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Preface

The past 25 years have seen great advances in both Bayesian and frequentist
methods for data analysis. The most significant advance for the Bayesian approach
has been the development of Markov chain Monte Carlo methods for estimating
expectations with respect to the posterior, hence allowing flexible inference and
routine implementation for a wide range of models. In particular, this development
has led to the more widespread use of hierarchical models for dependent data. With
respect to frequentist methods, estimating functions have emerged as a unifying
approach for determining the properties of estimators. Generalized estimating
equations provide a particularly important example of this methodology that allows
inference for dependent data.

The aim of this book is to provide a modern description of Bayesian and
frequentist methods of regression analysis and to illustrate the use of these methods
on real data. Many books describe one or the other of the Bayesian or frequentist
approaches to regression modeling in different contexts, and many mathematical
statistics texts describe the theory behind Bayesian and frequentist approaches
without providing a detailed description of specific methods. References to such
texts are given at the end of Chaps. 2 and 3. Bayesian and frequentist methods are
not viewed here as competitive, but rather as complementary techniques, and in this
respect this book has some uniqueness.

In embarking on the writing of this book, I have been influenced by many current
and former colleagues. My early training was in the Mathematics Department at
the University of Nottingham and my first permanent academic teaching position
was in the Mathematics Department at Imperial College of Science, Technology
and Medicine in London. During this period I was introduced to the Bayesian
paradigm and was greatly influenced by Adrian Smith, both as a lecturer and as
a Ph.D. adviser. I have also benefited, and continue to benefit, from numerous
conversations with Dave Stephens who I have known for over 25 years. Following
my move to the University of Washington in Seattle I was exposed to a very modern
view of frequentist methods in the Department of Biostatistics. In particular, Scott
Emerson, Patrick Heagerty and Thomas Lumley have provided constant stimulation.
These interactions, among many others, have influenced the way I now think about
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statistics, and it is this exposure which I hope has allowed me to write a balanced
account of Bayesian and frequentist methods. There is some theory in this book and
some data analysis, but the focus is on material that lies between these endeavors
and concerns methods. At the University of Washington there is an advanced three-
course regression methods sequence and this book arose out of my teaching of the
three courses in the sequence.

If modern computers had been available a 100 years ago, the discipline of
statistics would have developed in a dramatically different fashion to the way in
which it actually evolved. In particular, there would probably be less dependence on
linear and generalized linear models, which are mathematically and computationally
convenient. While these model classes are still useful and do possess a number
of convenient mathematical and computational properties, I believe they should be
viewed as just two choices within a far wider range of models that are now available.
The approach to modeling that is encouraged in this book is to first specify the
model suggested by the background science and to then proceed to examining the
mathematical and computational aspects of the model.

As a preparation for this book, the reader is assumed to have a grasp of calculus
and linear algebra and have taken first courses in probability and statistical theory.
The content of this book is as follows. An introductory chapter describes a number
of motivating examples and discusses general issues that need consideration before
a regression analysis is carried out. This book is then broken into five parts: I, In-
ferential Approaches; II, Independent Data; III, Dependent Data; IV, Nonparametric
Modeling; V, Appendices. The first two chapters of Part I provide descriptions of the
frequentist and Bayesian approaches to inference, with a particular emphasis on the
rationale of each approach and a delineation of situations in which one or the other
approach is preferable. The third chapter in Part I discusses model selection and
hypothesis testing. Part II considers independent data and contains three chapters on
the linear model, general regression models (including generalized linear models),
and binary data models. The two chapters of Part III consider dependent data
with linear models and general regression models. Mixed models and generalized
estimating equations are the approaches to inference that are emphasized. Part IV
contains three chapters on nonparametric modeling with an emphasis on spline and
kernel methods. The examples and simulation studies of this book were almost
exclusively carried out within the freely available R programming environment. The
code for the examples and figures may be found at:

http://faculty.washington.edu/jonno/regression-methods.html

along with the inevitable errata and links to datasets. Exercises are included at
the end of all chapters but the first. Many of these exercises concern analyses of
real data. In my own experience, a full understanding of methods requires their
implementation and application to data.

In my own teaching I have based three one-quarter courses on the following.
Regression Methods for Independent Data is based on Part II, dipping into topics in
Part I as needed and using motivating examples from Chap. 1. Regression Methods
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for Dependent Data centers on Part II, again using examples from Chap. 1, and
building on the independent data material. Finally, Nonparametric Regression and
Classification is based on the material in Part IV. The latter course is stand-alone in
the sense of not requiring the independent and dependent data courses though extra
material on a number of topics, including linear and generalized linear models and
mixed models, will need to be included if not previously encountered.

In the 2003–2004 academic year I was the Genentech Professor and received
funding specifically to work on this book. The staff at Springer have been very
helpful at all stages. John Kimmel was the editor during most of the writing of this
book and I am appreciative of his gentle prodding and advice. About 18 months
from the completion of this book, Marc Strauss stepped in and has also been very
supportive. Many of my colleagues have given comments on various chapters, but
I would like to specifically thank Lurdes Inoue, Katie Kerr, Erica Moodie, Zoe
Moodie, Ken Rice, Dave Stephens, Jon Wellner, Daniela Witten, and Simon Wood
for feedback on different parts of this book. Finally, lest we forget, I would like
to thank all of those students who suffered through initial presentations of this
material—I hope your sacrifices were not in vain. . .

Seattle, WA Jon Wakefield
June 2012
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Chapter 1
Introduction and Motivating Examples

1.1 Introduction

This book examines how a response is related to covariates using mathematical mod-
els whose unknown parameters we wish to estimate using available information—
this endeavor is known as regression analysis. In this first chapter, we will begin in
Sect. 1.2 by making some general comments about model formulation. In Sect. 1.3,
a number of examples will be described in order to motivate the material to
follow in the remainder of this book. In Sect. 1.4, we examine, in simple idealized
scenarios, how “randomness” is induced by not controlling for covariates in a
model. Section 1.5 briefly contrasts the Bayesian and frequentist approaches to
inference, and Sect. 1.7 gives references that expand on the material of this chapter.
Finally, Sect. 1.6 summarizes the overall message of this book which is that in
many instances, carefully thought out Bayesian and frequentist analyses will provide
similar conclusions; however, situations in which one or the other approach may be
preferred are also described.

1.2 Model Formulation

In a regression analysis, the following steps may be followed:

1. Formulate a model based on the nature of the data, the subject matter context,
and the aims of the data analysis.

2. Examine the mathematical properties of the initial model with respect to
candidate inference procedures. This examination will focus on whether specific
methods are suited to both the particular context under consideration and the
specific questions of interest in the analysis.

3. Consider the computational aspects of the model.

J. Wakefield, Bayesian and Frequentist Regression Methods, Springer Series
in Statistics, DOI 10.1007/978-1-4419-0925-1 1,
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2 1 Introduction and Motivating Examples

The examination in steps 2 and 3 may suggest that we need to change the model.1

Historically, the range of model forms that were available for regression modeling
was severely limited by computational and, to a lesser extent, mathematical
considerations. For example, though generalized linear models contain a flexible
range of alternatives to the linear model, a primary motivation for their formulation
was ease of fitting and mathematical tractability. Hence, step 3 in particular took
precedent over step 1.

Specific aspects of the initial model formulation will now be discussed in
more detail. When carrying out a regression analysis, careful consideration of the
following issues is vital and in many instances will outweigh in importance the
particular model chosen or estimation method used. The interpretation of parameters
also depends vitally on the following issues.

Observational Versus Experimental Data

An important first step in data analysis is to determine whether the data are
experimental or observational in nature. In an experimental study, the experimenter
has control over at least some aspects of the study. For example, units (e.g., patients)
may be randomly assigned to covariate groups of interest (e.g., treatment groups).
If this randomization is successfully implemented, any differences in response will
(in expectation) be due to group assignment only, allowing a causal interpretation
of the estimated parameters. The beauty of randomization is that the groups are
balanced with respect to all covariates, crucially including those that are unobserved.

In an observational study, we never know whether observed differences between
the responses of groups of interest are due, at least partially, to other “confounding”
variables related to group membership. If the confounders are measured, then there
is some hope for controlling for the variability in response that is not due to group
membership, but if the confounders are unobserved variables, then such control is
not possible. In the epidemiology and biostatistics literature, this type of discrepancy
between the estimate and the “true” quantity of interest is often described as bias
due to confounding. In later chapters, this issue will be examined in detail, since it
is a primary motivation for regression modeling. In observational studies, estimated
coefficients are traditionally described as associations, and causality is only alluded
to more informally via consideration of the combined evidence of different studies
and scientific plausibility. We expand upon this discussion in Sect. 1.4.

Predictive models are more straightforward to build than causal models. To
quote Freedman (1997), “For description and prediction, the numerical values of the
individual coefficients fade into the background; it is the whole linear combination
on the right-hand side of the equation that matters. For causal inference, it is the
individual coefficients that do the trick.”

1To make clear, we are not suggesting refining the model based on inadequacies of fit; this is a
dangerous enterprise, as we discuss in Chap. 4.
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Study Population

Another important step is to determine the population from which the data were
collected so that the individuals to whom inferential conclusions apply may be
determined. Extrapolation of inference beyond the population providing the data
is a risky enterprise.

Throughout this book, we will take a superpopulation view in which probability
models are assumed to describe variability with respect to a hypothetical, infinite
population. The study population that exists in practice consists of N units, of which
n are sampled. To summarize:

Superpopulation (∞) → Study Population (N) → Sample (n)

Inference for the parameters of a superpopulation may be contrasted with a survey
sampling perspective in which the focus is upon characteristics of the responses of
the N units; in the latter case, a full census (n = N ) will obviate the need for
statistical analysis.

The Sampling Scheme

The data collection procedure has implications for the analysis, in terms of the
models that are appropriate, the questions that may be asked, and the inferential
approach that may be adopted. In the most straightforward case, the data arise
through random sampling from a well-defined population. In other situations, the
random samples may be drawn from within covariate-defined groups, which may
improve efficiency of estimation by concentrating the sampling in informative
groups but may limit the range of questions that can be answered by the data
due to the restrictions on the sampling scheme. In more complex situations, the
data may result from outcome-dependent sampling. For example, a case-control
study is an outcome-dependent sampling scheme in which the binary response of
interest is fixed by design, and the random variables are the covariates sampled
within each of the outcome categories (cases and controls). For such data, care is
required because the majority of conventional approaches will not produce valid
inference, and analysis is carried out most easily using logistic regression models.
Similar issues are encountered in the analysis of matched case-control studies, in
which cases and controls are matched upon additional (confounder) variables. Bias
in parameters of interest will occur if such data are analyzed using methods for
unmatched studies, again because the sampling scheme has not been acknowledged.
In the case of individually matched cases and controls (in which, for example, for
each case a control is picked with the same gender, age, and race), conventional
likelihood-based methods are flawed because the number of parameters (including
one parameter for each case-control pair) increases with the sample size (providing
an example of the importance of paying attention to the regularity conditions
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required for valid inference)—conditional likelihood provides a valid inferential
approach in this case. The analysis of data from case-control studies is described
in Chap. 7.

Missing Data

Measurements may be missing on the responses which can lead to bias in estimation,
depending on the reasons for the absence. It is clear that bias will arise when the
probability of missingness depends on the size of the response that would have been
observed. An extreme example is when the result of a chemical assay is reported
as “below the lower limit of detection”; such a variable may be reported as the
(known) lower limit, or as a zero, and analyzing the data using these values can
lead to substantial bias. Removing these observations will also lead to bias. In
the analysis of individual-level data over time (to give so-called longitudinal data)
another common mechanism for missing observations is when individuals drop out
of the study.

Aim of the Analysis

The primary aim of the analysis should always be kept in mind; in particular, is
the purpose descriptive, exploratory (e.g., for hypothesis generation), confirmatory
(with respect to an a priori hypothesis), or predictive? Regression models can be
used for each of these endeavors, but the manner of their use will vary. Large
data sets can often be succinctly described using parsimonious2 regression models.
Exploratory studies are often informal in nature, and many different models may
be fitted in order to gain insights into the structure of the data. In general, however,
great care must be taken with data dredging since spurious associations may be
discovered due to chance alone.

The level of sophistication of the analysis, and the assumptions required, will
vary as the aims and abundance of data differ. For example, if one has a million
observations independently sampled from a population, and one requires inference
for the mean of the population, then inference may be based on the sample mean
and sample standard deviation alone, without recourse to more sophisticated models
and approaches—we would expect such inference to be reliable, being based on few
assumptions. Similarly, inference is straightforward if we are interested in the aver-
age response at an observed covariate value for which abundant data were recorded.

2The Oxford English Dictionary describes parsimony as “. . . that no more causes or forces should
be assumed than are necessary to account for the facts,” which serves our purposes, though care is
required in the use of the words “causes,” “forces,” and “facts.”
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However, if such data are not available (e.g., when the number of covariates becomes
large or the sample size is small), or if interpolation is required, regression models
are beneficial, as they allow the totality of the data to estimate global parameters
and smooth across unstructured variability. To answer many statistical questions,
very simple approaches will often suffice; the art of statistical analysis is deciding
upon when a more sophisticated approach is necessary/warranted, since dependence
on assumptions usually increases with increasing sophistication.

1.3 Motivating Examples

We now introduce a number of examples to illustrate different data collection
procedures, types of data, and study aims. We highlight the distinguishing features
of the data in each example and provide a signpost to the chapter in which
appropriate methods of analysis may be found.

In general, data {Yi,xi, i = 1, . . . , n} will be available on n units, with Yi

representing the univariate response variable and xi = [1, xi1, . . . , xik] the row
vector of explanatory variables on unit i. Variables written as uppercase letters will
represent random variables, and those in lowercase fixed quantities, with boldface
representing vectors and matrices.

1.3.1 Prostate Cancer

We describe a dataset analyzed by Tibshirani (1996) and originally presented by
Stamey et al. (1989). The data were collected on n = 97 men before radical
prostatectomy, which is a major surgical operation that removes the entire prostate
gland along with some surrounding tissue. We take as response, Y , the log of
prostate specific antigen (PSA); PSA is a concentration and is measured in ng/ml.
In Stamey et al. (1989), PSA was proposed as a preoperative marker to predict the
clinical stage of cancer. As well as modeling the stage of cancer as a function
of PSA, the authors also examined PSA as a function of age and seven other
histological and morphometric covariates. We take as our aim the building of a
predictive model for PSA, using the eight covariates:

• log(can vol): The log of cancer volume, measured in milliliters (cc). The area
of cancer was measured from digitized images and multiplied by a thickness to
produce a volume.

• log(weight): The log of the prostate weight, measured in grams.
• Age: The age of the patient, in years.
• log(BPH): The log of the amount of benign prostatic hyperplasia (BPH), a

noncancerous enlargement of the prostate gland, as an area in a digitized image
and reported in cm2.
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• SVI: The seminal vesicle invasion, a 0/1 indicator of whether prostate cancer
cells have invaded the seminal vesicle.

• log(cap pen): The log of the capsular penetration, which represents the level of
extension of cancer into the capsule (the fibrous tissue which acts as an outer
lining of the prostate gland). Measured as the linear extent of penetration, in cm.

• Gleason: The Gleason score, a measure of the degree of aggressiveness of the
tumor. The Gleason grading system assigns a grade (1–5) to each of the two
largest areas of cancer in the tissue samples with 1 being the least aggressive
and 5 the most aggressive; the two grades are then added together to produce the
Gleason score.

• PGS45: The percentage of Gleason scores that are 4 or 5.

The BPH and capsular penetration variables originally contained zeros, and a
small number was substituted before the log transform was taken. It is not clear
from the original paper why the log transform was taken though PSA varies over a
wide range, and so linearity of the mean model may be aided by the log transform.
It is also not clear why the variable PGS45 was constructed. If initial analyses were
carried out to find variables that were associated with PSA, then significance levels
of hypothesis tests will not be accurate (since they are not based on an a priori
hypotheses but rather are the result of data dredging).

Carrying out exploratory data analysis (EDA) is a vital step in any data analysis.
Such an enterprise includes the graphical and tabular examination of variables, the
checking of the data for errors (for example, to see if variables are within their
admissible ranges), and the identification of outlying (unusual) observations or
influential observations that when perturbed lead to large changes in inference. This
book is primarily concerned with methods, and the level of EDA that is performed
will be less than would be desirable in a serious data analysis.

Figure 1.1 displays the response plotted against each of the covariates and
indicates a number of associations. The association between Y and log(can vol)
appears particularly strong. In observational settings such as this, there are often
strong dependencies between the covariates. We may investigate these dependencies
using scatterplots (or tables, if both variables are discrete). Figure 1.2 gives an
indication of the dependencies between those variables that exhibit the strongest
associations; log(can vol) is strongly associated with a number of other covariates.
Consequently, we might expect that adding log(can vol) to a model for log(PSA) that
contains other covariates will change the estimated associations between log(PSA)
and the other variables.

We define Yi as the log of PSA and xi = [1, xi1, . . . , xi8] as the 1 × 9 row
vector associated with patient i, i = 1, . . . , n = 97. We may write a general mean
model as E[Yi | xi] = f(xi,β) where f(·, ·) represents the functional form and
β unknown regression parameters. The most straightforward form is the multiple
linear regression

f(xi,β) = β0 +
∑

j∈C

xijβj , (1.1)
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Fig. 1.1 The response y = log(PSA) plotted versus each of the eight explanatory variables, x, in
the prostate cancer study, with local smoothers superimposed for continuous covariates

where C corresponds to the subset of elements of {1, 2, . . . , 8} whose associated
covariates we wish to include in the model and β = [β0, {βj, j ∈ C}]T. The
interpretation of each of the coefficientsβj depends crucially on knowing the scaling
and units of measurement of the associated variables xj .

Most of the x variables in this study are measured with error (as is clear from
their derivation, e.g., log(BPH) is derived from a digitized image), and if we are
interested in estimating causal effects, then this aspect needs to be acknowledged
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Fig. 1.2 Associations between selected explanatory variables in the prostate cancer study, with
local smoothers superimposed for continuous covariates

in the models that are fitted, since inference is affected in this situation, which is
known as errors-in-variables.

Distinguishing Features. Inference for multiple linear regression models is de-
scribed in Chap. 5, including a discussion of parameter interpretation. Chapter 4
discusses the difficult but important topics of model formulation and selection.
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Table 1.1 Outcome after head injury as a function of four covariates: pupils, hematoma present,
coma score, and age

Pupils Good Poor
Hematoma present No Yes No Yes
Coma score Low High Low High Low High Low High

1–25 Dead 9 5 5 7 58 11 32 12
Alive 47 77 11 24 29 24 13 16

Age 26–54 Dead 19 6 21 14 45 7 61 15
(years) Alive 15 44 18 38 11 16 11 21

≥55 Dead 7 12 19 25 20 7 42 17
Alive 1 6 2 15 0 2 7 7

1.3.2 Outcome After Head Injury

Table 1.1 reports data presented by Titterington et al. (1981) in a study initiated
by the Institute of Neurological Sciences in Glasgow. These data were collected
prospectively by neurosurgeons between 1968 and 1976. The original aim was to
predict recovery for individual patients on the basis of data collected shortly after
the injury. The data that we consider contain information on a binary outcome,
Y = 0/1, corresponding to dead/alive after head injury, and the covariates: pupils
(with good corresponding to a reaction to light and poor to no reaction), coma
score (representing depth of coma, low or high), hematoma present (no/yes), and
age (categorized as 1–25, 26–54, ≥55).

The response of interest here is p(x) = Pr(Y = 1 | x); the probability that a
patient with covariates x is alive. This quantity must lie in the range [0,1], and so, at
least in this respect, linear models are unappealing. To illustrate, suppose we have a
univariate continuous covariate x and the model

p(x) = β0 + β1x.

While probabilities not close to zero or one may change at least approximately
linearly with x, it is extremely unlikely that this behavior will extend to the extremes,
where the probability–covariate relationship must flatten out in order to remain
in the correct range. An additional, important, consideration is that linear models
commonly assume that the variance is constant and, in particular, does not depend
on the mean. For a binary outcome with probability of response p(x), the Bernoulli
variance is p(x)[1 − p(x)] and so depends on the mean. As we will see, accurate
inference depends crucially on having modeled the mean–variance relationship
appropriately.

A common model for binary data is the logistic regression model, in which the
odds of death, p(x)/[1 − p(x)], is modeled as a function of x. For example, the
linear logistic regression model is

p(x)

1− p(x)
= exp(β0 + β1x).
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This form is mathematically appealing, since the modeled probabilities are con-
strained to lie within [0,1], though the interpretation of the parameters β0 and β1 is
not straightforward.

Distinguishing Features. Chapter 7 is dedicated to the modeling of binary data. In
this chapter, logistic regression models are covered in detail, along with alternatives.
Formulating predictive models and assessing the predictive power of such models
is considered in Chaps. 10–12.

1.3.3 Lung Cancer and Radon

We now describe an example in which the data arise from a spatial ecological study.
In an ecological study, the unit of analysis is the group rather than the individual. In
spatial epidemiological studies, due primarily to reasons of confidentiality, data on
disease, population, and exposure are often available as aggregates across area. It is
these areas that constitute the (ecological) group level at which the data are analyzed.
In this example, we examine the association between lung cancer incidence (over
the years 1998–2002) and residential radon at the level of the county, in Minnesota.
Radon is a naturally occurring radioactive gas produced by the breakdown of
uranium in soil, rock, and water and is a known carcinogen for lung cancer (Darby
et al. 2001). However, in many ecological studies, when the association between
lung cancer incidence and residential radon is estimated, radon appears protective.
Ecological bias is an umbrella term that refers to the distortion of individual-level
associations due to the process of aggregation. There are many facets to ecological
bias (Wakefield 2008), but an important issue in the lung cancer/radon context is the
lack of control for confounding, a primary source being smoking.

Let Yi denote the lung cancer incidence count and xi the average radon in county
i = 1, . . . , n = 87. Age and gender are strongly associated with lung cancer
incidence, and a standard approach to controlling these factors is to form expected
counts Ei =

∑J
j=1 Nijqj in which we multiply the population in stratum j and

county i, Nij , by a “reference” probability of lung cancer in stratum j, qj , to obtain
the expected count in stratum j. Summing over all J stratum gives the total expected
count. Intuitively, these counts are what we would expect if the disease rates in
county i conform with the reference. A summary response measure in county i
is the standardized morbidity ratio (SMR), given by Yi/Ei. Counties with SMRs
greater than 1 have an excess of cases, when compared to that expected.

Figure 1.3 maps the SMRs in counties of Minnesota, and we observe more
than twofold variability with areas of high incidence in the northeast of the state.
Figure 1.4 maps the average radon by county, with low radon in the counties to the
northeast. This negative association is confirmed in Fig. 1.5 in which we plot the
SMRs versus average radon, with a smoother indicating the local trend.
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Fig. 1.3 Standardized
morbidity ratios for lung
cancer in the period
1998–2002 by county in
Minnesota

Fig. 1.4 Average radon
(pCi/liter) by county in
Minnesota
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Fig. 1.5 Standardized
morbidity ratios versus
average radon (pCi/liter) by
county in Minnesota

A simple model that constrains the mean to be positive is the loglinear regression

logE

[
Yi

Ei
xi

]
= β0 + β1xi

i = 1, . . . , n. We might combine this form with a Poisson model for the counts.
However, in a Poisson model, the variance is constrained to equal the mean,
which is often too restrictive in practice, since excess-Poisson variability is often
encountered. Hence, we would prefer to fit a more flexible model. We might also be
concerned with residual spatial dependence between disease counts in counties that
are close to each other. Information on confounder variables, especially smoking,
would also be desirable.

Distinguishing Features. Poisson regression models for independent data, and
extensions to allow for excess-Poisson variation, are described in Chap. 6. Such
models are explicitly designed for nonnegative response variables. Accounting for
residual spatial dependence is considered in Chap. 9.

1.3.4 Pharmacokinetic Data

Pharmacokinetics is the study of the time course of a drug and its metabolites after
introduction into the body. A typical experiment consists of a known dose of drug
being administered via a particular route (e.g., orally or via an injection) at a known
time. Subsequently, blood samples are taken, and the concentration of the drug is
measured. The data are in the form of n pairs of points [xi, yi], where xi denotes the
sampling time at which the ith blood sample is taken and yi denotes the ith measured
concentration, i = 1, . . . , n. We describe in some detail some of the contextual
scientific background in order to motivate a particular regression model.

A typical dataset, taken from Upton et al. (1982), is tabulated in Table 1.2 and
plotted in Fig. 1.6. These data were collected after a subject was given an oral dose
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Table 1.2 Concentration (y) of the drug theophylline as a function of time (x), obtained from a
subject who was administered an oral dose of size 4.53 mg/kg

Observation Time Concentration
number (hours) (mg/liter)
i xi yi

1 0.27 4.40
2 0.58 6.90
3 1.02 8.20
4 2.02 7.80
5 3.62 7.50
6 5.08 6.20
7 7.07 5.30
8 9.00 4.90
9 12.15 3.70
10 24.17 1.05
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Fig. 1.6 Concentration of
theophylline plotted versus
time for the data of Table 1.2

of 4.53 mg/kg of the antiasthmatic agent theophylline. The concentration of drug
was determined in subsequent blood samples using a chemical assay (a method for
determining the amount of a specific substance in a sample). Data were collected
over a period slightly greater than 24 h following drug administration.

Pharmacokinetic experiments are important as they help in understanding the
absorption, distribution, and elimination processes of drugs. Such an understanding
provides information that may be used to decide upon the sizes and timings of
doses that should be administered in order to achieve concentrations falling within
a desired therapeutic window. Often the concentration of drug acts as a surrogate
for the therapeutic response. The aim of a pharmacokinetic trial may be dose
recommendation for a specific population, for example, to determine a dose size
for the packaging, or recommendations for a particular patient based on covariates,
which is known as individualization. A typical question is, for the patient who
produced the data in Table 1.2, what dose could we give at 25 h to achieve a
concentration of 10 mg/l at 37 h?
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Compartment 0

DOSE

Compartment 1
ka

ke

Fig. 1.7 Representation of a
one-compartment system
with oral dosing.
Concentrations are measured
in compartment 1

The processes determining drug concentrations are very complicated, but sim-
ple compartmental models (e.g., Godfrey 1983) have been found to mimic the
concentrations observed in patients. The basic idea is to model the body as a
system of compartments within each of which the kinetics of the drug flow is
assumed to be similar. We consider the simplest possible model for modeling
drug concentrations following the administration of an oral dose. The model is
represented in Fig. 1.7 and assumes that the body consists of a compartment into
which the drug is introduced and from which absorption occurs into a second “blood
compartment.” The compartments are labeled retrospectively as 0 and 1 in Fig. 1.7.
Subsequently, elimination from compartment 1 occurs with blood samples taken
from this compartment.

We now describe in some detail the one-compartment model with first-order
absorption and elimination. Let wk(t) represent the amount of drug in compartment
k at time t, k = 0, 1. The drug flow between the compartments is described by the
differential equations

dw0

dt
= −kaw0, (1.2)

dw1

dt
= kaw0 − kew1, (1.3)

where ka > 0 is the absorption rate constant associated with the flow from
compartment 0 to compartment 1 and ke > 0 is the elimination rate constant
(see Fig. 1.7). At time zero, the initial dose is w0(0) = D, and solving the pair
of differential equations (1.2) and (1.3), subject to this condition, gives the amount
of drug in the body at time x as

w1(x) =
Dka

ka − ke
[exp(−kex)− exp(−kax)]. (1.4)
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We do not measure the amount of total drug but drug concentration, and so we
need to normalize (1.4) by dividing w1(x) by the volume V > 0 of the blood
compartment to give

μ(x) =
Dka

V (ka − ke)
[exp(−kex)− exp(−kax)]. (1.5)

so that μ(x) is the drug concentration in the blood compartment at time x.
Equation (1.5) describes a model that is nonlinear in the parameters V , ka and ke;
for reasons that will be examined in detail in Chap. 6, inference for such models is
more difficult than for their linear counterparts.

We have so far ignored the stochastic element of the model. An obvious error
model is

yi = μ(xi) + εi,

with E[εi] = 0, var(εi) = σ2
ε , i = 1, . . . , n, and cov(εi, εj) = 0, i �= j. We may

go one stage further and assume εi | σ2
ε ∼iid N(0, σ2

ε ) where ∼iid is shorthand
for “is independent and identically distributed as.” There are a number of potential
difficulties with this error model, beyond the distributional choice of normality.
Concentrations must be nonnegative, and so we might expect the magnitude of
errors to decrease with decreasing “true” concentration μ(x), a phenomenon that
is often confirmed by examination of assay validation data. The error terms are
likely to reflect not only assay precision, however, but also model misspecification,
and given the simple one-compartment system we have assumed, this could be
substantial. We might therefore expect the error terms to display correlation across
time. In this example, the scientific context therefore provides not only a mean
function but also information on how the variance of the data changes with the
mean.

One simple solution, to at least some of these difficulties, is to take the logarithm
of (1.5) and fit the model:

log yi = logμ(xi) + δi.

We may further assume E[δi] = 0, var(δi) = σ2
δ , i = 1, ..., n, and cov(δi, δj) = 0,

i �= j, multiplicative errors on the original scale and additive errors on the log scale
give

var(Y ) = μ(x)2var(eδ) ≈ μ(x)2σ2
δ

for small δ.
There are two other issues that are relevant to modeling in this example. The first

is that in pharmacokinetic analyses, interest often focuses on derived parameters
of interest, which are functions of [V, ka, ke]. In particular, we may wish to make
inference for the time to maximum concentration, the maximum concentration, the
clearance (initial dose divided by the area under the concentration curve), and the
elimination half-life, which are given by

xmax =
1

ka − ke
log

(
ka
ke

)
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cmax = μ(xmax) =
D

V

(
ke
ka

)ke/(ka−ke)

Cl = V × ke

t1/2 =
log 2

ke
.

A second issue is that model (1.5) is unidentifiable in the sense that the parameters
[V, ka, ke] give the same curve as the parameters [V ke/ka, ke, ka]. This identifiabil-
ity problem can be overcome via a restriction such as constraining the absorption
rate to exceed the elimination rate, ka > ke > 0, though this complicates inference.

Often the data available for individualization will be sparse. For example,
suppose we only observed the first two observations in Table 1.2. In this situation,
inference is impossible without additional information (since there are more
parameters than data points), which suggests a Bayesian approach in which prior
information on the unknown parameters is incorporated into the analysis.

Distinguishing Features. Model (1.5) is nonlinear in the parameters. Such models
will be considered in Chap. 6, including their use in situations in which additional
information on the parameters is incorporated via the specification of a prior
distribution. The data in Table 1.2 are from a single subject. In the original study,
data were available for 12 subjects, and ideally we would like to analyze the
totality of data; hierarchical models provide one framework for such an analysis.
Hierarchical nonlinear models are considered in Chap. 9.

1.3.5 Dental Growth

Table 1.3 gives dental measurements of the distance in millimeters from the center
of the pituitary gland to the pteryo-maxillary fissure in 11 girls and 16 boys recorded
at the ages of 8, 10, 12, and 14 years. These data were originally analyzed in Potthoff
and Roy (1964).

Figure 1.8 plots these data, and we see that dental growth for each child increases
in an approximately linear fashion. Three inferential situations are:

1. Summarization. For each of the boy and girl populations, estimate the mean and
standard deviation of pituitary gland measurements at each of the four ages.

2. Population inference. For each of the populations of boys and girls from which
these data were sampled, estimate the average linear growth over the age range
8–14 years. Additionally, estimate the average dental distance, with an associated
interval estimate, at an age of 9 years.

3. Individual inference. For a specific boy or girl in the study, estimate the rate
of growth over the age range 8–14 years and predict the growth at 15 years.
Additionally, for an unobserved girl, from the same population that produced the
sampled girls, obtain a predictive growth curve, along with an interval envelope.
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Table 1.3 Dental growth data for boys and girls

Age (years) Age (years)
Girl 8 10 12 14 Boy 8 10 12 14

1 21.0 20.0 21.5 23.0 1 26.0 25.0 29.0 31.0
2 21.0 21.5 24.0 25.5 2 21.5 22.5 23.0 26.5
3 20.5 24.0 24.5 26.0 3 23.0 22.5 24.0 27.5
4 23.5 24.5 25.0 26.5 4 25.5 27.5 26.5 27.0
5 21.5 23.0 22.5 23.5 5 20.0 23.5 22.5 26.0
6 20.0 21.0 21.0 22.5 6 24.5 25.5 27.0 28.5
7 21.5 22.5 23.0 25.0 7 22.0 22.0 24.5 26.5
8 23.0 23.0 23.5 24.0 8 24.0 21.5 24.5 25.5
9 20.0 21.0 22.0 21.5 9 23.0 20.5 31.0 26.0
10 16.5 19.0 19.0 19.5 10 27.5 28.0 31.0 31.5
11 24.5 25.0 28.0 28.0 11 23.0 23.0 23.5 25.0

12 21.5 23.5 24.0 28.0
13 17.0 24.5 26.0 29.5
14 22.5 25.5 25.5 26.0
15 23.0 24.5 26.0 30.0
16 22.0 21.5 23.5 25.0
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Fig. 1.8 Dental growth data
for boys and girls: distance
plotted versus age

With 16 boys and 11 girls, inference for situation 1 can be achieved by simply
evaluating the sample mean and standard deviation at each time point; these
quantities are given in Table 1.4. These simple summaries are straightforward to
construct and are based on independence of individuals. To obtain interval estimates
for the means and standard deviations, one must be prepared to make assumptions
(such as approximate normality of the measurements), since for these data the
sample sizes are not large and we might be wary of appealing to large sample
(asymptotic) arguments.
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Table 1.4 Sample means and standard deviations (SDs) for girls and boys, by age group

Age Girls Boys
(years) Mean (mm) SD (mm) Mean (mm) SD (mm)

8 21.2 2.1 22.9 2.5
10 22.2 1.9 23.8 2.1
12 23.1 2.4 25.7 2.7
14 24.1 2.4 27.5 2.1

For situation 2, we may fit a linear model relating distance to age. Since there
are no data at 9 years, to obtain an estimate of the dental distance, we again require
a model relating distance to age. In situation 3, we may wish to use the totality of
data as an aid to providing inference for a specific child. For a new girl from the
same population, we clearly need to use the existing data and a model describing
between-girl differences.

For longitudinal (repeated measures) data such as these, we cannot simply fit
models to the totality of the data on boys or girls and assume independence of
measurements; we need to adjust for the correlation between measurements on the
same child. There is clearly dependence between such measurements. For example,
boy 10 has consistently higher measurements than the majority of boys. There are
two distinct approaches to modeling longitudinal data. In the marginal approach,
the average response is modeled as a function of covariates (including time),
and standard errors are empirically adjusted for dependence. In the conditional
approach, the response of each individual is modeled as a function of individual-
specific parameters that are assumed to arise from a distribution, so that the overall
variability is partitioned into within- and between-child components. The marginal
approach is designed for estimating population-level questions (as posed in situation
2) based on minimal assumptions. Conditional approaches can answer a greater
number of inferential questions but require an increased number of assumptions
which decreases their robustness to model misspecification.

Distinguishing Features. Chapter 8 describes linear models for dependent data such
as these.

1.3.6 Spinal Bone Mineral Density

Bachrach et al. (1999) analyze longitudinal data on spinal bone mineral density
(SBMD) measurements on 230 women aged between 8 and 27 years and of one of
four ethnic groups: Asian, Black, Hispanic, and White. The aim of this study was to
examine ethnic differences in SBMD.

Figure 1.9 displays the SBMD measurements by individual, with one panel for
each of the four races. The relationship between SBMD and age is clearly nonlinear,
and there are also woman-specific differences in overall level so that observations
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Fig. 1.9 Spinal bone mineral density measurements as a function of age and ethnicity. Points that
are connected represent measurements from the same woman

on the same woman are correlated. Letting Yij represent the SBMD measurement
on woman i at age ageij , we might propose a mean model of the form

E[Yij | ageij ] = xiβ + f(ageij) + bi

where xi is a 1 × 4 row vector with a single one and three zeroes that represents
the ethnicity of woman i (coded in the order Hispanic, White, Asian, Black), with
β = [βH , βW , βA, βB]

T the 4 × 1 vector of associated regression coefficients,
f(ageij) is a function that varies smoothly with age, and bi is a woman-specific
intercept which is included to account for dependencies of measurements on the
same individual. The relationship between SBMD and age is not linear and not of
primary interest. Consequently, we would like to use a flexible model form, and we
may not be concerned if this model does not contain easily interpretable parameters.
Nonparametric regression is the term we use to refer to flexible mean modeling.

Distinguishing Features. The analysis of these data requires both a flexible mean
model for the age effect and acknowledgement of the dependence of measure-
ments on the same woman. Chapters 10–12 describe models that allow for these
possibilities.
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1.4 Nature of Randomness

Regression models consist of both deterministic and stochastic (random) compo-
nents, and a consideration of the sources of the randomness is worthwhile, both
to interpret parameters contained in the deterministic component and to model
the stochastic component. We initially consider an idealized situation in which a
response is completely deterministic, given sufficient information, and randomness
is only induced by missing information.3 Let y denote a variable with values
y1, . . . , yN within a population. We begin with a very simple deterministic model

yi = β0 + β1xi + γzi (1.6)

for i = 1, . . . , N , so that, given xi and zi (and knowing β0, β1 and γ), yi is
completely determined. Suppose we only measure yi and xi and assume the model

Yi = β�
0 + β�

1xi + εi.

To interpret β�
0 and β�

1 , we need to understand the relationship between xi and zi,
i = 1, . . . , N. To this end, write

zi = a+ bxi + δi, (1.7)

i = 1, . . . , N . This form does not in any sense assume that a linear association is
appropriate or “correct”, rather it is the linear approximation to E[Z |x]. In (1.7),
we may take a and b as the least squares estimates from fitting a linear model to the
data [xi, zi], i = 1, . . . , N . Substitution of (1.7) into (1.6) yields

yi = β0 + β1xi + γ(a+ bxi + δi)

= β�
0 + β�

1xi + εi

where

β�
0 = β0 + aγ

β�
1 = β1 + bγ

εi = γδi, i = 1, . . . , N, (1.8)

3When simulations are performed, pseudorandom numbers are generated via deterministic se-
quences. For example, consider the sequence generated by the congruential generator

Xi = aXi−1, mod(m)

along with initial value (or “seed”) X0. Then Xi takes values in 0, 1, . . . ,m−1, and pseudorandom
numbers are obtained as Ui = Xi/m, where X0, a, and m are chosen so that the Ui’s have
(approximately) the properties of uniform U(0, 1) random variables. However, if X0, a, and m are
known, the randomness disappears! Ripley (1987, Chap. 2) provides a discussion of pseudorandom
variable generation and specifically “good” choices of a and m.
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so that β�
1 is a combination of the direct effect of xi on yi, and the effect of zi,

through the linear association between zi and xi. This development illustrates the
problems in nonrandomized situations of estimating the causal effect of xi on yi,
that is, β1. Turning to the stochastic component (1.8) illustrates that properties of
εi are inherited from δi. Hence, assumptions such as constancy of variance of εi
depend on the nature of zi and, in particular, on the joint distribution of xi and zi.

Increasing slightly the realism, we extend the original deterministic model to

yi = β0 +

p∑

j=1

βjxij +

q∑

k=1

γkzik. (1.9)

Suppose we only measure xi1, . . . , xip and assume the simple model

Yi = β�
0 +

p∑

j=1

β�
j xij + εi, (1.10)

where the errors, εi, now correspond to the totality of scaled versions of the zik’s
that remain after extracting the linear associations with the xij ’s by analogy with
(1.7) and (1.8).

Viewing the error terms as sums of random variables and considering the central
limit theorem (Appendix G) naturally leads to the normal distribution as a plausible
error distribution. There is no compelling reason to believe that the variance of this
normal distribution will be constant across the space of the x variables, however.

We have distinguished between the regression coefficients in the assumed model
(1.10), denoted by β�

j , and those in the original model (1.9), denoted βj . In general,
βj �= β�

j , because of the possible effects of confounding which occurs due to
dependencies between xij and elements of zi = [zi1, . . . , ziq]. In the example just
considered, only if xij is linearly independent of the zik will the coefficients βj

and β�
j coincide. For nonlinear models, the relationship between the two sets of

coefficients is even more complex.
This development illustrates that an aim of regression modeling is often to

“explain” the error terms using observed covariates. In general, error terms represent
not only unmeasured variables but also data anomalies, such as inaccurate recording
of responses and covariates, and model misspecification. Clearly the nature of the
randomness, and the probabilities we attach to different events, is conditional upon
the information that we have available and, specifically, the variables we measure.

Similar considerations can be given to other types of random variables. For
example, suppose we wish to model a binary random variable Y taking values coded
as 0 and 1. Sometimes it will be possible to link Y to an underlying continuous
latent variable and use similar arguments to that above. To illustrate, Y could be an
indicator of low birth weight and is a simple function of the true birth weight, U,
which is itself associated with many covariates. We may then model the probability
of low birth weight as a function of covariates x, via

p(x) = Pr(Y = 1 | x) = Pr(U ≤ u0 | x) = E[Y | x],



22 1 Introduction and Motivating Examples

where u0 is the threshold value that determines whether a child is classified as low
birth weight or not. This development is taken further in Sects. 7.6.1 and 9.13.

The above gives one a way of thinking about where the random terms in models
arise from, namely as unmeasured covariates. In terms of distributional assumptions,
some distributions arise naturally as a consequence of simple physical models. For
example, suppose we are interested in modeling the number of events occurring over
time. The process we now describe has been found empirically to model a number of
phenomena, for example the arrival of calls at a telephone exchange or the emission
of particles from a radioactive source. Let the rate of occurrences be denoted by
ρ > 0 and N(t, t+Δt) be the number of events in the interval (t, t+Δt]. Suppose
that, informally speaking, Δt tends to zero from above and that

Pr [N(t, t+Δt) = 0] = 1− ρΔt+ o(Δt),

Pr [N(t, t+Δt) = 1] = ρΔt+ o(Δt),

so that Pr [N(t, t+Δt) > 1] = o(Δt). The notation o(Δt) represents a function
that tends to zero more rapidly than Δt. Finally, suppose that N(t, t + Δt) is
independent of occurrences in (0, t]. Then we have a Poisson process, and the
number of events occurring in the fixed interval (t, t + h] is a Poisson random
variable with mean ρh.

Other distributions are “artificial.” For example, a number of distributions arise
as functions of normal random variables (such as Student’s t, Snedecor’s F, and
chi-squared random variables) or may be dreamt up for flexible and convenient
modeling (as is the case for the so-called Pearson family of distributions).

Models can arise from idealized views of the phenomenon under study, but then
we might ask: “If we could measure absolutely everything we wanted to, would
there be any randomness left?” In all but the simplest experiments, this question is
probably not that practically interesting, but the central idea of quantum mechanics
tells us that probability is still needed, because some experimental outcomes are
fundamentally unpredictable (e.g., Feynman 1951).

1.5 Bayesian and Frequentist Inference

What distinguishes the field of statistics from the use of statistical techniques in a
particular discipline is a principled approach to inference in the face of uncertainty.
There are two dominant approaches to inference, which we label as Bayesian and
frequentist, and each produces inferential procedures that are optimal with respect
to different criteria.

In Chaps. 2 and 3, we describe, respectively, the frequentist and Bayesian
approaches to statistical inference. Central to the philosophy of each approach
is the interpretation of probability that is taken. In the frequentist approach, as
the name suggests, probabilities are viewed as limiting frequencies under infinite
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hypothetical replications of the situation under consideration. Inferential recipes,
such as specific estimators, are assessed with respect to their performance under
repeated sampling of the data, with model parameters viewed as fixed, albeit
unknown, constants. By contrast, in the Bayesian approach that is described in
this book, probabilities are viewed as subjective and are interpreted conditional on
the available information. As a consequence, assigned probabilities concerning the
same event may differ between individuals. In this sense probabilities do not exist
as they vary as a function of the available information. All unknown parameters in
a model are treated as random variables, and inference is based upon the (posterior)
probability distribution of these parameters, given the data and other available
information. Practically speaking, the interpretation of probability is less relevant
than the number of assumptions that are required for valid inference (which has
implications for the robustness of analysis) and the breadth of inferential questions
that can be answered using a particular approach.

It should be stressed that many issues arising in the analysis of regression
data (such as the nature of the sampling scheme, parameter interpretation, and
misspecification of the mean model) are independent of philosophy and in practice
are usually of far greater importance than the inferential approach taken to analysis.

Each of the frequentist and Bayesian approaches have their merits and can often
be used in tandem, an approach we follow and advocate throughout this book. If
substantive conclusions differ between different approaches, then discovering the
reasons for the discrepancies can be informative as it may reveal that a particular
analysis is leaning on inappropriate assumptions or that relevant information is
being ignored by one of the approaches. Those situations in which one of the
approaches is more or less suitable will also be distinguished throughout this book,
with a short summary being given in the next section.

1.6 The Executive Summary

I would like to briefly summarize my view on when to take Bayesian or frequentist
approaches to estimation. As the examples throughout this book show, on many
occasions, if one is careful in execution, both approaches to analysis will yield
essentially equivalent inference. For small samples, the Bayesian approach with
thoughtfully specified priors is often the only way to go because of the difficulty
in obtaining well-calibrated frequentist intervals. An example of such a sparse
data occasion is given at the end of Sect. 6.16. For medium to large samples,
unless there is strong prior information that one wishes to incorporate, a robust
frequentist approach using sandwich estimation (or quasi-likelihood if one has faith
in the variance model) is very appealing since consistency is guaranteed under
relatively mild conditions. For highly complex models (e.g., with many random
effects), a Bayesian approach is often the most convenient way to formulate the
model, and computation under the Bayesian approach is the most straightforward.
The modeling of spatial dependence in Sect. 9.7 provides one such example in
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which the Bayesian approach is the simplest to implement. The caveat to complex
modeling is that in most cases consistency of inference is only available if all
stages of the model are correctly specified. Consequently, if one really cares about
interval estimates, then extensive model checking will be necessary. If formal
inference is not required but rather one is in an exploratory phase, then there is far
greater freedom to experiment with the approaches that one is most familiar with,
including nonparametric regression. In this setting, using procedures that are less
well-developed statistically is less dangerous.

In contrast to estimation, hypothesis testing using frequentist and Bayesian
methods can often produce starkly differing results, even in large samples. As
discussed in Chap. 4, I think that hypothesis testing is a very difficult endeavor, and
tests applied using the frequentist approach, as currently practiced (with α levels
being fixed regardless of sample size), can be very difficult to interpret. In general,
I prefer estimation to hypothesis testing.

As a final comment, as noted, in many instances carefully conducted frequentist
and Bayesian approaches will lead to similar substantive conclusions; hence, the
choice between these approaches can often be based on that which is most natural
(i.e., based on training and experience) to the analyst. Consequently, throughout this
book, methods are discussed in terms of their advantages and shortcomings, but a
strong recommendation of one method over another is usually not given as there is
often no reason for stating a preference.

1.7 Bibliographic Notes

Rosenbaum (2002) provides an in-depth discussion of the analysis of data from
observational studies, and an in-depth treatment of causality is the subject of
Pearl (2009). A classic text on survey sampling is Cochran (1977) with Korn
and Graubard (1999) and Lumley (2010) providing more recent presentations.
Regression from a survey sampling viewpoint is discussed in the edited volume of
Chambers and Skinner (2003). Errors-in-variables is discussed in detail by Carroll
et al. (2006) and missing data by Little and Rubin (2002). Johnson et al. (1994,
1995, 1997); Kotz et al. (2000), and Johnson et al. (2005) provide a thorough
discussion of the genesis of univariate and multivariate discrete and continuous
probability distributions and, in particular, their relationships to naturally occurring
phenomena. Barnett (2009) provides a discussion of the mechanics and relative
merits of Bayesian and frequentist approaches to inference; see also Cox (2006).
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Chapter 2
Frequentist Inference

2.1 Introduction

Inference from data can take many forms, but primary inferential aims will often be
point estimation, to provide a “best guess” of an unknown parameter, and interval
estimation, to produce ranges for unknown parameters that are supported by the
data. Under the frequentist approach, parameters and hypotheses are viewed as
unknown but fixed (nonrandom) quantities, and consequently there is no possibility
of making probability statements about these unknowns.1 As the name suggests,
the frequentist approach is characterized by a frequency view of probability, and the
behavior of inferential procedures is evaluated under hypothetical repeated sampling
of the data.

Frequentist procedures are not typically universally applicable to all models/
sample sizes and often require “fixes.” For example, a number of variants of
likelihood have been developed for use in particular situations (Sect. 2.4.2). In
contrast, the Bayesian approach, described in Chap. 3, is completely prescriptive,
though there are significant practical hurdles to overcome (such as likelihood
and prior specification) in pursuing that prescription. In addition, in situations in
which frequentist procedures encounter difficulties, Bayesian approaches typically
require very careful prior specification to avoid posterior distributions that exhibit
anomalous behavior.

The outline of this chapter is as follows. We begin our discussion in Sect. 2.2
with an overview of criteria by which frequentist procedures may be evaluated. In
Sect. 2.3 we present a general development of estimating functions which provide
a unifying framework for defining and establishing the properties of commonly
used frequentist procedures. Two important classes of estimating functions are then

1Random effects models provide one example in which parameters are viewed as random from a
frequentist perspective and are regarded as arising from a population of such effects. Frequentist
inference for such models is described in Part III of this book.

J. Wakefield, Bayesian and Frequentist Regression Methods, Springer Series
in Statistics, DOI 10.1007/978-1-4419-0925-1 2,
© Springer Science+Business Media New York 2013
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Fig. 2.1 Exploratory plot of
log SMR for lung cancer
versus average residential
radon, with a local smoother
superimposed, for 85 counties
in Minnesota

introduced: those arising from the specification of a likelihood function, in Sect. 2.4,
and those from a quasi-likelihood function, in Sect. 2.5. A recurring theme is the
assessment of frequentist procedures under model misspecification. In Sect. 2.6
we discuss the sandwich estimation technique which provides estimation of the
standard error of estimators in more general circumstances than were assumed in
deriving the estimator. Section 2.7 introduces the bootstrap, which is a simulation-
based method for making inference with reduced assumptions. Section 2.8 discusses
the choice of an estimating function. Hypothesis testing is considered in Sect. 2.9,
and the chapter ends with concluding remarks in Sect. 2.10. To provide some
numerical relief to the mostly methodological development of this chapter, we
provide one running example.

Example: Lung Cancer and Radon

We consider the data introduced in Sect. 1.3.3 and examine the association between
counts of lung cancer incidence, Yi, and the average residential radon, xi, in county
i with i = 1, . . . , 85, indexing the counties within which radon measurements were
available (in two counties no radon data were reported). We examine the association
using the loglinear model

logE[SMRi | xi] = β0 + β1xi. (2.1)

where SMRi = Yi/Ei (with Ei the expected count) is the standardized mortality
ratio in county i (Sect. 1.3.3) and is a summary measure that controls for the
differing age and gender populations across counties. We take as our parameter of
interest exp(β1) which is the multiplicative change in risk associated with a 1 pCi/l
increase in radon. In the epidemiological literature this parameter is referred to as
the relative risk; here it corresponds to the risk ratio for two areas whose radon
exposures x differ by one unit.

To first order, E[log SMR | x] ≈ log E[SMR | x], and so if (2.1) is an appropriate
model, a plot of log SMRi versus xi should display an approximately linear trend;
Fig. 2.1 shows this plot with a local smoother superimposed and indicates a negative
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association. This example is illustrative, and so distracting issues, such as the effect
of additional covariates (including smoking, the major confounder) and residual
spatial dependence in the counts, will be conveniently ignored.

2.2 Frequentist Criteria

In this section we describe frequentist criteria by which competing estimators may
be compared and discuss conditions under which optimal estimators exist under
these criteria. Under the frequentist approach to inference, the fundamental outlook
is that statistical procedures are assessed with respect to their performance under
hypothetical, repeated sampling of the data, under fixed values of the parameters.
In this section, for simplicity, we consider the estimation of a univariate parameter
θ and let Y = [Y1, . . . , Yn]

T represent a vector of n random variables and y =
[y1, . . . , yn]

T a realization. Often inference will be summarized via a 100(1− α)%
confidence interval for θ, which is an interval [ a(Y ), b(Y ) ] such that

Pr {θ ∈ [ a(Y ), b(Y ) ]} = 1− α, (2.2)

for all θ, where the probability statement is with respect to the distribution of Y
and 1 − α is known as the coverage probability. For interpretation it is crucial
to recognize that the random quantities in (2.2) are the endpoints of the interval
[ a(Y ), b(Y ) ], so that we are not assigning a probability statement to θ. The
correct interpretation of a confidence interval is that, under hypothetical repeated
sampling, a proportion 1 − α of the intervals created will contain the true value θ.
We emphasize that we cannot say that the specific interval [ a(y), b(y) ] contains θ
with probability 1− α.

Ideally, we would like to determine the shortest possible confidence interval for
a given α. The search for such intervals is closely linked to the determination of
optimal point estimators of θ. The point estimator θ̂(Y ) of θ represents a random
variable, with an associated sampling distribution, while the point estimate θ̂(y) is a
specific value. In any given situation a host of potential estimators are available, and
we require criteria by which to judge competing choices. Heuristically speaking, a
good estimator will have a sampling distribution that is concentrated “close” to the
true value θ, where “close” depends on the distance measure that we apply to the
distribution of θ̂(Y ).

One natural measure of closeness is the mean squared error (MSE) of θ̂(Y )
which arises from a quadratic loss function for estimation and is defined as

MSE
[
θ̂(Y )

]
= EY |θ

[(
θ̂(Y )− θ

)2
]

= varY |θ
[
θ̂(Y )

]
+ bias

[
θ̂(Y )

]2



30 2 Frequentist Inference

where the bias of the estimator is

bias
[
θ̂(Y )

]
= EY |θ

[
θ̂(Y )

]
− θ.

This notation stresses that all expectations are with respect to the sampling
distribution of the estimator, given the true value of the parameter; this is a crucial
aspect but the notation is cumbersome and so will be suppressed. Finding estimators
with minimum MSE for all values of θ is not possible. For example, θ̂(Y ) = 3 has
zero MSE for θ = 3 (and so is optimal for this θ!) but is, in general, a disastrous
estimator.

An elegant theory, which is briefly summarized in Appendix G, has been
developed to characterize uniformly minimum-variance unbiased estimators
(UMVUEs). The theory depends first on writing down a full probability model
for the data, p(y | θ). We assume conditional independence so that p(y | θ) =∏n

i=1 p(yi | θ). The Cramér–Rao lower bound for any unbiased estimator φ̂ of a
scalar function of interest φ = φ(θ) is

var(φ̂) ≥ − [φ′(θ)]2

E
[
∂2l
∂θ2

] , (2.3)

where l(θ) =
∑n

i=1 log p(yi | θ) is the log of the joint distribution of the data,
viewed as a function of θ. If T (Y ) is a sufficient statistic of dimension 1, then, under
suitable regularity conditions, there is a unique function φ(θ) for which a UMVUE
exists and its variance attains the Cramér–Rao lower bound. Further, a UMVUE only
exists when the data are independently sampled from a one-parameter exponential
family. Specifically, suppose that p(yi | θ) is of one-parameter exponential family
form, so that its distribution may be written, for suitably defined functions, as

p(y | θ) = exp [θT (y)− b(θ) + c(y)] . (2.4)

In this situation, there is a unique function of θ for which a UMVUE exists.
Unfortunately, this theory only covers a narrow range of circumstances. There are
methods available for constructing estimators with the minimal attainable variance
in additional situations but even this wider class of models does not come close to
covering the range of models that we would like to consider for practical application.
UMVUEs are also not always sensible; see Exercise 2.2.

As discussed in Sect. 1.2, model formulation should begin with a model that we
would like to fit, before proceeding to examine its mathematical properties. As we
will see, exponential family models can provide robust inference, in the sense of
performing well even if certain aspects of the assumed model are wrong, but to only
consider these models is unnecessarily restrictive.

We now discuss how estimators may be compared in general circumstances
asymptotically, that is, as n → ∞. There are two hypothetical situations that are
being considered here. The first is the repeated sampling aspect for fixed n, and the
second is allowing n → ∞. The asymptotic properties of frequentist procedures
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may be used in two respects. The first is to justify particular procedures, and the
second is to carry out inference, for example, to construct confidence intervals. We
might question the relevance of asymptotic criteria, since in any practical situation n
is finite, and an inconsistent or asymptotically inefficient estimator may have better
finite sample properties (a reduced MSE for instance) than a consistent alternative.
On the other hand, for many commonly used models, asymptotic inference is often
accurate for relatively small sample sizes (as we will see in later chapters).

While unbiasedness of estimators, per se, is of debatable value, a fundamentally
important frequentist criterion for assessing an estimator is consistency. Weak
consistency states that as n → ∞, θ̂n →p θ (Appendix F), that is,

Pr(| θ̂n − θ |> ε) → 0 as n → ∞ for any ε > 0.

Intuitively, the distribution of a consistent estimator concentrates more and more
around the true value as the sample size increases. In all but pathological cases,
a consistent estimator is asymptotically unbiased, though the contrary is not true.
For example, consider the model with E[Yi | θ] = θ, i = 1, . . . , n, and the estimator
θ̂ = Y1, this estimator is unbiased but inconsistent.

When assessing an estimator, once consistency has been established, asymptotic
normality of the estimator is then typically sought, and interest focuses on the
variance of the estimator. In particular, the asymptotic relative efficiency, or more
simply the efficiency, allows an estimator θ̃n to be compared to the estimator with
the smallest variance θ̂n via

var(θ̃n)

var(θ̂n)
.

The 100(1−α)% asymptotic confidence interval associated with an estimator θ̂n is

θ̂n ± z1−α/2 ×
√

var(θ̂n) (2.5)

where Z ∼ N(0, 1) and Pr(Z < z1−α/2) = 1 − α/2. If θ̂n is asymptotically
efficient, then interval (2.5) is (asymptotically) the shortest available. Maximum
likelihood estimation (Sect. 2.4) provides a method for finding efficient estimators.

A difficulty with the interpretation of frequentist inferential summaries is that all
probability statements refer to hypothetical data replications and to the estimator,
and not to the estimate from a specific realization of data. This can lead to intervals
with poor properties. Exercise 2.1 describes an instance in which the confidence
coverage is correct on average, but for some realizations of the data, the interval has
100% coverage.

We summarize this section and provide a road map to the remainder of the
chapter. A fundamental, desirable criterion is to produce confidence intervals that
are the shortest possible. Only in stylized situations may estimators with minimum
variance be found in non-asymptotic situations. Asymptotically, the picture is rosier,
however. In the next section we describe a general class of estimators and give
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results concerning consistency and asymptotic normality. Subsequently, we show
that maximum likelihood estimators attain the smallest asymptotic variance (subject
to regularity conditions) if the model is correctly specified. We then consider quasi-
likelihood, sandwich estimation, and the bootstrap, each of which is designed to
reduce the reliance of inference on a full probability model specification.

2.3 Estimating Functions

In the last section we saw that optimal estimators can be found when a full
probability model is assumed. The need to specify a full probability model for
the data is undesirable. While a practical context may suggest a mean model and
perhaps an appropriate mean–variance relationship, it is rare to have faith in a choice
for the distribution of the data. In this section we give a framework within which the
asymptotic properties of a broad range of estimation recipes may be evaluated.

Let Y = [Y1, . . . , Yn] represent n observations from a distribution indexed by a
p-dimensional parameter θ, with cov(Yi, Yj | θ) = 0, i �= j. In the following we
will not rigorously derive asymptotic results and only informally discuss regularity
conditions under which the results hold. The models discussed subsequently will,
unless otherwise stated, obey the necessary conditions.

In the following, for ease of presentation, we assume that Yi, i = 1, . . . , n, are
independent and identically distributed (iid).2 An estimating function is a function,

Gn(θ) =
1

n

n∑

i=1

G(θ, Yi), (2.6)

of the same dimension as θ for which

E[Gn(θ)] = 0 (2.7)

for all θ. The estimating functionGn(θ) is a random variable because it is a function
of Y . The corresponding estimating equation that defines the estimator θ̂n has
the form

Gn(θ̂n) =
1

n

n∑

i=1

G(θ̂n, Yi) = 0. (2.8)

For inference the asymptotic properties of the estimating function are derived
(which is why we index the estimating function by n), and these are transferred
to the resultant estimator. The estimator θ̂n that solves (2.8) will often be unavailable
in closed form and so deriving its distribution from that of the estimating function

2In a regression setting we have independently distributed observations only, because the distribu-
tion of the outcome changes as a function of covariates.
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is an ingenious step, because the estimating function may be constructed to be a
simple (e.g., linear) function of the data. The estimating function defined in (2.6) is a
sum of random variables, which provides the opportunity to evaluate its asymptotic
properties via a central limit theorem since the first two moments will often be
straightforward to calculate. The art of constructing estimating functions is to make
them dependent on distribution-free quantities, for example, the first two moments
of the data; robustness of inference to misspecification of higher moments often
follows.

We now state an important result that will be used repeatedly in the context of
frequentist inference.

Result 2.1. Suppose that θ̂n is a solution to the estimating equation

Gn(θ) =
1

n

n∑

i=1

G(θ, Yi) = 0,

that is, Gn(θ̂n) = 0. Then θ̂n →p θ (consistency) and

√
n (θ̂n − θ) →d Np

[
0,A−1B(AT)−1

]
(2.9)

(asymptotic normality), where

A = A(θ) = E

[
∂

∂θT
G(θ, Y )

]

and

B = B(θ) = E[G(θ, Y )G(θ, Y )T] = var [G(θ, Y )] .

Outline Derivation

We refer the interested reader to van der Vaart (1998, Sect. 5.2) for a proof of
consistency and present an outline derivation of asymptotic normality, based on
van der Vaart (1998, Sect. 5.3). For simplicity we assume that θ is univariate.

We expand Gn(θ) in a Taylor series around the true value θ:

0 = Gn(θ̂n) = Gn(θ) + (θ̂n − θ)
dGn

dθ

∣∣∣∣
θ

+
1

2
(θ̂n − θ)2

d2Gn

dθ2

∣∣∣∣∼
θ

, (2.10)

where θ̃ is a point between θ̂n and θ. We rewrite (2.10) as

√
n (θ̂n − θ) =

−√
n Gn(θ)

dGn

dθ

∣∣
θ
+ 1

2 (θ̂n − θ) d2Gn

dθ2

∣∣∣∼
θ

(2.11)
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and determine the asymptotic distribution of the right-hand side, beginning with the
distribution of Gn(θ). To apply a central limit theorem, note that E[Gn(θ)] = 0 and

n× var [Gn(θ)] = var [G(θ, Y )] = E
[
G(θ, Y )2

]
= B

(which we assume is finite). Consequently, by the central limit theorem
(Appendix G),

√
n Gn(θ) →d N [0, B(θ)] . (2.12)

We now transfer the properties of the estimating function to the estimator θ̂n via
(2.11). The first term of the denominator of (2.11),

dGn

dθ

∣∣∣∣
θ

=
1

n

n∑

i=1

d

dθ
G(θ, Yi)

∣∣∣∣
θ

,

is an average and so converges to its expectation, provided this expectation exists,
by the weak law of large numbers (Appendix G)

dGn

dθ

∣∣∣∣
θ

→p E

[
d

dθ
G(θ, Y )

]
= A(θ).

Due to consistency, θ̂n →p θ, and the second term in the denominator of (2.11)
includes the average

d2Gn

dθ2

∣∣∣∣∼
θ

=
1

n

n∑

i=1

d2

dθ2
G(θ, Yi),

which, by the law of large numbers, tends to its expectation, that is,

d2Gn

dθ2

∣∣∣∣∼
θ

→p E

[
d2

dθ2
G(θ, Y )

]
,

provided this average exists. Hence, the second term in the denominator of (2.11)
converges in probability to zero and so, by Slutsky’s theorem (Appendix G)

√
n (θ̂n − θ) →d N

(
0,

B

A2

)
,

as required, where we have suppressed the dependence of A(θ) and B(θ) on θ.

�
In practice, A = A(θ) and B = B(θ) are replaced by An(θ̂n) and Bn(θ̂n),
respectively, with asymptotic normality continuing to hold due to Slutsky’s theorem.

In the sections that follow we describe a number of approaches for constructing
and using estimating functions. These approaches differ in the number of assump-
tions that are required for both specifying the estimating function and making
inference. At one extreme, in a fully model-based approach, a full probability
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distribution is specified for the data and is used to both specify the estimating
function and to evaluate the expectations required in the calculation of A and B.
At the other extreme, minimal assumptions are made on the data to construct the
estimating function, and the expectations required to evaluate var(θ̂n) are calculated
empirically from the observed data (see Sect. 2.6).

In the independent but not identically distributed case

[
A−1

n Bn(A
T
n)

−1
]−1/2

(θ̂n − θ) →d Np(0, Ip), (2.13)

where

An = E

[
∂

∂θT
Gn(θ)

]

Bn = E [Gn(θ)Gn(θ)
T] = var [Gn(θ)] .

The previous independent and identically distributed situation is a special case, with
An = nA and Bn = nB, in which case (2.13) simplifies to (2.9).

The sandwich form of the variance of θ̂n in (2.9) and (2.13)—the covariance of
the estimating function, flanked by the expectation of the inverse of the Jacobian
matrix of the transformation from the estimating function to the parameter—is one
that will appear repeatedly.

Estimators derived from an estimating function are invariant in the sense that
if we are interested in a function, φ = g(θ), then the estimator is φ̂n = g(θ̂n).
The delta method (Appendix G) allows the transfer of inference from the parameters
of the model to quantities of interest. Specifically, suppose

√
n (θ̂n − θ) →d Np [0,V (θ)] .

Then, by the delta method,

√
n

[
g(θ̂n)− g(θ)

]
→d N [0, g′(θ)V (θ)g′(θ)T] ,

where g′(θ) is the 1 × p vector of derivatives of g(·) with respect to elements of θ.
For example, for p = 2

var [g(θ)] = V11

(
∂g

∂θ1

∣∣∣∣
θ

)2

+ 2V12

(
∂g

∂θ1

∣∣∣∣
θ

)(
∂g

∂θ2

∣∣∣∣
θ

)
+ V22

(
∂g

∂θ2

∣∣∣∣
θ

)2

,

where Vjk denotes the (j, k)th element of V , j, k = 1, 2. Again in practice, θ̂n

replaces θ in var [g(θ)]. The accuracy of the asymptotic distribution depends on the
parameterization adopted. A rule of thumb is to obtain the asymptotic distribution
for a reparameterized parameter defined on the real line; one may then transform
back to the parameter of interest, to construct confidence intervals, for example.
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The implementation of a frequentist approach usually requires a maximization or
root-finding algorithm, but most statistical software packages now contain reliable
routines for such endeavors in the majority of situations encountered in practice;
hence, we will rarely discuss computational details (in contrast to the Bayesian
approach for which computation is typically more challenging).

2.4 Likelihood

For reasons that will become evident, likelihood provides a popular approach to
statistical inference and our coverage reflects this. Let p(y |θ) be a full probability
model for the observed data given a p dimensional vector of parameters, θ.
The probability model for the full data is based upon the context and all relevant
accumulated knowledge. The level of belief in this model will clearly be context
specific, and in many situations, there will be insufficient information available
to confidently specify all components of the model. Depending on the confidence
in the likelihood, which in turn depends on the sample size (since large n allows
more reliable examination of the assumptions of the model), the likelihood may be
effectively viewed as approximately “correct,” in which case inference proceeds as
if the true model were known. Alternatively the likelihood may be seen as an initial
working model from which an estimating function is derived; the properties of the
subsequent estimator may then be determined under a more general model.

Definition. Viewing p(y | θ) as a function of θ gives the likelihood function,
denoted L(θ).

A key point is that L(θ) is not a probability distribution in θ, hence the name
likelihood.3

2.4.1 Maximum Likelihood Estimation

The value of θ that maximizes L(θ) and hence gives the highest probability
(density) to the observed data, denoted θ̂, is known as the maximum likelihood
estimator (MLE).

In Part II of this book, we consider models that are appropriate when the data are
conditionally independent given θ so that

p(y | θ) =
n∏

i=1

p(yi | θ).

3We use the label “likelihood” in this section, but strictly speaking we are considering frequentist
likelihood, since we will evaluate the frequentist properties of an estimator derived from the likeli-
hood. This contrasts with a pure likelihood view, as described in Royall (1997), in which properties
are derived from the likelihood function alone, without resorting to frequentist arguments.
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For the remainder of this chapter, we assume such conditional independence holds.
For both computation and analysis, it is convenient to consider the log-likelihood
function

l(θ) = logL(θ) =

n∑

i=1

log p(Yi | θ)

and the score function

S(θ) =
∂l(θ)

∂θ
=

[
∂l(θ)

∂θ1
, . . . ,

∂l(θ)

∂θp

]T

= [S1(θ), . . . , Sp(θ)]
T,

which is the p× 1 vector of derivatives of the log-likelihood. As we now illustrate,
the score satisfies the requirements of an estimating function.

Definition. Fisher’s expected information in a sample of size n is the p× p matrix

In(θ) = −E

[
∂2

∂θ∂θT
l(θ)

]
= −E

[
∂S(θ)

∂θT

]
.

Result. Under suitable regularity conditions,

E[S(θ)] = E

[
∂l

∂θ

]
= 0, (2.14)

and

In(θ) = −E

[
∂S(θ)

∂θT

]
= E [S(θ)S(θ)T] . (2.15)

Proof. For simplicity we give a prove for the situation in which θ is univariate,
and the observations are independent and identically distributed. Under these
circumstances

In(θ) = nI1(θ),

where

I1(θ) = −E

[
d2

dθ2
log p(Y | θ)

]
.

The expectation of the score is

E[S(θ)] =
n∑

i=1

E

[
d

dθ
log p(Yi | θ)

]
= nE

[
d

dθ
log p(Y | θ)

]

and, under regularity conditions that allow the interchange of differentiation and
integration,



38 2 Frequentist Inference

E

[
d

dθ
log p(Y | θ)

]
=

∫ (
d

dθ
log p(y | θ)

)
p(y | θ)dy

=

∫
d

dθ
p(y | θ)p(y | θ)

p(y | θ)dy =
d

dθ

∫
p(y | θ)dy = 0,

(2.16)

which proves (2.14).
From (2.16),

0 =
d

dθ

[∫ (
d

dθ
log p(y | θ)

)
p(y | θ)dy

]

=

∫
d

dθ

(
d

dθ
log p(y | θ)p(y | θ)

)
dy

=

∫ (
d2

dθ2
log p(y | θ)

)
p(y | θ)dy +

∫ (
d

dθ
log p(y | θ)

)(
d

dθ
p(y | θ)

)
dy

=

∫ (
d2

dθ2
log p(y | θ)

)
p(y | θ)dy +

∫ (
d

dθ
log p(y | θ)

)2

p(y | θ)dy

= E

[
d2

dθ2
log p(Y | θ)

]
+ E

[(
d

dθ
log p(Y | θ)

)2
]
,

which proves (2.15). �
Viewing the score as an estimating function,

Gn(θ) =
1

n
S(θ) =

1

n

n∑

i=1

d

dθ
log p(Yi | θ),

shows that the MLE satisfies Gn(θ̂n) = 0. We have already seen that

E[Gn(θ)] =
1

n
E[S(θ)] = 0,

and to apply Result 2.1 of Sect. 2.3, we require

A(θ) = E

[
∂

∂θT
G(θ, Y )

]
= E

[
∂2

∂θ∂θT
log p(Y | θ)

]

and

B(θ) = E [G(θ, Y )G(θ, Y )T] = E

[(
∂

∂θ
log p(Y | θ)

)(
∂

∂θ
log p(Y | θ)

)T]
.
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Equation (2.15) shows that

I1(θ) = −A(θ) = B(θ)

and, from (2.12)

n−1/2S(θ) →d N [0, I1(θ)] . (2.17)

From Result 2.1, the asymptotic distribution of the MLE is therefore

√
n (θ̂n − θ) →d Np

[
0, I1(θ)

−1
]
. (2.18)

For independent, but not necessarily identically distributed, random variables
Y1, . . . , Yn,

In(θ) = −An(θ) = Bn(θ),

and

In(θ)
1/2(θ̂n − θ) →d Np(0, Ip), (2.19)

The information is scaling the statistic and should be growing with n for the
asymptotic distribution to be appropriate. Intuitively, the curvature of the log-
likelihood, as measured by the second derivative, determines the variability of the
estimator; the greater the curvature, the smaller the variance of the estimator. The
distribution of θ̂n is sometimes written as

θ̂n →d Np

[
θ, In(θ)

−1
]
,

but this is a little sloppy since the limiting distribution should be independent of n.
The variance of the score-based estimating function has the property that A = AT

because the matrix of second derivatives is symmetric, that is,

∂2l

∂θj∂θk
=

∂2l

∂θk∂θj

for j, k = 1, . . . , p.
If there is a unique maximum, then the MLE is consistent and asymptotically

normal. The Cramér–Rao bound was given in (2.3). In the present terminology, for
any unbiased estimator, θ̃, the bound is var(θ̃) ≥ In(θ)

−1 so that the MLE is
asymptotically efficient. Asymptotic efficiency under correct model specification is
a primary motivation for the widespread use of MLEs.

For inference via (2.18), we may also replace the expected information by the
observed information,

I�
n = − ∂2

∂θ∂θT
l(θ).

Asymptotically, their use is equivalent since I�
n →p In as n → ∞ by the weak law

of large numbers (Appendix G).
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The regularity conditions required to derive the asymptotic distribution of the
MLE include identifiability so that each element of the parameter space θ should
correspond to a different model p(y | θ), otherwise there would be no unique
value of θ to which θ̂ would converge. We require the interchange of differentiation
and integration, and so the range of the data cannot depend on an unknown
parameter. Additionally, the true parameter value must lie in the interior of the
parameter space, and the Taylor series expansion that was used to determine the
asymptotic distribution of θ̂ requires a well-behaved derivative and so the amount
of information must increase with sample size. One situation in which one must be
wary is when the number of parameters increases with sample size—this number
cannot increase too quickly—see Exercise 2.6 for a model in which this condition
is violated.

In Sect. 2.4.3, we examine the effects on inference based on the MLE of
model misspecification and, in Sects. 2.6 and 2.7, describe methods for determining
properties of the estimator that do not depend on correct specification of the full
probability model.

Example: Binomial Likelihood

For a single observation from a binomial distribution, Y | p ∼ Binomial(n, p), the
log-likelihood is

l(p) = Y log p+ (n− Y ) log(1 − p),

where we omit the term log

(
n

Y

)
because it is constant with respect to p. The

score is

S(p) =
dl

dp
=

Y

p
− n− Y

1− p
,

and setting S(p̂) = 0 gives p̂ = Y/n. In addition

d2l

dp2
= − Y

p2
− n− Y

(1− p)2
,

and

I(p) = −E

[
d2l

dp2

]
=

n

p(1− p)
.

We therefore see that the amount of information in the data for p is greater if p is
closer to 0 or 1. This is intuitively reasonable since the variance of Y is np(1 − p)
and so there is less variability in the data (and hence less uncertainty) if p is close to
0 or 1. The asymptotic distribution of the MLE is

√
n(p̂− p) →d N [p, p(1− p)] ,
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so that an asymptotic 95% confidence interval for p is
[
p̂− 1.96×

√
p̂(1− p̂)

n
, p̂+ 1.96×

√
p̂(1− p̂)

n

]
.

Unfortunately, the endpoints of this interval are not guaranteed to lie in (0,1).
To rectify this shortcoming, we may parameterize in terms of the logit of p,
θ = log[p/(1 − p)]. We could derive the asymptotic distribution using the delta
method, but instead we reparameterize the model to give

l(θ) = Y θ − n log [1 + exp(θ)] ,

and, proceeding as in the previous parameterization,

θ̂ = log

(
Y

n− Y

)

and

I(θ) =
n[1 + exp(θ)]2

exp(θ)

to give

√
n(θ̂ − θ) →d N

(
θ,

exp(θ)

[1 + exp(θ)]2

)
.

An asymptotic 95% confidence interval for p follows from transforming the
endpoints of the interval for θ:

⎡

⎢⎢⎣
exp

(
θ̂ − 1.96×

√
var(θ̂)/n

)

1 + exp

(
θ̂ − 1.96×

√
var(θ̂)/n

) ,

exp

(
θ̂ + 1.96×

√
var(θ̂)/n

)

1 + exp

(
θ̂ + 1.96×

√
var(θ̂)/n

)

⎤

⎥⎥⎦ .

The endpoints will be contained in (0,1), though θ̂ is undefined if Y = 0 or Y = n.

Example: Lung Cancer and Radon

Consider the model

Yi | β ∼ind Poisson(μi),

with μi = Ei exp(xiβ), xi = [1, xi], i = 1, . . . , n, and β = [β0, β1]
T.

The probability distribution of y is

p(y | β) = exp

(
n∑

i=1

yi logμi −
n∑

i=1

μi −
n∑

i=1

log yi!

)
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to give log-likelihood

l(β) = βT

n∑

i=1

xT
iYi −

n∑

i=1

Ei exp(xiβ)

and 2× 1 score vector (estimating function)

S(β) =
∂l

∂β
=

n∑

i=1

xT
i [Yi − Ei exp(xiβ)]

= xT [Y − μ(β)] , (2.20)

where x = [xT
1, . . . ,x

T
n]

T, Y = [Y1, . . . , Yn]
T, and μ = [μ1, . . . , μn]

T. The equation
S(β̂) = 0 does not, in general, have a closed-form solution, but, pathological
datasets aside, numerical solution is straightforward. Asymptotic inference is
based on

In(β̂n)
1/2(β̂n − β) →d N2(0, I2),

where the information matrix is

In(β̂n) = var(S) =
n∑

i=1

xT
ivar(Yi)xi = xTV x,

with V the diagonal matrix with elements var(Yi) = Ei exp(xiβ), i = 1, . . . , n.
In this case, the expected and observed information coincide. In practice, the
information is estimated by replacing β by β̂n. An important observation is that
if the mean is correctly specified the score, (2.20) is a consistent estimator of zero,
and β̂n is a consistent estimator of β. In particular, if the data do not conform to
var(Yi) = μi, we still have a consistent estimator, but the standard errors will be
incorrect.

For the lung cancer data, we have n = 85, and the MLE is β̂ = [0.17,−0.036]T

with

I(β̂)−1 =

[
0.0272 −0.95× 0.027× 0.0054

−0.95× 0.027× 0.0054 0.00542

]
.

The estimated standard errors of β̂0 and β̂1 are 0.027 and 0.0054, respectively,
and an asymptotic 95% confidence interval for β1 is [−0.047,−0.026]. Leaning
on asymptotic normality is appropriate with the large sample size here. A useful
inferential summary is an asymptotic 95% confidence interval for the area-level
relative risk associated with a one-unit increase in residential radon, which is

exp(−0.036± 1.96× 0.0054) = [0.954, 0.975].

This interval suggests that the decrease in lung cancer incidence associated with a
one-unit increase in residential radon is between 2.5% and 4.6%, though we stress
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that this is an ecological (area-level) analysis, and we would not transfer inference
from the level of the area to the level of the individuals within the areas (as discussed
in Sect. 1.3.3).

Example: Weibull Model

The Weibull distribution is useful for the modeling of survival and reliability data
and is of the form

p(y | θ) = θ1θ
θ1
2 yθ1−1 exp

[−(θ2y)
θ1
]
,

where y > 0, θ = [θ1, θ2]
T and θ1, θ2 > 0. The mean and variance of the Weibull

distribution are

E[Y | θ] = Γ (1/θ1 + 1)/θ2

var(Y | θ) = [Γ (2/θ1 + 1)− Γ (1/θ1 + 1)2]/θ22,

where

Γ (α) =

∫ ∞

0

xα−1 exp(−x)dx

is the gamma function. Therefore, the first two moments are not simple functions
of θ1 and θ2. With independent and identically distributed observations Yi, i =
1, . . . , n, from a Weibull distribution the log-likelihood is

l(θ) = n log θ1 + nθ1 log θ2 + (θ1 − 1)

n∑

i=1

log Yi − θθ12

n∑

i=1

Y θ1
i ,

with score equations

S1(θ) =
∂l

∂θ1
=

n

θ1
+ n log θ2 +

n∑

i=1

log Yi − θθ12

n∑

i

Y θ1
i log(θ2Yi)

S2(θ) =
∂l

∂θ2
=

nθ1
θ2

− θ1θ
θ1−1
2

n∑

i=1

Y θ1
i ,

which have no closed-form solution and are not a function of a sufficient statistic
of dimension less than n. Hence, consistency of θ̂n, where S(θ̂n) = 0, cannot be
determined from consideration of the first moment (or even the first two moments)
of the data only, unlike the Poisson example. In particular, consistency under model
misspecification cannot easily be determined.
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2.4.2 Variants on Likelihood

Estimation via the likelihood, as defined by L(θ) = p(y | θ), is not always univer-
sally applied. In some situations, such as when regularity conditions are violated,
alternative versions are required to provide procedures that produce estimators with
desirable properties. In other situations, alternative likelihoods provide estimators
with better small sample properties, perhaps because nuisance parameters are dealt
with more efficiently. Unfortunately, the construction of these likelihoods is not
prescriptive and can require a great deal of ingenuity. We describe conditional,
marginal, and profile likelihoods.

Conditional Likelihood

Suppose λ represent parameters of interest, with φ being nuisance parameters.
Suppose the distribution for y can be factorized as

p(y | λ,φ) ∝ p(t1 | t2,λ)p(t2 | λ,φ), (2.21)

where t1 and t2 are statistics, that is, functions of y. Then inference for λ may be
based on the conditional likelihood

Lc(λ) = p(t1 | t2,λ). (2.22)

The conditional likelihood has similar properties to a regular likelihood. Conditional
likelihoods may be used in situations in which we wish to eliminate nuisance
parameters. The conditioning statistic, t2, is not ancillary (Appendix F), so that it
does depend on λ, and so some information may be lost in the act of conditioning,
but the benefits of elimination are assumed to outweigh this loss. Conditional
likelihoods will be used in Sect. 7.7 in the context of Fisher’s exact test and
individually matched case-control studies (in which the number of parameters
increases with sample size) and in Sects. 9.5 and 9.13.4 to eliminate random effects
in mixed effects models.

Marginal Likelihood

Let S1, S2, A be a minimal sufficient statistic where A is ancillary (Appendix F),
and suppose we have the factorization

p(y | λ,φ) ∝ p(s1, s2,a | λ,φ)
= p(a)p(s1 | a,λ)p(s2 | s1,a,λ,φ)
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whereλ are parameters of interest andφ are the remaining (nuisance) parameters. In
contrast to conditional likelihood, marginal likelihoods are based on averaging over
parts of the data to obtain p(s1 | a,λ), though operationally marginal likelihoods
are often derived without the need for explicit averaging.

Inference for λ may be based on the marginal likelihood

Lm(λ) = p(s1 | a,λ)

and is desirable if inference is simplified or if problems with standard likelihood
methods are to be avoided.

These advantages may outweigh the loss of efficiency in ignoring the term p(s2 |
s1,a,λ,φ). If there is no ancillary statistic, then the marginal likelihood is

Lm(λ) = p(s1 | λ).

The marginal likelihood has similar properties to a regular likelihood. We will make
use of marginal likelihoods for variance component estimation in mixed effects
models in Sect. 8.5.3.

Example: Normal Linear Model

Assume Y | β, σ2 ∼ Nn(xβ, σ
2In) where x is the n × (k + 1) design matrix

and dim(β) = k + 1. Suppose the parameter of interest is λ = σ2, with remaining
parameters φ = β. The MLE for σ2 is

∼
σ
2
=

1

n
(y − xβ̂)T(y − xβ̂) =

RSS
n

with β̂ = (xTx)−1xTY . It is well known that ∼
σ
2

has finite sample bias, because
the estimation of β is not taken into account. The minimal sufficient statistics are
s1 = S2 = RSS/(n− k− 1) and s2 = β̂. We write the probability density for y in
terms of s1 and s2:

p(y | σ2,β) = (2πσ2)−n/2 exp

[
− 1

2σ2
(y − xβ)T(y − xβ)

]

∝ σ−n exp

[
− 1

2σ2
(n− k − 1)s2

]
exp

[
− 1

2σ2
(β̂ − β)TxTx(β̂ − β)

]

= p(s1 | σ2)p(s2 | β, σ2)

where going between the first and second line is straightforward if we recognize that

(y − xβ)T(y − xβ) = (y − xβ̂ + xβ̂ − xβ)T(y − xβ̂ + xβ̂ − xβ)

= (y − xβ̂)T(y − xβ̂) + (β̂ − β)TxTx(β̂ − β), (2.23)
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with the cross term disappearing because of independence between β̂ and the vector
of residuals y − xβ̂. Consequently, the marginal likelihood is

Lm(σ2) = p(s2 | σ2).

Since the data are normal

(n− k − 1)s2

σ2
∼ χ2

n−k−1 = Ga

(
n− k − 1

2
,
1

2

)
,

and so

p(s2 | σ2) =

(
n− k − 1

2σ2

)(n−k−1)/2 (
s2
)(n−k−1)/2−1

Γ
(
n−k−1

2

) exp

[
− (n− k − 1)s2

2σ2

]
,

to give

lm = logLm = −(n− k − 1) log σ − (n− k − 1)s2

2σ2
,

and marginal likelihood estimator σ̂2 = s2, the usual unbiased estimator.

Profile Likelihood

Profile likelihood provides a method of examining the behavior of a subset of the
parameters. If θ = [λ,φ], where λ again represents a vector of parameters of
interest and φ the remaining parameters, then the profile likelihood Lp(λ) for λ
is defined as

Lp(λ) = max
φ

L(λ,φ). (2.24)

If λ̃ denotes the maximum of Lp(λ) and θ̂ =
[
λ̂, φ̂

]
is the MLE, then λ̃ = λ̂.

Profile likelihoods will be encountered in Sect. 8.5, in the context of the estimation
of variance components in linear mixed effects models.

2.4.3 Model Misspecification

In the following, we begin by assuming independent observations. We have seen
that if the assumed model is correct then the MLE, θ̂, has asymptotic distribution

√
n (θ̂n − θ) →d Np

[
0, I1(θ)

−1
]
.
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In this section we examine the effects of model misspecification. We first determine
exactly what quantity the MLE is estimating under misspecification and then
examine the asymptotic distribution of the MLE. Let p(y | θ) and pT(y) denote
the assumed and true densities, respectively.

The average of the log-likelihood is such that

1

n

n∑

i=1

log p(Yi | θ) →a.s. ET[log p(Y | θ)], (2.25)

by the strong law of large numbers. Hence, asymptotically the MLE maximizes the
expectation of the assumed log-likelihood under the true model and θ̂n →p θT. We
now investigate what θT represents when we have assumed an incorrect model. We
write

ET[log p(Y | θ)] = ET [log pT(Y )− log pT(Y ) + log p(Y | θ)]
= ET[log pT(Y )]− KL(pT, p), (2.26)

where

KL(f, g) =
∫

log
f(y)

g(y)
f(y) dy ≥ 0,

is the Kullback–Leibler measure of the “distance” between the densities f and g
(the measure is not symmetric so is not a conventional distance measure). The first
term of (2.26) does not depend on θ, and so the MLE minimizes KL(pT, p), and is
therefore that value of θ which makes the assumed model closest, in a Kullback–
Leibler sense, to the true model.

We let Sn(θ) denote the score under the assumed model and state the following
result, along with a heuristic derivation.

Result. Suppose θ̂n is a solution to the estimating equation Sn(θ) = 0, that
is, Sn(θ̂n) = 0. Then

√
n (θ̂n − θT) →d Np

[
0,J−1K(J T)−1

]
(2.27)

where

J = J(θT) = ET

[
∂2

∂θ∂θT
log p(Y | θT)

]
,

and

K = K(θT) = ET

[(
∂

∂θ
log p(Y | θT)

)(
∂

∂θ
log p(Y | θT)

)T]
.
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Outline Derivation

The derivation closely follows that of Result 2.1, and for simplicity we again assume
θ is one-dimensional. We first obtain the expectation and variance of

1

n
Sn(θ) =

1

n

n∑

i=1

d

dθ
log p(yi | θ),

in order to derive the asymptotic distribution of Sn(θ). Subsequently, we obtain the
distribution of θ̂n.

Recall that θT is that value which minimizes the Kullback–Leibler distance,
that is,

0 =
d

dθ
KL(θ)

∣∣∣∣
θT

=

[
d

dθ

∫
log

pT(y)

p(y | θ)pT(y)dy

]∣∣∣∣
θT

=

[∫
d

dθ
log pT(y)pT(y)dy −

∫
d

dθ
log p(y | θ)pT(y)dy

]∣∣∣∣
θT

= 0−
[∫ (

d

dθ
log p(y | θ)

)
pT(y)dy

]∣∣∣∣
θT

,

and so ET[S(θT)] = 0 (and we have assumed that we can interchange the order of
differentiation and integration).

For the second moment,

1

n

n∑

i=1

(
d

dθ
log p(yi | θ)

)2

→p ET

[(
d

dθ
log p(Y | θT)

)2
]
= K,

which we assume exists. Hence, by the central limit theorem

1

n
S(θT) →d N(0,K).

Expanding Sn(θ) in a Taylor series around θT:

0 =
1

n
Sn(θ̂n) =

1

n
Sn(θT) + (θ̂n − θT)

1

n

dSn

dθ

∣∣∣∣
θT

+
1

2
(θ̂n − θT)

2 1

n

d2Sn

dθ2

∣∣∣∣∼
θ

,

where θ̃ is between θ̂n and θT and

1

n

dSn(θ)

dθ

∣∣∣∣
θT

=
1

n

n∑

i=1

d2

dθ2
log p(y | θ)

∣∣∣∣∣
θT

→p ET

[
d2

dθ2
log p(Y | θT)

]
= J.
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Following the outline derivation of Result 2.1 gives

√
n (θ̂n − θT) →d N

(
0,

K

J2

)
,

as required.

Example: Exponential Assumed Model, Gamma True Model

Suppose that the assumed model is exponential with mean θ but that the true model
is gamma Ga(α, β). Minimizing the Kullback–Leibler distance with respect to θ
corresponds to maximizing (2.25), that is

ET

[
− log θ − Y

θ

]
= log θ − α/β

θ
,

so that θT = α/β is the quantity that is being estimated by the MLE. Hence, the
closest exponential distribution to the gamma distribution, in a Kullback–Leibler
sense, is the one that possesses the same mean.

2.5 Quasi-likelihood

2.5.1 Maximum Quasi-likelihood Estimation

In this section we describe an estimating function that is based upon the mean and
variance of the data only. Specifically, we assume that the first two moments are of
the form

E[Y | β] = μ(β)

var(Y | β) = αV [μ(β)]

where μ(β) = [μ1(β), . . . , μn(β)]
T represents the regression function, V is a

diagonal matrix (so the observations are assumed uncorrelated), with

var(Yi | β) = αV [μi(β)] ,

and α > 0 is a scalar that does not depend upon β. We assume β = [β0, . . . , βk]
T

so that the dimension of β is k + 1. The aim is to obtain the asymptotic properties
of an estimator of β based on these first two moments only. The specification of the
mean function in a parametric regression setting is unavoidable, and efficiency will
clearly depend on the form of the variance model.
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To motivate an estimating function, consider the sum of squares

(Y − μ)TV −1(Y − μ)/α, (2.28)

where μ = μ(β) and V = V (β). To minimize this sum of squares, there are two
ways to proceed. Perhaps the more obvious route is to acknowledge that both μ and
V are functions of β and differentiate with respect to β to give

− 2DTV −1(Y − μ)/α+ (Y − μ)T ∂V
−1

∂β
(Y − μ)/α, (2.29)

whereD is the n×p matrix of derivatives with elements ∂μi/∂βj , i = 1, . . . , n, j =
1, . . . , p. Unfortunately, (2.29) is not ideal as an estimating function because it does
not necessarily have expectation zero when we only assume E[Y | β] = μ, because
of the presence of the second term. If the expectation of the estimating function is
not zero, then an inconsistent estimator of β results.

Alternatively, we may temporarily forget that V is a function of β when we
differentiate (2.28) and solve the estimating equation

D(β̂)TV (β̂)−1
[
Y − μ(β̂)

]
/α = 0.

As shorthand we write this estimating function as

U(β) = DTV −1 (Y − μ) /α. (2.30)

This estimating function is linear in the data and so its properties are straightforward
to evaluate. In particular,

1. E[U(β)] = 0, assuming E[Y | β] = μ(β).
2. var [U(β)] = DTV −1D/α, assuming var(Y | β) = V .

3. −E
[
∂U
∂β

]
= DTV −1D/α = var [U(β)], assuming E[Y | β] = μ(β).

The similarity of these properties with those of the score function (Sect. 2.4.1) is
apparent and has led to (2.30) being referred to as a quasi-score function. Let β̂n

represent the root of (2.30), that is, U(β̂n) = 0. We can apply Result 2.1 directly
to obtain the asymptotic distribution of the maximum quasi-likelihood estimator
(MQLE) as

(DTV −1D)1/2(β̂n − β) →d Nk+1(0, αIk+1),

where we have assumed that α is known. Using (B.4) in Appendix B

E[(Y − μ)TV −1(μ)(Y − μ)]/α = n,

and so if μ were known, an unbiased estimator of α would be

α̂n = (Y − μ)TV −1(μ)(Y − μ)/n.
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A degree of freedom corrected (but not in general unbiased) estimate is given by the
Pearson statistic divided by its degrees of freedom:

α̂n =
1

n− k − 1

n∑

i=1

(Yi − μ̂i)
2

V (μ̂i)
, (2.31)

where μ̂i = μ̂i(β̂). This estimator of the scale parameter is consistent so long as
the assumed variance model is correct. The asymptotic distribution that is used in
practice is therefore

(D̂TV̂ −1D̂/α̂n)
1/2(β̂n − β) →d Nk+1(0, Ik+1).

The inclusion of an estimate for α is justified by applying Slutsky’s theorem
(Appendix G) to α̂n × U(β̂n). As usual in such asymptotic calculations, the
uncertainty in α̂n is not reflected in the variance for β̂n. This development reveals
a mixing of inferential approaches with β̂n a MQLE and α̂n a method of moments
estimator. A justification for the latter estimator is that it is likely to be consistent
in a wider range of circumstances than a likelihood-based estimator. A crucial
observation is that if the mean function is correctly specified, the estimator β̂n

is consistent also. Asymptotically appropriate standard errors result if the mean–
variance relationship is correctly specified. McCullagh (1983) and Godambe and
Heyde (1987) discuss the close links between consistency, the quasi-score function
(2.30), and membership of the exponential family; see also Chap. 6.

As an aside, in the above, the mean model does not need to be “correct” since
we are simply estimating a specified form of association, and estimation will be
performed regardless of whether this model is appropriate. Of course, the usefulness
of inference does depend on an appropriate mean model.

As a function of μ, we have the quasi-score

Y − μ

αV (μ)
, (2.32)

and integration of this quantity gives

l(μ, α) =

∫ μ

y

y − t

αV (t)
dt,

which, if it exists, behaves like a log-likelihood. As an example, for the model
E[Y ] = μ and var(Y ) = αμ

l(μ, α) =

∫ μ

y

y − t

αt
dt =

1

α
[y logμ− μ+ c],

where c = −y log y − y and y logμ − μ is the log-likelihood of a Poisson random
variable. Table 2.1 lists some distributions that correspond to particular choices of
variance function.
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Table 2.1 Variance functions and quasi log-likelihoods

Variance V (μ) Quasi log likelihood Distribution

1 − 1
α

[
1
2
(y − μ)2

]
N(μ, α)

μ 1
α
(y log μ− μ) Poisson(μ)

μ2 1
α

(
− y

μ
− log μ

)
Ga(1/α, μ/α)

nμ(1 − μ) 1
α

[
y log

(
μ

1−μ

)
+ n log(1− μ)

]
Binomial(n, μ)

μ+ μ2/b 1
α

[
y log

(
μ

b+μ

)
+ b log

(
b

b+μ

)]
NegBin(μ, b), b known

μ2(1− μ)2 1
α

[
(2y − 1) log

(
μ

1−μ

)
− y

μ
− 1−y

1−μ

]
No distribution

In all cases E[Y ] = μ. The parameterizations of the distributional forms are as in
Appendix D. For the Poisson, binomial, and negative binomial distributions, these are
the forms that the quasi-score corresponds to when α = 1

The word “quasi” refers to the fact that the score may or not correspond to a
probability function. For example, in Table 2.1, the variance function μ2(1 − μ)2

does not correspond to a probability distribution. In most cases, there is an implied
distributional kernel, but the addition of the variance multiplier α often produces a
mean–variance relationship that is not present in the implied distribution.

We emphasize that the first two moments do not uniquely define a distribution.
For example, the negative binomial distribution may be derived as the marginal
distribution of

Y | μ, θ ∼ Poisson(μθ) (2.33)

θ ∼ Ga(b, b) (2.34)

so that E[Y ] = μ and

var(Y ) = E[var(Y | θ)] + var(E[Y | θ]) = μ+
μ2

b
. (2.35)

These latter two moments are also recovered if we replace the gamma distribution
with a lognormal distribution. Specifically, assume the model

Y | θ� ∼ Poisson(θ�)

θ� ∼ LogNorm(η, σ2)

and let μ = E[θ] = exp(η + σ2/2). Then,

var(θ�) = E[θ�]2
[
exp(σ2)− 1

]
= μ2

[
exp(σ2)− 1

]
.

Under this model, E[Y ] = μ and

var(Y ) = E[var(Y | θ�)] + var[E(Y | θ�)] = μ+ μ2
[
exp(σ2)− 1

]
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which, on writing b� = [exp(σ2)− 1]−1, gives the same form of quadratic variance
function, (2.35), as with the gamma model.

If the estimating function (2.30) corresponds to the score function for a particular
probability distribution, then the subsequent estimator corresponds to the MLE
(because α does not influence the estimation of β), though the variance of the
estimator will usually differ. A great advantage of the use of quasi-likelihood is
its computational simplicity.

A prediction interval for an observable, Y , is not possible with quasi-likelihood
since there is no probabilistic mechanism with which to reflect the stochastic
component of the prediction.

Example: Lung Cancer and Radon

We return to the lung cancer example and now assume the quasi-likelihood model

E[Yi | β] = Ei exp(xiβ), var(Yi | β) = αE[Yi | β].

Fitting this model yields identical point estimates to the MLEs and α̂ = 2.81 so that
the quasi-likelihood standard errors are

√
α̂ = 1.68 times larger than the Poisson

model-based standard errors. The variance–covariance matrix is

(D̂TV̂ −1D̂)−1α̂ =

[
0.0452 −0.95× 0.045× 0.0090

−0.95× 0.045× 0.0090 0.00902

]
.

An asymptotic 95% confidence interval for the relative risk associated with a one-
unit increase in radon is [0.947, 0.982] which is

√
α̂ = 1.68 wider than the Poisson

interval evaluated previously.

2.5.2 A More Complex Mean–Variance Model

For comparison, we now describe a more general model than considered under the
quasi-likelihood approach. Suppose we specify the first two moments of the data as

E[Yi | β] = μi(β) (2.36)

var(Yi | β) = Vi(α,β), (2.37)

where α is an r×1 vector of parameters that appear only in the variance model. Let
α̂n be a consistent estimator of α. We state without proof the following result. The
estimator β̂n that satisfies the estimating equation
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G(β̂n, α̂n) = D(β̂n)V
−1(α̂n, β̂n)

[
Y − μ(β̂n)

]
(2.38)

has asymptotic distribution

(D̂TV̂ −1D̂)1/2(β̂n − β) →d Nk+1(0, Ik+1)

where D̂ = D(β̂n) and V̂ = V (α̂n, β̂n).
The difference between this model and that in the quasi-likelihood approach is

that V may now depend on additional variance–covariance parameters α in a more
complex way. Under quasi-likelihood it is assumed that var(Yi) = αVi(μi), so that
the estimating function does not depend on α. Consequently, β̂ also does not depend
on α, though the standard errors are proportional to

√
α. This is a motivating factor

in the development of quasi-likelihood, since standard software may be used for
implementation and, perhaps more importantly, consistency of β is guaranteed if
the mean model is correctly specified.

The form of the mean–variance relationship given by (2.36) and (2.36) suggests
an iterative scheme for estimation of β and α. Set t = 0 and let α̂(0) be an initial
estimate for α. Now iterate between

1. Solve G(β̂, α̂(t)) = 0 to give β̂(t+1),

2. Estimate α̂(t+1) with μ̂i = μi

(
β̂(t+1)

)
. Set t → t+ 1 and return to 1.

The model given by (2.36) and (2.36) is more flexible than that provided by quasi-
likelihood but requires the correct specification of mean and variance for a consistent
estimator of β.

Example: Lung Cancer and Radon

As an example of the mean–variance model discussed in the previous section, we
fit a negative binomial model to the lung cancer data. This model is motivated via
the random effects formulation given by (2.33) and (2.34) with loglinear model
μi = μi(β) = Ei exp(β0 + β1xi), i = 1, . . . , n. In the lung cancer context, the
random effects are area-specific perturbations from the mean μi. The introduction of
the random effects may be seen as a device for inducing overdispersion. Integrating
over θi, we obtain the negative binomial distribution

Pr(yi | β, b) = Γ (yi + b)

Γ (b)yi!

μyi

i bb

(μi + b)yi+b
,

for yi = 0, 1, 2, ..., with

E[Yi | β] = μi(β)

var(Yi | β, b) = μi(β)

[
1 +

μi(β)

b

]
, (2.39)
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so that smaller values of b correspond to greater degrees of overdispersion and
as b → ∞ we recover the Poisson model. For consistency with later chapters
we use b rather than α for the parameter occurring in the variance model. Care
is required with the negative binomial distribution since a number of different
parameterizations are available; see Exercise 2.4. The log-likelihood is

l(β, b) =

n∑

i=1

log
Γ (yi + b)

Γ (b)yi!
+ yi logμi + b log b− (yi + b) log(μi + b) (2.40)

giving the score function for β as

S(β) =
∂l

∂β
=

n∑

i=1

(
∂μi

∂β

)T
yi − μi

μi + μ2
i /b

=

n∑

i=1

D(β)T
iV

−1
i (b) [Yi − μi(β)]

which corresponds to (2.38). Hence, for fixed b, we can solve this estimating
equation to obtain an estimator β̂. Usually we will also wish to estimate b (as op-
posed to assuming a fixed value). One possibility is maximum likelihood though
a quick glance at (2.40) reveals that no closed-form estimator will be available
and numerical maximization will be required (which is not a great impediment).
We describe an alternative method of moments estimator which may be more robust.

For the quadratic variance model (2.39), the variance is

var(Yi | β, b) = E[(Yi − μi)
2] = μi(1 + μi/b),

so that

b−1 = E

[
(Yi − μi)

2 − μi

μ2
i

]
,

for i = 1, . . . , n, leading to the method of moments estimator

b̂ =

[
1

n− k − 1

n∑

i=1

(Yi − μ̂i)
2 − μ̂i

μ̂2
i

]−1

, (2.41)

with k = 1 in the lung cancer example. If we have a consistent estimator b̂ (which
follows if the quadratic variance model is correct) and the mean correctly specified,
then valid inference follows from

(D̂TV̂ (̂b)−1D̂)1/2(β̂ − β) →d N2(0, I2).

We fit this model to the lung cancer data. The estimates (standard errors) are β̂0 =
0.090 (0.047) and β̂1 = −0.030 (0.0085). The latter point estimate differs a little
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Fig. 2.2 Linear and
quadratic variance functions
for the lung cancer data

from the MLE (and MQLE) of −0.036, reflecting the different variance weighting
in the estimating function. The moment-based estimator was b̂ = 57.8 (the MLE
is 61.3 and so close to this value). An asymptotic 95% confidence interval for the
relative risk exp(β1) is [0.955,0.987], so that the upper limit is closer to unity than
the intervals we have seen previously.

In terms of the first two moments, the difference between quasi-likelihood
and the negative binomial model is that the variances are, respectively, linear and
quadratic functions of the mean. In Fig. 2.2, we plot the estimated linear and
quadratic variance functions over the range of the mean for these data. To produce a
clearer plot, the log of the variance is plotted against the log of the mean, and the log
of the observed counts, yi, i = 1, . . . , 85, is added to the plot (with a small amount
of jitter). Over the majority of the data, the two variance functions are similar, but
for large values of the mean in particular, the variance functions are considerably
different which leads to the differences in inference, since large observations are
being weighted very differently by the two variance functions. Based on this plot,
we might expect even greater differences. However, closer examination of the data
reveals that the x’s associated with the large y values are all in the midrange, and
consequently, these points are not influential.

Examination of the residuals gives some indication that the quadratic mean–
variance model is more appropriate for these data (see Sect. 6.9). It is typically very
difficult to distinguish between the two models, unless there are sufficient points
across a large spread of mean values.

2.6 Sandwich Estimation

A general method of avoiding stringent modeling conditions when the variance of
an estimator is calculated is provided by sandwich estimation. Recall from Sect. 2.3
the estimating function
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Gn(θ) =
1

n

n∑

i=1

G(θ, Yi).

Based on independent and identically distributed observations, we have the sand-
wich form for the variance

var(θ̂n) =
A−1B(AT)−1

n
(2.42)

where

A = E

[
∂

∂θ
G(θ, Y )

]

and

B = E[G(θ, Y )G(θ, Y )T].

For (2.42) to be asymptotically appropriate, the expectations need to be evaluated
under the true model (as discussed in Sect. 2.4.3).

So far we have used an assumed model to calculate the expectations. An
alternative is to evaluate A and B empirically via

Ân =
1

n

n∑

i=1

∂

∂θ
G(θ̂, Yi),

and

B̂n =
1

n

n∑

i=1

G(θ̂, Yi)G(θ̂, Yi)
T.

By the weak law of large numbers, Ân →p A and B̂n →p B, and

var(θ̂n) =
Â−1B̂(ÂT)−1

n
(2.43)

is a consistent estimator of the variance. The great advantage of sandwich estimation
is that it provides a consistent estimator of the variance in very broad situations. An
important assumption is that the observations are uncorrelated (this will be relaxed
in Part III of the book when generalized estimating equations are described).

We now consider the situation in which the estimating function arises from the
score and suppose we have independent and identically distributed data. In this
situation

Gn(θ) =
1

n

n∑

i=1

∂

∂θ
li(θ),

with li(θ) = log p(Yi | θ), to give

A =
1

n

n∑

i=1

E

[
∂2

∂θ∂θT
l(θ)

]



58 2 Frequentist Inference

and

B =
1

n

n∑

i=1

E

[(
∂

∂θ
l(θ)

)(
∂

∂θ
l(θ)

)T]

where l(θ) = log p(Y | θ). Then, under the model,

I1(θ) = −A(θ) = B(θ), (2.44)

so that

var(θ̂n) =
A−1B(AT)−1

n
=

I1(θ)
−1

n
.

The sandwich estimator (2.43) is based on

A =
1

n

n∑

i=1

∂2

∂θ∂θT
li(θ)

∣∣∣∣∣
̂θ

and

B =
1

n

n∑

i=1

(
∂

∂θ
li(θ)

)(
∂

∂θ
li(θ)

)T
∣∣∣∣∣
̂θ

.

The sandwich method can be applied to general estimating functions, not just those
arising from a score equation (in Sect. 2.4.3, we considered the latter in the context
of model misspecification).

Suppose we assume E[Yi] = μi and var(Yi) = αV (μi), and cov(Yi, Yj) = 0,
i, j = 1, . . . , n, i �= j, as a working covariance model. Under this specification, it is
natural to take the quasi-score function (2.30) as an estimating function, and in this
case, the variance of the resultant estimator is

vars(β̂n) = (DTV −1D)−1DTV −1var(Y )V −1D(DTV −1D)−1.

The appropriate variance is obtained by substituting in the correct form for var(Y ).
The latter is, of course, unknown but a simple “sandwich” estimator of the variance
is given by

v̂ar(β̂n) = (DTV −1D)−1DTV −1diag(RRT)V −1D(DTV −1D)−1,

where R = [R1, . . . , Rn]
T is the n× 1 vector of (unstandardized) residuals

Ri = Yi − μi(β̂),

so that diag(RRT) is the n×n diagonal matrix with diagonal elements
[
Yi−μi(β̂)

]2

for i = 1, . . . , n. This estimator is consistent for the variance of β̂, under correct
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Table 2.2 Components of estimation under the assumption of independent outcomes and for
one-dimensional β

Likelihood Quasi-likelihood

G(β) =
∑

i Gi(β)
∑

i
∂
∂β

logLi
1
α

∑
i

(
∂μi
∂β

)
Yi−μi

Vi

A =
∑

i E
[
∂Gi
∂β

] ∑
i E

[
∂2

∂β2 logLi

]
− 1

α

∑
i

(
∂μi
∂β

)2
1
Vi

Â =
∑

i
∂Gi
∂β

∣
∣

̂β

∑
i

∂2

∂β2 logLi − 1
α

∑
i

(
∂μi
∂β

)2
1
Vi

B =
∑

i E[Gi(β)2]
∑

i E
[(

∂
∂β

logLi

)2
]

1
α

∑
i

(
∂μi
∂β

)2
1
Vi

B̂ =
∑

i Gi(β̂)2
∑

i

(
∂
∂β

logLi

)2
1
α2

∑
i

(
∂μi
∂β

)2
(Yi−μ̂i)

2

V 2
i

Model-based variance
{∑

i E
[

∂2

∂β2 logLi

]}−1
α
{∑

i

(
∂μi
∂β

)
1
Vi

}−1

Sandwich variance
∑

i

(

∂
∂β

logLi

)2

[

∑

i
∂2

∂β2 logLi

]2

∑

i

(

∂μi
∂β

)2 (Yi−μ̂i)
2

V 2
i

[

∑

i

(

∂μi
∂β

)2 1
Vi

]2

The likelihood model is p(y | β) =
∏

i Li(β), and the quasi-likelihood model has
E[Yi | β] = μi(β), var(Yi | β) = αVi(β), i = 1, . . . , n, and cov(Yi, Yj | β) = 0, i �= j. The

expected information is −∑
i E

[
∂2

∂β2 logLi

]
, and the observed information is −∑

i
∂2

∂β2 logLi.

The sandwich estimator is Â−1B̂Â−1 which simplifies to −Â−1 under the model

specification of the mean, and with uncorrelated data. There is finite sample bias in
Ri as an estimate of Yi − μi(β) and versions that adjust for the estimation of the
parameters β are available; see Kauermann and Carroll (2001).

The great advantage of sandwich estimation is that it provides a consistent
estimator of the variance in very broad situations and the use of the empirical
residuals is very appealing. There are two things to bear in mind when one considers
the use of the sandwich technique, however. The first is that, unless the sample
size is sufficiently large, the sandwich estimator may be highly unstable; in terms
of mean squared error, model-based estimators may be preferable for small- to
medium-sized n (for small samples one would want to avoid the reliance on the
asymptotic distribution anyway). Consequently, empirical is a better description of
the estimator than robust. The second consideration is that if the assumed mean–
variance model is correct, then a model-based estimator is more efficient.

In many cases, quasi-likelihood with a model-based variance estimate may be
viewed as an intermediary between the full model specification and sandwich
estimation, in that the form of the variance function separates estimation of β and α,
to give consistency of β in broad circumstances, though the standard error will not
be consistently estimated unless the variance function is correct. Table 2.2 provides
a summary and comparison of the various elements of the likelihood and quasi-
likelihood methods, with sandwich estimators for each.
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Example: Poisson Mean

We report the results of a small simulation study to illustrate the efficiency-
robustness trade-off of variance estimation. Data were simulated from the model
Yi | δ ∼ Poisson(δ), i = 1, . . . , n, where δ ∼iid Gamma(θb, b). This setup gives
marginal moments

E[Yi] = θ

var(Yi) = E[Yi]×
(
1 +

1

b

)
= E[Yi]× α.

We take θ = 10 and α = 1, 2, 3 corresponding to no excess-Poisson variability, and
variability that is two and three times the mean. We estimate θ and then form an
asymptotic confidence interval based on a Poisson likelihood, quasi-likelihood, and
sandwich estimation.

For a univariate estimator θ̂ arising from a generic estimating function G(θ, Y ):

√
n(θ̂ − θ) →d N

(
0,

B

A2

)
.

where

A = E

[
d2

dθ2
G(θ)

]
, B = E

[(
d

dθ
G(θ)

)2
]
.

Under the Poisson model

li(θ) = −θ + Yi log θ

and

G(θ, Yi) = Si(θ) =
dli
dθ

=
Yi − θ

θ

d2li
dθ2

= −Yi

θ2
,

to give the familiar MLE, θ̂ = Y . As we already know

I1(θ) = −A = −E

[
d2l

dθ2

]
= B = var

(
(Y − θ)2

θ2

)
=

var(Y )

θ2
=

1

θ
,

under the assumption that var(Y ) = θ. The Poisson model-based variance estimator
is therefore

v̂ar(θ̂) =
1

nI1(θ̂)
=

Y

n
.

Under the Poisson model, the variance equals the mean, and given the efficiency of
the latter, it makes sense to estimate the variance by the sample mean.
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The quasi-likelihood estimator is derived from the quasi-score

G(θ, Yi) = Ui(θ) =
Yi − θ

αθ
,

and

var(θ̂) = (D̂TV̂ −1D̂)−1α̂

where the scale parameter is estimated using the method of moments

α̂ =
1

n− 1

n∑

i=1

(Yi − θ̂)2

θ̂
.

The quasi-likelihood estimator of the variance is

v̂ar(θ̂) =
s2

n
,

where

s2 =
1

n− 1

n∑

i=1

(Yi − θ̂)2.

For sandwich estimation based on the score

Â = − 1

n

n∑

i=1

Yi

θ̂2
= − 1

Y
,

and

B̂ =
1

n

n∑

i=1

(Yi − θ̂)2

θ̂2
=

(n− 1)s2

nθ̂2
.

Hence,

v̂ar(θ̂) =
s2(n− 1)/n

n
. (2.45)

Estimation of var(Yi) by (Yi − Y )2 produces the variance estimator (2.45).
Estimating var(Yi) by n(Yi−Y )2/(n− 1) would reproduce the degrees of freedom
adjusted quasi-likelihood estimator.

Table 2.3 gives the 95% confidence interval coverage for the model-based, quasi-
likelihood, and sandwich estimator variance estimates as a function of the sample
size n and overdispersion/scalar parameter α. We see that when the Poisson model
is correct (α = 1), the model-based standard errors produce accurate coverage for
all values of n. For small n, the quasi-likelihood and sandwich estimators have low
coverage, due to the instability in variance estimation, with sandwich estimation
being slightly poorer in performance. As the level of overdispersion increases, the
performance of the model-based approach starts to deteriorate as the standard error
is underestimated, resulting in low coverage. For α = 2, 3, the quasi-likelihood and
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Table 2.3 Percent confidence interval coverage for the Poisson mean example, based on 100,000
simulations

Overdispersion
α = 1 α = 2 α = 3

n Model Quasi Sand Model Quasi Sand Model Quasi Sand
5 95 87 84 83 87 84 74 86 83
10 94 92 90 83 91 90 73 91 89
15 95 93 92 84 92 92 75 92 91
20 95 93 93 83 93 93 73 93 92
25 95 94 93 83 94 93 74 93 93
50 95 94 94 83 94 94 74 94 94
100 95 95 94 83 95 94 74 95 94

The nominal coverage is 95%. The overdispersion is given by α = var(Y )/E[Y ]

sandwich estimators again give low coverage for small values of n, due to instability,
but for larger values, the coverage quickly improves. The adjusted degrees of
freedom used by quasi-likelihood give slightly improved estimation over the naive
sandwich estimator.

This example shows the efficiency-robustness trade-off. If the model is correct
(which corresponds here to α = 1), then the model-based approach performs
well. The sandwich and quasi-likelihood approaches are more robust to variance
misspecification, but can be unstable when the sample size is small. The choice of
which variance model to use depends crucially on our faith in the model. The use of
a Poisson model is a risky enterprise, however, since it does not contain an additional
variance parameter.

Example: Lung Cancer and Radon

Returning to the lung cancer and radon example, we calculate sandwich standard
errors, assuming that counts in different areas are uncorrelated. We take as “working
model” a Poisson likelihood, with maximum likelihood estimation of β. The
estimating function is

S(β) = DTV −1(Y − μ) = xT (Y − μ) ,

as derived previously, (2.20). Under this model

(A−1BAT)1/2(β̂n − β) →d N2(0, I2),

with sandwich ingredients

A = DTV −1D

B = DTV −1var(Y )V −1D,
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estimators

Â = D̂TV̂ −1D̂

B̂ = D̂TV̂ −1

⎡

⎢⎢⎢⎣

σ̂2
1 0 · · · 0

0 σ̂2
2 · · · 0

...
...

. . .
...

· · · · · · · · · σ̂2
n

⎤

⎥⎥⎥⎦ V̂ −1D̂

and with σ̂2
i = (Yi − μ̂i)

2, for i = 1, . . . , n. Substitution of the required data
quantities yields the variance–covariance matrix

[
0.0432 −0.87× 0.043× 0.0080

−0.87× 0.043× 0.0080 0.00802

]
.

The estimated standard errors of β̂0 and β̂1 are 0.043 and 0.0080, respectively, and
are 60% and 49% larger than their likelihood counterparts, though slightly smaller
than the quasi-likelihood versions. An asymptotic 95% confidence interval for the
relative risk associated with a one-unit increase in radon is [0.949, 0.980].

We have a linear exponential family likelihood and so a consistent estimator
of the loglinear association between lung cancer incidence and radon, as is clear
from (2.20). If the outcomes are independent, then a consistent sandwich variance
estimator is obtained and the large sample size indicates asymptotic inference is
appropriate. However, in the context of these data, independence is a little dubious as
we may have residual spatial dependence, particularly since we have not controlled
for confounders such as smoking which may have spatial structure (and hence
will induce spatial dependence). Sandwich standard errors do not account for such
dependence (unless we can lean on replication across time). In Sect. 9.7, we describe
a model that allows for residual spatial dependence in the counts. Although the
loglinear association is consistently estimated, this of course says nothing about
causality or about the appropriateness of the mean model.

2.7 Bootstrap Methods

With respect to estimation and hypothesis testing, the fundamental frequentist
inferential summary is the distribution of an estimator under hypothetical repeated
sampling from the distribution of the data. So far we have concentrated on the use
of the asymptotic distribution of the estimator under an assumed model, though
sandwich estimation (and to a lesser extent quasi-likelihood) provided one method
by which we could relax the reliance on the assumed model. The bootstrap is a
computational technique for alleviating some forms of model misspecification. The
bootstrap may also be used, to some extent, to account for a “non-asymptotic”
sample size. We first describe its use in single parameter settings before moving
to a regression context.
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2.7.1 The Bootstrap for a Univariate Parameter

Suppose Y1, . . . , Yn, are an independent and identically distributed sample from a
distribution functionF that depends on a univariate parameter θ. Let θ̂(Y ) represent
an estimator of θ. We may be interested in estimation of

(i) varF [θ̂(Y )]

(ii) PrF [a < θ̂(Y ) < b]

where we have emphasized that these summaries are evaluated under the sampling
distribution of the data F . Estimation of (i) is of particular interest if the sampling
distribution of θ̂ is approximately normal, in which case a 100(1− α)% confidence
interval is

θ̂(Y ) + biasF

[
θ̂(Y )

]
± z1−α/2

√
varF (θ̂) (2.46)

where biasF

[
θ̂(Y )

]
is the bias of the estimator, and z1−α/2 the (1− α/2) quantile

of an N(0, 1) random variable. More generally, interest may focus on a function of
interest T (F ).

The bootstrap is an idea that is so simple it seems, at first sight, like cheating
but it turns out to be statistically valid in many circumstances, so long as care
is taken in its implementation. The idea is to first draw B bootstrap samples
of size n, Y �

b = [Y �
b1, . . . , Y

�
bn], b = 1, . . . , B, from an estimate of F , F̂ . In

the nonparametric bootstrap, the estimate of F is Fn, the empirical estimate
of the distribution function that places a mass of 1/n at each of the observed
Yi, i = 1, . . . , n. Bootstrap samples are obtained by sampling a new dataset
Y �
bi, i = 1, . . . , n, from F̂n, with replacement. If one has some faith in the assumed

model, then F̂ may be based upon this model, which we call Fθ̂ where θ̂ = θ̂(y),
to give a second implementation. In this case, bootstrap samples are obtained by
sampling Y �

bi, i = 1, . . . , n, as independent and identically distributed samples from
Fθ̂ , to give a parametric bootstrap estimator.

Intuitively, we are replacing the distribution of

θ̂n − θ

with

θ̂�n − θ̂n.

Much theory is available to support the use of the bootstrap; early references are
Bickel and Freedman (1981) and Singh (1981); see also van der Vaart (1998).
Further references to the bootstrap are given in Sect. 2.11. As a simple example
of the sort of results that are available, we quote the following, a proof of which
may be found in Bickel and Freedman (1981).
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Result. Consider a bootstrap estimator of the sample mean, μ, of the distribution
F and assume E[Y 2] < ∞ and let the variance of F be σ2. Then we know
that

√
n(Y n − μ) →d N(0, σ2), and for almost every sequence Y1, Y2, . . . ,

√
n(Y

�

n − Y n) →d N(0, σ2).

The distribution of other functions of interest can be obtained via the delta
method; see van der Vaart (1998). There are two approximations that are being used
in the bootstrap. First, we are estimating F by F̂ , and second, we are estimating the
quantity of interest, for example, (i) or (ii), using B samples from F̂ . For example,
if (i) is of interest, an obvious estimator of varF (θ̂) is

v̂arF (θ̂) =
1

B

B∑

b=1

[
θ̂(Y �

b )− 1

B

B∑

b=1

θ̂(Y �
b )

]2

. (2.47)

In this case, the two approximations are

varF
(
θ̂
)
≈ var ̂F

(
θ̂�

)
≈ v̂arF̂

(
θ̂�

)

and the first approximation may be poor if the estimate F̂ is not close to F̂ , but we
can control the second approximation by choosing large B. For the nonparametric
bootstrap, we could, in principle, enumerate all possible samples, but there are nn of

these, of which

(
2n− 1

n

)
are distinct, which is far too large a number to evaluate

in practice.
There are many possibilities for computation of confidence limits, as required in

(ii). If normality of θ̂ is reasonable, then (2.46) is straightforward to use with the
variance estimated by (2.47) and the bias by

b̂iasF

[
θ̂(Y )

]
= θ̂(y)− 1

B

B∑

b=1

θ̂(Y �
b ).

As a simple alternative, the bootstrap percentile interval for a confidence interval of
coverage 1− α is [

θ̂�α/2, θ̂
�
1−α/2

]

where θ̂�α/2 and θ̂�1−α/2 are the α/2 and 1−α/2 quantiles of the bootstrap estimates

θ̂(Y �
b ), b = 1, . . . , B. More refined bootstrap confidence interval procedures

are described in Davison and Hinkley (1997). For example, Exercise 2.9 outlines the
derivation of a confidence interval based on a pivot. In Sect. 2.7.3, we illustrate the
close links between bootstrap variance estimation and sandwich estimation.

The bootstrap method does not work for all functions of interest. In particular,
it fails in situations when the tail behavior is not well behaved, for example, a
bootstrap for the maximum Y(n) will be disastrous.
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2.7.2 The Bootstrap for Regression

The parametric and nonparametric methods provide two distinct versions of the
bootstrap, and in a regression context, another important distinction is between re-
sampling residuals and resampling cases. We illustrate the difference by considering
the model

yi = f(xi,β) + εi, (2.48)

where the residuals εi are such that E[εi] = 0, i = 1, . . . , n and are assumed
uncorrelated. The two methods are characterized according to whether we take F
to be the distribution of Y only or of {Y,X}. In the resampling residuals approach,
the covariates xi are considered as fixed, and bootstrap datasets are formed as

Y
(b)
i = f(xi, β̂) + εbi,

where a number of options are available for sampling εbi, b = 1, . . . , B, i = 1,
. . . , n. The simplest, nonparametric, version is to sample εbi with replacement from

ei = yi − f(xi, β̂)− 1

n

n∑

i=1

[
yi − f(xi, β̂)

]
.

Various refinements of this simple approach are possible. If we are willing to assume
(say) that εi | σ2 ∼iid N(0, σ2), then a parametric resampling residuals method
samples εbi ∼ N(0, σ̂2) based on an estimate σ̂2. In a model such as (2.48),
the meaning of residuals is clear, but in generalized linear models (Chap. 6), for
example, this is not the case and many alternative definitions exist.

The resampling residuals method has the advantage of respecting the “design,”
that is, x1, . . . ,xn. A major disadvantage, however, is that we are leaning heavily
on the assumed mean–variance relationship, and we would often prefer to protect
ourselves against an assumed model. The resampling case method forms bootstrap
datasets by sampling with replacement from {Yi,Xi, i = 1, . . . , n} and does not
assume a mean–variance model. Again parametric and nonparametric versions are
available, but the latter is preferred since the former requires a model for the joint
distribution of the response and covariates which is likely to be difficult to specify.
When cases are resampled, the design in each bootstrap sample will not in general
correspond to that in the original dataset which, though not ideal (since it leads
to wider confidence intervals than necessary), will have little impact on inference,
except when there are outliers in the data; if the outliers are sampled multiple times,
then instability may result.

2.7.3 Sandwich Estimation and the Bootstrap

In this section we heuristically show why we would often expect sandwich and
bootstrap variance estimates to be in close correspondence. For simplicity, we
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consider a univariate parameter θ, and let θ̂n denote the MLE arising from a
sample of size n. In a change of notation, we denote the score by S(θ) =
[S1(θ), . . . , Sn(θ)]

T, where Si(θ) = dli/dθ is the contribution to the score from
observation Yi, i = 1, . . . , n. Hence,

S(θ) =

n∑

i=1

Si(θ) = S(θ)T1

where 1 is an n × 1 vector of 1’s. The sandwich form of the asymptotic variance
of θ̂n is

var(θ̂n) =
1

n

B

A2

where

A(θ) = E

[
dS

dθ

]
, B(θ) = E

[
S(θ)2

]
.

These quantities may be empirically estimated via

Ân =
1

n

dS

dθ

∣∣∣∣
̂θn

=
1

n

n∑

i=1

dSi

dθ

∣∣∣∣∣
̂θn

B̂n =
1

n
S(θ)TS(θ)

∣∣∣∣
̂θn

=
1

n

n∑

i=1

Si(θ)
2

∣∣∣∣∣
̂θn

.

A convenient representation of a bootstrap sample is Y� = Y × D where D =
diag(D1, . . . , Dn) is a diagonal matrix consisting of a multinomial random variable

⎡

⎢⎣
D1

...
Dn

⎤

⎥⎦ ∼ Multinomial

[
n,

(
1

n
, . . . ,

1

n

)]

with

E ([D1, . . . , Dn]
T) = 1

var ([D1, . . . , Dn]
T) = In − 1

n
11T → In

as n → ∞. The MLE of θ in the bootstrap sample is denoted θ̂�n and satisfies
S�(θ̂�n) = 0, where S�(θ) is the score corresponding to Y �. Note that

S�(θ) =

n∑

i=1

S�
i (θ) =

n∑

i=1

Si(θ)Di.
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We consider a one-step Newton–Raphson approximation (see Sect. 6.5.2 for a
more detailed description of this method) to θ̂�n and show that this leads to a
bootstrap variance estimate that is approximately equal to the sandwich variance
estimate. The following informal derivation is carried out without stating regularity
conditions. It is important to emphasize that throughout we are conditioning on Y
and therefore on θ̂n. A first-order Taylor series approximation

0 = S�(θ̂�n) ≈ S�(θ̂n) + (θ̂�n − θ̂n)
dS�

dθ

∣∣∣∣
̂θn

leads to the one-step approximation

θ̂�n ≈ θ̂n − S�(θ̂n)
d
dθS

�(θ)|
̂θn

.

The bootstrap score evaluated at θ̂n is

n∑

i=1

S�
i (θ̂n) =

n∑

i=1

Si(θ̂n)Di �= 0,

unless the bootstrap sample coincides with the original sample, that is, unless

D = In. We replace
[

d
dθS

�(θ)|
̂θn

]
by its limit

E

[
d

dθ
S�(θ)

∣∣∣∣
̂θn

]
= E

⎡

⎣
n∑

i=1

d

dθ
Si(θ)Di

∣∣∣∣∣
̂θn

⎤

⎦ =

n∑

i=1

d

dθ
Si(θ)

∣∣∣∣
̂θn

E[Di] = n× Ân

where Ân = 1
n

d
dθS(θ)

∣∣
̂θn

. Therefore, the one-step bootstrap estimator is approxi-
mated by

θ̂�n ≈ θ̂n − S(θ̂n)
TD

nÂn

and is approximately unbiased as an estimator since

E[θ̂�n − θ̂n] ≈ −S(θ̂n)
TE[D]

nÂn

= −S(θ̂n)
T1

nÂn

= 0

and, recall, θ̂n is being held constant. The variance is

var(θ̂�n − θ̂n) ≈ S(θ̂n)
Tvar([D1, . . . , Dn]

T)S(θ̂n)

(nÂn)2
=

S(θ̂n)
T
(
I − 1

n11
T
)
S(θ̂n)

(nÂn)2

≈ S(θ̂n)
TIS(θ̂n)

(nÂn)2
=

nB̂n

(nÂn)2
=

B̂n

nÂ2
n

,
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Fig. 2.3 Sampling
distribution of β̂1 arising
from the nonparametric
bootstrap samples. The solid
curve is the asymptotic
distribution of the MLE under
the Poisson model, and the
dashed line is the asymptotic
distribution under the
quasi-Poisson model

which is the sandwich estimator. Hence, var(θ̂�n − θ̂n) approximates var(θ̂n − θ),
which is a fundamental link in the bootstrap. For a more theoretical treatment, see
Arcones and Giné (1992) and Sect. 10.3 of Kosorok (2008).

Example: Lung Cancer and Radon

For the lung cancer and radon example, we implement the nonparametric bootstrap
resampling B = 1,000 sets of n case triples [Y �

bi, E
�
bi, x

�
bi], b = 1, . . . , B, i =

1, . . . , n. Figure 2.3 displays the histogram of estimates arising from the bootstrap
samples, along with the asymptotic normal approximations to the sampling distri-
bution of the estimator under the Poisson and quasi-Poisson models. We see that
the distribution under the quasi-likelihood model is much wider than that under the
Poisson model. This is not surprising since we have already seen that the lung cancer
data are overdispersed relative to a Poisson distribution. The bootstrap histogram
and quasi-Poisson sampling distribution are very similar, however.

Table 2.4 summarizes inference for β1 under a number of different methods
and again confirms the similarity of asymptotic inference under the quasi-Poisson
model and nonparametric bootstrap. In this example the similarity in the intervals
from quasi-likelihood, sandwich estimation, and the nonparametric bootstrap is
reassuring. The point estimates from the Poisson, quasi-likelihood, and sandwich
approaches are identical. The point estimate from the quadratic variance model (that
arises from a negative binomial model) is slightly closer to zero for these data, due
to the difference in the variance models over the large range of counts in these data.
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Table 2.4 Comparison of inferential summaries over various approaches, for the lung
cancer and radon example

Inferential method β̂1 s.e.(β̂1) 95% CI for exp(β1)

Poisson −0.036 0.0054 0.954, 0.975

Quasi-likelihood −0.036 0.0090 0.947, 0.982

Quadratic variance −0.030 0.0085 0.955, 0.987

Sandwich estimation −0.036 0.0080 0.949, 0.980

Bootstrap normal −0.036 0.0087 0.948, 0.981

Bootstrap percentile −0.036 0.0087 0.949, 0.981

The last two lines refer to nonparametric bootstrap approaches, with intervals based on
normality of the sampling distribution of the estimator (“Normal”) and on taking the
2.5% and 97.5% points of this distribution (“Percentile”)

2.8 Choice of Estimating Function

The choice of estimating function is driven by the conflicting aims of efficiency
and robustness to model misspecification. If the likelihood corresponds to the
true model, then MLEs are asymptotically efficient so that asymptotic confidence
intervals have minimum length. However, if the assumed model is incorrect, then
there are no guarantees of even consistency of estimation.

Basing estimating functions on simple model-free functions of the data often
provides robustness. As we discuss in Sect. 5.6.3, the classic Gauss–Markov
theorem states, informally, that among estimators that are linear in the data, the
least squares estimator has smallest variance, and this result is true for fixed sample
sizes. There is also a Gauss–Markov theorem for estimating functions. Suppose
E[Yi | β] = μi(β), var(Yi) = σ2

i and cov(Yi, Yj) = 0, i �= j, and consider the class
of linear unbiased estimating functions (of zero) that are of the form

G(β) =

n∑

i=1

ai(β) [Yi − μi(β)] , (2.49)

where ai(β) are specified nonrandom functions, subject to
∑n

i=1 ai(β) = c, a
constant (this is to avoid obtaining an arbitrarily small variance by multiplying
the estimating function by a constant). The estimating function (2.49) provides a
consistent estimator β̂ so long as the mean μi(β) is correctly specified. It can be
shown, for example, Godambe and Heyde (1987), that

E[UU T] ≤ E[GGT], (2.50)

where

U(β) = DTV −1(Y − μ)/α,

so that this estimating function has the smallest variance. Quasi-likelihood estima-
tors are therefore asymptotically optimal in the class of linear estimating functions
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and will be asymptotically efficient if the quasi-score functions correspond to the
score of the likelihood of the true data-generating model. Of course a superior
estimator (in terms of efficiency) may result from an estimating function that is not
linear in the data, if the data arise from a model for which the score function is not
linear. The consideration of quadratic estimating functions illustrates the efficiency-
robustness trade-off.

Result (2.50) is true for an estimating function based on a finite sample size n,
though there is no such result for the derived estimator. However, the estimator
derived from the estimating function is asymptotically efficient (e.g., McCullagh
1983). The optimal estimating equation is that which has minimum expected
distance from the score equation corresponding to the true model. We reemphasize
that a consistent estimator of the parameters in the assumed regression model is
obtained from the quasi-score (2.50), and the variance of the estimator will be
appropriate so long as the second moment of the data has been specified correctly.

To motivate the class of quadratic estimating functions suppose

Yi | β ∼ind N
[
μi(β), σ

2
i (β)

]
,

i = 1, . . . , n. The log-likelihood is

l(β) = −
n∑

i=1

log σi(β)− 1

2

n∑

i=1

[Yi − μi(β)]
2

σi(β)2
,

which gives the quadratic score equations

S(β) =
∂l

∂β

=
n∑

i=1

{Yi − μi(β)}
σi(β)2

∂μi

∂β
+

n∑

i=1

{
[Yi − μi(β)]

2 − σi(β)
2
}

σi(β)3
∂σi

∂β
. (2.51)

If the first two moments are correctly specified, then E[S(β)] = 0, so that a
consistent estimator is obtained.

In general, we may consider

n∑

i=1

ai(β) [Yi − μi(β)] + bi(β)
{
[Yi − μi(β)]

2 − σi(β)
2
}
,

where ai(β), bi(β) are specified nonrandom functions. With this estimating func-
tion, the information in the variance concerning the parameters β is being used
to improve efficiency. Among quadratic estimating functions, it can be shown that
(2.51) is optimal in the sense of producing estimators that are asymptotic efficient
(Crowder 1987). In general, to choose the optimal estimating function, the first four
moments of the data must be known, which may seem unlikely, but this approach
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may be contrasted with the use of the score as estimating function which effectively
requires all of the moments to be known. There are two problems with using
quadratic estimating functions. First, consistency requires the first two moments
to be correctly specified. Second, to estimate the covariance matrix of the estimator,
the skewness and kurtosis must be estimated, and these may be highly unstable. We
return to this topic in Sect. 9.10.

2.9 Hypothesis Testing

Throughout the book, we emphasize estimation over hypothesis testing, for reasons
discussed in Chap. 4, but in this section describe the rationale and machinery of
frequentist hypothesis testing.

2.9.1 Motivation

A common aim of statistical analysis is to judge the evidence from the data
in support of a particular hypothesis, defined through specific parameter values.
Hypothesis tests have historically been used for various purposes, including:

• Determining whether a set of data is consistent with a particular hypothesis
• Making a decision as to which of two hypotheses is best supported by the data

We assume there exists a test statistic T = T (Y ) with large values of T
suggesting departures from H0. In Sects. 2.9.3–2.9.5, three specific recipes are
described, namely, score, Wald, and likelihood ratio test statistics. We define the
p-value, or significance level, as

p = p(Y ) = Pr [ T (Y ) > T (y) | H0 ] ,

so that, intuitively, if this probability is “small,” the data are inconsistent with H0.
If T (Y ) is continuous, then under H0, the p-value p(Y ) follows the distribution
U(0, 1). Consequently, the significance level is the observed p(y). The distribution
of T (Y ) under H0 may be known analytically or may be simulated to produce a
Monte Carlo or bootstrap test.

The nomenclature associated with the broad topic of hypothesis testing is
confusing, but we distinguish three procedures:

1. A pure significance test calculates p but does not reject H0 and is often viewed
as an exploratory tool.

2. A test of significance sets a cutoff value α (e.g., α = 0.05) and rejects H0 if
p < α corresponding to T > Tα. The latter is known as the critical region.

3. A hypothesis test goes one step further and specifies an alternative hypothesis,
H1. One then reports whether H0 is rejected or not. The null hypothesis has
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special position as the “status quo,” and conventionally the phrase “accept H0”
is not used because not rejecting may be due to low power (perhaps because of a
small sample size) as opposed to H0 being true.

Rejecting H0 when it is true is known as a type I error, and a type II error occurs
when H0 is not rejected when it is in fact false. To evaluate the probability of a
type II error, specific alternative values of the parameters need to be considered. The
power is defined as the probability of rejecting H0 when it is false. We emphasize
that a test of significance may reject H0 for general departures, while a hypothesis
test rejects in the specific direction of H1.

A key point is that the consistency of the data with H0 is being evaluated, and
there is no reference to the probability of the null hypothesis being true. As usual in
frequentist inference, H0 is a fixed unknown and probability statements cannot be
assigned to it.4

2.9.2 Preliminaries

We consider a p-dimensional vector of parameters θ and consider two testing
situations. In the first, we consider the simple null hypothesis H0 : θ = θ0

versus the alternative H1 : θ �= θ0. In the second, we consider a partition of the
parameter vector θ = [θ1, θ2], where the dimensions of θ1 and θ2 are p− r and r,
respectively, and a composite null. Specifically, in the composite case, we compare
the hypotheses:

H0 : θ1 unrestricted, θ2 = θ20,

H1 : θ = [θ1, θ2] �= [θ1, θ20].

As a simple example, in a regression context, let θ = [θ1, θ2] with θ1 the intercept
and θ2 the slope. We may then be interested in H0 : θ2 = 0 with θ1 unspecified. In
both the simple and composite situations, the unrestricted MLE under the alternative
is denoted θ̂n = [θ̂n1, θ̂n2].

For simplicity of exposition, unless stated otherwise, we suppose that the re-
sponses Yi, i = 1, . . . , n, are independent and identically distributed. Consequently
we have p(y | θ) = ∏n

i=1 p(yi | θ). The extension to the nonidentically distributed
situation, as required for regression, is straightforward. The p× 1 score vector is

Sn(θ) =
n∑

i=1

∂li(θ)

∂θ

4As described in Chap. 3, in the Bayesian approach to hypothesis testing, a prior distribution is
placed on the alternatives (and on the null), allowing the calculation of the probability of H0 given
the data, relative to other hypotheses under consideration.
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where li(θ) is the log-likelihood contribution from observation i, i = 1, . . . , n.
Let Sn(θ) = [Sn1(θ),Sn2(θ)]

T be a partition of the score vector with Sn1(θ) of
dimension (p − r) × 1 and Sn2(θ) of dimension r × 1. Under the composite null,
let θ̂0

n = [θ̂n10, θ20] denote the MLE, where θ̂n10 is found from the estimating
equation

Sn1(θ̂n10, θ20) = 0.

In general, θ̂n10 �= θ̂n1.
In the independent and identically distributed case, In(θ) = nI1(θ) is the

information in a sample of size n. Suppressing the dependence on θ, let

I1 =

[
I11 I12
I21 I22

]

denote a partition of the expected information matrix, where I11, I12, I21, and I22
are of dimensions (p− r)× (p− r), (p− r)× r, r× (p− r), and r× r, respectively.
The inverse of I1 is

I−1
1 =

[
I−1
11·2 −I−1

11·2I12I
−1
22

−I−1
22·1I21I

−1
11 I−1

22·1

]

where

I11·2 = I11 − I12I
−1
22 I21

I22·1 = I22 − I21I
−1
11 I12

using results from Appendix B.

2.9.3 Score Tests

We begin with the simple null H0 : θ = θ0. Recall the asymptotic distribution of
the score, given in (2.17):

n−1/2Sn(θ) →d Np [0, I1(θ)] .

Therefore, under the null hypothesis

Sn(θ0)
TI−1

1 (θ0)Sn(θ0)/n →d χ2
p. (2.52)

Intuitively, if the elements of Sn(θ0) are large, this means that the components of
the gradient at θ0 are large. The latter occurs when θ0 is “far” from the estimator
θ̂n for which Sn(θ̂n) = 0. In (2.52), the matrix I−1

1 (θ0) is scaling the gradient
distance. The information may be evaluated at the MLE, θ̂n, rather than at θ0, since
I1(θ̂n) →p I1(θ0), by the weak law of large numbers.
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Under the composite null hypothesis, H0 : θ1 unrestricted, θ2 = θ20:

Sn(θ̂
0
n)

TI−1
1 (θ̂0

n)Sn(θ̂
0
n)/n →d χ2

r.

As a simplification, we can express this statistic in terms of partitioned information
matrices. Since r elements of the score vector are zero, that is, Sn2(θ̂

0
n) = 0, we

have

Sn1(θ̂
0
n)

TI−1
11·2(θ̂

0
n)Sn1(θ̂

0
n)/n →d χ2

r.

Hence, the model only needs to be fitted under the null. Each of the score statistics
remains asymptotically valid on replacement of the expected information by the
observed information.

2.9.4 Wald Tests

Under the simple null hypothesis H0 : θ = θ0, the Wald statistic is based upon the
asymptotic distribution

√
n(θ̂n − θ0) →d Np

[
0, I1(θ0)

−1
]
, (2.53)

and the Wald statistic is the quadratic form based on (2.53):

√
n(θ̂n − θ0)

TI1(θ0)
√
n(θ̂n − θ0) →d χ2

p. (2.54)

An alternative form that is often used in practice is

√
n(θ̂n − θ0)

TI1(θ̂n)
√
n(θ̂n − θ0) →d χ2

p,

which again follows because I1(θ̂n) →p I1(θ0), by the weak law of large numbers.
Under a composite null hypothesis, the Wald statistic is based on the marginal

distribution of θ̂n2:

√
n(θ̂n2 − θ20)

TI11·2(θ̂0
n)
√
n(θ̂n2 − θ20) →d χ2

r.

The observed information may replace the expected information in either form of
the Wald statistic.

2.9.5 Likelihood Ratio Tests

Finally, we consider the likelihood ratio statistic which, under a simple null, is

2
[
ln(θ̂n)− ln(θ0)

]
.
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Unlike the score and Wald statistics, the asymptotic distribution is not an obvious
quadratic form, and so we provide a sketch proof of the asymptotic
distribution under H0. A second-order Taylor expansion of ln(θ0) about θ̂n gives

ln(θ0) = ln(θ̂n) + (θ0 − θ̂n)
T ∂ln(θ)

∂θ

∣∣∣∣
̂θn

+
1

2
(θ0 − θ̂n)

T ∂2ln(θ)

∂θ∂θT

∣∣∣∣∼
θ

(θ0 − θ̂n),

where θ̃ is between θ0 and θ̂n. The middle term on the right-hand side is zero, and

1

n

∂2ln(θ)

∂θ∂θT

∣∣∣∣∼
θ

→p −I1(θ0).

Hence,

−2
[
ln(θ0)− ln(θ̂n)

]
= 2

[
ln(θ̂n)− ln(θ0)

]

≈ n(θ̂n − θ0)
TI1(θ0)(θ̂n − θ0),

and so

2
[
ln(θ̂n)− ln(θ0)

]
→d χ2

p. (2.55)

Similarly, under a composite null hypothesis:

2
[
ln(θ̂n)− ln(θ̂

0
n)

]
→d χ2

r .

2.9.6 Quasi-likelihood

We briefly consider the quasi-likelihood model described in Sect. 2.5. The score
test can be based on the quasi-score statistic Un(β) = DTV −1(Y − μ)/α, with
the information in a sample of size n being DTV −1D/α. The latter is also used
in the calculation of a Wald statistic since it supplies the required standard errors.
Similarly, a quasi-likelihood ratio test can be performed using ln(θ̂n, α), the form
of which is given in (2.32). Unknown α can be accommodated by substitution of a
consistent estimator α̂. For example, we might estimate α via the Pearson statistic
estimator (2.31).

If one wished to account for estimation of α, then one possibility is to assume
that (n − p) × α̂ follows a χ2

n−p distribution and then evaluate significance based
on the ratio of scaled χ2-squared random variables, to give an F distribution under
the null (see Appendix B). Outside of the normal linear model, this seems a dubious
exercise, however, since the numerator and denominator will not be independent,
and either of the χ2 approximations could be poor. The use of an F statistic is
conservative, however (so that significance will be reduced over the use of the plug-
in χ2 approximation).
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2.9.7 Comparison of Test Statistics

The score test statistic is invariant under reparameterization, provided that the
expected, rather than the observed, information is used. The score statistic may also
be evaluated without second derivatives if Sn(θ0)Sn(θ0)

T is used, which may be
useful if these derivatives are complex, or unavailable. The score statistic requires
the value of the score at the null, but the MLE under the alternative is not required.

Confidence intervals can be derived directly from the Wald statistic so that there
is a direct link between estimation and testing. Interpretation is also straightforward;
in particular, statistical versus practical significance can be immediately considered.
A major drawback of the Wald statistic is that it is not invariant to the parameteri-
zation chosen, which ties in with our earlier observation (Sect. 2.3) that asymptotic
confidence intervals are more accurate on some scales than on others. The Wald
statistic uses the MLE but not the value of the maximized likelihood.

The likelihood ratio statistic is invariant under reparameterization. Confidence
intervals derived from likelihood ratio tests always preserve the support of the pa-
rameter, unlike score- and Wald-based intervals (unless a suitable parameterization
is adopted). Similar to the attainment of the Cramér–Rao lower bound (Appendix F),
there is an elegant theory under which the likelihood ratio test statistic emerges as
the uniformly most powerful (UMP) test, via the famous Neyman–Pearson lemma;
see, for example, Schervish (1995). The likelihood ratio test requires the fitting of
two models.

The score, Wald, and likelihood ratio test statistics are asymptotically equivalent
but are not equally well behaved in finite samples. In general, and by analogy
with the asymptotic optimality of the MLE, the likelihood ratio statistic is often
recommended for use in regular models. If θ̂n and θ0 are close, then the three
statistics will tend to agree.

Chapter 4 provides an extended discussion and critique of hypothesis testing.

Example: Poisson Mean

We illustrate the use of the three statistics in a simple context. Suppose we have data
Yi | λ ∼iid Poisson(λ), i = 1, . . . , n, and we are interested in H0 : λ = λ0. The
log-likelihood, score, and information are

ln(λ) = −nλ+ nY log λ,

Sn(λ) = −n+
nY

λ
=

n(Y − λ)

λ
,

In(λ) =
n

λ
.
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Fig. 2.4 Geometric interpretation of score, Wald, and likelihood ratio (LR) statistics, for Poisson
data and a test of H0 : λ0 = 1, with data resulting in λ̂ = y = 0.6

The score and Wald statistics follow from (2.52) and (2.54) and both lead to

n(Y − λ0)
2

λ0
→d χ2

1

under the null. From (2.55), the likelihood ratio statistic is

2n
[
Y (log Y − log λ0)− (Y − λ0)

] →d χ2
1.

Suppose we observe
∑20

i=1 yi = 12 events in n = 20 trials so that λ̂ = y = 0.6.
Assume we are interested in testing the null hypothesis H0 : λ0 = 1.0. The score
and Wald statistics are 3.20 and the likelihood ratio statistic is 3.74, with associated
observed significance levels of 7.3% and 5.4%, respectively. Figure 2.4 plots the
log-likelihood against λ for these data. The (unscaled) statistics are indicated on the
figure. The score test is based on the gradient at λ0, the Wald statistic is the squared
horizontal distance between λ̂ and λ0, and the likelihood ratio test statistic is two
times the vertical distance between l(λ̂) and l(λ0).

We now reparameterize to θ = logλ, so that the null becomes H0 : θ = θ0 = 0.
The likelihood ratio statistic is invariant to parameterization, and the score statistic
turns out to be the same as previously in this example, since the observed and
expected information are equal. The forms of the Wald, score, and likelihood ratio
statistics, for general θ0, are
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n(log Y − θ0)
2 exp(θ0)

n
[
Y − exp(θ0)

]2
exp(−θ0)

2n
{
Y (θ̂ − θ0)− [exp(θ̂)− exp(θ0)]

}

with numeric values of 5.22, 3.20 and 3.74, respectively, in the example.

2.10 Concluding Remarks

In Sect. 1.2, we emphasized that model formulation should begin with the model
that is felt most appropriate for the context, before proceeding to determine the
behavior of inferential procedures under this model. In this chapter we have seen
that likelihood-based inference is asymptotically efficient if the model is correct.
Hence, if one has strong belief in the assumed model, then a likelihood approach is
appealing, particularly if the score equations are of linear exponential family form,
since in this case consistent estimators of the parameters in the assumed regression
model are obtained. If the likelihood is not of linear exponential form, then there
are no guarantees of consistency under model misspecification. So far as estimation
of the standard error is concerned, in situations in which n is sufficiently large for
asymptotic inference to be accurate, sandwich estimation or the bootstrap may be
used to provide consistent model-free standard errors, so long as the observations are
uncorrelated. The relevance of asymptotic calculations for particular sample sizes
may be investigated via simulation. In general, sandwich estimation is a very simple,
broadly applicable and appealing technique.

In many instances the context and/or questions of interest may determine the
mean function and perhaps give clues to the mean–variance relationship. The form
of the data may suggest viable candidates for the full probability model. A caveat to
this is that models such as the Poisson or exponential for which there is no dispersion
parameter should be used with extreme caution since there is no mechanism to “soak
up” excess variability. In practice, if the data exhibit overdispersion, as is often the
case, then this will lead to confidence intervals that are too short. Information on
the mean and variance may be used within a quasi-likelihood approach to define
an estimator, and if n is sufficiently large, sandwich estimation can provide reliable
standard errors. Experience of particular models may help to determine whether
the assumption of a particular likelihood with the desired mean and variance
functions is likely to be much less reliable than a quasi-likelihood approach. The
choice of how parametric one wishes to be will often come down to personal taste.

We finally note that the efficiency-robustness trade-off will be weighted in
different directions depending on the nature of the analysis. In an exploratory
setting, one may be happy to proceed with a likelihood analysis, while in a
confirmatory setting, one may want to be more conservative.
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2.11 Bibliographic Notes

Numerous accounts of the theory behind frequentist inference are available, Cox and
Hinkley (1974) remains a classic text. Casella and Berger (1990) also provides an in-
depth discussion of frequentist estimation and hypothesis testing. A mathematically
rigorous treatment of the estimating functions approach is provided by van der Vaart
(1998). A gentler and very readable presentation of a reduced amount of material is
Ferguson (1996). Further discussion of estimating functions, particularly for quasi-
likelihood, may be found in Heyde (1997) and Crowder (1986).

Likelihood was introduced by Fisher (1922, 1925b), and quasi-likelihood by
Wedderburn (1974). Asymptotic details for quasi-likelihood are described in
McCullagh (1983), while Gauss–Markov theorems detailing optimality are de-
scribed in Godambe and Heyde (1987) and Heyde (1997). Firth (1993) provides
an excellent review of quasi-likelihood.

Crowder (1987) gives counterexamples that reveal situations in which quasi-
likelihood is unreliable. Linear and quadratic estimating functions are described
by Firth (1987) and Crowder (1987). Firth (1987) also investigates the efficiency
of quasi-likelihood estimators and concludes that such estimators are robust to
“moderate departures” from the likelihood corresponding to the score.

The form of the sandwich estimator was given in Huber (1967). White (1980)
implemented the technique for the linear model, and Royall (1986) provides a clear
and simple account with many examples. Carroll et al. (1995, Appendix A.3) gives
a very readable review of sandwich estimation.

Efron (1979) introduced the bootstrap, and subsequently there has been a huge
literature on its theoretical properties and practical use. Bickel and Freedman (1981)
and Singh (1981) provide early theoretical discussions; see also van der Vaart
(1998). Book-length treatments include Efron and Tibshirani (1993) and Davison
and Hinkley (1997).

The score test was introduced in Rao (1948) as an alternative to the likelihood
ratio and Wald tests introduced in Neyman and Pearson (1928) and Wald (1943),
respectively. Consequently, the score test is sometimes known as the Rao score test.
Cox and Hinkley (1974) provide a general discussion of hypothesis testing. Peers
(1971) compares the power of score, Wald, and likelihood ratio tests. An excellent
expository article on the three statistics, emphasizing a geometric perspective, may
be found in Buse (1982).

2.12 Exercises

2.1 Suppose Y1, Y2 | θ ∼iid U (θ − 0.5, θ + 0.5) . Show that Pr(min{Y1, Y2} <
θ < max{Y1, Y2} | θ) = 0.5, so that [ min{Y1, Y2},max{Y1, Y2} ] is a
50% confidence interval for θ. Suppose we observe a particular interval with
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max{Y1, Y2} − min{Y1, Y2} ≥ 0.5. Show that in this case we know with
probability 1 that this interval contains θ.5

2.2 Consider a single observation from a Poisson distribution: Y | θ ∼ Poisson(θ).

(a) Suppose we wish to estimate exp(−3θ). Show that the UMVUE is (−2)y

for y = 0, 1, 2, . . . Is this a reasonable estimator?
(b) Suppose we wish to estimate θ2. Show that T (T − 1)/n2 is the UMVUE

for θ2. By examining the case T = 1 comment on whether this is a sensible
estimator.

2.3 Let Yi | σ2 ∼iid N(μ, σ2) with μ known.

(a) Show that the distribution p(y | σ2) is a one-parameter exponential family
member.

(b) Show that σ̂2 = 1
n

∑n
i=1(Yi − μ)2 is an unbiased estimator of σ2 and

evaluate its variance.
(c) Consider estimators of the form σ̃2

a = a
∑n

i=1(Yi − μ)2. Determine the
value of a that minimizes the mean squared error.

(d) The use of mean squared error to judge an estimator is appropriate for a
quadratic loss function, in this case L(σ̃2

a, σ
2) = (σ̃2

a−σ2)2. Since σ2 > 0,
there is an asymmetry in this loss function. Hence, explain why downward
bias in an estimator of σ2 can be advantageous.

(e) Show that σ̂2 is optimal amongst estimators σ̃2
a with respect to the Stein

loss function

Ls(σ̃
2
a, σ

2) =

(
σ̃2
a

σ2

)
− log

(
σ̃2
a

σ2

)
− 1.

2.4 Suppose Yi | θi ∼ind Poisson(θi) with θi ∼ind Ga(μib, b) for i = 1, . . . , n.

(a) Show that E[Yi] = μi and var(Yi) = μi(1 + b−1).
(b) Show that the marginal distribution of Yi | μi, b is negative binomial.
(c) Suppose logμi = β0 + β1xi. Write down the likelihood function L(β, b),

log- likelihood function l(β, b), score function S(β, b), and expected
information matrix I(β, b).

2.5 Consider the exponential regression problem with independent responses

p(yi | λi) = λie
−λiyi , yi > 0

and log λi = − β0 − β1xi for given covariates xi, i = 1, . . . , n. We wish to
estimate the 2× 1 regression parameter β = [β0, β1]

T using MLE.

5This exercise shows that although the confidence interval has the correct frequentist coverage
when averaging over all possible realizations of data, for some data we know with probability 1
that the specific interval created contains the parameter. The probability distribution of the data in
this example is not regular (since the support of the data depends on the unknown parameter), and
so we might anticipate difficulties. Conditioning on an ancillary statistic resolves the problems; see
Davison (2003, Example 12.3).
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Table 2.5 Survival times yi and concentrations of a contaminant xi for i = 1, . . . , 15

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

xi 6.1 4.2 0.5 8.8 1.5 9.2 8.5 8.7 6.7 6.5 6.3 6.7 0.2 8.7 7.5
yi 0.8 3.5 12.4 1.1 8.9 2.4 0.1 0.4 3.5 8.3 2.6 1.5 16.6 0.1 1.3

(a) Find expressions for the likelihood function L(β), log-likelihood function
l(β), score function S(β), and Fisher’s information matrix I(β).

(b) Find expressions for the maximum likelihood estimate β̂. If no closed-form
solution exists, then instead provide a functional form that could be simply
implemented.

(c) For the data in Table 2.5, numerically maximize the likelihood function to
obtain estimates of β. These data consist of the survival times (y) of rats
as a function of concentrations of a contaminant (x). Find the asymptotic
covariance matrix for your estimate using the information I(β). Provide a
95% confidence interval for each of β0 and β1.

(d) Plot the log-likelihood function l(β0, β1) and compare with the log of the
asymptotic normal approximation to the sampling distribution of the MLE.

(e) Find the maximum likelihood estimate β̂0 under the null hypothesis H0 :
β1 = 0.

(f) Perform score, likelihood ratio, and Wald tests of the null hypothesis H0 :
β1 = 0 with α = 0.05. In each case, explicitly state the formula you use to
compute the test statistic.

(g) Summarize the results of the estimation and hypothesis testing carried out
above. In particular, address the question of whether increasing concentra-
tions of the contaminant are associated with a rat’s life expectancy.

2.6 Consider the so-called Neyman–Scott problem (Neyman and Scott 1948) in
which Yij | μi, σ

2 ∼ind N(μi, σ
2), i = 1, . . . , n, j = 1, 2. Obtain the MLE

of σ2 and show that it is inconsistent. Why does the inconsistency arise in this
example?

2.7 Consider the example discussed at the end of Sect. 2.4.3 in which the true
distribution is gamma, but the assumed likelihood is exponential.

(a) Evaluate the form of the sandwich estimator of the variance, and compare
with the form of the model-based estimator.

(b) Simulate data from Ga(4,2) and Ga(10,2) distributions, for n = 10 and
n = 30, and obtain the MLEs and sandwich and model-based variance
estimates. Compare these variances with the empirical variances observed
in the simulations.

(c) Provide figures showing the log of the gamma densities of the previous part,
plotted against y, along with the “closest” exponential densities.

2.8 Consider the Poisson-gamma random effects model given by (2.33) and (2.34),
which leads to a negative binomial marginal model with the variance a quadratic
function of the mean. Design a simulation study, along the lines of that which
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produced Table 2.3, to investigate the efficiency and robustness under the
Poisson model, quasi-likelihood (with variance proportional to the mean), the
negative binomial model, and sandwich estimation. Use a loglinear model

logμi = β0 + β1xi,

with xi ∼iid N(0, 1), for i = 1, . . . , n, and β0 = 2, β1 = log 2. You should
repeat the simulation for different values of both n and the negative binomial
overdispersion parameter b. Report the 95% confidence interval coverages for
β0 and β1, for each model.

2.9 A pivotal bootstrap interval is evaluated as follows. Let Rn = θ̂n−θ be a pivot,
and H(r) = PrF (Rn ≤ r) be the distribution function of the pivot. Now define
an interval Cn = [ an, bn ] where

an = θ̂n −H−1
(
1− α

2

)

bn = θ̂n −H−1
(α
2

)
.

(a) Show that

Pr(an ≤ θn ≤ bn) = 1− α

so that Cn is an exact 100(1− α)% confidence interval for θ.
(b) Hence, show that the confidence interval is Cn = [ ân, b̂n ] where

ân = θ̂n − Ĥ−1
(
1− α

2

)
= θ̂n − r�1−α/2

= 2θ̂n − θ�1−α/2

b̂n = θ̂n − Ĥ−1
(α
2

)
= θ̂n − r�α/2

= 2θ̂n − θ�α/2

where r�γ denotes the γ sample quantile of the B bootstrap samples

[R�
n1, . . . , R

�
nB] and θ�γ the γ sample quantile of [θ̂�n1, . . . , θ̂

�
nB].

[Hint: To evaluate an and bn, we need to know H , which is unknown, but
may be estimated based on the bootstrap estimates

Ĥ(r) =
1

B

B∑

b=1

I(R�
nb ≤ r)

where R�
nb = θ̂�nb − θ̂n, b = 1, . . . , B. ]
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Chapter 3
Bayesian Inference

3.1 Introduction

In the Bayesian approach to inference, all unknown quantities contained in a
probability model for the observed data are treated as random variables. This is in
contrast to the frequentist view described in Chap. 2 in which parameters are treated
as fixed constants. Specifically, with respect to the inferential targets of Sect. 2.1,
the fixed but unknown parameters and hypotheses are viewed as random variables
under the Bayesian approach. Additionally, the unknowns may include missing data,
or the true covariate value in an errors-in-variables setting.

The structure of this chapter is as follows. In Sect. 3.2 we describe the constituents
of the posterior distribution and its summarization and in Sect. 3.3 consider the
asymptotic properties of Bayesian estimators. Section 3.4 examines prior speci-
fication, and in Sect. 3.5 issues relating to model misspecification are discussed.
Section 3.6 describes one approach to accounting for model uncertainty via
Bayesian model averaging. As we see in Sect. 3.2, to implement the Bayesian
approach, integration over the parameter space is required, and historically this has
proved a significant hurdle to the routine use of Bayesian methods. Consequently,
we discuss implementation issues in some detail. In Sect. 3.7, we provide a descrip-
tion of so-called conjugate situations in which the required integrals are analytically
tractable, before providing an overview of analytical and numerical integration
techniques, importance sampling, and direct sampling from the posterior. One
particular technique, Markov chain Monte Carlo (MCMC), has greatly extended
the range of models that may be analyzed with Bayesian methods, and Sect. 3.8
is devoted to a description of MCMC. Section 3.9 considers the important topic
of exchangeability, and in Sect. 3.10 hypothesis testing via so-called Bayes factors
is discussed. Section 3.11 considers a hybrid approach to inference in which the
likelihood is taken as the sampling distribution of an estimator and is combined with
a prior via Bayes theorem. Concluding remarks appears in Sect. 3.12, including
a comparison of frequentist and Bayesian approaches, and the chapter ends with
bibliographic notes in Sect. 3.13.

J. Wakefield, Bayesian and Frequentist Regression Methods, Springer Series
in Statistics, DOI 10.1007/978-1-4419-0925-1 3,
© Springer Science+Business Media New York 2013
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3.2 The Posterior Distribution and Its Summarization

Let θ = [θ1, . . . , θp]
T denote all of the unknowns of the model, which we continue

to refer to as parameters, and y = [y1, . . . , yn]
T the vector of observed data. Also

let I represent all relevant information that is currently available to the individual
who is carrying out the analysis, in addition to y. In the following description, we
assume for simplicity that each element of θ is continuous.

Bayesian inference is based on the posterior probability distribution of θ after
observing y, which is given by Bayes theorem:

p(θ | y, I) = p(y | θ, I)π(θ | I)
p(y | I) . (3.1)

There are two key ingredients: the likelihood function p(y | θ, I) and the prior
distribution π(θ | I). The latter represents the probability beliefs for θ held
before observing the data y. Both are dependent upon the current information I.
Different individuals will have different information I, and so in general their prior
distributions (and possibly their likelihood functions) may differ. The denominator
in (3.1), p(y | I), is a normalizing constant which ensures that the right-hand
side integrates to one over the parameter space. Though of crucial importance, for
notational convenience, from this point onwards we suppress the dependence on I,
to give

p(θ | y) = p(y | θ)π(θ)
p(y)

,

where the normalizing constant is

p(y) =

∫

θ

p(y | θ)π(θ) dθ, (3.2)

and is the marginal probability of the observed data given the model, that is, the
likelihood and the prior. Ignoring this constant gives

p(θ | y) ∝ p(y | θ)× π(θ)

or, more colloquially,

Posterior ∝ Likelihood × Prior.

The use of the posterior distribution for inference is very intuitively appealing since
it probabilistically combines the information on the parameters contained in the data
and in the prior.

The manner by which inference is updated from prior to posterior extends
naturally to the sequential arrival of data. Suppose first that y1 and y2 represent
the current totality of data. Then the posterior is
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p(θ | y1,y2) =
p(y1,y2 | θ)π(θ)

p(y1,y2)
. (3.3)

Now consider a previous occasion at which only y1 was available. The posterior
based on these data only is

p(θ | y1) =
p(y1 | θ)π(θ)

p(y1)
.

After observing y1 and before observing y2, the “prior” for θ corresponds to
the posterior p(θ | y1), since this distribution represents the current beliefs
concerning θ. We then update via

p(θ | y1,y2) =
p(y2 | y1, θ)π(θ | y1)

p(y2 | y1)
. (3.4)

Factorizing the right-hand side of (3.3) gives

p(θ | y1,y2) =
p(y2 | y1, θ)

p(y2 | y1)
× p(y1 | θ)π(θ)

p(y1)
,

which equals the right-hand side of (3.4). Hence, consistent inference based on y1

and y2 is reached regardless of whether we produce the posterior in one or two
stages. In the case of conditionally independent observations,

p(y1,y2 | θ) = p(y1 | θ)p(y2 | θ)
in (3.3) and

p(y2 | y1, θ) = p(y2 | θ)
in (3.4).

At first sight, the Bayesian approach to inference is deceptively straightforward,
but there are a number of important issues that must be considered in practice.
The first, clearly vital, issue is prior specification. Second, once prior and like-
lihood ingredients have been decided upon, we need to summarize the (usually)
multivariate posterior distribution, and as we will see, this summarization requires
integration over the parameter space, which may be of high dimension. Finally, a
Bayesian analysis must address the effect that possible model misspecification has
on inference. Prior specification is taken up in Sect. 3.4 and model misspecification
in Sect. 3.5. Next, posterior summarization is described.

Typically the posterior distribution p(θ | y) is multivariate, and marginal
distributions for parameters of interest will be needed. The univariate marginal
distribution for θi is

p(θi | y) =
∫

θ−i

p(θ | y) dθ−i, (3.5)

where θ−i is the vector θ excluding θi, that is, θ−i = [θ1, . . . , θi−1, θi+1, . . . , θp].
While examining the complete distribution will often be informative, reporting
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summaries of this distribution is also useful. To this end moments and quantiles
may be calculated. For example, the posterior mean is

E[θi | y] =
∫

θi

θip(θi | y) dθi. (3.6)

The 100× q% quantile, θi(q), with 0 < q < 1 is found by solving

q = Pr [ θi ≤ θi(q) ] =

∫ θi(q)

−∞
p(θi | y) dθi. (3.7)

The posterior median θi(0.5) is often an adequate summary of the location of the
posterior marginal distribution.

Formally, the choice between posterior means and medians can be made by
viewing point estimation as a decision problem. For simplicity suppose that θ is
univariate and the action, a, is to choose a point estimate for θ. Let L(θ, a) denote
the loss associated with choosing action a when θ is the true state of nature. The
(posterior) expected loss of an action a is

L(a) =

∫

θ

L(θ, a)p(θ | y) dθ (3.8)

and the optimal choice is the action that minimizes the expected loss. Different loss
functions lead to different estimates (Exercise 3.1). For example, minimizing (3.8)
with the quadratic loss L(θ, a) = (θ − a)2 leads to reporting the posterior mean,
â = E[θ | y]. The linear loss,

L(θ, a) =

{
c1(a− θ) θ ≤ a

c2(θ − a) θ > a
,

corresponds to a loss which is proportional to c1 if we overestimate and to c2 if we
underestimate. This function leads to â such that

Pr(θ ≤ â | y) = c2
c1 + c2

=
c2/c1

1 + c2/c1
,

that is, â = θ
(

c2
c1+c2

)
, so that presenting a quantile is the optimal action. Notice

that only the ratio of losses is required. When c1 = c2, under- and overestimation
are deemed equally hazardous, and the median of the posterior should be reported.

A 100×p% equi-tailed credible interval (0 < p < 1) is provided by

[ θi ({1− p}/2) , θi ({1 + p}/2) ] .

This interval is the one that is usually reported in the majority of Bayesian analyses
carried out, since it is the easiest to calculate. However, in cases where the posterior
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is skewed, one may wish to instead calculate a highest posterior density (HPD)
interval in which points inside the interval have higher posterior density than those
outside the interval. Such an interval is also the shortest credible interval.

Another useful inferential quantity is the predictive distribution for unobserved
(e.g., future) observations z. Under conditional independence, so that p(z | θ,y) =
p(z | θ), this distribution is

p(z | y) =
∫

θ

p(z | θ)p(θ | y) dθ. (3.9)

This derivation clearly assumes that the likelihood for the original data y is also
appropriate for the unobserved observations z.

The Bayesian approach therefore provides very natural inferential summaries.
However, these summaries require the evaluation of integrals, and for most models,
these integrals are analytically intractable. Methods for implementation are consid-
ered in Sects. 3.7 and 3.8.

3.3 Asymptotic Properties of Bayesian Estimators

Although Bayesian purists would not be concerned with the frequentist properties
of Bayesian procedures, personally I find it reassuring if, for a particular model, a
Bayesian estimator can be shown to be, as a minimum, consistent. Efficiency is also
an interesting concept to examine.

We informally give a number of results, before referencing more rigorous
treatments. We only consider parameter vectors of finite dimension. An important
condition that we assume in the following is that the prior distribution is positive in
a neighborhood of the true value of the parameter.

The famous Bernstein–von Mises theorem states that, with increasing sample
size, the posterior distribution tends to a normal distribution whose mean is the
MLE and whose variance–covariance matrix is the inverse of Fisher’s information.
Let θ be the true value of a p-dimensional parameter, and suppose we are in the
situation in which the data are independent and identically distributed. Denote the
posterior mean by θ̃n = θ̃n(Yn) = E[θ | Yn] and the MLE by θ̂n. Then,

√
n( θ̃n − θ) =

√
n( θ̃n − θ̂n) +

√
n(θ̂n − θ)

and we know that
√
n(θ̂n − θ) →d Np[0, I(θ)−1], where I(θ) is the information

in a sample of size 1 (Sect. 2.4.1). It can be shown that
√
n(θ̃n − θ̂n) →p 0 and so

√
n(θ̃n − θ) →d Np[0, I(θ)−1].

Hence, θ̃n is
√
n-consistent and asymptotically efficient. It is important to empha-

size that the effect of the prior diminishes as n → ∞. As van der Vaart (1998,
p. 140) dryly notes, “Apparently, for an increasing number of observations one’s
prior beliefs are erased (or corrected) by the observations.”
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The Bernstein–von Mises theorem is so-called because of the papers by Bernstein
(1917) and von Mises (1931), though the theorem has been refined by a number of
authors. For references and a recent treatment, see van der Vaart (1998, Sect. 10.2).
An early paper on consistency of Bayesian estimators is Doob (1948) and again
there have been many refinements; see van der Vaart (1998, Sect. 10.4). An
important assumption is that the parameter space is finite. Diaconis and Freedman
(1986) describe the problems that can arise in the infinite-dimensional case.

3.4 Prior Choice

The specification of the prior distribution is clearly a necessary and crucial aspect of
the Bayesian approach. With respect to prior choice, an important first observation
is that for all θ for which π(θ) = 0, we necessarily have p(θ | y) = 0, regardless of
any realization of the observed data, which clearly illustrates that great care should
be taken in excluding parts of the parameter space a priori.

We distinguish between two types of prior specification. In the first, which we
label as baseline prior specification, we presume an analysis is required in which
the prior distribution has “minimal impact,” so that the information in the likelihood
dominates the posterior. An alternative label for such an analysis is objective Bayes.
For an interesting discussion of the merits of this approach, see Berger (2006). Other
labels that have been put forward for such prior specification include reference, non-
informative and nonsubjective. Such priors may be used in situations (for example,
in a regulatory setting) in which one must be as “objective” as possible. There is
a vast literature on the construction of objective Bayesian procedures, with an aim
often being to define procedures which have good frequentist properties.

An analysis with a baseline prior may be the only analysis performed or,
alternatively, may provide an analysis with which other analyses in which substan-
tive priors are specified may be compared. Such substantive priors constitute the
second type of specification in which the incorporation of contextual information
is required. Once we have a candidate substantive prior, it is often beneficial to
simulate hypothetical data sets from the prior and examine these realizations to see
if they conform to what is desirable. A popular label for analyses for which the
priors are, at least in part, based on subject matter information is subjective Bayes.

3.4.1 Baseline Priors

On first consideration it would seem that the specification of a baseline prior is
straightforward since one can take

π(θ) ∝ 1, (3.10)

so that the posterior distribution is simply proportional to the likelihood p(y | θ).
There are two major difficulties with the use of (3.10), however.
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The first difficulty is that (3.10) provides an improper specification (i.e. it does
not integrate to a positive constant < ∞) unless the range of each element of θ
is finite. In some instances this may not be a practical problem if the posterior
corresponding to the prior is proper and does not exhibit any aberrant behavior
(examples of such behavior are presented shortly). A posterior arising from an
improper prior may be justified as a limiting case of proper priors, though some
statisticians are philosophically troubled by this argument. Another justification for
an improper prior is that such a choice may be thought of as approximating a prior
that is “locally uniform” close to regions where the likelihood is non-negligible (so
that the likelihood dominates) and decreasing to zero outside of this region. Great
care must be taken to ensure that the posterior corresponding to an improper prior
choice is proper. For nonlinear models, for example, improper priors should never be
used (as an example shortly demonstrates). It is difficult to give general guidelines as
to when a proper posterior will result from an improper prior. For example, improper
priors for the regression parameters in a generalized linear model (which are
considered in detail in Chap. 6) will often, but not always, lead to a proper posterior.

Example: Binomial Model

Suppose Y | p ∼ Binomial(n, p), with an improper uniform prior on the logit of p,
which we denote θ = log[p/(1− p)]. Then, π(θ) ∝ 1 implies a prior on p of

π(p) ∝ [p(1− p)]−1,

which is, of course, also improper.1 With this prior an improper posterior results if
y = 0 (or y = n) since the non-integrable spike at p = 0 (or p = 1) remains in the
posterior. Note that this prior results in the MLE being recovered as the posterior
mean.

Example: Nonlinear Regression Model

To illustrate the non-propriety in a nonlinear situation, consider the simple model

Yi | θ ∼ind N
[
exp(−θxi), σ

2
]
, (3.11)

for i = 1, . . . , n, with θ > 0 and σ2 assumed known. With an improper uniform
prior on θ, π(θ) = 1, we label the resulting (unnormalized) “posterior” as

q(θ | y) = p(y | θ)× π(θ) = exp

[
− 1

2σ2

n∑

i=1

(
yi − e−θxi

)2
]
.

1This prior is sometimes known as Haldane’s prior (Haldane 1948).
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As θ → ∞,

q(θ | y) → exp

[
− 1

2σ2

n∑

i=1

y2i

]
, (3.12)

a constant, so that the posterior is improper, because the tail is non-integrable, that is,
∫ ∞

θc

q(θ | y) = ∞

for all θc > 0. Intuitively, the problem is that as θ → ∞ the corresponding nonlinear
curve does not move increasingly away from the data, but rather to the asymptote
E[Y | θ] = 0. The result is that a finite sum of squares results in (3.12), even
in the limit. By contrast, there are no asymptotes in a linear model, and so as the
parameters increase or decrease to ±∞, the fitted line moves increasingly far from
the data which results in an infinite sum of squares in the limit, in which case the
likelihood, and therefore the posterior, is zero. �

To summarize, it is ill-advised to think of improper priors as a default choice.
Rather, improper priors should be used with care, and it is better to assume that they
will lead to problems until the contrary can be shown. The safest strategy is clearly
to specify proper priors, and this is the approach generally taken in this book.

The second difficulty with (3.10) is that if we reparameterize the model in terms
of φ = g(θ), where g(·) is a one-one mapping, then the prior for φ corresponding
to (3.10) is

π(φ) =

∣∣∣∣
dθ

dφ

∣∣∣∣ ,

so that, unless g is a linear transformation, the prior is no longer constant. We
have just seen an example of this with the binomial model. As another example,
consider a variance σ2, with prior π(σ2) ∝ 1. This choice implies a prior for the
standard deviation, π(σ) ∝ σ, which is nonconstant. The problem is that we cannot
be “flat” on different nonlinear scales. This issue indicates that a desirable property
in constructing baseline priors is their invariance to parameterization in order to
obtain the same prior regardless of the starting parameterization.

A number of methods have been proposed for the specification of baseline or
non-informative priors (we avoid the latter term since it is arguable that priors are
ever non-informative). Jeffreys (1961, Sect. 3.10) suggested the use of

π(θ) ∝ |I(θ)|1/2 , (3.13)

where I(θ) is Fisher’s expected information. This prior has the desirable property
of invariance to reparameterization. The invariance holds in general but is obvious
in the case of univariate θ. If φ = g(θ),

Iφ(φ) = Iθ(θ)×
(
dθ

dφ

)2

, (3.14)
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where the subscripts now emphasize the parameterization. Consequently, if we
start with

πφ(φ) ∝ Iφ(φ)
1/2

this implies

πθ(θ) ∝ Iφ
[
g−1(φ)

]1/2
∣∣∣∣
dφ

dθ

∣∣∣∣ = Iθ(θ)
1/2

from (3.14). Hence, prior (3.13) results if we use the prescription of Jeffreys, but
begin with φ. In the case of Y | p ∼ Binomial(n, p) the information is I(p) =
n/[p(1− p)] (Sect. 2.4.1). Therefore, Jeffreys prior is π(p) ∝ [p(1 − p)]−1/2. This
prior has the advantage of producing a proper posterior when y = 0 or y = n, a
property not shared by Haldane’s prior.

Unfortunately, the application of the above procedure to multivariate θ can lead
to posterior distributions that have undesirable characteristics. For example, in the
Neyman–Scott problem, the use of Jeffreys prior gives, as n → ∞, a limiting
posterior mean that is inconsistent, in a frequentist sense (see Exercise 3.3).

A refinement of Jeffreys approach for selecting priors on a more objective basis is
provided by reference priors. We briefly describe this approach heuristically; more
detail can be found in Bernardo (1979) and Berger and Bernardo (1992). For any
prior/likelihood distribution, suppose we can calculate the expected information
concerning a parameter of interest that will be provided by the data. The more
informative the prior, the less information the data will provide. An infinitely large
sample would provide all of the missing information about the quantity of interest,
and the reference prior is chosen to maximize this missing information.

3.4.2 Substantive Priors

The specification of substantive priors is obviously context specific, but we give a
number of general considerations. Specific models will be considered in subsequent
chapters. In this section we will discuss some general techniques but will not
describe prior elicitation in any great detail; see Kadane and Wolfson (1998),
O’Hagan (1998), and Craig et al. (1998) and the ensuing discussion for more on
this topic which can be thought of as the measurement of probabilities.

When specifying a substantive prior, it is obvious that we need a clear under-
standing of the meaning of the parameters of the model for which we are specifying
priors, and this can often be achieved by reparameterization.

Example: Linear Regression

Consider the simple linear regression E[Y | x] = γ0 + γ1x. Interpretation is often
easier if we reparameterize as
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E[Y | z] = β0 + β1(z − z)

where z = c × x and c is chosen so that the units of z are convenient. Under
this parameterization, β0 is the expected response at z = z. It will often be
easier to specify a prior for β0 than for γ0, the average response at x = 0, which
may be meaningless. The slope parameter, β1, is the change in expected response
corresponding to a c-unit increase in x (1-unit increase in z).

Example: Exponential Regression

It may be easier to specify priors on observable quantities, before transforming back
to the parameters. For the nonlinear model (3.11), we might specify a prior for the
expected response at x = x̂, φ = exp(−θ x̂) to give a prior πφ(φ). The prior for θ is

πθ(θ) = πφ [ exp(−θ x̂) ]× x̂ exp(−θ x̂),

the last term corresponding to the Jacobian of the transformation φ → θ. As an
example, one might assume a Be(a, b) prior for φ, with a and b chosen to give a
90% interval for φ. �

While the axioms of probability are uncontroversial, the interpretation of proba-
bility has been contested for centuries. In the frequentist approach of Chap. 2, prob-
ability was defined in an objective frequentist sense. If the event A is of interest and
an experiment is repeated n times resulting in nA occasions on which A occurs, then

P (A) = lim
n→∞

nA

n
.

In contrast, in the subjective Bayesian worldview, probabilities are viewed as sub-
jective and conditional upon an individual’s experiences and knowledge, although
one may of course base subjective probabilities upon frequencies. Cox and Hinkley
(1974, p. 53) state, with reference to the use of Bayes theorem, “If the prior
distribution arises from a physical random mechanism with known properties,
this argument is entirely uncontroversial,” but continue, “A frequency prior is,
however, rarely available. To apply the Bayesian approach more generally a wider
concept of probability is required . . . the prior distribution is taken as measuring the
investigator’s subjective opinion about the parameter from evidence other than the
data under analysis.”

As alluded to by this last quote, an obvious procedure is to base the prior
distribution upon previously collected data. Ideally, preliminary modeling of such
data should be carried out to acknowledge sampling error. If one believed that the
data-generation mechanism for both sets of data was comparable, then it would
be logical to base the posterior on the combined data (and then once again one
has to decide on how to pick a prior distribution). Often such comparability is not
reasonable, and a conservative approach is to take the prior as the posterior based
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on the additional data, but with an inflated variance, to accommodate the additional
uncertainty. This approach acknowledges nonsystematic differences, but systematic
differences (in particular, biases in one or both studies) may also be present, and this
is more difficult to deal with.

Roughly speaking, so long as the prior does not assign zero mass to any region,
the likelihood will dominate with increasing sample size (as we saw in Sect. 3.3), so
that prior choice becomes decreasingly important. A very difficult problem in prior
choice is the specification of the joint distribution over multiple parameters. In some
contexts one may be able to parameterize the model so that one believes a priori that
the components are independent, but in general this will not be possible.

Due to the difficulties of prior specification, a common approach is to carry out
a sensitivity analysis in which a range of priors are considered and the robustness
of inference to these choices is examined. An alternative is to model average across
the different prior models; see Sect. 3.10.

3.4.3 Priors on Meaningful Scales

As we will see in Chaps. 6 and 7, loglinear and linear logistic forms are extremely
useful regression models, taking the forms

logμ = β0 + β1x1 + . . .+ βkxk

log

(
μ

1− μ

)
= β0 + β1x1 + . . .+ βkxk

retrospectively, where μ = E[Y ]. Both forms are examples of generalized linear
models (GLMs) which are discussed in some detail in Chap. 6.

Often there will be sufficient information in the data for β = [β0, β1, . . . , βk]
T

to be analyzed using independent normal priors with large variances (unless, for
example, there are many correlated covariates). The use of an improper prior for β
will often lead to a proper posterior though care should be taken. Chapter 5 discusses
prior choice for the linear model and Chap. 6 for GLMs, and Sect. 6.8 provides an
example of an improper posterior that arises in the context of a Poisson model with
a linear link.

If we wish to use informative priors for β, we may specify independent normal
priors, with the parameters for each component being obtained via specification of
two quantiles with associated probabilities. For loglinear and logistic models, these
quantiles may be given on the exponentiated scale since these are more interpretable
(as the rate ratio and odds ratio, respectively). If θ1, θ2 are the quantiles and p1, p2
are the associated probabilities, then the parameters of the normal prior are

μ =
z1θ2 − z2θ1
z1 − z2

(3.15)

σ =
θ1 − θ2
z1 − z2

(3.16)
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Fig. 3.1 The beta prior,
Be(2.73, 5.67), which gives
Pr(p < 0.1) = 0.05 and
Pr(p < 0.6) = 0.95

where z1 and z2 are the quantiles of a standard normal random variable. For
example, in an epidemiological context with a Poisson regression model, we may
wish to specify a prior on a relative risk parameter, exp(β1) which has a median of 1
(corresponding to no association) and a 95% point of 3 (if we think it is unlikely that
the relative risk associated with a unit increase in exposure exceeds 3). If we take
θ1 = log(1) and θ2 = log(3), along with p1 = 0.5 and p2 = 0.95, then we obtain
β1 ∼ N(0, 0.6682). In general, less care is required in prior choice for intercepts in
GLMs since they are very accurately estimated with even small amounts of data.

Many candidate prior distributions contain two parameters. For example, a beta
prior may be used for a probability and lognormal or gamma distributions may be
used for positive parameters such as measures of scale. A convenient way to choose
these parameters is to, as above, specify two quantiles with associated probabilities
and then solve for the two parameters. For example, suppose we wish to specify a
beta prior, Be(a1, a2), for a probability p, such that the p1 and p2 quantiles are q1
and q2. Then we may solve

[p1 − Pr(p < q1 | a1, a2)]2 + [p2 − Pr(p < q2 | a1, a2)]2 = 0

for a1, a2. For example, taking p1 = 0.05, p2 = 0.95, q1 = 0.1, q2 = 0.6 yields
a1 = 2.73, a2 = 5.67, and Fig. 3.1 shows the resulting density.

3.4.4 Frequentist Considerations

We briefly give a simple example to illustrate the frequentist bias-variance trade-off
of prior specification, by examining the mean squared error (MSE) of a Bayesian
estimator. Consider data Yi, i = 1, . . . , n, with Yi independently and identically
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Fig. 3.2 Mean squared error
of the posterior mean
estimator when√
n(Y n − μ) →d N(0, σ2)

with σ2 known and prior
μ ∼ N(m, v). The dashed
line represents the case with
v = 1 and the dotted line
when v = 3, as a function of
the parameter μ. The mean
squared error of the sample
mean is the solid horizontal
line

distributed with E[Yi | μ] = μ and var(Yi | μ) = σ2 with σ2 known. The asymptotic
distribution of the sample mean is

√
n(Y n − μ) →d N(0, σ2).

We treat this distribution as the likelihood and examine a Bayesian analysis with
prior

μ ∼ N(m, v).

The posterior is

μ | Yn →d N

(
wnY n + (1− wn)m,wn

σ2

n

)

where

wn =
nv

nv + σ2
.

We first observe that the posterior mean estimator is consistent since wn → 1 as
n → ∞), so long as v > 0, but the estimator has finite sample bias if v−1 �= 0. The
mean squared error of the posterior mean estimator is

MSE = Variance + Bias2

= wn
σ2

n
+ [wnμ+ (1 − wn)m− μ]

2

= wn
σ2

n
+ (1− wn)

2(m− μ)2.

Figure 3.2 illustrates the MSE as a function of μ for two different prior distributions
that are both centered at zero but have different variances of v = 1, 3. For simplicity
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we have chosen σ2/n = 1 with n = 9 (so that the MSE of the sample mean is 1, and
is indicated as the solid horizontal line). The trade-off when specifying the variance
of the prior is clear; if the true μ is close to m, then reductions in MSE are achieved
with a small v, though the range of μ over which an improved MSE is achieved is
narrower than with the wider prior. At values of μ of m±√v + σ2/n, the MSE of
the sample mean and Bayesian estimator are equal. The variance of the estimator is
given by the lowest point of the MSE curves, and the bias dominates for large |μ|.

Example: Lung Cancer and Radon

As an example of prior specification, we return to the simple model considered
repeatedly in Chap. 2 with likelihood

Yi | β ∼ind Poisson [ Ei exp(β0 + β1xi) ] ,

where recall that Yi are counts of lung cancer incidence in Minnesota in 1998–
2002, and xi is a measure of residential radon in county i, i = 1, . . . , n. The
obvious improper prior here is π(β) ∝ 1 (and results in a proper posterior for this
likelihood).

To specify a substantive prior, we need to have a clear interpretation of the pa-
rameters, and β0 and β1 are not the most straightforward quantities to contemplate.
Hence, we reparameterize the model as

Yi | θ ∼ind Poisson
(
Eiθ0θ

xi−x
1

)
,

where θ = [θ0, θ1]
T so that

θ0 = E[Y/E | x = x] = exp(β0 + β1x)

is the expected standardized mortality ratio in an area with average radon. The
standardization that leads to expected numbers E implies we would expect θ0 to
be centered around 1. The parameter θ1 = exp(β1) is the relative risk associated
with a one-unit increase in radon. Due to ecological bias, studies often show
a negative association between lung cancer incidence and radon (and it is this
ecological association we are estimating for this illustration and not the individual-
level association). We take lognormal priors for θ0 and θ1 and use (3.15) and (3.16)
to deduce the lognormal parameters. For θ0 we take a lognormal prior with 2.5%
and 97.5% quantiles of 0.67 and 1.5 to give μ = 0, σ = 0.21. For θ1 we assume
the relative risk associated with a one-unit increase in radon is between 0.8 and 1.2
with probability 0.95, to give μ = −0.02, σ = 0.10. We return to this example later
in the chapter.
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3.5 Model Misspecification

The behavior of Bayesian estimators under misspecification of the likelihood has
received less attention than frequentist estimators. Recall the result concerning the
behavior of the MLE θ̂n under model misspecification summarized in (2.27), which
we reproduce here:

√
n (θ̂n − θT) →d Np

[
0,J−1K(J T)−1

]

where

J = ET

[
∂2

∂θ∂θT log p(Y | θT)

]

K = ET

[(
∂

∂θ
log p(Y | θT)

)(
∂

∂θ
log p(Y | θT)

)T]

with θT the true θ and p(Y | θ) the assumed model. Let θ̃n = E[θ | Yn] be the
posterior mean which we here view as a function of Yn = [Y1, . . . , Yn]

T. From
Sect. 3.3,

√
n(θ̃n − θ̂n) →p 0, and hence

√
n(θ̃n − θT) →d Np

[
0,J−1K(J T)−1

]
.

This has important implications since it shows that, asymptotically, the effect of
model misspecification on the posterior mean is the same as its effect on the MLE. If
the likelihood is of linear exponential family form, correct specification of the mean
function leads to consistent estimation of the parameters in the mean model (see
Sect. 6.5.1 for details). As with the reported variance of the MLE, the spread of the
posterior distribution could be completely inappropriate, however. While sandwich
estimation can be used to “correct” the variance estimator for the MLE, there is no
such simple solution for the posterior mean, or other Bayesian summaries.

With respect to model misspecification, the emphasis in the Bayesian literature
has been on sensitivity analyses, or on embedding a particular likelihood or prior
choice within a larger class. Embedding an initial model within a continuous class
is a conceptually simple approach. For example, a Poisson model may be easily
extended to a negative binomial model.

A difficulty with considering model classes with large numbers of unknown
parameters is that uncertainty on parameters of interest will be increased if a simple
model is closer to the truth. In particular, model expansion may lead to a decrease in
precision, as we now illustrate. As we have seen, as n increases, the prior effect is
negligible and the posterior variance is given by the inverse of Fisher’s information,
(Sect. 3.3). Suppose that we have k parameters in an original model, and we are
considering an expanded model with p parameters, and let

[
I11 I12
I21 I22

]
,
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where I11 is a k × k matrix corresponding to the information on the parameters
of the simpler model (which includes the parameters of interest), and I22 is the
(p− k)× (p− k) information matrix concerning the additional parameters in the
enlarged model. In the simpler model, the information on the parameters of interest
is I11, while for the enlarged model, it is

I11 − I12I
−1
22 I21,

which is never greater than I11. This is an oversimplified discussion (as we shall
see in Sect. 5.9), but it highlights that there can be a penalty to pay for specifying an
overly complex model.

3.6 Bayesian Model Averaging

If a discrete number of models are considered, then model averaging provides an
alternative means of assessing model uncertainty. The Bayesian machinery handles
multiple models in a very straightforward fashion since essentially the unknown
model is treated as an additional discrete parameter. Let M1, . . . ,MJ denote the J
models under consideration and θj the parameters of the jth model. Suppose, for
illustration, there is a parameter of interest φ (which we assume is univariate) that
is well defined for each of the J models under consideration. The posterior for φ is
a mixture over the J individual model posteriors:

p(φ | y) =
J∑

j=1

p(φ | Mj ,y) Pr(Mj | y)

where

p(φ | Mj,y) =

∫
p(φ | θj ,Mj,y)p(θj | Mj ,y) dθj

=
1

p(y | Mj)

∫
p(φ | θj ,Mj,y)p(y | θj ,Mj)p(θj | Mj) dθj ,

Pr(Mj | y) = p(y | Mj) Pr(Mj)

p(y)

=

∫
p(y | θj ,Mj)p(θj | Mj) dθj Pr(Mj)

p(y)

and with Pr(Mj) the prior belief in model j and p(θj | Mj) the prior on the
parameters of model Mj . The marginal probabilities of the data under the different
models are calculated as

p(y | Mj) =

∫
p(y | θj ,Mj)p(θj | Mj) dθj ,
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with

p(y) =

J∑

j=1

p(y | Mj) Pr(Mj).

To summarize the posterior for φ, we might report the posterior mean

E[φ | y] =
J∑

j=1

E[φ | y,Mj]× Pr(Mj | y),

which is simply the average of the posterior means across models, weighted by the
posterior weight received by each model. The posterior variance is

var(φ | y) =
J∑

j=1

var(φ | y,Mj)× Pr(Mj | y)

+
J∑

j=1

{E[φ | y,Mj]− E[φ | y]}2 × Pr(Mj | y)

which averages the posterior variances concerning φ in each model, with the
addition of a term that accounts for between-model uncertainty in the mean.

Although model averaging is very appealing in principle, in practice there are
many difficult choices, including the choice of the class of models to consider and
the priors over both the models and the parameters of the models. Summarization
can also be difficult because the parameter of interest may have different interpre-
tations in different models. For example, in a regression setting, suppose we fit the
single model

E[Y | x1, x2] = β0 + β1x1 + β2x2

with β1 the parameter of interest. The interpretation of β1 is as the average change in
response corresponding to a unit increase in x1, with x2 held constant. If we average
over this model and the model with x1 only, then the usual “x2 held constant”
qualifier is not accurate, so a phrase such as “allowing for the possibility of x2

in the model” may be instead used. Performing model averaging over models which
represent different scientific theories is also not appealing if the search for a causal
explanation is sought. If prediction is the aim, then model averaging is much more
appealing since parameter interpretation is often irrelevant (see Chap. 12). Another
disadvantage of model averaging is that it may encourage the user to believe they
have accounted for “all” uncertainty in which covariates to include in the model
which is a dangerous conclusion to draw.
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3.7 Implementation

In this section we provide an overview of methods for evaluating the integrals
required for performing Bayesian inference. We begin, in Sect. 3.7.1, by describing
so-called conjugate situations in which the prior and likelihood combination is
constructed in order for the posterior to be of the same form as the prior.
Unfortunately, in a regression setting, conjugate analyses are rarely available beyond
the linear model. In Sect. 3.7.2 the analytical Laplace approximation is described.
Quadrature methods are considered in Sect. 3.7.3 before we turn to a method that
combines Laplace and numerical integration in a very clever way, in Sect. 3.7.4, to
give a method known as the integrated nested Laplace approximation (INLA). More
recently developed sampling-based (Monte Carlo) approaches have transformed
the practical application of Bayesian methods, and we therefore describe these
approaches in some detail. In Sect. 3.7.5, importance sampling Monte Carlo is
considered, and in Sects. 3.7.6 and 3.7.7, direct sampling from the posterior is
described. MCMC algorithms are particularly important, and to these we devote
Sect. 3.8.

Beyond the crucial importance of integration in Bayesian inference, this material
is also relevant in a frequentist context. Specifically, in Part III of this book, we
will consider nonlinear and generalized linear mixed effects models for which
integration over the random effects is required in order to obtain the likelihood for
the fixed effects.

3.7.1 Conjugacy

So-called conjugate prior distributions allow analytical evaluation of many of the
integrals required for Bayesian inference, at least for certain convenient parameters.
A conjugate prior is such that p(θ | y) and p(θ) belong to the same family. We
assume dim(θ) = p. This definition is not adequate since it will always be true given
a suitable definition of the family of distributions. To obtain a more useful class,
we first note that if T (Y ) denotes a sufficient statistic for a particular likelihood
p( · | θ), then

p(θ | y) = p(θ | t) ∝ p(t | θ)p(θ).
This allows a definition of a conjugate family in terms of likelihoods that admit a
sufficient statistic of fixed dimension.

The p-parameter exponential family of distributions has the form:

p(yi | θ) = f(yi)g(θ) exp [λ(θ)
Tu(yi)] ,

where, in general, λ(θ) and u(yi) have the same dimension as θ and λ(θ) is called
the natural parameter (and in a linear exponential family, we have u(yi) = yi). For
n independent and identically distributed observations from p(· | θ),
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Table 3.1 Conjugate priors and associated posterior distributions, for various
likelihood choices

Prior Likelihood Posterior

θ ∼ N(m, v) Y | θ ∼ N(θ, σ2/n)
σ2 known

θ | y ∼ N[wy+ (1−w)m,wσ2/n]
with w = v/(v + σ2/n)

θ ∼ Be(a, b) Y | θ ∼ Bin(n, θ) θ | y ∼ Be(a + y, b+ n− y)

θ ∼ Ga(a, b) Y | θ ∼ Poisson(θ) θ | y ∼ Ga(a + y, b+ 1)

θ ∼ Ga(a, b) Y | θ ∼ Exp(θ) θ | y ∼ Ga(a + y, b+ 1)

p(y | θ) =
[

n∏

i=1

f(yi)

]
g(θ)n exp [λ(θ)Tt(y)] ,

where

t(y) =

n∑

i=1

u(yi).

The conjugate prior density is defined as

p(θ) = c(η,υ)× g(θ)η exp [λ(θ)Tυ] ,

where η and υ are specified, a priori. The resulting posterior distribution is

p(θ | y) = c(η + n,υ + t)× g(θ)η+n exp {λ(θ)T[υ + t(y)]} ,

demonstrating conjugacy. Comparison with p(yi | θ) indicates that η may be viewed
as a prior sample size giving rise to a sufficient statistic υ.

The above derivations are often not required if one wishes to simply obtain the
conjugate distribution for a given likelihood, since it can be determined quickly via
inspection of the kernel of the likelihood. The predictive distribution is often more
complex to derive, however, but is straightforward under the above formulation. In
the case of a conjugate prior, for new observations Z = [Z1, ..., Zm] arising as
an independent and identically distributed sample from p(Z | θ), the predictive
distribution is

p(z | y) =
[

m∏

i=1

f(zi)

]
c[η + n,υ + t(y)]

c[η + n+m,υ + t(y, z)]
.

Table 3.1 gives the conjugate choices for a variety of likelihoods.
Beyond the normal linear model, the direct practical use of conjugacy in a

regression setting is limited, but as we will see subsequently, the material of this
section is very useful when implementing direct sampling or MCMC approaches.
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Example: Binomial Likelihood

Suppose we have a single observation from a binomial distribution, Y | θ ∼
Binomial(n, θ):

p(y | θ) =
(
n

y

)
θy(1− θ)n−y .

By direct inspection we recognize that the conjugate prior is a beta distribution, but
for illustration we follow the more long-winded route. In exponential family form,

p(y | θ) =
(
n

y

)
(1− θ)n exp

[
y log

(
θ

1− θ

)]
,

or, in terms of the natural parameter λ = λ(θ) = log[θ/(1− θ)],

p(y | λ) =
(
n

y

)
[1 + exp(λ)]−n exp(yλ).

The conjugate prior for λ is therefore identified as

π(λ) = c(η, υ)[1 + exp(λ)]−η exp [υλ] (3.17)

so that the prior for θ is

π(θ) = c(η, υ)(1 − θ)η exp

[
υ log

θ

1− θ

]
1

θ(1− θ)

=
Γ (η + 2)

Γ (υ + 1)Γ (η − υ + 1)
θυ−1(1− θ)η−υ−1,

the Be(a, b) distribution with parameters a = υ, b = η − υ. An interpretation of
these parameters is that a prior sample size η = a + b yields the prior sufficient
statistic υ = a. It follows immediately that the posterior is Be(a+ y, b+ n− y).

We write

E[θ | y] = a+ y

a+ b+ n

=
y

n
w +

a

a+ b
(1− w)

where w = n/(a+ b+ n), so that the posterior mean is a weighted combination of
the MLE, θ̂ = y/n, and the prior mean. Similarly,

mode[θ | y] = a+ y − 1

a+ b+ n− 2

=
y

n
w� +

a− 1

a+ b− 2
(1− w�),
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where w� = n/(a+b+n−2), so that the posterior mode is a weighted combination
of the prior mode (if it exists) and the MLE. The choice of a uniform distribution,
a = b = 1, results in the posterior mode equaling the MLE, as expected in this
one-dimensional example.

The marginal distribution of the data, given likelihood and prior, is the beta-
binomial distribution

Pr(y) =

(
n

y

)
Γ (a+ b)

Γ (a)Γ (b)
× Γ (a+ y)Γ (b+ n− y)

Γ (a+ b+ n)
,

for y = 0, . . . , n. If a = b = 1, the prior predictive is uniform over the space of
outcomes: p(y) = (n+ 1)−1 for y = 0, 1, . . . , n, in line with intuition.

The mean of the prior predictive is

E[Y ] = Eθ[E(Y | θ)] = n× a

a+ b
,

with variance

var(Y ) = varθ[E(Y | θ)] + Eθ[var(Y | θ)] = nE(θ)[1 − E(θ)]× a+ b+ n

a+ b+ 1
,

illustrating the overdispersion relative to var(Y | θ) = nθ(1 − θ), if n > 1. If
n = 1, there is no overdispersion since we have a single Bernoulli random variable
for which the variance is always determined by the mean.

The predictive distribution for a new trial, in which Z = 0, 1, . . . ,m denotes the
number of successes and m the number of trials, is

p(z | y) =
(
m

z

)
Γ (a+ b+ n)

Γ (a+ y)Γ (b+ n− y)
× Γ (a+ b+ z)Γ (b+ n− y +m− z)

Γ (a+ b+ n+m)
,

which is another version of the beta-binomial distribution and is an overdispersed
binomial for which

E[Z | y] = m× E[θ | y] = m× a+ y

a+ b+ n
,

and

var(Z | y) = m× E(θ | y)× [1− E(θ | y)]× a+ b+ n+m

a+ b+ n+ 1
.

As n → ∞, with y/n fixed, the predictive p(z | y) approaches the binomial distri-
bution Bin(m, y/n). This makes sense since, under correct model specification, for
large n we effectively know θ, and so binomial variability is the only uncertainty
that remains.
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3.7.2 Laplace Approximation

In this section let

I =

∫ ∞

−∞
exp[nh(θ) ] dθ, (3.18)

denote a generic integral of interest, and we suppose initially that θ is a scalar.
Depending on the form of h(·), (3.18) can correspond to the evaluation of a variety
of quantities of interest including p(y) and posterior moments. The n appearing
in (3.18) is included solely to make the asymptotic arguments more transparent.

Let θ̃ denote the mode of h(·). We carry out a Taylor series expansion about θ̃,
assuming that h(·) is sufficiently well behaved for this operation; in particular we
assume that at least two derivatives exist. The expansion is

nh(θ) = n
∞∑

k=0

(θ − θ̃)k

k!
h(k)(θ̃),

where h(k)(θ̃) represents the kth derivative of h(·) evaluated at θ̃. Hence,

I =

∫ ∞

−∞
exp

[
n

∞∑

k=0

(θ − θ̃)k

k!
h(k)(θ̃)

]
dθ

≈ exp
[
nh(θ̃)

] ∫ ∞

−∞
exp

[
nh(2)

2
(θ̃)(θ − θ̃)2

]
dθ,

where we have ignored quadratic terms and above in the Taylor series and exploited
h(1)(θ̃) = 0. Writing ṽ = −1/h(2)(θ̃) gives the estimate

Î = exp
[
nh(θ̃)

](2πṽ

n

)1/2

, (3.19)

which is known as the Laplace approximation. The error is such that

I

Î
= 1 +O(n−1).

Suppose we wish to evaluate the posterior expectation of a positive function of
interest φ(θ), that is,

E[φ(θ) | y] =
∫
exp[logφ(θ) + log p(y | θ) + log π(θ) + log(dθ/dφ)] dθ∫

exp[log p(y | θ) + log π(θ)] dθ

=

∫
exp[nh1(θ)] dθ∫
exp[nh2(θ)] dθ

.
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where the Jacobian has been included in the numerator of the first line. Application
of (3.19) to numerator and denominator gives

Ê[φ(θ) | y] = ṽ1
ṽ0

exp[nh1(θ̃1)]

exp[nh0(θ̃0)]

where θ̃j is the mode of hj(·) and ṽj = −1/h
(2)
j (θ̃j), j = 0, 1. Further,

Ê[φ(θ) | y] = E[φ(θ) | y][1 +O(n−2)],

since errors in the numerator and denominator cancel (Tierney and Kadane 1986).
If φ is not positive then a simple solution is to add a large constant to φ, apply
Laplace’s method, and subtract the constant.

Now consider multivariate θ with dim(θ) = p and with required integral

I =

∫ ∞

−∞
· · ·
∫ ∞

−∞
exp[nh(θ)] dθ1 · · · dθp.

The above argument may be generalized to give the Laplace approximation

Î = exp
[
nh(θ̃)

](2π

n

)p/2

| ṽ |1/2, (3.20)

where θ̃ is the maximum of h(·) and ṽ is the p× p matrix whose (i, j)th element is

− ∂2h

∂θi∂θj

∣∣∣∣∼
θ

.

An important drawback of analytic approximations is the difficulty in per-
forming error assessment, so that in practice one does not know the accuracy
of approximation. The evaluation of derivatives can also be analytically and
numerically troublesome. These shortcomings apart, however, we will see that these
approximations are useful as components of other approaches, such as the scheme
described in Sect. 3.7.4, and for suggesting proposals for importance sampling and
MCMC algorithms.

3.7.3 Quadrature

We consider numerical integration rules for approximating integrals of the form

I =

∫
f(t) dt,
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via the weighted sum

Î =

m∑

i=1

wif(ti),

where the points ti and weights wi define the integration rule. So-called Gauss rules
are optimal rules (in a sense we will define shortly) that are constructed to integrate
weighted functions of polynomials accurately. Specifically, if p(t) is a polynomial
of degree 2m− 1, then the Gauss rule (ti, wi) is such that

m∑

i=1

wip(ti) =

∫
w(t)p(t) dt.

It can be shown that no rule has this property for polynomials of degree 2m, showing
the optimality of Gauss rules. Different classes of rule emerge for different choices
of weight function. We describe Gauss–Hermite rules that correspond to the weight
function

w(t) = exp(−t2) (3.21)

which is of obvious interest in a statistics context. If the integral is of the form

I =

∫
g(t) exp(−t2) dt

and f(t) can be well approximated by a polynomial of degree 2m − 1, we would
expect an m-point Gauss–Hermite rule to be accurate.

The points of the Gauss–Hermite rule are the zeroes of the Hermite polynomials
Hm(t) with weights

wi =
2m−1m!

√
π

m2[Hm−1(ti)]2
.

In general, the points of the rule need to be located and scaled appropriately.
Suppose that μ and σ are the approximate mean and standard deviation of θ, and let
t = (θ − μ)/

√
2σ. The integral of interest is

I =

∫
f(θ) dθ =

∫
g(μ+

√
2σt)

√
2σe−t2 dt

and applying the transformation yields

Î =

m∑

i=1

w�
i g(t

�
i ),

where w�
i = wi

√
2σ and t�i = μ+

√
2σti.
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In practice μ and σ are unknown but may be estimated at the same time as I is
evaluated to give an adaptive Gauss–Hermite rule (Naylor and Smith 1982).

Suppose θ is two-dimensional, and we wish to evaluate

I =

∫
f(θ) dθ =

∫ ∫
f(θ1, θ2) dθ2 dθ1 =

∫
f�(θ1) dθ1

where

f�(θ1) =

∫
f(θ1, θ2) dθ2.

We form

Î =

m1∑

i=1

wif̂
�(θ1i),

with

f̂�(θ1i) =

m2∑

j=1

ujf(θ1i, θ2j)

to give

Î =

m1∑

i=1

m2∑

j=1

wiujf(θ1i, θ2j),

which is known as a Cartesian Product rule. Such rules can provide very accurate in-
tegration with relatively few points, but the number of points required is prohibitive
in high dimensions since for p parameters and m points, a total of mp points are
required. Consequently, these rules tend to be employed when p ≤ 10.

In common with the Laplace method, quadrature methods do not provide an
estimate of the error of the approximation. In practice, consistency of the estimates
across increasing grid sizes may be examined.

3.7.4 Integrated Nested Laplace Approximations

We briefly review the INLA computational approach which combines Laplace
approximations and numerical integration in a very efficient manner; see Rue
et al. (2009) for a more extensive treatment. Consider a model with parameters
θ1 that are assigned normal priors, with the remaining parameters being denoted
θ2 with G = dim(θ1) and V = dim(θ2). Assume for ease of explanation that
the normal prior is centered at zero with variance–covariance matrix Σ, NG(0,Σ),
where Σ depends on elements in θ2. Many models fall into this class including
generalized linear models (Chap. 6) and generalized linear mixed models (Chap. 9).
The posterior is
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π(θ1, θ2 | y) ∝ π(θ1 | θ2)π(θ2)

n∏

i=1

p(yi | θ1, θ2)

∝ π(θ2) | Σ(θ2) |−1/2 exp

[
−1

2
θT
1Σ(θ2)

−1θ1 +

n∑

i=1

log p(yi | θ1, θ2)

]
.

(3.22)

Of particular interest are the posterior univariate marginal distributions π(θ1g | y),
g = 1, . . . , G, and π(θ2v | y), v = 1, . . . , V . The “normal” parameters θ1 are dealt
with by analytical approximations (as applied to the term in the exponent of (3.22),
conditional on specific values of θ2). Numerical integration techniques are applied
to θ2, so that V should not be too large for accurate inference (Sect. 3.7.3). For
elements of θ1 we write

π(θ1g | y) =
∫

π(θ1 | θ2,y)× π(θ2 | y) dθ2

which may be evaluated via the approximation

π̃(θ1g | y) =
∫

π̃(θ1g | θ2,y)× π̃(θ2 | y) dθ2

≈
K∑

k=1

π̃(θ1g | θ(k)
2 ,y)× π̃(θ

(k)
2 | y)×Δk (3.23)

for a set of weights Δk, k = 1, . . . ,K . Laplace or related analytical approximations
are applied to carry out the integration (over θ1g′ , g′ �= g) required for evaluation of

π̃(θ1g | θ2,y). To produce the grid of points {θ(k)
2 , k = 1, . . . ,K} over which

numerical integration is performed, the mode of π̃(θ2 | y) is located and the

Hessian is approximated, from which the grid of points {θ(k)
2 , k = 1, . . . ,K},

with associated weights Δk, is created and used in (3.23), as was described in
Sect. 3.7.3. The output of INLA consists of posterior marginal distributions, which
can be summarized via means, variances, and quantiles.

3.7.5 Importance Sampling Monte Carlo

The first sampling-based technique we describe directly estimates the required inte-
grals. To motivate importance sampling Monte Carlo, consider the one-dimensional
integral

I =

∫ 1

0

f(θ) dθ = E[f(θ)],
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where the expectation is with respect to the uniform distribution, U(0, 1). This
formulation suggests the obvious estimator

Îm =
1

m

m∑

t=1

f(θ(t)),

with θ(t) ∼iid U(0, 1), t = 1, . . . ,m. By the central limit theorem (Appendix G),

√
m(Îm − I) →d N[0, var(f)],

where var(f) = E[f(θ)2]−I2 and we have assumed the latter exists. The form of the
variance reveals that the efficiency of the method is determined by how variable the
function f is, with respect to the uniform distribution over [0, 1]. If f were constant,
we would have zero variance!

To achieve an approximately constant function, we can trivially rewrite the
integral as

I =

∫
f(θ) dθ =

∫
f(θ)

g(θ)
g(θ) dθ = Eg

[
f(θ)

g(θ)

]
, (3.24)

where we no longer restrict θ to lie in (0, 1). Define the estimator

Îm =
1

m

m∑

t=1

f(θ(t))

g(θ(t))
,

where θ(t) ∼iid g(·), with

√
m(Îm − I) →d N[0, var(f/g)],

and

var(f/g) = Eg

[(
f

g

)2
]
− I2.

The latter may be estimated by

v̂ar(f/g) =
1

m

m∑

t=1

(
f(θ(t))

g(θ(t))

)2

− Î2m.

Consequently, the aim is to find a density that closely mimics f (up to proportion-
ality), so that the Monte Carlo estimator will have low variance because samples
from important regions of the parameter space (where the function is large) are
being drawn, hence the label importance sampling Monte Carlo. A great strength of
importance sampling is that it produces not only an estimate of I but a measure of
uncertainty also. Specifically, we may construct the 95% confidence interval
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[
Îm − 1.96

√
v̂ar(f/g)√

m
, Îm + 1.96

√
v̂ar(f/g)√

m

]
. (3.25)

It may seem strange to be utilizing an asymptotic frequentist interval estimate when
evaluating an integral for Bayesian inference, but in this context the “sample size” m
is controlled by the user and is large so that an asymptotic interval is uncontroversial
(since a flat prior on I would give the same Bayesian interval).

Efficient use of importance sampling critically depends on finding a suitable g(·).
From the form of var(f/g), it is clear that if the support of θ is infinite, g(·) must
dominate in the tails; otherwise, the variance will be infinite and the estimate will
not be useful in practice (even though the estimator is unbiased). It is also desirable
to have a g(·) which is computationally inexpensive to sample from. Student’s t, or
mixtures of Student’s t distributions (West 1993), perhaps with iteration to tune the
proposal, are popular.

3.7.6 Direct Sampling Using Conjugacy

The emergence of methods to sample from the posterior distribution have revo-
lutionized the practical applicability of the Bayesian inferential approach. Such
methods utilize the duality between samples and densities: Given a sample, we can
reconstruct the density and functions of interest, and given an arbitrary density, we
can almost always generate a sample, given the range of generic random variate
generators available. With respect to the latter, the ability to obtain direct samples
from a distribution decreases as the dimensionality of the parameter space increases,
and MCMC methods provide an attractive alternative. However, as discussed in
Sect. 3.8, a major practical disadvantage to the use of MCMC is that the generated
samples are dependent which complicates the calculation of Monte Carlo standard
errors. Automation of MCMC algorithms is also not straightforward since an
assessment of the convergence of the Markov chain is required. Further, it is not
straightforward to calculate marginal densities such as (3.5) with MCMC. For
problems with small numbers of parameters, direct sampling methods provide a
strong competitor to MCMC, primarily because independent samples from the
posterior are provided and no assessment of convergence is required.

Suppose we have generated independent samples {θ(t), t = 1, . . . ,m} from

p(θ | y), with θ(t) = [θ
(t)
1 , . . . , θ

(t)
p ]; we describe how such samples may be used

for inference. The univariate marginal posterior for p(θj | y) may be approximated

by the histogram constructed from the points θ(t)j , t = 1, . . . ,m. Posterior means
E[θj | y] may be approximated by

Ê[θj | y] = 1

m

m∑

t=1

θ
(t)
j ,
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with other moments following in an obvious fashion. Coverage probabilities of the
form Pr(a < θj < b | y) are estimated by

P̂r(a < θj < b | y) = 1

m

m∑

t=1

I
(
a < θ

(t)
j < b

)
,

with I(·) representing the indicator function which is 1 if its argument is true and
0 otherwise. The central limit theorem (Appendix G) allows the accuracy of these
approximations to be simply determined since the samples are independent.

We discuss how to estimate the standard error associated with the estimate

μ̂m =
1

m

m∑

t=1

θ(t) (3.26)

of μ = E[θ | y]. By the strong law of large numbers, μ̂m →a.s. μ as m → ∞, and
the central limit theorem (Appendix G) gives

√
m(μ̂m − μ) →d N(0, σ2)

where σ2 = var(θ | y) (assuming this variance exists). The Monte Carlo standard
error is σ/

√
m, with consistent estimate of σ:

σ̂m =

√√√√ 1

m

m∑

t=1

(g(θ(t))− μ̂m)2.

By Slutsky’s theorem (Appendix G)

μ̂m − μ

σ̂m/
√
m

→d N(0, 1)

as m → ∞. An asymptotic confidence interval for μ is therefore

μ̂m ± 1.96× σ̂m√
m
.

We may also wish to obtain standard errors for functions that are not simple expec-
tations. For example, consider the posterior variance of a univariate parameter θ:

σ2 = var(θ | y) = E[(θ − μ)2 | y].

where μ = E[θ | y]. An obvious estimator is

σ̂2
m =

1

m

m∑

t=1

(θ(t) − μ̂m)2
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where μ̂m is given by (3.26). Now,

√
m

([
μ̂m

σ̂2
m

]
−
[
μ

σ2

])
→d N2

([
0

0

]
,

[
σ2 μ∗

3

μ∗
3 μ∗

4 − σ4

])

where μ∗
j = E[(θ − μ)j | y] is the jth central moment, j = 3, 4 (where we assume

that these quantities exist). The standard error of σ̂2 is estimated by

√
μ̂∗
4,m − σ̂4

m

m
(3.27)

where μ̂∗
4,m = 1

m

∑m
t=1(θ

(t) − μ̂m)4 which can, unfortunately, be highly unstable.
Therefore, accurate interval estimates for σ2 require larger sample sizes than are
needed for accurate estimates for μ.

Once samples from p(θ | y) are obtained, it is straightforward to convert to
samples for a parameter of interest g(θ) via g(θ(t)). This property is important
in a conjugate setting since although we have analytical tractability for one set of
parameters, we may be interested in functions of interest that are not so convenient.
For example, with likelihood Y | θ ∼ Binomial(n, θ) and prior θ ∼ Be(a, b), we
know that θ | y ∼ Be(a+ y, b+ n− y). However, suppose we are interested in the
odds g(θ) = θ/(1 − θ). Given samples θ(t) from the beta posterior, we can simply
form g(θ(t)) = θ(t)/(1 − θ(t)), t = 1, . . . ,m. As an aside, in this setting, for a
Bayesian analysis with a proper prior, the realizations Y = 0 or Y = n do not cause
problems, in contrast to the frequentist case in which the MLE for g(θ) is undefined.

3.7.7 Direct Sampling Using the Rejection Algorithm

The rejection algorithm is a generic and widely applicable method for generating
samples from arbitrary probability distributions.

Theorem (Rejection Sampling).
Suppose we wish to sample from the distribution

f(x) =
f�(x)∫
f�(x) dx

,

and we have a proposal distribution g(·) for which

M = sup
x

f�(x)

g(x)
< ∞.

Then the algorithm:

1. Generate U ∼ U(0, 1) and, independently, X ∼ g(·).
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2. Accept X if

U <
f�(X)

Mg(X)
,

otherwise return to 1,

produces accepted points with distribution f(x), and the acceptance probability is

pa =

∫
f�(x) dx

M
.

Proof. The following is based on Ripley (1987). We have

Pr(X ≤ x ∩ acceptance ) = Pr(X ≤ x) Pr( acceptance | X ≤ x)

=

∫ x

−∞
g(y) Pr( acceptance | y) dy

=

∫ x

−∞
g(y)

f�(y)

Mg(y)
dy =

∫ x

−∞

f�(y)

M
dy.

The probability of acceptance is

Pr(acceptance) =
∫ ∞

−∞

f�(y)

M
dy = pa.

The number of iterations until accepting a point is a geometric random variable with
probability pa. The expected number of iterations until acceptance is p−1

a . It follows
that

Pr(X ≤ x | acceptance) =
∞∑

i=1

Pr( acceptance on the ith trial )

=

∞∑

i=1

(1− pa)
i−1

∫ x

−∞

f�(y)

M
dy =

1

pa

∫ x

−∞

f�(y)

M
dy

=
M∫∞

−∞ f�(y)

∫ x

−∞

f�(y)

M
dy =

∫ x

−∞
f(y)dy,

as required. �
We describe a rejection algorithm that is convenient for generating samples from

the posterior (Smith and Gelfand 1992). Let θ denote the unknown parameters, and
assume that we can evaluate the maximized likelihood

M = sup
θ

p(y | θ) = p(y | θ̂)



116 3 Bayesian Inference

where θ̂ is the MLE. The algorithm then proceeds as follows:

1. Generate U ∼ U(0, 1) and, independently, sample from the prior, θ ∼ π(θ).
2. Accept θ if

U <
p(y | θ)

M
,

otherwise return to 1.

The probability that a point is accepted is

pa =

∫
p(y | θ)π(θ) dθ

M
=

p(y)

M
.

This algorithm can be very easy to implement since finding the MLE can often be
carried out routinely. We need then only generate points from the prior and evaluate
the likelihood at these points. Rejection sampling from the prior is very intuitive;
the prior supplies the points which are then “filtered out” via the likelihood.

The empirical rejection rate can be used to derive the normalizing constant as

p̃(y) = M × p̂a (3.28)

which may be useful for model assessment/selection (Sect. 3.10). If we desire m
samples from the posterior, the number of generations required from the prior π(·) is
m+m� (where m� is the number of rejected points), and m� is a negative binomial
random variable (Appendix D). The MLE of pa is m/(m+m�).

An alternative importance sampling estimator of the normalizing constant that is
more efficient than (3.28) is

p̂(y) =
1

m+m�

m+m�∑

t=1

p(y | θ(t)), (3.29)

where θ(t) ∼iid π(·), t = 1, . . . ,m + m�. Notice that there is no rejection
of points associated with this calculation so that all m + m� prior points are
used. Although (3.29) is the more efficient estimator, (3.28) provides an alternative
estimator as a by-product that is useful for code checking. The estimator (3.28)
assumes that all normalizing constants are included in M . If the maximization has
been carried out with respect to M� = p�(y | θ) where p�(y | θ) = p(y | θ)/c,
then we must instead use the estimate

p̃(y) = c×M� × p̂a. (3.30)

Posterior moments can be estimated directly as averages of the accepted points,
or we may implement importance sampling estimators that use all points generated
from the prior. For example, the posterior mean

E[θ | y] =
∫
θp(y | θ)π(θ) dθ∫
p(y | θ)π(θ) dθ =

E [θp(y | θ)]
E [p(y | θ)]
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may be estimated by

Ê[θ | y] =
1

m+m�

∑m+m�

t=1 θ(t)p(y | θ(t))
1

m+m�

∑m+m�

t=1 p(y | θ(t)) ,

where θ(t) ∼iid π(·), t = 1, . . . ,m+m�.
Clearly we need a proper prior distribution to implement the above algorithm.

The efficiency of the algorithm will depend on the correspondence between the
likelihood and the prior, as measured through p(y). For large n, the algorithm will
become less efficient since the likelihood becomes increasingly concentrated, and
so prior points are less likely to be accepted (which is another manifestation of the
prior becoming less important with increasing sample size, Sect. 3.3).

The rejection algorithm that samples from the prior does not need the functional
form of the prior to be available. As an example, Wakefield (1996) used a predictive
distribution from a Bayesian analysis as the prior for the analysis of a separate
dataset; samples from the predictive distribution could be simply generated, even
though no closed form was available for this distribution.

Example: Poisson Likelihood, Lognormal Prior

We illustrate some of the technique described in the previous sections using a
Poisson likelihood with data from a geographical cluster investigation carried out
in the United Kingdom (Black 1984). The Sellafield nuclear site is located in the
northwest of England on the coast of West Cumbria. Initially, the site produced
plutonium for defense purposes and subsequently carried out the reprocessing
of spent fuel from nuclear power stations in Britain and abroad and stored and
discharged to sea low-level radioactive waste. Seascale is a village 3 km to the south
of Sellafield and had y = 4 cases of lymphoid malignancy among 0–14 year olds
during 1968–1982, compared with E = 0.25 expected cases (based on the number
of children in the region and registration rates for the overall northern region of
England). A question here is whether such a large number of cases could have
reasonably occurred by chance. There is substantial information available on the
incidence of childhood leukemia across the United Kingdom as a whole.

We assume the model Y | θ ∼ Poisson[E exp(θ)], where θ is the log relative
risk (the ratio of the risk in the study region, to that in the northern region), the
MLE of which is θ̂ = log(16) = 2.77 with asymptotic standard error 0.25.
We assume an N(μ, σ2) normal prior for θ, which is equivalent to a lognormal
prior LogNorm(μ, σ2) for exp(θ). To choose the prior parameters, we assume, for
illustration, that the median relative risk is 1 and the 90% point of the prior is 10,
which leads, from (3.15) and (3.16), to μ = 0 and σ2 = 1.382.
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We will estimate

Ir =

∫ ∞

−∞
θr Pr(y | θ)π(θ) dθ

=
Ey(2πb2)−1/2

y!

∫
exp

[
r log θ − E exp(θ) + θy − (θ − a)2

2b2

]
dθ

=
Ey(2πb2)−1/2

y!

∫
exp[hr(θ)] dθ

for r = 0, 1, 2, to give the normalizing constant and posterior mean and variance as

p(y) = I0

E[θ | y] = I1
I0

var(θ | y) = I2
I0

− I21
I20

.

We choose to calculate the posterior variance not because it is a quantity of particular
interest but because it provides a summary that is not particularly easy to estimate
and so reveals some of the complications of the various methods.

To apply the Laplace method, we first give the first and second derivatives of
hr(θ):

h(1)
r (θ) =

r

θ
− Eexp(θ) + y − θ − a

b2

h(2)
r (θ) = − r

θ2
− Eexp(θ) − 1

b2
,

for r = 0, 1, 2. The estimates based on the Laplace approximation are shown in
Table 3.2. The mean and variance are accurately estimated, but the variance is
underestimated for these data. We implemented Gauss–Hermite rules using m =
5, 10, 15, 20 points, with the grid centered and scaled by the Laplace approximations
of the mean and variance of the posterior. Table 3.2 shows that Pr(y) and E[θ | y]
are well estimated across all grid sizes, while there is more variability in the
estimate of var(θ | y), though it is more accurately estimated then with the Laplace
approximation.

We now turn to importance sampling. We have

Ir =

∫ ∞

−∞
fr(θ) dθ = E

[
fr(θ)

g(θ)

]
,

with fr(θ) = θrPr(y | θ)π(θ).
We take as proposal, g(·), a normal distribution scaled via the Laplace estimates

of location and scale. Table 3.2 shows estimates resulting from the use of m = 5,000
points and the estimator
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Table 3.2 Laplace, Gauss–Hermite, and Monte Carlo approximations for Poisson lognormal
model with an observed count of y = and an expected count of E = 0.25

Pr(y) (×102) E[θ | y] var(θ | y)
Truth 1.37 2.27 0.329
Laplace 1.35 2.29 0.304
Gauss–Hermite m = 5 1.36 2.27 0.328
Gauss–Hermite m = 10 1.37 2.27 0.331
Gauss–Hermite m = 15 1.37 2.27 0.331
Gauss–Hermite m = 20 1.37 2.27 0.331
Importance sampling 1.37 [1.35,1.38] 2.27 [2.24,2.29] 0.336 [0.310,0.362]
Rejection algorithm 1.37 2.27 [2.25,2.28] 0.332 [0.319,0.346]
Metropolis–Hastings – 2.27 [2.22,2.32] 0.328 [0.294,0.361]

The importance sampling and rejection algorithms are based on samples of size m = 5,000.
The Metropolis–Hastings algorithm was run for 51,000 iterations, with the first 1,000
discarded as burn-in. 95% confidence intervals for the relevant estimates are displayed (where
available) in square brackets in the last three lines of the table

Îr =
1

m

m∑

t=1

fr(θ
(t))

g(θ(t))

where θ(t) are independent samples from the normal proposal. The variance of the
estimator is

var
(
Îr

)
=

var(fr/g)
m

The delta method can be used to produce measures of accuracy for the posterior
mean and variance, though these measures are a little cumbersome. The variance of
the normalizing constant is

var
[
P̂r(y)

]
= var(Î0).

To evaluate the variances of the posterior mean and posterior variance estimates we
need the multivariate delta method. We must also include covariance terms if the
same samples are used to evaluate all three integrals. The formulas are:

var
[
Ê(θ | y)

]
= var

(
Î1

Î0

)

≈ var(Î1)

Î20
+

Î21var(Î0)

Î40
− 2Î1

Î30
cov(Î0, Î1)

var [v̂ar(θ | y)] = var

(
Î2

Î0
− Î21

Î20

)

≈
(
− Î2

Î20
+

2Î21

Î30

)2

var(Î0) +

(
−2Î1

Î20

)2

var(Î1) +

(
1

Î0

)2

var
(
Î2

)
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Fig. 3.3 Histogram
representations of posterior
distributions in the Sellafield
example for (a) the log
relative risk θ and (b) the
relative risk exp(θ), with
priors superimposed as solid
lines. The prior on θ is
normal, so that the prior on
exp(θ) is lognormal

+ 2

(
−Î2

Î20
+

2Î21

Î30

)(
−2Î1

Î20

)
cov

(
Î0, Î1

)

+ 2

(
−Î2

Î20
+

2Î21

Î30

)(
1

Î0

)
cov

(
Î0, Î2

)

+ 2

(
−2Î1

Î20

)(
1

Î0

)
cov

(
Î1, Î2

)
.

Using these forms we obtain the interval estimates displayed in Table 3.2. The
estimates of each of the three summaries are accurate though the interval estimate
for the posterior variance is quite wide, because of the inherent instability associated
with estimating the standard error.

Finally we implement a rejection algorithm, sampling from the prior distribution
and estimating Pr(y) using the importance sampling estimator, (3.29). The mean
and variance of the samples was used to evaluate E[θ | y] and var(θ | y), with
the standard error of the latter based on (3.27). The acceptance probability was
0.07, the small value being explained by the discrepancy between the prior and the
likelihood, which is illustrated in Fig. 3.3(a) which gives a histogram representation,
based on 5000 points, of p(θ | y), along with the prior drawn as a solid curve.
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Panel (b) displays the marginal posterior distribution of the relative risk, p(eθ | y),
which is of more substantive interest, and is simply produced via exponentiation of
the θ samples. The rejection estimates in Table 3.2 have relatively narrow interval
estimates.

3.8 Markov Chain Monte Carlo

3.8.1 Markov Chains for Exploring Posterior Distributions

The fundamental idea behind MCMC is to construct a Markov chain over the
parameter space, with invariant distribution the posterior distribution of interest.
Specifically, consider a random variable x with support Rp and density π(·). We
give a short summary of the essence of discrete time Markov chain theory.

A sequence of random variables X(0),X(1), . . . is called a Markov chain on a
state space Rp if for all t and for all measurable sets A:

Pr
(
X(t+1) ∈ A | X(t),X(t−1), . . . ,X(0)

)
= Pr

(
X(t+1) ∈ A | X(t)

)

so that the probability of moving to any set A at time t + 1 only depends on where
we are at time t. Furthermore, for a homogeneous Markov chain,

Pr
(
X(t+1) ∈ A | X(t)

)
= Pr

(
X(1) ∈ A | X(0)

)
.

If there exists p(x,y) such that

Pr(X1 ∈ A | x) =
∫

A

p(x,y) dy,

then p(x,y) is called the transition kernel density. A probability distribution π(·)
on R

p is called an invariant distribution of a Markov chain with transition kernel
density p(x,y) if so-called global balance holds:

π(y) =

∫

Rp

π(x)p(x,y) dx.

A Markov chain is called reversible if

π(x)p(x,y) = π(y)p(y,x) (3.31)

for x,y ∈ R
p, x �= y. It can shown (Exercise 3.5) that if (3.31) holds, then π(·) is

the invariant distribution which is useful since (3.31) can be easy to check.
A key idea is that if we have an invariant distribution, then we can evaluate

long-term, or ergodic, averages from realizations of the chain. This is crucial for
making inference in a Bayesian setting since it means we can estimate quantities of



122 3 Bayesian Inference

interest such as posterior means and medians. In Markov chain theory, conditions on
the transition kernel under which invariant distributions exist is an important topic.
Within an MCMC context, this is not important since the posterior distribution is
the invariant distribution and we are concerned with constructing Markov chains
(transition kernels) with π(·) as invariant distribution. Only very mild conditions
are typically required to ensure that π(·) is the invariant distribution, typically ape-
riodocity and irreducibility. A chain is periodic if there are places in the parameter
space that can only be reached at certain regularly spaced times; otherwise, it is
aperiodic. A Markov chain with invariant distribution π(·) is irreducible if for any
starting point, there is positive probability of entering any set to which π(·) assigns
positive probability.

Suppose that x(1), . . . ,x(m) represents the sample path of the Markov chain.
Then expectations with respect to the invariant distribution

μ = E[g(x)] =
∫

g(x)π(x) dx

may be approximated by μ̂m = 1
m

∑m
t=1 g(x

(t)). Monte Carlo standard errors are
more difficult to obtain than in the independent sampling case. The Markov chain
law of large numbers (the ergodic theorem) tells us that

μ̂m →a.s. μ

as m → ∞, and the Markov chain central limit theorem states that
√
m(μ̂m − μ) →d N(0, τ2)

where

τ2 = var
[
g(x(t))

]
+ 2

∞∑

k=1

cov
[
g(x(t)), g(x(t+k))

]
(3.32)

and the summation term accounts for the dependence in the chain. Chan and Geyer
(1994) provide assumptions for validity of this form. Section 3.8.6 describes how
τ2 may be estimated in practice. We now describe algorithms that define Markov
chains that are well suited to Bayesian computation.

3.8.2 The Metropolis–Hastings Algorithm

The Metropolis–Hastings algorithm (Metropolis et al. 1953; Hastings 1970) pro-
vides a very flexible method for defining a Markov chain. At iteration t of the
Markov chain’s evolution, suppose the current point is x(t). The following steps
provide the new point x(t+1):



3.8 Markov Chain Monte Carlo 123

1. Sample a point y from a proposal distribution q( · | x(t)).
2. Calculate the acceptance probability:

α(x(t),y) = min

[
π(y)

π(x(t))
× q(x(t) | y)

q(y | x(t))
, 1

]
. (3.33)

3. Set

x(t+1) =

{
y with probability α(x(t),y)

x(t) otherwise.

In a Bayesian context, the term π(y)/π(x(t)) in (3.33) is the ratio of the posterior
densities at the proposed to the current point; since we are taking the ratio, the
normalizing constant in the posterior cancels, which is crucial since this is typically
unavailable. The second term in (3.33) is the ratio of the density of moving from
y → x(t) to the density of moving from x(t) → y, and it is this term that
guarantees global balance and hence that the Markov chain has the correct invariant
distribution; see Exercise 3.6. In an independence chain, the proposal distribution
does not depend on the current point, that is, q(y | x(t)) is independent of x(t). We
now consider a special case of the algorithm that is particularly easy to implement
and widely used.

3.8.3 The Metropolis Algorithm

Suppose the proposal distribution is symmetric in the sense that

g(y | x(t)) = g(x(t) | y).
In this case the product of ratios in (3.33) simplifies to

α(x(t),y) = min

[
π(y)

π(x(t))
, 1

]

so that only the ratio of target posterior densities is required. In the random walk,
Metropolis algorithm q(y | x(t)) = q( |y − x(t)| ), with common choices for q(·)
being normal or uniform distributions. In a range of circumstances, an acceptance
probability of around 30% is optimal (Roberts et al. 1997), which may be obtained
by tuning the proposal density, the variance in a normal proposal, for example. The
balancing act is between having high acceptance rates with small movement and
having low acceptance rates with large movement.

3.8.4 The Gibbs Sampler

We describe a particularly popular algorithm for simulating from a Markov chain,
the Gibbs sampler. We describe two flavors: the sequential Gibbs sampler and the
random scan Gibbs sampler. In the following, let x−i represent the vector x with
the ith variable removed, that is, x−i = [x1, . . . , xi−1, xi+1, . . . , xp].
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The sequential scan Gibbs sampling algorithm starts with some initial value x(0)

and then, with current point x(t) = [x
(t)
1 , . . . , x

(t)
p ], undertakes the following p steps

to produce a new point x(t+1) = [x
(t+1)
1 , . . . , x

(t+1)
p ]:

• Sample x
(t+1)
1 ∼ π1

(
x1 | x(t)

−1

)

• Sample x
(t+1)
2 ∼ π2

(
x2 | x(t+1)

1 , x
(t)
3 , . . . , x

(t)
p

)

...

• Sample x
(t+1)
p ∼ πp

(
xp | x(t+1)

−p

)
.

The beauty of the Gibbs sampler is that the often hard problem of sampling for
the full p-dimensional variable x has been broken into sampling for each of the p
variables in turn via the conditional distributions.

We now illustrate that the Gibbs sampling algorithm produces a transition kernel
density that gives the required stationary distribution. We do this by showing that
each component is a Metropolis–Hastings step. Consider a single component move
in the Gibbs sampler from the current point x(t) to the new pointx(t+1), with x(t+1)

obtained by replacing the ith component inx(t) with a draw from the full conditional

π
(
xi | x(t)

−i

)
. We view this move in light of the Metropolis–Hastings algorithm

in which the proposal density is the full conditional itself. Then the Metropolis–
Hastings acceptance ratio becomes

α(x(t),x(t+1)) = min

⎡

⎣
π
(
x
(t+1)
i ,x

(t)
−i

)
π
(
x
(t)
i | x(t+1)

−i

)

π
(
x
(t)
i ,x

(t)
−i

)
π
(
x
(t+1)
i | x(t)

−i

) , 1

⎤

⎦

= min

⎡

⎣
π
(
x
(t)
−i

)

π
(
x
(t)
−i

) , 1

⎤

⎦ = 1

because π
(
x
(t)
−i

)
= π

(
x�
i ,x

(t)
−i

)
/π
(
x�
i | x(t)

−i

)
.

Consequently, when we use full conditionals as our proposals in the Metropolis–
Hastings step, we always accept. This means that drawing from a full conditional
distribution produces a Markov chain with stationary distribution π(x). Clearly, we
cannot keep updating only the ith component, because we will not be able to explore
the whole state space this way, that is, we do not have an irreducible Markov chain.
Therefore, we can update each component in turn, though this is not the only way to
execute Gibbs sampling (though it is the easiest to implement and the most common
approach). We can also randomly select an component to update. This is called
random scan Gibbs sampling:

• Sample a component i by drawing a random variable with probability mass
function [α1, . . . , αp] where αi > 0 and

∑p
i=1 αi = 1.

• Sample x
(t+1)
i ∼ πi

(
xi | x(t)

−i

)
.
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Roberts and Sahu (1997) examine the convergence rate of the sequential and random
scan Gibbs sampling schemes and show that the sequential scan version has a better
rate of convergence in the Gaussian models they examine.

In many cases, conjugacy (Sect. 3.7.1) can be exploited to derive the conditional
distributions. Many examples of this are given in Chaps. 5 and 8. It is also common
for sampling from a full conditional distribution to not require knowledge of the
normalizing constant of the target distribution. For example, we saw in Sect. 3.7.7
that rejection sampling does not require the normalizing constant.

3.8.5 Combining Markov Kernels: Hybrid Schemes

Suppose we can construct m transition kernels, each with invariant distribution
π(·). There are two simple ways to combine these transition kernels. First, we can
construct a Markov chain, where at each step we sequentially generate new states
from all kernels in a predetermined order. As long as the new Markov chain is
irreducible, then it will have the required invariant distribution, and we can, for
example, use the ergodic theorem on the samples from the new Markov chain.
Hence, we can combine Gibbs and Metropolis–Hastings steps. One popular form
is Metropolis within Gibbs in which all components with recognizable conditionals
are sampled with Gibbs steps with Metropolis–Hastings for the remainder. In the
second method of combining Markov kernels, we first create a probability vector
[α1, . . . , αm], then randomly select kernel i with probability αi, and then use this
kernel to move the Markov chain.

In general, one can be creative in the construction of a Markov chain, but care
must be taken to ensure the proposed chain is “legal,” in the sense of having the
required stationary distribution. As an example, a chain with a Metropolis step that
keeps proposing points until the kth point, with k ≥ 1, is accepted does not have
the correct invariant distribution.

A final warning is that care is required to ensure that the posterior of interest is
proper since there is no built in check when an MCMC scheme is implemented.
For example, one may be able to construct a set of proper conditional distributions
for Gibbs sampling, even when the joint posterior distribution is not proper; see, for
example, Hobert and Casella (1996).

3.8.6 Implementation Details

Although theoretically not required, many users remove an initial number of
iterations, the rationale being that inferential summaries should not be influenced
by initial points that might be far from the main mass of the posterior distribution.
Inference is then based on samples collected subsequent to this “burn-in” period.
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In order to obtain valid Monte Carlo standard errors for empirical averages,
some estimate for τ2 in (3.32) is required. Time series methods exist to estimate
τ2, but we describe a simple approach based on batch means (Glynn and Iglehart
1990). The basic idea is to split the output of length m into K batches each of
length B, with B chosen to be large enough so that the batch means have low serial
correlation; B should not be too large, however, because we want K to be large
enough to provide a reliable estimate of τ2. The mean of the function of interest is
then estimated within each of the batches:

μ̂k =
1

B

KB∑

t=(k−1)B+1

g(x(t))

for k = 1, . . . ,K . The combined estimate of the mean is the average of the batch
means

μ̂ =
1

K

K∑

k=1

μ̂k.

Then
√
B(μ̂k − μ), k = 1, . . . ,K are approximately independently distributed as

N(0, τ2), and so τ2 can be estimated by

τ̂2 =
B

K − 1

K∑

k=1

(μ̂k − μ̂)2

and

v̂ar(μ̂) =
τ̂2

K
=

B

K(K − 1)

K∑

k=1

(μ̂k − μ̂)2.

Normal or Students t confidence intervals can be calculated based on the square
root of this quantity. The construction of these intervals has the advantage of
being simple, but the output should be viewed with caution as the above derivation
contains a number of approximations.

MCMC approaches provide no obvious estimator of the normalizing constant
p(y), but a number of indirect methods have been proposed (Meng and Wong 1996;
DiCiccio et al. 1997)

Aside from directly calculating integrals, we may also form graphical summaries
of parameters of interest, essentially using the dependent samples in the same way
that we would independent samples. For example, a histogram of x(t)

i provides an
estimate of the posterior marginal distribution, πi(xi), i = 1, . . . , p.

In practice, there are a number of important issues that require thought when
implementing MCMC. A crucial question is how large m should be in order to
obtain a reliable Monte Carlo estimate. The Markov chain will display better mixing
properties if the parameters are approximately independent in the posterior. In an
extreme case, if we have independence, then
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π(x1, . . . , xp) =

p∏

i=1

π(xi)

and Gibbs sampling via the conditional distributions π(xi), i = 1, . . . , p, equates to
direct sampling from the posterior.

Dependence in the Markov chain may be greatly reduced by sampling simul-
taneously for variables that are highly depend, a strategy known as blocking.
Reparameterization may also be helpful in this regard. As the blocks become larger,
the acceptance rate (if a Metropolis-Hastings algorithm is used) may be reduced
to an unacceptably low level in which case there is a trade-off with respect to the
size of blocks to use. Some chains may be very slow mixing, and an examination
of autocorrelation aids in deciding on the number of iterations required. If storage
of samples is an issue, then one may decide to “thin” the chain by only collecting
samples at equally spaced intervals.

A number of methods have been proposed for “diagnosing convergence.” Trace
plots provide a useful method for detecting problems with MCMC convergence and
mixing. Ideally, trace plots of unnormalized log posterior and model parameters
should look like stationary time series. Slowly mixing Markov chains produce trace
plots with high autocorrelation, which can be further visualized by plotting the
autocorrelation at different lags. Slow mixing does not imply lack of convergence,
however, but that more samples will be required for accurate inference (as can be
seen from (3.32)). When examining trace plots and autocorrelations, it is clearer to
work with parameters transformed to R. Running multiple chains from different
starting points is also very useful since one may compare inference between
the different chains. Gelman and Rubin (1992) provide one popular convergence
diagnostic based on multiple chains. As with the use of diagnostics in regression
modeling, convergence diagnostics may detect evidence of poor behavior, but there
is no guarantee of good behavior of the chain, even if all convergence diagnostics
appear reasonable.

Example: Poisson Likelihood, Lognormal Prior

Recall the Poisson lognormal example in which y = 4 and E = 0.25 with a single
parameter, the log relative risk θ. Gibbs sampling corresponds to direct sampling
from the univariate posterior for θ, which we have already illustrated using the
rejection algorithm.

We implement a random walk Metropolis algorithm using a normal kernel and
the asymptotic variance of the MLE for θ multiplied by 3 as the variance of the
proposal, to achieve a reasonable acceptance probability of 0.32. This multiplier
was found by trial and error, based on preliminary runs of the Markov chain. It is
important to restart the chain when the proposal is changed based on past real-
izations to ensure the chain is still Markovian. Table 3.2 gives estimates of the
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posterior mean and variance based on a run length of 51,000, with the first 1,000
discarded as a burn-in. The confidence interval for the estimates of the posterior
mean and posterior variance is based on the batch means method, with K =50
batches of size B = 1,000.

Example: Lung Cancer and Radon

We return to the lung cancer and radon example, first introduced in Sect. 1.3.3, to
demonstrate the use of the Metropolis random walk algorithm in a situation with
more than one parameter. For direct comparison with methods applied in Chap. 2,
we assume an improper flat prior on β = [β0, β1] so that the posterior p(β | y) is
proportional to the likelihood.

We begin by implementing a Metropolis random walk algorithm based on a
pair of univariate normal distributions. In this example, the Gibbs sampler is less
appealing since the required conditional distributions do not assume known forms.
The first step is to initialize β

(0)
0 = β̂j , where β̂j , j = 0, 1, are the MLEs. We then

iterate, at iteration t, between:

1. Generate β�
0 ∼ N(β

(t)
0 , c0V̂0), where V̂0 is the asymptotic variance of β̂0.

Calculate the acceptance probability:

α0(β
�
0 , β

(t)
0 ) = min

[
p(β�

0 , β
(t)
1 | y)

p(β
(t)
0 , β

(t)
1 | y)

, 1

]

and set

β
(t+1)
0 =

{
β�
0 with probability α0(β

�
0 , β

(t)
0 ),

β
(t)
0 otherwise.

2. Generate β�
1 ∼ N(β

(t)
1 , c1V̂1), where V̂1 is the asymptotic variance of β̂1.

Calculate the acceptance probability:

α1(β
�
1 , β

(t)
1 ) = min

[
p(β

(t+1)
0 , β�

1 | y)
p(β

(t+1)
0 , β

(t)
1 | y)

, 1

]

and set

β
(t+1)
1 =

{
β�
1 with probability α1(β

�
1 , β

(t)
1 ),

β
(t)
1 otherwise.

The constants c0 and c1 are chosen to provide a trade-off between gaining a
high proportion of acceptances and moving around the support of the parameter
space; this is illustrated in Fig. 3.4 where the realized parameters from the first
1,000 iterations of two Markov chains are plotted. In panels (a) and (d), we chose
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Fig. 3.4 Sample paths from Metropolis–Hastings algorithms for β0 (top row) and β1 (bottom row)
for the lung cancer and radon data. In the left column the proposal random walk has small variance;
in the center column large variance and in the right column, we use a bivariate proposal

c0 = c1 = c = 0.1 and in panels (b) and (e) c0 = c1 = c = 2. For c = 0.1
the acceptance rate is 0.90, but movement around the space is slow, as indicated by
the meandering nature of the chain, while for c = 2 the moves tend to be larger,
but the chain sticks at certain values, as seen by the horizontal runs of points (the
acceptance rate is 0.14).

Figure 3.6a shows a scatterplot representation of the joint distribution p(β0,
β1 |y) and clearly shows the strong negative dependence; the asymptotic correlation
between the MLEs β̂0 and β̂1 is −0.90, and the posterior correlation between
β0 and β1 is −0.90 also (the correspondence between these correlations is not
surprising since the sample size is large and the prior is flat). The strong negative
dependence is evident in each of the first two columns of Fig. 3.4. Figure 3.5 shows
the autocorrelations between sampled parameters at lags of between 1 and 40. The
top row is for β0, and the bottom is for β1. In panels (a) and (d), the autocorrelations
are high because of the small movements of the chain.

The dependence in the chain may be reduced via reparameterization or by
generation from a bivariate proposal. We implement the latter with variance–
covariance matrix equal to c×var(β̂). The acceptance rate for the bivariate proposal
with c = 2 is 0.29, which is reasonable. We then iterate the following:
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Fig. 3.5 Autocorrelation functions for β0 (top row) and β1 (bottom row) for the lung cancer and
radon data. First column: univariate random walk, c = 0.1, second column: univariate random
walk, c = 2, third column: bivariate random walk, c = 2

1. Generate β� ∼ N2(β
(t), cV̂ ), where V̂ is the asymptotic variance of the

MLE β̂.
2. Calculate the acceptance probability

α(β�,β(t)) = min

[
p(β� | y)
p(β(t) | y) , 1

]

and set

β(t+1) =

{
β� with probability α(β�,β(t)),

β(t) otherwise.

Note that the choice of c and the dependence in the chain do not jeopardize the
invariant distribution, but rather the length of chain until practical convergence is
reached and the number of points required for summarization. More points are
required when there is high positive dependence in successive iterates, which is clear
from (3.32). The final column of Fig. 3.4 shows the sample path from the bivariate
proposal, with good movement and little dependence between the parameters.
Panels (c) and (f) show that the autocorrelation is also greatly reduced.
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Fig. 3.6 Posterior summaries for the lung cancer and radon data: (a) p(β0, β1 | y),
(b) p(log θ0, log θ1 | y), (c) p(β0 | y), (d) p(θ0 | y), (e) p(β1 | y), (f) p(θ1 | y)

Figure 3.6 shows inference for the reparameterized model

Yi | θ ∼ind Poisson(Eiθ0θ
xi−x
1 )

where θ0 = exp(β0 + β1x) > 0 and θ1 = exp(β1) > 0 along with summaries
for the β0, β1 parameterization. Figure 3.6(b) shows the bivariate posterior for
log θ0, log θ1 and demonstrates that the parameters are virtually independent (the
correlation is −0.03). By comparison there is strong negative dependence between
β0 and β1 (panel (a)). Panels (d) and (f) show histogram representations of the
posteriors of interest p(θ0 | y) and p(θ1 | y).

The posterior median (95% credible interval) for exp(β1) is 0.965 [0.954, 0.975]
which is almost identical to the asymptotic inference under a Poisson model
(Table 2.4), which is again not surprising given the large sample size.
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Fig. 3.7 (a) Mean–variance relationships, in the negative binomial model, for values of b between
50 and 200, in increments of 10 units. The dashed line is the line of equality corresponding to the
Poisson model, which is recovered as b → ∞. (b) Lognormal prior for b

The Poisson model should be used with caution since the variance is determined
by the mean, with no additional parameter to soak up excess-Poisson variability,
which is often present in practice. To overcome this shortcoming we provide a
Bayesian analysis with a negative binomial likelihood, parameterized so that

E[Yi | β, b] = μi(β), var(Yi | β, b) = μi(β)[1 + μ(β)/b]. (3.34)

We will continue with an improper flat prior for β, but a prior for b requires more
thought. To determine a prior, we plot the mean–variance relationship in Fig. 3.7a,
for different values of b. In this example the regression model does not include
information on confounders such as smoking. The absence of these variables will
certainly lead to bias in the estimate of exp(β1) due to confounding, but with
respect to b, we might expect considerable excess-Poisson variability due to missing
variables. The sample average of the observed counts is 158, and we specify a
lognormal prior for b by giving two quantiles of the overdispersion, μ(1 + μ/b), at
μ = 158, and then solve for b. Specifically, we suppose that there is a 50% chance
that the overdispersion is less than 1.5×μ and a 95% chance that it is less than 5×μ.
Formulas (3.15) and (3.16) give a lognormal prior with parameters 3.68 and 1.262

and 5%, 50%, and 95% quantiles of 4.9, 40, and 316, respectively. Figure 3.7(b)
gives the resulting lognormal prior density.

A random walk Metropolis algorithm with a normal proposal was constructed
for β0, β1, b with the variance–covariance matrix taken as 3 times the asymptotic
variance–covariance matrix (̂b is asymptotically independent of β̂0 and β̂1), based
on the expected information. The posterior median and 95% credible interval for
exp(β1) are 0.970 [0.955,0.987], and for b the summaries are 57.8 [34.9,105]. The
MLE is b̂ = 61.3, with asymptotic 95% confidence interval (calculated on the log b
scale and then exponentiated) of [35.4,106]. Therefore, likelihood and Bayesian
inference for b are in close agreement for these data. Histograms of samples from
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Fig. 3.8 Univariate and bivariate summaries of the posterior p(β0, β1, b | y), arising from the
negative binomial model

the univariate posteriors for β0, β1, and b are shown in the first row of Fig. 3.8, while
bivariate scatterplots are shown in the second row. The posterior marginals for β0

and β1 are very symmetric, while that for b is slightly skewed.

3.8.7 Implementation Summary

While MCMC has revolutionized Bayesian inference in terms of the breadth of
applications and complexity of models that can now be considered, other methods
may still be preferable in some situations, in particular when the number of
parameters is small. Direct sampling from the posterior is particularly appealing
since one retains all of the advantages of sample-based inference (e.g., the ability
to simply examine generic functions of interest), without the need to worry about
the convergence issues associated with MCMC. Quadrature methods are also
appealing for low-dimensional problems, since they are highly efficient. The latter
is particularly important if the calculation of the likelihood is expensive. Importance
sampling Monte Carlo methods are appealing in that error assessment may be
carried out; analytical approximations are, in general, poor in this respect.

INLA is very attractive due to its speed of computation, though a reliable measure
of accuracy is desirable and there are practical situations in which the method
is not accurate. For example, the method is less accurate for binomial data with
small denominators (Fong et al. 2010). In exploratory situations, one may always
use quick methods such as INLA for initial modeling, with more computationally
demanding approaches being used when a set of finals models are honed in upon.
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INLA is also useful for performing simulation studies to examine the properties of
model summaries. In general, comparing results across different methods is a good
idea. When deciding upon a method of implementation, there is often a clear trade-
off between efficiency and the time taken to code prospective methods. MCMC
methods are often easy to implement, but are not always the most efficient (at least
not for basic schemes) and are difficult to automate. For many high-dimensional
problems, MCMC may be the only method that is feasible, although INLA may be
available if the model is of the required form (a small number of “non-Gaussian”
parameters).

An important paper in the history of MCMC is that of Green (1995) in which
reversible jump MCMC was introduced. This method can be used in situations in
which the parameter space is of varying dimension across different models.

3.9 Exchangeability

We now provide a brief discussion of de Finetti’s celebrated representation theorem
which describes the form of the marginal distribution of a collection of random
variables, under certain assumptions. As we will see, this provides one way in which
important modeling questions can be framed. We first require the introduction of a
very important concept in Bayesian inference, exchangeability.

Definition. Let p(y1, . . . , yn) be the joint density of Y1, . . . , Yn. If

p(y1, . . . , yn) = p(yπ(1), . . . , yπ(n))

for all permutations,π, of {1, 2, . . . , n}, then Y1, . . . , Yn are (finitely) exchangeable.

This definition essentially says that the labels identifying the individual com-
ponents are uninformative. Obviously if a collection of n random variables is
exchangeable, this implies that the marginal distribution of all single random
variables are the same, as are the marginal distributions for all pairs, all triples, etc. A
collection of random variables is infinitely exchangeable if every finite subcollection
is exchangeable.

As a simple example, consider Bernoulli random variables, Yi, for i = 1,
2, 3 = n. Under exchangeability,

Pr(Y1 = a, Y2 = b, Y3 = c) = Pr(Y1 = a, Y2 = c, Y3 = b)

= Pr(Y1 = b, Y2 = a, Y3 = c)

= Pr(Y1 = b, Y2 = c, Y3 = a)

= Pr(Y1 = c, Y2 = a, Y3 = b)

= Pr(Y1 = c, Y2 = b, Y3 = a)

for all a, b, c = 0, 1.
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Result. If θ ∼ p(θ) and Y1, . . . , Yn are conditionally independent and identically
distributed given θ, then Y1, . . . , Yn are exchangeable.

Proof. By definition:

p(y1, . . . , yn) =

∫
p(y1, . . . , yn | θ)π(θ) dθ

=

∫ [ n∏

i=1

p(yi | θ)
]
π(θ) dθ

=

∫ [ n∏

i=1

p(yπ(i) | θ)
]
π(θ) dθ

= p(yπ(1), . . . , yπ(n))

We now present the converse of this result.

Theorem. de Finetti’s representation theorem for 0/1 random variables.

If Y1, Y2, . . . is an infinitely exchangeable sequence of 0/1 random variables, there
exists a distribution π(·) such that the joint mass function Pr(y1, . . . , yn) has
the form

Pr(y1, . . . , yn) =

∫ 1

0

n∏

i=1

θyi(1 − θ)1−yiπ(θ) dθ,

where
∫ θ

0

π(u) du = lim
n→∞ Pr

(
Zn

n
≤ θ

)
,

with Zn = Y1 + . . .+ Yn, and θ = limn→∞ Zn/n.

Proof. The following is based on Bernardo and Smith (1994). Let zn = y1+. . .+yn
be the number of 1’s (which we label “successes”) in the first n observations. Then,
due to exchangeability,

Pr(y1 + . . .+ yn = zn) =

(
n

zn

)
Pr(Yπ(1), . . . , Yπ(n)),

for all permutations π of {1, 2, . . . , n} such that yπ(1) + . . .+ yπ(n) = zn. We can
embed the event y1 + . . .+ yn = zn within a longer sequence and

Pr(Y1 + . . .+ Yn = zn)=

N−(n−zn)∑

ZN=zn

Pr(zn, zN)=

N−(n−zn)∑

ZN=zn

Pr(zn | zN ) Pr(zN ),

where Pr(zN ) is the “prior” belief in the number of successes out of N . To obtain
the conditional probability, we observe that it is “as if” we have a population of N
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items of which zN are successes and N−zN failures, from which we draw n items.
The distribution of zn | zN successes is therefore hypergeometric so that

Pr(y1 + . . .+ yn = zn) =

N−(n−zn)∑

zN=zn

(
zN
zn

)(
N − zN
n− zn

)

(
N

n

) Pr(zN ).

We now let Π(θ) be the step function which is 0 for θ < 0 and has jumps of Pr(zN )
at θ = zN/N , zN = 0, . . . , N . We now let N → ∞. Then the hypergeometric
distribution tends to a binomial distribution with parameters n and θ and the prior
Pr(zN ) is translated into a prior for θ, which we write as π(θ). Consequently,

Pr(y1 + . . .+ yn = zn) →
(

n

zn

)∫
θzn(1 − θ)n−znπ(θ) dθ,

as N → ∞. �
The implications of this theorem are of great significance. By the strong law of

large numbers, θ = limn→∞ Zn/n, so that π(·) represents our beliefs about the
limiting relative frequency of 1’s. Hence, we have an interpretation of θ. Further,
we may view the Yi as conditional independent, Bernoulli random variables,
conditional on the random variable θ.

In conventional language, we have a likelihood function

Pr(y1, . . . , yn | θ) =
n∏

i=1

p(yi | θ) =
n∏

i=1

θyi(1− θ)1−yi ,

where the parameter θ is assigned a prior distribution π(θ).
In general, if Y1, Y2, . . . is an infinitely exchangeable sequence of random

variables, there exists a probability density function π(·) such that

p(y1, . . . , yn) =

∫ n∏

i=1

p(yi | θ)π(θ) dθ, (3.35)

with p(Y | θ) denoting the density function corresponding to the “unknown
parameter” θ. A sketch proof of (3.35) may be found in Bernardo and Smith
(1994). This result tells us that a conditional independence model can be justified
via an exchangeability argument. In this general case, further assumptions on
Y1, Y2, . . . are required to identify p(Y | θ). Bernardo and Smith (1994) present
the assumptions that lead to a number of common modeling choices. For example,
suppose that Y1, Y2, . . . is an infinitely exchangeable sequence of random variables
such that Yi > 0, i = 1, 2, . . .. Further, suppose that for any event A in R× . . .×R,
and for all n,

Pr[(y1, . . . , yn) ∈ A] = Pr[(y1, . . . , yn) ∈ A+ a]
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for all a ∈ R × . . . × R such that aT1 = 0 and A + a is an event in R × . . . × R.
Then the joint density for y1, . . . , yn is

p(y1, . . . , yn) =

∫ ∞

0

n∏

i=1

θ−1 exp(−θ−1yi)× π(θ) dθ

where
∫∞
0 π(u) du = limn→∞ Pr(yn ≤ θ) and yn = (y1 + . . . + yn)/n. For a

proof, see Diaconis and Ylvisaker (1980). Hence, a belief in exchangeability and a
“lack of memory” property leads to the integral of the predictive distribution being
the marginal distribution that is constructed from the product of a conditionally
independent set of exponential random variables and a prior. The parameter is
identified as the sample mean from a large number of observations.

This kind of approach is of theoretical interest, but in practice the choice
of likelihood will often be based more directly on the context and previous
experience with similar data types. Exchangeability is very useful in practice for
prior specification, however. Before one uses a particular conditional independence
model, one can think about whether all units are deemed exchangeable. If some
collection of units are distinguishable, then one should not assume conditional
independence for all units, and one may instead separate the units into groups within
which exchangeability holds. For further discussion, see Sect. 8.6.

In terms of modeling, if we believe that a sequence of random variables is
exchangeable, this allows us to write down a conditional independence model.
We emphasize that independence is a very different assumption since it implies that
we learn nothing from past observations:

p(ym+1, . . . , yn | y1, . . . , ym) = p(ym+1, . . . , yn)

In a regression context, the situation is slightly more complicated. Informally,
exchangeability within covariate-defined groups gives the usual conditional inde-
pendence model, where we now condition on parameters and covariates; Bernardo
and Smith (1994, Sect. 4.64) contains details.

3.10 Hypothesis Testing with Bayes Factors

We now turn to a description of Bayes factors, which are the conventional Bayesian
method for comparison of hypotheses/models. Let the observed data be denoted y =
[y1, . . . , yn], and assume two hypotheses of interest, H0 and H1. The application of
Bayes theorem gives the probability of the hypothesis H0, given data y, as

Pr(H0 | y, H0 ∪H1) =
p(y | H0) Pr(H0 | H0 ∪H1)

p(y | H0 ∪H1)
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Table 3.3 Losses corresponding to the
decision δ, when the truth is H and LI

and LII are the losses associated with type
I and II errors, respectively

Decision

L(δ,H) δ = 0 δ = 1

Truth H H0 0 LI

H1 LII 0

where

p(y | H0 ∪H1) = p(y | H0) Pr(H0 | H0 ∪H1) + p(y | H1) Pr(H1 | H0 ∪H1)

is the probability of the data averaged overH0 and H1. The prior probability that H0

is true, given one of H0 and H1 is true, is Pr(H0 | H0 ∪H1), and Pr(H1 | H0 ∪
H1) = 1−Pr(H0 | H0∪H1) is the prior on the alternative hypothesis. This simple
calculation makes it clear that to evaluate the probability that the null is true, one is
actually calculating the probability of the null given that H0 orH1 is true. Therefore,
we are calculating the “relative truth”; H0 may provide a poor fit to the data, but H1

may be even worse. Although conditioning on H0 ∪H1 is crucial to interpretation,
we will drop it for compactness of notation.

If we wish to compare models H0 and H1, then a natural measure is given by the
posterior odds

Pr(H0 | y)
Pr(H1 | y) =

p(y | H0)

p(y | H1)
× Pr(H0)

Pr(H1)
, (3.36)

where the Bayes factor

BF =
p(y | H0)

p(y | H1)

is the ratio of the marginal distributions of the data under the two models, and
Pr(H0)/Pr(H1) is the prior odds. Care is required in the choice of priors when
Bayes factors are calculated; see Sect. 4.3.2 for further discussion.

Depending on the nature of the analysis, we may: simply report the Bayes factor;
or we may place priors on the hypotheses and calculate the posterior odds of H0; or
we may go a step further and derive a decision rule. Suppose we pursue the latter
and let δ = 0/1 represent the decision to pick H0/H1. With respect to Table 3.3,
the posterior expected loss associated with decision δ is

E[L(δ,H)] = L(δ,H0) Pr(H0 | y) + L(δ,H1) Pr(H1 | y)
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so that for the two possible decisions (accept/reject H0) the expected losses are

E[L(δ = 0, H)] = 0× Pr(H0 | y) + LII × Pr(H1 | y)
E[L(δ = 1, H)] = LI × Pr(H0 | y) + 0× Pr(H1 | y).

To find the decision that minimizes posterior expected cost, let v = Pr(H1 | y)
so that

E[L(δ = 0, H)] = LII × v (3.37)

E[L(δ = 1, H)] = LI × (1 − v). (3.38)

We should choose δ = 1 if LII × v ≥ LI(1 − v), that is, if v/(1 − v) ≥ LI/LII, or
v ≥ LI/(LI + LII). Hence, we report H1 if

Pr(H1 | y) ≥ LI

LI + LII

=
1

1 + LII/LI

,

illustrating that we only need to specify the ratio of losses. If incorrect decisions
are equally costly, we should therefore report the hypothesis that has the greatest
posterior probability, in line with intuition. These calculations can clearly be
extended to three or more hypotheses. The models that represent each hypothesis
need not be nested as with likelihood ratio tests, though careful prior choice is
required so as to not inadvertently favor one model over another. One remedy to
this difficulty is described in Sect. 6.16.3.

To evaluate the Bayes factor, we need to calculate the normalizing constants
under H0 and H1. A generic normalizing constant is

I = p(y) =

∫
p(y | θ)π(θ) dθ. (3.39)

We next derive a popular approximation to the Bayes factor. The integral (3.39)
is an integral of the form (3.18) with

nh(θ) = log p(y | θ) + log π(θ).

Letting θ̃ denote the posterior mode, we may apply (3.20) with nh(θ̃) = log p(y |
θ̃) + log π(θ̃) to give the Laplace approximation

log p(y) = log p(y | θ̃) + log π(θ̃) +
p

2
log 2π − p

2
logn+

1

2
log | ṽ | .

As n increases, the prior contribution will become negligible, and the posterior
mode will be close to the MLE θ̂. Dropping terms of O(1), we obtain the crude
approximation

−2 log p(y) ≈ −2 log p(y | θ̂) + p logn.
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Let hypothesis Hj be indexed by parameters θj of length pj and θ̂j denote the
MLEs for j = 0, 1. Without loss of generality, assume p0 ≤ p1. We may
approximate twice the log Bayes factor by

2 [ log p(y | H0) − log p(y | H1) ]

= 2
[
log p(y | θ̂0)− log p(y | θ̂1)

]
+ (p1 − p0) log n

= 2
[
l(θ̂0)− l(θ̂1)

]
+ (p1 − p0) logn (3.40)

which is the log-likelihood ratio statistic (see Sect. 2.9.5) with the addition of
a term that penalizes complexity; (3.40) is known as the Bayesian information
criteria (BIC). The Schwarz criterion (Schwarz 1978) is the BIC divided by 2. If
the maximized likelihoods are approximately equal, then model H0 is preferred
if p0 < p1, as it contains fewer parameters. As n increases, the penalty term
increases in size showing the difference in behavior with frequentist tests in which
significance levels are often kept constant with respect to sample size. A more
detailed comparison of Bayesian and frequentist approaches to hypothesis testing
will be carried out in Chap. 4.

3.11 Bayesian Inference Based on a Sampling Distribution

We now describe an approach to Bayesian inference which is pragmatic and
computationally simple and allows frequentist summaries to be embedded within
a Bayesian framework. This is useful in situations in which one would like to
examine the impact of prior specification. It is also appealing to examine frequentist
procedures with no formal Bayesian justification from a Bayesian slant. Suppose
we are in a situation in which the sample size n is sufficiently large for accurate
asymptotic inference and suppose we have a parameter θ of length p. The sampling
distribution of the estimator is

θ̂n | θ ∼ Np(θ,Vn),

where Vn is assumed known. The notation here is sloppy; it would be more accurate
to state the distribution as

Vn
−1/2(θ̂n − θ) ∼ Np( 0, I ).

Appealing to conjugacy, it is then convenient to combine this “likelihood” with the
prior θ ∼ Np(m,W ) to give the posterior

θ | θ̂n ∼ Np(m
�
n,W

�
n ) (3.41)
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where

W �
n = (W−1 + V −1

n )−1

m�
n = W �

n (W
−1m+ V −1

n θ̂n)

The posterior distribution is therefore easy to determine since we only require a
point estimate θ̂n, with an associated variance–covariance matrix, and specification
of the prior mean and variance–covariance matrix.

An even more straightforward approach, when a single parameter is of interest, is
to ignore the remaining nuisance parameters and focus only on this single estimate
and standard error. There are a number of advantages to this approach, not least
of which is the removal of the need for prior specification over the nuisance
parameters. Let θ denote the parameter of interest and α the (p × 1) vector of
nuisance parameters. Following Wakefield (2009a), we give a derivation beginning
with the asymptotic distribution (we drop the explicit dependence on n for notational
convenience):

[
α̂

θ̂

]
∼ Np+1

([
α

θ

]
,

[
I00 I01
IT
01 I11

]−1
)

(3.42)

where I00 is the p × p expected information matrix for α, I11 is the information
concerning θ, and I01 is the p× 1 vector of cross terms. We now reparameterize the
model and consider (α, θ) → (γ, θ) where

γ = α+
I01
I00

θ

which yields
[
γ̂

θ̂

]
∼ Np+1

([
γ

θ

]
,

[
I�
00 0

0T I11

]−1
)

(3.43)

where γ̂ = α̂+(I01/I00) θ̂ and 0 is a p× 1 vector of zeros. Hence, asymptotically,
the “likelihood” factors into independent pieces

p(γ̂, θ̂ | γ, θ) = p(γ̂ | γ)× p(θ̂ | θ).
We now assume independent priors on γ and θ, π(γ, θ) = π(γ)π(θ), to give

p(γ, θ | γ̂, θ̂) = p(γ̂ | γ)π(γ)p(θ̂ | θ)π(θ)
= p(γ | γ̂)p(θ | θ̂)

so that the posterior factors also and we can concentrate on p(θ | θ̂) alone. The
simple model

θ̂ | θ ∼ N(θ, V )

θ ∼ N(m,W )
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therefore results in the posterior

θ | θ̂ ∼ N
[
(W−1 + V −1)−1(W−1m+ V −1θ̂), (W−1 + V −1)−1

]
. (3.44)

The above approach is similar to the “null orthogonality” reparameterization of Kass
and Vaidyanathan (1992). The reparameterization is also that which is used when
the linear model

Yi = α+ xiθ + εi

is written as

Yi = γ + (xi − x)θ + εi

which, of course, yields uncorrelated least squares estimators γ̂, θ̂. The reparame-
terization trick works because of the assumption of independent priors on γ and
θ which, of course, does not imply independent priors on α and θ. However, we
emphasize that we do not need to explicitly specify priors on γ, because the terms
involving γ cancel in the calculation.

Bayes factors can also be simply evaluated under either of the approxima-
tions, (3.41) or (3.44). To illustrate for the latter, suppose θ is univariate, and we
wish to compare the hypotheses

H0 : θ = 0, H1 : θ �= 0,

with the prior under the alternative, θ ∼ N(0,W ). The Bayes factor is

BF =
p(θ̂ | θ0)∫

p(θ̂ | θ)π(θ) dθ

=

√
V +W

V
exp

[
−1

2

θ̂2

V

W

V +W

]
. (3.45)

This approach allows a Bayesian interpretation of published results, since all that
is required for calculation of (3.45) is θ̂ and V , which may be derived from a
confidence interval or the estimate with its associated standard error.

More controversially, an advantage of the use of the asymptotic distribution of
the MLE only is that the Bayes factor calculation may be based on nonstandard
likelihoods or estimating functions which do not have formal Bayesian justifica-
tions. For example, the estimate and standard error may arise from conditional or
marginal likelihoods (as described in Sect. 2.4.2), or using sandwich estimates of
the variance. As discussed in Chap. 2, a strength of modern frequentist methods
based on estimating functions is that estimators are produced that are consistent
under much milder assumptions than were used to derive the estimators (e.g., the
estimator may be based on a score equation, but the variance estimate may not
require the likelihood to be correctly specified). The use of a consistent variance
estimate with (3.45) allows the benefits of frequentist sandwich estimation and
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Bayesian prior specification to be combined. Bayesian hypothesis testing may also
be based on frequentist summaries. Exercises 3.10 and 3.11 give further details on
the approach described in this section, including the extension to having estimators
and standard errors from multiple studies.

3.12 Concluding Remarks

Bayesian analyses should not be restricted to convenient likelihoods and like-
lihood/prior combinations; this is especially true with the advent of modern
computational approaches. However, one still needs to be careful that the sampling
scheme (i.e., the design) is acknowledged by the likelihood specification and that
the likelihood/prior combination leads to a proper posterior.

We now follow up on Sect. 1.6 and describe situations in which frequentist
and Bayesian methods are likely to agree and when one is preferable over the
other. We concentrate on estimation since point and interval estimation are directly
comparable under the two paradigms. For model comparison, the objectives of
Bayes factors and hypothesis tests are fundamentally different (see, e.g., Berger
(2003)), and so comparison is more difficult. Chapter 4 compares and critiques
frequentist and Bayesian approaches to hypothesis testing.

On a philosophical level, the Bayesian approach is satisfying since one simply
follows the rules of probability as applied to the unknowns whether they be
parameters or hypotheses. This is in stark contrast to the frequentist approach in
which the parameters are fixed. Consequently, credible intervals are probabilistic
and easily interpretable, and posterior distributions on parameters of interest are
obtained through marginalization. Another appealing characteristic is that the
Bayesian approach to inference may be formally derived via decision theory; see,
for example, Bernardo and Smith (1994). A concept that has received a lot of
discussion is the likelihood principle (Berger and Wolpert 1988; Royall 1997)
which states that the likelihood function contains all relevant information. So two
sets of data with proportional likelihoods should lead to the same conclusion. The
likelihood principle leads one toward a Bayesian approach since all frequentist
criteria invalidate this principle, and a true likelihood approach as followed by,
for example, Royall (1997) is difficult to calibrate. The likelihood principle is a
cornerstone of many Bayesian developments, but in this book we follow a far more
pragmatic approach and so do not provide further details on this topic.

In contrast, the frequentist approach is more difficult to justify on philosophical
grounds. Instead, much theory has been developed in terms of optimality within
a frequentist set of guidelines. For example, as discussed in Sect. 2.8, there is a
Gauss–Markov theorem for linear estimating functions (Godambe and Heyde 1987;
McCullagh 1983), while Crowder (1987) considers the optimality of quadratic
estimating functions.

We have seen that, so long as the prior does not exclude regions of the parameter
space, Bayesian estimators have similar frequentist properties to MLEs. The greatest
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drawback of the Bayesian approach is the need to specify both a likelihood and
a prior distribution. Sensitivity to each of these components can be examined,
but carrying out such an endeavor in practice is difficult and one is then faced
with the difficulty of how results should be reported. The frequentist approach to
model misspecification is quite different, and the use of sandwich estimation to
give a consistent standard error is very appealing. There is no Bayesian approach
analogous to sandwich estimation, but see Szpiro et al. (2010) for some progress on
a Bayesian justification of sandwich estimation.

For small n, Bayesian methods are desirable; in an extreme case if the number of
parameters exceeds n, then a Bayesian approach (or some form of penalization, see
Chaps. 10–12) must be followed. In this situation there is no way that the likelihood
can be checked and inference will be sensitive to both likelihood and prior choices.
When the model is very complex, then Bayesian methods are again advantageous
since they allow a rigorous treatment of nuisance parameters; MCMC has allowed
the consideration of more and more complicated hierarchical models, for example.
Spatial models, particularly those that exploit Markov random field second stages,
provide a good example of models that are very naturally analyzed using MCMC
or INLA, where the conditional independencies may be exploited; see Sect. 9.7
for an illustrative example. Unfortunately, assessments of the effects of model
misspecification are difficult for such complex models; instead sensitivity studies
are again typically carried out. Consistency results under model misspecification
are difficult to come by for complex models (such as those discussed in Chap. 9).
Bayesian methods are also appealing in situations in which the maximum likelihood
estimator provides a poor summary of the likelihood, for example, in variance
components problems.

If n is sufficiently large for asymptotic normality of the sampling distribution to
be accurate, then frequentist methods have advantages over Bayesian alternatives.
In particular, as just mentioned, sandwich estimation can be used to provide a
consistent estimator of the variance–covariance matrix of the estimator. Hence, if
the estimator is consistent, reliable confidence coverage will be guaranteed. We
stress that n needs to be sufficiently large for the sandwich estimator to be stable.
A typical Bayesian approach would be to increase model complexity, often through
the introduction of random effects. The difficulty with this is that although more
flexibility is achieved, a specific form needs to be assumed for the mean–variance
relationship, in contrast to sandwich estimation.

We briefly mention two topics which have not been discussed in this chapter.
The linear Bayesian method (Goldstein and Wooff 2007) is an appealing approach
in which Bayesian inference is carried out on the basis of expectation rather than
probability. The appeal comes from the removal of the need to specify complete
prior distributions, rather the means and variances of the parameters only require
specification. The deviance information criterion (DIC) is a popular approach for
comparison of models that was introduced by Spiegelhalter et al. (1998). The
method is controversial, however, as the discussion of the aforementioned paper
makes clear; see also Plummer (2008).
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Bayes’ original paper was published posthumously as Bayes (1763). The book by
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Bernardo and Smith (1994) provide a thorough description of the decision-
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good overview of Bayesian methodology and Gelman et al. (2004) and Carlin and
Louis (2009) descriptions with a more practical flavor. Robert (2001) provides a
decision-theoretic approach. Hoff (2009) is an excellent introductory text.

Approaches to addressing the sensitivity of inference to different prior choices,
are described in O’Hagan (1994, Chap. 7). A good overview of methods for
integration is provided by Evans and Swartz (2000). Lindley (1980), Tierney and
Kadane (1986), and Kass et al. (1990) provide details of the Laplace method in
a Bayesian context. Devroye (1986) provides an excellent and detailed overview
of random variate generation. Smith and Gelfand (1992) emphasize the duality
between samples and densities and illustrate the use of simple rejection algorithms
in a Bayesian context. Gamerman and Lopes (2006) provides an introduction
to MCMC; an up-to- date summary may be found in Brooks et al. (2011).
Computational techniques that have not been discussed include reversible jump
Markov chain Monte Carlo (Green 1995) which may be used when the parameter
space changes dimension across models, variational approximations (Jordan et al.
1999; Ormerod and Wand 2010), and approximate Bayesian computation (ABC)
(Beaumont et al. 2002; Fearnhead and Prangle 2012). Kass and Raftery (1995) give
a review of Bayes factors, including a discussion of computation and prior choice.
Johnson (2008) discusses the use of Bayes factors based on summary statistics.

3.14 Exercises

3.1 Derive the posterior mean and posterior quantiles as the solution to quadratic
and linear loss, respectively, as described in Sect. 3.2.

3.2 Consider a random sample Yi | θ ∼iid N(θ, σ2), i = 1, . . . , n, with θ unknown
and σ2 known.

(a) By writing the likelihood in exponential family form, obtain the conjugate
prior and hence the posterior distribution.

(b) Using the conjugate formulation, derive the predictive distribution for
a new univariate observation Z from N(θ, σ2), assumed conditionally
independent of Y1, . . . , Yn.

3.3 Consider the Neyman–Scott problem in which Yij | μi, σ
2 ∼ind N(μi, σ

2),
i = 1, . . . , n, j = 1, 2.
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Table 3.4 Case-control data: Y = 1 cor-
responds to the event of esophageal cancer,
and X = 1 exposure to greater than 80 g of
alcohol per day

X = 0 X = 1

Y = 1 104 96 200
Y = 0 666 109 775

(a) Show that Jeffreys prior in this case is

π(μ1, . . . , μn, σ
2) ∝ σ−n−2.

(b) Derive the posterior distribution corresponding to this prior and show that

E[σ2 | y] = 1

2(n− 1)

n∑

i=1

(Yi1 − Yi2)
2

2
.

(c) Hence, using Exercise 2.6, show that E[σ2 | y] → σ2/2 as n → ∞, so
that the posterior mean is inconsistent.

(d) Examine the posterior distribution corresponding to the prior

π(μ1, . . . , μn, σ
2) ∝ σ−2.

(e) Is the posterior mean for σ2 consistent in this case?

3.4 Consider the data given in Table 3.4, which are a simplified version of
those reported in Breslow and Day (1980). These data arose from a case-
control study (Sect. 7.10) that was carried out to investigate the relationship
between esophageal cancer and various risk factors. There are 200 cases and
775 controls. Disease status is denoted Y with Y = 0/1 corresponding
to without/with disease, and alcohol consumption is represented by X with
X = 0/1 denoting < 80 g/ ≥ 80 g on average per day. Let the probabilities
of high alcohol consumption in the cases and controls be denoted

p1 = Pr(X = 1 | Y = 1) and p2 = Pr(X = 1 | Y = 0),

respectively. Further, let X1 be the number exposed from n1 cases and X2 be
the number exposed from n2 controls. Suppose Xi | pi ∼ Binomial(ni, pi) in
the case (i = 1) and control (i = 2) groups.

(a) Of particular interest in studies such as this is the odds ratio defined by

θ =
Pr(Y = 1 | X = 1)/Pr(Y = 0 | X = 1)

Pr(Y = 1 | X = 0)/Pr(Y = 0 | X = 0)
.
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Show that the odds ratio is equal to

θ =
Pr(X = 1 | Y = 1)/Pr(X = 0 | Y = 1)

Pr(X = 1 | Y = 0)/Pr(X = 0 | Y = 0)
=

p1/(1− p1)

p2/(1− p2)
.

(b) Obtain the MLE and a 90% confidence interval for θ, for the data of
Table 3.4.

(c) We now consider a Bayesian analysis. Assume that the prior distribution
for pi is the beta distribution Be(a, b) for i = 1, 2. Show that the posterior
distribution pi | xi is given by the beta distribution Be(a+xi, b+ni−xi),
i = 1, 2.

(d) Consider the case a = b = 1. Obtain expressions for the posterior mean,
mode, and standard deviation. Evaluate these posterior summaries for the
data of Table 3.4. Report 90% posterior credible intervals for p1 and p2.

(e) Obtain the asymptotic form of the posterior distribution and obtain 90%
credible intervals for p1 and p2. Compare this interval with the exact
calculation of the previous part.

(f) Simulate samples p
(t)
1 , p

(t)
2 , t = 1, . . . , T = 1,000 from the posterior

distributions p1 | x1 and p2 | x2. Form histogram representations of the
posterior distributions using these samples, and obtain sample-based 90%
credible intervals.

(g) Obtain samples from the posterior distribution of θ | x1, x2 and provide
a histogram representation of the posterior. Obtain the posterior median
and 90% credible interval for θ | x1, x2 and compare with the likelihood
analysis.

(h) Suppose the rate of esophageal cancer is 17 in 100,000. Describe how this
information may be used to evaluate

q1 = Pr(Y = 1 | X = 1) and q0 = Pr(Y = 1 | X = 0).

3.5 Prove that if global balance, as given by (3.31), holds then π(·) is the invariant
distribution, that is,

π(A) =

∫

Rp

π(x)P (x, A) dx,

for all measurable sets A.
3.6 Prove that the Metropolis–Hastings algorithm, defined through (3.33), has

invariant distribution π(·), by showing that detailed balance (3.31) holds.
3.7 We consider the data described in the example at the end of Sect. 3.7.7

concerning the leukemia count, Y , assumed to follow a Poisson distribution
with mean E × δ. Consider the y = 4 observed leukemia cases in Seascale,
with expected number of cases E = 0.25. Previously in this chapter, a
lognormal prior was assumed for δ. In this exercise, a conjugate gamma prior
will be used.
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(a) Show that with a Ga(a, b) prior, the posterior distribution for δ is a
gamma distribution also. Hence, determine the posterior mean, mode,
and variance. Show that the posterior mean can be written as a weighted
combination of the MLE and the prior mean. Similarly write the posterior
mode as a weighted combination of the MLE and the prior mode.

(b) Determine the form of the prior predictive Pr(y) and show that it
corresponds to a negative binomial distribution.

(c) Obtain the predictive distribution Pr(z | y) for the number of cases z in a
future period of time with expected number of cases E�.

(d) Obtain the posterior distribution under gamma prior distributions with
parameters a = b = 0.1, a = b = 1.0, and a = b = 10. Determine
the 5%, 50%, and 95% posterior quantiles in each case and comment on
the sensitivity to the prior.

3.8 Consider a situation in which the likelihood may be summarized as

√
n(Y n − μ) →d N(0, σ2),

where Y n = 1
n

∑n
i=1 Yi, with σ2 known, and the prior for μ is the Cauchy

distribution with parameters 0 and 1, that is,

p(μ) =
1

π(1 + μ2)
, −∞ < μ < ∞.

We label this likelihood-prior combination as model Mc.

(a) Describe a rejection algorithm for obtaining samples from the posterior
distribution, with the proposal density taken as the prior.

(b) Implement the rejection algorithm for the case in which y = 0.2, σ2=2
and n = 10. Provide a histogram representation of the posterior, and
evaluate the posterior mean and variance. Also obtain an estimate of the
normalizing constant, p(y | Mc).

(c) Describe an importance sampling algorithm for evaluating p(y | Mc),
E[μ | y,Mc], and var(μ | y,Mc).

(d) For the data of part (b), implement the importance sampling algorithm,
and calculate p(y | Mc) and E[μ | y,Mc] and var(μ | y,Mc).

(e) Now assume that the prior for μ is the normal distribution N(0, 0.4).
Denote this model Mn. Obtain the form of the posterior distribution in
this case.

(f) For the data of part (b), obtain the normalizing constant p(y | Mn) and
the posterior mean and variance. Compare these summaries with those
obtained under the Cauchy prior. Interpret the ratio

p(y | Mn)

p(y | Mc)
,

that is, the Bayes factor, for these data.
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Table 3.5 Genetic data from an experiment carried out
by Mendel that concerned the numbers of peas that were
classified by their shape and color

Round Wrinkled Round Wrinkled
yellow yellow green green Total
n1 n2 n3 n4 n+

315 101 108 32 556

3.9 The data in Table 3.5 result from one of the famous experiments carried out
by Mendel in which pure bred peas with wrinkled green seeds were crossed
with pure bred peas with wrinkled green seeds. These data are given on page
15 of the English translation (Mendel 1901) of Mendel (1866). All of the
first-generation hybrids had round yellow seeds (since this characteristic is
dominant), but when these plants were self-pollinated, four different pheno-
types (characteristics) were observed and are displayed in Table 3.5.

A model for these data is provided by the multinomial M4(n+,p) where
p = [p1, p2, p3, p4]

T, and pj denotes the probability of falling in cell j, j =
1, . . . , 4, that is,

Pr(N = n | p) = n+!∏4
j=1 nj !

4∏

j=1

p
nj

j ,

where N = [N1, . . . , N4]
T and n = [n1, . . . , n4]

T. In this exercise a Bayesian
analysis of these data will be carried out using the conjugate Dirichlet prior
distribution, Dir(a1, a2, a3, a4):

p(p) =
Γ
(∑4

j=1 aj

)

∏4
j=1 Γ (aj)

4∏

j=1

p
aj−1
j ,

where aj > 0, j = 1, . . . , 4, are specified a priori.

(a) Show that the marginal prior distributions for pj are the beta distributions
Be(aj , a− aj), where a =

∑4
j=1 aj .

(b) Obtain the distributional form, and the associated parameters, of the
posterior distribution p(p | n).

(c) For the genetic data and under a prior for p that is uniform over the simplex
(i.e., a1 = a2 = a3 = a4 = 1), evaluate E[pj | n] and s.d.(pj | n),
j = 1, . . . , 4.

(d) Obtain histogram representations and 90% credible intervals for pj | n,
j = 1, . . . , 4.

(e) Determine the form of the predictive distribution for [N1, N2, N3, N4]
given n+ =

∑
j nj . Describe how a sample from this predictive distri-

bution could be obtained.
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A particular model of interest is that which states that genes are
inherited independently of each other, so that the ratio of counts is
9:3:3:1, or

H0 : p10 =
9

16
, p20 =

3

16
, p30 =

3

16
, p40 =

1

16
.

The evidence in favor of this model, versus the alternative of H1 : p
unspecified, will now be determined.

(f) For the data in Table 3.5, carry out a likelihood ratio test comparing H0

and H1.
(g) Obtain analytical expressions for Pr(n | H0) and Pr(n | H1).
(h) Evaluate the Bayes factor Pr(n | H0)/Pr(n | H1) for the genetic data.

Comment on the evidence for/againstH0 and compare with the conclusion
from the likelihood ratio test statistic.

3.10 With respect to Sect. 3.11, consider the “likelihood,” θ̂ | θ ∼ N(θ, V ) and the
prior θ ∼ N(0,W ). Show that θ | θ̂ ∼ N(rθ̂, rV ) where r = W/(V +W ).

3.11 Again consider the situation discussed in Sect. 3.11 in which a Bayesian
analysis is carried out based not on the full data but rather on summary
statistics.

(a) Suppose data are to be combined from two studies with a common
underlying parameter θ. The estimates from the two studies are θ̂1, θ̂2
with standard errors

√
V 1 and

√
V 2 (with the two estimators being

conditionally independent given θ). Show that the Bayes factor that
summarizes the evidence from the two studies, that is,

p(θ̂1, θ̂2 | H0)

p(θ̂1, θ̂2 | H1)
,

takes the form

BF(θ̂1, θ̂2) =

√
W

RV1V2
exp

[
−1

2

(
Z2
1RV2 + 2Z1Z2R

√
V1V2 + Z2

2RV1

)]

where R = W/(V1W + V2W + V1V2) and Z1 = θ̂1/
√
V1 and Z2 =

θ̂2/
√
V2 are the usual Z-statistics.

(b) Suppose now there are K studies with estimates θ̂k and asymptotic
variances Vk , k = 1, . . . ,K , and again assume a common underlying
parameter θ. Show that the Bayes factor

p(θ̂1, . . . , θ̂K | H0)

p(θ̂1, . . . , θ̂K | H1)
,
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takes the form

BF(θ̂1, . . . , θ̂K)

=

∏K
k=1(2πVk)

−1/2 exp
(
− ̂θ 2

k
2Vk

)

∫ ∏K
k=1(2πVk)

−1/2 exp

(
−

(

̂θ 2
k −θ

)2

2Vk

)
(2πW )−1/2 exp

(
− θ2

2W

)
dθ

=

√√√√W

(
W−1 +

K∑

k=1

V −1
k

)
exp

⎡

⎣−1

2

(
K∑

k=1

θ̂k
Vk

)2(
W−1 +

K∑

k=1

V −1
k

)
−1

⎤

⎦.

Further, show that the posterior summarizing beliefs about θ given the K
estimates is

θ | θ̂1, . . . , θ̂K ∼ N(μ, σ2)

where

μ =

(
K∑

k=1

θ̂k
Vk

)(
W−1 +

K∑

k=1

V −1
k

)−1

and

σ2 =

(
W−1 +

K∑

k=1

V −1
k

)−1

.
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Chapter 4
Hypothesis Testing and Variable Selection

4.1 Introduction

In Sects. 2.9 and 3.10, we briefly described the frequentist and Bayesian machinery
for carrying out hypothesis testing. In this chapter we extend this discussion,
with an emphasis on critiquing the various approaches and on hypothesis testing
in a regression setting. We examine both single and multiple hypothesis testing
situations; Sects. 4.2 and 4.3 consider the frequentist and Bayesian approaches,
respectively. Section 4.4 describes the well-known Jeffreys–Lindley paradox that
highlights the starkly different conclusions that can occur when frequentist and
Bayesian hypothesis testing is carried out. This is in contrast to estimation, in which
conclusions are often in agreement. In Sects. 4.5–4.7, various aspects of multiple
testing are considered. The discussion includes situations in which the number of
tests is known a priori and variable selection procedures in which the number
of tests is driven by the data. Section 4.9 provides a discussion of the impact
on inference that the careless use of variable selection can have. Section 4.10
describes a pragmatic approach to variable selection. Concluding remarks appear
in Section 4.11.

4.2 Frequentist Hypothesis Testing

Early in this chapter we will consider a univariate parameter θ ∈ R. Suppose we are
interested in evaluating the evidence in the data with respect to the null hypothesis:

H0 : θ = θ0

using a statistic T . By convention, large values are less likely under the null.
The observed value of the test statistic is tobs. As discussed in Sect. 2.9, there
are various possibilities for T including squared Wald, likelihood ratio, and score

J. Wakefield, Bayesian and Frequentist Regression Methods, Springer Series
in Statistics, DOI 10.1007/978-1-4419-0925-1 4,
© Springer Science+Business Media New York 2013
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statistics. Under regularity conditions, T →d χ2
1 under the null, as n → ∞.

If n is not large, or regularity conditions are violated, permutation or Monte Carlo
tests (perhaps based on bootstrap samples, as described in Sect. 2.7) can often be
performed to derive the empirical distribution of the test statistic under the null.
A type I error is said to occur when we reject H0 when it is in fact true, while a type
II error is to not reject H0 when it is false.

4.2.1 Fisherian Approach

Under the null, for continuous sample spaces, the tail-area probability Pr(T > t |
H0) is uniform. This is not true for discrete sample spaces, but in the following,
unless stated otherwise, we will assume we are in situations in which uniformity
holds. Let

p = Pr(T > tobs | H0)

denote the observed p-value, the probability of observing tobs, or a more extreme
value, with repeated sampling under the null.

Fisher advocated the pure test of significance, in which the observed p-value is
reported as the measure of evidence against the null (Fisher 1925a), with H0 being
rejected if p is small. Alternative hypotheses are not explicitly considered and so
there is no concept of rejecting the null in favor of a specific alternative; ideally, the
test statistic will be chosen to have high power under plausible alternatives, however.

4.2.2 Neyman–Pearson Approach

In contrast to the procedure of Fisher, the Neyman–Pearson approach is to specify an
alternative hypothesis, H1, with H0 nested in H1. The celebrated Neyman–Pearson
lemma of Neyman and Pearson (1933) proved that, for fixed type I error

α = Pr(T > tfix | H0),

the most powerful procedure is provided by the likelihood ratio test (Sect. 2.9.5).
The decision rule is to reject the null if p < α. Due to the fixed threshold, this
procedure controls the type I error at α.

4.2.3 Critique of the Fisherian Approach

A common explanation for seeing a “small” p-value is that either H0 is not true
or H0 is true and we have been “unlucky.” A major practical difficulty is on
defining “small.” Put another way, how do we decide on a threshold for significance?
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The p-value is uniform under the null, but with a large sample size, we will be able
to detect very subtle departures from the null and so will often obtain small p-values
because the null is rarely “true.” To rectify this a confidence interval for θ is often
reported, along with the p-value, so that the scientific significance of the departure of
θ from θ0 can be determined. The ability to detect smaller and smaller differences
from the null with increasing sample size suggests that the p-value threshold rule
used in practice should decrease with increasing n, but there are no universally
recognized rules. In a hypothesis testing context a natural definition of consistency
is that the rule for rejection is such that the probability of the correct decision being
made tends to 1 as the sample size increases. So the current use of p-values, in
which typically 0.05 or 0.01 is used as a threshold for rejection, regardless of sample
size, is inconsistent; by construction, the probability of rejecting the null when it is
true does not decrease to zero with increasing sample size. By contrast, the type II
error will typically decrease to zero with increasing sample size. A more balanced
approach than placing special emphasis on the type I error would be to have both
type I and type II errors decrease to zero as n increases.

There are two common misinterpretations of p-values. The most basic is to
interpret a p-value as the probability of the null given the data, which is a serious
misconception. Probabilities of the truth of hypotheses are only possible under a
Bayesian approach. More subtly, using the observed value of the test statistic tobs

does not allow one to say that following the general procedure will result in control
of the type I error at p, because the threshold is data-dependent and not fixed.
The key observation is that the p-value is associated with, “observing tobs, or a more
extreme value,” so that the tail area begins at the observed value of the statistic. For
example, if p = 0.013, we cannot say that the procedure controls the type I error
at 1.30%. Such control of the type I error is provided by a fixed α level procedure
which is based on a fixed threshold, tfix with α = Pr(T > tfix | H0).

There is some merit in the consideration of a tail area when one wishes to
control the type I error rate, but when no such control is sought, the use of a tail
area seems simply of mathematically convenience. As an alternative the ordinate
p(T = tobs | H0) may be considered, which brings one closer to a Bayesian
formulation (see Sect. 4.3.1), but from a frequentist perspective, it is not clear how
to scale the observed statistic without an alternative hypothesis.

4.2.4 Critique of the Neyman–Pearson Approach

As with the use of p-values we need to decide on a size α for the test. The historical
emphasis has been on fixing α and then evaluating power, but as with a threshold for
p-values, practical guidance on how α should depend on sample size is important
but lacking. With an α level that does not change with sample size, one is implicitly
accepting that type II errors become more important with increasing sample size,
and in a manner which is implied rather than chosen by the investigator. Pearson
(1953, p. 68) expressed the desirability of a decreasing α as sample size increases:
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“. . . the quite legitimate device of reducing α as n increases.” As we have already
noted, a fixed significance level with respect to n gives an inconsistent procedure.

By merely stating that p < α, information is lost, but if we state an observed
p-value, then we lose control of the type I error because control requires a fixed
binary decision rule. The procedure must also be viewed in the light of both
H0 and H1 being “wrong” since no model is a correct specification of the data-
generating process.

For discrete data, the discreteness of the statistic causes difficulties, particularly
for small sample sizes. To achieve exact level α tests, so-called randomization
rules have been suggested. Under such rules, the same set of data may give
different conclusions depending on the result of the randomization, which is clearly
undesirable.

4.3 Bayesian Hypothesis Testing with Bayes Factors

4.3.1 Overview of Approaches

In the Bayesian approach, all unknowns in a model are treated as random variables,
even though they relate to quantities that are in reality fixed. Therefore, the “true”
hypothesis is viewed as an unknown parameter for which the posterior is derived,
once the alternatives have been specified. The latter step is essential since we require
a sample space of hypotheses. In the case of two hypotheses, we have the following
candidate data-generating mechanisms:

H0 ⇒ β0 | H0 ⇒ y | β0

H1 ⇒ β1 | H1 ⇒ y | β1.

The posterior probability of Hj is, via Bayes theorem,

Pr(Hj | y) = p(y | Hj)× πj

p(y)

with πj the prior probability of hypothesisHj , j = 0, 1. The likelihood of the data is

p(y | Hj) =

∫
p(y | βj)p(βj | Hj) dβj (4.1)

with p(βj | Hj) the prior distribution over the parameters associated with
hypothesis Hj , j = 0, 1, and

p(y) = p(y | H0)× π0 + p(y | H1)× π1.
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The posterior odds in favor of H0 is therefore

Posterior Odds =
Pr(H0 | y)
Pr(H1 | y) = Bayes factor × Prior Odds (4.2)

where the
Bayes factor =

p(y | H0)

p(y | H1)
, (4.3)

and the prior odds are π0/π1 with π1 = 1 − π0. The Bayes factor is the ratio of
the density of the data under the null to the density under the alternative and is an
intuitively appealing summary of the information the data provide concerning the
hypotheses. The Bayes factor was discussed previously in Sect. 3.10. From (4.2),
we also see that

Bayes Factor =
Posterior Odds

Prior Odds
,

which emphasizes that the Bayes factor summarizes the information in the data and
does not involve the prior beliefs about the hypotheses. As can be seen in (4.1),
priors on the parameters are involved in each of the numerator and denominator of
the Bayes factor, since these provide the distributions over which the likelihoods are
averaged.

When it comes to reporting/making decisions, various approaches based on
Bayes factors are available for different contexts. Most simply, one may just report
the Bayes factor. Kass and Raftery (1995), following Jeffreys (1961), present a
guideline for the interpretation of Bayes factors. For example, if the negative log
base 10 Bayes factor lies between 1 and 2 (so that the data are 10–100 times
more likely under the alternative, as compared to the null), then there is said to
be strong evidence against the null hypothesis. Such thresholds may be useful in
some situations, but in general one would like the guidelines to be context driven.
Going beyond the consideration of the Bayes factor only, one may include prior
probabilities on the null and alternative, to give the posterior odds (4.2). Stating the
posterior probabilities may be sufficient, but one may wish to derive a formal rule
for deciding upon which of H0 or H1 to report.

Recall from Sect. 3.10 that, under a Bayesian decision theory approach to
hypothesis testing, the “decision” δ is taken that minimizes the posterior expected
loss. Following the notation of Table 3.3, the losses associated with type I and type
II errors are LI and LII, respectively. Minimization of the posterior expected loss
then results in the rule to choose δ = 1 if

Pr(H1 | y)
Pr(H0 | y) ≥ LI

LII

,

or equivalently if

Pr(H1 | y) ≥ 1

1 + LII/LI

. (4.4)
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For example, if a type I error is four times as bad as a type II error, we should report
H1 only if Pr(H1 | y) ≥ 0.8. In contrast, if the balance of losses is reversed, and a
type II error is four times as costly as a type I error, we reportH1 if Pr(H1 | y)≥0.2.

Discreteness of the sample space does not pose any problems for a Bayesian
analysis, since one need only consider the data actually observed and not other
hypothetical realizations.

4.3.2 Critique of the Bayes Factor Approach

As always with the Bayesian approach, we need to specify priors for all of the
unknowns, which here correspond to each of the hypotheses and all parameters
(including nuisance parameters) that are contained within the models defined under
the two hypotheses. It turns out that placing improper priors upon the parameters
that are the focus of the hypothesis test leads to anomalous behavior of the Bayes
factor. We give an informal discussion of the fundamental difference between
estimation and hypothesis testing with respect to the choice of improper priors.
Suppose we have a model that depends on a univariate unknown parameter, θ with
improper prior p(θ) = c, for arbitrary c > 0. The posterior, upon which estimation
is based, is

p(y | θ)p(θ)∫
p(y | θ)p(θ) dθ (4.5)

and so the arbitrary constant in the prior cancels in both numerator and denominator.
Now suppose we are interested in comparison of the hypotheses H0 : θ = θ0,
H1 : θ �= θ0 with θ ∈ R. The Bayes factor is

p(y | H0)

p(y | H1)
=

p(y | θ0)∫
p(y | θ)p(θ) dθ ,

so that the denominator of the Bayes factor depends, crucially, upon c. Hence, in
this setting the Bayes factors with an improper prior on θ is not well defined.

Specifying prior distributions for all of the parameters under each hypothesis can
be difficult, but Sect. 3.11 describes a strategy based on test statistics which requires
a prior distribution for the parameter of interest only.

In principle, one can compare non-nested models using a Bayesian approach,
but in practice great care must be taken in specifying the priors under the two
hypotheses, in order to not inadvertently favor one hypothesis over another. One
possibility is to specify priors on functions of the parameters that are meaningful
under both hypotheses; for an example of this approach, see Sect. 6.16.

As with the Neyman–Pearson approach, all of the calculations have to be
conditioned upon H0 ∪ H1. In a Bayesian context, we need to emphasize that
we are obtaining the posterior probability of the null given one of the null or
alternative is true and under the assumed likelihood and priors. Consequently,
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posterior probabilities on hypotheses must be viewed in a relative, rather than an
absolute, sense since the truth will rarely correspond to H0 or H1. Hence, the precise
interpretation is that the posterior probability of H0 is the posterior probability of
H0, given that one of H0 or H1 is true.

If one follows the decision theory route, one must also specify the ratio of losses
which is usually difficult. In general, Bayes factor calculation requires analytically
intractable integrals over the null and alternative parameter spaces, to give the two
normalizing constants p(y | H0) and p(y | H1). Further, Markov chain Monte
Carlo approaches do not simply supply these normalizing constants. Analytical
approximations exist under certain conditions, see Sect. 3.10.

4.3.3 A Bayesian View of Frequentist Hypothesis Testing

We consider an artificial situation in which the only available data in a Bayesian
analysis corresponds to knowing that the event T > tfix has occurred. This means
that the likelihood of the data, Pr( data | H0) coincides with the α level. To obtain
Pr(H0 | data ) we must specify the alternative hypothesis. We consider the simple
case in which the model contains a single parameter θ with null H0 : θ = θ0 and
alternative H1 : θ = θ1. Then

Pr(H0 | data ) =
Pr( data | H0)× π0

Pr( data | H0)× π0 + Pr( data | H1)× π1
(4.6)

where πj = Pr(Hj), j = 0, 1. Dividing by Pr(H1 | data ) gives

Posterior Odds =
Pr( data | H0)

Pr( data | H1)
× Prior Odds

=
α

power at θ1
× Prior Odds (4.7)

which depends, in addition to the α level, on the prior on H0, π0, and on the power,
Pr( data | H1). Equation (4.7) implies that, for two studies that report a result as
significant at the same α level, the one with the greater power will, in a Bayesian
formulation, provide greater evidence against the null. The power is never explicitly
considered when reporting under the Fisherian or Neyman–Pearson approaches.
An important conclusion is that to make statements about the “evidence” that the
data contain with respect to a hypothesis, as summarized in an α level, one would
want to know the power or, as a minimum, the sample size (since this is an important
component of the power).

The prior is also important which seems, as already noted, reasonable when one
considers the usual interpretation of a tail area in terms of “either H0 is true and we
were unlucky or H0 is not true.” A prior on H0 is very useful in weighing these two
possibilities. A key observation is that although a particular dataset may be unlikely



160 4 Hypothesis Testing and Variable Selection

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0
p−value

P
os

te
rio

r 
pr

ob
ab

ili
ty

 o
f t

he
 n

ul
l π0

π0
π0

== 0.75
== 0.5
== 0.25

Fig. 4.1 Lower bound for
Pr(H0 | data), under three
prior specifications, as a
function of the p-value

under the null, it may also be unlikely under chosen alternatives, so that there may
be insufficient evidence to reject the null, at least in comparison to these alternatives.

Sellke et al. (2001) summarize a number of different arguments that lead to the
following, quite remarkable, result. For a p-value p < e−1 = 0.368:

Pr(H0 | data ) ≥
[
1−

(
1

ep log p
× π1

π0

)−1
]−1

. (4.8)

Hence, given a p-value, one may calculate a lower bound on the posterior probability
of the null. Figure 4.1 illustrates this lower bound, as a function of the p-
value, for three different prior probabilities, π0. We see, for example, that with
a p-value of 0.05 and a prior probability on the null of π0 =0.75, we obtain
Pr(H0 | data ) ≥ 0.55.

The discussion of Sect. 4.2.3, combined with the implications of (4.7) and (4.8),
might prompt one to ask why p-values are still in use today, in particular with
the almost ubiquitous application of a 0.05 or 0.01 decision threshold. With these
thresholds, which are often required for the publication of results, the relationship
(4.8), with π0 = 0.5, gives Pr(H0 | data )≥ 0.29 and 0.11 with p = 0.05 and
0.01, respectively. Rejection of H0 with such probabilities may not be unreasonable
in some circumstances but the difference between the p-value and Pr(H0 | data) is
apparent.

Small prior probabilities, π0, were not historically the norm since, particularly in
experimental situations, data would not be collected if there were little chance the
alternative were true.

In some disciplines scientists may calibrate p-values to the sample sizes with
which they are familiar, as no doubt Fisher did when the 0.05 rule emerged.
For example, in Tables 29 and 30 of Statistical Methods for Research Workers
(Fisher 1990), the sample sizes were 30 and 17, and Fisher discusses the 0.05 limit
in each case, though in both cases he concentrates more on the context than on the
absolute value of 0.05.
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Poor calibration of p-values could be one of the reasons why so many “findings”
are not reproducible, along with the other usual suspects of confounding, data
dredging, multiple testing, and poorly measured covariates.

4.4 The Jeffreys–Lindley Paradox

We now discuss a famous example in which Bayesian and frequentist approaches
to hypothesis testing give starkly different conclusions. The example has been
considered by many authors, but Lindley (1957) and Jeffreys (1961) provide early
discussions; see also Bartlett (1957). To illustrate the so-called Jeffreys–Lindley
“paradox,” we assume that Y n | θ ∼ N(θ, σ2/n) with σ2 known and θ unknown.
Suppose the null is H0 : θ = 0, with alternative H1 : θ �= 0. Let

yn = z1−α/2 × σ/
√
n

where α is the level of the test and Pr(Z < z1−α/2) = 1− α/2, with Z ∼ N(0, 1).
We define yn in this manner, so that for different values of n the α level remains
constant. For a Bayesian analysis, assume π0 = Pr(H0), and under the alternative
θ ∼ N(0, τ2). In the early discussions of the paradox, a uniform prior over a finite
range was assumed, but the message of the paradox is unchanged with the use of a
normal prior. Then

Pr(H0 | yn) =
Bayes Factor × Prior Odds

1 + Bayes Factor × Prior Odds

where the Bayes factor is

Bayes Factor =
p(yn | H0)

p(yn | H1)
(4.9)

and the Prior Odds = π0/(1 − π0). The prior predictive distributions, the ratios of
whose densities give the Bayes factor (4.9), are

yn | H0 ∼ N(0, σ2/n) (4.10)

yn | H1 ∼ N(0, σ2/n+ τ2). (4.11)

Figure 4.2 shows these two densities, as a function of yn, for σ2 = 1, τ2 = 0.22, and
n = 100. An α level of 0.05 gives yn = 1.96×σ/

√
n = 0.20, the value indicated in

the figure with a dashed-dotted vertical line. For this value, the Bayes factor equals
0.48, so that the data are roughly twice as likely under the alternative as compared
to the null. The Sellke et al. (2001) bound on the Bayes factor is BF ≥ −ep log p
which for p = 0.05 gives BF ≥ 0.41.
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The Bayes factor is the ratio of (4.10) and (4.11):

Bayes Factor =
(2πσ2/n)−1/2 exp

[
− y2

n

2σ2/n

]

(2π[σ2/n+ τ2])−1/2 exp
[
− y2

n

2(σ2/n+τ2)

]

=

√
σ2/n+ τ2

σ2/n
exp

[
−
z21−α/2

2

τ2

τ2 + σ2/n

]
. (4.12)

This last expression reveals that, as n → ∞, the Bayes factor → ∞, so that Pr(H0 |
yn) → 1. Therefore, the “paradox” is that for a level of significance α, chosen to
be arbitrarily small, we can find datasets which make the posterior probability of
the null arbitrarily close to 1, for some n. Hence, frequentist and Bayes procedures
can, for sufficiently large sample size, come to opposite conclusions with respect to
a hypothesis test.

Figure 4.3 plots the posterior probability of the null as a function of n for
σ2 = 1, τ2 = 0.22, π0 = 0.5, α = 0.05. From the starting position of 0.5 (the prior
probability, indicated as a dashed line), the curve Pr(H0 | yn) initially falls,
reaching a minimum at around n = 100, and then increases towards 1, illustrating
the “paradox.” For large values of n, yn is very close to the null value of 0, but there
is high power to detect any difference from 0, and so an α of 0.05 is not difficult
to achieve. The Bayes factor also incorporates the density under the alternative and
values close to 0 are more likely under the null, as illustrated in Fig. 4.2.

We now consider a Bayesian analysis of the above problem but assume that the
data appear only in the form of knowing that |Y n| ≥ yn, a censored observation.
This is clearly not the usual situation since a Bayesian would condition on the actual
value observed, but it does help to understand the paradox. The Bayes factor is



4.4 The Jeffreys–Lindley Paradox 163

1 100 10000
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0
n

P
os

te
rio

r 
pr

ob
ab

ili
ty

 o
f t

he
 n

ul
l

Fig. 4.3 Posterior
probability of the null versus
sample size, for a fixed α
level of 0.05. The model is
Y n | θ ∼ N(θ, σ2/n) with
σ2 = 1. The null and
alternative are H0 : θ = 0 and
H1 : θ �= 0, and the prior
under the alternative is
θ ∼ N(0, τ2) with τ2 = 0.22

1 100 10000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n

A
ve

ra
ge

 P
ow

er

1 100 10000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n

T
ai

l−
ar

ea
 B

ay
es

 fa
ct

or
a b

Fig. 4.4 Bayes factor based on a tail area with null and alternative of H0 : θ = 0 and H1 : θ �= 0:
(a) Average power, which corresponds to the denominator of the Bayes factor, under a N(0, 0.22)
prior and for a fixed α level of 0.05 and (b) Bayes factor based on the tail area, with α = 0.05; the
horizontal dashed line indicates a tail-area Bayes factor value of 0.05

Pr(|Y n| ≥ yn|H0)

Pr(|Y n| ≥ yn|H1)
=

α∫
Pr(|Y n| ≥ yn|θ)p(θ) dθ

,

that is, the type I error rate divided by the power averaged over the prior p(θ).
Figure 4.4a gives the average power as a function of n. We see a monotonic increase
with sample size towards the value 1, as we would expect with fixed α.

Since the Bayes factor is the ratio of α to the average power, we see in Fig. 4.4b
that the Bayes factor based on the tail-area information is monotonic decreasing
towards α as n increases (and with π0 = 0.5, this gives the posterior probability of
the null also). For our present purposes, the calculation with the tail area illustrates
that when a Bayesian analysis conditions on a tail area, the conclusions are in line
with a frequentist analysis.
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The difference in behavior between a genuine Bayesian analysis that conditions
on the actual statistic and that based on conditioning on a tail area is apparent.
As noted by Lindley (1957, p. 189–190), “. . . the paradox arises because the
significance level argument is based on the area under a curve and the Bayesian
argument is based on the ordinate of the curve.”

Ignoring now the comparison with tests of significance, it is informative to
examine the Bayes factor for fixed yn. Upon rearrangement of (4.12),

Bayes Factor =

√
σ2 + nτ2

σ2
exp

[
−y2n

2

n/σ2

1 + σ2/nτ2

]
.

As τ2 → ∞, the Bayes Factor → ∞ so that Pr(H0 | yn) → 1, which is at first
sight counter intuitive since increasing τ2 places less prior mass close to θ = 0.
However, this behavior occurs because averaging with respect to the prior on θ with
large τ2 produces a small Pr(yn | H1), because the prior under the alternative is
spreading mass very thinly across a large range; τ2 � 0 suggests very little prior
belief in any θ �= 0. Hence, even if the data point strongly to a particular θ �= 0, we
still prefer H0. More generally, τ2 � 0 should not be interpreted as “ignorance”
since it supports very big effects. Said another way, as τ2 → 0, the Bayes factor
favors the alternative, even though as τ2 gets smaller and smaller the prior under the
alternative becomes more and more concentrated about the null.

4.5 Testing Multiple Hypotheses: General Considerations

In the following sections we examine how inference proceeds when more than a
single hypothesis test is performed. There are many situations in which multiple
hypothesis testing arises, but we concentrate on just two. In the first, which we refer
to as a fixed number of tests scenario, we suppose that the number of hypotheses
to be tested is known a priori, and is not data driven, which makes the task of
evaluating the properties of proposed solutions (both frequentist and Bayesian) more
straightforward. This case is discussed in Sect. 4.6. As an example, we will shortly
introduce a running example that concerns comparing, between two populations,
expression levels for m = 1, 000 gene transcripts (during transcription, a gene
is transcribed into (mutiple) RNA transcripts). In the second situation, which we
refer to as variable selection, and which is discussed in Sect. 4.7, the number of
hypotheses to be tested is random, which makes the evaluation of properties more
difficult.

One of the biggest abuses of statistical techniques is the unprincipled use of
model selection. Two examples of this are separately testing the significance of
a large number of variables and then reporting only those that are nominally
“significant” (the problem considered in Sect. 4.6), and testing multiple confounders
to see which ones to control for (the problem considered in Sect. 4.7). In each
of these cases, even if the exact procedure is described, unless care is exercised,
interpretation is extremely difficult.
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4.6 Testing Multiple Hypotheses: Fixed Number of Tests

Suppose we wish to examine the association between a response and m different
covariates. In a typical epidemiological study, many potential risk factors are
measured, and an exploratory, hypothesis-generating procedure may systematically
examine the association between the outcome and each of the risk factors. In
general, the covariates may not be independent, which complicates the analysis.
Another fixed number of tests scenario is when m responses are examined with
respect to a single covariate. Recently, there has been intense interest in so-called
high throughput techniques in which thousands, or tens of thousands, of variables
are measured, often as a screening exercise in which the aim is to see which of
the variables are associated with some biological endpoint. For example, one may
examine whether the expression levels of many thousands of genes are elevated or
reduced in samples from cancer patients, as compared to cancer-free individuals.

When m tests are preformed, the aim is to decide which of the nulls should
be rejected. Table 4.1 shows the possibilities when m tests are performed and K are
flagged as requiring further attention. Here m0 is the number of true nulls, B is the
number of type I errors, and C is the number of type II errors, and each of these
quantities is unknown. The aim is to select a rule on the basis of some criterion and
this in turn will determine K . The internal cells of Table 4.1 are random variables,
whose distribution depends on the rule by which K is derived.

Example: Microarray Data

To illustrate the multiple testing problem in a two-group setting, we examine a
subset of microarray data presented by Kerr (2009). The data we analyze consist
of expression levels on m = 1, 000 transcripts measured in Epstein-Barr virus-
transformed lymphoblastic cell line tissue, in each of two populations. Each
transcript was measured on 60 individuals of European ancestry (CEU) and 45
ethnic Chinese living in Beijing (CHB). The data have been normalized, and log2
transformed, so that a one-unit difference between recorded values corresponds to a
doubling of expression level.

Let Y ki be the measured expression level for transcript i in population k, with
i = 1, . . . ,m, and k = 0/1 representing the CEU/CHB populations. Then define

Table 4.1 Possibilities when
m tests are performed and K
are flagged as worthy of
further attention

Not flagged Flagged

H0 A B m0

H1 C D m1

m−K K m
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Fig. 4.5 (a) Z scores and (b) p-values, for 1,000 transcripts in the microarray data

Yi = Y 1i − Y 0i and let s2ki be the sample variance in population k, for transcript i,
i = 1, . . . ,m. We now assume

Yi | μi ∼iid N(μi, σ
2
i )

where σ2
i = s21i/60 + s20i/45 is the sample variance, which is reliably estimated

for the large sample sizes in the two populations and therefore assumed known.
The null hypotheses of interest are that the difference in the average expression
level between the two populations is zero. We let Hi = 0 correspond to the null for
transcript i, that is, μi = 0 for i = 1, . . . ,m. Figure 4.5a gives a histogram of the
Z scores Yi/σi, along with the reference N(0, 1) distribution. Clearly, unless there
are problems with the model formulation, there are a large number of transcripts
that are differentially expressed between the two populations, as confirmed by the
histogram of p-values displayed in Fig. 4.5b.

4.6.1 Frequentist Analysis

In a single test situation we have seen that the historical emphasis has been on
control of the type I error rate. We let Hi = 0/1 represent the hypotheses for the
i = 1, . . . ,m tests. In a multiple testing situation there are a variety of criteria that
may be considered. With respect to Table 4.1, the family-wise error rate (FWER)
is the probability of making at least one type I error, that is, Pr(B ≥ 1 | H1 =
0, . . . , Hm = 0). Intuitively, this is a sensible criteria if one has a strong prior
belief that all (or nearly all) of the null hypotheses are true, since in such a situation
making at least one type I error should be penalized (this is made more concrete
in Sect. 4.6.2). In contrast, if one believes that a number of the nulls are likely to
be false, then one would be prepared to accept a greater number of type I errors,
in exchange for discovering more true associations. As in all hypothesis testing
situations, we want a method for trading off type I and type II errors.
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Table 4.2 True FWER as a
function of the correlation ρ
between two bivariate normal
test statistics

ρ True FWER

0 0.0497
0.3 0.0484
0.5 0.0465
0.7 0.0430
0.9 0.0362

Let Bi be the event that the ith null is incorrectly rejected, so that, with respect
to Table 4.1, B, the random variable representing the number of incorrectly rejected
nulls, corresponds to ∪m

i=1Bi. With a common level for each test α�, the FWER is

αF = Pr(B ≥ 1 | H1 = 0, . . . , Hm = 0) = Pr (∪m
i=1Bi | H1 = 0, . . . , Hm = 0)

≤
m∑

i=1

Pr(Bi | H1 = 0, . . . , Hm = 0)

= mα�. (4.13)

The Bonferroni method takes α� = αF/m to give FWER ≤ αF. For example, to
control the FWER at a level of α = 0.05 with m = 10 tests, we would take α� =
0.05/10 = 0.005. Since it controls the FWER, the Bonferroni method is stringent
(i.e., conservative in the sense that the bar is set high for rejection) and so can result
in a loss of power in the usual situation in which the FWER is set at a low value,
for example 0.05. A little more conservatism is also introduced via the inequality,
(4.13). The Sidák correction, which we describe shortly, overcomes this aspect.

If the test statistics are independent,

Pr(B ≥ 1) = 1− Pr(B = 0)

= 1− Pr (∩m
i=1B

′
i)

= 1−
m∏

i=1

Pr(B′
i)

= 1− (1 − α�)m.

Consequently, to achieve FWER = αF we may take α� = 1 − (1 − αF)
1/m, the

so-called Sidák correction (Sidák 1967).
With dependent tests, the Bonferroni approach is even more conservative; we

demonstrate with m = 2 and bivariate normal test statistics with correlation
ρ. Suppose we wish to achieve a FWER of 0.05. Table 4.2 gives the FWER
achieved using Bonferroni and illustrates how the test becomes more conservative
as the correlation increases. The situation becomes worse as m increases in size.
The k-FWER criteria (Lehmann and Romano 2005) extends FWER to the incorrect
rejection of k or more nulls (Exercise 4.2).
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A simple remedy to the conservative nature of the control of FWER is to increase
αF. An intuitive measure to calibrate a procedure is via the expected number of false
discoveries:

EFD = m0 × α�

≤ m× α�

where α� is the level for each test. If m0 is close to m, this inequality will be
practically useful. As an example, one could specify α� such that the EFD ≤ 1
(say), by choosing α� = 1/m.

Recently there has been interest in a criterion that is particularly useful in
multiple testing situations. We first define the false discovery proportion (FDP) as
the proportion of incorrect rejections:

FDP =

{
B
K if B > 0

0 if B = 0.

Then the false discovery rate (FDR), the expected proportion of rejected nulls that
are actually true, is

FDR = E[ FDP ] = E[B/K | B > 0 ] Pr(B > 0).

Consider the following procedure for independent p-values, each of which is
uniform under the null:

1. Let P(1) < . . . < P(m) denote the ordered p-values.
2. Define li = iα/m and R = max{i : P(i) < li} where α is the value at which

we would like FDR control.
3. Define the p-value threshold as pT = P(R).
4. Reject all hypotheses for which Pi ≤ PT , that is, set Hi = 1 in such cases,

i = 1, . . . ,m.

Benjamini and Hochberg (1995) show that if this procedure is applied, then
regardless of how many nulls are true (m0) and regardless of the distribution of
the p-values when the null is false,

FDR ≤ m0

m
α < α.

We say that the FDR is controlled at α.

Example: Hypothetical Data

We simulate data from m = 100 hypothetical tests in which m0 = 95 tests are
null, to give m1 = 5 tests for which the alternative is true. Figure 4.6 displays
the sorted observed − log10(p-values) versus the expected − log10(p-values), along
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Fig. 4.6 Observed versus
expected − log10(p-values)
for a simulated set of data
with 95 nulls and 5
alternatives. Three criteria for
rejection, based on
Bonferroni, the expected
number of false discoveries
(EFD), and the false
discovery rate (FDR), are
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with a line of equality (solid line). Also displayed are three approaches to calling
significance. The top dashed line corresponds to a Bonferroni correction at the 5%
level (so that the line is at − log10(0.05/100) = 3.30). This criterion calls a single
test as significant illustrating the conservative nature of the control of FWER at a
low value. If we choose instead to control the expected number of false discoveries
at 1, then the dotted line at − log10(1/100) = 2 results. We see that all 5 true
alternatives are selected, along with a single false positive. Finally, we examine
those hypotheses that would be rejected if we control the FDR at α = 0.05, via
the Benjamini–Hochberg procedure. On the log to the base 10 scale, the potential
thresholds li = iα/m, i = 1, . . . ,m correspond to a line with slope 1 and intercept
− log10(α). The dotted-dashed line gives the FDR threshold (recall the FDR is
an expectation) corresponding to α = 0.05. The use of this threshold gives three
p-values as significant, for an empirical FDR of zero.

�

The algorithm of Benjamini and Hochberg (1995) begins with a desired FDR
and then provides the p-value threshold. Storey (2002) proposed an alternative
method by which, for any fixed rejection region, a criteria closely related to FDR,
the positive false discovery rate pFDR = E[B/K | K > 0], may be estimated.
We assume rejection regions of the form T > tfix and consider the pFDR associated
with regions of this form, which we write as pFDR(tfix). We define, for i = 1, . . . ,m
tests, the random variables Hi = 0/1 corresponding to null/alternative hypotheses
and test statistics Ti. Then, with π0 = Pr(H = 0) and π1 = 1 − π0 independently
for all tests,

pFDR(tfix) =
Pr(T > tfix | H = 0)× π0

Pr(T > tfix | H = 0)× π0 + Pr(T > tfix | H = 1)× π1
.
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Note the similarity with (4.6). Consideration of the false discovery odds:

pFDR(tfix)

1− pFDR(tfix)
=

Pr(T > tfix | H = 0)

Pr(T > tfix | H = 1)
× π0

π1

explicitly shows the weighted trade-off of type I and type II errors, with weights
determined by the prior on the null/alternative; this expression mimics (4.7). Storey
(2003) rigorously shows that

pFDR(tfix) = Pr(H = 0 | T > tfix).

giving a Bayesian interpretation. In terms of p-values, the rejection region corre-
sponding to T > tfix is of the form [0, γ]. Let P be the random p-value resulting
from a test. Under the null, P ∼ U(0, 1), and so

pFDR(tfix) =
Pr(P ≤ γ | H = 0)× π0

Pr(P ≤ γ)

=
γ × π0

Pr(P ≤ γ)
. (4.14)

From this expression, the crucial role of π0 is evident. Storey (2002) estimates
(4.14), using uniformity of p-values under the null, to produce the estimates

π̂0 =
#{pi > λ}
m(1− λ)

P̂r(P ≤ γ) =
#{pi ≤ γ}

m
(4.15)

with λ chosen via the bootstrap to minimize the mean-squared error for prediction
of the pFDR. The expression (4.15) calculates the empirical proportion of p-values
to the right of λ and then inflates this to account for the proportion of null p-values
in [0, λ].

This method highlights the benefits of using the totality of p-values to estimate
fundamental quantities of interest such as π0. In general, information in all of the
data may also be exploited, and in Sect. 4.6.2, we describe a Bayesian mixture model
that uses the totality of data.

The q-value is the minimum FDR that can be attained when a particular test is
called significant. We give a derivation of the q-value and, following Storey (2002),
first define a set of nested rejection regions {tα}1α=0 where α is such that Pr(T >
tα | H = 0) = α. Then

p-value(t) = inftα:t∈tα Pr(T > tα | H = 0)

is the p-value corresponding to an observed statistic t. The q-value is defined as

q-value(t) = inftα:t∈tα Pr(H = 0 | T > tα). (4.16)
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Therefore, for each observed statistic ti, there is an associated q-value. It can be
shown that (Exercise 4.3)

Pr(H0 | T > tobs) < Pr(H0 | T = tobs) (4.17)

so that the evidence for H0 given the exact ordinate is always greater than that
corresponding to the tail area.

When one decides upon a value of FDR (or pFDR) to use in practice, the sample
size should again be taken into account, since for large sample size, one would not
want to tolerate as large an FDR as with a small sample size. Again, we would prefer
a procedure that was consistent. However, as in the single test situation, there is no
prescription for deciding how the FDR should decrease with increasing sample size.

Example: Microarray Data

Returning to the microarray example, application of the Bonferroni correction to
control the FWER at 0.05 produces a list of 220 significant transcripts. In this
context, it is likely that there are a large proportion of non-null transcripts (Storey
et al. 2007) and there are relatively large sample sizes for each test (so the power
is good), and so this choice is likely to be very conservative. The procedure of
Benjamini and Hochberg with FDR control at 0.05 gives 480 significant transcripts.
Applying the method of Storey gives an estimate of the proportion of nulls as
π̂0 = 0.33. At a pFDR threshold of 0.05, 603 transcripts are highlighted.

4.6.2 Bayesian Analysis

In some situations, a Bayesian analysis of m tests may proceed in exactly the same
fashion as with a single test, that is, one can apply the same procedure m times;
see Wakefield (2007a) for an example. In this case the priors on each of the m null
hypotheses will be independent. In other situations, however, one may often wish
to jointly model the data so that the totality of information can be used to estimate
parameters that are common to all tests.

In terms of reporting, as with a single test (as considered in Sect. 4.3), the Bayes
factors

Bayes Factori =
p(yi | Hi = 0)

p(yi | Hi = 1)
, (4.18)

i = 1, . . . ,m are a starting point. These Bayes factors may then be combined with
prior probabilities π0i = Pr(Hi = 0), to give

Posterior Oddsi = Bayes Factori × Prior Oddsi, (4.19)

where Prior Oddsi = π0i/(1− π0i).
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Proceeding to a decision theory approach. Suppose for simplicity common
losses, LI and LII, associated with type 1 and type 2 errors, for each test. The aim is
to define a rule for deciding which of the m null hypotheses to reject. The operating
characteristics, in terms of “false discovery” and “non-discovery,” corresponding
to this rule may then be determined. The loss associated with a particular set of
decisions δ = [δ1, . . . , δm] and hypotheses H = [H1, . . . , Hm] is the expectation
over the posterior

E[L(δ,H)] = LI

m∑

i=1

[
δi Pr(Hi = 0 | yi) +

LII

LI

(1− δi) Pr(Hi = 1 | yi)

]

= LI

[
EFP +

LII

LI

× EFN

]

where EFP is the expected number of false positives and EFN is the expected
number of false negatives. These characteristics of the procedure are given, respec-
tively, by

EFD =

m∑

i=1

δi Pr(Hi = 0 | yi)

EFN =

m∑

i=1

(1− δi) Pr(Hi = 1 | yi),

where Pr(Hi = 0 | yi) and Pr(Hi = 1 | yi) are the posterior probabilities on the
null and alternative. We should report test i as significant if

Pr(Hi = 1 | yi) ≥ 1

1 + LII/LI

,

which is identical to the expression derived for a single test, (4.4).
Define K =

∑m
i=1 δi as the number of rejected tests. Then dividing EFD by

K gives an estimate, based on the posterior, of the proportion of false discoveries,
and dividing EFN by m − K gives a posterior estimate of the proportion of false
non-discoveries. Hence, for a given ratio of losses, we can determine the expected
number of false discoveries and false non-discoveries, and the FDR and FNR. As
ni, the sample size associated with test i, increases, under correct specification of
the model, the power for each test increases, and so EFD/K and EFN/(m−K) will
tend to zero (assuming the model is correct). This is in contrast to the frequentist
approach in which a fixed (independent of sample size) FDR rule is used so that the
false non-discovery rate does not decrease to zero (even when the model is true).

Notice that the use of Bayes factors does not depend on the number of tests, m, so
that, for example, we could analyze the data in the same way regardless of whether
m is 1 or 1,000,000. Similarly, for the assumed independent priors, the posterior
probabilities do not depend on m, and for the loss structure considered, the decision
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does not depend on m. Hence, the Bayes procedure gives thresholds that depend
on n (since the Bayes factor will depend on sample size, see Exercise 4.1 for an
example) but not on m, while the contrary is true for many frequentist procedures
such as Bonferroni.

There is a prior that results in a Bayesian Bonferroni-type correction. If the prior
probabilities of each of the nulls are independent with π0i = π0 for i = 1, . . . ,m.
Then the prior probability that all nulls are true is

Π0 = Pr(H1 = 0, . . . , Hm = 0) = πm
0

which we refer to as prior P1. For example, if π0 = 0.5 and m = 10, Π0 = 0.00098,
which may not reflect the required prior belief. Suppose instead that we wish to fix
the prior probability that all of the nulls are true at Π0. A simple way of achieving
this is to take π0i = Π

1/m
0 , a prior specification we call P2. Westfall et al. (1995)

show that for independent tests

αB = Pr(Hi = 0 | yi, P2) ≈ m× Pr(Hi = 0 | yi, P1) = m× α�
B

so that a Bayesian version of Bonferroni is recovered.
An alternative approach is to specify a full model for the totality of data.

These data can then be exploited to estimate common parameters. In particular,
the proportion of null tests π0 can be estimated, which is crucial for inference since
posterior odds and decisions are (unsurprisingly) highly sensitive to the value of
π0. The decision is still based on the posterior, and there continues to be a trade-off
between false positive and false negatives depending on the decision threshold used.
We illustrate using the microarray data.

Example: Microarray Data

Recall that we assume Yi | μi ∼ind N(μi, σ
2
i ), i = 1, . . . ,m where m = 1,000.

We first describe a Bayesian analysis in which the m transcripts are analyzed
separately. We assume under the null that μi = 0, while under the alternative
μi ∼iid N(0, τ2) with τ2 fixed. For illustration, we assume that for non-null genes,
a fold change in the mean greater than 10%, that is, log2 μi > 0.138, only occurs
with probability 0.025. Given

Pr

(
−∞ <

μi

τ
<

log2(1.1)

τ

)
= 0.975

we can solve for τ to give

τ =
log2(1.1)

Φ−1(0.975)
= 0.070,
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where Φ(·) is the distribution function of a standard normal random variable.
The prior on μi is therefore

μi =

{
0 with probability π0

N(0, 0.1382) with probability π1 = 1− π0
.

The Bayes factor for the ith transcript is

Bayes Factori =

√
σ2
i + τ2

τ2
exp

[
−Z2

i

2

τ2

σ2
i + τ2

]
(4.20)

where Zi = Yi/σi is the Z score for the ith transcript. Therefore, we see that
the Bayes factor depends on the power through σ2

i (which itself depends on the
sample sizes), as well as on the Z-score, while the p-value depends on the latter
only. In Fig. 4.7, we plot the ordered − log10( Bayes factors ) (so that high values
correspond to evidence against the null). A reference line of 0 is indicated and, using
this reference, for 487 transcripts the data are more likely under the alternative than
under the null.

To obtain the posterior odds, we need to specify a prior for the null. We assume
π0 = Pr(Hi = 0) so that the prior is the same for all transcripts. The posterior odds
are the product of the Bayes factor and the prior odds and are highly sensitive to
the choice of π0. For illustration, suppose the decision rule is to call a transcript
significant if the posterior odds of H = 0 are less than 1 (which corresponds
to a ratio of losses, LII/LI = 1). Figure 4.8 plots the number of such significant
transcripts under this rule, as a function of the prior, π0. The sensitivity to the
choice of π0 is evident. To overcome this problem, we now describe a joint model
for the data on all m = 1,000 transcripts that allows estimation of parameters that
are common across transcripts, including π0. Notice that for virtually the complete
range of π0 more transcripts would be called as significant under the Bayes rule than
under the FWER.
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We specify a mixture model for the collection [μ1, . . . , μm], with

μi =

{
0 with probability π0

N(δ, τ2) with probability π1 = 1− π0
.

We use mixture component indicators Hi = 0/1 to denote the zero/normal
membership model for transcript i. Collapsing over μi gives the three-stage model:

Stage One:

Yi | Hi, δ, τ, π0 ∼ind

{
N(0, σ2

i ) if Hi = 0

N(δ, σ2
i + τ2) if Hi = 1.

Stage Two: Hi | π1 ∼iid Bernoulli(π1), i = 1, . . . ,m.

Stage Three: Independent priors on the common parameters:

p(δ, τ, π0) = p(δ)p(τ)p(π0).

We illustrate the use of this model with

p(δ) ∝ 1,

p(τ) ∝ 1/τ

p(π0) = 1,

so that we have improper priors for δ and τ2. The latter choice still produces a
proper posterior because we have fixed variances at the first stage of the model
(see Sect. 8.6.2 for further discussion). Implementation is via a Markov chain Monte
Carlo algorithm (see Sect. 3.8). Exercise 4.4 derives details of the algorithm.
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The posterior median and 95% interval for δ (×10−3) is −6.8 [−9.4,−0.40],
while for τ2 (×10−3), we have 1.1 [0.92,1.2]. Of more interest are the posterior
summaries for π0: 0.29 [0.24,0.33], giving a range that is consistent with the pFDR
estimate of 0.33. Figure 4.9 displays univariate and bivariate posterior distributions.
The distributions resemble normal distributions, reflecting the large samples within
populations and the number of transcripts.
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For transcript i, we may evaluate the posterior probabilities of the alternative

Pr(Hi = 1 | yi) = E[Hi | y]
= Eδ,τ2,π0|y

[
Pr(Hi | δ, τ2, π0)

]

= Eδ,τ2,π0|y
[
Pr(Hi = 1 | y, δ, τ2, π0)

]

= Eδ,τ2,π0|y

[
p(y | Hi = 1, δ, τ2)× π1

p(y | Hi = 1, δ, τ2)× π1 + p(y | Hi = 0)× π0

]

(4.21)

where

p(y | Hi = 1, δ, τ2, π0) = [2π(σ2
i + τ2)]−1/2 exp

[
− (yi − δ)2

2(σ2
i + τ2)

]

p(y | Hi = 0, δ, τ2, π0) = [2πσ2
i ]

−1/2 exp

[
− y2i
2σ2

i

]
.

Expression (4.21) averages Pr(Hi = 1 | y, δ, τ2, π0) with respect to the posterior
p(δ, τ2, π0 | y) and may be simply evaluated via

1

T

T∑

t=1

p(y | Hi = 1, δ(t), τ2(t))π
(t)
1

p(y | Hi = 1, δ(t), τ2(t), π
(t)
0 )π

(t)
1 + p(y | Hi = 0)π

(t)
0

given samples δ(t), τ2(t), π(t)
0 , t = 1, . . . , T , from the Markov chain.

Figure 4.10 displays the ordered posterior probabilities, Pr(Hi = 1 | y), i =
1, . . . ,m, along with a reference line of 0.5. Using this line as a threshold, 689
transcripts are flagged as “significant,” and the posterior estimate of the proportion
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of false discoveries is 0.12. Interestingly, the posterior estimate of the proportion
of false negatives (i.e., non-discoveries) is 0.35. The latter figure is rarely reported
but is a useful summary. Previously, using a pFDR threshold of 0.05, there were
603 significant transcripts. Interestingly, using a rule that picked the 603 transcripts
whose posterior probability on the alternative was highest yielded an estimate of the
posterior probability of the proportion of false discoveries as 0.07, which is not very
different from the pFDR estimate. This is reassuring for both the Bayesian and the
pFDR approaches.

For this example, sensitivity analyses might relax the independence between
transcripts and, more importantly, the normality assumption for the random ef-
fects μi.

The Bayes factor, (4.20), was derived under the assumption of a normal sampling
likelihood. In general, if we have large sample sizes, we may take as likelihood
the sampling distribution of an estimator and combine this with a normal prior, to
give a closed-form estimator. The latter is an approximation to a Bayesian analysis
with weakly informative priors on the nuisance parameters and was described in
Sect. 3.11, with Bayes factor (3.45).

4.7 Testing Multiple Hypotheses: Variable Selection

A ubiquitous issue in regression modeling is deciding upon which covariates to
include in the model. It is useful to distinguish three scenarios:

1. Confirmatory: In which a summary of the strength of association between a
response and covariates is required. We include in this category the situation
in which an a priori hypothesis concerning a particular response/covariate
relationship is of interest; additional variables have been measured and we wish,
for example, to know which to adjust for in order to reduce confounding.

2. Exploration: In which the aim is to gain clues about structure in the data.
A particular example is when one wishes to gain leads as to which covariates
are associated with a response, perhaps to guide future study design.

3. Prediction: In which we are not explicitly concerned with association but merely
with predicting a response based on a set of covariates. In this case, we are
not interested in the numerical values of parameters but rather in the ability to
predict new outcomes. Chapters 10–12 examines prediction in detail, including
the assessment of predictive accuracy.

For exploration, formal inference is not required and so we will concentrate on the
confirmatory scenario. As we will expand upon in Sect. 5.9, a trade-off must be
made when deciding on variables for inclusion and it is often not desirable to fit
the full model. To summarize the discussion, as we include more covariates in the
model, bias in estimates is reduced, but variability may be increased, depending on
how strong a predictor the covariate is and on its association with other covariates.
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Example: Prostate Cancer

To illustrate a number of the methods available for variable selection, we consider
a dataset originally presented by Stamey et al. (1989) and introduced in Sect. 1.3.1.
The data were collected on n = 97 men before radical prostatectomony. We take
as response the log of prostate-specific antigen (PSA) which was being forwarded
in the paper as a preoperative marker, that is, a predictor of the clinical stage of
cancer. The authors examined log PSA as a function of eight covariates: log(can
vol); log(weight) (where weight is prostate weight); age; log(BPH); SVI; log(cap
pen); the Gleason score, referred to as gleason; and percentage Gleason score 4 or
5, referred to as PGS45.

Figure 1.1 shows the relationships between the response and each of the
covariates and indicates what look like a number of strong associations, while
Fig. 1.2 gives some idea of the dependencies among the more strongly associated
covariates. After Sect. 4.9, we will return to this example, after describing a number
of methods for selecting variables in Sect. 4.8 and discussing model uncertainty in
Sect. 4.9.

4.8 Approaches to Variable Selection and Modeling

We now review a number of approaches to variable selection. Let k be the number
of covariates, and for ease of exposition, assume each covariate is either binary or
continuous, so that the association is summarized by a univariate parameter. We also
exclude interactions so that the largest model contains k+1 regression coefficients.
Allowing for the inclusion/exclusion of each covariate only, there are 2k possible
models, a number which increases rapidly with k. For example, with k = 20 there
are 1, 048, 576 possible models. The number of models increases even more rapidly
with the number of covariates, if we allow variables with more than two levels and/or
interactions.

The hierarchy principle states that if an interaction term is included in the model,
then the constituent main effects should be included also. If we do not apply the
hierarchy principle, there are 22

k−1 interaction models (i.e., models that include
main effects and/or interactions), where k is the number of variables. For example,
k = 2 leads to 8 models. Denoting the variables by A and B, these models are

1, A, B, A+B, A+B +A.B, A+A.B, B +A.B, A.B.

The class of hierarchical models includes all models that obey the hierarchy
principle. Applying the hierarchy principle in the k = 2 case reduces the number
from 8 to 5, as we lose the last three models in the above list. With k = 5
variables, there are 2,147,483,648 interaction models, illustrating the sharp increase
in the number of models with k. There is no general rule for counting the number
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of models that satisfy the hierarchy principle for a given dimension. For some
discussion, see Darroch et al. (1980, Sect. 6). The latter include a list of the number
of hierarchical models for k = 1, . . . , 5; for k = 5, the number of hierarchical
models is 7,580.

We begin by illustrating the problems of variable selection with a simple
example.

Example: Confounder Adjustment

Suppose the true model is

yi = β0 + β1x1i + β2x2i + εi, (4.22)

with εi | σ2 ∼iid N(0, σ2), i = 1, . . . , n. We take x1 as the covariate of interest,
so that estimation of β1 is the focus. However, we decide to “control” for the
possibility of β2 �= 0 via a test. For simplicity, we assume that σ2 is known and
assess significance by examining whether a 95% confidence interval for β2 contains
zero (which is equivalent to a two-sided hypothesis test with α = 0.05). If the
interval contains zero, then the model,

E[Yi | x1i, x2i] = β∗
0 + β∗

1x1i,

is fitted; otherwise, we fit (4.22). We illustrate the effects of this procedure through
a simulation in which we take β0 = β1 = β2 = 1, σ2 = 32, and n = 10.
The covariates x1 and x2 are simulated from a bivariate normal with means zero,
variances one and correlation 0.7.

In Fig. 4.11a, we display the sampling distribution of β̂1 given the fitting of
model (4.22). The mean and standard deviation of the distribution of β̂1 are 1.00
and 1.23, respectively. Unbiasedness follows directly from least squares/likelihood
theory (Sect. 5.6).

Figure 4.11b displays the sampling distribution of the reported estimator when
we allow for the possibility of adjustment according to a test of β2 �= 0. The mean
and standard deviation of the distribution of the reported estimator of β1 are 1.23 and
1.01, respectively, showing positive bias and a reduced variance. This distribution
is a mixture of the sampling distribution of β̂1 (the estimator obtained from the
full model), and the sampling distribution of β̂�

1 , with the mixing weight on the
latter corresponding to one minus the power of the test of β2 = 0. The sampling
distribution of β̂�

1 is shifted because the effects of both x1 and x2, are being included
in the estimate and the distribution is shifted to the right because x1 and x2 are
positively correlated. Using the conditional mean of a bivariate normal (given as
(D.1) in Appendix D) we have
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E[Y | x1] = β0 + β1x1 + β2E[X2 | x1]

= β0 + (β1 + 0.7)× x1

= β�
0 + β�

1x1

illustrating the bias,

E[β̂�
1 ]− β1 = 0.7 (4.23)

when the reduced model is fitted. Allowing for the possibility of adjustment gives
an estimator with a less extreme bias, since sometimes the full model is fitted (if
the null is rejected). The reason for the lower reported variance in the potentially
adjusted analysis is the bias-variance trade-off intrinsic to variable selection. In
model (4.22), the information concerning β1 and β2 is entangled because of the
correlation between x1 and x2, which results in a higher variance. Section 5.9
provides further discussion. The reported variance is not appropriate, however,
since it does not acknowledge the model building process, an issue we examine
in Sect. 4.9. As n → ∞, the power of the test to reject β2 = 0 tends to 1, and we
recover an unbiased estimator with an appropriate variance.

�

4.8.1 Stepwise Methods

A number of methods have been proposed that proceed in a stepwise fashion,
adding or removing variables from a current model. We describe three of the most
historically popular approaches.

Forward selection begins with the null model, E[Y | x] = β0, and then fits each
of the models

E[Y | x] = β0 + βjxj ,

j = 1, . . . , k. Subject to a minimal requirement (i.e., a particular p-value threshold),
the model that contains the covariate that provides the greatest “improvement” in fit
is then carried forward. This procedure is then iterated until no covariates meet the
minimal requirement (i.e., all the p-values are greater than the threshold), or all the
variables are in the model.

Backward elimination has the same flavor but begins with the full model, and
then removes, at each stage, the covariate that is contributing least to the fit. For
example, the variable with the largest p-value, so long as it is bigger than some
prespecified value, is removed from the model.

Each of these approaches can miss important models. For example, in forward
selection, x1 may be the “best” single variable, but x1 and any other variable
may be “worse” than x2 and x3 together (say), but the latter combination will
never be considered. Related problems can occur with backward elimination. Such
considerations lead to Efroymson’s algorithm (Efroymson 1960) in which forward
selection is followed by backward elimination. The initial steps are identical to
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Fig. 4.11 (a) Sampling
distribution of β̂1, controlling
for x2, and (b) sampling
distribution of β̂1, given the
possibility of controlling
for x2

forward selection, but with three or more variables in the model, the loss of fit
of each of the variables (excluding the last one added) is examined, in order to
avoid the scenario just described, since in this case if the order of variables being
added was x1, x2, x3, it would then be possible for x1 to be removed. The “p-value
to enter” value (i.e., the threshold for forward selection) is chosen to be smaller
than the “p-value to remove” value (i.e., the threshold for backward elimination),
to prevent cycling in which a variable is continually added and then removed.
The choice of inclusion/exclusion values is contentious for forward selection,
backward elimination and Efroymson’s algorithm.
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The Efroymson procedure, although overcoming some of the deficiencies of
forward selection and backwards elimination, can still miss important models.
The overall frequentist properties of any subset selection approach are difficult to
determine, as we discuss in Sect. 4.9.

Each of the stepwise approaches may miss important models. A popular
alternative is to examine all possible models and to then select the “best” model.
We next provide a short summary of some of the criteria that have been suggested
for this selection.

4.8.2 All Possible Subsets

We first consider linear models and again suppose there are k potential regressors,
with the full model of the form

y = xβ + ε (4.24)

with E[ε] = 0, var(ε) = σ2In, and where y is n × 1, x is n × (k + 1), and β is
(k + 1)× 1.

The R2 measure of variance explained is

R2 = 1− RSS
CTSS

where the residual and corrected total sum of squares are given, respectively, by

RSS = (y − xβ̂)T(y − xβ̂)

CTSS = (y − 1y)T(y − 1y).

Consequently,R2 can be interpreted as measuring the closeness of the fit to the data,
with R2 = 1 for a perfect fit (RSS = 0) and R2 = 0 if the model does not improve
upon the intercept only model. In terms of a comparison of nested models, the R2

measure is nondecreasing in the number of variables, and so picking the model with
the smallest R2 will always produce the full model.

Let P represent a model constructed from covariates whose indices are a subset
of {1, 2, . . . , k}, with p = |P |+1 regression coefficients in this model. The number
of parameters p accounts for the inclusion of an intercept so that in the full model
p = k + 1. Suppose the fit of model P yields estimator β̂P and residual sum
of squares RSSP . For model comparison, a more useful measure than R2 is the
adjusted R2 which is defined as

R2
a = 1− RSSP/(n− p)

CTSS/(n− 1)

= 1− (1−R2)

(
n− 1

n− p

)
.
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Maximization of R2
a leads to the model that produces the smallest estimate of σ2

across models.
A widely used statistic, known as Mallows CP , was introduced by Mallows

(Mallows 1973).1 For the model associated with the subset P

CP =
RSSP

σ̂2
− (n− 2p) (4.25)

where RSSP = (y − xβ̂P )
T(y − xβ̂P ) is the residual sum of squares and σ̂2 =

RSSk/(n−k−1) is the error variance estimate from the full model that contains all k
covariates. This criteria may be derived via consideration of the prediction error that
results from choosing the model under consideration (as we show in Sect. 10.6.1).
It is usual to plot CP versus p and for a good model CP will be close to, or below,
p, since E[RSSP ] = (n− p)σ2 and so E[CP ] = p for a good model.

Lindley (1968) showed that Mallows CP can also be derived from a Bayesian
decision approach to multiple regression in which, among other assumptions, the
aim is prediction and the X’s are random and multivariate normal.

We now turn to more general models than (4.24). Consideration of the likelihood
alone is not useful since the likelihood increases as parameters are added to the
model, as we saw with the residual sum of squares in linear models. A number
of penalized likelihood statistics have been proposed that penalize models for their
complexity. A large number of statistics have been proposed, but we concentrate
on just two, AIC and BIC. An Information Criteria (AIC, Akaike 1973) is a
generalization of Mallows CP and is defined as

AIC = −2l(β̂P ) + 2p (4.26)

where l(β̂P ) denotes the maximized log-likelihood of, and p the number of
parameters in, model P . A derivation of AIC is presented in Sect. 10.6.5. We have
already encountered the Bayesian information criterion (BIC) in Sect. 3.10 as an
approximation to a Bayes factor. The BIC is given by

BIC = −2l(β̂P ) + p logn.

For the purposes of model selection, one approach is to choose between models by
selecting the one with the minimum AIC or BIC. In general, BIC penalizes larger
models more heavily than AIC, so that in practice AIC tends to pick models that are
more complicated. As an indication, for a single parameter (p = 1 in (4.26)), the
significance level is α = 0.157 corresponding to Pr(χ2

1 < 2), which is a very liberal
threshold. Given regularity conditions, BIC is consistent (Haughton 1988, 1989;
Rao and Wu 1989), meaning if the correct model is in the set being considered,
it will be picked with a probability that approaches 1 with increasing sample size,

1Named in honor of Cuthbert Daniel with whom Mallows initially discussed the use of the CP

statistic.
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while AIC is not. The appearance of n in the penalty term of BIC is not surprising,
since this is required for consistency.

4.8.3 Bayesian Model Averaging

Rather than select a single model, Bayesian model averaging (BMA) places priors
over the candidate models, and then inference for a function of interest is carried
out by averaging over the posterior model probabilities. Section 3.6 described
this approach in detail, and we will shortly demonstrate its use with the prostate
cancer data.

4.8.4 Shrinkage Methods

An alternative approach to selecting a model is to consider the full model but
to allow shrinkage of the least squares estimates. Ridge regression and the lasso
fit within this class of approaches and are considered in detail in Sects. 10.5.1
and 10.5.2, respectively. Such methods are often used in situations in which the
data are sparse (in the sense of k being large relative to n).

4.9 Model Building Uncertainty

If a single model is selected on the basis of a stepwise method or via a search over
all models, then bias will typically result. Interval estimates, whether they be based
on Bayesian or frequentist approaches, will tend to be too narrow since they are
produced by conditioning on the final model and hence do not reflect the mechanism
by which the model was selected; see Chatfield (1995) and the accompanying
discussion.

To be more explicit, let P denote the procedure by which a final model M is
selected, and suppose it is of interest to examine the properties of an estimator
φ̂ of a univariate parameter φ, for example, a regression coefficient associated
with a covariate of interest. The usual frequentist unbiasedness results concern
the expectation of an estimator within a fixed model. We saw an example of bias
following variable selection, with the bias given by (4.23). In general, the estimator
obtained from a selection procedure will not be unbiased with respect to the final
model chosen, that is,

E[φ̂ | P ] = EM|P [E(φ̂ | M) ] (4.27)

�= E(φ̂ | M̂), (4.28)
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where M̂ is the final model chosen. In addition,

var(φ̂ | P ) = EM|P [var(φ̂ | M)] + varM|P (E[φ̂ | M ]) (4.29)

�= var(φ̂ | M̂) (4.30)

where the latter approximates the first term of (4.29) only. Hence, in general, the
reported variance conditional on a chosen model will be an underestimate. The bias
and variance problems arise because the procedure by which M̂ was chosen is not
being acknowledged.

From a Bayesian standpoint, the same problem exists because the posterior
distribution should reflect all sources of uncertainty and a priori all possible models
that may be entertained should be explicitly stated, with prior distributions being
placed upon different models and the parameters of these models. Model averaging
should then be carried out across the different possibilities, a process which is
fraught with difficulties not least in placing “comparable” priors over what may
be fundamentally different objects (see Sect. 6.16.3 for an approach to rectifying
this problem). Suppose there are m potential models and that pj = Pr(Mj | y) is
the posterior probability of model j, j = 1, . . . ,m. Then

E[φ | y] =
k∑

j=1

E[φ | Mj,y]× pj

�= E[φ | M̂,y], (4.31)

where the latter is that which would be reported, based on a single model M̂ . The
“bias” is E[φ | M̂,y]− E[φ | y]. In addition,

var(φ | y) =
m∑

j=1

var(φ | Mj ,y)× pj +

m∑

j=1

(E[φ | Mj ,y]− E[φ | y])2 × pj

(4.32)

�= var(φ | M̂,y), (4.33)

so that the variance in the posterior acknowledges both the weighted average of the
within-model variances, via the first term in (4.32), and the weighted contributions
to the between-model variability, via the second term. Note the analogies between
the frequentist and Bayesian biases, (4.28) and (4.31), and the reported variances,
(4.30) and (4.33).

The fundamental message here is that carrying out model selection leads to
estimators whose frequency properties are not those of the estimators without any
tests being performed (Miller 1990; Breiman and Spector 1992) and Bayesian
single model summaries are similarly misleading. This problem is not unique to
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Table 4.3 Parameter estimates, standard errors, and T statistics for the prostate cancer data. The
full model and models chosen by stepwise/BIC and CP /AIC are reported

Full model Stepwise/BIC model CP /AIC model
Variable Est. (Std. err.) T stat. Est. Std. err. T stat. Est. Std. err. T stat.

1 log(can vol) 0.59 (0.088) 6.7 0.55 (0.075) 7.4 0.57 (0.075) 7.6
2 log(weight) 0.46 (0.17) 2.7 0.51 (0.15) 3.9 0.42 (0.17) 2.5
3 age −0.020 (0.011) −1.8 – – – −0.015 (0.011) −1.4
4 log(BPH) 0.11 (0.058) 1.8 – – – 0.11 (0.058) 1.9
5 SVI 0.77 (0.24) 3.1 0.67 (0.21) 3.2 0.72 (0.21) 3.5
6 log(cap pen) −0.11 (0.091) −1.2 – – – – – –
7 gleason 0.045 (0.16) 0.29 – – – – – –
8 PGS45 0.0045 (0.0044) 1.0 – – – – – –

σ 0.78 – – 0.72 – – 0.71 – –

variable selection. Similar problems occur when other forms of model refinement
are entertained, such as transformations of y and/or x, or experimenting with a
variety of variance models and error distributions.

Example: Prostate Cancer

We begin by fitting the full model containing all eight variables. Table 4.3 gives the
coefficients, standard errors, and T statistics. For this example, the forward selection
and backward elimination stepwise procedures all lead to the same model containing
the three variables log(can vol), log(weight), and SVI. The p-value thresholds were
chosen to be 0.05. The standard errors associated with the significant variables all
decrease for the reduced model when compared to the full model. This behavior
reflects the bias-variance trade-off whereby a reduced model may have increased
precision because of the fewer competing explanations for the data (for more
discussion, see Sect. 5.9). We emphasize, however, that uncertainty in the model
search is not acknowledged in the estimates of standard error. We see that the
estimated standard deviation is also smaller in the reduced model.

Turning now to methods that evaluate all subsets, Figure 4.12 plots the CP

statistic versus the number of parameters in the model. For clarity, we do not include
models with less than four parameters in the plot, since these were not competitive.
Recall that we would like models with a small number of parameters whose CP

value is close to or less than the line of equality. The variable plotting labels are
given in Table 4.3. For these data, we pick out the model with variables labeled 1,
2, 3, 4, and 5 since this corresponds to a model that is close to the line in Fig. 4.12
and has relatively few parameters. The five variables are log(can vol), log(weight),
age, log(BPH), and SVI, so that age and log(BPH) are added to the stepwise model.

Carrying out an exhaustive search over all main effects models, using the adjusted
R2 to pick the best model (which recall is equivalent to picking that model with
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Fig. 4.12 Mallows’ CP

statistic plotted versus p,
where p− 1 is the number of
covariates in the model, for
the prostate cancer data.
The line of equality is
indicated, for a good model
E[CP ] ≈ p, where the
expectation is over repeated
sampling. The variable labels
are given in Table 4.3

the smallest σ̂2), gives a model with seven variables (gleason is the variable not
included). The estimate of the error variance is σ̂ = 0.70. The minimum BIC model
was the same model as picked by the stepwise procedures.

We used Bayesian model averaging with, for illustration, equal weights on each
of the 28 models and weakly informative priors. The most probable model has
posterior probability 0.20 and contains log(can vol), log(weight), and SVI, while
the second replaces log(weight) with log(BPH) and has posterior probability 0.09.
The third most probable model adds log(BPH) to the most probable model and
has probability 0.037. Cumulatively across models, the posterior probability that
log(can vol) is in the model is close to 1, with the equivalent posterior probabilities
for SVI, log(weight), and log(BPH) being 0.69, 0.66, and 0.27, respectively. A more
detailed practical examination of BMA is presented at the end of Chap. 10.

4.10 A Pragmatic Compromise to Variable Selection

One solution to deciding upon which variables for inclusion in a regression model
is to never refine the model for a given dataset. This approach is philosophically
pure but pragmatically dubious (unless one is in the context of, say, a randomized
experiment) since we may obtain appropriate inference for a model that is a very
poor description of the phenomenon under study. It is hard to state general strategies,
but on some occasions, it may be safest, and the most informative, to report multiple
models.

We consider situations that are not completely confirmatory and not completely
exploratory. Rather we would like to obtain a good description of the phenomena
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under study and also have some faith in reported interval estimates. The philosophy
suggested here is to think as carefully as possible about the model before the
analysis proceeds. In particular, context-specific models should be initially posited.
Hopefully the initial model provides a good description, but after fitting the model,
model checking should be carried out and the model may be refined in the face of
clear model inadequacy, with refinement ideally being carried out within distinct a
priori known classes. A key requirement is to describe the procedure followed when
the results are reported.

If a model is chosen because it is clearly superior to the alternatives then, roughly
speaking, inference may proceed as if the final model were the one that was chosen
initially. This is clearly a subjective procedure but can be informally justified via
either frequentist or Bayesian approaches. From a frequentist viewpoint, it may be
practically reasonable to assume, with respect to (4.28), that E[φ | P ] ≈ E[φ |
M̂ ] because M̂ would be almost always chosen in repeated sampling under these
circumstances. In a similar vein, under a Bayesian approach, the above procedure
is consistent in which model averaging in which the posterior model weight on the
chosen model is close to 1 (since alternative models are only rejected on the basis
of clear inadequacy), that is, with reference to (4.31), E[φ | y] ≈ E[φ | M̂,y],
because Pr(M̂ | y) ≈ 1. The aim is to provide probability statements, from either
philosophical standpoints that are “honest” representations of uncertainty.

The same heuristic applies more broadly to examination of model choice, beyond
which variables to put in the mean model. As an example of when the above
procedure should not be applied, examining quantile–quantile plots of residuals for
different Student’s t distributions and picking the one that produces the straightest
line would not be a good idea.

4.11 Concluding Comments

In this chapter, we have discussed frequentist and Bayesian approaches to hypothesis
testing. With respect to variable selection, we make the following tentative conclu-
sions. For pure confirmatory studies, one should not carry out model selection and
use instead background context to specify the model. Prediction is a totally different
enterprise and is the subject of Chaps. 10–12. In exploratory studies, stepwise and
all subsets may point to important models, but attaching (frequentist or Bayesian)
probabilistic statements to interval estimates is difficult. For studies somewhere
between pure confirmation and exploratory, one should attempt to minimize model
selection, as described in Sect. 4.10.

From a Bayesian or a frequentist perspective, regardless of the criteria used in
a multiple hypothesis testing situation, it is essential to report the exact procedure
followed, to allow critical interpretation of the results.

We have seen that when a point null, such as H0 : θ = 0, is tested, then frequentist
and Bayesian procedures may well differ considerably in their conclusions. This
is in contrast to the testing of a one-sided null such as H0 : θ ≤ 0; see Casella
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and Berger (1987) for discussion. We conclude that hypothesis testing is difficult
regardless of the frequentist or Bayesian persuasion of the analysis. A particular
difficulty is how to calibrate the decision rule; many would agree that the Bayesian
approach is the most natural since it directly estimates Pr(H = 0 | y), but this
estimate depends on the choices for the alternative hypotheses (so is a relative
rather than an absolute measure) and on all of the prior specifications. The practical
interpretation of the p-value depends crucially on the power (sample size and
observed covariate distribution in a regression setting) and reporting point and
interval estimates alongside a p-value or an α level is strongly recommended.

Model choice is a fundamentally more difficult endeavor than estimation since
we rarely, if ever, specify an exactly true model. In contrast, estimation is concerned
with parameters (such as averages or linear associations with respect to a popula-
tion) and these quantities are well defined (even if the models within which they are
embedded are mere approximations).

4.12 Bibliographic Notes

There is a vast literature contrasting Bayesian and frequentist approaches to
hypothesis testing, and we mention just a few references. Berger (2003) summarizes
and contrasts the Fisherian (p-values), Neyman (α levels), and Jeffreys (Bayes
factors) approaches to hypothesis testing, and Goodman (1993) provides a very
readable, nontechnical commentary. Loss functions more complex than those
considered in Sect. 4.3 are discussed in, for example, Inoue and Parmigiani (2009).

The running multiple hypothesis testing example concerned the analysis of
multiple transcripts from a microarray experiment. The analysis of such data has
received a huge amount of attention; see, for example, Kerr (2009) and Efron (2008).

4.13 Exercises

4.1 Consider the simple situation in which Yi | θ ∼iid N(θ, σ2) with σ2 known.
The MLE θ̂ = Y ∼ N(θ, V ) with V = σ2/n. The null and alternative
hypotheses are H0 : θ = 0 and H1 : θ �= 0, and under the alternative, assume
θ ∼ N(0,W ). Consider the case W = σ2:

(a) Derive the Bayes factor for this situation.
(b) Suppose that the prior odds are PO = π0/(1 − π0), with π0 the prior on

the null, and let R = LII/LI be the ratio of losses of type II to type I errors.
Show that this setup leads to a decision rule to reject H0 of the form

√
1 + n× exp

(
−Z2

2

n

1 + n

)
× PO < R (4.34)

where Z = θ̂/
√
V is the usual Z-statistic.
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(c) Rearrangement of (4.34) gives a Wald statistic threshold of

Z2 >
2(1 + n)

n
log

(
PO
R

√
1 + n

)
.

Form a table of the p-values corresponding to this threshold, as a function
of π0 and n and with R = 1. Hence, comment on the use of 0.05 as a
threshold.

4.2 The k-FWER criteria controls the probability of rejecting k or more true null
hypotheses, with k = 1 giving the usual FWER criteria. Show that the
procedure that rejects only the null hypotheses Hi, i = 1, . . . ,m for those
p-values with pi ≤ kα/m, controls the k-FWER at level α.

4.3 Prove expression (4.17).
4.4 In this question, an MCMC algorithm for the Bayesian mixture model described

in Sect. 4.6.2 will be derived and applied to “pseudo” gene expression data that
is available on the book website.

The three-stage model is:

Stage One:

Yi | Hi, δ, τ, π0 ∼ind

{
N(0, σ2

i ) if Hi = 0

N(δ, σ2
i + τ2) if Hi = 1

.

Stage Two: Hi | π1 ∼iid Bernoulli(π1).

Stage Three: Independent priors on the common parameters:

p(δ, τ, π0) ∝ 1/τ.

Derive the form of the conditional distributions

δ | τ2, π0,H

τ2 | δ, π0,H

π0 | τ2, δ,H
Hi | δ, τ2, π0, Hi, i = 1, . . . ,m,

where H = [H1, . . . , Hm]. The form for τ2 requires a Metropolis–Hastings
step (as described in Sect. 3.8.2).

Implement this algorithm for the gene expression data on the book website.
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Chapter 5
Linear Models

5.1 Introduction

In this chapter we consider linear regression models. These models have received
considerable attention because of their mathematical and computational conve-
nience and the relative ease of parameter interpretation. We discuss a number of
issues that require consideration in order to perform a successful linear regression
analysis. These issues are relevant irrespective of the inferential paradigm adopted
and so apply to both frequentist and Bayesian analyses.

The structure of this chapter is as follows. We begin in Sect. 5.2 by describing
a motivating example, before laying out the linear model specification in Sect. 5.3.
A justification for linear modeling is provided in Sect. 5.4. In Sect. 5.5, we discuss
parameter interpretation, and in Sects. 5.6 and 5.7, we describe, respectively,
frequentist and Bayesian approaches to inference. In Sect. 5.8, the analysis of
variance is briefly discussed. Section 5.9 provides a discussion of the bias-variance
trade-off that is encountered when one considers which covariates to include in the
mean model. In Sect. 5.10, we examine the robustness of the least squares estimator
to model assumptions; this estimator can be motivated from estimating function,
likelihood, and Bayesian perspectives. The assessment of assumptions is considered
in Sect. 5.11. Section 5.12 returns to the motivating example. Concluding remarks
are provided in Sect. 5.13 with references to additional material in Sect. 5.14.

5.2 Motivating Example: Prostate Cancer

Throughout this chapter we use the prostate cancer data of Sect. 1.3.1 to illustrate
the main points. These data consist of nine measurements taken on 97 men.
Along with the response, the log of prostate-specific antigen (PSA), there are eight
covariates. As an illustrative inferential question, we consider estimation of the
linear association between log(PSA) and the log of cancer volume, with possible

J. Wakefield, Bayesian and Frequentist Regression Methods, Springer Series
in Statistics, DOI 10.1007/978-1-4419-0925-1 5,
© Springer Science+Business Media New York 2013
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Fig. 5.1 Log of
prostate-specific antigen
versus log cancer volume,
with smoother superimposed

adjustment for other “important” variables. Figure 5.1 plots log(PSA) versus log
cancer volume, along with a smoother. The relationship looks linear, but Figs. 1.1
and 1.2 showed that log(PSA) was also associated with a number of the additional
seven covariates and that there are strong associations between the eight covariates
themselves. Consequently, we might question whether some or all of the other seven
variables should be added to the model.

5.3 Model Specification

A multiple linear regression model takes the form

Yi = β0 + β1xi1 + . . .+ βkxik + εi, (5.1)

where we begin by assuming that the error terms are uncorrelated with E[εi] = 0 and
var(εi) = σ2. In a simple linear regression model, k = 1 so that we have a single
covariate. Linearity here is with respect to the parameters, and so variables may
undergo nonlinear transforms from their original scale, before inclusion in (5.1).

In matrix form we write

Y = xβ + ε, (5.2)

where

Y =

⎡

⎢⎢⎢⎣

Y1

Y2

...
Yn

⎤

⎥⎥⎥⎦ , x =

⎡

⎢⎢⎢⎣

1 x11 . . . x1k

1 x21 . . . x2k

...
...

. . .
...

1 xn1 . . . xnk

⎤

⎥⎥⎥⎦ , β =

⎡

⎢⎢⎢⎣

β0

β1

...
βk

⎤

⎥⎥⎥⎦ , ε =

⎡

⎢⎢⎢⎣

ε1
ε2
...
εn

⎤

⎥⎥⎥⎦ .
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with E[ε] = 0 and var(ε) = σ2In. We will also sometimes write

Yi = xiβ + εi,

where xi = [1 xi1 . . . xik] for i = 1, . . . , n.
The covariates may be continuous or discrete. Discrete variables with a finite

set of values are known as factors, with the values being referred to as levels. The
levels may be ordered, and the ordering may or not be based upon numerical values.
For example, dose levels of a drug are associated with numerical values but may be
viewed as factor levels. Suppose x represents dose, with levels 0, 1, and 5. There are
two alternative models that are immediately suggested for such an x variable. First,
we may use a simple linear model in x:

E[Y | x] = β0 + β1x. (5.3)

Second, we may adopt the model

E[Y | x] = α0 × I(x = 0) + α1 × I(x = 1) + α2 × I(x = 5), (5.4)

where the indicator function

I(x = x̃) =

{
0 if x �= x̃

1 if x = x̃

and ensures that the appropriate level of x is picked. The mean function (5.4)
allows for nonlinearity in the modeled association between Y and the observed x
values, but does not allow interpolation to unobserved values of x. In contrast, (5.3)
allows interpolation but imposes linearity. For an ordinal variable, the order of
categories matters, but there are not specific values associated with each level
(though values will be assigned as labels for computation). An example of an ordinal
value is a pain score with categories none/mild/medium/severe. Alternatively, the
levels may be nominal (such as female/male). The coding of factors is discussed in
Sect. 5.5.2. Covariates may be of inherent were specific interest or may be included
in the model in order to control for sources of variability or, more specifically,
confounding; Sect. 5.9 provides more discussion.

The lower-/uppercase notation adopted here explicitly emphasizes that the
covariates x are viewed as fixed while the responses Y are random variables.
This is true regardless of whether the covariates were fixed by design or were
random with respect to the sampling scheme. In the latter case it is assumed that
the distribution of x does not carry information concerning β or σ2, so that it is
ancillary (Appendix F). Specifically, letting γ denote parameters associated with a
model for x, we assume that

p(y,x | β, σ2,γ) = p(y | x,β, σ2)× p(x | γ), (5.5)

so that conditioning on x does not incur a loss in information with respect to β.
Hence, we can ignore the second term on the right-hand side of (5.5).
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Random covariates, as just discussed, should be distinguished from inaccurately
measured covariates. We will assume throughout that the x values are measured
without error, an assumption that must always be critically assessed. In an obser-
vational setting in particular, it is common for elements of x to be measured with
at least some error, but, informally speaking, we hope that these errors are small
relative to the ranges; if this is not the case, then we must consider so-called errors-
in-variables models; methods for addressing this problem are extensively discussed
in Carroll et al. (2006).

5.4 A Justification for Linear Modeling

In this section we discuss the assumption of linearity. In general, there is no reason
to expect the effects of continuous covariates to be causally linear,1 but if we have
a “true” model, E[Y | x] = f(x), then a first-order Taylor series expansion about a
point x0 gives

f(x) ≈ f(x0) +
df

dx

∣∣∣∣
x0

(x− x0)

= β0 + β1(x− x0)

so that, at least for x values close to x0, we have an approximately linear
relationship.

As an example, Fig. 5.2 shows the height of 50 children plotted against their
age. The true nonlinear form from which these data were generated is the so-called
Jenss curve:

E[Y | x] = β0 + β1x− exp(β2 + β3x),

where Y is the height of the child at year x. This model was studied by Jenss
and Bayley (1937), and the parameter values for the simulation were taken from
Dwyer et al. (1983). The solid line on Fig. 5.2 is the curve from which these data
were simulated, and the dotted and dashed lines are the least squares fits using data
from ages less than 1.5 years only and greater than 4.5 years only, respectively.
At younger ages, the association is approximately linear, and similarly for older
ages, but a single linear curve does not provide a good description over the complete
age range.

1In fact, as illustrated in Example 1.3.4, many physical phenomena are driven by differential
equations with nonlinear models arising as solutions to these equations.
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growth curve model

5.5 Parameter Interpretation

Before considering inference, we discuss parameter interpretation for the linear
model. This topic is of vital importance in many settings, in order to report analyses
in a meaningful manner. Interpretation is of far less concern in situations in which
we simply wish to carry out prediction; methods for this endeavor are described
in Chaps. 10–12. In a Bayesian analysis the specification of informative prior
distributions requires a clear understanding of the meaning of parameters.

5.5.1 Causation Versus Association

We begin with the simple linear regression model

E[Y | x] = β0 + β1x. (5.6)

Here we have explicitly conditioned upon x which is an important distinction since,
for example, the models

E[Y ] = E[E(Y | x)] = β0 (5.7)

and

E[Y | x] = β0, (5.8)

are very different. In (5.7) no assumptions are made, and we are simply saying
that there is an average response in the population. However, (5.8) states that
the expected response does not vary with x, which is a very strong assump-
tion. Consequently, care should be taken to understand which situation is being
considered.

We first consider the intercept parameter β0 in (5.6), which is the expected
response at x = 0. The latter expectation may make little sense (e.g., suppose the
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response is blood pressure and the covariate is weight), and there are a number of
reasons to instead use the model

E[Y | x] = β�
0 + β1(x− x�), (5.9)

within which β�
0 is the expected response at x = x�. By choosing x� to be a

meaningful value, we will, for example, be able to specify a prior for β�
0 more easily

in a Bayesian analysis (see Sect. 3.4.2 for further discussion). Choosing x� = x
is dataset specific (which does not allow simple comparison of estimates across
studies) but provides a number of statistical advantages. Of course, models (5.6)
and (5.9) provide identical inference since they are simply two parameterizations of
the same model.

In both (5.6) and (5.9), the mathematical interpretation of the parameter β1 is
that it represents the additive change in the expected response for a unit increase
in x. Notice that the interpretation of β1 depends on the scales of measurement of
both x and Y . More generally, cβ1 represents the additive change in the expected
response for a c unit change in x. A difficulty with such interpretations is that it is
inviting to think that if we were to provide an intervention and, for example, increase
x by one unit for every individual in a population, then the expected response would
change by β1. The latter is a causal interpretation and is not appropriate in most
situations, and never in observational studies, because unmeasured variables that
are associated with both Y and x will be contributing to the observed association,
β̂1, between Y and x. In a designed experiment in which everything proceeds as
planned, x is randomly assigned to each individual, and we may interpret β1 as
the expected change in the response for an individual following an intervention in
which x were increased by one unit. Even in this ideal situation we need to know
that the randomization was successfully implemented. It is also preferable to have
large sample sizes so that any chance imbalance in variables between groups (as
defined by different x values) is small.

We illustrate the problems with a simple idealized example. Suppose the “true”
model is

E[Y | x, z] = β0 + β1x+ β2z, (5.10)

and let

E[Z | x] = a+ bx, (5.11)

describe the linear association between x and z. Then, if Y is regressed on x, only

E[Y | x] = EZ | x[E(Y | x, Z)]

= β0 + β1x+ β2E[Z | x]
= β�

0 + β�
1x (5.12)

where

β�
0 = β0 + aβ2

β�
1 = β1 + bβ2 (5.13)
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showing that, when we observe x only and fit model (5.12), our estimate of β�
1

reflects not just the effect of x but, in addition, the effect of z mediated through its
association with x. If b = 0, so that X and Z are uncorrelated, or if β2 = 0, so that
Z does not affect Y , then there will be no bias. Here “bias” refers to estimation of
β1, and not to β�

1 . So for bias to occur in a linear model, Z must be related to both Y
and X which, roughly speaking, is the definition of a confounder. The simulation at
the end of Sect. 4.8 illustrated this phenomenon. A major problem in observational
studies is that unmeasured confounders can always distort the true association.
This argument reveals the beauty of randomization in which, by construction, there
cannot be systematic differences between groups of units randomized to different
x levels.

To rehearse this argument in a particular context, suppose Y represents the
proportion of individuals with lung cancer in a population of individuals with
smoking level (e.g., pack years) x. We know that alcohol consumption, z, is
also associated with lung cancer, but it is unmeasured. In addition, X and Z are
positively correlated. If we fit model (5.12), that is, regress Y on x only, then
the resultant β̂�

1 is reflecting not only the effect of smoking but that of alcohol
also through its association with smoking. Specifically, since b > 0 (individuals
who smoke are more likely to have increased alcohol consumption), then (5.13)
indicates that β̂�

1 will overestimate the true smoking effect β1. If we were to
intervene in our study population and (somehow) decrease smoking levels by
one unit, then we would not expect the lung cancer incidence to decrease by β�

1

because alcohol consumption in the population has remained constant (assuming
the imposed reduction does not change alcohol patterns). Rather, from (5.10), the
expected decrease in the fraction with lung cancer will be β1 if there were no
other confounders (which of course is not the case). The interpretation of β1 is
the following. If we were to examine two groups of individuals within the study
population with levels of smoking of x+1 and x, then we would expect lung cancer
incidence to be β̂�

1 higher in the group with the higher level of smoking.
To summarize, great care must be taken with parameter interpretation in

observational studies because we are estimating associations and not causal relation-
ships. The parameter estimate associated with x reflects not only the “true” effect
of x but also the effects of all other unmeasured variables that are related to both x
and Y .

5.5.2 Multiple Parameters

In the model

E[Y | x1, . . . , xk] = β0 + β1x1 + . . .+ βkxk,

the parameter βj is the additive change in the average response associated with a
unit change in xj , with all other variables held constant.
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In some situations the parameters of a model may be very difficult to interpret.
Consider the quadratic model:

E[Y | x] = β0 + β1x+ β2x
2.

In this model, interpretation of β1 (and β2) is difficult because we cannot change
x by one unit and simultaneously hold x2 constant. An alternative parameterization
that is easier to interpret is γ = [γ0, γ1, γ2], where γ0 = β0, γ1 = −β1/2β2, and
γ2 = β0 − β2

1/4β2. Here γ1 is the x value representing the turning point of the
quadratic, and γ2 is the expected value of the curve at this point.

We now discuss parameterizations that may be adopted when coding factors.
We begin with a simple example in which we examine the association between a
response Y and a two-level factor x1, which we refer to as gender, and code as
x1 = 0/1, for female/male. The obvious formulation of the model is

E[Y | x1] =

{
β′
0 + β′

1 if x1 = 0 (female),
β′
0 + β′

2 if x1 = 1 (male).

The parameters in this model are clearly not identifiable; the data may be summa-
rized as two means, but the model contains three parameters. This nonidentifiability
is sometimes referred to as (intrinsic) aliasing, and the solution is to place a
constraint on the parameters.

In the sum-to-zero parameterization, we impose the constraint β′
1 + β′

2 = 0, to
give the model

E[Y | x1] =

{
β′′
0 − β′′

1 if x1 = 0 (female),
β′′
0 + β′′

1 if x1 = 1 (male).

In this case E[Y | x] = xβ′′, where the rows of the design matrix are x = [1,−1]
if female and x = [1, 1] if male. We write

E[Y ] = E[Y | x1 = 0]× p0 + E[Y | x1 = 1]× (1− p0)

= β′′
0 + β′′

1 (1− 2p0),

where p0 is the proportion of females in the population. We therefore see that β′′
0 is

the expected response if p0 = 1/2, and

E[Y | x1 = 1]− E[Y | x1 = 0] = 2β′′
1 ,

is the expected difference in responses between males and females.
An alternative parameterization imposes the corner-point constraint and assigns

β′
1 = 0 so that

E[Y | x1] =

{
β0 if x1 = 0 (female),
β0 + β1 if x1 = 1 (male).
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For this parameterization, E[Y | x] = xβ, where x = [1, 0] if female and x = [1, 1]
if male. In this model, β0 is the expected response for females, and β1 is the additive
change in the expected response for males, as compared to females.

A final model is

E[Y | x1] =

{
β†
0 if x1 = 0 (female)

β†
1 if x1 = 1 (male).

In this case E[Y | x] = xβ† where x = [1, 0] if female and x = [0, 1] if male so that
β�
0 is the expected response for a female and β�

1 is the expected response for a male.
We stress that inference for each of the formulations is identical; all that changes is
parameter interpretation.

The benefits or otherwise of alternative parameterizations should be considered
in the light of their extension to the case of more than two levels and to multiple
factors. For example, the [β†

0, β
†
1] parameterization does not generalize well to

a situation in which there are multiple factors and we do not wish to assume
a unique mean for each combination of factors (i.e., a non-saturated model). It
is obviously important to determine the default parameterization adopted in any
particular statistical package so that parameter interpretation can be accurately
carried out.

In this book we adopt the corner-point parameterization. Unlike the sum-to-
zero constraint, this parameterization is not symmetric, since the first level of
each factor is afforded special status, but parameter interpretation is relatively
straightforward. If possible, one should define the factors so that the first level is
the most natural “baseline.” We illustrate the use of this parameterization with an
example concerning two factors, x1 and x2, with x1 having 3 levels, coded as 0, 1,
2, and x2 having 4 levels coded as 0, 1, 2, 3. The coding for the no interaction (main
effects2 only) model is

E[Y | x1, x2] =

⎧
⎪⎪⎨

⎪⎪⎩

μ if x1 = 0, x2 = 0,

μ+ αj if x1 = j, j = 1, 2, x2 = 0,

μ+ βk if x1 = 0, x2 = k, k = 1, 2, 3,

μ+ αj + βk if x1 = j, j = 1, 2, x2 = k, k = 1, 2, 3.

As shorthand, we write this model as

E[Y | x1 = j, x2 = k] = μ+ αj × I(x1 = j) + βk × I(x2 = k),

for j = 0, 1, 2, k = 0, 1, 2, 3, with α0 = β0 = 0.

2This terminology is potentially deceptive since “effects” invite a causal interpretation.
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Fig. 5.3 Expected values for various models with two binary factors x1 and x2, “×” represents
x2 = 0 and “◦” x2 = 1: (a) Null model, (b) x1 main effect only, (c) x2 main effect only, (d) x1

and x2 main effects, (e) interaction model 1, (f) interaction model 2. The dashed lines in panels
(e) and (f) denote the expected response under the main effects only model

When one or more of the covariates are factors, interest may focus on interac-
tions. To illustrate, suppose first we have two binary factors, x1 and x2 each coded
as 0, 1. The most general form for the mean is the saturated model

E[Y | x1, x2] = μ+ α1 × I(x1 = 1) + β1 × I(x2 = 1) + γ11 × I(x1 =1, x2 =1)

(5.14)

where we have four unknown parameters and the responses may be summarized
as four mean values. Figure 5.3 shows a variety of scenarios that may occur with
this model. Panel (a) shows the null model in which the response does not depend
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Table 5.1 Corner-point notation for two-factor model with interaction

x2

0 1 2 3

x1 0 μ μ+ β1 μ+ β2 μ+ β3

1 μ+ α1 μ+ α1 + β1 + γ11 μ+ α1 + β2 + γ12 μ+ α1 + β3 + γ13
2 μ+ α2 μ+ α2 + β1 + γ21 μ+ α2 + β2 + γ22 μ+ α2 + β3 + γ23

on either variable, and panels (b) and (c) main effects due to x1 only and to x2

only, respectively. In panel (d) the response depends on both factors in a simple
additive main effects only fashion (which is characterized by the parallel lines on
the plot). The association with x2 is the same for both levels of x1 and γ11 = 0
in (5.14). Panels (e) and (f) show two different interaction scenarios. In panel (e),
when x1 = 1 and x2 = 1 simultaneously, the expected response is greater than
that predicted by the main effects only model (which is shown as a dashed line).
In panel (f), the effect of the interaction is to reduce the association due to x2.
For the x1 = 0 population, individuals with x2 = 1 have an increased expected
response over individuals with x2 = 0. In the x1 = 1 population, this association is
reversed. In the saturated model (5.14), γ11 is measuring the difference between the
average in the x1 = 1, x2 = 1 population and that predicted by the main effects only
model. In the saturated model, α1 is the expected change in the response between
the x1 = 1 and the x1 = 0 populations when x2 = 0, α1 + γ11 is this same
comparison when x2 = 1.

In this example we have a two-way (also known as first-order) interaction (a
terminology that extends in an obvious fashion to three or more factor). If an
interaction exists in a model, then all main effects that are involved in the interaction
will often be included in the model, which is known as the hierarchy principle
(see Sect. 4.8 for further discussion). Following this principle aids in interpretation,
but there are situations in which one would not restrict oneself to this subset of
models. For example, in a prediction setting (Chaps. 12–10), we may ignore the
hierarchy principle.

Table 5.1 illustrates the corner-point parameterization for the case in which there
are two factors with three and four levels and all two-way interactions are present.
The main effects model is obtained by setting γjk = 0 for j = 1, 2, k = 1, 2, 3. This
notation extends to generalized linear models, as we see in Chap. 6.

5.5.3 Data Transformations

Model (5.1) assumes uncorrelated errors with constant variance. If there is evidence
of nonconstant variance, the response may be transformed to achieve constant
variance, though this changes other characteristics of the model. Historically, this
was a popular approach due to the lack of easily implemented alternatives to
the linear model with constant variance, and it is still useful in some instances.
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For example, for positive data taking the log transform and fitting linear models is
a common strategy. An alternative approach that is often preferable is to retain the
mean–variance relationship and model on the original scale of the response (using
a generalized linear model, for example see Chap. 6).

Suppose we have

E[Y ] = μy

and

var(Y ) = σ2
yg(μy),

so that the mean–variance relationship is determined by g(·), which is assumed
known, at least approximately. Consider the transformed random variable, Z =
h(Y ). Taking the approximation

Z ≈ h(μy) + (Y − μy)h
′(μy),

where h′(μy) =
dh
dy

∣∣
µy

, produces

E[Z] ≈ h(μy),

and

var(Z) ≈ σ2
yg(μy)h

′(μy)
2.

To obtain independence between the variance and the mean, we therefore require

h(·) =
∫

g(y)−1/2 dy. (5.15)

For example, a commonly encountered relationship for positive responses is
var(Y ) = σ2

yμ
2
y , so that the coefficient of variation (which is the standard deviation

divided by the mean) is constant. In this case, the suggested transformation,
from (5.15), is Z = log Y . As a second example, if var(Y ) = σ2

yμy , the

recommended transformation is Z =
√
Y .

Transformations of Y , and/or covariates, may also be taken in order to obtain an
approximately linear association, though it is advisable to do this before seeing the
scatterplot of y versus x, since data dredging is a bad idea, as discussed in Sect. 4.10.

Parameter interpretation is usually less straightforward if we have transformed
the response and/or the covariates, as we illustrate with a series of examples. In this
section, for clarity, we explicitly state the base of the logarithm. Suppose we fit
the model

loge Y = β0 + β1x+ ε, (5.16)

or equivalently

Y = exp(β0 + β1x+ ε) = exp(β0 + β1x)δ, (5.17)
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where δ = exp(ε). The expectation of Y depends on the distribution of ε, but the
median of Y | x is exp(β0 + β1x), so long as the median of ε is zero. It will often
be more appropriate to report associations in terms of the median for a positive
response; exp(β0) is the median response when x = 0, and exp(β1) is the ratio
of median responses corresponding to a unit increase in x. We may interpret the
intercept in terms of the expected value for specific distributional choices for ε.
For example, if ε | x ∼ N(0, σ2), then since Y is lognormal (Appendix D),

E[Y | x] = exp(β0 + β1x+ σ2/2),

giving E[Y | x = 0] = exp(β0 + σ2/2) and

E[Y | x+ 1]

E[Y | x] = exp(β1), (5.18)

so that exp(β1) can be interpreted as the ratio of expected responses between
subpopulations whose x values differ by one unit. The interpretation (5.18) is true
for other distributions, so long as E[exp(ε) | x] does not depend on x. In general,
if (5.18) holds, exp(cβ1) is the ratio of expected responses between subpopulations
with covariate values x + c and x. An alternative interpretation follows from
observing that

d

dx
E[Y | x] = β1E[Y | x],

so that the rate of change of the mean function with respect to x is proportional to
the mean, with proportionality constant β1.

Model (5.16), with the assumption of normal errors, is useful if the standard
deviation on the original scale is proportional to the mean (to give a constant
coefficient of variation) since, evaluating the variance of a lognormal distribution
(Appendix D),

var(Y | x) = E[Y | x]2 [exp(σ2)− 1
]
,

and if σ2 is small, exp(σ2) ≈ 1 + σ2, and so

var(Y | x) ≈ E[Y | x]2σ2,

showing that for this model we have, approximately, a constant coefficient of
variation. Hence, log transformation of the response is often useful for strictly
positive responses, which ties in with the example following (5.15).

A model that looks similar to (5.17) is

Y = E[Y | x] + ε = exp(β0 + β1x) + ε. (5.19)

In this model we have additive errors, whereas in the previous case, the errors were
multiplicative. For the additive model, exp(β0) is the expected value at x = 0, and
exp(β1) is the ratio of expected responses between subpopulations whose x values
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differ by one unit, regardless of the error distribution (so long as it has zero mean).
In model (5.19), we may question whether additive errors are reasonable given that
the mean function is always positive, though if the responses are well away from
zero, there may not be a problem. Model (5.19) is nonlinear in the parameters,
whereas (5.16) is linear, which has implications for inference and computation, as
discussed in Chap. 6.

We now consider the model

Y = β0 + β1 log10 x+ ε (5.20)

which can be useful if linearity of the mean is reasonable on a log scale. For
example, if we have dose levels of a drug x of 1, 10, 100, and 1,000, then we would
be very surprised if changingx from 1 to 2 produces the same change in the expected
response as increasing x from 1,000 to 1,001. Modeling on the original scale might
also result in extreme x values that are overly influential, though the appropriateness
of the description of the relationship between Y and x should drive the decision as to
which scale to model on. For model (5.20), the obvious mathematical interpretation
is that β1 represents the difference in the expected response for individuals whose
log10 x values differ by one unit. A more substantive interpretation follows from
observing that

E[Y | cx]− E[Y | x] = β1 log10 c

so that for a c=10-fold increase in x, the expected responses differ by β1.
Therefore, taking log10 x gives an associated coefficient that gives the same change
in the average when going from 1 to 10, as when going from 100 to 1,000.

Similarly, if we consider a linear model in log2 x, then kβ1 is the additive
difference between the expected response for two subpopulations with covariates
2kx and x. For example, if one subpopulation has twice the covariate of another,
the difference in the expected response is β1. In general, if we reparameterize via
loga x (to give β1 as the change corresponding to an a-fold change), then the effect
of a b-fold change is β1 loga b. As an example, if we initially assume the model

E[Y | x] = β0 + β1 loge x,

then β1 loge 10 = 2.30× β1 is the expected change for a 10-fold change in x.
We now consider the model with both Y and x transformed

loge Y = β0 + β1 log10 x+ ε.

Under this specification, exp(β1) represents the multiplicative change in the median
response corresponding to a 10-fold increase in x.
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Example: Prostate Cancer

For the prostate data, a simple linear regression model that does not adjust for
additional variables is

log(PSA) = β0 + β1 × loge(can vol) + ε

where the errors ε are uncorrelated with E[ε] = 0 and var(ε) = σ2. In this model,
exp(β1) is the multiplicative change in median PSA associated with an e-fold
change in cancer volume. Perhaps more usefully, 2.30 × β1 is the multiplicative
change in median PSA associated with a 10-fold increase in cancer volume.

5.6 Frequentist Inference

5.6.1 Likelihood

Consider the model

Y = xβ + ε,

with ε ∼ Nn(0, σ
2In), x = [1, x1, . . . , xk], and β = [β0, β1, . . . , βk]

T. The
complete parameter vector is θ = [β, σ] and is of dimension p×1 where p = k+2.
The likelihood function is

L(θ) = (2πσ2)−n/2 exp

[
− 1

2σ2
(y − xβ)T(y − xβ)

]
,

with log likelihood

l(θ) = −n

2
log(2πσ2)− 1

2σ2
(y − xβ)T(y − xβ),

which yields the score equations (estimating functions)

S1(θ) =
∂l

∂β
= − 1

σ2
xT(Y − xβ) (5.21)

S2(θ) =
∂l

∂σ
= −n

σ
+

1

σ3
(Y − xβ)T(Y − xβ). (5.22)

Setting (5.21) and (5.22) to zero (and assuming xTx is of full rank) gives the MLEs

β̂ = (xTx)−1xTY

σ̂ =

[
1

n
(Y − xβ̂)T(Y − xβ̂)

]1/2
.
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We now examine the properties of these estimators, beginning with β̂:

E[β̂] = (xTx)−1xTE[Y ]

= (xTx)−1xTxβ

= β

so that β̂ is an unbiased estimator for all n. Though S2 is an unbiased estimating
function, σ̂ is a nonlinear function of S2 and so has finite sample bias (but is
asymptotically unbiased).

Asymptotic variance estimators are obtained from the information matrix:

I(θ) = −E

[
∂S

∂θ

]
=

[
I11 I12
I21 I22

]

where S = [S1, S2]
T, and

I11 =
∂S1

∂β
=

xTx

σ2

I12 = IT
21 =

∂S1

∂σ
= 0

I22 =
∂S2

∂σ
=

2n

σ2
.

Taking var(θ̂) = I(θ)−1 gives

var(β̂) = σ2(xTx)−1

var(σ̂) =
σ2

2n
.

In practice, σ2 is replaced by its estimator to give

v̂ar(β̂) = σ̂2(xTx)−1

v̂ar(σ̂) =
σ̂2

2n
.

For β̂ to be unbiased, we need only assume E[Y | x] = xβ, while for var(β̂) =
σ2(xTx)−1, we require var(Y | x) = σ2In, but not normality of errors. The
expression for the variance is also exact for finite n.

The asymptotic distribution of the MLE based on n observations, β̂n, is

(xTx)1/2(β̂n − β) →d Nk+1(0, σ
2Ik+1), (5.23)
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and (by Slutsky’s theorem, Appendix G) is still valid if σ is replaced by a consistent
estimator. It should be stressed that normality of Y is not required, just n sufficiently
large for the central limit theorem to apply. Since β̂n is a linear combination
of independent observations, the central limit theorem may be directly applied.
Another way of viewing this asymptotic derivation is of replacing the likelihood
p(y | β) by p(β̂n | β).

For σ̂ to be asymptotically unbiased, we require var(Y | x) = σ2In, so that the
estimating function for σ, (5.22), is unbiased. For v̂ar(σ̂) = σ̂2/2n to hold, we need
the third and fourth moments to be correct and equal to zero and σ2, respectively,
as with the normal distribution. The dependence on higher-order moments results in
inference for σ being intrinsically more hazardous than inference for β.

Intervals for βj , the jth components of β, are based upon the statistic

β̂j − βj

ŝ.e.(β̂j)
,

where the standard error in the denominator is σ̂ times the square root of the (j, j)th
element of (xTx)−1. The robustness to non-normality of the data is in part due to
the standardization via the estimated standard error. In particular, we only require
σ̂ →p σ. An asymptotic 100× (1− α)% confidence interval for βj is

β̂j ± zα/2 × ŝ.e.(β̂j)

where zα/2 = Φ(α/2).
If we wish to make inference about σ2, then we might be tempted to construct a

confidence interval for σ2 by leaning on εi | σ2 ∼iid N(0, σ2). This leads to

RSS
σ2

∼ χ2
n−k−1, (5.24)

where RSS =
∑n

i=1(Yi − xiβ̂)
2 is the residual sum of squares. Intervals obtained

in this manner are extremely non-robust to departures from normality; however,
see van der Vaart (1998, p. 27). The chi-square statistic does not standardize in any
way, and any attempt to do so would require an estimate of the fourth moment of
the error distribution, an endeavor that will be difficult due to the inherent variability
in an estimate of the kurtosis (for a normal distribution, the kurtosis is zero, and so
we do not require an estimate). Consequently, an interval (or test) based on (5.24)
should not be used in practice unless we have strong evidence to suggest normality
(or close to normality) of errors.

If the errors are such that ε | σ2 ∼ Nn(0, σ
2In), then combining (5.23)

with (5.24) gives, using (E.2) of Appendix E, the distribution

β̂ ∼ Tk+1

[
β, s2(xTx)−1, n− k − 1

]
, (5.25)
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a (k + 1)-dimensional Student’s t distribution with location β, scale matrix
s2(xTx)−1, and n−k−1 degrees of freedom (Sect. D). A 100×(1−α)% confidence
interval for βj follows as

β̂j ± tn−k−1
α/2 × ŝ.e.(β̂j)

where tn−k−1
α/2 is the α/2 percentage point of a standard t random variable with

n − k − 1 degrees of freedom. A more reliable approach to the construction of
confidence intervals for elements of β is to use the bootstrap or sandwich estimation,
though if n is small, the latter are likely to be unstable. For small n, a Bayesian
approach may be taken, though there is no way that the distributional assumption
made for the data (i.e., the likelihood) can be reliably assessed.

We have just discussed the non-robustness of (5.24) to normality. It is perhaps
surprising then that confidence intervals constructed from (5.25) are used, since they
are derived directly from (5.24). However, the resultant intervals are conservative in
the sense that they are wider than those constructed from (5.23), explaining their
widespread use.

For a test of H0 : βj = c, j = 1, . . . , k, we may derive a t-test. Under H0,

T =
β̂j − c

S
1/2
j σ̂

∼ Tn−k−1, (5.26)

where Sj is the (j, j)th element of (xTx)−1 and Tn−k−1 denotes the univariate
t distribution with n − k − 1 degrees of freedom, location β̂j , and scale Sj σ̂

2.
Although σ̂ can be very unstable, (5.26) it is an example of a self-normalized sum
and so is asymptotically normal (Giné et al. 1997). The test with c = 0 is equivalent
to the partial F statistic

F =
FSS(βj | β0, . . . , βj−1, βj+1, . . . , βk)/1

RSS(β)/(n− k − 1)
,

where RSS(β) is the residual sum of squares given the regression model E[Y | x] =
xβ and the fitted sum of squares

FSS(βj | β0, . . . , βj−1, βj+1, . . . , βk) = RSS(β0, . . . , βj−1, βj+1, . . . , βk)− RSS(β),

is equal to the change in residual sum of squares when βj is dropped from the
model. The “partial” here refers to the occurrence of βl, l �= j in the model. Under
H0, F ∼ F1,n−k−1. The link with (5.26) is that F = T 2 with T evaluated at c = 0.

Let β = [β1,β2] be a partition with β1 = [β0, . . . , βq] andβ2 = [βq+1, . . . , βk],
with 0 ≤ q < k. Interest may focus on simultaneously testing whether a set of
parameters is equal to zero, via a test of the null

H0 : β1 unrestricted, β2 = 0 versus H1 : β = [β1,β2] �= [β1,0].
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Under H0, the partial F statistic

F=
FSS(βq+1, . . . , βk | β0, β1, . . . , βq)/(k − q)

RSS/(n− k − 1)
=

FSS(β2 | β1)/(k − q)

RSS/(n− k − 1)
(5.27)

is distributed as Fk−q,n−k−1 (Appendix D). Note that

FSS(β2 | β1) �= FSS(β2),

unless [x1, . . . , xq] is orthogonal to [xq+1, . . . , xk]. Such derivations are crucial to
the mechanics of analysis of variance models, which we describe in Sect. 5.8.

Extending the above with q = −1 so that all k + 1 parameters are being
considered, the 100× (1− α)% confidence interval for β is the ellipsoid

(β − β̂)TxTx(β − β̂) ≤ (k + 1)s2Fk+1,n−k−1(1− α) (5.28)

where s2 = RSS/(n − k − 1) and Fk+1,n−k−1(1 − α) is the 1 − α point of the
F distribution with k + 1, n− k − 1 degrees of freedom. The total sum of squares
(TSS) may be partitioned as

TSS = (y − xβ̂)T(y − xβ̂)

= (y − xβ + xβ − xβ̂)T(y − xβ + xβ − xβ̂)

= (y − xβ)T(y − xβ) + (β − β̂)TxTx(β − β̂)

= RSS + FSS.

Such expressions are specific to the linear model.
We now consider prediction of both an expected and an observed response.

The latter require consideration of what we term measurement error, though we
recognize that the errors in the model in general represent not only discrepancies
arising from the measurement instrument but all manner of additional errors and
sources of model misspecification. For inference concerning the expected response
at covariate vector x0, we define θ = x0β. Then θ̂ = x0β̂ and under correct first
and second moment specification and via the central limit theorem:

[x0(x
Tx)−1xT

0]
−1/2(θ̂n − θ) →d N(0, σ2) (5.29)

from which confidence intervals may be constructed. For prediction of an observed
response at x0, we define φ = x0β + ε with estimator φ̂ = x0β̂ + ε̂. It is now
crucial to make a distributional assumption for the errors. Under ε ∼ N(0, σ2),

[1 + x0(x
Tx)−1xT

0]
−1/2(φ̂− φ) ∼ N(0, σ2). (5.30)

The accuracy of intervals based on this form will be extremely sensitive to the
normality assumption.
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5.6.2 Least Squares Estimation

We describe an intuitive method of estimation with a long history and attractive
properties. In ordinary least squares, the estimator is chosen to minimize the residual
sum of squares

RSS(β) =
n∑

i=1

(Yi − xiβ)
2 = (Y − xβ)T(Y − xβ).

Differentiation (and scaling for convenience) gives

− 1

2

∂

∂β
RSS = G(β) = xT(Y − xβ) (5.31)

with solution

β̂ = (xTx)−1xTY ,

so long as xTx is of full rank. If we assume E[Y | x] = xβ, then E[G(β)]=0
and so (5.31) corresponds to an estimating equation, and we may apply the
nonidentically distributed version of Result 2.1, summarized in (2.13), with

An = E

[
∂G

∂β

]
= −xTx

Bn = var(G) = xTvar(Y )x.

Consequently, to obtain the variance–covariance matrix of β̂, we need to specify
var(Y ). Assuming var(Y ) = σ2In gives B = σ2xTx and

(xTx)1/2(β̂ − β) →d Nk+1(0, σ
2Ik+1).

More generally, sandwich estimation may be applied, as we discuss in Sect. 5.6.4.
In the method of generalized least squares, we assume E[Y | x] = xβ and

var(Y | x) = σ2V whereV is a known matrix (weighted least squares corresponds
to diagonal V ) and consider the function

RSSG(β) = (Y − xβ)TV −1(Y − xβ).

Minimization of RSSG(β) yields the estimating function

GG(β) = xTV −1(Y − xβ),

and corresponding estimator

β̂
G
= (xTV −1x)−1xTV −1Y ,
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with asymptotic distribution

(xTV −1x)1/2(β̂G − β) →d Nk+1(0, σ
2Ik+1). (5.32)

This estimator also arises from a likelihood with ε ∼ Nn(0, σ
2V ) with V = In

giving the ordinary least squares estimator, as expected. An unbiased estimator of
σ2 is

σ̂2
G
=

1

n− k − 1
(Y − xβ̂)TV −1(Y − xβ̂), (5.33)

(see Exercise 5.1) and may be substituted for σ2 in (5.32).
Given a particular dataset with n cases, a natural question is as follows: What

is the practical significance of a central limit theorem and the associated regularity
conditions? In the simple linear regression context, we require

max
1≤i≤n

(xi − x)2/

n∑

j=1

(xj − x)2 → 0, (5.34)

as n → ∞. Intuitively, the imaginary way in which the number of data points
is going to infinity is such that no single x value can dominate. In Sect. 5.10 we
will present a number of simulations showing the behavior of the least squares
estimator as a function of n, the distribution of the errors, and the distribution of
the x values. Such simulations give one an indication of when asymptotic normality
“kicks in.” The required conditions indicate the sorts of x distributions that are
more or less desirable for valid asymptotic inference. A crucial observation is that
reliable asymptotic inference via (5.32) requires the mean–variance relationship to
be correctly specified. We now present a theorem that provides one justification for
the use of the least squares estimator.

5.6.3 The Gauss–Markov Theorem

Definition. The best linear unbiased estimator (BLUE) of β:

• Is a linear function of Y , so that the estimator can be written BTY , for an n ×
(k + 1) matrix B

• Is unbiased so that E[BTY ] = β
• Has the smallest variance among all linear estimators

We now state and prove a celebrated theorem.

The Gauss–Markov Theorem: Consider the linear model E[Y ] = xβ, where Y
is n×1, x is n×(k+1), and β is (k+1)×1. Suppose further that cov(Y ) = σ2In.

Then β̂ = (xTx)−1xTY is the best linear unbiased estimator (BLUE) of cTβ.
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Proof. The estimator β̂ = (xTx)−1xTY is clearly linear, and we have already
shown it is unbiased. We therefore only need to show the variance is smallest among
linear unbiased estimators.

Let β̃ = AY be another linear unbiased estimator with A a (k + 1)× n matrix.
Since the estimator is unbiased, E[β̃] = AE[Y ] = Axβ for any β, which implies
Ax = Ik+1. Now

var(β̃)− var(β̂) = Aσ2Ik+1A
T − σ2(xTx)−1

= σ2
[
AAT −Ax(xTx)−1xTAT

]
.

At this point we define h = x(xTx)−1xT, which is known as the hat matrix (see
Sect. 5.11.2). The hat matrix is symmetric and idempotent so that hT = h and
hhT = h. Further, In − h inherits these properties. Using these facts, we can write

var(β̃)− var(β̂) = σ2A(In − h)AT

= σ2A(In − h)(In − h)TAT

and this (k + 1) × (k + 1) matrix is positive definite, establishing that β̂ has the
smallest variance among linear unbiased estimators. 	


This result shows that β̂, which is the least squares estimate, the maximum
likelihood estimate with a normal model, and the Bayesian posterior mean with
normal model and improper prior π(β, σ2) ∝ σ−2 (as we show in Sect. 5.7), is
optimal among linear estimators. We emphasize that, in the above theorem, only
first and second moment assumptions were used with no distributional assumptions
being required.

5.6.4 Sandwich Estimation

We have already examined the properties of the ordinary least squares/maximum
likelihood estimator β̂ = (xTx)−1xY and have seen that var(β̂) = (xTx)−1σ2, if
var(Y | x) = σ2In. Suppose that the correct variance model is var(Y | x) = σ2V
so that the model from which the estimator was derived was incorrect. Then the
estimator is still unbiased, but the appropriate variance estimator is

var(β̂) = (xTx)−1xTvar(Y | x)x(xTx)−1

= (xTx)−1xTV x(xTx)−1σ2, (5.35)

Expression (5.35) can also be derived directly from the estimating function

G(β) = xT(Y − xβ),
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since we know

(A−1
n BnA

T
n
−1

)1/2(β̂ − β) →d Nk+1(0n, In),

where

Bn = var(G) = xTV xσ2

An = E

[
∂G

∂β

]
= −xTx,

to give

var(β̂) = (xTx)−1xTV x(xTx)−1σ2.

We now describe a sandwich estimator of the variance that relaxes the constant
variance assumption but assumes uncorrelated responses. When the variance is
not constant, the ordinary least squares estimator is consistent (since the mean
specification is correct), but the usual standard errors will be inappropriate.

Consider the estimating function G(β) = xT(Y − xβ). The “bread” of the
sandwich A−1 remains unchanged since A does not depend on Y . The “filling”
becomes

B = var(G) = xTvar(Y )x =

n∑

i=1

σ2
i x

T
ixi, (5.36)

where σ2
i = var(Yi) and we have assumed that the data are uncorrelated. Unfortu-

nately, σ2
i is unknown, but various simple estimation techniques are available. An

obvious estimator stems from setting σ̂2
i = (Yi − xiβ)

2 to give

B̂n =

n∑

i=1

xT
ixi(Yi − xiβ̂)

2, (5.37)

and its use provides a consistent estimator of (5.36). However, this variance
estimator has finite sample downward bias.

For linear regression, the MLE

σ̂2 =
1

n

n∑

i=1

(Yi − xiβ̂)
2 =

1

n

n∑

i=1

σ̂2
i ,

is downwardly biased (as we saw in Sect. 5.6.1), with bias −(k + 1)σ2/n, which
suggests using

B̂n =
n

n− k − 1

n∑

i=1

xT
ixi(Yi − xiβ̂)

2. (5.38)

This simple correction provides an estimator of the variance that has finite bias, since
the bias in σ̂2 changes as a function of the design points xi, but will often improve
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on (5.37). In linear regression, if var(Yi) = σ2, then E[(Yi − xiβ̂)
2] = σ2(1− hii)

where hii is the ith diagonal element of the hat matrix x(xTx)−1xT (we derive this
result in Sect. 5.11.2). Therefore, another suggested correction is

B̂n =

n∑

i=1

xT
ixi

(Yi − xiβ̂)
2

(1− hii)
. (5.39)

For each of (5.37), (5.38), and (5.39), the variance of the estimator β̂ is consistently
estimated by Â−1

n B̂nÂ
−1
n .

We report the results of a small simulation study, in which we examine the
performance of the sandwich estimator as a function of n, the distribution of x, and
the variance estimator. We carry out six sets of simulations with the x distribution
either uniform on (0,1) or exponential with rate parameter 1, and var(Y | x) =
E[Y | x]q × σ2 with q = 0, 1, 2, so that the variance of the errors is constant,
increases in proportion to the mean, or increases in proportion to the square of the
mean. The errors are normally distributed and uncorrelated in all cases (Sect. 5.10
considers the impact of other forms of model misspecification).

In Table 5.2, we see that, as expected, confidence intervals obtained directly from
the usual variance of the ordinary least squares estimator, that is, (xTx)−1σ̂2, give
accurate coverage when the error variance is constant. When the x distribution is
uniform, the coverage is accurate even under variance model misspecification. There
is poor coverage for the exponential distribution, however, which worsens with
increasing n. The coverage of the sandwich estimator confidence intervals requires
large samples to obtain accurate coverage for the exponential x model. There is a
clear efficiency loss when using sandwich estimation, if the variance of the errors
is constant. The downward bias of the sandwich estimator based on the unadjusted
residuals is apparent, though this bias decreases with increasing n. Working with
residuals standardized by n/(n − k − 1), (5.38), improves the coverage, while the
use of the hat matrix version, (5.39), improves performance further.

If the errors are correlated, the sandwich estimators of the variance considered
here will not be consistent. Chapter 8 provides a description of sandwich estimators
for the correlated data situation that may be used when there is replication across
“clusters.”

Example: Prostate Cancer

We fit the model

log yi = β0 + β1 log10(xi) + εi (5.40)

where yi is PSA and xi is the cancer volume for individual i and εi are assumed
uncorrelated with constant variance σ2.
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Table 5.2 Confidence interval coverage of nominal 95% intervals under a model-based
variance estimator in which the variance is assumed independent of the mean and under
three sandwich estimators given by (5.37)–(5.39)

n Model-based Sandwich 1 Sandwich 2 Sandwich 3

5 95 84 90 93
10 95 88 91 92
25 94 92 93 94
50 95 94 94 94
100 95 95 95 95
250 95 95 95 95

var(Y | x) = σ2, x uniform

5 95 82 88 92
10 95 85 88 91
25 95 89 91 92
50 95 91 92 93
100 95 93 93 94
250 95 94 94 94

var(Y | x) = σ2, x exponential

5 95 83 89 92
10 95 89 92 93
25 95 92 94 94
50 95 94 95 95
100 95 95 95 95
250 95 95 95 95

var(Y | x) = E[Y | x]× σ2, x uniform

5 92 76 83 89
10 90 77 82 87
25 87 83 85 88
50 85 87 88 90
100 85 90 91 92
250 83 93 93 93

var(Y | x) = E[Y | x]× σ2, x exponential

5 95 83 89 92
10 95 89 92 93
25 95 92 93 94
50 94 94 94 94
100 95 94 95 95
250 95 95 95 95

var(Y | x) = E[Y | x]2 × σ2, x uniform

5 89 70 78 86
10 81 71 75 82
25 75 78 80 85
50 73 85 86 88
100 71 89 90 91
250 68 92 92 93

var(Y | x) = E[Y | x]2 × σ2, x exponential

The true values are β0 = 1, β1 = 1, and all results are based on 10,000 simulations. In
all cases, the errors are normally distributed and uncorrelated. The true variance model
and distribution of x are given in the last line of each block
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Table 5.3 Least squares/maximum likelihood parameter
estimates and model-based and sandwich estimates of the
standard errors, for the prostate cancer data

Model-based Sandwich
Parameter Estimate standard error standard error

β0 1.51 0.122 0.123
β1 0.719 0.0682 0.0728
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Fig. 5.4 Log of
prostate-specific antigen
versus log of cancer volume,
along with the least
squares/maximum likelihood
fit, and 95% pointwise
confidence intervals for the
expected linear association
(narrow bands) and for a new
observation (wide bands)

where yi is PSA and xi is cancer volume for individual i and εi are assumed
uncorrelated with constant variance σ2. Table 5.3 gives summaries of the linear
association under model-based and sandwich variance estimates. The point esti-
mates and model-based standard error estimates arise from either ML estimation
(assuming normality of errors) or ordinary least squares estimation of β. The sand-
wich estimates of the standard errors relax the constancy of variance assumption
but assume uncorrelated errors. The standard error of the intercept is essentially
unchanged under sandwich estimation, when compared to the model-based version,
while that for the slope is slightly increased. The sample size of n = 97 is large
enough to guarantee asymptotic normality of the estimator. For a 10-fold increase
in cancer volume (in cc), there is a exp(β̂1) = 2.1 increase in PSA concentration.

Figure 5.4 plots the log of PSA versus the log of cancer volume and superimposes
the estimated linear association, along with pointwise 95% confidence intervals
for the expected linear association and for a new observation (assuming normally
distributed data). There does not appear to be any deviation in random scatter of
the data around the line (a residual plot would give a clearer way of assessing the
nonconstant variance assumption, as we will see in Sect. 5.10). In Fig. 5.5(a), we
plot PSA versus log cancer volume and clearly see the variance of PSA increasing
with increasing cancer volume on this scale. Figure 5.5(b) plots PSA versus cancer
volume. It is very difficult to assess the goodness of fit of the fitted relationship
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Fig. 5.5 (a) Prostate-specific antigen versus log cancer volume, (b) Prostate-specific antigen
versus cancer volume. In each case, the least squares/maximum likelihood fit is included

or assumptions concerning the mean–variance relationship when the response and
covariate are on their original scales. In both plots, the fitted line is from the fitting
of model (5.40).

5.7 Bayesian Inference

We now consider Bayesian inference for the linear model. As with likelihood
inference, we are required to specify the probability of the data and we assume
Y | β, σ2 ∼ Nn(xβ, σ

2In). The posterior distribution is

p(β, σ2 | y) ∝ L(β, σ2)× π(β, σ2). (5.41)

Closed-form posterior distributions for β and σ2 are only available under restricted
prior distributions. In particular, consider the improper prior distribution

π(β, σ2) = p(β)× p(σ2) ∝ σ−2 (5.42)

Under this prior and likelihood combination, the posterior is, up to proportionality,

p(β, σ2 | y) ∝ (σ2)−(n+2)/2 exp

[
− 1

2σ2
(y − xβ)T(y − xβ)

]
. (5.43)

To derive p(β | y), we need to integrate σ2 from the joint distribution. To achieve
this, it is useful to use an equality derived earlier, (2.23):

(y − xβ)T(y − xβ) = s2(n− k − 1) + (β̂ − β)TxTx(β̂ − β),
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where β̂ is the ML/LS estimate. Substitution into (5.43) gives

p(β | y) ∝
∫
(σ2)−(n+2)/2 exp

{
− 1

2σ2

[
s2(n− k − 1)

+ (β̂ − β)TxTx(β̂ − β)
]}

dσ2.

The integrand here is the kernel of an inverse gamma distribution (Appendix D) for
σ2 and so has a known normalizing constant, the substitution of which gives

p(β | y) ∝ Γ
(n
2

)[s2(n− k − 1) + (β̂ − β)TxTx(β̂ − β)

2

]−n/2

∝
[
1 +

(β̂ − β)Ts−2xTx(β̂ − β)

n− k − 1

]−(n−k−1+k+1)/2

after some simplification. By inspection we recognize that this expression is the
kernel of a (k + 1)-dimensional t distribution (Appendix D) with location β̂, scale
matrix s2(xTx)−1, and n− k − 1 degrees of freedom, that is,

β | y ∼ Tk+1

[
(xTx)−1xTy, (xTx)−1s2, n− k − 1

]
. (5.44)

Consequently, under the prior (5.42), the Bayesian posterior mean E[β | y]
corresponds to the MLE, and 100(1 − α)% credible intervals are identical to
100(1 − α)% confidence intervals, though of course the two intervals have very
different interpretations.

Asymptotically, as with likelihood estimation, it is the covariance model
var(Y | x) that is most important for valid inference, and normality of the error
terms is unimportant. One way of thinking about this is as replacing y | β, σ2 by

β̂ | β, σ̂2 ∼ Nk+1

[
β, σ̂2(xTx)−1/2

]
.

We may derive the marginal posterior distribution of σ2 as

σ2 | y ∼ (n− p− 1)s2 × χ−2
n−k−1, (5.45)

a scaled inverse chi-squared distribution. As in the frequentist development,
inference for σ2 is likely to be highly sensitive to the normality assumption.

Although we can obtain analytic forms for p(β | y) and p(σ2 | y) under the
prior (5.42), closed forms will not be available for general functions of interest.
Direct sampling from the posterior may be utilized for inference in this case
though. A sample from the joint distribution p(β, σ2 |y) can be generated using
the composition method (Sect. 3.8.4) via the factorization
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p(β, σ2 | y) = p(σ2 | y)× p(β | σ2,y),

whereβ |σ2,y ∼ Nk+1

[
β̂, σ2(xTx)−1

]
, and σ2 |y is given by (5.45). Independent

samples are generated via the pair of distributions

σ2(t) ∼ p(σ2 | y)
β(t) ∼ p(β | σ2(t),y),

for t = 1, . . . , T . Samples for functions of interest φ = g(β, σ2) are then available
as φ(t) = g(β(t), σ2(t)).

The conjugate prior (Sect. 3.7.1) here takes the form π(β, σ2) = π(β | σ2)π(σ2)
with β | σ2 ∼ Nk+1(m, σ2V ) and σ−2 ∼ Ga(a, b). However, this specification
is not that useful in practice since the prior for β depends on σ2. In particular, for
smaller and smaller σ2, the prior for β becomes increasingly concentrated about m
which would not seem realistic in many contexts.

Under other prior distributions, analytic/numerical approximations or sampling-
based techniques are required. An obvious prior choice is

β ∼ N(m,V ), σ−2 ∼ Ga(a, b)

which gives the posterior

p(β, σ2 | y) ∝ l(β, σ2)π(β)π(σ2)

which is intractable, unless V −1 is the (k + 1) × (k + 1) matrix of zeroes, which
is the improper prior case, (5.42), already considered. Although the posterior is not
available in closed form under this prior, it is straightforward to construct a blocked
Gibbs sampling algorithm (Sect. 3.8.4). Specifically, letting L(β, σ2) denote the
likelihood, one iterates between the pair of conditional distributions:

p(β | y, σ2) ∝ L(β, σ2)π(β)

∼ N(m�,V �) (5.46)

p(σ−2 | y,β) ∝ L(β, σ2)π(σ−2)

∼ Ga

(
a+

n

2
, b+

1

2
(y − xβ)T(y − xβ)

)
(5.47)

where

m� = W × β̂ + (Ik+1 −W )×m

V � = W × var(β̂)

and

W = (xTx+ V −1σ2)−1(xTx).
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Conditional conjugacy is exploited in this derivation; for details, see Exercise 5.4.
For general prior distributions, the Gibbs sampler is less convenient because the
conditional distributions will be of unrecognizable form, but Metropolis–Hastings
steps (Sect. 3.8.2) for β | y, σ2 and σ−2 | y,β are straightforward to construct.

5.8 Analysis of Variance

The analysis of variance, or ANOVA, is a method by which the variability in the
response is partitioned into components due to the various classifying variables and
due to error. At one level, the ANOVA model is just a special case of a multiple
linear regression model, but ANOVA does not simply have a role as an “outgrowth”
of linear models. Rather Cox and Reid (2000, p. 245) state that ANOVA has a role
“in clarifying the structure of sets of data, especially relatively complicated mixtures
of crossed and nested data. This indicates what contrasts can be estimated and the
relevant basis for estimating error. From this viewpoint the analysis of variance
table comes first, then the linear model, not vice-versa.” A study of the analysis of
variance is intrinsically linked to the study of the design of experiments. Numerous
books exist on ANOVA and the design of experiments; here we only give a brief
discussion and introduce the main concepts. Specifically, we distinguish between
crossed and nested (or hierarchical) designs and fixed and random effects modeling.

5.8.1 One-Way ANOVA

Consider the data in Table 5.4, taken from Davies (1967), which consist of the yield
(in grams) from six randomly chosen batches of raw material, with five replicates
each. The aim of this experiment was to find out to what extent batch-to-batch
variation is responsible for variation in the final product yield.

Data such as these correspond to the simplest situation in which we have a single
factor and a one-way classification. We may model the yield Yij in the jth sample
from batch i as

Yij = μ+ αi + εij , (5.48)

Table 5.4 Yield of dyestuff in grams of standard color, in each of six batches

Replicate
observation

Batch

1 2 3 4 5 6

1 1,545 1,540 1,595 1,445 1,595 1,520
2 1,440 1,555 1,550 1,440 1,630 1,455
3 1,440 1,490 1,605 1,595 1,515 1,450
4 1,520 1,560 1,510 1,465 1,635 1,480
5 1,580 1,495 1,560 1,545 1,625 1,445
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with εij | σ2 ∼iid N(0, σ2), i = 1, . . . , a, j = 1, . . . , n. We need a constraint
to prevent aliasing (Sect. 5.5.2), with two possibilities being the sum-to-zero
constraint,

∑a
i=1 αi = 0, and corner-point constraint: α1 = 0. Model (5.48) is

an example of a multiple linear regression with mean

E[Y | x] = xβ

in which

Y =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y11

...
Y1n

Y21

...
Y2n

...
Ya1

...
Yan

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, x =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 . . . 0

. . . . . . . . . . . . . . .

1 1 0 . . . 0

1 0 1 . . . 0

. . . . . . . . . . . . . . .

1 0 1 . . . 0

. . . . . . . . . . . .

1 0 0 . . . 1

. . . . . . . . . . . .

1 0 0 . . . 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, β =

⎡

⎢⎢⎢⎣

μ

α1

...
αa

⎤

⎥⎥⎥⎦ ,

and where we adopt the corner-point constraint. Suppose we are interested in
whether there are differences between the strengths from different looms. No
differences correspond to the null hypothesis:

H0 : α1 = . . . = αa = 0. (5.49)

Carrying out a(a − 1)/2 t-tests leads to multiple testing problems (Sect. 4.5).
Viewing this problem from a frequentist perspective and with a = 6 batches, we
have 15 tests of pairs of batches, and with an individual type I error of 0.05, this gives
an overall type I error of 1 − 0.9510 = 0.54. As an alternative, we may test (5.49)
using an F test (Sect. 5.6.1). Specifically, the F statistic is given by

F =
FSS(α | μ)/(a− 1)

RSS(α)/a(n− 1)
(5.50)

where

FSS(α | μ) = RSS(μ)− RSS(μ,α)

is the fitted sum of squares that results when α = [α1, . . . , αa] is added to the
model containing μ only. In (5.50), the F statistic is the ratio of two so-called mean
squares, which are average sum of squares, and under H0, since the contributions in
numerator and denominator are independent, F ∼ Fa−1,a(n−1). The ANOVA table
associated with the test is given in Table 5.5. This table lays out the quantities that
require calculation and shows the decomposition of the total sum of squares into
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Table 5.5 ANOVA table for the one-way classification. The F statistic is for a test of H0 : α1 =
α2 = . . . = αa = 0; DF is short for degrees of freedom and EMS for the expected mean square,
which is E[SS/DF]

Source Sum of squares DF EMS F statistic

Between
batches

SS1 = n
∑a

i=1(Y i· − Y ··)2 a− 1 σ2 + n
∑a

i=1 α2
i

a−1
SS1/(a−1)

SS2/a(n−1)

Error SS2 =
∑a

i=1

∑n
j=1(Yij − Y i·)2 a(n− 1) σ2

Total SST =
∑a

i=1

∑n
j=1(Yij − Ȳ··)2 an− 1

Table 5.6 One-way ANOVA table for the dyestuff data; DF is shorthand
for degrees of freedom

Source Sum of squares DF Mean square F statistic

Between
batches

56, 358 5 11,272 4.60 (0.0044)

Error 58,830 24 2,451

Total 115,188 29

The quantity in brackets in the final column is the p-value

that due to groups (batches in this example) and that due to error. The intuition
behind the F test is that if there are no group effects, then the average sum of
squares corresponding to the groups will, in expectation, equal the error variance.
Consequently, we see in Table 5.5 that the expected mean square is simply σ2 when
α1 = . . . = αa = 0. The success of the F test depends on the fact that we
may decompose the overall sum of squares into the sum of the constituent parts
corresponding to different components, and these follow independent χ2 random
variables.

Table 5.6 gives the numerical values for the dyestuff data of Table 5.4 and results
in a very small p-value. As discussed in Sect. 4.2, the calibration of p-values is
difficult, but for this relatively small sample size, a p-value of 0.0044 strongly
suggests that the null is very unlikely to be true, and we would conclude that there
are significant differences between batch means for these data. A Bayesian approach
to testing may be based on Bayes factors. In this linear modeling context, there are
close links between the Bayes factor and the F statistic (O’Hagan 1994, Sect. 9.34),
though as usual the interpretations of the two quantities differ considerably. It is
straightforward to extend the F test to the case of different sample sizes within
looms, that is, to the case of general ni, i = 1, . . . , a.

If we are interested in the overall average yield, we would not want to ignore
batch effects if present (even if they are not of explicit interest), because a model
with no batch effects would not allow for the positive correlations that are induced
between yields within the same batch. This issue is discussed in far greater detail in
Chap. 8.



5.8 Analysis of Variance 227

Table 5.7 Data on clotting
times (in minutes) for eight
subjects, each of whom
receives four treatments

Treatment

Subject 1 2 3 4 Mean

1 8.4 9.4 9.8 12.2 9.95

2 12.8 15.2 12.9 14.4 13.82

3 9.6 9.1 11.2 9.8 9.92

4 9.8 8.8 9.9 12.0 10.12

5 8.4 8.2 8.5 8.5 8.40

6 8.6 9.9 9.8 10.9 9.80

7 8.9 9.0 9.2 10.4 9.38

8 7.9 8.1 8.2 10.0 8.55

Mean 9.30 9.71 9.94 11.02 9.99

5.8.2 Crossed Designs

We now consider two factors, which we label A and B, with a and b levels,
respectively. If each level of A is crossed with each level of B, we have a
factorial design. Suppose that there are n replicates within each of the ab cells.
The interaction model is

Yijk = μ+ αi + βj + γij + εijk,

for i = 1, . . . , a, j = 1, . . . , b, and k = 1, . . . , n. This model contains 1 + a+ b+
ab parameters, while the data supply only ab sample means. Therefore, it is clear
that constraints on the parameters are required. In the corner-point parameterization
(Sect. 5.5.2), the 1 + a+ b constraints are

α1 = β1 = γ11 = . . . = γ1b = γ21 = . . . γa1 = 0.

Alternatively, we may adopt the sum-to-zero constraints:

a∑

i=1

αi =

b∑

j=1

βj =

a∑

i=1

γij =

b∑

j=1

γij = 0.

Table 5.7 reproduces data from Armitage and Berry (1994) in which clotting
times of plasma are analyzed. These data are from a crossed design in which each
of a = 8 subjects received b = 4 treatments. The design is crossed since each
patient receives each of the treatments. These data also provide an example of
a randomized block design in which the aim is to provide a more homogeneous
experimental setting within which to compare the treatments. Ignoring the blocking
factor increases the unexplained variability and reduces efficiency. Section 8.3
provides further discussion.
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Table 5.8 ANOVA table for the two-way crossed classification with one observation per cell; DF
is short for degrees of freedom and EMS for the expected mean square

Source Sum of squares DF EMS F statistic

Factor A SSA = b
∑a

i=1(Y i. − Y ..)2 a − 1 SSA
a−1

σ2+b
∑a

i=1 α2
i

a−1

Factor B SSB = a
∑b

j=1(Y .j − Y ..)2 b− 1 SSB
b−1

σ2+a
∑b

j=1 β2
j

b−1

Error SSE = (a − 1)(b − 1) SSE
(a−1)

σ2

∑a
i=1

∑b
j=1(Yij − Y i. − Y .j + Y ..)2

Total SST =
∑a

i=1

∑b
j=1(Yij − Y ..)2 ab − 1

Table 5.9 ANOVA table for the plasma clotting time data in Table 5.7; DF is short
for degrees of freedom. The quantity in brackets in the final column is the p-value

Source of variation Sum of squares DF Mean square F statistic

Treatment 13.0 3 4.34 6.62 (0.0026)
Subjects 79.0 7 11.3 17.2 (2.2× 10−7)
Error 13.8 21 0.656

Total 105.8 31

There are no replicates within each of the 8× 4 cells in Table 5.7, and so it is not
possible to examine interactions between subjects and treatments. Consequently, we
concentrate on the main effects only model:

Yij = μ+ αi + βj + εij , (5.51)

for i = 1, . . . , 4; j = 1, . . . , 8 and with εij | σ2 ∼iid N(0, σ2). Here we adopt
the corner-point parameterization with α1 = 0 and β1 = 0. Table 5.8 gives the
generic ANOVA table for a two-way classification with no replicates, and Table 5.9
gives the numerical values for the plasma data. For these data, primary interest is in
treatment effects (the αi’s), and Table 5.9 shows the steps to obtaining a p-value of
0.0026 for the null of H0 : α2 = α3 = α4 = 0 which, for this small sample size,
points strongly towards the null being unlikely. In passing, we note that there are
large between-subject differences for these data, so that the crossed design is very
efficient.

We now examine treatment differences using estimation. Under the improper
prior

p(μ,α,β, σ2) ∝ 1

σ2

interval estimates obtained from Bayesian, likelihood, and least squares analyses
are identical. We take a Bayesian stance and report the posterior distribution for
each of the treatment effects. We let θ = [μ,α,β] where α = [α2, α3, α4]
and β = [β2, . . . , β8]. The joint posterior for θ is multivariate Student’s t, with
n − k − 1 = 32 − 11 = 21 degrees of freedom, posterior mean θ̂ (the least
squares estimate) and posterior scale matrix, (xTx)−1σ̂2, where σ̂2 is the usual
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Fig. 5.6 Marginal posterior
distributions for the treatment
contrasts, with treatment 1 as
the baseline, for the plasma
clotting time data in Table 5.7

unbiased estimator of the residual error variance. Since treatment 1 is the reference
we examine treatment differences with respect to this baseline group. Figure 5.6
gives the posterior distributions for α2, α3, α4. The posterior probabilities that the
average responses under treatments 2, 3, and 4 are greater than zero are 0.16,
0.065, and 0.00017, respectively. Consequently, we conclude that there is strong
evidence that treatment 4 differs from treatment 1, with decreasingly lesser evidence
of differences between treatment 1 and treatments 3 and 2.

5.8.3 Nested Designs

For a design with two factors, suppose that Yijk denotes a response at level i of
factor A and level j of factor B, with replication indexed by k. In a nested design,
in contrast to a crossed design, j = 1 in level 1 of factor A has no meaningful
connection with j = 1 in level 2 of factor A. In the context of the previous example,
suppose each of eight patients received a single treatment each, but with k replicate
measurements. In this case, we again have two factors, treatments and patients, but
the patient effects are nested within treatments. A nested model for two factors is

Yijk = μ+ αi + βj(i) + εijk,

with i = 1, . . . , a indexing factor A and j = 1, . . . , b factor B. In the nested
patient/treatment example, A represents treatment and B patient, and so βj(i)

represents the change in expected response for patient j within level i of treatment.
Notice that there is no interaction in the model, because factor B is nested within
factor A, and not crossed, and so there is no way of estimating the usual interactions.
In a sense, βj(i) is an interaction parameter since it is the patient effect specific to a
particular treatment. Table 5.10 gives the ANOVA table for this design.



230 5 Linear Models

Table 5.10 ANOVA table for the two-way nested classification; DF is short for degrees of
freedom and EMS for the expected mean square

Source Sum of squares DF EMS F statistic

Factor A SSA = bn
∑a

i=1(Y i.. − Y ...)2 a− 1 SSA
a−1

σ2+bn
∑a

i=1 α2
i

a−1

Factor B SSB = n
∑a

i=1

∑b
j=1(Y ij. − Y i..)

2 a(b − 1) SSB
(a(b−1)

σ2+a
∑b

j=1 β2
j

b−1

(within A)

Error SSE =∑a
i=1

∑b
j=1

∑n
i=1(Yijk−

Y ij.)
2

ab(n − 1) SSE
(a−1)(b−1)

σ2

Total SST =∑a
i=1

∑b
j=1

∑n
i=1(Yijk−

Y ...)2

abn− 1

5.8.4 Random and Mixed Effects Models

The examples we have presented so far are known, in the frequentist literature, as
fixed effects ANOVA models since the parameters, for example, the αi’s in the
one-way classification, are viewed as nonrandom. An alternative random effects
approach is to view these parameters as a sample from a probability distribution,
with the usual choice being αi | σ2

α ∼iid N(0, σ2
α). From a frequentist perspective,

the choice is based on whether the units that are selected can be viewed as being
a random sample from some larger distribution of effects. Often, patients in a trial
may be regarded as a random sample from some population, while treatment effects
may be regarded as fixed effects. In this case, we have a mixed effects model.
Model (5.51) was used for the data in Table 5.7 with the αi and βj being treated as
fixed effects. Alternatively, we could use a mixed effects model with the individual
effects αi being treated as random effects and the βj , representing treatment effects,
being seen as fixed effects.

From a Bayesian perspective, the distinction being fixed and random effects is
less distinct since all unknowns are viewed as random variables. However, the prior
choice reflects the distinction. For example, in model (5.51), the “fixed effects”
corresponding to treatments may be assigned independent prior distributions βj ∼
N(0, V ) where V is fixed, while the “random effects” corresponding to patients may
be assigned the prior αi | σ2

α ∼iid N(0, σ2
α) with σ2

α assigned a prior and estimated
from the data.

A full description of estimation for random and mixed effects models will be
postponed until Chap. 8, though here we briefly describe likelihood-based inference
for the one-way model (5.48). Readers who have not previously encountered
random effects models may wish to skip the remainder of this section and return
after consulting Chap. 8. The one-way model is

Yij = μ+ αi + εij ,



5.9 Bias-Variance Trade-Off 231

Table 5.11 ANOVA table for test of H0 : σ2
α = 0; DF is short for degrees

of freedom and EMS for the expected mean square

Source Sum of squares DF EMS

Between batches n
∑a

i=1(Ȳi· − Ȳ··)2 a− 1 σ2 + nσ2
α

Error
∑a

i=1

∑n
j=1(Yij − Ȳi·)2 a(n − 1) σ2

Total
∑a

i=1

∑n
j=1(Yij − Ȳ··)2 an− 1

where we have the usual assumption εij | σ2 ∼iid N(0, σ2), j = 1, . . . , n, and add
αi | σ2

α ∼iid N(0, σ2
α), i = 1, . . . , a as the random effects distribution. We no longer

need a constraint on the αi’s in the random effects model since these parameters
are “tied together” via the normality assumption. A primary question of interest is
often whether there are between-unit differences, and this can be examined via the
hypothesis H0 : σ2

α = 0. In the one-way classification, this test turns out to be
equivalent to the F test given previously in Sect. 5.8.1, though this equivalence is
not true for more complex models. The ANOVA table given in Table 5.11 is very
similar to that for the fixed effects model form in Table 5.5, though we highlight the
difference in the final column.

Estimation via a likelihood approach proceeds by integrating the αi from the
model to give the marginal distribution

p(yi | μ, σ2, σ2
α) =

∫
p(yi | μ, αi, σ

2)× p(αi | σ2
α) dαi,

and results in

yi | μ, σ2, σ2
α ∼iid N(μ1r, σ

2Ir + σ2
αJr),

where 1r is the r × 1 vector of 1’s, Ir is the r × r identity matrix, and Jr is the
r × r matrix of 1’s. This likelihood can be maximized with respect to μ, σ2

α, σ
2,

and asymptotic standard errors may be calculated from the information matrix. A
Bayesian approach combines the marginal likelihood with a prior π(μ, σ2

α, σ
2).

5.9 Bias-Variance Trade-Off

Chapter 4 gave an extended discussion of model formulation and model selection,
and the example at the end of Sect. 4.8 acted as a prelude to this section in which
we describe the bias-variance trade-off that is encountered when we consider which
variables to include in a model.

Suppose the true model is

Y = xβ + ε,
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where Y is n× 1, x is n × (k + 1), β is (k + 1)× 1, and the errors are such that
E[ε] = 0 and var(ε) = σ2In. We have seen that the estimator

β̂ = (xTx)−1xTY ,

arises from ordinary least squares, likelihood (with normal errors, or large n),
and Bayesian (with normal errors and prior (5.42), or large n) considerations.
Asymptotically,

(xTx)1/2(β̂n − β) →d Nk+1(0, σ
2In)

where we assume xTx is of full rank. Since xTx is positive definite (all proper
variance–covariance matrices are positive definite), we can find a unique Cholesky
decomposition that is an upper-triangular matrix U such that (xTx)−1 = UU T.
Proofs of the matrix results in this section may be found in Schott (1997, p.139–
140). This decomposition leads to

var(β̂j) = σ2
k+1∑

l=1

U2
jl,

with Ujl = 0 if j > l.
We now split the collection of predictors into two groups, x = [xA,xB], and

examine the implications of regressing on a subset of predictors. Let β = [βA,βB]
T

where xA is n × (q + 1) with q < k and βA is (q + 1) × 1. Now suppose we fit
the model

E[Y | xA,xB] = xAβ
�
A

where we distinguish between β�
A and βA since the interpretation of the two sets

of parameters differs. In particular, each coefficient in βA has an interpretation
as the linear association of the corresponding variable, controlling for all of the
other variables in x. For coefficients in β�

A , control is only for variables in xA. The
estimator in the reduced model is

β̂
�

A = (xT
AxA)

−1xT
AY ,

and

E[β̂
�

A ] = (xT
AxA)

−1xT
AE[Y ]

= (xT
AxA)

−1xT
A(xAβA + xBβB)

= βA + (xT
AxA)

−1xT
AxBβB, (5.52)
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so that the second term is the bias arising from omission of the last k− q covariates.
This defines the quantity that is being consistently estimated by β̂

�

A . An alternative,
less direct, derivation follows from the results of Sect. 2.4.3 in which we showed that
the Kullback–Leibler distance between the true model and the reduced (assumed)
model is that which is being minimized.

From (5.52), we see that the bias is zero if xA and xB are orthogonal, or if βB = 0.
Consequently, for bias to result, we need xB to be associated with both the response
Y and at least one of the variables in xA. These requirements, roughly speaking, are
the conditions for xB to be considered a confounder. More precisely, Rothman and
Greenland (1998) give the following criteria for a confounder:

1. A confounding variable must be associated with the response.
2. A confounding variable must be associated with the variable of interest in the

population from which the data are sampled.
3. A confounding variable must not be affected by the variable of interest or

the response. In particular it cannot be an intermediate step in the causal path
between the variable of interest and the response.

At first sight, this result suggests that we should include as many variables as
possible in the mean model, since this will reduce bias. But the splitting of the mean
squared error of an estimator into the sum of the squared bias and the variance
shows that this is only half of the story. Unfortunately, including variables that are
not associated (or have a weak association only) with Y can increase the variance
of the estimator (or equivalently, the posterior variance), as we now demonstrate.

We write

(xT
AxA)

−1 = UAU
T
A

where UA is upper-triangular and consists of the first q+ 1 rows and columns of U .
Denoting the jth element of the estimators from the reduced and full models as β̂�

Aj

and β̂Aj , retrospectively, we have

var(β̂�
Aj) = σ2

q+1∑

l=1

U2
jl

≤ var(β̂Aj),

for j = 0, 1, . . . , q, with equality if and only if xA and xB are orthogonal.
Hence, if σ2 is fixed across analyses, we conclude that adding covariates

decreases precision. Intuitively this is because there is only so much information
within a dataset, and if we add in variables that are related to Y and are not
orthogonal to existing variables, the associations are not so accurately estimated
since there are now competing explanations for the data.

Another layer of complexity is added when we take into account estimation of
σ2 since the estimated standard errors of the estimator now depend on σ̂2. The usual
unbiased estimator is given by the residual sum of squares divided by the degrees of
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freedom. The former is nonincreasing as covariates are added to the model, and the
latter is decreasing. Consequently, as variables are entered into the model in terms
of their “significance,” a typical pattern is for σ̂2 to decrease with the addition of
important covariates, with an increase then occurring as variables that are almost
unrelated are added (due to the decrease in the denominator of the estimator).

To expand on this further, consider the “true” model in which we assume for
simplicity that βB is univariate so that xB is n× 1:

y = xAβA + xBβB + ε

where E[ε] = 0 and var(ε) = σ2In. We now fit the model

Y = xAβ
�
A + ε�,

so that xB is omitted. Then, viewing XB as random (since it is unobserved), we
obtain

var(Y | xA) = σ2In + β2
B var(XB | xA),

showing the form of the increase in residual variance (unless βB = 0) when variables
related to the response are added to the model. If xA and xB are collinear, the
variance of XB does not depend on xA.

We expand on the development of this section, with a slight change of notation,
via the “true” model

Yi = β0 + βA(xi − x) + βB(zi − z) + εi,

and fitted model

Yi = β�
0 + β�

A (xi − x) + εi.

Then, β̂0 = β̂�
0 = Y (since the covariates are centered in each model), and so each

is an unbiased estimator of the intercept:

E[β̂0] = E[β̂�
0 ] = β0.

From (5.52),

E[β̂�
A ] = βA + βB × Sxz

Sxx

= βA + βB × ρxz

(
Sxz

Sxx

)1/2

(5.53)
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where

Sxx =
n∑

i=1

(xi − x)2, Sxz =
n∑

i=1

(xi − x)(zi − z) Szz =
n∑

i=1

(zi − z)2

and

ρxz =
Sxz

(SxxSzz)1/2
.

We have seen (5.53) before in a slightly different form, namely (5.11) in the context
of confounding. In the full model we have

(xTx)−1 =

⎡

⎣
1/n 0 0

0 Szz/D −Sxz/D

0 −Sxz/D Sxx/D

⎤

⎦ ,

where D = SxxSzz − S2
xz , giving

var(β̂A) =
σ2

Sxx − S2
xz/Szz

≥ σ2

Sxx
= var(β̂�

A ),

with equality if and only if Sxz = 0 (so that X and Z are orthogonal), assuming
that σ2 is known.

When deciding upon the number of covariates for inclusion in the mean model,
there are therefore competing factors to consider. The bias in the estimator cannot
increase as more variables are added, but the precision of the estimator may increase
or decrease, depending on the strength of the associations of the variables that are
candidates for inclusion. The unexplained variation in the data (measured through
σ̂2) may be reduced, but the uncertainty in which of the covariates to assign the
variation in the response to is increased. If the number of potential additional
variables is large, the loss of precision may be considerable.

Section 4.8 described and critiqued various approaches to variable selection,
emphasizing that the strategy taken is highly dependent on the context and in
particular whether the aim is exploratory, confirmatory, or predictive. Chapter 12
considers the latter case in detail.

Example: Prostate Cancer

In this section we briefly illustrate the ideas of the previous section using two
covariates from the PSA dataset, log(can vol) which we denote x2 and log(cap pen)
which we denote x1. Let x = [x1, x2] and recall Y is log(PSA). Figure 5.7(a)
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Fig. 5.7 (a) Association between log capsular penetration and log cancer volume, with fitted line,
(b) association between log prostate-specific antigen and log capsular penetration, with fitted line

plots x2 versus x1 and illustrates the strong association between these variables.
Figure 5.7(b) plots Y versus x1, and we see an association here too. We obtain the
following estimates:

E[Y | x] = β�
0 + β�

1x1 (5.54)

= 1.51 + 0.72× x1 (5.55)

E[Y | x] = β0 + β1x1 + β2x2 (5.56)

= 1.61 + 0.66× x1 + 0.080× x2 (5.57)

E[x2 | x1] = a+ bx1

= −12.6 + 0.80× x1 (5.58)

We first confirm, using (5.12) and (5.11), that the estimate associated with log(can
vol) in model (5.54) combines the effect of this variable and log(cap pen):

β̂�
1 = β̂1 + b̂× β̂2

= 0.66 + 0.80× 0.08 = 0.72,

with b̂ from (5.58), to give the estimate appearing in (5.55). The standard error
associated with x1 in model (5.54) is 0.068, while in the full model (5.56), it
increases to 0.092 due to the association observed in Fig. 5.7a between x1 and x2.

5.10 Robustness to Assumptions

In this section we investigate the behavior of the estimator

β̂ = (xTx)−1xTY ,
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under departures from the assumptions that lead to

(xTx)1/2(β̂n − β) →d Nk+1(0k+1, σ
2Ik+1).

Correct inference arises from normality of the estimator, and the error terms should
have constant variance and absence of correlation. Normality of the estimator occurs
with a sufficiently large sample size or if the error terms are normal. Judging when
the sample size is large enough can be assessed through simulation, and there is
an interplay between sample size and the closeness of the error distribution to
normality. We present results examining the effect of departures on confidence
interval coverage, but these are identical to Bayesian credible intervals under the
improper prior (5.42). Regardless of the distribution of the errors and the mean–
variance relationship, we always obtain an unbiased estimator, hence the emphasis
on confidence interval coverage.

5.10.1 Distribution of Errors

We begin by examining the effect of non-normality of the errors and simulate data
from a linear model with errors that are uncorrelated and with constant variance.
The distribution of the errors is taken as either normal, Laplacian, Student’s t
with 3 degrees of freedom, or lognormal. We examine the behavior of the least
squares estimator for β1, with n = 5 and n = 20, and two distributions for the
covariate, either xi ∼iid U(0, 1) or xi ∼iid Ga(1, 1) (an exponential distribution),
for i = 1, . . . , n. The latter was chosen to examine the effects of a skewed covariate
distribution.

Table 5.12 presents the 95% confidence interval coverage for β1; based on 10,000
simulations, the true value is β1 = 0. For the normal error distributions, the coverage
should be exactly 95%, but we include simulation-based results to give an indication
of the Monte Carlo error. In all cases the coverage probabilities are good, showing
the robustness of inference in this simple scenario. When the number of covariates,
k is large relative to n, more care is required, especially if the distributions of the
covariate are very skewed. Lumley et al. (2002) discuss the validity of the least
squares estimator when the data are not normal.

5.10.2 Nonconstant Variance

We have already considered the robustness of inference to nonconstant error
variance in Sect. 5.6.4, in the context of sandwich estimation. Table 5.2 showed
that confidence interval coverage will be poor when an incorrect mean–variance
relationship is assumed. Sandwich estimation provides a good frequentist alternative
estimation strategy, so long as the sample size is large enough for the variance of
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Table 5.12 Coverage of
95% confidence intervals for
β1 for various error
distributions, distributions of
the covariate, and sample
sizes n. The entries are based
on 10,000 simulations

Error distribution Distribution of x n Coverage

Normal N(0, 1) Uniform 5 95
Normal N(0, 1) Uniform 20 94
Normal N(0, 1) Exponential 5 95
Normal N(0, 1) Exponential 20 95
Laplacian Lap(0, 1) Uniform 5 95
Laplacian Lap(0, 1) Uniform 20 95
Laplacian Lap(0, 1) Exponential 5 94
Laplacian Lap(0, 1) Exponential 20 95
Student T (0, 1, 3) Uniform 5 95
Student T (0, 1, 3) Uniform 20 95
Student T (0, 1, 3) Exponential 5 95
Student T (0, 1, 3) Exponential 20 95
Lognormal LN(0, 1) Uniform 5 95
Lognormal LN(0, 1) Uniform 20 96
Lognormal LN(0, 1) Exponential 5 94
Lognormal LN(0, 1) Exponential 20 95

the estimator to be reliably estimated. The bootstrap (Sect. 2.7) provides another
method for reliable variance estimation, again when the sample size is not small.

5.10.3 Correlated Errors

Finally we investigate the effect on coverage of correlated error terms. A simple
scenario to imagine is (x, y) pairs collected on consecutive days. We assume an
AR(1) autoregression model of order 1 (Sect. 8.4.2) which results in ε | σ2 ∼
N(0n, σ

2V ), where V is the n× n matrix

V =

⎡

⎢⎢⎢⎣

1 ρ ρ2 · · · ρn−1

ρ 1 ρ · · · ρ
...

...
...

. . .
...

ρn−1 ρn−2 ρ · · · 1

⎤

⎥⎥⎥⎦

and with ρ the correlation between errors on successive days. Table 5.13 gives
the 95% confidence interval coverage (arising from a model in which the errors
are assumed uncorrelated) as a function of sample size, the distribution of x
(uniform or exponential), and strength of correlation. The table clearly shows
that correlated errors can drastically impact confidence interval coverage, with the
coverage becoming increasingly bad as the sample size increases.
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Table 5.13 95% confidence
interval for the slope
parameter β1 as a function of
the autocorrelation parameter
ρ and the sample size n. The
entries are based upon 10,000
simulations and are calculated
under a model in which the
errors are assumed
uncorrelated

Distribution of x Correlation ρ n Coverage

Uniform 0.1 5 94
Uniform 0.1 20 93
Uniform 0.1 50 92
Uniform 0.5 5 89
Uniform 0.5 20 76
Uniform 0.5 50 75
Uniform 0.95 5 79
Uniform 0.95 20 36
Uniform 0.95 50 26
Exponential 0.1 5 94
Exponential 0.1 20 93
Exponential 0.1 50 93
Exponential 0.5 5 89
Exponential 0.5 20 79
Exponential 0.5 50 77
Exponential 0.95 5 81
Exponential 0.95 20 41
Exponential 0.95 50 32

Intuitively, one might expect that in this situation the standard errors based on
(xTx)−1σ2 would always underestimate the true standard error of the estimator.
In the scenario described above, the effect of correlated errors depends critically
upon the correlation among the x variables across time, however. If the x-variable is
slowly varying over time, then the standard errors will be underestimated, but if the
variable is changing rapidly, then the true standard errors may be smaller than those
reported. This is because if there is high positive correlation, then the difference in
the error terms on consecutive days is small, and so if Y changes, it must be due to
changes in x. For further discussion, see Sect. 8.3.

5.11 Assessment of Assumptions

In this section we will describe a number of approaches for assessing the assump-
tions required for valid inference.

5.11.1 Review of Assumptions

We consider the linear regression model:

Y = xβ + ε



240 5 Linear Models

where Y is n × 1, x is n × (k + 1), β is (k + 1) × 1, and ε is n × 1, with
ε | σ2 ∼ Nn(0, σ

2In). Under these assumptions, we have seen that the estimator
β̂ = (xTx)−1xTY , with var(β̂) = (xTx)−1σ2, emerges from likelihood, least
squares, and Bayesian approaches. The standard errors and confidence intervals we
report are valid if:

• The error terms have constant variance. If sandwich estimation is used, then this
assumption may be relaxed, so long as we have a large sample size.

• The error terms are uncorrelated.
• The estimator is normally distributed, so that we can effectively replace the

likelihood Y | β, σ2 by β̂ | β ∼ Np

[
β, (xTx)−1σ̂2

]
. This occurs if the error

terms are normally distributed and/or the sample size n is sufficiently large for
the central limit theorem to ensure that the estimator is normally distributed.

As we saw in Sect. 5.10, confidence interval coverage can be very poor if the error
variance is nonconstant and/or the errors are correlated. Normality of errors is not
a big issue with the linear model with respect to estimation (which explains the
popularity of least squares), unless the sample size is very small (relative to the
number of predictors) or the distribution of the x values is very skewed. For validity
of a predictive interval for an observable, we need to make a further assumption
concerning the distribution of the error terms, however. This interval is given
by (5.30) under the assumption of normal errors.

From a frequentist perspective and given the assumed mean model, E[Y | x] =
xβ, the estimator β̂ is an unbiased estimator of β. For example, in simple linear
regression, β̂1 is an unbiased estimator of the linear association in a population,
regardless of the true relationship between response and covariate. The assumed
mean model may be a poor description, however, and we will usually wish to
examine the appropriateness of the model to decide on whether linearity holds.

Another aspect of model checking is scrutinizing the data for outlying or
influential points. It is difficult to define exactly what is meant by an outlier, and
we content ourselves with a fuzzy description of an outlier as “a data point that is
unusual relative to the others.” Single outlying observations may stand out in the
plots described below. The presence of multiple outliers is more troublesome due to
masking, in which the presence of an outlier is hidden by other outliers.

5.11.2 Residuals and Influence

In general, model checking may be carried out locally, using informal techniques
such as residual plots, or globally using formal testing procedures; we concentrate
on the former. The observed error is given by

ei = Yi − Ŷi, (5.59)
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where Ŷi = xiβ̂, while the true error is

εi = Yi − E[Yi | xi].

In residual analysis we examine the observed residuals for discrepancies from the
assumed model. We define residuals as

e = [e1, . . . , en]
T = Y − Ŷ = (In − h)Y , (5.60)

where h = x(xTx)−1xT is the hat (or projection) matrix encountered in Sect. 5.6.3.
The hat matrix is symmetric, hT = h, and idempotent, hhT = h. We want to
examine the relationship between e and ε so we can use the former to assess whether
assumptions concerning the latter hold.

Substitution of

Y = xβ + ε

into (5.60) gives

e = (In − h)ε, (5.61)

or

ei = εi −
n∑

j=1

hijεj, (5.62)

showing that the estimated residuals differ from the true residuals, complicating
residual analysis.

We examine the moments of the error terms. The residuals e are random variables
since they are a function of the random variables ε. We have

E[e] = (In − h)E[ε] = 0n

and the variance–covariance matrix is

var(e) = (In − h)(In − h)Tσ2 = (In − h)σ2,

so that fitting the model has induced dependence in the residuals. In particular,

var(ei) = (1− hii)σ
2,

since for a symmetric and idempotent matrix hii =
∑n

j=1 h
2
ij (see Schott 1997,

p. 374), and

cov(ei, ej) = −hij ,

showing that the observed errors have correlation given by



242 5 Linear Models

corr(ei, ej) = − hij

[(1 − hii)(1− hjj)]1/2
.

Consequently, even if the model is correctly specified, the residuals have noncon-
stant variance and are correlated. We may write

Ŷi = hiiYi +

n∑

j=1,j �=i

hijYj , (5.63)

so that if hii is large relative to the other elements in the ith row of h, then the ith
fitted value will be largely influenced by Yi; hii is known as the leverage. Note that
the leverage depends on the design matrix (i.e., the x’s) only. Exercise 5.8 shows that
tr(h) = k+1 so the average leverage is at least (k+1)/n. If hii = 1, ŷi = xiβ̂ and
the ith observation is fitted exactly, using a single degree of freedom for this point
alone, which is not desirable.

Based on these results we may define standardized residuals:

e�i =
Yi − Ŷi

σ̂(1− hii)1/2
, (5.64)

for i = 1, . . . , n, and where σ̂ is an unbiased estimator of σ. These residuals have
mean E[σ̂e∗i ] = 0 and variance var(σ̂e∗i ) = σ2, but they are not independent since
they are based on n− k− 1 independent quantities. Often the (1− hii)

1/2 terms in
the denominator of (5.64) are ignored.

For the simple linear regression model,

hii =
1

n
+

(xi − x)2∑n
k=1(xk − x)2

and

hij =
1

n
+

(xi − x)(xj − x)∑n
k=1(xk − x)2

.

Therefore, with respect to (5.63), we see that an extreme xi value produces a fitted
value Ŷi that is more heavily influenced by the observed value of Yi. Such xi values
also influence other fitted values, particularly those with x values not close to x. The
two constraints on the model are

n∑

i=1

ei =
n∑

i=1

Yi − Ŷi = 0

n∑

i=1

eixi =

n∑

i=1

(Yi − Ŷi)xi = 0

which induces correlation in the ei’s.
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5.11.3 Using the Residuals

The constancy of variance assumption may be assessed by plotting the residuals, ei
versus the fitted values Ŷi with a random scatter suggesting no cause for concern.
Examination may be simpler if squared residuals e2i or absolute values of the
residuals |ei| are plotted versus the fitted values Ŷi. These plots are useful since
departures from constant variance often correspond to a mean–variance relationship
which, given sufficient data and range of the mean function, will hopefully reveal
itself in these plots. If the variance increases with the mean, plotting ei versus Ŷi

will reveal a funnel shape with the wider end of the funnel to the right of the plot.
For the plots using the squared or absolute residuals, interpretation may be improved
with the addition of a smoother.

When one of the columns of x represents time, we may plot the residuals versus
time and assess dependence between error terms. Dependence may also be detected
using scatterplots of lagged residuals, for example, by plotting ei versus ei−1 for
i = 2, . . . , n. Independent residuals should produce a plot with a random scatter
of points. The autocorrelation at different lags may also be estimated for equally
spaced data in time, while for unequally spaced data, a semi-variogram may be
constructed. The latter is described in the context of longitudinal data in Sect. 8.8.

To assess normality of the residuals, we may construct a normal QQ plot. We
first order the residuals and call these e(i), i = 1, . . . , n. The expected order statistic
of size n from a normal distribution is given (approximately) by

f(i) = Φ−1

(
i− 0.5

n

)
,i = 1, . . . , n,

where Φ(·) is the cumulative distribution function of the standard normal distribu-
tion, that is, if Z ∼ N(0, 1) then Φ(z) = Pr(Z < z). We then plot e(i) versus
f(i). If the normality assumption is reasonable, the points should lie approximately
on a straight line. If we plot the ordered standardized residuals e∗(i) versus f(i),
then, in addition, the line should have slope one. Deciding on whether the points
are suitably close to linear is difficult and may be aided by simulating multiple
datasets from which intervals may be derived for each i. Care must be taken in
interpretation as (5.62) shows that the observed residuals are a linear combination
of the error terms and hence may exhibit supernormality, that is, even if εi is not
normal,

∑n
j=1 hijεj may tend toward normality (and dominate the first term, εi).

Figure 5.8 shows what we might expect to see under various distributional
assumptions. QQ normal plots for normal. Laplacian, Student’s t3, and lognormal
error distributions are displayed in the four rows, with sample sizes of n =
10, 25, 50, 200 across columns. The characteristic skewed shape of the lognormal
distribution is revealed for all sample sizes, but it is difficult to distinguish
between the Laplacian and the normal, even for a large sample size. For small n,
interpretation is very difficult.
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Fig. 5.8 Normal scores plot for various distributions and sample sizes. Columns 1–4 represent
sample sizes of 10, 25, 50, and 200. Rows 1–4 correspond to errors generated from normal,
Laplacian, Student’s t3, and lognormal distributions, respectively. In each plot, the expected
residuals are plotted on the x-axis, and the observed ordered residuals on the y-axis

In general, simulation may be used to examine the behavior of plots when
the model is true. QQ plots may be constructed to assess any distributional
assumption, by an appropriate choice of f(i). The Bayesian approach to inference
allow alternative likelihoods to the normal to be fitted relatively easily under an
MCMC implementation. We have concentrated on frequentist residuals, but all of
the above plots may be based on Bayesian residuals. For example, we can obtain
samples from the posterior distribution of β and σ and then substitute these samples
into

e�i =
yi − xiβ

σ(1 − hii)1/2
, (5.65)

to produce samples from the posterior distribution of the residuals. The posterior
mean or median of the e�i can then be calculated and examined. More simply, one
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Table 5.14 Parameter
estimates and standard errors
(model-based and sandwich)
for the prostate cancer data

Standard error
Variable Estimate Model-based Sandwich

log(can vol) 0.59 0.088 0.077
log(weight) 0.45 0.17 0.19
age −0.020 0.011 0.0094
log(BPH) 0.11 0.058 0.057
SVI 0.77 0.24 0.21
log(cap pen) −0.11 0.091 0.079
gleason 0.045 0.16 0.13
PGS45 0.0045 0.0044 0.0042
σ̂ 0.78 – –

could substitute the posterior means or medians of β and σ into (5.65). An early use
of Bayesian residuals analysis was provided by Chaloner and Brant (1988).

A major problem with residual analysis, unless one is in purely exploratory
mode, is that if the assumptions are found wanting and we change the model, what
are the frequentist properties in terms of bias, the coverage of intervals, and the
α level of tests? Recall the discussion of Chap. 4. To avoid changing the model,
including transforming x and/or y, one should try and think as much as possible
about a suitable model, before the data are analyzed. As always the exact procedure
followed should be reported, so that inferential summaries can be more easily
interpreted. The same problems exist for a Bayesian analysis, since one should
specify a priori all models that one envisages fitting (which may not be feasible
in advance), with subsequent averaging across models (Sect. 3.6).

5.12 Example: Prostate Cancer

We return to the PSA data and provide a more comprehensive analysis. We fit the
full (main effects only) model

log PSA = β0+β1 × log(can vol)+β2 × log(weight)+β3 × age+β4 × log(bph)

+β5 × svi + β6 × log(cap pen) + β7 × gleason + β8 × PGS45 + ε,

with ε |σ2 ∼iid N(0, σ2). The resultant least squares parameter estimates and
standard errors are given in Table 5.14. This table includes the sandwich standard
errors, to address the possibility of nonconstant variance error terms. These are
virtually identical to the model-based standard errors. This is not surprising given
Fig. 5.9(a), which plots the absolute value of the residuals against the fitted values,
and indicates that the constant variance assumption appears reasonable.

With n−k−1 = 88, we do not require normality of errors, but for illustration we
include a QQ normal plot in Fig. 5.9(b) and see that the errors are close to normal.
Figures 5.9(c) and (d) plot the residuals versus two of the more important covariates,
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Fig. 5.9 Diagnostic plots in the prostate cancer study: (a) absolute values of residuals versus fitted
values, with smoother, (b) normal QQ plot of residuals; (c) residuals versus log cancer volume,
with smoother, (d) residuals versus log weight, with smoother

log cancer volume and log weight, with smoothers added. In each case, we see no
strong evidence of nonlinearity.

We now discuss a Bayesian analysis of these data. With the improper prior (5.42),
we saw in Sect. 5.7 that inference was identical with the frequentist approach so
that the estimates and (model-based) standard errors in Table 5.14 are also posterior
means and posterior standard deviations. Figure 5.10 displays the marginal posterior
densities (which are located and scaled Student’s t distributions with 88 degrees of
freedom) for the eight coefficients. In this plot, for comparability, we scale each of
the x variables to lie on the range (0,1).

Turning now to an informative prior distribution, without more specific knowl-
edge, we let β� = [β�

0 , . . . , β
�
8 ]

T represent the vector of coefficients associated with
the standardized covariates on (0,1). The prior is taken as π(β�)π(σ2) with

π(β�) =

8∏

j=0

π(β�
j ) (5.66)

and π(β�
0 ) ∝ 1 (an improper prior). For the regression coefficients β�

j ∼iid N(0, V )

with the standard deviations,
√
V , chosen in the following way. For the prostate
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Fig. 5.10 Marginal posterior
distributions of regression
coefficients associated with
the eight (standardized)
covariates, for the prostate
cancer data

data, we believe that it is unlikely that any of the standardized covariates, over the
range (0,1), will change the median PSA by more than 10 units. The way we include
this information in the prior is by assuming that the 1.96 × √

V point of the prior
corresponds to the maximum value we believe is a priori plausible, that is, we set
β�
j = log(10) equal to this point. For σ2, we assume the improper choice π(σ2) ∝

σ−2.
Figure 5.11 shows the 95% credible intervals under the flat and informative

priors, and we see the general shrinkage towards zero (the prior mean). On average
there is around a 10% reduction in the posterior standard deviations (and hence
the credible intervals) under the informative prior, which shows how the use of
informative priors can aid in the bias-variance trade-off. The above analysis is
closely related to ridge regression, as will be discussed in Sect. 10.5.1.

5.13 Concluding Remarks

In this chapter we have concentrated on the linear model

Y = xβ + ε

where β is n×(k+1) and ε ∼ Nn(0n, σ
2In). Although the range of models that are

routinely available for fitting has expanded greatly (see Chaps. 6 and 7), the linear
model continues to be popular. There are good reasons for this, since parameter
interpretation is straightforward and the estimators commonly used are linear in the
data and therefore possess desirable robustness properties.
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Fig. 5.11 95% credible
intervals for regression
coefficients corresponding to
standardized covariates,
under flat and informative
priors, for the prostate cancer
data

Unless n is not large, or there is substantial prior information, the point estimate

β̂ = (xTx)−1xTy

and 100(1− α)% interval estimate

β̂j ± tn−k−1
1−α/2 × ŝ.e.(β̂j),

where tn−k−1
1−α/2 is the 100(1−α/2)% point of a Student’s t distribution with n−k−1

degrees of freedom, emerges from likelihood, ordinary least squares, and Bayesian
analyses. These summaries are robust to a range of distributions for the error terms,
so long as n is large. Nonconstant error variance and correlated errors can both
seriously damage the appropriateness of the interval estimate, however. With larger
sample sizes, sandwich estimation provides a good approach for guarding against
nonconstant error variance.

5.14 Bibliographic Notes

McCullagh and Nelder (1989, Chap. 3) provide an extended discussion on parame-
terization issues, including aliasing, and the interpretation of parameters. For more
discussion of conditions for asymptotic normality for simple linear regression, see
(van der Vaart 1998, p.21). Firth (1987) discusses the loss of precision when the data
are not normally distributed and shows that the skewness of the true distribution
of the errors is an important factor. The theory presented in Lehmann (1986,
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p. 209–211) indicates that dependence in the residuals can cause real problems for
estimation of appropriate standard errors. Further details of residual analysis may
be found in Cook and Weisberg (1982).

The classic frequentist text on the analysis of variance is Scheffé (1959), while
Searle et al. (1992) provide a more recent treatment. An interesting discussion, from
a Bayesian slant, is provided by Gelman and Hill (2007, Chap. 22).

Numerous texts have been written on the linear model; see, for example,
Ravishanker and Dey (2002) and Seber and Lee (2003) for the theory and Faraway
(2004) for a more practical slant.

5.15 Exercises

5.1 Consider the model

Y = xβ + ε,

where Y is the n× 1 vector of responses, x is the n× (k + 1) design matrix,
β = [β0, . . . , βk], and E[ε] = 0, var(ε) = σ2V whereV is a known correlation
matrix V .

(a) By considering the sum of squares,

RSSV = (Y − xβ)TV −1(Y − xβ).

show that the generalized least squares estimator is

β̂V = (xTV −1x)−1xTV −1Y ,

provided the necessary inverse exists.
(b) Derive the distribution of β̂V.
(c) Show that σ̂2

V , as defined in (5.33), is an unbiased estimator of σ2.

5.2 Suppose β̂1 �= β̂2 are two different least squares estimates of β. Show there
are infinitely many least squares estimates of β.

5.3 Let Yi = β0 + β1xi + εi, i = 1, . . . , n, where E[εi] = 0, var(εi) = σ2 and
cov(εi, εj) = 0 for i �= j. Prove that the least squares estimates of β0 and β1

are uncorrelated if and only if x = 0.
5.4 Consider the simple linear regression model

Yi = β0 + β1xi + εi,

with εi | σ2 ∼iid N(0, σ2), i = 1, . . . , n. Suppose the prior distribution is of
the form

π(β0, β1, σ
2) = π(β0, β1)× σ−2, (5.67)
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where the prior for [β0, β1] is

[
β0

β1

]
∼ N2

([
m0

m1

]
,

[
v00 v01
v01 v11

])
.

In this exercise the conditional distributions required for Gibbs sampling
(Sect. 3.8.4) will be derived.

(a) Write down the form of the posterior distribution (up to proportionality)
and derive the conditional distributions p(β0 | β1, σ

2,y), p(β1 | β0, σ
2,y),

and p(σ2 | β0, β1,y). Hence, give details of the Gibbs sampling algorithm.
(b) Another blocked Gibbs sampling algorithm (Sect. 3.8.6) would simulate

from the distributions p(β |σ2,y) and p(σ2 | β,y). Derive these distribu-
tions, given in (5.46) and (5.47), and hence describe the form of the Gibbs
sampling algorithm.

5.5 The algorithm derived in Exercise 5.4(b) will now be implemented for the
prostate cancer data of Sect. 1.3.1. These data are available in the R package
lasso2 and are named Prostate. Take Y as log prostate specific antigen
and x as log cancer volume. Implement the blocked Gibbs sampling algorithm
using the prior (5.67), with m0 = m1 = 0, v00 = v11 = 2, and v01 = 0. Run
two chains, one with starting values corresponding to the unbiased estimates of
the parameters and one starting from a point randomly generated from the prior
π(β0, β1). Report:

(a) Histogram representations of the univariate marginal distributions p(β0 |
y), p(β1 | y), and p(σ | y) and scatterplots of the bivariate marginal
distributions p(β0, β1 | y), p(β0, σ | y), and p(β1, σ | y).

(b) The posterior means, standard deviations, and 10%, 50%, 90% quantiles
for β0, β1, and σ.

(c) Pr(β1 > 0.5 | y).
(d) Justify your choice of “burn-in” period (Sect. 3.8.6). For example, you may

present the trace plots β(t)
0 , β

(t)
0 , log σ2(t) versus t.

(e) Confirm the results you have obtained using INLA or WinBUGS.

5.6 In this question, parameter interpretation will be considered. Consider a
continuous univariate response y, with two potential covariates, a continuous
variable x1, and a binary factor x2. The x variables will be referred to as age
and gender, respectively. Consider the four models:

Model A

y =

{
θ0 + ε, for men (x2 = 0)

θ1 + ε, for women (x2 = 1).

Model B

y = θ0 + θ1x1 + ε.
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Model C

y =

{
θ0 + θ1x1 + ε, for men (x2 = 0)

θ2 + θ1x1 + ε, for women (x2 = 1).

Model D

y =

{
θ0 + θ1x1 + ε, for men (x2 = 0)

(θ0 + φ0) + θ1x1 + ε, for women (x2 = 1).

Model E

y =

{
θ0 + θ1x1 + ε, for men (x2 = 0), and
θ0 + θ2x1 + ε, for women (x2 = 1).

Model F

y =

{
θ0 + θ1x1 + ε, for men (x2 = 0),

θ2 + θ3x1 + ε, for women (x2 = 1).

For each model, the error terms ε are assumed to have zero mean.

(a) For each model, provide a careful interpretation of the parameters and give
a description of the assumed form of the relationship.

(b) Which of the above models are equivalent?

5.7 Let Y1, . . . , Yn be distributed as Yi | θ, σ2 ∼ind N(iθ, i2σ2) for i = 1, . . . , n.
Find the generalized least squares estimate of θ and prove that the variance of
this estimate is σ2/n.

5.8 Suppose that the design matrix x of dimension n× (k+ 1) has rank k + 1 and
let h = x(xTx)−1xT represent the hat matrix. Show that tr(h) = (k + 1).

5.9 Consider the model

Yi = β0 + β1Xi + εi

for i = 1, . . . , n, where

[
Xi

εi

]
∼ N2

([
μx

0

]
,

[
σ2
x 0

0 σ2
ε

])
,

to give
[
Yi

Xi

]
∼ N2

([
μy

μx

]
,

[
σ2
y σxy

σxy σ2
x

])

where σ2
y = β2

1σ
2
x + σ2

ε , μy = β0 + β1μx and σxy = β1σ
2
x.
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(a) Derive E[Yi | xi] and var(Yi | xi).

Now suppose one does not observe xi, i = 1, . . . , n but instead wi =
xi + ui where

⎡

⎣
Xi

εi
Ui

⎤

⎦ ∼ N3

⎛

⎝

⎡

⎣
μx

0

0

⎤

⎦ ,

⎡

⎣
σ2
x 0 0

0 σ2
ε 0

0 0 σ2
ε

⎤

⎦

⎞

⎠ .

Assume that Yi is conditionally independent of Wi, that is, E[Yi | xi, ui] =
E[Yi | xi]. Suppose the true model is E[Yi | xi] = β0 + β1xi but the
observed data are [wi, yi], i = 1, . . . , n.

(b) Relate E[Yi | wi] to E[xi | wi].
(c) What is the joint distribution of Xi and Wi and what is E[Xi | wi]?
(d) Using your answers to (b) and (c), show that E[Yi | wi] = β�

0 + β�
1xi.

(e) What is the relationship between β�
0 , β

�
1 and β0, β1?



Chapter 6
General Regression Models

6.1 Introduction

In this chapter we consider the analysis of data that are not well-modeled by the
linear models described in Chap. 5. We continue to assume that the responses are
(conditionally) independent. We describe two model classes, generalized linear
models (GLMs) and what we refer to as nonlinear models. In the latter, a response
Y is assumed to be of the form Y = μ(x,β) + ε with μ(x,β) nonlinear in x and
the errors ε independent with zero mean.

In Sect. 6.2 we introduce a motivating pharmacokinetic dataset that we will
subsequently analyze using both GLMs and nonlinear models. Section 6.3 considers
GLMs, which were introduced as an extension to linear models and have received
considerable attention due to their computational and mathematical convenience.
While computational advances have unshackled the statistician from the need to
restrict attention to GLMs, they still provide an extremely useful class. Parameter
interpretation for GLMs is discussed in Sect. 6.4. Sections 6.5, 6.6, 6.7, and 6.8
describe, respectively, likelihood inference, quasi-likelihood inference, sandwich
estimation, and Bayesian inference for the GLM. Section 6.9 considers the assess-
ment of the assumptions required for reliable inference in GLMs. In Sect. 6.10, we
introduce nonlinear regression models, with identifiability discussed in Sect. 6.11.
We then describe likelihood and least squares approaches to inference in Sects. 6.12
and 6.13 and sandwich estimation in Sect. 6.14. A geometrical comparison of linear
and nonlinear least squares is provided in Sect. 6.15. Bayesian inference is described
in Sect. 6.16 and Sect. 6.17 concentrates on the examination of assumptions.
Concluding comments appear in Sect. 6.18 with bibliographic notes in Sect. 6.19.

In Chap. 7 we discuss models for binary data; models for such data could have
been included in this chapter but are considered separately since there are a number
of wrinkles that deserve specific attention.

J. Wakefield, Bayesian and Frequentist Regression Methods, Springer Series
in Statistics, DOI 10.1007/978-1-4419-0925-1 6,
© Springer Science+Business Media New York 2013
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6.2 Motivating Example: Pharmacokinetics of Theophylline

In Table 1.2 we displayed pharmacokinetic data on the sampling times and measured
concentrations of the drug theophylline, collected from a subject who received an
oral dose of 4.53 mg/kg. These data are plotted in Fig. 6.1, along with fitted curves
from various approaches to modeling that we describe subsequently. We will fit
both a nonlinear (so-called, compartmental) model to these data and a GLM. Let xi

and yi represent the sampling time and concentration in sample i, respectively, for
i = 1, . . . , n = 10.

In Sect. 1.3.4, we detailed the aims of a pharmacokinetic study and described in
some detail compartmental models that have been successfully used for modeling
concentration–time data. Let μ(x) represent the deterministic model relating the
response to time, x; μ(x) will usually be the mean response, though may correspond
to the median response, depending on the assumed error structure. Notationally
we have suppressed the dependence of μ(x) on unknown parameters. For the data
considered here, a starting point for μ(x) is

μ(x) =
Dka

V (ka − ke)
[exp(−kex)− exp(−kax)] (6.1)

where ka > 0 is the absorption rate constant, ke > 0 is the elimination rate constant,
and V > 0 is the (apparent) volume of distribution (that converts total amount
of drug into concentration). This model was motivated in Sect. 1.3.4. A stochastic
component may be added to (6.1) in a variety of ways, but one simple approach
is via

y(x) = μ(x) + δ(x), (6.2)
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Fig. 6.1 Theophylline data,
along with fitted curves under
various models and inferential
approaches. Four curves are
included, corresponding to
MLE and Bayes analyses of
GLM and nonlinear models.
The two nonlinear curves are
indistinguishable
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where E[δ(x)] = 0 and var[δ(x)] = σ2μ(x)2 with δ(x) at different times x
being independent. The variance model produces a constant coefficient of variation
(defined as the ratio of the standard deviation to the mean), which is often observed
in practice for pharmacokinetic data. Combining (6.1) and (6.2) gives an example
of a three parameter nonlinear model. An approximately constant coefficient of
variation can also be achieved by taking

log y(x) = logμ(x) + ε(x),

with E[ε(x)] = 0 and var[ε(x)] = σ2. In this case, μ(x) represents the median
concentration at time x (Sect. 5.5.3).

Model (6.1) is sometimes known as the flip-flop model, because there is an
identifiability problem in that the same curve is achieved with each of the parameter
sets [V, ka, ke] and [V ke/ka, ke, ka]. Recall from Sect. 2.4.1 that identifiability is
required for consistency and asymptotic normality of the MLE. Often, identifiability
is achieved by enforcing ka > ke > 0, since the absorption rate is greater
than the elimination rate for most drugs. Such identifiability issues are not a rare
phenomenon for nonlinear models, and will receive further attention in Sect. 6.11.

Model (6.1) may be written in the alternative form

μ(x) =
Dka

V (ka − ke)
[exp(−kex)− exp(−kax)]

= exp(β0 + β1x) {1− exp[−(ka − ke)x]} , (6.3)

where β0 = log[Dka/V (ka − ke)] and β1 = −ke. As an alternative to the
compartmental model, (6.1), we will also consider the fractional polynomial model
(as introduced by Nelder 1966) given by

μ(x) = exp (β0 + β1x+ β2/x) . (6.4)

Comparison with (6.3) shows that β2 is the parameter that is determining the absorp-
tion phase. This model only makes sense if it produces both an increasing absorption
phase and a decreasing elimination phase, which correspond, retrospectively, to
β2 < 0 and β1 < 0. When combined with an appropriate choice for the stochastic
component, model (6.4) falls within the GLM class, as we see shortly.

In a pharmacokinetic study, as discussed in Sect. 1.3.4, interest often focuses
on certain derived parameters. Of specific interest are x1/2, the elimination half-
life, which is the time it takes for the drug concentration to drop by 50% (for
times sufficiently large for elimination to be the dominant process); xmax, the time
to maximum concentration; μ(xmax), the maximum concentration; and Cl, the
clearance, which is the amount of blood cleared of drug in unit time.

With respect to model (6.1), the derived parameters of interest, in terms of
[V, ka, ke], are
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x1/2 =
log 2

ke

xmax =
1

ka − ke
log

(
ka
ke

)

μ(xmax) =
Dka

V (ka − ke)
[exp(−kexmax)− exp(−kaxmax)]

=
D

V

(
ka
ke

)ka/(ka−ke)

Cl =
D

AUC

= V × ke

where AUC is the area under the concentration–time curve between 0 and ∞. With
respect to model (6.4), as functions of β = [β0, β1, β2],

x1/2 = − log 2

β1

xmax =

(
β2

β1

)1/2

μ(xmax) = D exp
[
β0 − 2(β1β2)

1/2
]

Cl =

√
β1/β2

2 exp(β0)K1[2(β1β2)1/2]
, (6.5)

where Ks(x) denotes a modified Bessel function of the second kind of order s.
Consequently, for both models, the quantities of interest are nonlinear functions of
the original parameters, which has implications for inference.

6.3 Generalized Linear Models

Generalized linear models (GLMs) were introduced by Nelder and Wedderburn
(1972) and provide a class with relatively broad applicability and desirable statistical
properties. For a GLM:

• The responses yi follow an exponential family, so that the distribution is of
the form

p(yi | θi, α) = exp

(
yiθi − b(θi)

α
+ c(yi, α)

)
, (6.6)
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Table 6.1 Characteristics of some common GLMs. The notation is as in (6.6). The canonical
parameter is θ, the mean is E[Y ] = μ, and the variance is var(Y ) = αV (μ)

Distribution N(μ, σ2) Poisson(μ) Bernoulli(μ) Ga(1/α, 1/[μα])

Mean E[Y | θ] θ exp(θ)
exp(θ)

1+exp(θ)
− 1

θ

Variance V (μ) 1 μ μ(1 − μ) μ2

b(θ) θ2/2 exp(θ) log(1 + eθ) − log(−θ)

c(y, α) − 1
2

[
y2

2
+ log(2πα)

]
− log y! 1

log(y/α)
α

− log y + logΓ (α)

for functions b(·), c(·, ·) and where θi and α are scalars. It is straightforward to
show (using the results of Sect. 2.4) that

E[Yi | θi, α] = μi

= b′(θi)

and

var(Yi | θi, α) = αb′′(θi)

= αV (μi),

for i = 1, . . . , n. We assume cov(Yi, Yj | θi, θj , α) = 0, for i �= j (Chap. 9
provides the extension to dependent data).

• A link function g(·) provides the connection between the mean function μi =
E[Yi | θi, α] and the linear predictor xiβ via

g(μi) = xiβ,

where xi is a (k + 1) × 1 vector of explanatory variables (including a 1 for
the intercept) and β = [β0, β1, . . . , βk]

T is a (k + 1) × 1 vector of regression
parameters.

To summarize, a GLM assumes a linear relationship on a transformed mean scale
(which, as we shall see, offers certain computational and statistical advantages) and
an exponential family form for the distribution of the response.

If α is known, then (6.6) is a one-parameter exponential family model. If α is
unknown, then the distribution may or may not be a two-parameter exponential
family model. So-called canonical links have θi = xiβ and provide simplifications
in terms of computation.

GLMs are very useful pedagogically since they separate the deterministic and
stochastic components of the model, and this aspect was emphasized in the abstract
of Nelder and Wedderburn (1972): “The implications of the approach in designing
statistics courses are discussed.”

Table 6.1, adapted from Table 2.1 of McCullagh and Nelder (1989), characterizes
a number of common GLMs. Another example which is not listed in the table, is the
inverse Gaussian distribution; Exercise 6.1 derives the detail for this case.
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Example: Pharmacokinetics of Theophylline

Model (6.3) is an example of a GLM with a log link:

logμ(x) = β0 + β1x1 + β2x2 (6.7)

where x = [1, x1, x2] and x2 = 1/x1.
Turning to the stochastic component, as noted in Sect. 6.2, the error terms often

display a constant coefficient of variation. With this in mind, we may combine (6.7)
with a gamma distribution via

Y (x) | β, α ∼ind Ga{α−1, [μ(x)α]−1}, (6.8)

to give E[Y (x)] = μ(x) and var[Y (x)] = αμ(x)2 so that α1/2 is the coefficient
of variation. Lindsey et al. (2000) examine various distributional choices for
pharmacokinetic data and found the gamma assumption to be reasonable in their
examples. It is interesting to note that for the gamma distribution, the reciprocal
transform is the canonical link, but this option is not statistically appealing since it
does not constrain the mean function to be positive. In the pharmacokinetic context
the reciprocal link also results in a concentration–time curve that is not integrable
between 0 and ∞ so that the fundamental clearance parameter is undefined. One
disadvantage of the loglinear GLM defined above, compared to the nonlinear
compartmental model we discuss later, is that if multiple doses are considered, the
mean function does not correspond to a GLM.

Example: Lung Cancer and Radon

In Sect. 1.3.3 we described data on lung cancer incidence in counties in Minnesota,
with Yi the number of cases, xi the average radon, and Ei the expected number
of cases, in area i, i = 1, . . . , n. These data were examined repeatedly in Chaps. 2
and 3.

A starting model is Yi | β ∼ind Poisson [Ei exp(β0 + β1xi)], which we write as

log Pr(Y = yi | β) = yi logμi − μi − log yi!

with logμi = logEi + β0 + β1xi, to give a GLM with a (canonical) log link. As
discussed in Chaps. 2 and 3, this model is fundamentally inadequate because α = 1,
and so there is no parameter to allow for excess-Poisson variation. The latter can
be modeled using the negative binomial model of Sect. 6.3 or the quasi-likelihood
approach described in Sect. 6.6.

With unknown scale parameter, the negative binomial is not a GLM. We consider
the case of known b (which will rarely be of interest in a practical setting). For
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consistency with its use in Chap. 2, we label the scale parameter of the negative
binomial model as b. In the following, care should therefore be taken to discriminate
between b(·), as in (6.6), and the scale parameter, b. From (2.40),

log Pr(Y = yi | μi) = b−1

[
yib log

(
μi

μi + b

)
− b2 log(μi + b)

]

+ logΓ (yi + b)− logΓ (b)− log yi!− b(b+ 1) log b

which is of the form (6.6) with

θi = b log

(
μi

μi + b

)
,

b(θi) = b2 log(μi + b),

c(yi, b) = logΓ (yi + b)− logΓ (b)− log yi!− b(b+ 1) log b,

so that

E[Yi | μi] = μi = b′(θi)

=
beθi/b

1− eθi/b
,

var(Yi | μi) = b× b′′(θi)

= μi + μ2
i /b.

The canonical link is

θi = b log

(
μi

μi + b

)
= xβ,

which depends on b. The negative binomial distribution is described in detail by
Cameron and Trivedi (1998).

6.4 Parameter Interpretation

Interpretation of the regression parameters in a GLM is link function specific. The
linear link was discussed in Chap. 5, and the log link was considered repeatedly
(in the context of the lung cancer and radon data) in Chaps. 2 and 3. We provide an
interpretation of binary data link functions, such as the logistic, in Chap. 7. Linearity
on some scale offers advantages, as illustrated by the following example.

Consider the log linear model:

logμ(x) = β0 + β1x1 + β2x2.
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The parameter exp(β1) has a relatively straightforward interpretation, being the
multiplicative change in the average response associated with a one-unit increase
in x1, with x2 held constant.

In contrast, for general nonlinear models, the parameters often define particular
functions of the response covariate curve or fundamental quantities that define the
system under study. We saw an example of this in Sect. 6.2, in which the nonlinear
concentration–time curve (6.1) was defined in terms of the volume of distribution V
and the absorption and elimination rate constants ka and ke. Alternatively, we could
define the model in terms of characteristics of the curve, for example, the half-life,
x1/2, the time to maximum concentration, xmax, and the maximum concentration,
μ(xmax). We now discuss inference for the GLM.

6.5 Likelihood Inference for GLMs

6.5.1 Estimation

We first derive the score vector and information matrix. For an independent sample
from the exponential family (6.6)

l(θ) =

n∑

i=1

li(θ) =

n∑

i=1

yiθi − b(θi)

α
+ c(yi, α),

where θ = θ(β) = [θ1(β), . . . , θn(β)] is the vector of canonical parameters. Using
the chain rule, the score function is

S(β) =
∂l

∂β
=

n∑

i=1

dli
dθi

dθi
dμi

∂μi

∂β

=

n∑

i=1

Yi − b′(θi)
α

1

Vi

∂μi

∂β
, (6.9)

where var(Yi | β) = αVi and

d2b

dθ2i
=

dμi

dθi
= Vi,

for i = 1, . . . , n. Hence,

S(β) =

n∑

i=1

(
∂μi

∂β

)T
[Yi − E(Yi | μi)]

var(Yi | μi)

= DTV −1 [Y − μ(β)] /α, (6.10)
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where D is the n × (k + 1) matrix with elements ∂μi/∂βj , i = 1, . . . , n,
j = 0, . . . , k, and V is the n × n diagonal matrix with ith diagonal element Vi.
Consequently, an estimator β̂n defined through S(β̂n) = 0 will be consistent so
long as the mean function is correctly specified, since the estimating function is
unbiased in this case. For canonical links, for which θi = xiβ,

n∑

i=1

∂li
∂β

=
n∑

i=1

dli
dθi

∂θi
∂β

=
1

α

∑

i=1

xT
i [Yi − μi(β)]

so that the sufficient statistics

n∑

i=1

xT
iYi =

n∑

i=1

xT
iμi(β̂)

are recovered at the MLE, β̂.
From Result 2.1, the MLE has asymptotic distribution

In(β)
1/2(β̂n − β) →d Nk+1(0, Ik+1),

where the expected information is

In(β) = E[S(β)S(β)T] = DTV −1D/α.

In practice we use

In(β̂n) = D̂TV̂ −1D̂/α,

where V̂ and D̂ are evaluated at β̂n. The variance of the estimator is

v̂ar(β̂) = α
(
D̂TV̂ −1D̂

)−1

(6.11)

and is consistently estimated if the second moment is correctly specified.
The information matrix may be written in a particularly simple and useful form,

as we now show. We first let ηi = g(μi) denote the linear predictor. The score, (6.9),
may be written, for parameter j, j = 0, 1, . . . , k, as

Sj(β) =
∂l

∂βj
=

n∑

i=1

(Yi − μi)

αVi

dμi

dηi

∂ηi
∂βj

=

n∑

i=1

(Yi − μi)

αVi

dμi

dηi
xij . (6.12)
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Hence, element (j, j′) of the expected information is

−
n∑

i=1

E

[
∂2li

∂βj∂βj′

]
=

n∑

i=1

E

[(
∂li
∂βj

)(
∂li
∂βj′

)]

=

n∑

i=1

E

[
(Yi − μi)xij

αVi

dμi

dηi

(Yi − μi)xij′

αVi

dμi

dηi

]

=

n∑

i=1

xijxij′

αVi

(
dμi

dηi

)2

.

The information matrix therefore takes the form

I(β) = xTW (β)x (6.13)

where W is the diagonal matrix with elements

wi =
(dμi/dηi)

2

αVi
,

i = 1, . . . , n.
When α is unknown, it may be estimated using maximum likelihood or the

method of moments estimator

α̂ =
1

n− k − 1

n∑

i=1

(Yi − μ̂i)
2

V (μ̂i)
, (6.14)

where μ̂i = μ̂i(β̂). Section 2.5 contained the justification for this estimator, which
has the advantage of being, in general, a consistent estimator in a broader range of
circumstances than the MLE. The method of moments approach is routinely used for
normal and gamma data. As usual, there will be an efficiency loss when compared
to the use of the MLE if the distribution underlying the derivation of the latter is
“true.”

The use of (6.10) is appealing since it depends on only the first two moments
so that consistency of β̂n does not depend on the distribution of the data. Accurate
asymptotic confidence interval coverage depends only on correct specification of the
mean–variance relationship. Section 6.7 describes how the latter requirement may
be relaxed.

If the score is of the form (6.6), that is, if the score arises from an exponential
family, it is not necessary to have a mean function of GLM form (i.e., a linear
predictor on some scale). So, for example, the nonlinear models considered later
in the chapter, when embedded within an exponential family, also share consistency
of estimation (so long as regularity conditions are satisfied).
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6.5.2 Computation

Computation is relatively straightforward for GLMs, since the form of a GLM yields
a log-likelihood surface that is well behaved, for all but pathological datasets. In
particular, a variant of the Newton–Raphson method (a generic method for root-
finding), known as Fisher scoring, may be used to find the MLEs. We briefly digress
to describe the Newton–Raphson method. Let S(β) represent a p × 1 vector of
functions that are themselves functions of a p× 1 vector β. We wish to find β such
that S(β) = 0. A first-order Taylor series expansion about β(0) gives

S(β) ≈ S(β(0)) + (β − β(0))TS′(β(0)).

Setting the left-hand side to zero yields

β = β(0) − S′(β(0))−1S(β(0)).

The Newton–Raphson method iterates the step:

β(t+1) = β(t) − S′(β(t))−1S(β(t)),

for t = 0, 1, 2, . . . The Fisher scoring method is the Newton–Raphson method
applied to the score equation, but with the observed information, S′(β), replaced
by the expected information E[S′(β)] = −I(β) to give

β(t+1) = β(t) + I(β(t))−1S(β(t)),

so that a new estimate is calculated based on the score and information evaluated at
the previous estimate. Recall that for a GLM, I(β) = xTW (β)x. Using this form,
and (6.12), we write

β(t+1) = (xTW (t)x)−1xTW (t)
[
xβ(t) + (W (t))−1u(t)

]

= (xTW (t)x)−1xTW (t)z(t) (6.15)

where u(t) and z(t) are n× 1 vectors with ith elements

u
(t)
i =

(Yi − μ
(t)
i )

αV
(t)
i

dμi

dηi

∣∣∣∣
β(t)

,

and

z
(t)
i = xiβ

(t) + (Yi − μ
(t)
i )

dηi
dμi

∣∣∣∣
β(t)

,
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Table 6.2 Point and 90% interval estimates for the theophylline data of Table 1.2, under various
models and estimation techniques. CV is the coefficient of variation and is expressed as a
percentage. The Bayesian point estimates correspond to the posterior medians

Model x1/2 xmax μ(xmax) CV (×100)

GLM MLE 7.23 [6.89,7.59] 1.60 [1.52,1.69] 8.25 [7.95,8.56] 4.38 [3.04,6.33]
GLM sandwich 7.23 [6.97,7.50] 1.60 [1.57,1.64] 8.25 [8.02,8.48] 4.38 [3.04,6.33]
Nonlinear MLE 7.54 [7.09,8.01] 1.51 [1.36,1.66] 8.59 [7.99,9.24] 6.32 [4.38,9.13]
Nonlinear sandwich 7.54 [7.11,7.98] 1.51 [1.43,1.58] 8.59 [8.11,9.10] 6.32 [4.38,9.13]

Prior 8.00 [5.30,12.0] 1.50 [0.75,3.00] 9.00 [6.80,12.0] 5.00 [2.50,10.0]
GLM Bayes 7.26 [6.93,7.74] 1.60 [1.51,1.68] 8.24 [7.89,8.54] 5.21 [3.72,7.86]
Nonlinear Bayes 7.57 [7.15,8.04] 1.50 [1.36,1.66] 8.59 [8.22,8.94] 6.01 [4.34,8.93]

respectively. The Fisher scoring updates (6.15) therefore have the form of a
weighted least squares solution to

(z(t) − xβ)TW (t)(z(t) − xβ) (6.16)

with “working” or “adjusted” response z(t). This method is therefore known as
iteratively reweighted least squares (IRLS). For canonical links, the observed and
expected information coincide so that the Fisher scoring and Newton–Raphson
methods are identical.

The existence and uniqueness of estimates have been considered by a number of
authors; early references are Wedderburn (1976) and Haberman (1977).

Example: Pharmacokinetics of Theophylline

Fitting the gamma model (6.8) with mean function (6.7) gives MLEs for [β0, β1, β2]
of [2.42,−0.0959,−0.246]. The fitted curve is shown in Fig. 6.1. The method of
moments estimate of the coefficient of variation, 100

√
α, is 5.3%, while the MLE is

4.4%. Asymptotic standard errors for [β0, β1, β2], based on the method of moments
estimator for α, are [0.033, 0.0028, 0.018]. The point estimates of β are identical,
regardless of the estimate used for α, because the root of the score is independent of
α in a GLM, as is clear from (6.10).

The top row of Table 6.2 gives MLEs for the derived parameters, along with
asymptotic 90% confidence intervals, derived using the delta method. All are based
upon the method of moments estimator for α. The parameters of interest are all
positive, and so the intervals were obtained on the log scale and then exponentiated.
Deriving an interval estimate for the clearance parameter using the delta method is
more complex. Working with θ = logCl, we have

var(θ̂) = [D0 D1 D2]V
�

⎡

⎣
D0

D1

D2

⎤

⎦
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where, from (6.5),

D0 =
∂θ

∂β0
= 1

D1 =
∂θ

∂β1
=

1

β1
+

√
β2

β1

K0

(
2
√
β1β2

)

K1

(
2
√
β1β2

)

D2 =
∂θ

∂β2
=

√
β1

β2

K0

(
2
√
β1β2

)

K1

(
2
√
β1β2

) ,

and V � is the variance–covariance matrix of β̂ as given by (6.11). For the
theophylline data, the MLE is Ĉl = 0.042 with asymptotic 90% confidence
interval [0.041,0.044]. Inference for the clearance parameter using the sampling-
based Bayesian approach that we describe shortly is straightforward, once samples
are generated from the posterior.

Example: Poisson Data with a Linear Link

We now describe a GLM that is a little more atypical and reveals some of the
subtleties of modeling that can occur. In the context of a spatial study, suppose
that, in a given time period, Yi0 represents the number of counts of a (statistically)
rare disease in an unexposed group of size Ni0, while Yi1 represents the number of
counts of a rare disease in an exposed group of size Ni1, all in area i, i = 1, . . . , n.
Suppose also that we only observe the sum of the disease counts, Yi = Yi0 + Yi1,
along with Ni0 and Ni1. If we had observed Yi0, Yi1, we would fit the model
Yij | β� ∼ind Poisson(Nijβ

�
j ) so that 0 < β�

j < 1 is the probability of
disease in exposure group j, with j = 0/1 representing unexposed/exposed and
β� = [β�

0 , β
�
1 ]. Then, writing xi = N1i/Ni as the proportion of exposed individuals,

the distribution of the total disease counts is

Yi | β� ∼ind Poisson {Ni[(1− xi)β
�
0 + xiβ

�
1 ]} , (6.17)

so that we have a Poisson GLM with a linear link function. Since the parameters
β�
0 and β�

1 are the probabilities (or risks) of disease for unexposed and exposed
individuals, respectively, a parameter of interest is the relative risk, β�

1/β
�
0 .

We illustrate the fitting of this model using data on the incidence of lip cancer
in men in n = 56 counties of Scotland over the years 1975–1980. These data were
originally reported by Kemp et al. (1985) and have been subsequently reanalyzed by
numerous others, see, for example, Clayton and Kaldor (1987). The covariate xi is
the proportion of individuals employed in agriculture, fishing, and farming in county
i. We let Yi represent the number of cases in county i. Model (6.17) requires some
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adjustment, since the only available data here, in addition to xi, are the expected
numbers Ei that account for the age breakdown in county i (see Sect. 1.3.3). We
briefly describe the model development in this case, since it requires care and reveals
assumptions that may otherwise be unapparent.

Let Yijk be the number of cases, from a population of Nijk in county i, exposure
group j, and age stratum k, i = 1, . . . , n, j = 0, 1, k = 1, . . . ,K . An obvious
starting model for a rare disease is

Yijk | pijk ∼ind Poisson(Nijkpijk).

This model contains far too many parameters, pijk , to estimate, and so we simplify
by assuming

pijk = βj × pk, (6.18)

across all areas i. Consequently, pk is the probability of disease in age stratum k
and βj > 0 is the relative risk adjustment in exposure group j, and we are assuming
that the exposure effect is the same across areas and across age stratum. The age-
specific probabilities pk are assumed known (e.g., being based on rates from a larger
geographic region). The numbers of exposed individuals in each age stratum are
unknown, and we therefore make the important assumption that the proportion of
exposed and unexposed individuals is constant across age stratum, that is, Ni0k =
Nik(1 − xi) and Ni1k = Nikxi. This assumption is made since Ni0k and Ni1k are
unavailable and is distinct from assumption (6.18) which concerns the underlying
disease model. Summing across stratum and exposure groups gives

Yi | β ∼ind Poisson

(
β0(1− xi)

K∑

k=1

Nikpk + β1xi

K∑

k=1

Nikpk

)
.

Letting Ei =
∑K

k=1 Nikpk represent the expected number of cases, and simplifying
the resultant expression gives

Yi | β ∼ind Poisson {Ei[(1 − xi)β0 + xiβ1]} . (6.19)

Under this model,

E

[
Yi

Ei

]
= β0 + (β1 − β0)xi, (6.20)

illustrating that the mean model for the standardized morbidity ratio (SMR), Yi/Ei,
is linear in x. Figure 6.2 plots the SMRs Yi/Ei versus xi, with a linear fit added,
and we see evidence of increasing SMR with increasing x.

Fitting the Poisson linear link model gives estimates (asymptotic standard errors)
for β0 and β1 of 0.45 (0.043) and 10.1 (0.77). The fitted line (6.20) is superimposed
on Fig. 6.2. The estimate of the relative risk β1/β0 is 22.7 with asymptotic standard
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Fig. 6.2 Plot of standardized
morbidity ratio versus
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cancer incidence in 56
counties of Scotland. The
linear model fit is indicated

error 3.39. The latter is a model-based estimate and in particular depends on there
being no excess-Poisson variation, which is highly dubious for applications such as
this, because of all of the missing auxiliary information, including data on smoking.

6.5.3 Hypothesis Testing

Suppose that dim(β) = k + 1 and let β = [β1,β2] be a partition with β1 =
[β0, . . . , βq] and β2 = [βq+1, . . . , βk], with 0 ≤ q < k. Interest focuses on testing
whether the subset of k − q parameters are equal to zero via a test of the null

H0 : β1 unrestricted, β2 = β20

H1 : β = [β1,β2] �= [β1,β20]. (6.21)

As outlined in Sect. 2.9, there are three main frequentist approaches to hypothesis
testing, based on Wald, score, and likelihood ratio tests. We concentrate on the latter.
For the linear model, the equivalent approach is based on an F test (Sect. 5.6.1),
which formally accounts for estimation of the scale parameter.

The log-likelihood is

l(β) =

n∑

i=1

yiθi − b(θi)

α
+ c(yi, α),

with α the scale parameter. We let θ = θ(β) = [θ1(β), . . . , θn(β)] denote the
vector of canonical parameters. Under the null, from Sect. 2.9.5,

2

[
l(β̂)− l(β̂

(0)
)

]
→d χ2

k−q,

where β̂ is the unrestricted MLE and β̂
(0)

= [β̂10,β20] is the MLE under the null.
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In some circumstances, one may assess the overall fit of a particular model
via comparison of the likelihood of this model with the maximum attainable log-
likelihood which occurs under the saturated model. We write θ̃ = [θ̃1, . . . , θ̃n]

to represent the MLEs under the saturated model. Similarly, let θ̂ = [θ̂1, . . . , θ̂n]
denote the MLEs under a reduced model containing q + 1 parameters. The log-
likelihood ratio statistic of H0 : reduced model, H1 : saturated model is

2
[
l(θ̃)− l(θ̂)

]
=

2

α

n∑

i=1

[
Yi(θ̃i − θ̂i)− b(θ̃i) + b(θ̂i)

]
=

D

α
, (6.22)

where D is known as the deviance (associated with the saturated model) and D/α
is the scaled deviance. If the saturated model has a fixed number of parameters, p,
then, under the reduced model,

D

α
→d χ2

p−q−1.

In general, this result is rarely used, though cross-classified discrete data provide
one instance in which the overall fit of a model can be assessed in this way. An
alternative measure of the overall fit is the Pearson statistic

X2 =
n∑

i=1

(Yi − μ̂i)
2

V (μ̂i)
, (6.23)

with X2 →d χ2
p−q−1 under the null. Again, the saturated model should contain a

fixed number of parameters (as n → ∞).
Consider again the nested testing situation with hypotheses, (6.21). We describe

an attractive additivity property of the likelihood ratio test statistic for nested

models. Let β̂
(0)

, β̂
(1)

and β̂
(s)

represent the MLEs of β under the null, alternative,

and saturated models, respectively. Suppose that the dimensionality of β̂
(j)

is qj
with 0 < q0 < q1 < p. Under H0,

2

[
l(β̂

(1)
)− l(β̂

(0)
)

]
= 2

{
l(β̂

(s)
)− l(β̂

(0)
)− [l(β̂

(s)
)− l(β̂

(1)
)]

}

=
1

α
(D0 −D1) →d χ2

q1−q0 ,

where Dj is the deviance representing the fit under hypothesis j, relative to the
saturated model, j = 0, 1. The Pearson statistic does not share this additivity
property.
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For a GLM, in contrast to the linear model (see Sect. 5.8), even if a covariate
is orthogonal to all other covariates, its significance will still depend on which
covariates are currently in the model.

Example: Normal Linear Model

We consider the model Y | β ∼ Nn(xβ, σ
2In). The log-likelihood is

l(β, σ) = −n logσ − 1

2σ2
(y − xβ)T(y − xβ),

with α in the GLM formulation being replaced by σ2. Again, let β = [β1,β2]
where β1 = [β0, . . . , βq] and β2 = [βq+1, . . . , βk], and consider the null H0 :
β1 unrestricted, β2 = β20. Under this null, from (6.22),

D =

n∑

i=1

(
Yi − xiβ̂

(0)
)2

where xiβ̂
(0)

are the fitted values for the ith case, based on the MLEs under the
reduced model, H0. In this case, the asymptotic distribution is exact since

∑n
i=1(Yi − xiβ̂

(0)
)2

σ2
∼ χ2

n−q+1. (6.24)

This result is almost never directly useful, however, since σ2 is rarely known.
In terms of comparing the nested hypotheses H0 : β1 unrestricted, β2 = β20,

and H1 : β = [β1,β2] �= [β1,β20], the likelihood ratio statistic is

1

σ2
(D0 −D1) =

1

σ2

[
n∑

i=1

(Yi − xiβ̂
(0)

)2 −
n∑

i=1

(Yi − xiβ̂
(1)

)2

]

=
RSS0 − RSS1

σ2
=

FSS01

σ2
(6.25)

where xβ̂
(j)

are the fitted values corresponding to the MLEs under model j, RSSj

is the residual sum of squares for model j, j = 0, 1, and FSS01 is the fitted sum of
squares due to the additional parameters present in H1.

In practice if n is large, we may use (6.25) with σ2 replaced by a consistent
estimator σ̂2. Alternatively, the ratios of scaled versions of (6.25) and (6.24) may be
taken to produce an F-statistic by which statistical significance may be assessed, as
described in Sect. 5.6.1.
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Example: Lung Cancer and Radon

Under a Poisson model, the deviance and scaled deviance are identical since α = 1.
For a Poisson model with MLE β̂, the deviance is

2

n∑

i=1

[
(μi(β̂)− yi) + yi log

(
yi

μi(β̂)

)]

and if the sum of the observed and fitted counts agree, then we obtain the intuitive
distance measure

2
n∑

i=1

yi log

(
yi

μi(β̂)

)
.

For the Minnesota data, suppose we wish to test H0 : β0 unrestricted, β1 = 0 versus
H1 : [β0, β1] �= [β0, 0], in the model μi = Ei exp(β0 + β1xi). The likelihood ratio
statistic is

T = 2

n∑

i=1

yi log

(
μi(β̂)

μi(β̂
(0)

)

)
,

since
∑n

i=1 μi(β̂) =
∑n

i=1 μi(β̂
(0)

), and where β̂ and β̂
(0)

are the MLEs under the
null and alternative hypotheses. Under H0, T →d χ2

1.
For the Minnesota data T = 46.2 to give an extremely small p-value. The

estimate (standard error) of β1 is −0.036 (0.0054) so that for a one-unit increase
in average radon, there is an associated drop in relative risk of lung cancer of 3.6%.

6.6 Quasi-likelihood Inference for GLMs

Section 2.5 provided an extended discussion of quasi-likelihood, and here we recap
the key points. GLMs that do not contain a scale parameter are particularly vulnera-
ble to variance model misspecification, specifically the presence of overdispersion in
the data. The Poisson and binomial models are especially susceptible in this respect.

Rather than specify a complete probability model for the data, quasi-likelihood
proceeds by specifying the mean and variance as

E[Yi | β] = μi(β)

var(Yi | β) = αV (μi),

with cov(Yi, Yj | β) = 0. From these specifications, the quasi-score is defined as
in (2.30) and coincides with the score function (6.10). Hence, the maximum quasi-
likelihood estimator β̂ is identical to the MLE due to the multiplicative form of the
variance model. Estimation of α may be carried out using the form (6.14) or via
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α̂ =
D

n− k − 1
,

where D is the deviance and dim(β) = k + 1. Asymptotic inference is based on

(DTV −1D/α)1/2(β̂n − β) →d Nk+1(0, Ik+1).

In practice, D and V are evaluated at β̂n, and α̂ replaces α.
Hypothesis tests follow in an obvious fashion, with adjustment for α̂. Specifi-

cally, if as before

l(β, α) =

∫ μ

y

y − t

αV (t)
dt,

then if l(β) = l(β, α = 1) represents the likelihood upon which the quasi-
likelihood is based (e.g., a Poisson or binomial likelihood),

l(β) = l(β, α)× α (6.26)

and to test H0 : β1 unrestricted, β2 = β20, we may use the quasi-likelihood ratio
test statistic

2

[
l(β̂, α̂)− l(β̂

(0)
, α̂)

]
→d χ2

k−q−1,

or equivalently

2

[
l(β̂)− l(β̂

(0)
)

]
→d α̂× χ2

k−q . (6.27)

If, as is usually the case, α̂ > 1, then larger differences in the log-likelihood are
required to attain the same level of significance, as compared to the α = 1 case.

Example: Lung Cancer and Radon

Fitting the quasi-likelihood model

E[Yi | β] = Ei exp(β0 + β1xi) (6.28)

var(Yi | β) = αE[Yi | β], (6.29)

yields identical point estimates for β to the Poisson model, with scale param-
eter estimate α̂ = 2.81, obtained via (6.14). Therefore, with respect to H0 :
β0 unrestricted, β1 = 0, the quasi log-likelihood ratio statistic is 46.2/2.81 = 16.5
so that the significance level is vastly reduced, though still strongly suggestive of a
nonzero slope.
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6.7 Sandwich Estimation for GLMs

The asymptotic variance–covariance for β̂, which is given by (6.11), is appropriate
only if the first two moments are correctly specified. In general, as detailed in
Sect. 2.6, var(β̂) = A−1B(AT)−1 where

A = E

[
∂G

∂β

]
= DTV −1D, (6.30)

regardless of the distribution of the data (so long as the mean is correctly specified),
and

B = var [G(β)] = DTV −1var(Y )V −1D,

where G(β) = S(β)/n. Under the assumption of uncorrelated errors,

B̂ =

n∑

i=1

(
∂μi

∂β

)T var(Yi)

V 2
ii

(
∂μi

∂β

)
(6.31)

where a naive estimator of var(Yi) is

σ̂2
i = (Yi − μ̂i)

2, (6.32)

which has finite sample bias. Combination of (6.31) and (6.32) provides a consistent
estimator of the variance and therefore asymptotically corrects confidence interval
coverage (so long as independence of responses holds).

Bootstrap methods (Sect. 2.7.2) may also be used to provide inference that
is robust to certain aspects of model misspecification, provided n is sufficiently
large. The resampling residuals method may be applied, but the meaning of
residuals is ambiguous in GLMs (Sect. 6.9), and this method does not correct for
mean–variance misspecification, which is a major drawback. The resampling cases
approach corrects for this aspect. Davison and Hinkley (1997, Sect. 7.2) discuss both
resampling residuals and resampling cases in the context of GLMs.

Example: Pharmacokinetics of Theophylline

Table 6.2 gives confidence intervals for x1/2, xmax and μ(xmax), based on sandwich
estimation. In each case, the interval estimates are a little shorter than the model-
based estimates. This could be due to either instability in the sandwich estimates
with a small sample size (n = 10) or to the gamma mean–variance assumption
being inappropriate.
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6.8 Bayesian Inference for GLMs

We now consider Bayesian inference for the GLM. The posterior is

p(β, α | y) ∝ l(β, α)π(β, α)

where it is usual to assume prior independence between the regression coefficients
β and the scale parameter α, that is, π(β, α) = π(β)π(α).

6.8.1 Prior Specification

Recall that β = [β0, β1, . . . , βk]. Often, βj , j = 0, 1, . . . , k, is defined on R, and so
a multivariate normal prior for β is the obvious choice. Furthermore, independent
priors are frequently defined for each component. As a limiting case, the improper
prior π(β) ∝ 1 results. However, care should be taken with this choice since it
may lead to an improper posterior. With canonical links, impropriety only occurs
for pathological datasets (see the binomial model example of Sect. 3.4), but for
noncanonical links, innocuous datasets may lead to impropriety, as the Poisson data
with a linear link example described below illustrates. If the scale parameter α > 0
is unknown, gamma or lognormal distributions provide obvious choices.

Poisson Data with a Linear Link

Recall the Poisson model with a linear link function

Yi | β ∼ind Poisson {Ei[(1− xi)β0 + xiβ1]}

and suppose we assume an improper uniform prior for β0 > 0, that is,

π(β0) ∝ 1.

We define eγ = β1/β0 > 0 as the parameter of interest and write

μi = β0Ei[(1 − xi) + xi exp(γ)] = β0μ
�
i .
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The marginal posterior for γ is

p(γ | y) =
∫

p(β0, γ | y) dβ0

∝
∫

l(β0, γ) dβ0 × π(γ)

∝
∫

exp

(
−β0

n∑

i=1

μ�yi

i

)
β
∑n

i=1 yi

0

n∏

i=1

μ�yi

i dβ0 × π(γ)

∝
n∏

i=1

(
Ei[(1− xi) + xieγ ]∑n
i=1 Ei[(1− xi) + xieγ ]

)yi

× π(γ) (6.33)

= l(γ)× π(γ), (6.34)

where the last line follows from the previous on recognizing that the integrand is the
kernel of a Ga (

∑n
i=1 yi,

∑n
i=1 μ

�
i ) distribution. The “likelihood,” l(γ) in (6.34),

is of multinomial form with the total number of cases y+ distributed among the n
areas with probabilities proportional to Ei[(1−xi)+xi exp(γ)] so that, for example,
larger Ei and larger xi (if γ > 0) lead to a larger allocation of cases to area i. The
likelihood contribution to the posterior tends to the constant

n∏

i=1

(
Ei(1 − xi)∑n
i=1 Ei(1− xi)

)yi

(6.35)

as γ → −∞, showing that, in general, a proper prior is required (since the tail will
be non-integrable). The constant (6.35) is nonzero unless xi = 1 in any area with
yi �= 0. The reason for the impropriety is that in the limit as γ → −∞, the relative
risk exp(γ) → 0 so that exposed individuals cannot get the disease, which is not
inconsistent with the observed data, unless all individuals in area i are exposed,
xi = 1, and yi �= 0 in that area since then clearly (under the assumed model) the
cases are due to exposure. A similar argument holds as γ → ∞, with replacement
of 1− xi by xi in (6.35) providing the limiting constant.

Figure 6.3 illustrates this behavior for the Scottish lip cancer example, for which
xi = 0 in five areas. The log- likelihood has been scaled to have maximum 0, and the
constant (6.35) is indicated with a dashed horizontal line. The MLE γ̂ = log(22.7)
is indicated as a vertical dotted line.

6.8.2 Computation

Unfortunately, when continuous covariates are present in the model, conjugate
analysis is unavailable. However, sampling-based approaches are relatively easy to
implement. In particular, if informative priors are available, then the rejection algo-
rithm of Sect. 3.7.6 is straightforward to implement with sampling from the prior.
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Fig. 6.3 Log-likelihood for
the log relative risk parameter
γ, for the Scottish lip cancer
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line is the constant to which
the log-likelihood tends to as
γ → −∞

MCMC (Sect. 3.8) is obviously a candidate for computation and was illustrated for
Poisson and negative binomial models in Chap. 3. The INLA method described in
Sect. 3.7.4 may also be used.

As described in Sect. 3.3, there is asymptotic equivalence between the sampling
distribution of the MLE and the posterior distribution. Hence, Bayes estimators for
β are consistent due to the form of the likelihood, so long as the priors are nonzero
in a neighborhood of the true values of β.

6.8.3 Hypothesis Testing

A simple method for examining hypotheses involving a single parameter,H0 : βj =
0 versus H1 : βj �= 0, with any remaining parameters unrestricted, is to evaluate
the posterior tail probability Pr(βj > 0 | y), with values close to 0 or 1 indicating
that the null is unlikely to be true. Bayes factors (which were discussed in Sects. 3.10
and 4.3) provide a more general tool for comparing hypotheses (by analogy with the
likelihood ratio statistic, though of course, as usual, interpretation is very different):

BF =
p(y | H0)

p(y | H1)
.

The use of Bayes factors will be illustrated in Sect. 6.16.3. As discussed in
Sect. 4.3.2, great care is required in the specification of priors when model com-
parison is carried out using Bayes factors.



276 6 General Regression Models

6.8.4 Overdispersed GLMs

Quasi-likelihood provides a simple procedure by which frequentist inference may
accommodate overdispersion in GLMs. No such simple remedy exists within the
Bayesian framework. An alternative method of increasing the flexibility of GLMs
is through the introduction of random effects. We have already seen an example of
this in Sect. 2.5 when the negative binomial model was derived via the introduction
of gamma random effects into a Poisson model.

Example: Lung Cancer and Radon

The Bayesian Poisson model was fitted in Chap. 3 using a Metropolis–Hastings
implementation. Here the use of the INLA method of Sect. 3.7.4, with improper
flat priors on β0, β1, gives a 95% interval estimate for the relative risk exp(β1) of
[0.954,0.975] which is identical to that based on asymptotic likelihood inference
(the posterior mean and MLE both equal −0.036, and the posterior standard
deviation and standard error both equal 0.0054).

Example: Pharmacokinetics of Theophylline

With respect to the gamma GLM with μ(x) = exp(β0 + β1x + β2/x), the
interpretation of β0 and β2 in particular is not straightforward, which makes
prior specification difficult. As an alternative, we specify prior distributions on
the half-life x1/2, time to maximum xmax, maximum concentration μ(xmax), and
coefficient of variation,

√
α. We choose independent lognormal priors for these four

parameters. For a generic parameter θ, denote the prior by θ ∼ LogNorm(μ, σ). To
obtain the moments of these distributions, we specify the prior median θm and the
95% point of the prior θu. We then solve for the moments via

μ = log(θm), σ =
log(θu)− μ

1.645
, (6.36)

as described in Sect. 3.4.2. Based on a literature search, we assume prior 50% (95%)
points of 8 (12), 1.5 (3), and 9 (12) for x1/2, xmax, and μ(xmax), respectively. For
the coefficient of variation, the corresponding values are 0.05 (0.10). The third line
of Table 6.2 summarizes these priors. To examine the posterior, we use a rejection
algorithm, as described in Sect. 3.7.6. We sample from the prior on the parameters
of interest and then back-solve for the parameters that describe the likelihood. For
the loglinear model, the transformation to β is via
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Fig. 6.4 Histogram representations of posterior distributions from the GLM for the theophylline
data for (a) half-life, (b) time to maximum, (c) maximum concentration, and (d) coefficient of
variation, with priors superimposed as solid lines

β1 = − log 2

x1/2

β2 = β1x
2
max

β0 = logμ(xmax) + 2(β1β2)
1/2.

Table 6.2 summarizes inference for the parameters of interest, via medians and 90%
interval estimates. Point and interval estimates show close correspondence with the
frequentist summaries. Figure 6.4 gives the posterior distributions for the half-life,
the time to maximum concentration, the maximum concentration, and the coefficient
of variation (expressed as a percentage). The prior distributions are also indicated
as solid curves. We see some skewness in each of the posteriors, which is common
for nonlinear parameters unless the data are abundant.

Inference for the clearance parameter is relatively straightforward, since one
simply substitutes samples for β into (6.5). Figure 6.5 gives a histogram represen-
tation of the posterior distribution. The posterior median of the clearance is 0.042
with 90% interval [0.041,0.044]; these summaries are identical to the likelihood-
based counterparts. We see that the posterior shows little skewness; the clearance
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parameter is often found to be well behaved, since it is a function of the area under
the curve, which is reliably estimated so long as the tail of the curve is captured.

6.9 Assessment of Assumptions for GLMs

The assessment of assumptions for GLMs is more difficult than with linear models.
The definition of a residual is more ambiguous, and for discrete data in particular, the
interpretation of residuals is far more difficult, even when the model is correct.
Various attempts have been made to provide a general definition of residuals that
possess zero mean, constant variance, and a symmetric distribution. In general, the
latter two desiderata are in conflict.

When first examining the data, one may plot the response, transformed to
the linear predictor scale, against covariates. For example, with Poisson data and
canonical log link, one may plot log y versus covariates x.

The obvious definition of a residual is

ei = Yi − μ̂i

but clearly in a GLM, such residuals will generally have unequal variances so
that some form of standardization is required. Pearson residuals, upon which we
concentrate, are defined as

e�i =
Yi − μ̂i√

v̂ar(Yi)
=

Yi − μ̂i

σ̂i
,

where v̂ar(Yi) = α̂V (μ̂i) and μ̂i are the fitted values from the model. Squaring and
summing these residuals reproduce Pearson’s χ2 statistic:

X2 =

n∑

i=1

e�2i ,
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as previously introduced, (6.23). For Pearson residuals, E[σ̂ie
�
i ] = 0 and E[e�2i ] = 1,

but the third moment is not equal to zero in general so that the residuals are skewed.
As an example, for Poisson data, E[e�3] = μ−1/2. Clearly for normal data, Pearson
residuals have zero skewness.

Deviance residuals are given by

e�i = sign(Yi − μ̂i)
√
Di

so that D =
∑n

i=1 e
�2
i , as defined in Sect. 6.5.3. As an example, for a Poisson

likelihood, the deviance residuals are

e�i = sign(yi − μ̂i){2[yi log(yi/μ̂i)− yi + μ̂i]}1/2.

For discrete data with small means, residuals are extremely difficult to interpret
since the response can only take on a small number of discrete values. One strategy
to aid in interpretation is to simulate data with the same design (i.e., x values) and
under the parameter estimates from the fitted model. One may then examine residual
plots to see their form when the model is known.

As with linear model residuals (Sect. 5.11), Pearson or deviance residuals can
be plotted against covariates to suggest possible model forms. They may also
be plotted against fitted values or some function of the fitted values to access
mean–variance relationships. If the spread is not constant, then this suggests that
the assumed mean–variance relationship is not correct. McCullagh and Nelder
(1989, p. 398–399) recommend plotting against the fitted values transformed to the
“constant-information” scale. For example, for Poisson data, the suggestion is to
plot the residuals against 2

√
μ̂. Residuals can also be examined for outliers/points

of high influence.
For the linear model, the diagonal elements of the hat matrix, h = x(xTx)−1xT,

correspond to the leverage of response i, with hii = 1 if ŷi = xiβ̂ (Sect. 5.11.2).
Consideration of (6.15) reveals that for a GLM we may define a hat matrix as h =
w1/2x(xTwx)−1xTw1/2, from which the diagonal elements may be extracted and,
once again, large values of hii indicate that the fit is sensitive to yi in some way.
As with the linear model, responses with hii close to 1 have high influence. Unlike
the linear case, h depends on the response through w. Another useful standardized
version of residuals is

e�i =
Yi − μ̂i√

(1− hii)v̂ar(Yi)
,

for i = 1, . . . , n.
It is approximately true that

V −1/2(μ̂− μ) ≈ hV −1/2(Y − μ)
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(McCullagh and Nelder 1989, p. 397), and so

V −1/2(Y − μ) ≈ (I− h)V −1/2(Y − μ̂)

which shows the effect of estimation of μ on properties of the residuals.

Example: Pharmacokinetics of Theophylline

We fit the gamma GLM Yi | β, α ∼ind Ga
[
α−1, (αμi)

−1
]

using MLE and
calculate Pearson residuals

e�i =
Yi − μ̂i√

α̂ μ̂i

.

In Fig. 6.6(a), these residuals are plotted versus time xi and show no obvious
systematic pattern, though interpretation is difficult, given the small number of data
points and the spacing of these points over time. Figure 6.6(b) plots |e�i | against
fitted values to attempt to discover any unmodeled mean–variance relationship, and
again no strong signal is apparent.

Example: Lung Cancer and Radon

As we have seen, fitting the quasi-likelihood model given by the mean and variance
specifications (6.28) and (6.29) yields α̂ = 2.76, illustrating a large amount of
overdispersion. The quasi-MLE for β1 is −0.035, with standard error 0.0088. We
compare with a negative binomial model having the same loglinear mean model and

var(Yi) = μi(1 + μi/b). (6.37)

Previously, a negative binomial model was fitted to these data using a frequentist
approach in Sect. 2.5 and a Bayesian approach in Sect. 3.8 The negative binomial
MLE is −0.029, with standard error 0.0082, illustrating that there is some sensitivity
to the model fitted.

For these data, the MLE is b̂ = 61.3 with standard error 17.3. Figure 6.7
shows the fitted quadratic relationship (6.37) for these data. We also plot the quasi-
likelihood fitted variance function. At first sight, it is surprising that the latter
is not steeper, but the jittered fitted values included at the top of the plot are
mostly concentrated on smaller values. The few larger values are very influential
in producing a small estimated value of b (which corresponds to a large departure
from the linear mean–variance model).
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Fig. 6.6 Pearson residual plots for the theophylline data: (a) residuals versus time for the GLM,
(b) absolute values of residuals versus fitted values for the GLM, (c) residuals versus time for the
nonlinear compartmental model, and (d) absolute values of residuals versus fitted values for the
nonlinear compartmental model
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Fig. 6.8 Absolute values of Poisson Pearson residuals versus
√
μ when the true mean–variance

relationship is quadratic, but we analyze as if linear, for four simulated datasets with the same
expected numbers and covariate values as in the lung cancer and radon data

To attempt to determine which variance function is more appropriate, we
simulate data under the negative binomial model using {Ei, xi, i = 1, . . . , n} and
[ β̂, b̂ ].

We then fit a Poisson model (which provides identical fitted values as from
a quasi-likelihood model), form residuals (y − μ̂)/

√
μ̂, that is, residuals from a

Poisson model, and then plot the absolute value versus
√
μ to see if we can detect

a trend. In the majority of simulations, the inadequacy of assuming the variance is
proportional to the mean is apparent; this endeavor is greatly helped by having just
a few points with very large fitted values. Specifically, the upward trend indicates
that the Poisson linear mean–variance assumption is not strong enough. Figure 6.8
shows four representative plots. Figure 6.9 gives the equivalent plot from the real
data. This plot shows a similar behavior to the simulated data, and so we tentatively
conclude that the quadratic mean–variance relationship is more appropriate for
these data. Cox (1983) provides further discussion of the effects on estimation
of different forms of overdispersion, including an extended discussion of excess-
Poisson variation.
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6.10 Nonlinear Regression Models

We now consider models of the form

Yi = μi(β) + εi, (6.38)

for i = 1, . . . , n, where μi(β) = μ(xi,β) is nonlinear in xi, β is assumed to
be of dimension k + 1, E[εi | μi] = 0, var(εi | μi) = σ2f(μi), and cov(εi, εj |
μi, μj) = 0. Such models are often used for positive responses, and if such data
are modeled on the original scale, it is common to find that the variance is of the
form f(μ) = μ or f(μ) = μ2. An alternative approach that is appropriate for the
latter case is to assume constant errors on the log-transformed response scale (see
Sect. 5.5.3). More generally, we might assume that var(εi | β,xi) = σ2g1(β,xi),
with cov(εi, εj | β,xi,xj) = g2(β,xi,xj). When data are measured over time,
serial correlation can be a particular problem. We concentrate on the simpler second
moment structure here.

Example: Michaelis–Menten Model

A nonlinear form that is used to model the kinetics of many enzymes has mean

μ(z) =
α0z

α1 + z
,

a nonlinear model. Parameter interpretation is obtained by recognizing that as z →
∞, μ(z) → α0 and at α1, μ(α1) = α0/2. A possible model for such data is

Y (z) = μ(z) + ε(z),
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with E[ε(z)] = 0, var[ε(z)] = σ2μ(z)r, with r = 0, 1, or 2. An alternative approach
is to write

1

μ(x)
= β0 + β1x

where

x = 1/z

β0 = 1/α0

β1 = α1/α0,

which is a GLM with reciprocal link.

6.11 Identifiability

For many nonlinear models, identifiability is an issue, by which we mean that the
same curve may be obtained with different sets of parameter values. We have already
seen one example of this for the nonlinear model fitted to the theophylline data
(Sect. 6.2). As a second example, consider the sum-of-exponentials model

μ(x,β) = β0 exp(−xβ1) + β2 exp(−xβ3), (6.39)

where β = [β0, β1, β2, β3] and βj > 0, j = 0, 1, 2, 3. The same curve results
under the parameter sets [β0, β1, β2, β3] and [β2, β3, β0, β1], and so we have non-
identifiability. In the previous “flip-flop” model (Sect. 6.2), identifiability could
be imposed through a substantive assumption such as ka > ke > 0, and for
model (6.39), we may enforce (say) β3 > β1 > 0 and work with the set

γ = [log β0, log(β3 − β1), log β2, log β1]

which constrains β0 > 0, β2 > 0, and β1 > β3 > 0. If a Bayesian approach is
followed, a second possibility is to retain the original parameter set, but assign one
set of curves zero mass in the prior. The latter option is less appealing since it can
lead to a discontinuity in the prior.
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6.12 Likelihood Inference for Nonlinear Models

6.12.1 Estimation

To obtain the likelihood function, a probability model for the data must be fully
specified. A common choice is

Yi | β, σ ∼ind N[μi(β), σ
2μi(β)

r],

for i = 1, . . . , n, and with r = 0, 1, or 2 being common choices. The corresponding
likelihood function is

l(β, σ) = −n log σ − r

2

n∑

i=1

logμi(β)− 1

2σ2

n∑

i=1

[Yi − μi(β)]
2

μr
i (β)

. (6.40)

Differentiation with respect to β and σ yields, with a little rearrangement, the score
equations

S1(β, σ) =
∂l

∂β

=
r

2σ2

n∑

i=1

∂μi

∂β

1

μi(β)

{
[Yi − μi(β)]

2

μr
i (β)

−σ2

}
+

1

σ2

n∑

i=1

[Yi − μi(β)]

μi(β)r
∂μi

∂β

(6.41)

S2(β, σ) =
∂l

∂σ

= −n

σ
+

1

σ3

n∑

i=1

[Yi − μi(β)]
2

μr
i (β)

.

Notice that this pair of quadratic estimating functions (Sect. 2.8) are such that
E[S1] = 0 and E[S2] = 0 if the first two moments are correctly specified, in
which case consistency of β results. It is important to emphasize that if r > 0, we
require the second moment to be correctly specified in order to produce a consistent
estimator of β. If r = 0, the first term of (6.41) disappears, and we require the first
moment only for consistency. In general, the MLEs β̂ are not available in closed
form, but numerical solutions are usually straightforward (e.g.,via Gauss–Newton
methods or variants thereof) and are available in most statistical software. The MLE
for σ2 is

σ̂2 =
1

n

n∑

i=1

[Yi − μi(β̂)]
2

μr
i (β̂)

, (6.42)



286 6 General Regression Models

but, by analogy with the linear model case, it is more usual to use the degrees of
freedom adjusted estimator

σ̃ 2 =
1

n− k − 1

n∑

i=1

[Yi − μi(β̂)]
2

μr
i (β̂)

. (6.43)

For a nonlinear model, σ̃ 2 has finite sample bias but is often preferred to (6.42)
because of better small sample performance.

Under the usual regularity conditions,

I(θ)1/2(θ̂n − θ) →d Nk+1(0, Ik+1).

where θ = [β, σ] and I(θ) is Fisher’s expected information. In the case of r = 0,
we obtain

l(β, σ) = −n logσ − 1

2σ2

n∑

i=1

[Yi − μi(β)]
2

S1(β, σ) =
1

σ2

n∑

i=1

[Yi − μi(β)]
∂μi

∂β
(6.44)

S2(β, σ) = −n

σ
+

1

σ3

n∑

i=1

[Yi − μi(β)]
2

I11 = −E

[
∂S1

∂β

]
=

1

σ2

n∑

i=1

(
∂μi

∂β

)T (
∂μi

∂β

)

I12 = −E

[
∂S1

∂σ

]
= 0

I21 = −E

[
∂S2

∂β

]
= 0T

I22 = −E

[
∂S2

∂σ

]
=

2n

σ2
.

Asymptotically,
∑n

i=1[Yi − μ(β̂)]2

σ2
→d χ2

n−k−1 (6.45)

which may be used to construct approximate F tests, as described in Sect. 6.12.2.
If r is unknown, then it may also be estimated by deriving the score from the
likelihood (6.40), though an abundance of data will be required. Estimation of
the power in a related variance model is carried out in the example at the end of
Sect. 9.20.
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Example: Pharmacokinetics of Theophylline

We let yi represent the log concentration and assume the model yi | β, σ2 ∼ind

N[μi(β), σ
2], i = 1, . . . , n, where

μi(β) = log

{
Dka

V (ka − ke)
[exp(−kex)− exp(−kax)]

}
(6.46)

with β = [β0, β1, β2] and β0 = V , β1 = ka, β2 = ke. We fit this model using
maximum likelihood estimation for β and the moment estimator (6.43) for σ2.
The results are displayed in Table 6.2, with the fitted curve displayed on Fig. 6.1.
Confidence intervals, based on the asymptotic distribution of the MLE, were
calculated for the parameters of interest using the delta method. These parameters
are all positive, and so the intervals were obtained on the log-transformed scale and
then exponentiated.

In Fig. 6.10, slices through the three-dimensional likelihood surface are dis-
played. The two-dimensional surfaces are evaluated at the MLE of the third variable.
A computationally expensive alternative would be to profile with respect to the third
parameter, as described in Sect. 2.4.2. In the left column the range of each variable
is taken as three times the asymptotic standard errors, and the surfaces are very well
behaved. By contrast, in the right column of the figure, the range is ±30 standard
errors, and here we see very irregular shapes, with some of the contours remaining
open. Such shapes are typical when nonlinear models are fitted and are not in general
only apparent at points far from the maximum of the likelihood.

6.12.2 Hypothesis Testing

As usual, hypothesis tests may be carried out using Wald, score, or likelihood ratio
statistics, and again we concentrate on the latter. Suppose that dim(β) = k + 1 and
let β = [β1,β2] be a partition with β1 = [β0, . . . , βq] and β2 = [βq+1, . . . , βk],
with 0 ≤ q < k. Interest focuses on testing whether a subset of k − q parameters
are equal to zero via a test of the null

H0 : β1 unrestricted, β2 = β20 versus H1 : β = [β1,β2] �= [β1,β20].

Asymptotically, and with known σ,

2

[
l(β̂

(1)
, σ2)− l(β̂

(0)
, σ2)

]
→d χ2

k−q−1

where β̂
(0)

and β̂
(1)

are the MLEs under null and alternative, respectively, and
l(β, σ2) is given by (6.40). Unlike the normal linear model, this result is only
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Fig. 6.10 Likelihood contours for the theophylline data with the range of each parameter being
the MLE ± 3 standard errors in the left column and ± 30 standard errors in the right column; (a)
and (b) log ka versus log V , (c) and (d) log ke versus log V , and (e) and (f) log ke versus log ka.
On each plot, the filled circle represents the MLE. In each panel, the third variable is held at its
maximum value

asymptotically valid for a normal nonlinear model. For the usual case of unknown
σ2, one may substitute an estimate or use an F test with degrees of freedom k−q−1
and n−k−1, though the numerator and denominator sums of squares are only
asymptotically independent. The denominator sum of squares is given in (6.45).
More cautiously, one may assess the significance using Monte Carlo simulation
under the null.
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6.13 Least Squares Inference

We first consider model (6.38) with E[εi | μi] = 0, var(εi | μi) = σ2, and
cov(εi, εj | μi, μj) = 0. In this case we may obtain ordinary least squares estimates,
β̂, that minimize the sum of squares

n∑

i=1

[Yi − μi(β)]
2 = [Y − μ(β)]T[Y − μ(β)].

Differentiation with respect to β, and letting D be the n × (k + 1) dimensional
matrix with element (i, j), ∂μi/∂βj , yields the estimating function

n∑

i=1

[Yi − μi(β)]
∂μi

∂β
= DT(Y − μ)

which is identical to (6.44) and is optimal within the class of linear estimating
functions, under correct specification of the first two moments.

If we now assume uncorrelated errors with var(εi | μi) = σ2μr
i (β), then the

method of generalized least squares estimates β̂ by temporarily forgetting that
the variance depends on β. This is entirely analogous to the motivation for quasi-
likelihood; see the discussion centered around (2.28) in Sect. 2.5.1. We therefore
minimize

n∑

i=1

[Yi − μi(β)]
2

μr
i (β)

= [Y − μ(β)]TV (β)−1[Y − μ(β)],

where V is the n× n diagonal matrix with diagonal elements μr
i (β), i = 1, . . . , n.

The estimating function is

n∑

i=1

[Yi − μi(β)]
2

μr
i (β)

∂μi

∂β
= DTV −1(Y − μ),

which is identical to that under quasi-likelihood (6.10). Inference may be based on
the asymptotic result

(DTV −1D/σ2)1/2(β̂n − β) →d Nk+1(0, Ik+1). (6.47)

If the normal model is true, then the GLS estimator is not as efficient as that
obtained from a likelihood approach but is more reliable under model misspecifica-
tion. Therefore, the approach that is followed should depend on how much faith we
have in the assumed model.



290 6 General Regression Models

In Sect. 9.10, we will discuss further the trade-offs encountered when one wishes
to exploit the additional information concerning β contained within the variance
function.

6.14 Sandwich Estimation for Nonlinear Models

The sandwich estimator of the variance is again available and takes exactly the same
form as with the GLM. In particular, consider the estimating function

G(β) = DTV −1(Y − μ),

with D an n× (k+1) matrix with elements ∂μi/∂βj , i = 1, . . . , n, j = 0, . . . , k+
1 and V the diagonal matrix with elements Vii = μi(β)

r with r ≥ 0 known.
This estimating equation arises from likelihood considerations if r = 0 or, more
generally, from GLS. With this form for G(·), (6.30), (6.31), and (6.32) all hold.

Example: Pharmacokinetics of Theophylline

We now let yi be the concentration and consider the model with first two moments

E[Yi | β, σ2] = μi(β) =
Dka

V (ka − ke)
[exp(−kex) − exp(−kax)] ,

var(Yi | β, σ2) = σ2μi(β)
2,

for i = 1, . . . , n. One possibility for fitting is generalized least squares. As an
alternative, we may assume Yi | β, σ2 ∼ind N[μi(β), σ

2μi(β)
2], i = 1, . . . , n

and proceed with maximum likelihood estimation. Table 6.3 gives estimates of the
above model under GLS and MLE, along with likelihood estimation for the model,

log yi | β, τ2 ∼ind N
{
log[μi(β)], τ

2
}
.

There are some differences in the table, but overall the estimates and standard errors
are in reasonable agreement. Table 6.2 gives confidence intervals for x1/2, xmax,
and μ(xmax) based on sandwich estimation. As with the GLM analysis, the interval
estimates are a little shorter.
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Table 6.3 Point estimates and asymptotic standard errors for the theophylline
data, under various models and estimation techniques. In all cases the coefficient
of variation is approximately constant

Model log V log ka log ke

MLE log scale −0.78 (0.035) 0.79 (0.089) −2.39 (0.037)
GLS original scale −0.77 (0.030) 0.81 (0.055) −2.39 (0.032)
MLE original scale −0.74 (0.025) 0.85 (0.069) −2.45 (0.044)

6.15 The Geometry of Least Squares

In this section we briefly discuss the geometry of least squares to gain insight into
the fundamental differences between linear and nonlinear fitting.

We consider minimization of

(y − μ)T(y − μ) (6.48)

where y and μ are n×1 vectors. We first examine the linear model, μ = xβ, where
x is n× (k+1) and β is (k+1)× 1. For fixed x, the so-called solution locus maps
out the fitted values xβ̃ for all values of β̃ and is a (k + 1)-dimensional hyperplane
of infinite extent. Differentiation of (6.48) gives

xT(y − xβ̂) = xTe = 0

where β̂ = (xTx)−1xTy and e is the n × 1 vector of residuals. So the sum of
squares is minimized when the vector (y−xβ) is orthogonal to the hyperplane that
constitutes the solution locus. The fitted values are

ŷ = xβ̂ = x(xTx)−1xTy = hy,

and are the orthogonal projection of y onto the plane spanned by the columns of x,
with h the matrix that represents this projection.

For a nonlinear model, the solution locus is a curved (k+1)-dimensional surface,
possibly with finite extent. In contrast to the linear model, equally spaced points on
lines in the parameter space do not map to equally spaced points on the solution
locus but rather to unequally spaced points on curves.

These observations have several implications. In terms of inference, recall from
Sect. 5.6.1, in particular equation (5.27) with q = −1, that for a linear model, a
100(1− α)% confidence interval for β is the ellipsoid

(β − β̂)TxTx(β − β̂) ≤ (k + 1)s2Fk+1,n−k−1(1− α).

Geometrically, the region has this form because the solution locus is a plane and the
residual vector is orthogonal to the plane so that values of β map onto a disk. For
nonlinear models, asymptotic inference for β results from
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(β − β̂)TV̂ −1(β − β̂) ≤ (k + 1)s2Fk+1,n−k−1(1 − α),

where v̂ar(β̂) = σ̂2V̂ , with σ̂2 = s2. The approximation occurs because the
solution locus is curved, and equi-spaced points in the parameter space map to
unequally spaced points on curved lines on the solution locus. Intuitively, inference
will be more accurate if the relevant part of the solution locus is flat and if parallel
equi-spaced lines in the parameter space map to parallel equi-spaced lines on the
solution locus. The curvature and lack of equally spaced points manifest itself
in contours of equal likelihood being banana-shaped and perhaps “open” (so that
they do not join). The right column of Fig. 6.10 gives examples of this behavior.
Another important aspect is that reparameterization of the model can alter the
behavior of points mapped onto the solution locus, but cannot affect the curvature
of the locus. Hence, the curvature of the solution locus has been referred to as
the intrinsic curvature (Beale 1960; Bates and Watts 1980), while the aspect that
is parameterization dependent is the parameter-effects curvature (Bates and Watts
1980). We note that the solution locus does not depend on the observed data but
only on the model and design. As n → ∞, the surface becomes increasingly locally
linear and inference correspondingly more accurate.

We illustrate with a simple fictitious example with n = 2, x = [1, 2], and y =
[0.2, 0.7]. We compare two models, each with a single parameter, the linear zero
intercept model

μ = xβ, −∞ < β < ∞,

and the (simplified) nonlinear Michaelis–Menten model

μ = x/(x + θ), θ > 0.

Figure 6.11(a) plots the data versus the two fitted curves (obtained via least squares),
while panel (b) plots the solution locus for the linear model, which in this case is a
line (since k = 0). The point [x1β̂, x2β̂] with least squares estimate

β̂ =

2∑

i=1

xiyi/

2∑

i=1

x2
i = 0.32,

is the fitted point and is indicated as a solid circle. The dashed line is the vector
joining [y1, y2] to the fitted point and is perpendicular to the curved solution locus.
The circles indicated on the solution locus correspond to changes in β of 0.1 and
are equi-spaced on the locus. The final aspect to note is that the locus is of infinite
extent.

Panel (c) of Fig. 6.11 plots the solution locus for the Michaelis–Menten model,
for which θ̂ = 1.70. The vector joining [y1, y2] to the fitted values [x1/(x1+ θ̂), x2/

(x2 + θ̂)] is perpendicular to the curved solution locus, but we see that points on the
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Fig. 6.11 (a) Fictitious data with x = [1, 2] and y = [0.2, 0.7], and fitted lines (b) solution locus
for the zero intercept linear model with the observed data indicated as a cross and the fitted value as
a filled circle, (c) solution locus for the Michaelis–Menten model with the observed data indicated
as a cross and the fitted value as a filled circle, and (d) solution locus for the Michaelis–Menten
model under a second parametrization with the observed data indicated as a cross and the fitted
value as a filled circle

latter are not equally spaced. Also, the solution locus is of finite extent moving from
the point [0, 0] for θ = ∞ to the point (1,1) for θ = 0 (these are the asymptotes
of the model). Finally, panel (d) reproduces panel (c) with the Michaelis–Menten

model reparameterized as
[
x1/[x1 + exp(φ̂)], x2/[x2 + exp(φ̂)]

]
, with φ = log θ.

The spacing of points on the solution locus is quite different under the new
parameterization. The points are more equally spaced close to the fitted value,
indicating that asymptotic standard errors are more likely to be accurate under this
parametrization.
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6.16 Bayesian Inference for Nonlinear Models

Bayesian inference for nonlinear models is based on the posterior distribution

p(β, σ2 | y) ∝ l(β)π(β, σ2).

We discuss in turn prior specification, computation, and hypothesis testing.

6.16.1 Prior Specification

We begin by assuming independent priors on β and σ2:

π(β, σ2) = π(β)π(σ2).

The prior on σ2 is a less critical choice, and σ−2 ∼ Ga(a, b) is an obvious candidate.
The choice a = b = 0, which gives the improper prior π(σ2) ∝ 1/σ2, will often
be a reasonable option. If the variance model is of the form var(Yi) = σ2μi(β)

r,
then clearly substantive prior beliefs will depend on r so that we must specify the
conditional form π(σ2 | r), since the scale of σ2 depends on the choice for r.

So far as a prior for β is concerned, great care must be taken to ensure that the
resultant posterior is proper; Sect. 3.4 provided an example of the problems that can
arise with a nonlinear model. In general, models must be considered on a case-by-
case basis. However, a parameter, θ (say), corresponding to an asymptote (so that
μ → a as θ → ∞), will generally require proper priors because the likelihood tends
to the constant

exp

[
− 1

2σ2

n∑

i=1

(yi − a)2

]

as θ → ∞ and not zero as is necessary to ensure propriety.

6.16.2 Computation

Unfortunately, closed-form posterior distributions do not exist with a nonlinear
mean function, but sampling-based methods are again relatively straightforward
to implement. A pure Gibbs sampling strategy (Sect. 3.8.4) is not so appealing
since the conditional distribution, β | y, σ, will not have a familiar form. How-
ever, Metropolis–Hastings algorithms (Sect. 3.8.2) will be easy to construct. If an
informative prior is present, direct sampling via a rejection algorithm, with the prior
as a proposal, may present a viable option.
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6.16.3 Hypothesis Testing

As with GLMs (Sect. 6.8.3), posterior tail areas and Bayes factors are available to
test hypotheses/compare models.

Example: Pharmacokinetics of Theophylline

We report a Bayesian analysis of the theophylline data and specify lognormal priors
for x1/2, xmax, and μ(xmax) using the same specification as with the GLM analysis.
Samples from the posterior for [V, ka, ke] are obtained from the rejection algorithm.
Specifically, we sample from the prior on the parameters of interest and then back-
solve for the parameters that describe the likelihood. For the compartmental model,
we transform back to the original parameters via

ke = (log 2)/x1/2

0 = xmax(ka − ke)− log

(
ka
ke

)
(6.49)

V =
D

μ(xmax)

(
ka
ke

)ka/(ka−ke)

so that ka is not directly available but must be obtained as the root of (6.49).
Table 6.2 summarizes inference for the parameters of interest with the interval

estimates and medians being obtained as the sample quantiles. Figure 6.12 shows
the posteriors for functions of interest under the nonlinear model. The posteriors are
skewed for all functions of interest. These figures and Table 6.2 show that Bayesian
inference for the GLM and nonlinear model are very similar. Frequentist and
Bayesian methods are also in close agreement for these data, which is reassuring.

Recall that the parameter sets [V, ka, ke] and [V ke/ka, ke, ka] produce identical
curves for the compartmental model (6.1). One solution to this identifiability
problem is to enforce ka > ke > 0, for example, by parameterizing in terms of
log ke and log(ka − ke). Pragmatically, not resorting to this parameterization is
reasonable, so long as ka and ke are not close. Figure 6.13 shows the bivariate
posterior distribution p(ka, ke | y), and we see that ka � ke for these data, and so
there is no need to address the identifiability issue.

Another benefit of specifying the prior in terms of model-free parameters is that
models may be compared using Bayes factors on an “even playing field,” in the sense
that the prior input for each model is identical. For more discussion of this issue,
see Pérez and Berger (2002). To illustrate, we compare the GLM and nonlinear
compartmental models. The normalizing constants for these models are 0.00077
and 0.00032, respectively, as estimated via importance sampling with the prior as



296 6 General Regression Models

D
en

si
ty

7.0 7.5 8.0 8.5

0.
0

0.
4

0.
8

1.
2

D
en

si
ty

1.2 1.4 1.6 1.8

0
1

2
3

4

D
en

si
ty

8.0 8.5 9.0 9.5

0.
0

0.
5

1.
0

1.
5

D
en

si
ty

4 6 8 10 12

0.
00

0.
10

0.
20

0.
30

Fig. 6.12 Histogram representations of posterior distributions from the nonlinear compartmental
model for the theophylline data for the (a) half-life, (b) time to maximum, (c) maximum
concentration, and (d) coefficient of variation, with priors superimposed as solid lines
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proposal and using (3.28). Consequently, the Bayes factor comparing the GLM to
the nonlinear model is 2.4 so that the data are just over twice as likely under the
GLM, but this is not strong evidence. For these data, based on the above analyses, we
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Fig. 6.14 Histogram representations of posterior distributions from the nonlinear compartmental
models for the reduced theophylline dataset of n = 3 points for the (a) half-life, (b) time to
maximum, (c) maximum concentration, and (d) coefficient of variation, with priors superimposed
as solid lines

conclude that both the GLM and the nonlinear models provide adequate fits to the
data, and there is little difference between the frequentist and Bayesian approaches
to inference.

We now demonstrate the benefits of a Bayesian approach with substantive prior
information, when the data are sparse. To this end, we consider a reduced dataset
consisting of the first n = 3 concentrations only. Clearly, a likelihood or least
squares approach is not possible in this case, since the number of parameters
(three regression parameters plus a variance) is greater than the number of data
points. We fit the nonlinear model with the same priors as used previously and
with computation carried out with the rejection algorithm. Figure 6.14 shows the
posterior distributions, with the priors also indicated. As we might expect, there is
no/little information in the data concerning the terminal half-life log ke/2 or the
standard deviation σ. In contrast, the data are somewhat informative with respect to
the time to maximum concentration, and the maximum concentration.
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6.17 Assessment of Assumptions for Nonlinear Models

In contrast to GLMs, residuals are unambiguously defined for nonlinear models as

e�i =
yi − μ̂i√

v̂ar(Yi)
, (6.50)

which we refer to as Pearson residuals. These residuals may be used in the usual
ways; see Sects. 5.11.3 and 6.9. In particular, the residuals may be plotted versus
covariates to assess the mean model, and the absolute values of the residuals may
be plotted versus the fitted values μ̂i to assess the appropriateness of the mean–
variance model. For a small sample size, normality of the errors will aid in accurate
asymptotic inference and may be assessed via a normal QQ plot, as described in
Sect. 5.11.3.

Example: Pharmacokinetics of Theophylline

Letting yi represent the log concentration at time xi, we examine the Pearson
residuals, as given by (6.50), obtained following likelihood estimation with the
model yi | β, σ2 ∼ind N(μi, σ

2), with μi given by (6.46), for i = 1, . . . , n.
Figure 6.6(c) plots e�i versus xi and shows no gross inadequacy of the mean model.
Panel (d), which plots |e�i | versus xi, similarly shows no great problem with the
mean–variance relationship. Figure 6.15 gives a normal QQ plot of the residuals and
indicates no strong violation of normality. In all cases, interpretation is hampered by
the small sample size.
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for the theophylline data and
model (6.46)
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6.18 Concluding Remarks

Within the broad class of general regression models, the use of GLMs offers certain
advantages in terms of computation and interpretation, though one should not
restrict attention to this class. Many results and approaches used for linear models
hold approximately for GLMs. For example, the influence of points was defined
through the weight matrix used in the “working response” approach implicit in the
IRLS algorithm (Sect. 6.5.2). The form of GLMs, in particular the linearity of the
score with respect to the responses, is such that asymptotic inference is accurate for
relatively small n.

Care is required in the fitting of, and inference for, nonlinear models. For
example, models must be examined to see if the parameters are uniquely identified.
For both GLMs and nonlinear models, the examination of residual plots is essential
to determine whether the assumed model is appropriate, but such plots are difficult
to interpret because the behavior of residuals is not always obvious, even if the
fitted model is correct. The use of a distribution from the exponential family is
advantageous in that results on consistency of estimators follow easily, as discussed
in Sect. 6.5.1. The identifiability of nonlinear models should always be examined,
and one should be wary of the accuracy of asymptotic inference for small sample
sizes. The parameterization adopted is also important, as discussed in Sect. 6.15.

6.19 Bibliographic Notes

The most comprehensive and interesting description of GLMs remains McCullagh
and Nelder (1989). An excellent review is also given by Firth (1993). Sandwich
estimation for GLMs is discussed by Kauermann and Carroll (2001).

Nonlinear models are discussed by Bates and Watts (1988) and Chap. 2 of
Davidian and Giltinan (1995), with an emphasis on generalized least squares. Book-
length treatments on nonlinear models are provided by Gallant (1987); Seber and
Wild (1989); see also Carroll and Ruppert (1988).

Gibaldi and Perrier (1982) provide a comprehensive account of pharmacokinetic
models and principles and Godfrey (1983) an account of compartmental modeling
in general. Wakefield et al. (1999) provide a review of pharmacokinetic and
pharmacodynamic modeling including details on both the biological and statistical
aspects of such modeling. The model given by (6.7) and (6.8) was suggested by
Wakefield (2004) and was developed more extensively in Salway and Wakefield
(2008).
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6.20 Exercises

6.1 A random variable Y is inverse Gaussian if its density is of the form

p(y | λ, δ) =
(

δ

2πy3

)1/2

exp

[−δ(y − λ)2

2λ2y

]
,

for y > 0.

(a) Show that the inverse Gaussian distribution is a member of the exponential
family and identify θ, α, b(θ), a(α), and c(y, α).

(b) Give forms for E[Y | θ, α] and var(Y | θ, α) and determine the canonical
link function.

6.2 Table 6.4 reproduces data, from Altham (1991), of counts of T4 cells/mm3 in
blood samples from 20 patients in remission from Hodgkin’s disease and from
20 additional patients in remission from disseminated malignancies. A question
of interest here is whether there is a difference in the distribution of cell counts
between the two diseases. A quantitative assessment of any difference is also
desirable.

(a) Carry out an exploratory examination of these data and provide an informa-
tive graphical summary of the two distributions of responses.

(b) These data may be examined: (1) on their original scale, (2) loge trans-
formed, and (3) square root transformed. Carefully define a difference
in location parameter in each of the designated scales. What are the
considerations when choosing a scale? Obtain 90% confidence interval for
each of the difference parameters.

(c) Fit Poisson, gamma, and inverse Gaussian models to the cell count data,
assuming canonical links in each case.

(d) Using the asymptotic distribution of the MLE, give 90% confidence
intervals for the difference parameters in each of the three models. Under
each of the models, would you conclude that the means of the two groups
are equal?

6.3 The data in Table 6.5, taken from Wakefield et al. (1994), were collected
following the administration of a single 30 mg dose of the drug cadralazine

Table 6.4 Counts of T4 cells/mm3 in blood samples from 20 patients in remission from Hodgkin’s
disease and 20 other patients in remission from disseminated malignancies

Hodgkin’s disease 396 568 1,212 171 554 1,104 257 435 295 397
Non-Hodgkin’s disease 375 375 752 208 151 116 736 192 315 1,252
Hodgkin’s disease 288 1,004 431 795 1,621 1,378 902 958 1,283 2,415
Non-Hodgkin’s disease 675 700 440 771 688 426 410 979 377 503
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Table 6.5 Concentrations yi
of the drug cadralazine as a
function of time xi, obtained
from a subject who was
administered a dose of 30 mg.
These data are from
Wakefield et al. (1994)

Observation Time Concentration
number (hours) (mg/liter)
i xi yi

1 2 1.63
2 4 1.01
3 6 0.73
4 8 0.55
5 10 0.41
6 24 0.01
7 28 0.06
8 32 0.02

to a cardiac failure patient. The response yi represents the drug concentration
at time xi, i = 1, . . . , 8. The most straightforward model for these data is to
assume

log yi = μ(β) + εi = log

[
D

V
exp(−kexi)

]
+ εi,

where εi | σ2 ∼iid N(0, σ2), β = [V, ke] and the dose is D = 30. The
parameters are the volume of distribution V > 0 and the elimination rate ke.

(a) For this model, obtain expressions for:

(i) The log-likelihood function L(β, σ2)
(ii) The score function S(β, σ2)

(iii) The expected information matrix I(β, σ2)

(b) Obtain the MLE and provide an asymptotic 95% confidence interval for
each element of β.

(c) Plot the data, along with the fitted curve.
(d) Using residuals, examine the appropriateness of the assumptions of the

above model. Does the model seem reasonable for these data?
(e) The clearance Cl = V × ke and elimination half-life x1/2 = log 2/ke

are parameters of interest in this experiment. Find the MLEs of these
parameters along with asymptotic 95% confidence intervals.

A Bayesian analysis will now be carried out, assuming independent
lognormal priors for V , ke and an independent inverse gamma prior for
σ2. For the latter, assume the improper prior π(σ2) ∝ σ−2.

(f) Assume that the 50% and 90% points for V are 20 and 40 and that for ke,
these points are 0.12 and 0.25. Solve for the lognormal parameters using
the method of moments equations (6.36).

(g) Implement an MCMC Metropolis–Hastings algorithm (Sect. 3.8.2). Report
the median and 90% interval estimates for each of V, ke, Cl, and x1/2. Pro-
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vide graphical summaries of each of the univariate and bivariate posterior
distributions.

6.4 Let Yi represent a count and xi = [xi1, . . . , xik] a covariate vector for
individual i, i = 1, . . . , n. Assume that Yi | μi ∼iid Poisson(μi), with

μi = E[Yi | γ0i, γ1, . . . , γk] = exp(γ0i + γ1xi1 + ...+ γkxik), (6.51)

where the intercept is a random effect (see Chap. 9) that varies according to

γ0i | γ0, τ2 ∼iid N(γ0, τ
2).

(a) Give an interpretation of each of the parameters γ0 and γ1.
(b) Suppose we fit an alternative Poisson model with mean

μ�
i = E[Yi | β0, β1, . . . , βk] = exp(β0 + β1xi1 + . . .+ βkxik). (6.52)

Evaluate
E[Yi | τ2, γ0, γ1, . . . , γk],

and hence, by comparison with E[Yi | β0, β1, . . . , βk], equate γj to βj ,
j = 0, 1, . . . , k.

(c) Evaluate var(Yi | τ2, γ0, γ1, . . . , γk) and compare this expression with
var(Yi | β0, β1, . . . , βk).

(d) Suppose one is interested in the parameters γ1, . . . , γk. Use your answers
to the previous two parts to discuss the implications of fitting model (6.52)
when the true model is (6.51).

(e) Now consider an alternative random effects structure in which

δi | a, b ∼iid Ga(a, b),

where δi = exp(γ0i). Evaluate the marginal mean E[Yi | a, b, γ1, . . . , γk]
and marginal variance var(Yi | a, b, γ1, . . . , γk).

(f) Compare the expressions for the mean and variance under the normal and
gamma formulations.

(g) For the Poisson-Gamma model, calculate the form of the likelihood

L(γ1, . . . , γk, a, b) =
n∏

i=1

∫
Pr(yi | γ0i, γ1, . . . , γk)π(γ0i | a, b) dγ0i.

Derive expressions for the score and information matrix and hence describe
how inference may be performed from a likelihood standpoint.
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Table 6.6 Concentrations yi
of the drug theophylline as a
function of time xi obtained
from a subject who was
administered an oral dose of
size 4.40 mg/kg

Observation Time Concentration
number (hours) (mg/liter)
i xi yi

1 0.27 1.72
2 0.52 7.91
3 1.00 8.31
4 1.92 8.33
5 3.50 6.85
6 5.02 6.08
7 7.03 5.40
8 9.00 4.55
9 12.00 3.01
10 24.30 0.90

6.5 Table 6.6 gives concentration–time data for an individual who was given a dose
of 4.40 mg/kg of the drug theophylline. In this chapter we have analyzed the
data from another of the individuals in the same trial.

(a) For the data in Table 6.6,1 fit the gamma GLM given by (6.7) and (6.8)
using maximum likelihood and report the MLEs and standard errors.

(b) Obtain MLEs and standard errors for the parameters of interest x1/2, xmax,
μ(xmax), and Cl.

(c) Let zi represent the log concentration and consider the model zi | β, σ2 ∼ind

N[μi(β), σ
2], i = 1, . . . , n, where μi(β) is given by the compartmental

model (6.46). Fit this model using maximum likelihood and report the
MLEs and standard errors.

(d) Obtain the MLEs and standard errors for the parameters of interest x1/2,
xmax, μ(xmax), and Cl.

(e) Compare these summaries with those obtained under the GLM.
(f) Examine the fit of the two models and discuss which provides the better fit.

1These data correspond to individual 2 in the Theoph data, which are available in R.
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Chapter 7
Binary Data Models

7.1 Introduction

In this chapter we consider the modeling of binary data. Such data are ubiquitous
in many fields. Binary data present a number of distinct challenges, and so we
devote a separate chapter to their modeling, though we lean heavily on the methods
introduced in Chap. 6 on general regression modeling. It is perhaps surprising that
the simplest form of outcome can pose difficulties in analysis, but a major problem
is the lack of information contained within a variable that can take one of only
two values. This can lead to a number of problems, for example, in assessing
model fit. Another major complication arises because models for probabilities are
generally nonlinear, which can lead to curious behavior of estimators in the presence
of confounders. Difficulties in interpretation also arise, even when independent
regressors are added to the model.

The outline of this chapter is as follows. We give some motivating examples
in Sect. 7.2, and in Sect. 7.3, describe the genesis of the binomial model, which
is a natural candidate for the analysis of binary data. Generalized linear models for
binary data are examined in Sect. 7.4. The binomial model has a variance determined
by the mean, with no additional parameter to accommodate excess-binomial
variation, and so Sect. 7.5 describes methods for dealing with such variation. For
reasons that will become apparent, we will focus on logistic regression models,
beginning with a detailed description in Sect. 7.6. This section includes discussions
of estimation from likelihood, quasi-likelihood, and Bayesian perspectives. Condi-
tional likelihood and “exact” inference are the subject of Sect. 7.7. Assessing the
adequacy of binary models is discussed in Sect. 7.8. Summary measures that exhibit
nonobvious behavior are the subject of Sect. 7.9. Case-control studies are a common
design, which offer interesting inferential challenges with respect to inference, and
are described in Sect. 7.10. Concluding comments appear in Sect. 7.11. Section 7.12
gives references to more in-depth treatments of binary modeling and to source
materials.

J. Wakefield, Bayesian and Frequentist Regression Methods, Springer Series
in Statistics, DOI 10.1007/978-1-4419-0925-1 7,
© Springer Science+Business Media New York 2013
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7.2 Motivating Examples

7.2.1 Outcome After Head Injury

We will illustrate methods for binary data using the data first encountered in
Sect. 1.3.2. The binary response is outcome after head injury (dead/alive), with
four discrete covariates: pupils (good/poor), coma score (depth of coma, low/high),
hematoma present (no/yes), and age (categorized as 1–25, 26–54, ≥55). These data
were presented in Table 1.1, but it is difficult to discern patterns from this table. In
general, cross-classified data such as these may be explored by looking at marginal
and conditional tables of counts or frequencies. Figure 7.1 displays conditional
frequencies, with panel (a) corresponding to low coma score and panel (b) to high
coma score. These plots suggest that the probability of death increases with age,
that a low coma score is preferable to a high coma score, and that good pupils are
beneficial. The association with the hematoma variable is less clear. The sample
sizes are lost in these plots, which makes interpretation more difficult.

7.2.2 Aircraft Fasteners

Montgomery and Peck (1982) describe a study in which the compressive strength
of fasteners used in the construction of aircraft was examined. Table 7.1 gives the
total number of fasteners tested and the number of failures at a range of pressure
loads. We see that the proportion failing increases with load. For these data we will
aim to find a curve to adequately model the relationship between the probability of
fastener failure and load pressure.
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Fig. 7.1 Probability of death after head injury as a function of age, hematoma score, and pupils:
Panels (a) and (b) are for low and high coma scores, respectively
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Table 7.1 Number of
aircraft fastener failures at
specified pressure loads

Load (psi) Failures Sample size Proportion failing

2,500 10 50 0.20
2,700 17 70 0.24
2,900 30 100 0.30
3,100 21 60 0.35
3,300 18 40 0.45
3,500 43 85 0.51
3,700 54 90 0.60
3,900 33 50 0.66
4,100 60 80 0.75
4,300 51 65 0.78

7.2.3 Bronchopulmonary Dysplasia

We describe data from van Marter et al. (1990) and subsequently analyzed by
Pagano and Gauvreau (1993) on the absence/presence of bronchopulmonary dys-
plasia (BPD) as a function of birth weight (in grams) for n = 223 babies. BPD
is a chronic lung disease that affects premature babies. In this study, BPD was
defined as a function of both oxygen requirement and compatible chest radiograph,
with 147 of the babies having neither characteristic by day 28 of life. We take as
illustrative aim the prediction of BDP using birth weight, the rationale being that if
a good predictive model can be found, then measures could be taken to decrease the
probability of BPD. There are a number of caveats that should be attached to this
analysis. First, these data are far from a random sample of births, as they are sampled
from intubated infants with weights less than 1,751 g (so that all of the babies are
of low birth weight). In general, an estimate of the incidence of BPD is difficult to
tie down, in part, because of changes in the definition of the condition. Allen et al.
(2003) provide a discussion of this issue and report that, of preterm infants with
birth weights less than 1,000 g, 30% develop BPD. Second, a number of additional
covariates would be available in a serious attempt at prediction, including gender
and the medication used by the mothers.

Figure 7.2 displays the BPD indicator, plotted as short vertical lines at 0 and 1, as
a function of birth weight. Visual assessment suggests that children with lower birth
weight tend to have an increased chance of BPD. It is hard to discern the shape of the
association from the raw binary data alone, however, since one is trying to compare
the distributions of zeros and ones, which is difficult. This example is distinct from
the aircraft fasteners because the latter contained multiple responses at each x value.
Binning on the basis of birthweight and plotting the proportions with BPD in each
bin would provide a more informative plot.



308 7 Binary Data Models

|

|

|

| ||

|

|

||

| |

||

||

|| ||

| | | ||

|

| || |

|

||

||||

| ||

| | |

|

||||

|

||

| ||

|

|

||||

|| |

||

| ||| || || || ||| |

||

|| ||

||

| ||| || ||

|

| |

||

| |

|

|

||||

| |

| |

|

|

|

|

|||

| |

|| |

||

| || |

|

|

||| ||

|| || |

|

| |

|

||| | ||

|

|| || ||

| |

|

||

|

|

| || || | ||

||

|

|

|

|

| | | || ||| | | | |

|

| ||| ||| | || | |

|

|| || |

|

|

|

| |||

|

|| | |

400 600 800 1000 1400
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Birthweight (grams)

B
P

D

Logistic

Comp Log Log

Fig. 7.2 Indicator of
bronchopulmonary dysplasia
(BPD), as a function of birth
weight. The short vertical
lines at 0 and 1 indicate the
observed birth weights for
non-BPD and BPD infants,
respectively. The dashed
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logistic regression fit and the
dotted curve to a
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7.3 The Binomial Distribution

7.3.1 Genesis

In the following we will refer to the basic sampling unit as an individual. Let Z
denote the Bernoulli random variable with

Pr(Z = z | p) = pz(1 − p)1−z,

z = 0, 1, and
p = Pr(Z = 1 | p),

for 0 < p < 1. For concreteness, we will call the Z = 1 outcome a positive
response. A random variable taking two values must have a Bernoulli distribution,
and all moments are determined as functions of p. In particular, var(Z | p) =
p(1−p) so that there is no concept of underdispersion or overdispersion for a
Bernoulli random variable.

Suppose there are N individuals, and let Zj denote the outcome for the jth
individual, j = 1, . . . , N . Also let Y =

∑N
j=1 Zj be the total number of individuals

with a positive outcome, and suppose that each has equal probabilities, that is, p =
p1 = . . . = pN . Under the assumption that the Bernoulli random variables are
independent,

Y | p ∼ Binomial(N, p)

so that

Pr(Y = y | p) =
(
N

y

)
py(1 − p)1−y, (7.1)

for y = 0, 1, . . . , N .
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Constant p = pj , j = 1, . . . , N , over the N individuals is not necessary for Y to
follow a binomial distribution. Suppose that individual j has probability pj drawn
at random from a distribution with mean p. In this case,

E[Zj ] = E [E(Zj | pj)] = p

and
Y | p ∼ Binomial(N, p). (7.2)

Crucial to this derivation is the assumption that pj are independent draws from
the distribution with mean p, which means that the Zj are also independent for
j = 1, . . . , N . Alternative scenarios are described in the context of overdispersion
in Sect. 7.5.

We give a second derivation of the binomial distribution. Suppose Yj | λj ∼ind

Poisson(λj), j = 1, 2 are independent Poisson random variables with rates λj .
Then,

Y1 | Y1 + Y2, p ∼ Binomial(Y1 + Y2, p),

with p = λ1/(λ1 + λ2) (Exercise 7.3).

7.3.2 Rare Events

Suppose that Y | p ∼ Binomial(N, p) and that p → 0 and N → ∞, with λ =
Np fixed (or tending to a constant). Then Exercise 7.1 shows that, in the limit,
Y | λ ∼ Poisson(λ). Approximating the binomial distribution with a Poisson has
a number of advantages. Computationally, the Poisson model can be more stable
than the binomial model. Also, λ > 0 can be modeled via a loglinear form which
provides a more straightforward interpretation than the logistic form, log[p/(1−p)].
The following example illustrates one use of this result for obtaining a closed-form
distribution when counts are summed.

Example: Lung Cancer and Radon

In Sect. 1.3.3 we introduced the lung cancer dataset, with Yi being the number of
cases in area i. A possible model for these data is

Yi | θi ∼ Poisson(Eiθi), (7.3)

where Ei is the expected number of cases based on the age and gender breakdown
of area i and θi is the relative risk associated with the area, for i = 1, . . . , n.

A formal derivation of this model is as follows (see Sect. 6.5 for a related
discussion). Let Yij be the disease counts in area i and age-gender stratum j and
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Nij the associated population, i = 1, . . . , n, j = 1, . . . , J . In the Minnesota study,
we have J = 36, corresponding to male/female and 18 age bands: 0–4, 5–9,. . . , 80–
84, 85+. We only have access to the total counts in the area, Yi, and so we require a
model for this sum. One potential model is Yij | pij ∼ Binomial(Nij , pij), with pij
the probability of lung cancer diagnosis in area i, stratum j. With binomial Yij , the
distribution of Yi =

∑J
j=1 Yij is a convolution, which is unfortunately awkward to

work with. For example, for J = 2,

Pr(yi | pi1, pi2)

=
∑ui

yi1=li

(
Ni1

yi1

)(
Ni2

yi − yi1

)
pyi1

i1 (1− pi1)
Ni1−yi1pyi−yi1

i2 (1− pi2)
Ni2−yi+yi1

where li = max(0, yi − Ni2), ui = min(Ni1, yi), gives the range of admissible
values that yi1 can take, given the margins Yi, Ni−Yi1−Yi2, Ni1, Ni2. Lung cancer
is statistically rare, and so we can use the Poisson approximation to give Yij | pij ∼
Poisson(Nijpij). The distribution of the sum Yi is then straightforward:

Yi | pi1, . . . , piJ ∼ Poisson

⎛

⎝
J∑

j=1

Nijpij

⎞

⎠. (7.4)

There are insufficient data to estimate the n × J probabilities pij , and so it is
common to assume pij = θi × qj , where qj are a set of known reference stratum-
specific rates and θi is an area-specific term that summarizes the deviation of the
risks in area i from the reference rates. Therefore, this model assumes that the effect
on risk of being in area i is the same across stratum. Usually, the qj are assumed

known. Consequently, (7.4) simplifies to Yi | θi ∼ Poisson
(
θi
∑J

j=1 Nijqj

)
, and

substituting the expected numbers Ei =
∑J

j=1 Nijqj produces model (7.3).

7.4 Generalized Linear Models for Binary Data

7.4.1 Formulation

Let Zij = 0/1 denote the absence/presence of the binary characteristic of interest
in each of the j = 1, . . . , Ni trials, with i = 1, . . . , n different “conditions.” Let
Yi =

∑Ni

j=1 Zij denote the number of positive responses and N =
∑n

i=1 Ni the
total number of trials. Further, suppose there are k explanatory variables recorded
for each condition, and let xi = [1, xi1, . . . , xik] denote the row vector of dimension
1 × (k + 1) for i = 1, . . . , n. We now wish to model the probability of a positive
response p(xi), as a function of xi, in order to identify structure within the data.
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We might naively model the observed proportion via the linear model

Yi

Ni
= xiβ + εi,

for i = 1, . . . , n. There are a number of difficulties with such an approach. First,
the observed proportions must lie in the range [0, 1], while the modeled probability
xiβ is unrestricted. We could attempt to put constraints on the parameters in order
to alleviate this drawback, but this is inelegant and soon becomes cumbersome with
multiple explanatory variables. The resultant inference is also difficult due to the
restricted ranges. The second difficulty is that we saw in Sect. 5.6.4 that in the usual
linear model framework, an appropriate mean–variance model is crucial for well-
calibrated inference (unless sandwich estimation is turned to). A linear model is
usually associated with error terms with constant variance, but this is not appropriate
here since

var

(
Yi

Ni

)
=

p(xi)[1 − p(xi)]

Ni

so that the variance changes with the mean. The generalized linear model, intro-
duced and discussed in Sect. 6.3, can rectify these deficiencies. For sums of binary
variables, the binomial model is a good starting point.

The binomial model is a member of the exponential family, specifically Y | p ∼
Binomial(N, p), that is, (7.1), translates to

p(y | p) = exp

[
y log

(
p

1− p

)
+N log(1− p)

]
, (7.5)

which provides the stochastic element of the model. For the deterministic part, we
specify a monotonic, differentiable link function:

g [ p(x) ] = xβ. (7.6)

The exponential family is appealing from a statistical standpoint since correct
specification of the mean function leads to consistent inference, since the score
function is linear in the data (this function is given for the logistic model in (7.12)).
With a GLM, the computation is also usually straightforward (Sect. 6.5.2). Non-
linear models can also be considered, however, if warranted by the application.
For example, Diggle and Rowlingson (1994) considered modeling disease risk as
a function of distance x from a point source of pollution. These authors desired a
model for which disease risk returned to baseline as x → ∞ and suggested a model
for the odds of the form
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Pr(Z = 1 | x)
Pr(Z = 0 | x) = β0

[
1 + β1 exp(−β2x

2)
]
,

with β0 corresponding to baseline odds, β1 corresponding to the excess odds at
x = 0 (i.e., at the point source), and β2 determining the speed at which the odds
decline to baseline. Such nonlinear models are computationally more difficult to fit
but produce consistent parameter estimates, if combined with an exponential family.

7.4.2 Link Functions

From (7.5) we see that the so-called canonical link is the logit θ = log [p/(1− p)].
We will see that logistic regression models of the form

log

[
p(x)

1− p(x)

]
= xβ (7.7)

offer a number of advantages in terms of computation and inference. This link
function is by far the most popular in practice, and so Sect. 7.6 is dedicated to
logistic regression modeling.

Other link functions that may be used for binomial data include the probit,
complimentary log–log, and log–log links. The probit link is

Φ−1 [ p(x) ] = xβ,

where Φ[·] is the distribution function of a standard normal random variable. This
link function generally produces similar inference to the logistic link function. The
logistic and probit link functions are symmetric in the sense that g(p) = −g(1− p).

The complementary log–log link function is

log {− log [1− p(x)]} = xβ, (7.8)

to give

p(x) = 1− exp [− exp(xβ)] ,

which is not symmetric. Hence, the log–log link model

− log {− log [p(x)]} = xβ

with

p(x) = exp[− exp(−xβ)]
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may also be used and will not produce the same inference as (7.8). If gCLL(·) and
gLL(·) represent the complementary log–log and log–log links, respectively, then the
two are related via gCLL(p) = −gLL(1− p).

7.5 Overdispersion

Overdispersion is a phenomena that occurs frequently in applications and, in the
binomial data context, describes a situation in which the variance var(Yi | pi)
exceeds the binomial variance Nipi(1− pi).

Often overdispersion occurs due to clustering in the population from which the
individuals were drawn. To motivate a variance model, suppose for simplicity that
the Ni individuals for whom we measure outcomes in trial i are actually broken
into Ci clusters of size ki so that Ni = Ci × ki. These clusters may correspond
to families, geographical areas, genetic subgroups, etc. Within the cth cluster, the
number of positive responders Yic has distribution Yic | pic ∼ind binomial(ki, pic),
where each pic is drawn independently from some distribution, for c = 1, . . . , Ci.
Let Pic represent a random variable with

E[Pic] = pi

var(Pic) = τ2i pi(1− pi),

where the variance is written in this form for convenience (as we see shortly). In the
following we will use expressions for iterated expectation, variance, and covariance,
as described in Appendix B. Then, letting Yi =

∑Ci

c=1 Yic,

E[Yi] = E

[
Ci∑

c=1

Yic

]
=

Ci∑

c=1

EPic
[E(Yic | Pic)] =

Ci∑

c=1

EPic
[kiPic] = Nipi.

Turning to the variance,

var(Yi) = var

(
Ci∑

c=1

Yic

)
=

Ci∑

c=1

var(Yic),

since the counts are independent, as each pic is drawn independently. Continuing
with this calculation and exploiting the iterated variance formula,
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var(Yi) =

Ci∑

c=1

{E [var(Yic | pic)] + var (E[Yic | pic])}

=

Ci∑

c=1

{
EPic

[kiPic(1− Pic)] + varPic
(kiPic)

}

=

Ci∑

c=1

{
kipi − ki

[
var(Pic) + E[Pic]

2
]
+ k2i τ

2
i pi(1 − pi)

}

= Nipi(1− pi)×
[
1 + (ki − 1)τ2i

]

= Nipi(1− pi)σ
2
i .

Hence, the within-trial clustering has induced excess-binomial variation. Suppose
each cluster is of size ki = 1 (i.e., Ci = Ni); then we recover the binomial
case (7.2). The above derivation requires 1 ≤ σ2

i ≤ ki ≤ Ni, since 0 ≤ σ2
i ≤ 1

(McCullagh and Nelder 1989, Sect. 4.5.1). If we were to assume a second moment
model with a common σ2

i = σ2 to give

var(Yi) = Nipi(1− pi)σ
2 (7.9)

then the constraint becomes σ2 ≤ Ni, which is unfavorable, but will rarely be a
problem in practice.

If we have a single cluster, that is, Ci = 1, then ki = Ni and

var(Yi) = Nipi(1− pi)×
[
1 + (Ni − 1)τ2i

]
. (7.10)

Suppose Zij , j = 1, . . . , Ni are the binary outcomes within-trial i so that Yi =∑Ni

j=1 Zij . Then, for the case of a single cluster (Ci = 1),

cov(Zij , Zik) = E[cov(Zij , Zik | pi1)] + cov(E[Zij | pij ],E[Zik | pik])
= covPi1

(Pi1, Pi1)

= var(Pi1) = τ2i pi(1− pi),

so that τ2i is the correlation between any two outcomes in trial i.
We now discuss a closely related scenario in which we start by assuming that

outcomes within a trial have correlation τ2i . Then (Exercise 7.4),

var(Yi) = Nipi(1− pi)×
[
1 + (Ni − 1)τ2i

]
. (7.11)

Notice that, unlike the derivation leading to (7.10), underdispersion can occur
if τ2i < 0. The equality of (7.10) and (7.11) shows that the effect of either a
random response probability or positively correlated outcomes within a trial is
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indistinguishable marginally (unless one is willing to make assumptions about the
within-trial distribution, but such assumptions are uncheckable).

Inferentially, two approaches are suggested. We could specify the first two mo-
ments only and use quasi-likelihood. This route is taken in Sect. 7.6.3. Alternatively,
one can assume a specific distributional form and then proceed with parametric
inference, as we now illustrate.

The most straightforward way to model overdispersion parametrically is to
assume the binomial probability arises from a conjugate beta model. This model is

Yi | qi ∼ Binomial(Ni, qi)

qi ∼ Beta(ai, bi),

where we can parameterize as ai = dpi, bi = d(1− pi) so that

pi =
ai
d

var(pi) =
pi(1− pi)

d+ 1
.

An obvious choice of mean model is the linear logistic model

pi =
exp(xiβ)

1 + exp(xiβ)
.

Notice that d = 0 corresponds to the binomial model. Integration over the random
effects results in the beta-binomial marginal model:

Pr(Yi=yi) =

(
Ni

yi

)
Γ (ai + bi)

Γ (ai)Γ (bi)

Γ (ai + yi)Γ (bi +Ni − yi)

Γ (ai + bi +Ni)
, yi = 0, 1, . . . , Ni.

The marginal moments are

E[Yi] = Nipi = Ni

(
ai

ai + bi

)

var(Yi) = Nipi(1− pi)

(
ai + bi +Ni

ai + bi + 1

)
,

confirming that there is no overdispersion when Ni = 1. This variance is also
equal to (7.10), with the assumption of constant τ2i on recognizing that τ2 =
(ai+ bi+1)−1 = 1/(d+1). Unfortunately, the log-likelihood l(β, d) is not easy to
deal with due to the gamma functions. More seriously, the beta-binomial distribution
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is not of exponential family form and does not possess the consistency properties of
distributions within this family.

Liang and McCullagh (1993) discuss the modeling of overdispersed binary data.
In particular, they suggest plotting residuals

yi −Nip̂i√
Nip̂i(1− p̂i)

againstNi in order to see whether there is any association, which may help to choose
between models (7.9) and (7.10).

7.6 Logistic Regression Models

7.6.1 Parameter Interpretation

We write the probability of Y = 1 as p(x) to emphasize the dependence on
covariates x. Model (7.7) is equivalent to saying that the odds of a positive outcome
may be modeled in a multiplicative fashion, that is,

p(x)

1− p(x)
= exp(xβ) = exp(β0)

k∏

j=1

exp(xjβj).

Less intuition is evident on the probability scale for which

p(x) =
exp(xβ)

1 + exp(xβ)
.

The transformation used here is known as the expit transform (and is the inverse of
the logit transform). The expression for the probability makes it clear that we have
enforced 0 < p(x) < 1.

For clarity, we discuss interpretation in the situation in which p(x) is the
probability of a disease, given exposure x. Consider first the logistic regression
model in the case where the exposures have no effect on the probability of disease:

log

[
p(x)

1− p(x)

]
= β0.

In this case, β0 is the log odds of disease for all levels of the exposuresx. Equivalent
statements are that exp(β0) is the odds of disease and exp(β0)/[1+ exp(β0)] is the
probability of disease, regardless of the levels of x.

Now consider the situation of a single exposure x for an individual with
probability p(x) and

log

[
p(x)

1− p(x)

]
= β0 + β1x.
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The parameter exp(β0) is the odds of disease at exposure x = 0, that is, the odds for
an unexposed individual. The parameter exp(β1) is the odds ratio for a unit increase
in x. For example, if exp(β1) = 2, the odds of disease double for a unit increase in
exposure. If x is a binary exposure, coded as 0/1, then exp(β1) is the ratio of odds
when going from unexposed to exposed:

p(1)/[1− p(1)]

p(0)/[1− p(0)]
=

exp(β0 + β1)

exp(β0)
= exp(β1).

For a rare disease, the odds ratio and relative risk, which is given by p(x)/p(x−1)
for a univariate exposure, are approximately equal, with the relative risks being
easier to interpret (see Sect. 7.10.2 for a more detailed discussion).

Logistic regression models may be defined for multiple factors and continuous
variables in an exactly analogous fashion to the multiple linear models considered in
Chap. 5. We simply include on the right-hand side of (7.6) the relevant design matrix
and associated parameters. This is a benefit of the GLM framework in which we
have linearity on some scale, though, with noncanonical link functions, parameter
interpretation is usually more difficult.

The logistic model may be derived in terms of the so-called tolerance distribu-
tions. Let U(x) denote an underlying continuous measure of the disease state at
exposure x. We observe a binary version, Y (x), of this variable which is related to
U(x) via

Y (x) =

{
0 if U(x) ≤ c

1 if U(x) > c,

for some threshold c. Suppose that the continuous measure follows a logistic
distribution: U(x) ∼ logistic [μ(x), 1]. This distribution is given by

p(u | μ, σ) = exp{(u− μ)/σ}
σ{1 + exp[(u − μ)/σ]}2 , −∞ < u < ∞.

The logistic distribution function, for the case σ = 1, is

Pr [U(x) < u] =
exp(u− μ)

1 + exp(u − μ)
, −∞ < u < ∞.

From this model for U(x), we can obtain the probability of the discrete outcome as

p(x) = Pr [Y (x) = 1] = Pr [U(x) > c] =
exp(μ(x) − c)

1 + exp(μ(x) − c)
,

which is equivalent to

log

[
p(x)

1− p(x)

]
= μ(x)− c.
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So far we have not specified how the exposure x changes the distribution of the
continuous latent variable U(x). We assume that the effect of exposure to x is to
move the location of the underlying variable U(x) in a linear fashion via μ(x) =
a+ bx, but while keeping the variance constant. We then obtain

log

[
p(x)

1− p(x)

]
= β0 + β1x,

where β0 = a− c and β1 = b, that is, a linear logistic regression model.
The probit and complementary log–log links may similarly be derived from

normal and extreme-value1 tolerance distributions, respectively.

7.6.2 Likelihood Inference for Logistic Regression Models

We consider the logistic regression model

log

[
pi(β)

1− pi(β)

]
= xiβ,

where xi is a 1× (k + 1) vector of covariates measured on the ith individual and β
is the (k+1)×1 vector of associated parameters. We write pi(β) to emphasize that
the probability of a positive response is a function of β. For the general binomial
model the log-likelihood is

l(β) =

n∑

i=1

Yi log pi(β) +

n∑

i=1

(Ni − Yi) log [1− pi(β)] ,

with score function

S(β) =

n∑

i=1

∂pi(β)

∂β

[Yi −Nip(β̂)]

p(β)[1− p(β̂)]
. (7.12)

Letting μ represent the n × 1 vector with ith element μi = Nipi(β) allows (7.12)
to be rewritten as

S(β) = DTV −1 [Y − μ(β)] , (7.13)

where D is the n × (k + 1) matrix with (i, j)th element ∂μi/∂βj , i = 1, . . . , n,
j = 0, . . . , k and V is the n × n diagonal matrix with ith diagonal element
Nip(xi) [1− p(xi)]. From Sect. 6.5.1,

1u has an extreme-value distribution if its distribution function is of the form F (u) = 1 −
exp{− exp[(u− μ)/σ]}.
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In(β)
1/2(β̂n − β) →d Nk+1( 0, Ik+1),

where In(β) = DTV −1D. For the logistic model,

∂μi

∂βj
= xijNipi(1− pi)

Vii = Nipi(1− pi).

Consequently, the score takes a particularly simple form:

S(β) = xT [Y − μ(β)] .

Hence, at the maximum, xTY = xTμ(β̂) so that selected sums of the outcomes (as
defined by the design matrix) are preserved. In addition, element (j, j′) of In(β)
takes the form

n∑

i=1

xijxij′Nipi(1− pi).

We now turn to hypothesis testing and consider a model with 0 < q ≤ k
parameters and fitted probabilities p̂. The log-likelihood is

l(p̂) =

n∑

i=1

[yi log p̂i + (Ni − yi) log(1 − p̂i)] ,

with the maximum attainable value occurring at p̃i = yi/Ni. The deviance is

D = 2 [l(p̃)− l(p̂)]

= 2

n∑

i=1

[
yi log

(
yi
ŷi

)
+ (Ni − yi) log

(
Ni − yi
Ni − ŷi

)]
, (7.14)

where p̃ is the vector of probabilities, p̃i, i = 1, . . . , n. Notice that the deviance
will be small when ŷi is close to yi. The above form may also be derived directly
from (6.22) under a binomial model. If n, the number of parameters in the saturated
model (which, recall, is the number of conditions considered and not the total
number of trials which is given by N ), is fixed, then under the hypothesized model
that produced p̂, D →d χ2

n−q . The important emphasis here is on fixed n. The
outcome after head injury dataset provides an example in which this assumption is
valid since there are n = 2 × 2 × 2 × 3 = 24 binomial trials being carried out at
each combination of the levels of coma score, pupils, hematoma, and age.

When n is not fixed, the above result on the absolute fit is not relevant, but the
relative fit may be assessed by comparing the difference in deviances. Specifically,
consider nested models with qj parameters under Hj , j = 0, 1. Further, the
estimated probabilities and fitted values under hypothesis Hj will be denoted p̂j

and ŷ(j), j = 0, 1, respectively. Then the reduction in deviance is



320 7 Binary Data Models

D0 −D1 = 2 {l(p̃)− l(p̂0)− [l(p̃)− l(p̂1)]}
= 2 [l(p̂1)− l(p̂0)]

= 2

n∑

i=1

[
yi log

(
ŷ
(1)
i

ŷ
(0)
i

)
+ (Ni − yi) log

(
Ni − ŷ

(1)
i

Ni − ŷ
(0)
i

)]
.

Under H0, D0 −D1 →d χ2
q1−q0 .

When the denominators Ni are small, the deviance should not be used, as we
now illustrate in the case of Ni = 1. Suppose that Yi | pi ∼ind Bernoulli(pi), with a
logistic model, logit(pi) = xiβ, for i = 1, . . . , n. We fit this model using maximum
likelihood, resulting in estimates β̂ and fitted probabilities p̂. In this case, (7.14)
becomes

D = −2

n∑

i=1

yi log

(
p̂i

1− p̂i

)
− 2

n∑

i=1

yi log(1− p̂i)

= −2yTxβ̂ − 2

n∑

i=1

log(1− p̂i)

= −2β̂
T

xTy − 2

n∑

i=1

log(1− p̂i)

since y log y = (1− y) log(1 − y) = 0. At the MLE, xTy = xTp̂ so that

D = −2β̂
T

xTp̂− 2

n∑

i=1

log(1− p̂i)

and the deviance is a function only of β̂. In other words, D is a deterministic
function of β̂ only and cannot be used as a goodness of fit statistic. With small Ni,
this is a problem for any link function.

An alternative goodness of fit measure for a model with q parameters is the
Pearson statistic, as introduced in Sect. 6.5.3:

X2 =

n∑

i=1

(Yi −Nip̂i)
2

Nip̂i(1− p̂i)
, (7.15)

with X2 →d χ2
n−q under the null and under the assumption of fixed n. The Pearson

statistic also has problems with small Ni. For example, for the model Yi | p ∼ind

Bernoulli(p), p̂ = y and

X2 =

n∑

i=1

(yi − y)2

y(1− y)
= n,
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which is not a useful goodness of fit measure (McCullagh and Nelder 1989,
Sect. 4.4.5). The deviance also has problems under this Bernoulli model (Exer-
cise 7.5).

7.6.3 Quasi-likelihood Inference for Logistic Regression
Models

As we saw in Sect. 6.6, an extremely simple and appealing manner of dealing with
overdispersion is to assume the model

E[Yi | β] = Nipi(β)

var(Yi | β) = αNipi(β) [1− pi(β)] ,

with cov(Yi, Yj | β) = 0, for i �= j. Under this model, due to the proportionality
of the variance model, the maximum quasi-likelihood estimator satisfies the score
function (7.12), since the value of α is irrelevant to finding the root of the
estimating equation. Hence, the quasi-likelihood estimator β̂ corresponds to the
MLE. Interval estimates and tests are altered, however. In particular, asymptotic
confidence intervals are derived from the variance–covariance α̂(DTV −1D)−1. An
obvious estimator of α is provided by the method of moments, which corresponds
to the Pearson statistic (7.15) divided by n − k − 1. This estimator is consistent if
the first two moments are correctly specified. The reference χ2 distribution under
the null is also perturbed, as in (6.27).

7.6.4 Bayesian Inference for Logistic Regression Models

A Bayesian approach to inference combines the likelihood L(β) with a prior
π(β), with a multivariate normal distribution being the obvious choice. For the
binomial model there is no conjugate distribution for general regression models.
In simple situations with a small number of discrete covariates, one could specify
beta priors with known parameters for each combination of levels and obtain
analytic posteriors, but there would be no linkage between the different groups, that
is, no transfer of information. With multivariate normal priors, computation may
be carried out using INLA (Sect. 3.7.4), though this approximation strategy may be
inaccurate if the binomial denominators are small (Fong et al. 2010). An alternative
is provided by MCMC (Sect. 3.8).

As discussed in Sect. 7.6.3, it is common to encounter excess-binomial variation.
This may be dealt with in a Bayesian context via the introduction of random effects.
The beta-binomial described in Sect. 7.5 provides one possibility. An alternative,
more flexible formulation would assume the two-stage model:
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Stage One: The likelihood:

Yi | β, bi ∼ind Binomial [N, p(xi)]

log

[
p(xi)

1− p(xi)

]
= xiβ + bi

Stage Two: The random effects distribution:

bi | σ2
0 ∼iid N(0, σ2

0).

The parameter σ2
0 controls the amount of overdispersion, though not in a simple

fashion. A Bayesian approach adds priors on β and σ2
0 . This model is discussed

further in Sect. 9.13.

Example: Outcome After Head Injury

Parameter estimation, whether via likelihood or Bayes, is straightforward for these
data given a particular model. The difficult task in this problem is deciding upon a
model. If prediction is all that is required, then Bayesian model averaging provides
one possibility, and this is explored for these data in Chap. 12.

In exploratory mode, we illustrate some approaches to model selection. In
Sect. 4.8, approaches to variable selection were reviewed and critiqued. In partic-
ular, the hierarchy principle, in which all interactions are accompanied by their
constituent main effect, was discussed. Even applying the hierarchy principle here,
there are still 167 models with k = 4 variables.

We begin by applying forward selection (obeying the hierarchy principle),
beginning with the null model and using AIC as the selection criteria. This leads
to a model with all main effects and the three two-way interactions H.P, H.A,
and P.A. Since there are n = 24 fixed cells here we can assess the overall fit.
The deviance associated with the model selected via forward selection is 13.6 on
13 degrees of freedom which indicates a good fit. Applying backward elimination
produces a model with all main effects and five two-way interactions, the three
selected using forward selection and, in addition, H.C and C.A. This model has a
deviance of 7.0 on 10 degrees of freedom, so the overall fit is good.

Carrying out an exhaustive search over all 167 models using AIC as the criterion
leads to the model selected with backward selection (i.e., main effects plus five two-
way interactions). Using BIC as the criteria leads to a far simpler model with the
main effects H, C, and A only. It is often found that BIC picks simpler models.

We consider inference for the model:

1+H+P+C+A2+A3+H.P+H.A2+H.A3+P.A2+P.A3, (7.16)
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Table 7.2 Likelihood and
Bayesian estimates and
uncertainty measures for
model (7.16) applied to the
head injury data

MLE Std. err. Post. mean Post S.D.

1 −1.39 0.26 −1.37 0.26
H 1.03 0.35 1.02 0.35
P 2.05 0.30 2.04 0.29
C −1.52 0.17 −1.53 0.17
A2 1.20 0.33 1.18 0.32
A3 3.69 0.48 3.68 0.47
H.P −0.55 0.34 −0.55 0.34
H.A2 −0.39 0.36 −0.38 0.36
H.A3 −1.32 0.53 −1.29 0.52
P.A2 −0.57 0.37 −0.56 0.36
P.A3 −1.35 0.49 −1.33 0.48

that is, the model with main effects for hematoma (H), pupils (P), coma score
(C), and age (with A2 and A3 representing the second and third levels) and with
interactions between hematoma and pupils (H.P), hematoma and age (H.A2 and
H.A3), and pupils and age (P.A2 and P.A3).

The MLEs and standard errors are given in Table 7.2, along with Bayesian
posterior means and standard deviations. The prior on the intercept was taken as
flat, and for the 10 log odds ratios, independent normal priors N(0, 4.702) were
taken, which correspond to 95% intervals for the odds ratios of [0.0001,10000],
that is, very weak prior information was incorporated. The INLA method was used
for computation. The original scale of the parameters is given in the table, which
is not ideal for interpretation, but makes sense for comparison of results since the
sampling distributions and posteriors are close to normal. The first thing to note is
that inference from the two approaches is virtually identical. This is not surprising,
given the relatively large counts and weak priors.

The pupil and age variables and their interaction at the highest age level are
clearly very important. The high coma score parameter is large and negative, and
since the coma variable is not involved in any interactions, we can say that having a
high coma score reduces the odds of death by exp(−1.52) = 0.22.

The observed and fitted probabilities are displayed in Fig. 7.3 with different
line types joining the observed probabilities (as in Fig. 7.1). The vertical lines join
the fitted to the observed probabilities, with the same line type as the observed
probabilities with which they are associated. There are no clear badly fitting cells.

Example: Aircraft Fasteners

Let Yi be the number of fasteners failing at pressure xi, and assume Yi | pi ∼ind

Binomial(ni, pi), i = 1, . . . , n, with the logistic model logit(pi) = β0 + β1xi. This
specification yields likelihood
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Fig. 7.3 Probability of death
after head injury as a function
of age, hematoma score, and
pupils. Panels (a) and (b) are
for low and high coma scores,
respectively. The open circles
are the fitted values. The
observed values are joined by
different line types. The
residuals y/n− p̂ are shown
as vertical lines of the same
line type

L(β) = exp

(
β0

n∑

i=1

yi + β1

n∑

i=1

xiyi −
n∑

i=1

ni log [1 + exp(β0 + β1xi)]

)

(7.17)

where β = [β0, β1]
T. The MLEs and variance–covariance matrix are

β̂ =

[ −5.34

0.0015

]
, v̂ar(β̂) =

[
2.98× 10−1 −8.50× 10−5

−8.50× 10−5 2.48× 10−8

]
. (7.18)

The solid line in Fig. 7.4 is the fitted curve p̂(x) corresponding to the MLE. The
fit appears good. For comparison we also fit models with complementary log–log
and log–log link functions, as described in Sect. 7.4.2. Figure 7.4 shows the fit from
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Fig. 7.4 Fitted curves for the
aircraft fasteners data under
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these models. The residual deviance from logistic, complementary log–log, and log–
log links are 0.37, 0.69, and 1.7, respectively. These values are not comparable via
likelihood ratio tests since the models are not nested. AIC (Sect. 4.8.2) can be used
for such comparisons, but the approximations inherent in the derivation are more
accurate for nested models (Ripley 2004 and Sect. 10.6.4). The differences are so
small here that we would not make any conclusions on the basis of these numbers.
Since the number of x categories is not fixed in this example, we cannot formally
examine the absolute fit of the models. In Fig. 7.6, we see that residual plots for
these three models indicate that the logistic fit is preferable.

A 95% confidence interval for the odds ratio corresponding to a 500 psi increase
in pressure load is

exp

[
500× β̂1 ± 1.96× 500

√
var(β̂1)

]
= [1.86, 2.53]. (7.19)

We now present a Bayesian analysis. For these abundant data and without any
available prior information, the improper uniform prior π(β) ∝ 1 is assumed. The
posterior is therefore proportional to (7.17). We use a bivariate Metropolis–Hastings
random walk MCMC algorithm (Sect. 3.8.2) to explore the posterior. A bivariate
normal proposal was used, with variance–covariance matrix proportional to the
asymptotic variance–covariance matrix, v̂ar(β̂), (7.18). This matrix was multiplied
by four to give an acceptance ratio of around 30%. Panels (a) and (b) of Fig. 7.5
show histograms of the dependent samples from the posterior β(s)

0 and β
(s)
1 , s =

1, . . . , S = 500, and panel (c) the bivariate posterior. The posterior median for β is
[−5.36, 0.0015], and a 95% posterior interval for the odds ratio corresponding to a
500 psi increase in pressure is identical to the asymptotic likelihood interval (7.19).
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Fig. 7.5 Posterior summaries for the aircraft fasteners data: (a) p(β0|y), (b) p(β1|y), (c)
p(β0, β1|y), (d) p(exp(θ)/[1 + exp(θ)]|y), where θ = β0 + β1x̃, that is, the posterior for the
probability of failure at a load of x̃ = 3,000 psi

We now imagine that it is of interest to give an interval estimate for the
probability of failure at x̃ = 3,000 psi (which is indicated as a dashed vertical line
on Fig. 7.4). An asymptotic 95% confidence interval for θ = β0 + β1x̃ is

θ̂ ± 1.96×
√

var(θ̂),

where

θ̂ = β̂0 + x̃β̂1

var(θ̂) = var(β̂0) + 2x̃cov(β̂0, β̂1) + x̃2var(β̂1).

Taking the expit transform of the endpoints of the confidence interval on the linear
predictor scale leads to a 95% interval of [0.29,0.38]. Substitution of the posterior
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Table 7.3 A generic 2× 2
table

Y = 0 Y = 1

X = 0 y00 y01 y0·
X = 1 y10 y11 y1·

y·0 y·1 y··

samples β(s) to give expit(θ(s)), s = 1, . . . , S results in a 95% interval which is
again identical to the frequentist interval.

7.7 Conditional Likelihood Inference

In Sect. 2.4.2, conditional likelihood was introduced as a procedure that could be
used for eliminating nuisance parameters. In this chapter, conditional likelihood will
be used for discrete data, which we denote y. Suppose the distribution for the data
can be represented as,

p(y | λ,φ) ∝ p(t1 | t2,λ)p(t2 | λ,φ), (7.20)

where λ is a parameter of interest and φ is a nuisance parameter. Then inference for
λ may be based on the conditional likelihood

Lc(λ) = p(t1 | t2,λ).

Perhaps the most popular use of conditional likelihood leads to Fisher’s exact
test. Consider the 2× 2 layout of data shown in Table 7.3 with

y01 | p0 ∼ Binomial(y0·, p0)

y11 | p1 ∼ Binomial(y1·, p1),

which we combine with the logistic regression model:

log

(
p0

1− p0

)
= β0

log

(
p1

1− p1

)
= β0 + β1.

Here,

exp(β1) =
p1/(1− p1)

p0/(1− p0)
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is the odds of a positive response in the X = 1 group, divided by the odds of
a positive response in the X = 0 group, that is, the odds ratio. This setup gives
likelihood

Pr(y01, y11 | β0, β1) =

(
y0·
y01

)(
y1·
y11

)
ey11β1

(1 + eβ0+β1)y1·

ey·1β0

(1 + eβ0)y0·
.

(7.21)

Now [y01, y11] implies the distribution of [y11, y·1], so we can write

Pr(y11, y·1 | β0, β1) =

(
y0·

y·1 − y11

)(
y1·
y11

)
ey11β1

(1 + eβ0+β1)y1·

ey·1β0

(1 + eβ0)y0·
.

We now show that by conditioning on the column totals, in addition to the row totals,
we obtain a distribution that depends only on the parameter of interest β1. Consider

Pr(y11 | y·1, β0, β1) =
Pr(y11, y·1 | β0, β1)

Pr(y·1 | β0, β1)
,

where the marginal distribution is obtained by summing over the possible values
that y11 can take, that is,

Pr(y·1 | β0, β1) =

u1∑

u=u0

Pr(u, y·1 | β0, β1)

=

u1∑

u=u0

(
y0·

y·1 − u

)(
y1·
u

)
euβ1

(1 + eβ0+β1)y1·

ey·1β0

(1 + eβ0)y0·

where u0 = max(0, y·1 − y0·) and u1 = min(y1·, y·1) ensure that the marginals
are preserved. With respect to (7.20), λ ≡ β1, φ ≡ β0, t1 ≡ y11, and t2 ≡ y·1.
Accordingly, the conditional distribution takes the form

Pr(y11 | y·1, β1) =

(
y0·

y·1 − y11

)(
y1·
y11

)
ey11β1

∑u1

u=u0

(
y0·

y·1 − u

)(
y1·
u

)
euβ1

, (7.22)

an extended hypergeometric distribution. We have removed the conditioning on β0

since this distribution depends on β1 only (which was the point of this derivation).
Inference for β1 may be based on the conditional likelihood (7.22). In particular, the
conditional MLE may be determined, though unfortunately no closed form exists.

Conventionally, estimates of β0 and β1 would be determined from the product
of binomial likelihoods, (7.21). Unless the samples are small, the conditional and
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unconditional MLEs (and associated variances) will be in close agreement, but
for small samples, the conditional MLE is preferred due to the following informal
argument. Consider the original 2 × 2 data in Table 7.3. If we knew y·1, then this
alone would not help us to estimate β1, but the precision of conclusions about β1

will depend on this column total, and we should therefore condition on the observed
value. This is to ensure that we attach to the conclusions the precision actually
achieved and not that to be achieved hypothetically in a particular situation that
has in fact not occurred. For further discussion, see Cox and Snell (1989, p. 27–29).

To derive the conditional MLE, first consider the conditional likelihood

Lc(β1) =
c(y11)e

y11β1

∑u1

u=u0
c(u)euβ1

where

c(u) =

(
y0·

y·1 − u

)(
y1·
u

)
.

The (conditional) score is

Sc(β1) =
∂

∂β1
logLc(β1) = y11 −

∑u1

u=u0
c(u)ue

̂β1u

∑u1

u=u0
c(u)êβ1u

. (7.23)

The extended hypergeometric distribution is a member of the exponential family
(Exercise 7.6) and

E[Sc(β1)] =
∂

∂β1
logLc(β1)

∣∣∣
̂β1

= 0,

at the MLE. Consequently, from (7.23), we can use the equation E[Y11 | β̂1] = y11
to solve for β̂1. Asymptotic inference is based on

Ic(β1)
1/2
(
β̂1 − β1

)
→d N(0, 1), (7.24)

where the (conditional) information is

Ic(β1) = − ∂2

∂β2
1

logLc(β1) =

∑u1

u=u0
c(u)u2e

̂β1u

∑u1

u=u0
c(u)êβ1u

−
(∑u1

u=u0
c(u)ue

̂β1u

∑u1

u=u0
c(u)êβ1u

)2

= var(Y11 | β1).

It is straightforward to test the null hypothesis H0 : β1 = 0 using the conditional
likelihood. When β1 = 0, the distribution (7.22) is hypergeometric, and so
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Table 7.4 Data on tumor
appearance within rats

Tumor

Absent Present
Y = 0 Y = 1

Control X = 0 13 19 32
Treated X = 1 2 21 23

15 40 55

Pr(y11 | y·1, β1 = 0) =

(
y0·

y·1 − y11

)(
y1·
y11

)

(
y··
y·1

) . (7.25)

The comparison of the observed y11 with the tail of this distribution is known as
Fisher’s exact test (Fisher 1935). Various possibilities are available to obtain a two-
sided significance level, the simplest being to double the one-sided p-value. An
alternative is provided by summing all probabilities less than the observed table.
Confidence intervals for β1 may be obtained from (7.24), or by inverting the test. See
Agresti (1990, Sects. 3.5 and 3.6) for further discussion; in particular, the problems
of the discreteness of the sampling distribution are discussed.

Example: Tumor Appearance Within Mice

We illustrate the application of conditional likelihood using data reported by
Essenberg (1952) and presented in Table 7.4. To examine the carcinogenic effects of
tobacco, 36 albino mice were placed in an enclosed chamber which was filled with
the smoke of one cigarette every 12 h per day. Another group of mice were kept in
an alternative chamber without smoke. After 1 year, autopsies were carried out on
those mice that had survived for at least the first 2 months of the experiment. The
data in Table 7.4 give the numbers of mice with and without tumors in the “control”
and “treated” groups.

For these data, the permissible values of y11 lie between u0 = max(0, 40 −
32) = 8 and u1 = min(23, 40) = 23. Under H0 : β1 = 0, the probabilities of
y11 = 21, 22, 23, from (7.25), are 0.00739, 0.00091, and 0.00005, which sum to
0.00834, the one-sided p-value. The simplest version of the two-sided p-value is
therefore 0.0167, which would lead to rejection of H0 under the usual threshold of
0.05. Summing the probabilities of more extreme tables gives a p-value of 0.0130.

Denoting by β̂u
1 the (unconditional) MLE of the log odds ratio, we have

β̂u
1 = log

(
21× 13

2× 19

)
= log(7.18) = 1.97,
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with asymptotic standard error

√
v̂ar(β̂u

1 ) =

√
1

2
+

1

21
+

1

13
+

1

19
= 0.82,

to give asymptotic 95% confidence interval for the odds ratio of

exp(1.97± 1.96× 0.82) = [1.44, 35.8] .

The Wald test p-value of 0.0166 is very close to that obtained from Fisher’s exact
test. The conditional MLE is

β̂1 = log(6.95) = 1.93

with conditional standard error

√
var(β̂1) = 0.61,

illustrating the extra precision gained by conditioning on y·1. The conditional
asymptotic 95% confidence interval for the odds ratio based on (7.24) is

exp(1.93± 1.96× 0.61) = [2.11, 22.9] .

7.8 Assessment of Assumptions

In general, residual analysis is subjective, and though one might be able to
conclude that a model is inadequate, concluding adequacy is much more difficult.
Unfortunately, for logistic regression models with binary data, the assessment is
even more tentative. Even when the model is true, little can be said about the
moments and distribution of the residuals.

We briefly review Pearson and deviance residuals as defined for GLMs in
Sect. 6.9. Pearson residuals are defined as e�i = (Yi − μ̂i)/

√
v̂ar(Yi), and for

Yi | pi ∼ Binomial(ni, pi), we obtain

e�i =
yi − nip̂i

[nip̂i(1− p̂i)]
1/2

,

i = 1, . . . , n. Pearson’s statistic is

X2 =

n∑

i=1

(Yi − nip̂i)
2

nip̂i(1− p̂i)
=

n∑

i=1

(e�i )
2,
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showing the link between the measures of local and absolute fit.
Deviance residuals are defined as

e�i = sign(yi − μ̂i)
√
Di,

i = 1, . . . , N . Note that the deviance D =
∑n

i=1(e
�
i )

2 where D is given by (7.14).
For binary Yi and a particular value of p̂i, the residuals can only take one of two
possible values, which is clearly a problem (this is illustrated later, in Fig. 7.8).

Few analytical results are available for the case of a binomial model, but, if
the model is correct, both the Pearson and deviance residuals are asymptotically
normally distributed. Hence, they may be put to many of the same uses as
residual defined with respect to the normal linear regression model (as described
in Sect. 5.11.3). For example, residuals may be plotted against covariates x and
examined for outlying values. Interpretation is more difficult, however, as one must
examine the appropriateness of the link function as well as the linearity assumption.
A normal QQ plot of residuals can indicate outlying observations.

Empirical logits log[(yi + 0.5)/(Ni − yi + 0.5)] are useful for examining the
adequacy of the logistic linear model. The addition of 0.5 removes problems when
yi = 0 or Ni. This adjustment is optimal; see Cox and Snell (1989, Sect. 2.1.6)
for details. The mean–variance relationship can be examined by plotting residuals
versus fitted values. In particular, different overdispersion models may be compared,
as discussed in Sect. 7.5.

Example: Aircraft Fasteners

In this example, the denominators are relatively large (ranging between 40 and
100 for each of the 10 trials), and so the residuals are informative. Figure 7.6
shows Pearson residuals plotted against pressure load for each of three different link
functions. On the basis of these plots, the logistic model looks the most reasonable
since there are runs of positive and negative residuals associated with the other two
link functions, signifying mean model misspecification.

Example: Outcome After Head Injury

The binary response in this example is cross-classified with respect to factors with
2 or 3 levels. We saw in Fig. 7.3 that the fit of model (7.16) appeared reasonable,
though the distances yi

ni
− p̂i that are displayed as vertical lines are not standardized,

making interpretation difficult. Figure 7.7 gives a normal QQ plot of the Pearson
residuals, and there are no obvious causes for concern with no outlying points.
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Fig. 7.6 Pearson residuals versus pressure load for the aircraft fasteners data for (a) logistic link
model, (b) complementary log–log link model, and (c) log–log link model
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Fig. 7.7 QQ plot of Pearson
residuals for the head injury
data

Example: BPD and Birth Weight

We fit a logistic regression model

Pr(Y = 1 | x) = exp(β0 + β1x)

1 + exp(β0 + β1x)
, (7.26)

with Y = 0/1 corresponding to absence/presence of BPD and x to birth weight. The
curve arising from fitting this model is shown in Fig. 7.2, along with the curve from
the use of the complementary log–log link. We might question whether either of
these curves is adequate, since they are relatively inflexible, with forms determined
by two parameters only. The Pearson residuals from the two models are plotted
versus birth weight in Fig. 7.8. The binary nature of the response is evident in these
plots, and assessing whether the models are adequate is not possible from this plot.
In Chap. 11, we return to these data and fit flexible nonlinear models.
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Fig. 7.8 Pearson residuals versus birth weight for the BPD data: (a) logistic model, (b) comple-
mentary log–log model

7.9 Bias, Variance, and Collapsibility

We begin by summarizing some of the results of Sect. 5.9 in which the bias and
variance of estimators were examined for the linear model. Consider the models:

E[Y | x, z] = β0 + β1x+ β2z (7.27)

E[Y | x] = β�
0 + β�

1x. (7.28)

First, suppose that x and z are orthogonal. Roughly speaking, if z is related to Y ,
then fitting model (7.27) will lead to a reduction in the variance of β̂1, and E[β̂1] =

E[β̂�
1 ] so that bias is not an issue. When x and z are not orthogonal, then fitting

model (7.28) will lead to bias in the estimation of β1 since β�
1 reflects not only x but

also the effect of z through its association with x.
In this section we discuss these issues with respect to logistic regression models.

To this end, consider the logistic models:

E[Y |x, z] = exp(β0 + β1x+ β2z)

1 + exp(β0 + β1x+ β2z)
(7.29)

E[Y |x] = exp(β∗
0 + β∗

1x)

1 + exp(β∗
0 + β∗

1x)
= Ez|x

[
exp(β0 + β1x+ β2z)

1 + exp(β0 + β1x+ β2z)

]
.

(7.30)

The last equation indicates that determining the effects of omission of z will be very
hard to determine due to the nonlinearity of the logistic function. As we illustrate
shortly though, even if x and z are orthogonal, E[β1] �= E[β�

1 ]. Linear models for the
probabilities are more straightforward to understand, but, as discussed previously,
since probabilities are constrained [0, 1], such models are rarely appropriate for
binary data.
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Table 7.5 Illustration of Simpson’s paradox for the case of non-orthogonal x and z

z = 0 z = 1 Marginal

Y = 0 Y = 1 Y = 0 Y = 1 Y = 0 Y = 1

Control x = 0 8 2 9 21 17 23
Treatment x = 1 18 12 2 8 20 20

Odds Ratio 1.6 1.7 0.7

We now discuss the marginalization of effect measures. Roughly speaking, if
an effect measure is constant across strata (subtables) and equal to the measure
calculated from the marginal table, it is known as collapsible. Non-collapsibility
is sometimes referred to as Simpson’s paradox (Simpson 1951) in the statistics
literature. As in Greenland et al. (1999), we include the case of orthogonal x and
z in Simpson’s paradox, though first illustrate with a case in which x and z are
non-orthogonal.

Consider the data in Table 7.5 in which x = 0/1 represents a control/treatment
which is applied in two strata z = 0/1, with a binary response Y = 0/1 being
recorded. In both z strata, the treatment appears beneficial with odds ratios of 1.6
and 1.7. However, when the data are collapsed over strata, the marginal association
is reversed to give an odds ratio of 0.7 so that the treatment appears detrimental.

Mathematically, the paradox is relatively simple to understand. Let

pxz = Pr(Y = 1 | X = x, Z = z)

p∗x = Pr(Y = 1 | X = x)

be the conditional and marginal probabilities of a response and qx = Pr(Z = 1 |
X = x) summarize the relationship between x and z, for x, z = 0, 1. The “paradox”
reflects the fact that it is possible to have

p00 < p10 and p01 < p11,

that is, the probability of a positive response being greater under X = 1 for both
strata, but

p00(1− q0) + p01q0 = p∗0 > p∗1 = p10(1− q1) + p11q1

so that the marginal probability of a positive response is greater under x = 0 than
under x = 1. For the data of Table 7.5,

p00 =
2

10
= 0.20, p10 =

13

30
= 0.43, p01 =

21

30
= 0.7, p11 =

8

10
= 0.8,

and

p∗0 =
23

40
= 0.58, p∗1 =

20

40
= 0.50,
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Table 7.6 Illustration of Simpson’s paradox for the case of orthogonal x and z

z = 0 z = 1 Marginal

Y = 0 Y = 1 Y = 0 Y = 1 Y = 0 Y = 1

Control x = 0 95 5 10 90 105 95
Treatment x = 1 90 10 5 95 95 105

Odds ratio 2.1 2.1 1.2

with

q0 =
30

40
, q1 =

10

40
.

It is important to realize that the paradox has nothing to do with the absolute values
of the counts. Reversal of the association (as measured by the odds ratio) cannot
occur if q0 = q1 (i.e., if there is no confounding), but the odds ratio is still non-
collapsible, as the next example illustrates.

We now consider the situation in which q0 = q1. Such a balanced situation would
occur, by construction, in a randomized clinical trial in which (say) equal numbers
of x = 0 and x = 1 groups receive the treatment. We illustrate in Table 7.6 in which
there are 100 patients in each of the four combinations of x and z. In each of the
z stratum, we see an odds ratio for the treatment as compared to the control of 2.1.
We do not see a reversal in the direction of the association but rather an attenuation
toward the null, with the marginal association being 1.2.

We emphasize that the marginal estimator is not a biased estimate, but is rather
estimating a different quantity, the averaged or marginal association. A second point
to emphasize is that, as we have just illustrated, collapsibility and confounding are
different issues and should not be confused. In particular, it is possible to have
confounding present without non-collapsibility, as discussed in Greenland et al.
(1999).

Another issue that we briefly discuss is the effect of stratification on the variance
of an estimator. As discussed at the start of this section, if x and z are orthogonal but
z is associated with y, then including z in a linear model will increase the precision
of the estimator of the association between y and x. We illustrate numerically that
this is not the case in the logistic regression context, again referring to the data in
Table 7.6. Let pxz represent the probability of disease for treatment group x and
strata z. In the conditional analysis we fit the model

log

(
pxz

1− pxz

)
=

⎧
⎪⎪⎨

⎪⎪⎩

β0 for x = 0, z = 0

β0 + βX for x = 1, z = 0

β0 + βZ for x = 0, z = 1

β0 + βX + βZ for x = 1, z = 1,

where we have not included an interaction between x and z. This results in
exp(βX) = exp(0.75) = 2.1, as expected from Table 7.6, with standard error 0.40.
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Now suppose we ignore the stratum information and let p�x be the probability of
disease for treatment group x. We fit the model

log

(
p�x

1− p�x

)
=

{
β�
0 for x = 0

β�
0 + β�

X for x = 1

This gives exp(β�
X ) = exp(0.20) = 1.2, again as expected from Table 7.6, but with

standard error 0.20 which is a reduction from the conditional model and is in stark
contrast to the behavior we saw with the linear model.

In any cross-classified table the summary we observe is an “averaged” measure,
where the average is with respect to the population underlying that table. Consider
the right-hand 2 × 2 set of counts in Table 7.6, in which we had equal numbers in
each strata (which mimics a randomized trial). The odds ratio comparing treatment
to control is 1.2 here and is the effect averaged across strata (and any other
variables that were unobserved). Such measures are relevant to what are sometimes
referred to as population contrasts. Depending on the context, we will often wish
to include additional covariates in order to obtain effect measures most relevant to
particular subgroups (or subpopulations). The issues here have much in common
with marginal and conditional modeling as discussed in the context of dependent
data in Chaps. 8 and 9.

We emphasize that, as mentioned above, the difference between population and
subpopulation-specific estimates should not be referred to as “bias” since different
quantities are being estimated. As a final note, the discussion in this section has
centered on logistic regression models, but the same issues hold for other nonlinear
summary measures.

7.10 Case-Control Studies

In this section we discuss a very popular design in epidemiology, the case-control
study. In the econometrics literature, this design is known as choice-based sampling.

7.10.1 The Epidemiological Context

Cohort (prospective) studies investigate the causes of disease by proceeding in the
natural way from cause to effect. Specifically, individuals in different exposure
groups of interest are enrolled, and then one observes whether they develop the
disease or not over some time period. In contrast, case-control (retrospective) studies
proceed from effect to cause. Cases and disease-free controls are identified, and then
the exposure status of these individuals is determined. Table 7.7 demonstrates the
simplest example in which there is a single binary exposure, with yij representing
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Table 7.7 Generic 2× 2
table for a binary exposure
and binary disease outcome

Not diseased Diseased
Y = 0 Y = 1

Unexposed X = 0 y00 y01 n0

Exposed X = 1 y10 y11 n1

m0 m1 n

the number of individuals in exposure group i, i = 0, 1 and disease group j,
j = 0, 1. In a cohort study, n0 and n1, the numbers of unexposed and exposed
individuals, are fixed by design, and the random variables are the number of
unexposed cases y01 and the number of exposed cases y11.

There are a number of strong motivations for carrying out a case-control study.
Since many diseases are rare, a cohort study has to generally contain a large number
of participants to demonstrate an association between a risk factor and disease
because few individuals will develop the disease (unless the effect of the exposure
of interest is very strong). It may be difficult to assemble a full picture of the disease
across subgroups (as defined by covariates) within a cohort study because the cohort
is assembled at a particular time, the start of the study. As the study proceeds, certain
subgroups, for example, the young, disappear. In this case it will not be possible to
investigate a calendar time/age interaction, that is, the effect of calendar time at
different age groups. Finally, the disease may take a long time to develop (this is
true, for example, for most cancers), and so the study may need to run for a long
period.

The case-control study provides a way of overcoming these difficulties. With
reference to Table 7.7, m0 and m1, the numbers of controls and case, are fixed by
design, and the random variables are the number of exposed controls y10 and the
number of exposed cases, y11.

A case-control study is not without its drawbacks. Probabilities of disease given
exposure status are no longer directly estimable without external information, as we
will discuss in more detail shortly. Most importantly, the study participants must
be selected very carefully. The probability of selection for the study, for both cases
and controls, must not depend on exposure status; otherwise, selection bias will be
introduced; this bias can arise in many subtle ways. The great benefit of case-control
studies is that we can still estimate the strength of the relationship between exposure
and disease, a topic we discuss in-depth in the next section.

7.10.2 Estimation for a Case-Control Study

Consider the situation in which we have a binary response Y taking the values 0/1
corresponding to disease-free/diseased and exposures contained in a (k + 1) × 1
vector x. The exposures can be a mix of continuous and discrete variables. In the
case-control scenario, we select individuals on the basis of their disease status y,
and the random variables are the exposures X .
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In a cohort study with a binary endpoint, a logistic regression disease model is
the most common choice for analysis, with form

Pr(Y = 1 | x) = p(x) =
exp
(
β0 +

∑k
j=1 xjβj

)

1 + exp
(
β0 +

∑k
j=1 xjβj

) . (7.31)

The relative risk of individuals having exposures x and x� is defined as

Relative risk =
Pr(Y = 1 | x)
Pr(Y = 1 | x�)

and is an easily interpretable quantity that epidemiologists are familiar with.
As already mentioned in Sect. 7.6.1, for rare diseases, the relative risk is well
approximated by the odds ratio

Pr(Y = 1 | x)/Pr(Y = 0 | x)
Pr(Y = 1 | x�)/Pr(Y = 0 | x�)

.

With respect to the logistic regression model (7.31),

p(x)/ [1− p(x)]

p(x�)/ [1− p(x�)]
= exp

⎡

⎣
k∑

j=1

βj(xj − x�
j )

⎤

⎦ ,

so that, in particular, exp(βj) represents the increase in the odds of disease
associated with a unit increase in xj , with all other covariates held fixed (Sect. 7.6.1).
The parameter β0 represents the baseline log odds of disease, corresponding to the
odds when all of the exposures are set equal to zero.

We now turn to interpretation in a case-control study. We first introduce an
indicator variable Z which represents the event that an individual was selected for
the study (Z = 1) or not (Z = 0). Let πy = Pr(Z = 1 | Y = y) denote the
probabilities of selection, given response y, y = 0, 1. Typically, π1 is much greater
than π0, since cases are rarer than non-cases. Now consider the probability that a
person is diseased, given exposures x and selection for the study:

Pr(Y = 1 | Z = 1,x) =
Pr(Z = 1 | Y = 1,x) Pr(Y = 1 | x)

Pr(Z = 1 | x) . (7.32)

The denominator may be simplified to

Pr(Z = 1 | x) =
1∑

y=0

Pr(Z = 1 | Y = y,x) Pr(Y = y | x)

=
1∑

y=0

Pr(Z = 1 | Y = y) Pr(Y = y | x),
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where we have made the crucial assumption that

Pr(Z = 1 | Y = y,x) = Pr(Z = 1 | Y = y) = πy,

for y = 0, 1, that is, the selection probabilities depend only on the disease status and
not on the exposures (i.e., there is no selection bias). If we take a random sample of
cases and controls, this assumption is valid. Substitution in (7.32), and assuming a
logistic regression model, gives

Pr(Y = 1 | Z = 1,x) =
π1 exp(xβ)/[1 + exp(xβ)]

π1 exp(xβ)/[1 + exp(xβ)] + π0/[1 + exp(xβ)]

=
π1 exp

(
β0 +

∑k
j=1 xjβj

)

π0 + π1 exp
(
β0 +

∑k
j=1 xjβj

)

=
exp
(
β�
0 +
∑k

j=1 xjβj

)

1 + exp
(
β�
0 +
∑k

j=1 xjβj

) ,

where β�
0 = β0+log π1/π0. Hence, we see that the probabilities of disease in a case-

control study also follow a logistic model but with an altered intercept. In the usual
case, π1 > π0 so that the intercept is increased to account for the over-sampling of
cases. Unless information on π0 and π1 is available, we cannot obtain estimates of
Pr(Y = 1 | x) (the incidence for different exposure groups).

This derivation shows that assuming a logistic model in the cohort context
implies that the disease frequency within the case-control sample also follows a
logistic model, but does not illuminate how inference may be carried out. Suppose
there are m0 controls and m1 cases. Since the exposures are random in a case-
control context, the likelihood is of the form

L(θ) =

1∏

y=0

my∏

j=1

p(xyj | y, θ),

where xyj is the set of covariates for individual j in disease group y, and it appears
that we are faced with the unenviable task of specifying forms, depending on
parameters θ, for the distribution of covariates in the control and case populations.
In a seminal paper, Prentice and Pyke (1979) showed that asymptotic likelihood
inference for the odds ratio parameters was identical irrespective of whether the
data are collected prospectively or retrospectively. The proof of this result hinges
on assuming a logistic disease model, depending on parameters β, with additional
nuisance parameters being estimated via nonparametric maximum likelihood. Great
care is required in this context because unless the sample space for x is finite
(i.e., the covariates are all discrete with a fixed number of categories), the dimension
of the nuisance parameter increases with the sample size.
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To summarize, when data are collected from a case-control study, a likelihood-
based analysis with a logistic regression model may proceed with asymptotic
inference, acting as if the data were collected in a cohort fashion, except that the
intercept is no longer interpretable as the baseline log odds of disease.

7.10.3 Estimation for a Matched Case-Control Study

A common approach in epidemiological studies is to “match” the controls to the
cases on the basis of known confounders. By choosing controls to be similar
to cases, one “controls” for the confounding variables. This provides efficiency
gains since the controls are more similar to the cases with respect to confounders,
which increases power. It also removes the need to model the disease-confounder
relationship.

In a frequency-matched design, the cases are grouped into broad strata (e.g., 10-
year age bands), and controls are matched on the basis of these variables. In an
individually matched study, controls are matched exactly, usually upon multiple
variables, for example, age, gender, time of diagnosis, and area of residence. For
both forms of matching, the nonrandom selection of controls must be acknowledged
in the analysis by including a parameter for each matching set in the logistic model.

For matched data, let j = 1, . . . , J index the matched sets, and Yij and xij

denote the responses and covariate vector of additional variables (i.e., beyond the
matching variables) for individual i, with i = 1, . . . ,m1j representing the cases and
i = m1j + 1, . . . ,m1j +m0j the controls. Hence, for j = 1, . . . , J ,

yij = 1 for i = 1, . . . ,m1j

yij = 0 for i = m1j + 1, . . . ,m1j +m0j ,

and there are m1 =
∑J

j=1 m1j cases and m0 =
∑J

j=1 m0j controls in total.
The disease model is

log

[
pj(xij)

1− pj(xij)

]
= αj + xijβ (7.33)

where
pj(xij) = Pr(Yij = 1 | xij , stratum j)

for i = 1, . . . ,m0j +m1j , j = 1, . . . , J . In terms of inference, the key distinction
between the two matching situations is that in the frequency matching situation, the
number of matching strata J is fixed. In this case, the result outlined in Sect. 7.10.2
can be extended so that the matched data can be analyzed as if they were gathered
prospectively, though the intercept parameters αj are no longer interpretable as log
odds ratios describing the association between disease and the variables defining
stratum j. For the same reason, it is not possible to estimate interactions between
stratum variables and exposures of interest. Calculations in Breslow and Day (1980)
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show that, in terms of efficiency gains, it is usually not worth exceeding 5 controls
per case and 3 will often be sufficient. Exercise 7.8 considers the analysis of a
particular set of data to illustrate the benefits of case-control sampling and matching.

For individually matched data, for simplicity, suppose there are M controls for
each case so that m1j = 1 and m0j = M for all j. Hence, m1 = J and m0 =
MJ = Mm1. Also let n = m1 represent the number of cases so that m0 = Mn is
the number of controls. The likelihood contribution of the jth stratum is

p(x1j | Y1j = 1)

M+1∏

i=2

p(xij | Yij = 0), (7.34)

but care is required for inference because the number of nuisance parameters,
α1, . . . , αn, is equal to the number of cases/matching sets, n, and so increases with
sample size.

To overcome this violation of the usual regularity conditions, a conditional
likelihood may be constructed. Specifically, for each j, one conditions on the
collection of M + 1 covariate vectors within each matching set. The conditional
contribution is the probability that subject i = 1 is the case, given it could have been
any of the M +1 subjects within that matching set. The numerator is (7.34), and the
denominator is this expression but evaluated under the possibility that each of the
i = 1, . . . ,M + 1 individuals could have been the case. Hence, the jth contribution
to the conditional likelihood is

p(x1j | Y1j = 1)
∏M+1

i=2 p(xij | Yij = 0)
∑

Rj
p(xπ(1),j | Y1j = 1)

∏M+1
i=2 p(xπ(i),j | Yij = 0)

where Rj is the set of M + 1 permutations, [xπ(1),j , . . . ,xπ(M+1),j ] of [x1j , . . . ,
xM+1,j ]. Applying Bayes theorem to each term,

p(xij | Y = y) =
p(Y = y | xij)p(xij)

p(Y = y)
,

and taking the product across matching sets, we obtain

Lc(β) =

n∏

j=1

p(Y1j = 1 | x1j)
∏M+1

i=2 p(Yij = 0 | xij)∑
Rj

p(Y1j = 1 | xπ(1),j)
∏M+1

i=2 p(Yij = 0 | xπ(i),j)
.

Substitution of the logistic disease model (7.33) yields the conditional likelihood

Lc(β) =
n∏

j=1

exp(x1jβ)∑M+1
i=1 exp(xijβ)

=

n∏

j=1

(
1 +

M+1∑

i=2

exp [(xij − x1j)β]

)−1
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Table 7.8 Notation for a
matched-pair case-control
study with n controls and n
cases and a single exposure

Not diseased Diseased
Y = 0 Y = 1

Unexposed X = 0 m00 m01

Exposed X = 1 m10 m11

n n

with the αj terms having canceled out, as was required. For further details, see Cox
and Snell (1989) and Prentice and Pyke (1979, Sect. 6). As an example, if M = 2
(two controls per case), the conditional likelihood is

Lc(β) =

n∏

j=1

exp(x1jβ)

exp(x1jβ) + exp(x2jβ) + exp(x3jβ)

=

n∏

j=1

(
1 +

3∑

i=2

exp [(xij − x1j)β]

)−1

.

The importance of the use of conditional likelihood can be clearly demonstrated
in the matched-pairs situation, in which there is one control per case. Suppose
that the data are as summarized in Table 7.8 so that there is a single exposure
only. There are m00 concordant pairs in which neither case nor control is exposed
and m11 concordant pairs in which both are exposed. Exercise 7.12 shows that
the unconditional MLE of the odds ratio is (m10/m01)

2, the square of the ratio
of discordant pairs. In contrast, the estimate based on the appropriate conditional
likelihood is m10/m01. Hence, the unconditional estimator is the square of the
correct conditional estimator.

A further caveat to the use of individually matched case-control data is that it
is more difficult to generalize inference to a specific population under this design
because the manner of selection is far from that of a random sample.

7.11 Concluding Remarks

The analysis of binomial data is difficult unless the denominators are large because
there is so little information in a single Bernoulli outcome. In addition, the models
for probabilities are typically nonlinear. Logistic regression models are the obvious
candidate for analysis, but the interpretation of odds ratios is not straightforward,
unless the outcome of interest is rare. The effect of omitting variables is also
nonobvious. The fact that the linear logistic model is a GLM does offer advantages
in terms of consistency, however, and the logit being the canonical link gives
simplifications in terms of computation.
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The use of conditional likelihood in individually matched case-control studies
in practice is uncontroversial, but its theoretical underpinning is not completely
convincing (since the conditioning statistic is not ancillary). Fisher’s exact test is
historically popular, but, as discussed in Sect. 4.2, frequentist hypothesis testing can
be difficult to implement in practice since p-values need to be interpreted in the
context of the sample size. For Fisher’s exact, the discreteness of the test statistic can
also be problematic. Exercise 7.11 provides an alternative approach based on Bayes
factors. The latter do not suffer from the discreteness of the sampling distribution
(since one only uses the observed data and not other hypothetical realizations).

7.12 Bibliographic Notes

Robinson and Jewell (1991) examine the effects of omission of variables in logistic
regression models and contrast the implications with the linear model case. Green-
land et al. (1999) is a wide-ranging discussion on collapsibility and confounding.
A seminal book on the design and analysis of case-control studies is Breslow and
Day (1980). There is no Bayesian analog of the Prentice and Pyke (1979) result
showing the equivalence of odds ratio estimation for prospective and retrospective
sampling, though Seaman and Richardson (2004) show the equivalence in restricted
circumstances. Simplified estimation based on nonparametric maximum likelihood
has also been established for other outcome-dependent sampling schemes such as
two-phase sampling; see, for example, White (1982) and Breslow and Chatterjee
(1999). Again, no equivalent Bayesian approaches are available. A fully Bayesian
approach in a case-control setting would require the modeling of the covariate dis-
tributions for each of the cases and controls, which is, in general, a difficult process
and seems unnecessary given that there is no direct interest in these distributions.
Hence, the nonparametric maximum likelihood procedure seems preferable, though
a hybrid approach in which one simply combines the prospective likelihood with a
prior would seem practically reasonable if one has prior information and/or one is
worried about asymptotic inference.

Rice (2008) shows the equivalence between conditional likelihood and random
effects approaches to the analysis of matched-pairs case-control data. In general,
conditional likelihood does not have a Bayesian interpretation, though Bayesian
analyses have been carried out in the individually matched case-control situation
by combining a prior with the conditional likelihood. This approach avoids the
difficulty of specifying priors over nuisance parameters with dimension equal to
the number of matching sets (Diggle et al. 2000).

Fisher’s exact test has been discussed extensively in the statistics literature;
see, for example, Yates (1984). Altham (1969) published an intriguing result
showing that Fisher’s exact test is equivalent to a Bayesian analysis. Specifically,
let p00, p10, p01, p11 denote the underlying probabilities in a 2× 2 table with entries
y = [y00, y10, y01, y11]

T (see Table 7.3), and suppose the prior on these probabilities
is (improper) Dirichlet with parameters (0,1,1,0). Then the posterior probability
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Pr(p11p22/p12p21 < 1 | y) equals the Fisher’s exact test p-value for testing
H0 : p00p11 = p10p01 versus H1 : p00p11 < p10p01. Hence, the prior (slightly)
favors a negative association between rows and columns, which is related to the fact
that conditioning on the margins (as is done in Fisher’s exact test) does lead to a
small loss of information.

7.13 Exercises

7.1 Suppose Z | p ∼ Bernoulli(p).

(a) Show that the moment-generating function (Appendix D) ofZ is MZ(t) =
1 − p + p exp(t). Hence, show that the moment-generating function of
Y =

∑n
i=1 Zi is

MY = [1− p+ p exp(t)]n,

which is the moment-generating function of a binomial random variable.
(b) Suppose Y | λ ∼ Poisson(λ). Show that the cumulant-generating

function (Appendix D) of Y is

λ[exp(t)− 1].

(c) From part (a), obtain the form of the cumulant-generating function of Y .
Suppose that p → 0 and n → ∞ in such a way that μ = np remains fixed.
By considering the limiting form of the cumulant-generating function of
Y , show that in this situation, the limiting distribution of Y is Poisson
with mean μ.

7.2 Before the advent of GLMs, the arc sine variance stabilizing transforma-
tion was used for the analysis of binomial data. Suppose that Y | p ∼
Binomial(N, p) with N large. Using a Taylor series expansion, show that the
random variable

W = arcsin
[√

(Y/N)
]

has approximate first two moments:

E[W ] ≈ arcsin(
√
p)− 1− 2p

8
√
Np(1− p)

var(W ) ≈ 1

4N
.

7.3 Suppose Zj | λj ∼ind Poisson(λj), j = 1, 2 are independent Poisson random
variables with rates λj . Show that

Z1 | Z1 + Z2, p ∼ Binomial(Z1 + Z2, p),

with p = λ1/(λ1 + λ2).
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7.4 Consider n Bernoulli trials with Zij , j = 1, . . . , Ni the outcomes within-trial
i with Yi =

∑Ni

j=1 Zij , i = 1, . . . , n. By writing

var(Yi) =

Ni∑

j=1

var(Zij) +

Ni∑

j=1

∑

j �=k

cov(Zij , Zik),

show that
var(Yi) = Nipi(1− pi)× [1 + (Ni − 1)τ2i ].

7.5 With respect to Sect. 7.6.2, show that for Bernoulli data the Pearson statistic
is X2 = n. Find the deviance in this situation and comments on its usefulness
as a test of goodness of fit.

7.6 Show that the extended hypergeometric distribution (7.22) is a member of the
exponential family (Sect. 6.3), that is, the distribution can be written in the
form

Pr(y11 | θ, α) = exp

(
y11θ − b(θ)

α
+ c(y, α)

)

for suitable choices of α, b(·), and c(·, ·).
7.7 In this question, a simulation study to investigate the impact on inference of

omitting covariates in logistic regression will be performed, in the situation
in which the covariates are independent of the exposure of interest. Let x be
the covariate of interest and z another covariate. Suppose the true (adjusted)
model is Yi | xi, zi ∼iid Bernoulli(pi), with

log

(
pi

1− pi

)
= β0 + β1xi + β2zi. (7.35)

A comparison with the unadjusted model Yi | xi ∼iid Bernoulli(p�i ), where

log

(
p�i

1− p�i

)
= β�

0 + β�
1xi, (7.36)

for i = 1, . . . , n = 1,000 will be made. Suppose x is binary with Pr(X=1) =
0.5 and Z ∼iid N(0, 1) with x and z independent. Combinations of the
parameters β1 = 0.5, 1.0 and β2 = 0.5, 1.0, 2.0, 3.0, with β0 = −2 in all
cases, will be considered.

For each combination of parameters, compare the results from the two
models, (7.35) and (7.36), with respect to:

(a) E[β̂1] and E[β̂�
1 ], as compared to β1

(b) The standard errors of β̂1 and β̂�
1

(c) The coverage of 95% confidence intervals for β1 and β�
1

(d) The probability of rejecting H0 : β1 = 0 in model (7.35) and the
probability of rejecting H0 : β∗

1 = 0 in model (7.36). These probabilities
correspond to the powers of the tests. Calculate these probabilities using
Wald tests.
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Table 7.9 Left table: leprosy cases and non-cases versus presence/absence
of BCG scar. Right table: leprosy cases and controls versus presence/
absence of BCG scar

BCG scar Cases Non-cases BCG scar Cases Controls

Present 101 46,028 Present 101 554
Absent 159 34,594 Absent 159 446

Based on the results, summarize the effect of omitting a covariate that is
independent of the exposure of interest, in particular in comparison with the
linear model case (as discussed in Sect. 5.9).

7.8 This question illustrates the benefits of case-control and matched case-control
sampling, taking data from Fine et al. (1986) and following loosely the
presentation of Clayton and Hills (1993). Table 7.9 gives data from a cross-
sectional survey carried out in Northern Malawi. The aim of this study was to
investigate whether receiving a bacillus Calmette-Guérin (BCG) vaccination
in early childhood (which protects against tuberculosis) gives any protection
against leprosy. Let X = 0/1 denote absence/presence of BCG scar, Y = 0/1
denote leprosy-free/leprosy, and px = Pr(Y = 1 | X = x), x = 0, 1:

(a) Fit the logistic model

log

(
px

1− px

)
= β0 + β1x

to the case/non-case data in the left half of Table 7.9. Report your findings
in terms of an estimate of the odds ratio exp(β1) along with an associated
standard error.

(b) Now consider the case/control data in the right half of Table 7.9 (these data
were simulated from the full dataset). Fit the logistic model

log

(
px

1− px

)
= β�

0 + β1x

to the case/control data, and again report your findings in terms of the
odds ratio exp(β1) along with an associated standard error. Hence, use this
example to describe the benefits, in terms of efficiency, of a case-control
study.

(c) In this example, the population data are known and consequently the sam-
pling fractions of cases and controls are also known. Hence, reconstruct
an estimate of β0, using the results from the case-control analysis.

(d) Next the benefits of matching will be illustrated. BCG vaccination was
gradually introduced into the study region, and so older people are less
likely to have been vaccinated but also more likely to have developed
leprosy. Therefore, age is a potential confounder in this study.

Let z = 0, 1, . . . , 6 denote age represented as a factor and pxz =
Pr(Y = 1 | X = x, ), for x = 0, 1, denote the probability of leprosy
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Table 7.10 Left table: leprosy cases and non-cases as a function of presence/absence of BCG scar
and age. Right table: leprosy cases and matched controls as a function of presence/absence of BCG
scar and age

BCG scar BCG scar

Cases Non-cases Cases Controls

Age Absent Present Absent Present Age Absent Present Absent Present

0–4 1 1 7,593 11,719 0–4 1 1 3 5
5–9 11 14 7,143 10,184 5–9 11 14 48 52
10–14 28 22 5,611 7,561 10–14 28 22 67 133
15–19 16 28 2,208 8,117 15–19 16 28 46 130
20–24 20 19 2,438 5,588 20–24 20 19 50 106
25–29 36 11 4,356 1,625 25–29 36 11 126 62
30–34 47 6 5,245 1,234 30–34 47 6 174 38

for an individual with BCG status x and in age strata z. To adjust for age,
fit the logistic model

log

(
pxz

1− pxz

)
= β0 + β1x+ βZz

to the data in the left half of Table 7.10. This model assumes a common
odds ratio across age strata. Report your findings in terms of the odds ratio
exp(β1) and associated standard error.

(e) If it were possible to sample controls from the non-cases in the left half of
Table 7.10, the age distribution would be highly skewed toward the young,
which would lead to an inefficient analysis. As an alternative, the right
half of Table 7.10 gives a simulated frequency-matched case-control study
with 4 controls per case within each age strata. Analyze these data using
the logistic model

log

(
pxz

1− pxz

)
= β�

0 + β1x+ β�
Z z,

and report your findings in terms of exp(β1) and its associated standard
error. Comment on the accuracy of inference as compared to the analysis
using the complete data.

7.9 Table 7.11 gives data from a toxicological experiment in which the number
of beetles that died after 5 h exposure to gaseous carbon disulphide at various
doses.

(a) Fit complementary log–log, probit, and logit link models to these data
using likelihood methods.

(b) Summarize the association for each model in simple terms.
(c) Examine residuals and report the model that you believe provides the best

fit to these data, along with your reasoning.
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Table 7.11 Number of
beetle deaths as a function of
log dose, from Bliss (1935)

Log dose No. beetles No. killed

1.691 59 6
1.724 60 13
1.755 62 18
1.784 56 28
1.811 63 52
1.837 59 53
1.861 62 61
1.884 60 60

Table 7.12 Death penalty
verdict by race of victim and
defendant

Defendant’s Victim’s Death penalty
race race Yes No

White White 19 132
Black 0 9

Black White 11 52
Black 06 97

(d) Fit your favored model with a Bayesian approach using (improper) flat
priors. Is there a substantive difference in the conclusions, as compared to
the likelihood analysis?

7.10 Table 7.12 contains data from Radelet (1981) on death penalty verdict, cross-
classified by defendant’s race and victim’s race.

(a) Fit a logistic regression model that includes factors for both defendant’s
race and victim’s race. Estimate the odds ratios associated with receiving
the death penalty if Black as compared to if White, for the situations in
which the victim was White and in which the victim was Black.

(b) Fit a logistic regression model to the marginal 2 × 2 table that collapses
across victim’s race, and hence, estimate the odds ratio associated with
receiving the death penalty if Black versus if White.

(c) Discuss the results of the two parts, in relation to Simpson’s paradox. In
particular, discuss the paradox in terms understandable to a layperson.

7.11 Suppose Yi | pi ∼ Binomial(Ni, pi) for i = 0, 1 and that interest focuses on
H0 : p0 = p1 = p versus H1 : p0 �= p1:

(a) Consider the Bayes factor (Sect. 3.10)

BF =
Pr(y0, y1 | H0)

Pr(y0, y1 | H1)

with the priors: p ∼ Be(a0, b0) under H0 and pi ∼ Be(a1, b1), for i =
0, 1, under H1. Obtain a closed-form expression for the Bayes factor.

(b) Calculate the Bayes factor for the tumor data given in Table 7.4 using
uniform priors, that is, a0 = a1 = b0 = b1 = 1.

(c) Based on the Bayes factor, would you reject H0? Why?
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(d) Using the same priors as in the previous part, evaluate the posterior
probability that Pr(p0 > p1 | y0, y1). Based on this probability, what
would you conclude about equality of p0 and p1? Is your conclusion in
agreement with the previous part?
[Hint: Obtaining samples from the posteriors p(pi | yi), for i = 0, 1, is a
simple way of obtaining the posterior of interest in the final part.]

7.12 This question derives unconditional and conditional estimators for the case of
a matched-pairs case-control design with n pairs and a binary exposure. The
notation is given in Table 7.8, and the logistic model in the jth matching set is

Pr(Y = 1 | x, j) = exp(αj + xβ)

1 + exp(αj + xβ)
,

for x = 0, 1 and j = 1, . . . , n.

(a) Show that the unconditional maximum likelihood estimator of β is the
square of the ratio of the discordant pairs, (m10/m01)

2.
(b) Show, by considering the distribution of m10 given the total m10 +

m01, that the estimate based on the appropriate conditional likelihood is
m10/m01.
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Chapter 8
Linear Models

8.1 Introduction

In Part III of the book the conditional independence assumptions of Part II are
relaxed as we consider models for dependent data. Such data occur in many
contexts, with three common situations being when sampling is over time, space,
or within families. We do not discuss pure time series applications in which data
are collected over a single (usually long) series; this is a vast topic with many
specialized texts. Generically, we consider regression modeling situations in which
there are a set of units (“clusters”) upon which multiple measurements have been
collected. For example, when data are available over time for a group of units, we
have longitudinal (also known as repeated measures) data, and each unit forms
a cluster. We will often refer to the units as individuals. The methods described
in Part II for calculating uncertainty measures (such as standard errors) are not
applicable in situations in which the data are dependent.

Throughout Part III we distinguish approaches that specify a full probability
model for the data (with likelihood or Bayesian approaches to inference) and
those that specify first, and possibly second, moments only (with an estimating
function being constructed for inference). As in Part II we believe it will often
be advantageous to carry out inference from both standpoints in a complimentary
fashion. In some instances the form of the question of interest may be best served
by a particular approach, however, and this will be stressed at relevant points.

In this chapter we consider linear regression models. Such models are widely
applicable with growth curves, such as the dental data of Sect. 1.3.5, providing
a specific example. As another example, in the so-called split-plot design, fields
are planted with different crops and within each field (unit), different subunits are
treated with different fertilizers. We expect crop yields in the same field to be more
similar than those in different fields, and yields may be modeled as a linear function
of crop and fertilizer effects. With clustered data, we expect measurements on the
same unit to exhibit residual dependence due to shared unmeasured variables, where
the qualifier acknowledges that we have controlled for known regressors.

J. Wakefield, Bayesian and Frequentist Regression Methods, Springer Series
in Statistics, DOI 10.1007/978-1-4419-0925-1 8,
© Springer Science+Business Media New York 2013
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The structure of this chapter is as follows. We begin, in Sect. 8.2, with a brief
overview of approaches to inference for dependent data, in the context of the
dental data of Sect. 1.3.5. Section 8.3 provides a description of the efficiency
gains that can be achieved with data collected over time in a longitudinal design.
In Figure 8.1(a), linear mixed effects models, in which full probability models
are specified for the data, are introduced. In Sects. 8.5 and 8.6, likelihood and
Bayesian approaches to inference for these models are described. Section 8.7
discusses the generalized estimating equations (GEE) approach which is based on a
marginal mean specification and empirical sandwich estimation of standard errors.
We describe how the assumptions required for valid inference may be assessed in
Sect. 8.8 and discuss the estimation of longitudinal and cohort effects in Sect. 8.9.
Concluding remarks appear in Sect. 8.10 with bibliographic notes in Sect. 8.11.

8.2 Motivating Example: Dental Growth Curves

In Table 1.3 dental measurements of the distance in millimeters from the center of
the pituitary gland to the pteryo-maxillary fissure are given for 11 girls and 16 boys,
recorded at the ages of 8, 10, 12, and 14 years. In this section we concentrate on
the data from the girls only. Figure 8.1(a) plots the dental measurements for each
girl versus age. The slopes look quite similar, though there is clearly between-girl
variability in the intercepts.

There are various potential aims for the analysis of data such as these:

1. Population inference, in which we describe the average growth as a function of
age, for the population from which the sample of children were selected.

2. Assessment of the within- to between-child variability in growth measurements.
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Fig. 8.1 Dental data for girls only: (a) individual observed data (with the girl index taken as
plotting symbol), (b) individual fitted curves (dashed) and overall fitted curve (solid)
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3. Individual-level inference, either for a child in the sample, or for a new
unobserved child (from the same population). The latter could be used to con-
struct a “growth chart” in which the percentile points of children’s measurements
at different ages are presented.

Part III of the book will provide extensive discussion of mixed effects models which
contain both fixed effects that are shared by all individuals and random effects that
are unique to particular individuals and are assumed to arise from a distribution. For
longitudinal data there are two extreme fixed effects approaches. Proceeding naively,
we could assume a single “marginal” curve for all of the girls data and carry out
a standard analysis assuming independent data. Marginal here refers to averaging
over girls in the population. At the other extreme we could assume a distinct curve
for each girl. Figure 8.1(b) displays the least squares fitted lines corresponding to
each of these fixed effects approaches.

Continuing with the marginal approach, let Yij denote the jth measurement,
taken at time tj on the ith child, i = 1, . . . ,m = 11, j = 1, . . . , ni = 4. Consider
the model

E[Yij ] = βM
0 + βM

1 tj (8.1)

where βM
0 and βM

1 represent marginal intercept and slope parameters. Then,

eM
ij = Yij − βM

0 − βM
1 tj ,

i = 1, . . . , 11; j = 1, . . . , 4, denote marginal residuals. In Part II of the book, we
emphasized conditional independence, so that observations were independent given
a set of parameters; due to dependence of observations on the same girl, we would
not expect the marginal residuals to be independent.

We fit the marginal model (8.1) to the data from all girls and let

⎡

⎢⎢⎣

σ1

ρ12 σ2

ρ13 ρ23 σ3

ρ14 ρ24 ρ34 σ4

⎤

⎥⎥⎦ (8.2)

represent the standard deviation/correlation matrix of the residuals. Here,

σj =
√

var(eM
ij),

is the standard deviation of the dental length at time tj and

ρjk =
cov(eM

ij , e
M
ik)√

var(eM
ij)var(eM

ik)
,

is the correlation between residual measurements taken at times tj and tk on the
same girl, j �= k, j, k = 1, . . . , 4. We assume four distinct standard deviations
at each of the ages, and distinct correlations between measurements at each of
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the six combinations of pairs of ages, but assume that these standard deviations
and correlations are constant across all girls. We empirically estimate the entries
of (8.2) as

⎡

⎢⎢⎣

2.12

0.83 1.90

0.86 0.90 2.36

0.84 0.88 0.95 2.44

⎤

⎥⎥⎦ (8.3)

illustrating that, not surprisingly, there is clear correlation between residuals at
different ages on the same girl. Fitting a single curve to the totality of the data
and using methods for independent data that assume within-girl correlations are
zero will clearly give inappropriate standard errors/uncertainty estimates for β̂M

0 and
β̂M
1 . Fitting such a marginal model is appealing, however, since it allows the direct

calculation of the average responses at different ages. Fitting a marginal model
forms the basis of the GEE approach described in Sect. 8.7.

The alternative fixed effects approach is to assume a fixed curve for each child
and analyze each set of measurements separately. However, while providing valid
inference for each curve, there is no “borrowing of strength” across children, so that
each girl’s fit is based solely on her data only and not on the data of other children.
We might expect that there is similarity between the curves, and therefore, it is
reasonable to believe that the totality of data will enhance estimation for each child.
In some instances, using the totality of data will be vital. For example, estimating the
growth curve for a girl with just a single observation is clearly not possible using
the observed data on that girl only. Suppose we are interested in making formal
inference for the population of girls from which the m = 11 girls are viewed as
a random sample; this is not formally possible using the collection of fixed effects
estimates from each girl. The basis of the mixed effects model approach described in
Sect. 8.4 is to assume a girl-specific set of random effect parameters that are assumed
to arise from a population. In different contexts, random effects may have a direct
interpretation as arising from a population of effects, or may simply be viewed as a
convenient modeling tool, in situations in which there is no hypothetical population
of effects to appeal to.

Throughout Part III, we will describe mixed effects and GEE approaches to
analysis. The mixed effects approach can be seen as having a greater contextual
basis, since it builds up a model from the level of the unit. In contrast, with a
marginal model, as specified in GEE, the emphasis is on population inference based
on minimal assumptions and on obtaining a reliable standard error via sandwich
estimation.

8.3 The Efficiency of Longitudinal Designs

While making inference for dependent data is in general more difficult than for
independent data, designs that collect dependent data can be very efficient. For
example, in a longitudinal data setting, applying different treatments to the same
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patient over time can be very beneficial, since each patient acts as his/her own
control. To illustrate, we provide a comparison between longitudinal and cross-
sectional studies (in which data are collected at a single time point); this section
follows the development of Diggle et al. (2002, Sect. 2.3).

We consider a very simple situation in which we wish to compare two treatments,
coded as −1 and +1, and take four measurements in total. In the cross-sectional
study a single measurement is taken on each of four individuals with

Yi1 = β0 + β1xi1 + εi1, (8.4)

for i = 1, . . . ,m = 4. The error terms εi1 are independent with E[εi1] = 0 and
var(εi1) = σ2. The design is such that x11 = −1, x21 = −1, x31 = 1, x41 = 1, so
that individuals 1 and 2 (3 and 4) receive treatment −1 (+1). With this coding, the
treatment effect is

E[Y1 | x = 1]− E[Y1 | x = −1] = 2β1.

The (unbiased) ordinary least squares (OLS) estimators are

β̂C
0 =

∑4
i=1 Yi1

4
, β̂C

1 =
Y31 + Y41 − (Y11 + Y21)

4
,

and, more importantly for our purposes, the variance of the treatment estimator is

var(β̂C
1) =

σ2

4
.

The subscript here labels the relevant quantities as arising from the cross-sectional
design.

For the longitudinal study we assume the model

Yij = β0 + β1xij + bi + δij ,

with bi and δij independent and E[δi1] = 0, var(δij) = σ2
δ , E[bi] = 0, var(bi) = σ2

0 ,
for i = 1, 2, j = 1, 2, so that we record two observations on each of two individuals.
The bi represent random individual-specific parameters and εij measurement error.
Marginally, that is, averaging over individuals, and with Y = [Y11, Y12, Y21, Y22]

T,
we have var(Y ) = σ2R with

R =

⎡

⎢⎢⎣

1 ρ 0 0

ρ 1 0 0

0 0 1 ρ

0 0 ρ 1

⎤

⎥⎥⎦ (8.5)
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where σ2 = σ2
0 +σ2

δ is the sum of the between- and within-individual variances and
ρ = σ2

0/σ
2 is the correlation between observations on the same individual. Notice

that the cross-sectional variance model is a special case of (8.4) with εi1 = bi+ δi1.
We consider two designs. In the first, the treatment is constant over time for each
individual: x11 = x12 = −1, x21 = x22 = 1, while in the second each individual
receives both treatments: x11 = x22 = 1, x12 = x21 = −1. Generalized least
squares gives unbiased estimator

β̂
L

= (xTR−1x)−1xTR−1Y , (8.6)

with
var(β̂

L

) = (xTR−1x)−1σ2,

and where R is given by (8.5). The variance of the “slope” estimator is

var(β̂L
1) =

σ2(1− ρ2)

4− 2ρ(x11x12 + x21x22)
.

The efficiency of the longitudinal design, as compared to the cross-sectional design,
is therefore

var(β̂L
1)

var(β̂C
1)

=
(1− ρ2)

1− ρ(x11x12 + x21x22)/2
.

The efficiency of the longitudinal study with constant treatments across individu-
als is

1 + ρ,

so that in this case, the cross-sectional study is preferable in the usual situation
in which observations on the same individual display positive correlation, that
is, ρ > 0. When the treatment is constant within individuals, the treatment estimate
is based on between-individual comparisons only, and so, it is more beneficial to
obtain measurements on additional individuals.

The efficiency of the longitudinal study with treatments changing within individ-
uals is

1− ρ,

so that the longitudinal study is more efficient when ρ > 0, because each
individual is acting as his/her own control. That is, we are making within-
individual comparisons. If ρ = 0, the designs have the same efficiency. In practice,
collecting two measurements on different individuals will often be logistically more
straightforward than collecting two measurements on the same individual (e.g.,with
the possibility of missing data at the second time point), but in pure efficiency terms,
the longitudinal design with changing treatment can be very efficient. Clearly, this
discussion extends to other longitudinal situations in which covariates are changing
over time (and more general situations with covariate variation within clusters).
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8.4 Linear Mixed Models

8.4.1 The General Framework

The basic idea behind mixed effects models is to assume that each unit has
a regression model characterized by both fixed effects, that are common to all
units in the population, and unit-specific perturbations, or random effects. “Mixed”
effects refers to the combination of both fixed and random effects. The frequentist
interpretation of the random effects is that the units can be viewed as a random
sample from a hypothetical super-population of units. A Bayesian interpretation
arises through considerations of exchangeability (Sect. 3.9), as we discuss further in
Sect. 8.6.2.

Let the multiple responses for the ith unit be Yi = [Yi1, . . . , Yini ]
T, i = 1, . . . ,m.

We assume that responses on different units are independent but that there is
dependence between observations on the same unit. Let β represent a (k + 1) × 1
vector of fixed effects and bi a (q + 1)× 1 vector of random effects, with q ≤ k. In
this chapter, we assume the mean for Yij is linear in the fixed and random effects.
Let xij = [1, xij1, . . . , xijk ] be a (k + 1) × 1 vector of covariates measured at
occasion j, so that xi = [xi1, . . . ,xini ] is the design matrix for the fixed effects for
unit i. Similarly, let zij = [1, zij1, . . . , zijq]

T be a (q+1)×1 vector of variables that
are a subset of xij , so that zi = [zi1, . . . , zini ]

T is the design matrix for the random
effects.

We describe a two-stage linear mixed model (LMM).

Stage One: The response model, conditional on random effects bi is

yi = xiβ + zibi + εi, (8.7)

where εi is an ni × 1 zero-mean vector of error terms, i = 1, . . . ,m.

Stage Two: The random terms in (8.7) satisfy

E[εi] = 0, var(εi) = Ei(α),

E[bi] = 0, var(bi) = D(α),

cov(bi, εi′) = 0, i, i′ = 1, . . . ,m,

where α is an r × 1 vector containing the collection of variance–covariance
parameters. Further, cov(εi, εi′ ) = 0 and cov(bi, bi′) = 0, for i �= i′.

The two stages may be collapsed, by averaging over the random effects, to give the
marginal model:

E[Yi] = xiβ

var(Yi) = Vi(α)

= ziD(α)zT
i +Ei(α) (8.8)
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for i = 1, . . . ,m, so that Vi(α) is an ni × ni matrix. The random effects have
therefore induced dependence on an individual through the first term in (8.8).
However, responses on individuals i and i′, i �= i′, are independent:

cov(Yi,Yi′) = 0

where cov(Yi,Yi′) is the ni × ni′ matrix with element (j, j′) corresponding to
cov(Yij , Yi′j′ ), j = 1, . . . , ni, j′ = 1, . . . , ni′ .

8.4.2 Covariance Models for Clustered Data

With respect to model (8.7), a common assumption is that bi ∼iid Nq+1( 0,D) and
εi ∼ind Nni( 0,Ei). A common variance for all individuals and at all measurement
occasions, along with uncorrelated errors, gives the simplified form Ei = σ2

ε Ini .
We will refer to σ2

ε as the measurement error variance, but as usual, the error
terms may include contributions from model misspecification, such as departures
from linearity, and data recording errors. The inclusion of random effects induces
a marginal covariance model for the data. This may be contrasted with the direct
specification of a marginal variance model. In this section we begin by deriving
the marginal variance structure that arises from two simple random effects models,
before describing more general covariance structures. It is important to examine the
marginal variances and covariances, since these may be directly assessed from the
observed data.

We first consider the random intercepts only model zibi = 1nibi with var(bi) =
σ2
0 , along with Ei = σ2

ε Ini . From (8.8), it is straightforward to show that this
stipulation gives the exchangeable or compound symmetry marginal variance model:

var(Yi) = σ2

⎡

⎢⎢⎢⎢⎢⎣

1 ρ ρ . . . ρ

ρ 1 ρ . . . ρ

ρ ρ 1 . . . ρ
...

...
...

. . .
...

ρ ρ ρ . . . 1

⎤

⎥⎥⎥⎥⎥⎦

where σ2 = σ2
ε + σ2

0 and ρ = σ2
0/σ

2. In this case we have two variance parameters
so that α = [σ2

ε , σ
2
0 ]. A consequence of between-individual variability in intercepts

is therefore constant marginal within-individual correlation. The latter must be
nonnegative under this model (since σ2

0 ≥ 0) which would seem reasonable in most
situations.

The exchangeable model is particularly appropriate for clustered data with no
time ordering as may arise, for example, in a split-plot design, or for multiple mea-
surements within a family. It may be useful for longitudinal data also, particularly
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over short time scales. If we think of residual variability as being due to unmeasured
variables, then the exchangeable structure is most appropriate when we believe such
variables are relatively constant across responses within an individual.

We now consider a model with both random intercepts and random slopes. Such
a model is a common choice in longitudinal studies. With respect to (8.7) and for
i = 1, . . . ,m, the first stage model is

⎡

⎢⎢⎢⎣

yi1
yi2
...

yini

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

1 ti1
1 ti2
...

...
1 tini

⎤

⎥⎥⎥⎦

[
β0

β1

]
+

⎡

⎢⎢⎢⎣

1 ti1
1 ti2
...

...
1 tini

⎤

⎥⎥⎥⎦

[
bi0
bi1

]
+

⎡

⎢⎢⎢⎣

εi1
εi2
...

εini

⎤

⎥⎥⎥⎦

with bi = [bi0, bi1]
T and var(bi) = D where

D =

[
σ2
0 σ01

σ01 σ2
1

]
.

Therefore, σ0 is the standard deviation of the intercepts, σ1 is the standard deviation
of the slopes, and σ01 is the covariance between the two. This model induces a
marginal variance at time tij which is quadratic in time:

var(Yij) = σ2
ε + σ2

0 + 2σ01tij + σ2
1t

2
ij . (8.9)

The marginal correlation between observations at times tij and tik is

ρjk =
σ2
0 + (tij + tik)σ01 + tijtikσ

2
1

(σ2
ε + σ2

0 + 2tijσ01 + t2ijσ
2
1)

1/2(σ2
ε + σ2

0 + 2tikσ01 + t2ikσ
2
1)

1/2
(8.10)

for j, k = 1, . . . , ni, j �= k. Therefore, the assumption of random slopes has induced
marginal correlations that vary as a function of the timings of the measurements.
After a model is fitted, the variances (8.9) and correlations (8.10) can be evaluated at
the estimated variance components and compared to the empirical marginal variance
and correlations.

In a longitudinal setting, an obvious extension to model (8.7) is provided by

yi = xiβ + zibi + δi + εi, (8.11)

with the error vectors bi, δi, and εi representing individual-specific random effects,
serial dependence, and measurement error. We assume

E[εi] = 0, var(εi) = σ2
ε Ini

E[bi] = 0, var(bi) = D

E[δi] = 0, var(δi) = σ2
δRi

cov(bi, εi′) = 0, i, i′ = 1, . . . ,m,
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cov(bi, δi′) = 0, i, i′ = 1, . . . ,m,

cov(δi, εi′) = 0, i, i′ = 1, . . . ,m,

with cov(εi, εi′) = 0, cov(δi, δi′) = 0, and cov(bi, bi′ ) = 0, for i �= i′. Here,
Ri is an ni × ni correlation matrix with elements Rijk , for j, k = 1, . . . , ni which
correspond to within individual correlations.

In general, it is difficult to identify/estimate all three sources of variability, but
this formulation provides a useful conceptual model.

We now discuss specific choices of Ri, beginning with a widely-used time series
model, the first-order autoregressive, or AR(1), process. We assume initially that
responses are observed at equally spaced times. For j ≥ 2 and |ρ| < 1 suppose

δij = ρδi,j−1 + uij , (8.12)

with ui = [ui1, . . . , uini ]
T, E[ui] = 0, var(ui) = σ2

uIni , and with uij independent
of all other error terms in the model. We first derive the marginal moments
corresponding to this model. Repeated application of (8.12) gives, for k > 0,

δij = uij + ρui,j−1 + ρ2ui,j−2 + . . .+ ρk−1ui,j−k+1 + ρkδi,j−k (8.13)

so that

var(δij) = σ2
u(1 + ρ2 + ρ4 + . . .+ ρ2(k−1)) + ρ2kvar(δi,j−k).

Taking the limit as k → ∞, and using
∑∞

l=1 x
l−1 = (1 − x)−1 for |x| < 1, gives

var(δij) =
σ2
u

(1 − ρ2)
= σ2

δ ,

which is the marginal variance of all of the δ error terms. Using (8.13),

cov(δij , δi,j−k) = E[δijδi,j−k] = ρkE[δ2i,j−k] = ρkvar(δ2i,j−k)

= ρkσ2
δ ,

so that the correlations decline as observations become further apart in time. Under
this model, the correlation matrix of δi is

Ri =

⎡

⎢⎢⎢⎢⎢⎣

1 ρ ρ2 . . . ρni−1

ρ 1 ρ . . . ρni−2

ρ2 ρ 1 . . . ρni−3

...
...

...
. . .

...
ρni−1 ρni−2 ρni−3 . . . 1

⎤

⎥⎥⎥⎥⎥⎦
.
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The autoregressive model is appealing in longitudinal settings and contains just two
parameters, σ2

δ and ρ. The model can be extended to unequally spaced times to give
covariance

cov(δij , δik) = σ2
δρ

|tij−tik|. (8.14)

A Toeplitz model assumes the variance is constant across time and that responses
that are an equal distance apart in time have the same correlation.1 For equally
spaced responses in time:

var(δi) = σ2
δ

⎡

⎢⎢⎢⎢⎢⎣

1 ρ1 ρ2 . . . ρni−1

ρ1 1 ρ1 . . . ρni−2

ρ2 ρ1 1 . . . ρni−3

...
...

...
. . .

...
ρni−1 ρni−2 ρni−3 . . . 1

⎤

⎥⎥⎥⎥⎥⎦
.

This model may be useful in situations in which there is a common design across
individuals, which allows estimation of the ni = n parameters (n − 1 correlations
and a variance). The AR(1) model is a special case in which ρk = ρk.

An unstructured covariance structure allows for different variances at each
occasion σ2

δ1, . . . , σ
2
δni

and distinct correlations for each pair of responses, that is,

corr(δi) =

⎡

⎢⎢⎢⎢⎢⎣

1 ρ12 ρ13 . . . ρ1ni

ρ21 1 ρ23 . . . ρ2ni

ρ31 ρ32 1 . . . ρ3ni

...
...

...
. . .

...
ρni1 ρni2 ρni3 . . . 1

⎤

⎥⎥⎥⎥⎥⎦

with ρjk = ρkj , for j, k = 1, . . . , ni. This model contains ni(ni + 1)/2 parameters
per individual, which is a large number if ni is large. If one has a common design
across individuals, it may be plausible to fit this model, but one would still need a
large number of individuals m, in order for inference to be reliable. As usual, there
is a trade-off between flexibility and parsimony.

8.4.3 Parameter Interpretation for Linear Mixed Models

In this section we discuss how β and b may be interpreted in the LMM; this
interpretation requires care, as we illustrate in the context of a longitudinal study

1In linear algebra, a Toeplitz matrix is a matrix in which each descending diagonal, from left to
right, is constant.
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with both random intercepts and random slopes. For a generic individual at time t,
suppose the model is

E[Y | b, t] = (β0 + b0) + (β1 + b1)(t− t)

with b = [b0, b1]
T. The marginal model is

E[Y | t] = β0 + β1(t− t).

so that β0 is the expected response at t = t and the slope parameter β1 is the
expected change in response for a unit increase in time. These expectations are with
respect to the distribution of random effects and are averages across the population
of individuals.

For a generic individual, β0 + b0 is the expected response at t = t, and β1 + b1
is the expected change in response for a unit increase in time. In a linear model,
β1 is also the average of the individual slopes, β1 + b1. Consequently, since the
model is linear, β1 is both the expected change in the average response in unit time
(across individuals) and the average of the individual expected changes in unit time.
An alternative interpretation is that β1 is the change in response for a unit change
in t for a “typical” individual, that is, an individual with b1 = 0. In Chap. 9 we will
illustrate how the interpretation of parameters in mixed models becomes far more
complex when the model is nonlinear in the parameters, and we will see that the
consideration of a typical individual is particularly useful in this case.

8.5 Likelihood Inference for Linear Mixed Models

We now turn to inference and first consider likelihood methods for the LMM

yi = xiβ + zibi + εi.

To implement a likelihood approach, we need to specify a complete probability
distribution for the data, and this follows by specifying distributions for εi and bi,
i = 1, . . . ,m. A common choice is εi | σ2

ε ∼iid Nni( 0, σ2
ε Ini) and bi | D ∼iid

Nq+1( 0,D) where

D =

⎡

⎢⎢⎢⎢⎢⎢⎣

σ2
0 σ01 σ02 . . . σ0q

σ10 σ2
1 σ12 . . . σ1q

σ20 σ21 σ2
2 . . . σ2q

...
...

...
. . .

...
σq0 σq1 σq2 . . . σ2

q

,

⎤

⎥⎥⎥⎥⎥⎥⎦
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so that the vector of variance–covariance parameters is α = [σ2
ε ,D]. The marginal

mean and variance are

E[Yi | β] = μi(β) = xiβ (8.15)

var(Yi | α) = Vi(α) = ziDzT
i + σ2

ε Ini . (8.16)

We have refined notation in this section to explicitly condition on the relevant
parameters. In general, inference may be required for the fixed effects regression
parametersβ, the variance componentsα, or the random effects, b = [b1, . . . , bm]T.
We consider each of these possibilities in turn.

8.5.1 Inference for Fixed Effects

Likelihood methods have traditionally been applied to nonrandom parameters, and
so, we integrate over the random effects in the two-stage model to give

p(y | β,α) =

∫

b

p(y | b,β,α)× p(b | β,α) db.

Exploiting conditional independencies, we obtain the simplified form

p(y | β,α) =

m∏

i=1

∫

bi

p(yi | bi,β, σ2
ε )× p(bi | D) dbi

and since a convolution of normals is normal, we obtain

yi | β,α ∼ Nni [μi(β),Vi(α) ],

where the marginal meanμi(β) and varianceVi(α) correspond to (8.15) and (8.16),
respectively. The log-likelihood is

l(β,α) = −1

2

m∑

i=1

log |Vi(α)| − 1

2

m∑

i=1

(yi − xiβ)
TVi(α)−1(yi − xiβ).

(8.17)

The MLEs forβ andα are obtained via maximization of (8.17). The score equations
for β are

∂l

∂β
=

m∑

i=1

xT
iV

−1
i Yi −

m∑

i=1

xT
iV

−1
i xiβ

=
m∑

i=1

xT
iV

−1
i (Yi − xiβ) (8.18)
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and yield the MLE

β̂ =

(
m∑

i=1

xT
iVi(α̂)−1xi

)−1( m∑

i=1

xT
iVi(α̂)−1yi

)
, (8.19)

which is a generalized least squares estimator. If D = 0, then V = σ2
ε IN (where

N =
∑m

i=1 ni), and β̂ corresponds to the ordinary least squares estimator, as we
would expect. The variance of β̂ may be obtained either directly from (8.19), since
the estimator is linear in yi, or from the second derivative of the log-likelihood.

The expected information matrix is block diagonal:

I(β,α) =

[
Iββ 0

0 Iαα

]
(8.20)

so there is asymptotic independence between β̂ and α̂ and any consistent estimator
of α will give an asymptotically efficient estimator for β (likelihood-based estima-
tion of α is considered in Sects. 8.5.2 and 8.5.3). Since

Iββ = −E

[
∂2l

∂β∂βT

]
=

m∑

i=1

xT
iV

−1
i xi = − ∂2l

∂β∂βT , (8.21)

the observed and expected information matrices coincide. The estimator β̂ is linear
in the data Yi, and so under normality of the data, β̂ is normal also. Under correct
specification of the variance model, and with a consistent estimator α̂,

(
m∑

i=1

xiVi(α̂)−1xi

)1/2

(β̂m − β) →d Nk+1( 0, I),

as m → ∞. Since β̂ is linear in Y , it follows immediately that this asymptotic
distribution is also appropriate when the data and random effects are not normal.
We require the second moments of the data to be correctly specified, however. In
Sect. 8.7 we describe how a consistent variance estimator may be obtained when
cov(Yi,Yi′ |α) = 0, but var(Yi |α) = Vi(α) is not necessarily correctly specified.

In terms of the asymptotics it is not sufficient to have m fixed and ni → ∞
for i = 1, . . . ,m. We illustrate for the LMM with zi = xi, in which case Vi =
xiDxT

i + σ2
ε Ini . Under this setup,

var(β̂) =

(
m∑

i=1

xT
iV

−1xi

)−1

=

(
m∑

i=1

[
(xT

ixi)
−1σ−2

ε +D
]−1

)−1

,
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where we have used the matrix identity xT
iV

−1
i xi =

[
(xT

ix)
−1σ2

ε +D
]−1

(which
may be derived from (B.3) of Appendix B). When ni → ∞,

(xT
ixi)

−1 = O(n−1
i ) → 0,

and if m is fixed,

var(β̂) → D

m
,

showing that we require m → ∞ for consistency of β̂.
Likelihood ratio tests can be used to test hypotheses concerning elements of β,

for fixed α or, in practice, the substitution of an estimate α. Various t and F -like
approaches have been suggested for correcting for the estimation of α, see Verbeeke
and Molenberghs (2000, Chap. 6), but if the sample size m is not sufficiently large
for reliable estimation of α, we recommend resampling methods, or following a
Bayesian approach to inference, since this produces inference for β that averages
over the uncertainty in the estimation of α.

For more complex linear models, inference may not be so straightforward. For
example, consider the model

Yij = xijβ + zibi + εij = μij + εij

but with nonconstant measurement error variance. A common model is var(Yij) =
σ2
εμ

γ
ij , for known γ > 0. In this case the MLE for β is not available in closed form,

and we do not have a diagonal information matrix as in (8.20). An example of the
fitting of such a model in a nonlinear setting is given at the end of Sect. 9.20.

Maximum likelihood estimation is also theoretically straightforward for the
extended model (8.11) in which we have a richer variance model, but identifiability
issues may arise due to the complexity of the error structure.

8.5.2 Inference for Variance Components via Maximum
Likelihood

The MLE α̂ is obtained from maximization of (8.17), but in general, there is no
closed-form solution. However, the expectation-maximization (EM, Dempster et al.
1977) or Newton–Raphson algorithm may be applied to the profile likelihood:

lp(α) = max
β

l(β,α) = −1

2
log |V (α)| − 1

2
(y − xβ̂)TV (α)−1(y − xβ̂),

since recall from Sect. 2.4.2 that the MLE for α is identical to the estimate obtained
from the profile likelihood. Under standard likelihood theory,

I1/2
αα (α̂−α) →d Nr( 0, Ir),
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where r is the number of distinct elements of α. This distribution provides
asymptotic confidence intervals for elements of α.

Testing whether random effect variances are zero requires care since the null
hypothesis lies on the boundary, and so, the usual regularity conditions are not
satisfied. We illustrate by considering the model

Yij = β0 + xijβ + bi + εij

with bi | σ2
0 ∼ N(0, σ2

0). Suppose we wish to test whether the random effects
variance is zero, that is, H0 : σ2

0 = 0 versus H1 : σ2
0 > 0. In this case, the

asymptotic null distribution is a 50:50 mixture of χ2
0 and χ2

1 distributions, where the
former is the distribution that gives probability mass 1 to the value 0. For example,
the 95% points of a χ2

1 and the 50:50 mixture are 3.84 and 2.71, respectively.
Consequently, if the usual χ2

1 distribution is used, the null will be accepted too
often, leading to a variance component structure that is too simple.

The intuition behind the form of the null distribution is the following. Estimating
σ2
0 is equivalent to estimating ρ = σ2

0/σ
2 and setting ρ̂ = 0 if the estimated

correlation is negative, and under the null, this will happen half the time. If ρ̂ = 0,
then we recover the null for the distribution of the data, and so, the likelihood ratio
will be 1. This gives the mass at the value 0, and combining with the usual χ2

1

distribution gives the 50:50 mixture.
If H0 and H1 correspond to models with k and k+1 random effects, respectively,

each with general covariance structures, then the asymptotic distribution is a 50:50
mixture of χ2

k and χ2
k+1 distributions. Hence, for example, if we wish to test random

intercepts only versus correlated random intercepts and random slopes (with D
having elements σ2

0 , σ01, σ
2
1), then the distribution of the likelihood ratio statistic is

a 50:50 mixture of χ2
1 and χ2

2 distributions. Similar asymptotic results are available
for more complex models/hypotheses; see, for example, Verbeeke and Molenberghs
(2000).

8.5.3 Inference for Variance Components via Restricted
Maximum Likelihood

While MLE for variance components yields consistent estimates under correct
model specification, the estimation of β is not acknowledged, in the sense that
inference proceeds as if β were known. We have already encountered this in
Sect. 2.4.2 for the simple linear model where it was shown that the MLE of σ2

is RSS/n, while the unbiased version is RSS/(n − k − 1), where RSS is the
residual sum of squares and k is the number of covariates. An alternative, and often
preferable, method that acknowledges estimation of β is provided by restricted
(or residual) maximum likelihood (REML). We provide a Bayesian justification
for REML in Sect. 8.6 and here provide another derivation based on marginal
likelihood.
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Recall the definition of marginal likelihood from Sect. 2.4.2. Let S1, S2, be
minimal sufficient statistics and suppose

p(y | λ,φ) ∝ p(s1, s2 | λ,φ) = p(s1 | λ)p(s2 | s1,λ,φ) (8.22)

where λ represents the parameters of interest and φ the remaining (nuisance)
parameters. Inference for λ may be based on the marginal likelihood Lm(λ) =
p(s1 | λ). We discuss how marginal likelihoods may be derived for general LMMs.

To derive a marginal likelihood, we need to find a function of the data, U =
f(Y ), whose distribution does not depend upon β. We briefly digress to discuss
an error contrast, CTY , which is defined by the property that E[CTY ] = 0 for all
values of β, with C an N -dimensional vector. For the LMM

E[CTY ] = 0 for all β if and only if CTx = 0.

When CTx = 0,

CTY = CTzb +CTε,

which does not depend on β, suggesting that the marginal likelihood could be
based on error contrasts. If x is of full rank, that is, is of rank k + 1, there
are exactly N − k − 1 linearly independent error contrasts (since k + 1 fixed
effects have been estimated, which induces dependencies in the error contrasts).
Let B = [C1, . . . ,CN−k−1] denote an error contrast matrix. Given two error
contrast matrices B1 and B2, it can be shown that there exists a full rank,
(N−k−1)×(N−k−1) matrix A such that ABT

1 = ABT
2. Therefore, likelihoods

based on BT
1Y or on BT

2Y will be proportional, and estimators based on either will
be identical. Let H = x(xTx)−1xT, and choose B such that I − H = BBT and
I = BTB. It is easily shown that B is an error contrast matrix since

BTx = BTBBTx = BT(I−H)x = 0.

The function of the data we consider is therefore U = BTY which may be
written as

U = BTY = BTBBTY = BT(I−H)Y = BTr,

where r = Y − xβ̂O, and β̂O = (xTx)−1xTY is the OLS estimator, showing that
BTY is a linear combination of residuals (hence the name “residual” maximum
likelihood). Since BTx = 0, we can confirm that

U = BTY = BTzb+BTε,

with E[U ] = 0. Further, the distribution of U does not depend upon β, as required
for a marginal likelihood.
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We now derive the distribution of U by considering the transformation from
Y → [U , β̂G] = [BTY ,GTY ], where

β̂G = GTY = (xTV −1x)−1xTV −1Y

is the generalized least squares (GLS) estimator. We derive the Jacobian of the
transformation, using (B.1) and (B.2) in Appendix B:

|J | =
∣∣∣∣∣
∂(U , β̂G)

∂Y

∣∣∣∣∣ = |B G| =
∣∣∣∣

[
BT

GT

]
[B G]

∣∣∣∣
1/2

= | BTB |1/2| GTG−GTB(BTB)−1BTG |1/2

= 1× | GTG−GT(I−H)G |1/2

= GTHG =| xTx |−1/2 �= 0

which implies that [U , β̂G] is of full rank (and equal to N ). The vector [U , β̂G] is a
linear combination of normals and so is normal, and

cov(U , β̂G) = E[U(β̂G − β)T]

= E[BTY Y TG]− E[BTY − βT]

= BT [var(Y ) + E(Y )E(Y T)]G+BTxβ − βT

= BTV GT +BTxβ(xβ)T

= 0,

where we have repeatedly used BTx = 0 and V = var(Y ). So U and β̂G are
uncorrelated and, since they are normal, independent also. Consequently,

p(Y | α,β) = p(U , β̂G | α,β) | J |
= p(U | β̂G,β)p(β̂G | α,β) |J |
= p(U | α)p(β̂G | α,β) |J |. (8.23)

By comparison with (8.22), we have s1 = U , s2 = β̂G, λ = α, and φ = β, and
p(U | α) is a marginal likelihood. Rearrangement of (8.23) gives

p(U | α) =
p(y | α,β)

p(β̂G | α,β)
|J |−1.

Since

p(y | α,β) = (2π)−N/2|V |−1/2 exp

[
−1

2
(y − xβ)TV −1(y − xβ)

]
,
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and

p(β̂G | α,β) = (2π)−(k+1)/2|xTV −1x|1/2 exp
[
−1

2
(β̂G − β)TxTV −1x(β̂G − β)

]

we obtain the marginal likelihood

p(U | α) = c
|xTx|1/2|V |−1/2

|xTV −1x|1/2 exp

[
−1

2
(y − xβ̂G)

TV −1(y − xβ̂G)

]

with c = (2π)−(N−k−1)/2, which (as already mentioned) does not depend upon B.
Hence, we can choose any linearly independent combination of the residuals.

The restricted log-likelihood upon which inference for α may be based is

lR(α)= − 1

2
log |xTV (α)−1x|−1

2
log |V (α)|−1

2
(y − xβ̂G)

TV (α)−1(y − xβ̂G).

Comparison with the profile log-likelihood for α,

lP (α) = −1

2
log |V (α)| − 1

2
(y − xβ̂G)

TV (α)−1(y − xβ̂G),

shows that we have an additional term, − 1
2 log |xTV (α)−1x|, that may be viewed

as accounting for the degrees of freedom lost in estimation of β. Computationally,
finding REML estimators is as straightforward as their ML counterparts, as the
objective functions differ simply by a single term. Both ML and REML estimates
may be obtained using EM or Newton–Raphson algorithms; see Pinheiro and Bates
(2000) for details.

In general, REML estimators have finite sample bias, but they are less biased than
ML estimators, particularly for small samples. So far, as estimation of the variance
components are concerned, the asymptotic distribution of the REML estimator is
normal, with variance given by the inverse of the Fisher’s information matrix, where
the latter is based on lR(α).

REML is effectively based on a likelihood with data constructed from the
distribution of the residuals y − xβ̂G. Therefore, when two regression models
are to be compared, the data under the two models are different; hence, REML
likelihood ratio tests for elements of β cannot be performed. Consequently, when
a likelihood ratio test is required to formally compare two nested regression models,
maximum likelihood must be used to fit the models. Likelihood ratio tests for
variance components are valid under restricted maximum likelihood, however, since
the covariates, and hence residuals, are constant in both models.

Example: One-Way ANOVA

The simplest example of a LMM is the balanced one-way random effects ANOVA
model:

Yij = β0 + bi + εij ,
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with bi and εij independent and distributed as bi | σ2
0 ∼iid N(0, σ2

0) and εij |
σ2
ε ∼iid N(0, σ2

ε ), with n observations on each unit and i = 1, . . . ,m to give N =
nm observations in total. In this example, β = β0 and α = [σ2

ε , σ
2
0 ]. This model

was considered briefly in Sect. 5.8.4.
The model can be written in the form of (8.7) as

yi = 1nβ0 + 1nbi + εi

where yi = [yi1, . . . , yin]
T and εi = [εi1, . . . , εin]

T. Marginally, this specification
implies that the data are normal with E[Y | β] = 1Nβ0 and var(Y | α) =
diag(V1, . . . ,Vm) where

Vi = 1n 1T
nσ

2
0 + Inσ

2
ε ,

for i = 1, . . . ,m. In the case of n = 3 observations per unit, this yields the N ×N
marginal variance

V = σ2

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 ρ ρ 0 0 0 . . . 0 0 0

ρ 1 ρ 0 0 0 . . . 0 0 0

ρ ρ 1 0 0 0 . . . 0 0 0

0 0 0 1 ρ ρ . . . 0 0 0

0 0 0 ρ 1 ρ . . . 0 0 0

0 0 0 ρ ρ 1 . . . 0 0 0
...

...
...

...
...

. . .
...

...
...

...
0 0 0 0 0 0 . . . 1 ρ ρ

0 0 0 0 0 0 . . . ρ 1 ρ

0 0 0 0 0 0 . . . ρ ρ 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where σ2 = σ2
ε + σ2

0 is the marginal variance of each observation, and

ρ =
σ2
0

σ2
=

σ2
0

σ2
ε + σ2

0

is the marginal correlation between two observations on the same unit. The
correlation, ρ, is induced by the shared random effect and is referred to as the intra-
class correlation coefficient.

For some data/mixed effects model combinations, there are more combined fixed
and random effects than data points, which is at first sight disconcerting, but the
random effects have a special status since they are tied together through a common
distribution. In the above ANOVA model, we have m + 3 unknown quantities if
we include the random effects, but these random effects may be integrated from
the model so that the distribution of the data may be written in terms of the three
parameters, [β0, σ

2
0 , σ

2
ε ] only, without reference to the random effects, that is,

Y | β0, σ
2
0 , σ

2
ε ∼ NN

[
1β0,V (σ2

0 , σ
2
ε )
]
.
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A fixed effects model with a separate parameter for each group hasm+1 parameters,
which shows that the mixed effects model can offer a parsimonious description.

The MLE for β0 is given by the grand mean, i.e., β̂0 = Y ... With balanced data
the ML and REML estimators for the variance components are available in closed
form (see Exercise 8.2). We define the between- and within-group mean squares as

MSA =
n
∑m

i=1(yi. − y..)
2

m− 1
, MSE =

∑m
i=1

∑n
j=1(yij − yi.)

2

m(n− 1)
.

The MLEs of the variance components are

σ̂2
ε = MSE,

σ̂2
0 = max

(
0,

(1− 1/m)MSA − MSE
n

)
.

The REML for σ̂2
ε is the same as the MLE, but the REML estimate for σ2

0 is

σ̂2
0 = max

(
0,

MSA − MSE
n

)
,

which is slightly larger than the ML estimate, having accounted for the estimation
of β0. Notice that the ML and REML estimators for σ2

0 may be zero.

Example: Dental Growth Curves

We consider the full data and fit a model with distinct fixed effects (intercepts and
slopes) for boys and girls and with random intercepts and slopes but with a common
random effects distribution for boys and girls. Specifically, at stage one,

Yij = (β0 + bi0) + (β1 + bi1)tj + εij

for boys, i = 1, . . . , 16, and

Yij = (β0 + β2 + bi0) + (β1 + β4 + bi1)tj + εij

for girls, i = 17, . . . , 27. At stage two,

bi =

[
bi0
bi1

]
| D ∼iid N2 ( 0,D ) , D =

[
σ2
0 σ01

σ2
01 σ2

1

]

for i = 1, . . . , 27. We take [t1, t2, t3, t4] = [−2,−1, 1, 2] so that we have centered
by the average age of 11 years. In the generic notation introduced in Sect. 8.4, the
above model translates to

Yij = xijβ + zijbi + εij
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where β = [β0, β1, β2, β3]
T, and the design matrices for the fixed and random

effects are

xij =

{
[1, tj, 0, 0 ] for i = 1, . . . , 16

[1, tj, 1, tj ] for i = 17, . . . , 27,

and zij = [1, tj ], where j = 1, 2, 3, 4. Therefore, β0 is the average tooth length
at 11 years for boys, β1 is the slope for boys (specifically the average change in
tooth length between two populations of boys whose ages differ by 1 year), β2 is
the difference between the average tooth lengths of girls and boys at 11 years, and
β3 is the average difference in slopes between girls and boys. The intercept random
effects bi0 may be viewed as the accumulation of all unmeasured variables that
contribute to the tooth length for child i differing from the relevant (boy or girl)
population average length (measured at 11 years). The slope random effects bi1 are
the child by time interaction terms and summarize all of the unmeasured variables
for child i that lead to the rate of change in growth for this child differing from the
relevant (boy or girl) population average.

Fitting this model via REML yields

β̂ = [25, 0.78,−2.3,−0.31]T

with standard errors

[0.49, 0.086, 0.76, 0.14].

The asymptotic 95% confidence interval for the average difference in tooth lengths
at 11 years is [−3.8,−0.83], from which we conclude that the average tooth lengths
at 11 years is greater for boys than for girls. The 95% interval for the slope difference
is [−0.57,−0.04] suggesting that the average rate of growth is greater for boys also.

There are a number of options to test whether gender-specific slopes are required,
that is, to decide on whether β4 = 0. A Wald test using the REML estimates gives
a p-value of 0.026 (so that one endpoint of a 97.4% confidence interval is zero),
which conventionally would suggest a difference in slopes. To perform a likelihood
ratio test, we need to carry out a fit using ML, since REML is not valid, as explained
in Sect. 8.5.2. Fitting the models with and without distinct slopes gives a change
in twice the log-likelihood of 5.03, with an associated p-value of 0.036, which is
consistent with the Wald test. Hence, there is reason to believe that the slopes for
boys and girls are unequal, with the increase in the average growth over 1 year being
estimated as 0.3 mm greater for boys than for girls.

The estimated variance–covariance matrices of the random effects, D̂, under
REML and ML are

[
1.842 0.21× 1.84× 0.18

0.21× 1.84× 0.18 0.182

]
,

and [
1.752 0.23× 1.75× 0.15

0.23× 1.75× 0.15 0.152

]
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so that, as expected, the REML estimates are slightly larger. Although β̂ depends
on D̂, the point estimates of β are identical under ML and REML here, because of
the balanced design. The standard errors for elements of β are slightly larger under
REML, due to the differences in V̂ .

Under REML, the estimated standard deviations of the distributions of the
intercepts and slopes are σ̂0 = 1.84 and σ̂1 = 0.18, respectively. Whether these
are “small” or “not small” relates to the scale of the variables with which they
are associated. Interpretation of elements of D depends, in general, on how we
parameterize the time variable. For example, if we changed the time scale via a
location shift, we would change the definition of the intercept. As parameterized
above, the off-diagonal term D01 describes the covariance between the child-
specific responses at 11 years and the child-specific slopes (the REML estimates
of the correlation between these quantities is 0.23).

Suppose we reparameterize stage one of the model as

E[Yij | b�i ] = (β�
0 + b�i0) + (β1 + bi1)t

�
j

with [t�1, t
�
2, t

�
3, t

�
4] = [8, 10, 12, 14] and b�i = [b�i0, bi1]

T. Then β�
0 = β0 − β1t,

b�i0 = bi0 − bi1t, and

D�
00 = D00 − 2tD01 + t

2
D11

D�
01 = D01 − tD11

D�
11 = D11.

Consequently, only the interpretation of the variance of the slopes remains un-
changed, when compared with the previous parameterization.

We return to the original parameterization and examine further the fitting of
this model. Since we have assumed a common measurement error variance σ2

ε ,
and common random effects variances D for boys and girls, the implied marginal
standard deviations and correlations are the same for boys and girls and may
be estimated from (8.9) and (8.10). Under REML, σ̂ε = 1.31 and the standard
deviations (on the diagonal) and correlations (on the off-diagonal) are

⎡

⎢⎢⎣

2.23

0.65 2.23

0.64 0.65 2.30

0.62 0.65 0.68 2.35

⎤

⎥⎥⎦ . (8.24)

We see that the standard deviations increases slightly over time, and the correlations
decrease only slightly for observations further apart in time, suggesting that the
random slopes are not contributing greatly to the fit. Fitting a random-intercepts-
only model to these data produced a marginal variance estimate of 2.282 and
common within-child correlations of 0.63.
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The empirical standard deviations and correlations for boys and girls are given,
respectively, by

⎡

⎢⎢⎣

2.45

0.44 2.14

0.56 0.39 2.65

0.32 0.63 0.59 2.09

⎤

⎥⎥⎦ ,

⎡

⎢⎢⎣

2.12

0.83 1.90

0.86 0.90 2.36

0.84 0.88 0.95 2.44

⎤

⎥⎥⎦

which suggests that our model needs refinement, since clearly the correlations for
girls are greater than for boys.

8.5.4 Inference for Random Effects

In some situations, interest will focus on inference for the random effects. For
example, for the dental data, we may be interested in the growth curve of a particular
child. Estimates of random effects are also important for model checking.

Various approaches to inference for random effects have been proposed. The
simplest, which we describe first, is to take an empirical Bayes approach. From a
Bayesian standpoint, there is no distinction inferentially between fixed and random
effects (the distinction is in the priors that are assigned). Consequently, inference is
simply based on the posterior distribution p(bi | y). Consider the LMM

yi = xiβ + zibi + εi,

and assume bi and εi are independent with bi | D ∼iid Nq+1( 0,D) and εi |
σ2
ε ∼ind Nni( 0, σ2

ε I), so that α = [σ2
ε ,D]. We begin by considering the simple,

albeit unrealistic, situation, in which β and α are known. Letting y�
i = yi − xiβ,

we have

p(bi | yi,β,α) ∝ p(yi | bi,β,α)× π(bi | α)

∝ exp

[
− 1

2σ2
ε

(y�
i − zibi)

T(y�
i − zibi)− 1

2
bT
iD

−1bi

]

which we recognize as a multiple linear regression with a zero-centered normal prior
on the parameters bi (this model is closely linked to that used in ridge regression,
see Sect. 10.5.1). Using a standard derivation, (5.7),

bi | yi,β,α ∼ Nq+1 [E(bi | yi,β,α), var(bi | yi,β,α) ]

with mean and variance

E[bi | yi,β,α] =

(
zT
izi
σ2
ε

+D−1

)−1
zT
i

σ2
ε

(yi − xiβ)

= DzT
iV

−1
i (yi − xiβ) (8.25)
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var(bi | yi,β,α) =

(
zT
izi
σ2
ε

+D−1

)−1

= D −DzT
iV

−1
i ziD, (8.26)

see Exercise 8.4. As we will see in this section, the estimate (8.25) may be derived
under a number of different formulations.

A fully Bayesian approach would consider

p(b | y) =
∫ ∫

p(b,β,α | y) dβdα,

which emphasizes that the uncertainty in β,α is not acknowledged in the derivation
of (8.25) and (8.26).

We now demonstrate how we may account for estimation of β with a flat prior
on β and assuming α known. The posterior mean and variance of β are

E[β | y,α] = β̂G

var(β | y,α) = (xTV −1x)−1

where β̂G is the GLS estimator (these forms are derived for more general priors later,
see (8.35) and (8.36)). Consequently,

E[bi | y,α] = Eβ|y,α [E(bi | y,α)]

= DzT
iV

−1
i (yi − xiβ̂G) (8.27)

var(bi | y,α) = Eβ|y,α[var(bi | β,y,α)] + varβ|y,α(E[bi | y,α])

= Eβ|y,α[D −DzT
iV

−1
i ziD] + varβ|y,α(DzT

iV
−1
i (yi − xiβ))

= D −DzT
iV

−1
i ziD +DzT

iV
−1
i xi(x

TV −1x)−1xT
iV

−1
i ziD.

(8.28)

Therefore, we can easily account for the estimation of β, but no such simple
development is available to account for estimation of α.

From a frequentist perspective, inference for random effects is often viewed as
prediction rather than estimation, since [b1, . . . , bm] are random variables and not
unknown constants. Many different criteria may be used to find a predictor b̂ =
f(Y ) of b, for a generic unit.

We begin by defining the optimum predictor as that which minimizes the mean
squared error (MSE). Let b� represent a general predictor and consider the MSE:

MSE(b�) = Ey,b[(b
� − b)TA(b� − b)],
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where we emphasize that the expectation is with respect to both y and b, and A
is any positive definite symmetric matrix. We show that the MSE is minimized by
b̂ = E[b | y]. For the moment, we suppress the dependence on any additional
parameters. We can express the MSE in terms of b� and b̂:

MSE(b�) = EY ,b[(b
� − b)TA(b� − b)]

= EY ,b[(b
� − b̂+ b̂− b)TA(b� − b̂+ b̂− b)]

= EY ,b[(b
� − b̂)TA(b� − b̂)] + 2× EY ,b[(b

� − b̂)A(b̂− b)]

+EY ,b[(b̂− b)TA(b̂− b)]. (8.29)

The third term does not involve b�, and we may write the second expectation as

EY ,b[(b
� − b̂)A(b̂ − b)] = EY {Eb|y[(b� − b̂)A(b̂ − b) | y]}

= EY [(b� − b̂)A(b̂− b̂)] = 0

and so, minimizing MSE corresponds to minimizing the first term in (8.29). This
quantity must be nonnegative, and so, the solution is to take b� = b̂. The latter is the
solution irrespective of A. So the best prediction is that which estimates the random
variable b by its conditional mean. We now examine properties of b̂.

The usual frequentist optimality criteria for a fixed effect θ concentrate upon
unbiasedness and upon the variance of the estimator, var(θ̂), see Sect. 2.2. When
inference is required for a random effect b, these criteria need adjustment. Specifi-
cally, an unbiased predictor b̂ is such that

E[b̂− b] = 0,

to give

E[b̂] = E[b]

so that the expectation of the predictor is equal to the expectation of the random
variable that it is predicting. For b̂ = E[b | y],

EY [b̂] = EY [Eb|y(b | y)] = Eb[b]

where the first step follows on substitution of b̂ and the second from iterated
expectation; therefore, we have an unbiased predictor. We emphasize that we do
not have an unbiased estimator in the usual sense, and in general, b̂ will display
shrinkage toward zero, as we illustrate in later examples.

The variance of a random variable is defined with respect to a fixed number, the
mean. In the context of prediction of a random variable, a more relevant summary
of the variability is

var(b̂− b) = var(b̂) + var(b)− 2× cov(b̂, b).



8.5 Likelihood Inference for Linear Mixed Models 379

If this quantity is small, then the predictor and the random variable are moving in a
stochastically similar way. We have

covb̂,b(b̂, b) = EY [cov(b̂, b | y)] + covY (E[b̂ | y],E[b | y])
= EY [cov(b̂, b | y)] + covY (b̂, b̂)

= var(b̂), (8.30)

since the first term in (8.30) is the covariance between the constant E[b̂ | y] (since
y is conditioned upon) and b̂, and so is zero. To obtain the form of the second term
in (8.30), we have used E[b̂ | y] = E[E[b | y] | y] = b̂. Hence,

var(b̂− b) = var(b)− var(b̂) = D − var(b̂).

In order to determine the form of b̂ = E[b | y] and evaluate var(b̂ − b), we need
to provide more information on the model that is to be used, so that the form of
p(b | y) can be determined.

For the LMM,

[
bi
Yi

]
∼ Nq+1+ni

([
0

xiβ

]
,

[
D DzT

i

ziD Vi

])

since

cov(bi,Yi) = cov(bi,xiβ + zibi + εi) = cov(bi, zibi) = DzT
i ,

(Appendix B), and similarly, cov(Yi, bi) = ziD. The conditional distribution of a
multivariate normal distribution is normal also (Appendix D) with mean

b̂i = E[bi | yi] = DzT
iV

−1
i (yi − xiβ) (8.31)

which coincides with the Bayesian derivation earlier, (8.25). From a frequentist
perspective, (8.25) is known as the best linear unbiased predictor (BLUP), where
unbiased refers to it satisfying E[b̂i] = E[bi].

The form (8.31) is not of practical use since it depends on the unknown β and α;
instead, we use

b̂i = E[bi | yi, β̂, α̂] = D̂zT
i V̂

−1
i (yi − xiβ̂G) (8.32)

where D̂ = D(α̂) and V̂ = V (α̂). The implications of the substitution of β̂G are
not great, since it is an unbiased estimator and appears in (8.31) in a linear fashion,
but the use of α̂ is more problematic. In particular the predictor b̂i is no longer linear
in the data, so that exact properties can no longer be derived.
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The uncertainty in the prediction, accounting for the estimation of β, is

var(b̂i − bi) = D − var(b̂i)

= D −DzT
iV

−1
i ziD +DzT

iV
−1
i xi(x

TV −1x)−1xT
iV

−1
i ziD

after tedious algebra (Exercise 8.5), so that (8.27) is recovered. We again emphasize
that this estimate of variability of prediction does not acknowledge the uncertainty
in α̂. Given correct specification of the marginal variance model, var(Y | α) =

V (α), and a consistent estimator of α, b̂i is asymptotically normal with a known
distribution, which can be used to form interval estimates. As an alternative to the
use of (8.25), we can implement a fully Bayesian approach (Sect. 8.6), though no
closed-form solution emerges.

As a final derivation, rather than assume normality, we could consider estimators
that are linear in y. Exercise 8.6 shows that this again leads to

b̂i = DzT
iV

−1
i (yi − xiβ).

The best linear predictor is therefore identical to the best predictor under normality.
For general distributions, E[bi | yi] will not necessarily be linear in yi.

Since we now have a method for predicting bi, we can examine fitted values:

Ŷi = xiβ̂ + zib̂i

= xiβ̂ + zi

[
DzT

iV
−1
i (yi − xiβ̂)

]

= (Ini −Wi)xiβ̂ +Wiyi,

with Wi = ziDzT
iV

−1
i , so that we have a weighted combination of the population

profile and the unit’s data. If D = 0, we obtain Ŷi = xiβ̂, and if D is “small,” the
fitted values are close to the population curve, which is reasonable if there is little
between-unit variability. If elements of D are large, the fitted values are closer to
the observed data.

Example: One-Way ANOVA

For the simple balanced ANOVA model previously considered, the calculation of
E[bi | yi, β̂, α̂] results in

b̂i =
nσ̂2

0

σ̂2
ε + nσ̂2

0

(yi − β̂0)
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to give a predictor that is a weighted combination of the “residual” yi − β̂0 and
zero. For finite n, the predictor is biased towards zero. As n → ∞, b̂i → yi − β̂0,
so that β̂0 + b̂i → yi, illustrating that the shrinkage disappears as the number of
observations on a unit n increases, as we would hope.

8.6 Bayesian Inference for Linear Mixed Models

8.6.1 A Three-Stage Hierarchical Model

We consider the LMM

yi = xiβ + zibi + εi,

with bi and εi independent and distributed as bi | D ∼iid Nq+1( 0,D), and εi |
σ2
ε ∼ind Nni( 0, σ2

ε I), i = 1, . . . ,m.
The second stage assumption for bi can be motivated using the concept of

exchangeability that we encountered in Sect. 3.9. If we believe a priori that
b1, . . . , bm are exchangeable (and are considered within a hypothetical infinite
sequence of such random variables), then it can be shown using representation
theorems (Sect. 3.9) that the prior has the form

p(b1, . . . , bm) =

∫ m∏

i=1

p(bi | φ)π(φ) dφ,

so that the collection [b1, . . . , bm] are conditionally independent, given hyperpa-
rameters φ, with the hyperparameters having a distribution known as a hyperprior.

Hence, we have a two-stage (hierarchical) prior:

bi | φ ∼iid p(· | φ), i = 1, . . . ,m

φ ∼iid π(·).
Parametric choices for p(· | φ) and π(·) are based on the application, though com-
putational convenience may also be a consideration (as we discuss in Sect. 8.6.3).
We initially consider the multivariate normal prior Nq+1( 0,D) so that φ = D. The
practical importance of this representation is that under exchangeability the beliefs
about each of the unit-specific parameters must be identical. For example, for the
dental data, if we do not believe that the individual-specific deviations from the
average intercepts and slopes for boys and girls are exchangeable, then we should
consider separate prior specifications for each gender. In general, if collections of
units cluster due to an observed covariate that we believe will influence bi, then
our prior should reflect this. This framework contrasts with the sampling theory
approach in which the random effects are assumed to be a random sample from a
hypothetical infinite population.
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The three-stage model is

Stage One: Likelihood:

p(yi | β, bi, σ2
ε ), i = 1, . . . ,m.

Stage Two: Random effects prior:

p(bi | D), i = 1, . . . ,m.

Stage Three: Hyperprior:

p(β,D, σ2
ε ).

8.6.2 Hyperpriors

It is common to assume independent priors:

π(β,D, σ2
ε ) = π(β)π(D)π(σ2

ε ).

A multivariate normal distribution or β and an inverse gamma distribution for σ2
ε are

often reasonable choices, since they are flexible enough to reflect a range of prior
information. The data are typically informative on β and σ2

ε also. These choices
also lead to conditional distributions that have convenient forms for Gibbs sampling
(Sect. 3.8.4). The prior specification for D is less straightforward.

If D is a diagonal matrix with elements σ2
k, k = 0, 1, . . . , q, then an obvious

choice is

π(σ2
0 , . . . , σ

2
q ) =

q∏

k=0

IGa(ak, bk),

where IGa(ak, bk) denotes the inverse gamma distribution with prespecified pa-
rameters ak, bk, k = 0, . . . , q. These choices also lead to conjugate conditional
distributions for Gibbs sampling. Other choices are certainly possible, however, for
example, those contained in Gelman (2006). A prior for non-diagonal D is more
troublesome; there are (q+2)(q+1)/2 elements, with the restriction that the matrix
of elements is positive definite. The inverse Wishart distribution is the conjugate
choice and is the only distribution for which any great practical experience has been
gathered.

We digress to describe how the Wishart distribution can be motivated. Suppose
Z1, . . . ,Zr ∼iid Np( 0,S), with S a non-singular variance–covariance matrix,
and let

W =

r∑

j=1

ZjZ
T
j . (8.33)
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Then W follows a Wishart distribution, denoted Wishp(r,S), with probability
density function

p(w) = c−1 | w |(r−p−1)/2 exp

[
−1

2
tr(wS−1)

]

where

c = 2rp/2Γp(r/2) | S |r/2, (8.34)

with

Γp(r/2) = πp(p−1)/4

p∏

j=1

Γ [(r + 1− j)/2]

the generalized gamma function. We require r > p − 1 for a proper density. The
mean is

E[W ] = rS.

Taking p = 1 yields

p(w) =
(2S)−r/2

Γ (r/2)
wr/2−1 exp(−w/2S),

for w > 0, revealing that the Wishart distribution is a multivariate version of the
gamma distribution, parameterized as Ga[r/2, 1/(2S)]. Further, taking S = 1 gives
a χ2

r random variable, which is clear from (8.33).
If W ∼ Wishp(r,S), the distribution of D = W−1 is known as the inverse

Wishart distribution, denoted InvWishp(r,S), with density

p(d) = c−1 | d |−(r+p+1)/2 exp

[
−1

2
tr(d−1S)

]
,

where c is again given by (8.34). We denote this random variable by D in
anticipation of subsequently specifying an inverse Wishart distribution as prior for
the variance–covariance matrix of the random effects D. The mean is

E[D] =
S−1

r − p− 1

and is defined for r > p + 1. If p = 1, we recover the inverse gamma distribution
IGa(r/2, 1/2S) with

E[D] =
1

S(r − 2)

var(D) =
1

S2(r − 2)(r − 4)
,
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so that small r gives a more dispersed distribution (which is true for general p).
One way of thinking about prior specification is to imagine that the prior data for
the precision consists of observing r multivariate normal random variables with
empirical variance–covariance matrices R = S−1. See Appendix D for further
properties of the Wishart and inverse Wishart distributions.

Returning from our digression, within the LMM, we specify W = D−1 ∼
Wq+1(r,R

−1) where we have taken S = R−1 to aid in prior specification. We
require choices for r and R. Since

E[D] =
R

r − q − 2
,

R may be scaled to be a prior estimate of D, with r acting as a strength of belief in
the prior, with large r placing more mass close to the mean.

One method of specification that attempts to minimize the influence of the prior
is to take r = q+3 the smallest integer that gives a proper prior to give E[D] = R,
as the prior guess for D. We now describe another way of specifying a Wishart
prior, based on Wakefield (2009b). Marginalization over D gives bi as multivariate
Student’s t with location 0, scale matrix R/(r − p + 1), and degrees of freedom
d = r − q + 2. The margins of a multivariate Student’s t are t also, which allows
r and R to be chosen via specification of an interval for the jth element of bi, bij .
Specifically, bij follows a univariate Student’s t distribution with location 0, scale
Rjj/(r− q+2), and degrees of freedom d = r− q. For a required range of [−V, V ]

with probability 0.95, we use the relationship ±td0.025
√
Djj = ±V , where tdp is

the 100× pth quantile of a Student’s t random variable with d degrees of freedom.
Picking the smallest integer that results in a proper prior gives r = q + 1 so that
d = 1 and Rjj = V 2d/2(td1−(1−p)/2)

2.
As an example of this procedure, consider a single random effect (q = 0).

We specify a Ga[r/2, 1/(2S)] prior for σ−2
0 , so that marginally, bi is a Student’s

t distribution with location 0, scale r/S, and degrees of freedom r. The above
prescription gives r = 1 and S = (td1−(1−p)/2)

2/V 2. In the more conventional

Ga(a, b) parameterization, we obtain a = 0.5 and b = V 2/[2(td1−(1−p)/2)
2]. For

example, for the dental data, if we believe that a 95% range for the intercepts, about
the population intercept, is ±V = ±0.2, we obtain the choice Ga(0.5, 0.000124)
for σ−2

0 . This translates into a prior for σ0 (which is more interpretable) with 5%,
50%, and 95% points of [0.008, 0.023, and 0.25]. An important point to emphasize
is that within the LMM, a proper prior is required for D to ensure propriety of the
posterior distribution.

A weakness with the Wishart distribution is that it is deficient in second moment
parameters, since there is only a single degrees of freedom parameter r. So, for
example, it is not possible to have differing levels of certainty in the tightness of
the prior distribution for different elements of D. This contrasts with the situation
in which D is diagonal, and we specify independent inverse gamma priors, which
gives separate precision parameters for each variance.
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Fig. 8.2 Prior summaries for the prior D−1 ∼ W2(r,R−1) with r = 4 and R containing
elements [1.0, 0, 0, 0.1]. Univariate marginal densities for (a) σ0, (b) ρ, (c) σ1, and the bivariate
density for (d) (σ0, σ1)

Figure 8.2 displays summaries for an example with a 2× 2 variance–covariance
matrix (so that q = 1). We assume D−1 ∼ W2(r,R

−1) with r = 4 and E[D] =

R
4−1−2 = R with R =

[
1.0 0

0 0.1

]
. We summarize samples from the Wishart via

marginal distributions for σ0, σ1, and ρ since these are more interpretable. These
plots were obtained by simulating samples for D−1 from the Wishart prior and then
converting these samples to the required functions of interest. Finally, we smooth
the sample histograms and scatter plots to produce Fig. 8.2. As we would expect, the
prior on the correlation is symmetric about 0. Examination of intervals for σ0, σ1 can
inform on whether we believe the prior is suitable for any given application. Going
one step further, we could then simulate random effects from the zero mean normal
with variance D, the latter being a draw from the prior; we might also continue to
simulate data, though this would require draws from the other priors too.
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8.6.3 Implementation

For simplicity, we suppose that xi = zi. It is convenient in what follows to
reparameterize in terms of the set [β1, . . . ,βm, τ,β,W ] where βi = β + bi,
τ = σ−2

ε , and W = D−1. The joint posterior is

p(β1, . . . ,βm, τ,β,W | y) ∝
m∏

i=1

[p(yi | βi, τ)p(βi | β,W )]π(β)π(τ)π(W ),

with priors:

β ∼ Nq+1(β0,V0), τ ∼ Ga(a0, b0), W ∼ Wq+1(r,R
−1).

Marginal distributions, and summaries of these distributions, are not available in
closed form. Various approaches to obtaining quantities of interest are available.
The INLA procedure described in Sect. 3.7.4 is ideally suited to the LMM. As an
alternative, we describe an MCMC strategy using Gibbs sampling (Sect. 3.8.4). The
required conditional distributions are

• p(β | τ,W ,β1, . . . ,βm,y).
• p(τ | β,W ,β1, . . . ,βm,y).
• p(βi | β, τ,W ,y), i = 1, . . . ,m.
• p(W | β, τ,β1, . . . ,βm,y).

where we block update β, W , and βi to reduce dependence in the Markov chain.
The conditional distributions for β, τ , and βi are straightforward to derive

(Exercise 8.10) and are given, respectively, by

β | β1, . . . ,βm,W ∝
m∏

i=1

p(βi | β,W )π(β)

∼ Nq+1

[
(
mW + V −1

0

)−1

(
W

m∑

i=1

βi + V −1
0 β0

)
,

(
mW + V −1

0

)−1
]

τ | βi,y ∝
m∏

i=1

p(yi | βi, τ)π(τ)

∼ Ga

[
a0 +

∑m
i=1 ni

2
, b0 +

1

2

m∑

i=1

(yi − xiβi)
T(yi − xiβi)

]

βi | τ,W ,y ∝
m∏

i=1

p(yi | βi, τ)p(βi | β,W )

∼ Nq+1

[
(τxT

ixi +W )−1(τxT
iyi +Wβ), (τxT

ixi+W )−1
]
.
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Conditional independencies have been exploited, and in each case, the notation
explicitly conditions on only those parameters on which the conditional distribution
depends. For example, to derive the conditional distribution for β, we only require
[β1, . . . ,βm] and W . The conditional for βi is, once we reparameterize, identical
to the empirical Bayes estimates derived for the random effects in Sect. 8.5.4
(Exercise 8.11). This comparison illustrates how the uncertainty in β and α =
[τ,W ] is accounted for across iterates of the Gibbs sampler.

Deriving the conditional distribution for W is a little more involved. First, note
that

(βi − β)TW (βi − β) = tr[(βi − β)TW (βi − β)] = tr[W (βi − β)(βi − β)T].

Then

W | βi,β ∝
m∏

i=1

p(βi | W )× π(W )

∝ | W |(m+r−q−1−1)/2 exp

{

−1

2

[
m∑

i=1

(βi − β)TW (βi − β) + tr(WR)

]}

= | W |(m+r−q−1−1)/2 exp

{

−1

2
tr

(

W

[
m∑

i=1

(βi − β)(βi − β)T +R

])}

to give the conditional distribution

W | β1, . . . ,βm,β ∼ Wq+1

⎡

⎣r +m,

(
R+

m∑

i=1

(βi − β)(βi − β)T

)−1
⎤

⎦ .

This illustrates how r and R are comparable to m and the between-unit sum of
squares, respectively, which aids in prior specification. Since

E[D | β1, . . . ,βm,β] =
R+

∑m
i=1(βi − β)(βi − β)T

r +m− q − 2

the form of the conditional distribution suggests that it is better to err on the side of
picking R too small, since a large R will always dominate the sum of squares. If m
is small, the prior is always influential.

If we collapse over βi, i = 1, . . . ,m, we obtain the two-stage model with

Stage One: Marginal likelihood:

y | β, τ,W ∼ NN (xβ,V ),

where V = V (W , τ).
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Stage Two: Priors:

π(β)π(W )π(τ).

An MCMC algorithm iterates between

• p(β | y,W , τ)
• p(τ | y,β,W )
• p(W | y,β)
This approach is appealing since it is over a reduced parameter space, but the form of
p(W | y,β, τ) is extremely awkward. The conditional for β offers some intuition
on the Bayesian approach, however. Specifically, writing α = [τ,W ], we obtain
the conditional distribution:

β | y,α ∼ Nq+1 [E(β | y,α), var(β | y,α) ]

where the mean and variance can be written in the weighted forms

E[β | y,α] = w × β̂G + (I−w)× β0 (8.35)

var(β | y,α) = w × var(β̂G). (8.36)

Here, β̂G = (xTV −1x)−1xTV −1y is the GLS estimator with variance var(β̂G) =
(xTV −1x)−1, and the (q + 1)× (q + 1) weight matrix is

w = (xTV −1x+ V −1
0 )−1xTV −1x.

As the prior becomes more diffuse, that is, as V −1
0 → 0, the weight w → I, the

conditional posterior mean approaches the GLS estimator β̂G, and the conditional
posterior variance approaches var(β̂G). In contrast, as V −1 → 0, so that the
prior becomes more concentrated about β0, w → 0 and the conditional posterior
moments approach the prior distribution. Since

E[β | y] = Eα|y [E(β | y,α) ] ,

the posterior mean is the conditional posterior mean averaged over α | y. As is
typical, the Bayesian estimate integrates overα, while the GLS estimator conditions
on α̂ for evaluation of V . We would expect likelihood and Bayesian point and
interval estimates to be similar for large samples because the posterior α | y will
become increasingly concentrated about α̂.

8.6.4 Extensions

Computationally, under a Bayesian approach via MCMC, it is relatively straight-
forward to extend the basic LMM. The conditional distributions may not be of
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conjugate form, but Metropolis–Hastings steps can be substituted (Sect. 3.8.2). For
example, great flexibility in the distributional assumptions and error models is
available, though prior specification will usually require greater care. To automati-
cally protect against outlying measurements/individuals, Student’s t errors may be
specified at stage one/stage two of the hierarchy, though when regression is the
focus of the analysis, the greatest effort should be concentrated upon specifying
appropriate mean–variance relationships at the two stages.

With the advent of MCMC, there is a temptation to fit complex models that
attempt to reflect every possible nuance of the data. However, the statistical prop-
erties of complex models (such as consistency of estimation under incorrect model
specification) are difficult to determine, as are the implied marginal distributions for
the data (which can aid in model assessment). Overfitting is also always a hazard.
Consequently, caution should be exercised in model refinement. One of the arts of
statistical analysis is deciding on when model refinement is warranted.

Example: Dental Growth Curves

We analyze the data from the m = 11 girls only and adopt the following three-stage
hierarchical model:

Stage One: As likelihood, we assume

yij = βi0 + βi1tj + εij ,

with εij | τ ∼iid N(0, τ−1), j = 1, . . . , 4, i = 1, . . . , 11.
Stage Two: Let

βi =

[
βi0

βi1

]
β =

[
β0

β1

]
D =

[
σ2
0 σ01

σ10 σ2
1

]
,

with random effects prior

βi | β,D ∼ N2(β,D), i = 1, . . . ,m.

Stage Three: As hyperprior, we assume

π(τ,β,D−1) = π(τ) × π(β)× π(D−1)

with improper priors on τ and β:

π(τ) ∝ τ−1, π(β) ∝ 1

and

D−1 ∼ W2(r,R
−1).



390 8 Linear Models

In the LMM, there is typically abundant information in the data with respect to
τ and β. By placing a flat prior on β (which are often the parameters of interest),
we are also basing inference on the data alone (in nonlinear models, more care is
required since a proper prior is often required to ensure propriety of the posterior).

With just 11 girls, we would expect inference for D to be sensitive to the prior,
and so, we consider three choices of r and R. Each prior has the same mean of

E[D] =

[
1.0 0

0 0.1

]
=

R

r − q − 2
(8.37)

with q = 1 here. The above specification corresponds to an a priori belief that the
spread of the expected response at 11 years across girls is

±1.96E[σ0] ≈ ±1.96
√
R11 = ±1.96

and the variability in slopes across girls is expected to be

±1.96E[σ1] ≈ ±1.96
√
R22 = ±0.62.

The exact intervals can be evaluated in an obvious fashion using simulation. The
off-diagonal of R is 0 as we assume there is no reason to believe the correlation
between intercepts and slopes will be positive or negative.

The degrees of freedom r is on the same scale as m and may be viewed as a prior
sample size. We pick r = 4, 7, 28, and to obtain the same prior mean, (8.37), R is
specified as

[
1.0 0

0 0.1

]
,

[
4.0 0

0 0.4

]
,

[
25 0

0 2.5

]
,

for each of r = 4, 7, 28, respectively. To obtain a proper posterior, we require r > 1.
We pick r = 4 as our smallest choice since the mean exists for this value. Samples
from this prior are displayed in Fig. 8.2.

We present the results in terms of elements of D, for direct comparison with
the prior. If we were reporting substantive conclusions, we would choose σ0, σ1,
ρ, or interval estimates for βi� = [βi�0, βi�1], the parameters of a new girl who is
exchangeable with those in the study. Table 8.1 gives posterior medians and 95%
interval estimates for the fixed effects and variance components. We see sensitivity
to the prior with respect to inference for D. As r increases, the posterior medians
draw closer to the prior means of 1.0 and 0.1. For β0 and β1, the medians are robust
to the prior specification, while the width of the intervals for β0 and β1 change in
proportion to the behavior of σ2

0 and σ2
1 , respectively. The interval estimates for

β0 narrow, while those for β1 widen, though the changes are modest. With only 11
subjects, we would expect sensitivity to the prior on D. For r = 7, the “total degrees
of freedom” is 18 with a prior contribution of 7 and a data contribution of 11.



8.7 Generalized Estimating Equations 391

Table 8.1 Posterior medians and 95% intervals for fixed effects and variance components, under
three priors for the dental growth data for girls

Prior r = 4 r = 7 r = 28

β0 – 22.6 [21.4,23.8] 22.6 [21.5,23.7] 22.6 [21.8,23.5]
β1 – 0.48 [0.33,0.63] 0.48 [0.31,0.65] 0.48 [0.28,0.67]
σ2
0 1.0 3.48 [1.66,8.75] 2.97 [1.51,6.63] 1.78 [1.14,2.97]

σ01 0.0 0.13 [−0.10,0.54] 0.10 [−0.14,0.46] 0.04 [−0.10,0.20]
σ2
1 0.1 0.03 [0.01,0.10] 0.05 [0.02,0.12] 0.08 [0.05,0.14]

The population intercept is β0 and the population slope is β1. The variances of the random
intercepts and random slopes are σ2

0 and σ2
1 , respectively, and the covariance between the two

is σ01

8.7 Generalized Estimating Equations

8.7.1 Motivation

We now describe the GEE approach to modeling/inference. GEE attempts to make
minimal assumptions about the data-generating process and is constructed to answer
population-level, rather than individual-level, questions. There are some links with
the quasi-likelihood approach described in Sect. 2.5 in that, rather than specify a
full probability model for the data, only the first two moments are specified. GEE
is motivated by dependent data situations, however, and exploits replication across
units to empirically estimate standard errors through sandwich estimation. GEE
uses a “working” second moment assumption; “working” refers to the choice of a
variance model that may not necessarily correspond to exactly the form we believe
to be true but rather to be a choice that is statistically convenient (we elaborate
on this point subsequently). Any discrepancies from the truth are corrected using
sandwich estimation to give a procedure that gives a consistent estimator of both
the regression parameters and the standard errors (so long as we have independence
between individuals).

We assume the marginal mean model

E[Yi] = xiβ,

and consider the ni × ni working variance–covariance matrix:

var(Yi) = Wi (8.38)

with cov(Yi,Yi′) = 0 for i �= i′, so that observations on different individuals
are assumed uncorrelated. To motivate GEE, we begin by assuming that Wi is
known and does not depend on unknown parameters. In this case the GLS estimator
minimizes

m∑

i=1

(Yi − xiβ)
TW−1

i (Yi − xiβ),
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and is given by the solution to the estimating equation

m∑

i=1

xT
iW

−1
i (Yi − xiβ̂) = 0,

which is

β̂ =

(
m∑

i=1

xT
iW

−1
i xi

)−1 m∑

i=1

xT
iW

−1
i Yi.

We have E[β̂] = β, and if the information about β grows with increasing m, then
β̂ is consistent. The vital observation is that β̂ is a consistent estimator for any fixed
W = diag(W1, . . . ,Wm). The weighting of observations by the latter dictates the
efficiency of the estimator but not its consistency. The variance, var(β̂), is

(
m∑

i=1

xT
iW

−1
i xi

)−1( m∑

i=1

xT
iW

−1
i var(Yi)W

−1
i xi

)(
m∑

i=1

xT
iW

−1
i xi

)−1

.

(8.39)

If the assumed variance–covariance matrix is substituted, that is, var(Yi) = Wi,
then we obtain the model-based variance

var(β̂) =

(
m∑

i=1

xT
iW

−1
i xi

)−1

.

A Gauss–Markov theorem shows that, in this case, the estimator is efficient amongst
linear estimators if the variance model (8.38) is correct (Exercise 8.6). The novelty
of GEE is that rather than depend on a correctly specified variance model, sandwich
estimation, via (8.39), is used to repair any deficiency in the working variance
model.

8.7.2 The GEE Algorithm

We now suppose that var(Yi) = Wi(α) where α are unknown parameters in the
variance–covariance model. A common approach is to assume

Wi(α) = α1Ri(α2),

where α1 = var(Yij) is the variance of the response, for all i and j, and Ri(α2)
is a working correlation matrix that depends on parameters α2. There are a number
of choices for Ri, including independence, exchangeable and AR(1) models (as
described in Sect. 8.4.2). For known α, β̂ is the root of the estimating equation
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G(β) =

m∑

i=1

xT
iW

−1
i (α)(Yi − xiβ) = 0. (8.40)

When α is unknown, we require an estimator α̂ that converges to “something”
so that, informally speaking, we have a stable weighting matrix W (α̂) in the
estimating equation.

The sandwich variance estimator is

v̂ar(β̂) =

(
m∑

i=1

xT
iŴ

−1
i xi

)−1( m∑

i=1

xT
iŴ

−1
i var(Yi)Ŵ

−1
i xi

)(
m∑

i=1

xT
iŴ

−1
i xi

)−1

(8.41)

where Ŵi = Wi(α̂) and var(Yi) is estimated by the variance–covariance matrix of
the residuals:

(Yi − xiβ̂)(Yi − xiβ̂)
T. (8.42)

This produces a consistent estimate of var(β̂), so long as we have independence
between units, that is, cov(Yi,Yi′) = 0 for i �= i′. It is the replication across
units that produces consistency, and so, the approach cannot succeed if we have no
replication. Exercise 8.12 shows that we cannot estimate var(Y ) using the analog
of (8.42) when there is dependence between units.

For inference, we may use the asymptotic distribution

v̂ar(β̂)
−1/2

(β̂ − β) ∼ Nk+1( 0, I),

where we emphasize that the asymptotics are in the number of units, m. The
variance estimator is sometimes referred to as robust, but empirical is a more
appropriate description since the form can be highly unstable for small m.

In the most general case of working variance model specification, we may allow
the working variance model to depend on β also, so that we have Wi(α,β)
to allow mean–variance relationships. For example, in a longitudinal setting, the
variance may depend on the square of the marginal mean μij with an autoregressive
covariance model:

var(Yij) = α1μ
2
ij

cov(Yij , Yik) = α1α
|tij−tik|
2 μijμik

cov(Yij , Yi′k) = 0, i �= i′

with j = 1, . . . , ni, k, k′ = 1, . . . , ni′ and where tij is the time associated with
responseYij . In this model,α1 is the component of the variance that does not depend
on the mean (and is assumed constant across time and across individuals), α2 is the
correlation between responses on the same individual which are one unit of time
apart and α = [α1, α2]. In general the roots of the estimating equation
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m∑

i=1

xT
iW

−1
i (α,β)(Yi − xiβ) = 0 (8.43)

are not available in closed form when β appears in W .
We can write the (k+1)×1 estimating function in a variety of forms, for example:

xTW−1(Y − xβ)

m∑

i=1

xT
iW

−1
i (Yi − xiβ)

m∑

i=1

ni∑

j=1

ni∑

k=1

xijW
jk
i (Yik − xikβ)

where W ij
i denotes entry (i, j) of W−1

i . We will often use the middle form,
since this emphasizes that the basic unit of replication (upon which the asymptotic
properties depend) is indexed by i.

The GEE approach is constructed to carry out marginal inference, and so we
cannot perform individual-level inference. For a linear model, marginalizing a
LMM produces a marginal model identical to that used in a GEE approach. As
a consequence, parameter interpretation, as discussed in Sect. 8.4.3 in the marginal
setting, is identical in the LMM and in GEE. When nonlinear models are considered
in Chap. 9 there is no equivalence and the differences between the conditional and
marginal approaches to inference becomes more pronounced. For the linear model,
sandwich estimation may be applied to the MLE of β.

So far, as the choice of “working” correlation structure is concerned, we en-
counter the classic efficiency/robustness trade-off. If we choose a simple structure,
there are few elements in α to estimate, but there is a potential loss of efficiency.
A more complex model may provide greater efficiency if the variance model is
closer to the true data-generating mechanism but more instability in estimation of
α. Clearly, this choice should be based on the sample size, with relatively sparse
data encouraging the use of a simple model.

We summarize the GEE approach to modeling/estimation when the working
variance model depends on α and not on β. The steps of the approach are:

1. Specification of a mean model, E[Yi] = xiβ.
2. Specification of a working variance model, var(Yi) = Wi(α).
3. From (1) and (2), an estimating function is constructed, and sandwich estimation

is applied to the variance of the resultant estimator.

In general, iteration is needed to simultaneously estimate β and α. Let α̂(0) be an
initial estimate, set t = 0, and iterate between:

1. Solve G(β̂, α̂(t)) = 0, with G given by (8.40), to give β̂
(t+1)

.

2. Estimate α̂(t+1) based on β̂
(t+1)

.

Set t → t+ 1, and return to 1.
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Example: Linear Regression

We illustrate the use of a working variance assumption in an independent data
situation. Suppose

E[Yi] = xiβ,

for i = 1, . . . , n. Under the working independence variance model, var(Y ) = αI,
the OLS estimator

β̂ = (xTx)−1xTY

is recovered. The sandwich form of variance estimate is

var(β̂) = (xTx)−1xTvar(Y )x(xTx)−1. (8.44)

Assuming the working variance is “true” gives the model-based estimate

var(β̂) = (xTx)−1α,

and α may be estimated by

α̂ =
1

n− k − 1

n∑

i=1

(Yi − xiβ̂)
2,

which is formerly equivalent to quasi-likelihood. If we replace var(Y ) in (8.44)
by a diagonal matrix with diagonal elements (Yi − xiβ̂)

2, then we obtain a
variance estimator that protects (asymptotically) against errors with nonconstant
variance. We cannot protect against correlated outcomes, however, since there is
no replication.

8.7.3 Estimation of Variance Parameters

To formalize the estimation of α, we may introduce a second estimating equation.
In the context of data with μij = E[Yij ] and var(Yij) ∝ v(μij), we define residuals
Rij = Yij −xijβ. Recall that β is a (k+1)× 1 vector of parameters, and suppose
α is an r× 1 vector of variance parameters. We then consider the pair of estimating
equations:

G1(β,α) =

m∑

i=1

xT
iW

−1
i (Yi − xiβ) (8.45)

G2(β,α) =
m∑

i=1

ET
iH

−1
i [Ti −Σi(α)] (8.46)
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where the “data” in the second estimating equation are

T T
i = [Ri1Ri2, . . . , Rini−1Rini , R

2
i1, . . . , R

2
ini

],

an [ni + ni(ni − 1)/2]-dimensional vector with

Σi(α) = E[Ti]

a model for the variances of, and correlations between, the residuals. In (8.46),Ei =
∂Σi/∂α is the [ni+ni(ni−1)/2]×r vector of derivatives, and Hi = cov(Ti) is the
[ni+ni(ni−1)/2]× [ni+ni(ni−1)/2] working covariance model for the squared
and cross residual terms. If G2 is correctly specified, then there will be efficiency
gains. A further advantage of this approach is that it is straightforward to incorporate
a regression model for the variance–covariance parameters, that is, α = g(x), for
some link function g(·). For general H , we will require the estimation of fourth
order statistics, that is, var(T ), which is a highly unstable endeavor unless we have
an abundance of data. For this reason, working independence,Hi = I, is often used.

If E[T ] �= Σ, then we will not achieve consistent estimation of the true variance
model but, crucially, consistency of β through G1 is guaranteed, so long as α̂
converges to “something.” We reiterate that a consistent estimate of var(β̂) is
guaranteed through the use of sandwich estimation, so long as units are independent.

As an illustration of the approach, assume for simplicity ni = n = 3 so that

T T
i = [Ri1Ri2, Ri1Ri3, Ri2Ri3, R

2
i1, R

2
i2, R

2
i3].

With an exchangeable variance model:

Σi(α)T = E[T T
i ] = [α1α2, α1α2, α1α2, α1, α1, α1]

so that α1 is the marginal variance, and α2 is the correlation between observations
on the same unit. With Hi = I, that is, a working independence model for the
variance parameters, the estimating function for α is

G2(β̂,α) =

m∑

i=1

[
α2 α2 α2 1 1 1

α1 α1 α1 0 0 0

]

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

Ri1Ri2

Ri1Ri3

Ri2Ri3

R2
i1

R2
i2

R2
i3

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

−

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

α1α2

α1α2

α1α2

α1

α1

α1

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.
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We therefore need to simultaneously solve the two equations:

m∑

i=1

α̂2

⎡

⎣
∑

j<k

RijRik − α̂1α̂2

⎤

⎦+

3∑

j=1

(R2
ij − α̂1) = 0

m∑

i=1

α̂1

⎡

⎣
∑

j<k

RijRik − α̂1α̂2

⎤

⎦ = 0.

Dividing the second of these by α̂1 shows that

α̂1α̂2 =
1

3m

m∑

i=1

∑

j<k

RijRik

and substituting this into the first equation gives

α̂1 =
1

3m

m∑

i=1

∑

j<k

R2
ij ,

to yield a pair of method of moments estimators.

Example: Dental Growth Curve

We use a GEE approach with the marginal model:

E[Yij ] = xijβ,

and interactions so that

xij =

{
[1, tj, 0, 0 ] for i = 1, . . . , 16

[1, tj, 1, tj ] for i = 17, . . . , 27,

where j = 1, 2, 3, 4 and [t1, t2, t3, t4] = [−2,−1, 1, 2]. Table 8.2 summarizes anal-
yses with independence and exchangeable working correlation models, including
standard errors under the assumption that the working model is correct (the “model”
standard errors) and under sandwich estimation.

The point estimates and model-based standard errors under working indepen-
dence always correspond to those from an OLS fit. The point estimates under the two
working models are also identical here due to the balanced design. This agreement
will not hold in general. The marginal variance is estimated as 2.26, and the
correlation parameter under the exchangeable model as 0.61. These are in very close
agreement with the equivalent values of 2.28 and 0.63 obtained from the random
intercepts LMM. As we would expect for these data, the model-based and sandwich
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Table 8.2 Summaries for the dental growth data of fixed effects from GEE analyses, under
independence and exchangeable working correlation matrices; β0 and β1 are the population
intercept and population slope for boys and β0 + β2 and β1 + β3 are the population intercept
and population slope for girls

Independence Exchangeable

Standard error Standard error

Estimate Model Sandwich Estimate Model Sandwich

β0 25.0 0.28 0.44 25.0 0.47 0.44
β1 0.78 0.13 0.098 0.78 0.079 0.098
β2 −2.32 0.44 0.75 −2.32 0.74 0.75
β3 −0.31 0.20 0.12 −0.31 0.12 0.12

standard errors are quite similar under the exchangeable working model, because we
have seen that the empirical estimates of the second moments are close to those of an
exchangeable correlation structure. In contrast, the working independence standard
errors change quite considerably. The sandwich standard errors are larger for the
time static intercepts and smaller for the parameters associated with time (the two
slopes).

Likelihood inference for a LMM with random intercepts and slopes produced
identical point estimates to those in Table 8.2 and standard errors of [0.49, 0.086,
0.76, 0.14], which are in reasonable agreement with the sandwich standard errors
reported in the table.

Example: Dental Data, Reduced Dataset

In the dental example the balanced design and relative abundance of data leads to
summaries that might suggest that the alternative methods we have described are
always in complete agreement. To correct this illusion, we now report summaries
from an artificially created dental growth curve data set in which it is assumed that
children randomly drop out of the study at some point after the first measurement.
This yielded the data in Fig. 8.3 with 39 measurements on boys (previously there
were 64) and 25 on girls (previously there were 44).

We analyze these data using GEE and LMMs, the latter via likelihood and
Bayesian approaches to inference. For GEE, we implement independence and
exchangeable working correlation structures. Table 8.3 gives point estimates along
with uncertainty measures. For GEE, we report sandwich standard errors, for the
likelihood LMM model-based standard errors and for the Bayes LMM posterior
(model-based) standard deviations. The posterior distributions for the regression
parameters were close to normal, with interval estimates based on a normal
approximation virtually identical to those based directly on samples from the
posterior. For the Bayesian analysis, we used a flat prior on β, and the Wishart
prior for D−1 had prior mean (8.37), with r = 4.
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Fig. 8.3 Distance versus age for reduced dental data

Table 8.3 Summaries for the reduced dental growth data of fixed effects from GEE under
independent and exchangeable working correlation matrices and likelihood and Bayesian LMMs;
β0 and β1 are the population intercept and population slope for boys and β0 + β2 and β1 + β3 are
the population intercept and population slope for girls

GEE independence GEE exchangeable LMM likelihood LMM Bayesian

Est. s.e. Est. s.e. Est. s.e. Est. s.d.

β0 24.9 0.75 24.8 0.63 24.7 0.65 24.8 0.63
β1 0.77 0.20 0.71 0.11 0.70 0.14 0.70 0.16
β2 −2.70 1.23 −2.01 0.97 −1.92 1.04 −1.98 1.02
β3 −0.53 0.27 −0.21 0.15 −0.17 0.23 −0.19 0.26
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For these data, none of the analyses are completely satisfactory since the small
number of observations does not give confidence in the sandwich standard errors,
nor are the data sufficiently abundant to allow any reliable evaluation of assumptions
for the LMM analyses. The exchangeable standard errors appear too small for the
slope parameters, though the point estimates are in reasonable agreement with their
LMM counterparts. The GEE independence standard errors are more in line with
the LMM analyses, though the point estimates are quite different for β2 and β3.
As expected under these priors, the likelihood and Bayes analyses are in reasonable
agreement.

8.8 Assessment of Assumptions

8.8.1 Review of Assumptions

Each of the approaches to modeling that we have described depend, to a varying
degree, upon assumptions. To ensure that inference is accurate, we need to check
that these assumptions are at least approximately valid. We begin by reviewing the
assumptions, starting with GEE (since it depends on the fewest assumptions).

For GEE, we have the marginal mean model:

Yi = xiβ + ei,

and working covariance var(ei) = Wi(α), i = 1, . . . ,m. The first consideration
is whether the marginal model E[Yi] = xiβ is appropriate. In particular, one
must check whether the model requires refinement by, for example, the addition of
quadratic terms or interactions. We may also examine whether additional variables,
such as confounders, are required in the model. These considerations are common
to all approaches. If the mean model is inadequate, but all other assumptions are
satisfied, then we will still have a consistent estimator of the assumed form, but
the relevance of inference is open to question. For example, suppose the true
relationship is quadratic, but we incorrectly assume a linear model. The linear
association will still be consistently estimated but may be very misleading. Deciding
on a course of action if the mean model is inadequate depends on the nature
of the analysis. If we are in exploratory mode, then fitting different models is
not problematic. But if we are in confirmatory mode, then we would want to
minimize changes to the model, though knowing of inadequacies is important for
interpretation.

The use of a sandwich estimate for the standard errors is reliable in the sense
of giving consistent estimates regardless of whether the working covariance model
mimics the truth, but a working model that is far from the truth will lead to a loss
of efficiency (so that the standard errors are bigger than they need to be), which
suggests one should examine whether the assumed working model is far from that
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suggested by the data. In addition, if the number of units m is not large, then the
estimate of the sandwich standard errors could be very unstable, and asymptotic
inference may be inappropriate. As usual, there is no easy recipe for deciding
whetherm is “sufficiently large”, since this depends on the design across individuals
in the sample. The decision may be based on simulation, though experience with
similar datasets is beneficial.

For the LMM, the usual model is

Yi = xiβ + zibi + εi,

with bi | D ∼iid Nq+1( 0,D ), εi | σ2
ε ∼ind Nni( 0, σ2

ε I ), and bi, εi independent,
i = 1, . . . ,m. This leads to the marginal model Yi | β,α ∼ Nni(xiβ,Vi ) and
estimator

β̂ =
(
xTV −1x

)−1
xTV −1Y (8.47)

with
(
xTV −1x

)1/2
(β̂ − β) ∼ Nk+1( 0, I ).

Therefore, if m is large, we do not require the data or the random effects to be
normally distributed since the estimator is linear in the data, and so we can appeal to
a central limit theorem. For an accurate standard error, we require the model-based
form of the variance to be close to the truth, however. It is particularly important
that there are no unmodeled mean–variance relationships. Another key requirement
is that the random effects arise from a common distribution. Often, unit-specific
covariates will be available, and these may define subpopulations that have different
distributions (e.g., differing variance–covariance matrices D) in covariate-defined
subpopulations. If m is small we require, in addition, the data to be “close to normal”
for valid inference. Sandwich estimation can be easily applied to obtain an empirical
standard error, keeping in mind the caveats expressed above with regard to the need
for sufficiently large m.

For prediction of the random effects, we have seen that the BLUP estimator is
optimal under a number of different criteria. Normality of the random effects or the
errors is not required, though an appropriate variance model is again important.

A Bayesian analysis of the LMM adds hyperpriors for β and α to the two-stage
likelihood model. Each of the modeling assumptions required for likelihood-based
inference are needed for a Bayesian analysis. However, asymptotic inference is not
needed if, for example, MCMC is used. Accurate inference requires checking of
the first and second stage assumptions because inference relies on the model being
correct (or in practice, close to correct). Also, thought is required when priors are
specified because inference may well be sensitive to the choices made. In particular,
care is called for in the specification for D. We emphasize that normality of the data
and the random effects is not needed for a valid analysis if the sample size is large.
For example, for inference with respect to β, the posterior for β will be accurate so
long as the asymptotic distribution of the estimator, (8.47), is faithful. Essentially,
the asymptotic distribution replaces the likelihood contribution to the posterior.
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8.8.2 Approaches to Assessment

For those individuals with sufficient data, individual-specific models may be fitted to
allow examination of the appropriateness of initially hypothesized models in terms
of the linear component and assumptions about the errors, such as constant variance,
serial correlation, and normality if m is small. Following the fitting of marginal or
mixed models, the assumptions may then be assessed further, with examination of
residuals a useful exercise.

Residuals may be defined with respect to different levels. With respect to the
usual LMM, a vector of unstandardized population-level (marginal) residuals is

ei = Yi − xiβ

and these are most useful for analyses based on the marginal (GEE) approach.
A vector of unstandardized unit-level (stage one) residuals is

εi = Yi − xiβ − zibi.

The vector of random effects bi is also a form of (stage two) residual. Estimated
versions of these residuals are

êi = Yi − xiβ̂ (8.48)

ε̂i = Yi − xiβ̂ − zib̂i (8.49)

and b̂i, i = 1, . . . ,m.
We first discuss the population residuals (8.48). Recall, from consideration of

the ordinary linear model (Sect. 5.11), that estimated residuals have dependencies
induced by replacement of parameters by their estimates. The situation is far
worse for dependent data because we would expect the population residuals to be
dependent, even if the true parameter values were known. If Vi(α) is the true error
structure, then

var(ei) = Vi and var(êi) ≈ Vi(α̂),

showing the dependence of the residuals under the model. This means that, when
working with ei, it is difficult to check whether the covariance model is correctly
specified. Plotting êij versus the lth covariate xijl, l = 1, . . . , k may also be
misleading due to the dependence within the residuals. Therefore, standardization
is essential to remove the dependence.

Let V̂i = LiL
T
i be the Cholesky decomposition of V̂i = Vi(α̂). We can use this

decomposition to form

ê�i = L−1
i êi = L−1

i (Yi − xiβ̂)

so that var( ê �
i ) ≈ Ini . We may then work with the model

Y �
i = x�

iβ + e�i
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where Y �
i = L−1

i Yi, x�
i = L−1

i xi, and e�i = L−1
i ei. Plots of ê �

ij against x�
ijl,

l = 1, . . . , k should not show systematic patterns if the assumed linear form is
correct.

QQ plots of ê �
ij versus the expected residuals from a normal distribution can

be used to assess normality (unless m is small, normal errors are not required
for accurate inference, but the closer to normality are the data, the smaller the m
required for the asymptotics to have practically “kicked in”). If eij are normal,
then standardized residuals will be normally distributed also, since e�ij is a linear
combination of elements of ei.

The correctness of the mean–variance relationship can be assessed by plotting
ê �2
ij (or |ê �

ij |) against fitted values μ̂�
ij = x�

ijβ̂. Any systematic (non-horizontal)
trends suggest problems. Local smoothers (as described in Chap. 11) can be added
to plots to aid interpretation and plotting symbols such as unit or observation number
can also be useful to identify collections of observations for which the model is not
adequate.

For the LMM with εi | σ2
ε ∼iid Nni( 0, σ2

ε I ), the stage one residuals (8.49) may
be formed. Standardized versions are ε̂ �ij = ε̂ij/σ̂ε. As usual, these residuals may
be plotted against covariates. One may construct normal QQ plots, though a correct
mean–variance relationship is more influential than lack of normality (so long as the
sample size is not small). The constant variance assumption may be examined via a
plot of ε̂ � 2

ij (or |ε̂ �ij |) versus μ̂ij = xijβ̂ + zij b̂i.
Recall the model

yi = xiβ + zibi + δi + εi, (8.50)

introduced in Sect. 8.4.2, with bi | D ∼iid Nq+1( 0,D ) and εi | σ2
ε ∼iid

Nni( 0, σ2
ε I ) representing random effects and measurement error and δij being

zero-mean normal error terms with serial dependence in time. A simple and
commonly used form for serial dependence is the AR(1) model (also described in
Sect. 8.4.2) which gives covariances

cov(δij , δik) = σ2
δρ

|tij−tik| = σ2
δRijk.

Conditional on bi, this leads to the variance–covariance for responses on unit i:

var(Yi | bi) = Vi = σ2
δRi + σ2

ε Ini . (8.51)

If model (8.50) is fitted, then residuals of the form (8.49) may be formed, but
these should be standardized in the same way as just described for population
residuals (i.e., using the decomposition V̂i = LiL

T
i) since they will have marginal

variance (8.51).
In a temporal setting, one may want to detect whether serial correlation is present

in the residuals. Two tools for such detection are the autocorrelation function and the
semi-variogram. We describe the autocorrelation function and the semi-variogram
generically with respect to the model

Yt = μt + εt,
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for t = 1, . . . , n. We assume the error terms εt are second-order stationary, which
means that E[εt] = μ is constant, and cov(εt, εt+d) = C(d), where d ≥ 0, that
is, the covariance only depends on the temporal spacing between the variables.
This implies that the variance of εt is constant, and equal to C(0), for all t. The
autocorrelation function (ACF) is defined, for time points d ≥ 0 apart, as

ρ(d) =
cov(εt, εt+d)√
var(εt)var(εt+d)

=
C(d)

C(0)
,

for all t. Now, suppose we have estimates of the errors ε̂t for responses equally
spaced over time, which we label as t = 1, . . . , n. The empirical ACF is defined as

ρ̂(d) =
Ĉ(d)

Ĉ(0)
=

∑n−d
t=1 ε̂t ε̂t+d/(n− d)∑n

t=1 ε̂
2
t /n

,

for d = 0, 1, . . . , n−1. A correlogram plots ρ̂(d) versus d for d = 0, 1, 2, . . . , n−1.
If the residuals are a white noise process (i.e., uncorrelated), then asymptotically

√
n ρ̂(d) →d N(0, 1),

for d = 1, 2, . . ., to give, for example, 95% confidence bands of ±1.96/
√
n.

We now turn to a description of the semi-variogram, a tool which was introduced
by Matheron (1971) in the context of spatial analysis (more specifically, geostatis-
tics) and is described in the context of longitudinal data by Diggle et al. (2002,
Chap. 3.4). Define the semi-variogram of the residuals εt, as

γ(d) =
1

2
var(εt − εt+d) =

1

2
E
[
(εt − εt+d)

2
]

for d ≥ 0. The reason for the 1/2 term will soon become apparent. The semi-
variogram exists under weaker conditions than the ACF, specifically under intrinsic
stationarity, which means that εt has constant mean and var(εt−εt+d) only depends
on d (so that the covariance need not be defined). For zero-mean error terms and
under second-order stationarity,

γ(d) =
1

2
var(εt) +

1

2
var(εt+d)− cov(εt, εt+d)

= C(0)− C(d)

= C(0)[1− ρ(d)].

Suppose we now have estimated errors ε̂l, along with associated times tl, l =
1, . . . , n. The sample semi-variogram uses the empirical halved squared differences
between pairs of residuals

vll′ =
1

2
( ε̂l − ε̂l′)

2,
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along with the spacings dll′ = |tl − tl′ | for l = 1, . . . , n and l < l′ = 1, . . . , n.
With irregular sampling times, the variogram can be estimated from the pairs
(dll′ , vll′), with the resultant plot being smoothed.2 An example of such a plot is
given in Fig. 8.9. Under normality of the data, the marginal distribution of each vll′

is C(0)χ2
1, and this large variability can make the variogram difficult to interpret. In

addition, because each residual contributes to n− 1 terms in the empirical cloud of
points, the points are not independent, and a single outlying point can influence the
plot at different time lags.

Suppose now we are in a longitudinal setting, in which response yij is observed
at time tij , and we fit the LMM

yi = xiβ + zibi + εi, (8.52)

with the usual forms for bi and εi. After fitting, we form the stage one residu-
als (8.49), that is, ε̂ij = yij −xijβ̂−zij b̂i. We might believe the serial dependence
takes the same form across individuals. For equally spaced times, we can examine
the empirical ACF of the residuals where, for simplicity, we assume that there are n
responses on each of the m individuals,

ρ̂(d) =

∑m
i=1

∑n−d
j=1 ε̂ij ε̂i,j+d/(n− d)

∑m
i=1

∑n
j=1 ε̂

2
ij/n

,

for d = 0, 1, . . . , n− 1.

2For unequally spaced times, the longitudinal data literature often recommends the construction
of the empirical semi-variogram (Diggle et al. 2002, Sect. 3.4; Fitzmaurice et al. 2004, Sect. 9.4),
though one could construct and smooth the empirical covariance function in a similar fashion.
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Now suppose that we again fit model (8.52), and we have ni responses for
individual i with sampling times tij . We then define the semi-variogram for the
ith individual as

γi(dijk) =
1

2
E
[
(εij − εik)

2
]

where dijk = |tij − tik|. We now form

vijk =
1

2
( ε̂ij − ε̂ik)

2

and the semi-variogram can then be estimated by plotting the pairs (dijk, vijk) for
i = 1, . . . ,m and j < k = 1, . . . , ni and smoothing. If no serial dependence is
present, the smoother should be roughly horizontal.

Consider the interpretation of the variogram when model (8.50) is the “truth,”
but suppose we fit a LMM without the autocorrelated terms. We consider stage one
residuals, which under (8.50) will take the form

ε′ij = Yij − xijβ − zijbi = δij + εij .

For differences in residuals on the same individual,

ε′ij − ε′ik = δij + εij − δik − εik

= (δij − δik) + (εij − εik),

and so the semi-variogram takes the form

γi(dijk) =
1

2
E
[
(ε′ij − ε′ik)

2
]

=
1

2
E
[
(δij − δik)

2 + (εij − εik)
2
]

= σ2
δ [1− ρ(dijk)] + σ2

ε . (8.53)

As dijk → 0, γi(dijk) → σ2
ε . The rate at which asymptote σ2

δ + σ2
ε is reached as

dijk → ∞ is determined by ρ. This variogram is illustrated in Fig. 8.4.
We now briefly consider the use of population residuals, starting with the random

intercepts model:

Yij = xijβ + bi + δij + εij ,

with bi | σ2
0 ∼iid N(0, σ2

0) and the AR(1) model for δij . The population residuals
under this model are

eij = Yij − xijβ = bi + δij + εij ,

i = 1, . . . ,m; j = 1, . . . ni. For differences in residuals on the same individual,
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eij − eik = bi + δij + εij − bi − δik − εik

= (δij − δik) + (εij − εik),

and so we obtain the same semi-variogram, (8.53), as before. Since bi is constant
for individual i, its variance does not appear.

In general, the variogram is limited in its use for population residuals for
the LMM, as we now illustrate. Consider the LMM with random intercepts and
independent random slopes:

bi0 | D0 ∼ N(0, D0), bi1 | D1 ∼ N(0, D1).

This leads to marginal variance

var(Yij) = σ2
ε +D0 +D1t

2
ij ,

which is not constant over time. Therefore, a semi-variogram of population residuals
should not be constructed, because we do not have second-order stationarity.

Predictions of the random effects b̂i may be used to assess assumptions as-
sociated with the random effects distribution, though since these have undergone
shrinkage, they may be deceptive. One may instead carry out individual fitting
and then use the resultant estimates to assess the normality assumption. The latter
may be assessed via QQ plots, but the interpretation of plots requires care since
estimates and not observed quantities are being plotted; see Lange and Ryan (1989).
We may also assess whether the variance of the random effects is independent
of covariates xi. If the spread of the random effects distribution depends on
the levels of covariates, and this is missed, then inaccurate inference can result
(Heagerty and Kurland 2001). For the LMM, it is better to examine stage one and
stage two residuals separately, rather than population residuals, since the latter are
a mixture of the two, and so, if something appears amiss, it is difficult to determine
the stage at which the inadequacy is occurring. As usual, as discussed in Sect. 4.9,
the implications of changing the model should be carefully considered, and one
should avoid the temptation to model every nuance of the data.

Example: FEV1 Over Time

The dental data that have formed our running illustration are balanced, and there
are few individuals and time points, and so, these data are not ideal for illustrating
model checking. Hence, we introduce data from an epidemiological study described
by van der Lende et al. (1981). We analyze a sample of 133 men and women,
initially aged 15–44, from the rural area of Vlagtwedde in the Netherlands. Study
participants were followed over time to obtain information on the prevalence of,
and risk factors for, chronic obstructive lung diseases. These data were previously
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Table 8.4 Mean FEV1 (and
sample size) by smoking
status and time

Time Former smoker Current smoker

0 3.52 (23) 3.23 (85)
3 3.58 (27) 3.12 (95)
6 3.26 (28) 3.09 (89)
9 3.17 (30) 2.87 (85)
12 3.14 (29) 2.80 (81)
15 2.87 (24) 2.68 (73)
19 2.91 (28) 2.50 (74)
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Fig. 8.5 Mean FEV1 profiles
versus time for two smoking
groups

analyzed by Fitzmaurice et al. (2004). Follow-up surveys provided information on
respiratory symptoms and smoking status. Pulmonary function was measured by
spirometry, and a measure of forced expiratory volume (FEV1) was obtained every
3 years for the first 15 years of the study and also at year 19. Each study participant
was either a current or a former smoker, with current smoking defined as smoking at
least one cigarette per day. In this dataset, FEV1 was not recorded for every subject
at each of the planned measurement occasions so that the number of measurements
of FEV1 on each subject varied between 1 and 7. Table 8.4 shows the numbers of
observations available at each time point. There are 32 former smokers and 101
current smokers in total, and we see that the numbers with missing observations at
each time point are not drastically different.

Figure 8.5 plots the mean FEV1 profiles versus time for former smokers (solid
line) and current smokers (dashed line). It is clear that there is a difference in
the overall level, with former smokers having higher responses. Whether the rate
of decline in FEV1 is different in the two groups is not so obvious. Figure 8.6
plots the individual trajectories versus time for former smokers (solid lines) and
current smokers (dashed lines). There is clearly large between-individual variability
in levels so that observations on the same individual will be correlated.
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Fig. 8.6 FEV1 versus time for 133 individuals, former and current smokers are indicated by solid
and dashed lines respectively

Let Yij represent the FEV1 on individual i at time (from baseline) tij (in
years), with Si = 0/1 indicating former/current smoker. We treat this example as
illustrative only and therefore fit various models to examine the effects on inference
and to demonstrate model assessment and comparison. We initially fit the following
three models using REML:

Yij = β0 + β1tij + bi + εij (8.54)

Yij = β0 + β1tij + β2Si + bi + εij (8.55)

Yij = β0 + β1tij + β2Si + β3Si × tij + bi + εij (8.56)

with bi | σ2
0 ∼iid N(0, σ2

0) and εij | σ2
ε ∼iid N(0, σ2

ε ) and with εij and bi
independent, i = 1, . . . ,m, j = 1, . . . , ni. We emphasize that the random effect
distribution is assumed common to both former and current smokers. Estimates and
standard errors for β1, β2, and β3 are given in Table 8.5. We include an ordinary
least squares (OLS) fit of the model E[Yij ] = β0 + β1tij + β2Si + β3Si × tij .
This model is clearly inappropriate since it assumes independent observations but,
when compared to the equivalent LMM, (8.56), illustrates that the standard errors of
the estimates corresponding to time-varying covariates (time β1 and the interaction
β3) are reduced under the LMM. This behavior occurs because within-individual
comparisons are more efficient in a longitudinal study (as discussed in Sect. 8.3).
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Table 8.5 Results of various LMM analyses and an ordinary least squares (OLS) fit to the
FEV1 data

Model β1 (Time) s.e. β2 (Smoke) s.e. β3 (Inter) s.e.

LMM TIME −0.037 0.0013 – – – –
LMM TIME + SMOKE −0.037 0.0013 −0.31 0.11 – –
LMM TIME × SMOKE −0.034 0.0026 −0.27 0.11 −0.0046 0.0030
OLS TIME × SMOKE −0.038 0.0067 −0.31 0.085 −0.00041 0.0077

Table 8.6 Results of LMM (likelihood and Bayesian) and GEE analyses for the FEV1 data

Model β1 (Time) s.e. β2 (Smoke) s.e. σ0

Likelihood LMM −0.037 0.0013 −0.31 0.11 0.53
Bayes LMM −0.037 0.0013 −0.31 0.12 0.53
GEE −0.037 0.0015 −0.31 0.11 –
Likelihood LMM AR(1) −0.037 0.0013 −0.31 0.11 0.53

σ0 is the standard deviation of the random intercepts

To compare the three LMMs in Table 8.5, we must use MLE for likelihood ratio
tests, since the data are not constant under the different models under REML (due
to different β̂G, Sect. 8.5.3). For

H0 : Model (8.54) versus H1 : Model (8.55)

we have a likelihood ratio statistic of 8.22 on 1 degree of freedom and a p-value of
0.0042. Hence, there is strong evidence to reject the null, and we conclude that there
are differences in intercepts for former and current smokers (as we suspected from
Fig. 8.5). For

H0 : Model (8.55) versus H1 : Model (8.56)

we have a likelihood ratio statistic of 2.29 on 1 degree of freedom and a p-value of
0.13. Hence, under conventional levels of significance, there is no reason to reject
the null, and we conclude that the interaction is not needed, so that the decline in
FEV1 with time is the same for both former and current smokers.

We now report a Bayesian analysis of model (8.55) with improper flat priors
on β0, β1, β2, the improper prior σ2

ε ∝ 1
σ2
ε

and σ−2
0 ∼ Ga(0.5, 0.02). The latter

prior gives 95% of its mass for σ0, the standard deviation of the between-individual
intercepts, between 0.09 and 6.5. Table 8.6 gives the results, which are very similar
to those of the likelihood-based approach, which is reassuring.

We now fit the marginal model version of (8.55) using GEE. We use an
exchangeable correlation structure, since clearly we have dependence between
measurements on the same individual at different times, but the exact form of
the correlation is not clear. The results are given in Table 8.6 and again show
good agreement for the regression coefficients. In the exchangeable correlation
structure, there are two components to α, a marginal variance, α1, and a common
marginal correlation, α2. The model may be compared to the random intercepts
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Fig. 8.7 Stage one residual plots for the FEV1 data: (a) normal QQ plot, (b) residuals versus time,
(c) residuals as a function of smoking status (0 = former smoker, 1 = current smoker), (d) absolute
value of residuals versus fitted values

model in which we have marginal variance α1 = σ2
0 + σ2

ε and marginal correlation
α2 = σ2

0/(σ
2
0 + σ2

ε ). From the GEE analysis, α̂1 = 0.31 and α̂2 = 0.82 to give√
α̂1 × α̂2 = 0.50, which is comparable to the estimates of σ̂0 = 0.53 in Table 8.6.
We now examine the assumptions of the various approaches. We focus on

the linear model that includes time and smoking (but no interaction). Figure 8.7
summarizes the stage one residuals:

ε̂ij = yij − xijβ̂ − zib̂i.

Panel (a) shows that the distribution of the errors is symmetric but heavier tailed than
normal. With such a large sample, there is nothing troubling in this plot, and, there
are no outlying points. Panels (b) and (c) plot the residuals against time and smoking
status. We see no nonlinear behavior in the time plot and no great divergence
from constant variance in either plot. A very important assumption in mixed
effects modeling is that a common random effects distribution across covariates
is appropriate. To examine this assumption, separate analyses were carried out for
former and current smokers. The estimates of the variance components for former
smokers were σ̂ε = 0.22 and σ̂0 = 0.58 and for current smokers, σ̂ε = 0.21 and
σ̂0 = 0.51. The differences between estimates in the two groups are small, and we
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Fig. 8.8 Normal QQ plots of OLS estimates for the FEV1 data for (a) intercepts, (b) slopes, and
(c) scatterplot of pairs of least square estimates

conclude that a common random effects distribution is reasonable. Panel (d) plots
the absolute value of the residuals versus the fitted values xijβ̂ + b̂i, along with
a smoother. If the variance function is correctly specified, then we should see no
systematic pattern. Here, there is nothing to be too concerned about since there is
only a slight increase in variability as the mean increases. These residual plots are
based on residuals from the likelihood analysis (the Bayesian versions are similar).

For the 132 individuals with more than a single response, individual OLS fits
were performed. Figure 8.8 shows normal QQ plots of the intercept and slope
parameter estimates in panels (a) and (b) and a bivariate scatter plot of the pairs of
estimates in panel (c). The estimates look remarkably normal, at least in (a) and (b),
and there are no outlying individuals.

Finally, we examine the residuals for serial correlation. Figure 8.9 gives the semi-
variogram of the stage one residuals along with a smoother and indicates some
evidence of dependence. In panel (a), the pattern is not apparent, but in panel (b),
the semi-variance axis is reduced for clarity, which allows the trend to be more
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Fig. 8.9 For the FEV1 data: (a) the (semi)-variogram of stage one residuals, (b) on a truncated
semi-variogram scale

clearly seen. Consequently, we fit an AR(1) model to the residuals (Sect. 8.4.2),
using restricted maximum likelihood, and obtain the parameter estimates in the
last row of Table 8.6. This model is a significant improvement over the non-serial
correlation model (as measured by a likelihood ratio test, p = 0.0002). However,
there is virtually no change in the estimates/standard errors, since the AR correlation
parameter is just 0.20, with an asymptotic 95% confidence interval of [0.087, 0.30].

We may also examine whether random slopes are required. Fitting this model via
restricted likelihood gave a standard deviation of σ̂1 = 0.0099. The likelihood ratio
statistic test for correlated random intercepts and slopes, versus random intercepts
only, is 10.9 which is significant at around the 0.0025 level (where the distribution
under the null is a mixture of χ2

1 and χ2
2 distributions, see Sect. 8.5.2).

In terms of the fixed effects, there is little sensitivity to the assumed random
effects structure. Inference under the random intercepts and slopes models is similar
to the random intercepts only model, since the between-individual variability in
slopes is small (though statistically significant). The population change in FEV1 is
a drop of 0.037 l per year, with a standard error of 0.0013–0.0015 depending on the
model. The posterior median for the intraindividual correlation, σ2

0/(σ
2
ε + σ2

0), is
0.84 with 95% interval [0.82, 0.89] suggesting that the majority of the variability in
FEV1 is between individual.

8.9 Cohort and Longitudinal Effects

We now describe another benefit of longitudinal studies, the ability to estimate both
longitudinal and cohort effects. We frame the discussion around the modeling of
Y = FEV1 as a function of age. We might envisage that FEV1 changes as age
increases within an individual and that individuals may have different baseline levels
of FEV1 due to “cohort” effects. A birth cohort is a group of individuals who were
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Fig. 8.11 Relationship
between cross-sectional and
longitudinal effects in a
hypothetical example with
three populations. The dashed
line (which is the top line)
represents the cross-sectional
slope

born in the same year. Cohort effects may include the effects of environmental
pollutants and differences in lifestyle choices or medical treatment received. In a
cross-sectional study, a group of individuals are measured at a single time point. A
great advantage of longitudinal studies, as compared to cross-sectional studies, is
that both cohort and aging (longitudinal) effects may be estimated.

As an illustration, Fig. 8.10 shows the trajectories of three hypothetical individu-
als as a function of calendar time. The starting positions are different due to cohort
effects. Figure 8.11 shows the same individuals but with trajectories plotted versus
age. The cross-sectional association, which would result from observing the final
measurement only, is highlighted and displays a steeper decline than seen in the
longitudinal slope.
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To examine in more detail the issues, consider the model

E[Yij | xij , xi1] = β0 + βCxi1 + βL(xij − xi1)

where Yij is the jth FEV1 measurement on individual i and xij is the age of the
individual at occasion j, with xi1 being the age on a certain day (so that all the
individuals are comparable). At the first occasion,

E[Yi1 | xi1] = β0 + βCxi1,

so that βC is the average change in response between two populations who differ by
one unit in their baseline ages. Said another way, we are examining the differences
in FEV1 between two birth cohorts a year apart, so that βC is the cohort effect.

Since

E[Yij | xij , xi1]− E[Yi1 | xi1] = βL(xij − xi1)

it is evident that βL is the longitudinal effect, that is, the change in the average FEV1
between two populations who are in the same birth cohort and whose ages differ by
1 year. The usual cross-sectional model is

E[Yij | xij ] = β0 + β1xij (8.57)

= β0 + β1xi1 + β1(xij − xi1)

so that the model implicitly assumes equal longitudinal and cohort effects, that
is, β1 = βC = βL.

In the cross-sectional study with model (8.57),

β̂1 =

∑m
i=1

∑ni

j=1(xij − x)(Yij − Y )
∑m

i=1

∑ni

j=1(xij − x)2

with x = 1
N

∑m
i=1

∑ni

j=1 xij and Y = 1
N

∑m
i=1

∑ni

j=1 Yij with N =
∑m

i=1 ni. The
expected value of this estimator is

E[β̂1] = βL +

∑m
i=1 ni(xi1 − x1)(xi − x)∑m

i=1

∑ni

j=1(xij − x)2
(βC − βL) (8.58)

(Exercise 8.15) so that the estimate is a combination of cohort and longitudinal
effects. The cross-sectional regression model will give an unbiased estimate of the
longitudinal association if βL = βC or if {xi1} and {xi} are orthogonal. To conclude,
longitudinal studies can be powerfully employed to separate cohort and longitudinal
effects.
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8.10 Concluding Remarks

In this chapter we have described two approaches to fitting linear models to
dependent data: LMMs and GEE. GEE has the fewest assumptions and is designed
for population-level inference. Asymptotics are required for inference, and so, GEE
is less appealing when the number of individuals m is small. A sufficiently large
sample size is required for both normality of the estimator and reliability of the
sandwich variance estimator. The use of the sandwich variance estimator makes
GEE the most dependable method in large sample situations. However, there can be
losses in efficiency if we choose a working correlation matrix that is far from reality.
With GEE, it is not possible to make inference for individuals or incorporate prior
information.

LMMs are more flexible than GEE in terms of the questions that can be
addressed with the data, but this flexibility comes at the price of a greater number
of assumptions. For likelihood inference, as with GEE, we require the number of
units m to be sufficiently large for asymptotic inference. Prior information cannot
be incorporated in a likelihood analysis; for that, we need a Bayesian approach. For
a small number of individuals, a Bayesian approach fully captures the uncertainty,
but inference is completely model-based, and with a small number of individuals, it
is unlikely that we will be able to check the modeling assumptions.

8.11 Bibliographic Notes

For descriptions of linear mixed effects models, see Hand and Crowder (1996,
Chap. 5), Diggle et al. (2002, Sects. 4.4 and 4.5), and Verbeeke and Molenberghs
(2000). Covariance models are described in Verbeeke and Molenberghs (2000,
Chap. 10), Pinheiro and Bates (2000, Chap. 5), and Diggle et al. (2002, Chap. 5).
Demidenko (2004) provides theory for mixed models, including the linear case.
Robinson (1991) provides an interesting discussion of BLUP estimates. Two early
influential references on the LMM from Bayesian and likelihood perspectives,
respectively, are Lindley and Smith (1972) and Laird and Ware (1982).

The name GEE was coined by Liang and Zeger (1986) and Zeger and Liang
(1986). See also Gourieroux et al. (1984) who considered sandwich estimation for
regression parameters with a consistent estimator of additional parameters. Prentice
(1988) introduced a second estimating equation for estimation of α. Crowder (1995)
points out that the existence of the α parameters in the working covariance matrix is
not guaranteed, in which case the asymptotics break down. Fitzmaurice et al. (2004)
is an excellent practical text on longitudinal modeling.
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8.12 Exercises

8.1 A Gauss–Markov Theorem for Dependent Data: Suppose E[Y ] = xβ and
var(Y ) = V , with Y = [Y T

1 , . . . ,Y
T
m]

T and where Yi = [Yi1, . . . , Yini ]
T

and x = [x1, . . . ,xm]
T is N × (k + 1) with xi = [xi1, . . . ,xini ], xij =

[1, xij1, . . . , xijk]
T, N =

∑
i ni and β is the (k + 1)× 1 vector of regression

coefficients.
Consider linear estimators of the form

β̃W = (xTW−1x)−1xTW−1Y ,

where W is symmetric and positive definite. Show that:

(a) E[β̃W] = β.
(b) var(β̃V) ≤ var(β̃W).

[Hint: In (b), show that var(β̃W)− var(β̃V) is positive semi-definite.]
8.2 Consider the data in Table 5.4 (from Davies 1967) that were presented in

Sect. 5.8.1. These data consist of the yield in grams from six randomly chosen
batches of raw material, with five replicates each. The aim of this experiment
was to find out to what extent batch-to-batch variation was responsible for
variation in the final product yield.
One possibility for a model for these data is the one-way analysis of variance
with

yij = μ+ bi + εij ,

with j = 1, . . . , n, replicates on i = 1, . . . ,m, batches, bi | σ2
0 ∼iid N(0, σ2

0),
εij | σ2

ε ∼iid N(0, σ2
ε ), with bi and εij independent.

In what follows the following identity is useful. Let In denote the n × n
identity matrix and Jn the n× n matrix of 1’s. Then

(aIn + bJn)
−1 =

1

a

(
In − b

a+ nb
Jn

)
, a �= 0, a �= −nb,

and

|aIn + bJn| = an−1(a+ nb).

(a) Derive the log-likelihood for μ, σ2
0 , σ

2
ε .

(b) Differentiate the log-likelihood, and show that the MLEs are

μ̂ = ȳ··,

σ̂2
ε = MSE,

σ̂2
0 =

(1− 1/m)MSA − MSE
n

,
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where MSA= n
∑m

i=1(ȳi· − ȳ··)2/(m − 1) and MSE=
∑m

i=1

∑n
j=1

(yij − ȳi·)2/[m(n− 1)].
[Hint: Life is easier if the model is parameterized in terms of λ =
σ2
ε + nσ2

0 .]

(c) Obtain the form of var(μ̂), and give an estimator of this quantity.
(d) Find the REML estimators of σ2

0 and σ2
ε .

(e) In the one-way random effects model with balanced data, it can be
shown that

MSA/(nσ2
0 + σ2

ε )

MSE/σ2
ε

∼ Fm−1,m(n−1),

the F distribution on m − 1 and m(n − 1) degrees of freedom. Use
this result to explain why F = MSA/MSE may be compared with an
Fm−1,m(n−1) distribution to provide a test of H0 : σ2

0 = 0.
(f) Using the last part, show that the probability that the REML estimator σ̂2

0

is negative is the probability that an Fm(n−1),(m−1) random variable is
bigger than 1 + nσ2

0/σ
2
ε .

(g) Numerically obtain an MLE, with associated standard error, for μ.
Additionally, find ML and REML estimates of σ2

0 and σ2
ε .

(h) Confirm these estimates using a statistical package.

8.3 Consider the so-called Neymann–Scott problem (previously considered in
Exercises 2.6 and 3.3) in which

Yij | μi, σ
2 ∼ind N(μi, σ

2),

for i = 1, . . . , n, j = 1, 2.

(a) Obtain the MLE for σ2, and show that it is inconsistent. Why are there
problems here?

(b) Consider a REML approach. Assign an improper uniform prior to μ1, . . . ,
μn, and integrate out these parameters. Obtain the REML of σ2, and show
that it is an unbiased estimator.

8.4 Derive (8.25) and (8.26).
[Hint: The identities

(
zT
izi
σ2
ε

+D−1

)−1
zT
i

σ2
ε

= DzT
iV

−1
i

(
D−1 +

zT
izi
σ2
ε

)−1

= D −DzT
iV

−1ziD

are useful. These follow from
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(E + F )−1E = I− (E + F )−1F

(G+EFET)−1 = G−1 −G−1E(ETG−1E + F−1)−1ETG−1,

respectively.]
8.5 Show that

var(b̂i − bi) = var(bi)− var(b̂i) = D − var(b̂i)

= D −DzT
iV

−1
i ziD +DzT

iV
−1
i xi(x

TV −1x)−1xT
iV

−1
i ziD.

8.6 Consider the class of linear predictors b∗(y) = a +By, where a and B are
constants of dimensions (q + 1)× 1 and (q + 1)× n. Let W = b−By, and
show that

E[(b∗ − b)TA(b∗ − b)] = [a− E(W )]
T
A [a− E(W )] + tr [Avar(W )] .

Deduce that this expression is minimized by taking a = −Bxβ and B =
DzTV −1. Hence, show that

DzTV −1(y − xβ)

is the best linear predictor of b, whatever the distributions of b and y.
8.7 Prove that if the prior distribution for θT = [θ1, . . . , θm] can be written as

p(θ) =

∫ m∏

i=1

p(θi | φ)p(φ) dφ,

then the covariances cov(θi, θj) are all nonnegative.
[Hint: You may assume that E[θi | φ] = E[θj | φ] for i �= j.]

8.8 We return to the yield data of Exercise 8.2.

(a) Numerically evaluate the formula

b̂i = E[bi | yi] = D̂zT
i V̂

−1
i (yi − xiβ̂)

in your favorite package, and obtain predictions for the yield data.
(b) Obtain measures of the variability of the prediction via var(b̂i − bi).
(c) Confirm your predictions using LMM software.

8.9 A Bayesian analysis of the yield data of Exercise 8.2 will now be performed.
In terms of the parameters β0, σ

2
ε , and λ = σ2

ε + nσ2
0 , the likelihood is

p(y | β0, σ
2
ε , λ) = (2π)−nm/2(σ2

ε )
−m(n−1)/2λ−m/2

× exp

{
−1

2

[
nm(y++ − β0)

2

λ
+

SSB

λ
+

SSW

σ2
ε

]}
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where

SSB = n

m∑

i=1

(yi+ − y++)
2, SSW =

m∑

i=1

n∑

i=1

(yij − yi+)
2.

Assume the improper prior

π(β0, σ
2
ε , λ) ∝

1

σ2
ελ

.

(a) Integrate β0 from the joint posterior p(β0, σ
2
ε , λ | y) to obtain p(σ2

ε , λ| y).
Show that this distribution has the form of a product of independent
inverse gamma distributions with an additional term that is due to the
constraint λ > σ2

ε > 0.
(b) Obtain the distribution of p(β0 | σ2

ε , λ,y).
(c) Give details of a composition algorithm (as described in Sect. 3.8.4) for

simulating from the posterior p(β0, σ
2
ε , λ | y).

(d) Implement the algorithm for the yield data.

(i) Give histograms and 5%, 50%, 95% quantile summaries of the uni-
variate posterior distributions for β0, σ

2
ε , λ, σ

2
0 , and ρ=σ2

0/(σ
2
0+σ2

ε ).
(ii) Obtain a bivariate scatterplot representation of the posterior distribu-

tion p(σ2
ε , σ

2
0 | y).

(iii) Using samples from the distribution for ρ, answer the original
question concerning the extent of batch-to-batch variability that is
contributing to the total variability.

(e) Obtain the distribution of p(bi | β0, σ
2
ε , σ

2
0 ,y). Hence, describe an

algorithm for simulating from the posterior p(bi | y). Implement this
algorithm for the yield data, and give 5%, 50%, 95% quantile summaries
for p(bi | y), i = 1, . . . ,m.

(f) Now, consider an alternative computational approach assuming indepen-
dent priors with an improper flat prior on μ, the improper prior π(σ2

e ) ∝
σ−2
e , and a Ga(0.05, 0.01) prior for σ−2

0 . Implement a Gibbs sampling
algorithm for sampling from the conditionals:

• μ | σ2
e , σ

2
0 , b,y

• σ2
e | μ, σ2

0 , b,y
• σ2

0 | μ, σ2
e , b,y

• b | μ, σ2
e , σ

2
0 ,y,

where b = [b1, . . . , bm]
T.

Report posterior medians and 90% credible intervals for μ, σ2
0 , σ

2
e , b,

and ρ, and compare your answers with those using the alternative priors
derived in the earlier part of the question.
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8.10 Derive the conditional distributions, given in Sect. 8.6.3, that are required for
Gibbs sampling in the LMM.

8.11 Show the equivalence of the BLUP predictor b̂i and the Gibbs conditional
distribution bi | y,β,α.

8.12 Consider the tooth growth data that were analyzed in this chapter. These data
are available in the R package nlme as Orthodont. Let Yij denote the
growth (in mm) at occasion tj (in years) for boy i, i = 1, . . . ,m, j = 1, . . . , 4,
with t1 = 8, t2 = 10, t3 = 12, t4 = 14.

(a) Code up a GEE algorithm with working independence in your favorite
package, and report β̂ and var(β̂).

(b) Using an available option in a statistical package such as R confirm the
results of the previous part.

(c) Show that var(Y ) = (Y − xβ)T(Y − xβ) = 0 if we attempt to use
sandwich estimation in the situation in which cov(Yi,Yi′) �= 0.

8.13 In this question the effect of using different correlation structures, designs,
and sample sizes in the GEE approach will be examined. Let Yij represent the
observed growth on individual i at time xij , i = 1, . . . ,m; j = 1, . . . , ni. Let
N =

∑m
i=1 ni.

Assume the marginal model is

E[Yij ] = β0 + β1xij ,

so that E[Y ] = xβ where Y is of dimension N × 1, x is N × 2, and β is
2× 1. Consider the estimating function

m∑

i=1

xT
iW

−1
i (Yi − xiβ),

with working covariances Wi of dimension ni × ni, i = 1, ..,m.
Assume throughout that β0 = 18, β1 = 0.5, α1 = 1, and α2 is set

to either 0.5 or 0.9. Simulate data from the multivariate normal distribution
Yi ∼ Nni(xiβ,Vi), with the form of Vi taken as either the exchangeable or
the AR(1) matrices Wi that are given below, for i = 1, . . . ,m. Examine the
efficiency of these working models as a function of:

• The number of individuals, with m = 8, 20, 60
• Two designs:

– Design I: Balanced with ni = n = 4, i = 1, . . . ,m and x1 = 8, x2 = 10,
x3 = 12, x4 = 14 for all individuals

– Design II: Unbalanced with ni = n = 3, i = 1, . . . ,m and
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xi1 = 8, xi2 = 10, xi3 = 12 for i = 1, . . . ,m/4

xi1 = 8, xi2 = 10, xi3 = 14, for i = m/4 + 1, . . . ,m/2

xi1 = 8, xi3 = 12, xi3 = 14, for i = m/2 + 1, . . . , 3m/4

xi2 = 10, xi3 = 12, xi4 = 14, for i = 3m/4 + 1, . . . ,m

• The working covariance structure α1Wi with:

– Independence: Wi = Ini where Ini is the ni × ni identity matrix.
– Exchangeable: Wi has diagonal elements 1 and off-diagonal elements α2.
– First-order autocorrelation: Wi has diagonal elements 1 and off-diagonal

elements Wijk = α
|xij−xik|
2 , j, k = 1, . . . , ni, j �= k, i = 1, . . . ,m.

In total, there are 3×2×4 = 24 sets of simulations, and for each you should:

(a) Report the 95% confidence interval coverage for β1.
(b) Report the standard errors and efficiencies. For each working covariance

model, there are two standard error calculations; the “true” standard

errors are obtained across simulations while var(β̂1) describes the average
(across simulations) of the reported squared standard error, where the
latter is calculated using the sandwich formula. To evaluate the efficien-
cies, the (sandwich) variance of the estimators under each of the working
models should be calculated.

8.14 Crowder and Hand (1990) describe data on the body weight of rats measured
over 64 days. These data are available in the R package nlme and are named
BodyWeight. Body weight is measured (in grams) on day 1, and every 7
days subsequently until day 64, with an extra measurement on day 44. There
are 3 groups of rats, each on a different diet; 8 rats are on a control diet, and
two sets of 4 rats are each on a different treatment.

(a) Fit LMMs to these data using ML/REML, with the primary aim being to
determine whether there are differences in intercepts and slopes for each
of the diets. Repeat this procedure using GEE.

(b) Carefully describe the models that you fit, in particular the choice of
random effects structure in the LMM, and summarize your findings in
simple terms.

(c) Now, analyze the first group of rats using a Bayesian analysis. Specifically,
suppose Yij is the body weight of rat i at time tj , and consider the three-
stage model:
Stage One:

Yij = β0 + bi + β1tj + εij

with εij | τ ∼iid N(0, τ−1), i = 1, . . . ,m, j = 1, . . . , n.
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Stage Two: bi | τ0 ∼iid N(0, τ−1
0 ), with bi independent of the εij ,

i=1, . . . ,m, j = 1, . . . , n.
Stage Three: Independent hyperpriors with:

π(β) ∝ 1,

π(τ) ∝ τ−1,

π(τ0) ∼ Ga(0.1, 0.5)

where β = [β0, β1]
T.

(d) Find the form of the conditional distributions that are required for con-
structing a Gibbs sampling algorithm to explore the posterior distribution
p(β, τ, b1, . . . , bm, τ0 | y):

• p(β | τ, b1, . . . , bm, τ0,y).
• p(τ | β, b1, . . . , bm, τ0,y).
• p(τ0 | β, τ, b1, . . . , bm,y).
• p(bi | β, τ, bj, j �= i, τ0,y), i = 1, . . . ,m.

(e) Implement this algorithm for the data on the 8 rats in the control
group. Provide trace plots of selected parameters to provide evidence
of convergence of the Markov chain. Report two sets of summaries,
consisting of the 5%, 50%, 95% quantiles, from two chains started from
different values.

(f) Check your answers using available software, such as INLA or WinBUGS.

8.15 Prove (8.58).
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Chapter 9
General Regression Models

9.1 Introduction

In this chapter we consider dependent data but move from the linear models of
Chap. 8 to general regression models. As in Chap. 6, we consider generalized linear
models (GLMs) and, more briefly, nonlinear models. We first give an outline
of this chapter. In Sect. 9.2 we describe three motivating datasets to which we
return throughout the chapter. The GLMs discussed in Sect. 6.3 can be extended
to incorporate dependences in observations on the same unit; as with the linear
model, an obvious way to carry out modeling in this case is to introduce unit-
specific random effects. Within a GLM a natural approach is for these random
effects to be included on the linear predictor scale. The resultant conditional models
are known as generalized linear mixed models (GLMMs), and these are introduced
in Sect. 9.3. In Sects. 9.4 and 9.5 we describe likelihood and conditional likelihood
methods of estimation, with Sect. 9.6 devoted to a Bayesian treatment. Section 9.7
illustrates some of the flexibility of GLMMs by describing and applying a particular
model for spatial dependence. An alternative random effects specification, based
on conjugacy, is described in Sect. 9.8. An important approach to the modeling
and analysis of dependent data that is philosophically different from the random
effects formulation is via marginal models and generalized estimating equations
(GEE), and these are the subject of Sect. 9.9. In Sect. 9.10, a second GEE approach
is described in which the estimating equations for the mean are supplemented
with a second set for the variances/covariances. For GLMMs, extra care must be
taken with parameter interpretation, and Sect. 9.11 discusses this issue, emphasizing
how interpretation differs between conditional and marginal models. In Part II of
the book, which focused on independent data, Chap. 7 was devoted to models for
binary data. For dependent data, models binary data are less well developed, and
so we do not devote a complete chapter to their description. However, Sect. 9.12
introduces the modeling of dependent binary data, and, subsequently, Sects. 9.13
and 9.14 describe conditional (mixed) and marginal models for binary data. Section
9.15 considers how nonlinear models, as defined in Sect. 6.10, can be extended

J. Wakefield, Bayesian and Frequentist Regression Methods, Springer Series
in Statistics, DOI 10.1007/978-1-4419-0925-1 9,
© Springer Science+Business Media New York 2013
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to the dependent data case. For such models, many applications concentrate on
inference for units, and so the introduction of random effects is again suggested.
We refer to the resultant class of models as nonlinear mixed models (NLMMs).
Section 9.16 considers issues related to the parameterization of the nonlinear model.
Inference for nonlinear mixed models via likelihood and Bayes approaches is
covered in Sects. 9.17 and 9.18, while GEE is briefly considered in Sect. 9.19. The
assessment of assumptions for general regression models is described in Sect. 9.20,
with concluding comments contained in Sect. 9.21. Additional references appear in
Sect. 9.22.

9.2 Motivating Examples

In this chapter we will analyze the lung cancer and radon data introduced in
Sect. 1.3.3 and three additional datasets.

9.2.1 Contraception Data

Fitzmaurice et al. (2004) reanalyze data originally appearing in Machin et al. (1988)
concerning a randomized longitudinal contraception trial. Each of 1,151 women
received injections of 100 or 150 mg of depot medroxyprogesteroneacetate (DMPA)
on the day of randomization and three additional injections at 90-day intervals.
There was a final follow-up 3 months after the last injection (a year after the initial
injection). The women completed a menstrual diary throughout the study, and the
binary response is whether the woman had experienced amenorrhea, the absence
of menstrual bleeding for a specified number of days, during each of the four 3-
month intervals. There was dropout in this study, but we will not address this issue,
important though it is. The sample sizes, across measurement occasions, in the low-
and high-dose groups are [576, 477, 409, 361] and [575, 476, 389, 353], respectively.
Plotting the individual-level 0/1 data is usually not informative for binary data, and
so in Fig. 9.1, we plot the averages, that is, the probabilities of amenorrhea over time
for the two treatment groups. We see increasing probabilities of amenorrhea in both
groups, with the probabilities in the 150-mg dose group being greater than in the
100-mg dose group.

As we will discuss in Sect. 9.14, for binary data, there is no obvious natural
measure of dependence, unlike normal data for which the correlation is routinely
used. However, Table 9.1 gives the empirical correlations between responses at
different measurement occasions in the low- and high-dose groups, respectively.
In both groups there is appreciable correlation between observations on the same
woman, with a suggestion that the correlations decrease on measurements taken
further apart. To explicitly acknowledge the dependence over time in responses on
the same woman, multivariate binary data models are required.
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Fig. 9.1 Probability of amenorrhea over time in low- and high-dose groups, in the contraception
data

Table 9.1 Empirical variances (on the diagonal) and correlations (on the
upper diagonal), between measurements on the same woman at different
observation occasions (1–4), in the low- (left) and high- (right) dose groups
of the contraception data

1 2 3 4 1 2 3 4

1 0.15 0.40 0.28 0.27 1 0.16 0.31 0.25 0.29
2 0.19 0.45 0.35 2 0.22 0.43 0.43
3 0.24 0.13 3 0.25 0.47
4 0.25 4 0.25

9.2.2 Seizure Data

Thall and Vail (1990) describe data on epileptic seizures in 59 individuals. For each
patient, the number of epileptic seizures was recorded during a baseline period of 8
weeks, after which patients were randomized to one of two groups: treatment with
either the antiepileptic drug progabide or with placebo. The numbers of individuals
in the placebo and progabide groups were 28 and 31, respectively. The number of
seizures was recorded in four consecutive 2-week periods. For these data, let Yij

represent the number of counts for patient i, i = 1, . . . , 59 at occasion j, with j = 0
the baseline period and j = 1, . . . , 4 the subsequent set of four 2-week measurement
periods. Also, let Tj be the length (in weeks) of the observation period (which is the
same for all individuals), with T0 = 8 and Tj = 2 for j = 1, . . . , 4. We might
consider the model

Yij | μij ∼ Poisson(μij)
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Fig. 9.2 Log of seizure rates by period for individuals on placebo and progabide

where μij = Tj exp(xijβ) and exp(xijβ) is a loglinear regression model. There
are two immediate issues with this model: data on the same individual are unlikely
to be independent and there may be excess-Poisson variation.

As a first look at the data, we plot the log seizure rate log[(Yij+0.5)/Tj] for each
individual versus period j in Fig. 9.2. The 0.5 is added to avoid taking the log of zero.
The line types distinguish the placebo and progabide groups. It is difficult to discern
much pattern from this plot. In particular, it is not clear if progabide provides a drop
in the rate of seizures, though there is clearly large between-individual variability in
the rates. One individual’s profile appears to be outlying and high, with the rate of
seizures increasing after treatment with progabide.

Figure 9.3 displays the average seizure counts by period and by treatment group.
In three out of the four post-baseline periods, the averages are lower in the progabide
group. To assess the excess Poisson, we calculate the ratio of the variance of the
counts to the mean, that is, var(Yij)/E[Yij ], by period and treatment group. Table 9.2
gives these ratios and clearly shows that there is a great deal of excess-Poisson
variability for these data.

9.2.3 Pharmacokinetics of Theophylline

Twelve subjects were given an oral dose of the antiasthmatic agent theophylline,
with 11 concentration measurements obtained from each individual over 25 h. The
doses ranged between 3.10 and 5.86 mg/kg. As is usual with experiments such as
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Fig. 9.3 Average seizure rates by period and treatment group

Table 9.2 Ratio of the variance of seizure counts to the mean of the seizure
counts, by period and treatment group

Period

Group 0 1 2 3 4

Placebo 22.1 11.0 8.0 24.5 7.3
Progabide 24.8 38.8 16.7 23.7 18.9

this, there is abundant sampling at early times in an attempt to capture the absorption
phase, which is rapid. Further background on pharmacokinetic modeling is given in
Example 1.3.4 where the data for the first individual were presented. Section 6.2
introduced a mean model for these data (for a generic individual) as

Dka
V (ka − ke)

[exp(−kex) − exp(−kax)]

where x is the sampling time, ka > 0 is the absorption rate constant, ke > 0 is
the elimination rate constant, and V > 0 is the (apparent) volume of distribution
(that converts total amount of drug into concentration). Figure 9.4 shows the
concentration–time data. The curves follow a similar pattern, but there is clearly
between-subject variability.
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Fig. 9.4 Concentrations versus time for 12 individuals who received the drug theophylline

9.3 Generalized Linear Mixed Models

In this section we describe a modeling framework that allows the introduction of
random effects into GLMs; these models induce dependence between responses on
the same unit. Adding normal random effects on the linear predictor scale gives a
GLMM. The paper of Breslow and Clayton (1993) popularized these models, by
discussing implementation and providing a number of cases studies.

We first describe notation. Let Yij be the jth observation on the ith unit for
i = 1, . . . ,m, j = 1, . . . , ni. The responses for the ith unit will be denoted
Yi = [Yi1, . . . , Yini ]

T, i = 1, . . . ,m. Responses on different units will be assumed
independent. Let β represent a (k+1)×1 vector of fixed effects and bi a (q+1)×1
vector of random effects, with q ≤ k. Let xij = [1, xij1, . . . , xijk] be a (k+ 1)× 1
vector of covariates, so that xi = [xi1, . . . ,xini ] is the design matrix for the fixed
effects of unit i, and let zij = [1, zij1, . . . , zijq]

T be a (q+1)×1 vector of variables
that are a subset of xij , so that zi = [zi1, . . . , zini ]

T is the design matrix for the
random effects of unit i.
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A GLMM is defined by the following two-stage model:

Stage One: The distribution of the data is Yij | θij , α ∼ p(·) where p(·) is a member
of the exponential family, that is

p(yij | θij , α) = exp {[yijθij − b(θij)]/a(α) + c(yij , α)} , (9.1)

for i = 1, . . . ,m units and j = 1, . . . , ni, measurements per unit. The variance is

var(Yij | θij , α) = αv(μij).

Let μij = E[Yij | θij , α] and, for a link function g(·), suppose

g(μij) = xijβ + zijbi,

so that random effects are introduced on the scale of the linear predictor. This defines
the conditional part of the model.

Stage Two: The random effects are assigned a normal distribution:

bi | D ∼iid Nq+1(0,D ).

For a number of reasons, including parameter interpretation, it is important to
investigate the marginal moments that are induced by the random effects. Since
marginal summaries may be calculated for the observed data, comparison with the
theoretical forms is useful for model checking. The marginal mean is

E[Yij ] = E[Ebi
(Yij | bi) ]

= E[μij ] = Ebi
[ g−1(xijβ + zijbi) ].

The variance is

var(Yij) = E[ var(Yij | bi) ] + var(E[Yij | bi] )
= αEbi

[ v{g−1(xijβ + zijbi)} ] + varbi [ g
−1(xijβ + zijbi) ].

The covariances between outcomes on the same unit are

cov(Yij , Yik) = E[ cov(Yij , Yik | bi) ] + cov[E(Yij | bi],E[Yik | bi) ]
= covbi

[ g−1(xijβ + zijbi), g
−1(xikβ + zikbi) ]

�= 0,

for j �= k due to shared random effects, and

cov(Yij , Yi′k) = 0,
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for i �= i′, as there are no random effects in the model that are shared by different
units. Explicit forms of the moments are available for some choices of exponential
family, as we see later in the chapter, though the marginal distribution of the data is
not typically available (outside of the normal case discussed in Chap. 8).

9.4 Likelihood Inference for Generalized Linear
Mixed Models

As discussed in Sect. 8.5, there are three distinct sets of parameters for which
inference may be required: fixed effects β, variance components α, and random
effects b = [b1, . . . , bm]T. As with the linear mixed model (LMM), we maximize
the likelihoodL(β,α), where α denote the variance components in D and the scale
parameterα (if present). The likelihood is obtained by integrating [b1, . . . , bm] from
the model:

L(β,α) =

m∏

i=1

∫
p(yi | β, bi)× p(bi | α) dbi.

There are m integrals to evaluate, each of dimension equal to the number of random
effects, q+1. For non-Gaussian GLMMs, these integrals are not available in closed
form, and so some sort of analytical, numerical, or simulation-based approximation
is required (Sect. 3.7). Common approaches include analytic approximations such
as the Laplace approximation (Sect. 3.7.2) or the use of adaptive Gauss–Hermite
numerical integration rules (Sect. 3.7.3). There are two difficulties with inference
for GLMMs: carrying out the required integrations and maximizing the resultant
(approximated) likelihood function. The likelihood function can be unwieldy, and,
in particular, the second derivatives may be difficult to determine, so the Newton–
Raphson method cannot be directly used. An alternative is provided by the quasi-
Newton approach in which the derivatives are approximated (Dennis and Schnabel
1996).

One approach to the integration/maximization difficulties is the following. In
Sect. 6.5.2 the iteratively reweighted least squares (IRLS) algorithm was described
as a method for finding MLEs in a GLM. The penalized-IRLS (P-IRLS) algorithm
is a variant in which the working likelihood is augmented with a penalization term
corresponding to the (log of the) random effects distribution. This algorithm may
be used in a GLMM context in order to obtain, conditional on α, estimates of β
and b, with α being estimated via a profile log-likelihood (Sect. 2.4.2); see Bates
(2011). The P-IRLS is also used for nonparametric regression and is described in
this context in Sect. 11.5.1.

The method of penalized quasi-likelihood (PQL) was historically popular
(Breslow and Clayton 1993) but can be unacceptably inaccurate, in particular, for
binary outcomes. See Breslow (2005) for a recent perspective.
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Approximate inference for [β,α] is carried out via the usual asymptotic normal-
ity of the MLE which is, with sloppy notation,

[
β̂

α̂

]
∼ N

([
β

α

]
,

[
Iββ Iβα
Iαβ Iαα

]−1
)

(9.2)

where Iββ , Iβα, Iαβ , and Iαα are the relevant information matrices. An important
observation is that in general Iβα �= 0, and so we cannot separately estimate the
regression and variance parameters, so consistency requires correct specification of
both mean and variance models. Likelihood ratio tests are available for fixed effects
though it requires experience or simulation to determine whether the sample size m
is large enough for the null χ2 distribution to be accurate.

In terms of the random effects, one estimator is

E[bi | y] =
∫
bi
bip(y | bi)p(bi | D) dbi∫

bi
p(y | bi)p(bi | D) dbi

.

Unless the first stage is normal, the integrals in numerator and denominator will
not be analytically tractable, though Laplace approximations or adaptive Gauss–
Hermite may be used. In practice, empirical Bayes estimators, E[bi | y, β̂, α̂], are
used.

Example: Seizure Data

Recall that Yij is the number of seizures on patient i during period j, j = 0, 1, 2, 3, 4,
and Tj is the observation period during period j, j = 0, 1, 2, 3, 4 with T0 = 8
weeks and Tj = 2 weeks for j = 1, . . . , 4. It is clear from Fig. 9.2 that there
is considerable between-patient variability in the level of seizures, which suggests
that a random effects model should include at least random intercepts. A random
intercepts GLMM for the seizure data is:

Stage One: Yij | β, bi ∼ind Poisson(μij), with

g(μij) = logμij = logTij + xijβ + bi,

and where xij is the design matrix for individual i at period j, with associated fixed
effect β. A particular model will be discussed shortly. The first two-conditional
moments are

E[Yij | bi] = μij = Tij exp(xijβ + bi),

var(Yij | bi) = μij .
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Table 9.3 Parameter interpretation for the model defined by (9.3)

Group Period 0 Period 1,2,3,4

Placebo exp(β0) exp(β0 + β2)

Progabide exp(β0 + β1) exp(β0 + β1 + β2 + β3)

Stage Two: bi | σ2
0 ∼iid N(0, σ2

0).

Writing α = σ2
0 , the likelihood is

L(β,α) =

m∏

i=1

∫ ni∏

j=1

exp[−μij(bi)]μij(bi)
yij

yij !

×(2πσ2
0)

−1/2 exp

(
− b2i
2σ2

0

)
dbi

= (2πσ2
0)

−m/2
m∏

i=1

exp

⎛

⎝
ni∑

j=1

yijxijβ

⎞

⎠

∫
exp

⎛

⎝−ebi
ni∑

j=1

exijβ +

ni∑

j=1

yijbi − b2i
2σ2

0

⎞

⎠ dbi.

The latter integral is analytically intractable. A Laplace approximation would
expand each of the m integrands about the maximizing value of bi, or, alternatively,
numerical integration can be used, for example, using adaptive Gauss–Hermite.

Let x1i = 0/1 if patient i was assigned placebo/progabide, x2j = 0/1 if
j = 0/1, 2, 3, 4, and xij3 = x1i × x2j for j = 0, 1, 2, 3, 4. Therefore, x1 is a
treatment indicator, x2 is an indicator of pre-/post-baseline, and x3 takes the value
1 for progabide individuals who are post-baseline and is zero otherwise. The first
model we fit is

xijβ = β0 + β1x1i + β2x2j + β3x3ij , (9.3)

so that xij is 1 × 4 and β is 4 × 1. Table 9.3 summarizes the form of the model
across groups and periods.

We first provide an interpretation from a conditional perspective. In the following
interpretation, a “typical” patient corresponds to a patient whose random effect is
zero, that is, b = 0. On the more interpretable rate scale:

• exp(β0) is the rate of seizures for a typical individual under placebo in time
period 0.

• exp(β1) is the ratio of the seizure rate of a typical individual under progabide to
a typical individual under placebo, in time period 0. If the groups are comparable
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at the time of treatment assignment and there are no other corrupting factors, we
would expect this parameter to be estimated as close to 1.

• exp(β2) is the ratio of the seizure rate post-baseline (Tj , j = 1, 2, 3, 4) as
compared to baseline (T0), for a typical individual in the placebo group.

• exp(β3) is the ratio of the seizure rate for a typical individual in the progabide
group post-baseline, as compared to a typical individual in the placebo group in
the same period. Hence, exp(β3) is the rate ratio parameter of interest.

Alternatively, we may interpret these rates and ratios of rates as being between two
individuals with the same baseline rate of seizures (i.e., the same random effect b)
prior to treatment assignment.

We now evaluate the implied marginal model. We recap the first two moments of
a lognormal random variable. If Z ∼ LogNorm(μ, σ2), then

E[Z] = exp(μ+ σ2/2)

var(Z) = exp(2μ+ σ2)× [exp(σ2)− 1]

= E[Z]2 × [exp(σ2)− 1].

Therefore, since exp(bi) ∼ LN(0, σ2
0), the marginal mean is

E[Yij ] = Ebi
[E(Yij | bi) ]

= Tij exp(xijβ)Ebi
[ exp(bi) ]

= Tij exp(xijβ + σ2
0/2).

Consequently, for this model, relative rates exp(βk), k = 1, 2, 3 (which, recall,
are ratios) have a marginal interpretation, since the exp(σ2

0/2) terms cancel in
numerator and denominator (under the model). For example, exp(β1) is the ratio
of the average seizure rate in the progabide group to the average rate in the placebo
group, in time period 0. Further discussion of parameter interpretation in marginal
and conditional models is provided in Sect. 9.11. The marginal variance is

var(Yij) = Ebi
[ var(Yij | bi)] + varbi [E(Yij | bi) ]

= Ebi
[Tij exp(xijβ + bi) ] + varbi [Tij exp(xijβ + bi) ]

= E[Yij ][1 + E(Yij)][ exp(σ
2
0)− 1) ]

= E[Yij ][1 + E(Yij)× κ]

where

κ = exp(σ2
0)− 1 > 0

illustrating quadratic excess-Poisson variation which increases as σ2
0 increases.
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The marginal covariance between observations on the same individual is

cov(Yij , Yik) = cov [Tij exp(xijβ + bi), Tij exp(xikβ + bi)]

= TijTik exp(xijβ + xikβ)× exp(σ2
0)[exp(σ

2
0)− 1]

= E[Yij ]E[Yik]κ.

To summarize, for individual i, the variance–covariance matrix is

⎡

⎢⎢⎣

μi1 + μ2
i1κ μi1μi2κ μi1μi3κ μi1μi4κ

μi2μi1κ μi2 + μ2
i2κ μi2μi3κ μi2μi4κ

μi3μi1κ μi3μi2κ μi3 + μ2
i3κ μi3μi4κ

μi4μi1κ μi4μi2κ μi4μi2κ μi4 + μ2
i4κ

⎤

⎥⎥⎦ .

For a random intercepts only LMM the marginal correlation is constant within a unit
with correlation σ2

0/(σ
2
0 + σ2

ε ), regardless of μij , μik. In contrast, for the Poisson
random intercepts mixed model, the marginal correlation is

corr(Yij , Yik) =
κ
√
μijμik√

(1 + κμij)(1 + κμik)

=

[
1 +

1

κ

(
1

μij
+

1

μik

)
+

1

κ2

1

μijμik

]−1/2

(9.4)

so that correlations vary in a complicated fashion as a function of the mean
responses. However, the correlations increase as κ increases and as the means
increase. A deficiency of this model is that we have only a single parameter (σ2

0)
to control both excess-Poisson variability and the strength of dependence over time.
We address this in Sect. 9.6 by adding a second random effect to the model. For
observations on different individuals, cov(Yij , Yi′k) = 0 for i �= i′.

Using a Laplace approximation to evaluate the integrals that define the likeli-
hood, we obtain the estimates and standard errors given in Table 9.4. An alternative
approach using Gauss–Hermite with 50 points to evaluate the integrals gave the
same answers, so we conclude that the Laplace approximation is accurate in this
example.

In terms of the parameter of interest β3, there is an estimated drop in the
seizure rates of 10% in the progabide group as compared to placebo, but this drop
is not significant when assessed using a likelihood ratio test under conventional
significance levels. The estimated value of β1 indicates that the placebo and
progabide groups are comparable at baseline, though the value of β2 and its standard
error suggest there is some evidence that the rate of seizures increased in the placebo
group after randomization.

The random intercepts standard deviation is estimated as σ̂2
0 = 0.61 to give

κ̂ = 0.84. For an individual whose rate of seizures is constant over the study period
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Table 9.4 MLEs and
standard errors from a
generalized linear mixed
model fit to the seizure data

Estimate Std. err.

β0 1.03 0.15
β1 −0.024 0.21
β2 0.11 0.047
β3 −0.10 0.065
σ0 0.78 –

Parameter meaning: β0 is the log baseline seizure rate in
the placebo group for a typical individual; β1 is the log
of the ratio of seizure rates between typical individuals in
the progabide and placebo groups, at baseline; β2 is the
log of the ratio of seizure rates of typical individuals in the
post-baseline and baseline placebo groups; β3 is the log of
the ratio of the seizure rate for a typical individual in the
progabide group as compared to a typical individual in the
placebo group, post-baseline; σ0 is the standard deviation
of the random intercepts

at levels μij = μik = 1, 2, 5, the correlations between responses on this individual,
from (9.4), are estimated as 0.46, 0.63, 0.81. We conclude that the correlations are
appreciable.

9.5 Conditional Likelihood Inference for Generalized
Linear Mixed Models

An alternative approach to estimation in the GLMM is provided by conditional
likelihood (Sect. 2.4.2). The basic idea is to split the data into components t1
and t2 in such a way that t1 contains information on parameter of interests,
while t2 contains information primarily on nuisance parameters. In a GLMM
setting, the aim is to condition on a part of the data that eliminates the random
effects, hence avoiding both the need for their estimation and the need to specify
their distribution. A consequence of the conditioning is that we also eliminate all
regression coefficients in the model that are associated with covariates that are
constant within an individual.

We now work through the details and assume a discrete GLMM and a canonical
link function so that

g(μij) = θij = βTxT
ij + bT

iz
T
ij .

We further assume α = 1, as is true for Poisson and binomial models. Viewing both
β and b as fixed effects gives, from (9.1),

Pr(y | β, b) ∝ exp

⎡

⎣βT

m∑

i=1

ni∑

j=1

xT
ijyij +

m∑

i=1

bT
i

ni∑

j=1

zT
ijyij −

m∑

i=1

ni∑

j=1

b(θij)

⎤

⎦ ,

(9.5)
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where b′(θij) = E[Yij | bi]. Define

t1i =

ni∑

j=1

xT
ijyij

t2i =

ni∑

j=1

zT
ijyij ,

and let t1 = [t11, . . . , t1m]T and t2 = [t21, . . . , t2m]T so that t1 and t2i are sufficient
statistics for β and bi, respectively. Conditioning on the sufficient statistics for bi,
we obtain

Pr

⎛

⎝yi |
ni∑

j=1

zT
ijYij = t2i,β

⎞

⎠ =
Pr
(
yi,
∑ni

j=1 z
T
ijYij = t2i | β, bi

)

Pr
(∑ni

j=1 z
T
ijYij = t2i | β, bi

)

=

∑
S1i

exp(βTt1i + bit2i)∑
S2i

exp(βTxT
ijyij + bit2i)

,

so that the conditional likelihood is

Lc(β) =

∑
S1i

exp(βTt1i)∑
S2i

exp(βTxT
ijyij)

,

where

S1i =

⎧
⎨

⎩yi |
ni∑

j=1

xT
ijyij = t1i,

ni∑

j=1

zT
ijyij = t2i

⎫
⎬

⎭

S2i =

⎧
⎨

⎩yi |
ni∑

j=1

zT
ijyij = t2i

⎫
⎬

⎭ .

The set S1i denotes the possible outcomesYij , j = 1, . . . , ni that are consistent with
t1i and t2i, given xi and zi. The conditional MLE has the usual properties of an
MLE. In particular, under regularity conditions, it is consistent and asymptotically
normally distributed with the variance–covariance matrix determined from the
second derivatives of the conditional log-likelihood.

The conditional likelihood approach allows the specification of a model (via the
parameters bi) to acknowledge dependence but eliminates these parameters from
the model. We emphasize that no distribution has been specified for the bi, as
they have been viewed as fixed effects. Depending on the structure of xij and
zij , some of the β parameters may be eliminated from the model. For example,
if xij = zij , the collections S1i and S2i coincide and the complete β vector would
be conditioned away.
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Example: Seizure Data

We derive the conditional likelihood in this example, using the random intercepts
only model so that zijbi = bi. The loglinear random intercept model is

logE[Yij | β�, λi] = logTij + λi + β2x2j + β3x3ij

= logTij + λi + xijβ
�

= logμij

where β� = [β2, β3]
T represents the regression coefficients that are not conditioned

from the model (since they are associated with covariates that change within an
individual), xij = [x2j , x3ij ], and λi = β0 + β1x1i + bi. We cannot estimate β1

because the associated covariate x1i is a treatment indicator and constant within an
individual in this study; hence, it is eliminated from the model by the conditioning,
along with bi and β0. This parameter is not a parameter of primary interest, however.

To derive the conditional likelihood, we first write c−1
1i =

∏4
j=0 yij !, and then

the joint distribution of the data for the ith individual is

p(yi | β�, λi) = c1i exp

⎛

⎝
4∑

j=0

yij logμij −
4∑

j=0

μij

⎞

⎠

= c1i exp

⎡

⎣λiyi+ +
4∑

j=0

yij(logTij + xijβ
�)− μi+

⎤

⎦.

In this case, the conditioning statistic is yi+, and its distribution is straightforward
to derive

Yi+ | β�, λi ∼ Poisson(μi+).

Letting c−1
2i = yi+!, and recognizing that μi+ = exp(λi)

∑4
j=0 Tij exp(xijβ

�),
gives

p(yi+ | β�, λi) = c2i

m∏

i=1

exp (−μi+ + yi+ logμi+)

= c2i

m∏

i=1

exp

⎡

⎣λiyi+ + yi+ log

⎛

⎝
4∑

j=0

Tij exp(xijβ
�)

⎞

⎠− μi+

⎤

⎦ .

Hence,

p(yi | yi+,β
�) =

p(yi | β�, λi)

p(yi+ | β�, λi)
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simplifies to

p(yi | yi+,β
�) =

c1i
c2i

exp

⎡

⎣
4∑

j=0

yij(log Tij+xijβ
�)−yi+ log

⎛

⎝
4∑

j=0

Tij exp(xijβ
�)

⎞

⎠

⎤

⎦

=
c1i
c2i

4∏

j=0

exp

⎧
⎨

⎩yij

⎡

⎣log Tij+xijβ
�− log

⎛

⎝
4∑

j=0

Tij exp(xijβ
�)

⎞

⎠

⎤

⎦

⎫
⎬

⎭

=
yi+!∏4
j=0 yij !

4∏

j=0

(
Tij exp(xijβ

�)
∑4

l=0 Til exp(xilβ
�)

)yij

which is a multinomial likelihood (we have conditioned a set of Poisson counts on
their total so this is no surprise). More transparently,

yij | yi+,β� ∼ Multinomial4(yi+,πi)

where πi = [πi0, . . . , πi4]
T and

πij =
Tij exp(xijβ

�)
∑4

l=0 Til exp(xilβ
�)
.

Since xi1 = xi2 = xi3 = xi4 and Ti0 = 8 =
∑4

j=1 Tij , we effectively have two

observation periods of equal length. Letting Y �
i =

∑4
j=1 Yij ,

Y �
i | yi+, β� ∼ind Binomial(yi+, π

�
i )

where the odds are such that

π�
i

1− π�
i

=

{
exp(β2) i = 1, . . . , 28, placebo group
exp(β2 + β3) i = 29, . . . , 59, progabide group.

Hence, fitting can be simply performed using logistic regression. For the seizure
data, the sum of the denominators are 1,825 and 1,967 for placebo and progabide
with 963 and 987 total seizures in the post-treatment period. These values result
in estimates (standard errors) of β̂2 = 0.11 (0.047) and β̂3 = −0.10 (0.065). The
estimate suggests a positive effect of progabide, but the difference from zero is not
significant. Performing Fisher’s exact test (Sect. 7.7) makes little difference for these
data since the counts are large.

The conditional likelihood approach is quite intuitive in this example and results
in a two-period design in which each person is acting as their own control.
Conditioning on the sum of the two counts results in a single outcome per patient
and removes the need to confront the dependency issue.
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9.6 Bayesian Inference for Generalized Linear
Mixed Models

9.6.1 Model Formulation

A Bayesian approach to inference for a GLMM requires a prior distribution for
β,α. As with the linear mixed model (Sect. 8.6), a proper prior is required for the
matrix D. A proper prior is not always necessary for β, but care is required. The
exponential family and canonical link lead to a likelihood that is well behaved (in
particular, with respect to tail behavior), though it is safer to specify a proper prior
since impropriety of the posterior can occur in some cases (e.g., with noncanonical
links or when counts are either equal to zero or to the denominator; see Sect. 6.8.1).
As with the LMM, closed-form inference is unavailable, but MCMC (Sect. 3.8)
is almost as straightforward as in the LMM, and the integrated nested Laplace
approximation approach (Sect. 3.7.4) is also available though the approximation is
not always accurate for the GLMM (Fong et al. 2010).

Let W = D−1, and assume that there are no unknown scale parameters at stage
one of the model (i.e., α = 1), as is the case for binomial and Poisson models. The
joint posterior is

p(β,W , b | y) ∝
m∏

i=1

[p(yi | β, bi)p(bi | W )] π(β,W ).

We assume independent hyperpriors:

β ∼ Nq+1(β0,V0)

W ∼ Wishq+1(r,R
−1)

where Wishq+1(r,R
−1) denotes a Wishart distribution of dimension q + 1 with

degrees of freedom r and scale matrix R−1; see Sect. 8.6.2 for further discussion.
The conditional distribution for W is unchanged from the LMM case. There are no
closed-form conditional distributions for β, or for bi, but if an MCMC approach is
followed, Metropolis–Hastings steps can be used.

9.6.2 Hyperpriors

In a GLMM we can often specify priors for more meaningful parameters than the
original elements of β. For example, exp(β) is the relative risk/rate in a loglinear
model and is the odds ratio in a logistic model. It is convenient to specify lognormal
priors for a generic parameter θ > 0, since one may specify two quantiles of
the distribution, and directly solve for the two parameters of the prior. Denote
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by LogNorm(μ, σ) the lognormal prior distribution for θ with E[log θ] = μ and
var(log θ) = σ2, and let θ1 and θ2 be the q1 and q2 quantiles of this prior. Then,
(3.15) and (3.16) give the lognormal parameters. As an example, in a Poisson model,
suppose we believe there is a 50% chance that the relative risk is less than 1 and a
95% chance that it is less than 5. With q1 = 0.5, θ1 = 1.0 and q2 = 0.95, θ2 = 5.0,
we obtain lognormal parameters μ = 0 and σ = log(5/1.96) = 0.98.

Consider the random intercepts model with bi | σ2
0 ∼iid N(0, σ2

0). It is not
straightforward to specify a prior for σ0, which represents the standard deviation of
the residuals on the linear predictor scale and is consequently not easy to interpret.
We specify a gamma prior Ga(a, b) for the precision τ0 = 1/σ2

0 , with parameters
a, b specified a priori. The choice of a gamma distribution is convenient since it
produces a marginal distribution for the “residuals” in closed form. As discussed in
Sect. 8.6.2, the marginal distribution for bi is td(0, λ

2), a Student’s t distribution
with d = 2a degrees of freedom, location zero, and scale λ2 = b/a. These
summaries allow prior specification based on beliefs concerning the residuals on
a natural scale.

As an example, consider a log link, in which case the above prior specification
is equivalent to the residual relative risks following a log Student’s t distribution.
We specify the range exp(±V ) within which we expect the residual relative risks
to lie with probability q and use the relationship ±tdq/2λ = ±V , where tdq is the qth
quantile of a Student’s t random variable with d degrees of freedom, to give a =
d/2, b = V 2d/2(tdq/2)

2. For example, if we assume a priori that the residual relative
risks follow a log Student’s t distribution with 2 degrees of freedom and that 95%
of these risks fall in the interval [0.5,2.0], then we obtain the prior, Ga(1, 0.0260).
In terms of σ0, this results in [2.5%,97.5%] quantiles of [0.084,1.01] with posterior
median 0.19.

It is important to assess whether the prior allows all reasonable levels of
variability in the residual relative risks, in particular, small values should not be
excluded. The prior Ga(0.001,0.001), which has been widely used under the guise
of being relatively non-informative, should be avoided for this reason. This prior
corresponds to the relative risks following a log Student’s t distribution with 0.002
degrees of freedom, so that the spread is enormous. For example, the 0.01 quantile
for σ0 is 6.4 so that it is unlikely a priori that the standard deviation is small.

Example: Seizure Data

For illustration, we consider three models for the seizure data:

Model 1: The conditional mean model we start with has stages one and two
given by:

Yij | bi ∼ind Poisson[Tij exp(xijβ + bi)]

bi | σ2
0 ∼iid N(0, σ2

0). (9.6)
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For a Bayesian analysis, we require priors for β and σ2
0 . In this and the following

two models, we take the improper prior π(β) ∝ 1. We assume σ−2
0 = τ0 ∼

Ga(1, 0.260). This prior corresponds to a Student’s t2 distribution for the residual
rates with a 95% prior interval of [0.5, 2.0].

Model 2: We assume the same first and second stages as model 1 but address the
sensitivity to the prior on τ0. Specifically, we perturb the prior to τ0 ∼ Ga(2, 1.376),
which corresponds to a Student’s t4 distribution for the residual rates with a 95%
interval [0.1, 10.0].

Model 3: As pointed out in Sect. 9.4, a Poisson mixed model with a single random
effect has a single parameter σ0 only to model excess-Poisson variability and
within-individual dependence. Therefore, we introduce “measurement error” into
the model via the introduction of an additional random effect in the linear predictor.
To motivate this model, consider the random intercepts only LMM model:

E[Yij | bi] = xijβ + bi + εij

bi | σ2
0 ∼ N(0, σ2

0)

εij | σ2
ε ∼ N(0, σ2

ε ),

with bi and εij independent. By analogy, consider the model:

Yij | bi, εij ∼ Poisson[Tij exp(xijβ + bi + εij)]

bi | σ2
0 ∼ N(0, σ2

0)

εij | σ2
ε ∼ N(0, σ2

ε )

with bi and εij independent. There are now two parameters to allow for between-
individual variability, σ2

0 , and within-individual variability, σ2
ε (with both producing

excess-Poisson variability). Unfortunately, there is no simple marginal interpretation
of σ2

0 and σ2
ε since

E[Yij ] = μij = Tij exp(xijβ + σ2
0/2 + σ2

ε/2)

var(Yij) = μij{1 + μij [exp(σ
2
0)− 1][exp(σ2

ε )− 1]}
cov(Yij , Yik) = TijTik exp[(xij + xik)β] exp(σ

2
0)[exp(σ

2
0)− 1].

The expression for the marginal covariance shows that σ2
0 is controlling the within-

individual dependence in the model, with large values giving high dependence. The
expression for the marginal variance is quadratic in the mean and is controlled by
both σ2

0 and σ2
ε , with large values corresponding to greater excess-Poisson variabil-

ity. We assign independent priors σ−2
0 ∼ Ga(1, 0.260), σ−2

ε ∼ Ga(1, 0.260).
All three models were implemented using MCMC. Table 9.5 gives summaries for

the three models. Model 1 gives very similar inference to the likelihood approach
described in Sect. 9.4 (specifically, the result presented in Table 9.4), which is not
surprising given the relatively large sample size and weak priors. Model 2 shows
little sensitivity to the prior distribution on σ0 which is again not surprising given
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Table 9.5 Posterior means and standard deviations for Bayesian analyses of the seizure data

Model 1 Model 2 Model 3

Estimate Std. err. Estimate Std. err. Estimate Std. err.

β0 1.03 0.16 1.04 0.16 1.04 0.18
β1 −0.036 0.21 −0.030 0.22 0.062 0.25
β2 0.11 0.047 0.11 0.047 0.0064 0.10
β3 −0.10 0.065 −0.10 0.065 −0.29 0.14

σ0 0.80 0.078 0.81 0.077 0.82 0.084
σε – – – – 0.39 0.033

See the caption of Table 9.4 for details on parameter interpretation. Models 1 and 2 are standard
GLMMs and differ only in the priors placed on σ0 which is the standard deviation of the
random intercepts. Model 3 adds an additional measurement error random effect, with standard
deviation σε

the number of individuals. Model 3 shows substantive differences, however. The
parameter of interest β3 is now greatly reduced, with a 95% credible interval for
the rate being [0.56,0.99]. The reason for the change is that in the progabide group,
there is a single individual (as seen in Fig. 9.2) who is very influential; this individual
has counts of 151, 102, 65, 72 and 63 in the five time periods. The introduction of
measurement error accommodates this individual. The posterior medians of εij for
this individual show a negative error term at baseline, followed by a run of positive
terms post-baseline: −0.61, 0.61, 0.17, 0.27, 0.14. The difference in signs explains
why the between-individual random effect cannot accommodate this individual’s
data. Notice also that β2 (the log ratio of seizure rates in the post-baseline period
relative to the baseline period, for typical individuals in the placebo group) is now
close to zero, whereas in models 1 and 2, it is 0.11. This shows that the aberrant
individual’s measurements were responsible for the high value of β2 in the first two
models. The estimate for σε is less than half the estimate for σ0 so that between-
individual variability is greater than within-individual variability for these data.

In analyses presented in Diggle et al. (2002), the influential individual was
dropped, and in their Table 9.7, the single random effect analysis produced an
estimate (standard error) of −0.30 (0.070), which is very similar to that for model
3. We would always prefer to not remove individuals from the analysis, however,
unless there are substantive reasons to do so.

Another possibility for modeling excess-Poisson variability, by combining the
Poisson likelihood with a gamma random effects distribution, is considered in
Sect. 9.8. �

In the last example we saw that the introduction of normal random effects
accounted for both measurement error and between-individual variability. This
flexibility is a great benefit of the GLMM framework. One way of approaching
modeling is to first imagine that the response is continuous and then decide upon
a model that would be considered in this case. The same structure can then be
assumed for the data at hand but on the linear predictor scale. In the next example,
the versatility is further illustrated with a model for spatial dependence.
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9.7 Generalized Linear Mixed Models with Spatial
Dependence

9.7.1 A Markov Random Field Prior

The topic of modeling residual spatial dependence is vast and here we only scratch
the surface and present a model that is popular in the spatial epidemiology literature,
and fits within the GLMM framework. We first describe the model and then illustrate
its use on the lung cancer and radon data of Sect. 1.3.3.

The following three-stage model was introduced by Besag et al. (1991) in the
context of disease mapping:

Stage One: The distribution of the response in area i is

Yi | μi, εi, Si ∼ind Poisson[Eiμi exp(εi + Si)]

with loglinear mean model

logμi = β0 + βixi, (9.7)

where xi is the radon level in area i. The random effects εi and Si represent error
terms without and with spatial structure, respectively. We have already encountered
the nonspatial version when a Poisson-Gamma model was described for these data
in Chap. 6. There are many models one might envision for the spatial terms Si, i =
1, . . . ,m. An obvious isotropic form would be S = [S1, . . . , Sm]T ∼ Nm(0, σ2

sR)
with R a correlation matrix with Rii′ describing the correlation between areas i
and i′, i, i′ = 1, . . . ,m. A common form is Rii′ = ρdii′ where dii′ is the distance
between the centroids of areas i and i′. We have already seen this form of correlation
in the context of longitudinal data; see in particular (8.14).

Marginally, this model gives

E[Yi] = Eiμi exp(σ
2
ε/2 + σ2

s/2)

var(Yi) = E[Yi]
{
1 + E[Yi][exp(σ

2
ε )− 1][exp(σ2

s )− 1)]
}

cov(Yi, Yi′ ) = EiμiEi′μi′ exp(σ
2
s )[exp(σ

2
s )− 1].

This isotropic model is computationally expensive within an MCMC scheme
because we need to invert R at each iteration to obtain the conditional distribution.
We describe an alternative which is both computationally feasible and statistically
appealing.
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Stage Two: The random effects distributions are

εi | σ2
ε ∼iid N(0, σ2

ε ) (9.8)

Si | Si′ , i
′ ∈ ne(i), σ2

s ∼ind N

(
Si,

σ2
s

ni

)
(9.9)

where Si = 1
ni

∑
i′∈ne(i) Si′ is the mean of the “neighbors” of area i, with

ne(i) defining the set of, and ni the number of, such neighbors. This intrinsic
conditional autoregressive (ICAR) model is very appealing since it provides local
spatial smoothing and may be viewed as providing stochastic interpolation (Besag
and Kooperberg 1995). A common definition (which we adopt in the example at the
end of this section) is that two areas are neighbors if they share a common boundary.
In non-lattice systems, this is clearly ad hoc.

An interesting aspect of this model is that the joint distribution is undefined. The
form of the joint “density” is

p(s | σ2
s ) ∝ σ−(m−r)

s exp

[
− 1

2σ2
s

∑

i<i′
Wii′ (si − si′)

2

]
, (9.10)

where Wii′ = 1 if areas i and i′ are neighbors and Wii′ = 0 otherwise. In the spatial
context, r is the number of connected regions. So if r = 1, there are no collection
of areas that are not neighbors of the remaining areas, which means that we cannot
break the study region into collections of areas that are unconnected. One way of
thinking about this model is that it specifies a prior on the differences between levels
in different areas but not on the overall level.

There are two equivalent representations of model (9.10) that are commonly
used. In one approach, the intercept β0 is removed from the mean model (9.7),
while in the other, we allow an intercept β0, along with an improper uniform prior
for this parameter, and then constrain S = 0. In the following we assume that the
intercept has been excluded from the model. See Besag and Kooperberg (1995) and
Rue and Held (2005) for further discussion of this model.

Stage Three: Hyperpriors:

β1 ∼ N(μβ , Σβ)

σ−2
ε ∼ Gamma(aε, bε)

σ−2
s ∼ Gamma(as, bs).
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9.7.2 Hyperpriors

Picking a prior for σs is not straightforward because of its interpretation as the
conditional standard deviation. In particular, σs and σε are not directly comparable
since the latter has a marginal interpretation (on the log relative risk scale).

We describe how to simulate realizations from (9.10) to examine candidate prior
distributions. As already noted, due to the rank deficiency, (9.10) does not define a
probability density, and so we cannot directly simulate from this prior. We need to
define some new notation in order to describe the method of simulation. The model
can be written in the form

p(s | σ2
s ) = (2π)−(m−r)/2|Q�|1/2σ−(m−r)

s exp

(
− 1

2σ2
s

sTQs

)
(9.11)

where s = [s1, . . . , sm] is the collection of random effects, Q is a (scaled)
“precision” matrix of rank m− r, with

Qij = σ−2
s

⎧
⎨

⎩

ni if i = j

−1 if i and j are neighbors
0 otherwise

and |Q�| is a generalized determinant which is the product over the m− r nonzero
eigenvalues of Q.

Rue and Held (2005) give the following algorithm for generating samples from
(9.11):

1. Simulate zj ∼ N(0, λ−1
j ), for j = m−r+1, . . . ,m, where λj are the eigenvalues

of Q (recall there are m− r nonzero eigenvalues as Q has rank m− r).
2. Return s = zm−r+1en−r+1 + z3e3 + . . . + znem = Ez where ej are the

corresponding eigenvectors of Q, E is the m × (m − r) matrix with these
eigenvectors as columns, and z is the (m − r) × 1 vector containing zj ,
j = m− r + 1, . . . ,m.

The simulation algorithm is conditioned so that samples are zero in the null-space
of Q. If s is a sample and the null-space is spanned by v1 and v2, then sTv1 =
sTv2 = 0. For example, suppose Q1 = 0 so that the null-space is spanned by
1 and the rank deficiency is 1. Then Q is of rank m − 1, since the eigenvalue
corresponding to 1 is zero, and samples s produced by the algorithm are such that
sT1 = 0. It is also useful to note that if we wish to compute the marginal variances,
only then simulation is not required, as they are available as the diagonal elements
of the matrix

∑
j λ

−1
j eje

T
j .
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Fig. 9.5 (a) Nonspatial and (b) spatial random effects for the Minnesota lung cancer data

Example: Lung Cancer and Radon

We apply the Poisson model with nonspatial and spatial normal random effects, that
is, the model given by (9.8) and (9.9). We note that model (9.7) does not aggregate
correctly from a plausible individual-level model; see Wakefield (2007b) and the
discussion leading to model (6.19). The prior on β1 is N(0, 1.172) which gives a
95% interval for the relative risk of [0.1,10].

The priors on σ2
ε and σ2

s require more care, but we would like to specify priors
in such a way that the nonspatial and spatial contributions are approximately equal.
This is complicated by σ2

s having a conditional interpretation, as just discussed. We
specify gamma priors for each of the precisions, σ−2

ε and σ−2
s . To make the priors

compatible, we first specify a prior for σ−2
ε and evaluate the average of the marginal

variances over the 87 areas, when σ2
s = 1, as described at the end of Sect. 9.7.2. We

then match up the means of the gamma distributions. Following the development of
Sect. 9.6.2 for the unstructured variability, we assume that the unstructured residual
relative risks lie in the interval [0.2, 5] with probability 0.95 and assume d = 2
to give the exponential prior distribution Ga(1,0.140) for σ−2

ε . The average of the
marginal variances over the study region for the spatial random effects is 0.21;
hence, the average of the marginal precisions is approximately 1/0.21. The prior
for σ−2

s is therefore Ga(0.21,0.140), to give E[σ−2
s ] = 0.21× E[σ−2

ε ].
The fitting of this model (using INLA) results in the posterior mean estimates ε̂i

and Ŝi mapped in Fig. 9.5(a) and (b) respectively. Notice that the scale is narrower
in panel (b), since the spatial contribution to the residuals is relatively small here,
though the spatial pattern in these residuals is apparent. As we discussed with
respect to prior specification, the variances σ2

ε and σ2
s are not directly comparable,
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Table 9.6 Parameter estimates for β1, the area-level log relative risk correspond-
ing to radon, and measures of uncertainty (standard errors and posterior standard
deviations) under various models, for the Minnesota lung cancer data

Model Estimate (×102) Uncertainty (×103)

Poisson −3.6 5.4
Quasi-likelihood −3.6 8.8
Negative binomial −2.9 8.2
Nonspatial random effects −2.8 9.1
Nonspatial and ICAR

random effects
−2.8 9.7

and so we calculate an approximate proportion of the total residual variance that is
spatial by comparing σ2

ε with an empirical estimate of the marginal variance of the
collection of random effects {Ŝi, i = 1, . . . ,m}. Specifically, we calculate

var(Ŝi)

var(Ŝi) + σ̂2
ε

where var(Ŝi) is the empirical variance of the random effects and σ̂2
ε is the posterior

median. From this calculation, the fraction of the total residual variability that is
attributed to the spatial component is 0.13.

Table 9.6 provides estimates and standard error/posterior standard deviations for
the log relative risk associated with a unit increase in radon, for a variety of models.
We include a model with nonspatial normal random effects only. The Poisson and
quasi-likelihood methods assume the same form of (proportional) mean–variance
relationship, while the negative binomial and nonspatial normal random effects
approaches imply a variance that is quadratic in the mean. The marginal variance
does not exist under the improper spatial model, but here the spatial contributions are
small. We might therefore expect to see similar conclusions to the negative binomial
and nonspatial normal random effects models. This is borne out in the table, with
the last three models giving similar estimates that are closer to zero than the first
two models. The standard error from the spatial model does increase a little over the
nonspatial random effects model.

In general, if strong spatial effects are present and the exposure surface has spatial
structure, then when spatial random effects are added to a model, large changes may
be seen in the regression coefficient associated with exposure. This phenomenon,
which is sometimes known as confounding by location, is a big practical headache
since it is difficult to decide on whether to attribute spatial variability in risk to
the exposure or to the spatial random effects (which may be acting as surrogates for
unmeasured confounders). Wakefield (2007b) and Hodges and Reich (2010) provide
further discussion.
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9.8 Conjugate Random Effects Models

An obvious approach to extending models for independent data is to assume a
random effects distribution that is conjugate to the likelihood. We illustrate this
approach, and its shortcomings, through two examples.

Example: Lung Cancer and Radon

A Poisson-Gamma conjugate model was fitted to the lung cancer/radon data in
Sect. 6.9 with:

Stage One: Yi | μi, δi ∼ind Poisson(Eiδi), with logμi = β0 + β1xi, for i =
1, . . . ,m.

Stage Two: δi | b ∼iid Gamma(b, b) for i = 1, . . . ,m.

The advantage of this model is that the random effects can be analytically
integrated from the model to give Yi | μi, b ∼ind NegBin(μi, b), i = 1, . . . ,m.
However, the extension to allow spatial dependence is not obvious, unless one
introduces normal random effects, as in the last section.

Example: Seizure Data

Letting μij = Tij exp(xijβ), consider the two-stage model:

Yij | μij , ξij ∼ind Poisson(μijξij)

ξij | b ∼iid Ga(b, b).

This results in Yij | μi, b ∼ind NegBin(μi, b) with E[Yi] = μij and var(Yij) =
μij(1 + μij/b). This model allows for excess-Poisson variability but not for
dependence of observations on the same patient. The introduction of patient-specific
random effects allows for the latter but loses the analytical tractability. Specifically,
the two-stage model

Yij | μij , δi ∼ind Poisson(μijδi)

δi | b ∼iid Ga(b, b)

leads to a marginal model for the data of the ith individual of

Pr(yi0, . . . , yi4 | μij , b) =

⎛

⎝
4∏

j=0

μ
yij

ij

yij !

⎞

⎠ bb

Γ (b)

Γ (b+ yi+)

(b+ μi+)b+yi+
,

which is not of negative binomial form.
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9.9 Generalized Estimating Equations for Generalized
Linear Models

The GEE approach was described in Sect. 8.7 for linear models. The extension to
GLM mean models is conceptually straightforward, since all that is required is
specification of a mean model and a working covariance model. The mean is

g(μij) = xγ

where μij = E[Yij ], g(·) is a link function, x is a n × (k + 1) design matrix, and
γ is a (k + 1)× 1 vector. We use γ to denote the parameters in the marginal mean
model to distinguish them from the parameters β which have been used to represent
the mixed model conditional parameters. The working covariance matrix is

var(Y ) = W .

and in a GLM setting, W will usually depend on γ and on additional parameters α
so that W = W (γ,α). Suppose α̂ is a consistent estimator of α. Then, GEE takes
the estimator γ̂ that satisfies

G(γ̂, α̂) =

m∑

i=1

DT
iW

−1
i (Yi − μ̂i) = 0,

where Di = ∂μi/∂γ is ni × (k + 1) and Wi = Wi(γ, α̂) is the ni × ni working
covariance model for unit i, i = 1, . . . ,m. The estimator γ̂ will not be of closed
form, unless the link is linear. Under mild regularity conditions,

V −1/2
γ

(γ̂ − γ) →d Nk+1(0, Ik+1 ),

where Vγ takes the sandwich form

(
m∑

i=1

DT
iW

−1
i Di

)−1 [ m∑

i=1

DT
iW

−1
i cov(Yi)W

−1
i Di

](
m∑

i=1

DT
iW

−1
i Di

)−1

.

(9.12)

In practice, an empirical estimator of cov(Yi) is substituted to obtain V̂γ . This
produces a consistent estimator of the standard error of γ̂, so long as we have
independence between units i �= i′, i, i′ = 1, . . . ,m. For small m, the variance
estimator may be unstable, however.

As in the linear case, various assumptions about the form of the working
covariance are available. We write

Wi = Δ
1/2
i Ri(α)Δ

1/2
i ,
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where Δi = diag[var(Yi1), . . . , var(Yini)]
T and Ri is a working correlation model.

Common choices include independence, exchangeable, AR(1), and unstructured.
For discrete data, there is often no natural choice since, in this setting, the correlation
is not an intuitive measure of dependence.

For small m, the sandwich estimator will have high variability, and so model-
based variance estimators may be preferable (and we would probably not rely on
asymptotic normality if m were small anyway). Model-based estimators are more
efficient if the model is correct and efficiency will be improved if we can pick a
working correlation matrix that is close to the true structure.

Published comments on whether to assume working independence or a more
complex form are a little in conflict: Liang and Zeger (1986) state that there is “little
difference when correlation is moderate,” in agreement with McDonald (1993) who
states “the independence estimator may be recommended for practical purposes.”
On the other hand, Zhao et al. (1992) assert that assuming independence “can lead
to important losses of efficiency,” in line with Fitzmaurice et al. (1993) who state that
it is “important to obtain a close approximation to cov(Yi) in order to achieve high
efficiency.” The issue is complex since it depends on, among other things, the design
and whether the covariates corresponding to the parameters are constant within an
individual or not.

9.10 GEE2: Connected Estimating Equations

In an approach coined by Liang et al. (1992) as GEE2, there is a connected set
of joint estimating equations for γ and α. This approach is particularly appealing
if the variance–covariance model is of interest. To motivate a pair of estimating
equations, consider the following model for a single individual with n independent
observations:

Yi | γ, α ∼ind N [μi(γ), Σi(γ, α)] .

For example, we may haveΣi(γ, α) = αμi(γ)
2, i = 1, . . . , n. The log-likelihood is

l(γ, α) = −1

2

n∑

i=1

log(Σi)− 1

2

n∑

i=1

(Yi − μi)
2

Σi
.

Differentiation gives the score equations as

∂l

∂γ
= −1

2

n∑

i=1

(
∂Σi

∂γ

)T
1

Σi
+

n∑

i=1

(
∂μi

∂γ

)T
(Yi − μi)

Σi
+
1

2

n∑

i=1

(
∂Σi

∂γ

)T
(Yi − μi)

2

Σ2
i

=

n∑

i=1

(
∂μi

∂γ

)T
(Yi − μi)

Σi
+

n∑

i=1

(
∂Σi

∂γ

)T
[
(Yi − μi)

2 −Σi

]

2Σ2
i

(9.13)
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and

∂l

∂α
= −1

2

n∑

i=1

(
∂Σi

∂α

)T
1

Σi
+

1

2

n∑

i=1

(
∂Σi

∂α

)T
(Yi − μi)

2

Σ2
i

=
n∑

i=1

(
∂Σi

∂α

)T
[
(Yi − μi)

2 −Σi

]

2Σ2
i

. (9.14)

This pair of quadratic estimating functions is unbiased given correct specification
of the first two moments; to emphasize, normality of the data is not required. A
disadvantage of the use of these functions, compared to the original GEE method
(which is sometimes referred to as GEE1), is that if the variance model is wrong,
we are no longer guaranteed a consistent estimator of γ. If the model is correct,
however, there will be a gain in efficiency.

Let

Si = (Yi − μi)
2

with E[Si] = Σi. Under normality,

var(Si) = E[S2
i ]− E[Si]

2 = 3Σ2
i −Σ2

i = 2Σ2
i

Hence, (9.13) and (9.14) can be written

∂l

∂γ
=

n∑

i=1

DT
iV

−1
i (Yi − μi) +

n∑

i=1

EiW
−1
i (Si −Σi) (9.15)

∂l

∂α
=

n∑

i=1

FiW
−1
i (Si −Σi) (9.16)

where Di = ∂μi/∂β, Ei = ∂Σi/∂β, Fi = ∂Σi/∂α, Vi = Σi, and Wi = 2Σ2
i .

This pair of estimating equations can be compared with the usual estimating
equation specification

∂l

∂β
=

n∑

i=1

DT
iV

−1
i (Yi − μi).

The additional term is the information about γ in the variance.
We turn to the dependent data situation and let μi denote the ni × 1 mean vector

and Σi the ni × ni covariance matrix. The general form of estimating equations is

m∑

i=1

[
Di 0

Ei Fi

]T [
Vi Ci

CT
i Wi

]−1 [
Yi − μi

Si −Σi

]
=

[
0

0

]
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where Di = ∂μi/∂β, Ei = ∂Σi/∂β, and Fi = ∂Σi/∂α and we have “working”
variance–covariance structure

Vi = var(Yi)

Ci = cov(Yi,Si)

Wi = var(Si).

When Ci = 0, we obtain

G1(γ,α) =

m∑

i=1

DT
iV

−1
i (Yi − μi) +

m∑

i=1

EiW
−1
i (Si −Σi) (9.17)

G2(γ,α) =

m∑

i=1

FiW
−1
i (Si −Σi) (9.18)

which are the dependent data version of the normal score equations we obtained
earlier, that is, (9.15) and (9.16). In the dependent data pair of equations, we have
freedom in choosing Vi and Wi. In particular, the latter need not be chosen to
coincide with that under a multivariate normal model, and, since this choice is
difficult, we could instead choose working independence.

It can be shown (Prentice and Zhao 1991, Appendix 2) that (9.17) and (9.18)
arise from the quadratic exponential model

p(yi | θi,λi) = Δ−1
i exp[yT

iθi +wT
iλi + ci(yi)], (9.19)

where θi = [θi1, . . . , θini ]
T is the canonical parameter,

wi = [y2i1, yi1yi2, . . . , y
2
i2, yi2yi3, . . .]

T

is the vector of squared responses, ci(·) is a function that defines the “shape,” Δi =
Δi(θi,λi, ci) is a normalization constant, andλi = [λi11, λi12, . . . , λi22, λi23, . . .]

T.
As an example of this form, if all the responses are continuous on the whole real line
and ci = 0, the multivariate normal is recovered (Exercise 9.2). Gourieroux et al.
(1984) showed that the quadratic exponential family is unique in giving consistent
estimates of the mean and covariance parameters, even in the situation in which the
data actually arise from outside this family. So, as the exponential family produces
desirable consistency properties for mean parameters, the quadratic exponential
family has the same properties when mean and variance parameters are of interest.

To emphasize: For consistency of γ̂, we require the models for both Yi and Si

to be correct, and there is increased efficiency over the single estimating equation
version (GEE1) if this is the case. This approach is useful if the variance–covariance
parameters are of primary interest as, for example, in some breeding and genetic
applications. Otherwise, if can, be prudent to stick with GEE1.
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9.11 Interpretation of Marginal and Conditional Regression
Coefficients

To illustrate the differences in interpretation of marginal and conditional coeffi-
cients, we examine the meaning of parameters for a loglinear model. In a marginal
model, such as is considered under GEE, we have

E[Y | x] = exp(γ0 + γ1x),

in which case exp(γ1) is the multiplicative change in the average response over two
populations of individuals whose x values differ by one unit . Under the conditional
mixed model, the interpretation of regression coefficients is conditional on the value
of the random effect. For the model

E[Y | x, b] = exp(β0 + β1x+ b),

with b | σ2
0 ∼iid N(0, σ2), exp(β1) is therefore the change in the expected response

for two individuals with identical random effects. Sometimes, the comparison is
described as between two typical (i.e., b = 0) individuals who differ in x by one
unit. The marginal mean corresponding to this model follows from the variance of
a lognormal distribution:

E[Y | x] = Eb[E(Y | x, b) ] = exp(β0 + σ2/2 + β1x).

Therefore, for the random intercepts, loglinear model exp(β1) has the same
marginal interpretation to exp(γ1) and the marginal intercept is γ0 = β0 + σ2/2.

We now consider the random intercepts and slopes model

E[Y | x, b] = exp [(β0 + b0) + (β1 + b1)x]

where b = [b0, b1] and

[
b0
b1

]
∼ N2

([
0

0

]
,

[
D00 D01

D10 D11

])
.

In this model exp(β1) is the relative risk between two individuals with the same b
but with x values that differ by one unit. That is,

exp(β1) =
E[Y | x, b]

E[Y | x− 1, b]
.

An alternative interpretation is to say that it is the expected change between two
“typical individuals,” that is, individuals with specific values of the random effects,
b = 0. Under this model, the marginal mean is

E[Y | x] = exp
[
β0 +D00/2 + x(β1 +D01) + x2D11/2

]
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so that a quadratic loglinear marginal model has been induced by the conditional
formulation. The marginal median is exp(β0 + β1x) so that exp(β1) is the ratio of
median responses between two populations whose x values differ by one unit. There
is no such simple interpretation in terms of marginal means.

Hence, marginal inference is possible under a mixed model formulation, though
care must be taken to derive the exact form of the marginal model. Estimation
of marginal parameters via GEE produces a consistent estimator in more general
circumstances than mixed model estimation, though there is an efficiency loss if the
random effects model is correct.

Example: Seizure Data

The marginal mean version of the conditional model fitted previously in this
chapter is

E[Yij ] = Tij exp(γ0 + γ1xi1 + γ2xij2 + γ3xi1xij2).

The parameters are interpreted as follows:

• exp(γ0) is the expected rate of seizures in the placebo group during the baseline
period, j = 0 (this expectation is over the hypothetical population of individuals
who were assigned to the placebo group).

• exp(γ1) is the ratio of the expected seizure rate in the progabide group, compared
to the placebo group, during the baseline period.

• exp(γ2) is the ratio of the expected seizure rate post-baseline as compared to
baseline, in the placebo group.

• exp(γ3) is the ratio of the expected seizure rates in the progabide group in the
post-baseline period, as compared to the placebo group, in the same period.
Hence, exp(γ3) is a period by treatment effect and is the parameter of interest.

The loglinear mean model suggests the variance model var(Yij) = α1μij . We
consider various forms for the working correlation. Table 9.7 gives estimates and
standard errors under various models. The Poisson, quasi-likelihood, and working
independence GEE models have estimating equation

G(γ̂, α̂) =

m∑

i=1

xT
i(Yi − μ̂i) = 0.

Consequently, the point estimates coincide but the models differ in the manner
by which the standard errors are calculated. The Poisson standard errors are
clearly much too small. The coincidence of the estimates and standard errors
for independence and exchangeable working correlations is a consequence of the
balanced design. The quasi-likelihood standard errors are increased by

√
19.7 =

4.4 (in line with the empirical estimates in Table 9.2) but do not acknowledge
dependence of observations on the same individual (so estimation is carried out
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Table 9.7 Parameter estimates and standard errors under various models for the seizure data

Estimates and standard errors

Poisson Quasi-Lhd GEE independence GEE exchangeable GEE AR(1)

γ0 1.35 0.034 1.35 0.15 1.35 0.16 1.35 0.16 1.31 0.16
γ1 0.027 0.047 0.027 0.21 0.027 0.22 0.027 0.22 0.015 0.21
γ2 0.11 0.047 0.11 0.21 0.11 0.12 0.11 0.12 0.16 0.11
γ3 −0.10 0.065 −0.10 0.29 −0.10 0.22 −0.10 0.22 −0.13 0.27
α1, α2 1.0 0 19.7 0 19.4 0 19.4 0.78 20.0 0.89

Parameter meaning: γ0 is the log baseline seizure rate in the placebo group; γ1 is the log of the
ratio of seizure rates between the progabide and placebo groups, at baseline; γ2 is the log of the
ratio of seizure rates in the post-baseline and baseline placebo groups; γ3 is the log of the ratio of
the seizure rate in the progabide group as compared to the placebo group, post-baseline; α1 and
α2 are variance and correlation parameters, respectively

as if we have 59 × 5 independent observations). The standard errors of estimated
parameters that are associated with time-varying covariates (γ2 and γ3) are reduced
under GEE, since within-person comparisons are being made and a longitudinal
design can be very efficient in such a study, if there is strong within-individual
dependence (as discussed in Sect. 8.3). In none of the analyses would the treatment
effect of interest be judged significantly different from zero, under conventional
levels.

9.12 Introduction to Modeling Dependent Binary Data

Binary outcomes are the simplest form of data but are, ironically, one of the most
challenging to model. For a single binary variable Y all moments are determined
by p = E[Y ]. Specifically, E[Y r] = p for r ≥ 1, so that Bernoulli random
variables cannot be overdispersed. Before turning to observations on multiple units,
we initially adopt a simplified notation and consider n binary observations Y =
[Y1, . . . , Yn]

T. Under conditional independence and with probabilities pj = E[Yj ],

Pr(Y = y | p) =
n∏

j=1

p
yj

j (1 − pj)
1−yj ,

with p = [p1, . . . , pn]
T. In Chap. 7, we saw that a common mean form is the logistic

regression model with log[pj/(1−pj)] = xjβ. In this chapter we wish to formulate
models that allow for dependence between binary outcomes, with a starting point
being the specification of a multivariate binary distribution. Such a joint distribution
can be used with a likelihood-based approach, or one can use the first one or two
moments only within a GEE approach. The difficulty with multivariate binary data
is that there is no natural way to characterize dependence between pairs, triples,
etc., of binary responses. In the dependent binary data situation, we will show that
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correlation parameters are tied to the means, making estimation from a model based
on means and correlations unattractive.

To specify the joint distribution of n binary responses requires 2n probabilities
so that the saturated model has 2n − 1 parameters. This may be contrasted
with a saturated multivariate normal model which has n means, n variances, and
n(n−1)/2 correlations. As n becomes large, the number of parameters in the binary
saturated model is very large. With n = 10, for example, there are 210 − 1 = 1, 023
parameters in the binary model as compared to 65 in the normal model. Our aim
is to reduce the 2n − 1 distinct probabilities to give formulations that allow both a
parsimonious description and the interpretable specification of a regression model.

We begin our description of models for multivariate binary data in Sect. 9.13 with
a discussion of mixed models, with likelihood, Bayesian and conditional likelihood
approaches to inference. Next, in Sect. 9.14, marginal models are described.

9.13 Mixed Models for Binary Data

9.13.1 Generalized Linear Mixed Models for Binary Data

In Sect. 7.5, we discussed a beta-binomial model for overdispersed data. This form
is not very flexible, for the reasons described in Sect. 9.8, and so we describe an
alternative mixed model with normal random effects. Let Yij be the binary “success”
indicator with j = 1, . . . , ni trials on each of i = 1, . . . ,m units.

Consider the GLMM with logistic link:

Stage One: Likelihood: Yij | pij ∼ind Bernoulli(nij , pij) with the linear logistic
model

log

(
pij

1− pij

)
= xijβ + zijbi.

In this model, β represents a (k+1)× 1 vector of fixed effects and bi a (q+1)× 1
vector of random effects, with q ≤ k. Let xij = [1, xij1, . . . , xijk] be a (k+ 1)× 1
vector of covariates, so that xi = [xi1, . . . ,xini ] is the design matrix for the fixed
effects, and let zij = [1, zij1, . . . , zijq]

T be a (k + 1) × 1 vector of variables that
are a subset of xij , so that zi = [zi1, . . . , zini ]

T is the design matrix for the random
effects.

Stage Two: Random effects distribution: bi | D ∼iid Nq+1(0,D) for i =
1, . . . ,m.

As we have repeatedly stressed, the conditional parameters β and the marginal
parameters γ have different interpretations in nonlinear situations, and for a logistic
model, there is no exact analytical relationship between the two. However, we
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Fig. 9.6 Individual-level curves (dotted lines) from a random intercept logistic GLMM, along with
marginal curve (solid line). The specific model is logit (E[Y | b]) = β0+β1x, with β0 = 0, β1 = 1
and b ∼iid N(0, 22). The approximate attenuation factor of the marginal curve, which is given by
the denominator of (9.21), is 1.54

may approximate the relationship. For the random intercepts model bi | σ2
0 ∼iid

N(0, σ2
0), we have, for a generic Bernoulli response Y with associated random

effect b,

E[Y ] =
exp(xγ)

1 + exp(xγ)
= Eb[E(Y | b) ]

= Eb

[
exp(xβ + b)

1 + exp(xβ + b)

]
≈ exp(xβ/[c2σ2

0 + 1]1/2)

1 + exp(xβ/[c2σ2
0 + 1]1/2)

(9.20)

where c = 16
√
3/(15π) (Exercise 9.1), so that

γ ≈ β

[c2σ2
0 + 1]1/2

. (9.21)

Consequently, the marginal coefficients are attenuated toward zero. Figure 9.6
illustrates this phenomena for particular values of β0, β1, σ

2
0 . We observe that the

averaging of the conditional curves results in a flattened marginal curve. This
attenuation was first encountered in Sect. 7.9 when the lack of collapsibility of the
odds ratio was discussed. We emphasize that one should not view the difference
in marginal and conditional parameter estimates as bias. If σ0 > 0 and β1 �= 0,
the parameters will differ, but they are estimating different quantities. In practice,
if we fit marginal and conditional models and we do not see attenuation, then the
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approximation could be poor (e.g., if σ2
0 is large) or some of the assumptions of the

conditional model could be inaccurate.
For the general logistic mixed model

log

(
E[Y | b]

1− E[Y | b]
)

= xβ + zb

with b | D ∼iid Nq+1(0,D), we obtain

E[Y ] =
exp(xγ)

1 + exp(xγ)
≈ exp

(
xβ/ | c2DzzT + Iq+1 |(q+1)/2

)

1 + exp
(
xβ/ | c2DzzT + Iq+1 |(q+1)/2

)

so that

γ ≈ β

| c2DzzT + Iq+1 |(q+1)/2
.

With random slopes or more complicated random effects structures, it is therefore
far more difficult to understand the relationship between conditional and marginal
parameters.

Marginal inference is possible with mixed models, but one needs to do a little
work. Specifically, if one requires marginal inference, then the above approxima-
tions may be invoked, or one may directly calculate the required integrals using a
Monte Carlo estimate. For example, the marginal probability at x is

Ê[Y | x] = 1

S

S∑

s=1

exp(xβ̂ + b(s))

1 + exp(xβ̂ + b(s))
(9.22)

where the random effects are simulated as b(s) | D̂ ∼ Nq+1(0, D̂), s = 1, . . . , S.
A more refined Bayesian approach would replace D̂ by samples from the posterior
p(D | y).

An important distinction between conditional and marginal modeling through
GEE is that the latter is likely to be more robust to model misspecification, since it
directly models marginal associations.

Recall that the logistic regression model for binary data can be derived by consid-
eration of an unobserved (latent) continuous logistic random variable (Sect. 7.6.1).
This latent formulation can be extended to the mixed model. In particular, assume
Uij = μij + bi, where bi | σ2

0 ∼ N(0, σ2
0) and Uij follows the standard logistic

distribution, that is, Uij | bi ∼ind Logistic(μij + bi, 1). Without loss of generality
set, Yij = 1 if Uij > c and 0 otherwise. Then

Pr(Yij = 1 | bi) = Pr(Uij > c | bi) = exp(μij + bi − c)

1 + exp(μij + bi − c)

and taking μij = xijβ + c produces the random effects logistic model.



9.13 Mixed Models for Binary Data 461

An interpretation of σ2
0 is obtained by comparing its magnitude to π2/3 (the

variance of the logistic distribution, which can be viewed as the within-person
variability) via the intra-class correlation:

ρ = corr(Uij , Uik) =
σ2
0

σ2
0 + π3/3

.

Note that ρ is the marginal correlation (averaged over the random effects) among the
unobserved latent variables Uij and not the marginal correlation among the Yij’s.
See Fitzmaurice et al. (2004, Sect. 12.5) for further discussion.

We examine the marginal moments further. The marginal mean is E[Yij ] =
Pr(Yij = 1) = Ebi

[pij ] where we continue to consider the random intercepts only
model

pij =
exp(xijβ + bi)

1 + exp(xijβ + bi)
.

The expectation is over the distribution of the random effect. We have already
derived the approximate marginal mean (9.20), which we write as

p�ij =
exp[xijβ/(c

2σ2
0 + 1)1/2]

1 + exp[xijβ/(c2σ2
0 + 1)1/2]

.

The variance is

var(Yij) = E[var(Yij | bi)] + var[E(Yij | bi)]
= E[pij − p2ij ] + E[p2ij ]− E[pij ]2

= p�ij(1− p�ij),

illustrating again that there is no overdispersion for a Bernoulli random variable.
This gives the diagonal elements of the marginal variance–covariance matrix. The
covariances between responses on the same unit i are

cov(Yij , Yik) = cov

(
exp(xijβ + bi)

1 + exp(xijβ + bi)
,

exp(xikβ + bi)

1 + exp(xikβ + bi)

)

= E

[(
exp(xijβ + bi)

1 + exp(xijβ + bi)

)(
exp(xikβ + bi)

1 + exp(xikβ + bi)

)]
− p�ijp

�
ik,

so note that the marginal covariance is not constant and not of easily interpretable
form. With a single random effect, the correlations are all determined by the single
parameter σ0.



462 9 General Regression Models

9.13.2 Likelihood Inference for the Binary Mixed Model

As with the GLMMs described in Sect. 9.4, the integrals required to evaluate the
likelihood for the fixed effects β and variance components α = D are analytically
intractable. Unfortunately the Laplace approximation method may not be reliable
for binary GLMMs, particularly if the random effects variances are large. For this
reason adaptive Gauss–Hermite quadrature methods are often resorted to, though
care in implementation is required to ensure that sufficient points are used to obtain
an accurate approximation. When maximization routines encounter convergence
problems, it may be an indication that either the model being fitted is not supported
by the data or that the data do not contain sufficient data to estimate all of the
parameters.

9.13.3 Bayesian Inference for the Binary Mixed Model

A Bayesian approach to binary GLMMs requires priors to be specified for β and
D. As in Sect. 9.6.2, the priors may be specified in terms of interpretable quantities,
for example, the residual odds of success. The information in binary data is limited,
and so sensitivity to the priors may be encountered, particularly the prior on D.
As with likelihood-based approaches, greater care is required in computation with
binary data. Fong et al. (2010) report that the INLA method is relatively inaccurate
for binary GLMMs so that MCMC is the more reliable method if the binomial
denominators are small.

Example: Contraception Data

We illustrate likelihood inference for a binary GLMM using the contraception data
introduced in Sect. 9.2.1. Let Yij = 0/1 denote the absence/presence of amenorrhea
in the ith woman at time tij , where the latter takes the values 1, 2, 3, or 4. Also,
let di = 0/1 represent the randomization indicators to doses of 100 mg/150 mg,
for i = 1, . . . , 1151 women (576 and 575 women received the low and high doses,
respectively). There are ni observations per woman, up to a maximum of 4. We
consider the following two-stage model:

Stage One: The response model is Yij | pij ∼ind Bernoulli (pij) with

log

(
pij

1− pij

)
= β0 + β1tij + β2t

2
ij + β3ditij + β4dit

2
ij + bi, (9.23)

so that we have separate quadratic models in time for each of the two-dose levels.
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Table 9.8 Mixed effects model parameter estimates for the contraception data
Likelihood Laplace Likelihood G–Ha Bayesian MCMC

Parameter Est. Std. err. Est. Std. err. Est. Std. err.

Intercept −3.8 0.27 −3.8 0.30 −3.6 0.27
Low-dose time 1.1 0.25 1.1 0.27 0.99 0.25
Low-dose time2 −0.044 0.052 −0.042 0.055 −0.015 0.052
High-dose time 0.55 0.18 0.56 0.21 0.55 0.18
High-dose time2 −0.11 0.051 −0.11 0.050 −0.11 0.058
σ0 2.1 – 2.3 0.11 2.2 0.13
aAdaptive Gauss–Hermite with 50 points

Stage Two: The random effects model is bi | σ2
0 ∼iid N(0, σ2

0).

We do not include a term for the main effect of dose, since we assume that
randomization has ensured that the two-dose groups are balanced at baseline
(t = 0). The conditional odds ratios exp(β1) and exp(β2) represent linear and
quadratic terms in time for a typical individual (bi = 0) in the low-dose group.
Similarly, exp(β1 + β3) and exp(β2 + β4) represent linear and quadratic terms in
time for a typical individual (bi = 0) in the high-dose group.

Table 9.8 gives parameter estimates and standard errors for a number of analyses,
including Laplace and adaptive Gauss–Hermite rules for likelihood calculation. We
initially concentrate on the Gauss–Hermite results which are more reliable than
those based on the Laplace implementation. Informally, comparing the estimates
with the standard errors, the linear terms in time are clearly needed, while it is not
so obvious that the quadratic terms are required.

In terms of substantive conclusions, a woman assigned the high dose, when
compared to a woman assigned the low dose, both with the same baseline risk of
amenorrhea (i.e., with the same random effect) will have increased odds at time t of

exp(β̂3t+ β̂4t
2)

giving increases of 1.6, 2.0, 2.0, 1.6 at times 1, 2, 3, 4, respectively. Hence, the
difference between the groups increases and then decreases as a function of time,
though it is always greater than zero.

The standard deviation of the random effects σ̂ = 2.3 is substantial here. An
estimate of a 95% interval for the risk of amenorrhea in the low-dose group at
occasion 1 is

exp(−3.8 + 1.1− 0.042± 1.96× 2.3)

1 + exp(−3.8 + 1.1− 0.042± 1.96× 2.3)
= [0.0007, 0.85],

so that we have very large between-woman variability in risk. The marginal intra-
class correlation coefficient is estimated as ρ = 0.61 (recall this is the correlation
for the latent variable and not for the marginal responses).
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Fig. 9.7 Probability of amenorrhea over time in low- and high-dose groups in the contraception
data, along with fitted probabilities. The latter are calculated via Monte Carlo simulation, with
likelihood estimation in the mixed model, implemented with Gauss–Hermite quadrature

Table 9.9 Monte Carlo estimated variances (on the diagonal) and correlations (upper diagonal),
between measurements on the same woman, at different observations occasions (1–4), in the low-
(left) and high- (right) dose groups

1 2 3 4 1 2 3 4

1 0.14 0.38 0.36 0.33 1 0.17 0.39 0.36 0.33
2 0.20 0.41 0.39 2 0.23 0.42 0.40
3 0.24 0.43 3 0.25 0.43
4 0.25 4 0.24

These estimates are based on likelihood estimation in the mixed model, implemented with Gauss–
Hermite quadrature

Allowing the random effects variance to vary by covariate groups is important
to investigate since missing such dependence can lead to serious inaccuracies
(Heagerty and Kurland 2001). The assumption of a common σ0 in the two groups is
important for accurate inference in this example. We fit separate logistic GLMMs to
the two-dose groups and obtain estimates of 2.3 and 2.2, illustrating that a common
σ0 is supported by the data.

We evaluate the marginal means calculation using Monte Carlo integration.
These means are shown, along with the observed proportions, in Fig. 9.7. We see
that the overall fit is good, apart from the last time point (for which there is reduced
data due to dropout).

In Table 9.9, we estimate the marginal variance–covariance and correlation
matrices for the two-dose groups using Monte Carlo integration. As we have
already discussed in Sect. 9.13.1 a random intercepts only model does not lead to
correlations that are constant across time (unlike the linear model). In general, the
estimates are in reasonable agreement with the empirical variances and correlations
reported in Table 9.1.
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For the Bayesian analysis, the prior for the intercept was relatively flat, β0 ∼
N(0, 2.382). If there was no effect of time (i.e., if β1 = β2 = β3 = β4 = 0) then
a 95% interval for the probabilities for a typical individual would be exp(±1.96×
2.38) = [0.009, 0.99]. For the regression coefficients, we specify βk ∼ N(0, 0.982)
which gives a 95% interval for the odds ratios of exp(±1.96× 0.98) = [0.15, 6.8].
Finally, for σ−2

0 , we assume a Gamma(0.5,0.1) prior which gives a 95% interval
for σ0 of [0.06,4.5]. More informatively, a 95% interval for the residual odds
is [0.17,6.0]. These priors are not uninformative but correspond to ranges for
probabilities and odds ratios that are consistent with the application.

The posterior means and standard deviations are given in Table 9.8, and we see
broad agreement with the MLEs and standard errors found using Gauss–Hermite.
The intra-class correlation coefficient is estimated as 0.60 with 95% credible interval
[0.55, 0.67].

9.13.4 Conditional Likelihood Inference for Binary Mixed
Models

Recall that conditional likelihood is a technique for eliminating nuisance parame-
ters, in this case the random effects in the mixed model. Following from Sect. 9.5, we
outline the approach as applied to the binary mixed model with random intercepts.
Consider individual i with binary observations yi1, . . . , yini and assume the random
intercepts model Yij | λi,β

� ∼ Bernoulli(pij), where

log

(
pij

1− pij

)
= xijβ

� + λi

and λi = xiβ
† + bi so that β† represents those parameters associated with

covariates that are constant within an individual and β� those that vary. Mimicking
the development in Sect. 9.5, the joint distribution for the responses of the ith unit is

Pr(yi1, . . . , yini | λi,β
�) =

ni∏

j=1

exp
(
λiyij + β�TxT

ijyij
)

1 + exp
(
λi + β�TxT

ij

)

=
exp
(
λi

∑ni

j=1 yij + β�T
∑ni

j=1 x
T
ijyij

)

∏ni

j=1

[
1 + exp

(
λi + β�TxT

ij

)]

=
exp (λit2i + β�Tt1i)∏ni

j=1

[
1 + exp

(
λi + β�TxT

ij

)]

=
exp (λit2i + β�Tt1i)

k(λi,β)

= p(t1i, t2i | λi,β
�)
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where

t1i =

ni∑

j=1

xT
ijyij , t2i =

ni∑

j=1

yij = yi+

and

k(λi,β
�) =

ni∏

j=1

[
1 + exp

(
λi + β�TxT

ij

)]
.

Therefore, the conditioning statistic is the number of successes on the ith unit.
We have conditional likelihood

Lc(β) =

m∏

i=1

p(t1i | t2i,β�) =

m∏

i=1

p(t1i, t2i | λi,β
�)

p(t2i | λi,β
�)

where

p(t2i | λi,β
�) =

∑
(

ni
yi+

)

l=1 exp
(
λiyi+ + β�T

∑ni

k=1 x
T
iky

(l)
ik

)

k(λi,β
�)

,

and the summation is over the
(

ni
yi+

)

ways of choosing yi+ ones out of ni and

y
(l)
i = [y

(l)
i1 , . . . , y

(l)
ini

], l = 1, . . . ,
(

ni
yi+

)

is the collection of these ways. Inference

may be based on the conditional likelihood

Lc(β
�) =

m∏

i=1

exp
(
λiyi+ + β�T

∑ni

j=1 x
T
ijyij

)

∑
(

ni
yi+

)

l=1 exp
(
λiyi+ + β�T

∑ni

k=1 x
T
iky

(l)
ik

)

=

m∏

i=1

exp
(
β�T
∑ni

j=1 x
T
ijyij

)

∑
(

ni
yi+

)

l=1 exp
(
β�T
∑ni

k=1 x
T
iky

(l)
ik

) .

Hence, there is no need to specify a distribution for the unit-specific parameters
that allow for within-unit dependence, as they are eliminated by the conditioning
argument.

As an example, if ni = 3 and yi = [0, 0, 1] so that yi+ = 1, then

y
(1)
i = [1, 0, 0], y

(2)
i = [0, 1, 0], y

(3)
i = [0, 0, 1]

and the contribution to the conditional likelihood is

exp(β�TxT
i3)

exp(β�TxT
i1) + exp(β�TxT

i2) + exp(β�TxT
i3)

.
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As a second example, if ni = 3 and yi = [1, 0, 1] so that yi+ = 2, then

y
(1)
i = [1, 1, 0], y

(2)
i = [1, 0, 1], y

(3)
i = [0, 1, 1],

and the contribution to the conditional likelihood is

exp(β�TxT
i1 + β�TxT

i3)

exp(β�TxT
i1 + β�TxT

i2) + exp(β�TxT
i1 + β�TxT

i3) + exp(β�TxT
i2 + β�TxT

i3)
.

There is no contribution to the conditional likelihood from individuals with
ni = 1 or yi+ = 0 or yi+ = ni. The conditional likelihood can be computationally
expensive to evaluate if ni is large, for example, if ni = 20 and yi+ = 10
there are

(

ni
yi+

)

= 184, 756 variations. The similarity to Cox’s partial likelihood

(e.g., Kalbfleisch and Prentice 2002, Chap. 4) may be exploited to carry out
computation, however.

We reiterate that the conditional likelihood estimates those elements of β� that
are associated with covariates that vary within individuals. If a covariate only varies
between individuals, then its effect cannot be estimated using conditional likelihood.
For covariates that vary both between and within individuals, only the within-
individual contrasts are used.

9.14 Marginal Models for Dependent Binary Data

We now consider the marginal modeling of dependent binary data. We begin by
describing how the GEE approach of Sect. 9.9 can be used for binary data and then
describe alternative approaches.

9.14.1 Generalized Estimating Equations

For the marginal Bernoulli outcome Yij | μij ∼ Bernoulli(μij) and with a logistic
regression model, we have the exponential family representation

Pr(Yij = yij | xij) = μ
yij

ij (1− μij)
1−yij

= exp {yijθij − log[1 + exp(θij)]} ,

where

θij = log

(
μij

1− μij

)
= xijγ.
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For independent responses, the likelihood is

Pr(Y | x) = exp

⎧
⎨

⎩

m∑

i=1

ni∑

j=1

yijθij −
m∑

i=1

ni∑

j=1

log[1 + exp(θij)]

⎫
⎬

⎭

= exp

⎛

⎝
m∑

i=1

ni∑

j=1

lij

⎞

⎠ .

To find the MLEs, we consider the score equation

G(γ) =
∂l

∂γ
=

m∑

i=1

ni∑

j=1

∂lij
∂θij

∂θij
∂γ

=

m∑

i=1

ni∑

j=1

xij(yij − μij) =

m∑

i=1

xT
i(yi − μi)

with μi = [μi1, . . . , μini ]
T. This form is identical to the use of GEE with working

independence and so can be implemented with standard software, though we
need to “fix up” the standard errors via sandwich estimation. Hence, the above
estimating equation construction offers a very simple approach to inference which
may be adequate if the dependence between observations on the same unit is
small. If the correlations are not small, then efficiency considerations suggest that
nonindependence working covariance models should be entertained.

As with other types of data (Sect. 9.9), we can model the correlation structure
(Liang and Zeger 1986) and assume var(Yi) = Wi with Wi = Δ

1/2
i Ri(α)Δ

1/2
i

with Δi a diagonal matrix with jth diagonal entry var(Yij) = μij(1 − μij) and
Ri(α) a working correlation model depending on parameters α. In this case, the
estimating function is

G(γ,α) =

m∑

i=1

DT
iW

−1
i (yi − μi), (9.24)

whereDi = ∂μi/∂γ. As usual, an estimate of α is required, with an obvious choice
being a method of moments estimator. The variance of the estimator takes the usual
sandwich form (9.12).

9.14.2 Loglinear Models

We now consider another approach to constructing models for dependent binary data
that may form the basis for likelihood or GEE procedures. Loglinear models are a
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Table 9.10 Probabilities of
the four possible outcomes
for two binary variables via a
loglinear representation

y1 y2 Pr(Y1 = y1, Y2 = y2)

0 0 c(θ)

1 0 c(θ) exp(θ
(1)
1 )

0 1 c(θ) exp(θ
(1)
2 )

1 1 c(θ) exp(θ
(1)
1 + θ

(1)
2 + θ

(2)
12 )

popular choice for cross-classified discrete data (Cox 1972; Bishop et al. 1975). We
begin by returning to the situation in which we have n responses on a single unit,
yj , j = 1, . . . , n. A saturated loglinear model is

Pr(Y = y) = c(θ) exp

⎛

⎝
n∑

j=1

θ
(1)
j yj +

∑

j1<j2

θ
(2)
j1j2

yj1yj2 + . . .+ θ
(n)
12...ny1 . . . yn

⎞

⎠ ,

with 2n − 1 parameters θ = [θ
(1)
1 , . . . , θ

(1)
n , θ

(2)
12 , . . . , θ

(2)
n−1,n, . . . , θ

(n)
12...n]

T, and
normalizing constant c(θ). To provide an interpretation of the parameters, consider
the case of n = 2 trials for which

Pr(Y1 = y1, Y2 = y2) = c(θ) exp
(
θ
(1)
1 y1 + θ

(1)
2 y2 + θ

(2)
12 y1y2

)
,

where θ = [θ
(1)
1 , θ

(1)
2 , θ

(2)
12 ]

T and

c(θ)−1 =

1∑

y1=0

1∑

y2=0

exp
(
θ
(1)
1 y1 + θ

(1)
2 y2 + θ

(2)
12 y1y2

)
.

Table 9.10 gives the forms of the probabilities for the loglinear representation, from
which we can determine the interpretation of the three parameters:

exp(θ
(1)
1 ) =

Pr(Y1 = 1 | y2 = 0)

Pr(Y1 = 0 | y2 = 0)

is the odds of an event at trial 1, given no event at trial 2,

exp(θ
(1)
2 ) =

Pr(Y2 = 1 | y1 = 0)

Pr(Y2 = 0 | y1 = 0)

is the odds of an event at trial 2, given no event at trial 1, and

exp(θ
(12)
12 ) =

Pr(Y2 = 1 | y1 = 1)/Pr(Y2 = 0 | y1 = 1)

Pr(Y2 = 1 | y1 = 0)/Pr(Y2 = 0 | y1 = 0)
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is the ratio of the odds of an event at trial 2 given an event at trial 1, divided by the
odds of an event at trial 2 given no event at trial 1. Consequently, if this parameter
is larger than 1, there is positive dependence between Y1 and Y2.

For general n, a simplified version of the loglinear model is provided when third-
and higher-order terms are set to zero, so that

Pr(Y = y) = c(θ) exp

⎛

⎝
n∑

j=1

θ
(1)
j yj +

∑

j<k

θ
(2)
jk yjyk

⎞

⎠ . (9.25)

For this model,

Pr(Yj = 1 | Yk = yk, Yl = 0, l �= j, k)

Pr(Yj = 0 | Yk = yk, Yl = 0, l �= j, k)
= exp(θ

(1)
j + θ

(2)
jk yk).

so that exp(θ(1)j ) is the (conditional) odds of an event at trial j, given all other

responses are zero. Further, exp(θ(2)jk ) is the odds ratio describing the association
between Yj and Yk, given all other responses are set equal to zero, that is,

Pr(Yj = 1, Yk = 1 | Yl = 0, l �= j, k) Pr(Yj = 0, Yk = 0 | Yl = 0, l �= j, k)

Pr(Yj = 1, Yk = 0 | Yl = 0, l �= j, k) Pr(Yj = 0, Yk = 1 | Yl = 0, l �= j, k)

= exp(θ
(2)
jk ).

The quadratic model (9.25) was described in Sect. 9.10 and was suggested for the
analysis of binary data by Zhao and Prentice (1990). Recall that this model has the
appealing property of consistency so long as the first two moments are correctly
specified. The quadratic exponential model is unique in this respect.

Unfortunately, parameterizing in terms of the θ parameters is unappealing for
regression modeling where the primary aim is to model the response as a function
of x. To illustrate, consider binary longitudinal data with a binary covariate x and
suppose we let the parameters θ depend on x. The difference between the log odds
θ
(1)
j (x = 1) and θ

(1)
j (x = 0) represents the effect of x on the conditional log odds

of an event at period j, given that there were no events at any other trials, which is
difficult to interpret. We would rather model the marginal means μ, and these are a
function of both θ(1) and θ(2). For example, for the n = 2 case presented in Table
9.10, the marginal means are

E[Y1] = c(θ) exp(θ
(1)
1 )[1 + exp(θ

(1)
1 + θ

(2)
12 )]

E[Y2] = c(θ) exp(θ
(1)
2 )[1 + exp(θ

(1)
2 + θ

(2)
12 )],

and these forms do not lend themselves to straightforward incorporation of covari-
ates. Hence, alternative approaches have been proposed as we now discuss.



9.14 Marginal Models for Dependent Binary Data 471

9.14.3 Further Multivariate Binary Models

A number of approaches are based on assuming a marginal mean model, to
overcome the problems described in the previous section, along with a second set of
parameters to model the dependence.

First, we may reparameterize the model via the mean vector μ and second-
and higher-order loglinear parameters. For example, we may consider second-order
parameters only and work with μ and the loglinear parameters θ(2), as suggested by
Fitzmaurice and Laird (1993). The latter used maximum likelihood for estimation.
There are two disadvantages to this approach. First, the interpretation of the θ(2)

parameters depends on the number of responses n. This is particularly a problem
in a longitudinal setting with differing ni. Hence, this approach is most useful for
data that have ni = n for all i. Second, if interest lies in understanding the structure
of the dependence, the conditional odds ratio parameters do not have the attractive
simple interpretation of marginal odds ratios.

A second approach is based on modeling the correlations in addition to the
means. Let

e�ijk =
Yij − μij

[μij(1 − μij)]1/2

ρijk = corr(Yij , Yik) = E[e�ije
�
ik]

ρijkl = E[e�ije
�
ike

�
il]

· · · · · ·
ρi1...ni = E[e�i1e

�
i2 . . . e

�
ini

].

The correlations have marginal interpretations. For example, ρijkl is a three-way
association parameter. Bahadur (1961) defined a multivariate binary model based on
the marginal means and these correlations. The probability for the set of outcomes
on unit i is

Pr(Yi = yi) =

ni∏

j=1

μ
yij

ij (1− μij)
1−yij ×

⎛

⎝1 +
∑

j<k

ρijke
�
ije

�
ik +

∑

j<k<l

ρijkle
�
ije

�
ike

�
il + . . .+ ρi1...ne

�
i1e

�
i2 . . . e

�
ini

⎞

⎠.

Unfortunately, the correlations are constrained in complicated ways by the marginal
means. As an example, consider two measurements on a single individual, Yi1 and
Yi2, with means μi1 and μi2. The correlation is

corr(Yi1, Yi2) =
Pr(Yi1 = 1, Yi2 = 1)− μi1μi2

[μi1(1− μi1)μi2(1− μi2)]1/2
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Table 9.11 Notation in the
case of ni = 2 binary
responses on individual i

Yi2

0 1

0 1− μi1 − μi2 + μi12 μi2 − μi12 1− μi1
Yi1 1 μi1 − μi12 μi12 μi1

1− μi2 μi2

and

max(0, μi1 + μi2 − 1) ≤ Pr(Yi1 = 1, Yi2 = 1) ≤ min(μi1, μi2),

which implies complicated constraints on the correlation. For example, if μi1 =
0.8 and μi2 = 0.2, then 0 ≤ corr(Yi1, Yi2) ≤ 0.25. The message here is that
correlations are not a natural measure of dependence for binary data so that the
Bahadur representation is not appealing.

A third approach (Lipsitz et al. 1991; Liang et al. 1992) is to parameterize in
terms of the marginal means and the marginal odds ratios defined by. Let

δijk =
Pr(Yij = 1, Yik = 1)Pr(Yij = 0, Yik = 0)

Pr(Yij = 1, Yik = 0)Pr(Yij = 0, Yik = 1)

=
Pr(Yij = 1 | Yik = 1)/Pr(Yij = 0 | Yik = 1)

Pr(Yij = 1 | Yik = 0)/Pr(Yij = 0 | Yik = 0)
,

which is the odds (for individual i) that the jth observation is a 1, given the kth
observation is a 1, divided by the odds that the jth observation is a 1, given the kth
observation is a 0. Therefore, we have a set of marginal odds ratios, and if δijk > 1,
we have positive dependence between outcomes j and k. It is then possible to obtain
the joint distribution in terms of the means μ, where μij = Pr(Yij = 1), the odds
ratios δi = [δi12, . . . , δi,ni−1,ni ] and contrasts of odds ratios. To determine the
probability distribution of the data, we need to find

μijk = E[YijYik] = Pr(Yij = 1, Yik = 1),

so that we can write down either the likelihood function or an estimating function.
For the case of ni = 2 (see Table 9.11), we have

δi12 =
Pr(Yi1 = 1, Yi2 = 1)Pr(Yi1 = 0, Yi2 = 0)

Pr(Yi1 = 1, Yi2 = 0)Pr(Yi1 = 0, Yi2 = 1)
=

μi12(1− μi1 − μi2 + μi12)

(μi1 − μi12)(μi2 − μi12)
,

and so
μ2
i12(δi12 − 1) + μi12bi + δi12μi1μi2 = 0,

where bi = (μi1 + μi2)(1− δi12)− 1, to give

μi12 =
−bi ±

√
b2i − 4(δi12 − 1)μi1μi2δi12

2(δi12 − 1)
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if δi12 �= 1 and μi12 = μijμik if δi12 = 1. The likelihood is

μyi1

i1 (1− μi1)
1−yi1μyi2

i2 (1− μi2)
1−yi2 + (−1)(yi1−yi2)(μi12 − μi1μi2) (9.26)

(Exercise 9.3).
As the number of binary responses increases so does the complexity of solving

for the μijk’s; see Liang et al. (1992) for further details. In the case of large ni, there
are a large numbers of nuisance odds ratios, and assumptions such as δijk = δ for
i = 1, . . . ,m, j, k = 1, . . . , ni may be made.

In a longitudinal setting, another possibility is to take

log δijk = α0 + α1|tij − tik|−1,

so that the degree of association is inversely proportional to the time between
observations. Computation may be carried out by setting up an estimating equation
for yi and a method of moments estimator for estimation of the covariance
parameters. As an alternative, GEE2 may be used with a pair of linked estimating
equations (Sect. 9.10).

Letting αijk = log δijk , Carey et al. (1993) suggest the following approach for
estimating β and α. It is easy to show that

Pr(Yij = 1 | Yik = yik)

Pr(Yij = 0 | Yik = yik)
= exp(yikαijk)

Pr(Yij = 1, Yik = 0)

Pr(Yij = 0, Yik = 0)

= exp(yikαijk)

(
μij − μijk

1− μij − μik + μijk

)
,

which can be written as a logistic regression model for the conditional probabilities
E[Yij | Yik]:

logit (E[Yij | Yik]) = log

(
Pr(Yij = 1 | Yik = yik)

Pr(Yij = 0 | Yik = yik)

)

= yikαijk + log

(
μij − μijk

1− μij − μik + μijk

)

where the term on the right is an offset (given estimates of the means). Suppose, for
simplicity, that αijk = α. Then, given current estimates of β, α, we can fit a logistic
regression model by regressing Yij on Yik for 1 ≤ j < k ≤ ni, to reestimate α. The
offset is a function of α and β so iteration is required. Consequently, Carey et al.
(1993) named this approach alternating logistic regressions. Once the α parameters
are estimated, one may solve for var(Yi) in order to use the estimating function
(9.24).

In some situations, interest may focus on estimating/modeling the within-unit
dependence. Basing a model on correlation parameters is not appealing, but using
marginal log odds ratios suggests the model αijk = x�

ijkΨ for a set of covariates of
interest x�

ijk with associated regression coefficients Ψ .
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Table 9.12 GEE parameter estimates for the contraception data

GEE independence GEE exchangeable GEE ALRa

Parameter Est. Std. err. Est. Std. err. Est. Std. err.

Intercept −2.2 0.18 −2.2 0.18 −2.3 0.16
Low-dose time 0.67 0.16 0.70 0.16 0.70 0.15
Low-dose time2 −0.030 0.033 −0.033 0.032 −0.033 0.031
High-dose time 0.30 0.11 0.33 0.11 0.34 0.11
High-dose time2 −0.062 0.030 −0.064 0.029 −0.067 0.028
aAlternating logistic regression

Example: Contraception Data

Table 9.12 gives parameter estimates and standard errors for various implementa-
tions of GEE, for the marginal model

log

(
pij

1− pij

)
= γ0 + γ1tij + γ2t

2
ij + γ3ditij + γ4dit

2
ij , (9.27)

where the γ notation emphasizes that we are estimating marginal parameters. We
initially implement GEE with working independence; in general, this is not to be
recommended unless it is thought that the outcomes within a cluster are close
to independent. We also allow a working exchangeable structure, with the latter
parameterized in terms of correlations. Finally, we assume a working exchangeable
model parameterized in terms of a common (marginal) log odds ratio. For these
data, there are few substantive differences between the approaches. Under the
exchangeable models, the common correlation is estimated as 0.36 (0.024) (which
is in line with the correlations in Table 9.1), while the common log odds ratio is
estimated as 2.0 (0.11). The latter is log of the ratio of the the odds of amenorrhea
at time t, given amenorrhea at time s, to the odds of amenorrhea at time t, given no
amenorrhea at time s, s �= t.

We may compare these results with a random intercept GLMM. The Bayesian
marginal estimates obtained by dividing the posterior means and the posterior
standard deviations by (c2σ̂2

0 + 1)1/2 result in the estimates (standard errors): −2.3
(0.17), 0.68 (0.15), −0.019 (0.032), 0.34 (0.11), and −0.066 (0.035), which are in
close agreement with the point and interval estimates in Table 9.12. The marginal
probabilities from the GEE exchangeable model were identical to those obtained via
Monte Carlo integration in the mixed model (and displayed on Fig. 9.7).

As we have already mentioned, model checking is very difficult with binary data.
For data with replication across common x variables, one may obtain empirical
probabilities and/or logits (as in Fig. 9.1), which may suggest model forms in an
exploratory model building exercise or may be compared with fitted summaries.
Similarly, the dependence structure may be examined across covariate groups, via
empirical correlations or odds.
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Fig. 9.8 Logit of probability of amenorrhea over time in high- and low- dose groups with marginal
fits from exchangeable GEE model

Figure 9.8 shows the fitted logistic curves in each dose group versus time along
with the logits of the probabilities of amenorrhea. The vertical lines represent 95%
confidence intervals for the logits. These intervals increase slightly in width over
time as dropout occurs. Here, we would conclude that the model fit is reasonable.

9.15 Nonlinear Mixed Models

We now turn attention to the nonlinear mixed model (NLMM). Our development
will be much shorter for this class of models. One reason for this is that the non-
linearity results in very little analytical theory being available. Also, traditionally,
dependent nonlinear data have been analyzed with mixed models and not GEE
because the emphasis is often on unit-level inference. The fitting, inferential sum-
marization and assessment of assumptions will be illustrated using the theophylline
data described in Sect. 9.2.3.

In a nonlinear mixed model (NLMM), the first stage of a linear mixed model is
replaced by a nonlinear form. We describe a specific two-stage form that is useful in
many longitudinal situations. The response at time tij is yij , and xij are covariates
measured at these times, i = 1, . . . ,m, j = 1, . . . , ni. Let N =

∑m
i=1 ni:

Stage One: Conditional on random effects, bi, the response model is

yij = f(ηij , tij) + εij , (9.28)
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where f(·, ·) is a nonlinear function and

ηij = xijβ + zijbi,

with a (k + 1) × 1 vector of fixed effects β, a (q + 1) × 1 vector of random
effects, bi, with q ≤ k, xi = [xi1, . . . ,xini ]

T the design matrix for the fixed effect
with xij = [1, xij1, . . . , xijk]

T and zi = [zi1, . . . , zini ]
T the design matrix for the

random effects with zij = [1, zij1, . . . , zijq]
T.

Stage Two: Random terms:

E[εi] = 0, var(εi) = Ei(α),

E[bi] = 0, var(bi) = D(α),

cov(bi, εi) = 0

where α is the vector of variance–covariance parameters. A common model
assumes

εi ∼ind N(0, σ2
ε Ini),

bi ∼iid N(0,D).

For this model, α = [σ2
ε ,D].

For nonlinear models even the first two moments are not available in closed form.
In general:

E[Yij ] = Ebi
[f(xijβ + zijbi, tij)] �= f(xijβ, tij)

where f(xijβ, tij) is the nonlinear curve evaluated at bi = 0. Hence, unlike the
LMM, the nonlinear curve at a time point averaged across individuals is not equal
to the nonlinear curve at that time for an average individual (i.e., one with bi = 0).
The variance is

var(Yij) = σ2
ε + varbi [f(xijβ + zijbi, tij)]

so that the marginal variance of the response is not constant across time, even when
we have a random intercepts only model (unlike the LMM). For responses on the
same individual, dependence is induced through the common random effects:

cov(Yij , Yij′ ) = covbi
[f(xijβ + zijbi, tij), f(xij′β + zij′bi, tij′ )]

but, as with the GLMM, there is no closed form for the covariance. Finally, for
observations on different individuals:

cov(Yij , Yi′j′ ) = 0
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for i �= i′. The data do not have a closed-form marginal distribution. These forms
illustrate that picking particular random effect structures cannot be based on specific
requirements in terms of the marginal variance and covariance. Rather, this choice
should be based on the context and on data availability.

In a NLMM, the interpretation of parameters is usually tied to the particular
model. In a GLMM, one can make use of linearity on the linear predictor scale to
have an interpretation in terms of unit changes in covariates (as we have illustrated
for loglinear and logistic linear models). In a NLMM, this will not be possible,
however (since the model is nonlinear!).

We next briefly consider parameterization of the model, before considering
likelihood and Bayesian inference in Sects. 9.17 and 9.18, respectively. A GEE
approach is briefly considered in Sect. 9.19, but as previously mentioned, this is
not as popular as likelihood and Bayes approaches, and so this section is short.
The nonlinearity of the model means there is no sufficient statistic for β, and so
conditional likelihood cannot be used.

9.16 Parameterization of the Nonlinear Model

In contrast to LMMs and GLMMs, there is no obvious way to parameterize a
NLMM, and the way one proceeds is an art form. Given the normal random effects
distribution, one usually parameterizes to quantities on the whole real line. This
issue relates to the discussion of the solution locus and the parameterization of
nonlinear models given in Sect. 6.15.

Example: A Simple Pharmacokinetic Model

The simplest pharmacokinetic model is

E[Y | V, ke] = D

V
exp(−ket)

where D is the known dose, V > 0 is the volume of distribution, and ke > 0 is the
elimination rate constant. The obvious parameterization is β0 = logV, β1 = log ke.
A key parameter of interest is the clearance, defined as Cl = V × ke, and so one
may alternatively take β�

1 = logCl with β�
0 = β0 as before. This parameterization

has a number of advantages. A first advantage is that the clearance for individual i
is often modeled as a function of covariates, for example, via a loglinear model of
the form

logCl = α0 + α1xi (9.29)
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where xi is a covariate of interest such as weight. A second advantage is that the
clearance is a very stable parameter to estimate. The clearance is the dose D divided
by the area under the concentration–time curve, and this area tends to be very well
estimated (unless there are few sample points at large times) and hence so does the
clearance, Cl.

If a Bayesian approach is adopted, then the prior must clearly be specific to the
parameterization. For example, for β = [β0,β1]

T and β∗ = [β∗
0,β

∗
1]

T the prior β ∼
N2(μ0,Σ0) with fixed μ0,Σ0, will clearly give different inference to assuming
β� ∼ N2(μ0,Σ0). �

There is some theoretical work on choosing parameterizations (Bates and
Watts 1980), but good parameterizations are often found through experience with
particular models. The accuracy of asymptotic approximations is also crucially
dependent on the choice of parameterization, with stable parameters likely to display
good asymptotic properties. The examination of likelihood contours (as was done
in Sect. 6.12) can indicate whether asymptotic distributions are likely to be accurate
or not.

With many nonlinear models, care must be taken to ensure the model is
identifiable in the sense that if θ �= θ′, f(θ) �= f(θ′). If there is non-identifiability,
then one may either reparameterize the model or enforce identifiability through the
prior. The latter can be messy, however.

Unfortunately, preserving identifiability and retaining an interpretable parameter
cannot usually be simultaneously achieved. We illustrate the problems with an
example.

Example: Pharmacokinetics of Theophylline

As discussed in Sect. 6.2, the one-compartment open model is non-identifiable. We
illustrate by parameterizing as [ke, ka, Cl] to give the mean model, for a generic
individual, as

E[Y ] =
Dkeka

Cl(ka − ke)
[exp(−ket)− exp(−kat)] . (9.30)

This form is known as the “flip-flop” model because the parameters [ke, ka, Cl]
give the same curve as the parameters [ka, ke, Cl]. To enforce identifiability, it is
typical to assume that ka > ke > 0, since for many drugs, absorption is faster than
elimination. This suggests the parameterization [log ke, log(ka − ke), logCl].
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9.17 Likelihood Inference for the Nonlinear Mixed Model

As with the linear mixed and generalized linear mixed models already considered,
the likelihood is defined with respect to fixed effects β and variance components α:

p(y | β,α) =

m∏

i=1

∫

bi

p(yi | bi,β, σ2
ε )× p(bi | D) dbi, (9.31)

with α = [D, σ2
ε ].

The first difficulty to overcome is how to calculate the required integrals, which
for nonlinear models are analytically intractable (recall for the LMM they were
available in closed form). As with the GLMM, two obvious approaches are to resort
to Laplace approximations or adaptive Gauss–Hermite. Pinheiro and Bates (2000,
Chap. 7) contains extensive details on these approaches (see also Bates 2011). We
wish to evaluate

p(yi | β,α) = (2πσ2
ε )

−ni/2(2π)−(q+1)/2|D|−1/2

∫
exp[nig(bi) ] dbi,

where

− 2nig(bi) = [yi − fi(β, bi,xi)]
T[yi − fi(β, bi,xi)]/σ

2
ε + bT

iD
−1bi (9.32)

and
fi(β, bi) = [f(xi1β + zi1bi, ti1), . . . , f(xiniβ + zinibi, tini)]

T.

The Laplace approximation (Sect. 3.7.2) is a second-order Taylor series expansion
of g(·) about

b̂i = argmin
bi

[−g(bi)]

where this minimization constitutes a penalized least squares problem. For a
nonlinear model, numerical methods are required for this minimization, but the
dimensionality, q+1, is typically small. With respect to (9.31), the second difficulty
is how to maximize the likelihood as a function of β and α; again see Pinheiro and
Bates (2000) and Bates (2011) for details.

In terms of the random effects, empirical Bayes estimates may be calculated,
as with the GLMM. In the example that follows, we evaluate the MLEs using
the procedure described in Lindstrom and Bates (1990) in which estimates of bi
are β are first obtained by minimizing the penalized least squares criteria (9.32),
given estimates of D and σ2

ε . Then a first-order Taylor series expansion of fi

about the current estimates of β and bi is carried out, which results in a LMM.
For such a model, the random effects may be integrated out analytically, and the
subsequent (approximate) likelihood can be maximized with respect to D and σ2

ε .
This procedure is then iterated until convergence.
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Approximate inference for [β,α] is carried out via asymptotic normality of the
MLE:

[
β̂

α̂

]
∼ N

([
β

α

]
,

[
Iββ Iβα
Iαβ Iαα

]−1
)

where Iββ , Iβα, Iαβ , and Iαα are the relevant information matrices.
Many approximation strategies have been suggested for nonlinear hierarchical

models, but care is required since validity of the asymptotic distribution depends
on the approximation used. For example, a historically popular approach (Beal and
Sheiner 1982) was to carry out a first-order Taylor series about E[bi] = 0 to give

yij = f(xijβi + zijbi, tij) + εij

≈ f(xijβi, tij) + bT
i

∂f

∂bi

∣∣∣∣
bi = 0

+ εij .

This first-order estimator is inconsistent, however, and has bias even if ni and m
both go to infinity; see Demidenko (2004, Chap. 8).

Example: Pharmacokinetics of Theophylline

For these data, the one-compartment model with first-order absorption and elimina-
tion is a good starting point for analysis. This model was described in some detail
in Sect. 6.16.3. The mean concentration at time point tij for subject i is

Dikaikei
Cli(kai − kei)

[exp(−keitij)− exp(kaitij)] , (9.33)

where we have parameterized in terms of [Cli, kai, kei] and Di is the initial dose.
We first fit the above model to each individual, using nonlinear least squares;

Fig. 9.9 gives the resultant 95% asymptotic confidence intervals. The between-
individual variability is evident, particularly for log ka. Figure 9.10 displays the
data along with the fitted curves. The general shape of the curve seems reasonable,
but the peak is missed for a number of individuals (e.g., numbers 10, 1, 5, and 9).

Turning now to a NLMM, we assume that each of the parameters is treated as a
random effect so that

log kei = β1 + b1i (9.34)

log kai = β2 + b2i (9.35)

logCli = β3 + b3i (9.36)
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Fig. 9.9 95% confidence
intervals for each of the three
parameters and 12 individuals
in the theophylline data.
Obtained via individual fitting

with bi | D ∼ N3(0,D) where bi = [bi1, bi2, bi3]
T. The estimates resulting from

the Lindstrom and Bates (1990) method described in the previous section are given
in Table 9.13. The standard deviation of the random effects for log ka is large, as we
anticipated from examination of Fig. 9.9.
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Fig. 9.10 Concentrations versus time for 12 individuals given the drug theophylline, along with
individual nonlinear least squares fits

9.18 Bayesian Inference for the Nonlinear Mixed Model

The first two stages of the model are as in the likelihood formulation. We first
discuss how hyperpriors may be specified, before discussing inference for functions
of interest.

9.18.1 Hyperpriors

A Bayesian approach requires a prior distribution for β,α. As with the LMM,
a proper prior is required for the matrix D. In contrast to the LMM, a proper
prior is required for β also, to ensure the propriety of the posterior distribution.
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Table 9.13 Comparison of likelihood and Bayesian NLMM estimation techniques for the theo-
phylline data

Likelihood Bayes normal Bayes lognorm Bayes power

PK label Parameter Est. (s.e.) Est. (s.d.) Est. (s.d.) Est. (s.d.)

log ke β1 −2.43 (0.063) −2.46 (0.077) −2.43 (0.075) −2.25 (0.083)
log ka β2 0.45 (0.20) 0.47 (0.19) 0.26 (0.23) 0.45 (0.22)
log Cl β3 −3.21 (0.081) −3.23 (0.082) −3.22 (0.090) −3.22 (0.092)
log ke

√
D11 0.13 (–) 0.19 (0.049) 0.22 (0.059) 0.23 (0.061)

log ka
√
D22 0.64 (–) 0.62 (0.15) 0.72 (0.19) 0.69 (0.18)

log Cl
√
D33 0.25 (–) 0.25 (0.051) 0.30 (0.071) 0.29 (0.072)

For the likelihood summaries, we report the MLEs and the asymptotic standard errors, while for
the Bayesian analysis, we report the mean and standard deviation of the posterior distribution. The
three Bayesian models differ in the error models assumed at the first stage with normal, lognormal,
and power models being considered

If parameters occur linearly, then proper priors are not required, but, as usual, the
safest strategy is to specify proper priors.

For simplicity, we assume that random effects are associated with all parameters
and as, in Sect. 8.6.3, parameterize the model as τ = σ−2

ε , W = D−1, and βi =
β + bi for i = 1, . . . ,m, with the dimensionality of βi being k + 1. The joint
posterior is

p(β1, . . . ,βm, τ,β,W | y) ∝
m∏

i=1

[p(yi | βi, τ)p(βi | β,W )]π(β)π(τ)π(W ).

We assume the priors

β ∼ Nk+1(β0,V0), τ ∼ Ga(a0, b0), W ∼ Wishk+1(r,R
−1),

for further discussion of this specification, see Sect. 8.6.2. Closed-form inference
is unavailable, but MCMC is almost as straightforward as in the LMM case. The
INLA approach is not (at time of writing) available for the Bayesian analysis of
nonlinear models. With respect to MCMC, the conditional distributions for β, τ , W
are unchanged from the linear case. There is no closed-form conditional distribution
for βi, which is given by

p(βi | β, τ,W ,y) ∝ p(yi | βi, τ)× p(βi | β,W )

but a Metropolis–Hastings step can be used (to give a Metropolis within Gibbs
algorithm, as described in Sect. 3.8.5).
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9.18.2 Inference for Functions of Interest

We discuss prior choice and inferential summaries in the context of fitting a NLMM
to the theophylline data. For these data, the parameterization

βi = [log kei, log kai, logCli]

was initially adopted, with random effects normal prior βi | β,D ∼iid N3(β,D ).
We assume independent normal priors for the elements of β, centered at 0 and
with large variances (recall that we need proper priors). For D−1, we assume a
Wishart(r,R−1) distribution with diagonal R (see Sect. 8.6.2 and Appendix D for
discussion of the Wishart distribution). We describe the procedure that is followed
in order to choose the diagonal elements.

Consider a generic univariate “natural” parameter θ (e.g., ke, ka, or Cl) for which
we assume the lognormal prior LogNorm(β,D). Pharmacokineticists have insight
into the coefficient of variation for θ, that is, CV(θ) = sd(θ)/E[θ]. Recall the first
two moments of a lognormal

E[θ] = exp(β +D/2)

var(θ) = E[θ]2[exp(D)− 1]

sd(θ) = E[θ]
√

exp(D)− 1

≈ E[θ]
√
D

so that

CV(θ) ≈
√
D.

We can therefore assign a prior for D by providing a prior estimate of
√
D. Under

the Wishart parameterization, we have adopted E[D−1] = rR−1. We take r = 3
(which is the smallest integer that gives a proper prior) andR = diag(1/5, 1/5, 1/5)
which gives E[D−1

kk ] = 15 so that, for k = 1, 2, 3, E[
√
Dkk] ≈ 1/

√
15 = 0.26, or

an approximate prior expectation of the coefficient of variation of 26%, which is
reasonable in this context (Wakefield et al. 1999).

For inference, again consider a generic parameter θ with prior LogNorm(β,D).
The mode, median, and mean of the population distribution of θ are

exp(β −
√
D), exp(β), exp(β +D/2),

respectively. Further, exp(β ± 1.96
√
D ) is a 95% interval for θ in the population.

Consequently, given samples from the posterior p(β,D | y), one may simply
convert to samples for any of these summaries.

In a pharmacokinetic context, interest often focuses on various functions of the
natural parameters. As a first example, consider the terminal half-life which is given
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by t1/2 = k−1
e log 2. In the parameterization adopted in the theophylline study,

log ke ∼ N(β1, D11 ), and so the distribution of the log half-life is normal also:

log t1/2 ∼ N[ log(log 2)− β1, D11 ]

which simplifies inference since one can summarize the population distribution in
the same way as was just described for a generic parameter θ. Other parameters
of interest are not simple linear combinations, however. For example, the time to
maximum is

tmax =
1

ka − ke
log

(
ka
ke

)

and the maximum concentration is

E[Y | tmax] =
Dka

V (ka − ke)
[exp(−ketmax)− exp(−katmax)]

=
D

V

(
ka
ke

)ka/(ka−ke)

.

For such summaries, the population distribution may be examined by simulating
parameter sets [log ke, log ka, logCl] for new individuals from the population
distribution, and then converting to the functions of interest.

As noted in Sect. 9.16, the parameterization [log ke, log ka, logCl] that we have
adopted is non-identifiable since the same likelihood values are achieved with the
set [log ka, log ke, logCl]. For the theophylline data, we performed MCMC with
two chains, and one of the chains “flipped” between the two non-identifiable regions
in the parameter space, as illustrated in Fig. 9.11 (note that in panels (a) and (b), the
vertical axes have the same scale). In this plot the three population parameters β1,
β2, β3 are plotted in the three rows. Here, the labeling of β1 and β2 is arbitrary. The
parameter β3 is unaffected by the flip-flop behavior because the mean log clearance
is the same under each nonidentifiable set. In Fig. 9.11(a), the chain represented by
the solid line corresponds to the smaller of the two rate constants and, after a small
period of burn-in, remains in the region of the parameter space corresponding to
the smaller constant. In contrast, the chain represented by the dotted line flips to the
region corresponding to the larger rate constant at around (thinned) iteration number
200. In panel (b), we see that the dotted chain flips the other way, as it is required
to do.

We now constrain the parameters by enforcing the known ordering on the rates:
kai > kei > 0. To avoid the flip-flop problem, we use the parameterization

θ1i = log kei = β1 + b1i (9.37)

θ2i = log(kai − kei) = β2 + b2i (9.38)

θ3i = logCli = β3 + b3i (9.39)
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Fig. 9.11 Demonstration of
flip-flop behavior for the
theophylline data and the
unconstrained
parameterization given by
(9.34)–(9.36): (a) β1, (b) β2,
(c) β3. Thinned realizations
from two chains appear in
each plot

with bi = [b1i, b2i, b3i]
T ∼ N3(0,D). This is a different model to the model that

does not prevent flip-flop since the prior inputs are different. In this case, we keep
the same priors which correspond to assuming that the coefficient of variation for
ka − ke is around 26% which is clearly less meaningful, but in this example, ka is
considerably larger than ke.
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We can convert to the original parameters via

kei = exp(θ1i)

kai = exp(θ1i) + exp(θ2i)

Cli = exp(θ3i).

Inference for the population distribution of kei and Cli is straightforward, but for
kai, more work is required. However, the expectation of the population absorption
rate is

E[kai] = E[ exp(θ1i) + exp(θ2i) ]

= exp
(
β1 +

√
D11/2) + exp(β1 +

√
D11/2

)
.

A full Bayesian analysis is postponed until later in the chapter (at the end of
Sect. 9.20).

9.19 Generalized Estimating Equations

If interest lies in population parameters, then we may use the estimator γ̂ that
satisfies

G(γ, α̂) =
m∑

i=1

DT
iW

−1
i (Yi − fi) = 0, (9.40)

where Di = ∂fi/∂γ, Wi = Wi(γ, α̂) is the working covariance model, fi =
fi(γ), and α̂ is a consistent estimator of α. Sandwich estimation may be used to
obtain an empirical estimate of the variance Vγ :

(
m∑

i=1

DT
iW

−1
i Di

)−1 [ m∑

i=1

DT
iW

−1
i cov(Yi)W

−1
i Di

](
m∑

i=1

DT
iW

−1
i Di

)−1

.

(9.41)

We then have the usual asymptotic result: V −1/2
γ

(γ̂ − γ) →d N(0, I).
GEE has not been extensively used in a nonlinear (non-GLM) setting. This

is partly because in many settings (e.g., pharmacokinetics/pharmacodynamics),
interest focuses on understanding between-individual variability, and explaining
this in terms of individual-specific covariates, or making predictions for particular
individuals. The interpretation of the parameters within a GEE implementation is
also not straightforward. For a marginal GLM, there is a link function and a linear
predictor which allows interpretation in terms of differences in averages between
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Table 9.14 GEE estimates
of marginal parameters for
the theophylline data

PK label Parameter Est. (s.e.)

log ke γ1 −2.52 (0.068)
log ka γ2 0.40 (0.17)
log Cl γ3 −3.25 (0.076)

populations defined by covariates; see Sect. 9.11. Consider a nonlinear model over
time. In a mixed model, the population mean parameters are averages of individual-
level parameters. A marginal approach models the average response as a nonlinear
function of time, and the parameters do not, in general, have interpretations as
averages of parameters. Rather, parameters within a marginal nonlinear model
determine a population-averaged curve. The parameters can be made a function of
covariates such as age and gender, but the interpretation is less clear when compared
to a mixed model formulation. For example, in (9.29), we model the individual-
level log clearance as a function of a covariate xi. We could include covariates
in the marginal model in an analogous fashion, but it is not individual clearance
we are modeling, and the subsequent analysis cannot be used in the same way to
derive optimal doses as a function of x, for example. Obviously, GEE cannot provide
estimates of between-individual variability or obtain predictions for individuals.

Example: Pharmacokinetics of Theophylline

GEE was implemented with mean model

E[Yij ] = fi(γ) =
Di exp(γ1 + γ2)

exp(γ3)[exp(γ2)− exp(γ1)]
[exp(−eγ1tij)− exp(−eγ2tij)] .

(9.42)

As just discussed, the interpretation of the parameters for this model is not
straightforward since we are simply modeling a population-averaged curve. So,
for example, ke = exp(γ1) is the rate of elimination that defines the population-
averaged curve and is not the average elimination rate in the population.

We use working independence (Wi = Ini ) so that (9.40) is equivalent to a
nonlinear least squares criteria, which allows the estimates to be found using stan-
dard software. The variance estimate (9.41) simplifies under working independence,
and the most tedious part is evaluating the ni × 3 matrix of partial derivatives
Di = ∂fi/∂γ. The estimates and standard errors are given in Table 9.14. It is
not possible to directly compare these estimates with those obtained from a mixed
model formulation.
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9.20 Assessment of Assumptions for General
Regression Models

Model checking proceeds as with the linear model with dependent data (Sect. 8.8)
except that interpretation is not as straightforward since the properties of residuals
are difficult to determine even when the model is correct. We focus on generalized
and nonlinear mixed models. For both of these classes Pearson (stage one) residuals,

eij =
Yij − E[Yij | bi]√

var(Yij | bi)

are straightforward to calculate.
With respect to mixed models, as with the LMM, there are assumptions at each of

the stages, and one should endeavor to provide checks at each stage. If we are in the
situation in which there are individuals with sufficient data to reliably estimate the
parameters from these data alone, we should use the resultant estimates to provide
checks. Residuals from individual fits can be used to assess whether the nonlinear
model is appropriate and if the assumed variance model is appropriate. One may
also construct normal QQ plots and bivariate plots of the estimated individual-level
parameters to see if the second-stage normality assumption appears reasonable. In
a nonlinear setting, there are few results availability on consistency of estimates,
unless the model is correct, and so it is far more important to have random effects
distributions that are approximately correctly specified.

If individual-level covariates are available, then the estimated parameters may
be plotted against these to determine whether a second-stage regression model is
appropriate (if we are in exploratory mode). In the pharmacokinetic context, one
may model clearance as a function of weight, for example, via a loglinear model
as in (9.29). Examining whether the spread of the random effects estimates changes
with covariates is also an important step.

All of the above checks can be carried out based on the (shrunken) estimates
obtained from random effects modeling, but caution is required as these estimates
may be strongly influenced by the assumption of normality. If ni is large, then this
will be less problematic.

Example: Pharmacokinetics of Theophylline

We present some diagnostics for the theophylline data. We first carry out individual
fitting using nonlinear least squares (which is possible here since ni = 11), and
Fig. 9.12 gives normal QQ plots of the log ke, log ka, and logCl parameters. There
is at least one outlying individual here, but there is nothing too worrying in these
plots.
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Fig. 9.12 Normal QQ plots (left column) and scatterplots (right column) of the parameter
estimates from individual nonlinear least square fits for the theophylline data. (a) QQ plot for
log ke, (b) log ka versus log ke, (c) QQ plot for log ka, (d) logCl versus log ke, (e) QQ plot for
logCl, (f) logCl versus log ka

In the following, a number of mixed models are fitted in an exploratory fashion
in order to demonstrate some of the flexibility of NLMMs. We first fit a mixed
model using MLE and the nonlinear form (9.33). The error terms were assumed to
be normal on the concentration scale, with constant variance. Plots of the Pearson
residuals versus fitted value and versus time are displayed in Figs. 9.13(a) and (b).

Figure 9.13(b) suggests the variance changes with time (or that the model is
inadequate for time points close to 0), and we carry out another analysis with the
model

log yij = log(μij) + δij (9.43)
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Fig. 9.13 Residuals obtained from various NLMM fits to the theophylline data: (a) normal model:
residuals against fitted values (b) normal model: residuals against time, (c) lognormal model:
residuals against fitted values (d) lognormal model: residuals against time, (e) power model:
residuals against fitted values (f) power model: residuals against time

with μij again given by (9.33) and δij | σ2
δ ∼iid N(0, σ2

δ ). This lognormal
model has (approximately) a constant coefficient of variation. To fit this model,
the responses at time 0 were removed since μij = 0 for tij = 0. This time, we
adopt the parameterization that prevents flip-flop, that is, the model with (9.37)–
(9.39). This model produced the Bayesian summaries given in Table 9.13 which are
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reasonably consistent with those in the normal model. Unfortunately, the residual
plot in Fig. 9.13(d) shows only a slight improvement over the normal model in
panel (b).

The next model considered was yij = μij + εij with the power model

εij | μij , σ
2
0 , σ

2
1 , γ ∼ind N

(
0, σ2

0 + σ2
1μ

γ
ij

)
(9.44)

with μij given by (9.33) and 0 < γ ≤ 2. This model has two components of variance
and may be used when an assay method displays constant measurement at low
concentrations with the variance increasing with the mean for larger concentrations.
See Davidian and Giltinan (1995, Sect. 2.2.3) for further discussion of variance
models.

The joint prior on [σ0, σ1, γ] can be difficult to specify since there is dependence
between σ1 and γ in particular. For simplicity, uniform priors on the range [0,2]
were placed on σ0 and σ1. The parameter γ controls the strength of the mean–
variance relationship, and, considering the second component only, the constant
coefficient of variation model corresponds to γ = 2. In the pharmacokinetics
literature, fixing γ = 1 or 2 is not uncommon. A uniform prior on [0,2] was specified
for γ also. Figures 9.13(e) and (f) show the residual plots for this model, and we
see some improvement over the other two error models, though there is still some
misspecification evident at low time points in panel (f). Further analyses for these
data might examine other absorption models (since the kinetics may be nonlinear,
which could explain the poor fit at low times).

Posterior summaries for the power variance model are given in Fig. 9.14. The
strong dependence between σ1 and γ is evident in panel (f). There is a reasonable
amount of uncertainty in the posterior for γ, but the median is 0.71. The parameter
estimates for β and D are given in Table 9.13 and are similar to those from
the normal and lognormal error models. Following the procedure described in
Sect. 9.18.2, samples for the population medians for ke, ka, and Cl were generated,
and these are displayed in Fig. 9.15, with notable skewness in the posteriors for ka
and Cl.

9.21 Concluding Remarks

The modeling of generalized linear and nonlinear dependent data is inherently more
difficult than the modeling of linear dependent data due to mathematical tractability,
the required computations to perform inference and parameter interpretation. Con-
ceptually, however, the adaption of mixed (conditional) and GEE (marginal) models
to the generalized linear and nonlinear scenarios is straightforward. With respect
to parameter interpretation, the clear distinction between marginal and conditional
models is critical and needs to be recognized.

There is little theory on the consistency of estimators in the face of model
misspecification for GLMMs and NLMMs. This suggests that one should be more
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Fig. 9.14 Posterior summaries for the two-component power error model (9.44) fitted to the
theophylline data. Posterior marginals for σ0, σ1, γ in the left common and bivariate plots in
the right column

cautious in interpretation of the results from GLMMs and NLMMs, when compared
to LMMs, and model checking should be carefully carried out. The effects of
model misspecification with mixed models have attracted a lot of interest. Heagerty
and Kurland (2001) illustrate the bias that is introduced when the random effects
variances are a function of covariates. McCulloch and Neuhaus (2011) show that
misspecification of the assumed random effects distribution has less impact on
prediction of random effects. Sensitivity analyses, with respect to the random effects
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median ka, (d) population median ke versus population median Cl, (e) population median Cl,
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distribution, for example, can be useful. The Bayesian approach, with computation
via MCMC, is ideally suited to this endeavor. If the number of observations per
unit, or the number of units, is small, then the MCMC route is appealing because
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one does not have to rely on asymptotic inference. Model checking is difficult in
this situation, however.

We have not discussed REML in the context of GLMs; Smyth and Verbyla (1996)
show how REML may be derived from a conditional likelihood approach in the
context of GLMs with dispersion parameters and canonical link functions.

The modeling of dependent binary data is a difficult enterprise since binary
observations contain little information, and there is no obvious choice of multi-
variate binary distribution. Logistic mixed models are intuitively appealing but are
restrictive in the dependence structure they impose on the data. Care in computation
is required, and the use of adaptive Gauss–Hermite for MLE, or MCMC for Bayes,
is recommended. As always, GEE has desirable robustness properties for large
numbers of clusters. In the GLM context, we emphasize the fitting of both types
of model in a complimentary fashion. We have illustrated how marginal inference
may be carried out with the logistic mixed model, which allows direct comparison
of results with GEE.

9.22 Bibliographic Notes

Liang and Zeger (1986) and Zeger and Liang (1986) popularized GEE by con-
sidering GLMs with dependence within units (in the context of longitudinal
data). Prentice (1988) proposed using a second set of estimating equations for α.
Gourieroux et al. (1984) considered the quadratic exponential model. Zhao and
Prentice (1990) discussed the use of this model for multivariate binary data and
Prentice and Zhao (1991) for general responses (to give the approach labelled
GEE2). Qaqish and Ivanova (2006) describe an algorithm for detecting when an
arbitrary set of logistic contrasts correspond to a valid set of joint probabilities and
for computing them if they provide a legal set. Fitzmaurice et al. (2004) is a very
readable account of the modeling of longitudinal data with GLMs, from a frequentist
(GEE and mixed model) perspective.

An extensive treatment of Bayesian multilevel modeling is described in Gelman
and Hill (2007). We have concentrated on inverse gamma priors for random effects
variances, but a popular alternative is the half-normal prior; see Gelman (2006) for
further details. Fong et al. (2010) describe how the INLA computational approach
may be used for GLMMs, including a description of its shortcomings, in terms of
accuracy, for the analysis of binary data. Models and methods of analysis for spatial
data are reviewed in Gelfand et al. (2010).

Davidian and Giltinan (1995) is an extensive and excellent treatment of nonlinear
modeling with dependent responses, mostly from a non-Bayesian perspective.
Pinheiro and Bates (2000) is also excellent and covers mixed models (again
primarily from a likelihood perspective) and is particularly good on computation.
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9.23 Exercises

9.1 Consider the model

E[Y | b] = exp(βx+ b)

1 + exp(βx+ b)
,

with b | σ2
0 ∼iid N(0, σ2

0). Prove that

E[Y ] ≈ exp
[
βx/(c2σ2

0 + 1)1/2
]

1 + exp
[
βx/(c2σ2

0 + 1)1/2
]

where c = 16
√
3/(15π).

[Hint: G(z) ≈ Φ(cz) where G(z) = (1 + e−z)−1 is the CDF of a logistic
random variable, and Φ(·) is the CDF of a normal random variable.]

9.2 Show that if each response is on the whole real line, then the density (9.19),
with ci = 0, corresponds to the multivariate normal model.

9.3 With respect to Table 9.11, show that, for a model for two binary responses
parameterized in terms of the marginal means and marginal odds ratio, the
likelihood is given by (9.26).

9.4 Sommer (1982) contains details of a study on 275 children in Indonesia.
This study examined, among other things, the association between the risk
of respiratory infection and xerophthalmia (dry eye syndrome), which may
be caused by vitamin A deficiency. These data are available in the R package
epicalc and are named Xerop.

Consider the marginal model for the jth observation on the ith child

log

(
E[Yij ]

1− E[Yij ]

)
= γ0 + γ1 genderij + γ2 hforaij + γ3 cosij +

γ4 sinij + γ5 xeroij + γ6 ageij + γ7 age
2
ij (9.45)

where:

• Yij is the absence/presence of respiratory infection.
• genderij is the gender (0 = male, 1 = female).
• hforaij is the height-for-age.
• cosij is the cosine of time of measurement i, j (time is in number of

quarters).
• sinij is the sine of time of measurement i, j (time is in number of quarters).
• xeroij is the absence/presence (0/1) of xerophthalmia.
• ageij is the age.

See Example 9.4 of Diggle et al. (2002) for more details on this model.

(a) Interpret each of the coefficients in (9.45).
(b) Provide parameter estimates and standard errors from a GEE analysis.
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(c) Consider a GLMM logistic analysis with a normally distributed random
intercept and the conditional version of the regression model (9.45).
Interpret the coefficients of this model.

(d) Provide parameter estimates and standard errors from the GLMM analysis.
(e) Summarize the association between respiratory infection and xeropthalmia

and age.

9.5 On the book website, you will find data on illiteracy and race collected during
the US 1930 census. Wakefield (2009b) provides more information on these
data. Illiterate is defined as being unable to read and over 10 years of age. For
each of the i = 1, . . . , 49 states that existed in 1930, the data consist of the
number of illiterate individuals Yij and the total population aged 10 years and
older Nij by race, coded as native-born White (j = 1), foreign-born White
(j = 2), and Black (j = 3). Let pij be the probability of being illiterate
for an individual residing in state i and of race j. An additional binary state-
level variable xi = 0/1 describes whether Jim Crow laws were absent/present
in state i = 1, . . . , 49. These laws enforced racial segregation in all public
facilities.

The association between illiteracy and race, state, and Jim Crow laws will
be examined using logistic regression models. In particular, interest focuses
on whether illiteracy in 1930 varied by race, varied across states, and was
associated with the presence/absence of Jim Crow laws:

(a) Calculate the empirical logits of the pij’s, and provide informative plots
that graphically display the association between illiteracy and state, race,
and Jim Crow laws.

(b) First consider the native-born White data only (Yi1, Ni1), i = 1, . . . , 49,
with the following models:

• Binomial: Yi1 | pi1 ∼ Binomial(Ni1, pi1), with the logistic model

log

(
pi1

1− pi1

)
= γ1 (9.46)

for i = 1, . . . , 49.
• Quasi-Likelihood: Model (9.46) with

E[Yi1] = Ni1pi1, var(Yi1) = κ×Ni1pi1(1− pi1).

• GEE: Model (9.46) with E[Yi1] = Ni1pi1 and working independence.
• GLMM

log

(
pi1

1− pi1

)
= β1 + bi1 (9.47)

with bi1 | σ2
1 ∼iid N(0, σ2

1), i = 1, . . . , 49.
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(i) Give careful definitions of exp(γ1) in the GEE model and exp(β1) in
the GLMM.

(ii) Fit the binomial model to the native-born White data and give a 95%
confidence interval for the odds of native-born White illiteracy. Is this
model appropriate?

(iii) Fit the quasi-likelihood and GEE models to the native-born White data
and give 95% confidence interval for the odds of native-born White
illiteracy in each case. How does the GEE approach differ from quasi-
likelihood here? Which do you prefer?

(iv) Fit the GLMM model to the data using a likelihood approach and give
a 95% confidence interval for the odds of native-born White illiteracy
along with an estimate of the between-state variability in logits. Are
the results consistent with the GEE analysis?

(c) Now consider data on all three races. Using GEE fit, separate models to
the data of each race. Give a 95% confidence interval for the odds ratios
comparing illiteracy between foreign-born Whites and native-born Whites,
and comparing Blacks with native-born Whites. Is there any problem with
this analysis?

(d) Use GEE to fit a model to all three races simultaneously and compare your
answer with the previous part. Which analysis is the most appropriate and
why?

(e) Fit the GLMM

log

(
pij

1− pij

)
= βj + bij (9.48)

with bij | σ2
j ∼ind N(0, σ2

j ), j = 1, 2, 3, using likelihood-based methods.
Give 95% confidence intervals for the odds ratios comparing illiteracy
between foreign-born Whites and native-born Whites, and comparing
Blacks with native-born Whites. Are your conclusions the same as with
the GEE analysis? Does this model require refinement?

(f) The state-level Jim Crow law indicator will now be added to the analysis.
Consider the model

log

(
pij

1− pij

)
= γ0j + γ1jxi (9.49)

Give interpretations of each of exp(γ0j), exp(γ1j) for j = 1, 2, 3. Fit this
model using GEE and interpret and summarize the results in a clear fashion.

(g) Consider Bayesian fitting of the GLMM:

log

(
pij

1− pij

)
= β0j + β1jxi + bij (9.50)
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where bi | D ∼iid N3(0,D ) with bi = [bi1, bi2, bi3]
T and

D =

⎡

⎣
σ2
1 ρ12σ1σ2 ρ13σ1σ3

ρ12σ2σ1 σ2
2 ρ23σ2σ3

ρ13σ3σ1 ρ23σ3σ2 σ2
3

⎤

⎦

is a 3 × 3 variance–covaraince matrix for the random effects bi. Assume
improper flat priors for β0j , β1j , j = 1, 2, 3, and the Wishart prior W =
D−1 ∼ Wishart(r,S) parameterized so that E[W ] = rS, with r = 3 and

S =

⎡

⎣
30.45 0 0

0 30.45 0

0 0 30.45

⎤

⎦ .

Carry out a Bayesian analysis using this model and interpret and summarize
the results in a clear fashion.

(h) Write a short summary of what you have found, concentrating on the
particular substantive questions of interest stated in the introduction.

9.6 For the theophylline data considered in this chapter, reproduce the results in
Table 9.14 by coding up the nonlinear GEE model with working independence.
These data are available as Theoph in the R package.

9.7 Throughout this chapter, mixed models with clustering induced by normally
distributed random effects have been considered. In this question, a non-normal
random effects distribution will be considered. Suppose, for paired binary
observations, that the data-generating mechanism is the following:

Yij | μij ∼ind Bernoulli(μij),

for i = 1, . . . , n, j = 1, 2, with

μij =
exp(β0 + β1xij + bi)

1 + exp(β0 + β1xij + bi)

bi =

{−γ with probability 1/2

γ with probability 1/2.

and Xij ∼iid Unif(−10, 10). The parameters β1 ∈ R and γ > 0 are unknown,
and all bi are independent and identically distributed. For simplicity, assume
β0 = 0 throughout:

(a) For 0 ≤ β1 ≤ 1 and 0 ≤ γ ≤ 5, calculate the correlation between the
outcomes Yij and Yij′ within cluster i, averaged over the distribution of
clusters.
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(b) For β1 = 1 and 0 ≤ γ ≤ 5, calculate the numerical value of the true slope
parameter estimated by a GEE logistic regression model of y on x, with
working independence within clusters. Compare this value to the true β1.

(c) Consider a study with paired observations and binary outcomes (e.g., a
matched-pairs case-control study as described in Sect. 7.10.3). The true
data-generating mechanism is as above with β1 = 1, γ = 5. First plot y
versus x for all observations and add a smoother. This plot seems to indicate
that there are low-, medium-, and high-risk subjects, depending on levels of
x.

(d) In truth, of course, there are not three levels of risk. For some example data,
give a plot that illustrates this and write an explanation of what your plot
shows. The plot should use only observed, and not latent, variables.
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Chapter 10
Preliminaries for Nonparametric Regression

10.1 Introduction

In all other chapters we assume that the regression model, f(x), takes an a
priori specified, usually simple, parametric form. Such models have a number of
advantages: If the assumed parametric form is approximately correct, then efficient
estimation will result; having a specific linear or nonlinear form allows concise
summarization of an association; inference for parametric models is often relatively
straightforward. Further, a particular model may be justifiable from the context.

In this and the following two chapters, we consider situations in which a greater
degree of flexibility is desired, at least when modeling some components of the
covariate vector x. Nonparametric modeling is particularly useful when one has
little previous experience with the specific data-generating context. Typically, one
may desire f(·) to arise from a class of functions with restrictions on smoothness
and continuity. Although the models of this and the next two chapters are referred
to as nonparametric,1 they often assume parametric forms but depend on a large
number of parameters which are constrained in some way, in order to prevent
overfitting of the data. For some approaches, for example, the regression tree models
described in Sect. 12.7, the model is specified implicitly through an algorithm, with
the specific form (including the number of parameters) being selected adaptively.

There are a number of contexts in which flexible modeling is required. The
simplest is when a graphical description of a set of data is needed, which is often
referred to as scatterplot smoothing. Formal inference is also possible within a
nonparametric framework, however. In some circumstances, estimation of a para-
metric relationship between a response and an x variable may be of interest, while
requiring flexible nonparametric modeling of other nuisance variables (including
confounders). The example described in Sect. 1.3.6 is of this form, with the
association between spinal bone mineral density and ethnicity being of primary

1Some authors prefer the label semiparametric.

J. Wakefield, Bayesian and Frequentist Regression Methods, Springer Series
in Statistics, DOI 10.1007/978-1-4419-0925-1 10,
© Springer Science+Business Media New York 2013
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interest, but with a flexible model for age being desired. Finally, an important and
common use of nonparametric modeling is prediction. In this case, the focus is on
the accuracy of the final prediction, with little interest in the values of the parameters
in the model. Prediction with a discrete outcome is often referred to as classification.

Much of the development of nonparametric methods, in particular those asso-
ciated with classification, has occurred in computer science and, more specifically,
machine learning, with a terminology that is quite different to that encountered in
the statistics literature. The data with which the model is fitted constitute the training
sample; nonparametric regression is referred to as learning a function; the covariates
are called features; and adding a penalty term to an objective function (e.g., a
residual sum of squares) is called regularization. In supervised learning problems,
there is an outcome variable that we typically wish to predict, while in unsupervised
learning there is no single outcome to predict, rather the aim is to explore how the
data are organized or clustered. Only supervised learning is considered here.

The layout of this chapter is as follows. In Sect. 10.2, we discuss a number
of motivating examples. Section 10.3 examines what response summary should
be reported in a prediction setting using a decision theory framework, while in
Sect. 10.4 various measures of predictive accuracy are reviewed. A recurring
theme will be the bias-variance trade-off encountered when fitting flexible models
containing a large number of parameters. To avoid excess variance of the prediction,
various techniques that reduce model complexity will be described; a popular
approach is to penalize large values of the parameters. This concept is illustrated
in Sect. 10.5 with descriptions of ridge regression and the lasso. These shrinkage
methods are introduced in the context of multiple linear regression.2 Controlling
the complexity of a model is a key element of nonparametric regression and is
usually carried out using smoothing (or tuning) parameters. In Sect. 10.6, smoothing
parameter estimation is considered. Concluding comments appear in Sect. 10.7.
There is a huge and rapidly growing literature on nonparametric modeling, and the
surface is only scratched here; Sect. 10.8 gives references to broader treatments and
to more detailed accounts of specific techniques.

The next two chapters also consider nonparametric modeling. In Chap. 11, two
popular approaches to smoothing are described: Those based on splines and those
based on kernels; the focus of the latter is local regression. Chapter 11 only considers
situations with a single covariate, with multiple predictors considered in Chap. 12,
along with methods for classification.

10.2 Motivating Examples

Three examples that have been previously introduced will be used for illustrating
nonparametric modeling: The prostate cancer data described in Sect. 1.3.1 are used
for illustration in this chapter and in Chap. 12; the spinal bone marrow data of

2Ridge regression is also briefly encountered in Sect. 5.12.
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Fig. 10.1 Log ratio of two
laser sources, as a function of
the range, in the LIDAR data

Sect. 1.3.6 will be analyzed in Chap. 11; and the bronchopulmonary dysplasia data
described in Sect. 7.2.3 will be examined in Chaps. 11 and 12. In this section, two
additional datasets are described.

10.2.1 Light Detection and Ranging

Figure 10.1 shows data, taken from Holst et al. (1996), from a light detection and
ranging (LIDAR) experiment. The LIDAR technique (which is similar to radar
technology) uses the reflection of laser-emitted light to monitor the distribution of
atmospheric pollutants. The data we consider concern mercury. The x-axis measures
distance traveled before light is reflected back to its source (and is referred to as the
range), and the y-axis is the logarithm of the ratio of distance measured for two laser
sources: One source has a frequency equal to the resonant frequency of mercury,
and the other has a frequency off this resonant frequency. For these data, point and
interval estimates for the association between the log ratio and range are of interest.
Figure 10.1 shows a clear nonlinear relationship between the log ratio and range,
with greater variability at larger ranges.

10.2.2 Ethanol Data

This example concerns data collected in a study reported by Brinkman (1981). The
data consist of n = 88 measurements on three variables: NOx, the concentration
of nitric oxide (NO) and nitrogen dioxide (NO2) in the engine exhaust, with
normalization by the work done by the engine; C, the compression ratio of the
engine; and E, the equivalence ratio at which the engine was run, a measure of
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the air/ethanol mix. Figure 10.2 gives a three-dimensional display of these data. The
aim is to build a predictive model, and a simple linear model is clearly inadequate
since there is a strong nonlinear (inverse U-shaped) association between NOx and E.
The form of the association between NOx and C is less clear.

10.3 The Optimal Prediction

Before considering model specification and describing methods for fitting, we use a
decision theory framework to decide on which summary of the distribution of Y | x
we should report if the aim of analysis is prediction, where x is a 1× (k + 1) design
vector corresponding to the intercept and k covariates. Throughout this section,
we will suppose we are in an idealized situation in which all aspects of the data-
generating mechanism are known, and we need only decide on which quantity to
report.

The specific decision problem we consider is the following. Imagine we are
involved in a game in which the aim is to predict a new observation y, using
a function of covariates x, f(x). Further, we know that our predictions will be
penalized via a loss function L[y, f(x)] that is the penalty incurred when predicting
y by f(x). The optimal prediction is that which minimizes the expected loss
defined as

EX, Y {L [Y, f(X)]} , (10.1)

where the expectation is with respect to the joint distribution of the random variables
Y and X .
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10.3.1 Continuous Responses

The most common choice of loss function is squared error loss, with f(x) chosen
to minimize the expected (squared) prediction error:

EX, Y

{
[Y − f(X)]

2
}
, (10.2)

that is, the quadratic loss. Writing (10.2) as

EX

[
EY |X = x

{
[Y − f(x)]

2 | X = x
}]

indicates that we may minimize pointwise, with solution

f̂(x) = E[Y | x],

that is, the conditional expectation (Exercise 10.4). Hence, the best prediction,
f̂(x), is the usual regression function.

As an alternative, with absolute loss, EX, Y [ |Y − f(X)| ], the solution is the
conditional median

f̂(x) = median(Y | x)
(Exercise 10.4). Modeling via the median, rather than the mean, provides greater ro-
bustness to outliers but with an increase in computational complexity. Exercise 10.4
also considers a generalization of absolute loss.

Other choices have also been suggested for specific situations. For example, the
scaled quadratic loss function

L[y, f(x)] =

(
y − f(x)

y

)2

(10.3)

has been advocated for random variables y > 0 (e.g., Bernardo and Smith 1994,
p. 301). This loss function is scaling departures y− f(x) by y, so that discrepancies
in the predictions of the same magnitude are penalized more heavily for small y
than for large y. Taking the expectation of (10.3) with respect to Y | x leads to

f̂(x) =
E[Y −1 | x]
E[Y −2 | x] . (10.4)

For details, see Exercise 10.5. As an example, suppose the data are gamma
distributed as

Y | μ(x), α ∼iid Ga
{
α−1, [μ(x)α]−1

}
,
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where E[Y | x] = μ(x), and α−1/2 is the coefficient of variation. Then
Exercise 10.5 shows that (10.4) is equal to

f̂(x) = (1− 2α)μ(x), (10.5)

for α < 0.5. Hence, under the scaled quadratic loss function, we should scale the
mean function by 1− 2α when reporting.

10.3.2 Discrete Responses with K Categories

Now suppose the response is categorical, with Y ∈ {0, 1, . . . ,K − 1}. Again, we
must decide on which summary measure to report. One approach is to assign a class
in {0, 1, . . . ,K − 1} to a new case via a classification rule g(x). Alternatively, a
probability distribution over the classes may be reported.3

Suppose the distributions of x given Y = k, p(x | Y = k), are known along
with prior probabilities on the classes, Pr(Y = k) = πk . Then, via Bayes theorem,
the posterior classifications may be obtained:

Pr(Y = k | x) = p(x | Y = k)πk∑K−1
l=0 p(x | Y = l)πl

. (10.6)

Choosing the k that maximizes these probabilities gives a Bayes classifier.
For the situation in which we wish to assign a class label, the loss function is

a K × K matrix L with element L(j, k) representing the loss incurred when the
truth is Y = j, and the classification is g(x) = k, with j, k ∈ {0, 1, . . . ,K − 1}.
A sensible loss function is

L(j, k) =

{
0 if j = k

≥ 0 if j �= k.
(10.7)

In most cases,we will assign L(j, k) > 0 for j �= k but in some contexts incorrect
classifications will not be penalized if they are of no consequence. We emphasize
that the class predictor g(x) takes a value from the set {0, 1, . . . ,K − 1} and is a
function of Pr(Y = k | x). The expected loss is

EX, Y {L [Y, g(X)]} = EX [EY |x {L [Y, g(x)] | X = x}]

= EX

[
K−1∑

k=0

L [Y = k, g(x)] Pr(Y = k | x)
]
. (10.8)

3It is possible to also have a “doubt” category that is assigned if there is sufficient ambiguity but
we do not consider this possibility. See Ripley (1996) for further discussion.
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Table 10.1 Loss table for a
binary decision problem

Predicted Class

g(x) = 0 g(x) = 1

True Y = 0 0 L(0, 1)

Class Y = 1 L(1, 0) 0

where we are assuming the form of g(x) is known. The inner expectation of (10.8)
is known as the Bayes risk (e.g., Ripley 1996), with minimum

ĝ(x) = argming(x)∈{0,...,K−1}

K−1∑

k=0

L [Y = k, g(x)] Pr(Y = k | x).

The K = 2 situation will now be considered in greater detail. Table 10.1 gives
the table of losses for this case. The Bayes risk is minimized by the choice

ĝ(x) =

argming(x)∈{0,1}{L [Y = 0, g(x)] Pr(Y = 0 | x) + L [Y = 1, g(x)] Pr(Y = 1 | x)} .

Hence,

g(x) = 0 gives Bayes risk = L(1, 0)× Pr(Y = 1 | x)
g(x) = 1 gives Bayes risk = L(0, 1)× [1− Pr(Y = 1 | x)]

and so the Bayes risk is minimized by g(x) = 1 if

L(1, 0)× Pr(Y = 1 | x) > L(0, 1)× [1− Pr(Y = 1 | x)]
or equivalently if

Pr(Y = 1 | x)
1− Pr(Y = 1 | x) >

L(0, 1)

L(1, 0)
= R (10.9)

with the consequence that only the ratio of losses R requires specification. A final
restatement is to classify a new case with covariates x as g(x) = 1 if

Pr(Y = 1 | x) > L(0, 1)

L(0, 1) + L(1, 0)
=

R

1 +R
.

If classifying as g(x) = 1 when Y = 0 is much worse than classifying as g(x) = 0
when Y = 1, then R should be given a value greater than 1. In this case, if Pr(Y =
1 | x) > 0.5 then we assign g(x) = 1. For example, if R = 4, we set g(x) = 1
only if Pr(Y = 1 | x) > 0.8.

Returning to the case of general K , in the most straightforward case of all errors
being equal, we simply assign an observation to the most likely class, using the
probabilities Pr(Y = k | x), k = 0, 1, . . . ,K − 1.
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We now turn to the second situation in which a classification is not required, but
rather a set of probabilities over {0, 1, . . . ,K − 1}, that is, we require f(x) =
[f0(x), . . . , fK − 1(x)]. First, consider the K = 2 (binary) case. In this case we
simplify notation and write f(x) = [ f(x), 1 − f(x) ]. We may specify a loss
function which is proportional to the negative Bernoulli log-likelihood

L[y, f(x)] = −2y log [f(x)]− 2(1− y) log [1− f(x)] (10.10)

where f(x) is the function that we will report. Therefore, if the log-likelihood is
high the loss is low. The expectation of (10.10) is

−2Pr(Y = 1 | x) log [f(x)]− 2 [1− Pr(Y = 1 | x)] log [1− f(x)]

where E[Y | x] = Pr(Y = 1 | x) are the true probabilities, given covariates x. The
solution is f̂(x) = Pr(Y = 1 | x). Hence, to minimize the expected deviance-type
loss function, the true probabilities should be reported, which is not a great surprise.

In the general case of K classes and a multinomial likelihood with one trial and
probabilities f(x) = [f0(x), . . . , fK − 1(x)], the deviance loss function is

L [y,f(x)] = −2

K−1∑

k=0

I(Y = k) log fk(x), (10.11)

where I(·) is the indicator function that equals 1 if its argument is true and 0
otherwise. The expected loss is

−2

K−1∑

k=0

Pr(Y = k | x) log fk(x)

which is minimized by f̂k(x) = Pr(Y = k | x).

10.3.3 General Responses

In general, if we are willing to speculate on a distribution for the data, we may take
the loss function as

L[y, f(x)] = −2 log pf(y | x), (10.12)

which is the deviance (Sect. 6.5.3), up to an additive constant not depending on f .
The notation pf emphasizes that the distribution of the data depends on f . The
previous section gave examples of this loss function for binomial, (10.10), and
multinomial, (10.11), data. The loss function (10.12) is an obvious measure of the
closeness of y to the predictor function f(x) since it is a general measure of the
discrepancy between the data y and f(x). When Y | x ∼ N[f(x), σ2], we obtain

L[y, f(x)] = log
(
2πσ2

)
+ [y − f(x)]

2
/σ2,
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which produces f̂(x) = E[Y | x], as with quadratic loss. Similarly, choosing a
Laplacian distribution, that is, Y | x ∼ Lap[f(x), φ] (Appendix D) leads to the
posterior median as the optimal choice.

10.3.4 In Practice

Sections 10.3.1 and 10.3.2 describe which summary should be reported, if one is
willing to specify a loss function. Such a loss function will often have been based
on an implicit model for the distribution of the data or upon an estimation method.

For example, a quadratic loss function is consistent with a model for continuous
responses with additive errors which is of the form

Y = f(x) + ε (10.13)

with E[ε] = 0, var(ε) = σ2 and errors on different responses being uncorrelated.
This form may be supplemented with the assumption of normal errors or one may
simply proceed with least squares estimation. Modeling proceeds by assuming some
particular form for f (x). A simple approach is to assume that the conditional mean,
f(x), is approximated by the linear model xβ, as in Chap. 5. Alternative nonlinear
models are described in Chap. 6.

Relaxing the constant variance assumption, one may consider generalized linear
model (GLM) type situations, to allow for more flexible mean-variance modeling.
GLMs are also described in Chap. 6. An assumption of a particular distributional
form may be combined with the deviance-type loss function (10.12).

In Sect. 10.3.2 discrete responses were considered, and we saw that with equal
losses, one may classify on the basis of the probabilities Pr(Y = k | x). As
described in Chap. 12, there are two broad approaches to classification. The first
approach directly models the probabilities Pr(Y = k | x). For example, in the case
of binary (K = 2) responses, logistic modeling provides an obvious approach (as
described in Sect. 7.6). Chap. 12 describes a number of additional methods to model
the probabilities as a function of x. The second approach is to assume forms for the
distributions of x given Y = k, p(x | Y = k) and then combine these with prior
probabilities on the classes, Pr(Y = k) = πk, to form posterior classifications,
via (10.6); Chapter 12 also considers this situation.

10.4 Measures of Predictive Accuracy

As already noted, nonparametric modeling is often used for prediction, and so
the conventional criteria by which methods of parameter estimation are compared
(as discussed in Sect. 2.2) are not directly relevant. In a prediction context, there is
less concern about the values of the constituent parts of the prediction equation,
rather interest is on the total contribution. In Sect. 10.3, loss functions were
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introduced in order to determine how to report the prediction. In this section, loss
functions are used to provide an overall measure of the “error” of a procedure.

The generalization error is defined as

GE(f̂) = EX, Y

{
L
[
Y, f̂(X)

]}
, (10.14)

where f̂(X) is the prediction for Y at a point X , with X, Y drawn from their joint
distribution. Hence, we are in the so-called X-random, as opposed to X-fixed, case
(Breiman and Spector 1992). The terminology with respect to different measures of
accuracy can be confusing and is also inconsistent in the literature; the notation used
here is summarized in Table 10.2.

Hastie et al. (2009, Sect. 7.2) describe how one would ideally split the data
into three portions with one part being used to fit (or train) models, a second
(validation) part to choose a model (which includes both choosing between different
classes of models and selecting smoothing parameters within model classes), and
a third part to estimate the generalization error of the final model on a test
dataset. Unfortunately, there are often insufficient data for division into three parts.
Consequently, when prediction methods are to be compared, a common approach is
to separate the data into training and test datasets. The training data are used to train
the model and then approximate the validation step using methods to be described in
Sect. 10.6. The test data are used to estimate the generalization error (10.14) using
the function f̂(x) estimated from the training data. We now discuss the form of the
generalization error for different data types.

10.4.1 Continuous Responses

To gain flexibility and so minimize bias, predictive models f(x) that contain many
parameters are appealing. However, if the parameters are not constrained in some
way, such models produce wide predictive intervals because a set of data only
contains a limited amount of information. In general, as the number of parameters
increases, the uncertainty in the estimation of each increases in tandem, which
results in greater uncertainty in the prediction also. Consequently, throughout this
and the next two chapters, we will repeatedly encounter the bias-variance trade-off.
Section 5.9 provides a discussion of this trade-off in the linear model context.

The expected squared prediction error is a special case of the generalization error
with squared error loss:

ESPE(f̂) = EX, Y

{[
Y − f̂(X)

]2}
, (10.15)

where f̂(X) is again the prediction for Y at a point X , with X, Y drawn from their
joint distribution.

Estimators f̂ with small ESPE(f̂) are sought, but balancing the bias in estimation
with the variance will be a constant challenge. To illustrate, suppose we wish to
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Table 10.2 Summary of predictive accuracy measures

Name Short-hand Definition

Generalization error GE(f̂) EX, Y

{
L[Y, f̂(X)]

}

Expected squared prediction error ESPE(f̂) EX, Y

{
[Y − f̂(X)]2

}

Mean squared error (or risk) MSE
[
f̂(x0)

]
EYn

{
[f̂(x0)− f(x0)]2

}

Predictive risk PR
[
f̂(x0)

]
EYn,Y0

{
[Y0 − f̂(x0)]2

}

= σ2 + MSE
[
f̂(x0)

]

Integrated mean squared error IMSE
(
f̂
) ∫

EYn

{
[f̂(x) − f(x)]2

}
p(x) dx

=
∫

MSE
(
f̂(x)

)
p(x) dx

Average mean squared error AMSE
(
f̂
)

n−1
∑n

i=1 eYn

{
[f̂(xi) − f(xi)]

2
}

=
∑n

i=1 MSE
[
f̂(xi)

]

Average predictive risk APR
(
f̂
)

n−1
∑n

i=1 eYn,Y �
n

{
[Y �

i − f̂(xi)]
2
}

= σ2 + AMSE
(
f̂
)

Residual sum of squares RSS
(
f̂
)

n−1
∑n

i=1[yi − f̂(xi)]
2

Leave-one-out (ordinary) CV score OCV
(
f̂
)

n−1
∑n

i=1[yi − f̂−i(xi)]2

Generalized CV score GCV
[
f̂
]

[n− tr(S)]−1
∑n

i=1[yi − f̂(xi)]
2

All rows of the table but the first are based on integrated or summed squared quantities and, hence,
are appropriate for a model of the form y = f(x) + ε with the error terms ε having zero mean,
constant variance σ2, and with error terms at different x being uncorrelated. CV is short for cross-
validation, with OCV and GCV being described in Sects. 10.6.2 and 10.6.3, respectively. Notation:
The predictive model evaluated at covariates x is f(x), with prediction f̂(x) based on the observed
data Yn = [Y1, . . . , Yn]; Y0 is a new response with associated covariates x0; the observed data
are [yi,xi], i = 1, . . . , n; Y �

n = [Y �
1 , . . . , Y �

n ] are a set of new observations with covariates
x1, . . . ,xn that we would like to predict; p(x) is the distribution of the covariates; f̂−i(xi) is the
prediction at the point xi based on the observed data with the i-th case, [yi,xi], removed; S is the
“smoother” hat matrix and is described in Sect. 10.6.1. The entries in the last three lines are all
estimates of ESPE(f̂ )

predict a response Y0 with associated covariates x0. We calculate the expected
squared distance between the response Y0 and the fitted function f̂(x0). The
expectation is with respect to both Y0 and repeat (training) data Yn = [Y1, . . . , Yn]
with Y0 and Yn being independent. The resultant measure is known as the predictive
risk and may be decomposed as

EYn,Y0

{[
Y0 − f̂(x0)

]2}
= EYn,Y0

{[
Y0 − f(x0) + f(x0)− f̂(x0)

]2}

= EY0

{
[Y0 − f(x0)]

2
}
+ EYn

{[
f̂(x0)− f(x0)

]2}

+ 2× EY0
{[Y0−f(x0)]}EYn

{[
f̂(x0)−f(x0)

]}
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= σ2 + EYn

{[
f̂(x0)− f(x0)

]2}

= σ2 + MSE
[
f̂(x0)

]
.

Writing

MSE
[
f̂(x0)

]
= EYn

{[
f(x0)− EYn

(
f̂(x0)

)
+ EYn

(
f̂(x0)

)
− f̂(x0)

]2}

we have

EYn,Y0

{[
Y0 − f̂(x0)

]2}
= σ2 + EYn

{[
EYn

(
f̂(x0)

)
− f(x0)

]2}

+ EYn

{[
f̂(x0)− EYn

(
f̂(x0)

)]2}

= σ2 + bias
[
f̂(x0)

]2
+ varYn

[
f̂(x0)

]
.

In terms of the prediction error we can achieve given a particular model, nothing
can be done about σ2, which is referred to as the irreducible error. Therefore, we
concentrate on the MSE of the estimator f̂(x0):

MSE
[
f̂(x0)

]
= EYn

{[
f̂(x0)− f(x0)

]2}
= bias

[
f̂(x0)

]2
+ var

[
f̂(x0)

]

where we emphasize that the MSE is calculated at the point x0, with the expectation
over training samples. As we discuss subsequently, the estimators f̂ we consider
are indexed by a smoothing parameter, and selection of this parameter influences
the characteristics of f̂ . Little smoothing produces a wiggly f̂ , with low bias and
high variance. More extensive smoothing produces f̂ with greater bias but reduced
variance.

To summarize the MSE over the range of x, we may consider the integrated
mean squared error (IMSE). For univariate x, over an interval [a, b], and with
density p(x):

IMSE
(
f̂
)
=

∫ b

a

EYn

{[
f̂(x) − f(x)

]2}
p(x) dx

=

∫ b

a

bias
[
f̂(x)

]2
p(x) dx+

∫ b

a

var
[
f̂(x)

]
p(x) dx.

(10.16)

This summary will be encountered in Sect. 11.3.2.
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An alternative to the IMSE, that may be more convenient to use, is the average
mean squared error (AMSE), which only considers the errors at the observations:

AMSE
(
f̂
)
=

1

n

n∑

i=1

EYn

{[
f̂(xi)− f(xi)

]2}

=
1

n

n∑

i=1

bias
[
f̂(xi)

]2
+

1

n

n∑

i=1

var
[
f̂(xi)

]
. (10.17)

For the additive errors model (10.13), the average predictive risk (APR) is

APR
(
f̂
)
=

1

n

n∑

i=1

EYn,Y �
n

{[
Y �
i − f̂(xi)

]2}

= σ2 + AMSE
(
f̂
)
.

where Y �
n = [Y �

1 , . . . , Y
�
n ] are the new set of observations which we would like to

predict at x1, . . . ,xn, and are independent of Yn. In Sect. 10.6.1, a procedure for
estimating the APR will be described in the context of smoothing parameter choice.

We denote the test data by [y�i ,x
�
i ], i = 1, . . . ,m. For continuous data and

quadratic loss, we may evaluate an estimate of the expected squared prediction
error (10.15):

1

m

m∑

i=1

[
y�i − f̂(x�

i )
]2

, (10.18)

where f̂(x�
i ) is the estimator based on the training data.

10.4.2 Discrete Responses with K Categories

With the loss function (10.7), and with equal losses, the generalization error is

PrX,Y [ĝ(X) �= Y ] , (10.19)

which is also known as the misclassification probability. Given test data [y�i ,x
�
i ],

i = 1, . . . ,m, the empirical estimate is

1

m

m∑

i=1

I [ĝ(x�
i ) �= y�i ] ,

which is simply the proportion of misclassified observations.
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We now consider the binary case and introduce terminology that is common in a
medical context, before describing additional measures that are useful summaries of
a procedure in this case. Suppose we wish to predict disease status given covariates
(symptoms) x. Define

Y =

{
0 if true state is no disease
1 if true state is disease.

A classification rule g(x) is

g(x) =

{
0 if prediction is no disease
1 if prediction is disease.

The sensitivity of a rule is the probability of predicting disease for a diseased
individual:

Sensitivity = Pr [g(x) = 1 | Y = 1] .

The specificity is the probability of predicting disease-free for an individual without
disease:

Specificity = Pr [g(x) = 0 | Y = 0] .

With respect to Table 10.1, recall that L(0, 1) is the loss for predicting g(x) = 1
when in reality Y = 0 (so we predict disease for a healthy individual) and L(1, 0) is
the loss associated with predicting healthy for a diseased individual. Consequently,
if we increase the former loss L(0, 1) while holding L(1, 0) constant, we will
be more conservative in declaring a patient as diseased, which will increase the
specificity and decrease the sensitivity.4 An alternative, closely related, pair of
summaries are the false-positive fraction (FPF) and true-positive fraction (TPF)
defined, respectively, as

FPF = Pr [g(X) = 1 | Y = 0]

and
TPF = Pr [g(X) = 1 | Y = 1] .

The sensitivity is the TPF, and the specificity is (1−FPF). Two additional measures
are the positive predictive value (PPV) and the negative predictive value (NPV),
defined as

PPV = Pr [Y = 1 | g(X) = 1] =
Pr [g(X) = 1 | Y = 1]Pr(Y = 1)

Pr [g(X) = 1]

NPV = Pr [Y = 0 | g(X) = 0] =
Pr [g(X) = 0 | Y = 0]Pr(Y = 0)

Pr [g(X) = 0]
,

which give the probabilities of correct assignments, given classification.

4We note that the decision problem considered here has many elements in common with that in
which we choose between two hypotheses, as discussed in Sect. 4.3.1. The sensitivity is analogous
to the power of a test, while 1−specificity is analogous to the type I error.



10.5 A First Look at Shrinkage Methods 517

Now define a classification rule that, based on a model g(x) (whose parameters
will be estimated from the data), assigns g(x) = 1 if the odds of disease

Pr(Y = 1 | x)
Pr(Y = 0 | x) >

L(0, 1)

L(1, 0)
= R,

as discussed in more detail in relation to (10.9). Plotting TPF(R) versus FPF(R)
produces a receiver-operating characteristic (ROC) curve. The ROC curve gives
the complete behavior of FPF and TPF over the range of R. Pepe (2003) provides
an in-depth discussion of the above summary measures.

10.4.3 General Responses

For general data types we may evaluate the deviance-like loss function (10.12) over
the test data [y�i ,x

�
i ], i = 1, . . . ,m:

− 2

m

m∑

i=1

log p
̂f (y

�
i | x�

i ) ,

to measure the error of a procedure.

10.5 A First Look at Shrinkage Methods

We describe two penalization methods that are used in the context of multiple linear
regression, ridge regression and the lasso.

10.5.1 Ridge Regression

We first assume that y has been centered and that each covariate has been
standardized, that is,

n∑

i=1

yi = 0,
1

n

n∑

i=1

xij = 0,
1

n

n∑

i=1

x2
ij = 1.

Consider the linear model

y = xβ + ε
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with x the n× k design matrix, β = [β1, . . . , βk]
T the k × 1 vector of parameters,

and E[ε] = 0, var(ε) = σ2I. Note that there is no intercept in the model due to the
centering of y1, . . . , yn.

We saw in Chap. 5 that linear models are an analytically and computationally
appealing class but, with many predictors, fitting the full model without penalization
may result in large predictive intervals, unless the sample size is very large relative
to k. Ridge regression is an approach to modeling that addresses this deficiency

by placing a particular form of constraint on the parameters. Specifically, β̂
RIDGE

is
chosen to minimize the penalized sum of squares:

n∑

i=1

⎛

⎝yi −
k∑

j=1

xijβj

⎞

⎠
2

+ λ
k∑

j=1

β2
j , (10.20)

for some λ > 0. Using a Lagrange multiplier argument (Exercise 10.6), minimiza-
tion of (10.20) is equivalent to minimization of

n∑

i=1

⎛

⎝yi −
k∑

j=1

xijβj

⎞

⎠
2

subject to, for some s ≥ 0,
k∑

j=1

β2
j ≤ s, (10.21)

so that the size of the sum of the squared coefficients is constrained (which is
known as an L2 penalty). The intuition behind ridge regression is that, with many
parameters to estimate, the estimator can be highly variable, but by constraining the
sum of the squared coefficients, this shortcoming can be alleviated.

Figure 10.3 shows the effect of ridge regression with two parameters, β1 and β2.
The elliptical contours in the top right of the figure correspond to the sum of squares.
In ridge regression this sum of squares is minimized subject to the constraint (10.21),
and for k = 2, this constraint corresponds to a circle, centered at zero. The estimate
is given by the point at which the ellipse and the circle touch.

Writing the penalized sum of squares (10.20) as

(y − xβ)T(y − xβ) + λβTβ (10.22)

it is easy to see that the minimizing solution is

β̂
RIDGE

= (xTx+ λIk)
−1xTY . (10.23)

Since the estimator (10.23) is linear, it is straightforward to calculate the variance–
covariance matrix, for a given λ, as

var
(
β̂

RIDGE
)
= σ2(xTx+ λIk)

−1xTx(xTx+ λIk)
−1. (10.24)
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β1

β 2

0

0

Fig. 10.3 Pictorial
representation of ridge
regression, for two covariates.
The elliptical contours
represent the sum of squares,
and the circle represents the
constraint corresponding to
the L2 penalty

Beginning with a normal likelihood y | β ∼ Nn(xβ, σ
2In) and adding the

penalty term λβTβ to the log-likelihood also leads to minimization of (10.22).
The resultant estimator (10.23) is therefore sometimes referred to as a maximum
penalized likelihood estimator (MPLE).

It is well known that the least squares estimator β̂
LS

is an unbiased estimator,
with variance (xTx)−1σ2 (under correct second moment specification). If we write
R = (xTx)−1, then the ridge regression estimator may be written as (Exercise 10.7)

β̂
RIDGE

= (Ik + λR)−1β̂
LS

, (10.25)

showing that it is clearly biased. Turning now to a consideration of the variance,
let x = UDV T be the singular value decomposition (SVD) of x. In the SVD U
is n × n, V is k × k and D is an n × k diagonal matrix with diagonal elements
d1, . . . , dk. Then, the variance of the ridge estimator (10.24) may be written as

var
(
β̂

RIDGE
)
= σ2(xTx+ λIk)

−1xTx(xTx+ λIk)
−1 = σ2V AV T, (10.26)

where A is a diagonal matrix whose elements are d2i /(d
2
i +λ)2. The variance of the

least squares estimator is

var
(
β̂

LS
)
= σ2V WV T, (10.27)

where W is a diagonal matrix whose elements are 1/d2i . Hence, the reduction in
variance of the ridge regression estimator is apparent. The derivations of (10.26)
and (10.27) are left as Exercise 10.7.

With respect to the frequentist methods described in Chap. 2, penalized least
squares correspond to a method that produces an estimating function with finite
sample bias but with potentially lower mean squared error as a consequence of the
penalization term, which reduces the variance.
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For orthogonal covariates xTx = n× Ik, the ridge regression estimator is

β̂
RIDGE

=
n

n+ λ
β̂

LS

.

Hence, in this case, the ridge estimator always produces shrinkage towards 0.
Figure 10.4(a) illustrates the shrinkage (towards zero) performed by ridge regression
for a single parameter in the case of orthogonal covariates. For non-orthogonal
covariates, the collection of estimators undergoes shrinkage, though individual
components of β̂

RIDGE

may increase in absolute value.
The fitted value at a particular value x̃ is

f̂ ( x̃ ) = x̃ β̂
RIDGE

(10.28)

= x̃(xTx+ λIk)
−1xTY (10.29)

with

var
[
f̂ ( x̃ )

]
= σ2x̃(xTx+ λIk)

−1xTx(xTx+ λIk)
−1x̃T. (10.30)

An important concept in shrinkage is the “effective” degrees of freedom associ-
ated with a set of parameters. In a ridge regression setting, if we choose λ = 0, we
have k parameters, while for λ > 0 the parameters are constrained and the degrees
of freedom will effectively be lower, tending to 0 as λ → ∞. Many smoothers are
linear in the sense that ŷ = S(λ)y, with ridge regression being one example, as can
be seen from (10.29). For linear smoothers, the effective (or equivalent) degrees of
freedom may be defined as

p(λ) = df(λ) = tr
(
S(λ)

)
, (10.31)

where the notation p(λ) emphasizes the dependence on the smoothing parameter.
For the ridge estimator, the effective degrees of freedom associated with estimation
of β1, . . . , βk is defined as

df(λ) = tr
[
x(xTx+ λIk)

−1xT
]
. (10.32)

Notice that λ = 0, which corresponds to no shrinkage, gives df(λ) = k (so long as
xTx is non-singular), as we would expect.

There is a one-to-one mapping between λ and the degrees of freedom, so in
practice, one may simply pick the effective degrees of freedom that one would like
associated with the fit and solve for λ. As an alternative to a user-chosen λ, a number
of automated methods for choosing λ are described in Sect. 10.6.

Insight into the ridge estimator can be gleaned from the following Bayesian
formulation. Consider the model with likelihood

y | β, σ2 ∼ Nn(xβ, σ
2In), (10.33)
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Fig. 10.4 The comparison for single estimate of different forms of shrinkage, with alternative
estimates plotted against the least squares estimate β̂LS and in the case of orthogonal covariates:
(a) ridge regression, (b) soft thresholding as carried out by the lasso, and (c) hard thresholding as
carried out by conventional variable selection. On all plots, the line of equality, representing the
unrestricted estimate, is drawn as dashed

with σ2 known, and prior

β | σ2 ∼ Nk

(
0,

σ2

λ
Ik

)
.

The latter form shows that a large value of λ corresponds to a prior that is more
tightly concentrated around zero and so leads to greater shrinkage of the collection
of coefficients towards zero. A common λ for each βj makes it clear that we need
to standardize each of the covariates in order for them to be comparable.

Using derivations similar to those of Sect. 5.7, the posterior is

β | y ∼ Nk

[
β̂

RIDGE

, σ2(xTx+ λIk)
−1

]
,

where β̂
RIDGE

corresponds to (10.23), confirming that the posterior mean and mode
coincide with the ridge regression estimator, (10.23). Interestingly, the posterior

variance var(β | y) differs from var
(
β̂

RIDGE
)

, as given in (10.24).
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Fig. 10.5 Ridge estimates for the prostate data, as a function of the effective degrees of freedom

Example: Prostate Cancer

As described in Sect. 1.3.1, the response in this dataset is log (PSA), and there
are eight covariates. In this chapter, we take the aim of the analysis as prediction of
log PSA. In Chap. 5, we analyzed these data using a Bayesian approach with normal
priors for each of the eight standardized coefficients, as summarized in (5.66). In that
case, the standard deviation of the normal prior was chosen on substantive grounds.
Here, we illustrate the behavior of the estimates as a function of the smoothing
parameter.

Figure 10.5 shows the eight ridge estimates as a function of the effective degrees
of freedom (which ranges between 0 and 8, because there is no intercept in the
model). For small values of λ, the effective degrees of freedom is close to 8, and
estimates show little shrinkage. In contrast, large values of λ give effective degrees
of freedom close to 0 and strong shrinkage. Notice that the curves do not display
monotonic shrinkage due to the non-orthogonality of the covariates.
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10.5.2 The Lasso

The least absolute shrinkage and selection operator, or lasso, as described in
Tibshirani (1996),5 is a technique that has received a great deal of interest. As with
ridge regression, we assume that the covariates are standardized to have mean zero
and standard deviation 1. The lasso estimate minimizes the penalized sum of squares

n∑

i=1

⎛

⎝yi − β0 −
k∑

j=1

xijβj

⎞

⎠
2

+ λ
k∑

j=1

|βj |, (10.34)

with respect to β. The L2 penalty of ridge regression is therefore being replaced by
an L1 penalty. As with ridge regression, the minimization of (10.34) can be shown
to be equivalent to minimization of

n∑

i=1

⎛

⎝yi − β0 −
k∑

j=1

xijβj

⎞

⎠
2

(10.35)

subject to
k∑

j=1

|βj | ≤ s, (10.36)

for some s ≥ 0.
Let β̂

LS

and β̂
LASSO

denote the least squares and lasso estimates, respectively, and
define s0 =

∑k
j=1 |β̂LS

j | as the L1 norm of the least squares estimate. Values of

s < s0 cause shrinkage of
∑k

j=1 |β̂LASSO
j | towards zero. If, for example, s = s0/2,

then the average absolute shrinkage of the least squares coefficients is 50%, though
individual coefficients may increase rather than decrease in absolute value.

A key characteristic of the lasso is that individual parameter estimates may be
set to zero, a phenomenon that does not occur with ridge regression. Figure 10.6
gives the intuition behind this behavior in the case of two coefficients β1 and β2.
The lasso performs L1 shrinkage so that there are “corners” in the constraint; the
diamond represents constraint (10.36) for k = 2. If the ellipse (10.35) “hits” one of
these corners, then the coefficient corresponding to the axis that is touched is shrunk
to zero. In the example in Fig. 10.6, neither of the coefficients would be set to zero,
because the ellipse does not touch a corner. As k increases, the multidimensional
diamond has an increasing number of corners, and so there is an increasing chance
of coefficients being set to zero. Consequently, the lasso effectively produces a form
of continuous subset (or feature) selection. The lasso is sometimes referred to as
offering a sparse solution due to this property of setting coefficients to zero.

5The method was also introduced into the signal-processing literature, under the name basis
pursuit, by Chen et al. (1998).
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Fig. 10.6 Pictorial
representation of the lasso for
two covariates. The elliptical
contours represent the sum of
squares, and the diamond
indicates the constraint
corresponding to the L1

penalty

In the case of orthonormal covariates, for which xTx = Ik, the lasso performs
so-called soft thresholding. Specifically, for component j of the lasso estimator:

β̂LASSO
j = sign

(
β̂LS
j

)(
|β̂LS

j | −
λ

2

)

+

,

where “sign” denotes the sign of its argument (±1), and z+ represents the positive
part of z. As the smoothing parameter is varied, the sample path of the estimates
moves continuously to zero, as displayed in Fig. 10.4(b). In contrast, conventional
hypothesis testing performs hard thresholding, as illustrated in Fig. 10.4(c), since
the coefficient is set equal to zero when the absolute value of the estimate drops
below some critical value, giving discontinuities in the graph.

The lasso solution is nonlinear in y. Efficient algorithms exist for computation
based on coordinate descent; however, see Meier et al. (2008) and Wu and Lange
(2008). Tibshirani (2011) gives a brief history of the computation of the lasso
solution. Due to the nonlinearity of the solution and the subset selection nature of
estimation, inference is not straightforward and remains an open problem. Standard

errors for elements of β̂
LASSO

are not immediately available, though they may be
calculated via the bootstrap. Since the lasso estimator is not linear, the effective
degrees of freedom cannot be defined as in (10.31); an alternative definition exists
as

df =
1

σ2

n∑

i=1

cov(ŷi, yi),

see Hastie et al. (2009) equation (3.60).
More generally, penalties of the form

λ

k∑

j=1

|βj |q
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may be considered, for q ≥ 0. Ridge regression and the lasso correspond to q = 2
and q = 1, respectively. For q < 1, the constraint is non-convex, which makes
optimization more difficult. Convex penalties occur for q ≥ 1 and feature selection
for q ≤ 1, so that the lasso (with q = 1) achieves both.

Many variants of the lasso have appeared since its introduction (Tibshirani 2011).
In some contexts, we may wish to treat a set of regressors as a group, for example,
when we have a categorical covariate with more than two levels. The grouped
lasso (Yuan and Lin 2007) addresses this problem by considering the simultaneous
shrinkage of (pre-defined) groups of coefficients.

In the case in which k > n, the lasso cannot select more than n variables.
Furthermore, the lasso will typically assign only one nonzero coefficient to a
set of highly correlated covariates (Zou and Hastie 2005), which is an obvious
disadvantage and was a motivation for the group lasso (Yuan and Lin 2007).
Empirical observation indicates that the lasso produces inferior performance to
ridge regression when there are a large number of small effects (Tibshirani 1996).
These deficiencies motivated the elastic net (Zou and Hastie 2005) which attempts
to combine the desirable properties of ridge regression and the lasso via a penalty
of the form

λ1

k∑

j=1

|βj |+ λ2

k∑

j=1

β2
j .

The lasso estimate is equivalent to the mode of the posterior distribution under a
normal likelihood, (10.33), and independent Laplace (double exponential) priors on
elements of β:

π(βj) =
λ

2
exp (−λ|βj |)

for j = 1, . . . , k (the variance of this distribution is 2/λ2, Appendix D). Under this
prior, the posterior is not available in closed form, but the posterior mean will not
equal the posterior mode. Hence, if used as a summary, the posterior means will
not produce the same lasso shrinkage of coefficients to zero. Thus, regardless of
the value of λ, all k covariates are retained in a Bayesian analysis, even though the
posterior mode may lie at zero. Markov chain Monte Carlo allows inference under
the normal/Laplace model but without the subset selection aspect, which lessens the
appeal of this Bayesian version of the lasso.

Example: Prostate Cancer

We illustrate the use of the lasso for the prostate cancer data. Figure 10.7 shows the
lasso estimates as a function of the shrinkage factor:

∑k
j=1 |β̂LASSO

j |
∑k

j=1 |β̂LS
j |

.
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Fig. 10.7 Lasso estimates for the prostate data, as a function of the shrinkage factor,∑k
j=1 |β̂LASSO

j |/∑k
j=1 |β̂LS

j |

When the shrinkage factor is 1, the lasso estimates are the same as the least squares
estimates. Beginning with the coefficient associated with log capsular penetration
and ending with that associated with log cancer volume each of the coefficients
is absorbed at zero, as the coefficient trajectories are traced out. For example, at
a shrinkage factor of 0.4, only 3 coefficients are nonzero, those associated with
log cancer volume, log weight and Gleason. In this example, the curves decrease
monotonically to zero, but this phenomenon will not occur in all examples. The
piecewise linear nature of the solution is apparent.

10.6 Smoothing Parameter Selection

For both ridge regression and the lasso, as well as a number of methods to be
described in Chaps. 11 and 12, a key element of implementation is smoothing
parameter selection.6 We denote a generic smoothing parameter by λ and the
estimated function at this λ, for a particular covariate value x, by f̂ (λ)(x).

6We use the name “smoothing” parameter because we concentrate on nonparametric regression
smoothers in this and the next two chapters, but in the context of ridge regression and the lasso, the
label “tuning” parameter is often used.
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In this section, the overall strategy is to derive methods for minimizing, with
respect to λ, estimates of the generalization error, or related measures. We initially
assume a quadratic loss function before describing smoothing parameter selection
in generalized linear model situations.

In Sect. 10.6.1, an analytic method of minimizing the AMSE (Table 10.2) is
described and shown to be equivalent to Mallows CP (Sect. 4.8.2). Two popular
approaches for smoothing parameter selection, ordinary and generalized cross-
validation, are described in Sects. 10.6.2 and 10.6.3, and in Sect. 10.6.4, we describe
the AIC model selection statistic, which extends Mallows CP to general data types.
Finally, Sect. 10.6.5 briefly describes cross-validation for generalized linear models.

Bayesian approaches include choosing λ on substantive grounds (as carried out
in Sect. 5.12) or treating λ as an unknown parameter. In the latter case, a prior is
specified for λ, which is then estimated in the usual way. Section 11.2.8 adopts
a mixed model formulation and describes a frequentist approach to smoothing
parameter estimation, with restricted maximum likelihood (REML, see Sect. 8.5.3)
being emphasized. Section 11.2.9 takes the same formulation but describes a
Bayesian approaches to estimation.

Smoothing parameter choice is an inherently difficult problem because, in many
situations, the data do not indicate a clear “optimal” λ. Therefore, there is no
universally reliable method for smoothing parameter selection. Consequently, in
practice, one should not blindly accept the solution provided by any method. Rather,
one should treat the solution as a starting point for further exploration, including the
use of alternative methods.

10.6.1 Mallows CP

In this section we assume that the smoothing method produces a linear smoother of
the form ŷ = S(λ)y. Ridge regression provides an example with S(λ) = x(xTx+
λIk)

−1xT; the lasso does not fall within this class. Many methods that we describe
in Chap. 11 produce smoothers of linear form.

Recall, from Sect. 5.11.2, that in linear regression ŷ = Sy where S =
x(xTx)−1xT is the hat matrix, and tr(S) is both the number of regression
parameters in the model and the degrees of freedom. Equation (10.31) defined the
effective degrees of freedom for linear smoothers as p(λ) = df(λ) = tr

(
S(λ)

)
. One

approach to smoothing parameter choice is to simply pick λ to produce the desired
effective degrees of freedom p(λ), if we have some a priori sense of the degrees of
freedom that is desirable. This allows a direct comparison with parametric models.
For example, one may pick p(λ) = 4 to provide a fit with effective degrees of
freedom equal to the number of parameters in a cubic polynomial regression model.

An appealing approach is to choose the smoothing parameter to minimize the
average mean squared error, (10.17):
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AMSE(λ) = AMSE(f̂ (λ)) =
1

n

n∑

i=1

E

{[
f(xi)− f̂ (λ)(xi)

]2}

=
1

n
E
[(

f − f̂ (λ)
)T (

f − f̂ (λ)
)]

, (10.37)

where f = [f(x1), . . . , f(xn)]
T and f̂ (λ) =

[
f̂ (λ)(x1), . . . , f̂

(λ)(xn)
]T

. The

AMSE depends on the unknown f and so is not directly of use. A more applicable
version is obtained by replacing f by Y − ε (with E[ε] = 0) and taking f̂ (λ) =
S(λ)Y to give

AMSE(λ) =
1

n
E
[(

Y − ε− S(λ)Y
)T (

Y − ε− S(λ)Y
)]

=
1

n
E
[(

Y − S(λ)Y
)T (

Y − S(λ)Y
)]

+
1

n
E[εTε]− 1

n
E
[
2εT(I − S(λ))Y

]
.

Replacing Y by f + ε in the final term and rearranging gives

AMSE(λ) =
1

n
E
[(

Y − S(λ)Y
)T (

Y − S(λ)Y
)]

− 1

n
E
[
εTε+ 2εTf − 2εTS(λ)f − 2εTS(λ)ε

]
.

Since

E
[
εTS(λ)ε

]
= E

[
tr
(
εTS(λ)ε

)]
=E

[
tr
(
S(λ)εεT

)]
=tr

(
S(λ)Iσ2

)
=σ2tr

(
S(λ)

)

= σ2p(λ),

and E[2εTf ] = E[2εTS(λ)f ] = 0, we obtain

AMSE(λ) =
1

n
E
[(

Y − S(λ)Y
)T (

Y − S(λ)Y
)]

− σ2 +
2

n
E
[
εTS(λ)ε

]

=
1

n
E
[(

Y − S(λ)Y
)T (

Y − S(λ)Y
)]

− σ2 +
2

n
p(λ)σ2. (10.38)

The natural estimator of (10.38) is

ÂMSE
(λ)

=
1

n

(
Y − S(λ)Y

)T (
Y − S(λ)Y

)
− σ̂2

max +
2

n
p(λ)σ̂2

max

=
σ̂2
max

n

[
RSS(λ)

σ̂2
max

−
(
n− 2p(λ)

)]
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where σ̂2
max > 0 is an estimate from a maximal model (e.g., the full model in

a regression setting). Minimizing the estimated AMSE(λ) as a function of λ is
therefore equivalent to minimization of Mallows CP statistic, (4.25):

RSS(λ)

σ̂2
max

−
(
n− 2p(λ)

)
. (10.39)

A useful quantity to evaluate is the average predictive risk (APR, Table 10.2), which
is the predictive risk at the observed xi, i = 1, . . . , n. Specifically,

APR = σ2 + AMSE, (10.40)

which can be estimated by

ÂPR
(λ)

= σ̂2
max +

1

n
RSS(λ) − 1

n

(
n− 2p(λ)

)
σ̂2
max

=
RSS(λ)

n
+

2p(λ)

n
σ̂2
max. (10.41)

Estimating APR by the average residual sum of squares (i.e. the first term in (10.41))
is clearly subject to overfitting (and hence will be an underestimate), but this is
corrected for by the second term.

10.6.2 K-Fold Cross-Validation

A widely used and simple method for estimating prediction error, and hence
smoothing parameters, is cross-validation. If we try to estimate the APR, as given
by (10.40), from the data directly, that is, using

1

n

n∑

i=1

[
yi − f̂ (λ)(xi)

]2
=

RSS(λ)

n
,

we will obtain an optimistic estimate because the data have been used twice: once
to fit the model and once to estimate the predictive risk, as we saw in (10.41).
The problem is that the idiosyncrasies of the particular realization of the data will
influence coefficient estimates so that the model will, in turn, predict the data
“too well”. As noted in Sect. 10.4, ideally one would split the data to produce
a validation dataset, with estimation of the generalization error being performed
using the validation data. Unfortunately there are frequently insufficient data to carry
out this step. However, cross-validation provides an approach in the same spirit to
estimate the APR.

In K-fold validation, a fraction (K − 1)/K of the data are used to fit the model.
The remaining fraction, 1/K , are predicted, and these data are used to produce
an estimate of the predictive risk. Let y = [y1, . . . ,yK ] represent a particular
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K-fold split of the n × 1 data vector y. Further, let J(k) be the set of elements
of {1, 2, . . . , n} that correspond to the indices of data points within split k, with
nk = |J(k)| representing the cardinality of set k. Let y−k be the data with the

portion yk removed and f̂
(λ)
−k (xi) represent the i-th fitted value, computed from

fitting a model using y−k. Cross-validation proceeds by cycling over k = 1, . . . ,K
through the following two steps:

1. Fit the model using y−k.
2. Use the fitted model to obtain predictions for the removed data, yk, and estimate

the error as

CV(λ)
k =

1

nk

∑

i∈J(k)

[
yi − f̂

(λ)
−k (xi)

]2
. (10.42)

The K prediction errors are averaged to give

CV(λ) =
1

K

K∑

k=1

CV(λ)
k .

This procedure is repeated for each potential value of the smoothing parameter, λ.
We emphasize that the data are split into K pieces once, and so the resultant datasets
are the same across all λ.

Typical choices for K include 5, 10, and n, the latter being known as leave-one-
out or ordinary cross-validation (OCV). Picking K = n produces an estimate of the
expected prediction error with the least bias, but this estimate can have high variance
because the n training sets are so similar to one another. The computational burden
of OCV can be heavy, though for a large class of smoothers this burden can be side-
stepped, as we describe shortly. For smaller values ofK , the variance of the expected
prediction error estimator is smaller but there is greater bias. Breiman and Spector
(1992) provide some discussion on choice of K and recommend K = 5 based on
simulations in which the aim was subset selection. A number of authors (e.g., Hastie
et al. 2009) routinely create an estimate of the standard error of the cross-validation
score, (10.42). This estimate assumes independence of CV(λ)

k , k = 1, . . . ,K , which
is clearly not true since each pair of splits share a proportion 1 − 1/(K − 1) of the
data.

We consider leave-one-out cross-validation in more detail. It would appear that
we need to fit the model n times, but we show that, for a particular class of smoothers
(to be described below),

1

n

n∑

i=1

[
yi − f̂

(λ)
−i (xi)

]2
=

1

n

n∑

i=1

[
yi − f̂ (λ)(xi)

]2

(
1− S

(λ)
ii

)2 (10.43)

where S
(λ)
ii is the ith diagonal element of S(λ), and f̂

(λ)
−i (xi) is the ith fitted point,

based on y−i.
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We prove (10.43), for a particular class of smoothers, based on the derivation in
Wood (2006, Sect. 4.5.2). For many smoothing methods, including ridge regression,
we can write the model as f = hβ where h = [h1, . . . ,hn]

T is an n × J design
matrix with hi a 1× J vector, and β is a J × 1 vector of parameters. We prove the
result (10.43) for a class of problems involving minimization of a sum of squares
plus a quadratic penalty term:

n∑

i=1

(yi − hiβ)
2
+ λβTDβ,

for a known matrix D. Section 11.2.5 gives further examples of smoothers that fall
within this class. Fitting the model to the n − 1 points contained in y−i involves
minimization of

n∑

j=1,j �=i

[yj − f−i(xj)]
2
+ λβTDβ =

n∑

j=1

[
y�j − f−i(xj)

]2
+ λβTDβ

(10.44)

where

y�j =

{
yj if j �= i

yi − yi + f−i(xi) if j = i.

Minimization of (10.44) yields

f̂ = S(λ)y� = h(hTh+ λD)−1hTy�,

and f̂
(λ)
−i (xi) = S

(λ)
i y�, where S

(λ)
i is the ith row of S(λ) and y� = [y�1 , . . . , y

�
n].

Now

f̂
(λ)
−i (xi) = S

(λ)
i y�

= S
(λ)
i y − S

(λ)
ii yi + S

(λ)
ii f̂

(λ)
−i (xi)

= f̂ (λ)(xi)− S
(λ)
ii yi + S

(λ)
ii f̂

(λ)
−i (xi)

so that

f̂
(λ)
−i (xi) =

f̂ (λ)(xi)− S
(λ)
ii yi

1− Sii

and

yi − f̂
(λ)
−i (xi) =

yi(1− S
(λ)
ii )− f̂ (λ)(xi) + S

(λ)
ii yi

1− S
(λ)
ii

=
yi − f̂ (λ)(xi)

1− S
(λ)
ii

, (10.45)
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as required. To calculate the leave-one-out CV score, we therefore need only the
residuals from the fit to the complete data and the diagonal elements of the smoother

matrix. Note that the effect of
(
1− S

(λ)
ii

)2

in the denominator of (10.43) is to inflate

the residual at the i-th point, hence accounting for the underestimation of simply
using the residual sum of squares. Formula (10.43) is true for all linear smoothers.

In practice, curves of the estimated prediction error against λ (the smoothing
parameter) can be very flat, as shown for instance in Fig. 10.9. Therefore, as already
noted, simply blindly using the value of λ that minimizes the cross-validation sum
of squares is not a reliable strategy. In Hastie et al. (2009), it is recommended that λ
be chosen such that the prediction error is no greater than one standard error above
that with the lowest error. This approach results in a more parsimonious model being
selected, though this recommendation is based on judgement and experience rather
than theory.

10.6.3 Generalized Cross-Validation

So-called generalized cross-validation (GCV) provides an alternative to K-fold
cross-validation. The GCV score is

GCV(λ) =
n

[
n− tr

(
S(λ)

)]2
n∑

i=1

(
yi − S

(λ)
i y

)2

(10.46)

for a linear smoother ŷ = S(λ)y. An important early reference on the use of
GCV is Craven and Wabha (1979). Recall that tr

(
S(λ)

)
is the effective degrees

of freedom of a linear smoother, (10.31), with larger values of λ corresponding to
increased smoothing. Therefore, the denominator of (10.46) is the squared effective
residual degrees of freedom and a measure of complexity: increasing λ decreases
the effective number of parameters, that is, the complexity of the model, and this
reduction produces lower variability. However, the numerator is the residual sum of
squares and as such is a measure of squared bias with larger λ giving a poorer fit
and increased bias. Consequently, we see that the GCV score is providing a trade-off
between bias and variance. Unlike K-fold cross-validation, GCV does not require
splitting of the data into cross-validation folds and repeatedly training and testing
the model.

GCV may be justified/motivated in a number of different ways. On computational
grounds, the GCV score is simpler to evaluate than the OCV score, since one only
needs the trace of S(λ) and not the diagonal elements S(λ)

ii . Recall from Sect. 5.11.2

that in the context of a linear model, the leverage of yi is defined as S
(λ)
ii , and so

the OCV score can be highly influenced by a small number of data points (due to
the presence of 1 − S

(λ)
ii in the denominator of (10.43)), which can be undesirable.

Therefore, one interpretation of GCV is that it is simply a robust alternative to OCV
with 1− S

(λ)
ii replaced by 1− tr(S(λ))/n, which is clear if we rewrite (10.46) as
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GCV(λ) =
1

n

n∑

i=1

(
yi − S

(λ)
i y

)2

(
1− S

(λ)
ii

)2

(
1− S

(λ)
ii

1− tr
(
S(λ)

)
/n

)2

=
1

n

n∑

i=1

[
yi − f̂

(λ)
−i (xi)

]2
(

1− S
(λ)
ii

1− tr
(
S(λ)

)
/n

)2

.

This representation illustrates that those observations with large leverage are being
down-weighted, as compared to OCV.

A final justification for using GCV, which was emphasized by Golub et al. (1979),
is an invariance property. Namely, GCV is invariant to certain transformations of
the data whereas OCV is not. Suppose we transform y and x to Qy and Qx,
respectively, where Q is any n × n orthogonal matrix (i.e., QQT = QTQ = In).
For fixed λ, minimization with respect to β of

(y − xβ)T(y − xβ) + λβTβ

leads to inference that is identical to minimization of

(Qy −Qxβ)T(Qy −Qxβ) + λβTβ.

However, for fixed λ, the OCV scores are not identical, so that λ̂ obtained via
minimization of the OCV will differ depending on whether we work with y or Qy.

If S(λ) is the linear smoother for the original data, then

S
(λ)
Q = QS(λ)QT

is the linear smoother for the rotated data. Note that

tr
(
S

(λ)
Q

)
= tr

(
QS(λ)QT

)
= tr

(
S(λ)QTQ

)
= tr

(
S(λ)

)
,

and GCV is invariant to the choice of Q (Golub et al. 1979). It can be shown
(e.g., Wood 2006, Sect. 4.5.3) that GCV corresponds to the rotation of the data
that results in each of the diagonal elements of S(λ)

Q being equal. Since the expected
prediction error is invariant to the rotation used, the GCV score shares with the OCV
score the interpretation as an estimate of the expected prediction error.

Using the approximation (1− x)−2 ≈ 1 + 2x we obtain

GCV(λ) ≈ 1

n

n∑

i=1

[
yi − f̂ (λ)(xi)

]2
+

2tr
(
S(λ)

)

n

1

n

n∑

i=1

[
yi − f̂ (λ)(xi)

]2

=
RSS(λ)

n
+

2p(λ)

n
σ̂2,

which is proportional to Mallows CP if we replace σ̂2
max in (10.39) with σ̂2, up to a

constant not depending on λ.
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10.6.4 AIC for General Models

The AIC was introduced in Sect. 4.8.2; here we provide a derivation as a generaliza-
tion of Mallows CP . Consider the prediction of new observations Y �

1 , . . . , Y
�
n with

model

Y �
i | β ∼ind N

[
fi(β), σ

2
]
,

for i = 1, . . . , n. Suppose we fit a model using data Yn = [Y1, . . . , Yn] and obtain
the MLE β̂. The expected value of the negative maximized log-likelihood evaluated
at β̂ is

−E
[
ln(β̂)

]
=

n

2
log 2π + n log σ +

1

2σ2

n∑

i=1

E

{[
Y �
i − fi(β̂)

]2}
.

Considering the last term only, we saw in Sect. 10.4.1 that

n∑

i=1

E

{[
Y �
i − fi(β̂)

]2}
= nσ2 +

n∑

i=1

E

{[
fi(β̂)− fi(β)

]2}
, (10.47)

and Mallows CP was derived as an approximation to the second term, with “good”
models having a low Cp.

We now consider a general log-likelihood based on n observations ln(β), with
our aim being to find a criterion to judge the “fits” of a collection of models, taking
into account model complexity. The basis of AIC is to evaluate a model based on its
ability to predict new data Y �

i , i = 1, . . . , n. The prediction is based on the model
p(y� | β̂) with β̂ being the MLE based on an independent sample of size n, Yn.

The criterion that is used for discrimination, that is, to decide on whether the
prediction is good, is the Kullback–Leibler distance (as discussed in Sect. 2.4.3)
between the true model and the assumed model. The distance between the true
(unknown) distribution pT(y

�) and a model p(y� | β) is

KL [pT(y
�), p(y� | β)] =

∫
log

(
pT(y

�)

p(y� | β)
)
pT(y

�) dy� ≥ 0.

A good model with estimator β̂ will produce a small value of

KL
[
pT(y

�), p(y� | β̂)
]
. (10.48)

Unfortunately (10.48) cannot be directly used, since pT(y
�) is unknown, but we

show how it may be approximated, up to an additive constant.

Result: Let Yn = [Y1, . . . , Yn] be a random sample from pT(y) and suppose a model
p(y | β) is fitted to these data and yields MLE β̂, where β is a parameter vector
of dimension p. For simplicity, we state and prove the result for independent and
identically distributed data but the result is true in the nonidentically distributed case
also. We wish to predict an independent sample, Y �

i , i = 1, . . . , n, using p(y� | β̂).
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Two times the expected distance between the true distribution and the assumed
distribution, evaluated at the estimator β̂, is

D� = 2× EY �

[
n∑

i=1

log

(
pT(Y

�
i )

p(Y �
i | β̂)

)]

= 2n× KL
[
pT(y

�), p(y� | β̂)
]
. (10.49)

Then, we have the approximation

D� ≈ 2n× KL [pT(y
�), p(y� | βT)] + p, (10.50)

where βT is the value of β that minimizes the Kullback–Leibler distance between
pT(y) and p(y | β) (for discussion, see Sect. 2.4.3). The difference between (10.49)
and (10.50) therefore gives the increase in the discrepancy when p(y� | βT) is
replaced by p(y� | β̂).

An estimate of D� is

D̂� = −2× ln(β̂) + 2p+ 2cT

where cT =
∫
log[pT(y

�)]pT(y
�) dy� is a constant that is common to all models

under comparison. Ignoring this constant gives Akaike’s An Information Criterion7

(AIC, Akaike 1973):
AIC = −2× ln(β̂) + 2p.

Outline Derivation

The outline proof presented below is based on Davison (2003, Sect. 4.7). The
distance measure D� given in (10.49) is two times the expected difference between
log-likelihoods:

D� = E
[
2n log pT(Y

�)− 2n log p(Y � | β̂)
]
, (10.51)

where the expectation is with respect to the true model pT(y
�). We proceed by first

approximating the second term via a Taylor series expansion about βT. Let

S1(β) =
∂

∂β
log p(Y | β), I1(β) = −E

[
∂2

∂β∂βT log p(Y | β)
]

denote the score and information in a sample of size one. Then

2n log p(Y � | β̂) ≈ 2n log p(Y � | βT) + 2n(β̂ − βT)
TS1(βT)

− n(β̂ − βT)
TI1(βT)(β̂ − βT).

7Commonly AIC is referred to as Akaike’s Information Criterion.
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Note that E [S1(βT)] = 0 and n(β̂ − βT)
TI1(βT)(β̂ − βT) is asymptotically χ2

p

(Sect. 2.9.4) so its expectation is p, the number of elements of β. Hence, the second
term in (10.51) may be approximated by

E
[
2n log p(Y � | β̂)

]
≈ E [2n log p(Y � | βT)]− p. (10.52)

Therefore,

D� ≈ 2n× E [log pT(Y
�)− log p(Y � | βT)] + p

= 2n

∫
log

(
pT(y

�)

p(y� | βT)

)
pT(y

�) dy� + p

= 2n× KL [pT(y
�), p(y� | βT)] + p (10.53)

proving (10.50).
This expression for D� is not usable because pT(·) is unknown. An estimator of

KL [pT(y
�), p(y� | βT)] can be based on E

[
ln(β̂)

]
= E

[
log p(Y | β̂)

]
, however.

We write

− 2× E
[
ln(β̂)

]
= 2× E

[
−ln(βT)−

{
ln(β̂)− ln(βT)

}]

≈ 2n× E [− log p(Y � | βT)]− p

= 2n× E [− log p(Y � | βT) + log pT(Y
�)− log pT(Y

�)]− p

= 2n× KL [pT(y
�), p(y | βT)]− 2cT − p (10.54)

where

cT =

∫
log[pT(y

�)] pT(y
�) dy�,

and we have used the asymptotic result that

2
[
ln(β̂)− ln(βT)

]
→ χ2

p, (10.55)

as n → ∞, see (2.55). It follows, by rearrangement of (10.54), that

2n× KL [pT(y
�), p(y� | βT)] ≈ −2× E

[
ln(β̂)

]
+ p+ 2cT

which suggests an estimator of

2n× K̂L [pT(y
�), p(y� | βT)] = −2× ln(β̂) + p+ 2cT.

This estimate can be substituted into (10.53) to give the estimator

D̂� = −2× ln(β̂) + 2p+ 2cT

= AIC + 2cT
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where AIC = −2× ln(β̂)+2p. Since the term on the right is common to all models,
the AIC may be used to compare models, with relatively good models producing a
small value of the AIC. Some authors suggest retaining all models whose AIC is
within 2 of the minimum (e.g. Ripley 2004). �
The above derivation is based on a number of assumptions (Ripley 2004) including
the model under consideration being true. The accuracy of the approximations is
also much greater if the models under comparison are nested.

In a GLM smoothing setting, the AIC may be minimized as a function of λ, with
the degrees of freedom p being replaced by tr

(
S(λ)

)
. The AIC criteria in this case is

AIC(λ) = −2l(β̂) + 2× tr
(
S(λ)

)
, (10.56)

with the second term again measuring complexity.

An Aside

The derivation of AIC was carried out under the assumption of a correct model,
which was required to obtain (10.52) and (10.55). If the model is wrong, then√
n(β̂ − β̂T) is asymptotically normal with zero mean and variance I−1KIT−1

where

K = K(βT) = E

[(
∂

∂β
log p(Y | βT)

)(
∂

∂β
log p(Y | βT)

)T]
,

see Sect. 2.4.3. Hence, using identity (B.4) from Appendix B, the expectation of
n(β̂ − βT)

TI1(βT)(β̂ − βT) is

tr
[
I1(βT)I1(βT)

−1K(βT)I1(βT)
−1

]
= tr

[
K(βT)I1(βT)

−1
]
.

Similarly, under a wrong model, the likelihood ratio statistic 2
[
ln(β̂)− ln(βT)

]
has

an asymptotic distribution proportional to χ2
p but with mean tr

[
K(βT)I1(βT)

−1
]
.

This follows since, via a Taylor series approximation,

2
[
ln(β̂)− ln(βT)

]
≈ n(β̂ − βT)

TI1(βT)(β̂ − βT).

Replacing p by tr
[
K(βT)I1(βT)

−1
]

in the above derivation gives the alternative
network information criterion (NIC)

NIC = −2l(β̂) + 2× tr
[
K(β̂)I1(β̂)

−1
]
,

as introduced by Stone (1977).
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10.6.5 Cross-Validation for Generalized Linear Models

As discussed in Sect. 10.3.1, for general outcomes, a loss function for measuring
the accuracy of a prediction is the negative log-likelihood. Hence, cross-validation
can be extended to general data situations by replacing the sum of squares in (10.42)
with a loss function to give

CV(λ)
k =

1

nk

∑

i∈J(k)

L
[
yi, f̂

(λ)
−k (xi)

]
.

In particular, the negative log-likelihood loss (10.12) produces

CV(λ)
k = − 2

nk

∑

i∈J(k)

log p
̂f
(λ)
−k

(yi | xi) ,

where this notation emphasizes that the prediction at the point xi is based upon the
fitted value f̂

(λ)
−k . Similarly, a natural extension of (10.46) is the generalized cross-

validation score based on the log-likelihood

GCV(λ) = − 2n
[
n− tr(S(λ))

]2
n∑

i=1

log p
̂f
(λ)
−k

(yi | xi) .

Some authors (e.g., Ruppert et al. 2003, p. 220) replace the log-likelihood by the
deviance, which adds a term that does not depend on λ.

Example: Prostate Cancer

We illustrate smoothing/tuning parameter choice and estimation of the prediction
error using various approaches to modeling and a number of the methods described
in Sect. 10.6 for smoothing parameter estimation. The modeling approaches we
compare are fitting the full model using least squares, and picking the “best” subset
of variables via an exhaustive search based on Mallows CP , ridge regression, the
lasso, and Bayesian model averaging (Sect. 3.6). We divide the prostate data into
a training dataset of 67 randomly selected individuals and a test dataset of the
remaining 30 individuals. Since the sample size is small, we repeat this splitting
500 times and then evaluate, for the different methods, the average error and its
standard deviation over the train/test splits. An important point to emphasize is
that we standardize the x variables in the training dataset and then apply the same
standardization in the test dataset (and this procedure is repeated separately for each
of the 500 splits).



10.6 Smoothing Parameter Selection 539

Table 10.3 Average test errors over 500 train/test splits of the prostate
cancer data, along with the standard deviation over these splits

Null Full Best subset Ridge Lasso BMA

Mean 1.30 0.59 0.76 0.59 0.60 0.59
SD 0.32 0.15 0.35 0.14 0.14 0.14

Table 10.3 gives summaries of the test error, calculated via (10.18), for the five
approaches. We also report the error that results from fitting the null (intercept only)
model. The latter is a baseline reference, and gives an error of 1.30. The estimate
of error corresponding to the full model fitted with least squares is 0.59, a reduction
of 71%. The exhaustive search over model space (i.e., the 28 = 256 combinations of
8 variables), using Mallows CP as the model selection criterion, was significantly
worse giving an error of 0.76 with a large standard deviation. Table 10.4 shows
the variability across train/test splits in the model chosen by the exhaustive search
procedure. For example, 34.2% of models contained only the variables log(can vol),
log(weight), and SVI. The seven most frequently occurring models account for
73.8% of the total, with the remainder being spread over 27 other combinations of
variables. The table illustrates the discreteness of the exhaustive search procedure
(as discussed in Sect. 4.9) and explains the poor prediction performance. Ridge
regression and the lasso were applied to each train/test split with λ chosen via
minimization of the OCV score. The entries in Table 10.3 show that, for these data,
the shrinkage methods provide prediction errors which are comparable to, and not
an improvement on, the full model. The reason for this is that in this example the
ratio of the sample size to the number of parameters is relatively large, and so there
is little penalty for including all parameters in the model.

Figure 10.8 illustrates the variability across train/test splits of the optimal
effective degrees of freedom, chosen via minimization of (a) the OCV score and (b)
Mallows CP , for the ridge regression analyses. The two measures are then plotted
against each other in (c) and show reasonable agreement. There is a reasonable
amount of variability in the optimal degrees of freedom across simulations.

The final approach included in this experiment was Bayesian model averaging.
In this example, the performance of BMA matches that of ridge regression and the
lasso. BMA is superior to exhaustive search because covariates are not excluded
entirely, but rather every model is assigned a posterior weight so that all covariates
contribute to the fit. A number of successful approaches to prediction, including
boosting, bagging, and random forests (Hastie et al. 2009), gain success from
averaging over models, since different models can pick up different aspects of the
data, and the variance is reduced by averaging. Bagging and random forests are
described in Sects. 12.8.5 and 12.8.6, respectively.

We now provide more detail on the ridge regression, lasso, and Bayesian model
averaging approaches. We first consider in greater detail the application of ridge
regression. Figure 10.9 shows estimates of the test error, evaluated via different
methods, as a function of the effective degrees of freedom, for a single train/test
split. The minimizing values are indicated as vertical lines. The dotted line shows
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Fig. 10.8 Minimizing values of the effective degrees of freedom for ridge regression from 500
train/test splits of the prostate cancer data using: (a) OCV, (b) Mallows CP as the minimizing
criteria. Panel (c) plots the optimal degrees of freedom arising from each criteria against each
other

the estimate as the AMSE plus the estimate of the error variance, (10.41). The
minimizing value of AMSE (which is equivalent to minimizing Mallows CP ) is
very similar to that obtained with the OCV criteria and is also virtually identical to
that obtained from GCV. In all cases, the curves are flat close to the minimum, so one
would not want to overinterpret specific numerical values. The effective degrees of
freedom corresponding to the minimum OCV is 5.9, while under GCV and Mallows,
the values are identical and equal to 5.7. The fivefold CV estimate is minimized
for a slightly larger value than for OCV for this train/test split (effective degrees
of freedom of 6.6); over all train/test splits, fivefold CV produced a comparable
prediction error to OCV. Also included in the figure is the average residual sum of
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Table 10.4 Percentage of models selected in an exhaustive best subset search,
over 500 train/test splits of the prostate cancer data

Variables selected

lcavol lweight age lbph svi lcp gleason pgg45 Percentage

1 1 0 0 1 0 0 0 34.2
1 1 1 1 1 0 0 0 11.4
1 1 0 1 1 0 0 0 11.0
1 0 0 1 1 0 0 0 5.8
1 0 1 1 1 0 0 0 4.8
1 1 0 0 1 0 0 1 3.4
1 1 1 0 1 0 0 0 3.2
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Fig. 10.9 Various estimates
of error, as a function of the
effective degrees of freedom,
for ridge regression applied to
the prostate cancer data.
Minimizing values are shown
as vertical lines. Also shown
is the residual sum of squares
(which has a minimum at 8
degrees of freedom)

squares, which is minimized at the most complex model (degrees of freedom equal
to 8), as expected, and underestimates the predictive error, since the data are being
used twice.

Turning now to the lasso, Figs. 10.10(a) and (b) show the OCV and GCV
estimates of error versus the coefficient shrinkage factor, along with estimates of
the standard error. As with ridge regression, the curves are relatively flat close to the
minimum, indicating that we should not be wedded to the exact minimizing value of
the smoothing parameter. For this train/test split, the minimizing value of the OCV
function leads to three coefficients being set to zero.

Finally, for Bayesian model averaging, Fig. 10.11 provides a plot in which
the horizontal axis orders the models in terms of decreasing posterior probability
(going from left to right), with the variables indicated on the vertical axis. Black
rectangles denote inclusion of that variable and gray, no inclusion. The posterior
model percentages for the top five models are 23%, 17%, 8%, 7%, and 6%.
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Fig. 10.10 (a) OCV and (b) fivefold CV estimates of error for the lasso, as a function of the
scaling factor,
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j |, for the prostate cancer data. The minimizing value of the
CV estimates of error is shown as a solid vertical line. Also shown are approximate standard error
bands evaluated as if the CV estimates were independent (as discussed in Sect. 10.6.2)
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Fig. 10.11 From left to right
this plot shows, for a
particular split of the prostate
cancer data, the models with
the highest posterior
probability, as evaluated via
Bayesian model averaging

10.7 Concluding Comments

Whether parametric or nonparametric models are used, the bias-variance trade-off
is a key consideration. In nonparametric modeling there are explicit smoothing
parameters that determine this trade-off. We saw this with both ridge regression
and the lasso, and this issue will return repeatedly in Chaps. 11 and 12. The
choice of smoothing parameter is, therefore, crucial and a variety of approaches for
selection, including cross-validation and the minimization of Mallows CP have been
described. Additional methods will be described in Chap. 11, but no single approach
will work in all situations, and often subjective judgement is required. Härdle et al.
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(1988) have shown that smoothing parameter methods such as Mallows CP and
GCV converge slowly to the optimum as the sample size increases. A number of
simulation studies have been carried out and back up the above comments, see, for
example, Ruppert et al. (2003, Sect. 5.4) and references therein.

10.8 Bibliographic Notes

There are many excellent texts on nonparametric regression, including Green and
Silverman (1994), Simonoff (1997), Ruppert et al. (2003), Wood (2006), and, more
recently and with a large range of topics, Hastie et al. (2009). Gneiting and Raftery
(2007) provide an excellent review of scoring rules, which are closely related to
the loss functions considered in Sect. 10.3. An important early reference on ridge
regression is Hoerl and Kennard (1970). Since its introduction in Tibshirani (1996),
the lasso has been the subject of much interest, see Tibshirani (2011) and the ensuing
discussion for a summary. There is a considerable literature on the theoretical
aspects of the lasso, for example, examining its properties with respect to prediction
loss and model selection, see Meinshausen and Yu (2009) and references therein.

10.9 Exercises

10.1 For the LIDAR data described in Sect. 10.2.1 fit polynomials of increasing
degree as a function of range and comment on the fit to the data. These
data are available in the R package SemiPar and are named lidar. What
degree of polynomial is required to obtain an adequate fit to these data?
[Hint: One method of assessing the latter is to examine residuals.]

10.2 The BPD data described in Sect. 7.2.3 are available on the book website. Fit
linear and quadratic logistic regression models to these data and interpret the
parameters.

10.3 Carry out backwards elimination for the prostate cancer data, which are
available in the R package lasso2 and are named Prostate. Comment
on the standard errors of the estimates in the final model that you arrive at,
as compared to the corresponding estimates in the full model.

10.4 With reference to Sect. 10.3.1:

a. Show that minimization of expected quadratic loss, EX, Y

{
[Y − f(X)]

2
}

leads to f̂(x) = E[Y | x].
b. Show that minimization of expected absolute value loss, EX, Y [ |Y −

f(X)| ] leads to f̂(x) = median(Y | x).
c. Consider the bilinear loss function
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L[y, f(x)] =

{
a [y − f(x)] if f(x) ≤ y

b [f(x)− y] if f(x) ≥ y.

Deduce that this leads to the optimal f(x) being the 100 × a/(a + b)%
point of the distribution function of Y .

10.5 a. Show that the expected value of scaled quadratic loss

EY | x

{
[Y − f(x)]2

Y 2

}

is minimized by

f̂(x) =
E[Y −1 | x]
E[Y −2 | x] .

b. Suppose Y | μ(x), α ∼ Ga
{
α−1, [μ(x)α]−1

}
and that prediction of Y

using f(x) is required, under scaled quadratic loss. Show that f̂(x) =
E[Y −1 | x] = (1− 2α)μ(x).
[Hint: If Y | a, b ∼ Ga(a, b), then Y −1 | a, b ∼ InvGa(a, b).]

10.6 From Sect. 10.5.1 show, using a Lagrange multiplier argument, that minimiz-
ing the penalized sum of squares:

n∑

i=1

⎛

⎝yi − β0 −
k∑

j=1

xijβj

⎞

⎠
2

+ λ

k∑

j=1

β2
j ,

is equivalent to minimization of

n∑

i=1

⎛

⎝yi − β0 −
k∑

j=1

xijβj

⎞

⎠
2

subject to
k∑

j=1

β2
j ≤ s,

for some s.
10.7 Prove the alternative formulas (10.25)–(10.27) for ridge regression.
10.8 Show, using (10.45), that

| yi − f̂
(λ)
−i (xi) | ≥ | yi − f̂ (λ)(xi) |.

Interpret this result.
10.9 Cross-validation can fail completely for some problems, as will now be

illustrated.
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(a) Suppose we smooth a response yi, by minimizing, with respect to μi,
i = 1, . . . , n, the ridge regression sum of squares

n∑

i=1

(yi − μi)
2 + λ

n∑

i=1

μ2
i ,

where λ is the smoothing parameter. Show that for this problem, the OCV
and GCV scores are identical and independent of λ.

(b) By considering the basic principle of OCV, explain what causes the
failure of the previous part.

(c) Given the explanation of the failure of cross-validation for the ridge
regression problem in part (a), it might be expected that the following
modified approach will work better. Suppose a covariate xi is observed
for each yi (and for convenience, assume xi < xi+1 for all i). Define
μ(x) to be the piecewise linear function with n − 1 linear segments
between xi and xi−1 for i = 2, . . . , n. In this case μi could be estimated
by minimizing the following penalized least squares objective:

n∑

i=1

(yi − μi)
2 + λ

∫
μ(x)2dx,

with respect to μi, i = 1, . . . , n.
Now consider three equally spaced points x1, x2, x3 with corresponding
μ values μ1, μ2, μ3. Suppose that μ1 = μ3 = μ�, but that μ2 can be
freely chosen. Show that in order to minimize

∫ x3

x1
μ(x)2dx, μ2 should

be set to −μ�/2. What does this imply about trying to choose λ by cross-
validation?
[Hint: think about what the penalty will do to μi if we “leave out” yi.]

(d) Would the penalty ∫
μ′(x)2 dx

suffer from the same problem as the penalty used in part (c)?
(e) Would you expect to encounter these sorts of problems with penalized

regression smoothers? Explain your answer.

10.10 In this question data in the R package faraway that are named meatspec
will be analyzed. Theses data concern the fat content, which is the response,
measured in 215 samples of finely chopped meat, along with 100 covariates
measuring the absorption at 100 wavelengths. Perform ridge regression on
these data using OCV and GCV to choose the smoothing parameter. You
should include a plot of how the estimates change as a function of the
smoothing parameter and a plot displaying the cross-validation scores as a
function of the smoothing parameter.

10.11 For the prostate cancer data considered throughout this chapter, reproduce
the summaries in Table 10.3, coding up “by hand” the cross-validation
procedures.
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Chapter 11
Spline and Kernel Methods

11.1 Introduction

Spline models are based on piecewise polynomial fitting, while kernel regression
models are based on local polynomial fitting. These two approaches to modeling
are extremely popular, and so we dedicate a whole chapter to their description.

The layout of this chapter is as follows. In Sect. 11.2, a variety of approaches
to spline modeling are described, while Sect. 11.3 discusses kernel-based methods.
For inference, an estimate of the error variance is required; this topic is discussed
in Sect. 11.4. In this chapter we concentrate on a single x variable only. However,
we do consider general responses and, in particular, the class of generalized linear
models. Approaches for these types of data are described in Sect. 11.5. Concluding
comments appear in Sect. 11.6. There is an extensive literature on spline and
kernel modeling; Sect. 11.7 gives references to key contributions and book-length
treatments.

11.2 Spline Methods

11.2.1 Piecewise Polynomials and Splines

For continuous responses, splines are simply linear models, with an enhanced basis
set that provides flexibility.1 Let hj(x) : R → R denote the jth function of x, for
j = 1, . . . , J . A generic linear model consists of the linear basis expansion in x:

f(x) =
J∑

j=1

βjhj(x).

1Appendix C gives a brief review of bases.

J. Wakefield, Bayesian and Frequentist Regression Methods, Springer Series
in Statistics, DOI 10.1007/978-1-4419-0925-1 11,
© Springer Science+Business Media New York 2013
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Fig. 11.1 Polynomial fits to the LIDAR data: (a) quadratic, (b) cubic, (c) quartic, and (d) degree-8
polynomial

An obvious choice of basis is a polynomial of degree J − 1, but the global behavior
of such a choice can be poor in the sense that the polynomial will not provide a good
fit over the complete range of x. However, local behavior can be well represented
by relatively low-order polynomials.

Example: Light Detection and Ranging

Figure 11.1 shows degree 2, 3, 4, and 8 polynomial fits to the LIDAR data. The
quadratic and cubic models fit very badly, while the quartic model produces a poor
fit for ranges of 500–560 m. The degree-8 polynomial fit is also not completely
satisfactory with wiggles at the extremes of the range variable due to the global
nature of the fitting.

To motivate spline models, we fit piecewise-constant, linear, quadratic, and cubic
models using least squares, with three pieces in each case. The fits are displayed in
Fig. 11.2. We focus on the piecewise linear model, as shown in Fig. 11.2(b). By
forcing the curve to be continuous but only allowing linear segments, we see that
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Fig. 11.2 Piecewise polynomials for the LIDAR data: (a) constant, (b) linear, (c) quadratic, and
(d) cubic

the fit is not good (particularly in the first segment). The lack of smoothness is also
undesirable. The quadratic and cubic fits in panels (c) and (d) are far more appealing
visually, though neither provide satisfactory fits because we have only allowed three
piecewise polynomials. In particular, in panel (d), the cubic fit is still poor at the left
endpoint. �

We now start the description of spline models by introducing some notation.
Let ξ1 < ξ2 < . . . < ξL be a set of ordered points, called knots, contained in
some interval [a, b]. An M -th order spline is a piecewise M − 1 degree polynomial
with M − 2 continuous derivatives at the knots.2 Splines are very popular in
nonparametric modeling though, as we shall see, care is required in choosing the
degree of smoothing. The latter depends on a variety of factors including the order
of the spline and the number and position of the knots.

We begin with a discussion on the order of the spline. The most basic piecewise
polynomial is a piecewise-constant function, which is a first-order spline. With two
knots, ξ1 and ξ2, one possible set of three basis functions is

2From the Oxford dictionary, a spline is a “flexible wood or rubber strip, for example, used in
drawing large curves especially in railway work.”
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h1(x) = I(x < ξ1), h2(x) = I(ξ1 ≤ x < ξ2), h3(x) = I(ξ2 ≤ x)

where I(·) is the indicator function. Note that there are no continuous derivatives at
the knots; Fig. 11.2(a) clearly shows the undesirability of this aspect.

To obtain linear models in each of the intervals, we may introduce three
additional bases

h3+j = hj(x)x, j = 1, 2, 3,

to give the model

f(x) = I(x < ξ1)(β1+β4x)+I(ξ1 ≤ x < ξ2)(β2+β5x)+I(ξ2 ≤ x)(β3+β6x),

which contains six parameters. Lack of continuity is a problem with this model, but
we can impose two constraints to enforce f(ξ−1 ) = f(ξ+1 ) and f(ξ−2 ) = f(ξ+2 ),
which imply the two conditions

β1 + ξ1β4 = β2 + ξ1β5

β2 + ξ2β5 = β3 + ξ2β6,

to give four parameters in total. A neater way of incorporating these constraints is
with the basis set:

h1(x) = 1, h2(x) = x, h3(x) = (x− ξ1)+, h4(x) = (x− ξ2)+ (11.1)

where t+ denotes the positive part. We refer to the generic basis (x − ξ)+ as a
truncated line.3 The resultant function

f(x) = β0 + β1x+ β2(x − ξ1)+ + β3(x− ξ2)+

is continuous at the knots since all prior basis functions are contributing to the fit
up to any single x value. The model defined by the basis (11.1) is an order-2 spline,
and the first derivative is discontinuous. Figure 11.3 shows the basis functions for
this representation and Fig. 11.2(b) the fit of this model to the LIDAR data.

We now consider how the piecewise linear model may be extended. Naively, we
might assume the quadratic form:

f(x)= β0 + β1x+ β2x
2 + β3(x− ξ1)+ + β4(x− ξ1)

2
+ + β5(x− ξ2)+ + β6(x− ξ2)

2
+,

(11.2)

which is continuous but has first derivative

f ′(x) = β1+2β2x+β3I(x > ξ1)+2β4(x− ξ1)++β5I(x > ξ2)+2β6(x− ξ2)+,

3It is conventional to define the truncated lines with respect to bases that take the positive part, but
we could have defined the same model with respect to bases taking the negative part.
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Fig. 11.3 Basis functions for
a piecewise linear model with
two knots at ξ1 and ξ2. The
solid lines are the bases 1 and
x, and the dashed lines are
the bases (x− ξ1)+ and
(x− ξ2)+

which is discontinuous at the knot points ξ1 and ξ2 due to the linear truncated
bases associated with β3 and β5 in (11.2). This lack of smoothness at the knots is
undesirable. Hence, we drop the truncated linear bases to give the regression model

f(x) = β0 + β1x+ β2x
2 + β3(x− ξ1)

2
+ + β4(x − ξ2)

2
+

which has continuous first derivative:

f ′(x) = β1 + 2β2x+ 2β3(x− ξ1)+ + 2β4(x− ξ2)+.

The second derivative is discontinuous, however, which may also be undesirable.
Consequently, a popular form (which we justify more rigorously shortly) is a cubic
spline. We will concentrate on cubic splines in some detail, and so we introduce a
slight change of notation with respect to the truncated cubic parameters. With two
knots the function and first three derivatives are

f(x) = β0 + β1x+ β2x
2 + β3x

3 + b1(x − ξ1)
3
+ + b2(x− ξ2)

3
+

f ′(x) = β1 + 2β2x+ 3β3x
2 + 3b1(x− ξ1)

2
+ + 3b2(x− ξ2)

2
+

f ′′(x) = 2β2 + 6β3x+ 6b1(x− ξ1)+ + 6b2(x− ξ2)+

f ′′′(x) = 6β3 + 6b1I(x > ξ1) + 6b2I(x > ξ2).

The latter is discontinuous, with a jump at the knots. Figure 11.4 shows the basis
functions for the cubic spline, with two knots, and Fig. 11.2(d) shows the fit to the
LIDAR data.

For L knots, we write the cubic spline function as

f(x) = β0 + β1x+ β2x
2 + β3x

3 +

L∑

l=1

bl(x − ξl)
3
+, (11.3)
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Fig. 11.4 Basis functions for a piecewise cubic spline model with two knots at ξ1 and ξ2. Panel
(a) shows the bases 1, x, x2, and x3 and panel (b) the bases (x − ξ1)3+ and (x − ξ2)3+. Note that
in (b) the bases have been scaled in the vertical direction for clarity

so that we have L + 4 coefficients. The key to implementation is to recognize that
we simply have a linear model, f(x) = E[Y | z] = zγ, where z = z(x) and

z =

⎡

⎢⎢⎢⎣

1 x1 x2
1 x3

1 (x1 − ξ1)
3
+ . . . (x1 − ξL)

3
+

1 x2 x2
2 x3

2 (x2 − ξ1)
3
+ . . . (x2 − ξL)

3
+

...
...

...
...

...
. . .

...
1 xn x2

n x3
n (xn − ξ1)

3
+ . . . (xn − ξL)

3
+

⎤

⎥⎥⎥⎦ , γ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β0

β1

β2

β3

b1
...
bL

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The obvious estimator is therefore γ̂ = (zTz)−1zTY , which gives the linear
smoother Ŷ = SY , where S = z(zTz)−1zT.

11.2.2 Natural Cubic Splines

Spline models such as (11.3) can produce erratic behavior beyond the extreme knots.
A natural spline enforces linearity beyond the boundary knots, that is,

f(x) = a1 + a2x for x ≤ ξ1

f(x) = a3 + a4x for x ≥ ξL.

The first condition only considers values of x before the knots, and therefore, the bl
parameters in (11.3) are irrelevant. Consequently, it is straightforward to see that we
require

β2 = β3 = 0. (11.4)
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For x ≥ ξL,

f(x) = β0 + β1x+

L∑

l=1

bl(x− ξl)
3

= β0 + β1x+

L∑

l=1

bl(x
3 − 3x2ξl + 3xξ2l − ξ3l ),

and so, for linearity,
L∑

l=1

bl =

L∑

l=1

blξl = 0. (11.5)

Hence, we have four additional constraints in total, so that the basis for a natural
cubic spline has L elements. Exercise 11.3 describes an alternative basis.

11.2.3 Cubic Smoothing Splines

So far we have examined splines in a heuristic way, as flexible functions with certain
desirable properties in terms of the continuity of the function and the first and second
derivatives at the knots. We now present a formal justification for the natural cubic
spline.

Result. Consider the penalized least squares criterion
n∑

i=1

[yi − f(xi)]
2 + λ

∫
f ′′(x)2dx, (11.6)

where the second term penalizes the roughness of the curve and λ controls the
degree of this roughness. It is clear that without the penalization term, we could
choose an infinite number of curves that interpolate the data (in the case of unique x
values, at least), with arbitrary behavior in between. Quite remarkably, the f(·) that
minimizes (11.6) is the natural cubic spline with knots at the unique data points; we
call this function g(x).

Proof. The proof has two parts and is based on Green and Silverman (1994,
Chap. 2). We begin by showing that a natural cubic spline minimizes (11.6) amongst
all interpolating functions and then extend to non-interpolating functions. Assume
that x1 < . . . < xn. We consider all functions that are continuous in [x1, xn] with
continuous first and second derivatives and which interpolate [xi, yi], i = 1, . . . , n.
Since the first term of (11.6) is zero, we need to show that the natural cubic spline,
g(x), minimizes

∫ xn

x1

f ′′(x)2dx.
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Let g̃(x) be another interpolant of (xi, yi), and define h(x) = g̃(x)−g(x). Then,
∫ xn

x1

g̃ ′′(x)2 dx =

∫ xn

x1

[g′′(x) + h′′(x)]2 dx

=

∫ xn

x1

[
g′′(x)2 + 2g′′(x)h′′(x) + h′′(x)2

]
dx.

Applying integration by parts to the cross term,

∫ xn

x1

g′′(x)h′′(x)dx = [g′′(x)h′(x)]xn

x1
−
∫ xn

x1

g′′′(x)h′(x) dx

= −
∫ xn

x1

g′′′(x)h′(x) dx since g′′(x1) = g′′(xn) = 0

= −
n−1∑

i=1

g′′′(x+
i )

∫ xi+1

xi

h′(x) dx

since g′′′(x) is constant in, and x+
i is a point in, [xi, xi+1]

= −
n−1∑

i=1

g′′′(x+
i ) [h(xi+1)− h(xi)]

= 0

since h(xi+1) = g̃(xi+1) − g(xi+1) and both are interpolants (and similarly for
h(xi)). We have shown that

∫ xn

x1

g̃′′(x)2dx =

∫ xn

x1

g′′(x)2dx+

∫ xn

x1

h′′(x)2 dx

≥
∫ xn

x1

g′′(x)2 dx

with equality if and only if h′′(x) = 0 for x1 < x < xn. The latter implies
h(x) = a + bx, but h(x1) = h(xn) = 0, and so a = b = 0. Consequently, any
interpolant that is not identical to g(x) will have a higher integrated squared second
derivative. Therefore, the natural cubic spline with knots at the unique x values is
the smoothest interpolant in the sense of minimizing

∫
f ′′(x)2 dx. This is of use in,

for example, numerical analysis, where interpolation of [xi, yi] is of interest. But,
in statistical applications, the data are measured with error, and we typically do not
wish to restrict attention to interpolating functions.4

4There are some analogies here with bias, variance, and mean squared error. The penalized sum of
squares (11.6) is analogous to the mean squared error, and interpolating functions are “unbiased”
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We have shown that a natural cubic spline minimizes (11.6) amongst all
interpolating functions but the minimizing function need not necessarily be an
interpolant since an interpolating function may have a large associated penalty
contribution. The second part of the proof considers functions that do not necessarily
interpolate the data but have n free parameters g(xi) with the aim being minimiza-
tion of (11.6). The resulting g(x) is known as a smoothing spline. Suppose some
function f�(x), other than the cubic smoothing spline, minimizes (11.6). Let g(x)
be the natural cubic spline that interpolates [xi, f

�(xi) ], i = 1, . . . , n. Obviously,
f� and g produce the same residual sum of squares in (11.6) since f�(xi) = g(xi).
But, by the first part of the proof,

∫
f�′′

(x)2dx >

∫
g′′(x)2dx.

Hence, the natural cubic spline is the function that minimizes (11.6); this spline is
known as a cubic smoothing spline.

The above result has shown us that if we wish to minimize (11.6), we should take
as model class the cubic smoothing splines. The coefficient estimates of the fit will
depend on the value chosen for λ. We stress that the fitted natural cubic smoothing
spline will not typically interpolate the data, and the level of smoothness will be
determined by the value of λ chosen. Small values of λ, which correspond to a large
effective degrees of freedom (Sect. 10.5.1), impose little smoothness and bring the
fit closer to interpolation, while large values will result in the fit being close to linear
in x (in the limit, a zero second derivative is required).

In terms of interpretation, if a thin piece of flexible wood (a mechanical spline) is
placed over the points [xi, yi ], i = 1, . . . , n, then the position taken up by the piece
of wood will be of minimum energy and will describe a curve that approximately
minimizes

∫
f ′′2 over curves that interpolate the data.

Example: Light Detection and Ranging

We fit a natural cubic spline to the LIDAR data. Figure 11.5 shows the ordinary
and generalized cross-validation scores (as described in Sects. 10.6.2 and 10.6.3,
respectively) versus the effective degrees of freedom. The curves are very similar
with well-defined minima since these data are abundant and the noise level is
relatively low. The OCV and GCV scores are minimized at 9.3 and 9.4 effective
degrees of freedom, respectively. Figure 11.6 shows the fit (using the GCV
minimum corresponding to λ̂ = 959), which appears good. In particular, we note
that the boundary behavior is reasonable.

but may have large variability. However, we can obtain a better estimator if we are prepared to
examine “biased” (i.e., non-interpolating) functions.
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Fig. 11.5 Ordinary and
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scores versus effective
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LIDAR data and a natural
cubic spline model
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Fig. 11.6 Cubic spline fits to
the LIDAR data. The natural
cubic spline fit has smoothing
parameter chosen by
generalized cross-validation.
The mixed model cubic
spline has smoothing
parameter chosen by REML

11.2.4 B-Splines

There are many ways of choosing a basis to represent a cubic spline; the so-called
B-spline basis functions are popular, a primary reason being that they are nonzero
over a limited range which aids in computation. B-splines also form the building
blocks for other spline models as we describe in Sect. 11.2.5. The classic text on
B-splines is de Boor (1978).

B-splines are available for splines of general order, which we again denote by
M (so that for a cubic spline, M = 4). The number of basis functions is L + M
since we have an M −1 degree polynomial (giving M bases) and one basis for each
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knot. The original set of knots are denoted ξl, l = 1, . . . , L, and we let ξ0 < ξ1 and
ξL < ξL+1 represent two boundary knots. We define an augmented set of knots, τj ,
j = 1, . . . , L+ 2M , with

τ1 ≤ τ2 ≤ . . . ≤ τM ≤ ξ0

τj+M = ξj , j = 1, . . . , L

ξL+1 ≤ τL+M+1 ≤ τL+M+2 ≤ . . . ≤ τL+2M

where the choice of the additional knots is arbitrary and so we may, for example,
set τ1 = . . . = τM = ξ0 and ξL+1 = τL+M+1 = . . . = τL+2M . These additional
knots ensure the basis functions detailed below are defined close to the boundaries.
To construct the bases, first define

B1
j (x) =

{
1 if τj ≤ x < τj+1

0 otherwise
(11.7)

for j = 2, . . . , L+ 2M − 1. For 1 < m ≤ M , define

Bm
j (x) =

x− τj
τj+m−1 − τj

Bm−1
j +

τj+m − x

τj+m − τj+1
Bm−1

j+1 (11.8)

for j = 1, . . . , L+2M −m. If we divide by zero, then we define the relevant basis
element to be zero. The B-spline bases are nonzero over a domain spanned by at
most M +1 knots. For example, the support of cubic B-splines (M = 4) is at most
five knots. At any x, M of the B-splines are nonzero.

The cubic B-spline model is

f(x) =

L+4∑

j=1

B4
j (x)βj . (11.9)

For further details on computation, see Hastie et al. (2009, p. 186). Figure 11.7
shows the cubic B-spline basis (including the intercept) for L = 9 knots.

11.2.5 Penalized Regression Splines

Although the result of Sect. 11.2.3 is of theoretical interest, in general, we would
like to have a functional form that has less parameters than data points. Regresssion
splines are defined with respect to a reduced set of L < n knots. Automatically
deciding on the number and location of knots is difficult. For example, starting
with n knots and then selecting via stepwise methods (Sect. 4.8.1) is fraught
with difficulties since there are 2n models to choose from (assuming the intercept
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Fig. 11.7 B-spline basis
functions corresponding to a
cubic spline (M = 4) with
L = 9 equally spaced knots
(whose positions are shown
as open circles on the x-axis).
There are L+M = 13 bases
in total. Note that six distinct
line types are used so that, for
example, there are three
splines represented by solid
curves: the leftmost, the
central, and the rightmost

and linear terms are always present). An alternative penalized regression spline
approach, with L < n knots, is to choose sufficient knots for flexibility and then to
penalize the parameters associated with the knot bases. If this approach is followed,
the number and selection of knots is far less important than the choice of smoothing
parameter. An obvious choice is to place an L2 penalty on the coefficients, that is, to
include the term λ

∑L
l=1 b

2
l in a penalized least squares form. So-called low-rank

smoothers use considerably fewer than n basis functions.
We now consider linear smoothers of the form:

f(x) =

J∑

j=1

hj(x)βj = h(x)β,

where h(x) is a 1 × J vector. A general penalized regression spline is β̂
T

h(x),
where β̂ is the minimizer of

n∑

i=1

(yi − hiβ)
2 + λβTDβ, (11.10)

with hi = h(xi), D is a symmetric-positive semi-definite matrix, and λ > 0 is a
scalar. If we let h = [h1, . . . ,hn]

T represent the n× J design matrix, then

β̂ = (hTh+ λD)−1hTY . (11.11)

The penalty

λ

∫
f ′′(x)2dx (11.12)
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is of the form (11.10) since, for a linear smoother f(x),
∫

f ′′(x)2dx = βT

[∫
h′′(x)h′′(x)Tdx

]
β

= βTDβ

with D a matrix of known coefficients. The penalty is measuring complexity: For
λ = 0, there is no cost to fitting a very complex function, while λ = ∞ gives the
simple linear least squares line.

O’Sullivan splines (O’Sullivan 1986) use the cubic B-spline basis representation
(11.9), combined with the penalty (11.12), which takes the form:

λ

∫ ⎛

⎝
L+4∑

j=1

B4
j (x)

′′βj

⎞

⎠
2

dx.

Hence, the penalty matrix D has (j, k)-th element
∫
B4

j (x)
′′B4

k(x)
′′ dx. O’Sullivan

splines correspond to cubic smoothing splines for L = n and distinct xi (Green and
Silverman 1994, Sect. 3.6).

The construction of P -splines is based on a different penalty in which a set of
B-spline basis functions are used with a collection of equally spaced knots (Eilers
and Marx 1996). The form of the penalty is

λ

J∑

j=k+1

(Δkβj)
2 (11.13)

with Δβj = βj − βj−1, the difference operator, and where k is a positive integer.
For k = 2, the penalty is

λ

J−1∑

j=1

(βj+1 − βj)
2 = β2

1 − 2β1β2 + 2β2
2 + . . .+ 2β2

J−1 − 2βJ−1βJ + β2
J ,

which corresponds to the general penalty βTDβ with

D =

⎡

⎢⎢⎣

1 −1 0 · ·
−1 2 −1 · ·
0 −1 2 · ·
· · · · ·

⎤

⎥⎥⎦ .

This form penalizes large changes in adjacent coefficients, providing an alternative
representation of smoothing. The P -spline approach was heavily influenced by the
derivation of O’Sullivan splines (O’Sullivan 1986), and the P -spline penalty is an
approximation to the integrated squared derivative penalty. See Eilers and Marx
(1996) for a careful discussion of the two approaches. Wand and Ormerod (2008)
also contrast O’Sullivan splines (which they refer to as O-splines) with P -splines
and argue that O-splines are an attractive option for nonparametric regression.
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With respect to penalized regression splines, a number of suggestions exist for
the number and location of the knots. For example, Ruppert et al. (2003) take as
default choice:

L = min

(
1

4
× number of unique xi, 35

)
,

with knots ξl taken at the (l + 1)/(L+ 2)th points of the unique xi. These authors
say that these choices “work well in most of the examples we come across” but urge
against the unquestioning use of these rules.

11.2.6 A Brief Spline Summary

The terminology associated with splines can be confusing, so we provide a brief
summary. For simplicity, we assume that the covariate x is univariate and that
x1, . . . , xn are unique. A smoothing spline contains n knots, and a cubic smoothing
spline is piecewise cubic. A natural spline is linear beyond the boundary knots. If
there are L < n knots, we have a regression spline. A penalized regression spline
imposes a penalty on the coefficients associated with the piecewise polynomial. The
penalty terms may take a variety of forms.

The number of basis functions that define the spline depends on the number of
knots and the degree of the polynomial; natural splines have a reduced number of
bases. Spline models may be parameterized in many different ways.

11.2.7 Inference for Linear Smoothers

Nonparametric regression may be used for a variety of purposes. The simplest
use is as a scatterplot smoother for pure exploration. In such a context, a plot of
f̂(x) versus x is perhaps all that is required. In other instances, we may wish to
produce interval estimates, either pointwise or simultaneous, in order to examine
the uncertainty as a function of x.

We consider linear smoothers with J basis functions and write f(x) = h(x)β
for a prediction at x with β a J × 1 vector and h(x) the J × 1 design matrix
associated with x. Further, assume Y (x) = f(x) + ε(x), with the error terms ε(x)
uncorrelated and with constant variance σ2. We emphasize that J is not equal to
the effective degrees of freedom, which is given by p(λ) = tr

[
h(hTh+ λD)−1hT

]

where h = [h(x1), . . . ,h(xn) ]
T. Differentiation of (11.10) with respect to β and

setting equal to zero gives

β̂ = (hTh+ λD)−1hTY .
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Assuming a fixed λ, asymptotic inference for β is straightforward since

[
(hTh+ λD)−1hTh(hTh+ λD)−1

]−1/2
(
β̂ − β

)
→ NJ (0, σ

2I).

In a nonparametric regression context, interest often focuses on inference for the
underlying function; we first consider inference at a single point x, f(x).

Since the estimator is linear in the data,

f̂(x) = h(x)β̂ = S(x)Y =

n∑

i=1

Si(x)Yi (11.14)

where S(x) = h(x)(hTh + λD)−1hT is the 1 × n vector with elements Si(x),
i = 1, . . . , n. This estimator has mean

E
[
f̂(x)

]
=

n∑

i=1

Si(x)f(xi)

and variance

var
(
f̂(x)

)
= σ2

n∑

i=1

Si(x)
2 = σ2||S(x)||2. (11.15)

A major difficulty with (11.14) is that there will be bias b(x) present in the
estimator. If this bias were known, then

f̂(x)− f(x)− b(x)

σ||S(x)|| →d N(0, 1), (11.16)

via a central limit theorem. Note that it is “local” sample size that is relevant here,
with a precise definition depending on the smoothing technique used (which defines
S(x). Estimation of the bias is difficult since it involves estimation of f ′′(x) (for a
derivation in the context of density estimation, see Sect. 11.3.4).

Often the bias is just ignored. The interpretation of the resultant confidence

intervals is that they are confidence intervals for f(x) = E
[
f̂(x)

]
, which may

be thought of as a smoothed version of f(x). We have

f̂(x) − f(x)

σ||S(x)|| =
f̂(x) − f(x)

σ||S(x)|| +
f(x) − f(x)

σ||S(x)||

= Zn(x) +
b(x)

σ||S(x)|| , (11.17)

which is a restatement of (11.16) and where Zn(x) converges to a standard
normal. Hence, a 100(1 − α)% asymptotic confidence interval for f(x) is f̂(x) ±
cασ||S(x)||, where cα is the appropriate cutoff point of a standard normal distribu-
tion. In parametric inference, the bias is usually much smaller than the standard
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deviation of the estimator, so the bias term goes to zero as the sample size
increases.5 In a smoothing context, we have repeatedly seen that optimal smoothing
corresponds to balancing bias and variance, and the second term does not disappear
from (11.17), even for large sample sizes (recall that S(x) will depend on λ, whose
choice will depend on sample size).

We now turn to simultaneous confidence bands of the function f(x) over an
interval x ∈ [ a, b ] with a = min(xi) and b = max(xi), i = 1, . . . , n. In
the following, we will assume that the confidence bands are for the smoothed

function f(x) = E
[
f̂(x)

]
, thus sidestepping the bias issue. We again assume linear

smoothers so that (11.14) holds.
One way to think about a simultaneous confidence band is to begin with a finite

grid of x values: xj = a + j(b − a)/m, j = 1, . . . ,m. Now suppose we wish
to obtain a simultaneous confidence band for f(xj), j = 1, . . . ,m. One way of
approaching this problem is to consider the probability that each of the m estimated
functions simultaneously lie within c standard errors of f , that is,

m⋂

j=1

{∣∣∣∣∣
f̂(xj)− f(xj)

σ||S(xj)||

∣∣∣∣∣ ≤ c

}
,

where c is chosen to correspond to the required 1 − α level of the confidence
statement. Then

Pr

⎛

⎝
m⋂

j=1

{∣∣∣∣∣
f̂(xj)− f(xj)

σ||S(xj)||

∣∣∣∣∣ ≤ c

}⎞

⎠ = Pr

(
max

x1,...,xm

∣∣∣∣∣
f̂(xj)− f(xj)

σ||S(xj)||

∣∣∣∣∣ ≤ c

)
.

(11.18)

Now suppose that m → ∞ to give the limiting expression for (11.18) as

Pr

(
sup

x∈[a,b]

∣∣∣∣∣
f̂(x)− f(x)

σ||S(x)||

∣∣∣∣∣ ≤ c

)
= Pr(M ≤ c).

Sun and Loader (1994), following Knafl et al. (1985), considered approximating this
probability in the present context. Let T (x) = S(x)/||S(x)||. Based on the theory
of Gaussian processes,

Pr(M ≥ c) ≈ 2 [1− Φ(c)] +
κ0

π
exp(−c2/2),

where

κ0 =

∫ b

a

||T ′(x)|| dx,

5With parametric models, we are often interested in simple models with a fixed number of
parameters, even if we know they are not “true”. For example, when we carry out linear regression,
we do not usually believe that the “true” underlying function is linear; rather, we simply wish to
estimate the linear association.
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T ′(x) = [T ′
1(x), . . . , T

′
n(x)]

T and T ′
i (x) = ∂Ti(x)/∂x for i = 1, . . . , n. We choose

c to solve

α = 2 [1− Φ(c)] +
κ0

π
exp(−c2/2), (11.19)

and κ0 may be evaluated using numerical integration over a grid of x values. To
summarize, once an α level is chosen, we obtain κ0 and c and then form bands
f̂(x) ± cσ||S(x)||.

In the case of nonconstant variance, we replace σ by σ(x). Section 11.4 contains
details on estimation of the error variance. Throughout this section, we have
conditioned upon a λ value, which is usually estimated from the data. Hence, in
practice, the uncertainty in λ is not accounted for in the construction of interval
estimates. A Bayesian mixed model approach (Sect. 11.2.9) treats λ as a parameter,
assigns a prior, and then averages over the uncertainty in λ in subsequent inference.

In some contexts, interest may focus on testing the adequacy of a parametric
model, comparing nested smoothing models, or testing whether the relationship
between the expected response and x is flat. In each of these cases, likelihood
ratio or F tests can be performed (see, e.g., Wood 2006, Sect. 4.8.5), though the
nonstandard context suggests that the significance of test statistics should be judged
via simulation.

Example: Light Detection and Ranging

We fit a cubic penalized regression spline, with penalization λ
∑L

l=1 b
2
l and λ esti-

mated using generalized cross-validation. Figure 11.8(a) gives pointwise confidence
intervals and simultaneous confidence bands under the assumption of constant
variance. Figure 11.8(b) presents the more appropriate intervals with allowance
for nonconstant variance (for details on how σ(x) is estimated, see the example
at the end of Sect. 11.4). The coverage probability is 0.95, and the critical value
for c is 1.96 for the pointwise intervals and 3.11 for the simultaneous intervals, as
calculated from (11.19), with κ0 estimated as 15.4. Under a nonconstant variance
assumption, the intervals are very tight for low ranges and increase in width as the
range increases.

11.2.8 Linear Mixed Model Spline Representation: Likelihood
Inference

In this section we describe an alternative mixed model framework for the rep-
resentation of regression spline models. A benefit of this framework is that the
smoothing parameter may be estimated using standard inference (e.g., likelihood
or Bayesian) techniques. It is also possible to build complex mixed models that can
model dependencies within the data using random effects, in addition to performing
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Fig. 11.8 Pointwise
confidence intervals and
simultaneous confidence
bands for f(x) for the LIDAR
data under the assumption of
(a) homoscedastic errors and
(b) heteroscedastic errors

the required smoothing. In the following, we lean heavily on the material on linear
random effects modeling contained in Chap. 8. Consider the (p+1)th-order (degree
p polynomial) penalized regression spline with L knots, that is,

f(x) = β0 + β1x+ . . .+ βpx
p +

L∑

l=1

bl(x − ξl)
p
+.

A penalized least squares approach with L2 penalization of the L truncated cubic
coefficients leads to minimization of
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n∑

i=1

(yi − xiβ − zib)
2 + λ

L∑

l=1

b2l , (11.20)

where

xi = [1, xi, . . . , x
p
i ], β =

⎡

⎢⎢⎢⎣

β0

β1

...
βp

⎤

⎥⎥⎥⎦, zi = [ (xi−ξ1)
p
+, . . . , (xi−ξL)

p
+ ], b =

⎡

⎢⎣
b1
...
bL

⎤

⎥⎦.

Let D = diag(0p+1, 1L) and c be the n × (p + 1 + L) matrix with ith row
ci = [1, xi, . . . , x

p
i , (xi − ξ1)

p
+, . . . , (xi − ξL)

p
+], so that c = [x, z], where

x = [x1, . . . ,xn]
T and z = [z1, . . . , zn]

T. The penalized sum of squares (11.20)
can be written as

(y − cγ)T(y − cγ) + λγTDγ, (11.21)

where γ = [β, b ]T.
We now reframe this approach in mixed model form with mean model

yi = f(xi) + εi

= xiβ + zib+ εi,

and covariance structure and distributional form determined by εi | σ2
ε ∼iid

N(0, σ2
ε ) and bl | σ2

b ∼iid N(0, σ2
b ) with εi and bl independent, i = 1, . . . , n,

l = 1, . . . , L. This formulation sheds some light on the nature of the penalization.
Since the distribution of bl is independent of bl′ for l 	= l′, we are assuming that
the size of the contribution due to the lth basis is not influenced by any other
contributions, in particular, the closest (in terms of x) basis. For example, knowing
the sign of bl−1 does not imply we believe that bl is of the same sign. This is in
contrast to the P -spline difference penalty described in Sect. 11.2.5.

Minimization of (11.21) with respect to β and b is then equivalent to minimiza-
tion of

1

σ2
ε

[
(y − xβ − zb)T(y − xβ − zb) +

σ2
ε

σ2
b

bTb

]

so that λ = σ2
ε /σ

2
b . We summarize likelihood-based inference for this linear

mixed model; Sect. 8.5 contains background details. The maximum likelihood (ML)
estimate of β is

β̂ =
(
xTV −1x

)−1
xTV −1Y (11.22)

where V = σ2
bzz

T + σ2
ε In, and the best linear unbiased predictor (BLUP)

estimator/predictor of b is

b̂ = σ2
bz

TV −1(y − xβ) (11.23)
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Let σ̂2
ε and σ̂2

b be the restricted maximum likelihood (REML) estimators (see
Sect. 8.5.3) of σ2

ε and σ2
b so that

λ̂ =

(
σ̂2
ε

σ̂2
b

)
.

In practice, we use

β̂ = (xTV̂ −1x)−1xTV̂ −1Y

b̂ = σ̂2
bz

TV̂ −1(y − xβ̂).

The (penalized) estimator of γ = [β, b ]T can be written as

γ̂ = (cTc+ λD)−1cTY (11.24)

(Exercise 11.2). Hence, we can write the fitted values as the linear smoother:

f̂ = cγ̂ = S(λ)Y

= c(cTc+ λD)−1cTY .

The degrees of freedom of the model is defined as

df(λ) = tr
(
S(λ)

)

= tr
[
c(cTc+ λD)−1cT

]
. (11.25)

We consider inference for a particular value x:

f̂(x) = x(x)β̂ + z(x)b̂

= c(x)γ̂

= c(x)(cTc+ λD)−1cTY

where x(x) = [ 1, x, . . . , xp ], z(x) = [ (x − ξ1)
p, . . . , (x − ξL)

p ] and c(x) =
[x(x), z(x) ].

The variance, conditional on b, is

var
(
f̂(x) | b

)
= σ2

ε c(x)(c
Tc+ λD)−1cTc(cTc+ λD)−1c(x)T,

which is identical to the variance obtained from ridge regression (10.30). Ruppert
et al. (2003, Sect. 6.4) argue for conditioning on b to give the appropriate measure of
variability. Specifically, they state (in the notation used here): “Randomness of b is
a device used to model curvature, while ε accounts for variability about the curve.”
Asymptotic 95% pointwise confidence intervals for f(x) are

f̂(x)± 1.96×
√

var
(
f̂(x)

)
.

Approximate or fully Bayesian approaches to confidence interval construction for
the complete curve have been recently advocated and have shown to be accurate in
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simulation studies; see Chap. 17 of Ruppert et al. (2003) and the detailed account
of Marra and Wood (2012). These accounts build upon the work of Wabha (1983);
Silverman (1985), and Nychka (1988). The latter showed, for univariate x, that a
Bayesian interval estimate of the curve, constructed using a cubic smoothing spline,
has good frequentist coverage probabilities when the bias in curve estimation is
a small contributor to the overall mean squared error. In this case, the average
posterior variance is a good approximation to the mean squared error of the
collection of predictions. Marra and Wood (2012) provide a far-ranging discussion
of Bayesian confidence interval construction, in the context of generalized additive
models, as described in Sect. 12.2; included is a discussion of when the coverage
probability of the interval is likely to be poor, one instance being when a relatively
large amount of bias occurs, for example, when one over-smooths.

Tests of the adequacy of a parametric model or of a null association via likelihood
ratio and F tests are described in Ruppert et al. (2003, Sects. 6.6 and 6.7). We
illustrate confidence interval construction with an example.

Example: Light Detection and Ranging

We fit a cubic spline with 20 equally spaced knots (so that we have 4 fixed effects
and 20 random effects) with REML estimation of the smoothing parameter. The
resultant fit is shown in Fig. 11.6 as a dashed line. The variance components
are estimated as σ̂2

ε = 0.0792 and σ̂2
b = 0.0122, to give smoothing parameter

λ̂ = 45.8, which equates to an effective degrees of freedom of 8.5. This is quite
similar to the effective degrees of freedom of 9.4 that was chosen by GCV for
the natural cubic spline fit, which is also shown in Fig. 11.6. The fits are virtually
indistinguishable, which is reassuring. Again we point out that this analysis ignores
the clear heteroscedasticity in these data. Within the linear mixed model framework,
it would be natural to assume a parametric or nonparametric model for σ2

ε as a
function of x.

In Fig. 11.9, we display the contributions b̂l(x − ξl)
3
+ from the l = 1, . . . , 20,

truncated cubic segments. The contribution from the fixed effect cubic, β̂0 + β̂1x+
β̂2x

2 + β̂3x
3, is shown as the solid line in each of the plots in this figure. The 1st

and 16th–20th cubic segments offer virtually no contribution to the fit, while the
contribution of the 4th–14th segments is considerable, which reflects the strong rate
of change in the response between ranges of 550 m and 650 m.

11.2.9 Linear Mixed Model Spline Representation: Bayesian
Inference

We now discuss a Bayesian mixed model approach. The model is the same as in
the last section, with carefully chosen priors. We will not discuss implementation in
detail, but lean on the INLA method described in Sect. 3.7.4.
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Fig. 11.9 Contributions of the 20 spline bases to the linear mixed model fit to the LIDAR data. The
cubic fixed effects fitted line is drawn as the solid line on each plot, and the 20 contributions from
each of the truncated cubic segments are drawn as dotted lines on each plot. The dotted vertical
line on each plot indicates the knot location associated with the truncated line segment displayed
in that plot
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Prior distributions on smoothing parameters have the potential to increase the
stability of the fit, if the priors are carefully specified. An approach suggested by
Fong et al. (2010) is to place a prior on σ2

b and examine the induced prior on the
effective degrees of freedom, a more easily interpretable quantity. The idea is to
experiment with prior choices on σ2

b until one settles on a prior on the effective
degrees of freedom that one is comfortable with. The effective degrees of freedom
is given by (11.25) and can be rewritten as

df(λ) = tr[(cTc+ λD)−1cTc].

The total degrees of freedom can be decomposed into the degrees of freedom
associated with β and b. This decomposition can be extended easily to situations
in which we have additional random effects beyond those associated with the
spline basis. In each of these situations, the degrees of freedom associated with the
respective parameter are obtained by summing the appropriate diagonal elements of
(cTc+λD)−1cTc. Specifically, for d sets of parameters, let Ej be the (p+1+L)×
(p + 1 + L) diagonal matrix with ones in the diagonal positions corresponding to
set j, j = 1, . . . , d. Then, the degrees of freedom associated with this set are

dfj(λ) = tr[Ej(c
Tc+ λD)−1cTc].

Note that the effective degrees of freedom change as a function of L, as expected.
To evaluate λ, σ2

ε is required; Fong et al. (2010) recommend the substitution of an
estimate of σ2

ε . For example, one may use an estimate obtained from the fitting of a
spline model in a likelihood implementation. For further discussion of prior choice
for σ2

b in a spline context, see Crainiceanu et al. (2005). We first illustrate the steps
in prior construction in a toy example, before presenting a more complex example.

Example: One-Way ANOVA Model

As a simple non-spline demonstration of the derived effective degrees of freedom,
consider the one-way ANOVA model:

Yij = β0 + bi + εij ,

with bi | σ2
b ∼iid N(0, σ2

b ) and εij | σ2
ε ∼iid N(0, σ2

ε ) for i = 1, . . . ,m groups and
j = 1, . . . , n observations per group. This model may be written as y = cγ + ε,
where c is the nm× (m+ 1) design matrix

c =

⎡

⎢⎢⎢⎣

1n 1n 0n · · · 0n

1n 0n 1n · · · 0n

...
...

...
. . .

...
1n 0n 0n · · · 1n

⎤

⎥⎥⎥⎦ ,

and γ = [β0, b1, . . . , bm ]T. The effective degrees of freedom are given by (11.25),
with λ = σ2

ε /σ
2
b and D a diagonal matrix with a single zero followed by m ones.

For illustration, assume m = 10 and σ−2
b ∼ Ga(0.5, 0.005). Figure 11.10

displays the prior distribution for σb, the implied prior distribution on the effective
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Fig. 11.10 Gamma prior for σ−2
b with parameters 0.5 and 0.005, for the one-way ANOVA

example. (a) Implied prior for σb, (b) implied prior for the effective degrees of freedom, and
(c) effective degrees of freedom versus σb

degrees of freedom, and the bivariate plot of these quantities. For clarity, values of
σb greater than 2.5 (corresponding to 4% of points) are excluded from the plots.
In panel (c), we have placed horizontal lines at effective degrees of freedom equal
to 1 (complete smoothing) and 10 (no smoothing). We also highlight the strong
nonlinearity. From panel (b), we conclude that this prior choice favors quite strong
smoothing.

Example: Spinal Bone Marrow Density

We demonstrate the use of the mixed model for nonparametric smoothing using
O’Sullivan splines, which, as described in Sect. 11.2.5, are based on a B-spline
basis, and using data introduced in Sect. 1.3.6. Recall that these data concern
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Fig. 11.11 Spinal bone mineral density measurements versus age by ethnicity. Measurements on
the same woman are joined with gray lines. The bold solid curve corresponds to the fitted spline,
and the dashed lines to the individual fits

longitudinal measurements of spinal bone mineral density (SBMD) on 230 female
subjects aged between 8 and 27 years and of one of four ethnic groups: Asian, Black,
Hispanic, and White. Let yij denote the SBMD measure for subject i at occasion j,
for i = 1, . . . ,m = 230 and j = 1, . . . , ni and with ni ranging between 1 and 4.
Let N =

∑m
i=1 ni. Figure 11.11 shows these data with joined points indicating

measurements on the same woman. For these data, we would like a model in which
the response is a smooth function of age and in which between-woman variability
in response is acknowledged. We therefore assume the model:

yij = xijβ1 + ageij × β2 +
L∑

l=1

zijlb1l + b2i + εij

where xij is a 1 × 4 vector containing an indicator for the ethnicity of individual i,
with β1 the associated 4 × 1 vector of fixed effects, zijl is the lth basis associated
with age, with associated parameters b1l | σ2

1 ∼ N(0, σ2
1) and b2i | σ2

2 ∼ N(0, σ2
2)

are the woman-specific random effects, and εij | σ2
ε ∼iid N(0, σ2

ε ) represent the
residual errors. All random terms are assumed independent. Note that the spline
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model is assumed common to all ethnic groups and all women, though it would be
straightforward to allow, for example, a different spline for each ethnicity. Let β =
[β1, β2 ]

T and xi be the ni × 5 fixed effect design matrix with j-th row [xij , ageij ],
j = 1, . . . , ni (each row is identical since ageij is the initial age). Also, let z1i be the
ni × L matrix of age basis functions, b1 = [b1, . . . , bL]

T be the vector of associated
coefficients, z2i represent the ni × 1 vector of ones, and εi = [εi1, . . . , εini ]

T. Then

yi = xiβ + z1ib1 + z2ibi + εi

and we may write:

y = xβ + z1b1 + z2b2 + ε

= cγ + ε,

where y = [y1, . . . ,ym]T, x = [x1, . . . ,xm]T, z1 = [z11, . . . , z1m]T, z2 =
[z21, . . . , z2m]T, and b2 = [b21, . . . , b2m]T.

We examine two approaches to inference, one based on REML (Sect. 8.5.3) and
the other Bayesian, using INLA for computation. In each case, to fit the model,
we first construct the basis functions and from these, the required design matrices.
Running the REML version of the model, we obtain σ̂ε = 0.033, which we use
to evaluate the effective degrees of freedom associated with the priors for each of
σ2
1 and σ2

2 . We assume the usual improper prior, π(σ2
ε ) ∝ 1/σ2

ε for σ2
ε . After some

experimentation, we settled on the prior σ−2
1 ∼ Ga(0.5, 5×10−6). For σ2

2 , we desire
a 90% interval for b2i of ±0.3 which, with 1 degree of freedom for the marginal
distribution, leads to σ−2

2 ∼ Ga(0.5, 0.00113). See Sect. 8.6.2 for details on the
rationale for this approach. Figures 11.12(a) and (d) shows the priors for σ1 and σ2,
with the priors on the implied effective degrees of freedom displayed in panels (b)
and (e). For the spline component, the 90% prior interval on the effective degrees
of freedom is [ 2.4, 10 ]. Figures 11.12(c) and (f) shows the relationship between the
standard deviations and the effective degrees of freedom.

Table 11.1 compares estimates from REML and INLA implementations of the
model, and we see close correspondence between the two. Figures 11.12(a) and (d)
show the posterior medians for σ1 and σ2, which correspond to effective degrees of
freedom of 8 and 214 for the spline model and random intercepts, respectively, as
displayed on panels (b) and (e). The effective degrees of freedom of 214 associated
with the random intercepts show that there is considerable variability between the
230 women here. This is confirmed in Fig. 11.11, where we observe large vertical
differences between the profiles. This figure also shows the fitted spline, which
appears to mimic the age trend in the data well.

11.3 Kernel Methods

We now turn to another class of smoothers that are based on kernels. Kernel methods
are used in both density estimation and nonparametric regression, and it is the latter
on which we concentrate (though we touch on the former in Sect. 11.3.2). The basic
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Fig. 11.12 Prior summaries for the spinal bone mineral density data. (a) σ1, the standard deviation
of the spline coefficients; (b) effective degrees of freedom associated with the prior for the spline
coefficients; (c) effective degrees of freedom versus σ1; (d) σ2, the standard deviation of the
between-individual random effects; (e) effective degrees of freedom associated with the individual
random effects; and (f) effective degrees of freedom versus σ2. The lower and upper dashed
horizontal lines in panels (c) and (f) are the minimum and maximum attainable degrees of freedom,
respectively. The vertical dashed lines on panels (a), (b), (d), and (e) correspond to the posterior
medians
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Table 11.1 REML and
INLA summaries for the
spinal bone data. The
intercept corresponds to the
Asian group. For the entries
marked with a �, standard
errors were unavailable

Variable REML INLA

Intercept 0.560 ± 0.029 0.563 ± 0.031
Black 0.106 ± 0.021 0.106 ± 0.021
Hispanic 0.013 ± 0.022 0.013 ± 0.022
White 0.026 ± 0.022 0.026 ± 0.022
Age 0.021 ± 0.002 0.021 ± 0.002
σ1 0.018� 0.024 ± 0.006
σ2 0.109� 0.109 ± 0.006
σε 0.033� 0.033 ± 0.002

idea underlying kernel methods is to estimate the density/regression function locally
with the kernel function weighting the data in an appropriate fashion. We begin by
briefly defining, and giving examples of, kernels.

11.3.1 Kernels

A kernel is a smooth function K(·) such that K(x) ≥ 0, with
∫

K(u) du = 1,

∫
uK(u) du = 0, σ2

K =

∫
u2K(u) du < ∞. (11.26)

In practice, a kernel is applied to a standardized variable, and so, in what follows,
we do not include a scale parameter since the standardization has removed the
dependence on scale.

We describe four common examples of kernel functions. The Gaussian kernel is

K(x) = (2π)−1/2 exp

(
−x2

2

)

and is nonzero for all x, which makes this kernel relatively computationally
expensive to work with since all points must be considered in calculations for a
single x. We describe three alternatives but first define

I(x) =

{
1 if |x| ≤ 1

0 if |x| > 1.

The Epanechnikov kernel has the form

K(x) =
3

4
(1− x2)I(x), (11.27)

while the tricube kernel is

K(x) =
70

81

(
1− |x|3)3 I(x). (11.28)



11.3 Kernel Methods 575

−3 −2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

x

K
er

ne
l D

en
si

ty

Gaussian
Epanechnikov
Tricube
Boxcar

Fig. 11.13 Pictorial representation of four commonly used kernels

Finally, the boxcar kernel is

K(x) =
1

2
I(x). (11.29)

All four kernels are displayed in Fig. 11.13. We first describe kernel density
estimation, which is a simple technique used in a classification context (as described
in Sect. 12.8.3).

11.3.2 Kernel Density Estimation

Consider a random univariate sample x1, . . . , xn from a density p(·). The kernel
density estimate (KDE) of the unknown density, given a smoothing parameter λ, is

p̂(λ)(x) =
1

nλ

n∑

i=1

K

(
x− xi

λ

)
, (11.30)

so that the estimate of the density at x is potentially built upon contributions from all
n observed values, though for the finite range kernels (11.27)–(11.29), the sum will
typically be over far fewer points. Choosing K(·) as a probability density function
ensures that p̂(λ)(x) is also a density. We write Kλ(u) = λ−1K(u/λ) for a slightly
more compact notation.

We now informally state a number of properties of the kernel density estimator.
A number of regularity conditions are required, the most important of which is
that the second derivative p′′(x) is absolutely continuous; Wand and Jones (1995,
Chap. 2) contains more details. We also assume the conditions on K(·) given
in (11.26).
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Since x1, . . . , xn are a random sample from p(·), the expectation of the density
estimator can be written as

E
[
p̂(λ)(x)

]
=

1

nλ

n∑

i=1

EXi

[
K

(
x−Xi

λ

)]

= ET [Kλ (x− T )]

=

∫
Kλ(x− t)p(t) dt, (11.31)

which is a convolution of the true density with the kernel. Smoothing has, therefore,
produced a biased estimator whose mean is a smoothed version of the true density.
Clearly, we wish to have λ → 0 as n → ∞, so that the kernel concentrates more
and more on x with increasing n, ensuring that the bias goes to zero.

We write λn to emphasize the dependence on n. It is straightforward to show
that, as n → ∞, with λn → 0 and nλn → ∞:

E
[
p̂(λn)(x)

]
= p(x) +

1

2
λ2
np

′′(x)σ2
K + o(λ2

n)

so that the estimator is asymptotically unbiased.

Proof. With p̂(λn)(x) given by (11.30),

E[p̂(λn)(x)] =

∫
Kλn(x− t)p(t)dt

=

∫
K(u)p(x− λnu)du

=

∫
K(u)

[
p(x)− λnup

′(x) +
λ2
nu

2

2
p′′(x) + . . .

]
du

= p(x) +
λ2
n

2
p′′(x)σ2

K + o(λ2
n). �

The bias is large whenever the absolute value of the second derivative is large. In
peaks, p′′(x) < 0, and the bias is negative since p̂(λn)(x) underestimates p(x), and
in troughs, the bias is positive as p̂(λn)(x) overestimates p(x).

Via a similar calculation,

var
[
p̂(λn)(x)

]
=

1

nλn
p(x)K2 + o

(
1

nλn

)
,

where K2 =
∫
K(u)2 du and nλn is a “local sample size” (so that larger λn gives

a larger effective sample size). The variance is also proportional to the height of the
density. Overall, as λn decreases to zero, the bias diminishes, while the variance
increases, with the opposite behavior occurring as λn increases. The combined
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effect is that, in order to obtain an estimator which converges to the true density,
we require both λn and 1/nλn to decrease as sample size increases.

As discussed in Sect. 10.4, the accuracy of an estimator may be assessed by
evaluating the mean squared error (MSE). For p̂(λn)(x),

MSE
[
p̂(λn)(x)

]
= E

[(
p̂(λn)(x)− p(x)

)2]

= bias
[
p̂(λn)(x)

]2
+ var

[
p̂(λn)(x)

]

≈ λ4
n

4
p′′(x)2σ4

K +
1

nλn
p(x)K2, (11.32)

where the expectation in (11.32) is over the uncertainty in p̂(λn)(x), that is, over
the sampling distribution of X1, . . . , Xn.

Averaging the MSE over x gives the integrated mean squared error

IMSE
[
p̂(λn)(x)

]
=

∫
MSE

[
p̂(λn)(x)

]
dx

≈ 1

4
λ4
nσ

4
K

∫
p′′(x)2dx+

1

nλn
K2. (11.33)

If we differentiate (11.33) with respect to λn and set equal to zero, we obtain an
asymptotic optimal bandwidth of

λ�
n =

(
K2

nσ4
K

∫
p′′(x)2dx

)1/5

. (11.34)

This formula is useful since it informs us that the optimal bandwidth decreases at
rate n−1/5. Then, substitution in (11.33) shows that the IMSE is of O(n−4/5). It
can be shown that there does not exist any estimator that converges faster than this
rate, assuming only the existence of second derivatives, p′′; for more details, see
Chap. 24 of van der Vaart (1998).6

We turn now to a discussion of estimation of the amount of smoothing to
carry out, that is, how to estimate the optimal λn. So-called “plug-in” estimators
substitute estimates for unknown quantities (here the integrated squared second
derivative in the denominator) in order to evaluate λ�

n. If we assume that p(·) is
normal in (11.34), we obtain

λ�
n = (4/3)1/5 × σn−1/5, (11.35)

where σ is the standard deviation of the normal.

6The histogram estimator converges at rate O(n−2/3); see, for example, Wand and Jones (1995,
Sect. 2.5).
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Leave-one-out cross-validation may be used to choose λn in order to minimize a
measure of estimation accuracy. One convenient quantity that may be minimized is
the integrated squared error (ISE), defined as

ISE
[
p̂(λn)(x)

]
=

∫ [
p̂(λn)(x)− p(x)

]2
dx

=

∫
p̂(λn)(x)2 dx− 2

∫
p(x)p̂(λn)(x) dx+

∫
p(x)2 dx.

The last term does not involve λn, and the other terms can be approximated by

1

n

n∑

i=1

(∫
p̂
(λn)
−i (x)2 dx

)
− 2

n

n∑

i=1

p̂
(λn)
−i (xi),

where p̂
(λn)
−i (x) is the estimator constructed from the data without observation xi.

The use of normal kernels gives a very convenient form for estimation, as described
by Bowman and Azzalini (1997, p. 37).

11.3.3 The Nadaraya–Watson Kernel Estimator

We now turn to nonparametric regression and estimation of

f(x) = E[Y | x]

=

∫
yp(y | x) dy

=
1

p(x)

∫
yp(x, y) dy. (11.36)

Suppose we estimate p(x, y) by the product kernel

p̂(λx,λy)(x, y) =
1

nλxλy

n∑

i=1

Kx

(
x− xi

λx

)
Ky

(
y − yi
λy

)
,

and p(x) by

p̂(λx)(x) =
1

nλx

n∑

i=1

Kx

(
x− xi

λx

)
.

Substitution of these estimates in (11.36) gives the Nadaraya–Watson kernel
regression estimator (Nadaraya 1964; Watson 1964):
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f̂(x) =

1
nλxλy

∑n
i=1

∫
yKx

(
x−xi

λx

)
Ky

(
y−yi

λy

)
dy

1
nλx

∑n
i=1 Kx

(
x−xi

λx

)

=

∑n
i=1 Kx

(
x−xi

λx

) ∫
(yi + uλy)Ky(u) du

∑n
i=1 Kx

(
x−xi

λx

)

=

∑n
i=1 K

(
x−xi

λ

)
yi∑n

i=1 K
(
x−xi

λ

) (11.37)

where we have used
∫
Ky(u) du = 1 and

∫
uKy(u) du = 0. We also write λ = λx

and Kx = K in the final line. This estimator may be written as the linear smoother:

f̂ (λ)(x) =

n∑

i=1

S
(λ)
i (x)Yi,

where the weights S(λ)
i (x) are defined as

S
(λ)
i (x) =

K
(
x−xi

λ

)
∑n

i=1 K
(
x−xi

λ

) .

As a special case, a rectangular window (i.e., the boxcar kernel) produces a smoother
that is a simple moving average. As with spline models, the choice of the smoothing
parameter λ is crucial for reasonable behavior of the estimator.

We now examine the asymptotic IMSE which, as usual, can be decomposed into
contributions due to squared bias and variance. An advantage of local polynomial
regression estimators is that the form of the bias and variance is relatively simple,
thus enabling analytic study. For the subsequent calculations, and those that appear
later in this chapter, we state results without regularity conditions. See Fan (1992,
1993) for a more rigorous treatment.

As λn → 0 and nλn → ∞, the bias of the Nadaraya–Watson estimator at the
point x is

bias
[
f̂ (λn)(x)

]
≈ λ2

nσ
2
K

2

(
f ′′(x) + 2f ′(x)

p′(x)
p(x)

)
, (11.38)

where p(x) is the true but unknown density of x. The bias increases with increasing
λn as we would expect. The bias also increases at points at which f(·) increases
in “wiggliness” (i.e., large f ′′(x)) and where the derivative of the “design density,”
p′(x), is large. The so-called design bias is defined as 2f ′(x)p′(x)/p(x) and, as we
will see in Sect. 11.3.4, may be removed if locally linear polynomial models are
used.
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The variance at the point x is

var
[
f̂ (λn)(x)

]
≈ K2σ

2

nλn

1

p(x)
, (11.39)

where we have assumed, for simplicity, that the variance σ2 = var(Y | x) is
constant. The variance of the estimator decreases with decreasing measurement
error, increasing density of x values, and increasing local sample size nλn.
Consequently, we see the “usual” trade-off with small λ reducing the bias but
increasing the variance. Combining the squared bias and variance and integrating
over x gives the IMSE:

IMSE
(
f̂ (λn)

)
≈ λ4

nσ
4
K

4

∫ (
f ′′(x) + 2f ′(x)

p′(x)
p(x)

)2

dx+
K2σ

2

nλn

∫
1

p(x)
dx.

(11.40)

If we differentiate this expression and set equal to zero, we obtain the optimal
bandwidth as

λ�
n =

(
1

n

)1/5 (
σ2K2

∫
p(x)−1 dx

σ4
K

∫
(f ′′(x) + 2f ′(x)p′(x)/p(x))2 dx

)1/5

(11.41)

so that λ� = O(n−1/5). Plugging this expression into (11.40) shows that the IMSE
is O(n−4/5), which holds for many nonparametric estimators and is in contrast
to most parametric estimators whose variance is O(n−1). The loss in efficiency is
the cost of the flexibility offered by nonparametric methods. Expression (11.41)
depends on many unknown quantities, and while there are “plug-in” methods for
estimating these terms, a popular approach is cross-validation.

11.3.4 Local Polynomial Regression

We now describe a generalization of the Nadaraya–Watson kernel estimator,
local polynomial regression, with improved theoretical properties. Let wi(x) =
K [(xi − x)/λ] be a weight function and choose β0x = f(x) to minimize the
weighted sum of squares

n∑

i=1

wi(x) (Yi − β0x)
2

with solution

f̂(x) = β̂0x =

∑n
i=1 wi(x)Yi∑n
i=1 wi(x)

,

showing that the Nadaraya–Watson kernel regression estimator (11.37) corresponds
to a locally constant model, estimated using weighted least squares. For notational
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simplicity, we have not acknowledged that the weight wi(x) depends on the
smoothing parameter λ. We emphasize that we carry out a separate weighted least
squares fit for each prediction that we wish to obtain.

This formulation suggests an extension in which a local polynomial replaces the
locally constant model of the Nadaraya–Watson kernel estimator. For values of u in
a neighborhood of a fixed x, define the polynomial:

Px(u;βx) = β0x + β1x(u− x) +
β2x

2!
(u− x)2 + . . .+

βpx

p!
(u− x)p,

with βx = [β0x, . . . , βpx ]. The idea is to approximate f in a neighborhood of x
by the polynomial Px(u;βx).

7 The parameter β̂x is chosen to minimize the locally
weighted sum of squares:

n∑

i=1

wi(x) [Yi − Px(xi;βx)]
2
. (11.42)

The ensuing local estimate of f at u is

f̂(u) = Px(u; β̂x).

We could use this estimate in a local neighborhood of x, but instead, we fit a new
local polynomial for every target x value. At a target value u = x,

f̂(x) = Px(x; β̂x) = β̂0x.

The weight function is w(xi) = K[(xi − x)/λ], so that the level of smoothing is
controlled by the smoothing parameter λ, with λ = 0 resulting in f̂(xi) = yi and
λ = ∞ being equivalent to the fitting of a linear model. It is important to emphasize
that f̂(x) only depends on the intercept β̂0x of a local polynomial model, but should
not be confused with the fitting of a locally constant model.

For estimating the function f at the point x, local regression is equivalent to
applying weighted least squares to the model:

Y = xxβx + εx, (11.43)

with E[εx] = 0, var(εx) = σ2W−1
x ,

xx =

⎡

⎢⎢⎢⎢⎣

1 x1 − x · · · (x1−x)p

p!

1 x2 − x · · · (x2−x)p

p!
...

...
. . .

...
1 xn − x · · · (xn−x)p

p!

⎤

⎥⎥⎥⎥⎦

representing the n× (p+ 1) design matrix and Wx the n× n diagonal matrix with
elements wi(x), i = 1, . . . , n. Large values of wi correspond to x− xi being small,

7This approximation may be formally motivated via a Taylor series approximation argument.
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so that data points xi close to x are most influential. With the finite range kernels
described in Sect. 11.3.1, some of the wi(x) elements will be zero, in which case
we would only consider the data with nonzero elements within (11.43). Note that
Wx depends on the kernel function, K(·), and therefore upon the bandwidth, λ.
Minimization of

(Y − xxβx)
TWx(Y − xxβx)

gives

β̂x = (xT
xWxxx)

−1xT
xWxY . (11.44)

Taking the inner product of the first row of (xT
xWxxx)

−1xT
xWx with Y gives

f̂(x) = β̂0x.
From (11.44), it is clear that this estimator is linear in the data:

f̂(x) =

n∑

i=1

S
(λ)
i (x)Yi.

This estimator has mean

E[f̂(x)] =
n∑

i=1

S
(λ)
i (x)f(xi)

and variance

var
[
f̂(x)

]
= σ2

n∑

i=1

S
(λ)
i (x)2 = σ2||S(λ)(x)||2,

where we have again assumed the error variance is constant and that the observations
are uncorrelated. The effective degrees of freedom can be defined as p(λ) = tr(S(λ))

where S(λ) is the “hat” matrix determined from Ŷ = S(λ)Y .
Asymptotic analysis suggests that local polynomials of odd degree dominate

those of even degree (Fan and Gijbels 1996), though Wand and Jones (1995) empha-
size that the practical implications of this result should not be overinterpreted. Often
p = 1 will be sufficient for estimating f(·). It can also be shown (Exercise 11.6) that
with a linear local polynomial, we obtain

f̂(x) =

∑n
i=1 wi(x)Yi∑n
i=1 wi(x)

+ (x− xw)

∑n
i=1 wi(x)(xi − xw)Yi∑n
i=1 wi(x)(xi − xw)2

,

where xw =
∑n

i=1 wi(x)xi/
∑n

i=1 wi(x) and wi(x) = K((x− xi)/λ). Therefore,
the estimator is the locally constant (Nadaraya–Watson) estimator plus a term that
corrects for the local slope and skewness of the xi.

For the linear local polynomial model, we have

E
[
f̂ (λn)(x)

]
≈ f(x) +

1

2
λ2
nf

′′(x)σ2
K
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and

var
[
f̂ (λn)(x)

]
≈ 1

nλn
K2σ

2 1

p(x)
.

Proofs of these expressions may be found in Wand and Jones (1995, Sect. 5.3).
Notice that the bias is dominated by the second derivative, which is reflecting the
error in the linear approximation. If f is linear in x, then f̂ is exactly unbiased.

For the local linear polynomial estimator,

IMSE
(
f̂ (λn)

)
= bias

[
f̂ (λn)

]2
+ var

[
f̂ (λn)

]

≈ λ4
nσ

4
K

4

[∫
f ′′(x)2 dx

]
+

K2σ
2

nλn

∫
1

p(x)
dx.

In comparison with (11.40), the design bias is zero, showing a clear advantage of the
linear polynomial over the Nadaraya–Watson estimator. The optimal λ is therefore

λ�
n =

(
1

n

)1/5(
σ2K2

∫
p(x)−1dx

σ4
K

∫
f ′′(x)2 dx

)1/5

. (11.45)

Each of the terms in expression (11.45) can be estimated to give a “plug-in”
estimator of λn, or cross-validation may be used. Since the local polynomial
regression estimator is a linear smoother, inference for this model follows as in
Sect. 11.2.7.
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Example: Light Detection and Ranging

Figure 11.14 shows scatterplot smoothing of the LIDAR data using local linear
polynomials and Gaussian, tricube and Epanechnikov kernels. In each case the
smoothing parameter is chosen via generalized cross-validation, as described in
Sect. 10.6.3. The choice of kernel is clearly unimportant in this example.

11.4 Variance Estimation

Accurate inference, for example, confidence intervals for f(x) at a particular x,
depends on accurate estimation of the error variance, which may be nonconstant.

We begin by assuming that the model is

yi = E[Yi | xi] + εi = f(xi) + εi,

with var(εi | xi) = σ2 and cov(εi, εj | xi, xj) = 0. We have made the crucial, and
strong, assumption that the errors have constant variance (i.e., are homoscedastic)
and are uncorrelated. We assume a linear smoother so that f̂ = SY with p = tr(S)
the effective degrees of freedom and suppressing the dependence on the smoothing
parameter.

The expectation of the residual sum of squares is

E[(Y − f̂ )T(Y − f̂ )] = E[(Y − SY )T(Y − SY )]

= E[Y T(I − S)T(I − S)Y ]

= f T(I − S)T(I − S)f + tr
[
(I − S)T(I − S)Iσ2

]

using identity (B.4) from Appendix B

= f T(I − S)T(I − S)f + σ2tr(I − ST − S + STS)

= f T(I − S)T(I − S)f + σ2(n− 2p+ p̃)

where

p̃ = tr(STS).

The bias is

f − E[f̂ ] = f − SE[Y ] = f − Sf = (I − S)f .

Therefore,

E

[
RSS

n− 2p+ p̃

]
= σ2 +

f T(I − S)T(I − S)f

n− 2p+ p̃
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with the second term being the sum of squared bias terms divided by a particular
form of degrees of freedom. If the second term is small, it may be ignored to give
the estimator:

σ̂2 =

∑n
i=1

(
Yi − f̂(xi)

)2

n− 2p+ p̃
. (11.46)

Notice that for idempotent S, we have STS = S, p = p̃, and (11.46) results in
an estimator with a more familiar form, that is, with denominator n − p with p the
effective degrees of freedom.

We now derive an alternative local differencing (method of moments) estimator
(Rice 1984). We begin by considering the expected differences:

E
[
(Yi+1 − Yi)

2
]
= E

[
(fi+1 + εi+1 − fi − εi)

2
]

= (fi+1 − fi)
2 + E

[
(εi+1 − εi)

2
]

(11.47)

= (fi+1 − fi)
2 + 2σ2 (11.48)

for i = 1, . . . , n− 1. If fi+1 ≈ fi, then E[(Yi+1 − Yi)
2] ≈ 2σ2, leading to

σ̂2 =
1

2(n− 1)

n−1∑

i=1

(yi+1 − yi)
2. (11.49)

This estimator will be inflated, as is clear from (11.48). An improved method
of moments estimator, proposed by Gasser et al. (1986), is based on weighted
second differences of the data. Specifically, first consider the line joining the points
[xi−1, yi−1] and [xi+1, yi+1]. This line is obtained by solving

yi+1 = αi + βixi+1

yi−1 = αi + βixi−1,

to give

α̂i =
yi−1xi+1 − yi+1xi−1

xi+1 − xi−1

β̂i =
yi+1 − yi−1

xi+1 − xi−1
.

Define a pseudo-residual as

ε̃i = α̂i + β̂ixi − yi

= aiyi−1 + biyi+1 − yi,
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where

ai =
xi+1 − xi

xi+1 − xi−1

bi =
xi − xi−1

xi+1 − xi−1
.

Gasser et al. (1986) show that var(ε̃i) = [a2i+b2i+1]σ2+O(n−2) (the final term here
is required because the pseudo-residuals do not have mean zero). We are therefore
led to the estimator:

σ̃ 2 =
1

n− 2

n−1∑

i=2

c2i ε̃
2
i (11.50)

where c2i = (a2i + b2i + 1)−1, for i = 2, . . . , n. Note that the variance estimators
(11.49) and (11.50) depend only on (yi, xi), i = 1, . . . , n and not on the model that
is fitted.

Now suppose we believe the data exhibit nonconstant variance (heteroscedas-
ticity). If the variance depends on f(x) via some known form, for example,
σ2(x) = σ2f(x), then quasi-likelihood (Sect. 2.5) may be used. Otherwise,
consider the model:

Yi = f(xi) + σ(xi)εi,

with E[εi] = 0 and var(εi) = 1. Since the variance must be positive, a natural model
to consider is

Zi = log
[
(Yi − f(xi))

2
]
= log

[
σ2(xi)

]
+ log(ε2i )

= g(xi) + δi, (11.51)

where δi = log(ε2i ). A simple approach to implementation is to first estimate
f(·) under the assumption of constant variance, obtain fitted values, and then form
residuals. One may then estimate g(·) using a nonparametric estimator to produce
σ̂(x)2 = exp [ ĝ(x) ], for i = 1, . . . , n. Subsequently, confidence intervals may be
constructed based on σ̂(x). For further details, see Yu and Jones (2004). A more
statistically rigorous approach would simultaneously estimate f(·) and g(·).

Example: Light Detection and Ranging

Using the natural cubic spline fit, the variance estimate based on the residual sum
of squares (11.46) is 0.0802. The estimates based on the first differences (11.49)
and second differences (11.50) are 0.0822 and 0.0832, respectively. In this example,
therefore, the estimates are very similar though of course for these data, the variance
of the error terms is clearly nonconstant. In Fig. 11.15(a), we plot the residuals
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(from a natural cubic spline fit) versus the range. To address the nonconstant error
variance, we assume a model of the form (11.51). Figure 11.15(b) plots the log
squared residuals zi, as defined in (11.51), versus the range. Experimentation with
smoothing models for zi indicates that a simple linear model

E[Zi | xi] = α0 + α1xi

is adequate, and this is added to the plot. Figure 11.15(c) plots the estimated
standard deviation, σ̂(x) =

√
exp (α̂0 + α̂1x), versus x, and Fig. 11.15(d) shows

the standardized residuals:

yi − f̂(xi)

σ̂(xi)

versus xi. We see that the spread is constant across the range of xi, suggesting that
the error variance model is adequate.

11.5 Spline and Kernel Methods for Generalized Linear
Models

So far we have considered models of the form, Y = f(x)+ ε, with independent and
uncorrelated constant variance errors ε. We outline the extension to the situation in
which generalized linear models (GLMs, Sect. 6.3) are appropriate in a parametric
framework. To carry out flexible modeling, penalty terms or weighting may be
applied to the log-likelihood and smoothing models (e.g., based on splines or
kernels) may be used on the linear predictor scale.

Recall that, for a GLM, E[Yi | θi, α] = b′(θi) = μi, with a link function g(μi)
and a variance function var(Yi | θi, α) = αb′′(θi) = αVi. In a smoothing context,
we may relax the linearity assumption and connect the mean to the smoother via
g(μi) = f(xi). The log-likelihood for a GLM is

l(θ) =

n∑

i=1

li(θ) =

n∑

i=1

yiθi − b(θi)

α
+ c(yi, α). (11.52)

11.5.1 Generalized Linear Models with Penalized Regression
Splines

Let l(f) denote the log-likelihood corresponding to the smoother f(xi), i =
1, . . . , n. Maximizing over all smooth functions f(·) is not useful since there are an
infinite number of ways to interpolate the data. Consider a regression spline model
on the scale of the canonical link:
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Fig. 11.15 Examination of heteroscedasticity for the LIDAR data. In all plots, the range is plotted
on the x-axis, and on the y-axis we have (a) residuals from a natural cubic spline fit to the response
data; (b) log squared residuals, with a linear fit; (c) the estimated standard deviation σ̂(x); and
(d) standardized residuals

θi = f(xi) = β0 + β1xi + . . .+ βpx
p
i +

L∑

l=1

bl(xi − ξl)
p
+

= xiβ + zib,

with penalty term λbTDb, where D denotes a known matrix that determines the
nature of the penalization, as in Sect. 11.2.5. For example, an obvious form is
λ
∫
f ′′(t)2 dt. As in Sect. 11.2.8, we may write f(xi) = cγ with c = [x, z] and

γ = [β, b ]T, and D = diag(0p+1, 1L) to give penalty λγTDγ. To extend the
penalized sum of squares given by (11.21), consider the penalized log-likelihood
which adds a penalty to (11.52) to give
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lp(γ) = l(γ)− λγTDγ, (11.53)

where

l(γ) =

n∑

i=1

yiθi − b(θi)

α
+ c(yi, α), (11.54)

and θi = cγ.
For known λ, the parameters γ can be estimated as the solution to

∂lp
∂γj

=
n∑

i=1

∂μi

∂γj

yi − μi

αVi
− 2λDγj = 0.

To find a solution, a hybrid of IRLS (as described in Sect. 6.5.2) termed the
penalized IRLS (P-IRLS) algorithm can be used. At the tth iteration, we minimize
a penalized version of (6.16):

(z(t) − xγ)TW (t)(z(t) − xγ) + λγTDγ, (11.55)

where, as in the original algorithm, z(t) is the vector of pseudo-data with

z
(t)
i = xiγ

(t) + (Yi − μ
(t)
i )

dηi
dμi

∣∣∣∣
γ(t)

and W (t) is a diagonal matrix with elements:

wi =

(
dμi/dηi|γ(t)

)2

αVi
.

The iterative strategy therefore solves (11.55) using the current versions of z
and W .

We define an influence matrix for the working penalized least squares problem
at the final step of the algorithm as S(λ) = x(xTWx+ λD)−1xTW . The effective
degrees of freedom is then defined as p(λ) = tr

(
S(λ)

)
.

So far as inference is concerned, γ̂ is asymptotically normal with mean E [γ̂] and
variance–covariance matrix:

α(xTWx+ λD)−1xWx(xTWx+ λD)−1.

For more details, see Wood (2006, Sect. 4.8).
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Fig. 11.16 Penalized cubic
spline and local likelihood fits
to the BPD/birthweight data,
with linear logistic fit for
comparison

Example: Bronchopulmonary Dysplasia

We illustrate GLM smoothing using the data introduced in Sect. 7.2.3, which consist
of binary responses (BPD) Yi along with birthweights xi. We consider a logistic
regression model:

Yi | p(xi) ∼ind Binomial [ni, p(xi) ] , (11.56)

with

log

(
p(xi)

1− p(xi)

)
= f(xi). (11.57)

The log-likelihood is

l (f) = yif(xi)− ni log { 1 + exp [f(xi)] } .
A penalized spline model assumes

f(xi) = β0 + β1xi + . . .+ βpx
p
i +

L∑

l=1

bl(xi − ξl)
p
+

= xiβ + zib.

The predicted probabilities are therefore

p(x) =
exp(xiβ + zib)

1 + exp(xiβ + zib)
.

Figure 11.16 displays the data along with three fitted curves. The linear logistic
model is symmetric in the tails, which appears overly restrictive for these data. We
fit a penalized cubic spline model (11.53) with L = 10 knots using P-IRLS and pick
the smoothing parameter using AIC. For this model,
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AIC(λ) = −2l
(
f (λ)

)
+ 2p(λ),

where we have now explicitly written f(x) as a function of the smoothing parameter
λ and p(λ) is the effective degrees of freedom. Figure 11.16 gives the resultant fit,
which has an effective degrees of freedom of 3.0. It is difficult to determine the
adequacy of the fit with binary data, but in terms of smoothness and monotonicity,
the curve appears reasonable. Notice that the behavior for high birthweights is quite
different from the linear logistic model.

11.5.2 A Generalized Linear Mixed Model Spline
Representation

The regression spline model described in Sect. 11.5.1 has an equivalent specification
as a generalized linear mixed model (Sect. 9.3) with the assumption that bl |
σ2
b ∼iid N(0, σ2

b ), l = 1, . . . , L. The latter random effects distribution penalizes
the truncated basis coefficients.

For a GLM with canonical link, maximization of the penalized log-likelihood
(11.53) is then equivalent to maximization of

1

α

[
n∑

i=1

{yi(xiβ + zib)− b(xiβ + zib) + α× c(yi, α)} − α

2σ2
b

bTb

]
(11.58)

with respect to β and b, for fixed α, σ2
b . In practice, estimates of α, σ2

b will also be
required and will determine the level of smoothing. As discussed in Chap. 9, rather
than maximize (11.58) as a function of both β and b, an alternative is to integrate
the random effects b from the model and then maximize the resultant likelihood.
This approach is outlined for the case of a binomial model.

The likelihood as a function of β and σ2
b is calculated via an L-dimensional

integral over the random effects b:

L(β, σ2
b ) =

n∏

i=1

(
ni

yi

)∫

b

exp {yi (xiβ + zib)− ni log [1 + exp(xiβ + zib)]}

× (2πσ2
b )

−L/2 exp

(
− bTb

2σ2
b

)
db

and may be maximized to find β and σ2
b . For implementation, some form of

approximate integration strategy must be used; various approaches are described
in Chap. 9. The latter also contains details on how the random effects bl may be
estimated (as required to produce the fitted curve), as well as Bayesian approaches
to estimation. Under the mixed model formulation, smoothing parameter estimation
is carried out via estimation of σ2

b . Maximizing jointly for β and b is formally
equivalent to penalized quasi-likelihood (Breslow and Clayton 1993); see Chaps. 10
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and 11 of Ruppert et al. (2003) for the application of penalized quasi-likelihood to
spline modeling.

Inference from a likelihood perspective may build on mixed model theory, as
described in Chap. 9 (see also, Ruppert et al. 2003, Chap. 11). A Bayesian approach
can be implemented using either INLA or MCMC, both of which are described in
Chap. 3.

11.5.3 Generalized Linear Models with Local Polynomials

The extension of the local polynomial approach of Sect. 11.3.4 to GLMs is rela-
tively straightforward with a locally weighted log-likelihood replacing the locally
weighted sum of squares (11.42). Recall that for the ith data point, the canonical
parameter is θi = xiβ (Sect. 6.3). The local polynomial replaces the linear model
in θi so that we have a local polynomial on the linear predictor scale. We write the
log-likelihood for β as

l(β) =

n∑

i=1

l [yi, θi(β)] .

To obtain the fit at the point x under a local polynomial model, we maximize the
locally weighted log-likelihood:

lx(β) =

n∑

i=1

wi(x) lx [yi, Px(xi;β)] ,

where wi(x) = K[(xi − x)/λ] and Px(xi;β) is the local polynomial with
parameters β. Our notation also emphasizes that the likelihood is constructed for
each point x at which a prediction is desired. The local likelihood score equations
are therefore

n∑

i=1

wi(x)
∂

∂β
lx [yi, Px(xi;β)] .

Once we have performed estimation, the estimate (on the transformed scale) for x is
evaluated as β̂0. This method is often referred to as local likelihood. The existence
and uniqueness of estimates are discussed in Chap. 4 of Loader (1999). For a GLM,
an iterative algorithm is required; Chap. 11 of Loader (1999) gives details based on
the Newton–Raphson method. We stress that the equations are solved at all locations
x for which we wish to obtain the fit. The smoothing parameter may again be chosen
in a variety of ways, with cross-validation being an obvious approach.

Example: Bronchopulmonary Dysplasia

Returning to the BPD/birthweight example, local log-likelihood fitting at the point
x is based on
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lx(β) =

n∑

i=1

wi(x)ni

(
yi
ni

Px(xi;β)− log {1 + exp [Px(xi;β)]}
)
, (11.59)

with wi(x) = K[(xi − x)/h]. Writing the likelihood in this form emphasizes that
wi(x)ni is acting as a local weight.

Figure 11.16 shows the local linear likelihood fit with a tricube kernel and
smoothing parameter chosen by minimizing the AIC. The latter produces a model
with effective degrees of freedom of 4.1. The local likelihood cubic curve bears
more resemblance to the penalized cubic spline curve than to the linear logistic
model, but there are some differences between the former two approaches, particu-
larly for birthweights in the 900–1,500-gram range.

11.6 Concluding Comments

In this chapter we have described smoothing methods for general data types
based on spline models and kernel-based methods. A variety of spline models are
available, but we emphasize that the choice of smoothing parameter will often be far
more important than the specific model chosen. For simple scatterplot smoothing,
the spline and kernel techniques of Sects. 11.2 and 11.3 will frequently produce
very similar results. If inference is required, penalized regression splines are a class
for which the theory is well developed and for which much practical experience has
been gathered. To obtain confidence intervals for the complete curve, a Bayesian
solution is recommended; see Marra and Wood (2012). For inference about a curve,
including confidence bands, care must be taken in variance estimation, as described
in Sect. 11.4. In terms of smoothing parameter choice, there will often be no clear
optimal choice, and a visual examination of the resultant fit is always recommended.

Kernel-based methods are very convenient analytically, and we have seen that
expressions for the bias and variance are available in closed form which allows
insight into when they might preform well. Spline models are not so conducive to
such analysis though penalized regression splines have the great advantage of having
a mixed model representation which allows the incorporation of random effects and
the estimation of smoothing parameters using conventional estimation techniques.

11.7 Bibliographic Notes

Book-length treatments on spline methods include Wabha (1990) and Gu (2002).
A key early reference on spline smoothing is Reinsch (1967). The book of Wand
and Jones (1995) is an excellent introduction to kernel methods. Local polynomial
methods are described in detail in Fan and Gijbels (1996) and Loader (1999).
Bowman and Azzalini (1997) provides a more applied slant. The work of Ruppert
et al. (2003) is a readable account of smoothing methods, with an emphasis on the
mixed model representation of penalized regression splines.
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11.8 Exercises

11.1 Based on (11.7) and (11.8), write code, for example, within R, to produce plots
of the B-spline basis functions of order M = 1, 2, 3, 4, with L = 9 knots and
for x ∈ [0, 1].

11.2 Prove that (11.22) and (11.23) are equivalent to (11.24).
11.3 Show that an alternative basis for the natural cubic spline given by (11.3), with

constraints (11.4) and (11.5), is

h1(x) = 1, h2(x) = x, hl+2(x) = dl(x) − dL−1(x),

where

dl(x) =
(x− ξl)

3
+ − (x− ξL)

3
+

ξL − ξl
.

11.4 In this question, various models will be fit to the fossil data of Chaudhuri and
Marron (1999). These data consist of 106 measurements of ratios of strontium
isotopes found in fossil shells and their age. These data are available in the R
package SemiPar and are named fossil. Fit the following models to these
data:

(a) A natural cubic spline (this model has n knots), using ordinary cross-
validation to select the smoothing parameter.

(b) A natural cubic spline (this model has n knots), using generalized cross-
validation to select the smoothing parameter.

(c) A penalized cubic regression spline with L = 20 equally spaced knots,
using ordinary cross-validation to select the smoothing parameter.

(d) A penalized cubic regression spline with L = 20 equally spaced knots,
using generalized cross-validation to select the smoothing parameter.

(e) A penalized cubic regression spline with L = 20 equally spaced knots,
using a mixed model representation to select the smoothing parameter.

In each case report f̂(x), along with an asymptotic 95% confidence interval,
for the (smoothed) function, at x = 95 and x = 115 years.

11.5 In this question a dataset that concerns cosmic microwave background (CMB)
will be analyzed. These data are available at the book website; the first column
is the wave number (the x variable), while the second column is the estimated
spectrum (the y variable):

(a) Fit a penalized cubic regression spline using, for example, the R package
mgcv.

(b) Fit a Nadaraya–Watson locally constant estimator.
(c) Fit a locally linear polynomial model.
(d) Which of the three models appears to give the best fit to these data?
(e) Obtain residuals from the fit in part (c) and form the log of the squared

residuals. Model the latter as a function of x.
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(f) Compare the model for the fitted standard deviation with the estimated
standard error (which is the third column of the data).

(g) Reestimate the linear polynomial model, weighting the observations by the
reciprocal of the variance, where the latter is the square of the estimated
standard errors (column three of the data). Repeat using your estimated
variance function.

(h) Does the fit appear improved when compared with constant weighting?

At each stage provide a careful description of how the models were fitted.
For example, in (a), how were the knots chosen, and in (b) and (c), what
kernels and smoothing parameters were used and why?

11.6 For the locally linear polynomial fit described in Sect. 11.3.4, show that

f̂(x) =

∑n
i=1 wi(x)Yi∑n
i=1 wi(x)

+ (x− xw)

∑n
i=1 wi(x)(xi − xw)Yi∑n
i=1 wi(x)(xi − xw)2

where xw =
∑n

i=1 wi(x)xi/
∑n

i=1 wi(x) and wi(x) = K[(x − xi)/λ] is a
kernel.
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Chapter 12
Nonparametric Regression with Multiple
Predictors

12.1 Introduction

In this chapter we describe how the methods described in Chaps. 10 and 11 may be
extended to the situation in which there are multiple predictors. We also provide a
description of methods for classification, concentrating on approaches that are more
model, as opposed to algorithm based.

To motivate the ensuing description of modeling with multiple covariates,
suppose that xi1, . . . , xik are k covariates measured on individual i, with Yi a
univariate response. In Chap. 6 generalized linear models (GLMs) were considered
in detail, and we begin this chapter by relaxing the linearity assumption via so-
called generalized additive models. A GLM has Yi independently distributed from
an exponential family with E[Yi | xi] = μi. A link function g(μi) then connects the
mean to a linear predictor

g(μi) = β0 + β1xi1 + . . .+ βkxik. (12.1)

This model is readily interpreted but has two serious restrictions. First, we are
constrained to linearity on the link function scale. Transformations of x values or
inclusion of polynomial terms may relax this assumption somewhat, but we may
desire a more flexible form. Second, we are only modeling each covariate separately.
We can add interactions but may prefer an automatic method for seeing the way in
which the response is associated with two or more variables.

A general specification with k covariates is

g(μi) = f(xi1, xi2, . . . , xik). (12.2)

Flexible modeling of the complete k-dimensional surface is extremely difficult to
achieve due to the curse of dimensionality. To capture “local” behavior in high
dimensions requires a large number of data points. To illustrate, suppose we wish
to smooth a function at a point using covariates within a k-dimensional hypercube

J. Wakefield, Bayesian and Frequentist Regression Methods, Springer Series
in Statistics, DOI 10.1007/978-1-4419-0925-1 12,
© Springer Science+Business Media New York 2013

597
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centered at that point, and suppose also that the covariates are uniformly distributed
in the k-dimensional unit hypercube. To capture a proportion q of the unit volume
requires the expected edge length to be q1/k. For example, to capture 1% of the
points in k = 4 dimensions requires 0.011/4 = 0.32 of the unit length of each
variable to be covered. In other words, “local” has to extend a long way in higher
dimensions, and so modeling a response as a function of multiple covariates using
local smoothing becomes increasingly more difficult as the number of covariates
grows.

The outline of this chapter is as follows. The modeling of multiple predictors
via the popular class of generalized additive models is the subject of Sect. 12.2.
Section 12.3 extends the spline models of Sect. 11.2 to the multiple covariate case,
including descriptions of natural thin plate splines, thin plate regression splines,
and tensor product splines. The kernel methods of Sect. 11.3 are described for
multiple covariates in Sect. 12.4. Section 12.5 considers approaches to smoothing
parameter estimation including the use of a mixed model formulation. Varying-
coefficient models provide one approach to modeling interactions, and these are
outlined in Sect. 12.6. Moving towards classification, regression tree methods are
discussed in Sect. 12.7. Section 12.8 is dedicated to a brief description of methods
for classification, including logistic modeling, linear and quadratic discriminant
analysis, kernel density estimation, classification trees, bagging, and random forests.
Concluding comments appear in Sect. 12.9. Section 12.10 gives references to
additional approaches and more detailed descriptions of the approaches considered
here.

12.2 Generalized Additive Models

12.2.1 Model Formulation

Generalized additive models (GAMs) are an extremely popular, simple and inter-
pretable extension of GLMs (which were described in Sect. 6.3). The simplest GAM
extends the linear predictor (12.1) of the GLM to the additive form

g(μi) = β0 + f1(xi1) + f2(xi2) + . . .+ fk(xik) (12.3)

where β0 is the intercept and fj(·), j = 1, . . . , k are a set of smooth functions.
Each of the functions fj(·) may be modeled using different techniques, with splines
and kernel local polynomials (as described in Chap. 11) being obvious choices.
For reasons of identifiability, we impose

∑n
i=1 fj(xij) = 0, for j = 1, . . . , k.

A GAM may also consist of smooth terms that are functions of pairs, or triples of
variables, providing a compromise between the simplest model with k smoothers
and the “full” model (12.2) which allows interactions between all variables. The
multivariate spline models of Sect. 12.3 provide one approach to the modeling
of more than a single variable. As a concrete example of a GAM, suppose that



12.2 Generalized Additive Models 599

univariate penalized regression splines (Sect. 11.5.1) are used for each of the
covariates, with the spline for covariate j being of degree pj and with knot locations
ξjl, l = 1, . . . , Lj . The GAM is

g(μ) = β0 +

k∑

j=1

⎡

⎣
pj∑

d=1

βjdx
d
j +

Lj∑

l=1

bjl(xj − ξjl)
pj

+

⎤

⎦ ,

with penalization applied to the coefficients bj = [bj1, . . . , bjLj ]
T, as described in

Sect. 11.2.5. For example, penalty j may be of the form

λj

Lj∑

l=1

b2jl.

Model (12.3) is very simple to interpret since the smoother for element j of x,
fj(xj), is the same regardless of the values of the other elements. Hence, each of
the fj terms may be plotted to visually examine the relationship between Y and xj ;
Fig. 12.1 provides an example. Model (12.3) is also computationally convenient, as
we shall see in Sect. 12.2.2.

A semiparametric model is one in which a subset of the covariates are modeled
parametrically, with the remainder modeled nonparametrically. Specifically, let
zi = [zi1, . . . , ziq] represent the sets of variables we wish to model parametrically
and β = [β1, . . . , βq]

T the set of associated regression coefficients. Then (12.3) is
simply extended to

g(μi) = β0 + ziβ +
k∑

j=1

fj(xij).

We saw an example of this form in Sect. 11.2.9 in which spinal bone marrow density
was modeled as a parametric function of ethnicity and as a nonparametric function
of age.

12.2.2 Computation via Backfitting

The structure of an additive model suggests a simple and intuitive fitting algorithm.
Consider first the linear link g(μi) = μi, to give the additive model

Yi = β0 + f1(xi1) + f2(xi2) + . . .+ fk(xik) + εi. (12.4)

Define partial residuals

r
(j)
i = Yi − β0 −

k∑

l=1,l�=j

fl(xil), (12.5)
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for j = 1, . . . , k. For these residuals,

E[r(j)i | xij ] = fj(xij),

which suggests we can estimate fj , using as response the residuals r
(j)
1 , . . . , r

(j)
n .

Iterating across j produces the backfitting algorithm. Backfitting proceeds as
follows:

1. Initialize: β̂0 = 1
n

∑n
i=1 yi and f̂j ≡ 0 for j = 1, . . . , k.

2. For a generic smoother Sj , cycle over j repeatedly:

f̂j = Sj

(
r
(j)
1 , . . . , r(j)n

)

with r
(j)
i given by (12.5), until the functions f̂j change by less than some

prespecified threshold.

Buja et al. (1989) describe the convergence properties of backfitting. For general
responses beyond (12.4), the backfitting algorithm uses the “working” residuals, as
defined with respect to the IRLS algorithm in Sect. 6.5.2. Wood (2006) contains
details on how the P-IRLS algorithm (Sect. 11.5.1) may be extended to fit GAMs.
An alternative method of computation for GAMs, based on a mixed model
representation, is described in Sect. 12.5.2.

Example: Prostate Cancer

For illustration, we fit a GAM to the prostate cancer data (Sect. 1.3.1) in order to
evaluate whether a parametric model is adequate. The response is log PSA, and
we model each of log cancer volume, log weight, log age, log BPH, log capsular
penetration, and PGS45 using smooth functions. The variable SVI is binary, and
the Gleason score can take just 4 values. Hence, for these two variables, we
assume a parametric linear model. The smooth functions are modeled as penalized
regression cubic splines, with seven knots for each of the six variables. Generalized
cross-validation (GCV, Sect. 10.6.3) was used for smoothing parameter estimation
and produced effective degrees of freedom of 1, 1.1, 1.5, 1, 4.6, and 3.9 for the
six smooth terms (with the variable order being as in Fig. 12.1). The resultant
fitted smooths, with shaded bands indicating pointwise asymptotic 95% confidence
intervals, are plotted in Fig. 12.1. Panels (e) and (f) indicate some nonlinearity, but
the wide uncertainty bands and flatness of the curves indicate that little will be
lost if linear terms are assumed for all variables. This figure illustrates the simple
interpretation afforded by GAMs, since each smooth shows the modeled association
with that variable, with all other variables held constant.
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Fig. 12.1 GAM fits to the prostate cancer data. For each covariate, penalized cubic regression
splines were fitted, with seven knots each. The tick marks on the x axis indicate the covariate
values

12.3 Spline Methods with Multiple Predictors

In this section we describe how splines may be defined as a function of
multivariate x. These models are of interest in their own right and may be used
within GAM formulations alongside univariate specifications. For example, suppose
associated with a response Y there are three variables temperature x1, latitude x2,
and longitude x3. In this situation we might specify a GAM with two smoothers,
f1(x1) for temperature and f2(x2, x3), a bivariate smoother for x2, x3 (since we
might expect an interaction involving latitude and longitude).
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12.3.1 Natural Thin Plate Splines

For simplicity, we concentrate on the two-dimensional case and begin by defining a
measure of the smoothness of a function f(x1, x2). In the one-dimensional case, the
penalty was P (f) =

∫
f ′′(x)2 dx. A natural penalty term to measure rapid variation

in f in two dimensions is

P (f) =

∫ ∫ [(
∂2f

∂x2
1

)2

+ 2

(
∂2f

∂x1∂x2

)2

+

(
∂2f

∂x2
2

)2
]
dx1dx2. (12.6)

Changing the coordinates by rotation or translation in R
2 does not affect the value of

the penalty1 which is an appealing property. The penalty is always nonnegative, and,
as in the one-dimensional case, the penalty equals zero, if and only if f(x) is linear
in x1 and x2, as we now show. If f(x) is linear, then it is clear that P (f) is zero.
Conversely, if P (f) = 0, all of the second derivatives are zero. Now, ∂2f/∂x2

1 = 0
implies f(x1, x2) = a(x2)x1 + b(x2) for functions a(·) and b(·). The condition
∂2f/∂x1∂x2 = 0 gives a′(x2) = 0 so that a(x2) = a for some constant a. Finally,
∂2f/∂x2

2 = 0 implies b′′(x2) = 0 so that b′(x2) = b and b(x2) = bx2 + c, for
constants b and c. It follows that

f(x1, x2) = ax1 + bx2 + c

is linear.
We wish to minimize the penalized sum of squares

n∑

i=1

[yi − f(xi1, xi2)]
2 + λP (f) (12.7)

with penalization term (12.6). As shown by Green and Silverman (1994, Chap. 7),
the unique minimizer is provided by the natural thin plate spline with knots at the
observed data, which is defined as

f(x) = β0 + β1x1 + β2x2 +

n∑

i=1

biη(||x− xi||), (12.8)

where

η(r) =

{
1
8π r

2 log(r) for r > 0

0 for r = 0

1This requirement is natural in a spatial context where the coordinate directions and the position
of origin are arbitrary.
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and the unknown bi are constrained via

n∑

i=1

bi =
n∑

i=1

bixi1 =
n∑

i=1

bixi2 = 0,

that is, xTb = 0, where x = [x1, . . . ,xn]
T is n × 3 with xi = [1, xi1, xi2] and

b = [b1, . . . , bn]
T.

Such a spline provides the unique minimizer of P (f) among interpolating
functions. Interested readers are referred to Theorems 7.2 and 7.3 of Green and
Silverman (1994) and to Duchon (1977), who proved optimality and uniqueness
properties for natural thin plate splines. Consequently, the one-dimensional result
outlined in Sect. 11.2.3 holds in two dimensions also. If f is a natural thin plate
spline, it can be shown that the penalty (12.6) is given by P (f) = bTEb where E is
the n × n matrix with Eij = η(||xi − xj ||), i, j = 1, . . . , n (Green and Silverman
1994, Theorem 7.1). The minimization (12.7) with penalty term (12.6) is

(y − xβ −Eb)
T
(y − xβ −Eb) + λbTEb (12.9)

subject again to xTb = 0 and where β = [β0, β1, β2]
T. Green and Silverman (1994,

p. 148) show that this system of equations has a unique solution.
In terms of a mechanical interpretation, suppose that an infinite elastic flat plate

interpolates a set of points [xi, yi], i = 1, . . . , n. Then the “bending energy” of the
plate is proportional to the penalty term (12.6), and the minimum energy solution
is the natural thin plate spline. Natural thin plate regression splines can be easily
generalized to dimensions greater than two. Green and Silverman (1994, Sect. 7.9)
contains details.

12.3.2 Thin Plate Regression Splines

Natural thin plate splines are very appealing since they remove the need to decide
upon knot locations or basis functions; each is contained in (12.8). In practice,
however, thin plate splines have too many parameters. A thin plate regression
spline (TPRS) reduces the dimension of the space of the “wiggly” basis (the bi’s
in (12.8)), while leaving β unchanged. Specifically, let E = UDU T be the eigen-
decomposition of E, so that D is a diagonal matrix containing the eigenvalues of
E arranged so that |Di,i| ≥ |Di−1,i−1|, i = 2, . . . , n, and the columns of U are
the corresponding eigenvectors. Now, let Uk denote the matrix containing the first
k columns of U and Dk the top left k×k submatrix of D. Finally, write b = Ukbk
so that b is restricted to the column space of Uk . Then, under this reduced basis
formulation, analogous to (12.9), we minimize with respect to β and bk

(y − xβ −UkDkbk)
T
(y − xβ −UkDkbk) + λbT

kDkbk



604 12 Nonparametric Regression with Multiple Predictors

subject to xTUkbk = 0. See Wood (2006, Sect. 4.1.5) for further details, including
the manner by which predictions are obtained and details on implementation. In
addition, the optimality of thin plate regression splines as approximating thin plate
splines using a basis of low rank is discussed. Thin plate regression splines retain
both the advantage of avoiding the choice of knot locations and the rotational
invariance of thin plate splines.

Example: Prostate Cancer

For illustration, we examine the association between the log of PSA and log
cancer volume and log weight. Figure 12.2(a) shows the two-dimensional surface
corresponding to a model that is linear in the two covariates (and in particular has
no interaction term). We next fit a GAM with a TPRS smoother for log cancer
volume and log weight, along with (univariate) cubic regression splines for age,
log BPH, log capsular penetration, and PGS45, along with linear terms for SVI
and the Gleason score. Figure 12.2(b) provides a perspective plot of the fitted
bivariate surface. There are some differences between this plot and the linear model.
In particular for high values of log cancer volume and low values of log weight,
the linear no interaction model gives a lower prediction than the TPRS smoother.
Overall, however, there is no strong evidence of an interaction.

12.3.3 Tensor Product Splines

As an alternative to thin plate splines, one may consider products of basis functions.
Again, suppose that x ∈ R

2 and that we have basis functions hjl(xj), l =
1, . . . ,Mj , representingxj , j = 1, 2. Then, the M1×M2 dimensional tensor product
basis is defined by

gj1j2(x) = h1j1(x1)h2j2(x2), j1 = 1, . . . ,M1; j2 = 1, . . . ,M2,

which leads to the two-dimensional predictive function:

f(x) =

M1∑

j1=1

M2∑

j2=1

βj1j2gj1j2(x).

We illustrate this construction using spline bases. Suppose that we wish to specify
linear splines with L1 truncated lines for x1 and L2 for x2. This model therefore has
L1 + 2 and L2 + 2 bases in the two dimensions:

1 , x1, (x1 − ξ11)+, . . . , (x1 − ξ1L1)+, (12.10)

1 , x2, (x2 − ξ21)+, . . . , (x2 − ξ2L2)+. (12.11)
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The tensor product model is

f(x1, x2) = β0 +β1x1 + β2x2 + β3x1x2

+

L1∑

l1=1

b
(1)
l1

(x1 − ξ1l1)+ +

L2∑

l2=1

b
(2)
l2

(x2 − ξ2l2)+

+

L1∑

l1=1

c
(1)
l1

x2(x1 − ξ1l1)+ +

L2∑

l2=1

c
(2)
l2

x1(x2 − ξ2l2)+

+

L1∑

l1=1

L2∑

l2=1

d
(12)
l1l2

(x1 − ξ1l1)+(x2 − ξ2l2)+. (12.12)

An additive model would correspond to the first two lines of this model only (with
the x1x2 term removed), illustrating that the last two lines are modeling interactions.
The unknown parameters associated with this model are

β = [β0, . . . , β3]
T

b(1) = [b
(1)
1 , . . . , b

(1)
L1

]T

b(2) = [b
(2)
1 , . . . , b

(2)
L2

]T

c(1) = [c
(1)
1 , . . . , c

(1)
L1

]T

c(2) = [c
(2)
1 , . . . , c

(2)
L2

]T

d(12) = [d
(12)
11 , . . . , d

(12)
L1L2

]T.

Consequently, there are

4 + L1 + L2 + L1 + L2 + L1L2 = (L1 + 2)(L2 + 2)

parameters in the tensor product model. Clearly the dimensionality of the basis
increases quickly with the dimensionality of the covariate space k. See Exercise 12.1
for an example of the construction and display of these bases. An example of a tensor
product fit is given at the end of Section 12.5.

The fit from a tensor product basis is not invariant to the orientation of the
coordinate axis. Radial invariance can be achieved with basis functions of the form
C(||x − ξ||), with ξ = [ξ1, ξ2] and for some univariate function C(·), see for
example Ruppert et al. (2003). The value of the function at x only depends on the
distance from this point to ξ, and so the function is radially symmetric about this
point.
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12.4 Kernel Methods with Multiple Predictors

In principle, the extension of the kernel local polynomial smoothing methods of
Sect. 11.3 is straightforward; one simply needs to choose a multivariate weight
function (i.e., a kernel) and a multivariate local polynomial. For simplicity, we
consider the case of two covariates and a continuous response with additive errors:

Yi = f(xi1, xi2) + εi

with E[εi] = 0, var(εi) = σ2 and cov(εi, εj) = 0 for i �= j. A suitably smooth
function may be approximated, for values u = [u1, u2] in a neighborhood of a point
x = [x1, x2], by a second-order Taylor series approximation:

f(u) ≈ f(x) + (u1 − x1)
∂f

∂x1
+ (u2 − x2)

∂f

∂x2

+(u1 − x1)
2 1

2

∂2f

∂x2
1

+ (u1 − x1)(u2 − x2)
∂2f

∂x1∂x2
+ (u2 − x2)

2 1

2

∂2f

∂x2
2

.

We see that the model includes an interaction term (u1 − x1)(u2 − x2), and the
approximation suggests that for a prediction at the point x, we can use the local
polynomial:

Px (u;βx
) = β0x + (u1 − x1)β1x + (u2 − x2)β2x

+(u1 − x1)
2β3x

2
+ (u1 − x1)(u2 − x2)β4x + (u2 − x2)

2β5x

2
.

Estimation proceeds exactly as in the one-dimensional case by choosing β̂x to
minimize the locally weighted sum of squares

n∑

i=1

wi(x) [Yi − Px (xi;βx)]
2
,

with the weights wi(x) depending on a two-dimensional kernel function. The
simplest choice is the product of one-dimensional kernels, that is,

wi(x) = K1

(
x1 − xi1

λ1

)
×K2

(
x2 − xi2

λ2

)
.

The fitted value is

f̂(x) = Px(x; β̂x) = β̂0x.

Embedding multivariate local polynomials within a generalized linear model
framework is straightforward, by simple extension of the approach described in
Sect. 11.5.3.



608 12 Nonparametric Regression with Multiple Predictors

As with multivariate spline methods, the local polynomial approach becomes
more difficult as the dimensionality increases, due to the sparsity of points in high
dimensions.

12.5 Smoothing Parameter Estimation

12.5.1 Conventional Approaches

The simplest way to control the level of smoothing is to specify an effective degrees
of freedom, dfj , for each of the j = 1, . . . , k smoothers (where we have assumed
for simplicity that we are modeling k univariate smoothers).

As we saw in Chap. 10, there are two ways of estimating smoothing parameters.
The first is to attempt to minimize prediction error which may be represented
by AIC-like criteria or via cross-validation. Such procedures were described in
Sect. 10.6. The second method is to embed the penalized smoothing within a mixed
model framework and then use likelihood (ML or REML) or Bayesian estimation
of the random effects variances. This approach is described in Sect. 12.5.2.

For GAMs the smoothing of multiple parameters may be estimated during the
iterative cycle (e.g., within the P-IRLS iterates), which is known as performance
iteration. As an alternative, fitting may be carried out multiple times for each set
of smoothing parameters, which is known as outer iteration. The latter is more
reliable but requires more work to implement. However, the methods for minimizing
prediction error using outer iteration described in Wood (2008) are shown to be
almost as computationally efficient as performance iteration.

12.5.2 Mixed Model Formulation

To illustrate the general technique, consider a linear additive model with penalized
regression splines providing the smoothing for each of the k covariates. Further,
assume a truncated polynomial representation with a degree pj polynomial and
Lj knots with locations ξjl, l = 1, . . . , Lj , associated with the jth smooth, j =
1, . . . , k. A mixed model representation is

yi = β0 +

k∑

j=1

⎡

⎣
pj∑

d=1

βjdx
d
j +

Lj∑

l=1

bjl(xj − ξjl)
pj

+

⎤

⎦+ εi

= β0 +

k∑

j=1

xijβj +

k∑

j=1

zijbj + εi (12.13)
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with εi | σ2
ε ∼ N(0, σ2

ε ),

xij = [xij , . . . , x
pj

ij ], βj =

⎡

⎢⎣
βj1

...
βjpj

⎤

⎥⎦ ,

and

zij = [(xij − ξj1)
pj

+ , . . . , (xij − ξjLj )
pj

+ ], bj =

⎡

⎢⎣
bj1
...

bjpj

⎤

⎥⎦ .

The parameters β1, . . . , βk are treated as fixed effects with b1, . . . , bk being a
set of independent random effects. The penalization is incorporated through the
introduction of k sets of random effects:

bjl | σ2
bj ∼ind N(0, σ2

bj), l = 1, . . . , Lj

for j = 1, . . . , k. Inference, from either a likelihood (Sect. 11.2.8) or Bayesian
(Sect. 11.2.9) perspective, proceeds exactly as in the univariate covariate case. The
extension of (12.13) to a tensor product spline model, such as (12.12), is straight-
forward. Comparison with (12.12) reveals the strong simplification of (12.13) (with
k = 2 and pj = 1), which includes no cross-product terms.

One can estimate the variance components (and hence the amount of smoothing)
using a fully Bayesian approach or via ML/REML. With a likelihood-based
approach, one requires the random effects to be integrated from the model. For
non-Gaussian response models, these integrals cannot be evaluated analytically.
Approaches to integration were reviewed in Sect. 3.7. One iterative strategy we
mention briefly here linearizes the model, which allows linear methods of estimation
to be applied. This strategy is known as penalized quasi-likelihood (PQL, Breslow
and Clayton 1993) and is essentially equivalent to performance iteration. Using the
more sophisticated Laplace approximation gives one approach to outer iteration.
See Wood (2011) for details of a method that is almost as computationally efficient
as performance iteration. Bayesian approaches typically use MCMC (Sect. 3.8) or
INLA (Sect. 3.7.4).

Some theoretical work (Wabha 1985; Kauermann 2005) suggests that methods
that minimize prediction error criteria give better prediction error asymptotically,
but have slower convergence of smoothing parameters (Härdle et al. 1988). Reiss
and Ogden (2009) show that the equations by which generalized cross-validation
(GCV) and REML estimates are obtained have a similar form and use this to
examine the properties of the estimates. They find that converging to a local,
rather than a global, solution appears to happen more frequently for GCV than for
REML. Hence, care is required in finding a solution, and Reiss and Ogden (2009)
recommend plotting the criteria function over a wide range of values. Wood (2011)
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discusses how GCV can lead to “occasional severe under-smoothing,” and this
is backed up by Reiss and Ogden (2009) who argue, based on their theoretical
derivations, that REML estimates will tend to be more stable than GCV estimates.

Example: Prostate Cancer

We return to the prostate cancer example and fit a GAM with a tensor product
spline smoother for log cancer volume and log weight, along with (univariate) cubic
regression splines for age, log BPH, log capsular penetration and PGS45, and with
linear terms for SVI and the Gleason score. Each of the constituent smoothers in the
tensor product is taken to be a cubic regression spline with bases of size 6 for each of
the components. GCV is used for estimation of the smoothing parameters and results
in an effective degrees of freedom of 12.4 for the tensor product term. Figure 12.2c
provides a perspective plot of the fitted bivariate surface. It is reassuring that the fit
is very similar to the thin plate regression spline in panel (b).

12.6 Varying-Coefficient Models

Varying-coefficient models (Cleveland et al. 1991; Hastie and Tibshirani 1993)
provide another flexible model based on a linear form but with model coefficients
that vary smoothly as a function of other variables. We begin our discussion by
giving an example with two covariates, x and z. The model is

E[Y | x, z] = μ = β0(z) + β1(z)x (12.14)

so that we have a linear regression with both the intercept and the slope correspond-
ing to x being smooth functions of z. The first thing to note is that the model is not
symmetric in the two covariates. Rather, the linear association between Y and x is
modified by z, and we have a specific form of interaction model.

The extension to a generalized linear/additive model setting is clear, on replace-
ment of E[Y | x, z] by g(μ). With covariates x = [x1, . . . , xk] and z the model is

g(μ) = β0(z) +

k∑

j=1

βj(z)xj ,

so that each of the slopes is modified by z. Computation and inference are
straightforward for the varying-coefficient model.



12.6 Varying-Coefficient Models 611

We return to the case of just two variables, x and z, and consider penalized linear
spline smoothers with L knots having locations ξk for each of the intercept and
slope. Then, model (12.14) becomes:

E[Y | x, z] = α
(0)
0 + α

(0)
1 z +

L∑

l=1

b
(0)
l (z − ξl)+

︸ ︷︷ ︸
β0(z)

+

(
α
(1)
0 + α

(1)
1 z +

L∑

l=1

b
(1)
l (z − ξl)+

)

︸ ︷︷ ︸
β1(z)

x.

A mixed model representation (Ruppert et al. 2003, Sect. 12.4) assumes independent
random effects with b

(0)
l | σ2

0 ∼iid N(0, σ2
0) and b

(1)
l | σ2

1 ∼iid N(0, σ2
1) for l =

1, . . . , L.
An obvious application of varying-coefficient models is in the situation in which

the modifying variables correspond to time. As a simple example, if a response and
covariate x are collected over time, we might consider the model

Yt = α+ β(t)xt + εt, (12.15)

where we have chosen a simple model in which the slope, and not the intercept,
is a function of time. We briefly digress to provide a link with Bayesian dynamic
linear models, which were developed for the analysis of time series data and allow
regression coefficients to vary according to an autoregressive model. The simplest
dynamic linear model (see, for example, West and Harrison 1997) is defined by the
equations

Yt = α+ xtβt + εt, εt | σ2
ε ∼iid N(0, σ2

ε )

βt = βt−1 + δt, δt | σ2
δ ∼iid N(0, σ2

δ ).

Accordingly, we have a varying-coefficient model of the form of (12.15) with
smoothing carried out via a particular flexible form: a first-order Markov model
(the limiting form of an autoregressive model, see Sect. 8.4.2). This is also a mixed
model but with the first differences (βt − βt−1) being modeled. A spatial form of
this autoregressive model was considered in Sect. 9.7.

Example: Ethanol Data

We illustrate the use of a varying-coefficient model with the ethanol data described
in Sect. 10.2.2. Figure 10.2 provides a three-dimensional plot of these data. An
initial analysis, with NOx modeled as a linear function of C and a quadratic function
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Fig. 12.3 NOx versus C for nine subsets of the ethanol data (defined via the quantiles of E), with
linear model fits superimposed

of E, was found to provide a poor fit. Specifically, the association between NOx and
E is far more complex than quadratic. To examine the association more closely
and to motivate the varying-coefficient model, we split the E variable into nine
bins, based on the quantiles of E, with an approximately equal number of pairs
of [NOx,C] points within each bin. We then fit a linear model to each portion of the
data. Figure 12.3 shows the resultant data and fitted lines. A linear model appears,
at least visually, to provide a reasonable fit in each panel, though the intercepts and
slopes vary across the quantiles of E.

Figures 12.4(a) and (b) plot these intercepts and slopes as a function of the
midpoint of the bins for E, and we see that the coefficients vary in a non-monotonic
fashion. Consequently, we fit the varying-coefficient model

E [NOx | C,E] = β0(E) + β1(E)× C, (12.16)

with β0(E) and β1(E) both modeled as penalized cubic regression splines with 10
knots each. The smoothing parameters for the smoothers were chosen using GCV,
which resulted in 6.4 and 4.7 effective degrees of freedom for the intercept and
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Fig. 12.4 (a) Intercepts and (b) slopes from linear models fitted to the ethanol data in which
the response is NOx and the covariate is C, with the nine groups defined by quantiles of the E
variable. The fitted curves are from a varying-coefficient model in which the intercepts and slopes
are modeled as cubic regression splines in E
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Fig. 12.5 Image plot of the
predictive surface from the
varying-coefficient
model (12.16) fitted to the
ethanol data. Light and dark
gray values indicate,
respectively, high and low
values of expected NOx

slope, respectively. The fitted smooths are shown on Fig. 12.4, and we see that the
intercept and slope rise then fall as a function of E.

Figure 12.5 gives the fitted surface. The inverted U-shape in E is evident. More
subtly, as we saw in Fig. 12.4(b), the strength (and sign) of the linear association
between NOx and C varies as a function of E.
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12.7 Regression Trees

12.7.1 Hierarchical Partitioning

In this section we consider a quite different approach to modeling, in which the
covariate space is partitioned into regions within which the response is relatively
homogeneous. A key feature is that although a model for the data is produced, the
approach is best described algorithmically. As we will see, a tree-based approach
to the construction of partitions is both interpretable and amenable to computation.
Our development follows similar lines to Hastie et al. (2009, Sect. 9.2).

In order to motivate tree-based models, we first take a step back and consider
ways of constructing partitions; the aim is to produce regions of the covariate space
within which the response is constant. An obvious statement is that, in practice,
clearly the shapes and sizes of the partition will be dependent on the distribution of
the covariates. There are clearly many possible ways (models) by which partitions
might be defined, beginning with a completely unrestricted search in which there are
no constraints on the shapes and sizes of the partition region. This is too complex a
task to practically accomplish, however.2 We examine a series of partitions for the
case of two covariates, x1 and x2, leading to a particular mechanism for partitioning.
Figure 12.6(a) shows partitions defined by straight lines in the covariate space, with
the lines not constrained to be parallel to either axis (clearly we could start with
partitions of even greater complexity). Explaining how the response varies as a
function of x1 and x2 for the particular partition in Fig. 12.6(a) is not easy, however.
In addition, searching for the best partitions defined with respect to lines of this
form is very difficult, particularly when the covariate space is high dimensional.
Figure 12.6(b) displays a partition in which the space is dissected with lines that
are parallel to the axes, and, though simpler to describe than the previous case, the
regions are still not straightforward to explain or compute.

x1

x 2

x1

x 2

Fig. 12.6 Examples of
flexible partitions of the
[x1, x2] space that use
straight lines to define the
partitions

2Methods aimed in this direction do exist, for example, in the spatial literature. Knorr-Held and
Rasser (2000) and Denison and Holmes (2001) describe Bayesian partition models based on
Voronoi tessellations. These models are computationally expensive to implement and have so far
been restricted to two-dimensional covariate settings.



12.7 Regression Trees 615

x1

x 2

t1

t4

t2 t3

R1 R2

R3

R4

R5

Fig. 12.7 Hierarchical
binary tree partition of the
[x1, x2] space

x2 t1

x1 t2 x1 t3

x2 t4

R 1 R 2

R 4 R 5

R 3

<

<

<

<

Fig. 12.8 Hypothetical
regression tree corresponding
to Fig. 12.7. The four splits
lead to five terminal nodes
(leaves), labeled R1, . . . , R5

Figure 12.7 shows a tree-based partition that is based on successive binary
partitions of the predictor space, again to produce subsets of the response which
are relatively constant. Splits are only allowed within, and not between, partitions.
Such a method has the advantage of producing models that are relatively easy to
explain, since they follow simple rules, and may be computed without too much
difficulty. The partition in Fig. 12.7 is generated by the algorithm illustrated in the
form of a “tree” in Fig. 12.8 (notice that trees are usually shown as growing down
the page). We describe in detail how this partition is constructed.

The terminology we use is graphical. Decisions are taken at nodes, and the root
of the tree is the top node. The terminal nodes are the leaves, and covariate points
x assigned to these nodes are assigned a constant fitted value (which is called a
classification if the response is discrete). Attached to each nonterminal node is a
question that determines a split of the data. Suppose a tree T0 is grown. A subtree
of T0 is a tree with root a node of T0; it is a rooted subtree if its root is the root of
T0. The size of a tree, denoted |T |, is the number of leaves.

In Fig. 12.8, the first split is according to X2 ≤ t1. If this condition is true, then
we follow the left branch and next split on X1 ≤ t2, to give leaves with labels R1
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Fig. 12.9 Hypothetical
surface corresponding to the
partition of Fig. 12.7 and the
tree of Fig. 12.8

and R2. If we follow the right hand branch and X1 > t3, we terminate at the R3

leaf. If X1 ≤ t3, we split again via X2 ≤ t4 to give the leaves R4 and R5. The
model resulting from these operations is

f(x1, x2) =

5∑

j=1

βjI ( [x1, x2] ∈ Rj ) ,

where the indicator I {[x1, x2] ∈ Rj} is 1 if the point [x1, x2] lies in region Rj and
is equal to 0 otherwise. Figure 12.9 is a hypothetical surface corresponding to the
tree shown in Fig. 12.8.

The five basis functions hj , which correspond to Rj , j = 1, . . . , 5, are:

h1(x1, x2) = I(x2 ≤ t1)× I(x1 ≤ t2)

h2(x1, x2) = I(x2 ≤ t1)× I(x1 > t2)

h3(x1, x2) = I(x2 > t1)× I(x1 > t3)

h4(x1, x2) = I(x2 > t1)× I(x1 ≤ t3)× I(x2 ≤ t4)

h5(x1, x2) = I(x2 > t1)× I(x1 ≤ t3)× I(x2 > t4).

Basis hj corresponds to Rj , j = 1, . . . , 5. These bases cover the covariate space
and at any point x only one basis function is nonzero, so that we have a partition.
We emphasize that these bases are not specified a priori, but selected on the basis
of the observed data, so that they are locally adaptive. A regression tree provides
a hierarchical method of describing the partitions (i.e., the partitioning is defined
through a nested series of instructions), which aids greatly in describing the model.
Tree models effectively perform variable selection, and discovering interactions is
implicit in the process.
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There are many ways in which we could go about “growing” a tree. Clearly we
could continue to split the data until each leaf contains a single unique set of x
values, but this would lead to overfitting. Many approaches grow a large tree and
then prune it back, to avoid such overfitting. There are different ways to both split
nodes (e.g., only binary splits may be performed) and prune back the tree.

We now describe an approach to tree-building based on binary splits. Consider
a simple situation in which we have a response Y and k continuous predictors xl,
l = 1, . . . , k. A common implementation considers recursive binary partitions in
which the x space is first split into two regions on the basis of one of x1, . . . , xk,
with the variable and split point being chosen to achieve the best fit (according
to, say, the residual sum of squares, or more generally the deviance). There are a
maximum of k(n−1) partitions to consider. Next, one or both of the regions are split
into two more regions. Only partitions within, and not between, current partitions
are considered at each step of the algorithm. This process is continued until some
stopping rule is satisfied. The final tree may then be pruned back.

For ordered categorical variables, the above procedure poses no ambiguity, but
for unordered categorical variables with more than two levels, we may divide the
levels into two groups; with L levels there are 2L−1 − 1 pairs of groups. Note that,
in general, monotonic transformations of quantitative covariates produce identical
results.

When the algorithm terminates, we end up with a regression model having fitted
values β̂j in region Rj , that is,

f̂(x) =

J∑

j=1

β̂jI(x ∈ Rj). (12.17)

An obvious estimator is

β̂j =
1

nj

∑

i:xi∈Rj

yi

where nj is the number of observations in partition Rj , j = 1, . . . , J (so that
there are J leaves). Inherent in the construction of this unweighted estimator is
an assumption that the error terms are uncorrelated with constant variance (which
is consistent with choosing the splits on the basis of minimizing the residual sum of
squares).

We now give more detail on how regression trees are “grown.” The algorithm
automatically decides on both the variable on which to split and on the split points.
To find the best tree, we start with all the data and proceed with a greedy algorithm.3

Consider a particular variable xl and a split point s and define

R1(l, s) = {x : xl ≤ s }
R2(l, s) = {x : xl > s }.

3A greedy algorithm is one in which “locally” optimal choices are made at each stage.
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We seek the splitting variable index l and split point s that solve

min
l,s

⎡

⎣min
β1

∑

i:xi∈R1(l,s)

(yi − β1)
2 +min

β2

∑

i:xi∈R2(l,s)

(yi − β2)
2

⎤

⎦ ,

that is, that minimizes the residual sum of squares among models with two response
levels, based on a split of one of the k variables. For any choice of l and s, the inner
minimization is solved by

β̂1 =
1

|R1(l, s)|
∑

i:xi∈R1(l,s)

yi

β̂2 =
1

|R2(l, s)|
∑

i:xi∈R2(l,s)

yi.

Each of the covariates, x1, . . . , xk, is scanned and, for each, the determination of
the best split point s is found, which is fast. Having found the best split, we partition
the data into the two resulting regions, and the splitting process is then repeated on
each region to find the next split.

We now return to the key question: How large a tree should be grown? If the tree
is too large, then we will overfit, and if too small, the tree will not capture important
features. The tree size is therefore acting as a tuning parameter that determines
complexity. By analogy with forward selection, growing a tree until (say) the sum
of squares is not significantly reduced in size is shortsighted, since splits below the
current tree may be highly beneficial. In practice, a common approach is to first grow
a large tree, T0, stopping when some minimum node size is reached (in the extreme
case we could continue until each leaf contains a single observation); the tree is
then pruned back. The space of trees becomes large very quickly, as k increases.
Consequently, searching over all subtrees and using, for example, cross-validation
or AIC to select the “best” is not feasible. We discuss an alternative way to penalize
overfitting.

Let T be a subtree of T0 that is obtained by weakest-link pruning T0, that is, by
collapsing any number of its internal (nonterminal) nodes. We let

Sj(T ) =
1

nj

∑

i:xi∈Rj

(yi − β̂j)
2 (12.18)

denote the within-partition residual sum of squares and |T | be the number of
terminal nodes in T . With respect to (12.17), J = |T |. Following, Breiman et al.
(1984) define the cost complexity criterion as the total residual sum of squares plus
a penalty term that consists of a smoothing parameter λ multiplied by the size of the
tree:

Cλ(T ) =

|T |∑

j=1

njSj(T ) + λ|T |. (12.19)
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Hence, we have a penalized sum of squares. For a given λ, we can find the subtree
Tλ ∈ T0 that minimizes Cλ(T ). The tuning parameter λ ≥ 0 obviously balances
the tree size and the goodness of fit of the tree to the data, with larger values giving
smaller trees. As usual we are encountering the bias-variance trade-off. Large trees
exhibit low bias and high variance, with complementary behavior being exhibited
by small trees. With λ = 0, we obtain the full tree, T0.

For each λ, it can be shown that there exists a unique smallest subtree, Tλ̂ that
minimizes Cλ(T ). See Breiman et al. (1984) and Ripley (1996) for details. This
tree can be found using weakest-link pruning. The estimation of the smoothing
parameter λ may be carried out via cross-validation to give a final tree Tλ̂.
Specifically, cross-validation splits are first formed, and then, for a given λ, the
tree that minimizes (12.19) can be found. For this tree, the cross-validation sum of
squares (y− ŷ)2 can be calculated over the left-out data y, where ŷ is the prediction
from the tree. This procedure is carried out for different values of λ, and one may
pick the value that minimizes the sum of squares.

Before moving to an example, we make some general comments about regression
trees. See Hastie et al. (2009, Sect. 9.2.4) and Berk (2008, Chap. 3) for more
extensive discussions.

In applications there are often missing covariate values. One approach to
accommodating such values that is applicable to categorical variables is to create a
“missing” category; this may reveal that responses with some missing values behave
differently to those without missing values. Another approach is to drop cases down
the tree, as far as they will go, until a decision on a missing value is reached. At that
point, the mean of y can be calculated from the other cases available at this node and
can be used as the prediction. This can result in decisions being made based on little
information, however. A general alternative strategy is to create surrogate variables
that mimic the behavior of the missing variables. When considering a predictor
for a split only, the non-missing values are used. Once the best predictor/split
combination is selected, other predictor/split points are examined to see which best
mimics the one selected. For example, suppose the optimal split based on the non-
missing observations is based on x1. The binary outcome defined by the split on
x1 is then taken as response, and we try to predict this variable using splits based
on each of xl, l = 2, . . . , k. The classification rate is then examined with the best,
second best, etc., surrogates being recorded. When training data with missing values
on x1 are encountered, one of the surrogates is then used instead, with the variable
chosen being the one that is available with the best classification rate. The same
strategy is used for new cases with missing values. The basic idea is to exploit
correlation between the covariates. The best advice with regard to missing data is
obvious: one should avoid having missing values as much as possible when the
study is conducted, and if there are a large proportion of missing values predictions
should be viewed with a fair amount of skepticism, whatever the correction method
employed. A number of authors have pointed out that variables having more values
are favored in the splitting procedure (e.g., Breiman et al. 1984, p. 42). Variables
with more missing values are also favored (Kim and Loh 2001).
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An undesirable aspect of the fitted surface is that, by construction, it is piecewise
constant, which will often not be plausible a priori. Multiple adaptive regression
splines (MARS, to be described in Sect. 12.7.2) constructs a basis function from
linear segments, in order to alleviate this problem. The flexibility of trees can be a
disadvantage since one cannot build in structure which one might think is present.
For example, consider an additive model with two variables. Specifically, suppose
the true model is E[Y | x1, x2] = β1I(x1 ≤ t1) + β2I(x2 ≤ t2) and the first split
is at x1 ≈ t1. Then, two subsequent splits would be needed, one on each branch at
x2 ≈ t2.

Fundamentally, carrying out inference with regression trees is difficult, because
one needs to consider the stepwise nature of the search algorithm (Sect. 4.8.1
discussed the inherent difficulties of such an approach). One solution, based on
permutation methods, has been suggested by Hothorn et al. (2006). Gordon and
Olshen (1978) and Gordon and Olshen (1984); Olshen (2007) (among others)
have produced results on the conditions under which tree-based approaches are
consistent.

A major problem with trees is that they can exhibit high variance, in the sense
that a small change in the data can result in a very different tree being formed.
The hierarchical nature of the algorithm is responsible for this behavior, since the
effect of changes is propagated down the tree. Later in the chapter we will describe
bagging (Sect. 12.8.5) and random forest (Sect. 12.8.6) approaches that consider
collections of trees in order to alleviate this instability.

We now illustrate the use of regression trees with the prostate cancer data. In
Sect. 12.8.4 we consider tree-based approaches to classification.

Example: Prostate Cancer

We fit a binary regression tree model treating log PSA as the response and with
the splits based on the eight covariates. We grow the tree with a requirement that
there must be at least three observations in each leaf. This specification leads to a
regression tree with 27 splits.

We now choose the smoothing parameter λ based on cross-validation and
minimizing (12.19), with weakest-link pruning being carried out for each candidate
value of λ. Figure 12.10 plots the cross-validation score (along with an estimate
of the standard error) as a function of “complexity” (on the bottom axis) and tree
size (top axis). The complexity score here is the improvement in R2 (Sect. 4.8.2)
when the extra split is made. The tree that attains the minimum CV is displayed in
Fig. 12.11 and has four splits and five leaves (terminal nodes). We saw in Fig. 10.7
that when the lasso was used, log cancer volume was the most important variable (in
the sense of being the last to be removed from the model), followed by log weight
and SVI. Consequently, it is no surprise that two of the splits are on log cancer
volume, with one each for log weight and SVI.
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Fig. 12.10 Cross-validation score versus complexity, as measured by tree size (top axis) and
improvement in R2 (bottom axis), for the prostate cancer data

The final model is

f̂(x) =

5∑

j=1

β̂jhj(x),

where the numerical values of β̂j are given in Fig. 12.11 and

h1(x) = I(lcavol < −0.4786)

h2(x) = I(lcavol ≥ −0.4786) × I(lcavol < 2.462) × I(lweight < 3.689) × I(svi <0.5)

h3(x) = I(lcavol≥− 0.4786) × I(lcavol<2.462) × I(lweight<3.689) × I(svi>0.5)

h4(x) = I(lcavol≥−0.4786) × I(lcavol<2.462) × I(lweight≥3.689)

h5(x) = I(lcavol≥2.462).

In terms of assigning a prediction to a new observation with covariatesx, we simply
read down the tree in Fig. 12.11.
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|
lcavol< 2.462

lcavol< −0.4786

lweight< 3.689

svi< 0.5

0.6017
n=9

1.927
n=35

3.267
n=3

2.712
n=29

3.765
n=21

Fig. 12.11 Hierarchical
regression tree for the
prostate cancer data. For each
leaf we give the estimated
mean response and the
number of observations

12.7.2 Multiple Adaptive Regression Splines

We briefly describe the multiple adaptive regression splines (MARS) algorithm
that combines stepwise linear regression with a spline/tree model; MARS was
introduced in Friedman (1991). MARS overcomes the discreteness of the regression
trees fitted model by using piecewise linear basis functions of the form (xj − t)+
and (t− xj)+ for j = 1, . . . , k; these are known as a reflected pair. Here, xj refers
to a generic covariate, and t to an observed value of that covariate. Hence, we have a
pair of linear truncated line segments, which we have already seen used as building
blocks for splines in Sect. 11.2.1. The collection of basis functions is

{ (xl − t)+, (t− xl)+, t ∈ {x1l, . . . , xnl}, l = 1, . . . , k } . (12.20)

If all of the covariates are distinct, there are 2nk basis functions in total.
The model is of the form

f(x) = β0 +

J∑

j=1

βjhj(x)

where each hj(x) is a particular reflected pair from the collection (12.20) or a
product of two or more pairs. To select basis functions, forward selection is used
(Sect. 4.8.1). At a particular step suppose we have functions hl(x), l = 1, . . . , L in
the current model. We then add the term of the form

β̂L+1hl(x)× (xl′ − t)+ + β̂L+2hl(x)× (t− xl′)+
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Fig. 12.12 Image plots of the fitted surfaces for the ethanol data obtained from (a) a pruned
regression tree and (b) the MARS algorithm

that gives the largest decrease in the residual sum of squares. As with regression
trees the process is continued until some preset maximum number of terms are
present. This typically gives overfitting, and so backward elimination (Sect. 4.8.1) is
used to reduce the size of the model by removing one by one the term that gives the
smallest increase in the residuals sum of squares. Note that whereas in the forward
direction the terms are added in pairs, in the backward direction, single terms can
be removed. The balance between the size of the model and the closeness of the
predictions to the observations is decided upon using generalized cross-validation
(recall that generalized cross-validation requires less computation than ordinary
cross-validation, Sect. 10.6.3).

Like regression trees, MARS is effectively performing variable selection. The
model and parameter estimates produced by MARS are also quite interpretable
(unlike boosting and random forests, which we will meet shortly) though inference,
as with regression trees, is not straightforward.

MARS is particularly appealing as the dimensionality of the covariate space
increases since, as we saw in Sect. 12.3.3, the use of tensor products of splines
is prohibitive in higher dimensions, as the number of bases explodes. MARS avoids
this problem by adaptively choosing bases and then carrying out a kind of pruning.
The manner in which the terms are added has a flavor of following the hierarchy
principle (Sect. 4.8) since interaction terms are added on top of the main effects. A
more detailed discussion of MARS can be found in Hastie et al. (2009, Sect. 9.4).

Example: Ethanol Data

We applied both regression trees and the MARS approach to the ethanol data.
The pruned regression tree had five splits with four involving the E variable. The
resultant fitted surface is shown in Fig. 12.12(a) with the discreteness being apparent
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and undesirable. Applying the MARS method to the ethanol data results in six bases
in the model (in addition to the intercept), with four of the six involving the E
variable. The resultant fitted surface is shown in Fig. 12.12b and is far more visually
appealing than the regression tree surface.

12.8 Classification

The classification problem is to predict the class of a response, given covariates x,
from the set {0, 1, . . . ,K−1}. The true outcome is denoted Y and the classification
Ŷ = g(x), where g(·) is the classifier. There are many approaches to classification,
and we will only scratch the surface in this section. More extensive treatments are
referenced in Sect. 12.10.

We distinguish two broad approaches. In the first, we fit (or train) a model Y | x,
with, for example, E[Y | x] = f(x) for a class of functions f(·). A classification is
then made on the basis of the fitted model. The spline and kernel generalized linear
model methods discussed in Sect. 11.5 are clearly applicable, if we model the data
as multinomial. For example, logistic smoothers may be used in the binary case.
The fitted values f̂(x) can be simply converted to classifications ĝ(x), for example,
using the Bayes classifier that assigns an observation to the class with the highest
probability (Sect. 10.3.2).

In the second approach, we reverse the conditioning and model X | y. Suppose
initially that for class k the distribution of x is known with the prior probabilities
of class k being πk, k = 0, 1, . . . ,K − 1. Then the posterior probability that a case
with covariates x is of class k is

Pr(Y = k | x) = pk(x)× πk∑K−1
l=0 pl(x)× πl

, (12.21)

where pk(x) is the distribution of x for class k. Given class probabilities, we wish to
decide upon a classification. Minimization of the expected prediction error (which is
the expected loss with equal misclassification losses) gives the classifier that assigns
the class that maximizes the posterior probability (Sect. 10.4.2).

We may draw an analogy with Bayes model selection, as described in Sect. 4.3.1.
For simplicity, suppose we have to decide between just two actions: in the model
selection context, two models, and in the classification context, two classes. In the
former, model M1 is preferred if

Pr(M1 | y)
Pr(M0 | y) =

p(y | M1)

p(y | M0)
× π1

π0
>

LI

LII

,
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where LI and LII are the losses associated with type I and type II errors and π0 and
π1 are the prior probabilities of M0 andM1. In the classification context, we classify
to class 1 if

Pr(Y = 1 | x)
Pr(Y = 0 | x) =

p(x | Y = 1)

p(x | Y = 0)
× π1

π0
>

L(0, 1)

L(1, 0)
, (12.22)

where L(0, 1) is the loss associated with assigning g(x) = 1 when the truth is
Y = 0 and L(1, 0) is the loss associated with assigning g(x) = 0 when the truth is
Y = 1 and π0 and π1 are the prior probabilities of Y = 0 and Y = 1 (Table 10.1).

Now that we have briefly described the two basic approaches, we outline the
structure of this section. In Sect. 12.8.1, we briefly describe a multinomial version
of the logistic model that may be used for more than K = 2 categories. We then
proceed to describe two methods for modeling p(X | y), linear and quadratic
discriminant analysis in Sect. 12.8.2 and kernel density estimation in Sect. 12.8.3.
The former is a parametric method based on normal distributions for the distribution
of X | y, and the latter is nonparametric. Turning to the approach of directly
modeling Y | x, we describe classification trees, bagging, and random forests in,
respectively, Sects. 12.8.4–12.8.6.

12.8.1 Logistic Models with K Classes

We describe extensions to logistic regression modeling when K > 2, and the
categories are nominal, that is, have no ordering. For K classes we may specify
the model in terms of K − 1 odds where, for simplicity, we assume univariate x:

Pr(Y = k | x)
Pr(Y = K − 1 | x) = exp(β0k + β1kx), (12.23)

to give

Pr(Y = k | x) = exp(β0k + β1kx)

1 +
∑K−2

l=0 exp(β0l + β1lx)
, k = 0, . . . ,K − 2,

(12.24)

with Pr(Y = K − 1 | x) = 1−∑K−2
k=0 Pr(Y = k | x) (Exercise 12.3). The use of

the last category as reference is arbitrary, and the particular category chosen makes
no difference for inference. If we do wish to interpret the parameters, then exp(β0k)
is the baseline probability of Y = k, relative to the probability of the final category,
Y = K − 1, so that we have a specific generalization of odds. The parameter
exp(β1k) is the odds ratio that gives the multiplicative change associated with a
one-unit increase in x in the odds of response k relative to the odds of response
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K− 1. We emphasize that in a classification (prediction) setting, we will often have
little interest in the model coefficients.

In terms of nonparametric modeling, one may model the collection of K − 1
logits as smooth functions, along with a multinomial likelihood. For example, a
simple model is of the form

log

[
Pr(Y = k | x)

Pr(Y = K − 1 | x)
]
= fk(x)

with smoothers (such as splines or local polynomials) fk(·), k = 0, . . . ,K − 2.
Yee and Wild (1996) describe how GAMs can be extended to this situation using
penalized spline models and also describe the extension to ordered classes.

12.8.2 Linear and Quadratic Discriminant Analysis

If we wish to follow the approach summarized in (12.21), then a key element is
clearly the specification of the distribution of the covariates for each of the different
classes. In this section we assume these distributions are multivariate normal.
In a slight change of notation from previous sections, we assume the dimensionality
of x is p. We begin by assuming that X | y = k ∼ Np(μk,Σ) so that the
p × p covariance matrix is common to all classes. The within-class distribution of
covariates is therefore

pk(x) = (2π)−p/2|Σ|−1/2 exp

[
−1

2
(x− μk)

TΣ−1(x− μk)

]
,

for k = 0, 1, . . . ,K − 1. From (12.21) we see that maximizing Pr(Y = k | x) over
k is equivalent to minimizing − logPr(Y = k | x), i.e., minimizing

(x− μk)
TΣ−1(x− μk)− 2 log πk, (12.25)

where the first term is the Mahalanobis distance (Malahanobis 1936) between x and
μk. If the prior is uniform over 0, 1, . . . ,K−1, then we pick the class that minimizes
the within-class sum of squares. Expanding the square in (12.25), it is clear that the
term xTΣ−1x, which depends on Σ and not k, can be ignored. Consequently, we
see that the above rule is equivalent to picking, for fixedx, the class k that minimizes

ak + xTbk (12.26)

where

ak = μT
kΣ

−1μk − 2 logπk

bk = −2Σ−1μk
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for k = 0, . . . ,K − 1. Hence, we have a set of K linear planes, and for any x, we
pick the class k whose plane at that x is a minimum. Said another way, we have a
decision boundary that is linear in x, and the method is therefore known as linear
discriminant analysis (LDA). The decision boundary between classes k and l, that
is, where Pr(Y = k | x) = Pr(Y = l | x) is linear in x and the regions in R

p

that are classified according to the different classes, 0, 1, . . . ,K − 1, are separated
by hyperplanes. An example of the linear boundaries, in the case of univariate x, is
given in Fig. 12.15.

The parameters of the normal distributions are, of course, unknown and may be
estimated from the training data via MLE:

π̂k =
nk

n
(12.27)

μ̂k =
1

nk

∑

i:yi=k

xi (12.28)

Σ̂ =
1

n−K

K−1∑

k=0

∑

i:yi=k

(xi − μ̂k)(xi − μ̂k)
T (12.29)

where nk is the number of observations with Y = k, k = 0, 1, . . . ,K − 1, and n =∑
k nk. To estimate πk from the data, as in (12.27), depends on a random sample

of observations having been taken. Otherwise, we might use prior information to
specify class probabilities.

We now relax the assumption that the covariance matrices are equal. In this case,
we pick k that minimizes

log |Σk|+ (x− μk)
TΣ−1

k (x− μk)− 2 log πk,

as shown by Smith (1947). Expanding the quadratic form gives a term xTΣ−1
k x

which cannot be ignored since the variance–covariance matrix depends on k; hence,
the method is known as quadratic discriminant analysis (QDA). Again, we need to
estimate the parameters, with the estimators for πk and μk corresponding to (12.27)
and (12.28) with

Σ̂k =
1

nk

∑

i:yi=k

(xi − μ̂k)(xi − μ̂k)
T

for k = 0, 1, . . . ,K − 1.
We now examine the connection between logistic regression and LDA in the case

of two classes, that is, K = 2. Under LDA we define the log odds function

L(x) = log

[
Pr(Y = 1 | x)
Pr(Y = 0 | x)

]

= log

(
π1

π0

)
− 1

2
(μ1 + μ0)

TΣ−1(μ1 − μ0)

︸ ︷︷ ︸
α0

+Σ−1(μ1 − μ0)
T

︸ ︷︷ ︸
α1

x,
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so that the function upon which classifications are based has the linear form α0 +
α1x. If the losses associated with the two types of errors are equal, then we assign
a case with covariates x to class Ŷ = 1 if L(x) > 0, see (12.22). Notice that x only
enter through the term Σ−1(μ1 − μ0)

T. Under (linear) logistic regression,

log

[
Pr(Y = 1 | x)
Pr(Y = 0 | x)

]
= β0 + β1x.

Consequently, the rules are both linear in x, but differ in the manner by which the
parameters are estimated. In general, we may factor the distribution of xi, yi in
two ways, which correspond to the two approaches to classification that we have
highlighted. Modeling the x distributions corresponds to the factorization

n∏

i=1

p(xi, yi) =

n∏

i=1

p(xi | yi)
n∏

i=1

p(yi).

For example, under LDA, it is assumed that p(xi | yi) is normal, and then∏n
i=1 p(xi, yi) is maximized with respect to the parameters of the normals. In

contrast, under linear logistic regression the factorization is

n∏

i=1

p(xi, yi) =

n∏

i=1

p(yi | xi)

n∏

i=1

p(xi),

and we maximize the first term, under the assumption of a linear logistic model,
while ignoring the second term. Logistic regression therefore leaves the marginal
distribution p(x) unspecified, and so the method is more nonparametric than LDA,
which is usually an advantage. Asymptotically, there is a 30% efficiency loss when
the data are truly multivariate normal but are analyzed via the logistic regression
formulation (Efron 1975).

The original derivation of LDA in Fisher (1936) was somewhat different to
the presentation given above and was carried out for K = 2. Specifically, a
linear combination aTx was sought that separated (or discriminated between) the
classes as much as possible to, “maximize the ratio of the difference between the
specific means to the standard deviations”, Fisher (1936, p. 466). This difference is
maximized by taking a ∝ Σ−1(μ1 − μ0)

T, an expression we have already seen,
see Exercise 12.4 for further detail.

Example: Bronchopulmonary Dysplasia

We return to the BPD example and classify individuals on the basis of their
birth weight using linear and quadratic logistic models, and linear and quadratic
discriminant analysis. We emphasize that these rules are relevant to the sampled
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Fig. 12.13 Logistic linear and quadratic fits to the BPD and birth weight data. The horizontal line
indicates p(x) = 0.5, and the two vertical lines correspond to the linear and quadratic logistic
decision rules

population of children for whom data were collected and not to the general
populations of newborn babies. This is important since this is far from a random
sample, and so the estimate of the probability of BPD (the outcome of interest) is
a serious overestimate. In general this example is illustrative of techniques rather
than substantively of interest, not least because of the lack of other covariates that
one would wish to base a classification rule upon (including medications used by
the mother).

Figure 12.13 shows the linear and quadratic logistic regression fits as a function
of x. The horizontal p(x) = 0.5 line is drawn in gray, and we see little difference
between the classification rules based on the two logistic models. The birth weight
thresholds below/above which individuals would be classified as BPD/not BPD, for
the linear and quadratic models, are 954 g and 926 g, respectively. The fitted curves
are quite different in the tails, however. In particular, we see that the quadratic curve
seems to move toward a nonzero probability for higher birth weights, a feature we
have seen in other analyses. For example, the penalized cubic splines and local
likelihood fits shown in Fig. 11.16 display this behavior. The similarity between
the classification rules, even though the models are quite different, illustrates that
prediction is a different enterprise to conventional modeling.

Turning to a discriminant analysis approach, Figures 12.14(a) and (b) display
normal QQ plots (Sect. 5.11.3) of the birth weights for the BPD = 0 and BPD = 1
groups, respectively. The babies with BPD in particular have birth weights which
do not appear normal.

The parameter estimates for LDA and QDA are

π̂0 = 0.66

μ̂0 = 1,287, μ̂1 = 953

Σ̂ = 76,309, Σ̂0 = 77,147, Σ̂1 = 74,677.
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Fig. 12.14 (a) Normal QQ plot of birth weights for the BPD=0 group, (b) normal QQ plot of
birth weights for the BPD=1 group

Crucially, we see that the variances within the two groups (not BPD/BPD) are very
similar so that we would expect LDA and QDA to give very similar answers in this
example. This is indeed the case as the linear and quadratic discriminant boundaries
are at birth weights of 970 and 972 g, respectively.

Figure 12.15 gives the lines that are proportional to −2 logPr(Y = k | x) for
k = 0, 1 (with x the birth weight here), that is the lines given by (12.26). The
crossover point gives the birth weight at which we switch from a classification of
Ŷ = 1 to a classification of Ŷ = 0. Figure 12.16 shows the fitted normals under the
model with differing variances.

There are only small differences in this example, because the within-class birth
weights are not too far from normal, the variances in each group are approximately
equal, and the sample sizes are relatively large.

12.8.3 Kernel Density Estimation and Classification

We now describe a nonparametric method for classification based on kernel density
estimation (Sect. 11.3.2). With estimated densities p̂k(x), the classification is

Pr(Y = k | x) = p̂k(x)× πk∑K−1
l=0 p̂l(x)× πl

.

When classification is the goal, then effort should be concentrated estimating
the class probabilities Pr(Y = k | x) accurately near the decision boundary.
As we saw in Sect. 11.3.2, the crucial aspect of kernel density estimation is an
appropriate choice of smoothing parameter with the form of the kernel being usually
unimportant.

Kernel density estimation is hard when the dimensionality p of x is large. The
naive Bayes method assumes that, given a class Y = l, the random variables
X1, . . . , Xp are independent to give joint distribution
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Fig. 12.15 Linear discriminant boundaries (12.26) for the two BPD groups with k = 0/1
representing no disease/disease, the rule is based on whichever of the two lines is lowest. The
vertical line is the decision boundary so that to the left of this line the classification is to disease
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pl(x) =

p∏

j=1

plj(xj). (12.30)

The naive Bayes method is clearly based on heroic assumptions but is also clearly
simple to apply since one need only compute p univariate kernel density estimates
for each class. An additional advantage of the method is that elements of x that
are discrete may be estimated using histograms, allowing the simple combination of
continuous and discrete variables. Taking the logit transform of (12.30), as described
in Sect. 12.8.1, we obtain

log

[
Pr(Y = l | x)

Pr(Y = K − 1 | x)
]
= log

[
πlpl(x)

πK−1pK−1(x)

]

= log

[
πl

∏p
j=1 plj(xj)

πK−1

∏p
j=1 pK−1,j(xj)

]

= log

[
πl

πK−1

]
+

p∑

j=1

log

[
plj(xj)

pl,K−1(xj)

]

= βl +

j∑

j=1

flj(xj)
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Fig. 12.16 For the BPD data, fitted normal distributions with different variances for each of the
two classes (i.e., Σ0 �= Σ1) and with areas proportional to π1 and π0 (for the left and right normals,
respectively); the dashed line represents the quadratic discrimination rule and corresponds to the
crossover point of the two densities. The dashes on the top and bottom axes represent the observed
birth weights for those babies with and without BPD

which has the form of a GAM (Sect. 12.2) and provides an alternative method of
estimation to kernel density estimation under the assumption of independence of
elements of x in different classes. The same form of decision rule arising via two
separate estimation approaches is similar to that seen when comparing LDA and
logistic regression.

Example: Bronchopulmonary Dysplasia

We illustrate the use of kernel density estimation in a one-dimensional setting using
the birth weight/BPD example. The choice of smoothing parameter λ is crucial, and
we present three different analyses based on different methods. We let λk represent
the smoothing parameter under classification k, k = 0, 1.

First, we use the optimal λk, given by (11.36), that arises under the assumption
that each of the densities is normal. This leads to estimates of λ̂0 = 108 and
λ̂1 = 122. Figure 12.17(a) shows the estimated densities for both classes. The
non-normality of birth weights for the k = 0 class, that was previously seen in
Fig. 12.14(a), is evident. The log ratio,

log

[
Pr(Y = 1 | x)
Pr(Y = 0 | x)

]
= log

[
p1(x)

p0(x)

]
+ log

[
π1

π0

]
,

is shown in panel (b) and gives a decision threshold of x = 1,162 g.
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Fig. 12.17 The left column shows kernel density estimates for the birth weights under the two
classes (with k = 0/1 corresponding to no BPD/BPD) and the right column the log of the ratio
Pr(Y = 1 | x)/Pr(Y = 0 | x) with the vertical line indicating the decision threshold. The
three rows correspond to choosing the smoothing parameters based on normality of the underlying
densities, cross-validation, and upon a plug-in method

We next use cross-validation to pick the smoothing parameters (as described in
Sect. 11.3.2). The resultant estimates are λ̂0 = 103 and λ̂1 = 28 with the resultant
density estimates plotted in Fig. 12.17c. The estimate for the disease group (k = 1)
is very unsatisfactory, though the decision boundary (as shown in Fig. 12.17(d)) is
very similar to the previous approach, with a threshold of x = 1,083 g.
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Finally, we use the plug-in method of Sheather and Jones (1991) to pick the
smoothing parameters, giving λ̂0 = 97 and λ̂1 = 59. The resultant density estimates
are plotted in Fig. 12.17(e). The birth weight threshold is x = 1,102 g under these
smoothing parameters with the log ratio, shown in Fig. 12.17(f), being more smooth
than the cross-validation version but less smooth than the normal version.

12.8.4 Classification Trees

In this section we consider how the regression trees described in Sect. 12.7 can
be used in a classification context. Classification and regression trees, or CART, has
become a generic term to describe the use of regression trees and classification trees.

In the classification setting, the criteria for splitting nodes needs refinement.
For regression, we used the residual sum of squares within each node as the
impurity measure Sj(T ), defined in (12.18). This measure was then used within the
cost complexity criterion, (12.19), to give a penalized sum of squares function to
minimize. A sum of squares is not suitable for classification, however (for a variety
of reasons, including the nonconstant variance aspect of discrete outcomes). In order
to define an impurity measure, we need to specify, for each of the J terminal nodes
(leaves), a probability distribution over the K outcomes. Node j represents a region
Rj with nj observations, and the obvious estimate of the probability of observing
class k at node j is

p̂jk =
1

nj

∑

i:xi∈Rj

I(yi = k),

which is simply the proportion of class k observations in node j, for k = 0, . . . ,
K − 1, j = 1, . . . , J . We may classify the observations in node j to class

k(j) = arg maxk p̂jk,

the majority class (Bayes rule) at node j. Given a set of classification probabilities,
we turn to defining a measure of impurity. In a regression setting, we wished to
find regions of the x space within which the response was relatively constant,
and the impurity measure in this setting was the residual sum of squares about
the mean of the terminal node in question. By analogy, we would like the leaves
in a classification setting to contain observations of the same class. An impurity
measure should therefore be 0 if all the probability at a node is concentrated on one
class, that is, if p̂jk = 1 for some k, and the measure should achieve a maximum
if the probability is spread uniformly across the classes, that is, if p̂jk = 1/K for
k = 0, . . . ,K − 1. Three different impurity measures are discussed by Hastie et al.
(2009, Sect. 9.2.3).
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The misclassification error of node j is the proportions of observations at node j
that are misclassified:

1

nj

∑

i:xi∈Rj

I[yi �= k(j)] = 1− p̂k(j),j .

The Gini index associated with node j is

∑

k �=k′
p̂jkp̂jk′ =

K−1∑

k=0

p̂jk(1− p̂jk).

The Gini index has an interesting interpretation. Instead of assigning observations
to the majority class at a node, we could assign to class k with probability p̂jk. With
such an assignment, the training error of the rule at the node is

K−1∑

k=0

Pr( Truth = k )× Pr( Classify �= k ) =

K−1∑

k=0

p̂jk(1− p̂jk),

which is the Gini index. It may be better to use this than the misclassification error
because it “has an element of look ahead” Ripley (1996, p. 327), that is, it considers
the error in a hypothetical training dataset. The final measure is the deviance, which
is just the negative log-likelihood of a multinomial:

−
K−1∑

k=0

p̂jk log p̂jk.

This measure is also known as the entropy.4 The deviance and Gini index are
differentiable and hence more amenable to numerical optimization.

For two classes, let pj be the proportion in the second class at node j, for j =
1, . . . , J . In this case, the misclassification error, Gini index, and deviance measures
are, respectively,

1−max(p̂j , 1− p̂j)

2p̂j(1− p̂j)

−p̂j log p̂j − (1− p̂j) log(1− p̂j)

The worst scenario is p̂ = 0.5 since we have a 50:50 split of the two classes in the
partition (and hence the greatest impurity). Figure 12.18 graphically compares the
three measures, with the deviance scaled to pass through the same apex point as
the other two measures.

4In statistical thermodynamics, the entropy of a system is the amount of uncertainty in that system,
with the maximum entropy being associated with a uniform distribution over the states.
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Fig. 12.18 Comparison of impurity measures for binary classification. The classes are labeled 0
and 1 and pj is the proportion in the second class (i.e., k = 1) at node j

12.8.5 Bagging

We previously noted in Sect. 12.7.1 that regression trees can be unstable, in the
sense that a small change in the learning data can induce a large change in the
prediction/classification. Classification trees can also produce poor results when
there exist heterogeneous terminal nodes, or highly correlated predictors.

Bootstrap aggregation or bagging (Breiman 1996) averages predictions over
bootstrap samples (Sect. 2.7) in order to overcome the instability. The intuition
is that idiosyncratic results produced by particular trees can be averaged away,
resulting in more stable estimation. Although bagging is often implemented with
regression or classification trees, it may be used with more general nonparametric
techniques. To demonstrate the variability in tree construction; Figs. 12.19(a)–(c)
show three pruned trees based on three bootstrap samples for the prostate cancer
data. The first splits in (a) and (b) are on log cancer volume but at very different
points, while in (c), the first split is on SVI. The variability across bootstrap samples
is apparent.

As usual, let [xi, yi], i = 1, . . . , n denote the data. The aim is to form a
prediction, f(x0) = E[Y | x0] at a covariate value x0. Bagging proceeds as
follows:

1. Construct B bootstrap samples

[x�
b ,y

�
b ] = {x�

bi, y
�
bi, i = 1, . . . , n},
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Fig. 12.19 Three pruned trees for the prostate cancer data, based on different bootstrap samples

for b = 1, . . . , B. The bootstrap samples are formed by resampling cases
(Sect. 2.7.2), that is, we sample with replacement from [xi, yi], i = 1, . . . , n.

2. If the outcome is continuous (in which case, we might use regression trees for
prediction), form the averaged prediction

f̂B(x0) =
1

B

B∑

b=1

f̂�
b (x0), (12.31)

where f̂�
b (x) is the prediction constructed from the b-th bootstrap sample

[x�
b ,y

�
b ], b = 1, . . . , B. If classification is the aim and regression trees are

constructed from the samples, one may take a majority vote over the B samples
in order to assign a class label.

If tree methods are used, there is evidence that pruning should not be carried out
(Bauer and Kohavi 1999). By not pruning, more complex models are fitted which
reduces bias, and since bagging averages over many models the variance can be
reduced also.
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We examine the continuous case in greater detail. Expression (12.31) is a

Monte Carlo estimate of the theoretical bagging estimate EP̂

[
f̂�

B (x0)
]

where the

expectation is with respect to sampling [x�,y�] from P̂, which is the empirical
distribution having probability 1/n at [xi,yi], i = 1, . . . , n.

We now examine the mean squared error in an idealized setting. Let P be the
population from which [yi,xi], i = 1, . . . , n are drawn. For analytical simplicity,
suppose we can draw bootstrap samples from the population rather than the
observed data. Let f̂�(x0) be a prediction at x0, based on a sample from P, and

fAGG(x0) = EP

[
f̂�(x0)

]

be the ideal bagging estimate which averages the estimator over samples from the
population.

We consider a decomposition of the MSE of the prediction, in a regression
setting, based on the single sample estimator, f̂�(x0), only:

EP

{[
Y − f̂�(x0)

]2}
= EP

{[
Y − fAGG(x0) + fAGG(x0)− f̂�(x0)

]2}

= EP

{
[Y − fAGG(x0)]

2
}
+ EP

{[
f̂�(x0)− fAGG(x0)

]2}

+2EP {[Y − fAGG(x0)]}EP

{[
f̂�(x0)− fAGG(x0)

]}

= EP

{
[Y − fAGG(x0)]

2
}
+ EP

{[
f̂�(x0)− fAGG(x0)

]2}

(12.32)

≥ EP

{
[Y − fAGG(x0)]

2
}
.

Hence, the MSE of idealized population averaging (which is the expression in the
last line) never increases the MSE of an estimate from a single prediction. The
second term in (12.33) is the variability of the estimator f̂�(x0) about its average.
The above decomposition is relevant to a regression setting but is not valid for
classification (0–1 loss), and bagging a bad classifier can make it even worse.

Bagging is an example of an ensemble learning method; another such method
that we have already encountered is Bayesian model averaging (Sect. 3.6). The
bagged estimate (12.31) will differ (in expectation) from the original estimate
f̂(x0), only when f̂(x0) is a nonlinear function of the data. So, for example, bagged
prediction estimates from spline and local polynomial models that produce linear
smoothers will be the same as those from fitting a single model using the complete
data.

The original motivation for bagging (Breiman 1996) was to reduce variance.
However, bagging can also reduce (or increase!) bias (Bühlmann and Yu 2002). Bias
may be reduced if the true function is smoothly varying and tree models are used
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(since the averaging of step functions will produce smoothing). If the true function
is “jaggedy,” bias can be introduced through averaging. As just noted, bagging was
originally designed to reduce variance and works well in examples in which the
data are “unstable,” that is, in situations in which small changes in the data can
cause large changes in the prediction. We give an example of a scenario in which
bagging can increase the variance. Suppose there is an outlying point (in x space).
This point may stabilize the fit when the model is fitted to the complete data, and
if it is left out of a particular bootstrap sample, the fitted values may be much more
variable for this sample.

To bag a tree-based classifier, we first grow a classification tree for each of
the B bootstrap samples. Recall, we may have two different aims: reporting a
classification or reporting a probability distribution over classes. Suppose we require
a classification. The bagged estimate f̂B(x) is the K-vector: [ p̂0(x), . . . , p̂K−1(x) ]
where p̂k(x) is the proportion of the B trees that predict class k, k = 0, 1, . . . ,K−1.
The classification is the k that maximizes pk(x), that is, the Bayes rule. If we
require the class-probability estimates, then we average the underlying functions
that produce the classifications gb(x). We should not average the classifications. To
illustrate why, consider a two class case. Each bootstrap sample may predict the 0
class with probability 0.51, and hence the classifier for each would be Ŷ = 0, but
we would not want to report the class probabilities as (1,0).

The simple interpretation of trees is lost through bagging, since a bagged tree is
not a tree. For each tree, one may evaluate the test error on the “left-out” samples
(i.e., those not selected in the bootstrap sample). On average, around 1/3 of the data
do not appear in each bootstrap sample. These data are referred to as the “out-of-
bag” (oob) estimate. These test estimates may be combined, removing the need for
a test dataset.

Bagging takes the algorithmic approach to classification to another level beyond
tree-based methods and was important historically as it was an intermittent step
toward various other methods including random forests, which we describe next.

12.8.6 Random Forests

Random forests (Breiman 2001a) are a very popular and easily implemented
technique that build on bagging by reducing the correlation between the multiple
trees that are fitted to bootstrap samples of the data.

The random forest algorithm is as follows:

1. B bootstrap samples of size n are drawn, with replacement, from the original
data.

2. Suppose there are p covariates, a number m 
 p is specified, and at each node
m variables are selected at random from the p available. The best split from these
m is used to split the node.

3. Each tree is grown to be large, with no pruning. We emphasize that a different
set of m covariates is selected at each split so the input variables are changing
within each tree.
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Once this process is completed, the output is a collection of B trees. As with
bagging, in a regression context, the prediction may be taken to be the average of the
fits, as in (12.31), while in a classification context the majority vote may be taken.

There are two conflicting aims when we consider the size of m. Increasing the
correlation between any two trees in the forest increases the forest error rate, but the
forest error rate decreases as the strength of each individual tree increases. Reducing
m reduces both the correlation and the strength, while increasing m increases both.
We heuristically explain why reducing the correlation between predictions leads to a
lowering of the forest error rate. Suppose we wish to estimate a prediction at a value
x0 using an average of B predictions. Let f̂AVE(x0) =

1
B

∑B
b=1 f̂b(x0) and suppose

that the predictions each have variance σ2 and pairwise correlations ρ. Then it is
straightforward to show that the variance of the average is

var(f̂AVE(x0)) =
(1− ρ)

B
σ2 + ρσ2.

The first term decreases to zero as the number of predictor functions increases, while
the second term is a function of the dependence between the functions. Hence, the
closer the predictor functions are to independence, the lower the variance.

As with bagging, when the training set (i.e., the bootstrap sample) for the current
tree is drawn by sampling with replacement, about 1/3 is left out of the sample, and
these form the oob (Sect. 12.8.5). These set aside data are used to get a running
unbiased estimate of the classification error, as trees are added to the forest. An
example of such a plot is given in Fig. 12.20. A typical recommended value for m
is the integer part of

√
p in a classification setting, and the integer part of p/3 for

regression (Hastie et al. 2009, Sect. 15.3) though these values should not be taken
as written in stone, and some experimentation should be performed.

The concept of only taking a subset of variables seems totally alien statistically,
since information is reduced, but the vital observation is that this produces classifiers
that are close to being uncorrelated. This is a key difference with bagging, with
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Fig. 12.21 Random forest variable importance for one split of the outcome after head injury data.
The left panel shows the decrease in predictive ability (as measured by the misclassification error)
when the variable is permuted and the right panel the decrease in the Gini index when the variable
is not included in the classification

which the random forests method shares many similarities. By injecting randomness
into the algorithm, through the random selection of covariates at each split, the
constituent trees are more independent. Selecting a random set of m covariates also
allows random forests to cope with the situation in which there are more covariates
than observations (i.e., n < p).

As we have noted, random forests lose the relatively simple interpretation of tree-
based methods. Although prediction is the objective of random forests, it may still
often be of interest to see which of the variables are making contributions to the
overall prediction (averaged over trees). If one is interested in gaining this insight
into which predictors are performing well, then two measures of variable importance
are popular. One approach is to obtain the decrease in the fitting measure each time
a particular variable is used. The average of this decrease over all trees can then be
calculated with important variables having large decreases. For regression the fitting
measure is the residual sum of squares, and for classification it is often the Gini
index (Sect. 12.7). The right panel of Fig. 12.21 shows this average. This measure
seems intuitively reasonable, but, as discussed by Berk (2008, Sect. 5.6.1), it has a
number of drawbacks. First, reductions in the fitting criteria do not immediately
translate into improvements in prediction. Second, the decreases are calculated
using the data that were used to build the model and not from test data. Finally, there
is no absolute scale on which to judge reductions. As an alternative, one may, for
each predictor, calculate the error rate using a random permutation of the predictor.
The difference between the two is then averaged over trees. This second approach
is more akin to setting a coefficient to zero in a regression model and then assessing
the reduction in predictive power (say in a test dataset). The importance of each
variable is assessed by creating trees using random permutations of the values of
the variable, rather than the variable itself. The predictive power is then assessed
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using the “true” variable in the oob data compared to the permuted version. We give
more detail in a classification setting and assuming we measure the predictive power
in terms of the misclassification error rate. Suppose that, for the bth tree, this rate is
vb when using all of the true variables and is vbj when the jth variable is shuffled.
Then, the change in the predictive power is summarized as

1

B

B∑

b=1

(vbj − vb). (12.33)

Note that if the variable is not useful predictively, then this measure might by chance
be negative. The left panel of Fig. 12.21 shows the decrease in predictive power for
each of four variables.

Example: Outcome After Head Injury

We now compare classification methods on the head injury data described in
Sect. 7.2.1. The binary response is outcome after head injury (dead/alive), and
there are four discrete covariates: pupils (good/poor), coma score (depth of coma,
low/high), hematoma present (no/yes), and age (categorized as 1–25, 26–54, ≥ 55).
We found in Sect. 7.6.4 that these data are explained by relatively simple models.
For example, a model with all main effects and three two-way interactions H.P,
H.A, P.A had a deviance of 13.6 on 13 degrees of freedom which indicates a good
fit. The main effects only model has a deviance of 34.1 on 18 degrees of freedom
and an associated p-value of 1.2% so although not a good fit, it is not terrible either.

The approaches to prediction we compare are the null model, main effects only
model, subset selection over all models using AIC and BIC, unrestricted subset
selection using AIC and BIC, classification trees, bagging trees, and random forests.
We looked at two versions of AIC and BIC with one enforcing the hierarchy
principle and the other not. The random forest method used two variables to split on
at each node. In this example there are just four covariates, and the discrete nature of
these covariates (each with few levels) and the good fit of simple models indicates
that we would not expect to see great advantages in using tree-based methods.

We split the data into training and test datasets consisting of 70% and 30% of
the data, respectively. Each of the methods was ran 100 times for different splits of
the data and then the misclassification rates were recorded, along with the standard
deviations of these rates. The results are given in Table 12.1. The striking aspect
of this table is the lack of a clear winner; apart from the null model, all methods
perform essentially equally.

Figure 12.20 shows the oob error rate as a function of the number of trees. We see
that the error rate stabilizes at around 300 trees. Figure 12.21 shows two measures
of the variable importance from one particular split of the data (i.e., one out of 100).
For this split, coma is the most important variable for classification, with hematoma
the least important. These importance measures are in line with the summaries from
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Table 12.1 Average test errors over 100 train/test splits of the outcome after head injury data,
along with the standard deviation over these splits

Null Main AIC 1 BIC 1 AIC 2 BIC 2 Tree Bagging Ran For

Mean 50.5 26.1 26.1 25.8 26.1 25.9 25.4 25.7 25.6
SD 2.8 2.2 2.1 2.3 2.0 2.4 2.2 2.3 2.2

AIC 1 and BIC 1 enforce the hierarchy principle, while AIC 2 and BIC 2 do not

Table 12.2 Parameter
estimates, standard errors,
and p-values for the main
effects only model and one
split of the outcome after
head injury data

Estimate Std. Err. p-value

Haem 0.169 0.194 0.386
Pup 1.26 0.192 <0.0001

Coma −1.60 0.198 <0.0001

Age 1 0.724 0.209 0.00054
Age 2 2.36 0.303 <0.0001

the main effects only model presented in Table 12.2. The left-hand panel shows that
replacing the coma score with a permuted version leads to, on average, an increase
in the predictive error rate, as measured by (12.33), of around 10%. In contrast,
replacing the hematoma variable with a permuted variable actually gives a slight
decrease, indicating that this variable is not useful for forecasting the outcome status
(dead/alive) of a child.

This example is not typical of classification problems since the number of
predictors is so small, Exercise 12.2 describes a setting that is more usual.

12.9 Concluding Comments

In this chapter we have discussed various nonparametric methods for prediction
and classification. For exploration and description it is clear that the GAM models
described in Sect. 12.2 are very useful. Formal inference requires more care since,
as we have seen repeatedly, the appropriateness of inference depends critically
on smoothing parameter choice. The potential loss of efficiency as compared to
a parametric approach should also be borne in mind.

Classification is a huge topic, and the surface has only been scratched here
with a focus on model-based, as opposed to algorithm-based, techniques. Bagging
and random forests have been included, however, to provide a hint of the algo-
rithmic approaches that are available. Neural networks (Ripley 1996; Neal 1996),
boosting (Freund and Schapire 1997; Friedman et al. 2000), and support vector
machines (Vapnick 1996) are three popular classification techniques which have
not been discussed. For a very interesting exposition on the algorithmic approach
to regression, see Breiman (2001b) and the accompanying discussion. We have
not considered large datasets in this chapter and in particular have only briefly
discussed the situation in which the sample size is small relative to the number
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of available predictors (the “small n, large p problem”). If prediction is the sole
aim, then ensemble methods such as bagging, random forests, and Bayesian model
averaging have been shown to be very powerful.

This chapter has almost exclusively considered frequentist approaches to predic-
tion and classification (apart from the mixed model approach to fitting GAMs). We
briefly mention some Bayesian approaches. The book-length treatment of Denison
et al. (2002) describes Bayesian analogs of a number of the techniques that we have
discussed including spline and classification models. Bayesian CART models are
described in Chipman et al. (1998). Gaussian process models are an important topic
that are considered by Rasmussen and Williams (2006).

12.10 Bibliographic Notes

An influential early work on GAMs is the book-length treatment of Hastie and
Tibshirani (1990). Wood (2006) is an excellent mix of the theory and practice of
using GAMs, with an emphasis on thin plate regression splines. Ruppert et al. (2003)
also consider GAMs from a mixed model standpoint. Natural thin plate splines are
described in Wabha (1990) and Green and Silverman (1994, Chap. 7).

Early references to tree-based strategies include Morgan and Sonquist (1963),
Morgan and Messenger (1973), and Friedman (1979). Approaches based on trees
were expanded and popularized in Breiman et al. (1984). Ripley (1996), Izenman
(2008), and Berk (2008) describe machine learning techniques from a statistical
perspective. Hastie et al. (2009) is a broad and in-depth treatment.

12.11 Exercises

12.1 For model (12.12), form and graphically display (via perspective plots) the
16 tensor product bases functions with L1 = L2 = 2, ξ11 = ξ21 = 1/3,
ξ12 = ξ22 = 2/3.

12.2 For the ethanol data in the R package SemiPar, fit a tensor product cubic
spline model.

12.3 Show that (12.24) follows from (12.23).
12.4 The background to this question on discriminant analysis can be found in

Sect. 12.8.2. Suppose that under the two classes, X0 ∼ Np(μ0,Σ) and,
independently, X1 ∼ Np(μ1,Σ). Consider the statistic

{E[aTX0]− E[aTX1]}2
var(aTX0 − aTX1)
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as a function of the p× 1 vector a. Show that a ∝ Σ−1(μ0 −μ1) maximizes
the statistic, using a Lagrange multiplier approach. Explain why this result
provides one justification for the use of linear discriminant analysis.

12.5 In this question, the famous iris data analyzed in Fisher (1936) will be
considered. These data may be found at the book website and contain three
classes of iris (Setosa, Versicolour, and Virginica) and four covariates (sepal
length, sepal width, petal length, and petal width) all measured in cm.

(a) Based on the full data for Setosa and Versicolour only, build classifiers
based on the approaches listed below. In each case, explain carefully how
you implemented the approach, and provide graphical summaries of the
output.

(1) Linear discriminant analysis.
(2) Quadratic discriminant analysis.
(3) Linear logistic regression.
(4) Classification trees.
(5) Bagging.
(6) Random forests.

(b) Repeat the previous part for the data on all three classes of iris.

12.6 At the book website of Hastie et al. (2009), you will find data that have
been extensively used to test binary classification methods. The data concern
4601 emails, and the aim is to predict which are spam, in order to filter out
such emails. There are 1813 spam messages and 57 potential predictors that
concern the content of the emails. The data have been split into a training
set of 3065 emails, with 1536 remaining for testing the models. Following
Hastie et al. (2009), analyze these data using linear logistic regression, a GAM
with splines having fixed degrees of freedom equal to 3 for each smoother,
classification trees, bagging, and random forests. Summarize your findings
based on the test error.
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Appendix A
Differentiation of Matrix Expressions

For univariate x and f : R → R we write the derivative as

df

dx
.

We define

∂

∂x
=

⎡

⎢⎢⎣

∂
∂x1

...
∂

∂xp

⎤

⎥⎥⎦

to be differentiation with respect to elements of a vector x = [x1, . . . , xp]
T. Let a

and x represent p× 1 vectors, then

∂

∂x
(aTx) = a =

∂

∂x
(xTa), (A.1)

the second equality arising because aTx = xTa. Also

∂

∂xT
(aTx) =

[
∂

∂x
(aTx)

]T

= aT =
∂

∂xT
(xTa). (A.2)

Suppose u = u(x) is an r × 1 vector and x is p× 1. Then

∂uT

∂x

is a matrix of order p× r with (i, j)th element

∂uj

∂xi
, i = 1, . . . , p, j = 1, . . . , r.

J. Wakefield, Bayesian and Frequentist Regression Methods, Springer Series
in Statistics, DOI 10.1007/978-1-4419-0925-1 13,
© Springer Science+Business Media New York 2013

649



650 A Differentiation of Matrix Expressions

The transpose (
∂uT

∂x

)T

=
∂u

∂xT

is a matrix of order r × p with (j, k)th element

∂uj

∂xk
, j = 1, . . . , r, k = 1, . . . , p.

For example,
∂x

∂xT
=

∂xT

∂x
= Ip,

the p× p identity matrix.
Consider the matrix A of dimension p× p. If A is not a function of x:

∂

∂xT
(Ax) = A

∂x

∂xT
= A

and
∂

∂xT
(xTA) =

∂xT

∂x
A = A.

If u = u(x) then
∂

∂xT
(Au) = A

∂u

∂xT
,

and
∂

∂xT
(uTA) =

∂uT

∂x
A.

Let u = u(x) and v = v(x) be p × 1 vectors. Then the derivative of the inner
product uTv is

∂

∂x
(uTv) =

∂uT

∂x
v +

∂vT

∂x
u.

If A is again a p× p matrix then

∂

∂x
(uTAu) =

∂uT

∂x
Au+

∂vT

∂x
ATu.

If A is symmetric

∂

∂x
(uTAu) = 2

∂uT

∂x
Au.

In particular, for a quadratic form

∂

∂x
(xTAx) = 2Ax. (A.3)
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Let f : R → R then
∂f

∂x

is p× 1 and
∂

∂x

∂f

∂xT
=

∂2f

∂x∂xT

is a p× p matrix with elements

∂2f

∂xi∂xj
, i = 1, . . . , p, j = 1, . . . , p.

For example, with p = 2:

∂

∂x

∂f

∂xT
=

⎡

⎣
∂

∂x1

(
∂f
∂x1

∂f
∂x2

)

∂
∂x2

(
∂f
∂x1

∂f
∂x2

)

⎤

⎦ =

[
∂2f
∂x2

1

∂2f
∂x1∂x2

∂2f
∂x2∂x1

∂2f
∂x2

2

]
.

For a non-singular p× p matrix A, whose elements are functions of x, we have

∂A−1

∂x
= −A−1 ∂A

∂x
A−1.

Also,
∂

∂x
log |A | = tr

(
A−1 ∂A

∂x

)
.

The trace of a p× p square matrix is

tr(A) =

p∑

i=1

aii.
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Appendix B
Matrix Results

We begin with two properties of determinants:

det(ATA) = det(AT)det(A) = det(A)2 (B.1)

and ∣∣∣∣
T U

V W

∣∣∣∣ =| T || W − V T−1U | . (B.2)

Let A be an n× n non-singular matrix, which we express as

[
A11 A12

A21 A22

]
,

where A11 is k × k and A12 is k × (n− k). The inverse B = A−1 has elements

B11 = (A11 −A12A
−1
22 A21)

−1

B22 = (A22 −A21A
−1
11 A12)

−1

B12 = −A−1
11 A12B22

B21 = −A−1
22 A21B11.

For matrices A, B and C of the appropriate dimensions:

(A+BCBT)−1 = A−1 −A−1B(BTA−1B +C−1)−1BTA−1. (B.3)

We now describe how the expectation, variance and covariance operators deal with
vectors of random variables.
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Suppose U is an n × 1 vector of random variables, and A is an m × n matrix.
Then

E[AU ] = A E[U ]

var(AU) = A var(U)AT.

Suppose V is an m × 1 vector of random variables. Then cov(U ,V ) = C is an
n×m matrix with (i, j)th element cov(Ui, Vj), i = 1, . . . , n, j = 1, . . . ,m. Hence,
cov(V ,U) = CT. In addition,

cov(U ,AU) = cov(U)AT

cov(AU ,U) = A cov(U).

The iterated expectation and covariance formulas are given by:

E[Y ] = EX [EY | X(Y | X)]

cov(Y ,Z) = EX [covY ,Z | X(Y ,Z | X)] + covX [EY | X(Y |X),EZ | X(Z |X)] .

Suppose Z is an n × 1 random variable with E[Z] = μ, var(Z) = Σ and A is
a symmetric n× n matrix. Then

E[ZTAZ] = tr(AΣ) + μTAμ. (B.4)

See Schott (1997, p. 391) for a proof.



Appendix C
Some Linear Algebra

Bases

Definition. Let S be a collection of m× 1 vectors satisfying the following:

1. If x1 ∈ S and x2 ∈ S, then x1 + x2 ∈ S.
2. If x ∈ S, and α is any real scalar, then αx ∈ S.

Then S is called a vector space in m-dimensional space.

Definition. Let {x1, . . . ,xn} be a set of m × 1 vectors in the vector space S. If
each vector in S can be expressed as a linear combination of x1, . . . ,xn then the
set {x1, . . . ,xn} is said to span S.

Definition. Let {x1, . . . ,xn} be a set of m × 1 vectors in the vector space S.
This set is called a basis if it spans S and if the vectors x1, . . . ,xn are linearly
independent.
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Appendix D
Probability Distributions and Generating
Functions

Continuous Distributions

Multivariate Normal Distribution

The p-dimensional random variable X = [X1, . . . , Xp]
T has a normal distribution,

denoted Np(μ,Σ), with mean μ = [μ1, . . . , μp]
T and p × p variance–covariance

matrix Σ if its density is of the form

p(x) = (2π)−p/2 | Σ |−1/2 × exp

[
−1

2
(x− μ)TΣ−1(x− μ)

]
,

for x ∈ R
p, μ ∈ R

p and non-singular Σ.

Summaries:

E[X] = μ

mode(X) = μ

var(X) = Σ.

Suppose
[
X1

X2

]
∼ Np

([
μ1

μ2

]
,

[
V11 V12

V21 V22

])

where:

• X1 and μ1 are r × 1,
• X2 and μ2 are (p− r) × 1,
• V11 is r × r,
• V12 is r × (p− r), V21 is (p− r) × r,
• V22 is (p− r) × (p− r).
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Then the marginal distribution of X1 is

X1 ∼ Nr(μ1,V11)

and the conditional distribution X1 | X2 = x2 is

X1 | X2 = x2 ∼ Nr

[
μ1 + V12V

−1
22 (x2 − μ2),W11

]
, (D.1)

where W11 = V11 − V12V
−1
22 V21.

Suppose

Yj | μj , σ
2
j ∼ N(μj , σ

2
j ),

for j = 1, . . . , J , with Y1, . . . , YJ independent. Then, if a1, . . . , aJ represent
constants,

Z =

J∑

j=1

ajYj ∼ N

⎛

⎝
J∑

j=1

ajμj ,

J∑

j=1

a2jσ
2
j

⎞

⎠ . (D.2)

If Y is a p× 1 vector of random variables whose distribution is N(μ,Σ) and A is
an r × p matrix of constants, then

AY ∼ N(Aμ,AΣAT). (D.3)

Beta Distribution

The random variable X follows a beta distribution, denoted Be(a, b), if its density
has the form:

p(x) = B(a, b)−1xa−1(1− x)b−1,

for 0 < x < 1 and a, b > 0 and where

B(a, b) =
Γ (a)Γ (b)

Γ (a+ b)
=

∫ 1

0

za−1(1− z)b−1 dz (D.4)

is the beta function.

Summaries:

E[X ] =
a

a+ b

mode(X) =
a− 1

a+ b− 2
for a, b > 1

var(X) =
ab

(a+ b)2(a+ b+ 1)
.
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Gamma Distribution

The random variable X follows a gamma distribution, denoted Ga(a, b), if its
density is of the form

p(x) =
ba

Γ (a)
xa−1 exp(−bx),

for x > 0 and a, b > 0.

Summaries:

E[X ] =
a

b

mode(X) =
a− 1

b
for a ≥ 1

var(X) =
a

b2
.

A χ2
k random variable with degrees of freedom k corresponds to the Ga(k/2, 1/2)

distribution.

Inverse Gamma Distribution

The random variableX follows an inverse gamma distribution, denoted InvGa(a, b),
if its density is of the form

p(x) =
ba

Γ (a)
x−(a+1) exp(−b/x),

for x > 0 and a, b > 0.

Summaries:

E[X ] =
b

a− 1
for a > 1

mode(X) =
b

a+ 1

var(X) =
b2

(a− 1)2(a− 2)
for a > 2.

If Y is Ga(a, b) then X = Y −1 is InvGa(a, b).
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Lognormal Distribution

The random variable X follows a (univariate) lognormal distribution, denoted
LogNorm(μ, σ2), if its density is of the form

p(x) = (2πσ2)−1/2 1

x
exp

[
− 1

2σ2
(log x− μ)2

]
,

for x > 0 and μ ∈ R, σ > 0.

Summaries:

E[X ] = exp(μ+ σ2/2)

mode(X) = exp(μ− σ2)

var(X) = E[X ]2
[
exp(σ2)− 1

]
.

If Y is N(μ, σ2) then X = exp(Y ) is LogNorm(μ, σ2).

Laplacian Distribution

The random variable X follows a Laplacian distribution, denoted Lap(μ, φ), if its
density is of the form

p(x) =
1

2φ
exp(− | x− μ | /φ),

for x ∈ R, μ ∈ R and φ > 0.

Summaries:

E[X ] = μ

mode(X) = μ

var(X) = 2φ2.

Multivariate t Distribution

The p-dimensional random variable X = [X1, . . . , Xp]
T has a (Student’s) t

distribution with d degrees of freedom, location μ = [μ1, . . . , μp]
T and p × p scale

matrix Σ, denoted Tp(μ,Σ, d), if its density is of the form



D Probability Distributions and Generating Functions 661

p(x) =
Γ [(d+ p)/2]

Γ (d/2)(dπ)p/2
|Σ|−1/2

[
1 +

(x− μ)TΣ−1(x− μ)

d

]−(d+p)/2

,

for x ∈ R
p, μ ∈ R

p, non-singular Σ and d > 0.

Summaries:

E[X] = μ for d > 1

mode(X) = μ

var(X) =
d

d− 2
×Σ for d > 2.

The margins of a multivariate t distribution also follow t distributions. For example,
if X = [X1,X2]

T where X1 is r × 1 and X2 is (p − r) × 1, then the marginal
distribution is

X1 ∼ Tr(μ1,V11, d),

where μ1 is r × 1 and V11 is r × r.

F Distribution

The random variable X follows an F distribution, denoted F(a, b), if its density is
of the form

p(x) =
aa/2bb/2

B(a/2, b/2)
xa/2−1

(b+ ax)(a+b)/2
,

for x > 0, with degrees of freedom a, b > 0 and where B(·, ·) is the beta function,
as defined in (D.4).

Summaries:

E[X ] =
b

b− 2
for b > 2

mode(X) =
a− 2

a

b

b+ 2
for a > 2

var(X) =
2b2(a+ b− 2)

a(b− 2)2(b− 4)
for b > 4.
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Wishart Distribution

The p× p random matrix X follows a Wishart distribution, denoted Wishp(r,S), if
its probability density function is of the form

p(x) =
| x |(r−p−1)/2

2rp/2Γp(r/2) | S |r/2 exp

[
−1

2
tr(xS−1)

]
,

for x positive definite, S positive definite and r > p− 1 and where

Γp(r/2) = πp(p−1)/4

p∏

j=1

Γ [(r + 1− j)/2]

is the generalized gamma function.

Summaries:

E[X] = rS

mode(X) = (r − p− 1)S for r > p+ 1

var(Xij) = r(S2
ij + SiiSjj) for i, j = 1, . . . , p.

Marginally, the diagonal elements Xii have distribution Ga[r/2, 1/(2Sii)], i =
1, . . . , p.

Taking p = 1 yields

p(x) =
(2S)−r/2

Γ (r/2)
xr/2−1 exp(−x/2S),

for x > 0 and S, r > 0, i.e. a Ga[r/2, 1/(2S)] distribution, revealing that the
Wishart distribution is a multivariate version of the gamma distribution.

Inverse Wishart Distribution

The p × p random matrix X follows an inverse Wishart distribution, denoted
InvWishp(r,S), if its probability density function is of the form

p(x) =
|x|−(r+p+1)/2

2rp/2Γp(r/2) | S |r/2 exp

[
−1

2
tr(x−1S)

]
,

for x positive definite, S positive definite and r > p− 1.
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Summaries:

E[X] =
S−1

r − p− 1
for r > p+ 1

mode(X) =
S−1

r + p+ 1

var(Xij) =
(r − p+ 1)S−2

ij + (r − p− 1)S−1
ii S−1

jj

(r − p)(r − p− 1)2(r − p− 3)
for i, j = 1, . . . , p.

If p = 1 we recover the inverse gamma distribution InvGa[r/2, 1/(2S)] with

E[X ] =
1

S(r − 2)
for r > 2

mode(X) =
1

S(r + 2)

var(X) =
1

S2(r − 2)(r − 4)
for r > 4.

If Y ∼ Wishp(r,S), the distribution of X = Y −1 is InvWishp(r,S).

Discrete Distributions

Binomial Distribution

The random variable X has a binomial distribution, denoted Binomial(n, p), if its
distribution is of the form

Pr(X = x) =

(
n

x

)
px(1− p)n−x,

for x = 0, 1, . . . , n and 0 < p < 1.

Summaries:

E[X ] = np

var(X) = np(1− p).



664 D Probability Distributions and Generating Functions

Poisson Distribution

The random variable X has a Poisson distribution, denoted Poisson(μ), if its
distribution is of the form

Pr(X = x) =
exp(−μ)μx

x!
,

for μ > 0 and x = 0, 1, 2, . . . .

Summaries:

E[X ] = μ

var(X) = μ.

Negative Binomial Distribution

The random variable X has a negative binomial distribution, denoted NegBin(μ, b),
if its distribution is of the form

Pr(X = x) =
Γ (x+ b)

Γ (x+ 1)Γ (b)

(
μ

μ+ b

)x(
b

μ+ b

)b

,

for μ > 0, b > 0 and x = 0, 1, 2, . . .

Summaries:

E[X ] = μ

var(X) = μ+ μ2/b.

The negative binomial distribution arises as a gamma mixture of a Poisson random
variable. Specifically, if X | μ, δ ∼ Poisson(μδ) and δ | b ∼ Ga(b, b), then X |
μ, b ∼ NegBin(μ, b).

We link the above description, motivated by a random effects argument, with
the more familiar derivation in which the negative binomial arises as the number
of failures seen before we observe b successes from independent trials, each with
success probability p = μ/(μ+ b). The probability distribution is

Pr(X = x) =

(
x+ b− 1

x

)
px(1− p)b,

for 0 < p < 1, b > 0 an integer, and x = 0, 1, 2, . . .
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Summaries:

E[X ] =
pb

1− p

var(X) =
pb

(1− p)2
.

Generating Functions

The moment generating function of a random variable Y is defined as MY (t) =
E[exp(tY )], for t ∈ R, whenever this expectation exists. We state three important
and useful properties of moment generating functions:

1. If two distributions have the same moment generating functions then they are
identical at almost all points.

2. Using a series expansion:

exp(tY ) = 1 + tY +
t2Y 2

2!
+

t3Y 3

3!
+ . . .

so that

MY (t) = 1 + tm1 +
t2m2

2!
+

t3m3

3!
+ . . .

where mi is the ith moment. Hence,

E[Y i] = M
(i)
Y (0) =

diMY

dtn

∣∣∣∣
t=0

.

3. If Y1, . . . , Yn are a sequence of independent random variables and S =∑n
i=1 aiYi, with ai constant, then the moment generating function of S is

MS(t) =
n∏

i=1

MYi(ait).

The cumulant generating function of a random variable Y is defined as

CY (t) = logE[exp(tY )]

for t ∈ R.
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Appendix E
Functions of Normal Random Variables

If Yj ∼ N(0, 1), j = 1, . . . , J , with Y1, . . . , YJ independent, then

Z =

J∑

j=1

Y 2
j ∼ χ2

J , (E.1)

a chi-squared distribution with J degrees of freedom and E[Z] = J, var(Z) = 2J .
If X ∼ N(0, 1), Y ∼ χ2

d, with X and Y independent, then

X

(Y/d)1/2
∼ T(0, 1, d), (E.2)

a Student’s t distribution with d degrees of freedom.
If U ∼ χ2

J and V ∼ χ2
K , with U and V independent, then

U/J

V/K
∼ F(J,K), (E.3)

the F distribution with J,K degrees of freedom.
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Appendix F
Some Results from Classical Statistics

In this section we provide some definitions and state some theorems (without
proof) from classical statistics. More details can be found in Schervish (1995). Let
y = [y1, . . . , yn]

T be a random sample from p(y | θ).

Definition. The statistic T (Y ) is sufficient for θ within a family of probability
distributions p(y | θ) if p(y | T (y)) does not depend upon θ.

Theorem. The Fisher–Neyman factorization theorem states that T (Y ) is sufficient
for θ if and only if

p(y | θ) = g[T (y) | θ]× h(y).

Intuitively, all of the information in the sample with respect to θ is contained in
T (Y ).

Definition. The statistic T (Y ) is minimal sufficient for θ within a family of
probability distributions p(y | θ) if no further reduction from T is possible while
retaining sufficiency.

Theorem. The Lehmann–Scheffé theorem states that if T (Y ) satisfies the following
property: for every pair of sample points y, z the ratio p(y | θ)/p(z | θ) is free of
θ if and only if T (y) = T (z), then T is minimal sufficient.

Example. Let Y1, . . . , Yn be independent and identically distributed from the one-
parameter exponential family of distributions:

p(y | θ) = exp[θT (y)− b(θ) + c(y)]

for functions b(·) and c(·). Then
∑n

i=1 T (Yi) is sufficient for θ by the factorization
theorem and minimal sufficient by the Lehmann–Sheffé theorem.

Definition. A statistic V = V (y) is ancilliary for θ within a family of probability
distributions p(y | θ) if its distribution does not depend on θ.
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Definition. If a minimal sufficient statistic is T = [T1, T2] and T2 is ancillary then
T1 is called conditionally sufficient given T2.

Example. In a linear normal linear regression with covariate x, suppose that x has
distribution p(x) and

Yi | Xi = xi ∼ N(β0 + β1xi, σ
2), i = 1, . . . , n.

Then, letting x = [x1, . . . , xn]
T, y = [y1, . . . , yn]

T and β = [β0, β1]
T the

distribution for the data is

p(x,y | β, σ2) = p(x)(2πσ)−n/2 exp

[
− 1

2σ2

n∑

i=1

(yi − β0 − β1xi)
2

]
.

The sufficient statistic for [β, σ2] is

S =

[
β̂, σ̂2,

n∑

i=1

xi,

n∑

i=1

x2
i

]
,

with the last two components being an ancillary statistic.

Definition. A statistic T is complete if for every real-valued function g(·), E[g(T )] =
0 for every θ implies g(T ) = 0.

Definition. Suppose we wish to estimate φ = φ(θ) based on Y | θ ∼ p(· | θ).
An unbiased estimator φ̂ of φ is a uniformly minimum-variance unbiased estimator
(UMVUE) if, for all other unbiased estimators φ̃,

var(φ̂) ≤ var(φ̃)

for all θ.

Lemma. If T is complete then φ(θ) admits at most one unbiased estimator φ̂(T )
depending on T .

Theorem (Rao–Blackwell–Lehmann–Scheffé). Let T = T (Y ) be complete and
sufficient for θ. If there exists at least one unbiased estimator φ̃ = φ̃(Y ) for φ(θ)
then there exists a unique UMVUE φ̂ = φ̂(T ) for φ(θ), namely,

φ(Y ) = E[φ̃(Y | T ].

Corollary. Let T = T (Y ) be complete and sufficient for θ. Then any function g(T )
is the UMVUE of its expectation E[g(T )] = φ(θ).

Theorem. The Cramér–Rao lower bound for any unbiased estimator φ̂ of a scalar
function of interest φ = φ(θ) is
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var(φ̂) ≥ − [φ′(θ)]2

E
[
∂2l
∂θ2

] ,

where l(θ) =
∑n

i=1 log p(yi | θ), is the log of the joint distribution, viewed as a
function of θ. Equality holds if and only if p(y | θ) is a one-parameter exponential
family.
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Appendix G
Basic Large Sample Theory

We define various quantities, and state results, that are useful in various places in
the book. The presentation is informal see, for example, van der Vaart (1998) for
more rigour.

Modes of Convergence

Suppose that Yn, n ≥ 1, are all random variables defined on a probability space
(Ω,A, P ) where Ω is a set (the sample space) A is a σ-algebra of subsets of Ω, and
P is a probability measure.

Definition. We say that Yn converges almost surely to Y , denoted Yn →a.s. Y , if

Yn(ω) → Y (ω) for all ω ∈ A where P (Ac) = 0 (G.1)

or, equivalently, if, for every ε > 0

P

(
sup
m≥n

|Ym − Y | > ε

)
→ 0 as n → ∞. (G.2)

Definition. We say that Yn converges in probability to Y , denoted Yn →p Y , if

P (|Ym − Y | > ε) → 0 as n → ∞. (G.3)

Definition. Define the distribution function of Y as F (y) = Pr(Y ≤ y). We say
that Yn converges in distribution to Y , denoted Yn →d Y , or Fn → F , if

Fn(y) → F (y) as n → ∞ for each continuity point y of F . (G.4)
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Limit Theorems

Proposition (Weak Law of Large Numbers). If Y1, Y2, . . . , Yn, . . . are indepen-
dent and identically distributed (i.i.d.) with mean μ = E[Y ] (so E[|Y |] < ∞) then
Y n →p μ.

Proposition (Strong Law of Large Numbers). If Y1, Y2, . . . , Yn, . . . are i.i.d. with
mean μ = E[Y ] (so E[|Y |] < ∞) then Y n →a.s. μ.

Proposition (Central Limit Theorem). If Y1, Y2, . . . , Yn are i.i.d. with mean μ =
E[Y ] and variance σ2 (so E[Y 2] < ∞), then

√
n(Y n − μ) →d N(0, σ2).

Proposition (Slutsky’s Theorem). Suppose that An →p a, Bn →p b, for
constants a and b, and Yn →d Y . Then AnYn +Bn →d aY + b.

Proposition (Delta Method). Suppose
√
n (Yn − μ) →d Z and suppose that

g : Rp → R
k has a derivative g′ at μ (here g′ is a k × p matrix of derivatives).

Then the delta method gives the asymptotic distribution as

√
n [g(Y )− g(μ)] →d g′(μ)Z.

If Z ∼ Np(0,Σ), then

√
n [g(Y )− g(μ)] →d Nk [0, g

′(μ)Σg′(μ)T] .



References

Agresti, A. (1990). Categorical data analysis. New York: Wiley.
Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle.

In B.N. Petrov & F. Csaki (Eds.), Second International Symposium on Information Theory
(pp. 267–281). Budapest: Akademia Kiado.

Allen, J., Zwerdling, R., Ehrenkranz, R., Gaultier, C., Geggel, R., Greenough, A., Kleinman,
R., Klijanowicz, A., Martinez, F., Ozdemir, A., Panitch, H., Nickerson, B., Stein, M., Tomezsko,
J., van der Anker, J., & American Thoracic Society. (2003). Statement of the care of the child
with chronic lung disease of infancy and childhood. American Journal of Respiratory and
Critical Care Medicine, 168, 356–396.

Altham, D. (1991). Practical statistics for medical research. Boca Raton: Chapman and Hall/CRC.
Altham, P. (1969). Exact Bayesian analysis of a 2 × 2 contingency table and Fisher’s ‘exact’

significance test. Journal of the Royal Statistical Society, Series B, 31, 261–269.
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for testing, 72
non-parametric bootstrap, 64
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percentile interval, 65
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C
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Cartesian product rule, 109
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frequency matching, 341
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matched pairs, 343
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selection bias, 338
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Central limit theorem, 674
importance sampling, 111

Chi-squared distribution, 659, 667
Choice based sampling, 337
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logistic models, 625–626
Classification trees, 634–635
Coefficient of variation, 255
Cohort data, 413–415
Cohort study, 337
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Complete statistic, 670
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Conditional modeling, 18
Conditional likelihood, 327–330

binary mixed model, 465–467
individual-matched case-control study,
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mixed model, 437–438

Confidence intervals, 29
Bayesian, in a smoothing context, 566
binomial model, 41
linear smoothing context, 561
simultaneous, linear smoothing context,
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bias due to, 2
by location, 449
definition of, 233
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random effects models, 449–450
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nonlinear models, 285
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Convergence in probability, 673
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linear mixed model, 389
logistic regression model, 325
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nonlinear mixed model, 483
nonlinear model, 301
normal linear model, 224

Michaelis–Menten Model, 283–284
Misclassification error, 515

classification, 635
Missing data, 4
Mixed models
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generalized linear, 429–449
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nonlinear, 475–487
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asymptotic distribution, 39
binomial model, 40–41
model misspecification, 46–49
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Weibull model, 43

Model misspecification, 18
behavior of Bayes estimators, 98–100

Modes of convergence, 673
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Multinomial distribution, 626
Multinomial distribution
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Multiple adaptive regression splines, 620–624
Multiple linear regression, 196
Multiple testing, 164–179, 225
Multivariate binary models, 468–473
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Nadaraya–Watson kernel estimator, 578–580
Naive Bayes, 630
Negative binomial distribution, 54, 81, 258,
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quasi-likelihood version, 51

Negative predictive value, 516
Newton–Raphson method, 263, 432
Neyman–Pearson lemma, 154
Neyman–Scott problem, 93
Neyman–Scott problem, 82, 145, 146, 418
NIC, 537
Nominal variable, 197, 625
Nonlinear mixed models, 475–487

Bayesian inference, 481–483
likelihood inference, 478–480

Nonlinear models, 283–284
assessment of assumptions, 297–298
Bayesian estimation, 294
Bayesian inference, 293–295
geometry, 290–293
hypothesis testing, 287–288
identifiability, 284
intrinsic curvature, 292
least squares estimation, 288–290
likelihood estimation, 285–286
likelihood inference, 284–288
parameter effects curvature, 292
sandwich estimation, 290
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Normal linear model
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Observational data, 2
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Bayesian estimation, 146
conditional, 468–471
interpretation, 317
marginal, 472–473

Ordinal variable, 197
Out of bag estimate, 639, 640
Outer iteration, 608
Outliers, 240
Overdispersion

Bernoulli random variable, 308
beta-binomial distribution, 105
binomial data, 313–316
GLMs, 275–276

Overfitting
prediction, 529

P
Parameter interpretation, 7, 8

Bayesian modeling averaging, 101
factors, 202–205
GEE, 394
GEE, nonlinear models, 487–488
GLMs, 259–260
linear mixed models, 373–375
linear models, 198–209, 232–233
logistic regression, case-control study,

339–340
logistic regression, cohort study, 339
marginal versus conditional models,

454–456
multiple linear regression, 201
nonlinear mixed models, 477
Poisson conditional models,

434–436
prior specification, 200
quadratic model, 202

Parameterization
of a nonlinear model, 477, 478

Parsimony, 4
Pearson statistic, 51, 268, 320
Penalization, 518
Penalized IRLS, 432

Penalized IRLS, 589
Penalized least squares, 519

nonlinear mixed models, 479
spline models, 553

Penalized likelihood, 591
Penalized quasi-likelihood, 432, 591
Performance iteration, 608
Pharmacokinetics

compartmental models, 14
general description, 12–16
one compartment model, 14

Piecewise polynomials, 547–552
Plug-in estimators, 577, 634
Poisson distribution, 663–664

conjugate prior for, 148
quasi-likelihood version, 51

Poisson process, 22
Positive false discovery rate, 169
Positive predictive value, 516
Power variance model, 492
Prediction

random effects, 377–380
Predictive distribution

Bayes, 89
with conjugate prior, 103

Predictive models, 2, 10
Predictive risk, 513
Prior choice, 90–98

baseline priors, 90–93
generalized linear mixed models, 441–442
GLMs, 273
improper posterior, 91, 92
improper prior, 91, 175
improper prior for linear model, 221
improper prior for nonlinear mixed model,

482
improper prior for Poisson model, 273–274
improper spatial prior, 446
lognormal distribution, 276–278
nonlinear models, 294
objective Bayes, 90–93
proper priors for hierarchical models, 384
substantive priors, 93–95

Probability
meaning of, 94

Projection matrix, 241
Pure significance test, 72, 154
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QQ plot, 243

mixed models, 403, 489
Quadratic exponential model, 454
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binomial overdispersion, 315
hypothesis testing, 76, 271
prediction, 53

Quasi-score function, 50, 51, 58

R
Random effects, 355

ANOVA, 230
interpretation, 356

Random forests, 639–642
variable importance, 641

Random intercepts and slopes model, 361
Random intercepts model, 360
Randomization, 2, 200, 201
Randomized block design, 227
Rao-Blackwell-Lehmann-Scheffé theorem,
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Receiver operating characteristic, 517
Reflected pair, 622
Regression trees, 613–624

bias-variance trade-off, 619
greedy algorithm, 617
hierarchical partitioning, 614–621
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missing data, 619
missing data, 619
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overfitting, 618
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weakest-link pruning, 618
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Rejection algorithm, 114

sampling from prior, 116
Relative risk

case-control study, 339
Repeated measures data, 18, 353
Residuals

deviance, 279
deviance, binomial models, 332
GLMs, 278–280
linear models, 240–245
nonlinear models, 298
Pearson, 278
Pearson, binomial models, 331
Pearson, mixed models, 489
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standardized population-level, mixed
models, 402

standardized unit-level, mixed models, 403
standardized, linear models, 242
to determine form of overdispersion, 316
to investigate mean–variance relationship,

280–283
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Restricted maximum likelihood, 368–371
Ridge regression, 247, 376, 517–522

Bayesian formulation, 520

S
Sampling from the posterior
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directly using the rejection algorithm,

114–117
Sandwich estimation, 35, 56–63

GEE, 393, 400–401
linear models, 216–218
model misspecification, 47
Poisson models, 61, 62
relationship with the bootstrap, 66–69
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Schwarz criterion, 140
Score function, 37, 38

binomial, 318
conditional, 329
GLM, 260
negative binomial, 55
nonlinear model, 285

Score test, 74–75
Second-order stationary, 404
Semi-variogram, 243, 404
Sensitivity, 516
Shrinkage, 517–526

ridge regression, 520, 521
Shrinkage methods, 504
Sidák correction, 167
Significance level, 72
Simple linear regression, 196
Simpson’s paradox, 335, 349
Slutsky’s theorem, 674
Smoothing parameter selection

multiple predictors, 608–610
Soft thresholding, 524
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Spatial dependence, 12, 23, 445–449
Specificity, 516
Splines, 547–572
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M -th order, 549
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cubic smoothing, 553–555
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mixed model representation, 563–572
multiple predictors, 600–606
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O’Sullivan, 559
penalized regression splines, 557–560
regression, 557
smoothing, 555
summary of terminology, 560
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thin plate regression, 603–604

Split-plot design, 353
Strong law of large number, 674
Student’s t distribution, 667

importance sampling, 112
multivariate, 660–661
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conditional likelihood, 438
conditionally, 670
conjugacy, 102
marginal likelihood, 44
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prior, 103
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crossed design, 227
one-way ANOVA, 225

Supernormality, 243
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Survey sampling, 3

T
Test data, 512, 515
Test of significance, 72
Toeplitz error model, 363
Tolerance distributions, 317–318
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Transformations of the data, 205–209
True positive fraction, 516
Truncated line, 550, 622
Type I error, 154, 155, 516

multiple testing, 165
Type II error, 154

multiple testing, 165

U
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estimator, 30, 81, 670
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V
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backward elimination, 181
Efroymson’s algorithm, 181
forward selection, 181
procedures, 179–185
stepwise methods, 181–183

Variance estimation
nonparametric regression, 584–587

Varying-coefficient models, 610–613
Vector space, 655

W
Wald test, 75
Weak law of large number, 674
Wishart distribution, 382, 661–662

prior, nonlinear mixed models, 484
Working variance model, 58

GEE, binary data, 468
GEE, GLMs, 451–452
GEE, linear models, 391–394
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