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Preface

This book is about nonlinear regression analysis with R, in particular, how
to use the function nls() and related functions and methods.

Range of the book

Nonlinear regression may be a confined and narrow topic within statistics.
However, the use of nonlinear regression is seen in many applied sciences,
ranging from biology to engineering to medicine and pharmacology. Therefore,
this book covers a wide range of areas in the examples used. Appendix A lists
the disciplines from which data are used in this book.

What not to expect

This book is not a textbook on nonlinear regression. Basic concepts will be
briefly introduced, but the reader in need of more explanations will have to
consult comprehensive books on nonlinear regression such as Bates and Watts
(1988) or Seber and Wild (1989). Instead, this book may be particularly well-
suited as an accompanying text, explaining in detail how to carry out nonlinear
regression with R. However, we also believe that the book is useful as a stand-
alone, self-study text for the experimenter or researcher who already has some
experience with R and at the same time is familiar with linear regression and
related basic statistical concepts.

Prerequisites

Experience with R at a level corresponding to the first few chapters in Dal-
gaard (2002) should be sufficient: The user should be acquainted with the
basic objects in R such as vectors, data frames, and lists, as well as basic
plotting and statistics functions for making scatter plots, calculating descrip-
tive statistics, and doing linear regression.
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How to read the book

Chapter 2 is essential for getting started on using nls(). Section 3.2 and
Chapter 4 are at times somewhat technical regarding the use of R, whereas
Section 6.3 is technical on a statistical level. These parts of the book could be
skipped on a first reading.

The R extension package nlrwr is support software for this book, and it
is available at CRAN: http://cran.r-project.org/web/packages/nlrwr/index.html.
All datasets and functions used are available upon loading nlrwr. All code
snippets used in the book are also found in the scripts folder that comes
with the package. This means that all R code snippets shown in this book
can be run once the support package nlrwr has been installed and loaded.
Appendix A provides a list of all datasets used, with a reference to the package
where they are found, and Appendix C lists the main functions used in this
book together with a package reference.
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1

Introduction

Throughout this book, we consider a univariate response, say y, that we want
to relate to a (possibly multivariate) predictor variable x through a function
f . The function f is not completely known, but it is known up to a set of p
unknown parameters β = (β1, . . . , βp). We will use various Greek and Latin
letters to denote parameters, often using the symbols typically used in the
particular models. The relationship between the predictor and the response
can be formulated as follows:

y = f(x, β) (1.1)

This book is about the situation where the function f is nonlinear in one
or more of the p parameters β1, . . . , βp. In practice, the parameters have
to be estimated from the data. Consider a dataset consisting of n pairs
(x1, y1), . . . , (xn, yn). (The number of parameters occurring in f should be less
than the number of observations; that is, p < n.) The relationship in Equa-
tion (1.1) is for the ideal situation where both the predictor values x1, . . . , xn

and the response values y1, . . . , yn are observed without error. In reality, there
will be measurement errors that will distort the picture such that none of
the pairs (x1, y1), . . . , (xn, yn) will fit Equation (1.1) exactly. Therefore, we
will assume that the value xi is predicting the value yi according to Equa-
tion (1.1) apart from some measurement error. In other words, it is more
realistic to entertain the idea that the relationship in Equation (1.1) is correct
only on average. We can formalise this notion by introducing the conditional
mean response E(yi|xi) (conditional on the predictor value xi) and recast
Equation (1.1) as follows:

E(yi|xi) = f(xi, β) (1.2)

Equation (1.2) reads as follows: Given the predictor value xi, we will expect
the response to be centered around the value f(xi, β). Therefore, we will refer
to f as the mean function.



2 1 Introduction

In the formulation above, it is implicitly assumed that the data analyst
has some prior knowledge about which kind of function f should be used (at
least roughly). Thus nonlinear regression methods are suited for analysing
data for which there is an empirically or theoretically established functional
relationship between response and predictor.

Each measurement will be distorted by some error related to the measure-
ment process. The observation yi will differ from the expected mean E(yi|xi)
by some amount, which we will denote εi. The perturbations may be due to
minute changes in the measurement process. Therefore, the complete specifi-
cation of the model of the relationship between the response and the predictor
is given by the nonlinear regression model:

yi = E(yi|xi) + εi = f(xi, β) + εi (1.3)

We will think of the term εi as the error term for observation i ; that is, the
distortion in the response yi away from the expected value f(xi, β) caused by
various unknown sources of variation. The error εi will vary from measurement
to measurement. Typically, the errors are assumed to be normally distributed
with mean 0 and some unknown standard deviation σ that is estimated from
the data. We will go into more detail about the assumptions underlying model
(1.3) in Chapter 5. We will in this book specify models by means of the mean
function involved but implicitly having the complete specification as given in
Equation (1.3) in mind. The variables x and y often will be replaced with the
actual names being used in a given context and for a given dataset.

Now we will present three examples. The first example is motivating the
use of a two-parameter nonlinear regression model. In the second example,
a nonlinear regression model involving two predictor variables is introduced.
The third example presents a grouped data structure in a nonlinear regression
framework.

1.1 A stock-recruitment model

In fisheries biology, there are several theoretical models describing the rela-
tionship between the size of the spawning stock (the spawning biomass) and
the resulting number of fish (the recruitment). The data frame M.merluccius
in the package nlrwr contains three variables: spawn.biomass (the stock),
num.fish (the recruitment), and year (which we will not use). Figure 1.1
shows the plot of recruitment versus stock. We may be able to discern an
increase that flattens out as spawning biomass increases, but we also notice
that there is considerable scatter/variation in the data.

One of these models is the Beverton-Holt model:

f
(
S, (α, k)

)
=

αS

1 + S/k
(1.4)
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> plot(num.fish ~ spawn.biomass,

+ data = M.merluccius, xlab = "Spawning biomass (1000 tonnes)",

+ ylab = "Recruitment (million fish)")
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Fig. 1.1. Recruited number of fish plotted against the size of the spawning stock.

The parameter α is the slope at 0, whereas k is the stock resulting in a
recruitment halfway between 0 and the upper limit, which is equal to α · k. In
practice, there is a lot of variability in this kind of data (Cadima, 2003, p. 47),
so it is not reasonable to assume that the relationship in Equation (1.4) is
deterministic (Carroll and Ruppert, 1988, p. 139), and therefore a nonlinear
regression model with the mean function in Equation (1.4) comes into play.
We will return to this dataset in Section 7.6.

1.2 Competition between plant biotypes

We want to assess the relative competitive abilities of two biotypes of Lolium
rigidum. One has developed resistance to glyphosate, and the other is a sensi-
tive wild type (Pedersen et al., 2007). The experimental layout in the green-
house was an incomplete factorial design. The density of the resistant and
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sensitive biotypes was based upon the actual density counted after germina-
tion (see Fig. 1.2). This sometimes differed from the intended density. The
model we use is a hyperbolic model (Jensen, 1993). It describes the competi-
tive ability of the sensitive biotype in relation to the resistant biotype. More
specifically, the relationship between biomass per plant of the sensitive biotype
(the response) and the densities is described by the function

f
(
x, z, (a, b, c)

)
=

a

1 + b(x + cz)
(1.5)

where x and z are the density per unit area of the sensitive and resistant
biotype, respectively. The interpretation of the parameters is:

• a is the theoretical biomass of a plant at zero density.
• b is a measure of the intraspecific competition between plants of the sen-

sitive biotype.
• c is the substitution rate, and it is effectively the exchange rate between

the biotypes: If c equals 1, then the two biotypes are equally competitive,
and if c is greater than 1, the sensitive biotype is more competitive than
the resistant one and vice versa if c is smaller than 1.

The data are in the data frame RScompetition in the package drc. The
plot of the data is shown in Fig. 1.2. For the label on the x axis, we use
mathematical annotation (see ?plotmath for the details). We use the construct
as.numeric(as.factor(RScompetition$z)) to convert the integer values of
the variable z in the range 0 to 64 to integer values from 1 to 10, which are
suitable as values of the argument pch, which is controlling the plot symbol
(Dalgaard, 2002, pp. 8, 173). We will return to this dataset in Subsection 4.4.1.

1.3 Grouped dose-response data

Christensen et al. (2003) describe an experiment that was designed in order to
compare the potency of the two herbicide treatments in white mustard plants
(Sinapis alba).

The data are from a dose-response experiment, which means that a biolog-
ical stimulus is recorded for a range of doses of some toxic substance. The aim
of such experiments is typically to assess the toxicity of the substance applied.
The data consist of measurements for the herbicide glyphosate at six different
doses and for the herbicide bentazone at seven different doses; for all doses,
there are four replicates. The dose is in the unit g/ha and the response is dry
matter measured in g/pot. Furthermore, both herbicides have a control of zero
dose with eight replicates. The data are available as the data frame S.alba
in the package drc. The data frame consists of a total of 68 observations and
three variables: the response DryMatter, the predictor Dose, and the factor
Herbicide, with two levels (Bentazone and Glyphosate) identifying the two
treatments.
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> plot(biomass ~ x, data = RScompetition,

+ log = "", xlab = Density ~

+ (plants/m^2), ylab = Biomass ~

+ of ~ sensitive ~ biotype ~

+ (g/plant), pch = as.numeric(as.factor(RScompetition$z)))
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Fig. 1.2. Plot of biomass of sensitive biotype in response to its density. The biomass
of the sensitive biotype growing together with the resistant biotype has different
symbols.

To get a first impression of the data, we make a plot. As we have two
herbicide treatments, we choose a conditional scatter plot using the function
xyplot() in the package lattice. The resulting plot is shown in Fig. 1.3 and
displays a marked s-shaped or sigmoid curve for each herbicide treatment.
One commonly used empirically based model for such dose-response data is
the log-logistic model (Streibig et al., 1993) with mean function

f
(
dose, (b, c, d, e)

)
= c +

d − c

1 + exp[b{log(dose) − log(e)}] (1.6)

The parameters c and d refer to the lower and upper horizontal asymptotes
of the s-shaped curve. The parameter e in model (1.6) is the inflection point
of the curve (that is, the point around which it is symmetric on a logarithmic
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dose axis), and the parameter b is proportional to the slope at a dose equal to
e. Figure 1.3 reveals that the two curves seem to have roughly the same lower
and upper limits, and they appear to be parallel in the dose range from 20 to
100 g/ha, possibly indicating similar slopes but different inflection points.

> xyplot(DryMatter ~ Dose | Herbicide,

+ data = S.alba, scales = list(x = list(log = TRUE)),

+ ylab = "Dry matter (g/pot)",

+ xlab = "Dose (g/ha)")
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Fig. 1.3. The effect of increasing doses of two herbicide treatments on growth of
white mustard (Sinapis alba) plants.
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Getting Started

In this chapter, we show how to get started fitting nonlinear regression models
in R. Before getting to R, we will provide an ultrabrief summary of the main
concepts used when fitting nonlinear regression models (Section 2.1). Much
more detailed accounts are provided in the books by Bates and Watts (1988),
Seber and Wild (1989), and Huet et al. (2004). Then (in Section 2.2) we will
get started using R. We focus on the fitting function nls(), but in Section 2.3
we introduce another fitting function that may also sometimes be useful in a
nonlinear regression context.

2.1 Background

We have predictor values x1, . . . , xn, response values y1, . . . , yn, and a given
mean function f depending on some unknown parameters (in Chapter 1, we
already encountered a few examples of mean functions). The parameter esti-
mates are determined as the parameters providing the best fit of the mean
function f to the observations y1, . . . , yn obtained by minimisation of the
residual sums of squares (RSS) with respect to β:

RSS(β) =
n∑

i=1

(
yi − f(xi, β)

)2 (2.1)

The minimisation of RSS is often referred to as minimising the least-squares
criterion or least-squares estimation, and the solution to the minimisation
problem is the least-squares parameter estimates, which we denote β̂. These
estimates are the β values (within the domain of all β values that are mean-
ingful for a given mean function f) that make RSS as small as possible. In
other words, the global minimum of RSS(β) is attained for β = β̂. In contrast
to linear regression (Dalgaard, 2002, pp. 95–96), the minimisation of RSS will
in general be a nonlinear problem due to the nonlinearity of f , and therefore
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numerical optimisation methods are needed. These methods are iterative pro-
cedures that will ideally approach the optimal parameter values in a stepwise
manner. At each step, the algorithms determine the new parameter values
based on the data, the model, and the current parameter values. By far the
most common algorithm for estimation in nonlinear regression is the Gauss-
Newton method, which relies on linear approximations to the nonlinear mean
function at each step. For more details and explanations, see, for example,
Bates and Watts (1988, pp. 32–66), Seber and Wild (1989, pp. 21–89), or
Weisberg (2005, pp. 234–237). The numerical optimisation methods are not
perfect. Two common complications when using them are:

• how to start the procedure and how to choose the initial/starting parame-
ter value

• how to ensure that the procedure reached the global minimum
rather than a local minimum

These two issues are interrelated. If the initial parameter values are sufficiently
close to the optimal parameter values, then the procedure will usually get
closer and closer to the optimal parameter value (the algorithm is said to
converge) within a few steps. Therefore, it is very important to provide sensible
starting parameter values. Poorly chosen starting values on the other hand will
often lead the procedures astray so no useful model fit is obtained. If lack of
convergence persists regardless of the choice of starting values, then it typically
indicates that the model in its present form is not appropriate for the data at
hand (if possible, you could try fitting a related but simpler model).

As the solutions to nonlinear regression problems are numeric, they may
differ as a consequence of different algorithms, different implementations of
the same algorithm (for example, different criteria for declaring convergence
or whether or not first derivatives are computed numerically or explicit ex-
pressions are provided), different parameterisations, or different starting val-
ues. However, the resulting parameter estimates often will not differ much.
If there are large discrepancies, then it may possibly indicate that a simpler
model should be preferred.

Once the parameter estimates β̂ are found, the estimate of the residual
variance σ2 is obtained as the minimum value of RSS (attained when para-
meter estimates are inserted) divided by the degrees of freedom (n−p), giving
the estimate s2 = RSS(β̂)

n−p (Fox, 2002). The residual standard error is then s.

2.2 Getting started with nls()

In this section, we will introduce the key player in this book, the model fitting
function nls() (Bates and Chambers, 1992), which comes with the standard
installation of R (in the package stats). We go through an example show-
ing how to fit a model, how to obtain parameter estimates, predictions, and
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summary measures, and how to make plots of the fitted mean function or
regression curve.

2.2.1 Introducing the data example

We consider data from an experiment on N uptake reported by Cedergreen and
Madsen (2002), where the predictor variable is the initial substrate concentra-
tion and the response variable is the uptake rate. In this type of experiment,
it is anticipated that the uptake will increase as the concentration increases,
approaching a horizontal asymptote. The data are available as the data frame
L.minor. To get a first impression, we display the data frame by typing the
name of the dataset at the command line.

> L.minor

conc rate
1 2.856829 14.58342
2 5.005303 24.74123
3 7.519473 31.34551
4 22.101664 72.96985
5 27.769976 77.50099
6 39.198025 96.08794
7 45.483269 96.96624
8 203.784238 108.88374

The data frame L.minor contains eight observations. The response is named
rate and the predictor is named conc.

A graphical display of the dataset can be obtained using the default plot
method. The first argument is a model formula giving the response on the left-
hand side of the ∼ symbol and the predictor on the right-hand side. As the
second argument, we specify the data frame where the predictor and response
are found. Finally, we provide informative labels for both the x and y axes of
the plot.

The resulting plot is shown in Fig. 2.1. The steep ascent for small concen-
trations and the ensuing approach towards a horizontal asymptote are easily
seen in Fig. 2.1.

2.2.2 Model fitting

Kinetics data such as those in L.minor are often described by the Michaelis-
Menten model (Bates and Watts, 1988, p. 33). The model describes the uptake
rate as a function of the substrate concentration through the model

f
(
concentration, (K,Vm)

)
=

Vm · concentration
K + concentration

(2.2)
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> plot(rate ~ conc, data = L.minor,

+ ylab = "Uptake rate (weight/h)",

+ xlab = Substrate ~ concentration ~

+ (mmol ~ m^-3))
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Fig. 2.1. Velocity curve showing uptake rate as a function of substrate concentration
based on the data frame L.minor.

using two parameters: K and Vm. In a more abstract formulation, the same
Michaelis-Menten model can be written as

f
(
x, (K,Vm)

)
=

Vmx

K + x
(2.3)

with x and y playing the roles of the predictor and response, respectively.
The mean function f is the right-hand side in Equation (2.3); that is,
f
(
x, (K,Vm)

)
= Vmx

K+x . At concentration 0, the model predicts a rate equal
to 0, and as the substrate concentration becomes larger and larger, the rate
approaches from below the upper limit or horizontal asymptote Vm. The pa-
rameter K is the substrate concentration where the rate is halfway between
0 and Vm.

Fitting the Michaelis-Menten model to the data frame L.minor can be
done conveniently using nls().
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> L.minor.m1 <- nls(rate ~ Vm * conc/(K +

+ conc), data = L.minor, start = list(K = 20,

+ Vm = 120), trace = TRUE)

624.3282 : 20 120
244.5460 : 15.92382 124.57148
234.5198 : 17.25299 126.43877
234.3595 : 17.04442 125.96181
234.3533 : 17.08574 126.04671
234.3531 : 17.07774 126.03016
234.3531 : 17.07930 126.03338
234.3531 : 17.07899 126.03276

The first argument, rate∼Vm*conc/(K+conc), is the model formula, where
∼ is used to relate the response, rate, on the left-hand side to the expres-
sion for the mean function, Vm*conc/(K+conc), which is explicitly formulated
on the right-hand side. The specification of the mean function involves both
the predictor (conc) and the parameters (K and Vm), so parameters have
to be named explicitly, in contrast to the linear regression specification in
lm() (Dalgaard, 2002, pp. 95–110). Alternatively, we could have supplied a
previously defined mean function (defined as an R function) instead of the
expression Vm*conc/(K+conc) (see Exercise 2.2). Note that in the formula
the parameters in the supplied mean function are identified as the names
not corresponding to variables in the data frame or the search path and not
corresponding to mathematical operations and functions.

In the second argument (data), the data frame containing the response
(rate) and the predictor (conc) is specified. In order to initiate the estimation
algorithm, we need to supply starting values for the parameters.

We use the argument start to supply the starting values. Having in mind
the interpretation of the model parameters given in Subsection 2.2.1, we can
read off from Fig. 2.1 an approximate upper limit at a rate of 120, and the
rate is roughly halfway (that is, at 120/2 = 60) around a concentration of 20.
The argument trace controls whether or not the parameter values at each
step in the iterative estimation procedure should be displayed. We see that
the parameter values rapidly stabilise, indicating that the initial values were
good guesses.

It is useful to report the value of RSS(β̂), or equivalently the estimated
residual standard error or variance, as a summary measure of the model fit.
Such a summary measure is useful for comparing different model fits (based on
different mean functions or software) to the same dataset (see Exercise 2.5) or
even for comparing different models (see Section 7.6). To obtain the minimum
value of RSS, the value RSS(V̂m, K̂), we can use the deviance method.

> deviance(L.minor.m1)

[1] 234.3531
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Another summary measure of the fit that is sometimes reported is the value of
the logarithm of the likelihood function, evaluated at the parameter estimates.
The likelihood function is closely related to RSS, defined in Equation (2.1),
and is defined as follows:

L(β, σ2) =
1

(2πσ2)n/2
exp

{
−RSS(β)

2σ2

}

The parameter estimates β̂ are the parameters that maximise L as a function
in β, but this is equivalent to minimising RSS as a function in β. The resulting
maximum value of the likelihood function is

L(β̂, σ̂2) =
1

(2πRSS(β̂)/n)n/2
exp(−n/2) (2.4)

where we use the estimate σ̂2 = n−p
n s2. Fox (2002) and Huet et al. (2004)

provide more details. The maximum value of the logarithm-transformed like-
lihood function, which is often simply referred to as the log likelihood function,
can be obtained using the logLik method.

> logLik(L.minor.m1)

'log Lik.' -24.86106 (df=3)

In addition to the value of the log likelihood function, the number of parame-
ters (p + 1) is shown.

We can use the coef method to list the parameter estimates:

> coef(L.minor.m1)

K Vm
17.07899 126.03276

The output is simply a vector of the parameter estimates, nothing else. For a
more detailed summary of the model fit, we can use the summary method.

> summary(L.minor.m1)

Formula: rate ~ Vm * conc/(K + conc)

Parameters:
Estimate Std. Error t value Pr(>|t|)

K 17.079 2.953 5.784 0.00117 **
Vm 126.033 7.173 17.570 2.18e-06 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 6.25 on 6 degrees of freedom
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Number of iterations to convergence: 7
Achieved convergence tolerance: 8.144e-06

The specified model formula is displayed at the top. Then the parameter es-
timates and related quantities are shown. The parameter estimates are found
in the first column: The horizontal asymptote is attained at 17.1, and the
substrate concentration resulting in an increase from 0 to Vm/2 is 126. The
second column contains the estimated standard errors of the parameter esti-
mates, which are the square roots of the diagonal elements in the estimated
variance-covariance matrix

v̂ar(β̂) = s2B̂ (2.5)

where B̂ is the inverse of the matrix of second derivatives of the log likeli-
hood function as a function of β evaluated at the parameter estimates β = β̂.
This matrix is often called the Hessian. In nls(), the Hessian matrix is calcu-
lated using numeric approximation. Note that different approximations of the
Hessian matrix may lead to (usually) small differences in estimated standard
errors. Columns 3 and 4 contain t-tests for testing the hypothesis that the
parameter is 0. We will discuss hypothesis testing in more detail in Chapter 7,
but for the time being we note that these hypotheses are not always relevant
to consider. Finally, the estimated residual standard error can also be read
directly off the summary output (s = 6.25) together with the correspond-
ing degrees of freedom (n − p = 6). Finally, some details on the estimation
procedure are reported:

• number of iterations needed for the estimation algorithm (here seven it-
erations (eight evaluations) were used, but we already know this from the
trace output)

• tolerance at the final step (difference between the last two evaluations)

The fitted Michaelis-Menten regression curve is given by the following expres-
sion:

rate =
17.1 · concentration
126 + concentration

(2.6)

2.2.3 Prediction

Equation (2.6) can be used for calculating predicted values. For given con-
centrations that are supplied, the resulting predicted rates can be determined
using Equation (2.6). If we use the same concentrations present in the dataset
L.minor, then we get the fitted values, but in all other cases we use the model
fit to interpolate between or extrapolate beyond the original concentrations
in the dataset, and the resulting values are called predicted values. The fitted
values are the model-based predictions for the predictor values in the dataset
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considered, and they play an important role in constructing model diagnos-
tics such as residual plots. The fitted values can be obtained directly from the
nls() fit using the fitted method, with the model fit as the only argument.
For instance, the fitted values from the model fit L.minor.m1 are obtained in
the following way:

> fitted(L.minor.m1)

[1] 18.06066 28.56474 38.52679
[4] 71.09461 78.03806 87.78424
[7] 91.62683 116.28685
attr(,"label")
[1] "Fitted values"

In general, prediction can be viewed as follows. For N specified predictor values
x01, . . . , x0N , we want to predict the values f(x01, β̂), . . . , f(x0N , β̂). To do this
in R, we need to supply both the model fit and the data frame containing
the predictor values x01, . . . , x0N . Let us return to the model fit L.minor.m1.
First, we define a vector of predictor values (that is, concentrations) for which
we want to get predictions.

> concVal <- with(L.minor, seq(min(conc),

+ max(conc), length.out = 10))

Explanation: Throughout this book, we will use the function with() when-
ever we want to manipulate with variables inside a data frame. The first
argument to with() is the data frame, whereas the second argument is what-
ever manipulation we want to do (here it is to use the function seq() for
generating a sequence of numbers). We want ten predictions based on equidis-
tantly spaced concentrations within the range of concentrations in the original
dataset L.minor. Therefore we use the function seq to generate a sequence
of concentrations, starting at the minimum concentration in the dataset (ob-
tained using min(conc)) and ending at the maximum concentration in the
dataset (max(conc)). In total, ten values are generated (governed by the ar-
gument length.out). The concentrations generated are stored in the vector
concVal.

The predictions based on the concentrations in concVal are obtained using
the predict method.

> predict(L.minor.m1, data.frame(conc = concVal))

[1] 18.06066 75.09908 92.70509
[4] 101.26607 106.32776 109.67157
[7] 112.04518 113.81733 115.19094
[10] 116.28685

Note that inside the data frame we have to assign the same name to the gener-
ated concentrations as is used for the concentrations in the dataset L.minor,
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which is conc. Using the predict method without supplying a data frame
results in the same output as obtained from the fitted method. We will use
the predict method in the next subsection because predict is useful for
constructing plots.

2.2.4 Making plots

In order to create a plot of the original data with the fitted regression curve
superimposed, we have to proceed through a few steps. The original data are
plotted using the default plot method.

> plot(rate ~ conc, data = L.minor,

+ ylim = c(10, 130), ylab = "Uptake rate (weight/h)",

+ xlab = Substrate ~ concentration ~

+ (mmol ~ m^-3))

> lines(L.minor$conc, fitted(L.minor.m1))
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Fig. 2.2. Rate versus substrate concentration in L.minor plotted together with a
crude approximation to the fitted Michaelis-Menten regression curve.

We specify the graphical argument ylim in plot to ensure a sufficiently
large plot window encompassing both the original data and the entire fitted
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regression curve. The function lines() connects the fitted values for each
concentration in the dataset L.minor with line segments (linear interpolation).
The result in Fig. 2.2 is a crude approximation to the fitted regression curve.

In order to get a nicer (smoother) plot of the estimated regression curve,
we need to define a finer grid on the x axis. Figure 2.3 shows the original
data in L.minor plotted together with a smooth approximation of the fitted
regression curve, which is obtained by first generating a sequence of 100 equally
spaced concentrations (using the function seq()) between the minimum and
maximum concentrations in the dataset L.minor (using the functions min()
and max()). These 100 concentrations are stored in the vector named concVal.
The use of the function with() with first argument L.minor avoids having to
make explicit reference to the data frame L.minor every time we consider a
variable inside the data frame (we need to use conc twice), and this way the
resulting R statement is shortened.

The estimated horizontal asymptote has been added using the function
abline(), which can be used to add arbitrary lines (horizontal, vertical, or
determined by intercept and slope) to a plot (Dalgaard, 2002, p. 99). Here
we specify a horizontal line (argument h) at coef(L.minor.m1)[2], which is
the second component in the vector of parameter estimates, the parameter
estimate of Vm. A dashed line type is requested by the argument lty = 2
(Murrell, 2006, pp. 59–61). The agreement between the data and the model
appears to be acceptable, although the estimated horizontal asymptote is
overshooting a bit.

2.2.5 Illustrating the estimation

The RSS function for the Michaelis-Menten model based on the dataset
L.minor is defined as follows using Equation (2.1):

RSS(K,Vm) =
8∑

i=1

(
ratei −

Vm · concentrationi

K + concentrationi

)2

So for a grid of pairs of K and Vm values, we can calculate the values
RSS(K,Vm), and it can be visualised by means of a contour plot connect-
ing pairs of K and Vm values that result in the same value of RSS(K,Vm).
This approach is possible for any model with at most two parameters (p = 2).
The function nlsContourRSS() in the package nlstools constructs an ob-
ject containing all the information needed for making the contour plot. The
only argument that we need to supply to nlsContourRSS() is the model fit
for which a contour plot should be generated. The following line generates a
contour plot object based on the model fit L.minor.m1.

> L.minor.m1con <- nlsContourRSS(L.minor.m1)

The corresponding plot method is then applied to show the contour plot.
Apart from the model fit we specify, the absence of most colours in the plot
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> plot(rate ~ conc, data = L.minor,

+ ylim = c(10, 130), ylab = "Uptake rate (weight/h)",

+ xlab = Substrate ~ concentration ~

+ (mmol ~ m^-3))

> concVal <- with(L.minor, seq(min(conc),

+ max(conc), length.out = 100))

> lines(concVal, predict(L.minor.m1,

+ newdata = data.frame(conc = concVal)))

> abline(h = coef(L.minor.m1)[2],

+ lty = 2)

0 50 100 150 200

20
40

60
80

10
0

12
0

Substrate concentration (mmol m−3)

U
pt

ak
e 

ra
te

 (
w

ei
gh

t/h
)

Fig. 2.3. Rate versus substrate concentration in L.minor plotted together with
a smooth version of the fitted Michaelis-Menten regression curve. The estimated
horizontal asymptote is the dashed line.

(col = FALSE), and we decide to display ten contour levels. The resulting
contour plot is shown in Fig. 2.4. Each contour level corresponds to all pairs
of parameter values (K,Vm) producing the same value of RSS. In addition to
the ten contour levels, a dashed contour line defines a region that corresponds
to a 95% confidence region of the two parameters (see ?nlsContourRSS for
more details). The narrowing contour lines clearly indicate the approximate
location of the parameter estimates.



18 2 Getting Started

> plot(L.minor.m1con, col = FALSE,

+ nlev = 10)
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Fig. 2.4. Contour plot of the residual sums-of-squares function RSS(K, Vm) for the
Michaelis-Menten model fitted to the dataset L.minor. The region encompassed by
the dashed contour is a 95% confidence region (see Chapter 7 for more details).

2.3 Generalised linear models

In this section, we briefly present another fitting function that sometimes may
be useful in relation to nonlinear regression.

Some nonlinear regression models can be treated as generalised linear mod-
els, which are a collection of statistical models where it is possible to transform
the mean function in such a way that a linear model is recovered on some
transformed scale (McCullagh and Nelder, 1989, Chapter 1). One advantage
of using a generalised linear model is that there is typically no need to specify
starting values.

Let us once more return to the dataset L.minor and the Michaelis-Menten
model. The mean function can be rewritten as follows (which works because
we assume all predictor values are positive):

f
(
x, (K,Vm)

)
=

1
1

Vm
+ K

Vm

1
x

=
1

β̃0 + β̃1
1
x
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Thus the reciprocal mean function looks like

1
f
(
x, (K,Vm)

) = β̃0 + β̃1
1
x

which is a linear regression formulation in 1/x (the so-called linear predictor)
with intercept parameter β̃0 = 1/Vm and slope parameter β̃1 = K/Vm. Con-
sequently the Michaelis-Menten model can be viewed as a generalised linear
model with the inverse or reciprocal function as the link function between the
original and transformed scales for the mean (McCullagh and Nelder, 1989;
Nelder, 1991, Chapter 8). Going to the generalised linear model formulation
changed the parameterisation, so we will need to do some extra work in or-
der to retrieve the original parameters K and Vm from the generalised linear
model fit.

The main model fitting function in R for generalised linear models is
glm(), which is explained in more detail by Venables and Ripley (2002a,
Chapter 7) and Dalgaard (2002, Chapter 11). We can fit the model to the
dataset L.minor as follows:

> L.minor.m4 <- glm(rate ~ I(1/conc),

+ data = L.minor, family = gaussian("inverse"))

The first argument is the model formula rate∼I(1/conc), specifying the re-
sponse and the linear regression formulation. We use the function I() when-
ever we manipulate with a predictor on the right-hand side of a model formula.
This way the manipulation is protected and not interpreted in relation to the
usual rules governing model specification (Dalgaard, 2002, Chapter 10). The
transformation to be applied to the linear predictor ("inverse") and the
distribution assumed (gaussian) are specified in the argument family. The
resulting summary output is shown below.

> summary(L.minor.m4)

Call:
glm(formula = rate ~ I(1/conc), family = gaussian("inverse"),

data = L.minor)

Deviance Residuals:
Min 1Q Median 3Q Max

-7.403 -4.663 -2.007 2.741 8.304

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.0079344 0.0004516 17.570 2.18e-06 ***
I(1/conc) 0.1355123 0.0173574 7.807 0.000233 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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(Dispersion parameter for gaussian family taken to be 39.05854)

Null deviance: 9427.92 on 7 degrees of freedom
Residual deviance: 234.35 on 6 degrees of freedom
AIC: 55.722

Number of Fisher Scoring iterations: 7

The output is quite similar to what nls() produces. Dalgaard (2002, Chap-
ter 11) provides a detailed explanation for all components in the output.

Exercises

2.1. Fit the exponential model

f
(
x, (b, y0)

)
= y0 exp(x/b)

with parameters b (controlling the rate of change) and y0 (average response
level at x = 0) to the dataset RGRcurve. Make a plot of the original data with
the estimated curve superimposed. Comment on the plot.

2.2. The mean function of the Michaelis-Menten model can be defined as the
following R function:

> MMfct <- function(conc, K, Vm) {

+ Vm * conc/(K + conc)

+ }

Use the function MMfct() to fit the Michaelis-Menten model to the dataset
L.minor introduced in Subsection 2.2.1.

2.3. Use the function plotfit() for plotting the data in L.minor together
with the fitted Michaelis-Menten regression curve based on the model fit
L.minor.m1. Note that plotfit() only works for model fits involving a one-
dimensional predictor without any grouping structure.

2.4. Venables and Ripley (2002a) consider an extension of the exponential
model introduced in Exercise 2.1. The extended model involves three para-
meters; the additional parameter describes the lower, horizontal asymptote of
the regression curve. The extended exponential model is given by the function

f
(
x, (β1, β2, β3)

)
= β12−x/β2 + β3

All three parameters have a biological interpretation: β1 is the final weight,
β2 is the time where the weight is halfway between the initial weight and final
weight β1, and β3 is the weight loss.

Fit the extended exponential model to the dataset wtloss found in the
package MASS by guessing appropriate starting values.
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2.5. As seen in Section 1.1, the Beverton-Holt model can be used to describe
stock-recruitment relationships. The model is a reparameterisation of another
model used in Chapter 2. Which model? Use nls() to fit this model to the
dataset M.merluccius. Plot the data together with the fitted regression curve.

In Cadima (2003, p. 131), the reported parameter estimates are α̂ = 4.91
and k̂ = 45.39. How does this agree with the parameter estimates obtained
from the nls() fit? Add the regression curve based on Cadima’s parameters
to the plot showing the nls() fit. Which model fit is best?
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Starting Values and Self-starters

This chapter is about how to find appropriate starting values and how to use
self-starter functions. We present several techniques for finding initial parame-
ter values in Section 3.1. The use of self-starter functions, which are functions
that substitute for a manual search for starting values, is introduced in Sec-
tion 3.2.

3.1 Finding starting values

Finding starting values for the parameters by “eye-balling” appeared to work
fine in the previous section. This way of guessing the initial parameter values
is the most common approach for obtaining starting values. It may require
some skill or experience from previous analyses to come up with a successful
guess. On the other hand, simply trying out a range of parameter values will
sometimes suffice. If the mean function in the nonlinear regression model has
parameters with an interpretation, then it may be easy to read off starting
values from a plot of the data. If this is not the case, then it may be useful

– to jointly explore the data and the model function graphically
– to search for good initial parameter values

In the following two subsections, we will focus on these strategies.

3.1.1 Graphical exploration

Typically some parameters have a subject-specific (e.g., biological, chemical,
or physical) interpretation, whereas the remaining parameters do not.

The dataset Chwirut2 in the package NISTnls contains measurements
from an experiment examining how ultrasonic response depends on the metal
distance, and it stems from an NIST study involving ultrasonic calibration
(NIST (National Institute of Standards and Technology), 1979). Data are
shown in Fig. 3.1 and seem to exhibit some kind of exponential decay.
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> library(NISTnls)

> plot(y ~ x, data = Chwirut2, xlab = "Metal distance",

+ ylab = "Ultrasonic response")
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Fig. 3.1. Plot of the dataset Chwirut2 showing how ultrasonic response depends on
metal distance.

The model suggested by NIST (National Institute of Standards and Tech-
nology) (1979) for this dataset is an exponential decay model where the re-
sponse y (ultrasonic response) is related to the predictor x (metal distance)
through the mean function

f
(
x, (β1, β2, β3)

)
=

exp(−β1x)
β2 + β3x

(3.1)

For x = 0, the model gives the value 1/β2, and thus β2 can be taken to
be the reciprocal of the response value closest to the y axis, which is roughly
1/100 = 0.01. The two remaining parameters do not have a similar simple in-
terpretation. Therefore, we want to explore graphically how the mean function
f is situated for different choices of the parameters.

First, the mean function in Equation (3.1) is defined.

> expFct <- function(x, beta1, beta2,

+ beta3) {
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+ exp(-beta1 * x)/(beta2 + beta3 *

+ x)

+ }

Next we plot the data and add the curve for a given choice of parameter
values on top of the plot using the function curve() (Dalgaard, 2002, p. 31).
In Fig. 3.2, the resulting explorative plot is shown. For our initial choice of
parameter values, which are β1 = 1, β2 = 0.01, and β3 = 1, the mean function
is hardly visible, lying slightly above the x axis except for those close to x = 0.

> plot(y ~ x, data = Chwirut2, xlab = "Metal distance",

+ ylab = "Ultrasonic response",

+ ylim = c(0, 100))

> curve(expFct(x, beta1 = 1, beta2 = 0.01,

+ beta3 = 1), add = TRUE)
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Fig. 3.2. Explorative plot showing the mean function for a given configuration of
the parameter values (β1 = 1, β2 = 0.01, and β3 = 1) together with the data from
the dataset Chwirut2.

So our initial choice of parameter values was not great. Therefore let us
try out four other configurations, (0.1, 0.01, 1), (0.1, 0.01, 0.1), (0.1, 0.01, 0.01),
and (0.2, 0.01, 0.01), where we only make a change in one of the parameters
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at a time. The four resulting explorative plots are shown in Fig. 3.3. They
are produced using curve(). The argument lty in curve() is used to obtain
different line types for the four curves.

> plot(y ~ x, data = Chwirut2, xlab = "Metal distance",

+ ylab = "Ultrasonic response",

+ ylim = c(0, 100))

> curve(expFct(x, beta1 = 0.1, beta2 = 0.01,

+ beta3 = 1), add = TRUE, lty = 2)

> curve(expFct(x, beta1 = 0.1, beta2 = 0.01,

+ beta3 = 0.1), add = TRUE, lty = 3)

> curve(expFct(x, beta1 = 0.1, beta2 = 0.01,

+ beta3 = 0.01), add = TRUE,

+ lty = 4)

> curve(expFct(x, beta1 = 0.2, beta2 = 0.01,

+ beta3 = 0.01), add = TRUE,

+ lty = 1)
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Fig. 3.3. Four explorative plots to see how the mean function varies with the
parameter values: long-dashed (0.1, 0.01, 1), short-dashed (1, 0.01, 0.1), long–short-
dashed (0.1, 0.01, 0.01) and solid (0.2, 0.01, 0.01).
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We see from Fig. 3.3 how the chosen parameter values result in a mean
function lying closer and closer to the data. In practice, you may need more
than just a few tries to get the mean function close to the data (see Exer-
cise 3.1).

The parameter values producing the solid curve in Fig. 3.3 seem to roughly
fit the data, so let us try to use these parameter values as starting values.

> Chwirut2.m1 <- nls(y ~ expFct(x,

+ beta1, beta2, beta3), data = Chwirut2,

+ start = list(beta1 = 0.2, beta2 = 0.01,

+ beta3 = 0.01))

We get no errors, and it seems that the estimation algorithm converged. The
summary output of the model fit is shown below.

> summary(Chwirut2.m1)

Formula: y ~ expFct(x, beta1, beta2, beta3)

Parameters:
Estimate Std. Error t value Pr(>|t|)

beta1 0.1665753 0.0383032 4.349 6.56e-05 ***
beta2 0.0051653 0.0006662 7.753 3.54e-10 ***
beta3 0.0121501 0.0015304 7.939 1.81e-10 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3.172 on 51 degrees of freedom

Number of iterations to convergence: 5
Achieved convergence tolerance: 4.688e-06

Indeed, the estimation algorithm converged in five steps, producing parameter
estimates that seem reasonable, as they are quite close to the initial values that
we provided and that already seemed to provide an acceptable fit as judged
from Fig. 3.3. Note that the parameter values used in the first explorative plot
in Fig. 3.2 will not work, but instead they will result in nls() terminating
with an error message.

3.1.2 Searching a grid

In case you have an idea about the range within which the parameter esti-
mates should be lying, it can be useful to carry out a grid search: to evaluate
the residual sums-of-squares function RSS(β) for a coarse grid based on the
ranges supplied for the parameters and then to choose as starting values the
parameter values that yield the smallest value of RSS(β).
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Consider again the dataset Chwirut2 and the mean function defined in
Equation (3.1). Without having any idea about the range of β1 and β3 (we
know that β2 is roughly around 0.01) apart from the fact that they are positive
numbers, we could search through a rather small grid from 0.1 to 1 at steps
of size 0.1 for both parameters. Thus we want to search through a grid with
the following ranges for the three parameters:

β1: 0.1 to 1
β2: 0.01 (fixed at one value)
β3: 0.1 to 1

We approximate the ranges listed above for the parameters β1 and β3 by
generating two vectors of parameter values using the function seq() (Dal-
gaard, 2002, Chapter 1). The result of seq(0.1, 1, by=0.1) is a vector of
length 10 (the numbers from 0.1 to 1 in steps of 0.1). We define the grid of
all combinations or triples of the elements in the three vectors seq(0.1, 1,
by=0.1) for β1, c(0.01) for β2 (a vector with a single element), and seq(0.1,
1, by=0.1) for β3 by using the function expand.grid(). The three vectors
of parameter values are collected in a list that is then supplied as the only
argument to expand.grid().

> grid.Chwirut2 <- expand.grid(list(beta1 = seq(0.1,

+ 1, by = 0.1), beta2 = c(0.01),

+ beta3 = seq(0.1, 1, by = 0.1)))

The generated grid grid.Chwirut2, which is a data frame, contains three
columns with names that correspond to the parameter names, so there is a
column for each parameter and as many rows as there are different triples
combining elements from the vectors; that is, 100 rows.

In order to evaluate RSS over the grid grid.Chwirut2, the fitting func-
tion nls2() in the package of the same name can be used. The specification of
nls2() is very similar to that of nls() apart from the start and method ar-
guments. A data frame or even an nls2() model fit can be given as arguments
to start. The choice "brute-force" for the argument method evaluates RSS
for the parameter values provided through the start argument.

> Chwirut2.m2a <- nls2(y ~ expFct(x,

+ beta1, beta2, beta3), data = Chwirut2,

+ start = grid.Chwirut2, algorithm = "brute-force")

The resulting output obtained by printing Chwirut2.m2a contains the min-
imum RSS value and the parameter values for which the minimum was at-
tained.

> Chwirut2.m2a

Nonlinear regression model
model: y ~ expFct(x, beta1, beta2, beta3)
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data: NULL
beta1 beta2 beta3
0.10 0.01 0.10
residual sum-of-squares: 60696

Number of iterations to convergence: 100
Achieved convergence tolerance: NA

The minimum value of RSS attained for the combinations provided in the
data frame grid.Chwirut2 is 60696, with corresponding parameter values
(0.1, 0.01, 0.1). The obtained nls2() fit Chwirut2.m2a can conveniently be
supplied as starting values to nls2() again (not shown). The resulting model
fit is similar to the fit Chwirut2.m1 obtained in the previous section.

3.2 Using self-starter functions

We believe that for repeated use of the same nonlinear regression model some
automated way of providing starting values is indispensable. The solution is
to use self-starter functions.

Self-starter functions render estimation
in nonlinear regression almost as easy
and unproblematic as for estimation in
linear regression.

Self-starter functions are specific for a given mean function and calculate
starting values for a given dataset. Many different self-starter functions can be
constructed for a particular mean function. The calculated starting values may
not always result in a successful model fit, but robustly designed functions may
often yield starting values that are close enough to the parameter estimates
that the estimation algorithm will converge.

As pointed out by Watkins and Venables (2006), it is possible to build
up knowledge bases within R. Once a sensible self-starter function has been
constructed for a nonlinear regression model, any future analyses based on
this model become considerably easier. We believe that this potential of R
has not yet been fully realised.

We are only aware of two attempts to create self-starter knowledge bases
within R designed for use with the fitting function nls(). The primary col-
lection of self-starter functions comes with the standard installation of R. We
have listed these self-starter functions in Table B.1 in Appendix B. A sec-
ond collection is found in the package HydroMe and specifically focusses on
nonlinear regression models used for estimating soil hydraulic parameters in
soil sciences. Finally, a self-starter function for the Richards model is found
in the package NRAIA (see Exercise 3.2). In this book, we will only focus on
the built-in self-starter functions in the standard installation. How to create
a self-starter function is the topic of Subsection 3.2.2.
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3.2.1 Built-in self-starter functions for nls()

As already mentioned, the function nls() comes with a collection of self-
starter functions, which are listed in Table B.1.

L.minor revisited

Let us return to the dataset L.minor. In Section 2.2, a Michaelis-Menten
model was fitted to the dataset using nls() with manually supplied starting
values. Now we will repeat the model fit using the self-starter function SSmic-
men(), which provides a convenient way of fitting the Michaelis-Menten model
without having to bother about starting values. We fit the model to L.minor
using nls() and SSmicmen(), naming the resulting model fit L.minor.m2.

> L.minor.m2 <- nls(rate ~ SSmicmen(conc,

+ Vm, K), data = L.minor)

The first argument is again a model formula, where ∼ is used to separate
the response (rate) on the left-hand side from the self-starter function on
the right-hand side. The predictor (conc) is supplied as the first argument in
the self-starter function SSmicmen(). The two subsequent arguments in the
self-starter function are the two parameters in the mean function, Vm and
K, in Equation (2.2) in Subsection 2.2.2. Pay attention to the order of the
parameters in the self-starter function (consult for example the relevant help
page). The order is determined by the self-starter function; for SSmicmen()
it is Vm first and then K. The second argument in nls() is the data frame
containing the response and the predictor. When using a self-starter function,
there is no need to supply initial parameter values through the argument
start. Yet providing the argument start in addition to using a self-starter
function will override the starting values found by the self-starter function.

The resulting model fit is identical to the model fit L.minor.m1 that we
obtained using manually supplied starting values.

> summary(L.minor.m2)

Formula: rate ~ SSmicmen(conc, Vm, K)

Parameters:
Estimate Std. Error t value Pr(>|t|)

Vm 126.033 7.173 17.570 2.18e-06 ***
K 17.079 2.953 5.784 0.00117 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 6.25 on 6 degrees of freedom

Number of iterations to convergence: 0
Achieved convergence tolerance: 2.460e-06
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It is worth noting that the estimation algorithm already converged after the
first evaluation, so the number of iterations needed was 0. The reason is that
the self-starter function SSmicmen() already employs nls() to find the start-
ing values. This is the case for several of the built-in self-starters.

3.2.2 Defining a self-starter function for nls()

You can make your own self-starter functions. For understanding the following
material, it is a prerequisite to know what data frames, functions, lists, and
vectors are and how to manipulate them in R.

We will illustrate the concept through an example using the exponential
model with the mean function

f
(
x, (b, y0)

)
= y0 exp(x/b) (3.2)

This model can be used to describe radioactive decay. The parameter y0 is
the initial amount of the radioactive substance (at time x = 0). The rate of
decay is governed by the second parameter b (the inverse decay constant).

Apart from the definition of the mean function, the main ingredient in a
self-starter function is an initial value routine (Watkins and Venables, 2006), a
function taking the dataset as argument as well as a few other arguments that
ensures that the initial value routine and the mean function and nls() are tied
together and returns starting values ideally not too far from the parameter
values. In order to construct such a function, we manipulate Equation (3.2)
in such a way that we get a model allowing relatively simple and robust
parameter estimation.

Applying a logarithmic transformation on the right-hand side of the expo-
nential model in Equation (3.2) results in the following equation:

log(y0) +
1
b
x (3.3)

The relationship between log(y) and x in Equation (3.3) is linear, with an
intercept equal to log(y0) and a slope equal to 1/b. Therefore we can obtain
estimates of log(y0) and 1/b by fitting a linear regression model with 1 log(y) as
response and x as predictor. We are only interested in getting estimates but do
not bother about the error structure, which differs between the original model
in Equation (3.2) and the logarithm-transformed model in Equation (3.3) (at
most one of them may be the correct one). Therefore the linear regression
model should be viewed only as a very crude approximation to the mean
function on some transformed scale.

Having boiled down the problem to a linear regression model is convenient
because parameter estimation in this model does not involve any iterative
procedure. The parameters β̃0 and β̃1 are the estimated intercept and slope,
respectively, from the linear regression of log(y) on x. Initial parameter values
of y0 and b (which we signify using ∼ on top) are obtained through back
transformation using the exponential and reciprocal functions, respectively:
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ỹ0 = exp(β̃0), b̃ =
1
β̃1

(3.4)

We have now established a procedure for calculating starting values. The next
step is to convert the procedure into a corresponding R function. We imple-
ment the procedure above using the function selfStart(), which comes with
the standard installation of R. Before we use selfStart(), we need to define
an initial value routine. To this end, we define a function that corresponds to
the mean model.

> expModel <- function(predictor,

+ b, y0) {

+ y0 * exp(predictor/b)

+ }

The function expModel() has three arguments. The first argument corre-
sponds to the predictor, whereas the two subsequent arguments are the two
parameters in the model, so there is an argument for each parameter (sim-
ilarly there would need to be one argument for each predictor variable for
multivariate predictors). The next step is to define the corresponding initial
value routine.

> expModelInit <- function(mCall,

+ LHS, data) {

+ xy <- sortedXyData(mCall[["predictor"]],

+ LHS, data)

+ lmFit <- lm(log(xy[, "y"]) ~

+ xy[, "x"])

+ coefs <- coef(lmFit)

+ y0 <- exp(coefs[1])

+ b <- 1/coefs[2]

+ value <- c(b, y0)

+ names(value) <- mCall[c("b",

+ "y0")]

+ value

+ }

The arguments supplied to the initial value routine come from within the
call that we make to nls() when we fit the model. The arguments are as
explained below (keep in mind that the initial value routine is invoked from
inside nls()).

• mCall: the nls() call where all of the specified arguments are specified by
their full names (see the help for match.call())

• LHS: the left-hand side in the model formula supplied in the nls() call
(that is, the response)

• data: the data frame used in nls()
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The following is a line-by-line explanation of the definitions of the initial value
routine above:

• Lines 1–2: A data frame xy with predictor and response values (two
columns) sorted according to increasing predictor values is created using
the function sortedXyData(). The step may be useful as the first step in
most initial value routines (for univariate predictors). Note how the name
of the first argument in the mean function is referred to as ("predictor");
this name needs to correspond exactly to the first argument in the mean
function (here expModel()).

• Line 3: The linear regression model is fit (Equation (3.3)).

• Line 4: The parameter estimates are extracted from the fitted linear re-
gression model.

• Lines 5–6: The initial value ỹ0 of the parameter y0 is calculated using the
exponential function, and the initial value b̃ of the parameter b is calcu-
lated by taking the reciprocal value (using Equation (3.4)).

• Line 7: The two initial parameter values are concatenated into a vector
named value.

• Line 8: The components in the vector value are given the names specified
in the call to the self-starter function, so if, for example, you specify the
names a and b, then those will be the names given to the vector com-
ponents. This line is needed in order to satisfy the requirement for the
argument start in nls().

• Line 9: Finally, the vector value is returned by the initial value routine.

Once the mean function and the initial value routine are defined, the function
selfStart() can be used to construct the self-starter function:

> SSexp <- selfStart(expModel, expModelInit,

+ c("b", "y0"))

The third argument specifies the names of the parameters. The self-starter
function can be used directly if we want to evaluate the mean function for a
given vector of predictor values and given parameter values as in the following
example. We use the dataset RGRcurve (in the package nlrwr), which contains
relative growth rates measured over a number of days. The exponential model
in Equation (3.2) has been used to fit this dataset (Cedergreen et al., 2005).

> with(RGRcurve, SSexp(Day, 4, 0.2))
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[1] 0.2000000 0.2000000 0.2000000
[4] 0.2000000 0.2000000 0.2000000
[7] 0.2568051 0.2568051 0.2568051
[10] 0.2568051 0.2568051 0.3297443
[13] 0.3297443 0.3297443 0.3297443
[16] 0.3297443 0.3297443 0.4234000
[19] 0.4234000 0.4234000 0.4234000
[22] 0.4234000 0.4234000 0.5436564
[25] 0.5436564 0.5436564 0.5436564
[28] 0.5436564 0.5436564 0.8963378
[31] 0.8963378 0.8963378 0.8963378
[34] 0.8963378 0.8963378 1.4778112
[37] 1.4778112 1.4778112 1.4778112
[40] 1.4778112 1.4778112

It simply acts as an ordinary mean function, returning values of the mean
function for a given data and parameter constellation.

To see the starting values that the self-starter function SSexp() calculates
for a specific dataset, the function getInitial() can be used.

> getInitial(RGR ~ SSexp(Day, b,

+ y0), data = RGRcurve)

b y0
3.8450187 0.1674235

Having constructed the self-starter function, the exponential model is conve-
niently fit as follows.

> RGRcurve.m1 <- nls(RGR ~ SSexp(Day,

+ b, y0), data = RGRcurve)

The parameter estimates of the model fit RGRcurve.m1 are retrieved using the
coef method.

> coef(RGRcurve.m1)

b y0
3.7645432 0.1637214

The starting values obtained from getInitial() above are indeed close to
the parameter estimates of the model fit.

More examples on defining self-starter functions for nls() are found in
Watkins and Venables (2006) or Venables and Ripley (2002a, pp. 216–217).
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Table 3.1. Functions useful for defining self-starter functions.

Name Usage

getInitial Calculating the initial values for a given model
using a given self-starter function

selfStart Constructing a self-starter function from
a mean function and an initial value routine

Exercises

3.1. The translated generalised hyporbola model defined using the mean func-
tion

f
(
x, (θ1, θ2, θ3)

)
= θ1 +

(θ2 − θ1)θ3+1

(x − θ1)θ3

has been proposed for these datasets (Hamilton and Knop, 1998). Fit this
model to the two datasets btb and sts.

3.2. The Richards growth model is defined using the mean function

f
(
x, (b, d, e, f)

)
= d · (1 + exp((e − x)/b))− exp(−f)

It is a generalisation of the logistic growth model (SSlogis()), which is ob-
tained by setting f = 0. Fit the Richards model to the dataset Leaves using
the self-starter function SSRichards().

3.3. Construct a self-starter function for nls() for the extended exponential
model (encountered in a different guise in Exercise 2.4)

f
(
x, (b, c, y0)

)
= y0 exp(x/b) + c

which contains a third parameter c representing the lower asymptote or limit
that the response approaches for large x values (assuming b < 0). Fit the
extended exponential model to the dataset wtloss using the constructed self-
starter function.

3.4. In Subsection 3.2.2, it is shown how to linearise the mean function of
the exponential model. Similarly, the mean function of the Michaelis-Menten
model (Equation (2.3)) can be transformed into a linear regression function
by using the reciprocal transformation

1
Vm

+
K

Vm

1
x

= β̃0 + β̃1
1
x

This means that fitting a linear regression model with the response 1/y and the
predictor 1/x will produce estimates of the intercept β̃0 = 1

Vm
and the slope
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β̃1 = K
Vm

. Fit this linear regression model to the dataset L.minor introduced
in Subsection 2.2.1. Calculate the derived parameters K and Vm based on the
linear regression model fit. Compare the parameter estimates to the summary
output given in Subsection 2.2.2.
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More on nls()

In Chapter 2, we introduced the basic functionality of nls(). In this chapter,
we will go into more detail with the arguments and methods available for
nls(). We will also provide more examples showing what nls() is capable of.

4.1 Arguments and methods

In Subsection 2.2.2, we specified an nls() call using the following arguments:
formula, data, start, and trace. In addition to these arguments, there are
several other useful arguments (what follows is not a complete list of argu-
ments, see ?nls all arguments):

• algorithm: specification of estimation algorithm:

– "default": the Gauss-Newton algorithm (the default)
– "plinear": for models with conditionally linear parameters

(see Section 4.3)
– "port": for models with constraints on the parameters

(can be used with the arguments lower/upper)

• control: fine-tuning of the estimation algorithm
(see Section 4.6 for the default values and how to change them)

• na.action: handling of missing values (NAs). The default is na.omit();
other options are na.exclude() and na.fail()

• subset: specification of a subset of the data frame (supplied in the argu-
ment data) for which to fit the model

• weights: supplying case weights
(see Section 6.4 for an example)
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If no starting values are specified for the algorithms "default and "port"
(that is, the argument start is not specified), then nls() will use a wild
guess: The starting values for all parameters are set to 1. For the "plinear"
algorithm, nls() will halt if no starting values are supplied.

Several method functions, or simply methods, are available for extracting
specific information from a model fit obtained from nls(). We already used
several of them in the previous chapter (e.g., coef and summary). All available
methods are listed in Table 4.1. We will use most of these methods in this
chapter and subsequent chapters.

Table 4.1. Available methods for extracting various quantities from an nls() model
fit.

Name Usage

anova comparison of a sequence of nested model fits
coef parameter estimates from model fit
confint profile likelihood confidence intervals for the parameters

(in the package MASS)

deviance minimum residual sum of squares (RSS(β̂))
df.residual residual degrees of freedom (n − p)
fitted fitted values: the predictions based on

the predictor values in the dataset used
formula model formula from the model fit

logLik maximum value of log likelihood value (log(L(β̂, σ̂2)))
plot residual plot (in the package nlme)
predict predictions based on user-supplied predictor values
print brief summary output of the model fit
profile profile t-statistics (see Chapter 7)
residuals residuals from the model fit
summary summary output of the model fit
vcov variance-covariance for the parameter estimates
weights weights supplied in the nls() call

(NULL is returned if no weights were supplied)

We will explain and use many of these methods in this book, but you may
still want to consult the help pages for more details.

4.2 Supplying gradient information

Minimisation of RSS using the default Gauss-Newton algorithm relies on a
linear approximation of the mean function using the first derivatives of the
mean function (that is, gradient information) at each step in the algorithm. If
no gradient information is provided, the derivatives are calculated numerically:
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nls() uses the function numericDeriv(). Sometimes there may be a benefit in
supplying explicit expressions for the derivatives. This may improve the speed
of convergence as the number of function evaluations is reduced because such
evaluations are used by numericDeriv(), but they are not needed if gradient
information is supplied. This could be an issue in situations where a specific
model is fitted to many datasets. Continuing with the Michaelis-Menten model
and the dataset L.minor from the previous chapters, we show two ways of
supplying the gradient information in nls().

4.2.1 Manual supply

Differentiation of the mean function for the Michaelis-Menten model in Equa-
tion (2.2) with respect to each of the two parameters K and Vm produces the
following partial derivatives:

∂f

∂K
= −Vmx

(K+x)2

∂f

∂Vm
= x

K+x (4.1)

Having derived the derivatives available, we can define the enhanced mean
function MMfct1() to be supplied to nls(). The function has three arguments:
conc, K and Vm (the predictor and the two parameters).

> MMfct1 <- function(conc, K, Vm) {

+ numer <- Vm * conc

+ denom <- K + conc

+ mean <- numer/denom

+ partialK <- -numer/(denom^2)

+ partialVm <- mean/Vm

+ attr(mean, "gradient") <- cbind(partialK,

+ partialVm)

+ return(mean)

+ }

In the first three lines in the function body between the curly brackets, the
mean is calculated and stored in the variable mean. We calculate the numer-
ator, denominator, and their ratio separately because these terms are reused
in lines 4–5 in the calculation of the derivatives based on Equation (4.1). In
line 6, the vector of calculated mean values defined in line 3 (that is mean)
is assigned an attribute, which is a kind of attachment to a variable named
gradient and containing the derivatives calculated in lines 4–5. This is the
way to attach the gradient information so that nls() will find it. The return
value of the function MMfct1() is defined in line 7: The mean values together
with the gradient attribute are returned.
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The Michaelis-Menten model enhanced with gradient information is fitted
to the dataset L.minor as follows.

> L.minor.mgr1 <- nls(rate ~ MMfct1(conc,

+ K, Vm), data = L.minor, start = list(K = 20,

+ Vm = 120))

The summary output confirms that we obtain a model fit similar to the
previous one obtained without using gradient information (the model fit
L.minor.m1 from Subsection 2.2.2).

> summary(L.minor.mgr1)

Formula: rate ~ MMfct1(conc, K, Vm)

Parameters:
Estimate Std. Error t value Pr(>|t|)

K 17.079 2.953 5.784 0.00117 **
Vm 126.033 7.173 17.570 2.18e-06 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 6.25 on 6 degrees of freedom

Number of iterations to convergence: 7
Achieved convergence tolerance: 8.148e-06

4.2.2 Automatic supply

The alternative to manually supplying the derivatives is to use the function
deriv() for deriving symbolic derivatives. This function requires three argu-
ments: the model formula specifying the mean function (the response to the
left of the tilde ∼ can be skipped, as it is not used), the parameter names,
and a function with the predictor and the parameters as arguments and with
an empty function body ({ }) to fill in the expressions of the derivatives
generated by deriv().

For the Michaelis-Menten model, the call to deriv() looks like this:

> MMfct2 <- deriv(~Vm * conc/(K +

+ conc), c("K", "Vm"), function(conc,

+ K, Vm) {

+ })

The function MMfct2() is supplied to nls() in the same way as MMfct1() in
the previous subsection.
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> L.minor.mgr2 <- nls(rate ~ MMfct2(conc,

+ K, Vm), data = L.minor, start = list(K = 20,

+ Vm = 120))

The summary output (not shown) is identical to what we obtained using
manual supply.

For a small dataset such as L.minor, there is no benefit in using the gra-
dient information. Venables and Ripley (2002a, pp. 214–216) go through an
example involving a larger dataset, where gradient information leads to a re-
duction in the number of function evaluations. Another example is shown by
Fox (2002).

4.3 Conditionally linear parameters

Often the mean function in a nonlinear regression model will not be nonlinear
in all parameters. This means the function will be linear in some of the para-
meters, which we will term conditionally linear parameters (Bates and Watts,
1988, p. 36). Consider again the Michaelis-Menten model:

f
(
x, (K,Vm)

)
=

Vmx

K + x
(4.2)

This mean function is linear in the parameter Vm. The right-hand side in
Equation (4.2) can also be written in the following way by changing the order
of the factors:

x

K + x︸ ︷︷ ︸
coefficient

· Vm︸︷︷︸
linear term

The parameter K on the other hand is not conditionally linear, as we cannot
establish a similar factorisation of Equation (4.2) for this parameter. Another
example is the segmented regression or hockey stick model (Weisberg, 2005,
Chapter 11)

f
(
x, (θ0, θ1, γ)

)
= θ0 + θ1 max(0, x − γ) (4.3)

involving the three parameters θ0, θ1, and γ. Here the two parameters θ0 and
θ1 are conditionally linear.

Parameter estimation can take advantage of conditionally linear parame-
ters because for fixed values of the parameters that are not conditionally linear,
the conditionally linear parameters can be estimated using ordinary linear re-
gression. This means that fewer starting values need to be supplied. In the
following two subsections we will look at two related ways of exploiting this
fact: One approach uses nls() and the other approach uses lm() repeatedly.
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4.3.1 nls() using the "plinear" algorithm

To exploit the conditional linear parameters, nls() has to be used with the
argument algorithm="plinear". Venables and Ripley (2002a, p. 218) point
out that this algorithm may be more robust, not requiring the starting values
to be that precise. The model specification is somewhat different from the
specification of nls() that we have used so far. For each additive term in
the mean function containing a conditionally linear parameter we take what
is left after removal of the conditionally linear parameter. This part will only
depend on the parameters that are not conditionally linear and the predictor.
If there are more additive terms, each of which will correspond to a column,
then they need to be bound together subsequently using cbind() (Dalgaard,
2002, Chapter 1) (see Exercise 4.1).

Again, using the L.minor dataset with the Michaelis-Menten model as an
example, we find that the model only contains one term: Vm*conc/(K+conc).
Omitting the conditionally linear parameter Vm leaves the term
conc/(K+conc).

> L.minor.m3 <- nls(rate ~ conc/(K +

+ conc), data = L.minor, algorithm = "plinear",

+ start = list(K = 20))

The model fit is identical to the model fit L.minor.m1, although the summary
output looks slightly different because the conditionally linear parameter is
not explicitly named Vm in the nls() call. It is denoted .lin. Note that we
only supply a starting value for the parameter K.

> summary(L.minor.m3)

Formula: rate ~ conc/(K + conc)

Parameters:
Estimate Std. Error t value Pr(>|t|)

K 17.079 2.953 5.784 0.00117 **
.lin 126.033 7.173 17.570 2.18e-06 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 6.25 on 6 degrees of freedom

Number of iterations to convergence: 8
Achieved convergence tolerance: 2.058e-06

Another example using algorithm="plinear" is found in Venables and Rip-
ley (2002a, pp. 218–220) (here cbind() is used).
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4.3.2 A pedestrian approach

In this subsection, we will exploit the conditional linearity in a different way.
To this end, the R programming needed will become a bit more involved.

Consider the data frame segreg. The dataset consists of two variables: C
denotes monthly measurements of electricity consumption in kilowatt-hours
and Temp is the average temperature in degrees Fahrenheit. Both variables are
recorded for one particular building on the University of Minnesota’s Twin
Cities campus. An initial look at the data in Fig. 4.1 shows that for high
temperatures there is an increase in energy consumption as a function of
temperature as a consequence of increased use of air conditioning. For low
temperatures, energy consumption appears to be constant.

> data(segreg)

> plot(C ~ Temp, data = segreg, xlab = Mean ~

+ temperature ~ (degree ~ F),

+ ylab = "Energy consumption (kWh)")
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Fig. 4.1. Energy consumption as a function of monthly average temperature based
on the data frame segreg.
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Weisberg (2005, pp. 244–248) considers the segmented regression model
defined in Equation (4.3) for the dataset segreg (that is, the model with the
following mean function):

f
(
x, (θ0, θ1, γ)

)
= θ0 + θ1 max(0, x − γ)

Our main interest lies in the parameter γ, which corresponds to the thresh-
old temperature above which increased energy consumption is occurring. As
already seen, this parameter is not conditionally linear. Therefore, one option
is to consider the profile RSS function for γ, which is a function of γ only
because all the remaining parameters are replaced by appropriate estimates.
Mathematically, the profile RSS function for γ is defined as follows:

RSS(γ) = min
θ0,θ1

n∑

i=1

(
yi − f

(
xi, (θ0, θ1, γ)

))2

Thus the value of the profile function for a fixed value of γ is obtained by
minimisation of the least squares criterion in the remaining parameters θ0

and θ1, so this is a linear regression problem for which lm() can be used,
as the remaining two parameters are both conditionally linear. Therefore the
profile function for the segmented regression model can be defined in R as
follows:

> profRSS1 <- function(gamma) {

+ deviance(lm(C ~ pmax(0, Temp -

+ gamma), data = segreg))

+ }

> profRSS2 <- Vectorize(profRSS1,

+ "gamma")

We use the deviance method (for lm()) to obtain the residual sum-of-square
RSS(γ) for a fixed γ value. Then we use the function Vectorize() to vec-
torise the function profRSS1() that converts the function from taking a sin-
gle γ value as argument to taking an entire vector of γ values as argument
(automatically doing the calculation for each value in the vector). The first
argument to Vectorize() is the function to be vectorised (here profRSS1()).
The second argument is the argument in the function supplied as first argu-
ment that should take vector values (here "gamma"). The vectorised version
of the profile function is useful for plotting the function.

The plot of the profile RSS is shown in Fig. 4.2 based on a crude grid
consisting of values of γ corresponding to the actual average temperatures in
the dataset (the Temp values). The plotted profile function is jagged. This is
not only due to the crude grid used but also due to the fact that the mean
function is not smooth (it is continuous but not differentiable everywhere). A
finer resolution could be achieved by evaluating the profile likelihood function
on a finer grid on the temperature axis (see Exercise 4.3), but the bends will
remain.
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> plot(profRSS2(Temp) ~ Temp, data = segreg,

+ type = "l", xlab = expression(gamma),

+ ylab = "Profile RSS")
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Fig. 4.2. Profile RSS function for the parameter γ for the hockey stick model fitted
to the data frame segreg. The parameter estimate γ̂ is lying close to 42.

4.4 Fitting models with several predictor variables

First, we consider an example with two predictors. Second, we show by means
of another example how to use nls() for more general models involving sev-
eral predictors. Our examples only involve two predictors, but they generalise
straightforwardly to situations involving more than two predictors.

4.4.1 Two-dimensional predictor

Let us return to the data introduced in Section 1.2. The proposed competition
model has the mean function given in Equation (1.5) in Section 1.2, but for
convenience we formulate it here again:

f
(
x, z, (a, b, c)

)
=

a

1 + b(x + cz)
(4.4)

The model is fitted to the dataset RScompetition using nls() as follows.
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> RScompetition.m1 <- nls(biomass ~

+ a/(1 + b * (x + c * z)), data = RScompetition,

+ start = list(a = 20, b = 1,

+ c = 1))

So the presence of two predictor variables is not much changing the way
the model is specified. They simply include the mean function specified. The
starting value for a is based on Fig. 1.2. The starting value for b is more
of a guess, whereas the starting value for c has the interpretation that both
biotypes are equally competitive. The summary output is extracted using
summary.

> summary(RScompetition.m1)

Formula: biomass ~ a/(1 + b * (x + c * z))

Parameters:
Estimate Std. Error t value Pr(>|t|)

a 25.9144 2.3393 11.078 1.42e-14 ***
b 0.1776 0.0355 5.004 8.68e-06 ***
c 1.1349 0.2964 3.829 0.000387 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.673 on 46 degrees of freedom

Number of iterations to convergence: 8
Achieved convergence tolerance: 1.431e-06

The interesting parameter is c, which is estimated to be 1.13. It means that
you need 1.13 resistant plants to substitute for a sensitive plant.

As soon as more than one predictor is considered, it gets difficult to display
the fitted curve together with the original data. There is no general approach,
but for specific models there may be specific solutions providing graphical
displays that succinctly summarise how the model fits the data. For the com-
petition model, such a specific display exists: We can use the term x + cz,
which is often referred to as the virtual or effective density, as the variable on
the horizontal axis and thus reduce the de facto three-dimensional surface im-
posed by the competition model to a conventional two-dimensional plot. The
calculations necessary in order to plot the biomass as a function of the virtual
density are: (1) to calculate the virtual densities based on the two densities
using the estimate of c, (2) to find the range of the virtual density, and (3) to
calculate the predicted values based on the model fit RScompetition.m1.

> virDensity <- with(RScompetition,

+ x + coef(RScompetition.m1)[3] *

+ z)
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> virDenVal <- seq(0, max(virDensity),

+ length.out = 100)

> biomassVal <- predict(RScompetition.m1,

+ data.frame(x = virDenVal, z = 0))

The resulting plot is shown in Fig. 4.3, indicating that the model describes
the data reasonably well.

> plot(biomassVal ~ virDenVal, type = "l",

+ ylab = "Biomass of sensitive biotype (g/plant)",

+ xlab = Virtual ~ density ~

+ (plants/m^2))

> with(RScompetition, points(biomass ~

+ virDensity))
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Fig. 4.3. Plot of biomass per plant of the sensitive plants as a function of the virtual
density x + 1.13z together with the fitted curve.
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4.4.2 General least-squares minimisation

So far, we have used nls() for estimating parameters such that the spec-
ified mean function fits the data as closely as possible. In other words, we
were looking for the parameters minimising the difference y − f(x, β) (x and
y are playing the roles of predictor and response, respectively) under the
least-squares criterion (Equation (2.1)). A more general model formulation is
obtained by replacing the difference y−f(x, β) by an arbitrary function of the
variables x and y, which we want to minimise using the least-squares criterion.
If we denote the function to be minimised by, say f̃ , then the resulting RSS
function looks like this:

RSS(β) =
n∑

i=1

(
f̃(xi, yi, β)

)2 (4.5)

In this formulation, the variables x and y are partners on equal terms. nls()
can also be used for least-squares minimisation of arbitrary functions based
on Equation (4.5). To demonstrate how this works in practice, we consider an
example.

A demodulator is a device that provides a two-dimensional vector repre-
sentation of an input signal representing the amplitude and phase of the input
signal in two components. More background details are provided by Kafadar
(1994). The data frame IQsig contains such pairs of components from such
an input signal (from two channels, named I and Q) measured on an uncali-
brated device. The data are shown in Fig. 4.4 using the plot method (ignore
the superimposed unit circle for the time being).

To ensure a high accuracy in the decomposition carried out by the demod-
ulator, calibration is needed. Kafadar (1994) derives the following implicitly
defined nonlinear regression model for the signal values (Ii, Qi) from an un-
calibrated instrument:

0 = (Ii−I0)2−2γ sin(φ)(Ii−I0)(Qi−Q0)+γ2(Qi−Q0)2−
(
ργ cos(φ)

)2 (4.6)

I0 and Q0 are the offsets for the I and Q signal values, respectively. γ is
the ratio between the amplitudes in the two channels. The angle between the
coordinate axes for the I and Q signal values is π/2− φ radians, and ρ is the
amplifier compression ratio. For a perfectly calibrated instrument, the signal
(I,Q) would lie on the unit circle in the I/Q coordinate system corresponding
to the parameter values: I0 = 0, γ = 1, φ = 0, Q0 = 0, and ρ = 1. This
reference unit circle is also shown in Fig. 4.4. It is obtained using the function
lines(). Figure 4.4 shows that the data deviate from the reference circle by
having an elliptical shape, as the circle seems to have become slightly squeezed
at the bottom and top.

In order to fit this model, we can specify Equation (4.6) directly in nls(),
having Equation (4.5) in mind. The left-hand side in the formula supplied to
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> plot(Q ~ I, data = IQsig)

> theta <- 0:360 * (pi/180)

> lines(cos(theta), sin(theta))
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Fig. 4.4. Plot of the original I/Q signal pairs in the dataset IQsig together with
the reference unit circle corresponding to a perfectly calibrated signal.

nls() is left unspecified, which is interpreted as 0 just like the left-hand side
in Equation (4.6). Similarly, the right-hand side in the formula corresponds
to the right-hand side in Equation (4.6). The starting values used are close to
those suggested in Kafadar (1994). Thus the nls() model specification looks
like this:

> IQsig.m1 <- nls(~((I - I0)^2 -

+ 2 * gamma * sin(phi) * (I -

+ I0) * (Q - Q0) + gamma *

+ gamma * (Q - Q0)^2) - (rho *

+ gamma * cos(phi))^2, data = IQsig,

+ start = list(I0 = -0.005, gamma = 1,

+ phi = -0.005, Q0 = -0.005,

+ rho = 1))
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The summary output is shown below.

> summary(IQsig.m1)

Formula: 0 ~ ((I - I0)^2 - 2 * gamma *
sin(phi) * (I - I0) * (Q - Q0) +
gamma * gamma * (Q - Q0)^2) - (rho * gamma * cos(phi))^2

Parameters:
Estimate Std. Error t value Pr(>|t|)

I0 -0.002259 0.002058 -1.097 0.278
gamma 1.007053 0.003719 270.764 < 2e-16 ***
phi -0.053540 0.004977 -10.758 5.02e-14 ***
Q0 -0.002481 0.002278 -1.089 0.282
rho 0.974295 0.002540 383.553 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.01917 on 45 degrees of freedom

Number of iterations to convergence: 3
Achieved convergence tolerance: 6.022e-07

As could be expected from Fig. 4.4, the estimated offset parameters I0 and
Q0 are close to (0,0).

4.5 Error messages

Below, we list some of the most common error messages from nls().
The following five error messages usually indicate that the estimation al-

gorithm failed to achieve convergence:

Error in nls(... :
number of iterations exceeded maximum of 50

Error in nls(... :
step factor 0.000488281 reduced below 'minFactor'
of 0.000976562

Error in nls(... :
singular gradient

Error in numericDeriv(form[[3]], names(ind), env) :
Missing value or an infinity produced when
evaluating the model
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Error in nlsModel(formula, mf, start, wts) :
singular gradient matrix at initial parameter estimates

The first two messages refer to the fact that the estimation algorithm has
reached some preset limit :

• The default number of iterations is set to 50. This means that the es-
timation algorithm will stop after 50 steps regardless of whether or not
convergence has been achieved. Sometimes increasing the maximum will
help achieve convergence because the procedure simply was terminated
prematurely (one example is found in Section 7.6). To see if this is the
case, the first thing to do would be to add the argument trace=TRUE in
the nls() specification and rerun nls() and then from the trace output
assess if the estimates are changing a lot from step to step or are approach-
ing some steady values.

• The step factor is a scaling factor that determines the size of the increment
to be added to the estimate from the previous step to obtain the current
estimate (this is specific to the Gauss-Newton algorithm). By default, it is
set to 1/1024 = 0.0009765625, but sometimes convergence may be achieved
by using a smaller value.

We will explain in the next section how to actually change these default values.
The last three error messages are typically related to poor starting values.
Solutions could be to:

• choose different starting values (see Chapter 3)
• try another estimation algorithm (the "port" algorithm may be more ro-

bust than the default Gauss-Newton algorithm)
• reparameterise the mean function (if possible avoiding factors/terms in-

volving several parameters but not involving predictor variables)

Some error messages are related to the use of the self-starter function (oc-
curring before the estimation algorithm gets started). One example is shown
below.

Error in lm.fit(x, y, offset = offset,
singular.ok = singular.ok, ...) :
NA/NaN/Inf in foreign function call (arg 1)

For some self-starter functions, such messages may be caused by the presence
of 0s among the predictor values. Moreover, the nls() fit used in some of
the self-starter functions may fail to achieve convergence, and the resulting
error messages will then be very similar to the ones listed above. The resulting
messages look like this:

Error in nls(y ~ cbind(1, 1/(1 + exp((xmid - x)/exp(lscal)))),

data = xy, :
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singular gradient

Error in nls(y ~ 1/(1 + exp((xmid - x)/scal)),
data = xy, start = list(xmid = aux[1], :
step factor 0.000488281 reduced below 'minFactor' of
0.000976562

4.6 Controlling nls()

As mentioned in Section 4.1, the fitting function nls() has an argument
control for controlling the estimation algorithm. This argument is conve-
niently specified using the function nls.control(), although it is possible to
supply values directly in a list (this is what nls.control() does).

To display the control arguments and their default values, we simply type
nls.control() at the command line.

> nls.control()

$maxiter
[1] 50

$tol
[1] 1e-05

$minFactor
[1] 0.0009765625

$printEval
[1] FALSE

$warnOnly
[1] FALSE

The output is a list with five components.

1. maxiter controls the maximum number of iterations, with a default of 50.
2. tol specifies the tolerance level for the relative offset convergence crite-

rion (Bates and Watts, 1988, pp. 49–50). The closer it is to 0, the more
demanding the convergence criterion is. The default is 0.00001.

3. minFactor is the minimum step factor to be used (see the explanation in
Section 4.5). The default is 1/1024 = 0.0009765625.

4. printEval indicates whether or not numerical derivatives should be re-
ported during the estimation for each iteration.

5. warnOnly indicates whether or not nls() should report an error if some-
thing goes wrong (e.g., the algorithm fails to converge). If the argument
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is set to FALSE (the default), then any error encountered will result in
nls() abruptly stopping with an error message. If the argument is set
to TRUE, then (for errors producing the first three error messages men-
tioned in Section 4.5) nls() will issue a warning message and return an
incomplete model fit instead of stopping with an error. This fit is not ap-
propriate for obtaining parameter estimates and testing hypotheses about
the parameters, but it may be useful for finding out what caused the error.
It may also be useful to set this argument to TRUE in cases where nls()
is used repeatedly for many datasets in an automatic fashion because it
prevents the loop through all datasets from stopping due to errors with a
few datasets.

More details can be found in the help page ?nls.control.

Exercises

4.1. Fit the hockey stick model to the dataset segreg from Subsection 4.3.2
using the "plinear" algorithm. (Hint: Use the function pmax().) Plot the
fitted regression curve together with the data.

4.2. The Deriso stock-recruitment model (Cadima, 2003, p. 48) is defined by

f
(
S, (α, c, k)

)
= αS

(
1 − cS

k

)1/c

Fit this model to the dataset M.merluccius. (Hint: It may be an advantage to
exploit conditional linearity. Notice also that c is a kind of power parameter,
and setting c = 1 results in a quadratic regression model with maximum at
S = k.)

4.3. Consider the analysis of the dataset segreg using the hockey stick model
in Subsection 4.3.2. Figure out how to use the function which.min to find the
temperature that yields the minimum value of the profile likelihood based on
the original temperatures in segreg. Plot the profile likelihood using a finer
grid such as tempVal <- seq(35, 50, by = 0.01). Obtain a more precise
estimate based on the finer grid.

4.4. Fit the competition model defined in Equation (4.4) to the dataset
RScompetition using the following three sets of starting values: a = 20, b = 0,
c = 1; a = 200, b = −1, c = 100; and a = 20, b = −1, c = 1. If possible,
compare the model fit obtained to the fit found in Subsection 4.4.1.

4.5. The reaction rate of the catalytic isomerisation from n-pentane to iso-
pentane depends on various factors, such as partial pressures of the products
involved in the reaction. The data frame Isom contains the partial pressures
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of hydrogen (H), iso-pentane (I), and n-pentane (N), as well as the corre-
sponding reaction rates. Huet et al. (2004, pp. 9–10) consider the following
model for describing the relationship between the reaction rate and the three
partial pressures:

f
(
(H, I,N), (θ1, θ2, θ3)

)
=

θ1θ3(N − I/1.632)
1 + θ2H + θ3N + θ4I

Fit this nonlinear regression model to the dataset Isom (you could again ex-
ploit conditional linearity).
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Model Diagnostics

This chapter is devoted to model checking procedures. Without having val-
idated the assumptions underlying a nonlinear regression model, we cannot
be sure that the model is appropriate and consequently that the conclusions
based upon the model fit are correct. The kinship to linear regression is appar-
ent, as many of the techniques applicable for linear regression are also useful
for nonlinear regression.

If any model violations are found, then Chapter 6 should be consulted.

5.1 Model assumptions

The assumptions underlying nonlinear regression models of the form specified
by Equation (1.3) are:

(1) correct mean function f
(2) variance homogeneity (homoscedasticity)
(3) normally distributed measurements errors
(4) mutually independent measurement errors εi

Substantive departures from the assumptions could result in bias (inaccu-
rate estimates) and/or distorted standard errors.

Model violations can be detected by means of graphical procedures and
formal statistical tests. We believe that graphical procedures will often be suf-
ficient for validating model assumptions, but they may be supplemented by
statistical tests. Sometimes, if you are in doubt about the interpretation of a
plot, it may be helpful to get a second opinion by using statistical tests. This
could be relevant for assessing variance homogeneity and normality assump-
tions. For nonlinear regression models applied within a regulatory framework
(as in toxicity testing), it may indeed be mandatory to carry out such tests
(Environment Canada, 2005, pp. 101–103).

In the subsequent four sections, we consider techniques for assessing each
of the four assumptions listed above.
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5.2 Checking the mean structure

We consider several techniques for assessing the mean structure in nonlinear
regression models.

5.2.1 Plot of the fitted regression curve

If the model describes the mean structure in the data appropriately, then the
estimated regression curve should agree with the data. Thus we can check
the model visually by plotting the data and adding the estimated regression
curve. Poor model fits are usually easily spotted. Poor fits may be caused
by convergence to suboptimal parameter values that locally (within a smaller
region of possible β values), but not globally (among all possible β values)
minimise RSS or by choosing a wrong mean model. We will now consider two
examples illustrating the latter (have a look at Exercise 4.5 for an illustration
of the former).

The first example, which will be the running example in this section and
the subsequent sections, is from chemistry and deals with vapour pressure of
CO. The dataset vapCO contains measurements of vapour pressure (in Pa)
of carbon monoxide (CO) for a range of different temperatures (in K). The
dataset is shown in Fig. 5.1.

Based on theoretical considerations, the Clapeyron model has been de-
rived. It relates the logarithm-transformed pressure to temperature through
the following equation:

log(pressure) ≈ A − B

temperature
(5.1)

This is an ordinary linear regression model (predictor: 1
temperature , intercept:

A, slope: B) providing a rough approximation to the relationship between
pressure and temperature. An empirically based modification of the Clapey-
ron model in Equation (5.1) that provides an improved description of the
relationship is the three-parameter Antoine model (Van Ness and Abbott,
1997, pp. 4–15) given by the relationship

log(pressure) ≈ A − B

C + temperature
(5.2)

with the additional parameter being denoted C. The Antoine model is a non-
linear regression model with mean function

f(temperature, (A,B,C)
)

= A − B

C + temperature

We fit the Antoine model in Equation (5.2) to the dataset vapCO using nls()
(notice that the response is logarithm-transformed (log(p))).
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> plot(p ~ T, data = vapCO, log = "y",

+ xlab = "Temperature (K)", ylab = "Pressure (Pa)")
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Fig. 5.1. Plot of the dataset vapCO showing the relationship between pressure and
temperature for CO. Notice that the pressure axis is logarithmic as in Equation (5.1).

> vapCO.m1 <- nls(log(p) ~ A - B/(C +

+ T), data = vapCO, start = list(A = 10,

+ B = 100, C = -10))

The response used is the logarithm-transformed pressure. The plot of the data
together with the estimated regression curve is shown in Fig. 5.2.

Notice that we are back-transforming the fitted values from the logarithm
axis using the exponential function exp(). We see that there is quite good
agreement between the original data and the estimated regression curve, in-
dicating that the model is capturing the systematic part in the data appro-
priately.

The second example uses the dataset lettuce in the package drc, which is
the result of a typical dose-response experiment, where lettuce plant biomass
is expected to decrease as the concentration of the chemical isobutyl alcohol is
increased, and eventually the plant is killed, resulting in a plant biomass close
to 0 (van Ewijk and Hoekstra, 1993). Seven isobutyl alcohol concentrations
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> plot(p ~ T, data = vapCO, log = "y",

+ xlab = "Temperature (K)", ylab = "Pressure (Pa)")

> lines(vapCO$T, exp(fitted(vapCO.m1)))
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Fig. 5.2. Plot of the dataset vapCO together with the estimated regression curve
based on the Antoine model.

were used, with two replicates per concentration, amounting to a dataset of
size 14.

For such a toxicity experiment, it is common to use the log-logistic model
with a lower limit fixed at 0 (van Ewijk and Hoekstra, 1993). The correspond-
ing mean function is defined as follows:

f
(
x, (b, d, e)

)
=

d

1 +
(

x
e

)b
(5.3)

This model corresponds to a strictly decreasing dose-response curve, but look-
ing at Fig. 5.3, it is apparent that such a curve will not describe the non-
monotonous pattern in the data well. Therefore a nonmonotonous mean func-
tion is required to describe this type of data. The phenomenon seen in Fig. 5.3
is often called hormesis. Such models are discussed by Brain and Cousens
(1989), Cedergreen et al. (2005), and Beckon et al. (2008).
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> plot(weight ~ conc, data = lettuce,

+ xlab = "Concentration (mg/l)",

+ ylab = "Biomass (g)", log = "x")
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Fig. 5.3. Plot of biomass as a function of concentration for the dataset lettuce

(using a logarithmic concentration axis).

Plotting the data and the estimated regression curve is only really useful
for one-dimensional predictors. For multidimensional predictors, we will have
to use other approaches, such as the one introduced in the next subsection.

5.2.2 Residual plots

In Subsection 5.2.1, the appropriateness of the model fit was inspected by
assessing whether or not the data were spread in a nonsystematic/random
manner around the fitted nonlinear regression curve (Fig. 5.2). Often it is
easier to look for deviations from a horizontal line. This can be accomplished
using residual plots. The raw or working residual r̂i for the ith observation
is the part of the response value that is not captured by the model. More
precisely, the residual is defined as the difference between the response value
yi and the corresponding fitted value:
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r̂i = yi − f(xi, β̂) (5.4)

The residual plot is the plot of the fitted values (defined in Subsection 2.2.3)
versus the residuals (plotting the pairs (f(xi, β̂), r̂i)). It is worth noting that
the residual plot is also well-defined for multivariate predictors, even though
in this situation it could also be relevant to plot the residuals against each
component of the predictor.

When looking at the residual plot, you should keep the following question
in mind: Is there any systematic pattern in the plot? If yes, then the mean
function is not appropriate for describing the data at hand. If no, then the
mean function is adequately capturing the average trend in the data. Clearly,
there is a grey zone where it can be difficult to decide. A systematic pattern
may often manifest itself in the form of curvature or trends in the plot, for
instance rendering the plot asymmetric around the x axis. This indicates that
the mean function is not doing a good job of describing the average behaviour
of data.

We saw already in Subsection 2.2.3 how to obtain the fitted values. The
residuals are retrieved from the nls() model fit by applying the residuals
method. The residual plot for the model fit vapCO.m1 obtained in Subsec-
tion 5.2.1 is shown in Fig. 5.4. The points in Fig. 5.4 correspond to pairs of
fitted values and residuals: There seems to be some curvature in the plot, as
the residuals fluctuate from groups of negative residuals to groups of positive
residuals and then back again, so maybe the Antoine model is not describing
the data in vapCO that well after all.

5.2.3 Lack-of-fit tests

If there are replicates available (that is, repeated measurements at the same
value of x), then it is possible to supplement the graphical assessment of the
mean function with statistical tests.

The idea is to compare the chosen nonlinear regression model to a more
general ANOVA model. We consider the dataset ryegrass in the package
drc. The data are from a study investigating the joint action of phenolic acid
mixtures on root growth inhibition of perennial ryegrass (Lolium perenne L.)
and its significance in allelopathy research (Inderjit et al., 2002). The toxicity
of ferulic acid (one component in the mixtures mentioned before) when applied
to perennial ryegrass was examined for a range of concentrations. The response
is the root length of perennial ryegrass plants in cm (rootl), and the predictor
is the concentration of ferulic acid in mM (conc). Figure 5.5 shows the data.

It was established in Inderjit et al. (2002) that the four-parameter log-
logistic model is appropriate for describing the decline in growth caused by
ferulic acid.

f
(
x, (b, c, d, e)

)
= c +

d − c

1 +
(

x
e

)b
(5.5)



5.2 Checking the mean structure 61

> plot(fitted(vapCO.m1), residuals(vapCO.m1),

+ xlab = "Fitted Values", ylab = "Residuals")

> abline(a = 0, b = 0)

6 8 10 12 14

−
0.

20
−

0.
10

0.
00

0.
05

0.
10

0.
15

Fitted Values

R
es

id
ua

ls

Fig. 5.4. Residual plot based on the model fit vapCO.m1 of the Antoine model fitted
to the dataset vapCO. A reference line with intercept 0 and slope 0 has been added
using abline().

This is the model that we introduced in Section 1.3. If we were to ignore all the
biological knowledge above on how the response, root length, is expected to
depend on the predictor, herbicide concentration, we could choose to analyse
the dataset using a one-way ANOVA model with conc as a factor (Dalgaard,
2002, pp. 111–120). The one-way ANOVA model imposes no restrictions on
how the response changes from one concentration to another concentration, as
there will be one parameter for each concentration. Consequently, it is a more
general model than the nonlinear regression model, or, in other words, the
nonlinear regression model is a submodel of the ANOVA model. This means
that we can compare the ANOVA model and the nonlinear regression model
using a statistical test, testing the null hypothesis that the ANOVA model
can be simplified to the nonlinear regression model. This test is called the
lack-of-fit test. We consider two approaches for testing the hypothesis:

– the F -test (Bates and Watts, 1988, pp. 103–104)
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> plot(rootl ~ conc, data = ryegrass,

+ xlab = "Concentration (mM)",

+ ylab = "Root length (cm)")
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Fig. 5.5. Plot of the root length for a range of concentrations of ferulic acid using
the dataset ryegrass.

– the likelihood ratio test (Huet et al., 2004, pp. 110–111)

F -test

The F -test statistic is a measure of the distance between the ANOVA model
and nonlinear model expressed as the difference of the sums-of-squares terms
for the two models relative to the size of the sums-of-squares term for the more
general model. A large value of the statistic indicates that the two models are
far apart, meaning that they do not provide similar descriptions of the data,
and consequently the more general ANOVA model is the more appropriate
model.

A brief definition of the F -test statistic is that it is a ratio with the nu-
merator being the difference in the sums-of-squares terms between the two
models being compared divided by the difference in parameters between the
two models and the denominator being the sums-of-squares term for the more
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general of the two models, the ANOVA model. The F -test statistic is defined
as follows:

F =
(RSS(β̂) − RSSANOVA)/(n − p − dfANOVA)

RSSANOVA/dfANOVA

The F -test statistic is defined in exactly the same way as for linear models,
but in contrast to linear models the F -distribution only holds approximately
(getting better as the sample size increases). The p-value is determined by
looking up the value of the F -statistic in an F -distribution with degrees of
freedom (n − p − dfANOVA, dfANOVA), where dfANOVA denotes the degrees of
freedom in the ANOVA model (the number of observations minus the number
of distinct predictor values).

If there are no replicates for any of the predictor values in the dataset,
then the term RSSANOVA is 0 and the test is not defined.

What can we conclude from the test? If the test is nonsignificant (e.g.,
using a significance level of 0.05), then there is no evidence against the non-
linear regression model. If the test is significant, however, then the nonlinear
regression model may not be appropriate. We are purposely cautious in for-
mulating the interpretation of the lack-of-fit test, as the test is sensitive to
the variation in data: A small variation may result in a significant test even
though the model seems appropriate (e.g., the model fitted similar data in the
past with no problems), whereas a large variation may yield a nonsignificant
and inconclusive result.

To obtain the F -test for a model fitted with nls(), we first need to fit the
more general ANOVA model. This is accomplished using the function lm for
fitting linear models (Dalgaard, 2002, Chapter 5).

> ryegrass.m1 <- lm(rootl ~ as.factor(conc),

+ data = ryegrass)

Notice that we convert the variable conc to a factor (Dalgaard, 2002, pp. 111–
120) in order to fit a one-way ANOVA model. Next we fit the log-logistic model
using nls().

> ryegrass.m2 <- nls(rootl ~ c +

+ (d - c)/(1 + exp(b * +(log(conc) -

+ log(e)))), start = list(b = 1,

+ c = 0.6, d = 8, e = 3), data = ryegrass)

The lack-of-fit test is then obtained using anova with two arguments: the
nonlinear regression fit as the first argument and the ANOVA fit as the second
argument.

> anova(ryegrass.m2, ryegrass.m1)

Analysis of Variance Table
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Model 1: rootl ~ c + (d - c)/(1 + exp(b * +(log(conc) - log(e))))

Model 2: rootl ~ as.factor(conc)

Res.Df Res.Sum Sq Df Sum Sq F value

1 20 5.4002

2 17 5.1799 3 0.2204 0.2411

Pr(>F)

1

2 0.8665

The lack-of-fit test is overwhelmingly nonsignificant, which lends support to
the nonlinear regression model. We conclude that the four-parameter log-
logistic model is appropriate for describing the relation between the response
and the predictor in the dataset ryegrass.

Likelihood ratio test

An alternative to the F -test is to use a lack-of-fit test based on a likelihood
ratio test. Like the F -test, the likelihood ratio test is a test for comparison of
two nested models, where one model is more general than the other model. The
test statistic itself is defined as −2 times the difference of the logarithms of the
likelihood functions for the nonlinear regression model (Subsection 2.2.2) and
the ANOVA model (evaluated at the optimal parameter value). The resulting
test statistic Q is given by the expression

Q = n log RSS(β̂) − n log RSSANOVA

Large values of Q lead to rejection of the nonlinear regression model. To deter-
mine what a large value is, we assume that Q is approximately χ2-distributed
with n − p − dfANOVA degrees of freedom.

The lack-of-fit test is obtained with the logLik method applied to the two
model fits ryegrass.m1 and ryegrass.m2 and then taking −2 times their
difference (the submodel coming first in the difference).

> Q <- -2 * (logLik(ryegrass.m2) -

+ logLik(ryegrass.m1))

The corresponding degrees of freedom is obtained using the df.residual
method.

> df.Q <- df.residual(ryegrass.m2) -

+ df.residual(ryegrass.m1)

Finally, the p-value of the lack-of-fit test based on a likelihood ratio test is
obtained by evaluating Q in the χ2 distribution with df.Q degrees of freedom
using the cumulative distribution function pchisq().

> 1 - pchisq(Q, df.Q)

'log Lik.' 0.8012878 (df=5)

We find that the p-value is not far from the p-value of the F -test.
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5.3 Variance homogeneity

In this section, we will focus on assumption (2) in Section 5.1 using the dataset
vapCO.

5.3.1 Absolute residuals

Variance inhomogeneity can be detected by looking at a plot of the fitted
values versus the absolute residuals , which are defined as follows:

|r̂i| =
{

r̂i r̂i ≥ 0
−r̂i r̂i < 0

The absolute residuals are the raw residuals stripped for negative signs. Again
we can use plot in combination with the fitted and residuals methods and
the function abs() for obtaining absolute values. The resulting plot is shown
is Fig. 5.6.

In Fig. 5.6, there seems to be an overall, though somewhat jagged, in-
creasing trend with increasing fitted values. We would say that the variance
is an increasing function of the mean. This indicates that the assumption of
variance homogeneity is not satisfied. In Chapter 6, we will discuss how to
remedy this type of model violation.

5.3.2 Levene’s test

If there are replicates available, then the graphical procedure in the previous
subsection can be supplemented by means of a statistical test.

A robust test for examining the hypothesis of equal variances at all predic-
tor values is Levene’s test (Environment Canada, 2005). The test is robust in
the sense that it does not rely on the normality assumption. In R, this test is
available in the package car (which was loaded together with nlrwr) through
the function levene.test().

> with(ryegrass, levene.test(rootl,

+ as.factor(conc)))

Levene's Test for Homogeneity of Variance
Df F value Pr(>F)

group 6 1.9266 0.1344
17

The test indicates that the assumption of variance homogeneity is satisfied. A
nonrobust alternative is Bartlett’s test, available in R through the function
bartlett.test().
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> plot(fitted(vapCO.m1), abs(residuals(vapCO.m1)),

+ xlab = "Fitted values", ylab = "Absolute residuals")
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Fig. 5.6. Plot of the absolute residuals for the model fit vapCO.m1 of the Antoine
model to the dataset vapCO.

5.4 Normal distribution

The distribution of the measurement errors may deviate from the normality
assumption in many ways. A few possibilities are one or few outliers, too many
extreme values (heavy tails), or skewness. Such deviations can be assessed us-
ing the standardised residuals (Pinheiro and Bates, 2000, pp. 149–150), which
are defined as the raw residuals divided by the square root of the estimated
residual variance:

êi = r̂i/s

If the model assumptions are satisfied, then the standardised residuals will
be approximately standard normally distributed (having expectation 0 and
deviation 1). They are not entirely independent, but usually the correlation
is small. Therefore the plot of the fitted values versus the standardised resid-
uals, obtained using the plot method, can be useful in assessing whether or
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not the spread of the standardised residuals resembles that of a standard nor-
mal distribution. There are several arguments that can be specified for the
plot method and are useful for identifying observations; see the help page
?plot.nls for more details. The resulting plot for the model fit vapCO.m1 is
shown in Fig. 5.7. Note that, apart from the scale on the y axis, the plot looks
very much like the one in Fig. 5.4.

> plot(vapCO.m1)
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Fig. 5.7. Plot of the fitted values versus the standardised residuals for the nls()

model fit vapCO.m1.

The plot of the fitted values versus the standardised residuals may be of some
help in detecting deviations from the normal distribution (such as heavy-tailed
distributions or outliers). However, it is often more informative to look at the
standardised residuals in a QQ plot.

5.4.1 QQ plot

A normal QQ plot compares the distribution of the standardised residu-
als to a standard normal distribution (see Dalgaard, 2002, p. 64). The two
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distributions agree if the points in the QQ plot approximately follow a straight
line intercepting the y axis at 0 and having slope 1. The QQ plot can be made
by qqnorm(). The QQ plot for the nonlinear regression fit ryegrass.m2 is
shown in Fig. 5.8. We use abline() to add the reference line. The standard-
ised residuals are obtained using the residual method and then subsequently
dividing by the estimated residual error, which is extracted as the component
"sigma" for the summary output of the model fit.

> standardRes <- residuals(ryegrass.m2)/summary(ryegrass.m2)$sigma

> qqnorm(standardRes, main = "")

> abline(a = 0, b = 1)
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Fig. 5.8. Normal QQ plot for the model fit ryegrass.m2 of the log-logistic model to
the dataset ryegrass. The reference line with intercept 0 and slope 1 is also shown.

Taking the small number of observations into account, the QQ plot shows
good agreement between the two distributions, and we have reason to believe
that the normality assumption is satisfied. In some situations (especially for
small datasets), it may be useful to have a statistical test as an aid for de-
ciding whether or not the normality assumption is met. The next subsection
introduces such a test.
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5.4.2 Shapiro-Wilk test

The Shapiro-Wilk test can be used to assess whether or not the residuals are
normally distributed. This test is available within the standard installation of
R through the function shapiro.test, which takes the vector for residuals
from the model fit as its argument. So, for the model fit ryegrass.m2, the
Shapiro-Wilk test is obtained as follows (we reuse the vector standardRes of
standardised residuals constructed above).

> shapiro.test(standardRes)

Shapiro-Wilk normality test

data: standardRes
W = 0.9823, p-value = 0.9345

We see that the test confirms the visual impression from the QQ plot in
Fig. 5.8: The assumption of normally distributed errors is acceptable. The
value of the test statistic (the closer to 1, the better the agreement in Fig. 5.8)
and the resulting p-value should not be given too much weight. Use it as
supplement to the QQ plot.

5.5 Independence

Typically, for designed experiments such as the one leading to the dataset
ryegrass used in Subsection 5.2.3, independence between response values is
ensured by the experimental design using a new organism or subject for each
measurement. Correlated response values often occur in experiments where re-
peated measurements on the same organism or subject occur. A few examples
are:

– all measurements stem from the same organism or subject
– replicate measurements at each predictor value are

from the same organism or subject

Ignoring correlation will tend to give the wrong precision of parameter esti-
mates. Sometimes arguments specific to the subject matter can rule out corre-
lation; see Ducharme and Fontez (2004) for an example of biological reasoning
related to modelling growth curves.

One way to detect correlation is to look at a lag plot, which is a plot of each
raw residual versus the previous residual (also called the lag-one residual) in
the order determined by the predictor scale. Correlation would show up as a
linear trend; examples are given by Bates and Watts (1988, pp. 92–96) and
Huet et al. (2004, p. 106).

For the model fit vapCO.m1, the lag plot is shown in Fig. 5.9 below. We
obtain the lagged residuals using residuals(vapCO.m1)[-1], simply taking



70 5 Model Diagnostics

the vector of residuals and leaving out the first component. To match the
lengths of the vectors, we append an NA to the vector of lagged residuals.
There appears to be a positive linear relationship in the plot. However, there
is quite some scatter in the plot, and therefore we cannot be very certain
about this trend.

> plot(residuals(vapCO.m1), c(residuals(vapCO.m1)[-1],

+ NA), xlab = "Residuals", ylab = "Lagged residuals")
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Fig. 5.9. Lag plot of the model fit vapCO.m1 for the Antoine model fitted to the
dataset vapCO.

Exercises

5.1. Fit the Clapeyron model to the dataset vapCO. Carry out model checking.

5.2. A classical model for population growth is the logistic or Verhulst model,
which describes the population size through the mean function
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f
(
time, (β1, β2, β3)

)
=

β1

1 + exp(β2 + β3time)

β1 is the upper limit for population growth, β2 is related to the population
size at time 0 (the population size is not 0 at time 0), and β3 (< 0) governs the
rate of growth. The dataset US.pop contains the population size of the United
States of America from 1790 to 1990 (per decade). Plot population size versus
decades. Fit the logistic model. Check the model assumptions (what is your
conclusion?).

5.3. Make a plot of the dataset heartrate. Fit a log-logistic model (Equa-
tion (5.5)) to the dataset. Check the model assumptions.

5.4. The reason for the poor fit obtained for the dataset lettuce in Subsec-
tion 5.2.1 is that there appears to be a hormetic effect at low concentrations,
an initial stimulation contrary to the expected effect of the herbicide. Only
at higher concentrations is the expected effect of the herbicide visible. The
Brain-Cousens model

f
(
x, (b, d, e, f)

)
=

d + f · x
1 + (x/e)b

is specifically intended for describing hormesis. Fit this model to the dataset
lettuce. Check the model assumptions.

5.5. Consider the nonlinear regression model fit

> Indometh.1.m1 <- nls(conc ~ SSbiexp(time,

+ A1, lrc1, A2, lrc2), data = Indometh,

+ subset = Subject == 1)

which is fitted to a subset of the dataset Indometh (see ?Indometh for a
detailed description). Check the model assumptions. Are there any substantive
deviations?
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Remedies for Model Violations

In the previous chapters, we assumed that the measurement errors were stan-
dard normally distributed (with mean 0 and variance σ2). In this chapter, we
consider several approaches for dealing with model violations related to the
measurement errors:

• normally distributed with heterogeneous variance
• non-normally distributed with homogeneous or heterogeneous variance

Modelling the variance will only remove variance heterogeneity, but it is
no remedy for non-normal errors. In contrast, a transformation approach may
often be able to remediate both non-normal error distributions and variance
heterogeneity.

6.1 Variance modelling

Variance heterogeneity usually will not influence the parameter estimates β̂
much, but if ignored it may result in severely misleading confidence and pre-
diction intervals (Carroll and Ruppert, 1988, pp. 51–61).

One way of taking into account variance heterogeneity is by explicitly
modelling it; that is, formulating a regression model for the variance similar
to what we have done for the mean in Equation (1.3). Thus we will assume
that the mean is specified as in Equation (1.3) and, furthermore, that the
errors are additive and normally distributed.

In Chapter 2, we assumed that all errors had the same variance,

var(εi) = σ2 (6.1)

implying that the errors were identically distributed. Now we will consider
situations where the variance changes as the predictor values change.
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6.1.1 Power-of-the-mean variance model

Often the variance is nonconstant in such a way that it depends on the mean: A
small mean value implies a small variance, whereas a large mean value implies
a large variance (it can also be the other way around). Consider the plot in
Fig. 6.1, which shows exponential growth of relative growth rates as a function
of time based on the dataset RGRcurve already used in Subsection 3.2.2. There
is a clear tendency: the larger the mean value, the larger the variation around
the mean value.

> plot(RGR ~ Day, data = RGRcurve,

+ xlab = "Time (days)", ylab = "Relative growth rate (%)")

0 2 4 6 8

0.
5

1.
0

1.
5

Time (days)

R
el

at
iv

e 
gr

ow
th

 r
at

e 
(%

)

Fig. 6.1. Relative growth rate as a function of time in days.

One way to model the dependence of the variance on the mean seen in
Fig. 6.1 is through a power-of-the-mean variance model

var(εi) = σ2
(
f(xi, β)

)2θ (6.2)

where the variance of each observation yi depends on the corresponding mean
value f(xi, β) through a power function with exponent 2θ. Variance homo-
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geneity corresponds to θ = 0, in which case Equation (6.2) reduces to Equa-
tion (6.1). This means that the model with variance homogeneity is a sub-
model of the power-of-the-mean model and, consequently, a statistical test
can be used to assess whether or not the power-of-the-mean model provides
a significantly improved fit compared with the model that assumes variance
homogeneity.

The parameter θ is usually assumed to be unknown and will have to be
estimated from data, though in some situations the data type would justify
fixing θ at a certain value. If the response values are counts that are not
too small then they may be treated as if they are normally distributed with
a variance structure mimicking that of the Poisson distribution: var(εi) =
σ2f(xi, β) (θ = 1/2) (see Huet et al., 2004, pp. 222–224).

For estimation of the regression parameters as well as the variance para-
meter θ, several approaches are available. In R, the function gnls() in the
package nlme allows generalised least squares estimation of the power-of-the-
mean model (Equation (6.2)) and a few related built-in variance models (see
Table 6.1 below). The details behind the estimation procedure implemented
in gnls() are found in Pinheiro and Bates (2000, pp. 332–336).

Returning to the dataset RGRcurve, we want to fit an exponential growth
model (Equation (3.2)). We use gnls(), which is specified in much the same
way as nls(). We use the self-starter defined in Subsection 3.2.2.

> RGRcurve.m2 <- gnls(RGR ~ SSexp(Day,

+ a, b), data = RGRcurve, weights = varPower())

Apart from the last argument, the specified arguments are the same as for
an nls() call: first the model formula using the previously defined self-starter
function (Subsection 3.2.2), then the dataset containing the variables used
in the formula. The last argument, weights, specifies the variance model
varPower(), where the variance is a power of a predictor or the mean. The
default is a power-of-the-mean variance model. The default argument in full
in varPower() looks like

weights = varPower( form = fitted(.) )

which means that the variance is a power of the fitted values. For more details,
consult Pinheiro and Bates (2000, pp. 401–409). If the argument weights is
omitted, gnls() produces the same model fit as nls(). The summary method
(as well as most other standard methods) is available for models fitted with
gnls().
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> summary(RGRcurve.m2)

Generalized nonlinear least squares fit
Model: RGR ~ SSexp(Day, a, b)
Data: RGRcurve

AIC BIC logLik
-97.20773 -90.35344 52.60386

Variance function:
Structure: Power of variance covariate
Formula: ~fitted(.)
Parameter estimates:
power

1.012692

Coefficients:
Value Std.Error t-value p-value

a 3.858027 0.14751689 26.15312 0
b 0.168432 0.00720728 23.36973 0

Correlation:
a

b 0.797

Standardized residuals:
Min Q1 Med

-1.8325511 -0.6356797 -0.1609886
Q3 Max

0.6477644 1.8176431

Residual standard error: 0.1671879
Degrees of freedom: 41 total; 39 residual

The summary output consists of the following six components: (1) model
specification and measures of goodness-of-fit, (2) estimated variance parame-
ters, (3) estimated parameters in the mean model, (4) estimated correlation
between parameters in the mean model, (5) five-number summary of the dis-
tribution of the residuals, and (6) estimated residual standard error. Below
we provide an explanation for each component.

(1) First, the specified model formula is shown. Second, the name of the
data frame used is listed. Third, the values of the goodness-of-fit mea-
sures AIC (Akaike’s information criterion), BIC (Bayesian information
criterion), and the logarithm of the likelihood function are displayed.
The AIC and BIC are useful for comparing models that are non-nested
(Burnham and Anderson, 2002, Chapter 2), but at the moment we only
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consider a single model and therefore have no use for these measures
(see Section 7.6 for an example of how to use these measures). The value
of the log likelihood function can be used to compare nested models
through a likelihood ratio test using a χ2 distribution as reference (see
Subsection 5.2.3 for an example).

(2) The variance structure used and the estimated variance parameter are
displayed. The variance parameter estimate θ̂ is 1.01, really close to
1, indicating that the variance structure resembles that of a gamma
distribution (Nelder, 1991); that is, the variance is proportional to the
square of the mean.

(3) This part of the output is similar to the output from an nls() model,
showing the parameter estimates with the corresponding standard er-
rors and t-test statistic and p-value for the null hypothesis that the
parameter is equal to 0. The parameter estimates have not changed
much compared with the model fit that assumes constant variance
(RGRcurve.m1 in Subsection 3.2.2).

(4) The estimated correlation between the parameter estimates is reported.
In our example, it is a single number, as we consider a mean function
with only two parameters). The estimates of the parameters in the
mean function will be mutually correlated to a lesser or greater extent.

(5) The five-number summary consists of the minimum, maximum, me-
dian, and 25% and 75% quantiles of the distribution of the standard-
ised residuals. This summary may be useful for assessing whether the
standardised residuals are evenly spread around 0 (looking at the sum-
mary, we find that the median is close to 0, and the 25% and 75%
quantiles are similar apart from the sign; the minimum and maximum
are also similar apart from the sign).

(6) The residual standard error is 0.167, and the residual degrees of freedom
is 39, obtained as the difference between 41 (number of observations)
and 2 (number of parameters).

The self-starter functions that are available for nls() also work for gnls().
Other examples using gnls() in conjunction with varPower are found in the
help page of gnls() (?gnls) and in Pinheiro and Bates (2000, pp. 401–404).

6.1.2 Other variance models

Apart from the power-of-the-mean model (varPower()), a few other variance
models can be specified. The most important models are listed in Table 6.1
below.

The package nlreg in the bundle hoa also provides functionality for fitting
nonlinear regression models that assume various variance structures (Brazzale,
2005).
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Table 6.1. Variance models for use with gnls().

R function Variance model

varExp() Variance as exponential of covariate or mean
varIdent() Different variances in different groups
varPower() Variance as power of covariate or mean

6.2 Transformations

Frequently the response values are both non-normally distributed and ex-
hibit variance heterogeneity. For example, right-skewed response values (e.g.,
lengths or weights of some test organisms) with variation that increases as a
function of the mean are commonly encountered in toxicology (OECD (Or-
ganisation for Economic Cooperation and Development), 2006a). In such sit-
uations, it may often be possible to find a transformation that will produce
nearly normally distributed response values with constant variance. This ap-
proach for nonlinear regression was introduced by Carroll and Ruppert (1984)
and elaborated in Carroll and Ruppert (1988, Chapter 4). It has also been
discussed by Streibig et al. (1993) in a weed science context.

6.2.1 Transform-both-sides approach

In Section 1.1, we encountered a model that is used in fisheries manage-
ment, namely the Beverton-Holt model. For modelling the stock-recruitment
relationship between sockeye salmon in the Skeena River, Carroll and Rup-
pert (1988, pp. 139–152) consider another two-parameter nonlinear regression
model for the relationship between stock (S) and recruitment (number of
recruits):

f
(
S, (α, k)

)
= αS exp(−kS) (6.3)

This model is called the Ricker model, and it was derived from theoretical
considerations. As in the Beverton-Holt model, the parameter α has the same
interpretation as the slope of the tangent at 0. The mean function in Equa-
tion (6.3) tends to 0 both for S approaching 0 from the right and for S
approaching ∞, and it has a maximum at S = 1/k, so this mean function is
not monotonous in S.

The data are provided in the data frame sockeye in the package nlrwr.
The data frame sockeye contains the two variables recruits and spawners
(numbers in thousands). Observation no. 12 is left out of the following analyses
because a rock slide occurred that year (Carroll and Ruppert, 1988, p. 141).
Figure 6.2 shows the data. We see some increase as stock values get larger,
but the variation is clearly increasing as the stock is increasing.
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> plot(recruits ~ spawners, data = sockeye[-12,

+ ], xlab = "Number of spawners (thousands)",

+ ylab = "Number of recruits (thousands)")
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Fig. 6.2. Plot of recruitment as a function of the stock using the dataset sockeye.

Initially we consider a standard nonlinear regression model, assuming vari-
ance homogeneity and normality of errors, that is a model of the general form
given in Equation (1.3).

> sockeye.m1 <- nls(recruits ~ beta1 *

+ spawners * exp(-beta2 * spawners),

+ data = sockeye[-12, ], start = list(beta1 = 2,

+ beta2 = 0.001))

The first thing to do is to check the model. Following the approach outlined
in Chapter 5, we find that according to the plot of the raw residuals versus
the fitted values (not shown), the model seems to capture the systematic
deviation in the data quite well, so the chosen mean function appears to
be alright. Similarly, the QQ plot (not shown) does not suggest any severe
deviation from the normality assumption. On the other hand, the plot of the
fitted values versus the absolute residuals in Fig. 6.3 clearly indicates variance
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heterogeneity: The variation in the absolute residuals is increasing as the fitted
values increase.

> plot(fitted(sockeye.m1), abs(residuals(sockeye.m1)),

+ xlab = "Fitted values", ylab = "Absolute residuals")
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Fig. 6.3. Plot of the fitted values versus the absolute residuals for the model fit
sockeye.m1 of the Ricker model to the dataset sockeye (without using a transfor-
mation).

So the presence of variance heterogeneity is the only severe deviation from
the model assumptions in Section 5.1. We can cope with this model violation
by using a variance model (as seen in the previous section) or a transformation.
Following Carroll and Ruppert (1988, pp. 139–152), we use a transformation.

In linear regression, it is common to transform the response only (that
would be the variable recruits in our example) but otherwise not change the
model (Carroll and Ruppert, 1988, p. 117). The same approach can be applied
to nonlinear regression models, but it will distort the original relationship
between the response and the predictor dictated by the chosen mean function.
We insist on preserving this relationship because there is almost always a good
reason why a particular mean function is used. Therefore, it is necessary to
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consider a transform-both-sides approach where both the left- and right-hand
sides in Equation (1.1) are transformed

h(y) = h
(
f(x, β)

)

by using some transformation h (we will get more concrete below). This
model ensures that the original relationship between response and predic-
tor is retained, as both the response (left-hand side) and the mean function
(right-hand side) are subject to the same transformation. Consequently, the
transformed Ricker model can be specified using the following mean function:

h
(
f
(
S, (α, k)

))
= h

(
αS exp(kS)

)
+ ε (6.4)

For the right choice of the transformation h, we could hope to achieve that
the errors ε are normally distributed with constant variance. How do we find
the right transformation?

6.2.2 Finding an appropriate transformation

In practice the transformation h is often estimated from the data unless some
apparent choice of transformation is natural for a given dataset (see Exer-
cise 6.4). In order to estimate a transformation, we start out considering a
family of transformations that is indexed by a parameter λ, say, such that
each value of λ corresponds to another transformation. In this way, estima-
tion of a transformation is simply a matter of estimating a single parameter.
The most used family of transformations are the Box-Cox transformations
(Box and Cox, 1964), defined as follows:

hλ(y) =

⎧
⎨

⎩

yλ−1
λ λ �= 0

log(y) λ = 0
(6.5)

For λ = 0, the logarithm transformation is obtained. For λ different from
0, the Box-Cox transformations are power functions. Well-known transfor-
mations included are the reciprocal transformation (λ = −1), the cubic-root
transformation (λ = 1/3), the square-root transformation (λ = 1/2), and the
quadratic transformation (λ = 2). The value λ = 1 is equivalent to not trans-
forming at all, and this fact provides a means for carrying out a hypothesis
test to assess whether or not there is a need for a transformation.

One way is to estimate the parameters β in the mean function and λ jointly
using a profile likelihood approach (Carroll and Ruppert, 1988, pp. 124–127).
This approach is implemented in the boxcox method for nls() model fits
(available in the package nlrwr). By default, the boxcox method produces a
plot of the profile log likelihood function: For a grid of λ values between −2 and
2 (the default interval), the transformed model based on the transformation
hλ is fitted, and the resulting log likelihood values are plotted against the λ
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values. Beware: The resulting transformation may not always be successful in
establishing normally distributed responses with constant variance.

The optimal transformation within the Box-Cox family for the Ricker
model is conveniently done using boxcox.nls(), as only the nls() model
fit needs to be supplied. The resulting plot of the profile log likelihood func-
tion for the parameter λ is shown in Fig. 6.4. The estimate of the λ value lies
between -1 and 0.

> sockeye.m2 <- boxcox.nls(sockeye.m1)
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Fig. 6.4. Plot of the profile log likelihood function for the parameter λ for the
transform-both-sides Box-Cox transformed Ricker model fitted to the dataset sock-
eye.

Using the function bcSummary(), we can extract the estimate of λ together
with a 95% confidence interval (the default).

> bcSummary(sockeye.m2)

Estimated lambda: -0.2
Confidence interval for lambda: [-0.89, 0.52]



6.3 Sandwich estimators 83

So the estimate of λ is −0.2, and the optimal Box-Cox transformation is h−0.2

(with reference to Equation (6.5)); that is, a power function with exponent
−0.2. The confidence interval does not include λ = 1, implying that not
transforming is not an option. We also see from the confidence interval that
λ = 0 cannot be rejected, meaning that we could also choose to use the
logarithm transformation instead of h−0.2.

In order to compare the standard errors between the models with and with-
out transformation, the summary output of both sockeye.m1 and sockeye.m2
are needed.

> coef(summary(sockeye.m1))

Estimate Std. Error t value
beta1 3.9495589029 1.0154151168 3.889600
beta2 0.0008525523 0.0003570088 2.388043

Pr(>|t|)
beta1 0.0006575081
beta2 0.0248117796

> coef(summary(sockeye.m2))

Estimate Std. Error t value
beta1 3.7767884397 0.6941023788 5.441256
beta2 0.0009539344 0.0003061565 3.115839

Pr(>|t|)
beta1 1.195245e-05
beta2 4.563495e-03

The parameter estimates are almost the same for both model fits, but the
estimated standard errors have changed substantially, becoming smaller as a
consequence of applying the transformation.

6.3 Sandwich estimators

Consider a nonlinear regression model specified by Equation (1.3), where the
conditional mean structure (Equation (1.2)) imposed by the chosen mean func-
tion f is correctly specified but the assumptions regarding normality and/or
the variance homogeneity are not satisfied. In this case, the estimated stan-
dard errors from the model assuming normality and variance homogeneity will
be inconsistent: They will not approach the true standard errors as the sample
size increases (Carroll and Ruppert, 1988, p. 128). However, even though the
model is misspecified with regard to some of the distributional assumptions,
it is still possible to obtain consistent estimates of the standard errors by ad-
justing the estimated variance-covariance matrix (Carroll and Ruppert, 1988,
p. 128). Equation (2.5) is only valid if the model is correctly specified (w.r.t.
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both the mean structure and the distributional assumptions). Rewinding the
derivation leading to Equation (2.5) the equation

v̂ar(β̂) = s2B̂M̂B̂ (6.6)

is obtained, where the matrix M̂ is a function of the first derivatives of the log
likelihood function and B̂ is defined as in Equation (2.5). This equation is valid
as long as the mean structure is correct and independence can be assumed.
Therefore, the resulting estimated variance-covariance matrix is said to be ro-
bust against misspecification of the distributional assumptions. If the model
is correctly specified, we have the equality M̂ = B̂−1, and Equation (6.6) re-
duces to Equation (2.5). The robust variance-covariance matrix is often called
a sandwich estimator due to the particular product form on the right-hand side
of Equation (6.6), whereas the estimated nonrobust variance-covariance ma-
trix is referred to as näıve. More detailed explanations can be found in White
(1981), Carroll and Ruppert (1988, pp. 209–213), White (1996, Chapter 5),
and Zeileis (2006). In conclusion, the use of sandwich estimates is attractive,
because we avoid having to find a transformation or specify a variance model
but can still adjust for deviations from the model assumptions.

For the model fit sockeye.m1, the estimated näıve variance-covariance
matrix is obtained with the vcov method.

> vcov(sockeye.m1)

beta1 beta2
beta1 1.0310678594 3.436056e-04
beta2 0.0003436056 1.274553e-07

The diagonal elements in this matrix are the squared estimated standard
errors of the parameter estimates (reported in the corresponding summary
output), whereas the off-diagonal elements are estimates of the covariances
between parameter estimates. In passing, we note that the vcov method can
be useful for assessing how strongly correlated the parameter estimates are.
High correlation between some of the parameters may indicate that possibly
a model with fewer parameters should be considered.

In order to calculate the sandwich estimator, the function sandwich() in
the package sandwich (Zeileis, 2006) can be applied:

> sandwich(sockeye.m1)

beta1 beta2
beta1 0.6082739547 2.458975e-04
beta2 0.0002458975 1.162302e-07

We notice that the elements in the matrix change somewhat. The next step
is to look at the summary output to see the actual changes in the estimated
standard errors. In order to view the part of the summary output containing
parameter estimates and corresponding standard errors, t-tests, and p-values,
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we could apply the coef method to the summary output (as seen in Sub-
section 6.2.2). Alternatively, we could use the function coeftest() in the
package lmtest (Zeileis and Hothorn, 2002).

The parameter estimates with naive standard errors (using the elements
in vcov(sockeye.m1)) are shown below.

> coeftest(sockeye.m1)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
beta1 3.94955890 1.01541512 3.8896 0.0006575 ***
beta2 0.00085255 0.00035701 2.3880 0.0248118 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The output is identical to what we get using coef(summary(sockeye.m1)).
To obtain the estimated standard errors based on the sandwich estimator we
can use coeftest() again, but this time also specifying the argument vcov
with the value sandwich.

> coeftest(sockeye.m1, vcov = sandwich)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
beta1 3.94955890 0.77991920 5.0641 3.158e-05 ***
beta2 0.00085255 0.00034093 2.5007 0.01931 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Comparing the two outputs, we see that the adjustment leads to a substan-
tially smaller standard error for the parameter β1, but it does not change
the standard error for the parameter β2 much. The standard error for β1

based on the sandwich estimator is close to the corresponding standard error
obtained from the transformation model sockeye.m2. As there may be ap-
preciable differences in the standard errors between the different approaches,
we would suggest using the sandwich estimator if there are any doubts about
the validity of the distributional assumptions.

6.4 Weighting

Weights can also be used to get the variance structure right, but weights
should preferably be used in cases where data have been summarised into
averages! If the complete original dataset is available, then there are often
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better ways to take the variance structure into account (Carroll and Ruppert,
1988, p. 12), as seen in the previous sections.

It happens that the complete dataset is not available to the data ana-
lyst because response values have been averaged at some level. Typically, the
average response was calculated for each unique predictor value. Ideally, the
corresponding empirical standard deviations and the number of replicates for
each unique predictor value should also be available because these values can
be used to construct weights to be used in the estimation procedure. Denote
the weights w1, . . . , wn. We consider the following nonlinear regression model:

yi = f(xi, β) + εi/
√

wi (6.7)

The expectation of yi is still f(xi, β) (as it was defined in Equation (1.3)),
but the variance is now σ2/wi due to the weight introduced in the error
term. Through multiplication with

√
wi, the model in Equation (6.7) can be

converted to an equivalent model with error terms (εis) that have constant
variance σ2 such that least-squares estimation can be applied. We need not do
any multiplication manually. Instead we can use nls() with the weights argu-
ment specified to be the variable that corresponds to the wis (not the

√
wis!).

Thus estimation in the nonlinear regression model defined in Equation (6.7)
amounts to minimising the weighted RSS defined below.

weighted RSS(β) =
n∑

i=1

wi

(
yi − f(xi, β)

)2

Let us return to the average responses. If we assume that there is variance
homogeneity (of the original responses, which are averages), then the general
model given by Equation (1.3) implies the following variance for the average
response (yi):

var(yi) = σ2/mi

So using the number of replicates m1, . . . ,mn as weights will result in a model
for yi of the form given in Equation (6.7).

If we cannot assume variance homogeneity, we also need to consider the
standard deviations (in addition to the number of replicates). In this case,
Equation (1.3) implies the following variance:

var(yi) = σ2
i /mi

We would expect the ratios σ2
i /s2

i to be roughly 1 because s2
i is an estimate

of σ2
i , and multiplication of yi by the weights

√
mi/si would result in quan-

tities approximately having constant variance 1. Therefore, using the weights
(si/

√
mi)−1 will result in a model where variance homogeneity is not entirely

unreasonable. Be aware that the reasoning above relies heavily on the s2
i s

being good estimates of the σ2
i s.
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If the weights supplied are all the same, then only the estimated residual
variance will be influenced (it is merely a scaling), whereas unequal weights
will influence the estimated residual variance as well as parameter estimates
and estimated standard errors.

6.4.1 Decline in nitrogen content in soil

Laberge et al. (2006) consider two experiments where the decline of nitrogen
content from pea residues was followed in soil over 16.5 years. The two exper-
iments correspond to two different ways in which the residues were added to
the soil. The resulting datasets are available as exp1 and exp2 in the package
nlrwr. Let us consider experiment 1 first. The corresponding dataset is shown
below.

> exp1

time Nremaining stdev norep
1 0.08 75.16000 2.61 3
2 0.25 70.07000 2.61 3
3 0.55 60.13000 5.23 3
4 1.00 39.54000 4.58 3
5 2.00 36.00000 1.63 3
6 3.01 29.74000 5.88 3
7 8.64 20.82000 1.26 3
8 16.51 16.20837 2.86 3

There are four variables in exp1:

• time is the time elapsed in years (predictor)
• Nremaining is the average percentage of nitrogen available (response)
• stdev is the corresponding standard deviation
• norep is the number of replicates

The data have been summarised for each unique value of the predictor (time).
The standard deviations (in the third column) are not varying that much, be-
ing of the same order of magnitude, indicating that the assumption of variance
homogeneity may be acceptable. A plot of the data is shown in Fig. 6.5.

The model suggested for this type of data is the biexponential model with
mean function

f
(
time, (a1, a2, b1, b2)

)
= a1 exp(− exp(a2)time) + b1 exp(− exp(b2)time)

The reason for choosing this model is that it is anticipated that there are
several mechanisms involved, causing exponential decays at different rates
(Laberge et al., 2006). A self-starter function is available for the biexponential
model: SSbiexp() (see Table B.1 in Appendix B). First, we fit the model
where each average response is treated as a single response value, ignoring the
number of replicates and standard deviations. Next, we fit the same model,
but this time using the appropriate weights (norep/(stdev*stdev)).
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> plot(Nremaining ~ time, data = exp1,

+ xlab = "Time (years)", ylab = "Nitrogen content (%)")

0 5 10 15

20
30

40
50

60
70

Time (years)

N
itr

og
en

 c
on

te
nt

 (
%

)

Fig. 6.5. Decline in nitrogen content over time for experiment 1.

> exp1.m1 <- nls(Nremaining ~ SSbiexp(time,

+ a1, a2, b1, b2), data = exp1)

> exp1.m2 <- nls(Nremaining ~ SSbiexp(time,

+ a1, a2, b1, b2), data = exp1,

+ weights = norep/(stdev * stdev))

The actual values of the weights can be retrieved using the weights method.

> weights(exp1.m2)

[1] 0.4403928 0.4403928 0.1096776
[4] 0.1430179 1.1291355 0.0867694
[7] 1.8896447 0.3667661

A comparison of the two model fits by means of their summary output looks
as follows (notice the use of the coef method applied to the summary output
in order to get a more concise output):

> coef(summary(exp1.m1))
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Estimate Std. Error t value Pr(>|t|)
a1 49.6945735 6.1714388 8.0523481 0.001291449
a2 0.2182533 0.3162611 0.6901049 0.528080831
b1 32.2059455 6.1631160 5.2255946 0.006402928
b2 -3.1242900 0.4881789 -6.3998879 0.003061147

> coef(summary(exp1.m2))

Estimate Std. Error t value Pr(>|t|)
a1 48.95580529 5.8454395 8.37504275 0.001111764
a2 -0.02288415 0.2953566 -0.07747973 0.941962763
b1 30.67388498 6.4550371 4.75193009 0.008958175
b2 -3.15057479 0.5205589 -6.05229290 0.003760909

We see that the parameter estimates change only slightly, except for a2, which
differs considerably between the two model fits. There also are only slight
changes in the estimated standard errors. This is not surprising, as the weights
supplied are of roughly the same magnitude.

The dataset exp2 is similar to exp1 with respect to the variables included.
However, the standard deviations vary substantially (several orders of magni-
tude).

> exp2

time Nremaining stdev norep
1 0.08 92.48000 10.46 3
2 0.25 75.49000 5.23 3
3 0.55 74.51000 7.19 3
4 1.00 60.13000 10.46 3
5 2.00 50.00000 2.61 3
6 3.01 45.42000 0.01 3
7 7.64 26.94000 1.64 3
8 15.51 17.14786 2.50 3

Again we fit biexponential models with and without weights using nls() and
the self-starter SSbiexp().

> exp2.m1 <- nls(Nremaining ~ SSbiexp(time,

+ a1, a2, b1, b2), data = exp2)

> exp2.m2 <- nls(Nremaining ~ SSbiexp(time,

+ a1, a2, b1, b2), data = exp2,

+ weights = norep/(stdev^2))

The estimated regression curves are shown in Fig. 6.6. The curves appear to
be quite similar.

> plot(Nremaining ~ time, data = exp2,

+ xlab = "Time (years)", ylab = "Nitrogen content (%)")
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> timeVal <- with(exp2, seq(min(time),

+ max(time), length.out = 100))

> lines(timeVal, predict(exp2.m1,

+ newdata = data.frame(time = timeVal)),

+ lty = 2)

> lines(timeVal, predict(exp2.m2,

+ newdata = data.frame(time = timeVal)),

+ lty = 3)
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Fig. 6.6. Decline in nitrogen content over time for experiment 2 (the dataset exp2)
together with estimated regression curves based on model fits without and with
weights, respectively.

Looking at the summary outputs, we find that the parameter estimates change
moderately, whereas three out of four estimated standard errors change quite
dramatically (by a factor of 2) as a consequence of using the weights.

> coef(summary(exp2.m1))

Estimate Std. Error t value Pr(>|t|)
a1 37.1828528 7.3946626 5.0283366 0.007342087
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a2 0.3984263 0.4676840 0.8519135 0.442262764
b1 56.9940957 7.2995778 7.8078619 0.001451984
b2 -2.4593036 0.2429193 -10.1239547 0.000535818

> coef(summary(exp2.m2))

Estimate Std. Error t value Pr(>|t|)
a1 28.9158392 8.3745109 3.4528392 2.598700e-02
a2 0.3128281 0.8122243 0.3851499 7.197304e-01
b1 59.7777230 3.7595533 15.9002197 9.144765e-05
b2 -2.3567707 0.1311759 -17.9664898 5.641332e-05

Moreover, the estimated residual error in the summary output of the model fit
exp2.m2 (not shown) is not as far from 1, as we would expect after applying
the weights.

Exercises

6.1. Consider the dataset RGRcurve. Fit the two-parameter exponential model,
but in such a way that the variance is assumed to be an exponential function
of the mean.

6.2. Verify for the model fit sockeye.m1 that the mean structure is appropri-
ate and that the normality assumption is acceptable.

6.3. Consider the dataset sockeye. Fit the Ricker model, but this time with
a variance model included. Compare the results to the fits sockeye.m1 and
sockeye.m2 and to the results based on the sandwich estimator.

6.4. Fit the exponential model (Equation (3.2)) to the dataset O.mykiss.
Check the model assumptions. Are there any problems? For this kind of
data, it is common to apply a transform-both-sides approach using the log-
arithm transformation (OECD (Organisation for Economic Cooperation and
Development), 2006b), so in this case there is no need to look for the best
transformation. Fit the logarithm-transformed model, and check the model
assumptions. Is there any improvement over the initial fit?
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Uncertainty, Hypothesis Testing, and Model
Selection

Nonlinear regression methods often rely on the assumption that the nonlinear
mean function can be approximated by a linear function locally. This linear
approximation may or may not be used in the estimation algorithm (e.g., the
Gauss-Newton algorithm), but more importantly it is often used to obtain
standard errors, confidence intervals, and t-tests, all of which will depend on
how good the approximation is.

The quality of the linear approximation can be summarised by means of
two features of the model referred to as intrinsic curvature and parameter ef-
fects curvature. We will not provide rigorous definitions here. More details can
be found in Bates and Watts (1988, Chapter 7). The two curvature measures
reflect different aspects of the linear approximation: (1) The planar assump-
tion ensures that it is possible to approximate the nonlinear mean function
at a given point using a tangent plane. (2) The uniform coordinate assump-
tion means that a linear coordinate system is imposed on the approximating
tangent plane. Intrinsic curvature is related to the planar assumption, and it
depends on the dataset considered and the mean function but not on the para-
meterisation used in the mean function. Parameter effects curvature is related
to the uniform coordinate assumption, and it depends on all aspects of the
model, including the parameterisation. Large values of these two curvature
measures indicate a poor linear approximation. The function rms.curv() in
the package MASS can be used to calculate the two measures for a given nls()
model fit (Venables and Ripley, 2002b).

In many cases the intrinsic curvature will be negligible compared with the
parameter effects curvature (Bates and Watts, 1988, p. 256), and in such cases
the profile likelihood approach in Section 7.1 is likely to be useful. The boot-
strap approach in Section 7.2 is another alternative. The Wald procedures in
Sections 7.3 and 7.4 are influenced by both intrinsic curvature and parameter
effects curvature, and therefore they should be used with some reservation, es-
pecially for small datasets. Sections 7.5 and 7.6 consider comparisons between
nested and non-nested models, respectively.
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7.1 Profile likelihood

For a parameter of interest, say βj , the profile t function is defined as

τ(βj) = sign(βj − β̂j)

√
RSS(βj) − RSS(β̂)

s
(7.1)

where the profile RSS function βj (that is, RSS(βj) in Equation (7.1)) is
defined in Subsection 4.3.2 and s denotes the residual standard error defined
in Section 2.1. The profile t function can be used to examine the extent of
curvature in the direction of the parameter βj . More details on the profiling
approach can be found in Bates and Watts (1988, Section 6.1) and Venables
and Ripley (2002a, Section 8.4).

The profile method, applicable to any model fit obtained using nls(),
will calculate the profile t function for each parameter in the model unless
otherwise specified (see below). In fact, the only argument needed in profile
is the model fit. Before we do the profiling, we use the update method to
fit L.minor.m1, but this time switching off the trace (it was switched on in
Subsection 2.2.2) to avoid the subsequent profiling, which involves refitting
the model several times over a grid of βj values, to fill the R console with
trace output.

> L.minor.m1 <- update(L.minor.m1,

+ trace = FALSE)

> L.minor.m1pro <- profile(L.minor.m1)

Profiling is done for all parameters in the model (use the argument which to
limit the profiling to fewer parameters). To show the profile t functions for
the parameters in the model, the corresponding plot method can be applied
to profiling result L.minor.m1pro. The resulting plot is shown in Fig. 7.1. By
default, the absolute value of τ(βj) is plotted as a function of the parameter
being profiled.

> plot(L.minor.m1pro)

To obtain plots using the original τ(βj) values instead of absolute values, the
argument absVal can be used. It takes a logical value (FALSE or TRUE) to
specify the absence or presence of absolute values. The resulting plot is shown
in Fig. 7.2.

> plot(L.minor.m1pro, absVal = FALSE)

The plots in both Fig. 7.1 and Fig. 7.2 show that there is some curvature for
the parameter K, indicating that the linear approximation is not perfect in
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that parameter component. In contrast, the linear approximation seems quite
acceptable for the parameter Vm, as there is only very slight curvature for this
parameter component.

Profile confidence intervals, which are obtained by referring τ(βj) in Equa-
tion (tau) to the appropriate percentiles in a t-distribution with n− p degrees
of freedom, are extracted using the confint method. The 95% confidence
intervals of the two parameters in L.minor.m1 are shown below.

> confint(L.minor.m1)

2.5% 97.5%
K 11.45520 24.86789
Vm 110.64411 143.75862

The argument level can be used to specify the confidence level(s) required.
We could already have read off the intervals from Fig. 7.1 or Fig. 7.2 using
the solid vertical lines dropped from the profile function onto the x axis. By
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Fig. 7.1. Plots of the profile t functions for the two parameters K and Vm in the
Michaelis-Menten model fitted to the dataset L.minor.
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Fig. 7.2. Plots of the profile t functions (using the untransformed τ values) for the
two parameters in the Michaelis-Menten model fitted to the dataset L.minor.

default, 50%, 80%, 90%, 95%, and 99% confidence intervals are shown on
the plots of the profile functions, but this can be controlled by means of the
argument conf for specifying the desired confidence levels.

7.2 Bootstrap

An alternative to profile confidence intervals is to apply the bootstrap to
repeatedly generate datasets based on the fitted nonlinear regression model.
Confidence intervals based on the bootstrap approach do not rely on the linear
approximation.

We will use the function nlsBoot() in the package nlstools and the as-
sociated plot and summary methods. This means that we use a nonparamet-
ric bootstrap approach where the mean centered residuals are bootstrapped
(Venables and Ripley, 2002a, Chapter 8). By default, nlsBoot() generates
999 datasets, and for each dataset the original nonlinear regression model is



7.2 Bootstrap 97

fitted and the resulting parameter estimates stored. We store the bootstrap
results generated by nlsBoot() when applied to the model fit L.minor.m1 in
the object L.minor.m1boot.

> L.minor.m1boot <- nlsBoot(L.minor.m1)

The bootstrapped values are useful for assessing the marginal distributions
of the parameter estimates, so we start out by comparing them with a nor-
mal distribution, which they should ideally follow if the linear approximation
holds. To this end, we can use normal QQ plots, which we already used in
Subsection 5.4.1. The resulting plots are shown in Fig. 7.3. The points in the
two normal QQ plots in Fig. 7.3 do not follow a straight line exactly, show-
ing some curvature, especially in the tails some departure from the normal
distribution is apparent.

To obtain bootstrap confidence intervals, the summary method is used.
The confidence intervals obtained are so-called percentile confidence intervals
that are based on percentiles in the empirical distribution of the bootstrap
parameter estimates. If 999 bootstrap simulations are used, then the empir-
ical distribution is based on 1000 values: the original estimate and the 999
bootstrap estimates. Thus, to construct a 95% percentile confidence interval,
we take the 25th value and the 975th value among the 1000 ordered estimates
(ordered from smallest to largest) as left and right endpoints, respectively. The
percentile confidence interval has the advantage of lying entirely within the
range of plausible parameter values, which in the case of the Michaelis-Menten
model means the range from 0 upwards. This is in contrast to Wald confidence
intervals (Section 7.3), which for small samples occasionally may give unreal-
istic lower and upper limits. The 95% bootstrap confidence intervals for the
parameters K and Vm are shown below.

> summary(L.minor.m1boot)

------
Bootstrap estimates

K Vm
17.27010 125.89618

------
Bootstrap confidence intervals

2.5% 97.5%

> qqnorm(L.minor.m1boot$coefboot[,

+ 1], main = "K")

> qqnorm(L.minor.m1boot$coefboot[,

+ 2], main = "Vm")
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Fig. 7.3. Normal QQ plots of the 999 bootstrap parameter estimates for each of
the two parameters K and Vm in the Michaelis-Menten model fitted to the dataset
L.minor.

K 12.88137 22.32728
Vm 115.58938 138.58658

The 95% percentile confidence intervals are slightly narrower than the
profile confidence intervals obtained in Section 7.1. It is also worth noting
that the intervals are slightly asymmetric, as was in fact also the case for the
profile confidence intervals. In conclusion, the bootstrap and profile likelihood
confidence intervals of the analysis of L.minor agree quite well. Apart from
the bootstrap confidence intervals, the summary of the bootstrap results also
shows the median values of bootstrap estimates for each parameter, which
can be used to assess if there is any bias present in the parameter estimates.
This seems not to be the case here (comparing the values above to the original
parameter estimates 17.08 and 126.0).

Another example using the bootstrap approach is found in Venables and
Ripley (2002a, Section 8.4).

The bootstrap approach is somewhat computer-intensive, as the nonlinear
regression model considered has to be refitted numerous times, but for many
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applications it will still be a feasible approach. Moreover, the linear approxi-
mation will improve as the sample size increases, and therefore the bootstrap
approach may be most useful for small datasets.

7.3 Wald confidence intervals

In this section, we consider confidence intervals that are based on asymptotic
or large sample results, which may not necessarily work well for small sample
sizes where the linear approximation may be poor. Denote the estimated as-
ymptotic standard error of the parameter estimate β̂j by se(β̂j). The 1 − α
Wald confidence interval of the parameter βj is then defined as

β̂j ± t1−α/2,n−pse(β̂j)

where t1−α/2,n−p denotes the 1−α/2 percentile in a t-distribution with n− p
degrees of freedom. Several approximations are at work in this definition. The
linear approximation is used to obtain se(β̂j), and the use of a t-distribution
is also only an approximation. However, these confidence intervals may still be
useful in applications. We have seen examples where they work well for models
with 3–5 parameters and sample sizes as small as 20–30, but, in general, you
should exert caution in relying on these confidence intervals.

The Wald confidence intervals for the two parameters K and Vm based
on the model fit L.minor.m1 can be retrieved from the model fit using the
confint2 method from the package nlrwr in the following way:

> confint2(L.minor.m1)

2.5 % 97.5 %
K 9.853828 24.30416
Vm 108.480813 143.58470

In this case, the resulting confidence intervals do not differ much from the
confidence intervals based on the profiling and bootstrap approaches. To get
confidence intervals for other confidence levels, the argument level needs
to be specified. For example, the following line produces the 99% confidence
intervals of the parameters.

> confint2(L.minor.m1, level = 0.99)

0.5 % 99.5 %
K 6.131815 28.02617
Vm 99.439005 152.62651
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7.4 Estimating derived parameters

If we can assume that the joint distribution of the parameter estimates approx-
imately follows a normal distribution, which is again a matter of the validity
of the linear approximation, then it follows that any smooth (that is, differen-
tiable) transformation of the parameter estimates will again be approximately
normally distributed.

In more detail, assume that the parameter estimates β̂ are approximately
normally distributed with a variance-covariance matrix estimated by V (β̂),
which we can get from an nls() model fit using the vcov method. Then the de-
rived parameter g(β̂), which is a function g of the original parameter estimates
β̂, is again approximately normally distributed with an estimated variance-
covariance matrix Dg(β̂)tV (β̂)Dg(β̂), where Dg(β̂) denotes the gradient of
g; that is, the vector of first derivatives of g with respect to the parameters
evaluated at the parameter estimates β̂ (van der Vaart, 1998, Chapter 3).
Bailer and Piegorsch (2000, p. 88) and Weisberg (2005, pp. 120–122) provide
some good examples that explain this approach in more detail. This result is
extremely powerful, as it makes it possible to establish approximate normality
for various derived parameters, that are functions of the original parameters
in the model. Applying this result is usually referred to as using the delta
method. Of course, if the original parameter estimates are not approximately
normally distributed, then the delta method will not work well. In such cases,
it may be better to use a bootstrap approach, generating a bootstrap estimate
of the derived parameter of interest for each bootstrap estimate of the original
parameters and then proceeding along the lines of Section 7.2. Next, we will
show how to use the delta method in R.

As a measure of the rate of change of the underlying enzymatic process, it
can be useful to consider the slope of the Michaelis-Menten curve at the con-
centration K: The larger the slope, the faster the enzymatic reaction goes. The
slope of the curve at the concentration K is a function of the two parameters
K and Vm:

Vm

4K
(7.2)

The estimate of the slope is calculated by plugging in the parameter estimates
of K and Vm in Equation (7.2), but how do we obtain the corresponding
estimated standard error? We use the delta method!

The function to use in R is delta.method() in the package alr3. We need
to supply two arguments to this function: first, the model fit from which to
retrieve the parameter estimates and the estimated variance-covariance ma-
trix, and second, the expression of the derived parameter to be calculated (as
a string, in quotation marks). For the model fit L.minor.m1, the specification
looks like this:

> delta.method(L.minor.m1, "Vm/(4*K)")
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Functions of parameters: expression(Vm/(4 * K))
Estimate = 1.844850 with se = 0.2363011

Thus we find that the rate of change is estimated to be 1.84, and the corre-
sponding estimated standard error is 0.24.

7.5 Nested models

Let us assume that we have fitted a nonlinear regression model that provides
an adequate description of a given dataset. Then, the next step would often
be to try to simplify the model in order to obtain the most parsimonious
description of the data. Simplification could mean that some of the parameters
in the model are replaced by fixed values such that eventually fewer parameters
are used to describe the data. In the terminology of Equation (1.3), we consider
the null hypothesis

H0 : βj = β0j (7.3)

for some parameter of interest βj and for some given value β0j .
In the following two subsections, we will discuss two ways of testing the

null hypothesis. We will use the data frame secalonic in the package drc to
illustrate the different approaches. The data in secalonic stem from a large
experiment exploring the toxicity of secalonic acid to roots of various grasses
(Gong et al., 2004). The data are shown below.

> secalonic

dose rootl
1 0.000 5.5
2 0.010 5.7
3 0.019 5.4
4 0.038 4.6
5 0.075 3.3
6 0.150 0.7
7 0.300 0.4

The dataset contains a response variable (rootl), which is the root length
(in cm), and a predictor variable (dose), which is the dose of secalonic acid
applied (in mM). The response values are means of an unknown number of
replicates. Figure 7.4 shows the data.

The dose-response relationship is clearly sigmoidal, and therefore the four-
parameter logistic model is a natural choice (Streibig et al., 1993). The logistic
model is conveniently fitted using the self-starter SSfpl() (see Table B.1 in
Appendix B).

> secalonic.m1 <- nls(rootl ~ SSfpl(dose,

+ a, b, c, d), data = secalonic)
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> plot(rootl ~ dose, data = secalonic,

+ xlab = "Dose (mM)", ylab = "Root length (cm)")
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Fig. 7.4. Plot of the root length as a function of the dose of secalonic acid based
on the dataset secalonic.

In the next two subsections, we will show how to carry out hypothesis testing
using the model fit secalonic.m1 as the starting point.

7.5.1 Using t-tests

To test the null hypothesis in Equation (7.3) with β0j = 0 (that is, testing
whether or not the parameter is equal to 0), we can use the t-test statistic

t =
β̂j − β0j

se(β̂j)
=

β̂j

se(β̂j)
(7.4)

which is the difference between the parameter estimate β̂j and the given value
β0j divided by the corresponding estimated standard error se(β̂j). The test
statistic t approximately follows a t-distribution with n − p degrees of free-
dom. Using the summary method, we can instantaneously get t-tests based
on Equation (7.4) with the corresponding p-values for all parameters in the
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model. Typically only one or a few – if any – of these hypotheses are rele-
vant to consider. Let us have a look at the summary output for the model fit
secalonic.m1.

> summary(secalonic.m1)

Formula: rootl ~ SSfpl(dose, a, b, c, d)

Parameters:
Estimate Std. Error t value Pr(>|t|)

a 6.053612 0.395467 15.308 0.000606 ***
b 0.353944 0.194089 1.824 0.165722
c 0.075188 0.005911 12.721 0.001048 **
d 0.029350 0.006621 4.433 0.021333 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.2028 on 3 degrees of freedom

Number of iterations to convergence: 0
Achieved convergence tolerance: 8.101e-06

The parameters a and b are the upper and lower limits on the observed root
length. The logistic model will predict root lengths close to a for doses al-
most 0, and the predicted root lengths will approach b as the dose becomes
very large. It would be natural to expect that the lower limit will be close
to 0, as large doses may prohibit any growth, and therefore it is relevant to
consider the hypothesis H0 : b = 0. The value of the corresponding t-test
statistic is 1.82. The corresponding p-value based on the t-distribution with
3 degrees of freedom is 0.166. This means that we cannot reject the hypoth-
esis H0 : b = 0, tentatively suggesting that the lower limit could be 0. The
result is not surprising in light of Fig. 7.4. Consequently, we can simplify the
original four-parameter logistic model by fixing the lower limit at 0 to obtain
a three-parameter model describing the data. This three-parameter model is
also available in a self-starter version for nls(), namely SSlogis() (we will
use it in the next subsection).

A related approach for testing the hypothesis H0 : βj = βj0 would be to
use confidence intervals: If βj0 is not contained in the 95% confidence interval
of βj , then the hypothesis in Equation (7.3) is rejected at a significance level
of 5%. So this approach can be applied using either profile, bootstrap, or Wald
confidence intervals.

7.5.2 Using F -tests

The t-tests rely on the estimated standard errors and thus rely to a large
extent on the linear approximation of the mean function. By using the F -test,
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we can curb the influence on the linear approximation. In order to apply the
F -test, two models need to be fitted: Model A and Model B. Model B should
be a submodel of Model A; that is, obtained from Model A by imposing some
constraint on the parameters. The choice of submodel will be determined by
the null hypothesis that is of interest. The F -test statistic is defined as

F =
(RSSB(β̂B) − RSSA(β̂A))/(dfB − dfA)

SSA/dfA

where subscripts A and B refer to Model A and Model B, respectively. This
test statistic is related to the statistic introduced in Subsection 5.2.3. The
test is sometimes referred to as the extra-sum-of-squares F -test (Motulsky
and Christopoulos, 2004, Chapter 22). The main ingredient in the statistic is
the difference between the RSS quantities for the two models considered. A
large difference means that the two models are quite different, whereas a small
difference indicates that they provide similar fits to the data. Large and small
can be quantified by means of a p-value obtained from an F -distribution with
degrees of freedom (dfB − dfA, dfA).

Getting back to the dataset secalonic, the first step is to fit the submodel
that we want to compare to the initial model. Thus we fit the three-parameter
logistic model where the lower limit is fixed at 0. The reason for considering
this submodel is of that we want to test the hypothesis that the lower limit
could be 0 (just as it was in the previous subsection). As already mentioned,
the relevant self-starter function is SSlogis().

> secalonic.m2 <- nls(rootl ~ SSlogis(dose,

+ a, c, d), data = secalonic)

To assess whether or not the reduction from the model fit secalonic.m1 to
the model fit secalonic.m2 is warranted by the data, the anova method is
invoked to calculate the F -test defined above.

> anova(secalonic.m2, secalonic.m1)

Analysis of Variance Table

Model 1: rootl ~ SSlogis(dose, a, c, d)
Model 2: rootl ~ SSfpl(dose, a, b, c, d)
Res.Df Res.Sum Sq Df Sum Sq F value

1 4 0.25924
2 3 0.12341 1 0.13582 3.3016
Pr(>F)

1
2 0.1668

The order of the arguments secalonic.m2 and secalonic.m1 does not have
any effect on the resulting p-value, but we still always specify the fitted sub-
model as the first argument in anova. The F -test yields the same conclusion
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as was already established using the t-test, in fact giving almost the same p-
value as the t-test in the previous subsection (see Exercise 7.4 for a situation
where results differ).

7.6 Non-nested models

Consider a collection of candidate models that has been chosen a priori for a
particular dataset. These models need not be submodels of each other, and
therefore it may not be possible to use the F -test procedure introduced in
the previous section to compare these models. How then do we decide which
model is the most appropriate?

Ideally, the experimenter collecting or generating the data should decide
which model to use based on subject matter. If no such suggestions are avail-
able, then it may be useful to use some kind of statistic to compare the avail-
able models. The basic idea is to calculate the value of the statistic for each
candidate model and then compare these values to determine which model
provides the best fit. The decision rule is simple: One model is better than
another model if it has the smallest value of the statistic. Based on all pair-
wise comparisons using this rule, a ranking of the candidate models can be
established.

The residual standard error and Akaike’s information criterion (AIC)
(Burnham and Anderson, 2002, pp. 94–96) are two statistics, that are of-
ten used for model comparison and selection. The residual standard error is
a measure of the distance between the data and fitted regression curve based
on the model fit, whereas we can think of the AIC as being an estimate of the
distance from the model fit to the true but unknown model that generated the
data. The AIC is defined as −2 times the maximum value of the log likelihood
plus 2 times the number of parameters in the model. Using Equation (2.4) in
Subsection 2.2.2, the AIC can be written as

AIC = − 2 log
(
L(β̂, σ̂2)

)
+ 2(p + 1)

= n log(2π) + n log(RSS(β̂)/n) + n + 2(p + 1) (7.5)

For nonlinear regression models as defined by Equation (1.3), the AIC is a
function of the residual sum of squares, the number of observations and num-
ber of parameters (Burnham and Anderson, 2002, p. 94), so the same ingredi-
ents are used in both the residual standard error and the AIC, but, as we shall
see shortly, they will not in general produce the same ranking of the models.
By definition, the AIC includes a penalty for the number of parameters used
(the term 2(p + 1) in Equation (7.5)). Therefore, using the AIC will take the
model complexity into account, and this feature may curb overfitting.

We consider the dataset M.merluccius, which contains stock and recruit-
ment data for hake in the period 1982–1996 (see also Section 1.1). Cadima
(2003, pp. 47–49) considers four stock-recruitment models for these data:
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• Beverton-Holt:
f
(
S, (α, k)

)
= αS

1+S/k (introduced in Section 1.1)
• Deriso:

f
(
S, (α, c, k)

)
= αS(1 − cS

k )1/c

• Ricker:
f
(
S, (α, k)

)
= αS exp(−kS) (introduced in Subsection 6.2.1)

• Shepherd:
f
(
S, (α, c, k)

)
= αS

1+(S
k )c

The Beverton-Holt and Ricker models use two parameters, whereas the Deriso
and Shepherd models involve three parameters. For all four models, the para-
meter α is the slope of the regression curve at S = 0. We can fit the models
using nls().

> M.merluccius.bh <- nls(num.fish ~

+ spawn.biomass * alpha/(1 +

+ spawn.biomass/k), data = M.merluccius,

+ start = list(alpha = 5,

+ k = 50))

> M.merluccius.de <- nls(num.fish ~

+ spawn.biomass * alpha *

+ (1 - c * spawn.biomass/k)^(1/c),

+ data = M.merluccius, start = list(alpha = 4.4,

+ k = 106, c = 0.86))

> M.merluccius.ri <- nls(num.fish ~

+ spawn.biomass * alpha *

+ exp(-spawn.biomass/k),

+ data = M.merluccius, start = list(alpha = 5,

+ k = 50))

> M.merluccius.sh <- nls(num.fish ~

+ spawn.biomass * alpha/(1 +

+ (spawn.biomass/k)^c),

+ data = M.merluccius, start = list(alpha = 3.87,

+ k = 61.72, c = 2.25),

+ control = nls.control(maxiter = 100))

In order to obtain convergence in the Shepherd model (M.merluccius.sh), it
is necessary to increase the default number of iterations from 50 and up to
100 using the function nls.control() with the argument maxiter.

To extract the estimated residual standard errors from the model fits, we
could use the summary output for each model fit, but as we are only interested
in a single piece of information in the output, we extract that component
directly using $ (use str(summary(M.merluccius.bh)) to get a list of all
components in the summary object summary(M.merluccius.bh) and identify
the component sigma).
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> summary(M.merluccius.bh)$sigma

[1] 14.69956

> summary(M.merluccius.de)$sigma

[1] 14.78346

> summary(M.merluccius.ri)$sigma

[1] 14.30425

> summary(M.merluccius.sh)$sigma

[1] 14.56758

A comparison of the numbers shows that the Ricker model has the smallest
estimated residual standard error, and therefore that would be the model to
choose.

The function AIC() can be used to retrieve the AIC value from a model fit.
The AIC values for the four stock-recruitment models are obtained as follows,
simply supplying the model fit as the only argument to AIC().

> AIC(M.merluccius.bh)

[1] 127.0562

> AIC(M.merluccius.de)

[1] 128.0263

> AIC(M.merluccius.ri)

[1] 126.2383

> AIC(M.merluccius.sh)

[1] 127.5850

The best model is again found to be the Ricker model, but the mutual ranking
of the models has changed as compared with the ranking based on the residual
standard errors: The two three-parameter models, the Deriso and Shepherd
models, end up having the largest AIC values, being penalised for using one
parameter more than the two other models. However, the differences between
the AIC values for the four model fits are small when judged by the rule of
thumb given in Burnham and Anderson (2002, pp. 70–72), which requires a
difference in AIC of more than 10 in order to definitely prefer one model over
another model. Therefore we would expect the models to provide very similar
descriptions of the dataset M.merluccius.
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Exercises

7.1. In Section 4.4, we consider the model fit

> RScompetition.m1 <- nls(biomass ~

+ a/(1 + b * (x + c * z)), data = RScompetition,

+ start = list(a = 20, b = 1,

+ c = 1))

The interesting parameter is c, and it can be used to quantify the degree of
competition between the two biotypes. Obtain a 95% confidence interval for
this parameter in order to show the range of plausible values of c.

7.2. Are any of the t-tests reported in the summary output of L.minor.m1 of
interest?

7.3. Compare the Clapeyron and Antoine models for the dataset vapCO (Sub-
section 5.2.1) by means of an F -test.

7.4. The Brain-Cousens model is given by the mean function

f
(
x, (b, d, e, f)

)
=

d + fx

1 +
(

x
e

)b
(7.6)

Fit the model to the dataset lettuce. The null hypothesis H0 : f = 0 can
be interpreted as the absence of a hormetical effect at low concentrations. Is
there evidence in the data in favour of rejction of this hypothesis? Test the
hypothesis using both a t-test and an F -test. What is the conclusion?

7.5. The data frame ScotsPine contains leaf area indices for various ages (in
years) collected for a number of Scots pine trees (Pinus sylvestris L.). The
leaf ratio index is the ratio between the single-sided leaf surface area and the
ground surface area. Bailer and Piegorsch (2000, Chapter 2) suggest using the
monoexponential model with mean function

f
(
age, (a, b, c)

)
= a + b · exp(−age/c) (7.7)

to describe the relationship between age and leaf ratio index. Fit the model
and report the 95% confidence intervals for the parameters. Is there anything
suspicious?

7.6. Consider the Michaelis-Menten model fit L.minor.m4 from Section 2.3:

> L.minor.m4 <- glm(rate ~ I(1/conc),

+ data = L.minor, family = gaussian(link = "inverse"))

The intercept in the model fit corresponds to β̃0 = 1/Vm, and the slope
parameter corresponds to β̃1 = K/Vm, which means that we have the following
expressions for the original parameters: Vm = 1/β̃0 and K = β̃1/β̃0. Use the
delta method to obtain parameter estimates of the original parameters in the
Michaelis-Menten model and the corresponding standard errors.
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Grouped Data

Often the relationship between response and predictor has been recorded for
several levels of a grouping variable. Examples are:

• enzymatic reaction rates for a range of substrate concentrations recorded
for each of two treatments

• dry matter weight of plants measured for a number of herbicide doses
recorded for each of two herbicide treatments

We refer to this type of data as grouped data. One reason for considering
grouped data is that data pertaining to one experiment should be analysed in
one model, as this allows comparisons among groups at various levels.

We start out by considering models assuming variance homogeneity but
now also across groups, which means that the same constant variance applies
to all observations regardless of their group membership. In Section 8.1, we will
show how to fit nonlinear regression models for grouped data, and the topic
in Section 8.2 is model reduction of nonlinear regression models for grouped
data. Sections 8.3 and 8.4 deal with the case of a common control group
for all remaining groups and prediction for grouped-data model, respectively.
Variance homogeneity is not always a reasonable assumption, as there may
be more than one source of variation in play in grouped data structures. We
consider this situation in Section 8.5.

8.1 Fitting grouped data models

In comparison with the situation with only one group, which we dealt with
in the previous chapters, estimation of nonlinear regression models for sev-
eral treatments requires that the treatment factor is explicitly introduced. In
the following subsections, we will consider a range of ways to fit nonlinear
regression models to grouped data.

The example used throughout this section will be the dataset Puromycin,
which consists of measurements of enzymatic reaction rates for a range of
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substrate concentrations. The experiment was carried out with two different
treatments: treating the enzyme with the antibiotic puromycin or leaving the
enzyme untreated. The response, predictor, and grouping factor are named
rate, conc, and state, respectively.

We use the function xyplot() (in the package lattice) to show the data.
The resulting scatter plot in Fig. 8.1 shows the data separated by treatment
group. There appears to be a marked difference in the upper limit between the
two treatments, whereas the concentration producing a reaction rate halfway
between 0 and the upper limit could be the same for both treatments.

> xyplot(rate ~ conc | state, data = Puromycin,

+ xlab = "Substrate concentration (ppm)",

+ ylab = "Reaction rates\n(counts/min/min)")
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Fig. 8.1. Conditional scatter plot of reaction rate versus substrate concentration
for the two groups in the dataset Puromycin.

Following Bates and Watts (1988, pp. 33–34), we consider the Michaelis-
Menten model for describing the rate (rate).
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f
(
conc, (K[1],K[2], Vm[1], Vm[2])

)

=

⎧
⎪⎨

⎪⎩

Vm[1]conc
K[1]+conc if state = treated

Vm[2]conc
K[2]+conc if state = untreated

(8.1)

In total, four parameters are used in the mean function because both K and
Vm are assumed to vary from treatment to treatment. We can write the right-
hand side more concisely as

Vm[state]conc
K[state] + conc

where we use the brackets (state) after parameters that vary as the group-
ing/treatment variable state changes. This is the most general model in the
sense that the grouping is reflected in all parameters of the model. In Sec-
tion 8.2, we will show how to simplify the model by collapsing parameters
that do not differ between treatments.

8.1.1 Using nls()

The model given in Equation (8.1) is specified as follows using nls().

> Puromycin.m1 <- nls(rate ~ Vm[state] *

+ conc/(K[state] + conc), data = Puromycin,

+ start = list(K = c(0.1, 0.1),

+ Vm = c(200, 200)))

Using nls() is quite similar to our previous use of the function except for the
use of the square brackets (with the grouping variable inside) to indicate the
grouping: The construction Vm[state] means that the parameter Vm changes
every time the level in the factor state changes, so we get two Vm parameters.
Similarly, there are two K parameters (K[state]). The grouping variable
between the square brackets can either be a factor (as in the example above)
or a numeric vector (different numbers denote different groups). The use of
square brackets does not work with self-starter functions.

The summary output is shown below.

> summary(Puromycin.m1)

Formula: rate ~ Vm[state] * conc/(K[state] + conc)

Parameters:
Estimate Std. Error t value Pr(>|t|)

K1 6.412e-02 7.877e-03 8.141 1.29e-07 ***
K2 4.771e-02 8.281e-03 5.761 1.50e-05 ***
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Vm1 2.127e+02 6.608e+00 32.185 < 2e-16 ***
Vm2 1.603e+02 6.896e+00 23.242 2.04e-15 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 10.4 on 19 degrees of freedom

Number of iterations to convergence: 7
Achieved convergence tolerance: 1.563e-06

This approach for fitting multiple curves is also described for another example
in Venables and Ripley (2002a, Chapter 8), where a dataset with 21 curves is
considered.

8.1.2 Using gnls()

The function gnls() (in the package nlme) provides a different interface for
specifying grouping structures: The specification of the grouping is separated
from the specification of the mean function. The additional argument params
allows the user to specify parameter models for the parameters in the mean
function. Otherwise the specification of gnls() is very similar to how it is
done for nls().

> Puromycin.m2 <- gnls(rate ~ Vm *

+ conc/(K + conc), data = Puromycin,

+ start = list(Vm = c(200, 200),

+ K = c(0.1, 0.1)), params = list(Vm ~

+ state - 1, K ~ state -

+ 1))

The list supplied to params contains a component related to each parameter.
For the parameter Vm, the component is Vm∼ state-1, which should be inter-
preted in much the same way as the following lm call, lm(a∼state-1), fitting
a one-way ANOVA structure in a parameterisation with no intercept term;
that is, there will be a parameter for each group/treatment level (Dalgaard,
2002, Chapter 10). The same applies for the specification of the parameter
model of K. The same starting values as used in the nls() call in Subsec-
tion 8.1.1 above are supplied.

The summary output from the gnls() fit is also obtained using the
summary method.

> summary(Puromycin.m2)

Generalized nonlinear least squares fit
Model: rate ~ Vm * conc/(K + conc)
Data: Puromycin

AIC BIC logLik
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178.6001 184.2776 -84.30006

Coefficients:
Value Std.Error t-value

Vm.statetreated 212.68374 6.608094 32.18534
Vm.stateuntreated 160.28005 6.896014 23.24242
K.statetreated 0.06412 0.007877 8.14053
K.stateuntreated 0.04771 0.008281 5.76105

p-value
Vm.statetreated 0
Vm.stateuntreated 0
K.statetreated 0
K.stateuntreated 0

Correlation:
Vm.sttt Vm.sttn K.sttt

Vm.stateuntreated 0.000
K.statetreated 0.765 0.000
K.stateuntreated 0.000 0.777 0.000

Standardized residuals:
Min Q1 Med Q3

-1.32632750 -0.52742160 -0.06890301 0.51295803
Max

2.44557124

Residual standard error: 10.40003
Degrees of freedom: 23 total; 19 residual

The results are very similar to the results based on Puromycin.m1, and the
explanation given in Subsection 6.1.1 also applies here. The fitting function
gnls() provides greater flexibility than nls() for analysis of grouped data,
and it is also possible to use self-starter functions.

8.1.3 Using nlsList()

The function nlsList() (in the package nlme) partitions the data according
to a grouping variable, and therefore it can also be used for fitting grouped
data.

We use the self-starter function SSmicmen() followed by “|” and then the
grouping factor.

> Puromycin.m3 <- nlsList(rate ~

+ SSmicmen(conc, Vm, K) | state,

+ data = Puromycin)
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The argument pool, which we did not specify for Puromycin.m3, can be added
to control whether or not the pooled standard error across groups should be
used to calculate estimated standard errors. The default setting is TRUE, which
results in a model fit identical to the fits in the previous two subsections. If
the mean function is specified explicitly (without using a self-starter function),
starting values for only one group have to be supplied, as they will be used as
starting values for all groups.

Alternatively, the grouping structure can be specified explicitly first using
the function groupedData() (Pinheiro and Bates, 2000, Section 3.2). Below
we denote the grouped data object resulting from using groupedData() by
Puromycin2.

> Puromycin2 <- groupedData(rate ~

+ conc | state, data = Puromycin)

The two arguments are a formula enhanced with “|” to indicate the grouping
variable and the name of the dataset that contains the variables. The next
step is to fit the model, supplying the generated grouped data object in the
data argument in nlsList().

> Puromycin.m4 <- nlsList(rate ~

+ SSmicmen(conc, a, b), data = Puromycin2)

The following methods can be applied to an nlsList() fit: coef, fitted,
plot (residual plot), predict (predicted values), and summary.

8.2 Model reduction and parameter models

For grouped data, we distinguish between two situations. Interest lies in:

• comparing entire groups (e.g., is there any difference between two treat-
ments in the Puromycin dataset?)

• comparing specific features/parameters between the groups

Subsection 8.2.1 shows how to compare groups, and Subsection 8.2.2 shows a
series of more specific comparisons.

8.2.1 Comparison of entire groups

Let us consider the dataset Puromycin again. Looking at the plot in Fig. 8.1,
there appears to be a difference between the treated and untreated groups:
Treatment with the antibiotic puromycin results in a higher upper limit for
the enzymatic reaction rate, so there seems to be a difference between the
two treatments. Therefore we proceed to test the null hypothesis that the two
parameters K and Vm do not differ between the two groups. The hypothesis
can be formulated in terms of the parameters as follows.
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K(treated) = K(untreated) and Vm(treated) = Vm(untreated)

In order to do so, we need two model fits: one fit where both parameters in the
Michaelis-Menten model vary from group to group and another fit where both
parameters are assumed to be identical for the two groups. The model with
varying parameters was already fitted in Subsections 8.1.1, 8.1.2, and 8.1.3, so
we only need to fit the model assuming common parameters for both groups.
This model is easily fitted, as we just leave out the grouped variable from the
right-hand side of the model formula and modify the list of starting values
accordingly.

> Puromycin.m5 <- nls(rate ~ Vm *

+ conc/(K + conc), data = Puromycin,

+ start = list(K = 0.1, Vm = 200))

In order to compare the two models, we use the F -test as it was defined in
Subsection 7.5.2. The anova method provides a convenient way of obtaining
the F -test of the null hypothesis.

> anova(Puromycin.m5, Puromycin.m1)

Analysis of Variance Table

Model 1: rate ~ Vm * conc/(K + conc)
Model 2: rate ~ Vm[state] * conc/(K[state] + conc)
Res.Df Res.Sum Sq Df Sum Sq F value

1 21 7276.5
2 19 2055.1 2 5221.5 24.138

Pr(>F)
1
2 6.075e-06 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The null hypothesis is rejected with a p-value of 6.07e-06, indicating that the
two groups are indeed very different.

8.2.2 Comparison of specific parameters

In this subsection, we consider a more elaborate approach where we only com-
pare one parameter across groups at a time. Let us continue using the dataset
Puromycin. In the previous subsection, we established that there is a difference
between the treatments, but is it a difference in the parameter K or in the
parameter Vm, or in both parameters? To be able to examine these questions,
we need to use parameter models. Nonlinear regression models for grouped
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data give rise to model formulations for each parameter in the mean function.
Take as an example the model fit Puromycin.m1 from Subsection 8.1.1. The
two parameters K and Vm differ between groups, and therefore we can write
the corresponding parameter models as follows:

K ∼ state
Vm ∼ state

Similarly, the model fit Puromycin.m5 corresponds to the following parameter
models:

K ∼ 1
Vm ∼ 1

The parameter models above imply that there are common K and Vm para-
meters for both treatment groups. The two sets of parameter models listed
above are the extremes where either all or none of the parameters in the mean
function are shared across groups. Two other sets of parameter models can be
envisaged for the Michaelis-Menten model fitted to the Puromycin dataset.
The following parameter models assume different K and common Vm:

K ∼ state
Vm ∼ 1

Finally, the parameter models below correspond to common K and different
Vm:

K ∼ 1
Vm ∼ state

These models are useful if we only want to compare one parameter across
groups at a time. As already mentioned, Fig. 8.1 indicates that the upper limits
(that is, the parameter Vm) differ between the treated and untreated groups.
To examine whether or not a statistical test can confirm this impression, we fit
the model corresponding to the null hypothesis Vm(treated) = Vm(untreated)
with the aim of comparing it to the model fit Puromycin.m1. The model fit
is obtained using nls() with the square brackets formulation introduced in
Subsection 8.1.1.

> Puromycin.m6 <- nls(rate ~ Vm *

+ conc/(K[state] + conc), data = Puromycin,

+ start = list(K = c(0.1, 0.1),

+ Vm = 200))

The F -test is once more obtained using the anova method.

> anova(Puromycin.m6, Puromycin.m1)
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Analysis of Variance Table

Model 1: rate ~ Vm * conc/(K[state] + conc)
Model 2: rate ~ Vm[state] * conc/(K[state] + conc)
Res.Df Res.Sum Sq Df Sum Sq F value

1 20 4815.4
2 19 2055.1 1 2760.4 25.521

Pr(>F)
1
2 7.082e-05 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Thus we can safely conclude that the upper limits are different for the two
treatments. Similarly, we can test the null hypothesis H0 : K(treated) =
K(untreated) by means of an F -test once we have fitted the corresponding
model.

> Puromycin.m7 <- nls(rate ~ Vm[state] *

+ conc/(K + conc), data = Puromycin,

+ start = list(K = 0.1, Vm = c(200,

+ 200)))

Again the anova method produces the results of the F -test.

> anova(Puromycin.m7, Puromycin.m1)

Analysis of Variance Table

Model 1: rate ~ Vm[state] * conc/(K + conc)
Model 2: rate ~ Vm[state] * conc/(K[state] + conc)
Res.Df Res.Sum Sq Df Sum Sq F value

1 20 2240.89
2 19 2055.05 1 185.84 1.7182
Pr(>F)

1
2 0.2056

The p-value is 0.206, and we cannot reject the null hypothesis. This implies
that the substrate concentration needed for the enzyme reaction rate to reach
the level halfway between 0 and the upper limit is independent of the treat-
ment, so the model fit Puromycin.m1 can be simplified to Puromycin.m7. The
summary output for the final model fit Puromycin.m7 is shown below.

> summary(Puromycin.m7)

Formula: rate ~ Vm[state] * conc/(K + conc)
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Parameters:
Estimate Std. Error t value Pr(>|t|)

K 0.05797 0.00591 9.809 4.37e-09 ***
Vm1 208.63004 5.80399 35.946 < 2e-16 ***
Vm2 166.60408 5.80743 28.688 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 10.59 on 20 degrees of freedom

Number of iterations to convergence: 7
Achieved convergence tolerance: 1.373e-06

The size of the difference between the upper limits, which we know is signifi-
cantly different from 0, is roughly 42 counts/min/min. The common estimate
of K is 0.058.

8.3 Common control

It may happen that a special type of grouped data occurs where the response
values for a particular predictor value (typically 0) are not measured for each
group but instead are measured separately and intended to serve as a common
control for all other groups. We illustrate this situation through an example.

The dataset G.aparine originates from Cabanne et al. (1999). The exper-
iment was designed to measure the effect of two formulations of the herbicide
phenmedipham, which is a herbicide that does not move around in the plant,
only exerting its effect where it hits the plants. Herbicide formulation 1 is the
herbicide phenmedipham sprayed alone and herbicide formulation 2 is phen-
medipham sprayed with an adjuvant that should enhance the effect. The test
plant used was cleavers (Galium aparine). The same ten nonzero doses were
used for both formulations, with ten replicates per dose. In addition, there
were taken 20 replicates of the untreated control (dose equal to 0). The data
are shown in Fig. 8.2 using xyplot().

> xyplot(drymatter ~ dose | as.factor(treatment),

+ data = G.aparine, xlab = "Dose (g/ha)",

+ ylab = "Dry matter (mg/pot)")

Cabanne et al. (1999) use the four-parameter log-logistic model introduced
in Equation (1.6) in Section 1.3 to describe how drymatter changes with dose:

f
(
dose, (b, c, d, e)

)
= c +

d − c

1 + exp(b(log(dose) − log(e)))
(8.2)

Due to the common control measurements, there need to be some restrictions
on the parameters. The upper limit is mainly determined by the common
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Fig. 8.2. Conditional scatter plot of the dose-response curves in the dataset
G.aparine.

control measurements (shown in the bottom left window in Fig. 8.2), and
therefore there is no point in assuming varying upper limits (the parameter
d) across the two herbicide formulations. The remaining parameters b, c, and
e can easily vary from formulation to formulation.

Before proceeding to fit the model, we need to do a little manipulation be-
cause the control measurements are grouped separately. They have their own
values of the variable treatment equal to 0 (which was utilised in creating the
plot in Fig. 8.2). This is useful for indicating that the control measurements
form a separate group, which should not be used repeatedly as control mea-
surements for each of the remaining groups, as that approach would illegally
augment the dataset. However, it is not useful for a model fitting. For this
purpose, it is convenient to assign the control measurements to one of the
remaining groups. This is done in the following two R lines, where we define
a new factor treatment2 inside the data frame G.aparine.

> G.aparine$treatment2 <- factor(G.aparine$treatment)

> levels(G.aparine$treatment2) <- c("1",

+ "1", "2")
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The new factor treatment2 is based on the grouping variable treatment.
This means that after executing the first line the factor treatment2 will have
the levels 0, 1, and 2. In the second line, we change that: The levels<-
replacement method is applied to change the levels into 1, 1, and 2, in effect
collapsing the groups 0 and 1 into a single group. The choice of collapsing
groups 0 and 1 rather than 0 and 2 is arbitrary, but the resulting model fit
will be the same for both choices.

Now, we are ready to fit the model using nls() with the grouped-data
specification outlined in Subsection 8.1.1.

> G.aparine.m1 <- nls(drymatter ~

+ c[treatment2] + (d - c[treatment2])/(1 +

+ exp(b[treatment2] * (log(dose) -

+ log(e[treatment2])))),

+ data = G.aparine, start = list(b = c(2,

+ 2), c = c(500, 100), d = 1000,

+ e = c(50, 100)))

The parameters b, c, and e vary from one herbicide formulation to the other
(indicated by the square brackets [treatment2]), whereas the parameter d is
constant. The summary of the resulting model fit is shown below.

> summary(G.aparine.m1)

Formula: drymatter ~ c[treatment2] +
(d - c[treatment2])/(1 + exp(b[treatment2] *
(log(dose) - log(e[treatment2]))))

Parameters:
Estimate Std. Error t value Pr(>|t|)

b1 1.6129 0.3462 4.659 5.33e-06 ***
b2 1.7510 0.2303 7.603 7.07e-13 ***
c1 509.5035 23.4379 21.738 < 2e-16 ***
c2 151.9164 27.2114 5.583 6.56e-08 ***
d 984.8883 12.7957 76.970 < 2e-16 ***
e1 50.8000 7.8465 6.474 5.58e-10 ***
e2 93.4466 8.1626 11.448 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 111.4 on 233 degrees of freedom

Number of iterations to convergence: 7
Achieved convergence tolerance: 9.927e-06

The output shows that as expected only one upper limit (the parameter d) is
estimated, whereas the remaining three parameters are estimated for each of
the two formulations.
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So it is possible to handle common control measurements by specifying the
right model, using a common parameter across the grouping for the aspect of
the model determined by the control measurement.

8.4 Prediction

Prediction for the grouped data situation proceeds in much the same way
as outlined for a single curve in Subsection 2.2.3. We return to the dataset
Puromycin to illustrate the concepts. We begin by defining the vector of pre-
dictor values; that is, concentrations.

> concValues <- with(Puromycin, seq(min(conc),

+ max(conc), length.out = 10))

> concValues

[1] 0.02 0.14 0.26 0.38 0.50 0.62 0.74
[8] 0.86 0.98 1.10

Similarly, we construct the grouping vector by extracting the group levels from
the factor variable state.

> stateVal1 <- levels(Puromycin$state)

> stateVal1

[1] "treated" "untreated"

Then we use the function expand.grid() to create the appropriate data frame
containing both concentrations and grouping information.

> csValues1 <- expand.grid(conc = concValues,

+ state = stateVal1)

> csValues1

conc state
1 0.02 treated
2 0.14 treated
3 0.26 treated
4 0.38 treated
5 0.50 treated
6 0.62 treated
7 0.74 treated
8 0.86 treated
9 0.98 treated
10 1.10 treated
11 0.02 untreated
12 0.14 untreated
13 0.26 untreated
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14 0.38 untreated
15 0.50 untreated
16 0.62 untreated
17 0.74 untreated
18 0.86 untreated
19 0.98 untreated
20 1.10 untreated

Finally, the predict method produces the requested predictions based on the
final model fit obtained in Subsection 8.2.2.

> predict(Puromycin.m7, csValues1)

[1] 53.51423 147.53721 170.59315
[4] 181.01489 186.95393 190.79057
[7] 193.47329 195.45463 196.97784
[10] 198.18535 42.73445 117.81765
[13] 136.22925 144.55166 149.29435
[16] 152.35815 154.50047 156.08269
[19] 157.29907 158.26334

The result is a vector of length 2 · 10 = 20; that is, ten predicted values for
each group. If we only want predicted values for one particular group, then
we still need to define the grouping vector as a factor. For instance, if we only
want predicted values for the group "untreated", then the grouping vector
has to be defined as follows:

> stateVal2 <- factor("untreated",

+ levels = c("treated", "untreated"))

> stateVal2

[1] untreated
Levels: treated untreated

The vector stateVal2 has length 1, only containing the character string
"untreated", but through the argument levels it is ensured that it is de-
fined as a factor with two levels: "treated" and "untreated". In the following
construction of the data frame, it will be replicated appropriately; that is, re-
peated for each element in the vector concValues.

> csValues2 <- data.frame(conc = concValues,

+ state = stateVal2)

> csValues2

conc state
1 0.02 untreated
2 0.14 untreated
3 0.26 untreated
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4 0.38 untreated
5 0.50 untreated
6 0.62 untreated
7 0.74 untreated
8 0.86 untreated
9 0.98 untreated
10 1.10 untreated

The predict method can be applied in the same way as before.

> predict(Puromycin.m1, csValues2)

[1] 47.3444 119.5430 135.4296 142.4018
[5] 146.3188 148.8279 150.5725 151.8559
[9] 152.8395 153.6175

The result is a vector of length 10 that is identical to the last ten predicted
values obtained above using csValues1.

8.5 Nonlinear mixed models

In this section, we introduce nonlinear mixed models by means of an example.
It is intended to be an appetizer only. Pinheiro and Bates (2000) provides a
comprehensive introduction to all the facets of nonlinear mixed model analysis
in R.

Nellemann et al. (2003) carried out experiments to assess the in vitro and
in vivo effects of the fungicides procymidone and vinclozolin. We will only
consider the data obtained from the in vitro assessment of vinclozolin. The
data were obtained using an androgen receptor reporter gene assay, which was
repeated six times (on different days). Each assay resulted in concentration-
response data with nine concentrations (in µM) of the fungicide, and the re-
sponse measured was chemiluminescence (in luminescence units), so the same
nine concentrations were used in all six assays. However, in one assay, only
eight concentrations were used. It is expected that there will be some variation
between the experiments (interassay variation), which may partly be due to
varying efficiency from assay to assay, but it may also be due to other condi-
tions that vary from day to day. Thus we expect that there are two sources of
variation in the data: variation between the measurements within each assay
(this is the measurement error) and variation between assays.

The data are available in R in the package drc as the data frame
vinclozolin, and they are shown in Fig. 8.3. The variables in the data frame
are the predictor variable conc, the response variable effect, and the group-
ing variable exper. The concentration-response pattern in the data is apparent
from Fig. 8.3.
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> xyplot(effect ~ conc | exper, data = vinclozolin,

+ xlab = expression(paste("Concentration (",

+ mu, "M)")), ylab = "Luminescence (LU)")
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Fig. 8.3. Conditional scatter plot of the dose-response curves in the dataset vin-

clozolin.

Following Nellemann et al. (2003), we will use the three-parameter log-logistic
model given by the mean function:

f
(
conc, (b, d, e)

)
=

d

1 +
(

conc
e

)b
(8.3)

We start out by fitting such a model to the data from each assay separately
using nls(). There are several reasons for taking this route. One reason is
that in many cases it is easier to fit the model to the individual curves than to
the collection of curves, and this approach also provides good starting values
for the model involving all curves. In general, it may be a good idea to build
a model for grouped data on the basis of models for the individual groups.

We anticipate interassay variation, but the question is in which parameters
this variation manifests itself. It can happen that there is a lot of variation
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across assays for all parameters in the model function, but more often it only
shows up in a few or even a single parameter.

The individual assay data are fitted below using nls(), supplying sensible
starting values.

> LL3.formula <- effect ~ d/(1 +

+ exp(b * (log(conc) - log(e))))

> vinclozolin.e1.m <- nls(LL3.formula,

+ data = vinclozolin, subset = exper ==

+ 10509, start = list(b = 1,

+ d = 1000, e = 0.26))

> vinclozolin.e2.m <- nls(LL3.formula,

+ data = vinclozolin, subset = exper ==

+ 10821, start = list(b = 1,

+ d = 1200, e = 0.074))

> vinclozolin.e3.m <- nls(LL3.formula,

+ data = vinclozolin, subset = exper ==

+ 10828, start = list(b = 1,

+ d = 2800, e = 0.15))

> vinclozolin.e4.m <- nls(LL3.formula,

+ data = vinclozolin, subset = exper ==

+ 10904, start = list(b = 1,

+ d = 2700, e = 0.03))

> vinclozolin.e5.m <- nls(LL3.formula,

+ data = vinclozolin, subset = exper ==

+ 11023, start = list(b = 1,

+ d = 1400, e = 0.14))

> vinclozolin.e6.m <- nls(LL3.formula,

+ data = vinclozolin, subset = exper ==

+ 11106, start = list(b = 0.5,

+ d = 2600, e = 0.02))

Note how we initially define a model formula (LL3.formula) and then use it
repeatedly in the six model fits. The following R lines create a plot of the
data and the fitted concentration-response curves.

> plot(effect ~ conc, data = vinclozolin,

+ pch = as.numeric(exper), log = "x",

+ xlim = c(1e-04, 10), xlab = expression(paste

+ ("Concentration(", mu, "M)")), ylab = "Luminescence(LU)")

> concVec <- exp(seq(log(1e-04),

+ log(10), length.out = 50))

> lines(concVec, predict(vinclozolin.e1.m,

+ data.frame(conc = concVec)),

+ lty = 2)

> lines(concVec, predict(vinclozolin.e2.m,
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+ data.frame(conc = concVec)),

+ lty = 3)

> lines(concVec, predict(vinclozolin.e3.m,

+ data.frame(conc = concVec)),

+ lty = 4)

> lines(concVec, predict(vinclozolin.e4.m,

+ data.frame(conc = concVec)),

+ lty = 5)

> lines(concVec, predict(vinclozolin.e5.m,

+ data.frame(conc = concVec)),

+ lty = 6)

> lines(concVec, predict(vinclozolin.e6.m,

+ data.frame(conc = concVec)),

+ lty = "3313")
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Fig. 8.4. Fitted dose-response curves based on individual fits of the three-parameter
log-logistic model for each assay in the dataset vinclozolin (dashed lines). The
unusual line type specification for the sixth assay is needed to avoid getting a solid
line (read more on the help page of par).
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The resulting plot is shown in Fig. 8.4, indicating that the interassay vari-
ation is by far most pronounced at concentration 0; that is, in the variation
in the upper limit (the parameter d). Figure 8.4 shows that for each assay
the three-parameter log-logistic model roughly speaking captures the assay-
specific concentration-response trend. However, the real interest lies in the
overall dose-response trend (sometimes called the population trend), which is
the trend adjusted for assay-specific distortions or shifts.

The previous sections and chapters have considered nonlinear regression
models assuming one single source of randomness: the error attached to each
individual measurement. As we have seen in Fig. 8.4, for a group of assays,
the variation between assays also needs to be considered. We can think of
this variation as being derived by minute unobservable changes in the en-
vironment of the assay that occur at random. In a nonlinear mixed-model
approach, this randomness is quantified in terms of random effects. In Equa-
tion (8.3), there are three parameters (b, d, and e), but for each individual
assay, we only observe a concentration-response curve where each parameter
is distorted by some positive or negative quantities: b + δ1, d + δ2, and e + δ3.
The quantities δ1, δ2, and δ3 are the random effects, which explain the part
of the variation stemming from unobservable sources such as changes in envi-
ronmental conditions. Consequently, there will be different random effects in
play for different assays, but still it is usually assumed that random effects for
the same parameter from different assays follow the same normal distribution
with mean 0 and some unknown variance parameter, which is often called a
variance component. This means that a nonlinear mixed model is a nonlinear
regression model that has been extended by allowing some or all of the para-
meters to vary randomly across groups in order to account for the variation
between groups. Another consequence of introducing random effects is that
all measurements within a group are correlated, reflecting the fact that they
all share the same experimental conditions.

In contrast, the parameters b, d, and e are called the fixed effects or fixed-
effects parameters, as they remain constant across the groups. The fixed-
effects parameters explain the part of the variation in the data that is largely
determined by the recorded predictor variables. In the case of the dataset
vinclozolin, the systematic concentration-response trend is governed largely
by the fungicide concentration (the predictor variable). The fixed-effect para-
meters should be viewed as average or population parameter values.

As we are considering grouped data, it is natural to formulate parameter
models similar to what was done in Section 8.2.2, but we will extend the
specification by considering parameter models for both the fixed effects and
the random effects.

The parameter models for the fixed effects are given below.

b ∼ 1
d ∼ 1
e ∼ 1
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There is only one b, one d, and one e, as the six assays are repeated without
changing the experimental design. The parameter models for the random-
effects part of the model are then specified having our initial individual analy-
sis results in mind.

d ∼ exper

This means that random effects are only assigned to the parameter d (the
upper limit) but not to the parameters b and e.

The random effects are assumed to be normally distributed with mean 0
and an unknown variance σ2

exper, so the introduction of random effects means
that there are two layers of variation, both of which are described by means
of normal distributions. Therefore such a model is often called a hierarchical
model. Inclusion of random effects according to the parameter model above
means that one additional parameter has to be estimated, namely the variance
component σ2

exper, reflecting the variation exhibited in the six random effects.
Another way to think about the model is to imagine that for each assay or

group a random parameter determining the upper limit was sampled from a
normal distribution with mean d and variance σ2

exper. Thus, in a hypothetical
situation with many assays available, the average upper limit across the assays
would be close to d, and we would expect roughly 95% of the assays to have
upper limits within a distance of 2σexper from d.

Nonlinear mixed models can be fitted in R using the fitting function
nlme() in the package nlme (Pinheiro and Bates, 2000, Chapter 7). The pa-
rameter models above translate into the following specification of nlme():

> vinclozolin.m1 <- nlme(effect ~

+ d/(1 + exp(b * (log(conc) -

+ log(e)))), fixed = list(b ~

+ 1, d ~ 1, e ~ 1), random = d ~

+ 1 | exper, start = c(1, 1000,

+ 0.1), data = vinclozolin)

We assess the model fit by adding the fitted concentration-response curve to
the plot shown in Fig. 8.4.

> lines(concVec, predict(vinclozolin.m1,

+ data.frame(conc = concVec),

+ level = 0), lty = 1, lwd = 3)

The argument level determines which kinds of predictions should be re-
turned. The level 0 corresponds to the average trend or population trend,
which is what we are interested in here. Figure 8.5 shows that the popula-
tion concentration-response trend based on the six assays lies somewhere in
the middle between the six individual assay-specific concentration-response
trends.

The summary of the model fit is as usual obtained using summary.
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Fig. 8.5. Fitted dose-response curves based on individual fits of the three-parameter
log-logistic model for each assay (the dashed lines) and the fitted dose-response curve
based on a nonlinear mixed-model analysis of the dataset vinclozolin (solid).

> summary(vinclozolin.m1)

Nonlinear mixed-effects model fit by maximum likelihood
Model: effect ~ d/(1 + exp(b * (log(conc) - log(e))))
Data: vinclozolin

AIC BIC logLik
715.5204 725.3719 -352.7602

Random effects:
Formula: d ~ 1 | exper

d Residual
StdDev: 695.3775 150.9623

Fixed effects: list(b ~ 1, d ~ 1, e ~ 1)
Value Std.Error DF t-value p-value

b 0.4654 0.03896 45 11.945080 0
d 1976.4209 298.62209 45 6.618468 0
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e 0.0793 0.01483 45 5.349841 0
Correlation:
b d

d -0.051
e 0.529 -0.145

Standardized Within-Group Residuals:
Min Q1 Med Q3

-1.83842038 -0.58871949 -0.06161384 0.54652837
Max

2.07902662

Number of Observations: 53
Number of Groups: 6

The summary output contains:

• the model specification together with some measures for model selection
• the estimated variance components
• the estimated fixed-effects parameters (the three parameters in Equa-

tion (8.3))
• the five-number summary of the residuals
• the number of observations and the number of groups

The nonlinear mixed-model analysis has succinctly summarised the six assays,
both yielding estimates for the parameters in the three-parameter log-logistic
model that are of direct interest in this example (Nellemann et al., 2003)
and giving an idea about the interassay variability in this kind of experiment,
which is roughly 4–5 times as large as the within-assay variability.

To extract the estimated fixed-effects parameters and the estimated vari-
ance component and residual variance (and corresponding standard devia-
tions), the functions fixef() and VarCorr(), respectively, can be used. The
estimated fixed-effects parameters and standard deviations with the accompa-
nying approximate confidence intervals can be obtained using intervals().

Apart from the predict and summary methods already used, there is a
plot method for displaying the residual plot. The residuals can be extracted
directly using the residuals method. We refer to Pinheiro and Bates (2000,
Appendix B) for a complete overview of the available functions and methods.

In practice, there often occurs both a grouping variable, which we need
to use to account for between-group variation, and a treatment variable (or
even several such variables), which is of primary interest. This means that the
parameter models will have to reflect the grouping structure both in the fixed
effects and the random effects (see Exercise 8.5 for an example).
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Exercises

8.1. Fit an appropriate grouped data model to the dataset S.alba introduced
in Section 1.3.

8.2. The asymptotic regression model can be used to describe growth. The
corresponding mean function is defined as follows:

f
(
x, (a, b, c)

)
= a + (b − a)(1 − exp(−cx))

Fit the model to the dataset methionine.

8.3. Obtain the predicted value for a dose value of 500 based on the model fit
G.aparine.m1.

8.4. Fit the three-parameter log-logistic model to the dataset vinclozolin,
but this time using a model where random effects are assigned to all three
parameters. Use the summary output for the resulting model fit to decide
the parameter for which to omit the corresponding random effects. Fit the
simplified model. Use the anova method to confirm that there is no evidence
in the data against the simplified model.

8.5. Nielsen et al. (2004) consider a nonlinear mixed-model analysis of the
dataset provided in the data frame spinach. Consider the following parameter
models based on a four-parameter log-logistic model for the fixed and random
effects:

Fixed effects
b ∼ HERBICIDE
c ∼ HERBICIDE
d ∼ HERBICIDE
e ∼ HERBICIDE

Random effects
c ∼ CURVE
d ∼ CURVE

Fit the corresponding nonlinear mixed model using nlme().
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Table A.1. Models considered in this book.

Model Page

Antoine 56

Beverton-Holt 2, 106

Biexponential 87

Brain-Cousens 58, 71, 108

Clapeyron 56

Demodulator 48

Deriso 106

Exponential decay 24, 31

Hockey stick 41

Hyperbolic 4, 35

Logistic 70, 101

Log-logistic (4 parameters) 5, 60, 118

Log-logistic (3 parameters) 58

Michaelis-Menten 9, 30

Monoexponential 108

Ricker 78, 106

Shepherd 106

Verhulst 70
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Table A.2. Datasets used in this book.

Discipline Page Package
Name

Biology

exp1 87 nlrwr

exp2 87 nlrwr

L.minor 9 nlrwr

Leaves 35 NRAIA

methionine 131 drc

RGRcurve 33 nlrwr

RScompetition 4, 45 drc

ScotsPine 108 nlrwr

Chemistry

btb 35 nlrwr

Isom 53 NRAIA

sts 35 nlrwr

vapCO 56 nlrwr

Fisheries

M.merluccius 2, 105 nlrwr

O.mykiss 91 drc, nlrwr
sockeye 78 nlrwr

Engineering

Chwirut2 23 NISTnls

IQsig 48 nlrwr

Medicine

heartrate 71 drc

Puromycin 109 datasets

wtloss 20 MASS

Toxicology

G.aparine 118 drc

lettuce 57 drc

ryegrass 60 drc

S.alba 4 drc

secalonic 101 drc

spinach 131 drc

vinclozolin 123 drc

Other

Indometh (pharmacokinetics) 71 datasets

segreg (energy consumption) 44 alr3

US.pop (population growth) 71 car
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Table B.1. Available self-starter functions for nls().

Model No. Self-starter function

param. Mean function

Biexponential 4 SSbiexp(x, A1, lrc1, A2, lrc2)

A1 · exp(− exp(lrc1) · x) + A2 · exp(− exp(lrc2) · x)

Asymptotic 3 SSasymp(x, Asym, R0, lrc)

regression Asym + (R0 − Asym) · exp(− exp(lrc)x)

Asymptotic 3 SSasympOff(x, Asym, lrc, c0)

regression Asym · (1 − exp(− exp(lrc)(x − c0)))
with offset

Asymptotic 2 SSasympOrig(x, Asym, lrc)

regression (c0 = 0) Asym · (1 − exp(− exp(lrc)x))

First-order 3 SSfol(x1, x2, lKe, lKa, lCl)

compartment x1 · exp(lKe + lKa − lCl)/(exp(lKa) − exp(lKe))
·(exp(− exp(lKe)x2) − exp(− exp(lKa)x2))

Gompertz 3 SSgompertz(x, Asym, b2, b3)

Asym · exp(−b2 · b3x)

Logistic 4 SSfpl(x, A, B, xmid, scal)

A + (B − A)/(1 + exp((xmid − x)/scal))

Logistic (A = 0) 3 SSlogis(x, Asym, xmid, scal)

Asym/(1 + exp((xmid − x)/scal))

Michaelis-Menten 2 SSmicmen(x, Vm, K)

V m · x/(K + x)

Weibull 4 SSweibull(x, Asym, Drop, lrc, pwr)

Asym − Drop · exp(− exp(lrc) · xpwr)
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All the packages listed below will be available in the R session after installation
of nlrwr from CRAN (http://cran.r-project.org) and subsequent loading
(using library(nlrwr)).

Table C.1. Packages used in this book.

Package Description

alr3 Methods and data to accompany Weisberg (2005)

car Companion to Applied Regression

datasets The R Datasets Package (in the R standard installation)

drc Analysis of dose-response curve

HydroMe Estimation of Soil Hydraulic Parameters from Experimental Data

lattice Lattice Graphics

lmtest Testing Linear Regression Models

MASS Support software for Venables and Ripley (2002)

NISTnls Nonlinear least-squares examples from NIST

nlme Linear and Nonlinear Mixed Effects Models

nlrwr Support package for this book

nls2 Nonlinear regression with brute force

nlstools Tools for nonlinear regression diagnostics

NRAIA Datasets from Bates and Watts (1988)

sandwich Robust Covariance Matrix Estimators

stats The R Stats Package (in the R standard installation)
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Table C.2. Main functions used in this book.

Function Package Page

AIC() stats 107

bartlett.test() stats 65

bcSummary() nlrwr 82

boxcox.nls() nlrwr 82

coeftest() lmtest 85

confint2() nlrwr 99

delta.method() alr3 100

deriv() stats 40

getInitial() stats 34

glm() stats 19

gnls() nlme 112

levene.test() car 65

nlme() nlme 128

nls() stats All over the book!

nls.control() stats 52

nls2() nls2 28

nlsBoot() nlstools 97

nlsContourRSS() nlstools 16

nlsList() nlme 113

plotfit() NRAIA 20
(also in nlstools)

sandwich() sandwich 84

selfStart() stats 33

shapiro.test() stats 69

xyplot() lattice 6, 118, 123
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