜇, 𝛼′′i = 𝛼i,

𝛽′′j = 𝛽j + 𝛾.j and 𝛾 ′′ij = 𝛾ij − 𝛾.j, (35)

we have the model (29), corresponding to Table 9.10. This follows because from
(35),

𝛾 ′′
.j = 𝛾.j − 𝛾.j = 0

as in (30). Other properties of the 𝛾 ′′’s also follow. First, from (35),

𝜎2
𝛽′′ = 𝜎2

𝛽
+
𝜎2
𝛾

a
(36)

and

𝜎2
𝛾′′ = 𝜎2

𝛾

(

1 + 1
a
− 2

a

)

=
(a − 1)𝜎2

𝛾

a
, (37)

giving

𝜎2
𝛾
= a

a − 1
𝜎2
𝛾′′ . (38)

In addition, we have that

cov(𝛽′′j , 𝛾 ′′ij ) = 𝜎2
𝛾

(1
a
− 1

a

)

= 0,

cov(𝛽′′j , 𝛾 ′′ij′) = 0 for j ≠ j′,

cov(𝛾 ′′ij , 𝛾 ′′i′j) = 𝜎2
𝛾

(

−1
a
− 1

a
+ 1

a

)

= −
𝜎2
𝛾

a

= −
𝜎2
𝛾′′

(a − 1)
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from (38). Furthermore,

cov(𝛾 ′′ij , 𝛾 ′′ij′) = 0

as in (33). Hence, the properties of the 𝛽′′’s and 𝛾 ′′’s defined in (35) are exactly those
attributed to (29) and (30) in deriving Table 9.10. In addition, substituting (36) and
(38) into Table 9.10 yields Table 9.91.

Lengthy discussion of the models (29) and (30) that leads to Table 9.10 is avail-
able in Wilk and Kempthorne (1955, 1956), Cornfield and Tukey (1956), and Scheffe
(1959). The model that leads to Table 9.9 is the one customarily used for unbalanced
data. More than this will not be said. The purpose of this section was to show a rela-
tionship between the two different models. In either model, the variance components
are estimated from the last three mean squares of the appropriate table, either 9.9 or
9.10.

Example 9 Expected Mean Squares If We Assume Inspectors in Example 8 Are
Fixed and Parts are Still Random If in Example 8, we assume that inspectors are
specific people but the parts are chosen at random, the expected means squares of
Table 9.9 are given below. We have,

E(MS parts) = 9𝜎2
𝛼

+ 3𝜎2
𝛾
+ 𝜎2

e ,

E(MS inspectors) = 15
3∑

j=1

(𝛽j − 𝛽.)2 + 3𝜎2
𝛾
+ 𝜎2

e ,

E(MS parts*inspectors) = 3𝜎2
𝛾
+ 𝜎2

e ,

and E(MSE) = 𝜎2
e

The reader may estimate the variance components in Exercise 5a. Using SAS, we get
the following tables, the numerical results for the different sums of squares being the
same.

The SAS System
The GLM Procedure

Quadratic Forms of Fixed Effects in the Expected Mean Squares
Source: Type III Mean Square for inspector

inspector 1 inspector 2 inspector 3
inspector 1 20.00000000 −10.00000000 −10.00000000
inspector 2 −10.00000000 20.00000000 −10.00000000
inspector 3 −10.00000000 −10.00000000 20.00000000

1 S. R. Searle gratefully acknowledges conversations on this topic with C. R. Henderson, R. R. Hocking,
and N. S. Urquhart.
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The SAS System
The GLM Procedure

Source Type III Expected Mean Square
part Var(Error) + 3 Var(part∗inspector) + 9 Var(part)
inspector Var(Error) + 3 Var(part∗inspector) + Q(inspector)
part∗inspector Var(Error) + 3 Var(part∗inspector)

The SAS System
The GLM Procedure

Dependent Variable: result
Tests of Hypotheses Using the Type III MS for part∗inspector as an

Error Term
Source DF Type III SS Mean Square F Value Pr > F
part 9 3935.955556 437.328395 162.27 <.0001
inspector 2 39.266667 19.633333 7.28 0.0048

The quadratic form uses the matrix given in the first line of the table divided by the
degrees of freedom for inspectors, which is 2. Thus,

Q = 1
2

[
𝛽1 𝛽2 𝛽3

] ⎡
⎢
⎢
⎣

20 −10 −10
−10 20 −10
−10 −10 20

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

𝛽1
𝛽2
𝛽3

⎤
⎥
⎥
⎦

.

In Exercise 5b, the reader can show that Q = 15
3∑

j=1
(𝛽j − 𝛽.)2.

8. ESTIMATING VARIANCE COMPONENTS FROM BALANCED DATA

The method of estimating variance components from balanced data has been dis-
cussed and illustrated in terms of the one-way and two-way classifications. The rules
of Section 6 determine both the appropriate analysis of variance and their expected
mean squares. The expected mean squares are equated to the observed mean squares
for obtaining estimators. We now discuss the properties of estimators derived in this
fashion.

We now discuss the properties of estimators derived by the analysis of variance
method.

For illustration, we use the one-way classification model. Table 9.11 shows its
analysis of variance and is a generalization of Table 9.2. We consider data consisting
of a classes with n observations in each class.
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TABLE 9.11 Analysis of Variance for One-Way Classification Random Model, n
Observations in Each of a Classes N = an

Source of Variation d.f. Sum of Squares Mean Square
Expected Value of
Mean Square

Mean 1 SSM = T𝜇 MSM = SSM N𝜇2 + n𝜎2
𝛼
+ 𝜎2

e

Classes a − 1 SSA = TA − T𝜇 MSA = SSA
a − 1

n𝜎2
𝛼
+ 𝜎2

e

Residual error a(n − 1) SSE = T0 − TA MSE = SSE
a(n − 1)

𝜎2
e

Total an SST = T0

We introduce and use the notation

To =
a∑

i=1

n∑

j=1

y2
ij, TA = n

a∑

i=1

ȳ2
i., and T𝜇 = Nȳ2

..
(39)

with N = an in Table 9.11 because:

1. It refers to the basic calculations required;

2. It simplifies the writing of the analysis of variance tables; and

3. It extends conveniently to unbalanced data.

Each T-term is a total uncorrected sum of squares, with the subscript indicating the
factor it refers to. The subscript 0 is for the observations. The subscript A is for the
A-factor. The subscript 𝜇 for T𝜇 = R(𝜇).

Estimation of 𝜎2
𝛼

and 𝜎2
e follows from Table 9.11 in the same way it follows from

Table 9.2. Thus, we have that

�̂�2
e = MSE and �̂�2

𝛼
= (MSA − MSE)

n
. (40)

Notation: From now on, we abandon the use of ˆ over a symbol to denote best linear
unbiased estimator. Instead ˆ will simply mean “an estimator of.”

a. Unbiasedness and Minimum Variance

Estimators of variance components obtained from balanced data are unbiased, regard-
less of whether the model is fixed or random. Suppose that m = {Mi}, for i =
1, 2,… , k, is the vector of mean squares such that E(m) does not involve fixed
effects. Furthermore, 𝜎2 is the vector of variance components to be estimated, with
E(m) = P𝜎2 for P non-singular. Then, we can solve the equations m = P𝜎2 as

�̂�2 = P−1m (41)
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TABLE 9.12 Hypothetical Data of a One-Way Classification,
Three Observations in Two Classes

Class Observations Total

1 19 17 15 51 = y1.

2 25 5 15 45 = y2.

96 = y..

for the estimators of the variance components. These estimators are unbiased because

E(�̂�2) = P−1E(m) = P−1P𝜎2 = 𝜎2.

The property of unbiasedness applies to both random and mixed models for
balanced data only. The analogous estimators for unbalanced data are not unbiased.
We return to this point in Chapter 10. Now, we merely note that even this simplest of
properties, unbiasedness is not universally true for analysis of variance estimators of
variance components.

The estimators of �̂�2 of (41) have the smallest variance of all estimators which
are both quadratic functions of the observations and unbiased. Graybill and Hultquist
(1961) present this property of minimum quadratic unbiasedness. Under normality
assumptions, the estimators in (41) have the smallest variance from among all unbi-
ased estimators, both those that are quadratic functions of the observations and those
that are not. Graybill (1954) and Graybill and Wortham (1956) discuss this property.
These papers, and the minimum variance properties they establish, apply only to bal-
anced data. Discussion of similar properties for unbalanced data from the one-way
classification is available in Townsend (1968) and Harville (1969a). Some discussion
for the two-way classification can be found in Searle, Casella, and Mc Culloch (1992).

b. Negative Estimates

A variance component is, by definition, positive. Nevertheless, estimates derived from
(41) could be negative. A simple example illustrates this. Suppose three observations
in each of two classes are those of Table 9.12.Then as in (39),

TA = 512

3
+ 452

3
= 1542

T𝜇 = 962

6
= 1536

T0 = 192 + 172 + 152 + 252 + 52 + 152 = 1750.

Table 9.13 shows the analysis of variance for the data of Table 9.12. Hence, as in
(40),

�̂�2
e = 52 and �̂�2

𝛼
= 6 − 52

3
= −15.333. (42)
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TABLE 9.13 Analysis of Variance in Data in Table 9.12

Source d.f. Sum of Squares Mean Square
Expected Mean

Square

Mean 1 1536 = 1536 1536
Classes 1 1542 − 1536 = 6 6 3𝜎2

a + 𝜎
2
e

Residual error 4 1750 − 1542 = 208 52 𝜎2
e

Total 6 1750 = 1750

This demonstrates how negative estimates can arise from the analysis of variance
method. There is nothing intrinsic in the method to prevent this. This can happen
not only in a simple case such as (42) but also in many factored models, both with
balanced and unbalanced data.

It is clearly embarrassing to estimate a variance component as negative. Interpre-
tation of a negative estimate of a non-negative parameter is obviously a problem.
Several courses of action exist. Few are satisfactory. We list some possibilities.

(i) Accept the estimate, despite its distastefulness and use it as evidence that
the true value of the component is zero. Although this interpretation may be
appealing, the unsatisfying nature of the negative estimate still remains. This
is particularly true if the negative estimate is used to estimate the sum of
components. In that case, the estimated sum can be less than the estimate of
an individual component. For example, from (42), we have the estimated sum
of the components as �̂�2

a + �̂�2
e = 52 − 15.333 = 36.667 < �̂�2

e .

(ii) Accept the negative estimate as evidence that the true value of the correspond-
ing component is zero. Hence, use zero in place of the negative value. Even
though this seems to be a logical replacement, such a truncation procedure
disturbs the properties of the estimates as otherwise obtained. For example,
they are no longer unbiased.

(iii) Use the negative estimate as an indication of a zero component and ignore
that component while retaining the factor as far as the lines in the analysis of
variance table are concerned. This leads to ignoring the component estimated
as negative and re-estimating the others. Thompson (1961, 1962) gives rules
for doing this, known as “pooling minimal mean squares with predecessors.”
Thompson and Moore (1963) give an application.

(iv) Interpret the negative estimate as indication of a wrong model and re-examine
the source of the data to look for a new model. Searle and Fawcett (1970)
suggest finite population models as possible alternatives. They sometimes give
positive estimates when infinite populations models yield negative estimates.
However, their use is likely to be of limited extent. In contrast, Nelder (1954)
suggests that at least for split plot and randomized block designs, random-
ization theory indicates that negative variance components can occur in some
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situations. Such an apparent inconsistency can arise from the intra-block cor-
relation of plots being less than the inter-block correlation.

(v) Use some method other than the analysis of variance method. There are sev-
eral possibilities. One is to use Bayes procedures (see for example, Hill (1965,
1967), Tiao and Tan (1965, 1966), Tiao and Box (1967), Harville (1969b), and
Searle, Casella, and Mc Culloch (1992). Another possibility is to use maxi-
mum likelihood estimators, as suggested by Herbach (1959) and Thompson
(1962). We will discuss these estimators at the end of this chapter. Still another
possibility is to use restricted maximum likelihood estimators. One might also
try using the Minimum norm estimators (MINQUE) (see C. R. Rao (1970,
1971a,b) together with suggested modifications in Chaubey (1984). Two other
references on the above-mentioned estimators are P. S. R. S. Rao (1997) and
Searle (1995).

(vi) Take the negative estimate as indication of insufficient data. Follow the statis-
tician’s last hope. Collect more data and analyze them, either on their own
or pooled with those that yielded the negative estimate. If the estimate from
the pooled data were negative, that would be additional evidence that the
corresponding component is zero.

Obtaining a negative estimate from the analysis of variance method is solely
a consequence of the data and the method. It depends in no way on an implied
distribution normality or otherwise. However, if we assume normality, it is possible
to derive the probability of obtaining a negative estimate. We shall discuss this in
Section 9e.

9. NORMALITY ASSUMPTIONS

Up to now, no particular form for the distribution of the error terms has been assumed.
All of the preceding results obtained in this chapter are true for any distribution. We
now make the normality assumptions. To be specific, we assume that the e’s and
each set of random effects in the model are normally distributed, with zero means
and variance–covariance structure discussed earlier. Recall that we assumed that the
effects of each random factor have a variance–covariance matrix that is the variance
component multiplied by an identity matrix and that the effects of each random factor
are independent of those of every other factor and of the error terms. Under these
conditions, we also assume normality.

a. Distribution of Mean Squares

Let f, SS, and M be the degrees of freedom, sum of squares and mean square

M = SS
f

, (43)
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respectively, in a line of the analysis of variance table of balanced data. Under the
normality assumptions just described, one can show that

SS
E(M)

∼ 𝝌2(f ), and the SS-terms are pairwise independent.

Hence,

fM

E(M)
∼ 𝝌2(f ), and the M′s are pairwise independent. (44)

We can derive result (44) by writing SS/E(M) as a quadratic form y′Ay in the
observations y, and applying Theorems 5 and 6 of Chapter 2. In applying these
theorems to random or mixed models, V is not 𝜎2

e I as it is in the fixed model. Instead,
it a matrix whose elements are functions of the 𝜎2’s of the model as illustrated in (9)
and (10). Nevertheless, for the A-matrices in the quadratic form y′Ay for SS/E(M),
we will find that AV is always idempotent. Furthermore, for the random model, 𝝁 has
the form 𝜇1 and 𝝁′A𝜇 = 𝜇′1′A1𝜇 will, by the nature of A, always be zero. Hence,
the 𝜒2’s are central, as indicated in (44). For the mixed model, (44) will also apply
for all sums of squares whose expected values do not involve fixed effects. Those that
do involve fixed effects will be non-central 𝜒2’s.

Example 10 The Distribution of the Between Sum of Squares in One-Way Anal-
ysis of Variance The variance–covariance matrix for the one-way classification
model of Table 9.11 is

V = 𝜎2
e I + 𝜎2

𝛼

a∑

i=1

+J (45)

where I has order N = an and J has order n. The expression in (45) is a generalization
of that in (10). Now for Table 9.11, with JN being a J-matrix of order N, the terms of
(44) are

SS = SSA = y′
(

n−1
a∑

i=1

+J − N−1JN

)

y (46)

and

E(M) = E(MSA) = n𝜎2
a + 𝜎2

e ,

so that

SS
E(M)

= y′Ay with A =
n−1

a∑

i=1

+J − N−1JN

n𝜎2
a + 𝜎2

e

. (47)
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Hence, using properties of J matrices such as 1′J = n1′ and J2 = nJ (see, for example,
Searle (1966, p. 197) or Gruber (2014, p. 47)),

AV =

⎡
⎢
⎢
⎣

𝜎2
e

⎛
⎜
⎜
⎝

n−1

a∑

i=1

+J − N−1JN

⎞
⎟
⎟
⎠

+ 𝜎2
a

⎛
⎜
⎜
⎝

a∑

i=1

+J − nN−1JN

⎞
⎟
⎟
⎠

⎤
⎥
⎥
⎦

n𝜎2
a + 𝜎2

e

=
a∑

i=1

+n−1J − N−1JN .

(48)

It may be shown that (AV)2 = AV, meaning that AV is idempotent. Furthermore, from
(47), 1′A = 0. Hence,

SSA
E(MSA)

∼ 𝜒2′[r(AV), 0] = 𝜒2(a − 1). (49)

The rank of AV is its trace, namely a – 1. This follows from (48).

There are, of course, easier ways to derive (49). However, the intermediary steps
(45)–(48) have useful generalizations for the case of unbalanced data.

b. Distribution of Estimators

Equating mean squares to their expected values as a method of deriving variance
component estimators gives estimators that are linear functions of their mean squares.
The distribution of these mean squares was given in (44). Therefore, the resulting
variance components are linear functions of multiples of 𝜒2-variables. Some of
these 𝜒2-variables have negative coefficients. A closed form does not exist for the
distribution of such functions. Furthermore, the coefficients are themselves functions
of the population variance components.

Example 11 Demonstration That the Exact Form of the Variance Component
𝝈2
𝜶

cannot be Obtained In Table 9.11, we have that

(a − 1)MSA

n𝜎2
𝛼
+ 𝜎2

e

∼ 𝜒2(a − 1).

Independently,

a(n − 1)MSE

𝜎2
e

∼ 𝜒2(an − a).
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Therefore,

�̂�2
𝛼
= MSA − MSE

n

∼
n𝜎2

𝛼
+ 𝜎2

e

n(a − 1)
𝜒2(a − 1) −

𝜎2
e

an(n − 1)
𝜒2(an − a).

(50)

The exact form of the distribution in (50) cannot be derived for two reasons. First,
its second term is negative. Second, 𝜎2

𝛼
and 𝜎2

e occur in the coefficients and are
unknown. □

In general, the exact form of the distribution cannot be derived for the type of
variance component in Example 11 above. If we knew the coefficients of the variance
components, we could employ the methods of Robinson (1965) or Wang (1967) to
obtain their distributions as infinite series expansions.

In contrast to other components, we can obtain the exact form of the distribution
of �̂�2

e exactly, under normality assumptions. We have that

�̂�2
e = MSE =

𝜎2
e

fMSE
𝜒2(fMSE), (51)

where fMSE are the degrees of freedom associated with MSE.
Generalization of (50) arises from (41), which is �̂�2 = P−1m. The elements of m

follow (44). Thus, for example, Mi ∼ E(Mi)f
−1
i 𝜒2(fi). Now, write

C = diag{f−1
i 𝜒2(fi)} for i = 1, 2,… , k,

where there are k lines in the analysis of variance being used. Then from (41),

�̂�2 ∼ P−1CE(m) ∼ P−1CP𝜎2. (52)

In this way, we can express the vector of estimators of variance components as a
vector of multiples of central 𝜒2 variables.

c. Tests of Hypothesis

Expected values of mean squares, derived by the rules of Section 6 will suggest which
mean squares are the appropriate denominators for testing the hypotheses that certain
variance components are zero. In order to use a central F-distribution, the expected
mean square of the numerator should be that of the denominator plus the variance
component we wish to determine whether or not is significantly different from zero.
Thus, in Table 9.9 MSAB/MSE is appropriate for testing the hypothesis H: 𝜎2

𝛾
= 0

and MSB/MSAB is appropriate for testing H: 𝜎2
𝜷
= 0. Likewise, in Examples 8 and 9,

we tested the hypotheses about the variance components for the main random effects
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using the mean square for the interaction term. In the random model, all ratios of
mean squares have central F-distributions, because all mean squares follow (44). In
the mixed model, the same is true of ratios of mean squares whose expected values
contain no fixed effects.

The table of expected values will not always suggest the “obvious” denominator
for testing a hypothesis. For example, suppose in Table 9.4 we wish to test the
hypothesis 𝜎2

b = 0. From that table we have, using M1, M2, M2, and M4, respectively
for MS(B), MS(C: B), MS(AB), and MS(AC: B),

E(M1) = k1𝜎
2
b + k2𝜎

2
c:b + k3𝜎

2
ab + k4𝜎

2
ac:b + 𝜎

2
e

E(M2) = k2𝜎
2
c:b + k4𝜎

2
ac:b + 𝜎

2
e

E(M3) = k3𝜎
2
ab + k4𝜎

2
ac:b + 𝜎

2
e

E(M4) = k4𝜎
2
ac:b + 𝜎2

e .

Here, we have written the coefficients of the 𝜎2’s as products of the n’s shown in
the column heading of Table 9.4 as k’s, for example, k1 = nancnw. We observe from
these expected values that there is no mean square in the table suitable for testing
the hypotheses H: 𝜎2

b = 0. The reason is that there is no mean square whose expected
value is E(M1) with the 𝜎2

b omitted. We see that

E(M1) − k1𝜎
2
b = k.2𝜎

2
c:b + k3𝜎

2
ab + k4𝜎

2
ac:b + 𝜎

2
e . (53)

However, there is a linear function of the other means squares whose expected value
does equal E(M1) − k1𝜎

2
b . We have that

E(M2) + E(M3) − E(M4) = k.2𝜎
2
c:b + k3𝜎

2
ab + k4𝜎

2
ac:b + 𝜎

2
e . (54)

We shall show how to use the mean squares in (53) and (54) to calculate a ratio that
is approximately distributed as a central F-distribution.

In (54), some of the mean squares are involved negatively. However, from (53),
we have that

E(M1) + E(M4) = k1𝜎
2
b + E(M2) + E(M3).

Let us generalize this to

E(Mr +⋯ + Ms) = k𝜎2
𝛼
+ E(Mm +⋯ + Mn). (55)

Consider testing the hypothesis H: 𝜎2
𝛼
= 0, where 𝜎2

𝛼
is any component of the model.

To test this hypothesis, Satterthwaite (1946) suggests the statistic

F = M′

M′′ =
Mr +⋯ + Ms

Mm +⋯ + Mn
, which is approximately ∼ F(p, q) (56)
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where

p =
(Mr +⋯ + Ms)

2

M2
r ∕fr +⋯ + M2

s ∕fs
and q =

(Mm +⋯ + Mn)2

M2
m∕fm +⋯ + M2

n∕fn
. (57)

In p and q, the term fi is the degrees of freedom associated with the mean square Mi.
The rationale for this test is that both the numerator and denominator of (56) are

distributed approximately as multiples of central 𝜒2 variables. each mean square in
the analysis is distributed as the multiple of a central 𝜒2. Moreover, in (56), there is
no mean square that occurs in both the numerator and denominator. Thus, the random
variables in the numerator and denominator of (56) are independent. Thus, we have
that the statistic F in (56) has an approximate F(p, q)-distribution.

In (56), both M′ and M′′ are sums of mean squares. As Satterthwaite (1946)
showed, pM′∕E(M′) has an approximate central 𝜒2-distribution with p degrees of
freedom where p is given by (57). A similar result holds true for M′′ with q degrees
of freedom. More generally, consider the case where some mean squares are included
negatively. Suppose

M0 = M1 − M2

where M1 and M2 are now sums of mean squares having degrees of freedom f1 and f2,
respectively. Let

𝝆 =
E(M1)

E(M2)
and �̂� =

M1

M2
≥ 1.

In addition, let

f̂0 =
(�̂� − 1)2

(�̂�∕f1 + 1∕f2)
.

Simulation studies of Gaylor and Hopper (1969) suggest that the statistic

f̂0M0

E(M0)
is approximately∼𝝌2(f0)

provided that

𝝆 > Ff2⋅f1⋅0.975, f1 ≤ 100, and f1 ≤ 2f2.

They further suggest that 𝝆 > Ff2⋅f1⋅0.975 “appears to be fulfilled reasonably well”
when

�̂� > Ff2⋅f1⋅0.975 × Ff2⋅f1⋅0.50.
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Under these conditions, we may use Satterthwaite’s procedure in (56) and (57) on
functions of mean squares that involve differences as well as sums.

d. Confidence Intervals

Although we are unable to derive exact distributions, we can still find approximate
and, in some cases, confidence intervals for functions of variance components.

Graybill (1961, p. 369) presents a method for obtaining approximate confidence
intervals for a linear function of expected mean squares. The method is as follows.
Define 𝝌2

n,L and𝝌2
n,U as lower and upper points of a (1 − 𝛼)% region of the 𝝌2(n)-

distribution such that

Pr{𝝌2
n,L ≤ 𝝌2(n) ≤ 𝝌2

n,U} = 1 − 𝛼. (58)

Then for any constants ki, such that
∑

kiMi > 0, the approximate confidence interval
on

∑
kiMi is given by

Pr

{
n
∑

kiMi

𝝌2
r,U

≤
∑

kiE(Mi) ≤
n
∑

kiMi

𝝌2
r,L

}

= 1 − 𝛼,

where

r =
(∑

kiMi

)2

∑
k2

i M2
i ∕fi

analogous to (57). Since r will seldom be an integer, 𝝌2
r,L and𝝌2

r,U are obtained from

tables of the central 𝜒2-distribution using either interpolation or the nearest (or next
largest integer to r. Welch gives a correction to the tabulated 𝜒2-values when r <
30. Graybill (1961, p. 370) recommends its use and provides details. Other methods
of finding simultaneous confidence intervals on ratios of variance components are
available in Broemeling (1969).

Suppose that M1 and M2 are two mean squares having the properties of (44) and
such that

E(M1) = 𝜃 + 𝜎2
e and E(M2) = 𝜎2

e .

Suppose f1 and f2 are the respective degrees of freedom of M1 and M2 and let

F =
M1

M2
.
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Then with Ff1,f2,𝛼 being the upper 𝛼% point of the F(f1, f2)-distribution, that is, a
fraction 𝛼% of the distribution lying beyond Ff1,f2,𝛼 , write

𝛼1 + 𝛼2 = 𝛼

and

F1 = Ff2,f1,𝛼 , F2 = Ff1,f2,𝛼 ,
F′

1 = F∞,f1,𝛼 , F′
2 = Ff1,∞,𝛼.

Scheffe (1959, p. 235) gives an approximate (1 − 𝛼)% confidence interval that is
similar to that of Bulmer (1957). The confidence interval on 𝜃 is

(
M2(F − F2)(F + F2 − F′

2)

FF′
2

,
M2(F − 1∕F1)(F + 1∕F1 − 1∕F′

1

F∕F′
1

)

.

When F < F2, the lower limit is taken as zero. When F < 1/F1, the interval is taken
as zero.

Scheffe (1959, p. 235) (Also see Section 2 of Chapter 10 of that reference)
indicates that this interval can be “seriously invalidated by non-normality, especially
of the random effects” for which M1 is the mean square.

Although, in general, only approximate confidence intervals can be placed on
variance components, there are some instances where it is possible to derive exact
intervals. The most notable is the interval for 𝜎2

e based on the 𝜒2-distribution of (51).
It yields the interval contained in the probability statement

Pr

{

SSE

𝜒2
fSSE,U

≤ 𝜎2
e ≤

SSE

𝜒2
fSSE,L

}

= 1 − 𝛼 (59)

where for the degrees of freedom fSSE = fMSE. We derive the 𝜒2-values from tables
as in (58).

Other exact confidence intervals readily available are those for the one-way clas-
sification. We show these in Table 9.14 above. The first entry there is the appropriate
form of (59). The last three entries are equivalent intervals for different ratio functions,
all based on the fact that for F = MSA/MSE,

𝜎2
e F

(
n𝜎2

𝛼
+ 𝜎2

e

) ∼ F[a − 1, (n − 1)]. (60)

Graybill (1961, p. 379) gives the interval for 𝜎2
𝛼
∕(𝜎2

𝛼
+ 𝜎2

e ). Sheffe (1959, p. 229)
gives the interval for 𝜎2

𝛼
∕𝜎2

e . Williams (1962) gives the confidence interval for 𝜎2
𝛼
,

the second entry in the table. It results from combining (60) and the distribution of
SSE∕𝜎2.
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TABLE 9.14 Confidence Intervals for the Variance Components and Functions
Thereof, in the One-Way Classification Random Model, Balanced Data (See Table 9.11)

Exact Confidence Intervala

Parameter
Lower
limit

Upper
limit

Confidence
Coefficient

𝜎2
e

SSE
𝜒2

a(n−1),U

SSE
𝜒2

a(n−1)L

1 − 𝛼

𝜎2
𝛼

SSA(1 − FU∕F)

n𝜒2
a−1,U

SSA(1 − FL∕F)

n𝜒2
a−1,L

1 − 2𝛼

𝜎2
𝛼

𝜎2
𝛼
+ 𝜎2

e

F∕FU − 1

n + F∕FU − 1

F∕FL − 1

n + F∕FL − 1
1 − 𝛼

𝜎2
e

𝜎2
𝛼
+ 𝜎2

e

n
n + F∕FL − 1

n
n + F∕FU − 1

1 − 𝛼

𝜎2
𝛼

𝜎2
e

F∕FU − 1

n

F∕FL − 1

n
1 − 𝛼

aNotation
F = MSA∕MSE

Pr
{

𝜒2
n,L ≤ 𝜒2(n) ≤ 𝜒2

n,U

}

= 1 − 𝛼
Pr{FL ≤ F[a − 1, a(n − 1)] ≤ FU} = 1 − 𝛼.

e. Probability of Negative Estimates

Consider two mean squares M1 and M2 of the kind described in (44). Suppose
E(M1 − M2) = k𝜎2 so that

�̂�2 =
(M1 − M2)

k
.

Then the probability of �̂�2 being negative is

Pr{�̂�2 is negative} = Pr
{

M1

M2
< 1

}

= Pr
{

M1∕E(M1)

M2∕E(M2)
<

E(M2)

E(M1)

}

= Pr
{

F(f1, f2) <
E(M2)

E(M1)

}

. (61)

This provides a means of calculating the probability that an estimator of the form �̂�2 =
(M1 − M2)∕k will be negative. It requires giving values to the variance components
being estimated because E(M1) and E(M2) are functions of the components. However,
in using a series of arbitrary values for these components, calculation of (61) provides
some general indication of the probability of obtaining a negative estimate. The
development of this procedure is due to Leone et al. (1968). We could extend it to
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use the approximate F-statistic of (56) for finding the probability that the estimate of
𝜎2
𝛼

would be negative.

Example 12 Probability that 𝝈2
𝜶
< 0 in the One-Way Classification For the one-

way classification of Table 9.11, equation (61) is

Pr
{
�̂�2
𝛼
< 0

}
= Pr

{

Fa−1,a(n−1) <
𝜎2

e

𝜎2
e + n𝜎2

a

}

= Pr
{

Fa−1,a(n−1) <
1

1 + n𝜌

}

where 𝜌 = 𝜎2
𝛼
∕𝜎2

e . □

f. Sampling Variances of Estimators

In spite of the fact that, in general, the distribution functions for variance component
estimators that are linear functions of 𝜒2-variables cannot be derived, their sampling
variances can be. We shall show how to do this in this section. Of course, the variances
are functions of the unknown components.

(i) Derivation. Since the estimators are linear functions of mean squares, they are
linear functions of the quadratic forms of the observations. Hence, the estimators
are also quadratic forms of the observations. Therefore, we may use Theorem 4 of
Chapter 2 to derive their variances. We shall use this procedure for unbalanced data
in Chapter 10. However, for balanced data, the mean squares are independent with
known distributions, as in (44). Therefore, we can easily derive the variances of linear
functions of the mean squares. If we write an estimator in the form

�̂�2 =
∑

kiMi,

from (44), we have that cov(MiMi′) = 0 for i ≠ i′ and

v(Mi) = 2fi

[
E(Mi)

fi

]2

=
2[E(Mi)]

2

fi
.

Hence,

v(�̂�2) = 2
∑ k2

i [E(Mi)]
2

fi
. (62)

Example 13 Sampling Variance of Variance Components in the One-Way Clas-
sification In the one-way classification of Table 9.11

�̂�2 = (MSA − MSE)
n
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and so from (62),

v(�̂�2
𝛼
) = 2

n2

[
(n𝜎2

𝛼
+ 𝜎2

e )2

a − 1
+

𝜎4
e

a(n − 1)

]

. (63)

Similarly from (51),

v(𝜎2
e ) =

2𝜎4
e

fMSE
. (64)

For Table 9.11, this is

v(𝜎2
e ) =

2𝜎4
e

a(n − 1)
. (65)

□

(ii) Covariance Matrix As noted in (44), mean squares in the analysis of variance
are distributed independently of one another. Therefore, they have zero covariances.
However, this is not necessarily the case for variance component estimators that
are linear functions of these mean squares. Such estimators usually have non-zero
covariances. For example, from (40), we have in the one-way classification

cov(�̂�2
𝛼
, �̂�2

e ) = −v(MSE)
n

(66)

= −
2𝜎4

e

an(n − 1)
. (67)

In general, from (41), the variance–covariance matrix of the vector of estimators
is

var(�̂�2) = P−1var(m)P−1′ . (68)

As a result of the mean squares being independent, var(m) is diagonal. Thus, we can
write it as

var(m) = D = diag

{
2[E(Mi]

2

fi

}

for i = 1, 2,… , k. (69)

Then,

var(�̂�2) = P−1DP−1′ . (70)

Each element of (70) is a quadratic function of variance components, as is [E(Mi]
2

in (69).
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(iii) Unbiased Estimation The estimation of the elements of var(�̂�2) in any optimal
manner is not easy because of the quadratic nature of the variance components. The
procedure that is simplest and most often used is that of replacing E(Mi) in D by Mi.
Thus, from (69), we write

D1 = diag

{
2M2

i

fi

}

for i = 1, 2,… , k. (71)

We then have,

vãr(�̂�2) = P−1D1P−1′ . (72)

These estimators have no desirable properties. They are not even unbiased.
However, we can readily obtain unbiased estimators of var(�̂�2) from (71) through

replacing fi therein by fi + 2. Thus, with

D2 = diag

{
2M2

i

(fi + 2)

}

for i = 1, 2,… , k. (73)

we have,

vâr(�̂�2) = P−1D2P−1′ (74)

as an unbiased estimator of var(�̂�2). For example, from (63) and (65),

v̂(�̂�2
𝛼
) = 2

n2

[
(n�̂�2

𝛼
+ �̂�2

e )2

a + 1
+

�̂�4
e

a(n − 1) + 2

]

and

v̂(�̂�2
e ) =

2�̂�4
e

a(n − 1) + 2

are unbiased estimators of the variances �̂�2
𝛼

and �̂�2
e , respectively.

The reason that (74) gives an unbiased estimator of var(�̂�2) is as follows. For any
mean square M, with degrees of freedom f,

v(M) = 2[E(M)]2

f
.

By the well-known shortcut formula for calculating the variance of a random variable,

v(M) = E(M2) − [E(M)]2.
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Hence,

E(M2) =
(

1 + 2
f

)

[E(M)]2.

As a result, M2∕(f + 2) is an unbiased estimator of [E(M)]2∕f . Therefore, using
M2

i ∕(fi + 2) in place of E(M2
i )∕fi in (69) as is done in (73), makes D2 an unbi-

ased estimator of D. Hence, P−1D2P−1′ of (74) is an unbiased estimator of
var(�̂�2) = P−1DP−1′ .

10. OTHER WAYS TO ESTIMATE VARIANCE COMPONENTS

This section will give a sketch of three other methods of variance components estima-
tion. These are maximum likelihood estimation, Bayes estimation, and the MINQUE
method. Most of the discussion will be confined to the one-way classification. We
will present a few results for the two-way classification without proof. For a more
extensive treatment of these topics, the reader may consult Searle, Casella, and Mc
Culloch (1992) and the references therein. An overview of these topics is available
in Searle (1995).

a. Maximum Likelihood Estimation

Estimating parameters of a fixed-effects model by the method of maximum likeli-
hood, under normality assumptions, frequently leads to the same estimators as do
least squares and best linear unbiased estimation. However, for variance component
estimators, it does not lead to the analysis of variance estimators. The analysis of
variance estimators cannot be maximum likelihood estimators because as we have
already seen, they can be negative. We obtain maximum likelihood estimators by
maximizing the likelihood over a parameter space that is non-negative as far as the
variance components are concerned. Therefore, maximum likelihood estimators must
be non-negative. The derivation of maximum likelihood estimators is not as straight
forward for variance components as it is for the parameters of a fixed-effects model.
Indeed, with unbalanced data, explicit estimators cannot be obtained. We now discuss
some of the available results for balanced data in the one-way classification.

We first consider the un-restricted maximum likelihood estimator and then con-
sider the restricted maximum likelihood estimator for the one-way classification. We
then give the maximum likelihood estimators for the two-way classification without
derivation.

(i) The Unrestricted Maximum Likelihood Estimator. The likelihood of the sam-
ple of observations in the one-way classification model is

L = (2𝜋)−
1
2

an
|V|

− 1
2 exp{−1

2
(y − 𝜇1)′V−1(y − 𝜇1). (75)
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The matrix V of (45) may be rewritten as

V =
a∑

i=1

+(𝜎2
e I + 𝜎2

𝛼
J),

where the order of I and J is n. Then the determinant of V is

|V| =
a∏

i=1

|(𝜎2
e I + 𝜎2

𝛼
J)| = [𝜎2(n−1)

e (𝜎2
e + n𝜎2

𝛼
)]a

and the inverse of V is

V−1 =
a∑

i=1

+

[

1
𝜎2

e

I −
𝜎2
𝛼

𝜎2
e (𝜎2

e + 𝜎2
𝛼
)
J

]

.

Substituting for |V| and V−1 into (75), after some simplification yields

L =

exp− 1
2

[

SSE
𝜎2

e

+ SSA
𝜎2

e + n𝜎2
𝛼

+
an(ȳ.. − 𝜇)2

𝜎2
e + n𝜎2

𝛼

]

(2𝜋)
1
2

an(𝜎2
e )

1
2 a(n−1)

(𝜎2
e + n𝜎2

𝛼
)

1
2

a
. (76)

Equating to zero, the derivatives of logL with respect to 𝜇, 𝜎2
𝛼
, and 𝜎2

e and denoting
the solutions by �̃�, �̃�2

𝛼
, and �̃�2

e gives �̃� = ȳ.. and

a(�̃�2
e + n�̃�2

𝛼
) = SSA and a(n − 1)�̃�2

e = SSE. (77)

The solutions to (77) are

�̃�2
e = SSE

a(n − 1)
= MSE (78a)

and

�̃�2
𝛼
=

SSA∕a − �̃�2
e

n
=

(1 − 1∕a) MSA-MSE

n
(78b)

When maximizing L in (76), we did not restrict the parameters �̃�2
𝛼

and �̃�2
e to positive

values. The solutions to (77) given in (78a) and (78b) are not maximum likelihood
estimators. Herbach (1959) and Searle, Casella, and Mc Culloch (1992, pp. 81–84),
show that when �̃�2

𝛼
is negative or equivalently (1 – 1/a)MSA < MSE, the maximum

likelihood estimator of 𝜎2
𝛼

is zero and that of 𝜎2
e is SST/an.
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(ii) Restricted Maximum Likelihood Estimator We now consider an adaption of
maximum likelihood estimation, which maximizes that portion of the likelihood
confined to sufficient statistics that are location invariant (see pp. 296–300 of Casella
and Berger (2002)). For the one-way classification, this means maximizing that
portion of the likelihood that does not involve 𝜇.

Thompson (1962) and Patterson and Thompson (1971) suggest restricted maxi-
mum likelihood estimation. Anderson and Bancroft (1952, p. 320) and Russell and
Bradley (1958) consider similar estimation procedures. Thus, we maximize

L =

exp− 1
2

[

SSE
𝜎2

e

+ SSA
𝜆

]

(2𝜋)
1
2

(an−1)(𝜎2
e )

1
2 a(n−1)

(𝜆)
1
2

(a−1)(an)
1
2

, (79)

where 𝜆 = 𝜎2
e + n𝜎2

𝛼
. Finding the partial derivatives of logL in (79) with respect to

𝜎2
e and 𝜆, equating them to zero and solving the resulting equations, we find that

restricted maximum likelihood solutions are

�̃�2
e,R = SSE

n − 1
= MSE and �̃�2

𝛼,R = 1
n

(MSA − MSE). (80a)

From considerations similar to those in finding the unrestricted maximum likelihood
estimator, we have that the restricted maximum likelihood estimator is given by (80a)
when �̃�2

𝛼,R > 0 and when �̃�2
𝛼,R ≤ 0,

�̃�2
e,R =

SST

an − 1
and �̃�2

𝛼,R = 0. (80b)

Example 14 Illustration of Numerical Values of the Maximum Likelihood Esti-
mator For the computer output in Example 2, we have a = 6, n = 6, MSA = 1.960,

and MSE = 0.313. Then �̃�2
e = 0.313 and �̃�2

𝛼
= 1

6

[(

1 − 1
6

)

1.960 − 0.313
]

= 0.220 is

the maximum likelihood estimate. The restricted maximum likelihood estimator is
the same as the analysis of variance estimator that was obtained in Example 2.

The results of this section are summarized in Table 9.15 below. □

(iii) The Maximum Likelihood Estimator in the Two-Way Classification. For a
two-way model where both factors are random, the maximum likelihood estimators
cannot be found in closed form. They can be found in closed form for the mixed
model however. These closed forms are given in Tables 9.16–9.18 where A is the
fixed factor and B is the random factor.

Searle, Casella, and Mc Culloch (1992, p. 253) point out that solutions to the
restricted maximum likelihood estimators in balanced data for all mixed models are
the same as that of the analysis of variance estimator. Anderson (1978, pp 97–104)
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TABLE 9.15 Estimators of Variance Components in the One-Way Classification,
Random Model, With Balanced Data

Estimators

Methods of Estimation Conditions of 𝜎2
𝛼

of 𝜎2
e

Analysis of variance None
(MSA − MSE)

n
MSE

Maximum likelihood
(Herbach, 1959)

a − 1
a

MSA ≥ MSE
(((a − 1)∕a) MSA − MSE)

n
MSE

a − 1
a

MSA < MSE 0
SST
an

Restricted maximum
likelihood (Thompson,
1962)

MSA ≥ MSE
(MSA − MSE)

n
MSE

MSA < MSE 0
SST

an − 1

gives a detailed proof of this result. For discussion of this result and some specific
examples, see Patterson and Thompson (1971), Corbeil and Searle (1976), Searle
(1976), and Harville (1977).

b. The MINQUE

We give a brief summary of the MINQUE method of estimating variance components.
It is particularly useful for unbalanced data because its variance is less than that of
the analysis of variance estimator. Also for certain modifications of the MINQUE
estimator, we can avoid negative variance components. For the most part, we follow
P. S. R. S. Rao (1997).

TABLE 9.16 Maximum Likelihood (ML) Estimators of 𝝈2
𝜶
,𝝈2

𝜷
, and𝝈2

𝜸
in a Two-Way

Nested Classification Mixed Model

Conditions satisfied by
the ML soluations �̃�2

𝛼
MLE �̃�2

𝛽
�̃�2

e

(a − 1) MSA ≥ a MSB:
A, MSB: A ≥ MSB

SSA − a MSB: a
abn

MSB: A − MSE
n

MSE

(a − 1) MSA ≥ a MSB:
A, MSB: A < MSB

SSA − a�̃�2
e

abn
0

SSE + SSB: A
a(bn − 1)

(a − 1) MSA < a MSB:
A, MSB: A ≥ MSB

0
(SSA + SSB: A − abMSE

abn

)

MSE

(a − 1) MSA < a MSB:
A, MSB: A < MSB

0 0
SSTm

abn
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ȳ i

j.
−
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TABLE 9.18 Maximum Likelihood Estimators of 𝝈2
𝜷

and𝝈2
e in a Two-Way Crossed

Classification, Mixed Model, 𝜶 Effects Fixed

Conditions Satisfied by the ML solutions MLE �̃�2
𝛽

�̃�2
e

(b − 1)
b

MSB ≥

[

1 − (a − 1)
b(an − 1)

]

MSE

(b − 1)
b

MSB −
[

1 − a − 1
b(an − 1)

MSE

]

an

[

1 − a − 1
b(an − 1)

MSE

]

(b − 1)
b

MSB <

[

1 − (a − 1)
b(an − 1)

]

MSE 0
SSTm

abn

(i) The Basic Principle. The letters in MINQUE stand for minimum, invariant,
norm, quadratic unbiased estimation, respectively. In the course of this development,
we shall explain how this comes into play.

Consider a linear model

Y = Xb + 𝜀 (81)

with Y an n × 1 vector of observations, X a known n × s matrix, and 𝛽 an s × 1 vector
of fixed parameters. We can express the n × 1 vector e as

𝜺 = U1𝝃1 + U2𝝃2 +⋯ + Up𝝃p = U𝝃. (82)

The n × ni matrices Ui, i = 1, 2,… , p are known and the ni × 1 vectors 𝝃i
represent the random effects and residuals n =

∑p
i=1 ni.. Observe that U =

[
U1 U2 ⋯ Up

]
, 𝝃′ =

[
𝝃′1, 𝝃′2,⋯ , 𝝃p

]
and e = U𝝃.

We assume that 𝝃i follows a normal distribution with E(𝝃i) = 0, E(𝝃i𝝃
′
i) =

𝜎2
i Ii, and E(𝝃i𝝃

′
j) = 0 for i ≠ j. The variance–covariance matrix or dispersion matrix

of Y is

Σ = E(𝜺𝜺′) = E(U𝝃)(U𝝃)′ =
p∑

i=1

𝜎2
i Vi, (83a)

where Vi = UiU
′
i. When 𝝃i, i = 1,2, p has a normal distribution, Y follows a multi-

normal distribution with mean X𝛽 and dispersionΣ.

Example 15 What this Model Looks Like for the Balanced One-Way Analysis
of Variance For the balanced one-way analysis of variance Y is an na × 1 vector
of observations, X = 1na, U1 is the na × a matrix

U1 =
⎡
⎢
⎢
⎢
⎣

1n 0 0 0
0 1n 0 0
⋮ ⋮ ⋱ ⋮
0 0 0 1n

⎤
⎥
⎥
⎥
⎦
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and 𝝃1 = 𝛼. Now U2 is the na × na matrix Ina and 𝝃2 = e. Then,

V1 =
⎡
⎢
⎢
⎢
⎣

Jn 0 0 0
0 Jn ⋯ ⋯
⋯ ⋯ ⋱ ⋯
⋯ ⋯ ⋯ Jn

⎤
⎥
⎥
⎥
⎦

and V2 = Ina. We then have that

𝝃 = U1𝛼 + U2e

and

V = 𝜎2
𝛼
V1 + 𝜎2

e V2.

Consider a linear combination of the variance components of the model in (81) in
the form

l′𝜎 = l1𝜎
2
1 + l2𝜎

2
2 +⋯ + lp𝜎

2
p (83b)

where l is a p × 1 column vector with elements li, 1 ≤ i ≤ p and 𝜎 is a p × 1 column
vector with elements 𝜎2

i , 1 ≤ i ≤ p.
To estimate this linear combination we consider we use a quadratic form of the

observations that is invariant to 𝜷 . For any s × 1 vector 𝜷0 the quadratic form

(Y − X𝛽0)′A(Y − X𝛽0) = Y′AY (84)

provided that AX = 0. Note that AX = 0 implies X′AX = 0. From (84), using
translation invariance, we have that

Y′AY = 𝜺′A𝜺 = 𝝃′U′AU𝝃 (85)

and from (83a),

E(Y′AY) = Etr(AU𝝃𝝃′U′) =
p∑

i=1

𝜎2
i trAVi. (86)

Hence, l′�̂� = Y′AY will be unbiased for l′𝜎 if trAVi = li for i = 1, 2,… , p.
To formulate the MINQUE principle, Rao (1971a) starts with the estimator

(
l1
n1

)

𝝃′1𝝃1 +
(

l2
n2

)

𝝃′2𝝃2 +⋯ +
( lp

np

)

𝝃′p𝝃p = 𝝃′𝚫𝝃. (87)

The matrix 𝚫 is block diagonal with diagonal blocks (li/ni)Ii, where Ii is the identity
matrix of dimension ni.
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From (85) and (87), we obtain the difference

Y′AY − 𝝃′𝚫𝝃 = 𝝃′(U′AU − 𝚫)𝝃 (88)

We reduce this distance by minimizing the square of the Euclidean norm

‖
‖U′AU − 𝚫‖

‖
2 = tr(U′AU − 𝚫)2

= tr(AVAV + 𝚫2 − 2AU𝚫U′)
= trAVAV − tr𝚫2.

(89)

Note that tr𝚫2 =
∑p

i=1 (l2i ∕ni). The last expression in (89) is obtained by the unbi-
asedness condition.

From the development above, finding the matrix A of MINQUE of l′𝜎 = Y′AY
consists of minimizing trAVAV with the variance and unbiasedness conditions

(i) AX = 0 and (ii) trAVi = li. (90)

(ii) The MINQUE Solution Observe that

AX = 0 ⇒ BX0 = 0 (91)

where B = V1∕2AV1∕2 and X0 = V−1∕2X. The condition for unbiasedness now
becomes

trAVi = trBV−1∕2ViV
−1∕2 = li. (92)

Thus, minimizing trAVAV with the two conditions in (90) is the same as minimizing
trB2 with the conditions in (91) and (92). Now,

BX0 = 0 ⇒ B = Q0BQ0 (93)

where Q0 = I − X0(X′
0Xo)−X′

0. As a result,

trBV−1∕2ViV
−1∕2 = trBQ0V−1∕2ViV

−1∕2Q0 = li. (94)

The solution for minimizing trB2 with the constraints in (93) and (94) is

B =
p∑

i=1

𝜆iQ0V−1∕2ViV
−1∕2Q0. (95)

Thus, we have that

A =
p∑

i=1

𝝀iR0ViR0, (96)
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where R0 = V−1∕2Q0V−1∕2 = V−1[I − X(X′V−1X)−X′V−1]. We obtain the coeffi-
cients 𝝀i from the unbiasedness condition in (90), that is from

p∑

i=1

𝝀itrR0ViR0Vj = lj, j = 1, 2,… , p. (97)

(See Section 1f.3, of C. R. Rao (1973, pp. 65–66).)
Equations (97) may be expressed as F0𝝀 = l where𝝀 and l are the vectors of 𝜆i

and li, respectively.
From (96), we see that the MINQUE of l′𝜎 is

l′�̂� =
p∑

i=1

𝜆ie
′
0Vie0 =

p∑

i=1

𝜆ig0i = 𝜆′g0, (98)

where e0 = R0Y, g0i = e′0Vie0 and g0 is the vector of the elements g0i for i =
1, 2,… , p. Since l′ = 𝝀′F0 it follows from (98), that

F0�̂� = g0. (99)

Thus, we obtain the MINQUE of the individual variance components and l′𝜎 from
the equations �̂� = F−1

0 g0 and l′�̂� = l′F−1
0 g0.

This procedure for estimating the variance components is equivalent to equating
e′Vie to its expectation and solving for 𝜎2

i . From (98) and (99), we see that the
MINQUE is a linear combination of the quadratic forms of the residuals Q0Y obtained
by regressing V−1∕2Y on V−1∕2X.

Alternative derivations of the MINQUE are available in P. S. R. S. Rao (1997),
C. R. Rao (1973), C. R. Rao (1984), Mitra (1971), and Brown (1977).

(iii) A priori Values and the MIVQUE Suppose a priori values are available for
𝜎2

i , i = 1, 2,… , p for the model in (82). Denote these values by 𝛾2
i . For the model

(82), we have,

𝜀 = U1∗𝜂1 + U2∗𝜂2 +⋯ + Up∗𝜂p (100)

with Ui∗ = Ui𝛾i, U∗ = (U1∗ , U2∗ ,… , Up∗ ), 𝜼i = (1∕𝛾i)𝝃i and 𝜼′ = (𝜼′1, 𝜼′2,… , 𝜼′p).

Observe that U∗ = U𝚲1∕2 and 𝜼 = 𝚲−1∕2𝝃 where 𝚲−1∕2 is a diagonal matrix with
elements 𝜸iIi.

Using (100) and the invariance condition AX = 0, we have

Y′AY = 𝝃′U′AU𝝃 = 𝜼′(𝚲1∕2U′AU𝚲1∕2)𝜼. (101)
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We may express the estimator
∑p

i=1 (li∕ni)𝝃i𝝃
′
i in (87) as

𝝃′𝚫𝝃 = 𝜼′(𝚲1∕2U′AU𝚲1∕2)𝜼. (102)

To minimize the difference between (101) and (102), consider

tr[𝚲1∕2(U′AU − 𝚫)𝚲1∕2]
= trA(U𝚲U′)A(U𝚲U′) + tr𝚫𝚲𝚫𝚲 − 2trAU(𝚲𝚫𝚲)U′

= trAV∗AV∗ −
p∑

i=1

(
li
ni

)

𝛾2
i ,

(103)

where V∗ = U∗U′
∗. We obtain the last expression through the unbiasedness condition.

We obtain the MINQUE by minimizing trAV∗AV∗ together with the constraints
in (90). The resulting solution is

A =
p∑

i=1

𝝀iRViR, (104)

where R = V−1
∗ − V−1

∗ X(X′V−1
∗ X)−1X′V−1

∗ . We obtain the coefficients 𝜆i from

p∑

i=1

𝜆itrRViRVj = lj, j = 1, 2,… , p. (105)

We have as before

l′�̂� =
p∑

i=1

𝜆ie
′Vie =

p∑

i=1

𝜆igi, (106)

where e = RY and gi = e′Vie. As before, we obtain the MINQUEs from

F�̂� = g (107)

where the elements of F are fij = trRViRVj.
The MIVQUE is an estimator obtained by minimizing the variance instead of the

norm subject to the same unbiasedness and invariance conditions as for the MINQUE.
Methods of finding the MIVQUE from (99) and (107) are available in Lou and Sen-

turia (1977), P. S. R. S. Rao, Kaplan, and Cochran (1983), Kaplan (1983), Giesbrecht
(1983), Kleffe and Seifert (1984), and others.
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(iv) Some Properties of the MINQUE The MINQUE has some other desirable
properties besides invariance and unbiasedness. These include

1. When all the ni elements of 𝝃i have the same variance 𝜎2
i and the same fourth

moment 𝝁4i with the invariance condition AX = 0,

V(Y′AY) = 2trAΣAΣ +
p∑

i=1

(𝝁4i − 3𝜎4
i )trAViAVi. (108)

If 𝝃i is normally distributed, the second term of (108) vanishes. Then the
MINQUE obtained in (ii) is the same as the estimator obtained by minimizing
(108) with V∗ =

∑p
i=1 𝛾

2
i Vi in place of Σ. As a result, the MINQUE is the same

as the MIVQUE with a priori values.

2. The MINQUE in (98) is a linear combination of the quadratic forms of the
residuals Q∗Y. We can find these residuals by regressing V−1∕2

∗ Y on V−1∕2
∗ X.

3. If 𝜸2
i are close to 𝜎2

i for i = 1, 2,…, p the restricted maximum likelihood estima-
tors and the MINQUE estimators for 𝜎2

i with constraints for non-negativeness
would be expected to be the same.

4. When prior observations 𝛾2
i are not available we can obtain the MINQUEs for

𝜎2
i by iterative procedures (See Section 6.8 P. S. R. S. Rao (1997)).

Example 16 The MIVQUE of a Common Means Model Consider the
model

yij = 𝜇 + 𝜀ij, i = 1, 2,… , k and j = 1, 2,… , ni (109)

with E(𝜀ij) = 0 and V(𝜀ij) = 𝜎2
i . This model represents observations from samples of

sizes ni from k populations with a common mean 𝜇 but different variances 𝜎2
i . We

assume that the residuals 𝜀ij within a group and among groups are uncorrelated.
We find that

𝛾4
i e′Vie = (ni − 1)s2

i + ni(ȳi − ȳW )2, (110)

where ȳi and s2
i are the sample mean and variance of the ith group. Furthermore,

Wi = ni∕𝛾i, W =
∑k

i=1 Wi, and ȳW =
∑k

i=1 Wiȳi∕W. Finding the expectation of (110),
we have that

𝛾4
i E(e′Vie) =

(

ni − 2
Wi

W

)

𝜎2
i +

ni

W2

k∑

i=1

W2
i 𝜎

2
i

ni
. (111)

To find the MIVQUE, equate the right-hand sides of (110) and (111) and solve for
𝜎2

i . Numerical methods would have to be used. However, we will obtain an estimate
of 𝜎2

i by making a simplifying assumption.
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From equations (110) and (111), we see that the MIVQUEs depend only on the
relative values of the a priori values. If there is no information available about the
variances all of the 𝛾2

i may be considered equal to unity. Then equating the right-hand
sides of (110) and (111) for each i and solving the resulting system of equations we
find that

�̂�2
i = 1

n − 2

⎡
⎢
⎢
⎢
⎢
⎢
⎣

n
ni

ni∑

j=1

(yij − ȳ)2 −

k∑

i=1

ni∑

j=1
(yij − ȳ)2

n − 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (112)

Suppose we have only one sample and ni = n. We can drop the subscript i and
obtain the well-known unbiased estimate of the variance

�̂�2 = 1
n − 1

n∑

j=1

(yj − ȳ)2. (113)

For a single random sample of n observations, the MIVQUE is the usual unbiased
estimate of the variance.

(v) Non-negative Estimators of Variance Components P. S. R. S. Rao and Chaubey
(1978) show that we can find non-negative estimates of variance components
(MINQE) by ignoring the unbiasedness condition. Using the notation of the pre-
vious sub-section taking the derivative of the Euclidean norm with respect to A and
setting it to zero we get

V∗AV∗ = U∗𝚲1∕2𝚫𝚲1∕2U′
∗. (114)

(See C. R. Rao (1973), Exercise 13.2, p. 72.)
Using the invariance condition AX = 0, we have, using notation already defined,

that

V1∕2
∗ AV1∕2

∗ = Q∗V1∕2
∗ AV1∕2

∗ Q∗ (115)

Substitution of (115) into (114) gives

A = RU∗𝚲1∕2𝚫𝚲1∕2U′
∗R =

p∑

i=1

li

(
𝛾4

i

ni

)

RViR. (116)
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Hence the MINQE of 𝜎2
i is

�̂�2
i =

(
𝛾4

i

ni

)

e′Vie =

(
𝛾4

i

ni

)

gi. (117)

The expression in (117) is non-negative. □

Example 17 The MINQE for a Model with Common Mean Discussed in Example
16 For the model in (109), the MINQE for 𝜎2

i takes the form

�̂�2
i =

[(ni − 1)s2
i + ni(ȳi − ȳW )2]

ni
(118)

Wi = ni∕𝛾2
i and ȳW =

∑k
i=1 Wiȳi∕

∑k
i=1 Wi. If 𝜎2

i = 𝜎2 the MINQE for 𝜎2 is given by

�̂�2 =

k∑

i=1

n∑

j=1
(yij − ȳ)2

n
, (119)

the average of the squared residuals. □

c. Bayes Estimation

Bayesian statistics makes use of both the data collected as a result of a statistical
experiment and prior information about the parameter we wish to estimate. In order
to be able to do this, we combine the prior information with the information obtained in
sampling using Bayes Theorem to calculate a posterior distribution. We will illustrate
this, first by a simple example and then by estimating the variance components for the
one-way balanced model. The discussion here is adapted from that of Searle, Casella
and Mc Culloch (1992).

(i) Bayes Theorem and the Calculation of a Posterior Distribution Let x = (x1,
x2, …, xn) be a random sample from a population. Let 𝜋(𝜃) be a prior distribution of
the parameter 𝜃. Then Bayes Theorem states that the posterior distribution is given
by

𝜋(𝜃|x) =
f (x|𝜃)𝜋(𝜃)

∫Θ f (x|𝜃)𝜋(𝜃)d𝜃
(120)

The joint distribution of the components of x is called the likelihood functions and Θ
represents all of the possible values of the parameter 𝜃.
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We will illustrate the calculation of a posterior distribution by means of a simple
example.

Example 18 Posterior Distribution of a Variance Assume that x ∼ N(𝜇1, 𝜎2I).
The usual unbiased estimator of 𝜎2 is

s2 =

n∑

i=1
(xi − x̄)2

n − 1
, with

(n − 1)s2

𝜎2
∼ 𝜒2

n−1. (121)

We then have,

f (s2|𝜎2) =
(m∕𝜎2)

1
2

ms
2
(

1
2

m−1
)

e−
1
2

ms2∕𝜎2

𝚪
(

1
2
m
)

2
1
2

m , (122)

where m = n – 1.
For the prior distribution, we will use the inverted gamma distribution. We can

obtain it by finding the distribution of the reciprocal of a gamma random variable. Its
general form is

f (x) = x−(a+1)e−1∕bx

𝚪(a)ba
. (123)

We shall use this with a = 2 and b = 1 as the prior for 𝜎2. Because the resulting
distribution will have infinite variance, so rather vague prior information will be
imparted.

Using (120), we need to calculate

𝜋(𝜎2, s2) =
f (s|𝜎2)𝜋(𝜎2)

∫
∞

0 f (s|𝜎2)𝜋(𝜎2)d𝜎2
. (124)

The numerator is

f (s2|𝜎2)𝜋(𝜎2) = m
1
2

m

𝚪
(

1
2
m
)

2
1
2

m
.
s

2
(

1
2

m−1
)

e
−
(

1
2

ms2−1
)

∕𝜎2

e
2
(

3+ 1
2

m
) (125)

The denominator is

f (s2) = m
1
2

ms
2
(

1
2

m−1
)

𝚪
(

1
2
m
)

2
1
2

m ∫

∞

0

e−
1
2

(ms2+1)∕𝜎2
d𝜎2

𝜎
2
(

3+ 1
2

m
) =

m
1
2

ms
2
(

1
2

m−1
)

𝚪
(

2 + 1
2
m
)

𝚪
(

1
2
m
)

2
1
2

m
(

1
2
ms2 + 1

)2+ 1
2

m
.

(126)
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The resulting posterior distribution is

𝜋(𝜎2|s2) = (𝜎2)−(a+1)e−1∕b𝜎2

Γ(a)ba
(127)

with a = 2 + 1
2
m and b = 1

1
2

ms2+1
.

Notice that we again obtain an inverted gamma distribution. When this situation
arises where the prior and posterior distributions come from the same family, we have
a conjugate prior distribution.

The Bayes rule can be the mean, median, or mode of the posterior distribution.
We now illustrate the result in each of these three cases.
For the mean of (127) and the Bayes rule, we have that

�̂�2
B = E(𝜎2|s2) = (n − 1)s2 + 2

n + 1
. (128)

Its mean and variance are

E(�̂�2
B) = (n − 1)𝜎2 + 2

n + 1
and var(�̂�2

B) = 2(n − 1)𝜎4

(n + 1)2
. (129)

The reader can show that (128) is a biased estimator for 𝜎2 with a smaller variance
and under certain conditions, smaller mean square error than s2 (Exercise 8).

To estimate the median, it is necessary for a specific sample to solve the
equation

∫

med

0

(𝜎2)−(a+1)e−1∕b𝜎2

𝚪(a)ba
d𝜎2 = 0.5 (130)

with a and b from (127) numerically for median.
To find the mode of the posterior distribution, we differentiate the natural logarithm

of the posterior distribution, set it equal to zero and solve for �̂�2. From (127),

log𝜋(𝜎2|s2) = −(a + 1) log 𝜎2 − 1
b𝜎2

. (131)

Differentiating with respect to 𝜎2 and setting the result equal to zero, we have that

− a + 1
𝜎2

+ 1
b(𝜎2)2

= 0 (132)

and the Bayes estimate is

�̂�2 = 1
(a + 1)b2

. (133)
□
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(ii) The Balanced One-Way Random Analysis of Variance Model We use the
restricted likelihood estimator from (79) with 𝜆 = 𝜎2

e + n𝜎2
𝛼
,

L =

exp− 1
2

[

SSE
𝜎2

e

+ SSA
(𝜎2

e + n𝜎2
𝛼
)

]

(2𝜋)
1
2

(an−1)(𝜎2
e )

1
2 a(n−1)

(𝜎2
e + n𝜎2

𝛼
)

1
2

(a−1)(an)
1
2

. (134)

together with the prior distribution of the variance components, a product of inverted
gammas

𝜋(𝜎2
e , 𝜎2

𝛼
) = k

e−1∕q𝜎2
e

𝜎
2(p+1)
e

⋅
e−1∕b𝜎2

𝛼

𝜎
2(c+1)
𝛼

. (135)

The constant k is a function of c, b, p, and q such that ∫ ∞
0 ∫

∞
0 𝜋(𝜎2

e , 𝜎2
𝛼
)d𝜎2

e d𝜎2
𝛼
= 1.

Taking the product of (134) and (135), we shall find its log, find partial derivatives
with respect to 𝜎2

e and 𝜎2
𝛼

and set them equal to zero. We do not need the denominator
of the posterior distribution because it will be a constant function of 𝜎2

e and 𝜎2
𝛼
.

On doing this, we find that we cannot obtain explicit solutions for �̂�2
e and �̂�2

𝛼
. Let

𝛿 = �̂�2
e∕(�̂�2

e + n�̂�2
𝛼
) and �̂� = �̂�2

a∕(�̂�2
e + n�̂�2

𝛼
). After some algebraic manipulation, we

obtain the equations

�̂�2
e =

SSE∕2 + 1∕q + SSA𝛿2∕2

a(n − 1)∕2 + p + 1 + (a − 1)𝛿∕2
(136a)

and

�̂�2
𝛼
=

nSSA�̂�2∕2 + 1∕b

(a − 1)n�̂�∕2 + c + 1
. (136b)

For a specific problem, we would have to solve these equations numerically for the
estimates of the variance components.

11. EXERCISES

1 Dudewicz and Bishop (1981) describe an experiment that investigates the effects
of four bleaching chemicals on pulp brightness. The four chemicals were selected
from a large population of potential bleaching agents. The data are as follows.
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Chemical Pulp Brightness

1 77.199 74.466 92.746 76.208 82.876
2 80.522 79.306 81.914 80.346 73.385
3 79.417 78.017 91.596 80.802 80.626
4 78.001 78.358 77.544 77.364 77.386

Reprinted with permission from the Journal of Quality Technology © 1981 ASQ,
www.asq.org.

(Data taken from Montgomery (2005), problem 13-6, p. 522. Reproduced with
kind permission of John Wiley and Sons.)

(a) Do the analysis of variance to determine whether there is significant vari-
ability amongst the chemicals.

(b) Estimate the variance components using

(1) The analysis of variance method.

(2) Finding the Maximum Likelihood estimator.

(3) The Bayes Estimator

Use q = 1, b = 2, p = 10, and c = 6.

(c) Find the confidence intervals in Table 9.14 when 𝛼 = .10

2 An experiment was performed to investigate the capability of a measurement
system.

Five parts were selected at random and two randomly selected operators
measured each part twice.

The tests were made in random order and the following data resulted.

Operator 1 2

Measurements Measurements

Parts 1 2 1 2

1 50 50 50 51
2 52 51 51 51
3 53 50 54 51
4 49 50 48 51
5 48 48 48 48

(a) Do the analysis of variance and determine

(1) Whether there is significant variability amongst the operators.

(2) Whether there is significant variability amongst the parts.

(3) Whether the variance component due to interaction is significant.

(b) Estimate the variance components

(1) Using the ANOVA method.

(2) By finding maximum likelihood estimates.

http://www.asq.org
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3 Repeat Exercise 2 assuming there are two specific operators with the parts
being selected at random. Test the appropriate hypotheses and estimate the
variance components again by the analysis of variance method and the maximum
likelihood method.

4 In a machine shop, 10 people each take one measurement of the length of a
10-inch rod. The measurements obtained from lowest to highest to the nearest
thousandth of an inch are 9.339, 9.494, 9.636, 9.682, 9.885, 9.907, 10.101,
10.182, 10.198, and 10.463.

Find the three Bayes estimates of Example 18.

5 (a) Estimate the variance components in Example 9 using the analysis of vari-
ance method.

(b) Show the equivalence of the quadratic forms

Q = 1
2

[
𝛽1 𝛽2 𝛽3

] ⎡
⎢
⎢
⎣

20 −10 −10
−10 20 −10
−10 −10 20

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

𝛽1
𝛽2
𝛽3

⎤
⎥
⎥
⎦

and

Q = 15
3∑

j=1

(𝛽j − 𝛽.)2.

6 Consider the following three samples from three populations with mean 10 and
different variances.

1 2 3

8.0887 11.7611 10.2285
10.4158 12.4821 10.3067
10.3684 9.4075 9.9038
9.5483 13.5566 7.0905
8.9411 9.1150 9.5776
8.7716 11.0542 13.1282

10.0032 11.1194
8.8426

Using equation (112), find the MIVQUE estimates for each sample and compare
them to the usual sample variance.

7 Verify the result in equation (126) and hence establish that the posterior distri-
bution is given by (127). [Hint: Let u = (ms2 + 1)∕(2𝜎2).]
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8 (a) Verify the formulae for the mean and variance of (128) that is given in (129).

(b) Obtain conditions for the mean square error of (128) to be less than that of
s2.

Exercises 9–12 depend on the use of the direct product that we define below.
Let A be an m × n matrix and B be a p × q matrix. The Kronecker product

(also called the direct product) is given by

A⊗ B = aijB, i = 1, 2,… , m, j = 1, 2,… , n

Some useful properties of direct product include:

(i) Assume that matrices A and B have the same size. Then,

(a) (A + B)⊗ C = A⊗ C + B⊗ C
(b) C⊗ (A + B) = C⊗ A + C⊗ B

(ii) Assuming A, B, C, and D have appropriate dimensions so that AC and BD
are defined,

(A⊗ B)(C⊗ D) = (AC⊗ BD).

(iii)For two non-singular matrices A and B, (A⊗ B)−1 = A−1 ⊗ B−1.

(iv)The transpose (A⊗ B)′ = A′ ⊗ B′.

(v) tr(A⊗ B) = trA trB.

For more details, see Gruber (2014).

9 (a) Show that equation (45) may be written as

V = Ia ⊗ (𝜎2
e In + 𝜎2

𝛼
Jn).

(b) Show that for the balanced one-way analysis of variance model, equation
(46) may be written as

SSA = y′
(1

n
(Ia ⊗ Jn) − 1

na
(Ja ⊗ Jn)

)

y

= y′
((

Ia −
1
a

Ja

)

⊗
1
n

Jn

)

y

(c) Show that

SSTm = y′
(

Ia ⊗ In −
1

an
(Ja ⊗ Jn)

)

y

and hence

SSE = y′
(

Ia ⊗

(

In −
1
n

Jn

))

y.
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(d) Using E(yy′) = V and y′My = tr(Myy′) show that

(i) E(MSA) = n𝜎2
𝛼
+ 𝜎2

e

(ii) E(MSE) = 𝜎2
e

10 Use Theorems 5 and 7 of Chapter 2 to show that SSA∕(𝜎2
e + n𝜎2

𝛼
) and SSE∕𝜎2

e
of Table 9.11 in the form of Exercise 7 are distributed independently as central
chi-square random variables.

11 Consider a two-way random model where one factor is nested within the other.
Both factors are random. The linear model may be written in the form

Y = (1a ⊗ 1b ⊗ 1c)𝜇 + (Ia ⊗ 1b ⊗ 1c)𝛼 + (Ia ⊗ Ib ⊗ 1c)𝛽 + e,

where there are c replications.
We can show that

SSA = y′
((

Ia −
1
a

Ja

)

⊗
Jb

b
⊗

Jc

c

)

y,

SSB(A) = y′
(

Ia ⊗

(

Ib −
1
b

Jb

)

⊗
1
c

Jc

)

,

and

SSE = y′
(

Ia ⊗ Ib ⊗

(

Ic −
1
c

Jc

))

y.

(a) How many degrees of freedom are associated with each sum of squares.

(b) Find the variance of Y assuming the 𝛼, 𝛽(𝛼) and e are independent and
that their means are zero and that 𝛼 ∼ (0, 𝜎2

𝛼
Ia), 𝛽(𝛼) ∼ (0, 𝜎2

𝛽(𝛼)Ib), e ∼
(0, 𝜎2

e Iabc).

(c) Derive the expected mean squares.

(d) Give the analysis of variance estimates of the variance component estimators
in terms of MSA, MSB(A), and MSE.

Use the rules for expected mean squares to do Exercises 12, 13, and 15.

12 For each of the situations below, consider a model for balanced data, more than
one replication and all of the possible interactions. Formulate the analysis of
variance table as is done in Table 9.3 and give the expected mean squares.

(a) Factors A, B, and C where C is nested within B and all of the factors are
random.

(b) Factors A and B where factor C is nested within the AB subclasses and D
is nested within C. Give the expected mean squares when (i) all factors are
random; (ii) the model is mixed, where A is a fixed-effects factor, the other
factors being random; (iii) the model is mixed, where the fixed factors are
A and B.

(c) Factors A, B, and D and factor C within AB for the same cases as in part (b).
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13 Consider the following model. It is an example of a split plot design.

yijk = 𝜇 + 𝛼i + 𝜌j + 𝛿ij + 𝛽k + 𝜃ik + eijk, i = 1, 2, j = 1, 2, 3, 4, k = 1, 2, 3

Give the expected mean squares for each of the following cases:

(a) Random model,

(b) Mixed model 𝜌’s and 𝛿′s random,

(c) Mixed model only the 𝛽’s fixed,

(d) Mixed model only the 𝛼’s fixed.

14 Show that F = Q∕s�̂�2 as used in earlier chapters (e.g., equation (21) of Chapter 6)
is distributed as F′{s, N − r, [E(Q) − s𝜎2]∕2𝜎2}.

15 For each of the following models, obtain the analysis of variance estimators of
the variance components in terms of MSA, MSB, etc. Assume the models are
random.

(a) yijk = 𝜇 + 𝛼i + 𝛽j + eijk, i = 1, 2,… , a, j = 1, 2,… , b, k = 1, 2,… , n

(b) yijk = 𝜇 + 𝛼i + 𝛽j + (𝛼𝛽)ij + eijk, i = 1, 2,… , a, j = 1, 2,… , b, k =
1, 2,… , n

16 Consider the nested model in the form

Y =
[

1a ⊗ 1b ⊗ 1c Ia ⊗ 1b ⊗ 1c Ia ⊗ Ib ⊗ 1c

] ⎡
⎢
⎢
⎣

𝜇

𝛼

𝛽

⎤
⎥
⎥
⎦

+ e

(a) Find the normal equations.

(b) Solve the normal equations together with the constraints
∑a

i=1 𝛼i = 0

and
b∑

j=1
𝛽ij = 0, 1 ≤ i ≤ a.

(c) Show that

(1) �̂� +̂ �̂�i = ȳi.., 1 ≤ i ≤ a.

(2) �̂� + ̂̂𝛼i + 𝛽ij = ȳij., 1 ≤ i ≤ a, 1 ≤ j ≤ b.



10
METHODS OF ESTIMATING
VARIANCE COMPONENTS FROM
UNBALANCED DATA

The main focus of Chapter 9 was the estimation of variance components for balanced
data by the analysis of variance method. Several other methods that were not discussed
there will be presented in this chapter. These methods will be presented largely in gen-
eral terms. They will be illustrated by means of the one-way and the two-way crossed
classifications. Most of the illustrations are of individual aspects of the methods and
not of complete analyses. The objective of this chapter is to describe methodology
without the clutter of lengthy details of specific cases. This should enable the reader to
direct his/her attention to basic procedures instead of being diverted to their numerous
details in individual applications. Specific results are available in Chapter 11 posted
on the web page: www.wiley.com\go\Searle\LinearModels2E. There, we present
these results in full detail with little or no discussion of the methodology. Therefore,
the present chapter is a chronicle of the various methods. The web page presents a
catalogue of the available consequences of applying these methods to specific cases.

1. EXPECTATIONS OF QUADRATIC FORMS

The analysis of variance method of estimating quadratic components from balanced
data is based on equating mean squares of analyses of variance to their expected
values. This method is well-defined for balanced data because there is only one
analysis of variance for any particular model. For example, the only analysis of
variance for the balanced two-way classification model with interaction is that of
Table 7.9 or equivalently that of Table 9.5 However, for unbalanced data for that

Linear Models, Second Edition. Shayle R. Searle and Marvin H. J. Gruber.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.
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same model, there are two analyses of variance. They are given in the two parts of
Table 7.8. One is for fitting 𝛼 before 𝛽. The other is for fitting 𝛽 before 𝛼. This is so in
general. There can be several, perhaps many ways, or partitioning a sum of squares.
On the face of it, there are no criteria for choosing any one of these partitionings over
the others when it comes to using one of them for estimating variance components.
We shall return to this matter later. For the moment, we only notice that for unbalanced
data, there is no uniquely “obvious” sets of sums of squares of quadratic forms in the
observations that can be optimally used for estimating variance components. Instead,
there are a variety of quadratic forms that can be used, each of them in the method of
equating observed quadratic forms to their expected values. Therefore, we begin by
considering the expected value of the general quadratic form y′Qy.1

As usual, we take the general linear model to be

y = Xb + e (1)

where y is N × 1 (N observations). For the sake of generality,

var(y) = V.

Then, from Theorem 4 of Section 5a of Chapter 2, the expected value of the quadratic
form y′Qy is

E(y′Qy) = tr(QV) + E(y′)QE(y). (2)

We view equation (2) in terms of the model (1) for three cases: a fixed-effect model,
a mixed model, and a random model.

In each of the three cases, b represents all of the effects of the model. In addition, in
each model, E(e) = 0, so that var(e) is E(ee′) = 𝜎2

e I. Furthermore, when b is a vector
of fixed effects, E(be′) = bE(e′) = 0. When b includes elements that are random
effects, we assume they have zero means, and zero covariance with all the elements
of e. Thus, at all times, E(be′) = E(eb′) = 0.

a. Fixed-Effects Models

In the usual fixed-effects model, b is a vector of fixed effects with E(y) = Xb and
V = 𝜎2

e IN . Then, (2) becomes

E(y′Qy) = b′X′Xb + 𝜎2
e tr(Q). (3)

Two well-known applications of (3) are Q = IN and Q = X(X′X)−X′. We illustrate
equation (3) for these two cases in Examples 1 and 2 below.

1 The matrix Q used here is not to be confused with the scalar Q used earlier for the numerator sum of
squares in hypothesis testing.
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Example 1 The Case Where Q = IN In this case, we have that

E(y′y) = b′X′Xb + N𝜎2
e . □

Example 2 The Case Where Q = X(X′X)−X′ When Q = X(X′X)−X′, we have
that y′Qy is the reduction in sum of squares R(b). This gives

E(R(b)) = b′X′Xb + 𝜎2
e tr[X(X′X)−X′]

= b′X′Xb + 𝜎2
e r(X),

because X(X′X)−X′ is idempotent and has the same rank as X (see Theorem 10 of
Chapter 1). Hence,

E[y′y − R(b)] = [N − r(X)]𝜎2
e .

This is the familiar result for a residual sum of squares (see Section 2e of Chapter 5).
□

b. Mixed Models

In a mixed model, we partition b′ as

b′ =
[

b′
1 b′

A b′
B ⋯ b′

K

]
, (4)

where b1 contains all the fixed effects of the model (including the mean 𝜇). The
other b’s each represent a set of random effects for the factors A, B, C,… , K,
respectively. Although this notation only uses single subscripts, it does not exclude
interaction effects and/or nested-factor effects. We consider them merely as factors,
each identified by a single letter rather than the letters of the corresponding main
effects. For example, the AB-interaction effects might be in the vector bG.

The model (1) is written in terms of (4) as

y = X1b1 + XAbA + XBbB +⋯XKbK + e,

that is, as

y = X1b1 +
K∑

𝜃=A

X𝜃b𝜃 + e. (5)

The matrix X has been partitioned conformably for the product Xb. In the sum-
mation, 𝜃 takes the values A, B,… , K. For the random effects, we make two initial
assumptions.

(i) They have zero means.

(ii) The effects of each random factor have zero covariance with those of every
other factor.
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Thus, we write E(b𝜃) = 0 and obtain from (5),

E(y) = X1b1 (6)

and

V = var(y) =
K∑

𝜃=A

X𝜃var(b𝜃)X′
𝜃
+ 𝜎2

e IN , (7)

where IN is an identity matrix of order N, and var(b𝜃) is the covariance matrix of the
random effects of the 𝜃-factor. We usually assume that these effects are uncorrelated,
with uniform variance 𝜎2

𝜃
. As a result,

var(b𝜃) = 𝜎2
𝜃
IN𝜃

for 𝜃 = A, B,… , K, (8)

there being N𝜃 different effects of the 𝜃-factor in the data, meaning N𝜃 levels of that
factor. Thus in (7), we have that

V =
K∑

𝜃=A

X𝜃X′
𝜃
𝜎2
𝜃
+ 𝜎2

e IN . (9)

Hence, from (6) and (9), the expectation of the quadratic form in (2) is

E(y′Qy) = (X1b1)′QX1b1 +
K∑

𝜃=A

𝜎2
𝜃
tr(QX𝜃X′

𝜃
) + 𝜎2

e tr(Q). (10)

c. Random-Effects Models

We take all effects in a random model to be random except for 𝜇, the general mean.
Therefore, we can use the expression in (10) just developed for E(y′Qy) for the mixed
model for the random model, by letting b1 be the scalar 𝜇 and X1 be a vector of 1’s
denoted by 1. Thus, we have for the random model,

E(y′Qy) = 𝜇21′Q1 +
K∑

𝜃=A

𝜎2
𝜃
tr(QX𝜃X′

𝜃
) + 𝜎2

e tr(Q). (11)

d. Applications

Applying these general results to particular models involves partitioning b into sub-
vectors, each of which contains effects pertaining to all levels of one complete
classification (or interaction of classifications) involved in the linear model. In this
way, expressions (3), (10), and (11) represent the general results for the fixed, mixed,
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and random models, respectively. With their aid, expectations of quadratic forms can
be readily obtained for any of the three models. For example, suppose we had

yijkh = 𝜇 + 𝛼i + 𝛽j + 𝛾k + 𝛿ik + eijkh.

We can write this in vector form as

y = 𝜇1 + XAbA + XBbB + XCbC + XDbD + e,

where bA is the vector of 𝛼-effects, bB is the vector of the 𝛽’s, and bC and bD are
vectors of the 𝛾- and 𝛿-terms, respectively. In this way, we can apply the results in (3),
(10), and (11) to find expectations of any quadratic form y′Qy of the observations y.

2. ANALYSIS OF VARIANCE METHOD (HENDERSON’S METHOD 1)

The analysis of variance method with balanced data consists of equating mean squares
to their expected values. We use essentially the same procedure for unbalanced data.

We begin by discussing the method in terms of an example, the two-way classifi-
cation model. This is not the simplest example that we can use. However, it illustrates
facets of the method that could not be demonstrated with a simpler one. We shall give
many details of deriving estimators for the two-way classification model but we shall
not give the complete results. These will be available on the web page (Chapter 11).
In this chapter, we give just those details necessary for illustrating the method and its
various aspects.

a. Model and Notation

The model for the two-way classification with interaction is

yijk = 𝜇 + 𝛼i + 𝛽j + 𝛾ij + eijk. (12)

We have that yijk is the kth observation in the ith level of the A-factor and the jth level
of the B-factor where i = 1, 2,… , a, j = 1, 2,… , b, and k = 1, 2,… , nij with s of the
nij-values being non-zero. Section 2a of Chapter 7 gives a complete description of
the fixed-effects case of the model. In the random model, which we now consider,
we assume that the 𝛼i’s, 𝛽j’s, and 𝛾ij’s are all random with zero means and variances
𝜎2
𝛼
Ia, 𝜎2

𝛽
Ib, and 𝜎2

𝛾
Is, respectively. This means, for example, that

E(𝛼i) = 0, E
(
𝛼2

i

)
= 𝜎2

𝛼
, and E(𝛼i𝛼i′) = 0 for i ≠ i′, (13)

with similar results for the 𝛽’s and the 𝛾’s. In addition, we assume that all the
covariances between pairs of non-identical random variables are zero. The e-terms
follow the usual prescription: E(e) = 0, var(e) = 𝜎2

e IN and the covariance of every e
with every random effect is zero.
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b. Analogous Sums of Squares

Table 9.5 shows the analysis of variance for balanced data. It contains a term

SSA = bn
a∑

i=1

(ȳi.. − ȳ…)2 =
a∑

i=1

y2
i..

bn
−

y2
…

abn
, (14)

where the bar and the dot notation of totals and means is the same as defined in
Section 2 of Chapter 7. For unbalanced data the term analogous to (14) is

SSA =
a∑

i=1

y2
i..

ni.
−

y2
…

n..
. (15)

This is one of the terms used for estimating variance components by the analysis of
variance method for unbalanced data. In a similar manner, the other terms are

SSB =
b∑

j=1

y2
.j.

nij
−

y2
…

n..
, (16)

SSAB =
a∑

i=1

b∑

j=1

y2
ij.

nij
−

a∑

i=1

y2
i..

ni.
−

b∑

j=1

y2
.j.

n.j
+

y2
…

n..
(17)

and

SSE =
a∑

i=1

b∑

j=1

nij∑

k=1

y2
ijk −

a∑

i=1

b∑

j=1

y2
ij.

nij
. (18)

The analysis of variance method of variance component estimation for unbalanced
data then involves equating (15)–(18) to their expected values. Before considering
the derivation of these expected values, we need to make some comments about these
SS-terms.

(i) Empty Cells. Since nij is the number of observations in a cell, it can, as we have
seen, be zero. Therefore, the summations in SSAB and SSE that involve nij in the
denominator are therefore defined only for the (i, j) combinations for which nij is
non-zero. That means we sum over only those s cells that have observations in them.
This removes the possibility of zero denominators.

(ii) Balanced Data. When the data are balanced, that is, nij = n for all i and j, then
(15) reduces to (14). In a like manner, (16), (17), and (18) reduce to the corresponding
analysis of variance sums of squares for balanced data shown in Table 9.5.

(iii) A Negative “Sum of Squares.” Equations (15)–(18) have been established
solely by analogy with the analysis of variance of balanced data. In general, not all
such analogous expressions are sums of squares. For example, SSAB is not always
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positive (see Exercise 1 of Chapter 2) and so it is not a sum of squares. We might
therefore refer to (15)–(18) and their counterparts in more complicated models as
analogues to sums of squares in recognition of the fact that the formulae are analogous
to sums of squares in the balanced case but not necessarily sums of squares. We could
refer to the method as the analogous analysis of variance method. However, it is
conventionally called the analysis of variance method, or Henderson’s method 1,
after Henderson (1953).

(iv) Uncorrected Sums of Squares. In light of the fact that, in general, the SS-terms
are not sums of squares, we deal with them in terms of uncorrected sums of squares.
These are denoted by T’s as introduced for balanced data in equation (39) of Section
8 of Chapter 9. Thus for the SS-terms of (15)–(18), we define

TA =
a∑

i=1

y2
i..

ni.
and TB =

b∑

j=1

y2
.j.

n.j
, (19a)

TAB =
a∑

i=1

b∑

j=1

y2
ij.

nij
and T𝜇 =

y…
n..

(19b)

with

T0 =
a∑

i=1

b∑

j=1

nij∑

k=1

y2
ijk. (19c)

Apart from T𝜇 for the correction factor for the mean and T0 for the total sum of
squares of all observations, the subscript of a T denotes the factor it applies to and
provides easy recognition of the calculating required. For example,

TA =
∑

levels of
A-factor

(total y for a level of the A-factor)2

number of observations in that total
. (20)

Similarly TAB is calculated by an expression similar to (20) only with “A-factor”
replaced by “AB-factor.” With the T’s of (19) the SS-terms in (15)–(18) are

SSA = TA − T𝜇 and SSB = TB − T𝜇,
SSAB = TAB − TA − TB + T𝜇 and SSE = T0 − TAB.

(21)

In this form, we may handle the SS-terms with relative ease because the T’s are
positive definite quadratic forms with manageable matrices.

c. Expectations

We estimate variance components by equating observed values of terms like (15)–
(18) to their expected values. We can calculate the observed values from the T’s.
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We can derive both the expected values of terms like (15)–(18) (these are quadratic
forms) and the expected values of the T from Theorem 4 of Chapter 2. However,
the “brute force” method illustrated for balanced data in Section 7 of Chapter 9
is probably no more lengthy than using the theorem. This is especially true when
simplifications arising from the model are fully utilized. We therefore illustrate by
deriving E(SSA) = E(TA) − E(T𝜇) and then give a generalization. The derivation of
E(TA) in full-length serves as a guide to deriving expected values of T’s generally.

(i) An Example of a Derivation of the Expectation of a Sum of Squares. We
obtain

E(SSA) = E(TA) − E(T𝜇)

by substituting the model (12) into TA and T𝜇 of (19) and taking expectations. First,
for TA, we have

yi.. =
b∑

j=1

nij∑

k=1

yijk = ni.𝜇
2 + ni.𝛼

2
i +

b∑

j=1

nij𝛽j +
b∑

j=1

nij𝛾ij + ei... (22)

Hence, on squaring and expanding the right-hand side of (22) and dividing by ni., we
get

y2
i..

ni.
= 𝜉 + 𝜂, (23)

where

𝜉 = ni.𝜇
2+ni.𝛼

2
i +

b∑

j=1

n2
ij𝛽

2
j

ni.
+

b∑

j=1

n2
ij𝛾

2
ij

ni.
+

ei..

ni.
+

b∑

j=1

n∑

j′≠j

nijnij′𝛽j𝛽j′

ni.
+

b∑

j=1

∑

j≠j′
nijnij′𝛾ij𝛾ij′

ni.

and

𝜂 = 2

[

𝜇ni.𝛼i + 𝜇
b∑

j=1

nij𝛽j + 𝜇
b∑

j=1

nij𝛾ij + 𝜇ei.. + 𝛼i

b∑

j=1

nij𝛽j + 𝛼i

b∑

j=1

nij𝛾ij + 𝛼iei..

]

+ 2

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(
b∑

j=1

nij𝛽j

)(
b∑

j=1

nij𝛾ij

)

ni.
+

(
b∑

j=1

nij𝛽j

)

i

ei..

ni.
+

(
b∑

j=1

nij𝛾ij

)

ei..

ni.

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
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Expression (23) holds true no matter which effects in the model are fixed and which
are random.

Consider taking the expected value of (23) under a random model. Products
involving 𝜇 go to zero because each other term in such products is a random variable
having zero expectation. For example, E(𝜇ni𝛼i) = 𝜇niE(𝛼i) = 0. Products of random
variables also have zero expectation because all covariances and expected values are
zero. For example,

E

(

𝛼i

b∑

j=1

nij𝛽j

)

=
b∑

j=1

niE(𝛼i𝛽j) = 0

and

E(𝛼i𝛽j) = cov(𝛼i𝛽j) + E(𝛼i)E(𝛽j) = 0.

Similarly, we have that

b∑

j=1

b∑

j≠j′
nijnij′E(𝛽j𝛽j′) = 0.

The only non-zero terms are the expected values of all square terms that, apart from
𝜇2, become variances. These are the only non-zero terms remaining in E(y2

i..∕ni.). As
a result,

E

(
y2

i..

ni.

)

= ni.𝜇
2 + ni.𝜎

2
𝛼
+

b∑

j=1

n2
ij

ni.
𝜎2
𝛽
+

b∑

j=1

n2
ij

ni.
𝜎2
𝛾
+ 𝜎2

e . (24)

The last term of (24) is 𝜎2
e because

E

(
e2

i..

ni.

)

=
b∑

j=1

nij∑

k=1

E
(
e2

ijk

)

ni.
=

ni.𝜎
2
e

ni.
= 𝜎2

e ,

with the cross products in the e’s having zero expectation. Hence, summing (24)
gives

E(TA) = E

(
y2
…
N

)

= N𝜇2 + N𝜎2
𝛼
+

a∑

i=1

b∑

j=1

n2
ij

ni.
𝜎2
𝛽
+

a∑

i=1

b∑

j=1

n2
ij

ni.
𝜎2
𝛾
+ 𝜎2

e . (25)
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The extended form (23) shows how to derive (24) and (25). It is particularly
useful when we come to the case of mixed models where not all the cross product
terms have an expected value of zero. For example, see equation (30). However, the
consequences of the expected values of the model (e.g., (13)) enable us to go directly
from (22) to (25). Thus for T𝜇, we write

y… = N𝜇 +
a∑

i=1

ni.𝛼i +
b∑

j=1

n.j𝛽j +
a∑

i=1

b∑

j=1

nij𝛾ij + e….

Then, we have that,

E(T𝜇) = E

(
y2
…
N

)

= N𝜇2 +

a∑

i=1

n2
i.

N
𝜎2
𝛼
+

b∑

j=1

n2
.j

N
𝜎2
𝛽
+

a∑

i=1

b∑

j=1

n2
ij

N
𝜎2
𝛾
+ 𝜎2

e . (26)

Hence,

E(SSA) = E(TA) − E(T𝜇)

=

⎛
⎜
⎜
⎜
⎜
⎜
⎝

N −

a∑

i=1

n2
i.

N

⎞
⎟
⎟
⎟
⎟
⎟
⎠

𝜎2
𝛼
+

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a∑

i=1

b∑

j=1

n2
ij

ni.
−

b∑

j=1

n2
.j

N

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

𝜎2
𝛽

+

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a∑

i=1

b∑

j=1

n2
ij

ni.
−

a∑

i=1

b∑

j=1

n2
ij

N

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

𝜎2
𝛾
+ (a − 1)𝜎2

e . (27)

In a like manner, we can calculate expected values of SSB and SSAB. Using E(SSE) =
(N − s)𝜎2

e , when we equate the four expected values to their corresponding observed
values, we obtain four equations in the four variance components we wish to estimate.

Notice that (27) has a non-zero coefficient for every variance component in the
model. For balanced data, the comparable expected value has no term in 𝜎2

𝛽
(see

E(MSA) in Table 9.8). However, the coefficient for the term in 𝜎2
𝛽

does reduce to zero
for balanced data. Indeed, when

nij = n, ni. = bn, n.j = an, and n.. = N = abn, (28)
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the coefficient of 𝜎2
𝛽

in (27) is

a∑

i=1

b∑

j=1

n2
ij

ni.
−

b∑

j=1

n2
.j

N
= a

(
bn2

bn

)

− ba2n2

abn
= an − an = 0.

Similarly, the coefficient of 𝜎2
𝛼

in (27) becomes

N −

a∑

i=1

n2
i.

N
= abn − ab2n2

abn
= bn(a − 1).

The coefficient of 𝜎2
𝛾

reduces to n(a − 1). Hence, for balanced data (27) becomes

E(SSA) = (a − 1)
(
bn𝜎2

𝛼
+ n𝜎2

𝛾
+ 𝜎2

e

)

as is implicit in Table 9.8.

(ii) Mixed Models. Suppose that in the two-way classification, the A-factor is a
fixed-effects factor. Then, the 𝛼i’s of the model are fixed effects. Furthermore, the
expected values of the SS-terms of (21) differ from their values under the random
model. For example, in taking the expected value of (23) to obtain E(TA), we have,
with the 𝛼’s as fixed effects,

E(ni.𝛼
2
i ) = ni.𝛼

2
i , and not ni.𝜎

2
𝛼

as in (24);

E(2𝜇ni.𝛼i) = 2𝜇ni.𝛼 and not 0 as in (24). (29)

Other terms in (23) involving 𝛼i will have zero expectation, just as they did in (24)
but now for a different reason. For example, E(𝛼i𝛽j) = 0 in (24) because the 𝛼’s and
𝛽’s were random variables with zero means and covariances. In the mixed model,
E(𝛼i𝛽j) is still equal to zero. However, this is because E(𝛼i𝛽j) = 𝛼iE(𝛽j) = 𝛼i(0) = 0.

Equations (29) mean that in the mixed model, instead of the terms N𝜇2 + N𝜎2
𝛼
,

E(TA) contains N𝜇2 +
a∑

i=1

ni.𝛼
2
i + 2𝜇

a∑

i=1

ni𝛼i. (30)

Similarly, we can show that

E(T𝜇) contains N𝜇2 +

(
a∑

i=1

ni.𝛼i

)2

N
+ 2𝜇

a∑

i=1

ni.𝛼i. (31)
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Therefore,

E(SSA) = E(TA) − E(T𝜇) contains
a∑

i=1

ni.𝛼
2
i −

(
a∑

i=1

ni.𝛼i

)2

N
= 𝜃1, say. (32)

Carrying through the same process for SSB shows that

E(SSB) = E(TB) − E(T𝜇) contains
b∑

j=1

(
a∑

i=1

nij𝛼i

)2

n.j
−

(
a∑

i=1

ni.𝛼i

)2

N
= 𝜃2, say.

(33)

The important thing to notice is that 𝜃1 ≠ 𝜃2. Thus, E(SSA − SSB) is not free of
fixed effects in the way that E(TA) − E(T𝜇) is of N𝜇2. This is generally true for mixed
models. Expected values of the SS-terms contain functions of the fixed effects that
cannot be eliminated by considering linear functions of the terms. Thus, the analysis
of variance method cannot be used for mixed models.

We present two possible ways to overcome the above difficulty. However, both are
deviants from the true mixed model and must therefore be considered unsatisfactory.
The two ways are:

(i) Ignore the fixed effects altogether and eliminate them from the model. What
remains then is a model that is completely random for which estimation of
the variance components can be made.

(ii) Assume the fixed effects are in fact random, and then treat the model as if it
were completely random. In the resulting estimation process, components for
the fixed effects will be estimated and can be ignored.

In using either of these possibilities, we deal with random models, for which the
estimation process is suitable. However, the variance component estimators will, in
both cases, be biased because their expectations under the true, mixed model will not
equal the variance components of that model. They will include quadratic functions
of the fixed effects. Despite this, if the models that these approximations invoke
are in any way acceptable alternatives to the mixed model, then the approximations
may be of some use. Furthermore, they utilize the relatively easy arithmetic of the
analysis of variance method. This is sometimes advantageous in the face of the greater
complexity of other analyses of mixed models (see Section 3).

(iii) General Results. We now develop general rules for obtaining expectations of
the T-terms in random models. To do so, we write the model as

y = 𝜇1 +
K∑

𝜃=A

X𝜃b𝜃 + e. (34)



ANALYSIS OF VARIANCE METHOD (HENDERSON’S METHOD 1) 575

The model in (34) is the same as that in (5), with X1 = 1 and b1 taken as the scalar
𝜇. To derive E(TA) from (20), we define

y.(Ai) = total of
n(Ai) = number of

}

observations in the ith level of the A-factor

and have from (20),

TA =
NA∑

i=1

[y.(Ai)]
2

n(Ai)
. (35)

Now, just as in Section 7 of Chapter 6, define n(Ai, 𝜃j) as the number of observations
in the ith level of the A-factor and the jth level of the 𝜃-factor. In addition, define b𝜃j

as the jth element of b𝜃 , and e.(Ai) as the total of the error terms corresponding to
y.(Ai). Then, using (34) in (35) gives

TA =
NA∑

i=1

[

n(Ai)𝜇 +
K∑

𝜃=A

N𝜃∑

j=1

n(Ai, 𝜃j)b𝜃j
+ e.(Ai)

]2

n(Ai)
(36)

Taking expected values of (36) gives:

(i) a term in 𝜇2:

NA∑

i=1

[n(Ai)]
2𝜇2

n(Ai)
= 𝜇2

NA∑

i=1

n(Ai) = N𝜇2; (37)

(ii) a term in 𝜎2
𝜃
, for 𝜃 = A, B,… , K:

k
(
𝜎2
𝜃
, TA

)
𝜎2
𝜃
=

NA∑

i=1

N𝜃∑

i=1

[n(Ai, 𝜃j)]
2

n(Ai)
𝜎2
𝜃
, (38)

where we define k(𝜎2
𝜃
, TA) as the coefficient of 𝜎2

𝜃
in E(TA);

(iii) a term in 𝜎2
e :

NA∑

i=1

n(Ai)𝜎
2
e

n(Ai)
= 𝜎2

e

NA∑

i=1

1 = NA𝜎
2
e . (39)
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Example 3 Derivation of E(Ta) of (25) from (39) The terms N𝜇2 and NA𝜎
2
e need

no demonstration. The others are

k
(
𝜎2
𝛼
, TA

)
𝜎2
𝛼
=

a∑

i=1

[n(𝛼i, 𝛼i)]
2

n(𝛼i)
𝜎2
𝛼
=

a∑

i=1

ni.𝜎
2
𝛼
= N𝜎2

𝛼
,

k
(
𝜎2
𝛽
, TA

)
𝜎2
𝛽
=

a∑

i=1

b∑

j=1

[n(𝛼i, 𝛽j)]
2

n(𝛼i)
𝜎2
𝛽
=

a∑

i=1

b∑

j=1

n2
ij

ni.
𝜎2
𝛽
,

and

k
(
𝜎2
𝛾
, TA

)
𝜎2
𝛾
=

a∑

i=1

b∑

j=1

[n(𝛼i, 𝛾ij)]
2

n(𝛼i)
𝜎2
𝛾
=

a∑

i=1

b∑

j=1

n2
ij

ni.
𝜎2
𝛾
.

Similarly, the terms in E(T𝜇) are, for example, of the form:

k
(
𝜎2
𝛼
, T𝜇
)
𝜎2
𝛼
=

a∑

i=1

[n(𝛼i)]
2

N
𝜎2
𝛼
=

a∑

i=1

n2
i.

N
𝜎2
𝛼

as in (26).

(iv) Calculation by “Synthesis.” Hartley (1967) developed a method for calculat-
ing coefficients of 𝜎2’s in terms like E(SSA and E(TA) without first requiring the
algebraic form of these coefficients. The method applies to calculating coefficients of
the 𝜎2’s in expected values of any quadratic form that is homogeneous in the obser-
vations in y. It requires no distributional properties of the model. He has called it the
method of “synthesis.” We describe it in terms of calculating TA of Sub-Section 2c(iii).

Write TA of (35) as

TA =
NA∑

i=1

[y.(Ai)]
2

n(Ai)
= y′QAy = TA(y). (40)

Define

x(𝜃, j) = jth column of X𝜃. (41)

Then, the method of synthesis derives k(𝜎2
𝜃
, TA) as the coefficient of 𝜎2

𝜃
in E(TA), as

k
(
𝜎2
𝜃
, TA

)
=

N𝜃∑

j=1

TA[x(𝜃, j)]; (42)
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that is, using each column of X𝜃 as a column of data (all 0’s and 1’s), calculate TA,
and sum the results over all columns of X𝜃 . The sum is the coefficient of 𝜎2

𝜃
in E(TA),

namely k(𝜎2
𝜃
, TA) of (38).

The procedure can be used numerically without recourse to explicit algebraic
forms of the coefficients k(𝜎2

𝜃
, TA). Since it applies to any quadratic form in the place

of TA, it can also be used directly on the SS-terms. Thus, paraphrasing Hartley’s
words: we can apply the analysis of variance method to each of the N𝜃 columns of X𝜃

used as data. Single out a particular quadratic f (y) over the N𝜃 analyses of variance,
to obtain k[𝜎2

𝜃
, f (y)], the coefficient of 𝜎2

𝜃
in E[f (y)]. Therefore, carrying out

∑k
𝜃=A N𝜃

analyses of variance and summing them appropriately gives all the coefficients of the
𝜎2’s in the expected quadratics. Since many of the “observations” in these analyses
will be zero, any computer procedure designed for this task should take account of
this many-zeroed feature of the “data.”

We can show the equivalence of (42) to (38). The jth column of X𝜃 , namely x(𝜃, j),
has n(𝜃j) ones in it and N − n(𝜃j) zeroes. Therefore, using x(𝜃, j) as the vector y in
y.(Ai) of (40) we require the total of the “observations” in x(𝜃, j) that are in the ith
level of A. These observations will consist of n(Ai, 𝜃j) ones and n(Ai) − (n(Ai, 𝜃j)
zeros. Their total is thus n(Ai, 𝜃j). Therefore, from (40),

TA[x(𝜃, j)] =
Na∑

i=1

[n(Ai, 𝜃j)]
2

n(Ai)
.

Summing this over j as in (42) yields (38).
The method of “synthesis” can be applied to calculating variances of variance

component estimators (see Section 2d(iii) following). J. N. K. Rao (1968) extended
it to general incidence matrices and to mixed models.

d. Sampling Variances of Estimators

The analogous sums of squares (in the manner of (14)–(17)) that we use in the
analysis of variance method for unbalanced data are the SS-terms. Under normality
assumptions, they do not have 𝜒2-distributions. In addition, they are not distributed
independently of each other. The only sum of squares with a known distribution is
SSE. It follows a 𝜒2-distribution in the usual manner. In addition, it has zero covari-
ance with the other SS-terms. Therefore, �̂�2 = SSE∕(N − s) has a similar distribution.
The other distributions that are linear functions of the SS-terms have distributions that
are unknown. Despite this, under normality assumptions, we can derive the variances
of these estimators. Suppose we define

c = vector of SS-terms but not SSE,

𝜎2 = vector of 𝜎2’s, but not 𝜎2
e ,

and

f = vector of “degrees of freedom,” the coefficients of 𝜎2
e in E(c).
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The vector of SS-terms is therefore
[

c′ SSE
]
. Equating this to its expected values

yields the variance components estimators. Suppose P is the matrix of coefficients of
variance components (other than 𝜎2

e ) in E(c). Then, we can write

E

[
c

SSE

]

=
[

P f
0 N − s

] [
𝜎2

𝜎2
e

]

. (43)

Equating

[
c

SSE

]

to its expected values gives the estimators

�̂�2
e = SSE

(N − s)
(44a)

and

�̂�2 = P−1(c − �̂�2
e f
)
. (44b)

Expressions (44a) and (44b) provide a means for deriving the variances of the esti-
mators.

(i) Derivation. The distribution of SSE∕𝜎2
e is 𝜒2

N−s with variance 2(N − s). Thus,
from (44a), we have,

v
(
�̂�2

e

)
=

2𝜎4
e

(N − s)
. (45)

Now SSE (and hence �̂�2
e ) has zero covariance with every element of c, that is, with

every other SS-term. Therefore, from (44b),

cov
(
�̂�2, �̂�2

e

)
= −P−1fv

(
�̂�2

e

)
(46a)

and

var(�̂�2) = P−1[var(c) + v
(
�̂�2

e

)
ff′
]
P−1′ . (46b)

In addition, since the SS-terms are linear functions of the T’s, we can with

T = vector of T’s write c = Ht (47)

for some matrix H (that is quite unrelated to H = GX′X of previous chapters). For
example, in the case of the two-way classification, H is the matrix of the transforma-
tion of the T’s to SSA, SSB, and SSAB shown in (21). Hence,

var(c) = Hvar(t)H′ (48a)
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and

var(�̂�2) = P−1[Hvar(t)H′ + v
(
�̂�2

e

)
ff′
]
P. (48b)

This result is due by Searle (1958). Blischke (1968) utilized this result in the general
case. Its application in any particular situation requires obtaining only var(t), the
variance–covariance matrix of the T’s. The matrix P is that of the coefficients of the
𝜎2’s in the expected values of the SS-terms. The matrix H expresses the relationship
between the SS-terms and the T’s. The vector of the “degrees of freedom” in the
SS-terms is f. The elements of f are the coefficients of 𝜎2

e in the expected values of
the SS-terms.

Deriving elements of var(t) requires cumbersome algebra. However, the basis of
two different methods of doing so is quite straightforward. For both methods, we
assume normality, that is, that

y ∼ N(𝜇1, V). (49)

For the first method, we show the manner in which 𝜇2 occurs in the variances and
the covariances of the T’s. From (40), we can show that

QA =
NA∑

i=1

+ 1
n(Ai)

Jn(Ai)
. (50)

This means that QA is a block diagonal matrix of square matrices of order n(Ai) with
every element being 1/n(Ai). This kind of result applies not just to the A-factor but
also to every factor 𝜃 of the model (34). For two factors A and B, we then have from
Chapter 2,

v(TA) = 2tr(VQA)2 + 4𝜇21′QAVQA1.

There is a similar expression for v(TB). Furthermore,

cov(TA, TB) = 2tr(VQAVQB) + 4𝜇21′QAVQB1.

However, from (50),

1′QA = 1′.

The same is true of QB. Thus, we have that

v(TA) = 2tr(VQA)2 + 4𝜇21′V1

and that

cov(TA, TB) = 2tr(VQAVQB) + 4𝜇21′V1.
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Observe that 4𝜇21′V1 is part of all the variances and covariances of the T’s. However,
because in c = Ht the T’s are used only in terms of the differences between them, the
4𝜇21′V1 term in the above expressions can be ignored. This is equivalent to assuming
𝜇 = 0. It gives

v(TA) = 2tr(VQA)2 (51)

and

cov(TA, TB) = 2tr(VQAVQB). (52)

From these elements, we can obtain the elements of var(t). This has been done for
several specific cases. The details are available on the web page (Chapter 11).

The second method is due to Blischke (1966, 1968). He obtains the same elements
of var(t) by using the fact that for normal variables u and v,

cov(u2, v2) = 2[cov(u, v)]2

(See Exercise 17 of Chapter 2). Therefore, since TA and TB are weighted sums of
squares of normally distributed random variables, their covariance

cov(TA, TB) = cov

{ NA∑

i=1

[y.(Ai)]
2

n(Ai)
,

NB∑

j=1

[y.(Bj)]
2

n(Bj)

}

,

is, assuming 𝜇 = 0,

cov(TA, TB) =
NA∑

i=1

NB∑

j=1

2{cov[y.(Ai), y.(Bj)]}
2

n(Ai)n(Bj)
.

A special case of this is

var(TA) =
NA∑

i=1

2{var[y.(Ai)]}
2

[n(Ai)]2
+

NA∑

i≠i′

2{cov[y.(Ai), y.(Ai′)]}
2

n(Ai)n(Ai′)
.

Whether one uses these expressions or their equivalent matrix forms (51) and (52),
the ensuing algebra for specific cases is cumbersome and tedious, as is evident from
the results listed on the web page (Chapter 11).

One of the difficulties in deriving the matrix var(t) is the large number of elements.
An r-way classification random model, with all interactions (see Exercise 2) involves
2r−1(2r + 1) different elements in var(t). Each element is a linear function of the same
number of squares and products of variance components. Thus, we need to deal with
a square matrix of order 2r−1(2r + 1). For r = 2, 3, 4, and 5, this matrix has order 10,
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36, 136, and 528, respectively. Its elements for r = 2 and r = 3 are available on the
web page (Chapter 11).

(ii) Estimation. We may use the elements of var(t) that we derive from (51) and
(52) in (48) to obtain var(�̂�2). However, the elements of var(t) are quadratic functions
of the unknown variance components. The problem of estimating var(�̂�2) therefore
remains. A common procedure is to replace the variance components in var(�̂�2) by
their estimates and use the resulting value of var(�̂�2) as the estimator of var(�̂�2). As an
estimator, this has no known desirable properties other than being relatively easy to
compute. Searle (1961) discusses a small numerical example. We can derive unbiased
estimators of the variances and covariances of the variance component estimator, that
is, of (45), (46), and (48) as follows. First, array (45), (46), and the elements of the
upper triangular half of (48) in a vector v:

v = vector of variances and covariances of all �̂�2’s.

For example, in the one-way classification with components 𝜎2
𝛼

and 𝜎2
e ,

v′ =
[

v
(
�̂�2
𝛼

)
v
(
�̂�2

e

)
cov
(
�̂�2
𝛼
, �̂�2

e

) ]

and

𝛾 ′ =
[
𝜎4
𝛼

𝜎4
e 𝜎2

𝛼
𝜎2

e

]
.

Then, because of (45), (46), and (48), every element of v is a linear combination of
the elements in 𝛾 , and so, for some matrix A say

v = A𝛾 (53)

With an r-way classification random model that has all possible interactions A of
(53) has an order 2r−1(2r + 1). However, A is not the matrix referred to at the end of
Section (i), where the different elements of var(t) were envisaged as a vector B𝛾 , say.
In (53), it is v(�̂�2

e ) and the elements of cov(�̂�2, �̂�2
e ) and var(�̂�2) being written as A𝛾 .

The matrices A and B have the same order but are not equal.
We derive the unbiased estimator of v from (53). First, observe that every variance

component estimator of �̂�2 of (44) is unbiased. Thus, for example, on writing �̂�4
A for

(�̂�2
A)2, we have

E
(
�̂�4

A

)
= v
(
�̂�2

A

)
+ 𝜎4

A. (54)

Similarly,

E
(
�̂�2

A�̂�
2
B

)
= cov

(
�̂�2

A, �̂�2
B

)
+ 𝜎2

A𝜎
2
B. (55)
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Writing �̂� as the vector of squares and products of the �̂�2’s corresponding to 𝛾 , we
have from (54) and (55) that

E(�̂�) = v + 𝛾. (56)

We will then find that replacing 𝛾 in (53) by �̂� − v̂ and calling the resulting expression
v̂ yields v̂ as an unbiased estimator of v; that is,

v̂ = A(�̂� − v̂) (57)

gives

v̂ = (I + A)−1A�̂� (58)

as an unbiased estimator of v. Utilizing (53) and (56) in taking the expected value
of (58) shows that E(v̂) = v (see Exercise 6). The elements in v̂ in (58) are therefore
unbiased estimators of the variances and covariances of the analysis of variance
estimators of the variance components.

Mahamunulu (1963) describes the derivation of v̂ in terms of (57). It consists
of replacing every 𝜎4

A term in (53) by �̂�4
A − v(�̂�2

A) and every 𝜎2
A𝜎

2
B term in (53) by

�̂�2
A�̂�

2
B − côv(�̂�2

A, �̂�2
B), and calling the resulting expression v̂. Ahrens (1965) derived

the form of the result given in (58).
The nature of (45) ensures that (58) yields

v̂
(
�̂�2

e

)
= 2�̂�4

(N − s + 2)
. (59)

We can, of course, also derive (59) directly from (45) by using the counterpart of (54)
for 𝜎2

e . In the same way, (58) also yields

côv
(
�̂�2, �̂�2

e

)
= −Pfv̂

(
�̂�2

e

)
(60)

as an unbiased estimator of (46). The remaining terms in v̂ are unbiased estimators
of the elements of var(�̂�2) of (48).

Example 4 Estimating Variances of Variance Components in the Unbalanced
One-Way Classification Model The analysis of variance for the one-way classi-
fication model is derived in Section 2d of Chapter 6. Denoting SSRm given there as
SSA, we have

SSA =
a∑

i=1

niȳ
2
i. − Ny2

..
, with E(SSA) =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

N −

a∑

i=1

n2
i

N

⎞
⎟
⎟
⎟
⎟
⎟
⎠

𝜎2
𝛼
+ (a − 1)𝜎2

e
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and

SSE =
a∑

i=1

n∑

j=1

y2
ij −

a∑

i=1

niȳ
2
i., with E(SSE) = (N − a)𝜎2

e .

Therefore, from (43), P and f are scalars,

P = N −

a∑

i=1

n2
i

N
and f = a − 1. (61)

The estimators are

�̂�2
e = SSE

N − a
and �̂�2

𝛼
=

SSA − (a − 1)�̂�2
e

N −
a∑

i=1

n2
i ∕N

. (62)

The variances and covariances of these estimators are (see Crump (1947) and Searle
(1956))

v
(
�̂�2

e

)
= k1𝜎

4
e for k1 = 2

(N − a)
,

cov
(
�̂�2
𝛼
, �̂�2

e

)
= k2𝜎

4
e for k2 = −2(a − 1)

[(N − a)(N − S2∕N)]
, (63)

and

v
(
𝜎2
𝛼

)
= k3𝜎

4
e + k4𝜎

2
e𝜎

2
𝛼
+ k5𝜎

4
𝛼

with

k3 = 2N2(N − 1)(a − 1)

(N2 − S2)2
, k4 = 4N

N2 − S2
, and k5 =

2
(
N2S2 + S2

2 − 2NS3

)

(N2 − S2)2
,

where S2 =
a∑

i=1
n2

i and S3 =
a∑

i=1
n3

i . Therefore, (53) is

⎡
⎢
⎢
⎣

v
(
�̂�2

e

)

cov
(
�̂�2
𝛼
, �̂�2

e

)

v
(
�̂�2
𝛼

)

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

k1 0 0

k2 0 0

k3 k4 k5

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

𝜎4
e

𝜎2
𝛼
𝜎2

e

𝜎4
𝛼

⎤
⎥
⎥
⎦

.
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As a result, (58) is

⎡
⎢
⎢
⎣

v̂
(
�̂�2

e

)

côv
(
�̂�2
𝛼
, �̂�2

e

)

v̂
(
�̂�2
𝛼

)

⎤
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

1 + k1 0 0

k2 1 0

k3 k4 1 + k5

⎤
⎥
⎥
⎦

−1
⎡
⎢
⎢
⎣

k1 0 0

k2 0 0

k3 k4 k5

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

�̂�4
e

�̂�2
𝛼
�̂�2

e

�̂�4
𝛼

⎤
⎥
⎥
⎦

= 1
(1 + k1)(1 + k5)

⎡
⎢
⎢
⎣

k1(1 + k5) 0 0

k2(1 + k5) 0 0

k3 − k2k4 k4(1 + k1) k5(1 + k1)

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

�̂�4
e

�̂�2
𝛼
�̂�2

e

�̂�4
𝛼

⎤
⎥
⎥
⎦

.

(64)

From (64),

v̂
(
�̂�2

e

)
=

k1(1 + k5)�̂�4
e

(1 + k1)(1 + k5)
=

k1�̂�
4
e

1 + k1
=

2�̂�4
e

N − a + 2

on substituting for k1, a result that is in keeping with (59). Similarly, from (64),

côv
(
�̂�2
𝛼
, �̂�2

e

)
=

k2

1 + k1
�̂�4

e =
k2

k1

(
k1�̂�

4
e

1 + k1

)

=
k2

k1
v̂
(
�̂�2

e

)
.

This result agrees with (60) because, from (63) and (61), k2∕k1 = −P−1f
of (60). □

Example 5 Numerical Estimates of Variance Components and Their Variances
and Covariances for a One-Way Classification Model Four brands of light bulbs
are chosen from a large population of light-bulb brands. The life lengths of samples
of light bulbs are given below.

A B C D

915 1011 989 1055
912 1001 979 1048
903 1003 1004 1061
893 992 992 1068
910 981 1008 1053
890 1001 1009 1063
879 989 996

1003 998
997

(Data from Gruber (2014, p. 252). Reproduced with kind permission of John Wiley
& Sons.)
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The analysis of variance is given below.

Source d.f. Sum of Squares Mean Square F

Brand 3 84,663 28,221 271.214
Error 26 2706 104
Total 29 87,369

We shall estimate the variance components and the variance of the variance compo-
nents.

Using (62), we have that

�̂�2
e = 2706

26
= 104 and �̂�2

𝛼
= 84663 − 3(104)

30 − (72 + 82 + 92 + 62)∕30
= 3777.

Equation (62) found the expectations of the sum of squares. To find the expected mean
square, this expectation is divided by the degrees of freedom. This could be done
with the expectations calculated in Example 4 above. Using the random command in
PROC GLM, we get the result below. This would be the same as in (62) if we divide
by the degrees of freedom. Thus, for a particular data set, we can obtain the expected
mean squares using SAS whether the data is balanced or not.

Source Type III Expected Mean Square

Brand var(error) + 7.4444 var(brand)

Using the formulae of Crump (1947) and Searle (1956), we obtain k1 =
0.07692, k2 = −0.01033, k3 = 0.01342, k4 = 0.1791, and k5 = 0.6768. Substitution
into (64) yields the estimates v(�̂�2

e ) = 772.543, cov(�̂�2
e , �̂�2

𝛼
) = −103.749, v(�̂�2

𝛼
) =

5.80007 × 106. □

(iii) Calculation by Synthesis. The “synthesis” method of calculating numerical
coefficients of �̂�2’s in expected values has been described in Section 2c(iv). We can
also apply it to calculate squares and products of �̂�2’s in variances and covariances.
We give the procedure for obtaining E(TATB) from which we can obtain cov(TA, TB)
using E(TA) and E(TB) based upon (42).

We first write e = X0b0 with X0 = I and b0 = e. The model (34) then becomes

y = 𝜇1 +
K∑

𝜃=0
X𝜃b𝜃 . Hartley (1967) then derives E(TATB) in the form

E(TATB) =
K∑

𝜃,𝜑=0

k
(
𝜎2
𝜃
𝜎2
𝜑

, TATB

)
𝜎2
𝜃
𝜎2
𝜑
+

K∑

𝜃=0

h(𝜇4,𝜃 ,TATB)𝜇4,𝜃 ,
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where by definition,

𝜇4,0 = E(e4
i ) for i = 1, 2,…N

and for 𝜃 = A, B,… , K

𝜇4,𝜃 = E(b4
𝜃j

) for j = 1, 2,… , N𝜃.

With these definitions, the coefficients that Hartley (1967) gives are

h(𝜇4𝜃 , TATB) = coefficient of E(TATB)

=
N𝜃∑

j==1

TA[x(𝜃, j)]TB[x(𝜃, j)], (65)

k
(
𝜎4
𝜃
, TATB

)
= coefficient of 𝜎4

𝜃
in E(TATB)

=
N𝜃∑

j=1

∑

j<j′
TA[x(𝜃, j) + x(𝜃, j′)]TB[x(𝜃, j) + x(𝜃, j′)]

− (N𝜃 − 5)h(𝜇4,𝜃 , TAT), (66)

and

k
(
𝜎2
𝜃
𝜎2
𝜑

, TATB

)
= coefficient of 𝜎2

𝜃
𝜎2
𝜑

in E(TATB)

= 1
2

N𝜃∑

j=1

N𝜑∑

j′=1

TA[x(𝜃, j)+x(𝜑, j′)]TB[x(𝜃, j) + x(𝜑, j′)]

−N𝜃h(𝜇4,𝜑, TATB) − N𝜑h(𝜇4,𝜃 , TATB). (67)

Thus for h(𝜇4𝜃 , TATB), we use columns X𝜃 as “data” vectors in TA and TB. In
k(𝜎4

𝜃
, TATB), we add pairs of different columns of X𝜃 and use the sums as “data”

vectors in TA and TB. These results are quite general and apply to any quadratic forms
of the observations, including the use of TA in place of TB to obtain E(T2

A) and hence
v(TA). Furthermore, the results are all in terms of variances and fourth moments. No
particular form of the distribution has been assumed for the random variables. The
formulae are well-suited computationally for obtaining coefficients, numerically in
specific situations. However, with large amounts of data, the calculations would be
extensive. We could also use these formulae to find coefficients algebraically. How-
ever, in most cases, the details involved would be most tedious. A simple example
follows.

Example 6 Illustration of the Results by Finding the Variance of S2 Hartley
(1967) illustrates his results by finding the variance of the usual unbiased estimator
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of the sample variance

s2 = s2(x) =

(
n∑

i=1

x2
i − nx̄2

)

(n − 1)

as

v(s2) = E(s2s2) − 𝜎4,

where

E(s2s2) = k00𝜎
4 + h0𝜇4,0.

By (65),

h0 =
N𝜃∑

j=1

{[x(0, j)]}2

=
n∑

j=1

[s2(column of In)]2

= n

[
1 − n(1∕n)2

n − 1

]2

= 1
n
.

Furthermore, by (66),

k00 =
N𝜃∑

j=1

N𝜃∑

j′<j

{s2[x(0, j) + x(0, j′)]}2 − (N𝜃 − 5)h0

=
n∑

j=1

n∑

j<j′
[s2(sum of 2 columns of In)]2 − n − 5

n

= (n − 1)n
2

[
2 − n(2∕n)2

(n − 1)

]2

− n − 5
n

= n2 − 2n + 3
n(n − 1)

.

Hence,

v(s2) = k00𝜎
4 + h0𝜇4,0 − 𝜎4

=
[

n2 − 2n + 3
n(n − 1)

− 1

]

𝜎4 +
𝜇4,0

n
= 3 − n

n(n − 1)
𝜎4 +

𝜇4,0

n
.

The above result can also be obtained directly (see Exercise 4). With normality
assumptions 𝜇4,0 = 3𝜎4 and the result reduces to the familiar v(s2) = 2𝜎4∕(n − 1). □
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3. ADJUSTING FOR BIAS IN MIXED MODELS

We indicated in Section 2c(ii) that with unbalanced data, the analysis of variance
method for mixed models leads to biased estimators of variance components. There
is, of course, a dual problem with mixed models—estimation of both the fixed effects
and the variance components of the random effects. Here, we confine attention to
estimating, just the variance components. In some situations, this would be exactly
what would be done in practice. For example, with genetic data effects that are often
considered fixed, such as year effects might be of little interest compared to genetic
variance components. On the other hand, if trends in the year effects were of interest,
their estimation together with that of variance components would be considered
simultaneously. We now consider the dual estimation problem.

Henderson (1953) presents the method. He first uses the data to estimate the fixed
effects of the model. He then adjusts the data by these estimators. Then, he estimates
the variance components using the adjusted data. The design of the whole procedure
is such that the presence of fixed effects does not cause the variance components to be
biased. The analysis of variance estimators would be biased. This method produces
unbiased estimators. However, Searle (1968) shows that the method is not uniquely
defined. Furthermore, we cannot use certain simplified forms of the method whenever
the model includes interactions between the fixed effects and the random effects. We
now consider these points. We follow Searle (1968) closely but do not repeat the
details here.

a. General Method

We consider the general model (34) in the form

y = 𝜇1 + Xf bf + Xrbr + e. (68)

In the model (68), we represent all of the fixed effects other than 𝜇 by bf and all of
the random effects by br. We take E(br) = 0. Then, E(brb′

r) = var(br). This is the
variance–covariance matrix of the random effects. Suppose and estimator of the fixed
effects bf is b̃f = Ly. Then, z = y − Xf b̃f is a vector of data adjusted by the vector bf.
Substitution from (68) shows that the model for z contains no terms on bf provided
that L is a generalized inverse of Xf. Under this condition, the analysis of variance
method applied to z will yield unbiased estimators of the variance components.
However, the fact that L has only to be a generalized inverse of Xf indicates the lack
of uniqueness in the method.

b. A Simplification

The calculations involved in applying the analysis of variance method to y, particu-
larly those involving the random effects Xrbr have been documented in the preceding
section. In z = y − Xrb̃f , the term in the random effects is Xr − Xf LXr.
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For the case where Xf LXr = 0, application of the analysis of variance method to
z would, so far as random effects are concerned, be the same as applying the method
to y. To be more specific, suppose we chose L such that the model for z is

z = 𝜇∗1 + Xrbr + Ze, (69)

for 𝜇∗ being a scalar (not necessarily equal to 𝜇) and for Z being the same matrix. The
analysis of variance method applied to (69) would involve no fixed effects. Although
treatment of the error terms in (69) would differ from that of the error terms in (68),
treatment of the random effects would be the same as when using (68). Therefore,
apart from calculations relating to 𝜎2

e , using the analysis of variance method on (69)
would be the same as using it on (68) with the fixed effects ignored. To achieve this,
Searle (1968) shows that L need not be a generalized inverse of Xf but has to satisfy
three conditions. They are:

Xf LXf = 0, (70)

Xf L has its row sums equal, (71)

and

Xf − Xf LXf has all its rows the same. (72)

Although the non-unique condition on L that Xf LXf = Xf has been replaced by the
conditions in (70)–(72), they do not necessarily determine L uniquely. Furthermore,
these conditions imply that the model for y must not contain interactions between
fixed and random effects. This is a severe limitation on the method.

c. A Special Case: Henderson’s Method 2

Method 2, described by Henderson (1953) is simply one specific way that we can carry
out the simpler form of the generalized method. Henderson’s method 2 estimates bf
as b̃f = Ly. It uses an L that satisfies (70), (71), and (72), and then uses the analysis
of variance method on y − Xf b̃f . Even though Henderson’s method 2 is just one way
of executing the simpler form of the generalized model, it suffers from the limitation
already alluded to. It cannot be used whenever the model has interactions between
fixed and random effects. Although Henderson (1953) does not state this explicitly,
his example does not have interactions between fixed and random effects. There, the
fixed effects in a study of dairy production are years. The random effects are herds,
sires, and herds-by-sires interactions. There are no interactions of years with herds
and/or sires.

To use Henderson’s method 2, we first estimate bf by least squares assuming
temporarily, and for this purpose only, that 𝜇 = 0 and that the random effects are
fixed. This leads to the equations

X′X
[

b̃f

b̃r

]

=
[

X′
f Xf X′

f Xr

X′
rXf X′

rXr

] [
bf

br

]

=
[

X′
f y

X′
ry

]

. (73)
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It is the manner in which (73) is solved that leads to the solution b̃f being b̃f =
Ly satisfying (70), (71), and (72). The essential part of the solution is picking a
generalized inverse of X′X in the manner described in Section 1 of Chapter 1. Recall
that in finding a generalized inverse of X′X we strike out rows and columns to reduce
it to full rank. This should be done in such a way so that as many as possible of
these rows and columns are through X′

f Xf . Searle (1968) gives details of this process.
Despite being able to specify the method in this manner, the method suffers from the
deficiencies already alluded to. It is not uniquely specified. It cannot be used in the
presence of interactions between fixed and random effects. For these reasons, we do
not recommend its use.

4. FITTING CONSTANTS METHOD (HENDERSON’S METHOD 3)

Fitting the linear models of Chapter 5–8 is often referred to as the technique of fitting
constants, as mentioned in Chapter 4, because the effects of fixed-effects models
are sometimes called constants. We now describe a third method of fitting variance
components that is based on fitting fixed-effects models. Accordingly, it is called
the fitting constants method, or Henderson’s method 3, after Henderson (1953). For
whatever model being used, the method uses reductions in the sums of squares due to
fitting this model and the different sub-models thereof, in the manner of Chapter 6,
7, and 8. These reductions, the R( )-terms of those chapters, are used in the analysis
of variance method in the same manner as are the SS-terms, the analogous sums of
squares of the analysis of variance method. One estimates the variance components
by equating each computed reduction to its expected value—its expected value under
the full model. We describe the general properties of the method and then illustrate
its application in the two-way classification. The presentation follows closely that of
Searle (1968).

a. General Properties

We rewrite the general model y = Xb + e as

y = X1b1 + X2b2 + e. (74)

The portioning simply divides b into two groups with no thought for whether the
groups represent fixed or random effects. We will denote the reduction in sum of
squares due to fitting this model by R(b1, b2). For the moment, we are concerned
with finding the expected values of R(b1, b2) and of the reduction in the sum of
squares due to fitting the sub-model

y = X1b1 + e. (75)

Both expectations will be taken under the full model (74).
Denoting the reduction in the sum of squares due to fitting (75) by R(b1), we write

R(b2|b1) = R(b1, b2) − R(b1) (76)
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in the manner of Section 3a of Chapter 6. We will show that the expected value of
(76) under the model (74) involves only 𝜎2

e and

E(b2b′
2) = var(b2) + E(b2)E(b2)′, (77)

and it does not involve b1. Consequently, the fitting constants method, by judicious
choice of sub-models represented by b1 in (76), yields unbiased estimators of the
variance components of the full model. These estimators are uncomplicated by any
fixed effects that may be in the model.

First, we slightly modify equation (2) for E(y′Qy). In the general model y = Xb +
e, the vector b can be fixed, random, or mixed. Adopting the convention that for a
fixed effect E(bi) = bi enables E(b) to be defined whatever be the nature of b. Thus
from (2),

E(y′Qy) = tr[Q{XVar(b)X′ + 𝝈2
eI}] + E(b′)X′QXE(b)

= tr[X′QXE(bb′)] + 𝝈2
e tr(Q).

In this form, E(y′Qy) is suitable for considering the models (74) and (75).
In fitting (74), the reduction sum of squares is the same as that of equation (14) of

Chapter 5. Thus,

R(b1, b2) = y′X(X′X)−X′y, (78)

where (X′X)− is a generalized inverse of X′X. Taking the expectation of (78) gives

ER(b1, b2) = tr{((X′X)E(bb′)} + 𝜎2
e r(X)

= tr

{[
X′

1X1 X′
1X2

X′
2X1 X′

2X2

]

E(bb′)

}

+ 𝜎2
e r(X).

Similarly, when fitting (75), the reduction in the sum of squares is

R(b1) = y′X1(X′
1X1)−X′

1y,

with

ER(b1) = tr{X′X1(X′
1X1)−X′

1XE(bb′)} + 𝜎2
e r(X1)

= tr

{[
X′

1X1

X′
2X1

]

(X′
1X1)−

[
X′

1X1 X′
1X2
]

E(bb′)

}

+ 𝜎2
e r(X1)

= tr

{[
X′

1X1 X′
1X2

X′
2X1 X′

2X1(X′
1X1)−X′

1X2

]

E(bb′)

}

+ 𝜎2
e r(X1).
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Hence, the expected value of R(b2|b1) is

E[R(b2|b1)] = E[R(b2, b1) − R(b1)]

= tr{X′
2[I − X1(X′

1X1)−X′
1]X2E(b2b′

2)} + 𝜎2
e [r(X) − r(X1)]. (79)

As forecast, the only b-term involved here is b2. The expectation of R(b2|b1) is a
function simply of E(b2b′

2) and 𝜎2
e . It does not involve E(b1b′

1) or E(b1b′
2). Observe

that this result has been derived without any assumptions on the form of E(bb′).
The result in (79) has important consequences. It means that if the b-vector of

one’s model can be partitioned into two parts b1 and b2, where b2 contains just
random effects, then ER(b2|b1) as given in (79) contains only 𝜎2

e and the variance
components relating to those random effects. Thus, when b1 represents all the fixed
effects, ER(b2|b1) contains no terms due to those fixed effects. This is the value of
the method of fitting constants to the mixed model. The method yields estimates of
the variance components unaffected by the fixed effects. Furthermore, in the random
model, when b1 contains random effects, ER(b2|b1) contains no terms arising from
var(b1). More importantly, it does not contain any terms arising from any covariance
between the elements of b1 and b2. Hence, even if the model is such that the terms
in b1 are correlated with terms in b2, the expectation in (79) does not involve this
correlation. It depends solely on the second moments in b2 (and on 𝜎2

e ).
Compared with the analysis of variance method, the immediate importance of

the fitting constants method lies in its appropriateness for the mixed model for
which it yields variance component estimators that are unbiased for the fixed effects.
Therefore, it is the preferred method for mixed models. Its disadvantage is that
it involves calculating generalized inverses that will be very large in models having
large number of effects in them. This difficulty can arise in calculating both reductions
in sums of squares and the coefficients in the 𝜎2’s in their expectations. Hartley’s
(1967) method of synthesis described in Section 2d(iii) can be used as one means of
calculation. Other available shortcuts can be found in Gaylor et al. (1970).

We now consider the application of this method to the two-way classification.

b. The Two-Way Classification

Equation (12) is that of the two-way classification model. Table 7.8 gives the reduction
in the sums of squares for fitting the fixed-effects version of this model. This table
includes

R(𝛼|𝜇) = R(𝜇, 𝛼) − R(𝜇)
R(𝛽|𝜇, 𝛼) = R(𝜇, 𝛼, 𝛽) − R(𝜇, 𝛼)
R(𝛾|𝜇, 𝛼, 𝛽) = R(𝜇, 𝛼, 𝛽, 𝛾) − R(𝜇, 𝛼, 𝛽)

(80)

and

SSE =
∑

y2 − R(𝜇, 𝛼, 𝛽, 𝛾).
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We shall use these terms in the fitting constants method of estimating variance
components. To do so, we need their expected values.

(i) Expected Values. As usual, the expected value of SSE in (80) is (N − s)𝜎2
e .

Taking R(𝛾|𝜇, 𝛼, 𝛽) next, its expected value can be derived from (79). However, we
cannot obtain the expected values of R(𝛼|𝜇) and R(𝛽|𝜇, 𝛼) directly from (79). This
is because (79) is the expected value of R(b2|b1) = R(b1, b2) − R(b1). This is the
difference between two R(⋅)-terms. One of them is for the full model; the other is
for a sub-model. This is the only kind of term to which (79) applies. An example is
R(𝛾|𝜇, 𝛼, 𝛽) of (80). In contrast, (79) does not apply to R(⋅|⋅)-terms that are differences
between two R(⋅)-terms that are both for sub-models. For this reason, with the full
model involving 𝜇, 𝛼, 𝛽, and 𝛾 , (79) does not apply to R(𝛼|𝜇) and R(𝛽|𝜇, 𝛼) of (80).

Although (79) cannot be used directly on R(𝛼|𝜇) and R(𝛽|𝜇, 𝛼), it can be utilized
by considering certain sums of squares of the terms in (80) that involve R(𝛼|𝜇) and
R(𝛽|𝜇, 𝛼). For example, (79) applies to

R(𝛼, 𝛽, 𝛾|𝜇) = R(𝜇, 𝛼, 𝛽, 𝛾) − R(𝜇). (81)

This is the sum of the first three terms in (80):

R(𝛼, 𝛽, 𝛾|𝜇) = R(𝛼|𝜇) + R(𝛽|𝜇, 𝛼) + R(𝛾|𝜇, 𝛼, 𝛽).

Similarly, (79) applies to

R(𝛽, 𝛾|𝜇, 𝛼) = R(𝜇, 𝛼, 𝛽, 𝛾) − R(𝜇, 𝛼) (82)

which is

R(𝛽, 𝛾|𝜇, 𝛼) = R(𝛽|𝜇, 𝛼) + R(𝛾|𝜇, 𝛼, 𝛽).

Equating observed values of R(⋅|⋅)-terms to their expected values to obtain variance
component estimators, using (81) and (82) in place of R(𝛼|𝜇) and R(𝛽|𝛼,𝜇) of (80)
yields equations that are linear combinations of those that would arise using (80).
Therefore, the estimators will be the same. Table 10.1 shows the form taken by the

TABLE 10.1 Reductions in Sum of Squares for Estimating Variance Components in a
Two-Way Classification Interaction, Random Model, Unbalanced Data

Computing
Reduction in Sum of Squares Formulaa Expected Valuesb

R(𝛼, 𝛽, 𝛾|𝜇) = R(𝜇, 𝛼, 𝛽, 𝛾) − R(𝜇) = TAB − T𝜇 h1𝜎
2
𝛼
+ h2𝜎

2
𝛽
+ h3𝜎

2
𝛾
+ (s − 1)𝜎2

e

R(𝛽, 𝛾|𝜇, 𝛼) = R(𝜇, 𝛼, 𝛽, 𝛾) − R(𝜇, 𝛼) = TAB − TA h4𝜎
2
𝛽
+ h5𝜎

2
𝛾
+ (s − a)𝜎2

e

R(𝛾|𝜇, 𝛼, 𝛽) = R(𝜇, 𝛼, 𝛽, 𝛾) − R(𝜇, 𝛼, 𝛽) = TAB − R(𝜇, 𝛼, 𝛽) h6𝜎
2
𝛾
+ s∗𝜎2

e

SSE =
∑

y2 − R(𝜇, 𝛼, 𝛽, 𝛾) = T0 − TAB (N − s)𝜎2
e

aThe T’s are defined in (19) and R(𝜇, 𝛼, 𝛽) is defined in (63) of Section 2d(i) of Chapter 7.
bThe h’s come from (79) and are given in Section 4e of Chapter 11.
s∗ = s − a − b + 1.
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expected values of this reduction (81), (82), and the last two terms of (80). The table
also shows the computing formulas for the reductions. We discuss these and the
h-coefficients of the 𝜎2’s (which would be derived from (79) later). The coefficients
of the 𝜎2

e ’s have already been obtained from (79).

(ii) Estimation. The nature of (79) and of the reductions shown in Table 10.1
ensures that the expectations of those reductions involve successively more variance
components, one at a time reading from the bottom up.

Estimation of these components from Table 10.1 is therefore quite straightforward.
The estimators are

�̂�2
e = SSE

(N − s)

�̂�2
𝛾
=
[
R(𝛾|𝜇, 𝛼, 𝛽) − (s − a − b + 1)�̂�2

e

]

h6

�̂�2
𝛽
=

[
R(𝛽, 𝛾|𝜇, 𝛼) − h5�̂�

2
𝛾
− (s − a)�̂�2

e

]

h4
(83)

and

�̂�2
𝛼
=

[
R(𝛼, 𝛽, 𝛾|𝜇) − h2�̂�

2
𝛽
− h3�̂�

2
𝛾
− (s − 1)�̂�2

e

]

h1

Once we obtain the R’s and the h’s, we can calculate these estimators easily. We turn
to this now.

(iii) Calculation. Expressions for calculating the R(⋅)-terms of Table 10.1 are given
in equations (58)–(63) of Section 2d(i) of Chapter 7. Most of them are the same as
the T’s given in (19) of this chapter; that is,

R(𝜇) = T𝜇, R(𝜇, 𝛼) = TA,
R(𝜇, 𝛼, 𝛽, 𝛾) = TAB and

∑
y2 = T0.

(84)

These are easy to calculate, as in (19), and lead to the computing formulae shown
in Table 10.1. Notice that the only term that is not part of the analysis of variance
method is R(𝜇, 𝛼, 𝛽). Calculation of this is given in equations (63)–(65) in Section
2d(i) of Chapter 7 and repeated again in Chapter 11 (see the web page). For the
moment, we concern ourselves with the general methodology rather than the specific
applications. Therefore, details of calculating R(𝜇, 𝛼, 𝛽) and the h’s of Table 10.1 are
left until Chapter 11 (the web page).

In passing, we may note that because the reductions in Table 10.1 are largely
functions of the T’s, most of the h’s are correspondingly functions of coefficients of
𝜎2’s in expected values of T’s. Equations (38) contain a general expression for these
coefficients. Chapter 11 (the web page) shows full details.
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TABLE 10.2 An Alternative Set of Reductions in Sum of Squares for Estimating
Variance Components in a Two-Way Classification Interaction, Random Model,
Unbalanced Data

Computing
Reduction in Sum of Squares Formulaa Expected Valuesb

R(𝛼, 𝛽, 𝛾|𝜇) = R(𝜇, 𝛼, 𝛽, 𝛾) − R(𝜇) = TAB − T𝜇 h1𝜎
2
𝛼
+ h2𝜎

2
𝛽
+ h3𝜎

2
𝛾
+ (s − 1)𝜎2

e

R(𝛼, 𝛾|𝜇, 𝛽) = R(𝜇, 𝛼, 𝛽, 𝛾) − R(𝜇, 𝛽) = TAB − TB h7𝜎
2
𝛼

+ h8𝜎
2
𝛾
+ (s − B)𝜎2

e

R(𝛾|𝜇, 𝛼, 𝛽) = R(𝜇, 𝛼, 𝛽, 𝛾) − R(𝜇, 𝛼, 𝛽) = TAB − R(𝜇, 𝛼, 𝛽) h6𝜎
2
𝛾
+ s∗𝜎2

e

SSE =
∑

y2 − R(𝜇, 𝛼, 𝛽, 𝛾) = T0 − TAB (N − s)𝜎2
e .

aThe T’s are defined in (19) and R(𝜇, 𝛼, 𝛽) is defined in (63) of Section 2d(i) of Chapter 7.
bThe h’s come from (79) and are given in Section 4e of Chapter 11.
s∗ = s − a − b + 1.

c. Too Many Equations

Table 10.1 contains no term R(𝜇, 𝛽) = TB. This is because the table is based on the
reductions in the sum of squares shown in (80). These in turn come from the first
part of Table 7.8. This deals, in the fixed-effect model, with the fitting of 𝛼 before 𝛽.
In this context, R(𝜇, 𝛽) does not arise. On the other hand, R(𝜇, 𝛽) = R(𝜇) + R(𝛽|𝜇),
comes from the second part of Table 7.8, concerned with fitting 𝛽 before 𝛼. However,
observe that there is nothing sacrosanct about either part of the table as far as
estimation of variance components in the model is concerned. In (80), we used the
first part. However, we could have just as well-used the second. Rearrangement of the
reductions in sums of squares therein, in the manner of Table 10.1, yields Table 10.2.
Table 10.2 is exactly the same as Table 10.1 except for the second entry that involves
R(𝜇, 𝛽) instead of R(𝜇, 𝛼).

Equating the reductions to their expected values yields the following estimators
of the variance components:

�̂�2
e = SSE

(N − s)

�̂�2
𝛾
=
[
R(𝛾|𝜇, 𝛼, 𝛽) − (s − a − b + 1)�̂�2

e

]

h6

�̂�2
𝛼
=

[
R(𝛼, 𝛾|𝜇, 𝛽) − h8�̂�

2
𝛾
− (s − b)�̂�2

e

]

h7
(85)

and

�̂�2
𝛽
=

[
R(𝛼, 𝛽, 𝛾|𝜇) − h1�̂�

2
𝛽
− h3�̂�

2
𝛾
− (s − 1)�̂�2

e

]

h2
.

The estimators �̂�2
e and �̂�2

𝛾
in (85) are the same as those in (83) but �̂�2

𝛼
and are not.
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The question immediately arises as to which estimators should be used, (83) or
(85)? Unfortunately, there is no satisfactory answer to this question. Indeed, there
is almost no answer at all. In the fixed-effects model, there is often good reason for
choosing between fitting 𝛽 after 𝛼 or 𝛼 after 𝛽. However, for the random-effects model,
there appears to be no criteria for making this choice when using the reductions in
the sums of squares to estimate variance components. It means, in effect, that we can
have, in the fitting constants method, more equations than variance components. For
example, Tables 10.1 and 10.2 provide between them five equations in four variance
components.

An unsolved difficulty with the fitting constants method of estimation is that it
can yield more equations than there are components to be estimated. Moreover, it
provides no guidance as to which equations should be used. The difficulty can assume
some magnitude in multi-classification models. For example, there are six sets in a
three-way classification model (see Table 8.2). Not only can each of these sets be
used on their own. Combinations of terms from them can also be used. For example,
in Tables 10.1 and 10.2, the last two lines are the same. These two lines and the
second line of each table could be used to provide estimators. This is the principle of
procedures considered by Harville (1967) and Low (1964).

A criterion that could have some appeal for deciding on which reductions to
use is that they should add up to the total sum of squares corrected for the mean,
SSTm =

∑
y2 − T𝜇. Although the reductions listed in Tables 10.1 and 10.2 do not

meet this requirement explicitly, they are linear combinations of reductions that do
so and therefore provide the same estimators. For example, the terms in Table 10.1
are linear combinations of those in (80) which do add up to SSTm. One feature of this
criterion is that the resulting estimators come from reductions that account for the
total observed variability in the y’s, and they are reductions with known properties
in fixed-effects models. This criterion would confine us to using sets of reductions
like those in Tables 10.1 and 10.2 and would preclude using combinations of terms
from these tables. On the other hand, using combinations is attractive, because, for
example, Table 10.1 excludes R(𝜇, 𝛽) and Table 10.2 excludes R(𝜇, 𝛼). Intuitively,
one might feel these terms should not be omitted.

Knowing, as we do, certain properties in the analysis of variance with balanced
data suggests that whatever reductions are used for estimating variance components
from unbalanced data, they should be such as to reduce the resulting estimators to
the analysis of variance estimators when the data are balanced, that is, when the nij’s
are equal. For example, (80) reduces to Table 7.9 when nij = n for all i and j.

One possible way of overcoming the situation of having more equations than
variance components is to apply “least squares” as suggested by Robson (1957).
Arraying all calculated reductions as a vector r let us suppose that E(r) = A𝜎2.
Then, r = A�̂�2 are the equations we would like to solve for �̂�2. However, when there
are more equations than variance components these equations will usually not be
consistent.2 Nevertheless, provided the reductions in r are linearly independent and
A has full-column rank, we could estimate �̂�2 by “least squares” as �̂�2 = (A′A)−1A′r.

2 S. R. Searle thanks D. A. Harville for bringing this to his attention.
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d. Mixed Models

The fitting constants method of estimation applies equally as well to mixed models
as to random models. Indeed, for mixed models, it provides unbiased estimators.
The analysis of variance method does not. As has already been explained, this arises
from (79). Based on that result, we use only those reductions that have no fixed
effects in their expected values. For example, in the two-way classification model
with 𝛼’s as fixed effects, we would use the last three lines of Table 10.1. By (79), they
will have no fixed effects in their expectations. Furthermore, they provide unbiased
estimators of 𝜎2

e , 𝜎2
𝛾
, and 𝜎2

𝛽
. The one entry in Table 10.2 that differs from Table 10.1

is R(𝛼, 𝛾 ,𝜇, 𝛽). It has, by (79), an expected value that is not free of the fixed 𝛼-effects
and so cannot be used. Therefore, the basis of estimation in the two-way classification
model having 𝛼’s as fixed effects is the last three lines of Table 10.1.

The principles we include here are quite straightforward and extend readily to
multi-classification mixed models.

We can mention here variations on Henderson’s method 2 of adjusting for bias
in mixed models. As shown in equation (73), Henderson’s method 2 temporarily
assumes the random effects are fixed in order to solve the normal equations for the
fixed effects.

An alternative is to temporarily ignore the random effects, and solve normal
equations for fixed effects as b̃f = (X′

f Xf )−X′
f y. Using (68) as the model for y, we

then adjust the data to be

z = y − Xf b̃f = [I − Xf (X′
f Xf )−X′

f ]y = [I − Xf (X′
f Xf )−X′

f ](Xrbr + e).

Two possibilities are available with z: the analysis of variance method and the fitting
constants method. Zelen (1968) suggested that the fitting constants method for z is
equivalent to the use of the fitting constants method directly on y. Searle (1969)
demonstrates the details of this.

e. Sampling Variances of Estimators

Each R(⋅) reduction used in the fitting constants method can be expressed in the
form y′X(X′X)−X′y for some matrix X. Therefore, on the basis of the normality
assumptions for both the error terms and the random effects, we can derive the
sampling variance of each reduction using Theorem 5 of Chapter 2. In a similar
manner, we can derive covariances between reductions. We have that when y ∼
N(𝜇, V),

cov(y′Py, y′Qy) = 2tr(PVQV) + 4𝜇′PVQ𝜇.

In this way, we can develop sampling variances of variance components, since the
estimators are linear combinations of these reductions. The details are somewhat
lengthy, involving extensive matrix manipulations. Rohde and Tallis (1969) give
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general results applicable to both variance and covariance. Low (1964) and Harville
(1969c) discuss specific cases.

Al Sarraj and von Rosen (2008) using ideas of Kelly and Mathew (1994) present
a method of perturbing the variance component estimators obtained by Henderson’s
method 3 so that they have smaller mean square error.

5. ANALYSIS OF MEANS METHODS

Data in which every subclass of the model contains observations can, in fixed-effects
models, be analyzed in terms of the means of the sub-most subclasses. Two such
analyses are discussed in Section 3c of Chapter 8. We can use the mean squares of
these analyses for estimating variance components in random and mixed models.
Table 10.3 shows expected values of these mean squares for the random model. We

TABLE 10.3 Expected Values of Mean Squares in
Two Analyses of Means of The Two-Way Classification
Interaction Random Model Having All Nij > 0

a. Unweighted Means Analysis (Table 8.12)a

E(MSAw) = b𝜎2
𝛼

+ 𝜎2
𝛾
+ nh𝜎

2
e

E(MSBw) = a𝜎2
𝛽
+ 𝜎2

𝛾
+ nh𝜎

2
e

E(MSABw) = 𝜎2
𝛾
+ nh𝜎

2
e

E(MSE) = 𝜎2
e

b. Weighted Means Analysis (Table 8.18)b

E(MSAw) = 1
(a − 1)b

⎛
⎜
⎜
⎜
⎜
⎜
⎝

a∑

i=1

wi −

a∑

i=1

w2
i

a∑

i=1

wi

⎞
⎟
⎟
⎟
⎟
⎟
⎠

(
b𝜎2

𝛼
+ 𝜎2

𝛾

)
+ 𝜎2

e

E(MSAw) = 1
a(b − 1)

⎛
⎜
⎜
⎜
⎜
⎜
⎝

b∑

j=1

vj −

b∑

j=1

v2
j

b∑

j=1

vj

⎞
⎟
⎟
⎟
⎟
⎟
⎠

(
a𝜎2

𝛽
+ 𝜎2

𝛾

)
+ 𝜎2

e

E(MSAB) = 𝜎2
𝛾
+ nh𝜎

2
e

E(MSE) = 𝜎2
e

a nh =

a∑

i=1

b∑

j=1

n−1
ij

ab
.

b wi =
b2

b∑

j=1

n−1
ij

; vj =
a2

a∑

i=1

n−1
ij

.
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obtain estimators of the variance components in the usual manner of equating the
mean squares to their expected values. The estimators are unbiased. Even though
they are quadratic forms we can, under normality assumptions, obtain their variances
using Theorem 4 of Chapter 2. We could also derive the variances by the method
of “synthesis” described in Section 2d(iii). For mixed models, we shall only use the
mean squares whose expectations contain no fixed effects to estimate the variance
components. For example, if the 𝛼’s are fixed effects in the two-way classification
we will not use MSAu or MSAw of Table 10.3.

Extensions of Table 10.3 to multi-way classifications depends on the extension of
Tables 8.12 and 8.18. This is particularly straightforward for the unweighted means
analysis of Table 8.12. However, the need for having data in every subclass of the
model still remains. Analysis of means cannot be made otherwise.

6. SYMMETRIC SUMS METHODS

Koch (1967a, 1968) suggests a method of estimating variance components based on
symmetric sums of the observations, rather than the sum of squares. The method uses
the fact that expected values of products of observations are linear combinations of
the variance components. Therefore, sums of these products (and hence means of
them) provide unbiased estimators of the components. We illustrate them in terms
of the one-way classification.

Consider the random model for the one-way classification yij = 𝜇 + 𝛼i + eij, where
E(𝛼i) = E(eij) = 0, E(𝛼2

i ) = 𝜎2
𝛼
, and E(e2

ij) = 𝜎2
e for all i and j, and all covariances are

zero. Then, expected values of products of observations are as follows:

E(yijyi′j′) = 𝜇2 + 𝜎2
𝛼
+ 𝜎2

e when i = i′ and j = j′;

= 𝜇2 + 𝜎2
𝛼

when i = i′ and j ≠ j′;

= 𝜇2 when i ≠ i′.

(86)

We derive the estimators from the means of the different products in (86). We have
that

�̂�2 + �̂�2
𝛼
+ �̂�2

e =

a∑

i=1

ni∑

j=1

y2
ij

N
, (87)

�̂�2 + �̂�2
𝛼
=

a∑

i=1

ni∑

j=1

n′i∑

j′≠j

yijyij′

a∑

i=1

ni(ni − 1)

=

(
a∑

i=1

y2
i. −

a∑

i=1

ni∑

j=1

y2
ij

)

(S2 − N)
(88)
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where S2 =
a∑

i=1
n2

i , and

�̂�2 =

a∑

i=1

a∑

i′≠i

ni∑

j=1

ni′∑

j′=1

yijyi′j′

a∑

i=1

a∑

i′≠i

nini′

=

(

y2
..
−

a∑

i=1

y2
i.

)

(N2 − S2)
. (89)

We can obtain the estimators �̂�2
e and �̂�2

𝛼
from these expressions.

These estimators are unbiased and consistent. Furthermore, they are identical to
the analysis of variance estimators in the case of balanced data. However, as noted
by Koch (1968), the variances of these estimators are functions of 𝜇. We can see
evidence of this in �̂�2

e . Use (87) and (88) to write

�̂�2
e = y′

(

k1IN − k2

a∑

i=1

+Jni

)

y, (90)

where

k1 = S2∕N(S2 − N) and k2 = 1∕(S2 − N). (91)

When deriving the variance of (90) from Theorem 4 of Chapter 2, we will find the
term in 𝜇2 is

4𝜇21′
(

k1IN − k2

a∑

i=1

+Jni

)(

𝜎2
e IN +

a∑

i=1

+Jni

)(

k1IN − k2

a∑

i=1

+Jni

)

1

= 4𝜇2
a∑

i=1

(
𝜎2

e + ni𝜎
2
𝛼

)
(k1 − nik2)2.

The above expression is non-zero for unequal ni. It is zero when the ni are equal.
Hence, for unbalanced data, the variance of �̂�2

e derived from (87) and (88) is a function
of 𝜇. We could also show this for �̂�2

𝛼
. This is clearly unsatisfactory.

Koch (1968) shows how to overcome this difficulty. He suggests that, instead of
using symmetric sums of products, one should use symmetric sums of differences.
Thus in the one-way classification,

E(yij − yi′j′)
2 = 2𝜎2

e when i = i′ and j ≠ j′;
= 2
(
𝜎2

e + 𝜎2
𝛼

)
when i ≠ i′.
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Therefore, we derive estimators from

2�̂�2
e =

a∑

i=1

ni∑

j=1

ni∑

j′≠j

(yij − yij′ )
2

a∑

i=1
ni(ni − 1)

(92)

and

2(�̂�2
e + �̂�2

𝛼
) =

a∑

i=1

a∑

i′≠i

ni∑

j=1

ni′∑

j′=1

(yij − yi′j′)
2

a∑

i=1

a∑

i′≠i

nini′

.

The resulting estimators have variances free of 𝜇 because (92) contains no terms in 𝜇.
The estimators are unbiased and for balanced data, reduce to the analysis of variance
estimators.

Koch (1967b) gives a procedure for obtaining an unbiased estimator of 𝜇 from
an unbiased estimator of 𝜇2. It is a by-product of (89). Suppose that our estimator
of 𝜇2 is �̂�2 = q(y), a quadratic function of y. This, for example, is the case for the
expression in (89). Then, because q(y) is unbiased for 𝜇2, we have that

E(�̂�2) = E(q(y)) = 𝜇2.

From this, we can show for scalars 𝜃 and g,

E[q(y + 𝜃1)] = q(y) + 2g𝜃 + 𝜃2 = �̂�2 + 2g𝜃 + 𝜃2.

Minimizing this with respect to 𝜃 gives 𝜃 = −g. The minimum value is �̂�2 − g2. This
suggests taking �̂� = g, that is, taking the estimator of 𝜇 as half the coefficient of 𝜃 in
q(y + 𝜃1), where �̂�2 = q(y) is derived when estimating variance components. We see
that this gives the unbiased estimator

�̂� = g =
[q(y + 𝜃1) − q(y) − 𝜃2]

2𝜃
.

Observe that

E(�̂�) = [(𝜇 + 𝜃)2 − 𝜇2 − 𝜃2]
2𝜃

= 𝜇.
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For example, we have in (89) an estimator of 𝜇2 which is

q(y) =

(

y2
..
−

a∑

i=1

y2
i.

)

(N2 − S2)
.

Thus,

q(y + 𝜃1) =

[

(y.. + N𝜃)2 −
a∑

i=1

(yi. + ni𝜃)2

]

N2 − S2
,

from which the estimator of 𝜇, taken as half the coefficient of 𝜃, is

�̂� =

(

Ny.. −
a∑

i=1

niyi.

)

(N2 − S2)
.

Of course, this estimator reduces to ȳ.. for balanced data.

7. INFINITELY MANY QUADRATICS

If the reader has gained an impression from the preceding sections that there are
many quadratic forms of the observations that can be used for estimating variance
components, then he has judged the situation correctly. There are infinitely many
quadratic forms that can be used in the manner of the analysis of variance method.
This consists of equating observed values of quadratic forms to their expected values
and solving the resulting equations to get estimators of the variance components. As
we have seen, this procedure is widely used but it has a serious deficiency. It gives
no criteria for selecting the quadratic forms to be used. The only known property that
the method gives to the resulting estimators is that they are universally unbiased for
random models and, with the fitting constants method, unbiased for mixed models.

Even the property of unbiasedness is of questionable value. As a property of esti-
mators, it has been borrowed from fixed-effects estimation. However, in the context
of variance component estimation, it may not be appropriate. In estimating fixed
effects, the basis of desiring unbiasedness is the concept of repetition of data and
associated estimates. This basis is often not valid with unbalanced data from random
models. It might perhaps be valid for repeated data. However, it might not necessarily
be valid with the same pattern of unbalancedness or with the same set of (random)
effects in the data. Therefore, replications of data are not just replications of any
existing data structure. Mean unbiasedness may no longer be pertinent. One might
consider replacing it with some other criterion. One possibility is modal unbiasedness
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suggested by Searle (1968). However, Harville (1969b) doubts if modally unbiased
estimators exist, and questions the justification of such a criterion on decision theo-
retic grounds. Nevertheless, as Kempthorne (1968) points out, mean unbiasedness in
estimating fixed effects “… leads to residuals which do not have systematic effects
and is therefore valuable… and is fertile mathematically in that it reduces the class of
candidate statistics (or estimates).” However, “… in the variance component problem
it does not lead to a fertile smaller class of estimates.”

Lehmann and Casella (1998) give a general formulation of the concept of unbi-
asedness. Perhaps some special kind of unbiasedness other than mean or modal unbi-
asedness might prove useful. This needs further investigation. In recent years, there
has been much work done on shrinkage estimators for means and variances. Perhaps
one ought to consider these more in the context of estimating variance components. A
recent source containing information on shrinkage estimators for covariance matrices
is Pourahmadi (2013).

All of the estimation methods that have been discussed reduce to the analysis of
variance method when the data are balanced. This and unbiasedness are the only
known properties of the methods. Otherwise, the quadratic forms involved in each
method have been selected solely because they seemed “reasonable” in one way or
another. However, “reasonableness” of the quadratic forms in each case provides
little or no comparison of any properties of the estimators that result from the differ-
ent methods. Probably the simplest idea would be to compare sampling variances.
Unfortunately, this comparison becomes bogged down in algebraic complexity. The
variances are generally not tractable unless we assume normality. Furthermore, just
as with balanced data, the variances themselves are functions of the variance com-
ponents. The complexity of the variance components is evident in (63). Aside from
v(�̂�2

e ) = 2𝜎4
e∕(N − s), (63) is the simplest example of a variance component estimator

obtained from unbalanced data. Suppose we rewrite (63) as

v(�̂�2
𝛼
) = 2N

N −
∑

n2
i

⎧
⎪
⎪
⎨
⎪
⎪
⎩

N(N − 1)(a − 1)𝜎4
e

N2 −
∑

n2
i

+ 2𝜎2
e𝜎

2
𝛼

+

[

N2
∑

n2
i +
(∑

n2
i

)2
− 2N

∑
n3

i

]

𝜎4
𝛼

N
(

N2 −
∑

n2
i

)

⎫
⎪
⎪
⎬
⎪
⎪
⎭

. (93)

The study of the variance in (93) as a function of N, the total number of observations,
of a, the number of classes ni, the number of observations in the ith class for i =
1, 2,… , a, and of 𝜎2

𝛼
and 𝜎2

e is not a small task. It would also be very difficult to
compare (93) with an equally as complex a function that represents the variance of
another estimator.
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TABLE 10.4 Values of nij in Some 6 × 6 Designs Used by Bush and Anderson (1963)

Design Number

S22 C18 124
2 1 0 0 0 0
1 2 1 0 0 0
0 1 2 1 0 0
0 0 1 2 1 0
0 0 0 1 2 1
0 0 0 0 1 2

1 1 1 0 0 0
1 1 1 0 0 0
0 1 1 1 0 0
0 0 1 1 1 0
0 0 0 1 1 1
0 0 0 1 1 1

1 1 0 0 0 0
1 1 0 0 0 0
2 1 0 0 0 0
1 2 0 0 0 0
1 1 2 1 1 1
1 1 2 1 1 1

This is the simplest example of unbalanced data. The above discussion illustrates
how analytic comparisons of the variances of different estimators presents great
difficulties.

Due to the analytical difficulties just described, comparisons in the literature
have largely been in terms of numerical studies. These though, are not without
their difficulties also, and results can be costly to obtain. Kussmaul and Anderson
(1967) have studied a special case of the two-way nested classification that makes
it a particular form of the one-way classification. A study of the two-way nested
classification by Anderson and Crump (1967) suggests that for very unbalanced data,
the unweighted means estimator appears to have larger variance than does the analysis
of variance estimator for small values of 𝜌 = 𝜎2

𝛼
∕𝜎2

e , but that it has smaller variance
for large 𝜌. Bush and Anderson (1963) studied the two-way classification interaction
model in terms of several cases of what can be called planned unbiasedness. For
example, in the case of six rows and six columns, three of the designs used are
those shown in Table 10.4. Designs such as these were used to compare the analysis
of variance, the fitting constants and the weighted means method of estimation.
Comparisons were made, by way of variances of the estimators, both of different
designs as well as different estimation procedures, over a range of values of the
underlying variance components. For the designs used, the general trend of the
results is that, for values of the error variance much larger than the other components,
the analysis of variance method estimators have smallest variance. Otherwise, the
fitting constants method estimators have the smallest variance.

Even with present-day computing facilities, making comparisons such as those
made by Bush and Anderson (1963) is no small task. Nevertheless, as samples of
unbalanced data, generally, the examples they used (their designs) are of somewhat
limited extent. This, of course, is the difficulty with numerical comparisons. For-
mulating planning sets of nij-values that will provide comparisons about unbalanced
data in general is quite troublesome to say the least. Even in the simplest case, the
one-way classification, there are infinitely many sets of ni values available for (93)
for studying the behavior of v(�̂�2

𝛼
). In addition, there are varying values of a and of

𝜎2
𝛼

and 𝜎2
e that one has to take into consideration. There is considerable difficulty

in planning a series of these values that in any sense “covers the field.” This diffi-
culty is simply multiplied when one comes to consider higher order classifications,
such as those handled by Bush and Anderson (1963). Therefore, neither analytic nor
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numerical comparisons of estimators are easily resolved. One thing that can be done
is to go back to the grounds on which “reasonableness” was judged appropriate in
establishing the methods. Searle (1971b) summarizes the situation. “The analysis of
variance method commends itself because it is the obvious analogue of the analysis
of variance of balanced data and is easy to use; some of its terms are not sums of
squares, and it gives biased estimators in mixed models.” The generalized form of
Henderson’s method 2 makes up for this deficiency, but it is not uniquely defined
and his specific definition cannot be used when there are interactions between fixed
and random effects. The fitting constants method uses sums of squares that have non-
central 𝜒2-distributions in the fixed-effects models, and it gives unbiased estimators
in the mixed model; but it can involve more quadratics that there are components
to be estimated; and it can also involve extensive computing” (inverting matrices of
order equal to the number of random effects in the model). For data in which all
subclasses are filled the analysis of means, methods have the advantage of being
easier to compute than the fitting constants method. The unweighted means analysis
is especially easy. For balanced data, all of them reduce to the analysis of variance
method. Moreover, all of them can yield negative estimates for the variance compo-
nents. Little more can be said by way of comparing the methods. The problem awaits
thorough investigation.

8. MAXIMUM LIKELIHOOD FOR MIXED MODELS

We have already mentioned (see Section 2 of Chapter 9) that all models could, in
fact, be called mixed models. Every model usually has both a general mean 𝜇, which
is a fixed effect and error terms e which are random. Thus, although by its title this
section might be devoted to only one class of models it does in fact apply to all linear
models.

The fitting constants method of estimating variance components gives unbiased
estimators of the components even for mixed models. However, it is only a method
for estimating variance components of the model and gives no guidance on the
problem of estimating the fixed effects. If the variance components of the model are
known, of course, there would be no problem in estimating the estimable functions
of the fixed effects from a solution to the normal equations X′V−1Xb◦ = X′V−1y
of the generalized least-square procedure. In these equations, V is the variance–
covariance matrix of y. The elements of V are functions of the (assumed known)
variance components. However, when these variance components are unknown, as is
usually the case, we want to be able to estimate both the fixed effects and the variance
components of the model simultaneously.

At least two courses of action are available. They include the following:

(i) Use the fitting constants method to estimate the variance components. Then,
use the resulting estimates in place of the true components in V in the gener-
alized least-square equations for the fixed effects.

(ii) Estimate the fixed effects and the variance components simultaneously with
a unified procedure such as maximum likelihood.
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In both cases, recourse usually has to be made to an iterative procedure with its
possibly extensive computing requirements. However, some progress has been made
analytically. We shall indicate the results of some of this progress.

a. Estimating Fixed Effects

We write the model,

y = Xb + Zu + e. (94)

The fixed effects are contained in the vector b. The vector u contains the random
effects. The corresponding incidence matrices are X and Z. The vector e contains
the random error terms. In the usual way, we assume that the error terms have zero
means, are uncorrelated and in this case have known variance–covariance matrices

var(u) = E(uu′) = D and var(e) = E(ee′) = R. (95)

From (94), it follows that

V = var(y) = ZDZ′ + R. (96)

We also assume that V is non-singular. The normal equations stemming from gener-
alized least squares are

X′V−1Xb◦ = X′V−1y (97)

with solution

b◦ = (X′V−1X)−1X′V−1y. (98)

If V is singular, we replace V−1 in (97) and (98) by V− as in (143a) and (143b) of
Chapter 5. Under normality assumptions for the u’s and the e’s, (98) also represents
the maximum likelihood solution.

Calculating (98) involves V−1. The order of this matrix is equal to the number of
observations. For large data sets this can be very large, perhaps many thousands. After
we have obtained V−1, we also need a generalized inverse (X′V−1X)−. Obtaining this
generalized inverse will be a lesser task because its order is the number of levels of
the fixed effects. Therefore, the difficulty with (97) or (98) is that of calculating V−1.
In the fixed effects case, V usually has the form 𝜎2

e IN . With a little more generality,
it may be diagonal. In either case, inversion of V is simple. However, in general
V = ZDZ′ + R of (96) is not diagonal even if D and R are. Thus it is not always easy
to calculate V−1. However, Henderson et al. (1959) give an alternative derivation of
b◦ by establishing a set of equations that do not involve V−1. We now show how he
does this.
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Suppose that in (94), the effects represented by a vector u were in fact fixed and
not random. Then, because var(e) = R, the normal equations for the now completely
fixed-effects model would be

[
X′

Z′

]

R−1 [X Z
]
[

b̃
ũ

]

=
[

X′

Z′

]

R−1y

or, equivalently,

[
X′R−1X X′R−1Z
Z′R−1X Z′R−1Z

] [
b̃
ũ

]

=
[

X′R−1y
Z′R−1y

]

. (99)

We use the notation b̃ in contrast to b◦ to distinguish a solution to (99) from one of
(97).

Suppose that we amend (99) by adding D−1 to the lower right-hand sub-matrix
Z′R−1Z of the matrix on the left. This gives

[
X′R−1X X′R−1Z
Z′R−1X Z′R−1Z + D−1

] [
b∗

u∗

]

=
[

X′R−1y
Z′R−1y

]

. (100)

We use the asterisk notation to distinguish solutions of (100). We can show that the
solutions b∗ to (100) are identical to the solutions b◦ of (97). In this way, (100)
provides a means of deriving b◦ without having to invert V. We only have to invert
D and R. These matrices are usually diagonal. We then have to solve (100) which
has as many equations as there are fixed and random effects in the model. Usually,
this is considerably fewer than the number of observations, so (100) is easier to solve
than (97).

We now demonstrate the equivalence of b∗ of (100) to b◦ of (98). From (100),
observing that for the second rows of the matrices

(Z′R−1X)b∗ + (Z′R−1Z + D−1)u∗ = Z′R−1y

and solving for u∗, we get

u∗ = (Z′R−1Z + D−1)−1(Z′R−1y − Z′R−1Xb∗).

Substituting u∗ into the system of equations in the first row of the matrices, we get

(X′R−1X)b∗ + (X′R−1Z)(Z′R−1Z + D−1)−1(Z′R−1y − Z′R−1Xb∗) = X′R−1y.

Thus, putting terms involving b∗ on the left-hand side of the equation and terms
involving y on the right-hand side, we have,

X′[R−1 − R−1Z(Z′R−1Z + D−1)−1Z′R−1]Xb∗

= X′[R−1 − R−1Z(Z′R−1Z + D−1)−1Z′R−1]y. (101a)
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Substituting

W = R−1 − R−1Z(Z′R−1Z + D−1)−1Z′R−1

into (101a) yields

X′WXb∗ = X′Wy. (101b)

However,

WV = [R−1 − R−1Z(Z′R−1Z + D−1)−1Z′R−1](ZDZ′ + R)

= R−1ZDZ′ + I − R−1Z(Z′R−1Z + D−1)−1(Z′R−1ZDZ′ + Z′)

= R−1ZDZ′ + I − R−1Z(Z′R−1Z + D−1)−1(Z′R−1Z + D−1)DZ′

= I.

Thus, W = V−1. Therefore, equations (101) and (97) are the same. As a result the
solution b∗ to (101b), which in part is a solution to (100), is the solution to (97) given
in (98). Therefore, equation (100), with its computational advantages over (97) can
be used to derive a solution to (97).

Equations (100) are the normal equations of the model assuming that all effects
are fixed. They are equations (99) modified by adding the inverse of the variance–
covariance matrix of the random effects u to the sub-matrix that is the coefficient of
ũ in the “ũ-equations”–, that is, by adding D−1 to Z′R−1Z, as in (100). In certain
special cases, this is particularly simple. For example, when R = var(e) = 𝜎2

e IN , as
is so often, assumed equations (99) are

[
X′X X′Z
Z′X Z′Z

] [
b̃
ũ

]

=
[

X′y
Z′y

]

(102)

and equations (100) are

[
X′X X′Z
Z′X Z′Z + 𝜎2

e D−1

] [
b∗

u∗

]

=
[

X′y
Z′y

]

. (103)

Furthermore, D is often diagonal of the form

D = diag
{
𝜎2
𝜃
IN𝜃

}
for 𝜃 = A, B,… , K,

where A, B,… , K are the random factors, the factor 𝜃 having N𝜃 levels and variance
𝜎2
𝜃
.
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In this case, 𝜎2
𝜃
D−1 requires just adding 𝜎2

e∕𝜎
2
𝜃

to appropriate diagonal elements
of Z′Z. In particular, if there is only one random factor, (103) becomes

⎡
⎢
⎢
⎢
⎣

X′X X′Z

Z′X Z′Z +

(
𝜎2

e

𝜎2
𝜃

)

I

⎤
⎥
⎥
⎥
⎦

[
b∗

u∗

]

=
[

X′y
Z′y

]

. (104)

Of course, this formulation of the maximum likelihood solution b◦ = b∗ applies
only when the variance components are known. However, in most applications just
their values relative to 𝜎2

e need be known. The result in (104) illustrates this. However,
together with the fitting constants method of estimating variance components free of
the fixed effects, (100) and its simplified forms provide a framework for estimating
both the fixed effects and the variance components of a mixed model.

Equations (100) arise from the joint density of y and u. Assuming that e ∼ N(0, R)
and u ∼ N(0, D), this joint density is

f (y, u) = g(y|u)h(u)

= C exp
[

− 1
2
(y − Xb − Zu)′R−1(y − Xb − Zu)

]

exp
[

− 1
2
u′Du

]

,

where C is a constant. Maximizing with respect to b and u leads at once to (100).
The solution for b∗ in (100) is of interest because b is a vector of fixed effects

in the model (94). However, even though u is a vector of random variables, the
solution for u∗ in (100) is, in many situations, also of interest. It is an estimator of
the conditional mean of u given y. We now show this. First, from (94) and (95), we
have cov(u, y′) = DZ′. Then, on assuming normality,

E(u|y) = E(u) + cov(u, y′)[var(y)]−1[y − E(y)] = DZ′V−1(y − Xb).

Hence, from (100),

u∗ = (Z′R−1Z + D−1)−1Z′R−1(y − Xb∗)

= (Z′R−1Z + D−1)−1Z′R−1VV−1(y − Xb∗)

= (Z′R−1Z + D−1)−1Z′R−1(ZDZ′ + R)V−1(y − Xb∗)

= (Z′R−1Z + D−1)−1(Z′R−1Z + D−1)DZ′V−1(y − Xb∗)

= DZ′V−1(y − Xb∗). (105)

This last expression in the above equation is exactly E(u|y) with b replaced by b∗,
which we know is the maximum likelihood estimator of b. Hence, for a given set of
observations y, u∗ = E(u|̂y) is the maximum likelihood estimator of the mean of u.

Henderson et al. (1959) mentions with further discussion in Henderson (1963)
that u∗ = E(u|̂y) is the “estimated genetic merit” as used by animal breeders. In their



610 METHODS OF ESTIMATING VARIANCE COMPONENTS FROM UNBALANCED DATA

case, u is a vector of genetic merit values of a series of animals from which y is the
vector of production records. The problem is to use y to get estimated values of u in
order to determine which animals are best in some sense. For example, if the animals
were cows, y might represent how many gallons of milk they produce in a week.

The estimators b∗ and u∗ derived above are often referred to in the literature as
the best linear unbiased predictor (BLUP). The original presentation of this estimator
is due to Henderson. Another derivation of this estimator using the linear Bayes
estimator (see Section 3 of Chapter 3), also available in Gruber (2010) modeled after
that of Bulmer (1980), will now be given. Two other useful references are Henderson
(1975) and Robinson (1991).

Consider the linear model where the vector b contains the fixed effects and u is a
random vector.

y = Xb + Zu + e (106)

Assume that

E(u) = 0 and D(u) = D.

Also, assume that

E(e) = 0 and D(e) = R.

Let v = Y − Xb. Then, for the model

v = Zu + e,

the linear Bayes estimator of u takes the form

ũ = DZ′(ZDZ′ + R)−1v (107)

Rewrite the model in (106) as

y = Xb + 𝜂, (108)

where 𝜂 = Zu + e. It follows that
E(𝜂) = 0 and D(𝜂) = XDX′ + R = W. Then, the weighted least-square estimator

for b is

b∗ = (X′W−1X)−1X′W−1y (109)

Substitution of (109) into (107) yields

u∗ = DZ′(ZDZ′ + R)−1(y − Xb∗). (110)

This is equation (105) with V = ZDZ′ + R. Thus, (110) is the BLUP.
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b. Fixed Effects and Variance Components

We cannot solve maximum likelihood equations for estimating variance components
for unbalanced data explicitly. The equations for the simplest case illustrate this.
Consider the one-way classification as described in Section 6. With

V = var(y) = 𝜎2
e IN + 𝜎2

𝜎

a∑

i=1

+Jni
,

as used there,

|V| = 𝜎2(N−a)
e

a∏

i=1

(
𝜎2

e + ni𝜎
2
𝛼

)
,

and

V−1 =

(

1
𝜎2

e

)

IN +
a∑

i=1

+ 1
ni

(

1
𝜎2

e + ni𝜎
2
𝛼

)

Jni
.

On the basis of normality, the likelihood function is

L = (2𝜋)−
1
2

N
|V|−

1
2 exp

{

− 1
2
(y − 𝜇1)′(y − 𝜇1)

}

,

and after substituting for |V| and V−1, the logarithm of this reduces to

logL = 1
2
Nlog(2𝜋) − 1

2
(N − a)log𝜎2

e − 1
2

a∑

i=1

log
(
𝜎2

e + ni𝜎
2
𝛼

)

− 1
2

(

1
𝜎2

e

)
a∑

i=1

ni∑

j=1

(yij − ȳi.)
2 − 1

2

a∑

i=1

ni(ȳi. − 𝜇)2

𝜎2
e + ni𝜎

2
𝛼

.

Equating to zero, the differentials of logL with respect to 𝜇, 𝜎2
e and 𝜎2

𝛼
, gives, formally,

the equations whose solutions (to be denoted by �̃�, �̃�2
e and �̃�2

𝛼
) are the maximum

likelihood estimators. These equations are as follows:

�̃� =

a∑

i=1

niȳi.

�̃�2
e + ni�̃�

2
𝛼

a∑

i=1

ni

�̃�2
e + ni�̃�

2
𝛼

,

N − a
�̃�2

e

+
a∑

i=1

1
�̃�2

e + ni�̃�
2
𝛼

−

a∑

i=1

ni∑

j=1

(yij − ȳi.)
2

�̃�4
e

−
a∑

i=1

ni(ȳi. − �̃�)2

(
�̃�2

e + ni�̃�
2
𝛼

)2
= 0,
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and

a∑

i=1

ni

�̃�2
e + ni�̃�

2
𝛼

−
a∑

i=1

n2
i (ȳ2

i. − �̃�)2

(
�̃�2

e + ni�̃�
2
𝛼

)2
= 0.

These equations have no explicit solution for �̃�, �̃�2
e , and �̃�2

𝛼
. Of course, they reduce

to the simpler equations of balanced data given in (77) of Section 9g of Chapter 9,
when ni = n for all i.

Even if we could find solutions in the unbalanced data case, we still must consider
the problem of using these solutions to derive a non-negative estimator of 𝜎2

𝛼
. We had

the same consideration for the balanced case at the end of Section 9g of Chapter 9.
Therefore, explicit maximum likelihood estimators must be despaired of. However,

Hartley and J. N. K. Rao (1967) have developed a general set of equations from which
specific estimates are obtained by iteration involving extensive computations. We give
their equations and mention how they indicate a solution may be found. To do so, we
rewrite the model (94) using

Zu =
K∑

𝜃=A

Z𝜃u𝜃 ,

where u𝜃 is the vector of random effects of the 𝜃-factor. Then, defining 𝛾𝜃 as 𝛾𝜃 =
𝜎2
𝜃
∕𝜎2

e for 𝜃 = A, B,… , K, and H as

H = IN +
K∑

𝜃=A

𝛾𝜃Z𝜃Z′
𝜃
, (111)

V of (96) is V = 𝜎2
e H. On assuming normality, the logarithm of the likelihood is

logL = 1
2
Nlog(2𝜋) − 1

2
Nlog𝜎2

e −
(y − Xb)′H̃−1(y − Xb)

2𝜎2
e

.

Equating the differentials of logL with respect to 𝜎2
e , the 𝛾𝜃 and the elements of b to

zero gives the following equations:

X′H̃−1Xb = X′H̃−1y, (112)

𝜎2
e =

(y − Xb̃)′H̃−1(y − Xb̃)

N
, (113)

and

tr(H̃−1Z𝜃Z′
𝜃
) =

(y − Xb̃)′H̃−1Z𝜃Z′
𝜃
H̃−1(y − Xb̃)

�̃�2
e

for 𝜃 = A, B,… , K. (114)



MAXIMUM LIKELIHOOD FOR MIXED MODELS 613

These equations have to be solved for the elements of b̃, the error variance 𝜎2
e , and

the variance components inherent in H̃. Hartley and Rao (1967) indicate how this can
be done, either by the method of steepest ascent or obtaining an alternative form for
(114). However, the equations for the alternative form of (114) are difficult to handle.
Of course, equations (112) and (113) are recognizable as the maximum likelihood
equations for the fixed effects and the error variance. They are easy to solve if values
of the �̃�𝜃’s are available for H̃. Thus, an iteration is established via equations (112),
(113), and (114).

c. Large Sample Variances

Searle (1970) obtained general expressions for large sample variances of maximum
likelihood estimators of variance components under normality assumptions. We can
derive these expressions despite the fact that the estimators themselves cannot be
obtained explicitly. Using the model (94), with var(Zu + e) = V as in (96) and with
y ∼ N(Xb, V), the likelihood of the sample is

L = (2𝜋)−
1
2

N
|V|−

1
2 exp

{

− 1
2
(y − Xb)′V−1(y − Xb)

}

.

The logarithm of this likelihood is

logL = − 1
2
log|V| − 1

2
(y − Xb)′V−1(y − Xb). (115)

Suppose the model has p fixed effects and q variance components represented by
𝜎2 = {𝜎2

i } for i = 1, 2,… , q, one element of 𝜎2 being 𝜎2
e . Then (see Wald (1943)),

the variance–covariance matrix for the large sample maximum likelihood estimators
of the p elements of b and the q variance components is

[
var(b̃) cov(b̃, �̃�2)

cov(�̃�2, b̃) var(�̃�2)

]

=
[

−E(Lbb) −E(Lb𝜎2 )
−E(Lb𝜎2 )′ −E(L𝜎2𝜎2 )

]−1

. (116)

In (116), b̃ and �̃�2 are the maximum likelihood estimators of b and 𝜎2, respectively.
The left-hand side of (116) is a statement of their covariance matrix. The right-hand
side shows how to derive this covariance matrix. In its sub-matrices Lbb, for example,
is the p × p matrix of second differentials of L of (115) with respect to the elements
of b. The definition of Lb𝜎2 and L𝜎2𝜎2 follows in a similar manner.

The nature of (115) is such that after some algebraic manipulations, (116) yields
the following results:

var(b̃) = (X′V−1X)−1, (117)

cov(b̃, �̃�2) = 0, (118)
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and

var(�̃�2) = 2

{

tr

(

V−1 𝜕V
𝜕𝜎2

i

V−1 𝜕V
𝜕𝜎2

j

)

for i, j = 1⋯ q

}−1

. (119)

Searle (1970) gives details of the derivation of these results.
The results (117)–(119) merit attention. First, (117) corresponds to the variance

of b◦ in (98) and therefore comes as no surprise. Nevertheless, it indicates that for
unbalanced data from any mixed model, the maximum likelihood (under normality)
estimators of the fixed effects is what it would be if the variance components were
known and did not have to be estimated. Second, (118) shows that the covariance
between large sample maximum likelihood estimators of fixed effects and variance
components are zero. The simplest case of this relates to the mean of a sample and
the sample variance. Under normality, they are distributed independently. The gen-
eralization of this result is (118), which is therefore no surprise either. Finally, (119)
gives the variance–covariance matrix of the large sample maximum likelihood esti-
mators of the variance components. We notice that it is quite free of X, the incidence
matrix of the fixed effects. As one can see from (119) its form is the inverse of a
matrix whose typical element is the trace of the product of matrices V−1 and the
derivatives of V with respect to the variance components.

Example 7 Variance of a Variance Component in a Simple Case Con-
sider N observations from the model yi = 𝜇 + ei with e ∼ N(0, 𝜎2IN). Then, V =
𝜎2IN , V−1 = (1∕𝜎2)IN and V𝜎2 = IN . Hence, from (119), we obtain the well-known
result

var(�̃�2) = 2

{[

tr
(

1
𝜎2

)

ININ

]2
}−1

= 2
(

N
𝜎4

)−1
= 2𝜎4

N
.

□

Additional results stemming from (119) are shown in the next chapter on the web
page.

9. MIXED MODELS HAVING ONE RANDOM FACTOR

The mixed model (94) has several simplifying features when it has only one factor
that is random. We assume that in

y = Xb + Zu + e, (120)

r(X) = r, with b representing q ≥ r fixed effects and u, in representing the random
effects, contains t effects for just one random factor having variance 𝜎2

u . As a result,
Z has full-column rank, t, with its columns summing to 1, the same, as do certain
columns of X. We assume that this is the only linear relationship of the columns of
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Z to those of X. Hence,

r
[

X Z
]
= r(X) + t − 1 = r + t − 1.

Furthermore, by the nature of Z, the matrix Z′Z is diagonal of order t and (Z′Z)−1

exists.
Since the model is a mixed model, estimation is by the fitting constants method,

using

SSE = y′y − R(b, u) and R(u|b) = R(b, u) − R(b)

with

E(SSE) = [N − (r + t − 1)]𝜎2
e (121)

in the usual manner. From (79),

E[R(u|b)] = 𝜎2
u tr[Z′Z − Z′X(X′X)−X′Z] + 𝜎2

e [r(X) + t − 1 − r(X)]. (122)

Hence, the estimators are

�̂�2
e =

y′y − R(b, u)
N − r(X) − t + 1

(123)

and

�̂�2
u =

R(u|b) − �̂�2
e (t − 1)

tr[Z′Z − Z′X(X′X)−X′Z]
. (124)

These are the estimators given by Cunningham and Henderson (1968) for the case
where X has full-column rank. For a particular case of ensuring the non-singularity of
X′X through appropriate constraints, Cunningham (1969) gives a simple expression
for the denominator of (124).

A problem with the preceding formulation is that the calculation of

R(b, u) = y′
[

X Z
]
[

X′X X′Z
Z′X Z′Z

] [
X
Z

]

y (125)

may be very difficult because Z has as many columns as there are random effects in
the data. Since the random effects can be quite numerous, the computation of (125)
could be onerous. However, a generalization of the “absorption process” described
in Chapter 7 for the two-way classification permits an easier calculation as follows.
With the easier-to-calculate quantity

R(u) = y′Z(Z′Z)−1Z′y, (126)
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we find that

R(b|u) = R(b, u) − R(u) (127)

simplifies, after substitution from (125) and (126) to

R(b|u) = b◦′X′[I − Z(Z′Z)−1Z′]y, (128)

where

b◦ = Q−X′[I − Z(Z′Z)−1Z′]y (129)

with

Q = X′X − X′Z(Z′Z)−1Z′X. (130)

The quantity in (128) is easier to compute than that of (125) because Q and b◦ have
q rows. Using (126) and (128), we then calculate R(b, u) as

R(b, u) = R(b|u) + R(u).

Hence, for (124), we calculate R(u|b) as

R(u|b) = R(b|u) + R(u) − R(b), (131)

where

R(b) = y′X(X′X)X′y (132)

is also easy to compute.
Results (128)–(132) are similar to those summarized by Cunningham and Hen-

derson (1968) for a model in which X is assumed to have full-column rank. As we
shall see, this restriction is not necessary. The crucial result is (128), derived from
(127) by substituting from (125) and (126) using

[
X′X X′Z
Z′X Z′Z

]−
=
[

0 0
0 (Z′Z)−1

]

+
[

I
−(Z′Z)−1Z′X

]

Q−[I − X′Z(Z′Z)−1] (133)

with Q of (130). (See Exercise 33 of Chapter 1.) When carrying out the derivation,
we find that b◦ of (129) is a solution to

[
X′X X′Z
Z′X Z′Z

] [
b◦

u◦

]

=
[

X′y
Z′y

]

. (134)
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These are the least-square normal equations for b◦ and u◦ assuming that u is a vector
fixed rather than random effects. Recall, however, that comparable equations for
getting maximum likelihood solutions for the fixed effects are from (104),

[
X′X X′Z
Z′X Z′Z + 𝜆I

] [
b∗

u∗

]

=
[

X′y
Z′y

]

, (135)

where

𝜆 = 𝜎2
e∕𝜎

2
u . (136)

Since (135) is formally the same as (134) except for Z′Z + 𝜆I replacing Z′Z, Cun-
ningham and Henderson (1968) suggested making this replacement throughout the
whole variance component estimation process described in (123) through (131). The
result is an iterative procedure based on the maximum likelihood equations implicit
in (135). Thus, (123) and (124) would become

𝜎∗2
e =

y′y − R∗(b, u)
N − r(X) − t + 1

(137)

and

𝜎∗2
u =

R∗(u|b) − �̂�∗2
e (t − 1)

tr[Z′Z + 𝜆I − Z′X(X′X)−X′Z]
. (138)

The comparable definitions of the R∗-terms are

R∗(b, u) = R∗(b|u) + R∗(u) (139)

derived from using

P = Z′Z + 𝜆I (140)

in place of Z′Z in (126)–(132). Thus, from (126),

R∗(u) = y′ZP−1Z′y. (141)

From (128)–(130) we have,

R∗(b|u) = y′(I − ZP−1Z′)′X[X′(I − ZP−1Z′)X]−X′(I − ZP−1Z′)y. (142)

Equation (132) remains the same, namely,

R(b) = y′X(X′X)X′y. (143)
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Then, for (138), just as in (131),

R∗(u|b) = R∗(b|u) + R∗(u) − R∗(b). (144)

The replacement of Z′Z by Z′Z + 𝜆I as just described is based on the premise
that the expected values of SSE∗ = y′y − R∗(b|u) and R∗(u|b) are those of SSE
and R(u|b) as shown in (121) and (122) with Z′Z replaced by P. Thompson (1969)
points out that this is not the case. Consequently, (137) and (138) are not unbiased
estimators. The derivation of unbiased estimators that Thompson (1969) indicates
proceeds as follows. First, notice that from (140),

P−1Z′(ZZ′𝜎2
u + 𝜎2

e I) = P−1(ZZ′𝜎2
u + 𝜎2

e I
)
Z′

= P−1(Z′Z + 𝜆I)𝜎2
uZ′, from (136)

= P−1PZ′𝜎2
u , from (140)

= Z′𝜎2
u . (145)

Second, it follows from (120) that

E(yy′) = Xbb′X′ + ZZ′𝜎2
u + 𝜎2

e I. (146)

Hence, using E(y′Ay) = tr[AE(yy′)], the expected value of (141) is

E[R∗(u)] = tr[ZP−1Z′E(yy′)]

= tr
[
ZP−1Z′Xbb′X′ + ZZ′𝜎2

u

]
. (147)

Similarly, if

T = I − ZP−1Z′, (148)

(145) gives T(ZZ′𝜎2
u + 𝜎2

e I) = 𝜎2
e I. Thus, from (142) and (146), we have

E[R∗(b|u)] = tr[TX(X′TX)−X′TE(yy′)]

= tr
[
TX(X′TX)−X′TXbb′X′ + TX(X′TX)−X′𝜎2

e

]

= tr
[
TXbb′X′ + TX(X′TX)−X′𝜎2

e

]
. (149)

From (143) and (146), we have that

E(R∗(b)) = tr[X(X′X)−X′E(yy′)]

= tr
[
Xbb′X′ + X(X′X)−X′(ZZ′𝜎2

u + 𝜎2
e I
)]
. (150)
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Therefore, from (144), using (147), (149), and (150),

E[R∗(u|b)] = tr
{

(ZP−1Z′ + T − I)Xbb′X′ + [I − X(X′X)−X′]ZZ′𝜎2
u

+ [TX(X′TX)X′ − X(X′X)−X′]ZZ′𝜎2
e

}

= 𝜎2
u tr[Z′Z − Z′X(X′X)−X′Z]

+ 𝜎2
e tr[X′TX(X′TX)− − X′X(X′X)−]. (151)

By Lemma 1 in Section 2c of Chapter 1 X′TX(X′TX)− and X′X(X′X)− are idem-
potent matrices. The rank of an idempotent matrix is equal to its trace. Thus, we
have that tr(X′TX(X′TX)−) = r(X′TX) and tr(X′X(X′X)−) = r(X′X). Furthermore,
T has full rank (its inverse being (Z′Z∕𝜆 + I)). Thus, r(XTX′) = r(X). Hence, the
last term of (151) is zero. Thus

E[R∗(u|b)] = 𝜎2
u tr[Z′Z − Z′X(X′X)−X′Z].

Moreover, from (146)–(149),

E[y′y − R∗(b, u)] = E[y′y − R∗(u) − R∗(b|u)] = [N − r(X)]𝜎2
e .

Therefore, in place of (137) and (138), estimators for 𝜎2
e and 𝜎2

u are

�̃�2
e =

y′y − [R∗(u) + R∗(b|u)]
N − r(X)

(152)

and

�̃�2
u = R∗(u) + R∗(b|u) − R∗(b)

tr[Z′Z − Z′X(X′X)−X′Z]
. (153)

These results, given by Thompson (1969) for X of full-column rank provide an
iterative procedure. This is because through P of (140), the reductions R∗(u) and
R∗(b|u) of (141) and (142) involve 𝜆 = 𝜎2

e∕𝜎
2
u . Therefore, we achieve estimation by

taking an initial value of 𝜆, calculating (152) and (153), using the results to get a next
value of 𝜆 and repeating the process until convergence is attained.

The replacement of Z′Z by P = Z′Z + 𝜆I in the fitting constants method of esti-
mation does not lead from (123) and (124) to (137) and (138) because, as Thompson
(1969) points out, R∗(b, u) is not a reduction in the sum of squares due to solving
(135).

It is true that

R∗(b, u) = b∗′X′y + u∗′Z′y.

However, the right-hand side of the equation is the reduction in the sum of squares
only when the equation from which it stems, (135) in this case, is, for some matrix
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W, of the form

W′W
[

b∗

u∗

]

= W′y.

By observation, (135) is not of this form. Furthermore, as shown by Thompson
(1969), the reduction sum of squares after solving (135) is

y′y − (y − Xb∗ − Zu∗)′(y − Xb∗ − Zu∗) = R∗(u, b) + 𝜆u∗′u∗.

The calculations involved in the estimators (123) and (124) are summarized in
Section 7b of Chapter 11 and those for the estimators (152) and (153) are in Section
7c of Chapter 11. Please see the web page or the first edition.

10. BEST QUADRATIC UNBIASED ESTIMATION

The variance component analogue of the best linear unbiased estimator (b.l.u.e.) of a
function of fixed effects is a best quadratic unbiased estimator (BQUE) of a variance
component. By this, we mean a quadratic function of the observations that is an
unbiased estimator of the component and of all such estimators, it is the one with
minimum variance. The BQUE’s of variance components from balanced data are
derived by the analysis of variance method as has been discussed in Section 8a of
Chapter 9. As one might expect, derivation of such estimators from unbalanced data
is more difficult. Ideally, we would like estimators that are uniformly “best” for all
values of the variance components.

Townsend and Searle (1971) have obtained locally BQUE’s for the variance com-
ponents in a one-way classification model with𝜇 = 0 From these, they have suggested
approximate BQUE’s for the 𝜇 ≠ 0 model. The method used for the case where 𝜇 = 0
is essentially the same as that used to derive the MIVQUE (see Section 10b(ii) of
Chapter 9). Swallow and Searle (1978) use the MIVQUE method outlined in Section
10b(ii) of Chapter 9 to develop minimum variance quadratic unbiased estimators
for the variance components for the case where 𝜇 ≠ 0. The case where 𝜇 = 0 is
included in their derivation. The method used by Townsend and Searle (1971) to find
approximate BQUE’s for 𝜇 ≠ 0 is different from that of Swallow and Searle. We first
outline the development of BQUE’s by Townsend and Searle (1971) for the case of
a zero mean (𝜇 = 0). We then outline Swallow and Searle’s (1978) development of
the MIVQUE for the one-way classification model.

a. The Method of Townsend and Searle (1971) for a Zero Mean

We write the model yij = 𝛼i + eij similar to (94) as y = Z𝛼 + e with V of (96) being
V = 𝜎2

𝛼
ZZ′ + 𝜎2

e I. Suppose, we let the desired estimators of 𝜎2
e and 𝜎2

𝛼
take the form

𝜎2
e = y′Ay and 𝜎2

𝛼
= y′By,
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together with the unbiasedness condition

E
(
�̂�2

e

)
= tr(AV) = 𝜎2

e and E
(
�̂�2
𝛼

)
= tr(BV) = 𝜎2

𝛼
(154)

such that

v
(
�̂�2

e

)
= 2tr(AV)2 and v

(
�̂�2
𝛼

)
= 2tr(BV)2 is minimized. (155)

The problem is then to find matrices A and B such that (155) is satisfied subject to
(154). We obtain the canonical form of V under orthogonal similarity as P′VP = D,
where P is an orthogonal matrix and D is a diagonal matrix of eigenvalues (latent
roots) of V.

We then find that satisfying (154) and (155) demands minimizing 2tr(DQ)2 subject
to 𝜎2

e = tr(DQ) and minimizing 2tr(DR)2 subject to 𝜎2
𝛼
= tr(DR), where Q = P′AP

and R = P′BP. The eigenvalues of V are 𝜎2
e , with multiplicity N – a, and 𝜎2

e + ni𝜎
2
𝛼

for i = 1, 2,… , a. The corresponding eigenvectors (latent vectors) are the columns
of the matrix Σ+Gi, where G′

i is the last (ni − 1) rows of a Helmert matrix of order
ni (see Section 1 of Chapter 2) and the columns of Z. The minimization procedure
leads, after some algebraic simplification, to the following results. Define

𝜌 =
𝜎2
𝛼

𝜎2
e

, r =
a∑

i=1

1
(1 + ni𝜌)2

+ N − a,

s =
a∑

i=1

n2
i

(1 + ni𝜌)2
, and t =

a∑

i=1

ni

(1 + ni𝜌)2
.

Then, the BQUE’s are

�̂�2
e = 1

rs − t2

[
a∑

i=1

s − tni

(1 + ni𝜌)2
⋅

y2
i.

ni
+ s(SSE)

]

(156a)

and

�̂�2
𝛼
= 1

rs − t2

[
a∑

i=1

rni − t

(1 + ni𝜌)2
⋅

y2
i.

ni
− t(SSE)

]

, (156b)

where SSE is the usual error sum of squares,
∑∑

y2
ij −
∑

niȳ
2
i..

These estimators are functions of the variance components because they are func-
tions of the ratio 𝜌 = 𝜎2

𝛼
∕𝜎2

e . The variances of the estimators are identical to those
of the large sample maximum likelihood estimators. The limits of the estimators as
𝜌 → 0 are the Koch (1968) estimators given in (92). The limit of �̂�2

e as 𝜌 → ∞ is the
analysis of variance method estimator of 𝜎2

e .
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Two reasons why comparison of the BQUE’s is difficult are:

(i) Their variances are functions of the unknown variance components;

(ii) The BQUE’s themselves as in (156) are also functions of the unknown variance
components.

Therefore, Townsend (1968) compared the BQUE’s with the analysis of variance
method (ANOVA) estimators numerically. In doing so, he used a range of values of
𝜌, both for the actual BQUE’s and for approximate BQUE’s using a prior estimate,
or guess 𝜌0 of 𝜌 in the estimation procedure. When the approximate BQUE is used
in place of the ANOVA estimator, Townsend (1968) found that considerable reduction
in the variance of 𝜎2

𝛼
can be achieved. In fact, this advantage can be gained even when

rather inaccurate prior estimates (guesses) of 𝜌 are used as 𝜌0. The reduction in
variance appears to be greatest when the data are severely unbalanced and 𝜌 is either
small or large. It appears smallest for values of 𝜌 that are moderately small. In some
cases, there is actually no reduction in variance, when the ANOVA is a BQUE for
some specific 𝜌. Details of these comparisons are available in Townsend (1968). The
estimators, their variances and suggested expressions for the 𝜇 ≠ 0 model, taken from
Townsend (1968) are available in Section 1f of Chapter 11 (see the web page or the
first edition).

b. The Method of Swallow and Searle (1978) for a Non-Zero Mean

Recall that the MIVQUE of

p′�̂� =
k∑

i=1

pi𝜎
2
i

is taken to be a quadratic form y′Ay, where A is a symmetric matrix chosen to
minimize the variance of y′Ay subject to AX = 0 and tr(AVi) = pi. C. R. Rao (1971b)
shows that for

R = V−1[I − X(X′V−1X)−1X′V−1], (157)

S = {sii′} = {tr(ViRVi′R}, i, i′ = 1,… , k, (158)

and

u = {ui} = {y′RViRy}, i = 1,… , k, (159)

under normality, the vector of MIVQUE is

�̂�2 = s−1u. (160)

Under normality for balanced data for all of the usual models including fixed effects,
mixed or random models for the one- and two-way classification with and without
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interaction and nested models the MIVQUE estimators and the analysis of variance
estimators are the same.

Using equation (10) in Chapter 9 for the one-way classification model, we have
that the vector of observations y has a multivariate normal distribution with mean
1N𝜇 and variance–covariance matrix

V =
∑

+(𝜎2
e Ini

+ 𝜎2
𝛼
Jni

)
.

After simplifying the expressions (157)–(159), we write

ki =
ni

𝜎2
e + ni𝜎

2
𝛼

, k = 1
a∑

i=1

ki

and ȳi. =

ni∑

j=1

yij

ni
. (161)

Then, the s’s and the u’s of (158) and (159) may be written

s11 =
a∑

i=1

k2
i − 2k

a∑

i=1

k3
i + k2

(
a∑

i=1

k2
i

)2

, (162)

s12 =
a∑

i=1

k2
i

ni
− 2k

a∑

i=1

k3
i

ni
+ k2

a∑

i=1

k2
i

a∑

i=1

k2
i

ni
, (163)

s22 = N − a
𝜎4

e

+
a∑

i=1

k2
i

n2
i

− 2k
a∑

i=1

k3
i

n2
i

+ k2

(
a∑

i=1

k2
i

ni

)2

, (164)

u1 =
a∑

i=1

k2
i

[

ȳi. − k
a∑

i=1

kiȳi.

]2

, (165)

and

u2 = 1
𝜎4

e

SSE +
a∑

i=1

k2
i

ni

[

ȳi. − k
a∑

i=1

kiȳi.

]2

. (166)

From (160), under normality, the MIVQUE’s of 𝜎2
e and 𝜎2

𝛼
are then

�̂�2
e = 1

|S|
[−s12u1 + s11u2] (167)

and

�̂�2
𝛼
= 1
|S|

[s22u1 − s12u2], (168)

where |S| = s11s22 − s2
12.
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The variances and covariances of these MIVQUE’s are

v
(
�̂�2

e

)
=

2s11

|S|
, (169)

v
(
�̂�2
𝛼

)
=

2s22

|S|
, (170)

and

cov
(
�̂�2

e , �̂�2
𝛼

)
=

−2s12

|S|
. (171)

Unfortunately, the MIVQUE’s are functions of the unknown variance components.
Therefore, we must replace the unknown values of 𝜎2

𝛼
and 𝜎2

e by some numbers 𝜎2
e0

and 𝜎2
𝛼0 that are a priori estimates of 𝜎2

𝛼
and 𝜎2

e . Swallow and Searle (1978) give
comparisons of the variances of the MIVQUE of 𝜎2

𝛼
for different a priori estimates

and observe that in every case, the MIVQUE has a smaller variance than the analysis
of variance method estimators.

In a practical problem, one way to choose a priori estimates is to consider the
results of a previous run of the experiment or process, if available, and use the
analysis of variance estimates obtained from the past data.

Example 8 Numerical Comparison of Variances of Analysis of Variance Estima-
tors and MIVQUE Estimators The data for this example is taken from Swallow
and Searle (1978).

Five groups of several consecutive bottles each were snatched from a moving
production line that was filling the bottles with vegetable oil. The oil in each bottle
was weighed. The data appears in the table below. A multiple (24) head machine was
being used in the filling. Different (unidentified) heads are represented in the five
groups of bottles sampled. Thus, in part, variability among groups reflects variability
among heads.

Net Weights (oz.) of Vegetable Oil Fills

1 2 3 4 5

15.70 15.69 15.75 15.68 15.65
15.68 15.71 15.82 15.66 15.60
15.64 15.75 15.59
15.60 15.71

15.84

We have the Analysis of variance table.
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The SAS System
The GLM Procedure

Dependent Variable: weight
Source DF Sum of Squares Mean Square F Value Pr > F
Model 4 0.05530708 0.01382677 6.46 0.0063
Error 11 0.02353667 0.00213970
Corrected Total 15 0.07884375

We also have the expected mean square of the model sum of squares.

The SAS System
The GLM Procedure

Source Type III Expected Mean Square
group Var(Error) + 3.0938 Var(group)

We have that

�̂�2
e = 0.0021397

3.0938�̂�2
𝛼
+ 0.0021397 = 0.01382677

�̂�2
𝛼
= 0.00378921

are the analysis of variance estimates for the variance components.
Suppose, from other data of the same type, we have analysis of variance estimates

�̂�2
𝛼
= 0.0028 and �̂�2

e = 0.0025. Using these estimates, Swallow and Searle find that
the MIVQUE’s are �̂�2

𝛼
= 0.0021 and �̂�2

e = 0.0032. The MIVQUE have approximate
estimated variances and covariances

v
(
̂̂𝜎

2
e

)
= 0.0000113, v

(
̂̂𝜎

2
𝛼

)
= 0.0000684, and cov

(
�̂�2

e , ̂̂𝜎
2
𝛼

)
= −0.0000039.

The variances and covariances of the analysis of variance estimators are

v
(
̂̂𝜎

2
e

)
= 0.0000080, v

(
̂̂𝜎

2
𝛼

)
= 0.00001084, and cov

(
�̂�2

e , ̂̂𝜎
2
𝛼

)
= −0.0000026.

Swallow (1981) compares the variances of MIVQUE’s with the analysis of vari-
ance estimators. He notes from numerical comparisons that when 𝜎2

𝛼
∕𝜎2

e > 1 and
unless 𝜎2

𝛼0∕𝜎
2
e0 ≤ 𝜎2

𝛼
∕𝜎2

e , where 𝜎2
𝛼0 and 𝜎2

e0 are prior values of 𝜎2
𝛼

and 𝜎2
e :

(i) the MIVQUE’s have variances near their lower bounds;

(ii) the MIVQUE of 𝜎2
𝛼

is more efficient than the analysis of variance estimator.

He also observes that:

(i) when 𝜎2
𝛼
∕𝜎2

e < 1, the MIVQUE’s are more dependent on accurate specifica-
tion of the ratio of the variance components 𝜎2

𝛼0∕𝜎
2
e0;
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(ii) the MIVQUE and the analysis of variance estimator of 𝜎2
e have nearly equal

variances unless 𝜎2
𝛼0∕𝜎

2
e0 ≤ 𝜎2

𝛼
∕𝜎2

e in which case the analysis of variance
estimator has smaller variance.

By doing a Monte Carlo study, Swallow and Monahan (1984) compare the biases
and mean square errors of the analysis of variance estimators, the MIVQUE, the
restricted maximum likelihood estimator and maximum likelihood estimators of
variance components in the one-way classification model. Their results indicate that:

(i) analysis of variance estimators perform well when 𝜎2
𝛼
∕𝜎2

e > 1;

(ii) when 𝜎2
𝛼
∕𝜎2

e < 0.5, maximum likelihood estimators are excellent;

(iii) MIVQUE with a priori estimators the analysis of variance estimators are
adequate;

(iv) MIVQUE with a priori values 𝜎2
𝛼0 = 0 and 𝜎2

e0 = 1 performs poorly when
𝜎2
𝛼
∕𝜎2

e > 1.

In our discussion of the MIVQUE, we have focused on the one-way classification
model. P. S. R. S. Rao and Heckler (1997) consider the comparison of the variances
and biases of analysis of variance, restricted maximum likelihood estimators and
MIVQUE for a two-factor random-effects model with one factor nested.

11. SHRINKAGE ESTIMATION OF REGRESSION PARAMETERS AND
VARIANCE COMPONENTS

We shall consider shrinkage estimators of regression parameters and of variance
components. First, we explain what shrinkage estimators are and how they can be
more efficient than maximum likelihood estimators. We then discuss the celebrated
James–Stein estimator in the linear models context. Finally, we give examples of
some improved estimators of the variance and of variance components.

a. Shrinkage Estimators

Suppose we take one of the standard estimators of a vector of regression parameters
or the variance–covariance matrix and multiply it by a constant between zero and
one or a matrix M, where I – M is positive definite? The estimator we obtain in this
way is called a shrinkage estimator. Usually shrinkage estimators, although biased,
have a smaller variance than the estimators they shrink. In addition, in comparison
to the standard estimators that are multiplied by the shrinkage factor they typically
have a smaller mean square error for a range of the parameters. One example of such
a shrinkage estimator is the ridge regression estimator of Hoerl and Kennard (1970)
that was mentioned in Section 3 of Chapter 3. Notice that, for k > 0, we can write the
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ridge estimator as

p′𝛽(r) = (X′X + kI)−1X′y = (X′X + kI)−1(X′X)(X′X)−1X′y

= (X′X + kI)−1(X′X)b = (I + k(X′X)−1)−1b, (172)

where b is the least-square estimator. This is the product of a matrix whose difference
between it and the identity matrix is positive definite and the least-square estimator.

b. The James–Stein Estimator

Consider the linear Bayes estimator (see Section 3 of Chapter 3) derived from a prior

distribution, where 𝜃 = 0 and F = 𝜎2

k
(X′X)−1. The resulting estimator, as the reader

may show in Exercise 15, is

p′𝛽(c) = 1
1 + k

b =
(

1 − k
1 + k

)

b. (173)

The shrinkage estimator in (173) is the contraction estimator of Mayer and Willke
(1973).

Dempster (1973) and Zellner (1986) suggested the prior distribution that resulted
in the linear Bayes estimator of (173). Assuming a normal population, suppose we
substitute the unbiased estimator (s − 2)�̂�2∕b′X′Xb for fraction k∕(1 + k). Then, we
have in place of (173),

p′𝛽(JS) =
(

1 − (s − 2)�̂�2

b′X′Xb

)

b, (174)

the celebrated James–Stein estimator in the context of a linear model. Gruber (1998)
studies the James–Stein estimator for different linear model setups.

Stein (1956) and later James and Stein (1961) showed that the usual maximum
likelihood estimator of the mean of a multivariate normal distribution is inadmissible.
An estimator is inadmissible if we can find an estimator whose mean square error
is strictly less than it for at least one point and less than or equal to it for the entire
parameter space. An admissible estimator is one that we cannot do this for. We can
show that the mean square error of (174) is less than that of the least-square estimator
(see for example Gruber (1998)). The technique used to obtain (174) from (173),
namely, replacing a function of the prior parameters by an estimator based on the
data is known as empirical Bayes (see, for example, Efron and Morris (1973)).

c. Stein’s Estimator of the Variance

Stein (1964) showed that the minimum mean square error estimator of the variance
of a normal population is inadmissible. The inadmissible estimator is

�̂�2 = 1
n + 1

n∑

i=1

(xi − x̄)2. (175)
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Stein shows that the estimator (175) is inadmissible by establishing that

�̂�2
1 = min

{

1
n + 1

n∑

i=1

(xi − x̄)2,
1

n + 2

n∑

i=1

(xi − 𝜍0)2

}

, (176)

for any fixed number 𝜍0, has a mean square error strictly smaller than that of (175) for
at least one point of the parameter space and less than or equal to that of (175) for the
entire parameter space. Both the estimators in (174) and (176) are also inadmissible.
We can construct an estimator with smaller mean square error than (174) by truncating
the shrinkage factor to be zero for values where it would be negative. Brewster and
Zidek (1974), and Brown (1968) also produce estimators with smaller mean square
error than (175).

d. A Shrinkage Estimator of Variance Components

We shall present an estimator of the variance components for a mixed linear model
that has a smaller mean square error than that of the analysis of variance estimator. The
estimator is due to Kubokawa (1995). We shall follow this paper in our presentation.

We consider a general linear model

y = X𝛽 + Z𝛼 + e, (177)

where y is an n-vector of observations, X is an n × p1 known matrix with rank(X) =
r and 𝛽 is a p1-vector of parameters. In addition, Z is a given n × p2 matrix, 𝛼 and
e are independent random p2- and n-vectors, respectively with 𝛼 ∼ Np2

(0, 𝜎2
AI) and

e ∼ Nn(0, 𝜎2
e In). The random one-way analysis of variance model is a special case.

Consider an (n − r) × n matrix P1 and an r × n matrix P2 such that P1X =
0, P1P′

2 = 0, P1P′
1 = In−r, and P2P′

2 = Ir. Such matrices exist by the singular value
decomposition. Let x1 = P1y and x2 = P2y. It follows that

x1 ∼ Nn−r

(
0, 𝜎2

AP1ZZ′P′
1 + 𝜎

2
e In−r

)

and

x2 ∼ Nr

(
P2X𝛽, 𝜎2

AP2ZZ′P′
2 + 𝜎

2Ir

)
.

Consider the spectral decompositions

P1ZZ′P′
1 =

l∑

i=1

𝜆iE1i and P2ZZ′P′
2 =

k−1∑

j=1

𝜏jE2j,
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where rank(E1i) = mi,
∑l

i=1 mi = rank(P1ZZ′P′
1), rank(E2j) = nj, and

∑k−1
j=1 nj = rank(P2ZZ′P′

2). Assume that 𝜆i > 0 and 𝜏j > 0 satisfy

0 < 𝜆1 <⋯ < 𝜆l and 𝜏1 >⋯ 𝜏k−1 > 0. (178)

Assume that

m = n − r −
l∑

i=1

mi > 0. (179)

Let E1,l+1 = In−r −
∑l

i=1 E1i and E2,k = Ir −
∑k−1

j=1 E2j. We see that rank(E1,i+1) =
m > 0 and rank(E2,k) = r −

∑k−1
j=1 nj = nk ≥ 0. Thus, we obtain the quadratic

statistics

S = x′1E1,i+1x1 ∼ 𝜎2𝜒2
m,

S1 = x′1E11x1 ∼
(
𝜎2 + 𝜆1𝜎

2
A

)
𝜒2

m1
,

⋯
Sl = x′1E1lx1 ∼

(
𝜎2 + 𝜆l𝜎

2
A

)
𝜒2

ml

(180a)

and

T1 = x′2E21x2 ∼
(
𝜎2 + 𝜏1𝜎

2
A

)
𝜒2

(

n1,
𝛽′X′P′

2E2,iP2X𝛽

2
(
𝜎2 + 𝜏1𝜎

2
A

)

)

⋯

Tk = x′2E2,kx2 ∼
(
𝜎2 + 𝜏k𝜎

2
A

)
𝜒2

(

nk,
𝛽′X′P′

2E2,kP2X𝛽

2
(
𝜎2 + 𝜏k𝜎

2
A

)

)

.

(180b)

The analysis of variance estimator that one derives by Henderson’s method 3 is

�̂�2
A =

l∑

i=1

mi

l∑

i=1

𝜆imi

⎛
⎜
⎜
⎜
⎜
⎜
⎝

l∑

i=1

Si

l∑

i=1

mi

− S
m

⎞
⎟
⎟
⎟
⎟
⎟
⎠

. (181)

Kubokawa (1995) shows that an estimator with a smaller mean square error than
that of (181) takes the form

�̂�2
0A =

l∑

i=1

mi

l∑

i=1

𝜆imi

⎛
⎜
⎜
⎜
⎜
⎜
⎝

l∑

i=1

Si

l∑

i=1

mi + 2

− S
m

⎞
⎟
⎟
⎟
⎟
⎟
⎠

(182)
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and that an estimator with smaller mean square error than (182) takes the form

�̂�2
1A = max

⎧
⎪
⎪
⎨
⎪
⎪
⎩

�̂�2
1A,

2
l∑

i=1

mi

m
l∑

i=1

𝜆imi

(
l∑

i=1

mi + 2

)S

⎫
⎪
⎪
⎬
⎪
⎪
⎭

(183)

More discussion of shrinkage estimators for variance components is available in
Kubokawa (1999), Cui et al. (2005), An (2007), and the references therein.

12. EXERCISES

1 In Example 8, use the analysis of variance estimate for �̂�2
𝛼

and �̂�2
e as prior

estimates to find the MIVQUE’s. How does the variance of these estimates
compare with the analysis of variance estimates?

2 In the r-way classification random model, having all possible interactions, show
that var(t) has 2r−1(2r + 1) different elements.

3 For balanced data, show that:

(a) In equation (32), 𝜃1 = bn

( a∑

i=1
𝛼2

i − a�̄�2
.

)

.

(b) For random 𝛼, thatis,𝛼i ∼ N(0, 𝜎2
𝛼
), E(𝜃1) = (a − 1)bn𝜎2

𝛼
.

4 Establish the following for result (33)

(a) For random 𝛼’s

E(𝜃2) =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

b∑

j=1

a∑

i=1

n2
ij

n.j
−

a∑

i=1

n2
i.

N

⎞
⎟
⎟
⎟
⎟
⎟
⎠

𝜎2
𝛼

(b) For balanced data, 𝜃2 = 0.

5 Consider the sample variance

s2 = 1
n − 1

n∑

i=1

(xi − x̄)2,

where xi ∼ N(𝜇, 𝜎2). Assume that the xi’s are independent.
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(a) After making the transformation yi = xi − 𝜇, show that

s2 = 1
n − 1

y′
(

In −
1
n

Jn

)

y

(b) Using Corollaries 4.1 and 4.3 of Chapter 2, show that

E(s2) = 𝜎2

and

var(s2) = 2𝜎4

n − 1

6 Show that v̂ = (I + A)−1A�̂� is an unbiased estimator of v (see equations (56)–
(58)).

7 Show that the estimators �̂�2
e and �̂�2

𝛼
given by (87)–(89) are the analysis of variance

estimators for balanced data.

8 Find the variance of �̂�2
𝛼

that can be derived from (88) and (89).

9 Show that for balanced data, the estimator in (90) simplifies to the analysis of
variance estimator.

10 (a) Check the term below (91) for finding the variance of �̂�2
e given in (90).

(b) Find the variance of �̂�2
e given in (90).

(c) What does this variance simplify to, in the balanced case?

11 Consider the one-way random model

yij = 𝜇 + 𝛼i + eij, i = 1,… , a, j = 1, 2,… , ni
𝛼i ∼ N

(
0, 𝜎2

𝛼

)
, eij ∼ N(0, 𝜎2

e )
.

Define

T0 =
a∑

i=1

ni∑

j=1

y2
ij and T𝜇 =

y..
N
.

Show from first principles that

(a) E(T0) = N(𝜇2 + 𝜎2
𝛼
+ 𝜎2

e )

(b) E(T𝜇) = N𝜇2 +
a∑

i=1

n2
i

N
+ 𝜎2

e

12 Show that for a balanced one-way ANOVA model, the MIVQUE of the variance
components are those obtained by the ANOVA method.
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13 In fitting y = 𝜇1 + Xf bf + X1b1 + X2b2 + e,

(a) show that R(b1|bf ) equals R(b1)z when fitting z = Wy = WX1b1 + We,
where

W = I − Xf (X′
f Xf )−1X′

f .

(b) Show that the reduction in the sum of squares due to fitting z = WX1b1 + We
is R(b1)z.

14 (a) Show that the generalized inverse in (133) is indeed a generalized inverse
by direct computation.

(b) Use the result of (a) to establish (129).

(c) Derive the last equation at the end of Section 9.

15 (a) Show how to derive (173) as a linear Bayes estimator from the given prior
assumptions.

(b) Find a range of values of the 𝛽 parameters where (173) has a smaller mean
square error than the least-square estimator.
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