

This page intentionally left blank

Numerical Methods of Statistics
Second Edition

This book explains how computer software is designed to perform the tasks required
for sophisticated statistical analysis. For statisticians, it examines the nitty-gritty
computational problems behind statistical methods. For mathematicians and com-
puter scientists, it looks at the application of mathematical tools to statistical prob-
lems. The first half of the book offers a basic background in numerical analysis
that emphasizes issues important to statisticians. The next several chapters cover a
broad array of statistical tools, such as maximum likelihood and nonlinear regres-
sion. The author also treats the application of numerical tools; numerical integration
and random number generation are explained in a unified manner reflecting com-
plementary views of Monte Carlo methods. Each chapter contains exercises that
range from simple questions to research problems. Most of the examples are ac-
companied by demonstration and source code available on the author’s Web site.
New in this second edition are demonstrations coded in R, as well as new sections
on linear programming and the Nelder-Mead search algorithm.

John F. Monahan is a Professor of Statistics at North Carolina State University,
where he joined the faculty in 1978 and has been a professor since 1990. His
research has appeared in numerous computational as well as statistical journals. He
is also the author of A Primer on Linear Models (2008).

CAMBRIDGE SERIES IN STATISTICAL AND PROBABILISTIC MATHEMATICS

Editorial Board
Z. Ghahramani, Department of Engineering, University of Cambridge

R. Gill, Department of Mathematics, Utrecht University
F. Kelly, Statistics Laboratory, University of Cambridge

B. D. Ripley, Department of Statistics, University of Oxford
S. Ross, Epstein Department of Industrial & Systems Engineering,

University of Southern California
M. Stein, Department of Statistics, University of Chicago

This series of high-quality upper-division textbooks and expository monographs covers all aspects of
stochastic applicable mathematics. The topics range from pure and applied statistics to probability
theory, operations research, optimization, and mathematical programming. The books contain clear
presentations of new developments in the field and also of the state of the art in classical methods.
While emphasizing rigorous treatment of theoretical methods, the books also contain applications
and discussions of new techniques made possible by advances in computational practice.

1. Bootstrap Methods and Their Application, by A. C. Davison and D. V. Hinkley
2. Markov Chains, by J. Norris
3. Asymptotic Statistics, by A. W. van der Vaart
4. Wavelet Methods for Time Series Analysis, by Donald B. Percival and Andrew T. Walden
5. Bayesian Methods, by Thomas Leonard and John S. J. Hsu
6. Empirical Processes in M-Estimation, by Sara van de Geer
7. Numerical Methods of Statistics, by John F. Monahan
8. A User’s Guide to Measure Theoretic Probability, by David Pollard
9. The Estimation and Tracking of Frequency, by B. G. Quinn and E. J. Hannan

10. Data Analysis and Graphics Using R, by John Maindonald and John Braun
11. Statistical Models, by A. C. Davison
12. Semiparametric Regression, by D. Ruppert, M. P. Wand, and R. J. Carroll
13. Exercise in Probability, by Loic Chaumont and Marc Yor
14. Statistical Analysis of Stochastic Processes in Time, by J. K. Lindsey
15. Measure Theory and Filtering, by Lakhdar Aggoun and Robert Elliott
16. Essentials of Statistical Inference, by G. A. Young and R. L. Smith
17. Elements of Distribution Theory, by Thomas A. Severini
18. Statistical Mechanics of Disordered Systems, by Anton Bovier
19. The Coordinate-Free Approach to Linear Models, by Michael J. Wichura
20. Random Graph Dynamics, by Rick Durrett
21. Networks, by Peter Whittle
22. Saddlepoint Approximations with Applications, by Ronald W. Butler
23. Applied Asymptotics, by A. R. Brazzale, A. C. Davison, and N. Reid
24. Random Networks for Communication, by Massimo Franceschetti and Ronald Meester
25. Design of Comparative Experiments, by R. A. Bailey
26. Symmetry Studies, by Marlos A. G. Viana
27. Model Selection and Model Averaging, by Gerda Claeskens and Nils Lid Hjort
28. Bayesian Nonparametrics, by Nils Lid Hjort, Peter Müller, Stephen G. Walker
29. From Finite Sample to Asymptotic Methods in Statistics, by Pranab K. Sen, Julio M. Singer, and

Antonio C. Pedroso de Lima
30. Brownian Motion, by Peter Mörters and Yuval Peres
31. Probability: Theory and Examples, fourth edition, by Rick Durrett

Numerical Methods of Statistics

Second Edition

JOHN F. MONAHAN
North Carolina State University

cambridge university press
Cambridge, New York, Melbourne, Madrid, Cape Town,

Singapore, São Paulo, Delhi, Tokyo, Mexico City

Cambridge University Press
32 Avenue of the Americas, New York, NY 10013-2473, USA

www.cambridge.org
Information on this title: www.cambridge.org/9780521139519

© Cambridge University Press 2001, 2011

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written

permission of Cambridge University Press.

First published 2001
Second edition published 2011

Printed in the United States of America

A catalog record for this publication is available from the British Library.

Library of Congress Cataloging in Publication data
Monahan, John F.

Numerical methods of statistics / John F. Monahan.
p. cm. – (Cambridge series in statistical and probabilistic mathematics)

Includes bibliographical references.
ISBN 978-0-521-19158-6

1. Mathematical statistics – Data processing. 2. Numerical analysis. I. Title.
II. Cambridge series in statistical and probabilistic mathematics.

QA276.4.M65 2001
519.5–dc21 00-031269

ISBN 978-0-521-19158-6 Hardback
ISBN 978-0-521-13951-9 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or
third-party Internet Web sites referred to in this publication and does not guarantee that any content on such
Web sites is, or will remain, accurate or appropriate.

Contents

Preface to the Second Edition page xiii
Preface to the First Edition xv

1 Algorithms and Computers 1
1.1 Introduction 1
1.2 Computers 3
1.3 Software and Computer Languages 5
1.4 Data Structures 8
1.5 Programming Practice 9
1.6 Some Comments on R 10

References 12

2 Computer Arithmetic 13
2.1 Introduction 13
2.2 Positional Number Systems 14
2.3 Fixed Point Arithmetic 17
2.4 Floating Point Representations 20
2.5 Living with Floating Point Inaccuracies 23
2.6 The Pale and Beyond 28
2.7 Conditioned Problems and Stable Algorithms 32

Programs and Demonstrations 34
Exercises 35
References 38

3 Matrices and Linear Equations 40
3.1 Introduction 40
3.2 Matrix Operations 41
3.3 Solving Triangular Systems 43
3.4 Gaussian Elimination 44
3.5 Cholesky Decomposition 50
3.6 Matrix Norms 54
3.7 Accuracy and Conditioning 55
3.8 Matrix Computations in R 60

Programs and Demonstrations 61
Exercises 63
References 65

vii

viii Contents

4 More Methods for Solving Linear Equations 67
4.1 Introduction 67
4.2 Full Elimination with Complete Pivoting 67
4.3 Banded Matrices 71
4.4 Applications to ARMA Time-Series Models 73
4.5 Toeplitz Systems 76
4.6 Sparse Matrices 80
4.7 Iterative Methods 82
4.8 Linear Programming 84

Programs and Demonstrations 87
Exercises 88
References 90

5 Regression Computations 91
5.1 Introduction 91
5.2 Condition of the Regression Problem 93
5.3 Solving the Normal Equations 96
5.4 Gram–Schmidt Orthogonalization 97
5.5 Householder Transformations 100
5.6 Householder Transformations for Least Squares 101
5.7 Givens Transformations 104
5.8 Givens Transformations for Least Squares 105
5.9 Regression Diagnostics 107
5.10 Hypothesis Tests 110
5.11 Conjugate Gradient Methods 112
5.12 Doolittle, the Sweep, and All Possible Regressions 115
5.13 Alternatives to Least Squares 118
5.14 Comments 120

Programs and Demonstrations 122
Exercises 122
References 125

6 Eigenproblems 128
6.1 Introduction 128
6.2 Theory 128
6.3 Power Methods 130
6.4 The Symmetric Eigenproblem and Tridiagonalization 133
6.5 The QR Algorithm 135
6.6 Singular Value Decomposition 137
6.7 Applications 140
6.8 Complex Singular Value Decomposition 144

Programs and Demonstrations 146
Exercises 147
References 150

Contents ix

7 Functions: Interpolation, Smoothing, and Approximation 151
7.1 Introduction 151
7.2 Interpolation 153
7.3 Interpolating Splines 156
7.4 Curve Fitting with Splines: Smoothing and Regression 159
7.5 Mathematical Approximation 163
7.6 Practical Approximation Techniques 168
7.7 Computing Probability Functions 170

Programs and Demonstrations 177
Exercises 179
References 183

8 Introduction to Optimization and Nonlinear Equations 186
8.1 Introduction 186
8.2 Safe Univariate Methods: Lattice Search, Golden Section,

and Bisection 188
8.3 Root Finding 191
8.4 First Digression: Stopping and Condition 197
8.5 Multivariate Newton’s Methods 199
8.6 Second Digression: Numerical Differentiation 200
8.7 Minimization and Nonlinear Equations 203
8.8 Condition and Scaling 208
8.9 Implementation 210
8.10 A Non-Newton Method: Nelder-Mead 211

Programs and Demonstrations 213
Exercises 214
References 217

9 Maximum Likelihood and Nonlinear Regression 219
9.1 Introduction 219
9.2 Notation and Asymptotic Theory of Maximum Likelihood 220
9.3 Information, Scoring, and Variance Estimates 226
9.4 An Extended Example 228
9.5 Concentration, Iteration, and the EM Algorithm 230
9.6 Multiple Regression in the Context of Maximum Likelihood 236
9.7 Generalized Linear Models 237
9.8 Nonlinear Regression 242
9.9 Parameterizations and Constraints 246

Programs and Demonstrations 251
Exercises 252
References 255

10 Numerical Integration and Monte Carlo Methods 257
10.1 Introduction 257
10.2 Motivating Problems 258
10.3 One-Dimensional Quadrature 264

x Contents

10.4 Numerical Integration in Two or More Variables 271
10.5 Uniform Pseudorandom Variables 278
10.6 Quasi–Monte Carlo Integration 286
10.7 Strategy and Tactics 291

Programs and Demonstrations 295
Exercises 297
References 299

11 Generating Random Variables from Other Distributions 303
11.1 Introduction 303
11.2 General Methods for Continuous Distributions 304
11.3 Algorithms for Continuous Distributions 308
11.4 General Methods for Discrete Distributions 321
11.5 Algorithms for Discrete Distributions 325
11.6 Other Randomizations 330
11.7 Accuracy in Random Number Generation 334

Programs and Demonstrations 337
Exercises 338
References 341

12 Statistical Methods for Integration and Monte Carlo 343
12.1 Introduction 343
12.2 Distribution and Density Estimation 343
12.3 Distributional Tests 350
12.4 Importance Sampling and Weighted Observations 353
12.5 Testing Importance Sampling Weights 359
12.6 Laplace Approximations 361
12.7 Randomized Quadrature 363
12.8 Spherical–Radial Methods 365

Programs and Demonstrations 370
Exercises 372
References 373

13 Markov Chain Monte Carlo Methods 375
13.1 Introduction 375
13.2 Markov Chains 377
13.3 Gibbs Sampling 378
13.4 Metropolis–Hastings Algorithm 383
13.5 Time-Series Analysis 386
13.6 Adaptive Acceptance /Rejection 390
13.7 Diagnostics 394

Programs and Demonstrations 398
Exercises 398
References 400

Contents xi

14 Sorting and Fast Algorithms 403
14.1 Introduction 403
14.2 Divide and Conquer 403
14.3 Sorting Algorithms 405
14.4 Fast Order Statistics and Related Problems 408
14.5 Fast Fourier Transform 409
14.6 Convolutions and the Chirp-z Transform 413
14.7 Statistical Applications of the FFT 415
14.8 Combinatorial Problems 425

Programs and Demonstrations 429
Exercises 433
References 436

Author Index 439

Subject Index 444

Preface to the Second Edition

In the ten years since the first edition of this book went to press, the field of statisti-
cal computing has exploded with innovations in many directions. At one time my goal
was to write a comprehensive book on the subject. At this moment, however, my goals
for a second edition must be more modest. Because the field has grown so much, the
scope of this book has now become the core for a subset of this field. To fill in some
gaps in this new core, a few sections have been added (e.g., linear programming) and
others have been expanded. Many corrections have been made; I can only hope that
just a few errors remain.

A second change in this timespan is the rapid widespread adoption of R in the field of
statistics. As language and culture shape each other, my own views on computing have
changed from teaching this material using R. Small changes scattered throughout reflect
this change in viewpoint. Additionally, most of the demonstrations and examples – all
that seemed appropriate – have been translated to R and are available on my Web site
for this book (http://www4.stat.ncsu.edu/∼monahan/nmos2/toc.html).

Thanks are due to Lauren Cowles of Cambridge University Press for encourag-
ing this second edition. Karen Chiswell deserves recognition for finding numerous
typos and providing other corrections. I would like to also thank Jerry Davis and
Wendy Meiring for pointing out others. Bruce McCullough provided invaluable feed-
back, comments, questions, and suggestions. Thanks are also due to the many students
who, perhaps unknowingly, provided feedback with their questions. And this second
edition would not be possible without the love, support, and patience of my wife Carol.

xiii

Preface to the First Edition

This book grew out of notes for my Statistical Computing course that I have been
teaching for the past 20 years at North Carolina State University. The goal of this
course is to prepare doctoral students with the computing tools needed for statistical
research, and I have augmented this core with related topics that through the years
I have found useful for colleagues and graduate students. As a result, this book covers
a wide range of computational issues, from arithmetic, numerical linear algebra, and
approximation, which are typical numerical analysis topics, to optimization and non-
linear regression, to random number generation, and finally to fast algorithms. I have
emphasized numerical techniques but restricted the scope to those regularly employed
in the field of statistics and dropped some traditional numerical analysis topics such as
differential equations. Many of the exercises in this book arose from questions posed
to me by colleagues and students.

Most of the students that I have taught come with a graduate level understanding of
statistics, no experience in numerical analysis, and little skill in a programming lan-
guage. Consequently, I cover only about half of this material in a one-semester course.
For those with a background in numerical analysis, a basic understanding of two sta-
tistical topics, regression and maximum likelihood, would be necessary.

I would advise any instructor of statistical computing not to shortchange the fun-
damental topic of arithmetic. I have found that most students resist the idea that
computers have limited precision and employ many defense mechanisms to support
that denial. Until students are comfortable with finite precision arithmetic, this psycho-
logical obstacle will cripple their understanding of scientific computation. As a result,
I urge the use of single precision arithmetic in the early part of the course and introduce
numerical linear algebra using a low-level language, even though students may even-
tually use software or languages that completely hide the calculations behind operators
and double precision. These operators will continue to be mysterious black boxes until
the fundamental concept of finite precision arithmetic is understood and accepted.

Early in this effort, I faced the dilemma of how to describe algorithms. The big pic-
ture is easier to present or to understand with pseudocode descriptions of algorithms.
But I always felt that skipping over the details was misleading the reader, especially
when the details are critical to the success of an implementation. Furthermore, there
is no better challenge to one’s understanding of a topic than to take a big-picture de-
scription and program it to the smallest detail. On the other hand, writing one’s own
implementation of an algorithm often seems like a futile reinvention of the wheel.

xv

xvi Preface to the First Edition

And so my response to this dilemma is to have it both ways: to present algorithms in
pseudocode in the text, but also to supplement the pseudocode with Fortran programs
and demonstrations on the accompanying disk.

These programs provide the basic tools for extending the realm of statistical tech-
niques beyond the bounds of current statistical software. But my primary goal in pro-
viding this code is instructional. Some exercises consist of implementing a particular
algorithm, and occasionally I have intentionally included my implementation for the
reader to compare with, or, perhaps, improve upon. I encourage the reader to examine
the details of the code and to see how the algorithms respond to changes. A secondary
goal is to include as many realistic problems as practicable, having endured the frus-
tration of failing to get code to work on anything but toy problems.

I would like to express my appreciation to the many sources of support behind this
effort. First of all, three heads of the Department of Statistics have supported my work
in statistical computing: Tom Gerig, Dan Solomon, and the late Dave Mason. Some
of the work included here is the result of collaborations with many colleagues over the
years; especially notable are Al Kinderman on random number generation and Alan
Genz on numerical integration. In particular, I would like to thank Sujit Ghosh and
Dave Dickey for contributing invaluable advice on Chapter 13. Dennis Boos deserves
special acknowledgment as a friend, colleague, and collaborator, and most importantly,
for supplying me with many interesting problems over the years. I would like to thank
all of the colleagues and students who brought interesting problems to me that have
become material in this book. Finally, I appreciate the feedback that students have
given me each semester on earlier versions of this manuscript, including their blank
stares and yawns, as well as insightful questions.

1

Algorithms and Computers

1.1 Introduction

Discussing algorithms before computers emphasizes the point that algorithms are valu-
able mathematical constructs in themselves and exist even in the absence of computers.
An algorithm is a list of instructions for the completion of a task. The best examples of
algorithms in everyday life are cooking recipes, which specify how a list of ingredients
are to be manipulated to produce a desired result. For example, consider the somewhat
trivial recipe for cooking a three-minute egg. The recipe (or algorithm) for such a task
exemplifies the need to take nothing for granted in the list of instructions.

Algorithm Three-Minute Egg
Put water in a pan.
Turn on the heat.
When the water boils, flip over the egg timer.
When the timer has run out, turn off the heat.
Pour some cold water in the pan to cool the water.
Remove egg.

Although this algorithm may appear trivial to most readers, detailed examination
further emphasizes (or belabors) how clear and unambiguous an algorithm must be.
First, the receiver of these instructions, call it the actor, must recognize all of the jar-
gon of food preparation: water, pan, egg, egg timer, boil, and so forth. The actor must
recognize constructions: “put in ”; “when , do .” Some parts of
these instructions are unnecessary: “to cool the water.” If the actor is an adult who un-
derstands English, this may be a fine algorithm. To continue to belabor the point, the
actor can only do what the instructions say. If the instructions failed to tell the actor
to put an egg in the pan (as I did in writing this), then the actor may be stuck trying in
vain to complete the last instruction.

The actor must also interpret some instructions differently in different environments.
Even if the actor is working in a standard household, “Turn on the heat” has the same
intent – but different implementations – for gas versus electric ranges. Moreover, in
some environments, the heat may never be sufficient to boil the water, or be so hot
that the water boils away in less than three minutes, and so the actor following this

1

2 Algorithms and Computers

algorithm will fail to complete the task. Lastly, if the actor is not an adult, then the in-
structions must be much more specific and must reflect foresight for contingencies that
a parent can imagine a child to encounter. This precision and foresight become even
more important when considering instructions to be given to a machine.

Knuth (1997) listed five properties that algorithms must possess:

(1) finiteness – execution can be done with finite resources;
(2) definiteness – instructions are completely defined and unambiguous;
(3) input;
(4) output;
(5) effective – the instructions can be executed (my words).

To gain a general view of algorithms, consider that every statistical procedure must
also abide by these requirements. Of course, the input is the data and the output the
decision, test result, or estimator. But the steps of a statistical procedure must be as
clearly defined, finite, and effective as any algorithm. If the desired estimator is the
sample median, then the definition of the estimator must clearly state that if the sample
size is an even number then the median is defined to be the average of the two mid-
dle values. How do you define a maximum likelihood estimator when the algorithm to
compute it fails with some positive probability? What are the properties of such an es-
timator, such as consistency, efficiency, or mean square error? A statistical procedure
is often clearly defined only by the algorithm used to compute it.

Most effective algorithms are repetitive: do these instructions and when you’re done
go back and do them again. The route of the instructions executed inspired the name
loop, and the list of instructions to be completed is the range of the loop.

Algorithm Scramble(n)

Do these statements n times:
take an egg out of the refrigerator;
crack the egg’s shell on the edge of the counter;
pull the egg apart above the bowl;
let the contents of the egg fall into the bowl;
throw the egg shell in the waste basket.

Stir egg contents in the bowl.
Pour contents of bowl into frying pan.
...

In this algorithm, the range of the loop consists of five instructions. Notice that the
number of repetitions is specified by n as an argument to the algorithm.

Iterative algorithms may use a condition to control the number of times a loop is to
be executed.

Algorithm Cup-of-Water
...

Do these statements until it’s exact:

1.2 Computers 3

if the level is above the line then pour a little water out;
if the level is below the line then pour a little water in.

...

Iterative algorithms are common and effective, but they hold the potential for danger.
In this case, an actor with great eyesight and poor hand coordination may never be able
to get the water level exactly on the line. If the condition is impossible to satisfy (in this
case, “exact” may not be possible) then the algorithm may repeat indefinitely, becoming
stuck in the black hole of computing known as an infinite loop. Good programming
practice requires that – unless it is computationally provable that the algorithm is
finite – all iterative algorithms should have a stated limit on the number of repetitions.

One personal experience may emphasize the need for care in constructing iterative
algorithms. In constructing a fast algorithm for the Hodges–Lehmann location estima-
tor (see Section 14.4), I used the average of the maximum and minimum of a set of real
numbers to partition the set. Even if the set was weird and if this average separated
only one number from the rest, the partitioning would eventually succeed at cutting
the size of the set by one each time and eventually down to one element and finish. To
my surprise, for one set of data the algorithm never finished because the algorithm was
stuck in an infinite loop. Working on a computer with base-16 arithmetic, it is possible
(see Exercise 2.9) that the computed average of max and min will be smaller than every
number in the set. The set was never made smaller and so continued until I intervened
to stop the program.

Some algorithms use a version of themselves as a subtask to complete their work
and are called recursive algorithms. Consider the following algorithm for computing
factorials.

Algorithm Factorial(n)

If n = 1 then Factorial = 1
else Factorial = n ∗ Factorial(n − 1)

Recursive algorithms are extraordinarily effective in many problems, and some of the
great breakthroughs (FFT, sorting; see Chapter 14) in computing rely on recursion. Al-
though some software and computer languages do not permit explicit recursion, clever
coding can often implement a simply stated recursive algorithm.

1.2 Computers

Many of the ideas in statistical computing originated in an era where a computer was
a person, but the world of scientific computing now looks quite different. The visible
equipment, or hardware, usually consists of a processor box, video screen, keyboard,
mouse, and connections to other devices (e.g., a printer or modem). In spite of tremen-
dous changes in computing equipment over the last thirty years, the underlying model
for computing remains unchanged. The model for computing for this book consists of
a central processing unit (CPU), memory, mass storage, and input and output devices.
The CPU is a collection of semiconductor devices that controls the unit. Memory,

4 Algorithms and Computers

usually referred to as RAM (random access memory), is so named because the time
to access (write or read) any part of it does not depend on any order – a random order
takes as long as a consistent sequence. Mass storage refers to any source of slower
memory, which may be an internal disk drive, a floppy disk, magnetic tape, or a disk
drive on the other side of the world connected by the Internet. These memory devices
are slower to access and are designed to be accessed sequentially, at least in the small
scale. Input and output devices may refer to the tangible ones – such as the keyboard,
mouse, or printer – but could also include mass storage devices.

This general-purpose computer can only earn its name through the software designed
to run it. At its furthest abstraction, software is a list of instructions to operate the ma-
chinery of a computer. The most fundamental software for a computer is its operating
system. Other software – such as word processors, spreadsheets, games, compilers,
and, yes, statistical software – are written in a very general framework and are designed
to work within the framework that the operating system provides. Whereas a user may
give instructions to a spreadsheet to add one number to another and put the sum in a
third place, the software will give instructions that may look like the following:

get the first number from memory location x and put it here;
get the second number from memory location y and put it there;
add the two numbers stored in here and there, leaving the sum here;
store the number here to the memory location z.

The software’s instructions are, in their executable form, machine-level instructions
such as fetch, store, and add, but the storage locations are only relative. The operating
system specifies the physical locations for x, y, and z, manages the list of instructions,
and coordinates the input and output devices.

Computers operate most efficiently with both the data and instructions residing in
memory. But some software, including the operating system, is very complicated and
takes an enormous amount of space to store it. Some problems, such as simulating the
weather system of the earth, have so much data that no computer has enough memory
to hold all of it. These problems are managed by the operating system through paging.
While the fundamental tools of the operating system reside permanently in memory,
other pieces of the operating system, other pieces of the software, and other pieces of
data reside in mass storage, usually an internal disk. As these pieces are needed, the
operating system swaps space with other pieces, writing pieces residing in memory in
mass storage, making room for the needed pieces in memory. Imagine a person do-
ing calculations on a desk that doesn’t have enough room for all of the pieces of paper.
When this Computor needs more space, he takes some sheets of paper off the desk to
make room and puts them in a file cabinet. When a sheet in the file cabinet is needed,
he takes something else off the desk and exchanges sheets of paper from the file cabinet
to the desk. This method allows incredibly large problems to be done with finite mem-
ory, at the cost of slower computation due to the swapping. More memory can allow
some problems to run much faster by reducing the swapping, as if the Computor’s desk
were made much bigger. Poorly written software can aggravate the situation. Prob-
lems with enormous amounts of data improperly stored may require a swap for every
computation; “spaghetti code” software can continually shift code around instead of

1.3 Software and Computer Languages 5

keeping some core routines constantly resident in memory and using compartmental-
ized auxiliary routines.

1.3 Software and Computer Languages

Most computer software is written for completing a specific task. For example, as com-
plicated as the U.S. income tax laws may be, tax preparation software can satisfy the
needs of the vast majority of citizens every April. To satisfy the statistical needs of all
scientists, however, the range of tools available extends from very specific software to
general computer languages. Many standard office products, such as word processors
and accounting software, include tools for simple statistical analysis, such as t-tests or
simple linear regression. These tools are embedded in the main product and are lim-
ited in their scope. A step more general are spreadsheets – themselves more general
than, say, accounting software in that they are designed to do a variety of mathematical
tasks – with which the user has complete control over the arrangement of the calcula-
tions. At the far end of the spectrum are computer languages. Although most computer
languages are designed to solve a great variety of problems, some languages are better
at some tasks than others.

To assess the appropriate software needs in statistics, consider first the mathematical
tools of statistics. Statistical theory may rely on calculus for maximizing likelihoods or
computing posterior probabilities, but most statistical methods can be well explained
using linear algebra. Clearly, the main computational needs in statistics are imple-
menting the tools of linear algebra. On the simple side, these are sums and sums of
squares for computing t-tests and doing simple linear regression. The more complex
needs then extend to solving systems of linear equations in positive definite matri-
ces. Derivatives are occasionally needed, but numerical approximations will suffice
for most applications. Similarly, integration is sometimes required, but often numerical
approximations are the only route. Linear algebra encompasses most of the mathemat-
ical needs for statistical applications. Even though some mathematical software can
do calculus through symbolic manipulation, most calculus needs in statistics can be
implemented numerically.

In short, any software that can do sums and inner products can do a certain level of
statistical computing. Even sophisticated statistical techniques can be implemented in
spreadsheets. Some statistical software lies at this level of sophistication for the user:
the data take the form of vectors or rows or columns, and the more sophisticated tools
operate on these. Indeed, if most of the mathematics of statistics can be written in linear
algebra, then most statistical computing can be done with software designed to ma-
nipulate vectors and matrices. Of statistical software, Minitab and SAS’s IML operate
with vectors and matrices, and have special (“canned”) routines to do more sophisti-
cated mathematical and statistical analysis beyond the view (and control) of the user.
An early computer language designed to do linear algebra is APL, which was once
quite popular in spite of its use of special symbols; its legacy can be seen in IML and R.
SAS’s DATA step also can perform many of the required linear algebraic manipulations
and then tie into canned routines for more sophisticated analyses. Both R and S-Plus are
designed to do most linear algebraic manipulations using native operations, with a few

6 Algorithms and Computers

special canned routines and a structure (objects) for doing increasingly sophisticated
manipulations. At all points along the way, there is a compromise between generality
and control in one direction and a canned, special-purpose routine in the other.

Computer languages are needed to gain the full advantage of the “general” in general-
purpose computing. These languages resemble human languages and consist of a set
of instructions with a functional syntax – perhaps not a complete one, but then few hu-
man languages have one either. The grammar of subject-predicate-object works due
to the recognizability of the structure through a complete categorizing or typing of the
pieces. In deciphering spoken or written language we can recognize the predicate as
the action word in a sequence of words, and (in English) the actor precedes the ac-
tion as the subject and the object succeeds the action. Recognizing the parts of speech
(nouns, adjectives, adverbs, etc.) limits their function in a sentence. The order of the
words describes their function; for example, the adjectives “quick” and “brown” de-
scribe the noun and subject “fox” in the following sentence:

The quick brown fox jumped over the lazy dog.

Computer languages work in much the same way: (a) words are typed; (b) the type
of a word limits its possible functions; and (c) the structure of the sentence determines
the meaning. In comparison with human languages, computer languages must be more
rigid in typing and structure, since a computer does not have the intelligence of a hu-
man. In using computer languages, an important skill is to recognize how the computer
“thinks.” Using certain rules, the computer interprets the input by parsing the text (or
code) to determine the “parts of speech” for the language. The structure of the text
then further clarifies the list of commands. Many languages parse text into four types:
operators (such as +, ∗), constants (such as 2.7, 64), reserved words, and variables.
Constructs such as “put in ” would have “put” and “in” as reserved words
(i.e., text with special meaning). Often everything that is not an operator, a constant,
or a reserved word is considered to be the name of a variable.

Once the text has been parsed, computer languages follow two routes for execution:
interpreted or compiled. Interpreted code is set up for immediate execution. If the op-
erator is (say) “norm” and the operand is a vector, then the command is to compute the
norm of the accompanying vector. In further detail, the vector is stored as data, and
the interpreted code passes the vector’s pointer to a list of instructions that computes
the norm. However, in some computer languages the code is first compiled, or trans-
lated into a single body of instructions. The difference between the two methods is a
trade-off of effort. Interpreted code is intended to be executed just once for the par-
ticular arrangement of operator and operand. For example, we may compute the norm
of a particular vector just once. Compiled code is designed to be used many times.
The language itself dictates which route will be taken. In general, languages with more
sophisticated operators will be interpreted whereas more general-purpose languages,
which operate with lower-level commands, will be compiled.

The hierarchy of languages puts the array of software into perspective. At the base
level of all computing is machine-language instructions. Only the basic steps of com-
puting are written in machine language: usually just the basic commands to start the
computer. At the next level are assembler commands. These are usually in a lan-
guage with commands that directly translate to machine commands. At the next step

1.3 Software and Computer Languages 7

are the low-level general-purpose computer languages, such as Pascal, C, Fortran,
Lisp, and Cobol. Writing at this level gains access to certain machine-level opera-
tions, but the code can be written in a style that avoids most of the repetitive steps
that assembler-language level would require. The gains with using these languages are
(a) the great generality that is available and (b) the ability to rewrite tasks in terms of
subtasks whose code can be accessed in a wide variety of other tasks. For example, a
routine can be written to compute the norm of a vector that can be used by a variety
of other routines. Once compiled, the code need never be written again and is simply
accessed by its name. The strength of these languages is this foundation of subtasks,
each one solidly written and tested, so that extensive structures can rest on these build-
ing blocks. These languages are quite general, and the same task can be written in any
of them. The reason for the variety of languages is a variety of purpose; each language
has its own features or constructs that make certain tasks easier.

At the next level of languages, the operands available are much more sophisticated
and the details are hidden from the user. Notice the clear trade-off between power and
control: more powerful constructs will limit the control of the user. If the user wants
the usual Euclidean norm of a vector, then using a higher-level language saves time
and worry about coding it correctly. However, if the user wants the p = 4 norm of a
vector then the lower-level language will be needed. The higher-level languages are
often interpreted, with the specific operands actually accessing the compiled code of a
routine written in a lower-level language. For example, R and most of SAS are written
in C.

Higher-level interpreted languages (e.g., R, SAS’s IML, and GAUSS) have some
strong advantages. Primarily, the languages are designed to operate with the same ba-
sic mathematical tools common in statistics: vectors and matrices. As a result, the code
resembles familiar mathematical analysis and is easily read and understood without
extensive documentation. Moreover, the user is seldom bothered by the details of the
more sophisticated operations: solving linear equations, computing eigenvalues, and
so on. This removes a strong distraction if these tools are soundly implemented, but it
creates severe problems if they are not or if they are pushed to their limits. The dis-
advantages follow from their one-time interpretive nature. These languages often do
not have a natural looping structure, and if looping is possible then the structures are
clumsy. The one-time operation leads to the use of extensive dynamic storage alloca-
tion – that is, in the middle of computation, more storage is needed on a temporary
basis. The problem of creating and using this temporary storage has been solved, yet
often this temporary storage cannot be fully recovered and reused. This problem is
known as “garbage collection,” and the failure to solve it adequately leads to a contin-
ual demand for memory. As a result, these languages eat up memory and sometimes
grind to a halt while trying to find more space.

As mentioned previously, many general-purpose computer languages have been writ-
ten, often designed for specific purposes. Over the years, Fortran has been the dominant
language for scientific computation. The strength of general-purpose languages lies in
the formation of building blocks of subtasks, and Fortran does this particularly well.
Fortran has often been considered an inferior language with byzantine syntax, but recent
(1990, 1995) changes in the standard have cast off its worse parts and added a few really
useful structures. The revised language now permits strong typing of variables; that is,

8 Algorithms and Computers

all variables must have their type (integer, real, character) declared. This avoids silly
errors such as misspellings and requires more disciplined coding. The use of local and
global scoping, subprogram interfaces, and variable dimension declarations obviates
any need for poor programming practices long associated with the language, such as
spaghetti coding and circumlocutions for passing arguments to subprograms.

One of the more recent advances in software design is object-oriented programming.
Instead of the traditional paradigm of flow charts, the focus is on objects, which are
fundamentally containers for data with attendant software (for operating on the data)
and communication tools (see e.g. Priestly 1997). In statistical applications, objects are
primarily collections of data. For example, in a regression scenario an object may con-
sist of the response vector y and design matrix X, as well as least-squares estimates β̂

and residuals ê.

1.4 Data Structures

Although most data in statistics are stored as vectors or matrices, a brief introduction
to some more sophisticated structures – together with some details on the more com-
mon ones – provides some perspectives on the potential tools for problem solving. The
fundamental data structure is a linear list, which is natural for storing a vector. Inter-
nally, a vector x is merely referred to by a pointer to the storage location of its first
element. Any element of the vector, say xj, is found by adding (j − 1) to the pointer
for x. Matrices (and any higher-dimensional arrays) are still stored as a linear list. In
some computer languages (e.g. Fortran), if the matrix A has dimensions m and n, then
its pointer is the location of A11 and the element Aij is stored (j − 1) ∗ n + (i − 1) lo-
cations away. As a result, A11 is next to A21, which is next to A31, . . . , Am1; then A12

through to Am2 and then A13. As you traverse the list of elements, the leftmost index
varies fastest. Higher-dimensional arrays follow the same rule. In other languages
(e.g. C), the reverse convention is followed, with the order A11, A12, . . . , A1n, A21, etc.

One type of linear list permits changes, additions, or deletions of elements only at
the end of the list or at the top of a “stack.” The most common scientific application
of stacks is for counting in nested situations. For example, if we have j nested within
i (say, days within months), then j or days are at the top of the stack and only after the
cycling through j is completed do we drop to the lower level (i or months) and make
a change there. Stacks are commonly used in computer systems to handle similar sit-
uations: nested loops or nested calls to subprograms.

Most data take the form of vectors, matrices, and other arrays; however, two other
structures are occasionally useful in scientific programming: the linked list and the
binary tree. Each element of a linked list consists of the body and pointers. The ele-
ments of a linked list are not stored in consecutive locations. The body of each element
holds the data and, in the simplest case of a singly linked list, the pointer holds the
address of the next element of the list. As a result, traversing a linked list requires
going through the list from the front to the back – there is no way of knowing where
the j th element is stored without traversing the first, second, third, to the (j − 1)th
element. So what can be gained? The biggest gain is the ability to add or delete an ele-
ment from the list without moving the body of information stored in that element of the
list; all that needs to be done is to change the pointer. For example, in order to delete

1.5 Programming Practice 9

the third element, replace the pointer to “next” in the second element with the pointer
to the fourth element (stored in “next” of the third element). To add a new element be-
tween the second and third, have “next” in the second point to the new one with the
new one’s “next” pointing to the third element. To overcome some of the problems in
traversing the list, other pointers can be added. A doubly linked list has pointers both
to the next and previous elements.

Linked lists are more commonly used in commercial applications for databases,
sorting, and information retrieval. Moreover, they also permit simple dynamic stor-
age allocation and garbage collection. Creating space means deleting elements from
a linked list called FREESPACE, and garbage collection means adding elements to
FREESPACE.

In a binary tree, elements are linked to pairs in a top-down fashion that resembles
an upside-down tree. The first element, usually named the root, is at the top of the tree
and is linked to two other elements or children (or the right and left child). These ele-
ments are then parents to the next generation of children. A special form of binary tree
known as a “heap” is used in Chapter 14 for sorting. Other forms of a binary tree arise
from time to time. A binary tree can be implemented in a fashion similar to a linked
list, as long as the tree is traversed from top to bottom. Certain types of balanced trees
can be implemented as linear lists.

1.5 Programming Practice

For whatever purpose the reader will be using this book – whether devising new sta-
tistical procedures or delving deeper into how codes for certain algorithms work – the
author has considerable advice to offer. After over thirty years of programming, in
many languages at different levels and throughout many changes in the computing en-
vironment, it is clear that the pitfalls at the interface between human and computer
have not changed.

The appropriate attitude toward programming should be a healthy skepticism. Con-
fidence in the results of a new routine can grow only from its proving itself in small
steps. The envelope of trust opens as more and more difficult problems are attempted
and successfully completed. Only after considerable successful testing does confidence
become an appropriate attitude.

All big programming problems must be broken down into small component tasks.
Then each subtask is resolutely tested until the user is confident in having established
the envelope of proven reliability for that subtask. The great advantage of higher-level
languages is that many of these subtasks have been taken care of, and only the bigger
picture remains. Nevertheless, when starting out the user should be skeptical even of
these fundamental subtasks and test them also. Testing involves creating a battery of
test problems that are appropriate for the range of usage. The first test problems should
be simple ones: there’s no need to waste time on subtle problems when the easy ones
don’t work. Subsequent test problems should include some troublesome cases to en-
sure that the program does the right thing when the problem is beyond its capabilities.
In other words, the program should unmistakably fail on an impossible task. For ex-
ample, can a routine for solving a system of linear equations recognize and properly
react when the system is singular?

10 Algorithms and Computers

Another lesson learned over many years is KISS, or “keep it simple, stupid.” The
great value of simple programs with simple, unambiguous steps is that if a mistake is
made then it will be a big one and easy to recognize. As a program becomes more
complicated, it becomes more difficult to find the “bugs” or mistakes in the code. Un-
necessary features that increase complexity and potential for error are known as “bells
and whistles”; they should be avoided until the main part of the program has been thor-
oughly tested and debugged.

The hardest lesson for this author to learn has been documenting the program – and I
am still learning. All programs should be thoroughly documented with comments. The
need for the comments follows from breaking down the large task into subtasks. As
each subtask is completed, it must be fully documented as well as tested. This allows
the programmer to then forget the details of one subtask when working on another. In
commercial settings, this permits a programming team to divide up the effort and work
in parallel. But when an error is encountered in a poorly documented program, only the
person who wrote that part of the code will know how it works and what went wrong.
In the case of a single person writing the whole thing, this means that the person who
wrote the code a month ago can’t remember how it works. Or in my case, there’s no
way I could remember what I was thinking ten or twenty years ago when writing some
poorly documented code. The only solution may be to start all over, with considerable
waste of time and energy.

The final lesson learned after many years of experience is that if you are not certain
of your results then you have absolutely nothing. Hence, the only way to be sure of
the whole task is to be sure of each piece. In working on some joint research several
years ago, I observed some simulation results that were contrary to a theorem I thought
we had proved. My colleague kept telling me that the program was wrong. Thinking
he was right and that I was at fault, I started examining more than a thousand lines of
Fortran code, looking for errors. After two weeks of checking each piece, I confidently
told my colleague that no, the program is right; I am sure of each and every piece; the
theorem must be wrong. The point is that it is possible to confidently write large pro-
grams that are entirely correct. It does take a lot of careful, disciplined checking, but
the reader should be undaunted.

1.6 Some Comments on R

In the last ten years, the software system R has spread throughout the statistics commu-
nity. Due to its flexibility and the powerful nature of its functions, a great deal of recent
statistical research has been done in R. To those for whom R is not a native language,
some of its peculiarities may not be obvious at first glance.

R and its predecessors were not designed with efficient computation as a primary
goal. The author has often heard the rationale that computers will always be getting
faster and faster with more and more storage. As a result, often multiple copies of data
are stored at one time, and certain operations have considerable overhead that would
be unthinkable with other languages or software systems. Vector/matrix operations are
natural and efficient in R; looping is not so natural, although recent versions of R show
considerable improvement.

1.6 Some Comments on R 11

One characteristic of R that may be surprising is known as coercion. R is very
comfortable at converting from one data type to another. This may take the form as
something as simple as the following code:

x <- 5
3 + (x > 3)
c(x,(x>3),"maybe")

The first statement is a simple assignment; the snippet:

(x > 3)

produces a logical result. When we ask to add this logical to the numeric value 3, R
will coerce the logical to a numeric (with value 1) and then add. This is not uncom-
mon, as other languages allow such a conversion. However, in the next line, where
we try to make a vector out of a numeric variable, a logical, and a character string, R
converts them all to the “lowest” form, which is character – and makes a character vec-
tor of length 3. Good programming style would use explicit coercion with functions
such as as.numeric or as.character, because unintended coercion is a major source of
programming errors. Operations with vector and matrices often involve coercion and
recycling where coercion may not have enough values to make a sensible result. The
details of a simple operation:

1/(3:6)

is that we are asking R to divide a vector by a vector, which is fine but done element
by element. But R sees 1 as a vector of length 1, mismatched with the (3:6), which is a
vector of length 4; so, in trying to coerce them to match, R will recycle the value 1 four
times to give the expected result. If we multiply a matrix times a vector with the matrix
multiplication operator, R will coerce the vector to a conformable matrix and produce
a matrix result. Although the dimension of this matrix is one, it is still a matrix. Recy-
cling is ubiquitous in vector/matrix computations – and potentially dangerous indeed.
A warning only arises when the recycling does not complete a cycle. If we make the
simple change to:

c(1,2)/(3:6)

then we again get coercion to a vector of length 4 by recycling values producing the
same as c(1,2,1,2), and the computation of (1/3,2/4,1/5,2/6). Only with:

(1:3)/(3:6)

will we get an incomplete cycle and a warning. Many R programmers use coercion
and recycling all of the time without realizing it.

The power of R is in its functions. In many ways, the function definition in R does
not look very different from a function definition in other languages. One big differ-
ence in R is that the result of a function can be more than just a scalar. The result
of a function can be a vector, a matrix, or even a function – or even a list consisting

12 Algorithms and Computers

of any combination of those three – even a list of . . . ad infinitum. A second im-
portant difference is that default values can be assigned for arguments that may be
superfluous for certain instances. If the function is designed to compute normal tail
probabilities, values for options such as left or right tail, or a flag for a log transfor-
mation can be dropped from the argument list if the default values are requested. A
third difference is that R follows call-by-value rather than call-by-name. In languages
that follow call-by-name, invoking a function or subprogram with an argument x with
f unc(x) really just passes the address of x to the function f unc. In R with call-by-
value, the value of the variable x is passed to the function f unc. In languages with
call-by-name, a function/subroutine/subprogram update(A, how) may update a ma-
trix A in place; in R, this might need to be recoded by taking the current value of the
matrix A as an argument, computing the updated matrix, and then assigning its value
back to A. Because at least two matrices are used at one time, the original A and the
result of update(.), storage efficiencies may be lost unless some clever alternatives are
available.

The fourth important difference with functions in R deals with environments. Many
languages have an external function that is a black box, taking arguments and produc-
ing results. The variables in the argument list are dummy variables that are replaced
with an address (call-by-name) or value when the function is invoked. Within that black
box, an assignment to a variable x not in the argument list is a local assignment, not
related to any variable named x elsewhere. Any variable used in that black box aside
from the argument list is a local variable that only exists in that function, so all infor-
mation that the function needs must be passed through its arguments. (Some languages
have awkward ways around this, e.g., modules in Fortran.) Some languages also have
an internal function within a calling program that allows access to variables within the
calling program; however, this function is not available outside the calling program.
Functions in R have aspects of both internal and external functions through the use of
environments. At the top level or command-prompt level lies the global environment.
When a function is invoked, R creates a local environment for it and the values of the
variables in the argument list are assigned. Within the function, R resolves the value
of the other variables by looking first at the local environment and then at the global
environment. If the function is nested within other functions, their environments are
nested as well. If a variable in an expression is 1) not in the argument list or 2) not as-
signed as a local variable, then R will look through its nested environments looking for
a value. If the user forgot to list x as an argument or forgot its assignment earlier in the
function, then R will look for something called x. This approach for resolving values
of variables in functions is called lexical scoping and allows for external and internal
functions and all levels in between.

References

Robert Gentleman and Ross Ihaka (2000), “Lexical Scope and Statistical Computing.” Journal of
Computational and Graphical Statistics 9: 491–508.

Donald E. Knuth (1997), The Art of Computer Programming (vol. 1: Fundamental Algorithms), 3rd
ed. Reading, MA: Addison-Wesley.

Mark Priestly (1997), Practical Object-Oriented Design. London: McGraw-Hill.

2

Computer Arithmetic

2.1 Introduction

Most of the time, we wish to be blissfully ignorant of the inner workings of any com-
plicated machine. When we drive an automobile, traffic and road conditions demand
our concentration, and we would prefer that our attention wander to a favorite song
on the radio than to the oil pressure gauge. Only when trouble arises need we con-
cern ourselves with the internal combustion engine, air pressure in the tires, the lever
arms in the steering system, or a lug wrench. With as complicated a machine as a com-
puter, most of the time we can likewise treat its inner workings as a collection of black
boxes. However, researchers regularly operate a computer at its limits in the same way
a race-car driver takes an automobile to the limits of its capabilities. In order to drive
safely bumper-to-bumper at 200 mph, a race-car driver must understand the opera-
tion of every system of the machine. A researcher must understand the inner workings
of the arithmetic of the computer; otherwise, Overflow and Underflow become mys-
terious demons. Knowledge will not only dispel the fears brought on by ignorance, it
will also permit the researcher to control his or her computational destiny and not fall
victim to “roundoff error” any more than to “racing luck.”

The first three sections of this chapter present a brief overview of the mechanics
of computer arithmetic. Although necessary for ground-level knowledge, they should
be skimmed at first reading because the interesting details of the problems can eas-
ily sidetrack the reader. The more traditional numerical analysis topics, roundoff error
and conditioning, are discussed in Sections 2.4 and 2.6. The limits of floating point
arithmetic and techniques for surpassing those limitations are discussed in Section 2.5.
Sprinkled throughout this chapter are pieces of Fortran code to demonstrate the imple-
mentation of various techniques.

Computers really cannot do arithmetic. They merely recognize two states: on (1)
and off (0). Numbers on a computer are collections of these binary digits, or bits, whose
values exist only by established human conventions. We often work with the abstrac-
tion of real numbers in mathematics, but only a small set of numbers – those that can
be represented on the computer – constitute reality for arithmetic on a computer. The
set of representable numbers is but a small subset (and not a very dense subset) of the
real numbers.

Numbers are represented on a computer in two ways: fixed point numbers for rep-
resenting the integers, and floating point numbers for the real numbers. While conver-
sion from one to the other is common and sometimes automatic, they are quite different

13

14 Computer Arithmetic

animals, and the same mathematical value will be represented by a different collection
of bits. Wild behavior and catastrophic errors often result when a number written as a
fixed point number is then read through floating point–colored glasses.

2.2 Positional Number Systems

By using their fingers, people can count very easily up to ten. In most languages, peo-
ple created words for groups of ten, then hundreds, as far as their needs required. In
English, the vestiges of other number systems remain in the language. The cup–pint–
quart–gallon system used base 2; dozen–gross counters used base 12. The base-60
second–minute system remains in the language as part of mixed radix systems, with
hours (base 12) for measuring time and degrees (base 360) for measuring angles. Since
the eighteenth century, however, the trend has been toward the use of decimal mea-
surement systems. In Europe, this metric system has been universally adopted, even
for counting money.

Because binary digits are natural for the computer, the common human decimal
convention has been abandoned for collections of binary digits. Thus, the base for
arithmetic is not the human 10 but the more natural 2 or a power of 2, such as 16, which
is often viewed as a collection of 4 bits. (All numbers written here are decimal un-
less otherwise noted.) Since any positive number z can be written as a base-B number
using the set of digits {0,1, . . . , B − 1} in the convergent infinite series

z = akB
k + · · · + a2B

2 + a1B + a0 + a−1B
−1 + a−2B

−2 + · · · , (2.2.1)

where the coefficients aj are integers in the set {0, . . . , B −1}, it follows that the num-
ber z can be simply represented by the list of digits

z = (ak . . . a2a1a0 . a−1a−2 . . .)B, (2.2.2)

where the period in this representation is called the radix point. In particular, for base
10, the usual decimal point name is used, “hexadecimal” for base or radix 16, and
“binary” for base 2. Note that with base 2 the set of digits is just {0,1}; with base 8,
the set is {0,1, . . . , 7}. For base 16, the common Arabic symbols are not sufficient.
Unimaginative as they may be, the letters A = 10, B = 11, through F = 15 effectively
serve as symbols for the needed digits. The reader should be constantly mindful of the
meaning of a number (e.g., the number of players on an American football team) ver-
sus the symbols used to write that number – whether on paper, such as 11 or 13eight, or
on a computer, Bhex = 11ten = 1011two.

The terms “fixed point” and “floating point” refer to the position of the radix point
in the representation of a number as a list of base-B digits. Fixed point numbers are
analogs to integers, with the radix point placed to the right of the list, either explicitly
or implicitly. What is usually called “scientific notation” is the most common form of
floating point representation of a number. The number of atoms in a mole suggests an
integer, but Avagadro’s number is usually written as

N = 6.023 × 1023.

2.2 Positional Number Systems 15

Floating point representation usually takes the form of a sign S, the (integer) exponent
E, and the fraction F, which could be written as the triple (S, E, F). The translation from
the written (S, E, F) to the value implied by some convention requires explicit defini-
tion of that convention. The informal route taken here for demonstration purposes uses
S as + or −, E as a signed integer, and F as the list of base-B digits with the implicit
radix point on the left, so that

N = (+, +24, .6023)

using base B = 10 and d = 4 digits. The contrast between fixed and floating point is
clearest in considering financial transactions, which are performed not in whole dol-
lars but in exact cents. The radix point is fixed, as two positions from the right of the
list of numbers; the calculations are often done as integer cents on the computer and
then written out in the more common dollars-and-cents form.

Let’s get out the dustpan and clean up what was swept under the rug earlier. In
floating point arithmetic, only a finite number (say, d) of digits can be used to rep-
resent a number, and so the mathematician’s debate about the infinite expansions
(.37500000. . .) or (.37499999. . .) is dismissed as a philosophical quibble. If the ex-
ponent E is bounded, then only a finite number of values are achievable using float-
ing point notation. This means that any real number is approximated by an element
of the (finite) set of representable numbers F . Several issues now arise, the first of
which is “rounding” versus “chopping.” Suppose we are trying to represent the real
number z that lies between the two consecutive representable numbers (S, E, F) and
(S, E, F + B−d). Avagadro’s number is more precisely 6.02257 × 1023, so for d = 4
and B = 10 the choices are (+, 24, .6022) and (+, 24, .6023). The method of chop-
ping selects (S, E, F) or (+, 24, .6022) and will bias numbers downward. Rounding
to closest, here (+, 24, .6023) is preferred, but still a detail remains if z is in the mid-
dle. Knuth (1997b, p. 237) discussed the merits of rounding to the nearest even or
odd number, with a minor edge attributed to even. The rounding versus chopping is-
sue has important consequences in the analysis of accuracy. If we define the function
fl(z) : R → F, mapping a real number z to its floating point representation, then the
following bound can be established:

|fl(z) − z| ≤ U |z| for all z (2.2.3)

(see Exercise 2.17). Here U is called the machine unit, which takes the value B1−d for
chopping and half that for rounding to nearest. One expected implication is that the
machine unit U bounds the relative error |(fl(z) − z)/z| for the floating point represen-
tation. The reverse form of (2.2.3),

fl(z) = z(1 + u) where |u| ≤ U, (2.2.4)

will prove extremely useful in the analysis of floating point arithmetic in Section 2.4.
Asecond issue arises over multiple representations for the same number in F . For ex-

ample, the value 5 can be represented by (+,1, .5000)or (+, 2, .0500),or (+, 4, .0005).

The first representation (+,1, .5000) is preferred, since it connotes correctly the ac-
curacy of number, where the last could be representing any number in the interval
(4.5, 5.5). Representations where the most significant digit is nonzero are called nor-
malized. Most computer systems rely on the normalized representation of floating point

16 Computer Arithmetic

numbers. Clearly, the normalized floating point representation of Avagadro’s number
(+, 24, .6023) is more accurate than the unnormalized (+, 25, .0602)or (+, 26, .0060).

In Section 2.3, the use of “subnormalized” numbers in the IEEE floating point arith-
metic standard will be discussed.

Methods for converting a number from its representation in one base to another
depend on which base is available for arithmetic. In hand calculation (or most calcula-
tors), the arithmetic must be done in base10. Computers regularly do two conversions –
on input a list of decimal digits to the computer’s native base, and back to decimal for
output – both done in the native arithmetic. A positive number z written in base B or
in base C as

z = (ak . . . a1a0 . a−1a−2 . . . a−m)B = (dj . . . d2d1d0 . d−1d−2 . . . d−n)C

can be converted in either direction using the arithmetic in base B. For the first case,
the easiest route is to convert a number in base C to base B, from {di} to {ai}, just by
following the definition (2.2.1):

z = dkC
k + · · · + d2C

2 + d1C + d0 + d−1C
−1 + d−2C

−2 + · · · .

The integer part is found by multiplying and adding,

((. . . ((dj ∗ C) + dj−1) ∗ C .. .) ∗ C + d1) ∗ C + d0, (2.2.5)

and the fractional part is similar:

((. . . ((d−n/C) + d1−n)/C . . .)/C + d−1)/C. (2.2.6)

The multiply–add formulation for the evaluation of polynomials in (2.2.5) and (2.2.6)
is known as Horner’s rule, as will be discussed further in Chapter 7. The other direction,
from {ai} to {di}, is a little more complicated but still follows the modulo arithmetic
inherent in positional notation. Begin with the value H0 = ak . . . a1a0, the integer part
in base B; then compute

Hi+1 = �Hi/C� and di = Hi mod C = Hi − CHi+1, (2.2.7)

where �·� denotes the floor or integer part for a positive number, and proceed until
Hi = 0. For the fractional part, begin with L0 = . a−1 . . . a−m and then compute

d−i = �CLi−1� and Li = CLi−1 − d−i (2.2.8)

and proceed to the accuracy of z. The result is represented in base C as

z = (dj . . . d2d1d0 . d−1d−2 . . . d−n)C.

Conversion between two bases that are both powers of 2, say 8 and 16, involves
merely bookkeeping. The first step is to unbundle each digit into blocks of bits, such as
3F8sixteen = 001111111000, and then recollect the bits in groups 001111111000two =
1770eight. Often hex (Z) or octal (O) formats are used to print out the internal repre-
sentation of a number as a list of bits. Knuth (1997b, sec. 4.4) has discussed special
algorithms for base conversion, in particular for converting to and from bases 8 and 10.
Documentation for most computers includes tables to assist in conversion from base 10.

2.3 Fixed Point Arithmetic 17

Example 2.1: Base Conversion – Decimal to Binary
Convert π = 3.14159265ten to base C = 2. First the integer part: H0 = 3, H1 =
1, and H2 = 0, so that d0 = d1 = 1. For the fractional part, L0 = .14159265
and 2L0 = .2831853, so that d−1 = 0 and L1 = 2L0. Also, L2 = 2L1 =
.5663706 so d−2 = 0, but 2L2 = 1.1327412 so d−3 = 1 and L3 = .1327412.

The next step has 2L3 = .2654824 = L4 and 2L4 = .5309648 = L5 so d−4 =
d−5 = 0, but 2L6 = 1.0519296 so d−6 = 1. So far we have π = 11.001001two.

Recall the approximation of 22/7, which in base 2 has the repeating expansion
11.001001001. . . . Converting back, say π = 3.1104eight looks easier. The frac-
tional part is (1+ (1+ (0+4/8)/8)/8)/8 = (1+ (1.0625/8))/8 = 1.1328125/8 =
.1416015625ten, which is on the money for the number (5) of octal digits given.

Example 2.2: Base Conversion – Octal to Decimal
Convert x = 10.1ten to octal C = 8. Begin with H0 = 10 and H1 = 1, so d0 =
2, H2 = 0, and d1 = 1. Turn then to the fractional part: L0 = .1 and L1 = .8,

so d−1 = 0; multiplying again by 8 gives 6.4 or d−2 = 6 and L3 = .4. The next
step brings 3.2 (so d−3 = 3 and L4 = .2), followed by 1.6 giving d−4 = 1 and
L5 = .6. One more step gives 4.8 (d−5 = 4 and L6 = .8 = L1); we now have
a repeating pattern: d−j−4 = d−j for j ≥ 2, and 10.1ten = 12.063146314. . .eight.

Solving the repeating pattern gives 85x = 1206174eight + 8x.

2.3 Fixed Point Arithmetic

The arithmetic of integers is comparatively simple, although there are three common
conventions for the representation of integers: signed integer, one’s complement, and
two’s complement. Each has its merits and drawbacks, although two’s complement is
by far the most popular today. For illustrative purposes, the examples will be given for
8-bit representations and the mathematical results for the general M-bit case.

The signed integer notation is the simplest for representing an integer. The first
(leftmost) of a string of M bits is used to represent the sign of the number (0 =
positive), and the remaining M − 1 bits hold the magnitude of the number in base 2.
The advantages are that the range of possible numbers is symmetric,

−2M−1 + 1 ≤ x ≤ 2M−1 − 1, (2.3.1)

and division or multiplication by a power of 2 is easy – just shift. One disadvantage
is that zero is not unique (10000000 and 00000000); more seriously, the operations of
addition and subtraction are more difficult than with the other approaches. As a conse-
quence, this method is not commonly used.

A more common method, one’s complement, uses a different notation for negative
numbers: complement each bit of the positive. In this case, +21 is written as 00010101
and −21 is obtained by complementing each bit to yield 11101010. Again zero has two
representations (11111111 and 00000000) and the range of numbers is the same as in

18 Computer Arithmetic

(2.3.1), but the arithmetic for addition and subtraction is easier. This will become clear
in our discussion of the third method.

The two’s complement notation has its similarities and differences to one’s comple-
ment. In two’s complement, a negative number is found by complementing each bit
and then adding one, so −21 is written 11101011. Notice that zero is now unique, but
the range is no longer symmetric:

−2M−1 ≤ x ≤ 2M−1 − 1,

so that one number (viz., −2M−1) does not have a negative. In fact, an attempt to
negate this number −x usually has no effect. The advantages of two’s complement are
simpler methods for addition and subtraction. First of all, note that the negation of a
positive x can be viewed as

[(2M − 1) − x] + 1 = 2M − x,

since (2M − 1) produces a string of ones and subtraction of x complements each bit.
The rules of addition and subtraction can be followed with two exceptions: first, the
results are done modulo 2M; second, overflows need to be tracked.

Before deciphering the overflow rules, note the placement of points on the real line
and take care to distinguish the list of bits and the value implied by the convention.
Positive integers are where they would be expected, and the largest positive integer is
at 2M−1 − 1. The next number looks like 2M−1, but since it has a 1 bit in the leftmost
position it actually has the value −2M−1. As we proceed up the line we have larger
numbers (although negative and decreasing in magnitude) until we reach the largest
integer that we can write with M bits, 2M −1, which has the value −1. The next num-
ber marks the other important boundary, 2M, which cannot be written in M bits and is
the modulus for the arithmetic. The overflow–underflow rules keep track of crossing
the boundaries at 2M−1 and 2M and, because of the modulo 2M arithmetic, any multiple
of these. The rule is that crossing one boundary indicates an overflow; crossing both
kinds 2M−1 and 2M in the same step is all right. In terms of bit positions, one boundary
is a carry into the sign bit while the other is a carry out of the sign bit.

Example 2.3: Subtraction by Adding the Negation Modulo 2M

+48 = 00110000 = 48
−21 = 11101011 = 235 = 28 − 21

+27 =1 00011011 = 283 = 256 + 27 ≡ 27 mod 28 = 00011011 mod 2M.

Notice that an apparent overflow occurred in computing a number (283) that can-
not be stored. However, both the 2M−1 = 128 boundary and the 2M = 256
boundary were crossed. If we added two large positive numbers, we would cross
one boundary (at 128) but not the other (at 256):

+48 = 00110000
+96 = 01100000

144 = 10010000 = 256 − 112 ≡ −112 mod 256.

2.3 Fixed Point Arithmetic 19

If we added two large negative numbers, we would cross one boundary (at 256)
but not the other (at 384):

−48 = 11010000 = 208
−96 = 10100000 = 160

−144 =1 01110000 = 368 ≡ 112 mod 256;
again a true overflow occurs. True overflows can thus be easily detected by fol-
lowing these rules.

Returning momentarily to one’s complement, subtraction is also done by adding the
negative, with the same overflow rules. The exception is that the nonoverflow carry –
both into the sign bit and out of it – is not simply dropped, as it is in two’s complement.
Dropping this would be equivalent to modulo 2M. In one’s complement, this carry out
bit is instead added to the first bit. Recalling 48 − 21 from Example 2.2, −21 in one’s
complement would be 11101010two = 234, and the sum would be 282 = 100011010.

Taking the overflow bit around would give 00011011two = 27.

Overflow is not a major problem in integer arithmetic, except that sometimes it is
not flagged and negative products arise from multiplying positive numbers. Usually,
either the range of possible numbers is sufficient to solve the problem or the problem
is combinatorial in nature, when limits are reached very quickly and floating point ap-
proximations are introduced (see Exercises 2.4 and 2.20). The more common pitfall in
integer arithmetic is integer division. When an integer dividend is divided by an inte-
ger divisor, the usual mathematical result is the integer pair of quotient and remainder.
However, the usual result on a computer is just the integer quotient; the fractional part
(remainder/divisor) is truncated to leave the integer quotient. Whenever the divisor is
larger than the dividend the result is zero. Reasonable care is sufficient to overcome
this pitfall. For example, as long as we do the computations in the right order, we can
compute combinatorials without difficulty:

IBICOF = 1
DO J = 1,K

(2.3.2)
IBICOF = (IBICOF * (N-J+1)) / J
ENDDO

In many applications, both the quotient and remainder are needed. One route is to com-
pute the quotient and then get the remainder by multiplication and subtraction:

IQUOT = IDVDND / IDVSOR
IREMDR = IDVDND-IQUOT * IDVSOR

Another is to replace the last line with the modulo arithmetic intrinsic function MOD:

IREMDR = MOD(IDVDND, IDVSOR)

On many machines, the machine instruction for fixed point division produces both
quotient and remainder. A good optimizing compiler should translate either of these
methods to a single fixed point divide instruction.

20 Computer Arithmetic

The reader should be aware that not all machines have instructions for multiplication
and division. The earliest computers did not, and a few special-purpose computers and
many microcomputers currently implement multiplication and division by using soft-
ware instructions. The algorithm is known as “shift and add” and is purely an adaptation
of the elementary multiplication method using the trivial table of binary arithmetic:

11 0000 1011
×10 ×0000 1010

00 1 011∗ shift left one
11 101 1∗∗∗ shift left three

110 0110 1110 add.

Alternatively, envision the multiplier as a sum of powers of 2. Thus a multiplication is
the sum of the multiplicands shifted left by the power of 2. The analogous software di-
vide follows a “shift and subtract” scheme. Here we do 115÷10 = 11 with a remainder
of 5:

00001011 quotient

1010)01110011 compare 1010 and 1110, since smaller, subtract
01010

0010001 compare 1010 and 1000, too big, try 10001, subtract
0001010

00001111 compare 1010 and 1111, subtract
00001010

00000101 left with remainder of 5.

In conclusion, fixed point arithmetic has two great advantages over floating point
arithmetic. One advantage is that the results are exact, in contrast to the approximate
results obtained with floating point arithmetic. The other advantage is that fixed point
arithmetic is much faster. The disadvantages are that both the applicability and the
range of numbers are limited.

2.4 Floating Point Representations

The positive real number z described in (2.2.2) by a list of digits aj must be repre-
sented on a computer by a finite list of digits that is (say) d in length. The floating
position of the radix point with respect to this list gives the name to this notation. As
remarked in Section 2.2, floating point numbers are commonly written in three parts:
(S, E, F), where S is the sign (+ or −), E is the exponent, and F is the fraction. The term
“fraction” connotes the imaginary (or implied) placement of the radix point, usually to
the left of the list of digits F. To simplify the instructions for addition and multiplica-
tion, the true position of the radix point is given by the difference between E and what
is called the excess or bias. When the sign is stored in one bit (0 = +), the value of
the number represented by (S, E, F) is given by

(−1)S × Base(E−excess) × .FBase. (2.4.1)

2.4 Floating Point Representations 21

To represent a number in the most accurate way, the leading (leftmost, most signifi-
cant) digit in F should not be zero. A nonzero number represented so that the leading
digit is not zero is called “normalized.” Zero is usually written with the smallest possi-
ble exponent and zero fraction. Most computers follow this convention or some minor
variation for representing floating point numbers, each with its own base, number of
digits, excess, and so forth.

In recent years, most microcomputers and workstations follow the IEEE binary float-
ing point standard. The adoption of this standard is a milestone in computer arithmetic,
since the standard extends to rounding rules and overflow–underflow handling. The
word “binary” in the name denotes that the base is 2, and 32 bits are used to represent
a single precision number. The (S, E, F) notation applies but with a subtle twist due
to the normalization of base-2 numbers. Since normalization moves the radix point so
that the most significant digit is nonzero, the first digit of a normalized number in base 2
must be 1. Following this fact, the value of a normalized number stored as (S, E, F) is

(−1)S × 2E−excess × 1.F,

so that the implied leading digit 1 is actually placed to the left of the decimal, oops,
binary point. As before, the sign bit is 0 for positive numbers, but now eight bits are
used for the exponent, so that E ranges from 0 to 255. The excess is 127 so that the true
exponent range is −126 to +127, since the endpoints are treated as special cases. For
very small numbers, the smallest exponent E = 0 denotes a minor change in the value
of a number represented by (S, E, F). That is, for (S, 0, F), the value is given by

(−1)S × 2−126 × 0.F,

and these numbers are called “denormalized” since they do not follow the same nor-
malization scheme. The motivation for such denormalized numbers is to provide a
smoother drop from the smallest normalized number to zero, using numbers that can
be represented in the system. These denormalized numbers allow for a “soft underflow.”
Zero is unnormalizable and is represented by (0, 0, .0). At the other end, the exponent
E = 255 provides other convenient features. The notation (S, 255, .0) represents +∞
for S = 0 and −∞ for S = 1. For any other fractional part F, (S, 255, F) represents a
creature called “not-a-number” that is usually written as “NaN.” The main purpose of
such a creature is to represent the result of an undefined or illegal operation, such as 0/0
or the square root of a negative. An alternative use is as an initialization value. Most
variables are not initialized at the beginning of a program, and conventional practice
uses zero or whatever was left at the end of the last program as the default values. How-
ever, one of the most common errors is using a variable that has yet to be given a value.
Initialization to NaN ensures that such an occurrence would be flagged as an error.

The last two rows in Table 2.1 show the smallest normalized number and the largest
representable number in the single precision floating point system. The last column
shows the internal representation in groups of four bits. In many computer languages,
instead of writing a number as a decimal constant and using the compiler to convert,
the internal representation of a number can be written directly by preceding the eight
hex digits by the letter Z. Thus, to assign −1 to a variable V, the code is

V = Z’BF800000’

22 Computer Arithmetic

Table 2.1. IEEE binary floating point representation (single)

Number Conversion Sign, Exponent Fraction Z Format

1 1.0two × 20 0 011 1111 1 000 0000 0000 0000 0000 0000 3F800000
1/16 1.0two × 2−4 0 011 1101 1 000 0000 0000 0000 0000 0000 3D800000
0 0.0two × 2−127 0 000 0000 0 000 0000 0000 0000 0000 0000 00000000
−15 −1.111two × 23 1 100 0001 0 111 0000 0000 0000 0000 0000 C1700000
1.2E − 38 1.0two × 2−126 0 000 0000 1 000 0000 0000 0000 0000 0000 00800000
1.4E − 45 1.0two × 2−149 0 000 0000 0 000 0000 0000 0000 0000 0001 00000001
3.4E + 38 (2 − 2−23) × 2127 0 111 1111 0 111 1111 1111 1111 1111 1111 7F7FFFFF
+∞ 0 111 1111 1 111 1111 1111 1111 1111 1111 7FFFFFFF

– although very dependent on language, compiler, and operating system. For input and
output, often Z can also be used as a format code to access the internal representation
for both fixed and floating point numbers.

In order to gain greater accuracy, most languages offer “double precision” arith-
metic. However, taking this route to avoid the perils of floating point arithmetic and
roundoff error is really like whistling in the dark. The dangers are still there – they have
merely been pushed farther away. In most of this chapter, four-digit decimal arithmetic
has been used to illustrate some of the difficulties. The usual single precision arith-
metic is equivalent to six or seven decimal digits but the problems are still there, as
they remain even for arithmetic with 48-bit fractions. Confidence in the results of ex-
tensive computation comes only with the knowledge of where perils lie.

The use of double precision is a common source of errors in using mixed arithmetic.
Usually a machine will use twice the storage (or two words) to store a double preci-
sion number. Yet because the formats for storing single and double precision numbers
are different, the errors are similar to those of viewing a fixed point number through
floating point–colored glasses. On most machines using the IEEE standard format, the
double precision numbers have a different arrangement than the single precision num-
bers. Usually the sign and exponent are allotted 12 bits (3 more than the single’s 9),
and the fraction takes 52 bits, with 18 at the end of the first word and the remaining 32
bits in the second. As a result, the range of double precision numbers is much greater
in the IEEE standard. On IBM mainframes, a double precision number follows exactly
the same format as the single but with a longer 14-hexadecimal-digit fraction, so that
the range of numbers is nearly identical. The first word holds 8 bits for sign and expo-
nent, and the first 6 digits of the fraction fill the next 24 bits, so the last 8 digits take
up all 32 bits of the second word. Woe to those who read the second word as a sin-
gle precision floating point number! On the Cray machines, the exponent field of the
second word is filled with zeros, while the fraction field contains the second 48 bits of
the 96-bit fraction. In all three cases, reading under the wrong convention leads to big
trouble.

A similar but different problem can arise in the retrieval of numbers stored in in-
ternal format. If we read off the 32 bits of 2π in single precision bit by bit from the
floating point register and wrote it as 8 hexadecimal digits, we would have 40c90f d5.
Whereas most machines access storage by bytes, some would store 2π internally in

2.5 Living with Floating Point Inaccuracies 23

little endian format (e.g., Intel) with the first byte as d5 and the fourth (most signifi-
cant) byte as 40. However, big endian machines would store the first byte as 40 and
the fourth (least significant) byte as d5. A problem arises when data may be stored in
this internal format from one machine, to be read by another machine with a different
internal format. In Fortran, the bytes just have to be reversed in order using some awk-
ward equivalences; in R, readBin and writeBin have an ’endian=’ argument; SAS
supplies formats and informats for endianness writing/reading.

Finally, floating point multiplication and division are typically the slowest instruc-
tions on a computer, with their double precision versions even three or four times
slower. In the analysis of algorithms, where floating point arithmetic dominates the
workload, it is customary to measure work in “flops” – floating point operations. A
flop consists of a floating point multiply (or divide) and the usually accompanying ad-
dition, fetch, and store. Other calculations, comparisons, and fixed point arithmetic for
address calculations are much faster; their effect on the total workload is considered
less important and often can be safely ignored.

In computers with more modern floating point architecture, especially those known
as “supercomputers,” a clever sequencing of these operations, called pipelining, is ex-
ploited. For problems where the main effort lies in floating point operations (e.g.,
vectors and matrices), pipelining leads to much faster execution. The principle of
pipelining is to schedule the ancillary instructions for floating point operations so that
no part of the operation is waiting. For example, for adding a multiple of one vector
to another, zi = axi + yi, several similar steps are involved. Two sequences of values
{xi}, {yi} must be retrieved from storage and, for each step, two numbers are multi-
plied (axi), the product added to another, and the sequence of these sums {zi} stored.
In its simplest form, the fetches for x10 and y10 are initiated long before the multiplica-
tion is scheduled. While the product ax10 is being computed, z5 may be being stored
and the summation ax8 +y8 computed. As a result, the slowest step – usually the float-
ing point multiply – determines the execution time for the task. In earlier machines
and in some contemporary PCs and workstations, only fetches and stores are pipelined
and so the scheduling depends on memory retrieval speed, which – in big problems or
small machines – can extend to disk.

2.5 Living with Floating Point Inaccuracies

Earlier we discussed the abstract world of real numbers and the real world of numbers
that can be expressed on a computer. Because a number such as z in (2.2.2) cannot be
written exactly on a computer, a floating point approximation of it, fl(z), is used and
an approximation error must be endured. Numerical analysis is the study of this er-
ror and similar approximations necessary for practical computation. Since the purpose
of this book is the computation of statistics, I will endeavor to limit the discussion to
practicalities. We begin by reviewing some introductory material.

One measure of the accuracy of the approximation of a real number z by fl(z) is
absolute error, |fl(z) − z|. Although useful in some problems, most would agree that
6.023 × 1023 is a more accurate approximation of Avagadro’s number than 3 is an ap-
proximation of the ratio of the circumference of a circle to its diameter. The more

24 Computer Arithmetic

common measure of accuracy is relative error,

|fl(z) − z|/|z| for z
= 0.

To compute the relative error of our floating point approximation fl(z) to the real num-
ber z, it is helpful to use a mild generalization of the floating point systems previously
discussed. That is, a floating point number is represented by d digits in base B, where
the true exponent lies between −L and M. Thus the largest representable number is

fmax = (1 − B−d) × BM

and the smallest positive number is

fmin = B1−L.

The relative error of the floating point representation depends on whether we round
to the nearest available number or chop; that is, whether 3.1415926535. . . is written as
(+,1, .3142) (rounding) or (+,1, .3141) (chopping). The upper bound on the relative
error is called the machine unit U, expressed as

|fl(z) − z| ≤ U |z| for all z,

where

U =
{ 1

2B1−d if rounding is used,

B1−d if chopping is used.

The machine unit is more useful when this bound is rewritten backwards as fl(z) =
z(1+ u), where |u| ≤ U. Analysis of the accuracy of floating point arithmetic is based
on similar bounds for each of the four arithmetic operations, {+, −, ∗, /}. Avoiding
the elegant, let’s get to the practical and use B = 10 and d = 4 for these examples.

The first thing to learn is that floating point arithmetic does not obey the laws of
algebra – more specifically, the associative law. That is, if a list of numbers is added
in a different order, a different sum may be computed. For the simplest case with all
positive numbers, take a = 4 = (+,1, .4000), b = 5003 = (+, 4, .5003), and c =
5000 = (+, 4, .5000). Adding one way is a high (a + b) + c = (+, 5, .1001), but the
other gives a low a + (b + c) = (+, 5, .1000). This may look trivial, but suppose the
list is just 54,321 numbers all equal to 1. If we go through the list adding a 1 to the
current sum, then the sum will be (+, 5, .1000) or 10,000. Why? Well, since d = 4,

everything is fine for the first 10,000 additions. Now the next addition of 1 to 10,000
should give 10,001, but to write it as a floating point number the best that four deci-
mal digits can do is (+, 5, .1000) and so the sum doesn’t increase. In fact, adding a
million ones would yield the same result. This example becomes a serious problem
in numerical integration, where more computational effort can lead to a less accurate
result. Most such problems can be avoided by following these two principles: first,
always add numbers of like magnitude together. The second principle is to add small
numbers together before adding the larger ones (see Exercises 2.10 and 2.12). More
sophisticated addition algorithms are discussed in Section 2.5.

The more serious violation of the associative law occurs when the signs of the num-
bers are mixed. Catastrophic cancellation arises when subtraction of two nearly equal
numbers eliminates the most significant digits. Consequently, the small errors in round-
ing that were hiding so innocently are uncovered to become glaring errors. Using the

2.5 Living with Floating Point Inaccuracies 25

same numbers as before, (b−c)−a = b−(c+a) = (−, +1, .1000), which looks fine,
but now double all three numbers: 2a = (+, +1, .8000), 2b = (+, +5, .1001), and
2c = (+, +5, .1000). Then the sign flips for one sum, (2b−2c)−2a = (+, +1, .2000)

whereas the other gives zero, 2b − (2c + 2a) = (+, −L, .0000). Here both the asso-
ciative and distributive laws are violated.

In statistics, the most surprising cancellation problems occur in computing a dif-
ference of squares. The usual one-pass method for computing the sample variance of
n numbers is to (a) find the sum and the sum of squares and then (b) take the differ-
ence of the sum of squares and n times the square of the mean. If the sample is just
five numbers (356, 357, 358, 359, 360) and we round with our four decimal digits, the
sample variance computed this way is negative. For this particular problem, Exercise
5.11 contains a one-pass algorithm that will compute the sample variance easily. A sim-
pler improvement can be made by subtracting any number in the vicinity, leading to
the following simple one-pass algorithm:

n∑
i=1

(xi − x̄)2 =
n∑

i=2

(xi − x1)
2 − n(x1 − x̄)2. (2.5.1)

Although this method still faces some cancellation, the Samuelson (1968) inequality
limits the effect (see Exercise 2.19).

Example 2.4: Catastrophic Cancellation – Sample Variance

f l(X2
1) = 3562 = (+, 6, .1267)

f l(X2
2) = 3572 = (+, 6, .1274), f l(X2

1 + X2
2) = (+, 6, .2541)

f l(X2
3) = 3582 = (+, 6, .1282), f l(X2

1 + X2
2 + X2

3) = (+, 6, .3823)

f l(X2
4) = 3592 = (+, 6, .1289), f l(X2

1 + . . . + X2
4) = (+, 6, .5112)

f l(X2
5) = 3602 = (+, 6, .1296), f l(X2

1 + . . . + X2
5) = (+, 6, .6408)

f l(nX
2
) = (+, 6, .1282) × (+, 1, .5000) = (+, 6, 6410)

f l(

n∑
i=1

X2
i − nX

2
) = (+, 6, .6408) − (+, 6, .6410) = negative!

Many (if not most) serious cancellation problems can be anticipated and avoided using
simple work-arounds. If cancellation cannot be avoided, then avoid amplifying the ef-
fect. The use of “pivoting” in solving linear equations in Chapter 3 is simply to avoid
amplifying the effect of cancellation error. For problems as simple as adding a list
of numbers, pair up positives with negatives so that the pairs all have the same sign.
Otherwise, following the principles just mentioned will work: add the small numbers
together first and then the larger ones, so that the cancellations at the end have the least
effect. However, the biggest payoff lies in reworking the expressions analytically to
avoid cancellations. A common source of cancellation problems arises in computing
tail probabilities. As discussed in Chapter 7, most distribution functions are written to
evaluate the tail to avoid the cancellation in 1 − F(t).

26 Computer Arithmetic

Example 2.5: Tail Probability of the Logistic
For the logistic distribution, computing the probability in the tail beyond 6 using
1−F(t) = 1−(1+e−t)−1 has the intermediate step of the reciprocal of (+,1, .1002)

giving (+, 0, .9980); then (+,1, .1000)−(+, 0, .9980) = (+, −2, .2000), which
appears acceptable. But compare this result with subtracting analytically, where
we have the expressions 1 − F(t) = e−t/(1 + e−t) = 1/(1 + et). Using the
middle one with t = 6 leads to the division (+, −2, .2479)/(+,1, .1002) =
(+, −2, .2474); using the last gives the reciprocal of (+, 3, .4044) or (+, −2,

.2473), which is the correctly rounded form of the exact .002472623.

In this last example, the simplicity and small evaluation cost strongly suggest rework-
ing the expressions. Certain expressions cannot be reworked and the use of series
expansions is recommended. For example, in evaluating both log(1+x) and ex −1 for
extremely small x, the intermediate result can lose all accuracy. For our B = 10 and
d = 4, if x = (+, −5, .1000) or smaller then (1+x) will give (+,1, .1000), as will ex.

Consequently, both log(1 + x) and ex − 1 will be zero when the result (to first order)
should actually be x for both. Unavoidable expressions such as this demand coding of
series expansions for the extreme cases:

log(1 + x) ≈ x − x 2/2 + x3/3 − · · · , (2.5.2)

ex − 1 ≈ x + x 2/2! + x3/3! + x4/4! + · · · . (2.5.3)

Thankfully, when such rescues are required the series will usually converge very
quickly.

The careful reader may have noticed that expression (2.5.2) also includes some can-
cellation. For most computations, a certain level of cancellation is quite acceptable.
Here, for small x, any cancellation would be in a smaller order of magnitude. In Exam-
ple 2.5, two decimal digits were lost in cancellation, magnifying the relative importance
of the rounding error in the intermediate expressions into the second significant digit.
If d = 6 then the smaller rounding error would still be magnified two places, but only
to the fourth significant digit. Such an error may be problematic in optimization (e.g.,
maximum likelihood estimation), but this level of error may be insignificant in other
applications. The decision to rework expressions depends for the most part on how
much accuracy will be lost on a relative basis and how much work is required to avoid
it. For this tail probability calculation, t = 6 may be too rare to be worth the effort.

Another quirk of computer arithmetic is that things rarely add up exactly, unless
the numbers can be written exactly in the machine. When we add up 1/3 three times,
((.3333 + .3333) + .3333), the result is .9999 and not 1. As a consequence, any it-
erative algorithm that stops only when the condition is satisfied exactly may be in an
infinite loop. The solution is to change any exact test to a “close enough” test – say,

IF(ABS(XNEW-XOLD) .LE. 5.* ABS(XOLD) * UNIT) EXIT

Squeezing UNIT too small disables this improvement. Another manifestation of the
lack of exactness is the sudden discontinuous behavior of a continuous function when
changes in the ordinate drop to the order of U. A function that is increasing at x may

2.5 Living with Floating Point Inaccuracies 27

have a smaller value when computed at x(1 + U) owing to roundoff error. This noisy
behavior of an apparently smooth function at these small changes in x can cause prob-
lems in numerical differentiation (see Section 8.6).

Many computers offer the option of doing computations in double precision (using
2d or more digits in the fraction). As discussed in Section 2.4, the decision to use this
option should not be automatic. First of all, many problems do not require a great deal
of accuracy; sometimes three decimal digits solves the real problem. Secondly, the
single precision is sometimes more than adequate, especially for those machines with
48-bit fractions in base 2. However, the IBM mainframe 6-hex-digit fraction is often
inadequate. Another discouraging word is that some numerical problems are not aided
at all by double precision, especially problems whose accuracy is limited by the accu-
racy of the input. Finally, additions usually take twice as long, and multiplications are
three to four times slower.

On some machines, the computation of inner products can be improved cheaply
with an intermediate step. Sometimes the product of two single precision numbers pro-
duces a double precision product automatically. If this is accessible, then adding those
products in double precision is a cheap way to improve the accuracy, making the error
nearly independent of n. The code in Fortran 90/95 for the inner product of two single
precision arrays A and B, writing the result in a double precision variable S, is simply

S = 0.D0
DO I = 1,N
S = S + DPROD(A(I), B(I))
ENDDO

Some implementations use the conversion DBLE(A(I)*B(I)). This trick is called “ac-
cumulating inner products in double precision.”

Finally, there is the problem of accumulated roundoff error, encountered when
adding (or multiplying) many, many numbers. This is particularly the case in the
next chapter, when the typical task is the computation of the inner product of two vec-
tors of length n. Coarsely summarizing, the error analysis follows the route

fl(x1 + x2) = (x1 + x2)(1 + u1),

fl((x1 + x2) + x3) = (x1 + x2)(1 + u1)(1 + u2) + x3(1 + u2),

fl(· · · ((x1 + x2) + x3) · · · + xn) = (x1 + x2)

n−1∏
i=1

(1 + ui) + x3

n−1∏
i=2

(1 + ui)

+ · · · + xn(1 + un−1), (2.5.4)

with each |ui | ≤ U. This last expression can explain the mechanism. First, if U is
small, then these products look like sums to the first order. The error part of the right
side of (2.5.4) then behaves like

n∑
j=1

uj

(j∑
i=1

xi

)
.

28 Computer Arithmetic

Since the index j orders the summation, it is clear that adding smallest to largest would
minimize the effect. More rigorous analysis can follow one of two lines. For statis-
ticians, the natural route would be to treat uj as an independent random variable with
each uniform(−U, +U), which would lead to a relative standard error of approximately
n1/2U. The more pessimistic numerical analysis route would try to bound the error, and
that would lead to the more pessimistic nU approximate relative error. The second
implication of (2.5.4) is that the error grows with the sample size; being a pessimistic
person, I would begin to worry when nU grows large. For our B = 10 and d = 4
situation with U = .0005 (rounding), adding more than 200 numbers would begin to
squeeze the first digit. Note that, as n grows larger, approximating the products with
sums begins to fail and everything will collapse, as in our previous example of adding
54,321 numbers all equal to 1.

2.6 The Pale and Beyond

The Pale was the region around Dublin beyond which the protection (or oppression)
of the English government did not extend. Going “beyond the Pale” meant venturing
out of the ordinary, with both positive and negative connotations. The arithmetic on
a computer also has its capabilities and limitations, and one should be well armed be-
fore venturing beyond certain guideposts. After a discussion of those warning signs, a
number of techniques are introduced that break through some of these limitations.

In beginning work on a new machine, learning its limitations is essential. The first
among these limitations are the largest and smallest floating point numbers. Experi-
ence has shown the value of controlling overflow and underflow. Overflow arises from
attempting to compute a number so large that it cannot be written as a floating point
number. Similarly, an underflow is caused by computing a number that is too small;
usually the computer sets the number to zero and proceeds without warning. Although
apparently harmless, often a subsequent attempt to divide by zero is flagged or, worse
still, a division of zero by zero occurs.

Consider the simple problem of computing a binomial probability when n and k are
large:

f(k | n, p) =
(

n

k

)
pk(1 − p)(n−k). (2.6.1)

For n = 80 and k = 40 and using IEEE standard arithmetic, the computation of the
binomial coefficient will overflow. For a not immoderate p = .01, an underflow mes-
sage will be given – as arising in calling EXP, of all places, since the code P**K will be
converted to

EXP(REAL(K) * LOG(P))

These computations are more naturally computed by taking logarithms (see Chapter 7)
and using the log-gamma function ALGAMA(X) = log �(x) = log(x − 1)!:

FKGNPL = ALGAMA(N+1.)+(K*LOG(P)-ALGAMA(K+1.)) &
& +((N-K)*LOG(1.-P)-ALGAMA(N-K+1.))

2.6 The Pale and Beyond 29

Three points need to be emphasized. First, if the final result (e.g., a log likelihood)
can be computed, then interruptions by overflows and underflows are intolerable. Sec-
ond, one should design underflows to harmlessly flush to zero. Third, use overflows to
signal errors or inappropriate use of the algorithm.

These prescriptions merit reiteration. If the result is expressible, then the algo-
rithm should be designed to perform the task. If the binomial probability is not ex-
pressible, then perhaps its log is. For maximum likelihood estimation, this alternative
result suffices. The intermediate steps, however, should not cause a failure. Since
underflows are usually not signaled as errors and are just set to zero, the correspond-
ing overflows that are not errors should be reworked to be underflows. The cumula-
tive distribution function (cdf) F(t) = et/(1 + et) must be reworked as 1/(1 + e−t).

Overflows can then be used to signal problems. The largest number available can usu-
ally be used to set input or design specifications. Instead of testing input for meeting
specifications, inappropriate use of an algorithm will then just overflow. This ap-
proach is not recommended for commercial software, but it is easy and effective for
personal use.

On some machines, especially those using the single precision IEEE standard, the
range of available numbers 10±38 can be limiting. Bayesian problems find this limit
quickly, since a constant factor cancels out of any inference but remains in the likelihood
as an annoyance. Here, self-management of the fraction and exponent can effectively
extend the range of the floating point arithmetic when strictly positive numbers are
added or multiplied. The number is represented by a floating point variable D and an
integer I, and its value given by D × 2I . The subroutine ADJUST performs a normal-
ization that keeps D between 1 and 16 and uses a large negative integer for I to indicate
zero or a negative.

SUBROUTINE ADJUST(D,I)
! NORMALIZES D WHILE KEEPING CONSTANT VALUE OF D * (2**I)

INTEGER, PARAMETER :: IBIG = -2147483644
REAL, INTENT (IN OUT) :: D
INTEGER, INTENT(IN OUT) :: I
IF (D .GT. 0.0) THEN
DO WHILE (D .LT. 1.0)
D = D*16.
I = I-4
ENDDO
DO WHILE (D .GT. 16.0)
D = D/16.
I = I+4
ENDDO

ELSE
I = IBIG ! IF D < 0 THEN I= -BIG

ENDIF
RETURN
END SUBROUTINE ADJUST

30 Computer Arithmetic

To store the product of a simple floating point number A and a number represented by
D and I, the code is

D = D*A
CALL ADJUST(D,I)

To store the product of the pairs (A, I) and (B, J) back in (C, K), the code is

K = I + J
C = A * B
CALL ADJUST(C,K)

A more common problem is the sum of two positive numbers:

K = MAX(I, J)
C = 0.
IF(I-K .GT. -24) C = C + (A * 2 ** (I-K))
IF(J-K .GT. -24) C = C + (B * 2 ** (J-K))
CALL ADJUST(C,K)

The choice of “−24” depends on the machine epsilon, to be discussed shortly. Notice
that the two tests avoid controllable underflows, as well as unnecessary computation,
while possible overflows have not been checked. Once certain precautions have been
taken, any unexpected overflow should be considered a catastrophic error, causing the
program to stop. In Fortran 95, three intrinsic functions make these calculations a bit
easier, normalizing D to be between 1/2 and 1. If X = D ∗ 2I with 1/2 ≤ D < 1, then
the intrinsic FRACTION(X) gives D and EXPONENT(X) gives I. The scaling by powers
of two can be done easily using SCALE(D,I) to reproduce X = D ∗ 2I .

The second limitation to be learned is the accuracy of the floating point arithmetic.
One item discussed previously is the machine unit U, which relates the level of rounding
error. The second quantity is the machine epsilon εm, defined as the smallest number
that – when added to 1 – will change its value. Usually U and εm are very close to each
other and can almost be used interchangeably. The machine epsilon can be used to save
computations: if a number to be added is too small, then often some of its computation
can be avoided. The other use of εm is in testing for equality, as discussed in Section
2.4. The IEEE standard recommends a function NEXTAFTER to give the neighboring
value in the representable numbers F . Usually x(1 + εm) suffices, as will x(1 + U),

although a slight overestimation of each is preferred. The machine unit U usually gov-
erns the accuracy of the floating point operations. As noted at the end of the previous
section, the relative error when adding n numbers is approximately nU, with the ap-
proximation failing quickly as nU becomes no longer small.

The guideposts for adding or multiplying many numbers are comparatively clear.
When nU is small, the relative error is around nU. For U ≈ 10−6, n = 1000 should still
give three decimal digits, with improvements if the smallest numbers are added first.
The multiplication guidepost is the same. But as n grows larger, some other routes
should be considered to maintain accuracy. The first, and usually the best and the eas-
iest, is to add in double precision. This will usually cost only twice as much, and its

2.6 The Pale and Beyond 31

biggest drawback is keeping careful track of which variables are single and which are
double precision. The second route is a pairing algorithm, and the third is a “best-ever”
two-list summation algorithm. Dekker (1971) provided still another alternative.

In adding n numbers, at least n −1 additions are required. From (2.5.4) we see that
the order in which they are added can make a difference. Yet not only the order but also
the combinations make a difference, since the associative law fails in floating point ad-
dition. In the simple addition algorithm, the first number appears with every addition
error uj in (2.5.4), and adding smallest first is an improvement. Suppose, however, that
we add the first two numbers together, then the third and fourth et cetera, as x2j−1+x2j .

Then add the pairs together to get sums of four numbers, and add the fours together
to get eights, continuing until completion. Then each item xj is associated not with
n − j = O(n) errors ui but with only k = log2 n errors, when n = 2k. This improve-
ment is substantial, and the algorithm is rather easy to code; see the demonstration code
sum24.

If we look even more closely at the problem of adding n numbers, the only thing
very clear is that we should add the smallest two numbers together. Yet once that is
done, the problem is substantially the same but with n − 1 numbers, one from the sum
and the other n−2 remaining from the original list. At this point, we should either add
the smallest two from the original list or the smallest to the sum. In general, we just
add the smallest two numbers around. Although this looks like a nightmare to code as
an algorithm, if the numbers are initially sorted into a single ordered list {xj } then the
algorithm is rather simple. The key is to form a second list {sj } of sums. Each addi-
tion then takes two from the front of two lists, two from one list or one from each, and
the sum formed goes on the back of the sum list {sj }, since it is larger than any pre-
vious sum. When the original list {xj } is depleted, the sum list {sj } takes the role of
the original list, and the process is repeated until only one element remains. This al-
gorithm can be coded with a couple of pointers and using no extra storage, but it is
much more complicated than the pairing algorithm. The comparison algorithm to find
the smallest two of the four elements in the first two positions of the two lists is diffi-
cult to code and cannot be done very quickly. But this is the best that can be done to
add a list of numbers; the effort may not be worth the payoff in most applications. See
the demonstration code sum3.

The addition algorithms just discussed address adding positive numbers only. The
danger of cancellation complicates any sum of mixed-sign numbers. As discussed pre-
viously, the best way to deal with cancellation is to take care of differences analytically.
But now suppose that we do have a long list of m positive numbers and n negative num-
bers, how can we add them to get the best result? Following an analogy of the previous
algorithm, suppose we have ordered the two lists of numbers in increasing magnitude.
The obvious strategy is to add the smallest two numbers of opposite sign together. In
contrast to the previous case, the resultant sum will be smaller in magnitude than any
other number available. The next step is to add the next number of opposite sign to this
sum. If the sum of the two smallest is negative, then we add positives until the sum
turns positive, then negatives until the sum turns negative again, until one side runs
out, at which point the sum and the list remaining have the same sign. The principle is
that all of the cancellation is done early, so that no cancellation is done at the end.

32 Computer Arithmetic

Finally, three methods are strictly beyond the pale and should be considered only
when an important result cannot be found any other way. The first method is inter-
val arithmetic (see Moore 1979 or Alefeld and Herzberger 1983), which can guarantee
the accuracy of its computations. The accuracy of any result computed using floating
point arithmetic is often difficult, and sometimes impossible, to assess. We have a sin-
gle number, but no sense of variation, as if statistically we had a point estimate and no
standard error. But recall that computers can perform only the elementary operations of
add, subtract, multiply, and divide. In interval arithmetic, instead of a single number x

we use an interval that can be labeled as X = (x, x̄). All of the arithmetic operations can
then be applied and defined on these intervals; for example, X + Y = (x +y, x̄ + ȳ)

and X − Y = (x − ȳ, x̄ −y). As any expression is computed using these arithmetic
operations, an interval is produced that is guaranteed to hold the true result. Of course,
occasionally this interval can be too wide to be useful, but sometimes the results are
impressive (Wang and Kennedy 1994). For the same result, some algorithms will give
better (narrower) intervals than others. Software for performing interval arithmetic is
available but not widely so, and most problems do not warrant such effort for a rock-
solid answer.

A second method for handling problems outside the ordinary is multiple precision
arithmetic. Here, several words are chained together to represent a number to extreme
accuracy. Addition and subtraction are relatively straightforward, following the same
carry and normalization done bit by bit in the machine instructions. The key to the use-
fulness of multiple precision arithmetic is that multiplication is also not too difficult.
Recall the multiplication tables learned in elementary school for base-10 arithmetic.
The single precision multiply instruction takes place in base-2d/2 arithmetic, and the
long multiplication simply requires chaining and addition of the partial products. Brent
(1978) and Smith (1991) have produced Fortran-based multiple precision packages. For
an interesting application that computes the digits of π, see Bailey (1988).

The third and final approach for unusual problems are methods for doing rational
arithmetic. Here, the results are entirely exact and the computations are all performed
using integers. Different representations can be used. The simplest one, and the only
one recommended for amateurs, is to represent a number using its prime factoriza-
tion by the list of exponents: 33/34 = 2−131507011113017−1 = (−1,1, 0, 0,1, 0, −1).
Multiplication or division is very easy, but addition and subtraction can be problem-
atic when the primes become large. One work-around is to keep some prime factors
as integers – representing the number by two integers for numerator and denominator
involving only large primes – and use the list for the smaller primes. The alternative
method uses multiple modulus residue techniques. Two examples of applications are
Keller-McNulty and Kennedy (1985) and Alfeld and Eyre (1991). The interested reader
should consult these papers and the references therein after reading Knuth (1997b,
sec. 4.3.2).

2.7 Conditioned Problems and Stable Algorithms

The jargon word “condition” connotes, in a broad sense, the ease with which a prob-
lem can be solved; that is, a badly conditioned problem is hard to solve. Between the

2.7 Conditioned Problems and Stable Algorithms 33

handwaving heuristics and the meticulous mathematical drudgery, an important distinc-
tion is often lost between the condition of a problem and the stability of an algorithm
to solve that problem.

Numerical algorithms are often viewed as producing output as a function of input:

output = f(input).

The condition of a problem can be viewed as a general derivative of the output as a
function of the input, a measure of the difference of f(input+δ) from output. Usually,
this difference is measured in relative changes in both the input and output,

|f(input + δ) − output|
output

= condition
|δ|

input
. (2.7.1)

The condition of a problem measures the relative change in the output due to a relative
change in the input. In terms of derivatives, the condition number C of a problem is
conveniently approximated by

C = |xf ′(x)/f(x)|. (2.7.2)

For many problems, derivatives do not make sense and a more precise mathematical
specification is necessary. This is particularly the case in Section 3.6, where we discuss
the accuracy of the solution of linear equations.

As an example of conditioning, consider the problem of finding the smaller root of
the polynomial equation

z2 − x1z + x2 = 0, (2.7.3)

where both x1 and x2 > 0. Consider in particular the case where x2 is quite small, so
that both roots are positive with (say) one large z1 and the other z2 near zero. If we
write the quadratic formula for the smaller root z2,

z2(x1, x2) = (x1 −
√

x 2
1 − 4x2

)/
2, (2.7.4)

and then take the partial derivative with respect to x2, we obtain (x 2
1 − 4x2)

−1/2 =
1/|z1 − z2|. It is not surprising that the roots are difficult to find when they are close
together. Following the formula (2.7.2) with x1 fixed yields C = |z1/(z1 − z2)|, which
for the particular case of one small and one large root gives a condition number nearly
equal to 1.

Now consider solving the equation (2.7.3) using the quadratic formula

z = (−b ±
√

b2 − 4ac
)/

2 (2.7.5)

for the polynomial equation az2 + bz + c = 0, and contrast the performance of the
method for solution with the condition of the problem. It is clear that, when the roots
are nearly equal, the discriminant (b2 − 4ac) will be computed with catastrophic can-
cellation. Yet consider computing the smaller root of the equation

z2 − 8.42z + 0.04 = 0 (2.7.6)

using four decimal digits. First the discriminant is 70.74, its square root is 8.411, sub-
tracting from 8.420 gives .009000, and dividing by 2 produces the result .004500,

34 Computer Arithmetic

which is not very close to the true smaller root of .0047533. An alternative form of
the quadratic formula (reciprocal of largest root of quadratic in negative powers of z)

gives

2c
/[− b +

√
b2 − 4ac

]
. (2.7.7)

Computing the smaller root this way, the square root is the same 8.411, but the expres-
sion in brackets is 16.83 and the computed root is 2(0.04000)/16.83 = .004753, which
is on the money. If we change x2 to .05, then the usual formula yields .006000 while the
alternative method gives .005942, accurate to four digits again. Notice that the effect
of the relative change of .01/.04 in the input yields a change of .0012/.00475 in the
output.

This example illustrates the difference between the condition of the problem and
the numerical stability of the method to solve it. Solving the equation is a very well-
conditioned problem, for the roots are well separated and the condition number is
roughly 1. But one method of computing the root is not stable, whereas the other
method gives a very accurate result.

Analyses of the condition of a problem and of the stability of the computational
method are sources of confidence in the computed solution. The analysis of stabil-
ity is usually done in a backwards error analysis fashion – that the computed solution
f ∗(x) is the exact solution of a problem with different input f(x∗). Starting with ex-
pressions such as fl(z) = z(1 + u), this backwards error analysis states how close
x∗ is to x. Algorithms where x∗ is close to x are stable. A highly satisfactory conse-
quence is the stability on the level of the accuracy of the input. The condition number
permits assessment of how the differences between x∗ and x are magnified in the
output.

In the preceding example, looking only at the x2 = .04 input coefficient, the first
computed root of .0045 is the exact solution for the problem where x∗

2 = .03786975.

Now if the difference |.04 − .03787| ≈ .00213 is at the level of the accuracy of the
input, as in the sense of a standard error, then .0045 should be an acceptable solution.

Programs and Demonstrations

fixex Demonstration of fixed point arithmetic and internal representation
Ten integers are written out in internal format in half-integers (kind = 2). The most
negative number is decreased by one and then negated, resulting in no change.

floatex Demonstration of floating point arithmetic and its internal representation
Seven interesting numbers are written in their internal representation and written
also as if the internal representations were read as fixed point numbers.

macheps Algorithm to find the machine epsilon in single precision arithmetic
A few small numbers are added to 1 and compared to 1. The machine epsilon is
defined to be the smallest number added to 1 that yields a sum other than one.

Exercises 35

sum24 Demonstration of two algorithms for summation of positive numbers
Two subprograms are demonstrated for summing three examples, S1 = ∑n

j=1 j,

S2 = ∑n
j=1 j 2, and S3 = ∑n

j=1 j−1. One algorithm, sum2, follows the pairing
method described in Section 2.5. Another version of this method, sum4, can be put
in a loop and does not require the entire series to be stored in a list. Both do the
same summation.

sum3 Demonstration of the “best” algorithm for summation
A third “best” method is implemented in the subroutine sum3 to add the same series
as in sum24. Note that sum3 requires the initial list of numbers to be sorted.

tab21d Double precision values for Table 2.1.
Versions in Fortran, R, and SAS provide double precision values for Table 2.1,
including extremely large and small values.

Exercises

In the appropriate exercises, use the arithmetic methods (e.g. two’s complement) that
your computer uses.

2.1 Write the following as fixed point numbers using M = 16 bits: (a) −1234; (b) 55; (c) 8191;
(d) −10.

2.2 Write the numbers in Exercise 2.1 as floating point numbers, and also: (e) 2/3; (f) 1/10.

2.3 (a) Write −10 as a 32-bit fixed point number.
(b) What would its value be if it is read as a floating point number?

2.4 (a) Prove that n!/k!(n − k)! is always an integer.
(b) For your computer, for what value of n will (2.3.2) lead to an overflow?

2.5 Knuth gives some transcendental numbers in octal (base 8) as follows:

π = 3.11037552421026430215142306eight,

e = 2.55760521305053551246527734eight,

γ = 0.44742147706766606172232157eight (Euler’s γ).

(a) Convert these to six-digit decimal numbers and check your result.
(b) How are they written as floating point numbers?
(c) Write them also as double precision numbers.
(d) What is the value of the first word of (c) when read as a single precision number?

2.6 Suppose all of the bits of a 32-bit word were IID (independent and identically distrib-
uted) Bernoulli random variables with p = 1/2. What is the distribution of the value
when it is read as a floating point number? Describe the general behavior of the distribu-
tion function.

2.7 The smallest number that can be added to 1 that gives a sum that is different from 1 is
called the machine epsilon, εm. Find the machine epsilon and compare it to what you
guessed analytically.

36 Computer Arithmetic

2.8 For n = 30 and p = 1/2, compute the probability that a binomial random variable is
greater than 20 and estimate the accuracy of your answer. Compare it to the normal
approximation.

2.9 Can the computed average of two floating point numbers (x + y)/2 (sum, then divide)
be smaller than either one? Give an example (two digits are enough) in base 10 or 16. Is
it possible in base 2?

2.10 The transcendental number e can be represented by the series

e = 1 + 1 + 1/2 + 1/6 + · · · + 1/(i!) + · · · .

Compute e by summing this series in order from i = 0, which is from largest to small-
est. Compare this to the result from summing from smallest (take i large enough) to the
largest.

2.11 Compare the evaluation of e−x for x = 1, 2, 3, 4 using:
(a) the alternating series e−x = 1 − x + x 2/2 − x3/3! + · · · + (−1)jxj/j! + · · · ;
(b) the reciprocal of the nonalternating series

1/(1 + x + x 2/2 + x3/3! + · · · + xj/j! + · · ·).
2.12 The harmonic series Hn =∑n

j=1(1/j) is known to diverge, but on a computer it will ap-
pear to converge. Compute Hn until the value no longer changes with n. Compare the
stopping point with what can be guessed analytically, using εm and the approximation

Hn = 1 + 1/2 + 1/3 + · · · + 1/n = .577215664 + log n + o(n)

by equating εm and (n + 1)−1/Hn (see Knuth 1997a, p. 160).

2.13 Compare the accuracy of four approaches to the similar convergent alternating series

Sn = 1 − 1/2 + 1/3 − 1/4 + 1/5 − 1/6 + 1/7 − 1/8 + · · · + (−1)n+1/n,

where limn→∞ Sn = loge 2.

(a) Add from largest to smallest (1 to n).

(b) Add from smallest to largest (n to 1).
(c) Add the pairs first: (1 − 1/2) + (1/3 − 1/4) + · · · .

(d) Add the pairs analytically: sum 1/((2k − 1)(2k)) from k = 1.

2.14 Find the values of t where cancellation will be serious in the following expressions, and
rework to avoid the cancellation:
(a) 1/t − 1/

√
t 2 + a;

(b) e−2t 2 − e−8t 2;
(c) log(et+s − et);
(d) [(1 + e−t)2 − 1]t 2e−t .

2.15 On the computer you are using, what is the smallest number X for which EXP(X) does
not underflow? What is the largest number X such that EXP(X) does not overflow?

2.16 Following (2.7.2), compute the condition number for each of the following functions
f(x), and give the values of x for which the condition number is large:
(a) f(x) = ex;
(b) f(x) = log(x);
(c) f(x) = log(1 + x);

Exercises 37

(d) f(x) = �−1(x);
(e) f(x) = x/

√
1 + x 2.

Are there any surprises?

2.17 Let the real number z lie between (+, E, F) and (+, E, F+B−d). Carefully verify (2.2.3).

2.18 Write the Fortran code to add exp(A) to D ∗ 2I , using ADJUST if necessary, and reuse D

and I to represent the sum.

2.19 Samuelson’s inequality (also attributed to K. R. Nair) gives a bound on the extremes in
a sample in terms of the mean and variance:

|xi − x̄| ≤ s
√

n − 1.

Use this to bound the cancellation in (2.5.1) by giving a bound on the ratio

n(x1 − x̄)2
/∑

(xi − x1)
2.

2.20 The Lewis–Goodman–Miller algorithm for generating random numbers is given by the
integer relation zn+1 = 16807zn mod (231 −1). The portability problem with this method
is that the rules for fixed point overflow vary greatly. For a computer using two’s comple-
ment that allows an integer overflow to go unflagged, the following code was proposed:

Z = 16807 * Z
IF (Z .LT. 0) Z = (Z + 2147483647) + 1

Check to see if your computer behaves this way by checking this algorithm, beginning
with z1 = 1, and see if z10001 = 1043618065 (Park and Miller 1988).

2.21 Change the coefficient in (2.7.6) to .038 and redo the computations. Comment.

2.22 On your computer, what is the smallest integer that cannot be exactly represented as a
floating point number?

2.23 Prove that any positive number z can be written as a base-B number using the digits
{0,1, . . . , B − 1} as in (2.2.1).

2.24 In Bayesian analysis, a normalization constant often cancels out of the numerator and
denominator of posterior calculations. Since most of the analysis is first done in logs,
often a choice is available to compute exp(u − v) or exp(u)/exp(v). Which is better, or
does it make a difference at all? Compare the two methods for u ≈ v with values such
as ±1, ±5, ±10, ±100. Can you show analytically which one should be better?

2.25 The Cantor function g(x) is a weird function often used as a counterexample in analysis.
It takes constant values on the middle third of intervals:

g(x) = 1/2 for x ∈ (1/3, 2/3),

g(x) = 1/4 for x ∈ (1/9, 2/9),

g(x) = 3/4 for x ∈ (7/9, 8/9),

and so on. Royden (1968, p. 47) gave the following precise definition. Begin with the
base-3 expansion of x = ∑∞

j=1 aj 3−j and let N be the index of the first-time aj = 1.
Now let bj = aj/2 for j < N (notice that bj is 0 or 1) and bN = 1, so that g(x) =∑N

j=1 bj 2−j . The Cantor function is monotone nondecreasing and continuous almost
everywhere, with a derivative existing almost everywhere that is zero, although the func-
tion goes from g(0) = 0 to g(1) = 1. However weird it may be, can you write an algorithm

38 Computer Arithmetic

to compute g(x) for all representable numbers F ? Plot it on (0,1). Does it appear as you
would expect?

2.26 The budget of the United States government is on the order of 3,500,000,000,000 dol-
lars. The lowest unit of currency, however, is the cent with 100 cents per dollar. Could
SAS or R keep track of each cent as an integer?

2.27 Tsao (1974) derived a statistical model for the relative error ε in chopped floating point
computations as ε = U/Z, where U is uniformly distributed on

[
0, B−d

)
independently

of Z whose density is 1/(loge(B)z) on [1/B, 1). Is the confidence interval (0, m), where
Pr(U/Z ≤ m) = .95, substantially different from the bound B1−d given in Section 2.5?

References

The fascinating (and surprisingly difficult) subject of arithmetic is beautifully explained
in Knuth (1997b). The numerical analysis text of Forsythe, Malcolm, and Moler (1977)
gives a good exposition of accuracy problems and excellent exercises. Stewart (1973)
presents conditioning, stability, and the mathematics of roundoff error. The IBM docu-
ment (Anonymous 1956) is exemplary of the information available in the manuals that
accompany computers. The subroutine ADJUST appears as Algol code for Cholesky
decomposition (see Section 3.4) by Martin, Peters, and Wilkinson (1965), reprinted
in Wilkinson and Reinsch (1971). W. Kahan was the driving force behind the IEEE
standard, but many of his papers are technical reports or conference proceedings (e.g.
Kahan, Palmer, and Coonen 1979) and thus are not readily available.

Gotz Alefeld and Jurgen Herzberger (1983), Introduction to Interval Computations. New York:
Academic Press.

Peter Alfeld and David J. Eyre (1991), “The Exact Analysis of Sparse Rectangular Systems,” ACM
Transactions on Mathematical Software 17: 502–18.

Anonymous (1956), Number Systems. Poughkeepsie, NY: IBM Corporation.
David H. Bailey (1988), “The Computation of π to 29,360,000 Decimal Digits Using Borweins’

Quartically Convergent Algorithm,” Mathematics of Computation 50: 283–96.
Richard P. Brent (1978), “A Fortran Multiple-Precision Arithmetic Package,” ACM Transactions on

Mathematical Software 4: 57–70.
W. J. Cody (1988), “Algorithm 665, MACHAR: A Subroutine to Dynamically Determine Machine

Parameters,” ACM Transactions on Mathematical Software 14: 303–11.
Germund Dahlquist and Ake Bjorck (1974), Numerical Methods (trans. by N. Anderson). Englewood

Cliffs, NJ: Prentice-Hall.
T. J. Dekker (1971), “A Floating-Point Technique for Extending the Available Precision,” Numerische

Mathematik 18: 224–42.
George E. Forsythe, Michael A. Malcolm, and Cleve B. Moler (1977), Computer Methods for Math-

ematical Computations. Englewood Cliffs, NJ: Prentice-Hall.
David Goldberg (1991), “What Every Computer Scientist Should Know about Floating Point Arith-

metic,” ACM Computing Surveys 23: 5–48.
Institute of Electrical and Electronics Engineers (1985), “IEEE Standard for Binary Floating Point

Arithmetic,” Standard 754-1985, IEEE, New York.
W. Kahan, J. Palmer, and J. Coonen (1979), “A Proposed IEEE-CS Standard for Binary Floating Point

Arithmetic,” Proceedings of the Twelfth Interface Symposium on Computer Science and Statistics,
pp. 32–6, University of Waterloo.

References 39

Sallie Keller-McNulty and William J. Kennedy (1985), “Error-free Computation of a Reflexive
Generalized Inverse,” Linear Algebra and Its Applications 67: 157–67.

Donald E. Knuth (1997a), The Art of Computer Programming (vol. 1: Fundamental Algorithms), 3rd
ed. Reading, MA: Addison-Wesley.

Donald E. Knuth (1997b), The Art of Computer Programming (vol. 2: Seminumerical Algorithms),
3rd. ed. Reading, MA: Addison-Wesley.

Ulrich W. Kulisch and Willard L. Miranker (1981), Computer Arithmetic in Theory and Practice.
New York: Academic Press.

R. S. Martin, G. Peters, and J. H. Wilkinson (1965), “Symmetric Decomposition of a Positive Definite
Matrix,” Numerische Mathematik 7: 363–83.

Ramon E. Moore (1979), Methods and Applications of Interval Analysis. Philadelphia: SIAM.
Michael L. Overton (2001), Numerical Computing with IEEE Floating Point Arithmetic; Philadelphia:

SIAM.
Stephen K. Park and Keith W. Miller (1988), “Random Number Generators: Good Ones Are Hard to

Find,” Communications of the ACM 31: 1192–1201.
H. L. Royden (1968), Real Analysis, 2nd ed. New York: Macmillan.
Paul A. Samuelson (1968), “How Deviant Can You Be?” Journal of the American Statistical Associ-

ation 63: 1522–5.
David M. Smith (1991), “Algorithm 693: A Fortran Package for Floating-Point Multiple-Precision

Arithmetic,” ACM Transactions on Mathematical Software 17: 273–83.
G. W. Stewart (1973), Introduction to Matrix Computations. New York: Academic Press.
Nai-kuan Tsao (1974), “On the Distribution of Significant Digits and Roundoff Errors,” Communi-

cations of the ACM 17: 269–271.
Morgan C. Wang and William J. Kennedy (1994), “Self-Validating Computations of Probabilities

for Selected Central and Noncentral Univariate Probability Functions,” Journal of the American
Statistical Association 89: 878–87.

J. H. Wilkinson and C. Reinsch (Eds.) (1971), Linear Algebra. New York: Springer-Verlag.

3

Matrices and Linear Equations

3.1 Introduction

In recent years, linear algebra has become as fundamental a mathematical tool as cal-
culus. Since its role in statistics is so prominent, matrix computations and the solution
of linear equations are fundamental to the computing of statistics. Hence the treatment
in this chapter is rather traditional. The study of one particular statistical problem, re-
gression, is postponed, and some problems arising in time-series analysis are discussed
in the next chapter.

Numerical analysts always talk about the solution to a system of equations, Ax =
b, for the thought of computing an inverse is considered (for reasons often unstated)
naive and gauche. Although the tone is haughty, the reasoning is sound, and while
the mathematics of A−1B speaks of inverses, its computation means solving systems
of equations with several right-hand sides. To emphasize, although the algebra may
be written in terms of inverses, careful analysis to convert the computations to solv-
ing systems of equations with many right-hand sides may lead to substantial savings in
computing time.

The systems of equations to be treated here will always be square and consistent –
that is, they will always have a solution. When this assumption is violated, the problem
of solving a system of equations changes its nature, sometimes to a regression problem
(discussed in Chapter 5) or to an eigenproblem (Chapter 6).

The first topic to be covered is an introduction to the computational and storage
tricks that are so useful in matrix computations. Other acts of computational sleight of
hand will be introduced as they arise. Solving linear equations begins with the simplest
cases, triangular systems. The most common method of solving general linear equa-
tions, Gaussian elimination, is described in detail in Section 3.4. Factoring positive
definite matrices, so valuable in statistics, is discussed in Section 3.5. Matrix norms are
introduced in Section 3.6 and are used to analyze accuracy and conditioning in Section
3.7. Further topics in numerical linear algebra are discussed in Chapter 4.

Notation is critically important for communicating complicated algorithms clearly
and succinctly. All matrices will be denoted by a capital roman letter in boldface (e.g.
A). All vectors are column vectors unless otherwise indicated, and are denoted by low-
ercase roman letters (e.g. b). The notation for an individual element of a vector is a
simple subscript bi; for a matrix, Aij denotes the element in row i and column j. To de-
note a particular column, A •j will be used; for a row, A i• is the notation. A superscript

40

3.2 Matrix Operations 41

capital T indicates a transpose, bT. The ith elementary vector is denoted by ei , whose
elements are zero except for a one in the ith component.

To continue with notation, there are a number of special types of matrices that are
commonly encountered:

lower triangular – Aij = 0 for i < j ;
upper triangular – Aij = 0 for i > j ;
diagonal – Aij = 0 for i
= j ;
tridiagonal – Aij = 0 for |i − j | > 1;
positive definite – symmetric, with xTAx > 0 for all x
= 0;
orthogonal – ATA = I;
permutation – Aij = 1 if i = π(j) and = 0 otherwise, where π is a permutation;
elementary permutation – P(i, j) is an identity, except rows (or columns) i and j

are switched.

Matrix operations can be written symbolically in a much simpler fashion than they
can be coded in a language such as Fortran. Consequently, considerable effort has
been made in software development to codify and simplify computational linear al-
gebra. Within the Fortran community, most mathematical library developers (IMSL,
NAg) have produced subprograms to compute matrix multiplications and solve equa-
tions as well as eigenproblems and specialized matrix problems. In the public domain,
the BLAS (basic linear algebra subroutine) routines of LAPACK handle the funda-
mental steps, and LAPACK contains routines for solving equations, computing fac-
torizations and least squares problems, and solving eigenproblems. Other software
developers have taken a different route. A generation ago, Iverson invented a special-
ized language (APL) that handles vector and matrix constructs automatically, but its
cryptic symbols have been a major obstacle to its acceptance. However, having used
APL years ago with mnemonics in place of the symbols, I can attest to its power and
usefulness. Following in the same spirit have been John Sall’s development of IML
within the SAS statistical system, the mathematical software system GAUSS, and the
vector–matrix structures with the Bell Lab’s S language. In these systems, underly-
ing the special symbols and routines are the same Gaussian elimination and Cholesky
factorization algorithms – though the user may be (blissfully or otherwise) unaware
of them.

3.2 Matrix Operations

The craft of matrix computations can be described as skills for survival under depriva-
tion of space and time. These two factors often limit the size of the problem that can
be solved; doing without prepares us for making the most of what is available. Con-
servation of space is often achieved by overwriting the solution on the input. Methods
that require fewer arithmetic operations are constantly sought. Since reductions of an
order of magnitude are rare, percentage gains in speed are highly valued. Often, the

42 Matrices and Linear Equations

gain is merely avoiding computing a quantity (e.g. 0) whose value is known first-hand.
Improvements begin as early as the fundamental problem of matrix multiplication.

Suppose we wish to multiply a matrix A (with m rows and n columns) and a vector
y (of length n) and then store the product in z. The code may be written as

do i=1,m
s=0.
do j=1,n
s=s+a(i,j) * y(j)
end do ! loop on j
z(i)=s
end do ! loop on i

where the multiplication can be seen as a stacking of the inner products zi = A i• y. In
a different view, z is a linear combination of the columns of A:

z=0.
do j=1,n
do i=1,m
z(i)=z(i)+a(i,j) * y(j)
end do ! loop on i
end do ! loop on j

Which method is better? Well, for small to moderate m and n, it hardly matters since
both perform mn multiplications and additions (or flops). But for very large matrices,
the second one may be much, much faster, because the matrix is accessed in the way
that it is stored in Fortran, by columns. The first method may not work at all for very
large (m, n � 1000) matrices, since each fetch of an element could generate a page
fault.

More importantly, some matrices have a structure that can be exploited in a particu-
lar way to save both time and space. An example is a square matrix A with the special
form A = In + uvT. Then the product can be written

Ay = (In + uvT)y = y + u(vTy),

which leads to the simple code

s=0.
do i=1,n
s=s+v(i) * y(i)
end do ! loop on i
do i=1,n
z(i)=y(i)+s * u(i)
end do ! loop on i

Whereas the usual matrix–vector multiplication requires n2 multiplications, this code
uses only 2n. But notice that I took the liberty of storing the matrix A with only what is
needed to produce it – namely, the vectors u and v. In addition, if the vector y happens

3.3 Solving Triangular Systems 43

to be no longer needed, then z can be written on top of it, rewriting the penultimate
code line as

y(i)=y(i)+s * u(i)

In spite of the potential danger, this trick is universally practiced to save space and
produce crisp and clever code.

The avoidance of computation is best seen with the multiplication of triangular ma-
trices. If A is upper triangular, then the product Ay can be computed by

do i=1,n
s=0.
do j=i,n
s=s+a(i,j) * y(j)
end do ! loop on j
z(i)=s
end do ! loop on i

and the number of flops is n(n + 1)/2, reduced roughly by half. If the bottom part of
y is zero (say, for j > k), then the upper limit of the do-loops is changed from n to k,

further reducing the effort. The savings in multiplying two upper triangular matrices
should now be apparent.

Some other tricks for saving space or time are relatively transparent. A matrix that
can be produced with just a few numbers, such as a diagonal matrix or our In + uvT

matrix, can be stored with substantially fewer than n2 locations. Moreover, when stor-
age space is at a premium, the elements of a matrix such as In+uvT would be computed
only as needed. Symmetric or triangular matrices require only half the usual space; in
fact, in Section 3.3, an upper triangular matrix and a unit (i.e., ones on the diagonal)
lower triangular matrix are stored together in just n2 locations. Remember that space
is commonly the limiting factor in large problems.

3.3 Solving Triangular Systems

The systems of linear equations Ax = b that are simplest to solve are triangular sys-
tems, where the matrix A is either upper or lower triangular. The case where A is
diagonal is the simplest of all, and the code is trivial:

do i=1,n
x(i)=b(i)/a(i)
end do ! loop on i

Notice that only the useful part of A is stored, and that the solution could be written on
the input vector b with the statement

b(i)=b(i)/a(i)

44 Matrices and Linear Equations

Lower triangular systems can be solved in a straightforward fashion from the top down.
First x1 is computed, and this is used to compute x2, et cetera, yielding the naive code

do i=1,n
s=0.
if(i>1) then

im1=i-1
do j=1,im1
s=s+a(i,j) * x(j)
end do ! loop on j

end if ! (i>1)
x(i)=(b(i)-s)/a(i,i)
end do ! loop on i

If we want to overwrite the solution vector on top of b, then the code is a little cleaner:

do i=1,n
if(i>1) then

im1=i-1
do j=1,im1
b(i)=b(i)-a(i,j) * b(j)
end do ! loop on j

end if ! (i>1)
b(i)=b(i)/a(i,i)
end do ! loop on i

In contrast, upper triangular systems are solved from the bottom up:

do ii=1,n
i=n+1-ii ! count down from n to 1
if(n>i) then

ip1=i+1
do j=ip1,n
b(i)=b(i)-a(i,j) * b(j)
end do ! loop on j

end if ! (n>i)
b(i)=b(i)/a(i,i)
end do ! loop on i

We are assuming that the matrix A is nonsingular and so Aii will never be zero; hence
these algorithms will be able to obtain a solution to the equations.

3.4 Gaussian Elimination

The success enjoyed in solving triangular systems must be tempered with the realiza-
tion that few real problems are triangular. But if a full system of linear equations could

3.4 Gaussian Elimination 45

be converted to a triangular system, then that full system could be solved. The only
legal operation for such a conversion is premultiplication by nonsingular matrix B.

That is, the system

Ax = b is equivalent to BAx = Bb, (3.4.1)

so we seek a matrix B whose product (BA) is triangular. In its simplest form, (3.4.1) is
just adding multiples of rows together. Gaussian elimination constructs a sequence of
simple matrices, each adding multiples of rows together, producing a triangular system
in the end.

The first step in Gaussian elimination is the elimination of the elements in the first
column of the matrix (with the exception of the first element) by adding multiples of
the first row to the other rows. The multiple −Ai1/A11 of the first row, when added to
the ith row, will yield a zero in the first element of that row. If M(1) denotes the ma-
trix that adds those multiples of the first rows to the other rows, then the first step can
be written with A(0) = A as

M(1)A(0) = A(1)

or
1 0 0 0

−A21/A11 1 0 0

−A31/A11 0 1 0

−A41/A11 0 0 1

A
(0)
11 A

(0)
12 A

(0)
13 A

(0)
14

A
(0)
21 A

(0)
22 A

(0)
23 A

(0)
24

A
(0)
31 A

(0)
32 A

(0)
33 A

(0)
34

A
(0)
41 A

(0)
42 A

(0)
43 A

(0)
44

=

A

(1)
11 A

(1)
12 A

(1)
13 A

(1)
14

0 A
(1)
22 A

(1)
23 A

(1)
24

0 A
(1)
32 A

(1)
33 A

(1)
34

0 A
(1)
42 A

(1)
43 A

(1)
44

.

Notice that the elements in the first row do not change. Next, we want to force zeros
(eliminate) in the second column, but without introducing nonzeros in places where we
just put zeros. This time, we add multiples of the second row, so that this second step is

M(2)A(1) = A(2)

or
1 0 0 0

0 1 0 0

0 −A
(1)
32/A

(1)
22 1 0

0 −A
(1)
42/A

(1)
22 0 1

A
(1)
11 A

(1)
12 A

(1)
13 A

(1)
14

0 A
(1)
22 A

(1)
23 A

(1)
24

0 A
(1)
32 A

(1)
33 A

(1)
34

0 A
(1)
42 A

(1)
43 A

(1)
44

=

A

(2)
11 A

(2)
12 A

(2)
13 A

(2)
14

0 A
(2)
22 A

(2)
23 A

(2)
24

0 0 A
(2)
33 A

(2)
34

0 0 A
(2)
43 A

(2)
44

.

46 Matrices and Linear Equations

Again, elements in the first two rows are left unchanged. The continuation of this pro-
cedure is the construction of a sequence of matrices M(k), which are identity matrices
except for the kth column below the diagonal, whose elements are the multipliers

M
(k)
ik = −A

(k−1)
ik /A

(k−1)
kk , i = k + 1, . . . , n.

Each matrix M(k) is lower triangular and can be written as

M(k) = I − m(k)eT
k, (3.4.2)

where the column vector of multipliers has elements

m
(k)
i =

{
0 if i ≤ k,

A
(k−1)
ik /A

(k−1)
kk if i = k + 1, . . . , n.

(3.4.3)

Then a sequence of matrices A(k) = M(k)A(k−1) are produced, the last of which (A(n−1))

is upper triangular. This has been the plan: to convert the problem into solving a trian-
gular system. Of course, to solve the original problem, we must not forget to multiply
the right-hand side b by M(k) at each step and then backsolve the upper triangular sys-
tem so produced.

Notice that we can solve the triangular system if its diagonal elements, A
(n−1)
kk (k =

1, . . . , n), are all nonzero. Recall that these are the divisors (also called “pivots”) in the
M matrices for each step, so that if one of these were zero then the procedure would
have stopped earlier. In fact, the product of the first j of these diagonal elements equals
the determinant of the submatrix of A formed by the first j rows and columns. But
can the procedure for Gaussian elimination described so far solve the problem intended
for it – namely, a square and consistent set of equations? The answer is simply that it
cannot, for a trivial counterexample is[

0 1
1 0

][
x1

x2

]
=
[

b1

b2

]
.

However, the simple permutation of the two rows in this expression yields an upper
triangular system. So when faced with a pivot that is zero, an alternative is to permute
two rows of the current A(k) (and the right-hand side also) and so avoid this trap. Ini-
tially, any nonzero element in the kth column on or below the diagonal (switching a
row above the diagonal will mess up the pattern of zeros) appears to be a candidate.
Yet we know that, with floating point numbers, exact zeros are rare; for this problem,
near zeros might occur from a real zero through roundoff error. But before accepting
just any candidate that is “not too close” to zero, why not take the one that is actually
the farthest from zero? That is exactly what ought to be done, to switch row k with the
row (say, row j) with the largest (in absolute value) element in the kth column on or
below the diagonal. Premultiplication by an elementary permutation matrix, P(k, j),

switches rows k and j. The sequence of matrices can now be written

A(k) = M(k)P(k, jk)A(k−1), (3.4.4)

and the computations for the right-hand side are

M(n−1)P(n − 1, jn−1) · · · M(2)P(2, j2)M(1)P(1, j1)b. (3.4.5)

3.4 Gaussian Elimination 47

These permutations, known as partial pivoting, must be done in order to solve the
problem that was posed – a system of consistent equations. The additional effort of
searching for the largest of (n − k) elements is easy and only O(n2) in magnitude.

When implementing Gaussian elimination with partial pivoting, the original matrix
is usually destroyed and overwritten at each step by A(k), as is the right-hand side. If A
or b must be saved, then make a copy. The computations that produce the zeros in the
lower triangular part are not done. Moreover, each column m(k) can be stored in the
column of zeros that are created at each step, so that the matrices M(k) can be saved
without using any more space. Remarkably, storing the matrices in this way leads to a
useful factorization of the matrix A:

PA = LU, (3.4.6)

where U = A(n−1) is upper triangular and the matrix P is the permutation matrix com-
posed of the product of the elementary ones

P = P(n − 1, jn−1) · · · P(2, j2)P(1, j1). (3.4.7)

The matrix L is a unit (ones on the diagonal) lower triangular matrix whose elements
below the diagonal are those stored in the zero part of U = A(n−1), permuted as the
rows of A(k) are

L = In + m(1)
∗ eT

1 + · · · + m(n−1)
∗ eT

n−1, (3.4.8)

where

m(k)
∗ = P(n − 1, jn−1) · · · P(k + 1, jk+1)m(k). (3.4.9)

The details are examined in Exercises 3.6–3.9.

Example 3.1: Gaussian Elimination to Produce the LU Factorization

A =

1 2 −1 0

1/2 1 0 1

0 2 −1/2 3/2

1 −1 3/2 0

and the final result is

PA = LU =

1 2 −1 0

1 −1 3/2 0

0 2 −1/2 3/2

1/2 1 0 1

.

The maximum elements of column 1 are in rows 1 and 4, with no gain in switch-
ing, so P(1,1) = In is the first permutation matrix.

48 Matrices and Linear Equations

A = A(0) =

1 2 −1 0

1/2 1 0 1

0 2 −1/2 3/2

1 −1 3/2 0

,

m(1) =

0

1/2

0

1

, M(1)P(1,1)A(0) = A(1).

The maximum eligible element of column 2 is in row 4; switch rows 2 and 4, so
P(2, 4) is the second permutation matrix.

A(1) =

1 2 −1 0

0 0 1/2 1

0 2 −1/2 3/2

0 −3 5/2 0

, P(2, 4)A(1) =

1 2 −1 0

0 −3 5/2 0

0 2 −1/2 3/2

0 0 1/2 1

,

m(2) =

0

0

−2/3

0

, M(2)P(2, 4)A(1) = A(2).

The maximum element of column 3 is in row 3; no switching, so P(3, 3) = In.

A(2) =

1 2 −1 0

0 −3 5/2 0

0 0 7/6 3/2

0 0 1/2 1

, P(3, 3)A(2) =

1 2 −1 0

0 −3 5/2 0

0 0 7/6 3/2

0 0 1/2 1

,

m(3) =

0

0

0

3/7

, M(3)P(3, 3)A(2) = A(3) = U =

1 2 −1 0

0 −3 5/2 0

0 0 7/6 3/2

0 0 0 5/14

,

P(3, 3)P(2, 4)m(1) =

0

1

0

1/2

.

Continuing with P(3, 3)m(2), we can construct the lower factor L from (3.4.8):

L = I +

0

1

0

1/2

eT
1 +

0

0

−2/3

0

eT
2 +

0

0

0

3/7

eT
3 =

1 0 0 0

1 1 0 0

0 −2/3 1 0

1/2 0 3/7 1

.

3.4 Gaussian Elimination 49

As originally posed, the problem required that the right-hand side b be known in ad-
vance; however, once the factorization of A is computed, the solution of a new system
of equations Ax = b can be done easily:

(1) permute the right-hand side Pb;
(2) solve the triangular system Ly = (Pb) for y;
(3) solve the triangular system Ux = y for x.

The advantage of this approach (i.e., computing the factorization and solving two tri-
angular systems) over computing the inverse A−1 and multiplying (A−1)b can be seen
after the accounting of the work.

Example 3.2: Solving a System of Equations with Gaussian Elimination
1 2 −1 0

1/2 1 0 1

0 2 −1/2 3/2

1 −1 3/2 0

x1

x2

x3

x4

 =

1/2

1

3/2

2

.

In the form Ax = b, the matrix A is the same as in Example 3.1, so let’s use the
factorization obtained there using Gaussian elimination: PA = LU. First solve
Ly = (Pb) for y:

Ly =

1 0 0 0

1 1 0 0

0 −2/3 1 0

1/2 0 3/7 1

y1

y2

y3

y4

 = P(3, 3)P(2, 4)P(1,1)b =

1/2

2

3/2

1

,

so y =

1/2

3/2

5/2

−9/28

.

Having y, now solve Ux = y for x:

Ux =

1 2 −1 0

0 −3 5/2 0

0 0 7/6 3/2

0 0 0 5/14

x1

x2

x3

x4

= y =

1/2

3/2

5/2

−9/28

, so x =

−7/10

9/4

33/10

−9/10

.

Computing the factorization requires (2n − 3)(n − 1)(n − 2)/6 multiplys and
(n − 1)(n − 2)/2 divides as well as an equal number of additions and subtractions, or
n3/3 + O(n2) floating point operations or “flops.” Solving the two triangular systems
requires n2 flops for each right-hand side. To compute the inverse from the factor-
ization requires an additional 2

3n3 + O(n2) flops (see Exercise 3.2). To compute the
inverse by full elimination (as in Section 4.2) also requires n3 flops, so that the ex-
tra setup cost in computing the inverse is 2

3n3 flops. Multiplying the inverse and the
right-hand side vector takes the same n2 as solving the two triangular systems. In other

50 Matrices and Linear Equations

words, the marginal cost for each additional right-hand side is the same under both
schemes. Computing the inverse requires at least twice as much additional work as
the factorization. We conclude that the inverse of a matrix should never be computed,
unless:

(1) it is absolutely necessary to compute standard errors;
(2) the number of right-hand sides is so much larger than n that the extra cost is

insignificant; or
(3) the size of n is so small that the costs are irrelevant.

Finally, one computation that is important in statistics is the determinant of a matrix.
Some formulations of the determinant require an inordinate number of computations
for a numerically suspect result. However, Gaussian elimination enables an efficient
evaluation of the determinant, merely by multiplying the diagonal elements of U to-
gether and then adjusting by the odd or even number of permutations P(k, jk), since

det(P) det(A) = det(PA) = det(LU) = det(U).

The determinant of P(k, jk) is −1 unless k = jk, and the determinant of L is just 1.

3.5 Cholesky Decomposition

In statistics, the matrix A in the solution of linear equations Ax = b is more often pos-
itive definite than not. The covariance matrix of a multivariate random variable Y is
always nonnegative definite. The variance of a linear combination of the components
var(cTY) can be expressed as a quadratic form in the covariance matrix cT cov(Y)c.
Because variances are nonnegative, so will be the quadratic form. If the covariance
matrix is nonsingular then no nonzero linear combination c can give a zero variance or
quadratic form, and the matrix is then called positive definite. Positive definite matrices
arise in other areas wherever the matrix can be viewed as some form of covariance or
as a sum of squares and cross-products matrix.

Gaussian elimination can be used to solve a system of equations with a positive
definite matrix, but it cannot exploit the positive definiteness property. Positive defi-
niteness is common enough and useful enough to warrant special treatment. Instead of
an LU factorization, a positive definite matrix A can be factored into LLT, which ex-
ploits the symmetry of the matrix. Construction of this lower triangular matrix L also
demonstrates that the original matrix A is positive definite.

The Cholesky decomposition (or square root algorithm) is inductive – assuming first
that the matrix formed by the first (k − 1) rows and columns A[k−1] has been factored,

A[k−1] = L[k−1](L[k−1])T,

to produce the factors for A[k]. Starting the induction is easy, just A11 = L2
11. So now

look at the kth step, factoring a k × k matrix, to find the new row of L[k]:[
A[k−1] a[k]

a[k]T Akk

]
=
[

L[k−1] 0
�[k]T Lkk

]
L[k]

=
[

L[k−1] 0
�[k]T Lkk

][
L[k−1]T �[k]

0 Lkk

]
.

k − 1

1

3.5 Cholesky Decomposition 51

Because the factorization of A[k−1] is assumed, this step presents two equations to be
solved for the unknown �[k] and Lkk, which comprise the kth row of L[k]:

L[k−1]�[k] = a[k] (3.5.1)

and

L2
kk = Akk − �[k]T�[k]. (3.5.2)

The first part of step k consists of solving the triangular system of equations (3.5.1) for
�[k] using the known a[k] and previously computed (k − 1) × (k − 1) matrix L[k−1].

The second part of step k is computing the sum of squares of the solution vector �[k],

subtracting from the diagonal Akk, and computing a square root for Lkk. Whether the
right-hand side of (3.5.2) is positive serves as a test of the positive definiteness of A[k],

since a quadratic form in A with the vector−(A[k])−1a[k]

1

0

 k − 1

1

n − k

will yield the right-hand side of (3.5.2). Thus, if the matrix A is positive definite then
square roots can be computed at every step and the algorithm will run to completion,
since each L[k] will be nonsingular. If the factorization can be computed, then any qua-
dratic form will be nonnegative because

xTAx = xTLLTx = (LTx)T(LTx) = yTy ≥ 0

for LTx = y. Since L is nonsingular, a zero y will occur only with a zero x.

The Cholesky decomposition algorithm does require the computation of n square
roots. Although a square root is a comparatively easy nonarithmetic operation, a vari-
ation of the Cholesky method, known as the “Cholesky decomposition without square
roots,” lives up to its name. The difference is that two matrices, one unit lower trian-
gular M and one diagonal D, are computed to yield A = MDMT. Again the algorithm
is inductive; the beginning is just as simple, D11 = A11, and the kth step is[

A[k−1] a[k]

a[k]T Akk

]
=
[

M [k−1] 0
m[k]T 1

][
D[k−1] 0

0 Dkk

]
M [k]T.

The two equations to solve are the triangular system for m[k],

M [k−1]D[k−1]m[k] = a[k] (3.5.3)

and

Dkk = Akk − m[k]TD[k−1]m[k]. (3.5.4)

Positive definite matrices are symmetric, so it should not be surprising that a ma-
trix could be reproduced with only the n(n + 1)/2 elements of L. Since actually only
about half of the n2 storage locations for A or L are needed, can these matrices be
stored in a compressed fashion? The answer is, of course, Yes, and the most conve-
nient method is commonly called symmetric storage mode, although it is also useful

52 Matrices and Linear Equations

for triangular matrices. Here, only the lower triangular part is stored; it is stored in a
linear list, counting the elements along a row until the diagonal, as follows:

1
2 3
4 5 6
7 8 9 10
11 12 13 14 15
16 . . .,

so that the i, j element is stored in location (I ∗ (I −1))/2+J. If the matrix A is stored
in this fashion, then L can be overwritten in the same space.

An accounting of the work in Cholesky factorization provides a valuable compari-
son. The factoring of an n × n matrix A into LLT requires a solution of a triangular
system of length (k − 1) at step k, requiring k(k − 1)/2 flops plus (k − 1) more multi-
plys for the diagonal element. The total is then n3/6 + O(n2) flops and n square roots.
The effect of avoiding the square roots is only O(n). Since the LU factorization from
Gaussian elimination is n3/3+O(n2), the reduction by half in Cholesky’s exploitation
of symmetry should be expected. Although symmetry seems to be the only property
exploited, note that the positive definite property is essential. Symmetric but not posi-
tive definite matrices are difficult to factor in a similar way.

Example 3.3: Cholesky Factorization

A =

4 2 2 4

2 5 7 0

2 7 19 11

4 0 11 25

 = LLT, where L =

2 0 0 0

1 2 0 0

1 3 3 0

2 −1 4 2

.

k = 1: L11 = √
A11 = √

4 = 2.

k = 2: Solve L11L21 = A21 for the unknown L21: 2L21 = 2 gives L21 = 1;
L2

21 + L2
22 = A22, so that 1 + L2

22 = 5, leaving L22 = 2.

k = 3: Solve L[2]�[3] = a[3], which is
[

2 0
1 2

] [
L31

L32

]
=
[

2
7

]
, so L31 = 1 and

L32 = 3; L2
31 + L2

32 + L2
33 = A33, so that 1 + 9 + L2

33 = 19, leaving
L33 = 3.

k = 4: Solve L[3]�[4] = a[4], which is

[
2 0 0
1 2 0
1 3 3

][
L41

L42

L43

]
=
[

4
0
11

]
, so L41 = 2,

L42 = −1, and L43 = 4; L2
41 + L2

42 + L2
43 + L2

44 = A44, so that
4 + 1 + 16 + L2

44 = 25, leaving L44 = 2.

For the determinant, |A| = |L|2 = (2 × 2 × 3 × 4)2 = 242 = 28 × (9/4) with
1 ≤ 9/4 ≤ 16.

The advantages of avoiding computing the inverse of a matrix (discussed at the end of
Section 3.4) are more easily seen when the matrix is positive definite. For computing a

3.5 Cholesky Decomposition 53

quadratic form in the inverse, say xTA−1x, the Cholesky method leads to the following
steps:

(1) factor A = LLT (n3/6 flops);
(2) solve the lower triangular system Ly = x (n2/2 flops);
(3) multiply yTy = xTL−TL−1x = xTA−1x (n flops).

Computing a common expression like BTA−1B, where B is n × m, can be done simi-
larly as follows:

(1) factor A = LLT (n3/6 flops);
(2) solve the m lower triangular systems LC = B (mn2/2 flops);
(3) multiply CTC = BTL−TL−1B = BTA−1B (m2n/2 flops).

The MDMT algorithm without square roots leads to a similar solution.

Example 3.4: Solving a System of Equations Using Cholesky Factorization

Ax =

4 2 2 4

2 5 7 0

2 7 19 11

4 0 11 25

x1

x2

x3

x4

 = b =

−1

1

5/2

1/4

.

First solve Ly = b for the unknown vector y:

Ly =

2 0 0 0

1 2 0 0

1 3 3 0

2 −1 4 2

y1

y2

y3

y4

 = b =

−1

1

5/2

1/4

, so y =

−1/2

3/4

1/4

1/2

.

Then solve LTx = y for the unknown vector x:

LTx =

2 1 1 2

0 2 3 −1

0 0 3 4

0 0 0 2

x1

x2

x3

x4

 = y =

−1/2

3/4

1/4

1/2

, so x =

−13/16

7/8

−1/4

1/4

.

Finally, one of the most useful applications of the Cholesky factorization is as a pa-
rameterization for a positive definite matrix. This form of factorization is unique, so
that the correspondence between A and L is one-to-one. Moreover, some ugly cal-
culus can (a) show that the transformation is continuous and (b) find its Jacobian.
Parameterization by L, with just positive diagonals, imposes the positive definite con-
straint implicitly and avoids the complicated quadratic nonnegativity constraints, which
are difficult to impose explicitly.

54 Matrices and Linear Equations

3.6 Matrix Norms

Before analyzing the condition of the problem of solving a system of linear equations,
we need to examine ways of measuring the size of matrices. These techniques have
statistical applications other than in this narrow problem, but they are rarely discussed
elsewhere. As a result, this discussion will appear more mathematical than the reader
might expect.

Norms are used to measure the sizes of things because rescaling just rescales the
norm, and the triangle inequality is satisfied. Before looking at measuring the size of
matrices, consider first the norms of vectors. The length of a vector can be measured
by the p-norms,

‖a‖p =
(n∑

i=1

|ai |p
)1/p

,

with the provision that, for p = ∞, ‖a‖∞ = max i |ai |. The other two important
choices for p give familiar results: p = 2 gives the traditional Euclidean norm, and for
p = 1 we have ‖a‖1 =∑ |ai |. Rescaling a vector ca with c > 0 just rescales the norm
‖ca‖ = c‖a‖, and the triangle inequality is satisfied: ‖a + b‖ ≤ ‖a‖ + ‖b‖. These
well-known vector norms are then used to derive norms for general m × n matrices.
The p-norm of a matrix A is the supremum over all vectors x of the ratio

supx‖Ax‖p

‖x‖p

= ‖A‖p.

Here, all of the norms are taken using the same value of p. Three values of p give
simple and intuitive values for these norms as follows:

(1) for p = 1, ‖A‖ = maxj

∑
i |Aij | (column sum norm);

(2) for p = 2, ‖A‖ = (largest eigenvalue of ATA)1/2 (Euclidean norm);
(3) for p = ∞, ‖A‖ = max i

∑
j |Aij | (row sum norm).

The simplicity of the 1 and ∞ norms make these two the most common for use in
numerical analysis, while the Euclidean norm is the natural one for least squares and
eigenproblems as well as most problems in statistics. A fourth easily computed norm,
the Frobenius norm, can be used with p = 2:

‖A‖F =
[m∑

i=1

n∑
j=1

A2
ij

]1/2

(Frobenius norm).

The simplicity of the Frobenius norm over the usual 2-norm can be exploited through
the inequality ‖A‖2 ≤ ‖A‖F . All of these matrix norms are designed to satisfy the in-
equality

‖Ax‖p ≤ ‖A‖p‖x‖p (3.6.1)

in order to bound the effect of multiplication; the Frobenius norm satisfies (3.6.1) with
p = 2. This simple relation can be extended to handle products and powers of matrices
in the following way:

‖ABx‖p ≤ ‖A‖p‖Bx‖p ≤ ‖A‖p‖B‖p‖x‖p, (3.6.2)

3.7 Accuracy and Conditioning 55

so that ‖AB‖p ≤ ‖A‖p‖B‖p. For A = B, this relation becomes ‖A2‖p ≤ ‖A‖2
p, and

extending to powers gives ‖Ak‖p ≤ ‖A‖k
p.

For applications of these norms, consider first the von Neumann series

(I − B)−1 = I + B + B2 + B3 + · · · . (3.6.3)

In what sense is this infinite series in matrices the inverse of a matrix? More funda-
mentally, what is the meaning of such an infinite series? The natural route is to define
the infinite series as the limit of the partial sum

∞∑
k=0

Bk ≡ lim
m→∞ Sm, where Sm ≡ I + B + B2 + · · · + Bm.

The meaning of the limit (and whether the limit exists) depends on the norm ‖B‖ = b,

for simplicity. In this case, ‖Sm‖ ≤ 1 + b + b2 + · · · + bm = (1 − bm+1)/(1 − b), and
the series converges in an absolute sense only if b is strictly less than 1. If b = 1, then
the bound is infinite and the result is inconclusive. Examining the inverse, notice that

(I − B)Sm = I − Bm+1;
the difference from the identity converges to zero if ‖B‖ = b < 1, since

‖I − (I − B)Sm‖ = ‖I − (I − Bm+1)‖ = ‖Bm+1‖ ≤ bm+1 → 0.

Consequently, if ‖B‖ < 1 then the infinite series makes sense, and it does express the
inverse of a matrix.

3.7 Accuracy and Conditioning

In Section 2.7, a distinction was made between the conditioning of a problem and the
stability of an algorithm to compute a solution to that problem. Conditioning, remem-
ber, measured the effect of small changes of the input, here A and b, on the solution
vector x. Stability measured the closeness of the given problem to the problem whose
exact solution is the computed solution x∗. Analysis of stability focuses on the algo-
rithms and the arithmetic. This section begins with conditioning, using the mathemat-
ical tools of matrix norms begun in the previous section.

For the analysis of the conditioning of the solution of the linear equations Ax = b,

the first main result is

‖A−1 − (A + E)−1‖p ≤ ‖A−1‖p‖A−1E‖p

1 − ‖A−1E‖p

. (3.7.1)

(Stewart 1973, thm. 3.3.6). Using (3.7.1), defining the quantity κ = ‖A‖p‖A−1‖p, and
dividing both numerator and denominator on the right by ‖A−1‖ yields the inequality

‖A−1 − (A + E)−1‖p

‖A−1‖p

≤ κ‖E‖p/‖A‖p

1 − κ‖E‖p/‖A‖p

. (3.7.2)

The left-hand side of (3.7.2) shows the relative change in the magnitude of the inverse
of the matrix A. As ‖E‖p gets small, the denominator of the right-hand side approaches
unity; then

56 Matrices and Linear Equations

κ = ‖A‖p‖A−1‖p (3.7.3)

can be appropriately called the condition number of the matrix A, since it is the fac-
tor that magnifies the relative change in the matrix A. Mathematically, the solution of
a system of equations is only the inverse of the transformation A, so the right-hand
side b does not affect the conditioning of the problem. If the elements of the inverse
are much larger in magnitude than just the reciprocals of any typical element of the
original matrix, then this serves as a warning that the condition number will likely be
large. Recall that when we have multicollinearity in regression the variances, reflect-
ing (XTX)−1, are unusually large and thus reflect the poor conditioning of the problem
(for the problem of estimation).

Example 3.5: Condition of the Hilbert Matrix and the Condition Estimate
The Hilbert matrix is a notoriously badly conditioned matrix arising from a rather
simple form: Aij = 1/(i + j − 1). This matrix arises in many situations; one
of the simplest is as the inner product matrix of the polynomial basis functions
{1, x, x 2, . . .} with respect to the integral on the unit interval. That is, let fj(x) ≡
xj−1, and define 〈f, g〉 = ∫ 1

0 f(x)g(x) dx = Aij . These matrices have been used
for years to push matrix routines to the limit. Whereas the elements of the ma-
trix are reciprocals of integers and thus cannot be accurately expressed in floating
point arithmetic, the elements of the inverse are integers – and large ones at that.

To compute the condition number of a Hilbert matrix of order n, begin with
the norm of the matrix, which is rather easy: ‖A‖∞ = Hn = 1+1/2+· · ·+1/n,

the harmonic sum, since the max row sum occurs in the first row. Knuth (1997,
pp. 38, 474–5) gave a formula for the elements of the inverse matrix B:

(A−1)ij = Bij = (−1)i+jj

(
i + j − 2

i − 1

)(
i + n − 1

i − 1

)(
j + n − 1

n − i

)(
n

j

)
,

so ‖A−1‖∞ can also be computed. The elements of the inverse hit the fixed point
overflow rather quickly, for values as small as n = 8. The routine gaucpp also
computes the Golub–van Loan version of the Cline, Moler, Stewart, and Wilkin-
son (1979) method for computing an estimate1/κ̂ of the reciprocal of the condition
number 1/κ. These Hilbert matrices can then be used to evaluate the performance
of this estimator, using the inverse matrix B = A−1 as the input matrix since the
roundoff error in entry can be avoided by using B (the elements of A cannot be
entered exactly). The following table shows how badly conditioned the Hilbert
matrix is:

n 1/κ 1/κ̂

2 4 × 10−2 7 × 10−2

3 1 × 10−3 2 × 10−3

4 4 × 10−5 5 × 10−5

5 1 × 10−6 2 × 10−6

6 3 × 10−8 5 × 10−8

7 1 × 10−9 1 × 10−9

3.7 Accuracy and Conditioning 57

The estimate 1/κ̂ does a very good job of keeping close to the true with these
matrices. When the reciprocal of the condition drops below the machine unit,
then one cannot expect a method such as Gaussian elimination to work. See the
demonstration program chex35.

A second result gives us an inequality on the computed solution x∗ to the problem
Ax = b: ‖x − x∗‖p

‖x‖p

≤ κ‖b − b∗‖p

‖b‖p

, (3.7.4)

where b∗ = Ax∗ so that b − b∗ is the computed residual. More directly, (3.7.4) shows
how relative changes in the input – here, the right-hand side b – are amplified by κ to
bound the relative error changes in the solution. The bad news revealed in (3.7.4) is
that, when the condition number κ is large, a small residual b − b∗ may belie a large
error in the computed solution x∗. In practice, this result should be used in the follow-
ing way: since the right-hand side b must be rounded with an error O(U), it follows
that the relative error in the computed solution could be as large as O(κU).

Example 3.6: Condition of Interpolation
In Chapter 7, the numerical instability of interpolation with high-degree polyno-
mials will be discussed in more detail. Here, the interpolation problem merely
presents two easy cases of a badly conditioned system of equations and one that
is not so severe. Interpolation of a function f(x) at n points {xi, i = 1, . . . , n}
with a polynomial of degree n − 1 leads to the problem of solving a system of
equations for each point i (i = 1, . . . , n):

c1 + c2 xi + c3x
2
i + · · · + cnxn−1

i = yi = f(xi).

Writing these in matrix form as Ac = y produces a Vandermonde matrix, with
entries Aij = x

j−1
i . Various properties of Vandermonde matrices are known in

closed form, usually following its connection with interpolation. Here we are in-
terested in solving a system of equations and watching how the solution changes
with small changes in the right-hand side y. Two choices of abscissas {xi} are
available in the demonstration program chex36:

(1) equally spaced abscissas, xi = (2i − 1 − n)/2n;
(2) Chebyshev abscissas, xi = cos

(
(2i − 1)π)/2n

)
.

The interpolated function has less effect, in this case f(x) = 1/(1 + x 2). The
condition numbers for these two choices vary tremendously, even for small val-
ues of n. For n = 4, which gives cubic interpolation, the equally spaced Vander-
monde matrix has an estimated reciprocal condition number 1/κ̂ of .01 (computed
using gaucpp). Also for n = 4, the matrix formed by using the Chebyshev ab-
scissas has 1/κ̂ = .37, which is rather well conditioned. The effects of these
different abscissas can be seen as the right-hand sides are perturbed by ±ε in
mimicking (3.7.4). For ε at 10−5, the relative change in the solution c is mag-
nified by a factor of 85 for the equally spaced case but by a factor of only 5

58 Matrices and Linear Equations

for the Chebyshev case. See the program chex36 for further details; see also
Exercise 3.24.

The analysis of the stability of Gaussian elimination leads to a great deal of detailed
mathematics (see e.g. Stewart 1973, sec. 3.5). Exact error analysis, for all of the hard
work, turns out to give predictions that are unrealistically pessimistic in practice. Con-
flicting with this experience is that the matrices that provide the worst cases can be con-
structed, so that the theory cannot be improved to give less pessimistic error bounds. For
most practical problems, however, Gaussian elimination with partial pivoting should
be considered a stable algorithm. That is, the computed solution x∗ is the exact solution
to the problem (A + E)x = b, where ‖E‖ is O(‖A‖U). The warning signals for the
exceptional cases are computed solutions that are inordinately large in value and piv-
ots that are threateningly small. Cholesky decomposition is stable, unconditionally so
if the inner products are accumulated in double precision. A generation ago, the com-
mon prediction was that roundoff error would limit the size of matrices for which linear
equations could be solved to around n = 100. That prediction has not been realized
and now appears foolish.

If these comforting words are not sufficient, there are tools for improving the condi-
tion of the problem and the accuracy of the solution. For the latter, iterative improve-
ment is discussed in the next chapter. The condition of the problem can be improved
by judicious scaling of the problem – that is, multiplying all of the rows of A and also
b by the same constant. Similarly, the columns of A can be adjusted if reciprocal ad-
justments are made on the solution vector x. When all of the elements of the matrix
are nearly the same magnitude, then the condition number can be reduced dramatically
and many difficulties avoided. Even without a conscious effort to equalize the magni-
tudes of the elements, the common sense of avoiding any great disparities will prevent
most problems. However, no automatic method of rescaling rows and columns has
been found that can cure all ills.

Finally, although the condition number κ of a matrix holds the key to the accuracy
of the solution, computing the condition number faces real obstacles. In particular, the
inverse matrix A−1 needs to be computed, despite the contrary admonition at the be-
ginning of this chapter. Computing the inverse entails 2

3n3 + O(n2) flops in additional
work, but it is difficult to compute in cases where the condition number is large. An-
other route would be to compute the Euclidean norm, but this eigenproblem would be
even more costly. We seek a method of computing the condition number κ (or a reliable
estimate) in O(n2) additional work. Such an estimate should remain reliable even as
κ grows large. Cline et al. (1979) proposed an estimator satisfying these requirements;
Golub and van Loan (1996, pp. 76–8) presented a version based on the ∞-norm. This
method is used by gaucpp and exploited in chex36. The accuracy of this estimate is
assessed by cdnxpmt; see the following example.

Example 3.7: Performance of the Condition Estimator 1/κ̂
Stewart (1980) discussed the generation of random orthogonal matrices, but the
goal of his paper is a Monte Carlo study of the performance of the condition es-
timator of Cline et al. (1979). Stewart’s approach is to compute matrices with

3.7 Accuracy and Conditioning 59

approximately the same 2-norm yet with the ability to accurately and simply com-
pute the matrix and its inverse. This part of his methodology is beyond the level
of this chapter, but the reader would be well equipped after reading Chapter 5. In
the file cdnxpmt.out are the results of a Monte Carlo study of my implementation
of the Golub–van Loan ∞-norm version of this method (described previously).
The study is a three-factor {n, condition number (2-norm), construction} facto-
rial with two replications. Since the condition number under the 2-norm is the
square root of the ratio of the largest and smallest eigenvalues of ATA, two simple
methods of construction were used by Stewart to arrange the intermediate eigen-
values: all but the smallest equal (sharp break), and exponentially decaying from
the largest to the smallest. Four levels of n (5, 10, 25, 50) and four levels of κ2 (10,
100, 103,104) were used, and the median of the ratio κ∞/κ̂∞ from 25 sample ma-
trices was reported as the statistic. Over this wide range, the condition estimator
κ̂ tends to underestimate, with the worst cases at n = 50, and slightly worse for
larger condition numbers. Although the underestimate may appear grievous with
ratios as big as 20, from a practical point of view the performance of κ̂ makes
it a useful tool because it involves comparatively little additional computation
over the required Gaussian elimination LU factorization. See Exercise 3.26 and
cdnxpmt.

For positive definite systems of equations, that is, when A is positive definite, a dif-
ferent type of evidence on the condition of the problem may be available when an
algorithm to compute the Cholesky factorization fails. An instinctive response to the
failure of Cholesky is to ignore the theoretical positive definiteness and use another
method, such as Gaussian elimination, to compute a solution to these equations. The
question to ask, however, is whether a solution computed using Gaussian elimination
(or any other method) has any real value. Because of rounding error, we are comput-
ing the exact solution to a nearby problem – with A + E as the matrix – but this matrix
is singular. The failure of Cholesky brings us back to the original problem to find an-
other route, but it should also trigger a question whether a solution computed some
other way would have any value.

Finally, this discussion about the condition number would be incomplete without
the following caveat. The condition number is a useful summary of the ease or diffi-
culty in solving a linear system of equations, reflected in how changes in the matrix A
or the right-hand side b affects the solution. The particular application will suggest the
magnitude and pattern of the changes. Some elements of the matrix are always exactly
one; some elements may have been already rounded to four decimal digits. Take, for
example, the following simple 3 × 3 matrix

A =
[100 0 −200

1 −1 0
0 .01 −.01

]

whose condition number according to the p = 1 norm is approximately 105. Indeed, if
we add 10−6 to each element of A, we will see changes in the inverse of approximately.2.

60 Matrices and Linear Equations

But the scaling of the rows of the problem may suggest that certain patterns of the
changes are unlikely. Depending on the application, it may be that possible changes in
the first rows of A are 100 times as big as what one might expect in the second row,
and the changes in the third row may be 1/100 of changes in the second row. And so,
the change matrix E1 below may be quite unlikely, but E2 more realistic

E1 =
[10−6 10−6 10−6

10−6 10−6 10−6

10−6 10−6 10−6

]
, E2 =

[
.0001 .0001 .0001
10−6 1−6 10−6

10−8 10−8 10−8

]
.

In such a case, the matrix A is artificially ill-conditioned (Stewart and Sun, 1990,
p. 122ff); we should scale the rows of A appropriately, leading to a matrix whose condi-
tion number is just 15. If we are looking at changes in the right hand side, again, depend-
ing on the application, if we expect changes something like e1 = (10−6, 10−6, 10−6)T ,
then, again, 105 is the appropriate condition number. But if the pattern may be more
like e2 = (.0001, 10−6, 10−8)T , then the problem is artificially ill-conditioned and the
rows of A should be rescaled.

More generally, if by appropriate rescaling we change an ill-conditioned problem
to a well-conditioned one, then we can say that the original problem was artificially
ill-conditioned. The particular application dictates what scaling might be appropriate.
For solving linear equations, if changes in any component of the right-hand side b are
equivalent, based on the application, then rescaling rows would not be appropriate. If
changes in any component of the solution vector are viewed equally, then rescaling
rows should be similarly proscribed.

3.8 Matrix Computations in R

Even though vector and matrix computation is a natural part of R, the user must be
mindful of its eccentricities. Vectors are just vectors, not necessarily row nor column.
Hence careful programming means using inner() and outer() for clarity. The trans-
pose operator t () coerces a vector into a matrix with a single row. Similarly, the matrix
multiplication operator %∗% will coerce its operands into matrices and check for con-
formity. The non matrix multiplication operator ∗ presents potential dangers that the
naive user may not be able to imagine. Suppose X is a matrix and z is a scalar – oops,
a vector of length 1. While z ∗ X looks like scaling a matrix, in reality z is coerced
into a matrix conformable with X by recycling the single value in z, and then the con-
structed matrix and X are multiplied element-by-element. Now if z is a vector, again
z will be coerced into a matrix by recycling. If length(z) matches dim(X)[1] (num-
ber of rows of X), then z ∗ X will rescale the rows of X and give the same result as
diag(z)% ∗ %X. If length(z) is not the same as dim(X)[1], then all sorts of garbage
may be computed. And if prod(dim(X))%%length(z) == 0, that is, integer divi-
sion gave a zero remainder – or – the recycling of z went through a full cycle, then no
warning would be issued. If used properly, however, this coercion and recycing can be
powerful.

Suppose the matrix A is m × n, z has length m, and w has length n. Then z ∗ A

rescales the rows of A and A ∗ w rescales the columns. Say, we had a weighted

Programs and Demonstrations 61

regression problem, like X is N ×p, for which we wanted to compute XT W−1X where
W is diagonal with its elements stored in the vector w. Here are three ways to compute
XT W−1X

1. t(X)%*% solve(diag(w),X)
2. t(X)%*% diag(1/w) %*% X
3. t(X/w)%*% X or t(X) %*% (X/w)

The first method solves a system of equations with multiple right-hand sides to get
W−1X and does not exploit the diagonal structure of W. (Using f orwardsolve or
backsolve would at least exploit triangularity and cut the cost/time in half.) The sec-
ond method does exploit the diagonal structure, but constructs an N × N matrix. The
third method is fast, efficient, and dangerous without prominent comments about its
use of coercion and recycling. For large values of N , the first method takes O(N3)

time and O(N2) space, and usually space will limit the size of the problem. The sec-
ond method takes O(N2) time but still O(N2) space, whereas the third method takes
but O(Np2) time and just p2 space. The savings in time and space are dramatic here,
but that advantage must be tempered with the acknowledgment of the dangers of cryp-
tic code that exploits peculiarities of the software.

Some people may argue that the savings in time or space that involve only a factor
of two are not worth the human effort to exploit. In some ways, R follows this way of
thinking. Using the LU factorization from Gaussian elimination instead of computing
the inverse of a matrix only cuts the computation by a factor of two. In R, although
we cannot get the LU factorization from the function solve, we can have a matrix as
a right hand side. Similarly, the triangular matrices that arise from Cholesky or QR
(Chapter 5) are usually stored as full matrices, taking twice the space as necessary.
Nonetheless, triangular solvers f orwardsolve and backsolve are available to save
computation.

The reader should also note that R’s function for Cholesky factorization chol pro-
duces the upper triangular factor R = LT or the factorization A = RT R = LLT . The
reasoning behind this choice will not be clear until Chapter 5. Notice that this is a dif-
ferent factorization that would be computed from Exercise 3.25.

Programs and Demonstrations

gauspp Test /demonstration program for Gaussian elimination
The matrix given in Example 3.1 is factored using the LU factorization of Gauss-
ian elimination. The system of equations given in Example 3.2 is then solved. The
subprograms:
gauspp – computes the LU factorization, storing L and U on top of the original ma-
trix L. The permutation matrix is given by a list π(j). The last (nth) element of this
list gives an indicator of the computed rank of the matrix: π(n) = n if the routine
proceeded to completion, π(n) = j if the last successful pivot was on step j.

gausse – solves the system of linear equations using the LU factorization computed
by gauspp.

62 Matrices and Linear Equations

gaucpp Demonstration program for Gaussian elimination with a condition estimate
As in gauspp, the LU factorization of Gaussian elimination is computed, with a call
to gauspp. Additionally, gaucpp also computes the reciprocal of the estimate of
the condition number κ using the ∞-norm and the Golub–van Loan version of the
Cline et al. method. The subprograms:
gaucpp – computes LU factorization and 1/κ̂.

gauspp – called by gaucpp to compute LU factorization.
gausse – solves the system of equations.

chlsky Demonstration program for Cholesky factorization
The matrix given in Example 3.3 is factored using Cholesky factorization. Next, the
system of equations of Example 3.4 is solved. The subprograms:
chlsky – computes Cholesky factorization and the determinant in D × 2I fashion.
chlshi – solves the system of equations in the matrix L.

chlsih – solves the system of equations in the matrix LT.

adjust – normalizes a number by using the D × 2I form so that 1 ≤ D ≤ 16.

chlzky Demonstration program for Cholesky factorization using symmetric storage
mode
The matrix given in Example 3.3 is factored using Cholesky factorization. Next,
the system of equations of Example 3.4 is solved. Symmetric storage is used here
to save space and allow for easier passing of subprogram arguments. The subpro-
grams:
chlzky – computes Cholesky factorization and the determinant in D × 2I fashion.
chlzhi – solves the system of equations in the matrix L.

chlzih – solves the system of equations in the matrix LT.

adjust – normalizes a number by using the D × 2I form so that 1 ≤ D ≤ 16.

chlsoi Demonstration program for computing the inverse of a matrix from the
Cholesky factor
The matrix given in Example 3.3 is factored using Cholesky factorization. Then the
inverse is computed, overwriting the Cholesky factor. The upper triangular part of
the original matrix is left unchanged. The subprograms include chlsky and adjust,
as well as:
chlsoi – overwrites the Cholesky factor L with the inverse matrix L−TL−1 = (LLT)−1.
In the R version, the inverse is computed using the R function chol2inv.

chlzoi Demonstration program for computing the inverse of a matrix from the
Cholesky factor using symmetric storage mode
The matrix given in Example 3.3 is factored using Cholesky factorization, then the
inverse is computed and overwritten on the Cholesky factor. Symmetric storage is
used here to save space and allow for easier passing of subprogram arguments. The
subprograms include chlzky and adjust, as well as:
chlzoi – overwrites the Cholesky factor L with the inverse matrix L−TL−1 =
(LLT)−1.

Exercises 63

chex35 Demonstration of condition of Hilbert matrices
For n = 1, . . . , 7, the norm and the inverse of Hilbert matrices of order n are com-
puted, and the condition estimate is computed via gaucpp to compare with the exact
value. For n = 8, fixed point overflow would be encountered in computing the in-
verse exactly using fixed point arithmetic. The subprograms are as in gaucpp, with
the addition of:
ibicof – fixed point computation of binomial coefficients; uses many tabled values.

chex36 Demonstration program for the condition number of a matrix for solving
equations
As described in Example 3.6, a system of equations arising from an interpolation
problem are solved; then the right-hand sides are perturbed and the effect on the
computed solution analyzed, following the inequality (3.6.4). Both types of inter-
polation (equally spaced and Chebyshev) are demonstrated. Subprograms are the
same as in gaucpp.
In the R version, the condition number is computed directly with inverse computed
using the R function solve.

cdnxpmt Monte Carlo study of the performance of the condition estimate
As described in Example 3.7, a study by Stewart (1980) was emulated using the
Golub–van Loan ∞-norm version of the Cline et al. (1979) condition estimate.
The results of the three-factor (with ten replications) factorial experiment are in
cdnxpmt.out.
In the R version, a different reciprocal condition estimate is computed from the R
function rcond. Another R function kappa computes the exact condition for p = 2
from the SVD (Chapter 6).

Exercises

3.1 In Gaussian elimination with partial pivoting, show that if we cannot find a nonzero pivot
then the matrix is singular.

3.2 Let L be lower triangular and let eT
k = (0 . . .1 . . . 0).

(a) Write an algorithm to solve Lx = ek.

(b) Where are the known zeros in the solution vector?
(c) What columns of L are not needed?
(d) Write an algorithm to overwrite L with L−1.

3.3 Repeat Exercise 3.2(a)–(d) with an upper triangular matrix U.

3.4 Let A be positive definite, and let A(k) be the result of k steps of Gaussian elimination
(without pivoting). Partition both A and A(k) at k rows and columns to form

A =
[

B C
CT D

]
and A(k) =

[
B∗ C∗

0 D∗

]
.

Show that D∗ = D − CTB−1C. Where is this matrix found in statistics? If A is positive
definite, is pivoting necessary?

3.5 Describe a procedure for computing a bilinear form in the inverse of a positive definite
matrix A, xTA−1y.

64 Matrices and Linear Equations

The next four exercises concern the missing steps in Gaussian elimination, (3.4.6)
through (3.4.9).

3.6 Show that P(k, j)M(i) = [In − P(k, j)m(i)eT
i]P(k, j) for matrices M(i) in (3.4.2) and

(3.4.3) when both k and j exceed i.

3.7 For M(k)
∗ = In − m(k)

∗ eT
k (recall (3.4.9)), show that

M(n−1)P(n − 1, jn−1) · · · M(2)P(2, j2)M(1)P(1, j1)

= M(n−1)
∗ · · · M(1)

∗ P(n − 1, jn−1) · · · P(1, j1).

3.8 Show that (M(k+1)
∗ M(k)

∗)−1 = I + m(k)
∗ eT

k + m(k+1)
∗ eT

k+1.

3.9 Show that PA = LU where L is given by (3.4.8).

3.10 A matrix A is positive definite if and only if the determinants of all of its leading minors
are positive. Use the formula of the determinant of a partitioned matrix to show that

det(A[k]) = L2
kk det(A[k−1]),

so that Cholesky factorization will work if and only if the matrix is positive definite.

3.11 Show mathematically that the Hilbert matrix (Example 3.5) is positive definite.

3.12 Compute the Cholesky decomposition of the Hilbert matrix for n = 4.

3.13 Suppose the matrix A is positive semidefinite and singular, with rank n−1. Will Cholesky
factorization run to completion?

3.14 Verify your conclusions from Exercise 3.13 by factoring the multinomial covariance
matrix diag(p1, . . . , pn) − ppT, where pT = (p1, . . . , pn) with n = 4 and probabilities
(.4, .3, .2, .1).

3.15 Using Cholesky and Exercise 3.2, write a subroutine to compute the inverse of a positive
definite matrix. Can it be done using only the n(n +1)/2 storage locations in symmetric
storage mode?

3.16 Prove that ‖A‖∞ = max i

∑
j
|Aij |.

3.17 Prove that ‖A‖2 = (largest eigenvalue of ATA)1/2. Also show that the condition num-
ber of the matrix A based on the p = 2 norm κ2(A) is the square root of the ratio of the
largest and smallest eigenvalues of ATA.

3.18 Show that ‖A‖F = (trace ATA)1/2 and ‖A‖2 ≤ ‖A‖F .

3.19 Show that, if lim k→∞‖A(k)‖p = 0 for some p, then the sequence of matrices A(k) con-
verges for all p-norms for p ≥ 1.

3.20 Consider the matrix B = (1/√50
)[4 2

1/2 13/2

]
. Show that ‖B‖∞ < ‖B‖2 = 1 < ‖B‖1.

3.21 Consider B given in Exercise 3.20. What happens with the von Neumann series (3.6.3),
and does this conflict with Exercise 3.19? (You do not need to prove Exercise 3.19.)

3.22 Using (3.7.1), show that the inverse of a matrix is a continuous function of its elements.

3.23 Use the Sherman–Morrison–Woodbury formula for a rank-1 update of the inverse

(A + uvT)−1 = A−1 − 1

1 + vTA−1u
A−1uvTA−1 (3.9.1)

to find the derivative of the inverse of a matrix with respect to one of its elements. (Hint:
Use u = δei and v = ej .)

References 65

3.24 Using similar tools and det (I + abT) = 1 + bT a, find the derivative of the determinant
of a matrix with respect to its elements. (It will be a matrix.)

3.25 Another variation on Cholesky starts at the lower right-hand corner and constructs an up-
per triangular matrix R such that a positive definite matrix A can be factored as A =
RRT . Show the algebra for the induction step and apply this method to the 3 × 3 matrix[

9 2 −2
2 1 0

−2 0 4

]

3.26 Some stochastic processes Xt bring some challenges to Cholesky. Consider the stochas-
tic process Xt with the covariance kernel of the form Cov(Xt , Xs) = exp{−|t − s|}.
Let ti = i/n for i = 1, . . . , n be points of evaluation of Xt for t ∈ [0, 1], and let A(n)

be the covariance matrix, so (A(n))ij = exp{−|i − j |/n}. For various values of n, say
10, 20, 30, . . . , compute the Cholesky factors of A(n) and also the condition numbers κ =
‖A(n)‖‖(A(n))−1‖ using the p = 1 or p = ∞ norms. Does scaling with a parameter α in
(A(n))ij = exp{−α|i − j |/n} make much of a difference?

3.27 Consider a different covariance kernel of the form Cov(Xt , Xs) = exp{−α(t − s)2},
leading to the covariance matrix (B(n))ij = exp{−α((i − j)/n)2}. Analyze B(n) similarly
and determine the value of the dimension n where Cholesky fails numerically.

3.28 Can you improve the condition number of the Vandermonde matrix used in the interpo-
lation problem in Example 3.6 (chex36) by rescaling rows and columns?

3.29 By rescaling the rows and/or columns of the inverse of the Hilbert matrix used in Exam-
ple 3.5 and chex35, can you improve the condition number?

3.30 Analyze the data in cdnxpmt.out as the factorial experiment described in Example 3.7.

3.31 If A = diag(10−3,1,103) then κ(A) = 106, and someone might say that this appears to
be a large condition number for such a simple matrix. Comment.

References

The Stewart (1973) and Golub and van Loan (1996) books are outstanding: clearly writ-
ten with attention to both mathematical interest and practicalities. The course I took
from Stewart as a graduate student (following publication of his book) has been a ma-
jor influence in my understanding of linear algebra and regression. Papers with Algol
code are collected in the Wilkinson–Reinsch (1971) volume; the LINPACK (Dongarra
et al. 1979) and LAPACK (Anderson et al. 1995) guides have more code and less math-
ematics. Jennings (1977) discusses computational efficiencies in detail. The Demmel
(1988) article should be interesting to statisticians.

E. Anderson, Z. Bai, C. Bishof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammar-
ling, A. McKenney, S. Ostrouchov, and D. Sorenson (1995), LAPACK Users’Guide. Philadelphia:
SIAM.

A. K. Cline, C. B. Moler, G. W. Stewart, and J. H. Wilkinson (1979), “An Estimate for the Condition
Number of a Matrix,” SIAM Journal of Numerical Analysis 16: 368–75.

James W. Demmel (1988), “The Probability That a Numerical Analysis Problem Is Difficult,” Math-
ematics of Computation 50: 449–80.

66 Matrices and Linear Equations

J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. Stewart (1979), LINPACK Users’ Guide.
Philadelphia: SIAM.

Gene H. Golub and Charles van Loan (1996), Matrix Computations, 3rd. ed. Baltimore: Johns Hopkins
University Press.

Alton S. Householder (1975), The Theory of Matrices in Numerical Analysis. New York: Dover.
Ilse C. F. Ipsen (2009), Numerical Matrix Analysis. Philadelphia: SIAM.
Alan Jennings (1977), Matrix Computation for Engineers and Scientists. New York: Wiley.
Donald E. Knuth (1997), The Art of Computer Programming (vol. 1: Fundamental Algorithms), 3rd

ed. Reading, MA: Addison-Wesley.
Peter Lancaster and Miron Tismenetsky (1985), The Theory of Matrices, 2nd ed. Orlando, FL:

Academic Press.
G. W. Stewart (1973), Introduction to Matrix Computations. New York: Academic Press.
G. W. Stewart (1980), “The Efficient Generation of Random Orthogonal Matrices with an Application

to Condition Estimators,” SIAM Journal of Numerical Analysis 17: 403–9.
G. W. Stewart and Ji-guang Sun (1990), Matrix Perturbation Theory. Boston: Academic Press.
J. H. Wilkinson and C. Reinsch (Eds.) (1971), Linear Algebra. New York: Springer-Verlag.

4

More Methods for Solving Linear Equations

4.1 Introduction

The previous chapter dwelled on the fundamental methods of matrix computations. In
this chapter, more specialized methods are considered. The first topic is an alternative
approach to solving general systems of equations – full elimination (often the method
taught in beginning linear algebra courses), which has some advantages whenever the
inverse is required. Next, our goal is reducing the effort in solving equations by ex-
ploiting the structure of a matrix. One such structure is bandedness, and the Cholesky
factorization of a banded positive definite matrix is then applied to time-series com-
putations, cutting the work from O(n3) to O(n). Next is the Toeplitz structure, also
arising in time-series analysis, where the work can be reduced to O(n2) in a more gen-
eral setting. Sparse matrix methods are designed to exploit unstructured patterns of
zeros and so avoid unneeded work. Finally, iterative methods are discussed, beginning
with iterative improvement.

4.2 Full Elimination with Complete Pivoting

Gaussian elimination creates an upper triangular matrix, column by column, by adding
multiples of a row to the rows below it and placing zeros below the diagonal of each
column. An alternative is to place zeros throughout that column – with the exception
of the pivot position, which could be made equal to one. The matrix that changes a col-
umn a to an elementary vector eq, pivoting on the qth element, has a similar form to
that used in Gaussian elimination:

M = I − meT
q,

where m = (1/aq)(a − eq). This matrix is called a Gauss–Jordan transformation, and
the method is sometimes known as Gauss–Jordan elimination. When such a matrix is
constructed from the rth column of a matrix, pivoting on the qth element of that col-
umn, then premultiplying by this Gauss–Jordan transformation adds multiples of the
qth row to the other rows and changes the rth column to eq . The strategy of full elim-
ination is to multiply by a sequence of these transformations M(k) and so change the
original matrix to a permutation matrix. Permuting the rows of the product of these
matrices will then produce the inverse.

67

68 More Methods for Solving Linear Equations

Notice that, if column r has been pivoted in (i.e., once it is made into an elemen-
tary vector eq), then a second pivot in that column changes nothing because (a) the
only nonzero element in that column is in the qth position and (b) the M matrix is just
the identity. Also, pivoting subsequently in row q will add multiples of the one in col-
umn r to the zeros in column r, thus destroying the structure of zeros just constructed.
Consequently, pivoting should be done only once in each row and column, requiring
index vectors to keep track of what has been done. In Gaussian elimination with par-
tial pivoting, the pivot candidates are just the elements on or below the diagonal in the
current column; but for full elimination no such restriction exists, and any element in
a not previously pivoted row or column is a candidate. Pivoting on the largest (in ab-
solute value) element of the submatrix is called complete pivoting, and it has its merits
when accuracy is considered.

Summarizing, our strategy is thus to multiply by a sequence of matrices M(k) =
I − m(k)eT

q(k) so that the product is a permutation matrix

P = M(n) · · · M(2)M(1)A. (4.2.1)

If, at step k, the pivot element is in row q(k) and column r(k) of the matrix

A(k−1) = M(k−1) · · · M(1)A,

then the permutation matrix P can be written as

P =
∑

er(k)eT
q(k).

When this method is implemented as a textbook procedure and the computation done
by pencil and paper, an identity matrix is commonly augmented to the right and the
matrices M(k) multiplied together there. But on the computer, the additional n2 storage
required may not be available. Moreover, additional storage is not actually required,
since every nontrivial column added at a step to the augmented matrix is accompanied
by the trivializing of a column in the original matrix. So the clever strategy is to store
the new columns q(k) on top of the old ones r(k) to be discarded. The problem with
that procedure is that m(k) slightly modified (the modification is M(k)eq = eq − m(k))

should be placed in column q of the augmented matrix, when the only space available
is in column r. The consequence of placing the real column q(k) in column r(k) is that
the matrix at the end is now

B = M(n) · · · M(2)M(1)PT. (4.2.2)

Combining (4.2.1) and (4.2.2), the inverse of the original matrix A can be computed
from

A−1 = PTBP,

so that both the rows and columns of B must be permuted. The best way to do the
permutation is: begin with the inverse permutation, switching columns or rows as the
case may be; correspondingly switch the elements of the permutation; and then run
through the cycles until the result of the permutation inversions (switches) is the iden-
tity permutation.

4.2 Full Elimination with Complete Pivoting 69

As with other methods of computing the inverse, full elimination with full pivoting
requires n3 flops. The extra search brought on by the full pivoting is not the insignif-
icant overhead as in the case of partial pivoting, but it also is O(n3) work. Although
this method has fallen out of favor because it is slightly slower for solving equations
(see Exercise 4.2), it has survived as an effective method for matrix updating in lin-
ear programming. In recent years, full elimination has been used to advantage in the
vectorizations of supercomputers and array processors.

Example 4.1: Full Elimination with Complete Pivoting
The biggest elements are in (1, 2) and (4, 2); let’s use the first one, (p, q) = (1, 2).

A = A(0) =

1 2 −1 0

1/2 1 0 1

0 2 −1/2 3/2

1 −1 3/2 0

, m(1) = (1/2)

2 − 1

1

2

−1

=

1/2

1/2

1

−1/2

.

Then M(1) = I − m(1)e2. Augmenting A = A(0) with I, mimicking the usual
hand calculations, the first step is M(1)(A(0) | I) = (A(1) | M(1)):

1/2 0 0 0

−1/2 1 0 0

−1 0 1 0

1/2 0 0 1

1 2 −1 0 1 0 0 0

1/2 1 0 1 0 1 0 0

0 2 −1/2 3/2 0 0 1 0

1 −1 3/2 0 0 0 0 1

 = .

Ignoring the first row and second column, the largest element of A(1) is at (q, r) =
(3, 4):

1/2 1 −1/2 0 1/2 0 0 0

0 0 1/2 1 −1/2 1 0 0

−1 0 1/2 3/2 −1 0 1 0

3/2 0 1 0 1/2 0 0 1

,

so m(2) = (2/3)

0

1

3/2 − 1

0

 =

0

2/3

1/3

0

.

Then M(2) = I − m(2)e3, and the next step is M(2)(A(1) | M(1)) = (A(2) |
M(2)M(1)):

1 0 0 0

0 1 −2/3 0

0 0 2/3 0

0 0 0 1

1/2 1 −1/2 0 1/2 0 0 0

0 0 1/2 1 −1/2 1 0 0

−1 0 1/2 3/2 −1 0 1 0

3/2 0 1 0 1/2 0 0 1

 = .

Now ignoring the first and third rows and the second and fourth columns, the
largest element of A(2) is at (q, r) = (4,1):

70 More Methods for Solving Linear Equations
1/2 1 −1/2 0 1/2 0 0 0

2/3 0 1/6 0 1/6 1 −2/3 0

−2/3 0 1/3 1 −2/3 0 2/3 0

3/2 0 1 0 1/2 0 0 1

,

so m(3) = (2/3)

1/2

2/3

−2/3

3/2 − 1

 =

1/3

4/9

−4/9

1/3

;

M(3) = I − m(3)e4, and the third step gives M(3)(A(2) | M(2)M(1)) = (A(3) |
M(3)M(2)M(1)):

1 0 0 −1/3

0 1 0 −4/9

0 0 1 4/9

0 0 0 2/3

1/2 1 −1/2 0 1/2 0 0 0

2/3 0 1/6 0 1/6 1 −2/3 0

−2/3 0 1/3 1 −2/3 0 2/3 0

3/2 0 1 0 1/2 0 0 1

 = .

The only eligible element of A(3) is in row 2, column 3, so (q, r) = (3, 4):
0 1 −5/6 0 1/3 0 0 −1/3

0 0 −5/18 0 −1/18 1 −2/3 −4/9

0 0 7/9 1 −4/9 0 2/3 4/9

1 0 2/3 0 1/3 0 0 2/3

,

so m(4) = (−18/5)

−5/6

−5/18 − 1

7/9

2/3

 =

3

23/5

−14/5

−12/5

.

Finally, M(4) = I − m(4)e3. The last step completes the effort,

M(4)(A(3) | M(3)M(2)M(1)) = (A(4) | M(4)M(3)M(2)M(1)) = (P | PA−1):
1 −3 0 0

0 −18/5 0 0

0 14/5 1 0

0 12/5 0 1

0 1 −5/6 0 1/3 0 0 −1/3

0 0 −5/18 0 −1/18 1 −2/3 −4/9

0 0 7/9 1 −4/9 0 2/3 4/9

1 0 2/3 0 1/3 0 0 2/3

=

0 1 0 0 1/2 −3 2 1

0 0 1 0 1/5 −18/5 12/5 8/5

0 0 0 1 −3/5 14/5 −6/5 −4/5

1 0 0 0 1/5 12/5 −8/5 −2/5

,

so A−1 =

1/5 12/5 −8/5 −2/5

1/2 −3 2 1

1/5 −18/5 12/5 8/5

−3/5 14/5 −6/5 −4/5

.

4.3 Banded Matrices 71

4.3 Banded Matrices

Great savings in space and time are available in solving systems of linear equations
when the matrix has a structure that can be exploited. Banded matrices are relatively
common, and the savings require little effort. A matrix A is said to have

lower bandwidth p if Aij = 0 for all i > j + p;
upper bandwidth q if Aij = 0 for all j > i + q.

A matrix with upper bandwidth q and lower bandwidth p has no more than p + q + 1
nonzero elements in each row (or column). Storing only the not-known-to-be-zero ele-
ments, by rows or by columns, requires no more than n(p + q + 1) locations, which
is a substantial savings whenever p + q + 1 � n. Storing by rows suggests renaming
the column index to j − i + p + 1, so that Aij is in A(i, j − i + p + 1).

Exploiting the banded structure does face an obstacle in that the problem must be
reasonably well conditioned. With Gaussian elimination, for example, pivoting could
destroy much of the pattern of zeros on which the savings is based. Consequently, none
of the methods considered here permit pivoting or even (in the case of Cholesky de-
composition) need it at all.

First of all, consider the LU factorization that is computed by Gaussian elimination.
If the matrix A has bandwidths p and q, then the factored matrices are also banded, that
is, L is lower triangular with bandwidth p and U is upper triangular with bandwidth q.

Simple modifications to the usual Gaussian elimination algorithm are used to achieve
the savings; see Golub and van Loan (1996, sec. 5.3) and Exercise 4.5. More impor-
tantly, the savings in time is substantial. The work to compute the LU factorization is
merely O(npq), much less than the O(n3/3) that the usual full matrix requires. Solv-
ing the two triangular systems is then only O(np + nq), also much smaller. When p

and q are small, these systems of equations require only O(n) computations to solve –
a dramatic improvement.

Example 4.2: Tridiagonal Matrix
Consider the tridiagonal system where p = q = 1. Then the matrix can be stored
using just three vectors, and the LU factorization from Gaussian elimination re-
quires just n simple steps, modifying only two of the vectors. Indexing the matrix
by rows – with di denoting the diagonal entries, ei the elements above the main
diagonal, and ci those below – we obtain

d1 e1 0 0

c2 d2 e2 0

0 c3 d3 e3

0 0 c4 d4

 =

1 0 0 0

L2 1 0 0

0 L3 1 0

0 0 L4 1

d ∗
1 e1 0 0

0 d ∗
2 e2 0

0 0 d ∗
3 e3

0 0 0 d ∗
4

for the n = 4 case. The algorithm overwrites Lk on ck and d ∗

k on dk, and it can
be coded as

72 More Methods for Solving Linear Equations

do i=2,n
c(i)=c(i)/d(i-1)
d(i)=d(i)-e(i-1) * c(i)
end do ! loop on i

Coding the solution of the two triangular systems, first Ly = b and then Ux = y,
is also easy:

! solve lower triangular system Ly=b
do i=2,n
b(i)=b(i)-c(i-1) * b(i-1)
end do ! loop on i
! solve upper triangular system Ux=y
b(n)=b(n)/d(n)
do ii=2,n
i=n+1-ii ! count backwards from n-1 to 1
b(i)=(b(i)-e(i) * b(i+1))/d(i)
end do ! loop on ii

Altogether, only 5n − 4 flops are required to both factor and solve the system
of equations for a tridiagonal matrix. This efficiency will be exploited in spline
approximations in Chapter 7.

A similar scheme can be used for banded matrices that can be viewed with a block tridi-
agonal structure, where each position is now occupied by a k × k submatrix. Then the
block LU factorization looks like

D1 E1 0 0

C2 D2 E2 0

0 C3 D3 E3

0 0 C4 D4

 =

I 0 0 0

L2 I 0 0

0 L3 I 0

0 0 L4 I

D∗
1 E1 0 0

0 D∗
2 E2 0

0 0 D∗
3 E3

0 0 0 D∗
4

,

and the algorithm for the factorization is

D∗
1 = D1

for i = 2, . . . , n

solve L iD∗
i−1 = Ci for L i and store in Ci

overwrite Di with D∗
i = Di − L iE i−1.

The advantages are that structure in the submatrices Ci and E i can be exploited. When
they are full, then stay with the banded elimination scheme. Again, the condition of the
method depends upon the condition of the matrices D∗

i . In some differential equations
problems, these matrices can be proven to be well conditioned. If this is not possible
then extreme care should be exercised, since this method could collapse when any D∗

i

is near singular.
Cholesky decomposition of a banded positive definite matrix offers similar savings.

If the upper (and, by symmetry, lower) bandwidth is q, then the total bandwidth is

4.4 Applications to ARMA Time-Series Models 73

2q +1 and the Cholesky factor L also has a lower bandwidth of q. To see this, consider
the step-k system of equations (3.4.1) to be solved,

L(k−1)�(k) = a(k).

Now, since the matrix A has upper bandwidth q, at step k = q + j, the first j elements
of a(k) are zero. And since lower triangular systems are solved from the top down, the
first j elements of �(k) will also be zero. The result is a lower triangular matrix L with
lower bandwidth q and with fewer than n(q +1) elements. The required effort for fac-
toring the matrix and computing the determinant and any bilinear forms is O(n(q+1)),
substantially smaller than n3/6.

4.4 Applications to ARMA Time-Series Models

The autoregressive moving average (ARMA) process {zt} of order (p, q), centered
about zero, is defined by the stochastic difference equation

φ(B)zt = θ(B)et , (4.4.1)

where B is the backshift operator Bzt = zt−1 and φ and θ are polynomials of degrees
p and q, respectively,

φ(w) = 1 − φ1w − · · · − φpwp. (4.4.2)

Under the assumption of normally distributed errors, a finite segment of this process
z = (z1, . . . , zn)

T is observed, which has a multivariate normal distribution with zero
mean and covariance matrix proportional to An. Since this ARMA process is station-
ary, the covariance matrix satisfies

(An)ij = cov(zi, zj) = γ (i − j) = γ (|i − j |), (4.4.3)

where the covariance function γ (k) depends on the parameters of the model, φ1, . . . , φp,

θ1, . . . , θq . Such a matrix satisfying (4.4.3) is called Toeplitz , and algorithms for solv-
ing equations with the general Toeplitz structure will be treated in Section 4.5. The
ARMA model enforces additional structure that can be exploited to reduce the compu-
tations to O(n).

The computations required for a likelihood or Bayesian analysis are the determinant
of An and bilinear forms in the inverse, xTA−1

n y; more specifically, µ̂ = 1TA−1
n z/1TA−1

n 1
and the quadratic form Q = zTA−1

n z − (1TA−1
n z)2/1TA−1

n 1 are required. Note that if p =
0, the pure MA(q) process, then the covariance matrix is banded and γ (k) = 0 for
k > q. As discussed in Section 4.3, the Cholesky factor L of a positive definite matrix
with total bandwidth (2q + 1) can be computed in only O(n(q + 1)) time. The deter-
minant can be computed on the way, and any bilinear form in the inverse requires just
O(nq) flops. Careful examination shows that only the q +1 values of γ (k) are needed
to create An and that Lv = y can be solved using only O(q2) space. Since lower trian-
gular systems are solved from the top down, from the bandedness of L it follows that,
once vk is obtained, row k of L is no longer needed. Consequently, exact likelihood

74 More Methods for Solving Linear Equations

analysis of a pure moving average process requires only O(nq) time and O(q2) space,
which makes the analysis of long (large n, moderate q) time series feasible.

Example 4.3: Cholesky Factorization of a Moving Average Covariance Matrix
The moving average time-series model follows the stochastic difference equation

zt = et − θet−1 (t = 1, . . . , n),

where the {zt} are observed and {et} are unobserved errors. Taking σ 2
e = 1, the

covariance function γ (k) for the process {zt} takes the form γ (0) = 1 + θ 2,

γ (1) = −θ, and γ (j) = 0 for j > 1, so that the covariance matrix is banded
with bandwidth 1:

A =

1 + θ 2 −θ 0 0

−θ 1 + θ 2 −θ 0

0 −θ 1 + θ 2 −θ

0 0 −θ 1 + θ 2

.

Computing the Cholesky factor is straightforward: L11 =
√

1 + θ 2, L12 =
−θ/L11, and then L22 =

√
L2

12 + 1 + θ 2 gives the first two rows of the factor
L. The next step is to solve[

L11 0

L12 L22

][
L31

L32

]
=
[

0

−θ

]
, so L31 = 0 and L32 = −θ/L22;

completing row 3 yields L33 =
√

L2
32 + 1 + θ 2. The pattern of zeros should now

be evident, and the series of diagonal and subdiagonal elements are convergent:
Lkk → 1 and Lk,k−1 → −θ (see Exercise 4.7).

Achieving the same savings for the more general ARMA model hinges on converting
the series {zt} to a moving average series. Notice that, if the operator φ(B) is applied
to zt , then the series {wt} constructed from {zt} by

wt = zt − φ1zt−1 − · · · − φpzt−p (4.4.4)

has the same covariance structure as an MA(q) process. However, because z−1 and
others are unknown, wt can be constructed by (4.4.4) only for t = p + 1, . . . , n. But
if the first few zt are left alone, wt = zt , then the series {wt} has a covariance matrix
whose bandwidth is m = max(p, q). More specifically, define wt by

wt =
{

zt if t = 1, . . . , m,

zt − φ1zt−1 − · · · − φpzt−p if t = m + 1, . . . , n,
(4.4.5)

and correspondingly define the matrix B by

B =
[

Im 0
B1 B2

]
,

m = max(p, q)

n − m

where the submatrix (B1 B2) has rows of the form

0 . . . 0 0 − φp − φp−1 . . . − φ1 1 0 0 . . .

4.4 Applications to ARMA Time-Series Models 75

and where the ones are lined up on the diagonal of B. Hence B is unit lower triangular
with bandwidth p. The covariance matrix of {wt} is then

cov(w) = cov(Bz) =
[

Am DT

D C

]
= BAnBT, (4.4.6)

where Am has the same shape as before and C is the covariance matrix of an MA(q)

process. The matrix D is zero except for its upper right corner; its entries are covari-
ances of zt and es for t > s. Consequently, BAnBT is a positive definite covariance
matrix with total bandwidth (2m + 1), so that the Cholesky factorization

BAnBT = LLT (4.4.7)

yields a lower triangular factor L with bandwidth m. Then a bilinear form in the in-
verse of An can be computed using

xTA−1
n y = xT(B−1LLTB−T)−1y = (L−1Bx)T(L−1By). (4.4.8)

The factorization requires O(nm) flops and the storage needed is O(m2). The total
work for computing the bilinear form in the inverse is O(n(p + q +1)), which is such
a substantial savings that exact analysis of long time series is feasible.

Example 4.4: Computing the Likelihood of an ARMA(1,1) Model
Consider now the covariance matrix of an ARMA(1, 1) process defined by the
equation

zt − φzt−1 = et − et−1.

The covariance function γ (k) takes on the following values:

γ (0) = 1 + θ 2 − 2φθ

1 − φ2
σ 2

e , γ (1) = (1 − φθ)(φ − θ)

1 − φ2
σ 2

e ,

γ (j) = φγ (j − 1) for j ≥ 2.

To show how this approach works, consider just n = 4 and construct the series
{wt}:

w1 = z1,

w2 = z2 − φz1,

w3 = z3 − φz2,

w4 = z4 − φz3.

Beginning with z ∼ Nn(µ1, σ 2
e An), we have w = z ∼ Nn(µB1, σ 2

e BABT),

where

B =

1 0 0 0

−φ 1 0 0

0 −φ 1 0

0 0 −φ 1

 and

(BABT) =

∗ −θ 0 0

−θ 1 + θ 2 −θ 0

0 −θ 1 + θ 2 −θ

0 0 −θ 1 + θ 2

σ 2
e ;

76 More Methods for Solving Linear Equations

the missing element (∗) is γ (0)/σ 2
e , since w1 = z1. Notice that, except for the

1,1 element, the covariance matrix for w is that of an MA(1) process. For the
case φ = .9 and θ = .5, we have

z =

−2

1

0

1

, Bz =

−2

2.8

−0.9

1

, B1 =

1

.1

.1

.1

,

BABT =

1.84 −.5 0 0

−.5 1.25 −.5 0

0 −.5 1.25 −.5

0 0 −.5 1.25

, so

L =

1.36 0 0 0

−.37 1.06 0 0

0 −.47 1.01 0

0 0 −.49 1.00

 and then

L−1Bz =

−1.47

2.14

.11

1.05

 and L−1B1 =

.74

.35

.26

.23

.

The MLE (maximum likelihood estimator) for µ is then µ̂ = 1TA−1z/1TA−11 =
−.063/.79 = −.080 with |A| = 2.12, and the quadratic form for the likelihood
is zTA−1z − (1TA−1z)2/1TA−11 = 7.86. See the demonstration chex44.

4.5 Toeplitz Systems

The covariance matrix of every stationary time series process {zt}, observed at reg-
ularly spaced intervals, has the Toeplitz structure given by (4.4.3). But since most
applications use ARMA models, or models that can be put into ARMA form, the sav-
ings outlined in the previous section are much more important. When a stationary
process can not be put in the ARMA form – as happens, for example, with fractionally
differenced processes (see Hosking 1981 or Haslett and Raftery 1989) – then the sav-
ings are not so great but still are an improvement over the O(n3) flops required by the
usual Cholesky route.

Let An be a Toeplitz matrix as in (4.4.3) and let Pn be the permutation matrix that
reverses order, 1 ↔ n, . . . , i ↔ n + 1 − i; then note that Pn is symmetric and

PnAnPn = An. (4.5.1)

Normalize the covariance function γ (k) into correlations r(k) = γ (k)/γ (0), so that
r(0) = 1 and the diagonal elements of An are all one. For a likelihood-based analysis,

4.5 Toeplitz Systems 77

there are two systems of equations to be solved in addition to computing the determi-
nant. The first system consists of the more specific Yule–Walker equations

Anb(n) = −r(n), (4.5.2)

where r is the vector r = (r(1), . . . , r(n))T of length n; similarly, b(n) has length n.

When these equations arise in estimating autoregressive parameters, an improved al-
gorithm is really not needed because n is seldom very large. However, a faster solution
to (4.5.2), attributed to Durbin (1960), is an integral part of the fast solution of the more
general problem,

Anx(n) = y(n), (4.5.3)

which is due to Levinson (1947). The improved algorithms utilize recursion, using the
solution to the problem of size k to solve the problem of size k + 1.

Let us begin by partitioning the determinant into the first n rows and columns as

|An+1| =
∣∣∣∣ An Pnr(n)

r(n)TPn 1

∣∣∣∣ = |An|(1 − r(n)TPnA−1
n Pnr(n)),

following the expression for partitioned matrices and using the solution to (4.5.2),

Pnb(n) = −PnA−1
n r(n) = −A−1

n Pnr(n). (4.5.4)

Then, defining dn+1 = 1 + r(n)Tb(n), the determinant can be computed recursively by

|An+1| = |An|dn+1. (4.5.5)

Now the Yule–Walker equations (4.5.2) for n + 1 variables are written as[
An Pnr(n)

r(n)TPn 1

][
b(n+1)∗
b

(n+1)
n+1

]
= −

[
r(n)

rn+1

]
,

where b(n+1)∗ denotes the vector of the first n elements of the (n + 1) vector b(n+1).

Adding b(n)TPn = −r(n)TPnA−1
n times the first block of equations to the last equations

eliminates b(n+1)∗ and leads to

[1 + b(n)Tr(n)]b(n+1)
n+1 = −rn+1 − b(n)TPnr(n). (4.5.6)

Defining the negative of the right-hand side of (4.5.6) as en+1 = rn+1 + b(n)TPnr(n)

gives the last element of the new vector as

b
(n+1)
n+1 = −en+1/dn+1. (4.5.7a)

Plugging this back into the first set of equations, the remaining elements b(n+1)∗ can be
computed from b(n):

b(n+1)
∗ = A−1

n

[
(en+1/dn+1)Pnr(n) − r(n)

] = b(n) + b
(n+1)
n+1 Pnb(n). (4.5.7b)

The result is that b(k) can be computed recursively from b(k−1), and so on, taking
O(k) at each step; the total is O(n2). Solving the more general system (4.5.3) follows
similar steps, since now adding b(n)TPn times the first block of equations to the last
leaves

dn+1x
(n+1)
n+1 = yn+1 + b(n)T Pny(n) = yn+1 − r(n)TPnx(n) = fn+1, (4.5.8a)

78 More Methods for Solving Linear Equations

so that the new element is x
(n+1)
n+1 = fn+1/dn+1. Substitution for the other elements

x(n+1)∗ produces

Anx(n+1)
∗ = y(n) − x

(n+1)
n+1 Pnr(n),

so that the update step is

x(n+1)
∗ = A−1

n y(n) − x
(n+1)
n+1 A−1

n Pnr(n) = x(n) + x
(n+1)
n+1 Pnb(n). (4.5.8b)

Note that the solutions (4.5.8) require solving the Yule–Walker equations and that
the work is O(n2). The Levinson–Durbin method can be expressed algorithmically as
follows.

(1) Let d1 = 1, b
(1)
1 = −r1, and x

(1)
1 = y1.

(2) Then, for k = 2, . . . , n:
(i) compute the scalars

dk = 1 + r(k−1)Tb(k−1),

ek = rk + b(k−1)TPk−1r(k−1),

fk = yk − r(k−1)TPk−1x(k−1);
and then

(ii) update the vectors – first the new elements b
(k)
k = −ek/dk and x

(k)
k =

fk/dk; then

b(k)
∗ = b(k−1) + b

(k)
k Pk−1b(k−1),

x(k)
∗ = x(k−1) + x

(k)
k Pk−1b(k−1).

The reader is warned to be careful in updating b as shown here; updating elements i

and k − i at the same time will avoid an overwrite error. In likelihood analysis, the
quadratic form sn = 1TA−1

n 1 is usually needed. The update step for this quantity is

sk = sk−1 + (1 + 1Tb(k−1))2/dk; (4.5.9)

the details are outlined in Exercise 4.14. An alternative computation for dk+1 =
dk(1 − b

(k)2
k) is presented in Exercise 4.15.

Some authors do not recommend solving these systems by the Levinson–Durbin al-
gorithm, but Cybenko (1980) stated that the algorithm is as stable as the corresponding
Cholesky method. He contends that the condition of the equations causes the erratic
behavior, especially when the Yule–Walker equations correspond to processes that
are nearly nonstationary, with roots of the characteristic polynomial near unity. An ap-
proach for evaluating this contention is outlined in Exercise 4.16. The Levinson–Durbin
algorithm is related to tests for stationarity (Monahan 1984; Pagano 1973). An inver-
sion algorithm for a Toeplitz matrix by Trench (1964) is notable for its novelty, taking
only O(n2); however, the inverse is rarely needed. Nonetheless, a Cholesky factoriza-
tion would be quite useful. With a few reinventions of the wheel came the discovery
that the Levinson-Durbin algorithm does produce a Cholesky factorization, not for An,
but for A−1

n .

4.5 Toeplitz Systems 79

Consider the following calculation for 0 ≤ k < n based on a different partitioning

An

[0n−k−1

1
b(k)

]
=
[An−k−1 ∗ ∗

∗ 1 r(k)T

∗ r(k) Ak

][0n−k−1

1
b(k)

]
=
[∗

dk+1

0k

]

where ∗ represents not-known-to-be-zero elements. Now construct the lower triangu-
lar matrix Cn based on similarly stacked columns:

Cn =

1 0 0 . . . 0 0

b
(n−1)
1 1 0 . . . 0 0

b
(n−1)
2 b

(n−2)
1 1 . . . 0 0

.

b
(n−1)
n−2 b

(n−2)
n−3 b

(n−3)
n−2 . . . 1 0

b
(n−1)
n−1 b

(n−2)
n−2 b

(n−3)
n−3 . . . b

(1)
1 1

 .

Then we see that AnCn is upper triangular with diagonal elements dn−k+1. Then premul-
tiply by the upper triangular CT

n to form the upper triangular product Dn = CT
n AnCn.

But since Dn is also symmetric, then Dn must be diagonal, and its diagonal elements
are (Dn)jj = dn−j+1. Some algebra gives A−1

n = (CnD−1/2
n)(CnD−1/2

n)T , so that a
Cholesky factorization for the inverse merely requires rescaling the columns of Cn.

Example 4.5: Levinson–Durbin Algorithm for ARMA(1,1) problem
Consider the ARMA(1,1) problem with n = 4, φ = .9, and θ = .5 as described
in Example 4.4. Since the covariance matrix for such a process is Toeplitz, let
us recompute the MLE for µ and the quadratic form using the Levinson–Durbin
algorithm. Here the correlations are r(0) = 1, r(1) = .6286, r(2) = .5657,

r(3) = .5091, and r(4) = .4582. The data are z1 = −2, z2 = 1, z3 = 0, and
z4 = 1 and supply the values for y here.

k = 1: d1 = 1, s1 = 1, b1 = −.6286, and x1 = −2.

k = 2: d2 = 1 + r1b1 = 1 − b2
1 = .6049 and s2 = s1 + (1 + b1)

2/d2 = 1.2280;
also, e2 = r2 + b1r1 = .1706 and f2 = y2 − r1x1 = 2.2572, so that b2 =
−e2/d2 = −.2820 and x2 = f2/d2 = 3.7314; then, updating yields b1 =
b1 + b2b1 = −.4513 and x1 = x1 + x2b1 = −4.3456.

k = 3: d3 = d2(1 − b2
2) = .5568 and s3 = s2 + (1 + b1 + b2)

2/d3 = 1.3557;
also, e3 = r3 + r1b2 + r2b1 = .0765 and f3 = y3 − r1x2 − r2 x1 =
.1127, so that the new vectors are b3 = −e3/d3 = −.1375 and x3 =
f3/d3 = .2026; then, updating yields b1 = b1 + b3b2 = −.4126, b2 =
b2 + b3b1 = −.2200 and x1 = x1 + x3b2 = −4.4026, x2 = x2 + x3b1 =
3.6400.

k = 4: d4 = d3(1−b2
3) = .5463 and s4 = s3 + (1+b1+b2 +b3)

2/d4 = 1.4526;
also, e4 = r4 + r1b3 + r2b2 + r3b1 = .0373 and f4 = y4 − r1x3 −
r2 x2 − r3x1 = .7014, so that the new vectors are b4 = −e4/d4 = −.0683
and x4 = f4/d4 = 1.9314; then, updating yields b1 = b1 + b4b3 =
−.4031, b2 = b2 +b4b2 = −.2050, b3 = b3 +b4b1 = −.1093 and x1 =
x1 + x4b3 = −4.6682, x2 = x2 + x4b2 = 3.2151, x3 = x3 + x4b1 =
−.5941.

80 More Methods for Solving Linear Equations

The MLE for µ is then

µ̂ = 1TA−1z/1TA−11 = (x1 + · · · + x4)/s4 = −.1158/1.4526 = −.0797,

as before in Example 4.4. The quadratic form zTA−1z − (1TA−1z)2/1TA−11 has
been rescaled by γ (0) = 1.8421, so (y1x1 + · · · + y4 x4) − (x1 + · · · + x4)

2/s4 =
(14.4829) − (−.1158)2/1.4526 = 14.4737 should be divided by 1.8421 to yield
7.8572, agreeing with Example 4.4. Also, the determinant of the covariance ma-
trix can be computed as γ (0)4d1d2d3d4 = 2.1187 as before. The reader should
note that the results given here are rounded from IEEE arithmetic and that re-
computing with four decimal digits will give surprisingly different results. The
nearness of the AR coefficient φ = .9 to the stationary limit of 1 suggests that
this problem may not be well conditioned. See the demonstration chex45.

4.6 Sparse Matrices

In this chapter, the structure of a matrix has been exploited to reduce the effort required
to solve a system of equations. In the case of Toeplitz matrices, the effort for solv-
ing a system of equations can be reduced from the usual O(n3) to O(n2). For banded
matrices, the effort can be dropped another factor of n, down to O(n), although the
constant depends on the bandwidth p + q. Attributing this reduction in effort to the
O(n) not-known-to-be-zero (“nonzero”) elements would be a misleading oversimplifi-
cation, even though multiplying a vector by a matrix with O(n) nonzero elements does
take O(n) flops. If completely exploitable, the number of flops required by multipli-
cation can match the number of nonzeros. However, the banded structure is exploited
in solving a system of equations. Recall from Section 4.3 that the LU factorization re-
quires O(npq) flops; if p or q were near (say) n/2, then the savings would be but a
fraction and not an order of n. If the banded structure were lost, then the savings in
solving a system of linear equations would be lost.

Sparse matrices are those whose nonzero elements do not have an exploitable pat-
tern. As such, the distribution of their nonzero elements is assumed to be somewhat
random but with a fraction k of nonzeros in each row or column, making kn + O(1)
nonzero elements in all. Nonetheless, many techniques have been devised that take
particular advantage of the sparsity, although this discussion will focus only on some
simple methods for storage and matrix–vector multiplication.

In statistics, there are two major sources of sparse matrices. In a queuing model, a
Markov chain is commonly used to model the changes from one state to another. As
the model becomes complicated, the transition matrix Q grows rapidly in size to hun-
dreds or thousands of states, although most states may permit transition to only a few
k others. These problems usually require the stationary probability vectors, which in-
volve solving an eigenproblem in QT. Occasionally, the probability vector that is m

time steps ahead is needed, pTQm. Matrix–vector multiplication is the key here, as
well as for the eigenproblem discussed in Chapter 6.

The second statistical application of sparse matrices is constructing the design ma-
trix X of complicated experimental designs. Here both the rows (observations) and
columns (parameters) may be large while most entries are zeros, with typically only

4.6 Sparse Matrices 81

one nonzero appearing in a set of columns corresponding to a particular treatment or
interaction. Missing cells destroy patterns that could otherwise be exploited. Conju-
gate gradient methods (Section 5.10) are designed to exploit just the computation of
Xb for candidate estimate vectors b.

The key to sparse matrix techniques is storage of the nonzeros. Recall that stor-
age is usually the limiting factor in the size of problem that can be solved. Storing
just the nonzeros would reduce space requirements substantially, from n2 down to kn.

However, in order to keep track of the location of the nonzeros, another kn space is
needed to store the addresses. Methods for storage are designed with the application
in mind: matrix multiplication or solving equations; whether elements will be added,
deleted, or changed; whether the matrix needs to be traversed by row or column or
both. Since this discussion concerns only matrix–vector multiplication Ax, we need
only consider the following two rather simple-minded approaches.

In the first scheme, assume that x and the product y will both fit in memory. Con-
struct three lists A(k), r(k), c(k) from the nonzero elements of A; hence, if the kth
nonzero element is Aij then A(k) = Aij, r(k) = i, and c(k) = j. If the elements of A
could be stored in main memory, then the update step could look like the Fortran code:

do k=1, many
i=r(k)
j=c(k)
y(i)=y(i)+A(k) * x(j)
end do ! loop on k

The elements of A could also be read in as a linear list, even from a mass storage de-
vice, along with the corresponding row and column. In Fortran, this version of the
update step could be

do k=1, many
read(unit, frmt) i, j, a
y(i)=y(i)+a * x(j)
end do ! loop on k

If stored in main memory, this scheme would allow the elements to be changed or
deleted, or added at the end (or replacing a deletion).

For the second simple scheme, assume that both A and x will fit into main memory,
together with the product y. For matrix multiplication, we will be traversing the matrix
by rows. Construct first the list of nonzero elements of A, in order from the first row
to the last. Then construct two other lists, one of length n giving the number of non-
zeros in each row LGTHRW(I). The second list, COLLIST(K), gives the column index
for each corresponding element of A. The code for the product Ax may look like this:

! multiply A*x=y
k=0 ! count nonzero entries
do i=1,n
jmx=lgthrw(i) ! how many in this row?
y(i)=0.

82 More Methods for Solving Linear Equations

do jj=1,jmx
k=k+1 ! next nonzero pointer
j=collist(k) ! column index
y(i)=y(i)+A(k)*x(j) ! A(i,j)*x(j)
end do ! loop on jj
end do ! loop on i

These are but two simple schemes, yet either one is sufficient to exploit sparseness
for matrix multiplication.

Example 4.6: Sparse Matrix Multiplication
Harrod and Plemmons (1984) gave the following 10 × 10 matrix A as the trans-
pose of a transition matrix for a Markov chain. We have just listed the heart of the
Fortran code for multiplying Ax = y; after the matrix we list the declarations.

.2 .1
.1 .1 .5 .5 .1 .4

.6 .9
.6

.6 .3 .5 .2 .7
.8 .4

.3 .2
.8

.3
.2 .1 .1 .1 .1 .2

! demo of sparse matrix multiplication

! see Example 4.6

implicit none

integer, parameter :: n=10 ! dimension

integer, parameter :: nnz=28 ! number of nonzeroes

integer, DIMENSION(n) :: lgthrw ! # nonzeroes by row

integer, DIMENSION(nnz) :: collist ! column indices

integer k,i,jmx,jj,j

real, DIMENSION(nnz) :: A ! transition probs

real, DIMENSION(n) :: x,y ! vectors

!

21 FORMAT(10f8.4)

!

data lgthrw/ 2, 6, 2, 1, 5, 2, 2, 1, 1, 6 /

DATA collist/ 1,8, 2,3,5,6,9,10, 4,8, 1, 2,4,5,6,7, 9,10, 2,7, &

& 3, 6, 1,3,4,7,9,10 /

DATA A/ .2, 3*.1, 2*.5, .1, .4, .6, .9, 2*.6, .3, .5, .2, .7, &

& .8, .4, .3, .2, .8, .3, .2, 4*.1, .2 /

DATA x/ 10*.1 /

4.7 Iterative Methods

The first iterative scheme to be treated is iterative improvement. Suppose the system
Ax = b is large (n large) and full (or not otherwise structured), and suppose that it is

4.7 Iterative Methods 83

sufficiently ill conditioned that the computed solution x∗ is not very accurate. If κ(A)

is the condition number and U is the machine unit, then Uκ is larger than required.
The common response is to recompute the solution in double precision. A single pre-
cision solution requires n3/3 +O(n2) flops and so it follows that, if a double precision
floating point operation takes comparatively 3 flops (or it could be 4), then the double
precision route will take n3 flops – three times as much work. The presumed relative
accuracy is κU 2 for the double precision solution.

As an alternative, suppose the residual

r∗ = b − Ax∗ (4.7.1)

is computed and that the solution d∗ for the system Ad = r∗ is computed and added
to x∗,

x∗∗ = x∗ + d∗, (4.7.2)

to improve accuracy. Cancellation occurs in computing the residual r∗, so x∗∗ is not
likely to be an improvement. But if the residual computations (4.7.1) are done in dou-
ble precision, then x∗∗ will be more accurate. If these steps are repeated k times, then
the relative accuracy of the improved solution is roughly max(U, (κU)k) as long as
κU < 1.

The computation required for iterative improvement is substantially less than that
for completely double precision calculations. Since the residual r∗ must be done in
double precision, this step takes roughly 3n2 flops. But once PA = LU has been com-
puted, solving the system Ad = r∗ requires only n2 flops. For k steps the cost is merely
4kn2 flops, so that the break-even point on work is k = n/6. Although iterative im-
provement can enlarge the size of problems that are feasible, the drawbacks are that it
is dependent on both hardware and software and is also cumbersome to code.

Other iterative methods exploit the difference in the orders of magnitude between
multiplying a vector O(n2) and solving a system of equations O(n3). If the matrix is
sparse (i.e., if the number of nonzero elements is O(n)) and not banded, then this ad-
vantage is accentuated because the number of multiplications is only the number of
nonzero elements of the matrix. These methods begin with an approximate solution
x(0) and iterate by solving a related equation, so that (at convergence) the fixed point
x(last) gives the solution of the equation Ax = b.

For solving the system of equations Ax = b, decompose into A = L + D + U,

where D is a diagonal matrix composed of the diagonal elements of A, L is strictly
lower triangular, and U is strictly upper triangular. The Jacobi method can be viewed
as solving equation i for xi using the other components of x as known, coming from
the previous iteration, so that the steps for i = 1, . . . , n,

x
(k+1)
i = bi −∑j
=i Aij x

(k)
j

Aii

(4.7.3)

can be rewritten algebraically as

x(k+1) = D−1[b − (L + U)x(k)]. (4.7.4)

Note that, at convergence, (4.7.4) can be rewritten as

Dx = b − Lx − Ux ⇐⇒ (L + D + U)x = b.

84 More Methods for Solving Linear Equations

The error can be found from the iteration step (4.7.4) to be

(x(k+1) − x) = −D−1(L + U)(x(k) − x) = Ck+1(x(0) − x), (4.7.5)

where C = −D−1(L + U). It should then be clear that the convergence of the Jacobi
iteration depends on ‖C‖ < 1, since

‖x(k+1) − x‖ ≤ ‖C‖k+1‖x(0) − x‖. (4.7.6)

Whereas Jacobi updates x(k+1) all at once, the Gauss–Seidel iterative scheme up-
dates each element of the solution (one at a time) and uses it for the next. The update
step takes the form

x
(k+1)
i = bi −∑j<i Aij x

(k+1)
j −∑j>i Aij x

(k)
j

Aii

;
rewriting in vector form looks like solving the system of equations

(L + D)x(k+1) = b − Ux(k), (4.7.7)

which can be written algebraically as

x(k+1) = (L + D)−1(b − Ux(k)). (4.7.8)

Similarly to the Jacobi technique, the rate of convergence for the Gauss–Seidel method
depends on the norm

‖(L + D)−1U‖.
For some problems, it is possible to obtain the norm of the matrix analytically. Modifi-
cations of the Gauss–Seidel scheme, called successive over-relaxation (SOR), produce
faster or surer convergence by adjusting w in

x(k+1) = (wL + D)−1[wb − ((1 − w)D − wU)x(k)],

but this requires a great deal of preparation or knowledge of the problem.

4.8 Linear Programming

Many practical problems, as well as some important statistical ones, can be expressed
as a linear programming problem: maximize or minimize a linear combination of vari-
ables subject to linear constraints. To begin, write the objective function as minimize
cT x, where x is the vector of variables and c the coefficients or costs to be minimized.
The linear constraints can be written as Ax ≤ b and x ≥ 0, where the inequalities are
applied to each component. To view the geometry of the problem, recall that aT x = b

defines a hyperplane and the inequality aT x ≤ b the half-space bounded by that hyper-
plane. Since each row of the constraint matrix A defines one of those hyperplanes, the
system of inequality constraints Ax ≤ b expresses the intersection of these half-spaces.
The nonnegativity constraint x ≥ 0 restricts x to the positive orthant. This means that
the set of feasible solutions is a solid in d−dimensional space with boundaries formed
by the hyperplanes. Optimizing a linear function means pushing in a direction of im-
provement until a boundary is reached. In this situation, it means that the minimum of
the objective function must occur at a corner (vertex) of this solid.

4.8 Linear Programming 85

Backing up for a moment, notice that the inequality constraints of the form aT x ≤ b

can be rewritten as an equality constraint aT x + xs = b with the introduction of a non-
negative (xs ≥ 0) slack variable xs with zero cost coefficient (and vice versa). So we
could also view the problem as

minimize cT x subject to Ax = b, x ≥ 0.

At this point, the vertices of this solid are points where the boundaries are all encoun-
tered, which means that components of x are involved either with solving Ax = b or
hitting the boundary of x ≥ 0. Since the latter restriction means that these components
are zero, the corners or vertices are points where some of the components of x are zero,
and the others are solving Ax = b, also known as a basic feasible solution. Denote
the former (nonbasic) components as xN = 0 and the latter (basic) as xB and partition
accordingly

Ax = [B N]
[

xB
xN

]
= b

and cT = (xB, xN). If we have a basic feasible solution xT = (xT
B, xT

N), then xN = 0
and BxB = b or xB = B−1b.

The simplex algorithm begins with a basic, feasible solution (a corner) and searches
along its edges for a direction that gives an improvement (reduction) in the cost func-
tion to move to another basic, feasible solution or vertex. All solutions to Ax = b can
be written as

x =
[

xB
xN

]
= x + (I − AgA)y =

[
xB
0

]
+
[−B−1N

I

]
yN (4.8.1)

using the generalized inverse Ag =
[

B−1

0

]
. Let’s look carefully at this equation.

Even though the vector yN includes all free variables, because of the nonnegativity
constraint, we can only consider positive values. For an incremental increase in com-
ponent j of yN , the cost changes by cj − cT

BB−1N.j = dj . If these are all positive, then
all departures from that vertex increase the cost and we have found the minimum. If
for some j , we have dj < 0, the cost will decrease by increasing component j , we have
found a feasible direction. But notice that increasing component j by yj also means
changing the basic variables by −BN.j yj to satisfy Ax = b reaching the limit when
one of these basic variables hits zero (when we reach the next vertex). If for some
feasible direction, we find −BN.j to be all positive, then all basic variables will con-
tinue to increase and the problem has an unbounded solution. So the simplex algorithm
follows:

1. start with a basic feasible solution
2. for all columns j not in basis, compute dj

3. if all dj are positive, we have the solution

86 More Methods for Solving Linear Equations

4. for some column j where dj < 0 (why not biggest?) find the smallest value
of yj that makes a basic variable zero (and now non-basic) (if none, stop due to
unbounded solution)

5. move to new vertex where j now is among basic variables.

The simplex algorithm requires a basic feasible solution to get started. Sometimes
in converting inequality constraints to equality constraints, a basic feasible solution
may be easy to find. But if that is not available, a two-phase method can be used. In
the first phase, set the cost vector to zero and augment with nonnegative auxiliary vari-
ables xa with cost vector ca = 1. Now recast problem as minimize cT

a xa subject to
Ax + Exa = b with an easy to find basic feasible solution. If the components of b are
all nonnegative, take E = I and xa = b. If a component of b is negative, then change
the signs of everything in that equation, including RHS b, so that E remains diago-
nal with ±1’s there. Now use the simplex algorithm to solve this linear program. If
the costs are driven to zero, then all of the auxiliary variables should have been driven
to zero and we should now have a basic feasible solution using only the original vari-
ables. In the second phase, drop the auxiliary variables, reestablish the original cost
vector, and solve the original problem.

Other tricks abound. A maximization problem can be changed to a minimization
problem simply by negating the cost vector c. A variable that is not restricted to be non-
negative can be rewritten as the difference of two nonnegative variables x = x+ − x−;
one will be nonbasic and its absolute value is x = x+ + x−. Duality says that the pri-
mal problem: minimize cT x subject to Ax ≤ b, x ≥ 0 is related to the dual problem:
maximize bT u subject to AT u ≥ c, u ≥ 0. Although the two problems differ in size
and shape, they have the same Lagrangian. The solution to one can be used to find a
solution to the other.

The main computational task in the simplex algorithm is the repeated solving of lin-
ear equations BxB = b. From one step to the next, only one column of B is changed.
For small or modest problems that easily fit in memory, the easiest way to do the com-
putation is to use full elimination as described in Section 4.2. Begin with the full matrix
A and index set B of basic variables. The using row pivoting, select column j ∈ B of
initially A, then M(1)A, M(2)M(1)A, etc. to form a, and then M = I − 1

aq
(a − eq)eT

q

until B is exhausted and B−1A computed. Then to bring column j into the basis and
drop q, use column j of B−1A as the new vector a to compute a new full column elimi-
nation matrix M. Multiplying through produces MB−1A corresponding to B−1

newA with
a different index set.

For large problems or just a large number of iterations, the rounding error can
accumulate in B−1A, suggesting periodic restarts at the current basic feasible solu-
tion. Secondly, in many applications, the matrix A may be very large and very sparse.
In these cases, the computational scheme described above is quite inadequate as both
space and cost preclude computation and storage of B−1N.

The first step is to store the current B−1 as a product of matrices M(i) by storing
just the vectors a from each step. By computing once π = B−T cB, we can compute
dj from the original matrix A as cj − πT N.j . Only in Step 4 are the elements of B−1N
needed and only for one column: to check for an unbounded solution, to update the

Programs and Demonstrations 87

solution, and to find the new a(i) to form M(i). As a result, the main computational
tasks are (algebraically) multiplying vectors by B−1 and B−T , where B−1 = ∏i M(i).
The former is easy, as we can write

B−1N.j =
∏
i=1

M(i)N.j =
(∏

i=2

M(i)

)
M(1)N.j

=
(∏

i=2

M(i)

)[
I − 1

a
(1)
q

(a(1) − eq)eT
q

]
N.j

=
(∏

i=2

M(i)

)[
N.j − 1

a
(1)
q

(a(1) − eq)Nqj

]
.

The latter is a little more complicated

B−T cB =
(

k∏
i=1

M(i)

)T

cB =
(

k−1∏
i=1

M(i)

)T

M(k)T cB

=
(

k−1∏
i=1

M(i)

)T [
I − 1

a
(k)
q

eq(a(k) − eq)
T

]
cB

=
(

k−1∏
i=1

M(i)

)[
cB − eq

(a(k) − eq)
T cB

a
(k)
q

]
.

where a single element of cB is updated at each step.
For even a very sparse matrix A, B−1N.j becomes less sparse with each step, hence

a(i) becomes less sparse and the storage for B−1 increases. Restarts will restore some
sparseness as well as clean off some rounding error. However, full elimination with
pivoting only at the beginning (or at restart) lacks the stability of factored forms such
as the LU decomposition from Gaussian elimination. Bartels and Golub (1969) pro-
pose a method for storing B−1 in a sparse, factored form that maintains stability. Its
discussion is beyond the scope of this book.

Programs and Demonstrations

mirse Test /demonstration program for full elimination with complete pivoting
The matrix given in Example 4.1 is inverted in place, a system of equations in that
matrix is solved, and the solution is overwritten on the right-hand side. Code for
output has been included in mirse in lower case for demonstration purposes and can
be deleted.
mirse – computes the inverse, solution, and determinant of a system of equations.

chex44 Demonstration of methods for likelihood computations for ARMA models
The methods outlined in Section 4.4 are demonstrated using the ARMA(1,1) process
of Example 4.4; banded Cholesky factorization is used to solve the equations. In the

88 More Methods for Solving Linear Equations

R version, the results are computed directly as banded factorization is not native nor
easily coded in R.

chex45 Test /demonstration of the Levinson–Durbin algorithm
The data and parameters of Examples 4.4 and 4.5 are taken for the computation of
the likelihood quantities using the Levinson–Durbin algorithm for Toeplitz matrices.
These results are compared with the straightforward computation using Cholesky in
chex44. The new subprogram is:
levdrb – computes the solution of the Yule–Walker equations, and another with the
same Toeplitz structure and correlation function; also computes a quadratic form in
the inverse with the vector 1.

chex46 Sparse matrix demonstration
A simple vector is premultiplied by the sparse matrix Q in Example 4.6 as a demon-
stration of sparse matrix multiplication.

smplx Simplex algorithm for Linear Programming
The simplex algorithm described in Section 4.8 is tested using four problems. The
R version is simple as B−1A is stored and updated. In the Fortran version, B−1 is
stored in product form and sparse matrix tools are used to represent the matrix A as
well as a(i) for B−1.

Exercises

4.1 Recompute the solution to the interpolation problem in Example 3.6 (code in chex36)
using full elimination with complete pivoting (mirse). Compare its accuracy.

4.2 Determine the work (in flops) for computing just the solution to a system of linear equa-
tions using full elimination with complete pivoting. How much additional work is needed
to compute the inverse?

4.3 Does full elimination with partial pivoting make any sense?

4.4 Can Gaussian elimination be modified to do complete pivoting?

4.5 Modify the code for Gaussian elimination to exploit the structure of a banded matrix.
Store the matrix taking n(p + q + 1) locations.

4.6 Jennings (1977, p. 244) gave the following (transpose of) transition matrix (n = 7) for a
Markov chain:

diagonals (Aii) are .9, .6, .7, .6, .7, .7, .8;
superdiagonals (Ai,i+1) are .3, .2, .3, .2, .3, .2;
second subdiagonal (Ai+2,i) are all .1.

Write code to multiply any vector x by this transition matrix A, exploiting its banded
structure.

4.7 As described in Example 4.4, the covariance matrix of an MA(1) process is tridiagonal,
with main diagonal 1 + θ 2 and sub/superdiagonals −θ. For the Cholesky factorization
of A without square roots, MDMT, what are Dnn and Mn,n−1? Find their limits as n ap-
proaches infinity.

Exercises 89

4.8 For the covariance matrix AN+n of an ARMA(p, q) process, partitioned as

AN+n =
[

AN A12

A21 An

]
,

N

n

give an algorithm for computing the forecast covariance matrix, An − A21A−1
N A12.

4.9 Can the methods outlined in Section 4.4 for ARMA models adjust to missing values?

4.10 Suppose the matrix A is n × n, positive definite, and banded with bandwidth q = 5.

Suppose the vector b is zero except for nonzero entries in three consecutive locations,
say bk, bk+1, and bk+2. How much work does it take to compute bTA−1b? Can you do it
in less than O(n3) flops?

4.11 For n = 7 and r(k) given below, compare the solutions to the Yule–Walker equations
computed by (a) Cholesky and (b) Levinson–Durbin methods. Compute the condition
number of the correlation matrix, or an estimate using gaucpp.

r(0) = 1, r(5) = 0.477,

r(1) = 0.726, r(6) = 0.429,

r(2) = 0.654, r(7) = 0.386,

r(3) = 0.588, r(8) = 0.347.

4.12 Repeat Exercise 4.11 with the correlation sequence for a fractionally differenced process
of order d with |d| < 1/2, using r(0) = 1, r(1) = d/(1−d), r(j) = (j −1+d)r(j −1)/

(j − d), and different values of d.

4.13 Compute some iterative improvements to Example 3.5 or Example 3.6.

4.14 For a Toeplitz matrix A, prove the update for sn = 1TA−1
n 1 described in (4.5.9) as

sn+1 = sn + (1 + 1Tb(n))2/dn+1.

(Hint: Two routes are available; either follow the Levinson–Durbin algorithm with right-
hand side vector 1, or show directly using the formula for the inverse of a partitioned
matrix.)

4.15 Prove the alternative update formula for dn in the Levinson–Durbin algorithm dn+1 =
dn(1 − (b

(n)
n)2). (Hint: One route is to rewrite the formula for 1 + r(n+1)Tb(n+1) in terms

of r(n) and b(n) and then substitute.)

4.16 Cybenko (1980) contended that the instability attributed to the Levinson–Durbin algo-
rithm really stems from the condition of the problems presented for it to solve. Design a
Monte Carlo experiment to address this issue. Examine the effect on the condition as the
largest root of the autoregressive operator approaches unity. Compare Levinson–Durbin,
Cholesky, and the methods outlined in Section 4.4.

4.17 Use sparse matrix tools to store the following 6 × 6 matrix (Jennings 1977, p. 246):
.8 .6 .1

.4

.2 .3 1
.4 .4 1

.1 .1 .6

.

90 More Methods for Solving Linear Equations

4.18 Repeat Exercise 4.11 with r(k) = exp(−k2/s), beginning with s = 1 and the same n = 7.
Compute the condition number and increase the sample size n until Cholesky fails. Mod-
ify s and determine whether the condition improves or worsens with larger or smaller s.

4.19 The Cholesky factorization can fail for nearly singular matrices in trying to take the square
root of something that became negative due to rounding error. Can the Cholesky factor-
ization from the Levinson-Durbin algorithm fail in the same manner or is it different?
What is the point of failure?

4.20 Maximize x1 + 2x2 + 3x3 subject to
∑

i
xi = 1 and 1 ≥ x1 ≥ x2 ≥ x3 ≥ 0 as a linear

programming problem.

References

Golub and van Loan (1996) discuss banded matrices in detail, as well as Toeplitz and
iterative methods. Banded Cholesky factorization goes back to Martin and Wilkinson
(1965); extending it from the MA to the general ARMA case is due to Ansley (1979).
For more on the Toeplitz case, see Cybenko’s (1980) article. The literature of sparse
matrices is continually changing, but the applicability to statistical applications is quite
limited; Jennings (1977) extensively discusses applications of iterative methods.

Craig F. Ansley (1979), “An Algorithm for the Exact Likelihood of a Mixed Autoregressive-Moving
Average Process,” Biometrika 66: 59–65.

Richard H. Bartels and Gene H. Golub (1969), “The Simplex Method of Linear Programming Using
LU Decomposition,” Communications of the ACM, 12: 266–68.

G. E. P. Box and G. M. Jenkins (1972), Time Series Analysis: Forecasting and Control. San Francisco:
Holden-Day.

George Cybenko (1980), “The Numerical Stability of the Levinson–Durbin Algorithm for Toeplitz
Systems of Equations,” SIAM Journal of Scientific and Statistical Computing 1: 303–19.

J. Durbin (1960), “The Fitting of Time Series Models,” Revue Internationale Institut de Statistique
28: 233–43.

Gene H. Golub and Charles van Loan (1996), Matrix Computations, 3rd ed. Baltimore: Johns Hop-
kins University Press.

W. J. Harrod and R. J. Plemmons (1984), “Comparison of Some Direct Methods for Computing Sta-
tionary Distributions of Markov Chains,” SIAM Journal of Scientific and Statistical Computing 5:
453–69.

John Haslett and Adrian Raftery (1989), “Space-Time Modelling with Long-Memory Dependence:
Assessing Ireland’s Wind Power Resource,” Applied Statistics 38: 1–50.

J. R. M. Hosking (1981), “Fractional Differencing,” Biometrika 68: 165–76.
Alan Jennings (1977), Matrix Computation for Engineers and Scientists. New York: Wiley.
C. T. Kelley (1995), Iterative Methods for Linear and Nonlinear Equations. Philadelphia: SIAM.
Norman Levinson (1947), “The Weiner RMS Error Criterion in Filter Design and Prediction,” Jour-

nal of Mathematics and Physics 26: 261–78.
R. S. Martin and J. H. Wilkinson (1965), “Symmetric Decomposition of Positive Definite Band Ma-

trices,” Numerische Mathematik 7: 355–61.
John F. Monahan (1984), “A Note on Enforcing Stationarity in Autoregressive-Moving Average

Models,” Biometrika 71: 403–4.
Bruce A. Murtagh (1981), Advanced Linear Programming New York: McGraw-Hill.
Marcello Pagano (1973), “When is an Autoregressive Scheme Stationary?” Communications in Sta-

tistics 1: 533–44.
William F. Trench (1964), “An Algorithm for the Inversion of Finite Toeplitz Matrices,” Journal of

SIAM 12: 515–22.

5

Regression Computations

5.1 Introduction

Fitting models by minimizing the sum of squares is the most commonly used and most
powerful statistical tool. There are many computational methods for the solution of the
linear least-squares problem, as it is known in numerical analysis. After the statistical
background of the problem is discussed, the condition of the problem will be analyzed.
Then the many computational methods for solving this problem will be discussed in
turn, with comparisons of strengths and weaknesses. The first method is the simplest:
solving the normal equations using Cholesky factorization, which is fast and requires
little storage but has its drawbacks in accuracy. Next are the three orthogonalization
methods – Gram–Schmidt (and its modified form), Householder transformations, and
Givens transformations – all of which are computationally stable. A discussion of
regression diagnostics and hypothesis tests follows. These are then followed by the
conjugate gradient method, which is well suited for the very large and sparse problems
arising in experimental designs. Applications of elimination methods, the abbreviated
Doolittle method and the Sweep operator, are discussed next. Some personal com-
ments conclude the chapter.

The statistical motivation for least squares is the estimation of the coefficients of a
linear regression model,

yi = xi1b1 + · · · + xipbp + ei = x i• b + ei, (5.1.1)

where yi is the observed dependent variable. The independent or explanatory variables
are the xij, and their unknown coefficients b are the objects of interest. The errors or
disturbances ei are random variables that are usually assumed to be uncorrelated with
constant variance. Stacking the equations for the ith observation, i = 1, . . . , n, yields
the vector model

y = Xb + e, cov(e) = σ 2In,

where the n × p matrix X is called the design matrix. Setting the gradient of the sum-
of-squares function

S(b) = (y − Xb)T(y − Xb) (5.1.2)

with respect to the vector b to zero, the necessary condition for the minimizing vector
b̂, dictates that b̂ must be a solution to the normal equations

XTXb = XTy, (5.1.3)

91

92 Regression Computations

which can be rewritten as

XT(y − Xb̂) = XTê = 0, (5.1.4)

which defines the residual vector ê. Another useful notation is the projection matrix
PX, which enables the (orthogonal) projection of y onto the column space of X, the
fitted values, to be written as

ŷ = PX y = Xb̂

and the residual vector to be written as the difference ê = y − ŷ = (I − PX)y. These
two components of y are orthogonal.

If the design matrix X has full column rank (i.e., if rank(X) = p) then the ma-
trix XTX is nonsingular and positive definite, and the solution to the normal equations
(5.1.3) is unique and minimizes S(b). Handling the case where X may not have full
column rank presents some options in strategy. Since overparameterized models make
the expression of the design matrix so convenient, especially for analysis of variance
and covariance, requiring a full-rank X would be restrictive and inconvenient for these
problems. Any solution b̂ will suffice for statistical purposes (Searle 1973, chap. 6), so
the easiest route is to solve the full-rank subset of the normal equations and make the
coefficients zero for the other, redundant variables. Heuristic methods work best for
finding the rank degeneracies. The key is to detect explanatory variables, or columns
of X, whose error sums of squares are near zero when regressed on other explanatory
variables. This heuristic approach can be followed for most of the methods included
in this exposition. Finally, the non–full-rank case, where the cause is not overparam-
eterization, presents a quite different problem. Mathematically, the unique Moore–
Penrose inverse X+ leads to a unique least-squares solution X+y. Computationally,
however, finding X+ requires the singular value decomposition of the matrix X, which
is best described as an eigenproblem (discussed in Chapter 6) and differs in spirit from
the least-squares problem, usually going under the name of “principal components
regression.”

Though the quantities that must be computed in the solution of a linear least-squares
problem may vary, two quantities, the solution vector b̂ and the error sum of squares

SSE = S(b̂) = (y − Xb̂)T(y − Xb̂) = êTê, (5.1.5)

are nearly always needed. At the next level of importance are the residuals ê and
(XTX)−1, the (unscaled) covariance matrix of b̂,

cov(b̂) = σ 2(XTX)−1.

Other ancillary statistics are constrained solutions, hypothesis test statistics, and con-
fidence intervals for predictions or forecasts. In addition, orthonormal bases for the
column space of X or its orthogonal complement may replace the projection matrices
PX and I − PX for computational purposes. These matrices also play an important
role in regression diagnostics. Multivariate regression (i.e., several responses for each
observation) presents no real difficulties, since the coefficients for each dependent vari-
able can be computed in a repetitive fashion.

5.2 Condition of the Regression Problem 93

Weighted observations, or occasions where the covariance matrix of the disturbances
e is not a scaled identity matrix, present different problems. If the covariance matrix
of the disturbances is known up to a constant scale factor,

cov(e) = σ 2G,

then the generalized least squares (GLS) normal equations are

XTG−1Xb = XTG−1y, (5.1.6)

for which the methods given here must be modified, either explicitly – by constructing
(via Cholesky decomposition of G) new values X∗ = G−1/2X and y∗ = G−1/2y – or
implicitly.

5.2 Condition of the Regression Problem

The condition of a problem measures the magnitude of the change in the solution to a
problem to small perturbations in the input. The input quantities here are X and y, and
both affect the solution, albeit in different ways. The condition of the problem will be
analyzed for the case where X has full column rank in order to keep the results simple.
Also, all norms here are Euclidean (p = 2) norms, which are natural for this problem.

In contrast to the solution of linear equations, changes in the dependent variable y
do affect the condition of the least-squares problem. First consider y∗ as an observed
vector close to y and b̂∗ as the least-squares vector for it, and similarly for ê∗. Then the
following inequality (Stewart 1973, thm. 5.2.4) presents κ∗(X) as the condition num-
ber for regression:

‖b̂ − b̂∗‖
‖b̂‖ ≤ κ∗(X)

‖ŷ − ŷ∗‖
‖ŷ‖ , (5.2.1)

where κ∗(X) is related to the condition number computed in the solution of linear equa-
tions

κ∗(X)2 = ‖XTX‖‖(XTX)−1‖ = κ(XTX). (5.2.2)

Notice that κ∗ is the ratio of the largest to the smallest singular values of X, the square
root of the ratio of the largest and smallest eigenvalues of XTX. The notable conclu-
sion from this result is that only those perturbations that result in changes in the fitted
values ŷ will affect the solution. The inequality (5.2.1) and the condition number κ∗
are useful in regression diagnostics, which examine sensitivity from a strictly statisti-
cal viewpoint.

Example 5.1: Condition of Regression for y

Let X =
 1 1

1 1

1 1.1

1 1.1

, so XTX =
[

4.00 4.20

4.20 4.42

]
; then y =

 .9

1.0

1.0

1.1

 gives ŷ =
 .95

.95

1.05

1.05

and b̂ =

[−0.05

1.00

]
. Now change to y∗ =

 .9

0.99

1.01

1.1

 to get ŷ∗ =
 .945

.945

1.055

1.055

 and b̂∗ =

94 Regression Computations[−0.155

1.1

]
. The norms are ‖b̂‖ = 1.00125, ‖b̂ − b̂∗‖ = 0.145, ‖ŷ‖ = 2.00, and

‖ŷ − ŷ∗‖ = 0.01, and the condition number is a large κ∗(X) = 42.076. The
inequality (5.2.2) gives .145 = .145

1.00125 ≤ 42.076 .01
2.00 = .210.

The second inequality (Stewart 1973, thm. 5.2.7) measures the effect of perturbations
in the design matrix X, so that the solution b̂∗ solves the least-squares problem with
X + E and also satisfies

‖b̂ − b̂∗‖
‖b̂‖ ≤ 2κ∗ ‖PX E‖

‖X‖ + 4κ∗2 ‖(I − PX)E‖‖ê‖
‖X‖‖ŷ‖ + 8κ∗3 ‖(I − PX)E‖2

‖X‖2
; (5.2.3)

the third term can be ignored if the perturbation E is much smaller than κ∗(X) is
large.

This second inequality is complicated yet quite revealing, for it indicates that the
sensitivity to changes in X depend on how well the data fit the model. If the model
fits very well, then ê is much smaller than ŷ in norm and the second term on the right-
hand side of (5.2.3) disappears. However, if ê is not small, then the condition number
of the least-squares problem is essentially squared, κ∗(X)2. In most cases, PX E and
(I − PX)E will be about the same size.

Example 5.2: Condition of Regression for X

As before, let X =
 1 1

1 1

1 1.1

1 1.1

; then y =
 .97

.98

1.02

1.03

 gives ŷ =
 .975

.975

1.025

1.025

 and b̂ =

[
0.475

0.500

]
. Now change X by E as E =

 0 −.001

0 0

0 0

0 .001

, giving X + E =
 1 0.999

1 1.000

1 1.100

1 1.101

with residual ê =

 −.005

.005

−.005

.005

 and new b̂∗ =
[

0.4792

0.4960

]
, so that the inequality gives

.008405 = .0058

.689656

≤ 2(42.076)
.001

2.9
+ 4(42.076)2 (.001)(.01)

(2.9)(2)
+ 8(42.076)3 (.001)2

(2.9)2

= .0290 + .0122 + .0709 = .1121,

which is not close, with ‖PX E‖ = ‖(I − PX)E‖ = ‖ê‖ = .001. But now change

y for the same b̂: y =
 1.55

0.40

1.55

0.50

 and still b̂ =
[

0.475

0.500

]
, but now ê =

 .575

−.575

.475

−.475

 with

b̂∗ =
[

0.5935

0.3872

]
, so the inequality becomes

5.2 Condition of the Regression Problem 95

.2372 = .1636

.689656

≤ 2(42.076)
.001

2.9
+ 4(42.076)2 (.001)(1.05)

(2.9)(2)
+ 8(42.076)3 (.001)2

(2.9)2

= .0290 + 1.2820 + .0705 = 1.3815.

These results, though not surprising from a statistical viewpoint, are fundamental to
the analysis of the accuracy of the methods examined here. The condition number is
the square root of the ratio of the largest and smallest eigenvalues of XTX. If the data
fit the model well, then the regression coefficients are not as sensitive to small perturba-
tions as when the residuals are large. From the computational viewpoint, the backwards
error analysis relates the computed solution to the exact solution of a nearby problem –
that is, slightly perturbed X and y. From backward error analysis and the condition of
the regression problem previously analyzed, the accuracy of the computed solution can
be determined.

Once the accuracy of the computed solution is determined, it should be evaluated
in two ways. First, it should be compared to the statistical accuracy (i.e., the stan-
dard errors) of the coefficients. A computed coefficient that is inaccurate in the third
significant digit presents no difficulties when a confidence interval spans an order of
magnitude, but severe problems can arise if the standard error affects only the fifth sig-
nificant digit. Notice that the condition number reflects the magnitude of the standard
errors in the norm of the unscaled covariance matrix (XTX)−1. Consequently, if the
condition number is large, suggesting a sizable computational error, then the statistical
error will usually be large also and reflected in a large covariance matrix.

A second way to view the accuracy of a least-squares solution is to consider how ac-
curately the input variables X as well as y are measured. If the presumed errors here are
as large as those imputed from the backwards error analysis, then the regression model
with fixed X may be questioned, as well as the sources of error for y. The analyses of
the accuracy of the least-squares methods may lead one to infer that the least-squares
problem is quite difficult computationally, but in fact the occasions of difficulty are
usually those where the solution has limited usefulness. Great efforts to compute an
accurate solution to the numerical problem may be wasted when the solution has little
statistical accuracy.

The test problem of Longley exemplifies wasted effort. Longley (1967) constructed
an econometric model using some published economic variables. The explanatory vari-
ables were nearly collinear, and although the model made no real sense it did present a
difficult test problem – so difficult that only a sound program could produce “accurate”
results. However, since the explanatory variables were rounded off for publication, the
true problem has not been solved; only a problem close to it (using rounded data) has
been solved. Beaton, Rubin, and Barone (1976) argued that the true problem was one
that could be rounded to the published data, so they added uniform (relative) noise E
at the level of rounding to produce data from the distribution of possible true prob-
lems (X + E). They found that (a) the computed coefficients were widely distributed
and (b) the regression solution from the published data was far from the center of

96 Regression Computations

this distribution. Such a lack of precision in the problem made computing an accurate
solution unwarranted. Further comments on accuracy of methods are postponed to Sec-
tion 5.12.

5.3 Solving the Normal Equations

When X has full column rank, the easiest method for finding the least-squares vector
b̂ is to solve the positive definite system of normal equations. The obvious approach
is to use Cholesky factorization on the positive definite matrix XTX and solve two tri-
angular systems. The accompanying error sum of squares and covariance matrix are
easily computed. The plan is:

(1) compute XTX and XTy;
(2) factor XTX = LLT;
(3) solve Lw = XTy for w;
(4) compute SSE by subtraction, SSE = yTy − wTw;
(5) solve LTb = w for b to obtain b̂;
(6) invert L in place;
(7) multiply L−TL−1 = (XTX)−1.

Computing the solution to the least-squares problem in this way requires np2/2 +
p3/6 flops. More importantly, only p(p + 3)/2 storage locations are required. These
advantages of speed and low storage requirements make this method the first choice
for regression computations. However, the drawback of this method is that severe loss
of accuracy can occur.

The most straightforward problem is that the condition of this method is at best
that of solving the normal equations, κ(XTX). Since the condition of the least-squares

problem can be κ∗(X) = √
κ(XTX), there are problems for which this method is

certainly inferior. Another pitfall is that the computed XTX can easily fail to be pos-
itive definite and the Cholesky factorization impossible, as will be shown in Exam-
ple 5.3. The trick of accumulating inner products in double precision for XTX and
XTy will cure neither of these two problems, but it does shed light on the path to a
successful solution. Once the inner product matrix XTX is computed in double pre-
cision, solving the small (p × p) normal equations in double precision is then rel-
atively inexpensive and will yield an accurate solution as long as Uκ(XTX) is less
than unity.

The method just described – accumulating the inner products in double precision
to obtain XTX and XTy in double precision and then solving the normal equations in
double precision – is highly recommended for computing the coefficient vector. Other
ancillary statistics (e.g. residuals) may not be computed as accurately, however.

Example 5.3: Computationally Singular Matrix

For X =
 1 1

1 1

1 1.01

1 1.01

, XTX =
[

4 4.02

4.02 4.0402

]
, but rounded to four decimal digits is

5.4 Gram–Schmidt Orthogonalization 97

[
4.000 4.020

4.020 4.040

]
. Cholesky says L11 is 2 and L21 = 2.010, but 4.040 − 2.0102 =

0.000 (when computed to four decimal digits) so that, for this method, XTX is
computationally singular.

Finally, Example 5.3 suggests a rule of thumb for the use of this method. First of all, the
number of digits to represent the needed numbers is doubled in forming XTX. Second,
the condition number will magnify any roundoff error, so extra digits will be needed to
represent XTX. Thus, for Example 5.1, we might figure two digits for X becomes four
for holding XTX, and squaring the condition number gives 1764 so four more digits are
needed, totaling eight for solving the normal equations. As the number of observations
grows, more digits will be required.

5.4 Gram–Schmidt Orthogonalization

The classical Gram–Schmidt algorithm is a method for producing a sequence of or-
thonormal vectors from a set of linearly independent vectors. For the regression prob-
lem, the linearly independent vectors will be columns of the X matrix, denoted by
X •1, X •2, . . . , X •p. The orthonormal vectors are then used to solve the least-squares
problem.

The immediate objective is to perform a factorization on X as follows:

X = QR, where QTQ = Ip, (5.4.1)

so that Q has orthonormal columns Q•1, Q•2, . . . , Q•p and R is upper triangular. The
classical or regular Gram–Schmidt (RGS) method can be described as a sequence of
regressions. At step i, column i of X, X •i is regressed on the orthonormal columns
Q•j, j = 1, . . . , i − 1. Since the explanatory variables are orthonormal, the regression
coefficients Rji are easily computed:

Rji = QT
•j X •i , j = 1, . . . , i − 1. (5.4.2)

The length of the residual vector is then computed for normalization,

Rii =
∥∥∥∥X •i −

i−1∑
j=1

RjiQ•j

∥∥∥∥, (5.4.3)

and the new orthonormal vector is the normalized residual vector

Q•i = X •i −∑RjiQ•j

Rii

. (5.4.4)

This QR factorization, as it is called, is related to the Cholesky factorization of XTX;
that is, R is merely the transpose of L. The matrix with orthonormal columns Q can
then be written as XL−T. These relationships can be used to solve the least-squares
problem: since

XTXb = XTy ⇐⇒ LLTb = LQTy,

98 Regression Computations

taking an L from both sides produces

Rb = QTy, (5.4.5)

which is a simple triangular system to be solved. Although multiplying the problem
of minimizing y − Xb by an orthogonal matrix leads to a stable method of solving the
least-squares problem, the pitfall in using RGS is that the columns Q so computed may
not be very orthogonal and hence QTy may not be computed very accurately. As a result,
although solving (5.4.5) appears to have the condition of κ∗(X), in actuality the con-
dition is still κ(XTX) – as it is with solving the normal equations. A well-conditioned
problem may have been transformed to a poorly conditioned one. Nonetheless, solv-
ing (5.4.5) is really what should be solved; a better orthonormalization method is all
that is needed.

The better way to orthonormalize the columns of X is merely a modification of
the regular Gram–Schmidt method, appropriately called “modified Gram–Schmidt”
(MGS). The main difference is that every time a new orthonormal column Q•j is
found, each subsequent column of X is replaced by the residuals from a regression
on Q•j . Denote column i of X at step j by X(j)

•i . Then the first part of step j is just
normalization:

Rjj = ‖X(j)

•j ‖ and Q•j = X(j)

•j /Rjj .

Then update the columns of X (X = X(1)) with the coefficients

Rji = QT
•j X(j)

•i

and the residuals for i = j + 1, . . . , p,

X(j+1)
•i = X(j)

•i − RjiQ•j .

Although these two methods are mathematically equivalent, only MGS is recom-
mended, for it produces accurate vectors b̂ and reasonably orthogonal residuals. One
disadvantage is that X must be stored and overwritten with Q; another is that about np2

flops are needed, about twice that for solving the normal equations by Cholesky. Also,
the computed matrix Q may not have orthonormal columns even from the modified
version.

The method of iterative improvement described in (4.10) can be applied to the re-
gression problem by constructing the system of equations[

In X
XT 0

][
e
b

]
=
[

y
0

]
. (5.4.6)

Dahlquist and Bjorck (1974, p. 205) gave a detailed description of using MGS with
iterative improvement.

Finally, since Rjj can be viewed as a residual sum of squares of the regression of
column j of X on the previous columns, this quantity can be used as both a pivoting
technique and a test for collinearity in MGS. If column j is linearly dependent on the
previous ones, then Rjj is zero and can be tested for it. Moreover, the best order for
taking regressors are the ones with the most variation, which are the ones whose sum
of squares will be largest. Hence a preferential order can be based upon the sums of
squares of the remaining columns of X(j).

5.4 Gram–Schmidt Orthogonalization 99

Example 5.4: Regular and Modified Gram–Schmidt
For a simple quadratic regression problem with n = 6 observations, let’s do both
RGS and MGS using four-digit decimal arithmetic. We will follow RGS first and
then back up for MGS, since the two methods differ only in the last two steps.

X = X(1) =

1 1 1

1 2 4

1 3 9

1 4 16

1 5 25

1 6 36

, so R11 = 2.449 and Q•1 =

.4082

.4082

.4082

.4082

.4082

.4082

.

Next, R12 = 8.573, and

X •2 − R12Q•1 =

1 − 3.499

2 − 3.499

3 − 3.499

4 − 3.499

5 − 3.499

6 − 3.499

=

−2.499

−1.499

−.4990

.5010

1.501

2.501

,

R22 = 4.183, and Q•2 =

−.5974

−.3584

−.1193

.1198

.3588

.5979

.

At this point the two methods depart, with RGS computing the next vector in one
step: R13 = 37.15 and R23 = 29.31, so

X •3 − R13Q•1 − R23Q•2 =

1 − 15.16 + 17.51

4 − 15.16 + 10.51

9 − 15.16 + 3.497

16 − 15.16 − 3.511

25 − 15.16 − 10.52

36 − 15.16 − 17.52

=

3.350

−.6600

−2.663

−2.671

−.6800

3.320

.

Instead, MGS computes R13 = 37.15,

100 Regression Computations

X(2)
•3 = X •3 − R13Q•1 =

1 − 15.16

4 − 15.16

9 − 15.16

16 − 15.16

25 − 15.16

36 − 15.16

=

−14.16

−11.16

−6.16

.84

9.84

20.84

, and

X(3)
•3 − R23Q•2 =

−14.16 + 17.49

−11.16 + 10.49

−6.16 + 3.493

.84 − 3.508

9.84 − 10.51

20.84 − 17.51

=

3.330

−.6700

−2.667

−2.668

−.6700

3.330

,

with R23 = 29.28 instead of 29.31 from RGS. Notice that the two residual
vectors differ before normalization to Q•3, with MGS much closer to the exact
[10/3, −2/3, −8/3, −8/3, −2/3,10/3].

5.5 Householder Transformations

Householder transformations are simple but powerful matrices that are used to intro-
duce zeros into a matrix. For the least-squares problem, they are used to triangularize
X, forming the same QR factorization as in Gram–Schmidt. In eigenproblems they
are used to change a symmetric matrix into a tridiagonal one. Householder transfor-
mations are simple rank-1 updates of identity matrices that are orthogonal and can be
used to annihilate a vector. Because they are orthogonal, a great number can be used
without the accumulation of roundoff errors affecting the sums of squares.

The matrix U = I − duuT can be shown to be symmetric and orthogonal (UTU =
UUT = I) when d = 2/uTu. For any vector x, a vector u (which defines a matrix U)

can be found such that Ux = se1 for a scalar s. To show this, consider u = x + se1

where s2 = xTx. Notice that the scalar

d = 2

uTu
= 2

xTx + 2sx1 + s2
= 1

s2 + sx1
,

so that the computations yield

Ux = (I − duuT)x = x − u(duTx)

= x − (x + se1)(x + se1)
Tx/(s2 + sx1)

= x − (x + se1) = −se1.

Although the choice of the sign of s is somewhat arbitrary, it is prudent to choose it
to be the same as x1 so that the algorithm will avoid the case where u is the zero vec-
tor and attempt to divide by zero. Also, the possible overflow due to the squaring of

5.6 Householder Transformations for Least Squares 101

the elements is avoidable if the largest element of x is found and used to divide u and
multiply d accordingly.

Example 5.5: Householder Transformation

We have x =
 −1

2

−2

4

, xTx = s2 = 25, d = 1/20, and u =
 4

2

−2

4

, so

U = I4 − 1

20
uuT =

1/5 −2/5 2/5 −4/5

−2/5 4/5 1/5 −2/5

2/5 1/5 4/5 2/5

−4/5 −2/5 2/5 1/5

.

Now multiply:

Ux = x − uTx
d

u =

−1

2

−2

4

− 20

20

4

2

−2

4

=

1/5 −2/5 2/5 −4/5

−2/5 4/5 1/5 −2/5

2/5 1/5 4/5 2/5

−4/5 −2/5 2/5 1/5

−1

2

−2

4

 =

−5

0

0

0

.

Notice that s was taken to be positive (see Exercise 5.6).

5.6 Householder Transformations for Least Squares

The method of solving the least-squares problem using Householder transformation
can be viewed in two ways. The annihilation property can be seen as converting the
problem to a triangular one, as in Gaussian elimination; the method can also be seen
as computing a QR factorization. The orthogonal property can be seen as rotating
n-dimensional space into the column space of X and its orthogonal complement. In
reality, of course, all of these are at work.

The problem of minimizing the square of the distance between the observed y and
linear combinations of columns of X is unaffected by a rotation (a multiplication by an
orthogonal matrix), since the norm remains the same:

S(b) = ‖y − Xb‖2 = ‖Uy − UXb‖2. (5.6.1)

Now the new problem is no easier to solve unless UX has a simpler structure. Using
the annihilation property discussed in Section 5.5, a Householder transformation U1

can be constructed to place zeros throughout the first column of X, with the excep-
tion of the first element. Introducing zeros in more columns – without disturbing the
zeros already introduced – requires a bit of care. For the second column, construct the

102 Regression Computations

(n − 1)-dimensional annihilator to operate on the last (n − 1) elements (leaving the
first one alone) to zero out the last (n − 2) elements of the second column. Then the
zeros in the first column will be left unaffected. These steps are repeated to produce a
sequence of orthogonal matrices U1, U2, . . . , Up such that their product with X will be
triangular.

Let

Ui =
[

I i−1 0
0 U(i)

]
, where U(i) = In−i+1 − diu(i)u(i)T;

after i − 1 steps, Ui−1Ui−2 · · · U1X is computed to yield

i − 1 1 p − i[
R(i−1) r(i−1) B(i−1)

0 c(i−1) D(i−1)

]
.

i − 1

n − i + 1

At step i, choose u(i) = c(i−1) + sie1 (with si = ‖c(i−1)‖) to form U(i) and Ui , so

UiUi−1 · · · U1X =
[

R(i−1) r(i) B(i)

0 riie1 U(i)D(i−1)

]
=
[

R(i) B(i)

0 D(i)

]
.

i

n − i

After p steps (each column of X), both B and D disappear to leave R(p) = R, which is
an upper triangular matrix. After partitioning Up · · · U1y into its first p and last n − p

elements, denoted by z(1) and the remainder z(2), the least-squares problem has been
transformed to

‖y −Xb‖2 = ‖Up · · · U1(y −Xb)‖2 =
∥∥∥∥[z(1)

z(2)

]
−
[

Rb
0

]∥∥∥∥2

= ‖z(1) −Rb‖2 +‖z(2)‖2,

so that the sum of squares is easily minimized by solving Rb = z(1) to make the first
piece zero. The second piece that does not include b cannot be reduced and is the resid-
ual sum of squares, SSE. Notice also that XTX = RTR, so that R is the same matrix
obtained by Cholesky decomposition (except, perhaps, for a sign). The plan can then
be given for computing all of the needed quantities as follows:

(1) create and multiply U1, . . . , Up on X and y;
(2) solve Rb = z(1) to obtain b̂;
(3) SSR = ‖z(1)‖2 and SSE = ‖z(2)‖2;
(4) invert R and multiply to get (XTX)−1 = R−1R−T;
(5) multiply Up through U1 on z(2) (augmented with p zeros) for the residuals.

Although the design matrix X must be stored for this method, the transformations
Ui can be stored by overwriting X in the bottom part with the vectors u(i), i = 1, . . . , p.

These transformations are needed to compute the residuals, or to compute orthonormal
basis vectors for the column space of X or its orthogonal complement. The matrix Q
of the QR factorization can be computed by

Q = U1U2 · · · Up

[
Ip

0

]
; (5.6.2)

5.6 Householder Transformations for Least Squares 103

the basis vectors for the orthogonal complement can be computed by reversing the
identity matrix and the zero matrix and expanding the dimension to n − p. Saving the
scalars si speeds these calculations.

This method is somewhat slower than the other methods discussed, requiring roughly
np2 flops for computing b̂. More flops are required for the ancillary statistics. A se-
quence of regression problems, where one column is added to the design matrix at
a time, can be easily solved by stopping at each step to solve R(i)b = z(1)(i). Using
the Householder transformation to solve the least-squares problem is among the most
accurate methods, producing good residuals and orthogonal basis vectors close to or-
thogonal. Stability for virtually any sample size can be ensured by accumulating inner
products in double precision.

The Householder transformation approach for least squares is perhaps the best de-
signed for a method of pivoting that can test for rank and improve stability. If column
i of X is linearly dependent on the previous i − 1 columns, then c(i−1) and hence its
norm si will be zero. Because a small value of si hints at collinearity, the norms of
other columns in D(i−1) should be compared and column i of the current matrix (com-
posed of r(i−1) and c(i−1)) should be switched with the column with the largest norm of
its bottom part. These norms can be updated at each step to reduce the computations.
This strategy will also ensure that the most varying (and potentially most significant)
columns are used first. Although testing on si to check rank has its risks, it is a sound
strategy that will be successful for many problems.

Example 5.6: Simple Linear Regression with Householder Transformations

We have X =
 1 1

1 2

1 3

1 4

, so c(1) =
 1

1

1

1

, s1 = 2, u(1) =
 3

1

1

1

, d1 = 1/6, and

U(1) = I4 − d1u(1)u(1)T = U1, so

U1X =

−1/2 −1/2 −1/2 −1/2

−1/2 5/6 −1/6 −1/6

−1/2 −1/6 5/6 −1/6

−1/2 −1/6 −1/6 5/6

1 1

1 2

1 3

1 4

 =

−2 −5

0 0

0 1

0 2

.

Now c(2) =
[0

1

2

]
, s2 = √

5, u(2) =
[√

5

1

2

]
, d2 = 2/10 = 1/5, and U(2) =

I3 − d2u(2)u(2)T, so

U2U1X =

1 0 0 0

0 0 −1/
√

5 −2/
√

5

0 −1/
√

5 4/5 −2/5

0 −2/
√

5 −2/5 1/5

−2 −5

0 0

0 1

0 2

=

−2 −5

0 −√
5

0 0

0 0

.

104 Regression Computations

For z, notice that the first row of U2U1 is [−1/2, −1/2, −1/2, −1/2] and that the
second row of U2U1 can be written as

(
1
/(

6
√

5
))

[9, 3, −3, −9], so that

z(1) − Rb =
[−(y1 + y2 + y3 + y4)/2

(3y1 + y2 − y3 − 3y4)
/(

2
√

5
)]−

[−2 −5

0 −√
5

][
b1

b2

]
.

In R, the function qr computes the QR factorization via Householder transforma-
tions. This function returns a list of ($qr) a matrix the same size as X, ($rank) the
computed rank of the matrix, ($aux) an auxiliary vector, and ($pivot) the list of pivots.
What is needed, of course, is the information to reconstruct the matrices U1, . . . , Up.
The upper triangular matrix R is stored in the upper triangular part of ($qr). To con-
struct the matrices Ui , i = 1, . . . , p, we need the vectors u(i) and those vectors, scaled
by si , are stored in the remainder of ($qr), with one exception. Each vector u(i) has
n− i + 1 elements, but there are only n− i elements below the diagonal. Those home-
less first elements of u(i) are stored in ($aux), again scaled by si , so that they are also
equal to ‖(1/si)u(i)‖2. Two useful tools are qr.qy and qr.qty, which premultiply a vec-
tor/matrix with U1 · · · Up and Up · · · U1, respectively.

5.7 Givens Transformations

Givens transformations are similar in properties and purposes to Householder trans-
formations, but they have a different structure. They are orthogonal and can be used
as an annihilator in least-squares problems. They are also used in computing the QR
factorization that drives the QR algorithm for computing eigenvalues. Givens trans-
formations are based on an obvious extension of the simplest orthogonal matrix.

Consider the 2 × 2 orthogonal matrix, which can be written in two ways:[
sin t cos t

− cos t sin t

]
=
[

a b

−b a

]
, where a2 + b2 = 1.

A 2×2 matrix U can be constructed so that the product Ux is zero in its second element

simply by taking a = x1
/√

x 2
1 + x 2

2 and also b = x2
/√

x 2
1 + x 2

2 , so

Ux = 1√
x 2

1 + x 2
2

[
x1 x2

−x2 x1

][
x1

x2

]
=
[√

x 2
1 + x 2

2

0

]
.

The Givens transformation is merely a generalization of this, placing a zero in one ele-
ment of a vector and changing only one other:

Uij x =

I i−1 0 0 0 0

0 xi/s 0 xj/s 0

0 0 Ij−i−1 0 0

0 −xj/s 0 xi/s 0

0 0 0 0 In−j

. . .

xi

. . .

xj

. . .

 =

. . .

s

. . .

0

. . .

,

5.8 Givens Transformations for Least Squares 105

where s =
√

x 2
i + x 2

j . Notice that only elements i and j of x are changed; the others
remain the same. For any vector y, then, only the i and j elements are changed in com-
puting the product Uij y. And if both yi and yj are zero then the product is just y, and
nothing happens. Finally, since these matrices are really just a function of an angle,
only one number is needed to represent the matrix (in addition to the indices i and j).

Stewart (1976) proposed the following rule for using the single number ρ to represent
the 2 × 2 matrix:

if a = 0, then ρ = 1;
if |b| < |a|, then ρ = sign(a)b/2; (5.7.1)
if |a| ≤ |b|, then ρ = 2 sign(b)/a.

5.8 Givens Transformations for Least Squares

Solving the least-squares problem using Givens transformations follows the same strat-
egy as employed with Householder transformations. Orthogonal matrices are con-
structed to introduce zeros in UX until the resultant product is upper triangular. Again,
care must be exercised to preserve zeros produced by the previous steps.

Let Uij be the Givens transformation that changes only the i and j elements of a
vector. Then the effect of Uij on a matrix such as X is to change rows i and j. For solv-
ing the least-squares problem, Uij is constructed so that a zero is produced in column
i and row j of the current matrix, UU · · · UX, using elements ii and ji. The sequence
of matrices can be ordered in two ways.

(1) Go down each column:
do i = 1, p
do j = i + 1, n

compute Uij U · · · U12(X | y)

end do ! loop on j

end do ! loop on i

(2) Go across each row:
do j = 2, n

do i = 1, min(j − 1, p)

compute Uij UU12(X | y)

end do ! loop on i

end do ! loop on j

The first method is similar to the pattern used with Householder transformations. The
second method is ideal when intermediate results are needed and more observations are
added. The remainder of the analysis, including the accuracy of the method, follows
that of the Householder procedure. That is, represent the product of the orthogonal
matrices by Q =∏i

∏
j Uij, then

Upn · · · U12(X | y) = Q(X | y) =
(

R
0

∣∣∣∣ z(1)

z(2)

)
. (5.8.1)

106 Regression Computations

The regression coefficients are then computed by solving Rb = z(1).

When compared to Householder, this method takes more work: roughly 2np2, with
np square roots to be computed. A square root is a relatively easy nonarithmetic func-
tion, yet O(np) is substantial and so “fast” methods have been devised (Gentleman
1973) to avoid them, but not without a loss of simplicity.

The great advantage of this method can be exploited by using the second scheme.
Once j exceeds p, each new observation – with a row in X and an element in y – is
“processed” into an updated R and z. But since z(2) is sometimes used only for its sum
of squares, only the error sum of squares is updated, not all z(2). The storage needed
is merely p(p +1)/2 +1, and observations can easily be added and the regression re-
sults updated. An update of a Cholesky decomposition can be computed in the same
way. That is, to compute the decomposition MMT of the matrix with a rank-1 update
A = LLT + wwT, write the matrix A as an inner product,

(L | w)

(
LT

wT

)
= BTB; (5.8.2)

then the Givens update of the matrix B, zeroing out its last row and updating the upper
triangular part LT on top, produces the Cholesky factor MT:

Up · · · U1

(
LT

wT

)
=
(

MT

0

)
.

Note that the work is O(p2).

Example 5.7: Simple Linear Regression with Givens Transformations

We have X =
 1 1

1 2

1 3

1 4

, so use
[

1

1

]
; then

U12X =

1/

√
2 1/

√
2 0 0

−1/
√

2 1/
√

2 0 0

0 0 1 0

0 0 0 1

1 1

1 2

1 3

1 4

 =

√

2 3/
√

2

0 +1/
√

2

1 3

1 4

.

Use
[√

2

1

]
to get U13, so

U13U12X =

√

2/3 0 1/
√

3 0

0 1 0 0

−1/
√

3 0
√

2/3 0

0 0 0 1

√
2 3/

√
2

0 +1/
√

2

1 3

1 4

=

√

3 2
√

3

0 +1/
√

2

0
√

3/2

1 4

;

5.9 Regression Diagnostics 107

use

[
+1/

√
2√

3/2

]
to get U23, so

U23U13U12X =

1 0 0 0

0 +1/2
√

3/2 0

0 −√
3/2 +1/2 0

0 0 0 1

√
3 2

√
3

0 +1/
√

2

0
√

3/2

1 4

=

√

3 2
√

3

0
√

2

0 0

1 4

;

use
[√

3

1

]
to get U14, so

U14U23U13U12X =

√

3/2 0 0 1/2

0 1 0 0

0 0 1 0

−1/2 0 0
√

3/2

√
3 2

√
3

0
√

2

0 0

1 4

 =

2 5

0
√

2

0 0

0
√

3

;

use
[√

2√
3

]
to get U24, so

U24U14U23U13U12X =

1 0 0 0

0
√

2/5 0
√

3/5

0 0 1 0

0 −
√

3/5 0
√

2/5

2 5

0
√

2

0 0

0
√

3

 =

2 5

0
√

5

0 0

0 0

.

5.9 Regression Diagnostics

Now that the main methods for regression have been discussed, our attention can turn
to the computation of ancillary information, beginning with some statistics that have
been suggested for diagnosing problems arising in regression. For the statistical back-
ground, the reader is advised to consult a textbook on regression (e.g. Myers 1989).
For the more statistically adept, further details about these diagnostics can be found in
Belsley, Kuh, and Welsch (1980) or Cook and Weisberg (1982). The viewpoint taken
in this section is purely computational.

Prominent in the analysis of both residuals and influence is the so-called hat matrix
H = X(XTX)−1XT, also known as the regression projection matrix PX. Nonetheless,
usually only the diagonal elements Hii = hi are needed – which is a relief, since H
is n × n. Different methods are available for computing hi depending on which com-
putational route is taken from those discussed here: Cholesky solution of the normal
equations, modified Gram–Schmidt, Householder, or Givens.

The computation of the diagonal elements of H (or of the entire matrix, for that
matter) is easy whenever the matrix Q of the QR factorization is available, since

108 Regression Computations

H = QQT. This result easily follows from the factorization X = QR, so XR−1 =
Q and XTX = RTR. Deriving the diagonal elements hi requires only the sum of
squares of the rows of Q. Since MGS produces the matrix Q, this one is easy. For
the other orthogonalization methods, a special effort must be made to obtain Q. For
Householder transformations, this has been discussed and led to (5.6.2). For Givens,
construct a matrix with the first p columns of an n × n identity matrix and then apply
the orthogonal transformations in reverse order; that is (for Example 5.7),

Q = U12U13U23U14U24

[
Ip

0

]
. (5.9.1)

Remaining among the methods is solving the normal equations by Cholesky in dou-
ble precision, and the approach for obtaining H is simple. Let X i• be the ith row of the
design matrix; then, following

H = X(XTX)−1XT = XR−1R−TXT,

merely solve RTw = XT
i• to get X i• R−1 = wT and compute the sum of squares of w to

get hi.

From this point, things actually get easier, although some of the expressions at first
appear cryptic. One residual diagnostic is the predicted sum of squares for residu-
als (PRESS), which arises from a comparison of each observation to the prediction
computed without that observation and follows specifically the spirit of the jackknife.
Notationally,

PRESS =
n∑

i=1

(yi − ŷi,−i)
2 =

n∑
i=1

ê2
i,−i , (5.9.2)

where ŷi,−i denotes the fitted value for the ith observation computed from the n − 1
observations, excluding the ith. The PRESS residual êi,−i can be found from a simple
formula:

êi,−i = yi − ŷi

1 − hi

= êi

1 − hi

. (5.9.3)

Hidden within this is the Sherman–Morrison–Woodbury formula for the inverse of an
updated matrix:

(A + uvT)−1 = A−1 − A−1uvTA−1

1 + vTA−1u
. (5.9.4)

Now let x i be the ith row of X made into a column vector; then the algebra begins with

ŷi,−i = xT
i [XTX − x ixT

i]
−1(XTy − x iyi)

= xT
i

[
(XTX)−1 + (XTX)−1x ixT

i(XTX)−1

1 − hi

]
(XTy − x iyi)

(5.9.5)

and finishes with (5.9.3) (see Exercise 5.16). As a result, although the PRESS residuals
appear to require n different regressions, with some clever manipulations they require
only hi.

5.9 Regression Diagnostics 109

Also used in the analysis of residuals is an estimate of the variance parameter delet-
ing the ith observation, s2

−i , found by

s2
−i = SSE − ê2

i /(1 − hi)

n − p − 1
. (5.9.6)

This estimate is then used in an externally Studentized residual (sometimes called “R-
Student”),

ti = êi

s−i

√
1 − hi

, (5.9.7)

giving a view of a residual with a known Student’s t distribution with n − p − 2 de-
grees of freedom. The measure of influence of an observation DFFITSi has a similar
form, and the estimate of scale σ can be either the usual one or s−i , as in the latter
expression;

DFFITSi = êi

σ
√

1 − hi

√
hi

1 − hi

= ti

√
hi

1 − hi

.

Notice that no new computations appear to be required by these diagnostic statistics.
A measure of influence of observation i on the j th regression coefficient is

DFBETASj,i = b̂j − b̂j,−i

s−i

√
[(XTX)−1]jj

, (5.9.8)

where b̂j,−i denotes the estimate of the j th regression coefficient computed omitting
the ith observation. Again, this looks bad; but again, analysis similar to that just de-
scribed (see e.g. Myers 1989, apx. B.7) leads to the simplified expression

DFBETASj,i = ti
Zji√

1 − hi

√
[(XTX)−1]jj

, (5.9.9)

where ti is the Studentized residual given in (5.9.7) and Zji is the (j, i)th element of
Z, where

Z = (XTX)−1XT = R−1QT.

Since all of the methods discussed so far create R (or its negative, in the case of House-
holder), the matrix Z can be found by following the same route as for Q.

Finally, Cook’s D (for distance) measures the entire change (similar to Hotelling’s
T 2) in the coefficient vector following the omission of the ith observation,

Di = (b̂ − b̂−i)
T(XTX)(b̂ − b̂−i)/ps2, (5.9.10)

where b̂−i is the coefficient vector computed without the ith observation. Again, this
expression can be simplified to

Di = ê2
i hi

(1 − hi)2s2p
, (5.9.11)

which requires no special computations.

110 Regression Computations

5.10 Hypothesis Tests

The main tool of statistical inference in regression is the test of a hypothesis H that is
expressed as a set of linear equality constraints on the parameters,

H : KTb = m, (5.10.1)

where K is a full column rank matrix of size p × s. If the coefficient estimate that min-
imizes S(b) (subject to the constraints H) is denoted by b̃, then the statistic for testing
this hypothesis is

F = [S(b̃) − S(b̂)]/s

S(b̂)/(n − p)
. (5.10.2)

The numerator in (5.10.2) can be found algebraically from K, b̂, and the computations
from the unrestricted regression

S(b̃) − S(b̂) = (KT b̂ − m)T[KT(XTX)−1K]−1(KT b̂ − m),

but the potential for catastrophic cancellation is large. There are better ways of com-
puting the test statistic and the constrained estimate b̃. Both approaches to be presented
here are reparameterization methods, designed to produce the usual statistics from the
unconstrained problem as well as b̃ and S(b̃) from the constrained one. Both are de-
signed to work with any of the orthogonalization methods – MGS, Householder, or
Givens.

Before addressing either of these methods, consider that the most important hy-
potheses to be tested is whether or not to include a variable (or set of variables) in
the regression equation. Here, the sequential and partial sums of squares are required.
The sequential sums of squares are the regression sum of squares for each variable as
it is introduced into the model and reduces the error sum of squares. For this, the or-
thogonalization methods work best. The partial sums of squares for a variable is the
difference in error sum of squares when the variable is deleted from the model, essen-
tially the numerator sum of squares for the F -test for that variable’s significance. For
the case of a single variable, the easiest approach is just to use the t-test. For a set
of variables arising in an experimental design problem with many levels for each fac-
tor, running separate regressions for the subset models may be easiest. A comparison
of the two following approaches for obtaining partial sums of squares is the object of
Exercise 5.23.

The first method for general hypothesis tests uses an orthogonal reparameterization.
The first step is to find a matrix G that performs an upside-down and backwards QR
factorization of K, that is,

GK =
[

0
K∗

2

]
,

p − s

s

where K∗
2 is lower triangular and nonsingular. This can be done using either House-

holder or Givens methods but in an upside-down and backwards form. That is, for the
Householder method, annihilate the last column of K (except for the last element), then

5.10 Hypothesis Tests 111

the next-to-last column (except for the last two elements), and so on (see Exercise 5.8).
The reparameterized model is then

y = Xb + e = (XG)(GTb) + e = Wc + e, (5.10.3)

so that the new parameter vector is c = GTb and the hypothesis is restated as a square
nonsingular system

H : K∗T
2 c2 = m, (5.10.4)

where c2 is the lower part of c. Now use any of the orthogonalization methods for re-
gression (MGS, Householder, or Givens) on the new design matrix W = (W1 W2) =
XG to obtain

QT(y − Wc) =
 z1

z2

z3

−
R11 R12

0 R22

0 0

[c1

c2

]
,

p − s

s

n − p

(5.10.5)

which is the vector whose norm is to be minimized. To perform the unconstrained min-
imization, simply solve the system of equations[

R11 R12

0 R22

][
c1

c2

]
=
[

z1

z2

]
to obtain the vector ĉ. Then the unconstrained vector is b̂ = GTĉ, and the other
values can be found by undoing the reparameterization – for example, (XTX)−1 =
(GR−1)(GR−1)T.

To perform the constrained minimization, first solve for c̃2 by solving (5.10.4). Then
solve

R11c1 = z1 − R12 c̃2 (5.10.6)

to obtain c̃1, so that the constrained estimator is b̃ = Gc̃. The difference in the error
sum of squares can then be computed directly, from (5.10.5), as the square of the length
of the subvector z2 − R22 c̃2.

The alternative method uses elimination as the basis for the reparameterization.
Perform full column elimination with full row and column pivoting on the system of
equations described by the hypothesis H, again in a backwards fashion, to obtain an
equivalent form

H : KTb = m ⇐⇒ (K∗T Is)(Pb) = m∗, (5.10.7)

with the reparameterized vector c = Pb simply a permuted order. Similarly, permute
the columns of X to obtain W = (W1 W2) = XPT. Then perform the steps of MGS
(or Householder or Givens) to reach (5.10.5). The unconstrained results follow from
solving (5.10.6) and permuting back to obtain b̃.

The constrained results are much more difficult in this alternative method. The hy-
pothesis in (5.10.7) can be seen as giving c2 in terms of c1 (i.e., c2 = m∗ − K∗Tc1) so
that, upon reaching (5.10.5), the vector whose length is to be minimized is

X∗c1 − z∗ =
[

R11 − R12K∗T

−R22K∗T

]
c1 −

[
z1 − R12m∗

z2 − R22m∗

]
p − s

s
(5.10.8)

112 Regression Computations

as a function of c1 only, which is a regression problem still to be solved. This much
smaller least-squares problem can be solved by triangularizing the matrix X via House-
holder or Givens to obtain

Q(X∗c1 − z∗) =
[

R∗∗

0

]
c1 −

[
z∗∗

1

z∗∗
2

]
,

whose length is minimized by solving R∗∗c1 = z∗∗
1 for the constrained estimate c̃1.

The remainder of the coefficient estimates are found from c̃2 = m∗ − K∗Tc̃1. The dif-
ference in the error sum of squares, S(b̃) − S(b̂), will appear as the sum of squares
of z∗∗

2 .

Another textbook method (Searle 1973, chap. 3) follows the reparameterization just
given in a more direct manner, using the regression model under the hypothesis as

y − W2m∗ = (W1 − W2K∗T)c1 + e.

The constrained problem is then a regression with a design matrix W1−W2K∗T and de-
pendent variable y − W2m∗. This least-squares problem must be solved at some point;
the previous method suggests waiting until the end so that the unconstrained results are
also available.

Still another textbook method is to solve directly the Lagrangian equation that arises
from the constrained optimization formulation,[

XTX K
KT 0

][
b
θ

]
=
[

XTy
m

]
. (5.10.9)

Although simply stated, this is not a positive definite system and so the stable Cholesky
method cannot be used. The condition should be about κ(XTX), so this approach can
be much more difficult.

5.11 Conjugate Gradient Methods

Storage requirements have been emphasized in our discussion of the various meth-
ods for least-squares problems. A method that requires O(p2) storage has a distinct
advantage over one (e.g. Householder) that requires O(np), the advantage being that
its set of computationally feasible problems is considerably larger. But in the case
of large factorial models (or small computers), this set may not be large enough to
contain important problems. Conjugate gradient methods require only O(p) storage;
hence they can solve much larger problems on smaller computers than the other meth-
ods. While the advantage of a conjugate gradient (CG) approach is its small stor-
age requirements, its biggest disadvantage is that only b̂ and SSE are produced. Its
obstacles to numerical stability are such that a solution cannot be expected to be found
in a finite number of steps, so the method should be viewed in practice as an itera-
tive method. Often special efforts are needed to bring slow convergence to a tolerable
rate. This method should only be considered when storage requirements preclude other
approaches.

The conjugate gradient method can be viewed as a sequence of line searches to find
the minimum of the sum-of-squares function S(b). That is, consider minimizing along

5.11 Conjugate Gradient Methods 113

the line b + aq, constructing S ∗(a) = S(b + aq). Then the optimal a is given by

a∗ = qTXT(y − Xb)

qTXTXq
= −qT(∇S(b))

2qTXTXq
. (5.11.1)

However, pursuing the best direction – the gradient – leads to the steepest descent
method, which suffers from zig-zagging that can be crippling. Instead, a sequence of
directions {qk} is sought such that, at each step, searching along the new direction qk

yields the optimum b(k) found by the updating formula

b(k) = b(k−1) − akqk, (5.11.2)

which minimizes S(b) over the manifold span{q1, . . . , qk}. If this can be achieved,
then the line search will actually make progress toward the global optimum and not
merely marginal gains, as in steepest descent.

To see that this is possible, impose on the directions the requirement that they must
be mutually conjugate with respect to XTX,

qT
i X

TXqj = 0 for i
= j. (5.11.3)

By stacking the directions qj as columns in a p × k matrix Qk, the step-k optimization
problem can be written as finding the vector z and scalar a to minimize

S(Qk−1z + aqk) = S(Qk−1z) − 2aqT
kXTy + a2qT

kXTXqk, (5.11.4)

since the missing term is 2aqT
kXTXQz, which is zero owing to (5.11.3). This step-k

problem obviously decouples into the first part, finding the best z, which was the step-
(k − 1) problem that led to S(b(k−1)), and the second part, for which the optimal ak is
given by

ak = qT
kXTy/qT

kXTXqk. (5.11.5)

This appears to differ from the optimal given by (5.11.1); however, since b(k−1) =
Qk−1z for some z, it follows that qk ⊥ b(k−1) and the missing piece is zero.

The problem of finding a new qk that satisfies (5.11.3) is solvable by a form of
Gram–Schmidt, but this would cost so much in time and space that it would defeat the
purpose of the method. Moreover, the best direction at any step is to go opposite the
gradient. So the best choice for qk is the vector whose direction is close to the gradient
while retaining the orthogonality relationship (5.11.3); this is a least-squares problem.
Fortunately, this best qk can be shown to be a linear combination of two vectors qk−1

and ∇S(b(k−1))/2 = gk−1. The relationship is

qk = gk−1 + ckqk−1, (5.11.6)
where

ck = −qT
k−1XTXgk−1/qT

k−1XTXqk−1. (5.11.7)

The conjugate gradient iteration can then be written as follows:

ck = −qT
k−1XTXgk−1/qT

k−1XTXqk−1,

qk = gk−1 + ckqk−1,

ak = −qT
kgk−1/qT

kXTXqk,

b(k) = b(k−1) + akqk,

gk = XT(Xb(k) − y) or gk−1 + akXTXqk.

114 Regression Computations

Although this CG iteration appears to require two multiplications of the matrix XTX
and a vector, through the use of one of several recursive relationships (as in the last
step) we can reduce the multiplications to only one. One such technique is to compute
the vector hk = XTXqk. The algorithm can then be written informally, using just 4p
(and a constant number more) storage locations:

(0) b = 0, q = g = −XTy, c = 0
(1) for k = 1, 2, 3, . . . until convergence
(2) if (k
= 1) then c = −hTg/u and q = g + cq
(3) compute h = XTXq and u = qTXTXq = qTh
(4) a = −qTg/u

(5) b = b + aq
(6) g = g + ah

Because the orthogonality and conjugate relationships are quickly lost owing to
roundoff error, a restart by setting c = 0 is recommended every p iterations. No-
tice that the least-squares problem should be solved in just p iterations, according to
the mathematics; the conjugate gradient method should be considered as an iterative
method that could require more or fewer iterations. Moreover, the conjugate gradient
method can be used for more general problems, where the function to be minimized is
successively approximated by a quadratic. In this case, it is necessary to compute the
gradient directly at each step.

The convergence of the CG algorithm can be improved greatly by precondition-
ing the matrix XTX – usually by something easily computable, like the inverse of the
matrix composed only of its diagonal elements. Some aspects of the preconditioning,
as well as the applicability of CG to solving any positive definite system of equations,
behave similarly to successive over-relaxation in the modification of Gauss–Seidel and
Jacobi methods (see Section 4.7). Many advances in preconditioning, especially for
least-squares problems, are due to Hemmerle. Preconditioning and balancing are crit-
ical for the convergence of CG. Since the search direction often follows the steepest
descent direction, the performance of CG can suffer from the same zig-zagging that
slows steepest descent searches to a walk. Because the zig-zagging results from con-
tours of the sum-of-squares function that are highly eccentric, the preconditioning and
balancing are aimed at reducing this eccentricity so that the direction of steepest de-
scent points directly at the minimum.

Although the product matrix XTX appears in the formulation of the conjugate gradi-
ent algorithm, the matrix is never to be stored; doing so would require O(p2) storage,
for which Cholesky or Givens methods could be used for the least-squares problem.
The applications for which CG will prove its worth are large, unbalanced design prob-
lems with many factors and levels. The information within any observation consists
only of (a) the value of the dependent variable and (b) the values of the levels of the
various factors. To illustrate, consider the following example.

Example 5.8: Update Code for Conjugate Gradients
Consider a two-factor cross-classified model with no interaction, following

yijk = µ + αi + βj + eijk (1, . . . , I, j = 1, . . . , J, k = 1, . . . , nij).

5.12 Doolittle, the Sweep, and All Possible Regressions 115

Then the data can be stored with just y, i, j given for each observation. The fol-
lowing full-rank parameterization preserves simplicity but not balance:

b(1) = µ,

b(i + 1) = αi for i = 1, . . . , I − 1,

b(I + j) = βj for j = 1, . . . , J − 1,

(5.11.8)

using the identifying restrictions αI = βJ = 0. Other parameterizations that
might affect centering, such as b(i + 1) = αi − αI and b(I + j) = βj − βJ ,

may do better but lead to more complicated code. Changing the character of the
index k – from counting replicates to counting observations – leads to the follow-
ing code for computing h = XTXq in step (3):

do k=1,N
i=factor1(k)
j=factor2(k)
s=q(1)
if(i .ne. I) s=s+q(i+1)
if(j .ne. J) s=s+q(I+j)
h(1)=h(1)+s
if(i .ne. I) h(i+1)=h(i+1)+s
if(j .ne. J) h(I+j)=h(i+j)+s
end do ! loop on k

The approach given here on conjugate gradients is basically the original Hestenes–
Stiefel algorithm. Modifications by Beale and others, and by Hemmerle for the least-
squares problem specifically, are discussed in Golub and van Loan (1984) and in McIn-
tosh (1982). Preconditioning and balance (see McIntosh 1982, pp. 70ff) are difficult
tools that govern the performance of CG.

5.12 Doolittle, the Sweep, and All Possible Regressions

Two techniques – elimination methods both – have not yet been applied to the least
squares problem. One is Gaussian elimination, which leads to the abbreviated Doolittle
method that was popular among statisticians in the age of desk calculators. The other
technique is full (Gauss-Jordan) elimination, which leads to the sweep operator.

The Doolittle (1878) method is a direct computation of an LU factorization of a
symmetric matrix without the intermediate results that are computed in Gaussian elim-
ination. Applying Doolittle to the normal equations leads to a compact scheme with no
wasted effort. Consider the result of Gaussian elimination on the augmented matrix

(XT X XT y Ip) → (U L−1XT y L−1) (5.12.1)

Completion of the effort requires simply the solution of the triangular system Ub =
L−1XT y to find b̂, and the inverse matrix can be found by solving similar systems with
columns of L−1. The great savings comes from symmetry – both in the elimination,

116 Regression Computations

which is done one row at a time, and also in the partial solutions of the calculations of
the inverse.

The sweep operator can be viewed as a compact form of full (Gauss-Jordan) elim-
ination of an n × n symmetric matrix A. Consider full elimination on the augmented
matrix below, partitioned with a single row/column and the remainder

(A B I) =
(

A11 a(1)T B1. 1 0
a(1) A(1) B(1) 0 In−1

)
(5.12.2)

where the matrix B may be included whose columns are RHS of equations Ax = b to
be solved. Elimination (without pivoting) is equivalent to multiplying by a sequence
of matrices M1, M2, . . . , Mn, where the first step is

M1 (A B I) =
(

1/A11 0
−a(1)/A11 I

)
×
(

A11 a(1)T B1. 1 0
a(1) A(1) B(1) 0 In−1

)
=
(

1 a(1)T /A11 B1./A11 1/A11 0
0 A(1) − a(1)a(1)T /A11 B(1) − B1.a(1)/A11 −a(1)/A11 In−1

)
.

Now if we continued and eliminated each column, we would have the inverse and
solutions to equations:

Mn . . . M2M1 (A B I) = (I A−1B A−1) . (5.12.3)

But if we stopped partway, after eliminating p rows/columns, or sweeping the first p

rows/columns, we would have

Mp . . . M1 (A B I) =
(

A−1
11 0

−A21A−1
11 I

)
×
(

A11 A12 B1 Ip 0
A21 A22 B2 0 In−p

)
=
(

Ip A−1
11 A12 A−1

11 B1 A−1
11 0

0 A22 − A21A−1
11 A12 B2 − A21A−1

11 B1 −A21A−1
11 In−p

)
.

partitioning now as p and n − p rows/columns.
Notice that as columns of the appended identity matrix are changed, similar col-

umns are created in the first columns. If we store those changed columns where the
new ones were created to save space (and never store the identity), we can define the
sweep operator, either as sweeping a single row/column, as(

A11 a(1)T B1.

a(1) A(1) B(1)

)
→ sweep(1)

→
(

1/A11 a(1)T /A11 B1./A11

−a(1)/A11 A(1) − a(1)a(1)T /A11 B(1) − B1.a(1)/A11

)
(5.12.4)

or in block form(
A11 A12 B1

A21 A22 B2

)
→ sweep(1 : p)

→
(

A−1
11 A−1

11 A12 A−1
11 B1

−A21A−1
11 A22 − A21A−1

11 A12 B2 − A21A−1
11 B1

)
.

(5.12.5)

5.12 Doolittle, the Sweep, and All Possible Regressions 117

The effectiveness of the sweep operator for regression can now be seen when applied
to the cross products matrix:(

XT X XT y
XT y yT y

)
→ sweep(1 : p) →

(
(XT X)−1 b̂

−b̂ yT (I − PX)y

)
. (5.12.6)

The full power of the sweep can best be seen when a subset of the potential regres-
sors are swept, say, the first p1 corresponding to X, with p2 columns corresponding to
Z remaining, and generalizing to multivariate regression:(XT X XT Z XT Y

ZT X ZT Z ZT Y
YT X YT Z YT Y

)
→ sweep(1 : p1)

→
(

(XT X)−1 (XT X)−1XT Z (XT X)−1XT Y
−ZT X(XT X)−1 ZT (I − PX)Z ZT (I − PX)Y
−YT X(XT X)−1 YT (I − PX)Z YT (I − PX)Y

)
.

(5.12.7)

First of all, the capitalization Y indicates the ease of adding multiple dependent vari-
ables. Next, coefficients for models including only subsets of the explanatory variables
can be found along the way, as well as their error sums of squares. But notice also the
middle term in (5.12.4). If the columns of Z are linearly dependent on X, then this
“error” sum of squares is zero (theoretically). Computationally, this quantity can be
compared to a tolerance as a test for singularity. Because of the definiteness of the ma-
trices on the diagonal of the tableau, there is no need at all to pivot, except for these
dependencies; even in that case, sweeping row k also means column k, so that the piv-
ots are all on the diagonal.

The sweep operator has two other useful properties: (1) reversibility – sweeping
row/column k twice is the same as not sweeping at all; and (2) commutativity – the
order in which the sweeps are done has no effect (mathematically). But the most
important property of the sweep operator is its simplicity. If we denote the current
tableau by the m × m matrix A, then sweeping row/column k (which is equivalent to
adding/deleting the variable k in the regression) and overwriting the new tableau takes
the following code:

d=A(k,k)
do j=1,m
A(k,j)=A(k,j)/d
end do ! loop on j
do i=1,m
if(i .ne. k) then

b=A(i,k)
do j=1,m
A(i,j)=A(i,j)-b*A(k,j)
end do ! loop on j
A(i,k)=-b/d
end if ! if(i .ne. k)

end do ! loop on i
A(k,k)=1/d

118 Regression Computations

regsweep <- function(A,k) {
d <- A[k,k] # sweep out row k, col k
A[k,] <- A[k,]/d
b <- A[,k]
b[k] <- 0 # don’t change row k here
A <- A - outer(b,A[k,]) # main operation
A[,k] <- -b/d # fix col k
A[k,k] <- 1/d # diagonal element & done
regsweep <- A }

These properties make the sweep operator perfect for variable selection algorithms,
since adding or deleting a variable merely means doing a sweep operation. The only
drawback is that a system of normal equations is being solved and so the sweep should
only be done in double precision – unless the native arithmetic has a lot of precision to
spare.

The most demanding variable selection procedure is one requiring that all subsets
of a given set of explanatory variables be considered, that is, the problem of com-
puting all possible regressions. Given p variables, this means 2p regressions (if we
include the null regression with no explanatory variables). Schatzoff, Tsao, and Fein-
berg (1968) described a procedure to compute the results of all possible regressions
using the sweep operator, with no wasted effort. The one drawback of sweep becomes
even more prominent in this case, since the errors accumulate through a large number
of steps. Furnival (1971) offered a modification that requires more storage but avoids
backtracking; he also advocated the use of Gaussian elimination over sweep. Furnival
and Wilson (1974) proposed further improvements, which include avoiding some of
the subset regressions that can be shown (through the use of bounds) not to be promis-
ing. Clarke (1981) provided an alternative scheme using Givens transformations.

5.13 Alternatives to Least Squares

Many alternatives to least squares have been proposed over the years in response
a variety of issues, for example, multicollinearity, robustness, and model selection.
While these alternatives lead to different objective criteria, their computational meth-
ods often rely on the tools outlined earlier in this chapter.

Often an indication of multicollinearity is the presence of large estimated coeffi-
cients, but not necessarily significantly different from zero (small t statistics). So a
simple modification might be to restrict the coefficients, say, to ‖b‖ < c or the more
general (b − b∗)T A(b − b∗) ≤ c2. If ‖b‖ < c, then the least squares estimates solve
the problem; if not, then the restriction will hold at the elliptical boundary bT b = c2

or the general (b − b∗)T A(b − b∗) = c2. Since the least squares contours in b are
also elliptical, the solution to this modified least squares problem will occur when the
gradient vector of the least squares is orthogonal to the tangent plane of the bound-
ing ellipsoid – which is orthogonal to its gradient vector. In other words, the solution
will occur when these two gradient vectors are pointing in opposite directions: there is

5.13 Alternatives to Least Squares 119

some scalar λ such that

XT (y − Xb) = λA(b − b∗),

which also gives the solution to the penalized least squares problem

min(y − Xb)T (y − Xb) + λ(b − b∗)T A(b − b∗).

See also Exercise 5.31 (Ridge Regression).
While Euclidean geometry is based on the p = 2 norm, statisticians have also con-

sidered the p = 1 norm (see Exercise 5.36 for the p = ∞ norm). Here the objective
function to be minimized involves absolute values instead of squares

g(b) =
N∑

i=1

|yi − xT
i b|.

This median regression or L1 regression problem can be formulated as a linear pro-
gramming problem (Section 4.8) by separating the positive and negative residuals, e+
and e−, respectively, as well as the positive and negative parts of the coefficients b+
and b−

min 1T e+ + 1T e− subject to y = X(b+ − b−) + e+ − e−

with b+, b−, e+, e− each ≥ 0. Portnoy and Koenker (1997) discuss this approach as
well as alternatives, including the dual problem and interior point methods – modifying
non-smooth problems with smooth penalty functions – for problems where the sample
size N is very large. Only a small step to the function

ρτ (u) =
{

τ if u ≤ 0

1 − τ if u > 0

leads to quantile regression, where the objective function is

g(b) =
N∑

i=1

ρτ (yi − xT
i b).

For each value of the quantile value τ (0 < τ < 1), we can find the optimal b̂, where
the special case τ = 1/2 corresponds to the median, absolute values and the median
regression mentioned above. In another direction, the function ρ(u) can be modified
from ρ(u) = u2 (least squares) or ρ(u) = |u| (median regression) to other forms of
robust regression. One common form is due to Huber (1964):

ρHuber (u) =
{

u2/2 if |u| ≤ c

cu − c2/2 if |u| > c

which behaves like least squares for small residuals and like median regression for large
residuals. In this way, the coefficient estimates are less sensitive or robust to extreme
observations (outliers). Computational methods for these objective functions are sim-
ilar to those of maximum likelihood; these methods are called M-estimators for this
reason. See Chapter 9 for the discussion of maximum likelihood methods.

120 Regression Computations

A different combination of quadratic fit and linear or absolute value constraints lead
to the lasso (Tibshirani, 1996). Here the goal is to minimize the error sum of squares
subject to the constraint that the L1 norm of the coefficient vector is below a bound:

min
b

(y − Xb)T (y − Xb) subject to
∑

j

|bj | ≤ t.

As before, if the least squares solution b̂ satisfies the constraint, we’re done. Other-
wise, the solution will occur when the least squares elliptical contours hit the planar
faces of the constraint. This problem can be viewed as a quadratic programming prob-
lem (e.g., Gill and Murray, 1978; Lawson and Hansen, 1974) of the general form

min
b

1

2
xT Gx + cT x subject to AT x ≥ b

whose algorithms traverse the points where those planar faces – corresponding to equal-
ity constraints – intersect the elliptical contours. A sure-fire approach to finding a solu-
tion is to solve least squares problems at all subsets of those equality constraints. But
performing a similar step to the L1 problem earlier, let b = b+ + b− where b+ and
b− are constrained to be nonnegative. Then the lasso problem can be viewed as a least
squares problem in 2p variables subject to 2p + 1 simple linear constraints, and qua-
dratic programming tools that exploit the simple, sparse structure can be very effective.
Osborne et al. (2000) propose an effective algorithm exploiting the dual problem, and
Kim et al. (2008) propose another that can be extended to generalized regression prob-
lems (Chapter 9). Other variations on the lasso (e.g., elastic net, OSCAR, etc.) lead
to similar quadratic programming problems with simple and sparse constraints. If the
constraint bound t is not considered given, but found, say, by minimizing cross vali-
dation, then the solutions must be found for many values of t . A modification of the
LARS algorithm (Efron et al. 2004), can be used to find lasso solutions for all val-
ues of t .

5.14 Comments

After so many methods have been presented, an inevitable question is: Which one is
best? Because each method was developed for a set of circumstances in which the
others were considered inferior, it follows that, depending on the situation, there may
be a “best” method. The different methods have certain advantages and disadvan-
tages: storage requirements, speed, flexibility, ease of adding or deleting variables
and/or observations, ease of testing hypotheses, ease of testing for rank deficiencies,
and numerical stability. The best method, should there be one, will depend on the char-
acteristics of the problem and the purposes to which the results will be put.

When considering a general method, say a workhorse routine, the difficulties mount.
The computing environment must be considered: storage available, accuracy of the
arithmetic, speed of I /O and disk access. But the demands of the consumer direct the
decisions of what quantities are computed, regardless of whether overparameterized
models are permitted and regardless of what options are offered and of limitations that
may exist on problem size. From my own point of view, designing and implementing a

5.14 Comments 121

general method is a burdensome task worth avoiding. Hence only two, special-purpose
codes are given in this chapter for regression. Since there is not a “best” method and
since the workhorse routines in available statistical software systems are so good, the
only call for most statisticians to write their own regression routine is a special-purpose
problem. In such a case, the features of the special problem dictate which method
to use.

The reader may conclude that the least-squares problem is a computational night-
mare. That is not true. First, the methods that have advantages in accuracy are trying to
make the most out of arithmetic with limited accuracy. Using some of the other meth-
ods, such as Cholesky or sweep, can produce results just as accurate (if not more so) by
using the brute strength technique of performing the calculations in double precision;
this is inelegant but successful. Second, determining the rank of a matrix is quite a dif-
ficult problem, one that is best avoided. The preferred procedure would be to quit once
an explanatory variable is found to be linearly dependent on the others, but that would
require a full-rank parameterization for design models. Since forming a full-rank pa-
rameterization for a complicated design model is such a tedious task, and since the
tests for linear dependence work so well in practice (especially for design problems
whose entries are integers), the risk is worth the great savings in effort. Finally, the
source of the computational difficulties is that the problem of cancellation – which is
so fundamental to arithmetic – becomes magnified when taking the difference of sums
of squares. That main principle underlies all of the methods here, and it carries over to
the use of all statistical software for regression. However, centering and rescaling can
always improve the condition of the problem.

Example 5.9: Centering and scaling for quadratic regression
Consider fitting a quadratic regression model to an annual response yi , say, for
the 21 years 1990–2010

E(yi) = β0 + β1xi + β2x
2
i

where xi = 1989+i, i = 1, . . . , 21. The table below gives the condition number
κ∗ for the design matrix with rows (1, xi, x

2
i), along with some other parameter-

izations. Scaling the columns leads to the design matrix W and improves the
condition. Centering xi with its mean leads to U; centering the columns of X
leads to Z.

design matrix rows κ∗

X 1, xi , x
2
i

5 × 1011

W 1, xi/x, (xi/x)2 5 × 105

U 1, xi − x, (xi − x)2 74
Z 1, xi − x, x2

i
− x2 74

The reader may be quite surprised at the enormous condition number κ∗ of X
for so simple a problem. Rescaling the covariate columns of X drops the condi-
tion substantially, but see Exercise 5.33 to examine whether the ill conditioning

122 Regression Computations

of X is artificial or not. Centering the covariate has a dramatic effect on the
condition. The parameterization U has additional appeal because its two repa-
rameterized coefficients are easily interpreted as the mean response and slope at
the center.

Programs and Demonstrations

chex57 Check of Example 5.7, simple linear regression with Givens transformations
The operations of Example 5.7 are repeated, with creation of the Givens transforma-
tion and premultiplying on X. Also, the product matrix Q = Umn · · · U21 is computed
by starting with an identity and premultiplying the Givens transformations in suc-
cession.
rot734 – subroutine to compute a Givens transformation beginning with two ele-
ments, following a careful routine given by Stewart (1973) as Algorithm 7.3.4.

flyreg Demonstration of regression using Givens transformations “on the fly”
One advantage of doing regression via Givens transformation follows the second
looping scheme on page 96, where new observations (rows of X) are added as avail-
able, or “on the fly.” Since the crucial intermediate values are the matrix R, z(1),

and SSE, only these quantities are kept; neither y nor X are stored, and R is kept in
symmetric/triangular fashion. Once all of the observations are available (or at any
intermediate point), regression coefficients can be found by solving Rb = z(1) using
chlzih from Chapter 3; for computing (XTX)−1 at the end, the routine chlzoi is em-
ployed. The problem solved is Exercise 13.1 from Brownlee (1965, pp. 462–4).
flyreg – computes updates for regression by Givens transformations.

sweep Demonstration of the sweep operator for regression
Using the same problem from Brownlee as flyreg, the sweep operator is used to com-
pute regression coefficients. Each variable, beginning with the intercept, is swept
in succession, and then swept out to end up with the original augmented sums of
squares and cross-products matrix, as in (5.12.4). The code is remarkably short. The
computations are done in single precision; the interested reader should try this in
double precision.
sweep – subroutine that performs the sweep operator on a particular row/column of
a matrix.

Exercises

5.1 In Example 5.1, the same fit is obtained using the matrix

Z =

1 0

1 0

1 1

1 1

.

Find κ∗(Z).

Exercises 123

5.2 Steel and Torrie (1980, tab. 19.1) listed the following growth data on cabbages:

Week (X): 1 2 3 4 5 6
Height (Y): 4.5 5.5 6.5 8.0 10.0 12.0 cm

Compute simple linear regression estimates by solving the normal equations via Cholesky
for the model

yi = b1 + b2 xi + ei,

using only four decimal digits.

5.3 Redo Exercise 5.2 with six or eight decimal digits and compare the results.
5.4 For small values of n and p and Xij = ij−1, perform the Gram–Schmidt orthonormaliza-

tion analytically and find R−1QT = (XTX)−1XT. You should be reminded of orthogonal
polynomials.

5.5 With the data from Exercise 5.2 and using the results of Example 5.4, estimate the coeffi-
cients of the model yi = b1 +b2 xi +b3x

2
i + ei via regular and modified Gram–Schmidt,

using only four decimal digits.

5.6 How do things change in Example 5.5 when s is taken to be negative (as would be rec-
ommended)?

5.7 Construct the Householder transformation U so that Ux = −sen.

5.8 Modify the regression method using Householder transformations to produce the follow-
ing factorization with the lower triangular matrix L:

Up · · · U1X =
[

0

L

]
.

n − p

p

5.9 Verify the method given in step (5) for computation of residuals using Householder trans-
formations (see Section 5.6).

5.10 For

X =

1 0 0

1 1 0

1 0 1

1 1 1

 and y =

0

1

2

3

,

solve the least-squares problem with Householder.

5.11 (See Chan et al. 1983.) Show that the following updating algorithm for computing the
sample mean and variance is really just the Givens method for the simplest regression
problem (just a common mean):

Ti = Ti−1 + yi and Si = Si−1 + (iyi − Ti)
2/[i(i − 1)].

Show that it is equivalent to the following code:

s=0.
ss=0.
do i=1,n
d=(y(i)-s)/i
ss=ss+(i-1)*(y(i)-s)*d
s=s+d
end do ! loop on i

5.12 How would the Householder method work for the same problem of estimating a mean?

124 Regression Computations

5.13 Compare the formulas given in Exercise 5.11 with the usual ones for computing a mean
and variance for the sample yi = 212 + i for i = 1, . . . ,16.

5.14 Update your solution to Exercise 5.5 with the additional observation y7 = 15.5, using
Givens transformations.

5.15 Stewart (1976) proposed a single number ρ to represent a Givens transformation in (5.7.1).
Show how to reproduce a and b from ρ.

5.16 Using the Sherman–Morrison–Woodbury formula (5.9.4), fill in the details of the proof
of (5.9.3), including the details of (5.9.5).

5.17 Prove the Sherman–Morrison–Woodbury formula (5.9.4).

5.18 Verify (5.9.6).

5.19 Prove the equivalence of (5.9.8) and (5.9.9).

5.20 Prove the simplification of the expressions for Cook’s D from (5.9.10) and (5.9.11).

5.21 Compute all of the regression diagnostics using your solution to Exercise 5.5.

5.22 Using your solution to Exercise 5.5 (or Exercise 5.14, for that matter), test the hypothesis
H : b2 = 2b3; follow both routes considered in Section 5.10 as well as the straightfor-
ward expression

(KT b̂ − m)T[KT(XTX)−1K]−1(KT b̂ − m).

Discuss how a comparison could be made among the methods.

5.23 Consider a two-way crossed classified model with no interaction and with (say) four lev-
els on the first factor and two on the second. How would you compute partial sums of
squares for the factors using the results from any of the orthogonalization methods?

5.24 For testing the hypothesis in Exercise 5.22, find a condition number for solving the sys-
tem of equations (5.10.9).

5.25 Let xT∗ be a row of X. What is the condition of the problem of finding xT∗ b̂?

5.26 Compute κ∗ for X in Example 5.3.

5.27 Recommend a method for computing PXv and vTPXv. Compare its operation count to its
possible competitors. Does the same method work well for (I − PX)v and vT(I − PX)v?

5.28 Compute your solution to Exercise 5.5 (Exercise 5.2 with a quadratic model) using the
sweep operator. Compute all of the partial and sequential sums of squares as well.

5.29 Write a program to do regression using Householder transformations in single precision
and try it out (a trial by fire, indeed) on the Longley (1967) data. (Debug using something
else, of course!)

5.30 Write a program to do regression using the sweep operator in double precision, and try it
out on the Longley (1967) data.

5.31 Ridge regression is an alternative method to gain stability in cases of multicollinearity;
it uses the modified coefficient estimator

b̂λ = (XTX + λIp)−1XTy.

Show that b̂λ is continuous in λ. Suggest methods for computing b̂λ.

5.32 Are the Householder and Givens transformations for annihilating the second element of
a 2-dimensional vector the same?

References 125

5.33 In Example 5.9, the design matrix X has an intercept column, and covariate columns
xi , and x2

i . Rescaling the covariate columns to xi/x and (xi/x)2 drops the condition
substantially, suggesting the condition number for X may be artificially large. Consider
the situation where the change in the design matrix arose from changes in the recording
date, say, moved one day because of a holiday (1/365.25), or due to a leap year effect
(.25/365.25). What would be the effect on the solution to this least squares problem for
changes such as these on the four design matrices given in Example 5.9?

5.34 Consider the multiple regression problem including an intercept with the following list
of explanatory variables:

c1=cos(2πi/7) s1=sin(2πi/7)

c2=cos(2π2i/7) s2= sin(2π2i/7)

c3=cos(2π3i/7) s3= sin(2π3i/7)

c4=cos(2π4i/7) s4= sin(2π4i/7)

c5=cos(2π5i/7) s5= sin(2π5i/7)

c6=cos(2π6i/7) s6= sin(2π6i/7)

for i = 1, . . . , N .

a) Show that the last six variables (c4, s4, ..., s6) are linearly dependent on the first six
(c1, s1, ..., s3) and an intercept.

b) Test whether the regression software that you commonly use can detect dependen-
cies among the explanatory variables, using 3.1416 as your approximation for π , and
various values of N.

c) Repeat this exercise with a cruder approximation 3.14 for π or a more precise one.
d) Repeat this exercise with 4 in place of 7 (that is, 2πi/4, 4πi/4, etc.).

5.35 Suggest effective methods for solving the penalized least squares problem

min(y − Xb)T (y − Xb) + λ(b − b∗)T A(b − b∗)

for several values of λ at once.

5.36 Formulate the p = ∞ norm regression minb maxi |yi − xT
i b| as a linear programming

problem. Demonstrate the sensitivity of the resulting estimators to outliers.

5.37 Show that if the random variable U has df F , then the value of s that minimizes
E [ρτ (U − s)] is s∗ such that F(s∗) = τ .

5.38 Using the heart disease data in brown463.dat used by flyreg, compute the median
regression coefficients using the linear programming code from Chapter 4.

5.39 Formulate the quantile regression problem min
∑N

i=1 ρτ (yi − xT
i b) as a linear program-

ming problem.

References

The main reference works on least squares are the books by Stewart (1973), Golub
and van Loan (1984), and Lawson and Hanson (1974). The Golub, Klema, and Peters
(1980) article gives some useful practical guidance. The Bjorck (1967) paper is the
original on MGS. The Doolittle method, which is remarkably efficient for hand cal-
culation, can be found in Snedecor and Cochran (1967) or in any traditional (i.e. old)

126 Regression Computations

book on statistical methods. Goodnight’s (1979) insightful tutorial explains sweep and
a little of how it is used in the SAS package. Freund’s (1979) article includes two nice
regression problems. Velleman and Welsch (1981) discuss computations for regression
diagnostics.

There are many more articles on the problems (or lack thereof) of computing least-
squares solutions in the literature – stretching back more than a generation. There is
also a lot of controversy. The Beaton (1977; Beaton et al. 1976) articles, and those of
Wampler (1980), Goodnight (1979), and Longley (1967), include references to most of
the remaining literature on the subject.

Albert E. Beaton (1977), “Comment on ‘More on Computational Accuracy in Regression’,” Journal
of the American Statistical Association 72: 600.

Albert E. Beaton, Donald B. Rubin, and John L. Barone (1976), “The Acceptability of Regression
Solutions: Another Look at Computational Accuracy,” Journal of the American Statistical Asso-
ciation 71: 158–68.

D. A. Belsley, E. Kuh, and R. E. Welsch (1980), Regression Diagnostics: Identifying Influential Data
and Sources of Collinearity. New York: Wiley.

Ake Bjorck (1967), “Solving Least Squares Problems by Gram–Schmidt Orthogonalization,” BIT 7:
1–21.

K. A. Brownlee (1965), Statistical Theory and Methodology in Science and Engineering, 2nd ed. New
York: Wiley.

Tony F. Chan, Gene H. Golub, and Randall J. LeVeque (1983), “Algorithms for Computing the Sam-
ple Variance,” American Statistician 37: 242–7.

M. R. B. Clarke (1981), “AS 163: A Givens Algorithm for Moving from One Linear Model to Another
without Going Back to the Data,” Applied Statistics 30: 198–203.

R. D. Cook and S. Weisberg (1982), Residuals and Influence in Regression. New York: Chapman &
Hall.

Germund Dahlquist and Ake Bjorck (1974), Numerical Methods (trans. by N. Anderson). Englewood
Cliffs, NJ: Prentice-Hall.

M. H. Doolittle (1878), United States Coast Guard and Geodetic Survey Report, vol. 115.
Bradley Efron, Trevor Hastie, Iain Johnstone, and Robert Tibshirani (2004), “Least Angle Regres-

sion,” Annals of Statistics 32: 407–499.
R. J. Freund (1979), “Multicollinearity etc., Some ‘New’ Examples,” in Proceedings of the Statistical

Computing Section, pp. 111–12. Washington, DC: American Statistical Association.
George M. Furnival (1971), “All Possible Regressions with Less Computation,” Technometrics 13:

403–8.
George M. Furnival and Robert W. Wilson, Jr. (1974), “Regressions by Leaps and Bounds,” Techno-

metrics 16: 499–511.
W. Morven Gentleman (1973), “Least Squares Computations by Givens Transformations without

Square Roots,” Journal of the Institute of Mathematics and Its Applications 12: 329–36.
Philip E. Gill and Walter Murray (1978), “Numerically Stable Methods for Quadratic Programming,”

Mathematical Programming 14: 349–372.
Gene Golub, Virginia Klema, and Stephen C. Peters (1980), “Rules and Software for Detecting Rank

Degeneracy,” Journal of Econometrics 12: 41–8.
Gene H. Golub and Charles van Loan (1984), Matrix Computations. Baltimore: Johns Hopkins Uni-

versity Press.
James H. Goodnight (1979), “A Tutorial on the SWEEP Operator,” American Statistician 33: 149–58.
Peter J. Huber (1964), “Robust Estimation of a Location Parameter”, Annals of Mathematical Statis-

tics 35: 73–101.
Jinseog Kim, Yuwon Kim, and Yongdai Kim (2008), “A Gradient-Based Optimization Algorithm for

LASSO,” Journal of Computational and Graphical Statistics 17: 994–1009.

References 127

Charles L. Lawson and Richard J. Hanson (1974), Solving Least Squares Problems. Englewood Cliffs,
NJ: Prentice-Hall.

James W. Longley (1967), “An Appraisal of Least Squares Programs for the Electronic Computer for
the Point of View of the User,” Journal of the American Statistical Association 62: 819–41.

Allen McIntosh (1982), Fitting Linear Models: An Application of Conjugate Gradient Algorithms.
New York: Springer-Verlag.

Raymond H. Myers (1989), Classical and Modern Regression with Applications, 2nd ed. Boston:
PWS-Kent.

Michael R. Osborne, Brett Presnell, and Berwin A. Turlach (2000), “On the LASSO and Its Dual,”
Journal of Computational and Graphical Statistics 9: 319–337.

Stephen Portnoy and Roger Koenker (1997), “The Gaussian Hare and the Laplacian Tortoise: Com-
putability of Square-Error versus Absolute-error Estimators,” Statistical Science, 12: 279–300.

M. Schatzoff, R. Tsao, and S. Feinberg (1968), “Efficient Calculation of All Possible Regressions,”
Technometrics 10: 769–79.

Shayle R. Searle (1973), Linear Models. New York: Wiley.
George W. Snedecor and William G. Cochran (1967), Statistical Methods, 6th ed. Ames: Iowa State

University Press.
R. G. D. Steel and J. H. Torrie (1980), Principles and Procedures of Statistics, 2nd ed. New York:

McGraw-Hill.
G. W. Stewart (1973), Introduction to Matrix Computations. New York: Academic Press.
G. W. Stewart (1976), “The Economic Storage of Plane Rotations,” Numerische Mathematik 25:

137–8.
Robert Tibshirani (1996), “Regression Shrinkage and Selection via the Lasso,” Journal of the Royal

Statistical Society 58: 267–288.
Paul F. Velleman and Roy E. Welsch (1981), “Efficient Computing of Regression Diagnostics,” Amer-

ican Statistician 35: 234–42.
Roy H. Wampler (1980), “Test Procedures and Test Problems for Least Squares Algorithms,” Journal

of Econometrics 12: 3–22.

6

Eigenproblems

6.1 Introduction

Statistical problems requiring the computation of eigenvalues and eigenvectors fall into
two distinct categories. In the first category, the matrix of interest is symmetric and
positive definite, a covariance matrix arising in a multivariate statistical analysis. Often
all of the eigenvalues and vectors need to be computed. But when the eigenproblem for
a general matrix is faced, such as a transition matrix for a Markov chain or a coefficient
matrix for a multivariate autoregressive process, often only the largest eigenvalue (or
some of the largest) is required, along with its associated eigenvector. In this second
category, the demands are more limited, compensating for a more difficult problem,
and some knowledge of the eigenvalues is usually available. This chapter begins with
the matrix theory in Section 6.2 and proceeds to the simple and general power meth-
ods, which are designed for problems in that second category. The next two sections
attack the symmetric problem, which is followed by the related problem of comput-
ing the singular value decomposition in Section 6.6. The relationships of the many
statistical problems with these algorithms will be discussed in Section 6.7. Although
complex analysis will be avoided whenever possible, the problem of complex principal
components analysis (CPCA) using a complex version of singular value decomposi-
tion requires full use of complex analysis.

6.2 Theory

An eigenvalue of a square matrix A of size n is a solution to the polynomial equation
of degree n in the variable s,

c(s) = |A − sIn| = 0, (6.2.1)

where A is the n × n matrix and the polynomial c(s) is called the characteristic poly-
nomial. Although for the moment this discussion is confined to real matrices, the roots
may well occur in complex pairs. The eigenvector associated with an eigenvalue s is
the (nonnull) vector x that satisfies

Ax = sx, (6.2.2)

or, in another light, a vector in the null space of A − sIn. Since the determinant of a
transpose is the same as that of the matrix itself, an eigenvalue of A is also an eigen-
value of AT. However, a vector that is a (right) eigenvector of AT also satisfies

128

6.2 Theory 129

yTA = syT (6.2.3)

and is called a left eigenvector of the matrix A.

If the null space is 1-dimensional then the vector is determined only to a scale factor.
Eigenvectors are commonly normalized to have unit Euclidean length (which is still
undetermined as to sign), although alternatives of the 1 and ∞ p-norms have their ad-
vantages. For higher-dimensional null spaces, an orthonormal basis is sought, making
the Euclidean norm natural. For the spectral decomposition, the Euclidean normaliza-
tion is required.

Note that the polynomial equation (6.2.1) may have multiple roots. If the dimension
of the null space (geometric multiplicity) is smaller than the (algebraic) multiplicity of
a root, then the matrix is called “defective” and is much more difficult to work with.
But since this is rare in the real world, the only requirement is to be careful in stat-
ing the mathematical results. Since polynomial equations cannot be solved directly for
polynomials of degree more than 4, eigenproblems must be solved by iterative meth-
ods. The following list of results begins with the most general case.

Result 1 (Similarity Transformations): If s and x are an eigenvalue–eigenvector pair
for a matrix A, then s and Bx are a pair for the matrix BAB−1.

Result 2 (Shift): If s and x are an eigenvalue–eigenvector pair for a matrix A, then
s − r and x are a pair for A − rI.

Result 3: The eigenvectors of distinct eigenvalues are linearly independent.

The first two results follow from algebraic manipulations and lead to powerful com-
putational tools; the third result leads to some useful mathematical consequences. If
the eigenvectors are stacked side by side as columns in a matrix X, then the definition
(6.2.2) can be written as AX = XS, where S = diag(s1, s2, . . . , sn). If the matrix A is
nondefective then the matrix X has n linearly independent columns and so is nonsingu-
lar. Postmultiplying and premultiplying by the inverse of X then yields the equivalence
of the left eigenvectors and the rows of X−1 as well as the biorthogonality of the left
and right eigenvectors. Stacking the left eigenvectors as columns in Y yields Y = X−1

and (rather subtly) YTX = In.

Result 4 (Spectral Decomposition): A =∑ i six iyT
i , where x i are the right eigenvec-

tors and yi are the left eigenvectors.

The difficulty of solving an eigenproblem should naturally be compared to that of find-
ing the roots of the characteristic polynomial c(s), although this approach is seldom
taken. Both problems are not too difficult when the roots are real and well separated.
But when multiple roots are encountered (this is rare in practice), the polynomial be-
comes difficult to solve whereas the eigenvalue problem itself encounters no real diffi-
culty. Mathematically, multiple roots require finding any one set of orthonormal basis
vectors for the null space, if possible. In practice, when roots become close together,

130 Eigenproblems

the eigenvalues can be found without great difficulty while the respective eigenvectors
become less well-defined.

The sensitivity of the eigenvalue problem is succinctly stated in the following ap-
plication of the Gershgorin theorem.

Result 5: The eigenvalues of A lie in the union of the disks

Di =
{
s : |s − Aii | ≤

∑
j
=i

|Aij |
}
.

Result 6: Let A be nondefective, and let X−1AX = S = diag(si). Then the eigen-
values of A + E lie in the union of the disks

Di = {s : |s − si | ≤ κ(X)‖E‖p},
where the condition number κ is computed with the same norm.

One consequence of these results is simply that the eigenvalues are continuous func-
tions of the elements of the matrix. Note that Result 6 gives a condition number for
the eigenvalue problem. No such stability result exists for the eigenvector problem,
except for the heuristic that eigenvectors of well-separated eigenvalues are less sensi-
tive. For the statistical results for eigenvalues and eigenvectors of sample covariance
matrices, see Mardia, Kent, and Bibby (1979, chap. 8).

6.3 Power Methods

Consider the analogy to the matrix eigenproblem of forced oscillation. An operator A
acts on a state x repeatedly until a steady state is reached, where the result is just an in-
crease in amplitude sx. Similarly, in Markov chains, the stationary probability vector
can be obtained by successively multiplying an initial vector by the transition matrix.
As a method for finding an eigenvalue and its associated eigenvector, the procedure
is to multiply successively a vector by the matrix of interest and then normalize. The
vector, under suitable conditions, will converge to the eigenvector associated with the
largest eigenvalue.

The power method and its variants are designed to find the largest eigenvalue and its
vector, or a set of eigenvalues and their vectors. In the case of the probability transition
matrix of a Markov chain, the largest eigenvalue is unity and the stationary probabil-
ity vector is the associated left eigenvector. Also of interest may be the next largest
eigenvalues (and their vectors), which give an indication of intermediate-term perfor-
mance. In the case of the coefficient matrix of an autoregressive process, the primary
goal is to check the stationarity of the process – whether all of the eigenvalues are less
than unity in absolute value.

The algorithm for the power method begins with an initial vector z(0) and computes

v(k) = Az(k−1) for k = 1, 2, . . . (6.3.1)

6.3 Power Methods 131

and then normalizes, dividing by the length ‖v(k)‖, to produce the next vector

z(k) = v(k)

‖v(k)‖ . (6.3.2)

In practice, the norm chosen is either p = 2 (Euclidean) or p = ∞, although occa-
sionally the length of the first element is used. The convergence of the power method
depends largely on the properties of the matrix A.

If the matrix A is nondefective, then write the initial vector in terms of the right
eigenvectors x(i) of A:

z(0) =
∑

i

aix(i). (6.3.3)

If we write the spectral decomposition A =∑ six(i)y(i)T, then Ak becomes
∑

sk
i x(i)y(i)T

and the unnormalized vector v(k) becomes

v(k) =
∑

ais
k
i x(i)

‖v(k−1)‖ . (6.3.4)

If the eigenvalues are ordered as |s1| > |s2| ≥ · · · ≥ |sn| (with the first inequality strict)
and if a1 is nonzero, then z(k) converges to x(1) and ‖v(k)‖ converges to |s1|.

Example 6.1: Simple Power Method
Consider the n = 3 problem; let A and simple z(0) be as follows and avoid nor-

malization for simplicity. A =
[5 4 2

0 1 0

1 1 4

]
and z(0) =

[1

1

1

]
, so Az(0) =

[11

1

6

]
,

A2z(0) =
[71

1

36

]
, and A3z(0) =

[431

1

216

]
; hence, let’s guess that x(1) =

[2

0

1

]
, so

 5 4 2

0 1 0

1 1 4

 2

0

1

 =
12

0

6

 = 6

 2

0

1

and thus s1 = 6.

The exhaustive analysis of the convergence requires considerable attention to detail.
First of all, if a1 is zero, then z(k) may converge to the eigenvector corresponding to
the second largest eigenvalue. However, roundoff error may turn the vector around
to converge to x(1). Some implementations begin with a random initial vector z(0) to
overcome this possibility. If s1 is a single root, then its sign can be found by track-
ing the change in sign of the largest element of v(k). If s1 is a multiple root, then z(k)

could converge but instead may simply float in the eigenspace of the root s1 owing to
roundoff error; however, ‖v(k)‖ will still converge to |s1|. Similarly, if the largest (in
modulus) eigenvalues form a complex pair, then ‖v(k)‖ will still converge to |s1| while
the vector z(k) wanders. Finally, the rate of convergence of the power method depends
entirely upon the convergence of the ratio |s2/s1|k to zero. If the second largest root is
not far from the largest, then convergence may indeed be slow.

The straightforward power method has the great advantages of simplicity and that
its specialty – finding the largest eigenvalue and its associated vector – is often all

132 Eigenproblems

that is called for. For large sparse matrices, this method is particularly useful because
a matrix multiplication can be computed using only the nonzero elements and only
one vector need be stored. For the analysis of large queuing systems modeled by a
Markov chain, the probability transition matrix is very large and often very sparse
(Example 4.6 is comparatively small). For these problems, both the storage required
and the effort for each iteration depends only on the number of nonnull transitions.
However, a few of the largest eigenvalues (say, the largest p) are also commonly
desired.

When the largest few eigenvalues are real, the power method can be extended by
orthonormalizing a set of vectors; this is known as orthogonal iteration. Begin with a
matrix Z(0) with p orthonormal columns and multiply by A to obtain V(k) = AZ(k−1).

Then perform a QR factorization (by Householder or modified Gram–Schmidt) to ob-
tain a new Z(k) with orthonormal columns and an upper triangular R(k). The result
is that Z(k) converges (save for sign flips) to the matrix whose columns form an or-
thonormal basis for the eigenspace of the largest eigenvalues (technically, the dominant
invariant subspace). If sequences Z(k) and R(k) converge then they produce part of the
real Schur decomposition of the matrix A. The real Schur decomposition consists of
orthogonal Q and block triangular T, with diagonal blocks of sizes 1 (real) and 2 (com-
plex pair) so that QTAQ = T; hence, if the largest eigenvalues are real, then R(k)

converges to T with the largest eigenvalues on the diagonal. The first column of Z
will be the first eigenvector, and the other eigenvectors can be found from the other
columns (see Exercise 6.3). Multiple roots are no problem, since the orthonormaliza-
tion will produce an orthonormal basis. The demonstration program orthit computes
the largest eigenvalues and their vectors for a simple transition matrix from Jennings
(1977, p. 244). However, if there is a complex pair among the largest eigenvalues then
the power method – or its extension, orthogonal iteration – cannot really make the tran-
sition from a purely real problem to a complex one.

Although the power method appears to have an advantage in solving large sparse
Markov chain problems, the reader is cautioned that the size and difficulty of these
problems can grow quickly. The simple problem demonstrated with orthit has its sec-
ond eigenvalue around .93, which leads to very slow convergence. In a comparison of
approaches to these problems as applied to computer networks, W. J. Stewart’s (1978)
smallest problem used n = 20 and the seventh largest eigenvalue at .90, for which
the power method is painfully slow. (Direct methods have been proposed for find-
ing the stationary vectors for a Markov chain; see Harrod and Plemmons 1984 for a
comparison.) One variant of the power method that is effective for eigenproblems is
called lopsided simultaneous iteration. At each step where a matrix Z(k) is formed, a
smaller (order-p) full-matrix eigenvalue problem is solved to accelerate and reorient
the problem. Since the convergence can be very fast, solving a relatively small prob-
lem using a special method turns out to be quite effective in the long run. Jennings
(1977, chap. 10) discussed the method, and an implementation was presented by Stew-
art and Jennings (1981).

Before continuing with more useful material, the reason for the power method and
the lopsided iteration shortcut is that a general eigenproblem is relatively difficult to
compute. None of the advantages of the symmetric problem are available, and though

6.4 The Symmetric Eigenproblem and Tridiagonalization 133

the matrix may be real, the resulting eigenvalues and vectors can well be complex.
Golub and van Loan (1989) discussed the problem in detail, but (thankfully) a com-
plete solution to the nonsymmetric eigenproblem is rarely needed in statistics.

There are two variants of the power method whose combination is quite effective.
The first extension uses the trick of shifting. Instead of multiplying by A, it is just as
easy to multiply by (A − rI), so that the eigenvalues are now si − r. This can be used
to change the domain of convergence to a different eigenvalue, or to accelerate conver-
gence. A second variant of the power method is to use the matrix A−1. Multiplying by
this matrix will cause the power method to head toward the largest eigenvalue of the
inverse, which is the reciprocal of the smallest eigenvalue of the matrix A. This tech-
nique is called the inverse power method and can be more effective than one might
expect. Moreover, computation of the inverse can be avoided by first computing the
LU decomposition of (A − rI) and then performing the multiplication by solving a
pair of triangular systems. The inverse power method can be used directly to find the
smallest eigenvalue and its associated eigenvector.

The combination of the inverse power method with shifting produces dramatic im-
provements. Apply the power method to the matrix (A − rI)−1, and the eigenvalue
closest to r is found with its eigenvector. The convergence rate depends on the ratio
of the largest eigenvalue to the next and so, for the inverse power method with shift,
the rate depends on the ratio |s∗ − r|/min i |si − r|, which indicates that the best shift
heads straight for a singular matrix and trouble. However, although the LU decompo-
sition of such a nearly singular matrix is badly conditioned, the inverse power method
overcomes this and is stable in practice. For the two problems outlined here, a partic-
ular eigenvalue equal to (or near) unity is of particular interest, making the choice of
shift obvious. For other problems, two sources of good approximations are the power
method (with orthogonal iteration) and the Rayleigh quotient xTAx/xTx from a starting
vector x (see Exercise 6.15). For Markov chain problems, the direct methods previously
mentioned can be viewed as inverse power methods with a shift toward the eigenvalue
s = 1 with just a single iteration.

6.4 The Symmetric Eigenproblem and Tridiagonalization

When the matrix is symmetric, the eigenproblem becomes much simpler to solve. The
left eigenvectors are the same as the right ones, and the worries are few.

Result 7: A symmetric matrix is nondefective and has all real eigenvalues.

Result 8: If A is symmetric then there exists an orthogonal matrix X such that XTAX =
S = diag(s1, . . . , sn), so that the columns of X are eigenvectors.

When generalizing symmetry for the complex domain, the transpose is replaced with a
conjugate transpose, and a matrix whose conjugate transpose is the same as the original
matrix is called Hermitian; notationally, AH = A. A complex Hermitian eigenproblem
with matrix A real + iA imaginary can be rewritten as

134 Eigenproblems[
A real −A imaginary

A imaginary A real

][
x real

x imaginary

]
= s

[
x real

x imaginary

]
, (6.4.1)

where the eigenvalue s is real.
Perhaps the first consequence worth noting is that the power method and orthogo-

nal iteration will always work for symmetric matrices. The disadvantage is that these
methods are not particularly well suited for computing all of the eigenvalues and eigen-
vectors. A method is sought that can converge as fast as the inverse power method
incorporating a shift, with close approximations to roots easily available and faster
ways of doing the multiplication. This may sound like too much to ask, but it is not
beyond reach.

The first step is taking advantage of similarity transformations to change the orig-
inal eigenproblem into a similar one where the matrix multiplication is much easier.
Notice that, when p = n, a full matrix multiplication in an orthogonal iteration AZ
takes O(n3) work, which is costly for a single iteration even if rapid convergence is
achievable. Even for a single vector, the power method requires O(n2).

The similarity transformation is from A to BAB−1. The goal is to make the new
matrix as sparse as possible. If BAB−1 were diagonal then the eigenproblem would be
solved – which, of course, cannot be done without iterations. The next best thing is to
make A into a tridiagonal BAB−1, which is an achievable result. Then the work for
each iteration step will be O(n) for a single vector and at worst O(n2) for orthogonal
iteration. The technique is a modification of the Householder method last used in the
regression problem.

Tridiagonalization begins with a partitioning of the matrix A:

A =
 a11 a21 aT

#1

a21 a22 aT
#2

a#1 a#2 A22

.

1

1

n − 2

Now find a Householder transformation that can zero out the last n − 2 entries in the
first column. The transformation matrix U1 is nested as a submatrix in the form

U1 =
[

1 0
0 U(1)

]
, so that U(1)

[
a21

a#1

]
=
[

b2

0

]
.

1

n − 2

Multiplying U1 in front and then behind A produces

U1AU1 =
 a11 a21 aT

#1

b2 ∗ ∗
0 ∗ ∗

U1 =
 a11 b2 0

b2 ∗ ∗
0 ∗ ∗

,

where asterisks denote elements changed in these computations. It should now be ap-
parent that the next step is to eliminate the last n − 3 elements in the second column
and row with an appropriate U2, continuing on with this until we get Un−2. The full
similarity sequence gives the matrix Un−2 · · · U1AU1 · · · Un−2, which will be a sym-
metric tridiagonal matrix. The transformation B is then Un−2 · · · U1. See Example 6.2
and the demonstration program tridig.

6.5 The QR Algorithm 135

Example 6.2: Householder Transformations for Tridiagonalization

A =

3 2 −1 2

2 3 2 1

−1 2 3 4

2 1 4 7

 and x(1) =
 2

−1

2

, so

s1 = 3 and u(1) =
 5

−1

2

; hence U1A =

3 2 −1 2

−3 −2 −3 −4

0 3 4 5

0 −1 2 5

.

Then form

U1AU1 =

3 −3 0 0

−3 3 −4 −2

0 −4 5.4 2.2

0 −2 2.2 4.6

.

The next step uses x(2) =
[−4

−2

]
and gets messier.

6.5 The QR Algorithm

The QR algorithm is a superlative method of computing all the eigenvalues (and eigen-
vectors, if necessary) of a real symmetric tridiagonal matrix. It is fast, efficient, and
stable. The convergence rate in practice is roughly an eigenvalue every two or three it-
erations. The algorithm’s performance is remarkable, considering the apparent futility
of the iteration. Denote the original matrix (already made tridiagonal) by A0 and the
result of k similarity transforms by Ak. The algorithm is the sequential application of
two apparently harmless steps, using an origin shift t.

First step: Do a QR factorization of Ak − tk I using the Givens method, where Q is
orthogonal and R is upper triangular:

Ak − tk I = QkRk. (6.5.1)

Second step: Retridiagonalize by multiplying R by Q on the right and then adding
back the shift:

Ak+1 = RkQk + tk I = QT
k(Ak − tk I)Qk + tk I = QT

kAkQk. (6.5.2)

Thus, all that happens is a simple similarity transformation at each iteration. The result
is that Ak converges to a diagonal matrix, so the eigenvalues are the diagonal entries
of Alast and the eigenvectors are the columns of Q1Q2 · · · Q last.

To understand the success of this computation, disregard momentarily the origin
shift and consider the product of the orthogonal similarity matrices Pk = Q1 · · · Qk.

According to Parlett and Poole (1973), the QR iteration can be viewed as a simultane-
ous iteration of the power method and the inverse power method. Consequently, the

136 Eigenproblems

first columns of Pk are converging (relatively slowly) to a set of basis vectors of the
dominant invariant subspace, as in orthogonal iteration. At the same time, the last row
of Pk is converging to a vector orthogonal – which will be the eigenvector of the small-
est eigenvalue – as if the inverse power method were employed.

Now consider the origin shift, and recall that the inverse power method with an ori-
gin shift is much more effective than the power method with a shift. So the best way to
incorporate a shift into the QR algorithm is to find the smallest eigenvalues first. The
most common one is the Wilkinson shift, the eigenvalue of the last 2 × 2 diagonal sub-
matrix closest to the (n, n) element of Ak. The result of these iterations with the shift
recomputed each time is that the (n, n−1) element converges to zero at a cubic rate. In
practice, usually only two or three iterations are needed to produce another eigenvalue.
At convergence, one eigenvalue has been found, but the problem is now one smaller in
size. This process is then repeated, finding one eigenvalue after another until the final
problem is trivial.

Eigenvectors should not be computed if they are not required, since they are much
more costly to compute. When needed, then: if the Householder transformations Uj

arose in the tridiagonalization to form the matrix A0, then the matrix X of eigenvectors
is computed from

X = U1U2 · · · Un−2Q1Q2 · · · Q last.

Although the details of the algorithm differ with each implementation, the combina-
tion of the tridiagonal structure, symmetry, and the Givens transformations produces
a beautiful algorithm. The shift can be incorporated implicitly without forming the
matrix Ak − rI; all that is required is the first Givens transformation, which would
zero out the first subdiagonal element of Ak − rI. Once applied to Ak, the remaining
computations – premultiplying by the other n − 2 Givens rotations and then postmul-
tiplying – amount to a “zero chasing” to reproduce the tridiagonal form.

This first rotation produces a nonzero outside the tridiagonal band in positions
marked 1 in the (1, 3) and (3,1) elements:

Ak =

x x 0 0 0

x x x 0 0

0 x x x 0

0 0 x x x

0 0 0 x x

, Ak+1 = QT
kAkQk =

x x 1 0 0

x x x 2 0

1 x x x 3

0 2 x x x

0 0 3 x x

.

A second Givens rotation is sought to remove this nonzero by moving it further down in
the matrix, to the position marked 2. This new one is moved further down until no new
nonzero entries are created, essentially eliminating the one created by the first rotation.
Each step can be done on the fly, requiring little storage, and symmetry cuts the work in
half. The details of the implementation become rather tedious, and the demonstration
programs qreig0 and qreig1 compute the eigenvalues without and with (respectively)
the eigenvectors.

6.6 Singular Value Decomposition 137

6.6 Singular Value Decomposition

The singular value decomposition (SVD) of a matrix has many more applications than
one might expect. Computationally, it provides (a) the soundest way to determine the
rank of a matrix, (b) the construction of the Moore–Penrose pseudoinverse, and (c) the
smallest norm solution to an undetermined least-squares problem. In statistics, it is of-
ten used for regression diagnostics, data reduction, and graphical clustering. It also
provides the solution to some multivariate statistical problems. First of all, definitions
and constructions are in order.

Theorem: Let A be an m × n matrix (m ≥ n for definiteness) with real elements.
Then there exist orthogonal matrices U and V such that VTAU = D, where D (m×n)

is diagonal with entries di in decreasing order.

The columns of U are the right singular vectors of A, and the columns of V are the left
singular vectors. The elements di are known as the singular values of the matrix A.

These singular values are not the eigenvalues of A, but they are related to (and con-
structed from) an eigenproblem.

Recall that the positive eigenvalues of ATA and AAT are the same. Moreover, the
eigenvectors are related. Let u(i) be an eigenvector of ATA with eigenvalue si; then

ATAu(i) = siu(i). (6.6.1)

Premultiplying by A yields AATAu(i) = siAu(i), so that Au(i) is also an unnormalized
eigenvector of AAT with the same eigenvalue. The squared length of Au(i) is si, so
premultiplying by an eigenvector v(j) of AAT results in the equation

v(j)TAu(i) = √
siδ(i, j), (6.6.2)

where the δ is a Kronecker delta. Stacking the eigenvectors of the matrices ATA into
U and AAT into V produces exactly the SVD definition. The singular values di are the
square roots of the positive eigenvalues, and the decomposition form of the result is
written as

A = VDUT =
∑

div(i)u(i)T. (6.6.3)

Unless A is square, either ATA or AAT (or both) have zero eigenvalues, and often mul-
tiple ones, so both U and V may not be definite. But the decomposition for distinct
positive singular values will be unique (up to sign), since the arbitrariness occurs where
the di are zero.

An obvious approach to computing the singular value decomposition is solving the
smaller of the two eigenproblems. The drawback of this approach is the squaring of
the elements, which is never a good idea and can be avoided. The best method is first
to convert the problem to a manageable one, as was done in the tridiagonalization. The
iteration, then, is that of solving the eigenproblem by QR but without computing the
inner product. Since this sounds like making an omelet without cracking eggs, on to
the details.

138 Eigenproblems

The goal of the tridiagonalization step, as a prelude to the QR algorithm, was to
reduce a matrix (by similarity transformations) to the smallest number of nonzeros –
without solving the whole problem. Using orthogonal matrices gave stability as well
as ease, since the result (being symmetric) cut the work in half. In this case, symme-
try is not available, but the matrix can be premultiplied and postmultiplied to reduce it
to upper bidiagonal form. That is, the diagonal (as far as it goes) is nonzero, as is the
first superdiagonal. If the matrix is tall and skinny, m ≥ n, then the bidiagonal matrix
has only 2n − 1 nonzero elements. The method for this is to use Householder trans-
formations for producing zeros. Premultiplying by one on the left can zero out all but
the first element in the first column, changing the entire matrix. Then postmultiply-
ing by a Householder transformation that zeros out the last n − 2 elements on the first
row, changing the last n − 1 columns, can leave the first column alone, with the m − 1
zeros in the first column intact. The second Householder transform on the left zeros
out the last n − 2 elements in the second column, changing all of the elements in the
last m − 2 rows, but leaves the zeros in the first row and column intact. The second
Householder transform on the right puts zeros in the last n − 3 elements in the second
column, changing all of the elements in the last n − 2 columns, but will leave intact
the zeros introduced in the first row and first two columns. The result of the trans-
formations on the left, n unless the matrix is square (n − 1), makes the matrix upper
triangular in the same way as the QR factorization in Chapter 5. The transformations
on the right (n − 2) act in the same way as in the tridiagonalization in Section 6.4,
just producing more zeros. If the right and left ones do not alternate, then zeros will
be overwritten. After these steps, the result is an upper bidiagonal matrix B such that
HT

LAHR = B.

Example 6.3: Bidiagonalization

Begin with A =
 2 1 2

0 −2.8 0.4

−1 −2 1

2 4 3

; then s2 = 9 and u =
 5

0

−1

2

with d = 1/15. The

new matrix is H(1)
L A =

 −3 −4 −3

0 −2.8 0.4

0 −1 2

0 2 1

. Then, on the right, s2 = 25 and so u =
[−9

−3

]
with d = 1/45, yielding the next matrix H(1)

L AH(1)
R =

 −3 5 0

0 2 2

0 −0.4 2.2

0 −2.2 −0.4

.

Then, on the left, s2 = 9 and so u =
[5

−0.4

−2.2

]
with d = 1/15, yielding the

next matrix H(2)
L H(1)

L AH(1)
R =

 −3 5 0

0 −3 −4/3

0 0 37/15

0 0 16/15

. The last ugly step gives B = −3 5 0

0 −3 −4/3

0 0 −√
65/3

0 0 0

.

6.6 Singular Value Decomposition 139

Lawson and Hanson (1974) mentioned an alternative method that becomes effective
when m � 2n. Chan (1982) analyzed this approach completely and also provided
Fortran code. The idea is to first compute the QR factorization by Householder meth-
ods. Then the left and right Householder transformations on the smaller (n×n) matrix
R will run much faster, taking about half the work when m � n. Golub and van Loan
(1989) have recommended this approach whenever m > 5n/3.

Now, if the inner product BTB is formed then the matrix is tridiagonal and set up to
do QR iterations. However, the trick is not to form the inner product. But the QR iter-
ation wants a rotation in a particular direction, based on the leading submatrix and the
shift based on the last submatrix. Computing this Givens transformation based on the
inner product, though, is no problem, since any accumulation of errors affects merely
the accuracy of the shift and rotation and hence just the speed of convergence. So the
shift is found by forming the last submatrix from the last columns of B. Then the first
Givens transformation is found from the shift and the first two columns of B. Applied
on the right of B, and not to the left of BTB, this first transformation changes elements
in the first two columns, and its application to the second row will introduce a nonzero
in the (2,1) element. The rest of the work in the iteration, like in the implicit QR al-
gorithm, involves Givens transformations on the left and right, chasing the nonzero
element introduced in the first step in the (2,1) location out of the matrix and plac-
ing B back into its upper bidiagonal form. The chasing goes (2,1) to (1, 3) to (3, 2) to
(2, 4), . . . , (k +1, k) to (k, k −1), . . . , to (n, n −1) and out. The sequence is given by
the following matrix:

x x 2 0 0

1 x x 4 0

0 3 x x 6

0 0 5 x x

0 0 0 7 x

. (6.6.4)

Since the procedure is essentially a QR step, the iterations produce a sequence of
upper bidiagonal matrices that converge to a diagonal matrix of singular values. Ac-
cumulating the Givens rotations on the left (Ps) and right (Qs) will yield the singular
vectors. If the computations produced the diagonal matrix D,

D = PT
last · · · PT

1 BQ1 · · · Q last = PT
last · · · PT

1 HT
LAHRQ1 · · · Q last, (6.6.5)

then the singular vector matrices can be found as

U = HRQ1 · · · Q last and V = HLP1 · · · Plast. (6.6.6)

A subtle problem arises when the leading superdiagonal element has converged
prematurely. In the symmetric QR algorithm, while the last off-diagonal elements con-
verge most quickly, the first few off-diagonal elements are converging slowly to zero.
If the (1, 2) element of B has already reached zero, then the first Givens transformation
(with or without shift) is just the identity, and no nonzeros are introduced nor need to
be chased out. As a result, the algorithm stops dead without a check for convergence
at the beginning as well as the end of the superdiagonal.

140 Eigenproblems

6.7 Applications

The needs for eigenproblem solutions vary throughout the many areas of statistics. Two
areas have already been thoroughly discussed: computing stationary probability vec-
tors in Markov chains; and finding the largest eigenvalue of a coefficient matrix in a
multivariate autoregressive time-series model. Whereas some of the statistics that re-
quire an eigenproblem solution are straightforward, others require considerable effort
to turn them into a solvable eigenproblem.

(A) Roy’s Test

The most frequent call for the solution of an eigenproblem arises in the testing of mul-
tivariate hypotheses. The techniques of Chapter 5 can be used to compute the sum-of-
squares matrices E for error and H for the hypothesis. Roy’s test, a union–intersection
test, requires the largest eigenvalue of the matrix E−1H as well as its eigenvector. Since
this matrix is not symmetric and the problem is really a symmetric one, it is best posed
as the generalized eigenproblem

Ax = sBx, (6.7.1)

where A = H and B = E. In most circumstances, the matrix B is known to be pos-
itive definite. The best approach is to factor the matrix B using Cholesky, B = LLT;
then premultiplying Hx = sEx by L−1 yields the equivalent problem

(L−1HL−T)(LTx) = sLTx. (6.7.2)

Because the new problem is a symmetric one, the QR algorithm can be used to com-
pute all of the eigenvalues and vectors. Note that only symmetry is required for the
QR algorithm; the positive definiteness merely ensures nonsingularity. Commonly, E
is semidefinite when the components add to a constant. Since this also applies to H,

the problem can be overcome statistically by simply dropping one dimension; without
this fix, the problem is very difficult.

(B) Principal Components

Principal components is a data reduction technique designed to determine the modes of
variation of a multivariate random variable in high dimensions. The goal is to squeeze
a high-dimensional distribution into a smaller-dimensional space that has most of the
variation. Although principal components operates as if the dimensionality of an undis-
turbed signal is smaller and the remaining dimensions are noise, the noise is not modeled
as an additive noise or measurement error (as in factor analysis). Rather, the high di-
mensionality is seen to be unwieldy; moving to fewer dimensions is necessary for any
useful data analysis.

This method is used to find the linear combinations of vectors that maximize the
variation. Obviously, the single linear combination that maximizes the variance will be
the first eigenvector of the covariance matrix. Finding the k linear combinations (and

6.7 Applications 141

orthonormalizing them) amounts to finding the k largest eigenvalues and their eigen-
vectors; the solution is again the QR algorithm. Although the number k that is sought
may be small, seldom is the dimension of the covariance matrix so large that an or-
thogonal iteration would be a significant or necessary improvement.

(C) Moore–Penrose Pseudoinverse

In most problems involving generalized inverses, any one will do. Many such problems,
such as a non–full-rank least-squares problem, can be solved by adapting techniques –
such as QR factorization with Householder or Givens methods – to the possibility of
rank deficiencies. However, the singular value decomposition is the necessary tool for
some special problems.

The first problem is construction of the Moore–Penrose (MP) pseudoinverse, which
is the unique generalized inverse A+ that satisfies the conditions:

(1) AA+A = A;
(2) A+AA+ = A+;
(3) (AA+)T = AA+;
(4) (A+A)T = A+A.

Because of its uniqueness, it is necessary only to show that the proposed solution sat-
isfies the four conditions. The solution is constructed from the SVD of A = VDUT.

Since D is diagonal, form the MP inverse (D+) of it by taking the reciprocals of the
positive diagonal elements, leaving the remaining elements zero. Then form the matrix

A+ = UD+VT, (6.7.3)

which can be shown (Exercise 6.22) to satisfy the four conditions.
A tough problem is glossed over in the proposed solution for the MP inverse. The

computed singular values are unlikely to be all positive when the matrix A is not full
column (or row) rank, because of rounding error. Moreover, this ought to be expected
because almost all matrices have no linear dependencies (in the measure theoretic
sense). The best we can compute is the exact solution to a nearby problem, and al-
most all of the nearby problems have all positive singular values. The decision must
be made regarding how small is small – that is, to decide the rank of A. This decision
was faced previously, in Gaussian elimination as well as in Householder QR factoriza-
tion. But with the SVD, the decision is much easier owing to the following condition
result:

|dk(A + E) − dk(A)| ≤ ‖E‖2, (6.7.4)

where dk(·) denotes the kth singular value of the matrix argument. Essentially, the
condition of the SVD is 1. For real problems, the matrix E reflects the accuracy of the
input and can be used to “test” against zero, meaning a linear dependency.

The statistical value of the MP inverse follows from its use in constructing the min-
imum norm least-squares solution. That is, when there exist multiple solutions to the
normal equations

XTXb = XTy,

the solution b∗ = X+y has the smallest Euclidean length (Exercise 6.23).

142 Eigenproblems

(D) PC Scores and Regression

The relationship between the SVD, rank degeneracy, multicollinearity, and biased re-
gression can be viewed as a part of principal components regression. Suppose that rows
x(k)T form a design matrix X (n × m) and that the dependent observations are stored
in a vector y. An SVD of the design matrix X = VDUT facilitates the computation of
the regression coefficients

b̂ =
∑(

v(i)Ty
di

)
u(i), (6.7.5)

where v(i) and u(i) are columns of V and U, respectively.
Now if both y and X are centered (mean subtracted), then d 2

i are the eigenvalues
of the (rescaled) covariance matrix XTX whose eigenvectors are u(i). Hence princi-
pal components on the observations x(k) would produce the components u(i) and the
component score vectors

z(i) = Xu(i) = div(i). (6.7.6)

Retaining p components means putting the m-dimensional distribution of X into the
p-dimensional distribution of Z. The Z space has most of the variation, so that the re-
gression could be done in the transformed space – where the z(i) are orthogonal and
with sum of squares d 2

i – so that transforming back to the X space yields the same
expression as (6.7.5), except that the summation is stopped at p. This is principal com-
ponents regression.

Another viewpoint, purely computational, sees the p components as the result of
deciding dp+1 = · · · = dm = 0, as if the problem were one of rank deficiency. Then
computing the principal components regression coefficients is the same as a minimum
norm solution to the least-squares problem. See Mardia et al. (1979, chap. 8) for the
statistical view of rank deficiency.

Returning to the statistics, the motivation for principal components regression is the
behavior of regression coefficients under multicollinearity. By retaining many explana-
tory variables, the risk of misspecification is lessened but with the cost of less precise
estimates; the variances are large because XTX is nearly deficient in rank. By moving
to principal components regression, some bias must be faced but with great improve-
ments in accuracy. The goal is to determine which subset of the variables may have
the greatest effect on the dependent variable, with the hope of discarding the others.

Computationally, the SVD allows for a sound decision as to the multicollinearity
and the true rank of the design matrix X. The computation of the coefficient estimate
is simplified and flexible regarding the number of components to be retained.

(E) Canonical Correlation

The objective in canonical correlation is to find the two linear combinations aTx and
bTy that have the largest correlation. Both the correlations and the combinations them-
selves (which lead to canonical variables) are of interest and need to be calculated.
Two possible problems are faced: one where the covariance matrices only are given; a
second where the multivariate observations are available.

6.7 Applications 143

For the first case, let the joint covariance matrix of x and y be given by[
Sxx Sxy

Syx Syy

]
; p

q

then the problem is to maximize aTSxyb subject to aTSxxa = bTSyyb = 1, which in-
cludes the normalizations. Now factor the two covariance matrices by Cholesky,

Sxx = LLT and Syy = MMT,

so that the new problem is maximizing vTCu subject to uTu = vTv = 1, where the
new matrix is C = L−1Sxy M−T (p × q). Now, to maximize v for a fixed u means tak-
ing v to be proportional to Cu. The problem then becomes maximizing (Cu)TCu =
uTCTCu, so that maximizing over u yields u as the eigenvector of largest eigenvalue
of CTC. This should suddenly start to look like singular value decomposition, since
the best value for v is proportional to Cu, which yields the eigenvector of CCT. The
consequence is that the best linear combinations u and v are the right and left singular
vectors corresponding to the largest singular value of C that is the correlation. Return-
ing to the original space by a = L−Tv and b = M−1u yields the canonical vectors, and
the canonical variables are aTx and bTy.

The computations required for this side of the problem are the two Cholesky factor-
izations and the solving of two sets of triangular systems of equations to produce C.

Then the SVD of C is computed and two triangular systems are solved to get back to
a and b.

When the centered variables are stacked in matrices X and Y, the computations take
a slightly different route. The first step is to move to orthonormalized variables, using
Householder to form the QR factorizations

X = QxRx and Y = Qy Ry.

Then the matrix C is formed by
C = QT

xQy,

which again is p × q. Then the singular value decomposition is computed for C =
VDUT. The linear combinations are found from a = Qxv(1) and b = Qyu(1). Notice
that other canonical variables can be formed from the other singular values, up to
min(p, q). Also note that the matrix C appearing in the two cases is not the same ma-
trix. Even changing Sxx and the others to be sample covariance matrices, C needs to
be normalized by the number of observations n (or n − 1) to be identical.

(F) Procrustes Rotation

The problem here is to find an orthogonal matrix that rotates one set of data closest to
another. More specifically, let X and Y (both n × p) be centered data matrices. We
seek an orthogonal matrix Q that minimizes ‖Y − XQ‖F , where the subscript F de-
notes the Frobenius norm of a matrix – the square root of the sum of squares of all of
its elements. This problem also arises in multidimensional scaling. Alternatively, the
criterion can be written as

‖Y − XQ‖2 = tr(YTY) − 2 tr(YTXQ) + tr(XTX).

144 Eigenproblems

Again, the solution involves the singular value decomposition. Compute C = YTX
and its SVD C = VDUT. Then the optimal orthogonal matrix is Q = VUT. Golub and
van Loan (1989, p. 582) presented a clear, short proof of this result.

6.8 Complex Singular Value Decomposition

I have avoided the complex eigenproblems so far for three reasons: they are very dif-
ferent and difficult, and they are encountered rarely in statistics. The complex version
of SVD, however, has an important statistical application in the analysis of spatiotem-
poral series that may have signals that are traveling waves.

The complex singular value decomposition (CSVD) of a complex-valued matrix A
takes the same form as the real version, with

A = VDUH =
∑

div(i)u(i)H, (6.8.1)

where the superscript H denotes conjugate transpose. Here, the matrices U and V are
unitary, satisfying UHU = UUH = In and VHV = VVH = Im. The CSVD is also
related to the eigenproblems in the Hermitian matrices AHA and AAH as

AHAu(i) = d 2
i u(i) and AAHv(i) = d 2

i v(i). (6.8.2)

These matrices are Hermitian and so their eigenvalues are real, although the eigenvec-
tors will be complex. The inner product form of both AHA and AAH ensure that both
are nonnegative definite; hence the eigenvalues will be nonnegative, allowing d 2

i to be
written as in (6.8.2).

The computational approach for CSVD is the same as for the real case: bidiago-
nalize A and solve the symmetric, oops, Hermitian eigenproblem with AHA without
computing the inner products. The two obstacles are that the tools we have relied upon,
Householder and Givens transformations, need to be adjusted for working on complex
matrices.

The complex version of the Householder transformation looks very similar to the
real version, U = I − duuH, with d = 2/‖u‖2. Its use for annihilating a vector
requires some attention to detail. As in Section 5.5, consider constructing the House-
holder transform U to make Ux = −se1. Similar to the previous construction, compute
s2 = xHx = ‖x‖2 and form u = x + se1. Then the product Ux needs two smaller
steps, uHu = xHx + x̃1s + s̃x1 + s2 and uHx = s2 + s̃x1 (where the symbol ˜ denotes
conjugate), giving

Ux = (I − duuH)x = x − 2uHx
uHu

u = x − 2s2 + 2s̃x1

2s2 + 2 Re(s̃x1)
(x + se1). (6.8.3)

The right-hand side of (6.8.3) will be equal to −se1 only if s̃x1 = Re(s̃x1). Note, how-
ever, that in going to complex numbers only the magnitude of s has been determined
(unlike the real case, where two choices for s arising from s2 = ‖x‖2 led to a choice of
signs). The argument for s should be chosen so that s̃x1 = Re(s̃x1), which is satisfied by

s = x1

|x1|‖x‖. (6.8.4)

6.8 Complex Singular Value Decomposition 145

Example 6.4: Complex Householder Transformation

Let x =
 1+i

1−i

2

1

; then xHx = 9 and s = (1 + i) 3√
2

and so

u =

(1 + i)

(
3√
2

+ 1
)

1 − i

2

1

.

Then uHu = 18 + 6
√

2 = 2uHx, so

Ux = (I − duuH)x = x − 2uHx
uHu

u

=

1 + i

1 − i

2

1

− 2
(
9 + 3

√
2
)

18 + 6
√

2

(1 + i)

(
3√
2

+ 1
)

1 − i

2

1

 =

−(1 + i) 3√

2

0

0

0

.

To construct the complex version of the Givens transformation, all that is required is
the solution to the simple 2 × 2 case, for which the solution is

U = 1√
x̃1x1 + x̃2 x2

[
x̃1 x̃2

−x2 x1

]
. (6.8.5)

Although the conjugates in the first row look a little out of place, this is the matrix for
annihilation, since

Ux = 1√
x̃1x1 + x̃2 x2

[
x̃1 x̃2

−x2 x1

][
x1

x2

]
=
[√

x̃1x1 + x̃2 x2

0

]
. (6.8.6)

The computational route for CSVD follows the real SVD approach. The first step
is to pre- and postmultiply A by complex Householder transformations to form the
bidiagonal matrix B = HH

LAHR. Next come the sequence of iterations, beginning by
finding the Wilkinson shift t for the matrix BHB by forming the last 2 × 2 submatrix.
The first complex Givens transformation of the QR step (as in 6.5.1) for BHB − tIn is
then found and applied to the right of B. This introduces a nonzero in the (2,1) position
of B, whereafter a sequence of Givens transformations chases the nonzero around and
out of B in the same order as (6.6.4). These iterations lead to a diagonal matrix D of
singular values at convergence. Accumulating the Givens rotations on the left (Ps) and
right (Qs) will yield the singular vectors. If the computations produced the diagonal
matrix

D = PH
last · · · PH

1 BQ1 · · · Q last = PH
last · · · PH

1 HH
LAHRQ1 · · · Q last, (6.8.7)

then the singular vector matrices can be found as

U = HRQ1 · · · Q last and V = HLP1 · · · Plast. (6.8.8)

146 Eigenproblems

Programs and Demonstrations

orthit Test /demonstration program for orthogonal iteration
The largest four eigenvalues are found, along with the eigenvectors, for four test
matrices. The first case is the matrix given by Jennings (1977, p. 244), and the con-
vergence is unsurprisingly slow. Modified Gram–Schmidt (see Section 5.4) is used
for the QR factorization.
mgsqr – a simple-minded version of modified Gram–Schmidt.
orthit.dat – file holding test matrices.

tridig Test /demonstration program of tridiagonalization of a symmetric matrix
Four sample symmetric matrices of order n = 3, 4, 5, 6 are tridiagonalized using
Householder transformations, as described in Section 6.4.
tridig – does the tridiagonalization and stores the Householder matrices in compact
form.
expndh – computes the orthogonal matrix that does the tridiagonalization.

qreig0 Demonstration program of the QR eigenproblem algorithm
The eigenvalues of four sample symmetric matrices are found, but no eigenvectors.
qreig0 – subroutine that takes a tridiagonal matrix from tridig and computes the
eigenvalues.
rot734 – computes the annihilating Givens transformation, following G. W. Stew-
art’s (1973) Algorithm 7.3.4.

qreig1 Test /demonstration program of the QR eigenproblem algorithms,
but with vectors
Eigenvalues and vectors for the same four sample symmetric matrices are found.
The routine tridig is used to do the tridiagonalization, and the orthogonal matrix of
the tridiagonalization, which is an input for qreig1, found from expndh. Vectors
returned in an orthogonal matrix. (Also uses routine rot734.)
qreig1 – computes the eigenvalues and vectors from the symmetric tridiagonal
matrix.

bidiag Test /demonstration program for the Householder bidiagonalization algo-
rithm
The matrix from Example 6.3 is bidiagonalized, along with two others, and the or-
thogonal matrices are also formed from compact storage. The bidiagonalization is
checked, as well as the orthogonal matrices.
bidiag – bidiagonalizes matrix as in Section 6.6 and stores transformations in com-
pact form.
expndb – expands Householder transformations from compact form to make or-
thogonal matrices.

rsvd0 Demonstration program for SVD using Golub–Reinsch
Singular values for three examples are computed. The routine bidiag does the bi-
diagonalization. (Also uses rot734.)
rsvd0 – computes the singular values only of a bidiagonal matrix.

Exercises 147

rsvd1 Test /demonstration program for singular value decomposition
The singular values and vectors for three examples are computed. The routine bidiag
does the initial bidiagonalization, storing the matrices in compact form, expanded
to full form by expndb. The decomposition is checked, as well as the matrices of
left and right singular vectors for orthogonality. (Uses rot734.)
rsvd1 – computes singular values and vectors of a bidiagonal matrix.

bidiac Test /demonstration program for complex bidiagonalization
Three complex matrices are bidiagonalized using complex Householder transforma-
tions as described in Section 6.8, and the transformations are stored in compact form.
The unitary matrices are formed by expndc and the bidiagonalization is checked, as
well as the unitary matrices.
bidiac – bidiagonalizes matrix using complex Householder transformations.
expndc – expands transformations from bidiac into unitary matrices.

csvd0 Demonstration program for complex singular value decomposition
The singular values only for three complex matrices are computed. The routine
bidiac computes the complex bidiagonalization. (Uses rot734.)
csvd0 – computes singular values only for a complex bidiagonal matrix.

csvd1 Test /demonstration program for computing the complex singular value
decomposition
Singular values and vectors for three complex matrices are computed. The routine
bidiac does the initial bidiagonalization, storing the matrices in compact form, ex-
panded to full form by expndc. The decomposition is checked, and the matrices of
left and right singular vectors are checked to be unitary. (Uses rot734.)
csvd1 – computes singular values and vectors of a complex bidiagonal matrix.

Exercises

6.1 For the matrix below, compute the largest eigenvalue and its vector using the power
method:

1 −3 −2 1

−3 10 −3 6

−2 −3 3 −2

1 6 −2 1

.

6.2 Apply the orthogonal iteration method to the matrix above, using all four columns (p =
4). Describe the behavior of Z(k) and R(k).

6.3 Let Z have p orthonormal columns and let AZ = ZR, where R is upper triangular. For
p = 2, show that R22 is an eigenvalue and find its eigenvector in terms of the first two col-
umns of Z. For general p, find the eigenvectors corresponding to the diagonal elements
of R that are eigenvalues of A.

148 Eigenproblems

6.4 Apply the orthogonal iteration method to the matrix below for q = 2:

8 −3 −2 0 6 5

−3 6 1 −6 0 −2

−2 1 5 −5 2 0

0 −6 −5 8 −3 −2

6 0 2 −3 6 1

5 −2 0 −2 1 5

.

6.5 Find the left eigenvector corresponding to the largest eigenvalue of the matrix below
using the power method:

.6561 .2916 .0486 .0036 .0001

.2401 .4116 .2646 .0756 .0081

.0625 .2500 .3750 .2500 .0625

.0081 .0756 .2646 .4116 .2401

.0001 .0036 .0486 .2916 .6561

.

6.6 For the matrix of Exercise 6.5, apply the power method using shifts of 1/2 and −1/2.

How effective are they? Are there other shifts that may work better? Try them.

6.7 For the matrix of Exercise 6.5, find the eigenvalue closest to one using the inverse power
method. Compare the convergence with results from the two previous exercises. Are any
problems encountered with singularity?

6.8 For the matrix of Exercise 6.5, apply the orthogonal iteration method and find the three
largest eigenvalues and their vectors.

6.9 Apply the orthogonal iteration method to the following matrix: 1 −1 3

0 2 0

−1 3 4

.

6.10 Find all of the eigenvalues and vectors of the matrix in Example 6.1.

6.11 Suppose we exchange the values in the (1,1) and (1, 2) entries in the matrix in Exam-
ple 6.1 and then recompute the eigenvalues. Apply the Gershgorin Result 6 first. This
may be a good time to try the inverse power method with a shift.

6.12 Apply the technique of Lagrange multipliers to the problem of maximizing xTAx subject
to xTx = 1. Show how it relates to the matrix eigenproblem.

6.13 For a symmetric matrix of order n, how much work is required to reduce it to tridiagonal
form through the use of similarity transformations?

6.14 Find the two eigenvalues of a 2 × 2 symmetric matrix. Which one is closest to the (2, 2)
element?

6.15 Let A be the matrix in Example 6.1. For some continuous distribution in R3, generate ran-
dom vectors x(i) (i = 1, . . . , n) for n of at least100, and compute ui = x(i)TAx(i)/x(i)Tx(i).

What are the maximum and minimum values of ui?

6.16 Show that solving the real eigenproblem of (6.4.1) really solves the eigenproblem of a
Hermitian matrix.

Exercises 149

6.17 Finish Example 6.2.

6.18 Show that the choice of s in (6.8.4) does the job for the complex Householder transfor-
mation. Do you still have a choice for the sign?

6.19 Compute the eigenvalues and eigenvectors of the Hermitian matrix 1 −3 + 6i −2 + 5i

−3 − 6i 10 −3 − 2i

−2 − 5i −3 + 2i 3

.

6.20 Compute the eigenvalues and eigenvectors of the symmetric tridiagonal matrix with di-
agonal entries all zero and off diagonals k/

√
4k2 − 1 (cf. the Gauss–Legendre quadrature

(10.2.12)).

6.21 Compute the Roy largest root statistic and the eigenvector of the generalized eigenprob-
lem Ax = sBx, where

A = H =

63.21 −19.95 165.25 71.28

−19.95 11.35 −57.24 −22.93

165.25 −57.24 437.11 186.78

71.28 −22.93 186.78 80.41

,

B = E =

38.60 13.63 24.62 5.64

13.63 16.96 8.12 4.81

24.62 8.12 27.22 6.27

5.64 4.81 6.27 6.16

(Fisher’s iris data; Mardia et al. 1979, pp. 344ff).

6.22 Show that A+ = UD+VT satisfies the four Moore–Penrose conditions.

6.23 Show that X+y has the shortest length of all solutions to the normal equations XTXb =
XTy.

6.24 The Frobenius norm ‖A‖F of a matrix is the square root of the sum of the squares of the
elements. Show that ‖A‖2

F = tr(ATA).

6.25 Compute the SVD of the matrices X and X + E in Examples 5.1 and 5.2, and compare
the results with (6.7.4).

6.26 Suppose the joint covariance matrix of x and y (both p = q = 3) is given by the matrix
in Exercise 6.4. Find the canonical correlations.

6.27 Analyze the following matrix (given by Jennings 1977, p. 246), which is more problem-
atic – this chain is not irreducible:

.8 .6 .1 0 0 0

0 0 .4 0 0 0

0 0 0 0 0 0

.2 .3 0 1 0 0

0 0 .4 0 .4 1

0 .1 .1 0 .6 0

.

6.28 Combine sparse matrix multiplication techniques with the power method to find the sta-
tionary probability vector for the transition matrix given in Example 4.6.

150 Eigenproblems

6.29 Recall that eigenvectors, once normalized, are only unique up to a sign, that is, if Ax =
sx, then A(−x) = s(−x). In the SVD where A = UDVT , if we insist that the diagonal
elements of D are nonnegative, can we still choose some arbitrary signs for the left and
right vectors? For the complex SVD, show that the singular vectors can be scaled using
an imaginary number while still ensuring that the diagonal elements of D are nonnega-
tive. Suppose we computed two equivalent complex decompositions, A = U1DVH

1 =
U2DVH

2 ; what are the relationships among U1, U2, V1, and V2?

References

I have leaned heavily on the books by G. W. Stewart (1973) and Golub and van Loan
(1989) for this chapter. Each have their strengths: Stewart better for the details of the
algorithms; Golub and van Loan for completeness. The old monograph Linear Alge-
bra (Wilkinson and Reinsch 1971) has many algorithms, although they are in Algol.
For a modern Fortran library, LAPACK is most notable (Anderson et al. 1995), though
the needs of most statisticians are rather simple. Lawson and Hanson (1974) include
the proof of convergence of the QR algorithm in an appendix. Mardia et al. (1979) is
quite comprehensive and always discusses the computation of statistics. The volume
edited by W. J. Stewart (1991) presents the state of the art for Markov chain problems.

E. Anderson, Z. Bai, C. Bishof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammar-
ling, A. McKenney, S. Ostrouchov, and D. Sorenson (1995), LAPACK Users’Guide. Philadelphia:
SIAM.

T. F. Chan (1982), “An Improved Algorithm for Computing the Singular Value Decomposition,” ACM
Transactions on Mathematical Software 8: 72–88.

Gene H. Golub and Charles van Loan (1989), Matrix Computations, 2nd ed. Baltimore: Johns Hop-
kins University Press.

W. J. Harrod and R. J. Plemmons (1984), “Comparison of Some Direct Methods for Computing Sta-
tionary Distributions of Markov Chains,” SIAM Journal of Scientific and Statistical Computing 5:
453–68.

Alan Jennings (1977), Matrix Computation for Engineers and Scientists. New York: Wiley.
Charles L. Lawson and Richard J. Hanson (1974), Solving Least Squares Problems. Englewood Cliffs,

NJ: Prentice-Hall.
K. V. Mardia, J. T. Kent, and J. M. Bibby (1979), Multivariate Analysis. London: Academic Press.
B. N. Parlett and W. G. Poole (1973), “A Geometric Theory for the QR, LU and Power Iterations,”

SIAM Journal of Numerical Analysis 10: 389–412.
G. W. Stewart (1973), Introduction to Matrix Computations. New York: Academic Press.
William J. Stewart (1978), “A Comparison of Numerical Techniques in Markov Modeling,” Commu-

nications of the ACM 21: 144–52.
William J. Stewart (Ed.) (1991), Numerical Solution of Markov Chains. New York: Marcel Dekker.
William J. Stewart and Alan Jennings (1981), “A Simultaneous Iteration Method for Real Matrices,”

ACM Transactions on Mathematical Software 7: 184–98.
J. H. Wilkinson (1965), The Algebraic Eigenvalue Problem. London: Oxford University Press.
J. H. Wilkinson and C. Reinsch (Eds.) (1971), Linear Algebra. New York: Springer-Verlag.

7

Functions: Interpolation, Smoothing,
and Approximation

7.1 Introduction

As discussed in Chapter 2, the computer can perform only a few arithmetic operations:
addition, subtraction, multiplication, and division. Hence, the evaluation of any func-
tion must be expressed in terms of these operations only. We have already mentioned
the square root function, but nothing has been said regarding its computation. In this
chapter, the evaluation of nonarithmetic functions will be addressed, as well as other
aspects of the problem: interpolation, smoothing, and approximation.

In interpolation, a function f is sought that connects a set of points (xi, zi), i =
1, . . . , n; that is,

zi = f(xi) for i = 1, . . . , n.

Usually, the interpolating function f is used to approximate a function, say z(x), whose
values are known only at specified abscissas xi, as in a table. In the past, this has been
the most important topic in numerical analysis. At present, most interpolations are
done on a calculator or by hand.

The problem of smoothing is essentially the statistical problem of regression, or
least-squares curve fitting. Here the objective is to find a function f within a class of
functions, usually some form of polynomial, that fits data points (xi, yi):

minimize
n∑

i=1

[yi − f(xi)]
2.

Smoothing differs from interpolation by permitting a less than perfect fit with the po-
tential of a more appealing (smoother) function f. The change in notation from zi to
yi is intended to distinguish the exactness of zi in contrast to yi.

The approximation problem also permits a less than perfect fit, but the fit is eval-
uated over the full range of a function g. The class of functions considered for fitting
are arithmetic functions – those that can be evaluated on the computer. Usually only
particular subsets are considered, such as polynomials or rational functions, and often
the optimum fitting function is less important than being sufficiently close to the target
g. Here distance is measured using an Lp-norm,[∫

|f(x) − g(x)|pw(x) dx

]1/p

,

where w(x) is a nonnegative weight function. The usual values of p are 1, 2, and ∞,

the last of which acts as a sup norm.

151

152 Functions: Interpolation, Smoothing, and Approximation

The most common class of functions used in all three applications are polynomials,

p(x) = a0 + a1x + a2 x 2 + · · · + amxm,

which are easy to evaluate. Horner’s method, an efficient way of evaluating polyno-
mials, can be coded as

PX=A0+X*(A1+X*(A2+X*(A3+A4*X)))

for the case m = 4. In general, Horner’s method requires only m multiplications and
m additions for a polynomial of degree m. The mathematical usefulness of polynomi-
als is expressed in Weierstrass’s theorem, which says that any function over a finite
range can be approximated arbitrarily well by a polynomial. However, this result must
be taken with some caution because, outside of that finite range, the polynomial will
grow unboundedly.

An alternative (which also has a similar Weierstrass result) is the class of rational
functions, which can be expressed as the ratio of two polynomials, p and q:

r(x) = p(x)

q(x)
= a0 + a1x + · · · + amxm

b0 + b1x + · · · + bnxn
.

Note that rational functions are also easy to evaluate; they are widely used to approx-
imate functions, since their behavior outside a finite range can be made more stable.
Mathematically, they are not as easy to work with as polynomials.

A third class of functions are splines, which are piecewise polynomials with ad-
ditional smoothness properties (such as continuity) and, in the most commonly used
cubic spline, continuous first and second derivatives. Splines are relatively new, but
they are particularly effective in applications because of their implicit smoothness and
stable behavior.

Another class of functions (which will not be discussed here) is the class of trigono-
metric polynomials,

t(x) = a0 + a1 cos(x) + b1 sin(x) + · · · + ak cos(kx) + bk sin(kx)

+ · · · + am cos(mx) + bm sin(mx).

In interpolation, these functions are directly related to the discrete Fourier transform,
which will be discussed in Chapter 14. In smoothing, they are used in trigonometric re-
gression in time-series analysis for estimating periodic trends. In approximation, they
are used in Fourier series, where the mathematics leads to powerful and useful results.
However, for most of the problems addressed in this chapter, trigonometric polynomi-
als are not appropriate because their direct evaluation is not so simple.

In the next section, the interpolation problem will be discussed using polynomials
and rational functions. Interpolatory cubic splines are introduced in Section 7.3, fol-
lowed by their application to regression and smoothing in Section 7.4. In Section 7.5,
the approximation problem is faced from a mathematical viewpoint, and the practical
side of approximating functions is addressed in Section 7.6. Approximations for prob-
ability functions are discussed in Section 7.7.

7.2 Interpolation 153

7.2 Interpolation

The most common application is the linear interpolation of the tabled values of a func-
tion z(x). With just two points, (x0, z0) and (x1, z1), the interpolant is the linear
function

f(x) = z0 + (z1 − z0)[(x − x0)/(x1 − x0)]. (7.2.1)

Viewing the expression in brackets as the proportion p of the interval, f can be rewrit-
ten as (1 − p)z0 + pz1. Written this way, clearly the approximant f passes through
the two points.

Quadratic approximation is equally straightforward when the abscissas are equally
spaced. Let z−1, z0, z1 be three ordinates from equally spaced abscissas. Then for a
proportion p of the interval, p = 2(x − x0)/(x1 − x−1), the quadratic interpolant is

f(p) = [(z−1 − 2z0 + z1)/2]p2 + [(z−1 − z1)/2]p + z0, (7.2.2)

where p is in the interval [−1,1]. Notice that the values z−1, z0, z1 are attained at p =
−1, 0,1 (or x−1, x0, x1), respectively. If the abscissas are not equally spaced then the
following general approach must be followed.

In the general interpolation problem, we seek a function f to pass through a set of
points (xi, zi), i = 1, . . . , n; that is, zi = f(xi). The solution can be formed by con-
struction. First define

g(x) = (x − x1)(x − x2) · · · (x − xn) (7.2.3)

and let di(x) = g(x)/[(x − xi)g
′(xi)], so that di(x) is a polynomial of degree (n −1)

whose values at the abscissas resemble the Kronecker delta function: di(xi) = 1 and
di(xj) = 0 if i
= j. Another way of writing di(x) is

di(x) =
∏

j
=i(x − xj)∏
j
=i(xi − xj)

.

Then the interpolant f is a polynomial of degree (n − 1), which can be written as

f(x) =
n∑

i=1

zidi(x). (7.2.4)

An alternative method for solving the general interpolation problem is to set up a
system of linear equations of the form

∑
aj−1x

j−1
i = zi. Starting the column index at

1, construct the n × n matrix A with entries Aij = (xi)
j−1; then the right-hand sides

are bi = zi for i = 1, . . . , n, and the solution vector holds the coefficients of the inter-
polating polynomial (a0, a1, . . . , an−1).

Example 7.1: General Interpolation Problem
Let’s do a quadratic interpolation of the square root function z(x) = √

x at x =
1/16,1/4, and 1. Following (7.2.4), we have the formula for the interpolant f(x),

154 Functions: Interpolation, Smoothing, and Approximation

f(x) = 1

4

(x − 1/4)(x − 1)

(1/16 − 1/4)(1/16 − 1)

+ 1

2

(x − 1/16)(x − 1)

(1/4 − 1/16)(1/4 − 1)
+ 1

(x − 1/16)(x − 1/4)

(1 − 1/16)(1 − 1/4)

= (7 + 70x − 32x 2)/45 = a0 + a1x + a2 x 2.

Setting up the system of linear equations leads to1 1/16 1/256

1 1/4 1/16

1 1 1

 a0

a1

a2

 =
1/4

1/2

1

.

The accuracy of interpolation of (xi, zi) for a function z(x) can be found using New-
ton’s formulas, which extend the mean value theorem.

Theorem: If z(n)(x) exists, then for every x in [x1, xn] there is a w in [x1, xn] such
that, for the interpolant f(x),

z(x) − f(x) = g(x)z(n)(w)

n!
, (7.2.5)

where g(x) is given by (7.2.3).

For a proof, see Davis (1975, p. 56).
A solution to the general interpolation problem should be considered a mathematical

solution, with some limitations on its applicability. As n grows, the interpolant often
wiggles frantically to reach all of the data points. When the number of points (and
hence the degree of the polynomial) grows large, this wiggling can get out of hand,
leading to what is known as Runge’s phenomenon (see Figures 7.1 and 7.2, and codes
runge1 and runge2). In this example, a smooth function is being approximated by a
high-degree polynomial that is constructed by interpolating points of the function. At
the center of the range of the abscissas the approximation is very good, but the inter-
polant wiggles so badly that the approximation is terrible at the ends. Extrapolation
outside the range of the abscissas is hopeless.

Examining the right side of (7.2.5) reveals that some control can be exercised over
g(x) by choosing the interpolation abscissas. The optimum values of the abscissas for
the interval (−1,1) are the zeros of the Chebyshev polynomial Tn(x), xi = cos

(
2i−1
2n

π
)
.

Figure 7.2 shows the difference in performance by this alternative to equally spaced
abscissas.

For inverse interpolation, the roles of function and argument are reversed. The in-
terpolant f(x) is still used as an approximation for the function z(x), but a value of
z∗ is given and the value of x is sought that satisfies z(x) = z∗. In the linear case, the
formula is rather simple; solving (1 − p)y0 + py1 = y∗ yields

p = (z∗ − z0)/(z1 − z0)

7.2 Interpolation 155

Figure 7.1. Runge phenomenon with equal spacing. The solid line shows the function z(x) =
1/(1 + x 2); the dashed lines are 7- and 9-point interpolants.

Figure 7.2. Runge phenomenon with Chebyshev spacing. The solid line shows the function z(x) =
1/(1 + x 2); the dashed lines are 7- and 9-point interpolants.

and x = (1 − p)x0 + px1. In the quadratic case, the right-hand side of (7.2.4) is set
equal to z∗ and the resulting quadratic equation is solved for p.

The mean value theorem implies that a smooth function can be approximated by a
linear or quadratic function on an interval. The quality of the approximation depends
on the smoothness of the function z(x) and the size of the interval. In some statistical
problems, the original variable does not work so well. As seen in Exercises 7.4 and 7.6,
changing the variable (say, to 1/x) can improve matters, especially for an unbounded

156 Functions: Interpolation, Smoothing, and Approximation

variable. Recall that polynomials are well-behaved only in an interval, and can behave
wildly when unrestricted.

An alternative to polynomials for interpolation are rational functions,

rm,n(x) = pm(x)/qn(x).

Let pm(x) be a polynomial of degree m with coefficients ai, and let qn(x) be a polyno-
mial of degree n with coefficients bi. Then notice that dividing both sets of coefficients
by a constant leaves rm,n(x) unchanged. Consequently, the redundancy can be elim-
inated by setting b0 = 1, with only occasional complications, leaving (m + n + 1)
parameters. Rational function interpolation of (xi, zi), i = 1, . . . , (m + n +1), can be
determined by solving the system of equations

pm(xi) = ziqn(xi), i = 1, . . . , (m + n + 1), (7.2.6)

which are linear in the unknowns (a0, a1, . . . , am, b1, . . . , bn). Some drawbacks need
to be faced, since (i) the system of equations may not yield a unique solution, (ii) a
unique solution is necessary but not sufficient for determining the rational function in-
terpolant, and (iii) the system of equations is often badly conditioned. Overcoming
these obstacles may be worth the effort since rational functions are often more flexible
than polynomials for approximating functions.

Example 7.2: Rational Function Interpolation
Applying the formula (7.2.6) with m = n = 1 to the quadratic interpolation prob-
lem of Example 7.1 leads to the equations

a0 + a1/16 = (1/4)(1 + b1/16),

a0 + a1/4 = (1/2)(1 + b1/4),

a0 + a1 = (1)(1 + b1).

Solving for the unknowns a0, a1, b1 gives a0 = 1/7, a1 = 2, b1 = 8/7, and
r(x) = (1/7 + 2x)/(1 + 8x/7).

7.3 Interpolating Splines

Although linear and quadratic methods are simple and easy to use, a more appeal-
ing solution to the interpolation problem can be found using cubic splines. These are
piecewise cubic polynomials with a continuous first derivative (piecewise quadratic)
and second derivative (piecewise linear). These functions are not very difficult to use
(evaluating either the spline function or its derivative or indefinite integral), nor are they
difficult to determine for the interpolation problem discussed here or for the smoothing
problem (see Section 7.4).

The derivation of the interpolatory cubic spline is straightforward, but it is compli-
cated by many details. The mathematical objective is to determine the function S(x)

that interpolates a set of points (zi, xi) for i = 1, . . . , n while minimizing a “lack of
smoothness” criterion,

7.3 Interpolating Splines 157∫
|S ′′(x)|2 dx. (7.3.1)

The solution is a cubic spline. The abscissas xj are known as the knots, which delimit
the intervals Ij = [xj−1, xj] of length hj = xj − xj−1 for j = 2, . . . , n. Since we know
that the cubic spline S(x) is piecewise cubic, we can obtain a simple expression for the
piecewise linear S ′′(x) on the interval Ij :

S ′′(x) = Mj−1(xj − x)

hj

+ Mj(x − xj−1)

hj

, (7.3.2)

where S ′′(xj) = Mj (j = 1, . . . , n), the second derivatives at the knots. These Mj ap-
pear to be unknown parameters at the moment, but they can be determined using the
constraints on S(x). By integrating S ′′(x) twice and enforcing the interpolation con-
straints S(xj) = zj we can obtain, for x in Ij,

S(x) = Mj−1(xj − x)3 + Mj(x − xj−1)
3

6hj

+ (zj−1 − Mj−1h
2
j/6)(xj − x)

hj

+ (zj − Mjh
2
j/6)(x − xj−1)

hj

. (7.3.3)

Then, by differentiating, the enforcement of the derivative constraint S ′(x−
j) = S ′(x+

j)

yields a system of n − 2 linear equations in Mj, j = 1, . . . , n:

S ′(x−
j) = (hj/6)Mj−1 + (hj/3)Mj + (zj − zj−1)/hj,

S ′(x+
j) = (−hj+1/3)Mj + (−hj+1/6)Mj+1 + (zj+1 − zj)/hj+1.

(7.3.4)

Setting these two equal, S ′(x−
j) = S ′(x+

j), yields the equations

Mj−1(hj/6) + Mj(hj + hj+1)/3 + Mj+1(hj+1/6) = sj+1 − sj, (7.3.5)

where sj = (zj −zj−1)/hj . Dividing each of these equations by (hj +hj+1)/6 yields n−2
equations involving only Mj−1, Mj, and Mj+1 and whose coefficients are hj/(hj +hj+1),

2, and hj+1/(hj + hj+1), respectively. Note that the right-hand sides

dj = 6(sj+1 − sj)

hj + hj+1
for j = 2, . . . , n − 1 (7.3.6)

are linear combinations of the interpolated ordinates zj . To uniquely determine Mj,

two additional constraints are needed, which can be written as

2M1 + p1M2 = d1,

pnMn−1 + 2Mn = dn.
(7.3.7)

Then form the set of linear equations Dm = d, where the elements of m are Mj,

the elements of d are dj from (7.3.6) and (7.3.7), and the matrix D is tridiagonal with
diagonal elements all equal to 2. For j = 2, . . . , n − 1, the superdiagonal elements
Dj,j+1 are hj/(hj + hj+1) and the subdiagonal elements Dj,j−1 are their complements
hj+1/(hj + hj+1). The remaining elements of D are D1,2 = p1 and Dn,n−1 = pn. The
equations take the form

158 Functions: Interpolation, Smoothing, and Approximation

2 p1 0 0 . . .

h2/(h2 + h3) 2 h3/(h2 + h3) 0 . . .

0 0

0 0 hj/(hj + hj+1) 2 hj+1/(hj + hj+1) 0 0

0 0

0 hn−1/(hn−1 + hn) 2 hn/(hn−1 + hn)

0 pn 2

M1

M2

. . .

Mj

. . .

Mn−1

Mn

=

d1

d2

. . .

dj

. . .

dn−1

dn

. (7.3.8)

The additional constraints (7.3.7) arise as a priori information and usually take one
of three forms as follows.

(1) Force the first derivatives at the endpoints, S ′(x1) = z ′
1 and S ′(xn) = z ′

n, re-
quiring z ′

1 and z ′
n. These constraints are implemented by setting D1,2 = p1 =

Dn,n−1 = pn = 1 and, for the right-hand side,

d1 = 6(s2 − z ′
1)/h2 and dn = 6(z ′

n − sn)/hn. (7.3.9)

(2) Force the second derivatives at the endpoints, S ′′(x1) = z ′′
1 and S ′′(xn) = z ′′

n,

given z ′′
1 and z ′′

n. These constraints are implemented by setting d1 = 2z ′′
1 and

dn = 2z ′′
n and also p1 = pn = 0. An important special case is the natural spline,

where M1 = Mn = 0.

(3) Force the ratio of second derivatives at the endpoints to take given values r1 and
rn. These constraints are effected by p1 = −2r1 and pn = −2rn, with d1 =
dn = 0.

Backing away from the computational details, the result is a piecewise cubic func-
tion with continuous first and second derivatives. In order to construct it, first some
constants (sj and dj) must be computed and a tridiagonal system of equations solved as
a setup. The matrix D is tridiagonal and can be solved in O(n) time and space. Then,
to evaluate the cubic spline interpolant at some argument, the appropriate interval must
be determined and then just a simple cubic function evaluated.

In practice, the spline is both flexible and stable. It can fit nonpolynomial functions
well because it fits differently over each interval. The effect of a difficult fit on one in-
terval dissipates quickly and does not affect the fit in remote intervals. The time and
space complexity impose no real obstacles to the possible size of the problem. Com-
pare the polynomial interpolation with the performance of the spline in Figure 7.3 (see
also splint).

The spline can be used for more than just approximating a function z(x). In the
next section, the spline function will be used for curve fitting. The interpolant can be

7.4 Curve Fitting with Splines: Smoothing and Regression 159

Figure 7.3. Spline interpolation. The solid line shows the function z(x) = 1/(1 + x 2); the dashed
lines are the natural spline and spline fit with endpoint derivative conditions.

integrated to estimate the integral of the function z(x), leading to a numerical inte-
gration formula that is similar to the trapezoid rule. More importantly, the derivatives
of the spline interpolant make very good estimators of the derivatives of the function
z(x). The following bound expresses just how well the derivatives S(k) (k = 0,1, 2, 3)

perform as estimates. When zi = z(xi) – that is, when the interpolant S(x) is approx-
imating a function z(x) – one can show that

|z(k)(x) − S(k)(x)| ≤ CkMh4−k (7.3.10)

for k = 0,1, 2, 3 when |z(4)(x)| ≤ M. Hall and Meyer (1976) gave the constants as
C0 = 5/384, C1 = 1/24, C2 = 3/8, and C3 = (b + 1/b)/2, where h = max hj and
b = (max hj)/(min hj). These results will be useful in Chapter 12, where the deriva-
tive of the spline interpolant of an empirical distribution function is used as a density
estimator.

7.4 Curve Fitting with Splines: Smoothing and Regression

As soon as the interpolation constraint is relaxed and the ordinates are no longer con-
sidered to be exact, the problem becomes a statistical one and much more complicated.
Two approaches are considered. In one case, examined later this section, the family of
spline functions is used as a regression function and least-squares coefficients are es-
timated to determine the best fit. In the other case, the usual least-squares objective
changes to seeking both smoothness and a good fit to the data (xi, yi), i = 1, . . . , n.

More specifically, a function S(x) is sought to minimize a combination of the two:

n∑
i=1

[yi − S(xi)]
2 + t

∫
|S ′′(x)|2 dx. (7.4.1)

160 Functions: Interpolation, Smoothing, and Approximation

Note that taking t to zero reproduces the interpolation problem. The solution (over all
functions) to the smoothing problem can be shown to be a natural cubic spline. This
derivation begins with such an assumption. The unknown quantities to be solved here
are either the fitted values of the smoothing spline zj = S(xj) or the second deriva-
tives at the endpoints Mj. The minimization criterion can be rewritten in these terms
as follows:

min
∑

j

[yj − zj]2 + t

∫
|S ′′(x)|2 dx. (7.4.2)

Minimizing over z and m, with the cubic spline specification included as a con-
straint, we have Dm = d(z) using (7.3.6) to compute d. Now, since the solution is a
natural cubic spline (so that M1 = Mn = 0), deleting the first and last row and col-
umn from the matrix D leaves the square matrix D∗ of order n − 2. Similarly, delete
the first and last elements of m and d, yielding m∗ and d∗; then the spline constraint
may be rewritten as

D∗m∗ = d∗. (7.4.3)

For this discussion only, the indexing of these starred matrices and vectors of order
n − 2 will be from 2 to n − 1. The smoothness part can be simplified by computing∫

Ij

[S ′′(x)]2 dx = hj

3
[M 2

j−1 + MjMj−1 + M 2
j]. (7.4.4)

Because M1 = Mn = 0, the sum of these pieces can now be written as a quadratic
form in the slopes Mj,

1
6 m∗TE∗m∗, with the n − 2 square matrix

E∗ =

2(h2 + h3) h3 0 0 . . .

h3 2(h3 + h4) h4 0 . . .

0 h4 2(h4 + h5) h5 0

0 0 h5 2(h5 + h6) . . .

0 0 . . .

. (7.4.5)

Note that E∗ is positive definite and tridiagonal; it is also related to D∗ by D∗ =
(H∗)−1E∗, where H∗ is the diagonal matrix with elements (hj +hj+1), j = 2, . . . , n−1.
The spline constraint can be rewritten, with the right-hand side simplifying (recall
(7.3.5)) to

E∗m∗ = H∗d∗ = 6Cz. (7.4.6)

Here the matrix C is (n − 2) × n and banded, with rows of the form

0 . . . 0 1/hj −(1/hj + 1/hj+1) 1/hj+1 0 . . . 0

(three nonzero elements) for j = 2, . . . , n − 1.
Now the minimization problem can be rewritten in matrix terms as

min(y − z)T(y − z) + (t/6)m∗TE∗m∗ subject to E∗m∗ = 6Cz. (7.4.7)

The use of Lagrange multipliers suggests computing the stationary point of the La-
grangian L,

L(z, m∗, s) = (y − z)T(y − z) + (t/6)m∗TE∗m∗ − sT(E∗m∗ − 6Cz),

7.4 Curve Fitting with Splines: Smoothing and Regression 161

which leads to the following system of equations for m∗:

(E∗ + 6tCCT)m∗ = 6Cy. (7.4.8)

To solve for the fitted values z, merely compute

z = y − tCTm∗ = A(t)y. (7.4.9)

Note that (a) the introduction of the matrix A(t) suggests that the fitted values z are
linear combinations of the observations y and (b) given t, A(t) takes the role of a hat
matrix H in regression (see Section 5.9).

The smoothing problem has now been expressed mathematically in terms of a system
of linear equations in (7.4.8), with another expression for the fitted values z. Addressing
the computations, notice that the matrix in (7.4.8) is both positive definite (symmetric)
and banded with bandwidth 5 (p = q = 2). The Cholesky factorization then requires
roughly 3n in space and O(n) time, so the vector of second derivatives m∗ can be com-
puted in O(n) time and space; computing the fitted values z requires another set of
O(n) computations but no additional space. See splsmu for the computation.

This discussion has treated the smoothing parameter t as given a priori. In some
circles, however, this has been viewed as a unknown parameter λ = t/n, to be found
from the data as the value that performs best in terms of goodness of fit. The rec-
ommended method, generalized cross-validation (GCV), is computationally very de-
manding (Hutchinson 1986; Bates et al. 1987), since it aims to minimize

GCV(λ) = n−1‖(In − A(nλ))y‖2

(n−1 tr(I − A(nλ)))2
. (7.4.10)

Generalized cross-validation requires repeated computation of the estimation matrix

A(t) = [I − 6tCT(E∗ + 6tCCT)−1C] = [I + 6tCTE∗−1C]−1, (7.4.11)

as well as its trace, while searching for the best value for t. The most effective approach
is a spectral decomposition of the matrix

CTE∗−1C = UGUT,

where G is diagonal (eigenvalues) and U is orthogonal (eigenvectors). Once this O(n3)

investment is made,
∑

(zi − yi)
2 and tr A(t) = ∑

(1 + 6tgi)
−1 can be computed di-

rectly. Note that the trace cannot be computed without O(n3) work (Exercise 7.20) for
a given value of t.

The alternative use of cubic splines as a regression function arises from viewing the
knots kj as points of change of the function. Poirier (1973) viewed the knots as points
of structural change or changes in regime. Splines fit well into this scenario, where the
underlying regression function is smooth and changes only subtly. This differs from
the smoothing splines in that the knots are fixed and known (and not very many), rather
than occurring at every abscissa xi as with the smoothing splines. The form of the re-
gression function is then the cubic spline S(x) given by (7.3.3), interpolating (kj, zj),

where the zj are unknown and serve as parameters of the problem. For any given x,

S(x) is a linear function of the fitted values zj and the second derivatives Mj ; this is
written as

162 Functions: Interpolation, Smoothing, and Approximation

S(x) = p(x)Tm + q(x)Tz. (7.4.12)

However, the other parameters Mj are linearly related to the fitted values by the spline
equation Dm = d, where the right-hand side values d are linear functions of z. Recall
that the right-hand side values of (7.3.5) can be written as Cz, where C has rows

0 . . . 0 1/hj −(1/hj + 1/hj+1) 1/hj+1 0 . . . 0.

So, for any given value of x, the value of the regression function S(x) is a linear func-
tion of the unknown parameters zj ; this is expressed mathematically as

S(x) = w(x)Tz = [6p(x)TE−1C + q(x)T]z. (7.4.13)

The statistical model for the observations (xi, yi), i = 1, . . . , N, can then be written
in the familiar form

yi = S(xi) + ei = wT
i z + ei, (7.4.14)

where the errors ei are IID with variance σ 2. The remainder of the analysis is straight-
forward regression, once the row wi of the design matrix W is formed. The important
computations are the estimates of the regression coefficients, which are the fitted val-
ues of the regression function at the knots kj, the estimate of the variance of the errors
σ̂ 2, and the matrix (WTW)−1 for the covariances of the coefficient estimates. Poirier
(1973) gave the details for computing standard errors of fitted values and predictions
as well as hypothesis tests regarding structural change. The second derivatives of the
estimated regression function can be computed using the fitted values at the knots. See
the demonstration program splrgm.

These two methods should be viewed as two extremes of a spectrum of regression
and smoothing methods using piecewise polynomials. As a more flexible alternative
to simple polynomial regression, regression splines offer changes in a higher deriva-
tive at the knots while maintaining continuity at lower levels. In both cases, we have
knots (xi, i = 1, . . . , n) that include both endpoints of the domain [x1, xn] and change
points (x2, . . . , xn−2) where a higher derivative changes. Now we also have for design
points uj , j = 1, . . . , N where the response yj is observed. For polynomial regres-
sion of degree p, we can write the fitting function as S(u) = r(u)T β where r(u) =
(1, u, u2, . . . , up)T , and so a N × (p + 1) design matrix X can be constructed with
rows r(uj)

T , j = 1, . . . , N with the goal of minimizing ‖y − Xβ‖2. Extending to
piecewise polynomials with knots, we add (n− 1) columns to the design matrix X cor-
responding to the knots to form XT , so now

r(u) = (1, u, u2, . . . , up, (u − x2)
p
+, . . . , (u − xn−1)

p
+)T

where (u)+ = max(0, u). The functions in r(u) above are sometimes referred to as the
truncated power basis for the linear space of continuous piecewise polynomial func-
tions whose (p − 1) derivatives are also continuous. The design matrix XT with rows
r(uj)

T will be N × (n + p − 1).
Basis splines, or B-splines, provide an equivalent basis for the same linear space of

functions. B-spline functions are much more complicated to compute, but they lead
to a much better-conditioned design matrix X. B-splines can be constructed beginning
with n− 1 functions of degree p = 0, which are step functions Bi1(u) = 1 if xi ≤ u <

7.5 Mathematical Approximation 163

xi+1 and zero otherwise. B-splines of higher degree can be found from the recursion
formula

Bik(u) = (u − xi)

(xi+k−1 − xi)
Bi,k−1(u) + (xi+k − u)

(xi+k − xi+1)
Bi+1,k−1(u)

and by padding with extra knots on the ends: xm = x1 for m < 1 and xm = xn for m >

n. There are n linear B-splines, n + 1 quadratic B-splines, and n + p − 1 B-splines
Bi,p+1(u), i = 1, . . . , n + p − 1 of degree p. As with the truncated power basis, these
can be used to fill a N × (n + p − 1) design matrix XB .

The tradeoff between fit and smoothness expressed in (7.4.2) can be generalized to

‖y − Xβ‖2 + λ2pβT Dβ. (7.4.15)

Ruppert et al. (2003) follows the truncated power basis parameterization with XT and
suggests diag(D) = (0p+1, 1n−2). Other choices and parameterizations lead to more
complicated nonnegative definite matrices D. In this context, the natural cubic smooth-
ing splines have p = 3, knots at all of the design points, a more complicated D, and
the natural constraint of S ′′(x1) = S ′′(xn) = 0 leads to linear constraints on β. The
natural cubic regression splines also have p = 3, the same linear constraints on β, but
D = 0. As before with smoothing splines, the solutions to (7.4.15) or its normal equa-
tions equivalent

(XT X + λ2pD)β = XT y

or for its fitted values

ŷ = A(λ)y = X(XT X + λ2pD)−1XT y

may be sought for several values of λ, which suggests similar computation to (7.4.11)
previously for smoothing splines. Construct the Cholesky decomposition XT X = LLT ,
and then compute the spectral decomposition of L−1DL−T = UGUT where G is the
diagonal matrix of eigenvalues, and U the orthogonal matrix of eigenvectors. If we
compute the QR decomposition of X (via MGS, Householder, or Givens) as X = QLT ,
then we can write

ŷ = A(λ)y = QU(I + λ2pG)−1UT QT y

and I + λ2pG is diagonal. As previously with GCV, other measures of fit require the
computation of the traces of A and AAT ; both trA(λ) = ∑

k(1 + λ2pGkk)
−1 and

trA(λ)A(λ)T =∑k(1 + λ2pGkk)
−2can be easily computed for varying values of λ.

7.5 Mathematical Approximation

Before facing the practical problem of evaluating a nonarithmetic function on a com-
puter, consider first the best approximation of a function in a mathematical sense. The
distance between two functions is measured by the Lp-norm

‖f − g‖p =
[∫

|f(x) − g(x)|pw(x) dx

]1/p

.

164 Functions: Interpolation, Smoothing, and Approximation

In this discussion, only two values of p are considered. For p = 2, the distance is
given by

d(f, g) =
[∫

|f(x) − g(x)|2w(x) dx

]1/2

.

For p = ∞, the distance is sup norm, sometimes called the Chebyshev norm,

E(f, g) = sup
x

|f(x) − g(x)|.

The former (p = 2) lends itself more readily to analytic solutions, whereas solutions
to the latter (p = ∞) problem are more applicable to computer approximations.

The problem of best L2 approximation can be simplified by introducing an inner
product between two functions,

〈f, g〉 =
∫

f(x)g(x)w(x) dx.

Generalizing the idea of the Euclidean norm to functions and using ‖f ‖2 = 〈f, f 〉, the
distance can be written as a squared length,

d(f, g) = ‖f − g‖ = [〈f − g, f − g〉]1/2.

Many of the concepts of linear algebra and Euclidean geometry can now be extended
by replacing vectors with functions and replacing the inner product aTb with 〈f, g〉.
The best approximation in L2 can then be solved by least squares.

Translating a few more concepts of linear algebra clears the path to the solution.
Linear independence of a set of functions {y(i)} means that no linear combination gives
a function of zero norm, ∥∥∥∑ aiy

(i)(x)

∥∥∥
= 0.

Two functions are orthogonal if their inner product is zero, 〈f, g〉 = 0. Completeness
of a set of orthonormal functions means that a function orthogonal to every member is
a function with zero norm.

An orthogonal basis, a set of vectors (functions) that are mutually orthogonal, is
fundamental. The difference here is that the number of dimensions can be countably
infinite. For the most important cases, the linearly independent set of functions are the
polynomials {1, x, x 2, . . . , x i, . . .}. For different domains and weight functions, the re-
sulting orthogonal polynomials can be determined. For the most common choices of
domains and weights, the polynomials and interrelationships are well known. A short
summary of useful results is given in Tables 7.1 and 7.2. Abramowitz and Stegun (1970)
included most of the well-known results; further information can be found in Szego
(1959).

These families of orthogonal polynomials also have the important property of clo-
sure: any function with finite L2-norm can be written as an infinite linear combination
of orthogonal polynomials {q(i)}. More specifically, this is expressed as a limit

lim
n→∞

∥∥∥∥f −
n∑

i=0

aiq
(i)

∥∥∥∥ = 0.

7.5 Mathematical Approximation 165

Table 7.1. Domains and weights of common
orthogonal polynomials

Domain Weight Polynomials Notation

[−1,1] 1 Legendre Pn(x)

[−1,1] (1 − x 2)−1/2 Chebyshev (1st kind) Tn(x)

[−1,1] (1 − x 2)1/2 Chebyshev (2nd kind) Un(x)

[0, ∞) exp(−x) Laguerre Ln(x)

(−∞, ∞) exp(−x 2) Hermite Hn(x)

(−∞, ∞) exp(−x 2/2) Modified Hermite Hen(x)

The coefficients ai of this approximation are called the Fourier coefficients of the func-
tion f and arise as a solution to the least-squares problem

min
ai

∥∥∥∥f −
n∑

i=0

aiq
(i)

∥∥∥∥.
Following the usual result of least squares with orthogonal variables, the coefficients
are found by the inner product ai = 〈f, q(i)〉. Computing these Fourier coefficients will
produce the best L2 approximation of a function f on a particular domain and with a
particular weight.

Before undertaking the L∞ problem, consider an interesting property of the Cheby-
shev polynomials (first kind) Tn(x). Namely, |Tn(x)| ≤ 21−n, where the maximum is
attained at n + 1 points: the endpoints and n − 1 places in between the zeros. Of all
polynomials with leading coefficient 1, Tn(x) has the smallest sup norm. It achieves
this by taking its extrema to the same value as often as possible. In this way, it op-
timizes the sup norm of the function g(x) = (x − x1)(x − x2) · · · (x − xn), which
was posed in the Section 7.2 discussion of avoiding Runge’s phenomenon with inter-
polation. This “equal wiggle” property leads to optimal Chebyshev approximation of
functions.

The solution to the least maximum (L∞) approximation problem for polynomials
can be expressed in the following theorem.

Theorem: Let f(x) be continuous on [a, b] and let p(x) be the polynomial of degree
n that minimizes

E(f, p) = max
a≤x≤b

|f(x) − p(x)|,
so that E(f, p) = En. Let e(x) = f(x)−p(x). Then there are n+ 2 points a ≤ x1 <

x2 < · · · < xn+2 ≤ b, where e(x) takes the values En or −En with alternating signs,
e(xk) = −e(xk−1).

For a proof, see Davis (1975, sec 7.6).
This result characterizes the solution to the L∞ problem, but it does not provide an

algorithm for its construction. The following example shows the mathematical diffi-
culty of even a very simple problem.

166 Functions: Interpolation, Smoothing, and Approximation

Table 7.2. Other information on common
orthogonal polynomials

Legendre Polynomials
The first few: P0(x) = 1

P1(x) = x

P2(x) = [3x 2 − 1]/2 Norm ‖Pn‖2 = 2/(2n + 1)
P3(x) = [5x3 − 3x]/2
P4(x) = [35x4 − 30x 2 + 3]/8

Recurrence formula: (n + 1)Pn+1(x) = (2n + 1)xPn(x) − nPn−1(x)

Chebyshev Polynomials (1st kind)
The first few: T0(x) = 1

T1(x) = x

T2(x) = 2x 2 − 1 Norm ‖Tn‖2 =
{

π/2 for n
= 0
π for n = 0

T3(x) = 4x3 − 3x

T4(x) = 8x4 − 8x 2 + 1

Recurrence formula: Tn+1(x) = 2xTn(x) − Tn−1(x)

Chebyshev Polynomials (2nd kind)
The first few: U0(x) = 1

U1(x) = 2x

U2(x) = 4x 2 − 1 Norm ‖Un‖2 = π/2
U3(x) = 8x3 − 4x

U4(x) = 16x4 − 12x 2 + 1

Recurrence formula: Un+1(x) = 2xUn(x) − Un−1(x)

Laguerre Polynomials
The first few: L0(x) = 1

L1(x) = 1 − x

L2(x) = [2 − 4x + x 2]/2 Norm ‖Ln‖2 = 1
L3(x) = [6 − 18x + 9x 2 − x3]/6
L4(x) = [24 − 96x + 72x 2 − 16x3 + x4]/24

Recurrence formula: (n +1)Ln+1(x) = (2n +1− x)Ln(x) − nLn−1(x)

Hermite Polynomials
The first few: H0(x) = 1

H1(x) = 2x

H2(x) = 4x 2 − 2 Norm ‖Hn‖2 = 2nn! π1/2

H3(x) = 8x3 − 12x

H4(x) = 16x4 − 48x 2 + 12

Recurrence formula: Hn+1(x) = 2xHn(x) − 2nHn−1(x)

Modified Hermite Polynomials
The first few: He0(x) = 1

He1(x) = x

He2(x) = x 2 − 1 Norm ‖Hen‖2 = n!
√

2π

He3(x) = x3 − 3x

He4(x) = x4 − 6x 2 + 3

Recurrence formula: Hen+1(x) = xHen(x) − nHen−1(x)

7.5 Mathematical Approximation 167

Example 7.3: Chebyshev or Least Maximum Approximation
Let’s find the best linear function a0 +a1x to approximate f(x) = √

x on the in-
terval (1/16,1). Taking the two endpoints to have the same difference, since we
will have three extrema we have two equations for x = 1/16 and x = 1,

a0 + a1/16 − 1/4 = E,

a0 + a1 − 1 = E.

Subtracting these two yields a1 = 4/5, and the merged equation is a0 − 1/5 =
E. Next, find the extreme point in the middle by finding the extreme point of
a0 + (4/5)x − √

x, which has a zero derivative at x = 25/64. This leads to a
new equation with this extreme point taking the value −E,

a0 + (4/5)(25/64) − 5/8 = −E.

Combined with the former result, this leads to the solution a0 = 41/160 and E =
9/160.

The methods used to find least maximum approximations for either polynomials or
rational functions are variations on what is called “the second algorithm of Remes.”
To generalize further, weights should be included for the solution to the more general
problem,

min
p,q

max
x

|f(x) − p(x)/q(x)|/w(x),

to allow for absolute error with w(x) = 1 and for relative error with w(x) = f(x).

These methods are all heuristic, iteratively trying to force the “equal wiggle” property
of the error. Cody, Fraser, and Hart (1968) proposed the following iterative solution to
the equations

p(xi) − q(xi)f(xi) = (−1)iEw(xi)q(xi) (7.5.1)

for estimated extreme points {xi, i = 1, . . . , r}. If p and q are polynomials of degree m

and n, then r = m+n+2. The Cody et al. approach involves writing the denominator
polynomial as q(x) = 1+ q∗(x) in order to isolate the nonlinearity in these equations:

p(xi) − q(xi)f(xi) − (−1)iEw(xi)q
∗(xi) = (−1)iEw(xi). (7.5.2)

Now, given {xi, i = 1, . . . , r}, both w(xi) = wi and f(xi) = fi are fixed. Replacing
E on the left-hand side of (7.5.2) with the value Eold from the previous iteration leads
to a system of linear – yes, linear – equations (r = m+n+2 of them) in the m + n +1
coefficients and one more for E (from the right):

p(xi) − q∗(xi)fi − (−1)iEoldwiq
∗(xi) − (−1)iEwi = fi. (7.5.3)

Once these values are found, the roots of f(x) = p(x)/q(x) are then found and used
to find the extrema {xi, i = 1, . . . , r} for the next round. The modified equations
(7.5.3) are then solved again to find new coefficients and a new value of E. In practice,
this heuristic method either converges quickly to the least maximum solution or fails

168 Functions: Interpolation, Smoothing, and Approximation

quickly when no solution exists. Their algorithm is named “Chebyshev” and was used
to compute many approximations in the landmark volume by Hart et al. (1968). Other
heuristic approaches aim to solve the nonlinear equations (7.5.1), which can also apply
to other, nonlinear, approximations (see Monahan and Stefanski 1992).

7.6 Practical Approximation Techniques

As mentioned previously, the computer can perform only the simple arithmetic opera-
tions. How then, one might ask, can we compute tanh−1(r)? Within every black box for
the square root or logarithm resides a body of instructions that employ only addition,
subtraction, multiplication, and division. Most of the time, library routines are avail-
able to compute the trigonometric functions, logs, exponentials, and square and cube
roots. Occasionally, the gamma and error functions are not available and so the task
of constructing approximation routines must be faced. In some software systems (e.g.,
SAS, GAUSS, S), most of the probability functions, such as the incomplete gamma
and beta functions, will also be included. Even so, whenever we strain our available
computational tools we must know how they work in order to know their limits. This
discussion will focus on two important functions – the square root s(x) = √

x and
the gamma �(x) functions – examining how these approximations are done and where
their limits may be.

The mathematical definition of a function, a computing formula, and a practical al-
gorithm for its evaluation on a computer are all very different. Defining the gamma
function as an integral, or as the limit of an infinite product, does not express a practical
method of evaluation when the only tools available are arithmetic ones. A computing
formula, such as a power series expansion, may express mathematically a method of
evaluation using arithmetic operations. But because of the realities of finiteness and
roundoff error, computing formulas should still be considered mathematical abstrac-
tions. For the construction of a practical algorithm, these computing formulas often
serve a vital role of a starting point from which “exact values” can be computed –
values that can be made as accurate as desired. From a mathematical viewpoint, all
computational methods are approximations.

The practical evaluation of a function on a computer requires constant attention to
efficiencies and specifications. We seek an algorithm to compute a given function that
is fast, requires little storage and code, but still achieves a given level of accuracy. The
specifications for a library function are that it should produce a logical result (which
may include an overflow) for every argument for which it is defined. Moreover, the
result produced should be completely accurate – or as accurate as could be expected.
For the square root function, there may be many numbers whose square gives the argu-
ment when rounded. Any one of them should be considered completely accurate, and
anything less than these specifications should be referred to as only an approximation.
Constructing a routine to meet this library standard is a burdensome task. Moreover,
for some difficult problems, even constructing a good approximation can be quite dif-
ficult, and the resulting code can vary in speed by a factor of 10, depending on the
argument.

7.6 Practical Approximation Techniques 169

In the practical design of algorithms for computing nonarithmetic functions, range
reduction is the most effective tool for saving work. If an algorithm were available to
compute s(x) = √

x only on the interval (1/2,1), then applying the simple relation
s(4x) = 2s(x) extends the range to include (2, 4). Then the relation s(2x) = s(2)s(x)

can be applied to fill in (1, 2), once s(2) is computed; this approach can be extended to
cover the whole positive axis. Range reduction can be easily exploited, especially for
binary floating point arithmetic. Since x can be expressed as a2k with 1 ≤ a < 2, the
range is already reduced to that of the fraction. The exponent is then halved, and the
remainder when k is odd included with the fraction producing s(2)s(a).

Having reduced the range of the argument to the interval (1/2,1) an effective com-
puting formula can be obtained from Taylor’s expansion of s(x) around 1,

s(x) = 1+(1/2)(x−1)−(1/8)(x−1)2+(1/16)(x−1)3−(5/128)(x−1)4 · · · . (7.6.1)

Denote the expansion including terms to (x − 1)n as sn(x), and notice that sn(x) con-
verges uniformly in x to s(x). Finding the value of n such that E(sn, s) < U, the
machine unit, appears to have solved the problem of approximating the square root
function s(x). However, two important items have not yet been considered. One pos-
sible problem is that roundoff error, especially from cancellation in the alternating
series, may prevent computational achievement of such a small approximation error.
The second consideration is the possibility of doing better for the same effort – the
same number of multiplications and additions. Toward this end, consider the follow-
ing simple alternatives to s2(x) that can be considered, each taking two multiplications
and two additions.

(1) Interpolate s(x) at three points chosen according to Chebyshev interpolation.
(2) Find the least maximum approximation among quadratic polynomials using the

methods of Section 7.5.
(3) Find the best rational function approximation with degrees 1 and 1, again using

the methods of Section 7.5. (A division costs nearly the same as a multiplica-
tion.)

There are certainly other alternatives that could be entertained (see e.g. Fike 1968,
p. 25). Some will be more accurate computationally; others will be very easy or very
hard to find. But considering the requirements of a library function – small storage
and high speed with impeccable accuracy – the techniques of approximation by poly-
nomials and rational functions with range reduction can rarely be improved upon.
Considering the nearly limitless number of times the square root function will be
called, an extensive initial investment is justified in determining the best computational
algorithm.

Hastings (1955) found a number of rational function approximations to the common
functions; according to legend, these were found by eyeball and trial and error. Many
of these remarkably effective approximations were listed in Abramowitz and Stegun
(1970). Fike (1968) described the various mathematical techniques for constructing
approximations, compiling a great variety of work to that point in time. Following a
single approach, Hart led a systematic effort of computing and publishing a long list of
best uniform rational function approximations for many common functions (Hart et al.

170 Functions: Interpolation, Smoothing, and Approximation

1968). Their method was the “Chebyshev” algorithm mentioned in Section 7.5. These
coefficients have been tabled – along with the maximum relative or absolute error – for
square and cube roots, exponential and hyperbolic functions, trigonometric functions,
and gamma and error functions. To show how this work can be applied, consider the
implementation for the gamma function.

Range reduction for the gamma function �(x) follows the formula �(x + 1) =
x�(x), but it cannot be exploited as easily as the square root. For large values of x,

Stirling’s approximation can be used more effectively than the range reduction. Fol-
lowing Hart et al. (1968), for 41choices of m and n, the coefficients for rational function
approximations and their errors are tabled for the interval [2, 3]. For the infinite inter-
vals [8, ∞) and [12, ∞), rational function approximations are given for the correction
θ(x) to Stirling’s approximation to ln �(x),

θ(x) = ln �(x) − [(x − 1/2) ln x − x + ln
(√

2π
)]

. (7.6.2)

Now some planning is necessary. The gamma function grows very fast, exceed-
ing the range for real numbers for modest values of the argument; hence flags for both
overflow and negative integers are required. One may decide not to permit negative
arguments at all. The log of the gamma function, however, is rather stable, although
Stirling’s approximation will not work well for small values. Two modules are then re-
quired: one for �(x), usually called GAMMA; another for ln �(x), usually called ALGAMA.
For small and modest values of the argument, range reduction reduces the problem to
computing �(x) for the interval [2, 3]. For ALGAMA, this result is then logged. For large
values of the argument x, the correction θ(x) is computed and then Stirling’s approxi-
mation is used to compute ln �(x). For GAMMA, this result is then exponentiated, except
for when it will overflow. This last step is precarious, since a small relative error can
be severely amplified (recall Exercise 2.16). See the demonstration of gamma for an
updated version of an implementation written by the author when he was a graduate
student.

One of the essential lessons to be learned here is that writing such library rou-
tines is difficult and tedious – a problem that should not be sought out. (Necessity
has forced such efforts upon the author; usually the need is subsequently questioned.)
Other lessons involve understanding that (a) these library routines are nothing magi-
cal, (b) the routines have their limitations and shortcomings, and (c) these problems
must be kept in mind in everyday use.

7.7 Computing Probability Functions

Whereas many computers and calculators provide approximations for the common
(nonarithmetic) mathematical functions – square root, trigonometric functions, and
log and exponential functions – such facilities are not regularly supplied for the dis-
tribution functions used in statistics, such as normal, t, F, chi-square, Poisson, and
binomial. However, most commercial software libraries for scientific computation in-
clude routines for computing these functions: the NAG library, IMSL’s SFUN/ LIB,
as well as collections such as FUNPACK and the ACM algorithms. Other software

7.7 Computing Probability Functions 171

systems – such as SAS, R, and GAUSS – have most of the probability functions.
Maintained libraries are generally quite reliable, but one should still check the results
of these routines whenever their accuracy is being severely challenged. Keep in mind
also that, for the more difficult problems, an accurate approximation (of, say, an in-
complete gamma function) may require orders of magnitude more computation than
for the evaluation of a trigonometric function.

Because the accuracy specifications for library routines often grossly exceed what
may be needed for statistical applications, approximations of varying quality have con-
siderable appeal. For the common statistical distributions (Student’s t, chi-square, and
F), the usual computational approach is to devise corrections to the asymptotic normal
approximation. Since these functions now have two or three arguments, the accuracy
that was available with rational function approximation can no longer be achieved
without completely exploiting the behavior of the function. Ling (1978) compared the
accuracy of a number of methods for computing tail probabilities for t, chi-square, and
F distributions.

The mathematical definitions of the functions to be discussed here are well known
from a statistical viewpoint: distribution functions with well-known density func-
tions. As previously noted, the mathematical definition is often not very valuable in
computation. Computational formulas are needed – usually taking the form of power
series, asymptotic approximations, or continued fractions. For the common func-
tions, the best source for such formulas is Abramowitz and Stegun (1970), whose
numbers will be cited without further reference. For the less common functions,
such formulas are part of the study of the topic (e.g., the Smirnov distribution in
nonparametrics).

Note that, in nearly all cases, the focus is on the tail of the distribution. The rea-
soning is that (a) the values of statistical interest are in the tails, not the center, and (b)
evaluating in terms of the cumulative distribution function cannot give great accuracy,
because the numbers are all near unity and blindly subtracting from 1 risks serious can-
cellation error.

(A) Normal Distribution

The central distribution to all statistics is the normal distribution, whose density func-
tion is denoted by φ and distribution function by �(x). The function � is related to
the more common error function “erf” as follows:

�(x) = [erf
(
x/

√
2
)+ 1

]
/2 = erfc

(−x/
√

2
)
/2. (7.7.1)

Recall that �(−x) = 1−�(x) and erfc(u) = 1−erf(u). Abramowitz and Stegun gave
power series expansions (their 26.2.1 and 26.2.11) as computing formulas for �(x),

but they are not as effective as the continued fractions (their 26.2.14 and 26.2.15):

1 − �(x) = φ(x)/(xg(x 2)), (7.7.2)

�(x) = 1/2 + φ(x)h(x), (7.7.3)

172 Functions: Interpolation, Smoothing, and Approximation

where

g(w) = 1 + w−1

1 + 2/w

1 + 3/w

1 + · · ·

and h(x) = x

1 − x 2

3 + 2x 2

5 − 3x 2

7 + 4x 2

9 + · · ·

.

The first expression (7.7.2) is best for larger values of x (say, x > 1.3); (7.7.3) is better
for x near zero.

The error function and its complement are commonly part of the Fortran libraries,
appearing as often as the gamma function. Both functions are needed, since using
(7.7.1) for large negative x will yield substantial cancellation. The error function and
its complement are usually computed using rational function approximations for in-
tervals, and corrections are provided to asymptotic formulas for the tails. Recall that
a similar strategy was followed for the gamma function in Section 7.6. When high
accuracy is not required and if erf and erfc are not available, the Hastings (1955) ap-
proximations are recommended; Abramowitz and Stegun listed several (26.2.16–23).
A number of simple approximations have been proposed and are often suggested for
hand calculators. A more recent one by Vedder (1993), following the spirit of the lo-
gistic distribution, gives

�(x) ≈ [1 + exp(−ax − bx3)]−1, (7.7.4)

where a = 2
√

2/π and b = √2/π(4 − π)/(3π). See the demonstration normals for
some comparisons.

(B) Logarithm of the Normal Distribution Function

Although erf and erfc can be used to compute �(x) for most applications, the accu-
racy (for large |x|) when computing ln �(x) is lost. For large values of x, ln �(x) ∼
x−1φ(x) whereas using erf would entail the log of a quantity near 1 and a consequent
loss of significant digits. For large negative values, ln �(x) ∼ −x 2/2 yet erfc would
encounter underflow very quickly. In these cases, the accuracy is lost in storing the
intermediate quantities. One route is to recode: in the former case, express the inter-
mediate quantity as 1 − d and then compute ln(1− d) as a power series that converges
quickly. However, the latter case requires a correction for the asymptotic formula
that is not readily available. For these reasons – and for improved speed – the author
(Monahan 1981) devised a direct approximation for ln �(x), called ALNPHI, which is
included in the demonstration normals.

(C) Student’s t Distribution

For the Student’s t distribution, let Q(t | k) denote the tail probability for k degrees of
freedom,

Q(t | k) = Pr(X > t | X ∼ Student’s t with k df).

7.7 Computing Probability Functions 173

Note that, for integer values, Q(t | k) can be evaluated analytically using the formu-
las (26.7.3 and 26.7.4) given by Abramowitz and Stegun, whose evaluation effort is
proportional to k:

Q(t | k)

=

1
2 − θ

π
, k = 1,

1
2 − 1

π

{
θ + sin θ

[
cos θ + 2

3 cos3 θ + · · · + 2×4×···×(k−3)

1×3×···×(k−2)
cosk−2 θ

]}
k odd,

1
2 − sin θ

{
1 + 1

2 cos2 θ + 1×3
2×4 cos4 θ + · · · + 1×3×···×(k−3)

2×4×···×(k−2)
cosk−2 θ

}
k even,

(7.7.5)

where tan θ = t/
√

k or θ = arctan
(
t/

√
k
)
. Note the potential for cancellation for large

values of t/
√

k; particular care needs to be taken, which may include reworking the
arctan calculation. For exact evaluation with large values of k, an alternative represen-
tation that uses the incomplete beta function,

Q(t | k) = 1
2Ix(k/2, 1/2) for x = k/(k + t 2), (7.7.6)

would be preferred. The incomplete beta function Ix(·, ·) will be discussed further in
the context of the F distribution.

For more accurate results, in particular for large values of t, the first step is avoiding
some of the trigonometric evaluations. Notice that if θ = arctan

(
t/

√
k
)

then

sin(θ) = 1/
√

1 + k/t 2 and cos(θ) = (√k/t
)/√

1 + k/t 2,

so Q(t | k) can be computed for k even without sine and cosine. Write w = k/t 2;
then, for even k we have

Q(t | k) =
√

1 + w − B

2
√

1 + w
, where B =

n/2−1∑
j=1

cj

(
w

1 + w

)j

(7.7.7)

with cj = (2j − 1)cj−1/(2j) and c0 = 1. A similar expression obtains for k odd:

Q(t | k) = 1

π

[
π

2
− arctan

(
t√
k

)
−

√
w

1 + w

(n−3)/2∑
j=1

djw
j

]
, (7.7.8)

where dj = 2jdj−1/(2j + 1) and d0 = 1. Now, for very large t and small w, serious
cancellation occurs in both cases. For even k, however, expand

√
1 + w in a power

series as in (7.6.1),
√

1 + w = 1 + 1
2w − 1

8w2 + 1
16w3 − 5

128w4 + 7
256w5 − · · · ;

then the subtraction in the numerator
√

1 + w − B of (7.7.7) is done matching powers
of w. (Notice that analytic cancellation is not possible.) For (7.7.8) (k odd), expand in
another power series,

π

2
− arctan

(
t√
k

)
= 1√

w

[
1 − w

3
+ w2

5
− w3

7
+ w4

9
− · · ·

]
,

174 Functions: Interpolation, Smoothing, and Approximation

but then multiply by (1 + w) and cancel analytically the coefficients of like powers of
w. See the demonstration program ttail, as well as Exercises 7.36 and 7.37.

(D) Chi-Square, Poisson, and Incomplete Gamma

For the chi-square distribution, let Q(x | m) denote the tail probability for m degrees
of freedom,

Q(x | m) = Pr(X > x | X ∼ chi-square with m df).

For integer values of m, Q(x | m) can be found analytically; however, since the num-
ber of terms increases with m, this route is seldom practical. This result follows from
its relationship with the Poisson,

Pr(Y < j | Y ∼ Poisson(λ)) = Q(λ/2 | j).

Abramowitz and Stegun gave two power series expansions, neither of which can be
used blindly. For high accuracy, Gautschi (1979) gave algorithms for computing the in-
complete gamma function �(m, x), which is related to the chi-square tail by the identity
Q(x | m) = 1−�(m/2, x/2)/�(m/2). For computing the incomplete gamma function,

�(a, x) =
∫ x

0
t a−1e−t dt, (7.7.9)

Gautschi broke the problem down into three parts. For small x (x < 1.5) and smaller
a, he suggested using an alternating power series:

�(a, x) = �(a) − xa

a
− xa

∞∑
j=1

(−x)j

(a + j)j!
.

For a < x, he suggested a rewritten form of the continued fraction due to Legendre:

�(a, x) = (x + 1 − a)−1xae−x

1 + α1

1 + α2

1 + α3

1 + · · ·

, where αj = j(a − j)

(x + 2j − 1 − a)(x + 2j + 1 + a)
.

For a > x, Gautschi suggested the power series for the tail:

1 − �(a, x)

�(a)
= xae−x

∞∑
0

xj

�(a + j + 1)
.

These methods are implemented in two forms, pgamma for �(a, x)/�(a) and the com-
plementary qgamma for 1 − �(a, x)/�(a).

For approximations, the most common is the Wilson–Hilferty,

Q(x | m) ≈ 1 − �

{
(x/m)1/2 − (1 − 2/(9m))

2/(9m)

}
, (7.7.10)

which is accurate for large values of m.

7.7 Computing Probability Functions 175

(E) F and Beta Distributions

Before relating these two distributions, first define

Q(x | m1, m2) = Pr(X > x | X ∼ F with m1 and m2 df).

Then the tail probability is related to the incomplete beta function by

Q(x | m1, m2) = Iy(m2/2, m1/2) for y = m2/(m2 + xm1), (7.7.11)

where Pr(Y ≤ y | Y ∼ beta(a, b)) = Iy(a, b) is the incomplete beta integral

Iy(a, b) = �(a + b)

�(a)�(b)

∫ y

0
t a−1(1 − t)b−1 dt (0 < a, 0 < b, 0 ≤ x ≤ 1). (7.7.12)

Exact formulas are available for integer a and b (or even m1 and m2), but the ef-
fort will be proportional to the smaller of the pair of arguments. Accurate evaluation of
the incomplete beta function is a difficult task. For values of b below 1, the following
power series is effective:

Iy(a, b) = �(a + b)

�(a + 1)�(b)
ya

[
1 + a

∞∑
j=1

(1 − b)(2 − b) · · · (j − b)y j

j! (a + j)

]
. (7.7.13)

A reduction–duplication formula can be used to reduce b below 1 while increasing a:

Iy(a, b) = �(a + b)

�(a + 1)�(b)
ya(1 − y)b−1 + Iy(a + 1, b − 1). (7.7.14)

DiDonato and Morris (1992) gave an improved version of a continued fraction expres-
sion for large values of a and b:

Iy(a, b) = �(a + b)

�(a)�(b)

ya(1 − y)b

β0 + α1

β1 + α2

β2 + α3

β3 + · · ·

,

where

β1 = a

a + b
(λ + 1), λ = a − (a + b)y,

αj = (a + j − 1)(a + b + j − 1)

(a + 2j − 1)2
j(b − j)y2,

βj = j + j(b − j)y

a + 2j − 1
+ a + j

a + 2j + 1
[λ + 1 + n(2 − y)].

176 Functions: Interpolation, Smoothing, and Approximation

The power series method works best for small values of y, and the continued fraction
works best for y < a/(a + b). For other situations, a reflection–symmetry relation is
employed:

Iy(a, b) = 1 − I1−y(b, a). (7.7.15)

Thus, the grand strategy is to (i) use the continued fraction when both a and b are
large (> 20) and (ii) use (7.7.14) to reduce b below 1 and then use the power series
method. With one caveat, this approach works reasonably well and is implemented in
bratio. That caveat regards the difficult situation with large values of a, small b, and
large y (or the complement: small a, large b, and small y). Slow convergence of the
power series can be avoided using reflection (7.7.15), but only to face major loss in ac-
curacy due to cancellation. This situation is so bad that DiDonato and Morris return
both pieces, Iy(a, b) and 1− Iy(a, b), as well as constructing a special method for this
case. The code in bratio does not achieve the precision of other codes in this chapter,
since that pursuit would merely lead to reproducing the algorithm of DiDonato and
Morris (1992). Bosten and Battiste (1973) gave an effective algorithm for computing
the incomplete beta function that also employs the power series method and a reduction
formula, but it can be slow for large values of a and b. Majumder and Bhattacharjee
(1973) coded a method of Soper (1921), employing the reduction formula (7.7.14) but
using a slower method based on the relation

Iy(a, b) = �(a + b)

�(a + 1)�(b)
ya(1 − y)b + Iy(a + 1, b), (7.7.16)

essentially increasing a until Iy(a + k, b) vanishes.

(F) Inverse Normal

For most cases, the percentile points of a distribution are usually found by computing
the root to the equation P(x) = u; these problems will be faced in Chapter 8. For the
normal distribution, however, there is considerable call for computing �−1(u). Odeh
and Evans (1974) found a rational function approximation in the transformed variable
y = √−2 log u of the form

�−1(u) ≈ y + p(y)/q(y).

Bailey (1981, in the same journal but without reference to Odeh and Evans) proposed a
two-piece approximation based on the same transformation. One advantage of Vedder’s
(1993) simple approximation normal distribution function (7.7.4) is that the inverse is
not terribly complicated:

�−1(u) ≈ −2
√

A sinh

{
sinh−1

(
B

A
√

A

)/
3

}
, (7.7.17)

where A = a/(3b) and B = (1 − u)/(2ub).

Programs and Demonstrations 177

(G) Bivariate Normal

Among the many functions encountered in statistics, the last to be discussed here is the
bivariate normal distribution function:

P(x, y, r) = Pr(X ≤ x, Y ≤ y | X, Y ∼ N(0,1), cov(X, Y) = r).

A simple power series expansion in the correlation r exists (Abramowitz and Stegun,
26.3.29), but it is notoriously slow in converging for large values of r. Dresner (1978)
gave a clever method that can be used at any level of accuracy. Using three different
identities, Dresner converted all cases to a double integral over the whole first quad-
rant of a function that can be shown to be bounded between 0 and 1. Integration by
a product Gauss–Laguerre quadrature formula (see Chapter 10) gives higher accuracy
for additional evaluations. A product 5-point rule (25 evaluations) gives more than
six digits; four times as much effort (10-point rule) yields nearly twelve digits. Dres-
ner and Wesolowsky (1990) made some marginal improvements. Divgi (1979) took a
completely different direction, expressing the probability in terms of triangular sector
(following a route of Ruben 1961) and then finding an accurate approximation for an
integral therein. See the demonstration bvnrml for a comparison of the two methods.

Programs and Demonstrations

runge1 Demonstration of the Runge phenomenon from interpolation at equally
spaced points
Using equally spaced points on (−4, +4), a polynomial interpolating the function
z(x) = 1/(1+x 2) is found by solving a system of linear equations using gauspp and
gausse. The routine gaucpp also gives a condition estimate described in Chapter 3.

runge2 Contrasting performance of polynomial interpolation
In contrast to runge1, the interpolant is determined by the roots of the Chebyshev
polynomials Tn(x), xi = cos

(
2i−1
2n

π
)
. The same function is used and the same com-

putation route is followed.

splint Contrasting performance of spline interpolation
In contrast to runge1 and runge2, the cubic spline interpolation is used on the same
function z(x) on equally spaced points in the interval (−4, +4) following the meth-
ods described in Section 7.3.
splstn – subroutine to solve (7.3.8) for the second derivatives Mj with natural spline
conditions.
splstd – subroutine to solve (7.3.8) for the second derivatives Mj with derivative
conditions.
strids – solves a tridiagonal system of equations using banded Gaussian elimination.
splev – evaluates the interpolatory cubic spline function S(x).

jfind – given x, finds the appropriate interval Ij ; used by splev.

splsmu Test /demonstration of smoothing splines
Eubank (1988, pp. 271–2) gave an example of smoothing splines with n = 72 ob-
servations, stating that the value λ = 1.38 minimizes the GCV criterion (7.4.10)

178 Functions: Interpolation, Smoothing, and Approximation

(but uses λ = .699163). In this problem, the observations are equally spaced in x

(time) with hj = 1, making the problem relatively easy. The smoothing spline is
found by two computational routes. The first route is a demonstration of the routine
splsmu. The second route takes advantage of the simple structure arising from the
equal spacing, leading to constant bands on the matrix (E∗ +6tCCT) of (7.4.8) with
the diagonal 4 + 36t : first, super/sub 1 − 24t; second, super/sub diagonal 6t. This
matrix is then Toeplitz and so the methods of Section 3.5 can be employed; thus,
the second route is to use the Levinson–Durbin algorithm. These two quite differ-
ent methods agree on this rather large problem in single precision, but they disagree
somewhat with Eubank’s results. (I shall resist the temptation to speculate on the
reasons, stating only that I would tend to rely on my own results.)
splsmu – subroutine to compute fitted values z and second derivatives m for smooth-
ing splines.
levdrb – Levinson–Durbin algorithm described in Chapter 3.
eppright.dat – data used in Eubank’s example, from Eppright et al. (1972).

splrgm Test /demonstration program of interpolatory cubic spline regression
Poirier (1973) gave an example of the average speed of the winners of the Indianapo-
lis 500 races for the years 1911–71 (excepting the war years 1917–18 and 1942–45).
These interruptions also may be points of technological change, and so four knots
are used in his analysis – at years 11, 17.5, 43.5, and 72. The estimates of fitted values
at the knots are computed, along with their estimated covariance matrix and the es-
timates of the second derivatives there. Also computed is the error sum of squares
from two routes.
splrgm – computes estimates of fitted values and second derivatives for regression
splines. (Uses chlzoi and rot734, Givens rotations.)
indy500.dat – winning speeds for the Indianapolis 500 for 1911–71.

gamma Test /demonstration of gamma and log of the gamma function
The gamma function routine GAMMA and the natural log routine ALGAMA are tested by
computing values that appear in Tables 6.1, 6.3, and 6.4 of Abramowitz and Stegun
(1970). See the file dgamma for a double precision version (dgamma and dlgama).
gamma – computes gamma function for positive arguments.
algama – computes the natural logarithm of the gamma function for positive
arguments.

normals Comparison of methods to compute the normal distribution function
Several routines are evaluated in three different comparisons. Two routines for the
�(x) and 1−�(x) are given: one pair (of library quality) uses rational function ap-
proximations from Hart et al. (1968); the other pair uses the simple approximation
of Vedder (1993). The algorithm for log(�(x)) (Monahan 1981) is also tested and
compared. The first test is to produce a simple table. Next the tail probabilities from
alnphi are checked against Table 26.2 in Abramowitz and Stegun. Finally, some
random arguments are generated so that the various routines can be compared.
cdfn – computes the normal distribution function to library quality.

Exercises 179

cdcn – computes the complement of the normal distribution function, 1 − �(x);
companion to cdfn.
cdfved – computes the normal distribution function using Vedder’s approximation.
cdcved – computes the complement of the normal distribution function, 1 − �(x);
companion to cdfved.
alnphi – computes the natural logarithm of the normal distribution function.

ttail Test /demonstration program for Student’s t tail probabilities
Reproduces Abramowitz and Stegun’s table of t critical values using secant search.
Implemented in double precision only.
ttail – computes complementary distribution function (1 − F) of Student’s t distri-
bution.
secant – secant root-finding code; see Section 8.3.

pgama Test /demonstration for incomplete gamma function
Compares results for integer values of a to analytic results, and computes gamma
ratio and complement for several values of a and x for comparison. The file pdgama
has a double precision version of the code (pdgama and qdgama), as well as dlgama.
pgama – computes incomplete gamma ratio �(a, x)/�(a) using methods of Section
7.7(E).
qgama – computes complementary incomplete gamma ratio, 1 − �(a, x)/�(a).

algama – computes log of gamma function.

bratio Test /demonstration of incomplete beta function
Uses methods as described in Section 7.7(E) for computing the incomplete beta
function. Also uses algama for computing log of the gamma function.
bratio – computes incomplete beta function.

bvnrml Computes bivariate normal probabilities
Two algorithms are compared here, one by Dresner (1978) and one by Divgi (1979),
that employ quite different methods; but the results compare well. Both methods
use cdfn for �(x).

p2norm – controlling routine for Dresner’s method; employs reproduction formulas.
q2norm – part of Dresner group of routines; called by p2norm; calls phihkr.
phihkr – core routine of Dresner’s method that does the numerical integration.
pdivgi – controlling routine for Divgi’s method; calls rubenw.
rubenw – computes Divgi’s approximation to Ruben’s W function.

Exercises

7.1 Given F1, F2, F3 and F0 = 0, find the derivative at the origin of the cubic interpolant of
the points (i, Fi) for i = 0,1, 2, 3.

7.2 Interpolate the square root function at x = 1/4, 1/2, and 1 with a quadratic function.

7.3 Interpolate the square root function at x = 1/4, 1/2, and 1 with a rational function that is
linear in both numerator and denominator.

180 Functions: Interpolation, Smoothing, and Approximation

7.4 From a table of F critical values for ν1 = 3 degrees of freedom and for three values of
v2 = 60, 120, and ∞ df, we have (respectively) 2.76, 2.68, and 2.61. Find the critical
value for ν2 = 75 df by three methods: (a) linear interpolation on ν2; (b) linear interpo-
lation on 1/ν2; (c) quadratic interpolation on 1/ν2.

7.5 Given the following table values, find xp such that �(xp) = .99 by linear and quadratic
inverse interpolation.

x �(x)

2.3 .98927589
2.4 .99180246
2.5 .99379033

7.6 The following table gives t critical values for .01, .005, and .0005 for certain values of
degrees of freedom. Interpolate the following t table for 40 df in two ways, once with
df as the variable and once for 1/df. Which method gets closer to the correct values of
2.423, 2.704, and 3.551?

Level

df .01 .005 .0005

30 2.457 2.750 3.646
60 2.390 2.660 3.460

120 2.358 2.617 3.373
∞ 2.326 2.526 3.291

7.7 Fuller (1996, p. 363) gave tables for the critical values of Fisher’s periodogram test statis-
tic Y, which is the maximum of m χ2

2 random variables divided by their average. For one
test level, interpolate this table to obtain critical values for m = 25. Which method gets
closer to the correct values of 5.130, 5.701, and 6.955?

Level

m .10 .05 .01

20 4.862 5.408 6.594
30 5.346 5.935 7.237
40 5.681 6.295 7.663

7.8 Fuller (1996, p. 364) also gave the exact distribution function for Fisher’s periodogram
test statistic cited in Exercise 7.7:

1 − F(y) =
k∑

j=1

(−1)j−1

(
m

j

)(
1 − jy

m

)m−1

, where k =
[

m

y

]
and y ∈ [1, m].

Discuss the difficulties in its computation; then write an algorithm to compute them and
check your results from that exercise.

7.9 Compare your code in Exercise 7.8 to the approximation given by Bloomfield (1976,
p. 112):

F̂(y + log m) = exp(−e−y).

Exercises 181

7.10 Interpolate the logarithmic function at the integers 1 through n; use the general formulas
or solve a system of equations. Does this problem display the Runge phenomenon?

7.11 Following Examples 7.1 and 7.2, find the rational function interpolant at equally spaced
points on (−4, +4) using (7.2.6). Does this interpolant exhibit the Runge behavior?

7.12 Verify equation (7.3.2) by showing that S ′′ is linear and S ′′(xj) = Mj.

7.13 Obtain (7.3.3) from (7.3.2), and show that S(xj) = zj .

7.14 Find the derivative of the cubic spline given by (7.3.3). Write a routine for its evaluation
following the form of splev.

7.15 Using your solution to Exercise 7.14, compare the derivative of the spline found in splint
with the derivative of the function interpolated, z ′(x) = −2x(1 + x 2)−2.

7.16 Using the solution to Exercise 7.14, check the accuracy of spline derivatives given by
(7.3.10) for k = 0,1, 2.

7.17 Show that
∫ |S ′′(x)|2 dx = (1/6)m∗T E∗m∗.

7.18 Suppose we integrate a cubic spline interpolant from x1 to xn. What is the value in terms
of zs and xs?

7.19 Taking the smoothing parameter t to zero in (7.4.1) forces interpolation of the smoothing
spline. What happens as t → ∞? Describe the resultant regression problem, taking the
easy case of equally spaced points.

7.20 Let A be a banded positive definite matrix with bandwidth p, and let b be a vector with
all elements zero excepting just one nonzero element. How much work does it take to
compute bTA−1b?

7.21 Compute the 5 × 5 matrix V whose elements are Vij = 〈xi−1, xj−1〉 = ∫ 1

−1
xi+j−2 dx.

Have you seen this matrix before?

7.22 Compute the Cholesky factor of the matrix V found in Exercise 7.21. Relate this to the
Legendre polynomials in Table 7.2.

7.23 Expand ex in terms of Legendre polynomials to at least P3(x).

7.24 Write code to compute the Wallis function

�
(

1
2 (k + 1)

)
�
(

1
2

)
�
(

1
2 (k + 2)

)
for integer k. What is the behavior as k → ∞?

7.25 Compute the best L2 approximation by a polynomial of degree 2 to the square root func-
tion on the interval [1/2,1].

7.26 Compute the best L∞ approximation by a polynomial of degree 2 to the square root func-
tion on the interval [1/2,1].

7.27 Why should sqrt(x) be preferred to x**0.5 as a way to compute a square root?
7.28 Write an algorithm to compute the approximation in Exercise 7.23 using the recursive

formula given in Dahlquist and Bjorck (1974, sec. 4.4.3). This formula makes an orthog-
onal series expansion as fast as Horner’s method for any polynomial.

7.29 Economizing Power Series. Define s4(x) as the fourth-degree polynomial approxima-
tion from the power series expansion (7.6.1). Approximate s4(x) further by a quadratic

182 Functions: Interpolation, Smoothing, and Approximation

by substituting (3/4)(x − 1) for (x − 1)3 and (x − 1)2 − 1/8 for (x − 1)4; compare the
quadratic approximation that follows from these substitutions to the Chebyshev approx-
imation from Exercise 7.3. (These substitutions arise from the minimum norm property
of Tn(x): T3(u) = u3 − (3/4)u and T4(u) = u4 − u2 + 1/8.)

7.30 For a fixed level of accuracy – say, 10−6 – how many steps are needed in the continued
fractions g and h of (7.7.2) and (7.7.3) for various values of the arguments?

7.31 The correction θ(x) in (7.6.2) for Stirling’s formula has the series expansion

θ(x) = 1

12x
− 1

360x3
+ 1

1260x5
− 1

1680x7
+ · · · + B2m

2m(2m − 1)x 2m−1
+ · · · ,

where the higher terms (not needed for this exercise) involve Bernoulli numbers Bk.

Computing a least maximum approximation on an infinite interval such as [8, ∞] seems
forbidding until you consider changing variables to u = 1/x. Find a least maximum ap-
proximation for θ(x) using just two constants.

7.32 Draw a graph of the error, both absolute and relative, in Vedder’s approximation (7.7.4).

7.33 Lew (1981) gave another simple approximation to �(x):

1 − �(x) ≈
{

1/2 − (x − x3/7)/
√

2π for 0 ≤ x ≤ 1,

(1 + x)φ(x)/(1 + x + x 2) for x > 1.

Compare this approximation with Vedder’s. Which do you prefer?

7.34 Verify the inverse of Vedder’s approximation (7.7.17).

7.35 Compare Odeh and Evan’s (1974) formula for �−1(u) to Vedder’s method.

7.36 Prove the following power series representation for the tail probabilities for Student’s t

distribution:

Q(t | k) = �((k + 1)/2)

�(k/2)
√

π
u−k/2

∞∑
j=0

cj

(k + 2j)uj
,

where

c0 = 1, cj = 2j − 1

2j
cj−1, and u = 1 + t 2

k
.

(Hint: Change variables y = 1/
√

1 + t 2/k and then expand 1/
√

1 − v in a power series,
as in (7.6.1).)

7.37 Implement the power series in Exercise 7.36 as a computational formula and compare its
performance to that of ttail. Which is better?

7.38 The density of the correlation coefficient r of a sample of size N = n+1 from a bivariate
normal distribution with correlation ρ is given by

f(r | ρ) = (n − 1)�(n)√
2π

(1 − ρ2)n/2(1 − ρr)−n+1/2(1 − r 2)(n−3)/2

×
∞∑

j=0

�
(
j + 1

2

)2
�
(

1
2

)2
�
(
n + j + 1

2

) (1 + ρr)j

2jj!
.

(a) Simplify the gamma functions to facilitate computation.
(b) Write code to compute this function for any value of r and ρ.

(c) Plot the density for ρ = ±1/3 and 0 and check symmetry.

References 183

7.39 Consider the knots xi = i−1
n−1 , i = 1, . . . , n, and design points uj = j

N
, j = 1, . . . , N .

a) For n = 10 and N = 50 and degree p = 3, construct the design matrices XT using
the truncated power basis and XB using B-splines. b) Find the linear transformation C
such that XB = XT C. c) Compute the condition numbers for XT and XB . d) Repeat with
varying values of n, N , and p.

7.40 An alternative method for computing the solution to (7.4.15) is to augment the design
matrix X with rows λpL where LLT is the Cholesky decomposition of D, and zeros as
the corresponding responses to y and then solve the least squares problem. a) Verify the
algebra behind this approach. b) Can this be modified easily for varying values of λ?
(Hint: Givens ’on the fly’)

7.41 Show that for the B-spline functions Bik(u),
∑

i
Bik(u) = 1.

7.42 Using B-splines, the rows of XB have only p − 1 nonzero entries. Show that the inner
product matrix XT

BXB is banded and find its bandwidth. Can this structure be exploited
in the computation of

A(λ)y = X(XT X + λ2pD)−1XT

when the number of knots n is large?

References

The Handbook of Mathematical Functions (Abramowitz and Stegun 1970) includes a
great wealth of practical information. Identities, series expansions, asymptotic formu-
las, and approximations are given for many of the functions mentioned in this chapter,
as well as relationships with other functions and the best tables extant. In addition,
there are chapters on numerical methods and probability functions. In the abstract di-
rection, the book by Davis (1975) is well written and contains much of the mathematical
background for all of numerical analysis. Further information on interpolation can be
found in many good numerical analysis texts. Ahlberg, Nilsson, and Walsh (1967) is
still a good reference on splines; the original Reinsch (1967, 1971) papers on smooth-
ing splines are clearly presented. The book by Hart et al. (1968) includes a practical
guide in addition to tables of approximating functions.

Milton Abramowitz and Irene A. Stegun (Eds.) (1970), Handbook of Mathematical Functions. New
York: Dover.

J. H. Ahlberg, E. N. Nilsson, and J. L. Walsh (1967), The Theory of Splines and Their Applications.
New York: Academic Press.

B. J. R. Bailey (1981), “Alternatives to Hastings’Approximation to the Inverse of the Normal Cumu-
lative Distribution Function,” Applied Statistics 30: 275–6.

Douglas M. Bates, Mary J. Lindstrom, Grace Wahba, and Brian S. Yandell (1987), “GCVPACK:
Routines for Generalized Cross Validation,” Communications in Statistics B 16: 263–97.

Peter Bloomfield (1976), Fourier Analysis of Time Series: An Introduction. New York: Wiley.
N. E. Bosten and E. L. Battiste (1973), “Remark on Algorithm 179, Incomplete Beta Ratio,” Com-

munications of the ACM 17: 156–7.
W. J. Cody, W. Fraser, and J. F. Hart (1968), “Rational Chebyshev Approximation Using Linear

Equations,” Numerische Mathematik 12: 242–51.
William J. Cody and William Waite (1980), Software Manual for the Elementary Functions. Engle-

wood Cliffs, NJ: Prentice-Hall.

184 Functions: Interpolation, Smoothing, and Approximation

P. Craven and G. Wahba (1979), “Smoothing Noisy Data with Spline Functions,” Numerische Math-
ematik 31: 377–403.

Germund Dahlquist and Ake Bjorck (1974), Numerical Methods (trans. by N. Anderson). Englewood
Cliffs, NJ: Prentice-Hall.

Philip J. Davis (1975), Interpolation and Approximation. New York: Dover.
Carl De Boor (1978), A Practical Guide to Splines. New York: Springer-Verlag.
Armido R. DiDonato and Alfred H. Morris, Jr. (1992), “Algorithm 708: Significant Digit Computa-

tion of the Incomplete Beta Ratio,” ACM Transactions on Mathematical Software 18: 360–73.
D. R. Divgi (1979), “Calculation of Univariate and Bivariate Normal Probability Functions,” Annals

of Statistics 7: 903–10.
Zvi Dresner (1978), “Computation of the Bivariate Normal Integral,” Mathematics of Computation

32: 277–9.
Zvi Dresner and G. O. Wesolowsky (1990), “On the Computation of the Bivariate Normal Integral,”

Journal of Statistical Computation and Simulation 35: 101–7.
E. S. Eppright, H. M. Fox, B.A. Fryer, G. H. Lamkin, V. M. Vivian, and E. S. Fuller (1972), “Nutrition

of Infants and Preschool Children in the North Central Region of the United States of America,”
World Review of Nutrition and Dietetics 14: 269–332.

R. L. Eubank (1988), Spline Smoothing and Nonparametric Regression. New York: Marcel Dekker.
C. T. Fike (1968), Computer Evaluation of Mathematical Functions. Englewood Cliffs, NJ: Pren-

tice-Hall.
Wayne A. Fuller (1996), Introduction to Statistical Time Series, 2nd ed. New York: Wiley.
W. Gautschi (1979), “A Computational Procedure for Incomplete Gamma Functions,” ACM Trans-

actions on Mathematical Software 5: 466–81.
C. A. Hall and W. W. Meyer (1976), “Optimal Error Bounds for Cubic Spline Interpolation,” Journal

of Approximation Theory 16: 105–22.
John F. Hart, E. W. Cheney, Charles L. Lawson, Hans J. Maehly, Charles K. Mesztenyi, John R. Rice,

Henry G. Thatcher, Jr., and Christoph Witzgall (1968), Computer Approximations. New York:
Wiley; reprinted 1978 by Kreiger (Malabar, FL).

C. Hastings (1955), Approximations for Digital Computers. Princeton, NJ: Princeton University Press.
M. F. Hutchinson (1986), “Algorithm 642: A Fast Procedure for Calculating Minimum Cross-Vali-

dation Cubic Smoothing Splines,” ACM Transactions on Mathematical Software 12: 150–3.
Robert A. Lew (1981), “An Approximation to the Cumulative Normal Distribution with Simple Co-

efficients,” Applied Statistics 30: 299–301.
Robert F. Ling (1978), “A Study of the Accuracy of Some Approximation for t, chi-square, and F

Tail Probabilities,” Journal of the American Statistical Association 73: 274–83.
K. L. Majumder and G. P. Bhattacharjee (1973), “Algorithm AS63: The Incomplete Beta Integral,”

Applied Statistics 22: 409–11.
John F. Monahan (1981), “Approximating the Log of the Normal Cumulative,” in W. F. Eddy (Ed.),

Computer Science and Statistics: Proceedings of the Thirteenth Annual Symposium on the Inter-
face, pp. 304–7. New York: Springer-Verlag.

John F. Monahan and Leonard A. Stefanski (1992), “Normal Scale Mixture Approximations to F ∗(z)
and Computation of the Logistic–Normal Integral,” in N. Balakrishnan (Ed.), Handbook of the
Logistic Distribution, pp. 529–40. New York: Marcel Dekker.

R. E. Odeh and J. O. Evans (1974), “Algorithm AS70: The Percentile Points of the Normal Distribu-
tion,” Applied Statistics 23: 96–7.

Dale J. Poirier (1973), “Piecewise Regression Using Cubic Splines,” Journal of the American Statis-
tical Association 68: 515–24.

Christian H. Reinsch (1967), “Smoothing by Spline Functions,” Numerische Mathematik 10: 177–83.
Christian H. Reinsch (1971), “Smoothing by Spline Functions II,” Numerische Mathematik 16: 451–4.
Harold Ruben (1961), “Probability Contents of Regions under Spherical Normal Distributions III:

The Bivariate Normal Integral,” Annals of Mathematical Statistics 32: 171–86.
David Ruppert, M. P. Wand, and R. J. Carroll (2003), Semiparametric Regression. New York:

Cambridge University Press.

References 185

B. W. Silverman (1985), “Some Aspects of the Spline Smoothing Approach to Nonparametric Re-
gression Curve Fitting,” Journal of the Royal Statistical Society B 47: 1–52.

H. E. Soper (1921), “The Numerical Evaluation of the Incomplete Beta-Function,” in Tracts for
Computers (no. 7). Cambridge University Press.

G. Szego (1959), Orthogonal Polynomials. Providence, RI: American Mathematical Society.
John D. Vedder (1993), “An Invertible Approximation to the Normal Distribution Function,”

Computational Statistics and Data Analysis 16: 119–23.

8

Introduction to Optimization
and Nonlinear Equations

8.1 Introduction

This chapter serves as an appetizer to the main course, maximum likelihood and non-
linear least squares. This is stated so boldly because many statistical problems of this
type originate in estimation problems with maximum likelihood (or a similar criterion)
as the goal. Our discussion begins with some of the background calculus and defi-
nitions. Next, the discussion turns to the safe and slow methods for optimization in
a single variable, for which the statistical term “nonparametric” has the correct con-
notations. Next, the root-finding problem is addressed with the standard techniques,
Newton and secant methods, followed by a brief presentation of convergence rates.
After a short digression on stopping and condition, the multivariate problem is first
approached with Newton’s methods. After a second digression on numerical differen-
tiation, quasi-Newton methods are discussed for optimization and nonlinear equations.
Discussions of condition, scaling, and implementation conclude the chapter.

Some topics are not addressed in this discussion. One problem is the solution of
polynomial equations, which arise rarely in an isolated form in statistics. Constrained
optimization can often be avoided through reparameterization. The specialized prob-
lem of nonlinear regression is postponed until the next chapter, to be treated as a special
topic in maximum likelihood.

Before attacking the problems at hand, it is wise to review some foundations to gain
a clearer perspective of the situation. The cornerstone for everything are the first re-
sults of calculus, the primary tools in applied mathematics. These results will first be
stated in their univariate form. Before this, let us begin with some definitions.

A function f on an interval [a, b] is (strictly) monotone increasing if and only if
f(x) < f(y) for every a ≤ x < y ≤ b. A monotone nondecreasing function
satisfies the weak inequality f(x) ≤ f(y), and similar adjustments can be made
for (strictly) decreasing and nonincreasing.

A function f is (strictly) unimodal with mode (maximum) at x if and only if f is
strictly monotone increasing for y < x and strictly monotone decreasing for y > x.

A function f has a local maximum at x if and only if there exists a δ > 0 such that
f(y) < f(x) for all y with |y − x| < δ.

Theorem 8.1: If f has a local maximum (minimum) at x and if the derivative f ′(x)

exists, then f ′(x) = 0.

186

8.1 Introduction 187

Corollary 8.2: If f is differentiable on [a, b], then the zeros of f are separated by the
zeros of f ′.

Theorem 8.3 (Mean Value Theorem): If f is continuous in [a, b] and differentiable in
(a, b), then there exists c in (a, b) such that f(b) − f(a) = (b − a)f ′(c). In other
words: There is a tangent parallel to the secant.

At the risk of overstating the obvious, the first theorem tells where extreme points can
occur. Its contraposition – if the derivative at an interior point is not zero then the point
is not a local optimum – rules out all but a few points (all but one, it is hoped) from
consideration. The corollary gives some warning about the ability of function to wig-
gle. The mean value theorem can be interpreted as stating that all smooth functions are
locally linear.

Instead of proceeding to further results along this line, the results need to be re-
stated for the multivariate case, since many of the problems to be faced involve several
variables. Now x represents a vector of dimension p while the function f is still real-
valued, so f : Rp → R. The (column) vector of partial derivatives of f evaluated at
x, also known as the gradient, will be denoted by ∇f(x). The matrix of second partial
derivatives evaluated at x will be denoted by ∇2f(x), sometimes called the Hessian
matrix and denoted by H(x).

A function f has a local maximum (minimum) at x if and only if there exists δ > 0
such that f(y) ≤ f(x) for all y such that ‖y − x‖ ≤ δ. Note that the Euclidean norm
is used as the metric.

Theorem 8.4: If f is continuous and if ∇f exists for all x in a region S and has a local
maximum (minimum) at x in the interior of S, then ∇f(x) = 0.

Mean Value Theorems

Theorem 8.5 (Linear): If f and ∇f are continuous in a region S, then there exists a
point t on a line segment between x and y such that

f(x) = f(y) + (x − y)T∇f(t). (8.1.1)

Theorem 8.6 (Quadratic): If, in addition, ∇2f(x) is continuous on S, then there exists
a point t in S such that

f(x) = f(y) + (x − y)T∇f(y) + 1
2 (x − y)T∇2f(t)(x − y). (8.1.2)

Theorem 8.7: If ∇f(x) = 0 and H(x) is continuous and positive (resp., negative) def-
inite for a point x in an open convex set, then x is a local minimum (resp., maximum).

For a multivariate function g of a vector x mapping from Rm to Rn, the matrix of partial
derivatives will be denoted by Jg(x), so that the (i, j) element is the partial derivative
of the ith component of g with respect to xj . Hence, for an affine (generalization of
linear) function g(x) = Gx + h, it follows that Jg = G. The big difference here is that

188 Introduction to Optimization and Nonlinear Equations

the sought mean value theorem does not exist. However, the best available result has
the same basic conclusion: all smooth functions are locally affine.

Theorem 8.8: If g is continuous and differentiable in an open convex set S and if J
is Lipschitz continuous in a neighborhood of x in S, then for y in that neighborhood
of x we have

‖g(y) − g(x) − Jg(x)(y − x)‖ ≤ (δ/2)‖y − x‖2, (8.1.3)

where δ is the Lipschitz constant for Jg. Hence y in an open neighborhood of x satisfies

‖Jg(y) − Jg(x)‖ ≤ δ‖y − x‖.

8.2 Safe Univariate Methods: Lattice Search,
Golden Section, and Bisection

The first method to be presented in this chapter is designed to solve one of the simpler
problems: finding the maximum of a unimodal function f on a discrete set of points
{1, 2, . . . , m} – a lattice – hence the name lattice search. Although it has limited appli-
cability, it serves as a springboard to the other problems and methods of this chapter.

The strategy of the lattice search can be described as (i) finding good end strategies
for finding the mode on a small set of points and then (ii) employing backwards induc-
tion to start with the right strategy to match the optimal ending. Optimal strategy here
means the fewest evaluations of the function f that will solve all problems that meet
the specifications – that is, any strictly unimodal function.

Begin with m = 2, which obviously will require two evaluations of f to determine
the maximum. For m = 3, there are strategies that can solve it in two evaluations for
some functions, but it can easily be shown that three evaluations will be required if
we are to solve for all functions f. For m = 4, there is room for improvement. No-
tice that a single evaluation at the beginning of the search is really valueless, since we
have no idea of what “large” is. It therefore makes sense to begin by evaluating f at a
pair of points before deciding what to do next. Symmetry says that these points should
be placed so that a reversal of indices yields the same configuration. So for the m =
4 problem, the choice is whether to begin with evaluations at the pair 1 and 4 or at 2
and 3. It should be apparent that evaluating at 2 and 3 will disqualify 1 from consid-
eration as a possible mode if f(3) > f(2) (for if the mode were at 1 then the function
f would not be unimodal) and will disqualify 4 if f(2) > f(3); notice that no such
disqualification will occur for evaluating at 1 and 4. So if f is evaluated at 2 and 3 to
start, then the mode can be identified with only three evaluations of f. The advantage
is the disqualification of a point.

Although the goal is to disqualify as many points as possible, overzealousness is
not rewarded. For a very large problem, the most points can be disqualified by tak-
ing two evaluations at the middle. While this eliminates half of the points, it requires
two evaluations. The remaining subproblem has one point evaluated but, being at
the end, it cannot be effectively exploited; the strategy of cutting the problem size in
half requires two evaluations. The optimal strategy, tempering disqualifications and

8.2 Lattice Search, Golden Section, and Bisection 189

Table 8.1. Fibonacci numbers

n 1 2 3 4 5 6 7 8 9 10
Fn 1 2 3 5 8 13 21 34 55 89

placement of points, becomes apparent only by examining some special cases: m =
7,12, 20, 33,

First consider m = 7. If the opening evaluations are at 3 and 5, then three points will
be initially eliminated, leaving a 4-point problem with one evaluation already taken for
the best 4-point problem. A 7-point problem can be done in four evaluations.

Next consider m = 12. Taking opening evaluations at 5 and 8 will disqualify five
points and so leave either {1, 2, 3, 4, 5, 6, 7} or {6, 7, 8, 9,10,11,12}, which are 7-point
problems. In the first case, the function f has already been evaluated at 5, so that with
another evaluation at 3, the 7-point subproblem can be solved with only three addi-
tional evaluations for a total of five. The other subproblem has 8 already available, so
the additional one for this is at 10 and so again the subproblem requires only three ad-
ditional evaluations. Notice that if the first two were taken at 5 and 6, then a 6-point
problem would remain that would require four more evaluations for a total of six.

Example 8.1: Examples of Lattice Search
Consider how the lattice search strategy solves the following two problems, first
with m = 7.

m 1 2 3 4 5 6 7
f .0623 .2804 .5454 .5990 .3726 .1307 .0197

Here we first evaluate at k = 3 and 5 and find that f(3) > f(5), so the set
{1, 2, 3, 4} remains. Now evaluate at k = 2, finding f(2) < f(3), leaving {3, 4};
then the final evaluation at k = 4 shows that f(3) < f(4), leaving the singleton
set {4} as the solution.

m 1 2 3 4 5 6 7 8 9 10 11 12
f .0040 .0321 .1156 .2580 .3976 .4463 .3727 .2312 .1040 .0321 .0061 .0005

In this second problem, evaluate first at 5 and 8 and find that f(5) > f(8), leav-
ing the set {1, 2, 3, 4, 5, 6, 7}. Next evaluate at k = 3 and find f(3) < f(5),

leaving {4, 5, 6, 7}. The next step finds f(5) < f(6), and we finish at k = 7,

finding f(7) < f(6). The mode is k = 6.

The mystery of the optimal strategy of the lattice search is unveiled with the introduc-
tion of the Fibonacci numbers,

F0 = F1 = 1, F2 = 2, F3 = 3, F4 = 5, F5 = 8, . . . , Fn+1 = Fn−1 + Fn, . . .

(see Table 8.1). The special cases have been one fewer than a Fibonacci number, and
the required evaluations have been one fewer than the index.

190 Introduction to Optimization and Nonlinear Equations

The optimal strategy for searching for the maximum of a unimodal function on a lat-
tice of points {1, 2, . . . , m = Fn−1} is to begin by evaluating at the points Fn−2 and Fn−1.

If f(Fn−2) > f(Fn−1) (i.e., if the left point is higher), then the points {Fn−1, . . . , m} are
disqualified, leaving the subproblem with the set {1, . . . , Fn−1 −1} and with the evalua-
tion at Fn−2 perfectly placed. Conversely, if f(Fn−2) < f(Fn−1) then the subproblem
has the set {Fn−2 +1, . . . , Fn −1}, which also has Fn−1−1 elements and with the evalu-
ation at Fn−1 perfectly placed. A problem with Fn −1 points requires n−1 evaluations
to solve. Two details remain to be resolved. First, if the values of the function are
the same at Fn−2 and Fn−1 then, since the function is strictly unimodal, the mode must
be between the two points – in which case it doesn’t matter which part is discarded.
Second, if the number of points m for the problem at hand is not one fewer than a Fi-
bonacci number, then pad the lattice with points on either end to get to one fewer than
a Fibonacci number, where the value of the function at any of these additional points
is −∞.

Now the more common problem is searching for the maximum of a unimodal
function on a continuum, such as the unit interval (0,1). One solution approach is
to imbed a lattice in the unit interval by placing m points (located at 0,1/(m − 1),
2/(m − 1), . . . , j/(m − 1), . . . ,1) and then take the limit of the lattice search as m =
Fn − 1 goes to infinity. The lattice search is defined by the first two evaluations on the
set, so consider the limit of those first two points,

lim[(Fn−2 − 1)/(Fn − 1)] and lim[(Fn−1 − 1)/(Fn − 1)].

Let the limit of the ratio Fn−1/Fn as n → ∞ be denoted by φ; then dividing Fn =
Fn−2 + Fn−1 by Fn−1 shows that φ satisfies the equation 1/φ = φ +1 (or φ2 + φ −1 =
0). The positive root of this quadratic equation gives φ = (√5 − 1

)
/2 = .618. . . , also

known as the golden ratio. Then the limit of the left starting point of the lattice search
is φ2 = .382, which is symmetrically placed opposite the right starting point φ.

This limit of the lattice search is called the golden section search. The opening two
points are taken at locations φ2 and φ. If, without loss of generality, f(φ2) > f(φ),

then the remaining interval – the interval of uncertainty – is (0, φ), for which the evalu-
ation at φ2 is perfectly placed as the right opening point for the remaining subproblem.
Notice that the golden section search reduces the interval of uncertainty by φ = .618
with each evaluation.

This golden section search is not the optimal search procedure, but it is a method in
common use. The optimal procedure, known as the Fibonacci search, strives to reduce
the interval of uncertainty as much as possible by taking its two evaluations as close to
the middle as is feasible. Since this is practically impossible on a continuum, a mini-
mum separation d is required so that the two evaluations will give different values. The
Fibonacci search also requires that the number of evaluations be known in advance.
Because of these requirements, and since the loss in efficiency in using the golden sec-
tion search is at most the cost of one evaluation, the Fibonacci search is rarely used.

Before closing this section, consider the goal of the Fibonacci search: placing the
points of evaluation as close to the middle as possible in order to cut the interval of
uncertainty in half. It is the practical obstacle of a continuous unimodal function that
prevents this goal from being reached. But suppose that the derivative of the function f

8.3 Root Finding 191

were available, or that some differencing technique could be employed that would con-
vert the problem from one of finding the maximum of a unimodal function f to one of
finding the root of a monotone function g on the same interval. The result is the search
technique known as bisection or Bolzano’s method. Without loss of generality, let the
interval be (a, b) and let g(a) < 0 < g(b). Then, with a single evaluation at the mid-
point (a + b)/2, the interval of uncertainty can be halved. If g((a + b)/2)) < 0 then
the root is in the interval ((a + b)/2, b); otherwise the new interval is (a, (a + b)/2).

Comparison of these two techniques, golden section and bisection searches, reveals
the value of additional information or restrictions. The golden section search solves
a less restrictive problem, requiring only a strictly unimodal function. The bisection
method, if used to solve the same problem, requires that the derivative of the function
exist and be available. Whereas the golden section search reduces the length of the in-
terval of uncertainty by φ = .618 with each additional evaluation, bisection reduces
the length of the interval by 1/2 with each additional evaluation. The similarity of the
two methods (both require weak assumptions on the problem) will contrast markedly
with the methods introduced in the next section.

Example 8.2: Example of Golden Section and Bisection Searches
Let’s find the maximum of the simple function f(x) = 4

3 log(1+x)−x on (0,1).
For golden section, begin with evaluations at x = .382 and x = .618 and find
f(.382) = .0494 and f(.618) = .0236, so the interval of uncertainty is (0, .618).
Next evaluate at φ3 = .23607; this yields f(.236) = .0465 < f(.382) as the
right endpoint, so drop the left side to make the interval (.236, .618). Next, at
the right point of the new interval we have f(.472) = .0435 < f(.382) (the left
one), so the interval becomes (.236, .472) with length φ3.

For bisection, we want to find the root of f ′(x) = g(x) = (4/3)/(1 + x) − 1,
with a priori knowledge that the function is decreasing (actually, g(0) = 1/3 and
g(1) = −1/3). Evaluate first at x = 1/2 and find g(1/2) = −1/9, so the new
interval is (0,1/2). Next, g(1/4) = 1/15 > 0, so drop the left half to make the
new interval (1/4,1/2). The third evaluation gives g(3/8) = −1/33 < 0; drop
the right side, leaving the interval (1/4, 3/8). The fourth one gives g(5/16) =
−1/63 < 0, and the new interval of uncertainty is (1/4, 5/16) with length 1/16 =
.0625 versus φ3 = .236 for golden section.

8.3 Root Finding

The more common problem is solving a single nonlinear equation, g(x) = 0, using
evaluations of the function g at specified points and, on occasion, evaluations of the
derivative. Often the original problem is one of optimization, where the restatement as
a root-finding problem is no major obstacle and the motivation is to take advantage of
the improved convergence. All the methods presented here have rather simple motiva-
tions, approximating g(x) by a linear function and solving the linear approximation to
g(x) = 0. Moreover, the reader would be correct to infer from the inclusion of several
methods that each one exhibits a unique trade-off among speed, safety, and simplicity.

192 Introduction to Optimization and Nonlinear Equations

The premier method in many ways is Newton’s method, whose linear approxima-
tion is the tangent line to the function g at a point xold. In terms of the function g and
its derivative g ′, the point–slope formula gives

gt(x) = g(xold) + g ′(xold)(x − xold). (8.3.1)

The root of the equation gt(x) = 0 is at

xnew = xold − g(xold)/g
′(xold). (8.3.2)

Newton’s method is then a sequential application of this formula; the new point for one
step becomes the old point for the next iteration:

xn+1 = xn − g(xn)/g
′(xn). (8.3.3)

Notice that the form of the iteration, xn+1 = T(xn), brings to mind the mathematics of
contraction mappings. The success of Newton’s method relies upon the starting value
x0 lying in the domain of attraction of the root.

However, analysis of the rate of convergence for practical problems will require
more stringent (yet simple and reliable) assumptions. To analyze the convergence of
Newton’s method for the root-finding problem, denote the root by c and the error at
iteration n by en = xn − c. Then the relative error will be denoted by dn = en/c =
(xn − c)/c. The revealing equation is a Taylor expansion of the function g at the root
about the value xn at iteration n:

g(c) = 0 = g(xn) + (c − xn)g
′(xn) + (c − xn)

2g ′′(t)/2, (8.3.4)

where t lies between xn and the root c. Moving the first two terms on the rightmost
side of (8.3.4) to the left and then dividing through by g ′(xn) yields

xn − c − g(xn)/g
′(xn) = (xn − c)2[g ′′(t)/2g ′(xn)].

Recognizing the iteration formula (8.3.3) on the left and substituting for the error en

and en+1, we have the following result:

en+1 = e2
n[g ′′(t)/2g ′(xn)]. (8.3.5)

This expression reveals the quadratic convergence of Newton’s method – in contrast to
the linear convergence of golden section or bisection, where the interval of uncertainty
was reduced by a constant factor at each step. To elucidate, suppose the bracketed ex-
pression in (8.3.5) approximately equalled unity; then the error would be squared at
each step, so that if k digits of accuracy were achieved at one step then the next iter-
ation would achieve 2k digits. In practice, the expression in brackets moderates the
rate of convergence. Notice that this quantity is small whenever g ′ is large, so steeply
sloped functions are easier. Conversely, if a flat spot of the function is approached then
a nearly horizontal linear approximation will be attempted, and the subsequent point
may leap far away from the true root. A bounded second derivative is required both to
ensure a good rate of convergence and to keep the iteration formula from throwing the
new point out of the domain of convergence.

The domain of attraction just mentioned for Newton’s method depends on three
things. One is a bound on the second derivative in the region max|g ′′(t)|, and another

8.3 Root Finding 193

is a minimum for the slope g ′(x). Notice that letting the derivative g ′ approach zero
allows the function to become nearly flat. In such a case, an iteration step could throw
the next point far from the original starting point, beyond where the assumption of lo-
cal linearity of g would apply. The third item that determines the domain of attraction
is the starting point. A function with several roots may have several domains of attrac-
tion for different roots. The root that is reached by a sequence of Newton iterations
may depend on the domain in which the iteration starts. It is also possible to have a do-
main of divergence, where the iteration sequence diverges (see Exercise 8.8). Since the
domains depend on the root(s) and on the bounds on the first and second derivatives, it
is rare in practice for anything to be known about the domains (since that information
is not available at the outset).

If the original problem to be solved was really the optimization of a function f, then
Newton’s method can be rewritten to apply to the optimization problem by relating the
derivative f ′ to the function g whose root is sought; that is, g = f ′. As a consequence,
(8.3.3) can be rewritten as

xn+1 = xn − f ′(xn)/f
′′(xn), (8.3.3*)

and the constant part of the convergence expression (8.3.5) is [f ′′′(t)/2f ′′(xn)]. Re-
member, however, that this merely translates the problem into a root-finding problem
with the derivative, and the iteration sequence (8.3.3*) could minimize the function f

when the intention was to maximize (or vice versa).
Although Newton’s method achieves the fastest rate of convergence, its main draw-

back is that the derivative function must be available, and finding it can be tedious and
sometimes nearly impossible. As a result, a method that only requires evaluations of
the function g would be preferred in these cases. The approach for this also uses a lin-
ear approximation to the function g, but this time based on the 2-point formula for the
points (xn−1, g(xn−1)) and (xn, g(xn)):

gs(x) = g(xn) + {[g(xn) − g(xn−1)]/[xn − xn−1]}(x − xn). (8.3.6)

Notice that this line is the secant line, whereas Newton’s method used the tangent line.
The root of the linear equation gs(x) = 0 can be found to have a form similar to (8.3.2).
When the root of gs(x) = 0 is used as part of an iteration sequence, the formula can
be written as

xn+1 = xn − {[xn − xn−1]/[g(xn) − g(xn−1)]}g(xn). (8.3.7)

Note that this formula is the same as (8.3.3) but with the reciprocal of the derivative
1/f ′(xn), which is considered unavailable, replaced by its approximation – a first differ-
ence, the term in braces in (8.3.7). This iteration formula defines what is known as the
secant method, taking its name from the use of the secant line as its linear approximation.

Analysis of the convergence of the secant method is not as clean as with Newton’s
method, although a similar expression can be obtained:

en+1 ≈ Cen−1en,

where the constant C is the same as the bracketed expression in (8.3.5). Taking logs of
absolute values yields a difference expression similar to that of the Fibonacci numbers,
with the surprising and useful result that

194 Introduction to Optimization and Nonlinear Equations

Figure 8.1. Slow convergence of false position method. Solid line shows the function y(x) =
x3 − 1; dashed lines are successive interpolants.

|en+1| = O(|en|1+φ),

where the exponent 1 + φ = 1.618 (owing to its relationship to Fibonacci). Since
the exponent 1 + φ lies between the value 1 for linear convergence and the exponent
2 for quadratic convergence, the convergence rate of the secant method is called su-
perlinear. Moreover, since Newton’s method required evaluation of both g and g ′,
it follows that if the derivative were available but costly (i.e., more than about half
the cost of an evaluation of g) then the secant method would actually be faster than
Newton’s.

While the secant method shares some of the same assets (e.g. fast convergence) as
Newton’s, it also shares some of the same liabilities. In particular, when a flat portion of
the function g is encountered, the secant method can also be thrown far away from the
root. The “safe” method of bisection avoided this by ensuring that the root remained in
the interval (by keeping one endpoint with the value of g negative and the other with
g positive there). Retention of endpoints where g has differing signs is also possible
with the secant method. Begin with two points that straddle the root and then, instead
of discarding the older of the two points, xn−1, discard the point with the same sign as
g(xn+1). This method, known as false position or regula falsi, follows the secant for-
mula but acquires the same safety as bisection by retaining an interval in which the
root is sure to lie. The goal of combining rapid convergence and safety is a noble one,
but it is not achieved in practice with false position. The problem is that often one end-
point is retained for several iterations and so the analysis of the convergence leads to
en+1 ≈ Cene0. Consequently, although false position has the potential of the superlin-
ear convergence of the secant method, in practice the convergence is essentially linear,
with the constant adjusting whenever a true secant step is taken. Figure 8.1 shows the

8.3 Root Finding 195

Figure 8.2. Better convergence of Illinois method. Solid line shows the function y(x) = x3 − 1;
dashed lines are successive interpolants.

slow convergence of regula falsi on the simple function g(x) = x3 − 1 on the inter-
val (0, 2). Shown are the secant lines for the first six iterations; the next several move
slowly closer to right, actually stopping only by finding that g(x) is too close to zero
to continue.

The disappointing performance of false position can be corrected with a method
known as modified regula falsi or the Illinois method. Again the secant formula is
used and, as with false position, the pair of points are retained to keep the root brack-
eted. The difference is that, whenever one endpoint is retained more than once, the
value of g there is halved. The result is a shallower secant line and an inclination to
move and perform a secant step. If the endpoint remains, the value of g there will be
continually halved until a secant step is performed. Although this appears to be a com-
pletely artificial modification, experience has shown it to be extraordinarily effective.
The mathematics supports this, since the convergence rate is also superlinear (though
it is slower than the secant method), |en+1| = O(|en|1.44). The Illinois method is highly
recommended for any problem where the root can be bracketed and safety is desired.
Figure 8.2 shows the performance of the Illinois method on the same problem as be-
fore, g(x) = x3 − 1. After keeping the right endpoint twice, the secant line is made
shallower by halving the value of g at the right endpoint. After the second halving,
the secant line is shallow enough to make a secant step and move the right endpoint.
The full course of the iterations for both false position and Illinois is shown in the code
false (see also Exercise 8.14). Brent (1973) proposed a more complicated (and safe yet
effective) method that combines bisection and false position.

Finally, since root-finding problems are often motivated by an optimization problem,
one might consider an optimization algorithm analogous to the secant method. That is,
for the root-finding problem, two points are used to construct a linear approximation

196 Introduction to Optimization and Nonlinear Equations

Table 8.2. Convergence rates

Convergence Root finding Optimization

Linear Bisection Golden section
Superlinear Secant, Illinois Quadratic interpolation
Quadratic Newton Newton

to the function g(x) and the approximating linear problem is solved. For maximizing
a function f(x), say, a quadratic approximation can be constructed using three points.
The iteration then concludes by moving to the maximum of the quadratic approxima-
tion. The error analysis of such a method is quite interesting, with en+1 ∝ en−1en−2.

The convergence is superlinear, but with rate roughly 1.3 (see Exercise 8.6). However,
the implementation of such a method faces two obstacles:

(1) finding an apparent local minimum instead of maximum; and
(2) jumping outside an interval known to contain the maximum.

This section concludes with a review of the problems solved and the trade-offs avail-
able. In general, speed must be sacrificed in order to gain safety. For the root-finding
problem, bisection is the safest algorithm around; its only requirement is that the func-
tion g cross the axis only once. False position and Illinois methods require only a form
of Lipschitz continuity, whereas secant and Newton methods need well-behaved sec-
ond derivatives. Also, there is an obvious advantage to solving the root-finding problem
instead of an optimization problem. Table 8.2 illustrates the relationships.

Example 8.3: A Simple Likelihood to Be Maximized
In statistics, the most common problems in this area are likelihoods to be maxi-
mized or likelihood equations to be solved. Here is a relatively simple one, to be
used from time to time in this book. Suppose we have observations {1,1,1,1,1,1,
2, 2, 2, 3} from the (discrete) logarithmic series distribution with density

p(x | θ) = θ x/(x(−log(1 − θ))) for x = 1, 2, 3, . . . , 0 < θ < 1.

Then, neglecting a constant, the log likelihood can be the function to be maxi-
mized:

f(x) = (∑ xi

)
log θ − n log(−log(1 − θ)).

Solving the likelihood equations means finding the root of the derivative of f(x):

f ′(x) = g(x) =
(∑

xi

)
θ

+ n

(1 − θ) log(1 − θ)
= 0.

Figure 8.3 shows the two functions f(x) and g(x) on the interval (0,1). For
this example,

∑
xi = 15 and n = 10. The code finder demonstrates the various

methods discussed here on this problem.

8.4 First Digression: Stopping and Condition 197

Figure 8.3. Log likelihood and derivative for logarithmic series example. The solid line shows the
log likelihood; the dashed line is its derivative.

8.4 First Digression: Stopping and Condition

A well-written algorithm for root-finding or optimization should have three options for
termination: too many steps; no change in x; no change in the function. Which one(s)
to choose depends upon the particular application. All iterative algorithms should have
a maximum number of iterations. Because of the peculiarities of finite-precision arith-
metic, no proof of convergence can guarantee a solution found and termination in a
finite number of steps. Usually termination due to exceeding the maximum number of
iterations indicates a serious error in problem specification. Often this is easily recti-
fied, since most of the time the cause is an error as silly as trying to find (often to the
great surprise of the user) the root of a function that is always positive.

Algorithms are designed to terminate when either the change in x is less than εx

or when g is within εg of zero, whichever occurs first. Usually both εx and εg must
be specified; if not, any left unspecified is set to a machine epsilon. To disable one
entirely, one trick is to set ε = 0, but this is sometimes not permitted and so is over-
ridden (and often this ε is set to the machine epsilon by design). Several competing
issues are involved. The user would like a black box that gives the roots or optima, but
such a black box is not achievable. Attempts by the user to get the impossible are then
thwarted by the algorithm’s designer. In some root-finding applications, no value of x

will produce a value of g within εg of zero. In such a case, the best value that can be
given as the root is one of two points between which the function changes sign. Note
that this is exactly what some algorithms (bisection, regula falsi) are designed to do.
As far as the computer is concerned, there is no zero of the function but only a point
at which the function jumps from one sign to another. On the other side of the coin,
the error in evaluating the function may be substantial and so, at the precision of the

198 Introduction to Optimization and Nonlinear Equations

argument x, the function appears to have multiple roots. In such a case the assump-
tions required of the function do not hold. Then, as far as the algorithm is concerned, it
is the εx that has become meaningless because there are many values of x that appear
to act as the root of the function.

The most serious problem arises when an algorithm’s iteration is stopped because x

is not changing, even though no root is being approached. The source of the problem
is that some required assumptions on the function do not hold; Exercise 8.13 is a good
example of this case. Only by examination of the value of g at “convergence” can this
problem be discovered.

Another problem in algorithm design is the choice of relative or absolute change.
Either would work for stopping on x, but a relative change stopping rule

|xn+1 − xn| < |xn|εx

would be preferable, since it would automatically adjust to changes in magnitude (even
though an adjustment must be made for x near zero). In contrast, changes relative to
the goal of zero for g are unworkable, so only a user-specified εg would make sense for
a stopping rule on absolute change, |g(xn)| < εg, based on knowledge of the behav-
ior of the function. Without such knowledge, stopping on g should not be considered.
Yet for the optimization problem, if relative changes in the function are small then this
may appropriately signal that the goal has been reached. As a result, a relative change
stopping rule, |f(xn+1) − f(xn)| < |f(xn)|εf , makes sense.

The problem of specifying εx or εf is best viewed as an examination of the condition
of the problem: as the problem is slightly perturbed, how will the solution change? If
perturbations are made in the function g or f, then the solution will change a great deal
for a badly conditioned problem but only a little if the problem is well conditioned.
This view then takes εf and εg to the accuracy of the evaluation of the function, which
directly limits the accuracy of any possible solution. For the root-finding problem, a
simple mean value expression illustrates many of these points:

x − c = [g(x) − g(c)]/g ′(t). (8.4.1)

Suppose the function g can be computed only to a level of accuracy εg. Then, manip-
ulating (8.4.1) we find that |x − c| ≤ εg/|g ′(c)|, so the imprecision of g is amplified
by the condition number 1/|g ′(c)|. This should not be surprising, since steeply sloped
functions should be easier to solve than flat ones. Knowledge of the possible accuracy
of the function evaluation can determine the achievable accuracy of the solution, but
only in extreme cases will the magnitudes of the two εs differ greatly.

For the related optimization problem, the calculus gives

(x − c)2 = 2[f(x) − f(c)]/f ′′(t), (8.4.2)

indicating an apparent condition number of 2/|f ′′| – but only if the square on the left-
hand side of (8.4.2) is overlooked. Although 2/f ′′ is a good indicator of behavior, the
important consequence is that if the function f can only be known to a precision εf ,

then the optimum c can only be known to a precision

ex = √2εf/f ′′(c). (8.4.3)

8.5 Multivariate Newton’s Methods 199

Another way to view this result is that if the function can only be known to k digits of
accuracy, then the optimum can only be known to k/2 digits (taking f ′′ = 2).

8.5 Multivariate Newton’s Methods

A simplistic view of multivariate methods for optimizing a real-valued function f of
p variables x, or solving g(x) = 0, is that they are simple extensions of the univariate
methods. In many ways, this view is quite insightful; in other ways, it is just simplistic
and wrong, since there are subtleties in the multivariate problem that are absent in the
univariate case. Note that the multivariate extensions of the methods in Section 8.2 –
lattice search, golden section, and bisection – are absent, since in large part such exten-
sions do not exist (but see Vrahatis 1988). Our discussion of the multivariate problem
begins with Newton’s methods and follows the simplistic view as far as possible. In
the next section we digress to examine the problem of numerical differentiation before
facing the multivariate problem directly in Section 8.7.

For the univariate root-finding problem of a single nonlinear equation, Newton’s
method arose from finding the root of a tangent approximation to the function. In the
multivariate case, solving g(x) = 0, the tangent approximation g t(x) relies on the mul-
tivariate version expressed in Theorem 8.8,

g t(x) = g(xold) + Jg(xold)(x − xold). (8.5.1)

The solution xnew to the system of linear equations g t(x) = 0, as an approximation to
the nonlinear equations, can then be written as

xnew = xold − Jg(xold)
−1g(xold). (8.5.2)

This multivariate version of Newton’s method has the same form as the univariate case,
and its convergence rate is also quadratic (although the mathematics is much more com-
plicated).

For optimizing a function f of p variables x, begin analogously with the quadratic
approximation given by Theorem 8.6,

fq(x) = f(xold) + (x − xold)
T∇f(xold) + 1

2 (x − xold)
T∇2f(told)(x − xold). (8.5.3)

The stationary point xnew of fq(x) is then given by

xnew = xold − H(xold)
−1∇f (xold), (8.5.4)

where H(x) = ∇2f(x) is the Hessian matrix. If H(x) is positive (resp., negative) def-
inite at the stationary point, then a local minimum (resp., maximum) is found; if the
Hessian is indefinite then a saddle point is found.

The expression of the Newton iterations (8.5.2) and (8.5.4) with a matrix inverse
may spark some concern, but the propriety of that concern depends on the motiva-
tion. Computationally, of course, these are linear equations to be solved; an inverse
is never computed. In light of the nonlinear equations to be solved, these linear equa-
tions are comparatively the easiest problem to be faced. The main concern is that a

200 Introduction to Optimization and Nonlinear Equations

p-dimensional system is to be solved at each step. What may be overlooked is the
computation of just the p ×p matrix, either Jg or H. Compared to an evaluation of the
p-valued function g, evaluating Jg costs p times as much work. Compared to an eval-
uation of f, evaluating H costs p2 times as much – and this cost must be paid at every
step. Moreover, since the expressions for partial derivatives often become complicated
rather quickly, the human effort in coding should not be overlooked.

Facing these costs, alternatives to Newton’s methods are sought for both the op-
timization problem and the solution to systems of nonlinear equations. Anticipated
savings in these alternatives are based on two hopes: that (1) the matrix (H or Jg) may
not change much with changes in x and (2) approximations to the matrix constructed
from evaluations may work just as well. Before analyzing these alternative routes, we
must investigate the performance of numerical approximations to derivatives.

8.6 Second Digression: Numerical Differentiation

The secant method can be viewed as substituting a difference for a derivative in New-
ton’s method. Recall that, in the point–slope formula in (8.3.6) the expression in braces
gives the slope of the secant line: {[g(xn) − g(xn−1)]/[xn − xn−1]}. The performance
of the secant method depends on the local linearity of the function g, the ability of the
secant line to approximate the function, and the quality of the ratio of differences (i.e.,
{·}) in estimating the derivative. For other algorithms for both optimization and nonlin-
ear equations, the performance of various numerical differentiation schemes is central
to the performance of the method.

The study of calculus begins with the definition of a derivative,

f ′(x) = lim
h→0

f(x + h) − f(x)

h
= lim

h→0

f(x + h) − f(x − h)

2h
;

the first expression is that of a forward difference, and the second ratio is called a cen-
tral difference. In the limit, either will produce the derivative at x; but for finite values
of the difference h, the performance can be viewed as a trade-off between speed and
accuracy and between bias and variance. If we have the value of a function at a point x,

then estimating the derivative at x using forward difference,

f̂ ′
1(x) = [f(x + h) − f(x)]/h, (8.6.1)

requires only one additional evaluation of f at x + h, whereas the central difference

f̂ ′
2(x) = [f(x + h) − f(x − h)]/(2h) (8.6.2)

requires two additional evaluations of f, at x + h and x − h. Doubling the cost yields
substantial benefits, since the accuracies of the two methods differ dramatically,

f̂ ′
1(x) = f ′(x) + O(h) versus f̂ ′

2(x) = f ′(x) + O(h2). (8.6.3)

Before the reader gets the wise idea that “h versus h2 doesn’t really matter, just take h

very small,” consider the effect of roundoff error in the evaluation of the function f.

Suppose evaluating f involves a roundoff error ε, so that fl(f(x)) = f(x) + εx. Then

8.6 Second Digression: Numerical Differentiation 201

f̂ ′
1 will behave like f ′ + (εx+h − εx)/h for small values of h (and the central differ-

ence will behave similarly). Since the roundoff error isn’t going away, it follows that
f̂ ′

1 will behave wildly as h becomes smaller – until fl(x + h) = fl(x).

The problem of numerical differentiation can be summarized as trade-offs between
cost and accuracy and between bias and variance. The central difference would be pre-
ferred if it came for free, which sometimes it does (later for this). It may seem that
the size of the difference h should be chosen as small as possible without encoun-
tering roundoff error, but this procedure cannot be followed in practice because that
threshold is not known. Moreover, because of the alarming behavior when h is too
small, experience has shown that it is preferable to live with some bias in the esti-
mate of the derivative rather than to risk a wild result in taking h too small. Practice
shows that a good rule of thumb is to take h to be the size of the square root of the
machine unit, η = U 1/2 on a relative basis. That is, take h = ηx so that the relative
change is [(x + ηx) − x]/(x) = η. In many software codes, the user supplies a typ-
ical value for x in case the given x (a starting value) should be zero. A very useful
trick addresses the vagaries of floating point arithmetic, alluded to earlier as question-
ing whether fl(x + h) = fl(x). Dennis and Schnabel (1983) suggested dividing not by
h but by fl(x + h) − fl(x), which would better approximate the real change in the ar-
gument of the function. Gill, Murray, and Wright (1981) suggested η = U 1/3, rather
than U 1/2, for central differences.

Second derivatives can be approximated in a similar fashion using second differ-
ences,

f̂ ′′(x) = {[f(x + h) − f(x)] − [f(x) − f(x − h)]}/h2. (8.6.4)

Note that this formula was intentionally written as the difference of two differences,
instead of as f(x + h) − 2f(x) + f(x − h), in order to avoid unnecessary cancella-
tion. In this case, the accuracy can be expressed as f̂ ′′(x) = f ′′(x) + O(h), as for a
forward difference. However, the roundoff problem becomes somewhat more severe
here, leading to the recommendation that h = U 1/3x be taken for the step size, follow-
ing the same logic as before. Finally, observe that evaluating this second difference
requires two additional evaluations, at x +h and x −h. If the second derivative is to be
approximated, a more accurate central difference comes for free. After some heuristic
mathematics, Gill et al. (1981, pp. 340–1) recommended η = U 1/4 for second differ-
ences but without fussing over taking differences of differences.

The demonstration code numdif shows the performance of numerical differentiation
for the function log �(x) for various values of h = 2−k. The code ALGAMA is used for
computing, and x = 1/2 was chosen by way of example. Given ψ(x) ≡ � ′(x)/�(x),

we have ψ(1/2) = 1.96351and ψ ′(1/2) = 4.9348022. For the first derivative, both for-
ward and central differences are compared, labeledf ′

1 andf ′
2 (respectively). For the sec-

ond derivative, f ′′
1 uses the simple [f(x+h)−2f(x)+f(x−h)]/h2 whereas f ′′

2 follows
the mathematically equivalent (8.6.4), hoping to save a bit from cancellation. As can
be seen from the output, the central difference performs much better than the forward
difference, providing three good digits for a range of values of h = 2−k in IEEE single
precision arithmetic. For the second derivative, the two expressions rarely differ. The
punishment for taking h too small becomes quite obvious, resulting in very large values.

202 Introduction to Optimization and Nonlinear Equations

Since this digression comes amid an examination of methods for optimization and
nonlinear equations, the multivariate case – namely, partial derivatives – must be ad-
dressed. First consider the gradient vector, ∇f(x). Using ei to denote the ith elementary
vector, the estimate of the partial derivative with respect to xi is given by the forward
difference di = [f(x + hei) − f(x)]/h, and the error is ‖d − ∇f ‖ = O(h). For
the central difference formula, di = [f(x + hei) − f(x − hei)]/h and the error is
not surprisingly O(h2). For the Hessian matrix, more evaluations are needed, and the
scheme is

Ĥij = {[f(x + hiei + hj ej) − f(x + hiei)] − [f(x + hj ej) − f(x)]}/(hihj), (8.6.5)

again computed as the difference of two differences. As with the univariate second dif-
ference formula, the error ‖Ĥ−∇2f ‖ is O(h). Sometimes the symmetrized form H∗ =
(Ĥ + ĤT)/2 is computed to enforce symmetry in the Hessian matrix (perhaps lost by
roundoff). In order to evaluate the estimate d of the p-dimensional vector of partial
derivatives, p evaluations of the function f are needed in addition to the evaluation
at x. To compute the Hessian by differences, Ĥ or H∗ requires p(p + 3)/2 additional
evaluations.

The performance of central differences suggests that a little more effort may give
much better answers. If we view the central difference as an average of forward dif-
ferences taken in opposite directions, then a multivariate generalization of central dif-
ferences follows from taking the average of two versions of (8.6.5) using another pair
of elementary vectors in the opposite directions:

H̃ij = ({[f(x + hiei + hj ej) − f(x + hiei)] − [f(x + hj ej) − f(x)]}
+ {[f(x − hiei − hj ej) − f(x − hiei)] − [f(x − hj ej) − f(x)]})/(2hihj).

(8.6.6)

That additional effort nearly doubles the work, requiring p(p + 1) evaluations in ad-
dition to the center point. Whether the reduction in error to O(h2) is worth the effort
may depend on circumstances. The demonstration del12f shows the performance of
the algorithm that follows (8.6.6) for computing the Hessian matrix and also central
differences by di = [f(x + hiei) − f(x − hiei)]/hi.

An alternative method was suggested by Spendley, Hext, and Himsworth (1962) that
also takes p(p + 3)/2 evaluations. Their method arose as a simplex experimental de-
sign, focusing on the vertices x + hiei , with the goal of fitting a quadratic response
surface. Their design consists of the center point x, midpoints from x to the simplex ver-
tices x+(hi/2)ei , and midpoints between the simplex vertices x+(hi/2)ei +(hj/2)ej .

Going from the responses at these points to the estimates of the gradient and Hessian
follows some simple algebra.

The Jacobian matrix Jg of the nonlinear function g(x) can be estimated by the dif-
ference Ĵij = [gi(x + hj ej) − gi(x)]/hj for the forward difference case. Since the
evaluations of g yield a vector of values, this can be re-expressed in terms of an entire
column,

Ĵ•j = [g(x + hj ej) − g(x)]/hj, (8.6.7)

8.7 Minimization and Nonlinear Equations 203

with an error ‖Ĵ•j − (Jg)•j‖ of the size of O(hj). For this case, computing Ĵ requires an
additional p evaluations of the function g. If this vector-valued function g is in reality
the analytically computed ∇f, then symmetry can be enforced by H∗ = (Ĵ + ĴT)/2.

Before closing this section, two issues should be resolved. By avoiding a too small
difference h, numerical derivatives have gained favor in many circles. Confirming the
convictions of some is the anecdotal evidence that the major cause of failure in optimiza-
tion applications is the human error in the coding of analytical derivatives. Before pass-
ing judgment on this argument, the reader should attempt coding analytically the gradi-
ent and Hessian of the function [log(x1x2)/(x3x4)]2 used in the demonstration del12f.
Even though the accuracy from computing numerical derivatives is limited, doing so
can prevent major errors as well as embarrassments and a lot of work. In getting back
on the fence, however, if the effort is not taxing then you just can’t beat the real thing.

The second issue that arises here is the profound effect of the limited precision of
the arithmetic. In IEEE single precision with U ≈ 10−6, taking h = U 1/3 means h ≈
10−2 and so the best that can be expected from forward differences is two good decimal
digits, which is unacceptable. At this point, one should entertain moving from single
to double precision, even though there are two good reasons for staying with single
precision. First, mixing and mismatching single and double precision arithmetic is the
most common source of errors, in my experience. The second reason is pedagogical:
we reach the limits of floating point arithmetic so much quicker in single precision.
Moving to double precision does not remove these limits; it only moves them back. In
writing this my fear is that, in not seeing these barriers, the reader may forget where
they are as the research problem begins to strain the computer. From this point for-
ward, double precision arithmetic is not just permitted, it may be required. But like a
parent, I can’t hold back the admonition to “be careful!”

8.7 Minimization and Nonlinear Equations

The discussion of the multivariate Newton’s method was placed so prominently because
it is the main tool for these problems. Only when the full Newton step encounters some
problems is it worth employing any line search methods, and even then the Newton
direction is followed in the line search. There are certainly side issues – analytic ver-
sus numerical derivatives, the use of Newton analogs – but the approach stays pretty
simple.

Although the most common problem in statistics is maximizing likelihoods, the abil-
ity to talk of positive definite Hessians suggests simplifying the discussion to minimiza-
tion. In the univariate problem, the gain from moving from a minimization problem
to a root-finding problem was embodied in the ratio of φ to 1

2 , the rate of decrease
in the interval of uncertainty in golden section versus bisection. No such gain applies
in the multivariate game, since the minimization problem is really one of solving the
nonlinear system of equations ∇f(x) = 0. In fact, minimization has a few checks for
advantage: the function should decrease with each step, and the Hessian matrix should
be positive definite. The only advantage for the nonlinear equations is that a solution
is found if g(x) = 0.

204 Introduction to Optimization and Nonlinear Equations

In many multivariate problems, the usual route is to convert it to a univariate one.
In this case, however, that’s not such a good idea. One of the simplest techniques for
optimization is the steepest descent or gradient method. The motivation is simple: the
direction to move in order to minimize a function is the direction where the slope is
steepest. Once the direction is determined, the problem becomes a univariate one, and
univariate problems are relatively easy to solve. Mathematically, the steepest descent
method can be written as minimizing f ∗(u) = f(xold −ud), where d = ∇f(xold). The
method stops when there is nowhere to go: either d = 0 or moving to any u > 0 leads
to an increase in f. One of the advantages of this method is that a constant monitor-
ing of values of f can ensure that a minimum is found (and not a maximum or saddle
point). The main disadvantage of the method is that it tends to zig-zag its way to the
minimum whenever the problem is badly scaled. Consequently, the steepest descent
method is rarely competitive.

Example 8.4: Steepest Descent Zig-Zag
Even with a mildly scaled problem, the steepest descent method can do a lot of
zig-zagging. Let f(x) = x 2

1 + x 2
2 /2 and start at the point (1, 2). Then the first

zig in u is

f(x + ud) = f

(
1 − 2u

2 − 2u

)
= (1 − 2u)2 + (2 − 2u)2/2,

which has a minimum at u = 2/3. The pattern of the sequence of points can be
quickly found:(

1

2

)
,

(−1/3

2/3

)
,

(
1/9

2/9

)
,

(−1/27

2/27

)
,

(
1/81

2/81

)
,

Before the reader feels pleased by this geometric rate of convergence, recall that
Newton’s method would have the answer in one step. Figure 8.4 shows the con-
tours of f and the path of steepest descent.

A line search itself is not a bad idea; a line search in the Newton direction is a great
tool for overcoming a troublesome problem encountered often with Newton’s method
for minimization. Because Newton’s method is designed to find the solution to a lo-
cal quadratic, a step that leaps far beyond “local” can sometimes yield a value for the
function f at the new point that is actually larger, say, for a minimization problem.
In order not to leap beyond “local,” a simple patch is backtracking: search along the
Newton’s step direction. Suppose the Newton iteration (8.5.2) is xnew = xold + s; then,
when f(xnew) > f(xold), consider the function f ∗(u) = f(xold − us). Since f ∗(1) >

f ∗(0), the likely reason is that u = 1 is much too far from the minimizing value of
u. An accurate line search on u is usually wasted computation, so the most common
method is to take u that minimizes the quadratic functions of u that fit f ∗(0), f ∗′(0),

and f ∗(1), since all are known (see Exercise 8.19). If this fails to decrease the func-
tion, then a cubic can fit the four pieces of information now available. If Newton’s
method suggests decreases in this direction and yet this backtrack fails (with even very
small values of u not yielding any decrease in f), then the usual cause is that the limits

8.7 Minimization and Nonlinear Equations 205

Figure 8.4. Slow convergence of steepest descent. The convergence path zig-zags to the center of
the elliptical contours of the objective function f (x) = x2

1 + x2
2/2.

of accuracy of f have been reached – relative to the tolerances for the gradient being
small enough to stop.

Although the overall strategy is to do Newton’s method, backtracking if necessary,
there are some important side issues that include the choice of analytic versus numerical
derivatives or secant versus Newton methods. Many minimizing routines (or nonlin-
ear solvers) offer different versions for these choices, but the criteria are simply these:
(i) Are the evaluations cheap or expensive? (ii) Are the analytical derivatives easy or
difficult? If the evaluations are cheap then, even if the Hessian must be computed nu-
merically, its evaluation will still be cheap. In such a case, there is no need to employ
any secant method – just use Newton and backtracking with either numerical or ana-
lytic derivatives; the choice between these two is a matter of convenience. Yes, there
is an advantage to having analytical results, but only if they are correct; miscoding is
a common mistake even for experienced users, including the author.

If evaluation of the function is expensive, then secant analogs must be entertained.
Recall that computing the Hessian takes O(p2) work; for a statistical problem with n

observations, this is often really O(np2). This cost usually remains the same whether
analytic or numerical derivatives are used. Whereas it is important to obtain accurate
values of g(x) or ∇f(x), especially for determining whether the solution is found, errors
in Jg or H are more tolerable. Secant analogs use previous observations to approxi-
mate these matrices, sacrificing O(p2) work with a small scale factor to do the linear
algebra in order to avoid paying costs like O(np2). First, Broyden’s secant update for
nonlinear equations will be discussed, followed by the positive definite secant update
for minimization. Readers uninterested in these details should skip to the next section.

A simplistic route to approximate Jg would be to mimic directly the secant method
by finding the linear (affine) function that interpolates the previous p points. Although

206 Introduction to Optimization and Nonlinear Equations

this would work and give superlinear (barely, as p grows) convergence, it is sensitive
to the layout of points and can behave unstably. A better way of doing things is to view
the problem as one of updating the current Aold estimate of Jg to an updated one Anew.

Now the old matrix is defined by the secant approximation to g,

ĝold(x) = g(xold) + Aold(x − xold), (8.7.1)

and the secant equation for the new matrix is defined by

ynew = g(xnew) − g(xold) = Anew(xnew − xold) = Anewsnew, (8.7.2)

which gives a new affine approximation to g. This approximation is not uniquely de-
termined, requiring only that the change in g be a linear transformation Anew of the step
snew. The difference between these two affine approximations can be expressed by

ĝnew(x) − ĝold(x) = (Anew − Aold)(x − xold) (8.7.3)

after combining (8.7.1) and (8.7.2) and some algebra. The goal is to update A in such
a way as to minimize the change in the affine models given in (8.7.3). Reparameterize
x − xold in terms of a scalar α multiple in the direction snew; then a vector t orthogo-
nal to that direction gives x − xold = αsnew + t, where tTsnew = 0. The change in the
affine model can now be rewritten as

ĝnew(x) − ĝold(x) = α(Anew − Aold)snew + (Anew − Aold)t, (8.7.4)

and the goal now is expressed as making the last piece in (8.7.4) disappear. That is ac-
complished by writing (Anew − Aold) = wsT

new for some vector w to be determined.
Multiplying this by snew gives the first equation below; the others are obtained by eval-
uating (8.7.3) at x = xnew:

(Anew − Aold)snew = wsT
newsnew

= g(xnew) − g(xold) − Aold(xnew − xold)

= ynew − Aoldsnew, (8.7.5)

which determines w = (ynew − Aoldsnew)/sT
newsnew. All of this work produces a rank-

1 update known as Broyden’s secant update,

Anew = Aold + (ynew − Aoldsnew)sT
new

sT
newsnew

. (8.7.6)

The iteration step for Broyden’s method is then given by the Newton-like formula

xnext = xnew − A−1
newg(xnew). (8.7.7)

The resulting algorithm, following the iteration step (8.7.7), converges superlinearly to
the solution of the nonlinear equations. Broyden’s update can be shown to have nice
mathematical qualities, and though other updates have qualities at least as nice, none
performs as well as (8.7.6) in practice.

The rank-1 nature of Broyden’s secant update and the iteration formula written with
a matrix inverse may together suggest a Sherman–Morrison–Woodbury (SMW)-type
rank-1 matrix inverse updating scheme, (A +bcT)−1 = A−1−A−1bcTA−1/(1+cTA−1b).

In this form, the inverse of the new matrix is found from the inverse of the old matrix

8.7 Minimization and Nonlinear Equations 207

and takes only O(p2) operations instead of O(p3). However, when used repeatedly
this scheme becomes poorly conditioned and should not be used. A better route is to
update the QR factorization of A in the following way. Let Aold = QoldRold be the
factorization of the old matrix, where Q is orthogonal and R is upper triangular. The
new factorization is then written as

QnewRnew = QoldRold + bcT = Qold(Rold + dcT), (8.7.8)

so that the real problem is the factorization QupdRnew = Rold + dcT.

Consider first the QR factorization of a rank-1 matrix dcT by Givens transforma-
tions. Only (p −1) rotations are needed, since the linear combination of rows that puts
a zero in the second component of a pair of rows in one column will also put zeros in
the second component of each column. Now, for the problem at hand there is a super-
imposed upper triangular matrix Rold. Because of this, start the rotations at the bottom
with rows (p −1) and p, and rotate to put a zero in the pth component of the first col-
umn. This rotation, when applied to the whole matrix, will put zeros all along the last
row except for the first subdiagonal (p, p −1) element and the diagonal (p, p). Next,
move up to rows (p − 2) and (p − 1), which puts zeros in row (p − 1) as far as the
first subdiagonal (p − 1, p − 2). Repeating this for a total of (p − 1) rotations pro-
duces a matrix that is upper triangular except for the first subdiagonal (this is known
as a Hessenberg matrix). An additional (p − 1) rotations are needed to put a zero in
these places. Since each rotation is applied to every row, costing O(p) operations, it
follows that performing 2(p − 1) rotations (constituting Qupd) takes a total of O(p2)

operations, which is the same as the unstable SMW update. Hence, solving to compute
the step A−1

newg(xnew) still takes O(p2) operations.
Now that the secant analog has been found for the solution to nonlinear equations,

our attention turns to finding a similar one for the optimization problem. Obviously,
by taking derivatives, the optimization problem can be put into the nonlinear equations
format ∇f(x) = 0. Then the secant equation analogous to (8.7.2) is

ynew = ∇f(xnew) − ∇f(xold) = Hnew(xnew − xold) = Hnewsnew. (8.7.9)

Because H is here the Hessian matrix of the function f, it must be symmetric – in con-
trast to the matrix A of (8.7.2), which has no restrictions. Moreover, if a minimum is
sought then a positive definite Hessian matrix would be preferred because, near the so-
lution, the true matrix H(x) would be positive definite. The objective now is to find
an update of a Hessian matrix – from Hold (which satisfied the secant equation on the
previous step) to Hnew at this step – that is simple, fast, and produces a matrix both
symmetric and positive definite. Powell (1970) found a symmetrized form of Broy-
den’s secant update (8.7.6), but without a guarantee of positive definiteness. Enforcing
positive definiteness is possible only if sT

newynew > 0 (see Dennis and Schnabel 1983,
lemma 9.2.1). Using the definition of ynew in (8.7.9), this condition can be translated to

sT
new∇f(xnew) > sT

new∇f(xold),

which means that the function f is steeper now than before, in the direction of the step
snew. This condition can then be enforced as a part of the search implementation. The
resulting symmetric positive definite secant update is commonly known as the BFGS
(Broyden–Fletcher–Goldfarb–Shanno) update and takes the form

208 Introduction to Optimization and Nonlinear Equations

Hnew = Hold + ynewyT
new

yT
newsnew

− HoldsnewsT
newHold

sT
newHoldsnew

. (8.7.10)

As with Broyden’s secant update, there are other competitors, but the BFGS performs
best in practice. The iteration step for this secant analog for optimization takes the fa-
miliar form

xnext = xnew − H−1
new∇f(xnew). (8.7.11)

Again, as with Broyden’s secant update, efficient computations with H and its inverse
are a main concern; details for the BFGS update are discussed in Goldfarb (1976). In
this case, since H is positive definite, its Cholesky factor L can be updated. If we de-
note the old factor by Lold (i.e., Hold = LoldLT

old), then the update to the new factor
can be written as

Lnew = Lold + (ynew − αHoldsnew)(αLT
olds)T

yT
newsnew

, (8.7.12)

where α = (yT
newsnew/sT

newHoldsnew)1/2. This problem is quite similar to the update
problem (8.7.8) and with the same QR analog to be pursued, but notice that the orthog-
onal matrix need not be kept here.

8.8 Condition and Scaling

In Section 8.4, the problem of when to stop an iterative search algorithm led to a
discussion of the condition of the problem of root-finding or optimization. In the mul-
tivariate case – either solving nonlinear equations or optimizing a function of several
variables – the problem of condition becomes more complicated. For the solution to
nonlinear equations, the calculus (Theorem 8.8) gives

g(x) − g(c) ≈ Jg(x − c); (8.8.1)

this reveals that the condition of the problem is essentially that of the local affine ap-
proximation, which is merely a system of linear equations. Consequently, the results of
Chapter 3 apply, giving a condition number of ‖J−1‖‖J‖. In solving a system of non-
linear equations, the gains from rescaling variables are essentially the same as those
for rescaling in the linear case (see Chapter 3).

Stepping back from the mathematics for a moment, consider some of the practical
aspects. Mathematically, the condition of the problem as originally posed is usually
not subject to any control. Nonetheless, the seriousness of the condition could be exac-
erbated if we were to repose the problem poorly. To avoid this consequence, consider
what can be done to improve the situation. As just mentioned, conditioning for nonlin-
ear equations is essentially the same as for the affine approximant. Keeping all of the
variables x in the same order of magnitude (if possible) is equivalent to column scal-
ing. In the nonlinear equations case, this means reparameterizing the variables to y =
Dx and redefining the function as g(D−1y). Since premultiplication of g by any non-
singular matrix A will not change the root of the nonlinear equations, row scaling is
available as a linear transformation Ag(x) to keep each equation at the same magnitude.

8.8 Condition and Scaling 209

This rescaling of variables and equations is best done by the user, since rescaling by
algorithm is difficult and often ineffective.

For the optimization problem, the issue of scaling becomes more interesting. Fol-
lowing Gill et al. (1981, pp. 301ff), for a value x near the optimum c, we have by
Theorem 8.6 that

f(x) − f(c) = (x − c)TH(x − c)/2.

If the function f is accurate only to εf , then writing x − c = hd with ‖d‖ = 1 yields

h2 = ‖x − c‖2 ≈ 2εf/[dTHd], (8.8.2)

which indicates that the accuracy in the solution depends on the direction. Extreme
values of the quadratic form [dTHd] are, of course, the largest and smallest eigenval-
ues of the Hessian matrix H. The amplification will then be largest in the direction of
the eigenvector of the smallest eigenvalue. If H is nearly deficient in rank, then the
problem will be very badly conditioned and an acceptable solution may stray far in the
direction of that eigenvector. Remember that, owing to the nature of the problem, the
adjective “acceptable” must be attributed to an apparently inaccurate solution and that
no algorithm can be expected to improve upon it. Finally, it is disappointing to find
that such a difficulty may not be found by simply examining the gradient. More specif-
ically, the condition of ∇f again depends on the direction and the eigenvalues of H,

but now conversely. As a result, in the direction corresponding to small eigenvalues,
the gradient could be small and the deviation from the solution large (or vice versa).

Again, the greatest gains in rescaling are from simple applications of common sense.
In the optimization problem, however, the only easy tool is reparameterization. The
goal is to rescale the variables so that the resultant Hessian matrix is not so badly con-
ditioned. Another point of possible improvement is a rescaling of the function to be
optimized, so that the function values themselves are not too large (and convergence
never achieved) or too small (and gradients so close to zero that they indicate prema-
ture convergence).

Finally, the reader is cautioned to regard apparent convergence from optimization
software with a grain of skepticism. For a badly conditioned problem, changing some
part of the input to the problem – including stopping criteria – could lead to unaccept-
able changes in the purported solution. At any hint that assumptions on the function
may be violated or the problem is badly conditioned, the reader should take steps to
check whether the advertised solution really solved the problem. McCullough and
Vinod (2003) suggest commonsense steps that are paraphrased here as questions to be
addressed:

1. Is the gradient close enough to zero? If the algorithm stopped because of a small
gradient, the solution may change if this stopping condition was tightened or the
parameters rescaled. The accuracy of the arithmetic, the computational accu-
racy of the function, and the condition/scaling affect what might be considered
“close enough.”

2. Is the apparent convergence rate appropriate? Examine the sequence of itera-
tions or “trace” of the algorithm. Newton-like methods should accelerate to a
solution; linearly convergent methods should steadily improve.

210 Introduction to Optimization and Nonlinear Equations

3. Is the Hessian negative/positive definite? As just discussed, examining the
eigenvalues and eigenvectors of the Hessian can indicate whether a problem
is badly conditioned, as well as problematic search directions.

4. Is the function approximately quadratic at the solution? Plotting the function
along directions suggested by the eigenvectors of the Hessian can shed light on
many potential problems.

8.9 Implementation

The reader has been admonished previously about writing his or her own code where
quality maintained software may be available. At this last opportunity, I will list the
few situations where the reader might question that admonition. First, for some prob-
lems it is easy to code a Newton step – either for optimization or nonlinear equations –
and the user has the opportunity to closely monitor its progress. In this case, the reader
may enjoy coding his or her own algorithm. Second, in some situations the optimiza-
tion or root-finding problem is at the core of a larger and longer piece of code, and
the problem is sufficiently tractable that the performance of the method can be proven,
preferably mathematically but certainly with experience. In other cases, I would urge
the reader to use the software that is available. Software for optimization and nonlinear
equations that is well-written, documented, and tested can be found in libraries such as
NAG, IMSL, and MINPACK. Other algorithms can be found in the ACM algorithms,
published in TOMS. The author – with much reluctance, after years of successfully
avoiding the temptation and the effort – has taken the plunge to reinvent something as
basic as the wheel in some minimizing codes plum1t and plum2t, following the guide-
lines of Dennis and Schnabel (1983). Further descriptions of these demonstrations are
included in the next section. Although the author has some level of confidence in the
quality of this code, it is not maintained professionally and has been included primarily
for instructive purposes.

Nearly all of the optimization and nonlinear equation solvers are written as Fortran
subroutine subprograms. For reasons cited in Chapter 1, Fortran subprograms can work
as black boxes, to be pulled out of a library and put in place to solve whatever problem
is at hand. The calling structure is nearly always the same: the user writes function or
subroutine subprograms to compute the function or other information (g, ∇f, Jg, H),

and the names of these modules are passed as an argument to the solver subroutine. In
the driver, which calls the solver, an “external” statement is needed to denote the mod-
ule names as such (and not as variable names). In order to pass information or data
from the driver to the function or gradient modules, the usual method is to use modules.
More recent code features the ability to pass vectors through the solver as arguments
to both the solver and the function or gradient modules.

In R, a function is an object and can be passed as an argument to another function
without a problem. To pass data to a function to be optimized or a root found, most
commonly a loglikelihood function or its derivative, R offers three routes. The sim-
plest route is to define the function to be optimized in the global environment with the
data that it needs. If the function needs the data variable x, then the user must be careful

8.10 A Non-Newton Method: Nelder-Mead 211

never to use that variable elsewhere in that workspace. A second route that is similar
to Fortran or other “call by name” languages is the “. . . ” argument that is available in
most optimizing functions. This allows the optimizing function to be called with more
parameters than required, allowing the extra information to be made available to the
loglikelihood function. Again, care must be taken in naming and referring to the vari-
ables. The third route is to use another function to write the loglikelihood function.
We can write a function whose arguments are the data for the problem, whose result
is a function to be optimized with just the parameters as arguments. When the writing
function is called, it creates the loglikelihood function with the data in its environment.
Examine closely the R code in finder.r where all three routes are demonstrated.

As discussed previously, Newton methods are usually fastest but they are often cum-
bersome because they require gradient or Hessian information. Sometimes coding a
subprogram to provide this information is difficult; moreover, errors can be made in
coding complicated formulas. As a result, many libraries have solvers in pairs: the
user can either supply the information or let the solver compute the information using
numerical difference methods (discussed in Section 8.6). When the size of the differ-
ence is under control, you should use the methods outlined in that section for choosing
h. In some routines, h has been chosen much too small and so the solver is virtually
useless. Remember, it is better to take h too large and face some bias than get a wild
result from taking h too small.

In contrast, recent advances in automatic differentiation presage an end of the need
for numerical differentiation. By automatic differentiation, we mean methods that
can compute the gradient and/or Hessian of a function without the human effort of
coding such an auxiliary function. Currently, this has been employed in situations
where the software includes a language for models. For example, fitting a nonlin-
ear regression model (Section 9.8) of the form E(yi) = β0 + β1 exp(−β2xi) may
be written in some software in nearly the same set of symbols as the text on this
page: beta0 + beta1 ∗ exp(−beta2 ∗ x). As the software parses this text, it recog-
nizes parameters (e.g., beta1), vectors (x), addition, multiplications, and the function
exp. Automatic differentiation software can then arrange for the computation of both
the mean function and the Jacobian matrix using some common pieces to avoid the
duplication of effort. Currently, this software can handle most anything except code
that involves branching (Griewank and Walther, 2008).

Finally, most solvers require a list of information to solve the problem at hand. Many
of these have already been discussed: maximum number of iterations (or function or
gradient evaluations), epsilons (εx, εg, εf), starting values for x, and initial values for a
Hessian or Jacobian matrix. A less common but useful technique is to use a (diagonal)
rescaling matrix so that the variables can be left in their natural units and automatically
rescaled. This can also be used for rescaling to test for convergence on x as well as for
choosing h for differencing.

8.10 A Non-Newton Method: Nelder-Mead

In a paper previously cited on numerical differentiation, Spendley, Hext, and Himsworth
(1962) proposed a search algorithm based on constructing a regular simplex in d

212 Introduction to Optimization and Nonlinear Equations

dimensions for the purpose of optimizing the response in a d factor experiment using
the responses at d + 1 design points. The search process consisted of constructing a
new simplex by reflecting through the face opposite of the worst vertex of the simplex.
In the case of a regular simplex (i.e., an equilateral triangle in d = 2, a regular tetra-
hedron in d = 3), the reflected simplex has only one new point at which the response
must be measured. Sequentially updating this minimal set of design points leads to
their “simplex” algorithm. Nelder and Mead (1965) modified this idea by relaxing the
rigid regular shape of the simplex to just a set of d + 1 linearly independent vertices
in d-dimensional space and developed an effective search method. The Nelder-Mead
algorithm uses only values of the function and does not make the usual assumptions
on the smoothness of the function to be minimized. As a result, their algorithm has
a reputation for being rather robust, especially with respect to starting values. Using
minimal assumptions about the function, however, also means that it will be very slow
compared to any Newton-like method – its convergence will not improve greatly as
the search approaches the solution. In practice, Nelder-Mead has been often used on
difficult problems, or in situations where good starting values (good enough to allow
Newton to work well) may not be available.

The algorithm begins with a set of vertices {x(i), i = 1, . . . , d +1} forming the sim-
plex in d dimensions. In each step of the algorithm, new points are selected for the
simplex, essentially away from bad points, say xhigh which has the highest value of the
function f (x), and toward good ones, say xlow where the function is smallest. The new
point can be written as xnew = (1 + α)x − αxhigh, where xhigh is the largest (worst)
vertex and x = d−1∑

j
=high x(j), the centroid of the remaining vertices. Comparing
the value of the function at this new point fnew to flow = f (xlow) < . . . < fsecond =
f (xsecond) < fhigh = f (xhigh) leads to variations on this basic step.

If the new point is a definite improvement (fnew < fsecond), but not the best (flow <

fnew), then replace the worst xhigh with the new point xnew and restart.
If the new point is best, then try to expand the simplex by moving further away from

xhigh to xexp = (1 − γ)x + γ xnew, using the expansion coefficient γ . If this newest
point xexp is best, that is, f (xexp) < fnew, then replace the worst point xhigh in the sim-
plex with this expansion point xexp and restart; otherwise, replace the worst with the
improvement xnew (and restart).

If the new point is only a marginal improvement (fsecond < fnew < fhigh), so that
the new point would be the worst point in the new simplex, then the (just reflected)
simplex is contracted: xrcon = (1 − β)x + βxhigh. If this new point is better (frcon =
f (xrcon) < fnew), then replace the worst with xrcon; otherwise, we must have gone too
far and will have to shrink the simplex.

If the new point is now the worst, then going away from the xhigh may not have
been such a good idea, so we should contract the original simplex back toward xhigh

and away from xnew, and try the point xicon = (1 − β)x + βxnew. If the new point is an
improvement, replace xhigh with xicon in the simplex and restart; otherwise, we’ll have
to shrink the simplex.

The motivation for shrinking is that if any step away from the current simplex is
going up, perhaps the steps are too big and so the simplex is too big. Shrinking brings the
other points halfway to the current best xlow following x(i)

shrink = xlow − 1
2 (x(i) − xlow).

Programs and Demonstrations 213

According to Kelley (1999), even under reasonable assumptions, the function value
at best point flow is not guaranteed to improve with each step; rather, the average value
in the simplex (d + 1)−1∑

i f (x(i)) will be reduced. This is hardly a glowing endorse-
ment, especially compared to Newton-like methods that accelerate as they approach
the solution. As a result, Nelder-Mead should not be the first tool to be used on a prob-
lem, but one to be utilized when other methods have failed.

Programs and Demonstrations

false Convergence of false position and Illinois
The Illinois method is a powerful hybrid method, combining the safety of bisec-
tion or false position (regula falsi) while avoiding the problems of false position in
achieving superlinear convergence. As used in Figures 8.1 and 8.2, the function is
g(x) = x3 −1 on the interval (0, 2). Both methods are set up to do 30 iterations (too
many). False position stops only when it stumbles onto the root after 25 iterations;
Illinois starts slowly, but after its first secant step it quickly finds the root at 1.
regula – performs false position (regula falsi) search.
illini – performs Illinois method search.

finder Demonstration of all one-variable root finders and optimizer
The problem faced here was presented first as Example 8.3; this maximum likeli-
hood problem will be used again later in Chapters 9 and 12.
golden – performs golden section search for a maximum of a given function in an
interval.
bisect – performs bisection search for a root of a given function in an interval.
regula – performs regula falsi (false position) search for a root of a given function
in an interval.
illini – performs Illinois method search for a root of a given function in an interval.
secant – performs secant search for a root of a given function.
newton – performs Newton search for a root of a given function; also requires its
derivative.
In the R version, three ways of passing data to a function to be optimized/root found
are demonstrated using the similar R functions optimize and uniroot.

nelmead Demonstration of Nelder-Mead search
For the same four problems tested in plum1t/plum2t, the routine nelmead com-
putes the minimum of the functions. In the R version, default method in optim is
Nelder-Mead.

numdif Demonstration of numerical differentiation
Numerical estimates of the first and second derivatives of the function f(x) =
log �(x) are computed. The routine ALGAMA is used to compute the function. For-
ward difference estimates for the first derivative (f̂ ′

1(x) from (8.6.1)) as well as
central differences (f̂ ′

2(x) from (8.6.2)) are computed. For the second derivative,
both expressions f ′′

1 and f ′′
2 described on page 185 are employed for comparison.

214 Introduction to Optimization and Nonlinear Equations

del12f Test /demonstration of numerical differentiation of a multivariate function
Once maximum likelihood estimates have been computed, the next step is often
to compute the gradient vector and Hessian matrix of the log-likelihood function.
Given the function and differences for each variable, the routine del12f computes
the gradient vector (using central differences) and the Hessian (using the general-
ization given by (8.6.6)). The function used for testing is

f(x) =
{

log

(
x1x2

x3x4

)}2

,

which looks pretty simple but can be tricky. The gradient and Hessian were com-
puted at x = (1, 2, 3, 4).

del12f – computes gradient and Hessian by numerical differentiation.

plum1t Test /demonstration of general function minimizer plum1t
For four examples, the routine plum1t computes the minimum of a function. New-
ton’s method with backtracking (as recommended by Dennis and Schnabel 1983)
is the approach used. In this version, all derivatives – both gradient and Hessian –
are computed numerically using del12f. The first two examples are p = 4 and p =
10 generalizations of the Rosenbrock (1960) function. The third example is a likeli-
hood from Cox (1970), and the fourth is Example 9.4.1 from Dennis and Schnabel
(1983). The routine plum1t requires del12f as well as the Cholesky codes chlzky,
chlzhi, chlzih, and adjust.
plum1t – computes the minimum of a function using numerical gradients and Hes-
sians.
In the R version, the similar R function nlm is used for the same test problems.

plum2t Test /demonstration of general minimizer plum2t
The parallel routine to plum1t, but requires a user-supplied routine to compute the
gradient and Hessian analytically. The same four examples as plum1t are solved.
The routine plum2t also requires the same Cholesky routines chlzky, chlzhi, chlzih,
and adjust.
plum2t – computes the minimum of a function using analytic gradients and Hes-
sians.
In the R version, the similar R function nlm is used for the same test problems. Gra-
dients and Hessians are attached as attributes to the objective function.

Exercises

8.1 Consider the cubic function g(x) = x3 − x − 1. Show that the three roots of g(x) = 0
are separated by ±1/

√
3. Find the largest root.

8.2 A simple approximation to the square root of a number x in the interval [1/16,1) is the
function

y0(x) = 1.681595 − 1.288973/(0.8408065 + x).

Find the relative error of y0 by finding the extreme points of
(
y0(x) − √

x
)/√

x or the

extreme points of
(
y0 − √

x
)2

/x.

Exercises 215

8.3 Take the derivative of f(x + tp) with respect to t to show that the directional derivative
of a function f(x) in the direction p is equal to pT∇f(x).

8.4 Prove the linear version of the multivariate mean value theorem (8.1.1).

8.5 Find the constants c1 and c2 such that Fn = c1φ
n + c2φ

−n for the nth Fibonacci number.

8.6 Consider the difference equation yn+2 = yn + yn−1 with starting values all equal to 1.
What is the limit of the ratio yn+1/yn as n → ∞?

8.7 Discrete Bisection. Suppose Y1 < Y2 < · · · < Yn. The problem is to find (quickly) i for
a given y such that Yi ≤ y < Yi+1. (Let i = 0 if y < Y1.)

(a) Write an algorithm to solve this by applying the bisection algorithm to the function
f(k) = Yk − y. Be careful of details.

(b) Write a Fortran program to compute the empirical distribution function at a given
point, given the order statistics.

(c) For large values of n, how many steps would be required?

8.8 Consider the function g(x) = x/
√

1 + x 2, which has a single root at x = 0. For what
starting values of x will Newton’s method converge to 0? For what values will Newton’s
method diverge?

8.9 Give the iteration step and the relative error dn+1 in terms of dn for Newton’s method
applied to the square root problem, that is, finding the root of f(y) = y2 − x. (This
algorithm, known as Heron’s rule, goes back to ancient times.)

8.10 Suppose we solve Exercise 8.2 and use the estimate y0 of the square root of x to start two
Heron iterations, y1 = 1

2 (y0 + x/y0) and y2 = y1 − 1
2 (y1 − x/y1). What is the relative

error of y2? (This is the single precision algorithm for IBM mainframes; its accuracy is
advertised as 2−25.9.)

8.11 As in Exercise 8.9, analyze the convergence of Newton’s method applied to the function
f(y) = yp − x for p = 3, 4, . . . and also for p = −1 (for computers with no floating
point division instruction).

8.12 Explain why the secant formula (8.3.7) would be preferred to the following equivalent
expression:

xn+1 = [xn−1g(xn) − xng(xn−1)]/[g(xn) − g(xn−1)].

8.13 Let us define an estimator of location as the value of µ that minimizes

f(µ) =
n∑

i=1

|Xi − µ|3/2,

giving an estimator part way between the median (exponent 1) and mean (exponent 2).
(a) Show that the derivative f ′(µ) is monotone increasing.
(b) Where does the second derivative f ′′(µ) not exist?
(c) Find an interval in which the minimum of f must be attained.
(d) Show that neither Newton’s method nor the secant method are guaranteed to work.
(e) Can regula falsi also fail?
(f) Of the many methods, what is the best method for computing this estimate?

8.14 A problem similar to that used in Figures 8.1 and 8.2 is finding the root of g(x) = x3

in the interval (−1, 2). How do regula falsi and Illinois perform on this one? Is there
something wrong here?

216 Introduction to Optimization and Nonlinear Equations

8.15 The Hodges–Lehmann location estimator can be defined as the root of the Wilcoxon
statistic

W(µ) =
n∑

i=1

sign(Xi − µ) rank(|Xi − µ|).

(a) Design an algorithm to compute the estimator that would need to sort only once.
(b) When n modulo 4 is 0 or 3, the estimator is the midpoint of the interval of roots of

W. How would you handle that?

8.16 Consider using false position to find the root of the function f on the unit interval

f(x) =
{ −a for x < 1 − ε,

b for x ≥ 1 − ε,

with the starting points (0, −a) and (1, b). Show that the convergence can be made arbi-
trarily slow by taking a, b > 0 to extremes.

8.17 Find the minimum of the gamma function �(x) in the interval (1, 2).

8.18 Let f ∗(u) = f(x + ud). Find f ∗′(0).

8.19 Suppose we are given f ∗(0), f ∗(1), and f ∗′(0). Following Exercises 8.18 and 8.3, find
the value of u that minimizes a quadratic approximation to f ∗(u).

8.20 In the code numdif, change x to x = 3/2 and then compare the results to both f ′(3/2) =
.036489974 and f ′′(3/2) = .9348022005.

8.21 Compute the percentile points of the normal distribution for α = .10, .05, .01 by finding
the roots of the equation �(x) − α = 0.

8.22 For t = 1, 2, 3 and the same values of α as in Exercise 8.21, find the percentile points of
the inverse Gaussian distribution with distribution function

�
(
(x − 1)

√
t/x
)+ e2t�

(−(x + 1)
√

t/x
)
.

8.23 The Cantor function (see Exercise 2.25) is a continuous and nondecreasing function on
(0,1). Find where the Cantor function crosses 1/3 numerically.

8.24 Just for fun, using numdif and your code for the Cantor function f(x) in Exercise 8.23,
what happens when you try to compute numerical derivatives of f(x) at various x?

8.25 In smoothing spline computations, we need to solve nonlinear equations of the form

f (t) =
∑

i

1

1 + 6tgi

= r,

for constants gi > 0.
(a) Construct bounds for the root of this equation based on r and the minimum and max-

imum of gi .
(b) Recommend a method for solving this nonlinear equation.
(c) Write a function to take r and gi as input and compute the root.

8.26 (Bodily, 2002) Let g(x) be a stochastic process with zero mean and covariance kernel
Cov(g(x), g(y)) = γ (x, y). Let γ (x, y) have sufficient properties so that we can take
derivatives g′(x) such that Cov(g(x), g′(y)) = ∂

∂y
γ (x, y) and Cov(g′(x), g′(y)) =

References 217

∂2

∂x∂y
γ (x, y). Consider the computed first difference as having independent random

rounding errors e1 and e2 with variance ε2
m as

h−1(g(x + h) + e1) − h−1(g(x) + e2).

(a) Compute the variance as E
[
h−1(g(x + h) + e1) − h−1(g(x) + e2) − g′(x)

]2
.

(b) For the covariance kernel γ (x, y) = σ 2e−a(x−y)2
, find h (to first order) to minimize

this variance.
(c) Perform a similar analysis for the central difference (f (x + h) − f (x − h))/(2h).

8.27 Notice that for small values of c, fc(u) = √
c2 + u2 ≈ |u|, or in words, fc(u) is a continu-

ous approximation for the discontinuous function |u|. Consider using this approximation
to solve the median regression problem as

minb

∑
i

f (yi − xT
i b).

What optimization methods may work here? Will Newton methods work? Why or why
not?

References

The two main sources for optimization and nonlinear equations are the books by Dennis
and Schnabel (1983) and Gill et al. (1981). They are both well written, and the extent of
detail and complexity should deter the reader from writing algorithms while enabling
a deeper appreciation of the skill and artistry employed by extant optimizers and non-
linear equation solvers. Of the older references, Wilde (1964) is a favorite. Dowell and
Jarratt (1971) derived the convergence rate for the Illinois method.

Christopher H. Bodily (2002), “Numerical Differentiation Using Statistical Design,” unpublished
Ph.D. thesis, North Carolina State University.

R. P. Brent (1973), Algorithms for Minimization without Derivatives. Englewood Cliffs, NJ: Pren-
tice-Hall.

D. R. Cox (1970), Analysis of Binary Data. London: Methuen.
J. E. Dennis, Jr. (1984), “A User’s Guide to Nonlinear Optimization Algorithms,” Proceedings of the

IEEE 72: 1765–76.
J. E. Dennis, Jr., and R. B. Schnabel (1983), Numerical Methods for Unconstrained Optimization and

Nonlinear Equations. Englewood Cliffs, NJ: Prentice-Hall.
M. Dowell and P. Jarratt (1971), “A Modified Regula Falsi Method for Computing the Root of an

Equation,” BIT 11: 168–74.
D. M. Gay (1983), “Algorithm 611: Subroutines for Unconstrained Minimization Using a Model / Trust

Region Approach,” ACM Transactions on Mathematical Software 9: 503–24.
P. E. Gill, W. Murray, and M. H. Wright (1981), Practical Optimization. London: Academic Press.
D. Goldfarb (1976), “Factorized Variable Metric Methods for Unconstrained Optimization,” Mathe-

matics of Computation 30: 796–811.
Andreas Griewank and Andrea Walther (2008), Evaluating Derivatives: Principles and Techniques

for Algorithmic Differentiation. 2nd edition, Philadelphia: SIAM.
C. T. Kelley (1999), Iterative Methods for Optimization. Philadelphia: SIAM.
D. G. Luenberger (1984), Linear and Nonlinear Programming, 2nd ed. Reading, MA:Addison-Wesley.
B. D. McCullough and H. D. Vinod (2003), “Verifying the Solution from a Nonlinear Solver: A Case

Study,” The American Economic Review 93: 873–91.

218 Introduction to Optimization and Nonlinear Equations

J. A. Nelder and R. Mead (1965), “A Simplex Method for Function Minimization,” The Computer
Journal 7: 308–13.

M. J. D. Powell (1970), “A New Algorithm for Unconstrained Optimization,” in J. B. Rosen, O. L.
Mangasarian, and K. Ritter (Eds.), Nonlinear Programming, pp. 31–65. New York: Academic
Press.

H. Rosenbrock (1960), “An Automatic Method for Finding the Greatest or Least Value of a Function,”
Computer Journal 3: 175–84.

W. Spendley, G. R. Hext, and F. R. Himsworth (1962), “Sequential Application of Simplex Designs
in Optimization and Evolutionary Operation,” Technometrics 4: 441–61.

Michael N. Vrahatis (1988), “Solving Systems of Nonlinear Equations Using the Nonzero Value of
the Topological Degree,” ACM Transactions on Mathematical Software 14: 312–29.

D. J. Wilde (1964), Optimum Seeking Methods. Englewood Cliffs, NJ: Prentice-Hall.

9

Maximum Likelihood and
Nonlinear Regression

9.1 Introduction

Maximum likelihood is generally regarded as the best all-purpose approach for statis-
tical analysis. Outside of the most common statistical procedures, when the “optimal”
or “usual” method is unknown, most statisticians follow the principle of maximum
likelihood for parameter estimation and statistical hypothesis tests. Bayesian statis-
tical methods also rely heavily on maximum likelihood. The main reason for this
reliance is that following the principle of maximum likelihood usually leads to very
reasonable and effective estimators and tests. From a theoretical viewpoint, under very
mild conditions, maximum likelihood estimators (MLEs) are consistent, asymptoti-
cally unbiased, and efficient. Moreover, MLEs are invariant under reparameteriza-
tions or transformations: the MLE of a function of the parameter is the function of
the MLE. From a practical viewpoint, the estimates and test statistics can be con-
structed without a great deal of analysis, and large-sample standard errors can be com-
puted. Overall, experience has shown that maximum likelihood works well most of
the time.

The biggest computational challenge comes from the naive expectation that any sta-
tistical problem can be solved if the maximum of some function is found. Instead of
relying solely on the unconstrained optimization methods presented in Chapter 8 to
meet this unrealistic expectation, the nature of the likelihood function can be exploited
in ways that are more effective for computing MLEs. Since the exploitable properties
of likelihood functions follow from the large-sample theory, this chapter will begin
with a summary of the consistency and asymptotic normality properties of MLEs. The
computational consequences of the theory then follow, with an extended example in
Section 9.4 for illustrations. After a discussion of the usual regression problem in this
context, the two main extensions that rely on asymptotics – generalized regression and
nonlinear regression – will be covered in detail. The final section deals with reparam-
eterizations and constraints.

Our discussion in this chapter of the asymptotic properties of maximum likelihood
provides insight into the performance of computational procedures. The attention to
rigor may give the appearance of “proving” our results, but the goal is to show how
violations of assumptions lead to either (a) failure of MLEs to perform well statistically
or (b) the reasons for failure of a computational procedure.

219

220 Maximum Likelihood and Nonlinear Regression

9.2 Notation and Asymptotic Theory of Maximum Likelihood

Let Y1, Y2, . . . , Yn be independent and identically distributed (IID) observations from
one of a family of distributions on Rk indexed by a p-dimensional parameter θ . Denote
the distribution function of the Ys by F(y | θ) and the true value of the parameter by
θ∗. The likelihood function is the product of the densities f(y | θ) evaluated at the
observations, treated as a function of the parameter θ :

Ln(θ) =
n∏

i=1

f(Yi | θ);

the (natural) logarithm of the likelihood function, called the log-likelihood function, is
denoted by

�n(θ) = log Ln(θ) =
n∑

i=1

log f(Yi | θ).

Let Eθ [g(Y)] denote the expectation of a function of the random variable with re-
spect to the distribution at the parameter value θ . Then, with only a minor abuse of
notation, notice that clearly Eθ [�n(θ)] = nEθ [log f(Y | θ)]. Pursuing this further,
since n−1�n(θ) is an average, the strong law of large numbers dictates that

n−1�n(θ) → Eθ∗[log f(Y | θ)] ≡ �∗(θ), (9.2.1)

which defines a useful expectation function �∗(θ). The maximum likelihood estimate
will be denoted by θ̂n. This is defined to be a value of θ that attains the maximum; that is,

Ln(θ̂n) ≥ Ln(θ) for all θ ∈ �.

The MLE so defined may not be unique, but that is a problem to be faced later.
Consistency of the maximum likelihood estimate is the foremost result and the one

that requires the least in the way of conditions. The heart of the matter is the information
inequality, presented here as a lemma. As applied to this discussion, the information
inequality leads to �∗(θ∗) > �∗(θ); that is, the true parameter value maximizes the
mean of this random log-likelihood function.

Lemma 9.1 (Information Inequality): Let f and g be densities in y. Then∫
(log g)f(y) dy ≤

∫
(log f)f(y) dy,

with equality if and only if f = g.

Proof. See Exercise 9.1 or Wald (1949, lemma 1). �

The following assumptions, taken mostly from Wald (1949), are essential to proving
the consistency of maximum likelihood estimates. Violations of these assumptions are
most interesting, since they bear upon some of the computational difficulties. Each as-
sumption will be listed and discussed in turn.

Assumption A1 (Density): The distribution of the individual Y observations must
have a density f(y | θ) that is either continuous or discrete – not mixed.

9.2 Notation and Asymptotic Theory of Maximum Likelihood 221

More complicated problems are beyond the level of this discussion.

Assumption A2 (Compactness): The parameter space � ⊂ Rp (set of all possible θ)

is closed and bounded and hence is compact with respect to the Euclidean norm.

Assumption A2 avoids a lot of mathematical headaches, and that avoidance can spark a
debate. Given the reality of finite arithmetic on the computer to solve the problem, com-
pactness isn’t much of a strain. With respect to applications, the closed and bounded
parameter space may not permit some parameterizations where infinity corresponds to
a zero. This is also related to the continuity assumption (A5). One pathological fail-
ure of ML (Neyman and Scott 1948) occurs with an infinite number of parameters; see
Exercise 9.2.

Assumption A3 (Identifiability): The parameter θ is identified ; that is, for any θ1
=
θ2 there exists a set A ⊂ Rk such that Pr(Y ∈ A | θ = θ1)
= Pr(Y ∈ A | θ = θ2).

Violations of A3 usually manifest themselves computationally with an iterative se-
quence of estimates running around a surface or off to infinity without a change in
the value of the likelihood function. Although Assumption A3 requires merely the
existence of an informative datum, in finite samples some parameter points on a man-
ifold may be indistinguishable (see Exercise 9.3). Problems where parameter points
are nearly unidentified are difficult computationally as well as statistically. The seri-
ousness of the problem can be assessed by computing the mean and variance of the
difference Z = log(f(Y | θ1)) − log(f(Y | θ2)); see Exercise 9.4.

Assumption A4 (Boundedness): Eθ∗[|log f(Y | θ∗)|] < ∞ and, for all θ ,

Eθ∗[(log f(Y | θ))+] < ∞,

where (·)+ denotes the positive part.

This assumption precludes another pathological case where ML fails; see Exercise 9.5.

Assumption A5 (Continuity): The density is continuous in θ . That is,

lim
θj →θ

f(y | θj) = f(y | θ)

for all y except perhaps on a set of zero probability (with respect to f(y | θ∗)), per-
haps depending on θ .

The continuity of the likelihood function �n(θ) is essential to convergence. However,
if the parameter set is discrete (say, a finite number of points) then the proof becomes
easier. Nonetheless, finding the MLE without an exhaustive search requires unimodal-
ity, which is essential to the lattice search discussed in Section 8.1.

Theorem 9.1 (Consistency): Under Assumptions A1–A5, the maximum likelihood esti-
mate θ̂n converges to θ∗.

222 Maximum Likelihood and Nonlinear Regression

Outline of Proof. Following the definition in (9.2.1), the information inequality states
that �∗(θ) < �∗(θ∗) for all θ
= θ∗. The strong law then says that n−1{�n(θ) − �n(θ

∗)}
converges to something negative for any θ not in a neighborhood containing the
true value of the parameter θ∗. This traps the MLE in a neighborhood of θ∗, since
�n(θ̂n) − �n(θ

∗) > 0. The remainder of the proof consists of the mathematical details.
See Wald (1949) for a proof of strong consistency and Wolfowitz (1949) for a weaker
version. �

A problem whose discussion has been postponed is the possibility of the MLE not be-
ing unique, with many values of θ attaining the maximum. If no observations Yi allow
for two values of θ to be distinguished (i.e., if there are no realizations in the identifia-
bility set), then the data do not give any information about that region of the parameter
space. The more common circumstance is finding the maximum by finding the root of
the derivative of the likelihood function, ∇�n = 0, for which there may be multiple
roots corresponding to local maxima and minima. Most optimization techniques seek
only local optima; multiple starting points and comparison of the likelihood attained at
these optima are then required.

It is important to emphasize that the conditions for consistency of the MLE are not
very restrictive. However, achieving asymptotic normality requires more restrictive
assumptions. The following two examples give some contrasting analysis.

Example 9.1: Normal Distribution
Let Y1, Y2, . . . , Yn be observations IID normal(µ, γ); then

log f(y | θ) = −1

2
log 2π − 1

2
log γ − (y − µ)2

2γ
.

Taking expectations at the true value θ∗ = (µ∗, γ ∗), we get

Eθ∗[log f(y | θ)] = �∗(µ, γ) = −1

2
log 2π − 1

2
log γ − γ ∗ + (µ∗ − µ)2

2γ
.

Notice that the maximum of �∗(µ, γ) occurs at (µ∗, γ ∗).

Example 9.2A: Uniform Distribution
Let Y1, Y2, . . . , Yn be observations IID uniform(0, θ). Then log f(y | θ) =
−log θ for 0 < y < θ and −∞ otherwise. Again taking expectations at the
true value θ∗, we get

Eθ∗[log f(y | θ)] = �∗(θ) =
{ −log θ for θ ≥ θ∗,

−∞ for θ < θ∗.
Once again, �∗(θ) is maximized at θ = θ∗.

At this point, three results are fundamental to establish asymptotic normality for MLEs.
Central to these is the interchange of limit and integral – or, more specifically, deriva-
tive and integral. These conditions are satisfied in many important cases, but the results
when they are not satisfied are surprising; these cases will be discussed later.

9.2 Notation and Asymptotic Theory of Maximum Likelihood 223

Lemma 9.2: Under appropriate conditions, n−1/2∇�n(θ
∗) d−→ Np(0, J(θ∗)), where

the covariance matrix is

J(θ) = cov(∇ log f(Y | θ) | Y ∼ f(y | θ∗)). (9.2.2)

Proof. Let Z(i) = ∇ log f(Yi | θ) (evaluated at θ∗). Then, in order to compute
Eθ∗[Z(i)], assumptions are needed to permit pushing the derivative operation inside
the integral (expectation):

Eθ∗[Z(i)] =
∫

{∇ log f(y | θ)}f(y | θ) dy

=
∫ {∇f(y | θ)

f(y | θ)

}
f(y | θ) dy =

∫
∇f(y|θ) dy

= ∇
∫

f(y | θ) dy = ∇(1) = 0.

The interchange of operations occurs at the beginning of the third line. The remainder
of the work is just the application of the central limit theorem. �

Lemma 9.3: Let Hn(θ) = ∇2�n(θ). Then, under the appropriate conditions,

n−1Hn(θ)
as−→ H(θ) pointwise in θ

and −H(θ∗) = J(θ∗), where Eθ∗[∇2 log f(Y | θ)] = H(θ) is continuous in θ .

Proof. The first part is merely the strong law; the second part consists of a similar
interchange of derivative and expectation. �

Continuity of H(θ) is harder to prove, but quite important.

Theorem 9.2: Under the appropriate conditions,
√

n(θ̂n − θ∗) is asymptotically nor-
mal, with mean vector 0 and covariance matrix J(θ∗)−1.

Proof. The appropriate conditions are needed to permit the Taylor-like expansion
of ∇�n(θ) similar to Theorem 8.8. Given the appropriate conditions, the linearization
gives

‖n−1/2[∇�n(θ̂n) − ∇�n(θ
∗)] − n−1∇2�n(θ

∗){√n(θ̂n − θ∗)}‖ p−→ 0.

Now, ∇�n(θ̂n) = 0 and Lemma 9.3 give

n−1∇2�n(θ
∗)

p−→ −J(θ∗) (9.2.3)

and so, restating with Slutzky (without norms for simplicity), we have

n−1/2∇�n(θ
∗) − J(θ∗){√n(θ̂n − θ∗)} p−→ 0; (9.2.4)

hence they both have the same distribution. From Lemma 9.2, the first piece converges
in distribution to Np(0, J(θ∗)), so that the result follows by matrix multiplication. �

224 Maximum Likelihood and Nonlinear Regression

This is nice theory, but from a computational point of view, the following result – that
asymptotically the log-likelihood function is locally quadratic – is much more power-
ful. This is a wonderful result, saying that the problem is about as easy as one could
have hoped for.

Theorem 9.3: Asymptotically, for θ in a neighborhood of θ̂n, the likelihood function
is quadratic under the appropriate conditions.

Proof. Following Theorem 8.6, since ∇�n(θ̂n) is zero we have, for θ near θ̂n,

n−1�n(θ) = n−1�n(θ̂n) + 1
2 (θ − θ̂n)

T[n−1∇2�n(t)](θ − θ̂n)

for some value of t in the same neighborhood. Here the continuity of ∇2�n is critical
for allowing us to use the approximation ∇2�n(θ̂n) for the Hessian. �

The matrix J(θ) is called Fisher’s information matrix, and it measures the informa-
tion in the likelihood function. Inverting this matrix gives the asymptotic covariance
matrix of the MLE θ̂n. In many theoretical treatments, the estimate θ̂n is defined as
the root of the likelihood equation ∇�n(θ) = 0, and consistency is attempted without
verifying whether the root attains the maximum or not. This theoretical treatment is
noble in that, most often, the optimization problem is restated as a solution to a sys-
tem of nonlinear equations; yet it would be helpful if local optima could be shown to
be asymptotically unimportant. In some cases, all roots of the likelihood equation can
be shown to be consistent. However, from this computational perspective, good prac-
tice would dictate some verification that at least a maximum was achieved, which can
be done by checking the Hessian.

Example 9.3A: Variance of MLE from Logarithmic Series Distribution
Example 8.3 gave the likelihood for the logarithmic series distribution with
density

f(y | θ) = θy/[y(−log(1 − θ))] for y = 1, 2, 3, . . . and 0 < θ < 1.

For n = 10 and the statistic
∑

yi = 15, the log likelihood is

�n(θ) = constant +
(∑

yi

)
log θ − n log(−log(1 − θ))

= constant + 15 log θ − 10 log(−log(1 − θ)),

and the first and second derivatives are

∇�n(θ) = �′
n(θ) =

(∑
yi

)
θ

+ n

(1 − θ) log(1 − θ)
,

∇2�n(θ) = �′′
n(θ) = −

(∑
yi

)
θ 2

+ n

(1 − θ)2 log(1 − θ)
+ n

(1 − θ)2[log(1 − θ)]2
.

Evaluating at θ̂n = .533589, we find that ∇2�n(θ) = −33.9301 with a variance
estimate of 0.02947; the standard error for θ̂n is .1717. Another estimate is given
in the next section.

9.2 Notation and Asymptotic Theory of Maximum Likelihood 225

An annoyance due to maximizing instead of minimizing the likelihood function oc-
curs in the negative definite Hessian Hn(θ) = ∇2�n(θ). Since everything previous has
dealt with positive definiteness of such matrices, some authors choose to deal instead
with an “unlikelihood” function, defined to be either −�n(θ) or −2�n(θ); the latter also
goes by the name of “deviance” (McCullagh and Nelder 1992). However, we choose
not to do so, and the reader should notice how this sign change propagates throughout
the analysis. Computationally, this approach is commonly employed, especially with
optimization code designed for minimization rather than maximization.

The most restrictive part of the assumptions is the IID requirement. Relaxing this
to independent observations Yi with density fi(y | θ) would be a great improvement,
especially in light of later discussions of nonlinear and generalized regression. The
assumptions require only minor notational modifications, since each density fi must
satisfy all of the assumptions. Further technical details are inappropriate for this dis-
cussion, though we note a requirement on the information matrices J(i) from sample i,

n−1{J(1) + J(2) + · · · + J(n)} = n−1{Jn} → J∞ (positive definite). (9.2.5)

The notation Jn corresponds to the sum of information matrices from a non-IID sample
of size n.

Before proceeding to the computational consequences, some further remarks on the
“appropriate conditions” are necessary. The most common violations of these assump-
tions occur when the support of the distribution of the observations depends upon the
parameter θ . Instead of dire consequences, the situation is in fact improved. Con-
sistency of the MLE is not threatened; close examination reveals that observations
occurring outside a region of support for a particular value of θ lead to a value of −∞
for �n(θ). In such a case, the convergence rate is usually Op(n−1) instead of the usual
Op(n−1/2) of Theorem 9.2. A more serious problem arises when differentiability is ab-
sent, as (for example) with the Laplace or double exponential distribution, f(y | θ) =
exp{−|y − θ |}. The MLE is the sample median, which does converge to the true pa-
rameter value θ∗ and at the usual Op(n−1/2) rate. In such cases, it is necessary to find
other ways of establishing the asymptotics.

Example 9.2B: Uniform Distribution (cont.)
As in Example 9.2A, let Y1, Y2, . . . , Yn be observations IID uniform(0, θ). Then
the MLE of θ is θ̂n = max{Y1, Y2, . . . , Yn} = Xn, with Pr(Xn ≤ x) = (x/θ)n.

Let Un = n(1 − Xn/θ); then Un
d−→ exponential, so that θ̂n − θ = Op(n−1).

Whereas the statistical consequences are not so grave, the computational aspects be-
come perilous. In many of these cases, it is the continuity or smoothness that is absent.
As discussed in Chapter 8, Newton’s method relies on a quadratic approximation to the
function. When this is inappropriate, another computational route must be sought, even
though the maximum of �n(θ) may be clear. Often concentrated likelihoods (Section
9.5) can be used to reshape a problem where all of the remaining parameters behave
similarly and the function to be maximized is smooth.

226 Maximum Likelihood and Nonlinear Regression

9.3 Information, Scoring, and Variance Estimates

The thrust of Theorem 9.3 is that the log-likelihood function is asymptotically locally
quadratic. This is a welcome conclusion, since a quadratic optimization problem is the
easiest to deal with. Although computing the information matrix J(θ) is required to
find the standard errors for the estimators, the true value θ∗ is not known; this dictates
the curvature of the likelihood function, since J is obviously a function of θ . There
are several issues to be resolved and investigated, first among which is the informa-
tion problem. Several alternatives for optimizing the likelihood function will also be
discussed.

A practical view of Theorem 9.3 is that the MLE θ̂n is approximately normal with
mean vector the true θ∗ and covariance matrix Jn(θ

∗)−1. Since the true θ∗ is unknown,
the natural thing to do is putting in the estimate to get Jn(θ̂n)

−1, basing such a step
on continuity of Jn(θ) and of the inverse of a matrix. This is fitting and proper, but
further reflection is required. If we take to heart the conclusion that the likelihood func-
tion is approximately quadratic, then the quadratic nature of the observed likelihood
�n(θ), and not the expected likelihood �∗(θ), dictates the accuracy of the MLE. Conse-
quently, the best measure of the covariance matrix is the inverse of the Hessian ∇2�n,

which is evaluated at the MLE θ̂n and commonly referred to as the observed informa-
tion Hn(θ̂n). The information matrix Jn(θ), which equals nJ(θ) in the IID case, then
represents the average of all samples (of size n) of the Hessian of the likelihood func-
tion. Efron and Hinkley (1978) convincingly argued the superiority of the observed
information ∇2�n over the expected information Jn(θ).

Another view of the comparison of observed versus expected information is one of
effort, human or computer. To obtain the expected information matrix Jn(θ), the ma-
trix of second partial derivatives must be calculated and then an expectation figured.
Sometimes this process is relatively easy; sometimes it is painfully difficult. Rarely is
the effort required comparable to writing a routine to compute the observed informa-
tion, which has a relative constant level of difficulty. However, sometimes both ∇2�n

and Jn require too much human effort. In such a case, finite differences can be used
to estimate derivatives following the methods in Section 8.6, especially (8.6.6). Al-
ternatively, the BFGS update (8.7.10) produces an estimate of the Hessian following a
secant analog method for optimization; commonly the software permits access to this
information. These two routes require the least in human effort. Moreover, both are
estimating the observed information matrix ∇2�n, which is preferred to the informa-
tion matrix even when the latter is easy to obtain.

When the information matrix Jn can be obtained without a great deal of effort, this
knowledge of the quadratic nature of the likelihood function can be exploited to solve
any number of problems with the same data. First of all, consider an iteration of New-
ton’s method for computing the MLE:

θ̂ (j+1) = θ̂ (j) − [∇2�n]−1∇�n. (9.3.1)

Replacing this update with [−Jn(θ̂
(j))]−1∇�n saves on the computation of ∇2�n and

provides a Hessian that is sufficiently accurate to correctly orient the direction to the
maximum. This maneuver is called scoring, and it can be as effective as Newton’s

9.3 Information, Scoring, and Variance Estimates 227

method in finding the MLE. As a statistical procedure, beginning with a consistent es-
timate θ̂ (1), one scoring step

θ̂ (2) = θ̂ (1) − [−Jn]−1∇�n (9.3.2)

produces an efficient estimate (LeCam 1956). Although iterating will lead to an MLE,
improvements gained by iterating are only op(n−1/2) asymptotically.

Another view of the information matrix reveals its evidence on the numerical con-
dition of the problem. Recall that (8.8.2) indicated that the accuracy of the solution
to an optimization problem was reflected in the eigenvalues of the Hessian matrix.
In this chapter, a large Hessian matrix indicates more accurate estimates in a general
sense. Since the covariance matrix is the inverse of the information matrix and since
the eigenvalues of the inverse are the reciprocals of those of the information matrix,
clearly the condition of the problem and the statistical accuracy are directly related. A
small eigenvalue in the information matrix indicates that a certain linear combination
of the parameters cannot be estimated well, and this lack of information will contrib-
ute to the variances of all of the parameters. In a problem where the parameters are
nearly unidentified, there will be little information along a curve or surface; near the
MLE, this will manifest itself in a nearly singular information matrix, with the eigen-
vector indicating the direction of the curve. In contrast, when some parameters are
almost completely known (perhaps converging at a faster rate), this will be indicated
by a dominant eigenvalue and a vector indicating the parameter or linear combination
involved. This domination will destroy any knowledge of the other parameters, which
must therefore be handled separately.

Returning to estimating the covariance matrix of θ̂n, research on misspecification
and M-estimation have led to the following “information sandwich” covariance esti-
mator (see Boos 1992 and references therein):

Vn = [∇2�n]−1

{ n∑
i=1

s(Yi , θ̂n)s(Yi , θ̂n)
T

}
[∇2�n]−1 (9.3.3)

(which works in spite of misspecification), where s(Y, θ) = ∇ log f(Y | θ). The
reader may note that the expression in braces estimates the covariance matrix of ∇�n;
the inverse matrix of the Hessian arises from (9.2.2) and (9.2.3). Although Vn is rather
complicated, it does not present any new computational difficulties.

Example 9.3B: Variance of MLE from Logarithmic Series Distribution (cont.)
Applying (9.3.3) to the logarithmic series distribution with data {1,1,1,1,1,1, 2,

2, 2, 3}, we have

s(Y, θ) = y

θ
+ 1

(1 − θ) log(1 − θ)
.

At θ̂n = .533589 we have s(1, θ̂n) = −.93705, s(2, θ̂n) = 0.93705, and s(3, θ̂n) =
2.81115. Hence the expression in braces (in (9.3.3)) becomes {6(−0.93705)2 +
3(0.93705)2 + (2.81115)2} = 15.8050 and so

Vn = (−33.9301)−1{15.8050}(−33.9301)−1 = .001373.

228 Maximum Likelihood and Nonlinear Regression

9.4 An Extended Example

In order to illustrate the problems and techniques that have been discussed so far,
we devote this section to a single example (Example 9.4) that epitomizes maximum
likelihood estimation. The example is a relatively simple one, given by Rao (1973,
pp. 370ff). The problem is to estimate gene frequencies of blood antigens A and B by
observing the four main blood groups: AB, A, B, and O. Denote the gene frequencies
of A and B by θ1 and θ2 respectively, and also the probabilities of the four blood groups
by π1, π2, π3, and π4. These probabilities are functions of θ1 and θ2:

π1(θ1, θ2) = 2θ1θ2, π2(θ1, θ2) = θ1(2 − θ1 − 2θ2),

π3(θ1, θ2) = θ2(2 − θ2 − 2θ1), π4(θ1, θ2) = (1 − θ1 − θ2)
2.

The likelihood can be treated in two ways – first, as a multinomial with observed
frequencies n1, n2, n3, and n4. However, to better follow the methodology prescribed
here, consider each observation Yi to be independent and, taking one of four values
with the probabilities just given, let

f(y | θ1, θ2) = πy for y = 1, 2, 3, 4.

Following either route, the log likelihood can be written as

�n(θ) = n1 log π1 + n2 log π2 + n3 log π3 + n4 log π4 + constant.

The likelihood equation then takes a simple form:

∇�n(θ) =
4∑

j=1

(
nj

πj

)
∇πj(θ) = 0. (9.4.1)

The partial derivatives should be written out for clarity:

∇π1 =
(

2θ2

2θ1

)
, ∇π2 =

(
2(1 − θ1 − θ2)

−2θ1

)
,

∇π3 =
(−2θ2

2(1 − θ1 − θ2)

)
, ∇π4 =

(
2(1 − θ1 − θ2)

2(1 − θ1 − θ2)

)
.

The Hessian matrices are much simpler:

∇2π1 =
[

0 2

2 0

]
, ∇2π2 =

[−2 −2

−2 0

]
,

∇2π3 =
[

0 −2

−2 −2

]
, ∇2π4 =

[
2 2

2 2

]
.

The Hessian of the likelihood function can then be written in the simple form

Hn(θ) = ∇2�n(θ) =
4∑

j=1

nj

[(
1

πj

)
∇2πj −

(
1

π2
j

)
∇πj(∇πj)

T

]
, (9.4.2)

and the information matrix can be computed in either manner:

9.4 An Extended Example 229

Table 9.1. Convergence of iterative methods for computing MLEs

Scoring
Iteration θ1 θ2 J11 J22 J12 �n(θ)

0 .26300 .07400 8.9815 28.2662 2.4367 −494.6769
1 .26431 .09322 9.0081 22.7634 2.4765 −492.5353
2 .26444 .09317 9.0042 22.7748 2.4766 −492.5353

Newton’s Method with Analytical Derivatives
Iteration θ1 θ2 (Hn)11 (Hn)22 (Hn)12 �n(θ)

0 .26300 .07400 −3872.33 −15181.08 −1006.17 −494.6769
1 .26556 .08949 −3869.46 −10794.02 −1059.73 −492.6031
2 .26448 .09304 −3899.85 −10083.28 −1067.56 −492.5353
3 .26444 .09317 −3900.90 −10058.49 −1067.86 −492.5353

Newton’s Method with Hessian Computed Numerically
Iteration θ1 θ2 (Hn)11 (Hn)22 (Hn)12 �n(θ)

0 .26300 .07400 −3875.23 −15232.78 −1015.32 −494.6769
1 .26553 .08943 −3869.50 −10873.76 −1060.18 −492.6051
2 .26449 .09301 −3910.31 −10171.54 −1063.78 −492.5354
3 .26444 .09317 −3891.18 −10078.62 −1065.25 −492.5353

E{−∇2�n(θ)} = cov{∇�n(θ)} = NJ = N

[4∑
j=1

(
1

πj

)
∇πj(∇πj)

T

]
, (9.4.3)

where N = n1 + n2 + n3 + n4.

In his discussion, Rao gives the data as n1 = 17, n2 = 182, n3 = 60, and n4 = 176,

so that N = 435. The first step is to obtain starting values for computing maximum
likelihood estimates of θ1 and θ2. In the absence of any better ideas, setting πj = nj/N

for the first two groups and solving for θ1 and θ2 gives the starting values θ
(0)
1 = .263

and θ
(0)
2 = .074. Three methods are used for computing MLEs: scoring, and New-

ton’s method with analytical derivatives or with numerical derivatives. The results are
given in Table 9.1, and contour and surface plots of the log likelihood are given in Fig-
ures 9.1 and 9.2. Clearly, all three methods converge to the same value quickly and
without hesitation. Also, the Fisher information matrix NJ and the two Hessians all
give very similar results for the asymptotic variances. In the contour plot (Figure 9.1),
the contour lines mark confidence regions for (θ1, θ2) at levels (1 − 10−k) × 100% for
k = 1, . . . , 5. These are obtained by finding appropriate 10−k tail critical values from
the χ2

2 distribution, dividing by 2, and subtracting them from the maximum likelihood.
Consequently, the regions are defined by

{(θ1, θ2) : −2[�n(θ̂1, θ̂2) − �n(θ1, θ2)] ≤ tk}, (9.4.4)

where Pr(X > tk | X ∼ χ2
2) = 10−k. This approach for constructing confidence re-

gions based on inverting asymptotic χ2 tests is generally preferred to one that uses
intervals for each parameter based on the asymptotic normal distribution.

230 Maximum Likelihood and Nonlinear Regression

Figure 9.1. Contour plot of log likelihood for Extended Example 9.4. Contour lines mark confidence
regions at levels (1 − 10−k) × 100% for k = 1, . . . , 5.

The Hessian matrices were computed using a difference of θj/100, since the machine
unit for the arithmetic was 10−6. As discussed in Section 8.5, precision in numerical
differentiation is less important than avoiding anomalies in the computation of the Hes-
sian by finite differences. The estimated covariance matrix of the MLEs for the three
methods are, respectively:

10−6

[
263 −29

−29 104

]
, 10−6

[
264 −28

−28 102

]
, and 10−6

[
265 −28

−28 102

]
.

The performance of the various methods can depend greatly upon the starting val-
ues. In continuing this example, if another point (say, θ

(0)
1 = θ

(0)
2 = 0.333) is chosen

for starting values then the scoring algorithm will again converge in three iterations.
The first steps are larger, but the algorithm has little trouble in finding the maximum.
However, Newton’s method gives a step of (.087, −.337), which leaps over the θ2 >

0 boundary. Enforcing such constraints will be postponed until Section 9.9.

9.5 Concentration, Iteration, and the EM Algorithm

Because the maximum likelihood estimate is defined implicitly – and only occasionally
known in an explicit form as a statistic – the maximization process rises in importance.
As the previous section attests, the log-likelihood function usually takes on a quadratic
shape, and that knowledge can be exploited. Other information about the likelihood

9.5 Concentration, Iteration, and the EM Algorithm 231

Figure 9.2. Surface plot of log likelihood for Extended Example 9.4.

function can also be exploited in other ways. In cases where the parameters are separa-
ble (as variables in an optimization problem), the likelihood function of one subset can
be maximized without knowledge of the other subset of variables. More commonly,
given one subset of parameters, the MLEs of the other subset can be found explicitly.
As a result, a concentrated likelihood function can be used to reduce the dimension of
the numerical optimization problem. We will conclude this section by discussing the
EM algorithm, which can be used for a variety of problems.

The most commonly used trick in maximum likelihood estimation is the use of a con-
centrated or profile likelihood function. Partition the parameter vector into two subsets
α and β (of dimensions p1 and p2, respectively) and then rewrite the log-likelihood
function with two arguments, �n(θ) = �n(α, β). Now suppose that, for a given value
of β, the MLEs for the subset α could be found as a function of the others; that is, α̂n =
α̂(β). Then construct the concentrated likelihood function as a function only of β,

�c(β) = �n(α̂(β), β). (9.5.1)

Clearly, maximizing �c for β will maximize �n(α, β) for both α and β (see Exercise
9.11). The main advantage is a reduction in the dimension of the search. The greatest
simplifications occur when α̂ does not depend on β.

For the first example, consider the basic problem Yi IID N(µ, σ 2). Then µ̂ = Ȳ in-
dependently of σ 2 and we have �c(σ) = −(n/2) log σ 2 −∑(Yi − Ȳ)2/(2σ 2), which
simplifies the problem substantially. For another example, consider a modification of
the simple linear regression model

yi = α1 + α2 x
β

i + ei, ei IID N(0, α3). (9.5.2)

232 Maximum Likelihood and Nonlinear Regression

Given β = b, the usual regression estimates can be found for α1, α2, α3, but these will
all be explicit functions of b. In fact, �c(β) will depend only on an error sum of squares,
since α̂3 = SSE/n. Hence the concentrated likelihood function becomes simply

�c(β) = constant − n

2
log

(
SSE(β)

n

)
. (9.5.3)

The gain is that the dimension of an unconstrained (or even constrained) search has
been reduced from three (or four) dimensions to only one, and 1-dimensional searches
are markedly simpler than those in any higher dimension.

Example 9.5: Concentrated Likelihood
The 2-parameter gamma distribution offers a simple nontrivial case. The density
takes the form

f(y | α, β) = yα−1e−y/β/(βα�(α)) for y > 0.

For a sample of size n, the log likelihood is

�n(α, β) = −nα log(β) − n log �(α) + (α − 1)
n∑

i=1

log(Yi) −
n∑

i=1

Yi

β
.

Given α, the likelihood is maximized at β̂(α) =∑Yi/(nα), so the concentrated
likelihood function is

�c(α) = −nα log
(∑

Yi/(nα)
)

− n log �(α) + (α − 1)
n∑

i=1

log(Yi) − nα.

For a demonstration, August rainfall data for n = 45 years for Raleigh (North
Carolina) were fit to the 2-parameter gamma family. Initial values can be found by
the method of moments. A contour plot of the 2-dimensional likelihood surface
is given in Figure 9.3, with the curve of β̂(α) in Figure 9.4 and the concentrated
likelihood function �c(α) plotted in Figure 9.5. See the demonstration augrain1
for a solution using golden section to maximize the 1-dimensional concentrated
likelihood function �c(α). Compare to augrain2, which uses plum1t from Chap-
ter 8.

Example 9.6: Concentrated Likelihood
Bates and Watts (1988, p. 41) gave an example of a rather simple nonlinear re-
gression problem with two parameters:

yi = θ1(1 − exp{−θ2 xi}) + ei.

Given θ2, the problem becomes regression through the origin. The estimator of
θ1 is simply

θ̂1 =
n∑

i=1

ziyi

/ n∑
i=1

z2
i where zi = 1 − exp{−θ2 xi},

9.5 Concentration, Iteration, and the EM Algorithm 233

Figure 9.3. Contour plot of log likelihood for August rainfall (Example 9.5). Contour lines mark
(1 − 10)−k × 100% confidence regions.

Figure 9.4. Maximum likelihood estimator of β as a function of α for August rainfall.

and the concentrated likelihood function is as in (9.5.3) with

SSE(θ2) =
n∑

i=1

(yi − θ̂1(θ2))
2.

Compare the demonstration programs conclk and concll; see also Exercise 9.12.

234 Maximum Likelihood and Nonlinear Regression

Figure 9.5. Concentrated likelihood function �c(α) = �n(α, β̂(α)) for August rainfall.

Implementation of this tool is not particularly complicated. Sometimes it is helpful
to follow the mathematical specification instead of explicitly coding the concentrated
likelihood function. That is, if one has coded a function subprogram to compute the
log-likelihood function �n(α, β), then implement the concentrated likelihood function
in the following way. Code another subprogram to compute α̂(β); then, the concen-
trated likelihood function subprogram will accept values of β as its argument and call
the original �n(α, β) function with values of α̂(β) (computed from its subprogram)
and β.

Assessing the accuracy is a little more complicated since the optimization software
uses �c and not �n. The Hessian ∇2�n is needed instead of ∇2�c, whose estimates may
be readily available; having written (as just noted) the subprogram to compute �n(α, β)

then pays off. However, knowing ∇2�c does not help in constructing ∇2�n, since at
the optimum (where ∇�n = 0) the relationship is

∇2�c = (AT Ip2)∇2�n

(
A
Ip2

)
, (9.5.4)

where A denotes the Jacobian matrix of the transformation α̂(β). Even so, (9.5.4) can
(and should) be used to check the results; see Exercise 9.10. For inference based on �c,

see Murphy and van der Vaart (2000) and the references therein.
In some situations, the roles of α and β can be reversed. That is, another concen-

trated likelihood function can be constructed as

�∗
c(α) = �n(α, β̂(α))

using an MLE for β for a given α = a. Then an obvious route is to iterate, optimizing
each concentrated likelihood function in alternation. This approach can be an effective
method for optimizing the joint likelihood �n(α, β) when the computation of α̂(β) and
β̂(α) is straightforward and fast. The drawback of this approach is that the convergence

9.5 Concentration, Iteration, and the EM Algorithm 235

can be very slow. When both α and β are univariate, this method optimizes first in one
component and then the other. Hence the path of the sequence of steps zig-zags toward
the optimum, as steepest descent methods do (see Example 8.4), but taking right-angle
turns every time. When α and β are multivariate, the same zig-zagging path is taken
with right-angle turns, but now from one hyperplane to another that is orthogonal to it.

Another widely used approach that employs alternating optimization is the EM al-
gorithm of Dempster, Laird, and Rubin (1977; hereafter DLR). This method is best
described in terms of its motivation: a way to fill in missing data. Suppose that the
model for the process is f(x | θ) but not all of X is observed – only Y(X) is available.
Then the likelihood for the observed y is

L(θ) = g(y | θ) =
∫

Y−1({y})
f(x | θ) dx.

Computing L is usually prohibitive, so some other method is needed to maximize the
likelihood. The EM algorithm has two steps:

E-step – construct Q(θ , φ) = E{log f(x | φ) | y, θ};
M-step – maximize Q(θ , φ) over θ .

Beginning with the starting value θ (0), the iteration sequence is the formation of
Q(θ , θ (j)) and the maximizing θ of the M-step becomes θ (j+1). The E-step is so named
because, in many instances (especially in the exponential family), constructing Q is
equivalent to finding the expectation of the missing data – given the observations and
a value of the parameter. The mathematics behind the general nature of the EM algo-
rithm begins with the construction of the function

H(θ | φ) = E{log k(x | y, θ) | y, θ},
where k(x | y, θ) = f(x | θ)/g(y | θ) can be interpreted as the conditional density of
x given y. Actually, one can view k(x | y, θ) as an artifact to construct H, whose sole
purpose is to write the likelihood in terms of Q:

L(θ) = Q(θ , φ) − H(θ | φ).

The hidden key to the algorithm is the application of the information inequality (DLR,
lemma 1), which states that H(θ | φ) ≤ H(φ | φ) for all θ . The main result (DLR,
thm. 1) is that the likelihood is maximized at convergence. Additionally (DLR, thm. 4),
if ∇2

11Q(θ , φ) is strictly negative definite, then ∇� = 0 and ∇2Q(φ, φ) is negative def-
inite at θ (∞); the rate of the convergence of the EM algorithm is then given by the
largest eigenvalue of

∇2H(φ | φ)[∇2Q(φ, φ)]−1

evaluated at θ (∞).

The advantage of the EM algorithm is that often the steps are straightforward and
easy to implement. The missing data motivation often suggests a restatement of a prob-
lem in terms of unobservables or latent variables. In this way, sometimes both steps
become straightforward. One of the two disadvantages of the EM algorithm is that the
convergence can sometimes be slow, owing to the same zig-zag problem as in the other

236 Maximum Likelihood and Nonlinear Regression

alternation scheme. The other disadvantage, also shared by the alternation scheme, is
that the iteration can stop at any stationary point. Thus the process can converge to a
saddle point (or to a local maximum), and this unwelcome outcome cannot be discov-
ered without further investigation (see Wu 1983).

9.6 Multiple Regression in the Context of Maximum Likelihood

The intention of this section is to get the reader’s feet back on the ground by viewing
one of the most common statistical methods as an application of maximum likelihood.
In multiple regression we observed the Yi, which are independent and normally dis-
tributed with a mean function g(x i; β) and variance σ 2. The mean function is linear
in the p-dimensional parameter vector β,

g(x i; β) = βTx i ,

and a reparameterization of γ = σ−2 will make some calculations more convenient.
Notice that this is the “non-IID” case, and the parameter vector is composed of the lin-
ear coefficients β and the scale parameter γ. The log-likelihood function can then be
written as

�n(θ) = �n(β, γ) = constant + (n/2) log γ − γS(β)/2,

where the sum-of-squares function is S(β) = ∑
(Yi − g(x i; β))2. To maximize the

likelihood, first take the partial derivative with respect to the scale parameter γ to obtain

∂�n

∂γ
= n/γ − S(β)

2
,

which gives the MLE γ̂ (β) = n/S(β) as a function of the other parameters. Now form
the concentrated likelihood function

�c(β) = �n(β, γ̂ (β)) = constant − (n/2) log S(β).

Maximizing the concentrated likelihood function is now equivalent to minimizing the
sum-of-squares function S, which can be done by β̂ = (∑ x ixT

i

)−1(∑
x iyi

)
. The dis-

tribution of the MLEs (exact, finite sample) can be found directly as

β̂ ∼ Np

(
β,
(
γ
∑

x ixT
i

)−1)
and nγ/γ̂ = γS(β̂) ∼ χ2 with n − p df,

with both distributions independent. Notice that the MLE γ̂ differs from the unbiased
and usual estimate, which uses the degrees of freedom (n − p) as a divisor.

Following the analysis in the preceding sections, the gradient vector of the log like-
lihood is

∇�n(β, γ) =
[

γ
[∑

x i(yi − βTx i)
]

(n/γ − S(β))/2

]
; (9.6.1)

notice that the first-order conditions ∇�n = 0 are satisfied by the MLE. Now the Hes-
sian matrix of the log-likelihood function takes the form

∇2�n =
[−γ

(∑
x ixT

i

) ∑
x i(yi − βTx i)∑

xT
i(yi − βTx i) −n/(2γ 2)

]
, (9.6.2)

9.7 Generalized Linear Models 237

and the Fisher information matrix can be easily computed as

Jn = E{−∇2�n} =
[

γ
(∑

x ixT
i

)
0

0 n/(2γ 2)

]
. (9.6.3)

Notice that the (negative of the) Hessian matrix evaluated at the MLE, which is the
observed information matrix −Hn, is the same as the Fisher information matrix Jn,

since the off-diagonal pieces correspond to the normal equations. Also, the asymptotic
variance of γ̂ = σ̂−2 is given appropriately (see Exercise 9.14).

Establishing the consistency and asymptotic normality in multiple regression is eas-
ily done directly. Following the previous work, certain conditions must be verified.
Most are straightforward, but two are particularly noteworthy. One is Assumption A2,
which specifies that the parameter space is closed and bounded. This is not usually a
problem, nor is it here, except that it takes on a different form. The reparameterization
γ = σ−2 means that bounding γ becomes a bound away from zero for σ 2. Although
we have independence and constant variance (homoskedasticity), the fact that Yi are
not IID means that some care needs to be taken. The condition (9.2.5) is equivalent to

n−1
∑

x ixT
i → A (positive definite),

which should not be surprising. Consider the simple linear regression case E(Yi) =
β0 + β1xi. Then taking xi = 1/i fails this condition because the limiting matrix A has
only one nonzero element; the intercept β0 can be estimated well, but there is only a
finite amount of information about the slope. In the general regression situation, this
is manifest in a limited amount of information (or none) with respect to certain linear
combinations – that is, multicollinearity or nonidentifiability. In contrast, if we take
xi = i then the foregoing limit does not exist; the information on the slope grows too
rapidly, and the estimate of the slope β̂1 converges at a faster rate Op(n−1) than the
usual Op(n−1/2). Although the condition is not satisfied, the situation is better than ex-
pected. In this case it is very important to deal with the slope parameter separately from
the intercept; see Exercise 9.15.

9.7 Generalized Linear Models

Before reaching the real meat of this chapter – nonlinear regression – two examples of
regression in a more general context are to be entertained. Although the term “gener-
alized linear models” is sometimes applied (McCullagh and Nelder 1992), the spirit is
simply the application of maximum likelihood. The main thrust is that the observations
Yi are no longer distributed normally but rather according to some other distribution.
The mean function is expressed in the same fashion as regression, with unknown co-
efficients forming a linear combination of explanatory variables.

The first instance to be considered here is logistic regression. Observations in this
case consist of the Yi, which are independent binomial variates from mi trials, each
with probability πi. The true probabilities πi are unknown and are modeled as a re-
gression function in log(πi/(1 − πi)):

238 Maximum Likelihood and Nonlinear Regression

πi = p(x i; β) = exp(γi)

1 + exp(γi)
, where γi = βTx i . (9.7.1)

Here the explanatory variables may be simply indicators of different groups or covari-
ates, as in the usual normally distributed case. The remainder of the problem is just
maximum likelihood analysis. The log-likelihood function can be written as

�n(β) = constant +
∑

i

[yiγi − mi log(1 + exp(γi))],

and the gradient is easily calculated:

∇�n(β) =
∑[

yix i − mi

exp(γi)

1 + exp(γi)
x i

]
=

n∑
i=1

x i(yi − miπi). (9.7.2)

Notice that the form of (9.7.2) is very similar to that found in the usual regression case.
Computing next the Hessian matrix, we find

∇2�n(β) = −
∑

miπi(1 − πi)x ixT
i , (9.7.3)

which is nonstochastic and so the information matrices ∇2�n and Jn are the same. As a
result, scoring and Newton’s method again coincide and lead to the iterative algorithm

β(j+1) = β(j) +
[∑

miπi(1 − πi)x ixT
i

]−1[n∑
i=1

x i(yi − miπi)

]
. (9.7.4)

Close examination of this iteration shows the simplicity of the problem’s structure. The
update resembles the formulation for weighted least squares, where the problem is re-
stated as a heteroskedastic problem (which is true, approximately):

Yi independent N(miπi, miπi(1 − πi)).

Notice that the weights wi = miπi(1 − πi) would be updated at each iteration, to be
evaluated at the current estimate β(j). Consequently, this iteration scheme is an exam-
ple of iteratively reweighted least squares (IRWLS; Jennrich and Moore 1975), where
the observations are reweighted at each iteration and the update follows a weighted re-
gression scheme (not GLS); see Exercise 9.16. The asymptotic normality of the MLE
β̂ follows from Theorem 9.3. The interchange of integral and derivative required by
“appropriate conditions” is trivial, since ∇2�n is nonstochastic in this case. For this
problem, it will suffice to enforce

n−1
∑

miπi(1 − πi)x ixT
i → A (positive definite)

and bound ‖x i‖.
Some computational difficulties arise with the loglikelihood at infinity. First, the

loglikelihood function is linear at infinity, that is, starting at any finite point β∗ and tak-
ing the direction z, we find limt→∞ ∇2�n(β

∗ + tz) = 0 in any direction z, because πi

9.7 Generalized Linear Models 239

goes either to 0 or 1. As a result, the Hessian matrix may approach singularity far away
from the MLE. Second, we can determine the slope at infinity in direction z as

limt→∞d�n(β
∗ + tz)/dt = limt→∞

n∑
i=1

[
yi(zT xi) − mi(zT xi)e

xT
i
β∗+t (zT xi)

1 + exT
i
β∗+t (zT xi)

]

=
n∑

i=1

[
(zT xi)(yi − misi(z)

] = g(z)

where

si(z) =
{ 0 if zT xi < 0,

exT
i
β∗

/(1 + exT
i
β∗

) if zT xi = 0,

1 if zT xi > 0

We can see that g(z) will be negative, except if there exists a direction z that satisfies

• (zT xi) < 0 where yi = 0
• (zT xi) > 0 where yi = mi

• (zT xi) = 0 where 0 < yi < mi

This situation, where g(z) = 0 and the maximum of the loglikelihood occurs at in-
finity, is called complete separation or quasi-complete separation (Albert & Anderson,
1984; Santner & Duffy, 1986), owing to the situation where one group has all or no
successes. For example, consider coding the control and treatment dummy variable xi

as 0/1, with γi = β0 + β1xi so that xT
1 = (1, 0) and xT

2 = (1, 1). In the complete
separation case, y1 = 0 and y2 = m2, and the loglikelihood is maximized by taking
β0 to −∞ and β0 + β1 to +∞. In the quasi-complete separation case with y1 < m1

and y2 = m2, the loglikelihood is maximized by taking β0 = y1/m1 and β1 infinitely
large.

In general, if we construct a matrix A with rows xT
i when yi = mi and rows −xT

i

when yi = 0, then complete separation occurs if there exists a vector z such that Az >

0. Using a version of the Minkowski-Farkas lemma, then complete separation is equiv-
alent to finding a solution to AT y = 0 for y ≥ 0, which in turn is equivalent to finding
a feasible solution to a standard linear programming problem (Section 4.8).

For quasi-complete separation, construct a matrix B with rows xT
i when 0 < yi <

mi ; notice that this cannot occur if mi ≡ 1. The existence of a nonzero vector z sat-
isfying Az > 0 and Bz = 0 would indicate quasi-complete separation. To handle this
case, construct the matrix C whose columns form a basis for N (B) so that u parame-
terizes solutions to Bz = 0 through z = Cu. Now we are looking for a nonzero vector
u that satisfies A∗u > 0 with A∗ = AC which leads to the same linear programming
approach with A∗. In practice, if we can show N (B) = {0}, then separation of either
kind is impossible.

Example 9.7: Logistic Regression (Cox)
Cox (1970) gave a very simple example of logistic regression. Here Yi are the
number of ingots not ready for rolling out of mi after various heating times xi;

240 Maximum Likelihood and Nonlinear Regression

Figure 9.6. Contour plot of log likelihood for Cox logistic regression (Example 9.7). Contour lines
mark (1 − 10−k) × 100% confidence regions.

the model is relatively simple, with γi = β0 + β1xi. The log-likelihood func-
tion is shown by Figures 9.6 and 9.7 and the computation by the demonstration
program chex97. The data (n = 4) are as follows.

number mi 55 157 159 16
not ready yi 0 2 7 3
heating times xi 7 14 27 51

The contour lines in Figure 9.6 are constructed according to the method outlined
in (9.4.4) for Example 9.4.

Example 9.8: Logistic Regression (Finney)
One of the earliest examples of logistic regression is due to Finney (1947), who
investigated occurrences of constriction in response to air flow rate (xi1) and vol-
ume (xi2) for n = 39 individuals (mi ≡ 1). For initial values, take β1 = β2 = 0;
then β0 = logit

(∑
yi/
∑

mi

) = logit(20/39) = log(20/19) = 0.0513. In the
demonstration program chex98, iteratively reweighted least squares converges
in ten iterations.

A similar model uses the Poisson distribution. Let Yi be independent Poisson variates
with mean λi = siexp(βT xi), where si is a known positive intensity/weight/replicate

9.7 Generalized Linear Models 241

Figure 9.7. Surface plot of log likelihood for Cox logistic regression (Example 9.7).

variable. Then the loglikelihood for Yi(i = 1, . . . , n) is

�n(β) =
∑

[yi log(λi) − λi − log(yi!)]

=
∑[

yi(log(si) + βT xi) − λi

]+ constant

The gradient is then immediately found to be

∇�n(β) =
∑

(yi − λi)x i ,

and the Hessian is again nonstochastic:

∇2�n(β) = −
∑

λix ixT
i .

Notice that the Newton or scoring iteration takes the same form as (9.7.4). As before,
the conditions necessary for asymptotic normality are that −n−1∇2�n(β) converge to
a positive definite matrix and that ‖x i‖ be bounded. Also, the iteratively weighted
least-squares algorithm can likewise be used to find the MLE, using weights wi = λi.

Quasi-complete separation can also occur in the Poisson case, as the loglikelihood
can become linear in the limit, and

limt→∞d�n(β
∗ + tz)/dt = limt→∞

n∑
i=1

[
yi(zT xi) − (zT xi)sie

xT
i
β∗+t (zT xi)

]
=

n∑
i=1

[
(zT xi)(yi − vi(z))

] = g(z)

where

vi(z) =
{ 0 if zT xi < 0,

sie
xT
i
β∗

if zT xi = 0,

−∞ if zT xi > 0

242 Maximum Likelihood and Nonlinear Regression

One difference from the logistic case is that in some directions z the slope can go
to −∞; in fact, if g(z) is finite, then g(−z) = −∞.

Separation can occur, and the maximum of the loglikelihood attained at infinity, if
there exists a direction z
= 0 that satisfies

• (zT xi) ≤ 0 where yi = 0
• (zT xi) = 0 where 0 < yi

Adapting the control/treatment design discussed previously for the Poisson case, if
y1 > 0 and y2 = 0, then the direction z = (0, −1)T satisfies both conditions and the
maximum is attained by taking β2 to −∞. To discover separation, again fill a matrix
A with rows xT

i when yi = 0, and a matrix B with rows xT
i when yi > 0. Existence of

a nonzero z satisfying A ≥ 0 and Bz = 0 would indicate separation. For a full rank
design, separation is precluded if none of responses yi are zero.

Example 9.9: Poisson Regression (Frome)
Frome (1983) studied cancer death rates by age group and extent of smoking,
with nine age groups and seven categories for levels of smoking (so that n =
63). Here the responses are Yij, the number of deaths in category (i, j) out of nij

subjects, and the regression model for the Poisson rate parameter was a two-way
analysis of variance parameterized by log(λij /nij) = αi + δj with δ1 = 0 for
nonsmokers; hence the smoking level parameters δj are differences in log death
rates. The IRWLS obtains estimates for the 15 parameters in twelve iterations;
see chex99 and Exercise 9.18.

The unifying principles of generalized linear models are (a) a mean function (or its
logarithm or logit transform) that is linear in the parameters and (b) a log-likelihood
function whose Hessian turns out to be nonstochastic. The distributions that work
under this framework extend beyond the binomial (for logistic regression) and Pois-
son to include gamma, probit, and extreme-value models. Wedderburn (1976) showed
that, under common circumstances, the maximum likelihood estimates exist and are
unique.

9.8 Nonlinear Regression

In Section 9.6, the linear regression model was described by observations Yi that were:
(a) independent with respect to the normal distribution, with means g(x i , β) = βTx i;
(b) linear in the unknown parameters β; and (c) of constant variance σ 2 = 1/γ. In non-
linear regression, however, the mean function may take the notational form of g(x i , β)

but without the linearity in the unknown parameters. Usually the application dictates
the form of the model g(x i , β), but for our purposes the mean function could just as
well be expressed by gi(β). If these means were stacked to form a column vector of

9.8 Nonlinear Regression 243

length equal to the number of observations n, and similarly for the observations Yi,

then the nonlinear regression problem could be rewritten as

Y ∼ Nn(g(β), γ −1In).

The log-likelihood function then follows immediately:

�n(β, γ) = constant + (n/2) log γ − γS(β)/2,

where the same notation is used for the sum-of-squares function

S(β) = ‖Y − g‖2 =
∑

(Yi − gi(β))2. (9.8.1)

Concentrating on the scale parameter γ, clearly γ̂ = n/S(β) and so the concen-
trated likelihood function for the remaining parameters β is

�c(β) = constant − (n/2) log S(β);
hence, maximizing the likelihood for β is equivalent to minimizing the error sum of
squares. Instead of pursuing this line further, let us return to the likelihood function
and compute the gradient

∇�n(β, γ) =
[

γ GT(Y − g)

[n/γ − S(β)]/2

]
, (9.8.2)

where G = Jg(β), the Jacobian matrix of the vector-valued function g, so that Gij =
∂gi/∂βj . (Note the similarity of the matrix G to the design matrix X in regression.)
Next, the Hessian matrix also resembles its linear regression counterpart,

∇2�n(β, γ) =
[

γ
[∑

(Yi − gi)∇2gi − GTG
]

GT(Y − g)

(Y − g)TG −nγ −2/2

]
, (9.8.3)

but the Fisher information matrix is even closer:

Jn = E[−∇2�n(β, γ)] =
[

γ GTG 0
0 nγ −2/2

]
. (9.8.4)

The Jn of (9.8.4) is equivalent to (9.6.3) for linear regression, with the Jacobian matrix
G taking the place of the design matrix X. An examination of these results suggests
several routes for computing nonlinear regression estimates. Each has its strengths and
weaknesses, which depend upon the size of the errors or residuals (Yi − gi).

The first method, known as Gauss–Newton, can be first viewed as a scoring algo-
rithm with the iteration

β(j+1) = β(j) + (GTG)−1GT(Y − g). (9.8.5)

Another view can be formed by taking the affine approximation to the mean function g,

g(β) ≈ g(β(j)) + G(β − β(j)),

which now suggests a linear regression locally for β; the step just given is the least-
squares estimate for the difference β−β(j). Clearly, Gauss–Newton is relatively simple
to use, requiring only the computation of g and G for a given value of β. Following

244 Maximum Likelihood and Nonlinear Regression

this route, the asymptotic covariance matrix for the estimates of β would be estimated
by γ̂ −1(GTG)−1.

Gauss–Newton can be a very effective method for computing nonlinear regression
estimates. As the errors (Yi − gi) grow small, the Gauss–Newton iteration approaches
a Newton step. At its best as such, Gauss–Newton takes steps in the right direction
but suffers from the Newton-like problem of taking too large a step. The usual rem-
edy, known as modified or “damped” Gauss–Newton, shortens the step – usually just
by successively halving the size of the step until S(β) decreases. For the alternative
suggested in Section 8.7, a line search can be taken along the direction of the step by
fitting a quadratic to two points and a derivative (see Exercise 9.20).

Another remedy for shortening the Gauss–Newton step is known as the Levenberg–
Marquardt algorithm, which uses a different damped step,

β(j+1) = β(j) + (GTG + λj Ip)−1GT(Y − g). (9.8.6)

This method can be viewed in two ways, one as a damped intermediate between the
Newton direction (small λ) and the steepest descent GT(Y − g) for large λ (see Exer-
cise 9.26). Another view is that of a “trust region” algorithm, where λj is governed by
the size of the trust region ‖β(j+1) − β(j)‖ < δ; if the step does not exceed the limit
δ, then λj = 0; otherwise, make λj large enough to bring the step within range. Moré
(1977) explicitly described an effective implementation of the Levenberg–Marquardt
algorithm that includes recommendations for rescaling and stopping conditions as well
as a modification of an algorithm by Hebden (1973) for seeking λ, so that the step
is within upper and lower bounds. The algorithm nllsq follows the Moré algorithm
closely.

Both Gauss–Newton and Levenberg–Marquardt are computationally more conve-
nient than a full Newton procedure. Although the algebra in iterations (9.8.5) and (9.8.6)
display the inverse of a matrix, computationally both methods would use the techniques
of Chapter 5 for the calculation of the step (see Exercise 9.26). Gauss–Newton is most
effective in small residual problems. As the size of the errors grows to an intermediate
level, Gauss–Newton must be modified by adding a line search for continued effec-
tiveness. However, Levenberg–Marquardt works very effectively – for both small and
intermediate residual problems – simply by modifying the damping parameter λj . For
the small residual problems or when close to the minimum, taking λ to zero brings the
efficiency of Gauss–Newton. For intermediate or even large residual problems, keep-
ing δ small brings the relative safety of a trust region method.

Obviously, a full Newton step for the nonlinear least-squares problem would involve
considerably more computational effort, since the additional piece

∑
(Yi−gi)∇2gi must

be calculated. Writing this as requiring O(np2) additional work may be misleading,
since the complexity of g is not being accounted for (regardless of whether ∇2gi is
computed from an analytic formula or by finite differences). In the case of solving
systems of nonlinear equations or of unconstrained optimization, secant-style updates
have been sought for the Hessian or Jacobian matrices of Newton’s method. For the
first problem, Broyden found a particularly effective update; for the optimization prob-
lem, the BFGS update is used to approximate the Hessian. In the nonlinear regression

9.8 Nonlinear Regression 245

problem, the matrix to be approximated by secant-style methods is the difference

T(β(j)) =
∑

(Yi − gi)∇2gi evaluated at β(j).

Dennis, Gay, and Welsch (1981) proposed a symmetric update T(j) that solves a
secant equation. Since T(β) need not be positive or negative definite, T(j) is not re-
stricted in this way. Their algorithm NL2SOL begins with T(0) = 0, so that the first
step is Gauss–Newton. Thereafter, the iteration is a trust region one, like Levenberg–
Marquardt:

β(j+1) = β(j) + (GTG + T(j) + λj Ip)−1GT(Y − g). (9.8.7)

One view of the method is to perform Gauss–Newton and/or Levenberg–Marquardt
early in the process (when both are effective) and then, with better information on
T, to take efficient Newton-like steps to close in on the minimum. The implementa-
tion of their algorithms allows for the Jacobian matrix G to be computed either by a
user-provided subprogram or by finite differences (NL2SNO).

In discussing the unconstrained optimization problem, the two criteria for stopping
were small changes in the function and small changes in the argument. In nonlinear
regression, these two should certainly be retained. On rare occasions, a perfect fit is
expected and the minimum of S(β) is zero. Consequently, S(β) ≤ eS should be the
prominent criterion in this situation. Additionally, the nonlinear regression first-order
condition GT(Y − g) = 0 corresponds to the least-squares normal equations, indi-
cating the orthogonality of the residuals (Y − g) and the affine space spanned by the
columns of matrix G. This orthogonality can be manipulated into a stopping criterion
that focuses on the angle between the residual vector and the affine approximant to the
regression function g. Since Gβ denotes any vector in the affine space, the cosine of
the angle between the residual vector and the plane defined by G is given by

cos φ(β) = βTGT(Y − g)

‖Gβ‖‖Y − g‖ .

Maximizing this with respect to β using the extended Cauchy–Schwarz inequality (see
Exercise 9.22) gives

max
β

cos φ(β) = cos φ = [(Y − g)TG(GTG)−1GT(Y − g)]1/2

‖Y − g‖ . (9.8.8)

Squaring this quantity and recognizing the projection matrix

PG = G(GTG)−1GT,

it follows that the quantity (cos φ)2 = (Y − g)TPG(Y − g)/S(β) gives the fraction of
squared length of the residual vector projected into the affine space of G, which should
be small at convergence. Hence another stopping criterion is |cos φ| ≤ εc; for yet an-
other form, see Bates and Watts (1988, pp. 49ff). See also Exercise 9.23.

Returning to the statistical problem, there are at least three choices for the asymptotic
covariance matrix of the nonlinear regression estimates β̂. The first is C1 = σ̂ 2(GTG)−1,

which follows from Fisher’s information or from the Gauss–Newton methodology,

246 Maximum Likelihood and Nonlinear Regression

where σ̂ 2 = S(β̂)/(n − p). Another choice uses the inverse of the observed infor-
mation, C2 = σ̂ 2(GTG + T(β̂))−1, which is more appropriate when the residuals are
not negligible. Still another follows from the distribution of the Newton step, C3 =
σ̂ 2(GTG + T(β̂))−1GTG(GTG + T(β̂))−1, which is certainly the most complicated.
Following the sandwich route (9.3.3) leads to a still more complicated

C4 = (GTG + T(β̂))−1

{ n∑
i=1

(yi − gi(β̂))2GT
i•Gi•

}
(GTG + T(β̂))−1.

The first C1 is certainly the easiest to compute, since implementing a Gauss–Newton re-
gression program would produce it automatically. The second C2 points out a problem
heretofore ignored: the Hessian may not be positive definite in large residual prob-
lems. If a true local minimum is attained then certainly the Hessian must be positive
definite, but achieving this at convergence may depend more on the choice of stopping
criteria. When the Hessian is involved in the computation, as it is in C2 and C3, sev-
eral routes are available. One is to use the direct formula (GTG + T(β̂))−1, which is
likely to be the most costly from a computational standpoint. Another route is to use
the secant-style update to T as in NL2SOL. A third route (also used by NL2SOL) com-
putes the Hessian by finite differences.

As in the previous chapter, readers are again advised against writing their own soft-
ware for nonlinear regression. There are many good resources currently available;
moreover, many statistical packages offer a nonlinear regression analysis procedure.
For the specific nonlinear least-squares problem, many commercial software packages
include either a Gauss–Newton or Levenberg–Marquardt algorithm. The Dennis–Gay–
Welsch algorithm NL2SOL is available as part of the ACM collection. This procedure
(as do many others) offers many options for convenience. As previously noted, includ-
ing a routine to compute the Jacobian matrix G would be preferred to using the option
for the routine to approximate G by finite differences. That preference does not hold
when G is incorrectly coded – a not infrequent problem. As we have noted, computing
∇2gi does not provide the same advantages and in fact often adds to the computa-
tion required for each step. The more important issue regarding options concerns the
type of problem encountered: small or zero residual problems, moderate residuals, and
large residuals. Gauss–Newton will do the small residual problems easily and proba-
bly with less effort than its competitors. Modifications to Gauss–Newton extend what
can be considered small. Levenberg–Marquardt techniques are a bit more robust but
may not be as fast. The NL2SOL is designed to handle even large residual problems and
shines over its competitors when the function evaluations are most costly. The code
nllsq has proven to be successful at solving many test problems and should suffice in
most cases.

9.9 Parameterizations and Constraints

A naive user who has just learned about nonlinear regression may view the mean func-
tion hi(α) = log α1 + xi log α2 as a nonlinear model. Strictly speaking, that view is

9.9 Parameterizations and Constraints 247

completely correct, since the mean function is not linear in the unknown parameters.
However, with the simple reparameterization β1 = log α1 and β2 = log α2, the mean
function can be rewritten as β1+β2 xi, which is clearly simple linear regression. Com-
putationally, using the formulas for simple linear regression is preferred to the more
complicated nonlinear regression techniques. The reparameterization also simplifies
statistical matters somewhat, since the asymptotic covariance matrix for the α esti-
mates can be found from the covariance matrix of the β estimates:

cov(α̂) = Jα cov(β̂)JT
α ,

where Jα is the Jacobian matrix of the transformation

α1(β) = exp(β1), α2(β) = exp(β2).

Another common reparameterization arises in trigonometric regression, where the
mean function is written as β0+ρ cos(2πft−ω), where f is the known frequency. The
unknown parameters ρ for the amplitude and the phase angle ω can be reparameterized
to β1 = ρ cos ω and α1 = ρ sin ω, producing the mean function β0 + β1 cos(2πft) +
α1 sin(2πft), which is linear in the three unknown parameters β0, β1, and α1.

When viewed in terms of the possible mean functions, the reparameterizations do
not change anything. In the first case, the fitted mean function will still be a line in
the (x, y)-plane. In the second case, the fitted mean function will be a shifted cosine
curve with frequency f. Both problems are intrinsically linear regression problems.
The reparameterizations are effective in making the problem easier and more stable
computationally.

The most convenient form of reparameterization is simply centering and rescal-
ing. Consider the common model gi(β) = β1 exp(−β2 xi); this can be rewritten as
gi(β) = α1[exp(−β2(xi − x̄))], where α1 = [β1 exp(−β2 x̄)]. Now if the rescaled
x-deviations β2(xi − x̄) are small then the response surface is nearly linear, gi(β) ≈
a+bxi, and the reparameterization does not mask this fact as the original would. Even
if x varies greatly, the centering of the covariate makes the columns of G nearly orthog-
onal and so the estimates of the new parameters α1 and β2 are closer asymptotically
to independence. Bates and Watts (1980) discussed linear and nonlinear models and
focused on two measures of curvature, intrinsic and parameter-effects. If the devia-
tions β2(xi − x̄) are small then the model is intrinsically linear. In such a case, much
of the parameter-effects curvature can be removed by reparameterization, as it can be
removed completely in the two earlier cases. If those deviations are not small then
the problem becomes more nonlinear, and the curvature is intrinsic to the model and
the design points. Since nonlinear regression techniques work best when the model
is closest to linear, parameter-effects curvature should be removed by reparameteriza-
tion to improve the numerical condition of the problem. Poor conditioning imposed
by intrinsic curvature cannot be removed and remains as a computational burden to be
overcome.

248 Maximum Likelihood and Nonlinear Regression

More specifically, Bates and Watts (1980, 1988) proposed to measure curvature of
nonlinear regression models by looking at both the tangent space, spanned by columns
of G, and the acceleration space, spanned by vectors

G̈jk = ∂ 2g(β)

∂βj∂βk

. (9.9.1)

First form the QR decomposition of G = QR, where R is upper triangular and Q
has orthogonal columns, using the modified Gram–Schmidt, Householder, or Givens
method (see Chapter 5). Then construct matrices A(j) for each column j of Q whose
(k, l) element is A(j)

kl = QT
•j G̈kl . The relative parameter-effects curvature matrices are

then
C(j) = R−TA(j)R−1σ̂ 2√p. (9.9.2)

Continuing the QR factorization by appending columns G̈jk to the right of G adds ad-
ditional columns Q•j indexed by j > p, forming additional matrices A(j)

kl = QT
•j G̈kl

and C(j) from (9.9.2) for j = p + 1 to as large as p(p + 3)/2. Bates, Hamilton, and
Watts (1983) gave code utilizing LINPACK (now LAPACK) routines for QR decom-
position with pivoting for columns j > p. The ordering of the parameters, or pivoting,
greatly affects the matrices C(j). The code curve uses modified Gram–Schmidt with-
out pivoting. The root mean square curvatures – cθ for the parameter-effects and ci

for intrinsic curvatures, which do not depend on parameter order or pivoting – follow
from the expression

c2 = 1

p(p + 2)

∑
j

[
2

p∑
k=1

p∑
l=1

(C
(j)

kl)2 +
(p∑

k=1

C
(j)

kk

)2]
. (9.9.3)

Taking the sum on j from1to p in (9.9.3) gives the expression for the parameter-effects
curvature cθ ; summing on j for the remaining nonzero columns gives the intrinsic cur-
vature ci. See the demonstrations curve1 and curve2.

Reparameterization not only improves the numerical and statistical condition of the
problem, it can also be used to enforce constraints. The strategy is to find a transfor-
mation t from Rp to the parameter space � that is one-to-one, monotone, smooth, and
easy to compute. Then, maximizing �n(θ) over constrained � can be done by maximiz-
ing the function �n(t(α)) over an unconstrained parameter α. Fortunately, the inverse
of the transformation t is rarely needed.

When the parameter space is an interval on the real line, two transformations are
commonly used. The function t(α) = eα/(1 + eα) is particularly useful for probabil-
ities, since the complement 1 − t takes a similar form (1 + eα)−1. A computationally
simpler function is t(α) = α/

√
1 + α2, which transforms the real line to the interval

(−1, +1) and is linear at the origin. Either function can be relocated and scaled to cover
an arbitrary interval (a, b). For parameters constrained to be positive, the transforma-
tion t(α) = eα is appropriate. Note, however, that a parameter point θ = 0 corresponds
to α → −∞, which may violate the assumption of a compact parameter space.

The problem considered in Section 9.4 provides a good example of the gains from
using reparameterization to enforce constraints. Recall first that θ1 and θ2 represented
gene frequencies, constrained first to the unit interval, and also that θ1 + θ2 ≤ 1. Other

9.9 Parameterizations and Constraints 249

Table 9.2. Convergence of Newton’s method with numerical Hessian
under reparameterization

Iteration α1 α2 θ1 θ2 (Hn)11 (Hn)22 (Hn)12 �n(α)

0 0.0 0.0 .33333 .33333 −152.7913 −179.6468 96.4355 −678.1451
1 −1.32579 −1.78602 .18531 .11696 −112.2743 −85.6885 18.8166 −507.4411
2 −0.82000 −1.90968 .27725 .09325 −147.6034 −69.6789 22.5325 −492.8502
3 −0.88670 −1.93107 .26462 .09312 −144.1447 −69.6716 21.4137 −492.5353
4 −0.88756 −1.93078 .26444 .09317 −142.7205 −69.7197 21.3774 −492.5353

constraints are implied by 0 ≤ π2 ≤ 1 and 0 ≤ π3 ≤ 1, but they are superfluous. The
parameter space � is the triangle with vertices (0,1), (1, 0), and the origin (0, 0). An
effective transformation from R2 is the following:

t1(α1, α2) = eα1/(1 + eα1 + eα2),

t2(α1, α2) = eα2/(1 + eα1 + eα2).
(9.9.4)

Now the function �n(t(α)) can be maximized over α without constraints. Recall in the
example previously discussed that, when the starting value was changed to θ1 = θ2 =
.333, Newton’s method wanted to step out of the parameter space. This is not possible
with this reparameterization. The analytics are a bit more complicated (providing more
incentive to using differences for derivatives), but the first steps are not forbidding:

π1 = 2eα1+α2/(1 + eα1 + eα2)2, π2 = eα1(2 + eα1)/(1 + eα1 + eα2)2,

π3 = eα2(2 + eα2)/(1 + eα1 + eα2)2, π4 = 1/(1 + eα1 + eα2)2;

∇�n(t(α1, α2)) = n1

(
1

1

)
+ n2

(
2(1 + eα1)/(2 + eα1)

0

)
+ n3

(
0

2(1 + eα2)/(2 + eα2)

)
− 2N

(
eα1/(1 + eα1 + eα2)

eα2/(1 + eα1 + eα2)

)
.

The gradient should be computed following this analytic formula, but the remainder
of the optimization can be done using Newton’s method with the Hessian computed
by differences. Table 9.2 gives the iteration sequence for this method (see chex94rp).
Since the initial conditions correspond to α1 = α2 = 0, care must be taken not to use
the magnitude of the parameters to determine the differences; instead, use either typical
values or a minimum value for h. Even the distant starting value led to no difficulties,
and this method found the same MLE as before (taking only four iterations). Figures
9.8 and 9.9 give the contour and surface plots (respectively) of the likelihood in this
new parameter space. Notice that the plots are smoother than those of the original pa-
rameters given in Figures 9.1 and 9.2.

One of the most common nonlinear models is the exponential model g(x, β) =
β1 exp(−β2 x), where occasionally both β1 and β2 are constrained to be nonnegative.
The transformation β(α) = eα is the most common method used to enforce that con-
straint, even though the derivatives can quickly become complicated. Another common

250 Maximum Likelihood and Nonlinear Regression

Figure 9.8. Contour plot of log likelihood for Extended Example 9.4 with transformed parameter
space. Contour lines mark (1 − 10−k) × 100% confidence regions.

Figure 9.9. Surface plot of log likelihood for Extended Example 9.4 with transformed parameter
space.

model obtained by adding another exponential piece g(x, β) = β1 exp(−β2 x) +
β3 exp(−β4 x) appears to be just as simple, but an identifiability problem arises.
Since the parameter value (a, b, c, d) is observationally equivalent to (c, d, a, b), the
difficulty can be solved by distinguishing β2 and β4. This can be conveniently done
by the constraint β2 < β4 (with strict inequality, of course). The inequality can be en-
forced by reparameterization: use either β2 = β4/(1 + e−α) or β4 = β2(1 + eα). The
reader is warned that this problem’s simple appearance is deceiving; the problem can
actually be so difficult that it has been considered something not to be computed (Acton
1970, p. 253).

Programs and Demonstrations 251

Finally, one of the more common constraints is a system of linear equality constraints,
Aβ = c. Although imposing, this system can be handled by reparameterization. First of
all, the sight of m linear constraints suggests that the parameter space should be reduced
by the same number of dimensions. Hence the problem is to construct the manifold
of solutions to the constraints and then parameterize that manifold; the solution to the
maximum likelihood or nonlinear regression problem can then be found by searching
the parameters that sweep out the manifold. The dimension of β is p and so the matrix
A is m × p, with m < p for the problem to be interesting. The manifold of solutions
can be formed by constructing all solutions to the equations Aβ = c, which can be
written as β = β∗ + t, where t is a vector in the null space of A. Recall from Chapter 5
that the null space of A is the orthogonal complement of the range of AT. So, compute
the QR factorization of AT, using either Householder (preferred) or Givens, to derive

AT = Q
(

R
0

)
= (Q1 Q2)

(
R
0

)
= Q1R, (9.9.5)

where the columns of Q are partitioned with m for Q1 and with (m − p) for Q2. Thus
the linear equations Aβ = c are rewritten as RTQT

1β = c, and the manifold of solu-
tions can be written in terms of the (p − m)-dimensional parameter vector α as

β(α) = Q1R−Tc + Q2α, (9.9.6)

where the specific solution is β∗ = Q1R−Tc and the columns of Q2 form a basis for
the null space of A. The reparameterization changes the parameter space from a con-
strained one for β in Rp to an unconstrained one for α in Rp−m.

Programs and Demonstrations

chex94 Analysis of Extended Example 9.4
Three methods for computing MLEs for Example 9.4 are demonstrated: scoring,
and Newton’s method with analytical and numerical derivatives. Figures 9.1 and 9.2
show the log-likelihood function.

augrain1 MLE via concentrated likelihood for 2-parameter gamma (Example 9.5)
The concentrated likelihood is maximized by golden section to obtain MLEs for the
2-parameter gamma distribution fit to 45 years of August rainfall data from Raleigh,
NC. Uses golden for golden section search and del12f for numerical derivatives to
compute asymptotic standard errors. See Figures 9.3 and 9.5 for the log-likelihood
contour plot and the concentrated log-likelihood function, respectively.

augrain2 MLE for 2-parameter gamma (Example 9.5)
The likelihood for the 2-parameter gamma distribution is fit to 45 years of August
rainfall from Raleigh (NC) using the general optimizer plum1t from Chapter 8.

conclk, concll MLE via concentrated likelihood for nonlinear regression
As described in Example 9.6, this nonlinear regression example can be concentrated
to a function of a single variable, which was maximized using golden. In conclk,
the concentrated likelihood was reduced to its simplest form for optimization. In

252 Maximum Likelihood and Nonlinear Regression

concll, the log-likelihood function in three parameters (θ1, θ2, σ
2) was left intact

and the optimization done using an intermediate routine that supplied MLEs for θ1

and σ 2 for a given value of θ2.

chex97 Logistic regression (Example 9.7)
MLEs for the logistic regression problem of Cox (1970) are computed via the IRWLS
algorithm (9.7.4). See Figures 9.6 and 9.7 for contour and surface plots of the log-
likelihood function.

chex98 Logistic regression (Example 9.8)
MLEs for the logistic regression problem of Finney (1947) are computed via the
IRWLS algorithm (9.7.4).
finney.dat – Finney data.

chex99 Poisson regression (Example 9.9)
MLEs for the Poisson regression problem of Frome (1983) are computed via IRWLS.
frome.dat – Frome data.

nllsqu0 Nonlinear least-squares Test Problem 0
nllsqu1 Nonlinear least-squares Test Problem 1
nllsqu2 Nonlinear least-squares Test Problem 2

Three nonlinear least squares problems to test the code nllsq. Problem 0 is the linear
regression from Exercise 5.5. Problem 1 is from Fuller (1976); Problem 2 is from
Gallant (1975). See also the relative curvature demonstrations that follow for further
examples. Moré, Garbow, and Hillstrom (1981) presented a battery of challenging
test problems. (See also Exercise 9.27.)
nllsq – computes nonlinear least squares estimates following Moré’s (1977) algo-
rithm.
fulnls.dat – data for Fuller example.
gallant.dat – data for Gallant example.

chex94rp Reparameterization of Extended Example 9.4 as discussed in Section 9.9

rcurv1, recurv2 Relative curvature measures
Two test problems for computing relative curvature matrices C(j) as discussed in
Section 9.9, using the routine curve. Both test problems are examples given by
Bates and Watts (1980); the first (rcurv1) is the puromycin example. The second,
the isomerization example, has two parameterizations.
curve – computes relative curvature matrices.
puromy.dat – puromycin data.
isomer.dat – isomerization data.

Exercises

9.1 Prove the information inequality (Lemma 9.1) by applying Jensen’s inequality (−log x

is convex) to the function log[f(y)/g(y)]. Recall that equality is reached with Jensen
if the function is linear; and these must be densities. Also consider the case when the
supports are different.

Exercises 253

9.2 As in Neyman and Scott (1948), let Yij ∼ normal(µi, σ
2) (independent) for i = 1, . . . , n

and j = 1, . . . , k. The maximum likelihood estimators are

µ̂i = Ȳi• and σ̂ 2 =
n∑

i=1

k∑
j=1

(Yij − Ȳi•)
2

nk
.

As n → ∞ with k fixed, show that σ̂ 2 → [(k − 1)/k]σ 2 and is not consistent for σ 2.

9.3 Consider the zero-inflated Poisson model, where Pr(Y = 0) = p + (1 − p)e−λ and
Pr(Y = k) = (1 − p)λke−λ/k! for k > 0. For a sample of size n, suppose Y1 = · · · =
Yn = 0 and describe the contours of the likelihood function of (p, λ).

9.4 In the discussion of Assumption A3 in Section 9.1, computing the mean and variance of
the difference in log likelihoods Z = log(f(Y | θ1)) − log(f(Y | θ2)) is suggested for
assessing near nonidentifiability. For example, let θ1 represent the distribution of Y, the
MA(1) normal time-series model (see Chapter 4) with parameter θ = −.3, and let θ2

represent the distribution of such a vector from an AR(1) model with parameter φ = .3.

Compute the mean and variance of Z (with respect to θ1 as true) and compute a stan-
dardized distance t = mean/

√
variance. Although the two models are truly identified,

the value of t here is −0.196/
√

25 for n = 50 (Monahan 1983). Compute similar values
for n = 100 using the Levinson–Durbin algorithm.

9.5 Let Yi be IID with the density of a mixture of two normals,

f(y) = p
1

σ
√

2π
exp

(
− (y − µ)2

2σ 2

)
+ (1 − p)

1√
2π

exp

(
− (y − µ)2

2

)
,

where p is known but µ and σ are unknown. Show that the log likelihood can be made ar-
bitrarily large by setting µ̂ = Yi and taking σ → 0. Show that Assumption A4 is violated.

9.6 For the Extended Example 9.4, verify Assumptions A1 through A5.

9.7 For the Extended Example 9.4, show that cov(∇�n) = −E{∇2�n}.
9.8 For the Extended Example 9.4, compute the eigenvectors and eigenvalues of ∇2�n and

relate them to Figure 9.1.

9.9 For the Extended Example 9.4, compute the asymptotic standard errors and correlation.

9.10 Check equation (9.5.4) for the results from Example 9.5, the 2-parameter gamma.

9.11 Concentrated Likelihood. Suppose that β̂ maximizes �c(β) as defined in (9.5.1). Prove
that (α̂(β̂), β̂) maximizes �n(α, β).

9.12 Compute variance estimates for the nonlinear regression parameters in Example 9.6.
9.13 Recall the slow convergence of steepest descent in Example 8.4. Compare this to the

convergence of a Newton step with the incorrect Hessians
[

6 −2

−2 3

]
and
[

4 −1

−1 4

]
.

9.14 Show that the variance of n/S(β̂) in multiple regression is 2γ 2/n to terms of order n−1

(from 9.6.2).

9.15 In simple linear regression, describe the limiting behavior of n−1XTX when: (a) xi =
1/i; (b) xi = i; (c) xi = log i.

9.16 Show that the iteration step (9.7.4) for logistic (binomial) regression is not the same as
generalized least squares.

9.17 Compute variance estimates for the logistic regression parameters in Example 9.8.

254 Maximum Likelihood and Nonlinear Regression

9.18 Compute variance estimates for the Poisson regression parameters in Example 9.9.

9.19 For the Poisson regression Example 9.9 (Frome), analyze the data with a linear mean
function in the two variables and compute variance estimates of the parameters.

9.20 For the sum-of-squares function S(β) (from (9.8.1)), compute the derivative in the di-
rection d; that is, take the derivative of S(β + td) with respect to t.

9.21 Modify the least-squares problem ‖Y−g−G(β−β(j))‖ so that the Levenberg–Marquardt
step (9.8.6) gives the solution. (Hint: Add new observations.)

9.22 Prove the extended Cauchy–Schwarz inequality maxx‖cTx‖2/(xTBx) = cTB−1c.

9.23 What is the distribution of the Gauss–Newton step (GTG)−1GT[y − g(β(k))] evaluated
at the true β∗? Construct an F -test based on this result.

9.24 Compute the nonlinear least-squares estimate for the problem in nllsqt1 using plum1t.

9.25 What is the solution to the trust region constraint on the least-squares problem:

min‖y − Xβ‖ subject to ‖β − β∗‖ < δ.

9.26 Verify the claims about the limits of the Levenberg–Marquardt step (9.8.6) by taking the
limit of λ to both 0 and ∞.

9.27 One of the most challenging (“nasty” may be a better description) nonlinear least-squares
problems (Jennrich and Sampson 1968) has yi = 2i + 2 and gi(θ1, θ2) = exp(iθ1) +
exp(iθ2) for i = 1, . . . , n = 10.

(a) Draw contour and surface plots of the sum-of-squares function S(θ1, θ2).

(b) Try to solve this using nllsq (or any other optimizer) starting from (0.3, 0.4).
(c) Is the sum-of-squares function S(θ1, θ2) locally quadratic around the optimum at

(.2578, .2578)?

9.28 Compute “sandwich” variance estimates from (9.3.3) for the nonlinear least-squares es-
timate in the problem in nllsqt1.

9.29 Compute the relative curvature matrices C(j) given by (9.9.2) for the problem in nllsqt1.

9.30 For the reparameterization of the Extended Example 9.4, use chex94rp to compute the
analytic Hessian and compare it to the one computed numerically and given in Table 9.2.

9.31 Using the problem in rcurv1 with regression function gi(θ1, θ2) = θ1xi/(θ2 + xi), plot
the sum-of-squares function S(θ1, θ2). Using the same starting point as in rcurv1, plot
the trace of the Levenberg–Marquardt step (9.8.6) for values of λ from 0 to 1000.

9.32 Test for complete separation (or quasi-) in the Cox logistic regression problem Example
9.7. What happens if we change the response at the last design point to y4 = 16?

9.33 Find the conditions for complete separation in the probit model, where Pr(Yi = 1|xi) =
�(xT

i β) where � is the standard normal cdf. (See Stokes, 2004 for an interesting appli-
cation.)

9.34 Some badly conditioned problems can be improved dramatically by simply scaling the
variables so that the parameters of the problem do not differ by orders of magnitude. For
a Gauss-Markov model, E(y) = Xb, Cov(y) = σ 2I, this may mean using a scaled re-
sponse y∗ = cy where c is some scalar, perhaps c = 1000 from changing the units of the
response from kilograms to grams. We could also scale the covariates and use the design
matrix X∗ = XD where D is a diagonal matrix. Now we can rewrite the Gauss-Markov

References 255

model in terms of the rescaled response and design matrix, E(y∗) = X∗b∗, Cov(y∗) =
σ 2∗ I. a) Write the new parameters in terms of the old, that is, find S(b) and T (σ 2) so that
b∗ = S(b) and σ 2∗ = T (σ 2). b) Do the usual least squares estimators give the correct
adjustment, that is, are b̂∗ = S(b̂) and σ̂ ∗∗ = T (σ̂ 2∗)? c) For the following problems, ex-
amine whether the estimators/algorithm responds properly to changes in scale. Consider
whether both c and D are appropriate, and also (if appropriate) estimating σ 2. i) GLS aris-
ing from Cov(y) = σ 2V with V known ii) Ridge regression, with b̃ = (XT X+kI)−1XT y
ii) Newton/Scoring for logistic regression

References

The beauty of the maximum likelihood problem is that, in large samples, most problems
are approximately quadratic. For further reading on the maximum likelihood theory,
Rao (1973) is probably the easiest to read; LeCam (1970) may be more useful. Many
of the theory’s consequences have appeared only in bits and pieces, and some have
never been written down. Jennrich and Moore (1975) is an unusually placed paper
that provides some foundation to what had become folklore, including the IRWLS
for what McCullagh and Nelder (1992) called “generalized linear models.” Dennis
and Schnabel (1983) covered nonlinear least-squares computation only briefly; Moré
(1977) provided the do-it-yourself details. Bates and Watts (1988) provided the statis-
tical methodology at an applied level; see Gallant (1987) or Wu (1981) for all of the
theoretical background.

F. S. Acton (1970), Numerical Methods That Work. New York: Harper & Row.
A. Albert and J. A. Anderson (1984), “On the Existence of Maximum Likelihood Estimates in Logis-

tic Regression Models,” Biometrika 71: 1–10.
Y. Bard (1974), Nonlinear Parameter Estimation. New York: Academic Press.
D. M. Bates, D. C. Hamilton, and D. G. Watts (1983), “Calculation of Intrinsic and Parameter-Effects

Curvatures for Nonlinear Regression Models,” Communications in Statistics B 12: 469–77.
D. M. Bates and D. G. Watts (1980), “Relative Curvature Measures of Nonlinearity,” Journal of the

Royal Statistical Society B 42: 1–25.
D. M. Bates and D. G. Watts (1988), Nonlinear Regression Analysis and Its Applications. New York:

Wiley.
Dennis D. Boos (1992), “On Generalized Score Tests,” American Statistician 46: 327–33.
D. R. Cox (1970), Analysis of Binary Data. London: Methuen.
A. P. Dempster, N. M. Laird, and D. B. Rubin (1977), “Maximum Likelihood from Incomplete Data

via the EM Algorithm,” Journal of the Royal Statistical Society B 39: 1–38.
J. E. Dennis, Jr., D. M. Gay, and Roy E. Welsch (1981), “An Adaptive Nonlinear Least-Squares Al-

gorithm,” ACM Transactions on Mathematical Software 7: 348–83.
J. E. Dennis, Jr., and R. B. Schnabel (1983), Numerical Methods for Unconstrained Optimization and

Nonlinear Equations. Englewood Cliffs, NJ: Prentice-Hall.
B. Efron and D. V. Hinkley (1978), “Assessing the Accuracy of the Maximum Likelihood Estimator:

Observed versus Expected Fisher Information,” Biometrika 65: 457–87.
D. J. Finney (1947), “The Estimation from Individual Records of the Relationship Between Dose and

Quantal Response,” Biometrika 34: 320–34.
E. L. Frome (1983), “The Analysis of Rates Using Poisson Regression Models,” Biometrics 39: 665–

74.
W. A. Fuller (1976), Introduction to Statistical Time Series. New York: Wiley.
A. R. Gallant (1975), “Nonlinear Regression,” American Statistician 29: 73–81.

256 Maximum Likelihood and Nonlinear Regression

A. R. Gallant (1987), Nonlinear Statistical Models. New York: Wiley.
M. D. Hebden (1973), “An Algorithm for Minimization Using Exact Second Derivatives,” Report no.

TP515, Atomic Energy Research Establishment, Harwell, U.K.
Paul W. Holland and Roy E. Welsch (1977), “Robust Regression Using Iteratively Reweighted Least

Squares,” Communications in Statistics A6: 813–27.
R. I. Jennrich and R. H. Moore (1975), “Maximum Likelihood Estimation by Means of Nonlinear

Least Squares,” in Proceedings of the Statistical Computing Section, pp. 57–65. Washington, DC:
American Statistical Association.

R. I. Jennrich and P. F. Sampson (1968), “An Application of Stepwise Regression to Non-Linear Es-
timation,” Technometrics 10: 63–72.

L. LeCam (1956), “On the Asymptotic Theory of Estimation and Testing Hypotheses,” in Proceedings
of the Third Berkeley Symposium of Mathematical Statistics and Probability, vol. 1, pp. 129–56.
Berkeley: University of California Press.

L. LeCam (1970), “On the Assumptions Used to Prove Asymptotic Normality of Maximum Likeli-
hood Estimators,” Annals of Mathematical Statistics 41: 802–28.

L. LeCam and G. Yang (1990), Asymptotics in Statistics: Some Basic Concepts. New York: Springer-
Verlag.

D. Marquardt (1963), “An Algorithm for Least-Squares Estimation of Nonlinear Parameters,” SIAM
Journal of Applied Mathematics 11: 431–41.

P. McCullagh and J. A. Nelder (1992), Generalized Linear Models, 2nd ed. New York: Chapman &
Hall.

John F. Monahan (1983), “Fully BayesianAnalysis ofARMATime Series Models,” Journal of Econo-
metrics 21: 307–31.

Jorge J. Moré (1977), “The Levenberg–Marquardt Algorithm: Implementation and Theory,” in G. A.
Watson (Ed.), Numerical Analysis (Lecture Notes in Mathematics, no. 630), pp. 105–16. Berlin:
Springer-Verlag.

Jorge J. Moré, Burton S. Garbow, and Kenneth E. Hillstrom (1981), “Testing Unconstrained Opti-
mization Software,” ACM Transactions on Mathematical Software 7: 17–41.

S. A. Murphy and A. W. van der Vaart (2000), “On Profile Likelihood,” Journal of the American Sta-
tistical Association 95: 449–65.

J. Neyman and E. Scott (1948), “Consistent Estimates Based on Partially Consistent Observations,”
Econometrica 16: 1–32.

C. R. Rao (1973), Linear Statistical Inference and Its Applications, 2nd ed. New York: Wiley.
Thomas J. Santner and Diane E. Duffy (1986), “A Note on A. Albert and J. A. Anderson’s Conditions

for the Existence of Maximum Likelihood Estimates in Logistic Regression Models,” Biometrika
73: 755–58.

R. J. Serfling (1980), Approximation Theorems and Mathematical Statistics. New York: Wiley.
Houston H. Stokes (2004), “On the Advantage of Using Two or More Econometric Software Systems

to Solve the Same Problem,” Journal of Economic and Social Measurement 29: 307–20.
A. Wald (1949), “Note on the Consistency of the Maximum Likelihood Estimate,” Annals of Mathe-

matical Statistics 20: 595–601.
R. W. M. Wedderburn (1976), “On the Existence and Uniqueness of the Maximum Likelihood Esti-

mates for Certain Generalized Linear Models,” Biometrika 63: 27–32.
J. Wolfowitz (1949), “On Wald’s Proof of the Consistency of the Maximum Likelihood Estimate,”

Annals of Mathematical Statistics 20: 601–2.
C. F. Jeff Wu (1981), “Asymptotic Theory of Nonlinear Least Squares Estimation,” Annals of Statis-

tics 9: 501–13.
C. F. Jeff Wu (1983), “On the Convergence Properties of the EM Algorithm,” Annals of Statistics 11:

95–103.

10

Numerical Integration and
Monte Carlo Methods

10.1 Introduction

The juxtaposition of these two topics may appear strange to many readers. Upon fur-
ther reflection, the common thread of spreading points in space may become apparent.
My point in combining these topics is to emphasize that this thread is not weak. Monte
Carlo should be viewed as just another way to compute an integral; numerical integra-
tion should be viewed as just another way to sample points in space. Great gains can be
made by exploiting the strengths of one approach when the other is floundering. Only
with the willingness to adjust one’s viewpoint and use these tools in combination can
the full array of techniques be brought to bear on a difficult problem.

Tools such as Riemann sums and Simpson’s rule characterize the set of tools known
as fixed quadrature or simply quadrature. Aviewpoint of these methods as a discretiza-
tion of the continuous problem of integration is indeed naive. The points are spread in
a fixed way in space, with the number of points set in advance. Most of these meth-
ods employ a weighting scheme, so that the points (abscissas) where a function is to be
evaluated have varying importance. For estimating an integral by evaluating a function
at N points in one dimension, the error converges to zero at a rate of O(N−2) or better,
depending on the smoothness of the function. In higher dimensions, however, this rate
slows considerably. Assessing the accuracy of quadrature methods is extremely dif-
ficult, and most assessments are quite naive. Quadrature methods for one dimension
will be discussed in Section 10.3 and higher-dimensional techniques in Section 10.4.

Generating random variables begins with the generation of independent uniform
random variables, to be discussed in Section 10.5. Commonly used techniques employ
number theoretic methods and are clearly predictable, but their behavior is sufficiently
similar to that of truly random variables as to be preferred to any mechanical means.
Here, the number of points to be sampled need not be set in advance, and the vast array
of statistical tools can be employed to assess accuracy. The usual statistical conver-
gence rate of O(N−1/2) applies in nearly every case, with opportunities to improve the
convergence by reducing the variance. Moreover, the dimension of the problem has
no effect.

Two practical methods for generating quasirandom sequences occupy a strange in-
termediate point. As number theoretic methods to place points in space, they are char-
acterized by their filling up space too evenly to appear random. The evenness of filling
space is O(N−1) and dictates the convergence rate of its integration error, which is
affected by dimension in only a minor way. One of these two methods requires the

257

258 Numerical Integration and Monte Carlo Methods

number of points to be set in advance; the other does not. As with quadrature, assess-
ment of accuracy is quite difficult.

Because we seek an accuracy estimate for these quasirandom methods, randomiza-
tion is introduced in Section 10.7 as one of a number of techniques for improving accu-
racy. Some of the methods, described as standard techniques in experimental design,
are appropriate for simulation experiments. Other methods follow similar statistical
tools of conditioning and pairing.

Finally, after some discussion of the differences in these methods, another similarity
should be mentioned. Despite the array of methods presented here, the reader should
always keep in mind that Monte Carlo and numerical integration problems can often
be solved by brute strength alone. Since computing has become cheaper than think-
ing, the reader should not be afraid to use a simple tool and pound the problem into
submission.

10.2 Motivating Problems

Many of the techniques discussed here are specialized within a particular field of statis-
tics and are rarely discussed outside of that realm. In pursuit of the theme of spreading
points in space, it is important to discuss these motivating problems, relate the spe-
cialized techniques to each other, and explore where combinations of tools might be
exploited. In discussing these various fields of statistics, our focus is not their founda-
tion but rather how those foundations motivate the computation problem.

(A) Simulation Experiments in Statistics

Monte Carlo tools in theoretical statistics are mostly used in the evaluation of new
techniques. In general terms, data Y are observed arising from a distribution F. Then
a researcher may propose an estimator θ̂ (Y) of a characteristic θ(F) (mean, median,
variance, center of symmetry) of this distribution F or, more commonly, a parameter
θ of a parametric family Fθ . In many important situations, a researcher can find ana-
lytically some of the properties of the distribution of this proposed estimator θ̂ (i.e., its
mean, variance, etc.). Here, “analytically” means using pencil, paper, brainpower, and
probability calculus. For example, if the vector Y comes from a distribution F that has
each of n components independent normal with mean µ and variance σ 2, then a great
deal is known about certain estimators of the parameter vector θ = (µ, σ 2). However,
even for this most important case, little may be known about other estimators. For the
particular estimator µ̂ = median{Yi, i = 1, . . . , n}, the mean of its distribution is µ

(so it is unbiased) but no simple expression exists for the variance. An expression can
be written for the distribution of µ̂, but only in terms of a common (but complicated)
function �. Changing the underlying distribution F – to, say, independent exponen-
tial or logistic random variables – leads to such a different situation that little may be
known analytically about the properties of the sample mean and very little about the
sample median.

10.2 Motivating Problems 259

In the 1970s, researchers examined these foundations of statistics and could make
very little progress with analytic techniques. Information was largely limited to some
useful criteria for constructing estimators, such as maximum likelihood, that led to good
estimators (most of the time) as well as knowledge on how these estimators behave in
large samples. Expressions for bias may be workable, consistency of the estimator may
be easy to prove, and standard errors that work well in large samples may be found.
But outside of the normal distribution, very little can be done to analyze the sampling
distribution of estimators. The main tool for investigating the performance of alterna-
tive estimators of location and scale is the simulation experiment; here, samples Y can
be generated from a distribution of interest, the estimates µ̂(Y) computed, and statis-
tics of the sampling distribution of µ̂(Y) compiled and analyzed to obtain estimates of
the bias, variance, mean squared error (MSE), and so on. The most common question
to be addressed by such an experiment is “At what sample size n can the asymptotic re-
sults be used?” Other important issues are which estimator performs better, how much
better, and for what values of the parameters.

For example, suppose a statistician were encountering severely unbalanced one-way
analysis of variance (ANOVA) and wondered whether to useANOVAor maximum like-
lihood estimators of the variance components. The model takes the form

Yij = µ + αi + eij for j = 1, . . . , ni and i = 1, . . . , p,

with αi IID N(0, σ 2
a) and eij IID N(0, σ 2

e). Two factors may have an effect on the per-
formance of these two estimators: (i) the true ratio of variance components σ 2

a/σ
2
e , and

(b) the balance or pattern of the ni. The experiment now must be designed to address
the issues at hand: which method works better, and for what values of the variance
ratio σ 2

a/σ
2
e and what pattern of the ni. The pattern of the ni should come from typ-

ical experiments that the statistician is concerned about, and the values of the ratio
should cover the range of interest. Determining “better” involves the selection of cri-
teria: bias, variance, and MSE as well as the method of comparison. Other design
issues such as blocking or pairing arise in use of the same data for both methods and
can sometimes be resolved by using the same seeds or starting points for the random
number generator. Of course, the sample size of the simulation experiment should be
large enough that important differences could be found. With the benefit of more than
a dozen years and 20/20 hindsight, improvements on the design for a similar study
(Swallow and Monahan 1984) are now embarrassingly obvious.

Finally, although statisticians are more comfortable with the Monte Carlo approach,
some salient words in favor of numerical integration are in order. Notice that both es-
timators are functions of just two sums of squares,

B =
p∑

i=1

ni(Ȳi• − Ȳ••)
2 and W =

p∑
i=1

ni∑
j=1

(Yij − Ȳi•)
2,

which are scaled independent χ2 random variables. The MSE of the ANOVA estima-
tor for σ 2

a could be computed by integrating the function [Sa(b, w) − σ 2
a]2, where the

estimate is

Sa =
(

B − p − 1

N − p
W

)/(
N −

p∑
i=1

n2
i

N

)

260 Numerical Integration and Monte Carlo Methods

with respect to the 2-dimensional joint density of these two random variables (B, W);
any other criterion could be computed in a similar manner.

(B) Hypothesis Tests

In their abstraction, hypothesis tests appear rather strange. The goal is to determine
whether the distribution of the data Y arises from a particular distribution, or has a
particular characteristic – a.k.a. the hypothesis. The test can be viewed as merely a
function of the data T(Y) that takes on values 0 (accept) and 1 (reject). To achieve the
goal, the function T(Y) is designed so that it is more likely to reject the hypothesis
T(Y) = 1 when the hypothesis is not true – a.k.a. the alternative – than reject if the
hypothesis is true; that is, we hope that

E{T(Y) | hypothesis} ≤ E{T(Y) | alternative}.
In common practice, the left-hand side is set to be a certain small probability, since it
measures an error we wish to avoid; we call this the level of the test and denote it by
α. The right-hand side is the probability of a correct decision, usually denoted by β

and called the power of the test. As with estimation, often the distribution of the test
function may not be well known outside of a few special situations, and criteria for con-
structing good tests abound. The most common situation is that enough may be known
about the test function under the hypothesis to establish the level, and hopes for power
rest on these criteria for good (i.e. powerful) tests.

This situation is by no means universal, for the level may be known only asymp-
totically or approximately, so that the level can only be referred to as a nominal level
or target. Then a simulation experiment would be required to establish whether the
test is liberal (level greater than nominal) or conservative (level less than nominal).
For example, suppose the data Y were n independent pairs of bivariate normal random
variables, and suppose we were interested in a hypothesis about the correlation ρ using
the sample correlation r. If the test function were

T0(Y) = 1 ⇐⇒ t = r

√
n − 2

1 − r 2
> tn−2(α)

then, if the hypothesis were H : ρ = 0 and the interesting alternatives ρ > 0, the level
of the test is well known to be α and the test would have increasing power for positive
ρ. However, if we wished to test a different hypothesis – say, H : ρ = ρ∗ (where ρ∗
=
0) against the alternative ρ > ρ∗ – then the most common test would use Fisher’s z

transformation, Z(r) = tanh−1(r); the test function is

T1(Y) = 1 ⇐⇒ √
n − 3[Z(r) − Z(ρ∗)] > z(α).

The appeal of Fisher’s z follows from the complicated distribution of the sample
correlation r under this hypothesis; testing requires numerical integration of a difficult
function (see Exercise 7.38). The test T1 raises some interesting new issues. Although
the nominal level of this test may be α, a simulation study would be needed to establish
whether this approximate test is liberal or conservative, depending on the sample size
and hypothesized correlation ρ∗. But there are even more interesting avenues of attack.

10.2 Motivating Problems 261

As with many hypotheses, generation from the distribution F under the hypothesis is
often relatively easy. Suppose that samples Y (i) (i = 1, . . . , M) of n pairs of bivariate
normals were generated and that the sample correlations ri were computed. Then the
sampling distribution of r could be estimated and the critical value for r could be deter-
mined empirically. That is, find the value r∗ such that Pr(r(Y) > r∗ | hypothesis) =
α. If perhaps α = 1/k and M = k − 1 samples were generated, then the test

T2(Y) = 1 ⇐⇒ r > max{r1, . . . , rM}
would also have the appropriate level α. For example, say α = .10; if, after 100 sam-
ples Y (i) were generated, 50 ri were larger than the sample correlation r and 50 were
smaller, then there would be very little interest in continuing the effort.

Generating from the hypothesis distribution allows considerable freedom in select-
ing any sort of test statistic. For example, although a simple function of the sample
correlation coefficient r is the obvious choice for a test statistic, none of the proce-
dures just mentioned are restricted to such a statistic. Likelihood ratio tests that are
too complicated for everyday use can become a practical option when these generation
techniques are employed.

Generation from the hypothesis distribution opens a new world for conditional
tests. In testing independence in contingency tables, the conditional distribution un-
der the hypothesis is a random table with fixed marginals, which can be generated
using the techniques outlined in Section 11.6(C). Given, say, Y1, . . . , Yn1 IID F(y) and
Yn1 + 1, . . . , Yn1+n2 IID F(y − �), conditioning on the sufficient statistic for F under
the hypothesis � = 0 means that the hypothesis distribution is a random permutation
of the indices of the Y s. Generating random permutations – or just random sampling
in the two-sample problem – is also covered in Section 11.6(C). These permutation
tests, after 50 years in the backwaters of statistics, become practicable with the abil-
ity of generating from the permutation distribution. Again, the choice of test statistic
is not restricted with permutation tests.

(C) Bayesian Analysis

Bayesian statistical methods differ from what may be called sampling theory meth-
ods on philosophical grounds that are widely separated. Bayesian philosophy is based
on the notion that knowledge, or lack of it, can be expressed in terms of a probability
distribution. Whereas a particular parameter θ – say, the mean of a population – may
be considered unknown in the sampling theory view, in the Bayesian view something
will be known about it – and that imperfect information can be expressed in terms of
a prior distribution π(t) in advance of any experiment or sampling to gain further in-
formation. Data Y are obtained to give information about θ, following a model for the
data expressed in terms of the density of the data f(y | t) conditioned on values of
the parameter θ = t. The information from the data Y in the likelihood f(y | t) can
then be incorporated with the prior information in π(θ) to form the posterior distribu-
tion π(t | y) as the conditional density of the parameter θ given the observed data Y =
y, following Bayes’ theorem: π(t | y) ∝ π(t)f(y | t). Inference about the parame-
ter will then be based solely on the posterior π(t | y), which may be a point estimate

262 Numerical Integration and Monte Carlo Methods

(e.g., the posterior mean or median), a posterior probability set (an analog to a confi-
dence interval), or a Bayes decision that minimizes expected (with respect to π(t | y))

loss in a more complicated decision problem.
For sampling from certain distributions f(y | θ), there may be a family of prior

distributions that lead to posterior distributions in the same family. For example, if Y

follows the binomial distribution then we know that, if the prior distribution on the
success probability parameter is a member of the beta family of distributions, the pos-
terior will also be in the beta family. The prior–posterior family is called the conjugate
family for a particular sampling distribution. If the prior information can be expressed
well using a conjugate family then Bayesian methodology is simple and convenient
to use, since computing the posterior distribution simply means updating the parame-
ters of the prior. Expressing the posterior, however, may still require further numerical
tools – for example, computing special functions such as the incomplete gamma or beta
integrals. Although conjugate families exist for some of the most important problems,
such as normal sampling in regression and ANOVA, these situations are nevertheless
as rare as situations in which the sampling distribution of an estimator is known.

In my view, the value of Bayesian methodology in real problems manifests itself
when real information is available in the prior and the data are not so informative as to
overwhelm the prior. In many of these problems, either no conjugate family is available
for the prior or information is lost in forcing its form. Moreover, asymptotic approxi-
mations of the likelihood are inappropriate in such small samples. Either the prior or
likelihood usually preclude closed-form posteriors, and some form of numerical inte-
gration is then required. Consequently, the use of Bayesian methodology requires the
numerical expression of the posterior via posterior means and variances, expressing
the posterior density, or whatever form is available or necessary.

Hence the numerical work for Bayesian methodology usually requires computing
the integral of several functions with respect to the posterior distribution, usually ex-
pressed in an unnormalized form:

p∗(t) ∝ π(t | y) ∝ π(t)L(t) = π(t)f(y | t). (10.2.1)

Posterior moments of the parameter are often the easiest way of expressing properties
of the posterior distribution. Other characteristics of the posterior distribution, such as
posterior probability regions or expected loss, can also be written as the expectation
of some function h(t) with respect to the posterior. Since the normalization constant
corresponds to the special case of h(t) ≡ 1, numerical Bayesian methodology mostly
means computing several integrals with the same form

∫
h(t)p∗(t) dt for several dif-

ferent functions h.

In large samples, the differences between Bayesian and sampling theory methods
begin to fade. With a lot of data, the prior information π(t) becomes dominated by the
likelihood f(y | t) and so the posterior is essentially the same as the likelihood. The
large-sample asymptotics of maximum likelihood (see Chapter 9) now can be used in
many cases, leading to a large sample posterior distribution that is approximately nor-
mal, with a mean at the maximum likelihood estimate and variance from the inverse of
the information quantity. The Bayesian viewpoint reverses roles: the parameter is ran-
dom with its distribution centered on the estimate. But the conclusions in large samples

10.2 Motivating Problems 263

are essentially identical, and the approximation in Theorem 9.3 now looks like

log p∗(t) ≈ log p∗(tm) − 1
2 (t − tm)TH(t − tm), (10.2.2)

where tm is the mode of the unnormalized posterior p∗.
To illustrate the variety of issues just discussed, consider the variance components

problems mentioned previously but with a slightly different characterization and a
change in notation:

Yij ∼ N(θi, φ = σ 2
e), j = 1, . . . , ni;

θi ∼ N(β = µ, γ = σ 2
a), i = 1, . . . , p.

Then the likelihood for the three fixed parameters (relabeled as β = µ, φ = σ 2
e , and

γ = σ 2
a) can be written as

L(b, f, g) =
p∏

i=1

(nig + f)−1/2 exp

{
−1

2

p∑
i=1

(ȳi• − b)2

g + f/ni

}
× f −(N−p)/2 exp

{
−

1
2W

f

}
.

There is no conjugate family for this likelihood and parameterization, but convenience
nonetheless suggests a prior of the following form:

β ∼ N(b0, φ0),

φ ∼ inverse gamma(a1, b1),

γ ∼ inverse gamma(a2, b2),

with each component independent. The posterior then takes the form

p∗(b, f, g) = g−(a2+p/2)−1e−b2/g × f −(a1+N/2)−1e−[b1+W/2]/f

× exp

{
−

1
2 (m − b0)

2

φ0

}
×

p∏
i=1

(
ni

f
+ 1

g

)−1/2

× exp

{
−1

2

p∑
i=1

(ȳi• − b)2

g + f/ni

}
. (10.2.3)

From this point, several computational routes are available. First of all, the mean
parameter β could be integrated out analytically, since its distribution conditional on
the variance components φ and γ is univariate normal. The marginal joint distribu-
tion of (φ, γ) is rather complicated, however, whenever the problem is unbalanced
(i.e., unequal ni), with the reduction in dimension from 3 to 2. Although this drop in
dimension certainly makes a great difference in numerical integration, 3-dimensional
integrals are not prohibitively expensive. Several other computational routes exploit the
large-sample approximate normality of the posterior: importance sampling, random-
ized integration, and mixed methods (described more fully in Chapter 12). Introduction
of θi, the unobserved group means, suggests an augmented parameterization that in-
creases the dimension, with the posterior

264 Numerical Integration and Monte Carlo Methods

p∗(t, b, f, g) ∝ g−(a2+p/2)−1 exp

{
−b2 + 1

2

∑
i(ti − b)2

g

}

× f −(a1+N/2)−1 exp

{
−b1 + W/2 + 1

2

∑
i(ȳi• − ti)

2

f

}

× exp

{
−

1
2 (b − b0)

2

φ0

}
.

As will be seen in Chapter 13, the marginal distributions of each parameter (given the
others) are greatly simplified with the introduction of these unobservables. Markov
chain methods – in particular, Gibbs sampling – can be employed to generate vectors
from the joint distribution of these p + 3 parameters.

10.3 One-Dimensional Quadrature

In calculus, the integral of a function I(f) = ∫ f(x) dx is defined as the limit of up-
per and lower Riemann sums. For integrating a function f(x) over the interval [a, b],
only the most modest assumption – continuity – is required on the function f, so that
the limit of left and right Riemann sums,

R−
n (f) =

n−1∑
i=0

hf(a + ih) and R+
n (f) =

n∑
i=1

hf(a + ih) (10.3.1)

(where h = (b − a)/n), converge to the integral I(f) as n → ∞. It takes little imagi-
nation to see that either a left- or right-handed Riemann sum could be used be used as
a method of numerical integration. The modulus of continuity governs the error in this
method of approximate integration:

|I(f) − Rn(f)| ≤ (b − a)w(h), where w(h) = sup
|x−y|<h

|f(x) − f(y)|. (10.3.2)

Taking the simple average of the left and right Riemann sums leads to one of the more
common methods of integration, the trapezoid rule,

Tn(f) = h

2

[
f(a) + 2

n−1∑
i=1

f(a + ih) + f(b)

]
. (10.3.3)

The name “trapezoid” arises from the linear approximation of f over each subinterval
[a + (i − 1)h, a + ih], forming a trapezoid (see Figure 10.1) with the two sides at the
endpoints and the interval at the base. The view of the trapezoid rule as an average of
the two Riemann sums shows its ability to integrate functions with only the assumption
of continuity. Viewing it as a result of a linear approximation to the function f in each
subinterval leads to the following error analysis when the function f has a continuous
second derivative:

I(f) − Tn(f) = −(b − a)3f ′′(ξ)/(12n2) = −nh3f ′′(ξ)/12 for ξ ∈ [a, b]. (10.3.4)

10.3 One-Dimensional Quadrature 265

Figure 10.1. Trapezoid rule or linear interpolant. Solid line is log-series posterior from Example
10.1; dashed line is linear interpolant whose integral is the trapezoid rule.

This result shows that the error drops by a factor of 4 when the number of points or eval-
uations of the function is doubled. Another error result for periodic functions follows
from the Euler–Maclaurin formula; when the function has many zero derivatives at
the endpoints, dramatic convergence rates can be observed (see Davis and Rabinowitz
1984, sec. 2.9).

These primitive integration rules appear to follow a pattern of smoothness and conti-
nuity requirements, approximation, and rates of convergence as the number of function
evaluations increases. Riemann sums follow from approximating the function f with
step functions in each subinterval. Consequently, only continuity is required for con-
vergence, although that convergence is slow. The trapezoid rule follows from linear
approximations and is exact for linear functions. It converges at a quadratic rate, even
though it requires only one more evaluation than the Riemann sum. This pattern con-
tinues, and the appearance of getting something for nothing is part of the pattern.

A simple alternative to evaluating the function at the endpoints is to evaluate f in
the center of each subinterval [a + (i − 1)h, a + ih]. This leads to the midpoint rule,

Mn(f) = h

n∑
i=1

f

(
a + (b − a)

2i − 1

2n

)
, (10.3.5)

whose simplicity belies its effectiveness. The midpoint rule also merely approximates
the function f by a step function in each subinterval, yet its convergence rate is com-
petitive with the trapezoid rule:

I(f) − Mn(f) = (b − a)3f ′′(ξ)/(24n2) = nh3f ′′(ξ)/24 for ξ ∈ [a, b]. (10.3.6)

This error result shows that the midpoint rule integrates linear functions exactly while
using only one evaluation in each subinterval. After a little examination, this is not so
surprising. Without loss of generality, consider integrating the function f(x) = c+dx

over the interval [−1,1]. The value of the integral is I(f) = 2c, regardless of what the

266 Numerical Integration and Monte Carlo Methods

slope d is. Moreover, every linear function – even a step function – that integrates to
2c over that interval goes through the point (0, c).

The similarities of the expressions (10.3.4) and (10.3.6) invite comparisons between
the trapezoid and midpoint integration rules or quadrature formulas. The differences
in the sign of the error lead to an interesting bracketing formula for convex functions,

Mn(f) ≤ I(f) ≤ Tn(f) if f ′′(x) ≥ 0 on [a, b].

After our previous experience in taking an average of Riemann rules to get the trape-
zoid formula, it is natural to consider an average of the trapezoid and midpoint rules.
Using the constants (1/12 and 1/24) as indicators, 2

3Mn(f) + 1
3Tn(f) would be sug-

gested, and this average leads to Simpson’s rule. Since this route seems much too easy,
let us derive the rule by a route only hinted at so far. Again without loss of generality,
consider the interval [−1,1] and consider approximating a quadratic function f(x) =
c + dx + ex 2 using evaluations at ±1 and 0. After solving the three linear equations,

f(−1) = c − d + e,

f(0) = c,

f(1) = c + d + e,

we find the coefficients

c = f(0), d = (f(1) − f(−1))/2, e = (f(−1) − 2f(0) + f(1))/2,

which define the approximant f̂ (x). The approximant then has an integral of I(f̂) =
2c + 2e/3 = (f(−1) + 4f(0) + f(1))/6, which defines the weighting scheme for
Simpson’s rule: 1/6, 4/6, 1/6. Extending this rule to n subintervals covering [a, b],
the compound Simpson’s rule can be written as

Sn(f) = h

[
f(a) + 4

n∑
i=1

f

(
a + h

2i − 1

2

)
+ 2

n−1∑
i=1

f(a + ih) + f(b)

]/
6, (10.3.7)

where h is the width of the subintervals (b−a)/n, as before. The term “compound” has
been slipped in here to denote that the rule for a single (sub)interval has been applied
to several adjoining (sub)intervals. The midpoint and trapezoid rules were introduced
in their compound form.

This compound form makes comparison of the three methods (midpoint, trapezoid,
and Simpson) a little tricky. The error analysis for Simpson’s rule can be written in
both forms: for ξ ∈ [a, b],

I(f) − Sn(f) = −(b − a)5f (4)(ξ)/(2880n4) = −nh5f (4)(ξ)/90. (10.3.8)

Note that cubic functions are integrated exactly and that convergence is fourth order –
that is, doubling the number of evaluations will cut the error by a factor of 16. How-
ever, to compare to midpoint and trapezoid rules, remember that Simpson’s rule takes
two evaluations for each subinterval compared to one for the others.

Example 10.1: Simple Integration Rules for Bayesian Problem
Examples 8.3 and 9.3 described data from a sample of size n = 10 from the
logarithmic series distribution with parameter θ, leading to the (unnormalized)
likelihood function

10.3 One-Dimensional Quadrature 267

Figure 10.2. Midpoint rule or step interpolant. Solid line is log-series posterior from Example 10.1;
dashed line is step function interpolant whose integral is the midpoint rule.

Figure 10.3. Simpson’s rule or quadratic interpolant. Solid line is log-series posterior from Example
10.1; dashed line is quadratic interpolant whose integral is Simpson’s rule.

L(t) = t15/[−log(1 − t)]10

for a prior π(t) = 6t(1 − t); the (unnormalized) posterior is then

p∗(t) = t16(1 − t)/[−log(1 − t)]10 for 0 < t < 1.

The first function to be integrated is h0(t) ≡ 1 to obtain the normalization con-
stant. Other functions h to be computed are h1 = t and h2(t) = t 2, yielding (re-
spectively) the posterior mean and variance; see quad1 for the code. The posterior
is plotted in Figures 10.1–10.3, along with the interpolants from trapezoid, mid-
point, and Simpson’s rules. This is a comparatively easy function to integrate –
very smooth, and strongly converging to zero at the endpoints of the interval.

268 Numerical Integration and Monte Carlo Methods

Before proceeding, the thread of integration rules as integrating approximants must be
resolved. The midpoint rule approximates with a step function and the trapezoid rule
with a linear function, both with essentially one evaluation per subinterval and both
integrating linear functions exactly and achieving quadratic convergence. Simpson’s
rule approximates with a quadratic, integrates cubic exactly, and achieves quartic con-
vergence with the modest cost of doubling the number of evaluations. All three rules
are compounded to reduce the error with additional computations. Another route to
explore is integrating the higher-order approximant with the additional evaluations.
Following the short pattern established so far, could it be possible to integrate exactly
a polynomial of degree 2n −1 with n evaluations? It is possible; the method is known
as Gauss quadrature, and it leans heavily on the interpolation and approximation math-
ematics of Chapter 7.

Recall from Section 7.5 the weight function w(x) for the interval [a, b] and the or-
thogonal polynomials pn(x). The goal is to integrate exactly a polynomial g(x) of
degree 2n − 1 with respect to the weight function w(x) using the quadrature formula
of the form

∑n
i=1wig(xi). That is, the quadrature formula is defined by the weights

wi and abscissas xi, which must be constructed to integrate any polynomial of degree
2n − 1 with n function evaluations:∫ b

a

g(x)w(x) dx =
n∑

i=1

wig(xi).

Part of the solution will be imposed immediately – that the abscissas xi are the roots of
the orthogonal polynomial pn(x). Let q(x) be the polynomial of degree n − 1 that in-
terpolates g(x) at xi, i = 1, . . . , n. Then, following Section 7.2, q(x) can be written as

q(x) =
n∑

i=1

g(xi)di(x),

where di(x) are the delta functions di(xi) = 1 and di(xj) = 0 when i
= j. The trick is
to write g(x) in terms of pn, q, and a remainder, g(x) = q(x) + pn(x)rn−1(x), where
the remainder rn−1(x) is a polynomial of degree n−1. Then the steps of the integration
of g proceed as follows:∫

g(x)w(x) dx =
∫

[q(x) + pn(x)rn−1(x)]w(x) dx =
∫

q(x)w(x) dx

=
∫ [n∑

i=1

g(xi)di(x)

]
w(x) dx =

n∑
i=1

g(xi)

∫
di(x)w(x) dx,

where the second equality follows since pn is orthogonal to all polynomials of smaller
degree (Exercise 7.28). The last step indicates the solution by defining the weights,

wi =
∫ b

a

di(x)w(x) dx. (10.3.9)

Exercise 10.5 establishes that the weights wi are positive (see also Davis 1975, thm.
14.2.1). Proper notation for the abscissas and weights are xin and win (respectively),
since the entire set changes with each value of n. The index n may be added for em-
phasis or dropped for convenience.

10.3 One-Dimensional Quadrature 269

All of this effort in constructing Gauss quadrature formulas pays off in some im-
pressive error analysis,

I(f) −
n∑

i=1

wif(xi) = f (2n)(ξ)

(2n)! k2
n

for ξ ∈ [a, b]. (10.3.10)

Here kn is the coefficient of the normalized orthogonal polynomials,

pn(x)

‖pn(x)‖ = knxn + cxn−1 + · · · ,

so that for Gauss–Legendre quadrature with w(x) ≡ 1 on [−1,1], we have k4 =
(35/8)/

√
2/(2(4) + 1) = 105

8

√
2. Before the reader takes this result that appears math-

ematically “best” as the practical best, keep in mind that – unless the function is par-
ticularly smooth – the benefit of the large constants in the denominator will be lost in
trying to tame the (2n)th derivative. Gauss quadrature is predicated on the ability of
a single polynomial to approximate the function to be integrated over the entire inter-
val. When that approximation works well, then Gauss quadrature will likewise work
well. When a polynomial approximation is quite inappropriate, then Gauss quadrature
may perform poorly. At worst, however, the quadrature formula converges in weak*
fashion; that is,

I(f) −
n∑

i=1

winf(xin) → 0 as n → ∞ (10.3.11)

for any Riemann integrable function on [a, b]. In this sense, the abscissas and weights
define a sequence of discrete probability distributions that converge to the measure
dW(x). For further details, see Davis (1975, sec. 14.4).

The computation of the set of abscissas and weights for each value of the num-
ber of evaluations n appears to be a formidable task. Direct evaluation appears to
require that all of the roots to a polynomial be determined, and then n integrals for the
weights. Some tables have been published for the most popular orthogonal polynomial
configurations (Legendre, Hermite, etc.) of intervals and weight functions w(x): see
Abramowitz and Stegun (1970), Stroud and Secrest (1966), or Krylov (1962). How-
ever, the following general algorithm by Golub and Welsch (1969) is preferred. Recall
that the orthogonal polynomials of Section 7.5 follow a three-term recursion relation-
ship. Denote the normalized orthogonal polynomials by p∗

n(x) = pn(x)/‖pn(x)‖, and
write the recursion relationship as follows:

xp∗
n−1(x) = αnp

∗
n(x) + βnp

∗
n−1(x) + αn−1p

∗
n−2(x). (10.3.12)

Then construct the symmetric, tridiagonal matrix A with the coefficients βn on the di-
agonal and αn on the super- and subdiagonals:

A =

β1 α1 0 0

α1 β2 α2 0

0 α2 β3 α3

0 0 α3 β4

 for n = 4.

Table 10.1 gives the coefficients for the most commonly used cases.
For example, recall the Legendre polynomials, which have normalization constant

‖Pn(x)‖ =
√

2/(2n+1) and recurrence relationship (n+1)Pn+1 = (2n+1)xPn−nPn−1.

270 Numerical Integration and Monte Carlo Methods

Table 10.1. Tridiagonal elements for computation of
Gauss quadrature abscissas and weights

Legendre αn = n/
√

4n2 − 1 βn = 0

Shifted Legendre αn = (n/2)/
√

4n2 − 1 βn = 1/2

Hermite αn =
√

n/2 βn = 0

Modified Hermite αn = √
n βn = 0

Laguerre αn =
√

n(n + α) βn = 2n − 1 + α

Clearly βn = 0, and with a little algebra we find αn = n/
√

4n2 − 1, which was previ-
ously posed in Exercise 6.15. The eigenvalues of A are the roots of p∗

n(x), the abscis-
sas xin (i = 1, . . . , n). Denoting the corresponding eigenvectors by z(i) (i = 1, . . . , n),

the weights are found by taking the first components of each z
(i)
1 and forming win =

m0(z
(i)
1)2, where m0 = ∫ b

a
w(x) dx. As a result, this algorithm of Golub and Welsch

changes the problem to an easy eigenproblem, already in tridiagonal form, which can
be quickly solved using the QR algorithm (Section 6.5).

An important point that I want to make here is that even though the mathematics
of Gauss quadrature looks impressive, in practice the convergence rates become evi-
dent only in easy problems or special situations. With compounding, Gauss–Legendre
2-point and 3-point rules are competitive with Simpson’s rule. Gauss quadrature should
be considered for some small problems, especially if they are known to be smooth. But
these rules have little to offer for solving difficult problems.

Example 10.1 (cont.)
Gauss quadrature can be employed on this posterior in two ways. One method
is to use Gauss–Legendre quadrature, shifted from the [−1,1] interval to the
[0,1] interval; abscissas and weights were computed by qgaustb and tabled into
qgauslg.tab. Another approach is to take advantage of the normal approxima-
tion to the posterior. Here the posterior mode is at tm = .527167 and the second
derivative there is 42.036, so the posterior is approximately normal centered at
the mode and scaled along the θ axis by the variance s2 = (1/42.036). Then the
posterior integrals are rewritten as∫

h(t)p∗(t) dt =
∫

h(t)
p∗(t)

φ((t − tm)/s)/s
φ((t − tm)/s)/s dt

=
∫

h(tm + sz)
p∗(tm + sz)

φ(z)
φ(z) dz. (10.3.13)

As a result, Gauss–Hermite quadrature abscissas and weights can be employed,
scaled for statistical problems s with weight function exp(−z2/2) instead of
exp(−z2). These are also tabled by qgaustb and stored in qgaushm.tab; see the
code in quad2. Both approaches work well here, owing to the smoothness of the
function (in the first case) and the quality of the normal approximation, as shown
in Figure 10.4.

10.4 Numerical Integration in Two or More Variables 271

Figure 10.4. Normal approximation of posterior. Solid line is log-series posterior from Example
10.1; dashed line is the normal approximation matching the posterior mode and second derivative.

10.4 Numerical Integration in Two or More Variables

In root-finding and optimization problems, the change from one to two dimensions dra-
matically changes the nature of the problem and the techniques employed. However,
we have seen that, as the number of dimensions increased further, the techniques re-
mained the same and the burden increased only linearly or quadratically – as in the
computation of the Jacobian or Hessian matrix of Newton’s method. Conversely, in
numerical integration the methods do not change so dramatically but the computational
burden grows at a faster rate as the number of dimensions grows.

For integrating over a rectangle (the Cartesian product of two intervals), the Carte-
sian product of integration rules for intervals can be used quite effectively. For example,
the product midpoint rule over the unit square is simply

Mm × Mn(f) =
m∑

i=1

n∑
j=1

f

(
2i − 1

2m
,

2j − 1

2n

)
, (10.4.1)

and it is easy to show (see Exercise 10.8) that the product midpoint rule integrates lin-
ear functions of the form ax + by + c exactly. The product Simpson’s rule is just the
Cartesian product of the interval rule, with a weighting pattern

1 4 1

4 16 4

1 4 1

on the vertices, midpoint, and the midpoints of the sides of the square (or subsquare)
for the compound rule. Note that the weights of adjoining squares or rectangles are
added, as in the

1 4 2 4 2 4 2 4 1

univariate pattern. The Gauss rules can also be used in product form,

272 Numerical Integration and Monte Carlo Methods

Gm × Gn(f) =
m∑

i=1

n∑
j=1

wimwjnf(xim, xjn) (10.4.2)

whether for rectangles, quadrants (Laguerre), or R2 (Hermite). However, no simple
and effective error bounds are available for any of these product rules. The main result
(Davis and Rabinowitz 1984, p. 355) is that if a rule R integrates polynomials of de-
gree r in x exactly and integrates S polynomials of degree s in y exactly, then R × S

integrates all linear combinations of terms xiy j for i ≤ r and j ≤ s. For example, the
product Simpson’s rule will integrate exactly a polynomial in (x, y) of the form

ax3y3 + bx3y2 + cx3y + dx3 + ex 2y3 + fx 2y2 + gx 2y

+ hx 2 + ixy3 + jxy2 + kxy + lx + my3 + ny2 + oy + p.

However, such a result does not translate easily into an error bound. Take the case
of the midpoint rule over the square from the origin to (h1, h2). If the entries of the
Hessian matrix can be bounded over this square,

|(∇2f)ij | ≤ Mij,

then the error of the midpoint rule can be written as a quadratic form in the matrix M,

|I (f) − [M × M(f)]| ≤ (h2
1M11 + h2

2M22 + 2h1h2M12)/8. (10.4.3)

If the two variables are measured equally, h1 = h2 = h, then the error can be written
as O(h2) or quadratic in h. Considerable effort has been put into rules that are exact
for various simple functions over a square, cube, or hypercube, but without great suc-
cess; the reader is referred to Davis and Rabinowitz (1984, p. 361) for further results.
One parting note of caution has been reflected in the use of different rules on each co-
ordinate, such as Mm × Mn. Some functions can behave quite differently along a line
such as y = x, or something similar. Different compounding or formulas will often
obviate the need to treat the problem in a special manner; see Exercise 10.9.

Many other regions can be handled by similar means and some simple transforma-
tions. For the interior of a circle, changing to polar coordinates (r, θ) allows for the use
of a product rule over r and θ, while prudence dictates that the number of points for θ

should increase with increasing r. For a region in the plane bounded by a polygon, the
natural route is to divide the region into triangles. For integration over a simplex, say

{p1 + p2 + p3 ≤ 1, 0 ≤ pi ≤ 1},
the natural route is to subdivide this polyhedron into others. The methods for handling
this problem are similar to the triangle problem, which should be examined in depth.

(A) Integration over a Triangle

The midpoint rule analog for the triangle is to evaluate at the centroid of the triangle
(where the medians meet) with weight equal to the area of the triangle. Since linear
transformations convert any shaped triangle to any other (see Exercise 10.11), let us
define the triangle T with vertices (0, 0), (1, 0), and (1,1) as the fundamental triangle,

10.4 Numerical Integration in Two or More Variables 273

whose area is 1/2. The centroid is then the point (2/3,1/3). To check the midpoint
result, the integral of a linear function is∫ 1

0

∫ x

0
(ax + by + c) dy dx = a/3 + b/6 + c/2

= (1/2)(a(2/3) + b(1/3) + c) (10.4.4)

over this triangle T . Similarly, the analog to the trapezoid rule is to evaluate at the end-
points of the triangle with equal weights (1/6), which gives the same result as (10.4.4).
The Simpson’s rule analog is, of course, to evaluate at the centroid as well as the end-
points, but the weights are 3/8 at the centroid and 1/24 at each of the endpoints. Again
Simpson’s rule is equivalent to the average of midpoint and trapezoid rules, with the
midpoint having nine times the weight. The Simpson analog for the triangle can inte-
grate the function ax 2 + bxy + cy2 + dx + ey + f exactly, but without cubic terms.

Compounding of the triangle rules requires some care. If the fundamental triangle is
divided into smaller triangles by adding vertices at (1/2, 0), (1/2,1/2), and (0,1/2),

then four triangles are formed each with area 1/8. Each triangle is a right triangle with
legs of length 1/2, with one of them pointing down. In general, if the fundamental tri-
angle is subdivided into right subtriangles with legs 1/k long, then k2 subtriangles are
formed with vertices at (i/k, j/k) for i, j satisfying 0 ≤ j ≤ i ≤ k. Two problems re-
main: one is to determine the weights of vertices where triangles adjoin, the other is to
locate the centroids. For the weights, all of the interior vertices adjoin six triangles, so
the weight for interior points is 1/k2 for the trapezoid analog. For points on the bound-
ary, where i = j or j = 0 or i = k, each vertex is shared by three triangles, so their
weights are 1/(2k2); finally, weights are 1/(6k2) at the three main vertices. Locating
the centroids is another matter, since k(k−1)/2 triangles point up and (k−1)(k−2)/2
triangles point down. For those subtriangles pointing in the same direction as the fun-
damental triangle, centroids can be found by simply rescaling and relocating from the
original (2/3,1/3):

((i − 1)/k + 2/(3k), (j − 1)/k + 1/(3k)) for 1 ≤ j ≤ i ≤ k. (10.4.5)

For the subtriangles flipped over, centroids are found at

((j − 1)/k + 1/(3k), (i − 1)/k + 2/(3k)) for 1 < i < j < k. (10.4.6)

Notice that the latter set of indices are the complement of the former, so that both i and
j can run from 1 to k, and the decision to switch the order of the coordinates depends
on i < j.

The result of compounding these triangular rules is an increase in accuracy. Break-
ing the fundamental triangle into k2 smaller triangles reduces the error by a factor of
roughly O(k−2) for the midpoint and trapezoid analogs. For the Simpson analog, the
error drops as O(k−3). As with the product rules, no simple formula is available.

Example 10.2: Modification of Extended Example 9.4
Recall the extended example from Section 9.4, essentially a multinomial with
parameterized probabilities whose log likelihood is of the form

274 Numerical Integration and Monte Carlo Methods

Figure 10.5. Contour plot of log likelihood for Example 10.2. Contour lines mark (1−10−k)×100%
confidence regions.

Figure 10.6. Surface plot of log likelihood for Example 10.2.

�n(t) = n1 log[2t1t2] + n2 log[t1(2 − t1 − 2t2)]

+ n3 log[t2(2 − t2 − 2t1)] + 2n4 log[1 − t1 − t2];
for simplicity, consider the prior to be uniform over the triangular parameter
space. The sample size is so large (N = 435) in the example that the likelihood
dominates, the posterior matches the asymptotic normal approximation, and the
problem is not so interesting. Cutting the sample size substantially (n1 = 1, n2 =
10, n3 = 4, n4 = 9) makes the problem more interesting; a contour plot similar
to Figure 9.1 is given in Figure 10.5 (Figure 10.6 gives the corresponding surface
plot). One simple route for computing the posterior moments is to integrate over

10.4 Numerical Integration in Two or More Variables 275

the triangular region using the methods just outlined. Both midpoint and Simp-
son triangular analogs are employed in chex102t. Two other methods use the
approximate normality of the posterior. Recall that, with the constant prior, the
mode tm of the posterior p∗(t) is the same as the MLE and the Hessian matrix is
the same as before:

tm = θ̂ =
[

.265782

.110980

]
, H = −∇2 log p∗ =

[
215.1117 59.4264

59.4264 472.0310

]
,

and log p∗(tm) = −28.0271. We may therefore estimate the posterior as a scaled
bivariate normal:

log p∗(t) ≈ log p∗(tm) − 1
2 (t − tm)TH(t − tm),

and H−1 gives the approximate covariance matrix:

H−1 = 10−6

[
4816 −606

−606 2195

]
.

So the first of two methods that use the normal approximation is to center and
scale a product Simpson’s rule; the second is to use Gauss–Hermite quadrature.
The former (Simpson) is straightforward; the only detail is p∗ = 0 for values
outside the parameter space. Gauss–Hermite quadrature is best explained with a
little calculus (extension of (10.3.13)):∫∫

p∗(t) dt =
∫∫

p∗(tm + L−Tz)|L−T| dz

= |L|−1
∫∫

[p∗(tm + L−Tz)ezTz/2]e−zTz/2 dz.

Rectangular product Simpson’s rule is demonstrated in chex102s; Gauss–Hermite
integration in chex102g.

A few additional comments on Example 10.2 are in order because this problem typi-
fies Bayesian integration problems. First, the sample size for the original problem is so
large that integration is virtually unnecessary. This should be checked, of course, and
the methods outlined in Chapter 12 are designed to exploit the large-sample normality.
Another important aspect of integrating posterior distributions is that the normalization
constant is often enormously large or small, sometimes too big to write in the com-
puter’s arithmetic. For Bayesian problems, the normalization constant is often (but
not always!) unimportant, so one might be tempted to ignore it altogether. I would
caution to the contrary and suggest the route shown in chex102t /s/g by integrating
p∗(t)/p∗(tm), the posterior normalized by the mode. Here, values of the posterior that
are alarmingly small can be set to zero in order to avoid underflow and overflow. The
actual value of the normalization constant can then be found by reattaching p∗(tm). In
the demonstration of Example 10.2, some confidence in the computation can be gained
by comparing the integration of the normalization constant across methods.

The choice of the three approaches are also typical. Although the triangular meth-
ods appear to be the most natural and fit the parameter space, they don’t work as well
for problems where the posterior mass is so localized – even with the modified (smaller

276 Numerical Integration and Monte Carlo Methods

sample size) problem. However, because of the potential for compounding, this prob-
lem can be beaten down simply by using a lot of points and ignoring the fact that a third
or more – a fraction and not a dimension – are not needed. The product Simpson’s rule
is another “pound into submission” approach that works well here. Two details are
worth worrying about. One worry is whether three or four standard deviations are far
enough into the tail to get the whole posterior – this must be checked, usually by com-
paring the results from different ranges. The second worry is whether the correlations
are so large that a substantial effort is wasted. With large correlations, the posterior
mass lies entirely along a diagonal, and nearly a dimension of effort is unnecessary. In
Example 10.2, however, the correlation is small, the posterior contours are nearly cir-
cular, and little effort is wasted. The Gauss–Hermite scheme exploits well the posterior
normality, but it is not safe enough to use without exploring the posterior and check-
ing. This method requires much more finesse than the other “pound into submission”
methods and can easily give erroneous results in difficult problems, so careful use is
required.

(B) Integration on Surface of a Sphere

The surface of the sphere in d dimensions (denoted by Ud) is a peculiar space on which
to integrate, but it comes up enough times to merit some attention here. More impor-
tantly, it arises in some special algorithms in Chapter 12 that exploit the normality of
the posterior. The first method is called the antipodal rule: just put points at the axes
of the sphere and weight them equally. That is, the abscissas are ±ek (k = 1, . . . , d)

for each elementary vector and the weights are |Ud |/2d, where the area of the surface
of the sphere is |Ud | = 2πd/2/�(d/2). Like Simpson’s rule, this integration rule will
be exact for cubic functions on the surface of the sphere.

The simplex rule also uses equally weighted points, but at the vertices of the regu-
lar simplex in d dimensions. This produces d + 1 points on the surface of the sphere,
and this method is exact for quadratic functions. Mysovskikh (1980, p. 232) gives the
following formulas for the vertices a(i), i = 1, . . . , d + 1:

a
(i)
j =

0 for i < j,

v1 for i = j,

−v2 for i > j,

where

v1 =
√

(d + 1)(d − i + 1)

d(d − i + 2)
and v2 =

√
d + 1

d(d − j + 1)(d − j + 2)
.

The symmetric simplex rule is simply the symmetrization of the simplex rule; the addi-
tional points are {−a(i), i = 1, . . . , d +1}. This rule then uses 2d + 2 equally weighted
points and will be exact for cubic functions, similar to the antipodal rule. The extended
simplex integration method begins with the same d+1points of the simplex method and
then adds their negatives to make 2d + 2 vertex points. The midpoints of all segments
joining all pairs of vertex points are then projected to the surface of Ud. These projected

10.4 Numerical Integration in Two or More Variables 277

midpoint points are weighted differently than the vertex points (see Mysovskikh 1980,
p. 237): |Ud |[(7−d)d]/[2(d +1)2(d +2)] for the 2d +2 vertices; for the d(d +1) pro-
jected points, the weights are |Ud |[2(d − 1)2]/[d(d + 1)2(d + 2)]. In the general case
there are (d + 1)(d + 2) points, but we have only six equally weighted points for d =
2 and only 14 (not 20) points for d = 3 because of duplication. The extended simplex
method is exact for all polynomials of degree less than 6. Note that the projected mid-
points can also be viewed as abscissas for an equally weighted integration rule using
d(d + 1) points.

(C) The Curse and Monte Carlo Integration

This section ends with a discussion of what is known as “the curse.” The reader should
have noted that, in the expression (10.4.3), the error bound is roughly O(h2) for the
midpoint rule in two dimensions. Recall that the same was true for one dimension and,
following the same mathematics, the error in d dimensions will remain O(h2), where
h is the length of a side. Suppose that making a side of length h requires n points along
a dimension; then the number of points to get O(h2) error is N = nd total number of
function evaluations. Looking at it another way, we can fix the number of evaluations to
N; then the error from compounding the midpoint rule is O(N−2/d). In d = 4 dimen-
sions, N = 10,000 function evaluations gives only h ≈ .1, and two digits of accuracy
would be the best one could hope for. This enormous effort of N function evaluations
achieves little accuracy owing to the number of points needed to fill d-dimensional
space. This problem is commonly called “the curse of dimensionality”: that the effort
needed to achieve a certain level of accuracy grows exponentially with the dimension.
The curse may seem disheartening because we have seen (as with bisection in Chap-
ter 8) convergence rates where the error was exponentially decreasing, and that rate is
considered slow – to N−4 for Simpson’s rule in one dimension (Section 10.2). How-
ever, whereas previously the usual statistical rate of convergence of Op(N−1/2) was
laughably slow, for integrating in four dimensions (or more) that rate no longer looks
so slow, especially since it does not depend on the number of dimensions. In practice,
the normal approximation to the posterior is usually employed, following the expres-
sion ∫∫

p∗(t) dt = |L|−1
∫∫

[p∗(tm + L−Tz)ezTz/2]e−zTz/2 dz. (10.4.7)

Instead of spreading product Simpson’s rule (or Gauss–Hermite quadrature) points in
Rd, which will not fill it so well, the alternative is generating z ∼ Nd(0, Id); then this
function of z,

|L|−1[p∗(tm + L−Tz)ezTz/2],

has the same expectation as (10.4.7). More importantly, averages will converge at a
faster rate, O(N−1/2). For modest dimensions (say, d = 3, 4, 5), clever integration will
compete with Monte Carlo because of the variance – the constant in O(·). However,
the key to any Monte Carlo method is the uniform generation, since it is the driving
force behind the convergence rate.

278 Numerical Integration and Monte Carlo Methods

10.5 Uniform Pseudorandom Variables

The fundamental distribution in probability theory is the continuous uniform distribu-
tion on (0,1). While mechanical devices are still used to produce random phenomena
in gambling situations, such as the balls for state lotteries or shuffling cards for poker,
computer applications rely on number theory methods to generate pseudorandom num-
bers. The term pseudorandom connotes the appearance of randomness, even though
the outcome may be completely predictable. The quality of an algorithm for generating
random, oops, pseudorandom numbers is measured by how closely its performance re-
sembles that of a sequence of independent random variables, in particular, independent
uniform deviates on the interval (0,1). The quality of many algorithms is indeed high,
and the conceptual wink of dropping the descriptor “pseudo” is often quite appropriate.
While the good properties of these numerical algorithms can often be proven, mechan-
ical devices can never be proven to reliably produce random variables. If a mechanical
device did produce an unusual event – say, 100 consecutive heads in coin tosses – then
two alternatives remain equally plausible: the device is broken, or an unusual event oc-
curred (as it should every once in a long while). My personal experience of using the
mechanical generator at the Institute of Statistical Mathematics in Tokyo in 1982 led to
a long conceptual wrestling match that ended only after viewing all of Monte Carlo as
just another numerical integration method.

Although the goal is to generate uniform random variables, number theoretic meth-
ods actually produce a sequence of integers that appear to have the discrete uniform
distribution over the range {0, . . . , m − 1}. Dividing by a large value of m will give
an excellent approximation of the continuous uniform distribution, but the nature of
floating point arithmetic suggests that we generate from the discrete distribution with
support on the set of floating point numbers that best approximates the continuous uni-
form (or any other) distribution. This issue will be postponed until Chapter 11; for now,
we will take the straightforward route of dividing the sequence of random integers by
m and calling it a sequence of uniform random variables.

(A) Testing Random Number Generators

Over the years, researchers have been constantly testing the performance of random
number generators in common use. At one time, a common joke was that more random
numbers had been generated in testing than in applications. In spite of some needless
testing that continues today, the importance of testing generators for new applications
remains. The key to testing is that same conceptual wink of dropping the modifier
“pseudo.” Although the generators in common use are quite predictable and replica-
ble – in fact, that is their big advantage over physical generators – the requirement is
that these pseudorandom number generators resemble a sequence of independent uni-
form deviates in whatever ways that are important to the application at hand. Clearly,
the most important property for most applications is uniformity over (0,1). Beyond
that, the priorities depend on the application. Some generators with notorious defects
may work very well for many applications yet fail on another. Specifically, the gen-
erator RANDU will work quite well for integration in one dimension, but the joint

10.5 Uniform Pseudorandom Variables 279

Figure 10.7. Needle plot of successive triples from RANDU in planes 1, 4, 7, 10, and 13.

distribution of successive triples does not look close to the uniform distribution on the
unit cube. Theoretical tests have been devised to find certain kinds of defects in gener-
ators, and some can help predict poor performance in certain kinds of applications. But
neither theoretical tests nor the hodgepodge of goofy tests that have been devised over
the years are the final answer. The healthy fear that most researchers have is that the
generator they are using has some unknown defect. The only way to gain confidence in
the results of a simulation experiment is to follow the same practice as with any piece of
software: by comparing the performance in a closely related problem where analytical
results are available. In theoretical physics, the 2-dimensional Ising model provides a
perfect test for related Markov chain Monte Carlo methods (Ferrenberg, Landau, and
Wong 1992; Coddington 1994). In these models, analytic results are known for certain
quantities, and the performance of different generators used with different simulation
algorithms can be compared.

Beyond uniformity, two other departures from the idealized random number gener-
ator are cause for immediate concern: the period and the joint distribution in d dimen-
sions. Since all arithmetic methods of generating random numbers are based on simple
operators with finite memory on the finite set of integers {0, . . . , m − 1}, the sequence
will eventually repeat. Ashort period would indicate that many of the integers are never
realized and hence dictate some long-term dependence that may also affect short-term
dependence. The size of some current simulation experiments is so great that a large
segment of the period may be sampled in a simple experiment. In the multidimensional
uniform distribution, concern for defects ranges from simple matters such as serial cor-
relation to patterns in high dimensions. This latter concern is also motivated by the
fact that most methods for generating random variables place successive pairs on lines
in the plane, in planes in 3-dimensional space for successive triples, and so forth. The
generator RANDU places successive triples in one of only 15 planes in 3-dimensional
space. The planes are nearly vertical in the third dimension, so they show up well in the
needle plot of Figure 10.7, which shows planes 1, 4, 7, 10, and 13. Figure 10.8 shows the

280 Numerical Integration and Monte Carlo Methods

Figure 10.8. Successive pairs from RANDU from odd planes, denoted by 6u3 + 6u2 + 9u1.

placement of the odd or even planes in two dimensions. Marsaglia (1968, 1972) used
the words “fall mainly in the planes” and proposed to measure quality by counting the
few number of (hyper)planes onto which all of the k-tuples fell. Another viewpoint
measures the maximum distance between the lines (d = 2) or planes (d = 3), leading
to what is called the spectral test. Knuth (1997) discussed the spectral test in detail,
and Golder (1976) gave a Fortran program for computing the values for multiplicative
generators.

(B) Linear Congruential Generators

The linear congruential method, the oldest and most popular method for generating
pseudorandom sequences, follows the formula

Xn+1 = (aXn + c) mod m, (10.5.1)

where “mod m” means the remainder after integer division by m. The constants a, c,

and m are integers; a is called the multiplier, c the constant, and m the modulus. The
case c = 0, which will be slightly faster, is called a multiplicative congruential genera-
tor. The initial value X0 used to start the sequence is called the seed. We seek a sequence
of integers that “look” random, so let us consider the limitations of this approach. No-
tice that we really have defined a function on the set of integers {0, . . . , m − 1}, and
eventually the sequence must begin to repeat itself. Clearly, m is the longest period
possible. In the multiplicative case (c = 0), once zero is reached the sequence stays
there forever. Naturally, we should want a long sequence before cycling, since notice-
able periodicity would not look very random. Taking a = 1 and c = 1 would certainly
give as long a sequence as possible, but the output would still not look random. A sec-
ond drawback can be seen with the least significant digits. If d is a factor of m, then
Yn = Xn mod d will follow the same formula (10.5.1) but with modulus d, so that the
sequence {Yn} can have a cycle length of at most d. If m is a power of 2, then mod m or

10.5 Uniform Pseudorandom Variables 281

mod d really just selects the rightmost m or d digits, and the rightmost digit will either
alternate 0,1, 0,1, . . . or be constant.

The goals of long periods and apparent randomness must be tempered with the reality
of ease of computation. The linear congruential operations are rather simple and eas-
ily performed whenever fixed point multiplication and division are available. Whereas
multiplication is usually available, division is more problematic, and the most popu-
lar choice of modulus is either a power of 2 or (following some clever programming)
one more or less than a power of 2. Moreover, the method becomes quite compli-
cated once the native machine arithmetic cannot do the job. To get a longer period, one
route is to use a larger modulus; however, once the modulus exceeds the usual size of
fixed point numbers (usually 32 or 48 bits), the step to implement multiple precision
for just this problem seems like more work than it’s worth. As a result, most genera-
tors are machine-dependent, although portable versions have been produced (Schrage
1979).

Number theory can be used to determine the period of linear congruential genera-
tors. For the linear (c
= 0) case, the generator has full period m if (i) a and m are
relatively prime, (ii) a−1 is a multiple of every prime factor of m, and (iii) a mod 4 =
1 if m is a multiple of 4. For multiplicative (c = 0) generators with m prime, if
a(m−1)/q
= 1 mod m for every prime factor q of m − 1, then the generator has period
m−1. Multiplicative generators with modulus m = 2k have a period of 2k−2 or m/4 if
a ≡ 3 mod 8 or 5 mod 8. Often other properties (including serial correlation and dis-
tribution of successive pairs) can be established analytically, and the spectral test can
be used to establish lattice properties.

The following twelve linear congruential generators have been widely used or rec-
ommended, and all have as long a period as possible for the given modulus m. The
case of a generator with 2k not having a full period means not that there are gaps in
the numbers produced by the generator but rather that the least significant bits follow
a very predictable pattern, as alluded to earlier.

(1) Lewis–Goodman–Miller (1969): Xn+1 = 16807Xn mod (231 −1). This gener-
ator is one of the oldest and remains in use. Its persistence for over a generation
has earned it the name “minimal standard” by Park and Miller (1988), since it
has performed well in a great many applications. Its period is 231 − 2 and its
multiplicative nature should limit its usefulness in multidimensional problems,
but it still remains competitive. Coded as ranls (following Schrage 1979) and
as a fast implementation ranbf (following Bratley, Fox, and Schrage 1983).

(2) RANDU: Xn+1 = 65539Xn mod 231. Again one of the oldest (IBM’s SSP),
RANDU is fast to compute (65539 = 216 + 3) but is clearly the most noto-
rious generator owing to its 3-dimensional defects (illustrated in Figures 10.7
and 10.8); its period is 229. Coded as randu.

(3) Park, Miller, and Stockmeyer (1993): Xn+1 = 48271Xn mod (231−1). Offered
as an alternative to Lewis–Goodman–Miller, this can be easily implemented
and has a similar period of 231 − 2. Coded as ranpm in the same fashion as
ranbf.

(4) Marsaglia I: Xn+1 = 69069Xn mod 232;

282 Numerical Integration and Monte Carlo Methods

(5) Marsaglia II: Xn+1 = 69069Xn +1 mod 232. Marsaglia I and II gained promi-
nence because of the lattice properties of the multiplier. The multiplicative
Marsaglia I generator, coded as ran69, has a period of 230; the linear Marsag-
lia II, coded as ran70, has period 232.

(6) SAS/IMSL: Xn+1 = 397204094Xn mod (231 − 1). This generator has been
widely used, but was not as portable as others (e.g. Lewis–Goodman–Miller)
until Hormann and Derflinger (1993) suggested a faster implementation, coded
here as ranhd. It has a period of 231 − 2.

(7) Fishman–Moore I: Xn+1 = 630360016Xn mod (231 − 1);
(8) Fishman–Moore II: Xn+1 = 742938285Xn mod (231 − 1);
(9) Fishman–Moore III: Xn+1 = 950706376Xn mod (231 − 1). Fishman and

Moore (1982, 1986) did an exhaustive analysis of multiplicative generators
with modulus 231 − 1, putting them through a statistically sound battery of
tests. This modulus is particularly noteworthy since it is prime and one less
than a power of 2 for easy computation following methods of Schrage or Hor-
mann and Derflinger. These three choices of multiplier are comparative win-
ners and are coded as ranf1, ranf2, and ranf3, respectively. They all have the
same period of 231 − 2.

(10) Longer I: Xn+1 = aXn + c mod 248 with

c = Bhex = 11ten and a = 5deece66dhex = 25,214,903,917;
(11) Longer II: Xn+1 = aXn mod 248 with

a = 2875a2e7b175hex = 44,485,709,377,909;
(12) Longer III: Xn+1 = aXn + c mod 248 with c = 1 and a = b1a2bc2ec5hex =

517. These three have been designed for use on machines (e.g. Cray) with 48-bit
fraction arithmetic. A bonus for taking advantage of the native arithmetic is a
longer period than the others. These three have been implemented as ran48
(10), ran49 (11), and ran50 (12).

(C) Shift Register Methods

The strengths of the alternative shift register methods match the weaknesses of the con-
gruential generators. The shift register methods follow a simple recursion relationship:

Xn = Xn−p ⊕ Xn−p+q, 1 < q < p, (10.5.2)

where the operator ⊕ denotes the bit operation of “exclusive or.” In its original presen-
tation, Xn represented a single bit. Tausworthe (1965) constructed integers by stringing
consecutive bits together, so that a block from the stream of bits would represent a ran-
dom integer. Denoting as {zt} a sequence of bits constructed from the recursion (10.5.2),
this approach (called decimation) would form

Yn =
M∑

j=1

2−jznM+j (10.5.3)

as the random uniform, where M denotes the number of bits in the floating point
fraction. For an alternative route for forming large integers, Lewis and Payne (1973)

10.5 Uniform Pseudorandom Variables 283

suggested the generalized feedback shift register (GFSR) algorithm, which constructs
a uniform random variable by taking each bit from a further point upstream in the
sequence,

Yn =
M∑

j=1

2−jzn−s(j), (10.5.4)

where s(j) denotes the shifts. If we envision the sequence {zt} strung out vertically as
a columns of zeros and ones, then copy that column and pull it down by the shift s(2)

(s(1) ≡ 0) and place it to the right of the first column to form the second. If the se-
quence {zt} were a long ribbon hanging on a wall with a thumbtack at the top, then at
this point we would have two identical ribbons with one hanging lower (the shift) than
the other. Hang the third column a little lower (shift s(3)) on the wall to the right of the
other two, and repeat until we have M identical ribbons hanging on a wall, each hang-
ing a little lower than the one to its left. We have now formed an infinitely long matrix,
with each column related by a shift. A row then becomes the bit representation of the
integer Xn = (zn, zn−s(2), . . . , zn−s(M)), which also follows the recursion (10.5.1) bit
by bit, and dividing by 2−M forms the uniform Yn. If we cut off the top part of the rib-
bons on the left horizontally, so that the top is even with the top of the last (Mth) ribbon
on the right, and then cut off the bottom evenly after p rows, then we have formed the
p × M seed matrix.

The primary advantages of GFSR arise from its lack of dependence on machine arith-
metic. First of all, neither multiplication nor division are required, only implementation
of the logical exclusive or. Second, the same sequence of uniforms (in reality, its most
significant digits) can be produced independent of fraction length M. A third advantage
is the possibility of extraordinarily long periods, 2p − 1, with appropriately chosen p

and q. In contrast with congruential generators, GFSR generators can have outstand-
ing multidimensional properties even in high dimensions. One disadvantage is that the
initialization is not nearly as trivial as choosing haphazardly a seed from the phone di-
rectory. A minor disadvantage is that the storage is not as simple as the congruential
generator: a table of p integers must be stored – either the seed matrix or the most
recent p integers.

Lewis and Payne proposed the shifts s(j) = 100p(j − 1) and an initialization run
of 5000p to dampen out any initial effects from a start-up list of zn ≡ 1. That is, after
the seed matrix is formed, the sequence is run through 5000p steps and the output dis-
carded. They chose the values p = 98 and q = 27, yielding a sequence with a period
of 298 − 1 ≈ 3 × 1029, and gave Fortran code for the initialization. Since the initial-
ization procedure is so cumbersome, the suggested route is to initialize only once and
store the table of p integers and pointers. Then the analog of the seed in the congru-
ential generators is to read in a table of p integers from a file, either the initialization
table or the table stored at the end of the last simulation.

Although one of the advantages of the GFSR generators is its performance in high
dimensions, the initialization procedure given by Lewis and Payne does not guaran-
tee that the potential of GFSR will be fully realized. A sequence of M-bit integers
with period 2p − 1 is called k-distributed if every k-tuple of integers appears 2p−kM

times during a period – except for zeros, which appear one time fewer. The Lewis and

284 Numerical Integration and Monte Carlo Methods

Payne initialization does not guarantee it, but it leads to a 3-distributed GFSR sequence
with M = 31 bits. Fushimi and Tezuka (1983) showed that the important condition
for 1-distributedness is the nonsingularity of the p × M seed matrix formed from the
initial table. To check for a 2-distributed sequence, Fushimi and Tezuka evaluate the
1-distributedness of the related 2M-bit sequence formed by consecutive pairs. The rel-
evant seed matrix W (2) has twice the width, and its left side is just a copy of the original
matrix W (1). The right half of the W (2) is formed by copying row i from W (1) into the
right half of row i − 1 of W (2), forming a p × 2M matrix. This procedure can be ex-
tended to any k with kM ≤ p to investigate the distribution of k-tuples. In addition
to the approach of generating a seed matrix and checking, Fushimi and Tezuka also
suggested a simple initialization method that can guarantee a k-distributed sequence.
Ripley (1987, p. 221) provided code for testing the seed matrix.

Three GFSR generators have been implemented.

(13) Lewis and Payne (1973): p = 98 and q = 27. This original Lewis and Payne
GFSR (with their initialization) is coded as ranlp. Note that the initial table
is stored in a separate file, and good practice would be to write out the seed
matrix at the end to start the next sequence.

(14) Bright and Enison (1979) and Fushimi and Tezuka (1983): p = 521 and q =
32. This implementation ranft was initialized with the help of a linear congru-
ential generator; it has been verified to be 16-distributed for M = 31.

(15) Fushimi (pers. comm.): p = 17 and q = 5. This implementation ranfu of a
small test sequence has a period that is too short to be practical yet long enough
to illustrate the properties of GFSR sequences.

A variation on GFSR generators has gained a great deal of popularity. In the twisted
GFSR, equation (10.5.2) is modified to

Xn+p = Xn ⊕ (Xu
n+q, X

l
n+q+1)A

where Xu
n denotes the upper bits, and Xl

n the lower bits, of Xn. With an appropriate
choice of the matrix A, this different feedback mechanism leads to extremely long pe-
riods and better k-distributedness, with only a modest increase in computation. See
Panneton, L’Ecuyer, and Matsumoto (2006) for a discussion of this and further gener-
alizations.

(16) Matsumoto and Nishimura (1998) proposed the Mersenne twister that uses
p = 624 and q = 397, and a matrix A chosen to involve only bit shifts. This
popular generator with an advertised period of 219937 − 1 is implemented in
ranmt. As with other GFSR generators, a table of length p (seed matrix) and
the current pointer need to be stored.

(D) Recommendations

My intention in providing the code for so many (sixteen) generators is to permit the
reader to embark on any sort of testing scheme that whimsy may conjure. There is no

10.5 Uniform Pseudorandom Variables 285

universally accepted generator that works well in all situations. As mentioned previ-
ously, testing against similar problems where analytical results are available for com-
parison should be considered standard scientific computing practice. The Ising model
in theoretical physics works well as a test problem for those applications, and poor per-
formance of some common generators has even made the daily newspaper. Both linear
congruential generators and GFSR methods have their advocates and detractors, and
some techniques of combining generators have been employed to improve some of the
old standards.

MacLaren and Marsaglia (1965) suggested the following shuffling scheme for com-
bining two sequences {Uk} and {Vk}.

(0) Fill a table T with Tj = Uj (j = 1, . . . ,128) to initialize.
(1) To generate the sequence Xk, generate new values Uk and Vk.

(2) Use the first seven bits of Vk to get an index J.

(3) Output Xk = TJ as the next random number.
(4) Replace TJ in the table with Uk.

Bays and Durham (1976) suggested an alternative method of (i) using the previous
Xk−1 to get the index J for selecting Xk and then (ii) using only a single sequence. A
different way to combine generators is simply to take the sum of the uniforms modulo
1, which still has the uniform distribution. Wichman and Hill (1982) claimed success
with three sequences that can be easily computed using only 16-bit arithmetic:

Un+1 = 171Un mod 30269,

Vn+1 = 172Vn mod 30307,

Wn+1 = 170Wn mod 30323;
combining yields

Yn+1 = (Un+1/30269 + Vn+1/30307 + Wn+1/30323) mod 1.

A third route is to take a congruential generator and a GFSR generator and then take
the bitwise exclusive or. For example, Marsaglia’s (1985) Super-Duper used a multi-
plicative congruential generator and a Tausworthe generator with decimation (10.5.3),
but with only limited success. Another approach for combining these two contrasting
types looks like GFSR but with multiplication instead of exclusive or,

Xn = Xn−p ∗ Xn−p+q mod m, 1 < q < p, (10.5.5)

and has shown some promise (Coddington 1994).
Many researchers have worked in the field of generating random numbers, with

many of the best mathematical minds of the last 50 years among them. The math-
ematical analyses have been impressive, especially the works of Knuth (1997) and
Neiderreiter (1987, 1992). But in spite of hard work and lots of good ideas, no con-
sensus has been reached on what methods are good and what methods are not. Ripley
(1983) put it well: “Protagonists of the Tausworthe and congruential families have
been quick to point out deficiencies of the other family, often with ill-advised choices
of multiplier of primitive polynomial.” I have successfully used congruential gen-
erators (Lewis–Goodman–Miller in particular) as well as Lewis and Payne’s GFSR.

286 Numerical Integration and Monte Carlo Methods

Because of many years of experience by a large community of users, I have a lot of
confidence in them. But if I were to embark on a new area of application that may be a
challenge, I would be the first to call myself a fool if I did not begin by comparing the
performance of the simulation results to a similar problem for which I had analytical
results.

(E) Multiple Generators
Some applications, especially simulation studies, may require more than one use

of random number generation. In a simulation study, one generator may be needed to
generate sample data, another as part of an integration method, and yet another for a
random algorithm (e.g., Quicksort, Sec. 14.3). If we are comparing methods that re-
quire random sampling, we want to still be able to generate the same data and retain the
efficiencies of blocking. Thus we may want to use multiple streams of random num-
bers without them interfering with each other. In Fortran and similar languages, the
simple solution is to make multiple copies of the generating subprogram, and assign
them similar names, e.g., RAN, REN, RIN,. . . . However, this can cause problems with
blackbox codes that expect the uniform generator to have the same name such as RAN.
R has features that make multiple steams easy to implement. We can initialize a gen-
erator with the seed 5151917 with “set.seed(5151917).” The function “.Random.seed”
retrieves the current state of the generator, either a single number Xn in the case of a
simple congruential generator, or as complicated as the seed matrix and pointer for the
Mersenne-twister (default). This can be stored and used to restore that state later on.
For example,

set.seed(5151917) # set seed for first
(data generating) stream

Y <- rnorm(100) # generate data
seedGen <- .Random.seed # save first stream info
set.seed(1917515) # set seed for second stream
sY <- myQuicksort(Y) # Quicksort is random algorithm

that uses "runif"
seedQsort <- .Random.seed # save second stream info
.Random.seed <- seedGen # restore first stream info
Y <- rnorm(100) # generate data

SAS allows the use of multiple seeds for its linear congruential generator, but when
the function forms of generators are used, the seed is set at the initial call and not
changed. However, the CALL form of RANUNI can be used to save and reestablish
seeds.

10.6 Quasi–Monte Carlo Integration

Pseudorandom sequences depend heavily on number theory to determine their prop-
erties. Another class of methods, called number theoretic or quasirandom methods,

10.6 Quasi–Monte Carlo Integration 287

rely similarly on number theory for their properties. Pseudorandom and quasirandom
sequences both attempt to spread points over space, but they do so in quite different
ways. Whereas pseudorandom sequences attempt to mimic the properties of truly ran-
dom sequences, quasirandom sequences attempt to spread points as evenly as possible
over space, and they will fill up space more evenly than random or pseudorandom se-
quences. Two of the three methods for quasirandom sequences are practical, and these
two are very different in both spirit and usage. The mathematics may look rather fancy,
but either method can be useful – especially when a problem can be pounded into sub-
mission by evaluating at a large number of points.

One of the advantages of Monte Carlo integration is its ability to integrate any
Lebesgue-integrable function. While the finite precision of the arithmetic limits the
integrability to functions with a certain level of smoothness, the spirit remains. In
looking at the Riemann sum as an integration rule, we used the modulus of continuity
for a bound on the integration error in (10.3.2). Instead of assuming more smoothness –
leading to the midpoint, trapezoid, and Simpson’s rules – let us go in the opposite direc-
tion of assuming less smoothness. If we drop continuity in favor of bounded variation,
then the error bound depends on the total variation of the function V(f) and the dis-
crepancy of the set of abscissas DN :∣∣∣∣ 1

N

N∑
i=1

f(xi) −
∫

f(x) dx

∣∣∣∣ ≤ V(f)DN({xi}). (10.6.1)

The discrepancy DN of a sequence of points is the maximum over subintervals of the
absolute difference between Lebesgue measure and the measure given by the empirical
distribution for those N points (similar to Kolmogorov–Smirnov distance). Clearly,
if we can find sequences where the discrepancy decreases quickly, then any func-
tion worth integrating can be handled. For sequences of abscissas chosen randomly,
the rate of decrease in DN is O

(√
N−1 log log N

)
, from the law of the iterated log-

arithm. However, we can construct some sequences where the rate of convergence
reaches the much faster rate of O(N−1 log N). If we could fix the number of abscis-
sas, then a set of equally spaced points xi = a + i/N would give the minimum dis-
crepancy with DN = 1/N for 0 ≤ a ≤ 1/N. The midpoint rule arises from a =
1/(2N) and the left-handed Riemann sum from a = 0 (see Exercise 10.20). One
can view the two practical quasirandom methods as trying to generalize this to higher
dimensions.

The simplest sequence that gives O(N−1 log N) convergence for the discrepancy is
the van der Corput sequence:

1/2,1/4, 3/4,1/8, 5/8, 3/8, 7/8,1/16, 9/16,

The van der Corput sequence actually is more general, and the sequence just listed is
the base-2 sequence. For the more general case of base b, represent each integer i in
base b by the digits aj(i),

aL(i), aL−1(i), . . . , a1(i), a0(i) such that
L∑

j=0

aj(i)b
j = i,

288 Numerical Integration and Monte Carlo Methods

where bL ≤ i < bL+1. The sequence {xi} is then easily written as

xi =
L∑

j=0

aj(i)b
−j−1 = φb(i), (10.6.2)

where the function φb is called the radical inverse function. Note that if N = 2L − 1
then the sequence {φ2(i), i = 1, . . . , N} is a permutation of a set of equally spaced
points {j/N, j = 1, . . . , N} (see Exercise10.21). Kuipers and Neiderreiter (1974, p.127)
showed the upper bound on the discrepancy for the van der Corput sequence (though
they started with 0) to be

NDN ≤ log(N + 1)/ log 2.

This gives a faster rate of convergence than Monte Carlo and can handle almost any
“computer-integrable” function.

In one dimension, the van der Corput sequence can’t do anything that the midpoint
rule can’t do, but in higher dimensions the product midpoint rule falls under the spell
of the curse of dimensionality. Two generalizations of the van der Corput sequence,
however, avoid the curse. In d dimensions, the sequence of vectors

x(i) = (φb1(i), φb2(i), . . . , φbd
(i)), (10.6.3)

called the Halton sequence, forms a sequence of abscissas with discrepancy in d dimen-
sions with convergence rate D

(d)
N = O(N−1(log N)d) for relatively prime bj . Here, the

generalization of discrepancy to d dimensions is the maximum over hyperrectangles
of the distance between Lebesgue measure and the fraction of points in the hyperrec-
tangle. For a fixed number of points N, Hammersley suggested the slick improvement
of dropping the rate slightly:

x(i) = (i/N, φb1(i), . . . , φbd−1(i));
this reduces the rate to O(N−1(log N)d−1). Figure 10.9 shows the distribution of points
from the Halton sequence in two dimensions with bases b1 = 2 and b2 = 3.

In order to translate these discrepancy bounds into useful integration bounds, we
need multivariate generalizations of the weak smoothness conditions. If we redefine
the modulus of continuity for functions on Rd,

w(h) = sup
‖u−v‖≤h

|f(u) − f(v)|,

then we can get a bound using multivariate discrepancy for continuous functions on
the unit cube: ∣∣∣∣ 1

N

N∑
i=1

f(x(i)) −
∫

f(x) dx

∣∣∣∣ ≤ w(D
(d)
N ({x(i)})1/d) (10.6.4)

(Proinov 1988). If we abandon continuity for bounded variation (Hardy–Krause style),
then for variation V(f) we can use the Koksma–Hlawka inequality∣∣∣∣ 1

N

N∑
i=1

f(x(i)) −
∫

f(x) dx

∣∣∣∣ ≤ V(f)D
(d)
N ({x(i)}). (10.6.5)

10.6 Quasi–Monte Carlo Integration 289

Figure 10.9. First 100 points of Halton sequence with bases 2 (x) and 3 (y).

The consequences of these results are stunning: a convergence rate practically inde-
pendent of dimension for functions that need not be very smooth, and at a faster rate
than Monte Carlo.

A second method for getting points spread in space, called the Korobov sequence
or good lattice points, resembles the linear congruential generators. Here, take a vec-
tor g whose components g1, . . . , gd are integers, form the sequence x(i) = ((i/N)g)

(i = 1, . . . , n) for a fixed number N, and take the remainder for each component. For
component k, the sequence looks like computing igk mod N and dividing by N. The
analysis of discrepancy is much more complicated, but Hua and Wang (1981) proved
the existence of good lattice points with a discrepancy D

(d)
N = O(N−1(log N)d) and

also provided tables of good lattice points for a variety of points N and dimensions d

(see also Fang and Wang 1994, apx. A; Maisonneuve 1972; Kedem and Zaremba 1974).
A set of good lattice points in d dimensions can be projected into fewer dimensions and
still have good properties. Figure 10.10 shows the distribution of good lattice points
with g1 = 1, g2 = 89, and N = 144; the figure shows that the points lie on a lattice
that appears to spread evenly over space.

As can be easily seen in Figure 10.9, the Halton sequence looks somewhat random in
two dimensions; it just is “too random” and fills up space too evenly for a truly random
sequence. In contrast, the Korobov point set given in Figure 10.10 looks extremely reg-
ular; in fact, all 1-dimensional projections are equally spaced points of the form xi =
a + i/N. These differences suggest the use of Halton sequences when regularity might
be a problem. The other important difference between these two methods affects how
they may be used. Good lattice points require a fixed number of points N to be known
in advance, whereas the Halton sequence does not. These methods share two important
properties with Monte Carlo integration – namely, they can integrate most any func-
tion and the convergence is largely unaffected by dimension – but they share with fixed

290 Numerical Integration and Monte Carlo Methods

Figure 10.10. Korobov sequence with N = 144 points. The constants are g1 = 1 and g2 = 89.

quadrature methods the difficulty in assessing accuracy. Although the theoretical error
bounds provided some guidance, rarely are continuity or variation bounds available.
The only practical approach is to employ randomization as suggested by Cranley and
Patterson (1976), whose approach will be discussed further in Section 10.7.

Example 10.3: Variance Components Problem – Exchange Rate Data
Looking over some bills and transactions from a recent trip to England, I noticed
the differences in the exchange rates across the variety of dealers: credit-card
companies, bank transfers, travelers checks, and so on. In all, there were fif-
teen transactions across five dealers, with quite unequal sample sizes, recalling
the examples cited in earlier sections of this chapter. Consider then the Bayesian
variance components model considered in Section 10.2, with priors

β ∼ N(b0, φ0),

φ ∼ inverse gamma(a1, b1),

γ ∼ inverse gamma(a2, b2),

with each component independent. The posterior was given in (10.2.3) as

p∗(b, f, g) = g−(a2+p/2)−1e−b2/g × f −(a1+N/2)−1e−[b1+W/2]/f

× exp

{
−

1
2 (m − b0)

2

φ0

}
×

p∏
i=1

(
ni

f
+ 1

g

)−1/2

× exp

{
−1

2

p∑
i=1

(ȳi• − b)2

g + f/ni

}
. (10.6.6)

10.7 Strategy and Tactics 291

In this situation, p = 5, N = 15, and the data yij were100×(exchange rate−1.6)

to make the data more manageable. The problem, then, was to compute the
posterior means and variances. In the demonstration chex103, the posterior means
and variances were computed with the posterior p∗ as before, using these data
and some Korobov schemes.

Examination of the demonstration chex103 shows some of the difficulties in using
these quasirandom schemes, especially for Bayesian problems. One big restriction is
that the domain of integration is restricted to the unit hypercube or (through transfor-
mation) a hyperrectangle. As with Simpson’s rule in chex102s, the posterior mode and
dispersion must be known to a reasonable degree, and some sense of the tail behavior
is needed. To align this hyperrectangle in such a way that it captures most of the poste-
rior mass, the best we can do is estimate and hope. In practice, this means computing
the posterior mode and using the large-sample normal approximation to estimate the
variance. The question of how far into the tail the range must extend – in particular, of
whether three or four standard deviations is far enough – can be bedeviling. The only
way to know if some posterior mass is unaccounted for is to change the range of some
variables and compare. Knowing that the posterior is extremely small at the border of
the domain may not be enough. As the dimension rises, the volume increases exponen-
tially, and a lot of mass can be spread very thinly over an exponentially large volume
of space.

10.7 Strategy and Tactics

The topics covered so far – fixed quadrature, (pseudo)random sequences, and quasiran-
dom sequences – can be viewed as methods to spread points in space toward the overall
goal of computing an integral. Each of these methods has its particular strengths and
weaknesses as well as factors that affect its usage. For example, some of the methods
require the number of points to be known in advance, whereas others allow complete
flexibility. But the most important factors are usually their convergence rates and the
availability of accuracy estimates. As mentioned in the introduction to this chapter,
great gains can be made in combining these methods, as we shall see in the following
excursion through a host of topics that cross these fields.

One problem alluded to several times already is the difficulty in assessing the
accuracy with quadrature methods. With quasirandom sequences, Cranley and
Patterson (1976) suggested randomizing these fixed methods and then using statis-
tical techniques to analyze the results. For integrating with Korobov sequences, which
look like

x(k) = {(k/N)g}, k = 1, . . . , N

(the braces indicate taking the fractional part), the change is to compute replicate se-
quences i = 1, . . . , M of the form

x(i,k) = {U(i) + (k/N)g}, k = 1, . . . , N,

292 Numerical Integration and Monte Carlo Methods

where each component of the vector U(i) is an independent uniform (0,1) deviate. Then
the integration estimate that has been replicated over i gives independent estimates of
the same integral.

The statistical analysis of this approach now becomes blatantly clear if we reduce
this to one dimension. Since Korobov rules look like a Riemann sum in one dimension,
the integral estimate can be written in several equivalent forms – for example, as

Ti = 1

N

N∑
k=1

f

(
Ui + k − 1

N

)
.

This should be recognized by statisticians as systematic sampling with random starting
points Ui/N. This estimate of the integral is unbiased, since

E[Ti] =
∫ 1

0

1

N

N∑
k=1

f

(
u + k − 1

N

)
du =

N∑
k=1

∫ 1

0
f

(
u + k − 1

N

)
1

N
du

=
N∑

k=1

∫ k/N

(k−1)/N
f(t) dt =

∫ 1

0
f(t) dt.

The variance var(Ti) usually decreases at a rate of O(N−2), but the rate does depend
on the smoothness of the function. Dramatic reduction in variance can be gained if the
function is periodic or nearly so.

To summarize, randomization of these quadrature rules allows for the use of the
usual statistical methods to analyze these data and provide an estimate of the accuracy.
From a statistical viewpoint, randomization of these methods works because the sum
Ti itself gives a good estimate of the integral. Overall, the components of Ti are neg-
atively correlated and so the sum has a much smaller variance. As a result, the gain
due to systematic sampling will be there as long as the negative correlation is there.
As the function f becomes more noisy and less smooth, the values f((Ui + k −1)/N)

become less correlated and the gains from systematic sampling will disappear; then
simple random sampling (N = 1) will be competitive. Related techniques using ran-
domized quadrature are discussed further in Section 12.7.

One may view this randomization technique as merely a generalization of a com-
monly used technique in Monte Carlo studies known as antithetic variates, which
exploits symmetry and negative correlation. Again for (0,1), often f(U) and f(1−U)

are negatively correlated. As a result, we may compare the variances of two alterna-
tives that each use two function evaluations: first, one average using the same random
variable,

var([f(U) + f(1 − U)]/2) = var(f(U))/2 + cov(f(U), f(1 − U))/2,

and then a second average that uses two independent random variables,

var([f(U) + f(V)]/2) = var(f(U))/2.

Now if the f(U) and f(1 − U) are negatively correlated, then the former will have
smaller variance. This technique is not commonly used in statistical simulation ex-
periments; see Geweke (1989) for an illustration of its use in Bayesian problems. For

10.7 Strategy and Tactics 293

another extension, consider integrating a function h(z) with respect to the standard nor-
mal distribution with deviate Z. If h(Z) and h(−Z) are negatively correlated, then
we can gain the same sort of antithetic variate improvement. This can be extended (as
elaborated in Section 12.7) to more points, gaining – for suitable functions – dramatic
reductions in the variance for an estimate of the integral of h(z). These randomized in-
tegration rules follow the same principles: unbiased for all functions, reduced variance
for many, and dramatic improvement for some.

Example 10.1 (cont.)
Recall the logarithmic series data used previously, and recall the use of Gauss–
Hermite quadrature in the demonstration quad2. It featured the posterior mode
tm as the center of the approximating normal distribution, with variance s2, using
the expression∫

h(t)p∗(t) dt =
∫

h(t)
p∗(t)

φ((t − tm)/s)/s
φ((t − tm)/s)/s dt

=
∫

h(tm + sz)
p∗(tm + sz)

φ(z)
φ(z) dz. (10.3.13)

In demonstration quad3, ten trials of 100 samples from the standard normal dis-
tribution were used to compute integrals as

E

[
h(tm + sZ)p∗(tm + sZ)

φ(Z)

]
=
∫

h(tm + sz)

[
p∗(tm + sz)

φ(z)

]
φ(z) dz,

where Z ∼ N(0,1). To exploit antithetic variates, the sample size was cut to
50 while both Z and −Z were used to keep the number of evaluations at 100.
Analysis of the output shows that the estimates of the normalization constant and
posterior variance had about the same accuracy in both cases, whereas the esti-
mate of the posterior mean from the antithetic variates had a standard error that
was 1/100 of the other. This dramatic improvement occurred only when the vari-
ables were strongly negatively correlated. Notice that the sample sizes here are
much larger than the previous demonstrations with fixed quadrature. They won’t
seem so out of place when the dimension increases.

The analysis step (10.3.13) in the foregoing example demonstrates a vital tool known
as importance sampling. To estimate the posterior mean and variance, the easiest route
would be to generate random parameter values from the posterior distribution. This is
rarely possible in practice, so random variables are generated from another distribu-
tion, say g(t), and the observations weighted to correct:∫

h(t)p∗(t) dt =
∫

h(t)

[
p∗(t)
g(t)

]
g(t) dt = Eg{h(T)w(T)}, (10.7.1)

where T has density g(t) and the weight function is

w(t) = p∗(t)
g(t)

.

294 Numerical Integration and Monte Carlo Methods

Essentially, if g(t) samples more frequently than p∗(t) in a particular region, those ob-
servations are downweighted. Importance sampling is particularly useful in Bayesian
analysis, where the approximate normal distribution serves as a natural approximat-
ing distribution g(t) – as employed in the preceding example and in the demonstration
quad3. The main restriction on the approximating distribution is that the posterior be
absolutely continuous with respect to it; that is, if g(t) is zero then p∗(t) must be zero.
Problems arise when g(t) gets very small and p∗(t) does not, which can occur if the tail
of the posterior behaves more like a Student’s t-density than a normal. In such cases,
the weight function can become very large and then a few observations will dominate
the sample. Methods for detecting this problem are discussed in Section 12.5. The
other difficulty with importance sampling is the statistical analysis with weighted ob-
servations; the applicable statistical tools are discussed further in Section 12.3. Use of
these was avoided in our previous example, where complete replicates were used to
assess accuracy.

The principle behind antithetic variates is the same motivation for paired experimen-
tal procedures. Here the difference between two highly correlated random variables
may have substantially smaller variance. As discussed in Section 10.2, a comparison of
two methods of estimation would be enhanced by applying the two methods to the same
data. In Monte Carlo experiments, the ability to reproduce random numbers through
the use of pseudorandom sequences (discussed in Section 10.5) makes experimental
design comparatively easy. Although the need for some constructs (e.g., randomized
complete block design) may be absent, the main tools are still blocking or pairing and
randomized experimental units.

Examination of location estimates permits some powerful variance reduction tools
in the case of sampling from the normal distribution. Suppose the n-dimensional vec-
tor Y has components Yi, i = 1, . . . , n which are IID Normal(θ, σ 2). Consider an
estimate of location T (Y) satisfying

T(y + γ 1) = T(y) + γ, (10.7.2)

where 1 is a column vector of ones, so that adding a constant γ to each component
shifts the estimate by γ. For example, T(Y) may be the sample mean Ȳ or sample me-
dian. Suppose that the variance of some statistic T(Y) is sought. Consider first these
steps:

var(T (Y)) = var(T (Y − Ȳ1) + Ȳ) = var(T (Y − Ȳ1)) + σ 2/n, (10.7.3)

since (Y − Ȳ1) and Ȳ are independent (see Simon 1976, p. 269). Now estimate the
variance of T(Y − Ȳ1) from samples Y(k), k = 1, . . . , K, with components generated
IID Normal (θ, σ 2) by employing the usual estimator

K−1
K∑

k=1

[Tk − Ȳk]2

and a simplification from a second use of (10.7.2), since

T(Y(k) − Ȳk1) = T(Y(k)) − Ȳk = Tk − Ȳk.

Programs and Demonstrations 295

Now the estimate of the variance of T(Y) given by

σ 2/n + K−1
K∑

k=1

[Tk − Ȳk]2

will converge much faster than the usual estimator

K−1
K∑

k=1

T 2
k .

These steps were widely employed in the important Princeton simulation study (An-
drews et al. 1972). This trick (and similar variance reduction techniques) acquired the
name “Monte Carlo swindle” because of their surprising effectiveness through a sim-
ple algebraic sleight of hand (Relles 1970; Gross 1973; Simon 1976). Similar swindles
are available for scale estimates and combinations of location and scale.

A second swindle for comparing the variances of two estimators, say T(Y) and
S(Y), that are both unbiased employs the simple antithetic variate advantage of nega-
tive correlation. To estimate the difference of the variances, which can be written as

var(T (Y)) − var(S(Y)) = E(T(Y)2) − θ 2 − E(S(Y)2) + θ 2,

use the average of the difference of the squares T 2
k − S2

k . A third swindle, again fol-
lowing similar steps, permits estimation of percentiles of the distribution of a estimator
based on samples from the normal distribution. Writing Pr(T (Y) < t) in terms of an
indicator function E{It(T (Y))}, a series of conditioning steps using Ȳ gain the follow-
ing estimate:

E{It(T (Y))} = E{It(T (Y − Ȳ1) + Ȳ)}
= E{E[It(T (Y − Ȳ1) + Ȳ) | Y∗ = Y − Ȳ1]}
= E{�[

√
n(t − T(Y − Ȳ1))]}. (10.7.4)

The last step follows from Pr(T (Y − Ȳ1) + Ȳ ≤ t) = �[
√

n(t − T(Y − Ȳ1))]
and from the distribution function of Ȳ as �

(
y
√

n
)
. This last swindle also pro-

vides additional smoothness, since a step function is replaced by a smooth distribution
function.

Programs and Demonstrations

quad1 Primitive quadrature rules for posterior in Example 10.1
The 1-dimensional posterior in Example 10.1 is integrated using midpoint, trape-
zoid, and Simpson’s rules to obtain the posterior mean and variance.

qgaustb Computes abscissas and weights for Gauss rules
Abscissas and weights for modified Gauss–Hermite and shifted Gauss–Legendre
quadrature rules are (i) computed following the Golub–Welsch approach and the
implementation of the QR eigenvalue algorithm qreig1 from Chapter 6 and then
(ii) placed in files qgaushm.tab and qgauslg.tab.

296 Numerical Integration and Monte Carlo Methods

quad2 Gauss quadrature rules for posterior in Example 10.1
The 1-dimensional posterior in Example 10.1 is integrated using modified Gauss–
Hermite and shifted Gauss–Legendre quadrature to obtain the posterior mean and
variance. The abscissas and weights were read from tables in the files qgaushm.tab
and qgauslg.tab.

chex102t Posterior computation for Example 10.2 using triangle quadrature rules
chex102s Posterior computation for Example 10.2 using product Simpson’s rule
chex102g Posterior computation for Example 10.2 using product Gauss–Hermite

quadrature
The extended example from Chapter 9 is modified in Example 10.2 by cutting the
sample size and making the problem more interesting. Three approaches were used
to integrate the posterior; the first approach was to use midpoint and Simpson analogs
for integration over the triangular parameter space. The second approach was to ig-
nore the triangular parameter space and use the normal approximation to center and
scale a product Simpson’s rule. The third also uses the normal approximation, but
with product Gauss–Hermite quadrature.

ranls Schrage implementation of Lewis–Goodman–Miller uniform random number
generator

ranbf Lewis–Goodman–Miller generator implemented using idea of
Bratley et al. (1983)

randu Infamous uniform generator
ranpm Multiplicative uniform generator with multiplier recommended by

Park et al. (1993)
ran69 Multiplicative uniform generator with multiplier recommended by

Marsaglia (1972)
ran70 Linear congruential generator using multiplier 69069 as in ran69
ranhd Multiplicative uniform generator with multiplier 397204094
ranf1 Multiplicative uniform generator with multiplier 630360016
ranf2 Multiplicative uniform generator with multiplier 742938285
ranf3 Multiplicative uniform generator with multiplier 950706376
ran48 Linear congruential generator with modulus 248

ran49 Multiplicative uniform generator with modulus 248

ran50 Linear congruential generator with modulus 248

ranlp Original Lewis and Payne (1973) GFSR uniform generator
ranft GFSR uniform generator with p = 521 and q = 32
ranfu Fushimi test GFSR uniform generator with p = 17 and q = 5
ranmt Matsumoto and Nishimura’s (1998) Mersenne Twister

All 17 of these implementations are tested using a simple chi-square test for
1-dimensional uniformity with 64 intervals. Further discussion of appropriate tests
is postponed until Chapter 12. All of the implementations are in rather portable
Fortran code; none are particularly fast. The three GFSR versions are designed to
read in seed matrices as a list of integers.
gfsrlp.tb0 – original seed matrix for Lewis and Payne GFSR.

Exercises 297

gfsrft.tb0 – randomly sampled seed matrix for p = 521, q = 32 GFSR checked
for 16-distributedness.
gfsrfu.tb0 – seed matrix for Fushimi test GFSR.

halton Demonstration of code to compute van der Corput–Halton sequences
Code for the radical inverse function is used to compute van der Corput–Halton se-
quences for several bases. See also Halton and Smith (1964).
ncrmnt – gives list of digits for counting consecutive numbers in base b.

expand – computes a real number from the digits of its base-b expansion.

chex103 Posterior integration using Korobov rules
The 3-dimensional variance component problem outlined in Section 10.1 and de-
scribed further in Example 10.3 is integrated using a Korobov rule to obtain the
posterior mean vector and covariance matrix.

quad3 Randomization of Riemann sum
The posterior in Example 10.1 is integrated two more times with importance sam-
pling and antithetic variates as described in Section 10.7.

Exercises

10.1 Prove the error bound for the Riemann sum (10.2.2). Obtain a similar result for the mid-
point rule.

10.2 Compute the variance of the logistic distribution π2/3 = 2
∫ ∞

0
x 2e−x(1+ e−x)−2 dx to

five decimal digits using a simple quadrature method. The first step is to bound the tail
by 2

∫ ∞
t

x 2e−x dx by finding an appropriate value of t (and proving the bound). Next
find the appropriate value of h so that the integration error from (10.3.6) or Exercise 10.1
is small enough. Finally, integrate over [0, t] using the midpoint rule.

10.3 Suppose we wish to use the midpoint, trapezoid, or Simpson rule for computing nor-
mal probabilities, that is,

∫ b

a
(2π)−1/2 exp{−u2/2} du for any values of a and b, where

−3 ≤ a < b ≤ 3. To obtain an absolute error of less than .01, how many evaluations
would be needed for each method?

10.4 Following Exercise 10.3, implement your scheme and compare the theoretical bounds
with practice.

10.5 Use (10.2.9) to show that the weights in Gaussian quadrature are positive by first show-
ing that [di(x)]2 is a polynomial of degree 2n − 2. Now suppose the weights wj are
known, and apply the quadrature formula to the functions di(x) and [di(x)]2, which
both give the result wi.

10.6 Show that the shifted Gauss–Legendre rule computed in qgaustb actually will integrate
polynomials of degree 5 exactly by trying p(x) = 30x5 +20x4 +12x3 +6x 2 +2x +1.

10.7 The 2-point shifted Gauss–Legendre rule has abscissas at (1 ± 1/
√

3)/2 and equal
weights. Compare the performance of this rule in compounded form to the same com-
pounding of Simpson’s rule as in quad1. (This method is sometimes used instead of
Simpson.)

298 Numerical Integration and Monte Carlo Methods

10.8 Show that the Cartesian product of Simpson’s rule integrates functions of the form
f(x, y) = ax + by + c exactly over the unit square. Evaluations are at nine points,
{0,1/2,1} × {0,1/2,1}, and the integral is (a + b)/2 + c.

10.9 Compute the integral ∫ 1

0

∫ 1

0

sin2 π(x − y) dx dy

using product rules (midpoint or Simpson) with the same and different compounding
on the x and y. Does different compounding on x and y make a difference?

10.10 The midpoint rule can be transformed using any distribution function F by evaluating
at F −1

(
2i−1
2n

)
with n equally weighted points. Apply this transformed midpoint rule to

the logistic distribution with F(x) = 1/(1 + e−x). Compare your computation of the
variance to your result in Exercise 10.2.

10.11 Construct a linear tranformation that takes the fundamental triangle with vertices at
(0, 0), (1, 0), and (0,1) to the triangle with vertices at (a1, b1), (a2, b2), and (a3, b3).

10.12 Compare the triangular integration rules with a nested integration scheme following∫ 1

0

∫ x

0
f(x, y) dy dx for the posterior in Example 10.2. Use both midpoint and Simpson

versions of each.

10.13 Suppose Xi were IID Bernoulli with probability p, and let U = ∑∞
i=1 2−iXi . If p =

1/2, then U has the uniform distribution on (0,1). If p
= 1/2, what is the support of
the distribution of U? Given a real (or floating point) number y, describe an algorithm
for evaluating its cumulative distribution function.

10.14 For a time, radiation counters were considered as potential devices for obtaining random
variables. The physical model was that the counts were considered as a Poisson process
with a constant rate λ. Discuss methods for obtaining either random bits or uniform ran-
dom variables from this Poisson process. In reality, the inter-event time recorded by
any counter might include “dead time” during which the system was recovering. Would
this affect any method you have proposed?

10.15 Let Xn follow the multiplicative congruential formula Xn+1 = aXn mod (2k − 1), and
let Yn = Xn mod 2j with j < k. What can be said about the period of Yn?

10.16 Write a Fortran routine to generate uniforms using RANDU (be careful of integer over-
flow). Test for uniformity in three dimensions using boxes and the chi-square test. Use
103 and 203 boxes.

10.17 Show that, for the uniform generator RANDU, (Xn+2 − 6Xn+1 + 9Xn)/231 is an
integer.

10.18 Another measure of discrepancy for numeric sequences is the star discrepancy D∗
N,

which is equivalent to the Kolmogorov–Smirnov distance between the empirical distri-
bution function FN(x) of the sequence and the uniform distribution function F(x) = x

on [0,1]. Show that D∗
N ≤ DN ≤ 2D∗

N .

10.19 Show that, for the sorted sequence {xi, i = 1, . . . , N},

D∗
N = 1

2N
+ max

i

∣∣∣∣xi − 2i − 1

2N

∣∣∣∣.
10.20 For the van der Corput sequence {φ2(i), i = 1, . . . , N}, find D∗

N for N = 2L − 1 and
N = 2L.

References 299

10.21 Using Halton sequences and the code halton, compute the posterior integral in Example
10.3 as with chex103.

10.22 Following the randomization scheme for Korobov sequences described in Section 10.7,
find an error estimate using ten replicates for the problem in Example 10.3 as in
chex103.

10.23 Find the variance of the median of five random variables from the logistic distribution
directly by following Exercise 10.2 or 10.10 and integrating∫ ∞

−∞
x 2 30F(x)2(1 − F(x))2f(x) dx.

10.24 Evaluate the effectiveness of swindles for computing the variance of the median of
five random variables from the Normal(θ, σ 2) distribution. Compare the direct ap-

proach with the first swindle’s σ 2/n+K−1
∑K

k=1

[
Tk − Y k

]2
and the second swindle’s

σ 2/n + K−1
∑K

k=1

[
T 2

k − Y
2
k

]
.

10.25 The Dirichlet density and the density of a transformation of the Dirichlet distribution
makes good test problems for integration in many dimensions. The density function for
the Dirichlet is

f (t) = �(
∑d+1

j=1 αj)∏d+1
j=1 �(αj)

d∏
j=1

t
αj −1
j (1 −

d∑
j=1

tj)
αd+1−1

with support only on the simplex 0 ≤ tj ≤ 1,
∑

tj ≤ 1. The transformation extends the
support to Rd with the density

g(x) = �(
∑d+1

j=1 αj)∏d+1
j=1 �(αj)

e

∑d

j=1
αj xj

(1 +∑d

j=1 exj)

∑d+1

j=1
αj

.

a) Verify the calculus for the transformed Dirichlet density g(x). b) For d = 2, test
the fixed rules for integration over a triangle (Section 10.4[A]) on the Dirichlet density
f (t). c) Compare other integration methods on these test problems.

References

Even though I have included here many papers not mentioned in the text, this list is by
no means complete; the interested reader should expect to trace references further when
in full pursuit of a particular topic. I would recommend two books without reserva-
tion: Knuth (1997) and Davis and Rabinowitz (1984). Both Ripley (1987) and Bratley
et al. (1983) are more practical and readable. Neiderreiter’s (1978) paper is notable for
its extensive treatment of both Monte Carlo and quasi–Monte Carlo techniques. The
more recent articles (e.g. L’Ecuyer 1988, 1990) on random number generators are more
careful and show greater perspective than many of the earlier ones.

MiltonAbramowitz and Irene Stegun (Eds.) (1970), Handbook of Mathematical Functions. New York:
Dover.

D. F. Andrews, P. J. Bickel, F. R. Hampel, P. J. Huber, W. H. Rogers, and J. W. Tukey (1972), Robust
Estimates of Location. Princeton, NJ: Princeton University Press.

300 Numerical Integration and Monte Carlo Methods

C. Bays and S. D. Durham (1976), “Improving a Poor Random Number Generator,” ACM Transac-
tions on Mathematical Software 2: 59–64.

Paul Bratley, Bennett L. Fox, and Linus Schrage (1983), A Guide to Simulation. New York: Springer-
Verlag.

H. S. Bright and R. L. Enison (1979), “Quasi-Random Number Sequences from a Long-Period TLP
Generator with Remarks on Application to Cryptography,” Computing Surveys 11: 357–70.

P. D. Coddington (1994), “Analysis of Random Number Generators Using Monte Carlo Simulation,”
International Journal of Modern Physics C 5: 547–60.

R. Cranley and T. N. L. Patterson (1976), “Randomization of Number Theoretic Methods for Multi-
ple Integration,” SIAM Journal of Numerical Analysis 13: 904–14.

Philip J. Davis (1975), Interpolation and Approximation. New York: Dover.
Philip J. Davis and Philip Rabinowitz (1984), Methods of Numerical Integration, 2nd ed. Orlando,

FL: Academic Press.
K.-T. Fang and Y. Wang (1994), Number-Theoretic Methods in Statistics. London: Chapman & Hall.
A. M. Ferrenberg, D. P. Landau, and Y. J. Wong (1992), “Monte Carlo Simulations: Hidden Errors

from ‘Good’ Random Number Generators,” Physical Review Letters 69: 3382–4.
George S. Fishman and Louis R. Moore (1982), “A Statistical Evaluation of Multiplicative Con-

gruential Generators with Modulus 231 − 1,” Journal of the American Statistical Association 77:
129–36.

George S. Fishman and Louis R. Moore (1986), “An ExhaustiveAnalysis of Multiplicative Congruen-
tial Random Number Generators with Modulus 231−1,” SIAM Journal of Scientific and Statistical
Computing 7: 24–45.

Nancy Flournoy and Robert K. Tsutakawa (Eds.) (1991), Statistical Multiple Integration (Contempo-
rary Mathematics Series, vol. 115). Providence, RI: American Mathematical Society.

M. Fushimi and S. Tezuka (1983), “The k-Distribution of Generalized Feedback Shift Register Pseu-
dorandom Numbers,” Communications of the ACM 26: 516–23.

John Geweke (1989), “Bayesian Inference in Econometric Models Using Monte Carlo Integration,”
Econometrica 57: 1317–39.

E. R. Golder (1976), “The Spectral Test for the Evaluation of Congruential Pseudo-random Genera-
tors,” Applied Statistics 25: 173–80. [Corrections in Volume 25, p. 324 (Golder) and Volume 27,
pp. 375–6 (Hoaglin and King).]

Gene H. Golub and J. H. Welsch (1969), “Calculation of Gauss Quadrature Rules,” Mathematics of
Computation 23: 221–30.

A. M. Gross (1973), “A Monte Carlo Swindle for Estimators of Location,” Applied Statistics 22:
347–53.

J. H. Halton and G. B. Smith (1964), “Algorithm 247: Radical-Inverse Quasi-Random Point
Sequence,” Communications of the ACM 7: 701–2.

J. M. Hammersley and D. C. Handscomb (1964), Monte Carlo Methods. London: Methuen.
W. Hormann and G. Derflinger (1993), “A Portable Random Number Generator Well Suited for the

Rejection Method,” ACM Transactions on Mathematical Software 19: 489–95.
Loo Keng Hua and Yuan Wang (1981), Applications of Number Theory to Numerical Analysis. New

York: Springer-Verlag.
Gershon Kedem and S. K. Zaremba (1974), “A Table of Good Lattice Points in Three Dimensions,”

Numerische Mathematik 23: 175–80.
Donald E. Knuth (1997), The Art of Computer Programming (vol. 2: Seminumerical Algorithms),

3rd ed. Reading, MA: Addison-Wesley.
V. I. Krylov (1962), Approximate Calculation of Integrals (trans. by A. H. Stroud). New York: Mac-

millan.
L. Kuipers and H. Neiderreiter (1974), Uniform Distribution of Sequences. New York: Wiley.
Pierre L’Ecuyer (1988), “Efficient and Portable Random Number Generators,” Communications of

the ACM 31: 742–9, 774.
Pierre L’Ecuyer (1990), “Random Numbers for Simulation,” Communications of the ACM 33:

85–97.

References 301

P. A. W. Lewis, A. S. Goodman, and J. M. Miller (1969), “A Pseudo-random Number Generator for
the System/360,” IBM Systems Journal 2: 136–46.

T. G. Lewis and W. H. Payne (1973), “Generalized Feedback Shift Register Pseudorandom Number
Algorithm,” Journal of the Association for Computing Machinery 30: 456–68.

M. D. MacLaren and G. Marsaglia (1965), “Uniform Random Number Generators,” Journal of the
ACM 12: 83–9.

Dominique Maisonneuve (1972), “Recherche et Utilisation des ‘Bons Treillis.’ Programmation et
Resultats Numeriques,” in S. K. Zaremba (Ed.), Applications of Number Theory to Numerical
Analysis, pp. 121–201. New York: Academic Press.

George Marsaglia (1968), “Random Numbers Fall Mainly in the Planes,” Proceedings of the National
Academy of Sciences 61: 25–8.

George Marsaglia (1972), “The Structure of Linear Congruential Sequences,” in S. K. Zaremba
(Ed.), Applications of Number Theory to Numerical Analysis, pp. 249–85. New York: Academic
Press.

George Marsaglia (1985), “A Current View of Random Number Generators,” in L. Ballard (Ed.),
Computer Science and Statistics: Proceedings of the Sixteenth Symposium on the Interface, pp.
3–10. Amsterdam: North-Holland.

Makoto Matsumoto and Takuji Nishimura (1998), “Mersenne Twister: A 623-Dimensionally Equidis-
tributed Uniform Pseudo-Random Number Generator,” ACM Transactions on Modeling and
Computer Simulation, 8: 3–30.

I. P. Mysovskikh (1980), “The Approximation of Multiple Integrals by using Interpolatory Cubature
Formulae,” in R. A. DeVore and K. Scherer (Eds.), Quantitative Approximation, pp. 217–43. New
York: Academic Press.

Harald Neiderreiter (1978), “Quasi–Monte Carlo Methods and Pseudo-Random Numbers,” Bulletin
of the American Mathematical Society 84: 957–1041.

Harald Neiderreiter (1987), “Statistical Analysis of Generalized Feedback Shift Register
Pseudorandom Generators,” SIAM Journal of Scientific and Statistical Computing 8:
1035–51.

Harald Neiderreiter (1992), Random Number Generation and Quasi–Monte Carlo Methods. Phila-
delphia: SIAM.

Francois Panneton, Pierre L’Ecuyer, and Makoto Matsumoto (2006), “Improved Long-Period Gen-
erators Based on Linear Recurrences Modulo 2,” ACM Transactions on Mathematical Software
32: 1–16.

Stephen K. Park and Keith W. Miller (1988), “Random Number Generators: Good Ones Are Hard to
Find,” Communications of the ACM 31: 1192–1201.

Stephen K. Park, Keith W. Miller, and Paul K. Stockmeyer (1993), “Technical Correspondence,”
Communications of the ACM 36: 108–10.

P. D. Proinov (1988), “Discrepancy and Integration of Continuous Functions,” Journal of Approxi-
mation Theory 52: 121–31.

Daniel A. Relles (1970), “Variance Reduction Techniques for Monte Carlo Sampling from Student
Distributions,” Technometrics 12: 499–515.

Brian D. Ripley (1983), “Computer Generation of Random Variables: A Tutorial,” International Sta-
tistical Review 51: 301–19.

Brian D. Ripley (1987), Stochastic Simulation. New York: Wiley.
Linus Schrage (1979), “A More Portable Fortran Random Number Generator,” ACM Transactions on

Mathematical Software 5: 132–8.
Gary Simon (1976), “Computer Simulation Swindles, with Applications to Estimates of Location and

Dispersion,” Applied Statistics 25: 266–74.
A. H. Stroud (1971), Approximate Calculation of Multiple Integrals. Englewood Cliffs, NJ: Pren-

tice-Hall.
A. H. Stroud and D. H. Secrest (1966), Gaussian Quadrature Formulas. Englewood Cliffs, NJ:

Prentice-Hall.

302 Numerical Integration and Monte Carlo Methods

William H. Swallow and John F. Monahan (1984), “Monte Carlo Comparison of ANOVA, MIVQUE,
REML, and ML Estimators of Variance Components,” Technometrics 26: 47–57.

R. C. Tausworthe (1965), “Random Numbers Generated by Linear Recurrence Modulo Two,”
Mathematics of Computation 19: 201–9.

Shu Tezuka (1995), Uniform Random Numbers: Theory and Practice. Boston: Kluwer.
B. A.Wichmann and J. D. Hill (1982), “Algorithm AS 183: An Efficient and Portable Pseudorandom

Number Generator,” Applied Statistics 31: 188–90; 33: 123.

11

Generating Random Variables
from Other Distributions

11.1 Introduction

Chapter 10 provided an overview of Monte Carlo methods and dealt solely with the
problem of generating from the uniform distribution. Since the uniform distribution is
the fundamental distribution, we’re now prepared to deal with the postponed problem
of generating from other distributions. Given the results of Chapter 10, this problem
should be viewed as transforming a source sequence of IID uniform random vari-
ables {Ui} to an IID sequence of random variables {Xi} with cumulative distribution
function (cdf) F. A discussion of general methods for generating from continuous
distributions forms Section 11.2. Specific algorithms designed for various distribu-
tions, such as the normal and Student’s t, follow in Section 11.3. General methods
for discrete distributions are discussed in Section 11.4, with specific cases in Sec-
tion 11.5. Special problems, including random sampling from a population, are han-
dled in Section 11.6. The problem of accuracy in Monte Carlo is tackled in Sec-
tion 11.7.

Some general remarks are in order before pursuing the problem at hand. Algorithms
for generating random variables should always be simple, fast, and exact. Simplic-
ity is paramount, since users must often code and debug their own programs. Finding
errors in random output is very difficult (see Exercises 11.14 and 11.20). If an algorithm
is simple, most mistakes will bring consequences so severe that the error can be easily
discovered. Speed is not so important, since the computational effort in generation is
usually only a small fraction of the total effort in the Monte Carlo experiment. An al-
gorithm should be exact in the sense that perfectly accurate arithmetic yields the exact
distribution that is desired. In reality, of course, all generators will be approximations
in the presence of finite precision arithmetic. This topic will be pursued in more detail
in Section 11.7.

The algorithms given in this chapter will be presented in an informal form for sim-
plicity. Their implementation as Fortran function subprograms is given in a number
of demonstration programs; the list of these demonstrations begins on page 313. The
reader should take note that coding a working algorithm often becomes more com-
plicated as arithmetic shortcuts are sought. The working code sometimes appears in
such a convoluted form that the original purpose of a step may be lost, so diligence is
required.

303

304 Generating Random Variables from Other Distributions

11.2 General Methods for Continuous Distributions

Most distributions have characterizations that appear natural for generation. For ex-
ample, the usual characterization of Student’s t distribution is a normal divided by the
square root of a chi-square divided by its degrees of freedom. Some characterizations
lead to useful algorithms for generation, but others do not. For example, the distribu-
tion with cdf F(x) = xk on [0,1] could be generated from any number of methods.
However, its characterization as the cdf of the maximum of k uniforms leads to a more
effective algorithm for small k. When k becomes large, this algorithm slows consider-
ably and so another approach should be sought. The methods presented in this section
apply to almost any distribution, and algorithms following these approaches should be
considered as potential competitors to methods relying on characterizations.

(A) Transformations

The probability integral transformation appears to solve the problem of random num-
ber generation in one fell swoop. If we wish to generate random variables from the
distribution F, then transforming a uniform deviate U using the inverse cdf

X = F −1(U)

leads to X having the distribution with cdf F(x). Since the cdf is a monotone function,

Pr(X ≤ x) = Pr(F −1(U) ≤ x) = Pr(F(F −1(U)) = U ≤ F(x)) = F(x) (11.2.1)

for any cdf F. This method can be particularly effective for some distributions, such
as the exponential:

F(x) = 1 − e−x = u ⇐⇒ e−x = 1 − u ⇐⇒ x = F −1(u) = −log(1 − u).

Since both U and 1−U have the uniform distribution, X=-LOG(U) is the most common
method of generating an exponential random variable. However, if code for comput-
ing log(1− u) directly were available then such a route would be preferred for reasons
of accuracy; see Section 11.6. The issue of accuracy arises because the function F −1

is rarely an arithmetic function. Although accuracy is not as serious a problem with
such intrinsic functions as LOG, EXP, or SQRT, for most others the accuracy of the
function approximation is a serious issue. More commonly, however, the evaluation
of F −1 is so slow and cumbersome that other methods are preferred. Using an in-
verse incomplete gamma function is inappropriate for generating a chi-square random
variable.

Occasionally, the distribution function F(x) is not so difficult to evaluate yet the
inverse F −1 is unavailable or very slow. Then the probability integral transforma-
tion or the inverse of the cdf can be viewed as solving a nonlinear equation. The first
step is to generate U from the uniform distribution; then solve the nonlinear equation
F(x) − U = 0 for x. The solution X has the distribution F.

11.2 General Methods for Continuous Distributions 305

(B) Acceptance/Rejection

Acceptance /rejection (A/R), invented by von Neumann in the early days of comput-
ing, is one of the most useful general tools in random number generation. Again X

with the distribution F is sought, but suppose a random variable with cdf G(x) is much
easier to generate. Suppose also that, for all x, we can find β to satisfy a bound on the
densities

βf(x) ≤ g(x) for 0 < β < 1. (11.2.2)

The function g(x)/β is sometimes called an upper envelope for the density f(x).

Obviously, F must be absolutely continuous with respect to G; that is, if g = 0 then
f = 0. The algorithm for generating X with distribution function F then follows.

Algorithm AR1
(1) Generate X from G.

(2) Generate U from uniform(0,1).
(3) If Ug(X) ≤ βf(X) then deliver X (accept X as a random variable);

else go to (1) (reject X and repeat).

The proof of the algorithm shows the strengths of A/R. First compute

Pr(accept X) = Pr

(
U ≤ β

f(X)

g(X)

)
=
∫ [

β
f(x)

g(x)

]
g(x) dx = β,

since f(x) is a density with the same support as g(x). Then the distribution function
of the output random variable X can be computed as a conditional probability:

Pr(X ≤ x | accept) = Pr(X ≤ x and U ≤ βf(X)/g(X))

Pr(accept)

=
∫ x

−∞
[βf(w)/g(w)]g(w) dw

β

=
∫ x

−∞
f(w) dw = F(x). (11.2.3)

Note that the middle step is computing the probability of U conditional on X, and then
integrating X.

The strategy with acceptance /rejection is to choose G that is easy to generate from
and whose density g(x) is close to f in shape. Since the scale factor β is also the ac-
ceptance probability, small β means a lot of rejections and so large β is preferred. Note
that β itself is not required for the algorithm, only the ratio r(x) = [βf(x)/g(x)], so
that sometimes the computation of complicated normalization constants in the densi-
ties can be avoided. Moreover, sometimes the ratio r(x) is itself difficult to compute,
but bounding functions b(x) and B(x) can be found such that

b(x) ≤ r(x) = [βf(x)/g(x)] ≤ B(x). (11.2.4)

If these bounds are tight and the functions b(x) and B(x) are much easier to compute
than r(x), then the algorithm can be speeded up using the following steps.

306 Generating Random Variables from Other Distributions

Figure 11.1. Upper envelope for acceptance /rejection. Solid line is rescaled t density with five de-
grees of freedom; dashed line is upper envelope density function g(x).

Algorithm AR2
(1) Generate X from G.

(2) Generate U from uniform(0,1).
(3a) If U ≤ b(X) then deliver X (quick accept).
(3b) If U ≥ B(X) then go to (1) (quick reject).
(3c) If Ug(X) ≤ βf(X) then deliver X (accept X);

else go to (1) (reject X and repeat).

Here step (3c) is the same as step (3) in AR1. Acceptance /rejection, including the use
of inner and outer bounds, can be applied to discrete distributions as well as continuous
ones.

Figures 11.1 and 11.2 show the use of acceptance /rejection for generating from a
Student’s t distribution with five degrees of freedom (Algorithm C2 in the next sec-
tion). In Figure 11.1, we see the rescaled density βf(x) with the upper envelope density
g(x) lying above it. One view of acceptance /rejection is to produce a point uniformly
distributed in the striped region under the target density’s curve, so that the marginal
density of X is as desired. Notice that the two curves follow each other’s shapes, but
not particularly well. In Figure 11.2, however, we see the effectiveness of the inner and
outer bounds. The region below the inner bound is shown in solid gray, and the outer
bound cuts off most of the clear region below the envelope curve g(x) so that the (un-
normalized) density βf(x) is computed only in the region between these two bounds.

The number of trials needed before acceptance obviously follows a geometric dis-
tribution with probability β; hence the expected number of trials is 1/β, the inflation
factor in the envelope g(x)/β. The use of inner and outer bounds doesn’t change this,
but it speeds up each trial. When β is near 1, the inner bound b(x) becomes more im-
portant; as β decreases, the quick-reject outer bound B(x) becomes more important.

11.2 General Methods for Continuous Distributions 307

Figure 11.2. Inner and outer bounds for acceptance /rejection. Dashed line is the upper envelope
density; solid line is quick-reject upper bound. Triangular lower bound forms solid quick-accept
region.

(C) Ratio of Uniforms

The ratio of uniforms method is essentially a particular form of acceptance /rejection
where the tails of distributions are made more manageable, often leading to short and
simple algorithms for many distributions, including discrete ones. The key is a simple
result by Kinderman and Monahan (1977).

Theorem: If the point (U, V) is uniformly distributed over the region

Ch = {(u, v) : 0 ≤ u ≤ h1/2(v/u)},
then the ratio X = V/U has a density proportional to h(x).

Proof. Let the area of the region Ch be K. Then the joint density of (X, Y) = (V/U, U)

is given by g(x, y) = y/K for 0 ≤ y ≤ h1/2(x) and zero otherwise. Merely integrat-
ing out y produces the marginal density of X, which is (2K)−1h(x), so that 2K is the
normalization constant. If h(x) is itself a density, then the area of Ch is 1/2. �

This result goes nowhere if we cannot generate points uniformly over the region Ch. If
Ch fits nicely into a region (e.g. a rectangle) where uniformly distributed points can eas-
ily be generated, then this approach may show some promise. Sometimes the boundary
of the region Ch can be found in terms of u and v by solving u = h1/2(v/u), usually
for v in terms of u. However, the parametric form (u(x), v(x)) is much easier to work
with:

u(x) = h1/2(x) and v(x) = xh1/2(x). (11.2.5)

Typically, the extrema of this boundary can be computed easily:

308 Generating Random Variables from Other Distributions

Figure 11.3. Ratio of uniforms for normal with outer box and region Ch (striped).

u∗ = max
x

u(x) = max
x

h1/2(x),

v∗
+ = max

x
v(x) = max

x
xh1/2(x),

v∗
− = min

x
v(x) = min

x
xh1/2(x).

(11.2.6)

Often Ch fits snugly into the box with vertices (0, v∗+), (0, v∗−), (u∗, v∗+), (u∗, v∗+),

and a very simple acceptance /rejection algorithm follows.

Algorithm ROU
(1) Generate U ∼ uniform(0, u∗).
(2) Generate V ∼ uniform(v∗−, v∗+).

(3) X = V/U.

(4) If U 2 ≤ h(X) then deliver X; else go to (1).

The acceptance probability is then the ratio of the areas of the region Ch and the enclos-
ing box u∗(v∗+ − v∗−). As with acceptance /rejection, inner and outer bounds on b(x) ≤
h(x) ≤ B(x) can speed up the algorithm by avoiding the computation of h(x). For
the normal distribution, the region Ch has an egglike shape and is shown in Figure 11.3
as a striped egg fitting snugly in a rectangular box. The effectiveness of the inner and
outer bounds can be seen in Figure 11.4. The algorithm given later in the next section
(Algorithm A3) for the normal distribution epitomizes the ratio of uniforms method,
and the details of the inner and outer bounds are described there.

11.3 Algorithms for Continuous Distributions

For many distributions, several methods have been proposed but only a few have stood
the test of time. Some methods appear here in order to illustrate other algorithms,
although they may be inferior to current methods. Sometimes comparisons between

11.3 Algorithms for Continuous Distributions 309

Figure 11.4. Ratio of uniforms for normal with quick-accept region (solid), remainder of region Ch

(striped), and quick-reject outer bound.

algorithms are made difficult because of trade-offs between function calculation and the
number of uniforms, where the relative speeds depend on both hardware and software
and change considerably over time. Nonetheless, trade-offs that give up simplicity will
always be painful.

The generation from a family of distributions, such as the gamma family, presents
another challenge: finding an algorithm that can be general enough to work for an
entire family of distributions. However, often an algorithm can be tailored for a par-
ticular member of a family after some setup – computing some constants that depend
on the parameter – after which the tailored algorithm may be much more efficient. The
balance in the trade-off between setup and speed depends then upon how fast the pa-
rameter changes in an application.

The list of distributions handled in this book is far from complete. I would rec-
ommend the monograph by Devroye (1986) to the interested reader; the book is quite
comprehensive and contains much more than could be listed here.

(A) Normal Distribution

Fast, accurate, and simple algorithms are available for generating random variables
from the normal distribution, but many packages still use the approximation X =∑12

j=1 Uj − 6, where Uj are IID uniforms. This method is unacceptable, primarily be-
cause it is not exact where simple, exact algorithms are available. Additionally, this
method is much slower than its competitors.

Box–Muller (1958)
The Box–Muller transformation is the earliest method for generating normal random
variables, actually producing pairs of independent normals. It is not in common use
because the library routines that are called (SIN, COS, SQRT, LOG) render it rather slow.

310 Generating Random Variables from Other Distributions

When used with congruential generators, the dependence of pairs can lead to a bizarre
distribution of pairs known as the “Neave effect” (Neave 1973) (see Exercise 11.1).
This problem can be avoided by using two different streams of uniforms for U and V.

Algorithm A1 (Box–Muller) (gnbxml)
(1) Generate U,V independent uniform(0,1).
(2) Deliver X = cos(2πU)

√−2 logV

and Y = sin(2πU)
√−2 logV .

Another look at Box–Muller reveals the characterizations that lead to this method.
Viewing the bivariate normal in polar coordinates, the angle from the origin is uni-
formly distributed on (0, 2π) as is 2πU. The square of the radius X2 + Y 2 will be
chi-square with two degrees of freedom. Since the chi-square with 2 df is actually a
scaled exponential, −2 logV produces the scaled exponential deviate. See the code in
gnbxml.

Polar Method (Marsaglia and Bray 1964)
The polar method is actually an accelerated version of Box–Muller that avoids the two
trigonometric function calls. See the code in gnpolr.

Algorithm A2 (Polar) (gnpolr)
(1) Generate U,V independent uniform(−1,1).
(2) W = U 2 + V 2.

(3) If W > 1 then go to (1).
(4) Z = √(−2 logW)/W.

(5) Deliver X1 = UZ and X2 = VZ.

The key here is that steps (1)–(3) produce the point (U, V) uniformly distributed on
the unit circle. Then U/

√
W is equivalent to the sine and V/

√
W to the cosine of a ran-

dom angle. Moreover, the angle is independent of W, which has a uniform distribution
(see Exercise 11.3). One possible improvement is to generate an exponential random
variable Y by another route and compute

(4*) Z = √2Y/W.

Ratio of Uniforms
The ratio of uniforms algorithm for the normal distribution is a good example of this
general method at its best. The analysis is not difficult, and the resulting algorithm is
both simple and fast.

Algorithm A3 (Ratio of Uniforms) (gnrouo)
(1) Generate U ∼ uniform(0,1).
(2) Generate V ∼ uniform(−v, +v), where v = √2/e.

(3) Let X = V/U and store Z = X2.

(4a) (Quick accept) If Z ≤ 5 − (4e1/4)U then deliver X.

(4b) (Quick reject) If Z > (4e−1/4)/U − 3 then go to (1).
(4c) If Z ≤ −4 log U then deliver X; else go to (1).

11.3 Algorithms for Continuous Distributions 311

This algorithm also illustrates the effect of labor-saving steps on the clarity of a sim-
ple algorithm. Although the ratio of uniforms method is quite simple, as is Algorithm
A3, the relationship between the two may not be apparent to the reader.

The translation begins by examining the region Ch with h(x) = exp[−x 2/2] (the
unnormalized density),

Ch = {(u, v) : 0 ≤ u ≤ h1/2(v/u) = exp[−v2/(4u2)]}
= {(u, v) : x 2 = (v/u)2 ≤ −4 log u}, (11.3.1)

allowing the main inequality to be restated in terms of the deviate X. The inner and
outer bounds arise from inequalities on log u:

(1 + log c) − cu ≤ −log u, (11.3.2)

−log u ≤ 1/cu − (1 − log c). (11.3.3)

These, too, may appear cryptic, but both arise from the simple inequality that the tan-
gent line lies above the concave log function:

log y ≤ y/d + (log d − 1),

with the tangent taken at d. Taking y = u and d = 1/c leads to the lower bound (11.3.2);
using y = 1/u and d = c yields (11.3.3). The area of the inner bound (11.3.2) is largest
when c = e1/4 (see Exercise 11.4), and note that the constant 4e1/4 = 5.1361 would be
computed in advance and stored. The same c = e1/4 is used for the outer bound using
inequality (11.3.3) for the original version of the algorithm in gnrouo. Knuth (1997)
found the best value of c = e1.35 for the quick-reject outer bound (11.3.3) numerically
(see Exercise 11.5), leading to the improved version gnrouk.

Figure 11.3 showed the region Ch for the ratio of uniforms method as the striped
egg-shaped region, fitting snugly in the rectangular box just described. The region
determined by the inner bound was shown as the gray solid region in Figure 11.4 cov-
ering most of the striped region Ch, so the inner bound is rather tight. The Knuth outer
bound – though the best of its family – does not work as well as the inner bound, but
it still cuts off a sizable portion of the corners of the box.

The ratio of uniforms approach is really a form of acceptance /rejection, with the
probability of acceptance being the ratio of the area of Ch

(√
π/2

)
to the area of the

outer box
(
2
√

2/e
)
,

Pr(accept) =
√

π/2

2
√

2/e
=
√

πe

16
= .73;

the expected number of trials is 1.37. The inner and outer bounds reduce dramatically
the number of evaluations of nonarithmetic functions, since for each trial with gnrouk
we have

Pr(reaching (4c) or evaluating “log”) = .17.

The probability of accepting quickly, branching on (4a), is large (.66). Not only does the
ratio of uniforms lead to a simple algorithm, the fast and effective quick accept /reject
bounds make it one of the fastest algorithms for generating from the normal distribution.

Leva (1992) found tight quadratic bounds, which improve matters further; this led
to a slightly more complicated (but faster) algorithm in gnroul.

312 Generating Random Variables from Other Distributions

Algorithm A4 (Ratio of Uniforms – Leva Bounds) (gnroul)
(1) Generate U ∼ uniform(0,1).
(2) Generate V ∼ uniform(−v, +v), where v = √2/e.

(3) Let X = V/U, Z = U −S, Y = |V |−T, and Q = Z∗Z+Y ∗(a∗Y −b ∗Z),

where the constants are S = .449871, T = −3.86595, a = .19600, and b =
.25472.

(4a) (Quick accept) If Q ≤ 0.27597 then deliver X.

(4b) (Quick reject) If Q > 0.27846 then go to (1).
(4c) If V 2 ≤ −4U 2 log U then deliver X; else go to (1).

(B) Exponential Distribution

As discussed earlier, the exponential distribution has a closed-form expression for the
inverse of its cdf. The transformations −log U and −log(1 − U) can be used for gen-
erating from the exponential distribution; our discussion on preferring the latter will
be postponed until Section 11.7. Although these transformations are both fast and ac-
curate, one other algorithm is particularly noteworthy because it can generate from a
“transcendental” distribution (such as the exponential) using only arithmetic operations.

Algorithm B1 (von Neumann 1951) (gevonn)
(0) (Initialize) K = 0.

(1) Generate U1, U2, . . . as long as they decrease, until Un+1 > Un.

(2) If n is even, then deliver Y = U1 + K.

If n is odd, then K = K + 1 and go to (1).

At first glance, this algorithm looks so weird that the output could follow any distribu-
tion. However, we can dispel the mystery by simplifying matters as follows.

Algorithm B2
(1) Generate U1, U2, . . . as long as they decrease, until Un+1 > Un.

(2) If n is even, then deliver X = U1; else go to (1).

The key to Algorithm B2 is the distribution of U1 when successive uniforms are de-
creasing. Begin by defining the event that n uniforms occur in decreasing order:

En = {Un ≤ Un−1 ≤ · · · ≤ U1}.
Then the distribution function for U1 upon stopping in step (1) can be written as

Pr(U1 ≤ u, En, E
c
n+1) = Pr(U1 ≤ u, En) − Pr(U1 ≤ u, En+1)

= un

n
− un+1

(n + 1)!
, (11.3.4)

since En+1 is a subset of En (the superscript c denotes complement). Since we “ac-
cept” U1 when n is even, it follows that

Pr(U1 ≤ u, accept) =
∑
n even

Pr(U1 ≤ u, En, E
c
n+1)

=
∑
n even

[
un

n!
− un+1

(n + 1)!

]
= 1 − e−u.

11.3 Algorithms for Continuous Distributions 313

Taking u = 1 gives the acceptance probability

Pr(accept) = 1 − e−1

and so the distribution of X out of Algorithm B2 has the density e−x/(1 − e−1) on the
range (0,1), which is a truncated exponential distribution. The exponential distribution
follows the same shape throughout its support, so now we need only spread the distri-
bution over the positive real line by copying the distribution to each unit length interval
with the correct probability. If Y has the exponential distribution, then the probability
content of each unit interval is simply

Pr(k < Y ≤ k + 1) = e−k − e−k−1 = e−k(1 − e−1) k = 0,1, 2, . . . ;
this is simply the probability function of a geometric random variable with probability
of “success” equal to e−1, which is the probability of rejecting in Algorithm B2. As a
result, the counter K in Algorithm B1 has the geometric distribution, which gives the
correct probability content for each interval, and U1 conditional on accepting has the
correct distribution for the remainder. Again comparing with a true exponential devi-
ate Y, we can check:

Pr([y] < Y ≤ y) = e−[y] − e−y = Pr(U1 ≤ y − [y], accept) × Pr(K = [y])

= 1 − e−(y−[y])

1 − e−1
× e−[y](1 − e−1). (11.3.5)

Although this algorithm is notable, it is substantially slower than the transformations
because so many uniforms are needed. Marsaglia (1961), Sibuya (1962) (see Exercise
11.6), and others have suggested some clever modifications to speed up this method.
This von Neumann algorithm can be extended to other distributions (Forsythe 1972)
and generalized (Monahan 1979).

(C) Student’s t and Cauchy

Student’s t is the first family of distributions to be discussed. The algorithm based on
its characterization demonstrates some of the difficulties in writing a single algorithm
for a family.

Algorithm C1 (Student’s t with k degrees of freedom)
(1) Generate Z0, Z1, Z2, . . . , Zk IID normal(0,1).
(2) Sum the squares: S =∑k

j=1 Z2
i .

(3) Y = Z0/
√

S/k.

As k grows large, the distribution of Y converges to the normal, yet the effort grows
without bound. Replacing pairs of squares of normals by exponentials (−2 log U ∼
χ2

2) can only cut the work in half. Obviously, we need a better way to generate chi-
square random variables, but the same problem must be faced there. Using the gamma
algorithms presented later will not improve upon those designed specifically for the t.

When designing an algorithm for a family indexed by a parameter α, two features
must be considered. First, the effort for generating a random variable should not grow

314 Generating Random Variables from Other Distributions

unboundedly in the parameter. Second, often an algorithm can be tailored for a partic-
ular member of a family (this is known as setup), usually by calculating some constants
that are functions of the parameter α. The frequency of the change in the parameter
will govern the trade-off between setup and efficiency, and the particular application
will dictate that rate of change. For the Student’s t family of distributions, the index-
ing parameter is the degrees of freedom. In the following algorithms, that parameter
is considered to be a continuous variable – that is, not limited to the integers. The
acceptance /rejection algorithm for the t family is the best example of its application to
a family and also shows the trade-offs between setup and efficiency.

The t distribution has the density fα(x) = cαuα(x), where

cα = �

(
α + 1

2

)/[√
πα�

(
α

2

)]
and uα(x) =

(
1 + x 2

α

)−(α+1)/2

,

which looks quite complicated. Nonetheless, for α ≥ 1, we can show that the unnor-
malized density uα(x) lies below a simple rescaled density function:

uα(x) ≤ min(1, |x|−2) ≡ 4g(x),

leading to the envelope inequality βfα(x) ≤ g(x) with β = 1/(4cα). For accep-
tance /rejection, then, we need to generate from the density

g(x) = (1/4) min(1, |x|−2), (11.3.6)

which can be done rather easily: Generate Y ∼ uniform(−1,1); with probability 1/2
return X = Y, else return X = 1/Y. The main acceptance /rejection test takes on the
simplified form

U ≤ β
f(X)

g(X)
=
(

1

4cα

)
cαuα(X)

g(X)
= uα(X)

min(1, |X|−2)
= uα(X)

4g(X)
.

This does not involve the ugly constant cα, which therefore need not be computed.
Pushing further, the density kernel uα(x) can be avoided using the inner (quick-accept)
bound

1 − |x|/2 ≤ uα(x)

and the upper bounds

uα(x) ≤ [2uα(1)]u1(x) ≤ [2u∞(1)]u1(x) = 2e−1/2/(1 + x 2). (11.3.7)

The setup version of the acceptance /rejection algorithm for the t distribution takes
the following form.

Algorithm C2 (Simplified TIR from Kinderman, Monahan, and Ramage 1977)
(gttir)

(0) (Setup) Compute dα = 2uα(1) = 2(1 + 1/α)−(α+1)/2.

(1) Generate V ∼ uniform(0,1) and U ∼ uniform(0,1).
(2) If V ≤ 1/2, then set X = (1/4)/(V − (1/4)) and W = U/X2;

else X = 4 ∗ V − 3 and W = U

(now X ∼ g(x) and W = U ∗ (4g(X)) ∼ uniform(0, 4g(X))).

(3) If W ≤ 1 − |X| then deliver X.

11.3 Algorithms for Continuous Distributions 315

(4) If W > dα/(1 + X2) then go to (1).
(5) If W ≤ uα(X) then deliver X; else go to (1).

The non-setup version of Algorithm C2 simply replaces dα with d = 2e−1/2, which
works for all α. However, further improvements exploit details avoided here for sim-
plicity – namely, that the inner bound applies only for |X| < 1 and that the upper bound
is useful only for |X| in the interval [(2uα(1)−1)1/2, (2uα(1)−1)−1/2]. One of the crit-
ical concerns of an algorithm for the range α ≥ 1 is that the performance not degrade
for large values of α. Indeed, the amount of computation does not vary greatly with α,

and the expected number of trials is confined to a narrow range:

1.27 ≤ 1/β = 4cα ≤ 1.60.

In examining the upper bounds, one may also consider using the Cauchy distribution
for the upper envelope g(x). However, the Cauchy density is not as easily computed
as a uniform and a multiply or divide (see Exercise 11.8).

The ratio of uniforms method leads to the simplest and fastest algorithm for the t dis-
tribution. As before, drop the constant cα and let h(x) = uα(x) = (1 + x 2/α)−(α+1)/2.

Then the boundary of the enclosing box can be easily computed:

u∗ = max
x

h1/2(x) = max
x

(1 + x 2/α)−(α+1)/4 = 1,

v∗
+ = −v∗

− = max
x

xh1/2(x) = max
x

x(1 + x 2/α)−(α+1)/4

= √
2α(α + 1)−(α+1)/4(α − 1)(α−1)/4,

(11.3.8)

with v∗+ = −v∗− defined to be 1 for α = 1 (Cauchy). Note that v∗+ → √
2/e as α →

∞ (see Exercise 11.9). Construction of inner and outer bounds is more difficult. The
comparison u ≤ h1/2(x) can be reworked to

g(u) = α(u−4/(1+α) − 1) ≥ x 2. (11.3.9)

Kinderman and Monahan (1980) derived the bounds

5 − au ≤ g(u) ≤ e/u − 3,

where a = 4(1+1/α)(α+1)/4 and e = 4(1+1/α)−(α+1)/4, but the latter inequality holds
only for α ≥ 3. These results lead to the following algorithm.

Algorithm C3 (TROU from Kinderman and Monahan 1980) (gtrou)
(0) (Setup) Compute c = −(α + 1)/4, a = 4(1 + 1/α)−c, e = 16/a, and v∗+ =

−v∗− from (11.3.8).
(1) Generate U ∼ uniform(0,1).
(2) Generate V ∼ uniform(v∗−, v∗+) and form X = V/U.

(3) If aU ≤ 5 − X2 then deliver X.

(4) For α ≥ 3: if X2 ≥ e/U − 3 then go to (1).
(5) If U ≤ (1 + X2/α)c then deliver X; else go to (1).

Although Algorithm C3 is quite simple, the condition on the quick-reject step (4) is an-
noying and begs to be dropped. Another drawback is that the setup step (0) is quite

316 Generating Random Variables from Other Distributions

extensive, with two exponentials and a square root; a non-setup version could be useful
in some applications (see Exercise 11.11).

Finally, two special cases of the Student’s t family demand special recognition.
The first is the case α = 1, which gives the Cauchy distribution with density f(x) =
π−1(1+ x 2)−1. The ratio of uniforms method was inspired by the following algorithm.

Algorithm C4 (Synthetic Tangent Algorithm for the Cauchy Distribution)
(1) Generate U ∼ uniform(0,1).
(2) Generate V ∼ uniform(−1, +1).
(3) If U 2 + V 2 > 1 then go to (1); else deliver X = V/U.

The synthetic tangent algorithm is also suggested by the modified polar method for the
normal distribution, since the ratio of two standard normal deviates has the Cauchy dis-
tribution. Although the inverse distribution function has a closed form for the Cauchy
case, F −1(u) = π−1 tan−1

((
u − 1

2

))
, the synthetic tangent algorithm may be faster in

some circumstances.
The second special case of the t distribution is the case α = 3, with the density

f(x) ∝ (1 + x 2/3)−2. This distribution has both a mean and a variance, but it still has
long tails. Using h(x) = (1 + x 2/3)−2 and applying the ratio of uniforms method, the
region Ch is the ellipse with boundary

(u − 1/2)2 + v2/3 = 1/4,

which leads to a simple algorithm (see Exercises 11.12 and 11.14).

Algorithm C5 (Student’s t with 3 df)
(1) Generate U ∼ uniform(0,1).
(2) Generate V ∼ uniform

(−√3/4,
√

3/4
)
.

(3) If (U − 1/2)2 + V 2/3 > 1/4 then go to (1); else deliver X = V/U.

(D) Gamma, Chi-Square, and Chi

The gamma family has two parameters, a shape parameter α and a scale β, so the den-
sity can be written as

f(x) = β−α

�(α)
xα−1e−x/β for x, α, β > 0. (11.3.10)

To cement the definition of the parameters, the mean is αβ and the variance is αβ2.

The chi-square distribution with k degrees of freedom fits into this family with
α = k/2 and β = 2, and the chi is the square root of a chi-square. The gamma
family is closed under summation when the scale parameter is the same: if X ∼
gamma(α1, β) and Y ∼ gamma(α2, β) and both are independent, then the sum X+Y ∼
gamma(α1 + α2, β). Two special cases are also available: If Z is normal(0,1) then
Z2 ∼ χ2

1 = gamma(1/2, 2), and gamma(1, β) is the exponential distribution. Using
normals and exponentials, a deviate from gamma(k/2, β) for integer k can be gener-
ated; however, the effort goes up linearly with k. On the other end, generating from

11.3 Algorithms for Continuous Distributions 317

the gamma with small shape parameter faces some difficulties since the density is un-
bounded for α < 1.

The following ratio of uniforms algorithm for the chi distribution satisfies most de-
mands in a single program. The execution time is bounded as a function of α; chi-square
and gamma variates can be easily obtained (a square root takes longer than a square);
and the parameter range extends down to α = 1/2, which includes χ2

1 . Even with its
setup, it is faster than its competitors. The density of the chi distribution with γ degrees
of freedom is

f(x) = [21−(γ/2)/�(γ/2)]xγ−1 exp[−x 2/2], (11.3.11)

so that X2 is χ2
γ or gamma(γ/2, 2). Let η2 = γ − 1, so that the relocated random

variable Z = X − η has the density

g(z) = cηhη(z), where hη(z) = (1 + z/η)η
2

exp[−(x 2/2) − zη]. (11.3.12)

The ratio of uniforms region lies within the usual box, with u∗ = 1 as well as the more
complicated

v∗
+(η) = e−1/2

(
1/

√
2 + η

)
/(1/2 + η),

v∗
−(η) = max(−η, −e−1/2(1 − 1/[4(η2 + 1)])),

(11.3.13)

which were established numerically.

Algorithm D1 (Monahan 1987) (gchirv)
(0) (Setup) Compute η = √γ − 1 and v∗+(η), v∗−(η) given by (11.3.13).
(1) Generate U ∼ uniform(0,1) and V ∼ uniform(v∗−(η), v∗+(η)), and form Z =

V/U.

(2) If Z < −η then go to (1).
(3) (Quick accept)

(a) r = 5/2 − Z2.

(b) If Z < 0 then r = r + Z2/[3(Z + η)].
(c) (Test) If U < r/(2e1/4) then deliver X = Z + η.

(4) (Quick reject) If Z2 > (4e−1.35)/U + 1.4 then go to (1).
(5) (Regular test) If 2 log U < log hη(Z) then deliver X = Z + η; else go to (1).

The inner bounds for step (3) rely on logarithm bounds that differ on the two sides of
zero. The quick-reject outer bound is actually the one found by Knuth for the normal
distribution. Such a bound should not be a surprise because (a) at γ = 1, the χ is the
half-normal, and (b) as γ → ∞, the relocated distribution of Z converges to the nor-
mal. To reemphasize the use of Algorithm D1, observe:

(i) to generate gamma(α, β), call D1 with γ = 2α and deliver β(X ∗ X/2);
(ii) to generate χ2

k, call D1 with γ = k and deliver X ∗ X.

(E) Logistic and Laplace

These two distributions can be easily generated using transformations. In the logistic
case, the distribution function takes the form F(x) = 1/(1+ e−x), so that its inverse is

318 Generating Random Variables from Other Distributions

rather simple: F −1(u) = log(u/(1 − u)). Exercise a little care to ensure that the same
uniform is used, since the code

LOG(RAN(1)/(1.-RAN(1))

may have unpredictable consequences. An optimizing compiler might translate the
code with only one call to the uniform generator, and the result would be a random
variable with the logistic distribution. However, most compilers will translate the code
to make two calls to the uniform generator, and the resulting distribution is the Laplace,
or double exponential (see Exercise11.20). Another characterization of the Laplace dis-
tribution is that of an exponential random variable with a random sign, following the
density

f(x) = (1/2)e−|x|.

This route should be followed if a random sign can be easily attached.

(F) Beta, F, and Dirichlet

The relationship between the beta and F distributions is well known, but it is the re-
lationship of each to the gamma that is the key to their generation. Take the beta dis-
tribution with parameters α and β, with density

f(x) = �(α + β)

�(α)�(β)
xα−1(1 − x)β−1 for 0 ≤ x ≤ 1, α, β > 0. (11.3.14)

If U ∼ gamma(α,1) and V ∼ gamma(β,1) are independent, then X = U/(U + V)

has the beta distribution. The F distribution is characterized by independent chi-square
random variables. If U ∼ χ2

m = gamma(m/2, 2) and V ∼ χ2
n = gamma(n/2, 2),

then Y = (U/m)/(V/n) has the F distribution with m and n degrees of freedom. In
both the beta and F, the scale factor of the gamma cancels out.

Because Algorithm D1 can generate the chi distribution with degrees of freedom as
low as 1, it can also cover the gamma distribution for any shape parameter ≥ 1/2 sat-
isfying most applications of both the beta and F. To generate the beta, call Algorithm
D1 twice: once with parameter γ = 2α and the second time with γ = 2β. Squaring
the first output produces U, squaring the second gives V, and the ratio X = U/(U +V)

produces the desired beta deviate. To generate the F, again call Algorithm D1 twice –
first with γ = m and then with γ = n. Taking the ratio of the two outputs before squar-
ing saves a multiply, and the term n/m can be stored as a constant if repeated calls are
to be made. Note that, in both beta and F cases, if repeated calls are needed then the
setup can be exploited only by repeatedly calling with one parameter setting and then
the other.

The Dirichlet distribution is a multivariate generalization of the beta. To follow this
generalization, begin by visualizing the beta as really bivariate, with the second com-
ponent (1 − x) the complement from 1. Because of the constraint that the components
must sum to unity, the density exists in one dimension only. For the k-dimensional Di-
richlet distribution, the first k components are all nonnegative and less than 1, and the
shadow (k + 1)th component is the complement from 1. Each component has a shape

11.3 Algorithms for Continuous Distributions 319

parameter αi, i = 1, . . . , (k + 1). The density exists only in k dimensions and can be
written as

f(x) = �(α1)�(α2) · · · �(αk)�(αk+1)

�(α1 + α2 + · · · + αk + αk+1)

× x
α1−1
1 x

α2−1
2 · · · xαk−1

k

(
1 −

k∑
j=1

xj

)αk+1−1

; (11.3.15)

hence x is still restricted and so the sum of the components is less than 1. The algo-
rithm for generating the Dirichlet follows a characterization that shows most clearly the
generalization from the beta. Let U1, U2, . . . , Uk, Uk+1 be independent gamma random
variables each with shape parameter αj, j = 1, . . . , (k + 1). Then the k-dimensional
vector x whose components are

xj = Uj

/ k+1∑
i=1

Ui (11.3.16)

has the k-dimensional Dirichlet distribution with parameters α1, α2, . . . , αk, αk+1.

(G) Noncentral Chi-Square, F, and t

These three noncentral distributions are related, but not to each other. Well, that doesn’t
make sense, but it caught your attention enough to be careful with their character-
izations. The noncentral t has a different characterization than the others. If Z ∼
normal(µ,1) and U ∼ χ2

k, then the ratio

Y = Z/
√

U/k

has the noncentral t distribution with k degrees of freedom and noncentrality parameter
µ. This distribution should be generated by following this characterization precisely.
The noncentral t gives the distribution of the usual t statistic under an alternative
hypothesis.

The noncentral chi-square and noncentral F follow another characterization. Let Zi

IID normal(µi, σ
2) for i = 1, . . . , k. Then the sum of squares

Q =
k∑

i=1

Z2
i

has the noncentral chi-square distribution with k degrees of freedom and noncentrality
parameter λ = ∑k

i=1(µ
2
i/σ

2), although others (e.g. Searle 1971, p. 49) include a 2 in
the denominator. The noncentral chi-square has the density

f(x) = e−λ/2
∞∑

j=0

(
(λ/2)j

j!

)
2−k−2j

�(k + 2j)
xk+2j−1e−x/2, (11.3.17)

which can be viewed as a Poisson weighted sum of central χ2
k+2j densities. This char-

acterization leads to one route for generating the noncentral chi-square: generate a
Poisson random variable J with parameter λ/2 (be careful with how you’ve defined

320 Generating Random Variables from Other Distributions

the noncentrality parameter! – see Algorithm C2 for the Poisson) and then, given J,

generate a χ2
k+2J random variable for the result. For another method, which is likely

to be superior, see Exercise 11.19.
The noncentral F is usually characterized as Y = (U/m)/(V/n), where U is a non-

central χ2
m and V is central χ2

n. Following this characterization is the obvious route
for generation. The noncentral F gives the distribution of the F statistic in an analy-
sis of variance situation under an alternative hypothesis. Doubly noncentral t and F

distributions have also been defined, but their applications are more limited. In both
cases, the denominator χ2 is changed from central to noncentral in the definition, and
the generation method should follow the characterizing definition.

(H) Pareto and Weibull

The Pareto and Weibull distributions have nothing in common except for similar gen-
eration methods: they can both be generated using inverse cdf transformations. The
Pareto with shape parameter α and location parameter w has the density

f(x) = αwαx−α−1 for x > w.

The distribution function has a simple form F(x) = (w/x)α for x > w; the inverse is
just as simple,

F(x) = u = (w/x)α ⇐⇒ u1/α = w/x ⇐⇒ x = w/u1/α.

The density of the Weibull looks nastier, but its cdf has a very simple form:

F(y) = 1 − exp[−|(y − µ)/σ|α],

where µ is a location parameter, σ a scale parameter, and α a shape parameter. If Z

has the standard exponential distribution, then Y = µ + σZ1/α has this Weibull distri-
bution. So the Weibull distribution can be generated by transforming an exponential
deviate. In this way, the Weibull is a generalization of the exponential different from
the gamma, using a power transformation instead of using the distribution of sums.

(I) Multivariate Normal and t; Wishart

As noted previously, characterizations are often the key to finding algorithms for gener-
ating random variables. While the multivariate normal has so many characterizations,
two of the more fundamental results suffice. If the components xi of the p-dimensional
vector x are IID normal(0,1), then jointly x ∼ normalp(0, Ip). Any linear transforma-
tion y = Ax + b retains multivariate normality: y ∼ normalq(b, AAT). So, in order
to obtain a random vector y ∼ normalp(µ, �), begin by generating components xi

(i = 1, . . . , p) IID normal(0,1), and transform y = Ax + b with b = µ and A such
that AAT = �. The Cholesky decomposition presents the best method for determin-
ing A. For if we factor the covariance matrix � = LLT and simply let A = L, then y
will have covariance matrix �. Since � must be nonnegative definite, a modification
of Cholesky decomposition will work even if it is singular (recall Exercise 3.13).

11.4 General Methods for Discrete Distributions 321

The care just exercised for the normal is also important for the multivariate t. If x
has the multivariate t distribution in p dimensions – with location vector µ, dispersion
matrix �, and k degrees of freedom, denoted MVtp(µ, �, k) – then marginally each
component xi has the univariate Student’s t distribution; even so, the multivariate t

cannot be generated in that manner. The multivariate t is characterized (see DeGroot
1970, p. 59) by the vector x = (

√
k/Z)y, where y ∼ normalp(µ, �) and independently

Z ∼ χ2
k, so that each component shares the same random scaling. Notice that, follow-

ing the usual characterization of the univariate Student t, each component would have
a different scale and the joint distribution would not be multivariate t. The method for
generation then follows this characterization directly, by generating the multivariate
normal vector y as well as a χ or χ2 variable for the scaling.

The Wishart distribution has the following characterization. Let x(i) (i = 1, . . . , n)

be IID normalp(0, �) vectors; then the unnormalized sample covariance matrix

(n − 1)S =
n∑

i=1

(x(i) − x̄)(x(i) − x̄)T

has the Wishart distribution with n − 1 degrees of freedom and dispersion matrix �.

Clearly the Wishart is a generalization of the chi-square but with a scale matrix �.

Following this characterization is certainly one route for generation, but the effort for
generating grows substantially as the degrees of freedom grow large. The Bartlett
(1933) decomposition provides a much faster route. Without loss of generality, let W
have the Wishart distribution with � = Ip and k degrees of freedom, and compute the
Cholesky factor L so that LLT = W. Then the n(n + 1)/2 components of L are inde-
pendent random variables with

Lii ∼ χk+1−i for i = 1, . . . , p

and
Lij ∼ normal(0,1) for j = 1, . . . , i − 1 and i = 2, . . . , p.

This method provided the motivation for Algorithm D1 for the chi distribution with a
small setup cost because of the constantly changing shape parameter. To obtain the
general form of the Wishart distribution, the transformation AWAT yields a Wishart-
distributed matrix with the same degrees of freedom but with dispersion matrix AAT.

Again, a Cholesky factorization � = AAT provides the means for a general form of
the Wishart distribution. See also Smith and Hocking (1972).

11.4 General Methods for Discrete Distributions

All three of the general methods presented for generating from continuous distributions
have discrete analogs. The ratio of uniforms should be the surprise, but again it leads
to fast, simple algorithms. One theoretical point to be noted is that all discrete distribu-
tions can be viewed as distributions on the integers. Discrete distributions are proba-
bility measures on countable sets of points, and “countable” invokes a correspondence
with the integers. All of the methods presented here, then, will consider the problem

322 Generating Random Variables from Other Distributions

of generating a random variable with the support {1, 2, 3, . . .} and with probabilities
{p1, p2, p3, . . .}, where in some circumstances one or many of these probabilities may
be zero.

(A) Discrete Inversion

In the continuous case, the transformation F −1(U) could, theoretically, permit gener-
ation from any continuous distribution. The practical computation of such a function,
however, prohibits its use in many cases. In the case of a discrete distribution, the cdf
F(x) is a step function, so if we define the inverse correctly then the same approach
can be used. However, instead of trying to define the inverse of a step function, just
consider the problem of generating an integer with a particular probability.

Define q1 = p1, q2 = p1 + p2, and in general

qj = qj−1 + pj =
j∑

i=1

pi ≤ 1.

Now generate a uniform random variable U, and determine the random index J such
that

qJ−1 < U ≤ qJ .

Such an index is unique, and J is a discrete random variable with the desired distribu-
tion, since

Pr(J = j) = Pr(qj−1 < U ≤ qj) = qj − qj−1 = pj .

This table lookup to find the right index can be done in a simple-minded fashion, either
starting from j = 1 and incrementing or employing the discrete bisection search out-
lined in Exercise 8.7 (see the code gdinv). If the support of the distribution is the integers
{1, 2, . . . , n}, then the bisection search can determine J in only O(log n) operations.

The case of an infinite support creates problems when the cumulatives qj get close
to 1. So very near 1 and with pi very small, either many qj will be equal, suggesting
that the corresponding probabilities are negligibly small, or some qj may jump all the
way to 1, which would make the remaining cases impossible. With neither outcome
satisfactory, good numerical practice would dictate that the tail probabilities should be
mapped near 0, not near 1 where only a few numbers are available to represent the dif-
ference. If the tail sums rj = 1 − qj = ∑∞

i=j+1 pi were available, then the remaining
problem would be to do the search over an infinite (or very large) number of indices
j. This remains an unsurmountable problem in general, but it leads to an interesting
algorithm in the case of the geometric distribution.

The probability function for the geometric distribution is given by pj = pj(1 − p),

j = 0,1, 2, Then the cumulatives are qj = 1 − pj+1 and the tail sums are rj =
pj+1. Comparing a uniform random variable U to the list of tail sums, rj−1 > U ≥ rj
might be easier to view under a log transformation:

log rj−1 = j log p > log U ≥ (j + 1) log p = log rj .

Dividing through by log p leaves a simple problem of computing the greatest integer:

j <
log U

log p
≤ j + 1.

11.4 General Methods for Discrete Distributions 323

Figure 11.5. Discrete ratio of uniforms. Dashed line is upper envelope g(x), with binomial proba-
bility function with p = .40 and n = 20.

Since the transformation −log U produces an exponential deviate, this method for gen-
erating geometric random variables merely rescales an exponential and takes the integer
part J = �log U/ log p�.

(B) Acceptance/Rejection

The acceptance /rejection method presented earlier for the continuous case is virtually
unchanged in notation; the only difference is that the densities are now with respect to
counting measure. In practice, however, the greater change is that few discrete distri-
butions can be generated easily. The discrete uniform on {0,1, . . . , n−1} can be easily
generated by taking the greatest integer in a rescaled uniform J = �nU�. The geomet-
ric distribution can be generated by the algorithm just mentioned.

(C) Ratio of Uniforms

Here is the real surprise in the discrete analogs to the general methods. Just two steps
simplify matters considerably, and the resulting algorithms are short, simple, fast, and
not too difficult to follow. The first step is simply to make the target distribution con-
tinuous with a step function density constant on unit intervals, so that f(x) = pj when
j = �x�. The second step, which also applies to the continuous case, is to view the ratio
of uniforms method as strictly acceptance /rejection using a particular type of upper
envelope. Recall that the enclosing region was usually inside of a box with vertices
(0, v∗+), (0, v∗−), (1, v∗+), (1, v∗−) and that often the distribution was relocated. Sup-
pose for simplicity that v∗+ = 1 and v∗− = −1, and consider the distribution of X =
a + sV/U, where the pair (U, V) are uniformly distributed within the box. Then X has
the density called the “table mountain hat” (see Figure 11.5),

324 Generating Random Variables from Other Distributions

g(x) = (4s)−1 min(1, s2/(x − a)2), (11.4.1)

which could be viewed as the upper envelope function for acceptance /rejection. In
fact, with a = 0 and s = 1, this upper envelope function g(x) is exactly (11.3.6), which
was used for the Student’s t distribution. In the role of envelope, the condition on g

is that βf(x) ≤ g(x). Moreover, U 2/4s given X = x has the uniform distribution on
(0, g(x)), so that Y = U 2/4s takes the place of Ug(X) in step (3) of Algorithm AR1.
The pair (X, Y) is uniformly distributed under the curve g(x), and the test Ug(X) ≤
βf(X) becomes Y ≤ βf(X). The discrete version of the ratio of uniforms method then
leads to the following algorithm.

Algorithm DRU (Ahrens and Dieter 1991; Stadlober 1989, 1991)
(1) Generate U ∼ uniform(0,1) and V ∼ uniform(−1,1).
(2) Set X = a + sV/U and let J = �X�.
(3) If U 2/4s ≤ βf(X) then deliver J ; else go to (1).

Here the constants a, s, and β are chosen to satisfy the envelope criterion βf(x) ≤
g(x) as efficiently as possible – that is, β near 1. If the envelope bound is effective at
the peak, where g(x) is flat, then βfmax = (4s)−1, so β = (4sfmax)

−1 and the compar-
ison in step (3) takes the form

(3) If U 2 ≤ f(X)/fmax then deliver J ; else go to (1).

As before, upper and lower bounds lead to quick accept /reject steps to speed up the
algorithm. As in the continuous case, the ratio of uniforms method leads to simple al-
gorithms that are competitively fast for discrete distributions, such as the binomial,
Poisson, and hypergeometric.

(D) Walker’s Alias Method

As previously noted, few discrete distributions can be generated easily, with the dis-
crete uniform as one exception. Walker’s method utilizes the discrete uniform in a
greedy/borrowing scheme. Suppose the support for the target distribution {pj } is the
integers {1, 2, 3, . . . , n}. If we simply generated a discrete uniform random variable J

on these n integers, then pj ≥ 1/n for some j and pj < 1/n for other j. Some have too
much probability, others not enough. Walker’s method is to construct for each over-
supplied (pj ≤ 1/n) index j an alias aj so that the excess on j is given to the alias.
The mathematical foundation is a theorem stating that every finite discrete distribution
can be written as an equiprobable mixture of 2-point distributions. Each 2-point dis-
tribution puts probability qj on j and the remainder on an alias aj . The algorithm is
lightning fast, but it requires setup to construct the tables of probabilities and aliases
{qj, aj }.

Algorithm Alias (Walker 1977)
(1) Generate J ∼ discrete uniform(1, n).

(2) Generate U ∼ uniform(0,1).
(3) If U ≤ qj then deliver J ; else deliver the alias aJ .

11.5 Algorithms for Discrete Distributions 325

Table 11.1. Probabilities and alias list from
Walker’s method for the

binomial(5, .4) distribution

j qj aj pj

1 .4666 2 .0778 = (.4666)/6
2 1.0000 0 .2592 = (1 + .5334 + .0218)/6
3 .9782 2 .3456 = (.9782 + .1568 + .9386)/6
4 .8432 3 .2304 = (.8432 + .5392)/6
5 .4608 4 .0768 = (.4608)/6
6 .0614 3 .0102 = (.0614)/6

Steps (1) and (2) suggest a “reusing” of uniforms that has been avoided until now. The
usual way of generating a discrete uniform is J = 1 + �nU�, but the remainder is uni-
formly distributed on (0,1). This suggests the following replacement steps.

(1) Generate V ∼ uniform(0,1) and multiply W = nV.

(2) Compute the integer part J = 1 + �W� and the fraction U = J − W.

The algorithm given by Walker to construct the tables {qj, aj } is frightfully and un-
necessarily slow, taking O(n3). A faster setup procedure by Kronmal and Peterson
(1979) takes only O(n) but requires a bit more storage. The procedure is conceptually
simple: give the excess to the needy.

Algorithm ASU (Alias Setup) (Kronmal and Peterson 1979)
(1) Initialize qi = npi, i = 1, 2, . . . , n.

(2) Create two lists, N = {i : qi ≥ 1} (needy) and E = {i : qi < 1} (excess).
(3) Repeat until E is empty:

(a) Choose an element k of N and j of E.

(b) Set alias for j : aj = k and remove j from the list E.

(c) Adjust the probability: qk = qk − (1 − qj).

(d) If qk < 1 then switch k from list N to list E.

At every repetition of step (3), an element is deleted from one of the two lists. This al-
gorithm with the two lists is easy to implement even in Fortran (see the code walkst).
Table 11.1 is from the implementation in the code walker for the binomial(5, .4) distri-
bution; it shows the relationships among the two sets of probabilities pj and qj and the
alias list aj . Notice than the three needy {2, 3, 4} take from the three excess {1, 5, 6}
and that one cell (2) has q2 = 1 and no alias.

11.5 Algorithms for Discrete Distributions

With the exception of the geometric and negative binomial, the best (simple and fast) al-
gorithms for the most popular distributions are discrete ratio of uniforms algorithms. In
the three cases outlined in this section – binomial, Poisson, and hypergeometric – the

326 Generating Random Variables from Other Distributions

algorithms require the computation of γ (k) = log �(k + 1) = log k!. The best ap-
proach is write a separate routine for γ (k). For smaller values of k, table γ (k); for
larger values, the use of the quickly converging Stirling’s formula reduces the effort to
little more than the computation of a log, since

γ (k) = log
√

2π + (k + 1/2) log k − k

+ (12k)−1 − (360k3)−1 + (1260k5)−1 − (1680k7)−1 + · · · (11.5.1)

(see Exercise 11.26).
The discussion of accuracy will be postponed to Section 11.6, but there is one issue

peculiar to these problems. In most of these distributions, computing the probabilities
for values in the tails is quite difficult – facing either a long series of multiplications
(with its rounding error) or cancellation in the logs. Since these probabilities drop to
zero quickly, the distribution should be cut off before the rounding or cancellation be-
comes serious. Stadlober (1989, 1991) and Ahrens and Dieter (1991) discussed this
problem for the discrete ratio of uniforms algorithms.

(A) Geometric and Negative Binomial

The algorithm given previously for the geometric distribution, J = �log U/ log p�, is
certainly difficult to beat for speed and simplicity. However, recognizing that −log U

generates an exponential deviate would open the door for using another method for the
exponential to create Y, and then J = �−Y/ log p� would give an equivalent result.

The usual characterization of the negative binomial distribution is the number of
failures until k successes. Because the geometric gives the number of failures until
the first success, summing k independent geometric random variables will suffice. For
most applications, k is small and there is no need for a more complicated algorithm.
However, for k large, consider the following result. Let X ∼ Gamma(α, β), and let
J | X = x ∼ Poisson(x); then, marginally, J has the negative binomial distribution.
The joint density of X and J is

(β−α/�(α))xα−1e−x/β × e−xxj/j!,

so that integrating out x gives

β−α�(j + α)

j! �(α)

(
1 + 1

β

)−(j+α)

=
(

j + α − 1

j

)(
β

1 + β

)j(1

1 + β

)α

;
this is the probability of j failures until α successes, where Pr(success) = 1/(1 + β).

(B) Binomial

One very simple algorithm for the binomial(n, p) distribution is to mimic n Bernoulli
trials: generate U1, U2, . . . , Un IID uniform(0,1) random variables, and let J be the
number that are less than the success probability p. Obviously this method becomes
very slow as n grows large. A second simple algorithm for the binomial is discrete in-
version. This method will remain effective for large n as long as np remains relatively
small. If the setup effort is to be made to table the probabilities pj and cumulatives

11.5 Algorithms for Discrete Distributions 327

qj, the same effort could be put to create the alias and probability tables for Walker’s
alias method, which would run much faster. As a result, the discrete inversion is only
practical in a non-setup mode, and then only for np small.

For the general case, the discrete ratio of uniforms method leads to a relatively sim-
ple and fast algorithm. The keys to the general algorithm DRU are the constants a,

s, and β, which enforce the envelope inequality βf(x) ≤ g(x). With the maximum
of f(x) occurring at x = m ≡ �(n + 1)p�, the envelope bound is effective there, al-
though the tail comes into play with the scale factor s. The efficiency of the algorithm
in terms of the expected number of trials β−1 = 4sf(m) must be traded off with sat-
isfying the envelope inequality. Numerical experimentation has led to the following
simple approximation for s:

s(n, p) = c1

√
np(1 − p) + 1/2 + c2, (11.5.2)

where c1 = √2/e and c2 = 3/2 −√3/e. The best value for the center point a is near
the mean of the distribution, a = np+1/2. The main comparison (3) should be written
in terms of logarithms:

2 log U ≤ log f(J)/f(m) = γ (m) + γ (n − m) − γ (J) − γ (n − J)

+ (J − m) log(p/(1 − p)), (11.5.3)

where the right-hand side is the variable T in the algorithm. Upper and lower bounds
on 2 log u give quick-accept /reject bounds:

u − 1/u ≤ 2 log u ≤ −3 + 4u − u2 (11.5.4)

(see Exercise 11.28), and the following algorithm can now be presented.

Algorithm BRUs (Stadlober, simplified, p ≤ 1/2) (gbrus)
(0) Initialize a = np + 1/2, take s(n, p) from (11.5.2), r = log(p/(1 − p)), g =

γ (m) + γ (n − m).

(1) Generate U ∼ uniform(0,1) and V ∼ uniform(−1,1).
(2a) Set X = a + sV/U and let J = �X�.
(2b) T = (J − m)r + g − γ (J) − γ (n − J).

(3a) (Quick accept) If U(4 − U) − 3 ≤ T then deliver J.

(3b) (Quick reject) If U(U − T) > 1 then go to (1).
(3c) If 2 log U ≤ T then deliver J ; else go to (1).

(C) Poisson

The Poisson process provides a convenient characterization of the Poisson distribution.
Shortcuts to this characterization lead to an efficient algorithm for moderate values of
the mean of the Poisson distribution. For large values of the mean parameter, how-
ever, this algorithm slows and once again a discrete ratio of uniforms method produces
a faster algorithm.

In the Poisson process, the inter-arrival times are independent exponential random
variables, and the number of arrivals in the time interval [0, T] follows the Poisson dis-
tribution with mean parameter T . If the exponentials have mean 1, then the probability

328 Generating Random Variables from Other Distributions

of no arrivals in the interval [0, T] is the same as the first exponential deviate exceed-
ing T and hence

Pr(0 arrivals in [0, T]) = pT (0) = e−T .

Then pT (j), the probability of j arrivals in [0, T], follows the recursion

pT (j) =
∫ T

0
Pr(j − 1 arrivals in [s, T])e−s ds =

∫ ∞

0
e−spT −s(j − 1) ds,

since the time S of the first arrival has the density e−s . Posing the Poisson formula

pT (j) = e−T T j/j!,

which holds for j = 0, the recursion proof hinges on the step

e−T T j

j!
=
∫ T

0
e−se−(T −s) (T − s)j−1

(j − 1)!
ds.

Following this characterization, the algorithm suggests generating independent ex-
ponential random variables Yi and stopping when Y1 + Y2 + · · · + YJ+1 > T. Since the
exponentials can be generated easily by the transformation Yi = −log Ui, the stopping
rule in terms of the Yi can be rewritten in terms of the Ui as

U1 × U2 × · · · × UJ+1 < e−T ,

and so the sum of exponentials is converted into a product of uniforms.

Algorithm C1
(0) Initialize c = e−T .

(1) Set J = 0 and p = 1.
(2) Increment J = J + 1, generate U ∼ uniform(0,1), and multiply p = p ∗ U.

(3) If p ≥ c then go to (1); else deliver J = J − 1.

Since the expected number of uniforms is one greater than the mean parameter, this al-
gorithm becomes very inefficient when that mean grows large. Many algorithms have
been proposed over the years for the Poisson, and most are long and very complicated
in order to retain efficiency as the mean parameter grows large. The ratio of uniforms
algorithm for the Poisson again has a bounded execution time as the parameter grows
large, and it is simpler than most.

The ratio of uniforms algorithm given here for the Poisson distribution follows the
general form DRU. The maximum of the probability function pµ(j) occurs at j =
m = �µ�. The best simple centering parameter is a = µ +1/2, and the scale parame-
ter s follows the same functional form as with the binomial (11.5.2) since the variance
of the Poisson is also µ:

s(µ) = c1
√

a + c2. (11.5.5)

The main comparison can be written in terms of logarithms:

2 log U < log f(x)/f(m) = (k − m) log µ + γ (m) − γ (k), (11.5.6)

where k = �x�, and upper and lower bounds are used as in (11.5.4) for quick-accept /
reject steps. The right-hand side of (11.5.6) is T in the following algorithm.

11.5 Algorithms for Discrete Distributions 329

Algorithm C2 (Ahrens and Dieter 1991; Stadlober 1989, simplified) (gprua)
(0) Initialize a = µ + 1/2, take s(µ) from (11.5.5), g = log µ, m = �µ�, q =

mg − γ (m).

(1) Generate U ∼ uniform(0,1) and V ∼ uniform(−1,1), and set X = a + sV/U.

(2) If X < 0 then go to (1); else J = �X�.
(3) Set T = Kg − γ (K) − q.

(4) (Quick accept) If T ≥ U(4 − U) − 3 then deliver J.

(5) (Quick reject) If U(U − T) ≥ 1 then go to (1).
(6) If 2 log U ≤ T then deliver J ; else go to (1).

(D) Hypergeometric

The hypergeometric distribution arises in sampling without replacement, and this char-
acterization leads to a simple algorithm related to the sampling algorithm B2 in Section
10.6. With the hypergeometric, the random variable J is the number of red balls se-
lected out of a sample of n from an urn with N total balls, of which M are red. As
before, as n and N grow large, the simple characterizing algorithm performs poorly,
and a ratio of uniforms method can handle the general case.

Simple sampling without replacement suggests the following scheme: draw the first
ball from the urn with probability p = M/N. If this first ball is red, set J = 1 and reset
for the new situation with nnew = n−1, Nnew = N −1, and Mnew = M −1; otherwise,
only n and N are updated and J is still zero.

Algorithm D1 (Hypergeometric by Sampling)
(0) Initialize Ncur = N, Mcur = M, ncur = n, J = 0.

(1) Generate U ∼ uniform(0,1). If U > Mcur/Ncur then go to (3) (not a red ball).
(2) (Get red ball) Increment J = J + 1 and update Mcur = Mcur − 1. If Mcur = 0

then deliver J.

(3) Update Ncur = Ncur − 1 and ncur = ncur − 1.
(4) If ncur = 0 then deliver J ; else go to (1).

The ratio of uniforms algorithm approaches the problem as a discrete distribution
with probability function

pj =
(

M

j

)(
N−M

n−j

)(
N

n

) for max(0, n − N + M) ≤ j ≤ min(n, M). (11.5.7)

Notice that, without loss of generality, the parameter range can be reduced (see Exer-
cises 11.30 and 11.31) to n ≤ N/2 and M ≤ N/2. The theory requires that the mean
µ = nM/N be at least 1. Since contrary cases suggest another algorithm (see Exercise
11.32), this condition is not very restrictive. The algorithm again follows the same dis-
crete ratio of uniforms format DRU. The centering point again is a = µ + 1/2, and
the scale factor s again follows the same variance expression:

s(n, N, M) = c1

√
variance(J) + 1/2 + c2, (11.5.8)

330 Generating Random Variables from Other Distributions

with c1 and c2 as before. The mode occurs at m = �(n +1)(M +1)/(N + 2)�, and the
main comparison step takes the form 2 log U < log pj/pm, where the right-hand side
can be expressed as

γ (m) + γ (M − m) + γ (n − m) + γ (N − M − n + m)

− γ (j) − γ (M − j) − γ (n − j) − γ (N − M − n + j), (11.5.9)

for which tables of the function γ (k) are essential.

Algorithm D2 (Stadlober 1989) (nM > N) (ghrua)
(0) Initialize p = M/N, q = 1 − p, a = np + 1/2,

σ =
√

(N − n)npq/(N − 1) + 1/2,

s = c1σ + c2 from (11.5.8), m = �(n + 1)(M + 1)/(N + 2)�, and

g = γ (m) + γ (M − k) + γ (n − m) + γ (N − M − n + m).

(1) Generate U ∼ uniform(0,1) and V ∼ uniform(−1,1), and set X = a + sV/U.

(2) If X < 0 then go to (1); else set J = �X�.
(3) T = g − γ (J) − γ (M − J) − γ (n − J) − γ (N − M − n + J).

(4) If U(4 − U) − 3 ≤ T then deliver J.

(5) If U(U − T) ≥ 1 then go to (1).
(6) If 2 log U ≤ T then deliver J ; else go to (1).

Stadlober also presented another algorithm (HRUE), which has a more complicated
formula for s and is a bit faster.

11.6 Other Randomizations

Generating the uniform distribution is the fundamental problem in Monte Carlo. Once
that obstacle is overcome, generating from the various distributions appears rather
straightforward. But before closing, a few other problems remain that are best de-
scribed as randomizations. For problems in the design of experiments, these random-
izations are straightforward. For example, to obtain a random Latin square design,
merely take a standard Latin square and permute the treatment, row, and column la-
bels. The fundamental randomizations are then the random permutation and the random
sampling. An additional case – a random contingency table – is interesting in its own
right and will illustrate the kind of thinking required to handle similar problems.

(A) Random Permutations

There are two easy methods for generating a random permutation of the integers 1 to n.

If a sorting routine is available that will sort on one variable and carry another variable
along for the ride, then the following method is a breeze to use.

11.6 Other Randomizations 331

Algorithm A1 (Permutation by Sorting)
(1) For i = 1, . . . , n, generate Ui ∼ uniform(0,1) and let Ai = i.

(2) Sort the pairs (Ui, Ai) on Ui with Ai in parallel.

The sorted pairs (Ui, Ai) give the order statistics from an IID sample of uniforms, and
the Ai are the anti-ranks, which are a random permutation under the IID assumption.
The data management commands of higher-level statistical languages, such as SAS,
perform such sorting routinely. The SAS code would be simply

DATA ONE ;
SEED=5151917 ;
DO A=1 TO N ;
U=RANUNI(SEED) ;
OUTPUT ;
END ;

RUN ;
PROC SORT DATA=ONE ;

BY U ;
RUN ;

and the variable A would have a random ordering of the indices 1 to n. The sec-
ond method is not any more complicated and follows a method suggestive of random
sampling.

Algorithm A2 (Permutation by Shuffling)
(1) Initialize Ai = i, i = 1, . . . , n.

(2) For i = 1, . . . , n:
(a) Generate J ∼ discrete uniform(i, n).

(b) Exchange Ai with AJ .

For the analogy to sampling without replacement, consider a row of numbered balls
Ai in order. At the first step, select a ball at random and, to make room for it in the first
position, exchange places with the first ball. At the second step, now only select from
the balls in positions 2 through n. At the start of step i, the first i − 1 positions have
balls already selected, and the last n − i balls remain in the pool.

(B) Random Sampling

In taking a random sample from a population, the application may dictate what methods
may be possible. Whereas small problems will be relatively easy, difficult problems
can arise in problems that are straightforward but very large. In large problems, usu-
ally the objective is to sample records from a long computer tape. Since tape can only
be read from start to finish, a method for sequential sampling is required. For modest
problems, a sample of indices can be created ahead of time; in the reservoir sampling
problem – when the population size is unknown initially – one pass is used to construct
the indices and a second to pull off the desired records.

332 Generating Random Variables from Other Distributions

The first method considered is the simplest method for constructing a sample of size
k of the integers 1 to n. Since the first k indices from a random permutation would suf-
fice, the shuffling scheme Algorithm A2 can be run and stopped after k steps.

Algorithm B1 (Sampling by a Stopped Shuffle)
(1) Initialize Ai = i, i = 1, . . . , n.

(2) For i = 1, . . . , k:
(a) Generate J ∼ discrete uniform(i, n).

(b) Exchange Ai with AJ .

Notice that, for sequential sampling, this approach would require a sorting of the re-
sulting indices {Ai, i = 1, . . . , k}.

The second method is the standard sequential sampling method, which was sug-
gested by the hypergeometric algorithm D1. This method requires only a single pass
through the list of records, but it requires both k and n to be known.

Algorithm B2 (Standard Sequential Sampling)
(0) Initialize j = k.

(1) For i = 1, . . . , n:
(a) Generate U ∼ uniform(0,1).
(b) If U ≤ j/(n − i + 1) then select i and set j = j − 1.

For many problems, Algorithm B2 is unbeatable. A higher-level language poses little
challenge, as you can see from the SAS code for the DATA step in sampling 200 indi-
viduals from a population of 1000.

DATA SAMPLE ;
RETAIN I 0 J 200 ;
SET POPULATION ;
SEED=5151917 ;
I=I+1 ;
IF(RANUNI(SEED) < J / (1000-I+1)) THEN DO ;

OUTPUT ;
J=J-1 ;

END ;
RUN ;

A variant of the sequential sampling problem uses a known number k of samples to
be taken with the size n of the population left unknown. This situation arises not only
when the number of available records is unknown but also in the frequent case where
a subpopulation is to be sampled. As a record is read (off tape), the candidacy in the
subpopulation is determined. Moreover, in some circumstances, the space (on disk)
available to hold a subset of the population may be much larger than the number k to
be taken but much smaller than the entire population. These circumstances suggest the
use of a technique known as reservoir sampling. The simple version skips certain de-
tails that may be important in some applications.

11.6 Other Randomizations 333

Algorithm B3 (Idealized Reservoir Sampling)
(1) (Initialize table) For i = 1, . . . , k, generate Ui ∼ uniform(0,1) and form pairs

(i, Ui).

(2) Find Um = min Ui.

(3) (Go through remainder of file) For i = (k + 1) to end-of-file:
(a) Generate Ui.

(b) If Ui > Um then replace (m, Um) in list with (i, Ui) and find new minimum
index m.

At the end of the file, the uniforms are the k largest order statistics and the corresponding
indices are a random sample of size k from the integers 1 to n. In this simplified form,
the probability aspects are clear. However, the problems in applications are clearer in
a related form where a reservoir is created.

Algorithm B4 (Applied Reservoir Sampling)
(1) (Initialize table) For i = 1, . . . , k, set indices Ai = i (i = 1, . . . , k) and set

reservoir length m = k.

(2) (Go through remainder of file) For i = (k + 1) to end-of-file:
(a) Generate J ∼ discrete uniform(1, i).
(b) If J ≤ k then (output record i) increment reservoir length m = m + 1 and

replace AJ = m; else skip record i.

(3) Sort indices Ai, i = 1, . . . , k.

(4) (Reservoir pass) Select records from sorted index list Ai from reservoir.

Knuth (1997) attributed this algorithm to Alan G. Waterman. In its probability aspects,
this algorithm resembles the shuffling algorithms A2 and B1 (but see Exercise 11.34).
In Algorithm B4, records are explicitly placed in the reservoir, which acts as a larger
sample from the entire population. In practice, records would be taken from tape in
step (2b) and put on disk, later to be resampled with the short list in step (4).

All of these sampling algorithms (except for the stopped shuffle, Algorithm B1) re-
quire a uniform deviate for every member of the population. Another approach to sam-
pling without replacement is to sample with replacement and oversample so there will
be enough. The efficiencies of oversampling techniques rely on (a) the data structures
available to check for previous membership if only one pass is taken or (b) analysis
of the number to be oversampled if the duplicates are discarded afterwards. Opera-
tionally, the simplest route is to oversample, sort, and make a pass to delete duplicates
and count extras. Then sampling the extras for deletion leaves the correct sample size.
For further analysis, see Devroye (1986, pp. 635ff). For comparisons of implementa-
tion details, see Vitter (1987).

(C) Random Contingency Tables

One of the most important problems in statistics is the analysis of r × c contingency
tables, usually testing for independence. While Fisher’s exact test is the most com-
monly used statistic in the 2 × 2 table, a variety of test statistics have been proposed.

334 Generating Random Variables from Other Distributions

A more important factor, however, is that only approximate null distributions are com-
monly available; rarely are any exact null distributions known. One computationally
intensive approach for finding exact critical values or p-values would be to generate all
realizations of the data. In the case of an r × c contingency table, the number of cases
grows very large very quickly. Another route would be to find efficient exact count-
ing algorithms, although the type of data and statistic limit the possibilities severely.
A third route is to use Monte Carlo to estimate the exact null distribution by generat-
ing a sample of realizations of the data; this approach is not limited by the choice of a
statistic. For an r × c contingency table, this means generating all tables having fixed
marginals. Though imposing, the task is easier than you think.

Let Ri denote the row totals and Cj the column totals, so we have N = ∑
Ri =∑

Cj observations. The method follows a ball-and-urn scheme with labeled balls.

Algorithm C1 (Random Contingency Table) (Agresti, Wackerly, and Boyett
1979)

(1) Fill an array A with R1 elements equal to 1, R2 elements equal to 2, . . . , Rr

elements equal to r.

(2) Randomly permute all the elements in the array A.

(3) Take the first C1 elements of A for column 1, the next C2 elements for column
2, . . . , and fill the row that matches the array label.

Let us restate the algorithm more formally.

Algorithm C1 (Restated)
(1) t = 0.

(2) For i = 1, . . . , r do
For k = 1, . . . , Ri do t = t + 1, A(t) = i.

(3) Permute the elements of A.

(4) Initialize Nij = 0 for i = 1, . . . , r and j = 1, . . . , c.
(5) t = 0.

(6) For j = 1, . . . , c do
For k = 1, . . . , Cj do t = t + 1, i = A(t), Nij = Nij + 1.

11.7 Accuracy in Random Number Generation

This discussion has been postponed a couple of times in order to gain some perspective
on random number generation. From a naive viewpoint, accuracy problems can often
be clubbed into submission by using double precision arithmetic. This route may solve
some problems, but other problems are wished away and lie lurking to spring a trap.
Proper numerical practice dictates finding where the traps lie and knowing when to
worry. For problems in Monte Carlo, the goal is always the computation of some sort
of integral, and the main problem is that a discrete set of floating point–representable
numbers F is trying to approximate the continuous real line R.

This discussion follows a paper by the author (Monahan 1985) and probes in a few
different directions. The first question to be addressed is the best way to approximate

11.7 Accuracy in Random Number Generation 335

a continuous distribution on a discrete, finite set F. Next, once the ideal approxima-
tion is posed, a useful measure of distance or error can suggest the discretization error
faced in Monte Carlo integration. Since analysis quickly leads to intractable expres-
sions, some general heuristic guidelines will be discussed.

Given our discussion of computer arithmetic in the second chapter, the best way
to approximate a number x on the real line is to represent it with the closest value in
the set of floating point numbers F. In other words, round to the nearest number fl(x)

that is a member of F. For generating a continuous random variable X on the real line
with cdf F, the best approximation (here called the “ideal” approximation) would be
the discrete distribution F ∗, which is the cdf of the discrete random variable fl(X).

The ideal approximation can be achieved in some interesting cases. The order statistics
from an ideal approximation F ∗ yield an ideal approximation for the order statistics of
F. The exponential distribution can be generated ideally following a minor modifica-
tion of the von Neumann algorithm (Monahan 1979). Obviously, the most important
case is generating the uniform distribution ideally.

Whereas the interval [0,1] is fundamental in probability, the fundamental interval
in base-b floating point arithmetic is [1/b,1], since all of the points in F in that inter-
val are equally spaced. The points in F in the intervals [b−j−1, b−j] are also equally
spaced, and in order to generate the ideal uniform distribution, the interval [0,1] should
be viewed as the union of intervals of the form [b−j−1, b−j] for j = 0,1, . . . , (E − 1),
where E is the limit of the exponent. The remaining interval is [0, b−E], for which
only the endpoints are members of F. The ideal approximation for the uniform distri-
bution on the intervals [b−j−1, b−j] has equal weight on the bd−1 interior points and
half-weight on the endpoints, emulating the trapezoid integration rule. This distribu-
tion can be obtained by generating a discrete uniform integer M on [0, bd−1 − 1] and
adding 1 with probability 1/2, which is then relocated to the desired interval. To obtain
the uniform distribution on [0,1], an index J to the intervals must be generated cor-
rectly, that is, via a geometric distribution with probability 1/b. When J exceeds the
exponent range (J ≥ E) then, with probability 1/2, deliver 0 or b−E. (Note that the
soft underflow in the IEEE standard would affect this somewhat.)

Algorithm A (Ideal Uniform Distribution)
(1) Generate a random integer M on [0, bd − 1].
(2) With probability 1/2, add 1 to M to get M ∗.
(3) (Float) W = (bd−1 + M ∗)/bd.

(4) Generate geometric random variable J with probability 1/b,

Pr(J = j) = b−j(1 − 1/b) for j = 0,1, 2,

(5) If J < E then return X = W ∗ b−J ; else with probability 1
2 return X = 0 or

X = b−E.

Algorithm A differs from the usual route, Y = M/bd, in two ways: normalization
and centering. The usual practice is stochastically smaller than it should be and zeros
out the new high-order digits uncovered by the normalization shift due to leading-zero
digits.

336 Generating Random Variables from Other Distributions

Other measures can be proposed (see e.g. Exercise 11.36) to measure the discretiza-
tion error, yet the distance between two cdfs,

e(F, G) =
∫ x∞

x−∞
|F(x) − G(x)| dx, (11.7.1)

best captures the probability that is different and the distance to be moved to correct,
where x−∞ and x∞ are the smallest and largest elements in F. The bias in integrating
a function h can then be bounded by∣∣∣∣∫ h(x) dF(x) −

∫
h(x) dG(x)

∣∣∣∣ ≤ e(F, G) sup|h′(x)| (11.7.2)

if the function h is differentiable and vanishes for large x. Because floating point arith-
metic follows |fl(x) − x| ≤ U |x| for the machine unit U = b1−d/2, the bias for an
ideal approximation can be bounded by∣∣∣∣∫ h(x) dF(x) −

∫
h(x) dF ∗(x)

∣∣∣∣ ≤ U

∫
|xh′(x∗)| dF(x), (11.7.3)

where x∗ lies between x and fl(x). This expression suggests that the best place for the
function h to misbehave is near the origin, where the floating point number system is
most accurate.

The length of this chapter is in contrast to the naive approach – that the inverse cdf
G−1 is the only route needed for generating random variables with cdf G. The analy-
sis of accuracy from transformation methods faces two kinds of error. The first type of
error is the approximation error of a nonarithmetic function. If Ĥ(x) approximates the
transformation H(x) with relative error w, then the error in the resulting distribution
G is e(GH , GĤ) = w/(1 + w), and if the absolute error in Ĥ is w then e(GH , GĤ) =
w. The analysis of the discretization error is a bit more subtle because H is really map-
ping from F to F, and the accuracy varies across the different points. For example, if
U ∼ uniform(0,1) then X = 2U −1 ∼ uniform(−1,1) with H(u) = 2u−1. Mapping
the many points near u = 0 into the few points near x = −1 is no cause for concern.
However, the few points near u = 1/2 are mapped to the many points around x =
0 where F is most accurate. Consequently, if U followed the ideal approximation to
the uniform (0,1) distribution, the error in X = 2U − 1 would be substantial. Clearly,
attaching a random sign would be preferable. The two transformations for the exponen-
tial distribution carry this point further. Taking −log U maps the many points near the
origin to the long tail of the exponential, which is proper. However, the few points near
u = 1 are mapped to the many points near x = 0, which is quite inadequate since the
mode of distribution is there. The other transformation, −log(1−U), will (if properly
computed) cover the region near the origin well, but it will fail to cover the long tail ad-
equately. Since the von Neumann algorithm will generate the ideal approximation for
the exponential distribution, this route should be taken if accuracy is a major concern.

In using other methods for generating random variables, a random variable obtained
using acceptance /rejection can only be as accurate as the envelope distribution. The
ratio of uniforms method, however, can be an improvement. The discretization takes
the uniform distribution in a rectangle to a distribution on an irregular latticelike set,
where many points in the (u, v)-plane can be mapped into any part of F.

Programs and Demonstrations 337

Using more accurate algorithms for generating random variables certainly slows
down computations. Simply going to double precision will yield only a modest
improvement. The more important problem is that of overflows, which are mostly
the result of transformations hitting 0 or 1. Good numerical practice usually exploits
the many points in F near the origin, and so transformations like −log U are com-
monly used. Although encountering U = 0 will lead to an error, the ideal algorithm
will face this problem with a very low probability b−E. Following the usual route hits
zero with probability b−d, and moving to double precision can only square this b−2d .

I believe it is worth the effort to generate the uniform distribution ideally, attaching a
random sign to cover (−1,1). Most other problems do not warrant as much concern.

Programs and Demonstrations

gnbxml Box–Muller algorithm
The Box–Muller algorithm for generating from the standard normal distribution is
implemented in the function subprogram gnbxml and checked using Kolmogorov–
Smirnov and Anderson–Darling goodness-of-fit statistics. An implementation of the
Bratley–Fox–Schrage (1983) version of the Lewis–Goodman–Miller uniform gener-
ator is used as the source of uniforms. The normal distribution function is computed
using cdfn and cdfc from Chapter 7; the log of the normal distribution function is
computed using alnphi. Notice that only one (large) sample is taken.

gnpolr Marsaglia and Bray’s polar method
Marsaglia and Bray’s algorithm is implemented in the function subprogram gnpolr
and checked in the same manner as gnbxml.

gnrouo Ratio of uniforms method for normal, original version
gnrouk Ratio of uniforms method for normal using Knuth’s outer bounds
gnroul Ratio of uniforms method for normal using Leva’s improved bounds

The ratio of uniforms method for the normal distribution is implemented in these
three versions and checked in the same manner as gnbxml.

gevonn Von Neumann exponential algorithm
The von Neumann algorithm for the exponential distribution is implemented as a
function subprogram, using the Bratley–Fox–Schrage uniform generator (as with
gnbxml and others) and checked using the Kolmogorov–Smirnov and Anderson–
Darling goodness-of-fit statistics.

gttir Acceptance/rejection for Student’s t distribution
The acceptance /rejection method described as Algorithm C2 is implemented as
the function subprogram gttir and checked using the Kolmogorov–Smirnov and
Anderson–Darling goodness-of-fit statistics. The Student’s t distribution function
is computed using ttail.

gtrou Ratio of uniforms for Student’s t distribution
The ratio of uniforms method described asAlgorithm C3 is implemented as the func-
tion subprogram gtrou and checked in the same manner as gttir.

338 Generating Random Variables from Other Distributions

ggchi Ratio of uniforms for chi, gamma, and chi-square distributions
The ratio of uniforms method for the chi distribution described asAlgorithm D1is im-
plemented as the function subprogram gchirv and checked using the Kolmogorov–
Smirnov and Anderson–Darling goodness-of-fit statistics. The chi random variables
are transformed to gamma deviate with unit scale, and the distribution function for
the gamma is computed using the incomplete gamma codes pgamma and qgamma.

gdinv Discrete inversion
The general discrete inversion algorithm described in Section 11.4 is demonstrated
using several binomial distributions. The discrete bisection search is done using the
function ifind. This implementation is checked using a chi-square goodness-of-fit
test. Factorials and gamma function evaluations are computed using slgamk.

walker Walker’s alias method
Walker’s alias method for finite discrete distributions is demonstrated for several bi-
nomial distributions. An implementation of the Kronmal and Peterson (1979) setup
algorithm in walkst is used to compute the qj and aliases aj . This implementation
is checked using the chi-square goodness-of-fit test.

gbrus Discrete ratio of uniforms for the binomial distribution
Stadlober’s discrete ratio of uniforms algorithm for the binomial distribution is
implemented in the function subprogram gbrus and checked using the chi-square
goodness-of-fit test. The function subprogram slgamk computes ln k! with a com-
bination of tables and Stirling’s approximation.

gprua Discrete ratio of uniforms for the Poisson distribution
A simplified version of the discrete ratio of uniforms algorithm (described as Algo-
rithm C2 in Section 11.5) for the Poisson distribution is implemented in the function
subprogram gprua and checked using the chi-square goodness-of-fit test. The func-
tion subprogram slgamk computes ln k! with a combination of tables and Stirling’s
approximation.

ghrua Discrete ratio of uniforms for the hypergeometric distribution
Stadlober’s discrete ratio of uniforms algorithm (described as Algorithm D1 in Sec-
tion 11.5) for the hypergeometric distribution is implemented in the function sub-
program ghrua and checked using the chi-square goodness-of-fit test. The function
subprogram slgamk computes ln k! with a combination of tables and Stirling’s ap-
proximation.

Exercises

11.1 Using the uniform generator xn+1 = 53xn mod 213 (Kruskal 1969), compute pairs of nor-
mals via Algorithm A1 and plot the pairs. Do you find anything unusual?

11.2 “Mox–Buller”. Suppose we make a modification of the Box–Muller Algorithm A1 as
follows.
(1) Generate U,V independent uniform(0,1).
(2) Deliver X = cos(2πU)

√−2 logV

and Y = sin(2πV)
√−2 log U.

Exercises 339

Find the marginal distributions of both X and Y ; then generate and plot a sample from
the joint distribution. Are X and Y uncorrelated?

11.3 In Algorithm A2, find the joint distribution of W and U/
√

W.

11.4 In Algorithm A3, restate the quick-accept bound X2 ≤ 4(1 + log c) − 4cU and deter-
mine the boundary and area of the quick-accept region of the (u, v)-plane. Show that
this region has maximum area when c = e1/4.

11.5 As in Exercise 11.4, restate the quick-reject bound X2 ≥ 4/(cU) − (1 − log c) and find
the area as a function of c outside the region computed in that exercise but still inside
the box with vertices

(
0, ±
√

2/e
)

and
(
1, ±
√

2/e
)
. Does the maximum of this area

occur at c = e1.35?

11.6 Von Neumann’s method for the exponential distribution has been extended in some in-
teresting ways, two of which show some remarkable improvement in speed. In the first
one (due to Marsaglia 1961), let M have the geometric distribution with parameter e−1,

Pr(M = m) = (1−e−1)e−m, and let N have the Poisson distribution with zero removed:
Pr(N = n) = 1/[n!(e − 1)]. Show that X = M + min(U1, . . . , UN) has the exponen-
tial distribution. Following this result, write an algorithm using inversion for the two
discrete distributions and compare it to an implementation of the von Neumann algo-
rithm. Sibuya (1962) generalized to M geometric with Pr(M = m) = (eµ −1)/eµ(m+1)

and well as N (with the zero removed) Poisson with parameter µ, Pr(N = n) =
µn/(eµ − 1)n!. Show that this also will lead to X having the exponential distribution.
Implement Sibuya’s method with µ = log 2, so that the geometric is a shift count, and
compare it to the other two.

11.7 Compare Algorithm C2 for the t distribution and its non-setup version with d = 2e−1/2.

Use two scenarios, one where α is constant and another where α changes with each call.

11.8 Write an acceptance /rejection algorithm for the t distribution using a Cauchy envelope
and bounds (11.3.7). Compare setup and non-setup versions as in Exercise 11.7. Con-
sider also the Devroye bound(

1 + x 2

α

)−(α+1)/2

≤
(

1 +
(

α + 1

2α

)
x 2

)−1

.

Prove this inequality and include it in your implementation of the Cauchy algorithm.

11.9 Verify that (11.3.8) gives the correct bounds for v∗+ and v∗−, and give the limits as α → 1
and α → ∞. Where does v∗+ achieve its maximum?

11.10 Verify the bound (11.3.9).

11.11 Devise simpler bounds v∗+, v∗− (or use the maximum) and derive a non-setup version for
Algorithm C3. Compare its performance.

11.12 Derive and verify Algorithm C5 for t3. Find Pr(accept).

11.13 Show that the distribution function for the Student’s t distribution with three degrees of
freedom is

F(x) = 1

π
√

3

[
x

2(1 + x 2/3)
+ √

3 tan−1

(
x√
3

)]
+ 1

2
.

11.14 Suppose we made an error in implementing step (2) of Algorithm C5 for t3 by gen-
erating V ∼ uniform(−3/4, 3/4), forgetting the square root. Find the power of the
Kolmogorov–Smirnov test for N = 1000 by simulating from the wrong distribution and
testing goodness-of-fit using the distribution function of Exercise 11.13.

340 Generating Random Variables from Other Distributions

11.15 Derive the chi density in (11.3.11) as a transformation of a gamma random variable with
density given by (11.3.10).

11.16 Find the normalization constant cγ in the relocated chi density given by (11.3.12). Find
the limits of cγ as γ → 1 and γ → ∞.

11.17 Compare the performance of the t algorithms C2 and C3 with an algorithm based on
the characterization of a normal divided by a χ, using Algorithm D1 to generate χs.

11.18 Let U and V be independent uniform(0,1) random variables. What is the distribution
of log(U/(1 − V))? Are you surprised?

11.19 Show that, if X and Y are independent exponential random variables, then X − Y has
the Laplace distribution.

11.20 Generate random variables using the code

Y=LOG(RAN(1)/(1.-RAN(1)))

and test whether the output is logistic or Laplace.

11.21 Derive the density for the beta and Dirichlet, given by (11.3.14) and (11.3.15), arising
from the characterization of a gamma random variable U divided by a sum of gammas.

11.22 The characterization of the noncentral chi-square from Q = ∑
Z2

i , where Zi ∼
normal(µi, σ

2), suggests another route. Derive an algorithm and compare its perfor-
mance with the Poisson mixed chi-square approach suggested in the text.

11.23 Given the characterizations of both the F and beta distributions in terms of gamma ran-
dom variables, find the relationship between the F and beta.

11.24 Show directly that, if Y has the standard exponential distribution, then J = �λY � has
the geometric distribution.

11.25 For the binomial distribution with n = 4 and p = 1/4, compute the probabilities {qj }
and aliases {aj } for Walker’s alias method using Algorithm ASU.

11.26 Write a routine to compute γ (k) = log k! using (11.5.1) with error less than 10−6. Re-
duce the computations by tabling the values of γ (k) for small k.

11.27 (Ahrens and Dieter 1974) For generating the binomial, write the probability p in its bi-
nary expansion p = .p1p2 · · ·base 2 =∑∞

i=1 pi2−i . Consider the following algorithm.
Algorithm CO (Count Ones)

(0) Initialize m = n, J = 0, i = 0.

(1) Increment i = i + 1, and generate k ∼ binomial(m,1/2).

(2) If pj = 1 then m = k; else J = J + k and m = m − k.

(3) If m = 0 then deliver J ; else go to (1).
Show that this generates the binomial distribution. (This algorithm will fly if the com-
puter has a machine instruction to add the number of ones in a string of random bits
of length m that is binomial(m,1/2). If your computer has such a machine instruction,
you might consider comparing this algorithm’s performance with gbrus.)

11.28 Verify the log inequalities in (11.5.4).

11.29 Write a routine to generate the binomial(4,1/4) distribution using inversion, and com-
pare its performance with an implementation of Walker’s method from Exercise 11.25.

References 341

11.30 Let p(j | M, N, n) be the hypergeometric probability function given in (11.5.7). Verify
the following relationships:

p(j |M, N, n) = p(j | n, N, M)

= p(n − j | N, N − M, n)

= p(M − j | N, M, N − n)

= p(n − N + M + j | N, N − M, N − n).

11.31 Show how the formulas in Exercise 11.30 can be used to reduce the parameter range to
n ≤ N/2 and M ≤ N/2.

11.32 If the hypergeometric mean is less than 1, discuss alternative methods for generation.
(Hint: Consider inversion with probabilities computed recursively from 0.)

11.33 In Algorithm B3 for sampling, the minimum index m must be recomputed every time
Ui > Um. How much work will this entail?

11.34 In Algorithm B4 for sampling, compute for each record i the probability that it will re-
main in the sample.

11.35 In Algorithm B4 for sampling, what is the expected length of the reservoir?

11.36 For a continuous distribution function F, what discrete distribution G on F minimizes
the Kolmogorov–Smirnov distance supx |F(x) − G(x)|?

11.37 For e(F, G) defined by (11.7.1), find a bound for the ideal approximation F ∗ in terms of
E{|X|}.

11.38 Let Y = M/bd, where M ∼ discrete uniform[0, bd − 1]. Find the mean and variance
of Y. Find the error from (11.7.1) from the uniform(0,1) distribution.

11.39 For the output of Algorithm A in Section 11.7, find its mean and variance.

11.40 Write an algorithm for generating from the density proportional to r de−r(1 + e−r)−2

using either acceptance /rejection or ratio of uniforms.

11.41 Let A be a positive definite, symmetric, Toeplitz matrix. Discuss how to exploit the
Levinson-Durbin algorithm (Section 4.5) to generate multivariate normal vectors with
covariance matrix A.

References

Whereas some readers may find this chapter comprehensive, the author sees it merely
as an overview. Given the availability of Devroye’s volume, some of the more esoteric
distributions and algorithms of historical interest have been omitted here in favor of
pursuing the goal of simplicity and currency. In the process, the work of some individ-
uals has not been mentioned even though their contributions deserve it – for example,
Cheng’s work on the gamma distribution, Schmeiser’s on the Poisson, and Mark E.
Johnson’s work on simulating multivariate distributions.

Alan Agresti, Dennis Wackerly, and James M. Boyett (1979), “Exact Conditional Tests for Cross-
Classifications: Approximation of Attained Significance Levels,” Psychometrika 44: 75–83.

J. H. Ahrens and U. Dieter (1974), “Computer Methods for Sampling from Gamma, Beta, Poisson,
and Normal Distributions,” Computing 12: 223–46.

J. H. Ahrens and U. Dieter (1991), “A Convenient Sampling Method with Bounded Computation
Times for Poisson Distributions,” in Peter R. Nelson (Ed.), The Frontiers of Statistical Computa-
tion, Simulation and Modeling, pp. 137–49. Columbus, OH: American Sciences Press.

M. S. Bartlett (1933), “On the Theory of Statistical Regression,” Proceedings of the Royal Society of
Edinburgh 53: 260–83.

342 Generating Random Variables from Other Distributions

George E. P. Box and Mervin E. Muller (1958), “A Note on the Generation of Random Normal De-
viates,” Annals of Mathematical Statistics 29: 610–11.

Paul Bratley, Bennett L. Fox, and Linus E. Schrage (1983), A Guide to Simulation. Berlin: Springer-
Verlag.

Morris H. DeGroot (1970), Optimal Statistical Decisions. New York: McGraw-Hill.
Luc Devroye (1986), Non-Uniform Random Variate Generation. New York: Springer-Verlag.
George Forsythe (1972), “Von Neumann’s Comparison Method for Random Sampling from Normal

and Other Distributions,” Mathematics of Computation 26: 817–26.
Albert J. Kinderman and John F. Monahan (1977), “Computer Generation of Random Variables Using

the Ratio of Uniform Deviates,” ACM Transactions on Mathematical Software 3: 257–60.
Albert J. Kinderman and John F. Monahan (1980), “New Methods for Generating Student’s t and

Gamma Variables,” Computing 25: 369–77.
Albert J. Kinderman, John F. Monahan, and John G. Ramage (1977), “Computer Methods for Sam-

pling from Student’s t Distribution,” Mathematics of Computation 31: 1009–18.
Donald E. Knuth (1997), The Art of Computer Programming (vol. 2: Seminumerical Algorithms),

3rd ed. Reading, MA: Addison-Wesley.
Richard A. Kronmal and Arthur V. Peterson, Jr. (1979), “On the Alias Method for Generating Random

Variables from a Discrete Distribution,” American Statistician 33: 214–18.
Joseph B. Kruskal (1969), “An Extremely Portable Random Number Generator,” Communications of

the ACM 12: 93–4.
J. L. Leva (1992), “A Fast Normal Random Number Generator,” ACM Transactions on Mathematical

Software 18: 449–53.
George Marsaglia (1961), “Generating Exponential Random Variables,” Annals of Mathematical Sta-

tistics 32: 899–902.
George Marsaglia and T. A. Bray (1964), “A Convenient Method for Generating Normal Variables,”

SIAM Review 6: 260–4.
John F. Monahan (1979), “Extensions of von Neumann’s Method for Generating Random Variables,”

Mathematics of Computation 33: 1065–9.
John F. Monahan (1985), “Accuracy in Random Number Generation,” Mathematics of Computation

45: 559–68.
John F. Monahan (1987), “An Algorithm for Generating Chi Random Variables,” ACM Transactions

on Mathematical Software 13: 168–72.
Henry R. Neave (1973), “On Using the Box–Muller Transformation with Multiplicative Congruential

Pseudo-random Number Generators,” Applied Statistics 22: 92–7.
Shayle R. Searle (1971), Linear Models. New York: Wiley.
Masaaki Sibuya (1962), “Exponential and Other Random Variable Generators,” Annals of the Insti-

tute of Statistical Mathematics 13: 231–7.
W. B. Smith and R. R. Hocking (1972), “Algorithm AS 53: Wishart Variate Generator,” Applied Sta-

tistics 21: 341–5.
Ernst Stadlober (1989), “Sampling from Poisson, Binomial and Hypergeometric Distributions: Ratio

of Uniforms as a Simple and Fast Alternative,” Mathematisch–Statistische Sektion 303. Fors-
chungsgesellschaft Joanneum, Graz, Austria.

Ernst Stadlober (1990), “The Ratio of Uniforms Approach for Generating Discrete Random Vari-
ables,” Journal of Computational and Applied Mathematics 31: 181–9.

Ernst Stadlober (1991), “Binomial Random Variate Generation: A Method Based on Ratio of
Uniforms,” in Peter R. Nelson (Ed.), The Frontiers of Statistical Computation, Simulation and
Modeling, pp. 93–112. Columbus, OH: American Sciences Press.

Jeffrey S. Vitter (1987), “An Efficient Algorithm for Sequential Random Sampling,” ACM Transac-
tions on Mathematical Software 13: 58–67.

John von Neumann (1951), “Various Techniques in Connection with Random Digits,” in Monte Carlo
Method (AMS 12), pp. 36–8. Washington, DC: National Bureau of Standards.

Alastair J. Walker (1977), “An Efficient Method for Generating Random Variables with General Dis-
tributions,” ACM Transactions on Mathematical Software 3: 253–6.

12

Statistical Methods for Integration
and Monte Carlo

12.1 Introduction

One of the advantages of Monte Carlo methods, as highlighted in Chapter 10, is that
the whole array of statistical tools are available to analyze the results and assess the
accuracy of any estimate. Sadly, the statistical analysis of many Monte Carlo ex-
periments has been absent, with others poorly done. Quite simply, statisticians do
not always practice what they preach. One rationalization with some validity is that
the statistical tools for analyzing these data are beyond the mainstream of statistical
methodology; one of the goals of this chapter is to remove this as a possible excuse.
Some of the fundamental statistical tools are reviewed in Section 12.2. Density estima-
tion, long an object of theoretical discourse, becomes an important tool in expressing
the results of Monte Carlo studies; a brief discussion of the highlights of density es-
timation is included in this section. The most common statistical tests for these data
involve testing whether a sample arises from a specified distribution; a brief discussion
of goodness-of-fit tests forms Section 12.3. Importance sampling, discussed briefly in
Chapter 10, presents a class of statistical problems with weighted observations. This re-
quires some minor modifications of common statistical tools that are outlined in Section
12.4. An attendant problem with importance sampling is concern for the distribution
of the weights; tests on the behavior of the distribution of weights are discussed in Sec-
tion 12.5.

The other goal of this chapter is to introduce some specialized integration tools. In
Section 12.6, Laplace’s method provides an asymptotic approximation for moments of
a posterior based mainly on the large-sample normal approximation to the posterior.
Random and mixed quadrature methods for integrating posterior distributions are out-
lined in Sections 12.7 and 12.8.

12.2 Distribution and Density Estimation

In most Monte Carlo studies, the results come in the form of independent and identi-
cally distributed (IID) observations (Y1, Y2, . . . , Yn) with distribution function F and, if
continuous, density f. The estimation of the distribution function F is really the easiest
problem, but the related problem of estimating percentile points can be a bit tricky. Den-
sity estimation is quite a formidable problem and requires some special techniques. But
all of these methods rely on one fundamental tool: the empirical distribution function

343

344 Statistical Methods for Integration and Monte Carlo

Fn. The empirical distribution function is a random step function aiming to estimate
F, and it can be viewed as an average of indicator functions:

Fn(y) = 1

n

n∑
i=1

I(Yi ≤ y). (12.2.1)

Since Pr(Yi ≤ y) = F(y) and each Yi is independent, it follows that Fn(y) is an aver-
age of independent Bernoulli trials with probability F(y); in large samples,

Fn(y) ≈ N
(
F(y), F(y)[1 − F(y)]/n

)
from the central limit theorem. Notice that this result holds for each y, but clearly
Fn(y1) and Fn(y2) are dependent, with cov(Fn(y1), Fn(y2)) = F(y1)[1 − F(y2)]/n
for y1 ≤ y2. Fast computation of Fn(y) at any particular y requires an initial sorting
of the data to form the order statistics:

Y(1) ≤ Y(2) ≤ · · · ≤ Y(n).

Then evaluating Fn(y) requires finding the placement of y in this ordered list, for which
the discrete bisection search algorithm (Exercise 8.7) requires O(log n) work to com-
pute for each y. Ties in the Yi rarely present a problem, except in the Smirnov test.

Estimation of a percentile point – that is, finding cq such that F(cq) = q for a prob-
ability q – can be a little trickier, depending on whether or not nq is an integer. One
approach would be to take the inverse of the step function Fn(y), which gives

ĉ1 =
{

Y(j) if nq = j (an integer),
1
2 (Y(j) + Y(j+1)) if nq is not an integer,

where j = [nq]. Although any value in the interval (Y(j), Y(j+1)) could serve as the
inverse, taking the average of the endpoints follows the convention for the sample me-
dian. Another simple estimate is just linear interpolation of Fn(y):

ĉ2 = (1 − u)X(j) + uX(j+1), (12.2.2)

where again j = [nq] and u = nq − j. Notice that these two coincide for nq = j.

Still another estimate generalizes the convention for the sample median as

ĉ3 =
{ 1

2 (Y(j) + Y(j+1)) if nq = j (an integer),

Y(j+1) if nq is not an integer.

Notice the difference between ĉ1 and ĉ3: the cases are reversed with respect to whether
or not nq is an integer. Notice also that the estimate ĉ1 is asymmetric. That is, if we
changed the signs of the Yi and changed from q to 1 − q, then only the sign of ĉ3

changes (as it should) whereas the change in ĉ1 would be more than just a sign change.
The estimate ĉ1 behaves differently just because of the left continuous definition of a
distribution function. Because values of q near 1 are the most common cases, the use
of extreme value statistics motivates the following estimate by Weissman (1978):

ĉ4 = â loge(k/d) + Y(n−k+1), (12.2.3)

where â = k−1∑k
i=1 Y(n−i+1), q = 1−d/n, and k is a parameter to be chosen (but big-

ger than d). The motivation for ĉ4 is to use the shape of the tail in a sparsely populated,
thinly tailed distribution. Following a Monte Carlo study, Boos (1984) recommended

12.2 Distribution and Density Estimation 345

the use of ĉ4 for light-tailed distributions with n large but the linear interpolant ĉ2 for
heavy-tailed distributions. Summarizing briefly for q ≥ .95: for tails lighter than expo-
nential (such as normal), use k/d = 4; for approximately exponential tails, use k/n =
.2 for n ≤ 500 and k/n = .1 for larger n; see Boos (1984) for details.

Demonstration rho0 aims to compute the upper and lower 5th percentile points for
the distribution of the sample correlation coefficient for a sample size of 12 when the
true correlation ρ = 1/2. Here, n = 1000 and q = .05 and .95, so nq will be an inte-
ger. For the Weissman estimate, q = .05 means d = 950, and d = 50 for the upper
point where q = .95. Since light tails are expected and n is quite large, k is chosen
to be 200. The results for q = .95 are ĉ1 = ĉ2 = .801313, ĉ3 = .802152, and ĉ4 =
.794659; for q = .05, we find ĉ1 = ĉ2 = .037543, ĉ3 = .038485, and ĉ4 = .036463.

Before leaving percentile points, remember the statistical maxim that an estimator
is useless without an assessment of its accuracy. The large-sample result is that

ĉ(q) ≈ N
(
c(q), n−1q(1 − q)/f(c)2

)
,

which provides an additional motivation for probability density estimation.
Several methods have been proposed to estimate the density function f(y) from

a sample Y1, Y2, . . . , Yn – methods that trade off statistical properties, aesthetics, and
computational ease. The first and most common method is the kernel density estimator.
This method can be viewed as smoothing out the lumps of probability in the empirical
distribution function Fn(y). The density estimate takes the form

f̂1(y) = 1

n

n∑
i=1

k

(
y − Yi

h

)/
h, (12.2.4)

where k(u) is the kernel function. Choosing k(u) to be a density function centered at 0
leads to a nonnegative estimate f̂1(y) that integrates to 1 and makes the analysis easy;
the theoretical gains of allowing a kernel to become negative don’t balance the value
of the estimate being a probability density. The scale factor h affects the smoothness or
bumpiness of the estimate. Taking h larger spreads the lumps of probability in Fn(y)

more, but taking h too big will hide the shape. Taking h smaller reduces bias, but tak-
ing it too small leads to an unappealing, bumpy estimate. In Figure 12.1 are kernel
density estimates of the distribution of the exchange rates (n = 15) from Example 10.3
with three values of h. Clearly h = .2 is too small and the estimate too bumpy; also
h = .8 may be too large, as some bumps are completely smoothed out. Slight under-
smoothing is preferred; Silverman (1986, p. 41) puts it well: “the reader can do further
smoothing ‘by eye,’ but cannot easily unsmooth.”

The mathematics surrounding the choice of h balances bias and variance. The re-
duction of bias with smaller h follows from

E[f̂1(y)] =
∫

k((y − t)/h)

h
dF(t) =

∫
F(y − hv) dK(v) → F(y) as h → 0

using integration by parts. The “optimal” smoothing parameter in terms of integrated
MSE, that is,

E

{∫
|f̂ (y) − f(y)|2 dy

}
,

has h = O(n−1/5), but the constant depends on function f – which is being estimated.
There are theoretical methods for automatically selecting h; one route is to use some

346 Statistical Methods for Integration and Monte Carlo

Figure 12.1. Kernel density estimate using normal kernel and exchange rate data (15 observations).
Smoothing parameter h-values are .2 (solid, bumpy), .5 (dashed), .8 (solid, smooth).

simple statistics. After rescaling the kernel to have unit variance, Silverman (1986)
recommends

h = .9 min(standard deviation, interquartile range/1.34)n−1/5 (12.2.5)

based on considerations of the normal, t, and log-normal distributions. Another route
is to use cross-validation, but this approach can be prohibitively costly for large sam-
ple sizes because the effort is more than O(n2). Since large samples are common with
Monte Carlo, this route is impractical.

Although there is little theoretical basis for choosing a kernel k, a serious drawback
of kernel density estimates is the computational burden in many practical problems –
when n is large and the number of y values (say, M) is also large – since the estimate
requires O(Mn) work. Choosing a kernel with finite support may lose little theoreti-
cally and aesthetically yet gain considerably in reducing the constant. A finite support
kernel with some theoretical advantages is the Epanechnikov kernel:

k(u) =
{ (

3/4
√

5
)
(1 − u2/5) if |u| ≤ √

5,

0 if |u| >
√

5.
(12.2.6)

A personal favorite is the density of the sum of three uniforms, a piecewise quadratic
function with finite support that resembles the normal but without some of its theoret-
ical attributes. The density of the sample correlation coefficient problem mentioned
earlier in demonstration rho0 is estimated using kernel methods in rho1 and shown in
Figure 12.2.

Two other methods for estimating a density function rely on the approximation
mathematics from Chapter 7. The orthogonal series method is one of the older meth-
ods (Cencov 1962), not the most popular but certainly worth mentioning. Suppose we
expand the density in a Fourier series, following the mathematics in Section 7.5:

12.2 Distribution and Density Estimation 347

Figure 12.2. Kernel density estimates of density of sample correlation coefficient using n = 1000.

Solid line uses h = .6 ∗ stdv/n0.2; dashed line uses .9 ∗ stdv/n0.2.

f (y) =
∞∑
0

cjφj(y),

where {φj(y), j = 0,1, 2, . . .} are a series of complete orthonormal functions on the
appropriate domain – such as sines and cosines or Legendre polynomials for (−1,1)
and Hermite polynomials for (−∞, ∞) – and, perhaps, with a weight function v(y).

Then the Fourier coefficients can be estimated by

ĉj = 1

n

n∑
i=1

v(Yi)φj(Yi); (12.2.7)

it is easy to show (Exercise 12.4) that they are unbiased and that the variance vanishes
as n → ∞. The density estimate is then just the Fourier series with estimated coeffi-
cients truncated at k:

f̂2(y) =
k∑

j=0

ĉjφj(y).

The integrated MSE is easy to find for orthogonal series estimates,

E

{∫
|f̂ (y) − f(y)|2 dy

}
=

k∑
0

var(ĉj) +
∞∑
k+1

c2
j ,

so the choice of k comes down to balancing the variance (first piece) and bias (sec-
ond piece). An alternative to truncating at k is to taper the series based on smoothness
assumptions that dictate a rate of decay of the coefficients cj . The orthogonal series
estimates often become negative, and integrating to 1 requires ĉ0 = 1 in some cases.
They are not the most appealing estimates, but they are very easy to compute and eval-
uate. The density of the sample correlation coefficient problem mentioned earlier in

348 Statistical Methods for Integration and Monte Carlo

Figure 12.3. Orthogonal series density estimates of density of the sample correlation coefficient
using n = 1000. Solid line uses four terms; dashed lines use eight and twelve terms.

demonstrations rho0 and rho1 is estimated using orthogonal series methods in rho2
and shown in Figure 12.3.

Whereas the orthogonal series method can be viewed as a straightforward approxi-
mation of a function with a Fourier series, the spline method can be viewed as a spline
interpolation of the distribution function. In this version of spline density estimation
(due to Wahba 1975), choose a set of points or “knots” {tj, j = 1, . . . , m} where the
distribution function has been evaluated, Fn(tj) = Fj for j = 1, . . . , m. What this ac-
tually requires is that we set up bins or intervals with the knots as endpoints (tj−1, tj)

and then count the number of observations in the bins. Now let S(y) be the cubic
spline that interpolates the points {tj, Fj, j = 1, . . . , m}, ignoring for the moment the
“extra” condition required. The density estimate is then simply the derivative of the
spline,

f̂3(y) = S ′(y). (12.2.8)

Because the interpolatory splines have a certain built-in smoothness, the smoothing
in the sense we are using here is governed by the number of points or knots used. As
the sample size grows, the number of knots must also grow in order to reduce bias and
ensure consistency. Using too many knots will lead to a bumpy derivative function.
Again, the optimal rate for the number of knots is O(n1/5). The “extra” condition can
be obtained either by (i) using a natural spline with zero derivatives (of the density)
at the endpoints or (ii) estimating the density at the endpoints by some other means,
such as the kernel method. The first method is appropriate only if the domain (t1, tm)

extends beyond the range of the realized sample. It is not possible to ensure that f̂3(y)

remain nonnegative, but it is easy to check (Exercise 12.3). The spline’s coefficients
can be computed in O(m) operations by solving a tridiagonal system of equations.
Computing the value of the density at a point can be computed in constant time, once
the interval has been found. Finding the interval can take either O(log m) work if the

12.2 Distribution and Density Estimation 349

Figure 12.4. Spline density estimates of density of the sample correlation coefficient using n =
1000. Solid line uses eight bins; dashed line uses twelve.

knots are irregularly spaced or constant work if the knots (or a transformation of them)
are regularly spaced. Because of the speed of the computation, the spline method is
very effective for plotting densities. Moreover, other functionals (percentile points,
means, etc.) of the distribution can be easily obtained from the interpolant S(y). The
density of the sample correlation coefficient problem mentioned earlier in demonstra-
tions rho0–rho2 is estimated using spline methods in rho3 and shown in Figure 12.4.

Finally, a very different sort of density or distribution estimation arises when, in-
stead of a sample of observations, a sample of conditional densities is available. In
Bayesian problems, the conditional densities of a parameter may be available in closed
form as f(y | t(i)) or F(y | t(i)) when most of the parameters follow a conjugate fam-
ily. A similar situation arises when using the Monte Carlo swindle shown in (10.7.4).
The problem is to express the density or distribution of Y from the average of these con-
ditional densities or distributions. Often n is quite large, and plotting at many points
yj (j = 1, . . . , M) may render computing the averages

f̂ (yj) = 1

n

n∑
i=1

f(yj | t(i)) (12.2.9)

prohibitively costly for large M. To reduce the overall burden O(nM), reduce the num-
ber of points yj in (12.2.6) and use cubic splines on the distribution function averages:

F̂(yj) = 1

n

n∑
i=1

F(yj | t(i)). (12.2.10)

Then, to obtain density estimates f̂ (yj) for plotting, use the derivative of the spline
interpolant of {(yj, F̂(yj)), j = 1, . . . , M} as with the spline density estimates.

350 Statistical Methods for Integration and Monte Carlo

12.3 Distributional Tests

In many circumstances (and usually in debugging), we want to test whether the output
of our program has the distribution that we claim it should. This would be a direct em-
pirical test in the case of random number generation – say, for checking that a piece of
code produces independent uniform or normal random variables. In other situations,
where checking the entire simulation may be intractable, we may wish to check only
pieces of it to gain some confidence in the whole. The most common situation has Yi

(i = 1, . . . , n) IID F(y), where n is usually large. First, we want to test the hypothesis
that the sample comes from the idealized distribution G; that is, H : F = G. Second,
we may want to investigate departures from independence, but this discussion will be
postponed until a later chapter. In contrast to usual statistical practice, testing the first
hypothesis is quite reasonable. In the real world, F can only be close to G, and the re-
sult is that we seldom reject the hypothesis in small samples because the tests are never
very powerful against omnibus alternatives; in large samples, we always reject since F

is never the same as the idealized G. In Monte Carlo situations, however, the sample
size is usually large; hence no parameters of G need to be estimated and, if we reject
H, we conclude the existence of an error in the code or in a theorem.

It is not by accident that we express the idealized distribution G in terms of its dis-
tribution function. Most of the tests rely on computations from it. Knowing only the
density function makes life difficult; problems arising from these computational obsta-
cles will be noted along the way.

(A) Pearson’s Chi-Square

The oldest and most common test for goodness of fit is the Pearson chi-square test.
Although founded on the discrete case, continuous data can be handled effectively by
making it discrete. In the univariate case, construct disjoint intervals Ij that cover the
support of the distribution; if Y ∈ Ij then use X = j as the discretized random vari-
able. In higher dimensions, the intervals become boxes or bins. The chi-square statistic
takes the form

Q =
M∑

j=1

(Nj − Ej)
2

Ej

,

where Nj is the count of the number of observations when X = j and where Ej is the
expected number when the hypothesis H : F = G is true. Under the IID hypothesis,
the distribution of the Nj is multinomial with n = ∑Nj trials and probabilities Ej/n.

The theory behind the test relies on the central limit theorem applied to the multino-
mial distribution, and the statistic Q becomes the one-sample Hotelling’s T 2 test: in
large samples, Q ∼ χ2 with M − 1 degrees of freedom. The selection of cells (or in-
tervals or bins) determines whether the “large sample” criterion obtains, and that issue
involves both computation and the underlying distribution of Y. The best situation has
equiprobable cells – that is, constant Ej and M = O(n2/5). In the other direction, the
chi-square statistic is robust enough to work with anything but really drastic departures,
since large n can cover a multitude of sins.

12.3 Distributional Tests 351

Suppose the underlying distribution is discrete; then, if Y = j, it is natural to use
X = j. However, when the cell probabilities are very small, the smallest cells should
be aggregated. For the tail of the Poisson distribution, it is common to construct a cell
so that X = M if Y ≥ M. When the underlying distribution is continuous, then the in-
tervals should be constructed so that the probabilities for these intervals are the same.
This requires computing a number of percentile points of the distribution, so estab-
lishing equiprobable intervals is impractical for some distributions. In such cases, use
equal spacing of intervals (to obviate the need for code such as jfind to place Y in the
proper interval) and then collect the tails in two separate cells.

The common rule of thumb for cell selection is for Ej to be at least 5, but this is
quite conservative. Cochran (1954) recommended all Ej at least 1 and 80% at least 5.
Roscoe and Byars (1971) gave much less restrictive guidelines, which work as long as
the cells are approximately equiprobable. In the other direction, where cell selection is
completely at one’s discretion and n is large, Mann and Wald (1942) offered guidelines
for how many cells to use:

M = 4

{
2n2

c2
α

}1/5

for testing at level α, where cα is the usual normal α critical value. Citing studies
that suggest this guideline is conservative, Moore (1986) recommended the convenient
M = 2n2/5 for testing at level α = .05.

(B) Kolmogorov–Smirnov

One of the most common tests for goodness of fit measures a distance between the em-
pirical distribution function Fn(y) and the hypothesized distribution function F(y),

Dn = sup
y

|Fn(y) − F(y)|.

Only the two-sided statistic will be considered, since one-sided alternatives are not rel-
evant in the Monte Carlo context. For continuous random variables, the Kolmogorov–
Smirnov (KS) statistic is distribution-free, since transforming the data by Ui = F(Yi)

does not affect Dn. In fact, the KS statistic is computed in this context; by evaluating
the distribution function F only at the observations and then sorting, we have

Dn = max
i

{i/n − F(Y(i)), F(Y(i)) − (i − 1)/n}.
There is no need for the algorithms to yield the small-sample distribution of Dn. The
KS test is not very powerful and hence not useful in small samples, but it is convenient
in the large-sample Monte Carlo problems. Here the large-sample distribution is given
by limn→∞ Pr(

√
nDn ≤ t) = Q(t), where

Q(t) = 1 − 2
∞∑

j=1

(−1)j+1 exp[−2t 2j 2] =
√

2π

t

∞∑
j=1

exp

[
− (2j − 1)2π2

8t 2

]
. (12.3.1)

The first sum works for large t and fails to converge for small t; the rare second expres-
sion behaves in a complementary fashion. Stephens (1970) gave an improved version
of the convergence as

352 Statistical Methods for Integration and Monte Carlo(√
n + .12 + .11/

√
n
)
Dn → Q(t).

The critical values of Q(t) to remember are Q(1.358) = .95 and Q(1.628) = .99.

Smirnov (1939) constructed a two-sample version of this test using the distance be-
tween two empirical distribution functions:

Dmn = sup
z

|Fm(z) − Gn(z)|.

This test is useful when there are two ways (of different efficiency) to simulate the same
process yet there is a need to check one simulation against the other. In the two-sample
situation we have Xi (i = 1, . . . , m) as an IID sample from F and Yi (i = 1, . . . , n) as
another IID sample from G; we want to test H : F = G. The statistic Dmn is a little
harder to compute, but not much more than sorting. In fact, the computational step re-
sembles a merge sort (see Section 14.3). Begin by sorting both series, X(1) ≤ · · · ≤
X(i) ≤ · · · ≤ X(m) and Y(1) ≤ · · · ≤ Y(i) ≤ · · · ≤ Y(n). Then start with S = 0 and com-
pare the smallest in each list. If the X is smaller then remove it from the list of Xs and
decrease S by n (it may become negative); if the Y is smaller, remove it from the list
and increase S by m. Once either of the lists is exhausted, Dmn = S ∗/(mn) where S ∗ =
max|S|. Of course, we could instead decrease by 1/m and increase by 1/n and so avoid
dividing by mn, but then we couldn’t do the counting in integers. The large-sample
distribution of Dmn is similar to the one-sample case:√

mn

m + n
Dmn → Q(t).

See the demonstration code in dks2s.

(C) Anderson–Darling

Another goodness-of-fit statistic arises from the use of a different distance – namely, a
weighted Cramer–von Mises distance between the empirical distribution function and
the hypothesized:

A2 = n

∫ ∞

−∞
[Fn(y) − F(y)]2

F(y)[1 − F(y)]
dF(y)

= −n − 1

n

n∑
i=1

(2i − 1){log F(Y(i)) + log[1 − F(Y(n+1−i))]}. (12.3.2)

As with the KS statistic, the Anderson–Darling statistic is a distance and thus requires
sorting of the data and computation of the distribution function only at the observa-
tions Yi. The Anderson–Darling presents some computational difficulties for values in
the tails, since either F or 1 − F may be very small or near unity. For small values of
F, the logarithm may accentuate any relative error effects, and accuracy may be lost
when computing log(1 − F) unless a series expansion is employed because

log(1 − F) ≈ −F.

These problems suggest at a minimum some care in the coding and, for special cases
(e.g. the normal; see alnphi in Chapter 7), special coding of log F and/or log(1−F). For

12.4 Importance Sampling and Weighted Observations 353

power considerations, Stephens (1970, 1986) recommended A2 over other goodness-
of-fit statistics. The asymptotic distribution for A2 is reached for even small values of
n, and the upper .05 and .01 critical values are 2.492 and 3.857, respectively.

(D) Quasirandom Sequences

Finally, in most situations we reject the hypothesis H only for large values of the statis-
tic, because they are measuring a distance. Moreover, the power of these tests is not
usually sufficient to find any but the most blatant errors. However, we should also be
concerned when these goodness-of-fit statistics are too small. Rather than perfect data,
this rare phenomenon normally indicates insufficient randomness or some lack of inde-
pendence in the data. Recall that the quasirandom sequences discussed in Section 10.6
produced uniform-looking observations that filled up space too regularly. If one were
to use these methods to generate uniform variates, and further to generate from other
distributions (e.g. the normal), then the resultant observations {Yi, i = 1, . . . , n} would
fit the correct distribution yet do so too well. If we computed these goodness-of-fit sta-
tistics on these data, we would get distances that were too small – well, much too small.
Using quasirandom sequences to generate data is a powerful way to detect errors, since
we should expect a distance that would be clearly below typical upper critical values
and even below lower ones as well.

Example 12.0: Perfect Fit of the Normal Distribution
The demonstration program perfect uses the Halton sequence (10.6.3) with bases
2 and 3 to generate uniformly distributed points in the unit square. It then em-
ploys the Box–Muller transformation (Section 11.3, Algorithm A1 and gnbxml),
which produces a sequence of variables that fit the normal distribution too well.
For n = 16,384 (certainly large enough to detect differences), the KS statistic is√

nDn = .1554 and the Anderson–Darling A2 = .021898, well below the usual
upper critical values and well below the lower .05 critical values of .520 and .283,
respectively. However, the lower .01 critical values are in reach: .441 for

√
nDn

and .201 for A2. These results give us confidence that the algorithm was coded
correctly.

12.4 Importance Sampling and Weighted Observations

Importance sampling is a powerful tool for Bayesian analysis of high-dimensional
problems that require Monte Carlo integration, but it presents some difficulties in the
analysis of the results. In the typical situation, information about the posterior dis-
tribution is sought in the form of posterior means and variances as well as percentile
points of distributions and density estimates of some parameters. While the observa-
tions may be independent and identically distributed, they come with unequal weights,
which force some modifications to the tools discussed in the previous two sections.
The first step is to analyze the analog of the sample mean.

354 Statistical Methods for Integration and Monte Carlo

Commonly in Bayesian problems, the unnormalized posterior distribution p∗(t) is
too difficult to generate from, and so observations T(i) (i = 1, . . . , n) are generated
from another distribution with density g(t) that is absolutely continuous with respect to
p∗(t). In order to estimate the posterior mean of some function h(θ) of the parameter
vector θ , the integration step is a modification of (10.7.1):

Ep∗{h(θ)} =
∫∫

h(t)p∗(t) dt∫∫
p∗(t) dt

=
∫∫

h(t)[p∗(t)/g(t)]g(t) dt∫∫
[p∗(t)/g(t)]g(t) dt

= Eg{h(θ)w(θ)}, (12.4.1)

where θ has density g(t) and the weight function is

w(t) = p∗(t)/g(t).

In order to estimate the integrals, we sample T(i) (i = 1, . . . , n) IID from g(t) and then
compute the ratio of means:

1
n

∑n
i=1 h(T(i))w(T(i))

1
n

∑n
i=1w(T(i))

=
1
n

∑n
i=1 WiYi

1
n

∑n
i=1 Wi

. (12.4.2)

Owing to the large samples regularly used in Monte Carlo, the analysis of this ratio
would lean on a large-sample normal approximation, provided the usual requirements
of the central limit theorem (CLT) hold. Relabeling WiYi = Zi, the CLT suggests the
analysis of [

Z̄

W̄

]
≈ N

([
µz

µw

]
,

1

n

[
�zz �zw

�wz �ww

])
, (12.4.3)

where µz = ∫∫
h(t)p∗(t) dt and µw = ∫∫

p∗(t) dt. Not only do we want to estimate
the ratio of means µz/µw with the ratio of sample means Z̄/W̄ as its natural estimate,
we need an assessment of accuracy.

One route to take is the usual large-sample asymptotics, or the delta method. Rewrit-
ing the ratio of sample means using the algebraic substitution Z̄/µz = 1+(Z̄−µz)/µz,

we have

Z̄

W̄
= µz

µw

× Z̄/µz

W̄/µw

= µz

µw

× 1 + (Z̄ − µz)/µz

1 + (W̄ − µw)/µw

≈ µz

µw

×
[
1 + Z̄ − µz

µz

][
1 − W̄ − µw

µw

]
≈ µz

µw

×
[
1 + Z̄ − µz

µz

− W̄ − µw

µw

]
,

provided, of course, that certain conditions are satisfied. This result suggests the fol-
lowing normal approximation:

Z̄

W̄
≈ N

(
µz

µw

,
1

nµ2
w

[
�zz − 2

µz

µw

�zw + µ2
z

µ2
w

�ww

])
,

12.4 Importance Sampling and Weighted Observations 355

where the means (µz and µw) and variances (�zz etc.) are with respect to g, the impor-
tance distribution. This approximation leads to a standard error for the ratio of means
of the form

1√
nW̄

[
Szz − 2

Z̄

W̄
Szw + Z̄2

W̄ 2
Sww

]1/2

, (12.4.4)

where

Szw = 1

n − 1

n∑
i=1

(Zi − Z̄)(Wi − W̄)

and similarly for Szz and Sww. Since this result relies heavily on (W̄ − µw)/µw being
small, let’s look more closely at this quantity. Its variance takes the form �ww/nµ2

w,

which needs to be close to zero – say, 1/100 or smaller. The usual estimate of this vari-
ance is approximately S2 − 1/n, where

S2 =∑W 2
i /
(∑

Wi

)2
. (12.4.5)

The quantity S2 can be a useful indicator of the behavior of the weighting random vari-
able. Its reciprocal can be interpreted as an effective sample size for these weighted
observations, for if the weights were fixed then the variance of Ȳ would be S2 var(Y).

The relationship to the coefficient of variation of the weights �
1/2
ww/µw should not be

surprising.
A second route uses the same large-sample normal result (12.4.3) but relies on

Fieller’s theorem (1954) for confidence limits on the ratio of two normal means.
Fieller’s result provides a confidence interval for µz/µw of the form (Z̄/W̄ + c1,

Z̄/W̄ + c2), where c1 is the negative and c2 the positive root of the quadratic equation
in φ:(

W̄ 2 − t 2

n
Sww

)
φ2 − 2φ

t 2

n

(
Z̄

W̄
Sww − Szw

)
− t 2

n

[
Szz − 2

Z̄

W̄
Szw + Z̄2

W̄ 2
Sww

]
= 0, (12.4.6)

where t is the usual Student’s t critical value. Notice that ensuring a positive coeffi-
cient for φ2 is the same condition on the Wi as before, that is,

W̄ 2 − t 2

n
Sww > 0 or t 2 >

Sww

nW̄ 2
.

Also notice that the bracketed part (which we hope is positive) of the constant term in
(12.4.6) is the same bracketed term in the standard error formula in (12.4.4). To a first-
order approximation, these two approaches are identical.

Example 12.1: Log-Series Posterior
The log-series posterior from Example 10.1 was analyzed in quad1–quad3; here
a simple importance sampling scheme from the normal approximation to the pos-
terior is used again in quad4, and the results from 100 samples (Ti, Wi) are stored
in quad4.wgt. Some simple analysis gives the statistics

356 Statistical Methods for Integration and Monte Carlo[
Z̄

W̄

]
=
[

3.7617

7.2076

]
and

[
Szz Szw

Swz Sww

]
=
[

1.134947 .310150

.310150 .617505

]
after rescaling the weights by 10,000 and with Zi = WiTi. The estimate of the
posterior mean is Z̄/W̄ = .5219; following the calculations from (12.4.4), the
standard error for this ratio is

1√
nW̄

[
Szz − 2

Z̄

W̄
Szw + Z̄2

W̄ 2
Sww

]1/2

= √
.979408/72.076 = .01373.

Following now the Fieller route and using t 2 = 1.962 for n = 100, the quadratic
equation (12.4.6) is

51.9258φ2 − .0009φ − .0376 = 0,

which has roots c1 = −.02690 and c2 = .02692. The two methods are nearly
identical, since

Sww/nW̄ 2 = 1.012 × 10−4.

Before proceeding to modify all of the results in Sections 12.2 and 12.3 for weighted
observations, more than a moment’s reflection on importance sampling is appropriate.
Geweke (1989) gave the conditions that ensure the central limit theorem will apply to
yield (12.4.3). In addition to the fundamentals of importance sampling, such as ab-
solute continuity of p∗ with respect to g, Geweke’s conditions require the existence
of the variances �zz and �ww. Showing these analytically is often impractical, espe-
cially in high dimensions, and the additional assumption of bounded weights suggested
by Geweke may be unnecessarily restrictive. To underscore how easy it is to run into
problems, let p∗(t) = exp{−t 2/2} and let g(t) = φ(t − a), the standard normal den-
sity centered at a. Then the weight function w(t) = exp{a(a − 2t)/2}√2π is clearly
unbounded even though E(W 2) = √

2π exp{3a2}, which gets worse the further the
importance distribution g moves from the posterior p∗. Mismatching the scale is even
worse: if g(t) = φ(t/c)/c, then w(t) will be unbounded for c < 1 and E(W 2) will be
infinite if c2 < 1/2. Figures 12.5 and 12.6 show p∗(t) = φ(t) and g(t) = φ(t/c)/c

with c = .8 and 1.2, as well as the weight functions w(t).

The result of some of this analysis is that bounded weights are good, a small coeffi-
cient of variation of the weights is good, and infinite variance of the weights is a major
disaster. When only examination of the observed weights Wi (i = 1, . . . , n) is pos-
sible, one signal for a problem is one or a few of the weights dominating the sum. Since
the CLT relies on the average of a large number of independent quantities – with no
few of them dominating the sum – this signal indicates that the CLT may not be work-
ing. A natural measure is S1 = max{Wi}/∑Wi. Although both S1 and S2 are good
indicators of what may be going on, they do not lead to useful tests on the behavior of
the weights (this is discussed further in Section 12.5). The simple normal cases, while
showing how easy it may be to make a grave error in the use of importance sampling,
also reveal its strengths.

The strength of importance sampling is in oversampling relatively rare events. Its
prevalence in simulating nuclear power plants stems from the fact that failure rates are

12.4 Importance Sampling and Weighted Observations 357

Figure 12.5. Target density and two importance densities. Solid line is target f(t) = φ(t). Dashed
lines have different scales g(t) = φ(t/c)/c with c = .8 and 1.2.

Figure 12.6. Importance sampling weight functions with c = .8 and c = 1.2.

very low, and nothing would be learned about the system if no failures arose. So val-
ues that lead to problems are sampled more frequently, but those observations hold
very small weight. As a result, low probability or tail events occur more often but with
small weights. In choosing the scale parameter c too small in the preceding normal ex-
amples, the tails of the distribution are being seriously undersampled; choosing c > 1
bounds the weights and the undersampling of the middle and permits oversampling in
the rare-event tails. In general, a safe route is either to sample from a distribution with
heavier tails and a larger variance or to sample from a Student’s t instead of a normal;
see also Hesterberg (1995).

358 Statistical Methods for Integration and Monte Carlo

So far, only the simple expectation has been analyzed. How should all of the results
in Sections 12.2 and 12.3 be modified to account for weighted observations? Actually,
it’s pretty simple. The first problem is estimation of the distribution function. Here we
observe the pairs Wi, Yi (i = 1, . . . , n), and the natural estimate of F(y) is the mean of
an indicator function I(Yi ≤ y), which is

Fn(y) = 1

n

n∑
i=1

WiI(Yi ≤ y)
/1

n

n∑
i=1

Wi. (12.4.7)

Computation is rather straightforward: sort the Yi carrying the Wi along and compute
the increments,

Fk =
k∑

i=1

Wi

/ n∑
i=1

Wi; (12.4.8)

then Fn(y) = Fk for Yk−1 < y ≤ Yk, which can be done with the discrete bisection
search mentioned previously. Estimation of percentile points should be done with lin-
ear interpolation using ĉ2 of (12.2.2), since the jumps of the distribution function come
in different sizes. There should be no need for the extreme-value method ĉ4 of (12.2.3)
if the importance sampling is done correctly, since there should be many observations
with small weights in the tails. The density estimates are easily modified, with the ker-
nel method simply taking the form of a weighted sum,

f̂1(y) =
n∑

i=1

Wik

(
y − Yi

h

)/
h

n∑
i=1

Wi. (12.4.9)

The orthogonal series estimates use coefficient estimates that are weighted aver-
ages, and the spline density estimator just interpolates the distribution function Fn(y)

from (12.4.7) as before. As for the distributional tests, the chi-square test requires very
little modification, since the same CLT requirements given for the weighted averages
will provide the large-sample normality upon which the chi-square test relies. The
Kolmogorov–Smirnov tests would require two changes. One is that the definition of
the distance requires some revision in computation,

Dn = sup
y

|Fn(y) − F(y)| = max
k

{Fk − F(Y(k)), F(Y(k)) − Fk−1}, (12.4.10)

with Fk from (12.4.8); the other change is prompted by the effective sample size. Re-
call the role of n in the final statistic

√
nDn; in (12.4.10), the effective sample size is

not n. My recommendation would be to use 1/S2 from (12.4.5) in place of n when per-
forming the Kolmogorov–Smirnov tests. Similar modifications are suggested for the
two-sample test. Finally, the Anderson–Darling test is modified to

A2 = −1 −
n∑

i=1

(Fi − Fi−1)(Fi + Fi−1) log F(Y(i))

−
n∑

i=1

(Fi − Fi−1)(2 − Fi − Fi−1) log(1 − F(Y(i))),

but a sample size adjustment should not be necessary.

12.5 Testing Importance Sampling Weights 359

12.5 Testing Importance Sampling Weights

As mentioned in the previous section, analysis of the importance sampling distribution
and the weight function is often too difficult for practical verification of the conditions
for the central limit theorem. We need the CLT in order to assess the accuracy of the
importance sampling estimates. Recall that the first moment of the weights must exist
or else nothing at all is possible. If the variance does not exist, then we can rely neither
on the CLT nor on the existence of other expectations, such as posterior variances. The
author (Monahan 1993) examined two approaches for testing whether the importance
sampling distribution has first and second moments.

The first approach examines the tail behavior of the distribution of weights, model-
ing the distribution function as

1 − F(w) = Cw−1/β(1 + Dw−1 + o(w−1)) for w > 0. (12.5.1)

Note that only nonnegative x are considered because the weights are nonnegative. Tak-
ing β = 1 gives the tail behavior of a Cauchy random variable, which just barely does
not have a mean. Taking β = 1/2 corresponds to the tail of a Student’s t random
variable with two degrees of freedom, which barely does not have a variance. The hy-
potheses and alternatives of finite mean and variance can be written in terms of the
parameter β as follows.

(infinite mean) H1 : β ≥ 1 versus A1 : β < 1 (finite mean)

(infinite variance) H2 : β ≥ 1
2 versus A2 : β < 1

2 (finite variance)

The motivation for setting up the tests in this way is that we should not be willing to
use the asymptotic results unless these hypotheses are rejected. Hill (1975) proposed
an estimator for the parameter β using the largest order statistics:

β̂ = 1

k

k∑
j=1

log(W(n−j+1)) − log(W(n−k)), (12.5.2)

where W(j) is the j th smallest order statistic from a sample of size n importance
sampling weights. Haeusler and Teugels (1985) and Hall (1982) showed that if k =
o(nβ/(β+1/2)) then the estimator β̂ is asymptotically normal,

√
k(β̂ − β) → N(0, β2).

Pursuing this approach further, a test for infinite mean can be constructed as

reject H1 (infinite mean) in favor of A1 (finite mean) if β̂ < 1 − zα/
√

k, (12.5.3)

where zα is the usual upper α normal critical value. A test for infinite variance can be
constructed as

reject H2 (infinite variance) in favor of A2 (finite variance) if β̂ <
(
1 − zα/

√
k
)
/2,

(12.5.4)

360 Statistical Methods for Integration and Monte Carlo

so that the critical value for β̂ is just cut in half. Again, notice that these tests are set
up with the null hypotheses being undesirable, and rejection should give some confi-
dence that the conditions for the CLT may be satisfied. The study previously mentioned
shows that k = 4n1/3 works and that the sample size n = 2500 appears to be sufficient.

A second approach uses the two importance sampling indicators S1 and S2:

S1 = max Wi

/ n∑
i=1

Wi, S2 =
n∑

i=1

W 2
i

/(n∑
i=1

Wi

)2

.

Establishing the distribution of these statistics when the null hypothesis is true is very
difficult, since it depends so much on the underlying distribution of weights. Never-
theless, as a test for infinite mean,

reject H1 (infinite mean) in favor of A1 (finite mean) if (log n)S1 < (−log α)−1

(12.5.5)
appears to work reasonably well although not as well as (12.5.3). Testing infinite vari-
ance using S2 just doesn’t work well at all.

Example 12.2: Variance Components Problem
The variance components problem with the exchange rate data was detailed in
Example 10.3. Importance sampling – using some variation of the large-sample
normal approximation to the posterior – is the standard approach for solving these
kinds of Bayesian problems. The first step is find the mode tm of the log poste-
rior log p∗(t) and its Hessian H. Then one of these two importance distributions
are employed: either

g1(t) = (2π)−p/2|H|1/2 exp{− 1
2 (t − tm)TH(t − tm)}, (12.5.6)

the p-dimensional normal approximation to the posterior; or a multivariate Stu-
dent’s t approximation with k degrees of freedom,

g2(t) = �((k + p)/2)|H|1/2

�(k/2)(p + k)p/2πp/2

×
{

1 + 1

p + k
(t − tm)TH(t − tm)

}−(p+k)/2

. (12.5.7)

To generate from g1, first compute the Cholesky factorization of H = LLT and
generate Z(i) IID Np(0, Ip); then form

T(i) = tm + L−TZ(i).

To generate from g2, use the same Cholesky factorization and normal vectors
Z(i), but also generate the random variable Vi ∼ χk (chi with k df) using gchirv
from Chapter 11; then form

T(i) = tm + (√p + k/Vi

)
L−TZ(i). (12.5.8)

The demonstration chex122a uses g1 as its importance sampling distribution;
chex122b uses g2 with k = 5 df, both with n = 2500 replications. In both cases,

12.6 Laplace Approximations 361

the tail parameter estimate is small: β̂ ≈ .71 in the first case and β̂ = .59 in the
second. With k = 53, both fail to reject infinite mean and variance, suggesting a
problem in the tails.

12.6 Laplace Approximations

The central computational step in Bayesian analysis is the computation of information
about the posterior distribution p∗(t). Usually, the easiest pieces of information to ob-
tain are moments of functions, the posterior means and variances in particular. Owing
to the likelihood asymptotics from Chapter 9, there is a strong temptation to extend
those further for Bayesian analysis. That is, approximate the log of the posterior as a
quadratic with mode t∗:

log p∗(t) ≈ constant − 1
2 (t − t∗)TH(t − t∗),

where H = −∇2 log p∗(t) at t = t∗. This, of course, is equivalent to saying that the
posterior is approximately multivariate normal with mean vector t∗ and covariance ma-
trix H−1. Expectations of other functions could then be approximated by applying the
delta method:

E[h(t)] ≈ h(t∗) and var[h(t)] ≈ (∇h)TH−1(∇h). (12.6.1)

Tierney and Kadane (1986) and Tierney, Kass, and Kadane (1989) derived better ap-
proximations by applying Laplace’s approximation of the integral of a function with
mode t∗:∫

eng(t) dt ≈ eng(t∗)

∫
exp{− 1

2 (t − t∗)2(ng ′′)} dt = eng(t∗)(ng ′′)−1/2
√

2π,

which is accurate to terms O(n−1) for a relative error of O(n−1/2). Notice, however,
that most posterior expectations arise as a ratio of integrals; that is, we usually want to
compute

Ep∗[h(θ)] =
∫∫

h(t)p∗(t) dt∫∫
p∗(t) dt

. (12.6.2)

The trick is to apply Laplace’s approximation to both the numerator and denominator
and then take the ratio:

Ep∗[h(θ)] ≈ |H∗∗|−1/2 exp{log p∗∗(t∗∗)}
|H∗|−1/2 exp{log p∗(t∗)} , (12.6.3)

where p∗∗(t) = h(t)p∗(t), t∗ is the mode of p∗, t∗∗ is the mode of p∗∗, and

H∗ = −∇2 log p∗(t) at t = t∗,

H∗∗ = −∇2 log p∗∗(t) at t = t∗∗.

The gain in using (12.6.3) is that the first-order error terms cancel with the ratio and
hence the relative error drops to O(n−2). For each function h(t) whose expectation is
sought, the mode of the log of the modified posterior, log p∗∗(t) = log p∗(t)+ log h(t),

362 Statistical Methods for Integration and Monte Carlo

needs to be found. This requires a new optimization for each function, but (1) the pos-
terior mode t∗ should be close and (2) a single Newton or Newton-like step should
suffice, owing to Chapter 9 asymptotics.

Example 12.3: Laplace Approximation to Log-Series Problem
In Example10.1, posterior mean and variance were computed on a posterior based
on a sample from the log-series distribution

p∗(t) = t16(1 − t)/[−log(1 − t)]10.

In quad1, the posterior mean was computed as .527057; the variance was .0187,
using Simpson’s rule with 20 intervals. For the Laplace approximation (found in
laplace1), two searches for modes were performed using the Illinois method: one
for log p∗(t), the other for log p∗∗(t) = log t + log p∗(t). Following (12.6.3), the
posterior mean was approximated by .5251 and the posterior variance by .0186.
Using just the modal approximation (12.6.1), the mean is .5272 and variance
1/42.036 = .0238, not nearly as close as the Laplace approximation.

Example 12.4: Laplace Approximation for Extended Example from Chapter 9
In Example 10.2, the likelihood from the extended example from Chapter 9 was
modified by reducing the sample size to create a more interesting posterior for in-
tegration. Using product Simpson’s rule in chex102s, the posterior mean vector
and covariance matrix was computed as

E[θ] =
[

.271831

.125142

]
and cov[θ] =

[
.004474 −.000645

−.000645 .002242

]
.

With two parameters, six searches are required for the five posterior moments;
the results are found in laplace2. The Laplace approximation method gave the
following:

Ê[θ] =
[

.271660

.125327

]
and ĉov[θ] =

[
.004466 −.000645

−.000645 .002236

]
,

while the modal approximation gave

t∗ =
[

.265782

.110980

]
and H−1 =

[
.004816 −.000606

−.000606 .002195

]
.

The Laplace approximation gave a remarkable improvement over the modal ap-
proximation.

One of the obvious requirements is that the function h(t) be nonnegative over the
region where the posterior mass lies. For the two examples just discussed, the param-
eter space is constrained and so this requirement is obviously satisfied. For contrary
cases, one suggestion is to add a large constant to h(t) to keep it positive and then
subtract the constant off later. The alternative approach is to approximate the moment-
generating function of the function of interest, so that the function is now exp{sh(t)};
then log p∗∗(t) = log p∗(t) + sh(t). Now compute the Laplace approximation for a

12.7 Randomized Quadrature 363

few values of s near 0 and approximate the derivative at the origin numerically to get
the moment. This latter approach is preferred, according to Tierney et al. (1989).

12.7 Randomized Quadrature

Fixed integration methods (e.g., Simpson’s rule, Gauss–Hermite) exploit the smooth-
ness of the integrand and give rapid convergence. The difficulty in assessing their
accuracy, however, is a serious drawback. On the other hand, Monte Carlo integration
does not even use continuity of the integrand and converges comparatively slowly, yet
the usual statistical tools can be employed to assess accuracy. If only the best attributes
of both could be combined

Consider computing h(t) on the unit interval using a Riemann sum with a random
starting point:

Î(h) = n−1
n∑

i=1

h

(
U + i − 1

n

)
, (12.7.1)

where U ∼ uniform(0,1/n). Then this integral estimate is unbiased,

E[Î(h)] =
∫ 1

0
h(t) dt

for all functions h(t), and gains improved convergence through a smaller variance,
usually O(n−2). Applied statisticians would recognize this approach immediately as
systematic sampling. Randomized methods can be exact for certain functions, give
small variance for certain kinds of smoothness, and can be assessed for accuracy using
standard statistical methods. As discussed in Section10.7, Cranley and Patterson (1976)
suggested using random starting points for Korobov rules. This can now be seen as
just a multivariate version of (12.7.1):

Î(h) =
N∑

i=1

h({U + (i/N)g}), (12.7.2)

where {·} means to take the fractional part and where the components of U are in-
dependent uniform(0,1) random variables. Now E[Î(h)] = ∫ 1

0 · · · ∫ 1
0 h(t) dt for any

function h(t). In general terms, randomized quadrature works because the quadrature
rule gives a good estimate of the integral. If the function is smooth, then the values of
the function at the abscissas are negatively correlated (they must give nearly the same
integral estimate each time) and so the sum has a much smaller variance than mere
random sampling. As the function gets noisier, the improvement diminishes and the
variance approaches that of random sampling.

Siegel and O’Brien (1985) suggested a random integration rule for the interval
[−1, +1]. Let R have the density 3r 2 on the unit interval. Then the integration rule

T(R) = w0(R)h(0) + w1(R)h(−R) + w1(R)h(+R), (12.7.3)

where w0(R) = 2 − 2/(3R2) and w1(R) = 1/(3R2), is unbiased for all functions h.

That is,

364 Statistical Methods for Integration and Monte Carlo

E[T(R)] =
∫ 1

−1
h(r) dr,

and this is exact (zero variance) if h(r) is a cubic polynomial. Notice the similarity in
form and principle to the antithetic variates discussed in Section 10.7.

Genz and Monahan (1998) generalized this approach for integrating functions
weighted with |r|d−1 exp{−r 2/2}. The first-order rule takes the simple symmetrized,
antithetic variables form

T1(r) = 1
2h(−R) + 1

2h(R),

where R ∼ χd, which is exact only for linear h. The third-order rule T3(R) is similar
to Siegel–O’Brien (12.7.3) but with R ∼ χd+2 and with weights w0(R) = 1 − d/R2

and w1(R) = d/(2R2). This method is exact for cubic functions h with respect to the
weight function and is unbiased for all h:

E[T3(R)] = 2−d/2

�(d/2)

∫ ∞

−∞
h(r)|r|d−1 exp

{
−r 2

2

}
dr. (12.7.4)

Integration on the surface of a sphere with fixed quadrature was discussed in Section
10.4. These rules may appear unsatisfactory because the assumptions of smoothness
are not intuitively obvious, and it is difficult to add more points without some reliance
on further smoothness. Here randomization of these rules follows some of the spirit
of compound rules: add more points without assuming further smoothness. The in-
tegration rule with abscissas v(k) and weights uk can be randomized using a random
orthogonal matrix Q. If Q has the right distribution, then

E

[m∑
k=1

ukh(Qv(k))

]
=
∫

Ud

h(z) dz,

where Ud is the surface of the unit sphere in d dimensions. Stewart (1980) gave an al-
gorithm for generating Q with the right distribution, a uniform distribution (invariant
Haar measure) over orthogonal matrices. The basic theory is to generate a d ×d matrix
X with each entry Xij independent standard normal and then compute the QR factor-
ization X = QR following the methods of Chapter 5. Stewart gave a very efficient
algorithm using Householder transformations (Sections 5.5 and 5.6) for annihilating a
vector: first construct the transformation H1 to annihilate a bivariate normal vector x(1),

and rotate the last two coordinates of the v(k). Then construct transformation H2 on a
trivariate vector x(2) to rotate the last three coordinates, continuing on to finish with the
vector x(n−1) ∼ Nd(0, Id) to construct Hn−1. Multiplying by Q = Hn−1 · · · H2H1 can
then be done sequentially on the vectors v(k). Heiberger (1978) gave a similar algorithm
with a different ordering; see Tanner and Thisted (1982) for corrections.

Example 12.5: Random Rotation on the Unit Sphere
The demonstration program spkblh uses Stewart’s algorithm with Householder
transformations, as just outlined, to rotate the antipodal (Section 10.4) integra-
tion rule on the unit sphere for integrating the kernel of the Langevin distribution
(see Watson 1983, p. 101):

12.8 Spherical–Radial Methods 365

1

|Ud |
∫

Ud

exp{−k(µTz)} dz = Id/2−1(k)
(2π)d/2

kd/2−1
,

where Ij(x) is the modified Bessel function. Relevant results are tabled in
Abramowitz and Stegun (1970): their Table 9.8 lists e−kI0(k), e−kI1(k), and
k−2I1(k); their Table 10.8 shows

√
π/(2k)In+1/2(k).

12.8 Spherical–Radial Methods

The same spirit of exploiting the advantages of fixed quadrature and randomized meth-
ods motivated Monahan and Genz (1997) to propose a mixed method for the general
Bayesian integration problem. The common asymptotics suggests that the posterior
distribution should be approximately normal around the mode, with the inverse of the
Hessian approximating the covariance matrix of the parameters. However, as noted in
Sections 12.4 and 12.5 with importance sampling, putting too much trust in the asymp-
totics is dangerous and renders the CLT importance sampling results unreliable. We
desire an approach that could exploit the multivariate normality without failing com-
pletely when the posterior is far from normal.

Their approach begins with the same step: compute the posterior mode t∗ and Hes-
sian matrix, H = −∇2 log p∗(t) at t∗. Then compute the Cholesky factorization of H =
BBT and change variables from t to x via t = t∗ + B−Tx. The desired integrals now
take the form ∫

· · ·
∫

h(t)p∗(t) dt =
∫

· · ·
∫

g(x)q(x) dx,

where g(x) = h(t∗ + B−Tx) and q(x) = |B|p∗(t∗ + B−Tx). Integration over x is now
also over Rd; the main change is that the new variable x is centered at the origin and
scaled. The spherical–radial transformation is the next key step, essentially a change
to polar coordinates. Again we change variables from x to x = rz, where r is the ra-
dius and z is a point on the surface of the unit sphere in d dimensions Ud. Now the
desired integrals look like∫

· · ·
∫

h(t)p∗(t) dt =
∫

· · ·
∫

g(x)q(x) dx

=
∫ ∞

0

∫
Ud

g(rz)q(rz) dz r d−1 dr; (12.8.1)

don’t forget the r d−1. The value of changing to (r, z) is that the most common failure
of the normal approximation to the posterior appears in the tails, isolated here to the
radius r .

The spherical integration for a given r, the inner integral, calls for the randomiza-
tion of spherical rules discussed in Section 12.7. Generate random orthogonal matrices
Q(j), j = 1, . . . , q; then the inner integral is estimated using the average of the q

replicates

366 Statistical Methods for Integration and Monte Carlo

G(r) = 1

q

q∑
j=1

{ m∑
k=1

ukg(rQ(j)vk)q(rQ(j)vk)

}
, (12.8.2)

since the inner sum is an unbiased estimate of∫
Ud

g(rz)q(rz) dz.

Now that the inner integral (together with most of the d dimensions) has been taken
care of, two approaches are considered for the outer integral: fixed and random. The
randomized quadrature method for R1 described in Section 12.7 was derived for this
particular problem. Here we generate R ∼ χd+2 and then compute

T3(R) = w0(R)G(0) + 2w1(R)G(R) exp{R2/2}, (12.8.3)

with the weights as before, so w0(R) = 1 − d/R2 and 2w1(R) = d/R2. This third-
degree randomized integration rule for the radius has proved to be quite effective in
high-dimensional (d in hundreds) problems, but not as good as fixed rules in more
modest problems (d ≈ 3, . . . ,12).

The best approach for integrating posteriors in modestly high dimensions is a mixed
spherical–radial method: employ the randomized spherical integration rule as ex-
pressed in (12.8.2), but use a fixed method (e.g. Simpson) for the radial part. Here
the radial integration uses abscissas ri and weights wi. The mixed spherical–radial
method takes the form∑

i

wir
d−1
i G(ri) =

∑
i

wir
d−1
i

1

q

q∑
j=1

{ m∑
k=1

ukg(riQ(j)vk)q(riQ(j)vk)

}
. (12.8.4)

The integration in the radial direction does not depend on normal-like tails, and the
randomization appears in the high-dimension spherical integration. If the multivariate
normal approximation to the posterior works well, then this approach can exploit it;
if the approximation is poor, this mixed method can still soundly perform the integra-
tion and give reliable standard errors. An important byproduct of the mixed method
are some effective diagnostics based on an analysis of the variance expression. Let us
denote as Yij the term in braces in (12.8.4); then a standard error can be constructed in
a straightforward manner. Estimate the variance of G(ri) in the usual way:

S2
i =

q∑
j=1

(Yij − Ȳi)
2

q(q − 1)
; (12.8.5)

then the variance can be estimated as∑
i

w2
i r

2d−2
i S2

i . (12.8.6)

Experiments have shown this variance estimate to be reliable.
The diagnostics from the mixed spherical–radial method can assess the quality of

the multivariate normal approximation to the posterior. If the approximation is good,
then the variances of G(ri) will be small and the plot of, say, log G(ri) versus r should
look like −r 2

i /2. Departures from normality (say, heavy tails) will be manifest in the

12.8 Spherical–Radial Methods 367

Figure 12.7. Spherical–radial method on blood-type problem. Plot of posterior with normal (solid
line) and standard errors (slammed against axis) as a function of radius.

(tail) behavior of G(ri). The variances of G(ri) should be small for very small r, since
the posterior should be flat at its mode. The variances of G(ri) will also be small for
very large r as the posterior tails off to zero. In between, the variance estimates S2

i re-
flect the spherical symmetry of the posterior. These two plots can assess the quality of
the normal approximation via tail behavior and spherical symmetry; a combined plot
of (a) the weighted wir

d−1
i G(ri) versus r (compared to the χd kernel r d−1 exp{−r 2/2})

and (b) the weighted standard error contributionwir
d−1
i Si will show both effects at once.

Example 12.6: Spherical–Radial Integration of Posterior from Modified Blood-
Type Example
The posterior from the extended example of Chapter 9, with modified data as in
Example 10.2 to make the problem more interesting, is integrated using spherical
radial integration methods (see the code in mixed1). Since d = 2, the spherical
integration (really just a circle) is coded using just sines and cosines; the radial in-
tegration with Simpson’s rule is truncated at r = 8. The estimated relative error
in the normalization constant is just .0002, and the posterior mean vector and co-
variance matrix are computed as

E[θ] =
[

.271783

.124921

]
and cov[θ] =

[
.004442 −.000643

−.000643 .002217

]
.

The diagnostic plots for the spherical–radial method are given in Figures 12.7–
12.9. Figure 12.7 gives the G(r) and Si, and it is clear that near the mode the
posterior is very close to normal. Figure 12.8, plotting log G(r) versus r along
with −r 2/2, shows how the posterior normality deteriorates farther from the
mode. The combined plot in Figure 12.9 shows the effect on the posterior, with
the weighted radial part very close to the target χ2 density. Note that, in all three
plots, the errors are very small compared to the signal.

368 Statistical Methods for Integration and Monte Carlo

Figure 12.8. Spherical–radial method on blood-type problem. Plot of log posterior as a function of
radius; solid line is −r 2/2.

Figure 12.9. Spherical–radial method on blood-type problem. Plot of weighted posterior and chi
density with 2 df; weighted standard errors still against axis.

12.8 Spherical–Radial Methods 369

Figure 12.10. Spherical–radial method on variance components problem. Plot of weighted posterior
and chi density with 3 df; weighted standard errors no longer small.

Example 12.7: Spherical–Radial Integration of Posterior from Variance Com-
ponents Example
The posterior from the variance components example was previously analyzed
in Examples 10.3 and 12.2; here the posterior is integrated using spherical–radial
methods in the demonstration mixed2. Although the dimension d = 3 is still
small, this problem presents some difficulties because the first two components
must be positive. The range for the radial integration is extended to r = 16 and
many more points are used, yet the relative standard error in the normalization
constant is still at .0035.

As can be seen from the diagnostic plot Figure 12.10, the posterior is very close
to normal near the mode (small values of r), but the tails are heavier than normal
owing to the plot of r d−1G(r) tailing off much more slowly than the χ3 density.
More importantly, the error grows quickly and swamps the signal for large r. A
possible cause for the error to grow so quickly is that the parameter space bound-
aries are wrecking the spherical symmetry. One possible remedy is to put more
randomizations (bigger q) to reduce the error for larger values of the radius r.

Two technical details in the mixed spherical–radial method remain to be addressed.
The radial integration can be handled well using Simpson’s rule, but with a larger range
than one might expect. Using r in standardized coordinates, one might think that r =
2 is two standard errors and large. But as d grows, the volume in the higher dimen-
sion grows also, and like r d−1, so we’re really integrating the χd density kernel if

370 Statistical Methods for Integration and Monte Carlo

the posterior is exactly multivariate normal. As a result, it’s best to extend the range
much larger, say to r = 16. See Exercise 12.18 for how well Simpson’s rule can work
in this circumstance. The second technical detail involves the trade-off in bias and
variance. More radial points of integration reduce the bias; more replications (or ran-
domizations, or a bigger q) reduce the variance. As can be seen especially from the
diagnostic plots in Figures 12.9 and 12.10, the variance is small near the mode, rises,
and then tails off as the radius grows. The mixed spherical–radial approach can be im-
proved by varying the number of randomizations q with the radius or by implementing
a completely adaptive scheme to trade off bias and variance. The final detail is that
the spherical–radial method can work only if most of the posterior mass surrounds the
mode; other local modes with substantial mass that are far (r > 16) from the main
mode cannot be found. But there’s no other method that can work on those problems,
either.

Programs and Demonstrations

rho0 Estimation of percentile points of sample distribution of the correlation
coefficient
The correlation coefficient r for a sample size of 12 is generated using normals
(gnroul) and χ (gchirv) random variables for n = 1000 observations. The four per-
centile point estimates ĉj (j = 1, . . . , 4) described in Section 12.2 are computed.

rho1 Demonstration of kernel density estimation of the correlation coefficient
Sample correlation coefficients (n = 1000) are generated as in rho0 and kernel den-
sity estimates are computed using the density of the sum of three uniforms as the
kernel; results are stored in rho1.out. Plotted later to form Figure 12.2.
eknlde – computes kernel density estimates for kernel with finite support.
ds3uns – computes density of the sum of three uniform variables scaled to interval
(−1,1).
ifind – discrete bisection search described in Exercise 8.7.

rho2 Demonstration of orthogonal series density estimation of the correlation
coefficient
Sample correlation coefficients (n = 1000) are generated as in rho0 and orthogo-
nal series density estimates are computed using Legendre polynomials; results are
stored in rho2.out. Plotted later to form Figure 12.3.
ortpe – uses Clenshaw’s method to evaluate finite Fourier series of a function.
ortpv – evaluates orthogonal polynomials.
weight – evaluates orthogonal polynomial weight functions.

rho3 Demonstration of spline density estimation of the correlation coefficient
Sample correlation coefficients (n = 1000) are generated as in rho0 and spline
density estimates are computed using the natural cubic spline interpolant to the em-
pirical distribution function; results are stored in rho3.out. Plotted later to form
Figure 12.4. Uses spline routines splstn, strids, splev, spled, and jfind.

Programs and Demonstrations 371

dks2s Demonstration of Smirnov two-sample nonparametric test
First a textbook example of the Smirnov test statistic is computed, then several
samples including ties are generated and the results from dks2s compared with the
textbook approach to computation using sorts with parallel vectors.
dks2s – computes Smirnov two-sample nonparametric test statistic.
hsort – heapsort sorting algorithm.
hksort – heapsort sorting algorithm with an integer vector sorted in parallel to the
vector of keys.

perfect Demonstration of the use of quasirandom sequences to check generation code
Generates pairs from Halton sequence with bases 2 and 3 and performs Box–Muller
transformation; then checks by computing Kolmogorov–Smirnov and Anderson–
Darling goodness-of-fit test statistics via alnphi and cdfn.
ncremnt – arbitrary base counter for Halton sequence.
expand – converts base counter vector in reverse order to get Halton sequence.

quad4 Importance sampling for log-series posterior
As described in Example 12.1, the log-series posterior from Example 10.1 is inte-
grated using importance sampling from the normal approximation. The importance
sampling weights are stored in quad4.wgt. The statistics necessary for analysis as
described in Section 12.4 are also computed.

chex122a Posterior integration of variance components example using normal
importance sampling

chex122b Posterior integration of same example using importance sampling from
multivariate t
As described in Example12.2, the posterior from variance components example from
Chapter10 is integrated using the normal approximation to the posterior in chex122a,
whereas chex122b uses a multivariate t approximation with 5 df. Both use 2500
replications, and the weights are stored in files chex122a.wgt and chex122b.wgt.
The tail behavior of the distribution of weights is analyzed as outlined in Section12.5.

laplace1 Application of Laplace approximation to log-series posterior
As described in Example 12.3, the Laplace approximation is employed to compute
the posterior mean and variance. The 1-dimensional searches are performed using
the Illinois method.
illini – “Illinois” search algorithm.

laplace2 Application of Laplace approximation to posterior from modified blood-type
example
As described in Example 12.4, the Laplace approximation is employed to compute
the posterior means, variances, and covariance for the data of Example 10.2. Most
of the code is a modification of chex94rp.

spkblh Randomized quadrature on the surface of a sphere
As described in Example 12.5, the kernel of the Langevin distribution on the surface
of a sphere is integrated using the randomized quadrature of Section 12.7. The an-
tipodal integration rule on the sphere is rotated using a random orthogonal matrix
computed following Stewart’s algorithm.
spkblh – randomized quadrature on the surface of a sphere.

372 Statistical Methods for Integration and Monte Carlo

mixed1 Spherical–radial integration of posterior from modified blood-type example
As described in Example 12.6, the posterior mean vector and covariance matrix for
the modified blood-type example are computed using spherical–radial integration.
The spherical integration, actually on a circle since d = 2, is coded simply with
sines and cosines; the radial integration uses Simpson’s rule, truncating the range at
r = 8. The information for the diagnostic plots is written in mixed1.dgn.

mixed2 Spherical–radial integration of variance components example
As described in Example 12.7, the posterior mean vector and covariance matrix for
the variance components example, examined previously in Examples 10.3 and 12.2,
were computed using spherical–radial methods. A randomized antipodal spheri-
cal rule is used for the spherical integration; again Simpson is used for the radial,
but with truncation at r = 16. The diagnostic information is written in the file
mixed2.dgn.

Exercises

12.1 Discuss the computation of a kernel-type estimate of a distribution function.

12.2 Figures 10.1–10.4 display the log-series posterior from Examples 10.1 and 12.1. Using
the methods of Section 12.4 and the importance sampling weighted observations in
quad4.wgt, estimate the posterior density and compare it to the true density shown in
the figures.

12.3 Investigate the tail behavior of the importance sampling weights in quad4.wgt.

12.4 Using the results in quad4.wgt, estimate the .05 and .01 upper percentile points.

12.5 Write a routine to check a spline density estimate for nonnegativity.

12.6 Show that the estimates of the Fourier coefficients in orthogonal series density estima-
tion (12.2.7) are unbiased.

12.7 Generate a sample of n = 400 observations from the t3 distribution (Section 11.3, Algo-
rithm C5). Estimate the upper .05 and .01percentile points using estimates ĉ1, ĉ2, ĉ3, ĉ4,

and compare to the true values.

12.8 Generate a sample of n = 400 observations from the t3 distribution, compute an estimate
of the tail parameter β using (12.5.2), and test for infinite mean and variance at α = .05.

12.9 Generate a sample of n = 400 observations from the logistic distribution, compute an
estimate of the tail parameter β using (12.5.2), and test for infinite mean and variance
at α = .05.

12.10 Write a routine to compute the Kolmogorov–Smirnov distribution function Q(t) de-
fined in (12.3.1).

12.11 Find the .10, .05, and .01 upper percentile points of Q(t) from Exercise 12.10.

12.12 Modify the demonstration perfect for generating from the t3 distribution (Algorithm
C5 again) and generate a sample of n = 400.

(a) Estimate the density using any of the methods in Section 12.2.
(b) Test for goodness of fit using chi-square, Kolmogorov–Smirnov, or Anderson–

Darling.
(c) Estimate the upper .05 and .01 percentile points as in Exercise 12.7.

References 373

12.13 Compare the results from Exercise 12.7 for estimating the percentile points of the t3 dis-
tribution to those using importance sampling from the Cauchy (t1) distribution together
with weighted versions of the estimates ĉ1, ĉ2, ĉ3, ĉ4.

12.14 Apply the Laplace approximation method to estimate the posterior means using the repa-
rameterized form of the extended example from Section 9.9 and chex94rp. Recall that
the transformation made the likelihood much closer to normal.

12.15 Use the randomized Riemann sum (12.7.1) for finding the posterior mean and variance
of the log-series posterior used in Example 12.1. Assess the accuracy of the posterior
mean using the standard error for the ratio estimate from (12.4.4).

12.16 Compare the randomized Riemann sum (12.7.1) and a Simpson analog with alternat-
ing weights, one twice the other. Find the variances for each method for the following
functions on (0,1): (a) exp(x); (b) cos(πx); (c) 1/(1 + 5x 2).

12.17 Integrate the function f(x) = 1/(1+ x 2) on (−1,1) using the Siegel–O’Brien random-
ized quadrature method.

12.18 Integrate the kernel of the χ density r d−1 exp{−r 2/2} on (0, ∞) for various values of d.

(a) Find a truncation point. How does it depend on d?
(b) How many points are required using Simpson’s rule to get the relative error below

10−4?

References

Milton Abramowitz and Irene A. Stegun (Eds.) (1970), Handbook of Mathematical Functions. New
York: Dover.

Dennis D. Boos (1984), “Using Extreme Value Theory to Estimate Large Percentiles,” Technometrics
26: 33–9.

N. N. Cencov (1962), “Evaluation of an Unknown Distribution Density from Observations,” Soviet
Mathematics 3: 1559–62.

William G. Cochran (1954), “Some Methods for Strengthening the Common χ2 Tests,” Biometrics
10: 417–51.

R. Cranley and T. N. L. Patterson (1976), “Randomization of Number Theoretic Methods for Multi-
ple Integration,” SIAM Journal on Numerical Analysis 13: 904–14.

E. C. Fieller (1954), “Some Problems in Interval Estimation,” Journal of the Royal Statistical Society
B 16: 175–85.

Alan Genz and John Monahan (1998), “Stochastic Integration Rules for Infinite Regions,” SIAM Jour-
nal of Scientific Computation 19: 426–39.

John Geweke (1989), “Bayesian Inference in Econometric Models Using Monte Carlo Integration,”
Econometrica 57: 1317–39.

E. Haeusler and J. L. Teugels (1985), “On Asymptotic Normality of Hill’s Estimator for the Exponent
of Regular Variation,” Annals of Statistics 13: 743–56.

P. Hall (1982), “On Some Simple Estimates of an Exponent of Regular Variation,” Journal of the
Royal Statistical Society B 44: 37–42.

Richard M. Heiberger (1978), “Algorithm AS127: Generation of Random Orthogonal Matrices,”
Applied Statistics 27: 199–206.

Tim Hesterberg (1995), “Weighted Average Importance Sampling and Defensive Mixture Distribu-
tions,” Technometrics 37: 185–94.

B. W. Hill (1975), “A Simple General Approach to Inference about the Tail of a Distribution,” Annals
of Statistics 3: 1163–74.

H. B. Mann and A. Wald (1942), “On the Choice of the Number of Class Intervals in the Application
of the Chi-Square Test,” Annals of Mathematical Statistics 13: 306–17.

374 Statistical Methods for Integration and Monte Carlo

J. F. Monahan (1993), “Testing the Behavior of Importance Sampling Weights,” Computing Science
and Statistics 24: 112–17.

John Monahan and Alan Genz (1997), “Spherical-Radial Integration Rules for Bayesian Computa-
tion,” Journal of the American Statistical Association 92: 664–74.

David S. Moore (1986), “Tests of Chi-Squared Type,” in R. B. D’Agostino and M. A. Stephens (Eds.),
Goodness-of-Fit Techniques, pp. 63–95. New York: Marcel Dekker.

J. T. Roscoe and J. A. Byars (1971), “An Investigation of the Restraints with Respect to Sample Size
Commonly Imposed on the Use of Chi–Square Statistic,” Journal of the American Statistical As-
sociation 66: 755–9.

A. F. Siegel and F. O’Brien (1985), “Unbiased Monte Carlo Integration Methods with Exactness for
Low Order Polynomials,” SIAM Journal on Scientific and Statistical Computing 6: 169–81.

B. W. Silverman (1986), Density Estimation for Statistics and Data Analysis. London: Chapman &
Hall.

N. V. Smirnov (1939), “On the Estimation of the Discrepancy between Empirical Curves of Distribu-
tion for Two Independent Samples” (in Russian), Bulletin of Moscow University 2: 3–16.

Michael A. Stephens (1970), “Use of the Kolmogorov–Smirnov, Cramer–von Mises and Related Sta-
tistics without Extensive Tables,” Journal of the Royal Statistical Society B 32: 115–22.

Michael A. Stephens (1986), “Tests Based on EDF Statistics,” in R. B. D’Agostino and M. A. Stephens
(Eds.), Goodness-of-Fit Techniques, pp. 97–193. New York: Marcel Dekker.

G. W. Stewart (1980), “The Efficient Generation of Random Orthogonal Matrices with an Application
to Condition Estimation,” SIAM Journal on Numerical Analysis 17: 403–9.

Martin A. Tanner and Ronald A. Thisted (1982), “Remark ASR42. A Remark on AS127. Generation
of Random Orthogonal Matrices,” Applied Statistics 31: 190–92.

Richard A. Tapia and James R. Thompson (1978), Nonparametric Probability Density Estimation.
Baltimore: Johns Hopkins University Press.

Luke Tierney and Joseph B. Kadane (1986), “Accurate Approximations for Posterior Moments and
Marginal Densities,” Journal of the American Statistical Association 81: 82–6.

Luke Tierney, Robert E. Kass, and Joseph B. Kadane (1989), “Fully Exponential Laplace Approxima-
tions to Expectations and Variances of Nonpositive Functions,” Journal of the American Statistical
Association 84: 710–16.

Grace Wahba (1975), “Interpolating Spline Methods for Density Estimation I: Equi-Spaced Knots,”
Annals of Statistics 3: 30–48.

Geoffrey S. Watson (1983), Statistics on Spheres. New York: Wiley.
I. Weissman (1978), “Estimation of Parameters and Large Quantiles Based on the k Largest Obser-

vations,” Journal of the American Statistical Association 73: 812–15.

13

Markov Chain Monte Carlo Methods

13.1 Introduction

One of the main advantages of Monte Carlo integration is a rate of convergence that is
unaffected by increasing dimension, but a more important advantage for statisticians
is the familiarity of the technique and its tools. Although Markov chain Monte Carlo
(MCMC) methods are designed to integrate high-dimensional functions, the ability to
exploit distributional tools makes these methods much more appealing to statisticians.
In contrast to importance sampling with weighted observations, MCMC methods pro-
duce observations that are no longer independent; rather, the observations come from
a stationary distribution and so time-series methods are needed for their analysis. The
emphasis here will be on using MCMC methods for Bayesian problems with the goal
of generating a series of observations whose stationary distribution π(t) is proportional
to the unnormalized posterior p∗(t). Standard statistical methods can then be used to
gain information about the posterior.

The two general approaches covered in this chapter are known as Gibbs sampling
and the Metropolis–Hastings algorithm, although the former can be written as a spe-
cial case of the latter. Gibbs sampling shows the potential of MCMC methods for
Bayesian problems with hierarchical structure, also known as random effects or vari-
ance components. The key ingredient in Gibbs sampling is the ability to generate from
the conditional distribution of each variable given the others; in the case of three com-
ponents, generating from f(x | Y = y, Z = z), f(y | X = x, Z = z), and f(z |
X = x, Y = y). Under favorable conditions and starting values (X0, Y0, Z0), the
algorithm is simply as follows.

Algorithm BGS (Basic Gibbs Sampling)
For i = 1, . . . , n do

Generate Xi from f(x | Y = Yi−1, Z = Zi−1)

Generate Yi from f(y | X = Xi, Z = Zi−1)

Generate Zi from f(z | X = Xi, Y = Yi)

Then the triple (Xi, Yi, Zi) forms a Markov chain whose stationary distribution is the
joint distribution f(x, y, z). This algorithm is easy to use whenever the likelihood
and prior permit easy generation from the conditional distribution of one parameter
given all of the others. Note that any or all of the three components (X, Y, Z) may be
multivariate.

375

376 Markov Chain Monte Carlo Methods

Example 13.1A: Variance Components with Normal Variables
The simplest but most important random effects problem is the common vari-
ance components problem in normal variables visited previously in Chapter 10.
Recall the change in notation from the standard:

Yij ∼ N(θi, φ = σ 2
e), j = 1, . . . , ni;

θi ∼ N(β = µ, γ = σ 2
a), i = 1, . . . , p.

Our previous analyses constructed the likelihood for only the three fixed param-
eters (relabeled as β = µ, φ = σ 2

e , and γ = σ 2
a) by integrating out the random

effect parameters θi, but these parameters will be retained here. Convenience
suggests a prior on the fixed parameters of the following form:

β ∼ N(b0, φ0),

φ ∼ inverse gamma(a1, b1),

γ ∼ inverse gamma(a2, b2),

with each component independent. The posterior then takes the form

p∗(t, b, f, g) ∝ g−(a2+p/2)−1 exp

{
−b2 + 1

2

∑
i(ti − b)2

g

}

× f −(a1+N/2)−1 exp

{
−b1 + W/2 + 1

2

∑
i ni(ȳi• − ti)

2

f

}

× exp

{
−

1
2 (b − b0)

2

φ0

}
. (13.1.1)

The conditional distribution of the four (the first multivariate) parameters given
all the others can be easily written:

(θi | β = b, φ = f, γ = g) independent N(θ∗
i , γ

∗
i),

where γ ∗
i = 1/(ni/f + 1/g) and θ∗

i = (ni ȳi•/f + b0/g) ∗ γ ∗
i ;

(β | θ = t, φ = f, γ = g) ∼ N(β∗
0, φ

∗
0),

where φ∗
0 = 1/(1/φ0 + p/g) and β∗

0 = (b0/φ0 +∑ ti/g
) ∗ φ∗

0;
(φ | θ = t, β = b, γ = g) ∼ inverse gamma(a∗

1, b
∗
1),

where a∗
1 = a1 + N/2 and b∗

1 = b1 + W/2 + 1
2

∑
i(ȳi• − ti)

2; and

(γ | θ = t, β = b, φ = f) ∼ inverse gamma(a∗
2, b

∗
2),

where a∗
2 = a2 + p/2 and b∗

2 = b2 + 1
2

∑
i(ti − b)2.

See the demonstration program chex131. The reader should take warning that
even though this approach may appear to be simple, the problem is particularly
troublesome and will be revisited. See also Exercises 13.17, 13.18, and 13.19.

The keys for understanding MCMC methods are the Markov property and the finite
discrete Markov chain. Our discussion begins with an introduction to Markov chains

13.2 Markov Chains 377

in Section 13.2, followed by the main theory behind Gibbs sampling in Section 13.3 and
the Metropolis–Hastings algorithm in Section 13.4. Section 13.5 consists of a discus-
sion of applicable time-series methods, and diagnostics are discussed in Section 13.7.
The adaptive acceptance /rejection algorithms of Gilks and colleagues are described in
Section 13.6.

13.2 Markov Chains

A series of random variables {Yi, i = 1, . . . , n} has the Markov property if the condi-
tional distribution of Yi, given all the previous observations Y1, . . . , Yi−1, depends only
on the most recent observation Yi−1. Saying this another way: The distribution of the
future given the past and present depends only on the present. If Yi has a finite dis-
crete sample space (say, the integers {1, . . . , m}) then this distribution can be written in
terms of transition probabilities,

Pr(Yi = k | Y1, . . . , Yi−1) = Pr(Yi = k | Yi−1 = j) = Pjk. (13.2.1)

Hence this transition distribution can be expressed by an m × m matrix P with en-
tries Pjk whose rows sum to 1. If the probability distribution of Y0 is given by vector
π (0), then the distribution of Yi can be written as π (i) = (PT)iπ (0). (The reader should
recognize the relationship with the power methods of Chapter 6.) If P has the correct
properties then the largest eigenvalue of P is one with (a) right eigenvector 1 (column of
ones), since P1 = 11, and (b) left eigenvector π (i.e., PTπ = 1π), so that lim(PT)i =
π1T. As a result, the distribution π (i) converges to the stationary distribution π (with
π = PTπ) at a rate that depends on the second largest eigenvalue of P. Using Result 4
from Chapter 6, (PT)i can be written as 1πT + γ iV(i), where |γ | < 1 and ‖V(i)‖ is
bounded. Then π (i) − π = γ iV(i)π (0) and the convergence to the stationary distribu-
tion is geometric.

Just what are those “correct properties” that the transition matrix P must have? They
are: irreducibility, aperiodicity, and recurrence. Irreducibility means that there is just
one system; not one system moving around in the first half of the sample space and an-
other in the second half (giving P two unit eigenvalues). If the Markov chain is not
irreducible then it can get stuck in one part and never get to the other. As its name
suggests, a periodic chain cycles through some states in a regular fashion; aperiodicity
precludes this possibility. Recurrence means that the expected time to start in state i

and return back to state i is finite. Although this may have not special intuitive mean-
ing, its consequence is that the stationary distribution exists. With an infinite number
of states, recurrence precludes the series from running off to infinity, never to return.

The main consequences of a Markov chain having these properties are threefold.
First is that a stationary distribution exists and Yi converges in distribution to it. The
second is the ability to apply the strong law to the series in spite of its dependence:

1

n

n∑
i=1

g(Yi) → E{g(Y)}, (13.2.2)

378 Markov Chain Monte Carlo Methods

where Y has the stationary distribution. A series having this property is called ergodic.
The third desirable property is a version of the central limit theorem, which depends
on the geometric rate of convergence and works out as

√
n

(
1

n

n∑
i=1

g(Yi) − E{g(Y)}
)

→ N(0, η2
g), (13.2.3)

where the asymptotic variance term η2
g depends on the function g and the stationary

distribution. The applicable time-series methodology is discussed in Section 13.5.
Now two other items require attention before proceeding. First, the Markov prop-

erty can be relaxed to any finite degree of dependence by expanding the sample space.
If the distribution of Yi depends on both Yi−2 and Yi−1, then expand the definition of
the series {Yi} to two dimensions; the Markov property will then hold. The second item
concerns using sample means to estimate expectations, exploiting (13.2.2). The first
few observations Yi have distribution π (i), not their limiting distribution π , and we
want means with respect to π . In practice, starting the chain means a single value Y0,

not a distribution π (0), and different starting values will directly affect the first part of
the series and also the average n−1∑ g(Yi). As a result, the initial startup or “burn-in”
of a series is often discarded from the average for estimating properties of the station-
ary distribution. How much of the series to discard – or at what point convergence of
π (i) to π has been achieved – depends on the rate of convergence, which can be diffi-
cult to quantify in practice.

Generalizing the finite discrete Markov chain to the continuous case introduces some
obvious difficulties and, of course, some subtle ones. First extend to the multivariate
case, with sample space Rd . The transition matrix P becomes a transition kernel p(x, y)

(from x to y) for computing probabilities as

Pr(Y ∈ A | X = x) =
∫

A

p(x, y) dy.

The stationary distribution of the chain must then satisfy the integral equation

π(y) =
∫

p(x, y)π(x) dx. (13.2.4)

The “correct conditions” for the Markov process to be ergodic are similar to the dis-
crete case, but with some details. Irreducibility as applied to MCMC is not usually a
problem, save for getting stuck in one part of the space and not being able to get out.
Recurrence is rephrased in terms of sets with positive probability being visited infi-
nitely often. The reader is referred to Tierney (1994, 1995), Meyn and Tweedie (1993),
or Chan and Geyer (1994) for details.

13.3 Gibbs Sampling

Gibbs sampling is often the easiest MCMC method to implement and explain. How-
ever, its applicability can be limited to certain classes of problems. The problems that
are conducive for Gibbs sampling are those where the conditional distributions of vari-
ables (given the others) can be easily constructed from the posterior distribution. That

13.3 Gibbs Sampling 379

is, take the unnormalized posterior distribution p∗(t) and examine each component,
say t = (t1, t2, . . . , td). Notice that the conditional distribution of θj given all of the
other components is proportional to p∗(t):

p(tj | θ−j = t−j) ≡ p(tj | θ1 = t1, . . . , θj−1 = tj−1, θj+1 = tj+1, . . . , θd = td)

∝ p∗(t1, . . . , td),

although the only variable of interest is tj .

Leaving behind Bayesian analysis for a moment, consider the following joint den-
sity with X discrete and Y continuous (see also Casella and George 1992):

f(x, y) =
(

n

x

)
y x+α−1(1 − y)n−x+β−1 for x = 0,1, . . . , n and 0 ≤ y ≤ 1.

(13.3.1)

To obtain the conditional density of x given y, treat y as fixed in f(x, y); then we find

f(x | y) ∝
(

n

x

)
y x(1 − y)−x

or that (X | Y = y) is binomial(n, y), with the deleted constants only part of the nor-
malization. Going the other way, to derive the conditional density of y given x, treat
x as fixed in f(x, y); then we find

f(y | x) ∝ y x+α−1(1 − y)n−x+β−1

or that (Y | X = x) is beta(x + α, n − x + β). A Gibbs sampling algorithm following

For i = 1, . . . , n do
Generate Yi from f(y | X = Xi−1)

Generate Xi from f(x | Y = Yi)

will produce a series of pairs (Xi, Yi) whose stationary distribution is given by f(x, y)

in (13.3.1). Notice that the alphabetic order was reversed, generating Y first from the old
X whereafter the new X would use the new Y. Checking the integral equation (13.2.4),
with (X, Y) corresponding to y (new) and (u, v) corresponding to x (old), we have

p(u, v; x, y) = f(x | y)f(y | u)

=
(

n

x

)
y x(1 − y)n−x × �(α + β + n)

�(u + α)�(n − u + β)
yu+α−1(1 − y)n−u+β−1.

Hence, using f(u, v) (from 13.3.1) as π(x), the right-hand side is∫
p(x, y)π(x) dx

=
∫∫ 1

0
p(u, v, x, y)f(u, v) dv dµ(u)

=
∫∫ 1

0

(
n

x

)
y x(1 − y)n−x × �(α + β + n)

�(u + α)�(n − u + β)
yu+α−1(1 − y)n−u+β−1

×
(

n

u

)
vu+α−1(1 − v)n−u+β−1 dv dµ(u). (13.3.2)

380 Markov Chain Monte Carlo Methods

The innermost integral is just the beta kernel, and it cancels the ratio of gamma func-
tions to yield

=
∫ (

n

x

)
y x(1 − y)n−xyu+α−1(1 − y)n−u+β−1 ×

(
n

u

)
dµ(u)

=
(

n

x

)
y x(1 − y)n−xyα−1(1 − y)β−1 ×

∫ (
n

u

)
yu(1 − y)n−u dµ(u);

summing over u produces exactly π(y) = f(x, y), verifying (13.2.4). (See also Exer-
cises 13.1 and 13.2.)

Example 13.2: Ramus Heights (a.k .a. Jaw)
In a classic repeated measures problem, Elston and Grizzle (1962) give four mea-
surements on each of n = 20 boys of the size of the jaw at four ages. Denote the
measurement of boy i at age xj (xj = 8, 8.5, 9, 9.5) as Y

(i)
j with i = 1, . . . , n and

j = 1, . . . , p. Since parameterizing with the inverse covariance matrix will make
some things easier, the model has Y(i) ∼ Np(µ, �−1) but perhaps with a regres-
sion model for the mean vector µ; that is, µ = Xβ. The likelihood for these data
can be written as

f(Y | β, �) ∝ |�|n/2 exp
{− 1

2 trace �E∗}, (13.3.3)

where E∗ = E + n(Ȳ − Xβ)(Ȳ − Xβ)T and E = ∑n
i=1(Y(i) − Ȳ)(Y (i) − Ȳ)T.

The prior on the inverse covariance matrix � is Wishart with p degrees of free-
dom and scale matrix C−1. A flat prior is used for β. Consequently, the posterior
can be written as

p(b, O) ∝ |O|(n−1)/2 exp
{− 1

2 trace OE∗∗}, (13.3.4)

where E∗∗ = E∗ + C. The conditional distribution of � given β = b is clearly
Wishart, with scale matrix (E + C + n(Ȳ − Xb)(Ȳ − Xb)T)−1 and n + p de-
grees of freedom (we are talking about the inverse covariance matrix �). For the
other conditional distribution, some algebra is needed (Exercise 13.4) to show
that β given � = O is Np

(
β̃ = (XTOX)−1XTOȲ, (nXTOX)−1

)
. In the demon-

stration chex132, C = I4 and a simple linear regression model is used for Xβ (β

is 2-dimensional).

Clearly, Gibbs sampling can be easy to use if the conditional distributions work out into
nice forms, as in Examples 13.1 and 13.2. In the following example, however, things
don’t seem to work out for one of the parameters.

Example 13.3A: Pump Example
George, Makov, and Smith (1993) discussed a hierarchical prior from a Pois-
son model for the number of failures Yj for pump j with operating time xj . The
model for the data is Yj ∼ Poisson(φj xj), where the rate parameters φj come
from a gamma distribution (with parameters α and β) and use conjugate priors
for these hyperparameters: exponential(1) for α; Gamma(c,1) for β. The like-
lihood is proportional to

∏
(fj xj)

yj exp
{−∑ fj xj

}
, and the (prior) distribution

13.3 Gibbs Sampling 381

of the random effects parameters φj takes the form baf a−1
j exp{−bfj }/�(a). The

density for α (resp. β) is chosen proportional to e−a (resp. bc−1e−b).

Consider the case of Example13.3, where the joint posterior of θ = (φ1, . . . , φJ , α, β) is

p∗(f1, . . . , fJ , a, b) =
∏
j

(fj xj)
yj exp

{
−
∑

j

fj xj

}

×
∏
j

[
baf a−1

j exp{−bfj }
�(a)

]
× e−a × e−bbc−1.

However, first considering φ1, we have

p(f1 | θ−1 = t−1) ∝ p∗(t) ∝ f
a+y1−1

1 exp{−f1(b + x1)};
in general,

p(fj | θ−j = t−j) ∝ p∗(t) ∝ f
a+yj −1

j exp{−fj(b + xj)} for j = 1, . . . , J.

Then

p(a | φ = f , β = b) ∝ p∗(t) ∝ bJae−a
∏
j

f a
j

�(a)
=
(
e−1bJ

∏
j fj

)a
�(a)J

and finally

p(b | φ = f , α = a) ∝ p∗(t) ∝ bJa+c−1 exp
{−b

(
1 +∑ fj

)}
.

This leads to the conditional distributions given previously:

(φj | α = a, β = b) ∼ Gamma(yj + a, xj + b),

(α | φj = fj, j = 1, . . . , J) ∼ f(a) ∝ (e−1bJ
∏

j fj

)a
/�(a)J ,

(β | α = a, φj = fj, j = 1, . . . , J) ∼ Gamma
(
Ja + c, 1 +∑ fj

)
.

Generating from two of these three looks easy. But one of them appears rather in-
tractable, and if you look back in Chapter 11 for methods to generate from that density,
you’ll be disappointed. The distribution for α looks difficult, but even though some
of the other prior distributions were modified, none of these conditional distributions
would be easy either. Notice that there is very little leeway here. The range of prior
distributions that permit a concise expression of the list of conditional distributions is
quite limited. The form of the density for α, however, does permit generation from
a clever scheme that is particularly suited to this kind of problem in Gibbs sampling.
Gilks and Wild (1992), Gilks (1992), and Gilks, Best, and Tan (1995) have devised
adaptive acceptance /rejection methods that are discussed in Section 13.6. An alterna-
tive approach for this problem is discussed in Section 13.4.

The theory behind Gibbs sampling hinges on using the product of conditional dis-
tributions of each variable (given the others) as the transition kernel of a continuous
Markov chain. Using the general case for three variables (as in Algorithm BGS in Sec-
tion 13.1) in order to check (13.2.4), we have

382 Markov Chain Monte Carlo Methods∫
3

∫
2

∫
1
π(y3 | y1, y2)π(y2 | y1, x3)π(y1 | x2, x3)π(x1, x2, x3) dx1 dx2 dx3

= π(y3 | y1, y2)

∫
3
π(y2 | y1, x3)

∫
2
π(y1 | x2, x3)

∫
1
π(x1, x2, x3) dx1 dx2 dx3

= π(y3 | y1, y2)

∫
3
π(y2 | y1, x3)

∫
2
π(y1 | x2, x3)π(x2, x3) dx2 dx3

= π(y3 | y1, y2)

∫
3
π(y2 | y1, x3)

∫
2
π(y1, x2, x3) dx2 dx3

= π(y3 | y1, y2)

∫
3
π(y2 | y1, x3)π(y1, x3) dx3

= π(y3 | y1, y2)

∫
3
π(y1, y2, x3) dx3

= π(y3 | y1, y2)π(y1, y2) = π(y1, y2, y3). (13.3.5)

The main theoretical concerns for Gibbs sampling are starting values and ensuring ir-
reducibility. Specifically for Gibbs sampling, Roberts and Polson (1994) gave results
ensuring geometric convergence. In practice, the conditions are usually met but not
easily verified. The most common exceptions are cases where a set of conditional dis-
tributions can be constructed but no distribution exists. For Bayesian applications,
this usually means an improper posterior distribution arising from improper priors. An
oft-cited example (e.g. Casella and George 1992) follows.

Example 13.4: Conditionals from Improper Density
Consider the two conditional exponential densities f(y1 | y2) = y2e

−y1y2 and
f(y2 | y1) = y1e

−y1y2 for 0 < y1, y2 < ∞. Plugging in these conditionals in
order to solve (13.2.4), we have

f(y1, y2) =
∫

2

∫
1
f(y2 | y1)f(y1 | x2)f(x1, x2) dx1 dx2

=
∫

2

∫
1
y1e

−y1y2x2e
−y1x2f(x1, x2) dx1 dx2

=
∫

2
y1e

−y1y2x2e
−y1x2f(x2) dx2.

Now integrate y1 out of both sides to get the fixed point integral equation with
just the second variable:

f(y2) =
∫

2

x2

(x2 + y2)2
f(x2) dx2,

for which f(y2) ∝ 1/y2 is a solution. The only problem is that 1/y2 is an im-
proper density. See also Exercise 13.6 and further discussion in this section.

The reader may recall our efforts in Chapter 10 to reduce the dimension of the variance
components example (Example 10.3), first to the three structural parameters by inte-
grating out the random effects, then alluding to the possibility of integrating out the

13.4 Metropolis–Hastings Algorithm 383

mean parameter in order to reduce to the dimensions of the two variance components.
In stark contrast, this example resurfaced as Example 13.1 in its full-blown parameter-
ization, the random effects included with the structural parameters. In this form, the
conditional distributions are easy. If the random effects parameters were to be inte-
grated out, as in Chapter 10, Gibbs sampling would be very difficult to do.

This situation is common in MCMC problems, where including random effects pa-
rameters or latent variables makes life easier. Let us consider this problem in detail.
Suppose we partition the parameter vector θ = (φ, γ), with φ representing random
effects (or latent variables or nuisance parameters) and γ the structural parameters of
interest. Writing the joint (unnormalized) posterior as p∗(t) = p∗(f , g), the posterior
for γ is proportional to

∫
p∗(f , g) df . In Gibbs sampling, if we are able to generate from

the joint density proportional to p∗(f , g), then the “integration” can be done by just
ignoring the first part of the parameter vector and dealing with only the marginal distri-
bution of γ . Though it may at first seem like cheating, the mechanism for introducing
this type of parameter is often the only trick that makes Gibbs sampling tractable; it
goes by the name of data augmentation (see Tanner and Wong 1987).

The variance components example (Example 13.1) just mentioned also has a dark
side. In an attempt to minimize the effect of the prior, some researchers have used
parameters that make the prior improper: a1 = b1 = 0, so that the prior on φ (error
variance) is proportional to 1/f ; a2 = b2 = 0, so that the prior on γ (treatment vari-
ance) is proportional to 1/g; and φ0 = ∞, so that the prior on the mean β is flat.
However, the resulting posterior is improper (see the continuation of Example 13.1
that follows). Of course this is troubling, but not so surprising. The surprising and
more disturbing aspect of the improper posterior is that the Gibbs sampling algorithm
can generate a sequence of observations that show no sign of the inherent impropriety.
Perhaps no one would knowingly do such a thing, but this posterior distribution’s im-
properness is difficult to detect (Hobert and Casella 1996). See also Exercises 13.17,
13.18, and 13.19.

Example 13.1B: Variance Components (cont.)
To see that this improper prior leads to an improper posterior, simplify by assum-
ing a balanced problem, ni = n. Then, starting from (13.1.1), integrate out the ti
to obtain an expression for p∗(b, f, g) that is similar to (10.6.6):

g−1 × f −(N−p)/2−1 exp
{− 1

2W/f
}× (f + ng)−p/2 exp

{− 1
2B/(f + ng)

}
× exp

{− 1
2 (Ȳ•• − b)2(g/p + f/N)

}
.

Now, for fixed values of f and b, the joint density behaves like 1/g for small g

whose integral diverges.

13.4 Metropolis–Hastings Algorithm

The other MCMC method can be viewed as a dependent version of the acceptance /
rejection method of generating random variables from Chapter 11. Recall that, for gen-
erating from a distribution of density f(x), the method is to generate X instead from a

384 Markov Chain Monte Carlo Methods

distribution of density g(x) and to accept this X with a probability that depends on the
ratio of densities f(x)/g(x). The algorithm would “throw away” some of the variables
generated from a region where f was smaller than g in order to compensate. In the
case of generating from the posterior distribution with density proportional to p∗(t),
the normalization constant can be ignored; the main problem is finding a bounding dis-
tribution, so that p∗(t)/g(t) is bounded above.

The Metropolis–Hastings (MH) algorithm (Metropolis et al. 1953; Hastings 1970)
generates a transition that is accepted or rejected in such a way that the stationary dis-
tribution of the Markov process has the desired form. Beginning with starting vector
X(0), the algorithm takes the following generic form.

For i = 1, 2, . . . , n do
Generate Y(i) from the transition density q(X(i−1) = x; y)

Generate Ui IID uniform(0,1)
If Ui ≤ α(X(i−1), Y(i)) then X(i) = Y(i) (accept); else X(i) = X(i−1) (reject)

This algorithm, with appropriate choices for q and α, will generate a series {X(i)} whose
stationary distribution is the desired π(x). Taking some care with the nonzero probabil-
ity of no change, we see that the acceptance probability comes from satisfying (13.2.4)
and takes the form

α(x, y) = min

{
π(y)q(y; x)

π(x)q(x; y)
,1

}
. (13.4.1)

With α determined, all that is left is the choice of the transition distribution q.

In spite of appearances, the choice of q is quite arbitrary. Keep in mind, of course,
the goal of generating from the posterior distribution, so that the stationary distribution
π(t) is proportional to p∗(t). Of the common choices for q, the first one is a simple ran-
dom walk – that is, y = x + z, where z independently has density qr, so that q(x; y) =
qr(y − x). If the density qr is chosen to be symmetric, as usual, then the acceptance
probability simplifies to αr(x, y) = min{π(y)/π(x), 1}. This choice is simple, and it
is particularly effective when qr gives sufficiently wide dispersal to the candidates. The
trade-off here is that low dispersal will give high acceptance rates but may not move
enough to traverse the entire space, whereas high dispersal may mix well but reject so
often as to be ineffective.

A second common choice of q is to ignore x altogether and generate from qi(y),

sometimes called the “independence chain” (Tierney 1994). The obvious choice for
qi(y) is an approximation to the posterior density p∗(t). An acceptance leads to an in-
dependent “restart” and reduces the overall dependence, with its obvious advantages.
The reader should note its similarity to importance sampling (Section 12.4), which
would produce an independent series but with weighted observations.

Example 13.5A: Metropolis–Hastings for Log-Series Posterior
Recall the posterior from the log-series problem (Example 10.1) with unnormal-
ized posterior

p∗(t) ∝ t16(1 − t)/(−log(1 − t))10 for 0 < t < 1.

Three different candidate densities are used in the following demonstrations:

13.4 Metropolis–Hastings Algorithm 385

mh1 – q(x; y) is a random walk with Z ∼ uniform(−.1, .1);
mh2 – q(x; y) is a random walk with Z ∼ uniform(−.2, .2);
mh3 – independence chain q(x; y) = qi(y) and Y ∼ uniform(0,1).

An interesting approach is to implement the Metropolis–Hastings algorithm to update
one variable (perhaps multivariate) at a time. The mathematical background to sup-
port this arises from using, say, two steps to do the Markov transition for two (sets of)
variables. Suppose that the transition kernel p1(x1, y1 | x2) has the conditional distri-
bution of Y1 given Y2 = x2 as its stationary distribution, π(y1 | Y2 = x2). Let a second
transition kernel p2(x2, y2 | x1) have the conditional distribution of Y2 given Y1 = x1

as its stationary distribution, π(y2 | Y1 = x1). Then the result of these two transitions
(product of these kernels) has the joint density π(y1, y2) as its stationary distribution.
Note that the second step would be implemented conditional on y1, not x1. Checking
(13.2.4), we have∫

2

∫
1
p2(x2, y2 | y1)p1(x1, y1 | x2)π(x1, x2) dx1 dx2

=
∫

2
p2(x2, y2 | y1)

∫
1
p1(x1, y1 | x2)π(x1 | x2) dx1π(x2) dx2

=
∫

2
p2(x2, y2 | y1)π(y1 | x2)π(x2) dx2

=
∫

2
p2(x2, y2 | y1)π(x2 | y1) dx2π(y1) = π(y2 | y1)π(y1) = π(y1, y2).

Generalizing this result leads to the single-component Metropolis–Hastings algorithm.

For i = 1, 2, . . . , n do
For j = 1, . . . , p do

Generate Y
(i)

j from transition density q(X
(i)
1 , . . . , X

(i)
j−1, X

(i−1)
j+1 , . . . , X(i−1)

p ; yj)

Generate Ui IID uniform(0,1)

If Ui ≤ α(X
(i)
1 , . . . , X

(i)
j−1, X

(i−1)
j , . . . , X(i−1)

p , Y
(i)

j) then X
(i)
j = Y

(i)
j (accept);

else X
(i)
j = X

(i−1)
j (reject)

At each step j of this single-component MH algorithm, the goal is to generate from
a chain whose stationary distribution is the conditional distribution of component j

given all of the others, that is, X(i)
1 , . . . , X

(i)
j−1, X

(i−1)
j+1 , . . . , X(i−1)

p . One obvious solution
is to generate directly from such a distribution if it is easy to do so. Another solution is
to generate the new candidate in such a way that the acceptance probability is 1, which
leads to

qi(X
(i)
1 , . . . , X

(i)
j−1, X

(i−1)
j+1 , . . . , X(i−1)

p ; yj) ∝ π(X
(i)
1 , . . . , X

(i)
j−1, yj, X

(i−1)
j+1 , . . . , X(i−1)

p).

The reader should recognize that both solutions are the same and have already been
discussed as Gibbs sampling. This provides further mathematical foundation for Gibbs
sampling and also suggests the use of MH as an alternative route when, as in Example
13.3, one of the component distributions is somewhat intractable.

386 Markov Chain Monte Carlo Methods

Example 13.3B: Pump Example (cont.)
As noted previously, Gibbs sampling is tempting because two of the three com-
ponents lend themselves easily to generating from the conditional distributions.
However, one (α) remains intractable:

(φj | α = a, β = b) ∼ Gamma(yj + a, xj + b),

(α | φj = fj, j = 1, . . . , J) ∼ f(a) ∝ (e−1bJ
∏

j fj

)a
/�(a)J ,

(β | α = a, φj = fj, j = 1, . . . , J) ∼ Gamma
(
Ja + c, 1 +∑ fj

)
.

The single-component Metropolis–Hastings algorithm suggests (a) using the
usual Gibbs steps for φ and β while (b) updating α using a MH step. In the
demonstration chex133, a random walk candidate density is used for α, with
Z ∼ uniform(−.5, .5).

The relationship among the three Monte Carlo alternatives gives an insight to how
MCMC methods work. The fundamental task is to generate from random variables
from a desired density f(x); when direct generation from f(x) is difficult or im-
possible, these alternatives are considered. In acceptance /rejection, X is generated
from a candidate density g(x) and accepted with a probability proportional to the ra-
tio f(x)/g(x). This ratio f/g must be bounded above, and a good density g has f/g

tightly bounded above and below, yielding a uniformly large probability of acceptance.
In importance sampling, the observation X generated by g(x) is weighted by the same
ratio f(X)/g(X), where the weight compensates for the difference. The region where
f/g is small is sampled more often under g than f, and observations from there are
downweighted; where f/g is large, g does not sample often enough and the weight is
large. Although an upper bound on f/g is not required, difficulties can arise when the
ratio is unbounded; these were examined in Sections 12.4 and 12.5. What importance
sampling accomplishes by weights, Metropolis–Hastings does by employing depen-
dence. Using an independence sampler g(y), MH accepts a new candidate Y if the
ratio f(Y)/g(Y) is relatively large. The probability of acceptance is

α(xold, y) = min

{
1,

f(y)/g(y)

f(xold)/g(xold)

}
.

Consider what happens when Y ∼ g and f(Y)/g(Y) is large. In acceptance /rejection,
that Y will be accepted with a high probability. In importance sampling, the observa-
tion Y will have a large weight. In independence MH, the observation will be accepted
and then kept for a long time because – in subsequent trials – we have that xold = Y,

f(xold)/g(xold) will be large, and α will be small. When f/g is unbounded, the series
may stay in one place for a long time, losing geometric ergodicity and other desirable
convergence properties (Tierney 1995).

13.5 Time-Series Analysis

The inference from MCMC methods comes from standard statistical analysis of obser-
vations from the stationary distribution of interest. Some of the less standard statistical

13.5 Time-Series Analysis 387

techniques were discussed in Chapter 12. The analysis of most of these techniques is
straightforward, but the series generated by MCMC methods are not independent and
a review of time-series methodology is in order.

Let {Yt , t = 1, . . . , n} be an ordered series of observations. Most statistical inference
in time series is based on covariance stationarity. In this type of stationarity, the mean
is constant and the covariance between any two observations depends only on the time
difference; that is, for all t, E[Yt] = µ and cov(Yt , Yt+h) = γ (h). The result of MCMC
methods, however, are series that have strong stationarity. For strong stationarity, the
marginal distribution of each observation Yt is the same π(yt), and the joint distribution
of a set of observations is not time-dependent; that is, Pr((Yt+1, Yt+2, . . . , Yt+p) ∈ A)

does not depend on t. Only if the variance exists does strong stationarity imply covari-
ance stationarity. Any statistical inference that deals with indicator or other bounded
variables – such as estimation of the distribution function or density – will not be af-
fected by the absence of a second moment. Obviously, the techniques of Section 12.5
for testing for infinite mean and variance will come in handy here; see Exercise 13.18.
Hereafter, though, the existence of the second moments will be assumed.

The most important results in time-series analysis deal with the most fundamental
statistical tools, the estimation of mean and variance with the sample mean and vari-
ance estimate. Define the sample mean and covariances as follows:

Ȳn = 1

n

n∑
t=1

Yt , γ̂n(h) = 1

n

n−h∑
t=1

(Yt − Ȳn)(Yt+h − Ȳn).

Fuller (1996, chap. 6) and Anderson (1971, chap. 8) gave the following results.

Result 1: E[Ȳn] = µ.

Result 2: var[Ȳn] = 1

n2

n∑
i=1

n∑
j=1

γ (|i − j |) = 1

n

n−1∑
h=1−n

(
1 − |h|

n

)
γ (h).

Result 3: lim
n→∞ n var[Ȳn] =

∞∑
h=−∞

γ (h) = η2.

Result 4: E[γ̂n(0)] = σ 2

(
1 − η2

nσ 2

)
+ O(n−2), where σ 2 = γ (0).

The main result is that, yes, the sample mean is a fine, unbiased, consistent estimate
of the population mean. However, the usual way of reporting its standard error –
namely, (γ̂n(0)/n)1/2 – is not correct. If the series has strong positive autocorrelation
(γ (h)/γ (0) near unity), then the standard error can grossly underestimate the uncer-
tainty in the sample mean. The usual variance estimate n

n−1γ̂n(0) is biased, but the bias
diminishes as 1/n. Recall that γ (0) = var[Yi] = ∫(y − µ)2π(y) dy = σ 2.

There are three basic routes for estimating η2 consistently. The most common route
in the time-series literature (see e.g. Fuller 1996) is to model the process using the
ARMA family, estimate the parameters, and construct the estimate of η2 from those
estimates. For mild dependence, a first-order autoregressive AR(1) model, E{Yt − µ |
Yt−1} = ρ(Yt−1 − µ), may be appropriate; then η2 is estimated by

388 Markov Chain Monte Carlo Methods

γ̂ (0)
1 + γ̂ (1)/γ̂ (0)

1 − γ̂ (1)/γ̂ (0)
= γ̂ (0)

γ̂ (0) + γ̂ (1)

γ̂ (0) − γ̂ (1)
. (13.5.1)

More commonly for these applications, modeling the series {Yt} is unnecessary (as well
as difficult) and so a less parametric route is preferred. A straightforward approach is
to use a truncated estimate based on Result 3 and the covariance estimates γ̂n(h):

V̂1 =
gn∑

h=−gn

γ̂n(h),

where gn grows slowly with n. Although this can be improved using weighted obser-
vations or “windows,” a more effective nonparametric route uses frequency domain
tools. Define the spectral density function s(λ) as the Fourier transform of the covari-
ance sequence:

s(λ) =
∞∑

h=−∞
γ (h)e−i2πλh.

The spectral density parcels out the variance in the series as a function of frequency λ ∈
[0, 1

2]. For our purposes, the frequency λ = 0 corresponds to the mean, and s(0) = η2 of
Result 3. As described in Section 14.7(A), the common route for estimating the spectral
density uses the periodogram computed using the fast Fourier transform (FFT). Denote
the discrete Fourier transform for the centered series as aj = ∑n

t=1(yt − ȳn)e
i2πjt/n;

then the estimate of the spectral density at frequency λ = j/n will use smoothed values
of the periodogram In(j/n) = (2/n)|aj |2:

ŝ

(
j

n

)
=

d∑
k=−d

wkIn

(
j + k

n

)/(
2

d∑
k=−d

wk

)
.

For estimating at λ = 0, this estimate simplifies to

ŝ(0) =
d∑

k=1

wkIn

(
k

n

)/(
2

d∑
k=1

wk

)
(13.5.2)

because of symmetry in the periodogram In(−j/n) = In(j/n). We also have In(0) =
0 from centering the series by the sample mean ȳn. The cutoff d should slowly grow
with n; Geweke (1992) used equal weights and d ∝ n1/2.

Example 13.5B: Metropolis–Hastings for Log-Series Posterior (cont.)
Recall that, in demonstration mh1, q(x; y) is a random walk density with Z ∼
uniform(−.1, .1) and the series is analyzed in different ways. The sample size
is relatively large, n = 214 = 16,384; the sample mean Ȳn = .52086, γ̂ (0) =
.01803, and the first-order autocorrelation ρ̂ = γ̂ (1)/γ̂ (0) = .92652. Following
(13.5.1), a standard error for Ȳn is(

γ̂ (0)

n
× 1 + γ̂ (1)/γ̂ (0)

1 − γ̂ (1)/γ̂ (0)

)1/2

=
(

.01803

16,384
× 1 + .92652

1 − .92652

)1/2

= .00537.

Following the spectral density approach using dn = 128 and ŝ(0) = .39419, we
have the standard error calculations

√
ŝ(0)/n = √

.39419/16,384 = .004905,

13.5 Time-Series Analysis 389

which differs by less than 10% (since the first-order autoregressive model fits
quite well). The reader should note for reference that, in demonstration quad1,
the midpoint rule achieved six good digits with just 20 evaluations.

Another view of the effect of autocorrelation on the inference is that the information
available is not the same as if the same n observations were independent. This loss
of information can be expressed in terms of the effective reduction in sample size. If
the observations were independent, then var(Ȳn) would be estimated by γ̂n(0)/n, but
since the observations are autocorrelated, n should be replaced by n∗ = nγ̂n(0)/ŝ(0).

If an AR(1) model were used – which would be appropriate for modest levels of corre-
lation – the effective sample size would be n∗∗ = n[1 − γ̂ (1)/γ̂ (0)]/[1 + γ̂ (1)/γ̂ (0)],
adjusting by the reciprocal of the factor in (13.5.1). Notice that in the foregoing ex-
ample, where γ̂ (1)/γ̂ (0) ≈ .92, these calculations yield n∗∗ = 625. This suggests that
the information in 16,384 dependent observations is roughly equivalent to 625 inde-
pendent observations from the same distribution.

If the situation suggests that the dependence is so small as to be negligible, then a
white noise test can be done to check. The periodogram values can be used in one test
for independence. If the Yt are IID then the sequence of values {ck, k = 1, . . . , m −1},
where

ck =
k∑

j=1

In

(
j

n

)/ m∑
j=1

In

(
j

n

)
, (13.5.3)

has the same distribution as the order statistics from a uniform(0,1) sample of size m−1,
where m = [(n−1)/2]. The statistic D = maxk{|(k/(m−1)−ck|, |ck−(k−1)/(m−1)|}
then has the same distribution as the Kolmogorov–Smirnov test statistic discussed in
Section 12.3. Fuller (1996) attributed this white noise test to both Bartlett and Durbin.

The simulation community takes a very practical approach to the analysis of de-
pendent data of this sort with a technique known as batching. Here the series {Yt , t =
1, . . . , n} is broken into subsets (or batches) {X(i)

j }, where i = 1, . . . , k and j = 1, . . . , m
so that km = n and t = m(i−1)+j. The advantages of batching are varied. For some-
thing as simple as estimating the mean of Yt , the sample batch means that X̄(i) will
have a distribution closer to normal and hence t-based confidence intervals are sound.
In addition, the dependence across i will be smaller, so that first-order corrections for
var[Ȳn] – such as fitting an AR(1) model to {X̄(i)} and using (13.5.1) – should be all
that is needed. More commonly, the dependence may be sufficiently small that no ad-
justments are needed. For statistics (e.g. variances) that depend on the batching, such
batch statistics as Si = (m − 1)−1∑

j(X
(i)
j − X̄(i))2 see some replication, with low to

negligible dependence. Since the gain from replication marginally declines, Schmeiser
(1990) suggested using small k (10 to 20) and large m to reduce any bias. Large m is
especially important, since the biases in Si are O(m−1) from Result 4.

Example 13.5C: Metropolis–Hastings for Log-Series Posterior (cont.)
Once again in demonstration mh1, q(x; y) is a random walk density with Z ∼
uniform(−.1, .1) and the sample size is n = 214 = 16,384. Here the batch sta-
tistics are computed with k = 32 and m = 512. The variance of the batch
means that X̄(i) is estimated as .0007932, and the standard error for Ȳn is just

390 Markov Chain Monte Carlo Methods√
.0007932/32 = .00498, which nearly matches the spectral standard error com-

puted previously. Note that the mean of the batch variances Si is .017295, each
with bias O(m−1), as compared with the entire sample variance estimate .0180312,
bias O(n−1), and variance σ 2 = .018720 computed in quad1.

With the smaller sample size k from batching, the simple runs test (see e.g. Brownlee
1965, pp. 231ff) can be employed to check for both independence and stationarity. In
the runs test, the statistic R counts the number of runs of observations above or below
the median, applied here to the sequence of batch means {X̄(i), i = 1, . . . , k}. When
the data are independent and identically distributed, (2R − k)/

√
k is approximately

standard normal for modest values of k. Too few runs is the main concern here, due
either to a trend in the mean from slow convergence to stationarity of the batch means
X̄(i) or to positive autocorrelation (lack of independence) in the batch means. A strictly
monotone sequence would give the minimum of two runs.

Finally, some early work in MCMC methods suggested a technique called thinning
to reduce autocorrelation by only taking every kth observation. This is not a good idea,
since information is thrown away and the variance of the sample mean can only go up
(MacEachern and Berliner 1994). The gain is some reduction of autocorrelation, but
taking k large enough to eliminate the autocorrelation would also eliminate most of the
data. The goal of avoiding the need for sophisticated time-series methods would be
better achieved by batching and using simple time-series tools or by generating repli-
cate series (described further in Section 13.7).

13.6 Adaptive Acceptance /Rejection

As seen with Example 13.3, the simplicity and speed of Gibbs sampling comes to
a screeching halt when just one of the conditional distributions does not take a well-
known form. One alternative, as mentioned in Section13.4, is to use the single-variable
Metropolis–Hastings in its original form for that variable. A more courageous path is
to employ the tools from Chapter 11 for generating from the conditional density.

Acceptance /rejection is the most widely used approach (ratio of uniforms is a special
case) and also the most promising as a general algorithm. Generating from density f(x)

requires a bounding density g(x) such that βf(x) ≤ g(x). The algorithm is to generate
X with density g(x) and accept it with probability βf(X)/g(X). Acceptance /rejection
is effective when β is large, generation from g easy, and the ratio f/g simple to com-
pute. Improvements in efficiency are gained if easily computed upper or lower bounds
(b, B) are available:

b(x) ≤ β
f(x)

g(x)
≤ B(x).

For generating several variates from a single member of a family, some initial compu-
tation (setup) can lead to fast, efficient algorithms.

Using acceptance /rejection for generating from a conditional distribution for Gibbs
sampling sounds foolhardy at first. Even finding the mode of the density requires some
computation, let alone finding a bounding density g(x). Spending time on a setup

13.6 Adaptive Acceptance/Rejection 391

Figure 13.1. Adaptive acceptance /rejection algorithm with only two evaluations of log of density.
Upper envelope using tangents; inner bound using secants.

seems hopeless since the parameters of the distribution will change from iteration to
iteration. In the case of the parameter α in Example 13.3, we have f(x) ∝ c x/�(x)J ,

and c will change each time. But there’s some hope in that acceptance /rejection does
not require knowledge of all of the normalization constants.

Gilks and Wild (1992) noticed that many of the peculiar distributions arising in
Gibbs sampling from standard statistical models had a property that could be exploited
in a very clever way toward their generation. In many cases, the log of the density
was a concave function; that is, log(f(x)) = α + h(x) is concave (eα is the normal-
ization constant for eh). If we have two evaluations, h1 = h(x1) and h2 = h(x2),

then the secant line is below h(x). Lower bounds can help to avoid computing h, but
upper bounds – specifically, an upper envelope function g(x) – are required for accep-
tance /rejection. However, if the secant line is continued indefinitely then, outside the
interval (x1, x2), this secant line lies above h(x). Additionally, any tangent line will
also lie above h(x). With as few as two points, a piecewise linear function H ∗(x) can
be found such that h(x) ≤ H ∗(x) using the two tangent lines, although two evalua-
tions of the derivative h′(x) are also needed. With as few as three points, a piecewise
linear function H ∗(x) can be found that lies above h(x) by extending the two secant
lines; this requires only three evaluations of h(x). See Figures 13.1 and 13.2. More
points xj, although costing the computation of h(xj), will bring this upper approxi-
mant H ∗(x) closer to h(x); see Figure 13.3. Since h(x) ≤ H ∗(x), it follows that
f(x) ≤ exp{α + H ∗(x)} and that an upper envelope function g(x) can be constructed
proportional to exp{H ∗(x)}; see Figure 13.4.

Break the real line into intervals S(i), i = 1, . . . , N, using (a) n points xi, where h(x)

(and perhaps h′(x)) is evaluated and (b) intersections of tangent lines or extended secant
lines. Then, for x ∈ S(i), H ∗(x) = ci + di x. Let wi = ∫

S(i)
exp{ci + di x} dx, so that∫

exp{H ∗(x)} dx = ∑wi. Then the envelope density is g(x) = exp{H ∗(x)}/∑wi,

392 Markov Chain Monte Carlo Methods

Figure 13.2. Adaptive acceptance /rejection algorithm with three evaluations of log of density. Up-
per envelope using tangents; inner bound using secants.

Figure 13.3. Adaptive acceptance /rejection algorithm. Secant (no derivative) algorithm with four
evaluations of log of density.

the scaling probability is β = exp{−α}/∑wi, and the main acceptance check U ≤
βf(x)/g(x) is rewritten as

U ≤ f(x)

exp{α + H ∗(x)}
or, in log form,

log(U) + ci + di x ≤ h(x).

Generating from g(x) takes two steps. First, sample the interval S(i) with proba-
bility wi/

∑
wi; then, generate an exponential variate with density proportional to

13.6 Adaptive Acceptance/Rejection 393

Figure 13.4. Adaptive acceptance /rejection algorithm. Secant algorithm with four evaluations trans-
formed to original scale.

exp{H ∗(x)} = exp{ci +di x} on interval S(i). Exponential random variables on an in-
terval can be found by transforming −log(uniform) (see Section 11.2(A)). The secant
line segments form a lower bound function h∗(x) over the range of xs that can be used
to avoid computing f(x), providing the quick-accept test

log(U) + ci + di x ≤ h∗(x).

The most nagging detail arises with the endpoints. If the region is unbounded on the
left, then the slope of the secant connecting the two leftmost points (or the tangent at
the leftmost point) needs to be positive; likewise, if unbounded on the right, the right-
most secant must have a negative slope so that the exp{H ∗(x)} is integrable. If these
secant lines are going in the wrong direction, then more points need to be added just
to get the algorithm started, so judicious choice of the starting points is quite impor-
tant. The demonstration code gilks uses the secant version and avoids evaluation of
derivatives.

In the context of Gibbs sampling, a success or acceptance means the task for gen-
erating from this f(x) is over. Although acceptance /rejection means sampling until a
success, each failure produces a new point (xj, h(xj)), a snugger fit for h∗ and H ∗, and
greater likelihood for success without having to compute h again. Hence each failure
improves the probability of the next success and reduces its marginal cost.

Gilks and Wild (1992) originally developed the tangent method that uses both h(x)

and h′(x) for drawing tangent lines to form H ∗(x) and secant lines for h∗(x). Gilks
(1992) then presented the secant approach just described, whose improvements mimic
the advantages of the secant search method over Newton’s method (Chapter 8). Gilks
et al. (1995) gave a unified approach for handling nonconcave log(f(x)) with a single-
component MH step. Leydold (2000) proposed an adaptive acceptance/rejection
approach using the Ratio of Uniforms method.

394 Markov Chain Monte Carlo Methods

Devroye (1984; 1986, pp. 287ff) showed that many densities of interest are log-
concave; he presented a different general approach for generation whose main weak-
ness is that the mode of the distribution needs to be determined. Gilks and Wild (1992)
extended this list of log-concave densities to include posterior distributions arising in
Gibbs sampling. This list was extended further by George et al. (1993), and Dellapor-
tas and Smith (1993) showed that conditional posteriors arising from many generalized
linear models are also log-concave. As a result, this adaptive method is one of the core
tools in BUGS (Spiegelhalter et al. 1996).

13.7 Diagnostics

With the theory currently available, it is difficult for a user to establish that all of the
conditions are satisfied for MCMC methods to work properly – namely, that the sam-
ple series has the desired stationary distribution and the central limit theorem can be
applied. The two main worries are that the initial effects have not dissipated and that
the full range of the stationary distribution is not being visited. This, of course, as-
sumes that the problem was properly posed; attempts have been made to sample from
improper posteriors (Hobert and Casella 1996). As statisticians are adept at inference
from a sample, the hope has been to use diagnostics to detect violations. The successes
are modest and, as Cowles and Carlin (1996, p. 903) have put it: “Clearly, . . . automated
convergence monitoring (as by a machine) is unsafe and should be avoided.”

The Markov chain Monte Carlo method suffers from three main handicaps. First of
all, the output is random and (as alluded to in Chapter 12) it is difficult to detect errors
in random output. To find errors, both the sample size and the error must be large.
Simplicity has additional value since the mistakes will be big and easy to find. The sec-
ond handicap is that the output is autocorrelated and so the sample size needed to find
errors must be amplified. The third handicap, rarely mentioned, follows from the ease
of generating output using MCMC methods. For other numerical techniques, the user
must know properties of the likelihood or regression surface, as well as likely values
of the parameters, in order to get most software to work and give any useful results.
For MCMC, an extremely naive user can generate a lot of output without even under-
standing the problem. The lack of discipline of learning about the problem that other
methods require can lead to unfounded optimism and confidence in the results.

Only a few of the many methods for monitoring MCMC output are summarized
here. All of these methods use sound, common-sense statistical methodology for the
analysis of MCMC output.

(A) Plot the Data

The basic tool of applied statistics pays dividends here. A simple time plot of Yt versus
t can be used to detect initial transient effects and convergence to stationarity. Plots
similar to a random walk can show lack of stationarity or poor mixing of the chain,
where observations may cluster in regions for a long period of time before moving to

13.7 Diagnostics 395

another region. Stem-and-leaf plots give a good view of the distribution and can detect
unusual tail behavior or outliers.

(B) Gelman and Rubin

Gelman and Rubin (1992a,b) took a very common-sense approach: if you’re worried
about whether the series has converged to the stationary distribution, then (i) generate
replicate series with starting values more disperse than the stationary distribution and
(ii) test whether the means of the series are the same. The output then takes the form
of an analysis of variance: we observe Yij for j = 1, . . . , n from series i (i = 1, . . . , m)

with E(Yij) = µi. Convergence to the stationary distribution would mean that the µi

are all equal. The usual ANOVA sums of squares are

W =
m∑

i=1

n∑
j=1

(Yij − Ȳi•)
2 and B = n

m∑
i=1

(Ȳi• − Ȳ••)
2,

but the usual test for equality of means that uses F = [B/(m − 1)]/[W/(m(n − 1))]
would not be appropriate. Using the results from Section 13.5, notice that the denomi-
nator W/(m(n − 1)) is a biased estimate of σ 2,

E

[
W

m(n − 1)

]
= n

n − 1

[
σ 2 − 1

n
s(0)

]
+ O(n−2).

Note also that B/(m − 1) is a direct estimate of the variance of sample means from
replicates and is a clean (unbiased) estimate of s(0) = η2. Consequently, the usual F

statistic is aimed not at 1 but rather at η2/σ 2 + O(n−1). Nonetheless, the combination
of these two pieces forms a better estimate of σ 2, reducing the bias to O(n−2):

V̂ = n − 1

n

W

m(n − 1)
+ 1

n

B

m − 1
. (13.7.1)

Dividing by the within-variance estimate W/(m(n −1)), Gelman and Rubin then con-
structed the convergence diagnostic

R̂1/2 =
(

n − 1

n
+ 1

n
F

)1/2

(13.7.2)

as the “estimated potential scale reduction” in variance as the sample size n → ∞ (see
Gelman and Rubin 1992b for a slightly modified version). For n large, R̂ behaves like
1/(1 − n−1s(0)/σ 2) ∼ [1 + n−1s(0)/σ 2]. Because testing the equality of means has
value in its own right, the Gelman and Rubin approach should be extended by (a) esti-
mating var(Ȳ••) using Ŝ(0) from Section 13.5 and (b) testing by comparing B/ŝ(0) to
χ2

m−1.
Two major issues have been raised with the Gelman and Rubin approach. First, they

recommend choosing starting values for the replicate series from a distribution more
dispersed than the stationary distribution. The stationary distribution is not known,
however, so this may be difficult in practice. A second issue is that their analysis con-
siders only one variable at a time in a technique with many variables. It is not obvious
which variable to analyze; analyzing many or all would be time-consuming and raise

396 Markov Chain Monte Carlo Methods

issues of multiple comparison. One advantage of this approach is that it can be used
with any MCMC method. A computational advantage of the Gelman–Rubin technique
is that replicate chains are trivial to run in parallel, so the real time for computation can
be kept modest with little effort.

Example 13.5D: Metropolis–Hastings for Log-Series Posterior (cont.)
In demonstration mh3, q(x; y) is chosen so that Y ∼ uniform(0,1), and here
the series was restarted m = 16 times, each of length n = 1024 = 210. Here
B = 1.0181 and W = 297.9053, so that the bias-corrected variance estimate V̂

is computed as

V̂ = 1023

1024
× 297.9053

16(1023)
+ 1

1024
× 1.0181

15

= 1023

1024
× .0182005 + 1

1024
× .06787 = .018249,

which is still an underestimate. Note that B/(m−1) estimates η2 as .06787, which
appears much larger than the average of the spectral estimates from the m series,
.04934. However, since the test statistic B/ŝ(0) = 20.63 is smaller than its .05
level critical value χ2

15(.05) = 25.00, the replicate series means do not appear to
be significantly different. The convergence diagnostic is

R̂1/2 =
(

1023

1024
+ 1

1024
× 3.73

)1/2

= 1.001332,

whose proximity to 1 suggests that convergence was reached with n = 1024
observations.

(C) Geweke

Geweke (1992) took a simple, direct approach to the issue of convergence. To test
whether the mean at the beginning of the chain may be different from the end, just
modify the simple t-test to take care of autocorrelation. Estimate the mean at the be-
ginning by ȲA using nA observations from the first part of the data; estimate the mean
at the end by ȲB using nB observations from the last part of the data. Using spec-
tral methods as described in Section 13.5, estimate the variance of the difference by
ŝA(0)/nA + ŝB(0)/nB. Then construct an analog to Welsch’s t statistic,

Z = ȲA − ȲB

(ŝA(0)/nA + ŝB(0)/nB)1/2
, (13.7.3)

and compare Z to the N(0,1) critical values. Geweke suggested taking nA as n/10
from the very beginning of the series and nB = n/2, the last half of the data. In ad-
dition, Geweke referred to the ratio σ 2/s(0) as the “relative numerical efficiency” of
MCMC, but this ratio is just σ 2/η2 or the ratio of variances for the Ȳn of an indepen-
dent series to a stationary one. The Geweke approach does not require replicates and
can be applied to any MCMC method, but it is essentially a univariate approach in a
multivariate problem.

13.7 Diagnostics 397

Example 13.5E: Metropolis–Hastings for Log-Series Posterior (cont.)
Again, in demonstration mh2, q(x; y) is a random walk density with Z ∼
uniform(−.2, .2). The sample size is n = 214 = 16,384, and the series is broken
into the first nA = n/8 = 2048 observations and the last half nB = 8192. Here
ȲA = .522045, ȲB = .523012, ŝA(0) = .1534, and ŝB(0) = .1426. The com-
puted test statistic is Z = −.1006, which gives no indication of differences in the
means in the two pieces – suggesting quick convergence.

(D) Heidelberger and Welch

In a similar spirit as Geweke but in a more sophisticated fashion, Heidelberger and
Welch (1983) constructed an approximate Brownian bridge to investigate transient ini-
tial effects. Define

Tk =
k∑

i=1

Yi and Ȳ = n−1
n∑

i=1

Yi.

Then, as n → ∞, the function

Bn(t) = T[nt] − [nt]Ȳ

(nŜ(0))1/2
for 0 ≤ t ≤ 1 (13.7.4)

converges in distribution to the Brownian bridge. Among the various goodness-of-fit
statistics available, Heidelberger and Welch used the Cramer–von Mises statistic to
measure departures from the assumptions. In simulations they showed that this ap-
proach can detect transient trends unless the trend extends throughout the data. For
MCMC problems, this may not work well if the series never reaches convergence.

(E) Raftery and Lewis

In light of the importance of distribution and density estimation in the analysis of
MCMC data, Raftery and Lewis (1992) took another very practical approach: view-
ing all analysis as the estimation of probabilities. Using the mechanics of a two-state
Markov chain, they considered analyzing only binary variables in order to estimate the
convergence parameters. From this, they could estimate both the extent of the transient
initial effects (a.k.a. burn-in) and the sample size required to achieve a specified level
of accuracy. This method, too, is univariate, but with a complicating twist: whereas
the diagnostics may change in examining other variables, here they would also change
in examining several probabilities from the same variable.

(F) Dickey–Fuller

This test (and its descendants) is commonly used in economic data to test for a random
walk with the alternative of stationarity. In MCMC, this test can be used to see if the
serial correlation is so large that stationarity is suspect and the series may be following
a random walk. In its simplest form (Fuller 1996, chap. 10), the test statistic is

398 Markov Chain Monte Carlo Methods

n(ρ̂ − 1) = n

(
γ̂ (1)

γ̂ (0)
− 1

)
;

the random walk hypothesis is rejected if n(ρ̂−1) is smaller than the asymptotic critical
values c.05 = −14.1 and c.01 = −20.6. Rejection corresponds to modest correlations,
whereas correlations near unity suggest a random walk or at least raise the flag for fur-
ther examination.

Programs and Demonstrations

chex131 Demonstration of Gibbs sampling for normal variance components
Gibbs sampling is employed to generate from the posterior distribution of Example
13.1 using the data from Chapter 10 (demonstration chex103).

chex132 Demonstration of Gibbs sampling on Example 13.2 (Ramus Heights)
Gibbs sampling is employed to generate from the posterior in Example 13.2 using
the data from Elston and Grizzle (1962). Sampling from the Wishart distribution
requires both normal (gnroul) and chi (gchirv) random variables.

chex133 Demonstration of single-component Metropolis–Hastings
As described in Example 13.3B (Pump Example), a Metropolis–Hastings step is
used to handle the difficult parameter (alpha).

mh1, mh2, mh3 Demonstrations of Metropolis–Hastings on log-series posterior
from Example 10.1
The Metropolis–Hastings algorithm is employed to generate from the 1-dimensional
log-series posterior of Example 10.1. Three different candidate distributions are
used in the three programs: the first two use random walk; the last one is an “inde-
pendence” sampler.
mh1 – q(x; y) is a random walk with Z ∼ uniform(−.1, .1).
mh2 – q(x; y) is a random walk with Z ∼ uniform(−.2, .2).

mh3 – q(x; y) = q(y) and Y ∼ uniform(0,1).

gilks Demonstration of adaptive acceptance/rejection algorithm
The adaptive acceptance /rejection algorithm of Gilks (1992), which uses extended
secants for construction of the upper envelope, is employed to generate from the
standard normal distribution. Output tested as in gnrouk, etc.
gilks – implementation of adaptive acceptance /rejection using secants.

Exercises

13.1 Redo the calculations in (13.3.2) with the ordering of X and Y reversed in the Gibbs sam-
pling. That is, generate X first (given v) and then Y given X.

13.2 Redo the calculations in (13.3.2) with the order of X and Y chosen at random: X first
with probability p, and Y first with probability 1 − p.

Exercises 399

13.3 Analytically integrate out the random effects parameters φi in Example 13.3 (Pump),
reducing the posterior to two dimensions. Compute the posterior moments by using nu-
merical integration with a product Simpson’s rule.

13.4 In Example 13.2 (Jaw), show that the conditional distribution of (β | � = O) is normal
with mean vector and covariance matrix as given.

13.5 In Example 13.2 (Jaw), what would the conditional densities look like if the prior on β

were multivariate normal with mean vector β0 and covariance matrix �0? Is there any
proper prior that would lead to simple conditional densities?

13.6 In Example 13.4, the conditional densities are f(x | y) = ye−xy and f(y | x) = xe−xy .

Algorithmically, the Gibbs sampler in this situation would be

Vi,Wi IID exponential(1), Xi = Vi/Yi−1, Yi = Wi/Xi.

(a) Express Xn or Yn in terms of Vi,Wi (i = 1, . . . , n) and Y0.

(b) Can anything be said about the convergence or divergence of Xn or Yn?

13.7 Give a transformation of a uniform(0,1) random variable that produces a random vari-
able with density proportional to exp{c + dx} over the interval (a, b).

13.8 Show that the density for α in Example 13.3, proportional to c x/�(x), is log-concave.

13.9 Analyze the output from the demonstration chex131, computing the diagnostics from
Section 13.7. Compare the results to the numerical integration in chex103.

13.10 Analyze the output from the demonstration chex132, computing the diagnostics from
Section13.7. Compare the results to the numerical integration results from Exercise13.4.

13.11 For the log-series posterior from Example 10.1, used again in Example 13.5, find the pa-
rameters of the beta density that closely approximates p∗(t). Use multiple regression
with log(t) and log(1 − t) as explanatory variables.

13.12 Mimic the Metropolis–Hastings demonstration mh3 using the “independence chain”
candidate density q(x; y) = q(y), which is the beta density from the solution of Exer-
cise 13.11.

13.13 Redo the Metropolis–Hastings demonstration mh3 using the same uniform importance
sampling density, but now compute replicates by restarting with a sample from the beta
density from the solution of Exercise 13.11. Since q(y) should be nearly proportional
to p∗(t), it should start with a nearly stationary distribution – but can you tell?

13.14 For the log-series posterior Example 13.5, find a candidate density q(x; y) such that
α(x, y) is nearly constant and nearly 1.

13.15 Extend the demonstration mh1 using Fortran and single precision by expanding the
sample size to n = 220 or beyond, noting the effects of rounding error (which should
slowly deteriorate the results).

13.16 Following Exercise 13.15, compute the convergence diagnostic R̂1/2 from (13.7.2) using
varying sample sizes (e.g., 216, 217, . . .).

13.17 Repeat the demonstration chex131 with the improper prior parameters mentioned in
Section 13.3: a1 = b1 = 0, a2 = b2 = 0, and φ0 large (say, 100 or more). This imbal-
anced problem does show some strange behavior.

13.18 Test the output from Exercise 13.17 for infinite variance using the methods described in
Section 12.5.

400 Markov Chain Monte Carlo Methods

13.19 Balance may have something to do with observing unusual behavior in the variance
component problem with improper priors. Rework demonstration chex 131 but with
the balanced data from Box and Tiao (1973, second example), with B = 41.6816, W =
358.70135, ni ≡ 5; use group means of 6.2268, 4.6560, 7.5212, 6.0796, and 3.8252:
(a) with prior a1 = b1 = 0, a2 = b2 = 0, b0 = 0, and φ0 = (106)2 (Gelfand et al.

1990, Prior I);
(b) with prior a1 = b1 = 0, a2 = 1/2, b2 = 1, b0 = 0, and φ0 = (106)2 (Prior II).

13.20 Compute the runs test on the batch means from demonstration mh1.

13.21 For the second half of the series generated in the demonstration mh2, compute the pe-
riodogram white noise test by computing the Kolmogorov–Smirnov test on the series
{ck} in (13.5.3).

13.22 Apply Gibbs sampling to the pump problem (Example 13.3) by using the code gilks
to generate from the distribution of α. Compare the results with the single-component
Metropolis–Hastings method results from pump1 and the numerical results from Exer-
cise 13.3.

13.23 Using the output from Exercise 13.6, test for both infinite mean and variance using the
methods described in Section 12.5. Also test for stationarity using the Dickey–Fuller
test from Section 13.7(E).

References

The paper by Casella and George (1992), originally titled “Gibbs for Kids,” gives a
clear introduction to Gibbs sampling. Following the same spirit, Chib and Greenberg
(1995) explain Metropolis–Hastings as a form of acceptance /rejection. The 1992 Va-
lencia Meeting proceedings and the November 1992 issue of Statistical Science contain
some of the early discussions of diagnostics; the latter includes also a debate over mul-
tiple series versus one long run. The book Markov Chain Monte Carlo in Practice
(Gilks, Richardson, and Spiegelhalter 1996) contains survey papers by many of the
innovators and serves as a good overall reference.

T. W. Anderson (1971), The Statistical Analysis of Time Series. New York: Wiley.
George E. P. Box and George C. Tiao (1973), Bayesian Inference in Statistical Analysis. Reading,

MA: Addison-Wesley.
Paul Bratley, Bennett L. Fox, and Linus Schrage (1983), A Guide to Simulation. New York: Springer-

Verlag.
K. A. Brownlee (1965), Statistical Theory and Methodology, 2nd ed. New York: Wiley.
George Casella and Edward I. George (1992), “Explaining the Gibbs Sampler,” American Statistician

46: 167–74.
K. S. Chan and C. J. Geyer (1994), Discussion of “Markov Chains for Exploring Posterior Distribu-

tions” (by L. Tierney), Annals of Statistics 22: 1747–58.
Siddhartha Chib and Edward Greenberg (1995), “Understanding the Metropolis–HastingsAlgorithm,”

American Statistician 49: 327–35.
Mary Kathryn Cowles and Bradley P. Carlin (1996), “Markov Chain Monte Carlo Convergence Di-

agnostics: A Comparative Review,” Journal of the American Statistical Association 91: 883–904.
P. Dellaportas and A. F. M. Smith (1993), “Bayesian Inference for Generalized Linear and Propor-

tional Hazards Models via Gibbs Sampling,” Applied Statistics 42: 443–59.

References 401

Luc Devroye (1984), “A Simple Algorithm for Generating Random Variates with a Log-Concave
Density,” Computing 33: 247–57.

Luc Devroye (1986), Non-Uniform Random Variate Generation. New York: Springer-Verlag.
R. C. Elston and J. F. Grizzle (1962), “Estimation of Time Response Curves and Their Confidence

Bands,” Biometrics 18: 148–59.
Wayne A. Fuller (1996), Introduction to Statistical Time Series, 2nd ed. New York: Wiley.
Alan E. Gelfand, Susan E. Hills, Amy Racine-Poon, and Adrian F. M. Smith (1990), “Illustration

of Bayesian Inference in Normal Data Models Using Gibbs Sampling,” Journal of the American
Statistical Association 85: 973–85.

Andrew Gelman and Donald B. Rubin (1992a), “A Single Sequence from the Gibbs Sampler Gives a
False Sense of Security,” in J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith (Eds.),
Bayesian Statistics 4, pp. 625–31. Oxford, U.K.: Oxford University Press.

Andrew Gelman and Donald B. Rubin (1992b), “Inference from Iterative Simulation Using Multiple
Sequences,” Statistical Science 7: 457–511.

E. I. George, U. E. Makov, and A. F. M. Smith (1993), “Conjugate Likelihood Distributions,” Scan-
dinavian Journal of Statistics 20: 147–56.

J. Geweke (1992), “Evaluating the Accuracy of Sampling-Based Approaches to the Calculation of
Posterior Moments,” in J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith (Eds.),
Bayesian Statistics 4, pp. 169–93. Oxford, U.K.: Oxford University Press.

Charles J. Geyer (1992), “Practical Markov Chain Monte Carlo,” Statistical Science 7: 473–511.
W. R. Gilks (1992), “Derivative-Free Adaptive Rejection Sampling for Gibbs Sampling,” in J. M.

Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith (Eds.), Bayesian Statistics 4, pp. 641–9.
Oxford, U.K.: Oxford University Press.

W. R. Gilks, N. G. Best, and K. K. C. Tan (1995), “Adaptive Rejection Metropolis Sampling within
Gibbs Sampling,” Applied Statistics 44: 455–72.

W. R. Gilks, S. Richardson, and D. J. Spiegelhalter (Eds.) (1996), Markov Chain Monte Carlo in
Practice. London: Chapman & Hall.

W. R. Gilks and P. Wild (1992), “Adaptive Rejection Sampling for Gibbs Sampling,” Applied Statis-
tics 41: 337–48.

W. K. Hastings (1970), “Monte Carlo Sampling Methods Using Markov Chains and Their Applica-
tions,” Biometrika 57: 97–109.

P. Heidelberger and P. D. Welch (1983), “Simulation Run Length Control in the Presence of an Initial
Transient,” Operations Research 31: 1109–44.

James P. Hobert and George Casella (1996), “The Effect of Improper Priors on Gibbs Sampling in
Hierarchical Linear Models,” Journal of the American Statistical Association 91: 1461–73.

Robert E. Kass, Bradley P. Carlin, Andrew Gelman, and Radford M. Neal (1998), “Markov Chain
Monte Carlo in Practice: A Roundtable Discussion,” American Statistician 52: 93–100.

Josef Leydold (2000), “Automatic Sampling with the Ratio-of-Uniforms Method,” ACM Transac-
tions on Mathematical Software 26: 78–98.

Steven N. MacEachern and L. Mark Berliner (1994), “Subsampling the Gibbs Sampler,” American
Statistician 48: 188–90.

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller (1953), “Equations
of State Calculations by Fast Computing Machines,” Journal of Chemical Physics 21: 1087–92.

S. P. Meyn and R. L. Tweedie (1993), Markov Chains and Stochastic Stability. New York: Springer.
A. E. Raftery and S. Lewis (1992), “How Many Iterations in the Gibbs Sampler?” in J. M. Bernardo,

J. O. Berger, A. P. Dawid, and A. F. M. Smith (Eds.), Bayesian Statistics 4, pp. 763–73. Oxford,
U.K.: Oxford University Press.

Brian D. Ripley (1987), Stochastic Simulation. New York: Wiley.
Gareth O. Roberts and Nicholas G. Polson (1994), “On the Geometric Convergence of the Gibbs Sam-

pler,” Journal of the Royal Statistical Society B 56: 377–84.
Bruce Schmeiser (1990), “Simulation Experiments,” in D. P. Heyman and M. J. Sobel (Eds.), Hand-

books in Operations Research and Management Science (vol. 2: Stochastic Models), pp. 295–330.
Amsterdam: North-Holland.

402 Markov Chain Monte Carlo Methods

David Spiegelhalter,Andrew Thomas, Nicky Best, and Wally Gilks (1996), BUGS: Bayesian Inference
Using Gibbs Sampling. Cambridge, U.K.: Cambridge Medical Research Council Biostatistics Unit.

M. A. Tanner and W. H. Wong (1987), “The Calculation of Posterior Distributions by Data Augmen-
tation,” Journal of the American Statistical Association 82: 528–49.

Luke Tierney (1994), “Markov Chains for Exploring Posterior Distributions” (with discussion), An-
nals of Statistics 22: 1701–62.

Luke Tierney (1995), “Introduction to General State-Space Markov Chain Theory,” in W. R. Gilks,
S. Richardson, and D. J. Spiegelhalter (Eds.), Markov Chain Monte Carlo in Practice. London:
Chapman & Hall.

14

Sorting and Fast Algorithms

14.1 Introduction

The theme of this chapter is a simple one: there may be better, faster ways of computing
something than you may ever have thought of. One of the maxims of computer science
is that just a few programs use most of the resources. Early in the history of comput-
ing, people recognized that much of the computing resources went into the common
task of sorting a list of numbers. If this task could be done faster, then everything could
be done better. A concentrated effort on improving sorting algorithms led to several
breakthroughs, all following the principle known as “divide and conquer.” In simple
terms, to solve a large task, break it into smaller tasks of the same kind. Cleverly done,
the resulting algorithm can be more efficient than anyone would have expected, earn-
ing the jargon adjective “fast.” The principle of divide and conquer will be discussed
in the next section, followed by a discussion of fast algorithms for sorting. Section 14.4
comprises statistical applications of divide and conquer. Another great breakthrough,
the fast Fourier transform (FFT), will be discussed in Section 14.5. Using the FFT to
compute convolutions will be discussed in Section 14.6, followed by some interesting
applications of the FFT to statistics in Section 14.7. This chapter will close with some
topics that are important but don’t really fit elsewhere: algorithms for constructing per-
mutations and combinations.

14.2 Divide and Conquer

The general principle of divide and conquer is to break a difficult task into subtasks,
solve the subtasks, and then put the solutions together to solve the original task. This
principle has led to some algorithms that give incredible improvements over naive ap-
proaches to the same problem. To assess just how much of an improvement these fast
algorithms are, we must find some form of measurement. A simplistic approach would
be to time an algorithm and its competitor. However, this may not enable us to gener-
alize the results and so predict which would work better on any given problem.

In computer science, performance analysis is based on computational complexity.
Hence the common route is to count some part of the task – an operation count similar
to that in Chapters 3–6 with regard to numerical linear algebra. Back then we usu-
ally counted “flops” or floating point operations, which technically included fetching
some numbers, multiplying and/or adding, and storing the result. Here, in examining

403

404 Sorting and Fast Algorithms

sorting or similar operations, we can focus on a single task – such as a comparison,
“Is x bigger than y?” or an exchange, “Put x into y and y into x” – just as we could
have limited a flop to a multiplication. Concentrating on a single relevant task allows
a more precise analysis, which (if properly done) can explain how well an algorithm
will perform in a variety of problems. To emphasize: We must pick some part of the
task that is relevant and can be counted precisely.

The mathematical expression of divide-and-conquer algorithms usually comes down
to a simple recursive form:

T(N) = aT (N/b) + cN + d, (14.2.1)

where T(N) is the number of operations required to perform a task of size N by break-
ing the task into a subproblems of size N/b with cN + d operations needed to put the
subproblem solutions together to solve the original problem. Technically, we are refer-
ring to operation count, but practically, we’re thinking time – hence the notation T(·).
The solution to this recursive equation depends only on the relationship between the
constants a and b:

a < b �⇒ T (N) = cb

b − a
N + db

b − a
= O(N),

a = b > 1 �⇒ T (N) = cN loga N + NT (1) + d
N − 1

a − 1
= O(N log N).

(14.2.2)

These expressions can be verified by plugging in the solution and doing a little algebra;
see Exercise 14.1.

Often, the number of operations depends on the input. In these situations, both the
worst case and best case may well be easy to construct. Moreover, by placing a prob-
ability distribution over the possible inputs, an expected time or number of operations
can be computed. This is often the case in sorting or computing order statistics, and
the most useful probability distribution is one that is uniform over the possible permu-
tations of the data. Another stochastic variation arises with random algorithms, that
is, algorithms that explicitly employ some randomization. Here the expected time or
number of operations (and variance, of course) should be computed when comparing
algorithms.

The use, implementation, and comparison of these divide-and-conquer algorithms
can depend on the computing environment. Some high-level languages do not permit
recursive coding of algorithms; in particular, Fortran did not until recently. Nonethe-
less, clever coding can often obviate this defect; the accompanying code shows some
examples. Likewise, ingenious data structure techniques (Section 1.4) can make some
implementations easy. For example, it’s easy to add or delete an element to a set that is
stored as a linked list rather than as a simple linear list. But it’s much slower to traverse
a linked list than a sorted linear list when trying to find a particular element. Access
to auxiliary storage can make a big difference in performance, and that access depends
highly upon the environment (i.e., hardware, software, and language). For the algo-
rithms considered here, we will limit the discussion to linear lists and a few variants,
but none that require any special tools or auxiliary storage that is not explicit.

14.3 Sorting Algorithms 405

14.3 Sorting Algorithms

The simplest situation for sorting has but a single linear list of N numbers, and the
desired result is the list in order – the order statistics. In the more general case, the
values to be sorted are called “keys” and, along with those keys, an index or pointer
must be carried along in order to retain the ability to access other information. In sta-
tistics, a vector of observation indices is carried along with the data to be sorted (keys);
upon completion, this auxiliary vector holds the vector of antiranks. As a mundane
example, the keys may be last (family) names, and a pointer to a location of other infor-
mation (e.g., phone numbers, street addresses) is carried along. So if we want to find
someone’s phone number, we just traverse the sorted list (recall the speed of discrete
bisection search); if we find the name in location j then pointer(j) holds the location
of j ’s phone number.

One of the simplest sorting algorithms, known as bubble sort, is also one of the
most commonly reinvented wheels. Its coding is very simple, but it is still possible to
mess up.

Algorithm Bubblesort
DO J=2, N
DO I=1, J-1
IF(KEY(I) > KEY(J)) THEN exchange KEY(I) and KEY(J)
END DO ! LOOP ON I
END DO ! LOOP ON J

The name “bubblesort” arises from the largest elements “bubbling to the top.” As can
be clearly seen from the simple coding, this algorithm requires O(N 2) comparisons
(IFs). The number of exchanges depends on the data – if the list of keys is already
sorted, then there are no exchanges; if in reverse order, then about 1

2N 2 exchanges are
needed. If we compute an expectation with all permutations of the ordering equally
likely, then the expected number of exchanges is still O(N 2).

The surprise with bubblesort is that the fast algorithms for sorting can do so much
better. Three O(N log N) algorithms will be presented here, and while there may be
large constants hiding under those O(·)s, all three algorithms are dramatically better
than the forgettable bubblesort. The first of these is mergesort, which is a direct imple-
mentation of divide and conquer. In order to sort a list of length N, first sort two lists of
length N/2 and apply the algorithm recursively, down to sorting lists of length 1 or 2.
The pivotal task is putting the solutions to the two N/2 subproblems together – merg-
ing two sorted lists. But this task is relatively easy: compare the smallest elements in
each list and then pull off the smaller to start the merged list. Each step consists of
comparing the smallest remaining elements in the two lists and attaching it to the end
of the merged list being formed (see Example 14.1). With auxiliary storage, this can
be implemented simply with three pointers. The number of comparisons required de-
pends on the data. In the best case, all of the elements in one list are smaller than the
other, and after N/2 comparisons that exhaust one list we simply attach the other list
at the end. At worst, we need 2N − 1 comparisons to merge.

406 Sorting and Fast Algorithms

Mergesort may be analyzed as follows:

T(N) = 2T(N/2) + O(N),

so that T(N) = O(N log2 N). Regardless of how bad the constants may be in O(·),
for N large enough, mergesort will be faster. Mergesort is difficult to code without
auxiliary storage and very difficult to code in Fortran. However, we have established
a benchmark.

Example 14.1: Mergesort
The following table summarizes the merging of two sorted lists. At each step,
only the underlined elements are compared.

First sorted list Merged list Second sorted list

21 23 33 40 16 28 38 44 59
16

21 23 33 40 28 38 44 59
16 21

23 33 40 28 38 44 59
16 21 23

33 40 28 38 44 59
16 21 23 28

33 40 38 44 59
16 21 23 28 33

40 38 44 59
16 21 23 28 33 38

40 44 59
16 21 23 28 33 38 40

44 59
16 21 23 28 33 38 40 44 59

The next fast algorithm also directly applies the strategy of divide and conquer. Instead
of breaking the list exactly in half, the aptly named quicksort uses an element of the
set to break the list into three sets: those smaller, those equal, and those larger. Which
element of the set? Well, any one will do for the most part – why not the first one? For
most circumstances this will work very well, except (in the worst case!) when the list
is already sorted. That’s not good since it occurs so often. Hence the usual approach is
to select an element of the set at random for the splitting. The analysis of the average
effort works out as

T(N) = 2

N

N−1∑
j=1

T(j) + O(N), (14.3.1)

whose solution is T(N) = O(N log N).

Algorithm Quicksort (KEY, BEGIN, END)
(1) Generate J ∼ discrete uniform(BEGIN, END).

(2) Partition list into S1 = { those < KEY(J) }, S2 = { those = KEY(J) }, and
S3 = { those > KEY(J) }, with sizes k1, k2, k3 (respectively), reordering the

14.3 Sorting Algorithms 407

elements of list KEY so that the elements of S1 have the smallest indices, S2 in
middle, S3 at end.

(3) If(k1 > 1) then Quicksort(KEY, BEGIN, k1).

(4) If(k3 > 1) then Quicksort(KEY, k1 + k2 + 1, END).

It should be obvious that quicksort can easily be coded recursively. Nevertheless, both
the partition step (2) and the recursion stack can be coded without explicit recursion;
see the demonstrations partit and qsort. A skeptical eye may be wary of the constant
in O(N log N), but experience confirms that quicksort is appropriately named.

Heapsort, the third of these fast algorithms, does not employ the divide-and-conquer
strategy but instead employs the data structure known as a “heap.” A heap is a binary
tree with the property that the nodes (or “fathers”) are not smaller than their two sub-
nodes (or “sons”). At first glance, having to code something as exotic as a binary tree
might be sufficiently dissuasive. But without losing the efficiencies that the tree struc-
ture provides, a binary tree can be stored in a linear list, where node k has sons 2k and
2k + 1. The important structure for this problem – comparisons of fathers and sons –
is unhampered by this device. The largest element in the set is at the root of the tree
(location 1) or, inverting, at the “top of the heap.” The heapsort algorithm is easily
described in two parts: create the heap; then successively remove the largest, replac-
ing it with another, and reestablish the heap. The main step is to “heapify” (establish
the heap property), which is accomplished by comparing a new node with the larger
of its sons and, if out of order, exchanging and continuing to heapify the remainder of
the list. The construction of the heap starts with the bottom nodes that have sons; then
heapify the rest of the list, moving up the heap (down the list) to the top of the heap.
This construction takes only O(N) operations. Now the last element of the list is ex-
changed with the top (so the largest is now in location N), and the list from 1 to N −1
is heapified. The element at the top is now exchanged with the last element of the list;
the list is shortened by one and again heapified. The heapify step only takes O(log N)

steps, so the total effort for heapsort is only O(N log N) in the best case, worst case,
and average case. Knuth (1998, pp. 144ff) gave a detailed outline that is easily coded;
see also the demonstrations hsort and hksort.

In some areas of statistics, the order statistics are superfluous and inference is based
on the ranks. As mentioned earlier, we may accompany the vector of keys with an index
vector – say A, with Aj = j (j = 1, . . . , N) initially. If every exchange of the keys,
say Xj and Xk, is accompanied by an exchange of the Aj and Ak, then (upon com-
pletion of the sorting) the vector A holds the antiranks. That is, suppose the original
data are {Xj, j = 1, . . . , N}; if the j th antirank is Aj = k, then the kth order statistic
follows X(j) = Xk. The ranks can be found by inverting this permutation:

DO J=1, N
K=A(J)
R(K)=J
END DO ! LOOP ON J

Hence the kth rank indicates which order statistic belongs to the kth observation.

408 Sorting and Fast Algorithms

14.4 Fast Order Statistics and Related Problems

The divide and conquer strategy can be effectively applied to some purely statistical
problems with outstanding success. Moreover, in the field of robust statistics, the com-
putational complexity T(N) of an estimator can be just as critical a statistical property
as power or variance; an estimator that cannot be computed in O(N) or O(N log N)

may have little practical value no matter how great its statistical properties. In this sec-
tion, we’ll look at some examples of estimators where the use of divide and conquer
leads to improved computational complexity and makes the use of these estimators
practicable.

The first problem is the sample median, or any order statistic from a sample of size
N. When N is even, the usual definition is M = 1

2 (X(N/2) + X(N/2+1)). You may re-
call from Section 12.2 that the percentile point estimators ĉ1, ĉ2, ĉ3 employ consecutive
order statistics. Hence our problem should really be considered that of finding the kth
and (k + 1)th order statistics from a sample of size N. One straightforward approach
would be to just sort the data. If the data need to be sorted anyway then there is no
possible gain, since the O(N log N) cost will have to be paid anyway. But if the data
aren’t going to be sorted, the question becomes whether we can compute consecutive
order statistics from a sample of size N in less than O(N log N) time. The answer,
quite surprisingly, is “Yes!” An algorithm (FIND) due to Hoare (1961) is an analog of
quicksort and a direct application of divide and conquer.

Algorithm FastOS (K, X, BEGIN, END) (Find kth order statistic of sample of
size N)

(1) Generate J ∼ discrete uniform(BEGIN, END)
(2) Partition list into S1 = { those < KEY(J) }, S2 = { those = KEY(J) }, and

S3 = { those > KEY(J) }, with sizes k1, k2, k3 (respectively), reordering the
elements of list KEY so that the elements of S1 have the smallest indices, S2 in
middle, S3 at end.

(3) If(K ≤ k1) then FastOS(K, X, BEGIN, k1).

(4) If(k1 < K ≤ k1 + k2) then return X(J) as kth order statistic.
(5) If(K > k1 + k2) then FastOS(K − k1 − k2, X, k1 + k2 + 1, END).

Essentially, with a single partition, the problem has been changed from finding one
order statistic from a list of length N to finding a possibly different order statistic from
a smaller list. A pessimistic analysis of the complexity of FastOS is

T(N) ≤ cN + 1

N
max

k

{ N−1∑
N−k+1

T(j) +
N−1∑

k

T (j)

}
, (14.4.1)

since the partitioning takes only cN effort. The solution to (14.4.1) can be shown
(Exercise 14.4) to be a mere O(N). The order-of-magnitude calculations can hide a
nasty constant, indicating only that FastOS is an improvement over sorting for N large
enough. But suspend your skepticism until you try it out. See the demonstration fstmed
for computing medians; it can be easily modified to find any consecutive pair of order
statistics.

14.5 Fast Fourier Transform 409

The Hodges–Lehmann (1963) estimator, defined as

µ̂ = median{(Xi + Xj)/2, 1 ≤ i ≤ j ≤ N}, (14.4.2)

is another location estimator whose computation can be improved using the strategy
of divide and conquer. Johnson and Kashdan (1978) suggested this approach, but the
author (Monahan 1984) employed a randomized strategy similar to quicksort. Again,
the strategy is to cut the set, which in this case has O(N 2) elements, without construct-
ing all the elements – and to do it quickly. The unique feature of this problem is that
the partitioning of the O(N 2) elements can be done in O(N) time. Envision the up-
per triangular matrix of values whose (i, j) element is X(i) + X(j) (but don’t create it).
Select a partition element c and begin by comparing c to the (1, N) element (which is
X(1) + X(N)). If c is larger (or equal) then move down a row, and if c is smaller then
move left a column, until the diagonal is reached. By following the path of compar-
isons, the elements of the set that are less than c and greater than or equal to c can be
stored by just storing the row limits, requiring only O(N) operations and O(N) stor-
age for each partition step. A modification of the quicksort strategy using random row
medians is implemented in the demonstration hlqest. Robinson and Sheather (1988)
implemented further improvements, including a fast initial partition and a generaliza-
tion to any consecutive order statistics for constructing confidence intervals.

Demonstrations are also given for three other related problems. The first is the two-
sample variation of the Hodges–Lehmann estimator

�̂ = median{Xi − Yj, 1 ≤ i ≤ M, 1 ≤ j ≤ N} (14.4.3)

in the demonstration hl2qst; see also McKean and Ryan (1977). The other two demon-
strations are for one-sample scale estimators. One is a median,

S1 = median{(X(j) − X(i)), 1 ≤ i < j ≤ N}, (14.4.4)

demonstrated in abdfmd; the other is a trimmed estimator,

S2 = sum of k smallest {(X(j) − X(i)), 1 ≤ i < j ≤ N}, (14.4.5)

implemented in abdftr. All four of these estimators appear to take O(N 2) or O(MN)

in time and space, and all four follow similar divide-and-conquer and partitioning
strategies to reduce the effort to O(N log N), which is proportional to sorting. For an
alternative approximate approach for computing the location estimators, see Exercises
14.6, 14.7, and 14.8.

14.5 Fast Fourier Transform

The most important computational breakthrough of modern mathematics is the fast
Fourier transform (FFT). In this section we concentrate on the mathematical detail,
postponing applications until the next two sections. Essentially, the discrete Fourier
transform is a matrix multiplication with a structure that permits the nesting of the same
steps. Here divide and conquer takes a different tack, but it follows the same recursive

410 Sorting and Fast Algorithms

analysis. Although most of the steps involve transparently simple arithmetic, a con-
stant distraction is the change in indexing. Throughout this and subsequent sections,
all vectors and matrices are indexed from 0 to N − 1 instead of from 1 to N.

The discrete Fourier transform (DFT) of a vector x can be described as a matrix
multiplication Tx. The (j, k) element of the matrix T is Tjk = wjk, where w =
exp{−2πi/N} and i is the usual imaginary number i = √−1, so that

ak =
N−1∑
j=0

wjkxj . (14.5.1)

In Chapter 3 we counted as N 2 the number of flops for multiplying a matrix by a vector
of length N. By exploiting the special structure of this matrix, the fast Fourier trans-
form (Cooley and Tukey 1965) can do the job in merely O(N log N). One important
property of w, an N th root of unity, is that wkN+m = wm for any integers k and m.

The second important property is that the sum

N−1∑
k=0

wjk = Nδ(j) =
{

0 if j mod N
= 0,

N if j mod N = 0.
(14.5.2)

From these relationships, one can show that the (j, k) elements of the inverse matrix
T−1 are w−jk/N :

(T−1Tx)m = 1

N

N−1∑
k=0

w−mkak = 1

N

N−1∑
k=0

w−mk

N−1∑
j=0

wjkxj

= 1

N

N−1∑
j=0

xj

N−1∑
k=0

w(j−m)k = 1

N

N−1∑
j=0

xjNδ(j − m) = xm.

Since the inverse is closely related to the DFT, a similar algorithm should work for
both.

The “fast” in FFT can be seen from assuming that N is composite, N = N1N2.

Consider the following algebraic steps arising from a rewriting of the indices, j =
j1N2 + j2 and k = k1 + k2N1, where j1, k1 ∈ [0, N1 − 1] and j2, k2 ∈ [0, N2 − 1]:

ak =
N−1∑
j=0

wjkxj =
N−1∑
j=0

wj(k1+k2N1)xj;

ak1+k2N1 =
∑
j1

∑
j2

w(j1N2+j2)(k2N1+k1)xj1N2+j2

=
∑
j1

∑
j2

wj1k1N2+j2(k2N1+k1)xj1N2+j2 (since wN1N2j1k2 = 1)

=
∑
j2

wj2(k2N1+k1)
∑
j1

(wN2)j1k1xj1N2+j2 .

Now observe that each of the N2 inner sums is a DFT of length N1, and if we table
them as

14.5 Fast Fourier Transform 411

G(k1, j2) = wj2k1
∑
j1

(wN2)j1k1xj1N2+j2

then each of the N1 outer sums becomes

ak1+k2N1 =
∑
j2

(wN1)j2k2G(k1, j2),

which are DFTs of length N2. In the divide-and-conquer parlance, we perform a DFT
of length N = N1N2 by performing N2 DFTs of length N1 to get G(k1, j2) and then
N1 DFTs of length N2, or

T(N) = T(N1N2) = N2T(N1) + N1T(N2). (14.5.3)

For the simple case of even N, taking N1 = 2 yields the familiar

T(N) = (N/2)T (2) + 2T(N/2), (14.5.4)

whose solution is T(N) = O(N log N). The remainder of this section dwells on the
gory details; first-time readers should skip to the next section for something more in-
teresting.

The effectiveness of the FFT (and some details of its coding) become apparent by
looking in detail at the case N = 2m, the “power of 2” algorithm. Later we will see
that this is all we really need. Again do some rewriting of the indices:

j = j12m−1 + j22m−2 + · · · + jν2m−ν + · · · + jm−12 + jm

= j12m−1 + j ∗
1

= j12m−1 + j22m−2 + j ∗
2

...

Here jν ∈ [0,1], and j ∗
ν subsumes the remaining indices and covers [0, 2m−ν −1]. Now

repeat this with k, but in the reverse order:

k = k1 + k22 + · · · + kν2ν−1 + · · · + km−12
m−2 + km2m−1

= k1 + 2k∗
1

= k1 + 2k2 + 22k∗
2; (14.5.5)

here kν ∈ [0,1], and k∗
ν subsumes the remaining indices and covers [0, 2m−ν − 1].

Now begin with the full summation over j, and then step through one at a time:

ak =
∑
jm

· · ·
∑
j1

wk(
∑

jν 2m−ν)x∑ jν 2m−ν ;

ak1+2k∗
1

=
∑
j∗

1

∑
j1

w(k1+2k∗
1)(j12m−1+j∗

1)xj12m−1+j∗
1

=
∑
j∗

1

w(k1+2k∗
1)j∗

1

∑
j1

wk1j12m−1
xj12m−1+j∗

1

=
∑
j∗

1

w(k1+2k∗
1)j∗

1(xj∗
1

+ wk12m−1
xj∗

1 +2m−1).

412 Sorting and Fast Algorithms

Notice that the even (0) and odd (1) values of k simplify (respectively) to

a0+2k∗
1

=
∑
j∗

1

(w2)j∗
1 k∗

1(xj∗
1

+ xj∗
1 +2m−1)

and
a1+2k∗

1
=
∑
j∗

1

(w2)j∗
1 k∗

1(xj∗
1

− xj∗
1 +2m−1)wj∗

1 .

No previous mention was made of the indexing needed to store and retrieve G(k1, j2),

and this issue will be further postponed except to mention here the storage of interme-
diate results in X

(k1)

j∗
1

:

X
(0)

j∗
1

= (xj∗
1

+ xj∗
1 +2m−1) and X

(1)

j∗
1

= (xj∗
1

− xj∗
1 +2m−1)wj∗

1 .

Next consider the summation on j2 using X(k1):

ak1+2k2+22k∗
2

=
∑
j∗

2

∑
j2

(w2)(k2+2k∗
2)(j2 2m−2+j∗

2)X
(k1)

j2 2m−2+j∗
2
,

=
∑
j∗

2

w2(k2+2k∗
2)j∗

2(X
(k1)

j∗
2

+ wk2 2m−1
X

(k1)

j2 2m−2+j∗
2
),

=
∑
j∗

2

w4k∗
2 j∗

2 X
(k1,k2)

j∗
2

,

where

X
(k1,0)

j∗
2

= (X
(k1)

j∗
2

+ X
(k1)

j∗
2+2m−2) and X

(k1,1)
j∗

2
= (X

(k1)

j∗
2

− X
(k1)

j∗
2+2m−2)w

2j∗
2 .

Each step, a transform of length 2, can be summarized by the updates

X
(k1, ...,kν−1,0)

j∗
ν

= (X
(k1, ...,kν−1)

j∗
ν

+ X
(k1, ...,kν−1)

j∗
ν +2m−ν), (14.5.6a)

and
X

(k1, ...,kν−1,1)
j∗
ν

= (X
(k1, ...,kν−1)

j∗
ν

− X
(k1, ...,kν−1)

j∗
ν +2m−ν)w2ν−1j∗

ν . (14.5.6b)

Since j ∗
m−1 = jm and k∗

m−1 = km, the last step has

ak1+···+2m−1km
=
∑
jm

w2m−1jmkmX
(k1, ...,km−1)

jm

= X
(k1, ...,km−1)

0 + w2m−1kmX
(k1, ...,km−1)

1 = X(k1, ...,km).

Hence, for the power-of-2 algorithm, each step consists of a long list of pairwise sums
as well as an equally long list of pairwise differences scaled by w to some power. The
issue of storage can no longer be ignored – where can X

(k1, ...,kν)

j∗
ν

be stored? Since each
step has all of those pairwise sums and differences, the two results could be stored over
the two elements that contributed. If the rule is that the sums overwrite the first element
and the differences overwrite the second, then X

(k1)

j∗
1

is stored in xj∗
1 +k12m−1, X

(k1,k2)

j∗
2

is

stored in xj∗
2+k12m−1+k2 2m−2, and so on. At the end, X(k1, ...,km) is stored in location

rev(k) = k12m−1 + k22m−2 + · · · + kν2m−ν + · · · + km−12 + km, (14.5.7)

14.6 Convolutions and the Chirp-z Transform 413

which is just exactly reversed from k in (14.5.5). That is: given k as defined in (14.5.5),
if we reverse the order of the bits k1, . . . , km with the operator rev(k), then ak is stored in
location arev(k). The power-of-2 algorithm then follows the calculations in (14.5.6a,b)
and the storage steps just outlined; at the end, the elements are unscrambled using the
bit-reversing operator rev(k).

Two details remain. The biggest issue – what to do if N
= 2m – is postponed un-
til the discussion of the “chirp-z transform” (Section 14.6). The other issue is how to
handle the inverse transform. Only two changes are needed for its computation: a neg-
ative sign in the exponent of w in (14.5.6b) and dividing by N at the end.

Example 14.2: Discrete Fourier Transform of Length 8
Let x be the vector (1, 2, 3, 4, 5, 6, 7, 8)T. Then the DFT can be computed as
follows.

Storage xj X
(k1)

j∗
1

X
(k1,k2)

j∗
2

X(k1,k2,k3)

0 1 X
(0)

0 = 6 X
(0,0)

0 = 16 X(0,0,0) = 36

1 2 X
(0)

1 = 8 X
(0,0)

1 = 20 X(0,0,1) = −4

2 3 X
(0)

2 = 10 X
(0,1)

0 = −4 X(0,1,0) = −4(1 + w2)

3 4 X
(0)

3 = 12 X
(0,1)

1 = −4 X(0,1,1) = −4(1 − w2)

4 5 X
(1)

0 = −4 X
(1,0)

0 = −4(1 + w2) X(1,0,0) = −4(1 + w2)(1 + w)

5 6 X
(1)

1 = −4 X
(1,0)

1 = −4(1 + w2) X(1,0,1) = −4(1 + w2)(1 − w)

6 7 X
(1)

2 = −4 X
(1,1)

0 = −4(1 − w2) X(1,1,0) = −4(1 + w2)(1 + w3)

7 8 X
(1)

3 = −4 X
(1,1)

1 = −4(1 − w2) X(1,1,1) = −4(1 − w2)(1 − w3)

k rev(k) real(ak) imag(ak) wk

0 0 36 0 1

1 4 −4 4
(
1 + √

2
)

w = (1 − i)/
√

2

2 2 −4 +4 w2 = −i

3 6 −4 −4
(
1 − √

2
)

w3 = −(1 + i)/
√

2

4 1 −4 0 w4 = −1

5 5 −4 4
(
1 − √

2
)

w5 = (−1 + i)/
√

2

6 3 −4 −4 w6 = i

7 7 −4 −4
(
1 + √

2
)

w7 = (1 + i)/
√

2

See the demonstration fft2n.

14.6 Convolutions and the Chirp-z Transform

Use of the FFT follows the same pattern as the continuous Fourier transform. The
reader should keep in mind that the FFT is merely a fast computational algorithm for

414 Sorting and Fast Algorithms

the DFT. The Fourier transform is great for computing convolutions – the transform
of a convolution is the product of the transforms. This also applies to the DFT and is
the key to all of the applications discussed here.

Let the notation x ∗ y define the elementwise product of two vectors; that is, x ∗ y
is a vector whose j th element is (x ∗ y)j = xjyj . Then the convolution of two vectors
can be computed by computing the DFT for each vector, multiplying the transforms
together elementwise, and then taking the inverse transform. Mathematically, this ap-
proach to convolutions can be written as z = T−1((Tx) ∗ (Ty)); the details are

zu = 1

N

∑
k

w−uk

{∑
s

wksxs

}{∑
t

wktyt

}
= 1

N

∑
s

∑
t

xsyt

∑
k

wk(s+t−u)

= 1

N

∑
s

∑
t

xsytNδ(s + t − u) =
∑

s

xsyu−s .

Note that this is a circular or periodic convolution owing to (14.5.2), so that the final
sum on s extends from 0 to N − 1. Therefore, if u − s < 0 then xsyN+u−s is included
in the sum.

In order to compute a noncircular convolution, the vectors x and y must be padded
with at least N − 1 zeros to make those vectors at least 2N − 1 in length. If we had
two polynomials of degree N − 1, p(z) = ∑N−1

j=0 xjz
j and q(z) = ∑N−1

j=0 yjz
j , then

the product is a polynomial of degree 2N − 2,

p(z)q(z) =
2N−2∑
j=0

{ j∑
k=0

xkyj−k

}
zj .

This is a common avenue to circumvent the periodicity inherent in Fourier transforms.
In the previous section we presented the power-of-2 algorithm, yet there are ver-

sions of the FFT for other composite values of N (see especially Singleton 1969). Our
avoidance is due not only to sloth. First, as will be evident in the applications in the
next section, often the length N can be chosen for convenience. The second reason is
that, by employing the chirp-z transform (Bluestein 1970; Rabiner, Schafer, and Rader
1969) that follows, the power-of-2 algorithm can be used to compute the DFT for any
value of N.

We begin with a little algebra: (s − t)2 = s2 − 2st + t 2, so that

st = s2/2 + t 2/2 − (s − t)2/2.

Now write the DFT for a vector b as follows:

as =
N−1∑
t=0

wstbt =
N−1∑
t=0

ws2/2+t 2/2−(s−t)2/2bt

= ws2/2
N−1∑
t=0

(wt 2/2bt)w
−(s−t)2/2. (14.6.1)

The sum can be viewed as a convolution of xt = wt 2/2bt and yt = w−t 2/2. Any convo-
lution can be computed using three FFTs with enough padded zeros. The strategy here
is to pad with enough zeros so that the length is a power of 2. If 2m−1 < N < 2m, then

14.7 Statistical Applications of the FFT 415

three FFTs are needed with length 2m+1 = N ∗ in order to compute the convolution. If
N = 13, say, then pad with 19 zeros and use FFTs of length N ∗ = 32 = 25 to compute
the convolution. One important detail is that this convolution must be circular, so that
the vector y has entries stored as follows:

yt = 1, t = 0;
yt = w−t 2/2, t = 1, . . . , N − 1;
yt = 0, t = N, . . . , N ∗ − N;
yt = w−(N ∗−t)2/2, t = N ∗ − N + 1, . . . , N ∗ − 1.

See the following example and the demonstration chirpz.

Example 14.3: Chirp-z Transform
Consider the DFT of a series of length 3 (can’t be easier), b = (b0, b1, b2)

T. Then
the powers of w are w0 = 1, w1 = −(1 + i

√
3
)
/2, and w2 = −(1 − i

√
3
)
/2.

The DFT of b is then

a0 = b0 + b1 + b2,

a1 = w0b0 + w1b1 + w2b2,

a2 = w0b0 + w2b1 + w1b2.

In terms of (14.6.1), the vectors x and y can be written as

x0 = b0w
0, y0 = w0 = 1,

x1 = b1w
1/2, y1 = w−1/2 = y−1,

x2 = b2w
2, y2 = w−2 = w1 = y−2,

and the DFT looks like

a0 = w0 [x0y0 + x1y−1 + x2y−2]

= w0 [(w0b0)(w
0) + (w1/2b1)(w

−1/2) + (w2b2)(w
−2)],

a1 = w1/2[x0y1 + x1y0 + x2y−1]

= w1/2[(w0b0)(w
−1/2) + (w1/2b1)(w

0) + (w2b2)(w
−1/2)],

a2 = w2[x0y2 + x1y1 + x2y0]

= w2[(w0b0)(w
−2) + (w1/2b1)(w

−1/2) + (w2b2)(w
0)].

For N = 3, the convolutions could be computed using FFTs of length 8, where
y−1 would be stored in y7 and y−2 in y6. But if length 16 were used, y−1 would
be in y15 and y−2 in y14.

14.7 Statistical Applications of the FFT

Applications of the FFT in statistics range from the obvious and mundane to the sur-
prising and clever. The intention of this section is to provide a sampling of this variety.

416 Sorting and Fast Algorithms

As the reader may anticipate, the more interesting cases arise when a computationally
taxing problem can be solved by a completely different approach that exploits the abil-
ity to compute the DFT much faster than expected.

(A) Time Series

The first application of the FFT to statistical time-series analysis is the computation of
the periodogram IN(f), which measures how much of the variation of a time series
{yt} is attributable to activity at a particular frequency f. The periodogram is usually
defined by

IN(f) = N

2
[A(f)2 + B(f)2],

where A(f) and B(f) are estimates of the periodic components of the series {yt , t =
0, . . . , N − 1},

A(f) = 2

N

N−1∑
t=0

yt cos(2πft), B(f) = 2

N

N−1∑
t=0

yt sin(2πft).

An alternative definition of the periodogram has the series {yt} centered about its mean.
Although the periodogram is defined for all frequencies f ∈ [0, 1

2], most applications
would call for its evaluation only at several select frequencies. Use of the FFT would
permit fast computation at N frequencies, but only at the Fourier frequencies fj =
j/N. The DFT of the series {yt} takes the form

aj =
N−1∑
t=0

yt exp

{
− 2πijt

N

}
=

N−1∑
t=0

yt

[
cos

(
2πjt

N

)
+ i sin

(
2πjt

N

)]

= N

2

[
A

(
j

N

)
+ iB

(
j

N

)]
,

IN

(
j

N

)
= 2

N
|aj |2.

Notice also that, at these frequencies, it doesn’t matter whether the series {yt} is cen-
tered or not (see Exercises 14.14 and 14.15). The FFT has had its biggest impact in
the estimation of the power spectrum, where the ability to compute the periodogram
quickly at many frequencies has promoted estimates that are smoothed periodograms
computed at Fourier frequencies, as seen in Section 13.5.

The use of the FFT to compute convolutions also leads to faster methods for com-
puting both autocorrelations,

rk = 1

N − k

N−k∑
t=0

ytyt+k,

and cross-correlations,

vxy(k) = 1

N − k

N−k∑
t=0

xtyt+k.

14.7 Statistical Applications of the FFT 417

Notice, of course, that vxx(k) = rk; also, each series would commonly be centered
about its mean. All of the autocorrelations rk, or cross-correlations vxy(k), can be
computed using

[T−1(T(x) ∗ T(y))]k

= 1

N

N−1∑
j

wkj T(x)j T(y)j = 1

N

N−1∑
j=0

wkj

(∑
s

wsjxs

)(∑
t

w−tjyt

)

= 1

N

∑
s

∑
t

xsyt

∑
j

wkj+sj−tj = 1

N

∑
s

∑
t

xsytNδ(s − t + k) =
N−1∑
s=0

xsys+k.

Unless there is inherent periodicity in the indexing, the circular convolutions that the
FFT will compute must be avoided. The requirement here is that the series be padded by
N zeros so that series of length N ∗ = 2N are transformed, one multiplied by the conju-
gate of the other, and the product transformed back. If this is done, then (N − k)vxy(k)

will be in location k for k = 0, . . . , N − 1 and (N − k)vxy(−k) = (N − k)vyx(k) will
be in location N ∗ − k = 2N − k.

More than other areas of applications, the number of observations in a time series is
often not subject to choice. As a result, N (or 2N in the case of correlations) will not
be a power of 2 and so the chirp-z transform of Section 14.6 will be needed to compute
the DFT efficiently. If the number of observations is subject to choice, then clearly
choosing a sample size that is a power of 2 will have great computational advantages.

(B) Characteristic Functions of Discrete Random Variables

The characteristic function of a discrete random variable X is written as φ(t) = EeitX =∑
x pxe

itx . If the support of the distribution is finite and limited to the integers {0,1, . . . ,
N − 1}, then the DFT of the probabilities {pj } will be the complex conjugate of the
characteristic function of X evaluated at t = 2πk/N,

φ

(
2πk

N

)
=

N−1∑
j=0

pj exp

{
i
2πkj

N

}
=

N−1∑
j=0

pjw
−jk = ak,

or the characteristic function evaluated at t = −2πk/N will be the DFT of the proba-
bilities. In the other direction, the probabilities are the inverse DFT of the series {ak},
where ak = φ(−2πk/N). However, if the support of the distribution is not bounded
or if the support extends beyond N − 1, then

p∗
j =

∞∑
m=0

pj+mN

are the values of the inverse DFT of the series {ak = φ(−2πk/N)}. The probabilities
from N and beyond are aliased back to integers within the range. See the demonstra-
tion poisp.

The problems with discrete random variables where the FFT can be exploited to
speed up computation are all cases where the characteristic function is easily available,
often because a sum of independent random variables is involved. In such cases, the
usual approach is just to compute the characteristic function at the appropriate values

418 Sorting and Fast Algorithms

and then compute the inverse FFT. We can anticipate two obstacles. First, if the support
of the distribution is unbounded then there is an aliasing problem. The second problem
is the effect of roundoff error. One check for the accuracy of the results from inverting
a characteristic function to obtain a probability is that the computed probability should
be real and nonnegative. If the imaginary parts are not small on a relative basis, then
the computed probabilities are clearly suspect. In some circumstances, other tools are
available to rescue the situation, as seen in the following example.

Example 14.4: Ball and Urn Probabilities
In an application that involved hashing, Ramakrishna (1987) used recurrence re-
lationships to compute the probability P(n, m, b) that n balls can be placed at
random in m urns, each with capacity b balls, without overflowing: P(n, m, b) =
F(n, m, b)/mn. David and Barton (1962) gave an expression for F(n, m, b) in
terms of generating functions:

Gb(x) = 1 + x + x 2/2! + · · · + xk/k! + · · · + xb/b!,

G∗(x) = [Gb(x)]m =
mb∑
n=0

F(n, m, b)
xn

n!
.

The application has fixed m and b, so the values of F(n, m, b) for various values
of n can be found by inverting the characteristic function G∗(eit) and multiply-
ing the probabilities by n!. The characteristic function G∗(eit) = [Gb(e

it)]m,

and the Gb(e
it) can be found simply by computing the DFT of the probabili-

ties 1/j! (Monahan 1987). But it’s not quite that easy. Instead, construct qj =
rj/j! for j = 0, . . . , b, and notice that the qj are proportional to the probabilities
for the Poisson distribution with mean r, truncated at b. Then the DFT of {qj }
gives Gb(re

−i2πk/N) for N > mb, choosing N as a power of 2. Powering this
up m times yields G∗(rei2πk/N), and taking the inverse DFT will reproduce q∗

j =
F(n, m, b)rj/j!. The role of the scale r will become apparent only when con-
sidering which values of q∗

j will be large. Recall that the qj were proportional
to probabilities from a truncated Poisson distribution with mean r. For a reason-
able truncation point b, the q∗

j will be proportional to the probabilities from a
Poisson distribution with mean mr, which is approximately normal with mean
mr and variance mr, so the standard deviation is

√
mr. Hence the largest val-

ues of q∗
j will be around mr and so, for j far from mr, the value of q∗

j will be
relatively small and the roundoff error there much larger (relatively). If the inter-
esting values of j are large, then r should be adjusted so that these values can be
computed accurately. If there is no adjustment by r, then only values of j near m

will be computed accurately and perhaps interesting values of j will be swamped
by roundoff error.

The adjustment by the scalar r also brings the possibility of very large values
and potential overflow. The self-controlled floating point calculations from Sec-
tion 2.5 can be employed, writing a number as D×2I and storing the pair (D, I).

Here, the complication is that we have complex numbers, so that the three pieces
(x, y, k) ≡ (x + iy) × 2k are needed. As a result, the FFT routine must be re-
coded to handle this complicated arithmetic. However, because of the simple

14.7 Statistical Applications of the FFT 419

nature of the fundamental steps (14.5.6), this is not an insurmountable task. In
the demonstration chex144, the computed value of P(400, 30, 25) is given as
.966968; Ramakrishna gave .9670.

Example 14.5: Rank Tests
Pagano and Tritchler (1983) showed how to construct the characteristic function
for the null distribution of rank test statistics for the one- and two-sample prob-
lems. The one-sample problem is any statistic of the form

S1 =
n∑

j=1

s(Rj)I(Xj),

where s(Rj) is the score function; here I(Xj) = 1 if Xj > 0 and I(Xj) = 0 oth-
erwise. The most common cases are s(j) = j for the Wilcoxon test and s(j) =
�−1(j/(n + 1)) for the normal scores test. The characteristic function of the
statistic S1 is just

φ1(t) = eitT

n∏
j=1

cos(s(j)t),

where T = ∑
j s(j). For the Wilcoxon case with s(j) = j, the support of the

statistic is just the integers; hence, by forming

ak = φ1(−2πk/N), k = 0, . . . , N − 1,

for N a power of 2 larger than the largest value of the statistic, the distribution
of the test statistic S1 can be computed merely by computing the inverse FFT
of {ak}. See the demonstration wlcx1s. Notice that ties can be handled without
any difficulty. If (say) the two smallest values of |Xi | are tied, then multiply all
of the scores by 2 and use s(1) = s(2) = 3 and s(j) = 2j for j > 2; then the
distribution for 2S1 is computed.

For other score functions, such as the normal scores, the distribution is dis-
crete but the support is not the integers. The remedy suggested by Pagano and
Tritchler is to discretize the scores using the modified

s∗(j) =
[
L

s(j) − smin

smax − smin

]
,

where [·] denotes the integer part, smin and smax mark the range of the s(j), and
L is some large multiplier (say, 1000). The test statistic S1 using the modified
scores s∗(j) now has support on the integers, albeit with a much larger range.
Nevertheless, the effort in computing the distribution is still roughly O(n2) and
not combinatorial. The value of L can be varied to verify the lack of an effect.

For the two-sample problem, Pagano and Tritchler gave the characteristic func-
tion φ2(t) = ψ(m, m + n, t) for the statistic

S2 =
m∑

j=1

s(Rj),

where Rj denotes ranks from the combined (m + n) sample. This characteristic
function ψ(j, k, t) can be computed by the recursion

420 Sorting and Fast Algorithms

ψ(j, k, t) = exp{itsk}ψ(j − 1, k − 1, t)

+ ψ(j, k − 1, t) for 1 ≤ j ≤ k = 1, 2, . . . , (14.7.1)

where ψ(0, 0, t) = 1 and ψ(j, k, t) = 0 for j > k. Each value of the character-
istic function then takes O(m(m + n)) effort, choosing m to be the smaller of
the two sample sizes. For an implementation to compute the distribution of the
two-sample Wilcoxon test statistic with s(j) = j, see the demonstration wlcx2s.

As can be seen from these two examples, many combinatorial problems permit the cal-
culation of the characteristic function of a discrete or discretizable random variable.
Following the approach of Pagano and Tritchler (1983), many permutation tests that
lead to counting combinations of subsets lead also to a recursion formula for a char-
acteristic function of the form (14.7.1). Even if the calculation of the characteristic
function may be quite involved, the alternative method for calculation usually entails
enumeration of combinations. Although this topic will be covered in the next section,
it is sufficient to recognize that such enumeration is usually exponential in its compu-
tational complexity, whereas the characteristic function approach is only polynomial.
For further applications in the same vein, see Good, Gover, and Mitchell (1970) for
R × C tables, Tritchler (1984a,b) or Spino and Pagano (1991) for permutation distri-
butions, and Baglivo, Olivier, and Pagano (1992) for multinomials.

(C) Convolutions of Continuous Random Variables by Discretization

Since characteristic functions make convolutions easier to obtain and since discrete
random variables are easier to deal with using the FFT, one route for obtaining the dis-
tribution of the sum of continuous random variables is to discretize the problem and
then use the FFT to obtain the distribution of the sum. One strong advantage of this
route is that the distributions are discrete: the probabilities should be positive and add
to 1, and the imaginary parts should be zero. However, this route will work only if the
discretization works well. Denote the continuous random variable by X with density
f(x) and denote the discretized random variable by X∗, whose support is restricted to
the lattice {δj, j = 0, . . . , N − 1}. Then pj = Pr(X∗ = xj = δj) is approximating

Pr
((

j − 1
2

)
δ < X ≤ (j + 1

2

)
δ
) =

∫ xj +δ/2

xj −δ/2
f(u) du ≈ δf(xj). (14.7.2)

To approximate the distribution of the sum of m independent random variables each
with density f(x), the approach is to compute the FFT of the sequence of probabili-
ties {pj } to get {ak}, then raise to the power m to get (ak)

m = bk, and then transform
back the {bk} to obtain {qj }. In this case the discrete probabilities qj = Pr

(∑m
i=1 X∗

j =
xj = δj

)
are approximating

Pr

((
j − 1

2

)
δ <

m∑
i=1

Xi ≤ (j + 1
2

)
δ

)
.

If the random variables Xi are not identically distributed, then the exponentiation be-
comes a product: produce probabilities p

(i)
j for random variable Xi, transform to get

{a(i)
k }, then bk =∏m

i=1 a
(i)
j , and then transform {bk} back to get {qj }.

14.7 Statistical Applications of the FFT 421

Figure 14.1. Discretization of continuous convolutions. Density of average of reciprocals of uni-
forms, with m = 8 (solid), 16, and 32 (dashed).

The key part of this approach is that the approximation (14.7.2) works well; every-
thing else is details. However, this approximation does not work well in some important
cases. For example, for the chi-square distribution, the probability at zero is∫ δ/2

0
(2π)−1/2e−x/2x−1/2 dx,

which could be approximated by
√

δ/π. This approximation works well when δ is
small enough, but then δf(xj) will require special treatment for all small j ; see Exer-
cise 14.25. Distributions with infinite support pose two obvious problems. Truncation
of the distribution at (N − 1)δ requires the distribution to tail quickly to zero. If the
distribution does not tail quickly to zero, or if the bound (N − 1)δ isn’t large enough,
then any probability that the sum is greater than the upper bound will be aliased.

Example 14.6: Distribution of Sums of Reciprocals of Uniforms
In conducting research on the tests for infinite variance in Section 12.5, we sought
the limiting distribution of

Vm = m−1
m∑

i=1

1

Ui

,

where the Ui are IID uniform(0,1) random variables. To get a handle on the
asymptotics, the distribution of

∑m
i=1(1/Ui − 1) was approximated for m = 8,

16, and 32 using the approach just described with N = 216 = 65,536 and δ =
1/256. The demonstration tivmm1 constructs the {qj } for these three values of
m and writes them into the file tivmm1.dat, using this discretization method and
the extended precision version of the FFT. As can be seen in Figure 14.1, the
density of Vm − 1 appears to approach a consistent shape, although the location
of the distribution still shifts to the right as m increases. Notice how strong the
aliasing effect has become for m = 32, as the density is clearly decreasing at the

422 Sorting and Fast Algorithms

origin. The density for the sum at xj = δj is approximated by qj/δ; rescaling by
1/m rescales the horizontal variable to v = jδ/m and the density to mqj/δ.

(D) Inverting the Characteristic Function of Continuous Random Variables

The null distribution of many important statistics can be expressed as the sum of in-
dependent random variables. Since the sum of random variables can be conveniently
expressed in terms of products of characteristic functions, the inversion of the char-
acteristic function would be a natural approach for obtaining the distribution – either
the density for plotting, or the distribution function for critical values. The fast Fourier
transform also appears to be the natural computing tool for inverting characteristic
functions. However, the ease of use in the discrete case does not carry over to the
continuous case. Moreover, the problem of inversion of the characteristic function nu-
merically is not that easy, even with such a tool as the FFT available.

The mathematics of the inversion of a characteristic function is rather simple. De-
note the characteristic function of the random variable X by φ(t) = EeitX. Then the
inverse formula for the density can be expressed as

f(x) = 1

2π

∫ ∞

−∞
φ(t)e−itx dt. (14.7.3)

The density is usually not as useful as the distribution function, which takes the form

F(x) = 1

2
− 1

2πi

∫ ∞

−∞
φ(t)

t
e−itx dt. (14.7.4)

The exploitation of the FFT follows from replacing the infinite integral with a finite
one from −T to T and then replacing the finite integral by a sum over evenly spaced
points,

f(x) = 1

2π

∫ T

−T

φ(t)e−itx dt ≈ δ

2π

N−1∑
j=0

φ(tj)e
−itj x (14.7.5)

with tj = jδ. Evaluate f(x) at evenly spaced values of x (say, xk = kγ) and force the
product of the two spacings δγ = 2π/N. Then (14.7.5) can be rewritten as

f(xk) ≈ δ

2π

N−1∑
j=0

φ(jδ)e−ijk2π/N ,

so that the DFT of scaled values of the characteristic function forms values of the
density. The key is that the product of the two spacings follows δγ = 2π/N, which
combines the relationship between the spacing δ of the tj, the range ±T of the inte-
gration on t, where 2T = δN, as well as the spacing γ of the xk and their range ±G,

where 2G = γN. If the integration on t forces (a) the spacing δ because of smooth-
ness and (b) the range ±T to reduce the truncation/aliasing error, then for fixed effort
N this also forces the spacing of the xk and their range. The “fast” in FFT permits N

to be very large, and often both factors can be accommodated.
Observe that the periodicity in the DFT produces some simplifications for negative

values of t and x. If we use tj = jδ, then tN−j = (N − j)(2T/N) = 2T − tj = −tj .

14.7 Statistical Applications of the FFT 423

Similarly, xN−k = −xk, so that the large indices can be used for negative values in the
computation of the DFT. This obviates the need for shifting the distribution so that the
support is all on positive values.

Although the inversion formula for the density is usually well behaved, the more
useful distribution function is often quite troublesome. Notice that we’re dividing by t

in the integral (14.7.4); hence, in the sum we need to find something to replace [φ(tj)/tj]
for t0 = 0. If the distribution has a first moment, then the j = 0 term can be dropped
from the sum (Bohman 1975) (note the prime for the missing zero term):

F(x) ≈ 1

2
+ xδ

2π
− δ
∑

j

′ φ(tj)

2πitj
.

Another approach is to find a distribution with known characteristic function ψ(t) and
distribution function H(x), which leads to

F(xk) ≈ H(x) + δ

2π

N−1∑
j=0

e−ijk2π/N φ(tj) − ψ(tj)

tj
; (14.7.6)

again, a special value would be sought for the case tj = 0. If ψ and φ behaved simi-
larly at the origin, then the difference divided by t may have a limit at zero that could
be used in place of the j = 0 term. This will work in some cases using the normal
distribution. However, not many other distributions will work, since few simple dis-
tributions have a distribution function and a characteristic function that are both easy
to manipulate. The Cauchy characteristic function e−σ|t | behaves badly at the origin.
The double exponential / Laplace characteristic function ψ(t) = (1 + σ 2 t 2)−1 is nice
and smooth at the origin, but notice that it tails off very slowly and would require T to
be large.

The focus of this discussion has been what to do with the j = 0 term, but the point
is that – beyond merely avoiding division by zero – the behavior of the characteris-
tic function near the origin is important both for the behavior of the distribution and
the numerical evaluation of the integral. In general, numerical inversion for the distri-
bution function is difficult; see Exercises 14.22 and 14.23. One notable exception for
a particularly useful case is postponed to Section 14.7(E), after an example of some
mixed results.

Example 14.7: Distribution of Sums of Reciprocals of Uniforms, Revisited
As mentioned in Example 14.6, we seek the limiting distribution of

Vm = m−1
m∑

i=1

1

Ui

,

where Ui are IID uniform(0,1) random variables. Given the insight gained from

Figure 14.1, the limiting distribution could be established as Vm − m log m
D−→V,

where the random variable V is a stable law of order 1 with characteristic function

φV (t) = exp
{−π

2 |t |} exp{−it(η + log t)}, (14.7.7)

424 Sorting and Fast Algorithms

Figure 14.2. Limit density by inverting characteristic function. Density of average of reciprocals of
uniforms, with m = 8 (solid), 16, 32 (both dashed), and limit (taller solid).

where η = 1 − γ and γ = .5772... is Euler’s gamma. From Figure 14.1, most
of the mass should be above −4 and tailing off very slowly. Clearly V does not
have a first moment, so working with (14.7.6) for the normal distribution is hope-
less. However, note that the amplitude follows the characteristic function of the
Cauchy with scale σ = π/2. In the demonstration chfniv, the density is com-
puted by following (14.7.5) with N = 4096, δ = 2π/256, and the x-spacing
γ = 1/16. The difference approach is followed for the distribution function, em-
ploying (14.7.6) with the Cauchy distribution and the scale mentioned previously.
However, the behavior at the origin does not permit the use of a zero value at the
origin (see Exercise 14.24), as was done here. As a result, the computed distribu-
tion function does not match the one computed by the sequential sum of density
values multiplied by the x-spacing γ. Even so, the computed density in Figure
14.2 seems to fit well into the limiting distribution sketched in Figure 14.1.

(E) Weighted Sums of Chi-Square Random Variables

The null asymptotic distribution of some important statistics can be written as the
weighted sum of independent chi-square random variables. Other problems arise that
require the distribution of a quadratic form in normal random variables, which (after
some manipulation) can be rewritten as a linear combination of chi-square variables.
Imhof (1961) proposed inverting the characteristic function for this problem. Davies
(1975, 1980) analyzed the truncation and integration error and proposed practical upper
bounds effective for guaranteeing a desired level of accuracy.

Let Q =∑m
j=1wjXj, where wj are weights (not required to be positive) and Xj are

independent chi-square random variables with nj degrees of freedom and noncentrality
parameters δj . The characteristic function of Q is

14.8 Combinatorial Problems 425

φ(t) =
m∏

j=1

(1 − 2iwj t)
−(1/2)nj exp

{
i

m∑
i=1

δjwj t

1 − 2iwj t

}
. (14.7.8)

Following (14.7.4), some complex mathematics, and the substitution t = 2u, we may
express the distribution function of Q by the integral

Pr(Q ≤ x) = 1

2
− 1

π

∫ ∞

0

sin(θ(u))

uR(u)
du, (14.7.9)

where the angle θ(u) is

θ(u) =
m∑

j=1

[
(nj/2)tan−1(2uwj) + uwjδj

1 + 4w2
j u2

]
− ux

and the term in the denominator is

R(u) =
m∏

j=1

(1 + 4w2
j u2)nj /4 × exp{2u2

m∑
j=1

δjw
2
j

1 + 4w2
j u2

}

The integral (14.7.9) can then be approximated by the finite integral to an upper limit
U = (K + 1)� using the midpoint rule, evaluating the numerator and denominator at
u = �(k + 1

2) for k = 0, . . . , K. See the demonstration qimhof and Exercise 14.27.
Davies (1975, 1980) also included an independent normal variate X0 and allowed for

the evaluation of Pr(Q + σX0 ≤ x). The inclusion of noncentralities makes the prob-
lem a little more complicated, but the noncentralities also make the problem easier. The
difficulty here is the same as noted previously at the origin, and small m or nj and δj =
0 are much harder. Small values of x (corresponding to small probabilities) are also
more difficult because the convergence of the terms is slow – Davies (1975) pointed
out that this convergence can be surprisingly slow and require thousands of terms (K).

Later, Davies (1980) fully analyzed the error terms, gave bounds, and presented code
to automatically choose K and � to ensure a given level of accuracy. See Lu and King
(2002) for improved bounds and guidelines.

14.8 Combinatorial Problems

The discussion of counting and combinatorial problems may not appear to fit well in
this chapter. However, since these topics don’t seem to fit in any other chapter, their
sharp contrast to the preceding discussion makes its placement here useful. For as
much as the motivation throughout this chapter has been to seek solutions that are sur-
prisingly effective, this section examines a couple of the problems that can be the most
tedious. Yet even as the number of steps may grow large quickly – say, as n! or

(
n

k

)
–

all of the work is done in integers and so the steps are often quite fast. The number of
steps, however, can grow so fast that these problems soon become intractable. As a re-
sult, predicting how long an algorithm will run is difficult, since the toy problems may
run in the blink of an eye and so make timing impossible. It is therefore best to slowly
increase the size of the toy problems, since they can suddenly appear to take forever.

For all of these problems (counting, subsets, permutations), the same framework is
effective: an initialization, looping through to produce the next item and process it,

426 Sorting and Fast Algorithms

and then a flag to signal the last item. Often these are coded as subprograms to produce
the next item, which leads to the following program structure.

initialize
while (flag says it’s not the last one) do

first processing step
...

last processing step
call routine – get next item and flag
end do

further code

These algorithms are most useful in statistical applications for implementing exact
permutation tests. Permutation tests are designed so that, under the hypothesis of in-
terest, a group of transformations of the observations does not change the distribution.
For IID observations the order statistics are sufficient, and permutations of the order of
the observations do not affect the distribution. Permutations of the responses (Ys) are
usually the group of transformations, but in many cases the group of transformations
can be simplified. The big advantage of permutation tests is that they do not require
further distributional assumptions. Additionally, the test statistic itself is not restricted;
the critical value is adjusted. Briefly put, the p-value under the permutation distri-
bution is computed by counting the fraction of the permutations that produce a more
extreme test statistic.

The drawback of permutation tests is that enumeration of all permutations is a bur-
densome task. Without some simplification, permutation tests are nearly impossible
for all but small sample sizes, owing to the explosive growth of n!, the number of per-
mutations. Just a few values make this point clear: 8! = 40,320, 9! = 362,880, 10! =
3,628,800, 11! = 3.99 × 107, and 12! = 4.79 × 108. Without simplification, the sam-
ple size is therefore usually limited to one digit, since 10! exceeds one million. Some
simplifications are worth noting. In the two-sample problem, the transformations are
those that break the sample into two groups. So if m and n are the two group sizes,
then the number of permutations is reduced by a factor of m! n! to the combinatorial(

m + n

m

)
.

So if m = 10 and n = 5, then the number of permutations to be enumerated is cut from
the impossible 1.31 × 1012 to a very practical 3003 (see Example 14.9 and t2perm).
For testing the equality of two binomial probabilities, the transformations simplify to
all 2 × 2 tables with fixed marginals, also known as Fisher’s exact test.

Permutation tests’ advantage of the lack of distributional assumptions makes them
highly desirable – especially in clinical trials, where the sample sizes are small and the
need for power is great. But for many practical sample sizes they are often computa-
tionally intractable, save some notable exceptions: the Pagano–Tritchler algorithm (and
its successors) for rank tests mentioned in the previous section, and the network algo-
rithms of Mehta and Patel (1986) for r ×c contingency tables and related problems. As

14.8 Combinatorial Problems 427

a result, the strong temptation is to follow the fundamental principle of statistics: don’t
take a census (enumerate all permutations or combinations); instead, sample from the
population. The only disadvantage of sampling is that it can reduce the power slightly
by adding randomness in the calculation of the p-value.

(A) Counting in Base B

Counting in a base arose in the reverse operator rev(·) in the FFT and in the radical in-
verse function for quasi–Monte Carlo integration in Chapter 10; see the routine ncrmnt
in the demonstration halton. Other applications are similar; the general case involves
generating every possible list of numbers {aj, j = 1, . . . , K}, where each number is
bounded (uj ≤ aj < Uj), so that the total number of possibilities is

∏
j(Uj − uj + 1).

For counting in base B, we have uj = 0 and Uj = B − 1; there are BK possibilities.
The case B = 2 can be used to generate all 2K possible subsets of k elements by using
aj = 1 for inclusion and aj = 0 for exclusion.

A simple algorithm mimics counting: begin with all aj = uj (their lower bound)
and then increment a1 each time until it hits its upper bound U1. If any aj hits its up-
per bound, then reset aj to its lower bound and “carry” – that is, increment aj+1. Once
the cascade of “carrys” extends to the last aK incremented to its upper bound, set the
flag that the list is completed.

(B) Subsets of Size K from N

This problem can be viewed in a similar way to the counting problems, except that
here we have a list of length K and each aj is unique and bounded by N. The easiest
way to ensure this is to force an ordering on aj, such as a1 < a2 < · · · < aK. Then an
easy algorithm is to follow the counting problem, with each aj bounded below by aj−1.

The upper bound Uj = N − K + j follows from the endgame with aK = N, aK−1 =
N − 1, . . . , aj = N − K + j.

In some applications, each subset needs to be assigned a unique integer, preferably
from 1 to the maximum

(
n

k

)
. Knott (1974) suggested the function

ν(a) = 1 +
∑

j

(
aj − 1

j

)
and presented a method for inversion: create a subset from an integer. Although this
numbering scheme following ν(a) does not preserve lexicographic order, a modifica-
tion of it will:

ν∗(a) =
(

N

K

)
−
∑

j

(
a∗
j

j

)
,

where a∗
j = N − aK+1−j . See the demonstration nxtkon, which produces combina-

tions in lexicographic order.

Example 14.8: Null Distribution of Wilcoxon Two-Sample Statistic
For the two-sample problem with sample sizes m and n, the Wilcoxon test statis-
tic is the sum of the ranks in the first (m, smaller) sample, where the ranks are

428 Sorting and Fast Algorithms

those from combining the two samples. In other words, the statistic is the sum of
a subset of size m of the m+n ranks. The null distribution holds all subsets of size
m of the ranks to be equally likely; hence, in the simple case (with no ties), the test
statistic is just the sum of the indices in the subsets. The demonstration nxtkon
generates all of the equally likely subsets, computes the index sum, and tables the
counts of the sums to obtain the null distribution. Compare this distribution (in
counts) to that generated by the demonstration wlcx2s discussed in Example 14.5.

Example 14.9: Two-Sample Permutation Test
As mentioned earlier in this section, the permutation test for the two-sample prob-
lem has the permutation distribution assigning equal probabilities to all subsets
of size m out of m + n observations. Because the permutation test provides the
appropriate level for any test statistic, the possible power advantages of the usual
Student’s t-test when the distribution is normal are not jeopardized by the loss of
level if the distribution is nonnormal. In the demonstration t2perm, a problem
with sample sizes m = 10 and n = 5, the sample t statistic is computed. Then all
subsets of sizes m and n are constructed from the combined sample, the t statistic
computed for each, and a count made of the cases whose t statistics are greater
than that of the original sample. The fraction of those cases (divide the counts by
the number of subsets) gives the (one-sided) p-value of the test.

(C) All Permutations

Since the enumeration of all permutations has limited usefulness, this discussion will
be brief. An algorithm by Wells (1961) constructs the sequence of permutations using
transpositions, so only two entries are exchanged at each step. This algorithm is short
and easily coded; the version in permnx is a translation of the Algol implementation
by Boothroyd (1967). A more complicated algorithm by Shen (1963) produces the se-
quence of permutations in lexicographic order.

The problem of inverting permutations was addressed in Section 14.3 when we dis-
cussed computing ranks. Another aspect of permutations is assigning a unique integer
to each permutation, similar to the ν(a) just given for combinations. Knuth (1997) gave
an algorithm (shown next) for computing such a function µ(a) of a permutation a of
length n; it is coded as kperm in the demonstration permnx. The basis of such a func-
tion is a mixed-radix number system, with bases j! for j = 1, . . . , (n − 1) and digits
cj ∈ {0,1, . . . , j}, so that µ(a) =∑n−1

j=1 cj j!.

Algorithm Kperm (Compute Permutation Index)
(1) Initialize µ = 0
(2) For j = n, n − 1, . . . , 2 do

find largest of a1, . . . , aj and call it as

cj−1 = s − 1
µ = jµ + cj−1

exchange aj and as

end do;

Programs and Demonstrations 429

This algorithm can be easily inverted to form a permutation.

Algorithm Iperm (Compute Permutation from Index)
(1) Initialize k = µ(a) and aj = j, j = 1, . . . , n
(2) For j = 2, . . . , n

cj−1 = k mod j and s = cj−1 + 1
k = (k − cj−1)/j

interchange aj and as

Before considering using Algorithm Iperm to generate permutations, random or other-
wise, notice that n! − 1 must be expressible in fixed point arithmetic.

Example 14.10: Permutation Test for Trend
The observations in the first sample for Example 14.9 were from ten months
of my telephone bill. I may want to know if it’s increasing, so I’m looking to
test for a correlation between those values yt and the time index t. Following
Cox and Hinkley (1974, ex. 6.2, pp. 184ff), the relevant test statistic is simply∑

tyt and the transformations – under the hypothesis that these observations
are IID – are permutations of the responses yt . In the demonstration ptrend,
the many (but not too many) permutations are constructed by permnx, the test
statistic is computed for each permutation, and the p-value is computed. This
task took about two minutes; increasing the sample size to 12 required four
hours.

Programs and Demonstrations

hsort Demonstration of heapsort algorithm
Samples of various sizes (up to 14,400) from various distributions are sorted using
the heapsort algorithm. The results are checked in a direct fashion by ensuring that,
in the sorted list, the values are in nondecreasing order. Uniform random variables
are generated using the Lewis–Goodman–Miller algorithm.
hsort – sorts vector using the heapsort algorithm.

hksort Demonstration of heapsort algorithm with parallel sorting
In the same way as hsort, samples are sorted with the heapsort algorithm. As ob-
servations are exchanged, elements of another vector are exchanged in parallel.
hksort – sorts vector using the heapsort algorithm and moves another vector in
parallel.

bsort Demonstration of bubblesort algorithm
In the same way as hsort, samples are sorted using the slow bubblesort algorithm.
The results are checked in a direct fashion by ensuring that, in the sorted list, the
values are in nondecreasing order.
bsort – sorts vector using the bubblesort algorithm.

430 Sorting and Fast Algorithms

partit Test of partitioning algorithm
Samples of various sizes (up to 14,400) from various distributions are partitioned
into those less than, equal to, or greater than a partition element, which is one ele-
ment of the sample. The results are checked in a direct fashion.
partit – partitions vector into those less than, equal to, or greater than the partition
element.

qsort Demonstration of quicksort algorithm
In the same way as hsort, samples are sorted using the quicksort algorithm. The re-
sults are checked in a direct fashion by ensuring that, in the sorted list, the values
are in nondecreasing order. Uses two copies of Lewis–Goodman–Miller algorithm
for generating uniforms: one (rang) is for generating test data; the other (ran) is
required by qsort.
qsort – sorts vector using the quicksort algorithm.
partit – partitions vector into those less than, equal to, or greater than the partition
element.

fstmed Test of fast median algorithm
Samples of various sizes (up to14,400) of uniformly distributed random variables are
generated, and the sample median is computed using the quicksort analog fstmed.
The results are checked directly by ensuring that ka + ke ≥ kb and kb + ke ≥ ka,

where ka, ke, kb are (respectively) the number of observations above, equal to, or
below the computed sample median. Uses partit and two uniform generators, as in
the previous demonstration.
fstmed – fast algorithm for computing sample median.

hlqest Test of fast computation of Hodges–Lehmann location estimator
The Hodges–Lehmann location estimator, defined in (14.4.2), is computed in two
ways. First the pairwise sums are formed, and the median is computed using fstmed.
These results are then compared with the output of the fast algorithm hlqest, which
follows a modification of the quicksort divide-and-conquer strategy. Uses two uni-
form generators: one is for generating test data; the other is required by hlqest.
hlqest – fast Hodges–Lehmann algorithm described in Section 14.4.

hl2qst Test of fast computation of two-sample Hodges–Lehmann location estimator
The two-sample Hodges–Lehmann location estimator, defined in (14.4.3), is com-
puted in two ways. First the pairwise differences are formed, and the median is
computed using fstmed. These results are then compared with the output of the fast
algorithm hl2qst, which follows a modification of the quicksort divide-and-conquer
strategy. Uses two uniform generators: one is for generating test data; the other is
required by hl2qst.
hl2qst – fast Hodges–Lehmann two-sample algorithm described in Section 14.4.

abdfmd Test of fast computation of robust scale estimator S1

The scale estimator S1, defined in (14.4.4) and related to the Hodges–Lehmann loca-
tion estimator, is computed in two ways. First the pairwise differences are formed,

Programs and Demonstrations 431

and the median is computed using fstmed. These results are then compared with the
output of the fast algorithm abdfmd, which follows a modification of the quicksort
divide-and-conquer strategy. Uses two uniform generators: one is for generating
test data; the other is required by abdfmd.
abdfmd – fast algorithm to compute scale estimate S1 as described in Section
14.4.

abdftr Test of fast computation of robust scale estimator S2

The scale estimator S2, defined in (14.4.5) and related to trimmed means, is com-
puted in two ways. First the pairwise differences are formed and sorted, and S2 is
computed from the sorted pairwise differences. These results are then compared
with the output of the fast algorithm abdftr, which follows a modification of the
quicksort divide-and-conquer strategy. Uses two uniform generators: one is for
generating test data; the other is required by abdftr.
abdftr – fast algorithm to compute scale estimate S2 as described in Section 14.4.

fft2n Demonstration of fast Fourier transform
The discrete Fourier transform of a series of length 8 is computed using the “power
of 2” algorithm fft2n. The results can be compared to those given in Example 14.2.
fft2n – “power of 2” fast Fourier transform algorithm.

chirpz Demonstration of chirp-z algorithm for computing the fast Fourier transform
The discrete Fourier transform of a series of length 7 is computed using the chirp-z
algorithm chirpz. The chirp-z approach allows for the DFT of any length series
to be computed efficiently using only a power-of-2 algorithm. The results can be
compared to a direct computation of the DFT.
chirpz – implementation of the chirp-z algorithm for computing the FFT.
fft2n – “power of 2” fast Fourier transform algorithm.

poisp Demonstration of inversion of characteristic function using FFT
The Poisson characteristic function with rate λ = 4 is inverted using the FFT algo-
rithm fft2n. The results are compared to directly computed probabilities and sums
to show aliasing.
fft2n – “power of 2” fast Fourier transform algorithm.

chex144 Demonstration of FFT for discrete convolutions
The ball-and-urn overflow probability problem described in Example 14.4 as a con-
volution is computed using the FFT. Because of the size of the series and the extreme
range of the numbers, an extended arithmetic modification was needed, similar to
the self-controlled floating point methods of Section 2.5.
fft2ne – modification of “power of 2” fast Fourier transform algorithm for extended
range arithmetic.
adjst – normalization routine for extended range arithmetic; similar in spirit to
adjust.
combo – computes the basic FFT step in extended range complex arithmetic.
dlgama – computes log of gamma function (double precision version).

432 Sorting and Fast Algorithms

wlcx1s Demonstration of Pagano–Tritchler method for distribution of rank tests
using FFT
As described in Example 14.5, the Pagano–Tritchler method for computing the null
distribution of rank tests by inverting the characteristic function using the FFT is
demonstrated for the case of the one-sample Wilcoxon statistic. The results are com-
pared to a direct approach.
wlcxpt – computes distribution of the one-sample Wilcoxon statistic when ties are
present.
fft2n – “power of 2” fast Fourier transform algorithm.

wlcx2s Demonstration of Pagano–Tritchler method for distribution of rank tests
using FFT
As described in Example 14.5, the Pagano–Tritchler method for computing the null
distribution of rank tests by inverting the characteristic function using the FFT is
demonstrated for the case of the two-sample Wilcoxon statistic. The results can be
compared to a direct approach implemented in nxtkon for computing subsets.
fft2n – “power of 2” fast Fourier transform algorithm.

tivmm1 Demonstration of convolutions of continuous random variables by
discretization
As described in Example 14.5, in seeking to understand the limiting distribution of
the average of the reciprocal of uniform random variables, the distribution of 1/U −1
was discretized and the distribution of the sums of 8, 16, and 32 was computed by
transforming the discretized distribution to obtain the characteristic function, raising
that to a power to get the characteristic function of the sum, and then transforming
back. Because of the size of the series and the extreme range of the numbers, an
extended arithmetic modification was needed, similar to the self-controlled floating
point methods of Section 2.5. Uses the extended range arithmetic routines fft2ne,
adjst, and combo as in the demonstration chex144.

chfniv Demonstration of inversion of characteristic function to get density and cdf
As described in Example 14.7, the characteristic function for the limiting distribution
for the properly normalized average of reciprocal uniforms φV (t) given by (14.7.7)
was inverted to obtain the density and the cdf. The density worked out well and was
compared to the results of tivmm1 in Figure 14.2. The distribution function val-
ues do not work out – even using the comparison scheme (14.7.6) with the Cauchy
distribution – owing to difficult behavior of φV (t) at the origin.
fft2n – “power of 2” fast Fourier transform algorithm.

qimhof Demonstration of Imhof’s method for deriving the distribution of sums of
chi-square variables
As described in Section 14.7(E), Imhof’s method for inverting the characteristic
function of sums of independent chi-square random variables is implemented in the
routine qimhof. It was tested using cases from Davies (1980), stored in qimhof.dat.
qimhof – computes the distribution function of the sum of independent chi-square
random variables.

Exercises 433

nxtkon Demonstration of subset generation and subset index
As described in Example 14.8, all subsets of size 4 of the integers 1, . . . ,12 are gen-
erated using the code nxtkon, and the indices are summed. The distribution of the
sum of the indices matches that of the Wilcoxon two-sample test statistic, and these
should be compared to the output wlcx2s. The subset index ν(a) is also computed.
nxtkon – generates the next subset of size k out of n.

kkombo – computes the subset index ν(a).

ibicof – computes binomial coefficients in integer form, mostly using table lookup.

t2perm Demonstration of permutation test for the two-sample problem
As described in Example 14.9, the permutation test for the two-sample problem
involves combining the two samples, enumerating all subsets, and comparing the
computed test statistic with that of the original sample.
nxtkon – generates the next subset of size k out of n.

rbicof – computes binomial coefficients in floating point form, most using table
lookup.

permnx Demonstration of permutation algorithm, index, and index inversion
All permutations of size 4 are computed using the code permnx, a translation from
Algol of code by Boothroyd (1967) of the Wells (1961) algorithm. For each permu-
tation, the index function µ(a) is computed following Algorithm Kperm; then the
index is inverted to match the original permutation using Algorithm Iperm.
permnx – implementation of Wells’s algorithm to generate permutations.
kperm – computes the permutation index µ(a).

iperm – inverts the permutation index µ(a) to construct a permutation.

ptrend Demonstration of permutation test for correlation
As described in Example 14.10, the permutation test for correlation with a time index
involves enumerating all permutations, computing the inner product with the obser-
vations (from Example 14.9, t2perm) with the permutation vector, and comparing
with the inner product from the original data.
permnx – implementation of Wells’s algorithm to generate permutations.

Exercises

14.1 Verify (14.2.2). Try T(N) = eN + f in the first case and T(N) = gN log N + eN + f

in the second case; solve for g, e, and f.

14.2 Write a routine to compute the one-sample Wilcoxon statistic

N∑
i=1

rank(|Xi |) × sign(Xi).

14.3 Write a routine to compute the two-sample Wilcoxon statistic, the sum of the ranks of
observations in one of the samples, with the ranks found from combining the samples.
(See Section 14.7(B).)

434 Sorting and Fast Algorithms

14.4 Verify that the computational complexity of the fast order statistics algorithm FastOS is
O(N) by solving (14.4.1).

14.5 Compare the speed of fstmed for computing the sample median to the approach of sort-
ing the sample using quicksort or heapsort. Design an experiment with different values
of n.

14.6 An alternative method for finding the median is to find the root of the equation

g(a) =
N∑

i=1

|Xi − a| = 0.

(a) What root-finding methods might be appropriate for this problem?
(b) Can you take care of the problem of multiple roots as a function of N being even

or odd?
(c) Code a routine following this approach and compare it to fstmed.

14.7 The Hodges–Lehmann location estimator (14.4.2) arose from inverting the one-sample
Wilcoxon statistic, that is, the root of the equation

w(µ) =
N∑

i=1

rank(|Xi − µ|) × sign(Xi − µ) = 0.

Following Exercise 14.6, code a routine that uses root-finding techniques for computing
µ and compare this approach to hlqest.

14.8 Following Exercises 14.6 and 14.7, express the two-sample Hodges–Lehmann estimator
�̂ as the root of a test statistic and compare this approach to hl2qst.

14.9 Modify fstmed to compute any consecutive pair of order statistics.

14.10 Write a divide-and-conquer algorithm to compute the 25% trimmed mean, the average
of the middle half of the data.

14.11 Verify (14.5.2).

14.12 Complete the details in Example 14.1 by calculating the real and imaginary parts of
X(k1,k2,k3).

14.13 Can the DFT of length 17 = 24 +1 be computed using the chirp-z transform with FFTs
of length 32 = 25?

14.14 The periodogram IN(f) evaluated at Fourier frequencies f = k/N is unaffected by
whether or not the data are centered by the mean. Demonstrate this (mathematically)
by showing that

a∗
j =

N−1∑
t=0

(yt − ȳ) exp

{
−2πijt

N

}
is the same as

aj =
N−1∑
t=0

yt exp

{
−2πijt

N

}
for all j
= 0.

14.15 Compare the mathematical results of the previous exercise with the practical results ob-
tained by following the spirit of Exercise 5.13: compute the FFT of the series yi =
212 + i (i = 1, . . . , 8) and compare the results with the output of fft2n.

Exercises 435

14.16 Invert the characteristic function of the binomial distribution φ(t) = (1 − p + peit)n

for n = 20 and p = 1/4 using the FFT and methods of Section 14.7(B).

14.17 For a complex number written in three pieces as (x, y, k) ≡ (x + iy) × 2k, write code
to raise this complex number to an integer power.

14.18 For a complex number written in three pieces as (x, y, k) ≡ (x + iy) × 2k, write code
to raise this complex number to the power −1/2.

14.19 Use the discretization approach (see Section 14.7(C)) to compute the distribution of the
sum of m independent uniform(−1/2,1/2) random variables. Compare your approxi-
mation of the density to that of the normal (with the same variance) for samples of size
m = 3, 5,12.

14.20 Use the discretization approach to compute the distribution of the sum of m indepen-
dent logistic random variables. Compare your approximation of the density to that of
the normal (with the same variance) for samples of size m = 3, 5,12.

14.21 Invert the characteristic function of the normal distribution φ(t) = exp{−t 2/2} to ob-
tain the density, using (14.7.4) and the FFT. Compare the computed density with that
of the normal.

14.22 Invert the characteristic function of the normal distribution φ(t) = exp{−t 2/2} to ob-
tain the distribution function using a direct approach. What value would you use for
φ(t)/t at t = 0?

14.23 Invert the characteristic function of the normal distribution φ(t) = exp{−t 2/2} to obtain
the distribution function, using (14.7.6) and the FFT; use the Laplace /double exponen-
tial distribution for ψ(t) and H(x). Compare your results with cdfn.

14.24 For the characteristic function φV (t) given by (14.7.7), find the limit of φV (t)/t as
t → 0.

14.25 For small values of k and δ, compare approximations to the integral of the chi-square
density near zero, ∫ b

a

(2π)−1/2e−x/2x−1/2 dx,

for the following cases: a = 0 and b = δ/2; a = δ/2 and b = 3δ/2; and the general
case a = δ

(
k − 1

2

)
and b = δ

(
k + 1

2

)
. Use various approximations for e−x/2 for x near

zero.

14.26 (Silverman 1982) Recall that the kernel density estimator (12.2.4) is a convolution,

f̂ (y) = 1

n

n∑
i=1

k

(
y − Yi

h

)/
h.

If the observations Yi are rounded and/or discretized, show how to use the FFT to com-
pute the kernel density estimate at many points using the FFT.

14.27 Show that the inversion formula (14.7.4) applied to the characteristic function of the
sum of independent chi-square random variables given by (14.7.8) can be expressed as
the integral in (14.7.9).

14.28 Describe a method to enumerate all 2 × 2 contingency tables with fixed marginals.

14.29 Show that the maximum value of µ(a) given by Algorithm Kperm is n! − 1.

436 Sorting and Fast Algorithms

14.30 What is the largest value of n such that n! −1 can be expressed as a fixed point integer?

14.31 Relate the inversion of µ(a) (Algorithm Iperm) to Algorithm A2 of Section 11.6 for ran-
dom permutations.

References

I learned about sorting, data structures, and fast algorithms by reading Knuth (1998)
(but an earlier edition!) and Aho, Hopcroft, and Ullman (1974) while many of these
subjects were new and evolving. Although the list of statistical applications may ap-
pear to be long, these tools have not been as widely accepted in statistics as in other
fields.

Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman (1974), The Design and Analysis of Com-
puter Algorithms. Reading, MA: Addison-Wesley.

Jenny Baglivo, Donald Olivier, and Marcello Pagano (1992), “Methods for Exact Goodness-of-Fit
Tests,” Journal of the American Statistical Association 87: 464–9.

L. I. Bluestein (1970), “A Linear Filtering Approach to the Computation of the Discrete Fourier Trans-
form,” IEEE Transactions on Audio and Electroacoustics 18: 451–5.

Harald Bohman (1975), “Numerical Inversions of Characteristic Functions,” Scandinavian Actuarial
Journal, pp. 121–4.

J. Boothroyd (1967), “Algorithm 29: Permutation of the Elements of a Vector,” Computer Journal
10: 311.

J. W. Cooley, P. A. Lewis, and P. D. Welch (1967), “Historical Notes on the Fast Fourier Transform,”
IEEE Transactions on Audio and Electroacoustics 15: 76–9.

J. W. Cooley and J. W. Tukey (1965), “An Algorithm for the Machine Calculation of Complex Fourier
Series,” Mathematics of Computation 19: 297–301.

D. R. Cox and D. V. Hinkley (1974), Theoretical Statistics. London: Chapman & Hall.
F. N. David and D. E. Barton (1962), Combinatorial Chance. New York: Hafner.
R. B. Davies (1975), “Numerical Inversion of a Characteristic Function,” Biometrika 60: 415–17.
Robert B. Davies (1980), “ASS 155: The Distribution of a Linear Combination of Chi-Squared Ran-

dom Variables,” Applied Statistics 29: 323–33.
I. J. Good, T. N. Gover, and G. J. Mitchell (1970), “Exact Distribution for χ2 and for the Likelihood-

Ratio Statistic for the Equiprobable Multinomial Distribution,” Journal of the American Statistical
Association 65: 267–83.

C. A. R. Hoare (1961), “Algorithm 63 (PARTITION) and Algorithm 65 (FIND),” Communications
of the ACM 4: 321–2.

J. L. Hodges and E. L. Lehmann (1963), “Estimates of Location Based on Rank Tests,” Annals of
Mathematical Statistics 34: 598–611.

J. P. Imhof (1961), “Computing the Distribution of Quadratic Forms in Normal Variables,” Biometrika
48: 419–26.

D. B. Johnson and S. D. Kashdan (1978), “Lower Bounds for Selection in X + Y and Other Multi-
sets,” Journal of the ACM 25: 556–70.

Gary D. Knott (1974), “A Numbering System for Combinations,” Communications of the ACM 17:
45–6.

Donald E. Knuth (1997), The Art of Computer Programming (vol. 2: Seminumerical Algorithms),
3rd ed. Reading, MA: Addison-Wesley.

Donald E. Knuth (1998), The Art of Computer Programming (vol. 3: Sorting and Searching), 2nd ed.
Reading, MA: Addison-Wesley.

References 437

Lu, Zeng-Hua and Maxwell L. King (2002), “Improving the Numerical Technique for Computing the
Accumulated Distribution of a Quadratic Form in Normal Variables,” Econometric Reviews 21:
149–65.

J. W. McKean and T. A. Ryan (1977), “Algorithm 516: An Algorithm for Obtaining Confidence Inter-
vals and Point Estimates Based on Rank in a Two-Sample Location Problem,” ACM Transactions
on Mathematical Software 3: 183–5.

Cyrus R. Mehta and Nitin R. Patel (1986), “FEXACT:AFortran Subroutine for Fisher’s Exact Test on
Unordered r × c Contingency Tables,” ACM Transactions on Mathematical Software 12: 154–61.

John F. Monahan (1984), “Fast Computation of the Hodges–Lehmann Location Estimator,” ACM
Transactions on Mathematical Software 10: 265–70.

John F. Monahan (1987), “An Alternative Method for Computing Overflow Probabilities,” Commu-
nications in Statistics A 16: 3355–7.

A. Nijenhius and H. S. Wilf (1978), Combinatorial Algorithms. New York: Academic Press.
Marcello Pagano and David Tritchler (1983), “On Obtaining Permutation Distributions in Polynomial

Time,” Journal of the American Statistical Association 78: 435–40.
L. R. Rabiner, R. W. Schafer, and C. M. Rader (1969), “The Chirp-z Transform Algorithm and Its

Applications,” Bell System Technical Journal 48: 1249–92.
M. V. Ramakrishna (1987), “Computing the Probability of Hash Table /Urn Overflow,” Communica-

tions in Statistics A 16: 3343–53.
Ian Robinson and Simon Sheather (1988), “Fast Computation of the Hodges–Lehmann Estimator and

Its Associated Confidence Limits,” American Statistical Association Proceedings of the Statistical
Computing Section, pp. 187–91.

Mok-Kong Shen (1963), “Algorithm 202: Generation of Permutations in Lexicographical Order,”
Communications of the ACM 6: 517.

B. W. Silverman (1982), “Kernel Density Estimation Using the Fast Fourier Transform,” Applied Sta-
tistics 31: 93–7.

R. C. Singleton (1969), “An Algorithm for Computing the Mixed-Radix Fast Fourier Transform,”
IEEE Transactions on Audio and Electroacoustics 17: 93–103.

Cathie Spino and Marcello Pagano (1991), “Efficient Calculation of the Permutation Distribution of
Trimmed Means,” Journal of the American Statistical Association 86: 729–37.

David Tritchler (1984a), “On Inverting Permutation Tests,” Journal of the American Statistical Asso-
ciation 79: 200–7.

David Tritchler (1984b), “An Algorithm for Exact Logistic Regression,” Journal of the American Sta-
tistical Association 79: 709–11.

Mark B. Wells (1961), “Generation of Permutations by Transposition,” Mathematics of Computation
15: 192–5.

Author Index

Abramowitz, M., 164, 169, 171–9, 183, 269,
299, 365, 373

Acton, F. S., 250, 255
Agresti, A., 334, 341
Ahlberg, J. H., 182
Aho, A. V., 436
Ahrens, J. H., 324, 326, 329, 340–1
Albert, A., 239, 255
Alefeld, G., 32, 38
Alfeld, P., 32, 38
Anderson, E., 65, 150
Anderson, J. A., 239, 255
Anderson, T. W., 387, 400
Andrews, D. F., 295, 299
Anonymous, 38
Ansley, C. F., 90

Baglivo, J., 420, 436
Bai, Z., 65, 150
Bailey, B. J., 176, 183
Bailey, D. H., 32, 38
Bard, Y., 255
Barone, J. L., 95, 126
Bartels, R. H., 87, 90
Bartlett, M. S., 321, 341
Barton, D. E., 418, 436
Bates, D. M., 161, 182, 232, 245, 247–8,

252, 255
Battiste, E. L., 176, 183
Bays, C., 285, 300
Beaton, A. E., 95, 126
Belsley, D. A., 107, 126
Berliner, L. M., 390, 401
Best, N. G., 381, 394, 402
Bhattacharjee, G. P., 176, 184
Bibby, J. M., 130, 149–50
Bickel, P. J., 295, 299
Bishof, C., 65, 150
Bjorck, A., 38, 98, 125–6, 181, 184
Bloomfield, P., 180
Bluestein, L. I., 414, 436

Bodily, C. H., 216, 217
Bohman, H., 423, 436
deBoor, C., 182
Boos, D. D., 227, 255, 344–5, 373
Boothroyd, J., 428, 433, 436
Bosten, N. E., 176, 183
Box, G. E., 86, 309, 342, 400
Boyett, J. M., 334, 341
Bratley, P., 281, 300, 337, 342, 400
Bray, T. A., 310, 342
Brent, R. P., 32, 38, 195, 217
Bright, H. S., 284, 300
Brownlee, K. A., 122, 126, 390, 400
Bunch, J. R., 66
Byars, J. A., 351, 374

Carlin, B. P., 394, 400–1
Carroll, R. J., 163, 185
Casella, G., 379, 382–3, 394, 400–1
Cencov, N. N., 346, 373
Chan, K. S., 378, 400
Chan, T. F., 123, 126, 139, 150
Cheney, E. W., 168, 184
Chib, S., 400
Clarke, M. R., 118, 126
Cline, A. K., 56, 58–60, 65
Cochran, W. G., 125, 127, 351, 373
Coddington, P. D., 279, 285, 300
Cody, W. J., 38, 167, 183–4
Cook, R. D., 107, 126
Cooley, J. W., 410, 436
Coonen, J., 38
Cowles, M. K., 394, 400
Cox, D. R., 214, 217, 239–40, 252, 255, 429
Cranley, R., 290–1, 300, 363, 373
Craven, P., 182
Cybenko, G., 78, 90

Dahlquist, G., 38, 98, 126, 181, 184
David, F. N., 418, 436
Davies, R. B., 424–5, 432, 436

439

440 Author Index

Davis, P. J., 154, 165, 183, 268–9, 272, 300
DeGroot, M. H., 321, 342
Dekker, T. J., 31, 38
Dellaportas, P., 394, 400
Demmel, J., 65, 150
Dempster, A. P., 235, 255
DennisJr, J. E., 201, 207, 214, 217, 245, 255
Derflinger, G., 282, 300
Devroye, L., 309, 333, 341–2, 394, 401
DiDonato, A. R., 175–6, 184
Dieter, U., 324, 326, 329, 340–1
Divgi, D. R., 177, 179, 184
Dongarra, J., 65, 66, 150
Doolittle, M. H., 115, 126
Dowell, M., 217
Dresner, Z., 177, 179, 184
DuCroz, J., 65, 150
Duffy, D. E., 239, 256
Durbin, J., 77, 90
Durham, S. D., 285, 300

Efron, B., 120, 126, 226, 255
Elston, R. C., 380, 398, 401
Enison, R. L., 284, 300
Eppright, E. S., 178, 184
Eubank, R. L., 177, 184
Evans, J. O., 176, 182, 184
Eyre, D. J., 32, 37

Fang, K., 289, 300
Feiller, E. C., 355, 373
Feinberg, S., 118, 127
Ferrenberg, A. M., 279, 300
Fike, C. T., 169, 184
Finney, D. J., 240, 252, 255
Fishman, G. S., 282, 300
Flournoy, N., 300
Forsythe, G. E., 38, 313, 342
Fox, B. L., 281, 300, 337, 342, 400
Fox, H. M., 178, 184
Fraser, W., 167
Freund, R. J., 126
Frome, E. L., 242, 252, 255
Fryer, B. A., 178, 184
Fuller, E. S., 178, 184
Fuller, W. A., 180, 184, 252, 255, 387, 389,

397, 401
Furnival, G. M., 118, 126
Fushimi, M., 284, 300

Gallant, A. R., 252, 255–6
Garbow, B. S., 256
Gautschi, W., 174, 184

Gay, D. M., 217, 245, 255
Gelfand, A. E., 400–1
Gelman, A., 395, 401
Gentleman, R., 12
Gentleman, W. M., 106, 126
Genz, A., 364–5, 373–4
George, E. I., 379–80, 382, 394, 400
Geweke, J., 292, 300, 356, 373, 388, 396, 401
Geyer, C. J., 378, 400–1
Gilks, W. R., 381, 391, 393–4, 402
Gill, P. E., 120, 126, 201, 209, 217
Goldberg, D., 38
Golder, E. R., 280, 298
Goldfarb, D., 207–8, 217
Golub, G. H., 56, 58–60, 65, 66, 71, 87, 90, 115,

123–26, 133, 139, 144, 150, 269–70, 298
Good, I. J., 420, 436
Goodman, A. S., 281, 301
Goodnight, J. H., 126
Gover, T. N., 420, 436
Greenbaum, A., 65, 150
Greenberg, E., 400
Griewank, A., 211, 217
Grizzle, J. F., 380, 398, 401
Gross, A. M., 295, 300

Haeusler, E., 359, 373
Hall, C. A., 159, 183
Hall, P., 359, 373
Halton, J. H., 297, 300
Hamilton, D. C., 248, 255
Hammarling, S., 65, 150
Hammersley, J. M., 300
Hampel, F. R., 295, 299
Handscomb, D. C., 300
Hanson, R. J., 125–7, 139, 150
Harrod, W. J., 82, 99, 132, 150
Hart, J. F., 168–70, 177, 183–4
Haslett, J., 76, 90
Hastie, T., 120, 126
Hastings, C., 169, 172, 184
Hastings, W. K., 384, 401
Hebden, M. D., 244, 256
Heiberger, R. M., 364, 373
Heidelberger, P., 397, 401
Herzberger, J., 32, 37
Hesterberg, T., 357, 373
Hext, G. R., 202, 218
Hill, B. W., 359, 373
Hill, J. D., 285, 302
Hills, S. E., 400–1
Hillstrom, K. E., 256
Himsworth, F. R., 202, 218

Author Index 441

Hinkley, D. V., 226, 255, 429, 436
Hoare, C. A., 408, 436
Hobert, J. P., 383, 394, 401
Hocking, R. R., 321, 342
Hodges, J. L., 409, 436
Holland, P. W., 256
Hopcroft, J. E., 436
Hormann, W., 282, 300
Hosking, J. R., 76, 90
Householder, A. S., 66
Hua, L. K., 289, 300
Huber, P. J., 119, 126, 295, 299
Hutchinson, M. F., 161, 183

IEEE, 38
Ihaka, R., 12
Imhof, J. P., 424, 436
Ipsen, I. C. F., 66

Jarratt, P., 217
Jenkins, G. M., 90
Jennings, A., 65, 66, 88, 90, 132, 146, 150
Jennrich, R. I., 238, 254–6
Johnson, D. B., 409, 436
Johnstone, I., 120, 126

Kadane, J. B., 361, 374
Kahan, W., 38
Kashdan, S. D., 409, 436
Kass, R. E., 361, 374, 401
Kedem, G., 289, 300
Keller-McNulty, S., 32, 39
Kelley, C. T., 90, 213, 217
Kennedy, W. J., 32, 39
Kent, J. T., 130, 149–50
Kim, J. 120, 126
Kim, Y. 120, 126
Kinderman, A. J., 307, 314–5, 342
King, M. L., 425, 437
Klema, V., 120–1
Knott, G. D., 427, 436
Knuth, D. E., 2, 10, 16, 32, 36–9, 56, 66, 280,

285, 299–300, 311, 333, 342, 407, 428, 436
Koenker, R., 119, 127
Kronmal, R. A., 325, 338, 342
Kruskal, J. B., 338, 342
Krylov, V. I., 269, 300
Kuh, E., 107, 126
Kuipers, L., 288, 300
Kulisch, U. W., 39

L’Ecuyer, P., 284, 299–301
Laird, N. M., 235, 255

Lamkin, G. H., 178, 184
Lancaster, P., 66
Landau, D. P., 279, 300
Lawson, C. L., 125–7, 139, 150, 168, 184
LeCam, L., 227, 255–6
LeVeque, R. J., 123, 126
Lehmann, E. L., 409, 436
Leva, T. L., 311–2, 342
Levinson, N., 77, 90
Lew, R. A., 182, 184
Lewis, P. A., 281, 295, 301
Lewis, S., 397, 401
Lewis, T. G., 282–4, 301
Leydold, J., 393, 401
Lindstrom, M. J., 161, 182
Ling, R. F., 171, 184
Longley, J. W., 95, 124, 126, 127
Lu, Z-H., 425, 437
Luenberger, D. G., 217

MacEachern, S. N., 390, 401
MacLaren, M. D., 285, 301
Maehly, H. J., 168, 184
Maisonneuve, D., 289, 301
Majumder, K. L., 176, 184
Makov, U. E., 380, 401
Malcolm, M. A., 38
Mann, H. B., 351, 373
Mardia, K. V., 130, 149–50
Marquardt, D., 254
Marsaglia, G., 280–2, 285, 296, 301, 310, 313,

339, 342
Martin, R. S., 37, 39, 90
Matsumoto, M., 284, 296, 301
McCullagh, P., 225, 237, 255–6
McCullough, B. D., 209, 217
McIntosh, A., 115, 127
McKean, J. W., 409, 437
McKenney, A., 65, 150
Mead, R., 212, 218
Mehta, C. R., 426, 437
Mesztenyi, C. K., 168, 1843
Metropolis, N., 384, 401
Meyer, W. W., 159, 183
Meyn, S. P., 378, 401
Miller, J. M., 281, 301
Miller, K. W., 37, 39, 281, 301
Miranker, W. L., 39
Mitchell, G. J., 420, 436
Moler, C. B., 38, 56, 58–60, 65–6
Monahan, J. F., 78, 90, 168, 172, 178, 184, 253,

256, 259, 300, 313–5, 317, 334–5, 342,
359, 364–5, 373–4, 409, 437

442 Author Index

Moore, D. S., 351, 374
Moore, L. R., 282, 300
Moore, R. E., 32, 39
Moore, R. H., 238, 253
More, J. J., 244, 256
MorrisJr, A. H., 175–6, 184
Muller, M. E., 309, 342
Murphy, S. A., 234, 256
Murray, W., 120, 126, 201, 209, 217
Murtagh, B. A., 90
Myers, R. H., 107, 109, 127
Mysovskikh, I. P., 277, 301

Neal, R. M., 401
Neave, H. R., 310, 342
Neiderreiter, H., 285, 288, 299, 301
Nelder, J. A., 212, 218, 225, 237, 255–6
Neyman, J., 221, 253, 256
Nijenhius, A., 437
Nishamura, T., 284, 296, 301
Nilsson, E. N., 182

O’Brien, F., 363, 374
Odeh, R. E., 176, 182, 184
Olivier, D., 420, 436
Osborne, M. R., 120, 127
Ostrouchov, S., 65, 150
Overton, M. L., 38

Pagano, M., 78, 90, 419–20, 436–7
Palmer, J., 38
Panneton, F., 284, 301
Park, S. K., 37, 39, 281, 295, 301
Parlett, B. N., 135, 150
Patel, N. R., 426, 437
Patterson, T. N., 290–1, 300, 363, 373
Payne, W. H., 282–4, 295, 301
Peters, G., 37, 39
Peters, S. C., 120–1
PetersonJr, A. V., 325, 338, 342
Plemmons, R. J., 82, 90, 132, 150
Poirier, D. J., 161–2, 178, 184
Polson, N. G., 382, 401
Poole, W. G., 135, 150
Portnoy, S., 119, 127
Powell, M. J., 207, 218
Priestly, M., 8, 10
Presnell, B., 120, 127
Proinov, P. D., 288, 301

Rabiner, L. R., 414, 437
Rabinowitz, P., 272, 298
Racine-Poon, A., 400–1

Rader, C. M., 414, 437
Raftery, A., 76, 90, 397, 401
Ramage, J. G., 314, 342
Ramakrishnan, M. V., 418, 437
Rao, C. R., 228, 255–6
Reinsch, C., 39, 62, 66, 150, 183–4
Relles, D. A., 295, 301
Rice, J. R., 168, 184
Richardson, S., 400–1
Ripley, B. D., 284–5, 299, 301, 401
Roberts, G. O., 382, 401
Robinson, I., 409, 437
Rogers, W. H., 295, 299
Roscoe, J. T., 351, 374
Rosenbluth, A. W., 384, 401
Rosenbluth, M. N., 384, 401
Rosenbrock, H., 214, 218
Royden, H. L., 37, 39
Ruben, H., 177, 179, 185
Rubin, D. B., 95, 126, 235, 255, 395, 401
Ruppert, D., 163, 185
Ryan, T. A., 409, 437

Santner, T. J., 239, 256
Sampson, P. F., 254–6
Samuelson, P. A., 25, 37, 39
Schafer, R. W., 414, 437
Schatzoff, M., 118, 127
Schmeiser, B., 389, 401
Schnabel, R. B., 201, 207, 214, 217, 255
Schrage, L., 281, 300–1, 337, 342, 400
Scott, E., 221, 253, 256
Searle, S. R., 92, 112, 127, 319, 342
Secrest, D. H., 269, 301
Serfling, R. J., 256
Sheather, S., 409, 437
Shen, M-K., 428, 437
Sibuya, M., 313, 339, 342
Siegel, A. F., 363, 374
Silverman, B. W., 183, 345–6, 374, 435, 437
Simon, G., 295, 301
Singleton, R. C., 414, 437
Smirnov, N. V., 352, 374
Smith, A. F., 380, 394, 400–1
Smith, D. M., 32, 39
Smith, G. B., 297, 300
Smith, W. B., 321, 342
Snedecor, G. W., 125, 127
Soper, H. E., 176, 184
Sorenson, D., 65, 150
Spendley, W., 202, 218
Spiegelhalter, D. J., 394, 400–2
Spino, C., 420, 437

Author Index 443

Stadlober, E., 324, 326–30, 342
Steel, R. G., 123, 127
Stefanski, L. A., 168, 183
Stegun, I., 164, 169, 171–9, 183, 269, 299,

365, 373
Stephens, M. A., 351, 353, 374
Stewart, G. W., 37–9, 55–6, 58–60, 63, 65–6,

93–4, 105, 122–125, 127, 146, 150,
364, 374

Stewart, W. J., 132, 150
Stockmeyer, P. K., 281, 301
Stokes, H. H., 254, 256
Stroud, A. H., 269, 301
Sun, J., 60, 66
Swallow, W. H., 259, 302
Szego, G., 164, 183

Tan, K. K., 381, 401
Tanner, M. A., 364, 373, 383, 402
Tapia, R. A., 374
Tausworthe, R. C., 282, 302
Teller, A. H., 384, 401
Teller, E., 384, 401
Teugels, J. L., 359, 373
Tezuka, S., 284, 300, 302
ThatcherJr, H. G., 168, 184
Thisted, R. A., 364, 373
Thomas, A., 394, 402
Thompson, J. R., 374
Tiao, G. C., 400
Tibshirani, R., 120, 126, 127
Tierney, L., 361, 363, 374, 378, 384, 386, 400
Tismenetsky, M., 66
Torrie, J. H., 123, 127
Trench, W. F., 78, 90
Tritchler, D., 419–20, 437
Tsao, N., 38
Tsao, R., 118, 127
Tsutakawa, R. K., 300
Tukey, J. W., 295, 299, 410, 436
Turlach, B. A., 120, 127
Tweedie, R. L., 378, 401

Ullman, J. D., 436

van der Vaart, A. W., 234, 256
van Loan, C., 56, 58–60, 63, 65–6, 71, 90, 115,

125–6, 133, 139, 144, 150

Vedder, J. D., 172, 176, 178–9,
182, 185

Velleman, P. F., 126–7
Vinod, H. D., 209, 217
Vitter, J. S., 333, 342
Vivian, V. M., 178, 184
von Neumann, J., 312, 342
Vrahatis, M. N., 199, 218

Wackerly, D., 334, 341
Wahba, G., 161, 182, 348, 374
Waite, W., 182
Wald, A., 220, 222, 256, 351, 373
Walker, A. J., 324, 342
Walsh, J. L., 182
Walther, A., 211, 217
Wampler, R. H., 126–7
Wand, M. P., 163, 185
Wang, M. C., 32, 39
Wang, Y., 289, 300
Watson, G. S., 364, 374
Watts, D. G., 232, 245, 247, 248, 252, 255
Wedderburn, R. W., 242, 256
Weisberg, S., 107, 126
Weissman, I., 344, 374
Welch, P. D., 397, 401
Wells, M. B., 428, 433, 437
Welsch, J. H., 269–70, 298
Welsch, R. E., 107, 126–7, 245, 255
Wesolowsky, G. O., 177, 184
Wichmann, B. A., 285, 302
Wild, P., 381, 391, 393–4, 401
Wilde, D. J., 217–8
Wilf, H. S., 437
Wilkinson, J. H., 37, 39, 56, 58–60, 63, 65–6,

90, 150
WilsonJr, R. W., 118, 126
Witzgall, C., 168, 184
Wolfowitz, J., 222, 256
Wong, W. H., 383, 402
Wong, Y. J., 279, 300
Wright, M. H., 201, 209, 217
Wu, C. F., 236, 255–6

Yandell, B. S., 161, 182
Yang, G., 256

Zaremba, S. K., 289, 300

Subject Index

ARMA time-series model 73–6, 87, 89, 253,
387–9

Acceptance/rejection algorithm 305–7, 314–5,
323, 336, 383–4, 386

adaptive 381, 390–4, 398–9
Algorithm 1–3

iterative 2–3, 82–4, 114, 136, 197–9, 214–5
recursive 3, 403–4

Anderson-Darling test 337–8, 352–3, 358, 372
Antithetic variates 292
Approximation

Chebyshev or least-maximum 165, 167,
169–70, 180, 214

probability functions (see tail probabilities)
theory 151, 163–8

Base conversions 16–7, 35
Batching 389–90, 398, 400
Bayesian analysis 261–4, 361, 365, 375, 380,

382
Bias (excess) (of float point exponent) 20
Binary tree 8–9

heap 9, 407
Bisection algorithm (Bozano’s method)

191, 213
discrete 215, 322, 370

Cancellation (amplifies roundoff error) 24–6,
36, 82, 168, 201, 213

Canonical correlation 142–3
Central Limit Theorem (CLT) 223, 350, 354,

356, 378
Characteristic functions 417–20, 422–5,

431–2, 435
Chi-square test 350–1
Chirp-z transform 414–5, 431
Cholesky decomposition 50–3, 58, 59–60, 61,

62, 64–5, 96–7, 320–1
banded 72–6
without square roots 51, 52
update 106, 208

Chopping 24
Combinatorial problems 425–9, 433,

435–6
Compiled code 6–8
Computational complexity 42–3, 49, 61,

80, 83, 88, 103, 106, 161, 403–4,
411, 426, 433

Condition 32–4, 83, 183, 198, n
artificial ill-conditioning 60, 65,
eigenproblems 130
linear equations 36, 55–60, 62, 78
number (of matrix) 55–60, 93
regression 93–6, 121, 125, 183
singular value decomposition 141

Conjugate gradient methods 112–5
Consistency 221–2, 253
Convergence rate

estimator 225, 237, 389
numerical integration 257, 266, 269, 273,

277, 287
search algorithm 192, 194–6

Convolutions 413–5, 420–2, 431–2
Curse (“the curse of dimensionality”) 277
Curvature (nonlinear regression) 247–8,

252, 254

Debugging 10, 353
Density estimation 345–9, 358, 370

kernel 345–6, 435
orthogonal series 346–8, 372
spline 348–9, 372

Divide and conquer 403–4, 409

EM algorithm 235–6
Eigenproblem 128–50

general 128–33
symmetric 133–6
singular value decomposition 137–9

Eigenvalues 54, 128–9, 209, 253
Eigenvectors 128–9
Endianness 23

444

Subject Index 445

False position (regula falsi) algorithm 194, 213,
215, 216

Fast Fourier transform (FFT) 388, 409–24,
431–2, 434–5

Fast order statistics 408–9, 430–1, 434
Fibonacci series 189–90
Fieller’s Theorm 355–6
Fixed point arithmetic 17–20, 34–7, 38
Floating point arithmetic 14–7, 20–38, 298,

418, 435
double precision 22, 27, 35, 82–3, 203
multiple precision 32
representation, fl(x) 15, 23–4, 27, 201, 334–6

Flop 23, 42–3, 49, 52, 69, 85, 103
Function

monotone 186
unimodal 186, 188–90

Gamma function 181, 213
approximation 168–70, 177
incomplete 174
Stirling’s formula 170, 182, 326

Gauss quadrature (see quadrature)
Gauss–Newton algorithm 241–4, 252
Gauss–Seidel iteration 83–4
Gaussian elimination (LU factorization) 44–50,

57, 59, 61
banded matrix 71–2, 85

Generalized least squares 93, 253
Generalized linear models 237–42
Poisson regression 240–2, 252, 254

logistic regression 237–40, 252, 253
Gershgorin theorem 130
Gibbs sampling 375–6, 378–83, 398–400
Givens transformations 104, 111, 116, 118,

123, 207
complex 145
for eigenproblems 136, 139
for regression 104–7, 118, 122, 123

Golden section algorithm 190–1, 213
Gradient 187
Gram–Schmidt orthogonalization 97–100, 123

modified (MGS) 98–9, 123, 248

Hessian 187
Hilbert matrix 56, 63, 64, 65
Horner’s rule (polynomials) 16, 152, 181
Householder transformations 100–1,

111, 123
complex 145, 149
for eigenproblems 134–5, 138
for regression 101–3, 123

IEEE binary floating point standard 21–2
Identifiability 221, 237, 253
Illinois method (modified regula falsi) 195,

213, 215
Imhof algorithm 424–5, 432
Importance sampling 293–4, 353–61,

371, 386
Independence chain 384–5, 386, 398–9
Information

inequality 220, 235, 252
matrix 224–6
matrix, Fisher’s 224–6, 229
sandwich 227, 254

Inner products, accumulating in double
precision 27, 58

Interpolation 57, 63, 153–61, 178–9
Chebyshev 154–5

Interpreted code 6–8
Interval arithmetic 31
Iteratively reweighted least squares (IRWLS)

238, 240

Jacobi iteration 83
Jacobian matrix 187

Kolmogorov-Smirnov test 297, 337–8, 340–1,
351–2, 358, 372–3, 400

Laplace approximation 361–3, 371, 373
Lattice search algorithm 188–90
Levenberg–Marquardt algorithm 242–6, 254
Levinson–Durbin algorithm 77–9, 88, 89–90,

341
Likelihood function 221

concentrated (profile) 230–4, 251–53
Linear programming 84–7, 88, 90, 119, 125,

239, 241

Machine epsilon 30–1, 34, 35
Machine unit 15, 24, 201
Markov Chain Monte Carlo 375–402
Markov chain 80–2, 130, 132–3, 149, 377–8
Matrices

banded 71–6, 160–1, 180
bidiagonal 138, 146
diagonal 41, 60–61
orthogonal (see Givens, Householder)
permutation 41
sparse 80–82, 84, 87, 88
triangular 41, 43–4, 61
tridiagonal 41, 72, 134, 157–8

Matrix multiplication 41–3, 80–2
Maximum likelihood estimation 219–25

446 Subject Index

Mean value theorems 187–8
Memory issues 4, 12, 42–3, 61, 71, 80–82, 96,

103, 106, 161
Metropolis–Hastings algorithm 383–6,

398, 399
Monte Carlo integration 257–8, 278–80, 291–5
Monte Carlo swindles 294–5
Moore–Penrose pseudoinverse 92, 141, 149
Multicollinearity 55, 237

Neave effect 310, 338
Nelder–Mead 211–3
Newton’s method 226

multivariate 199–200, 204–5, 229, 242–3,
251, 254

univariate 192–3, 213, 215–6
Nonlinear equations

multivariate 203–8
univariate 191–7, 213, 215–6, 434

Nonlinear regression 242–6, 252, 254
Normal equations 96
Normalized floating point number 15–6, 21
Norms 54–7

Frobenius (matrix) 54
matrix 54–5, 64, 93–4
vector 53

Numerical differentiation 200–3, 211, 213–4,
216–7, 230

Numerical integration (see quadrature, Monte
Carlo integration)

Optimization
multivariate 203–9, 214
univariate 188–91, 195–6

Orthogonal polynomials 164–6, 181, 268–70,
347

Chebyshev (1st) 166, 181
Overflow 28–30, 275, 418

fixed point 35
floating point 28–30

Paging(swapping) 4, 42–3
Parsing 6
Percentile point estimation 344–5, 358, 370,

372–3
Permutations

generating 428–9, 433
random 330–1

Pivoting
complete (full column) 67–70, 87, 88
partial 46–50, 85
in regression 103, 116, 248

Posterior distribution

Power methods (for eigenproblems) 130–3, 147
inverse power method 133, 135–6, 148
orthogonal iteration 132, 146, 147–8

Principal components 140–1, 142
regression 142

Procrustes rotation 143–4

QR algorithm (for eigenproblems) 135–6, 140,
141, 146, 270

QR factorization 97, 101–2, 104, 139, 207,
248, 251

Quadrature 257–8, 264–72, 295–8, 363–70
Gauss 149, 268–70, 275
midpoint rule 265–8
on a triangle 272–5
on suface of sphere 276–7, 364–5
randomized 290, 292, 297, 363–5, 371, 373
Simpson’s rule 266–8, 275, 366–7, 373
trapezoid rule 264–8

Quasirandom sequences 286–91, 353, 371–2
van der Corput–Halton–Hammersley 287–9,

297, 298–9
Korobov (good lattice points) 289–91,

297, 299

R 10–12, 104, 118, 211–2, 286
environments 12, 211–2
recycling 11, 60
matrix computations 60–1, 104

Random number generation 297, 303–42
beta (F) 318–9
binomial 326–7, 338, 340
exponential 312–3, 336–7, 339, 399
gamma (chi-square, chi) 316–9, 338, 340
general algorithms 305–8, 321–5, 390–4
hypergeometric 329–30, 338, 341
multivariate 320–1
normal 309–12, 337, 338–9
Poisson 327–9, 338
Student’s t (Cauchy) 313–6, 337, 339–40
uniform 278–86, 296, 335, 341

Random sampling 331–3, 341
Ratio of uniforms algorithm 307–9, 310–2, 315,

317, 323–4, 336, 393
Rational arithmetic 32
Rayleigh quotient 133, 148
Regression

all possible 116
alternatives 118–120
diagnostics 107–9, 123
hypothesis tests 110–12, 123
robust 119, 125
theory 91–3

Subject Index 447

Reparameterization 110–1, 246–51, 252, 254
Roundoff error 24, 27, 30–1, 34–8, 80, 97, 399,

418, 434
Runge phenomenon 154–5, 159, 165, 177, 181

Scoring 226–7, 229, 240, 249
Secant method 193, 245

BFGS update 207–8, 226
Broyden’s update 206

Separation (in generalized linear models) 239,
240–1, 254

Sherman-Morrison-Woodbury formula 64, 108,
124, 206

Simulation experiment 58–9, 89, 258–61
Singular value decomposition 137–9, 146–7,

149
complex 144–5, 147, 150

Sorting 405–9, 429–30
heapsort 407, 429–30
mergesort 352, 405–6
quicksort 406–9, 429–31

Spectral density 387–9, 395–7, 416
Spherical–radial integration 365–70, 372
Splines 156

B-splines 162–3, 183
cubic interpolatory 156–9, 177, 180,

348–9, 372

cubic regression 161–3, 177–8
smoothing 159–61, 178

Stability (of algorithm) 33–4, 55–60,
78, 89

Stationary 73–6, 78, 377–8, 387, 395–9
Steepest descent 112, 113, 204–5, 235, 253
Stopping rules (for iterative algorithm) 2–3,

197–9, 209, 244–5
Sweep operator 115–6, 118
Symmetric storage (for matrix) 51–2

Tail probabilities 25–6, 216, 359
beta (F) 175–6, 177
bivariate normal 177, 179
gamma (chi-square, poisson) 174, 179, 435
normal 171–2, 178, 182
Student’s t 172–4, 179, 182

Time-series methods 386–90
Toeplitz structure 76–9, 89, 341

Underflow 21, 28–9, 335
Uniform pseudorandom numbers 278–85,

296
GFSR generators 282–4
linear congruential generators 280–2

Walker’s alias algorithm 324–5, 338

	Cover
	Half-title
	Series-title
	Title
	Copyright
	Contents
	Preface to the Second Edition
	Preface to the First Edition
	1 Algorithms and Computers
	1.1 Introduction
	1.2 Computers
	1.3 Software and Computer Languages
	1.4 Data Structures
	1.5 Programming Practice
	1.6 Some Comments on R
	References

	2 Computer Arithmetic
	2.1 Introduction
	2.2 Positional Number Systems
	2.3 Fixed Point Arithmetic
	2.4 Floating Point Representations
	2.5 Living with Floating Point Inaccuracies
	2.6 The Pale and Beyond
	2.7 Conditioned Problems and Stable Algorithms
	Programs and Demonstrations
	Exercises
	References

	3 Matrices and Linear Equations
	3.1 Introduction
	3.2 Matrix Operations
	3.3 Solving Triangular Systems
	3.4 Gaussian Elimination
	3.5 Cholesky Decomposition
	3.6 Matrix Norms
	3.7 Accuracy and Conditioning
	3.8 Matrix Computations in R
	Programs and Demonstrations
	Exercises
	References

	4 More Methods for Solving Linear Equations
	4.1 Introduction
	4.2 Full Elimination with Complete Pivoting
	4.3 Banded Matrices
	4.4 Applications to ARMA Time-Series Models
	4.5 Toeplitz Systems
	4.6 Sparse Matric
	4.7 Iterative Methods
	4.8 Linear Programming
	Programs and Demonstrations
	Exercises
	References

	5 Regression Computations
	5.1 Introduction
	5.2 Condition of the Regression Problem
	5.3 Solving the Normal Equations
	5.4 Gram–Schmidt Orthogonalization
	5.5 Householder Transformations
	5.6 Householder Transformations for Least Squares
	5.7 Givens Transformations
	5.8 Givens Transformations for Least Squares
	5.9 Regression Diagnostics
	5.10 Hypothesis Tests
	5.11 Conjugate Gradient Methods
	5.12 Doolittle, the Sweep, and All Possible Regressions
	5.13 Alternatives to Least Squares
	5.14 Comments
	Programs and Demonstrations
	Exercises
	References

	6 Eigenproblems
	6.1 Introduction
	6.2 Theory
	6.3 Power Methods
	6.4 The Symmetric Eigenproblem and Tridiagonalization
	6.5 The QR Algorithm
	6.6 Singular Value Decomposition
	6.7 Applications
	(A) Roy’s Test
	(B) Principal Components
	(C) Moore–Penrose Pseudoinverse
	(D) PC Scores and Regression
	(E) Canonical Correlation
	(F) Procrustes Rotation

	6.8 Complex Singular Value Decomposition
	Programs and Demonstrations
	Exercises
	References

	7 Functions: Interpolation, Smoothing, and Approximation
	7.1 Introduction
	7.2 Interpolation
	7.3 Interpolating Splines
	7.4 Curve Fitting with Splines: Smoothing and Regression
	7.5 Mathematical Approximation
	7.6 Practical Approximation Techniques
	7.7 Computing Probability Functions
	(A) Normal Distribution
	(B) Logarithm of the Normal Distribution Function
	(C) Student’s t Distribution
	(D) Chi-Square, Poisson, and Incomplete Gamma
	(E) F and Beta Distributions
	(F) Inverse Normal
	(G) Bivariate Normal

	Programs and Demonstrations
	Exercises
	References

	8 Introduction to Optimization and Nonlinear Equations
	8.1 Introduction
	8.2 Safe Univariate Methods: Lattice Search, Golden Section, and Bisection
	8.3 Root Finding
	8.4 First Digression: Stopping and Condition
	8.5 Multivariate Newton’s Methods
	8.6 Second Digression: Numerical Differentiation
	8.7 Minimization and Nonlinear Equations
	8.8 Condition and Scaling
	8.9 Implementation
	8.10 A Non-Newton Method: Nelder-Mead
	Programs and Demonstrations
	Exercises
	References

	9 Maximum Likelihood and Nonlinear Regression
	9.1 Introduction
	9.2 Notation and Asymptotic Theory of Maximum Likelihood
	9.3 Information, Scoring, and Variance Estimates
	9.4 An Extended Example
	9.5 Concentration, Iteration, and the EM Algorithm
	9.6 Multiple Regression in the Context of Maximum Likelihood
	9.7 Generalized Linear Models
	9.8 Nonlinear Regression
	9.9 Parameterizations and Constraints
	Programs and Demonstrations
	Exercises
	References

	10 Numerical Integration and Monte Carlo Methods
	10.1 Introduction
	10.2 Motivating Problems
	(A) Simulation Experiments in Statistics
	(B) Hypothesis Tests
	(C) Bayesian Analysis

	10.3 One-Dimensional Quadrature
	10.4 Numerical Integration in Two or More Variables
	(A) Integration over a Triangle
	(B) Integration on Surface of a Sphere
	(C) The Curse and Monte Carlo Integration

	10.5 Uniform Pseudorandom Variables
	(A) Testing Random Number Generators
	(B) Linear Congruential Generators
	(C) Shift Register Methods
	(D) Recommendations
	(E) Multiple Generators

	10.6 Quasi–Monte Carlo Integration
	10.7 Strategy and Tactics
	Programs and Demonstrations
	Exercises
	References

	11 Generating Random Variables from Other Distributions
	11.1 Introduction
	11.2 General Methods for Continuous Distributions
	(A) Transformations
	(B) Acceptance/Rejection
	(C) Ratio of Uniforms

	11.3 Algorithms for Continuous Distributions
	(A) Normal Distribution
	(B) Exponential Distribution
	(C) Student’s t and Cauchy
	(D) Gamma, Chi-Square, and Chi
	(E) Logistic and Laplace
	(F) Beta, F, and Dirichlet
	(G) Noncentral Chi-Square, F, and t
	(H) Pareto and Weibull
	(I) Multivariate Normal and t; Wishart

	11.4 General Methods for Discrete Distributions
	(A) Discrete Inversion
	(B) Acceptance/Rejection
	(C) Ratio of Uniforms
	(D) Walker’s Alias Method

	11.5 Algorithms for Discrete Distributions
	(A) Geometric and Negative Binomial
	(B) Binomial
	(C) Poisson
	(D) Hypergeometric

	11.6 Other Randomizations
	(A) Random Permutations
	(B) Random Sampling
	(C) Random Contingency Tables

	11.7 Accuracy in Random Number Generation
	Programs and Demonstrations
	Exercises
	References

	12 Statistical Methods for Integration and Monte Carlo
	12.1 Introduction
	12.2 Distribution and Density Estimation
	12.3 Distributional Tests
	(A) Pearson’s Chi-Square
	(B) Kolmogorov–Smirnov
	(C) Anderson–Darling
	(D) Quasirandom Sequences

	12.4 Importance Sampling and Weighted Observations
	12.5 Testing Importance Sampling Weights
	12.6 Laplace Approximations
	12.7 Randomized Quadrature
	12.8 Spherical–Radial Methods
	Programs and Demonstrations
	Exercises
	References

	13 Markov Chain Monte Carlo Methods
	13.1 Introduction
	13.2 Markov Chains
	13.3 Gibbs Sampling
	13.4 Metropolis–Hastings Algorithm
	13.5 Time-Series Analysis
	13.6 Adaptive Acceptance/Rejection
	13.7 Diagnostics
	(A) Plot the Data
	(B) Gelman and Rubin
	(C) Geweke
	(D) Heidelberger and Welch
	(E) Raftery and Lewis
	(F) Dickey–Fuller

	Programs and Demonstrations
	Exercises
	References

	14 Sorting and Fast Algorithms
	14.1 Introduction
	14.2 Divide and Conquer
	14.3 Sorting Algorithms
	14.4 Fast Order Statistics and Related Problems
	14.5 Fast Fourier Transform
	14.6 Convolutions and the Chirp-z Transform
	14.7 Statistical Applications of the FFT
	(A) Time Series
	(B) Characteristic Functions of Discrete Random Variables
	(C) Convolutions of Continuous Random Variables by Discretization
	(D) Inverting the Characteristic Function of Continuous Random Variables
	(E) Weighted Sums of Chi-Square Random Variables

	14.8 Combinatorial Problems
	(A) Counting in Base B
	(B) Subsets of Size K from N
	(C) All Permutations

	Programs and Demonstrations
	Exercises
	References

	Author Index
	Subject Index

