William Miles
Numerical Methods with Python

Also of Interest

NUMERICAL ANALYSIS
ON TIME SCALES

ADVANCED
MATHEMATICS

MIXED-INTEGER
OPTIMIZATION

AUTOMATA
THEORY

AND FORMAL
LANGUAGES

DISCRETE
MATHEMA

Numerical Analysis on Time Scales
Svetlin G. Georgiev and Inci M. Erhan, 2022
ISBN 978-3-11-078725-2, e-ISBN (PDF) 978-3-11-078732-0

Advanced Mathematics

An Invitation in Preparation for Graduate School

Patrick Guidotti, 2022

ISBN 978-3-11-078085-7, e-ISBN (PDF) 978-3-11-078092-5

Quantum Information Theory

Concepts and Methods

Joseph M. Renes, 2022

ISBN 978-3-11-057024-3, e-ISBN (PDF) 978-3-11-057025-0

Multi-level Mixed-Integer Optimization

Parametric Programming Approach

Styliani Avraamidou, Efstratios Pistikopoulos, 2022

ISBN 978-3-11-076030-9, e-ISBN (PDF) 978-3-11-076031-6

Automata Theory and Formal Languages
Wiladyslaw Homenda and Witold Pedrycz, 2022
ISBN 978-3-11-075227-4, e-ISBN (PDF) 978-3-11-075230-4

Geometry and Discrete Mathematics

A Selection of Highlights

Benjamin Fine, Anja Moldenhauer, Gerhard Rosenberger,
Annika Schiirenber, Leonard Wienke, 2022

ISBN 978-3-11-074077-6, e-ISBN (PDF) 978-3-11-074078-3

William Miles

Numerical
Methods with
Python

for the Sciences

DE GRUYTER

Mathematics Subject Classification 2010
Primary: 34-04, 35-04; Secondary: 92C45, 92D25, 34C28, 37D45

Author

William Miles, PhD

Stetson University

Department of Mathematics and Computer Science
421 N. Woodland Blvd.

Deland 32723

FL USA

wmiles@stetson.edu

ISBN 978-3-11-077645-4
e-ISBN (PDF) 978-3-11-077664-5
e-ISBN (EPUB) 978-3-11-077693-5

Library of Congress Control Number: 2022950763

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie;
detailed bibliographic data are available on the Internet at http://dnb.dnb.de.

© 2023 Walter de Gruyter GmbH, Berlin/Boston
Cover image: E. K. Miles

Typesetting: VTeX UAB, Lithuania

Printing and binding: CPI books GmbH, Leck

www.degruyter.com

mailto:wmiles@stetson.edu
http://dnb.dnb.de
www.degruyter.com

This book is dedicated to Andi and Emmy. To have them in my life is a blessing beyond
measure.

Acknowledgment

I thank William Wood and Sammi Smith for taking the time to read and edit large sec-
tions of the text. I also thank my students, Halle Block, Emily Mehigan, and Casey Ramey,
for alerting me of errors as they took the course.

https://doi.org/10.1515/9783110776645-201

https://doi.org/\global \c@doi \c@pseudochapter \relax \global \advance \c@doi \c@parttext \relax 10.1515/9783110776645-000

Contents

Acknowledgment — VII

1

2

2.1
2.2
2.3
24
2.5

3.1
3.2
33
3.4
35
3.6

4
41
4.1
412
413
4.4
415
4.2
4.2
422
43
4.4

5.1
5.2
5.2.1

5.2.2
5.3

Introduction — 1

The basic operations in Python — 3
Obtaining Python — 3
Addition, subtraction, multiplication, and division — 3
Powers — 8
Displaying output — 8
Exercises — 10

Functions — 11
Exponentials, logs, and trig functions — 11
Variables — 13
Defining and using mathematical functions — 17
Getting input from the keyboard — 19
Graphing functions — 20
Exercises — 38

Matrices, vectors, and linear systems — 41
Matrices with numpy — 41
Addition and subtraction: A + B— 44
Component-wise multiplication: A « B— 46
Component-wise division: A/B — 47
Scalar multiplication: cA — 48
Standard matrix multiplication — 49
Matrix inversion — 51
The identity matrix — 52
The inverse of a matrix — 53
Linear systems — 57
Exercises — 68

Iteration — 71
Finding roots: the bisection method — 71
Euler’s method for differential equations — 80
Systems of differential equations and higher-order differential
equations — 91
Interpolation—using the approximations — 99
Exercises — 101

X =— Contents

6 Statistics — 103

6.1 File handling — 103

6.2 Descriptive statistics — 118

6.3 Probability — 123

6.3.1 Numerical integration — 125

6.4 Confidence interval for the mean of a population — 132
6.5 Hypothesis testing — 140

6.6 Comparing groups — 147

6.6.1 Comparing means of two groups — 147
6.6.2 Comparing means of more than two groups — 152
6.7 Exercises — 157

7 Regression — 161

7.1 Linear regression — 161

7.1 Correlation — 170

7.1.2 Multiple linear regression — 171

7.2 Logistic regression — 178

7.21 Digit recognition model — 186

7.3 Neural networks — 193

7.4 Exercises — 206

A Python code — 209

Al Chapter 2 code — 209

A2 Chapter 3 code — 209

A3 Chapter 4 code — 216

A4 Chapter 5 code — 221

A5 Chapter 6 code — 228

A6 Chapter 7 code — 240

B Solutions — 249

Index — 313

Index of Python Commands — 315

1 Introduction

After years of mentoring undergraduate student research projects, it is clear that the

most popular projects are applied in nature. It is also true that most “real-world” prob-

lems can not be solved explicitly. That is, we cannot find a nice, neat formula to solve

the problem. Because of this, we must use numerical techniques to determine a close ap-

proximation to the solution of the problem of interest. These techniques often require

us to repeat a process hundreds or thousands of times in order for the approximation

to be “close enough” to the actual solution or for the approximation to evolve for the

desired length of time. In addition to such repeated processes, we also frequently need

to handle large amounts of data or manipulate large matrices in order to arrive at a

solution. To solve the types of problems that arise in math and science, we frequently

need to develop and implement an algorithm. An algorithm is the definition of a process

that is to be used in solving a problem. Generally, algorithms are presented as a list of

steps to be followed in order to arrive at a solution. In this book, we introduce some of

the fundamental ideas and methods that are used to solve scientific problems. Some of

the most frequently occurring challenges include:

— the need to locate the extreme values of a function;

— the need to solve large linear systems;

— the need to solve differential equations (or systems of differential equations);

— the need to draw conclusions about a population based on a sample (inferential
statistics);

— the need to find the “best” linear model for a set of data (linear regression); and

— the need to classify objects (logistic regression and neural networks).

Furthermore, from a mathematical standpoint, we need to be able to analyze functions,
e.g.:

— graph a function;

— find and graph the derivative of a function;

compute the definite integral of a function.

This text addresses all of these issues to some degree. The book is intended for math and
science students who have had a semester of calculus. We will approach topics from an
introductory level. Because of this, we will have to exclude much of the rich theory that
is available in the study of numerical methods. Our goal is to introduce students to the
types of methods that are available and the basic ideas that motivate these methods. In
general, there are more advanced (and more efficient) methods available than the ones
we cover. However, we seek to teach the student “how” to approach a problem within the
context of computing. If a student wishes to pursue a topic more deeply, we reference
avenues for such further study.

In order to present the techniques and methodologies, we use the Python program-
ming language. Thus, in addition to learning the numerical methods, students will also

https://doi.org/10.1515/9783110776645-001

https://doi.org/\global \c@doi \c@chapter \relax \global \advance \c@doi \c@parttext \relax 10.1515/9783110776645-000

2 =— 1 Introduction

learn how to program using Python. It is a powerful language that is available to every-
one at no cost (since it is open-sourced). The text begins by discussing some of the fun-
damental tasks that we must be able to accomplish using the programming language.
Such tasks include:

— arithmetic with Python;

— defining and graphing a function;

— manipulating matrices.

Once these fairly basic ideas are discussed in the context of the Python language (Chap-
ters 2, 3, and 4), we then move on to discuss more advanced numerical methods and
apply them in scientific settings.

Data files

The data files that are used within the text may be obtained from the following address:
https://www.degruyter.com/document/ishn/9783110776645/html

or by contacting the author at wmiles@stetson.edu.

https://www.degruyter.com/document/isbn/9783110776645/html
mailto:wmiles@stetson.edu

2 The basic operations in Python

2.1 Obtaining Python

The Python programming language may be obtained via several sources. A quick web
search will indicate many websites from which students may download and install the
language. Since there are so many possibilities, we do not attempt to define the in-
stallation process. We rely on the student to find and install the language. Students
should be sure to install a version of Python 3 because Python 2 will not be supported in
the future. For this text, we used Python version 3.8, and the reader should be aware
that the language is continually being updated, and sometimes methods and syntax
are modified or removed as new versions of the language are developed. Sites such
as Python.org and ActiveState.com have been reliable sources as of the writing of this
text (November 2022). In addition to the language, most students will find it helpful to
have a language editor. We have used PyCharm, from www.jetbrains.com, as the ed-
itor while writing the code for this book, but there are many nice editors available.
Students should install the Python language and the language editor of choice (usually,
Python is installed first, then the editor) before proceeding with the following mate-
rial.

2.2 Addition, subtraction, multiplication, and division

Once Python has been installed, our first goal is to be able to perform simple arithmetic
operations. This is relatively straightforward. So, let’s open a new file. We will use Py-
Charm as the editor, but you may choose to use a different editor. We recommend that
the editor recognize Python as the language. Features such as command highlighting
and completion and automatic indentation are very helpful.

Most of the arithmetic operations are as one might expect. For example, to add 3
and 5, we simply type ‘3 + 5’. Examples of other operations are similar:

Addition: 3+5
Subtraction: 3-5
Multiplication: 3 %5
Division: 5/3

Code:

1 # Chapter 2:
2 # 2.1,Arithmetic

3

https://doi.org/10.1515/9783110776645-002

http://Python.org
http://ActiveState.com
http://www.jetbrains.com
https://doi.org/\global \c@doi \c@chapter \relax \global \advance \c@doi \c@parttext \relax 10.1515/9783110776645-000

4 —— 2 The basic operations in Python

4« # Addition, Subtraction, Multiplication, Division

6 3+5
7 3-5
s 3%5
s 5/3

If we were to run a program with these commands, it would appear that nothing has
happened. We get the message “Process finished with exit code @.” Python actu-
ally did the operations requested, but we failed to ask to see the results. The simplest
way to see a result is to use the print command. To create the program to show these
results, we proceed as follows.

We need to write the commands in a program or script. A program is the list of
commands to be executed sequentially by the language (in this case, Python) compiler
or interpreter. There is a difference between a complied language and an interpreted
language, but, for our purposes, that difference is not of importance. We write the com-
mands in the language editor.

When we open PyCharm for the first time, we are asked to either open an existing
project or create a new one. We will create a new project called NumMethodProject. The
student can choose a different name if desired. This generates an editor window that
looks like the following.

° NumMethodProject
NumMethodProject &~ Add Configuration. Q >
Project v s -

I NumMethodProject ~/Desktop].
I Extern: es
o Scrate

¥ Project

onsoles

2. Structure

Search Everywhere Double ¢
Go to File 030

Recent Files %E

Navigation Bar 81

Drop files here to open them

% Favorites

© Problems B8 Terminal =TODO ® PythonPackages @ Python Console
C

QEventLog
Python 38

2.2 Addition, subtraction, multiplication, and division

We then create a new Python file using File — New — Python File.

NumMethodProject |

3+ o > G 8 Q0D

71 Resource Bundle
% EditorConfig File

L~ AddConfiguaton.. b 5 G M QO D

> 1l External Libraries
> Vg Scratches and Consoles

i Python unit test
i Python stub

6 —— 2 The basic operations in Python

Finally, we can type the commands in the program.

"eoe NumMethodProject - NumMethod.py
NumMethodProject (4 NumMethod.py &~ Add Configuration... Qo»
% Project v € T @ — & NumMethod.py
1 NumMethodProject 1 # Chapter 2: 2 A v
{# NumMethod.py 2 o
o 7 liExternal Libraries 3 # 2.1, Arithnetic
g > " Scratches and Consoles - “er
& # Addition, Subtraction, Multiplication, Division
- 6 print(3+5)
print(3-5)
8 print(3%5)
9 print(5/3)
]
3
£
*
© Problems B Terminal = TODO & Python Packages % Python Console QEventLog
o 101 LF_UTF-8 4spaces Python38

Now, we can run the code using the >.

YY) A% dumMethod.py
NumMethodProject = (4 NumMethod.py D L~ Add Configuration. QoP
2 i

Run. AXR 2 A v

Project v &
% I NumMethodProject
L (& NumMethod.py 2 Debug...
> Il External Libraries # Attach to Process...
> 7 Scratches and Consoles Edit Configurations...

Multiplication, Division

5. Structure

Debugging Actions >
Toggle Breakpoint >
@ View Breakpoints...

1 Import Tests from File...
Show Coverage Data...

* Favorites.

© Problems B Terminal i TODO © Python Packages @ Python Console QEventLog

IG] 101 LF UTF-8 4spaces Python3s

2.2 Addition, subtraction, multiplication, and division == 7

Then, we choose the program we wish to run.

NumMethodProject ~ NumMethod.py

NumMethodProject - 4 NumMethod.py &+ Add Configuration. Qo »
Project v €3 I T @ — i NumMethodpy
& ' NumMethodProject # Chapter 2 24a v
- NumMethod.py
o 7 liExternal Libraries
2 > "oScratches and Consoles
& # Addition, Subtraction, Multiplication, Divisio
print(3+5)
print(3-5)
print(3%5)
print(5/3)

0 £ Edit Configurations...

i
H
*
© Problems B Terminal =TODO ® Python Packages % Python Console QEvent Log
o 101 LF UTF-8 4spaces Python38 ‘W

As a result, the program runs and the output is displayed in lower frame of the edi-
tor window. The exit code of ‘0’ indicates that the program was executed (ran) with no
errors. If a code is given, then the code corresponds to a specific error condition that
indicates we need to correct our code in some way.

-

eoe NumMethodProject - NumMethod.py
NumMethodProject (4 NumMethod.py &~ NumMethod v B % Qo
§ Project v @ T F & — b NumMethodpy
* 1 NumMethodProject # Chapter 2 ~w
- NumMethod.py
o 7 lliExternal Libraries
g > " 'Scratches and Consoles
H
it print(3+5)
print(3-5)
print(3+5)
print(5/3)
Run: NumMethod o -
> /usr/local/bin/python3.8 /Users/WillHiles/Desktop/_Courses/SciComp/Sci ject
s 8
_ =2
® s
o T 1.6666666666666667
E A = - .
2 @ Process finished with exit code @
&
*
P Run| © Problems [Terminal :=TODO & Python Packages 4 Python Console QEventLog

o 101 LF UTF-8 4spaces Python3s ‘W

Screenshots are shown for this first example. However, we will list the code and the
output separately without actually showing screen shots henceforth. We can create as
many files as desired (using the same method as just shown) within the project.

8 —— 2 The basic operations in Python

Note that we can provide comments in Python by beginning the line with a # char-
acter. A comment is a line that is not executed when the program is run, but, instead,
supplies information and context to the programmer. Usually, comment lines indicate
what a program (or part of a program) is intended to do. They are very helpful in ex-
plaining the code to other programmers who may use or modify the code in the future.
If we wish to have several lines as comments, we can begin a comment block with three
single quotation marks. All lines that occur after the three quotes are considered to be
comments until another set of three quotes are encountered. Thus, the first four lines of
the preceding program (the comment lines) could also be written as follows:

11

2 Chapter 2:
3 2.1,Arithmetic

s Addition, Subtraction, Multiplication, Division

1

2.3 Powers

Powers are indicated slightly differently than we might expect. To raise a number to a
power, we use ** as the operator. Thus, 5° is expressed as 5**3.

Code:
1 print(5**3)

The output should look like this.

Output:
125

Process finished with exit code @

See Exercise 1.

2.4 Displaying output

In the previous examples, the print command was used to display the result of an opera-
tion. However, there are many times when we would like to display output in a particular
way. For example, consider the following script:

1 print(1/3)

2.4 Displaying output =— 9

Output:
0.3333333333333333

Process finished with exit code @

While the output is correct, one rarely needs one third expressed to 13 decimal places.
Thus, we wish to format the output to be more visually pleasing (without affecting the
value of the result). In addition, it is common to have multiple results that need to be
displayed.

We can modify the print statement to print more than one piece of information by
using commas between the separate items to be printed. Note, in the following example,
the first object to be printed is a literal string (i. e., a list of characters), ‘3+5 =’. The string
is printed as it appears, followed by the value of 3 + 5.

Code:
1 print('3+5 =',3+5)

Output:
3+5 = 8

Process finished with exit code @

We can format output so that it is more readable by using the .format() function within
Python. There are many options that may be applied to the .format method, but the
most common option for us is one that allows us to fix the number of decimal places to
be displayed. Suppose we wish to print 2/3 to four decimal places. We could do so with
the following code.

Code:
1 print('The value of 2/3 to four decimal places is {:.4f}. '.format(2/3))

The output is thus:

Output:
The value of 2/3 to four decimal places is 0.6667.

In this line of code, the string that we wish to display is enclosed in single quotes. The
braces, along with the colon, indicate that an argument will be supplied in the format
section, and the .4f forces the floating-point number that is generated to be displayed out
to four decimal places. We can have more than one argument. Suppose that the radius of
a circle is four. The following example prints the radius and the area of the circle, using
various format options. Recall that the area of a circle is given by A = 7r%. We use 3.14
to approximate 7.

10 — 2 The basic operations in Python

Code:
1 print('The radius is {3}, and the area is {:.3f}.'.format(4.0, 3.14%4x%x2))

Output:
The radius is 4.0, and the area is 50.240.

In this format, the value of the radius is the first value in the format list. Thus, it is as-
sociated with the first pair of braces in the string portion of the statement. The radius
is printed as given (4.0) in the format list because no format specification is included
within the braces. The area is the second value in the format list. The area is displayed
using three decimal places. We contrast this format statement with the following one to
further demonstrate the use of the .format structure.

Code:
print('The radius is {:.2f}, and the area is {:.5f}.'.format(4.0, 3.14x4x%x2))

Output:
The radius is 4.00, and the area is 50.24000.

In this case, two decimal places are displayed for the radius because the format specifica-
tions now include .2f while five decimal places are used for the area, as also stipulated.

See Exercise 2.

2.5 Exercises

1. Use Python to evaluate the following expressions:
@) 4.15-4*
1
® B+2°G6-1*
2. Recall that the volume of a sphere is given by V = %nrg’. For a sphere of radius
4.23 cm, use the format structure to output the sentence: “The radius is 4.23 and the
volume is xx.xxx.” where the volume is computed according to the formula (and

replaces the xx.xxx). Let 7 be approximated by 3.14.

3 Functions

3.1 Exponentials, logs, and trig functions

We have seen how to raise numbers to powers with the ** operator. What about calcu-
lating something like €3? There are multiple ways to do this, but each of them requires
that we ask Python to use a set of tools that is not included in the core Python language.
Such a set of tools is called a library or package. To access the package, we use the import
command. There are at least two packages that contain the tools we need to compute e*:
the math package and the numpy package. Within the math package, there is a method
or object called e that represents the number e as we know it. To access the object, we
use math.e. The import statement is used to make the package available to Python. See
the following code.

Code:

1 import math

2 print(math.e)

3 print(math.exx*3)

This will display the following:

Output:
2.718281828459045
20.085536923187664

Process finished with exit code @

So, now we have access to the value of e, and we can use it as we see fit. We can obtain
the value of €® with math.e**3. The math package also contains a method called .exp
which stands for exponential. Thus, math.exp(3) would also give us e* as shown here.

Code:

1 import math

2 print(math.e)

3 print(math.e**3)

4 print(math.exp(3))

Output:
2.718281828459045
20.085536923187664
20.085536923187668

Process finished with exit code @

https://doi.org/10.1515/9783110776645-003

https://doi.org/\global \c@doi \c@chapter \relax \global \advance \c@doi \c@parttext \relax 10.1515/9783110776645-000

12 =— 3 Functions

Alternatively, we could use a library called numpy instead of the math library. Numpy
has an method called exp that will compute ¢ with the command numpy.exp(x). Thus,
e® would be found with the following code.

Code:
1 import numpy
2 print(numpy.exp(3))

Output:
20.085536923187668

Process finished with exit code @

The log functions are similar. For example, to compute In(5), we could use either
math.log(5) or numpy.log(5), depending on which library we choose to import. Note
that, in both of these packages, “log” indicates “In” instead of the base 10 log. In our
experience, we tend to use numpy more often than the math library.

Both Numpy and the math package also provide the trigonometric functions. The
angle measures are assumed to be in radians. Suppose we wish to print a table of sine
and cosine values for the standard angles: 0, % %, g and %

Code:

1 #print a table of trig values

2 import numpy

3 print("angle [{:>5} |{:>5} [{:>5} |{:>5} |{:>5} |".format(\

4 '0','\u@3C0e/6", '\u03Co/4', '\u@3Co/3"', '\ud3Co/2"'))

s print('---————=——m——mmmm e ")

6 print("cos(x)|{:.4f3|{: . 4F3|{:.4F3|{:.4F}|{:.4f}|".format(\

7 numpy .cos (@), numpy.cos(numpy.pi/6),numpy.cos(numpy.pi/4),\
8 numpy . cos (numpy.pi/3), numpy.cos(numpy.pi/2)))

o print("sin(x) |{:.4f3|{: . 4F3[{:.4F3|{:.4F}|{:.4f}|".format(\

10 numpy.sin(@),numpy.sin(numpy.pi/6),numpy.sin(numpy.pi/4),\
n numpy . sin(numpy.pi/3),numpy.sin(nhumpy.pi/2)))

Output:

angle | 0| n/6| w4l w3 | w2

cos(x)|1.0000/06.8660]0.7071|6.5000|0.0000]
sin(x)|0.0000|0.5000/0.7071|0.8660]1.0000]

Process finished with exit code @

Figure 3.1: Table of trigonometric values.

3.2 Variables = 13

There are a few things to learn from this short code. First, line 3 makes use of a string
formatting argument to make the width of the output fixed. The notation { : >5} indicates
a string field of a width of five characters. This makes possible a vertical alignment of
the table since more lines are printed. To print the ;7 symbol, we used the code \u@3co.
The codes for the symbols may be found easily online. At the time of this writing, many
useful codes were found here:

https://pythonforundergradengineers.com/unicode-characters-in-python.html

The \ at the end of lines 3, 6, 7, 9, and 10 indicate that the command continues to the
next line. This allows for more readable code should the lines become lengthy. Finally,
one can see the numpy.sin(), numpy.cos(), and the numpy.pi methods used throughout
the code.

See Exercise 1.

3.2 Variables

When using a computer language, we need to be able to store values for future use. We
use variables to do this. In mathematics, we are accustomed to using variables like x
and y. In programming, it is common to use variable names that are more descriptive.
Variable names may not begin with a number, and, while the underscore character may
be used, most special characters are not allowed in the name. Otherwise, variables can
be named almost anything. For example, in mathematics we would tend to denote height
as a variable by using h or h(x), but, in Python (or most computer languages), one would
likely use the entire word height as the variable name. Hence, there is no confusion as
to what the variable represents. In that sense, programmers use variable and function
names in a more explicit and meaningful way than mathematicians. In this text, there
are three main types of variables used, namely,

— floating point

— integer

— string

A floating-point variable is a variable that can hold a decimal number while an integer
variable expects only a pure integer. It is important to use floating-point variables when
needed.

If a variable is assigned an integer value (no decimal point), then Python assumes
the variable is an integer variable. In Python 3, if an arithmetic operation involving
integer variables does not naturally result in an integer, the then Python will convert the
result to floating-point type. Such conversion is not true of all programming languages,
so one must be mindful of the types of variables that are being used.

https://pythonforundergradengineers.com/unicode-characters-in-python.html

14 — 3 Functions

Consider the following:

Code:

1 r =4

2 print(type(r))
3 q = 3

« print(type(a))
s a=r/q

6 print(a)

7 print(type(a))

Output:

<class 'int'>
<class 'int'>
1.3333333333333333
<class 'float'>

Note that r, g, and a are all variables in this code. We use the type command to see
what kind of contents are stored in the variable. From this, we see that, while r and q
are both integer-type variables, the result of r/q results in a non-integer. Fortunately,
Python recognizes this and assigns a to be a floating-point variable.

A variable that holds characters (or text) is called a string variable. Some example
code follows.

Code:
1 x = 'Will Miles'
2 print(x)

In this code, x holds the string Will Miles. The string must be enclosed by either single
or double quotes. When we run the code, the following output is given.

Output:
Will Miles

There are many methods that are available for use with strings. Perhaps surprisingly, we
can add strings and multiply them by counting numbers. The results of these operations
are shown via the following examples.

Code:
1 fname = 'Will’
2 1lname = 'Miles’

3 name = fname+lname
4+ print(name)

3.2 Variables =—— 15

Output:
WillMiles

Addition of strings results in the second string being attached to the end of the first
string. Such a combination is called a concatenation. Notice that no space is added be-
tween the strings that are being added. If we want a space, we could either add a space
to fname, or we could add a space explicitly in the expression:

[

name = fname + + name

Multiplying a string by a nonnegative integer creates the specified number of copies of
the string concatenated as shown next.

Code:

1 fname = 'Will'
2 name = 4*fname
3 print(name)

Output:
Willwillwillwill

Strings are officially lists of characters. Lists will be discussed in more detail later in the
text, but we can access portions of a string variable as follows. Consider the code that
follows.

Code:

1 coursename = 'Scientific Computing
2 print(coursename[3])

3 print(coursename[0:10])

4 print(coursename[11:])

[

Output:

e
Scientific
Computing

Notice that coursename[3] gives the fourth character of the string. This is because
Python begins counting at 0. When we write coursename[0:10], we are asking for a
range within the list, starting at the 0™ element and ending with the 9™ element. So,
[0:10] indicates from 0 to 10, not including 10. Similarly, coursename[11:] requests
the elements of coursename beginning with element 11 and continuing until the end of
the list (or string in this case). This colon notation allows us to access pieces of the string
or list as we wish.

16 —— 3 Functions

Another common task associated with strings is the need to find a particular string
inside of another string. This is accomplished with the . find attribute. We use the fol-
lowing structure:

variable name. find (' characters to search for')

The following code checks to see if the string ‘Comp’ is inside the string defined by
coursename. It then attempts to find the string ‘not’ inside of coursename.

Code:

1 coursename = 'Scientific Computing'’
2 a = coursename.find('Comp")

3 print(a)

4 b = coursename.find('not’)

s print(b)

Output:

11
-1

When a string is found, the index of the beginning of the substring is returned. That
is, ‘Comp’ begins at the eleventh™ element of coursename. However, if the string is not
found, the method returns a value of —1. When control structures are introduced later,
one will see how this information can be used. The . find method is case sensitive. That
is, if we were to search for ‘comp’ instead of ‘Comp’, the method would return a —1. If one
wishes to remove the case sensitivity, we could use the string method . upper to convert
the string to the upper case before searching the string.

Code:

1 #use upper case to ignore case sensitivity
2 coursename = 'Scientific Computing’

s # convert string to upper case

1+ Ucourse = coursename.upper()

s print(Ucourse, coursename)

s #search for the uppercase of 'comp’

7 a = Ucourse.find('comp’.upper())

s print(a)

Output:
SCIENTIFIC COMPUTING Scientific Computing
I

Process finished with exit code @

3.3 Defining and using mathematical functions = 17

Examining the previous code, we see that the contents of coursename are converted
to all uppercase letters in line 4. When the converted string, Ucourse, and the original
name are printed in line 5, we see that the original variable contents are unchanged.
In line 7, the uppercase string is searched for the uppercase substring. Thus, since all
letters are uppercase, there is no case sensitivity.

There are many other string methods available. Essentially, if you want to do some-
thing with strings, your first step should be to Google what you want with ‘Python’ in-
cluded in the search terms. It is likely that a method is already included among the re-
turned content.

See Exercises 2—4.

3.3 Defining and using mathematical functions

We have seen that Python has many mathematical functions (including trigonometric,
exponential, and logarithmic functions) available via the math and numpy libraries.
However, it is often the case that we would like to define our own functions and be
able to access them in a convenient fashion. We can do this in Python by using the def
structure. Suppose we wish to define and use the function f(x) = 3x* — 2x + 1. We would
begin by defining the function with the following.

Code:

1 def f(x):

2 y = 3.0%x*%2-2.0*x+1.0
3 return y

The code starts with the def command followed by the name of the function. We can
choose any name for the function. Generally, like variable names, function names tend
to indicate the purpose of the function. In this case the function name is f. Following
the function name is a list of inputs that the function will need in order to compute
its value or perform its task. In this example, the function f requires a value for x in
order to calculate the value of the function. In this example the value of the function is
stored in the variable y. Finally, we must return the value of y. The indentation after the
def declaration is important. All lines of code that are indented under the def are part
of the definition of the function. Once the indentation ends, the function is complete.
The return is required because defined functions have what is called local scope. This
means that variables and values used within the defined function are known only to
that function. Hence, if the main program refers to variables that are defined within the
function, an error will likely occur. For example, consider the following.

18 —— 3 Functions

Code:

1 #defining functions

2 X =3

3 def f(x):

4 Y = 3.0%x*%2-2.0%x+1.0
5 return y

6

7 print(y)

The program begins by defining x to be 3. The function f is then defined as before. How-
ever, when the code attempts to print y, an error is encountered.

Output:
Traceback (most recent call last):
File "/Users/WillMiles/Desktop/_Courses/SciComp/SciCompBook/BookCode/
BookCodeChap3.py”, line 75, in <module>
print(y)
NameError: name 'y' is not defined

Process finished with exit code 1

This is because the y variable that is defined in the function definition is restricted to
just that function. Hence the “mainline” program does recognize y as being a defined
variable. This local scope allows us to reuse variable names if we wish, i. e., we could
still define a variable y in the mainline without affecting the variable used inside the
function definition. Furthermore, defining x to be 3 has no meaning to the function. The
variable x is defined outside of the function definition; thus, the function does not know
the value of x.

To use (or call) the function, we use the function name and supply the necessary
arguments. For example, one can evaluate the function as usual, using f(x) notation.
For example, if we wished to know the value of f when x = 3, we would calculate f(3).
We can do this in Python as shown in the following.

Code:

1 #defining functions

2 def f(x):

3 Y = 3.0%x*%2-2.0%x+1.0
4 return y

5

sy = f(3)

7 print('f(3)=",y)

3.4 Getting input from the keyboard =— 19

The output displays as follows.

Output:
f(3)= 22.0

Process finished with exit code @

As another example to demonstrate the scope issue regarding functions, consider the
following.

Code:

1 #defining functions

2 def f(x):

3 Y = 3.0%x*%2-2.0*%x+1.0
4 return y

5

sy =10

7 print('f(3)=",f(3))
s print('y=",y)

Output:
f(3)= 22.0
y= 10

Process finished with exit code @

Notice that y is used in both the function and the mainline program. When the function
is called, it does not change the value of y that exists in the main.

See Exercises 5-6.

3.4 Getting input from the keyboard

Often, we wish to have a program ask for input from the user. For example, we may wish
to enter the value of the radius of a circle and have a Python compute the area of the
circle. We can accomplish this input via the input command. The command uses the
following syntax:

variable_name = input('prompt string')

Input is received as a string. Thus, if we wish to use the input as if it were numeric,
we must convert the string to a useable number. We can do this by simply taking the

20 — 3 Functions

input and applying the desired type to it. Consider the following code that prompts for
the radius of a circle to be entered, computes the corresponding area, and displays the
results.

Code:

1 import numpy as np

> radius_str = input('Enter the radius: ')

3 #convert the radius to a floating point value

4+ radius = float(radius_str)

s #compute the area, A = pi*r*2

6 area = np.pi*radiusx*x2

7 print('The area of a circle with radius {:.3f} cm is {:.3f}\
8 square cm'.format(radius, area))

The prompt is issued in line 2 of this code, and the number that is entered (as a string
by default) is converted to a floating-point variable in line 4. There are some issues that
we should recognize in this small code. First, if the user enters something other than a
number, an error is likely to occur in line 4 when it tries to convert the entered text into
a number. There are ways to check to see if the input is valid, but we will not address
that at this time. For our purpose, we wish to develop code that will help us to solve
problems. Hence, we simply recognize that we need to be careful when entering data.
Also, in line 1, notice that numpy was imported as np. This allows us to type np instead
of numpy when we access elements of the numpy package, as we did in line 6. A sample
output is given in the following.

Output:
Enter the radius: 4.2
The area of a circle with radius 4.200 cm is 55.418 square cm

Process finished with exit code @

See Exercises 7-8.

3.5 Graphing functions

In order to work with functions we frequently wish to see the graph. Thus, we turn
our attention to the task of producing graphs of functions using Python. To do this, we
make a list of x values and use the defined function to compute the corresponding list
of y values. We use another library called matplotlib to generate the graph. The plotting
methods are in a sub-module of matplotlib called pyplot. Hence, we can import just that
part of the library to save some memory and to reduce the amount of typing needed to
call up the methods.

3.5 Graphing functions =— 21

To make a list of x values, Python offers several alternatives. The standard list (or
array) is simply a list of items enclosed in square brackets and separated by commas.
In the following code, x and y are both standard lists in Python. Note that x is a list of
integers, while y is a list of mixed type: some integers, a floating-point number, and a
three strings.

Code:

1 #Python lists

» x = [1,2,3,4]

3 print('x=",x)

¢« y=1[1,"a",3.14,'c’,'will’]
s print('y=",y)

When the code is run, the following is displayed.

Output:
x= [1, 2, 3, 4]
y=[1, 'a', 3.14, 'c', 'will']

Process finished with exit code @

Just as we did with strings, we can access lists using square brackets. So, x[1] will be 2
(again, because Python begins counting at 0), and y[4] = ‘will’. We can also use the colon
notation to access parts of the lists as we previously did with strings.

So, suppose we wish to plot the function f(x) = x? between x = 0 and x = 5. To do
this in Python, we need a list of x values and a corresponding list of y values. So, let’s
define the list for x to be

x = [0,1,2,3,4,5].
Then the corresponding list for y would be
y = [0,1,4,9,16,25].

Now we want to plot these points and connect them. This is where we will use the mat-
plotlib package. The code to plot the points follows.

Code:

1 #graphing functions

> import matplotlib.pyplot as plt
s x = [0,1,2,3,4,5]

« y=1[0,1,4,9,16,25]

22 —— 3 Functions

s plt.plot(x,y)
s plt.show()

In line 1, we import the plotting functions that are included in the matplotlib package.
Notice that we imported the desired module and named it p1t. This allows us to refer
to the library using this abbreviated name, saving us some typing. Lines 2 and 3 define
the points that are on the graph of the function to be plotted. Line 4 actually creates the
plot but does not display the plot. Finally, line 5 shows the plot. In lines 4 and 5, the ‘plt’
references the library of plotting functions that was imported. We use the dot notation
to indicate which method from that library we wish to use. When this is run, we should
see the following plot.

25 A

20 A

154

101

It is important to remember to include the plt.show(). Without it, it will appear that
nothing has been calculated. We can also include many other attributes of a graph. We
can place titles on the axes or on the entire graph, we can change the plotting style, and
we can add a grid if desired. Consider the code below.

Code:

1 #graphing functions

2 import matplotlib.pyplot as plt

s x = [0,1,2,3,4,5]

.y =1[0,1,4,9,16,25]

s plt.plot(x,y, 'b*-",6label="f(x)=x"2")
6 plt.xlabel(’'x-axis"')

7 plt.ylabel('y-axis')

3.5 Graphing functions =— 23

s plt.title('Big Title')
s plt.grid()
0 plt.show()

The code should generate the plot that follows.

Output:

Big Title

251

201

15 A

y-axis

10 A

X-axis

There are many new attributes included in the previous code. In line 5, some plotting
options are included in the plot command. The string 'bx-' is a called a format string
and indicates that a blue line is to be used to connect data points. Further, the actual
data points are to be marked with an asterisk. The label attribute in line 5 allows one
to apply a description, f(x) = x*2, to this plot so that we can include a legend if desired.
Lines 6 and 7 indicate how to add axis titles to the plot, and line 8 allows for an overall
title. Finally, line 9 displays a graphing grid for the plot.

We can also include another plot on the same set of axes and add a legend to the
graph. Suppose we wish to add a graph of the derivative f'(x) = 2x to the current
plot. We can use the same list of x values, but we will need a new list of y values. In
the following code, we use z to store the list of y values that corresponds to 2x. Thus,
z=[0,2,4,6,8,10]. Then, another plot command is executed.

Code:

1 #graphing functions

2 import matplotlib.pyplot as plt
s x = [0,1,2,3,4,5]

24 — 3 Functions

+ y=1[0,1,4,9,16,25]

s z =[0,2,4,6,8,10]

s plt.plot(x,y, 'bx-" label="f(x)=x"2")

7 plt.xlabel(’'x-axis"')

s plt.ylabel('y-axis')

s plt.title('Big Title')

0 plt.grid()

n plt.plot(x,z, 'b--",label="f"(x)=2x",c='0.45")
2z plt.legend()

13 plt.show()

And the graph now looks like the following.

Big Title

y-axis

In line 11, we used another kind of color attribute. The attribute c='0.45" allows us to
plot in a gray scale. The variable c can take on any number between 0 and 1 where 0
implies the color is black and 1 is white. Values in between set the color to a level of
gray accordingly. Thus, the curve is to be plotted in a shade of gray using a dashed line
with no data markers. The legend is placed in line 12. A full list of plotting options can
be found in the documentation for matplotlib:

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html

See Exercises 9-10.

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html

3.5 Graphing functions =— 25

While the previous example is successful in plotting y = x* between x = 0 and
x =5, the graph has noticeable corners, and we had to manually type in all of the points
instead of using the actual function to calculate the y values. Thus, we’d like to find a way
to include a great many more points on the graph (so that the graph is smoother), and
we want to define the function and use it within Python instead of calculating values
by hand. Suppose we would like to use x values that are spaced 0.1 units apart. So, we
would have a list that looks like

x=10,01,02,03,...,5].

We could type the list of 51 numbers, but that kind of defeats the purpose of using a
computer. Fortunately, the numpy library includes a method that will do exactly this. We
can generate a numpy list using a method called arange(start, stop, step). The method
takes three arguments:

— start: the first number in the desired range of numbers;

— stop: the number at which the list will end (it is not included in the list);

— step: the interval between each pair of numbers in the list

Consider the following code.

Code:

1 import numpy as np

2 X = np.arange(0,5,1)
3 print('x=",x)

In line 1, we import the numpy library as np. We then assign a list of values to x, starting
with 0, ending at 5, separated by 1. However, note that 5 is not included. The program
produces what looks like this.

Output:
x= [0 1 2 3 4]

Process finished with exit code @

If we wanted 5 to be included in the list, then the “end” value would have to be larger
than 5. Let’s change 5 to 5.1. Now x is as shown below.

Output:
x=[0. 1. 2. 3. 4. 5.]

Process finished with exit code @

26 = 3 Functions

Now, 5isincluded in the list. Also, decimal points have now been used in all the numbers.
That’s because, when the Python interpreter encountered “5.1,” it assumed that floating-
point numbers were now allowed and expected.

So, to get our list of 51 points between 0 and 5, we would need
x = np.arange(0,5.1,0.1). In general, if we wish to construct a list that starts with a
and ends with b (including b) with a step of dx, then we should add the step size to the
end value. So, the command would look like this:

X = np.arange(a,b+dx,dx)

Now we wish to fill another list with the associated y values. To do so, we can define the
function of interest and use it to evaluate the function at all of the values in the x list.
The code to do this is given next.

Code:

1 import numpy as np
2 def f(x):

3 y = X*%2

4 return y

6 X = np.arange(9,5.1,0.1)
7 print('x=",x)

sy = f(x)

s print('y=",y)

While we can define functions almost anywhere in the code, it is common to put function
definitions at the top of the code. That way, we can be sure that all the functions are
defined before the logic of the program begins. Lines 24 define the function f(x) = x°.
Line 6 sets up the list of x values, and line 7 prints the list. We will want to eliminate the
print statement once we know things are working because the list is long and uses many
lines to display. In line 8, the list of associated y values is constructed. Note that we use
the defined function f(x) to evaluate x* for all of the x values at once. Line 9 prints the
list of y values just to make sure the list is filled correctly. Again, we will eliminate the
print statement in the future. When the code is run, the following is generated.

Output:
x=[0. 0.1 0.20.30.40.50.60.70.80.91. 1.11.21.31.41.51.6

1.71.81.92. 2.12.22.32.4252.62.72.82.93. 3.13.23.33.4
3.53.63.73.83.94. 4.14.24.34.44.54.64.74.84.95. 1]
= [0.000e+00 1.000e-02 4.000e-02 9.000e-02 1.600e-01 2.500e-01 3.600e-01

N

.900e-01 6.400e-01 8.100e-01 1.000e+00 1.210e+00 1.440e+00 1.690e+00
.960e+00 2.250e+00 2.560e+00 2.890e+00 3.240e+00 3.610e+00 4.000e+00
.410e+00 4.840e+00 5.290e+00 5.760e+00 6.250e+00 6.760e+00 7.290e+00
.840e+00 8.410e+00 9.000e+00 9.610e+00 1.024e+01 1.089e+01 1.156e+01

~N s~ =

3.5 Graphing functions =— 27

1.225e+01 1.296e+01 1.369e+01 1.444e+01 1.521e+01 1.600e+01 1.681e+01
1.764e+01 1.849%e+01 1.936e+01 2.025e+01 2.116e+01 2.209e+01 2.304e+01
2.401e+01 2.500e+01]

Process finished with exit code @

By inspection, we see that the values for the y list are, in fact, the squares of the values
in the x list. Hence, the function is working correctly. So, we now have 51 paired x and
y values. In this fashion, we could build lists with as many points as desired. The reader
is encouraged to modify the code to build a list of 100 points.

Note that numpy may use scientific notation to print numbers that are generated by
floating- point arithmetic. Personally, I do not like this, so I frequently change the default
print option with the following command:

np.set_printoptions(precision=3, suppress=1,floatmode="'fixed")

The precision=3 argument indicates that three decimal places are displayed. The sup-
press=1 argument suppresses the use of scientific notation, and the floatmode="fixed’ op-
tion causes all numbers to display all decimal places, even if there are redundant zeros.
You do not need this command. I use it because I do not like the look of scientific nota-
tion, especially if the numbers are not that big.

Okay, now we can plot the function the same way we did earlier, using the matplotlib
functions with the x and y lists.

Code:

1 import numpy as np

2 import matplotlib.pyplot as plt

3 np.set_printoptions(precision=3,suppress=1,floatmode='fixed")
4 def f(x):

5 y = X*%2

6 return y

8 X = np.arange(0,5.1,0.1)
9y = f(x)

0w plt.plot(x,y)

n plt.xlabel('x-axis')

2 plt.ylabel('y-axis')

3 plt.title('f(x) = x*2")
u plt.grid()

15 plt.show()

28 =—— 3 Functions

We can see that the resulting graph is much smoother than the previous graph.

f(x) = x"~2

25 A

20 A

15 A
0
=
©
>

10 1

5 -

0 -

0 1 2 3 4 5
X-axis

We should also note that the figure window that is generated by matplotlib is an inter-
active window. We can save the graph to a file or edit portions of the graph as indicated
by the tool bar at the bottom of the plot. Finally, we may want to plot multiple graphs in
separate windows. We use the . figure() method to accomplish this. In the following
code, we plot f(x) = x* in one window and g(x) = sin(x) in a second window. See the
modified code that follows.

Code:

1 import numpy as np

2 import matplotlib.pyplot as plt

3 np.set_printoptions(precision=3,suppress=1,floatmode='fixed")

¢ def f(x):
5 y = X*%2
6 return y

8 X = np.arange(0,5.1,0.1)
sy = f(x)

0z = np.sin(x)

n plt.plot(x,y)

2 plt.grid()

13 plt.figure()

u plt.plot(x,z)

3.5 Graphing functions =— 29

s plt.grid()
s plt.show()

When this code is executed, two figure windows are produced: one shows y = x%; one
shows y = sin(x).

LX) Figure 1 eove Figure 2

0 1 2 3 a 5 | 0 1 2 3 4 5

Aa€er+Q=m A€IPQE=R

We now look at how to plot piecewise functions. Suppose we wish to graph the following
function:

o0 = {xz ifx<0

x+1 ifx>0

To define this function, we must be able to make decisions based on the value of x. In
Python (and other programming languages), we do this with the if structure. The general
form of the if structure is:
if condition:

do these statements if condition is true

executable statements
else:

do these statements if condition is not true
executable statements

The indentation is important because it indicates the blocks of code to be done depend-
ing on the result of the condition. For the function of interest, we would want a structure
like the following.

Code:

1 #our first if statement

2 #first get an x value

3 x = float(input('Enter an x value: '))
1+ #logic of the piecewise function

30 — 3 Functions

s if x<=0: #the condition is x<=0
6 y = X*%2 #condition is true

7 else: #otherwise

8 y = x+1 #condition is false

9 print('f{3}) = {3'.format(x,y))

Let’s step through this. Lines 1 and 2 are comment lines. Python knows this because of
the # at the beginning of the lines. Comments are not executed. They are there to help
us explain to others what the code is doing. Line 3 allows the user to input a number.
The number is converted to a floating-point value and stored in the variable x. Line 5
begins the if structure by testing to see if x < 0. Note that < is denoted by <=. Suppose
the user enters —1. Then, the condition is true. Thus, line 6 is executed, and y = (—1)2 =1
Lines 7 and 8 are not executed because the condition was true. Then, line 9 is executed
to display f(-1) = 1 on the screen.

Output:

Enter and x value: -1
f(-1.0) = 1.0

Process finished with exit code 0

If we were to enter 2 for X, then, line 6 would not be executed because the condition
would be false. So, line 8 would be executed to givey = x +1=2+1=3. Try it.

Output:

Enter and x value: 2
f(2.0) = 3.0

Process finished with exit code @

When using conditions like those commonly found in if structures, we often use logical
operators to compare values. Thus, we need to know how to express the usual operators
in the Python language. The following table shows how to write each type of operator
in the appropriate way.

Logical Python
Operator Expression

IN A IV VRl
\4
Il

3.5 Graphing functions =— 31

Note that the double equals (==) is used when making a comparison, while the single
equals (=) is used to assign a value to a variable. We can include the if structure inside
of a function definition as shown in the code below.

Code:
1 # define a piecewise function using if statements
2 # in this example, we have named the function pw

3 def pw(x):

4 #logic of the piecewise function

5 if x<=0: #the condition is x<=0
6 y = Xk*2 #condition is true
7 else: #otherwise

8 y = x+1 #condition is false

9 return y

10

n oyl = pw(-1)

2 y2 = pw(2)

3 print('f{})
u print('f{3})

{}'.format(-1,y1))
{}'.format(2,y2))

Note that we must include another level of indentation to meet the requirements of the
def structure. We called the new function pw. Also, we must include a return statement
so that the value of the function can be used after it has been computed. Finally, the
function is used in lines 11 and 12 and the results are displayed by lines 13 and 14. When
executed, the program produces the following output.

Output:
f(-1) =1
f(2) =3

Process finished with exit code @

Okay, so now let’s try to plot the function between x = -2 and x = 2. We will use the
same steps that we did in previous graphing programs:

— import matplotlib.pyplot;

— define the function;

— create numpy list of x values;

— use the function to create corresponding list of y values;

— use .plot to plot the graph of the function.

So, it seems like the following should work.

32 — 3 Functions

Code:

1 import numpy as np

> import matplotlib.pyplot as plt

3 np.set_printoptions(precision=3,suppress=1,floatmode='fixed")
4+ # define a piecewise function using if statements

s # in this example, we have named the function pw

6 def pw(x):

7 #logic of the piecewise function

8 if x<=0: #the condition is x<=0
9 y = X*%2 #condition is true
10 else: #otherwise

1 y = x+1 #condition is false

12 return y

13

u a= -2

5 b =2

s n = 100

17 dx = (b—a)/n

18 X = np.arange(a,b+dx,dx)
v oy = pw(x)

o plt.plot(x,y)

a plt.show()

However, when we run this, we get the following error.

Output:
Traceback (most recent call last):
File "/Users/WillMiles/Desktop/_Courses/SciComp/SciCompBook/BookCode/
BookCodeChap3.py", line 163, in <module>
y = pw(x)
File "/Users/WillMiles/Desktop/_Courses/SciComp/SciCompBook/BookCode/
BookCodeChap3.py”, line 152, in pw
if x<=0: #the condition is x<=0
ValueError: The truth value of an array with more than one element is
ambiguous. Use a.any() or a.all()

Process finished with exit code 1

The problem occurs when we ask the function pw to compute a value for each of the
values in the x list. Once the if structure was introduced to the function, the function
no longer knows how to evaluate a distinct value for each value in the x list. The pw

3.5 Graphing functions =—— 33

function is really expecting just a single number (a scalar) as input. So when it encoun-
tered a list of numbers, the if structure was unable to perform the comparisons in an
element-by-element fashion. To address this issue, we will “vectorize” the pw function.
We create a new function that will do the element-by-element comparison with the fol-
lowing command:

vpw = np.vectorize(pw)

The function is named vpw (for vectorized pw). You can name it anything, but I tend
to just put a ‘v’ in front of the existing function’s name so that I can keep track of the
vectorized functions if I have more than one. The revised code follows.

Code:

1 import numpy as np

2 import matplotlib.pyplot as plt

s np.set_printoptions(precision=3,suppress=1,floatmode='fixed")
4+ # define a piecewise function using if statements

s # in this example, we have named the function pw

¢ def pw(x):

7 #logic of the piecewise function

8 if x<=0: #the condition is x<=0
9 y = Xk*2 #condition is true
10 else: #otherwise

1 y = x+1 #condition is false

12 return y

13 Vpw = np.vectorize(pw)

u a=-2

5 b =2

16 n = 100

17 dx = (b-a)/n

18 X = np.arange(a,b+dx,dx)
19y = vpw(x)

» plt.plot(x,y)

a plt.show()

Notice that the vectorized version of pw is formed in line 13, and line 19 has been changed
so that vpw is used instead of pw. The list of x values is created in lines 14-18. This may
look like a lot of work just to get a list of values, but structuring the list like this allows
us to enter the start and stop values easily. It also allows us to change the number of
intervals (number of points minus 1) we wish to use with ease. The spacing is calculated
by the code. So, a little extra work up front leads to more flexibility of the code in the
long run. The code now runs without error and produces the following plot.

34 — 3 Functions

4.0 A

3.5 1

3.0 A

2.5 A

2.0 A

1.5 A

1.0

0.5 4

0.0 4

T T T T T

-20 -15 -1.0 -05 0.0 0.5 1.0 15 2.0

From the plot, we can see that there are still problems with the graph at the point where
the jump discontinuity occurs (when x = 0). The graph is connected when it should dis-
play a jump from one curve to the other. One way to address this unwanted connection
is to draw the graph in separate segments, i. e., draw the x* part, and then draw the x +1
part, using appropriate lists of x values for each part. Thus, we construct a list of x val-
ues that are between -2 and 0 (including 0) and a separate list of values between 0 and
2 (excluding 0). Then, use the function to fill corresponding lists of y values. Finally, plot
each x-y pair on the same graph. The code to implement this logic is below.

Code:

1 import numpy as np

2 import matplotlib.pyplot as plt

3 np.set_printoptions(precision=3,suppress=1,floatmode='fixed")
1+ # define a piecewise function using if statements

s # in this example, we have named the function pw

¢ def pw(x):

7 #logic of the piecewise function

8 if x<=0: #the condition is x<=0
9 Yy = X*%2 #condition is true
10 else: #otherwise

1 y = x+1 #condition is false

12 return y

13 VPW = np.vectorize(pw)

u #set up the list for -2<x<=0
5 a= -2

s b =20

3.5 Graphing functions =—— 35

7 n =50

18 dx = (b-a)/n

19 X = np.arange(a,b+dx,dx)

0y = vpw(x)

a plt.plot(x,y,'b")

» #now do the second section of the function

3 a =@
u b =2
25 n = 50

% dx = (b—a)/n

2 # in this list we want to exclude the left endpoint at @

s # so we will use a start value that is slightly larger than @
2 X = np.arange(a+dx,b+dx,dx) #note, this includes 2

0y = vpw(x)

a plt.plot(x,y,'b")

» plt.grid()

3 plt.show()

The graph that is produced looks like this.

4.0 A

3.5 A

3.0 A

2.5 1

2.0 1

1.5

1.0 1

0.5 1

0.0 1

-20 -15 -1.0 -05 0.0 0.5 1.0 1.5 2.0

So, it seems that we did not fix the issue. We can see that the second part of the function
(the linear piece) seems to be fine. Itlooks like there is a small gap when x = 0 which was
accomplished in line 29 by starting the list at a+dx. So what happened in the first part of
the graph? Well, because of the way a computer does arithmetic, numbers can be off by
a very small amount, which is caused by computer rounding error. In this case, when

36 = 3 Functions

Python computed the x list, the last number in the list (which we designed to be zero)
is actually verb 1.7763568394002505e-15 . While this is really close to zero, it is slightly
greater than zero. Thus, the second part of the piecewise function was used to calculate
the y value, which results in an obvious error in the graph. To avoid this rounding error,
we can simply assign the last element of the list to be what we want it to be. The revised
code follows.

Code:

1 import numpy as np

2 import matplotlib.pyplot as plt

3 np.set_printoptions(precision=3,suppress=1,floatmode='fixed"')
4 # define a piecewise function using if statements

s # in this example, we have named the function pw

¢ def pw(x):

7 #logic of the piecewise function

8 if x<=0: #the condition is x<=0
9 y = X**%2 #condition is true
10 else: #otherwise

1 y = x+1 #condition is false

12 return y

13 VPW = np.vectorize(pw)
u #set up the list for -2<x<=0

5 a= -2

s b =20

7 n = 50

18 dx = (b-a)/n

1 X = np.arange(a,b+dx,dx) #last element may be very slightly above zero
o x[n] =b #assign the last element to be zero

a y = vpw(x)
2 plt.plot(x,y,'b")
23 #now do the second section of the function

% a==0
s b =2
% nh = 50

» dx = (b-a)/n

28 # in this list we want to exclude the left endpoint at @

9 # so we will use a start value that is slightly larger than 0@
3 X = np.arange(at+dx,b+dx,dx) #note, this includes 2

a1y = vpw(x)

2 plt.plot(x,y,'b")

3 plt.grid()

s #plt.plot(0,0,'b.’',markersize=11)

35 #plt.plot(@,1,'b.',fillstyle="none’,markersize=11)

6 plt.show()

3.5 Graphing functions =— 37

A new line 20 was inserted to force the right-hand endpoint to be x = 0. Now, the graph
looks like this.

4.0 A

3.5 A

3.0 A

2.5 1

2.0 A

1.5

1.0 1

0.5 1

0.0 1

-20 -15 -1.0 -05 0.0 0.5 1.0 1.5 2.0

This graph is usually sufficient for informative and presentation purposes, but it does
not explicitly show which part of the function is defined for x = 0. To make this clear, we
can plot a closed dot on the part of the graph that is defined and an open dot where it is
not. We use the subsequent lines to plot points at (0,0), which is defined by the function,
and (0,1) which would be an open endpoint on the function.

plt.plot(@,0,'b.’ ,markersize=11)
plt.plot(@,1,'b.’,fillstyle="none’,markersize=11)

The markersize parameter allows one to adjust the size of the point plotted. With these
lines added, the graph then looks similar to those we would expect to see in a textbook.
Finally, we should point out that the if structure can have any number of pieces
by using the elif option to add more conditional statements. For example, if we had a
piecewise function with three parts, such as
X2 ifx < -1
fOO=9x if —1<x<1
sinx ifx>1,

we could define the function as

def pw(x):
if x<-1:

38 = 3 Functions

y = X*%2
elif -1<=x<=1:

y = X
else:

y = np.sin(x)
return y

4.0 A

3.5 A

3.0 A

2.5 1

2.0 A

1.5

1.0 1

0.5 1

0.0 1

-20 -15 -1.0 =05 0.0 0.5 1.0 1.5 2.0

See Exercises 11-13.

3.6 Exercises

1. Use the print.format command and numpy package to modify the table in Figure 3.1
to include more angles and the tangent function as shown here:

angle | 0] n/6 | w4 | /3| w2 | 2n/3 | 3n/4 | Sn/6 | |
cos(x)]1.0000]/0.8660|0.7071|0.5000]/0.0000]|-0.500|-0.707|-0.866|-1.000]
sin(x)|0.0000|0.5000]|0.7071|0.8660|1.0000|0.8660|0.7071|0.5000|0.0000]|
tan(x)|0.0600|0.5774]1.0000|1.7321] undef|-1.732|-1.000|-0.577|-0.000]

2. Write code that assigns 2 to a variable called width and V5 to a variable called length.
Then, use a third variable called area to store the area of a rectangle with the spec-
ified length and width. Use print.format to display the result as follows: The area of
a box with width xx.xx and length xx.xx is Xx.xxX, where the xx’s are replaced with
the appropriate values.

10.

11.

3.6 Exercises = 39

Write code to store the string ‘Albert’ in a variable called firstname. Then store the

string ‘Einstein’ into a variable called lastname. Create a third variable called full-

name. Use the variables and string operations to assign ‘Einstein, Albert’ to the vari-

able fullname. Print the value of all three variables.

Assign the following string to a variable called basetext: ‘Force is equal to the prod-

uct of mass and acceleration.’

(a) Search basetext for the substring ‘mass’. Print the result.

(b) Using the: notation, print just the word ‘mass’ from basetext.

(c) Using the: notation, print the string beginning with the word ‘product’ through
the end of the string.

Write code to accomplish the following tasks:

(a) Define the function height(t) = ~16t% + 3t + 100.

(b) Evaluate the function at t = 2.

(c) Output the following to the screen: The value of height at t = 2 is xx.xxx. (Use
three decimal places in the format of the print statement.)

The body mass index is calculated according to the formula %, where weight is

in kg and height is in m. Write code to define a function called bmi that takes two

arguments, height and weight, and returns the body mass index. Use the function to

compute the body mass index of a person who is 1.7-m tall and weighs 68 kg. Print

the result as follows: ‘A person who is x.x m tall and weighs xx kg has a BMI of xx.xx.’

Write code to accomplish the following:

(@) Prompt the user for their weight in kg.

(b) Prompt the user for their height in m.

(c) Convert the weight and height that were entered to numeric values.

(d) Use the bmi function written in the previous problem to compute the BMI for
the data entered.

(e) Display the results in a meaningful message.

Modify the area example at the end of Section 3.4 so that the area is defined as a

function with the radius as the argument of the function.

Use Python to plot the function f(x) = cos(x) between x = 0 and x = 27.

(a) Create alist containing the following x values: 0, 7, 7, %T”, : %, 37” %”,

(b) Compute the corresponding y values for the given x values.

(c) Use the format string ‘go:” in the plot statement.

Add the graph of g(x) = sin(x) to the graph in Problem 9.

(a) Draw g(x) using a solid black line.

(b) Include alegend that clearly identifies each function.

(c) Include a grid in the plot.

(d) Label the x axis with X’

An object is thrown from the top of a 100-ft tall building. The height of the object

above the ground after t seconds is given by h(t) = —16¢> + 10¢ + 100.

(a) Atwhat time will the object hit the ground?

21,

40 — 3 Functions

12.

13.

(b) Graph this function for 0 < t < b, where b is your answer to part (a). Use at least
50 points and include axis labels and a grid.

Suppose that a particular bacterial population grows exponentially for the first

three hours and, then, because of environmental restrictions, the growth shifts to a

rational function. Thus, the population of the bacteria is given by

el ifo<t<3
P(0) = 1 sps614643 ift>3

t+5
(@) Graph the population function on the interval 0 < ¢t < 20.
(b) Does it appear that the function is continuous?
(c) If we want the function to be smooth, what might we require?
X2 ifx<-1
Graph the function f(x) = {x if -1<x <1 on the interval [-2,3]. Use at least
sinx ifx>1
100 points. Include closed/open circles where appropriate.

4 Matrices, vectors, and linear systems

Our next topic deals with solving systems of linear equations. This should not be a new
mathematical topic for students, but we wish to develop methods to solve these systems
via programming. In the sciences, we often encounter large linear systems so employing
computerized methods is a necessity. Before we begin the topic in earnest, we present
some of the machinery and operations that apply to matrices and vectors in Python.

4.1 Matrices with numpy

A matrix is simply a rectangular array of numbers. The shape or size of a matrix is given
by indicating the number of rows and columns contained in the matrix. For example,
we say a matrix with three rows and four columns is 3 by 4 or 3 x 4. In mathematics, we
enclose the array within square brackets. So, if

Ao 1 2 3 4 ,
-2 4 -3 5

then A is a 2 x 4 matrix. A matrix with the same number of rows as columns is called
square. The individual entries are denoted by row and column as A(row, col). Hence,
A(2,4) = Ay, = 5. Sometimes, the corresponding lower case letters are used, and the
comma notation is compressed. For example, we might write A(2,4) = ay, = 5. We will
use the numpy library to do all of our matrix handling. The first step is to create a ma-
trix with the desired numerical entries. In Python (and most programming languages) a
matrix is simply a two-dimensional list (array)—a list of lists. If the matrix is relatively
small, we can create the matrix explicitly with the desired values within the matrix. The
following code shows one way to create a matrix, as well as some ways to access the
entries of a matrix.

Code:

1 import numpy as np

2 #create the matrix

s A =np.array([[1,2,3,4],[-2,4,-3,51,[-1,3,-3,4]11)
4 print('A =")

s print(A)

¢ #access the second row, third column

7 a23 = A[1,2]

s print('The value in the second row, third column is ',a23)
9 #find the size of the matrix

1 m,n = np.shape(A)

n print('rows = {}. cols = {}'.format(m,n))

https://doi.org/10.1515/9783110776645-004

https://doi.org/\global \c@doi \c@chapter \relax \global \advance \c@doi \c@parttext \relax 10.1515/9783110776645-000

42 —— 4 Matrices, vectors, and linear systems

1 #get the third row of the matrix

13 Arow3 = A[2,:]

4 print('The third row is ',Arow3)

15 #get the second column of the matrix
s Acol2 = A[:,1]

v print('The second column is ',Acol2)

Output:

A =

[C1 2 3 4]
[-2 4 -3 5]

[-1 3 -3 4]]
The value in the second row, third column is -3
rows = 3. cols = 4
The third row is [-1 3 -3 4]
The second column is [2 4 3]

Process finished with exit code @

The matrix is created in line 3 with the . array method. In line 7, we show how to access
individual elements of the matrix, using the square brackets. The row is the first index,
the column is the second index (remember, Python starts counting at 0). We can also use
the’” notation as we did with strings to access certain parts of the matrix. We can access
all or part of any row or column. Lines 13 and 16 show how to access a certain row and
column, respectively.

There are times when we may wish to retain the original matrix. Thus, we make a
copy of the original, make changes to the copy, and then refer back to the original. We
must be careful when we do this because matrices are said to be immutable. So using
the ‘=’ to make the copy may not act as you expect. See the following code and output.

Code:

1 import numpy as np

2 #create the matrix

s A =np.array([[1,2,3,4],[-2,4,-3,5],[-1,3,-3,411)
4 print('A=")

s print(A)

¢ #show that matrices are immutable
7 B =A

s #change B

s B[0,0] =2

10 #show that A was also changed.

1

print('A = ")

2 print(A)

Output:

A =

[C1 2 3 4]
[-2 4 -3 5]
[-1 3 -3 4]]

A =

[[2 2 3 4]
[-2 4 -3 5]
[-1 3 -3 4]]

Process finished with exit code @

4.1 Matrices with numpy =— 43

Note that A[0, 0] is originally set to be 1. The matrix B is set equal to A, and then B[0, 0]
is changed to be 2. However, when we print A again, we see that A[0, 0] is now also 2.
So changing B also changed A. This is because, when we say that A = a matrix, it re-
ally means that A points to a location in memory where the matrix is stored. So, when
B = A, Python sets B to point to same location in memory. Thus, if one of the variables
is changed, then both of them are modified because they are both pointing to same lo-
cation. We can accomplish what we need by asking for a ‘hard’ copy. We do so with the
.copy method.

Code:

1

import numpy as np
#create the matrix

A = np.array([[1,2,3,4]1,[-2,4,-3,5]1,[-1,3,-3,4]1)

print('Original A = ")

print(A)

#show that matrices are immutable
B = A.copy()

#change B

B[0,0] = 2

#show that A was also changed.

print('A after B has been changed =")

print(A)
print('B after the change =')
print(B)

Output:

Original A =

44 — 4 Matrices, vectors, and linear systems

[L1 2 3 4]
[-2 4 -3 5]
[-1 3 -3 4]]
A after B has been changed =
[L1 2 3 4]
[-2 4 -3 5]
[-1 3 -3 4]]
B after the change =
[[2 2 3 4]
[-2 4 -3 5]
[-1 3 -3 4]]
Process finished with exit code @

So, when we use A. copy and assign it to B, then we can change B without affecting A.
Let’s investigate some of the other operators with respect to matrices. We want to
see what +, —, ¥ and / do when we have matrices as the variables.

4.1.1 Addition and subtraction: A + B

We begin with addition and subtraction of A and B.

Code:
1 import numpy as np

2 #create the matrix
3 A =np.array([[1,2],[3,411)

4+ B = np.array([[-1,3],[2,-511)
s print('A =")

6 print(A)

7 print('B =")

s print(B)

9 #add two matrices
0 print('A+B = ")

n print(A+B)

2 #subtract B from A
3 print('A-B = ")

1 print(A-B)

Output:
A =
[0 2]

[3 411
B

(-1 31
[2 -5]1]
A+B =

(L o 5]
[5-1]1]
A-B =

(L 2 -1]
L1 9]1]

Process finished with exit code @

4.1 Matrices with numpy = 45

A+ B creates a new matrix in which the corresponding elements of A and B are summed.
Likewise A—B subtracts each element of B from the corresponding element in A. Because
of the use of corresponding elements, A and B should be the same size in order to be able
to add or subtract them. However, Python allows addition and subtraction of different-
sized matrices in some circumstances. For example, the following code adds a 2x2 matrix
to alx 2 matrix.

Code:

1

This produces the following output.

import numpy as np
#create the matrix

A = np.array([[1,2],[3,41])

B = np.array([[-1,3]11)

print('A =")
print(A)
print('B =")
print(B)

#add two matrices
print('A+B = ")
print (A+B)
#subtract B from A
print('A-B = ")
print(A-B)

Output:

A =

L 21

[3 4]1]

46 —— 4 Matrices, vectors, and linear systems

B

-1 311
A+B =
[[e 5]

[2 711
A-B =
(2 -11

L4 11]

Process finished with exit code @

Because the number of columns in B was the same as that in A, the columns of B were
added/subtracted to each of the rows of A. While we may find occasion to take advantage
of this capability, it is generally bad practice, mathematically, to add or subtract matrices
of different sizes.

4.1.2 Component-wise multiplication: A « B

We now investigate what happens when we use the multiplication symbol.

Code:

1

import numpy as np
#create the matrix
A = np.array([[1,2],[3,411)

B = np.array([[-1,3]1,[2,-511)
print('A =")

print(A)

print('B =")

print(B)

#component-wise multiplication
print('A*xB = ")
print (AxB)

Output:
A =

[[1 2]
[3 411
B =

[[-1 3]
[2 -5]]
A*B =

4.1 Matrices with numpy = 47

(L -1 6]
[6 -201]

Process finished with exit code @

For those that have already learned how to multiply matrices, it is clear that, in Python,
A = B does not yield the usual matrix product. We will discuss usual matrix multipli-
cation later. The multiplication that is demonstrated here is called component-wise (or
element-wise) multiplication. Each element of the resulting matrix is the product of the
corresponding elements in A and B, i.e., if C = A * B, the C[i,j] = A[i,j] = B[i,j]. Again,
this should require that A and B be the same size, but Python allows the same kinds of
scenarios that are allowed with addition and subtraction.

4.1.3 Component-wise division: A/B
If we change the “ to ‘/ in the previous code, the following appears.

Output:

A =

[0 21

[3 4]1]

B =

(-1 3]

[2 -51]

A/B =

CL-1. 0.66666667]
L 1.5 -0.8 1]

Process finished with exit code @

This demonstrates component-wise division, where Cl-]- = Al-j/Bij.

As before, we see that Python defaults to displaying eight decimal places. This can
make the display of larger matrices difficult to read. As we did in Section 3.5, we can
set global printing options for matrices that restrict the number of decimals shown. The
command has the following form:

np.set_printoptions(precision=3, suppress=1,floatmode="'fixed")

Setting these global options modifies the display of the previous matrices to appear as
follows.

48

= 4 Matrices, vectors, and linear systems

Output:
A =

N
[3

2]
4]]

B =

Lt-
L

1 3]
2 -5]1]

A/B =

-
L

1.000 0.667]
1.500 -0.800]]

Process finished with exit code @

Notice that the final matrix entries display only three decimal places, but the first two
matrices display integers. If any entry of the matrix is a floating-point number, then all
entries are displayed with the designated precision.

41.

We

4 Scalar multiplication: cA

now consider multiplying a matrix by a number. Suppose we have a matrix A. If we

multiply A by a real number; ¢, then we simply multiply all entries of A by c.

Code:

1

2

import numpy as np

np.set_printoptions(precision=3, suppress=1,floatmode='fixed")
#create the matrix

A = np.array([[1,2,3]1,01,4,2],[2,-1,31])

print('A =")

print(A)

#scalar multiplication

#multiply A by 3

print('3A = ")

print(3*A)

Output:

A =
L
L
L
3A
L

1
1 4 2]
2 -1 3]]

4.1 Matrices with numpy =— 49

[312 6]
[6 -3 9]1]

Process finished with exit code @

So, multiplying a matrix by a number, c, scales the matrix by a factor of c. Thus, we call
¢ a scalar, and we call this type of multiplication scalar multiplication.

4.1.5 Standard matrix multiplication

For those that have had linear algebra, the following section will not be new, but we
need to spend some time developing a means of multiplying two matrices in such a
way that the result is consistent with other mathematical principles. We are now famil-
iar with component-wise multiplication, but mathematics provides a more meaningful
definition of AB, provided that the two matrices are appropriately sized. To make our
discussion more concise, we begin by defining some terms to be used later. A row vector
is a matrix that has one row and a finite number of columns. If a matrix has three rows,
then we could think of it as being composed of three row vectors. Likewise, a column
vector is a matrix with a finite number of rows and one column. Thus, an example of a
row vector is

v=[1 3 -2 8 51,

while a column vector would be something like

In this example, vis 1 x 5, and s is 5 x 1. When the context is clear, we frequently drop
the ‘row’ or ‘column’ designation and call either of them a vector. Further, when vectors
are used, there is no need for the double-indexed notation. Hence, v; would denote first
element of v, v, the second element, and so forth. The dot product between two vectors
is defined as follows:

Leta=[a; a, ... a,]andb = [by b, ... b,]. The dot product of a and b is

a-b=aqb +ab,+---+a,b,.

Written with summation notation, we have

50 — 4 Matrices, vectors, and linear systems

n
a-b= z aibl’.
i=1
Also, either of a or b could be a column vector, and the definition would not change.

Example. Leta=[13-285]andb =[1-24 -6 4]. Then

a-b=DD +@)(-2)+ (-2)(4) + (8)(=6) + (5)(4)
=1+ (-6) + (-8) + (-48) + (20)
=-41

With these concepts and terms, we can now define standard matrix multiplication.
Let A be an m x n matrix, and let B be an n x k matrix. Then AB is an m x k matrix such
that AB(r, ¢) is equal to the dot product of row r of A and column c of B. That is,

A(r,c)=A,.-B.,.

Example. LetA=[132 %]andB = [(1)3 zzx] Then,

AB = [1(1) + 2(0) + 3(-3) 1(2) + 2(4) + 3(2)
(D) +2(0) + (-3)(=3) (-1)(2) +2(4) + (-3)(2)
-8 16
B [8 0] '

Let Abe m x n and B be n x k. Then, AB has the following properties:

— The number of rows in B must equal the number of columns in A. Otherwise the
multiplication is not defined.

— The order of A and B matters, that is, AB does not necessarily equal BA. In fact,
sometimes one or the other is not defined.

— The matrix that results from the product AB has as many rows as A and as many
columns as B.

Fortunately, Python has this multiplication already defined as the numpy . dot operator.
The previous example is done in Python using the following code.

Code:

1 import numpy as np

2 np.set_printoptions(precision=3,suppress=1,floatmode='fixed")
3 #create the matrix

4+ A =np.array([[1,2,3],[-1,2,-3]1])

s B = np.array([[1,2],[0,4],[-3,2]11)

6 print('A =")

4.2 Matrix inversion = 51

7 print(A)
s print('B =")
s print(B)

10 #standard matrix multiplication
n C = np.dot(A,B)

2 print('AB =")

1 print(C)

Output:
A =
(L1 2 3]
[-1 2 -31]
B =
(L1 2]
[o 4]
(-3 211
AB =
[[-8 16]
[8 o]]

Process finished with exit code @

We see in line 11 that the . dot method requires that we specify the two matrices to be
multiplied. The order of the matrices does matter because np.dot(A,B) performs AB,
while np.dot(B,A) gives BA. In the code, the product is stored in a third matrix, C.

See Exercise 1.

4.2 Matrix inversion

In our usual real number system, we know that (1)x = x for any value of x. Likewise,
for any number x # 0, we know that (}()x = 1. In more general (abstract) terms, we call
the number 1 the multiplicative identity of the real numbers. Furthermore, we call