
William Miles
Numerical Methods with Python

Also of Interest
Numerical Analysis on Time Scales
Svetlin G. Georgiev and Inci M. Erhan, 2022
ISBN 978-3-11-078725-2, e-ISBN (PDF) 978-3-11-078732-0

Advanced Mathematics
An Invitation in Preparation for Graduate School
Patrick Guidotti, 2022
ISBN 978-3-11-078085-7, e-ISBN (PDF) 978-3-11-078092-5

Quantum Information Theory
Concepts and Methods
Joseph M. Renes, 2022
ISBN 978-3-11-057024-3, e-ISBN (PDF) 978-3-11-057025-0

Multi-level Mixed-Integer Optimization
Parametric Programming Approach
Styliani Avraamidou, Efstratios Pistikopoulos, 2022
ISBN 978-3-11-076030-9, e-ISBN (PDF) 978-3-11-076031-6

Automata Theory and Formal Languages
Wladyslaw Homenda and Witold Pedrycz, 2022
ISBN 978-3-11-075227-4, e-ISBN (PDF) 978-3-11-075230-4

Geometry and Discrete Mathematics
A Selection of Highlights
Benjamin Fine, Anja Moldenhauer, Gerhard Rosenberger,
Annika Schürenber, Leonard Wienke, 2022
ISBN 978-3-11-074077-6, e-ISBN (PDF) 978-3-11-074078-3

William Miles

Numerical
Methods with
Python
�
for the Sciences

Mathematics Subject Classification 2010
Primary: 34-04, 35-04; Secondary: 92C45, 92D25, 34C28, 37D45

Author
William Miles, PhD
Stetson University
Department of Mathematics and Computer Science
421 N. Woodland Blvd.
Deland 32723
FL USA
wmiles@stetson.edu

ISBN 978-3-11-077645-4
e-ISBN (PDF) 978-3-11-077664-5
e-ISBN (EPUB) 978-3-11-077693-5

Library of Congress Control Number: 2022950763

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie;
detailed bibliographic data are available on the Internet at http://dnb.dnb.de.

© 2023 Walter de Gruyter GmbH, Berlin/Boston
Cover image: E. K. Miles
Typesetting: VTeX UAB, Lithuania
Printing and binding: CPI books GmbH, Leck

www.degruyter.com

mailto:wmiles@stetson.edu
http://dnb.dnb.de
www.degruyter.com

�
This book is dedicated to Andi and Emmy. To have them in my life is a blessing beyond
measure.

Acknowledgment

I thank William Wood and Sammi Smith for taking the time to read and edit large sec-
tions of the text. I also thankmy students, Halle Block, EmilyMehigan, and Casey Ramey,
for alerting me of errors as they took the course.

https://doi.org/10.1515/9783110776645-201

https://doi.org/\global \c@doi \c@pseudochapter \relax \global \advance \c@doi \c@parttext \relax 10.1515/9783110776645-000

Contents

Acknowledgment� VII

1 Introduction� 1

2 The basic operations in Python� 3
2.1 Obtaining Python� 3
2.2 Addition, subtraction, multiplication, and division� 3
2.3 Powers� 8
2.4 Displaying output� 8
2.5 Exercises� 10

3 Functions� 11
3.1 Exponentials, logs, and trig functions� 11
3.2 Variables� 13
3.3 Defining and using mathematical functions� 17
3.4 Getting input from the keyboard� 19
3.5 Graphing functions� 20
3.6 Exercises� 38

4 Matrices, vectors, and linear systems� 41
4.1 Matrices with numpy� 41
4.1.1 Addition and subtraction: A ± B � 44
4.1.2 Component-wise multiplication: A ∗ B � 46
4.1.3 Component-wise division: A/B � 47
4.1.4 Scalar multiplication: cA� 48
4.1.5 Standard matrix multiplication� 49
4.2 Matrix inversion� 51
4.2.1 The identity matrix� 52
4.2.2 The inverse of a matrix� 53
4.3 Linear systems� 57
4.4 Exercises� 68

5 Iteration� 71
5.1 Finding roots: the bisection method� 71
5.2 Euler’s method for differential equations� 80
5.2.1 Systems of differential equations and higher-order differential

equations� 91
5.2.2 Interpolation—using the approximations� 99
5.3 Exercises� 101

X � Contents

6 Statistics� 103
6.1 File handling� 103
6.2 Descriptive statistics� 118
6.3 Probability� 123
6.3.1 Numerical integration� 125
6.4 Confidence interval for the mean of a population� 132
6.5 Hypothesis testing� 140
6.6 Comparing groups� 147
6.6.1 Comparing means of two groups� 147
6.6.2 Comparing means of more than two groups� 152
6.7 Exercises� 157

7 Regression� 161
7.1 Linear regression� 161
7.1.1 Correlation� 170
7.1.2 Multiple linear regression� 171
7.2 Logistic regression� 178
7.2.1 Digit recognition model� 186
7.3 Neural networks� 193
7.4 Exercises� 206

A Python code� 209
A.1 Chapter 2 code� 209
A.2 Chapter 3 code� 209
A.3 Chapter 4 code� 216
A.4 Chapter 5 code� 221
A.5 Chapter 6 code� 228
A.6 Chapter 7 code� 240

B Solutions� 249

Index� 313

Index of Python Commands� 315

1 Introduction

After years of mentoring undergraduate student research projects, it is clear that the
most popular projects are applied in nature. It is also true that most “real-world” prob-
lems can not be solved explicitly. That is, we cannot find a nice, neat formula to solve
the problem. Because of this, wemust use numerical techniques to determine a close ap-
proximation to the solution of the problem of interest. These techniques often require
us to repeat a process hundreds or thousands of times in order for the approximation
to be “close enough” to the actual solution or for the approximation to evolve for the
desired length of time. In addition to such repeated processes, we also frequently need
to handle large amounts of data or manipulate large matrices in order to arrive at a
solution. To solve the types of problems that arise in math and science, we frequently
need to develop and implement an algorithm. An algorithm is the definition of a process
that is to be used in solving a problem. Generally, algorithms are presented as a list of
steps to be followed in order to arrive at a solution. In this book, we introduce some of
the fundamental ideas and methods that are used to solve scientific problems. Some of
the most frequently occurring challenges include:
– the need to locate the extreme values of a function;
– the need to solve large linear systems;
– the need to solve differential equations (or systems of differential equations);
– the need to draw conclusions about a population based on a sample (inferential

statistics);
– the need to find the “best” linear model for a set of data (linear regression); and
– the need to classify objects (logistic regression and neural networks).

Furthermore, from amathematical standpoint, we need to be able to analyze functions,
e. g.:
– graph a function;
– find and graph the derivative of a function;
– compute the definite integral of a function.

This text addresses all of these issues to some degree. The book is intended for math and
science students who have had a semester of calculus. We will approach topics from an
introductory level. Because of this, we will have to exclude much of the rich theory that
is available in the study of numerical methods. Our goal is to introduce students to the
types of methods that are available and the basic ideas that motivate these methods. In
general, there are more advanced (and more efficient) methods available than the ones
we cover. However, we seek to teach the student “how” to approach a problemwithin the
context of computing. If a student wishes to pursue a topic more deeply, we reference
avenues for such further study.

In order to present the techniques and methodologies, we use the Python program-
ming language. Thus, in addition to learning the numerical methods, students will also

https://doi.org/10.1515/9783110776645-001

https://doi.org/\global \c@doi \c@chapter \relax \global \advance \c@doi \c@parttext \relax 10.1515/9783110776645-000

2 � 1 Introduction

learn how to program using Python. It is a powerful language that is available to every-
one at no cost (since it is open-sourced). The text begins by discussing some of the fun-
damental tasks that we must be able to accomplish using the programming language.
Such tasks include:
– arithmetic with Python;
– defining and graphing a function;
– manipulating matrices.

Once these fairly basic ideas are discussed in the context of the Python language (Chap-
ters 2, 3, and 4), we then move on to discuss more advanced numerical methods and
apply them in scientific settings.

Data files

The data files that are used within the text may be obtained from the following address:

https://www.degruyter.com/document/isbn/9783110776645/html

or by contacting the author at wmiles@stetson.edu.

https://www.degruyter.com/document/isbn/9783110776645/html
mailto:wmiles@stetson.edu

2 The basic operations in Python

2.1 Obtaining Python

The Python programming language may be obtained via several sources. A quick web
search will indicate many websites from which students may download and install the
language. Since there are so many possibilities, we do not attempt to define the in-
stallation process. We rely on the student to find and install the language. Students
should be sure to install a version of Python 3 because Python 2 will not be supported in
the future. For this text, we used Python version 3.8, and the reader should be aware
that the language is continually being updated, and sometimes methods and syntax
are modified or removed as new versions of the language are developed. Sites such
as Python.org and ActiveState.com have been reliable sources as of the writing of this
text (November 2022). In addition to the language, most students will find it helpful to
have a language editor. We have used PyCharm, from www.jetbrains.com, as the ed-
itor while writing the code for this book, but there are many nice editors available.
Students should install the Python language and the language editor of choice (usually,
Python is installed first, then the editor) before proceeding with the following mate-
rial.

2.2 Addition, subtraction, multiplication, and division

Once Python has been installed, our first goal is to be able to perform simple arithmetic
operations. This is relatively straightforward. So, let’s open a new file. We will use Py-
Charm as the editor, but you may choose to use a different editor. We recommend that
the editor recognize Python as the language. Features such as command highlighting
and completion and automatic indentation are very helpful.

Most of the arithmetic operations are as one might expect. For example, to add 3
and 5, we simply type ‘3 + 5’. Examples of other operations are similar:

Addition: � + �
Subtraction: � − �
Multiplication: � ∗ �
Division: �/�

Code:

1 # Chapter 2:

2 # 2.1,Arithmetic

3

https://doi.org/10.1515/9783110776645-002

http://Python.org
http://ActiveState.com
http://www.jetbrains.com
https://doi.org/\global \c@doi \c@chapter \relax \global \advance \c@doi \c@parttext \relax 10.1515/9783110776645-000

4 � 2 The basic operations in Python

4 # Addition, Subtraction, Multiplication, Division

5

6 3+5

7 3-5

8 3*5

9 5/3

If we were to run a program with these commands, it would appear that nothing has
happened. We get the message “Process finished with exit code 0.” Python actu-
ally did the operations requested, but we failed to ask to see the results. The simplest
way to see a result is to use the print command. To create the program to show these
results, we proceed as follows.

We need to write the commands in a program or script. A program is the list of
commands to be executed sequentially by the language (in this case, Python) compiler
or interpreter. There is a difference between a complied language and an interpreted
language, but, for our purposes, that difference is not of importance. We write the com-
mands in the language editor.

When we open PyCharm for the first time, we are asked to either open an existing
project or create a new one. Wewill create a new project calledNumMethodProject. The
student can choose a different name if desired. This generates an editor window that
looks like the following.

2.2 Addition, subtraction, multiplication, and division � 5

We then create a new Python file using File→ New→ Python File.

We named the file NumMethod.

6 � 2 The basic operations in Python

Finally, we can type the commands in the program.

Now, we can run the code using the⊳.

2.2 Addition, subtraction, multiplication, and division � 7

Then, we choose the program we wish to run.

As a result, the program runs and the output is displayed in lower frame of the edi-
tor window. The exit code of ‘0’ indicates that the program was executed (ran) with no
errors. If a code is given, then the code corresponds to a specific error condition that
indicates we need to correct our code in some way.

Screenshots are shown for this first example. However, we will list the code and the
output separately without actually showing screen shots henceforth. We can create as
many files as desired (using the same method as just shown) within the project.

8 � 2 The basic operations in Python

Note that we can provide comments in Python by beginning the line with a # char-
acter. A comment is a line that is not executed when the program is run, but, instead,
supplies information and context to the programmer. Usually, comment lines indicate
what a program (or part of a program) is intended to do. They are very helpful in ex-
plaining the code to other programmers who may use or modify the code in the future.
If we wish to have several lines as comments, we can begin a comment block with three
single quotation marks. All lines that occur after the three quotes are considered to be
comments until another set of three quotes are encountered. Thus, the first four lines of
the preceding program (the comment lines) could also be written as follows:

1 '''

2 Chapter 2:

3 2.1,Arithmetic

4

5 Addition, Subtraction, Multiplication, Division

6 '''

2.3 Powers
Powers are indicated slightly differently than we might expect. To raise a number to a
power, we use ** as the operator. Thus, 53 is expressed as 5**3.

Code:
1 print(5**3)

The output should look like this.

Output:
125

Process finished with exit code 0

See Exercise 1.

2.4 Displaying output
In the previous examples, the print commandwas used to display the result of an opera-
tion.However, there aremany timeswhenwewould like to display output in a particular
way. For example, consider the following script:

1 print(1/3)

2.4 Displaying output � 9

Output:
0.3333333333333333

Process finished with exit code 0

While the output is correct, one rarely needs one third expressed to 13 decimal places.
Thus, we wish to format the output to be more visually pleasing (without affecting the
value of the result). In addition, it is common to have multiple results that need to be
displayed.

We can modify the print statement to print more than one piece of information by
using commas between the separate items to be printed. Note, in the following example,
the first object to be printed is a literal string (i. e., a list of characters), ‘3+5 =’. The string
is printed as it appears, followed by the value of 3 + 5.

Code:
1 print('3+5 =',3+5)

Output:
3+5 = 8

Process finished with exit code 0

We can format output so that it is more readable by using the .format() function within
Python. There are many options that may be applied to the .format method, but the
most common option for us is one that allows us to fix the number of decimal places to
be displayed. Suppose we wish to print 2/3 to four decimal places. We could do so with
the following code.

Code:
1 print('The value of 2/3 to four decimal places is {:.4f}. '.format(2/3))

The output is thus:

Output:
The value of 2/3 to four decimal places is 0.6667.

In this line of code, the string that we wish to display is enclosed in single quotes. The
braces, along with the colon, indicate that an argument will be supplied in the format
section, and the .4f forces the floating-point number that is generated to be displayed out
to four decimal places.We can havemore than one argument. Suppose that the radius of
a circle is four. The following example prints the radius and the area of the circle, using
various format options. Recall that the area of a circle is given by A = πr2. We use 3.14
to approximate π.

10 � 2 The basic operations in Python

Code:
1 print('The radius is {}, and the area is {:.3f}.'.format(4.0, 3.14*4**2))

Output:
The radius is 4.0, and the area is 50.240.

In this format, the value of the radius is the first value in the format list. Thus, it is as-
sociated with the first pair of braces in the string portion of the statement. The radius
is printed as given (4.0) in the format list because no format specification is included
within the braces. The area is the second value in the format list. The area is displayed
using three decimal places. We contrast this format statement with the following one to
further demonstrate the use of the .format structure.

Code:
print('The radius is {:.2f}, and the area is {:.5f}.'.format(4.0, 3.14*4**2))

Output:
The radius is 4.00, and the area is 50.24000.

In this case, twodecimal places are displayed for the radius because the format specifica-
tions now include .2f while five decimal places are used for the area, as also stipulated.

See Exercise 2.

2.5 Exercises

1. Use Python to evaluate the following expressions:
(a) 4.12−42

.1
(b) (3 + 2)3(5 − 1)4

2. Recall that the volume of a sphere is given by V = 4
3πr

3. For a sphere of radius
4.23 cm, use the format structure to output the sentence: “The radius is 4.23 and the
volume is xx.xxx.” where the volume is computed according to the formula (and
replaces the xx.xxx). Let π be approximated by 3.14.

3 Functions

3.1 Exponentials, logs, and trig functions

We have seen how to raise numbers to powers with the ** operator. What about calcu-
lating something like e3? There are multiple ways to do this, but each of them requires
that we ask Python to use a set of tools that is not included in the core Python language.
Such a set of tools is called a library or package. To access the package, we use the import
command. There are at least two packages that contain the tools we need to compute e3:
themath package and the numpy package. Within themath package, there is a method
or object called e that represents the number e as we know it. To access the object, we
use math.e. The import statement is used to make the package available to Python. See
the following code.

Code:
1 import math

2 print(math.e)

3 print(math.e**3)

This will display the following:

Output:
2.718281828459045

20.085536923187664

Process finished with exit code 0

So, now we have access to the value of e, and we can use it as we see fit. We can obtain
the value of e3 with math.e**3. The math package also contains a method called .exp
which stands for exponential. Thus,math.exp(3) would also give us e3 as shown here.

Code:
1 import math

2 print(math.e)

3 print(math.e**3)

4 print(math.exp(3))

Output:
2.718281828459045

20.085536923187664

20.085536923187668

Process finished with exit code 0

https://doi.org/10.1515/9783110776645-003

https://doi.org/\global \c@doi \c@chapter \relax \global \advance \c@doi \c@parttext \relax 10.1515/9783110776645-000

12 � 3 Functions

Alternatively, we could use a library called numpy instead of the math library. Numpy
has an method called exp that will compute ex with the command numpy.exp(x). Thus,
e3 would be found with the following code.

Code:
1 import numpy

2 print(numpy.exp(3))

Output:
20.085536923187668

Process finished with exit code 0

The log functions are similar. For example, to compute ln(5), we could use either
math.log(5) or numpy.log(5), depending on which library we choose to import. Note
that, in both of these packages, “log” indicates “ln” instead of the base 10 log. In our
experience, we tend to use numpy more often than the math library.

Both Numpy and the math package also provide the trigonometric functions. The
angle measures are assumed to be in radians. Suppose we wish to print a table of sine
and cosine values for the standard angles: 0, π

6 ,
π
4 ,

π
3 , and

π
2 .

Code:
1 #print a table of trig values

2 import numpy

3 print("angle |{:>5} |{:>5} |{:>5} |{:>5} |{:>5} |".format(\

4 '0','\u03C0/6','\u03C0/4','\u03C0/3','\u03C0/2'))

5 print('--')

6 print("cos(x)|{:.4f}|{:.4f}|{:.4f}|{:.4f}|{:.4f}|".format(\

7 numpy.cos(0),numpy.cos(numpy.pi/6),numpy.cos(numpy.pi/4),\

8 numpy.cos(numpy.pi/3),numpy.cos(numpy.pi/2)))

9 print("sin(x)|{:.4f}|{:.4f}|{:.4f}|{:.4f}|{:.4f}|".format(\

10 numpy.sin(0),numpy.sin(numpy.pi/6),numpy.sin(numpy.pi/4),\

11 numpy.sin(numpy.pi/3),numpy.sin(numpy.pi/2)))

Output:

Figure 3.1: Table of trigonometric values.

3.2 Variables � 13

There are a few things to learn from this short code. First, line 3 makes use of a string
formatting argument tomake thewidth of the output fixed. The notation {:>5} indicates
a string field of a width of five characters. This makes possible a vertical alignment of
the table since more lines are printed. To print the π symbol, we used the code \u03C0.
The codes for the symbols may be found easily online. At the time of this writing, many
useful codes were found here:

https://pythonforundergradengineers.com/unicode-characters-in-python.html

The \ at the end of lines 3, 6, 7, 9, and 10 indicate that the command continues to the
next line. This allows for more readable code should the lines become lengthy. Finally,
one can see the numpy.sin(), numpy.cos(), and the numpy.pi methods used throughout
the code.

See Exercise 1.

3.2 Variables

When using a computer language, we need to be able to store values for future use. We
use variables to do this. In mathematics, we are accustomed to using variables like x
and y. In programming, it is common to use variable names that are more descriptive.
Variable names may not begin with a number, and, while the underscore character may
be used, most special characters are not allowed in the name. Otherwise, variables can
be named almost anything. For example, inmathematicswewould tend to denote height
as a variable by using h or h(x), but, in Python (or most computer languages), one would
likely use the entire word height as the variable name. Hence, there is no confusion as
to what the variable represents. In that sense, programmers use variable and function
names in a more explicit and meaningful way than mathematicians. In this text, there
are three main types of variables used, namely,
– floating point
– integer
– string

A floating-point variable is a variable that can hold a decimal number while an integer
variable expects only a pure integer. It is important to use floating-point variables when
needed.

If a variable is assigned an integer value (no decimal point), then Python assumes
the variable is an integer variable. In Python 3, if an arithmetic operation involving
integer variables does not naturally result in an integer, the then Pythonwill convert the
result to floating-point type. Such conversion is not true of all programming languages,
so one must be mindful of the types of variables that are being used.

https://pythonforundergradengineers.com/unicode-characters-in-python.html

14 � 3 Functions

Consider the following:

Code:
1 r = 4

2 print(type(r))

3 q = 3

4 print(type(q))

5 a = r/q

6 print(a)

7 print(type(a))

Output:
<class 'int'>

<class 'int'>

1.3333333333333333

<class 'float'>

Note that r, q, and a are all variables in this code. We use the type command to see
what kind of contents are stored in the variable. From this, we see that, while r and q

are both integer-type variables, the result of r/q results in a non-integer. Fortunately,
Python recognizes this and assigns a to be a floating-point variable.

A variable that holds characters (or text) is called a string variable. Some example
code follows.

Code:
1 x = 'Will Miles'

2 print(x)

In this code, x holds the string Will Miles. The string must be enclosed by either single
or double quotes. When we run the code, the following output is given.

Output:
Will Miles

There aremanymethods that are available for usewith strings. Perhaps surprisingly,we
can add strings andmultiply them by counting numbers. The results of these operations
are shown via the following examples.

Code:
1 fname = 'Will'

2 lname = 'Miles'

3 name = fname+lname

4 print(name)

3.2 Variables � 15

Output:
WillMiles

Addition of strings results in the second string being attached to the end of the first
string. Such a combination is called a concatenation. Notice that no space is added be-
tween the strings that are being added. If we want a space, we could either add a space
to fname, or we could add a space explicitly in the expression:

name = fname + ' ' + name

Multiplying a string by a nonnegative integer creates the specified number of copies of
the string concatenated as shown next.

Code:
1 fname = 'Will'

2 name = 4*fname

3 print(name)

Output:
WillWillWillWill

Strings are officially lists of characters. Lists will be discussed in more detail later in the
text, but we can access portions of a string variable as follows. Consider the code that
follows.

Code:
1 coursename = 'Scientific Computing'

2 print(coursename[3])

3 print(coursename[0:10])

4 print(coursename[11:])

Output:
e

Scientific

Computing

Notice that coursename[3] gives the fourth character of the string. This is because
Python begins counting at 0. When we write coursename[0:10], we are asking for a
range within the list, starting at the 0th element and ending with the 9th element. So,
[0:10] indicates from 0 to 10, not including 10. Similarly, coursename[11:] requests
the elements of coursename beginning with element 11 and continuing until the end of
the list (or string in this case). This colon notation allows us to access pieces of the string
or list as we wish.

16 � 3 Functions

Another common task associated with strings is the need to find a particular string
inside of another string. This is accomplished with the .find attribute. We use the fol-
lowing structure:

variable name.find('characters to search for')

The following code checks to see if the string ‘Comp’ is inside the string defined by
coursename. It then attempts to find the string ‘not’ inside of coursename.

Code:
1 coursename = 'Scientific Computing'

2 a = coursename.find('Comp')

3 print(a)

4 b = coursename.find('not')

5 print(b)

Output:
11

-1

When a string is found, the index of the beginning of the substring is returned. That
is, ‘Comp’ begins at the eleventhth element of coursename. However, if the string is not
found, the method returns a value of −1. When control structures are introduced later,
one will see how this information can be used. The .findmethod is case sensitive. That
is, if wewere to search for ‘comp’ instead of ‘Comp’, themethodwould return a−1. If one
wishes to remove the case sensitivity, we could use the string method .upper to convert
the string to the upper case before searching the string.

Code:
1 #use upper case to ignore case sensitivity

2 coursename = 'Scientific Computing'

3 # convert string to upper case

4 Ucourse = coursename.upper()

5 print(Ucourse, coursename)

6 #search for the uppercase of 'comp'

7 a = Ucourse.find('comp'.upper())

8 print(a)

Output:
SCIENTIFIC COMPUTING Scientific Computing

11

Process finished with exit code 0

3.3 Defining and using mathematical functions � 17

Examining the previous code, we see that the contents of coursename are converted
to all uppercase letters in line 4. When the converted string, Ucourse, and the original
name are printed in line 5, we see that the original variable contents are unchanged.
In line 7, the uppercase string is searched for the uppercase substring. Thus, since all
letters are uppercase, there is no case sensitivity.

There are many other string methods available. Essentially, if you want to do some-
thing with strings, your first step should be to Google what you want with ‘Python’ in-
cluded in the search terms. It is likely that a method is already included among the re-
turned content.

See Exercises 2–4.

3.3 Defining and using mathematical functions

We have seen that Python has many mathematical functions (including trigonometric,
exponential, and logarithmic functions) available via the math and numpy libraries.
However, it is often the case that we would like to define our own functions and be
able to access them in a convenient fashion. We can do this in Python by using the def
structure. Suppose we wish to define and use the function f (x) = 3x2 − 2x + 1. We would
begin by defining the function with the following.

Code:
1 def f(x):

2 y = 3.0*x**2-2.0*x+1.0

3 return y

The code starts with the def command followed by the name of the function. We can
choose any name for the function. Generally, like variable names, function names tend
to indicate the purpose of the function. In this case the function name is f. Following
the function name is a list of inputs that the function will need in order to compute
its value or perform its task. In this example, the function f requires a value for x in
order to calculate the value of the function. In this example the value of the function is
stored in the variable y. Finally, wemust return the value of y. The indentation after the
def declaration is important. All lines of code that are indented under the def are part
of the definition of the function. Once the indentation ends, the function is complete.
The return is required because defined functions have what is called local scope. This
means that variables and values used within the defined function are known only to
that function. Hence, if the main program refers to variables that are defined within the
function, an error will likely occur. For example, consider the following.

18 � 3 Functions

Code:
1 #defining functions

2 x = 3

3 def f(x):

4 y = 3.0*x**2-2.0*x+1.0

5 return y

6

7 print(y)

The program begins by defining x to be 3. The function f is then defined as before. How-
ever, when the code attempts to print y, an error is encountered.

Output:
Traceback (most recent call last):

File "/Users/WillMiles/Desktop/_Courses/SciComp/SciCompBook/BookCode/

BookCodeChap3.py", line 75, in <module>

print(y)

NameError: name 'y' is not defined

Process finished with exit code 1

This is because the y variable that is defined in the function definition is restricted to
just that function. Hence the “mainline” program does recognize y as being a defined
variable. This local scope allows us to reuse variable names if we wish, i. e., we could
still define a variable y in the mainline without affecting the variable used inside the
function definition. Furthermore, defining x to be 3 has nomeaning to the function. The
variable x is defined outside of the function definition; thus, the function does not know
the value of x.

To use (or call) the function, we use the function name and supply the necessary
arguments. For example, one can evaluate the function as usual, using f (x) notation.
For example, if we wished to know the value of f when x = 3, we would calculate f (3).
We can do this in Python as shown in the following.

Code:
1 #defining functions

2 def f(x):

3 y = 3.0*x**2-2.0*x+1.0

4 return y

5

6 y = f(3)

7 print('f(3)=',y)

3.4 Getting input from the keyboard � 19

The output displays as follows.

Output:
f(3)= 22.0

Process finished with exit code 0

As another example to demonstrate the scope issue regarding functions, consider the
following.

Code:
1 #defining functions

2 def f(x):

3 y = 3.0*x**2-2.0*x+1.0

4 return y

5

6 y = 10

7 print('f(3)=',f(3))

8 print('y=',y)

Output:
f(3)= 22.0

y= 10

Process finished with exit code 0

Notice that y is used in both the function and the mainline program. When the function
is called, it does not change the value of y that exists in the main.

See Exercises 5–6.

3.4 Getting input from the keyboard

Often, wewish to have a program ask for input from the user. For example, wemaywish
to enter the value of the radius of a circle and have a Python compute the area of the
circle. We can accomplish this input via the input command. The command uses the
following syntax:

variable_name = input('prompt string')

Input is received as a string. Thus, if we wish to use the input as if it were numeric,
we must convert the string to a useable number. We can do this by simply taking the

20 � 3 Functions

input and applying the desired type to it. Consider the following code that prompts for
the radius of a circle to be entered, computes the corresponding area, and displays the
results.

Code:
1 import numpy as np

2 radius_str = input('Enter the radius: ')

3 #convert the radius to a floating point value

4 radius = float(radius_str)

5 #compute the area, A = pi*r^2

6 area = np.pi*radius**2

7 print('The area of a circle with radius {:.3f} cm is {:.3f}\

8 square cm'.format(radius, area))

The prompt is issued in line 2 of this code, and the number that is entered (as a string
by default) is converted to a floating-point variable in line 4. There are some issues that
we should recognize in this small code. First, if the user enters something other than a
number, an error is likely to occur in line 4 when it tries to convert the entered text into
a number. There are ways to check to see if the input is valid, but we will not address
that at this time. For our purpose, we wish to develop code that will help us to solve
problems. Hence, we simply recognize that we need to be careful when entering data.
Also, in line 1, notice that numpy was imported as np. This allows us to type np instead
of numpy when we access elements of the numpy package, as we did in line 6. A sample
output is given in the following.

Output:
Enter the radius: 4.2

The area of a circle with radius 4.200 cm is 55.418 square cm

Process finished with exit code 0

See Exercises 7–8.

3.5 Graphing functions
In order to work with functions we frequently wish to see the graph. Thus, we turn
our attention to the task of producing graphs of functions using Python. To do this, we
make a list of x values and use the defined function to compute the corresponding list
of y values. We use another library calledmatplotlib to generate the graph. The plotting
methods are in a sub-module of matplotlib called pyplot. Hence, we can import just that
part of the library to save some memory and to reduce the amount of typing needed to
call up the methods.

3.5 Graphing functions � 21

To make a list of x values, Python offers several alternatives. The standard list (or
array) is simply a list of items enclosed in square brackets and separated by commas.
In the following code, x and y are both standard lists in Python. Note that x is a list of
integers, while y is a list of mixed type: some integers, a floating-point number, and a
three strings.

Code:
1 #Python lists

2 x = [1,2,3,4]

3 print('x=',x)

4 y = [1,'a',3.14,'c','will']

5 print('y=',y)

When the code is run, the following is displayed.

Output:
x= [1, 2, 3, 4]

y= [1, 'a', 3.14, 'c', 'will']

Process finished with exit code 0

Just as we did with strings, we can access lists using square brackets. So, x[1] will be 2
(again, because Python begins counting at 0), and y[4] = ‘will’. We can also use the colon
notation to access parts of the lists as we previously did with strings.

So, suppose we wish to plot the function f (x) = x2 between x = 0 and x = 5. To do
this in Python, we need a list of x values and a corresponding list of y values. So, let’s
define the list for x to be

x = [0,1,2,3,4,5].

Then the corresponding list for y would be

y = [0,1,4,9,16,25].

Now we want to plot these points and connect them. This is where we will use themat-
plotlib package. The code to plot the points follows.

Code:
1 #graphing functions

2 import matplotlib.pyplot as plt

3 x = [0,1,2,3,4,5]

4 y = [0,1,4,9,16,25]

22 � 3 Functions

5 plt.plot(x,y)

6 plt.show()

In line 1, we import the plotting functions that are included in the matplotlib package.
Notice that we imported the desired module and named it plt. This allows us to refer
to the library using this abbreviated name, saving us some typing. Lines 2 and 3 define
the points that are on the graph of the function to be plotted. Line 4 actually creates the
plot but does not display the plot. Finally, line 5 shows the plot. In lines 4 and 5, the ‘plt’
references the library of plotting functions that was imported. We use the dot notation
to indicate which method from that library we wish to use. When this is run, we should
see the following plot.

It is important to remember to include the plt.show(). Without it, it will appear that
nothing has been calculated. We can also include many other attributes of a graph. We
can place titles on the axes or on the entire graph, we can change the plotting style, and
we can add a grid if desired. Consider the code below.

Code:
1 #graphing functions

2 import matplotlib.pyplot as plt

3 x = [0,1,2,3,4,5]

4 y = [0,1,4,9,16,25]

5 plt.plot(x,y,'b*-',label='f(x)=x^2')

6 plt.xlabel('x-axis')

7 plt.ylabel('y-axis')

3.5 Graphing functions � 23

8 plt.title('Big Title')

9 plt.grid()

10 plt.show()

The code should generate the plot that follows.

Output:

There are many new attributes included in the previous code. In line 5, some plotting
options are included in the plot command. The string 'b*-' is a called a format string
and indicates that a blue line is to be used to connect data points. Further, the actual
data points are to be marked with an asterisk. The label attribute in line 5 allows one
to apply a description, f (x) = x^2, to this plot so that we can include a legend if desired.
Lines 6 and 7 indicate how to add axis titles to the plot, and line 8 allows for an overall
title. Finally, line 9 displays a graphing grid for the plot.

We can also include another plot on the same set of axes and add a legend to the
graph. Suppose we wish to add a graph of the derivative f ′(x) = 2x to the current
plot. We can use the same list of x values, but we will need a new list of y values. In
the following code, we use z to store the list of y values that corresponds to 2x. Thus,
z=[0,2,4,6,8,10]. Then, another plot command is executed.

Code:
1 #graphing functions

2 import matplotlib.pyplot as plt

3 x = [0,1,2,3,4,5]

24 � 3 Functions

4 y = [0,1,4,9,16,25]

5 z = [0,2,4,6,8,10]

6 plt.plot(x,y,'b*-',label='f(x)=x^2')

7 plt.xlabel('x-axis')

8 plt.ylabel('y-axis')

9 plt.title('Big Title')

10 plt.grid()

11 plt.plot(x,z,'b--',label="f'(x)=2x",c='0.45')

12 plt.legend()

13 plt.show()

And the graph now looks like the following.

In line 11, we used another kind of color attribute. The attribute c='0.45' allows us to
plot in a gray scale. The variable c can take on any number between 0 and 1 where 0
implies the color is black and 1 is white. Values in between set the color to a level of
gray accordingly. Thus, the curve is to be plotted in a shade of gray using a dashed line
with no data markers. The legend is placed in line 12. A full list of plotting options can
be found in the documentation for matplotlib:

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html

See Exercises 9–10.

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html

3.5 Graphing functions � 25

While the previous example is successful in plotting y = x2 between x = 0 and
x = 5, the graph has noticeable corners, and we had to manually type in all of the points
instead of using the actual function to calculate the y values. Thus, we’d like to find away
to include a great many more points on the graph (so that the graph is smoother), and
we want to define the function and use it within Python instead of calculating values
by hand. Suppose we would like to use x values that are spaced 0.1 units apart. So, we
would have a list that looks like

x = [0, 0.1, 0.2, 0.3, . . . , 5].

We could type the list of 51 numbers, but that kind of defeats the purpose of using a
computer. Fortunately, the numpy library includes amethod that will do exactly this. We
can generate a numpy list using a method called arange(start, stop, step). The method
takes three arguments:
– start: the first number in the desired range of numbers;
– stop: the number at which the list will end (it is not included in the list);
– step: the interval between each pair of numbers in the list

Consider the following code.

Code:
1 import numpy as np

2 x = np.arange(0,5,1)

3 print('x=',x)

In line 1, we import the numpy library as np. We then assign a list of values to x, starting
with 0, ending at 5, separated by 1. However, note that 5 is not included. The program
produces what looks like this.

Output:
x= [0 1 2 3 4]

Process finished with exit code 0

If we wanted 5 to be included in the list, then the “end” value would have to be larger
than 5. Let’s change 5 to 5.1. Now x is as shown below.

Output:
x= [0. 1. 2. 3. 4. 5.]

Process finished with exit code 0

26 � 3 Functions

Now, 5 is included in the list. Also, decimal points have nowbeenused in all the numbers.
That’s because, when the Python interpreter encountered “5.1,” it assumed that floating-
point numbers were now allowed and expected.

So, to get our list of 51 points between 0 and 5, we would need
x = np.arange(0,5.1,0.1). In general, if we wish to construct a list that starts with a

and ends with b (including b) with a step of dx, then we should add the step size to the
end value. So, the command would look like this:

x = np.arange(a,b+dx,dx)

Nowwe wish to fill another list with the associated y values. To do so, we can define the
function of interest and use it to evaluate the function at all of the values in the x list.
The code to do this is given next.

Code:
1 import numpy as np

2 def f(x):

3 y = x**2

4 return y

5

6 x = np.arange(0,5.1,0.1)

7 print('x=',x)

8 y = f(x)

9 print('y=',y)

Whilewe can define functions almost anywhere in the code, it is common to put function
definitions at the top of the code. That way, we can be sure that all the functions are
defined before the logic of the program begins. Lines 2–4 define the function f (x) = x2.
Line 6 sets up the list of x values, and line 7 prints the list. We will want to eliminate the
print statement oncewe know things are working because the list is long and usesmany
lines to display. In line 8, the list of associated y values is constructed. Note that we use
the defined function f (x) to evaluate x2 for all of the x values at once. Line 9 prints the
list of y values just to make sure the list is filled correctly. Again, we will eliminate the
print statement in the future. When the code is run, the following is generated.

Output:
x= [0. 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1. 1.1 1.2 1.3 1.4 1.5 1.6
1.7 1.8 1.9 2. 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3. 3.1 3.2 3.3 3.4
3.5 3.6 3.7 3.8 3.9 4. 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.]
y= [0.000e+00 1.000e-02 4.000e-02 9.000e-02 1.600e-01 2.500e-01 3.600e-01
4.900e-01 6.400e-01 8.100e-01 1.000e+00 1.210e+00 1.440e+00 1.690e+00
1.960e+00 2.250e+00 2.560e+00 2.890e+00 3.240e+00 3.610e+00 4.000e+00
4.410e+00 4.840e+00 5.290e+00 5.760e+00 6.250e+00 6.760e+00 7.290e+00
7.840e+00 8.410e+00 9.000e+00 9.610e+00 1.024e+01 1.089e+01 1.156e+01

3.5 Graphing functions � 27

1.225e+01 1.296e+01 1.369e+01 1.444e+01 1.521e+01 1.600e+01 1.681e+01
1.764e+01 1.849e+01 1.936e+01 2.025e+01 2.116e+01 2.209e+01 2.304e+01
2.401e+01 2.500e+01]

Process finished with exit code 0

By inspection, we see that the values for the y list are, in fact, the squares of the values
in the x list. Hence, the function is working correctly. So, we now have 51 paired x and
y values. In this fashion, we could build lists with as many points as desired. The reader
is encouraged to modify the code to build a list of 100 points.

Note that numpymay use scientific notation to print numbers that are generated by
floating- point arithmetic. Personally, I do not like this, so I frequently change the default
print option with the following command:

np.set_printoptions(precision=3,suppress=1,floatmode='fixed')

The precision=3 argument indicates that three decimal places are displayed. The sup-
press=1 argument suppresses the use of scientific notation, and the floatmode=’fixed’ op-
tion causes all numbers to display all decimal places, even if there are redundant zeros.
You do not need this command. I use it because I do not like the look of scientific nota-
tion, especially if the numbers are not that big.

Okay, nowwe can plot the function the samewaywedid earlier, using thematplotlib
functions with the x and y lists.

Code:
1 import numpy as np

2 import matplotlib.pyplot as plt

3 np.set_printoptions(precision=3,suppress=1,floatmode='fixed')

4 def f(x):

5 y = x**2

6 return y

7

8 x = np.arange(0,5.1,0.1)

9 y = f(x)

10 plt.plot(x,y)

11 plt.xlabel('x-axis')

12 plt.ylabel('y-axis')

13 plt.title('f(x) = x^2')

14 plt.grid()

15 plt.show()

28 � 3 Functions

We can see that the resulting graph is much smoother than the previous graph.

We should also note that the figure window that is generated by matplotlib is an inter-
active window. We can save the graph to a file or edit portions of the graph as indicated
by the tool bar at the bottom of the plot. Finally, we may want to plot multiple graphs in
separate windows. We use the .figure() method to accomplish this. In the following
code, we plot f (x) = x2 in one window and g(x) = sin(x) in a second window. See the
modified code that follows.

Code:
1 import numpy as np

2 import matplotlib.pyplot as plt

3 np.set_printoptions(precision=3,suppress=1,floatmode='fixed')

4 def f(x):

5 y = x**2

6 return y

7

8 x = np.arange(0,5.1,0.1)

9 y = f(x)

10 z = np.sin(x)

11 plt.plot(x,y)

12 plt.grid()

13 plt.figure()

14 plt.plot(x,z)

3.5 Graphing functions � 29

15 plt.grid()

16 plt.show()

When this code is executed, two figure windows are produced: one shows y = x2; one
shows y = sin(x).

We now look at how to plot piecewise functions. Supposewewish to graph the following
function:

f (x) = {
x2 if x ≤ 0
x + 1 if x > 0

To define this function, we must be able to make decisions based on the value of x. In
Python (and other programming languages),we do thiswith the if structure. The general
form of the if structure is:

if condition:
do these statements if condition is true
executable statements

else:

do these statements if condition is not true
executable statements

The indentation is important because it indicates the blocks of code to be done depend-
ing on the result of the condition. For the function of interest, wewouldwant a structure
like the following.

Code:
1 #our first if statement

2 #first get an x value

3 x = float(input('Enter an x value: '))

4 #logic of the piecewise function

30 � 3 Functions

5 if x<=0: #the condition is x<=0

6 y = x**2 #condition is true

7 else: #otherwise

8 y = x+1 #condition is false

9 print('f({}) = {}'.format(x,y))

Let’s step through this. Lines 1 and 2 are comment lines. Python knows this because of
the # at the beginning of the lines. Comments are not executed. They are there to help
us explain to others what the code is doing. Line 3 allows the user to input a number.
The number is converted to a floating-point value and stored in the variable x. Line 5
begins the if structure by testing to see if x ≤ 0. Note that ≤ is denoted by <=. Suppose
the user enters −1. Then, the condition is true. Thus, line 6 is executed, and y = (−1)2 = 1.
Lines 7 and 8 are not executed because the condition was true. Then, line 9 is executed
to display f(-1) = 1 on the screen.

Output:
Enter and x value: -1

f(-1.0) = 1.0

Process finished with exit code 0

If we were to enter 2 for x, then, line 6 would not be executed because the condition
would be false. So, line 8 would be executed to give y = x + 1 = 2 + 1 = 3. Try it.

Output:
Enter and x value: 2

f(2.0) = 3.0

Process finished with exit code 0

When using conditions like those commonly found in if structures, we often use logical
operators to compare values. Thus, we need to know how to express the usual operators
in the Python language. The following table shows how to write each type of operator
in the appropriate way.

Logical Python
Operator Expression= =≠= !=> >≥ >=< <≤ <=

3.5 Graphing functions � 31

Note that the double equals (==) is used when making a comparison, while the single
equals (=) is used to assign a value to a variable. We can include the if structure inside
of a function definition as shown in the code below.

Code:
1 # define a piecewise function using if statements

2 # in this example, we have named the function pw

3 def pw(x):

4 #logic of the piecewise function

5 if x<=0: #the condition is x<=0

6 y = x**2 #condition is true

7 else: #otherwise

8 y = x+1 #condition is false

9 return y

10

11 y1 = pw(-1)

12 y2 = pw(2)

13 print('f({}) = {}'.format(-1,y1))

14 print('f({}) = {}'.format(2,y2))

Note that we must include another level of indentation to meet the requirements of the
def structure. We called the new function pw. Also, we must include a return statement
so that the value of the function can be used after it has been computed. Finally, the
function is used in lines 11 and 12 and the results are displayed by lines 13 and 14. When
executed, the program produces the following output.

Output:
f(-1) = 1

f(2) = 3

Process finished with exit code 0

Okay, so now let’s try to plot the function between x = −2 and x = 2. We will use the
same steps that we did in previous graphing programs:
– import matplotlib.pyplot;
– define the function;
– create numpy list of x values;
– use the function to create corresponding list of y values;
– use .plot to plot the graph of the function.

So, it seems like the following should work.

32 � 3 Functions

Code:
1 import numpy as np

2 import matplotlib.pyplot as plt

3 np.set_printoptions(precision=3,suppress=1,floatmode='fixed')

4 # define a piecewise function using if statements

5 # in this example, we have named the function pw

6 def pw(x):

7 #logic of the piecewise function

8 if x<=0: #the condition is x<=0

9 y = x**2 #condition is true

10 else: #otherwise

11 y = x+1 #condition is false

12 return y

13

14 a = -2

15 b = 2

16 n = 100

17 dx = (b-a)/n

18 x = np.arange(a,b+dx,dx)

19 y = pw(x)

20 plt.plot(x,y)

21 plt.show()

However, when we run this, we get the following error.

Output:
Traceback (most recent call last):

File "/Users/WillMiles/Desktop/_Courses/SciComp/SciCompBook/BookCode/

BookCodeChap3.py", line 163, in <module>

y = pw(x)

File "/Users/WillMiles/Desktop/_Courses/SciComp/SciCompBook/BookCode/

BookCodeChap3.py", line 152, in pw

if x<=0: #the condition is x<=0

ValueError: The truth value of an array with more than one element is

ambiguous. Use a.any() or a.all()

Process finished with exit code 1

The problem occurs when we ask the function pw to compute a value for each of the
values in the x list. Once the if structure was introduced to the function, the function
no longer knows how to evaluate a distinct value for each value in the x list. The pw

3.5 Graphing functions � 33

function is really expecting just a single number (a scalar) as input. So when it encoun-
tered a list of numbers, the if structure was unable to perform the comparisons in an
element-by-element fashion. To address this issue, we will “vectorize” the pw function.
We create a new function that will do the element-by-element comparison with the fol-
lowing command:

vpw = np.vectorize(pw)

The function is named vpw (for vectorized pw). You can name it anything, but I tend
to just put a ‘v’ in front of the existing function’s name so that I can keep track of the
vectorized functions if I have more than one. The revised code follows.

Code:
1 import numpy as np

2 import matplotlib.pyplot as plt

3 np.set_printoptions(precision=3,suppress=1,floatmode='fixed')

4 # define a piecewise function using if statements

5 # in this example, we have named the function pw

6 def pw(x):

7 #logic of the piecewise function

8 if x<=0: #the condition is x<=0

9 y = x**2 #condition is true

10 else: #otherwise

11 y = x+1 #condition is false

12 return y

13 vpw = np.vectorize(pw)

14 a = -2

15 b = 2

16 n = 100

17 dx = (b-a)/n

18 x = np.arange(a,b+dx,dx)

19 y = vpw(x)

20 plt.plot(x,y)

21 plt.show()

Notice that the vectorized version of pw is formed in line 13, and line 19 has been changed
so that vpw is used instead of pw. The list of x values is created in lines 14–18. This may
look like a lot of work just to get a list of values, but structuring the list like this allows
us to enter the start and stop values easily. It also allows us to change the number of
intervals (number of points minus 1) we wish to use with ease. The spacing is calculated
by the code. So, a little extra work up front leads to more flexibility of the code in the
long run. The code now runs without error and produces the following plot.

34 � 3 Functions

From the plot, we can see that there are still problems with the graph at the point where
the jump discontinuity occurs (when x = 0). The graph is connected when it should dis-
play a jump from one curve to the other. One way to address this unwanted connection
is to draw the graph in separate segments, i. e., draw the x2 part, and then draw the x + 1
part, using appropriate lists of x values for each part. Thus, we construct a list of x val-
ues that are between −2 and 0 (including 0) and a separate list of values between 0 and
2 (excluding 0). Then, use the function to fill corresponding lists of y values. Finally, plot
each x-y pair on the same graph. The code to implement this logic is below.

Code:
1 import numpy as np

2 import matplotlib.pyplot as plt

3 np.set_printoptions(precision=3,suppress=1,floatmode='fixed')

4 # define a piecewise function using if statements

5 # in this example, we have named the function pw

6 def pw(x):

7 #logic of the piecewise function

8 if x<=0: #the condition is x<=0

9 y = x**2 #condition is true

10 else: #otherwise

11 y = x+1 #condition is false

12 return y

13 vpw = np.vectorize(pw)

14 #set up the list for -2<x<=0

15 a = -2

16 b = 0

3.5 Graphing functions � 35

17 n = 50

18 dx = (b-a)/n

19 x = np.arange(a,b+dx,dx)

20 y = vpw(x)

21 plt.plot(x,y,'b')

22 #now do the second section of the function

23 a = 0

24 b = 2

25 n = 50

26 dx = (b-a)/n

27 # in this list we want to exclude the left endpoint at 0

28 # so we will use a start value that is slightly larger than 0

29 x = np.arange(a+dx,b+dx,dx) #note, this includes 2

30 y = vpw(x)

31 plt.plot(x,y,'b')

32 plt.grid()

33 plt.show()

The graph that is produced looks like this.

So, it seems that we did not fix the issue. We can see that the second part of the function
(the linear piece) seems to be fine. It looks like there is a small gapwhen x = 0whichwas
accomplished in line 29 by starting the list at a+dx. So what happened in the first part of
the graph? Well, because of the way a computer does arithmetic, numbers can be off by
a very small amount, which is caused by computer rounding error. In this case, when

36 � 3 Functions

Python computed the x list, the last number in the list (which we designed to be zero)
is actually verb 1.7763568394002505e-15 . While this is really close to zero, it is slightly
greater than zero. Thus, the second part of the piecewise function was used to calculate
the y value, which results in an obvious error in the graph. To avoid this rounding error,
we can simply assign the last element of the list to be what we want it to be. The revised
code follows.

Code:
1 import numpy as np

2 import matplotlib.pyplot as plt

3 np.set_printoptions(precision=3,suppress=1,floatmode='fixed')

4 # define a piecewise function using if statements

5 # in this example, we have named the function pw

6 def pw(x):

7 #logic of the piecewise function

8 if x<=0: #the condition is x<=0

9 y = x**2 #condition is true

10 else: #otherwise

11 y = x+1 #condition is false

12 return y

13 vpw = np.vectorize(pw)

14 #set up the list for -2<x<=0

15 a = -2

16 b = 0

17 n = 50

18 dx = (b-a)/n

19 x = np.arange(a,b+dx,dx) #last element may be very slightly above zero

20 x[n] = b #assign the last element to be zero

21 y = vpw(x)

22 plt.plot(x,y,'b')

23 #now do the second section of the function

24 a = 0

25 b = 2

26 n = 50

27 dx = (b-a)/n

28 # in this list we want to exclude the left endpoint at 0

29 # so we will use a start value that is slightly larger than 0

30 x = np.arange(a+dx,b+dx,dx) #note, this includes 2

31 y = vpw(x)

32 plt.plot(x,y,'b')

33 plt.grid()

34 #plt.plot(0,0,'b.',markersize=11)

35 #plt.plot(0,1,'b.',fillstyle='none',markersize=11)

36 plt.show()

3.5 Graphing functions � 37

A new line 20 was inserted to force the right-hand endpoint to be x = 0. Now, the graph
looks like this.

This graph is usually sufficient for informative and presentation purposes, but it does
not explicitly showwhich part of the function is defined for x = 0. Tomake this clear, we
can plot a closed dot on the part of the graph that is defined and an open dot where it is
not. We use the subsequent lines to plot points at (0,0), which is defined by the function,
and (0,1) which would be an open endpoint on the function.

plt.plot(0,0,'b.',markersize=11)

plt.plot(0,1,'b.',fillstyle='none',markersize=11)

Themarkersize parameter allows one to adjust the size of the point plotted. With these
lines added, the graph then looks similar to those we would expect to see in a textbook.

Finally, we should point out that the if structure can have any number of pieces
by using the elif option to add more conditional statements. For example, if we had a
piecewise function with three parts, such as

f (x) =
{{{
{{{
{

x2 if x < −1
x if − 1 ≤ x ≤ 1
sin x if x > 1,

we could define the function as

def pw(x):

if x<-1:

38 � 3 Functions

y = x**2

elif -1<=x<=1:

y = x

else:

y = np.sin(x)

return y

See Exercises 11–13.

3.6 Exercises

1. Use the print.format command and numpy package tomodify the table in Figure 3.1
to include more angles and the tangent function as shown here:

2. Write code that assigns 2 to a variable calledwidth and√5 to a variable called length.
Then, use a third variable called area to store the area of a rectangle with the spec-
ified length and width. Use print.format to display the result as follows: The area of
a box with width xx.xx and length xx.xx is xx.xx, where the xx’s are replaced with
the appropriate values.

3.6 Exercises � 39

3. Write code to store the string ‘Albert’ in a variable called firstname. Then store the
string ‘Einstein’ into a variable called lastname. Create a third variable called full-
name. Use the variables and string operations to assign ‘Einstein, Albert’ to the vari-
able fullname. Print the value of all three variables.

4. Assign the following string to a variable called basetext: ‘Force is equal to the prod-
uct of mass and acceleration.’
(a) Search basetext for the substring ‘mass’. Print the result.
(b) Using the: notation, print just the word ‘mass’ from basetext.
(c) Using the: notation, print the string beginning with the word ‘product’ through

the end of the string.
5. Write code to accomplish the following tasks:

(a) Define the function height(t) = −16t2 + 3t + 100.
(b) Evaluate the function at t = 2.
(c) Output the following to the screen: The value of height at t = 2 is xx.xxx. (Use

three decimal places in the format of the print statement.)
6. The body mass index is calculated according to the formula weight

height2 , where weight is
in kg and height is in m. Write code to define a function called bmi that takes two
arguments, height andweight, and returns the bodymass index. Use the function to
compute the body mass index of a person who is 1.7-m tall and weighs 68 kg. Print
the result as follows: ‘A personwho is x.xm tall andweighs xx kg has a BMI of xx.xx.’

7. Write code to accomplish the following:
(a) Prompt the user for their weight in kg.
(b) Prompt the user for their height in m.
(c) Convert the weight and height that were entered to numeric values.
(d) Use the bmi function written in the previous problem to compute the BMI for

the data entered.
(e) Display the results in a meaningful message.

8. Modify the area example at the end of Section 3.4 so that the area is defined as a
function with the radius as the argument of the function.

9. Use Python to plot the function f (x) = cos(x) between x = 0 and x = 2π.
(a) Create a list containing the following x values: 0, π

4 ,
π
2 ,

3π
4 , π,

5π
4 ,

3π
2 ,

7π
4 , 2π.

(b) Compute the corresponding y values for the given x values.
(c) Use the format string ‘go:’ in the plot statement.

10. Add the graph of g(x) = sin(x) to the graph in Problem 9.
(a) Draw g(x) using a solid black line.
(b) Include a legend that clearly identifies each function.
(c) Include a grid in the plot.
(d) Label the x axis with ‘x’.

11. An object is thrown from the top of a 100-ft tall building. The height of the object
above the ground after t seconds is given by h(t) = −16t2 + 10t + 100.
(a) At what time will the object hit the ground?

40 � 3 Functions

(b) Graph this function for 0 ≤ t ≤ b, where b is your answer to part (a). Use at least
50 points and include axis labels and a grid.

12. Suppose that a particular bacterial population grows exponentially for the first
three hours and, then, because of environmental restrictions, the growth shifts to a
rational function. Thus, the population of the bacteria is given by

P(t) = {
et if 0 ≤ t < 3
52.5614t+3

t+5 if t ≥ 3.

(a) Graph the population function on the interval 0 ≤ t ≤ 20.
(b) Does it appear that the function is continuous?
(c) If we want the function to be smooth, what might we require?

13. Graph the function f (x) =
{{
{{
{

x2 if x < −1
x if − 1 ≤ x ≤ 1
sin x if x > 1 on the interval [−2, 3]. Use at least

100 points. Include closed/open circles where appropriate.

4 Matrices, vectors, and linear systems

Our next topic deals with solving systems of linear equations. This should not be a new
mathematical topic for students, but we wish to develop methods to solve these systems
via programming. In the sciences, we often encounter large linear systems so employing
computerized methods is a necessity. Before we begin the topic in earnest, we present
some of the machinery and operations that apply to matrices and vectors in Python.

4.1 Matrices with numpy

Amatrix is simply a rectangular array of numbers. The shape or size of amatrix is given
by indicating the number of rows and columns contained in the matrix. For example,
we say a matrix with three rows and four columns is 3 by 4 or 3 × 4. In mathematics, we
enclose the array within square brackets. So, if

A = [1 2 3 4
−2 4 −3 5

] ,

then A is a 2 × 4 matrix. A matrix with the same number of rows as columns is called
square. The individual entries are denoted by row and column as A(row, col). Hence,
A(2, 4) = A2,4 = 5. Sometimes, the corresponding lower case letters are used, and the
comma notation is compressed. For example, we might write A(2, 4) = a24 = 5. We will
use the numpy library to do all of our matrix handling. The first step is to create a ma-
trix with the desired numerical entries. In Python (andmost programming languages) a
matrix is simply a two-dimensional list (array)—a list of lists. If the matrix is relatively
small, we can create thematrix explicitly with the desired values within thematrix. The
following code shows one way to create a matrix, as well as some ways to access the
entries of a matrix.

Code:
1 import numpy as np

2 #create the matrix

3 A = np.array([[1,2,3,4],[-2,4,-3,5],[-1,3,-3,4]])

4 print('A = ')

5 print(A)

6 #access the second row, third column

7 a23 = A[1,2]

8 print('The value in the second row, third column is ',a23)

9 #find the size of the matrix

10 m,n = np.shape(A)

11 print('rows = {}. cols = {}'.format(m,n))

https://doi.org/10.1515/9783110776645-004

https://doi.org/\global \c@doi \c@chapter \relax \global \advance \c@doi \c@parttext \relax 10.1515/9783110776645-000

42 � 4 Matrices, vectors, and linear systems

12 #get the third row of the matrix

13 Arow3 = A[2,:]

14 print('The third row is ',Arow3)

15 #get the second column of the matrix

16 Acol2 = A[:,1]

17 print('The second column is ',Acol2)

Output:
A =

[[1 2 3 4]

[-2 4 -3 5]

[-1 3 -3 4]]

The value in the second row, third column is -3

rows = 3. cols = 4

The third row is [-1 3 -3 4]

The second column is [2 4 3]

Process finished with exit code 0

The matrix is created in line 3 with the .arraymethod. In line 7, we show how to access
individual elements of the matrix, using the square brackets. The row is the first index,
the column is the second index (remember, Python starts counting at 0). We can also use
the ’:’ notation as we did with strings to access certain parts of thematrix. We can access
all or part of any row or column. Lines 13 and 16 show how to access a certain row and
column, respectively.

There are times when we may wish to retain the original matrix. Thus, we make a
copy of the original, make changes to the copy, and then refer back to the original. We
must be careful when we do this because matrices are said to be immutable. So using
the ‘=’ to make the copy may not act as you expect. See the following code and output.

Code:
1 import numpy as np

2 #create the matrix

3 A = np.array([[1,2,3,4],[-2,4,-3,5],[-1,3,-3,4]])

4 print('A = ')

5 print(A)

6 #show that matrices are immutable

7 B = A

8 #change B

9 B[0,0] = 2

10 #show that A was also changed.

4.1 Matrices with numpy � 43

11 print('A = ')

12 print(A)

Output:
A =

[[1 2 3 4]

[-2 4 -3 5]

[-1 3 -3 4]]

A =

[[2 2 3 4]

[-2 4 -3 5]

[-1 3 -3 4]]

Process finished with exit code 0

Note that A[0, 0] is originally set to be 1. The matrix B is set equal to A, and then B[0, 0]
is changed to be 2. However, when we print A again, we see that A[0, 0] is now also 2.
So changing B also changed A. This is because, when we say that A = a matrix, it re-
ally means that A points to a location in memory where the matrix is stored. So, when
B = A, Python sets B to point to same location in memory. Thus, if one of the variables
is changed, then both of them are modified because they are both pointing to same lo-
cation. We can accomplish what we need by asking for a ‘hard’ copy. We do so with the
.copymethod.

Code:
1 import numpy as np

2 #create the matrix

3 A = np.array([[1,2,3,4],[-2,4,-3,5],[-1,3,-3,4]])

4 print('Original A = ')

5 print(A)

6 #show that matrices are immutable

7 B = A.copy()

8 #change B

9 B[0,0] = 2

10 #show that A was also changed.

11 print('A after B has been changed =')

12 print(A)

13 print('B after the change =')

14 print(B)

Output:
Original A =

44 � 4 Matrices, vectors, and linear systems

[[1 2 3 4]

[-2 4 -3 5]

[-1 3 -3 4]]

A after B has been changed =

[[1 2 3 4]

[-2 4 -3 5]

[-1 3 -3 4]]

B after the change =

[[2 2 3 4]

[-2 4 -3 5]

[-1 3 -3 4]]

Process finished with exit code 0

So, when we use A.copy and assign it to B, then we can change B without affecting A.
Let’s investigate some of the other operators with respect to matrices. We want to

see what +, −, *, and / do when we have matrices as the variables.

4.1.1 Addition and subtraction: A ± B

We begin with addition and subtraction of A and B.

Code:
1 import numpy as np

2 #create the matrix

3 A = np.array([[1,2],[3,4]])

4 B = np.array([[-1,3],[2,-5]])

5 print('A =')

6 print(A)

7 print('B =')

8 print(B)

9 #add two matrices

10 print('A+B = ')

11 print(A+B)

12 #subtract B from A

13 print('A-B = ')

14 print(A-B)

Output:
A =

[[1 2]

4.1 Matrices with numpy � 45

[3 4]]

B =

[[-1 3]

[2 -5]]

A+B =

[[0 5]

[5 -1]]

A-B =

[[2 -1]

[1 9]]

Process finished with exit code 0

A+B creates a newmatrix inwhich the corresponding elements ofA and B are summed.
LikewiseA−B subtracts each element ofB from the corresponding element inA. Because
of the use of corresponding elements,A and B should be the same size in order to be able
to add or subtract them. However, Python allows addition and subtraction of different-
sizedmatrices in some circumstances. For example, the following code adds a 2×2matrix
to a 1 × 2 matrix.

Code:
1 import numpy as np

2 #create the matrix

3 A = np.array([[1,2],[3,4]])

4 B = np.array([[-1,3]])

5 print('A =')

6 print(A)

7 print('B =')

8 print(B)

9 #add two matrices

10 print('A+B = ')

11 print(A+B)

12 #subtract B from A

13 print('A-B = ')

14 print(A-B)

This produces the following output.

Output:
A =

[[1 2]

[3 4]]

46 � 4 Matrices, vectors, and linear systems

B =

[[-1 3]]

A+B =

[[0 5]

[2 7]]

A-B =

[[2 -1]

[4 1]]

Process finished with exit code 0

Because the number of columns in B was the same as that in A, the columns of B were
added/subtracted to each of the rows ofA.Whilewemayfind occasion to take advantage
of this capability, it is generally bad practice,mathematically, to add or subtractmatrices
of different sizes.

4.1.2 Component-wise multiplication: A ∗ B

We now investigate what happens when we use the multiplication symbol.

Code:
1 import numpy as np

2 #create the matrix

3 A = np.array([[1,2],[3,4]])

4 B = np.array([[-1,3],[2,-5]])

5 print('A =')

6 print(A)

7 print('B =')

8 print(B)

9 #component-wise multiplication

10 print('A*B = ')

11 print(A*B)

Output:
A =

[[1 2]

[3 4]]

B =

[[-1 3]

[2 -5]]

A*B =

4.1 Matrices with numpy � 47

[[-1 6]

[6 -20]]

Process finished with exit code 0

For those that have already learned how to multiply matrices, it is clear that, in Python,
A ∗ B does not yield the usual matrix product. We will discuss usual matrix multipli-
cation later. The multiplication that is demonstrated here is called component-wise (or
element-wise) multiplication. Each element of the resulting matrix is the product of the
corresponding elements in A and B, i. e., if C = A ∗ B, the C[i, j] = A[i, j] ∗ B[i, j]. Again,
this should require that A and B be the same size, but Python allows the same kinds of
scenarios that are allowed with addition and subtraction.

4.1.3 Component-wise division: A/B

If we change the ‘*’ to ‘/’ in the previous code, the following appears.

Output:
A =

[[1 2]

[3 4]]

B =

[[-1 3]

[2 -5]]

A/B =

[[-1. 0.66666667]

[1.5 -0.8]]

Process finished with exit code 0

This demonstrates component-wise division, where Cij = Aij/Bij .
As before, we see that Python defaults to displaying eight decimal places. This can

make the display of larger matrices difficult to read. As we did in Section 3.5, we can
set global printing options for matrices that restrict the number of decimals shown. The
command has the following form:

np.set_printoptions(precision=3,suppress=1,floatmode='fixed')

Setting these global options modifies the display of the previous matrices to appear as
follows.

48 � 4 Matrices, vectors, and linear systems

Output:
A =

[[1 2]

[3 4]]

B =

[[-1 3]

[2 -5]]

A/B =

[[-1.000 0.667]

[1.500 -0.800]]

Process finished with exit code 0

Notice that the final matrix entries display only three decimal places, but the first two
matrices display integers. If any entry of the matrix is a floating-point number, then all
entries are displayed with the designated precision.

4.1.4 Scalar multiplication: cA

We now consider multiplying a matrix by a number. Suppose we have a matrix A. If we
multiply A by a real number, c, then we simply multiply all entries of A by c.

Code:
1 import numpy as np

2 np.set_printoptions(precision=3,suppress=1,floatmode='fixed')

3 #create the matrix

4 A = np.array([[1,2,3],[1,4,2],[2,-1,3]])

5 print('A =')

6 print(A)

7 #scalar multiplication

8 #multiply A by 3

9 print('3A = ')

10 print(3*A)

Output:
A =

[[1 2 3]

[1 4 2]

[2 -1 3]]

3A =

[[3 6 9]

4.1 Matrices with numpy � 49

[3 12 6]

[6 -3 9]]

Process finished with exit code 0

So, multiplying a matrix by a number, c, scales the matrix by a factor of c. Thus, we call
c a scalar, and we call this type of multiplication scalar multiplication.

4.1.5 Standard matrix multiplication

For those that have had linear algebra, the following section will not be new, but we
need to spend some time developing a means of multiplying two matrices in such a
way that the result is consistent with other mathematical principles. We are now famil-
iar with component-wise multiplication, but mathematics provides a more meaningful
definition of AB, provided that the two matrices are appropriately sized. To make our
discussion more concise, we begin by defining some terms to be used later. A row vector
is a matrix that has one row and a finite number of columns. If a matrix has three rows,
then we could think of it as being composed of three row vectors. Likewise, a column
vector is a matrix with a finite number of rows and one column. Thus, an example of a
row vector is

v = [1 3 −2 8 −5],

while a column vector would be something like

s =
[[[[[[

[

1
3
−2
−6
4

]]]]]]

]

.

In this example, v is 1 × 5, and s is 5 × 1. When the context is clear, we frequently drop
the ‘row’ or ‘column’ designation and call either of them a vector. Further, when vectors
are used, there is no need for the double-indexed notation. Hence, v1 would denote first
element of v, v2 the second element, and so forth. The dot product between two vectors
is defined as follows:

Let a = [a1 a2 . . . an] and b = [b1 b2 . . . bn]. The dot product of a and b is

a ⋅ b = a1b1 + a2b2 + ⋅ ⋅ ⋅ + anbn.

Written with summation notation, we have

50 � 4 Matrices, vectors, and linear systems

a ⋅ b =
n
∑
i=1 aibi.

Also, either of a or b could be a column vector, and the definition would not change.

Example. Let a = [1 3 −2 8 5] and b = [1 −2 4 −6 4]. Then

a ⋅ b = (1)(1) + (3)(−2) + (−2)(4) + (8)(−6) + (5)(4)

= 1 + (−6) + (−8) + (−48) + (20)

= −41

With these concepts and terms, we can now define standard matrix multiplication.
Let A be anm × nmatrix, and let B be an n × k matrix. Then AB is anm × k matrix such
that AB(r, c) is equal to the dot product of row r of A and column c of B. That is,

A(r, c) = Ar,: ⋅ B:,c .
Example. Let A = [1 2 3−1 2 −3] and B = [1 2

0 4−3 2
]. Then,

AB = [1(1) + 2(0) + 3(−3) 1(2) + 2(4) + 3(2)
(−1)(1) + 2(0) + (−3)(−3) (−1)(2) + 2(4) + (−3)(2)

]

= [
−8 16
8 0

] .

Let A bem × n and B be n × k. Then, AB has the following properties:
– The number of rows in B must equal the number of columns in A. Otherwise the

multiplication is not defined.
– The order of A and B matters, that is, AB does not necessarily equal BA. In fact,

sometimes one or the other is not defined.
– The matrix that results from the product AB has as many rows as A and as many

columns as B.

Fortunately, Python has this multiplication already defined as the numpy .dot operator.
The previous example is done in Python using the following code.

Code:
1 import numpy as np

2 np.set_printoptions(precision=3,suppress=1,floatmode='fixed')

3 #create the matrix

4 A = np.array([[1,2,3],[-1,2,-3]])

5 B = np.array([[1,2],[0,4],[-3,2]])

6 print('A =')

4.2 Matrix inversion � 51

7 print(A)

8 print('B =')

9 print(B)

10 #standard matrix multiplication

11 C = np.dot(A,B)

12 print('AB =')

13 print(C)

Output:
A =

[[1 2 3]

[-1 2 -3]]

B =

[[1 2]

[0 4]

[-3 2]]

AB =

[[-8 16]

[8 0]]

Process finished with exit code 0

We see in line 11 that the .dot method requires that we specify the two matrices to be
multiplied. The order of the matrices does matter because np.dot(A,B) performs AB,
while np.dot(B,A) gives BA. In the code, the product is stored in a third matrix, C.

See Exercise 1.

4.2 Matrix inversion

In our usual real number system, we know that (1)x = x for any value of x. Likewise,
for any number x ̸= 0, we know that (1x)x = 1. In more general (abstract) terms, we call
the number 1 themultiplicative identity of the real numbers. Furthermore, we call 1

x the
multiplicative inverse of x. The product of a number and its inverse is 1 (the identity). As
we define the usual arithmetic operations for matrices, we would also like also to define
amultiplicative identity and amultiplicative inverse formatrices. Doing sowill allow us
to construct a means for solving large linear systems via Python (or other programming
languages).

52 � 4 Matrices, vectors, and linear systems

4.2.1 The identity matrix

The identitymatrix of size n, In, is a squarematrix (n×n) with 1’s along themain diagonal
and 0’s everywhere else. So,

I2 = [
1 0
0 1
] while I5 =

[[[[[[

[

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

]]]]]]

]

Provided the sizes of the matrices allow for multiplication, then AI = A, and IA = A.
A Python example that uses the Amatrix from the preceding section is given here.

Code:
1 import numpy as np

2 np.set_printoptions(precision=3,suppress=1,floatmode='fixed')

3 #create the matrix

4 A = np.array([[1,2,3],[-1,2,-3]])

5 I3 = np.array([[1,0,0],[0,1,0],[0,0,1]])

6 I2 = np.array([[1,0],[0,1]])

7 print('A =')

8 print(A)

9 print('I3 =')

10 print(I3)

11 print('I2 =')

12 print(I2)

13 #standard matrix multiplication

14 C = np.dot(A,I3)

15 print('(A)(I3) =')

16 print(C)

17 D = np.dot(I2,A)

18 print('(I3)(A) =')

19 print(D)

20 print('(A)(I2) =')

21 print(np.dot(A,I2))

Output:
A =

[[1 2 3]

[-1 2 -3]]

I3 =

4.2 Matrix inversion � 53

[[1 0 0]

[0 1 0]

[0 0 1]]

I2 =

[[1 0]

[0 1]]

(A)(I3) =

[[1 2 3]

[-1 2 -3]]

(I3)(A) =

[[1 2 3]

[-1 2 -3]]

(A)(I2) =

Traceback (most recent call last):

File "/Users/WillMiles/Desktop/_Courses/SciComp/SciCompBook/BookCode/

basics.py", line 21, in <module>

print(np.dot(A,I2))

File "<__array_function__ internals>", line 5, in dot

ValueError: shapes (2,3) and (2,2) not aligned: 3 (dim 1) != 2 (dim 0)

Process finished with exit code 1

In the code, I3 is constructed in line 5 and I2 is constructed in line 6. The product AI − 3 is
computed in line 14, and I2A is done in line 17. Notice that, when we tried to multiply AI2
(line 21), our programcrashed, givingus an errormessage indicating that the dimensions
of the matrices did not align.

The identity matrix acts like a 1 in real numbers. When we multiply a number by 1,
we just get the original number. That is, a× 1 = a. Likewise, when allowed, AI = A in the
space of matrices.

4.2.2 The inverse of a matrix

In the real numbers, if ax = 1, then we can solve for x to get x = 1
a . We call 1

a the
multiplicative inverse of a. Similarly, we would like to find the multiplicative inverse of
a matrix. In general, only square matrices have inverses. Also, not all square matrices
have an inverse, but we are getting ahead of ourselves. LetA be amatrix of size n×n. We
say that X is the inverse of A if AX = XA = In. We write X = A−1. Note that A−1 ̸= 1

A since
1
A would not make sense in the space of matrices. The exponent notation is used only to
denote that A−1 is the multiplicative inverse of the matrix A as just defined. Finding the
inverse of amatrix requires the use of an algorithm tomanipulate the rows of thematrix
in such a way that the inverse is obtained. We will discuss some of this manipulation

54 � 4 Matrices, vectors, and linear systems

algorithm in the next section, but it is not our primary interest in this case. Thankfully,
Python has a method that will find the inverse of a matrix. The method is located in the
linear algebra routines which are included in numpy. An example is given next.

Code:
1 import numpy as np

2 #create the matrix

3 A = np.array([[1,2,3],[-1,2,-3],[0,2,5]])

4 print('A =')

5 print(A)

6 #find the inverse of A

7 A_inv = np.linalg.inv(A)

8 print('A_Inverse =')

9 print(A_inv)

10 #confirm the inverse

11 print('AA_inv = ')

12 print(np.dot(A,A_inv))

13 print('A_invA = ')

14 print(np.dot(A_inv,A))

Output:
A =

[[1 2 3]

[-1 2 -3]

[0 2 5]]

A_Inverse =

[[0.8 -0.2 -0.6]

[0.25 0.25 0.]

[-0.1 -0.1 0.2]]

AA_inv =

[[1.00000000e+00 2.77555756e-17 -5.55111512e-17]

[-2.77555756e-17 1.00000000e+00 5.55111512e-17]

[-2.77555756e-17 -2.77555756e-17 1.00000000e+00]]

A_invA =

[[1.0000000e+00 0.0000000e+00 -4.4408921e-16]

[0.0000000e+00 1.0000000e+00 0.0000000e+00]

[0.0000000e+00 0.0000000e+00 1.0000000e+00]]

Process finished with exit code 0

4.2 Matrix inversion � 55

This program illustrates a few things about Python (and programming, in general). First,
the inverse of thematrixA is found in line 7 by using the numpy.linalg.inv(A)method.
The inverse A−1 is found to be

A−1 = [[
[

0.8 −0.2 −0.6
0.25 0.25 0
−0.1 −0.1 0.2

]]

]

.

Line 11 prints the result of AA−1 which should be I . However, the numbers do not seem
like ones and zeros. This is because of the way a computer performs arithmetic. It fre-
quently must approximate numbers, and, hence, often accumulates rounding errors.
We, the scientists and programmers, must recognize what is supposed to be a zero. For
example, A−1(1, 2) = 2.7755756 × 10−17. Thus, this number has sixteen leading zeros in
the decimal places. It is very very small, and we should recognize this number as the
computer trying to say 0. To make the printout look nicer, we could use the print op-
tions command that we have used earlier, or we can round the entries of the matrix to
a given number of decimal places. To accomplish the rounding, we use the command
.round(number of decimals). The code to round the entries follows.

Code:
1 #confirm the inverse

2 print('AA_inv = ')

3 AA_inv = np.dot(A,A_inv)

4 #round the entries to 3 decimal places when printing

5 print(AA_inv.round(3))

6 print('A_invA = ')

7 A_invA=np.dot(A_inv,A)

8 print(A_invA.round(3))

Output:
AA_inv =

[[1. 0. -0.]

[-0. 1. 0.]

[-0. -0. 1.]]

A_invA =

[[1. 0. -0.]

[0. 1. 0.]

[0. 0. 1.]]

Process finished with exit code 0

Note that, when we use the .round method (in lines 5 and 8), it does not actually
change the values that are stored in the matrix. If one wishes to use the rounded val-
ues, they must be stored in another variable. For example, we could use the command

56 � 4 Matrices, vectors, and linear systems

D = AA_inv.round(3). This would stored the rounded values of AA_inv in the vari-
able D.

If a matrix does not have an inverse, the method will fail, and an error is reported
indicating that the matrix is singular.

Code:
1 import numpy as np

2 #np.set_printoptions(precision=3,suppress=1,floatmode='fixed')

3 #create the matrix

4 A = np.array([[1,2,3],[1,2,3],[0,2,5]])

5 print('A =')

6 print(A)

7 #find the inverse of A

8 A_inv = np.linalg.inv(A)

9 print('A_Inverse =')

10 print(A_inv)

Output:
Traceback (most recent call last):

File "/Users/WillMiles/Desktop/_Courses/SciComp/SciCompBook/BookCode/

basics.py", line 8, in <module>

A_inv = np.linalg.inv(A)

File "<__array_function__ internals>", line 5, in inv

File "/Library/Frameworks/Python.framework/Versions/3.8/lib/python3.8/

site-packages/numpy/linalg/linalg.py", line 545, in inv

ainv = _umath_linalg.inv(a, signature=signature, extobj=extobj)

File "/Library/Frameworks/Python.framework/Versions/3.8/lib/python3.8/

site-packages/numpy/linalg/linalg.py",

line 88, in _raise_linalgerror_singular

raise LinAlgError("Singular matrix")

numpy.linalg.LinAlgError: Singular matrix

A =

[[1 2 3]

[1 2 3]

[0 2 5]]

Process finished with exit code 1

Our primary use ofmatrix inverses is to solve linear systems of equations, whichwewill
discuss in the next section. However, readers especially interested inmatrix algebra and
inverses should consider taking a course in linear algebra.

See Exercise 2.

4.3 Linear systems � 57

4.3 Linear systems

We now turn our attention to solving linear systems of equations. We studied these in
algebra, but here we examine them from the perspective of using a computer and pro-
grams to obtain solutions in a faster, more efficient way. Let’s start with an example.
Consider the following set of equations:

x + y + z = 6 (4.1)

2x − 3y + z = −1 (4.2)

x + 2y − 3z = −4. (4.3)

An equation that contains only numbers or variables to the first power, alongwith possi-
ble coefficients (no variables under square root symbols, no variables in denominators,
no variables multiplied by each other), is called a linear equation. Each of the previous
equations is linear. We call such a set of equations a linear system of equations. In most
algebra courses, we learn to solve this type of system by using elimination by addition.
The generalmethod is to choose two of the equations,multiple themby constants in such
a way that, when the modified equations are added, one of the variables is eliminated.
Then, we choose another pair of equations and eliminate the same variable that was
previously eliminated. For our current example, this process would generate two equa-
tions in two variables. We then multiply the new equations by constants so that adding
will eliminate a variable. That will make it trivial to solve for the remaining variable. Fi-
nally, substitute the known value into one of the equations that has just two variables to
find the value of a second variable. Finally, substitute both values into one of the original
equations to find the value of the third variable. Let’s work through the process.

We can choose any pair of equations. Say we choose equations (4.1) and (4.2). We
can cause the coefficients of x to be opposites of each other by multiplying (4.1) by −2 to
get

−2x − 2y − 2z = −12

2x − 3y + z = −1.

Adding these two equations gives

−5y − z = −13.

Next, we’ll choose equations (4.1) and (4.3). We can eliminate x bymultiplying one of the
equations by −1. This gives

−x − y − z = −6

x + 2y − 3z = −4.

58 � 4 Matrices, vectors, and linear systems

Adding these yields

y − 4z = −10.

Now, we have a system of two equations

−5y − z = −13

y − 4z = −10.

Next, we can eliminate y by multiplying the second equation by 5 to get

−5y − z = −13

5y − 20z = −50.

Adding them gives

−21z = −63,

which implies that z = 3. Substitute z = 3 into y − 4z = −10 to get y − 4(3) = −10.
Thus, y = 2. Finally, we substitute z = 3 and y = 2 into any equation that contains x. So
x + y + z = 6 becomes x + 2 + 3 = 6, and x = 1. The process of substituting values back
into the equations to find the values of other variables is called back substitution.

If we had a system of four equations with four unknowns, we would choose three
pairs of equations and eliminate the same variable in each pair. This would yield a sys-
tem of three equations in three unknowns. Then, we would proceed as in the previous
example. So you can see how the process would work as the systems get larger. This
repetitive procedure is exactlywhat lends itself to computation. However, programming
languages don’t really have the ability to deal with a function explicitly. Hence, we need
to express the system in a different way. To do so, we will use matrices.

Let’s return to our previous example where we wished to solve the system

x + y + z = 6

2x − 3y + z = −1

x + 2y − 3z = −4.

To create a matrix that represents the system, we take the coefficients of each variable
from each equation and place them in a row. Likewise, we place the right-hand constant
in the associated row. For example, the first row would be

1 1 1 6.

When we include the second and third row, we have

4.3 Linear systems � 59

1 1 1 6
2 −3 1 −1
1 2 −3 −4

.

Standard matrix notation places square brackets around the array of numbers. In the
special case of representing equations, a vertical line is often placed in thematrix to sep-
arate the left sides of the equations from the right sides. Thus, we represent the system
as follows:

[[

[

1 1 1 6
2 −3 1 −1
1 2 −3 −4

]]

]

. (4.4)

The matrix of coefficients of the variables along with the right-hand sides of the equa-
tions is called the augmented matrix for the system.

We have discussed how the computer can store and manipulate this type of struc-
ture. Since each row represents an equation, we can operate on the rows aswewould an
equation. That is, we are allowed to multiply or divide rows by nonzero numbers, and
we can add two rows together and subtract rows from each other. We cannot, however,
remove a row entirely. The matrix size must remain the same. Our goal is to find the
values of x, y, and z. That is, we want

x = n1
y = n2
z = n3,

where n1, n2, and n3 are the values of the variables that solve the system. If we place this
in matrix form, we have

[[

[

1 0 0 n1
0 1 0 n2
0 0 1 n3

]]

]

. (4.5)

Notice that the left block of the goal matrix is I . Thus, wewish to use “equation combina-
tions” to get from (4.4) to (4.5). These equation combinations are called row operations,
and the process that we follow is called Gaussian elimination. The order to be followed
is important so that we avoid undoing progress made in a previous step while perform-
ing the next step in the process. In general, we will “fix” columns from left to right. We
perform an operation that achieves a 1 in the appropriate location. Then, we perform
operations to force the remainder of the column to contain zeros. Further, we get the
ones by using multiplication and division, and we get the zeros by combining multiples
of one equation with another. Sounds complicated, but an example will clear things up.
So, we start with the matrix in (4.4)

60 � 4 Matrices, vectors, and linear systems

[[

[

1 1 1 6
2 −3 1 −1
1 2 −3 −4

]]

]

,

and we begin with the first column. Keeping the goal in mind, we wish to have a 1 in the
first row. Fortunately, we already have that, so no work is required. Now, we wish to get
zeros in rows two and three. Consider row two. We want a 0 in place of the 2. We are
not allowed to simply subtract 2 from all the elements in the row. But, if we multiply the
first row by −2 (which is allowed), we would get

[[

[

−2 −2 −2 −12
2 −3 1 −1
1 2 −3 −4

]]

]

.

The new equation represented by the first row is equivalent to the original equation
(has the same solution). Now, adding rows one and two is equivalent to adding the two
associated equations

[−2 −2 −2 −12]
+ [2 −3 1 −1]

0 −5 −1 −13.

Wewill put the result of the addition into row two, replacing the current row. This gives

[[

[

−2 −2 −2 −12
0 −5 −1 −13
1 2 −3 −4

]]

]

.

We now have the zero where the 2 was, which is what we wanted. Now, we need to put
the first row back the way it was so that we have the one that we wanted:

[[

[

1 1 1 6
0 −5 −1 −13
1 2 −3 −4

]]

]

.

So, at this point, we have multiplied the first row by −2, added it to the second row, and
replaced the second row. We will represent this operation like this:

−2R1 + R2 → R2.

Okay, now we need a zero in the third row, first column. If we call the matrix A, we can
denote position in the matrix by A(row, column). So, we want A(3, 1) to be zero. We can
accomplish this by subtracting the first row from the third row:

R3 − R1 → R3.

4.3 Linear systems � 61

This gives

[[

[

1 1 1 6
0 −5 −1 −13
0 1 −4 −10

]]

]

.

Thefirst column is complete. Nowmove to the second column. According the goalmatrix
(4.5), we want A(2, 2) = 1. To get this, we will divide the second row by −5

−1
5
R2 → R2.

This gives us

[[

[

1 1 1 6
0 1 1

5
13
5

0 1 −4 −10

]]

]

.

Now, get zeros in the other rows of the column:

R1 − R2 → R1

R3 − R2 → R3.

Then, we have

[[[

[

1 0 4
5

17
5

0 1 1
5

13
5

0 0 − 215 −
63
5

]]]

]

.

Now, we have two of the three columns accomplished. Next, we force A(3, 3) = 1 with

−5
21

R3 → R3.

This gives

[[[

[

1 0 4
5

17
5

0 1 1
5

13
5

0 0 1 3

]]]

]

.

We get the necessary zeros with

−4
5
R3 + R1 → R1

−1
5
R3 + R2 → R2.

62 � 4 Matrices, vectors, and linear systems

This gives

[[

[

1 0 0 1
0 1 0 2
0 0 1 3

]]

]

.

And so we are finally done. We can now see the solution

x = 1, y = 2, z = 3.

It’s a lot of work, especially by hand. So one can see that it would be beneficial to write a
program (or use one that has already beenwritten) to solve this. This would save a lot of
time and produce far fewer errors. We can use our knowledge of matrices and the idea
of row operations to solve the previous example in Python as follows.

Code:
1 import numpy as np

2 #np.set_printoptions(precision=3,suppress=1,floatmode='fixed')

3 #create the matrix

4 A = np.array([[1,1,1,6],[2,-3,1,-1],[1,2,-3,-4]])

5 print('A =')

6 print(A)

7 #perform row operations to achieve the goal matrix

8 #-2R1+R2-->R2

9 print('-2R1+R2-->R2')

10 A[1,:] = -2*A[0,:]+A[1,:]

11 print('A =')

12 print(A)

13 #-R1+R3-->R3

14 print('-R1+R3-->R3')

15 A[2,:] = -1*A[0,:]+A[2,:]

16 print('A =')

17 print(A)

18 print('(-1/5)R2-->R2')

19 A[1,:] = (-1/5.0)*A[1,:]

20 print('A =')

21 print(A)

22 print('-1R2+R1-->R1')

23 print('-1R2+R3-->R3')

24 A[0,:] = -1*A[1,:]+A[0,:]

25 A[2,:] = -1*A[1,:]+A[2,:]

26 print('A =')

4.3 Linear systems � 63

27 print(A)

28 print('(-1/4)R3-->R3')

29 A[2,:] = (-1/4.0)*A[2,:]

30 print('A =')

31 print(A)

32 print('-1R3+R1-->R1')

33 A[0,:] = -1*A[2,:]+A[0,:]

34 print('A =')

35 print(A)

Output:
A =

[[1 1 1 6]

[2 -3 1 -1]

[1 2 -3 -4]]

-2R1+R2-->R2

A =

[[1 1 1 6]

[0 -5 -1 -13]

[1 2 -3 -4]]

-R1+R3-->R3

A =

[[1 1 1 6]

[0 -5 -1 -13]

[0 1 -4 -10]]

(-1/5)R2-->R2

A =

[[1 1 1 6]

[0 1 0 2]

[0 1 -4 -10]]

-1R2+R1-->R1

-1R2+R3-->R3

A =

[[1 0 1 4]

[0 1 0 2]

[0 0 -4 -12]]

(-1/4)R3-->R3

A =

[[1 0 1 4]

[0 1 0 2]

[0 0 1 3]]

-1R3+R1-->R1

64 � 4 Matrices, vectors, and linear systems

A =

[[1 0 0 1]

[0 1 0 2]

[0 0 1 3]]

Process finished with exit code 0

The last matrix printed shows that we achieve the same solution as before: x = 1, y = 2,
z = 3.

While we are less likely tomake errors by performing the row operations in Python,
it is still quite tedious to write the code to solve the system. Furthermore, if we had a
large system, say 1,000 equations with 1,000 unknowns, then writing each row oper-
ation would be even more of a challenge. Thus, we need some way to automate our
solution algorithm. There are many ways to accomplish this automation. We begin with
expressing our system in yet another way. We return to our example system,

x + y + z = 6

2x − 3y + z = −1

x + 2y − 3z = −4

Let A be the matrix of coefficients, without the right-hand sides. So,

A = [[
[

1 1 1
2 −3 1
1 2 −3

]]

]

.

Also, let X be a column vector of our variables, and let B be a column vector of the right-
hand sides of the equations. Thus,

X = [[
[

x
y
z

]]

]

, B = [[
[

6
−1
−4

]]

]

.

Now, consider AX .

AX = [[
[

1 1 1
2 −3 1
1 2 −3

]]

]

[[

[

x
y
z

]]

]

= [[

[

(1)x + (1)y + (1)z
2x + (−3)y + (1)z
(1)x + 2y + (−3)z

]]

]

4.3 Linear systems � 65

= [[

[

x + y + z
2x − 3y + z
x + 2y − 3z

]]

]

So, the entries of AX are exactly the left-hand sides of the original equations. Since B
holds the right-hand sides, we can express the original system as AX = B. Now, we can
use our knowledge ofmatrix inverses to help us solve the system.Multiplying both sides
on the left by A−1 gives

AX = B
A−1AX = A−1B

IX = A−1B
X = A−1B.

We can easily do this in Python.

Code:
1 import numpy as np

2 #create the coefficient matrix

3 A = np.array([[1,1,1],[2,-3,1],[1,2,-3]])

4 #create the right hand side column vector

5 B = np.array([[6],[-1],[-4]])

6 print('A =')

7 print(A)

8 print('B =')

9 print(B)

10 #get the inverse of A

11 AInv = np.linalg.inv(A)

12 #multiply the inverse of A by B

13 X = np.dot(AInv,B)

14 print('X =')

15 print(X)

Output:
A =

[[1 1 1]

[2 -3 1]

[1 2 -3]]

B =

[[6]

[-1]

[-4]]

66 � 4 Matrices, vectors, and linear systems

X =

[[1.]

[2.]

[3.]]

Process finished with exit code 0

There is yet another way that Python can help to solve systems. The linalg methods in-
cludes a solve command.We still need to define the coefficientmatrix and the right-hand
side matrix. Then, we can find the solution with the .linalg.solvemethod.

Code:
1 import numpy as np

2 #np.set_printoptions(precision=3,suppress=1,floatmode='fixed')

3 #create the matrix

4 A = np.array([[1,1,1],[2,-3,1],[1,2,-3]])

5 B = np.array([[6],[-1],[-4]])

6 print('A =')

7 print(A)

8 print('B =')

9 print(B)

10 X = np.linalg.solve(A,B)

11 print('X =')

12 print(X)

Output:
A =

[[1 1 1]

[2 -3 1]

[1 2 -3]]

B =

[[6]

[-1]

[-4]]

X =

[[1.]

[2.]

[3.]]

Process finished with exit code 0

4.3 Linear systems � 67

To close this discussion, we must recall from algebra that linear systems may have a
unique solution (like the example problem we have been working with), an infinite
number of solutions, or no solution. If the system has infinite solutions or no solution,
we must recognize this as the practicing scientist. Python will report an error in either
of the latter two cases. For example,

x + y + z = 6
2x + 2y + 2z = 12
x + 2y − 3z = −4

has an infinite number of solutions. But, if we try to solve it in Python, we get the fol-
lowing.

Code:
1 import numpy as np

2 #np.set_printoptions(precision=3,suppress=1,floatmode='fixed')

3 #create the matrix

4 A = np.array([[1,1,1],[2,2,2],[1,2,-3]])

5 B = np.array([[6],[12],[-4]])

6 print('A =')

7 print(A)

8 print('B =')

9 print(B)

10 X = np.linalg.solve(A,B)

11 print('X =')

12 print(X)

Output:
Traceback (most recent call last):

File "/Users/WillMiles/Desktop/_Courses/SciComp/SciCompBook/BookCode/

basics.py", line 10, in <module>

X = np.linalg.solve(A,B)

File "<__array_function__ internals>", line 5, in solve

File "/Library/Frameworks/Python.framework/Versions/3.8/lib/python3.8/

site-packages/numpy/linalg/linalg.py", line 393, in solve

r = gufunc(a, b, signature=signature, extobj=extobj)

File "/Library/Frameworks/Python.framework/Versions/3.8/lib/python3.8/

site-packages/numpy/linalg/linalg.py",

line 88, in _raise_linalgerror_singular

raise LinAlgError("Singular matrix")

numpy.linalg.LinAlgError: Singular matrix

A =

68 � 4 Matrices, vectors, and linear systems

[[1 1 1]

[2 2 2]

[1 2 -3]]

B =

[[6]

[12]

[-4]]

Process finished with exit code 1

On the other hand,

x + y + z = 6

2x + 2y + 2z = 6

x + 2y − 3z = −4

has no solutions, but Python will report the same error. We must be aware of these pos-
sibilities, and address them if they arise. We can address them via programming by ex-
amining something called the determinant of the matrix, but that is beyond the scope of
this course. If this is of interest, we encourage the reader to consider taking a course in
linear algebra.

As we stated earlier, one reason we wish to automate the solution of linear systems
is to save time. For very large systems, entering the coefficients manually would take
much time and tedious effort. Fortunately, when we encounter a very large system of
equations, a couple of situations are common:
1. The coefficients associated with the equation have a particular pattern.
2. The coefficients are the result of other computations that are done in other portions

of the problem-solving process.

In both of these scenarios, we can then automate the filling of the matrix entries with
something called a for loop, which will be discussed in the next chapter.

See Exercises 4–6.

4.4 Exercises

1. Create the following matrices in Python using numpy.

A = [[
[

1 −2 3
2 1 4
3 −1 −2

]]

]

, B = [0 4 2
3 −1 −3

] ,

4.4 Exercises � 69

C = [[
[

−2 1
0 −1
1 3

]]

]

, D = [[
[

1 −3 0
2 −2 2
3 −1 1

]]

]

.

Use these matrices to display the results of the following operations or indicate that
the operation is not defined.
(a) A + D
(b) D − A
(c) 3B
(d) A + B
(e) A ∗ D
(f) A ∗ C
(g) A/D
(h) A/B
(i) AD, standard matrix multiplication
(j) AB, standard matrix multiplication
(k) BC, standard matrix multiplication

2. Find the inverse of matrix A from exercise 1. Store the result in a variable named
A_inv.
(a) Display A_inv using three decimal places for each entry.
(b) Display the result of AA_inv to show that A−1 was computed correctly.

3. Indicate whether the following equations are linear.
(a) 2x − y = 7
(b) 3x − 4 + 2z = 3y
(c) 4√x − 2y = 10
(d) 2

x − 4y + z = 6
(e) 3xy − 2y + z = 4
(f) −x + 3y − sin(z) = 2

4. Solve the following system of equations by hand:

2x − y = 5

3x + 2y = 4.

5. Use matrix inverses or np.linalg.solve to solve the following system:

x − 3y + 2z − w = 6

2x − 4y + 5z + 2w = 13

−x + 3y − z + 3w = −23

3x + 2y − z − w = 6.

Print the solution as ‘x = ??, y = ??, z = ??, w = ??’.

70 � 4 Matrices, vectors, and linear systems

6. Solve the following system using Python and interpret the result:

x − 3y + 2z = 6
2x − 4y + 5z = 13
−x + 3y − 2z = −23.

5 Iteration

While solving linear systems is probably themost common task in appliedmathematics,
another often-used concept for solving problems algorithmically is iteration. We use
iteration primarily for two functions:
– to advance in time;
– to improve upon a previous approximation.

To introduce iteration as a process, we begin by showing a powerful but simple method
to find the roots of a function.

5.1 Finding roots: the bisection method

Suppose we have a continuous function f (x), as shown below, and we wish to find the
roots (or zeros) of the function, indicated by black dots. That is, we wish to solve

f (x) = 0.

If we can find numbers a and b such that f (a) and f (b) have opposite signs, then the
intermediate value theorem assures us that there is a value c, between a and b, such that
f (c) = 0. From the graph, we can see that f (−3) < 0 and f (−2) > 0. Therefore, there is a
root between x = −3 (playing the role of a) and x = −2 (playing the role of b). Thus, we
could take the midpoint between a and b as our first approximation of the root. Taking
themidpoint is equivalent to bisecting the interval [a, b]. So, let x1 =

a+b
2 . In our example,

we have x1 =
−3+−2

2 = −2.5 as can be seen in the next graph.

https://doi.org/10.1515/9783110776645-005

https://doi.org/\global \c@doi \c@chapter \relax \global \advance \c@doi \c@parttext \relax 10.1515/9783110776645-000

72 � 5 Iteration

Now, if f (x1) = 0, then we are done, and x1 is a root. Otherwise, either: (a) f (x1) and
f (a) have different signs or (b) f (x1) and f (b) have different signs. If (a) is true, then we
know the root lies between a and x1. If (b) is true, then the root lies between b and x1. In
the function shown, we see that f (−2.5) is negative. Thus, there must be a root between
x = −2.5 and x = −2. The function value at x1 = −2.5 is approximately f (−2.5) = −0.08534.
Nowwe can reassign a to be −2.5 and leave b as it was. We can zoom in on the graph for
the new interval. Notice that the interval [−2.5, −2] is half as wide as the original interval
[−3, −2].

Now, x2 =
−2.5+−2

2 = −2.25. The value of the function at x = −2.25 is approximately
f (−2.25) = 0.85844. This is actually further from 0 than our original guess, but, because

5.1 Finding roots: the bisection method � 73

the interval is shrinking, we can continue the process to get as close to the actual root
as desired. We say that x1 is the first approximation or the first iterate, x2 is the second
approximation or second iterate, and so on. From the graph, we see that f (x2) differs in
sign from f (−2.5). Thus, we can reassign b to be x2 = −2.25, leave a as it was, and repeat
the process.

We can then find the midpoint of the new interval as the next approximation and con-
tinue the process until we reach an approximation that is either the exact root or “close
enough.” The sequence of the first five iterates, plotted on the x-axis, is shown in the
next graph.

74 � 5 Iteration

Note that the iterates would change if the starting interval were different from [−3, −2].
For example, if the starting interval was [−2.75, −2], then the iterates would “bounce”
around more because the root is closer to the center of the original interval. The se-
quence of iterates that corresponds to a starting interval of [−2.75, −2] is given in the
following graph.

Because the process repeats itself, it is a good candidate for computation. Thus, the task
becomes one of translating the process just described into an algorithm that we can pro-
gramusing Python. For any continuous function f (x), we can use a graph to find original
values for a and b so that f (a) and f (b) have different signs. From a programming stand-
point, we can test whether two numbers, c and d, have different signs by considering
their product. If cd is negative, then one of the numbers is negative and one is positive
(so they have different signs). We can use this fact to test whether the function values
have the same or different signs. We can now describe, with more formality, the bisec-
tion algorithm.

Bisection Algorithm
Assume that f (x) is a continuous function on the interval [a, b] and that f (a) and f (b)
have different signs, that is to say f (a)f (b) < 0.
1. Let x = a+b

2 .
2. If f (x) = 0 or close enough to 0, then quit.
3. If f (a)f (x) < 0, then f (a) and f (x) have different signs. Thus, the root is between a

and x. Reassign b to be x and go back to step (1).
4. If f (x)f (b) < 0, f (x) and f (b) have different signs. Thus, the root is between x and b.

Reassign a to be x go back to (1).

5.1 Finding roots: the bisection method � 75

Let’s work through an example.

Example. Let f (x) = x4
10 −2x

2−x−3 sin(x)+5. Using Python to graph the function between
x = −5 and x = 5 yields the following.

From the graph, we can see that f (x) has multiple zeros. There is one that is very close
to x = −4, one between x = −4 and x = −2, one between x = 0 and x = 2, and one
between x = 4 and x = 5. There may be others zeros, but we can see those four on the
graph presented. To illustrate the method, let’s try to find the zero that is between x = 0
and x = 2. Note that f (0) > 0 and f (2) < 0. Thus, our first approximation to the root is
x = a+b

2 =
0+2
2 = 1. The values for f (0), f (2), and f (x1) are found in Python as follows.

Code:
1 import numpy as np

2

3 def f(x):

4 y = x**4/10 -2*x**2 + -x-3*np.sin(x) + 5

5 return(y)

6

7 a = 0

8 b = 2

9 print('f({:.4f}) = {:.4f}'.format(a,f(a)))

10 print('f({:.4f}) = {:.4f}'.format(b,f(b)))

11 x = (a+b)/2.0

12 print('f({:.4f}) = {:.4f}'.format(x,f(x)))

76 � 5 Iteration

Output:
f(0.0000) = 5.0000

f(2.0000) = -6.1279

f(1.0000) = -0.4244

Process finished with exit code 0

We can see that f (0) and f (1) have different signs. Thus, we now know that the root is
between 0 and 1. So we reassign the right-hand side of our interval from b = 2 to b = 1.
Then, we repeat the procedure. So, we can update our approximation to the root as the
midpoint between 0 and 1, or x = 0+1

2 =
1
2 . When we do that, we get the following.

Output:
f(0.0000) = 5.0000

f(1.0000) = -0.4244

f(0.5000) = 2.5680

Process finished with exit code 0

Now, we see that the root must be between x = 0.5 and x = 1. So, we reassign a to be 0.5.
Each computational process that generates a new approximation (an iterate) is called
an iteration. The next table summarizes the results of the first ten iterations.

Iteration a b x f (x)

1 0 2 1 −0.4244
2 0 1 0.5 2.5680
3 0.5 1 0.75 1.1117
4 0.75 1 0.875 0.3497
5 0.875 1 0.9375 −.0363
6 0.875 0.9375 0.9062 0.1570
7 0.9062 0.9375 0.9219 0.606
8 0.9219 0.9375 0.9297 0.0120
9 0.9297 0.9375 0.9336 −0.0121
10 0.9297 0.9336 0.9316 −0.0001

Note that, unless we wish to save the values of the iterates, we can simply replace the
value of previous iterate with the current iterate. Thus, we can use the same variable
(in this case, x) for all iterates instead of x1, x2, Manually changing a and b in the
code for each iteration is unreasonable. To make the code loop back to perform another
iteration, we will use a while loop. The general format of a while loop is

while condition:

statements to be executed

5.1 Finding roots: the bisection method � 77

The indentation is important. All the code that is indented under the ‘while’ statement
is part of the loop. Some part of the indented code will need to update the variables that
are involved in the while condition. The loop will be executed multiple times until the
while condition is violated, at which point, the code will drop to the next line below the
loop.

Since we are seeking a root of a function, we want to continue to generate iterates
until f (x) is very close to zero. Thus, we need something similar to the following.

while |f(x)| > 0.0001:

statements to be executed

The “cutoff” value for our loop is called the tolerance. In the current example, the tol-
erance is 0.0001. We accomplish the reassignment of a and b by using the if statement
that we learned earlier. We now present a version of the bisection algorithm for finding
roots of a continuous function. The code includes comment that indicate each step of
the algorithm.

Code:
1 import numpy as np

2

3 def f(x):

4 y = x**4/10 -2*x**2 + -x-3*np.sin(x) + 5

5 return(y)

6

7 tol = 0.0001

8 a = 0

9 b = 2

10 #we will do the first iterate before our while loop starts so that we

11 #have a value to test against the tolerance

12 x = (a+b)/2

13 while np.abs(f(x))>tol:

14 print('a={:.5f} f(a)={:.5f}, b={:.5f} f(b)={:.5f}, \

15 x={:.5f} f(x)={:.5f}'.format(a,f(a),b,f(b),x,f(x)))

16 #now decide whether we replace a or b with x

17 if f(a)*f(x) < 0:

18 #root is between a and x so replace b

19 b = x

20 elif f(b)*f(x)<0:

21 #root is between b and x so replace a

22 a = x

23 else:

24 # in this case, f(x) must be 0 and we have found the root

78 � 5 Iteration

25 # so we will know the root value is x and we can end the loop

26 break

27 #recompute the approximation

28 x = (a+b)/2

29 print('final x =',x)

30 print('final f(x) =',f(x))

Output:
a=0.00000 f(a)=5.00000, b=2.00000 f(b)=-6.12789, x=1.00000 f(x)=-0.42441

a=0.00000 f(a)=5.00000, b=1.00000 f(b)=-0.42441, x=0.50000 f(x)=2.56797

a=0.50000 f(a)=2.56797, b=1.00000 f(b)=-0.42441, x=0.75000 f(x)=1.11172

a=0.75000 f(a)=1.11172, b=1.00000 f(b)=-0.42441, x=0.87500 f(x)=0.34974

a=0.87500 f(a)=0.34974, b=1.00000 f(b)=-0.42441, x=0.93750 f(x)=-0.03631

a=0.87500 f(a)=0.34974, b=0.93750 f(b)=-0.03631, x=0.90625 f(x)=0.15703

a=0.90625 f(a)=0.15703, b=0.93750 f(b)=-0.03631, x=0.92188 f(x)=0.06043

a=0.92188 f(a)=0.06043, b=0.93750 f(b)=-0.03631, x=0.92969 f(x)=0.01208

a=0.92969 f(a)=0.01208, b=0.93750 f(b)=-0.03631, x=0.93359 f(x)=-0.01211

final x = 0.931640625

final f(x) = -1.3723513678343124e-05

Process finished with exit code 0

Notice that the absolute value is accomplished with the np.abs method. It is used in
line 13 to see if the function value is close to zero.

Now that we have a working program for the bisection method, we would like to
package it as a function so that we can use it to find roots for any appropriate function.
To do this, wewill define a function called bisectwhich takes four arguments: the name
of the function for which to find the root, a (lower bound for the root), b (upper bound
for the root), and tolerance. For the most part, we can simply wrap our existing code in
the def structure, but there are a few important changes. See the following.

Code:
1 def bisect(f,a,b,tol):

2 #we will do the first iterate before our while loop starts so that we

3 #have a value to test against the tolerance

4 x = (a+b)/2

5 while np.abs(f(x))>tol:

6 print('a={:.5f} f(a)={:.5f}, b={:.5f} f(b)={:.5f}, \

7 x={:.5f} f(x)={:.5f}'.format(a,f(a),b,f(b),x,f(x)))

8 #now decide whether we replace a or b with x

9 if f(a)*f(x) < 0:

10 #root is between a and x so replace b

11 b = x

12 elif f(b)*f(x)<0:

5.1 Finding roots: the bisection method � 79

13 #root is between b and x so replace a

14 a = x

15 else:

16 # in this case, f(x) must be 0 and we have found the root

17 # so we will know the root value is x and we can end the loop

18 break

19 #recompute the approximation

20 x = (a+b)/2

21 return x

The first thing to notice about this code is the addition of a return statement in line 21.
We must return the root that was found by the method. Also, the function f is now a
local variable for the defined function bisect. In the bisect function, f is the variable
that holds the name of the function whose root is sought. Thus, we can define any func-
tion for which we want to find a root and pass on the name to the bisection function.
For example, suppose we wish to find the root of f (x) = ex −3. By inspection, we see that
f (1) is negative and f (2) is positive. So, there is a root between a = 1 and b = 2. We could
call the bisect function with the following few lines of code added below the function
definition.

Code:
22 def shifted_exp(x):

23 y = np.exp(x) - 3

24 return y

25

26 tol = 0.0001

27 a = 1

28 b = 2

29 x = bisect(shifted_exp,a,b,tol)

30 print('final x =',x)

31 print('final f(x) =',shifted_exp(x))

Output:
a=0.00000 f(a)=-2.00000, b=2.00000 f(b)=4.38906, x=1.00000 f(x)=-0.28172

a=1.00000 f(a)=-0.28172, b=2.00000 f(b)=4.38906, x=1.50000 f(x)=1.48169

a=1.00000 f(a)=-0.28172, b=1.50000 f(b)=1.48169, x=1.25000 f(x)=0.49034

a=1.00000 f(a)=-0.28172, b=1.25000 f(b)=0.49034, x=1.12500 f(x)=0.08022

a=1.00000 f(a)=-0.28172, b=1.12500 f(b)=0.08022, x=1.06250 f(x)=-0.10640

a=1.06250 f(a)=-0.10640, b=1.12500 f(b)=0.08022, x=1.09375 f(x)=-0.01455

a=1.09375 f(a)=-0.01455, b=1.12500 f(b)=0.08022, x=1.10938 f(x)=0.03246

a=1.09375 f(a)=-0.01455, b=1.10938 f(b)=0.03246, x=1.10156 f(x)=0.00886

a=1.09375 f(a)=-0.01455, b=1.10156 f(b)=0.00886, x=1.09766 f(x)=-0.00287

a=1.09766 f(a)=-0.00287, b=1.10156 f(b)=0.00886, x=1.09961 f(x)=0.00299

80 � 5 Iteration

final x = 1.0986328125

final f(x) = 6.15721275165626e-05

Process finished with exit code 0

The function is defined as shifted_exp (shifted exponential). Then, the root is found
by calling the bisect function in line 8. Finally, once we are satisfied that the function
is working properly, we should remove most of the print statements within the bisect
function. Also, when the function is complete, we can save the function in a separate file
and import the filewhenneeded. For example, ifwe save the function from the def state-
ment to the return statement (and include any lines that import packages) in a file called
bisectfun.py, then we could accomplish the previous example with the following code.

Code:
1 import numpy as np

2 from bisectfun import *

3

4 def shifted_exp(x):

5 y = np.exp(x) - 3

6 return y

7

8 tol = 0.0001

9 a = 1

10 b = 2

11 x = bisect(shifted_exp,a,b,tol)

12 print('final x =',x)

13 print('final f(x) =',shifted_exp(x))

See Exercises 1–5.

5.2 Euler’s method for differential equations

Another reason for iteration is to get approximations at different times for a given equa-
tion. This need occurs frequently when solving differential equations. A differential equa-
tion (DE) is an equation that contains derivatives. For example, d2y

dx2 + y = 3x − 4 is a
differential equation. It is a second-order equation because the highest derivative that
appears is the second derivative. The solution to the DE is a function y(t) that, when
substituted into the equation, makes the equation true. Some differential equations are
fairly easy to solve. If we have

dy
dx
= 2x + 1,

5.2 Euler’s method for differential equations � 81

then we could integrate both sides with respect to x to get the solution:

dy
dx
= 2x + 1

∫
dy
dx

dx = ∫(2x + 1) dx

y(x) = 2x
2

2
+ x + C

y(x) = x2 + x + C,

where C is the constant of integration. So, in this case, there are an infinite number of
functions that satisfy the equation. We can check the result

d
dx
(x2 + x + C) =? 2x + 1

2x + 1 + 0 =? 2x + 1
2x + 1 = 2x + 1 √

Other differential equations are very difficult (or impossible) to solve explicitly. We
know that dy

dt = et
2
must have a solution, but it has also been shown that there is no

closed-form solution for ∫ et
2
dt. Thus, the best we can do is to try to get values of the

desired function for a sequence of t values. If we think of t as time, then we are seeking
approximations of y for a specified set of times. One of the earliest and most straight-
forward approaches to find such approximations is credited to Euler. Euler’s method
applies to first-order differential equations that can be arranged such that

dy
dt
= f (y, t).

Some examples are

dy
dt
=

y − t
2

dy
dt
= et − cos(t)

dy
dt
= et

2
.

Recall from Calculus I that the slope of the tangent line to a function g(t) at t = a is given
by dg

dt (a) = g
′(a), and the point of tangency is (a, g(a)). Then, we can use the point–slope

form of a line to find the equation of the tangent line:

y − y1 = m(t − t1)
y − g(a) = g′(a)(t − a)

y = g′(a)(t − a) + g(a).

82 � 5 Iteration

The critical idea in this method is that, when t is near a, the tangent line is close to the
function. Thus, the tangent line should provide a reasonable approximation to the func-
tion. So, when t is near a, g(t) ≈ g′(a)(t − a) + g(a). For the advanced reader, the method
depends on the Taylor series expansion of g(t), but that knowledge is not assumed here.
Now consider

dy
dt
=

y − t
2
.

While we do not know the formula for the function y(t), if we know a point on the
function (t0, y0), we can find the derivative of the function using this equation. Sup-
pose we knew that, when t = 0, y = 1, and we want to approximate the function y
for t = 0.5, 1.0, 1.5, 2.0, 2.5, . . . , 5.0. Note that the t values are equally spaced. In this case,
the successive values are 0.5 apart. We denote the spacing between t values by Δt, sub-
stituting t = 0 and y = 1 into the differential equation

y′(0) = 1 − 0
2
=

1
2
.

Furthermore, the tangent line at (0, 1) is given by

ytan = y
′(0)(t − 0) + y(0)

ytan =
1
2
(t) + 1.

This means that, for t near 0,

y(t) ≈ 1
2
(t) + 1.

The closer t is to 0, the better the approximation. Now we consider t = 0.5. Then,

y(0.5) ≈ 1
2
(0.5) + 1 = 1.25.

Thus, we have an approximation for y when t = 0.5. So, a point on the graph of y is
approximately (0.5, 1.25). Since the slope of y is not constant (how do we know this?), we
update the slope and compute a new tangent line. We compute the slope of the tangent
line using the approximation (0.5,1.25). Hence,

dy
dt
=
y − t
2

=
1.25 − 0.5

2

=
0.75
2
= 0.375

5.2 Euler’s method for differential equations � 83

Then, the updated tangent line is given by

y − 1.25 = 0.375(t − 0.5)
y = 0.375(t − 0.5) + 1.25.

This allows us to obtain an approximation associated with our next t value, t = 1.

y(1) ≈ = y′(0.5)(1 − 0.5) + y(0.5)
= 0.375(0.5) + 1.25
= 1.4375.

Now, we have three points that approximate the function to be found: (0, 1), (0.5, 1.25),
and (1, 1.4375). A table of values could be made as follows.

Iteration # t y

0 0 1
1 0.5 1.25
2 1.0 1.4375

Notice that the t values are evenly spaced by Δt. We will use subscripts to denote the
iteration. So, t0 = 0, y0 = 1, t1 = 0.5, y1 = 1.25, and t2 = 1.0, y2 = 1.4375.

The general idea is to use the most recent approximation to compute the slope.
Then, update the tangent line to find the next approximation. So, in general, we have
a current approximation (tcurrent, ycurrent). Thus, the slope of the updated tangent line is
given by y′(tcurrent, ycurrent), and the tangent line is found using the point–slope form of
a line.

y − ycurrent = y
′(tcurrent, ycurrent)(t − tcurrent)

y = y′(tcurrent, ycurrent)(t − tcurrent) + ycurrent

Using this tangent line, we can approximate the next value of y by

ynext = y
′(tcurrent, ycurrent)(tnext − tcurrent) + ycurrent.

If we denote the current iteration by n and the next iteration by n + 1, then the previous
equation can be written as

yn+1 = y
′(tn, yn)(tn+1 − tn) + yn.

Since the t values are evenly spaced, tn+1 − tn = Δt and the equation can be expressed
as

84 � 5 Iteration

yn+1 = y
′(tn, yn)Δt + yn.

This formula is called a recursive formula because the next term depends on the previ-
ous term(s) of the sequence. When we see recursion in mathematics, it often translates
to a loop structure within the associated programming code. Thus, it should be possible
to write a Python program to compute the Euler iterates for this differential equation.
We wish to solve

dy
dt
=

y − t
2
, 0 ≤ t ≤ 5,

where y(0) = 1. The given point, (0, 1), is called an initial condition, and it acts as the
initial point in our set of approximation points. We are allowed to choose the spacing of
the approximation points (or equivalently, the number of approximation points to com-
pute). For any interval of real numbers [a, b], if we have n + 1 points spaced uniformly
through the interval, then we have n subintervals. This means that the width of each
subinterval (Δt) is given by

Δt = b − a
n
.

So, let’s put this together in Python. We begin by defining the right-hand side of the
equation as a function in lines 7–9 as shown.

Code:
1 import numpy

2 import matplotlib.pyplot as plt

3

4 #solve dy/dt = (y-t)/2

5 #where when t=0, y=1

6

7 def rhs(t,y):

8 m = (y-t)/2

9 return m

We let a be the initial t value and b be the final t value. Suppose we will to have eleven
iterates, then n = 10. This allows us to compute Δt as follows.

Code:
10 #initial t value

11 a = 0

12 #final t value

13 b = 5

14 #number of intervals

15 n = 10

5.2 Euler’s method for differential equations � 85

16 #delta t

17 dt = (b-a)/n

We know that, for each iterate, t will have to increase by an amount of Δt. The starting
value of t is 0, and the ending value of t is 5. There are many ways to implement this
requirement. One way is to use the .arangemethod as shown here:

t = np.arange(a,b+dt,dt)

This produces a list of the necessary t values. Now, we need to compute the approxima-
tion values that are associated with each t value. We will use the formula for yn+1 to do
this, but we also need something called a for loop. We pause our discussion of Euler’s
method briefly to explain how such a loop will work.

A for loop is similar to a while loop except that it loops over a particular set of
index values. For example, consider what follows.

Code:
1 import numpy as np

2 t = np.arange(0,10,1)

3 print(t)

4 for i in t:

5 print(i)

Line 2 sets up a vector holding the numbers 0, 1, 2, . . . , 9. Line 4 begins a for loop. The
variable i takes on the next value in the t list each time through the loop. So, the first
time in the loop, i = t[0] = 0, the second time, i = t[1] = 1, . . . , and the 10th time, i = 9.
Within the loop, the program simply prints the value of i. So the output looks like this.

Output:
[0 1 2 3 4 5 6 7 8 9]

0

1

2

3

4

5

6

7

8

9

Process finished with exit code 0

86 � 5 Iteration

As with the while loop, we can include multiple statements to be executed in each pass
through the loop by indenting the statements. Once the indentation ends, the loop defi-
nition is complete.

Example. Given n = 5, compute the following sum: S = 1
1 +

1
2 +

1
3 + ⋅ ⋅ ⋅ +

1
n = ∑

n
k=1

1
k .

Code:
1 import numpy as np

2 n = 5

3 t = np.arange(1,n+1,1)

4 print(t)

5 S = 0

6 for k in t:

7 S = S+1.0/k

8 print('S =',S)

The t values are set up to hold 1, 2, 3, 4, 5. The variable S will hold the result of the sum
and is initialized as zero. Then, in the first time through the loop, k = 1 and S = S+ 1/k =
0 + 1/1 = 1.

The second time through the loop, k = 2 and S = S + 1/k = 1 + 1/2 = 1.5.
Likewise, the third time through the loop, k = 3 and S = S + 1/k = 1.5 + 1/3 =

1.83333333.
The fourth time through the loop, k = 4 and S = S + 1/k = 1.83333333 + 1/4 =

2.08333333.
And, finally, the fifth time through the loop, k = 5 and S = S+1/k = 2.08333333+1/5 =

2.283333333.
Notice how S accumulates the next term of the sum as it loops through the k values.

The program produces the following results.

Output:
[1 2 3 4 5]

S = 2.283333333333333

Try changing n to 100. You should get the following final answer: S = 5.187377517639621.
Returning to our differential equation, we wish to loop through all of the t values

and compute the associated approximation values.Whenwe calculated Δt = b−a
n ,n is the

number of intervals of length Δt in [0, 5]. There will actually be n+1 total approximation
points. Hence, we need an y list with space to store n + 1 values as the approximations
are computed. We wish to store all of the iterates so that we can plot them later or use
them for computational purposes. One way to do this in Python is by creating a list of
zeros as shown:

y = np.zeros(n+1).

5.2 Euler’s method for differential equations � 87

Then, we will replace the zeros with the approximation values as they are computed.
Thus, y starts with n + 1 zeros. We are given the initial point. In this case, (0, 1). That
means that y[0] = 1. So we can assign that value immediately and use a for loop to
compute the rest. Since we already know y0, we need y1, y2, . . . , yn. Thus, we can set up
an index list that has numbers 1 through n. Then, we use this list as the numbers to step
through in the for loop. Here we go.

Code:
1 import numpy as np

2 import matplotlib.pyplot as plt

3

4 #solve dy/dt = (y-t)/2

5 #where when t=0, y=1

6

7 def rhs(t,y):

8 m = (y-t)/2

9 return m

10

11 #initial t value

12 a = 0

13 #final t value

14 b = 5

15 #number of intervals

16 n = 10

17 #delta t

18 dt = (b-a)/n

19

20 #create a vector of t-values

21 t = np.arange(a,b+dt,dt)

22 #create space for the y-values

23 y = np.zeros(n+1)

24 #create a list of indices

25 i = np.arange(1,n+1,1)

26 #we know the initial value of y to be 1

27 y[0] = 1

28 for k in i:

29 #compute the Euler approximation

30 #use the right hand side function to get the slope of the tangent line

31 m = rhs(t[k-1],y[k-1])

32 #get the next approximation

33 y[k] = m*dt+y[k-1]

34 #plot the solution

88 � 5 Iteration

35 plt.plot(t,y)

36 plt.autoscale(enable=True, axis='x', tight=True)

37 plt.xlabel('t')

38 plt.ylabel('y')

39 plt.grid()

40 plt.show()

Line 25 creates a list of integers from 1 to n. These act as the index numbers for the
loop, the t values, and the y values. The right-hand side of the DE is computed in line 31,
and the recursive equation is imposed in line 33. The recursion stores the result in the
appropriate location in the y list. Finally, the program plots the approximation points to
give a graph that represents the approximate solution of the differential equation. For
n = 10, we obtain the following approximate solution.

This particular differential equation can be solved analytically to find that the true so-
lution is

y = t + 2 − e
1
2 t .

The size of Δt affects the accuracy of the approximation because Δt indicates how far
away from the point of tangency the approximation is. Larger values of Δt then tend
to cause more error because the approximation is further from the point of tangency.
The smaller the value of Δt, the better the approximation. The next a graph shows the
approximations for n = 10 and n = 100, along with the true solution. Note that the
approximation with 100 points is significantly closer to the true solution.

5.2 Euler’s method for differential equations � 89

It must be said that Euler’s method is a very simple method to solve particular types of
differential equations, but many differential equations will be too complicated to use
the method. Additionally, Euler’s method is highly dependent on Δt for accuracy. In fact,
in many instances, if Δt is too large, the method will fail. In such cases, there are many
other availablemethods.Most of thosemethods are beyond the scope of this text, but the
reader could investigate implicit differential equation solvers for more information or
the stability of numerical methods for differential equations. Euler’s method is straight-
forward and certainly demonstrates the concept of iteration.

Suppose we wish to modify Euler’s method as follows. Instead of

yn+1 = y
′(tn, yn)Δt + yn,

we use

yn+1 = y
′(tn+1, yn+1)Δt + yn.

In the first equation, yn+1 is dependent only on the values that are already known, while
in the second equation, yn+1 depends on knowing the derivative at the next time step.
Thus, we are trying to find the derivative at the next time step and the value of the
function at the next time step simultaneously. This type of method is called an implicit
method. We work our previous example using the modified Euler’s method,

dy
dt
=

y − t
2
, y(0) = 1

yn+1 = y
′(tn+1, yn+1)Δt + yn

90 � 5 Iteration

yn+1 =
yn+1 − tn+1

2
Δt + yn.

Solving for yn+1 gives

yn+1 =
yn+1 − tn+1

2
Δt + yn

2yn+1 = (yn+1 − tn+1)Δt + 2yn
2yn+1 − yn+1Δt = −tn+1Δt + 2yn
(2 − Δt)yn+1 = −tn+1Δt + 2yn

yn+1 =
−tn+1Δt + 2yn

2 − Δt
.

If we implement this scheme with Python, we can compare the results of the tradi-
tional Euler method with those just prescribed (we will call the new scheme the implicit
Euler method). For n = 20, the comparison displayed in the next graph. For n = 20, the
comparison is displayed in the next graph.

We can see that the implicit method differs from the explicit method. Implicit methods
are usuallymore difficult to implement, sometimes requiring the use ofmatrices to solve
a system of equations. However, implicit methods are generally more stable from a nu-
merical perspective, having less dependence on Δt. The study of such stability could be
encountered in a course in numerical analysis or computational analysis.

See Exercises 6–7.

5.2 Euler’s method for differential equations � 91

5.2.1 Systems of differential equations and higher-order differential equations

Inmany cases, we are not trying to solve a particular differential equation, but, rather, a
set or system of differential equations. Another issue that we have not addressed in any
way is the presence of a second derivative (or higher) in differential equations. Surpris-
ingly, if we can handle a system of equations, then we can handle many higher-order
equations, as well.

Suppose, instead of

dy
dt
=

y − t
2
,

we have

dx
dt
= y2 − x

dy
dt
=

y − x
2

This is a system of differential equations. This particular system has two equations and
two unknown functions, y(t) and x(t). We know that x and y are both functions because
the derivatives indicate that the independent variable is t (designated in the bottom of
dy
dt and

dx
dt). The goal is to find approximations to these functions. Note that both x and y

appear in both equations. Hence, wemust somehow solve the equations simultaneously.
As in our prior work, we will need some initial conditions in order to proceed such as
an initial condition for each function. Let us assume that y(0) = 1 and x(0) = 1.5. Recall
that in Chapter 4 we dealt with linear systems of equations by converting them into
a matrix representation and then manipulating the matrix to achieve a desired form.
Similarly, we will convert the system of differential equations into a matrix form. Then,
we will generalize Euler’s method so that it can be applied to the matrix representation.
We begin by forming a column vector that contains our desired functions

Y = [x(t)
y(t)
] .

Then, we define the derivative of the vector to be the vector of the derivative of each
component

dY
dt
= [

dx
dt
dy
dt

] = [
x′(t)
y′(t)
] .

Finally, we denote the right-hand side of the equations by

B = [y2 − x
y−x
2
] .

So, the system can be presented in vector form as

92 � 5 Iteration

dY
dt
= B(x, y, t).

This looks very similar to the single-equation form expressed earlier. The details
from this point on would show that we need to apply Euler’s method to each component
of the vector form of the equation. As it turns out, the form of the iteration generalizes
to vector form quite naturally. We find that

Yn+1 = B(xn, yn, tn)Δt + Yn.

The code to solve the example system for 0 ≤ t ≤ 20 is given below.

Code:
1 import numpy as np

2 import matplotlib.pyplot as plt

3

4 def rhs(t,yvec):

5 dy = np.zeros(2)

6 dy[0] = yvec[1]**2-yvec[0]

7 dy[1] = (yvec[1]-yvec[0])/2

8 return dy

9

10 #initial t value

11 a = 0

12 #final t value

13 b = 20

14 #number of intervals

15 n = 500

16 #delta t

17 dt = (b-a)/n

18

19 #create a vector of t-values

20 t = np.arange(a,b+dt,dt)

21 #create space for the y-values

22 y = np.zeros((n+1,2))

23 #create a list of indices

24 i = np.arange(1,n+1,1)

25 y[0,0] = 1.5

26 y[0,1] = 1

27 for k in i:

28 #compute the Euler approximation

29 #use the right hand side function to get the slope of the tangent line

30 dy = rhs(t[k-1],y[k-1,:])

31 #get the next approximation

32 y[k,:] = dy*dt+y[k-1,:]

33 #plot the approximations

5.2 Euler’s method for differential equations � 93

34 plt.plot(t,y[:,0])

35 plt.plot(t,y[:,1])

36 #plot true solution

37 plt.autoscale(enable=True, axis='x', tight=True)

38 plt.xlabel('t')

39 plt.grid()

40 plt.legend(['x(t)','y(t)'])

41 plt.show()

We should take some time to discuss the differences between this code and the code we
wrote for the single equation.
– First, in lines 4–8, we define the right-hand side function. In the single equation

code, the arguments were values for the independent variable, t, and the depen-
dent variable (desired function), y. In the system version, the second argument will
contain a vector of values for each of the functions included in the system. The vari-
able yvecwill contain a value for x(t) in the first component and a value for y(t) in
the second component.

– Similarly, while the single equation version returned a slope,m, the system version
returns a vector, dy, which contains the slope of each of the functions.

– The variables a, b, n, and Δt remain the same in the system version as in the single-
equation version.

– In line 22, thematrix is initialized to store the approximation values for x(t) and y(t).
Note that thematrix has asmany rows as therewill be approximations anda column
for each function in the system (in this case, two). So, the first column will store
the approximations for x(t), and the second column will hold the approximations
for y(t).

– The 0th row of y corresponds to the initial conditions of the system. Thus, since
x(0) = 1.5, the 0th column is 1.5, y[0, 0] = 1.5. Likewise, since y(0) = 1, the 1st col-
umn of y should be 1, y[0, 1] = 1.

– Line 30 calls the rhs function to compute for each iteration. Notice the second ar-
gument is y[k, :]. This is the kth row of y, which is a vector containing two values
(expected by rhs).

– Line 32 computes the values of the approximations for x(t) and y(t) for the kth time
step (iteration) and assigns them to the kth row of y. Notice how similar this is to the
single-equation version, y[k] = m∗dt+y[k−1]. The slopem is replaced by the vector
of slopes, dy, and y[k] is replaced by the vector at the (k − 1)st level. Otherwise, the
iteration is the same.

– Once the for loop is complete, the approximations for both functions are stored in y.
Line 34 plots the first column of y, which represents x(t), while line 35 plots the
second column, which represents y(t).

This generates the following graph.

94 � 5 Iteration

Notice that both x(t) and y(t) seem to approach 1 as t gets large. This is an example of an
equilibrium point. We say that the systemwould reach a steady state at the point (x = 1,
y = 1).

In systems containing two or three equations (and, thus, two or three functions), it
is common to examine how the functions behave simultaneously. We do this by plotting
what is known as a phase portrait. You can think of a phase portrait as the plot of a path
where the points of the path are given by the function values. In our example, we could
think of x(t) as the x-coordinate and y(t) as y-coordinate. The phase portrait would look
like this.

5.2 Euler’s method for differential equations � 95

The arrows placed on the curve show the direction in which travel as time (t) increases.
We can tell that the curve starts at (1.5, 1), which corresponds to the initial conditions
of x and y, and spirals to the point (1, 1), which corresponds to the steady state. Also,
the arrows are uniformly spaced with respect to t. So, we can see that the speed along
the path is faster (more distance traveled in the same amount of time) in the beginning
than it is when it approaches the steady state. The speed would be zero once the system
reaches steady state. The phase portrait allows us to know how the two curves interact
(and it is a really cool picture). Except for the directional arrows, the phase portrait is
accomplished by plotting the values for the x function and the corresponding values of
the y function. The arrows are helpful, but not a focal point in this text. For completeness,
the code to plot the phase portrait, including the arrows, is given next.

Code:
1 plt.figure()

2 plt.plot(y[:,0],y[:,1])

3 head = 1

4 tail = 0

5 w = 55

6 dx = y[head,0]-y[tail,0]

7 dy = y[head,1]-y[tail,1]

8 plt.arrow(y[head,0],y[head,1],dx,dy,width=.004)

9 numarrows = int((n-head)/w)

10 for i in range(4):

11 head = head + w

12 tail = tail + w

13 dx = y[head,0]-y[tail,0]

14 dy = y[head,1]-y[tail,1]

15 plt.arrow(y[head,0],y[head,1],dx,dy,width=.004)

16 plt.xlabel('x(t)')

17 plt.ylabel('y(t)')

18 plt.title('Phase Portrait: IC = (1.5,1)')

19 plt.grid()

20 plt.show()

There are many technical details that we are not covered here. In fact, for certain initial
conditions, the method would fail, and, it is possible the system may not be solvable. If
such topics are of interest, the reader may wish to pursue courses in numerical analysis
and differential equations.

To close our discussion of systems of differential equations, we turn our attention
to higher- order differential equations. Consider the following equation:

d2y
dt2
− μ(1 − y2)dy

dt
+ y = 0.

96 � 5 Iteration

This equation is called the van der Pol equation and arises in the study of circuits con-
taining vacuum tubes.We call the equation a second-order equation because the highest
order derivative is the second derivative. So, what does this have to do with systems of
differential equations? Our strategy will be to transform the higher-order equation into
a system of first-order equations. Then, we can use the methods previously discussed.
To make the transformation, we introduce a second function, say x(t), and define it to
be the derivative of y(t). That is, x(t) = y′(t). Then, x′(t) = y′′(t). Thus, the van der Pol
equation could be written as

x′(t) − μ(1 − y2)x(t) + y(t) = 0
y′(t) = x(t).

Solving the first equation for x′ gives

x′(t) = μ(1 − y2)x − y
y′(t) = x(t).

Thus, the original second-order equation is expressed as a system of two first-order
equations. Then, we can use Euler’s method for systems to approximate the solution
to x(t) and y(t). Note that the approximations that are of most interest are those for y(t)
since that is the only function in the original equation. As in previous examples, we will
need initial conditions for each of the functions. Generally, these conditions are dictated
via the context of the problem. In this abbreviated academic setting,we do not have such
context. For purpose of illustration, assume that x(0) = 1, y(0) = 1, and μ = 1. Solving the
system for 0 ≤ t ≤ 20 gives the following graphs for x(t) and y(t).

5.2 Euler’s method for differential equations � 97

The function y(t) is called a van der Pol oscillator that we can see is a periodic function.
For any smooth, periodic function, the derivativewould also have to be periodicwith the
same period (why?). It is clear this is the case from the graph of x(t). Since the functions
are periodic, the phase portrait would also become periodic. This means that it would
trace out the same loop repeatedly once the functions have established their periodicity.
The phase portrait of the system is depicted in the next graph.

Here is the code to compute the approximations and produce the graphs.

Code:
1 import numpy as np

2 import matplotlib.pyplot as plt

3

4 def rhs(t,yvec):

5 mu = 1

6 dy = np.zeros(2)

7 dy[0] = mu*(1-yvec[1]**2)*yvec[0]-yvec[1]

8 dy[1] = yvec[0]

9 return dy

10

11 #initial t value

12 a = 0

13 #final t value

14 b = 20

15 #number of intervals

98 � 5 Iteration

16 n = 500

17 #delta t

18 dt = (b-a)/n

19

20 #create a vector of t-values

21 t = np.arange(a,b+dt,dt)

22 #create space for the y-values

23 y = np.zeros((n+1,2))

24 #create a list of indices

25 i = np.arange(1,n+1,1)

26 y[0,0] = 1

27 y[0,1] = 1

28 for k in i:

29 #compute the Euler approximation

30 #use the right hand side function to get the slope of the tangent line

31 dy = rhs(t[k-1],y[k-1,:])

32 #get the next approximation

33 y[k,:] = dy*dt+y[k-1,:]

34 #plot the approximations

35 plt.plot(t,y[:,0])

36 plt.plot(t,y[:,1])

37 #plot true solution

38 plt.autoscale(enable=True, axis='x', tight=True)

39 plt.xlabel('t')

40 plt.grid()

41 plt.legend(['x(t)','y(t)'])

42 plt.figure()

43 plt.plot(y[:,0],y[:,1])

44 head = 1

45 tail = 0

46 w = int(n/12)

47 dx = y[head,0]-y[tail,0]

48 dy = y[head,1]-y[tail,1]

49 plt.arrow(y[head,0],y[head,1],dx,dy,width=.01)

50 numarrows = int((n-head)/w)

51 for i in range(4):

52 head = head + w

53 tail = tail + w

54 dx = y[head,0]-y[tail,0]

55 dy = y[head,1]-y[tail,1]

56 plt.arrow(y[head,0],y[head,1],dx,dy,width=.025)

57 plt.xlabel('x(t)')

58 plt.ylabel('y(t)')

59 plt.title('Phase Portrait: IC = (1,1)')

5.2 Euler’s method for differential equations � 99

60 plt.grid()

61 plt.show()

See Exercise 8.

5.2.2 Interpolation—using the approximations

In the previous section, we obtained approximate values of a van der Pol oscillator at
particular values of t. In our example, we solved for 0 ≤ t ≤ 20 with n = 500. So we have
501 approximations of y for t values that begin at 0 and are separated by 0.04 units. The
first ten approximation points are given in this table.

t 0.000 0.040 0.080 0.120 0.160 0.200 0.240 0.280 0.320 0.360
y 1.000 1.040 1.078 1.115 1.150 1.182 1.212 1.240 1.266 1.289

One question that arises is: ‘What if we need y(c) where c is not one of the t values
for which we have an approximation?’ Suppose we wished to approximate y(0.0732)?
The most common way to find such an approximation is by using linear interpolation.
The idea is to construct a linear function that connects the known approximation points
that surround the t value of interest. Then use the linear function to find the desired
value of y. For t = 0.0732, the surrounding t values would 0.040 and 0.080. Thus, the
corresponding (t, y) pairs are (0.040, 1.040) and (0.080, 1.078). We use algebra to find the
equation of the line containing these points.

m = y2 − y1
t2 − t1

m = 1.078 − 1.040
0.08 − 0.04

m = 0.95

point–slope form

y − y1 = m(t − t1)

y − 1.040 = 0.95(t − 0.04)

y = 0.95t + 1.002

Now, we can approximate y(0.0732) by substituting t = 0.0732 into the linear function
that we just found. So,

y(0.0732) ≈ 0.95(0.0732) + 1.002 = 1.07154.

100 � 5 Iteration

We can use this interpolation when we need to find approximations within the range of
those that have already been computed. The following code presents a crude function
to perform this interpolation.

Code:
1 import numpy as np

2

3 # x is the new input value, t is the vector of x-values

4 # y is the vector of y-values

5 def interp(x,t,y):

6 n = len(t)

7 startindex = 0

8 # find the indices between which the new x value lies

9 while t[startindex]<x:

10 startindex = startindex + 1

11 startindex = startindex - 1

12 endindex = startindex +1

13 # slope for interpolation

14 m = (y[endindex]-y[startindex])/(t[endindex]-t[startindex])

15 # compute approximation using point slope form

16 y_of_x = m*(x-t[startindex])+y[startindex]

17 return y_of_x

18

19 # begin main program

20 t = np.array([0.000, 0.040, 0.080, 0.120, 0.160,\

21 0.200, 0.240, 0.280, 0.320, 0.360])

22 y = np.array([1.000, 1.040, 1.078, 1.115, 1.150,\

23 1.182, 1.212, 1.240, 1.266, 1.289])

24

25 #approximate y(0.0732)

26 x = 0.0732

27 yinterp = interp(x,t,y)

28 print('y({}) = {:.5f}'.format(x,yinterp))

Output:
y(0.0732) = 1.07154

Process finished with exit code 0

See Exercise 9.

5.3 Exercises � 101

5.3 Exercises

1. (a) Modify the bisect function so that, in addition to the approximate solution, the
number of iterations needed to achieve the indicated tolerance is also returned.

(b) Plot the function f (x) = x3 − 100 cos(x) on the interval [−1, 4].
(c) Find the root of the function using a tolerance of 0.0001.

2. (a) Change the loop condition in bisect so that the iteration stops when the differ-
ence between two successive iterates is less than a designated tolerance.

(b) Find the same root as that found in problem 1. Compare the number of itera-
tions for each type of stopping criteria.

(c) Which stopping method do you think is better?
3. The population of a certain bacteria follows the form of the following function:

P(t) = {
et if 0 ≤ t < 3
at+3
t+5 if t ≥ 3.

Use the bisection algorithm to find the value of a that makes the function continu-
ous.

4. Find the maximum value of f (x) = ex sin(x) − x2
2 + 5 when −1 ≤ x ≤ 3.

5. Another method to find roots that we learned in the first semester of calculus is
Newton’s method. Write a Python function to implement Newton’s method for find-
ing roots. Then, repeat problem 1 using Newton’s method with an initial guess of
x0 = 1. Compare the number of iterations for each of the two methods. What hap-
pens if the initial guess is changed to x0 = −1?

6. (a) Modify the code for the explicit Euler scheme so that it is defined as a function.
What arguments should be included?

(b) Use the function to solve the differential equation

dy
dx
= x2 − sin(x).

Use a step size of .1 on the interval from 0 to 2π with y(0) = 0. Graph the ap-
proximate solution.

(c) We can solve the previous equation analytically to find that y = x3
3 + cos(x) − 1.

Plot the true solution on the same graph as the approximation.
7. Write a Python program to perform both the explicit and implicit Euler methods to

solve

dy
dt
= cos(t) + e−ty

for 0 ≤ t ≤ 20. Let y(0) = 0 with a step size of 0.05 on the interval from 0 to 2π. Plot
both approximations on the same axes.

102 � 5 Iteration

8. A relationship that commonly occurs in nature is that of a predator and its prey.
Under certain assumptions, the populations of a predator and prey can be modeled
by the system of differential equations

dX
dt
= aX − bXY

dY
dt
= cY + dXY ,

where X represents the population of the prey, Y represents the population of the
predator, and a and b represent the birth rate and death rate and c and d interaction
parameters.
Solve the system of differential equations using Euler’s method on the time interval
from t = 0 to t = 365 (t measured in days). Use trial and error to determine an
appropriate value for n (and hence, Δt). Use the following values:

a = 0.04
b = 0.0005
c = −0.1
d = 0.0005

X(0) = 50
Y (0) = 10.

(a) On the same graph, plot the populations of predator and prey throughout the
time period. Are the populations periodic? Use 50,001 points (Δt = tfinal−t0

50000). Why
or why not is that the case?

(b) Use the approximations of X and Y to draw a phase portrait. Using the phase
portrait, explain the cycle of the populations of each species. You do not need
to put arrows in the phase portrait.

9. Suppose we have the ten approximation points given at the beginning Section 5.2.2.
Let t be a vector of time values consisting of 76 evenly spaced values between 0 and
0.36, i. e.,

t = [0, .0048, .0096, . . . , 0.36].

Write a Python program to find the approximation associated with each t value and
plot the original set of ten points and the new set of 76 points on the same graph.

6 Statistics

We turn our attention now to projects that analyze large data sets. There are two general
types of project that we will consider:
– Projects that use data to infer conclusions about a larger group, called a population.

– This is usually done with hypothesis testing or confidence intervals.
– Projects that use data to predict results based on known results within the data.

– This is usually accomplished with some type of regression.

Wewill study both of these scenarios later in the chapter, but, first, wemust discuss how
to obtain the data for such projects.

6.1 File handling

Whendealingwith large amounts of data,wemust haveways of retrieving, filtering, and
saving the data. This is typically done via data files. Thus, we need to understand how
Python can open and close data files and how it can read data from a file and write data
to a file. One of the most common types of data files is the comma separated value file.
It uses .csv as the extension to the filename. The file is formatted so that data values are
separated by commas. Each line of the file corresponds to a data record that includes all
the values associatedwith one instance or observation of an experiment. As an example,
we found data that provides hourly surface-climate measurements from 122 weather
stations in Brazil. The data file can be found here: https://www.kaggle.com/PROPPG-PPG/
hourly-weather-surface-brazil-southeast-region. The filename is brazilclimate.csv. One
of the first things we might try when we find a data file of interest is to open it with
Microsoft Excel. Excel can open .csv files, but, in this case, the file is too large for Excel
to load all of the data it contains. This gives us our first reason to use something like
Python to analyze the data. However, loading just a portion of the file with Excel does
allow us to see the types of data contained in the file. A screen shot of the Excel window
is shown below in Figure 6.1. Examining the spreadsheet allows one to discover several
things about the data:
– there are 31 columns, indicating 31 different measurements for each row;
– the sheet contains the column headings

– we can make sense of many of the headings, but some we may need to investi-
gate (go back to the data source);

– there are a variety of types of data, including numbers, dates, and strings;
– it is clear that there is some missing or errant data in the sheet

– there are some zeros that seem to be incorrect, and there are many cells left
blank.

https://doi.org/10.1515/9783110776645-006

https://www.kaggle.com/PROPPG-PPG/hourly-weather-surface-brazil-southeast-region
https://www.kaggle.com/PROPPG-PPG/hourly-weather-surface-brazil-southeast-region
https://doi.org/\global \c@doi \c@chapter \relax \global \advance \c@doi \c@parttext \relax 10.1515/9783110776645-000

104 � 6 Statistics

Figure 6.1: Excel spreadsheet showing a portion of the data file.

We need to address the issues with the data as best we can. Sometimes, we will dis-
card records, and sometimes we can correct them. The process of “fixing” issues with
the data is called data cleaning. For example, the data has a column called prcp. In the
spreadsheet, it seems as if the value in this column is either absent or zero. Is this always
the case? If so, we can discard the column. So let’s investigate to see if the prcp is ever
nonzero. To do so, we need to open the file and read through every value of prcp to see
if it is ever nonzero. For simplicity, we will store the file in the same folder as the Python
program. If the data file is in a different folder, then we will have to use a file path to
indicate where the file is located. Consider the following code.

Code:
1 climate_file = open('brazilclimate.csv','r')

2 count = len(climate_file.readlines())

3 print('Number of lines in the file is',count)

4 climate_file.close()

Line 1 of the code executes an open statement. This statement opens the file for process-
ing. The ’r’ in the second argument indicates that the file is allowed to be read, but not
written to. Files can be opened for reading (r), writing (w), both reading and writing
(rw), or for appending (a). We will discuss writing files shortly. The file is assigned a file
identifier (fid) of climate_file. The fid name can be any valid variable name. In line 2,
climate_file.readlines() reads every line of the file and stores the information in
the computer’s memory. The len function returns the number of lines that were read.
Line 3 then prints out how many lines are contained in the file. Finally, any file that
is opened should be closed before the program ends. Hence, line 4 closes the file. The
output of the code follows.

6.1 File handling � 105

Output:
Number of lines in the file is 9779169

Process finished with exit code 0

We see that there are nearly 10 million records of data in the file. For the purposes of
illustration, a second file has been created called smallclimate.csv which contains only
the first 3,000 lines of brazilclimate.csv. We will work with the smaller file because it
allows us to show more meaningful output. For example, if we decide to show all of the
lines for which prcp is nonzero, the larger file may contain thousands of such records.
Displaying all of those would not be helpful. To see if prcp contains any nonzero values,
we need to look at each record to see what the value of prcp is. This requires us to break
each line of data into its separate fields (columns). Rather than read all the lines at the
same time (.readlines()), we will read one line at a time, find the prcp column, get
its value, and decide if the value is nonzero. One way to accomplish this is with the
following code.

Code:
1 climate_file = open('smallclimate.csv','r')

2 #we know the first line of this file contains headers of the columns

3 record = climate_file.readline()

4 #set up a counter to know what line we are on

5 count = 1

6 #set up a counter to count number of nonzero values for prcp

7 num_non0 = 0

8 #read lines until you reach a blank line, then assume you are done

9 while record != '':

10 record = climate_file.readline()

11 #split the record into its separate columns

12 record_vector = record.split(',')

13 #prcp is the 15th column. in Python, that is index 14

14 #convert from a string to value

15 if record_vector[14] == '':

16 prcp = 0

17 else:

18 prcp = float(record_vector[14])

19 if prcp != 0.0:

20 num_non0 = num_non0 + 1

21 print('prcp = {:.4f} in record #{}.'.format(prcp,count))

22 count = count + 1

23 print('The number of nonzero values is {}.'.format(num_non0))

24 climate_file.close()

106 � 6 Statistics

The output of the program follows.

Output:
Traceback (most recent call last):

File "/Users/WillMiles/Desktop/_Courses/SciComp/SciCompBook/BookCode/

basics4.py", line 18,

in <module>

if record_vector[14] == '':

IndexError: list index out of range

prcp = 0.6000 in record #1726.

prcp = 0.2000 in record #1860.

prcp = 0.2000 in record #1980.

.

.

.

prcp = 0.2000 in record #2980.

Process finished with exit code 1

This small program has much to show us about accessing information in files, as well
as an important error that we need to be aware of. We thoroughly explain this program
step-by-step.

Line 1: Opens the data file for reading.

Line 3: Since we know the first line of the file contains the headers, we read it so that
our file pointer is actually pointing to the second line. There is no need to find the prcp
value in the header line. Notice that the method is .readline(), not .readlines(). The
line from the file is stored as one long string in the variable record.

Line 5:Wemay want to knowwhich line of the file is currently begin accessed. Thus, we
set up a counter in the program called count to keep track of the location in the file.

Line 7: Likewise, we will want to know how many nonzero values are found for prcp.
Thus, a counter is initialized at 0 and will be updated as we find nonzero values. The
number of nonzero values is to be stored in the variable num_non0.

Line 9:We use a while loop to read each line of the file. The presumption is that, if a line
is blank, then we must be at the end of the file, and the code should exit the loop. We
test for the condition with record != ''. However, we will see that this assumption is
incorrect.

Line 10: This line reads the next record (line) in the file. The record is stored as one long
string that includes the commas separating the data fields.

6.1 File handling � 107

Line 12: In order to split the long string retrieved in line 10 into the separate fields
(or columns), we use the .split method. The command record.split(',') searches
through the string in record for commas. It uses commas to delineate separate fields in
the string and creates a vector with each field as an element of the vector. For example,
the line from the file may look like this:

178,SÃO GONÇALO,237.00,-6.835777,-38.311583,A333,São Gonçalo, ...

Once the split has been executed, record_vector would be:

['178', 'SÃO GONÇALO', '237.00', '-6.835777', '-38.311583', 'A333',

'São Gonçalo', ...]

Notice that the elements of record_vector are strings.

Lines 15–18: These few lines make the decisions on whether the prcp field has a nonzero
value. Since the prcp field is in the 15th column, it would be in the 14th index of
record_vector. So, testing if record_vector == '' is checking to see if the value is
blank. If it is, then we can likely assume the value is zero. Thus, we assign a variable
named prcp to be zero. If the field is not blank, then we drop to the else portion of the
if block. Since we know the field is not blank, we need to determine the value in the
field. The current contents of the field are in string form. Hence, we need to convert
the string to a floating-point number. This is done by using the float function applied to
record_vector[14] and assigning the resulting value to prcp in line 18. At this point,
prcp holds the value of column 15. If the column is blank, the value is zero.

Lines 19–21: In line 19, we test to see if the value in prcp is nonzero. If it is, we increment
the count of nonzero entries (line 20) and print the amount on the screen (line 21). Since
precipitation cannot be negative, it may be worth modifying the code slightly to see if
the value of prcp is negative or positive. A negative value would indicate an error in the
data.

Lines 22: At the bottom of the while loop, we increment count to indicate that we are
moving to the next line of the file.

Lines 23: Once the while loop has been completed, the code displays the total number of
nonzero entries that were found.

Lines 24: The data file is closed, and the program ends.

Now, from the output, we see that something has gone wrong. There is a message
that indicates there is a problem with the statement: if record_vector[14] == '':.
More precisely, the message indicates that a ‘subscript is out of range.’ This means that
there were not 15 entries in this record, but the loop condition terminates the loop if
the record is blank. The issue is that the record is read at the beginning of the while

108 � 6 Statistics

loop. So, the last record is read, and the code tries to process the record before the while
statement tests to see if the record is blank.We need tomove the .readline command to
the bottom of thewhile loop. However, this would then cause issueswith the first record.
We have read the header line and would have errors trying to convert the header prcp
into a number. Thus, we need to read the second record before the while loop begins.
Then, the code should run completely. The revised code and the output are given here.

Code:
1 climate_file = open('smallclimate.csv','r')

2 #we know the first line of this file contains headers of the columns

3 record = climate_file.readline()

4 #set up a counter to know what line we are on

5 count = 1

6 #set up a counter to count number of nonzero values

7 num_non0 = 0

8 # read the second line (which is the first line containing actual data)

9 record = climate_file.readline()

10 #read lines until you reach a blank line, then assume you are done

11 while record != "":

12 record = climate_file.readline() #move to bottom of the loop

13 #split the record into its separate columns

14 record_vector = record.split(',')

15 #prcp is the 15th column. in Python, that is index 14

16 #convert from a string to value

17 if record_vector[14] == '':

18 prcp = 0

19 else:

20 prcp = float(record_vector[14])

21 if prcp != 0.0:

22 num_non0 = num_non0 + 1

23 print('prcp = :.4f in record #.'.format(prcp,count))

24 count = count + 1

25 record = climate_file.readline()

26 print('The number of nonzero values is .'.format(num_non0))

27 print('There were records processed.'.format(count))

28 climate_file.close()

The changes to the code are in blue.

Output:
prcp = 0.6000 in record #1726.

prcp = 0.2000 in record #1860.

6.1 File handling � 109

prcp = 0.2000 in record #1980.

.

.

.

prcp = 0.2000 in record #2980.

The number of nonzero values is 39.

There were 3000 records processed.

Process finished with exit code 0

We can now see that the code runs without error. There were 39 nonzero values in the
3,000 records. If prcp is actually a quantity that we wish to analyze, we would likely
want to write a new data file that had the zeros written in place of the blanks. We will
address this shortly. Suppose we have a project that proposes to study the precipitation
and maximum temperature based on the time of year and location. Then, we need very
little of the data that is included in the brazilclimate.csv file. So, we will create a new file
that is “clean” and contains only the data of interest.

We still want to replace the blanks with zeros in the prcp column, and, in addition,
we want to examine the temperature, date, and station ID fields as well. When we ex-
amine the headers, we can determine which columns are needed:

Field Name Column

Station ID 1
Latitude 4
Longitude 5
Year 11
Month 12
Day 13
Hour 14
Precipitation 15
High Temperature 22

We will deal with blanks in precipitation as before. If the station ID or temperature is
blank, then we have other issues. Since there is no definitive way to deal with this pos-
sibility, we will discard any records that have such issues. We can fix latitude and longi-
tude blanks if we have the station ID (we can just use the lat and long values for another
record with the same station ID). We have to decide what to do if we have blanks in the
date fields. For now, we will discard the record if the year or month is blank. Finally, we
will store our cleaned data in a file called tempstudy.csv. We will process the larger file
this time. So we will read data from brazilclimate.csv and write data to tempstudy.csv.
Let’s determine a plan that will process the file as desired using the following options.

110 � 6 Statistics

– If station id, high temperature, year, or month is blank, discard the record.
– If latitude or longitude is blank and station id is blank, discard the record.
– If latitude or longitude is blank and station id is not blank, then find the correct

latitude and longitude
– We will test to see if any records meet this criterion before writing the logic if

needed.
– If precipitation is blank, then use a value of zero.

The code to process the file follows.

Code:
1 # open the climate file for reading

2 climate_file = open('brazilclimate.csv','r')

3 # open the new (output) file for writing. If the file does not exist,

4 # it is created.

5 temperature_file = open('tempstudy.csv','w')

6 # write the headers to the output file. the \n is a next line indicator

7 headerline = 'ID,lat,long,year,month,day,hour,precip,temp\n'

8 temperature_file.write(headerline)

9 # we know the first line of the input file contains headers of the columns

10 record = climate_file.readline()

11 # set up a counter to know what line of the input file we are on

12 count = 1

13 # set up counters to count the number of records that are corrected and

14 # the number of records that are discarded

15 corrected_recs = 0

16 discarded_recs = 0

17 # get the first non-header line (this is the first line with actual data)

18 record = climate_file.readline()

19 # read lines until you reach a blank line, then assume you are done

20 while record != "":

21 # initialize a variable (discard flag) to indicate whether

22 # the record should be discarded

23 # 0 = keep the record (write to the new file),

24 # -1 = discard the record (do not write to the new file)

25 # discarded records are not deleted from original file

26 # initialize the flag to "keep"

27 discardflag = 0

28 # this just lets me know that the program is progressing through the file

29 # by printing to the screen every millionth record

30 if count%1000000 == 0:

31 print(count)

32 # split the input record into its separate columns

33 record_vector = record.split(',')

6.1 File handling � 111

34 # check station ID, year, month, temperature for blanks the \ allows us to

35 # continue the code line to the next line for readability

36 if record_vector[0] == '' or record_vector[10] == '' \

37 or record_vector[11] == '' or record_vector[21] == '':

38 # if any of them is blank, set the discard flag and increment the

39 # the discarded records counter

40 discardflag = -1

41 discarded_recs = discarded_recs + 1

42 # see if there are any blank lat/long values that have a station id

43 if record_vector[3] == '' or record_vector[4]=='':

44 if record_vector[0] != '':

45 print('need to look up station id')

46 else:

47 # if the lat and long and id are all blank, discard the record

48 discardflag = -1

49 # now replace blank precip values with 0. only need to do this in the new

50 # file

51 if record_vector[14] == '':

52 record_vector[14] = '0'

53 # increment corrected records counter

54 corrected_recs = corrected_recs + 1

55 # build and write the record to the output file

56 if discardflag == 0:

57 # temp_record holds the record to be written

58 # the + will just concatenate the strings. the \ is a line

59 # continuation character

60 # we are building a string with all the desired

61 # fields separated by commas

62 temp_record = record_vector[0]+','+record_vector[3]+','\

63 +record_vector[4]+','+record_vector[10]+','+record_vector[11]+','\

64 +record_vector[12]+','+record_vector[13]+','+record_vector[14]+','\

65 +record_vector[21]+'\n'

66 # write to the output file

67 temperature_file.write(temp_record)

68 # read the next line of input

69 record = climate_file.readline()

70 count = count+1

71 # go back to the top of the loop

72 # the loop is complete

73 # close the files

74 climate_file.close()

75 temperature_file.close()

76 # print the counts

77 print('Number of discarded records:',discarded_recs)

78 print('Number of corrected records:',corrected_recs)

112 � 6 Statistics

The output is shown below.

Output:
1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

Number of discarded records: 26

Number of corrected records: 8371184

Process finished with exit code 0

The code is commented extensively, and the reader is encouraged to step through the
code, especially the if structures, to see how the code addresses the possible issues in the
file. The fact that 'need to look up station id' is never displayed, indicates that we
do not have to address the latitude and longitude issues because there are none. Note
that the shorter record is written to the file tempstudy.csv in line 67. When the file is
opened in line 5, it will be created if it does not exist. The file will be rewritten each
time the code is executed. If we wished to add to an existing file, we would open it for
append using the ‘a’ option in the open statement. The first few lines of tempstudy.csv
are displayed here.

tempstudy.csv
ID,lat,long,year,month,day,hour,precip,temp

178,-6.835777,-38.311583,2007,11,6,0,0,29.7

178,-6.835777,-38.311583,2007,11,6,1,0,29.9

178,-6.835777,-38.311583,2007,11,6,2,0,29.0

178,-6.835777,-38.311583,2007,11,6,3,0,27.4

178,-6.835777,-38.311583,2007,11,6,4,0,26.3

.

.

.

Now that we now have the cleaned data ready for use, let’s write a program to calculate
the average precipitation and the average temperature for eachmonth of the year. There
are many ways to accomplish this. Our approach will be as follows.
1. Read in each line of the tempstudy.csv file.

6.1 File handling � 113

2. For each record, determine the month for the data, the precipitation amount, and
the high temperature.

3. Add the precipitation amount to the current precipitation amount for that month.
4. Add the high temperature to the total temperature for that month.
5. Increment a counter to learn how many observations apply to that month.
6. When all records have been read, divide the totals by the number of observations

for each month.

The program is given here.

Code:
1 import numpy as np

2 import matplotlib.pyplot as plt

3 np.set_printoptions(precision=3,suppress=1,floatmode='fixed')

4

5 # open the temp study file for reading

6 temperature_file = open('tempstudy.csv','r')

7 # we know the first line of this file contains headers of the columns

8 record = temperature_file.readline()

9 # set up a matrix to hold what we need

10 # we need a row for each month and columns for

11 # total precip, total temperature, and number of observations

12 tempsummary = np.zeros((12,3))

13 # read lines until you reach a blank line, then assume you are done

14 temprec = temperature_file.readline()

15 count = 0

16 while temprec != '':

17 if count%1000000 == 0:

18 print(count)

19 # split the record into fields

20 tempvec = temprec.split(',')

21 # get the month, precipitation, and temperature for this observation

22 mth = int(tempvec[4])

23 precip = float(tempvec[7])

24 temp = float(tempvec[8])

25 tempsummary[mth-1,0] = tempsummary[mth-1,0] + precip

26 tempsummary[mth-1,1] = tempsummary[mth-1,1] + temp

27 tempsummary[mth-1,2] = tempsummary[mth-1,2] + 1

28 temprec = temperature_file.readline()

29 count = count + 1

30 temperature_file.close()

31 tempsummary[:,0] = tempsummary[:,0]/tempsummary[:,2]

32 tempsummary[:,1] = tempsummary[:,1]/tempsummary[:,2]

33 print(tempsummary)

114 � 6 Statistics

Lines 1–3 are the usual import and formatting statements that we have used before.
Line 6 opens the file that we created with the previous program. This time the file is
opened for reading. As in other examples, the header line is read so that the file pointer
is actually looking at data records. To compute the averages, we need to sum all of the
precipitation amounts and all of the temperature amounts, and, then, divide by the num-
ber of observations. We will use a matrix to hold the necessary information. Line 12 es-
tablishes the matrix. Since we want the average for eachmonth, we will have 12 rows in
the matrix. Row 0 corresponds to January, row 1 to February, and so on. We will use the
0th column to accumulate the precipitation, the 1st column to accumulate the tempera-
ture, and the 2nd column to keep track of the number of observations. Thus, the matrix
is 12× 3 and is initialized to all zeros. Line 14 reads the first actual data record. We enter
the while loop with the data record. Line 20 splits the data record into its component
fields (all fields are strings at this point). Lines 22–24 convert the month, precipitation,
and temperature values in the record into numbers. The row of the matrix that is to
be updated is one less than the month. Line 25 takes the current value in column 0 and
adds the new precipitation value to it. Thus, it is summing all of the precipitation val-
ues. Line 26 does the same thing for temperature. Line 27 sums the number of records
(observations) for that month. Once the while loop is complete, the tempsummarymatrix
has all of the components needed to compute the averages. The file is closed because we
will not need it anymore.

To compute the averages, we could establish another matrix, or we can reuse the
one we have. tempsummary currently has the following information in each row:

Column 0 Column 1 Column 2

sum of all precipitation
values for the month

sum of all the temperature
values for the month

total number of observations
for the month

Thus, we need to take columns 0 and 1 and divide them by column 2. This is done in
lines 31 and 32. In line 31,

tempsummary[:,0] = tempsummary[:,0]/tempsummary[:,2],

we take the 0th column, [:, 0], and divide those entries by the entries in the 2nd col-
umn. [:, 2] (element-wise division). Then we replace the current 0th column with the
result of that division. Thus, the 0th columnnowholds the average precipitation for each
month. Similarly, line 32 replaces the 1st column with the average temperature for each
month. Finally, the summary matrix is displayed. The output of the program is given
next.

6.1 File handling � 115

Output:
0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

[[0.270 22.634 819888.000]

[0.171 23.114 749424.000]

[0.201 22.483 822384.000]

[0.110 21.651 797856.000]

[0.059 19.194 827304.000]

[0.050 18.303 811522.000]

[0.038 18.539 850433.000]

[0.030 19.508 860852.000]

[0.065 21.132 848951.000]

[0.129 22.176 795171.000]

[0.239 21.963 780197.000]

[0.277 22.995 815160.000]]

Process finished with exit code 0

From the output, we can see, for example, that the average hourly precipitation in Jan-
uary is 0.27mm, and the average high temperature in May is 19.194 °C. We may wish to
graph these values. To graph the monthly precipitation values, we could add the follow-
ing lines:

m = np.arange(1,13,1)

plt.plot(m,tempsummary[:,0])

plt.xlabel('month')

plt.ylabel('precip')

plt.grid()

plt.show()

The graph is shown below.

116 � 6 Statistics

We could do a similar plot for the temperature by month. Notice that to get our plots we
had to process all of the tempstudy.csv file. This takes a long time. It took my MacBook
about 28 seconds to process the file. If we think we are going to use the summary in-
formation about precipitation and temperature frequently, we could write another file
that holds just that small amount of information. Then, accessing that file would save a
lot of time. We could add the following code to write the summary information to a file.

tempsum_file = open('tempsumm.csv','w')

for i in range(12):

summrec = str(tempsummary[i,0])+','+str(tempsummary[i,1])+',\

'+str(tempsummary[i,2])+'\n'

tempsum_file.write(summrec)

tempsum_file.close()

Now, if we want to produce the graphs, we could just open this new file to get the sum-
mary information. Using the summary file, we can produce the same graph as before,
except it takes about 0.13 seconds as opposed to 28 seconds. So, if we know we want to
use the summary data often, it is worth our time to produce the new file. The code to
produce the graph follows.

Code:
1 import numpy as np

2 import matplotlib.pyplot as plt

3 np.set_printoptions(precision=3,suppress=1,floatmode='fixed')

4 tempsumm_file = open('tempsumm.csv','r')

5 # set up a matrix to hold what we need

6 # we need a row for each month and columns for

6.1 File handling � 117

7 # total precip, total temperature, and number of observations

8 tempsummary = np.zeros((12,3))

9 # read each line and fill the matrix

10 for i in range(12):

11 summrec = tempsumm_file.readline()

12 summvec = summrec.split(',')

13 for j in range(3):

14 tempsummary[i,j] = summvec[j]

15 m = np.arange(1,13,1) # a list of month values

16 plt.plot(m,tempsummary[:,0])

17 plt.xlabel('month')

18 plt.ylabel('precip')

19 plt.grid()

20 plt.show()

Notice that, in line 14, we do not need to convert the string to a floating-point value. This
is because the tempsummarymatrix was initialized as a numpy matrix. This means that
the entries of the matrix are already assumed to be numeric. Thus, the conversion from
string to numeric value is automatic whenever possible. For completeness, we show
two more graphs next. One is the graph of the temperature by month. The other is the
graph of the precipitation versus temperature. The reader should try to reproduce these
graphs themselves.

The right-hand graph indicates that higher precipitation values correspond to higher
temperature values.

There are many more methods that help to handle files, and there are many more
types of files that Python can handle. There are also packages available for Python, such
asPandas, that allow for efficient, sophisticated datamanagement. The previous chapter
just scratches the surface of the topic. But, it gives the reader an idea of the need to clean
data and the need to be able to manipulate large files. While it is rare that we will deal

118 � 6 Statistics

with files with tens of millions of records, we will frequently deal with files with large
amounts of data. We should be comfortable doing so.

See Exercises 1–2.

Now that we have some idea of how to acquire, clean, and process data, we turn our
attention to describing the data with statistics.

6.2 Descriptive statistics

In this section, we briefly introduce some of the basic terms and ideas that are used
when describing data. Entire courses are dedicated to this topic, so we do not attempt to
offer a detailed presentation, but rather, we give a broad overview. Readerswho find the
topic interesting should pursue a course in statistics. We did some of this in the previous
section when we found the average monthly precipitation and temperature. When we
use such calculated values to describe data, we are using descriptive statistics. Whenwe
compute a number for an entire population, the number is called a parameter. When
we compute the same number for a subset of the population (called a sample), then the
number is called a statistic. For example, if we wanted to find the average height of
students at a particular university, it may be possible to measure every student and find
the average. In this case, we would have found the parameter that represents the mean
height of the population of students. If, however, we take a random sample of students,
and find the average height of the students in the sample, then we have found a statistic
that represents the mean height. Furthermore, if we use the value from the sample to
infer something about the population, then we are practicing inferential statistics. We
will generally focus on sample statistics and inference because if youhave access and the
ability to measure the entire population, then no inference is needed. For a particular
measurement (variable), we frequently want the mean of the measurement. This is the
average that most people think of. If the variable is x, then, for a population, the mean
is denoted by μx . For a sample, the mean is denoted by x̄. The mean is the sum of the
observations divided by the number of observations.

x̄ = sum of values
number of values

.

We can also computewhat is called a five-number summary of the data. The five-number
summary contains the following measurements.
– Median:Themedian, usually denoted byM , is themiddle observation. If the number

of data observations is even, it is the average of the middle two observations. If the
observations are sorted from least to greatest, x1, x2, . . . , xn, then

M =
{{
{{
{

x (n+1)
2

n is odd
x n
2
+x n

2 +1
2 n is even

6.2 Descriptive statistics � 119

– Minimum or min: This is the minimum value in the set of observations. If the obser-
vations are ordered,min = x1.

– Maximum or max: This is the maximum value in the set of observations. If the ob-
servations are ordered,max = xn.

– First quartile: This is themedian of the observations that are at or below themedian.
We denote it by Q1. It represents the value such that 25% of the observations are at
or below Q1.

– Third quartile: This is the median of the observations that are at or above the me-
dian. We denote it by Q3. It represents the value such that 75% of the observations
are at or below Q3.

The mean and the median are measures of the center of the data. The range of the data
is difference between the max and min. Likewise the interquartile range (IQR) is the
difference between Q3 and Q1. The range and the IQR are measures of spread or disper-
sion, indicating how variable the observations are. Another very common measure of
spread is the standard deviation, denoted by σ (population) or s (sample). The square
of the standard deviation is called the variance. The formulas for variance are slightly
different depending on whether we have data for the entire population or for a sample.
Suppose we have n observations. Then,

σ2 =
∑ni=1(xi − μ)

2

n
(population) and s2 =

∑ni=1(xi − x̄)
2

n − 1
(sample).

We can see from the formula that the variance measures the average squared distance
from an observation to the mean. Hence, the larger the variance, the more spread out
the data are.

Now, let’s see how we might use some of these ideas. Let’s return to our temper-
ature study. Our first goal is to compute the five-number summary for the maximum
temperature (X). To do this, we need to load the data into a matrix so that we can ac-
cess the numeric values via the numpy commands. We could use code similar to that
used in the previous section, but this is a good opportunity to show one of the many
available methods that numpy provides to make our code more efficient. The numpy
method.genfromtxt provides a way to load data from a text file into a numpy array.
There are several arguments that allow us to select the data we want to convert to the
type of value that we prefer. In the case at hand, we want the temperature values that
are held in the 9th field (column) or the 8th index, and we know that the first line of
the file contains headers. Then, to create the desired numpy array, we use the following
code.

Code:
1 import numpy as np

2 np.set_printoptions(precision=3,suppress=1,floatmode='maxprec')

120 � 6 Statistics

3 tempvals = np.genfromtxt('tempstudy.csv',dtype=float,delimiter=',',\

4 usecols=(8), skip_header=True)

5 print('The number of values in tempvals is {}.'.format(len(tempvals)))

Output:
The number of values in tempvals is 9779142.

Process finished with exit code 0

This method of importing the data is substantially faster than loading and parsing each
record, but it does require a higher level of coding sophistication. The .genfromtxt

command takes several arguments (there are other option arguments that we have not
used). The first argument is always the filename to be used. In our case, this is the tem-
perature data held in tempstudy.csv. The secondargument indicates that numeric strings
should be converted to floating-point numbers (dtype=float). The delimiter=',' ar-
gument tells the Python interpreter that the file is comma delimited. If other delimiters
are used, then they should be specified. The argument usecols=(8) indicates that we
wish to load the data in position 8 (9th column). We could specify multiple columns by
entering them as a comma-separated list within the parentheses. Finally, since we know
the first line contains headers, we can instruct the method to skip the first line with
skip_header=True. The print statement is included as a check so that we know data
has actually been imported into the tempvals array. The output indicates that there are
9,779,142 values in the array, so it appears that the data have been imported. As a fur-
ther check, we might print out the first 20 or so elements of tempvals to make sure they
agree with the data file.

Now that we have the desired data, we can use numpy methods to compute the
five-number summary. The following code is added to accomplish this.

Code:
6 M = np.median(tempvals)

7 Q1 = np.quantile(tempvals, .25)

8 Q3 = np.quantile(tempvals, .75)

9 min = np.min(tempvals)

10 max = np.max(tempvals)

11 R = max - min

12 IQR = Q3-Q1

13 print('Minimum = {:.2f}'.format(min))

14 print('Q1 = {:.2f}'.format(Q1))

15 print('Median = {:.2f}'.format(M))

16 print('Q3 = {:.2f}'.format(Q3))

17 print('Maximum = {:.2f}'.format(max))

6.2 Descriptive statistics � 121

18 print('Range = {:.2f}'.format(R))

19 print('IQR = {:.2f}'.format(IQR))

Output:
The number of values in tempvals is 9779142.

Minimum = -3.20

Q1 = 18.20

Median = 21.90

Q3 = 25.80

Maximum = 45.00

Range = 48.20

IQR = 7.60

Process finished with exit code 0

Note that we are assuming that the data has been cleaned prior to using these com-
mands. Lines 6–10 compute the five-number summary while lines 11–12 compute the
range and IQR respectively. We can tell by looking at the IQR and the median that the
data are roughly symmetric with respect to themedian. The ”upper” half of the data has
about the same spread as the lower half. To compute the mean and standard deviation,
we use .mean and .std commands.

20 # compute the mean and standard deviation

21 xbar = np.mean(tempvals)

22 print('Mean = {:.2f}'.format(xbar))

23 sd = np.std(tempvals,ddof=1)

24 print('Std.Dev.= {:.2f}'.format(sd))

Output:
The number of values in tempvals is 9779142.

Minimum = -3.20

Q1 = 18.20

Median = 21.90

Q3 = 25.80

Maximum = 45.00

Range = 48.20

IQR = 7.60

Mean = 21.11

Std.Dev.= 7.55

Process finished with exit code 0

122 � 6 Statistics

In the .stdmethod just used, doff=1 (degrees of freedom = n − `) indicates that we are
seeking a sample standard deviation. We would set ddof=0 or not include the option if
we wanted the population standard deviation. We see that the mean and median for
temperature are nearly the same value. This indicates that the distribution is symmet-
ric. We can verify this by creating a relative histogram for the data. A relative histogram
for a set of data divides the data values into equal numeric ranges (called classes) and
gives the proportion of observed values that fall within each class. Python easily cre-
ates these histograms within matplotlib. We simply add the following to our existing
code:

25 plt.hist(tempvals, density=1,edgecolor="black")

26 plt.show()

This produces the following graph.

From the graph, we see that the days with temperatures at zero or below are separated
from the rest of the data. This gives one cause to believe that the zero values for temper-
ature are actually indicating that no value was reported. Thus, we should further clean
this data by removing the days on which the temperature is zero or negative. The fol-
lowing histograms (Figure 6.2) show the shape of the distribution of temperatures when
the errant days have been removed. It is clear from these graphs that the distribution is
roughly symmetric.

6.3 Probability � 123

Figure 6.2: The histogram on the left uses 10 classes, while the histogram on the right uses 15 classes.

See Exercise 3.

6.3 Probability

Much of the power of statistics lies in the ability to estimate population parameters
based on sample statistics. To do this properly, one must provide a level of confidence
(or accuracy) for the estimate so that those who use the estimate have a sense of the risk
assumed by using it. This measure of accuracy is often based on the likelihood of the
sample that is being used. Such likelihood is called probability. We can think of the prob-
ability of an event as the long-term proportion of the number of times the event would
occur in repeated trials of the experiment under consideration. The study of probability
is both broad and deep, and there is no way to cover the subject with any detail in this
text. Students are encouraged to take a course in probability and statistics if they have
any interest in the study of random behavior or in the analysis of data in general. For
our purposes, we will introduce the subject in a very general way and then proceed to
apply some of the ideas that occur frequently in science.

As stated previously, the probability of an event E, denoted P(E), is the long-term
proportion of the occurrence of E. In some instances, the ‘long-term’ nature is hypothet-
ical. For example, the probability of the winner of a sporting event is based on an imag-
ining of repeated contests between the two teams. To compute probabilities for certain
types of variables (continuous variables), wemust know about the pattern of dispersion
of the values of such a variable. From this pattern, we can define the distribution for the
variable. There are several well-known, named distributions that are common: normal,
Poisson, binomial, chi-square, student t, F, among others. The normal distribution is, by
far, the most frequent distribution that is used (or assumed) when analyzing data. The
curve that describes the likelihood of values (derived from the distribution) of a variable
is called the probability density function (pdf) of the variable.

Let f (x) be the probability density function for the random variable X . Then, f (x)
has the following properties:

(i) f (x) ≥ 0 for all x

124 � 6 Statistics

(ii)
∞

∫
−∞

f (x) dx = 1

(iii) P(a ≤ X ≤ b) =
b

∫
a

f (x) dx,

where P(E) represents the probability of E.
Suppose X represents the height of students at a university. If we assume X is nor-

mally distributed, then the density function, f (x), would look something like the next
graph.

All normal density functions are bell-shaped curves with inflection points that are one
standard deviation from the mean of the variable. The mean is the x value that corre-
sponds to the peak of f (x).

Whenwe take a sample of observations, thenwe generally do not know themean of
the population μ. Hence, we use themean of the sample, x̄ as an estimate. Now, there are
many theoretical details that we ignore here, but, for each sample of size n, we would
likely get a different sample mean, x̄. For example, suppose we take a sample of ten stu-
dents andmeasure their heights. Further suppose thatwe compute themean of the sam-
ple to be 69.2 in. Now, if we took a second sample of ten students and computed themean
height, the samplemean (x̄) would likely not be 69.2 in. So, for the first sample, wewould
compute x̄1, for the second sample, we would get x̄2, and so on. Thus, the sample mean,
X̄ , is itself a variable.Whenwe study statistics and probability, we learn that themean of
the samplemean is the populationmean, and the standard deviation of the samplemean
is the population standard deviation divided by the square root of the sample size, i. e.,

μX̄ = μ

6.3 Probability � 125

and

σX̄ =
σ
√n
.

For any normal distribution (or for large sample sizes), the variable Z defined by

Z = x − μ
σ

is normally distributed with a mean of 0 and a standard deviation of 1. Z is called the
standard normal distribution.

Finally, if the sample size is large, then the sample mean is approximately normally
distributed, regardless of how the population is distributed. We have just put forth a
lot of information very briefly, but the hope is that we have the basic tools needed to
conduct some statistical analysis. From property (iii) of density functions, we see that
probabilities are found using integration. Thus, a discussion of numerical integration
seems appropriate at this point.

6.3.1 Numerical integration

Consider the function f (x) = 1
√2π

e
−x2
2 . The graph of the function on the interval [−4, 4] is

shown here.

The function f (x) is the probability density curve for a normal variable X (in this case,
it is actually the standard normal variable Z described previously) with a mean of zero

126 � 6 Statistics

and a standard deviation of 1. Thus, to find probabilities associated with X , we need to
find the area under the this curve. For example, the probability that X is between −2.3
and 1.2, denoted P(−2.3 ≤ X ≤ 1.2), is represented by the area shown in the following
figure.

From calculus, we know that we can find this area using the fundamental theorem of
calculus. Thus,

P(−2.3 ≤ X ≤ 1.2) =
1.2

∫
−2.3

f (x) dx = F(−2.3) − F(1.2),

where F(x) is an antiderivative of f (x) = 1
√2π

e
−x2
2 . The issue is that there is no closed-

form antiderivative of f (x) = 1
√2π

e
−x2
2 . That is, there is no function F that we can write

down in a nice, neat form so that F′(x) = f (x). Thus, we will need another way to com-
pute this definite integral. Recall the formal definition of the definite integral of f (x) on
[a, b],

b

∫
a

f (x) dx = lim
n→∞

n
∑
i=1

f (xi)Δx.

Remember that this forms a partition of the interval [a, b] using n rectangles with the
heights of the rectangles determined by f (x). Then, we compute the area of each rect-

6.3 Probability � 127

angle and sum the individual areas to approximate the integral. Allowing the number
of rectangles, n, to go to infinity would then yield the true value of the integral. These
summations of rectangular areas are called Riemann sums. The following figure gives
the rectangular partitions for n = 5 and n = 10 for our probability example.

The areas that are either entirely gray or entirely blue indicate an error in the approx-
imation. As the number of rectangles increases, this error decreases. The rectangles
that are shown here use the y-value at the right endpoint of each subinterval as the
height of the rectangle. Thus, these are called right Riemann sums. For our example, we
have partitioned the interval [−2.3, 1.2] into a set of x values. For n = 5, each interval
would need to be of width 1.2−(−2.3)

5 = 3.5
5 = 0.7. So, the x values that define the partition

are

x0 = −2.3, x1 = −1.6, x2 = −0.9, x3 = −0.2, x4 = 0.5, x5 = 1.2,

and the corresponding y values (found by substituting the x values into f (x)) are

y0 = 0.028, y1 = 0.111, y2 = 0.266, y3 = 0.391, y4 = 0.352, y5 = 0.194.

Thus, the area of each rectangle is given by

(height of the rectangle)(width of the rectangle) = yiΔx

for i = 1, 2, 3, 4, 5. We compute these areas and sum them to get

0.028(0.7) + 0.111(0.7) + 0.266(0.7) + 0.391(0.7) + 0.352(0.7) + 0.194(0.7) ≈ 0.9200.

Because we are using right Riemann sums, y0 is not used when calculating the areas.
Since this is the right Riemann sum obtained using five rectangles, we denote this by
R5 = 0.9200. Similar calculations using 10, 50, and 100 rectangles yield

128 � 6 Statistics

R10 = 0.90018, R50 = 0.8799, and R100 = 0.8771.

Obviously, we want to use Python to produce these approximations. The code to do this
is given next.

Code:
1 import numpy as np

2 import matplotlib.pyplot as plt

3 np.set_printoptions(precision=3,suppress=1,floatmode='maxprec')

4 # define the function

5 def stdnorm(x):

6 y = 1 / np.sqrt(2 * np.pi) * np.exp(-x ** 2 / 2)

7 return y

8

9 # get the number of rectangles

10 n = int(input('Enter the number of rectangles: '))

11 # limits of integration

12 a = -2.3

13 b = 1.2

14

15 # determine Delta x

16 dx = (b-a)/n

17 # create the partition of x values

18 x = np.arange(a,b+dx,dx)

19

20 # get the y values (heights of the rectangles

21 y = stdnorm(x)

22

23 # Compute the areas of each rectangle

24 A = y[1:]*dx

25 # Sum the areas

26 R = np.sum(A)

27 print('Riemann Sum is:',R)

Output:
Enter the number of rectangles: 5

Riemann Sum is: 0.9200101122108251

The areas are computed in line 24. Since we are using right sums, the first y value is not
used. Thus, we exclude it with y[1:]when multiplying the function values by Δx = 0.7.
The sum of the areas is accomplished with line 26. The question that arises when using
these sums to approximate the integration is: “How many rectangles do we need?” For

6.3 Probability � 129

our purposes, we will either choose a very large number of rectangles or use trial and
error to see when the sum ceases to change substantially. For the current example, we
would need thousands of rectangles to achieve the accuracy we would want when com-
puting a probability. That is not terribly troubling since we have a computer that can do
that easily. However, if we needed several such integrations, then it could begin to take
appreciable time to get our results. Fortunately, there are other numerical integration
techniques that are more accurate for fewer numbers of points in the partition.

See Exercise 4.

One modification to our numerical integration could be to change the shape used
in each subinterval. So, instead of rectangles, we might use trapezoids as shown here.

For a general trapezoid, the area is given by

A = 1
2
(b1 + b2)h,

where b1 and b2 are the bases (the lengths of the parallel sides) and h is the height. In
our case, the trapezoids are kind of on their sides. So the lengths of the bases are the
function values at consecutive x values, and the height of each trapezoid is the width of
the interval, Δx. So the trapezoidal areas would be:

A1 =
1
2
(y0 + y1)Δx

130 � 6 Statistics

A2 =
1
2
(y1 + y2)Δx

A3 =
1
2
(y2 + y3)Δx

A4 =
1
2
(y3 + y4)Δx

A5 =
1
2
(y4 + y5)Δx.

Since Δx and 1
2 are common to all terms, we can factor these out of the sum to get an

approximate total area (denoted by T5) of

T5 =
Δx
2
(y0 + 2y1 + 2y2 + 2y3 + 2y4 + y5).

We notice that all terms within the parentheses have a coefficient of 2 except the first
and the last terms. This means that, when we develop code to do this sum, we will need
to address the first and the last terms separately. With this example, we can write a
Python function to compute the trapezoidal approximation to the integral. The code is
given next.

Code:
1 import numpy as np

2 import matplotlib.pyplot as plt

3 np.set_printoptions(precision=3,suppress=1,floatmode='maxprec')

4

5 # use the trapezoidal rule to approximate the integral of f(x) from a to b

6 # we call the function traprule (trapezoidal rule)

7 def traprule(f,a,b,n):

8 dx = (b-a)/n

9 x = np.arange(a,b+dx,dx)

10 y = f(x)

11 # get the terms in the parentheses

12 # multiply all but the first and last y-values by 2

13 y[1:n] = 2*y[1:n]

14 # now multiply all terms by (delta x)/2

15 y = (dx/2)*y

16 # sum the areas

17 T = np.sum(y)

18 # return the value (T is the approximation to the integral)

19 return T

Note that, in line 13, the interior y values are replaced by twice the original y values,
leaving the first and the last y values unchanged. This applies the proper coefficients to
each of the y values. Then, line 15 multiplies each of these values by Δx

2 . Finally, the sum
is accomplished in line 17, stored in a local variable, T, and returned in line 19. Now, to

6.3 Probability � 131

use the traprule function, we simply need to call it with the appropriate arguments.
For our example problem, we would add the following to our previous code.

Code:
20 # integrate the standard normal density function from -2.3 to 1.2

21 # using 50 subintervals.

22 IntegralVal = traprule(stdnorm,-2.3,1.2,50)

23 print('The approximate value of the integral is',IntegralVal)

Output:
The approximate value of the integral is 0.87408445763325

The standard normal density is well-known. Thus, we know the integral values for
this function so that we can compare our results to the known results to see how well
our method is performing. For this example, the integral should be approximately
0.87420622. Using trial and error for the amount of rectangles, we can show that it
would take about 8,000 subintervals to achieve this amount of accuracy. If we attempt
to achieve this amount of accuracy using our right-Riemann rule, we would need about
54,000,050 subintervals. Thus, the trapezoidal rule seams to be a great improvement
with regard to the number of subintervals needed (and, hence, the amount of time
required) to compute the integral. One more version of numerical integration that we
see in calculus is Simpson’s rule. Simpson’s rule uses sets of three consecutive points
to fit a parabola. Then, the integrals of all the parabolas are computed and summed to
give the approximation to the overall integral. Figure 6.3 shows parabolas imposed on
our example problem for n = 6.

The blue areas in the figure represent portions of the region of integration that are
not accounted for by the coverage of the parabolas. We can see the parabolas provide
far less error than either the Riemann sum or the trapezoid rule. The general form of
Simpson’s rule is stated as:

b

∫
a

f (x) dx ≈ Δx
3
(f (x0) + 4f (x1) + 2f (x2) + 4f (x3) + 2f (x4) + ⋅ ⋅ ⋅ + 4f (xn−1) + f (xn)).

In order to use Simpson’s rule, wemust have an even number of subintervals so that we
can fit the parabolas appropriately. If we apply Simpson’s rule to the previous example,
we need only about 80 subintervals to achieve the accuracy indicated previously. Thus,
we see that Simpson’s rule far out-performs the other methods.

See Exercise 5.

Python has othermethods that are available for integration, andwe can use those if
desired. Now that we know how to do numerical integration, if we know the probability
density function of a variable, we can compute probabilities by using our integration
techniques.

132 � 6 Statistics

Figure 6.3:Multiple parabolas are fit to sets of three points: (p0, p1, p2), (p2, p3, p4), and (p4, p5, p6).

6.4 Confidence interval for the mean of a population

If we were to use the mean of a sample to represent the mean of a population (which is
a common practice), then we are inferring the mean of the population from the sample.
This action is part of what is called inferential statistics. Whenwemake such inferences,
we want to include some indication as to how accurate the estimate is. One way to do
this is to construct what is called a confidence interval. A P% confidence interval for pop-
ulation parameter δ is an interval (a, b) such that the probability, p, that δ is in (a, b) is
greater than or equal to P

100 . For example, a 95% confidence interval for the population
mean, μ, is an interval (a, b) such that the probability of a ≤ μ ≤ b is greater than or
equal to 0.95. Actually, the previous statement is subtly incorrect. The true statement
is that there is P% chance that the method will find an interval that contains the pa-
rameter. But, the general idea is that we are about P% sure the interval contains the
parameter.

So, suppose we take a sample of 100 students and find that the mean height of these
students is 67.2 in. Further suppose that we do not know the mean height of all students
(if we did, there would be no need to approximate it) and that we somehow know that
the standard deviation of the population height is 1.75. Wewould like to construct a 95%
confidence interval for the mean height of the students in the university based on the
sample we have taken. So, we want numbers a and b so that P(a < μ < b) = 0.95. Based
on the results given in Section 6.3, we know that μx̄ = μ and that

σx̄ =
σ
√n
=

1.75
√100
= 0.175.

6.4 Confidence interval for the mean of a population � 133

Knowing the standard deviation of the samplemean indicates that the shape of the den-
sity is known but the location of the center is not known since it would be centered at
the population mean. Below are density curves for x̄ that correspond to various values
of themean height of the population. The standard deviation associatedwith each curve
is the same.

We transform to the standard normal to shift the mean to be 0. So, let

Z = x̄ − μσ
√n
.

Then, if we can find numbers c and d so that P(c < Z < d) = 0.95, we can transform c
and d to determine the numbers that work for the original variable X (height), i. e.,

P(c < z < d) = P(c < x̄ − μσ
√n
< d)

= P(c σ
√n
< x̄ − μ < d σ

√n
)

= P(−x̄ + c σ
√n
< −μ < −x̄ + d σ

√n
)

= P(x̄ − c σ
√n
> μ > x̄ − d σ

√n
)

= P(x̄ − d σ
√n
< μ < x̄ − c σ

√n
).

Thus, a = x̄ − d σ
√n and b = x̄ − c σ

√n .

134 � 6 Statistics

Since we know the mean and standard deviation of Z, we can find c and d by using
something called the inverse normal. For Z, the density curve will look like this.

Thus, the goal is to find c and d such that the area under the curve between c and d is
0.95 as shown in the following.

For a distribution, the inverse of the distribution is defined as

inverse(A) = a such that P(x ≤ a) = A.

6.4 Confidence interval for the mean of a population � 135

For example, InvNormal(0.8) = ameans that P(x ≤ a) = 0.8. Thus, d = InvNormal(0.975)
and c = InvNormal(0.025). In our example, we note that, if the area under the curve
between c and d is 0.95, then there is an area of 1 − 0.95 = 0.05 outside of the desired
area.Wewill choose c and d such that the area below c is equal to the area above d. Thus,
there is 0.05

2 = 0.025 in each tail of the distribution. Finally, since the inverse function
uses the area below d, we combine the area below c, 0.025, and the shaded area, 0.95,
to get a total area of 0.975 below d. To generate these numbers using Python, we need
another package. We import the stats module from a package called scipy. The code is
as follows.

Code:
1 import scipy.stats as stats

2 c = stats.norm.ppf(q=0.025,loc=0,scale=1.0)

3 d = stats.norm.ppf(q=0.975,loc=0,scale=1.0)

4 print('c =',c)

5 print('d =',d)

Output:
c= -1.9599639845400545

d= 1.959963984540054

Process finished with exit code 0

Line 1 imports the new package scipy. If this is not installed, the student will have to
install this in the same way other packages have been installed. If the PyCharm editor is
used, we can install new packages fromwithin the editor. A Google search on something
like “add scipy package in PyCharm” will lead to the required information. Line 2 finds
the desired c value by using the norm.ppf command. This is the point percentile function
that is equivalent to the inverse function. It gives the data value which would be the
percentile value indicated by the first argument, 0.025. The loc argument is the mean,
and the scale argument is the standard deviation. Because the normal distribution is
symmetric about the mean, c and d are opposites of each other. The value 1.96 is called
the critical value of Z and is often denoted by z0.025. Now, we know that the interval for
Z is (−1.96, 1.96). The Z variable was our height transformed to standard normal. So

a = x̄ − d σ
√n

= 67.2 − 1.96 1.75
√100

= 67.2 − 1.96(0.175)
= 66.857.

Likewise,

136 � 6 Statistics

b = x̄ − c σ
√n

= 67.2 + 1.96 1.75
√100

= 67.2 + 1.96(0.175)
= 67.543.

Hence, there is a 95% likelihood that the true mean of the population is in the interval
(66.857, 67.543). This is our 95% confidence interval for the mean. We accomplish this in
Python as follows.

Code:
1 import scipy.stats as stats

2 Import numpy as np

3 c = stats.norm.ppf(q=0.025,loc=0,scale=1.0)

4 d = stats.norm.ppf(q=0.975,loc=0,scale=1.0)

5 print('c =',c)

6 print('d =',d)

7 xbar = 67.2

8 sig = 1.75

9 a = xbar - d*sig/np.sqrt(100)

10 b = xbar - c*sig/np.sqrt(100)

11 print('a =',a)

12 print('b =',b)

Output:
c = -1.9599639845400545

d = 1.959963984540054

a = 66.8570063027055

b = 67.5429936972945

In general, if the population standard deviation is known, then a P%confidence interval
for the sample mean of a sample of size n is given by

(x̄ − zα
σ
√n
, x̄ + zα

σ
√n
),

where zα is the critical value of Z associated with P%.

See Exercise 6.

In addition to giving some measure of certainty about the estimates that are being
used, the confidence interval can also answer questions regarding the mean itself. For
example, suppose we hypothesize that the mean height of the university students is 68

6.4 Confidence interval for the mean of a population � 137

inches. Then, we take a sample and obtain the results as reported previously. There is a
95% likelihood that the interval contains the actual mean of the population. Thus, since
68 is not included in the 95% confidence interval, it is highly unlikely that 68 is themean
of the population.

In the prior discussion, we assumed that we did not know the population mean but
we did know the population standard deviation. Inmost cases, this is unlikely. It is more
common that neither the mean nor the standard deviation for the population is known.
When this happens, we must modify our method for finding confidence intervals. We
will use the sample’s standard deviation as an estimate for the population’s standard
deviation. However, by using this estimate of σ , we can no longer assume that the asso-
ciated sampling distribution is normal. Instead, we move to another distribution called
the student t distribution. So, rather than taking the inverse of the normal, we take the
inverse of the student t distribution. Suppose the heights of the 100 students in the sam-
ple are given in the table below.

65.654 67.263 67.186 64.808 66.137 67.487 67.214 72.155 69.201 68.274
67.610 70.088 66.167 68.535 66.216 67.382 66.867 68.633 65.349 69.423
67.729 67.250 65.304 68.566 62.739 65.567 69.029 67.769 62.608 64.695
66.873 64.753 70.209 65.162 66.258 69.359 69.038 68.135 66.837 67.007
69.321 67.853 69.662 65.779 65.295 66.136 69.085 69.504 67.754 65.131
66.470 67.661 68.761 65.610 67.970 69.646 69.795 64.861 66.320 67.531
65.426 66.926 70.485 67.880 66.498 68.265 65.429 68.368 66.464 67.190
70.934 68.399 68.986 68.162 65.521 66.383 66.250 63.739 67.099 63.716
66.573 62.929 67.399 66.959 66.416 68.436 71.919 66.320 67.314 66.979
67.733 66.684 67.074 67.174 68.305 65.056 67.582 67.737 64.178 70.572

We can compute the mean and standard deviation of this sample with the following
code.

Code:
1 import numpy as np

2 import scipy.stats as stats

3

4 x = np.array([65.654, 67.263, 67.186, 64.808, 66.137, 67.487, 67.214,

5 72.155, 69.201, 68.274, 67.610, 70.088, 66.167, 68.535, 66.216, 67.382,

6 66.867, 68.633, 65.349, 69.423, 67.729, 67.250, 65.304, 68.566, 62.739,

7 65.567, 69.029, 67.769, 62.608, 64.695, 66.873, 64.753, 70.209, 65.162,

8 66.258, 69.359, 69.038, 68.135, 66.837, 67.007, 69.321, 67.853, 69.662,

9 65.779, 65.295, 66.136, 69.085, 69.504, 67.754, 65.131, 66.470, 67.661,

10 68.761, 65.610, 67.970, 69.646, 69.795, 64.861, 66.320, 67.531, 65.426,

11 66.926, 70.485, 67.880, 66.498, 68.265, 65.429, 68.368, 66.464, 67.190,

12 70.934, 68.399, 68.986, 68.162, 65.521, 66.383, 66.250, 63.739, 67.099,

13 63.716, 66.573, 62.929, 67.399, 66.959, 66.416, 68.436, 71.919, 66.320,

138 � 6 Statistics

14 67.314, 66.979, 67.733, 66.684, 67.074, 67.174, 68.305, 65.056, 67.582,

15 67.737, 64.178, 70.572])

16 n = len(x)

17 xbar = np.mean(x)

18 print('xbar =',xbar)

19 s = np.std(x,ddof=1)

20 print('s =',s)

Output:
xbar = 67.2214

s = 1.8736521674111353

Process finished with exit code 0

From here, we proceed as we did when σ was known except:
– we replace σ with s;
– we take the ppf of the t distribution instead of the normal distribution.

The t distribution is dependent on the number of observations in the sample, n. The
value of n − 1 is called the degrees of freedom. It is necessary to determine both the
density function for t and the inverse function for t. We forego the discussion of degrees
of freedom in this text, but the interested reader could find the discussion in the many
good statistic textbooks. Now, analogously to our previous example, we seek c and d
such that P(c < t < d) and find that

a = x̄ − d s
√n

and b = x̄ − c s
√n
.

Then, we can find the confidence interval by appending the following code.

Code:
19 c = stats.t.ppf(0.025,n-1)

20 d = stats.t.ppf(0.975,n-1)

21 print('c=',c)

22 print('d=',d)

23 a = xbar - d*s/np.sqrt(n)

24 b = xbar - c*s/np.sqrt(n)

25 print('a =',a)

26 print('b =',b)

Output:
xbar = 67.2214

s = 1.8736521674111353

6.4 Confidence interval for the mean of a population � 139

c= -1.9842169515086832

d= 1.9842169515086827

a = 66.84962676081919

b = 67.59317323918081

Process finished with exit code 0

Hence, the confidence interval for this sample when the population standard deviation,
σ , is unknown is (66.850, 67.593). Notice that the magnitude of c in this case was larger
than that when we knew σ . This means that the confidence interval is likely to be wider.
This makes sense because we are now estimating another quantity that makes us less
sure of our estimate for themean. Finally,we shouldmention that the scipy.statspackage
has a built-in method for finding confidence intervals. For the previous example, the
following code will find the same confidence interval as was previously found.

Code:
1 import numpy as np

2 import scipy.stats as stats

3

4 x = np.array([65.654, 67.263, 67.186, 64.808, 66.137, 67.487, 67.214,

5 72.155, 69.201, 68.274, 67.610, 70.088, 66.167, 68.535, 66.216, 67.382,

6 66.867, 68.633, 65.349, 69.423, 67.729, 67.250, 65.304, 68.566, 62.739,

7 65.567, 69.029, 67.769, 62.608, 64.695, 66.873, 64.753, 70.209, 65.162,

8 66.258, 69.359, 69.038, 68.135, 66.837, 67.007, 69.321, 67.853, 69.662,

9 65.779, 65.295, 66.136, 69.085, 69.504, 67.754, 65.131, 66.470, 67.661,

10 68.761, 65.610, 67.970, 69.646, 69.795, 64.861, 66.320, 67.531, 65.426,

11 66.926, 70.485, 67.880, 66.498, 68.265, 65.429, 68.368, 66.464, 67.190,

12 70.934, 68.399, 68.986, 68.162, 65.521, 66.383, 66.250, 63.739, 67.099,

13 63.716, 66.573, 62.929, 67.399, 66.959, 66.416, 68.436, 71.919, 66.320,

14 67.314, 66.979, 67.733, 66.684, 67.074, 67.174, 68.305, 65.056, 67.582,

15 67.737, 64.178, 70.572])

16

17 n = len(x)

18 xbar = np.mean(x)

19 s = np.std(x,ddof=1)

20 print('sample mean =',xbar)

21 print('sample standard deviation =',np.std(x,ddof=1))

22 print('standard dev of sample mean =',s/np.sqrt(n))

23 a,b = stats.t.interval(alpha=0.95, df=n-1, loc=xbar, scale=s/np.sqrt(n))

24 print('left end of interval =',a)

25 print('right end of interval =',b)

140 � 6 Statistics

The command to compute the confidence interval is shown in line 22. Note that the stu-
dent t distribution is indicated (because confidence intervals can be constructed using
many different distributions). The arguments of the .interval are as follows:
– alpha: the confidence level as a decimal;
– df : the degrees of freedom (sample size minus one);
– loc: the mean (or center);
– scale: the standard deviation.

See Exercise 7.

6.5 Hypothesis testing

Closely related to confidence intervals is another analytical technique called hypothesis
testing. Hypothesis tests are used to determine if there is evidence to indicate that an
assumed parameter is incorrect. For example, suppose a college publishes that the av-
erage GPA of student athletes is 2.35 on a 4.0 scale. A sample of 20 athletes is chosen, and
the GPA of each athlete is recorded.

Sample Athlete GPAs

2.46 2.2 2.09 2.84 2.82
2.19 2.76 2.72 2.98 2.22
2.74 2.28 2.47 2.13 2.81
2.98 2.01 2.67 2.34 2.62

We use the following code to find the mean and standard deviation of the sample.

Code:
1 import numpy as np

2 import matplotlib.pyplot as plt

3 np.set_printoptions(precision=3,suppress=1,floatmode='maxprec')

4

5 x=np.array([2.46,2.2,2.09,2.84,2.82,2.19,2.76,2.72,2.98,2.22,

6 2.74,2.28,2.47,2.13,2.81,2.98,2.01,2.67,2.34,2.62])

7 xbar = np.mean(x)

8 s = np.std(x,ddof=1)

9 print('Sample mean of GPAs: {:.3f}'.format(xbar))

10 print('Sample standard deviation: {:.3f}'.format(s))

6.5 Hypothesis testing � 141

Output:
Sample mean of GPAs: 2.516

Sample standard deviation: 0.314

Process finished with exit code 0

Remember that ddof=1 indicates that we are computing the standard deviation of a
sample instead of the population (ddof=0). Now, if the mean of the population is actu-
ally 2.35, then the mean of most random samples will be fairly close to 2.35. Of course,
different samples will have different sample means. The mean of our sample is 2.516.
This seems relatively high compared to the stated population mean of 2.35. Is it higher
than expected? And, if it is higher than expected, what does that tell us? We will answer
these questions by means of probabilities. Let X represent GPA. We need to compute
the probability that a sample would have a mean of 2.516 or higher. That is, we need
P(X̄ ≥ 2.516). We call this probability the p-value. So,

p = P(X̄ ≥ 2.516).

If p is very low, then one of two things has happened. Either the sample that was chosen
is actually an unusual sample, or the assumption that the population mean μ is 2.35 is
incorrect. Thus, if p is low, wemay choose to take another sample to see if our results are
repeatable. However, if the sampling techniques were appropriate and there is reason
to resist taking another sample (which is often the case), then we would conclude that
the evidence suggests that the assumed mean is incorrect. The next questions is: “What
is ‘low’ when comparing the p value?” The answer is up to the researcher and should
be determined before the probabilities are calculated. This threshold probability that is
used to make our decisions is designated as α and is called the significance level. Let’s
continue with our example. In the previous section, we used confidence levels to mea-
sure the reliability of the results. The value of α is 1 minus the confidence level. Thus,
analogous to a 95% confidence level, we would have a significance level of 0.05. The
assumption that μ = 2.35 is called the null hypothesis, and we denote it as

H0 : μ = 2.35.

In general, when testing means, the null hypothesis is usually in the form

H0 : μ = μ0.

In our example, μ0 = 2.35, so the null hypothesis is H0 : μ = 2.35. Given the null hypoth-
esis, we might consider three possibilities:
– The actual mean is higher than μ0;
– The actual mean is lower than μ0;
– The actual mean is different than μ0.

142 � 6 Statistics

Each of these options representswhatwe call an alternative hypothesis. The correspond-
ing notations for our example are:

Ha : μ > μ0
Ha : μ < μ0
Ha : μ ̸= μ0.

Ideally, the alternative hypothesis should be determined before any statistics are com-
puted, but it is often the case that the value of the sample statistic will dictate the alter-
native hypothesis. In our example, since x̄ = 2.516 is greater than the μ0 value of 2.35, we
choose the alternative hypothesis to be Ha : μ > 2.35. That is, we are testing the hypoth-
esis that the mean GPA of student athletes is actually higher than reported. Common
choices for α are 0.01, 0.05, and 0.10, but other values may be chosen. For our example,
let’s choose α = 0.05. Thus, our hypothesis test can be expressed by

H0 : μ = 2.35

Ha : μ > 2.35

Significance : α = 0.05.

Now, the problem reduces to finding the probability that the sample mean is greater
than or equal to the observedmean for our sample, that is, we need to find P(X̄ ≥ 2.516).
To compute this probability, we proceed as we did in the previous section. If the sam-
ple size is large enough (and we know the population standard deviation), then we can
use the normal distribution. If the sample size is small (say, less than 30) or the popu-
lation standard deviation is unknown, then we use the t distribution. In our example,
the sample size is 20, and the population standard deviation (σ) is not known so we will
use the t distribution. The most common case, by far, is to use the t distribution, and
the corresponding hypothesis test is called a t test. Since we are taking one sample (not
comparing results of two samples), this is called a one-sample t test. Thus, we want to
find the area under the t curve that is to the right of x̄ = 2.516. See Figure 6.4.

To find this area, we need to find

∞

∫
2.516

f (x) dx,

where f (x) is the density function shown. The formula for f (x) (the density function
for the t distribution) is very complex. Fortunately, Python can compute this integral
for us using something called the cumulative distribution function (cdf). The cumulative
distribution function for a random variable X is a function F(x) such that

F(x) = P(X ≤ x).

6.5 Hypothesis testing � 143

Figure 6.4: The shaded area represents P(̄x ≥ 2.516).

For example, if G(t) is the cdf for the sample mean GPA, then G(2.516) is equal to the
probability of the sample mean GPA being less than or equal to 2.516, i. e.,

G(2.516) = P(X̄ ≤ 2.516).

Python can compute this value for us by adding the following to our previous code.

Code:
11 n = len(x) #number of observations in the list

12 # get the cumulative distribution for xbar

13 cdf = stats.t.cdf(xbar,df=n-1,loc=2.35,scale=s/np.sqrt(n))

14 print('cdf(2.516) = {:.4f}'.format(cdf))

Output:
Sample mean of GPAs: 2.516

Sample standard deviation: 0.314

P(Xbar <= 2.516) = 0.9858

Process finished with exit code 0

The value of P(X̄ ≤ 2.516) is computed in line 13. The distribution function for t needs to
know the degrees of freedom, which is the size of the sample minus one. The degrees of
freedom is included as the second argument of stats.t.cdf. Then, wemust include the
mean (loc) and the standard deviation (scale) that, as before, is the sample standard

144 � 6 Statistics

deviation divided by the square root of the sample size. And, of course,wehave to supply
the x value that we are interested in. In this case, our value of interest is x̄ = 2.516. From
the output we see that P(X̄ ≤ 2.516) = 0.9858. However, we want P(X̄ ≥ 2.516). Since the
total area is 1, we can get the desired probability by subtracting the cdf value from 1.
Thus,

P(X̄ ≥ 2.516) = 1 − P(X̄ ≤ 2.516)
= 1 − 0.9898
= 0.0142.

So, the p value for this test is 0.0142. Since the p value is less than the threshold prob-
ability, α = 0.05, we claim that there is sufficient evidence to reject the null hypothesis
that μ = 2.35. Thus, we suspect that the mean GPA of the athletes is likely higher than is
being reported. If the p value is not less than α, then we cannot make such a claim.

We can also conduct the hypothesis test in a slightly different way. With α = 0.05,
we can find the sample mean, call it c, such that P(X̄ ≥ c) = 0.05. This is similar to how
we found the values for our confidence intervals. Because this is a “greater than” test,
we need the inverse of 1 − 0.05 = 0.95 to give us a critical value of the mean GPA.

Code:
1 import numpy as np

2 import matplotlib.pyplot as plt

3 np.set_printoptions(precision=3,suppress=1,floatmode='maxprec')

4 x=np.array([2.46,2.2,2.09,2.84,2.82,2.19,2.76,2.72,2.98,2.22,

5 2.74,2.28,2.47,2.13,2.81,2.98,2.01,2.67,2.34,2.62])

6 xbar = np.mean(x)

7 s = np.std(x,ddof=1)

8 print('Sample mean of GPAs: {:.3f}'.format(xbar))

9 print('Sample standard deviation: {:.3f}'.format(s))

10 n = len(x) #number of observations in the list

11 GPA_crit = stats.t.ppf(0.95,df=n-1,loc=2.35,scale=s/np.sqrt(n))

12 print('The critical value for GPA is {:.3f}.'.format(GPA_crit))

Output:
Sample mean of GPAs: 2.516

Sample standard deviation: 0.314

The critical value for GPA is 2.471.

Process finished with exit code 0

The critical GPA is found to be 2.471. The area to the right of this number is equal to α as
shown here.

6.5 Hypothesis testing � 145

The shaded region on the graph is called the critical region. Now, the mean GPA for our
sample is 2.516. Since 2.516 is to the right of 2.471, it lies within the critical region. This
implies that the probability of obtaining a sample mean of 2.516 or higher must be less
than α. Thus, we can reject the null hypothesis. This gives us two perspectives of the
hypothesis test:
– compute the p value and compare it to α;
– find the critical value and compare it to the sample statistic.

In our GPA example, we conducted a one-tailed test as seen by the critical region. In a
general sense, if the alternative hypothesis is a ‘greater than’ statement, then the critical
region is a region with area α located in the upper tail (right tail) of the distribution. If
the alternative hypothesis is a ‘less than’ statement, then the critical region is a region
with area α located in the lower tail (left tail) of the distribution, and if the alternative
hypothesis is a ‘not equal’ statement, then the critical region is split into two regions,
one in each tail having area α

2 . The corresponding critical regions and decision rules are
shown in Figure 6.5.

When a two-tailed test is used, two p values are theoretically considered, namely

P(X̄ ≥ observed sample mean)

and

P(X̄ ≤ observed sample mean).

The p value is the minimum of the two probabilities. However, only one of these prob-
abilities needs to be computed because the other will be more than 0.5. If the observed

146 � 6 Statistics

Figure 6.5: Critical regions and decision rules.

sample mean is greater than μ0, compute the greater-than probability. Otherwise, com-
pute the lesser-than probability. For example, in our GPA scenario, if instead ofHa > μ0,
we decided to test whether the mean GPA was simply not equal to the reported value.
Then, the alternative hypothesis isHa ̸= μ0, and the test becomes a two-tailed test. Thus,
having already computed the sample mean to be 2.516, we need to compute two proba-
bilities,

P(X̄ ≥ 2.516)

and

P(X̄ ≤ 2.516).

We’ve already computed the first of these probabilities in our prior work, i. e.,

P(X̄ ≥ 2.516) = 0.0142.

The probability associated with the less-than statement will then be

P(X̄ ≤ 2.516) = 1 − 0.0142 = 0.9856.

6.6 Comparing groups � 147

Since the two probabilities must add up to be 1, computing one of them automatically
gives us the other. The p value for this test is, then, the same as the former test, 0.0142.
However, because it is a two-tailed test, we must compare it to α

2 instead of α. Thus, if
α = 0.05, we compare p to 0.025. Hence, in this case, we would again indicate that we
should reject the null hypothesis.

See Exercise 8.

6.6 Comparing groups

The hypothesis tests in the previous section allowed us to infer whether a population
parameter was reasonable, but wemay also be faced with comparing the same parame-
ter in different populations. For example, what if we wanted to know if the mean height
of Americans was the same as the mean height of Europeans? This would require us to
compare the two groups by using samplemeans. The technique used to compare groups
depends, in part, on how many groups are involved.

6.6.1 Comparing means of two groups

Much like the previous section, we will us the t distribution, but we must adjust the
mean and standard deviation appropriately before computing p values or critical val-
ues. Suppose we wish to compare the mean values of two groups to decide if they are
significantly different. Then, the hypothesis test would be constructed as

H0 : μ1 = μ2
Ha : μ1 ̸= μ2,

where μ1 represents the mean of the population associated with the first group and μ2,
themean of the population of the second group. As before, our alternative test could also
be Ha : μ1 < μ2 or Ha : μ1 > μ2 if the research question were posed in that manner. The
general idea is to take a sample of values from each group, compute the sample means
(x̄1 and x̄2) and standard deviations (s1 and s2), and use a t test to determine if the means
differ significantly. While we do not cover the theory in this text, it can be shown that
the statistic

t = x̄1 − x̄2
sp√1/n1 + 1/n2

follows the t distributionwith n1+n2−2 degrees of freedomwhere sp = √
(n1−1)s21+(n2−1)s

2
2

n1+n2−2
.

The quantity sp is called the pooled standard deviation. We can then use this statistic as
we did in the previous section.

148 � 6 Statistics

Let’s consider an example. Suppose a study is done to evaluate a new diet plan. Two
samples of ten people are chosen. One group (we will call them group A) eats as they
normally do, while group B follows the diet plan. After ten weeks, the weight loss or
gain is recorded for each individual with the following results.

Weight Gain/Loss in Lbs

Group A Group B

2.61 0.62
−4.29 −4.03
−2.5 −5.32
2.34 −6.92
−4.31 −0.84
−4.37 −4.88
2.01 −7.83
0.16 −4.84
1.04 2.07
3.13 −4.88

Now, we use the t distribution as we did before. Because this is a two-tailed test, wemust
compute two p values and take the minimum of the two. Also, we either compare the p
value to α

2 , or we double the p value and compare directly to α. Most statistical packages
do the latter. Thus, we will double the probability found. For our example, α is chosen
to be 0.05. The code to accomplish this is given here.

Code:
1 import numpy as np

2 np.set_printoptions(precision=3,suppress=1,floatmode='maxprec')

3 import scipy.stats as stats

4

5 A = [2.61,-4.29,-2.5,2.34,-4.31,-4.37,2.01,0.16,1.04,3.13]

6 B = [0.62,-4.03,-5.32,-6.92,-0.84,-4.88,-7.83,-4.84,2.07,-4.88]

7 nA = len(A)

8 nB = len(B)

9 xbarA = np.mean(A)

10 sdA = np.std(A,ddof=1)

11 xbarB = np.mean(B)

12 sdB = np.std(B,ddof=1)

13 xdiff = xbarA - xbarB

14 pooledVar = ((nA-1)*sdA**2+(nB-1)*sdB**2)/(nA+nB-2)

15 sp = np.sqrt(pooledVar)

16 dofp = nA+nB-2

6.6 Comparing groups � 149

17 teststat = xdiff/(sp*np.sqrt(1/nA+1/nB))

18 print('test statistic:',teststat)

19 # mu_A < mu_B (group A lost more weight than B)

20 pvalL = stats.t.cdf(teststat,dofp)

21 # mu_A > mu_B (group A lost less weight than B)

22 pvalG = 1-stats.t.cdf(teststat,dofp)

23 pval = 2*np.min([pvalL,pvalG])

24 print('The p value is {:.3f}.'.format(pval))

Output:
test statistic: 2.296207907741645

The p value is 0.034.

Process finished with exit code 0

Lines 5–8 load the data and determine the number of observations in each group. The
means and standard deviations for each group are computed in lines 9–12. The pooled
standard deviation is computed in lines 14–15, and the test statistic is accomplished in
line 17. Finally, the probabilities are computed. The “less-than” probability is computed
in line 20, while the “greater-than” probability is computed in line 22. The p value for this
test is twice theminimum of these two probabilities. If the test were a one-tailed test, we
would only need to find the appropriate probability. No doubling would be necessary.
We see from the output that the p value for this example is 0.034. Because 0.034 < 0.05,
we would reject the null hypothesis and indicate that there is evidence to do so.

The scipy package provides a method that will do all of this work with just one line
of code. We could use the following.

Code:
print(stats.ttest_ind(a=A, b=B, equal_var=True))

Output:
Ttest_indResult(statistic=2.296207907741645, pvalue=0.033887154133051905)

Process finished with exit code 0

We see the same test statistic and p-value that we computed previously with much less
work. However, the programmer must understand that the p value represents a two-
tailed value. Thus, if the alternate hypothesis is one-tailed, the correct interpretation
must be made. For example, suppose we wish to test if the diet plan increased weight
loss. Then, the alternative hypothesis in our example would be Ha : μ1 > μ2. We would
use the exact same Python command, but the p value would be half of the value that is
returned. Thus, the p value for the stated alternative hypothesis would be p ≈ 0.0169. In

150 � 6 Statistics

general, the value of the sample means indicates the tail in which the p value resides.
For the general test, H0 : μ1 = μ2, if x̄1 < x̄2, then the p value derives from a left-tailed
(“less-than”) alternative test. If Ha is contrary to this (Ha : μ1 > μ2), then there is no
evidence to support rejection of the null hypothesis. If x̄1 > x̄2, the p value derives from
a right-tailed (“greater-than”) alternative test.

See Exercise 9.

In many scenarios, an experiment may take multiple data measurements on the
same sample of individuals. For example, in our diet scenario, instead of choosing dif-
ferent people for the groups (regular diet vs. plan diet), the researchermay select a sam-
ple of individuals to participate in the diet plan. Their weights are recorded before and
after the plan period and then compared to determine if the diet works. Thus, the same
individuals have two data values, before and after the diet. This is a reasonable design
to test whether the plan is effective, but wemust recognize that the two sets of numbers
are no longer independent. To compare the mean weight before the diet to the mean
weight after the diet, we use a paired t test. This paired character (dependence) affects
the variance associated with the test, but, in Python, we need only make a small change
to our method. Suppose the following data represents a pre-diet weight and a post-diet
weight for each of ten individuals.

Pre-Diet (lbs) Post-Diet (lbs)

152.61 149.62
145.71 144.97
147.5 143.68
152.34 142.08
145.69 148.16
145.63 144.12
152.01 141.17
150.16 144.16
151.04 151.07
153.13 144.12

Our hypothesis test would look like this:

H0 : μpre = μpost
Ha : μpre > μpost.

The following code modifies the previous code to perform the correct t test, but it also
gives more guidance as to the computation of the p value.

6.6 Comparing groups � 151

Code:
1 import numpy as np

2 np.set_printoptions(precision=3,suppress=1,floatmode='maxprec')

3 import scipy.stats as stats

4

5 A = [152.61, 145.71, 147.5, 152.34, 145.69,\

6 145.63, 152.01, 150.16, 151.04, 153.13]

7 B = [149.62, 144.97, 143.68, 142.08, 148.16,\

8 144.12, 141.17, 144.16, 151.07, 144.12]

9 xbarA = np.mean(A)

10 print('Pre-diet sample mean: {:.4f}'.format(xbarA))

11 xbarB = np.mean(B)

12 print('Post-diet sample mean: {:.4f}'.format(xbarB))

13 t,p = stats.ttest_rel(a=A, b=B)

14 print('t-stat = {:.4f}, p-value = {:.4f}'.format(t,p))

15 print('')

16 print('Assuming Ha: mu1 != mu2')

17 print('p value = {:.4f}'.format(p))

18 print('')

19 diffofmeans = xbarA - xbarB

20 if diffofmeans>0:

21 print('Assuming Ha: mu1 > mu2')

22 print('p value = {:.4f}'.format(0.5*p))

23 else:

24 print('Assuming Ha: mu1 < mu2')

25 print('p value = {:.4f}'.format(0.5*p))

Output:
Pre-diet sample mean: 149.5820

Post-diet sample mean: 145.3150

t-stat = 2.9341, p-value = 0.0166

Assuming Ha: mu1 != mu2

p value = 0.0166

Assuming Ha: mu1 > mu2

p value = 0.0083

Process finished with exit code 0

The code fills the sample data into arrays A and B in lines 5–8. So that correct decisions
can be made later, the means of each sample are computed and displayed in lines 9–12.

152 � 6 Statistics

Notice the call to the t test in line 13. Instead of ttest_ind which we used previously,
we now use ttest_rel to conduct the paired t test. The method returns the test statistic
and the two-tailed p-value and stores them in t and p. Lines 19–30 set up the logic to
determine the likely p-value for the problem. If the difference of the sample means is
positive, then the mean from group 1 was larger than the mean from group 2. Thus,
the likely alternative hypothesis is the “greater-than” hypothesis. Otherwise, the likely
alternative is the “less- than” hypothesis. In either case, the p value should be halved to
represent a one-tailed test if that is actually the type of test that is being done.

There likely are Python packages that contain statistical methods that allow one to
specify the type of alternative test, but as long as we know how to interpret results, the
above t tests are suitable for independent or paired samples.

See Exercise 10.

6.6.2 Comparing means of more than two groups

To compare themeans ofmore than two groups, we could do several tests between pairs
of groups, but this can become cumbersome if there are several groups. If there are three
groups to compare, say A, B, and C, then we would need to compare A to B, A to C, and B
to C. That is not too bad. However, for four groups, A, B, C, and D, the number of pairwise
comparisons grows to 6, and for more than four groups, the number of comparisons
grows quickly. In addition to the number of pairwise tests that need to be done, the like-
lihood of an incorrect rejection of the null hypothesis increases with repeated pairwise
testing. Thus, we seek a more efficient and effective way to compare group means. One
commonly used technique is called the analysis of variance.

The method of analysis of variance (ANOVA) is generally used to test the equality
of means for three or more groups. So, for three groups, the null hypothesis would be
H0 : μ1 = μ2 = μ3. The alternative hypothesis is that at least one of the populationmeans
is different from the others. When using ANOVA, the alternative hypothesis is always
two-tailed. To justify the use of ANOVA, the following conditions should be met:
– There are n independent samples (no paired data).
– The associated populations have bell-shaped distributions.
– The associated populations have the same variance.

While thismay seem like a lot to ask, theANOVAprocedure iswhat onewould call robust.
This means that, if the data deviate from the above requirements slightly, the results of
ANOVAwill not change greatly and are still reliable. The ANOVA procedure actually uses
variances to test the means of the various groups. Since the assumption is that the vari-
ancewithin each population is equal, two approximations to the variance are computed.
One approximation involves the variation between groups, the other uses variations

6.6 Comparing groups � 153

within each group. If the two approximations to the common population variance dif-
fer significantly, then the difference must be caused by differences in the means. Let’s
look a little closer. Suppose there are two study plans available for a student to help
them prepare for a standardized test. Sixty students are divided into three groups: A,
B, and C. Group A will study on their own, group B will use study plan 1, and group C
will use study plan 2. Note that these groups are independent and that no one is in more
than one group. The score for each individual is recorded and given in the following
table.

Group A Group B Group C

1026.0 1170.0 1248.0
989.0 1158.0 1301.0
961.0 1280.0 1492.0
1413.0 1388.0 1447.0
715.0 1174.0 1094.0
1013.0 957.0 1263.0
1130.0 1079.0 1462.0
1153.0 1154.0 1144.0
1029.0 1406.0 1133.0
1123.0 1125.0 995.0
1102.0 1228.0 1255.0
996.0 1090.0 1259.0
1103.0 1078.0 1182.0
1252.0 1123.0 1355.0
1109.0 828.0 1469.0
1296.0 1212.0 1158.0
911.0 1297.0 1339.0
1077.0 1246.0 1435.0
1180.0 1129.0 1311.0
1111.0 1316.0 1021.0

Our goal is to determine if the differing study plans produced significantly different
scores. Thus, our null hypothesis is:

H0 : μA = μB = μC ,

with an alternative of

Ha : at least two means differ.

The ANOVA technique assumes that each group comes from a population with mean μ
and variance σ2. The variability in the observations comes from two sources:
– variation within each group;
– variation between the groups

154 � 6 Statistics

Weuse each of these sources to estimate the common variance σ2. First, we consider the
variance within each group. We can compute the sample variance s2 for each group as
we did earlier in this chapter. Thus, we can get s2A, s

2
B, and s2C . We compute a weighted

sum of these variances to get what is called the sum of squares due to error (SSE). So,

SSE = (nA − 1)s
2
A + (nB − 1)s

2
B + (nC − 1)s

2
C ,

where nA, nB, and nC are the number of observations in the respective groups. We then
estimate σ2 by

SSE
n − k,

where n is the total number of observations and k is the number of groups. So, for our
example, we would have SSE

60−3 . In general, the estimate just found is called the mean
square due to error, (MSE). Thus,

MSE = SSE
n − k
.

Now we consider the variation between the groups. The variation between the groups
is determined by a weighted sum of the squares of the differences between the means
of each group and the overall mean. We call this thesum of squares due to treatment
(SST):

SST = nA(x̄A − x̄) + nB(x̄B − x̄) + nC(x̄C − x̄)

To estimate σ2, we divide the SST by one less than the number of groups. This is called
themean square due to treatment (MST).

MST = SST
k − 1

So,MSE andMST are both estimates of σ2. Thus, they should be nearly equal. If they are
not, then our assumption of equalmeans is likely not true. Let’s compute these estimates
in Python.

Code:
1 import numpy as np

2

3 # load the data from the file

4 studydata = np.genfromtxt('studydata.csv', delimiter=',',skip_header=1)

5

6 # determine the number of rows and columns in the data

7 # each column is a group

6.6 Comparing groups � 155

8 # this code assumes that there are the same number of observations in

9 # each group

10 m,n = np.shape(studydata)

11

12 # compute the sample variance s^2 for each group

13 vars = np.zeros(n)

14 for i in range(n):

15 vars[i] = np.var(studydata[:, i], ddof=1)

16

17 # compute MSE

18 SSE = np.sum((m-1)*vars)

19 print('SSE: {:.4f}'.format(SSE))

20 MSE = SSE/(m*n-n)

21 print('MSE (within groups): {:.4f}'.format(MSE))

22

23 # compute MST

24 # get the means for each group

25 means = np.zeros(n)

26 for i in range(n):

27 means[i] = np.mean(studydata[:, i])

28

29 #get the overall mean

30 xbar = np.mean(studydata)

31

32 # compute MST

33 SST = np.sum(m*(means - xbar)**2)

34 print('SST: {:.4f}'.format(SST))

35 MST = SST/(n-1)

36 print('MST (between groups): {:.4f}'.format(MST))

Output:
SSE: 1189207.3000

MSE (within groups): 20863.2860

SST: 337715.0333

MST (between groups): 168857.5167

Process finished with exit code 0

The data is stored in the file studydata.csv. As was done before, the data is read from the
file and loaded into a matrix using .genfromtxt. In this code, it is assumed that all of
the treatment groups contain the same number of observations. It is possible to have a
different number of observations in each group (as discussed previously), but the code

156 � 6 Statistics

would need modification to accommodate that circumstance. Line 10 determines the
number of rows and columns in the data matrix. In this case, the number of rows is the
number of observations in each group, and the number of columns is the number of
treatment groups. Thus, m is the number of observations per group, and n is the num-
ber of groups. The sample variance for each group is computed using numpy.var with
ddof=1 to indicate a sample rather than a population. Each group variance is stored
within the vars vector. All of this is done in lines 13–15. To get SSE, wemultiply each vari-
ance by one less than the number of observations in each group and sum the products.
This is done in line 18. The total degrees of freedom (dof) is equal to the total number
of observations minus the number of groups. Thus, MSE = SSE

mn−n as is accomplished in
line 20. At this point, we haveMSE as the first estimate for σ2. We thenmove to compute
themean square due to treatment (MST). This requires themean for each group and the
mean of all observations. The group means are stored in the vector denoted means. The
group means and overall mean are computed in lines 25–30. The sum of squares due to
treatment is computed in line 33, and MST is finally done in line 35. Helpful prints are
interspersed to inform us of the results.

Now that the two estimates,MSE andMST , are known, we can compare them. Since
they are meant to estimate the same parameter, if they are different, then one of our
assumptions is likely incorrect. If the variances are actually equal, then themeans of the
groups must not all be the same. To make the comparison we compute a new statistic.
The F statistic is given by

F = MST
MSE
.

If F is large, then the variance due to the difference between the groups is larger than the
differenceswithin the groups. Thiswould indicate that a difference inmeans is likely the
cause of the difference in the estimates. The F values are governed by the F distribution.
The F distribution needs two parameters, the degrees of freedom associated with the
numerator (number of groups minus one) and the degrees of freedom associated with
the denominator (total number of observations – number of groups). We use the .cdf
method to determine the probability that F is less than the computed value. Then, we
subtract that value from 1 to get the p value for the test. The Python code is given here.

Code:
37 # Compute the F statistic

38 F = MST/MSE

39 print('F statistic: {:.4f}'.format(F))

40

41 # compute the p-value

42 p = 1-stats.f.cdf(F,n-1,m*n-n)

43 print('p-value: {:.5f}'.format(p))

6.7 Exercises � 157

Output:
SSE: 1189207.3000

MSE (within groups): 20863.2860

SST: 337715.0333

MST (between groups): 168857.5167

F statistic: 8.0935

p-value: 0.00081

Because the p-value is very low, we would indicate that there is evidence to support the
rejection of the null hypothesis, and, thus, infer that at least two of the group means are
not equal. This result would likely motivate one to conduct pairwise tests at this point
in order to determine which of the groups differ. There are also tests to determine if
the variances are equal. There is much theory and detail that has been omitted in this
discussion (like including a second level of treatment), but, hopefully, the idea of the test
has been conveyed.

See Exercise 11–12.

The material presented in this chapter is just a small example of the many uses of
probability and statistics. Inference can bemade regarding several scenarios and quan-
tities. While the material is compelling, our goal here is to expose you to the types of
methods that are available. The hope is that the reader recognizes the power of such
arguments, knows of their existence, and can seek further resources if needed.

6.7 Exercises

1. The sci-kit package (whichwewill use later) includes several example data sets. The
data gives the values of several variables relating to tumors. The second attribute
in the data represents whether the tumor is malignant (M) or benign (B). The other
attributes are numericmeasures of aspects of the tumor. Use the data inwdbc-ex.csv
to write a new file that accomplishes the following:
(a) Replace the strings (M or B) in the second field with zeros and ones such that

’M’ is replaced with 1 and ’B’ is replaced by 0 for each record.
(b) Eliminate records that have missing data.

2. Modify the temperature summary program to find the average temperature and
precipitation for each month of each year included in the data. Graph the results
for temperature and precipitation in separate figures.

3. In the data reported in wdbc.csv, the third column gives the radius values for each
tumor, the fourth column gives the texture of the tumor, and the seventh column
gives the smoothness of each tumor.
(a) Use the file-handling methods to load the necessary data into a numpy matrix

of the proper size.

158 � 6 Statistics

(b) Compute the five-number summary, the mean, and the sample standard devia-
tion for radius, texture, and smoothness.

(c) Construct a relative frequency histogram for each of the variables using 20
classes in each case.

(d) Print the results in a neat and readable form.
4. (a) Modify the code in Section 6.3.1 so that the Riemann approximation to the in-

tegral is contained in a function called Rsum(fname, a,b,n) that takes as its
arguments:
– fname—name of the function to be integrated
– a—lower limit of integration
– b—upper limit of integration
– n—number of rectangles (subintervals) to be used.
The function should return the right Riemann approximation to the integral.

(b) Use the function to approximate

3

∫
0

(ex − x2) dx

with ten subintervals.
(c) Repeat the approximation using 1,000 subintervals, then 2,000 subintervals,

and compare the results.
5. (a) Write a Python function to compute the Simpson’s rule approximation to

∫
b
a f (x) dx.

(b) Compute the following integral using the fundamental theoremof calculus. This
will be the true value of the integral. Keep at least six decimal places.

4

∫
1

(sin x − 2
x
) dx.

(c) Use Python to approximate the integral using right Riemann sums with 20
subintervals.

(d) Use Python to approximate the integral using the trapezoidal rulewith 20 subin-
tervals.

(e) Use Python to approximate the integral using Simpson’s rule with 20 subinter-
vals.

(f) Compute the absolute value of the error (|approximation− true value|) for each
of the previous approximations. Comment on the results.

(g) Compare errors for the different approximations if 500 subintervals are used.
6. Suppose a university gives all students the same math placement test. A random

sample of 20 students is chosen, and the sample mean is found to be 72. If the stan-
dard deviation of test scores is known to be 7, find a 90% confidence interval for μ.

6.7 Exercises � 159

7. In the wdbc.csv file, the third column contains the radius of each tumor. Load the
radii into a numpy array, and find a 90% confidence interval for the mean radius
of a tumor.

8. A certain type of algae is studied and determined to grow at a particular rate when
exposed to approximately eight hours of light per day.When studied under amicro-
scope, it is found that the mean number of algae cells in a prescribed area is 45.6.
A student decides to grow the same algae under conditions that provide 16 hours of
light per day. The amount of algae for each observation in a sample is given in the
following table.

62 59 51 58
67 47 56 67
45 74 66 59
59 66 58 55
54 58 58 64
53 69 68 68
60 50 56 50
53 68 75 50
47 62 64 68
46 58 46 39

Conduct a one-tailed hypothesis test with α = 0.01 to determine if there is evidence
to suggest that more light exposure increases algae growth.

9. The file courserounds.csv contains the scores for several golfers on each of four
different courses. A golf organization claims that course 2 is more difficult than
course 3. Does the data support this claim? Use the data and Python to compare
the mean score for course 2 to the mean score for course 3 at a significance level of
α = 0.05. The test would be of the following form:

H0 : μcourse 2 = μcourse 3

Ha : μcourse 2 > μcourse 3.

10. One hundred individuals volunteered to participate in a diet study. Their weights
(in pounds)were recorded before the diet began and again tenweeks laterwhen the
diet period was over. The data are given inweightdata.csv. Conduct the appropriate
hypothesis test (with α = 0.05) to determine if the diet was effective at reducing a
person’s weight.

11. Suppose an investor is trying to determine if the various funds that are available
have different rates of return. Each fund includes 50 stocks with varying rates for
each stock. The data for four funds is given in the file stockdata.csv (this is not ac-
tual data). Conduct an ANOVA test to determine if there is evidence to reject the
hypothesis that all the funds have the same rate of return.

160 � 6 Statistics

12. (a) Modify the code given in the text so that the ANOVA method is a function with
the argument of the function being a matrix of data observations. Redo Exer-
cise 11 to verify that the function works correctly.

(b) How might we modify the code to allow for differing numbers of observations
for each group? Investigate the use of *args with Python functions.

7 Regression

In this portion of the book, we consider the idea of fitting a mathematical model to a
set of data. Amathematical model is simply an equation or set of equations that forms a
mathematical representation of a particular phenomenon. We begin with a straightfor-
ward, but incredibly useful, technique called linear regression.

7.1 Linear regression

We will use an example to illustrate the idea. Suppose we wish to study the number of
births to mothers who are 15–17-years-old in the United States. Further, we conjecture
that the number of such births is related to the poverty level of a community. A brief
web search yielded a source (Mind On Statistics, 3rd edition, Utts and Heckard) that
gives the data in the following, table with one row representing each of the 50 states
and the District of Columbia. The data is stored in the file poverty.txt. The first column
is the percentage of families in the state who live below the poverty level. The second
column is the birth rate per 1,000 females who are 15–17-years-old.

Location PovPct Brth15to17 Brth18to19 ViolCrime TeenBrth

Alabama 20.1 31.5 88.7 11.2 54.5
Alaska 7.1 18.9 73.7 9.1 39.5
Arizona 16.1 35 102.5 10.4 61.2
Arkansas 14.9 31.6 101.7 10.4 59.9
.
.
.
Wisconsin 8.5 15.9 57.1 4.3 32.3
Wyoming 12.2 17.7 72.1 2.1 39.9

For our initial study, we wish to use the poverty percentage to predict the birth rates
for mothers between 15–17-years-old. We let X denote the poverty level and Y the birth
rate. In regression, the variable that is being predicted is called the response variable,
while the variable that is used to do the prediction is called the explanatory variable. We
begin by plotting all of the points given in the data. We want to plot only the points, not
connected by lines. To do this, we build a list to hold the poverty percentages (X ’s) and a
list to hold the births (Y ’s). We could type in each of the 51 values for each list, but, if we
were using a large data set, this would be either impossible or highly impractical. This
is one of the reasons that we studied the file operations in Section 6.1. So we will load
the data directly from the file and store it employing formats that are convenient for us
to use in Python. The code to do this follows.

https://doi.org/10.1515/9783110776645-007

https://doi.org/\global \c@doi \c@chapter \relax \global \advance \c@doi \c@parttext \relax 10.1515/9783110776645-000

162 � 7 Regression

Code:
1 import numpy

2 import matplotlib.pyplot as plt

3

4 #open the data file
5 pov_file = open('poverty.txt','r')

6 #see how many lines are in the file
7 count = len(pov_file.readlines())

8 pov_file.close()

9 #since the first line contains headers, there are one fewer
10 #lines of numeric data
11 count = count-1

12

13 #set up some storage space for the data
14 x = numpy.zeros((count,1))

15 y = numpy.zeros((count,1))

16 #now we will reopen the file and read it line by line
17 #the first line of this file is a header
18 pov_file = open('poverty.txt','r')

19 headers = pov_file.readline()

20 #I printed the headers just in case I wanted to reference them
21 print(headers)

22 #now read the rest of the file one line at a time
23 for i in range(count):

24 #get the next line
25 l = pov_file.readline()

26 #split the line into separate fields
27 fields = l.split()

28 #the second field is the poverty percent. this is our x value
29 x[i] = float(fields[1])

30 #the third field holds the births that we want. store them in y
31 y[i] = float(fields[2])

32 #close the file
33 pov_file.close()

34 plt.plot(x,y,'.')

35 plt.xlabel('Poverty Percentage')

36 plt.ylabel('Births to 15 to 17 Year Old Mothers')

37 plt.grid()

38 plt.show()

The code is commented generously, and students are encouraged to read through the
code to be sure they understand how the data is loaded and plotted. The plot of the data
points is called a scatter plot. The scatter plot for our example is given next.

7.1 Linear regression � 163

From the plot we can see a general trend that indicates the number of births increases as
the poverty percentage increases. Also, notice that these points do not necessarily lie on
a function. If we had two locations with the same poverty percentage, we would likely
have different numbers of births for each of these locations. Hence, the points would not
satisfy the vertical line test for functions. However, we may wish to predict the average
number of births for a given poverty percentage, and a linear model seems appropriate
in this case because there does not seem to be any indication that the points would form
a “curve” as poverty percentage increases. We will address the appropriateness of the
model soon, but, for now, we want to try to fit the best line through the data points. So,
what do we mean by “best?” There are many lines that may appear to “fit” or represent
the data well. See the following figure.

164 � 7 Regression

We need to define precisely what we mean by the “best line”. We do so as follows. Sup-
pose that the line that represents the data is given by

ŷ = mx + b.

We will use y to represent the actual y value of the data point and ŷ to represent the
prediction for y given by the line. So, ŷ is the prediction for y associated with x. We will
also denote our points as (xi, yi), i. e., the first point in the data list will be (x1, y1), the
second will be (x2, y2), and so on. So the actual y value of the nth point is yn, and the
associated prediction is ŷn = mxn + b. The difference between the actual value, y, and
the predicted value, ŷ, is called the residual. Thus, for each data point (xi, yi), there is an
associated residual, ri, where

ri = yi − ŷi.

The following graph illustrates a few of the residuals from our birth rate data for a par-
ticular linear model.

We might define the best line to be the line that minimizes the sum of the residuals.
However, this is too simplistic. Consider a data set with just two points. The “best” line
would clearly be the line that goes through the two points (as in the left-hand image
shown in Figure 7.1). In such a case, the residual for each of the two points would be
zero, and, hence, the sum of the residuals would also be zero. That all sounds great. But,
suppose the points were (2, 5) and (4, 10). Consider the horizontal line, y = 7.5 (shown in
the right-hand image of Figure 7.1). Then, the predicted value for x = 2 would be ŷ = 7.5,

7.1 Linear regression � 165

and the predicted value for x = 4 would be ŷ = 7.5. Thus, the residual for the first point
is r1 = 5 − 7.5 = −2.5 and, for the second point, r2 = 10 − 7.5 = 2.5. So the sum of the
residuals is −2.5 + 2.5 = 0.

Figure 7.1: For both lines, the sum of the residuals is zero. However, the line on the left is clearly a better fit.

By measure of the sum of the residuals, both lines are equally “good.” We know that the
line through the points is better than the horizontal line because it predicts both points
perfectly. So, we must refine our idea of “good” or “best” fit. We could revise the idea by
minimizing the sum of the absolute values of the residuals. Hence, the new goal would
be to minimize

F =
n
∑
i=1
|ri|.

This is a good idea, but absolute value functions tend to have corners which means that
there are places where the function does not have a derivative. This makes the mini-
mization process a bit more difficult. So, instead of using the absolute value of the resid-
uals, we square each residual to make it positive and preserve the differentiability of
the function. Finally, we define the line of best fit to be the line that minimizes

F =
n
∑
i=1
(ri)

2

where n is the number of data points. Remember that ri = yi − ŷi, and, ŷi = mxi + b. So
F can be written as

F =
n
∑
i=1
(yi − ŷi)

2

=
n
∑
i=1
(yi − (mxi + b))

2

=
n
∑
i=1
(yi −mxi − b)

2.

166 � 7 Regression

In F as shown, all of the xi’s and yi’s are known. They are given in the n points from
our data. So, the unknowns arem and b that will define the regression line that we are
seeking. Thus, F is a function of m and b, F(m, b). If F were a function of x, we would
minimize it by finding the derivative and solving F′ = 0 (remember your first calculus
course?). We proceed very similarly when F is a function of two variables. We need to
take two different derivatives, one treating m as the variable and one treating b as the
variable. We call these partial derivatives. When we treat m as the variable, we think
of b as a constant. The partial derivative is denoted by 𝜕F𝜕m . So, the xi’s and yi’s are just
numbers, and we treat b as a constant to get

𝜕F
𝜕m
=

n
∑
i=1
[2(yi −mxi − b)(−xi)].

Likewise, treatingm as a constant, we get

𝜕F
𝜕b
=

n
∑
i=1
[2(yi −mxi − b)(−1)].

Just as in the first semester of calculus, we must set the derivatives equal to zero and
solve the resulting system.

n
∑
i=1
[2(yi −mxi − b)(−xi)] = 0

n
∑
i=1
[2(yi −mxi − b)(−1)] = 0

Expanding the sums enables us to isolate the terms withm and b.

n
∑
i=1
[2(yi −mxi − b)(−xi)] =

n
∑
i=1
(−2xiyi) +

n
∑
i=1
(2x2i m) +

n
∑
i=1
(2xib)

= 2
n
∑
i=1
−xiyi + 2m

n
∑
i=1

x2i + 2b
n
∑
i=1

xi

and
n
∑
i=1
[2(yi −mxi − b)(−1)] =

n
∑
i=1
(−2yi) +

n
∑
i=1
(2xim) +

n
∑
i=1
(2b)

= 2
n
∑
i=1
−yi + 2m

n
∑
i=1

xi + 2b
n
∑
i=1

1.

Thus, the system to be solved becomes

2
n
∑
i=1
−xiyi + 2m

n
∑
i=1

x2i + 2b
n
∑
i=1

xi = 0

7.1 Linear regression � 167

2
n
∑
i=1
−yi + 2m

n
∑
i=1

xi + 2b
n
∑
i=1

1 = 0.

Divide all terms by 2, and rearrange so that terms that do not includem or b are on the
right-hand side of the equations. Then, we have

m
n
∑
i=1

x2i + b
n
∑
i=1

xi =
n
∑
i=1

xiyi

m
n
∑
i=1

xi + b
n
∑
i=1

1 =
n
∑
i=1

yi.

This is a linear system of equations with unknownsm and b. In matrix form, the system
would be AX = B where

A = [
∑ni=1 x

2
i ∑

n
i=1 xi

∑ni=1 xi ∑
n
i=1 1
] , X = [m

b
] , and B = [

∑ni=1 xiyi
∑ni=1 yi
] .

We can now use Python to construct these matrices and solve the system as we did in
Section 4.3. The complete code is given next.

Code:
1 import numpy as np

2 import matplotlib.pyplot as plt

3

4 #open the data file

5 pov_file = open('poverty.txt','r')

6 #see how many lines are in the file

7 count = len(pov_file.readlines())

8 pov_file.close()

9 #since the first line contains headers, there is one less actual

10 #lines of data

11 count = count-1

12

13 #set up some storage space for the data

14 x = np.zeros((count,1))

15 y = np.zeros((count,1))

16 #now we will reopen the file and read it line by line

17 #the first line of this file is a header

18 pov_file = open('poverty.txt','r')

19 headers = pov_file.readline()

20 #i printed the headers just in case i wanted to reference them

21 print(headers)

22 #now read the rest of the file and store the x's and the y's

23 for i in range(count):

24 #get the next line and store it in l

168 � 7 Regression

25 l = pov_file.readline()

26 #split the line into separate fields (assumes space delimited)

27 fields = l.split()

28 #the second field (which will have an index of 1) is the poverty percent.

29 #this is our x value

30 x[i] = float(fields[1])

31 #the third field holds the births that we want. store them in y

32 y[i] = float(fields[2])

33 #close the file

34 pov_file.close()

35

36 #our variables are m and b. we need the matrix of coefficients

37 A = np.zeros((2,2))

38 #first row of coefficients

39 A[0,0] = np.sum(x*x)

40 A[0,1] = np.sum(x)

41 #second row of coefficients

42 A[1,0] = np.sum(x)

43 #the sum of 1 is equal the number of terms in the sum

44 A[1,1] = len(x)

45 #now we need the right hand side

46 B = np.zeros(2)

47 B[0] = np.sum(x*y)

48 B[1] = np.sum(y)

49 print('A=',A)

50 print('B=',B)

51 #now solve the system X = [m b]

52 X = np.linalg.solve(A,B)

53 print('X=',X)

Output:
Location PovPct Brth15to17 Brth18to19 ViolCrime TeenBrth

A= [[9690.44 669.]

[669. 51.]]

B= [16163.14 1136.4]

X= [1.37334539 4.26729284]

Process finished with exit code 0

The first 34 lines of the code are the same as before, loading the file and filling the lists
for x and y values. The code to construct theAmatrix begins at line 36. Line 39 computes
∑ni=1 x

2
i and places the value in the first row and first column of matrix A. Line 40 sums

the x values (∑ni=1 xi) and assigns it to the first row, second column ofA. Line 42 places the
same sum in the second row, first column of A. From algebra we know that ∑ni=1 1 = n.

7.1 Linear regression � 169

Thus, the value to placed in the second row, second column is the number of points in
the data set that is equal to the length of the x array. This is accomplished in line 44.
The code to build the B matrix begins at 46, placing ∑ni=1 xiyi in the first element of B
and∑ni=1 yi in the second component of B. Finally, the system is solved in line 52, and the
results are stored in X . The variable X holds two values: the first is m = 1.37334539, the
second is b = 4.26729284. This is a significant program. It accesses a data file, performs
arithmetic to build matrices, and solves a linear system. Imagine doing all of that by
hand. Then, imagine that the data changes, and you have to do it again.

Let’s plot the scatter plot and the regression line together to make sure things are
working correctly. We add the following code.

Code:
54 m = X[0]

55 b = X[1]

56 yhat = m*x+b

57 plt.plot(x,y,'.')

58 plt.plot(x,yhat)

59 plt.legend(['data','regression line'])

60 plt.show()

This gives the plot below.

Our regression model is now given by ŷ = 1.373x + 4.267, and we can use it to predict
the average number of births expected for a given poverty percentage. For example, if
a certain area had a poverty percentage of 16.2%, then we would expect

170 � 7 Regression

ŷ = 1.373(16.2) + 4.267 = 26.5096

births per 1,000 mothers who are 15–17-years-old in that area.
This seems to be a very nice method to construct linear models. However, there are

a couple of questions that still need to be addressed.While we knowwe haveminimized
the sum of the squared residuals to derive this line, we do not knowwhether we should
be using a line rather than some other functional form. Also, if wewish to usemore than
one explanatory variable to aid in the prediction, how do we extend the method to do
so?

7.1.1 Correlation

To address the question of whether the model should be linear, we use a measure called
the correlation coefficient. Without working through the derivation, we will rely on the
following property:

n
∑
i=1
(yi − ȳ)

2 =
n
∑
i=1
(ŷi − ȳ)

2 +
n
∑
i=1
(yi − ŷi)

2.

The sum on the left represents the total variability of the observed values from their
mean. This is the same sum that we used when discussing the variation and standard
deviation in Chapter 6. We call this the sum of squares total, SST . The first sum on the
right represents the amount of variation that is explained by the regression. We denote
this with SSR. The second sum on the right computes the total variation of the errors (or
residuals), SSE. Hence, we have

SST = SSR + SSE.

So, the proportion of total variation that is explained by the regression is given by

SSR
SST
=
∑ni=1(ŷi − ȳ)

2

∑ni=1(yi − ȳ)2
.

Weuse R2 to denote this proportion, which is called the coefficient of determination. If R2

is near 1, then the line fits the data well. If it is near 0, then the line does not fit well, and
other models may need to be explored. The square root of R2 is called the correlation
coefficient and is usually denoted by r. The sign of r will be the same as the sign of the
slope of the regression line. The correlation coefficient has the following properties:
– −1 ≤ r ≤ 1.
– If r = ±1, then the data are perfectly linear. That is, the data points all lie on the

same line. This is nearly impossible in real-world scenarios so be suspicious if such
a situation presents itself.

7.1 Linear regression � 171

– If r is close to 1 or −1, then the regression line is a good fit for the data.
– If r is near 0, then the data show no linear relationship.

To apply this to our birth rate problem, we simply add the following code.

Code:
61 SSR = np.sum((yhat-ybar)*(yhat-ybar))

62 SST = np.sum((y-ybar)*(y-ybar))

63 print('SSR=',SSR)

64 print('SST=',SST)

65 R2 = SSR/SST

66 print('R squared=',R2)

67 print('r=',np.sqrt(R2))

Output:
SSR= 1725.2594895969914

SST= 3234.8941176470585

R squared= 0.5333279627871965

r= 0.7302930663693833

Process finished with exit code 0

Since the slope of the regression line is positive (m ≈ 1.373), r is positive. We find that
r ≈ 0.73. This shows that there is definitely a linear relationship between the number
of births and the poverty percentage. However, the relationship is not overwhelmingly
strong.Whether this value is “strong enough” depends on the context of the problemand
the number of data points. In general, the accuracy of the model (prediction) improves
as r gets closer to ±1. Finally, R2 = 0.5333 tells us that about 53% of the variation in
the data is explained by the regression line. Again, there is a great deal of theory that we
have neglected. If onewants to learnmore about linear regression, there are awealth of
probability and statistics textbooks to be consulted that discuss the topic in much more
detail than presented here.

See Exercise 1.

7.1.2 Multiple linear regression

In our example, we currently have only one variable, poverty percentage, that is being
used to predict the birthrate. Suppose wewish to also use the crime rate associated with
the state to aid in predicting the birth rate. Then, our model would look like this:

172 � 7 Regression

ŷ = m1x1 +m2x2 + b,

where x1 is the poverty percentage, x2 is the crime rate, and ŷ is the predicted birth rate.
Whenmore than one independent variable is included in themodel, we call the process
multiple linear regression. We could proceed as we did previously and would now need
to take partial derivativeswith respect tom1,m2, and b. Set each of the partial derivatives
equal to zero and solve the resulting system. That is an acceptable approach. But, what
if we wanted to use five predictor variables, or ten? You can see how this might become
cumbersome. Itmay be that, aswe develop those systems, wewould see a pattern evolve
that would speed our work. In fact, that is likely the case. But there is another approach
that achieves the same regression line by using amatrix representation of the regression
process. To reduce notational complexity, let’s let p be the poverty rate and c the crime
rate. Then, if our data were perfectly linear, we would have that for each point:

yi = m1pi +m2ci + b.

For convenience, we will write the intercept first to have

yi = b +m1pi +m2ci.

Now, we construct matrices to hold the y values and the predictor variables. So, we let

Y =
[[[[[

[

y1
y2
...
yn

]]]]]

]

, A =
[[[[[

[

1 p1 c1
1 p2 c2

...
1 pn cn

]]]]]

]

, and S = [[
[

b
m1
m2

]]

]

.

Then, the set of equations for perfect data would be expressed as AS = Y. Now, if A
were a square matrix, we could solve this as we have earlier systems. However, A is
not square, and, in the actual data, we could have differing y values for the same (p, c)
pair. Thus, taking the inverse of A is not likely to be possible. To address this “non-
squareness,” we multiply both sides of the equation by the transpose of A to get

ATAS = ATY.

If we were to examine this system, we would find that this generates the same equa-
tions that are generated by taking the derivatives and moving constant terms to one
side (which seems incredible to me). But, since it is in matrix form, we can solve it using
matrix methods as before. So, let Q = ATA. Then we have

QS = ATY.

Finally, we simply multiply both sides by the inverse of Q to solve for the coefficients in
the regression model, i. e.,

7.1 Linear regression � 173

QS = ATY

Q−1QS = Q−1ATY

S = Q−1ATY.

(7.1)

Wewill apply this idea to our currentmodel.Wewant to use poverty rate and crime rate
as the independent (explanatory) variables and birth rate as the dependent (response)
variable. Thus, Awould have a column of ones, a column holding the poverty rates, and
a column holding the crime rates. Once A has been constructed, we let Python do the
rest as shown next.

Code:
1 import numpy as np

2

3 #open the data file

4 pov_file = open('poverty.txt','r')

5 #see how many lines are in the file

6 count = len(pov_file.readlines())

7 pov_file.close()

8 #since the first line contains headers, there is one less actual

9 #lines of data

10 count = count-1

11

12 #set up some storage space for the data

13 A = np.ones((count,3))

14 y = np.zeros((count,1))

15 #now we will reopen the file and read it line by line

16 #the first line of this file is a header

17 pov_file = open('poverty.txt','r')

18 headers = pov_file.readline()

19 #i printed the headers just in case i wanted to reference them

20 print(headers)

21 #now read the rest of the file

22 for i in range(count):

23 #get the next line

24 l = pov_file.readline()

25 #split the line into separate fields

26 fields = l.split()

27 #the second field is the poverty percent

28 A[i,1] = float(fields[1])

29 #the fifth field is the crime rate

30 A[i,2] = float(fields[4])

31 #the third field holds the births that we want. store them in y

32 y[i] = float(fields[2])

33 #close the file

174 � 7 Regression

34 pov_file.close()

35 #multiply both sides by A_transpose

36 A_trans = A.transpose()

37 Q = np.dot(A_trans,A)

38 #right hand side

39 RHS = np.dot(A_trans, y)

40

41 #now solve the system

42 X = np.linalg.solve(Q,RHS)

43 print('X=',X)

44 print('yhat = {:.4f} + {:.4f}(poverty) + {:.4f}(crime)'\

45 .format(X[0,0],X[1,0],X[2,0]))

46

47 ybar = np.average(y)

48

49 yhat = np.dot(A,X)

50

51 SSR = np.sum((yhat[:,0]-ybar)*(yhat[:,0]-ybar))

52 SST = np.sum((y-ybar)*(y-ybar))

53 print('SSR=',SSR)

54 print('SST=',SST)

55 R2 = SSR/SST

56 print('R squared=',R2)

57 print('r=',np.sqrt(R2))

Notice that in line 13 we initialize the datamatrix,A. It is establishedwith three columns
and preloaded with ones instead of zeros. Then, we can leave the first column as is and
adjust the second and third columns as needed. These data values are assigned in lines 28
and 30. The y values are as theywere before. To accomplish the regression, we use equa-
tion (7.1). We take the transpose of the data matrix in line 36 and multiply the transpose
by the data matrix in line 37 to give us Q. We must also multiply the right-hand side of
the equation by AT , and this is done in line 39, creating RHS. Then, we solve as usual
in line 42. The vector X holds the intercept and coefficients of the model. The result is
displayed in the output.

Output:
Location PovPct Brth15to17 Brth18to19 ViolCrime TeenBrth

X= [[5.98220133]

[1.03649967]

[0.34420732]]

yhat = 5.9822 + 1.0365(poverty) + 0.3442(crime)

Process finished with exit code 0

7.1 Linear regression � 175

We can compute the coefficient of determination in a similar fashion to the previous
example. We add the following code.

Code:
57 ybar = np.average(y)

58 yhat = np.dot(A,X)

59 SSR = np.sum((yhat[:,0]-ybar)*(yhat[:,0]-ybar))

60 SST = np.sum((y-ybar)*(y-ybar))

61 print('SSR =',SSR)

62 print('SST =',SST)

63 R2 = SSR/SST

64 print('R squared =',R2)

Output:
SSR = 2092.1951714030574

SST = 3234.8941176470585

R squared = 0.6467584703900114

Process finished with exit code 0

Using this matrix approach, we can include as many predictor variables as we wish by
adding columns to the data matrix. The method is unchanged regardless of the number
of variables.

One of the advantages to using a language like Python is that other smart people also
use the language. That being the case, libraries and packages are developed and made
available all the time. Thus, there are available packages that will compute the regres-
sion line for us. There are many such packages, but I have chosen to demonstrate the
third-party library found in scikit. So if you do not have scikit installed, you will need to
add it to your Python installation as we have done with other packages. The scikit pack-
age includes sklearn, which contains the regression methods we wish to use. We will
use this package to perform the multiple regression that we previously accomplished,
using poverty rate and crime rate as the independent variables. In addition, we can use
the genfromtxtmethod that we introduced in Section 6.2 to speed the process of loading
the data into matrices. The code to construct the regression is next.

Code:
1 import numpy as np

2 from sklearn.linear_model import LinearRegression

3

4 # load the poverty percent into column 1 of A and the crime rate in column 2

5 # we do not need a column of ones because the method will do that for us

6 A = np.genfromtxt('poverty.txt',dtype=float,usecols=(1,4), skip_header=True)

7 # load the birth rates into Y

176 � 7 Regression

8 Y = np.genfromtxt('poverty.txt',dtype=float,usecols=(2), skip_header=True)

9

10 # now the data matrix A and the actual y values Y are complete

11 # fit the regression line and store it.

12 # we are storing it in a variable named birthmodel of type LinearRegression

13 birthmodel = LinearRegression()

14 # find the parameters for the regression line

15 birthmodel.fit(A, Y)

16 # get the coefficient of determination (R-squared_

17 R2 = birthmodel.score(A, Y)

18 print('R squared =',R2)

19 # variables of type LinearRegression have components called

20 # coef_ and intercept_ that store the coefficients and intercept of

21 # the model.

22 coeff = birthmodel.coef_

23 intercept = birthmodel.intercept_

24 print('yhat = ({:.4f})poverty + ({:.4f})crime + {:.4f}'\

25 .format(coeff[0],coeff[1],intercept))

If one examines this code, we see that there are only 11 lines of actual executable state-
ments. The rest are comments. So, we built an entire multiple regression code with 11
statements. Hopefully, we are beginning to see the power of a programming language.
Let’s look at the code a bit.

In line 2, we use a different form of the import statement. The scikit package is very
large, and it would be inefficient to import the entire package if we only need a small
part of it. Thus, we take from it only the linear regression module that we need, which
is called LinearRegression. Line 6 loads the poverty and crime rates in the matrix A. We
can see that columns 2 and 5 (indices 1 and 4) of the data file are used and that the header
line is skipped. Since poverty.txt is space or tab delimited, we do not need to specify a
delimiter in genfromtxt as we did in Chapter 6. In line 8, the birth rates for 15–17-year-
olds are loaded into a vector Y. When we programmed our own regression method, we
had to include a column of ones in the data matrix. That is not necessary here since the
methods in scikit will do that for us when needed. Line 13 sets up a variable to hold the
results of the linear regression. The type of variable here is LinearRegression. This is
the same as saying thatwe are setting aside space for a package of items, and the package
is called birthmodel. The package has a prebuilt method that will do all the same work
that we have done in our previous regression example. The method is called .fit, and
we build the regressionmodel in line 15 with birthmodel.fit(A,Y), indicating the data
matrix and the actual y values associatedwith the data. Once this line has been executed,
the regression is complete, but we have to know how to access the information. Such
access comes via other items in the package. To find the coefficient of determination, we
use the .score item, as in line 17. Remember, our regression model will look like

ŷ = (c1)poverty + (c2)crime + b,

7.1 Linear regression � 177

where c1 and c2 are the coefficients of the variables and b is the intercept of the model.
To access the coefficient values, we use the coef_ method. It will return a vector of
coefficients that were computed when .fit was executed. Line 22 assigns this vector
of coefficients to the variable coeff. Similarly, the intercept (b) is found by using the
.intercept_method and assigned to the variable intercept in line 23. The coeff and
intercept variables are used to print the regression model that was found in line 26.
The output of the program is next.

Output:
R squared = 0.6467584703900118

yhat = (1.0365)poverty + (0.3442)crime + 5.9822

Process finished with exit code 0

We can see that the regression model and the R2 value are the same as we found before.
If wewanted to compute ŷ for particular values of poverty rate and crime rate, we could
use the .predictmethod. Suppose that p = 15 and c = 10. Then, we could compute the
prediction with

yhat = birthmodel.predict([[15,10]])

This is equivalent to 1.0365(15)+0.3442(10)+5.9822. Note that the argument of themethod
is a matrix. That is why there are two pairs of square brackets. If we wanted the pre-
dicted values for all of the data points, we could use the following command:

yhat = birthmodel.predict(A)

When we have more than one explanatory variable, we can no longer use scatterplots
to “visualize” the data because we leave two dimensional space (i. e., we havemore than
just x and y). Thus, we rely more onmeasures like R2 to tell us whether the linear model
is appropriate. Also, once we have a linear model, the absolute value of the coefficients
indicates which variable has more impact on the prediction. In our example, because
1.0365 is substantially greater than 0.3442, we can say that poverty rate plays a larger
role than crime rate in the prediction of birth rates.

There are many other methods available that enable one to study the residuals and
other measures of fitness. Using a third-party package like scikit often requires the de-
velopment of much less code. Instead, the effort is focused on installing and implement-
ing the package and on accessing and using the model that is produced. The motivated
student will find a wealth of available theory and application if linear regression is to
be pursued further.

See Exercises 2 and 3.

178 � 7 Regression

7.2 Logistic regression

When conducting linear regression, we have a continuous dependent (target) variable,
i. e., the variable is allowed to take on any value within the data range. For example, in
our birth-rate example, the birth rate could be any positive percentage. We were not
restricted to whole number percentages or had any other constraint. However, there
are many situations in which such freedom is not present. Suppose we poll 50 athletes
to obtain their heights and the sports they play. Further, we speculate that “tall” athletes
aremore likely to play basketball. Then, our response variable is an indicator ofwhether
the athlete plays basketball. Thus, there are only two choices for the variable: yes (they
play basketball) or no (they do not). We review the data and find that 25 of them play
basketball. The results of the poll are in the following table.

Heights (in) of
Basketball Players

Heights (in) of
Non-Basketball Players

78.29 74.22
82.28 71.2
81.36 73.85
80.27 74.2
76.48 74.35
78.33 68.99
82.05 69.45
80.71 70.77
76.02 76.87
79.44 73.29
70.87 70.61
75.32 75.85
79.46 73.8
74.52 71.01
77.8 72.65
74.9 76.8
78.97 74.39
81.12 67.63
83.04 70.95
78.59 69.17
75.73 69.94
77.59 71.79
75.69 72.04
78.72 70.69
76.32 68.4

We can use a value of 1 to indicate that an athlete plays basketball and value of 0 to
indicate that an athlete does not play basketball. Let’s use the variable y to indicate the
playing status. So, we see that 0 and 1 are the only two possible values for y. There is no
such thing as y = 0.5, or y = 0.23, or any other value. This means that y is not continuous

7.2 Logistic regression � 179

but discrete. When a variable is discrete, we can list the possible values of the variable,
and there is space between the numeric values. For our current example, we can plot
the data using the height as the first coordinate and the basketball status y as the second
coordinate. We get the following scatterplot.

We could proceed to conduct linear regression to find the line of best fit as shown in the
next graph.

This regression line yields a coefficient of determination ofR2 = 0.5604.While this seems
to be a moderately successful regression, it is clear that these data are not linear. Fur-

180 � 7 Regression

thermore, since the target should be 0 or 1, the prediction for most values will not be
very close to either of those values. The regression could also yield predictions that are
much above 1 or below 0, which are, in theory, meaningless for this scenario. Instead,
we might seek to use a model that is not linear and that better attempts to be 0 or 1. One
such curve is the logistic function,

f (x) = eg(x)

1 + eg(x)
.

An example of a logistic function is superimposed on the previous regression results in
the following graph.

One can easily see that such a curve would be “closer” to more of the data points and,
thus, would reduce the sum of the squared residuals. If we interpret the curve as the
probability of being a basketball player, we could easily code all of the predictions to
be either 0 or 1. The task becomes that of finding the “best” logistic function to fit the
data. Within that broad task, we also must find a way to incorporate the independent
(explanatory) variables into the logistic function.

While linear regression builds a model designed to predict a value of the target
(response) variable, logistic regression builds a model to predict the probability of a
particular outcome (e. g., P(Y = 1)). Then, if the predicted probability is 0.5 or greater,
we assign the predicted outcome to be 1. Otherwise, we assign the predicted outcome
to be 0. By predicting the probability instead of the target itself, we remove the possible
bias that could be present in linear regression on this data. Building themodel to predict
the probability is much more complicated than in the case of linear regression.

While the details of the process are beyond the scope of this text, we supply some
background for those studentswhowish (or need) to know someof the theory in order to

7.2 Logistic regression � 181

understand the broader picture. Using our basketball example, let the height be denoted
by x and the basketball status by y.We let 1 indicate that the athlete is a basketball player.
Then, we denote the probability of being a basketball player by p. Thus, P(y = 1) = p.
The odds of any event E are given by

Odds(E) = probability of E
1 − (probability of E)

=
P(E)

1 − P(E)

So, for our example, we have

Odds(playing basketball) = P(y = 1)
1 − P(y = 1)

=
p

1 − p
.

The process of logistic regression attempts to find a curve that best fits the Odds of E
as the target. However, it is clear that the odds of an event is not linear. Since the odds
formula involves a fraction (which includes p), we can decompose the fraction by taking
the natural log of the odds. It can be shown that we can model ln(odds of E) in a linear
fashion. In the context of our example, we can find coefficients so that

Predicted(ln(Odds of E)) = c0 + c1(height).

This may seem a bit arbitrary, but consider the following. Assume we fit the model per-
fectly so that

ln(Odds of E) = c0 + c1(height).

Then, if x = height, we have

ln(p
1 − p
) = c0 + c1x

eln(
p

1−p) = ec0+c1x
p

1 − p
= ec0+c1x

p = (1 − p)ec0+c1x

p = ec0+c1x − pec0+c1x

p + pec0+c1x = ec0+c1x

p(1 + ec0+c1x) = ec0+c1x

p = ec0+c1x

1 + ec0+c1x
.

The last equation shows that, if the log of the odds is linear, then the model for p is a
logistic function (andwe know the parameters of said logistic function). Very nice! Thus,
we seek to find the “best” values for c0 and c1 to define the predicted value of p,

p̂ = ec0+c1x

1 + ec0+c1x
.

182 � 7 Regression

So, can we do linear regression from this point on? We might be tempted to do so, us-
ing the log of the odds as the target variable. The problem is that we need values for
the odds of each of our observations. For example, one of our (height, basketball status)
pairs is (78.29, 1). So we have a player who is 78.29 inches tall and plays basketball. Since
we know he plays basketball, we might say that the probability of his playing basketball
is 1. If we do so, the odds of his playing basketball would be 1

1−1 =
1
0 = ∞. Obviously, this

poses a problem when trying to compute regression coefficients. Because of this, logis-
tic regression does not attempt to minimize the sum of the squared residuals. Instead, it
tries to maximize the probability that all of the observations have occurred. This max-
imization requires that we construct what is called a joint probability function. To do
so, you need to know a bit of probability that is not covered in this text, but we would
construct a new function called the likelihood function that has c0 and c1 as variables.
The likelihood function would also incorporate all of the observations from the data.
Then, as we did with linear regression, we would take derivatives with respect to each
variable. Finally, we would need to solve the resulting system of equations. It sounds
straightforward. However, the resulting system of equations is such that we cannot use
themethods discussed in this test. Wewould have to use amuchmore complicated solu-
tion technique. It is hoped that we are making it clear that logistic regression is a much
more complex process than linear regression. So,we should definitely look for a package
or library to accomplish this.

The sklearn package (from scikit) contains methods that will perform logistic re-
gression, similar to the linear regression methods we used in the previous section. The
code to perform the logistic regression for our basketball example is given next.

Code:
1 import numpy as np

2 import matplotlib.pyplot as plt

3

4 #load the required tools for logistic regression

5 from sklearn.linear_model import LogisticRegression

6 from sklearn import metrics

7

8 #create space for the height values. This must be a matrix, even

9 #if there is only one variable.

10 x = np.zeros((50,1))

11 x[:,0] = np.array([78.29, 82.28, 81.36, 80.27, 76.48, 78.33, 82.05, 80.71,

12 76.02, 79.44, 70.87, 75.32, 79.46, 74.52, 77.80, 74.90, 78.97, 81.12,

13 83.04, 78.59, 75.73, 77.59, 75.69, 78.72, 76.32,74.22, 71.20, 73.85,

14 74.20, 74.35, 68.99, 69.45, 70.77, 76.87, 73.29, 70.61, 75.85, 73.80,

15 71.01, 72.65, 76.80, 74.39, 67.63, 70.95, 69.17, 69.94, 71.79, 72.04,

16 70.69, 68.40])

17

18 #create storage space for status values

19 #this initializes with 1's in all the values

7.2 Logistic regression � 183

20 y = np.ones(50)

21 #the second 25 values in the data are not basketball players

22 #so the status values should be replaced with 0's

23 y[25:50] = np.zeros(25)

24

25 #establish a regression object

26 BasketballRegr = LogisticRegression()

27

28 #perform the regression to fit the model

29 BasketballRegr.fit(x, y)

30

31 #find the percentage of correct classifications

32 score = BasketballRegr.score(x, y)

33 print('Percentage of correct predictions:',score*100)

34

35 #calculate the predicted values

36 yhat = BasketballRegr.predict(x)

37

38 #print the confusion matrix

39 print('Confusion Matrix')

40 cm = metrics.confusion_matrix(y, yhat)

41 print(cm)

The code is documented (commented) to explain what each new command is to accom-
plish. Lines 5 and 6 import the tools necessary to do the regression and to make accessi-
ble certain metrics that measure the goodness of the results. The regression allows for
any number of independent (explanatory) variables. Thus, the values of the variables
are to be stored in a matrix. While our basketball example has only one independent
variable, height, we still must put it into a matrix, instead of a vector. The matrix is ini-
tialized with zeros in line 10. In line 11, the 50 heights are placed into thematrix called x.
The first 25 values represent the heights of the basketball players, while the remaining 25
are for those who did not play basketball. We build the vector of status values in lines 20
and 23. The y vector is initialized with ones. Then, the last 25 entries are replaced by
zeros. To perform the regression, we need a regression object much like we used in the
previous section. Line 26 initializes a variable called BasketballRegr to hold the results
of the regression. Line 29 actually performs the regression to find the optimal values for
the coefficients in the logistic model. At this point the regression is done, but we need
to know how to use and access the results. Line 32 accesses a method called .score in
the regression object that will report the number of predictions that are correct, given
the x and y values. In our case, the model predicts the player status correctly 88% of
the time, missing the prediction on 6 of the 50 values. To get more detail on the predic-
tions, we can create a confusion matrix. The confusion matrix indicates how many of
each category were predicted correctly. So, we need to get the predictions for our data

184 � 7 Regression

and compare them to the actual values. The predictions are obtained via line 36with the
.predictmethod. The argument of .predict is either a single x value or a matrix of x
values. The result gives the predictions for each of the x values. The confusion matrix
for this regression is given here.

Predicted Value
Actual Value 0 1

0 22 3
1 3 22

The rownumbers of thematrix represent the actual values of the target variable, and the
column numbers represent the predicted value. Let’s call the confusion matrix C. Then,
for our example C(0, 0) = 22 means that there were 22 observations for which the actual
target value and the predicted target value were both 0. Hence, these 22 predictions
were correct. In the first column, C(0, 1) = 3, we see that there were three values for
which the actual valuewas 0, but the predicted valuewas 1. Thus, these three predictions
were incorrect. Likewise, in the next row, we have C(1, 0) = 3 and C(1, 1) = 22. This
indicates the there were 22 correct predictions when the target value was 1 and three
incorrect predictions. The values along themain diagonal of C are those predictions that
were correct, while any value off of the diagonal represents an incorrect prediction. The
confusion matrix is not necessarily symmetric. It just happens to be in this case.

To get the actual confusionmatrix,weuse the metrics.confusion_matrix(y, yhat)

command. The command assigns the results to a matrix in line 40. We called the matrix
cm, but it can take any valid variable name. The output from the previous code is given
next.

Output:
Percentage of correct predictions: 88.0

Confusion Matrix

[[22 3]

[3 22]]

Process finished with exit code 0

If we wish to make a prediction for a new observation, we can again use the .predict
method. Suppose we wish to predict whether an athlete with a height of 72 inches plays
basketball. Then, we add the following code.

newy = BasketballRegr.predict([[72]])

print('Status for this player: ',newy)

We need [[72]] because the method expects a matrix. The output follows:

Status for this player: [0.]

7.2 Logistic regression � 185

Thus, our model predicts that an athlete who is 72-in tall would be assigned to status 0,
which indicates that the athlete does not play basketball.

Finally, if we wish to know the coefficients that are actually found by the regression
we use two other methods: .coef_ and .intercept_. We could use the following code:

coeff = BasketballRegr.coef_

c_1 = coeff[0]

c_0 = BasketballRegr.intercept_

print('c_0 = ',c_0)

print('c_1 = ',c_1)

Output:
c_0 = [-56.92020903]

c_1 = [0.75782544]

Since we could have more than one independent variable, the .coef_method returns a
vector of values. From the output we can determine the model for log of the odds to be

ln(p
1 − p
) ≈ −56.92020903 + 0.75782544x,

where x is height. We can solve this for p to get the logistic model

p̂ = e−56.92020903+0.75782544x

1 + e−56.92020903+0.75782544x
.

Remember that, if p̂ ≥ 0.5, our prediction is 1. Otherwise, the prediction is 0. The corre-
sponding logistic curve is shown in Figure 7.2.

Figure 7.2: Original scaterplot with logistic model.

186 � 7 Regression

The scatterplot represents a simple example of logistic regression. In practice, we use
logistic regression with much larger data sets. Also, logistic regression allows for more
than two classes. In the next section, we expand upon our discussion by considering a
much larger, more complicated scenario.

7.2.1 Digit recognition model

While the previous example involved one variable, two classes (basketball or not), and
50 observations, we generally use logistic regression on much larger sets of data involv-
ing many variables and multiple classes. Logistic regression extends naturally, though
tediously, to allow for almost any number of classes and variables. Fortunately, most of
the complexity of this extension is hidden in the logistic-regression methods that are
provided. To demonstrate the power of logistic regression, we consider a sample data
set that is included in the sklearn package. The data set is called digits and it includes
a large set of images of the numbers 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. The image data is repre-
sented by an 8×8matrix inwhich each element of thematrix represents an intensity (or
shade) of that part of the image. For example, one of the matrices and its corresponding
image are given next.

D =

[[[[[[[[[[[[[[

[

0 0 0 2 13 0 0 0
0 0 0 8 15 0 0 0
0 0 5 16 5 2 0 0
0 0 15 12 1 16 4 0
0 4 16 2 9 16 8 0
0 0 10 14 16 16 4 0
0 0 0 0 13 8 0 0
0 0 0 0 13 6 0 0

]]]]]]]]]]]]]]

]

The blue grid is artificially imposed to ease the process of locating particular regions
of the image. The matrix D above represents an image that is designated as a 4. Note
that D(0, 0) = 0 corresponds to a black square at the top left of the image. Likewise,
D(3, 2) corresponds to the square in the 4th row from the top and 3rd column from the
left. The value is 15, which corresponds to a much lighter shade in the image. Each ele-
ment of the matrix corresponds to one grid square of the image. To produce the image
in Python takes a new method within the matplotlib package. The code to produce the
image (without the grid lines) is shown here.

7.2 Logistic regression � 187

Code:
1 import numpy as np

2 import matplotlib.pyplot as plt

3 #plot a sample image

4 D = np.matrix([

5 [0., 0., 0., 2., 13., 0., 0., 0.],

6 [0., 0., 0., 8., 15., 0., 0., 0.],

7 [0., 0., 5., 16., 5., 2., 0., 0.],

8 [0., 0., 15., 12., 1., 16., 4., 0.],

9 [0., 4., 16., 2., 9., 16., 8., 0.],

10 [0., 0., 10., 14., 16., 16., 4., 0.],

11 [0., 0., 0., 0., 13., 8., 0., 0.],

12 [0., 0., 0., 0., 13., 6., 0., 0.]])

13

14 plt.imshow(D,cmap = plt.cm.gray)

15 plt.show()

The values of the matrix are loaded into a matrix named D. Then, we use the .imshow
method to construct the image. There is a parameter called cmap which designates the
color scheme to use when shading the image. There are many maps to choose from,
or the user can define one. A couple of other maps are cmap = plt.cm.summer and
cmap = plt.cm.Purples. The documentation for matplotlib provides information
about many more available color maps.

The sklearn package provides a large database of images and the digits towhich they
are assigned. We want to use logistic regression to build a model that would predict the
digit, based on a provided image. To load the image data, we use the following.

Code:
1 from sklearn.datasets import load_digits

2

3 #get the data for all the images

4 digits = load_digits()

5

6 # Determine the size of the image data

7 print('Image Data Shape' , digits.data.shape)

8 # Make sure the targets are appropriate size

9 print('Label Data Shape', digits.target.shape)

Output:
Image Data Shape (1797, 64)

Label Data Shape (1797,)

Process finished with exit code 0

188 � 7 Regression

Now, this method of loading the data is unique to this situation. As we have seen, data
maybe found inmanyplaces and inmany formats.Wehave to dealwithfinding andpro-
cessing data as the situation demands. In this case, the data is loaded by a method in the
sklearn package.We assign the data to a name (we chose digits) via the load_digits()
command on line 4. We then have a variable called digits that is a new type of variable
(whatever load_digits gave us). The digits variable has some methods available that
we use to find the shape of the digits data and the associated assigned digits that go with
each data record. From the output we see that the image data is stored in a matrix that
is 1797 by 64. So, each row of digits contains the intensity values of an 8 × 8 matrix.
We also see that there are 1,797 images represented. In sklearn, the y values (response
values) are called targets. With the .target.shape method, we see that we have 1,797
corresponding labels that tell us which digit each image it is supposed to represent.

In this scenario, we will treat each of the 64 positions in the matrix as a variable (64
different locations in the image). We have ten categories, one for each digit 0 through 9,
and we have 1,797 observations. Wewish to perform logistic regression to build amodel
from this data. With a large set of data, it is common to split the data into two sets. We
use one set to actually do the regression. We use the other set to act as new data to see
how well the model predicts for data that it has not seen before. The data that is used to
perform the regression is called the training set,while the data that is used to test the ac-
curacy of themodel is called the testing set. We could do this split ourselves, but sklearn
has provided routines that do this for us. Code to split the digits data is given next.

Code:
10 from sklearn.model_selection import train_test_split

11 x_train, x_test, y_train, y_test = train_test_split(digits.data,

12 digits.target, test_size=0.25, random_state=1)

The first of these commands imports the needed method from the sklearn package. The
second splits the data and the targets into two sets. The explanatory values are loaded
intomatrices named x_train and x_test, and the response values (targets) are loaded
into vectors named y_train and y_test. The x denotes the independent variables, and
the y denotes the target variables. Note that we are not required to use these names.
Any valid variable name is allowed, but, as usual, best practices dictate that the vari-
able name be meaningful if possible. By setting test_size=0.25, we use 75% of the
data to “train” or fit the model and the remaining 25% will be used to test the model
to see how well it performs. The records in the data are chosen randomly for the split,
and the random_state parameter enables us to control the selection to some degree. If
random_state is set to be an integer, then the same split of training and testing data will
be done each time the program is run so that the results will be reproducible. Different
integers will select different random sets. If the parameter is not included, then a dif-
ferent random set of data will be selected each time the program is run. Once the data
has been split, we should be able to run the logistic regression on the training data. We

7.2 Logistic regression � 189

do this similarly to the way we did the basketball problem. The proposed code is given
next.

Code:
1 from sklearn.model_selection import train_test_split

2 from sklearn.datasets import load_digits

3 from sklearn.linear_model import LogisticRegression

4

5 #get the data for all the images

6 digits = load_digits()

7

8 # Determine the size of the image data

9 print('Image Data Shape' , digits.data.shape)

10 # Make sure the targets are appropriate size

11 print('Label Data Shape', digits.target.shape)

12

13 x_train, x_test, y_train, y_test = train_test_split(digits.data, \

14 digits.target, test_size=0.25, random_state=1)

15

16 # all parameters not specified are set to their defaults

17 logisticRegr = LogisticRegression()

18

19 #do the logistic regression

20 logisticRegr.fit(x_train, y_train)

21 # Use score method to get accuracy of model

22 score = logisticRegr.score(x_test, y_test)

23 print('Percent correct =', score)

Lines 17, 20, and 22 are the samemethods we used in our basketball example to perform
the logistic regression, except that the .scoremethod is applied to the test data instead
of the data that was used to build the regression mode. The code attempts to fit the
regression on the training data and print the percentage of the test data that is predicted
correctly. However, the following output is given.

Output:
Image Data Shape (1797, 64)

Label Data Shape (1797,)

/Library/Frameworks/Python.framework/Versions/3.8/lib/python3.8/

site-packages/sklearn/linear_model/_logistic.py:938:

ConvergenceWarning: lbfgs failed to converge (status=1):

STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

190 � 7 Regression

Increase the number of iterations (max_iter) or scale the data as shown

in: https://scikit-learn.org/stable/modules/preprocessing.html

Please also refer to the documentation for alternative solver options:

https://scikit-learn.org/stable/modules/linear_model.html#logistic-

regression

n_iter_i = _check_optimize_result(

Percent correct = 0.9688888888888889

Process finished with exit code 0

The last line indicates that the process finishedwith exit code 0, and the score of 0.968888
was displayed, indicating that an effective regression model was constructed. However,
we received a STOP message. Obviously, this is something we should not ignore. Read-
ing through the message, it says that the maximum number of iterations was reached.
Further, it says that we could increase the parameter max_iter or scale the data. We
will look into each of these options. As we discussed earlier, optimizing the likelihood
function for logistic regression cannot be done by solving a linear system, as we did
previously in this book. Instead, the solution is achieved via an iterative process. The
process starts with an initial guess. Then, each iteration aims to improve upon the pre-
vious solution (much like we saw in the bisection method presented earlier in the text).
The solution after each iteration is called an iterate. The process will continue as long as
the iterates are getting better by a significant amount. So, in the previous case, there is a
limit on the number of iterations, and the process had not reachedwhat it believed to be
the best solution. Thus, we need to do some research to see how to change thismaximum
number of iterations. Doing such investigation, we find that the max_iter parameter is
established in the initialization of the logistic regression (line 17). We can modify that
initialization as follows.

Code:
17 logisticRegr = LogisticRegression(max_iter=2800)

Using trial and error, we can find the number of iterations that allows the process to
conclude without the warning.

Output:
Image Data Shape (1797, 64)

Label Data Shape (1797,)

Percent correct = 0.9688888888888889

Process finished with exit code 0

The next question, from a computing perspective, is whether we can reduce the number
of iterations needed. Fewer iterationswouldmean that the process takes less time.With-

7.2 Logistic regression � 191

out much knowledge as to how the solver is working, we look to the other part of the
warning that was previously given. We could try to scale the data. Scaling numeric data
is common. If numbers within a data set differ by several orders of magnitude, it often
leads to numerical issues when trying to compute with such numbers. Often rounding
and truncation error become a problem, and iterative solvers could also struggle. There
are many ways to scale data, but one of the easiest and most common ways is to sim-
ply divide all values by the same number. Frequently, we find the largest absolute value
within the data and divide all numbers by that maximum. Then, the scaled values are
all between −1 and 1. If the values are all positive, then the scaled values are all between
0 and 1. We could do such scaling in Python, but sklearn has provided methods to do
many different types of scaling. So, we will try the default scaling that is offered. Once
again, we need another package from sklearn called preprocessing. To scale the data for
our current example, we modify the previous code as follows.

Code:
1 from sklearn.model_selection import train_test_split

2 from sklearn.datasets import load_digits

3 from sklearn.linear_model import LogisticRegression

4 from sklearn import preprocessing

5

6 #get the data for all the images

7 digits = load_digits()

8

9 #scales the data to help with numeric computation

10 data_scaled = preprocessing.scale(digits.data)

11

12 # Print to show there are 1797 images (8 by 8 images for a dimensionality of 64)

13 print('Image Data Shape' , digits.data.shape)

14 # Print to show there are 1797 labels (integers from 0-9)

15 print('Label Data Shape', digits.target.shape)

16

17 x_train, x_test, y_train, y_test = train_test_split(data_scaled, digits.target,\

18 test_size=0.25, random_state=0)

19

20 # all parameters not specified are set to their defaults

21 logisticRegr = LogisticRegression(max_iter=100)

22 #logisticRegr = LogisticRegression()

23

24 #do the logistic regression

25 logisticRegr.fit(x_train, y_train)

26 # Use score method to get accuracy of model

27 score = logisticRegr.score(x_test, y_test)

28 print('Percent correct =',score)

192 � 7 Regression

Line 4 imports the necessary methods. Line 10 applies the default scaling method using
processing.scale and stores the scaled data in data_scaled. Note that you need to
use the same scaling on the test data as is done on the training data. In this case, we are
scaling the entire set before we split the data so we know that the same scale has been
implemented. Line 17 is changed to split the scaled data instead of the original data.
Finally, we used trial and error again to see if scaling the data reduced the number of
iterations needed to fit the model. Indeed, we could reduce max_iter from 2,800 to 100.
Thus, scaling greatly reduces the time needed to solve the model. The output follows.

Output:
Image Data Shape (1797, 64)

Label Data Shape (1797,)

Percent correct = 0.9666666666666667

Process finished with exit code 0

The value of score calculated in line 27 is achieved by computing predictions for all
of the observations in the test set and comparing the predictions to the actual target
values that are known. Thus, this model is predicting correctly about 97% of the time.
These images vary in quality and definition. Some are “typed” numbers, while; some are
handwritten. To get 97% correct seems amazing.

Let’s generate the confusion matrix as we did before. To do this, we need to include
the following lines of code. In the top of the code, we need the following statement:

from sklearn import metrics

Then, after the model has been fit, we include the following lines.

Code:
30 predictions = logisticRegr.predict(x_test)

31 print('Number of predictions =',len(predictions))

32 cm = metrics.confusion_matrix(y_test, predictions)

33 print(cm)

The program will give us the following confusion matrix.

Output:
Number of predictions = 450

[[37 0 0 0 0 0 0 0 0 0]

[0 40 0 0 0 0 0 0 2 1]

[0 0 43 1 0 0 0 0 0 0]

[0 0 0 44 0 0 0 0 1 0]

7.3 Neural networks � 193

[0 0 0 0 37 0 0 1 0 0]

[0 0 0 0 0 46 0 0 0 2]

[0 1 0 0 0 0 51 0 0 0]

[0 0 0 0 1 0 0 47 0 0]

[0 3 1 0 0 0 0 0 44 0]

[0 0 0 0 0 1 0 0 0 46]]

Wecan see that the test data included 450 images. From the confusionmatrix, we can see
that all 37 0’s were predicted correctly. Of the forty-three 1’s, all but three were predicted
correctly. Of those three, two were predicted as 8’s and one was predicted as a 9. We can
read similar results for all the predictions using thematrix. There were 15 errors among
the 450 predictions.

See Exercises 4–5.

7.3 Neural networks

Our last topic to consider is a very powerful technique for classification known as neural
networks. Detailed literature on themathematics underlying neural networks is actually
fairly rare. One good resource was found at https://d2l.ai/chapter_preface/index.html,
but even that does not fully explain themathematical process. To be sure, the complexity
of neural networks is intense andwell beyond our scope here.Wewill turn our focus to a
broader picture of the process and its implementation in Python.While linear and logis-
tic regression have a set of independent (input) variables and a set of dependent (target)
variables, neural networks include intermediate variables between the input and tar-
get variables. These intermediate variables make up what are called hidden layers of
the network. When such hidden layers are used, the method becomes a deep learning
method. A schematic of a small neural network is given in Figure 7.3.

Each circle represents a node of the network. The first column of nodes, denoted I1
and I2, comprise the input layer of the network. Themiddle column,H1,H2, andH3, make
up a hidden layer, and the last column, O1 and O2, make up the output layer. The output
layer corresponds to the classes into which we wish to assign the object associated with
the inputs. In this network, there are only two classes. In theory we can have any finite
number of nodes in any layer, and we could have multiple hidden layers if desired. The
arrows (edges) in the network represent the idea that each node of one layer contributes
to the value of each node of the next layer. Further, each node would have a weight
associated with it to indicate the amount of contribution for the associated node. For
example,w11 is the weight (coefficient) for I1’s contribution toH1,w12 is I1’s contribution
to H2, and wij is the weight assigned to node i when computing node j in the next layer.
Finally, each layer after the input layer is assigned a bias variable that will shift the
values of the next layer in a way that eases the decision making process later in the

https://d2l.ai/chapter_preface/index.html

194 � 7 Regression

Figure 7.3: Representation of a simple neural network.

network. For the network under discussion, the inputs would be processed as follows.
We let the lower case letters represent particular values of the associated uppercase
node. Thus, i1 is a particular value for I1, h2 a value for H2, and so on. We also assign b
as the bias for the hidden layer and k as the bias for the output layer. Then,

h1 = w11i1 + w21i2 + b
h2 = w12i1 + w22i2 + b
h3 = w13i1 + w23i2 + b.

Before using h1, h2, and h3 to compute the output values, an activation function is ap-
plied. This is similar to what we saw in logistic regression when the logistic function
was applied to achieve the final output. Several different activations may be used, but
most of them attempt to map the computed values to a number between 0 and 1. A lo-
gistic function with 0 as the lower bound and 1 as upper bound is commonly used. The
function is called a sigmoid function and is defined as

S(x) = 1
1 + e−x
.

Then, once the hidden values have been computed, the activation is applied to each
value:

a1 = S(h1)
a2 = S(h2)
a3 = S(h3).

7.3 Neural networks � 195

These transformed values are then used to compute the next level:

o1 = q11a1 + q21a2 + q31a3 + k
o2 = q12a1 + q22a2 + q32a3 + k.

Finally, we apply the activation function again to achieve the final output, r1, r2.

r1 = S(o1)
r2 = S(o2).

The larger value of r1 and r2 dictates which class is chosen in the decision. The process
just described is called forward propagation. While it is typical to represent a network
as shown in Figure 7.3, this depiction does not explicitly show the activations as data is
propagated through the network. Amore explicit diagramwould be something like that
given here.

We must have data to fit the network (the more the better), and each data record would
include measures of the aspects of interest and the class or category associated with the
record. For example, suppose we have data that has characteristics of dogs and cats.
Each record of data might include measures like weight, height, color of fur, length of
tail, etc. But, each record would also include whether the animal was in the dog class or
the cat class. So ifO1 represents dog andO2 represents cat, then for a dogwewould know
that r1 = 1 and r2 = 0. If the animal is a cat, then r1 = 0 and r2 = 1. Now, the values of
r1 and r2 computed by the network will likely not be exactly 1 or 0. They will be decimal
numbers between 0 and 1. Thus, there is error in the final output. To fit the weights to

196 � 7 Regression

the input and interior nodes, one must develop a function to indicate the magnitude
of the error for each data record. We sum all of the errors to get a final value for the
error function. Then, we try tominimize the error function.With somany variables, this
minimization is not trivial. Even in the small network depicted, there are 14 variables:

w11, w12, w13, w21, w22, w23, b, q11, q12, q21, q22, q31, q32, k.

This is very complicated and is generally accomplished with a method called steepest
descent or gradient descent. Suchmethods are beyond the scope of this text, but the idea
is this. Initial values for all the variables are assigned (either randomly or by educated
estimation). The data is then propagated through the network, and the error is calcu-
lated. Using the current values of all the nodes, the weights are adjusted in a way that
seeks a lower value for the error. The new weights are applied, and the data is propa-
gated again. The process is repeated until the error function is either unchanging or has
reached an acceptable tolerance. The steepest descent algorithmwill use the derivatives
of the error function to adjust theweights and biases, and these derivatives can be found
by working backward through the network, a process known as back propagation.

Let’s consider an example. A small study was done regarding differing grape culti-
vars used to produce wine, all grown in the same region of Italy (see https://archive.ics.
uci.edu/ml/datasets/wine). The researchers examined 178 samples of wine and recorded
measurements for several attributes. The goal is to predict which of the three cultivars
was used based on the values of the attributes. The attributes are:
1. Alcohol
2. Malic acid
3. Ash
4. Alcalinity of ash
5. Magnesium
6. Total phenols
7. Flavanoids
8. Nonflavanoid phenols
9. Proanthocyanins
10. Color intensity
11. Hue
12. OD280/OD315 of diluted wines
13. Proline

The file wine.csv contains the data for all 178 samples. As the data scientist, we do not
have to be experts in wine to construct a useful model. We need to know that there are
13 input variables and 3 classes. Within the data file, the type of cultivar is given as the
first field of each record, followed by values for each of the 13 attributes. A sample line
(record) is shown here:

https://archive.ics.uci.edu/ml/datasets/wine
https://archive.ics.uci.edu/ml/datasets/wine

7.3 Neural networks � 197

2,11.84,2.89,2.23,18,112,1.72,1.32,.43,.95,2.65,.96,2.52,500

Clearly, commas are used to separate the values of the attributes. For this example, we
know that this wine was grown with a type 2 cultivar. From a neural network perspec-
tive, we need an input layerwith 13 nodes and an output layerwith 3 nodes. The decision
on the number of hidden layers and the number of nodes within each hidden layer is
difficult to determine. But once we have the code in Python, we can try different com-
binations to see if significant gains are made. For our example, we will begin with one
hidden layer containing 5 nodes. To construct this network in Python, we begin by im-
porting all of the relevant packages.

Code:
1 print('importing packages')

2 import numpy as np

3 from sklearn.model_selection import train_test_split

4 import matplotlib.pyplot as plt

5 from sklearn.preprocessing import StandardScaler

6 from sklearn import metrics

7 from sklearn.neural_network import MLPClassifier

8 print('packages imported')

Most of these packages have been used previously in the text. Rather than import the
entire preprocessing module, we have imported only the standard scaling routines that
are included. The code specific to the fitting of the neural network is imported in line 7.
Also, print statements are used to informus as towhat the program is doing at each step.
These prints act as a kind of status update so that we know the code is indeed proceeding
as expected. Once the packages have been imported, the data file is read and the data is
stored.

Code:
9 print('reading data')

10 winedata = np.genfromtxt('wine.csv', delimiter=',')

11 m,n = winedata.shape

12 print('winedata dimensions:',m,n)

13 x = winedata[:,1:]

14 y = winedata[:,0]

The data is read by line 10. Lines 11 and 12 determine the size of the matrix that holds
the data and displays this information on the screen. Line 13 stores columns 2–14 in a
matrix called x,while line 14 stores the first column of the matrix in a variable called y.
The x matrix holds the wine attributes, and the y matrix holds the associated classes.
As we did in the logistic regression, we should split the data into a training set and a

198 � 7 Regression

testing set. With such a small data set, we must decide if a split still leaves enough data
to effectively build the model, but splitting is, in general, a good practice.

Code:
15 x_train, x_test, y_train, y_test = \

16 train_test_split(x, y, test_size=0.25,random_state=0)

17

18 print('x_train.shape',x_train.shape)

19 print('y_train.shape',y_train.shape)

20 print('x_test.shape',x_test.shape)

21 print('y_test.shape',y_test.shape)

Lines 15 and 16 accomplish the split into a training set and a testing set. The training set
contains 75% of the data while the testing set contains the remaining 25%. The print
statements are used to show the number of records (rows) and attributes (columns) in
each set. This enables one to check that the split was achieved as expected. We should
also scale the data to reduce the likelihood and magnitude of numerical errors during
the fitting of theweights to the data. Recall thatwe applied scaling in the logistic example
in the previous section. In that example, we scaled all of the data before the split. This
ensured that all the data received the same transformation. Since the data in our wine
example is already split into training and testing sets, we have to go about the scaling
in a slightly different way. We must apply the same scaling to the testing data that is
applied to the training data. To do this, we “fit” a scaler to the training data and then
apply the same scaler to the testing data.

Code:
22 scaler = StandardScaler()

23 # Fit only to the training data

24 scaler.fit(x_train)

25 # Now apply the transformations to the data:

26 x_train = scaler.transform(x_train)

27 x_test = scaler.transform(x_test)

The StandardScalermodule is imported in line 5. Line 22 sets up a variable of type Stan-
dardScaler. We called the variable scaler, but any valid variable name is acceptable. In
line 24, a scaling model is fit to the training data. Then lines 26 and 27 apply the same
transformation to both the training and testing data. With the scaling complete, we are
prepared to fit the neural network to our data. As with the logistic regression, we use
the training data to fit the parameters of the network. The code follows.

7.3 Neural networks � 199

Code:
28 print('fit to neural net')

29 winenetwork = MLPClassifier(hidden_layer_sizes=(10),max_iter=1000)

30 winenetwork.fit(x_train,y_train)

A variable called winenetwork of type MLPClassifier is initialized in line 29. For the
record, MLP stands for multi-layer perceptron. The network is initialized with one hid-
den layer having ten nodes. Also, the maximum number of iterations for the optimiza-
tion of the parameters is set to 1,000 (much like we did with the logistic regression). The
network is actually constructed in line 30 using the .fit method of the MLPClassifier
class. When the entire code is executed, the following output is displayed.

Output:
importing packages

packages imported

reading data

winedata dimensions: 178 14

x_train.shape (133, 13)

y_train.shape (133,)

x_test.shape (45, 13)

y_test.shape (45,)

fit to neural net

Process finished with exit code 0

From the output, we see that the code was executed with no errors (exit code of 0). We
can also see that the original data contained 178 records. The split data seems appropri-
ate since the training set has 133 and the testing set has 45 records. These sum to the 178
as expected. The xmatrix has 13 columns which correspond with the 13 wine attributes,
and the ymatrix has only one column that corresponds to the class of cultivar associated
with the wine. Hence, it seems that things are working properly, but we have no idea of
how well the network will predict classes for the test data. To acquire the prediction
associated with a set of input values, we use the .predictmethod for our winenetwork
variable. We can pass the input values for a single observation or for multiple observa-
tions. The predictions for all of the testing data are computed in line 31 of the following
code.

Code:
31 predictions = winenetwork.predict(x_test)

32 proport_correct = winenetwork.score(x_test, y_test)

33 print('proportion of correct predictions',proport_correct)

34 # get the confusion matrix

200 � 7 Regression

35 cm = metrics.confusion_matrix(y_test, predictions)

36 print('Confusion Matrix:')

37 print(cm)

The .scoremethod compares the predicted values for the inputs with the actual classes
associated with the inputs. The method returns the proportion of predictions that are
correct. For our wine data, the score is computed in line 32 and displayed in line 33. We
should note that, because theweights in themodel are initially chosen via a randompro-
cess, the score could change when the code is executed again (even though the random
state for the split was fixed). We could fix the randomness of the weights by assigning a
rand_state parameter in line 29, when the MLPClassifier is initialized. Finally, the con-
fusion matrix is also printed in line 35. The output for a particular execution is given
next.

Output:
importing packages

packages imported

reading data

winedata dimensions: 178 14

x_train.shape (133, 13)

y_train.shape (133,)

x_test.shape (45, 13)

y_test.shape (45,)

fit to neural net

proportion of correct predictions 0.9777777777777777

Confusion Matrix:

[[16 0 0]

[1 20 0]

[0 0 8]]

Process finished with exit code 0

As before, the confusion matrix gives us more detail on the predictions that were made.
For this particular case, there was only one incorrect prediction among the testing set.
One observation that was classified as type 1 was predicted as a type 0. All other predic-
tions were correct.

The sklearn package also includes routines to compute particular measures for a
given network. One such routine offers a classification report. Consider the example
confusion matrix from our previous digit recognition model. The matrix and associated
classification report are given next.

7.3 Neural networks � 201

Confusion Matrix:

[[37 0 0 0 0 0 0 0 0 0]

[0 42 0 0 0 0 0 0 1 0]

[0 0 44 0 0 0 0 0 0 0]

[0 0 0 44 0 0 0 0 1 0]

[0 0 0 0 37 0 0 1 0 0]

[0 0 0 0 0 47 0 0 0 1]

[0 1 0 0 0 0 51 0 0 0]

[0 0 0 0 0 0 0 48 0 0]

[0 1 0 1 0 0 0 0 46 0]

[0 0 0 0 0 1 0 1 0 45]]

Classification Report:

precision recall f1-score support

0 1.00 1.00 1.00 37

1 0.95 0.98 0.97 43

2 1.00 1.00 1.00 44

3 0.98 0.98 0.98 45

4 1.00 0.97 0.99 38

5 0.98 0.98 0.98 48

6 1.00 0.98 0.99 52

7 0.96 1.00 0.98 48

8 0.96 0.96 0.96 48

9 0.98 0.96 0.97 47

accuracy 0.98 450

macro avg 0.98 0.98 0.98 450

weighted avg 0.98 0.98 0.98 450

The classes for this classifier are given on the left: 0, 1, 2, 3, . . . , 9. Some of the measures
reported in the classification report deal with the ideas of false positives and false nega-
tives. A true positive classification for j occurs when an object of class j is predicted to be
in class j. A false positive for j occurs when an object of a class other than j is classified
as class j. The precision of a classifier measures the accuracy of positive predictions:

precision(j) = true positive predictions for j
true positive predictions for j + false positive predictions for j

In terms of the confusion matrix CM ,

precision(j) =
CMjj

Sum of column j
.

202 � 7 Regression

Note that, if an object is of class j but is identified as class i (i ̸= j), then this object is not
included in the computation of precision. Such a classification is called a false negative.
Likewise, a true negative occurs if an object not in class j is assigned a class other than j.

Recall is a measure of howmany of the true positives were detected. In this case the
false negative classifications are incorporated:

recall(j) = true positives for j
true positives for j + false negatives for j

=
CMjj

Sum of row j
.

The f 1measurement is aweighted average of precision and recall. It is the preferred
measure to use when comparing different classifier models:

f 1 = 2(precision)(recall)
recall + precision

.

The support for a class is the actual number of occurrences of that class. Accuracy is the
proportion of predictions that are correct:

accuracy = sum of diagonal of CM
sum of all elements in CM

.

The macro average is the unweighted average of the measure, and the weighted aver-
age uses the supports as weights when computing the average of the measure. So the
weighted average is given by

weighted avg =
∑i in class(supporti)(measure valuei)

∑i in class supporti
.

We could write Python functions to compute each of these measures, but sklearn
provides a method to generate all of these easily. The report is generated with one line
of code.

Code:
38 print(metrics.classification_report(y_test, predictions))

A separate execution of the program including the classification report for our wine
network produces the following.

7.3 Neural networks � 203

Output:
importing packages

packages imported

reading data

winedata dimensions: 178 14

x_train.shape (133, 13)

y_train.shape (133,)

x_test.shape (45, 13)

y_test.shape (45,)

fit to neural net

proportion of correct predictions 0.9777777777777777

Confusion Matrix:

[[16 0 0]

[0 20 1]

[0 0 8]]

precision recall f1-score support

1.0 1.00 1.00 1.00 16

2.0 1.00 0.95 0.98 21

3.0 0.89 1.00 0.94 8

accuracy 0.98 45

macro avg 0.96 0.98 0.97 45

weighted avg 0.98 0.98 0.98 45

Process finished with exit code 0

Examination of the confusion matrix shows that CM(1, 2) = 1. This reflects a false nega-
tive for class 2 and a false positive for class 3. Thus, the precision for class 3 is given by

8
0+1+8 ≈ 0.89, while the recall for class 2 is given by 20

0+20+1 ≈ 0.95.

See Exercise 6.

Weclose this sectionwith a brief discussion regarding the presentation of the confu-
sionmatrix. For the programmer, the appearance of the output of the confusionmatrix is
not generally of concern. The programmer knows what the matrix represents and how
to interpret the entries of the matrix. However, if one is including such information in
a presentation of sorts, then a more eloquent display may be more appropriate. There
are library routines that create a color-based confusion matrix. One such routine is the
.heatmap method found in the seaborn package, but we know enough Python now to
produce our own meaningful, appealing representation of the confusion matrix. To do

204 � 7 Regression

this, we can treat the confusion matrix much like we did the digit data from the previ-
ous section. Then, we can use the .imshowmethod to display the matrix. The only code
needed is:

plt.imshow(cm,cmap ='Blues')

Adding this line and rerunning the code produces the following confusion matrix and
associated image.

Output:
Confusion Matrix:

[[16 0 0]

[1 20 0]

[0 0 8]]

Of course, one may choose any available colormap to be used. The image is nice, but
certainly there is some room for improvement. The first thing to notice is that CM(0, 0)
and CM(2, 2) are both the only nonzero entries in their respective rows, but the respec-
tive color shading is very different. It would be more appropriate to scale the entries by
the row sums (or column sums) so that shadings are more representative of the accu-
racies in the network predictions. Also, the axis scalings are not meaningful. We should
include only the class labels. We can accomplish both of these goals with the following
code.

Code:
39 rowsums = np.sum(cm,0)

40 scaledcm = cm/rowsums

41 plt.imshow(scaledcm,cmap ='Blues',alpha=0.75)

42 plt.xticks(np.arange(0,3,1),['1','2','3'])

43 plt.yticks(np.arange(0,3,1),['1','2','3'])

44 plt.show()

Line 39 computes the row sums for all the rows in cm. If we were to replace the 0 with a
1, column sums would be computed instead of row sums. Line 40 divides all the entries

7.3 Neural networks � 205

in cm by the respective row sum. The image is produced in line 41 (the alpha parame-
ter allows us to set the transparency of the color). Finally, lines 42–43 define the axis
tick-mark locations and the labels that are to be used. When executed, the following
confusion matrix and image are created.

Output:
Confusion Matrix:

[[16 0 0]

[1 20 0]

[0 0 8]]

Finally, it would be helpful if the actual entries of the matrix were shown. We can write
text on a graph inmatplotlib by using the .textmethod. Themethod requires the x and
y coordinates on which text is to be displayed as well as the actual text to be displayed.
Since we wish to display the contents of cm, we will use a nested loop system and a little
trial and error to determine the locations for the text. The looping structure is added as
follows.

Code:
39 rowsums = np.sum(cm,0)

40 scaledcm = cm/rowsums

41 plt.imshow(scaledcm,cmap ='Blues',alpha=0.75)

42 plt.xticks(np.arange(0,3,1),['1','2','3'])

43 plt.yticks(np.arange(0,3,1),['1','2','3'])

44 for i in range(3):

45 for j in range(3):

46 plt.text(i-.1,j+.05,str(cm[i,j]))

47 plt.show()

The end result is illustrated in the next graph.

206 � 7 Regression

Output:
Confusion Matrix:

[[16 0 0]

[1 20 0]

[0 0 8]]

See Exercise 7.

7.4 Exercises

1. Use the data from the teen birth example find the linear regression line that predicts
births to 18–19-year-old women (instead of 15–17-year-olds) based on poverty rate.
(a) Create a scatter plot using poverty as the explanatory variable and births as the

response variable.
(b) Plot the regression line on the same plot as the scatter plot.
(c) Find the coefficient of determination and interpret its value.

2. Efron et al. (2004, in Annals of Statistics) collected data on 442 diabetic patients. The
data is contained in diabetes.txt. The first four fields of the data are: age, sex (1 =
male, 2 = female), body mass index (BMI), and blood pressure (BP). The right-hand
column is an indication of disease progression.
(a) Use this data to find the linear regression model to predict disease progression

using age, sex, BMI, and BP as the explanatory variables.
(b) Find the coefficient of determination and the correlation coefficient.
(c) Based on the values of the R2 and r, comment on the strength of the linear

model.
(d) For a woman who is 45-years-old with BMI of 30 and BP of 112, what is the pre-

dicted disease progression?
3. Use the diabetes data from the previous problem.

(a) Find separate regression models for males and females, using only age, BMI,
and blood pressure as explanatory variables.

(b) Find the R2 values associated with males and females. Comment on the results.
4. Revise the logistic regression for the digits example as follows:

7.4 Exercises � 207

(a) Instead of using all 64 entries in the image matrix, only use the odd numbered
rows of the image matrix. Thus, there would be a total of 32 explanatory vari-
ables instead of 64.

(b) Build the logistic-regression model for the revised data and compare the pre-
diction accuracy to the example model.

5. Using the diabetes data from Exercise 2, assign classes to the disease progression
field (Y) according to the following table.

Disease Progression Class

0–50 0
50–100 1
100–150 2
150–200 3

above 200 4

(a) Construct a logistic regressionmodel using age, sex, BMI, and BP as the explana-
tory variables and the classes described as the target values. Use the entire data
set as training data (and the testing data). To avoid warning messages, you may
have to increase the max_iter parameter in the regression variable.

(b) How accurately are the classes predicted for the given data?
(c) Compare the results from the logistic regression with those from the previous

linear regression.
6. Recall the logistic regression model to recognize digits in Section 7.2.

(a) Modify the logistic model to create a neural network model with two hidden
layers. The first hidden layer should have 60 nodes and the second hidden layer
should have 30 nodes.

(b) Produce a classification report for the resulting network using the test data.
(c) Compare the results of the logistic model and neural network mode.
(d) Add code to produce an appealing display of the confusion matrix for the digit-

recognition model. You may modify the code developed in the text or use the
.heatmapmethod in the seaborn package.

7. Moody et al. collected data regarding heart conditions. The data includes a large
number of ECG observations included in the files, mitbih_test.csv and
mitbih_train.csv. (Moody GB, Mark RG). The impact of the MIT-BIH Arrhythmia
Database. IEEE Eng in Med and Biol 20(3):45–50 (May–June 2001). (PMID: 11446209).
The data has already been split (as the file names indicate) into a training set and a
testing set.
(a) Each ECG contains 187 amplitude values. The 188th column is the class for the

ECG. Use the training set to find and plot one ECG associated with each class.
Include a legend on the plot. The y values are the amplitudes for the ECG. You
can let the x values be [0, 1, 2, . . . 186].

208 � 7 Regression

(b) Construct a neural network model to predict the classification of the heart con-
dition indicated by an ECG.

(c) Generate predictions for the testing data set.
(d) Display the classification report.
(e) Display an appealing confusion matrix.

A Python code

A.1 Chapter 2 code

Chapter 2:

2.1,Arithmetic

Addition, Subtraction, Multiplication, Division

3+5

3-5

3*5

5/3

powers

print(5**3)

printing

print('3+5 =',3+5)

print('The value of 2/3 to four decimal places is {:.4f}. '.format(2/3))

print('The radius is {}, and the area is {:.3f}.'.format(4.0, 3.14*4**2))

print('The radius is {:.2f}, and the area is {:.5f}.'.format(4.0, 3.14*4**2))

A.2 Chapter 3 code

exponentials

importing packages, math package

import math

print(math.e)

two representations of the same exponential value

print(math.e**3)

print(math.exp(3))

can also be done in numpy

import numpy

print(numpy.exp(3))

trig functions

#print a table of trig values

import numpy

print("angle |{:>5} |{:>5} |{:>5} |{:>5} |{:>5} |".format(\

https://doi.org/10.1515/9783110776645-008

https://doi.org/\global \c@doi \c@pseudochapter \relax \global \advance \c@doi \c@parttext \relax 10.1515/9783110776645-000

210 � A Python code

'0','\u03C0/6','\u03C0/4','\u03C0/3','\u03C0/2'))

print('--')

print("cos(x)|{:.4f}|{:.4f}|{:.4f}|{:.4f}|{:.4f}|".format(\

numpy.cos(0),numpy.cos(numpy.pi/6),numpy.cos(numpy.pi/4),\

numpy.cos(numpy.pi/3),numpy.cos(numpy.pi/2)))

print("sin(x)|{:.4f}|{:.4f}|{:.4f}|{:.4f}|{:.4f}|".format(\

numpy.sin(0),numpy.sin(numpy.pi/6),numpy.sin(numpy.pi/4),\

numpy.sin(numpy.pi/3),numpy.sin(numpy.pi/2)))

==

variable types

r = 4

print(type(r))

q = 3

print(type(q))

a = r/q

print(a)

print(type(a))

strings

x = 'Will Miles'

print(x)

fname = 'Will'

lname = 'Miles'

name = fname+lname

print(name)

name = fname + ' ' + name

print(name)

fname = 'Will'

name = 4*fname

print(name)

accessing and splicing strings

coursename = 'Scientific Computing'

print(coursename[3])

print(coursename[0:10])

print(coursename[11:])

find in string

A.2 Chapter 3 code � 211

coursename = 'Scientific Computing'

a = coursename.find('Comp')

print(a)

b = coursename.find('not')

print(b)

#use upper case to ignore case sensitivity

coursename = 'Scientific Computing'

convert string to upper case

Ucourse = coursename.upper()

print(Ucourse, coursename)

#search for the uppercase of 'comp'

a = Ucourse.find('comp'.upper())

print(a)

==

defining functions

def f(x):

y = 3.0*x**2-2.0*x+1.0

return y

y = f(3)

print('f(3)=',y)

==

input from the keyboard

import numpy as np

radius_str = input('Enter the radius: ')

#convert the radius to a floating point value

radius = float(radius_str)

#compute the area, A = pi*r^2

area = np.pi*radius**2

print('The area of a circle with radius {:.3f} cm is {:.3f}\

square cm'.format(radius, area))

==

#Python lists

x = [1,2,3,4]

print('x=',x)

y = [1,'a',3.14,'c','will']

print('y=',y)

==

212 � A Python code

graphing

import matplotlib.pyplot as plt

x = [0,1,2,3,4,5]

y = [0,1,4,9,16,25]

plt.plot(x,y,'b*-',label='f(x)=x^2')

plt.xlabel('x-axis')

plt.ylabel('y-axis')

plt.title('Big Title')

plt.grid()

plt.show()

--

import matplotlib.pyplot as plt

x = [0,1,2,3,4,5]

y = [0,1,4,9,16,25]

z = [0,2,4,6,8,10]

plt.plot(x,y,'b*-',label='f(x)=x^2')

plt.xlabel('x-axis')

plt.ylabel('y-axis')

plt.title('Big Title')

plt.grid()

plt.plot(x,z,'b--',label="f'(x)=2x",c='0.45')

plt.legend()

plt.show()

--

import numpy as np

def f(x):

y = x**2

return y

x = np.arange(0,5.1,0.1)

print('x=',x)

y = f(x)

print('y=',y)

--

import numpy as np

import matplotlib.pyplot as plt

np.set_printoptions(precision=3,suppress=1,floatmode='fixed')

def f(x):

A.2 Chapter 3 code � 213

y = x**2

return y

x = np.arange(0,5.1,0.1)

y = f(x)

plt.plot(x,y)

plt.xlabel('x-axis')

plt.ylabel('y-axis')

plt.title('f(x) = x^2')

plt.grid()

plt.show()

--

import numpy as np

import matplotlib.pyplot as plt

np.set_printoptions(precision=3,suppress=1,floatmode='fixed')

def f(x):

y = x**2

return y

x = np.arange(0,5.1,0.1)

y = f(x)

z = np.sin(x)

plt.plot(x,y)

plt.grid()

plt.figure()

plt.plot(x,z)

plt.grid()

plt.show()

==

#our first if statement

#first get an x value

x = float(input('Enter an x value: '))

#logic of the piecewise function

if x<=0: #the condition is x<=0

y = x**2 #condition is true

else: #otherwise

y = x+1 #condition is false

print('f({}) = {}'.format(x,y))

--

214 � A Python code

vectorizing functions

import numpy as np

import matplotlib.pyplot as plt

np.set_printoptions(precision=3,suppress=1,floatmode='fixed')

define a piecewise function using if statements

in this example, we have named the function pw

def pw(x):

#logic of the peicewise function

if x<=0: #the condition is x<=0

y = x**2 #condition is true

else: #otherwise

y = x+1 #condition is false

return y

vpw = np.vectorize(pw)

a = -2

b = 2

n = 100

dx = (b-a)/n

x = np.arange(a,b+dx,dx)

y = vpw(x)

plt.plot(x,y)

plt.show()

--

import numpy as np

import matplotlib.pyplot as plt

np.set_printoptions(precision=3,suppress=1,floatmode='fixed')

define a piecewise function using if statements

in this example, we have named the function pw

def pw(x):

#logic of the peicewise function

if x<=0: #the condition is x<=0

y = x**2 #condition is true

else: #otherwise

y = x+1 #condition is false

return y

vpw = np.vectorize(pw)

#set up the list for -2<x<=0

a = -2

b = 0

n = 50

dx = (b-a)/n

A.2 Chapter 3 code � 215

x = np.arange(a,b+dx,dx)

y = vpw(x)

plt.plot(x,y,'b')

#now do the second section of the function

a = 0

b = 2

n = 50

dx = (b-a)/n

in this list we want to exclude the left endpoint at 0

so we will use a start value that is slightly larger than 0

x = np.arange(a+dx,b+dx,dx) #note, this includes 2

y = vpw(x)

plt.plot(x,y,'b')

plt.grid()

plt.show()

--

import numpy as np

import matplotlib.pyplot as plt

np.set_printoptions(precision=3,suppress=1,floatmode='fixed')

define a piecewise function using if statements

in this example, we have named the function pw

def pw(x):

#logic of the peicewise function

if x<=0: #the condition is x<=0

y = x**2 #condition is true

else: #otherwise

y = x+1 #condition is false

return y

vpw = np.vectorize(pw)

#set up the list for -2<x<=0

a = -2

b = 0

n = 50

dx = (b-a)/n

x = np.arange(a,b+dx,dx) #last element may be very slightly above zero

x[n] = b #assign the last element to be zero

y = vpw(x)

plt.plot(x,y,'b')

#now do the second section of the function

a = 0

b = 2

216 � A Python code

n = 50

dx = (b-a)/n

in this list we want to exclude the left endpoint at 0

so we will use a start value that is slightly larger than 0

x = np.arange(a+dx,b+dx,dx) #note, this includes 2

y = vpw(x)

plt.plot(x,y,'b')

plt.grid()

#plt.plot(0,0,'b.',markersize=11)

#plt.plot(0,1,'b.',fillstyle='none',markersize=11)

plt.show()

--

A.3 Chapter 4 code

matrices

import numpy as np

#create the matrix

A = np.array([[1,2,3,4],[-2,4,-3,5],[-1,3,-3,4]])

print('A = ')

print(A)

#access the second row, third column

a23 = A[1,2]

print('The value in the second row, third column is ',a23)

#find the size of the matrix

m,n = np.shape(A)

print('rows = {}. cols = {}'.format(m,n))

#get the third row of the matrix

Arow3 = A[2,:]

print('The third row is ',Arow3)

#get the second column of the matrix

Acol2 = A[:,1]

print('The second column is ',Acol2)

--

import numpy as np

#create the matrix

A = np.array([[1,2,3,4],[-2,4,-3,5],[-1,3,-3,4]])

print('A = ')

print(A)

#show that matrices are immutable

A.3 Chapter 4 code � 217

B = A

#change B

B[0,0] = 2

#show that A was also changed.

print('A = ')

print(A)

--

import numpy as np

#create the matrix

A = np.array([[1,2,3,4],[-2,4,-3,5],[-1,3,-3,4]])

print('Original A = ')

print(A)

#show that matrices are immutable

B = A.copy()

#change B

B[0,0] = 2

#show that A was also changed.

print('A after B has been changed =')

print(A)

print('B after the change =')

print(B)

--

matrix arithmetic

import numpy as np

np.set_printoptions(precision=3,suppress=1,floatmode='fixed')

#create the matrix

A = np.array([[1,2],[3,4]])

B = np.array([[-1,3],[2,-5]])

print('A =')

print(A)

print('B =')

print(B)

#add two matrices

print('A+B = ')

print(A+B)

#subtract B from A

print('A-B = ')

print(A-B)

#component-wise multiplication

print('A*B = ')

218 � A Python code

print(A*B)

#component-wise division

print('A/B = ')

print(A*B)

#scalar multiplication

#multiply A by 3

print('3A = ')

print(3*A)

--

import numpy as np

np.set_printoptions(precision=3,suppress=1,floatmode='fixed')

#create the matrix

A = np.array([[1,2,3],[-1,2,-3]])

B = np.array([[1,2],[0,4],[-3,2]])

print('A =')

print(A)

print('B =')

print(B)

#standard matrix multiplication

C = np.dot(A,B)

print('AB =')

print(C)

==

identity matrix

import numpy as np

np.set_printoptions(precision=3,suppress=1,floatmode='fixed')

#create the matrix

A = np.array([[1,2,3],[-1,2,-3]])

I3 = np.array([[1,0,0],[0,1,0],[0,0,1]])

I2 = np.array([[1,0],[0,1]])

print('A =')

print(A)

print('I3 =')

print(I3)

print('I2 =')

print(I2)

#standard matrix multiplication

C = np.dot(A,I3)

print('(A)(I3) =')

print(C)

A.3 Chapter 4 code � 219

D = np.dot(I2,A)

print('(I3)(A) =')

print(D)

#print('(A)(I2) =')

#print(np.dot(A,I2))

--

import numpy as np

#create the matrix

A = np.array([[1,2,3],[-1,2,-3],[0,2,5]])

print('A =')

print(A)

#find the inverse of A

A_inv = np.linalg.inv(A)

print('A_Inverse =')

print(A_inv)

#confirm the inverse

print('AA_inv = ')

print(np.dot(A,A_inv))

print('A_invA = ')

print(np.dot(A_inv,A))

--

round numbers in a matrix

#confirm the inverse

print('AA_inv = ')

AA_inv = np.dot(A,A_inv)

#round the entries to 3 decimal places when printing

print(AA_inv.round(3))

print('A_invA = ')

A_invA=np.dot(A_inv,A)

print(A_invA.round(3))

==

linear systems

row operations

import numpy as np

#np.set_printoptions(precision=3,suppress=1,floatmode='fixed')

#create the matrix

A = np.array([[1,1,1,6],[2,-3,1,-1],[1,2,-3,-4]])

print('A =')

print(A)

220 � A Python code

#perform row operations to achieve the goal matrix

#-2R1+R2-->R2

print('-2R1+R2-->R2')

A[1,:] = -2*A[0,:]+A[1,:]

print('A =')

print(A)

#-R1+R3-->R3

print('-R1+R3-->R3')

A[2,:] = -1*A[0,:]+A[2,:]

print('A =')

print(A)

print('(-1/5)R2-->R2')

A[1,:] = (-1/5.0)*A[1,:]

print('A =')

print(A)

print('-1R2+R1-->R1')

print('-1R2+R3-->R3')

A[0,:] = -1*A[1,:]+A[0,:]

A[2,:] = -1*A[1,:]+A[2,:]

print('A =')

print(A)

print('(-1/4)R3-->R3')

A[2,:] = (-1/4.0)*A[2,:]

print('A =')

print(A)

print('-1R3+R1-->R1')

A[0,:] = -1*A[2,:]+A[0,:]

print('A =')

print(A)

--

use inverse to solve system

import numpy as np

#create the coefficient matrix

A = np.array([[1,1,1],[2,-3,1],[1,2,-3]])

#create the right hand side column vector

B = np.array([[6],[-1],[-4]])

print('A =')

print(A)

print('B =')

print(B)

#get the inverse of A

A.4 Chapter 5 code � 221

AInv = np.linalg.inv(A)

#multiply the inverse of A by B

X = np.dot(AInv,B)

print('X =')

print(X)

--

solve system using .solve

import numpy as np

#np.set_printoptions(precision=3,suppress=1,floatmode='fixed')

#create the matrix

A = np.array([[1,1,1],[2,-3,1],[1,2,-3]])

B = np.array([[6],[-1],[-4]])

print('A =')

print(A)

print('B =')

print(B)

X = np.linalg.solve(A,B)

print('X =')

print(X)

A.4 Chapter 5 code

bisection background

import numpy as np

def f(x):

y = x**4/10 -2*x**2 + -x-3*np.sin(x) + 5

return(y)

a = 0

b = 2

print('f({:.4f}) = {:.4f}'.format(a,f(a)))

print('f({:.4f}) = {:.4f}'.format(b,f(b)))

x = (a+b)/2.0

print('f({:.4f}) = {:.4f}'.format(x,f(x)))

--

using while statement in bisection algorithm

import numpy as np

222 � A Python code

def f(x):

y = x**4/10 -2*x**2 + -x-3*np.sin(x) + 5

return(y)

tol = 0.0001

a = 0

b = 2

#we will do the first iterate before our while loop starts so that we

#have a value to test against the tolerance

x = (a+b)/2

while np.abs(f(x))>tol:

print('a={:.5f} f(a)={:.5f}, b={:.5f} f(b)={:.5f}, \

x={:.5f} f(x)={:.5f}'.format(a,f(a),b,f(b),x,f(x)))

#now decide whether we replace a or b with x

if f(a)*f(x) < 0:

#root is between a and x so replace b

b = x

elif f(b)*f(x)<0:

#root is between b and x so replace a

a = x

else:

in this case, f(x) must be 0 and we have found the root

so we will know the root value is x and we can end the loop

break

#recompute the approximation

x = (a+b)/2

print('final x =',x)

print('final f(x) =',f(x))

--

bisection as a function

def bisect(f,a,b,tol):

#we will do the first iterate before our while loop starts so that we

#have a value to test against the tolerance

x = (a+b)/2

while np.abs(f(x))>tol:

print('a={:.5f} f(a)={:.5f}, b={:.5f} f(b)={:.5f}, \

x={:.5f} f(x)={:.5f}'.format(a,f(a),b,f(b),x,f(x)))

#now decide whether we replace a or b with x

if f(a)*f(x) < 0:

#root is between a and x so replace b

b = x

A.4 Chapter 5 code � 223

elif f(b)*f(x)<0:

#root is between b and x so replace a

a = x

else:

in this case, f(x) must be 0 and we have found the root

so we will know the root value is x and we can end the loop

break

#recompute the approximation

x = (a+b)/2

return x

--

using the bisection function

def shifted_exp(x):

y = np.exp(x) - 3

return y

tol = 0.0001

a = 1

b = 2

x = bisect(shifted_exp,a,b,tol)

print('final x =',x)

print('final f(x) =',shifted_exp(x))

==

for loop to do sum

import numpy as np

n = 5

t = np.arange(1,n+1,1)

print(t)

S = 0

for k in t:

S = S+1.0/k

print('S =',S)

--

Euler's method

import numpy as np

import matplotlib.pyplot as plt

#solve dy/dt = (y-t)/2

224 � A Python code

#where when t=0, y=1

def rhs(t,y):

m = (y-t)/2

return m

#initial t value

a = 0

#final t value

b = 5

#number of intervals

n = 10

#delta t

dt = (b-a)/n

#create a vector of t-values

t = np.arange(a,b+dt,dt)

#create space for the y-values

y = np.zeros(n+1)

#create a list of indices

i = np.arange(1,n+1,1)

#we know the inital value of y to be 1

y[0] = 1

for k in i:

#compute the Euler approximation

#use the right hand side function to get the slope of the tangent line

m = rhs(t[k-1],y[k-1])

#get the next approximation

y[k] = m*dt+y[k-1]

#plot the solution

plt.plot(t,y)

plt.autoscale(enable=True, axis='x', tight=True)

plt.xlabel('t')

plt.ylabel('y')

plt.grid()

plt.show()

--

Euler's method for systems

import numpy as np

import matplotlib.pyplot as plt

A.4 Chapter 5 code � 225

def rhs(t,yvec):

dy = np.zeros(2)

dy[0] = yvec[1]**2-yvec[0]

dy[1] = (yvec[1]-yvec[0])/2

return dy

#initial t value

a = 0

#final t value

b = 20

#number of intervals

n = 500

#delta t

dt = (b-a)/n

#create a vector of t-values

t = np.arange(a,b+dt,dt)

#create space for the y-values

y = np.zeros((n+1,2))

#create a list of indices

i = np.arange(1,n+1,1)

y[0,0] = 1.5

y[0,1] = 1

for k in i:

#compute the Euler approximation

#use the right hand side function to get the slope of the tangent line

dy = rhs(t[k-1],y[k-1,:])

#get the next approximation

y[k,:] = dy*dt+y[k-1,:]

#plot the approximations

plt.plot(t,y[:,0])

plt.plot(t,y[:,1])

#plot true solution

plt.autoscale(enable=True, axis='x', tight=True)

plt.xlabel('t')

plt.grid()

plt.legend(['x(t)','y(t)'])

plt.show()

--

phase portrait

plt.figure()

226 � A Python code

plt.plot(y[:,0],y[:,1])

head = 1

tail = 0

w = 55

dx = y[head,0]-y[tail,0]

dy = y[head,1]-y[tail,1]

plt.arrow(y[head,0],y[head,1],dx,dy,width=.004)

numarrows = int((n-head)/w)

for i in range(4):

head = head + w

tail = tail + w

dx = y[head,0]-y[tail,0]

dy = y[head,1]-y[tail,1]

plt.arrow(y[head,0],y[head,1],dx,dy,width=.004)

plt.xlabel('x(t)')

plt.ylabel('y(t)')

plt.title('Phase Portrait: IC = (1.5,1)')

plt.grid()

plt.show()

--

Euler method for second order equation

import numpy as np

import matplotlib.pyplot as plt

def rhs(t,yvec):

mu = 1

dy = np.zeros(2)

dy[0] = mu*(1-yvec[1]**2)*yvec[0]-yvec[1]

dy[1] = yvec[0]

return dy

#initial t value

a = 0

#final t value

b = 20

#number of intervals

n = 500

#delta t

dt = (b-a)/n

#create a vector of t-values

A.4 Chapter 5 code � 227

t = np.arange(a,b+dt,dt)

#create space for the y-values

y = np.zeros((n+1,2))

#create a list of indices

i = np.arange(1,n+1,1)

y[0,0] = 1

y[0,1] = 1

for k in i:

#compute the Euler approximation

#use the right hand side function to get the slope of the tangent line

dy = rhs(t[k-1],y[k-1,:])

#get the next approximation

y[k,:] = dy*dt+y[k-1,:]

#plot the approximations

plt.plot(t,y[:,0])

plt.plot(t,y[:,1])

#plot true solution

plt.autoscale(enable=True, axis='x', tight=True)

plt.xlabel('t')

plt.grid()

plt.legend(['x(t)','y(t)'])

plt.figure()

plt.plot(y[:,0],y[:,1])

head = 1

tail = 0

w = int(n/12)

dx = y[head,0]-y[tail,0]

dy = y[head,1]-y[tail,1]

plt.arrow(y[head,0],y[head,1],dx,dy,width=.01)

numarrows = int((n-head)/w)

for i in range(4):

head = head + w

tail = tail + w

dx = y[head,0]-y[tail,0]

dy = y[head,1]-y[tail,1]

plt.arrow(y[head,0],y[head,1],dx,dy,width=.025)

plt.xlabel('x(t)')

plt.ylabel('y(t)')

plt.title('Phase Portrait: IC = (1,1)')

plt.grid()

plt.show()

==

228 � A Python code

interpolation

import numpy as np

x is the new input value, t is the vector of x-values

y is the vector of y-values

def interp(x,t,y):

n = len(t)

startindex = 0

find the indices between which the new x value lies

while t[startindex]<=x:

startindex = startindex + 1

startindex = startindex - 1

endindex = startindex +1

slope for interpolation

m = (y[endindex]-y[startindex])/(t[endindex]-t[startindex])

compute approximation using point slope form

y_of_x = m*(x-t[startindex])+y[startindex]

return y_of_x

t = np.array([0.000, 0.040, 0.080, 0.120, 0.160,\

0.200, 0.240, 0.280, 0.320, 0.360])

y = np.array([1.000, 1.040, 1.078, 1.115, 1.150,\

1.182, 1.212, 1.240, 1.266, 1.289])

#approximate y(0.0732)

x = 0.0732

yinterp = interp(x,t,y)

print('y({}) = {:.5f}'.format(x,yinterp))

A.5 Chapter 6 code

file handling

climate_file = open('brazilclimate.csv','r')

count = len(climate_file.readlines())

print('Number of lines in the file is',count)

climate_file.close()

--

splitting strings and cleaning data

A.5 Chapter 6 code � 229

climate_file = open('smallclimate.csv','r')

#we know the first line of this file contains headers of the columns

record = climate_file.readline()

#set up a counter to know what line we are on

count = 1

#set up a counter to count number of nonzero values

num_non0 = 0

read the second line (which is the first line containing actual data)

record = climate_file.readline()

#read lines until you reach a blank line, then assume you are done

while record != "":

record = climate_file.readline() #move to bottom of the loop

#split the record into its separate columns

record_vector = record.split(',')

#prcp is the 15th column. in Python, that is index 14

#convert from a string to value

if record_vector[14] == '':

prcp = 0

else:

prcp = float(record_vector[14])

if prcp != 0.0:

num_non0 = num_non0 + 1

print('prcp = :.4f in record #.'.format(prcp,count))

count = count + 1

record = climate_file.readline()

print('The number of nonzero values is .'.format(num_non0))

print('There were records processed.'.format(count))

climate_file.close()

--

data cleaning

open the climate file for reading

climate_file = open('brazilclimate.csv','r')

open the new (output) file for writing. If the file does not exist,

it is created.

temperature_file = open('tempstudy.csv','w')

write the headers to the output file. the \n is a next line indicator

headerline = 'ID,lat,long,year,month,day,hour,precip,temp\n'

temperature_file.write(headerline)

we know the first line of the input file contains headers of the columns

record = climate_file.readline()

230 � A Python code

set up a counter to know what line of the input file we are on

count = 1

set up counters to count the number of records that are corrected and

the number of records that are discarded

corrected_recs = 0

discarded_recs = 0

get the first non-header line (this is the first line with actual data)

record = climate_file.readline()

read lines until you reach a blank line, then assume you are done

while record != "":

initialize a variable (discard flag) to indicate whether

the record should be discarded

0 = keep the record (write to the new file),

-1 = discard the record (do not write to the new file)

discarded records are not deleted from original file

initialize the flag to "keep"

discardflag = 0

this just lets me know that the program is progressing through the file

by printing to the screen every millionth record

if count%1000000 == 0:

print(count)

split the input record into its separate columns

record_vector = record.split(',')

check station ID, year, month, temperature for blanks the \ allows us to

continue the code line to the next line for readability

if record_vector[0] == '' or record_vector[10] == '' \

or record_vector[11] == '' or record_vector[21] == '':

if any of them is blank, set the discard flag and increment the

the discarded records counter

discardflag = -1

discarded_recs = discarded_recs + 1

see if there are any blank lat/long values that have a station id

if record_vector[3] == '' or record_vector[3]=='':

if record_vector[0] != '':

print('need to look up station id')

else:

if the lat and long and id are all blank, discard the record

discardflag = -1

now replace blank precip values with 0. only need to do this in the new

file

if record_vector[14] == '':

record_vector[14] = '0'

A.5 Chapter 6 code � 231

increment corrected records counter

corrected_recs = corrected_recs + 1

build and write the record to the output file

if discardflag == 0:

temp_record holds the record to be written

the + will just concatenate the strings. the \ is a line

continuation character

we are building a string with all the desired

fields separated by commas

temp_record = record_vector[0]+','+record_vector[3]+','\

+record_vector[4]+','+record_vector[10]+','+record_vector[11]+','\

+record_vector[12]+','+record_vector[13]+','+record_vector[14]+','\

+record_vector[21]+'\n'

write to the output file

temperature_file.write(temp_record)

read the next line of input

record = climate_file.readline()

count = count+1

go back to the top of the loop

the loop is complete

close the files

climate_file.close()

temperature_file.close()

print the counts

print('Number of discarded records:',discarded_recs)

print('Number of corrected records:',corrected_recs)

--

computing averages of categories

import numpy as np

import matplotlib.pyplot as plt

np.set_printoptions(precision=3,suppress=1,floatmode='fixed')

open the temp study file for reading

temperature_file = open('tempstudy.csv','r')

we know the first line of this file contains headers of the columns

record = temperature_file.readline()

set up a matrix to hold what we need

we need a row for each month and columns for

total precip, total temperature, and number of observations

tempsummary = np.zeros((12,3))

read lines until you reach a blank line, then assume you are done

232 � A Python code

temprec = temperature_file.readline()

count = 0

while temprec != '':

if count%1000000 == 0:

print(count)

split the record into fields

tempvec = temprec.split(',')

get the month, precipitation, and temperature for this observation

mth = int(tempvec[4])

precip = float(tempvec[7])

temp = float(tempvec[8])

tempsummary[mth-1,0] = tempsummary[mth-1,0] + precip

tempsummary[mth-1,1] = tempsummary[mth-1,1] + temp

tempsummary[mth-1,2] = tempsummary[mth-1,2] + 1

temprec = temperature_file.readline()

count = count + 1

temperature_file.close()

tempsummary[:,0] = tempsummary[:,0]/tempsummary[:,2]

tempsummary[:,1] = tempsummary[:,1]/tempsummary[:,2]

print(tempsummary)

graph results

m = np.arange(1,13,1)

plt.plot(m,tempsummary[:,0])

plt.xlabel('month')

plt.ylabel('precip')

plt.grid()

plt.show()

write info to file

tempsum_file = open('tempsumm.csv','w')

for i in range(12):

summrec = str(tempsummary[i,0])+','+str(tempsummary[i,1])+',\

'+str(tempsummary[i,2])+'\n'

tempsum_file.write(summrec)

tempsum_file.close()

--

use summary file to produce graphs

import numpy as np

import matplotlib.pyplot as plt

np.set_printoptions(precision=3,suppress=1,floatmode='fixed')

tempsumm_file = open('tempsumm.csv','r')

set up a matrix to hold what we need

A.5 Chapter 6 code � 233

we need a row for each month and columns for

total preip, total temperature, and number of observations

tempsummary = np.zeros((12,3))

read each line and fill the matrix

for i in range(12):

summrec = tempsumm_file.readline()

summvec = summrec.split(',')

for j in range(3):

tempsummary[i,j] = summvec[j]

m = np.arange(1,13,1) # a list of month values

plt.plot(m,tempsummary[:,0])

plt.xlabel('month')

plt.ylabel('precip')

plt.grid()

plt.show()

--

compute five number summary

use genfromtxt to read file

import numpy as np

np.set_printoptions(precision=3,suppress=1,floatmode='maxprec')

tempvals = np.genfromtxt('tempstudy.csv',dtype=float,delimiter=',',\

usecols=(8), skip_header=True)

print('The number of values in tempvals is {}.'.format(len(tempvals)))

M = np.median(tempvals)

Q1 = np.quantile(tempvals, .25)

Q3 = np.quantile(tempvals, .75)

min = np.min(tempvals)

max = np.max(tempvals)

R = max - min

IQR = Q3-Q1

print('Minimum = {:.2f}'.format(min))

print('Q1 = {:.2f}'.format(Q1))

print('Median = {:.2f}'.format(M))

print('Q3 = {:.2f}'.format(Q3))

print('Maximum = {:.2f}'.format(max))

print('Range = {:.2f}'.format(R))

print('IQR = {:.2f}'.format(IQR))

compute the mean and standard deviation

xbar = np.mean(tempvals)

print('Mean = {:.2f}'.format(xbar))

sd = np.std(tempvals,ddof=1)

234 � A Python code

print('Std.Dev.= {:.2f}'.format(sd))

create histograms

plt.hist(tempvals, density=1,edgecolor="black")

plt.xlabel('Temperature')

plt.ylabel('Relative Frequency')

plt.show()

==

compute Reimann sums

import numpy as np

import matplotlib.pyplot as plt

np.set_printoptions(precision=3,suppress=1,floatmode='maxprec')

define the function

def stdnorm(x):

y = 1 / np.sqrt(2 * np.pi) * np.exp(-x ** 2 / 2)

return y

get the number of rectangles

n = int(input('Enter the number of rectangles: '))

limits of integration

a = -2.3

b = 1.2

determine Delta x

dx = (b-a)/n

create the partiion of x values

x = np.arange(a,b+dx,dx)

get the y values (heights of the rectangles

y = stdnorm(x)

Compute the areas of each rectangle

A = y[1:]*dx

Sum the areas

R = np.sum(A)

print('Riemann Sum is:',R)

--

import numpy as np

import matplotlib.pyplot as plt

np.set_printoptions(precision=3,suppress=1,floatmode='maxprec')

A.5 Chapter 6 code � 235

use the trapezoidal rule to approximate the integral of f(x) from a to b

we call the the function traprule (trapezoidal rule)

def traprule(f,a,b,n):

dx = (b-a)/n

x = np.arange(a,b+dx,dx)

y = f(x)

get the terms in the parentheses

multiply all but the first and last y-values by 2

y[1:n] = 2*y[1:n]

now multiply all terms by (delta x)/2

y = (dx/2)*y

sum the the areas

T = np.sum(y)

return the value (T is the approximation to the integral)

return T

integrate the standard normal density function from -2.3 to 1.2 using

50 subintervals.

IntegralVal = traprule(stdnorm,-2.3,1.2,50)

print('The approximate value of the integral is',IntegralVal)

==

confidence intervals with sigma known

import scipy.stats as stats

import numpy as np

c = stats.norm.ppf(q=0.025,loc=0,scale=1.0)

d = stats.norm.ppf(q=0.975,loc=0,scale=1.0)

print('c =',c)

print('d =',d)

xbar = 67.2

sig = 1.75

a = xbar - d*sig/np.sqrt(100)

b = xbar - c*sig/np.sqrt(100)

print('a =',a)

print('b =',b)

--

confidence interval using t distribution

import numpy as np

import scipy.stats as stats

236 � A Python code

x = np.array([65.654, 67.263, 67.186, 64.808, 66.137, 67.487, 67.214, 72.155,

69.201, 68.274, 67.610, 70.088, 66.167, 68.535, 66.216, 67.382, 66.867, 68.633,

65.349, 69.423, 67.729, 67.250, 65.304, 68.566, 62.739, 65.567, 69.029, 67.769,

62.608, 64.695, 66.873, 64.753, 70.209, 65.162, 66.258, 69.359, 69.038, 68.135,

66.837, 67.007, 69.321, 67.853, 69.662, 65.779, 65.295, 66.136, 69.085, 69.504,

67.754, 65.131, 66.470, 67.661, 68.761, 65.610, 67.970, 69.646, 69.795, 64.861,

66.320, 67.531, 65.426, 66.926, 70.485, 67.880, 66.498, 68.265, 65.429, 68.368,

66.464, 67.190, 70.934, 68.399, 68.986, 68.162, 65.521, 66.383, 66.250, 63.739,

67.099, 63.716, 66.573, 62.929, 67.399, 66.959, 66.416, 68.436, 71.919, 66.320,

67.314, 66.979, 67.733, 66.684, 67.074, 67.174, 68.305, 65.056, 67.582, 67.737,

64.178, 70.572])

n = len(x)

xbar = np.mean(x)

print('xbar =',xbar)

s = np.std(x,ddof=1)

print('s =',s)

c = stats.t.ppf(0.025,n-1)

d = stats.t.ppf(0.975,n-1)

print('c=',c)

print('d=',d)

a = xbar - d*s/np.sqrt(n)

b = xbar - c*s/np.sqrt(n)

print('a =',a)

print('b =',b)

--

confidence interval using Python built-in methods

import numpy as np

import scipy.stats as stats

x = np.array([65.654, 67.263, 67.186, 64.808, 66.137, 67.487, 67.214, 72.155,

69.201, 68.274, 67.610, 70.088, 66.167, 68.535, 66.216, 67.382, 66.867, 68.633,

65.349, 69.423, 67.729, 67.250, 65.304, 68.566, 62.739, 65.567, 69.029, 67.769,

62.608, 64.695, 66.873, 64.753, 70.209, 65.162, 66.258, 69.359, 69.038, 68.135,

66.837, 67.007, 69.321, 67.853, 69.662, 65.779, 65.295, 66.136, 69.085, 69.504,

67.754, 65.131, 66.470, 67.661, 68.761, 65.610, 67.970, 69.646, 69.795, 64.861,

66.320, 67.531, 65.426, 66.926, 70.485, 67.880, 66.498, 68.265, 65.429, 68.368,

66.464, 67.190, 70.934, 68.399, 68.986, 68.162, 65.521, 66.383, 66.250, 63.739,

67.099, 63.716, 66.573, 62.929, 67.399, 66.959, 66.416, 68.436, 71.919, 66.320,

67.314, 66.979, 67.733, 66.684, 67.074, 67.174, 68.305, 65.056, 67.582, 67.737,

64.178, 70.572])

A.5 Chapter 6 code � 237

n = len(x)

xbar = np.mean(x)

s = np.std(x,ddof=1)

print('sample mean =',xbar)

print('sample standard deviation =',np.std(x,ddof=1))

print('standard dev of sample mean =',s/np.sqrt(n))

a,b = stats.t.interval(alpha=0.95, df=n-1, loc=xbar, scale=s/np.sqrt(n))

print('left end of interval =',a)

print('right end of interval =',b)

==

hypothesis tests

import numpy as np

import matplotlib.pyplot as plt

np.set_printoptions(precision=3,suppress=1,floatmode='maxprec')

x=np.array([2.46,2.2,2.09,2.84,2.82,2.19,2.76,2.72,2.98,2.22,

2.74,2.28,2.47,2.13,2.81,2.98,2.01,2.67,2.34,2.62])

xbar = np.mean(x)

s = np.std(x,ddof=1)

print('Sample mean of GPAs: {:.3f}'.format(xbar))

print('Sample standard deviation: {:.3f}'.format(s))

n = len(x) #number of oberservations in the list

get the cumulative distribution for xbar

cdf = stats.t.cdf(xbar,df=n-1,loc=2.35,scale=s/np.sqrt(n))

print('cdf(2.516) = {:.4f}'.format(cdf))

--

hypothesis test using critical value

import numpy as np

import matplotlib.pyplot as plt

np.set_printoptions(precision=3,suppress=1,floatmode='maxprec')

x=np.array([2.46,2.2,2.09,2.84,2.82,2.19,2.76,2.72,2.98,2.22,

2.74,2.28,2.47,2.13,2.81,2.98,2.01,2.67,2.34,2.62])

xbar = np.mean(x)

s = np.std(x,ddof=1)

print('Sample mean of GPAs: {:.3f}'.format(xbar))

print('Sample standard deviation: {:.3f}'.format(s))

n = len(x) #number of oberservations in the list

GPA_crit = stats.t.ppf(0.95,df=n-1,loc=2.35,scale=s/np.sqrt(n))

print('The critical value for GPA is {:.3f}.'.format(GPA_crit))

238 � A Python code

==

comparing two means

import numpy as np

np.set_printoptions(precision=3,suppress=1,floatmode='maxprec')

import scipy.stats as stats

A = [2.61,-4.29,-2.5,2.34,-4.31,-4.37,2.01,0.16,1.04,3.13]

B = [0.62,-4.03,-5.32,-6.92,-0.84,-4.88,-7.83,-4.84,2.07,-4.88]

nA = len(A)

nB = len(B)

xbarA = np.mean(A)

sdA = np.std(A,ddof=1)

xbarB = np.mean(B)

sdB = np.std(B,ddof=1)

xdiff = xbarA - xbarB

pooledVar = ((nA-1)*sdA**2+(nB-1)*sdB**2)/(nA+nB-2)

sp = np.sqrt(pooledVar)

dofp = nA+nB-2

teststat = xdiff/(sp*np.sqrt(1/nA+1/nB))

print('test statistic:',teststat)

mu_A < mu_B (group A lost more weight than B)

pvalL = stats.t.cdf(teststat,dofp)

mu_A > mu_B (group A lost less weight than B)

pvalG = 1-stats.t.cdf(teststat,dofp)

pval = 2*np.min([pvalL,pvalG])

print('The p value is {:.3f}.'.format(pval))

--

hypothesis test using built-in methods

import numpy as np

np.set_printoptions(precision=3,suppress=1,floatmode='maxprec')

import scipy.stats as stats

A = [2.61,-4.29,-2.5,2.34,-4.31,-4.37,2.01,0.16,1.04,3.13]

B = [0.62,-4.03,-5.32,-6.92,-0.84,-4.88,-7.83,-4.84,2.07,-4.88]

print(stats.ttest_ind(a=A, b=B, equal_var=True))

--

paired t test

import numpy as np

np.set_printoptions(precision=3,suppress=1,floatmode='maxprec')

A.5 Chapter 6 code � 239

import scipy.stats as stats

A = [152.61, 145.71, 147.5, 152.34, 145.69,\

145.63, 152.01, 150.16, 151.04, 153.13]

B = [149.62, 144.97, 143.68, 142.08, 148.16,\

144.12, 141.17, 144.16, 151.07, 144.12]

xbarA = np.mean(A)

print('Pre-diet sample mean: {:.4f}'.format(xbarA))

xbarB = np.mean(B)

print('Post-diet sample mean: {:.4f}'.format(xbarB))

t,p = stats.ttest_rel(a=A, b=B)

print('t-stat = {:.4f}, p-value = {:.4f}'.format(t,p))

print('')

print('Assuming Ha: mu1 != mu2')

print('p value = {:.4f}'.format(p))

print('')

diffofmeans = xbarA - xbarB

if diffofmeans>0:

print('Assuming Ha: mu1 > mu2')

print('p value = {:.4f}'.format(0.5*p))

else:

print('Assuming Ha: mu1 < mu2')

print('p value = {:.4f}'.format(0.5*p))

==

comparing more than two means, one-way ANOVA

import numpy as np

load the data from the file

studydata = np.genfromtxt('studydata.csv', delimiter=',',skip_header=1)

determine the number of rows and columns in the data

each column is a group

this code assumes that there are the same number of observations in each

group

m,n = np.shape(studydata)

compute the sample variance s^2 for each group

vars = np.zeros(n)

for i in range(n):

vars[i] = np.var(studydata[:, i], ddof=1)

240 � A Python code

compute MSE

SSE = np.sum((m-1)*vars)

print('SSE: {:.4f}'.format(SSE))

MSE = SSE/(m*n-n)

print('MSE (within groups): {:.4f}'.format(MSE))

compute MST

get the means for each group

means = np.zeros(n)

for i in range(n):

means[i] = np.mean(studydata[:, i])

#get the overall mean

xbar = np.mean(studydata)

compute MST

SST = np.sum(m*(means - xbar)**2)

print('SST: {:.4f}'.format(SST))

MST = SST/(n-1)

print('MST (between groups): {:.4f}'.format(MST))

Compute the F statistic

F = MST/MSE

print('F statistic: {:.4f}'.format(F))

compute the p-value

p = 1-stats.f.cdf(F,n-1,m*n-n)

print('p-value: {:.5f}'.format(p))

A.6 Chapter 7 code

linear regression

import numpy as np

import matplotlib.pyplot as plt

#open the data file

pov_file = open('poverty.txt','r')

#see how many lines are in the file

count = len(pov_file.readlines())

pov_file.close()

#since the first line contains headers, there is one less actual

#lines of data

A.6 Chapter 7 code � 241

count = count-1

#set up some storage space for the data

x = np.zeros((count,1))

y = np.zeros((count,1))

#now we will reopen the file and read it line by line

#the first line of this file is a header

pov_file = open('poverty.txt','r')

headers = pov_file.readline()

#i printed the headers just in case i wanted to reference them

print(headers)

#now read the rest of the file and store the x's and the y's

for i in range(count):

#get the next line and store it in l

l = pov_file.readline()

#split the line into separate fields (assumes space delimited)

fields = l.split()

#the second field (which will have an index of 1) is the poverty percent.

#this is our x value

x[i] = float(fields[1])

#the third field holds the births that we want. store them in y

y[i] = float(fields[2])

#close the file

pov_file.close()

#our variables are m and b. we need the matrix of coefficients

A = np.zeros((2,2))

#first row of coefficients

A[0,0] = np.sum(x*x)

A[0,1] = np.sum(x)

#second row of coefficients

A[1,0] = np.sum(x)

#the sum of 1 is equal the number of terms in the sum

A[1,1] = len(x)

#now we need the right hand side

B = np.zeros(2)

B[0] = np.sum(x*y)

B[1] = np.sum(y)

print('A=',A)

print('B=',B)

#now solve the system X = [m b]

X = np.linalg.solve(A,B)

242 � A Python code

print('X=',X)

#plot the regression line

m = X[0]

b = X[1]

yhat = m*x+b

plt.plot(x,y,'.')

plt.plot(x,yhat)

plt.legend(['data','regression line'])

plt.show()

compute correlation

SSR = np.sum((yhat-ybar)*(yhat-ybar))

SST = np.sum((y-ybar)*(y-ybar))

print('SSR=',SSR)

print('SST=',SST)

R2 = SSR/SST

print('R squared=',R2)

print('r=',np.sqrt(R2))

--

multiple regression

import numpy as np

#open the data file

pov_file = open('poverty.txt','r')

#see how many lines are in the file

count = len(pov_file.readlines())

pov_file.close()

#since the first line contains headers, there is one less actual

#lines of data

count = count-1

#set up some storage space for the data

A = np.ones((count,3))

y = np.zeros((count,1))

#now we will reopen the file and read it line by line

#the first line of this file is a header

pov_file = open('poverty.txt','r')

headers = pov_file.readline()

#i printed the headers just in case i wanted to reference them

print(headers)

#now read the rest of the file

A.6 Chapter 7 code � 243

for i in range(count):

#get the next line

l = pov_file.readline()

#split the line into separate fields

fields = l.split()

#the second field is the poverty percent

A[i,1] = float(fields[1])

#the fifth field is the crime rate

A[i,2] = float(fields[4])

#the third field holds the births that we want. store them in y

y[i] = float(fields[2])

#close the file

pov_file.close()

#multiply both sides by A_transpose

A_trans = A.transpose()

C = np.dot(A_trans,A)

#right hand side

RHS = np.dot(A_trans, y)

#now solve the system

X = np.linalg.solve(C,RHS)

print('X=',X)

print('yhat = {:.4f} + {:.4f}(poverty) + {:.4f}(crime)'.\

format(X[0,0],X[1,0],X[2,0]))

ybar = np.average(y)

yhat = np.dot(A,X)

SSR = np.sum((yhat[:,0]-ybar)*(yhat[:,0]-ybar))

SST = np.sum((y-ybar)*(y-ybar))

print('SSR=',SSR)

print('SST=',SST)

R2 = SSR/SST

print('R squared=',R2)

print('r=',np.sqrt(R2))

compute coefficient of determination

ybar = np.average(y)

yhat = np.dot(A,X)

SSR = np.sum((yhat[:,0]-ybar)*(yhat[:,0]-ybar))

SST = np.sum((y-ybar)*(y-ybar))

print('SSR =',SSR)

244 � A Python code

print('SST =',SST)

R2 = SSR/SST

print('R squared =',R2)

--

multiple regression with built-in methods

import numpy as np

from sklearn.linear_model import LinearRegression

load the poverty percent into column 1 of A and the crime rate in column 2

we do not need a column of ones because the method will do that for us

A = np.genfromtxt('poverty.txt',dtype=float,usecols=(1,4), skip_header=True)

load the birth rates into Y

Y = np.genfromtxt('poverty.txt',dtype=float,usecols=(2), skip_header=True)

now the data matrix A and the actual y values Y are complete

fit the regression line and store it.

we are storing it in a variable named birthmodel of type LinearRegression

birthmodel = LinearRegression()

find the parameters for the regression line

birthmodel.fit(A, Y)

get the coefficient of determination (R-squared_

R2 = birthmodel.score(A, Y)

print('R squared =',R2)

variables of type LinearRegression have components called

coef_ and intercept_ that store the coefficients and intercept of

the model.

coeff = birthmodel.coef_

intercept = birthmodel.intercept_

#coeff = np.append(coeff,reg.intercept_)

#print(coeff)

print('yhat = ({:.4f})poverty + ({:.4f})crime + {:.4f}'\

.format(coeff[0],coeff[1],intercept))

==

logistic regression

import numpy as np

import matplotlib.pyplot as plt

#load the required tools for logistic regression

from sklearn.linear_model import LogisticRegression

from sklearn import metrics

A.6 Chapter 7 code � 245

#create space for the height values. This must be a matrix, even

#if there is only one variable.

x = np.zeros((50,1))

x[:,0] = np.array([78.29, 82.28, 81.36, 80.27, 76.48, 78.33, 82.05, 80.71,

76.02, 79.44, 70.87, 75.32, 79.46, 74.52, 77.80, 74.90, 78.97, 81.12,

83.04, 78.59, 75.73, 77.59, 75.69, 78.72, 76.32,74.22, 71.20, 73.85,

74.20, 74.35, 68.99, 69.45, 70.77, 76.87, 73.29, 70.61, 75.85, 73.80,

71.01, 72.65, 76.80, 74.39, 67.63, 70.95, 69.17, 69.94, 71.79, 72.04,

70.69, 68.40])

#create storage space for status values

#this initalizes with 1's in all the values

y = np.ones(50)

#the second 25 values in the data are not basketball players

#so the status values should be replaced with 0's

y[25:50] = np.zeros(25)

#establish a regression object

BasketballRegr = LogisticRegression()

#perform the regression to fit the model

BasketballRegr.fit(x, y)

#find the percentage of correct classifications

score = BasketballRegr.score(x, y)

print('Percentage of correct predictions:',score*100)

#calculate the predicted values

yhat = BasketballRegr.predict(x)

#print the confusion matrix

print('Confusion Matrix')

cm = metrics.confusion_matrix(y, yhat)

print(cm)

get parameters of the model

coeff = BasketballRegr.coef_

c_1 = coeff[0]

c_0 = BasketballRegr.intercept_

print('c_0 = ',c_0)

print('c_1 = ',c_1)

==

246 � A Python code

use imshow

import numpy as np

import matplotlib.pyplot as plt

#plot a sample image

D = np.matrix([[0., 0., 0., 2., 13., 0., 0., 0.],

[0., 0., 0., 8., 15., 0., 0., 0.],

[0., 0., 5., 16., 5., 2., 0., 0.],

[0., 0., 15., 12., 1., 16., 4., 0.],

[0., 4., 16., 2., 9., 16., 8., 0.],

[0., 0., 10., 14., 16., 16., 4., 0.],

[0., 0., 0., 0., 13., 8., 0., 0.],

[0., 0., 0., 0., 13., 6., 0., 0.]])

plt.imshow(D,cmap = plt.cm.gray)

plt.show()

--

digit recognition logistic regression

from sklearn.model_selection import train_test_split

from sklearn.datasets import load_digits

from sklearn.linear_model import LogisticRegression

from sklearn import preprocessing

from sklearn import metrics

#get the data for all the images

digits = load_digits()

#scales the data to help with numeric computation

data_scaled = preprocessing.scale(digits.data)

Print to show there are 1797 images (8 by 8 images for a dimensionality

of 64)

print('Image Data Shape' , digits.data.shape)

Print to show there are 1797 labels (integers from 0--9)

print('Label Data Shape', digits.target.shape)

x_train, x_test, y_train, y_test = train_test_split(data_scaled,\

digits.target, test_size=0.25, random_state=0)

all parameters not specified are set to their defaults

logisticRegr = LogisticRegression(max_iter=100)

A.6 Chapter 7 code � 247

#logisticRegr = LogisticRegression()

#do the logisitic regression

logisticRegr.fit(x_train, y_train)

Use score method to get accuracy of model

score = logisticRegr.score(x_test, y_test)

print('Percent correct =',score)

predictions = logisticRegr.predict(x_test)

print('Number of predictions =',len(predictions))

cm = metrics.confusion_matrix(y_test, predictions)

print(cm)

==

neural network

print('importing packages')

import numpy as np

from sklearn.model_selection import train_test_split

import matplotlib.pyplot as plt

from sklearn.preprocessing import StandardScaler

from sklearn import metrics

from sklearn.neural_network import MLPClassifier

print('packages imported')

print('reading data')

winedata = np.genfromtxt('wine.csv', delimiter=',')

m,n = winedata.shape

print('winedata dimensions:',m,n)

x = winedata[:,1:]

y = winedata[:,0]

x_train, x_test, y_train, y_test = \

train_test_split(x, y, test_size=0.25,random_state=0)

print('x_train.shape',x_train.shape)

print('y_train.shape',y_train.shape)

print('x_test.shape',x_test.shape)

print('y_test.shape',y_test.shape)

scale the data

scaler = StandardScaler()

Fit only to the training data

scaler.fit(x_train)

Now apply the transformations to the data:

x_train = scaler.transform(x_train)

x_test = scaler.transform(x_test)

248 � A Python code

fit the network

print('fit to neural net')

winenetwork = MLPClassifier(hidden_layer_sizes=(10),max_iter=1000)

winenetwork.fit(x_train,y_train)

predict and score

predictions = winenetwork.predict(x_test)

proport_correct = winenetwork.score(x_test, y_test)

print('proportion of correct predictions',proport_correct)

get the confusion matrix

cm = metrics.confusion_matrix(y_test, predictions)

print('Confusion Matrix:')

print(cm)

classification report

print(metrics.classification_report(y_test, predictions))

pretty confusion matrix

rowsums = np.sum(cm,0)

scaledcm = cm/rowsums

plt.imshow(scaledcm,cmap ='Blues',alpha=0.75)

plt.xticks(np.arange(0,3,1),['1','2','3'])

plt.yticks(np.arange(0,3,1),['1','2','3'])

for i in range(3):

for j in range(3):

plt.text(i-.1,j+.05,str(cm[i,j]))

plt.show()

B Solutions

Chapter 2. The basic operations in Python

1.
1a

print('Answer to Chapter 2, Number 1a')

print((4.1**2-4**2)/0.1)

1b

print('Answer to Chapter 2, Number 1b')

print((3+2)**3*(5-1)**4)

Output
Answer to Chapter 2, Number 1a

8.099999999999987

Answer to Chapter 2, Number 1b

32000

2.
2

print('Answer to Chapter 2, Number 2')

print('The radius is {:.2f} and the volume is {:.3f}.'\

.format(4.23, 4/3*3.14*4.23**3))

Output
Answer to Chapter 2, Number 2

The radius is 4.23 and the volume is 316.876.

Chapter 3. Functions

1.
1.

#print a table of trig values

import numpy

print("angle |{:>5} |{:>5} |{:>5} |{:>5} |{:>5} |{:>5}\

|{:>5} |{:>5} |{:>5} |".format(\

'0','\u03C0/6','\u03C0/4','\u03C0/3',\

'\u03C0/2','2\u03C0/3','3\u03C0/4','5\u03C0/6','\u03C0'))

print('--\

https://doi.org/10.1515/9783110776645-009

https://doi.org/\global \c@doi \c@pseudochapter \relax \global \advance \c@doi \c@parttext \relax 10.1515/9783110776645-008

250 � B Solutions

-----------------')

print("cos(x)|{:.4f}|{:.4f}|{:.4f}|{:.4f}|{:.4f}|{:.3f}|{:.3f}|\

{:.3f}|{:.3f}|".format(numpy.cos(0),numpy.cos(numpy.pi/6),\

numpy.cos(numpy.pi/4),numpy.cos(numpy.pi/3),\

numpy.cos(numpy.pi/2),numpy.cos(2*numpy.pi/3),\

numpy.cos(3*numpy.pi/4),numpy.cos(5*numpy.pi/6),\

numpy.cos(numpy.pi)))

print("sin(x)|{:.4f}|{:.4f}|{:.4f}|{:.4f}|{:.4f}|{:.4f}\

|{:.4f}|{:.4f}|{:.4f}|".format(numpy.sin(0),\

numpy.sin(numpy.pi/6),numpy.sin(numpy.pi/4),\

numpy.sin(numpy.pi/3),numpy.sin(numpy.pi/2),\

numpy.sin(2*numpy.pi/3),numpy.sin(3*numpy.pi/4),\

numpy.sin(5*numpy.pi/63), numpy.sin(numpy.pi)))

print("tan(x)|{:.4f}|{:.4f}|{:.4f}|{:.4f}|undef |{:.3f}\

|{:.3f}|{:.3f}|{:.3f}|".format(numpy.tan(0),\

numpy.tan(numpy.pi/6),numpy.tan(numpy.pi/4),\

numpy.tan(numpy.pi/3),\

numpy.tan(2*numpy.pi/3),numpy.tan(3*numpy.pi/4),\

numpy.tan(5*numpy.pi/6), numpy.tan(numpy.pi)))

Output
angle | 0 | π/6 | π/4 | π/3 | π/2 | 2π/3| 3π/4 | 5π/6 | π |

cos(x)|1.0000|0.8660|0.7071|0.5000|0.0000|-0.500|-0.707|-0.866|-1.000|

sin(x)|0.0000|0.5000|0.7071|0.8660|1.0000|0.8660|0.7071|0.2468|0.0000|

tan(x)|0.0000|0.5774|1.0000|1.7321|undef |-1.732|-1.000|-0.577|-0.000|

Process finished with exit code 0

2.
2.

import numpy

width = 2

length = numpy.sqrt(5)

area = width*length

print('The area of a box with width {:.2f} and length {:.2f}\

is {:.2f}.'.format(width, length, area))

Output
The area of a box with width 2.00 and length 2.24 is 4.47.

Chapter 3. Functions � 251

Process finished with exit code 0

3.
3.

firstname = 'Albert'

lastname = 'Einstein'

fullname = lastname+', '+firstname

print('firstname:',firstname)

print('lastname:',lastname)

print('fullname:',fullname)

Output
firstname: Albert

lastname: Einstein

fullname: Einstein, Albert

Process finished with exit code 0

4.
4.

basetext = 'Force is equal to the product of mass and acceleration.'

m = basetext.find('mass')

print(m)

print(basetext[m:m+4])

n = basetext.find('product')

print(basetext[n:])

Output
33

mass

product of mass and acceleration.

Process finished with exit code 0

5.
5. a-c

def height(t):

y = -16*t**2+3*t +100

252 � B Solutions

return y

y2 = height(2)

print('The value of height at t=2 is {:.3f}.'.format(y2))

Output
The value of height at t=2 is 42.000.

Process finished with exit code 0

6.
6.

def bmi(height,weight):

height in m and weight in kg

b = weight/height**2

return b

h = 1.7

w = 68

b = bmi(h,w)

print('A person who is {:.1f} m tall and weighs {} kg has a bmi\

of {:.2f}.'.format(h,w,b))

Output
A person who is 1.7 m tall and weighs 68 kg has a bmi of 23.53.

Process finished with exit code 0

7.
7.

def bmi(height,weight):

height in m and weight in kg

b = weight/height**2

return b

h = input('Enter height in inches: ')

w = input('Enter weight in pounds: ')

#convert to numbers

h = float(h)

w = float(w)

Chapter 3. Functions � 253

#convert height and weight

h_m = h*.0254

w_p = w*.4536

b = bmi(h_m,w_p)

print('{} inches is {:.2f} meters'.format(h,h_m))

print('{} pounds is {:.2f} kg'.format(w,w_p))

print('A person who is {:.1f} m tall and weighs {} kg has a bmi\

of {:.2f}.'.format(h_m,w_p,b))

Output
Enter height in inches: 67

Enter weight in pounds: 150

67.0 inches is 1.70 meters

150.0 pounds is 68.04 kg

A person who is 1.7 m tall and weighs 68.04 kg has a bmi of 23.49.

Process finished with exit code 0

8.
8.

import numpy

def area(r):

a = numpy.pi*r**2

return a

r = input('Enter the radius: ')

r = float(r)

a = area(r)

print('The area of the circle with radius {} is {:.4f}'.format(r,a))

Output
Enter the radius: 4

The area of the circle with radius 4.0 is 50.2655

Process finished with exit code 0

9.
9.

import numpy as np

254 � B Solutions

import matplotlib.pyplot as plt

x = np.arange(0,2*np.pi+.1,np.pi/4)

y = np.cos(x)

plt.plot(x,y,'go:')

plt.grid()

plt.xlabel('x')

plt.ylabel('cos(x)')

plt.show()

Output

10.
10.

import numpy as np

import matplotlib.pyplot as plt

x = np.arange(0,2*np.pi+.1,np.pi/4)

y = np.cos(x)

y2 = np.sin(x)

plt.plot(x,y,'go:')

plt.plot(x,y2,'k')

plt.grid()

plt.xlabel('x')

plt.legend(['cos(x)','sin(x)'])

plt.show()

Chapter 3. Functions � 255

Output

11.
11.

a.

import numpy as np

import matplotlib.pyplot as plt

def f(x):

y = -16*x**2+10*x+100

return y

#use quadratic formula to solve -16t^2+10t+100

t1 = (-10+np.sqrt(10**2-4*(-16)*100))/(2*(-16))

t2 = (-10-np.sqrt(10**2-4*(-16)*100))/(2*(-16))

print('t1 =',t1, 'f(t1) =',f(t1))

print('t2 =',t2,'f(t2) =',f(t2))

b.

x = np.arange(0,t2+t2/50,t2/50)

y = f(x)

plt.plot(x,y)

plt.grid()

plt.xlabel('time')

plt.ylabel('height')

256 � B Solutions

plt.show()

Output
t1 = -2.2069555463432966 f(t1) = 1.4210854715202004e-14

t2 = 2.8319555463432966 f(t2) = 1.4210854715202004e-14

Process finished with exit code 0

12.
#12.

import numpy as np

import matplotlib.pyplot as plt

def P(t):

if 0<=t<3:

y = np.exp(t)

elif t>=0:

y = (52.5614*t+3)/(t+5)

else:

print('invalid t value')

return y

vP = np.vectorize(P)

dx = .01

x = np.arange(0,3,dx)

y = vP(x)

Chapter 3. Functions � 257

plt.plot(x,y)

x = np.arange(3,20+dx,dx)

y = vP(x)

plt.plot(x,y)

plt.show()

b. It does appear to be continuous

b.We would need the one-sided derivatives to be equal at t = 3

Output

13.
13.

import numpy as np

import matplotlib.pyplot as plt

def f(x):

if x<-1:

y = x**2

elif -1<=x<=1:

y = x

else:

y = np.sin(x)

return y

vf = np.vectorize(f)

258 � B Solutions

dx = .01

x1 = np.arange(-2,-1,dx)

y1 = vf(x1)

plt.plot(x1,y1)

plt.plot(-1,1,'b.',fillstyle='none',markersize=11)

x2 = np.arange(-1,1,dx)

y2 = vf(x2)

plt.plot(x2,y2)

plt.plot(-1,-1,'b.',markersize=11)

plt.plot(1,1+dx,'b.',markersize=11)

x3 = np.arange(1+dx,3+dx,dx)

y3 = vf(x3)

plt.plot(x3,y3)

plt.plot(1,np.sin(1),'b.',fillstyle='none',markersize=11)

plt.xlabel('x')

plt.ylabel('y')

plt.grid()

plt.show()

Output

Chapter 4. Matrices, vectors, and linear systems � 259

Chapter 4. Matrices, vectors, and linear systems

1.
1.

import numpy as np

A = np.array([[1,-2,3],[2,1,4],[3,-1,-2]])

B = np.array([[0,4,2],[3,-1,-3]])

C = np.array([[-2,1],[0,-1],[1,3]])

D = np.array([[1,-3,0],[2,-2,2],[3,-1,1]])

print('A+D=')

print(A+D)

print('')

print('D-A=')

print(D-A)

print('')

print('3B=')

print(3*B)

print('')

print('A+B=')

#print(A+B)

print('Matrices must be same dimension')

print('')

print('Element-wise multiplication')

print('A*D=')

print(A*D)

print('')

print('A*C=')

#print(A*C)

print('Matrices must be same dimension')

print('')

print('Element-wise division')

print('A/D=')

print(A/D)

print('')

print('A/B=')

#print(A/B)

print('Matrices must be same dimension')

print('')

print('Standard Matrix Multiplication')

260 � B Solutions

print('AD=')

print(np.dot(A,D))

print('We get a warning because one of the values of D is a zero')

print('')

print('AB=')

#print(np.dot(A,B))

print('Inner dimensions do not match')

print('')

print('BC=')

print(np.dot(B,C))

print('')

Output
A+D=

[[2 -5 3]

[4 -1 6]

[6 -2 -1]]

D-A=

[[0 -1 -3]

[0 -3 -2]

[0 0 3]]

3B=

[[0 12 6]

[9 -3 -9]]

A+B=

Matrices must be same dimension

Element-wise multiplication

A*D=

[[1 6 0]

[4 -2 8]

[9 1 -2]]

A*C=

Matrices must be same dimension

Element-wise division

A/D=

[[1. 0.66666667 inf]

Chapter 4. Matrices, vectors, and linear systems � 261

[1. -0.5 2.]

[1. 1. -2.]]

A/B=

Matrices must be same dimension

Standard Matrix Multiplication

AD=

[[6 -2 -1]

[16 -12 6]

[-5 -5 -4]]

We get a warning because one of the values of D is a zero

AB=

Inner dimensions do not match

BC=

[[2 2]

[-9 -5]]

/Users/WillMiles/Desktop/_Courses/SciComp/SciCompBook/BookCode/

booksolutions.py:280: RuntimeWarning: divide by zero encountered in

true_divide

print(A/D)

Process finished with exit code 0

2.
Append the following to the code from number 1.

np.set_printoptions(precision=3,suppress=1,floatmode='fixed')

A_inv = np.linalg.inv(A)

print('A_inv =')

print(A_inv)

print(np.dot(A,A_inv))

The additional output is given below.

Output
A_inv =

[[-0.044 0.156 0.244]

[-0.356 0.244 -0.044]

[0.111 0.111 -0.111]]

262 � B Solutions

[[1.000 0.000 -0.000]

[-0.000 1.000 0.000]

[0.000 -0.000 1.000]]

Process finished with exit code 0

3.
a. yes
b. yes
c. no
d. no
e. no
f. no

4.

2x − y = 5
3x + 2y = 4
2(2x − y = 5)
3x + 2y = 4
4x − 2y = 10
3x + 2y = 4

Add the two equations to get

7x = 14⇒ x = 2.

Then back substitute

4(2) − 2y = 10⇒ −2y = 2⇒ y = −1.

5.
5.

import numpy as np

#set up the matrices

A = np.array([[1,-3,2,-1],[1,-4,5,2],[-1,3,-1,3],[3,2,-1,-1]])

B = np.array([6,13,-23,6])

#using inverses

A_inv = np.linalg.inv(A)

X = np.dot(A_inv,B)

print('x = {:.4f}, y = {:.4f}, z = {:.4f}, w = {:.4f}'.\

Chapter 4. Matrices, vectors, and linear systems � 263

format(X[0],X[1],X[2],X[3]))

using the solve method

X = np.linalg.solve(A,B)

print('x = {:.4f}, y = {:.4f}, z = {:.4f}, w = {:.4f}'.\

format(X[0],X[1],X[2],X[3]))

Output
x = -14.7059, y = 31.4706, z = 42.6471, w = -29.8235

x = -14.7059, y = 31.4706, z = 42.6471, w = -29.8235

Process finished with exit code 0

6.
6.

import numpy as np

solve the system formed by AX = B

A = np.array([[1,-3,2],[2,-4,5],[-1,3,-2]])

B = np.array([6,13,-23])

using the solve method

X = np.linalg.solve(A,B)

Output
Traceback (most recent call last):

File "/Users/WillMiles/Desktop/_Courses/SciComp/SciCompBook/BookCode/

booksolutions.py", line 343, in <module>

X = np.linalg.solve(A,B)

File "<__array_function__ internals>", line 5, in solve

File "/Library/Frameworks/Python.framework/Versions/3.8/lib/python3.8/

site-packages/numpy/linalg/linalg.py", line 393, in solve

r = gufunc(a, b, signature=signature, extobj=extobj)

File "/Library/Frameworks/Python.framework/Versions/3.8/lib/python3.8/

site-packages/numpy/linalg/linalg.py",

line 88, in _raise_linalgerror_singular

raise LinAlgError("Singular matrix")

numpy.linalg.LinAlgError: Singular matrix

Process finished with exit code 1

264 � B Solutions

When solving in Python an error message is returned indicating that the matrix is sin-
gular. Thus, there are either an infinite number of solutions or no solution at all. So,
further analysis of the system is required. Multiplying the third equation by −1 gives

x − 3y − 2z = 23.

Thus, the left-hand sides of equations 1 and 3 are the same, but the right-hand sides are
different. Therefore, there is no solution to this system.

Chapter 5. Iteration

1.
1.

a.

The variable iterationcount is added to the code

and incremented for each iteration. then it is

returned in the return statement

Note the new call to the bisect function in the main

program.

import numpy as np

import matplotlib.pyplot as plt

def bisect(f,a,b,tol):

#we will do the first iterate before our while loop starts so that we

#have a value to test against the tolerance

x = (a+b)/2

iterationcount = 0

while np.abs(f(x))>tol:

#print('a={:.5f} f(a)={:.5f}, b={:.5f} f(b)={:.5f}, \

x={:.5f} f(x)={:.5f}'.format(a,f(a),b,f(b),x,f(x)))

#now decide whether we replace a or b with x

if f(a)*f(x) < 0:

#root is between a and x so replace b

b = x

elif f(b)*f(x)<0:

#root is between b and x so replace a

a = x

else:

in this case, f(x) must be 0 and we have found the root

so we will know the root value is x and we can end the loop

break

Chapter 5. Iteration � 265

#recompute the approximation

x = (a+b)/2

iterationcount = iterationcount + 1

return x,iterationcount

b.

def f(x):

y = x**3-100*np.cos(x)

return y

begin main program

x = np.linspace(-1,4,100) # could also use np.arange

y = f(x)

plt.plot(x,y)

plt.grid()

plt.show()

c.

x,itcount = bisect(f,-1,4,.001)

print('x = ',x)

print('Number of iterations needed:',itcount)

Output
x = 1.534637451171875

Number of iterations needed: 14

Process finished with exit code 0

266 � B Solutions

2.
2.

a.

The variable iterationcount is added to the code

and incremented for each iteration. then it is

returned in the return statement

Note the new call to the bisect function in the main

program.

import numpy as np

import matplotlib.pyplot as plt

def bisect(f,a,b,tol):

#we will do the first iterate before our while loop starts so that we

#have a value to test against the tolerance

x = (a+b)/2

iterationcount = 0

a variable to hold the absolute value of the difference

between two successive iterates. We artifically initialize

it to a large value so that the loop is entered for the first

iterate

diff = 1

while diff > tol or iterationcount == 0:

#print('a={:.5f} f(a)={:.5f}, b={:.5f} f(b)={:.5f}, \

x={:.5f} f(x)={:.5f}'.format(a,f(a),b,f(b),x,f(x)))

#now decide whether we replace a or b with x

if f(a)*f(x) < 0:

#root is between a and x so replace b

b = x

elif f(b)*f(x)<0:

#root is between b and x so replace a

a = x

else:

in this case, f(x) must be 0 and we have found the root

so we will know the root value is x and we can end the loop

break

keep the previous iterate

x_previous = x

compute the new iterate

x = (a+b)/2

find the difference between them

Chapter 5. Iteration � 267

diff = np.abs(x-x_previous)

iterationcount = iterationcount + 1

return x,iterationcount

b.

def f(x):

y = x**3-100*np.cos(x)

return y

x,itcount = bisect(f,-1,4,.001)

print('x = ',x)

print('Number of iterations needed:',itcount)

Output
Number of iterations needed: 12

Process finished with exit code 0

c. Comparing successive iterates will achieve more guaranteed accuracy.

3.
We require that

et = at + 3
t + 5
,

when t = 3. Thus, we need

e3 = a3 + 3
3 + 5

e3 − 3a + 3
8
= 0.

So, we need the root of f (x) = e3 − 3x+3
8 . This is a linear function, so we could solve this

by hand. Begin by plotting to find an appropriate interval for the root. Trial and error
shows there is a root between x = 50 and x = 54. Now, call the bisect function to calculate
that the a value is a ≈ 52.561462.

3.

from bisectfun import *

def f(x):

y = np.exp(3) - (3*x+3)/8

268 � B Solutions

return y

x = np.arange(50,60)

y = f(x)

plt.plot(x,y)

plt.grid()

plt.show()

x,itcount = bisect(f,50,54,.0001)

print('x = ',x)

print('Number of iterations needed:',itcount)

#check the answer

print('e^3 =',np.exp(3))

print('(3a+3)/(3+5) =',(x*3+3)/(8))

Output
x = 52.56146240234375

Number of iterations needed: 15

e^3 = 20.085536923187668

(3a+3)/(3+5) = 20.085548400878906

Process finished with exit code 0

4.
We have that f (x) = ex sin(x) − x2

2 + 5. Thus, f
′(x) = ex cos(x) + ex sin(x) − x. So, we need

to solve for the critical numbers, f ′(x) = 0 and test the endpoints.

4.

from bisectfun import *

original function

def f(x):

y = np.exp(x) * np.sin(x) - x**2/2 + 5

return y

derivative

def df(x):

y = np.exp(x)*(np.sin(x)+np.cos(x)) - x

return y

Chapter 5. Iteration � 269

plotting f' just to make sure there is a zero

dx = 0.1

x = np.arange(-1,3+dx,dx)

y = df(x)

plt.plot(x,y)

plt.grid()

plt.show()

x,itcount = bisect(df,-1,3,.0001)

print('x = ',x)

print('Number of iterations needed:',itcount)

check critical numbers and endpoints in the original function

x_compare = [-1,3,x]

y_compare = [f(-1),f(3),f(x)]

determine which index holds the max value

max_i = np.argmax(y_compare)

print('Max of {:.4f} occurs at x={:.4f}.'\

.format(y_compare[max_i],x_compare[max_i]))

Output
x = 2.18121337890625

Number of iterations needed: 15

Max of 9.8787 occurs at x=2.1812.

Process finished with exit code 0

270 � B Solutions

5.
Newton’s method uses the following iterative function:

xn+1 =
−f (xn)
f ′(xn)
+ xn.

5.

import numpy as np

Newton's method

f is the original function

df is the derivative of f

x0 is the initial guess for the root

def newtonroot(f,df,x0,tol):

itcount = 0

while np.abs(f(x0)) > tol:

x1 = -f(x0)/df(x0)+x0

itcount = itcount + 1

x0 = x1

return x0,itcount

def f(x):

y = x**3-100*np.cos(x)

return y

def df(x):

y = 3*x**2+100*np.sin(x)

return y

x,n = newtonroot(f,df,1,.00001)

print('x = ',x)

print('Number of iterations needed:',n)

Output
x = 1.5346454577941748

Number of iterations needed: 3

Process finished with exit code 0

For a tolerance of tol = 0.001 and an initial guess of x0 = 1, bisection and Newton’s
method return the same answer of x = 1.5346. Bisection requires 14 iterations, while
Newton’s method requires only 3.

Chapter 5. Iteration � 271

When the initial guess is x0 = −1, then Newton’s method converges to a root that is
not in the desired interval.

6.
a.
Euler's method

import numpy as np

import matplotlib.pyplot as plt

rhs is the right hand side function

[a,b] is the interval of solution

y0 is the initial value, y(a)

dt is the step-size

def euler(rhs,a,b,y0,dt):

#create a vector of t-values

t = np.arange(a,b+dt,dt)

n = len(t)

#create space for the y-values

y = np.zeros(n)

#create a list of indices

i = np.arange(1,n,1)

#we know the inital value of y to be 1

y[0] = y0

for k in i:

#compute the Euler approximation

#use the right hand side function to get the slope of the

#tangent line

m = rhs(t[k-1],y[k-1])

#get the next approximation

y[k] = m*dt+y[k-1]

return t,y

def rhs(t,y):

m = t**2-np.sin(t)

return m

def trusol(x):

y = x**3/3 + np.cos(x) - 1

return y

Begin main program

t,y = euler(rhs,0,2*np.pi,0,.1)

272 � B Solutions

#plot the solution

plt.plot(t,y,'b')

plt.autoscale(enable=True, axis='x', tight=True)

plt.xlabel('t')

plt.ylabel('y')

plt.grid()

plt.plot(t,trusol(t),'b--)

plt.legend(['Approximation','True Solution'])

plt.show()

Output

7.
Recall the general implicit Euler iteration

yn+1 = y
′(tn+1, yn+1)Δt + yn.

So,

yn+1 = (cos(tn+1) + e
−tn+1yn+1)Δt + yn

yn+1 − e
−tn+1yn+1Δt = cos(tn+1)Δt + yn

yn+1(1 − e
−tn+1Δt) = cos(tn+1)Δt + yn

yn+1 =
cos(tn+1)Δt + yn

1 − e−tn+1Δt
Then, one implementation is presented here:

Chapter 5. Iteration � 273

import numpy as np

import matplotlib.pyplot as plt

def rhs(t,y):

r = np.cos(t)+ np.exp(-t)*y

return r

a = 0

b = 2*np.pi

dt = 0.05

y0 = 0

t,y = euler(rhs,a,b,y0,dt)

plt.plot(t,y)

#implicit Euler

n = len(t)

y2 = np.zeros(n)

y2[0] = y0

for i in range(1,n,1):

y2[i] = (np.cos(t[i])*dt+y2[i-1])/(1-np.exp(-t[i])*dt)

plt.plot(t,y2,'b--)

plt.legend(['Explicit Euler','Implicit Euler'])

plt.show()

Output

274 � B Solutions

8.

Euler's method for systems

import numpy as np

import matplotlib.pyplot as plt

def rhs(t,yvec):

a = 0.04

b = 0.0005

c = -0.1

d = 0.0005

dy = np.zeros(2)

dy[0] = a*yvec[0]-b*yvec[0]*yvec[1]

dy[1] = c*yvec[1]+d*yvec[0]*yvec[1]

return dy

#initial t value

a = 0

#final t value

b = 365

#number of intervals

n = 50000

#delta t

dt = (b-a)/n

#create a vector of t-values

t = np.arange(a,b+dt/2,dt)

#create space for the y-values

y = np.zeros((n+1,2))

#create a list of indices

i = np.arange(1,n+1,1)

y[0,0] = 50

y[0,1] = 10

for k in i:

#compute the Euler approximation

#use the right hand side function to get the slope of the tangent line

dy = rhs(t[k-1],y[k-1,:])

#get the next approximation

y[k,:] = dy*dt+y[k-1,:]

#plot the approximations

plt.plot(t,y[:,0])

plt.plot(t,y[:,1])

Chapter 5. Iteration � 275

#plot true solution

plt.autoscale(enable=True, axis='x', tight=True)

plt.xlabel('t')

plt.grid()

plt.legend(['x(t)','y(t)'])

plt.show()

--

phase portrait

plt.figure()

plt.plot(y[:,0],y[:,1])

head = 1

tail = 0

w = 55

dx = y[head,0]-y[tail,0]

dy = y[head,1]-y[tail,1]

plt.arrow(y[head,0],y[head,1],dx,dy,width=.004)

numarrows = int((n-head)/w)

for i in range(4):

head = head + w

tail = tail + w

dx = y[head,0]-y[tail,0]

dy = y[head,1]-y[tail,1]

plt.arrow(y[head,0],y[head,1],dx,dy,width=.004)

plt.xlabel('x(t)')

plt.ylabel('y(t)')

plt.title('Phase Portrait: IC = X(0) = 50, Y(0) = 10')

plt.grid()

plt.show()

Output

276 � B Solutions

We can see that the populations are both periodic. The phase portrait shows that, while
the predator population is low, the prey population grows easily. When the prey pop-
ulation rises above 600, the predator population begins to grow faster, and the prey
population decreases more rapidly until the predator population is around 450, when
the predator decreases quickly, and the cycle repeats.

9.

import numpy as np

import matplotlib.pyplot as plt

def interp(x,t,y):

n = len(t)

startindex = 0

find the indices between which the new x value lies

if x > np.max(t):

print('outside of interpolation range')

return np.nan

elif x<np.min(t):

print('outside of interpolation range')

return np.nan

while t[startindex]<x:

startindex = startindex + 1

startindex = startindex - 1

endindex = startindex +1

slope for interpolation

m = (y[endindex]-y[startindex])/(t[endindex]-t[startindex])

compute approximation using point slope form

y_of_x = m*(x-t[startindex])+y[startindex]

return y_of_x

t = np.array([0.000, 0.040, 0.080, 0.120, 0.160,\

0.200, 0.240, 0.280, 0.320, 0.360])

y = np.array([1.000, 1.040, 1.078, 1.115, 1.150,\

1.182, 1.212, 1.240, 1.266, 1.289])

new_t = np.linspace(0,.36,76)

n = len(new_t)

new_y = np.zeros(n)

for i in range(n):

new_y[i] = interp(new_t[i],t,y)

plt.plot(t,y,'b-',alpha=.5)

Chapter 6. Statistics � 277

plt.plot(new_t, new_y,'b-',alpha=.95)

plt.xlabel('t')

plt.ylabel('y')

plt.show()

Output

The graphs are indistinguishable.

Chapter 6. Statistics

1.
a.

file handling

splitting strings and cleaning data

tumor_file = open('wdbc-ex.csv','r')

coded_file = open('wdbc-coded.csv','w')

since the file is not very big, we can read the entire file

into a list

print('loading data into list')

data = tumor_file.readlines()

tumor_file.close()

let's see how many records there are

n = len(data)

278 � B Solutions

print(n,'records in the list')

for i in range(n):

check the second field for an 'M' or a 'B'

record = data[i]

rec_vec = record.split(',')

get the number of fields in the record for later

m = len(rec_vec)

testfield = rec_vec[1]

if testfield == 'M':

reassing the value to a one

testfield = '1'

elif testfield == 'B':

reassing the value to a one

testfield = '0'

replace the M or B with the appropriate number

rec_vec[1] = testfield

build the string to write to new file

s = ''

for j in range(m):

if j < m-1:

s = s+rec_vec[j]+','

else:

s = s+rec_vec[j]

coded_file.write(s)

coded_file.close()

If the file were large so that it could not all be stored in amatrix, then thewewould have
to enter the file one line at a time. The changes in the code are minimal.

file handling

splitting strings and cleaning data

tumor_file = open('wdbc-ex.csv','r')

coded_file = open('wdbc-coded.csv','w')

if the file is large, we must handle it line by line

record = tumor_file.readline()

while record != '':

check the second field for an 'M' or a 'B'

rec_vec = record.split(',')

get the number of fields in the record for later

m = len(rec_vec)

testfield = rec_vec[1]

if testfield == 'M':

Chapter 6. Statistics � 279

reassing the value to a one

testfield = '1'

elif testfield == 'B':

reassing the value to a one

testfield = '0'

replace the M or B with the appropriate number

rec_vec[1] = testfield

build the string to write to new file

s = ''

for j in range(m):

if j < m-1:

s = s+rec_vec[j]+','

else:

s = s+rec_vec[j]

coded_file.write(s)

get the next input record

record = tumor_file.readline()

tumor_file.close()

coded_file.close()

b. We should use the file created in part (a) so that we do not undo the coding that was
done. The program should remove 15 records.

remove records with missing data

tumor_file = open('wdbc-coded.csv','r')

coded_file = open('wdbc-coded2.csv','w')

print('loading data into list')

data = tumor_file.readlines()

tumor_file.close()

let's see how many records there are

n = len(data)

print(n,'records in the list')

numdeleted = 0

for i in range(n):

check the second field for an 'M' or a 'B'

record = data[i]

rec_vec = record.split(',')

get the number of fields in the record for later

m = len(rec_vec)

deleteflag = 0

for j in range(m):

if rec_vec[j]=='':

280 � B Solutions

deleteflag = -1

numdeleted = numdeleted+1

if deleteflag == 0:

#write the record

coded_file.write(record)

print(numdeleted,'records deleted')

coded_file.close()

Output
loading data into list

569 records in the list

loading data into list

569 records in the list

15 records deleted

Process finished with exit code 0

2.
There are a few challenges in this problem, and there are many approaches that would
be acceptable. We first found that the years in the file were between 2006 and 2016. This
allows one to set up the proper storage structure for the summary numbers. Then, one
must create a formula to determine which row of the storage matrix is to be modified
for each record read from the data file.

computing averages of categories

import numpy as np

import matplotlib.pyplot as plt

#np.set_printoptions(precision=3,suppress=1,floatmode='fixed')

np.set_printoptions(suppress=1)

open the temp study file for reading

temperature_file = open('tempstudy.csv','r')

we know the first line of this file contains headers of the columns

record = temperature_file.readline()

set up a matrix to hold what we need

we need a row for each month and columns for

total precip, total temperature, and number of observations

the file includes the years 2006 - 2016. so there will need

to be 12 rows for each year, 12*11 = 132

i'll store 2006 in rows 0-11, 2007 in rows 12-23, ...

tempsummary = np.zeros((132,4))

read lines until you reach a blank line, then assume you are done

Chapter 6. Statistics � 281

temprec = temperature_file.readline()

count = 0

while temprec != '':

if count%1000000 == 0:

print(count)

split the record into fields

tempvec = temprec.split(',')

determine what years are in the file

get the year, month, precipitation, and temperature for

this observation

year = int(tempvec[3])

mth = int(tempvec[4])

precip = float(tempvec[7])

temp = float(tempvec[8])

determine the row of the summary matrix

(year-2005)*12 + mth-1

row = (year-2006)*12 + mth-1

tempsummary[row,0] = year

tempsummary[row,1] = tempsummary[row,1] + precip

tempsummary[row,2] = tempsummary[row,2] + temp

tempsummary[row,3] = tempsummary[row,3] + 1

temprec = temperature_file.readline()

count = count + 1

temperature_file.close()

tempsummary[:,1] = np.round(tempsummary[:,1]/tempsummary[:,3],3)

tempsummary[:,2] = np.round(tempsummary[:,2]/tempsummary[:,3],3)

print(tempsummary)

graph results

m = np.linspace(1,132,132)

plt.plot(m,tempsummary[:,1])

plt.xlabel('Month, 1=Jan, 2006')

plt.ylabel('precip')

plt.grid()

plt.figure()

plt.plot(m,tempsummary[:,2])

plt.xlabel('Month, 1=Jan, 2006')

plt.ylabel('temp')

plt.grid()

plt.show()

write info to file

tempsum_file = open('tempsumm.csv','w')

for i in range(132):

282 � B Solutions

summrec = str(tempsummary[i,0])+','+str(tempsummary[i,1])+','\

+str(tempsummary[i,2])+','+str(tempsummary[i,3])+'\n'

tempsum_file.write(summrec)

tempsum_file.close()

Output

3.
import numpy as np

import matplotlib.pyplot as plt

#np.set_printoptions(precision=3,suppress=1,floatmode='fixed')

np.set_printoptions(suppress=1)

read the file. we have multiple ways to do this

because the file is not large, genfromtxt is used here

tumor_data = np.genfromtxt('wdbc.csv',delimiter=',')

m,n = np.shape(tumor_data)

print('Data Matrix is {} x {}.'.format(m,n))

radius is index 2

texture is index 3

smoothness is index 6

fivenumsummary = np.zeros((5,3))

datacols = [2,3,6]

3.b.

generate the five number summaries, each column is a summary for

a variable.

for i in range(3):

col = datacols[i]

fivenumsummary[0,i] = np.min(tumor_data[:,col])

fivenumsummary[1,i] = np.quantile(tumor_data[:,col],.25)

Chapter 6. Statistics � 283

fivenumsummary[2,i] = np.median(tumor_data[:,col])

fivenumsummary[3,i] = np.quantile(tumor_data[:,col],.75)

fivenumsummary[4,i] = np.max(tumor_data[:,col])

3.c

plt.hist(tumor_data[:,2],density=1,bins=20,edgecolor = "black")

plt.xlabel('Radius')

plt.ylabel('Relative Frequency')

plt.figure()

plt.hist(tumor_data[:,3],density=1,bins=20,edgecolor = "black")

plt.xlabel('Texture')

plt.ylabel('Relative Frequency')

plt.figure()

plt.hist(tumor_data[:,6],density=1,bins=20,edgecolor = "black")

plt.xlabel('Smoothness')

plt.ylabel('Relative Frequency')

plt.show()

3.d.

histograms are labeled and displayed above

display the five-number summaries

variables = ['Radius','Texture','Smoothness']

for i in range(3):

print('5-Number Summary for {}'.format(variables[i]))

print('Minimum: {}'.format(fivenumsummary[0,i]))

print('Q1 : {}'.format(fivenumsummary[1,i]))

print('Median : {}'.format(fivenumsummary[2,i]))

print('Q3 : {}'.format(fivenumsummary[3,i]))

print('Maximum: {}'.format(fivenumsummary[4,i]))

print('')

Output
Data Matrix is 569 x 32.

5-Number Summary for Radius

Minimum: 6.981

Q1 : 11.7

Median : 13.37

Q3 : 15.78

Maximum: 28.11

5-Number Summary for Texture

284 � B Solutions

Minimum: 9.71

Q1 : 16.17

Median : 18.84

Q3 : 21.8

Maximum: 39.28

5-Number Summary for Smoothness

Minimum: 0.05263

Q1 : 0.08637

Median : 0.09587

Q3 : 0.1053

Maximum: 0.1634

Process finished with exit code 0

4.
4. a.

compute Reimann sums

import numpy as np

import matplotlib.pyplot as plt

np.set_printoptions(precision=3,suppress=1,floatmode='maxprec')

def Rsum(fname,a,b,n):

dx = (b-a)/n

create the partiion of x values

x = np.arange(a,b+dx,dx)

get the y values (heights of the rectangles

y = fname(x)

Compute the areas of each rectangle

A = y[1:]*dx

Sum the areas

Chapter 6. Statistics � 285

R = np.sum(A)

return R

4.b.

def f(x):

y = np.exp(x)-x**2

return y

R = Rsum(f,0,3,10)

print('Approximate Integral Value =',R)

4.c

R = Rsum(f,0,3,1000)

print('n=1000, Approximate Integral Value =',R)

R = Rsum(f,0,3,2000)

print('n=2000, Approximate Integral Value =',R)

Output
Approximate Integral Value = 11.69629473536423

n=1000, Approximate Integral Value = 10.100675042722996

n=2000, Approximate Integral Value = 10.093103529418098

Process finished with exit code 0

5.
5.

a.

import numpy as np

def simprule(f,a,b,n):

if n%2 != 0:

print('n must be even')

return np.nan

apply coefficients to even indices

dx = (b-a)/n

x = np.arange(a,b+dx,dx)

initialize the sum to the first term

S = f(a)

for i in range(1,n,1):

286 � B Solutions

if i%2 == 1:

x_1,x_3,x_5 ...

S = S + 4*f(x[i])

elif i%2 == 0:

x_2, x_4,

S = S + 2*f(x[i])

last term

S = S+f(b)

S = (dx/3)*S

return S

b.

def f(x):

y = np.sin(x) - 2/x

return y

F(x) = -cos(x) - 2*ln(x)

TrueValue = -np.cos(4) - 2*np.log(4) - (-np.cos(1)-2*np.log(1))

print('Actual Value of Integral =',TrueValue)

c.

from rightsum import *

rightsum = Rsum(f,1,4,20)

print('Right Reimann Sum =:',rightsum)

d.

from traprule import *

trapsum = traprule(f,1,4,20)

print('Trapezoidal Sum =:',trapsum)

e.

simpsum = simprule(f,1,4,20)

print('Simpson Sum =:',simpsum)

f.

print('Absolute Error:')

Chapter 6. Statistics � 287

print('Right Sum:',np.abs(TrueValue-rightsum))

print('Trap Sum:',np.abs(TrueValue-trapsum))

print('Simp Sum:',np.abs(TrueValue-simpsum))

we see that Simpson's rule is far better than the others

g.

print('For 500 Subintervals')

print('Absolute Error:')

print('Right Sum:',np.abs(TrueValue-Rsum(f,1,4,500)))

print('Trap Sum:',np.abs(TrueValue-traprule(f,1,4,500)))

print('Simp Sum:',np.abs(TrueValue-simprule(f,1,4,500)))

Output
Actual Value of Integral = -1.5786427955080296

Right Reimann Sum =: -1.7909468156456947

Trapezoidal Sum =: -1.6839829487430966

Simpson Sum =: -1.578671394402969

Absolute Error:

Right Sum: 0.21230402013766514

Trap Sum: 0.10534015323506707

Simp Sum: 2.8598894939557695e-05

For 500 Subintervals

Absolute Error:

Right Sum: 0.00030402725876355063

Trap Sum: 9.206818415874451e-06

Simp Sum: 7.746070451730702e-11

Process finished with exit code 0

6.
6.

confidence intervals with sigma known

import scipy.stats as stats

import numpy as np

c = stats.norm.ppf(q=0.05,loc=0,scale=1.0)

d = stats.norm.ppf(q=0.95,loc=0,scale=1.0)

xbar = 72

sig = 7

n = 20

a = xbar - d*sig/np.sqrt(n)

288 � B Solutions

b = xbar - c*sig/np.sqrt(n)

print('{}% CI is ({:.4f}, {:.4f})'.format(90,a,b))

Output
90% CI is (69.4254, 74.5746)

Process finished with exit code 0

7.
7.

import numpy as np

import matplotlib.pyplot as plt

import scipy.stats as stats

np.set_printoptions(suppress=1)

read the file. we have multiple ways to do this

because the file is not large, genfromtxt is used here

tumor_data = np.genfromtxt('wdbc.csv',delimiter=',')

m,n = np.shape(tumor_data)

print('Data Matrix is {} x {}.'.format(m,n))

radius is index 2

xbar = np.mean(tumor_data[:,2])

print('xbar =',xbar)

sx = np.std(tumor_data[:,2],ddof=1)

print('sx =',sx)

a,b = stats.t.interval(alpha=0.90, df=n-1, loc=xbar, scale=sx/np.sqrt(m))

print('{}% CI is ({:.4f}, {:.4f})'.format(90,a,b))

Output
Data Matrix is 569 x 32.

xbar = 14.127291739894552

sx = 3.5240488262120775

90% CI is (13.8768, 14.3778)

Process finished with exit code 0

8.
8.

import numpy as np

import matplotlib.pyplot as plt

Chapter 6. Statistics � 289

import scipy.stats as stats

np.set_printoptions(precision=3,suppress=1,floatmode='maxprec')

data = np.array([62,67,45,59,54,53,60,53,47,46,\

59,47,74,66,58,69,50,68,62,58,\

51,56,66,58,58,68,56,75,64,46,\

58,67,59,55,64,68,50,50,68,39])

hypothesis tests

xbar = np.mean(data)

s = np.std(data,ddof=1)

mu = 45.6

print('H0: mu = 45.6')

print('Ha: mu > 45.6')

print('Hypothesized mean : {:.3f}'.format(mu))

print('Sample mean : {:.3f}'.format(xbar))

print('Sample standard deviation: {:.3f}'.format(s))

n = len(data) #number of oberservations in the list

print('Number of data values : {}'.format(n))

get the cumulative distribution for xbar

cdf = stats.t.cdf(xbar,df=n-1,loc=mu,scale=s/np.sqrt(n))

print('cdf({}) : {:.4f}'.format(xbar,cdf))

greater than test

alpha = 0.01

pval = 1-cdf

print('pval : {:.6f}'.format(pval))

if pval <= alpha:

print('Reject H0')

else:

print('Do not reject H0')

--

print('-----')

print('OR using critical value approach')

hypothesis test using critical value

print('Sample mean : {:.3f}'.format(xbar))

print('Sample standard deviation: {:.3f}'.format(s))

crit = stats.t.ppf(1-alpha,df=n-1,loc=mu,scale=s/np.sqrt(n))

print('The critical value : {:.3f}.'.format(crit))

greater than test

if xbar >= crit:

print('Reject H0')

else:

290 � B Solutions

print('Do not reject H0')

Output
H0: mu = 45.6

Ha: mu > 45.6

Hypothesized mean : 45.600

Sample mean : 58.325

Sample standard deviation: 8.544

Number of data values : 40

cdf(58.325) : 1.0000

pval : 0.000000

Reject H0

OR using critical value approach

Sample mean : 58.325

Sample standard deviation: 8.544

The critical value : 48.877.

Reject H0

Process finished with exit code 0

9.
9.

comparing two means

import numpy as np

np.set_printoptions(precision=3,suppress=1,floatmode='maxprec')

import scipy.stats as stats

datafile = open('courserounds.csv','r')

get header line

record = datafile.readline()

record = datafile.readline()

course2 = np.zeros(1)

course3 = np.zeros(1)

count = 0

while record !='':

rec_vec = record.split(',')

if count == 0:

course2[0] = int(rec_vec[1])

course3[0] = int(rec_vec[2])

else:

Chapter 6. Statistics � 291

if rec_vec[1] != '':

course2 = np.append(course2,int(rec_vec[1]))

if rec_vec[2] != '':

course3 = np.append(course3, int(rec_vec[2]))

record = datafile.readline()

count = count+1

#print(course1)

#print(course2)

n2 = len(course2)

n3 = len(course3)

xbar2 = np.mean(course2)

sd2 = np.std(course2,ddof=1)

xbar3 = np.mean(course3)

sd3 = np.std(course3,ddof=1)

xdiff = xbar2 - xbar3

pooledVar = ((n2-1)*sd2**2+(n3-1)*sd3**2)/(n2+n3-2)

sp = np.sqrt(pooledVar)

dofp = n2+n3-2

teststat = xdiff/(sp*np.sqrt(1/n2+1/n3))

print('test statistic:',teststat)

mu_A < mu_B (group A lost more weight than B)

print('Ha: mu2 < mu3')

pvalL = stats.t.cdf(teststat,dofp)

print('pvalue =',pvalL)

print('')

mu_A > mu_B (group A lost less weight than B)

print('Ha: mu2 > mu3')

pvalG = 1-stats.t.cdf(teststat,dofp)

print('pvalue =',pvalG)

print('')

print('Ha: mu2 != mu3')

pval = 2*np.min([pvalL,pvalG])

print('The p value is {:.3f}.'.format(pval))

print('')

print('OR, using built-in methods')

t,p=stats.ttest_ind(a=course2, b=course3, equal_var=True)

print('Test Statistic:',t)

print('Two-tailed pvalue:',p)

print('One-tailed pvalue:',p/2)

print('Since p={:.4f} > .05, there is not sufficient evidence to reject H0.'\

.format(p/2))

292 � B Solutions

Output
test statistic: 1.6094543626515967

Ha: mu2 < mu3

pvalue = 0.9454326485590657

Ha: mu2 > mu3

pvalue = 0.054567351440934275

Ha: mu2 != mu3

The p value is 0.109.

OR, using built-in methods

Test Statistic: 1.6094543626515967

Two-tailed pvalue: 0.10913470288186862

One-tailed pvalue: 0.05456735144093431

Since p=0.0546 > .05, there is not sufficient evidence to reject H0.

Process finished with exit code 0

10.
10.

paired t test

import numpy as np

np.set_printoptions(precision=3,suppress=1,floatmode='maxprec')

import scipy.stats as stats

weightdata = np.genfromtxt('weightdata.csv',delimiter=',',skip_header=1)

A = weightdata[:,0]

B = weightdata[:,1]

xbarA = np.mean(A)

print('Pre-diet sample mean: {:.4f}'.format(xbarA))

xbarB = np.mean(B)

print('Post-diet sample mean: {:.4f}'.format(xbarB))

t,p = stats.ttest_rel(a=A, b=B)

print('t-stat = {:.4f}, p-value = {:.4f}'.format(t,p))

print('')

print('Assuming Ha: mu1 != mu2')

print('p value = {:.4f}'.format(p))

print('')

diffofmeans = xbarA - xbarB

Chapter 6. Statistics � 293

if diffofmeans>0:

print('Assuming Ha: mu1 > mu2')

print('p value = {:.4f}'.format(0.5*p))

else:

print('Assuming Ha: mu1 < mu2')

print('p value = {:.4f}'.format(0.5*p))

print('The appropriate test is Ha: muA > muB.')

print('So the pvalue is {:.4f}.'.format(p/2))

print('Since {:.4f} < .05, reject H0.'.format(p/2))

print('The diet appears to be effective.')

Output
Pre-diet sample mean: 198.3800

Post-diet sample mean: 195.9800

t-stat = 2.8640, p-value = 0.0051

Assuming Ha: mu1 != mu2

p value = 0.0051

Assuming Ha: mu1 > mu2

p value = 0.0026

The appropriate test is Ha: muA > muB.

So, the pvalue is 0.0026.

Since 0.0026 < .05, reject H0.

The diet appears to be effective.

Process finished with exit code 0

11.
11.

comparing more than two means, one-way ANOVA

import numpy as np

import scipy.stats as stats

load the data from the file

stockdata = np.genfromtxt('stockdata.csv', delimiter=',',skip_header=1)

determine the number of rows and columns in the data

each column is a group

this code assumes that there are the same number of observations in

294 � B Solutions

each group

m,n = np.shape(stockdata)

compute the sample variance s^2 for each group

vars = np.zeros(n)

for i in range(n):

vars[i] = np.var(stockdata[:, i], ddof=1)

compute MSE

SSE = np.sum((m-1)*vars)

print('SSE: {:.4f}'.format(SSE))

MSE = SSE/(m*n-n)

print('MSE (within groups): {:.4f}'.format(MSE))

compute MST

get the means for each group

means = np.zeros(n)

for i in range(n):

means[i] = np.mean(stockdata[:, i])

#get the overall mean

xbar = np.mean(stockdata)

compute MST

SST = np.sum(m*(means - xbar)**2)

print('SST: {:.4f}'.format(SST))

MST = SST/(n-1)

print('MST (between groups): {:.4f}'.format(MST))

Compute the F statistic

F = MST/MSE

print('F statistic: {:.4f}'.format(F))

compute the p-value

p = 1-stats.f.cdf(F,n-1,m*n-n)

print('p-value: {:.5f}'.format(p))

print('If p < \u03B1, we would reject the hypothesis that all the funds\

have the same rate of return. ')

Output
SSE: 1514.1254

MSE (within groups): 7.7251

Chapter 6. Statistics � 295

SST: 71.8462

MST (between groups): 23.9487

F statistic: 3.1001

p-value: 0.02787

If p < α, we would reject the hypothesis that all the funds have the same

rate of return.

Process finished with exit code 0

12.
a.

comparing more than two means, one-way ANOVA

import numpy as np

import scipy.stats as stats

def OneWayANOVA(data):

determine the number of rows and columns in the data

each column is a group

this code assumes that there are the same number of observations

in each group

m, n = np.shape(data)

compute the sample variance s^2 for each group

vars = np.zeros(n)

for i in range(n):

vars[i] = np.var(data[:, i], ddof=1)

compute MSE

SSE = np.sum((m-1)*vars)

print('SSE: {:.4f}'.format(SSE))

MSE = SSE/(m*n-n)

print('MSE (within groups): {:.4f}'.format(MSE))

compute MST

get the means for each group

means = np.zeros(n)

for i in range(n):

means[i] = np.mean(stockdata[:, i])

#get the overall mean

xbar = np.mean(data)

296 � B Solutions

compute MST

SST = np.sum(m*(means - xbar)**2)

print('SST: {:.4f}'.format(SST))

MST = SST/(n-1)

print('MST (between groups): {:.4f}'.format(MST))

Compute the F statistic

F = MST/MSE

print('F statistic: {:.4f}'.format(F))

compute the p-value

p = 1-stats.f.cdf(F,n-1,m*n-n)

print('p-value: {:.5f}'.format(p))

return F,p

load the data from the file

stockdata = np.genfromtxt('stockdata.csv', delimiter=',',skip_header=1)

F,p = OneWayANOVA(stockdata)

print('If p < \u03B1, we would reject the hypothesis that all the funds\

have the same rate of return. ')

Output
SSE: 1514.1254

MSE (within groups): 7.7251

SST: 71.8462

MST (between groups): 23.9487

F statistic: 3.1001

p-value: 0.02787

If p < α, we would reject the hypothesis that all the funds have the same

rate of return.

Process finished with exit code 0

b.
This is a challenging exercise. Using *args allows one to pass a variable number of ar-
guments to a Python function. Then, we must iterate through the argument list to deter-
mine the number and composition of the arguments that have passed. One version of a
modified ANOVA function is given in the following.

Chapter 6. Statistics � 297

b.

comparing more than two means, one-way ANOVA

import numpy as np

import scipy.stats as stats

def OneWayANOVA(*data):

determine the number of rows and columns in the data

each column is a group

this code assumes that there are the same number of observations

in each group

n = len(data)

compute the sample variance s^2 for each group

SSE = 0

SST = 0

#get the overall mean

sum=0

obs = 0

for d in data:

sum = sum+np.sum(d)

obs = obs+len(d)

xbar = sum/obs

for d in data:

m = len(d)

variance = np.var(d, ddof=1)

mean = np.mean(d)

compute MSE

SSE = SSE + np.sum((m-1)*variance)

compute MST

SST = SST+np.sum(m*(mean - xbar)**2)

print('SSE: {:.4f}'.format(SSE))

MSE = SSE / (obs - n)

print('MSE (within groups): {:.4f}'.format(MSE))

print('SST: {:.4f}'.format(SST))

MST = SST / (n - 1)

print('MST (between groups): {:.4f}'.format(MST))

Compute the F statistic

F = MST/MSE

print('F statistic: {:.4f}'.format(F))

compute the p-value

298 � B Solutions

p = 1-stats.f.cdf(F,n-1,obs-n)

print('p-value: {:.5f}'.format(p))

return F,p

load the data from the file

stockdata = np.genfromtxt('stockdata.csv', delimiter=',',skip_header=1)

d1 = stockdata[:,0]

d2 = stockdata[:,1]

d3 = stockdata[:,2]

d4 = stockdata[:,3]

F,p = OneWayANOVA(d1,d2,d3,d4)

print('If p < \u03B1, we would reject the hypothesis that all the funds\

have the same rate of return. ')

Output
SSE: 1514.1254

MSE (within groups): 7.7251

SST: 71.8462

MST (between groups): 23.9487

F statistic: 3.1001

p-value: 0.02787

If p < α, we would reject the hypothesis that all the funds have the same

rate of return.

Process finished with exit code 0

Chapter 7. Regression

1.
1.

multiple regression with built-in methods

import numpy as np

import matplotlib.pyplot as plt

load the poverty percent into column 1 of A and the crime rate in

column 2 we do not need a column of ones because the method will do that

for us

x = np.genfromtxt('poverty.txt',dtype=float,usecols=(1), skip_header=True)

load the birth rates into Y

Chapter 7. Regression � 299

y = np.genfromtxt('poverty.txt',dtype=float,usecols=(3), skip_header=True)

linear regression

#our variables are m and b. we need the matrix of coefficients

A = np.zeros((2,2))

#first row of coefficients

A[0,0] = np.sum(x*x)

A[0,1] = np.sum(x)

#second row of coefficients

A[1,0] = np.sum(x)

#the sum of 1 is equal the number of terms in the sum

A[1,1] = len(x)

#now we need the right hand side

B = np.zeros(2)

B[0] = np.sum(x*y)

B[1] = np.sum(y)

#now solve the system X = [m b]

X = np.linalg.solve(A,B)

print('predicted births = {:.4f}(poverty) + {:.4f}'.format(X[0],X[1]))

#plot the regression line

m = X[0]

b = X[1]

yhat = m*x+b

plt.plot(x,y,'.')

plt.plot(x,yhat,'b')

plt.legend(['data','regression line'])

plt.show()

compute correlation

ybar = np.mean(y)

SSR = np.sum((yhat-ybar)*(yhat-ybar))

SST = np.sum((y-ybar)*(y-ybar))

print('SSR =',SSR)

print('SST =',SST)

R2 = SSR/SST

print('R squared = {:.4f}'.format(R2))

print('r = {:.4f}'.format(np.sqrt(R2)))

print('{:.4f}% of the variation is explained by the regression.'\

.format(R2*100))

Output
predicted births = 2.8822(poverty) + 34.2124

SSR = 7598.568765118201

300 � B Solutions

SST = 18003.60039215686

R squared = 0.4221

r = 0.6497

42.2058% of the variation is explained by the regression.

Process finished with exit code 0

2.
2.

multiple regression with built-in methods

import numpy as np

from sklearn.linear_model import LinearRegression

load the explanatory variables into A

we do not need a column of ones because the method will do that for us

A = np.genfromtxt('diabetes.txt',dtype=float,usecols=(0,1,2,3),\

skip_header=True)

load the disease progression into Y

Y = np.genfromtxt('diabetes.txt',dtype=float,usecols=(10),\

skip_header=True)

now the data matrix A and the actual y values Y are complete

fit the regression line and store it.

we are storing it in a variable named diseasemodel of type

Chapter 7. Regression � 301

LinearRegression

diseasemodel = LinearRegression()

find the parameters for the regression line

diseasemodel.fit(A, Y)

get the coefficient of determination (R-squared_

R2 = diseasemodel.score(A, Y)

print('R squared =',R2)

print('r =',np.sqrt(R2))

variables of type LinearRegression have components called

coef_ and intercept_ that store the coefficients and intercept of

the model.

coeff = diseasemodel.coef_

intercept = diseasemodel.intercept_

print('yhat = {:.4f}(x1) + {:.4f}(x2) + {:.4f}(x3) +\

{:.4f}(x4) + {:.4f}'.format(coeff[0],coeff[1],\

coeff[2],coeff[3],intercept))

print('')

print('R^2 and r indicate a moderate linear relationship.')

print('Coding the sex variable as 1 or 2 is likely inefficient.')

print('')

print('For woman (x2=2) with x1=45, x3=30, x4=112')

X = np.array([[45,2,30,112]])

yhat = diseasemodel.predict(X)

print('Disease Progression is:', np.round(yhat[0],3))

Output
R squared = 0.4002610119699945

r = 0.6326618464630173

yhat = 0.1353(x1) + -10.1590(x2) + 8.4843(x3) +1.4345(x4) + -199.0694

R^2 and r indicate a moderate linear relationship.

Coding the sex variable as 1 or 2 is likely inefficient.

For woman (x2=2) with x1=45, x3=30, x4=112

Disease Progression is: 201.899

Process finished with exit code 0

3.
3.

import numpy as np

302 � B Solutions

from sklearn.linear_model import LinearRegression

work must be done to separate the data for males and females.

there are many ways to do this

load the all data, including response values, into A

A = np.genfromtxt('diabetes.txt',dtype=float,usecols=(0,1,2,3,10),\

skip_header=True)

now separate the men's data from the women's data

n = len(A)

combdata = np.zeros((n,3))

combdata[:,0] = A[:,0]

combdata[:,1:3] = A[:,2:4]

combresponse = A[:,4]

count how many men are in the data

nummen = 0

for i in range(n):

if A[i,1]==1:

nummen = nummen +1

numwomen = n - nummen

mdata = np.zeros((nummen,3))

mresponse = np.zeros(nummen)

wdata = np.zeros((numwomen,3))

wresponse = np.zeros(numwomen)

mindex = 0

windex = 0

for i in range(n):

if A[i,1]==1:

mdata[mindex,0] = A[i,0]

mdata[mindex, 1] = A[i,2]

mdata[mindex, 2] = A[i,3]

mresponse[mindex] = A[i,4]

mindex = mindex + 1

else:

wdata[windex, 0] = A[i,0]

wdata[windex, 1] = A[i,2]

wdata[windex, 2] = A[i,3]

wresponse[windex] = A[i,4]

windex = windex + 1

fit the regressions line and store them.

menmodel = LinearRegression()

womenmodel = LinearRegression()

combmodel = LinearRegression()

Chapter 7. Regression � 303

find the parameters for the regression line

menmodel.fit(mdata, mresponse)

womenmodel.fit(wdata, wresponse)

combmodel.fit(combdata,combresponse)

get the coefficients of determination (R-squared_

mR2 = menmodel.score(mdata,mresponse)

wR2 = womenmodel.score(wdata,wresponse)

cR2 = combmodel.score(combdata,combresponse)

print('R squared for men =',mR2)

print('R squared for women =',wR2)

print('R squared for combined =',cR2)

variables of type LinearRegression have components called

coef_ and intercept_ that store the coefficients and intercept of

the model.

mcoeff = menmodel.coef_

mintercept = menmodel.intercept_

print('yhat_men = {:.4f}(age) + {:.4f}(bmi) + {:.4f}(bp) +\

{:.4f}'.format(mcoeff[0],mcoeff[1],\

mcoeff[2],mintercept))

wcoeff = womenmodel.coef_

wintercept = womenmodel.intercept_

print('yhat_women = {:.4f}(age) + {:.4f}(bmi) + {:.4f}(bp) +\

{:.4f}'.format(wcoeff[0],wcoeff[1],\

wcoeff[2],wintercept))

Output
R squared for men = 0.32804892866272883

R squared for women = 0.5103735991833028

R squared for combined = 0.3962220650725521

yhat_men = -0.3225(age) + 7.6564(bmi) + 1.2778(bp) +-152.1153

yhat_women = 0.7354(age) + 9.6660(bmi) + 1.6896(bp) +-306.6624

Process finished with exit code 0

We can see that the correlation is much stronger (a better model fit) for women than for
men.

4.
4.

digit recognition logistic regression

from sklearn.model_selection import train_test_split

304 � B Solutions

from sklearn.datasets import load_digits

from sklearn.linear_model import LogisticRegression

from sklearn import preprocessing

from sklearn import metrics

#get the data for all the images

alldigits = load_digits()

get the odd rows

we could do this with a for loop, but we can also do it with list

splicing as below

digits = alldigits.data[::2]

targets = alldigits.target[::2]

#scales the data to help with numeric computation

data_scaled = preprocessing.scale(digits)

Print to show there are 1797 images (8 by 8 images for a dimensionality

of 64)

print('Image Data Shape' , digits.shape)

Print to show there are 1797 labels (integers from 0-9)

print('Label Data Shape', targets.shape)

x_train, x_test, y_train, y_test = train_test_split(data_scaled,\

targets, test_size=0.25, random_state=0)

all parameters not specified are set to their defaults

halfdigitLR = LogisticRegression(max_iter=100)

#do the logisitic regression

halfdigitLR.fit(x_train, y_train)

Use score method to get accuracy of model

score = halfdigitLR.score(x_test, y_test)

print('Percent correct =',score)

predictions = halfdigitLR.predict(x_test)

print('Number of predictions =',len(predictions))

cm = metrics.confusion_matrix(y_test, predictions)

print(cm)

Output
Image Data Shape (899, 64)

Label Data Shape (899,)

Percent correct = 0.96

Number of predictions = 225

Chapter 7. Regression � 305

[[19 0 0 0 0 0 0 0 0 0]

[0 23 0 0 0 0 0 0 0 0]

[0 0 20 0 0 0 0 1 0 0]

[0 0 0 21 0 0 0 0 0 0]

[0 0 0 0 22 0 0 0 1 0]

[0 0 0 0 0 24 0 0 0 1]

[0 0 0 0 0 0 22 0 0 0]

[0 0 0 0 0 0 0 23 0 2]

[0 3 0 0 1 0 0 0 18 0]

[0 0 0 0 0 0 0 0 0 24]]

Process finished with exit code 0

It appears that we lost about a percentage point of accuracy using only half the image
data.

5.
5.

import numpy as np

from sklearn.linear_model import LogisticRegression

from sklearn import metrics

load the data from diabetes.txt

A = np.genfromtxt('diabetes.txt',dtype=float,usecols=(0,1,2,3),\

skip_header=True)

load the disease progression into Y

Y = np.genfromtxt('diabetes.txt',dtype=float,usecols=(10),\

skip_header=True)

code the Y values

n = len(Y)

for i in range(n):

if Y[i] < 50:

Y[i] = 0

elif 50<=Y[i]<100:

Y[i] = 1

elif 100 <= Y[i] < 150:

Y[i] = 2

elif 150 <= Y[i] < 200:

Y[i] = 3

elif Y[i]>=200:

Y[i] = 4

306 � B Solutions

all parameters not specified are set to their defaults

diabetesLR = LogisticRegression(max_iter=3000)

#do the logisitic regression

diabetesLR.fit(A,Y)

Use score method to get accuracy of model

score = diabetesLR.score(A, Y)

print('Percent correct =',score)

predictions = diabetesLR.predict(A)

print('Number of predictions =',len(predictions))

cm = metrics.confusion_matrix(Y, predictions)

print(cm)

Output
Percent correct = 0.4751131221719457

Number of predictions = 442

[[0 17 0 0 3]

[0 101 4 3 19]

[0 47 6 2 36]

[0 33 3 4 37]

[0 23 3 2 99]]

Process finished with exit code 0

The logistic regression does not perform as well as the linear regression for this data.
This could be because the response (disease progression) is a continuous variable so
that it is difficult to categorize into arbitrary ranges. It may be that the classes could be
refined to improve upon the logistic model.

6.
6.

neural network

print('importing packages')

import numpy as np

from sklearn.datasets import load_digits

from sklearn.model_selection import train_test_split

import matplotlib.pyplot as plt

from sklearn.preprocessing import StandardScaler

from sklearn import metrics

from sklearn.neural_network import MLPClassifier

print('packages imported')

Chapter 7. Regression � 307

print('reading data')

digits = load_digits()

get the odd rows

we could do this with a for loop, but we can also do it with list

splicing as below

images = digits.data

targets = digits.target

Print to show there are 1797 images (8 by 8 images for a dimensionality

of 64)

print('Image Data Shape' , images.shape)

Print to show there are 1797 labels (integers from 0-9)

print('Label Data Shape', targets.shape)

print('Splitting Data')

x_train, x_test, y_train, y_test = train_test_split(images,\

targets, test_size=0.25, random_state=0)

scale the data

print('Scaling Data')

scaler = StandardScaler()

Fit only to the training data

scaler.fit(x_train)

Now apply the transformations to the data:

x_train = scaler.transform(x_train)

x_test = scaler.transform(x_test)

fit the network

print('fit to neural net')

digitsnetwork = MLPClassifier(hidden_layer_sizes=(60,30),max_iter=1000)

digitsnetwork.fit(x_train,y_train)

predict and score

predictions = digitsnetwork.predict(x_test)

proport_correct = digitsnetwork.score(x_test, y_test)

print('proportion of correct predictions',proport_correct)

get the confusion matrix

cm = metrics.confusion_matrix(y_test, predictions)

print('Confusion Matrix:')

print(cm)

classification report

print(metrics.classification_report(y_test, predictions))

pretty confusion matrix

rowsums = np.sum(cm,0)

scaledcm = cm/rowsums

plt.imshow(scaledcm,cmap ='Blues',alpha=0.75)

308 � B Solutions

plt.xticks(np.arange(0,10,1),['0','1','2','3','4','5','6','7','8','9'])

plt.yticks(np.arange(0,10,1),['0','1','2','3','4','5','6','7','8','9'])

for i in range(10):

for j in range(10):

plt.text(i-.1,j+.05,str(cm[i,j]))

plt.show()

Output
importing packages

packages imported

reading data

Image Data Shape (1797, 64)

Label Data Shape (1797,)

Splitting Data

Scaling Data

fit to neural net

proportion of correct predictions 0.9755555555555555

Confusion Matrix:

[[37 0 0 0 0 0 0 0 0 0]

[0 42 0 0 0 0 0 0 1 0]

[0 0 44 0 0 0 0 0 0 0]

[0 0 1 43 0 0 0 0 1 0]

[0 0 0 0 37 0 0 1 0 0]

[0 0 0 0 0 45 0 0 1 2]

[0 1 0 0 0 0 51 0 0 0]

[0 0 0 0 0 0 0 48 0 0]

[0 1 0 0 0 0 0 0 47 0]

[0 0 0 0 0 1 0 1 0 45]]

precision recall f1-score support

0 1.00 1.00 1.00 37

1 0.95 0.98 0.97 43

2 0.98 1.00 0.99 44

3 1.00 0.96 0.98 45

4 1.00 0.97 0.99 38

5 0.98 0.94 0.96 48

6 1.00 0.98 0.99 52

7 0.96 1.00 0.98 48

8 0.94 0.98 0.96 48

9 0.96 0.96 0.96 47

accuracy 0.98 450

Chapter 7. Regression � 309

macro avg 0.98 0.98 0.98 450

weighted avg 0.98 0.98 0.98 450

Process finished with exit code 0

The results will vary slightly from run to run because of the random draw of testing and
training sets. In this instance, the neural network was slightly better than the logistic
regression.

7.
7.

neural network

print('importing packages')

import numpy as np

from sklearn.model_selection import train_test_split

import matplotlib.pyplot as plt

from sklearn.preprocessing import StandardScaler

from sklearn import metrics

from sklearn.neural_network import MLPClassifier

print('packages imported')

print('reading data')

A_train = np.genfromtxt('mitbih_train.csv',dtype=float,delimiter=',',\

skip_header=False)

m,n = np.shape(A_train)

print('Training Set is {} by {}'.format(m,n))

A_test = np.genfromtxt('mitbih_test.csv',dtype=float,delimiter=',',\

310 � B Solutions

skip_header=False)

q,r = np.shape(A_test)

print('Testing Set is {} by {}'.format(q,r))

x_train = A_train[:,0:187]

y_train = A_train[:,187]

x_test = A_test[:,0:187]

y_test = A_test[:,187]

scale the data

print('Scaling Data')

scaler = StandardScaler()

Fit only to the training data

scaler.fit(x_train)

Now apply the transformations to the data:

x_train = scaler.transform(x_train)

x_test = scaler.transform(x_test)

fit the network

print('fit to neural net')

ECGnetwork = MLPClassifier(hidden_layer_sizes=(75,50),max_iter=1000)

ECGnetwork.fit(x_train,y_train)

predict and score

predictions = ECGnetwork.predict(x_test)

proport_correct = ECGnetwork.score(x_test, y_test)

print('proportion of correct predictions',proport_correct)

get the confusion matrix

cm = metrics.confusion_matrix(y_test, predictions)

print('Confusion Matrix:')

print(cm)

classification report

#print(metrics.classification_report(x_test, predictions))

pretty confusion matrix

rowsums = np.sum(cm,0)

scaledcm = cm/rowsums

plt.imshow(scaledcm,cmap ='Blues',alpha=0.75)

k,q = np.shape(cm)

ticklist = ['0']

for i in range(k-1):

ticklist.append(str(i+1))

plt.xticks(np.arange(0,k,1),ticklist)

plt.yticks(np.arange(0,k,1),ticklist)

for i in range(k):

Chapter 7. Regression � 311

for j in range(k):

plt.text(i-.1,j+.05,str(cm[i,j]))

plt.show()

#plot a sample of each type of ECG

imagecount = 0

reccount = 0

classnum = -1

t = np.linspace(0,186,187)

leglist = []

while imagecount < k:

if y_train[reccount] != classnum:

classnum = y_train[reccount]

y = A_train[reccount,0:187]

plt.plot(t,y)

leglist.append('ECG Type: '+str(y_train[reccount]))

imagecount = imagecount + 1

reccount = reccount + 1

plt.grid()

plt.legend(leglist)

plt.show()

Output
importing packages

packages imported

reading data

Training Set is 87554 by 188

Testing Set is 21892 by 188

Scaling Data

fit to neural net

proportion of correct predictions 0.9767038187465741

Confusion Matrix:

[[17922 109 52 16 19]

[123 423 9 0 1]

[65 8 1351 18 6]

[21 0 18 123 0]

[31 5 7 2 1563]]

Process finished with exit code 0

312 � B Solutions

Results will vary slightly from run to run based on the convergence of the network.
Sample images for the ECG’s are produced at the end of the code list.

Index
p-value 141
.copy 43
.format 9

accuracy 202
activation function 194
addition 3
algorithm 1
alternative hypothesis 142
analysis of variance 152
augmented matrix 59

back propagation 196
back substitution 58
bias 193

central limit theorem 125
classification report 200
coefficient of determination 170
column vector 49
comment 8
component-wise division 47
component-wise multiplication 47
concatenation 15
confidence interval 132
confusion matrix 183
correlation coefficient 170
critical region 145
critical value 144
cumulative distribution function 142

data cleaning 104
deep learning 193
degrees of freedom 138
descriptive statistics 118
differential equation 80
differential equation, order 80
differential equation, solution 80
discrete 179
division 3
dot product 49

explanatory variable 161

f1 202
false negative 202
false positive 201

floating point variable 13
for loop 85

Gaussian elimination 59
gradient descent 196

hard copy 43
hidden layer 193
hypothesis test 140

identity 52
immutable 42
implicit DE solver 89
implicit method 89
inference 118
inferential statistics 132
initial condition 84
integer variable 13
interquartile range 119
inverse of a matrix 53
iteration 71, 76

linear equation 57
linear interpolation 99
linear system 57
linear system of equations 57
local scope 17

mathematical model 161
matrix addition 44
matrix multiplication 49
matrix multiplication, component-wise 46
matrix subtraction 44
maximum 119
mean 118
mean square due to error 154
mean square due to treatment 154
median 118
minimum 119
model 161
MSE 154
MST 154
multiple regression 172
multiplication 3

neural network 193
node 193

https://doi.org/10.1515/9783110776645-010

https://doi.org/\global \c@doi \c@pseudochapter \relax \global \advance \c@doi \c@parttext \relax 10.1515/9783110776645-009

314 � Index

null hypothesis 141
numpy list 25

one-tailed test 145
output to screen 8

package 11
parameter 118
partial derivative 166
phase portrait 94
pooled standard deviation 147
powers 8
precision 201
probability 123
probability density function 123
probability distribution 123
program 4

quartile 119

range 119
recursion 84
relative histogram 122
residual 164
response variable 161
Riemann sum 127
right Riemann sum 127
robust 152
roots 71
rounding entries of a matrix 55
row vector 49

sample distribution 124
scalar multiplication 48, 49
scatter plot 162

script 4
significance level 141
Simpson’s rule 131
singular matrix 56
square matrix 41
SSE 154
SST 154
stability 89
standard deviation 119
standard normal 125
statistic 118
steepest descent 196
string variable 14
student T distribution 137
subtraction 3
sum of squared errors 170
sum of squares due to error 154
sum of squares due to treatment 154
sum of squares regression 170
sum of squares total 170
support 202

t test 142
testing set 188
training set 188
trapezoidal rule 130
true positive 201

variables 13
variance 119

while loop 76

zeros 71

Index of Python Commands
.close 104
.find 16
.imshow 187
.interval 140
.predict 184
.readline() 106
.readlines 104
.round 55
.split 107
.upper 16

colon notation 15

def 17

for 85

if 29
import 11
input 19

Len 104

numpy.abs 78
numpy.array 42
numpy.dot 50
numpy.genfromtxt 119
numpy.linalg.inv(A) 55
numpy.max 121
numpy.mean 121
numpy.median 121
numpy.min 121
numpy.quantile 121
numpy.set_printoptions(precision 47
numpy.std 121

open 104

random_state 188

type 14

https://doi.org/10.1515/9783110776645-011

https://doi.org/\global \c@doi \c@pseudochapter \relax \global \advance \c@doi \c@parttext \relax 10.1515/9783110776645-010

	Acknowledgment
	Contents
	1 Introduction
	2 The basic operations in Python
	3 Functions
	4 Matrices, vectors, and linear systems
	5 Iteration
	6 Statistics
	7 Regression
	A Python code
	B Solutions
	Index
	Index of Python Commands

