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Life is good for only two things, discovering mathematics and teaching it.

Siméon Poisson

In mathematics you don’t understand things, you just get used to them.

John von Neumann

Probability is the bane of the age.

Anthony Powell

Casanova’s Chinese Restaurant

The traditional professor writes a, says b, and means c; but it should be d .

George Pólya

To many persons the mention of Probability suggests little else than the notion of a

set of rules, very ingenious and profound rules no doubt, with which mathematicians

amuse themselves by setting and solving puzzles.

John Venn

The Logic of Chance





Preface to the Third Edition

This volume contains more than 1300 exercises in probability and random processes together

with their solutions. Apart from being a volume of worked exercises in its own right, it is also

a solutions manual for exercises and problems appearing in the fourth edition of our textbook

Probability and Random Processes, published by Oxford University Press in 2020, henceforth

referred to as PRP. These exercises are not merely for drill, but complement and illustrate the

text of PRP, or are entertaining, or both. The current edition extends the previous edition by

the inclusion of numerous new exercises, and several new sections devoted to further topics

in aspects of stochastic processes. Since many exercises have multiple parts, the total number

of interrogatives exceeds 3000.

Despite being intended in part as a companion to PRP, the present volume is as self-

contained as reasonably possible. Where knowledge of a substantial chunk of bookwork is

unavoidable, the reader is provided with a reference to the relevant passage in PRP. Expressions

such as ‘clearly’ appear frequently in the solutions. Although we do not use such terms in

their Laplacian sense to mean ‘with difficulty’, to call something ‘clear’ is not to imply that

explicit verification is necessarily free of tedium.

The table of contents reproduces that of PRP. The covered range of topics is broad,

beginning with the elementary theory of probability and random variables, and continuing,

via chapters on Markov chains and convergence, to extensive sections devoted to stationarity

and ergodic theory, renewals, queues, martingales, and diffusions, including an introduction

to the pricing of options. Generally speaking, exercises are questions which test knowledge of

particular pieces of theory, while problems are less specific in their requirements. There are

questions of all standards, the great majority being elementary or of intermediate difficulty.

We have found some of the later ones to be rather tricky, but have refrained from magnifying

any difficulty by adding asterisks or equivalent devices. To those using this book for self-study,

our advice is not to attempt more than a respectable fraction of these at a first read.

We offer two caveats to readers. While a great deal of care has been devoted to ensuring

these exercises are as correct as possible, there inevitably remain a few slips which have so

far escaped detection, and in this regard the readers’ patience is invited. Secondly, there will

always be debate on just what constitutes a proper or full solution. We have aimed at conveying

the nubs of arguments, with as many details as needed to satisfy most readers.

We pay tribute to all those anonymous pedagogues whose examination papers, work

assignments, and textbooks have been so influential in the shaping of this collection. To them

and to their successors we wish, in turn, much happy plundering. If you detect errors or have

potential improvements to propose, try to keep them secret, except from us.

Cambridge and Oxford G.R.G.

April 2020 D.R.S.



Preface to the Third Edition

Note on the Frontispiece

Fortuna, the goddess of chance and luck, is often depicted with a wheel symbolizing the

uncertainty occasioned by the passing of time; that is, the ups and downs of life. In this image,

the Wheel of Fortune is being turned not only by Time but also by a fox. From Aesop’s

fables (c.600 BC) to the mediaeval story-cycles of Reynard the Fox (c.1100 AD), the fox has

symbolized craft, cunning, and trickery, often actuated by malice. This particular Wheel of

Fortune may thus suggest that the workings of chance cannot be expected to give necessarily

just or fair outcomes.

A further discussion of the iconography is provided in Roberts 1998.
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1

Events and their probabilities

1.2 Exercises. Events as sets

1. Let {Ai : i ∈ I } be a collection of sets. Prove ‘De Morgan’s Laws’†:

(⋃

i

Ai

)c

=
⋂

i

Ac
i ,

(⋂

i

Ai

)c

=
⋃

i

Ac
i .

2. Let A and B belong to some σ -field F. Show that F contains the sets A ∩ B, A \ B, and A △ B.

3. A conventional knock-out tournament (such as that at Wimbledon) begins with 2n competitors
and has n rounds. There are no play-offs for the positions 2, 3, . . . , 2n − 1, and the initial table of
draws is specified. Give a concise description of the sample space of all possible outcomes.

4. Let F be a σ -field of subsets of � and suppose that B ∈ F. Show that G = {A ∩ B : A ∈ F} is a
σ -field of subsets of B.

5. Which of the following are identically true? For those that are not, say when they are true.

(a) A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C);

(b) A ∩ (B ∩ C) = (A ∩ B) ∩ C ;

(c) (A ∪ B) ∩ C = A ∪ (B ∩ C);

(d) A \ (B ∩ C) = (A \ B) ∪ (A \ C).

1.3 Exercises. Probability

1. Let A and B be events with probabilities P(A) = 3
4 and P(B) = 1

3 . Show that 1
12 ≤ P(A∩B) ≤ 1

3 ,
and give examples to show that both extremes are possible. Find corresponding bounds for P(A ∪ B).

2. A fair coin is tossed repeatedly. Show that, with probability one, a head turns up sooner or later.
Show similarly that any given finite sequence of heads and tails occurs eventually with probability
one. Explain the connection with Murphy’s Law.

3. Six cups and saucers come in pairs: there are two cups and saucers which are red, two white, and
two with stars on. If the cups are placed randomly onto the saucers (one each), find the probability
that no cup is upon a saucer of the same pattern.

†Augustus De Morgan is well known for having given the first clear statement of the principle of mathematical

induction. He applauded probability theory with the words: “The tendency of our study is to substitute the

satisfaction of mental exercise for the pernicious enjoyment of an immoral stimulus”.



[1.3.4]–[1.4.5] Exercises Events and their probabilities

4. Let A1, A2, . . . , An be events where n ≥ 2, and prove that

P

( n⋃

i=1

Ai

)
=
∑

i

P(Ai )−
∑

i< j

P(Ai ∩ Aj )+
∑

i< j<k

P(Ai ∩ Aj ∩ Ak )

− · · · + (−1)n+1P(A1 ∩ A2 ∩ · · · ∩ An).

In each packet of Corn Flakes may be found a plastic bust of one of the last five Vice-Chancellors
of Cambridge University, the probability that any given packet contains any specific Vice-Chancellor

being 1
5 , independently of all other packets. Show that the probability that each of the last three

Vice-Chancellors is obtained in a bulk purchase of six packets is 1 − 3( 4
5 )

6 + 3( 3
5 )

6 − ( 2
5 )

6.

5. Let Ar , r ≥ 1, be events such that P(Ar ) = 1 for all r . Show that P
(⋂∞

r=1 Ar

)
= 1.

6. You are given that at least one of the events Ar , 1 ≤ r ≤ n, is certain to occur, but certainly no
more than two occur. If P(Ar ) = p, and P(Ar ∩ As) = q, r 6= s, show that p ≥ 1/n and q ≤ 2/n.

7. You are given that at least one, but no more than three, of the events Ar , 1 ≤ r ≤ n, occur, where

n ≥ 3. The probability of at least two occurring is 1
2 . If P(Ar ) = p, P(Ar ∩ As) = q, r 6= s, and

P(Ar ∩ As ∩ At ) = x , r < s < t , show that p ≥ 3/(2n), and q ≤ 4/n.

1.4 Exercises. Conditional probability

1. Prove that P(A | B) = P(B | A)P(A)/P(B) whenever P(A)P(B) 6= 0. Show that, if P(A | B) >

P(A), then P(B | A) > P(B).

2. For events A1, A2, . . . , An satisfying P(A1 ∩ A2 ∩ · · · ∩ An−1) > 0, prove that

P(A1 ∩ A2 ∩ · · · ∩ An) = P(A1)P(A2 | A1)P(A3 | A1 ∩ A2) · · · P(An | A1 ∩ A2 ∩ · · · ∩ An−1).

3. A man possesses five coins, two of which are double-headed, one is double-tailed, and two are
normal. He shuts his eyes, picks a coin at random, and tosses it. What is the probability that the lower
face of the coin is a head?

He opens his eyes and sees that the coin is showing heads; what is the probability that the lower
face is a head? He shuts his eyes again, and tosses the coin again. What is the probability that the
lower face is a head? He opens his eyes and sees that the coin is showing heads; what is the probability
that the lower face is a head?

He discards this coin, picks another at random, and tosses it. What is the probability that it shows
heads?

4. What do you think of the following ‘proof’ by Lewis Carroll that an urn cannot contain two balls
of the same colour? Suppose that the urn contains two balls, each of which is either black or white;

thus, in the obvious notation, P(BB) = P(BW) = P(WB) = P(WW) = 1
4 . We add a black ball, so

that P(BBB) = P(BBW) = P(BWB) = P(BWW) = 1
4 . Next we pick a ball at random; the chance

that the ball is black is (using conditional probabilities) 1 · 1
4 + 2

3 · 1
4 + 2

3 · 1
4 + 1

3 · 1
4 = 2

3 . However, if

there is probability 2
3 that a ball, chosen randomly from three, is black, then there must be two black

and one white, which is to say that originally there was one black and one white ball in the urn.

5. The Monty Hall problem: goats and cars. (a) In a game show; you have to choose one of
three doors. One conceals a new car, two conceal old goats. You choose, but your chosen door is not
opened immediately. Instead the presenter opens another door, which reveals a goat. He offers you
the opportunity to change your choice to the third door (unopened and so far unchosen). Let p be the
(conditional) probability that the third door conceals the car. The presenter’s protocol is:

2



Independence Exercises [1.4.6]–[1.5.6]

(i) he is determined to show you a goat; with a choice of two, he picks one at random. Show p = 2
3 .

(ii) he is determined to show you a goat; with a choice of two goats (Bill and Nan, say) he shows you
Bill with probability b. Show that, given you see Bill, the probability is 1/(1 + b).

(iii) he opens a door chosen at random irrespective of what lies behind. Show p = 1
2 .

(b) Show that, for α ∈ [ 1
2 ,

2
3 ], there exists a protocol such that p = α. Are you well advised to change

your choice to the third door?

(c) In a variant of this question, the presenter is permitted to open the first door chosen, and to reward
you with whatever lies behind. If he chooses to open another door, then this door invariably conceals
a goat. Let p be the probability that the unopened door conceals the car, conditional on the presenter
having chosen to open a second door. Devise protocols to yield the values p = 0, p = 1, and deduce
that, for any α ∈ [0, 1], there exists a protocol with p = α.

6. The prosecutor’s fallacy†. Let G be the event that an accused is guilty, and T the event that
some testimony is true. Some lawyers have argued on the assumption that P(G | T ) = P(T | G).
Show that this holds if and only if P(G) = P(T ).

7. Urns. There are n urns of which the r th contains r − 1 red balls and n − r magenta balls. You
pick an urn at random and remove two balls at random without replacement. Find the probability that:

(a) the second ball is magenta;

(b) the second ball is magenta, given that the first is magenta.

8. Boys and girls, Example (1.4.3) revisited. Consider a family of two children in a population
in which each child is equally likely to be male as female; each child has red hair with probability r ;
these characteristics are independent of each other and occur independently between children.

What is the probability that both children are boys given that the family contains at least one red-
haired boy? Show that the probability that both are boys, given that one is a boy born on a Monday,
is 13/27.

1.5 Exercises. Independence

1. Let A and B be independent events; show that Ac, B are independent, and deduce that Ac, Bc

are independent.

2. We roll a die n times. Let Ai j be the event that the i th and j th rolls produce the same number.
Show that the events {Ai j : 1 ≤ i < j ≤ n} are pairwise independent but not independent.

3. A fair coin is tossed repeatedly. Show that the following two statements are equivalent:

(a) the outcomes of different tosses are independent,

(b) for any given finite sequence of heads and tails, the chance of this sequence occurring in the first
m tosses is 2−m , where m is the length of the sequence.

4. Let � = {1, 2, . . . , p} where p is prime, F be the set of all subsets of �, and P(A) = |A|/p for
all A ∈ F. Show that, if A and B are independent events, then at least one of A and B is either ∅ or
�.

5. Show that the conditional independence of A and B given C neither implies, nor is implied by,
the independence of A and B. For which events C is it the case that, for all A and B, the events A and
B are independent if and only if they are conditionally independent given C?

6. Safe or sorry? Some form of prophylaxis is said to be 90 per cent effective at prevention during
one year’s treatment. If the degrees of effectiveness in different years are independent, show that the
treatment is more likely than not to fail within 7 years.

†The prosecution made this error in the famous Dreyfus case of 1894.

3



[1.5.7]–[1.7.6] Exercises Events and their probabilities

7. Families. Jane has three children, each of which is equally likely to be a boy or a girl independently
of the others. Define the events:

A = {all the children are of the same sex},
B = {there is at most one boy},
C = {the family includes a boy and a girl}.

(a) Show that A is independent of B, and that B is independent of C .

(b) Is A independent of C?

(c) Do these results hold if boys and girls are not equally likely?

(d) Do these results hold if Jane has four children?

8. Galton’s paradox. You flip three fair coins. At least two are alike, and it is an evens chance that

the third is a head or a tail. Therefore P(all alike) = 1
2 . Do you agree?

9. Two fair dice are rolled. Show that the event that their sum is 7 is independent of the score shown
by the first die.

10. Let X and Y be the scores on two fair dice taking values in the set {1, 2, . . . , 6}. Let A1 =
{X + Y = 9}, A2 = {X ∈ {1, 2, 3}}, and A3 = {X ∈ {3, 4, 5}}. Show that

P(A1 ∩ A2 ∩ A3) = P(A1)P(A2)P(A3).

Are these three events independent?

1.7 Exercises. Worked examples

1. There are two roads from A to B and two roads from B to C. Each of the four roads is blocked by
snow with probability p, independently of the others. Find the probability that there is an open road
from A to B given that there is no open route from A to C.

If, in addition, there is a direct road from A to C, this road being blocked with probability p

independently of the others, find the required conditional probability.

2. Calculate the probability that a hand of 13 cards dealt from a normal shuffled pack of 52 contains
exactly two kings and one ace. What is the probability that it contains exactly one ace given that it
contains exactly two kings?

3. A symmetric random walk takes place on the integers 0, 1, 2, . . . , N with absorbing barriers at 0
and N , starting at k. Show that the probability that the walk is never absorbed is zero.

4. The so-called ‘sure thing principle’ asserts that if you prefer x to y given C , and also prefer x to
y given Cc, then you surely prefer x to y. Agreed?

5. A pack contains m cards, labelled 1, 2, . . . ,m. The cards are dealt out in a random order, one
by one. Given that the label of the kth card dealt is the largest of the first k cards dealt, what is the
probability that it is also the largest in the pack?

6. A group of 2b friends meet for a bridge soirée. There are m men and 2b − m women where
2 ≤ m ≤ b. The group divides into b teams of pairs, formed uniformly at random. What is the
probability that no pair comprises 2 men?

4



Problems Exercises [1.8.1]–[1.8.11]

1.8 Problems

1. A traditional fair die is thrown twice. What is the probability that:

(a) a six turns up exactly once?

(b) both numbers are odd?

(c) the sum of the scores is 4?

(d) the sum of the scores is divisible by 3?

2. A fair coin is thrown repeatedly. What is the probability that on the nth throw:

(a) a head appears for the first time?

(b) the numbers of heads and tails to date are equal?

(c) exactly two heads have appeared altogether to date?

(d) at least two heads have appeared to date?

3. Let F and G be σ -fields of subsets of �.

(a) Use elementary set operations to show that F is closed under countable intersections; that is, if
A1, A2, . . . are in F, then so is

⋂
i Ai .

(b) Let H = F ∩ G be the collection of subsets of� lying in both F and G. Show that H is a σ -field.

(c) Show that F∪G, the collection of subsets of� lying in either F or G, is not necessarily a σ -field.

4. Describe the underlying probability spaces for the following experiments:

(a) a biased coin is tossed three times;

(b) two balls are drawn without replacement from an urn which originally contained two ultramarine
and two vermilion balls;

(c) a biased coin is tossed repeatedly until a head turns up.

5. Show that the probability that exactly one of the events A and B occurs is

P(A)+ P(B)− 2P(A ∩ B).

6. Prove that P(A ∪ B ∪ C) = 1 − P(Ac | Bc ∩ Cc)P(Bc | Cc)P(Cc).

7. (a) If A is independent of itself, show that P(A) is 0 or 1.

(b) If P(A) is 0 or 1, show that A is independent of all events B.

8. Let F be a σ -field of subsets of �, and suppose P : F → [0, 1] satisfies: (i) P(�) = 1, and (ii) P
is additive, in that P(A ∪ B) = P(A)+ P(B) whenever A ∩ B = ∅. Show that P(∅) = 0.

9. Suppose (�,F,P) is a probability space and B ∈ F satisfies P(B) > 0. Let Q : F → [0, 1] be
defined by Q(A) = P(A | B). Show that (�,F,Q) is a probability space. If C ∈ F and Q(C) > 0,
show that Q(A | C) = P(A | B ∩ C); discuss.

10. Let B1, B2, . . . be a partition of the sample space �, each Bi having positive probability, and
show that

P(A) =
∞∑

j=1

P(A | Bj )P(Bj ).

11. Prove Boole’s inequalities:

P

( n⋃

i=1

Ai

)
≤

n∑

i=1

P(Ai ), P

( n⋂

i=1

Ai

)
≥ 1 −

n∑

i=1

P(Ac
i ).

5



[1.8.12]–[1.8.17] Exercises Events and their probabilities

12. Prove that

P

( n⋂

1

Ai

)
=
∑

i

P(Ai )−
∑

i< j

P(Ai ∪ Aj )+
∑

i< j<k

P(Ai ∪ Aj ∪ Ak )

− · · · − (−1)nP(A1 ∪ A2 ∪ · · · ∪ An).

13. Let A1, A2, . . . , An be events, and let Nk be the event that exactly k of the Ai occur. Prove the
result sometimes referred to as Waring’s theorem:

P(Nk ) =
n−k∑

i=0

(−1)i

(
k + i

k

)
Sk+i , where Sj =

∑

i1<i2<···<ij

P(Ai1
∩ Ai2

∩ · · · ∩ Aij
).

Use this result to find an expression for the probability that a purchase of six packets of Corn Flakes
yields exactly three distinct busts (see Exercise (1.3.4)).

14. Prove Bayes’s formula: if A1, A2, . . . , An is a partition of�, each Ai having positive probability,
then

P(Aj | B) =
P(B | Aj )P(Aj )∑n
1 P(B | Ai )P(Ai )

.

15. A random number N of dice is thrown. Let Ai be the event that N = i , and assume that

P(Ai ) = 2−i , i ≥ 1. The sum of the scores is S. Find the probability that:

(a) N = 2 given S = 4;

(b) S = 4 given N is even;

(c) N = 2, given that S = 4 and the first die showed 1;

(d) the largest number shown by any die is r , where S is unknown.

16. Let A1, A2, . . . be a sequence of events. Define

Bn =
∞⋃

m=n

Am , Cn =
∞⋂

m=n

Am .

Clearly Cn ⊆ An ⊆ Bn. The sequences {Bn} and {Cn} are decreasing and increasing respectively
with limits

lim Bn = B =
⋂

n

Bn =
⋂

n

⋃

m≥n

Am , lim Cn = C =
⋃

n

Cn =
⋃

n

⋂

m≥n

Am .

The events B and C are denoted lim supn→∞ An and lim infn→∞ An respectively. Show that

(a) B = {ω ∈ � : ω ∈ An for infinitely many values of n},
(b) C = {ω ∈ � : ω ∈ An for all but finitely many values of n}.
We say that the sequence {An} converges to a limit A = lim An if B and C are the same set A. Suppose
that An → A and show that

(c) A is an event, in that A ∈ F,

(d) P(An) → P(A).

17. In Problem (1.8.16) above, show that B and C are independent whenever Bn and Cn are inde-
pendent for all n. Deduce that if this holds and furthermore An → A, then P(A) equals either zero or
one.
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Problems Exercises [1.8.18]–[1.8.25]

18. Show that the assumption that P is countably additive is equivalent to the assumption that P is
continuous. That is to say, show that if a function P : F → [0, 1] satisfies P(∅) = 0, P(�) = 1, and
P(A ∪ B) = P(A) + P(B) whenever A, B ∈ F and A ∩ B = ∅, then P is countably additive (in the
sense of satisfying Definition (1.3.1b)) if and only if P is continuous (in the sense of Lemma (1.3.5)).

19. Anne, Betty, Chloë, and Daisy were all friends at school. Subsequently each of the
(4

2

)
= 6

subpairs meet up; at each of the six meetings the pair involved quarrel with some fixed probability
p, or become firm friends with probability 1 − p. Quarrels take place independently of each other.
In future, if any of the four hears a rumour, then she tells it to her firm friends only. If Anne hears a
rumour, what is the probability that:

(a) Daisy hears it?

(b) Daisy hears it if Anne and Betty have quarrelled?

(c) Daisy hears it if Betty and Chloë have quarrelled?

(d) Daisy hears it if she has quarrelled with Anne?

20. A biased coin is tossed repeatedly. Each time there is a probability p of a head turning up. Let pn

be the probability that an even number of heads has occurred after n tosses (zero is an even number).
Show that p0 = 1 and that pn = p(1− pn−1)+ (1− p)pn−1 if n ≥ 1. Solve this difference equation.

21. A biased coin is tossed repeatedly. Find the probability that there is a run of r heads in a row
before there is a run of s tails, where r and s are positive integers.

22. (a) A bowl contains twenty cherries, exactly fifteen of which have had their stones removed. A
greedy pig eats five whole cherries, picked at random, without remarking on the presence or
absence of stones. Subsequently, a cherry is picked randomly from the remaining fifteen.

(i) What is the probability that this cherry contains a stone?

(ii) Given that this cherry contains a stone, what is the probability that the pig consumed at least
one stone?

(b) 100 contestants buy numbered lottery tickets for a reverse raffle, in which the last ticket drawn
from an urn is the winner. Halfway through the draw, the Mistress of Ceremonies discovers that
10 tickets have inadvertently not been added to the urn, so she adds them, and continues the draw.
Is the lottery fair?

23. The ‘ménages’ problem poses the following question. Some consider it to be desirable that men
and women alternate when seated at a circular table. If n heterosexual couples are seated randomly
according to this rule, show that the probability that nobody sits next to his or her partner is

1

n!

n∑

k=0

(−1)k
2n

2n − k

(
2n − k

k

)
(n − k)!

You may find it useful to show first that the number of ways of selecting k non-overlapping pairs of

adjacent seats is
(2n−k

k

)
2n(2n − k)−1 .

24. An urn contains b blue balls and r red balls. They are removed at random and not replaced. Show

that the probability that the first red ball drawn is the (k + 1)th ball drawn equals
(r+b−k−1

r−1

)/(r+b
b

)
.

Find the probability that the last ball drawn is red.

25. An urn contains a azure balls and c carmine balls, where ac 6= 0. Balls are removed at random
and discarded until the first time that a ball (B, say) is removed having a different colour from its
predecessor. The ball B is now replaced and the procedure restarted. This process continues until the
last ball is drawn from the urn. Show that this last ball is equally likely to be azure or carmine.
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[1.8.26]–[1.8.33] Exercises Events and their probabilities

26. Protocols. A pack of four cards contains one spade, one club, and the two red aces. You deal
two cards faces downwards at random in front of a truthful friend. She inspects them and tells you
that one of them is the ace of hearts. What is the chance that the other card is the ace of diamonds?
Perhaps 1

3 ?

Suppose that your friend’s protocol was:

(a) with no red ace, say “no red ace”,

(b) with the ace of hearts, say “ace of hearts”,

(c) with the ace of diamonds but not the ace of hearts, say “ace of diamonds”.

Show that the probability in question is 1
3 .

Devise a possible protocol for your friend such that the probability in question is zero.

27. Eddington’s controversy. Four witnesses, A, B, C, and D, at a trial each speak the truth with

probability 1
3 independently of each other. In their testimonies, A claimed that B denied that C declared

that D lied. What is the (conditional) probability that D told the truth? [This problem seems to have
appeared first as a parody in a university magazine of the ‘typical’ Cambridge Philosophy Tripos
question.]

28. The probabilistic method. 10 per cent of the surface of a sphere is coloured blue, the rest is red.
Show that, irrespective of the manner in which the colours are distributed, it is possible to inscribe a
cube in S with all its vertices red.

29. Repulsion. The event A is said to be repelled by the event B if P(A | B) < P(A), and to be
attracted by B if P(A | B) > P(A). Show that if B attracts A, then A attracts B, and Bc repels A.

If A attracts B, and B attracts C , does A attract C?

30. Birthdays. At a lecture, there a m students born on independent days in 2007.

(a) With 2 ≤ m ≤ 365, show that the probability that at least two of them share a birthday is

p = 1 − (365)!/{(365 − m)! 365m}. Show that p > 1
2 when m = 23.

(b) With 2 ≤ m ≤ 366, find the probability p1 that exactly one pair of individuals share a birthday,
with no others sharing.

(c) Suppose m students are born on independent random days on the planet Magrathea, whose year has
M ≫ m days. Show that the probability p0 that no two students share a birthday is approximately

exp
(

− 1
2 m(m − 1)/M)

)
for large M .

31. Lottery. You choose r of the first n positive integers, and a lottery chooses a random subset L of
the same size. What is the probability that:

(a) L includes no consecutive integers?

(b) L includes exactly one pair of consecutive integers?

(c) the numbers in L are drawn in increasing order?

(d) your choice of numbers is the same as L?

(e) there are exactly k of your numbers matching members of L?

32. Bridge. During a game of bridge, you are dealt at random a hand of thirteen cards. With an
obvious notation, show that P(4S, 3H, 3D, 3C) ≃ 0.026 and P(4S, 4H, 3D, 2C) ≃ 0.018. However
if suits are not specified, so numbers denote the shape of your hand, show that P(4, 3, 3, 3) ≃ 0.11
and P(4, 4, 3, 2) ≃ 0.22.

33. Poker. During a game of poker, you are dealt a five-card hand at random. With the convention
that aces may count high or low, show that:

P(1 pair) ≃ 0.423, P(2 pairs) ≃ 0.0475, P(3 of a kind) ≃ 0.021,

P(straight) ≃ 0.0039, P(flush) ≃ 0.0020, P(full house) ≃ 0.0014,

P(4 of a kind) ≃ 0.00024, P(straight flush) ≃ 0.000015.
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Problems Exercises [1.8.34]–[1.8.38]

34. Poker dice. There are five dice each displaying 9, 10, J, Q, K, A. Show that, when rolled:

P(1 pair) ≃ 0.46, P(2 pairs) ≃ 0.23, P(3 of a kind) ≃ 0.15,

P(no 2 alike) ≃ 0.093, P(full house) ≃ 0.039, P(4 of a kind) ≃ 0.019,

P(5 of a kind) ≃ 0.0008.

35. You are lost in the National Park of Bandrika†. Tourists comprise two-thirds of the visitors to

the park, and give a correct answer to requests for directions with probability 3
4 . (Answers to repeated

questions are independent, even if the question and the person are the same.) If you ask a Bandrikan
for directions, the answer is always false.

(a) You ask a passer-by whether the exit from the Park is East or West. The answer is East. What is
the probability this is correct?

(b) You ask the same person again, and receive the same reply. Show the probability that it is correct

is 1
2 .

(c) You ask the same person again, and receive the same reply. What is the probability that it is
correct?

(d) You ask for the fourth time, and receive the answer East. Show that the probability it is correct

is 27
70 .

(e) Show that, had the fourth answer been West instead, the probability that East is nevertheless

correct is 9
10 .

36. Mr Bayes goes to Bandrika. Tom is in the same position as you were in the previous problem,
but he has reason to believe that, with probability ǫ, East is the correct answer. Show that:

(a) whatever answer first received, Tom continues to believe that East is correct with probability ǫ,

(b) if the first two replies are the same (that is, either WW or EE), Tom continues to believe that East
is correct with probability ǫ,

(c) after three like answers, Tom will calculate as follows, in the obvious notation:

P(East correct | EEE) =
9ǫ

11 − 2ǫ
, P(East correct | WWW) =

11ǫ

9 + 2ǫ
.

Evaluate these when ǫ = 9
20 .

37. Bonferroni’s inequality. Show that

P

( n⋃

r=1

Ar

)
≥

n∑

r=1

P(Ar )−
∑

r<k

P(Ar ∩ Ak).

38. Kounias’s inequality. Show that

P

( n⋃

r=1

Ar

)
≤ min

k





n∑

r=1

P(Ar )−
∑

r :r 6=k

P(Ar ∩ Ak )



 .

†A fictional country made famous in the Hitchcock film ‘The Lady Vanishes’.
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[1.8.39]–[1.8.43] Exercises Events and their probabilities

39. The lost boarding pass†. The n passengers for a Bell-Air flight in an airplane with n seats have
been told their seat numbers. They get on the plane one by one. The first person sits in the wrong seat.
Subsequent passengers sit in their assigned seats whenever they find them available, or otherwise in a
randomly chosen empty seat. What is the probability that the last passenger finds his or her assigned
seat to be free?

What is the answer if the first person sits in a seat chosen uniformly at random from the n available?

40. Flash’s problem. A number n of spaceships land independently and uniformly at random on the
surface of planet Mongo. Each ship controls the hemisphere of which it is the centre. Show that the

probability that every point on Mongo is controlled by at least one ship is 1− 2−n(n2 − n + 2). [Hint:

n great circles almost surely partition the surface of the sphere into n2 − n + 2 disjoint regions.]

41. Let X be uniformly distributed on {1, 2, . . . , n − 1}, where n ≥ 2. Given X , a team of size X is
selected at random from a pool of n players (including you), each such subset of size X being equally
likely. Call the selected team A, and the remainder team B.

(a) What is the probability that your team has size k?

(b) Each team picks a captain uniformly at random from its members. What is the probability your
team has size k given that you are chosen as captain?

42. Alice and Bob flip a fair coin in turn. A wins if she gets a head, provided her preceding flip was
a tail; B wins if he gets a tail, provided his preceding flip was a head. Let n ≥ 3. Show that the

probability the game ends on the nth flip is (n + 1)(n − 1)/2n+2 if n is odd, and (n + 2)(n − 2)/2n+2

if even.

What is the probability that A wins the game?

43. A coin comes up heads with probability p ∈ (0, 1). Let k ≥ 1, and let ρm be the probability that,
in m (≥ 1) coin flips, the longest run of consecutive heads has length strictly less than k. Show that

ρm − ρm−1 + (1 − p)pkρm−k−1 = 0, m ≥ k + 1,

and find ρm when k = 2.

†The authors learned of this problem from David Bell in 2000 or earlier.
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2

Random variables and their distributions

2.1 Exercises. Random variables

1. Let X be a random variable on a given probability space, and let a ∈ R. Show that

(a) aX is a random variable,

(b) X − X = 0, the random variable taking the value 0 always, and X + X = 2X .

2. A random variable X has distribution function F . What is the distribution function of Y = aX +b,
where a and b are real constants?

3. A fair coin is tossed n times. Show that, under reasonable assumptions, the probability of exactly

k heads is
(n

k

)
( 1

2 )
n . What is the corresponding quantity when heads appears with probability p on

each toss?

4. Show that if F and G are distribution functions and 0 ≤ λ ≤ 1 then λF +(1−λ)G is a distribution
function. Is the product FG a distribution function?

5. Let F be a distribution function and r a positive integer. Show that the following are distri-
bution functions: (a) F(x)r , (b) 1 − {1 − F(x)}r , (c) F(x) + {1 − F(x)} log{1 − F(x)},
(d) {F(x)− 1}e + exp{1 − F(x)}.

6. Uniform distribution. A random variable that is equally likely to take any value in a finite set S

is said to have the uniform distribution on S. If U is such a random variable and ∅ 6= R ⊆ S, show
that the distribution of U conditional on {U ∈ R} is uniform on R.

2.2 Exercises. The law of averages

1. You wish to ask each of a large number of people a question to which the answer “yes” is
embarrassing. The following procedure is proposed in order to determine the embarrassed fraction of
the population. As the question is asked, a coin is tossed out of sight of the questioner. If the answer
would have been “no” and the coin shows heads, then the answer “yes” is given. Otherwise people
respond truthfully. What do you think of this procedure?

2. A coin is tossed repeatedly and heads turns up on each toss with probability p. Let Hn and Tn be
the numbers of heads and tails in n tosses. Show that, for ǫ > 0,

P

(
2p − 1 − ǫ ≤

1

n
(Hn − Tn) ≤ 2p − 1 + ǫ

)
→ 1 as n → ∞.

3. Let {Xr : r ≥ 1} be observations which are independent and identically distributed with unknown
distribution function F . Describe and justify a method for estimating F(x).



[2.3.1]–[2.4.2] Exercises Random variables and their distributions

2.3 Exercises. Discrete and continuous variables

1. Let X be a random variable with distribution function F , and let a = (am : −∞ < m < ∞)

be a strictly increasing sequence of real numbers satisfying a−m → −∞ and am → ∞ as m → ∞.
Define G(x) = P(X ≤ am) when am−1 ≤ x < am , so that G is the distribution function of a discrete
random variable. How does the function G behave as the sequence a is chosen in such a way that
supm |am − am−1| becomes smaller and smaller?

2. Let X be a random variable and let g : R → R be continuous and strictly increasing. Show that
Y = g(X) is a random variable.

3. Let X be a random variable with distribution function

P(X ≤ x} =





0 if x ≤ 0,

x if 0 < x ≤ 1,

1 if x > 1.

Let F be a distribution function which is continuous and strictly increasing. Show that Y = F−1(X)

is a random variable having distribution function F . Is it necessary that F be continuous and/or strictly
increasing?

4. Show that, if f and g are density functions, and 0 ≤ λ ≤ 1, then λ f + (1 − λ)g is a density. Is
the product f g a density function?

5. Which of the following are density functions? Find c and the corresponding distribution function
F for those that are.

(a) f (x) =
{

cx−d x > 1,

0 otherwise.

(b) f (x) = cex (1 + ex )−2, x ∈ R.

2.4 Exercises. Worked examples

1. Let X be a random variable with a continuous distribution function F . Find expressions for the
distribution functions of the following random variables:

(a) X2, (b)
√

X ,

(c) sin X , (d) G−1(X),

(e) F(X), (f) G−1(F(X)),

where G is a continuous and strictly increasing function.

2. Truncation. Let X be a random variable with distribution function F , and let a < b. Sketch the
distribution functions of the ‘truncated’ random variables Y and Z given by

Y =





a if X < a,

X if a ≤ X ≤ b,

b if X > b,

Z =
{

X if |X | ≤ b,

0 if |X | > b.

Indicate how these distribution functions behave as a → −∞, b → ∞.
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Problems Exercises [2.5.1]–[2.7.4]

2.5 Exercises. Random vectors

1. A fair coin is tossed twice. Let X be the number of heads, and let W be the indicator function of
the event {X = 2}. Find P(X = x,W = w) for all appropriate values of x and w.

2. Let X be a Bernoulli random variable, so that P(X = 0) = 1− p, P(X = 1) = p. Let Y = 1− X

and Z = XY . Find P(X = x, Y = y) and P(X = x, Z = z) for x , y, z ∈ {0, 1}.

3. The random variables X and Y have joint distribution function

FX,Y (x, y) =





0 if x < 0,

(1 − e−x )

(
1

2
+

1

π
tan−1 y

)
if x ≥ 0.

Show that X and Y are (jointly) continuously distributed.

4. Let X and Y have joint distribution function F . Show that

P(a < X ≤ b, c < Y ≤ d) = F(b, d)− F(a, d)− F(b, c)+ F(a, c)

whenever a < b and c < d .

5. Let X , Y be discrete random variables taking values in the integers, with joint mass function f .
Show that, for integers x, y,

f (x, y) = P(X ≥ x, Y ≤ y)− P(X ≥ x + 1, Y ≤ y)

− P(X ≥ x, Y ≤ y − 1)+ P(X ≥ x + 1, Y ≤ y − 1).

Hence find the joint mass function of the smallest and largest numbers shown in r rolls of a fair die.

6. Is the function F(x, y) = 1 − e−xy , 0 ≤ x, y < ∞, the joint distribution function of some pair
of random variables?

2.7 Problems

1. Each toss of a coin results in a head with probability p. The coin is tossed until the first head
appears. Let X be the total number of tosses. What is P(X > m)? Find the distribution function of
the random variable X .

2. (a) Show that any discrete random variable may be written as a linear combination of indicator
variables.

(b) Show that any random variable may be expressed as the limit of an increasing sequence of discrete
random variables.

(c) Show that the limit of any increasing convergent sequence of random variables is a random
variable.

3. (a) Show that, if X and Y are random variables on a probability space (�,F,P), then so are
X + Y , XY , and min{X,Y }.

(b) Show that the set of all random variables on a given probability space (�,F,P) constitutes a
vector space over the reals. If � is finite, write down a basis for this space.

4. Let X have distribution function

F(x) =





0 if x < 0,
1
2 x if 0 ≤ x ≤ 2,

1 if x > 2,

13



[2.7.5]–[2.7.13] Exercises Random variables and their distributions

and let Y = X2. Find
(a) P

(
1
2 ≤ X ≤ 3

2

)
, (b) P(1 ≤ X < 2),

(c) P(Y ≤ X), (d) P(X ≤ 2Y ),

(e) P
(

X + Y ≤ 3
4

)
, (f) the distribution function of Z =

√
X .

5. Let X have distribution function

F(x) =





0 if x < −1,

1 − p if − 1 ≤ x < 0,

1 − p + 1
2 xp if 0 ≤ x ≤ 2,

1 if x > 2.

Sketch this function, and find: (a) P(X = −1), (b) P(X = 0), (c) P(X ≥ 1).

6. Buses arrive at ten minute intervals starting at noon. A man arrives at the bus stop a random
number X minutes after noon, where X has distribution function

P(X ≤ x) =





0 if x < 0,

x/60 if 0 ≤ x ≤ 60,

1 if x > 60.

What is the probability that he waits less than five minutes for a bus?

7. Airlines find that each passenger who reserves a seat fails to turn up with probability 1
10 indepen-

dently of the other passengers. EasyPeasy Airlines always sell 10 tickets for their 9 seat aeroplane
while RyeLoaf Airways always sell 20 tickets for their 18 seat aeroplane. Which is more often
over-booked?

8. A fairground performer claims the power of telekinesis. The crowd throws coins and he wills
them to fall heads up. He succeeds five times out of six. What chance would he have of doing at least
as well if he had no supernatural powers?

9. Express the distribution functions of

X+ = max{0, X}, X− = − min{0, X}, |X | = X+ + X−, −X,

in terms of the distribution function F of the random variable X .

10. Show that FX (x) is continuous at x = x0 if and only if P(X = x0) = 0.

11. The real number m is called a median of the distribution function F whenever limy↑m F(y) ≤
1
2 ≤ F(m).

(a) Show that every distribution function F has at least one median, and that the set of medians of F

is a closed interval of R.

(b) Show, if F is continuous, that F(m) = 1
2 for any median m.

12. Loaded dice.

(a) Show that it is not possible to weight two dice in such a way that the sum of the two numbers
shown by these loaded dice is equally likely to take any value between 2 and 12 (inclusive).

(b) Given a fair die and a loaded die, show that the sum of their scores, modulo 6, has the same
distribution as a fair die, irrespective of the loading.

13. A function d : S × S → R is called a metric on S if:

(i) d(s, t) = d(t, s) ≥ 0 for all s, t ∈ S,

(ii) d(s, t) = 0 if and only if s = t , and

(iii) d(s, t) ≤ d(s, u)+ d(u, t) for all s, t , u ∈ S.

14



Problems Exercises [2.7.14]–[2.7.17]

(a) Lévy metric. Let F and G be distribution functions and define the Lévy metric

dL(F,G) = inf
{
ǫ > 0 : G(x − ǫ)− ǫ ≤ F(x) ≤ G(x + ǫ)+ ǫ for all x

}
.

Show that dL is indeed a metric on the space of distribution functions.

(b) Total variation distance. Let X and Y be integer-valued random variables, and let

dTV(X,Y ) =
∑

k

∣∣P(X = k) − P(Y = k)
∣∣.

Show that dTV satisfies (i) and (iii) with S the space of integer-valued random variables, and that
dTV(X,Y ) = 0 if and only if X and Y have the same distribution. Thus dTV is a metric on the space
of equivalence classes of S with equivalence relation given by X ∼ Y if X and Y have the same
distribution. We call dTV the total variation distance.

Show that
dTV(X,Y ) = 2 sup

A⊆Z

∣∣P(X ∈ A)− P(Y ∈ A)
∣∣.

14. Ascertain in the following cases whether or not F is the joint distribution function of some pair
(X, Y ) of random variables. If your conclusion is affirmative, find the distribution functions of X and
Y separately.

F(x, y) =
{

1 − e−x−y if x, y ≥ 0,

0 otherwise.
(a)

F(x, y) =





1 − e−x − xe−y if 0 ≤ x ≤ y,

1 − e−y − ye−y if 0 ≤ y ≤ x,

0 otherwise.

(b)

15. It is required to place in order n books B1, B2, . . . , Bn on a library shelf in such a way that readers
searching from left to right waste as little time as possible on average. Assuming that each reader
requires book Bi with probability pi , find the ordering of the books which minimizes P(T ≥ k) for
all k, where T is the (random) number of titles examined by a reader before discovery of the required
book.

16. Transitive coins. Three coins each show heads with probability 3
5 and tails otherwise. The first

counts 10 points for a head and 2 for a tail, the second counts 4 points for both head and tail, and the
third counts 3 points for a head and 20 for a tail.

You and your opponent each choose a coin; you cannot choose the same coin. Each of you tosses

your coin and the person with the larger score wins £1010. Would you prefer to be the first to pick a
coin or the second?

17. Before the development of radar, inertial navigation, and GPS, flying to isolated islands (for
example, from Los Angeles to Hawaii) was somewhat ‘hit or miss’. In heavy cloud or at night it was
necessary to fly by dead reckoning, and then to search the surface. With the aid of a radio, the pilot
had a good idea of the correct great circle along which to search, but could not be sure which of the
two directions along this great circle was correct (since a strong tailwind could have carried the plane
over its target). When you are the pilot, you calculate that you can make n searches before your plane
will run out of fuel. On each search you will discover the island with probability p (if it is indeed in
the direction of the search) independently of the results of other searches; you estimate initially that
there is probability α that the island is ahead of you. What policy should you adopt in deciding the
directions of your various searches in order to maximize the probability of locating the island?
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[2.7.18]–[2.7.23] Exercises Random variables and their distributions

18. Eight pawns are placed randomly on a chessboard, no more than one to a square. What is the
probability that:

(a) they are in a straight line (do not forget the diagonals)?

(b) no two are in the same row or column?

19. Which of the following are distribution functions? For those that are, give the corresponding
density function f .

(a) F(x) =
{

1 − e−x2
x ≥ 0,

0 otherwise.

(b) F(x) =
{

e−1/x x > 0,

0 otherwise.

(c) F(x) = ex/(ex + e−x ), x ∈ R.

(d) F(x) = e−x2 + ex/(ex + e−x ), x ∈ R.

20. (a) If U and V are jointly continuous, show that P(U = V ) = 0.

(b) Let X be uniformly distributed on (0, 1), and let Y = X . Then X and Y are continuous, and
P(X = Y ) = 1. Is there a contradiction here?

21. Continued fractions. Let X be uniformly distributed on the interval [0, 1], and express X as a
continued fraction thus:

X =
1

Y1 +
1

Y2 +
1

Y3 + · · ·

.

Show that the joint mass function of Y1 and Y2 is

f (u, v) =
1

(uv + 1)(uv + u + 1)
, u, v = 1, 2, . . . .

22. Let V be a vector space of dimension n over a finite field F with q elements. Let X1, X2, . . . , Xm

be independent random variables, each uniformly distributed on V .

(a) Let ai ∈ F, i = 1, 2, . . . ,m, be not all zero. Show that the linear combination Z =
∑

i ai X i is
uniformly distributed on V .

(b) Let pm be the probability that X1, X2, . . . , Xm are linearly dependent. Show that, if m ≤ n + 1,

q−(n−m−1) ≤ pm ≤ q−(n−m), m = 1, 2, . . . , n + 1.

23. Modes. A random variable X with distribution function F is said to be unimodal† about a mode
M if F is convex on (−∞,M) and concave on (M,∞). Show that, if F is unimodal about M , then
the following hold.

(a) F is absolutely continuous, except possibly for an atom at M .

(b) If F is differentiable, then it has a density that is non-decreasing on (−∞,M) and non-increasing
on (M,∞), and furthermore, the set of modes of F is a closed bounded interval. [Cf. Problem
(2.7.11).]

(c) If the distribution functions F and G are unimodal about the same mode M , then aF + (1 − a)G

is unimodal about M for any 0 < a < 1.

†It is a source of potential confusion that the word ‘mode’ is used in several contexts. A function is sometimes

said to be unimodal if it has a unique maximum. The word mode is also used for the value(s) of x at which a

mass function (or density function) f (x) is maximized, and even on occasion the locations of its local maxima.
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3

Discrete random variables

3.1 Exercises. Probability mass functions

1. For what values of the constant C do the following define mass functions on the positive integers
1, 2, . . . ?

(a) Geometric: f (x) = C2−x .

(b) Logarithmic: f (x) = C2−x/x .

(c) Inverse square: f (x) = Cx−2.

(d) ‘Modified’ Poisson: f (x) = C2x/x!.

2. For a random variable X having (in turn) each of the four mass functions of Exercise (3.1.1), find:

(i) P(X > 1),

(ii) the most probable value of X ,

(iii) the probability that X is even.

3. We toss n coins, and each one shows heads with probability p, independently of each of the
others. Each coin which shows heads is tossed again. What is the mass function of the number of
heads resulting from the second round of tosses?

4. Let Sk be the set of positive integers whose base-10 expansion contains exactly k elements (so
that, for example, 1024 ∈ S4). A fair coin is tossed until the first head appears, and we write T for
the number of tosses required. We pick a random element, N say, from ST , each such element having
equal probability. What is the mass function of N?

5. Log-convexity. (a) Show that, if X is a binomial or Poisson random variable, then the mass

function f (k) = P(X = k) has the property that f (k − 1) f (k + 1) ≤ f (k)2 .

(b) Show that, if f (k) = 90/(πk)4, k ≥ 1, then f (k − 1) f (k + 1) ≥ f (k)2 .

(c) Find a mass function f such that f (k)2 = f (k − 1) f (k + 1), k ≥ 1.

3.2 Exercises. Independence

1. Let X and Y be independent random variables, each taking the values −1 or 1 with probability
1
2 , and let Z = XY . Show that X , Y , and Z are pairwise independent. Are they independent?

2. Let X and Y be independent random variables taking values in the positive integers and having
the same mass function f (x) = 2−x for x = 1, 2, . . . . Find:

(a) P(min{X,Y } ≤ x), (b) P(Y > X),
(c) P(X = Y ), (d) P(X ≥ kY ), for a given positive integer k,
(e) P(X divides Y ), (f) P(X = rY ), for a given positive rational r .



[3.2.3]–[3.3.5] Exercises Discrete random variables

3. Let X1, X2, X3 be independent random variables taking values in the positive integers and having

mass functions given by P(X i = x) = (1 − pi )p
x−1
i for x = 1, 2, . . . , and i = 1, 2, 3.

(a) Show that

P(X1 < X2 < X3) =
(1 − p1)(1 − p2)p2 p2

3

(1 − p2 p3)(1 − p1 p2 p3)
.

(b) Find P(X1 ≤ X2 ≤ X3).

4. Three players, A, B, and C, take turns to roll a die; they do this in the order ABCABCA. . . .

(a) Show that the probability that, of the three players, A is the first to throw a 6, B the second, and
C the third, is 216/1001.

(b) Show that the probability that the first 6 to appear is thrown by A, the second 6 to appear is thrown
by B, and the third 6 to appear is thrown by C, is 46656/753571.

5. Let Xr , 1 ≤ r ≤ n, be independent random variables which are symmetric about 0; that is,
Xr and −Xr have the same distributions. Show that, for all x , P(Sn ≥ x) = P(Sn ≤ −x) where
Sn =

∑n
r=1 Xr .

Is the conclusion necessarily true without the assumption of independence?

3.3 Exercises. Expectation

1. Is it generally true that E(1/X) = 1/E(X)? Is it ever true that E(1/X) = 1/E(X)?

2. Coupons. Every package of some intrinsically dull commodity includes a small and exciting
plastic object. There are c different types of object, and each package is equally likely to contain any
given type. You buy one package each day.

(a) Find the mean number of days which elapse between the acquisitions of the j th new type of object
and the ( j + 1)th new type.

(b) Find the mean number of days which elapse before you have a full set of objects.

3. Each member of a group of n players rolls a die.

(a) For any pair of players who throw the same number, the group scores 1 point. Find the mean and
variance of the total score of the group.

(b) Find the mean and variance of the total score if any pair of players who throw the same number
scores that number.

4. St Petersburg paradox†. A fair coin is tossed repeatedly. Let T be the number of tosses until
the first head. You are offered the following prospect, which you may accept on payment of a fee. If

T = k, say, then you will receive £2k . What would be a ‘fair’ fee to ask of you?

5. Let X have mass function

f (x) =
{

{x(x + 1)}−1 if x = 1, 2, . . . ,

0 otherwise,

and let α ∈ R. For what values of α is it the case‡ that E(Xα) < ∞?

†This problem was mentioned by Nicholas Bernoulli in 1713, and Daniel Bernoulli wrote about the question

for the Academy of St Petersburg.

‡If α is not integral, than E(Xα) is called the fractional moment of order α of X . A point concerning

notation: for real α and complex x = reiθ , xα should be interpreted as rαeiθα , so that |xα | = rα . In particular,

E(|Xα |) = E(|X |α).
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Expectation Exercises [3.3.6]–[3.3.12]

6. Show that var(a + X) = var(X) for any random variable X and constant a.

7. Arbitrage. Suppose you find a warm-hearted bookmaker offering payoff odds of π(k) against

the kth horse in an n-horse race where
∑n

k=1{π(k) + 1}−1 < 1. Show that you can distribute your
bets in such a way as to ensure you win.

8. You roll a conventional fair die repeatedly. If it shows 1, you must stop, but you may choose to
stop at any prior time. Your score is the number shown by the die on the final roll. What stopping
strategy yields the greatest expected score? What strategy would you use if your score were the square
of the final roll?

9. Continuing with Exercise (3.3.8), suppose now that you lose c points from your score each time

you roll the die. What strategy maximizes the expected final score if c = 1
3 ? What is the best strategy

if c = 1?

10. Random social networks. Let G = (V , E) be a random graph with m = |V | vertices and
edge-set E . Write dv for the degree of vertex v, that is, the number of edges meeting at v. Let Y be a
uniformly chosen vertex, and Z a uniformly chosen neighbour of Y .

(a) Show that EdZ ≥ EdY .

(b) Interpret this inequality when the vertices represent people, and the edges represent friendship.

11. The gambler Lester Savage makes up to three successive bets that a fair coin flip will show heads.
He places a stake on each bet, which, if a head is shown, pays him back twice the stake. If a tail is
shown, he loses his stake.

His stakes are determined as follows. Let x > y > z > 0. He bets x on the first flip; if it shows
heads he quits, otherwise he continues. If he continues, he bets y on the second flip; if it shows heads
he quits, otherwise he continues. If he continues, he bets z on the third flip.

Let G be his accumulated gain (positive or negative). List the possible values of G and their
probabilities. Show that E(G) = 0, and find var(G) and P(G < 0).

Lester decides to stick with the three numbers x , y, z but to vary their order. How should he place
his bets in order to simultaneously minimize both P(G < 0) and var(G)? Explain.

12. Quicksort†. A set of n different words is equally likely to be in any of the n! possible orders. It
is decided to place them in lexicographic order using the following algorithm.

(i) Compare the first word w with the others, and find the set of earlier words and the set of later
words.

(ii) Iterate the procedure on each of the two sets thus obtained.

(iii) Continue until the final ordering is achieved.

(a) Give an expression for the mean number cn of comparisons required.

(b) Show that cn = 2n(log n + γ − 2)+ O(1) as n → ∞, where γ is Euler’s constant.

(c) Let n be replaced by a random variable N with mass function

P(N = n) =
A

(n − 1)n(n + 1)
, n ≥ 2,

for suitable A. Show that the mean number of comparisons is 4.

†Invented by C. A. R. Hoare in 1959.
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[3.4.1]–[3.4.9] Exercises Discrete random variables

3.4 Exercises. Indicators and matching

1. (a) A biased coin is tossed n times, and heads shows with probability p on each toss. A run is a
sequence of throws which result in the same outcome, so that, for example, the sequence HHTHTTH
contains five runs. Show that the expected number of runs is 1 + 2(n − 1)p(1 − p). Find the variance
of the number of runs.

(b) Let h heads and t tails be arranged randomly in a line. Find the mean and variance of the number
of runs of heads

2. An urn contains n balls numbered 1, 2, . . . , n. We remove k balls at random (without replacement)
and add up their numbers. Find the mean and variance of the total.

3. Of the 2n people in a given collection of n couples, exactly m die. Assuming that the m have
been picked at random, find the mean number of surviving couples. This problem was formulated by
Daniel Bernoulli in 1768.

4. Urn R contains n red balls and urn B contains n blue balls. At each stage, a ball is selected at
random from each urn, and they are swapped. Show that the mean number of red balls in urn R after

stage k is 1
2 n{1 + (1 − 2/n)k}. This ‘diffusion model’ was described by Daniel Bernoulli in 1769.

5. Consider a square with diagonals, with distinct source and sink. Each edge represents a component
which is working correctly with probability p, independently of all other components. Write down an
expression for the Boolean function which equals 1 if and only if there is a working path from source
to sink, in terms of the indicator functions X i of the events {edge i is working} as i runs over the set
of edges. Hence calculate the reliability of the network.

6. A system is called a ‘k out of n’ system if it contains n components and it works whenever k or
more of these components are working. Suppose that each component is working with probability
p, independently of the other components, and let Xc be the indicator function of the event that
component c is working. Find, in terms of the Xc, the indicator function of the event that the system
works, and deduce the reliability of the system.

7. The probabilistic method. Let G = (V , E) be a finite graph. For any set W of vertices and any
edge e ∈ E , define the indicator function

IW (e) =
{

1 if e connects W and W c,

0 otherwise.

Set NW =
∑

e∈E IW (e). Show that there exists W ⊆ V such that NW ≥ 1
2 |E |.

8. A total of n bar magnets are placed end to end in a line with random independent orientations.
Adjacent like poles repel, ends with opposite polarities join to form blocks. Let X be the number of
blocks of joined magnets. Find E(X) and var(X).

9. Matching. (a) Use the inclusion–exclusion formula (3.4.2) to derive the result of Example
(3.4.3), namely: in a random permutation of the first n integers, the probability that exactly r retain
their original positions is

1

r !

(
1

2!
−

1

3!
+ · · · +

(−1)n−r

(n − r)!

)
.

(b) Let dn be the number of derangements of the first n integers (that is, rearrangements with no
integers in their original positions). Show that dn+1 = ndn + ndn−1 for n ≥ 2. Deduce the result of
part (a).

(c) Given that exactly m integers retain their original positions, find the probability that the integer 1
remains in first place.
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Examples of discrete variables Exercises [3.4.10]–[3.5.5]

10. Birthdays. In a lecture audience, there are n students born in 2011, and they were born on
independent, uniformly distributed days. Calculate the mean of the number B of pairs of students
sharing a birthday, and show that E(B) > 1 if and only if n ≥ 28. Compare this with the result of
Problem (1.8.30). Find the variance of B.

11. Inaba’s theorem. Show that any set of 10 points in the plane R2 can be covered by a suitable
placement of disjoint open unit disks. [Hint: Consider an infinite array of unit disks whose centres
form a triangular lattice.]

12. Days are either wet or dry, and, given today’s weather, tomorrow’s is the same as today’s with
probability p, and different otherwise. Let wn be the probability that the weather n days into the
future from today will be wet. Show that wn+1 = 1 − p + (2p − 1)wn−1 , and find wn . What is the
mean number of wet days in the next week?

13. An urn contains b balls of which g are green. Balls are sampled from the urn at random, one by
one. After a ball is sampled, its colour is noted, and it is discarded. Find the mean and variance of the
number of green balls in a sample of size n (≤ b).

14. Ménages (1.8.23) revisited. Let n (≥ 2) heterosexual couples be seated randomly at a circular
table, subject only to the rule that the sexes alternate. There is no requirement that couples sit together.
Let X be the number of couples seated adjacently. Show that E(X) = 2 and var(X) = 2 − 2/(n − 1).

3.5 Exercises. Examples of discrete variables

1. De Moivre trials. Each trial may result in any of t given outcomes, the i th outcome having
probability pi . Let Ni be the number of occurrences of the i th outcome in n independent trials. Show
that

P(Ni = ni for 1 ≤ i ≤ t) =
n!

n1! n2! · · · nt !
p

n1
1 p

n2
2 · · · p

nt
t

for any collection n1, n2, . . . , nt of non-negative integers with sum n. The vector N is said to have
the multinomial distribution.

2. In your pocket is a random number N of coins, where N has the Poisson distribution with
parameter λ. You toss each coin once, with heads showing with probability p each time. Show that
the total number of heads has the Poisson distribution with parameter λp.

3. Let X be Poisson distributed where P(X = n) = pn(λ) = λne−λ/n! for n ≥ 0. Show that

P(X ≤ n) = 1 −
∫ λ

0 pn(x) dx .

4. Capture–recapture. A population of b animals has had a number a of its members captured,
marked, and released. Let X be the number of animals it is necessary to recapture (without re-release)
in order to obtain m marked animals. Show that

P(X = n) =
a

b

(
a − 1

m − 1

)(
b − a

n − m

)/(
b − 1

n − 1

)
,

and find EX . This distribution has been called negative hypergeometric.

5. Compound Poisson distribution. Let 3 be a positive random variable with density function
f and distribution function F , and let Y have the Poisson distribution with parameter 3. Show for
n = 0, 1, 2, . . . that

P(Y ≤ n) =
∫ ∞

0
pn(λ)F(λ) dλ, P(Y > n) =

∫ ∞

0
pn(λ)[1 − F(λ)] dλ,

where pn(λ) = e−λλn/n!.
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[3.6.1]–[3.6.9] Exercises Discrete random variables

3.6 Exercises. Dependence

1. Show that the collection of random variables on a given probability space and having finite
variance forms a vector space over the reals.

2. Find the marginal mass functions of the multinomial distribution of Exercise (3.5.1).

3. Let X and Y be discrete random variables with joint mass function

f (x, y) =
C

(x + y − 1)(x + y)(x + y + 1)
, x, y = 1, 2, 3, . . . .

Find the marginal mass functions of X and Y , calculate C , and also the covariance of X and Y .

4. Let X and Y be discrete random variables with mean 0, variance 1, and covariance ρ. Show that

E
(
max{X2,Y 2}

)
≤ 1 +

√
1 − ρ2.

5. Mutual information. Let X and Y be discrete random variables with joint mass function f .

(a) Show that E(log fX (X)) ≥ E(log fY (X)).

(b) Show that the mutual information

I = E

(
log

{
f (X,Y )

fX (X) fY (Y )

})

satisfies I ≥ 0, with equality if and only if X and Y are independent.

6. Voter paradox. Let X , Y , Z be discrete random variables with the property that their values are
distinct with probability 1. Let a = P(X > Y ), b = P(Y > Z), c = P(Z > X).

(a) Show that min{a, b, c} ≤ 2
3 , and give an example where this bound is attained.

(b) Show that, if X,Y, Z are independent and identically distributed, then a = b = c = 1
2 .

(c) Find min{a, b, c} and supp min{a, b, c} when P(X = 0) = 1, and Y, Z are independent with

P(Z = 1) = P(Y = −1) = p, P(Z = −2) = P(Y = 2) = 1 − p. Here, supp denotes the

supremum as p varies over [0, 1].

[Part (a) is related to de Condorcet’s observation that, in an election, it is possible for more than half
of the voters to prefer candidate A to candidate B, more than half B to C, and more than half C to A.]

7. Benford’s distribution, or the law of anomalous numbers. If one picks a numerical entry at
random from an almanac, or the annual accounts of a corporation, the first two significant digits, X ,
Y , are found to have approximately the joint mass function

f (x, y) = log10

(
1 +

1

10x + y

)
, 1 ≤ x ≤ 9, 0 ≤ y ≤ 9.

Find the mass function of X and an approximation to its mean. [A heuristic explanation for this
phenomenon may be found in the second of Feller’s volumes published in 1971. See also Berger and
Hill 2015.]

8. Let X and Y have joint mass function

f ( j, k) =
c( j + k)a j+k

j ! k!
, j, k ≥ 0,

where a is a constant. Find c, P(X = j), P(X + Y = r), and E(X).

9. Correlation. Let X , Y , Z be non-degenerate and independent random variables. By considering
U = X + Y , V = Y + Z , W = Z − X , or otherwise, show that having positive correlation is not a
transitive relation.
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Conditional distributions and conditional expectation Exercises [3.6.10]–[3.7.7]

10. Cauchy–Schwarz inequality. Use the identity a2d2 + b2c2 − 2abcd = (ad − bc)2 to prove the
Cauchy–Schwarz inequality.

11. Cantelli, or one-sided Chebyshov inequality. Show that

P
(

X − E(X) > t
)

≤
var(X)

t2 + var(X)
, t > 0.

3.7 Exercises. Conditional distributions and conditional expectation

1. Show the following:

(a) E(aY + bZ | X) = aE(Y | X)+ bE(Z | X) for a, b ∈ R,

(b) E(Y | X) ≥ 0 if Y ≥ 0,

(c) E(1 | X) = 1,

(d) if X and Y are independent then E(Y | X) = E(Y ),

(e) (‘pull-through property’) E(Yg(X) | X) = g(X)E(Y | X) for any suitable function g,

(f) (‘tower property’) E{E(Y | X, Z) | X} = E(Y | X) = E{E(Y | X) | X, Z}.

2. Uniqueness of conditional expectation. Suppose that X and Y are discrete random variables,
and that φ(X) and ψ(X) are two functions of X satisfying

E
(
φ(X)g(X)

)
= E

(
ψ(X)g(X)

)
= E

(
Yg(X)

)

for any function g for which all the expectations exist. Show that φ(X) and ψ(X) are almost surely
equal, in that P(φ(X) = ψ(X)) = 1.

3. Suppose that the conditional expectation of Y given X is defined as the (almost surely) unique
function ψ(X) such that E(ψ(X)g(X)) = E(Yg(X)) for all functions g for which the expectations
exist. Show (a)–(f) of Exercise (3.7.1) above (with the occasional addition of the expression ‘with
probability 1’).

4. Conditional variance formula. How should we define var(Y | X), the conditional variance of
Y given X? Show that var(Y ) = E(var(Y | X))+ var(E(Y | X)).

5. The lifetime of a machine (in days) is a random variable T with mass function f . Given that the
machine is working after t days, what is the mean subsequent lifetime of the machine when:

(a) f (x) = (N + 1)−1 for x ∈ {0, 1, . . . , N},
(b) f (x) = 2−x for x = 1, 2, . . . .

(The first part of Problem (3.11.13) may be useful.)

6. Let X1, X2, . . . be identically distributed random variables with mean µ and variance σ 2, and
let N be a random variable taking values in the non-negative integers and independent of the X i . Let
S = X1 + X2 + · · · + X N . Show that E(S | N) = µN , and deduce that E(S) = µE(N). Find var S

in terms of the first two moments of N , using the conditional variance formula of Exercise (3.7.4).

7. A factory has produced n robots, each of which is faulty with probability φ. To each robot a test
is applied which detects the fault (if present) with probability δ. Let X be the number of faulty robots,
and Y the number detected as faulty. Assuming the usual independence, show that

E(X | Y ) =
{

nφ(1 − δ)+ (1 − φ)Y
}
/(1 − φδ).
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[3.7.8]–[3.8.3] Exercises Discrete random variables

8. Families. Each child is equally likely to be male or female, independently of all other children.

(a) Show that, in a family of predetermined size, the expected number of boys equals the expected
number of girls. Was the assumption of independence necessary?

(b) A randomly selected child is male; does the expected number of his brothers equal the expected
number of his sisters? What happens if you do not require independence?

9. Let X and Y be independent with mean µ. Explain the error in the following equation:

‘E(X | X + Y = z) = E(X | X = z − Y ) = E(z − Y ) = z − µ’.

10. A coin shows heads with probability p. Let Xn be the number of flips required to obtain a run of

n consecutive heads. Show that E(Xn) =
∑n

k=1 p−k .

11. Conditional covariance. Give a definition of the conditional covariance cov(X,Y | Z). Show
that

cov(X,Y ) = E
(
cov(X,Y | Z)

)
+ cov

(
E(X | Z),E(Y | Z)

)
.

12. An urn contains initially b blue balls and r red balls, where b, r ≥ 2. Balls are drawn one by one
without replacement. Show that the mean number of draws until the first colour drawn is first repeated
equals 3.

13. (a) Let X be uniformly distributed on {0, 1, . . . , n}. Show that var(X) = 1
12 n(n + 2).

(b) A student sits two examinations, gaining X and Y marks, respectively. In the interests of economy
and fairness, the examiner determines that X shall be uniformly distributed on {0, 1, . . . , n}, and that,
conditional on X = k, Y shall have the binomial bin(n, k/n) distribution.

(i) Show that E(Y ) = 1
2 n, and var(Y ) = 1

12 (n
2 + 4n − 2).

(ii) Find E(X + Y ) and var(X + Y ).

14. Let X , Y be discrete integer-valued random variables with the joint mass function

f (x, y) =
λye−2λ

x! (y − x)!
, 0 ≤ x ≤ y < ∞.

Show that X and Y are each Poisson-distributed, and that the conditional distribution of X given Y is
binomial.

3.8 Exercises. Sums of random variables

1. Let X and Y be independent variables, X being equally likely to take any value in {0, 1, . . . ,m},
and Y similarly in {0, 1, . . . , n}. Find the mass function of Z = X + Y . The random variable Z is
said to have the trapezoidal distribution.

2. Let X and Y have the joint mass function

f (x, y) =
C

(x + y − 1)(x + y)(x + y + 1)
, x, y = 1, 2, 3, . . . .

Find the mass functions of U = X + Y and V = X − Y.

3. Let X and Y be independent geometric random variables with respective parameters α and β.
Show that

P(X + Y = z) =
αβ

α − β

{
(1 − β)z−1 − (1 − α)z−1}.
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Simple random walk Exercises [3.8.4]–[3.9.3]

4. Let {Xr : 1 ≤ r ≤ n} be independent geometric random variables with parameter p. Show that
Z =

∑n
r=1 Xr has a negative binomial distribution. [Hint: No calculations are necessary.]

5. Pepys’s problem†. Sam rolls 6n dice once; he needs at least n sixes. Isaac rolls 6(n + 1) dice;
he needs at least n + 1 sixes. Who is more likely to obtain the number of sixes he needs?

6. Stein–Chen equation. Let N be Poisson distributed with parameterλ. Show that, for any function

g such that the expectations exist, E(Ng(N)) = λEg(N +1). More generally, if S =
∑N

r=1 Xr , where
{Xr : r ≥ 0} are independent identically distributed non-negative integer-valued random variables,
show that

E
(
Sg(S)

)
= λE

(
g(S + X0)X0

)
.

7. Random sum. Let S =
∑N

i=1 X i , where the X i , i ≥ 1, are independent, identically distributed

random variables with mean µ and variance σ 2, and N is positive, integer-valued, and independent
of the X i . Show that E(S) = µE(N), and

var(S) = σ 2E(N)+ µ2 var(N).

8. Let X and Y be independent random variables with the geometric distributions fX (k) = pqk−1,

fY (k) = λµk−1, for k ≥ 1, where p + q = λ + µ = 1 and q 6= µ. Write down P(X + Y =
n + 1, X = k), and hence find the distribution of X + Y , and the conditional distribution of X given
that X + Y = n + 1. Does anything special occur when q = µ?

3.9 Exercises. Simple random walk

1. Let T be the time which elapses before a simple random walk is absorbed at either of the absorbing

barriers at 0 and N , having started at k where 0 ≤ k ≤ N . Show that P(T < ∞) = 1 and E(T k) < ∞
for all k ≥ 1.

2. For simple random walk S with absorbing barriers at 0 and N , let W be the event that the particle
is absorbed at 0 rather than at N , and let pk = P(W | S0 = k). Show that, if the particle starts at
k where 0 < k < N , the conditional probability that the first step is rightwards, given W , equals
ppk+1/pk . Deduce that the mean duration Jk of the walk, conditional on W , satisfies the equation

ppk+1 Jk+1 − pk Jk + (pk − ppk+1)Jk−1 = −pk, for 0 < k < N,

subject to the convention that pN JN = 0. Show that we may take as boundary condition J0 = 0.

Find Jk in the symmetric case, when p = 1
2 .

3. With the notation of Exercise (3.9.2), suppose further that at any step the particle may remain
where it is with probability r where p + q + r = 1. Show that Jk satisfies

ppk+1 Jk+1 − (1 − r)pk Jk + qpk−1 Jk−1 = −pk

and that, when ρ = q/p 6= 1,

Jk =
1

p − q
·

1

ρk − ρN

{
k(ρk + ρN )−

2NρN (1 − ρk)

1 − ρN

}
.

†Pepys put a simple version of this problem to Newton in 1693, but was reluctant to accept the correct reply

he received.
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4. Problem of the points. A coin is tossed repeatedly, heads turning up with probability p on each
toss. Player A wins the game if m heads appear before n tails have appeared, and player B wins
otherwise. Let pmn be the probability that A wins the game. Set up a difference equation for the pmn .
What are the boundary conditions?

5. Consider a simple random walk on the set {0, 1, 2, . . . , N} in which each step is to the right with
probability p or to the left with probability q = 1 − p. Absorbing barriers are placed at 0 and N .
Show that the number X of positive steps of the walk before absorption satisfies

E(X) = 1
2

{
Dk − k + N(1 − pk)

}

where Dk is the mean number of steps until absorption having started at k, and pk is the probability
of absorption at 0.

6. Gambler’s ruin revisited. Let Dk be the duration of a random walk on {0, 1, 2, . . . , a} with
absorbing barriers at 0 and a, and started at k, with steps X i satisfying

P(X i = 1) = P(X i = −1) = p, P(X i = 0) = 1 − 2p.

(a) When p = 1
2 , show that

var(Dk ) = 1
3 k(a − k)

{
(a − k)2 + k2 − 2

}
.

(b) Deduce (without lengthy calculation) that, for p < 1
2 ,

var(Dk) =
k(a − k)

(2p)2

[
1 − 2p + 1

3

{
(a − k)2 + k2 − 2

}]
.

7. Returns and visits by random walk. Consider a simple symmetric random walk on the set
{0, 1, 2, . . . , a} with absorbing barriers at 0 and a, and starting at k where 0 < k < a. Let rk be
the probability the walk ever returns to k, and let vx be the mean number of visits to point x before
absorption. Find rk , and hence show that

vx =
{

2x(a − k)/a for 0 < x < k,

2k(a − x)/a for k < x < a.

8. (a) “Millionaires should always gamble, poor men never” [J. M. Keynes].

(b) “If I wanted to gamble, I would buy a casino” [P. Getty].

(c) “That the chance of gain is naturally overvalued, we may learn from the universal success of
lotteries” [Adam Smith, 1776].

Discuss.

3.10 Exercises. Random walk: counting sample paths

1. Consider a symmetric simple random walk S with S0 = 0. Let T = min{n ≥ 1 : Sn = 0} be the
time of the first return of the walk to its starting point. Show that

P(T = 2n) =
1

2n − 1

(
2n

n

)
2−2n,
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and deduce that E(Tα) < ∞ if and only if α < 1
2 . You may need Stirling’s formula: n! ∼

n
n+ 1

2 e−n
√

2π .

2. For a symmetric simple random walk starting at 0, show that the mass function of the maximum
satisfies P(Mn = r) = P(Sn = r)+ P(Sn = r + 1) for r ≥ 0.

3. For a symmetric simple random walk starting at 0, show that the probability that the first visit to
S2n takes place at time 2k equals the product P(S2k = 0)P(S2n−2k = 0), for 0 ≤ k ≤ n.

4. Samuels’ theorem. A simple random walk on the integers Z moves one step rightwards with
probability p and otherwise one step leftwards, where p ∈ (0, 1). Suppose it starts at 0 and has
absorbing barriers at ±a. Show that the time and place of absorption are independent.

5. Hitting time theorem. Let {Xm : m ≥ 1} be independent, identically distributed random
variables taking integer values such that P(X1 ≥ −1) = 1. Let Sn be the (generalized) random walk
given by Sn = k + X1 + X2 + · · · + Xn , where k ≥ 0 is given, and let T = inf{n ≥ 0 : Sn = 0} be
the hitting time of 0.

Show by induction that P(T = n) = (k/n)P(Sn = 0) when n ≥ 1, k ≥ 0.

3.11 Problems

1. (a) Let X and Y be independent discrete random variables, and let g, h : R → R. Show that g(X)

and h(Y ) are independent.

(b) Show that two discrete random variables X and Y are independent if and only if fX,Y (x, y) =
f X (x) fY (y) for all x, y ∈ R.

(c) More generally, show that X and Y are independent if and only if f X,Y (x, y) can be factorized
as the product g(x)h(y) of a function of x alone and a function of y alone.

2. Show that if var(X) = 0 then X is almost surely constant; that is, there exists a ∈ R such that

P(X = a) = 1. (First show that if E(X2) = 0 then P(X = 0) = 1.)

3. (a) Let X be a discrete random variable and let g : R → R. Show that, when the sum is absolutely
convergent,

E(g(X)) =
∑

x

g(x)P(X = x).

(b) If X and Y are independent and g, h : R → R, show that E(g(X)h(Y )) = E(g(X))E(h(Y ))
whenever these expectations exist.

4. Let� = {ω1, ω2, ω3}, with P(ω1) = P(ω2) = P(ω3) = 1
3 . Define X,Y, Z : � → R by

X (ω1) = 1, X (ω2) = 2, X (ω3) = 3,

Y (ω1) = 2, Y (ω2) = 3, Y (ω3) = 1,

Z(ω1) = 2, Z(ω2) = 2, Z(ω3) = 1.

Show that X and Y have the same mass functions. Find the mass functions of X + Y , XY , and X/Y .
Find the conditional mass functions fY |Z and fZ |Y .

5. For what values of k and α is f a mass function, where:

(a) f (n) = k/{n(n + 1)}, n = 1, 2, . . . ,

(b) f (n) = knα , n = 1, 2, . . . (zeta or Zipf distribution)?
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6. Let X and Y be independent Poisson variables with respective parameters λ and µ. Show that:

(a) X + Y is Poisson, parameter λ+ µ,

(b) the conditional distribution of X , given X + Y = n, is binomial, and find its parameters.

7. If X is geometric, show that P(X = n + k | X > n) = P(X = k) for k, n ≥ 1. Why do you think
that this is called the ‘lack of memory’ property? Does any other distribution on the positive integers
have this property?

8. Show that the sum of two independent binomial variables, bin(m, p) and bin(n, p) respectively,
is bin(m + n, p).

9. Let N be the number of heads occurring in n tosses of a biased coin. Write down the mass function
of N in terms of the probability p of heads turning up on each toss. Prove and utilize the identity

∑

i

(
n

2i

)
x2i yn−2i = 1

2

{
(x + y)n + (y − x)n

}

in order to calculate the probability pn that N is even. Compare with Problem (1.8.20).

10. An urn contains N balls, b of which are blue and r (= N −b) of which are red. A random sample
of n balls is withdrawn without replacement from the urn. Show that the number B of blue balls in
this sample has the mass function

P(B = k) =
(

b

k

)(
N − b

n − k

)/(
N

n

)
.

This is called the hypergeometric distribution with parameters N , b, and n. Show further that if N , b,
and r approach ∞ in such a way that b/N → p and r/N → 1 − p, then

P(B = k) →
(

n

k

)
pk (1 − p)n−k .

You have shown that, for small n and large N , the distribution of B barely depends on whether or not
the balls are replaced in the urn immediately after their withdrawal.

11. Let X and Y be independent bin(n, p) variables, and let Z = X + Y . Show that the conditional
distribution of X given Z = N is the hypergeometric distribution of Problem (3.11.10).

12. Suppose X and Y take values in {0, 1}, with joint mass function f (x, y). Write f (0, 0) = a,
f (0, 1) = b, f (1, 0) = c, f (1, 1) = d , and find necessary and sufficient conditions for X and Y to
be: (a) uncorrelated, (b) independent.

13. Tail sum for expectation.

(a) If X takes non-negative integer values show that

E(X) =
∞∑

n=0

P(X > n).

(b) An urn contains b blue and r red balls. Balls are removed at random until the first blue ball is
drawn. Show that the expected number drawn is (b + r + 1)/(b + 1).

(c) The balls are replaced and then removed at random until all the remaining balls are of the same
colour. Find the expected number remaining in the urn.
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(d) Let X and Y be independent random variables taking values in the non-negative integers, with
finite means. Let U = min{X,Y } and V = max{X,Y }. Show that

E(U) =
∞∑

r=1

P(X ≥ r)P(Y ≥ r),

E(V ) =
∞∑

r=1

[
P(X ≥ r)+ P(Y ≥ r)− P(X ≥ r)P(Y ≥ r)

]
,

E(U V ) =
∞∑

r,s=1

P(X ≥ r)P(Y ≥ s).

(e) Let X take values in the non-negative integers. Show that

E(X2) = E(X)+ 2

∞∑

r=0

rP(X > r) =
∞∑

r=0

(2r + 1)P(X > r),

and find a similar formula for E(X3).

14. Let X1, X2, . . . , Xn be independent random variables, and suppose that Xk is Bernoulli with
parameter pk . Show that Y = X1 + X2 + · · · + Xn has mean and variance given by

E(Y ) =
n∑

1

pk , var(Y ) =
n∑

1

pk(1 − pk).

Show that, for E(Y ) fixed, var(Y ) is a maximum when p1 = p2 = · · · = pn . That is to say, the
variation in the sum is greatest when individuals are most alike. Is this contrary to intuition?

15. Let X = (X1, X2, . . . , Xn) be a vector of random variables. The covariance matrix V(X) of X is
defined to be the symmetric n by n matrix with entries (vi j : 1 ≤ i, j ≤ n) given by vi j = cov(X i , X j ).
Show that |V(X)| = 0 if and only if the X i are linearly dependent with probability one, in that
P(a1 X1 + a2 X2 + · · · + an Xn = b) = 1 for some a and b. (|V| denotes the determinant of V.)

16. Let X and Y be independent Bernoulli random variables with parameter 1
2 . Show that X + Y and

|X − Y | are dependent though uncorrelated.

17. A secretary drops n matching pairs of letters and envelopes down the stairs, and then places the
letters into the envelopes in a random order. Use indicators to show that the number X of correctly
matched pairs has mean and variance 1 for all n ≥ 2. Show that the mass function of X converges to
a Poisson mass function as n → ∞.

18. Let X = (X1, X2, . . . , Xn) be a vector of independent random variables each having the Bernoulli
distribution with parameter p. Let f : {0, 1}n → R be increasing, which is to say that f (x) ≤ f (y)

whenever xi ≤ yi for each i .

(a) Let e(p) = E( f (X)). Show that e(p1) ≤ e(p2) if p1 ≤ p2.

(b) FKG inequality†. Let f and g be increasing functions from {0, 1}n into R. Show by induction
on n that cov( f (X), g(X)) ≥ 0.

19. Let R(p) be the reliability function of a network G with a given source and sink, each edge of
which is working with probability p, and let A be the event that there exists a working connection
from source to sink. Show that

R(p) =
∑

ω

IA(ω)p
N(ω)(1 − p)m−N(ω)

†Named after C. Fortuin, P. Kasteleyn, and J. Ginibre 1971, but due in this form to T. E. Harris 1960.
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[3.11.20]–[3.11.25] Exercises Discrete random variables

where ω is a typical realization (i.e. outcome) of the network, N(ω) is the number of working edges
of ω, and m is the total number of edges of G .

Deduce that R′(p) = cov(IA, N)/{p(1 − p)}, and hence that

R(p)(1 − R(p))

p(1 − p)
≤ R′(p) ≤

√
m R(p)(1 − R(p))

p(1 − p)
.

20. Let R(p) be the reliability function of a network G , each edge of which is working with probability
p.

(a) Show that R(p1 p2) ≤ R(p1)R(p2) if 0 ≤ p1, p2 ≤ 1.

(b) Show that R(pγ ) ≤ R(p)γ for all 0 ≤ p ≤ 1 and γ ≥ 1.

21. DNA fingerprinting. In a certain style of detective fiction, the sleuth is required to declare “the
criminal has the unusual characteristics . . . ; find this person and you have your man”. Assume that

any given individual has these unusual characteristics with probability 10−7 independently of all other

individuals, and that the city in question contains 107 inhabitants. Calculate the expected number of
such people in the city.

(a) Given that the police inspector finds such a person, what is the probability that there is at least
one other?

(b) If the inspector finds two such people, what is the probability that there is at least one more?

(c) How many such people need be found before the inspector can be reasonably confident that he
has found them all?

(d) For the given population, how improbable should the characteristics of the criminal be, in order
that he (or she) be specified uniquely?

22. In 1710, J. Arbuthnot observed that male births had exceeded female births in London for 82
successive years. Arguing that this showed the two sexes cannot be equally likely, since 2−82 is
very small, he attributed this run of masculinity to Divine Providence. Let us assume that each birth
results in a girl with probability p = 0.485, and that the outcomes of different confinements are
independent of each other. Ignoring the possibility of twins (and so on), show that the probability that

girls outnumber boys in 2n live births is no greater than
(2n

n

)
pnqn{q/(q − p)}, where q = 1 − p.

Suppose that 20,000 children are born in each of 82 successive years. Show that the probability that
boys outnumber girls every year is at least 0.99. You may need Stirling’s formula.

23. Consider a symmetric random walk with an absorbing barrier at N and a reflecting barrier at 0
(so that, when the particle is at 0, it moves to 1 at the next step). Let αk( j) be the probability that
the particle, having started at k, visits 0 exactly j times before being absorbed at N . We make the
convention that, if k = 0, then the starting point counts as one visit. Show that

αk( j) =
N − k

N2

(
1 −

1

N

) j−1

, j ≥ 1, 0 ≤ k ≤ N .

24. Problem of the points (3.9.4). A coin is tossed repeatedly, heads turning up with probability p

on each toss. Player A wins the game if heads appears at least m times before tails has appeared n

times; otherwise player B wins the game. Find the probability that A wins the game.

25. A coin is tossed repeatedly, heads appearing on each toss with probability p. A gambler starts
with initial fortune k (where 0 < k < N ); he wins one point for each head and loses one point for
each tail. If his fortune is ever 0 he is bankrupted, whilst if it ever reaches N he stops gambling to buy

a Jaguar. Suppose that p < 1
2 . Show that the gambler can increase his chance of winning by doubling

the stakes. You may assume that k and N are even.

What is the corresponding strategy if p ≥ 1
2 ?
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26. A compulsive gambler is never satisfied. At each stage he wins £1 with probability p and loses
£1 otherwise. Find the probability that he is ultimately bankrupted, having started with an initial
fortune of £k.

27. Range of random walk. Let {Xn : n ≥ 1} be independent, identically distributed random
variables taking integer values. Let S0 = 0, Sn =

∑n
i=1 X i . The range Rn of S0, S1, . . . , Sn is the

number of distinct values taken by the sequence. Show that P(Rn = Rn−1 +1) = P(S1S2 · · · Sn 6= 0),
and deduce that, as n → ∞,

1

n
E(Rn) → P(Sk 6= 0 for all k ≥ 1).

Hence show that, for the simple random walk, n−1E(Rn) → |p − q| as n → ∞.

28. Arc sine law for maxima. Consider a symmetric random walk S starting from the origin, and
let Mn = max{Si : 0 ≤ i ≤ n}. Show that, for i = 2k, 2k + 1, the probability that the walk reaches

M2n for the first time at time i equals 1
2 P(S2k = 0)P(S2n−2k = 0).

29. Let S be a symmetric random walk with S0 = 0, and let Nn be the number of points that have
been visited by S exactly once up to time n. Show that E(Nn) = 2.

30. Family planning. Consider the following fragment of verse entitled ‘Note for the scientist’.

People who have three daughters try for more,
And then its fifty–fifty they’ll have four,
Those with a son or sons will let things be,
Hence all these surplus women, QED.

(a) What do you think of the argument?

(b) Show that the mean number of children of either sex in a family whose fertile parents have
followed this policy equals 1. (You should assume that each delivery yields exactly one child
whose sex is equally likely to be male or female.) Discuss.

31. Dirichlet distribution. Letβ > 1, let p1, p2, . . . denote the prime numbers, and let N(1), N(2),

. . . be independent random variables, N(i ) having mass function P(N(i ) = k) = (1 − γi )γ
k
i for

k ≥ 0, where γi = p
−β
i for all i . Show that M =

∏∞
i=1 p

N(i)
i is a random integer with mass function

P(M = m) = Cm−β for m ≥ 1 (this may be called the Dirichlet distribution), where C is a constant
satisfying

C =
∞∏

i=1

(
1 −

1

p
β
i

)
=
( ∞∑

m=1

1

mβ

)−1

.

32. N + 1 plates are laid out around a circular dining table, and a hot cake is passed between them in
the manner of a symmetric random walk: each time it arrives on a plate, it is tossed to one of the two

neighbouring plates, each possibility having probability 1
2 . The game stops at the moment when the

cake has visited every plate at least once. Show that, with the exception of the plate where the cake
began, each plate has probability 1/N of being the last plate visited by the cake.

33. Simplex algorithm†. There are
(n

m

)
points ranked in order of merit with no matches. You seek

to reach the best, B. If you are at the j th best, you step to any one of the j −1 better points, with equal
probability of stepping to each. Let r j be the expected number of steps to reach B from the j th best

vertex. Show that r j =
∑ j−1

k=1 k−1. Give an asymptotic expression for the expected time to reach B

from the worst vertex, for large m, n.

†Due to George Dantzig (1914–2005), not to be confused with David van Dantzig.
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34. Dimer problem. There are n unstable molecules in a row, m1,m2, . . . ,mn . One of the n − 1
pairs of neighbours, chosen at random, combines to form a stable dimer; this process continues until
there remain Un isolated molecules no two of which are adjacent. Show that the probability that m1

remains isolated is
∑n−1

r=0 (−1)r /r ! → e−1 as n → ∞. Deduce that limn→∞ n−1EUn = e−2.

35. Poisson approximation. Let {Ir : 1 ≤ r ≤ n} be independent Bernoulli random variables with
respective parameters {pr : 1 ≤ r ≤ n} satisfying pr ≤ c < 1 for all r and some c. Let λ =

∑n
r=1 pr

and X =
∑n

r=1 Xr . Show that

P(X = k) =
λke−λ

k!

{
1 + O

(
λmax

r
pr +

k2

λ
max pr

)}
.

36. Sampling. The length of the tail of the r th member of a troop of N chimeras is xr . A random
sample of n chimeras is taken (without replacement) and their tails measured. Let Ir be the indicator
of the event that the r th chimera is in the sample. Set

Xr = xr Ir , Y =
1

n

N∑

r=1

Xr , µ =
1

N

N∑

r=1

xr , σ 2 =
1

N

N∑

r=1

(xr − x)2.

Show that E(Y ) = µ, and var(Y ) = (N − n)σ 2/{n(N − 1)}.

37. Berkson’s fallacy. Any individual in a group G contracts a certain disease C with probability
γ ; such individuals are hospitalized with probability c. Independently of this, anyone in G may be
in hospital with probability a, for some other reason. Let X be the number in hospital, and Y the
number in hospital who have C (including those with C admitted for any other reason). Show that the
correlation between X and Y is

ρ(X,Y ) =

√
γ p

1 − γ p
·
(1 − a)(1 − γ c)

a + γ c − aγ c
,

where p = a + c − ac.

It has been stated erroneously that, when ρ(X,Y ) is near unity, this is evidence for a causal
relation between being in G and contracting C .

38. A telephone sales company attempts repeatedly to sell new kitchens to each of the N families
in a village. Family i agrees to buy a new kitchen after it has been solicited Ki times, where the Ki

are independent identically distributed random variables with mass function f (n) = P(Ki = n). The
value ∞ is allowed, so that f (∞) ≥ 0. Let Xn be the number of kitchens sold at the nth round of

solicitations, so that Xn =
∑N

i=1 I{Ki =n}. Suppose that N is a random variable with the Poisson
distribution with parameter ν.

(a) Show that the Xn are independent random variables, Xr having the Poisson distribution with
parameter ν f (r).

(b) The company loses heart after the T th round of calls, where T = inf{n : Xn = 0}. Let
S = X1 + X2 + · · · + XT be the number of solicitations made up to time T . Show further that
E(S) = νE(F(T )) where F(k) = f (1)+ f (2) + · · · + f (k).

39. A particle performs a random walk on the non-negative integers as follows. When at the point n

(> 0) its next position is uniformly distributed on the set {0, 1, 2, . . . , n + 1}. When it hits 0 for the
first time, it is absorbed. Suppose it starts at the point a.

(a) Find the probability that its position never exceeds a, and prove that, with probability 1, it is
absorbed ultimately.

(b) Find the probability that the final step of the walk is from 1 to 0 when a = 1.
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(c) Find the expected number of steps taken before absorption when a = 1.

40. Let G be a finite graph with neither loops nor multiple edges, and write dv for the degree of
the vertex v. An independent set is a set of vertices no pair of which is joined by an edge. Let
α(G) be the size of the largest independent set of G . Use the probabilistic method to show that
α(G) ≥

∑
v 1/(dv + 1). [This conclusion is sometimes referred to as Turán’s theorem.]

41. Kelly betting, or proportional investment. A gambler (or ‘investor’) makes a sequence of
bets of the following type: on each bet, for a given stake S, the return is either the loss of the stake
with probability q (= 1 − p) or a win totalling (1 + r)S with probability p. (Assume the usual
independence.) The entry fee is cS where c < r . Show that the mean gain per play for stake S is gS,
where g = pr − q − c (with a negative value indicating a loss).

The gambler decides to bet a fixed fraction f of her current fortune at each stage. That is, given
a current fortune F , she bets f F for some fixed f . Show that her resulting fortune is

F ′ = F
{

1 + f [(1 + r)I − (1 + c)]
}
,

where I is the indicator function of a win.

Suppose p > (1 + c)/(1 + r). The gambler considers two policies for choosing f : for given F ,

(a) maximize E(F ′),
(b) maximize E(log F ′).
Find an expression for f in each case. Show that fa > fb, and explain why a cautious gambler may
prefer (b) to (a) even though this entails a slower rate of growth of her expected fortune.

42. Random adding sequence. Let x1, x2, . . . , xr be given reals with r ≥ 2, and let the sequence
{Xn : n ≥ 1} of random variables be given as follows. First, Xn = xn for n ≤ r . For n ≥ r , we
set Xn+1 = XUn + XVn where Un , Vn are uniformly distributed on {1, 2, . . . , n}, and the family
{Un, Vn : n ≥ r} are independent. Show that

E(Xn) =
2n

r(r + 1)

r∑

k=1

xk .

Enthusiasts may care to show that, when r = 1 = x1 and n → ∞,

1

n2
E(X2

n) →
1

2π
sinh π.

43. Random subtracting sequence. Let X1 = 1. For n ≥ 1, let Xn+1 = XUn − XVn where Un , Vn

are uniformly distributed on {1, 2, . . . , n}, and the family {Un, Vn : n ≥ 1} are independent. Show
that

1

n
var(Xn) → −

sin(π
√

3)

π
√

3
as n → ∞.

You may find it useful to recall Euler’s sine formula:

sin(πx) = πx

∞∏

n=1

(
1 −

x2

n2

)
.

44. Bilbo baffled. Gollum has concealed the ring of power in a box chosen randomly from a row
of n ≥ 1 such boxes. Bilbo opens a box at random. If the ring is not there, his occult powers are
sufficient for him to learn whether the ring lies to the right or the left, and he opens further boxes
accordingly. Find an expression for the mean number bn of boxes opened before finding the ring, and
deduce that bn ∼ 2 log n as n → ∞.
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45. Bilbo reloaded. In a variant of the previous problem, we have n = 2r − 1, and Bilbo invariably
chooses the middle box. Find the mean number mr of boxes inspected, and the asymptotics of mr as
r → ∞.

46. Fairies. A bad fairy has cursed you. A good fairy has concealed the magic word that cancels
the curse in one of n numbered boxes, and she has told you that it is in box i with probability pi , for
i = 1, 2, . . . , n. Each day you are permitted to look in one box.

(a) Assume that, each day, you inspect a box chosen at random, box i being chosen with probability
ci , and, furthermore, boxes chosen on different days are independent. Find the mean number of
days that elapse before your release from the curse, and find the mass function c that minimizes
this mean value.

(b) Suppose now that you remember the results of your previous failed searches. What now is your
optimal policy, and what is the mean number of days that elapse?

(c) After each search, the bad fairy removes the magic word, which is immediately replaced by the
good fairy in an independently chosen box, with the same distribution at each replacement. What
now is your optimal policy? Find the mean number of elapsed days.

47. Duration of play. Gwen and John play ‘best of 2n + 1 games’, and play stops as soon as either
has won n + 1 games. Gwen wins each game with probability γ ∈ (0, 1) and John otherwise (with
probability δ = 1 − γ ). Different games have independent winners. Write down an expression for
the probability fr that Gwen wins r games altogether, given that John has won the match, and deduce
that r fr = (n + r)γ fr−1 for 0 < r ≤ n.

Hence or otherwise, prove that the mean total number Tn of games in the match is

Tn = (n + 1)

(
γ (1 − Pn)

δ
+
δPn

γ
+ 1

)
− (2n + 1)

(
2n

n

)
(γ δ)n ,

where Pn is the probability that Gwen wins the match.

When p = 1
2 , show that

Tn = 2n − 2
√

n/π + 2 + O(n−1/2), as n → ∞.

48. Stirling numbers, Bell numbers, Dobinski’s formula. Let S(n, k) be the number of ways to
partition N = {1, 2, . . . , n} into k non-empty parts. Suppose each element of N is coloured with one
of c distinct colours. Prove that

cn =
n∑

k=1

S(n, k)c(c − 1) · · · (c − k + 1).

Deduce that the nth moment of the Poisson distribution with parameter 1 equals the number bn of
ways to partition N , that is, bn =

∑n
k=1 S(n, k).

49. Server advantage? Let β, γ ∈ [0, 1]. Bertha and Harold play a game of rackets. Bertha wins
the point with probability β when she serves, and Harold wins with probability γ when he serves.
The first player to win n points wins the game, and Bertha serves first. Consider the following rules
for changing server.

(a) Service alternates between players.

(b) Service is retained until a point is lost, and then passes to the other player.

(c) Service is retained until a point is won, and then passes to the other player.

(d) Bertha serves the first n points, and then Harold serves any further points required to decide the
outcome.
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Show that P(Bertha wins) is the same for all four rules.

50. Entropy. Let X , Y be discrete random variables with respective mass functions fX , fY , and joint
mass function fX,Y . Define the:

entropy of X : H(X) = −E
(
log fX (X)

)
,

joint entropy of X given Y : H(X,Y ) = −E
(
log f X,Y (X,Y )

)
,

conditional entropy of X given Y : H(X | Y ) = −E
(
log fX |Y (X | Y )

)
.

[It is normal to use logarithms to base 2 in information theory, but we use natural logarithms here.]

(a) Show that H(X + a) = H(X) for a ∈ R.

(b) Show that H(X)− H(X | Y ) = I (X; Y ), where I is the mutual information of Exercise (3.6.5).

(c) Show when X and Y are independent that H(X,Y ) = H(X) + H(Y ).

(d) Show that the entropy of the binomial distribution bin(n, p) is non-decreasing in n.

(e) Find the entropy of the geometric distribution, parameter p, and show it is decreasing in p.

51. (a) Show that the entropy H(λ), as defined in Problem (3.11.50), of the Poisson distribution with
parameter λ (using natural logarithms) is given by

H(λ) = λ− λ log λ+ e−λ
∞∑

m=0

λm log (m!)

m!
.

(b) Recalling Exercise (3.6.5) and Example (3.7.5), show that the mutual information of the number
N of hens and the number K of chicks is I (N; K ) = H(λ) − H(λ(1 − p)). Deduce that H(λ)

is increasing in λ.

(c) Spend a short time seeking to show the last statement directly from the expression in part (a).

52. Dirichlet distribution revisited. Let β > 1, and let X , Y be independent random variables with
the Dirichlet distribution with parameter β of Problem (3.11.31).

(a) Show that the events Ep = {X is divisible by p} are independent for p prime.

(b) Deduce Euler’s formula
∏

p prime

(
1 −

1

pβ

)
=

1

ζ(β)
,

where ζ(β) is the Riemann zeta function, ζ(β) =
∑∞

m=1 m−β , and β > 1.

(c) Show that the probability that X is ‘square-free’ (that is, indivisible by any perfect square other
than 1) equals 1/ζ(2β).

(d) Let H be the highest common factor of X and Y . Prove that

P(H = m) =
m−2β

ζ(2β)
, m = 1, 2, . . . .

53. Strict Oxford secrets. A strict Oxford secret is a secret which you may tell to no more than
one other person†. Of a group of n + 1 Oxonians, one learns a strict secret. In accordance with the
rules, she tells it to one other person selected uniformly at random from the rest of the group. Each
confidante tells the secret to exactly one person picked at random from the rest of the group, excluding

†Oliver Franks (1905–1992) defined a secret in the Oxford sense as one that you can tell to no more than

one person at a time.
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the person from whom they heard the secret. When someone who already knows the secret hears it
repeated, the entire process ceases.

Let S be the total number of people who eventually know the secret. Find the distribution of S,
and show that

1
√

n
E(S) →

√
π/2,

1

n
var(S) → 1

2 (4 − π), as n → ∞.

With r denoting n!/(n − r)!, you may find it useful that

∞∑

r=1

nr

nr
∼
√
πn/2,

∞∑

r=1

r
nr

nr
∼ n.

54. Transposition shuffle. From a pack of n cards, two different cards are selected randomly, and
they are transposed. Let pr be the probability that any given card (say, the top card) is in its original
position after r > 0 such independent transpositions.

(a) Show that

pr =
1

n
+

n − 1

n

(
n − 3

n − 1

)r

.

(b) Find E(Cr ), where Cr is the number of cards in their original place after r random transpositions.

(c) Show that, for large n, the number r of transpositions needed for E(Cr ) ≈ 2 is approximately
1
2 n log n.

55. Random walk on the d-cube. The d-cube Cd is the graph with vertex-set {0, 1}d , and an edge
between two vertices x = (x1, x2, . . . , xd ) and y = (y1, y2, . . . , yd) if and only if

∑
i |xi − yi | = 1.

A particle pursues a random walk on Cd . At each epoch of time, it moves from its current position
to a neighbour chosen uniformly at random, with the usual independence. Two vertices are called
‘antipodal’ if the graph-distance between them equals d .

Show that the mean first passage time md of the walker between two antipodal vertices satisfies

µd ∼ 2d as d → ∞.

56. The lost boarding pass, Problem (1.8.39) revisited.

(a) A particle performs a type of random walk on the set S = {1, 2, . . . , n}. Let Xr be the particle’s
position at time r . Given that Xr = x , Xr+1 is chosen uniformly at random from the set
{1} ∪ {x + 1, x + 2, . . . , n}. The particle stops moving at the first instant it arrives at either 1 or
n (so that 1 and n are ‘absorbing’, but absorption does not occur at time 0 even if X0 ∈ {1, n}).
The point m ∈ {1, 2, . . . , n} is said to be hit if Xr = m for some r ≥ 1. Show that

P(m is hit | X0 = 1) =





1

2
if m = 1,

1

n − m + 2
if m ≥ 2.

(b) The n passengers on a flight in an airplane with n seats have been told their seat numbers. They
board the plane one by one. The first person sits in a seat chosen uniformly at random from the
n seats then available. Subsequent passengers sit in their assigned seats whenever they find them
available, or otherwise in a randomly chosen empty seat. For m ≥ 2, what is the probability that
the mth passenger finds his or her assigned seat to be already occupied?

57. Paley–Zygmund ‘second moment’ inequalities.

(a) Let X be a random variable with E(X) > 0 and 0 < E(X2) < ∞. Show that

P(X > aE(X)) ≥
(1 − a)2E(X)2

E(X2)
for 0 ≤ a ≤ 1.
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(b) Deduce that, if P(X ≥ 0) = 1,

P(X = 0) ≤
var(X)

E(X2)
≤

var(X)

E(X)2
.

(c) Let A1, A2, . . . , An be events, and let X =
∑n

r=1 IAr be the sum of their indicator functions.
Show that

P(X = 0) ≤
1

E(X)
+

1

E(X)2

∑∗
P(Ar ∩ As),

where the summation
∑∗ is over all distinct unordered pairs r , s such that Ar and As are not

independent.
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4

Continuous random variables

4.1 Exercises. Probability density functions

1. For what values of the parameters are the following functions probability density functions?

(a) f (x) = C{x(1 − x)}−
1
2 , 0 < x < 1, the density function of the ‘arc sine law’.

(b) f (x) = C exp(−x − e−x ), x ∈ R, the density function of the ‘extreme-value distribution’.

(c) f (x) = C(1 + x2)−m , x ∈ R.

2. Find the density function of Y = aX , where a > 0, in terms of the density function of X . Show
that the continuous random variables X and −X have the same distribution function if and only if
fX (x) = fX (−x) for all x ∈ R.

3. If f and g are density functions of random variables X and Y , show that α f + (1 − α)g is a
density function for 0 ≤ α ≤ 1, and describe a random variable of which it is the density function.

4. Survival. Let X be a positive random variable with density function f and distribution function
F . Define the hazard function H(x) = − log[1 − F(x)] and the hazard rate

r(x) = lim
h↓0

1

h
P(X ≤ x + h | X > x), x ≥ 0.

Show that:

(a) r(x) = H ′(x) = f (x)/{1 − F(x)},
(b) If r(x) increases with x then H(x)/x increases with x ,

(c) H(x)/x increases with x if and only if [1 − F(x)]α ≤ 1 − F(αx) for all 0 ≤ α ≤ 1,

(d) If H(x)/x increases with x , then H(x + y) ≥ H(x)+ H(y) for all x, y ≥ 0.

4.2 Exercises. Independence

1. I am selling my house, and have decided to accept the first offer exceeding £K . Assuming
that offers are independent random variables with common distribution function F , find the expected
number of offers received before I sell the house.

2. Let X and Y be independent random variables with common distribution function F and density

function f . Show that V = max{X,Y } has distribution function P(V ≤ x) = F(x)2 and density
function fV (x) = 2 f (x)F(x), x ∈ R. Find the density function of U = min{X,Y }.

3. The annual rainfall figures in Bandrika are independent identically distributed continuous random
variables {Xr : r ≥ 1}. Find the probability that:



Expectation Exercises [4.2.4]–[4.3.5]

(a) X1 < X2 < X3 < X4,

(b) X1 > X2 < X3 < X4.

4. Let {Xr : r ≥ 1} be independent and identically distributed with distribution function F satisfying
F(y) < 1 for all y, and let Y (y) = min{k : Xk > y}. Show that

lim
y→∞

P
(
Y (y) ≤ EY (y)

)
= 1 − e−1.

5. Peripheral points. Let Pi = (X i ,Yi ), 1 ≤ i ≤ n, be independent, uniformly distributed points

in the unit square [0, 1]2. A point Pi is called peripheral if, for all r = 1, 2, . . . , n, either Xr ≤ X i

or Yr ≤ Yi , or both. Show that the mean number of peripheral points is n
(

3
4

)n−1
.

6. Let U and V be independent and uniformly distributed on the interval [0, 1].

(a) Show that

P(x < V < U2) = 1
3 − x + 2

3 x3/2, x ∈ [0, 1).

(b) Find the conditional density function of V given U2 > V .

(c) Find the probability that the equation x2 + 2U x + V = 0 has two distinct real roots.

(d) Given that the two roots R1 and R2 are real and distinct, find the probability that both roots have
absolute value less than 1.

7. Random hemispheres.

(a) We select n points independently and uniformly at random on the perimeter of a circle. What is
the probability that they all lie within some semicircle?

(b) This time we place our n points uniformly on the surface of a sphere in R3. Show that they all lie

within some hemisphere with probability (n2 − n + 2)2−n .

4.3 Exercises. Expectation

1. For what values of α is E(|X |α) finite, if the density function of X is:

(a) f (x) = e−x for x ≥ 0,

(b) f (x) = C(1 + x2)−m for x ∈ R?

If α is not integral, then E(|X |α) is called the fractional moment of order α of X , whenever the
expectation is well defined; see Exercise (3.3.5).

2. Let X1, X2, . . . , Xn be independent identically distributed random variables, and let Sm = X1 +
X2 + · · · + Xm . Assume that P(Sn = 0) = 0. Show that, if m ≤ n, then E(Sm/Sn) = m/n.

3. Let X be a non-negative random variable with density function f . Show that

E(Xr ) =
∫ ∞

0
r xr−1P(X > x) dx

for any r ≥ 1 for which the expectation is finite.

4. Mallows’s inequality. Show that the mean µ, median m, and variance σ 2 of the continuous

random variable X satisfy (µ − m)2 ≤ σ 2. [It can be shown that |µ − m| ≤ σ
√

0.6. See Basu and
Dasgupta 1997.]

5. Let X be a random variable with mean µ and continuous distribution function F .

(a) Show that ∫ a

−∞
F(x) dx =

∫ ∞

a
[1 − F(x)] dx,
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if and only if a = µ.

(b) Show that the set of medians of X is the set of all a for which E|X − a| is a minimum.

6. Let X1, X2, . . . , Xn be non-negative random variables with finite means. Show that

E(max
j

X j ) =
∑

j

E(X j )−
∑

i< j

E(min{X i , X j })+ · · · + (−1)n+1E(min
j

X j ).

7. Tails and moments. If X is a continuous random variable and E(Xr ) exists, where r ≥ 1 is an
integer, show that

∫ ∞

0
xr−1P(|X | > x) dx < ∞, and xr P(|X | > x) → 0 as x → ∞.

8. Integral inequality. Let X be a random variable taking values in [0, a], with density function

f satisfying f (x) ≤ b for all x . Show that E(X) ≥ (2b)−1 . More generally, show for n ≥ 1 that
E(Xn) ≥ 1/[(n + 1)bn].

[Hint: You may find a form of Steffensen’s integral inequality to be useful, namely: for integrable
functions g and h satisfying 0 ≤ h(x) ≤ 1 and g increasing on [0, a], we have

∫ s

0
g(x) dx ≤

∫ a

0
g(x)h(x) dx,

where s =
∫ a

0 h(x) dx .]

9. Let X be continuous with finite variance. Show that g(a) = E((X − a)2) is a minimum when
a = E(X).

10. Archery. A target comprising a disc with centre O and unit radius is hit by n arrows. They strike
independent spots on the target, and for each the chance of hitting within distance a ∈ (0, 1) of O is

a2. Let R be the radius of the smallest circle centred at O that covers all the arrow strikes. Show that
R has density f (r) = 2nr2n−1, 0 ≤ r ≤ 1, and find the mean area of this circle.

The arrow furthest from O falls out. Show that the area of the smallest circle centred at O and
covering the remaining arrows is (n − 1)π/(n + 1).

11. Johnson–Rogers inequality. Let X be continuous with variance σ 2, and also unimodal about a

mode M . Show that |M − EX | ≤ σ
√

3, with equality if and only if X is uniformly distributed. [You
may use without proof the fact that X , with distribution function F , is unimodal about 0 if and only if
there exist independent random variables U and Y , where U is uniformly distributed on (0, 1), such
that UY has distribution function F ; this is called Khinchin’s representation.]

What can you say about |M − m| where m is a median of X?

12. A football is placed at a uniformly distributed position W in the unit interval [0, 1], and kicked
with a non-zero random velocity V having a distribution that is symmetric about 0. Assuming that V

and W are independent, show (neglecting air resistance) that the time T at which the football hits an
endpoint of the interval is unimodal.

13. Continuation. Here are two further questions concerning the football of the previous exercise.

(a) Suppose that the football’s speed |V | has density function g(u) = u−3e−1/u for u > 0. Show
that the hitting time T is exponentially distributed with parameter 1.

(b) Find the density function of T when V has the so-called Laplace density function g(v) = 1
2 e−|v|.
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4.4 Exercises. Examples of continuous variables

1. Prove that the gamma function satisfies Ŵ(t) = (t − 1)Ŵ(t − 1) for t > 1, and deduce that

Ŵ(n) = (n − 1)! for n = 1, 2, . . . . Show that Ŵ( 1
2 ) =

√
π and deduce a closed form for Ŵ(n + 1

2 )

for n = 0, 1, 2, . . . .

2. Show, as in paragraph (4.4.8), that the beta function satisfies B(a, b) = Ŵ(a)Ŵ(b)/Ŵ(a + b).

3. Let X have the uniform distribution on [0, 1]. For what function g does Y = g(X) have the
exponential distribution with parameter 1?

4. Find the distribution function of a random variable X with the Cauchy distribution. For what
values of α does |X | have a finite (possibly fractional) moment of order α?

5. Log-normal distribution. Let Y = eX where X has the N(0, 1) distribution. Find the density
function of Y .

6. Stein’s identity. Let X be N(µ, σ 2). Show that E{(X − µ)g(X)} = σ 2E(g′(X)) when both
sides exist.

7. With the terminology of Exercise (4.1.4), find the hazard rate when:

(a) X has the Weibull distribution, P(X > x) = exp(−αxβ−1), x ≥ 0,

(b) X has the exponential distribution with parameter λ,

(c) X has density function α f + (1 − α)g, where 0 < α < 1 and f and g are the densities of
exponential variables with respective parameters λ and µ. What happens to this last hazard rate
r(x) in the limit as x → ∞?

8. Mills’s ratio. (a) For the standard normal density function φ(x), show that φ′(x)+ xφ(x) = 0.
Hence show that Mills’s ratio M(x) = (1 −8(x))/φ(x) satisfies

1

x
−

1

x3
< M(x) <

1

x
−

1

x3
+

3

x5
, x > 0.

Here, 8 denotes the N(0, 1) distribution function.

(b) Let X have the N(µ, σ 2) distribution where σ 2 > 0, and show that

E(X | X > c) = µ+
σ

M((c − µ)/σ )
,

E(X | X < c) = µ−
σ

M((c − µ)/σ )
.

9. Ordered exponentials. Let U , V , W be independent, exponentially distributed random variables
with respective parameters λ, µ, ν. Show that

P(U ≤ V ≤ W ) =
λµν

ν(ν + µ)(ν + µ+ λ)
.

10. Let U and X be independent, where U is uniform on (0, 1) and X is exponentially distributed

with parameter λ. Show that E(min{U, X}) = λ−1e−λ − λ−2(1 − e−λ).

11. Pareto distribution. (a) Let X be uniformly distributed on [0, 1], and let a > 0. Find the
distribution of Y = aX/(1 − X).

(b) Let Y1,Y2, . . . ,Yn be independent random variables with the same distribution as Y . Show that
S = min{Y1,Y2, . . . ,Yn} has the Pareto density function

f (s) =
n

a

(
a

a + s

)n+1

, s > 0,
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and find its mean value.

(c) Find the distribution function of T = max{Y1,Y2, . . . ,Yn}.

12. Arc sine distribution. Let X have the Cauchy distribution, and show that Y = 1/(1 + X2) has
the arc sine density function

fY (y) =
2

π
√

1 − y2
, 0 ≤ y ≤ 1.

13. Let X1, X2, . . . be independent and uniformly distributed on [−c, c].

(a) Find expressions for the probability that

(i) X i ≥ b for 1 ≤ i ≤ n,

(ii) X i ≤ b for 1 ≤ i ≤ n,

where b ∈ [−c, c].

(b) Show that the median Z of X1, X2, . . . , X2n+1 (that is, the middle value) has density function

fZ (z) =
(2n + 1)!

(n!)2
·
(c2 − z2)n

(2c)2n+1
, z ∈ [−c, c].

(c) Deduce the value of the integral
∫ c
−c(c

2 − z2) dz.

(d) Calculate the mean and variance of Z .

14. Beta distribution of the second kind. Let X have the beta distribution β(a, b). Show that
Y = X/(1 − X) has density function

f (y) =
Ŵ(a + b)

Ŵ(a)Ŵ(b)
·

ya−1

(1 + y)a+b
, y > 0.

This is called the beta distribution of the second kind. Find E(Y n) where 1 ≤ n < b.

15. Let Z have the Ŵ(1, t) distribution of paragraph (4.4.6). Show that

E
(
|Z − t |/

√
t
)

=
2e−t t

t− 1
2

Ŵ(t)
.

4.5 Exercises. Dependence

1. Clarke’s example. Let

f (x, y) =
|x |

√
8π

exp
{
−|x | − 1

2 x2 y2
}
, x, y ∈ R.

Show that f is a continuous joint density function, but that the (first) marginal density function

g(x) =
∫∞
−∞ f (x, y) dy is not continuous. Let Q = {qn : n ≥ 1} be a set of real numbers, and define

fQ(x, y) =
∞∑

n=1

( 1
2 )

n f (x − qn, y).
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Show that fQ is a continuous joint density function whose first marginal density function is discon-
tinuous at the points in Q. Can you construct a continuous joint density function whose first marginal
density function is continuous nowhere?

2. Buffon’s needle revisited. Two grids of parallel lines are superimposed: the first grid contains
lines distance a apart, and the second contains lines distance b apart which are perpendicular to those
of the first set. A needle of length r (< min{a, b}) is dropped at random. Show that the probability it
intersects a line equals r(2a + 2b − r)/(πab).

3. Buffon’s cross. The plane is ruled by the lines y = n, for n = 0,±1, . . . , and onto this plane we
drop a cross formed by welding together two unit needles perpendicularly at their midpoints.

(a) Let Z be the number of intersections of the cross with the grid of parallel lines. Show that
E(Z/2) = 2/π and that

var(Z/2) =
3 −

√
2

π
−

4

π2
.

(b) If you had the choice of using either a needle of unit length, or the cross, in estimating 2/π , which
would you use?

(c) Would it be preferable to use a unit needle on the grid of Exercise (4.5.2) with a = b = 1?

4. Let X and Y be independent random variables each having the uniform distribution on [0, 1]. Let
U = min{X,Y } and V = max{X,Y }. Find E(U), and hence calculate cov(U, V ).

5. (a) Let X and Y be independent continuous random variables. Show that

E
(
g(X)h(Y )

)
= E(g(X))E(h(Y )),

whenever these expectations exist. If X and Y have the exponential distribution with parameter 1, find

E
{

exp( 1
2 (X + Y ))

}
.

(b) Let X have finite variance. Show that 2 var(X) = E
(
(X − Y )2

)
where Y is independent and

distributed as X .

6. Three points A, B, C are chosen independently at random on the circumference of a circle. Let
b(x) be the probability that at least one of the angles of the triangle ABC exceeds xπ . Show that

b(x) =
{

1 − (3x − 1)2 if 1
3 ≤ x ≤ 1

2 ,

3(1 − x)2 if 1
2 ≤ x ≤ 1.

Hence find the density and expectation of the largest angle in the triangle.

7. Let {Xr : 1 ≤ r ≤ n} be independent and identically distributed with finite variance, and define

X = n−1∑n
r=1 Xr . Show that cov(X, Xr − X) = 0.

8. Let X and Y be independent random variables with finite variances, and let U = X + Y and
V = XY . Under what condition are U and V uncorrelated?

9. Let X and Y be independent continuous random variables, and let U be independent of X and Y

taking the values ±1 with probability 1
2 . Define S = U X and T = UY . Show that S and T are in

general dependent, but S2 and T 2 are independent.

10. Let X , Y , Z be independent and identically distributed continuous random variables. Show that

P(X > Y ) = P(Z > Y ) = 1
2 . What is P(Z > Y | X > Y )?

11. Hoeffding’s identity. Let (X,Y ) and (U, V ) be independent random vectors with common
distribution function F(x, y) and marginal distribution functions FX (x) and FY (y). Show that, when
|cov(X, Y )| < ∞, we have that E{(X − U)(Y − V )} = 2 cov(X,Y ) and

cov(X,Y ) =
∫∫

R2

[
F(x, y)− FX (x)FY (y)

]
dx dy.
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[4.5.12]–[4.5.20] Exercises Continuous random variables

12. Let the pair X , Y have the bivariate normal distribution with means 0, variances 1, and correlation
ρ. Show that

E
(
max{X,Y }

)
=
√

1 − ρ

π
.

13. Let X be exponentially distributed with parameter λ. Let N be the greatest integer not greater
than X , and set M = X − N . Show that M and N are independent. Find the density function of M

and the distribution of N .

14. Let X and Y be independent N(0, 1) random variables. Show, if 2a < 1, 2b < 1, and 4b2 <

(1 − 2a)(1 − 2c), that

E
(
exp{aX2 + 2bXY + cY 2}

)
=

1√
(1 − 2a)(1 − 2c)− 4b2

.

15. Contingency coefficient. Let X , Y be random variables with joint density function f (x, y) and
marginal densities g, h. Their contingency coefficient is given as

φ2 := E

(
f (X,Y )

g(X)h(Y )

)
− 1.

If X , Y are bivariate normal with correlation ρ ∈ (−1, 1), show that 1 + φ2 = 1/(1 − ρ2). Show in

addition that their mutual information (see Exercise (3.6.5)) is I = − 1
2 log(1 − ρ2).

16. Let X be uniformly distributed on [−1, 1]. Are the random variables Zn = cos(nπ X), n =
1, 2, . . . , correlated? Are they independent? Explain your answers.

17. Mean absolute difference. The mean absolute difference, or MAD, of two independent random
variables X , Y , with common distribution function F , is given by MAD = E|X − Y |. Show that, for
non-negative random variables X , Y ,

MAD = 2

{
E(X)−

∫ ∞

0
(1 − F(x))2 dx

}
.

More generally, for X and Y taking values in R, with a common continuous distribution function with
unique inverse Q, show that

MAD =
∫∫

(0,1)2
|Q(u)− Q(v)| du dv.

Find MAD for the following distributions:

(a) uniform on [0, 1],

(b) exponential with parameter λ,

(c) Pareto with F(x) = 1 − x−a , x > 1,

(d) normal N(0, 1).

18. Absolute normals. Let X , Y be independent N(0, 1) random variables, and U = min{|X |, |Y |},
V = max{|X |, |Y |}. Show that E(U/V ) = (4/π) log

√
2.

19. Another random triangle. A point P = (X,Y ) is selected uniformly at random inside a triangle
1with corners (1, 0), (1, 1), (0, 1). Show that a triangle ABC with BC = X , CA = Y , AB = 2−X −Y

can always be constructed, and prove that the angle ÂBC is obtuse with probability 3 − 4 log 2.

20. Random variables X , Y have joint density function f (x, y) = 3
{
(x + y) − (x2 + y2)

}
for

x, y ∈ [0, 1]. Show that X and Y are uncorrelated but dependent.
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Conditional distributions and conditional expectation Exercises [4.6.1]–[4.6.12]

4.6 Exercises. Conditional distributions and conditional expectation

1. A point is picked uniformly at random on the surface of a unit sphere. Writing 2 and 8 for its
longitude and latitude, find the conditional density functions of 2 given 8, and of 8 given 2.

2. Show that the conditional expectation ψ(X) = E(Y | X) satisfies E(ψ(X)g(X)) = E(Yg(X)),
for any function g for which both expectations exist.

3. Construct an example of two random variables X and Y for which E(Y ) = ∞ but such that
E(Y | X) < ∞ almost surely.

4. Find the conditional density function and expectation of Y given X when they have joint density
function:

(a) f (x, y) = λ2e−λy for 0 ≤ x ≤ y < ∞,

(b) f (x, y) = xe−x(y+1) for x, y ≥ 0.

5. Let Y be distributed as bin(n, X), where X is a random variable having a beta distribution on
[0, 1] with parameters a and b. Describe the distribution of Y , and find its mean and variance. What
is the distribution of Y in the special case when X is uniform?

6. Let {Xr : r ≥ 1} be independent and uniformly distributed on [0, 1]. Let 0 < x < 1 and define

N = min{n ≥ 1 : X1 + X2 + · · · + Xn > x}.

Show that P(N > n) = xn/n!, and hence find the mean and variance of N .

7. Let X and Y be random variables with correlation ρ. Show that E(var(Y | X)) ≤ (1 −ρ2) var Y .

8. Let X,Y, Z be independent and exponential random variables with respective parameters λ,µ, ν.
Find P(X < Y < Z).

9. Let X and Y have the joint density f (x, y) = cx(y − x)e−y , 0 ≤ x ≤ y < ∞.

(a) Find c.

(b) Show that:

fX |Y (x | y) = 6x(y − x)y−3, 0 ≤ x ≤ y,

fY |X (y | x) = (y − x)ex−y, 0 ≤ x ≤ y < ∞.

(c) Deduce that E(X | Y ) = 1
2 Y and E(Y | X) = X + 2.

10. Let {Xr : r ≥ 0} be independent and identically distributed random variables with density
function f and distribution function F . Let N = min{n ≥ 1 : Xn > X0} and M = min{n ≥ 1 :
X0 ≥ X1 ≥ · · · ≥ Xn−1 < Xn}. Show that X N has distribution function F + (1 − F) log(1 − F),
and find P(M = m).

11. Let the point P = (X,Y ) be uniformly distributed in the square S = [0, 1]2, and denote by
f (x | D) the density function of X conditional on the event D that P lies on the diagonal of S through
the origin.

(a) Let U = X − Y . Find f (x | D) by conditioning on U = 0.

(b) Let V = Y/X . Find f (x | D) by conditioning on V = 1.

(c) Explain.

12. Threshold game. (a) Let X and Y be independent with density functions fX , fY and distribution
functions FX , FY . Show that

P(X < Y ) =
∫ ∞

−∞
FX (y) fY (y) dy.
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[4.6.13]–[4.7.5] Exercises Continuous random variables

(b) A and B play a game as follows. Each creates a random variable, denoted respectively UA and
UB , which is uniformly distributed on [0, 1]; assume UA and UB are independent, and neither
player knows the opponent’s value. Each player has the option to (once) discard their number and
to resample from the uniform distribution. After any such choices, the two numbers are compared
and the larger wins. Show that the strategy ‘replace your number if and only if it is less than
1
2 (

√
5 − 1)’ ensures a win with probability at least 1

2 .

13. Record times. Let X1, X2, . . . be independent, each with density function f : R → [0,∞).
The index r > 1 is called a record time if Xr > max{X1, X2, . . . , Xr−1}, and r = 1 is called a record
time by convention. Let Ar be the event that r is a record time.

(a) Show that the Ar are independent events with P(Ar ) = 1/r .

(b) Show that the number Rn of record times up to time n has variance

var(Rn) =
n∑

r=1

(r−1 − r−2).

(c) Show that the first record time T after r = 1 has mean E(T ) = ∞.

14. Stick breaking. A unit stick is broken uniformly at random, and the larger piece is broken again
uniformly at random. Show that the probability the three pieces may be used to form a triangle is
2 log 2 − 1.

15. Let U1,U2, . . . ,Un+1 be independent random variables with the uniform distribution on [0, 1],
and let

U(1) = min
1≤r≤n

Ur , U(n) = max
1≤r≤n

Ur .

Show that E(U(1)) = 1/(n + 1) and deduce that

P
(
U(n) − U(1) ≤ Un+1

)
=

2

n + 1
.

4.7 Exercises. Functions of random variables

1. Let X , Y , and Z be independent and uniformly distributed on [0, 1]. Find the joint density function

of XY and Z2, and show that P(XY < Z2) = 5
9 .

2. Let X and Y be independent exponential random variables with parameter 1. Find the joint density
function of U = X + Y and V = X/(X + Y ), and deduce that V is uniformly distributed on [0, 1].

3. Let X be uniformly distributed on [0, 1
2π ]. Find the density function of Y = sin X .

4. Find the density function of Y = sin−1 X when:

(a) X is uniformly distributed on [0, 1],

(b) X is uniformly distributed on [−1, 1].

5. Normal orthant probability. Let X and Y have the bivariate normal density function

f (x, y) =
1

2π
√

1 − ρ2
exp

{
−

1

2(1 − ρ2)
(x2 − 2ρxy + y2)

}
.

Show that X and Z = (Y − ρX)/
√

1 − ρ2 are independent N(0, 1) variables, and deduce that

P(X > 0, Y > 0) =
1

4
+

1

2π
sin−1 ρ.
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Functions of random variables Exercises [4.7.6]–[4.7.17]

6. Let X and Y have the standard bivariate normal density function of Exercise (4.7.5), and define

Z = max{X,Y }. Show that E(Z) =
√
(1 − ρ)/π , and E(Z2) = 1.

7. Let X and Y be independent exponential random variables with parameters λ and µ. Show that
Z = min{X,Y } is independent of the event {X < Y }. Find:

(a) P(X = Z),

(b) the distributions of U = max{X − Y, 0}, denoted (X − Y )+ , and V = max{X,Y } − min{X,Y },
(c) P(X ≤ t < X + Y ) where t > 0.

8. A point (X,Y ) is picked at random uniformly in the unit circle. Find the joint density of R and

X , where R2 = X2 + Y 2.

9. A point (X, Y, Z) is picked uniformly at random inside the unit ball of R3. Find the joint density

of Z and R, where R2 = X2 + Y 2 + Z2.

10. Let X and Y be independent and exponentially distributed with parameters λ and µ. Find the
joint distribution of S = X + Y and R = X/(X + Y ). What is the density of R?

11. Find the density of Y = a/(1 + X2), where X has the Cauchy distribution.

12. Let (X, Y ) have the bivariate normal density of Exercise (4.7.5) with 0 ≤ ρ < 1. Show that

[1 −8(a)][1 −8(c)] ≤ P(X > a, Y > b) ≤ [1 −8(a)][1 −8(c)] +
ρφ(b)[1 −8(d)]

φ(a)
,

where c = (b −ρa)/
√

1 − ρ2, d = (a −ρb)/
√

1 − ρ2, and φ and8 are the density and distribution
function of the N(0, 1) distribution.

13. Let X have the Cauchy distribution. Show that Y = X−1 has the Cauchy distribution also. Find
another non-trivial distribution with this property of invariance.

14. Let X and Y be independent and gamma distributed as Ŵ(λ, α), Ŵ(λ, β) respectively.

(a) Show that W = X + Y and Z = X/(X + Y ) are independent, and that Z has the beta distribution
with parameters α, β.

(b) Show that R = X/Y has a beta distribution of the second kind (see Exercise (4.4.14)).

15. Frailty. Let X , Y be independent, positive, continuous random variables, such that 1 − FY (y) =
(1 − FX (y))

λ for y > 0. The positive parameter λ may be called the frailty or proportional hazard.
In more general models, λ may itself be a random variable.

Show that

P(X > Y ) = λP(Y > X) =
λ

1 + λ
.

16. Rayleigh distribution. Let X and Y be independent random variables, where X has an arc sine
distribution and Y a Rayleigh distribution:

fX (x) =
1

π
√

1 − x2
, |x | < 1, fY (y) = ye

− 1
2

y2
, y > 0.

Write down the joint density function of the pair (Y, XY ), and deduce that XY has the standard normal
distribution.

17. Binary expansions. Let U be uniformly distributed on the interval (0, 1).

(a) Let S be a (measurable) subset of (0, 1) with strictly positive measure (length). Show that the
conditional distribution of U , given that U ∈ S, is uniform on S.

47



[4.7.18]–[4.7.27] Exercises Continuous random variables

(b) Let V =
√

U , and write the binary expansions of U and V as U =
∑∞

r=1 Ur 2−r and V =∑∞
r=1 Vr 2−r . Show that Ur and Us are independent for r 6= s, while cov(V1, V2) = − 1

32 . Prove

that limn→∞ P(Vr = 1) = 1
2 .

18. Let (X, Y ) have the standard bivariate normal distribution with correlation ρ.

(a) Let ρ = 0. By changing from Cartesian to polar coordinates, or otherwise, show that Z = Y/X

has the Cauchy distribution.

(b) Let ρ > 0. Show that Z = Y/X has density function

f (z) =
√

1 − ρ2

π(1 − 2ρz + z2)
, z ∈ R.

19. Inverse Mills’s ratio. Let (X,Y ) have the standard bivariate normal distribution with correlation
ρ. Show that

E(Y | X > x) = ρ
φ(x)

8(−x)
,

where φ and 8 are the N(0, 1) density and distribution functions.

20. Let (X,Y ) have the standard bivariate normal distribution with density function f and corre-
lation ρ. Show that the probability that (X,Y ) lies in the interior of the ellipse f (x, y) = k is

1 − exp
{
−A/(2π

√
1 − ρ2)

}
, where A is the area of the ellipse.

21. Let R = X/Y where X , Y are independent and uniformly distributed on (0, 1). Find the proba-
bility that the integer closest to R is odd.

22. Let (X,Y ) have the standard bivariate normal distribution with correlation ρ and density function

f . Show that f (X,Y ) is uniformly distributed on the interval (0, ζ ) where ζ = 1/{2π
√

1 − ρ2}.

23. A number n of friends each visit Old Slaughter’s coffee house independently and uniformly at
random during their lunch break from noon to 1pm. Each leaves after δ hours (or at 1pm if that is
sooner), where δ < 1/(n−1). Show that the probability that none of them meet inside is (1−(n−1)δ)n .

24. Let X and Y be independent random variables with the uniform distribution on (0, 1). Find the
joint density function of W = XY and Z = Y/X , and deduce their marginal density functions.

25. Stein’s identity. (a) Let X have the N(µ, σ 2) distribution with σ 2 > 0. Show that, for suitable
g : R → R,

E
{

g(X)(X − EX)
}

= var(X)E(g′(X)),

when both sides exist.

(b) More generally, if X and Y have a bivariate normal distribution, show that

cov(g(X), Y ) = E(g′(X))cov(X,Y ).

(c) Let X be a random variable such that E(Xg(X)) = E(g′(X)) for all appropriate smooth functions

g satisfying g(x)e
− 1

2 x2
→ 0 as x → −∞. Show that X has the N(0, 1) distribution.

26. Chernoff–Cacoullos inequalities. Let X have the N(0, 1) distribution, and let G be a function
with derivative g. Show that

{
Eg(X)

}2 ≤ var G(X) ≤ E(g(X)2).

27. The joint density function of the pair (X,Y ) is

f (x, y) = 2
3 (x + y)e−x , x ∈ (0,∞), y ∈ (0, 1).

Find the joint density function of the pair U = X , and V = X + Y , and deduce the density function
of V .
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Sums of random variables Exercises [4.8.1]–[4.8.11]

4.8 Exercises. Sums of random variables

1. Let X and Y be independent variables having the exponential distribution with parameters λ and
µ respectively. Find the density function of X + Y .

2. Let X and Y be independent variables with the Cauchy distribution. Find the density function of
αX + βY where αβ 6= 0. (Do you know about contour integration?)

3. Find the density function of Z = X + Y when X and Y have joint density function f (x, y) =
1
2 (x + y)e−(x+y), x, y ≥ 0.

4. Hypoexponential distribution. Let {Xr : r ≥ 1} be independent exponential random variables
with respective parameters {λr : r ≥ 1} no two of which are equal. Find the density function of
Sn =

∑n
r=1 Xr . [Hint: Use induction.]

5. (a) Let X,Y, Z be independent and uniformly distributed on [0, 1]. Find the density function of
X + Y + Z .

(b) If {Xr : r ≥ 1} are independent and uniformly distributed on [0, 1], show that the density of
Sn =

∑n
r=1 Xr at any point x ∈ (0, n) is a polynomial in x of degree n − 1. Show in particular

that the density function fn of Sn satisfies fn(x) = xn−1/(n − 1)! for x ∈ [0, 1].

(c) Let n ≥ 3. What is the probability that the X1, X2, . . . , Xn of part (b) can be the lengths of the
edges of an n-gon?

6. For independent identically distributed random variables X and Y , show that U = X + Y and
V = X − Y are uncorrelated but not necessarily independent. Show that U and V are independent if
X and Y are N(0, 1).

7. Let X and Y have a bivariate normal density with zero means, variances σ 2, τ2, and correlation
ρ. Show that:

(a) E(X | Y ) =
ρσ

τ
Y ,

(b) var(X | Y ) = σ 2(1 − ρ2),

(c) E(X | X + Y = z) =
(σ 2 + ρστ)z

σ 2 + 2ρστ + τ2
,

(d) var(X | X + Y = z) =
σ 2τ2(1 − ρ2)

τ2 + 2ρστ + σ 2
.

8. Let X and Y be independent N(0, 1) random variables, and let Z = X + Y . Find the distribution
and density of Z given that X > 0 and Y > 0. Show that

E(Z | X > 0, Y > 0) = 2
√

2/π.

9. Let X and Y be independent N(0, 1) random variables. Find the joint density function of U =
aX + bY and V = bX − aY , and hence show that U is N(0, a2 + b2). Deduce a proof of the last
part of Example (4.8.3).

10. Let X and Y have joint distribution function F , with marginals FX and FY . Show that, if
µ = E(X + Y ) is well defined, then its value is determined by knowledge of FX and FY .

11. Let S = U + V + W be the sum of three independent random variables with the uniform
distribution on (0, 1).

(a) Show that E{var(U | S)} = 1
18 .

(b) Find v(s) = var(U | S = s) for 0 < s < 3.
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4.9 Exercises. Multivariate normal distribution

1. A symmetric matrix is called non-negative (respectively positive) definite if its eigenvalues are
non-negative (respectively strictly positive). Show that a non-negative definite symmetric matrix V

has a square root, in that there exists a symmetric matrix W satisfying W2 = V. Show further that W

is non-singular if and only if V is positive definite.

2. If X is a random vector with the N(µ,V) distribution where V is non-singular, show that Y =
(X −µ)W−1 has the N(0, I) distribution, where I is the identity matrix and W is a symmetric matrix

satisfying W2 = V. The random vector Y is said to have the standard multivariate normal distribution.

3. Let X = (X1, X2, . . . , Xn) have the N(µ,V) distribution, and show that Y = a1 X1 + a2 X2 +
· · · + an Xn has the (univariate) N(µ, σ 2) distribution where

µ =
n∑

i=1

ai E(X i ), σ 2 =
n∑

i=1

a2
i var(X i )+ 2

∑

i< j

ai aj cov(X i , X j ).

4. Let X and Y have the bivariate normal distribution with zero means, unit variances, and correlation
ρ. Find the joint density function of X + Y and X − Y , and their marginal density functions.

5. Let X have the N(0, 1) distribution and let a > 0. Show that the random variable Y given by

Y =
{

X if |X | < a

−X if |X | ≥ a

has the N(0, 1) distribution, and find an expression for ρ(a) = cov(X,Y ) in terms of the density
function φ of X . Does the pair (X,Y ) have a bivariate normal distribution?

6. Let {Yr : 1 ≤ r ≤ n} be independent N(0, 1) random variables, and define X j =
∑n

r=1 cj r Yr ,
1 ≤ r ≤ n, for constants cj r . Show that

E(X j | Xk) =
(∑

r cj rckr∑
r c2

kr

)
Xk .

What is var(X j | Xk)?

7. Let the vector (Xr : 1 ≤ r ≤ n) have a multivariate normal distribution with covariance matrix
V = (vi j ). Show that, conditional on the event

∑n
1 Xr = x , X1 has the N(a, b) distribution where

a = (ρs/t)x , b = s2(1 − ρ2), and s2 = v11, t2 =
∑

i j vi j , ρ =
∑

i vi1/(st).

8. Let X , Y , and Z have a standard trivariate normal distribution centred at the origin, with zero
means, unit variances, and correlation coefficients ρ1, ρ2, and ρ3. Show that

P(X > 0, Y > 0, Z > 0) =
1

8
+

1

4π
{sin−1 ρ1 + sin−1 ρ2 + sin−1 ρ3}.

9. Let X,Y, Z have the standard trivariate normal density of Exercise (4.9.8), with ρ1 = ρ(X,Y ).
Show that

E(Z | X,Y ) =
{
(ρ3 − ρ1ρ2)X + (ρ2 − ρ1ρ3)Y

}
/(1 − ρ2

1),

var(Z | X,Y ) =
{

1 − ρ2
1 − ρ2

2 − ρ2
3 + 2ρ1ρ2ρ3

}
/(1 − ρ2

1).

10. Rotated normals. Let X and Y have the standard bivariate normal distribution with correlation
ρ 6= 0, and let U = X cos θ + Y sin θ and V = −X sin θ + Y cos θ , where θ ∈ [0, π). Is there a value
of θ such that U and V are independent?
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Sampling from a distribution Exercises [4.9.11]–[4.11.5]

11. Let X have the N(0, 1) distribution, and let Y = B X where B is independent of X with mass

function P(B = 1) = P(B = −1) = 1
2 . Show that the pair (X,Y ) has a singular distribution (in the

sense that the support of the joint density function has zero (Lebesgue) area in the plane), but is not
singular bivariate normal.

4.10 Exercises. Distributions arising from the normal distribution

1. Let X1 and X2 be independent variables with the χ2(m) and χ2(n) distributions respectively.

Show that X1 + X2 has the χ2(m + n) distribution.

2. Show that the mean of the t (r) distribution is 0, and that the mean of the F(r, s) distribution is
s/(s − 2) if s > 2. What happens if s ≤ 2?

3. Show that the t (1) distribution and the Cauchy distribution are the same.

4. Let X and Y be independent variables having the exponential distribution with parameter 1. Show
that X/Y has an F distribution. Which?

5. Show the independence of the sample mean and sample variance of an independent sample from

the N(µ, σ 2) distribution. This may be done by either or both of: (i) the result of Exercise (4.5.7),
(ii) induction on n.

6. Let {Xr : 1 ≤ r ≤ n} be independent N(0, 1) variables. Let 9 ∈ [0, π ] be the angle
between the vector (X1, X2, . . . , Xn) and some fixed vector in Rn . Show that 9 has density

f (ψ) = (sinψ)n−2/B( 1
2 ,

1
2 n − 1

2 ), 0 ≤ ψ < π , where B is the beta function.

7. Let X1, X2, . . . , Xn be independent N(0, 1) random variables, and let Vn ≥ 0 be given by

V 2
n =

∑n
i=1 X2

i . Show that the random vector Y = (X1, X2, . . . , Xn)/Vn is uniformly distributed
on the unit sphere. Deduce the result of Exercise (4.10.6).

4.11 Exercises. Sampling from a distribution

1. Uniform distribution. If U is uniformly distributed on [0, 1], what is the distribution of X =
⌊nU⌋ + 1?

2. Random permutation. Given the first n integers in any sequence S0, proceed thus:

(a) pick any position P0 from {1, 2, . . . , n} at random, and swap the integer in that place of S0 with
the integer in the nth place of S0, yielding S1.

(b) pick any position P1 from {1, 2, . . . , n − 1} at random, and swap the integer in that place of S1
with the integer in the (n − 1)th place of S1, yielding S2,

(c) at the (r − 1)th stage the integer in position Pr−1, chosen randomly from {1, 2, . . . , n − r + 1},
is swapped with the integer at the (n − r + 1)th place of the sequence Sr−1.

Show that Sn−1 is equally likely to be any of the n! permutations of {1, 2, . . . , n}.

3. Gamma distribution. Use the rejection method to sample from the gamma densityŴ(λ, t)where
t (≥ 1) may not be assumed integral. [Hint: You might want to start with an exponential random
variable with parameter 1/t .]

4. Beta distribution. Show how to sample from the beta density β(α, β) where α, β ≥ 1. [Hint:
Use Exercise (4.11.3).]

5. Describe three distinct methods of sampling from the density f (x) = 6x(1 − x), 0 ≤ x ≤ 1.
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[4.11.6]–[4.11.12] Exercises Continuous random variables

6. Aliasing method. A finite real vector is called a probability vector if it has non-negative entries
with sum 1. Show that a probability vector p of length n may be written in the form

p =
1

n − 1

n∑

r=1

vr ,

where each vr is a probability vector with at most two non-zero entries. Describe a method, based on
this observation, for sampling from p viewed as a probability mass function.

7. Box–Muller normals. Let U1 and U2 be independent and uniformly distributed on [0, 1], and

let Ti = 2Ui − 1. Show that, conditional on the event that R =
√

T 2
1 + T 2

2 ≤ 1,

X =
T1

R

√
−2 log R2, Y =

T2

R

√
−2 log R2,

are independent standard normal random variables.

8. Let U be uniform on [0, 1] and 0 < q < 1. Show that X = 1 + ⌊log U/log q⌋ has a geometric
distribution.

9. A point (X,Y ) is picked uniformly at random in the semicircle x2 + y2 ≤ 1, x ≥ 0. What is the
distribution of Z = Y/X?

10. Hazard-rate technique. Let X be a non-negative integer-valued random variable with h(r) =
P(X = r | X ≥ r). If {Ui : i ≥ 0} are independent and uniform on [0, 1], show that Z = min{n :
Un ≤ h(n)} has the same distribution as X .

11. Antithetic variables†. Let g(x1, x2, . . . , xn) be an increasing function in all its variables, and
let {Ur : r ≥ 1} be independent and identically distributed random variables having the uniform
distribution on [0, 1]. Show that

cov
{

g(U1,U2, . . . ,Un), g(1 − U1, 1 − U2, . . . , 1 − Un)
}

≤ 0.

[Hint: Use the FKG inequality of Problem (3.11.18).] Explain how this can help in the efficient

estimation of I =
∫ 1

0 g(x) dx.

12. Importance sampling. We wish to estimate I =
∫

g(x) fX (x) dx = E(g(X)), where either it
is difficult to sample from the density fX , or g(X) has a very large variance. Let fY be equivalent
to fX , which is to say that, for all x , fX (x) = 0 if and only if fY (x) = 0. Let {Yi : 0 ≤ i ≤ n} be
independent random variables with density function fY , and define

J =
1

n

n∑

r=1

g(Yr ) fX (Yr )

fY (Yr )
.

Show that:

(a) E(J ) = I = E

[
g(Y ) fX (Y )

fY (Y )

]
,

(b) var(J ) =
1

n

[
E

(
g(Y )2 f X (Y )

2

fY (Y )
2

)
− I 2

]
,

(c) J
a.s.−→ I as n → ∞. (See Chapter 7 for an account of convergence.)

†A technique invented by J. M. Hammersley and K. W. Morton in 1956.
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Coupling and Poisson approximation Exercises [4.11.13]–[4.12.2]

The idea here is that fY should be easy to sample from, and chosen if possible so that var J is

much smaller than n−1[E(g(X)2)− I 2]. The function fY is called the importance density.

13. Construct two distinct methods of sampling from the arc sine density function

f (x) =
2

π
√

1 − x2
, 0 ≤ x ≤ 1.

14. Marsaglia’s method. Let (X,Y ) be a random point chosen uniformly on the unit disk. Show
that

(U, V ,W ) =
(

2X
√

1 − X2 − Y 2, 2Y
√

1 − X2 − Y 2, 1 − 2(X2 + Y 2)
)

is uniformly distributed on the unit sphere.

15. Acceptance–complement method. It is desired to sample from a density function f X satisfying
fX = f1 + f2 where f1, f2 : R → [0,∞), and f1 ≤ fY for some random variable Y . Let U be
uniformly distributed on [0, 1], and independent of Y . From Y and U , we generate another random

variable Z as follows. If U > f1(Y )/ fY (Y ), let Z have density f2(z)/
∫∞
−∞ f2(u) du; otherwise set

Z = Y . Show that Z has density function f X .

16. Hardy–Littlewood transform. The function F−1 defined in Theorem (4.11.1) may be called
the quantile function of the random variable in question.

(a) For a random variable U with the uniform distribution on (0, 1), and a continuously increasing
function G : (0, 1) → R, show that the quantile function of G(U) is G .

(b) For a random variable X with distribution function F and density function f , define HX (v) =
E(F−1(U) | U > v), where U is as in part (a). The Hardy–Littlewood transform of X is defined
as HX (V ), where V is uniformly distributed on (0, 1) and independent of U . Show that the

quantile function of HX (V ) is (1 − v)−1
∫∞
v F−1(w) dw, for v ∈ (0, 1).

17. Generalized inverse transform†. For an arbitrary (not necessarily continuous) distribution
function F = FX , define

G(x, u) = P(X < x)+ uP(X = x)

= F(x−)+ u(F(x)− F(x−)), u ∈ [0, 1].

Let U be uniformly distributed on (0, 1) and independent of X . We call G(X,U) the generalized

distributional transform of X . Show that W = G(X,U) is uniformly distributed on (0, 1), and that

the random variable F−1(W ) has distribution function F .

18. Copulas. Let (X1, X2, . . . , Xn) be a random vector with joint distribution function F and con-
tinuous marginal distribution functions F1, F2, . . . , Fn . Show that there exists a ‘copula-form’ distri-
bution function G(u1, u2, . . . , un) such that F(x1, x2, . . . , xn) = G(F1(x1), F2(x2), . . . , Fn(xn)).
[A ‘copula-form’ distribution function is one with the property that all its marginals are uniform on
[0, 1].]

4.12 Exercises. Coupling and Poisson approximation

1. Show that X is stochastically larger than Y if and only if E(u(X)) ≥ E(u(Y )) for any non-
decreasing function u for which the expectations exist.

2. Let X and Y be Poisson distributed with respective parameters λ and µ. Show that X is stochas-
tically larger than Y if λ ≥ µ.

†Also known in this context as the ‘quantile function’.
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[4.12.3]–[4.13.2] Exercises Continuous random variables

3. Show that the total variation distance between two discrete variables X , Y satisfies

dTV(X,Y ) = 2 sup
A⊆R

∣∣P(X ∈ A) − P(Y ∈ A)
∣∣.

4. Maximal coupling. Show for discrete random variables X , Y that P(X = Y ) ≤ 1− 1
2 dTV(X,Y ),

where dTV denotes total variation distance.

5. Maximal coupling continued. Show that equality is possible in the inequality of Exercise
(4.12.4) in the following sense. For any pair X , Y of discrete random variables, there exists a pair X ′,
Y ′ having the same marginal distributions as X , Y such that P(X ′ = Y ′) = 1 − 1

2 dTV(X,Y ).

6. Let X and Y be indicator variables with EX = p, EY = q. What is the maximum possible value
of P(X = Y ), as a function of p, q? Explain how X , Y need to be distributed in order that P(X = Y )

be: (a) maximized, (b) minimized.

7. Stop-loss ordering. The random variable X is said to be smaller than Y in stop-loss order if
E((X − a)+) ≤ E((Y − a)+) for all a ∈ R, in which case we write X ≤sl Y . Show that X ≤sl Y is
equivalent to: E(X+),E(Y +) < ∞ and E(c(X)) ≤ E(c(Y )) for all increasing convex functions c.

8. Convex ordering. The random variable X is said to be smaller than Y in convex order if
E(u(X)) ≤ E(u(Y )) for all convex functions u such that the expectations exist, in which case we write
X ≤cx Y .

(a) Show that, if X ≤cx Y , then EX = EY and var(X) ≤ var(Y ).

(b) Show that X ≤cx Y if and only if EX = EY and X ≤sl Y .

4.13 Exercises. Geometrical probability

With apologies to those who prefer their exercises better posed . . .

1. Pick two points A and B independently at random on the circumference of a circle C with centre
O and unit radius. Let 5 be the length of the perpendicular from O to the line AB, and let 2 be the
angle AB makes with the horizontal. Show that (5,2) has joint density

f (p, θ) =
1

π2
√

1 − p2
, 0 ≤ p ≤ 1, 0 ≤ θ < 2π.

2. Let S1 and S2 be disjoint convex shapes with boundaries of length b(S1), b(S2), as illustrated
in the figure beneath. Let b(H) be the length of the boundary of the convex hull of S1 and S2,
incorporating their exterior tangents, and b(X) the length of the crossing curve using the interior
tangents to loop round S1 and S2. Show that the probability that a random line crossing S1 also
crosses S2 is {b(X) − b(H)}/b(S1). (See Example (4.13.2) for an explanation of the term ‘random
line’.) How is this altered if S1 and S2 are not disjoint?

S1 S2

The circles are the shapes S1 and S2. The shaded regions are denoted A and B , and b(X) is

the sum of the perimeter lengths of A and B .
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Geometrical probability Exercises [4.13.3]–[4.13.17]

3. Let S1 and S2 be convex figures such that S2 ⊆ S1. Show that the probability that two independent

random lines λ1 and λ2, crossing S1, meet within S2 is 2π |S2|/b(S1)
2, where |S2| is the area of S2

and b(S1) is the length of the boundary of S1. (See Example (4.13.2) for an explanation of the term
‘random line’.)

4. Let Z be the distance between two points picked independently at random in a disk of radius a.

Show that E(Z) = 128a/(45π), and E(Z2) = a2.

5. Pick two points A and B independently at random in a ball with centre O. Show that the probability

that the angle ÂOB is obtuse is 5
8 . Compare this with the corresponding result for two points picked

at random in a circle.

6. A triangle is formed by A, B, and a point P picked at random in a set S with centre of gravity G.
Show that E|ABP| = |ABG|.

7. A point D is fixed on the side BC of the triangle ABC. Two points P and Q are picked independently

at random in ABD and ADC respectively. Show that E|APQ| = |AG1G2| = 2
9 |ABC|, where G1 and

G2 are the centres of gravity of ABD and ADC.

8. From the set of all triangles that are similar to the triangle ABC, similarly oriented, and inside

ABC, one is selected uniformly at random. Show that its mean area is 1
10 |ABC|.

9. Two points X and Y are picked independently at random in the interval (0, a). By varying a,
show that F(z, a) = P(|X − Y | ≤ z) satisfies

∂F

∂a
+

2

a
F =

2z

a2
, 0 ≤ z ≤ a,

and hence find F(z, a). Let r ≥ 1, and show that mr (a) = E(|X − Y |r ) satisfies

a
dmr

da
= 2

{
ar

r + 1
− mr

}
.

Hence find mr (a).

10. Lines are laid down independently at random on the plane, dividing it into polygons. Show that
the average number of sides of this set of polygons is 4. [Hint: Consider n random great circles of a
sphere of radius R; then let R and n increase.]

11. A point P is picked at random in the triangle ABC. The lines AP, BP, CP, produced, meet BC,

AC, AB respectively at L, M, N. Show that E|LMN| = (10 − π2)|ABC|.

12. Sylvester’s problem. If four points are picked independently at random inside the triangle ABC,

show that the probability that no one of them lies inside the triangle formed by the other three is 2
3 .

13. If three points P, Q, R are picked independently at random in a disk of radius a, show that E|PQR| =
35a2/(48π). [You may find it useful that

∫ π
0

∫ π
0 sin3 x sin3 y sin |x − y| dx dy = 35π/128.]

14. Two points A and B are picked independently at random inside a disk C . Show that the probability

that the circle having centre A and radius |AB| lies inside C is 1
6 .

15. Two points A and B are picked independently at random inside a ball S. Show that the probability

that the sphere having centre A and radius |AB| lies inside S is 1
20 .

16. Pick two points independently and uniformly at random on the surface of the sphere of R3 with

radius 1. Show that the density of the Euclidean distance D between them is f (d) = 1
2 d for d ∈ (0, 2).

17. Two points are chosen independently and uniformly at random on the perimeter (including the
diameter) of a semicircle with unit radius. What is the probability of the event D that exactly one of
them lies on the diameter, and of the event N that neither lies on the diameter?
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[4.13.18]–[4.14.4] Exercises Continuous random variables

Let A be the area of the triangle formed by the two points and the midpoint of the diameter. Show
that E(A | D) = 1/(2π), and E(A | N) = 1/π . Hence or otherwise show that E(A) = 1/(2 + π).

18. Stevens’s solution of Jeffreys’s bicycle wheel problem. After passing over a stretch of road
strewn with tacks, a cyclist looks repeatedly at the front wheel to check whether the tyre has picked
up a tack. One inspection of the wheel covers a fraction x of the tyre. After n independent such
inspections, each uniformly positioned on the wheel, show that the probability of having inspected

the entire tyre is 1 −
(n

1

)
(1 − x)n−1 +

(n
2

)
(1 − 2x)n−1 − · · · , where the series terminates at the term

in 1 − kx where k = ⌊1/x⌋ is the integer part of 1/x .

4.14 Problems

1. (a) Show that
∫∞
−∞ e−x2

dx =
√
π , and deduce that

f (x) =
1

σ
√

2π
exp

{
−
(x − µ)2

2σ 2

}
, −∞ < x < ∞,

is a density function if σ > 0.

(b) Calculate the mean and variance of a standard normal variable.

(c) Show that the N(0, 1) distribution function 8 satisfies

(x−1 − x−3)e
− 1

2 x2
<

√
2π [1 −8(x)] < x−1e

− 1
2 x2

, x > 0.

These bounds are of interest because 8 has no closed form.

(d) Let X be N(0, 1), and a > 0. Show that P(X > x + a/x | X > x) → e−a as x → 0.

2. Let X be continuous with density function f (x) = C(x − x2), where α < x < β and C > 0.

(a) What are the possible values of α and β?

(b) What is C?

3. Let X be a random variable which takes non-negative values only. Show that

∞∑

i=1

(i − 1)IAi
≤ X <

∞∑

i=1

i IAi
,

where Ai = {i − 1 ≤ X < i }. Deduce that

∞∑

i=1

P(X ≥ i ) ≤ E(X) < 1 +
∞∑

i=1

P(X ≥ i ).

4. (a) Let X have a continuous distribution function F . Show that

(i) F(X) is uniformly distributed on [0, 1],

(ii) − log F(X) is exponentially distributed.

(b) A straight line l touches a circle with unit diameter at the point P which is diametrically opposed

on the circle to another point Q. A straight line QR joins Q to some point R on l . If the angle P̂QR

between the lines PQ and QR is a random variable with the uniform distribution on [− 1
2π,

1
2π ],

show that the length of PR has the Cauchy distribution (this length is measured positive or negative
depending upon which side of P the point R lies).
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Problems Exercises [4.14.5]–[4.14.12]

(c) Let the net scores in the two halves of a game between teams A and B be independent and
identically distributed random variables X , Y that are symmetric about 0 and have a continuous
distribution function F . Team A wins (respectively, loses) if X +Y > 0 (respectively, X +Y ≤ 0).
Find the probability that A wins conditional on the half-time score X .

5. Lack of memory property. (a) Let g : [0,∞) → (0,∞) be such that g(s + t) = g(s)g(t) for
s, t ≥ 0. If g is monotone, show that g(s) = eµs for some µ ∈ R.

(b) Let X have an exponential distribution. Show that P(X > s + x | X > s) = P(X > x), for
x, s ≥ 0. This is the ‘lack of memory’ property again. Show that the exponential distribution is
the only continuous distribution with this property.

(c) The height M of the largest tidal surge in a certain estuary has the exponential distribution with
parameter 1, and it costs h to build a barrier with height h in order to protect an upstream city. If
M ≤ h, the surge costs nothing; if M > h, the surge entails an extra cost of a + b(M − h). Show
that, for a + b ≥ 1, the expected total cost is minimal when h = log(a + b). What if a + b < 1?

6. Show that X and Y are independent continuous variables if and only if their joint density function
f factorizes as the product f (x, y) = g(x)h(y) of functions of the single variables x and y alone.

Explain why the density function f (x, y) = Ce−x−y (for x, y ≥ 0, x + y > 1) does not provide
a counterexample to this assertion.

7. Let X and Y have joint density function f (x, y) = 2e−x−y , 0 < x < y < ∞. Are they
independent? Find their marginal density functions and their covariance.

8. Bertrand’s paradox extended. A chord of the unit circle is picked at random. What is the
probability that an equilateral triangle with the chord as base can fit inside the circle if:

(a) the chord passes through a point P picked uniformly in the disk, and the angle it makes with a
fixed direction is uniformly distributed on [0, 2π),

(b) the chord passes through a point P picked uniformly at random on a randomly chosen radius, and
the angle it makes with the radius is uniformly distributed on [0, 2π).

9. Monte Carlo. It is required to estimate J =
∫ 1

0 g(x) dx where 0 ≤ g(x) ≤ 1 for all x , as
in Example (2.6.3). Let X and Y be independent random variables with common density function
f (x) = 1 if 0 < x < 1, f (x) = 0 otherwise. Let U = I{Y≤g(X)}, the indicator function of the event

that Y ≤ g(X), and let V = g(X), W = 1
2 {g(X)+g(1− X)}. Show that E(U) = E(V ) = E(W ) = J ,

and that var(W ) ≤ var(V ) ≤ var(U), so that, of the three, W is the most ‘efficient’ estimator of J .

10. Let X1, X2, . . . , Xn be independent exponential variables, parameter λ. Show by induction that
S = X1 + X2 + · · · + Xn has the Ŵ(λ, n) distribution.

11. Let X and Y be independent variables, Ŵ(λ,m) and Ŵ(λ, n) respectively.

(a) Use the result of Problem (4.14.10) to show that X + Y is Ŵ(λ,m + n)when m and n are integral
(the same conclusion is actually valid for non-integral m and n).

(b) Find the joint density function of X + Y and X/(X + Y ), and deduce that they are independent.

(c) If Z is Poisson with parameter λt , and m is integral, show that P(Z < m) = P(X > t).

(d) If 0 < m < n and B is independent of Y with the beta distribution with parameters m and n − m,
show that Y B has the same distribution as X .

12. Let X1, X2, . . . , Xn be independent N(0, 1) variables.

(a) Show that X2
1 is χ2(1).

(b) Show that X2
1 + X2

2 is χ2(2) by expressing its distribution function as an integral and changing
to polar coordinates.

(c) More generally, show that X2
1 + X2

2 + · · · + X2
n is χ2(n).
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[4.14.13]–[4.14.21] Exercises Continuous random variables

13. Let X and Y have the bivariate normal distribution with means µ1, µ2, variances σ 2
1 , σ 2

2 , and
correlation ρ. Show that

(a) E(X | Y ) = µ1 + ρσ1(Y − µ2)/σ2,

(b) the variance of the conditional density function fX |Y is var(X | Y ) = σ 2
1 (1 − ρ2).

14. Let X and Y have joint density function f . Find the density function of Y/X .

15. Let X and Y be independent variables with common density function f . Show that tan−1(Y/X)

has the uniform distribution on (− 1
2π,

1
2π) if and only if

∫ ∞

−∞
f (x) f (xy)|x | dx =

1

π(1 + y2)
, y ∈ R.

Verify that this is valid if either f is the N(0, 1) density function or f (x) = a(1 + x4)−1 for some
constant a.

16. Rayleigh distribution. Let X and Y be independent N(0, 1) variables, and think of (X,Y ) as a

random point in the plane. Change to polar coordinates (R, 2) given by R2 = X2+Y 2, tan2 = Y/X ;

show that R2 is χ2(2), tan2 has the Cauchy distribution, and R and 2 are independent. Find the
density of R.

Find E(X2/R2) and

E

{
min{|X |, |Y |}
max{|X |, |Y |}

}
.

17. If X and Y are independent random variables, show that U = min{X,Y } and V = max{X,Y }
have distribution functions

FU (u) = 1 − {1 − FX (u)}{1 − FY (u)}, FV (v) = FX (v)FY (v).

Let X and Y be independent exponential variables, parameter 1. Show that

(a) U is exponential, parameter 2,

(b) V has the same distribution as X + 1
2 Y . Hence find the mean and variance of V .

18. Let X and Y be independent variables having the exponential distribution with parameters λ and
µ respectively. Let U = min{X,Y }, V = max{X,Y }, and W = V − U .

(a) Find P(U = X) = P(X ≤ Y ).

(b) Show that U and W are independent.

19. Let X and Y be independent non-negative random variables with continuous density functions
on (0,∞).

(a) If, given X + Y = u, X is uniformly distributed on [0, u] whatever the value of u, show that X

and Y have the exponential distribution.

(b) If, given that X + Y = u, X/u has a given beta distribution (parameters α and β, say) whatever
the value of u, show that X and Y have gamma distributions.

You may need the fact that the only non-negative continuous solutions of the functional equation
g(s + t) = g(s)g(t) for s, t ≥ 0, with g(0) = 1, are of the form g(s) = eµs . Remember Problem
(4.14.5).

20. Show that it cannot be the case that U = X + Y where U is uniformly distributed on [0, 1] and X

and Y are independent and identically distributed. You should not assume that X and Y are continuous
variables.

21. Order statistics. Let X1, X2, . . . , Xn be independent identically distributed variables with a com-
mon density function f . Such a collection is called a random sample. For eachω ∈ �, arrange the sam-
ple values X1(ω), . . . , Xn(ω) in non-decreasing order X(1)(ω) ≤ X(2)(ω) ≤ · · · ≤ X(n)(ω), where
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Problems Exercises [4.14.22]–[4.14.27]

(1), (2), . . . , (n) is a (random) permutation of 1, 2, . . . , n. The new variables X(1), X(2), . . . , X(n)
are called the order statistics. Show, by a symmetry argument, that the joint distribution function of
the order statistics satisfies

P(X(1) ≤ y1, . . . , X(n) ≤ yn) = n! P(X1 ≤ y1, . . . , Xn ≤ yn, X1 < X2 < · · · < Xn)

=
∫

· · ·
∫

x1≤y1
x2≤y2
..
.

xn≤yn

L(x1, . . . , xn)n! f (x1) · · · f (xn) dx1 · · · dxn

where L is given by

L(x) =
{

1 if x1 < x2 < · · · < xn,

0 otherwise,

and x = (x1, x2, . . . , xn). Deduce that the joint density function of X(1), . . . , X(n) is g(y) =
n! L(y) f (y1) · · · f (yn).

22. Find the marginal density function of the kth order statistic X(k) of a sample with size n:

(a) by integrating the result of Problem (4.14.21),

(b) directly.

23. Find the joint density function of the order statistics of n independent uniform variables on [0, T ].

24. Let X1, X2, . . . , Xn be independent and uniformly distributed on [0, 1], with order statistics
X(1), X(2), . . . , X(n).

(a) Show that, for fixed k, the density function of n X(k) converges as n → ∞, and find and identify
the limit function.

(b) Show that log X(k) has the same distribution as −
∑n

i=k i−1Yi , where the Yi are independent
random variables having the exponential distribution with parameter 1.

(c) Show that Z1, Z2, . . . , Zn , defined by Zk = (X(k)/X(k+1))
k for k < n and Zn = (X(n))

n , are
independent random variables with the uniform distribution on [0, 1].

25. Let X1, X2, X3 be independent variables with the uniform distribution on [0, 1]. What is the
probability that rods of lengths X1, X2, and X3 may be used to make a triangle? Generalize your
answer to n rods used to form a polygon.

26. Stick breaking. Let X1 and X2 be independent variables with the uniform distribution on [0, 1].
A stick of unit length is broken at points distance X1 and X2 from one of the ends. What is the
probability that the three pieces may be used to make a triangle? Generalize your answer to a stick
broken in n places.

27. Let X , Y be a pair of jointly continuous variables.

(a) Hölder’s inequality. Show that if p, q > 1 and p−1 + q−1 = 1 then

E|XY | ≤
{

E|X p|
}1/p{E|Y q |

}1/q
.

Set p = q = 2 to deduce the Cauchy–Schwarz inequality E(XY )2 ≤ E(X2)E(Y 2).

(b) Minkowski’s inequality. Show that, if p ≥ 1, then

{
E(|X + Y |p)

}1/p ≤
{

E|X p|
}1/p +

{
E|Y p|

}1/p
.

Note that in both cases your proof need not depend on the continuity of X and Y ; deduce that the same
inequalities hold for discrete variables.
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[4.14.28]–[4.14.34] Exercises Continuous random variables

28. Let Z be a random variable. Choose X and Y appropriately in the Cauchy–Schwarz (or Hölder)
inequality to show that g(p) = log E|Z p| is a convex function of p on the interval of values of p such
that E|Z p| < ∞. Deduce Lyapunov’s inequality:

{
E|Zr |

}1/r ≥
{

E|Z s |
}1/s

whenever r ≥ s > 0.

You have shown in particular that, if Z has finite r th moment, then Z has finite sth moment for all
positive s ≤ r .

Show more generally that, if r1, r2, . . . , rn are real numbers such that E|Xrk | < ∞ and s =
n−1∑n

k=1 rk , then {
n∏

k=1

E|Xrk |
}

−
{

E(|X |s
}

≥ 0.

29. Show that, using the obvious notation, E
{

E(X | Y, Z)
∣∣ Y
}

= E(X | Y ).

30. Rényi’s parking problem. Motor cars of unit length park randomly in a street in such a way that
the centre of each car, in turn, is positioned uniformly at random in the space available to it. Let m(x)

be the expected number of cars which are able to park in a street of length x . Show that

m(x + 1) =
1

x

∫ x

0

{
m(y)+ m(x − y)+ 1

}
dy.

It is possible to deduce that m(x) is about as big as 3
4 x when x is large.

31. Buffon’s needle revisited: Buffon’s noodle.

(a) A plane is ruled by the lines y = nd (n = 0,±1, . . . ). A needle with length L (< d) is cast
randomly onto the plane. Show that the probability that the needle intersects a line is 2L/(πd).

(b) Now fix the needle and let C be a circle diameter d centred at the midpoint of the needle. Let
λ be a line whose direction and distance from the centre of C are independent and uniformly

distributed on [0, 2π ] and [0, 1
2 d] respectively. This is equivalent to ‘casting the ruled plane at

random’. Show that the probability of an intersection between the needle and λ is 2L/(πd).

(c) Let S be a curve within C having finite length L(S). Use indicators to show that the expected
number of intersections between S and λ is 2L(S)/(πd).

This type of result is used in stereology, which seeks knowledge of the contents of a cell by studying
its cross sections.

32. Buffon’s needle ingested. In the excitement of calculating π , Mr Buffon (no relation) inadver-
tently swallows the needle and is X-rayed. If the needle exhibits no preference for direction in the
gut, what is the distribution of the length of its image on the X-ray plate? If he swallowed Buffon’s
cross (see Exercise (4.5.3)) also, what would be the joint distribution of the lengths of the images of
the two arms of the cross?

33. Let X1, X2, . . . , Xn be independent exponential variables with parameter λ, and let X(1) ≤
X(2) ≤ · · · ≤ X(n) be their order statistics. Show that

Y1 = n X(1), Yr = (n + 1 − r)(X(r) − X(r−1)), 1 < r ≤ n

are also independent and have the same joint distribution as the X i .

34. Let X(1), X(2), . . . , X(n) be the order statistics of a family of independent variables with common
continuous distribution function F . Show that

Yn = {F(X(n))}n , Yr =
{

F(X(r))

F(X(r+1))

}r

, 1 ≤ r < n,
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are independent and uniformly distributed on [0, 1]. This is equivalent to Problem (4.14.33). Why?

35. Secretary/marriage problem. You are permitted to inspect the n prizes at a fête in a given order,
at each stage either rejecting or accepting the prize under consideration. There is no recall, in the sense
that no rejected prize may be accepted later. It may be assumed that, given complete information, the
prizes may be ranked in a strict order of preference, and that the order of presentation is independent
of this ranking. Find the strategy which maximizes the probability of accepting the best prize, and
describe its behaviour when n is large.

36. Fisher’s spherical distribution. Let R2 = X2 +Y 2 + Z2 where X,Y, Z are independent normal

random variables with means λ,µ, ν, and common variance σ 2, where (λ, µ, ν) 6= (0, 0, 0). Show
that the conditional density of the point (X,Y, Z) given R = r , when expressed in spherical polar
coordinates relative to an axis in the direction e = (λ, µ, ν), is of the form

f (θ, φ) =
a

4π sinh a
ea cos θ sin θ, 0 ≤ θ < π, 0 ≤ φ < 2π,

where a = r |e|.

37. Let φ be the N(0, 1) density function, and define the functions Hn , n ≥ 0, by H0 = 1, and

(−1)n Hnφ = φ(n), the nth derivative of φ. Show that:

(a) Hn(x) is a polynomial of degree n having leading term xn , and

∫ ∞

−∞
Hm(x)Hn(x)φ(x) dx =

{
0 if m 6= n,

n! if m = n.

(b)

∞∑

n=0

Hn(x)
tn

n!
= exp(t x − 1

2 t2).

38. Lancaster’s theorem. Let X and Y have a standard bivariate normal distribution with zero
means, unit variances, and correlation coefficient ρ, and suppose U = u(X) and V = v(Y ) have finite
variances. Show that |ρ(U, V )| ≤ |ρ|. [Hint: Use Problem (4.14.37) to expand the functions u and
v. You may assume that u and v lie in the linear span of the Hn .]

39. Let X(1), X(2), . . . , X(n) be the order statistics of n independent random variables, uniform on
[0, 1]. Show that:

(a) E(X(r)) =
r

n + 1
, (b) cov(X(r), X(s)) =

r(n − s + 1)

(n + 1)2(n + 2)
for r ≤ s.

40. (a) Let X,Y, Z be independent N(0, 1) variables, and set R =
√

X2 + Y 2 + Z2. Show that

X2/R2 has a beta distribution with parameters 1
2 and 1, and is independent of R2.

(b) Let X,Y, Z be independent and uniform on [−1, 1] and set R =
√

X2 + Y 2 + Z2. Find the

density of X2/R2 given that R2 ≤ 1.

41. (a) Skew normal distribution. Letφ and8be the density and distribution functions of the random
variable X with the standard normal distribution. Show, for λ ∈ R, that g(x) = 2φ(x)8(λx),
x ∈ R, is the density function of some random variable (denoted by Y ). Show that |X | and |Y |
have the same distributions.

Let X have the N(0, 1)distribution and be independent of Y , and define U = (X+λ|Y |)/
√

1 + λ2.
Write down the joint density of U and V = |Y |, and deduce that U has density function g.
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[4.14.42]–[4.14.48] Exercises Continuous random variables

(b) General skew distributions. For i = 1, 2, let X i have a density function fi , which is symmetric
about 0 with distribution function Fi .

(i) Let λ ∈ R, and show that g1(x) = 2 f1(x)F2(λx) and g2(x) = 2 f2(x)F1(λx) are density
functions.

(ii) Let X1 and X2 be independent. Find the conditional density function of X2 given that
X1 < λX2.

42. The six coordinates (X i ,Yi ), 1 ≤ i ≤ 3, of three points A, B, C in the plane are independent

N(0, 1). Show that the the probability that C lies inside the circle with diameter AB is 1
4 .

43. The coordinates (X i ,Yi , Zi ), 1 ≤ i ≤ 3, of three points A, B, C are independent N(0, 1). Show

that the probability that C lies inside the sphere with diameter AB is
1

3
−

√
3

4π
.

44. Skewness. Let X have variance σ 2 and write mk = E(Xk ). Define the skewness of X by

skw(X) = E[(X − m1)
3]/σ 3. Show that:

(a) skw(X) = (m3 − 3m1m2 + 2m3
1)/σ

3,

(b) skw(Sn) = skw(X1)/
√

n, where Sn =
∑n

r=1 Xr is a sum of independent identically distributed
random variables,

(c) skw(X) = (1 − 2p)/
√

npq , when X is bin(n, p) where p + q = 1,

(d) skw(X) = 1/
√
λ, when X is Poisson with parameter λ,

(e) skw(X) = 2/
√

t , when X is gamma Ŵ(λ, t), and t is integral.

45. Kurtosis. Let X have variance σ 2 and E(Xk) = mk . Define the kurtosis of X by kur(X) =
E[(X − m1)

4]/σ 4. Show that:

(a) kur(X) = 3, when X is N(µ, σ 2),

(b) kur(X) = 9, when X is exponential with parameter λ,

(c) kur(X) = 3 + λ−1, when X is Poisson with parameter λ,

(d) kur(Sn) = 3 + {kur(X1) − 3}/n, where Sn =
∑n

r=1 Xr is a sum of independent identically
distributed random variables.

46. Extreme value. Fisher–Gumbel–Tippett distribution. Let Xr , 1 ≤ r ≤ n, be independent and
exponentially distributed with parameter 1. Show that X(n) = max{Xr : 1 ≤ r ≤ n} satisfies

lim
n→∞

P(X(n) − log n ≤ x) = exp(−e−x ), −∞ < x < ∞.

Hence show that
∫∞

0 {1 − exp(−e−x )− exp(−ex )} dx = γ where γ is Euler’s constant.

47. Squeezing. Let S and X have density functions satisfying b(x) ≤ fS(x) ≤ a(x) and fS(x) ≤
fX (x). Let U be uniformly distributed on [0, 1] and independent of X . Given the value X , we
implement the following algorithm:

if U fX (X) > a(X), reject X;
otherwise: if U fX (X) < b(X), accept X;
otherwise: if U fX (X) ≤ fS(X), accept X;
otherwise: reject X.

Show that, conditional on ultimate acceptance, X is distributed as S. Explain when you might use this
method of sampling.

48. Let X , Y , and {Ur : r ≥ 1} be independent random variables, where:

P(X = x) = (e − 1)e−x , P(Y = y) =
1

(e − 1)y!
for x, y = 1, 2, . . . ,
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and the Ur are uniform on [0, 1]. Let M = max{U1,U2, . . . ,UY }, and show that Z = X − M is
exponentially distributed.

49. Let U and V be independent and uniform on [0, 1]. Set X = −α−1 log U and Y = − log V

where α > 0.

(a) Show that, conditional on the event Y ≥ 1
2 (X −α)2, X has density function f (x) =

√
2/πe

− 1
2 x2

for x > 0.

(b) In sampling from the density function f , it is decided to use a rejection method: for given α > 0,

we sample U and V repeatedly, and we accept X the first time that Y ≥ 1
2 (X − α)2. What is the

optimal value of α?

(c) Describe how to use these facts in sampling from the N(0, 1) distribution.

50. Let S be a semicircle of unit radius on a diameter D.

(a) A point P is picked at random on D. If X is the distance from P to S along the perpendicular to
D, show E(X) = π/4.

(b) A point Q is picked at random on S. If Y is the perpendicular distance from Q to D, show
E(Y ) = 2/π .

51. (Set for the Fellowship examination of St John’s College, Cambridge in 1858.) ‘A large quantity
of pebbles lies scattered uniformly over a circular field; compare the labour of collecting them one by
one:

(i) at the centre O of the field,

(ii) at a point A on the circumference.’

To be precise, if LO and LA are the respective labours per stone, show that E(LO) = 2
3 a and

E(LA) = 32a/(9π) for some constant a.

(iii) Suppose you take each pebble to the nearer of two points A or B at the ends of a diameter. Show
in this case that the labour per stone satisfies

E(LAB) =
4a

3π

{
16

3
−

17

6

√
2 +

1

2
log(1 +

√
2)

}
≃ 1.13 ×

2

3
a.

(iv) Finally suppose you take each pebble to the nearest vertex of an equilateral triangle ABC inscribed
in the circle. Why is it obvious that the labour per stone now satisfies E(LABC) < E(LO)?
Enthusiasts are invited to calculate E(LABC).

52. The lines L , M , and N are parallel, and P lies on L . A line picked at random through P meets M

at Q. A line picked at random through Q meets N at R. What is the density function of the angle 2
that RP makes with L? [Hint: Recall Exercise (4.8.2) and Problem (4.14.4).]

53. Let1 denote the event that you can form a triangle with three given parts of a rod R.

(a) R is broken at two points chosen independently and uniformly. Show that P(1) = 1
4 .

(b) R is broken in two uniformly at random, the longer part is broken in two uniformly at random.
Show that P(1) = log(4/e).

(c) R is broken in two uniformly at random, a randomly chosen part is broken into two equal parts.

Show that P(1) = 1
2 .

(d) In case (c) show that, given 1, the triangle is obtuse with probability 3 − 2
√

2.

54. You break a rod at random into two pieces. Let R be the ratio of the lengths of the shorter to the
longer piece. Find the density function fR , together with the mean and variance of R.
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[4.14.55]–[4.14.63] Exercises Continuous random variables

55. Let R be the distance between two points picked at random inside a square of side a. Show that

E(R2) = 1
3 a2, and that R2/a2 has density function

f (r) =
{

r − 4
√

r + π if 0 ≤ r ≤ 1,

4
√

r − 1 − 2 − r + 2 sin−1
√

r−1 − 2 sin−1
√

1 − r−1 if 1 ≤ r ≤ 2.

56. Show that a sheet of paper of area A cm2 can be placed on the square lattice with period 1 cm in
such a way that at least ⌈A⌉ points are covered.

57. Show that it is possible to position a convex rock of surface area S in sunlight in such a way that

its shadow has area at least 1
4 S.

58. Dirichlet distribution. Let {Xr : 1 ≤ r ≤ k + 1} be independent Ŵ(λ, βr ) random variables
(respectively).

(a) Show that Yr = Xr/(X1 + · · · + Xr ), 2 ≤ r ≤ k + 1, are independent random variables.

(b) Show that Zr = Xr/(X1 + · · · + Xk+1), 1 ≤ r ≤ k, have the joint Dirichlet density

Ŵ(β1 + · · · + βk+1)

Ŵ(β1) · · ·Ŵ(βk+1)
z
β1−1
1 z

β2−1
2 · · · z

βk−1
k (1 − z1 − z2 − · · · − zk)

βk+1−1.

59. Hotelling’s theorem. Let Xr = (X1r , X2r , . . . , Xmr ), 1 ≤ r ≤ n, be independent multivariate
normal random vectors having zero means and the same covariance matrix V = (vi j ). Show that the
two random variables

Si j =
n∑

r=1

X ir X j r −
1

n

n∑

r=1

X ir

n∑

r=1

X j r , Ti j =
n−1∑

r=1

X ir X j r ,

are identically distributed.

60. Choose P, Q, and R independently at random in the square S(a) of side a. Show that E|PQR| =
11a2/144. Deduce that four points picked at random in a parallelogram form a convex quadrilateral

with probability ( 5
6 )

2.

61. Choose P, Q, and R uniformly at random within the convex region C illustrated beneath. By
considering the event that the convex hull of four randomly chosen points is a triangle, or otherwise,
show that the mean area of the shaded region is three times the mean area of the triangle PQR.

P

Q
R

62. Multivariate normal sampling. Let V be a positive-definite symmetric n × n matrix, and L

a lower-triangular matrix such that V = L′L; this is called the Cholesky decomposition of V. Let
X = (X1, X2, . . . , Xn) be a vector of independent random variables distributed as N(0, 1). Show that
the vector Z = µ + XL has the multivariate normal distribution with mean vector µ and covariance
matrix V.

63. Verifying matrix multiplications. We need to decide whether or not AB = C where A, B, C are
given n ×n matrices, and we adopt the following random algorithm. Let x be a random {0, 1}n-valued
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vector, each of the 2n possibilities being equally likely. If (AB − C)x = 0, we decide that AB = C,
and otherwise we decide that AB 6= C. Show that

P
(
the decision is correct

){ = 1 if AB = C,

≥ 1
2 if AB 6= C.

Describe a similar procedure which results in an error probability which may be made as small as
desired.

64. Coupon collecting, Exercise (3.3.2), revisited. Each box of cereal contains a worthless and
inedible object. The objects in different boxes are independent and equally likely to be any of the n

available types. Let Tn be the number of boxes opened before collection of a full set.

(a) Use the result of Exercise (4.3.6) to show that

1

n
E(Tn) =

n∑

r=1

(−1)r+1

r

(
n

r

)
=

n∑

r=1

1

r
.

(b) Prove the above combinatorial identity directly.

(c) By considering E(T 2
n ), show that

2n

n∑

r=1

(−1)r+1

r2

(
n

r

)
=

n∑

r=1

1

r2
+

n − 1

n

n∑

r=1

1

r
+
( n∑

r=1

1

r

)2

.

65. Points P and Q are picked independently and uniformly at random in the triangle ABC, in such a
way that the straight line passing through P and Q divides ABC into a triangle T and a quadrilateral
R. Show that the ratio of the mean area of T to that of R is 4 : 5.

66. Let X and Y be independent, identically distributed random variables with finite means. Show
that

E|X − Y | ≤ E|X + Y |,
with equality if and only if their common distribution is symmetric about 0.

67. Malmquist’s theorem. Simulated order statistics. Let U1,U2, . . . ,Un be independent and
identically distributed on [0, 1]. Define X1, X2, . . . , Xn recursively as follows:

X1 = U
1/n
1 , X2 = X1U

1/(n−1)
2 , . . . , X j = X j−1U

1/(n− j+1)
j , . . . , Xn = Xn−1Un .

Show that the random variables Xn < Xn−1 < · · · < X1 have the same joint distribution as the
order statistics U(1),U(2), . . . ,U(n). You may do this in two different ways: first by construction, and
second by using the change of variables formula.

68. Semi-moment. The value X of a financial index in one year’s time has the normal distribution
with mean µ and standard deviation σ > 0. You possess a derivative contract that will pay you
max{X − a, 0}, where a is a predetermined constant. Show that the expected payout V of the contract
is given by V = σ {φ(y) − y(1 − 8(y))}, where φ and 8 are the N(0, 1) density and distribution
functions, and y = (a − µ)/σ . Deduce that, for large positive y,

V ≈
σ 3

(a − µ)2
φ((a − µ)/σ ).

69. Gauss’s inequality. Let g be the density function of a positive, unimodal random variable X with
finite variance, with a unique mode at 0 (so that g is non-increasing on [0,∞), recall the definitions

of Problem (2.7.23)). For any x such that g(x) > 0, let y = x + g(x)−1
∫∞

x g(v) dv.
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(a) Prove that, for 0 < x < y < ∞, we have that (y − x)x2 ≤ 4
9

∫ y
0 v

2 dv.

(b) Deduce that

P(|X | > x) ≤
4

9x2
E(X2), x > 0.

(c) Prove the inequality of (b) for a continuous random variable X with a unique mode at 0.

70. Bruss’s odds rule. Let Ii be the indicator function of success in the i th of n independent trials.
Let pi = EIi = 1 − qi > 0, and let ri = pi/qi be the i th ‘odds ratio’. Let Rk =

∑n
i=k ri , and for

the moment assume that pi < 1 for all i .

(a) Show that the probability of exactly one success after the kth trial is σk = Rk+1
∏n

i=k+1 qi .

(b) Prove that σk is a unimodal function of k, in that there is a unique m such that σk is greatest either
for k = m or for k ∈ {m,m + 1}.

(c) It is desired to stop the process at the last success. Show that the optimal rule for achieving this
is to stop at the first success at time τ or later, where τ = max

{
1,max{k : Rk ≥ 1}

}
.

(d) What can be said if pi = 1 for some i?

(e) Show that the probability of stopping at the final success is στ = Rτ
∏n

i=τ qi .

(f) Use this result to solve the marriage problem (4.14.35).

71. Prophet inequality. Let X0, X1, . . . , Xn be non-negative, independent random variables. Their
values are revealed to you in order, and you are required to stop the process at some time T , and exit
with XT . Your target is to maximize E(XT ), and you are permitted to choose any ‘stopping strategy’
T that depends only on the past and present values X0, X1, . . . , XT . (Such a random variable is called
a ‘stopping time’, see Exercise (6.1.6).)

Show that E(maxr Xr ) ≤ 2 supT E(XT ), where supT is the supremum over all stopping strategies.

72. Stick breaking. A stick of length s is broken at n points chosen independently and uniformly in
the interval [0, s]. Let the order statistics of the resulting lengths of sticks be S1 < S2 < · · · < Sn+1.
Fix y > 0 and write pn(s, y) = P(S1 > y). Show that

pn+1(s, y) =
n + 1

sn+1

∫ s−y

0
xn pn(x, y) dx .

Deduce that

(i) pn(s, y) = s−n
{
(s − (n + 1)y)+

}n
for n ≥ 1, where x+ = max{0, x}.

(ii) ES1 = s/(n + 1)2.

(iii) ESr = s(Hn+1 − Hn−r+1)/(n + 1), where Hk =
∑k

r=1 r−1.

73. Let α > −1, and let X and Y have joint density function f (x, y) = cxα for x, y ∈ (0, 1),
x + y > 1. We set f (x, y) = 0 for other pairs x , y.

(a) Find the value of c and the joint distribution function of X , Y .

(b) Show that it is possible to construct a triangle with side-lengths X , Y , 2− X −Y , with probability
one.

(c) Show that the angle opposite the side with length Y is obtuse with probability

π = c

∫ 1

0

xα+1 − xα+2

2 − x
dx,

and find π when α = 0.

74. Size-biasing on the freeway. You are driving at constant speed v along a vast multi-lane highway,
and other traffic in the same direction is moving at independent random speeds having the same
distribution as a random variable X with density function f and finite variance.
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(a) Show that the expected value of the speed of vehicles passing you or being passed by you is

m(v) =
E
{

X |X − v|
}

E|X − v|
.

(b) Suppose that f is symmetric about its meanµ, and that v < µ. Show that the difference m(v)−µ
is positive, and that it has a maximum value for some value v = vmax < µ.

(c) What can be said if v > µ? Discuss.

(d) Suppose X is uniformly distributed on the interval {60, 61, . . . , 80}. Show for v = 63 that
m(v) ≈ 74, while for v = 77 we have m(v) ≈ 66.

67



5

Generating functions and their applications

5.1 Exercises. Generating functions

1. Find the generating functions of the following mass functions, and state where they converge.
Hence calculate their means and variances.

(a) f (m) =
(n+m−1

m

)
pn(1 − p)m , for m ≥ 0.

(b) f (m) = {m(m + 1)}−1, for m ≥ 1.

(c) f (m) = (1 − p)p|m|/(1 + p), for m = . . . ,−1, 0, 1, . . . .

The constant p satisfies 0 < p < 1.

2. Let X (≥ 0) have probability generating function G and write t (n) = P(X > n) for the ‘tail’
probabilities of X . Show that the generating function of the sequence {t (n) : n ≥ 0} is T (s) =
(1 − G(s))/(1 − s). Show that E(X) = T (1) and var(X) = 2T ′(1)+ T (1)− T (1)2.

3. Let G X,Y (s, t) be the joint probability generating function of X and Y . Show that G X (s) =
G X,Y (s, 1) and GY (t) = G X,Y (1, t). Show that

E(XY ) =
∂2

∂s ∂t
G X,Y (s, t)

∣∣∣∣∣
s=t=1

.

4. Find the joint generating functions of the following joint mass functions, and state for what values
of the variables the series converge.

(a) f ( j, k) = (1 − α)(β − α)α jβk− j−1, for 0 ≤ k ≤ j , where 0 < α < 1, α < β.

(b) f ( j, k) = (e − 1)e−(2k+1)k j /j !, for j, k ≥ 0.

(c) f ( j, k) =
(k

j

)
p j+k(1 − p)k− j

/[
k log{1/(1 − p)}

]
, for 0 ≤ j ≤ k, k ≥ 1, where 0 < p < 1.

Deduce the marginal probability generating functions and the covariances.

5. A coin is tossed n times, and heads turns up with probability p on each toss. Assuming the usual
independence, show that the joint probability generating function of the numbers H and T of heads
and tails is G H,T (x, y) = {px + (1 − p)y}n . Generalize this conclusion to find the joint probability
generating function of the multinomial distribution of Exercise (3.5.1).

6. Let X have the binomial distribution bin(n,U), where U is uniform on (0, 1). Show that X is
uniformly distributed on {0, 1, 2, . . . , n}.

7. Show that

G(x, y, z,w) = 1
8 (xyzw+ xy + yz + zw + zx + yw+ xz + 1)
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is the joint generating function of four variables that are pairwise and triplewise independent, but are
nevertheless not independent.

8. Let pr > 0 and ar ∈ R for 1 ≤ r ≤ n. Which of the following is a moment generating function,
and for what random variable?

(a) M(t) = 1 +
n∑

r=1

pr tr , (b) M(t) =
n∑

r=1

pr ear t .

9. Let G1 and G2 be probability generating functions, and suppose that 0 ≤ α ≤ 1. Show that
G1G2, and αG1 + (1 − α)G2 are probability generating functions. Is G(αs)/G(α) necessarily a
probability generating function?

10. Let X1, X2, . . . be independent, continuous random variables with common distribution function
F , that are independent of the positive integer-valued random variable Z . Define the maximum
M = max{X1, X2, . . . , X Z }. Show that

E(Z | M = m) = 1 +
F(m)G ′′(F(m))

G ′(F(m))
,

where G is the probability generating function of Z .

11. Truncated geometric distribution. Let 0 < p = 1 − q < 1, and let X have the geometric mass

function f (x) = qx−1 p for x = 1, 2, . . . . Find the probability generating function of Y = min{n, X}
for fixed n ≥ 1, and show that E(Y ) = (1 − qn)/p.

12. Van Dantzig’s collective marks. Let X i be the number of balls in the i th of a sequence of bins,
and assume the X i are independent with common probability generating function G X . There are N

such bins, where N is independent of the X i with probability generating function G N . Each ball is
‘unmarked’ with probability u, and marked otherwise, with marks appearing independently.

(a) Show that the probability π , that all the balls in the i th bin are unmarked, satisfies π = G X (u).

(b) Deduce that the probability that all the balls are unmarked equals G N (G X (u)), and deduce the
random sum formula of Theorem (5.1.25).

(c) Find the mean and variance of the total number T of balls in terms of the moments of X and N ,
and compare the argument with the method of Exercise (3.7.4).

(d) Find the probability generating function of the total number U of unmarked balls, and deduce the
mean and variance of U .

5.2 Exercises. Some applications

1. Let X be the number of events in the sequence A1, A2, . . . , An which occur. Let Sm = E
(X

m

)
,

the mean value of the random binomial coefficient
(X

m

)
, and show that

P(X ≥ i ) =
n∑

j=i

(−1) j−i

(
j − 1

i − 1

)
Sj , for 1 ≤ i ≤ n,

where Sm =
n∑

j=m

(
j − 1

m − 1

)
P(X ≥ j), for 1 ≤ m ≤ n.

2. Each person in a group of n people chooses another at random. Find the probability:

(a) that exactly k people are chosen by nobody,

(b) that at least k people are chosen by nobody.
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3. Compounding.

(a) Let X have the Poisson distribution with parameter Y , where Y has the Poisson distribution with

parameter µ. Show that G X+Y (x) = exp{µ(xex−1 − 1)}.
(b) Let X1, X2, . . . be independent identically distributed random variables with the logarithmic

mass function

f (k) =
(1 − p)k

k log(1/p)
, k ≥ 1,

where 0 < p < 1. If N is independent of the X i and has the Poisson distribution with parameter

µ, show that Y =
∑N

i=1 X i has a type of negative binomial distribution.

4. Let X have the binomial distribution with parameters n and p, and show that

E

(
1

1 + X

)
=

1 − (1 − p)n+1

(n + 1)p
.

Find the limit of this expression as n → ∞ and p → 0, the limit being taken in such a way that
np → λ where 0 < λ < ∞. Comment.

5. A coin is tossed repeatedly, and heads turns up with probability p on each toss. Let hn be
the probability of an even number of heads in the first n tosses, with the convention that 0 is an
even number. Find a difference equation for the hn and deduce that they have generating function
1
2

{
(1 + 2ps − s)−1 + (1 − s)−1

}
.

6. An unfair coin is flipped repeatedly, where P(H) = p = 1 − q. Let X be the number of flips
until HTH first appears, and Y the number of flips until either HTH or THT appears. Show that

E(s X ) = (p2qs3)/(1 − s + pqs2 − pq2s3) and find E(sY ).

7. Matching again. The pile of (by now dog-eared) letters is dropped again and enveloped at
random, yielding Xn matches. Show that P(Xn = j) = ( j + 1)P(Xn+1 = j + 1). Deduce that the

derivatives of the Gn(s) = E(s Xn ) satisfy G ′
n+1 = Gn , and hence derive the conclusion of Example

(3.4.3), namely:

P(Xn = r) =
1

r !

(
1

2!
−

1

3!
+ · · · +

(−1)n−r

(n − r)!

)
.

8. Let X have a Poisson distribution with parameter 3, where 3 is exponential with parameter µ.
Show that X has a geometric distribution.

9. Coupons. Recall from Exercise (3.3.2) that each packet of an overpriced commodity contains a
worthless plastic object. There are four types of object, and each packet is equally likely to contain
any of the four. Let T be the number of packets you open until you first have the complete set. Find

E(sT ) and P(T = k).

10. Library books. A library permits a reader to hold at most m books at any one time. Your holding
before a visit is B books, having the binomial bin(m, p) distribution. On each visit, a held book
is retained with probability r , and returned otherwise; given the number R of retained books, you
borrow a further N books with the bin(m − R, α) distribution. Assuming the usual independence,
find the distribution of the number A = R + N of books held after a visit. Show that, after a
large number of visits, the number of books held has approximately the bin(m, s) distribution where
s = α/[1 − r(1 − α)]. You may assume that 0 < α, p, r < 1.

11. Matching yet again, Exercise (5.2.7) revisited. Each envelope is addressed correctly with prob-
ability t , and incorrectly otherwise (assume the usual independence). It is decided that an incorrectly
addressed envelope cannot count as a match even when containing the correct letter. Show that the
number Yn of correctly addressed matches satisfies

P(Yn = y) =
t y

y!

n−y∑

k=0

(−1)k tk

k!
→

e−t t y

y!
as n → ∞, for y = 0, 1, 2, . . . .
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Note the Poisson limit distribution.

12. Sampling discrete random variables. A random variable is called simple if it may take only
finitely many values. Show that a simple random variable X may be simulated using a finite sequence
of Bernoulli random variables, in the sense that there exist independent Bernoulli random variables
{Bj : j = 1, 2, . . . ,m} with respective parameters bj , and real numbers {r j }, such that Y =

∑
j r j Bj

has the same distribution as X .

13. General Bonferroni inequalities. (a) For a generating function A(z) =
∑∞

i=0 ai zi , show that

a0 + a1 + · · · + am is the coefficient of zm in B(z) := A(z)(1 − zm+1)/(1 − z).

(b) With the definitions and notation of Example (5.2.11), show that, for r an even integer,

Si −
(

i + 1

i

)
Si+1 + · · · −

(
i + r + 1

i

)
Si+r+1

≤ P(X = i ) ≤ Si −
(

i + 1

i

)
Si+1 + · · · +

(
i + r

i

)
Si+r .

5.3 Exercises. Random walk

1. For a simple random walk S with S0 = 0 and p = 1 − q < 1
2 , show that the maximum

M = max{Sn : n ≥ 0} satisfies P(M ≥ r) = (p/q)r for r ≥ 0.

2. Use generating functions to show that, for a symmetric random walk,

(a) 2k f0(2k) = P(S2k−2 = 0) for k ≥ 1, and

(b) P(S1S2 · · · S2n 6= 0) = P(S2n = 0) for n ≥ 1.

3. A particle performs a random walk on the corners of the square ABCD. At each step, the probability
of moving from corner c to corner d equals ρcd , where

ρAB = ρBA = ρCD = ρDC = α, ρAD = ρDA = ρBC = ρCB = β,

and α, β > 0, α + β = 1. Let GA(s) be the generating function of the sequence (pAA(n) : n ≥ 0),
where pAA(n) is the probability that the particle is at A after n steps, having started at A. Show that

GA(s) =
1

2

{
1

1 − s2
+

1

1 − |β − α|2s2

}
.

Hence find the probability generating function of the time of the first return to A.

4. A particle performs a symmetric random walk in two dimensions starting at the origin: each

step is of unit length and has equal probability 1
4 of being northwards, southwards, eastwards, or

westwards. The particle first reaches the line x + y = m at the point (X,Y ) and at the time T . Find
the probability generating functions of T and X − Y , and state where they converge.

5. Derive the arc sine law for sojourn times, Theorem (3.10.21), using generating functions. That
is to say, let L2n be the length of time spent (up to time 2n) by a simple symmetric random walk to
the right of its starting point. Show that

P(L2n = 2k) = P(S2k = 0)P(S2n−2k = 0) for 0 ≤ k ≤ n.

6. Let {Sn : n ≥ 0} be a simple symmetric random walk with S0 = 0, and let T = min{n > 0 :
Sn = 0}. Show that

E
(
min{T, 2m}

)
= 2E|S2m| = 4mP(S2m = 0) for m ≥ 0.
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7. Let Sn =
∑n

r=0 Xr be a left-continuous random walk on the integers with a retaining barrier
at zero. More specifically, we assume that the Xr are identically distributed integer-valued random
variables with X1 ≥ −1, P(X1 = 0) 6= 0, and

Sn+1 =
{

Sn + Xn+1 if Sn > 0,

Sn + Xn+1 + 1 if Sn = 0.

Show that the distribution of S0 may be chosen in such a way that E(zSn ) = E(zS0) for all n, if and
only if E(X1) < 0, and in this case

E(zSn ) =
(1 − z)E(X1)E(z

X1 )

1 − E(z X1 )
.

8. Consider a simple random walk starting at 0 in which each step is to the right with probability
p (= 1 − q). Let Tb be the number of steps until the walk first reaches b where b > 0. Show that
E(Tb | Tb < ∞) = b/|p − q|.

9. Conditioned random walk. Let S = {Sk : k = 0, 1, 2, . . . } be a simple random walk on the
non-negative integers, with S0 = i and an absorbing barrier at 0. A typical jump X has mass function

P(X = 1) = p and P(X = −1) = q = 1 − p, where p ∈ ( 1
2 , 1). Let H be the event that the walk

is ultimately absorbed at 0. Show that, conditional on H , the walk has the same distribution as a
simple random walk W = {Wk : k = 0, 1, 2, . . . } for which a typical jump Y satisfies P(Y = 1) = q,
P(Y = −1) = p.

5.4 Exercises. Branching processes

1. Let Zn be the size of the nth generation in an ordinary branching process with Z0 = 1, E(Z1) = µ,

and var(Z1) > 0. Show that E(Zn Zm) = µn−m E(Z2
m) for m ≤ n. Hence find the correlation

coefficient ρ(Zm , Zn) in terms of µ.

2. Consider a branching process with generation sizes Zn satisfying Z0 = 1 and P(Z1 = 0) = 0.
Pick two individuals at random (with replacement) from the nth generation and let L be the index of

the generation which contains their most recent common ancestor. Show that P(L ≥ r) ≥ E(Z−1
r )

for 0 ≤ r < n. Show when r 6= 0 that equality holds if and only if Z1 is a.s. constant. What can be
said if P(Z1 = 0) > 0?

3. Consider a branching process whose family sizes have the geometric mass function f (k) = qpk ,
k ≥ 0, where p + q = 1, and let Zn be the size of the nth generation. Let T = min{n : Zn = 0} be
the extinction time, and suppose that Z0 = 1. Find P(T = n). For what values of p is it the case that
E(T ) < ∞?

4. Let Zn be the size of the nth generation of a branching process, and assume Z0 = 1. Find an
expression for the generating function Gn of Zn , in the cases when Z1 has generating function:

(a) G(s) = 1 − α(1 − s)β , 0 < α,β < 1.

(b) G(s) = f −1{P( f (s))}, where P is a probability generating function, and f is a suitable function
satisfying f (1) = 1.

(c) Suppose in the latter case that f (x) = xm and P(s) = s{γ −(γ −1)s}−1 where γ > 1. Calculate
the answer explicitly.

5. Branching with immigration. Each generation of a branching process (with a single progenitor)
is augmented by a random number of immigrants who are indistinguishable from the other members
of the population. Suppose that the numbers of immigrants in different generations are independent
of each other and of the past history of the branching process, each such number having probability
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generating function H(s). Show that the probability generating function Gn of the size of the nth
generation satisfies Gn+1(s) = Gn(G(s))H(s), where G is the probability generating function of a
typical family of offspring.

6. Let Zn be the size of the nth generation in a branching process with E(s Z1) = (2 − s)−1

and Z0 = 1. Let Vr be the total number of generations of size r . Show that E(V1) = 1
6π

2, and

E(2V2 − V3) = 1
6π

2 − 1
90π

4.

7. Let T be the total number of individuals in a branching process with family-size distribution

bin(2, p), where p 6= 1
2 . Show that

E(T | T < ∞) =
1

|2p − 1|
.

What is the family-size distribution conditional on T < ∞?

8. Let Z be a branching process with Z0 = 1, E(Z1) = µ > 1, and var(Z1) = σ 2. Use the
Paley–Zygmund inequality to show that the extinction probability ηn = P(Zn = 0) satisfies

ηn ≤
σ 2

µ(µ− 1)
(1 − µ−n).

5.5 Exercises. Age-dependent branching processes

1. Let Z(t) be the population-size at time t in an age-dependent branching process, the lifetime
distribution of which is exponential with parameterλ. If Z(0) = 1, show that the probability generating
function G t (s) of Z(t) satisfies

∂

∂t
G t (s) = λ

{
G(G t (s))− G t (s)

}
,

where G is the probability generating function of a typical family-size. Show in the case of ‘exponential

binary fission’, when G(s) = s2, that

G t (s) =
se−λt

1 − s(1 − e−λt)

and hence derive the probability mass function of the population size Z(t) at time t .

2. Solve the differential equation of Exercise (5.5.1) when λ = 1 and G(s) = 1
2 (1 + s2), to obtain

G t (s) =
2s + t (1 − s)

2 + t (1 − s)
.

Hence find P(Z(t) ≥ k), and deduce that

P
(

Z(t)/t ≥ x
∣∣ Z(t) > 0

)
→ e−2x as t → ∞.
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5.6 Exercises. Expectation revisited

1. (a) Jensen’s inequality. A function u : R → R is called convex if, for a ∈ R, there existsλ = λ(a)

such that u(x) ≥ u(a) + λ(x − a) for all x . Draw a diagram to illustrate this definition†. The
convex function u is called strictly convex if λ(a) is strictly increasing in a.

(i) Show that, if u is convex and X is a random variable with finite mean, then E(u(X)) ≥ u(EX).

(ii) Show further that, if u is strictly convex and E(u(X)) = u(EX), then X is a.s. constant.

(b) The entropy of a probability density function f is defined by H( f ) = −
∫

R
f (x) log f (x) dx ,

and the support of f is S( f ) = {x ∈ R : f (x) > 0}. Show that, among density functions with

support R, and with finite mean µ and variance σ 2 > 0, the normal N(µ, σ 2) density function,
and no other, has maximal entropy.

2. Let X1, X2, . . . be random variables satisfying E
(∑∞

i=1 |X i |
)
< ∞. Show that

E

( ∞∑

i=1

X i

)
=

∞∑

i=1

E(X i ).

3. Let {Xn} be a sequence of random variables satisfying Xn ≤ Y a.s. for some Y with E|Y | < ∞.
Show that

E

(
lim sup
n→∞

Xn

)
≥ lim sup

n→∞
E(Xn).

4. Suppose that E|Xr | < ∞ where r > 0. Deduce that xr P(|X | ≥ x) → 0 as x → ∞. Conversely,
suppose that xr P(|X | ≥ x) → 0 as x → ∞ where r ≥ 0, and show that E|Xs | < ∞ for 0 ≤ s < r .

5. Show that E|X | < ∞ if and only if the following holds: for all ǫ > 0, there exists δ > 0, such
that E(|X |IA) < ǫ for all A such that P(A) < δ.

6. Let M = max{X,Y } where X , Y have some joint distribution. Show that var(M) ≤ var(X) +
var(Y ).

7. Let A1, A2, . . . , An be events, and let S be the number of them which occur. Show that

P(S > 0) ≥
n∑

r=1

P(Ir = 1)

E(S | Ir = 1)
,

where Ir is the indicator function of Ar .

5.7 Exercises. Characteristic functions

1. Find two dependent random variables X and Y such that φX+Y (t) = φX (t)φY (t) for all t .

2. If φ is a characteristic function, show that Re{1 − φ(t)} ≥ 1
4 Re{1 − φ(2t)}, and deduce that

1 − |φ(2t)| ≤ 8{1 − |φ(t)|}.

3. The cumulant generating function K X (θ) of the random variable X is defined by K X (θ) =
log E(eθX ), the logarithm of the moment generating function of X . If the latter is finite in a neigh-
bourhood of the origin, then K X has a convergent Taylor expansion:

K X (θ) =
∞∑

n=1

1

n!
kn(X)θ

n

†There is room for debate about the ‘right’ definition of a convex function. We adopt the above definition

since it is convenient for our uses, and is equivalent to the more usual one.
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and kn(X) is called the nth cumulant (or semi-invariant) of X .

(a) Express k1(X), k2(X), and k3(X) in terms of the moments of X .

(b) If X and Y are independent random variables, show that kn(X + Y ) = kn(X)+ kn(Y ).

4. Let X be N(0, 1), and show that the cumulants of X are k2(X) = 1, km (X) = 0 for m 6= 2.

5. The random variable X is said to have a lattice distribution if there exist a and b such that X takes
values in the set L(a, b) = {a + bm : m = 0,±1, . . . }. The span of such a variable X is the maximal
value of b for which there exists a such that X takes values in L(a, b).

(a) Suppose that X has a lattice distribution with span b. Show that |φX (2π/b)| = 1, and that
|φX (t)| < 1 for 0 < t < 2π/b.

(b) Suppose that |φX (θ)| = 1 for some θ 6= 0. Show that X has a lattice distribution with span
2πk/θ for some integer k.

6. Let X be a random variable with density function f . Show that |φX (t)| → 0 as t → ±∞.

7. Let X1, X2, . . . , Xn be independent variables, X i being N(µi , 1), and let Y = X2
1+X2

2+· · ·+X2
n .

Show that the characteristic function of Y is

φY (t) =
1

(1 − 2i t)n/2
exp

(
i tθ

1 − 2i t

)

where θ = µ2
1 +µ2

2 + · · · + µ2
n . The random variables Y is said to have the non-central chi-squared

distribution with n degrees of freedom and non-centrality parameter θ , written χ2(n; θ).

8. Let X be N(µ, 1) and let Y be χ2(n), and suppose that X and Y are independent. The random
variable T = X/

√
Y/n is said to have the non-central t-distribution with n degrees of freedom and

non-centrality parameter µ. If U and V are independent, U being χ2(m; θ) and V being χ2(n), then
F = (U/m)/(V/n) is said to have the non-central F-distribution with m and n degrees of freedom
and non-centrality parameter θ , written F(m, n; θ).
(a) Show that T 2 is F(1, n;µ2).

(b) Show that

E(F) =
n(m + θ)

m(n − 2)
if n > 2.

9. Let X be a random variable with density function f and characteristic function φ. Show, subject
to an appropriate condition on f , that

∫ ∞

−∞
f (x)2 dx =

1

2π

∫ ∞

−∞
|φ(t)|2 dt.

10. If X and Y are continuous random variables, show that

∫ ∞

−∞
φX (y) fY (y)e

−it y dy =
∫ ∞

−∞
φY (x − t) fX (x) dx .

11. Tilted distributions. (a) Let X have distribution function F and let τ be such that M(τ ) =
E(eτ X ) < ∞. Show that Fτ (x) = M(τ )−1

∫ x
−∞ eτ y d F(y) is a distribution function, called a ‘tilted

distribution’ of X , and find its moment generating function.

(b) Suppose X and Y are independent and E(eτ X ),E(eτY ) < ∞. Find the moment generating function
of the tilted distribution of X + Y in terms of those of X and Y .
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12. Let X and Y be independent with the distributions N(µ, σ 2) and N(0, σ 2), where σ 2 > 0. Show

that R =
√

X2 + Y 2 has density function

f (r) =
r

πσ 2
exp

{
−
µ2 + r2

2σ 2

}∫ π

0
exp

{
rµ cos θ

σ 2

}
dθ, r > 0.

The integral may be expressed in terms of a modified Bessel function.

13. Joint moment generating function. For each of the following joint density functions of the pair

(X, Y ), find the joint moment generating function M(s, t) = E(es X+tY ), and hence find cov(X, Y ).

(a) We have that f (x, y) = 2e−x−y for 0 < x < y < ∞.

(b) We have that

f (x, y) =
x2 + y2 + c2

2π(2 + c2)
exp
{
− 1

2 (x
2 + y2)

}
, x, y ∈ R.

5.8 Exercises. Examples of characteristic functions

1. If φ is a characteristic function, show that φ, φ2, |φ|2, Re(φ) are characteristic functions. Show
that |φ| is not necessarily a characteristic function.

2. Show that
P(X ≥ x) ≤ inf

t≥0

{
e−t x MX (t)

}
,

where MX is the moment generating function of X . Deduce that, if X has the N(0, 1) distribution,

P(X ≥ x) ≤ e
− 1

2 x2
, x > 0.

3. Let X have the Ŵ(λ,m) distribution and let Y be independent of X with the beta distribution
with parameters n and m − n, where m and n are non-negative integers satisfying n ≤ m. Show that
Z = XY has the Ŵ(λ, n) distribution.

4. Find the characteristic function of X2 when X has the N(µ, σ 2) distribution.

5. Let X1, X2, . . . be independent N(0, 1) variables. Use characteristic functions to find the distri-

bution of: (a) X2
1 , (b)

∑n
i=1 X2

i , (c) X1/X2, (d) X1 X2, (e) X1 X2 + X3 X4.

6. Let X1, X2, . . . , Xn be such that, for all a1, a2, . . . , an ∈ R, the linear combination a1 X1 +
a2 X2 + · · ·+ an Xn has a normal distribution. Show that the joint characteristic function of the Xm is

exp(i tµ′− 1
2 tVt′), for an appropriate vectorµ and matrix V. Deduce that the vector (X1 , X2, . . . , Xn)

has a multivariate normal density function so long as V is invertible.

7. Let X and Y be independent N(0, 1) variables, and let U and V be independent of X and Y . Show

that Z = (U X + V Y )/
√

U2 + V 2 has the N(0, 1) distribution. Formulate an extension of this result
to cover the case when X and Y have a bivariate normal distribution with zero means, unit variances,
and correlation ρ.

8. Let X be exponentially distributed with parameter λ. Show by elementary integration that

E(eit X ) = λ/(λ− i t).

9. Find the characteristic functions of the following density functions:

(a) f (x) = 1
2 e−|x | for x ∈ R,
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(b) f (x) = 1
2 |x |e−|x | for x ∈ R.

10. Ulam’s redistribution of energy. Is it possible for X , Y , and Z to have the same distribution
and satisfy X = U(Y + Z), where U is uniform on [0, 1], and Y , Z are independent of U and of one
another? (This question arises in modelling energy redistribution among physical particles.)

11. Find the joint characteristic function of two random variables having a bivariate normal distribution
with zero means. (No integration is needed.)

12. Sampling from the normal distribution. Let X1, X2, . . . , Xn be independent random variables

with the N(µ, σ 2) distribution, where σ > 0. Let

X =
1

n

n∑

i=1

X i , S2 =
1

n − 1

n∑

i=1

(
X i − X

σ

)2

,

be the sample mean and variance. Show that cov(X , X i − X) = 0, and deduce that X and S2 are
independent.

Show that
(n − 1)S2

σ 2
+

n

σ 2
(X − µ)2 =

n∑

i=1

(
X i − µ

σ

)2

,

and use characteristic functions to prove that (n − 1)S2/σ 2 has the χ2(n − 1) distribution.

13. Isserlis’s theorem. Let the vector (X1, X2, . . . , Xn) have a multivariate normal distribution with
zero means. Show that, for n odd, E(X1 X2 · · · Xn) = 0, while for n = 2m,

E(X1 X2 · · · Xn) =
∑

r

∏

ir< jr

E(X ir X jr ),

that is, the sum over all products of expectations of m distinct pairs of variables.

14. Hypoexponential distribution, Exercise (4.8.4) revisited. Let X1, X2, . . . , Xn be independent
random variables with, respectively, the exponential distribution with parameterλr for r = 1, 2, . . . , n.
Use moment generating functions to find the density function of the sum S = X1 + X2 + · · · + Xn .
Deduce that, for any set {λr : 1 ≤ r ≤ n} of distinct positive numbers,

n∑

r=1

n∏

s=1
s 6=r

λs

λs − λr
= 1,

n∑

r=1

1

λr

n∏

s=1
s 6=r

λs

λs − λr
=

n∑

r=1

1

λr
.

15. Let X have the N(0, 1) distribution, and let f : R → R be sufficiently smooth. Show that

E(eθX f (X)) = e
1
2
θ2

E( f (X + θ)),

and deduce that E(X f (X)) = E( f ′(X)).

16. Normal characteristic function. Find the characteristic function of the N(0, 1) distribution
without using the methods of complex analysis. [Hint: Consider the derivative of the characteristic
function, and use an appropriate theorem to differentiate through the integral.]

17. Size-biased distribution. Let X be a non-negative random variable with 0 < µ = E(X) < ∞.
The random variable Y is said to have the size-biased X distribution if d FY (x) = (x/µ)d FX (x) for
all x . (You may think of this as saying that fY (x) ∝ x fX (x) if X is either discrete with mass function
fX , or continuous with density function fX .)
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[5.9.1]–[5.9.7] Exercises Generating functions and their applications

Show that:

(a) the characteristic functions satisfy φY (t) = φ′
X (t)/(iµ),

(b) when X has the Ŵ(λ, r) distribution, Y has the Ŵ(λ, r + 1) distribution,

(c) the non-negative integer-valued random variable X has the Poisson distribution with parameter
λ if and only if Y is distributed as X + 1.

What is the size-biased X distribution when X has the binomial bin(n, p) distribution?

5.9 Exercises. Inversion and continuity theorems

1. Let Xn be a discrete random variable taking values in {1, 2, . . . , n}, each possible value having

probability n−1. Show that, as n → ∞, P(n−1 Xn ≤ y)→ y, for 0 ≤ y ≤ 1.

2. Let Xn have distribution function

Fn(x) = x −
sin(2nπx)

2nπ
, 0 ≤ x ≤ 1.

(a) Show that Fn is indeed a distribution function, and that Xn has a density function.

(b) Show that, as n → ∞, Fn converges to the uniform distribution function, but that the density
function of Fn does not converge to the uniform density function.

3. A coin is tossed repeatedly, with heads turning up with probability p on each toss. Let N be the
minimum number of tosses required to obtain k heads. Show that, as p ↓ 0, the distribution function
of 2N p converges to that of a gamma distribution.

4. If X is an integer-valued random variable with characteristic function φ, show that

P(X = k) =
1

2π

∫ π

−π
e−itkφ(t) dt.

What is the corresponding result for a random variable whose distribution is arithmetic with span λ
(that is, there is probability one that X is a multiple of λ, and λ is the largest positive number with this
property)?

5. Use the inversion theorem to show that
∫ ∞

−∞

sin(at) sin(bt)

t2
dt = π min{a, b}.

6. Stirling’s formula. Let fn(x) be a differentiable function on R with a a global maximum at
a > 0, and such that

∫∞
0 exp{ fn(x)} dx < ∞. Laplace’s method of steepest descent (related to

Watson’s lemma and saddlepoint methods) asserts under mild conditions that

∫ ∞

0
exp{ fn(x)} dx ∼

∫ ∞

0
exp
{

fn(a)+ 1
2 (x − a)2 f ′′

n (a)
}

dx as n → ∞.

By setting fn(x) = n log x − x , prove Stirling’s formula: n! ∼ nne−n
√

2πn.

7. Let X = (X1, X2, . . . , Xn) have the multivariate normal distribution with zero means, and
covariance matrix V = (vi j ) satisfying |V| > 0 and vi j > 0 for all i, j . Show that

∂ f

∂vi j
=





∂2 f

∂xi∂xj
if i 6= j,

1

2

∂2 f

∂x2
i

if i = j,
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Two limit theorems Exercises [5.9.8]–[5.10.4]

and deduce that P(maxk≤n Xk ≤ u) ≥
∏n

k=1 P(Xk ≤ u).

8. Let X1, X2 have a bivariate normal distribution with zero means, unit variances, and correlation
ρ. Use the inversion theorem to show that

∂

∂ρ
P(X1 > 0, X2 > 0) =

1

2π
√

1 − ρ2
.

Hence find P(X1 > 0, X2 > 0).

9. (a) Let X1, X2, . . . be independent, identically distributed random variables with characteristic
function satisfying φ(t) = 1 − c|t | + o(t) as t → 0, where c > 0. Show that, as n → ∞, the
distribution of Yn = (X1 + X2 + · · · + Xn)/(cn) converges to the Cauchy distribution.

(b) Let U have the uniform distribution on [−1, 1], and show that

φ1/U (t) = 1 − |t |
∫ ∞

|t |

1 − cos x

x2
dx .

When U1,U2, . . . ,Un are independent and distributed as U , write down the limiting distribution

as n → ∞ of Yn = (2/(nπ))
∑n

r=1 U−1
r .

5.10 Exercises. Two limit theorems

1. Prove that, for x ≥ 0, as n → ∞,

∑

k:
|k− 1

2 n|≤ 1
2 x

√
n

(
n

k

)
∼ 2n

∫ x

−x

1
√

2π
e
− 1

2 u2
du,(a)

∑

k:
|k−n|≤x

√
n

nk

k!
∼ en

∫ x

−x

1
√

2π
e
− 1

2 u2
du.(b)

2. It is well known that infants born to mothers who smoke tend to be small and prone to a range of
ailments. It is conjectured that also they look abnormal. Nurses were shown selections of photographs
of babies, one half of whom had smokers as mothers; the nurses were asked to judge from a baby’s
appearance whether or not the mother smoked. In 1500 trials the correct answer was given 910 times.
Is the conjecture plausible? If so, why?

3. Let X have the Ŵ(1, s) distribution; given that X = x , let Y have the Poisson distribution with
parameter x . Find the characteristic function of Y , and show that

Y − E(Y )
√

var(Y )

D−→ N(0, 1) as s → ∞.

Explain the connection with the central limit theorem.

4. Let X1, X2, . . . be independent random variables taking values in the positive integers, whose
common distribution is non-arithmetic, in that gcd{n : P(X1 = n) > 0} = 1. Prove that, for all
integers x , there exist non-negative integers r = r(x), s = s(x), such that

P
(

X1 + · · · + Xr − Xr+1 − · · · − Xr+s = x
)
> 0.
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[5.10.5]–[5.10.14] Exercises Generating functions and their applications

5. Prove the local central limit theorem for sums of random variables taking integer values. You
may assume for simplicity that the summands have span 1, in that gcd

{
|x | : P(X = x) > 0

}
= 1.

6. Let X1, X2, . . . be independent random variables having common density function f (x) =
1/{2|x |(log |x |)2} for |x | < e−1. Show that the X i have zero mean and finite variance, and that the
density function fn of X1 + X2 + · · · + Xn satisfies fn(x) → ∞ as x → 0. Deduce that the X i do
not satisfy the local limit theorem.

7. First-passage density. Let X have the density function f (x) =
√

2πx−3 exp(−{2x}−1), x > 0.

Show that φ(i s) = E(e−s X ) = e−
√

2s , s > 0, and deduce that X has characteristic function

φ(t) =
{

exp{−(1 − i )
√

t} if t ≥ 0,

exp{−(1 + i )
√

|t |} if t ≤ 0.

[Hint: Use the result of Problem (5.12.18). This distribution is called the Lévy distribution.]

8. Let {Xr : r ≥ 1} be independent with the distribution of the preceding Exercise (5.10.7). Let

Un = n−1∑n
r=1 Xr , and Tn = n−1Un . Show that:

(a) P(Un < c) → 0 for any c < ∞,

(b) Tn has the same distribution as X1.

9. A sequence of biased coins is flipped; the chance that the r th coin shows a head is 2r , where2r

is a random variable taking values in (0, 1). Let Xn be the number of heads after n flips. Does Xn

obey the central limit theorem when:

(a) the 2r are independent and identically distributed?

(b) 2r = 2 for all r , where 2 is a random variable taking values in (0, 1)?

10. Elections. In an election with two candidates, each of thev voters is equally likely to vote for either
candidate, and they vote independently of one another. Show that, when v is large, the probability
that the winner was ahead when λv votes had been counted (where λ ∈ (0, 1)) is approximately
1
2 + (1/π) sin−1

√
λ.

11. Stirling’s formula again. By considering the central limit theorem for the sum of independent
Poisson-distributed random variables, show that

√
ne−nnn

n!
→

1
√

2π
as n → ∞.

12. Size-biased distribution. Let f be a mass function on {1, 2, . . . } with finite mean µ. Consider
a large population of households with independent sizes distributed as f . An individual A is selected
uniformly at random from the entire population. Show that the probability A belongs to a household
of size x is approximately x f (x)/µ. Find the probability generating function of this distribution in
terms of that of f .

13. More size-biasing. Let X1, X2, . . . be independent, strictly positive continuous random variables

with common density function fX and finite mean, and let Zr = Xr/Sn where Sk =
∑k

r=1 Xr . The
Zr give rise to a partition of (0, 1] into the intervals Ir = (Sr−1, Sr ]/Sn for r = 1, 2, . . . , n. Let U be
uniform on (0, 1] and independent of the Xr , and let L be the length of the interval into which U falls.
Show that L has density function fL (z) = (z/EZ) fZ (z), where Z = Z1. Find the characteristic
function of L in terms of that of Z .

14. Area process for random walk. Let Sn =
∑n

r=1 Xr be a continuous, symmetric random walk
on R started at 0, whose jumps are independent N(0, 1) random variables X i . Define the area process

An =
∑n

m=1 Sm . Let Im = {−1 < Am < 1}, and show that, with probability 1, only finitely many
of the Im occur.
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Large deviations Exercises [5.10.15]–[5.11.5]

15. Outguessing machines. At Bell Labs in the early 1950s, David Hagelbarger and Claude Shannon
built machines to predict whether a human coin-flipper would call heads or tails. Hagelbarger’s
machine (a “sequence extrapolating robot”, or “SEER”) was correct on 5218 trials of 9795, and
Shannon’s machine (a “mind-reading (?) machine”) was correct on 5010 trials of 8517. In each case,
what is the probability of doing at least as well by chance?

[When playing against his own machine, Shannon could beat it in around 60% of trials, in the long
run.]

5.11 Exercises. Large deviations

1. A fair coin is tossed n times, showing heads Hn times and tails Tn times. Let Sn = Hn − Tn .
Show that

P(Sn > an)1/n →
1√

(1 + a)1+a(1 − a)1−a
if 0 < a < 1.

What happens if a ≥ 1?

2. Show that

T
1/n
n →

4√
(1 + a)1+a(1 − a)1−a

as n → ∞, where 0 < a < 1 and

Tn =
∑

k:
|k− 1

2 n|> 1
2 an

(
n

k

)
.

Find the asymptotic behaviour of T
1/n
n where

Tn =
∑

k:
k>n(1+a)

nk

k!
, where a > 0.

3. Show that the moment generating function of X is finite in a neighbourhood of the origin if and
only if X has exponentially decaying tails, in the sense that there exist positive constants λ and µ such

that P(|X | ≥ a) ≤ µe−λa for a > 0. [Seen in the light of this observation, the condition of the large
deviation theorem (5.11.4) is very natural].

4. Let X1, X2, . . . be independent random variables having the Cauchy distribution, and let Sn =
X1 + X2 + · · · + Xn . Find P(Sn > an).

5. Chernoff inequality for Bernoulli trials. Let S =
∑n

r=1 Xr be a sum of independent Bernoulli
random variables Xr taking values in {0, 1}, where E(Xr ) = pr and E(S) = µ > 0. Show that

P
(
S > (1 + ǫ)µ

)
≤ exp

{
−µ
[
(1 + ǫ) log(1 + ǫ)− ǫ

]}
, ǫ > 0.
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[5.12.1]–[5.12.10] Exercises Generating functions and their applications

5.12 Problems

1. A die is thrown ten times. What is the probability that the sum of the scores is 27?

2. A coin is tossed repeatedly, heads appearing with probability p on each toss.

(a) Let X be the number of tosses until the first occasion by which three heads have appeared
successively. Write down a difference equation for f (k) = P(X = k) and solve it. Now write
down an equation for E(X) using conditional expectation. (Try the same thing for the first
occurrence of HTH).

(b) Let N be the number of heads in n tosses of the coin. Write down G N (s). Hence find the
probability that: (i) N is divisible by 2, (ii) N is divisible by 3.

3. A coin is tossed repeatedly, heads occurring on each toss with probability p. Find the probability
generating function of the number T of tosses before a run of n heads has appeared for the first time.

4. Find the generating function of the negative binomial mass function

f (k) =
(

k − 1

r − 1

)
pr (1 − p)k−r , k = r, r + 1, . . . ,

where 0 < p < 1 and r is a positive integer. Deduce the mean and variance.

5. For the simple random walk, show that the probability p0(2n) that the particle returns to the origin
at the (2n)th step satisfies p0(2n) ∼ (4pq)n/

√
πn, and use this to prove that the walk is recurrent if

and only if p = 1
2 . You will need Stirling’s formula: n! ∼ n

n+ 1
2 e−n

√
2π .

6. A symmetric random walk in two dimensions is defined to be a sequence of points {(Xn,Yn) :
n ≥ 0} which evolves in the following way: if (Xn,Yn) = (x, y) then (Xn+1,Yn+1) is one of the

four points (x ± 1, y), (x, y ± 1), each being picked with equal probability 1
4 . If (X0,Y0) = (0, 0):

(a) show that E(X2
n + Y 2

n ) = n,

(b) find the probability p0(2n) that the particle is at the origin after the (2n)th step, and deduce that
the probability of ever returning to the origin is 1.

7. Consider the one-dimensional random walk {Sn} given by

Sn+1 =
{

Sn + 2 with probability p,

Sn − 1 with probability q = 1 − p,

where 0 < p < 1.

(a) What is the probability of ever reaching the origin starting from S0 = a where a > 0?

(b) Let An be the mean number of points in {0, 1, . . . , n} that the walk never visits. Find the limit

a = limn→∞ An/n when p > 1
3 , and verify for p = 1

2 that a = 1
2 (7 − 3

√
5).

8. Let X and Y be independent variables taking values in the positive integers such that

P(X = k | X + Y = n) =
(

n

k

)
pk(1 − p)n−k

for some p and all 0 ≤ k ≤ n. Show that X and Y have Poisson distributions.

9. In a branching process whose family sizes have mean µ and variance σ 2, find the variance of Zn ,
the size of the nth generation, given that Z0 = 1.

10. Waldegrave’s problem. A group {A1, A2, . . . , Ar } of r (> 2) people play the following game.
A1 and A2 wager on the toss of a fair coin. The loser puts £1 in the pool, the winner goes on to play
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Problems Exercises [5.12.11]–[5.12.15]

A3. In the next wager, the loser puts £1 in the pool, the winner goes on to play A4, and so on. The
winner of the (r − 1)th wager goes on to play A1, and the cycle recommences. The first person to
beat all the others in sequence takes the pool.

(a) Find the probability generating function of the duration of the game.

(b) Find an expression for the probability that Ak wins.

(c) Find an expression for the expected size of the pool at the end of the game, given that Ak wins.

(d) Find an expression for the probability that the pool is intact after the nth spin of the coin.

This problem was discussed by Montmort, Bernoulli, de Moivre, Laplace, and others.

11. A branching process has a single progenitor.

(a) Show that the generating function Hn of the total number of individuals in the first n generations
satisfies Hn(s) = sG(Hn−1(s)).

(b) Let T be the total number of individuals who ever exist, with Q(s) = E(sT ). Show, for s ∈ [0, 1),

that Q(s) = sG(Q(s)). Writing µ < 1 for the mean of the family-size distribution, and σ 2 > 0
for its variance, show that:

(i) Q(1) := lims↑1 Q(s) = 1,

(ii) E(T ) = 1/(1 − µ),

(iii) var(T ) = σ 2/(1 − µ)3.

(c) Find Q(s) when G(s) = p/(1 − qs) where 0 < p = 1 − q < 1. Discuss the properties of Q in
the two cases p < q and p ≥ q.

(d) Let G be as in part (c), and write Hn(s) = yn(s)/xn(s) for appropriate polynomials xn , yn . Show
that xn satisfies xn(s) = xn−1(s)− spqxn−2(s), with x0 = 1 and x1(s) = 1 − qs. Deduce the
form of Q(s).

12. Show that the number Zn of individuals in the nth generation of a branching process satisfies

P(Zn > N | Zm = 0) ≤ Gm(0)
N for n < m.

13. (a) A hen lays N eggs where N is Poisson with parameter λ. The weight of the nth egg
is Wn , where W1,W2, . . . are independent identically distributed variables with common probability

generating function G(s). Show that the generating function GW of the total weight W =
∑N

i=1 Wi is
given by GW (s) = exp{−λ+λG(s)}. The quantity W is said to have a compound Poisson distribution.

Show further that, for any positive integral value of n, GW (s)
1/n is the probability generating function

of some random variable; W (or its distribution) is said to be infinitely divisible in this regard.

(b) Show that if H(s) is the probability generating function of some infinitely divisible distribution
on the non-negative integers then H(s) = exp{−λ + λG(s)} for some λ (> 0) and some probability
generating function G(s).

(c) Can the compound Poisson distribution of W in part (a) be a Poisson distribution for any choice
of G?

14. The distribution of a random variable X is called infinitely divisible if, for all positive integers n,

there exists a sequence Y
(n)
1 ,Y

(n)
2 , . . . ,Y

(n)
n of independent identically distributed random variables

such that X and Y
(n)
1 + Y

(n)
2 + · · · + Y

(n)
n have the same distribution.

(a) Show that the normal, Poisson, and gamma distributions are infinitely divisible.

(b) Show that the characteristic function φ of an infinitely divisible distribution has no real zeros, in
that φ(t) 6= 0 for all real t .

15. Let X1, X2, . . . be independent variables each taking the values 0 or 1 with probabilities 1− p and
p, where 0 < p < 1. Let N be a random variable taking values in the positive integers, independent
of the X i , and write S = X1 + X2 + · · · + X N . Write down the conditional generating function of N

given that S = N , in terms of the probability generating function G of N . Show that N has a Poisson

distribution if and only if E(x N )p = E(x N | S = N) for all p and x .
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[5.12.16]–[5.12.23] Exercises Generating functions and their applications

16. If X and Y have joint probability generating function

G X,Y (s, t) = E(s X tY ) =
{1 − (p1 + p2)}n

{1 − (p1s + p2t)}n
where p1 + p2 ≤ 1,

find the marginal mass functions of X and Y , and the mass function of X +Y . Find also the conditional

probability generating function G X |Y (s | y) = E(s X | Y = y) of X given that Y = y. The pair X,Y

is said to have the bivariate negative binomial distribution.

17. If X and Y have joint probability generating function

G X,Y (s, t) = exp
{
α(s − 1)+ β(t − 1)+ γ (st − 1)

}

find the marginal distributions of X , Y , and the distribution of X + Y , showing that X and Y have the
Poisson distribution, but that X + Y does not unless γ = 0.

18. Define

I (a, b) =
∫ ∞

0
exp(−a2u2 − b2u−2) du

for a, b > 0. Show that

(a) I (a, b) = a−1 I (1, ab), (b) ∂ I/∂b = −2I (1, ab),

(c) I (a, b) =
√
πe−2ab/(2a).

(d) If X has density function (d/
√

x)e−c/x−gx for x > 0, then

E(e−t X ) = d

√
π

g + t
exp
(
−2
√

c(g + t)
)
, t > −g.

(e) If X has density function (2πx3)
− 1

2 e−1/(2x) for x > 0, then X has moment generating function

given by E(e−t X ) = exp
{
−

√
2t
}

, t ≥ 0. [Note that E(Xn) = ∞ for n ≥ 1.]

19. Let X , Y , Z be independent N(0, 1) variables. Use characteristic functions and moment gener-
ating functions (Laplace transforms) to find the distributions of

(a) U = X/Y ,

(b) V = X−2,

(c) W = XY Z/
√

X2Y 2 + Y 2 Z2 + Z2 X2.

20. Let X have density function f and characteristic functionφ, and suppose that
∫∞
−∞ |φ(t)| dt < ∞.

Deduce that

f (x) =
1

2π

∫ ∞

−∞
e−it xφ(t) dt.

21. Conditioned branching process. Consider a branching process whose family sizes have the

geometric mass function f (k) = qpk , k ≥ 0, where µ = p/q > 1. Let Zn be the size of the nth
generation, and assume Z0 = 1. Show that the conditional distribution of Zn/µ

n , given that Zn > 0,

converges as n → ∞ to the exponential distribution with parameter 1 − µ−1.

22. A random variable X is called symmetric if X and −X are identically distributed. Show that X

is symmetric if and only if the imaginary part of its characteristic function is identically zero.

23. Let X and Y be independent identically distributed variables with means 0 and variances 1. Let
φ(t) be their common characteristic function, and suppose that X + Y and X − Y are independent.

Show that φ(2t) = φ(t)3φ(−t), and deduce that X and Y are N(0, 1) variables.

More generally, suppose that X and Y are independent and identically distributed with means 0
and variances 1, and furthermore that E(X − Y | X + Y ) = 0 and var(X − Y | X + Y ) = 2. Deduce

that φ(s)2 = φ′(s)2 − φ(s)φ′′(s), and hence that X and Y are independent N(0, 1) variables.
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24. Show that the average Z = n−1∑n
i=1 X i of n independent Cauchy variables has the Cauchy

distribution too. Why does this not violate the law of large numbers?

25. Let X and Y be independent random variables each having the Cauchy density function f (x) =
{π(1 + x2)}−1, and let Z = 1

2 (X + Y ).

(a) Show by using characteristic functions that Z has the Cauchy distribution also.

(b) Show by the convolution formula that Z has the Cauchy density function. You may find it helpful
to check first that

f (x) f (y − x) =
f (x)+ f (y − x)

π(4 + y2)
+ g(y)

{
x f (x)+ (y − x) f (y − x)

}

where g(y) = 2/{πy(4 + y2)}.

26. Let X1, X2, . . . , Xn be independent variables with characteristic functions φ1, φ2, . . . , φn . De-
scribe random variables which have the following characteristic functions:

(a) φ1(t)φ2(t) · · ·φn(t), (b) |φ1(t)|2,

(c)
∑n

1 pjφj (t) where pj ≥ 0 and
∑n

1 pj = 1, (d) (2 − φ1(t))
−1 ,

(e)
∫∞

0 φ1(ut)e−u du.

27. (a) Find the characteristic functions corresponding to the following density functions on R:

(i) 1/ cosh(πx), (ii) (1 − cos x)/(π x2),

(iii) exp(−x − e−x ), (iv) 1
2 e−|x |.

Show that the mean of the ‘extreme-value distribution’ in part (iii) is Euler’s constant γ .

(b) Characteristic functions coincident on an interval. Write down the density function with
characteristic function φ(t) = max{0, 1 − |t |/π} for t ∈ R.

Show that the periodic function ψ(t) with period 2π given by ψ(t) = max{0, 1 − |t |/π} for
|t | ≤ π , is the characteristic function of the discrete random variable with mass function

f (0) =
1

2
, f (2k + 1) = f (−2k − 1) =

2

π2(2k + 1)2
, k = 0, 1, 2, . . . .

28. Which of the following are characteristic functions:
(a) φ(t) = 1 − |t | if |t | ≤ 1, φ(t) = 0 otherwise,

(b) φ(t) = (1 + t4)−1, (c) φ(t) = exp(−t4),

(d) φ(t) = cos t , (e) φ(t) = 2(1 − cos t)/t2.

29. Show that the characteristic function φ of a random variable X satisfies |1 − φ(t)| ≤ E|t X |.

30. Suppose X and Y have joint characteristic function φ(s, t). Show that, subject to the appropriate
conditions of differentiability,

i m+nE(XmY n) =
∂m+nφ

∂sm∂tn

∣∣∣∣
s=t=0

for any positive integers m and n.

31. If X has distribution function F and characteristic function φ, show that for t > 0

∫

[−t−1,t−1]
x2 d F ≤

3

t2
[1 − Re φ(t)],(a)

P

(
|X | ≥

1

t

)
≤

7

t

∫ t

0
[1 − Re φ(v)] dv.(b)

85
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32. Let X1, X2, . . . be independent variables which are uniformly distributed on [0, 1]. Let Mn =
max{X1, X2, . . . , Xn} and show that n(1 − Mn)

D−→ X where X is exponentially distributed with
parameter 1. You need not use characteristic functions.

33. If X is either (a) Poisson with parameter λ, or (b) Ŵ(1, λ), show that the distribution of Yλ =
(X − EX)/

√
var X approaches the N(0, 1) distribution as λ → ∞.

(c) Show that

e−n

(
1 + n +

n2

2!
+ · · · +

nn

n!

)
→

1

2
as n → ∞.

34. Coupon collecting. Recall that you regularly buy quantities of some ineffably dull commodity.
To attract your attention, the manufacturers add to each packet a small object which is also dull, and in
addition useless, but there are n different types. Assume that each packet is equally likely to contain
any one of the different types, as usual. Let Tn be the number of packets bought before you acquire

a complete set of n objects. Show that n−1(Tn − n log n)
D−→ T , where T is a random variable with

distribution function P(T ≤ x) = exp(−e−x ), −∞ < x < ∞.

35. Find a sequence (φn) of characteristic functions with the property that the limit given by φ(t) =
limn→∞ φn(t) exists for all t , but such that φ is not itself a characteristic function.

36. (a) Use generating functions to show that it is not possible to load two dice in such a way that the
sum of the values which they show is equally likely to take any value between 2 and 12. Compare
with your method for Problem (2.7.12).

(b) Sicherman dice. Show that it is possible to number the faces of two fair dice, in a different manner
from two standard dice, such that the sum of the scores when rolled has the same distribution as the
sum of the scores of two standard dice.

37. A biased coin is tossed N times, where N is a random variable which is Poisson distributed
with parameter λ. Prove that the total number of heads shown is independent of the total number of
tails. Show conversely that if the numbers of heads and tails are independent, then N has the Poisson
distribution.

38. A binary tree is a tree (as in the section on branching processes) in which each node has exactly
two descendants. Suppose that each node of the tree is coloured black with probability p, and white
otherwise, independently of all other nodes. For any path π containing n nodes beginning at the root
of the tree, let B(π) be the number of black nodes in π , and let Xn(k) be the number of such paths π
for which B(π) ≥ k. Show that there exists βc such that

E{Xn(βn)} →
{

0 if β > βc,

∞ if β < βc,

and show how to determine the value βc .

Prove that

P
(

Xn(βn) ≥ 1
)

→
{

0 if β > βc,

1 if β < βc.

39. Use the continuity theorem (5.9.5) to show that, as n → ∞,

(a) if Xn is bin(n, λ/n) then the distribution of Xn converges to a Poisson distribution,

(b) if Yn is geometric with parameter p = λ/n then the distribution of Yn/n converges to an expo-
nential distribution.
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40. Let X1, X2, . . . be independent random variables with zero means and such that E|X3
j | < ∞ for

all j . Show that Sn = X1 + X2 + · · · + Xn satisfies Sn

/√
var(Sn)

D−→ N(0, 1) as n → ∞ if

n∑

j=1

E|X3
j | = o

(
{var(Sn)}−

3
2

)
.

The following steps may be useful. Let σ 2
j = var(X j ), σ(n)

2 = var(Sn), ρj = E|X3
j |, and φj

and ψn be the characteristic functions of X j and Sn/σ (n) respectively.

(i) Use Taylor’s theorem to show that |φj (t) − 1| ≤ 2t2σ 2
j and |φj (t) − 1 + 1

2σ
2
j t2| ≤ |t |3ρj for

j ≥ 1.

(ii) Show that | log(1 + z)− z| ≤ |z|2 if |z| ≤ 1
2 , where the logarithm has its principal value.

(iii) Show that σ 3
j ≤ ρj , and deduce from the hypothesis that max1≤ j≤n σj/σ (n) → 0 as n → ∞,

implying that max1≤ j≤n |φj (t/σ (n))− 1| → 0.

(iv) Deduce an upper bound for
∣∣log φj (t/σ (n))− 1

2 t2σ 2
j /σ (n)

2
∣∣, and sum to obtain that logψn(t) →

− 1
2 t2.

41. Let X1, X2, . . . be independent variables each taking values +1 or −1 with probabilities 1
2 and

1
2 . Show that √

3

n3

n∑

k=1

kXk
D−→ N(0, 1) as n → ∞.

42. Normal sample. Let X1, X2, . . . , Xn be independent N(µ, σ 2) random variables. Define X =
n−1∑n

1 X i and Zi = X i − X . Find the joint characteristic function of X , Z1, Z2, . . . , Zn , and hence

prove that X and S2 = (n − 1)−1∑n
1(X i − X)2 are independent.

43. Log-normal distribution. Let X be N(0, 1), and let Y = eX ; Y is said to have the log-normal

distribution. Show that the density function of Y is

f (x) =
1

x
√

2π
exp
{
− 1

2 (log x)2
}
, x > 0.

For |a| ≤ 1, define fa(x) =
{

1+a sin(2π log x)
}

f (x). Show that fa is a density function with finite
moments of all (positive) orders, none of which depends on the value of a. The family { fa : |a| ≤ 1}
contains density functions which are not specified by their moments.

44. Consider a random walk whose steps are independent and identically distributed integer-valued
random variables with non-zero mean. Prove that the walk is transient.

45. Recurrent events. Let {Xr : r ≥ 1} be the integer-valued identically distributed intervals
between the times of a recurrent event process. Let L be the earliest time by which there has been an
interval of length a containing no occurrence time. Show that, for integral a,

E(s L) =
saP(X1 > a)

1 −
∑a

r=1 sr P(X1 = r)
.

46. A biased coin shows heads with probability p (= 1 − q). It is flipped repeatedly until the first

time Wn by which it has shown n consecutive heads. Let E(sWn ) = Gn(s). Show that Gn =
psGn−1/(1 − qsGn−1), and deduce that

Gn(s) =
(1 − ps)pnsn

1 − s + qpnsn+1
.
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47. In n flips of a biased coin which shows heads with probability p (= 1 − q), let Ln be the length
of the longest run of heads. Show that, for r ≥ 1,

1 +
∞∑

n=1

snP(Ln < r) =
1 − pr sr

1 − s + qpr sr+1
.

48. The random process {Xn : n ≥ 1} decays geometrically fast in that, in the absence of external

input, Xn+1 = 1
2 Xn . However, at any time n the process is also increased by Yn with probability

1
2 , where {Yn : n ≥ 1} is a sequence of independent exponential random variables with parameter λ.
Find the limiting distribution of Xn as n → ∞.

49. Let G(s) = E(s X ) where X ≥ 0. Show that E{(X + 1)−1} =
∫ 1

0 G(s) ds, and evaluate this
when X is (a) Poisson with parameter λ, (b) geometric with parameter p, (c) binomial bin(n, p), (d)
logarithmic with parameter p (see Exercise (5.2.3)). Is there a non-trivial choice for the distribution

of X such that E{(X + 1)−1} = {E(X + 1)}−1?

50. Find the density function of
∑N

r=1 Xr , where {Xr : r ≥ 1} are independent and exponentially
distributed with parameter λ, and N is geometric with parameter p and independent of the Xr .

51. Let X have finite non-zero variance and characteristic function φ(t). Show that

ψ(t) = −
1

E(X2)

d2φ

dt2

is a characteristic function, and find the corresponding distribution.

52. Triangular distribution. Let X and Y have joint density function

f (x, y) = 1
4

{
1 + xy(x2 − y2)

}
, |x | < 1, |y| < 1.

Show that φX (t)φY (t) = φX+Y (t), and that X and Y are dependent. Find the probability density
function of X + Y .

53. Exercise (4.6.6) revisited. Let X1, X2, . . . be independent and uniformly distributed on (0, 1),
and let m(x) = E(N) where N = min{n :

∑n
r=1 Xr > x} for x > 0. Show that m′(x) =

m(x) − m(x − 1), and deduce that the Laplace transform m∗(s) =
∫∞

0 m(x)e−sx dx is given by

m∗(s) = 1/(e−s + s − 1) for s 6= 0. Hence prove that

m(x) =
⌊x⌋∑

r=0

(−1)r

r !
(x − r)r ex−r , x > 0.

54. Rounding error. Let Sn =
∑n

r=1 Xr be a partial sum of a sequence of independent random
variables with the uniform distribution on (0, 1). For x ∈ R, let {x} denote the nearest integer to x ,
and write Rn =

∑n
r=1{Xr }.

(a) Show that Xr − {Xr } is uniformly distributed on (− 1
2 ,

1
2 ).

(b) Show that

P({Sn} = Rn) = 2 fn+1(0) =
∫ ∞

−∞

1

π

(
sin t

t

)n+1

dt,

where fn(y) is the density function of the sum of n independent random variables with the uniform
distribution on (−1, 1).

(c) Find a similar expression for P
(
{Sn} − Rn = k

)
.
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55. Maxwell’s molecules.

(a) Let V = (V1, V2, V3) be the velocity in R3 of a molecule M of a perfect gas, and assume that
in any Cartesian coordinate system the coordinates of V are independent random variables with

mean 0 and finite variance σ 2. Show that the Vi are independent with the N(0, σ 2) distribution.

When σ 2 = 1, show that |V | has the Maxwell density f (v) =
√

2/πv2e
− 1

2
v2

for v > 0.

(b) A physicist assumes that, initially, M is equally likely to be anywhere in the region R between

two parallel planes with distance 1 apart, independently of its velocity. Assuming σ 2 = 1, show
that the probability p(t) that M is in R at time t is

p(t) =
1

√
2π

[∫ 1

−1

1

t
exp

{
−

x2

2t2

}
dx − 2t

(
1 − exp

{
−

1

2t2

})]
.

(c) Deduce that the density function of the time T at which M exits R is

fT (t) =
√

2/π

[
1 − exp

{
−

1

2t2

}]
, t > 0.

56. Let X , Y be independent random variables with a joint distribution with circular symmetry about
0 in the x/y-plane, and with finite variances. Show that the distribution of R = X cos θ + Y sin θ
does not depend on the value of θ .

With the usual notation for characteristic functions, show that:

(a) φX (t cos θ)φY (t sin θ) = φR(t),

(b) φX (t) = φX (−t) = φY (t) = φY (−t),

(c) φX (t) = ψ(t2) for some continuous real-valued function ψ ,

(d) X and Y are N(0, σ 2) for some σ 2 ≥ 0.
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6

Markov chains

6.1 Exercises. Markov processes

1. Show that any sequence of independent random variables taking values in the countable set S is
a Markov chain. Under what condition is this chain homogeneous?

2. A die is rolled repeatedly. Which of the following are Markov chains? For those that are, supply
the transition matrix.

(a) The largest number Xn shown up to the nth roll.

(b) The number Nn of sixes in n rolls.

(c) At time r , the time Cr since the most recent six.

(d) At time r , the time Br until the next six.

3. Let {Sn : n ≥ 0} be a simple random walk with S0 = 0, and show that Xn = |Sn| defines a
Markov chain; find the transition probabilities of this chain. Let Mn = max{Sk : 0 ≤ k ≤ n}, and
show that Yn = Mn − Sn defines a Markov chain. What happens if S0 6= 0?

4. Let X be a Markov chain and let {nr : r ≥ 0} be an unbounded increasing sequence of positive
integers. Show that Yr = Xnr constitutes a (possibly non-homogeneous) Markov chain. Find the
transition matrix of Y when nr = 2r and X is: (a) simple random walk, and (b) a branching process.

5. Let X be a Markov chain on S, and let I : Sn → {0, 1}. Show that the distribution of
Xn, Xn+1, . . . , conditional on {I (X1, . . . , Xn) = 1} ∩ {Xn = i }, is identical to the distribution
of Xn, Xn+1, . . . conditional on {Xn = i }.

6. Strong Markov property. Let X be a Markov chain on S, and let T be a random variable taking
values in {0, 1, 2, . . . } with the property that the indicator function I{T =n}, of the event that T = n, is
a function of the variables X1, X2, . . . , Xn . Such a random variable T is called a stopping time, and
the above definition requires that it is decidable whether or not T = n with a knowledge only of the
past and present, X0, X1, . . . , Xn , and with no further information about the future.

Show that

P
(

XT +m = j
∣∣ Xk = xk for 0 ≤ k < T, XT = i

)
= P(XT +m = j | XT = i )

for m ≥ 0, i, j ∈ S, and all sequences (xk) of states.

7. Let X be a Markov chain with state space S, and suppose that h : S → T is one–one. Show that
Yn = h(Xn) defines a Markov chain on T . Must this be so if h is not one–one?

8. Let X and Y be Markov chains on the set Z of integers.

(a) Is the sequence Zn = Xn + Yn necessarily a Markov chain?

(b) Is Z a Markov chain if X and Y are independent chains? Give a proof or a counterexample.



Classification of states Exercises [6.1.9]–[6.2.5]

(c) Show that Z is a Markov chain if X and Y are independent of one another and have independent
increments.

9. Let X be a Markov chain. Which of the following are Markov chains?

(a) Xm+r for r ≥ 0.

(b) X2m for m ≥ 0.

(c) The sequence of pairs (Xn, Xn+1) for n ≥ 0.

10. Two-sided Markov property. Let X be a Markov chain. Show that, for 1 < r < n,

P(Xr = k | X i = xi for i = 1, 2, . . . ,r − 1, r + 1 . . . , n)

= P(Xr = k | Xr−1 = xr−1, Xr+1 = xr+1).

11. Let {Xn : n ≥ 1} be independent identically distributed integer-valued random variables. Let
Sn =

∑n
r=1 Xr , with S0 = 0, Yn = Xn + Xn−1 with X0 = 0, and Zn =

∑n
r=0 Sr . Which of the

following constitute Markov chains: (a) Sn, (b) Yn , (c) Zn , (d) the sequence of pairs (Sn, Zn)?

12. A stochastic matrix P is called doubly stochastic if
∑

i pi j = 1 for all j . It is called sub-stochastic

if
∑

i pi j ≤ 1 for all j . Show that, if P is stochastic (respectively, doubly stochastic, sub-stochastic),

then Pn is stochastic (respectively, doubly stochastic, sub-stochastic) for all n.

13. Lumping. Let X be a Markov chain on the finite state space S with transition matrix P, and let
C = {Cj : j ∈ J } be a partition of S. Let Yn = j if Xn ∈ Cj . The chain X is called C-lumpable if
Y is a Markov chain.

Show that X is C-lumpable if and only if, for a, b ∈ J , P(Xn+1 ∈ Cb | Xn = i ) is constant for
i ∈ Ca .

6.2 Exercises. Classification of states

1. Last exits. Let li j (n) = P(Xn = j, Xk 6= i for 1 ≤ k < n | X0 = i ), the probability that the
chain passes from i to j in n steps without revisiting i . Writing

L i j (s) =
∞∑

n=1

snli j (n),

show that Pi j (s) = Pii (s)L i j (s) if i 6= j . Deduce that the first passage times and last exit times
have the same distribution for any Markov chain for which Pii (s) = Pj j (s) for all i and j . Give an
example of such a chain.

2. Let X be a Markov chain containing an absorbing state s with which all other states i communicate,
in the sense that pis(n) > 0 for some n = n(i ). Show that all states other than s are transient.

3. Show that a state i is recurrent if and only if the mean number of visits of the chain to i , having
started at i , is infinite. That is to say, i is recurrent if and only if

∑
n pii (n) = ∞.

4. Visits. Let Vj = |{n ≥ 1 : Xn = j}| be the number of visits of the Markov chain X to j , and
define ηi j = Pi (Vj = ∞). Show that:

(a) ηii =
{

1 if i is recurrent,

0 if i is transient,

(b) ηi j =
{

Pi (Tj < ∞) if j is recurrent,

0 if j is transient,
where Tj = min{n ≥ 1 : Xn = j}.

5. Symmetry. The distinct pair i, j of states of a Markov chain is called symmetric if

Pi (Tj < Ti ) = Pj (Ti < Tj ),
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where Ti = min{n ≥ 1 : Xn = i }. Show that, if X0 = i and i, j is symmetric, the expected number
of visits to j before the chain revisits i is 1. [Cf. the quotation following Theorem (3.10.18).]

6. Van Dantzig’s collective marks. Let X be a Markov chain, and let T be a geometric random
variable with P(T > n) = sn for n ≥ 0, which is independent of X . By considering the expected
number of visits by X to a given state before time T , prove Theorem (6.2.3).

7. Constrained first-passage time. Let X be an ergodic Markov chain started from a, and assume
X is irreducible (in that, for states i , j , there exists m ≥ 0 such that pi j (m) > 0). Let a, b, c be distinct
states, and let T (a, b,¬c) be the time until X first visits b, with no intermediate visit to c. That is, if
X visits b before c, then T (a, b,¬c) is that time, and if X visits c before b we set T (a, b,¬c) = ∞.
Let

G(a, b,¬c; s) =
∞∑

n=1

snPa

(
T (a, b,¬c) = n

)
.

Show that

G(a, b,¬c; s) =
Fab − Fac Fcb

1 − Fbc Fcb
,

where, for example, Fab(s) is the probability generating function of the first passage time Tab from a

to b irrespective of intermediate visits to c. Show further that

Pa

(
T (a, b,¬c) < ∞

)
=
µac + µcb − µab

µbc + µcb
,

where, for example, µab = Ea(Tab).

6.3 Exercises. Classification of chains

1. Let X be a Markov chain on {0, 1, 2, . . . } with transition matrix given by p0 j = aj for j ≥ 0,
pii = r and pi,i−1 = 1 − r for i ≥ 1. Classify the states of the chain, and find their mean recurrence
times.

2. Determine whether or not the random walk on the integers having transition probabilities pi,i+2 =
p, pi,i−1 = 1 − p, for all i , is recurrent.

3. Classify the states of the Markov chains with transition matrices




1 − 2p 2p 0
p 1 − 2p p

0 2p 1 − 2p


 ,(a)




0 p 0 1 − p

1 − p 0 p 0
0 1 − p 0 p

p 0 1 − p 0


 .(b)

In each case, calculate pi j (n) and the mean recurrence times of the states.

4. A particle performs a random walk on the vertices of a cube. At each step it remains where it is

with probability 1
4 , or moves to one of its neighbouring vertices each having probability 1

4 . Let v and
w be two diametrically opposite vertices. If the walk starts at v, find:

(a) the mean number of steps until its first return to v,

(b) the mean number of steps until its first visit to w,

(c) the mean number of visits to w before its first return to v.
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5. Visits. With the notation of Exercise (6.2.4), show that

(a) if i → j and i is recurrent, then ηi j = ηj i = 1,

(b) ηi j = 1 if and only if Pi (Tj < ∞) = Pj (Tj < ∞) = 1.

6. Hitting probabilities. Let TA = min{n ≥ 0 : Xn ∈ A}, where X is a Markov chain and A is a
subset of the state space S, and let ηj = Pj (TA < ∞). Show that

ηj =





1 if j ∈ A,∑

k∈S

pj kηk if j /∈ A.

Show further that if x = (xj : j ∈ S) is any non-negative solution of these equations then xj ≥ ηj for
all j .

7. Mean hitting times. In the notation of Exercise (6.3.6), let ρj = Ej (TA). Show that

ρj =





0 if j ∈ A,

1 +
∑

k∈S

pj kρk if j /∈ A,

and that if x = (xj : j ∈ S) is any non-negative solution of these equations then xj ≥ ρj for all j .

8. Let X be an irreducible Markov chain and let A be a subset of the state space. Let Sr and Tr

be the successive times at which the chain enters A and visits A respectively. Are the sequences
{XSr : r ≥ 1}, {XTr : r ≥ 1} Markov chains? What can be said about the times at which the chain
exits A?

9. (a) Show that for each pair i, j of states of an irreducible aperiodic chain, there exists N = N(i, j)

such that pi j (r) > 0 for all r ≥ N .

(b) Show that there exists a function f such that, if P is the transition matrix of an irreducible aperiodic
Markov chain with n states, then pi j (r) > 0 for all states i , j , and all r ≥ f (n).

(c) Show further that f (4) ≥ 6 and f (n) ≥ (n − 1)(n − 2).

[Hint: The postage stamp lemma asserts that, for a, b coprime, the smallest n such that all integers
strictly exceeding n have the form αa + βb for some integers α, β ≥ 0 is (a − 1)(b − 1).]

10. An urn initially contains n green balls and n + 2 red balls. A ball is picked at random: if it is
green then a red ball is also removed and both are discarded; if it is red then it is replaced together
with an extra red and an extra green ball. This is repeated until there are no green balls in the urn.
Show that the probability the process terminates is 1/(n + 1).

Now reverse the rules: if the ball is green, it is replaced together with an extra green and an extra
red ball; if it is red it is discarded along with a green ball. Show that the expected number of iterations
until no green balls remain is

∑n
j=1(2 j + 1) = n(n + 2). [Thus, a minor perturbation of a simple

symmetric random walk can be positive recurrent, whereas the original is null recurrent.]

6.4 Exercises. Stationary distributions and the limit theorem

1. The proof copy of a book is read by an infinite sequence of editors checking for mistakes. Each
mistake is detected with probability p at each reading; between readings the printer corrects the
detected mistakes but introduces a random number of new errors (errors may be introduced even if no
mistakes were detected). Assuming as much independence as usual, and that the numbers of new errors
after different readings are identically distributed, find an expression for the probability generating
function of the stationary distribution of the number Xn of errors after the nth editor–printer cycle,
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whenever this exists. Find it explicitly when the printer introduces a Poisson-distributed number of
errors at each stage.

2. Do the appropriate parts of Exercises (6.3.1)–(6.3.4) again, making use of the new techniques at
your disposal.

3. Dams. Let Xn be the amount of water in a reservoir at noon on day n. During the 24 hour period
beginning at this time, a quantity Yn of water flows into the reservoir, and just before noon on each
day exactly one unit of water is removed (if this amount can be found). The maximum capacity of
the reservoir is K , and excessive inflows are spilled and lost. Assume that the Yn are independent
and identically distributed random variables and that, by rounding off to some laughably small unit of
volume, all numbers in this exercise are non-negative integers. Show that (Xn) is a Markov chain, and
find its transition matrix and an expression for its stationary distribution in terms of the probability
generating function G of the Yn .

Find the stationary distribution when Y has probability generating function G(s) = p(1−qs)−1.

4. Show by example that chains which are not irreducible may have many different stationary
distributions.

5. Diagonal selection. Let (xi (n) : i, n ≥ 1) be a bounded collection of real numbers. Show that
there exists an increasing sequence n1, n2, . . . of positive integers such that limr→∞ xi (nr ) exists for
all i . Use this result to prove that, for an irreducible Markov chain, if it is not the case that pi j (n) → 0

as n → ∞ for all i and j , then there exists a sequence (nr : r ≥ 1) and a vector α (6= 0) such that
pi j (nr ) → αj as r → ∞ for all i and j .

6. Random walk on a graph. A particle performs a random walk on the vertex set of a connected
graph G , which for simplicity we assume to have neither loops nor multiple edges. At each stage it
moves to a neighbour of its current position, each such neighbour being chosen with equal probability.
If G has η (< ∞) edges, show that the stationary distribution is given by πv = dv/(2η), where dv is
the degree of vertex v.

7. Show that a random walk on the infinite binary tree is transient.

8. At each time n = 0, 1, 2, . . . a number Yn of particles enters a chamber, where {Yn : n ≥ 0}
are independent and Poisson distributed with parameter λ. Lifetimes of particles are independent and
geometrically distributed with parameter p. Let Xn be the number of particles in the chamber at time
n. Show that X is a Markov chain, and find its stationary distribution.

9. A random sequence of convex polygons is generated by picking two edges of the current polygon
at random, joining their midpoints, and picking one of the two resulting smaller polygons at random
to be the next in the sequence. Let Xn +3 be the number of edges of the nth polygon thus constructed.
Find E(Xn) in terms of X0, and find the stationary distribution of the Markov chain X .

10. Let s be a state of an irreducible Markov chain on the non-negative integers. Show that the chain
is recurrent if there exists a solution y to the equations yi ≥

∑
j : j 6=s pi j yj , i 6= s, satisfying yi → ∞.

11. Bow ties. A particle performs a random walk on a bow tie ABCDE drawn beneath on the left,
where C is the knot. From any vertex its next step is equally likely to be to any neighbouring vertex.
Initially it is at A. Find the expected value of:

(a) the time of first return to A,

(b) the number of visits to D before returning to A,

(c) the number of visits to C before returning to A,

(d) the time of first return to A, given no prior visit by the particle to E,

(e) the number of visits to D before returning to A, given no prior visit by the particle to E.
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A D

C

B E

A B

12. A particle starts at A and executes a symmetric random walk on the graph drawn above on the
right. Find the expected number of visits to B before it returns to A.

13. Top-to-random shuffling. A pack contains 52 cards labelled 1, 2, . . . , 52, and initially they are
in increasing order from top to bottom. At each stage of the shuffling process, the top card is moved
to one of the 52 available places determined by the other 51 cards, this place being chosen uniformly
at random, independently of all previous stages. Find the mean number of stages until card 52 is first
on top.

Show that, after the moment at which the card labelled 52 is inserted at random from the top, the
order of the pack is uniformly distributed over the 52! possibilities.

14. Random-to-top shuffling. A pack contains 52 cards labelled 1, 2, . . . , 52, and initially they are
in increasing order from top to bottom. At each stage, a card is picked uniformly at random from the
pack and placed on top, independently of all previous stages. Find the mean number of stages until
every card has been selected at least once.

Show that, after the moment at which the final card to be selected at random is placed on top, the
order of the pack is uniformly distributed over the 52! possibilities.

15. Quality control. Dick and Jim are writing exercises in sequence for inclusion in a textbook. Dick
writes them and Jim checks them. Each exercise is faulty with probability p, independently of other
exercises. Jim has two modes of operation. In Mode A, he inspects every exercise as it is produced.
In Mode B, he inspects each exercise with probability 1/r where r > 1, independently of all other
events.

Let N ≥ 1. Jim operates in Mode A until he has found N consecutive non-defective exercises, at
which point he changes to Mode B. He operates in Mode B until the first defective exercise is found,
and then he reverts to Mode A.

Let X be the Markov chain which is in state i if Jim is operating in Mode A and the last i

consecutive exercises since entering Mode A have been found to be non-defective, and is in state N

if Jim is in Mode B.

(a) Write down the transition probabilities of X and find its stationary distribution.

(b) Show that the long run proportion of exercises that are inspected is 1/[1 + (r − 1)(1 − pN )].

(c) Find an expression for the long run proportion of defective exercises which are not detected by
Jim.

16. Exercise (3.11.39) revisited. A particle performs a random walk on the non-negative integers as
follows. When at position k ≥ 0, its next position is uniformly distributed on the set {0, 1, . . . , k, k+1}.
Show that the sequence of positions forms an aperiodic, positive recurrent Markov chain, and find its
stationary distribution.

Find the mean number µ of steps required to reach position 0 for the first time from position 1.

17. Let {Xn : n ≥ 0} be an irreducible Markov chain with state space S and transition matrix P (the
chain may be either transient or recurrent). Let k ∈ S and let x be a stationary measure such that
xk = 1. Prove that x ≥ ρ(k) where ρ(k) is given in equation (6.4.5). If the chain is recurrent, show
that x = ρ(k).
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6.5 Exercises. Reversibility

1. A random walk on the set {0, 1, 2, . . . , b} has transition matrix given by p00 = 1 − λ0, pbb =
1 − µb, pi,i+1 = λi and pi+1,i = µi+1 for 0 ≤ i < b, where 0 < λi , µi < 1 for all i , and
λi + µi = 1 for 1 ≤ i < b. Show that this process is reversible in equilibrium.

2. Let X be an irreducible, positive recurrent, aperiodic Markov chain on the state space S.

(a) Kolmogorov’s reversibility criterion. Show that X is reversible in equilibrium if and only if

pj1, j2
pj2, j3

· · · pjn−1, jn pjn, j1
= pj1, jn pjn, jn−1

· · · pj2, j1

for all n and all finite sequences j1, j2, . . . , jn of states.

(b) Kelly’s reversibility condition. Show that X is reversible in equilibrium if, for all distinct triples
i, j, k ∈ S,

pi j pj k pki = pik pkj pj i ,

and in addition there exists c ∈ S such that pic > 0 for all i 6= c.

(c) Consider a chain with n ≥ 3 states. Show that Kolmogorov’s criterion, as expressed above, may

require the verification of up to 1
2

∑n
r=3

(n
r

)
(r − 1)! equations, whereas Kelly’s condition, if

appropriate, requires no more than
(n−1

3

)
.

(d) Show that a random walk on a finite tree is reversible in equilibrium.

3. Let X be a reversible Markov chain, and let C be a non-empty subset of the state space S. Define
the Markov chain Y on S by the transition matrix Q = (qi j ) where

qi j =
{
βpi j if i ∈ C and j /∈ C,

pi j otherwise,

for i 6= j , and where β is a constant satisfying 0 < β < 1. The diagonal terms qii are arranged so that
Q is a stochastic matrix. Show that Y is reversible in equilibrium, and find its stationary distribution.
Describe the situation in the limit as β ↓ 0.

4. Can a reversible chain be periodic?

5. Ehrenfest dog–flea model. The dog–flea model of Example (6.5.5) is a Markov chain X on the
state space {0, 1, . . . ,m} with transition probabilities

pi,i+1 = 1 −
i

m
, pi,i−1 =

i

m
, for 0 ≤ i ≤ m.

Show that, if X0 = i ,

E
(

Xn −
m

2

)
=
(

i −
m

2

)(
1 −

2

m

)n

→ 0 as n → ∞.

6. Which of the following (when stationary) are reversible Markov chains?

(a) The chain X = {Xn} having transition matrix P =
(

1 − α α

β 1 − β

)
where α + β > 0.

(b) The chain Y = {Yn} having transition matrix P =




0 p 1 − p

1 − p 0 p

p 1 − p 0


where 0 < p < 1.

(c) Zn = (Xn,Yn), where Xn and Yn are independent and satisfy (a) and (b).

7. Let Xn,Yn be independent simple random walks. Let Zn be (Xn,Yn) truncated to lie in the
region Xn ≥ 0, Yn ≥ 0, Xn + Yn ≤ a where a is integral. Find the stationary distribution of Zn .
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8. Show that an irreducible Markov chain with a finite state space and transition matrix P is reversible
in equilibrium if and only if P = DS for some symmetric matrix S and diagonal matrix D with strictly
positive diagonal entries. Show further that for reversibility in equilibrium to hold, it is necessary but
not sufficient that P has real eigenvalues.

9. Random walk on a graph. Let G be a finite connected graph with neither loops nor multiple
edges, and let X be a random walk on G as in Exercise (6.4.6). Show that X is reversible in equilibrium.

10. Consider a random walk on the strictly positive integers with transition probabilities

pi,i−1 =
1

2
·

i + 2

i + 1
, pi,i+1 =

1

2
·

i

i + 1
, i ≥ 2,

and p11 = 3
4 , p12 = 1

4 . Show that the walk is positive recurrent and find the mean recurrence time of
the state i .

11. An aleatory beetle performs a random walk on five vertices comprising the principal points
(labelled n, e, s, w) and centre (labelled c) of a compass, with transition probabilities

pen = pws = 1
4 ,

pcn = pne = pec = pce = psw = pwn = 1
8 ,

pnc = pes = psc = pcs = pse = pwc = 1
16 ,

pcw = pnw = 1
32 .

Other moves have probability 0. Show that the mean recurrence time of the centre is µc = 11
2 .

12. Lazy Markov chain. Let X be an irreducible (but not necessarily aperiodic) Markov chain on
the countable state space S with transition matrix P, with invariant distribution π . Let a ∈ (0, 1) and
let L = aP + (1 − a)I where I is the identity matrix.

(a) Show that L is the transition matrix of an irreducible, aperiodic Markov chain Y with invariant
distribution π .

(b) Show that, if X is reversible in equilibrium, then so is Y .

6.6 Exercises. Chains with finitely many states

The first two exercises provide proofs that a Markov chain with finitely many states has a stationary
distribution.

1. The Markov–Kakutani theorem asserts that, for any convex compact subset C of Rn and any
linear continuous mapping T of C into C , T has a fixed point (in the sense that T (x) = x for some
x ∈ C). Use this to prove that a finite stochastic matrix has a non-negative non-zero left eigenvector
corresponding to the eigenvalue 1.

2. Let T be a m ×n matrix and let v ∈ Rn . Farkas’s theorem asserts that exactly one of the following
holds:

(i) there exists x ∈ Rm such that x ≥ 0 and xT = v,

(ii) there exists y ∈ Rn such that yv′ < 0 and Ty′ ≥ 0.

Use this to prove that a finite stochastic matrix has a non-negative non-zero left eigenvector corre-
sponding to the eigenvalue 1.

3. Arbitrage. Suppose you are betting on a race with m possible outcomes. There are n bookmakers,
and a unit stake with the i th bookmaker yields ti j if the j th outcome of the race occurs. A vector
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x = (x1, x2, . . . , xn), where xr ∈ (−∞,∞) is your stake with the r th bookmaker, is called a betting

scheme. Show that exactly one of (a) and (b) holds:

(a) there exists a probability mass function p = (p1, p2, . . . , pm) such that
∑m

j=1 ti j pj = 0 for all

values of i ,

(b) there exists a betting scheme x for which you surely win, that is,
∑n

i=1 xi ti j > 0 for all j .

4. Let X be a Markov chain with state space S = {1, 2, 3} and transition matrix

P =




1 − p p 0
0 1 − p p

p 0 1 − p




where 0 < p < 1. Prove that

Pn =




a1n a2n a3n

a3n a1n a2n

a2n a3n a1n




where a1n + ωa2n + ω2a3n = (1 − p + pω)n , ω being a complex cube root of 1.

5. Let P be the transition matrix of a Markov chain with finite state space. Let I be the identity
matrix, U the |S| × |S| matrix with all entries unity, and 1 the row |S|-vector with all entries unity.
Let π be a non-negative vector with

∑
i πi = 1. Show that πP = π if and only if π(I − P + U) = 1.

Deduce that if P is irreducible then π = 1(I − P + U)−1.

6. Chess. A chess piece performs a random walk on a chessboard; at each step it is equally likely
to make any one of the available moves. What is the mean recurrence time of a corner square if the
piece is a: (a) king? (b) queen? (c) bishop? (d) knight? (e) rook?

7. Chess continued. A rook and a bishop perform independent symmetric random walks with
synchronous steps on a 4 × 4 chessboard (16 squares). If they start together at a corner, show that the
expected number of steps until they meet again at the same corner is 448/3.

8. Find the n-step transition probabilities pi j (n) for the chain X having transition matrix

P =




0 1
2

1
2

1
3

1
4

5
12

2
3

1
4

1
12


 .

9. The ‘PageRank’ Markov chain. The pages on the worldwide web form a directed graph W

with n vertices (representing pages) joined by directed edges (representing links). The existence of
a link from i to j is denoted by i → j , and the graph is specified by its adjacency matrix L = (li j )

where li j = 1 if i → j and li j = 0 otherwise. The out-degree di (respectively, in-degree ci ) of vertex
i is the number of links pointing away from i (respectively, towards i ). Vertex i is said to dangle if
di = 0.

The behaviour of a swiftly bored web surfer is modelled by a random walk on W . Let b ∈ (0, 1).
From any dangling vertex, the random walk moves to a randomly chosen vertex of W , each vertex
having probability 1/n. When at a non-dangling vertex i , with probability b < 1 the walk moves
to a random linked vertex (each having probability 1/di ), while with probability 1 − b it moves to a
random vertex of W (each having probability 1/n).

(a) Show that the transition matrix P may be written in the form P = bQ + v′e, where Q = (qi j )

with

qi j =





1/di if i → j,

1/n if i dangles,

0 otherwise,
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and v = (vi ) is a row vector with vi = (1 − b)/n, and e is a row vector with entries 1.

(b) Deduce that the stationary distribution π is given by π = {(1 − b)/n}e(I − bQ)−1 where I is
the identity matrix.

(c) Explain why the elements of π , when rearranged in decreasing order, supply a description of the
relative popularities of web pages (called ‘PageRank’ by Google, that being their trademark for
the patented algorithm).

10. Let P be the transition matrix of an irreducible Markov chain on a finite state space, and let π be
a left eigenvector of P corresponding to the eigenvalue 1. Show from the equation π = πP directly
that the entries of π are either all positive or all negative, and hence prove Theorem (6.6.1d): there
exists a unique distribution π satisfying πP = π , and, furthermore, all components of π are strictly
positive.

6.7 Exercises. Branching processes revisited

1. Let Zn be the size of the nth generation of a branching process with Z0 = 1 and P(Z1 = k) = 2−k

for k ≥ 0. Show directly that, as n → ∞, P(Zn ≤ 2yn | Zn > 0) → 1 − e−2y , y > 0, in agreement
with Theorem (6.7.8).

2. Let Z be a supercritical branching process with Z0 = 1 and family-size generating function G .
Assume that the probability η of extinction satisfies 0 < η < 1. Find a way of describing the process
Z , conditioned on its ultimate extinction.

3. Let Zn be the size of the nth generation of a branching process with Z0 = 1 and P(Z1 = k) = qpk

for k ≥ 0, where p + q = 1 and p > 1
2 . Use your answer to Exercise (6.7.2) to show that, if we

condition on the ultimate extinction of Z , then the process grows in the manner of a branching process

with generation sizes Z̃n satisfying Z̃0 = 1 and P(Z̃1 = k) = pqk for k ≥ 0.

4. (a) Show that E(X | X > 0) ≤ E(X2)/E(X) for any random variable X taking non-negative
values.

(b) Let Zn be the size of the nth generation of a branching process with Z0 = 1 and P(Z1 = k) = qpk

for k ≥ 0, where p > 1
2 . Use part (a) to show that E(Zn/µ

n | Zn > 0) ≤ 2p/(p − q), where
µ = p/q.

(c) Show that, in the notation of part (b), E(Zn/µ
n | Zn > 0) → p/(p − q) as n → ∞.

6.8 Exercises. Birth processes and the Poisson process

1. Superposition. Flies and wasps land on your dinner plate in the manner of independent Poisson
processes with respective intensities λ and µ. Show that the arrivals of flying objects form a Poisson
process with intensity λ+ µ.

2. Thinning. Insects land in the soup in the manner of a Poisson process with intensity λ, and each
such insect is green with probability p, independently of the colours of all other insects. Show that
the arrivals of green insects form a Poisson process with intensity λp.

3. Let Tn be the time of the nth arrival in a Poisson process N with intensity λ, and define the excess
lifetime process E(t) = TN(t)+1 − t , being the time one must wait subsequent to t before the next
arrival. Show by conditioning on T1 that

P
(

E(t) > x
)

= e−λ(t+x) +
∫ t

0
P
(

E(t − u) > x
)
λe−λu du.

Solve this integral equation in order to find the distribution function of E(t). Explain your conclusion.
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4. Let B be a simple birth process of paragraph (6.8.15b) with B(0) = I ; the birth rates are λn = nλ.
Write down the forward system of equations for the process and deduce that

P
(

B(t) = k
)

=
(

k − 1

I − 1

)
e−Iλt

(
1 − e−λt

)k−I
, k ≥ I .

Show also that E(B(t)) = I eλt and var(B(t)) = I e2λt(1 − e−λt ).

5. Let B be a process of simple birth with immigration (6.8.11c) with parameters λ and ν, and
with B(0) = 0; the birth rates are λn = nλ+ ν. Write down the sequence of differential–difference
equations for pn(t) = P(B(t) = n). Without solving these equations, use them to show that m(t) =
E(B(t)) satisfies m′(t) = λm(t)+ ν, and solve for m(t).

6. Let N be a birth process with intensities λ0, λ1, . . . , and let N(0) = 0. Show that pn(t) =
P(N(t) = n) is given by

pn(t) =
1

λn

n∑

i=0

λi e
−λi t

n∏

j=0
j 6=i

λj

λj − λi

provided that λi 6= λj whenever i 6= j .

7. Suppose that the general birth process of the previous exercise is such that
∑

n
λ−1

n < ∞.

Show that λn pn(t) → f (t) as n → ∞ where f is the density function of the random variable
T = sup{t : N(t) < ∞}. Deduce that E(N(t) | N(t) < ∞) is finite or infinite depending on the

convergence or divergence of
∑

n nλ−1
n .

Find the Laplace transform of f in closed form for the case when λn = (n + 1
2 )

2, and deduce an
expression for f .

8. Traffic lights. A traffic light is green at time 0, and subsequently alternates between green and
red at the instants of a Poisson process with intensity λ. Starting from time x > 0, let W (x) be the
waiting time until the light is green for the first time. Find the distribution of W (x).

9. Conditional property of simple birth. Let X = {X (t) : t ≥ 0} be a simple birth process with
rate λ, and let X (0) = 1. Let b ≥ 1. Show that, conditional on the event {X (t) = b + 1}, the times
of the b births have the same distribution as the order statistics of a random sample of size b from the
density function

f (x) =
λe−λ(t−x)

1 − e−λt
, 0 ≤ x ≤ t.

10. Coincidences. Boulders fall down a chute (or couloir) at the instants of a Poisson process with
intensity λ, and mountaineers ascend the chute at the instants of a Poisson process with intensity µ
(the two processes are independent of one another). If a fall and an ascent occur during any interval
of length c or less, it is said that a coincidence has occurred. Show that the time T until the first
coincidence has mean

ET =
1

λ+ µ

{
1 +

λ2 + µ2

λµ
+ 2e−(λ+µ)c − e−2(λ+µ)c

}/
{

1 − e−2(λ+µ)c}.

Show that cE(T ) → (2λµ)−1 as c ↓ 0. Can you prove the last result directly?

11. Let S1, S2 be the times of the first two arrivals in a Poisson process with intensity λ, in order of
arrival. Show that

P(s < S1 ≤ t < S2) = λ(t − s)e−λt , 0 < s < t < ∞,
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and deduce the joint density function of S1 and S2.

12. Gig economy. A freelance salesman is paid R units for each sale, and commissions arrive at the
instants of a Poisson process of rate λ. Living costs consume his resources at unit rate. If his initial

wealth is S > 0, show that the probability that he ever becomes bankrupt is aS/R, where a is the

smallest x > 0 such that x = eλR(x−1).

Prove that a ∈ (0, 1) if λR > 1, while a = 1 if λR < 1.

6.9 Exercises. Continuous-time Markov chains

1. Let λµ > 0 and let X be a Markov chain on {1, 2} with generator

G =
(

−µ µ

λ −λ

)
.

(a) Write down the forward equations and solve them for the transition probabilities pi j (t), i, j =
1, 2.

(b) Calculate Gn and hence find
∑∞

n=0(t
n/n!)Gn . Compare your answer with that to part (a).

(c) Solve the equation πG = 0 in order to find the stationary distribution. Verify that pi j (t) → πj

as t → ∞.

2. As a continuation of the previous exercise, find:

(a) P(X (t) = 2 | X (0) = 1, X (3t) = 1),

(b) P(X (t) = 2 | X (0) = 1, X (3t) = 1, X (4t) = 1).

3. Jobs arrive in a computer queue in the manner of a Poisson process with intensity λ. The central
processor handles them one by one in the order of their arrival, and each has an exponentially distributed
runtime with parameter µ, the runtimes of different jobs being independent of each other and of the
arrival process. Let X (t) be the number of jobs in the system (either running or waiting) at time t ,
where X (0) = 0. Explain why X is a Markov chain, and write down its generator. Show that a
stationary distribution exists if and only if λ < µ, and find it in this case.

4. Pasta property. Let X = {X (t) : t ≥ 0} be a Markov chain having stationary distribution π .
We may sample X at the times of a Poisson process: let N be a Poisson process with intensity λ,
independent of X , and define Yn = X (Tn). Show that Y = {Yn : n ≥ 0} is a discrete-time Markov
chain with the same stationary distribution as X . (This exemplifies the ‘Pasta’ property: Poisson
arrivals see time averages.)

[The full assumption of the independence of N and X is not necessary for the conclusion. It suffices
that {N(s) : s ≥ t} be independent of {X (s) : s ≤ t}, a property known as ‘lack of anticipation’. It is
not even necessary that X be Markov; the Pasta property holds for many suitable ergodic processes.]

5. Hitting probabilities. Let X be a continuous-time Markov chain with generator G satisfying
gi = −gii > 0 for all i . Let HA = inf{t ≥ 0 : X (t) ∈ A} be the hitting time of the set A of states,
and let ηj = Pj (HA < ∞) be the chance of ever reaching A from j . By using properties of the jump

chain, which you may assume to be well behaved, show that
∑

k gj kηk = 0 for j /∈ A.

6. Mean hitting times. In continuation of the preceding exercise, let µj = Ej (HA). Show that the
vector µ is the minimal non-negative solution of the equations

µj = 0 if j ∈ A, 1 +
∑

k∈S

gj kµk = 0 if j /∈ A.

7. Let X be a continuous-time Markov chain with transition probabilities pi j (t) and define Fi =
inf{t > T1 : X (t) = i } where T1 is the time of the first jump of X . Show that, if gii 6= 0, then
Pi (Fi < ∞) = 1 if and only if i is recurrent.
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8. Let X be the simple symmetric random walk on the integers in continuous time, so that

pi,i+1(h) = pi,i−1(h) = 1
2λh + o(h).

Show that the walk is recurrent. Let T be the time spent visiting m during an excursion from 0. Find
the distribution of T .

9. Let i be a transient state of a continuous-time Markov chain X with X (0) = i . Show that the
total time spent in state i has an exponential distribution.

10. Let X be an asymmetric simple random walk in continuous time on the non-negative integers
with retention at 0, so that

pi j (h) =
{
λh + o(h) if j = i + 1, i ≥ 0,

µh + o(h) if j = i − 1, i ≥ 1.

Suppose that X (0) = 0 and λ > µ. Show that the total time Vr spent in state r is exponentially
distributed with parameter λ− µ.

Assume now that X (0) has some general distribution with probability generating function G .
Find the expected amount of time spent at 0 in terms of G .

11. Let X be the continuous-time Markov chain on the finite state space S with generator G = (gi j ).
Show from first principles that the transition probabilities satisfy

pi j (h) =
{

1 + gii h + o(h) if i = j,

gi j h + o(h) if i 6= j.

12. Let X be a Markov chain on the integers Z with generator satisfying gi,i−1 = gi,i+1 = 2i for
i ∈ Z, and gi, j = 0 for other pairs (i, j) with i 6= j . Does X explode?

13. Growth with annihilation. A population grows subject to the threat of total annihilation. It is
modelled as a Markov chain with generator G = (gi j ) satisfying

gi,i+1 =
1

i + 2
, i ≥ 0,

gi,0 =
1

(i + 1)(i + 2)
, i ≥ 1,

the other off-diagonal elements of G being 0. Show that the chain is null recurrent.

14. Skeletons. Let Zn = X (nh) where X is a Markov chain and h > 0. Show that i is recurrent for
Z if and only if it is recurrent for X . Show that Z is irreducible if and only if X is irreducible.

6.10 Exercises. Kolmogorov equations and the limit theorem

1. Let N < ∞, and let Q be the space of N × N matrices with real entries, with norm

|Q| = sup
x 6=0

|Qx|
|x|

, Q ∈ Q,

where |y| is the Euclidean norm of the vector y, and the supremum is over all non-zero column vectors.

(a) Show for Q1, Q2 ∈ Q that

|Q1 + Q2| ≤ |Q1| + |Q2|, |Q1Q2| ≤ |Q1| · |Q2|.
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(b) Show for Q ∈ Q that En :=
∑n

k=0 Qk/k! converges with respect to | · | to a limit which we
denote E = E(Q).

(c) Show that E(Q1 + Q2) = E(Q1)E(Q2) if Q1 and Q2 are commuting elements of Q.

2. Let Y be an irreducible discrete-time Markov chain on a countably infinite state space S, having
transition matrix Y = (yi j ) satisfying yii = 0 for all states i , and with stationary distribution ν.
Construct a continuous-time process X on S for which Y is the jump chain, such that X has no
stationary distribution.

3. Let X = (X (t) : t ≥ 0) be a Markov chain on Z with generator G = (gi j ) given by

gi,i−1 = i 2 + 1, gi,i = −2(i 2 + 1), gi,i+1 = i 2 + 1, i ∈ Z.

Show that X is recurrent. Is X positive recurrent?

4. Let X be a Markov chain on Z with generator G = (gi j ) satisfying

gi,i−1 = 3|i|, gi,i = −3|i|+1, gi,i+1 = 2 · 3|i|, i ∈ Z.

Show that X is transient, but has an invariant distribution. Explain.

5. Let X = (X t : t ≥ 0) be a Markov chain with generator G = (gi j ) on the finite state space S,
and let f : S → R be a function, which we identify with the vector f = ( f (i ) : i ∈ S). Show that

G f (i ) =
∑

j∈S

gi j

(
f ( j)− f (i )

)
,

where G f denotes the standard matrix multiplication.

Show that

G f (i ) = lim
t→0

1

t

[
Ei f (X t )− f (i )

]
, i ∈ S,

and deduce that

Ei f (X t ) = f (i )+
∫ t

0
Ei (G f (Xs)) ds.

6.11 Exercises. Birth–death processes and imbedding

1. Describe the jump chain for a birth–death process with rates λn and µn .

2. Consider an immigration–death process X , being a birth–death process with birth rates λn = λ

and death rates µn = nµ. Find the transition matrix of the jump chain Y , and show that it has as
stationary distribution

πn =
1

2(n!)

(
1 +

n

ρ

)
ρne−ρ

where ρ = λ/µ. Explain why this differs from the stationary distribution of X .

3. Consider the birth–death process X with λn = nλ andµn = nµ for all n ≥ 0. Suppose X (0) = 1
and let η(t) = P1(X (t) = 0). Show that η satisfies the differential equation

η′(t)+ (λ + µ)η(t) = µ+ λη(t)2.

Hence find η(t), and calculate P1(X (t) = 0 | X (u) = 0) for 0 < t < u.
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4. For the birth–death process of the previous exercise with λ < µ, show that the distribution of
X (t), conditional on the event {X (t) > 0}, converges as t → ∞ to a geometric distribution.

5. Let X be a birth–death process with λn = nλ and µn = nµ, and suppose X (0) = 1. Show that
the time T at which X (t) first takes the value 0 satisfies

E(T | T < ∞) =





1

λ
log

(
µ

µ− λ

)
if λ < µ,

1

µ
log

(
λ

λ− µ

)
if λ > µ.

What happens when λ = µ?

6. Let X be the birth–death process of Exercise (6.11.5) with λ 6= µ, and let Vr (t) be the total
amount of time the process has spent in state r ≥ 0, up to time t . Find the distribution of V1(∞) and

the generating function
∑

r sr E(Vr (t)). Hence show in two ways that E(V1(∞)) = [max{λ,µ}]−1.

Show further that E(Vr (∞)) = λr−1r−1[max{λ,µ}]−r .

7. Repeat the calculations of Exercise (6.11.6) in the case λ = µ.

8. Consider a birth–death process X with birth rates λn > 0 for n ≥ 0, death rates µn > 0 for
n > 0, and µ0 = 0. Let X (0) = n > 0, and let Dn be the time until the process first takes the value
n − 1.

(a) Show that dn = E(Dn) satisfies

λndn+1 = µndn − 1, n ≥ 1.

(b) Show that the moment generating function Mn(θ) = E(eθDn ) satisfies

(λn + µn − θ)Mn(θ) = µn + λn Mn(θ)Mn+1(θ), n ≥ 1.

9. Biofilms. In a model for a biofilm population, we assume there are n colonizable ‘niches’ (or
‘food sources’). Let X (t) be the number of occupied niches at time t , and assume X is a Markov
chain that evolves as follows. The lifetime of any colony is exponentially distributed with parameter
µ; if X (t) = i , the rate of establishment of a new colony in an empty niche is λi (n − i ). The usual
independence may be assumed.

For X (0) = 1, 2, . . . , find the mean time until the population is extinct, which is to say that no
niches are occupied. Discuss the implications when n is large.

6.12 Exercises. Special processes

1. Customers entering a shop are served in the order of their arrival by the single server. They
arrive in the manner of a Poisson process with intensity λ, and their service times are independent
exponentially distributed random variables with parameter µ. By considering the jump chain, show

that the expected duration of a busy period B of the server is (µ − λ)−1 when λ < µ. (The busy
period runs from the moment a customer arrives to find the server free until the earliest subsequent
time when the server is again free.)

2. Disasters. Immigrants arrive at the instants of a Poisson process of rate ν, and each independently
founds a simple birth process of rate λ. At the instants of an independent Poisson process of rate δ,
the population is annihilated. Find the probability generating function of the population X (t), given
that X (0) = 0.
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3. More disasters. In the framework of Exercise (6.12.2), suppose that each immigrant gives rise
to a simple birth–death process of rates λ and µ. Show that the mean population size stays bounded
if and only if δ > λ− µ.

4. The queue M/G/∞. An ftp server receives clients at the times of a Poisson process with parameter
λ, beginning at time 0. The i th client remains connected for a length Si of time, where the Si are
independent identically distributed random variables, independent of the process of arrivals. Assuming
that the server has an infinite capacity, show that the number of clients being serviced at time t has the

Poisson distribution with parameter λ
∫ t

0 [1 − G(x)] dx , where G is the common distribution function
of the Si . Show that the mean of this distribution converges to λE(S) as t → ∞.

6.13 Exercises. Spatial Poisson processes

1. In a certain town at time t = 0 there are no bears. Brown bears and grizzly bears arrive as
independent Poisson processes B and G with respective intensities β and γ .

(a) Show that the first bear is brown with probability β/(β + γ ).

(b) Find the probability that between two consecutive brown bears, there arrive exactly r grizzly
bears.

(c) Given that B(1) = 1, find the expected value of the time at which the first bear arrived.

2. Campbell–Hardy theorem. Let 5 be the points of a non-homogeneous Poisson process on Rd

with intensity function λ. Let S =
∑

x∈5 g(x) where g is a (measurable) function which we assume
for convenience to be non-negative.

(a) Show directly that E(S) =
∫

Rd g(x)λ(x) dx and var(S) =
∫

Rd g(x)2λ(x) dx, provided these
integrals converge.

(b) Show that

E(e−t S) = exp

{
−
∫

Rd
(1 − e−tg(x))λ(x) dx

}
, t > 0,

and deduce that P(S < ∞) = 1 if
∫

Rd min{1, g(x)}λ(x) dx < ∞.

(c) If the integral condition of part (b) holds, show that the characteristic function φ of S satisfies

φ(t) = exp

{
−
∫

Rd
(1 − eitg(x))λ(x) dx

}
, t ∈ R,

3. Let5 be a Poisson process with constant intensity λ on the surface of the sphere of R3 with radius
1. Let P be the process given by the (X, Y ) coordinates of the points projected on a plane passing
through the centre of the sphere. Show that P is a Poisson process, and find its intensity function.

4. Repeat Exercise (6.13.3), when 5 is a homogeneous Poisson process on the ball {(x1, x2, x3) :

x2
1 + x2

2 + x2
3 ≤ 1}.

5. You stick pins in a Mercator projection of the Earth in the manner of a Poisson process with
constant intensity λ. What is the intensity function of the corresponding process on the globe? What
would be the intensity function on the map if you formed a Poisson process of constant intensity λ of
meteorite strikes on the surface of the Earth?

6. Shocks. The r th point Tr of a Poisson process N of constant intensity λ on R+ gives rise to an

effect Xr e−α(t−Tr ) at time t ≥ Tr , where the Xr are independent and identically distributed with

finite variance. Find the mean and variance of the total effect S(t) =
∑N(t)

r=1 Xr e−α(t−Tr ) in terms of
the first two moments of the Xr , and calculate cov(S(s), S(t)).

What is the behaviour of the correlation ρ(S(s), S(t)) as s → ∞ with t − s fixed?
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7. Let N be a non-homogeneous Poisson process on R+ with intensity function λ. Find the joint
density of the first two inter-event times, and deduce that they are not in general independent.

8. Competition lemma. Let {Nr (t) : r ≥ 1} be a collection of independent Poisson processes on R+
with respective constant intensities {λr : r ≥ 1}, such that

∑
r λr = λ < ∞. Set N(t) =

∑
r Nr (t),

and let I denote the index of the process supplying the first point in N , occurring at time T . Show that

P(I = i, T ≥ t) = P(I = i )P(T ≥ t) =
λi

λ
e−λt , i ≥ 1.

9. Poisson line process. Let 5 be a Poisson process on R2 \ 0 with intensity function λ(u, v) =
(u2 + v2)−3/2. Each point (U, V ) ∈ 5 gives rise to a line U x + V y = 1 in the x/y-plane L.

(a) Let (p, θ) be the polar coordinates of the foot of the perpendicular from the origin onto the line
ux + vy = 1 in the x/y-plane L. Express (p, θ) in terms of (u, v).

(b) Show that the Poisson line process is mapped by the map of part (a) to a uniform Poisson process

on the strip S⊥ = R × [0, π).

(c) Show that the line process in L is invariant under translations and rotations of L.

10. Attracted by traffic. A large continent is traversed by a doubly-infinite straight freeway on
which lorries are parked at the points of a Poisson process with constant intensity 1. The masses of the
lorries are independent, identically distributed random variables that are independent of the parking
places. Let G be the gravitational attraction due to the lorries on a pedestrian of unit mass standing
beside the freeway. You may take the gravitational constant to be 1.

Show that G has characteristic function of the form φ(t) = exp(−c|t |1/2) where c > 0. Express
c in terms of the mean of a typical mass M .

6.14 Exercises. Markov chain Monte Carlo

1. Let P be a stochastic matrix on the finite set 2 with stationary distribution π . Define the inner

product 〈x, y〉 =
∑

k∈2 xk ykπk , and let l2(π) = {x ∈ R2 : 〈x, x〉 < ∞}. Show, in the obvious

notation, that P is reversible with respect to π if and only if 〈x,Py〉 = 〈Px, y〉 for all x, y ∈ l2(π).

2. Barker’s algorithm. Show that a possible choice for the acceptance probabilities in Hastings’s
general algorithm is

bi j =
πj gj i

πi gi j + πj gj i
,

where G = (gi j ) is the proposal matrix.

3. Let S be a countable set. For each j ∈ S, the sets Aj k , k ∈ S, form a partition of the interval
[0, 1]. Let g : S × [0, 1] → S be given by g( j, u) = k if u ∈ Aj k . The sequence {Xn : n ≥ 0} of
random variables is generated recursively by Xn+1 = g(Xn,Un+1), n ≥ 0, where {Un : n ≥ 1} are
independent random variables with the uniform distribution on [0, 1]. Show that X is a Markov chain,
and find its transition matrix.

4. Dobrushin’s bound. Let U = (ust ) be a finite |S| × |T | stochastic matrix. Dobrushin’s ergodic

coefficient is defined to be

d(U) = 1
2 sup

i, j∈S

∑

t∈T

|uit − u j t |.

(a) Show that, if V is a finite |T | × |U | stochastic matrix, then d(UV) ≤ d(U)d(V).

(b) Let X and Y be discrete-time Markov chains with the same transition matrix P, and show that

∑

k

∣∣P(Xn = k) − P(Yn = k)
∣∣ ≤ d(P)n

∑

k

∣∣P(X0 = k) − P(Y0 = k)
∣∣.
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5. Let π be a positive mass function on the finite set 2, and let P be the transition matrix of an
irreducible, aperiodic Markov chain with stationary distribution π . Let W = (W (i ) : i ∈ 2) be a
vector of random variables such that P(W (i ) = j) = pi j for i, j ∈ 2, and use W as an update rule
in the coupling-from-the-past algorithm for sampling from π .

(a) If the W (i ), i ∈ 2, are independent, show that the coalescence time is a.s. finite.

(b) Give two examples of situations in which the coalescence time is a.s. infinite.

6. Ising model. Show that the Ising distribution of Example (6.14.2) satisfies the FKG lattice
condition (6.14.20).

6.15 Problems

1. Classify the states of the discrete-time Markov chains with state space S = {1, 2, 3, 4} and
transition matrices

(a)




1
3

2
3 0 0

1
2

1
2 0 0

1
4 0 1

4
1
2

0 0 0 1


 (b)




0 1
2

1
2 0

1
3 0 0 2

3
1 0 0 0
0 0 1 0


 .

In case (a), calculate f34(n), and deduce that the probability of ultimate absorption in state 4, starting

from 3, equals 2
3 . Find the mean recurrence times of the states in case (b).

2. A transition matrix is called doubly stochastic if all its column sums equal 1, that is, if
∑

i pi j = 1
for all j ∈ S.

(a) Show that if a finite chain has a doubly stochastic transition matrix, then all its states are positive

recurrent, and that if it is, in addition, irreducible and aperiodic then pi j (n) → N−1 as n → ∞,
where N is the number of states.

(b) Show that, if an infinite irreducible chain has a doubly stochastic transition matrix, then its states
are either all null recurrent or all transient.

3. Prove that intercommunicating states of a Markov chain have the same period.

4. (a) Show that for each pair i, j of states of an irreducible aperiodic chain, there exists N = N(i, j)

such that pi j (n) > 0 for all n ≥ N .

(b) Let X and Y be independent irreducible aperiodic chains with the same state space S and transition
matrix P. Show that the bivariate chain Zn = (Xn,Yn), n ≥ 0, is irreducible and aperiodic.

(c) Show that the bivariate chain Z may be reducible if X and Y are periodic.

5. Suppose {Xn : n ≥ 0} is a discrete-time Markov chain with X0 = i . Let N be the total number
of visits made subsequently by the chain to the state j . Show that

P(N = n) =
{

1 − fi j if n = 0,

fi j ( f j j )
n−1(1 − f j j ) if n ≥ 1,

and deduce that P(N = ∞) = 1 if and only if fi j = f j j = 1.

6. Let i and j be two states of a discrete-time Markov chain. Show that if i communicates with j ,
then there is positive probability of reaching j from i without revisiting i in the meantime. Deduce
that, if the chain is irreducible and recurrent, then the probability fi j of ever reaching j from i equals
1 for all i and j .
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7. Let {Xn : n ≥ 0} be a recurrent irreducible Markov chain on the state space S with transition
matrix P, and let x be a positive solution of the equation x = xP.

(a) Show that

qi j (n) =
xj

xi
pj i(n), i, j ∈ S, n ≥ 1,

defines the n-step transition probabilities of a recurrent irreducible Markov chain on S whose
first-passage probabilities are given by

gi j (n) =
xj

xi
lj i(n), i 6= j, n ≥ 1,

where lj i (n) = Pj (Xn = i, T > n) and T = min{m > 0 : Xm = j}.
(b) Show that x is unique up to a multiplicative constant.

(c) Let Tj = min{n ≥ 1 : Xn = j} and define hi j = Pi (Tj ≤ Ti ). Show that xi hi j = xj h j i for all
i, j ∈ S.

8. Renewal sequences. The sequence u = {un : n ≥ 0} is called a ‘renewal sequence’ if

u0 = 1, un =
n∑

i=1

fi un−i for n ≥ 1,

for some collection f = { fn : n ≥ 1} of non-negative numbers summing to 1.

(a) Show that u is a renewal sequence if and only if there exists a Markov chain X on a countable
state space S such that un = P(Xn = s | X0 = s), for some recurrent s ∈ S and all n ≥ 1.

(b) Show that if u and v are renewal sequences then so is {unvn : n ≥ 0}.

9. Consider the symmetric random walk in three dimensions on the set of points {(x, y, z) : x, y, z =
0,±1,±2, . . . }; this process is a sequence {Xn : n ≥ 0} of points such that P(Xn+1 = Xn + ǫ) = 1

6
for ǫ = (±1, 0, 0), (0,±1, 0), (0, 0,±1). Suppose that X0 = (0, 0, 0). Show that

P
(
X2n = (0, 0, 0)

)
=
(

1

6

)2n ∑

i+ j+k=n

(2n)!

(i ! j ! k!)2
=
(

1

2

)2n
(

2n

n

) ∑

i+ j+k=n

(
n!

3n i ! j ! k!

)2

and deduce by Stirling’s formula that the origin is a transient state.

10. Consider the three-dimensional version of the cancer model (6.12.12). If κ = 1, are the empires
of Theorem (6.12.14) inevitable in this case?

11. Let X be a discrete-time Markov chain with state space S = {1, 2}, and transition matrix

P =
(

1 − α α

β 1 − β

)
.

Classify the states of the chain. Suppose that αβ > 0 and αβ 6= 1. Find the n-step transition
probabilities and show directly that they converge to the unique stationary distribution as n → ∞.
For what values of α and β is the chain reversible in equilibrium?

12. Another diffusion model. N black balls and N white balls are placed in two urns so that each
contains N balls. After each unit of time one ball is selected at random from each urn, and the two
balls thus selected are interchanged. Let the number of black balls in the first urn denote the state
of the system. Write down the transition matrix of this Markov chain and find the unique stationary
distribution. Is the chain reversible in equilibrium?

13. Consider a Markov chain on the set S = {0, 1, 2, . . . } with transition probabilities pi,i+1 = ai ,
pi,0 = 1 − ai , i ≥ 0, where (ai : i ≥ 0) is a sequence of constants which satisfy 0 < ai < 1 for all i .
Let b0 = 1, bi = a0a1 · · · ai−1 for i ≥ 1. Show that the chain is
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(a) recurrent if and only if bi → 0 as i → ∞,

(b) positive recurrent if and only if
∑

i bi < ∞,

and write down the stationary distribution if the latter condition holds.

Let A and β be positive constants and suppose that ai = 1 − Ai−β for all large i . Show that the
chain is

(c) transient if β > 1,

(d) positive recurrent if β < 1.

Finally, if β = 1 show that the chain is

(e) positive recurrent if A > 1,

(f) null recurrent if A ≤ 1.

14. Let X be a continuous-time Markov chain with countable state space S and semigroup {Pt }. Show
that pi j (t) is a continuous function of t . Let g(t) = − log pii (t); show that g is a continuous function,
g(0) = 0, and g(s + t) ≤ g(s)+ g(t). We say that g is ‘subadditive’, and a well known theorem gives
the result that

lim
t↓0

g(t)

t
= λ exists and λ = sup

t>0

g(t)

t
≤ ∞.

Deduce that the limit gii = limt↓0 t−1{pii (t)− 1} exists.

15. Let X be a continuous-time Markov chain with generator G = (gi j ). Show that X is irreducible
if and only if for any pair i , j of distinct states there exists a sequence i, k1, k2, . . . , kn , j of distinct
states such that gi,k1

gk1,k2
· · · gkn , j > 0.

16. Reversibility.

(a) Let T > 0 and let X = {X (t) : 0 ≤ t ≤ T } be an irreducible, non-explosive Markov chain with
stationary distribution π , and suppose that X (0) has distribution π . Let Y (t) = X (T − t) for
0 ≤ t ≤ T . We call X reversible (in equilibrium) if X and Y have the same joint distributions.

(i) Show that Y is a (left-continuous) Markov chain with transition probabilities p̂i j (t) =
(πj/πi )pj i (t) and generator Ĝ satisfying πj ĝj i = πi gi j , where the pj i(t) and G = (gi j )

are those of X . Show that Y is irreducible and non-explosive with stationary distribution π .

(ii) Show that X is reversible in equilibrium if and only if the detailed balance equations πi gi j =
πj gj i (for all i and j ) hold.

(iii) Show that a measure ν satisfies νG = 0 if it satisfies the detailed balance equations.

(b) Let X be irreducible and non-explosive with stationary distribution π , and assume X (0) has
distribution π .

(i) Kolmogorov’s criterion. Show that X is reversible if and only if, for all n and all finite
sequences k1, k2, . . . , kn of states,

gk1,k2
gk2,k3

· · · gkn−1,kn gkn ,k1
= gk1,kn gkn ,kn−1

· · · gk2,k1
.

(ii) Kelly’s criterion. Show that X is reversible if, for all distinct triples i, j, k ∈ S, we have
gi j gj kgki = gik gkj gj i , and in addition there exists c ∈ S such that gic > 0 for all i 6= c.

(c) Show that every irreducible chain X with exactly two states is reversible in equilibrium.

(d) Show that every non-explosive birth–death process X having a stationary distribution is reversible
in equilibrium.

17. Elfving’s imbedding problem. Show that not every discrete-time Markov chain can be imbedded
in a continuous-time chain. More precisely, let

P =
(

α 1 − α

1 − α α

)
for some 0 < α < 1
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be a transition matrix. Show that there exists a semigroup {Pt } of transition probabilities in continuous

time such that P1 = P, if and only if 1
2 < α < 1. In this case show that {Pt } is unique and calculate

it in terms of α.

18. Consider an immigration–death process X (t), being a birth–death process with rates λn = λ,

µn = nµ. Show that its generating function G(s, t) = E(s X (t)) is given by

G(s, t) =
{

1 + (s − 1)e−µt
}I

exp
{
ρ(s − 1)(1 − e−µt )

}

where ρ = λ/µ and X (0) = I . Deduce the limiting distribution of X (t) as t → ∞.

19. Let N be a non-homogeneous Poisson process on R+ = [0,∞) with intensity function λ. Write
down the forward and backward equations for N , and solve them.

Let N(0) = 0, and find the density function of the time T until the first arrival in the process. If
λ(t) = c/(1 + t), show that E(T ) < ∞ if and only if c > 1.

20. Successive offers for my house are independent identically distributed random variables X1,

X2, . . . , having density function f and distribution function F . Let Y1 = X1, let Y2 be the first offer
exceeding Y1, and generally let Yn+1 be the first offer exceeding Yn . Show that Y1,Y2, . . . are the times
of arrivals in a non-homogeneous Poisson process with intensity function λ(t) = f (t)/(1 − F(t)).
The Yi are called ‘record values’.

Now let Z1 be the first offer received which is the second largest to date, and let Z2 be the second
such offer, and so on. Show that the Zi are the arrival times of a non-homogeneous Poisson process
with intensity function λ.

21. Let N be a Poisson process with constant intensity λ, and let Y1,Y2, . . . be independent random
variables with common characteristic function φ and density function f . The process N∗(t) =
Y1 + Y2 + · · · + YN(t) is called a compound Poisson process. Yn is the change in the value of N∗ at
the nth arrival of the Poisson process N . Think of it like this. A ‘random alarm clock’ rings at the
arrival times of a Poisson process. At the nth ring the process N∗ accumulates an extra quantity Yn .
Write down a forward equation for N∗ and hence find the characteristic function of N∗(t). Can you
see directly why it has the form which you have found?

22. If the intensity function λ of a non-homogeneous Poisson process N is itself a random process,
then N is called a doubly stochastic Poisson process (or Cox process).

(a) Consider the case when λ(t) = 3 for all t , and3 is a random variable taking either of two values

λ1 or λ2, each being picked with equal probability 1
2 . Find the probability generating function of

N(t), and deduce its mean and variance.

(b) For a doubly stochastic Poisson process N , show that var(N(t)) ≥ E(N(t)).

(c) Let M be an ordinary Poisson process on the time-interval [0,∞)with constant rate 1. Let M∗ be
obtained from M by deleting the kth arrival for every odd value of k. Is M∗ either: (i) a Poisson
process, or (ii) a doubly stochastic Poisson process?

23. Show that a simple birth process X with parameter λ is a doubly stochastic Poisson process with
intensity function λ(t) = λX (t).

24. Pólya’s process. The Markov chain X = {X (t) : t ≥ 0} is a birth process whose intensities
λk(t) depend also on the time t and are given by

P
(

X (t + h) = k + 1
∣∣ X (t) = k

)
=

1 + µk

1 + µt
h + o(h)

as h ↓ 0. Show that the probability generating function G(s, t) = E(s X (t)) satisfies

∂G

∂t
=

s − 1

1 + µt

{
G + µs

∂G

∂s

}
, 0 < s < 1.
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Hence find the mean and variance of X (t) when X (0) = I .

25. (a) Let X be a birth–death process with strictly positive birth rates λ0, λ1, . . . and death rates
µ1, µ2, . . . . Let ηi be the probability that X (t) ever takes the value 0 starting from X (0) = i . Show
that

λjηj+1 − (λj + µj )ηj + µjηj−1 = 0, j ≥ 1,

and deduce that ηi = 1 for all i so long as
∑∞

1 ej = ∞ where ej = µ1µ2 · · ·µj /(λ1λ2 · · · λj ).

(b) For the discrete-time chain on the non-negative integers with

pj, j+1 =
( j + 1)2

j2 + ( j + 1)2
and pj, j−1 =

j2

j2 + ( j + 1)2
,

find the probability that the chain ever visits 0, starting from 1.

26. Find a good necessary condition and a good sufficient condition for the birth–death process X of
Problem (6.15.25a) to be honest.

27. Let X be a simple symmetric birth–death process with λn = µn = nλ, and let T be the time until
extinction. Show that

P(T ≤ x | X (0) = I ) =
(

λx

1 + λx

)I

,

and deduce that extinction is certain if P(X (0) < ∞) = 1.

Show that P(λT/I ≤ x | X (0) = I ) → e−1/x as I → ∞.

28. Immigration–death with disasters. Let X be an immigration–death–disaster process, that is, a
birth–death process with parameters λi = λ,µi = iµ, and with the additional possibility of ‘disasters’
which reduce the population to 0. Disasters occur at the times of a Poisson process with intensity δ,
independently of all previous births and deaths.

(a) Show that X has a stationary distribution, and find an expression for the generating function of
this distribution.

(b) Show that, in equilibrium, the mean of X (t) is λ/(δ + µ).

29. With any sufficiently nice (Lebesgue measurable, say) subset B of the real line R is associated a
random variable X (B) such that

(a) X (B) takes values in {0, 1, 2, . . . },
(b) if B1, B2, . . . , Bn are disjoint then X (B1), X (B2), . . . , X (Bn) are independent, and furthermore

X (B1 ∪ B2) = X (B1)+ X (B2),

(c) the distribution of X (B) depends only on B through its Lebesgue measure (‘length’) |B|, and

P(X (B) ≥ 1)

P(X (B) = 1)
→ 1 as |B| → 0.

Show that X is a Poisson process.

30. Poisson forest. Let N be a Poisson process in R2 with constant intensity λ, and let R(1) < R(2) <

· · · be the ordered distances from the origin of the points of the process.

(a) Show that R2
(1), R2

(2), . . . are the points of a Poisson process on R+ = [0,∞) with intensity λπ .

(b) Show that R(k) has density function

f (r) =
2πλr(λπr2)k−1e−λπr2

(k − 1)!
, r > 0.

31. Let X be a n-dimensional Poisson process with constant intensity λ. Show that the volume of
the largest (n-dimensional) sphere centred at the origin which contains no point of X is exponentially
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distributed. Deduce the density function of the distance R from the origin to the nearest point of

X . Show that E(R) = Ŵ(1/n)/{n(λc)1/n} where c is the volume of the unit ball of Rn and Ŵ is the
gamma function.

32. A village of N + 1 people suffers an epidemic. Let X (t) be the number of ill people at time t ,
and suppose that X (0) = 1 and X is a birth process with rates λi = λi (N + 1 − i ). Let T be the
length of time required until every member of the population has succumbed to the illness. Show that

E(T ) =
1

λ

N∑

k=1

1

k(N + 1 − k)

and deduce that

E(T ) =
2(log N + γ )

λ(N + 1)
+ O(N−2)

where γ is Euler’s constant. It is striking that E(T ) decreases with N , for large N .

33. A particle has velocity V (t) at time t , where V (t) is assumed to take values in {n + 1
2 : n ≥ 0}.

Transitions during (t, t + h) are possible as follows:

P
(
V (t + h) = w

∣∣ V (t) = v
)

=





(v + 1
2 )h + o(h) if w = v + 1,

1 − 2vh + o(h) if w = v,

(v − 1
2 )h + o(h) if w = v − 1.

Initially V (0) = 1
2 . Let

G(s, t) =
∞∑

n=0

snP
(
V (t) = n + 1

2

)
.

(a) Show that
∂G

∂t
= (1 − s)2

∂G

∂s
− (1 − s)G

and deduce that G(s, t) = {1 + (1 − s)t}−1.

(b) Show that the expected length mn(T ) of time for which V = n + 1
2 during the time interval [0, T ]

is given by

mn(T ) =
∫ T

0
P
(
V (t) = n + 1

2

)
dt

and that, for fixed k, mk(T )− log T → −
∑k

i=1 i−1 as T → ∞.

(c) What is the expected velocity of the particle at time t?

34. A sequence X0, X1, . . . of random integers is generated as follows. First, X0 = 0, X1 = 1. For
n ≥ 1, conditional on X0, X1, . . . , Xn , the next value Xn+1 is equally likely to be either Xn + Xn−1
or |Xn − Xn−1|.
(a) Is X a Markov chain?

(b) Use the Markov chain Yn = (Xn−1, Xn) to find the probability that X hits the value 3 before it
revisits 0.

(c) Show that the probability that Y ever reaches the state (1, 1), having started at (1, 2), is 1
2 (3−

√
5).

35. Take a regular hexagon and join opposite corners by straight lines meeting at the point C. A
particle performs a symmetric random walk on these 7 vertices, starting at A (6= C). Find:

(a) the probability of return to A without hitting C,

(b) the expected time to return to A,

(c) the expected number of visits to C before returning to A,

(d) the expected time to return to A, given that there is no prior visit to C.
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36. Diffusion, osmosis. Markov chains are defined by the following procedures at any time n:

(a) Bernoulli model. Two adjacent containers A and B each contain m particles; m are of type I and
m are of type II. A particle is selected at random in each container. If they are of opposite types
they are exchanged with probability α if the type I is in A, or with probability β if the type I is in
B. Let Xn be the number of type I particles in A at time n.

(b) Ehrenfest dog–flea model. Two adjacent containers contain m particles in all. A particle is
selected at random. If it is in A it is moved to B with probability α, if it is in B it is moved to A
with probability β. Let Yn be the number of particles in A at time n.

In each case find the transition matrix and stationary distribution of the chain.

37. Let X be an irreducible continuous-time Markov chain on the state space S with transition prob-
abilities pj k(t) and unique stationary distribution π , and write P(X (t) = j) = aj (t). If c(x) is a

concave function, show that the function d(t) =
∑

j∈S πj c(aj (t)/πj ) increases to c(1) as t → ∞.

The relative entropy (or Kullback–Leibler divergence) of two strictly positive probability mass
functions f , g on a subset S of integers is defined as

D( f ; g) =
∑

i∈S

f (i ) log
(

f (i )/g(i )
)
.

Prove that, if X has a finite state space and stationary distribution π , the relative entropy D(a(t); π)
decreases monotonely to 0 as t → ∞.

38. With the notation of the preceding problem, let uk(t) = P(X (t) = k | X (0) = 0), and suppose

the chain is reversible in equilibrium (see Problem (6.15.16)). Show that u0(2t) =
∑

j (π0/πj )u j (t)
2,

and deduce that u0(t) decreases to π0 as t → ∞.

39. Perturbing a Poisson process. Let 5 be the set of points in a Poisson process on Rd with
constant intensity λ. Each point is displaced, where the displacements are independent and identically
distributed. Show that the resulting point process is a Poisson process with intensity λ.

40. Perturbations continued. Suppose for convenience in Problem (6.15.39) that the displacements
have a continuous distribution function and finite mean, and that d = 1. Suppose also that you are
at the origin originally, and you move to a in the perturbed process. Let LR be the number of points
formerly on your left that are now on your right, and RL the number of points formerly on your right
that are now on your left. Show that E(LR) = E(RL) if and only if a = µ where µ is the mean
displacement of a particle.

Deduce that if cars enter the start of a long road at the instants of a Poisson process, having
independent identically distributed velocities, then, if you travel at the average speed, in the long run
the rate at which you are overtaken by other cars equals the rate at which you overtake other cars.

41. Ants enter a kitchen at the instants of a Poisson process N of rate λ; they each visit the pantry and
then the sink, and leave. The r th ant spends time Xr in the pantry and Yr in the sink (and Xr + Yr in
the kitchen altogether), where the vectors Vr = (Xr ,Yr ) and Vs are independent for r 6= s. At time
t = 0 the kitchen is free of ants. Find the joint distribution of the numbers A(t) of ants in the pantry
and B(t) of ants in the sink at time t .

Show that, as t → ∞, the number of ants in the kitchen converges in distribution, provided
E(Xr + Yr ) < ∞.

Now suppose the ants arrive in pairs at the times of the Poisson process, but then separate to
behave independently as above. Find the joint distribution of the numbers of ants in the two locations.

42. Let {Xr : r ≥ 1} be independent exponential random variables with parameter λ, and set Sn =∑n
r=1 Xr . Show that:

(a) Yk = Sk/Sn, 1 ≤ k ≤ n − 1, have the same distribution as the order statistics of independent
variables {Uk : 1 ≤ k ≤ n − 1} which are uniformly distributed on (0, 1),
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(b) Zk = Xk/Sn, 1 ≤ k ≤ n, have the same joint distribution as the coordinates of a point
(U1, . . . ,Un) chosen uniformly at random on the simplex

∑n
r=1 ur = 1, ur ≥ 0 for all r .

43. Let X be a discrete-time Markov chain with a finite number of states and transition matrix
P = (pi j ) where pi j > 0 for all i, j . Show that there exists λ ∈ (0, 1) such that |pi j (n)− πj | < λn ,
where π is the stationary distribution.

44. Under the conditions of Problem (6.15.43), let Vi (n) =
∑n−1

r=0 I{Xr =i} be the number of visits of
the chain to i before time n. Show that

E

(∣∣∣∣
1

n
Vi (n)− πi

∣∣∣∣
2
)

→ 0 as n → ∞.

Show further that, if f is any bounded function on the state space, then

E



∣∣∣∣
1

n

n−1∑

r=0

f (Xr )−
∑

i∈S

f (i )πi

∣∣∣∣
2

→ 0.

45. Conditional entropy. Let A and B = (B0, B1, . . . , Bn) be a discrete random variable and
vector, respectively. The conditional entropy of A with respect to B is defined as H(A | B) =
E
(
E{− log f (A | B)

∣∣B}
)

where f (a | b) = P(A = a | B = b). Let X be an aperiodic Markov chain
on a finite state space. Show that

H(Xn+1 | X0, X1 . . . , Xn) = H(Xn+1 | Xn),

and that
H(Xn+1 | Xn) → −

∑

i

πi

∑

j

pi j log pi j as n → ∞,

if X is aperiodic with a unique stationary distribution π .

46. Coupling. Let X and Y be independent recurrent birth–death processes with the same parameters
(and no explosions). It is not assumed that X0 = Y0. Show that:

(a) for any A ⊆ R, |P(X t ∈ A) − P(Yt ∈ A)| → 0 as t → ∞,

(b) if P(X0 ≤ Y0) = 1, then E[g(X t )] ≤ E[g(Yt )] for any increasing function g.

47. Resources. The number of birds in a wood at time t is a continuous-time Markov process X . Food
resources impose the constraint 0 ≤ X (t) ≤ n. Competition entails that the transition probabilities
obey

pk,k+1(h) = λ(n − k)h + o(h), pk,k−1(h) = µkh + o(h).

Find E(s X (t)), together with the mean and variance of X (t), when X (0) = r . What happens as
t → ∞?

48. Parrondo’s paradox. A counter performs an irreducible random walk on the vertices 0, 1, 2 of
the triangle in the figure beneath, with transition matrix

P =




0 p0 q0
q1 0 p1
p2 q2 0




where pi + qi = 1 for all i . Show that the stationary distribution π has

π0 =
1 − q2 p1

3 − q1 p0 − q2 p1 − q0 p2
,
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with corresponding formulae for π1, π2.

0

1

2

Suppose that you gain one peseta for each clockwise step of the walk, and you lose one peseta
for each anticlockwise step. Show that, in equilibrium, the mean yield per step is

γ =
∑

i

(2pi − 1)πi =
3(2p0 p1 p2 − p0 p1 − p1 p2 − p2 p0 + p0 + p1 + p2 − 1)

3 − q1 p0 − q2 p1 − q0 p2
.

Consider now three cases of this process:

A. We have pi = 1
2 −a for each i , where a > 0. Show that the mean yield per step satisfies γA < 0.

B. We have that p0 = 1
10 − a, p1 = p2 = 3

4 − a, where a > 0. Show that γB < 0 for sufficiently
small a.

C. At each step the counter is equally likely to move according to the transition probabilities of
case A or case B, the choice being made independently at every step. Show that, in this case,

p0 = 3
10 − a, p1 = p2 = 5

8 − a. Show that γC > 0 for sufficiently small a.

The fact that two systematically unfavourable games may be combined to make a favourable game is
called Parrondo’s paradox. Such bets are not available in casinos.

49. Cars arrive at the beginning of a long road in a Poisson stream of rate λ from time t = 0 onwards.
A car has a fixed velocity V > 0 which is a random variable. The velocities of cars are independent
and identically distributed, and independent of the arrival process. Cars can overtake each other freely.
Show that the number of cars on the first x miles of the road at time t has the Poisson distribution with
parameter λE[V −1 min{x, V t}].

50. Events occur at the times of a Poisson process with intensity λ, and you are offered a bet based
on the process. Let t > 0. You are required to say the word ‘now’ immediately after the event which
you think will be the last to occur prior to time t . You win if you succeed, otherwise you lose. If no
events occur before t you lose. If you have not selected an event before time t you lose.

Consider the strategy in which you choose the first event to occur after a specified time s, where
0 < s < t .

(a) Calculate an expression for the probability that you win using this strategy.

(b) Which value of s maximizes this probability?

(c) If λt ≥ 1, show that the probability that you win using this value of s is e−1.

51. A new Oxbridge professor wishes to buy a house, and can afford to spend up to one million pounds.
Declining the services of conventional estate agents, she consults her favourite internet property page
on which houses are announced at the times of a Poisson process with intensity λ per day. House
prices may be assumed to be independent random variables which are uniformly distributed over the
interval (800,000, 2,000,000). She decides to view every affordable property announced during the
next 30 days. The time spent viewing any given property is uniformly distributed over the range (1, 2)
hours. What is the moment generating function of the total time spent viewing houses?

52. Kemeny’s constant. Let X = {Xn : n ≥ 0} be an irreducible, aperiodic Markov chain on the
finite state space S, and let hi j = Ei (min{n ≥ 0 : Xn = j}) denote the mean hitting time of j (noting

that hii = 0). Let Ki =
∑

j hi jπj be the mean time to hit a state Z chosen at random according to

the stationary distribution π . Show that Ki is independent of the choice of i .
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53. A professor travels between home and work on foot. She possesses a total of r umbrellas, being
those at home and at work. If it is raining when she leaves either home or work, she takes an umbrella
with her (if there is one available). Assume that it is raining at the start of any given walk with
probability p (subject to the usual independence). Let Xn be the number of umbrellas available to her
at the start of her nth walk.

(a) Explain why X is a Markov chain, and write down its transition matrix.

(b) Show that the chain has stationary distribution π given by

πi =





1 − p

r + 1 − p
if i = 0,

1

r + 1 − p
if i = 1, 2, . . . , r.

What proportion of walks result in her getting wet, in the long run?

(c) Let r = 1 and X1 = 1. Calculate the mean number of walks made before she gets wet.

54. Spiders. A spider climbs a vertical spout of height h at speed 1. At the instants of a Poisson
process of constant rate λ, the spider is flushed back to the bottom of the spout. It then recommences
its climb. Let T be the time to reach the top, and N the number of intermediate flushes. Show that

E(e−θT s N ) =
(λ + θ)e−(λ+θ)h

λ+ θ − λs(1 − e−(λ+θ)h)
, θ, s ∈ R.

By calculating E(e−θT | N = n) or otherwise, determine E(T | N = n) for n ≥ 0.

55. Probability flows. Let X be an ergodic Markov chain with transition matrix P and stationary
distribution π . Show for any set A of states that

∑

i∈A
j /∈A

πi pi j =
∑

i /∈A
j∈A

πi pi j .

56. Attractive hiking. A hiker of unit mass stands at the origin of the plain R2. Boulders with
independent, identically distributed masses M1,M2, . . . lie scattered on the plain at the points of a
Poisson process with intensity 1. Let G R be the x-component of the gravitational attraction on the
hiker of the boulders within distance R of the hiker. You may take the gravitational constant to be 1.

Show that, as R → ∞, G R converges in distribution to a Cauchy distribution with characteristic

function of the form φ(t) = e−c|t |, and express c in terms of a typical mass M .

57. Holtsmark distribution for stellar gravity. Let stars of common mass m be positioned at the

points of a Poisson process with intensity 1 in R3. Let G R be the x-component of the gravitational
attraction due to the stars within distance R of the origin, upon a hitchhiker of unit mass at the origin.
You may take the gravitational constant to be 1.

(a) Show that, as R → ∞, G R converges in distribution to a symmetric distribution with characteristic

function φ(t) = exp{−c|t |3/2} where c > 0.

(b) What is the answer if the stars have independent, identically distributed random masses Mi ?
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7

Convergence of random variables

7.1 Exercises. Introduction

1. Let r ≥ 1, and define ‖X‖r = {E|Xr |}1/r . Show that:

(a) ‖cX‖r = |c| · ‖X‖r for c ∈ R,

(b) ‖X + Y‖r ≤ ‖X‖r + ‖Y‖r ,

(c) ‖X‖r = 0 if and only if P(X = 0) = 1.

This amounts to saying that ‖ · ‖r is a norm on the set of equivalence classes of random variables on a
given probability space with finite r th moment, the equivalence relation being given by X ∼ Y if and
only if P(X = Y ) = 1.

2. Define 〈X,Y 〉 = E(XY ) for random variables X and Y having finite variance, and define ‖X‖ =√
〈X, X〉. Show that:

(a) 〈aX + bY, Z〉 = a〈X, Z〉 + b〈Y, Z〉,
(b) ‖X + Y‖2 + ‖X − Y‖2 = 2(‖X‖2 + ‖Y‖2), the parallelogram property,

(c) if 〈X i , X j 〉 = 0 for all i 6= j then

∥∥∥∥
n∑

i=1

X i

∥∥∥∥
2

=
n∑

i=1

‖X i ‖2.

3. Let ǫ > 0. Let g, h : [0, 1] → R, and define dǫ(g, h) =
∫

E dx where E = {u ∈ [0, 1] :
|g(u)− h(u)| > ǫ}. Show that dǫ does not satisfy the triangle inequality.

4. Lévy metric. For two distribution functions F and G , let

d(F,G) = inf
{
δ > 0 : F(x − δ)− δ ≤ G(x) ≤ F(x + δ)+ δ for all x ∈ R

}
.

Show that d is a metric on the space of distribution functions.

5. Find random variables X, X1, X2, . . . such that E(|Xn − X |2) → 0 as n → ∞, but E|Xn| = ∞
for all n.

7.2 Exercises. Modes of convergence

1. (a) Suppose Xn
r−→ X where r ≥ 1. Show that E|Xr

n| → E|Xr |.

(b) Suppose Xn
1−→ X . Show that E(Xn) → E(X). Is the converse true?

(c) Suppose Xn
2−→ X . Show that var(Xn) → var(X).
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2. Dominated convergence. Suppose |Xn| ≤ Z for all n, where E(Z) < ∞. Prove that if Xn
P−→ X

then Xn
1−→ X .

3. (a) Give a rigorous proof that E(XY ) = E(X)E(Y ) for any pair X,Y of independent non-negative
random variables on (�,F,P) with finite means. [Hint: For k ≥ 0, n ≥ 1, define Xn = k/n if
k/n ≤ X < (k + 1)/n, and similarly for Yn . Show that Xn and Yn are independent, and Xn ≤ X ,
and Yn ≤ Y . Deduce that EXn → EX and EYn → EY , and also E(XnYn) → E(XY ).]

(b) Give an example to show that the product XY of dependent random variables X , Y with finite
means may have E(XY ) = ∞.

4. Show that convergence in distribution is equivalent to convergence with respect to the Lévy metric
of Exercise (7.1.4).

5. (a) Suppose that Xn
D−→ X and Yn

P−→ c, where c is a constant. Show that XnYn
D−→ cX , and that

Xn/Yn
D−→ X/c if c 6= 0.

(b) Suppose that Xn
D−→ 0 and Yn

P−→ Y , and let g : R2 → R be continuous. Show that g(Xn,Yn)
P−→

g(0, Y ).

[These results are sometimes referred to as ‘Slutsky’s theorem(s)’.]

6. Let X1, X2, . . . be random variables on the probability space (�,F,P). Show that the set
A = {ω ∈ � : the sequence Xn(ω) converges} is an event (that is, lies in F), and that there exists a
random variable X (that is, an F-measurable function X : � → R) such that Xn(ω) → X (ω) for
ω ∈ A.

7. Let {Xn} be a sequence of random variables, and let {cn} be a sequence of reals converging to the
limit c. For convergence almost surely, in r th mean, in probability, and in distribution, show that the
convergence of Xn to X entails the convergence of cn Xn to cX .

8. Let {Xn} be a sequence of independent random variables which converges in probability to the
limit X . Show that X is almost surely constant.

9. Convergence in total variation. The sequence of discrete random variables Xn , with mass
functions fn , is said to converge in total variation to X with mass function f if

∑

x

| fn(x)− f (x)| → 0 as n → ∞.

Suppose Xn → X in total variation, and u : R → R is bounded. Show that E(u(Xn)) → E(u(X)).

10. Let {Xr : r ≥ 1} be independent Poisson variables with respective parameters {λr : r ≥ 1}. Show
that

∑∞
r=1 Xr converges or diverges almost surely according as

∑∞
r=1 λr converges or diverges.

11. Waiting for a coincidence. Let X1, X2, . . . be independent random variables, uniformly dis-
tributed on {1, 2, . . . ,m}, and let Im = min{r ≥ 2 : Xr = Xs for some s < r} be the earliest index
of a coincidence of values. Show that Im/

√
m converges in distribution as m → ∞, with as limit the

Rayleigh distribution with density function f (x) = xe
− 1

2 x2
, x > 0.

12. Moments. The random variable X has finite moments of all orders, and satisfies P(X > 0) = 1,
P(X > x) > 0 for x > 0.

(a) Show that c =
∑∞

n=0 1/E(Xn) satisfies c < ∞.

(b) Let M take values in {1, 2, . . . } with mass function f (m) = 1/(cE(Xm)) for m ≥ 1. Show that

E(x M ) < ∞ for all x ≥ 0, while E(X M ) = ∞.
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7.3 Exercises. Some ancillary results

1. (a) Suppose that Xn
P−→ X . Show that {Xn} is Cauchy convergent in probability in that, for all

ǫ > 0, P(|Xn − Xm | > ǫ) → 0 as n,m → ∞. In what sense is the converse true?

(b) Let {Xn} and {Yn} be sequences of random variables such that the pairs (X i , X j ) and (Yi ,Yj )

have the same distributions for all i, j . If Xn
P−→ X , show that Yn converges in probability to

some limit Y having the same distribution as X .

2. Show that the probability that infinitely many of the events {An : n ≥ 1} occur satisfies
P(An i.o.) ≥ lim supn→∞ P(An).

3. Let {Sn : n ≥ 0} be a simple random walk which moves to the right with probability p at each
step, and suppose that S0 = 0. Write Xn = Sn − Sn−1.

(a) Show that {Sn = 0 i.o.} is not a tail event of the sequence {Xn}.
(b) Show that P(Sn = 0 i.o.) = 0 if p 6= 1

2 .

(c) Let Tn = Sn/
√

n, and show that
{

lim inf
n→∞

Tn ≤ −x
}

∩
{

lim sup
n→∞

Tn ≥ x
}

is a tail event of the sequence {Xn}, for all x > 0, and deduce directly that P(Sn = 0 i.o.) = 1 if

p = 1
2 .

4. Hewitt–Savage zero–one law. Let X1, X2, . . . be independent identically distributed random
variables. The event A, defined in terms of the Xn , is called exchangeable if A is invariant un-
der finite permutations of the coordinates, which is to say that its indicator function IA satisfies
IA(X1, X2, . . . , Xn, . . . ) = IA(X i1

, X i2
, . . . , X in , Xn+1, . . . ) for all n ≥ 1 and all permutations

(i1, i2, . . . , in) of (1, 2, . . . , n). Show that all exchangeable events A are such that either P(A) = 0
or P(A) = 1.

5. Returning to the simple random walk S of Exercise (7.3.3), show that {Sn = 0 i.o.} is an ex-
changeable event with respect to the steps of the walk, and deduce from the Hewitt–Savage zero–one
law that it has probability either 0 or 1.

6. Weierstrass’s approximation theorem. Let f : [0, 1] → R be a continuous function, and let
Sn be a random variable having the binomial distribution with parameters n and x . Using the formula

E(Z) = E(Z IA)+ E(Z IAc ) with Z = f (x)− f (n−1Sn) and A = {|n−1Sn − x | > δ}, show that

lim
n→∞

sup
0≤x≤1

∣∣∣∣∣ f (x)−
n∑

k=0

f (k/n)

(
n

k

)
xk(1 − x)n−k

∣∣∣∣∣ = 0.

You have proved Weierstrass’s approximation theorem, which states that every continuous function
on [0, 1] may be approximated by a polynomial uniformly over the interval.

7. Complete convergence. A sequence X1, X2, . . . of random variables is said to be completely

convergent to X if ∑

n

P(|Xn − X | > ǫ) < ∞ for all ǫ > 0.

Show that, for sequences of independent variables, complete convergence is equivalent to a.s. conver-
gence. Find a sequence of (dependent) random variables which converges a.s. but not completely.

8. Let X1, X2, . . . be independent identically distributed random variables with common mean µ
and finite variance. Show that

(
n

2

)−1 ∑

1≤i< j≤n

X i X j
P−→ µ2 as n → ∞.
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9. Let {Xn : n ≥ 1} be independent and exponentially distributed with parameter 1. Show that

P

(
lim sup
n→∞

Xn

log n
= 1

)
= 1.

10. Let {Xn : n ≥ 1} be independent N(0, 1) random variables. Show that:

(a) P

(
lim sup
n→∞

|Xn|
√

log n
=

√
2

)
= 1,

(b) P(Xn > an i.o.) =
{

0 if
∑

n P(X1 > an) < ∞,

1 if
∑

n P(X1 > an) = ∞.

11. Construct an example to show that the convergence in distribution of Xn to X does not imply the
convergence of the unique medians of the sequence Xn .

12. (i) Let {Xr : r ≥ 1} be independent, non-negative and identically distributed with infinite mean.
Show that lim supr→∞ Xr/r = ∞ almost surely.

(ii) Let {Xr } be a stationary Markov chain on the positive integers with transition probabilities

pj k =





j

j + 2
if k = j + 1,

2

j + 2
if k = 1.

(a) Find the stationary distribution of the chain, and show that it has infinite mean.

(b) Show that lim supr→∞ Xr/r ≤ 1 almost surely.

13. Let {Xr : 1 ≤ r ≤ n} be independent and identically distributed with mean µ and finite variance

σ 2. Let X = n−1∑n
r=1 Xr . Show that

n∑

r=1

(Xr − µ)

/√√√√
n∑

r=1

(Xr − X)2

converges in distribution to the N(0, 1) distribution as n → ∞.

14. For a random variable X with mean 0, variance σ 2, and E(X4) < ∞, show that

P(|X | > t) ≤
E(X4)− σ 4

E(X4)− 2σ 2t2 + t4
, t > 0.

7.4 Exercise. Laws of large numbers

1. Let X2, X3, . . . be independent random variables such that

P(Xn = n) = P(Xn = −n) =
1

2n log n
, P(Xn = 0) = 1 −

1

n log n
.

Show that this sequence obeys the weak law but not the strong law, in the sense that n−1∑n
1 X i

converges to 0 in probability but not almost surely.

2. Construct a sequence {Xr : r ≥ 1} of independent random variables with zero mean such that

n−1∑n
r=1 Xr → −∞ almost surely, as n → ∞.
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3. Let N be a spatial Poisson process with constant intensity λ in Rd , where d ≥ 2. Let S be the
ball of radius r centred at zero. Show that N(S)/|S| → λ almost surely as r → ∞, where |S| is the
volume of the ball.

4. Proportional betting. In each of a sequence of independent bets, a gambler either wins 30%, or

loses 25% of her current fortune, each with probability 1
2 . Denoting her fortune after n bets by Fn ,

show that E(Fn) → ∞ as n → ∞, while Fn → 0 almost surely.

5. General weak law. Let Sn = X1 + X2 + · · · + Xn be the sum of independent, identically
distributed random variables. Let δ, ǫ > 0, and define the truncated variables Yj = X j I{|X j |≤δn}. Let

A = {X j = Yj for j = 1, 2, . . . , n}, and B = {|Sn − nE(Y1)| ≥ ǫn}. Prove that:

(a) P(B) ≤ P(Ac)+ P(B | A),

(b) P(Ac) ≤ nP(|X1| > δn),
(c) P(B | A) ≤ E(Y 2

1 )/(nǫ
2).

Deduce the weak law of large numbers, namely that, if E|X1| < ∞,

P
(
|Sn/n − µ| > ǫ

)
→ 0 as n → ∞,

where µ = E(X1).

7.5 Exercises. The strong law

1. Entropy. The interval [0, 1] is partitioned into n disjoint sub-intervals with lengths p1, p2, . . . ,

pn , and the entropy of this partition is defined to be

h = −
n∑

i=1

pi log pi .

Let X1, X2, . . . be independent random variables having the uniform distribution on [0, 1], and let
Zm(i ) be the number of the X1, X2, . . . , Xm which lie in the i th interval of the partition above. Show
that

Rm =
n∏

i=1

p
Zm (i)
i

satisfies m−1 log Rm → −h almost surely as m → ∞.

2. Recurrent events. Catastrophes occur at the times T1 , T2, . . . where Ti = X1+X2+· · ·+X i and
the X i are independent identically distributed positive random variables. Let N(t) = max{n : Tn ≤ t}
be the number of catastrophes which have occurred by time t . Prove that if E(X1) < ∞ then
N(t) → ∞ and N(t)/t → 1/E(X1) as t → ∞, almost surely.

3. Random walk. Let X1, X2, . . . be independent identically distributed random variables taking
values in the integers Z and having a finite mean. Show that the Markov chain S = {Sn} given by
Sn =

∑n
1 X i is transient if E(X1) 6= 0.

7.6 Exercise. The law of the iterated logarithm

1. A function φ(x) is said to belong to the ‘upper class’ if, in the notation of this section, P(Sn >

φ(n)
√

n i.o.) = 0. A consequence of the law of the iterated logarithm is that
√
α log log x is in the

upper class for all α > 2. Use the first Borel–Cantelli lemma to prove the much weaker fact that
φ(x) =

√
α log x is in the upper class for all α > 2, in the special case when the X i are independent

N(0, 1) variables.
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7.7 Exercises. Martingales

1. Let X1, X2, . . . be random variables such that the partial sums Sn = X1 + X2 + · · · + Xn

determine a martingale. Show that E(X i X j ) = 0 if i 6= j .

2. Let Zn be the size of the nth generation of a branching process with immigration, in which the
family sizes have mean µ (6= 1) and the mean number of immigrants in each generation is m. Suppose
that E(Z0) < ∞, and show that

Sn = µ−n

{
Zn − m

(
1 − µn

1 − µ

)}

is a martingale with respect to a suitable sequence of random variables.

3. Let X0, X1, X2, . . . be a sequence of random variables with finite means and satisfying E(Xn+1 |
X0, X1, . . . , Xn) = aXn + bXn−1 for n ≥ 1, where 0 < a, b < 1 and a + b = 1. Find a value of α
for which Sn = αXn + Xn−1, n ≥ 1, defines a martingale with respect to the sequence X .

4. Let Xn be the net profit to the gambler of betting a unit stake on the nth play in a casino; the
Xn may be dependent, but the game is fair in the sense that E(Xn+1 | X1, X2, . . . , Xn) = 0 for all
n. The gambler stakes Y on the first play, and thereafter stakes fn(X1, X2, . . . , Xn) on the (n + 1)th
play, where f1, f2, . . . are given functions. Show that her profit after n plays is

Sn =
n∑

i=1

X i fi−1(X1, X2, . . . , X i−1),

where f0 = Y . Show further that the sequence S = {Sn} satisfies the martingale condition E(Sn+1 |
X1, X2, . . . , Xn) = Sn, n ≥ 1, if Y is assumed to be known throughout.

5. A run in a random permutation (π1, π2, . . . , πn) of (1, 2, . . . , n) is a subsequence satisfying
πr−1 > πr < πr+1 < · · · < πs > πs+1. We set π0 = n + 1 and πn+1 = 0 by convention. Let Rn

be the number of runs. Show that Mn = n Rn − 1
2 n(n + 1) is a martingale. Find E(Rn) and E(R2

n).

7.8 Exercises. Martingale convergence theorem

1. Kolmogorov’s inequality. Let X1, X2, . . . be independent random variables with zero means
and finite variances, and let Sn = X1 + X2 + · · · + Xn . Use the Doob–Kolmogorov inequality to
show that

P

(
max

1≤ j≤n
|Sj | > ǫ

)
≤

1

ǫ2

n∑

j=1

var(X j ) for ǫ > 0.

2. Let X1, X2, . . . be independent random variables such that
∑

n n−2 var(Xn) < ∞. Use Kol-
mogorov’s inequality to prove that

n∑

i=1

X i − E(X i )

i

a.s.−−→ Y as n → ∞,

for some finite random variable Y , and deduce that

1

n

n∑

i=1

(X i − EX i )
a.s.−−→ 0 as n → ∞.
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(You may find Kronecker’s lemma to be useful: if (an) and (bn) are real sequences with bn ↑ ∞ and∑
i ai/bi < ∞, then b−1

n

∑n
i=1 ai → 0 as n → ∞.)

3. Let S be a martingale with respect to X , such that E(S2
n) < K < ∞ for some K ∈ R. Suppose

that var(Sn) → 0 as n → ∞, and prove that S = limn→∞ Sn exists and is constant almost surely.

7.9 Exercises. Prediction and conditional expectation

1. Let Y be uniformly distributed on [−1, 1] and let X = Y 2.

(a) Find the best predictor of X given Y , and of Y given X .

(b) Find the best linear predictor of X given Y , and of Y given X .

2. (a) Let the pair (X,Y ) have a general bivariate normal distribution. Find E(Y | X).

(b) Let U1,U2, . . . ,Un be independent N(0, 1) random variables, and let (ai ), (bi ) be real non-zero
vectors. Show that X =

∑
i aiUi and Y =

∑
i biUi satisfy

E(Y | X) = X

∑
i ai bi∑
i a2

i

.

3. Let X1, X2, . . . , Xn be random variables with zero means and covariance matrix V = (vi j ), and
let Y have finite second moment. Find the linear function h of the X i which minimizes the mean

squared error E{(Y − h(X1, . . . , Xn))
2}.

4. Verify the following properties of conditional expectation. You may assume that the relevant
expectations exist.

(a) E{E(Y | G)} = E(Y ).

(b) E(αY + βZ | G) = αE(Y | G)+ βE(Z | G) for α, β ∈ R.

(c) E(Y | G) ≥ 0 if Y ≥ 0.

(d) E(Y | G) = E
{

E(Y | H) | G
}

if G ⊆ H.

(e) E(Y | G) = E(Y ) if Y is independent of IG for every G ∈ G.

(f) Jensen’s inequality. g{E(Y | G)} ≤ E{g(Y ) | G} for all convex functions g.

(g) If Yn
a.s.−−→ Y and |Yn | ≤ Z a.s. where E(Z) < ∞, then E(Yn | G)

a.s.−−→ E(Y | G).

Statements (b)–(f) are of course to be interpreted ‘almost surely’.

5. Let X and Y have joint mass function f (x, y) = {x(x + 1)}−1 for x = y = 1, 2, . . . . Show that
E(Y | X) < ∞ while E(Y ) = ∞.

6. Let (�,F,P) be a probability space and let G be a sub-σ -field of F. Let H be the space of
G-measurable random variables with finite second moment.

(a) Show that H is closed with respect to the norm ‖ · ‖2.

(b) Let Y be a random variable satisfying E(Y 2) < ∞, and show the equivalence of the following
two statements for any M ∈ H :

(i) E{(Y − M)Z} = 0 for all Z ∈ H ,

(ii) E{(Y − M)IG} = 0 for all G ∈ G.

7. Maximal correlation coefficient. For possibly dependent random variables X and Y , define the
maximal correlation coefficient m(X,Y ) = sup ρ( f (X), g(Y )), where ρ denotes ordinary correlation,
and the supremum is over all functions f and g such that f (X) and g(Y ) have finite non-zero variances.
Show that:

(a) m(X,Y ) = 0 if and only if X and Y are independent,
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(b) m(X,Y )2 = supg var
(
E(g(Y ) | X)

)
, where the supremum is over all functions g such that

var(g(Y )) = 1,

(c) f̂ (X)m(X, Y ) = E(ĝ(Y ) | X) a.s., where f̂ and ĝ are functions such that m = ρ( f̂ (X), ĝ(Y )).

(d) We have, a.s., that

E
(
E( f̂ (X) | Y )

∣∣ X
)

= m(X,Y )2 f̂ (X), E
(
E(ĝ(Y ) | X)

∣∣ Y
)

= m(X,Y )2 ĝ(Y ).

(e) If the ordered triple X,Y, Z is a Markov chain, show that m(X, Z) ≤ m(X,Y )m(Y, Z), with
equality if (X,Y ) and (Z,Y ) are identically distributed.

(f) Deduce that, for a pair (U, V ) with the standard bivariate normal distribution, m(U, V ) is an
increasing function of the modulus |ρ| of correlation. [It can be shown that m(U, V ) = |ρ| in
this case.]

8. Monotone correlation. Let ρmon(X,Y ) = sup ρ( f (X), g(Y )), where the supremum is over all
monotonic functions f and g such that f (X) and g(Y ) have finite, non-zero variances. Show that
ρmon(X, Y ) = 0 if and only if X and Y are independent.

For random variables X , Y with finite, non-zero variances, show that ρ(X,Y ) ≤ ρmon(X,Y ) ≤
m(X,Y ), where m is the maximal correlation coefficient.

9. Prediction. Let (X,Y ) have joint density function f (x, y) = 2e−x−y for 0 < x ≤ y < ∞.

(a) Find the minimum mean-squared-error predictor of X given that Y = y.

(b) Find the minimum mean-squared-error linear predictor of X given that Y = y.

(c) Compare these.

7.10 Exercises. Uniform integrability

1. Show that the sum {Xn + Yn} of two uniformly integrable sequences {Xn} and {Yn} gives a
uniformly integrable sequence.

2. (a) Suppose that Xn
r−→ X where r ≥ 1. Show that {|Xn |r : n ≥ 1} is uniformly integrable, and

deduce that E(Xr
n) → E(Xr ) if r is an integer.

(b) Conversely, suppose that {|Xn|r : n ≥ 1} is uniformly integrable where r ≥ 1, and show that

Xn
r−→ X if Xn

P−→ X .

3. Let g : [0,∞) → [0,∞) be an increasing function satisfying g(x)/x → ∞ as x → ∞. Show
that the sequence {Xn : n ≥ 1} is uniformly integrable if supn E{g(|Xn |)} < ∞.

4. Let {Zn : n ≥ 0} be the generation sizes of a branching process with Z0 = 1, E(Z1) = 1,
var(Z1) 6= 0. Show that {Zn : n ≥ 0} is not uniformly integrable.

5. Pratt’s lemma. Suppose that Xn ≤ Yn ≤ Zn where Xn
P−→ X , Yn

P−→ Y , and Zn
P−→ Z . If

E(Xn) → E(X) and E(Zn) → E(Z), show that E(Yn) → E(Y ).

6. Let {Xn : n ≥ 1} be a sequence of variables satisfying E(supn |Xn |) < ∞. Show that {Xn} is
uniformly integrable.

7. Give an example of a uniformly integrable sequence {Xn} of random variables and a σ -field G

such that Xn
a.s.−−→ X as n → ∞, but E(Xn | G) does not converge a.s. to E(X | G).
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7.11 Problems

1. Let Xn have density function

fn(x) =
n

π(1 + n2x2)
, n ≥ 1.

With respect to which modes of convergence does Xn converge as n → ∞?

2. (i) Suppose that Xn
a.s.−−→ X and Yn

a.s.−−→ Y , and show that Xn + Yn
a.s.−−→ X + Y . Show that the

corresponding result holds for convergence in r th mean and in probability, but not in distribution.

(ii) Show that if Xn
a.s.−−→ X and Yn

a.s.−−→ Y then XnYn
a.s.−−→ XY . Does the corresponding result hold

for the other modes of convergence?

3. Let g : R → R be continuous. Show that g(Xn)
P−→ g(X) if Xn

P−→ X .

4. Let Y1,Y2, . . . be independent identically distributed variables, each of which can take any value

in {0, 1, . . . , 9} with equal probability 1
10 . Let Xn =

∑n
i=1 Yi 10−i . Show by the use of characteristic

functions that Xn converges in distribution to the uniform distribution on [0, 1]. Deduce that Xn
a.s.−−→ Y

for some Y which is uniformly distributed on [0, 1].

5. Let N(t) be a Poisson process with constant intensity on R.

(a) Find the covariance of N(s) and N(t).

(b) Show that N is continuous in mean square, which is to say that E
(
{N(t + h)− N(t)}2

)
→ 0 as

h → 0.

(c) Prove that N is continuous in probability, which is to say that P
(
|N(t + h)− N(t)| > ǫ

)
→ 0 as

h → 0, for all ǫ > 0.

(d) Show that N is differentiable in probability but not in mean square.

6. Prove that n−1∑n
i=1 X i

a.s.−−→ 0 whenever the X i are independent identically distributed variables

with zero means and such that E(X4
1) < ∞.

7. Show that Xn
a.s.−−→ X whenever

∑
n E(|Xn − X |r ) < ∞ for some r > 0.

8. Show that if Xn
D−→ X then aXn + b

D−→ aX + b for any real a and b.

9. (a) Cantelli, or one-sided Chebyshov inequality. If X has zero mean and variance σ 2 > 0,
show that

P(X ≥ t) ≤
σ 2

σ 2 + t2
for t > 0.

(b) Deduce that |µ−m| ≤ σ , where µ, m, and σ (> 0) are the mean, median, and standard deviation
of a given distribution.

(c) Use Jensen’s inequality to prove part (b) directly.

10. Show that Xn
P−→ 0 if and only if

E

(
|Xn |

1 + |Xn |

)
→ 0 as n → ∞.

11. The sequence {Xn} is said to be mean-square Cauchy convergent if E{(Xn − Xm)
2} → 0 as

m, n → ∞. Show that {Xn} converges in mean square to some limit X if and only if it is mean-square
Cauchy convergent. Does the corresponding result hold for the other modes of convergence?
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12. Suppose that {Xn} is a sequence of uncorrelated variables with zero means and uniformly bounded

variances. Show that n−1∑n
i=1 X i

m.s.−−→ 0.

13. Let X1, X2, . . . be independent identically distributed random variables with the common dis-
tribution function F , and suppose that F(x) < 1 for all x . Let Mn = max{X1, X2, . . . , Xn} and
suppose that there exists a strictly increasing unbounded positive sequence a1, a2, . . . such that
P (Mn/an ≤ x) → H(x) for some distribution function H . Let us assume that H is continuous
with 0 < H(1) < 1; substantially weaker conditions suffice but introduce extra difficulties.

(a) Show that n[1 − F(an x)] → − log H(x) as n → ∞ and deduce that

1 − F(an x)

1 − F(an)
→

log H(x)

log H(1)
if x > 0.

(b) Deduce that if x > 0
1 − F(t x)

1 − F(t)
→

log H(x)

log H(1)
as t → ∞.

(c) Set x = x1x2 and make the substitution

g(x) =
log H(ex )

log H(1)

to find that g(x + y) = g(x)g(y), and deduce that

H(x) =
{

exp(−αx−β) if x ≥ 0,

0 if x < 0,

for some non-negative constants α and β.

You have shown that H is the distribution function of Y −1, where Y has a Weibull distribution.

14. Let X1, X2, . . . , Xn be independent and identically distributed random variables with the Cauchy
distribution. Show that Mn = max{X1, X2, . . . , Xn} is such that πMn/n converges in distribution,

the limiting distribution function being given by H(x) = e−1/x if x ≥ 0.

15. Let X1, X2, . . . be independent and identically distributed random variables whose common

characteristic function φ satisfies φ′(0) = iµ. Show that n−1∑n
j=1 X j

P−→ µ.

16. Total variation distance. The total variation distance dTV(X,Y ) between two random variables
X and Y is defined by

dTV(X,Y ) = sup
u:‖u‖∞=1

∣∣E(u(X)) − E(u(Y ))
∣∣

where the supremum is over all (measurable) functions u : R → R such that ‖u‖∞ = supx |u(x)|
satisfies ‖u‖∞ = 1.

(a) If X and Y are discrete with respective masses fn and gn at the points xn , show that

dTV(X,Y ) =
∑

n

| fn − gn| = 2 sup
A⊆R

∣∣P(X ∈ A)− P(Y ∈ A)
∣∣.

(b) If X and Y are continuous with respective density functions f and g, show that

dTV(X,Y ) =
∫ ∞

−∞
| f (x)− g(x)| dx = 2 sup

A⊆R

∣∣P(X ∈ A) − P(Y ∈ A)
∣∣.

(c) Show that dTV(Xn, X) → 0 implies that Xn → X in distribution, but that the converse is false.
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(d) Maximal coupling. Show that P(X 6= Y ) ≥ 1
2 dTV(X,Y ), and that there exists a pair X ′, Y ′

having the same marginals for which equality holds.

(e) If X i , Yj are independent random variables, show that

dTV

( n∑

i=1

X i ,

n∑

i=1

Yi

)
≤

n∑

i=1

dTV(X i ,Yi ).

17. Let g : R → R be bounded and continuous. Show that

∞∑

k=0

g(k/n)
(nλ)k

k!
e−nλ → g(λ) as n → ∞.

18. Let Xn and Ym be independent random variables having the Poisson distribution with parameters
n and m, respectively. Show that

(Xn − n)− (Ym − m)
√

Xn + Ym

D−→ N(0, 1) as m, n → ∞.

19. (a) Suppose that X1, X2, . . . is a sequence of random variables, each having a normal distribution,

and such that Xn
D−→ X . Show that X has a normal distribution, possibly degenerate.

(b) For each n ≥ 1, let (Xn,Yn) be a pair of random variables having a bivariate normal distribution.

Suppose that Xn
P−→ X and Yn

P−→ Y , and show that the pair (X, Y ) has a bivariate normal
distribution.

20. Let X1, X2, . . . be random variables satisfying var(Xn) < c for all n and some constant c. Show

that the sequence obeys the weak law, in the sense that n−1∑n
1(X i − EX i ) converges in probability

to 0, if the correlation coefficients satisfy either of the following:

(i) ρ(X i , X j ) ≤ 0 for all i 6= j ,

(ii) ρ(X i , X j ) → 0 as |i − j | → ∞.

21. Let X1, X2, . . . be independent random variables with common density function

f (x) =





0 if |x | ≤ 2,
c

x2 log |x |
if |x | > 2,

where c is a constant. Show that the X i have no mean, but n−1∑n
i=1 X i

P−→ 0 as n → ∞. Show that
convergence does not take place almost surely.

22. Let Xn be the Euclidean distance between two points chosen independently and uniformly from

the n-dimensional unit cube. Show that E(Xn)/
√

n → 1/
√

6 as n → ∞.

23. Let X1, X2, . . . be independent random variables having the uniform distribution on [−1, 1].
Show that

P

(∣∣∣∣
n∑

i=1

X−1
i

∣∣∣∣ > 1
2 nπ

)
→ 1

2 as n → ∞.

24. Let X1, X2, . . . be independent random variables, each Xk having mass function given by

P(Xk = k) = P(Xk = −k) =
1

2k2
,

P(Xk = 1) = P(Xk = −1) =
1

2

(
1 −

1

k2

)
if k > 1.
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Show that Un =
∑n

1 X i satisfies Un/
√

n
D−→ N(0, 1) but var(Un/

√
n) → 2 as n → ∞.

25. Let X1, X2, . . . be random variables, and let N1, N2, . . . be random variables taking values in

the positive integers such that Nk
P−→ ∞ as k → ∞. Show that:

(i) if Xn
D−→ X and the Xn are independent of the Nk , then X Nk

D−→ X as k → ∞,

(ii) if Xn
a.s.−−→ X then X Nk

P−→ X as k → ∞.

26. Stirling’s formula.

(a) Let a(k, n) = nk/(k − 1)! for 1 ≤ k ≤ n + 1. Use the fact that 1− x ≤ e−x if x ≥ 0 to show that

a(n − k, n)

a(n + 1, n)
≤ e−k2/(2n) if k ≥ 0.

(b) Let X1, X2, . . . be independent Poisson variables with parameter 1, and let Sn = X1 + · · · + Xn .
Define the function g : R → R by

g(x) =
{

−x if 0 ≥ x ≥ −M,

0 otherwise,

where M is large and positive. Show that, for large n,

E

(
g

{
Sn − n

√
n

})
=

e−n

√
n

{
a(n + 1, n)− a(n − k, n)

}

where k = ⌊Mn1/2⌋. Now use the central limit theorem and (a) above, to deduce Stirling’s
formula:

n! en

n
n+ 1

2
√

2π

→ 1 as n → ∞.

27. Pólya’s urn. A bag contains red and green balls. A ball is drawn from the bag, its colour noted,
and then it is returned to the bag together with a new ball of the same colour. Initially the bag contained
one ball of each colour. If Rn denotes the number of red balls in the bag after n additions, show that
Sn = Rn/(n + 2) is a martingale. Deduce that the ratio of red to green balls converges almost surely
to some limit as n → ∞.

28. Anscombe’s theorem. Let {X i : i ≥ 1} be independent identically distributed random variables

with zero mean and finite positive variance σ 2, and let Sn =
∑n

1 X i . Suppose that the integer-valued

random process M(t) satisfies t−1 M(t)
P−→ θ as t → ∞, where θ is a positive constant. Show that

SM(t)

σ
√
θ t

D−→ N(0, 1) and
SM(t)

σ
√

M(t)

D−→ N(0, 1) as t → ∞.

You should not assume that the process M is independent of the X i .

29. Kolmogorov’s inequality. Let X1, X2, . . . be independent random variables with zero means,

and Sn = X1 + X2 +· · ·+ Xn . Let Mn = max1≤k≤n |Sk | and show that E(S2
n IAk

) > c2P(Ak )where

Ak = {Mk−1 ≤ c < Mk} and c > 0. Deduce Kolmogorov’s inequality:

P

(
max

1≤k≤n
|Sk | > c

)
≤

E(S2
n)

c2
, c > 0.
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30. Let X1, X2, . . . be independent random variables with zero means, and let Sn = X1 + X2 +
· · · + Xn . Using Kolmogorov’s inequality or the martingale convergence theorem, show that:

(i)
∑∞

i=1 X i converges almost surely if
∑∞

k=1 E(X2
k ) < ∞,

(ii) if there exists an increasing real sequence (bn) such that bn → ∞, and satisfying the inequality∑∞
k=1 E(X2

k )/b
2
k < ∞, then b−1

n

∑∞
k=1 Xk

a.s.−−→ 0 as n → ∞.

31. Estimating the transition matrix. The Markov chain X0, X1, . . . , Xn has initial distribution
fi = P(X0 = i ) and transition matrix P. The log-likelihood function λ(P) is defined as λ(P) =
log( fX0

pX0,X1
pX1,X2

· · · pXn−1,Xn ). Show that:

(a) λ(P) = log fX0
+
∑

i, j Ni j log pi j where Ni j is the number of transitions from i to j ,

(b) viewed as a function of the pi j , λ(P) is maximal when pi j = p̂i j where p̂i j = Ni j /
∑

k Nik ,

(c) if X is irreducible and ergodic then p̂i j
a.s.−→ pi j as n → ∞.

32. Ergodic theorem in discrete time. Let X be an irreducible discrete-time Markov chain, and let

µi be the mean recurrence time of state i . Let Vi (n) =
∑n−1

r=0 I{Xr =i} be the number of visits to i up
to n − 1, and let f be any bounded function on S. Show that:

(a) n−1Vi (n)
a.s.−→ µ−1

i as n → ∞,

(b) if µi < ∞ for all i , then

1

n

n−1∑

r=0

f (Xr ) →
∑

i∈S

f (i )/µi as n → ∞.

33. Ergodic theorem in continuous time. Let X be an irreducible recurrent continuous-time Markov
chain with generator G and finite mean return times m j .

(a) Show that
1

t

∫ t

0
I{X (s)= j } ds

a.s.−→
1

m j gj
as t → ∞;

(b) deduce that the stationary distribution π satisfies πj = 1/(m j gj );

(c) show that, if f is a bounded function on S,

1

t

∫ t

0
f (X (s)) ds

a.s.−→
∑

i

πi f (i ) as t → ∞.

34. Tail equivalence. Suppose that the sequences {Xn : n ≥ 1} and {Yn : n ≥ 1} are tail equivalent,
which is to say that

∑∞
n=1 P(Xn 6= Yn) < ∞. Show that:

(a)
∑∞

n=1 Xn and
∑∞

n=1 Yn converge or diverge together,

(b)
∑∞

n=1(Xn − Yn) converges almost surely,

(c) if there exist a random variable X and a sequence an such that an ↑ ∞ and a−1
n

∑n
r=1 Xr

a.s.−→ X ,
then

1

an

n∑

r=1

Yr
a.s.−→ X.

35. Three series theorem. Let {Xn : n ≥ 1} be independent random variables. Show that
∑∞

n=1 Xn

converges a.s. if, for some a > 0, the following three series all converge:

(a)
∑

n P(|Xn| > a),

(b)
∑

n var(Xn I{|Xn |≤a}),

(c)
∑

n E(Xn I{|Xn |≤a}).
[The converse holds also, but is harder to prove.]
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36. Let {Xn : n ≥ 1} be independent random variables with continuous common distribution function
F . We call Xk a record value for the sequence if Xk > Xr for 1 ≤ r < k, and we write Ik for the
indicator function of the event that Xk is a record value.

(a) Show that the random variables Ik are independent.

(b) Show that Rm =
∑m

k=1 Ir satisfies Rm/log m
a.s.−→ 1 as m → ∞.

37. Random harmonic series. Let {Xn : n ≥ 1} be a sequence of independent random variables

with P(Xn = 1) = P(Xn = −1) = 1
2 . Does the series

∑n
r=1 Xr/r converge a.s. as n → ∞?

38. Stirling’s formula for the gamma function. Let X have the gamma distribution Ŵ(1, s). By

considering the integral of the density function of Y = (X − s)/
√

s, show that Ŵ(s) ∼
√

2πs
s− 1

2 e−s

as s → ∞. [Hint: You may find it useful that

∫ b

a
e−u(x) dx ≤

1

u′(a)

∫ b

a
u′(x)e−u(x) dx,

if u′(x) is strictly positive and increasing.]

39. Random series. Let c1, c2, . . . be reals, let X1, X2, . . . be independent random variables with

the mass function f (1) = f (−1) = 1
2 , and let Sn =

∑n
r=1 cr Xr . Write

Bn =
n∑

r=1

c4
r , Dn =

√√√√
n∑

r=1

c2
r .

(a) Use characteristic functions to show that Sn/Dn converges in distribution to the N(0, 1) distri-

bution (as n → ∞) if and only if Bn/D4
n → 0. [Hint: You may use the fact that − 2

3 θ
4 ≤

1
2θ

2 + log cos θ ≤ − 1
12θ

4 for − 1
4π ≤ θ ≤ 1

4π .]

(b) Find the limit of Sn/Dn in the special case cr = 2−r .

40. Berge’s inequality. Let X and Y be random variables with mean 0, variance 1, and correlation
ρ. Show that, for ǫ > 0,

P
(
|X | ∨ |Y | > ǫ

)
≤

1

ǫ2

(
1 +

√
1 − ρ2

)
,

where x ∨ y = max{x, y}. [Hint: If |t | ≤ 1, the function g(x, y) = (x2 − 2t xy + y2)/(ǫ2(1 − t2))

is non-negative, and moreover satisfies g(x, y) ≥ 1 when |x | ∨ |y| ≥ ǫ.]

41. Poisson tail, balls in bins. Let X have the Poisson distribution with parameter 1.

(a) Show that P(X ≥ t) ≤ et−1/t t for t ≥ 1.

(b) Deduce that the maximum Mn of n independent random variables, distributed as X , satisfies

lim
n→∞

P

(
Mn ≥

(1 + a) log n

log log n

)
=
{

1 if a < 0,

0 if a > 0.
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8

Random processes

8.2 Exercises. Stationary processes

1. Flip–flop. Let {Xn} be a Markov chain on the state space S = {0, 1} with transition matrix

P =
(

1 − α α

β 1 − β

)
,

where α + β > 0. Find:

(a) the correlation ρ(Xm , Xm+n), and its limit as m → ∞ with n remaining fixed,

(b) limn→∞ n−1∑n
r=1 P(Xr = 1).

Under what condition is the process strongly stationary?

2. Random telegraph. Let {N(t) : t ≥ 0} be a Poisson process of intensity λ, and let T0 be

an independent random variable such that P(T0 = ±1) = 1
2 . Define T (t) = T0(−1)N(t). Show

that {T (t) : t ≥ 0} is stationary and find: (a) ρ(T (s), T (s + t)), (b) the mean and variance of

X (t) =
∫ t

0 T (s) ds.

[The so-called Goldstein–Kac process X (t) denotes the position of a particle moving with unit speed,
starting from the origin along the positive x-axis, whose direction is reversed at the instants of a
Poisson process.]

3. Korolyuk–Khinchin theorem. An integer-valued counting process {N(t) : t ≥ 0} with N(0) =
0 is called crudely stationary if pk(s, t) = P(N(s + t)− N(s) = k) depends only on the length t − s

and not on the location s. It is called simple if, almost surely, it has jump discontinuities of size 1 only.

Show that, for a simple crudely stationary process N , limt↓0 t−1P(N(t) > 0) = E(N(1)).

4. Kac’s ergodic formula. Let X = {Xn : n ≥ 0} be an ergodic Markov chain started in its
stationary distribution π . Let A be a subset of states, with stationary probability π(A), and let
TA = min{n ≥ 1 : Xn ∈ A}. Show that E(TA | X0 ∈ A) = 1/π(A).

8.3 Exercises. Renewal processes

1. Let ( fn : n ≥ 1) be a probability distribution on the positive integers, and define a sequence
(un : n ≥ 0) by u0 = 1 and un =

∑n
r=1 fr un−r , n ≥ 1. Explain why such a sequence is called a

renewal sequence, and show that u is a renewal sequence if and only if there exists a Markov chain U

and a state s such that un = P(Un = s | U0 = s).



[8.3.2]–[8.4.4] Exercises Random processes

2. Let {X i : i ≥ 1} be the inter-event times of a discrete renewal process on the integers. Show
that the excess lifetime Bn constitutes a Markov chain. Write down the transition probabilities of the
sequence {Bn} when reversed in equilibrium. Compare these with the transition probabilities of the
chain U of your solution to Exercise (8.3.1).

3. Let (un : n ≥ 1) satisfy u0 = 1 and un =
∑n

r=1 fr un−r for n ≥ 1, where ( fr : r ≥ 1) is a
non-negative sequence. Show that:

(a) vn = ρnun is a renewal sequence if ρ > 0 and
∑∞

n=1 ρ
n fn = 1,

(b) as n → ∞, ρnun converges to some constant c.

4. Events occur at the times of a discrete-time renewal process N (see Example (5.2.15)). Let un be
the probability of an event at time n, with generating function U(s), and let F(s) be the probability
generating function of a typical inter-event time. Show that, if |s| < 1:

∞∑

r=0

E(N(r))sr =
F(s)U(s)

1 − s
and

∞∑

t=0

E

[(
N(t) + k

k

)]
s t =

U(s)k

1 − s
for k ≥ 0.

5. Prove Theorem (8.3.5): Poisson processes are the only renewal processes that are Markov chains.

8.4 Exercises. Queues

1. The two tellers in a bank each take an exponentially distributed time to deal with any customer;
their parameters are λ and µ respectively. You arrive to find exactly two customers present, each
occupying a teller.

(a) You take a fancy to a randomly chosen teller, and queue for that teller to be free; no later switching
is permitted. Assuming any necessary independence, what is the probability p that you are the
last of the three customers to leave the bank?

(b) If you choose to be served by the quicker teller, find p.

(c) Suppose you go to the teller who becomes free first. Find p.

2. Customers arrive at a desk according to a Poisson process of intensity λ. There is one clerk, and
the service times are independent and exponentially distributed with parameter µ. At time 0 there is
exactly one customer, currently in service. Show that the probability that the next customer arrives
before time t and finds the clerk busy is

λ

λ+ µ
(1 − e−(λ+µ)t).

3. Vehicles pass a crossing at the instants of a Poisson process of intensity λ; you need a gap of
length at least a in order to cross. Let T be the first time at which you could succeed in crossing to

the other side. Show that E(T ) = (eaλ − 1)/λ, and find E(eθT ).

Suppose there are two lanes to cross, carrying independent Poissonian traffic with respective rates
λ andµ. Find the expected time to cross in the two cases when: (a) there is an island or refuge between
the two lanes, (b) you must cross both in one go. Which is the greater?

4. Customers arrive at the instants of a Poisson process of intensity λ, and the single server has
exponential service times with parameter µ. An arriving customer who sees n customers present
(including anyone in service) will join the queue with probability (n + 1)/(n + 2), otherwise leaving
for ever. Under what condition is there a stationary distribution? Find the mean of the time spent in
the queue (not including service time) by a customer who joins it when the queue is in equilibrium.
What is the probability that an arrival joins the queue when in equilibrium?
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The Wiener process Exercises [8.4.5]–[8.5.8]

5. Customers enter a shop at the instants of a Poisson process of rate 2. At the door, two represen-
tatives separately demonstrate a new corkscrew. This typically occupies the time of a customer and
the representative for a period which is exponentially distributed with parameter 1, independently of
arrivals and other demonstrators. If both representatives are busy, customers pass directly into the
shop. No customer passes a free representative without being stopped, and all customers leave by
another door. If both representatives are free at time 0, show the probability that both are busy at time

t is 2
5 − 2

3 e−2t + 4
15 e−5t .

8.5 Exercises. The Wiener process

1. For a Wiener process W with W (0) = 0, show that

P
(
W (s) > 0, W (t) > 0

)
=

1

4
+

1

2π
sin−1

√
s

t
for s < t.

Calculate P(W (s) > 0, W (t) > 0, W (u) > 0) when s < t < u.

2. Let W be a Wiener process. Show that, for s < t < u, the conditional distribution of W (t) given
W (s) and W (u) is normal

N

(
(u − t)W (s)+ (t − s)W (u)

u − s
,
(u − t)(t − s)

u − s

)
.

Deduce that the conditional correlation between W (t) and W (u), given W (s) and W (v), where s <

t < u < v, is √
(v − u)(t − s)

(v − t)(u − s)
.

3. For what values of a and b is aW1 + bW2 a standard Wiener process, where W1 and W2 are
independent standard Wiener processes?

4. Show that a Wiener process W with variance parameter σ 2 satisfies

n−1∑

j=0

{
W
(
( j + 1)t/n

)
− W ( j t/n)

}2 m.s.−→ σ 2t as n → ∞.

The process W is said to have finite quadratic variation.

5. Let W be a Wiener process. Which of the following define Wiener processes?

(a) −W (t), (b)
√

tW (1), (c) W (2t)− W (t).

6. Find the distribution of
∫ t

0 [W (u)/u] du where W is the Wiener process. [The integral is interpreted
as the limit as ǫ ↓ 0 of the integral from ǫ to t .]

7. Wiener process in n dimensions. An n-dimensional Wiener process is a process W (t) =
(W1(t),W2(t), . . . ,Wn(t)) taking values in Rn with independent increments, started at the origin
W (0) = 0, and such that W (t) − W (s) is multivariate normal with means 0 and covariance matrix
(t − s)I where I is the n × n identity matrix. Let W (t) be an n-dimensional Wiener process, and let
A be an orthonormal n × n matrix. Show that AW (t) is an n-dimensional Wiener process.

8. Let W be a standard Wiener process. Show that, for p ≥ 0,

E
(
|W (t)− W (s)|p

)
= cp |t − s|p/2, s, t ∈ R,

where

cp =
1

√
2π

∫ ∞

−∞
|y|pe

− 1
2 y2

dy.
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8.6 Exercises. Lévy processes and subordinators

1. Prove that the characteristic function φ(t, θ) = E(eiθX (t)) of a Lévy process X is a continuous
function of t .

2. Show that a compound Poisson process is a Lévy process, and find its Lévy symbol.

3. Verify the formula of Example (8.6.6) for the Laplace exponent of the Moran gamma process.

4. Prove Theorem (8.6.7): the property of being a Lévy process is preserved under time change by
an independent subordinator.

5. Let N be a Poisson process of rate 1, and T an independent random variable with the Ŵ(1, t)

distribution. Show that Y = N(T ) has probability generating function E(sY ) = (2 − s)−t for s < 2.

6. Let X be a Lévy process with finite variances. Show that the following are martingales:

(a) X (t)− E(X (t)),

(b) Z(t)2 − E(Z(t)2), where Z(t) = X (t) − E(X (t)),

(c) eiθX (t)/φ(t, θ), where φ(t, θ) = E(eiθX (t)).

7. Let X be a continuous-time martingale and T an independent subordinator. Show that, subject to
the moment condition E|Y (t)| < ∞, Y (t) = X (T (t)) defines a martingale with respect to a suitable
filtration. Show that the moment condition is valid whenever X is a positive martingale.

8.7 Exercises. Self-similarity and stability

1. Let X be stable, and let X1, X2, . . . , Xn be a random sample distributed as X . Show that, for

n ≥ 1, there exist An , Bn such that X1 + X2 + · · · + Xn
D= Bn X + An .

2. Prove that, for a non-degenerate, self-similar process X with stationary increments, finite vari-
ances, and Hurst exponent H > 0,

var(X (t) = t2H var(X (1)), t ≥ 0,

E(X (s)X (t)) = 1
2

(
s2H + t2H − |t − s|2H

)
E(X (1)2), s, t ≥ 0.

3. Show that a stable distribution is infinitely divisible.

4. Show that a self-similar Lévy process either is a Wiener process or has infinite variances.

5. Prove that a distribution with characteristic function φ(θ) = exp(−|θ |α), where α ∈ (0, 2], is
strictly α-stable and symmetric.

6. Let X and Y be independent stable random variables, where X is symmetric with exponent

α ∈ (0, 2], and Y is non-negative with Laplace transform M(θ) = exp(−kθβ) for θ ∈ [0,∞), where

1 6= β ∈ (0, 2]. Show that Z = XY 1/α is symmetric and αβ-stable. Deduce that, for independent
N(0, 1) random variables U , V , the ratio Z = U/V has the Cauchy distribution.

8.8 Exercises. Time changes

1. Let Z be a continuous-time Markov chain, and let T be an independent subordinator. Show that
X (t) = Z(T (t)) defines a Markov chain.

2. Let Z = {Zn : n ≥ 0} be a discrete-time Markov chain with n-step transition probabilities zi j (n).
Let N be a Poisson process of rate λ that is independent of Z , and set X (t) = ZN(t). Show that X is
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a continuous-time Markov chain with transition probabilities

pi j (t) =
∞∑

n=0

e−λt (λt)n

n!
zi j (n).

3. Let W be the standard Wiener process, and let T be an independent stable subordinator with

E(e−θT (t)) = exp(−tθa/2) where a ∈ (0, 2) and θ ≥ 0. Show that the time-changed process
Y (t) = W (T (t)) is a symmetric Lévy process.

4. Markov, but not strong Markov. Let V be exponentially distributed with parameter 1, and
define X = {X (t) : t ≥ 0} by: X (t) = 0 for t ≤ V , and X (t) = t − V for t ≥ V .

(a) Show that X is a Markov process.

(b) Show that V is a stopping time for X .

(c) Show that the two processes X1(t) = X (t) and X2(t) = X (t + V ) satisfy X1(0) = X2(0) = 0,
but have different fdds.

8.10 Problems

1. Let {Zn} be a sequence of uncorrelated real-valued variables with zero means and unit variances,
and define the ‘moving average’

Yn =
r∑

i=0

αi Zn−i ,

for constants α0, α1, . . . , αr . Show that Y is stationary and find its autocovariance function.

2. Let {Zn} be a sequence of uncorrelated real-valued variables with zero means and unit variances.
Suppose that {Yn} is an ‘autoregressive’ stationary sequence in that it satisfies Yn = αYn−1 + Zn ,
−∞ < n < ∞, for some real α satisfying |α| < 1. Show that Y has autocovariance function

c(m) = α|m|/(1 − α2).

3. Let {Xn} be a sequence of independent identically distributed Bernoulli variables, each taking
values 0 and 1 with probabilities 1 − p and p respectively. Find the mass function of the renewal
process N(t) with interarrival times {Xn}.

4. Customers arrive in a shop in the manner of a Poisson process with parameter λ. There are
infinitely many servers, and each service time is exponentially distributed with parameter µ. Show
that the number Q(t) of waiting customers at time t constitutes a birth–death process. Find its
stationary distribution.

5. Let X (t) = Y cos(θ t)+ Z sin(θ t)where Y and Z are independent N(0, 1) random variables, and

let X̃(t) = R cos(θ t +9) where R and 9 are independent. Find distributions for R and 9 such that

the processes X and X̃ have the same fdds.

6. Bartlett’s theorem. Customers arrive at the entrance to a queueing system at the instants of
an non-homogeneous Poisson process with rate function λ(t). Their subsequent service histories
are independent of each other, and a customer arriving at time s is in state A at time s + t with
probability p(s, t). Show that the number of customers in state A at time t is Poisson with parameter∫ t
−∞ λ(u)p(u, t − u) du.

7. An insurance company receives premiums (net of costs) at unit rate per unit time, and the claims
of size X1, X2, . . . are independent random variables with common distribution function F , arriving
at the instants of a Poisson process of rate 1. Show that the probability r(y) of ruin (that is, assets
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becoming negative) for an initial capital y satisfies

dr(y)

dy
= λr(y)− λP(X1 > y)− λ

∫ y

0
r(y − x) d F(x).

8. Fractional Brownian motion. Let X be fBMH with var(X (1)) = 1, where H ∈ (0, 1). Show
that:

(a) X (t)− X (s) has the N(0, |t − s|2H ) distribution,

(b) for r > 0,

E
(
|X (t)− X (s)|r

)
= C |t − s|r H ,

where C depends on r .

(c) X is a Wiener process if and only if H = 1
2 .

9. Holtsmark distribution for stellar gravity, Problem (6.15.57) revisited. Suppose stars are

distributed in R3 in the manner of a Poisson process with intensity λ, and let Gλ be the x-coordinate
of their aggregated gravitational force exerted on a unit mass at the origin.

(a) Show that Gλ+µ
D= Gλ + Gµ, the sum of two independent variables.

(b) Show by the inverse square law that Gλ
D= λ2/3G1.

(c) Comment on the relevance of the above in studying gravitational attraction in three dimensions.

10. In a Prague teashop (U Myšáka) before the Velvet Revolution of 1989, customers queue at the
entrance for a blank bill. In the shop there are separate counters for coffee, sweetcakes, pretzels, milk,
drinks, and ice cream, and queues form at each of these. At each service point the customers’ bills
are marked appropriately. There is a restricted number N of seats, and departing customers have to
queue in order to pay their bills. If interarrival times and service times are exponentially distributed
and the process is in equilibrium, find how much longer a greedy customer must wait if he insists on
sitting down. Answers on a postcard to the authors, please.

136



9

Stationary processes

9.1 Exercises. Introduction

1. Let . . . , Z−1, Z0, Z1, Z2, . . . be independent real random variables with means 0 and variances
1, and let α, β ∈ R. Show that there exists a (weakly) stationary sequence {Wn} satisfying Wn =
αWn−1 + βWn−2 + Zn , n = . . . ,−1, 0, 1, . . . , if the (possibly complex) zeros of the quadratic

equation z2 − αz − β = 0 are smaller than 1 in absolute value.

2. Let U be uniformly distributed on [0, 1] with binary expansion U =
∑∞

i=1 X i 2
−i . Show that

the sequence

Vn =
∞∑

i=1

X i+n2−i , n ≥ 0,

is strongly stationary, and calculate its autocovariance function.

3. Let {Xn : n = . . . ,−1, 0, 1, . . . } be a stationary real sequence with mean 0 and autocovariance
function c(m).

(i) Show that the infinite series
∑∞

n=0 an Xn converges almost surely, and in mean square, whenever∑∞
n=0 |an| < ∞.

(ii) Let

Yn =
∞∑

k=0

ak Xn−k , n = . . . ,−1, 0, 1, . . .

where
∑∞

k=0 |ak | < ∞. Find an expression for the autocovariance function cY of Y , and show
that

∞∑

m=−∞
|cY (m)| < ∞.

4. Let X = {Xn : n ≥ 0} be a discrete-time Markov chain with countable state space S and stationary
distribution π , and suppose that X0 has distribution π . Show that the sequence { f (Xn) : n ≥ 0} is
strongly stationary for any function f : S → R.

5. Let W , X , Y , Z have a multivariate normal distribution with zero means and covariance matrix



1 0 0 −1
0 1 −1 0
0 −1 1 0

−1 0 0 1


 .

Let U = W + i X and V = Y + i Z . Show that U and V are uncorrelated but not independent. Why
does this not violate the conclusion of Example (4.5.9) that multivariate normal random variables are
independent if and only if they are uncorrelated?
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6. Let Xn = cos(nS + U) for n ∈ Z, where U is uniformly distributed on (−π,π), and S is
independent of U with a density function g that is symmetric on its support (−π, π). Show that
X = {Xn : n ∈ Z} is weakly stationary, and find its autocorrelation function ρX .

Let Yn = Zn + aZn−1 for n ∈ Z, where |a| < 1 and the Zn are independent, identically
distributed random variables with means 0 and variances 1. Is it possible to choose g in such a way
that Y = {Yn : n ∈ Z} has the same autocorrelation function as X? If so, how?

9.2 Exercises. Linear prediction

1. Let X be a (weakly) stationary sequence with zero mean and autocovariance function c(m).

(i) Find the best linear predictor X̂n+1 of Xn+1 given Xn .

(ii) Find the best linear predictor X̃n+1 of Xn+1 given Xn and Xn−1.

(iii) Find an expression for D = E{(Xn+1 − X̂n+1)
2} − E{(Xn+1 − X̃n+1)

2}, and evaluate this
expression when:

(a) Xn = cos(nU) where U is uniform on [−π,π ],

(b) X is an autoregressive scheme with c(k) = α|k| where |α| < 1.

2. Suppose |a| < 1. Does there exist a (weakly) stationary sequence {Xn : −∞ < n < ∞} with
zero means and autocovariance function

c(k) =





1 if k = 0,
a

1 + a2
if |k| = 1,

0 if |k| > 1.

Assuming that such a sequence exists, find the best linear predictor X̂n of Xn given Xn−1,

Xn−2, . . . , and show that the mean squared error of prediction is (1 + a2)−1. Verify that {X̂n} is
(weakly) stationary.

9.3 Exercises. Autocovariances and spectra

1. Let Xn = A cos(nλ) + B sin(nλ) where A and B are uncorrelated random variables with zero
means and unit variances. Show that X is stationary with a spectrum containing exactly one point.

2. Let U be uniformly distributed on (−π, π), and let V be independent of U with distribution func-

tion F . Show that Xn = ei(U−V n) defines a stationary (complex) sequence with spectral distribution
function F .

3. Find the autocorrelation function of the stationary process {X (t) : −∞ < t < ∞} whose spectral
density function is:

(i) N(0, 1), (ii) f (x) = 1
2 e−|x |, −∞ < x < ∞.

4. Let X1, X2, . . . be a real-valued stationary sequence with zero means and autocovariance function
c(m). Show that

var

(
1

n

n∑

j=1

X j

)
= c(0)

∫

(−π,π]

(
sin(nλ/2)

n sin(λ/2)

)2

d F(λ)

where F is the spectral distribution function. Deduce that n−1∑n
j=1 X j

m.s.−−→ 0 if and only if
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F(0) − F(0−) = 0, and show that

c(0){F(0) − F(0−)} = lim
n→∞

1

n

n−1∑

j=0

c( j).

5. Let Z = {Zn : n ∈ Z} be a sequence of uncorrelated random variables with means 0 and variances
1, and suppose the sequence X = {Xn : n ∈ Z} satisfies Xn = φXn−1 + Zn + θ Zn−1.

(a) For what values of φ, θ is X stationary?

(b) For what values of φ, θ does Zn have a series representation in terms of the Xm?

(c) Show that the autocorrelation function ρ of X satisfies

ρ(1) =
(φ + θ)(1 + φθ)

1 + 2φθ + θ2
,

and find ρ(k) for k > 1. Hence evaluate the spectral density in a finite form.

6. Let Z = {Zn : n ∈ Z} be a sequence of uncorrelated random variables with means 0 and variances

1, and suppose Xn = φXn−1 + θ Xn−2 + Zn for n ∈ Z, where φ2 + 4θ > 0. Suppose dk is a real
sequence such that

Xn =
∞∑

k=0

dk Zn−k .

Show that dk = a1rk
1 + a2rk

2 , where a1 + a2 = 1 and a1r1 + a2r2 = φ. Show further that

a1 =
r1

r1 − r2
, a2 =

−r2

r1 − r2
, r1r2 = −θ, r2

1 + r2
2 = φ2 + 2θ.

Hence find E(X2
n) in terms of φ and θ when |r1|, |r2| < 1.

7. Kolmogorov–Szegő formula. Let X = {Xn : n ∈ Z} be a stationary process with zero means

and variances σ 2, and let X̂n+1 be the best linear predictor of Xn+1 given {Xr : r ≤ n}. (See Section
9.2.) The Kolmogorov–Szegő formula states that

var(Xn+1 − X̂n+1) = exp

{
1

2π

∫ π

−π
log
(
2πσ 2 f (λ)

)
dλ

}
,

where f is the spectral density of X . Verify this for the autoregressive scheme of Example (9.3.23).

9.4 Exercises. Stochastic integration and the spectral representation

1. Let S be the spectral process of a stationary process X with zero mean and unit variance. Show
that the increments of S have zero means.

2. Moving average representation. Let X be a discrete-time stationary process having zero means,
continuous strictly positive spectral density function f , and with spectral process S. Let

Yn =
∫

(−π,π]

einλ

√
2π f (λ)

d S(λ).

Show that . . . ,Y−1,Y0,Y1, . . . is a sequence of uncorrelated random variables with zero means and
unit variances.
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Show that Xn may be represented as a moving average Xn =
∑∞

j=−∞ aj Yn− j where the aj are

constants satisfying

√
2π f (λ) =

∞∑

j=−∞
aj e−i jλ for λ ∈ (−π,π ].

3. Gaussian process. Let X be a discrete-time stationary sequence with zero mean and unit vari-
ance, and whose fdds are of the multivariate-normal type. Show that the spectral process of X has
independent increments having normal distributions.

9.5 Exercises. The ergodic theorem

1. Let T = {1, 2, . . . } and let I be the set of invariant events of (RT ,BT ). Show that I is a σ -field.

2. Assume that X1, X2, . . . is a stationary sequence with autocovariance function c(m). Show that

var

(
1

n

n∑

i=1

X i

)
=

2

n2

n∑

j=1

j−1∑

i=0

c(i )−
c(0)

n
.

Assuming that j−1∑ j−1
i=0 c(i ) → σ 2 as j → ∞, show that

var

(
1

n

n∑

i=1

X i

)
→ σ 2 as n → ∞.

3. Let X1, X2, . . . be independent identically distributed random variables with zero mean and unit
variance. Let

Yn =
∞∑

i=0

αi Xn+i for n ≥ 1

where the αi are constants satisfying
∑

i α
2
i < ∞. Use the martingale convergence theorem to show

that the above summation converges almost surely and in mean square. Prove that n−1∑n
i=1 Yi → 0

a.s. and in mean, as n → ∞.

9.6 Exercises. Gaussian processes

1. Show that the function c(s, t) = min{s, t} is positive definite. That is, show that

n∑

j,k=1

c(tk , tj )z j zk > 0

for all 0 ≤ t1 < t2 < · · · < tn and all complex numbers z1, z2, . . . , zn at least one of which is
non-zero.

2. Let X1, X2, . . . be a stationary Gaussian sequence with zero means and unit variances which
satisfies the Markov property. Find the spectral density function of the sequence in terms of the
constant ρ = cov(X1, X2).

3. Show that a Gaussian process is strongly stationary if and only if it is weakly stationary.
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4. Let X be a stationary Gaussian process with zero mean, unit variance, and autocovariance function

c(t). Find the autocovariance functions of the processes X2 = {X (t)2 : −∞ < t < ∞} and

X3 = {X (t)3 : −∞ < t < ∞}.

5. (a) Let W be a standard Wiener process, and T : [0,∞) → [0,∞) a non-random, right-
continuous, non-decreasing function with T (0) = 0. Show that X (t) := W (T (t)) defines a
Gaussian process. Find the characteristic function of X (t) and the covariance function c(s, t) =
cov(X (s), X (t)).

(b) Let W be a Wiener process with var(W (t)) = 2t , and let T be an independent α-stable sub-
ordinator, where 0 < α < 1. Show that X (t) = W (T (t)) is a symmetric (2α)-stable Lévy
process.

6. Brownian sheet. Let X (s, t) be a two-parameter, zero-mean, Gaussian process on the positive

quadrant [0,∞)2 of R2, with covariance function cov(X (s, t), X (u, v)) = (s ∧ u)(t ∧ v), where
x ∧ y = min{x, y}. For any rectangle R with corners (s, t), (u, t), (s, v), (u, v)where 0 ≤ s < u < ∞
and 0 ≤ t < v < ∞, define

Y (R) = X (s, t)+ X (u, v)− X (s, v)− X (u, t).

Find var(Y (R)), and show that Y has independent increments.

9.7 Problems

1. Let . . . , X−1, X0, X1, . . . be uncorrelated random variables with zero means and unit variances,
and define

Yn = Xn + α

∞∑

i=1

βi−1 Xn−i for − ∞ < n < ∞,

where α and β are constants satisfying |β| < 1, |β − α| < 1. Find the best linear predictor of Yn+1
given the entire past Yn,Yn−1, . . . .

2. Let {Yk : −∞ < k < ∞} be a stationary sequence with variance σ 2
Y , and let

Xn =
r∑

k=0

akYn−k , −∞ < n < ∞,

where a0, a1, . . . , ar are constants. Show that X has spectral density function

f X (λ) =
σ 2

Y

σ 2
X

fY (λ)|Ga(e
iλ)|2

where fY is the spectral density function of Y , σ 2
X = var(X1), and Ga(z) =

∑r
k=0 ak zk .

Calculate this spectral density explicitly in the case of ‘exponential smoothing’, when r = ∞,

ak = µk(1 − µ), and 0 < µ < 1.

3. Suppose that Ŷn+1 = αYn + βYn−1 is the best linear predictor of Yn+1 given the entire past
Yn ,Yn−1, . . . of the stationary sequence {Yk : −∞ < k < ∞}. Find the spectral density function of
the sequence.

4. Recurrent events, Example (5.2.15). Meteorites fall at integer times T1, T2, . . . where Tn =
X1 + X2 + · · · + Xn . We assume that the X i are independent, X2, X3, . . . are identically distributed,
and the distribution of X1 is such that the probability that a meteorite falls at time n is constant for
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all n. Let Yn be the indicator function of the event that a meteorite falls at time n. Show that {Yn} is
stationary and find its spectral density function in terms of the characteristic function of X2.

5. Let X = {Xn : n ≥ 1} be given by Xn = cos(nU) where U is uniformly distributed on [−π,π ].
Show that X is stationary but not strongly stationary. Find the autocorrelation function of X and its
spectral density function.

6. (a) Let N be a Poisson process with intensity λ, and let α > 0. Define X (t) = N(t + α)− N(t)

for t ≥ 0. Show that X is strongly stationary, and find its spectral density function.

(b) Let W be a Wiener process and define X = {X (t) : t ≥ 1} by X (t) = W (t) − W (t − 1).
Show that X is strongly stationary and find its autocovariance function. Find the spectral density
function of X .

7. Let Z1, Z2, . . . be uncorrelated variables, each with zero mean and unit variance.

(a) Define the moving average process X by Xn = Zn + αZn−1 where α is a constant. Find the
spectral density function of X .

(b) More generally, let Yn =
∑r

i=0 αi Zn−i , where α0 = 1 and α1, . . . , αr are constants. Find the
spectral density function of Y .

8. Show that the complex-valued stationary process X = {X (t) : −∞ < t < ∞} has a spectral
density function which is bounded and uniformly continuous whenever its autocorrelation function ρ

is continuous and satisfies
∫∞

0 |ρ(t)| dt < ∞.

9. Let X = {Xn : n ≥ 1} be stationary with constant mean µ = E(Xn) for all n, and such that

cov(X1, Xn) → 0 as n → ∞. Show that n−1∑n
j=1 X j

m.s.−−→ µ.

10. Deduce the strong law of large numbers from an appropriate ergodic theorem.

11. Let Q be a stationary measure on (RT ,BT )where T = {1, 2, . . . }. Show that Q is ergodic if and
only if

1

n

n∑

i=1

Yi → E(Y ) a.s. and in mean

for all Y : RT → R for which E(Y ) exists, where Yi : RT → R is given by Yi (x) = Y (τ i−1(x)). As

usual, τ is the natural shift operator on RT .

12. The stationary measure Q on (RT ,BT ) is called strongly mixing if Q(A ∩ τ−n B) → Q(A)Q(B)
as n → ∞, for all A, B ∈ BT ; as usual, T = {1, 2, . . . } and τ is the shift operator on RT . Show that
every strongly mixing measure is ergodic.

13. Ergodic theorem. Let (�,F,P) be a probability space, and let T : � → � be measurable and

measure preserving (i.e. P(T −1 A) = P(A) for all A ∈ F). Let X : � → R be a random variable, and

let X i be given by X i (ω) = X (T i−1(ω)). Show that

1

n

n∑

i=1

X i → E(X | I) a.s. and in mean

where I is the σ -field of invariant events of T .

If T is ergodic (in that P(A) equals 0 or 1 whenever A is invariant), prove that E(X | I) = E(X)
almost surely.

14. Borel’s normal number theorem. Consider the probability space (�,F,P) where � = [0, 1),
F is the set of Borel subsets, and P is Lebesgue measure.

(a) Show that the shift T : � → � defined by T (x) = 2x (mod 1) is measurable, measure preserving,

and ergodic (in that P(A) equals 0 or 1 if A = T −1 A).
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(b) Let X : � → R be the random variable given by the identity mapping X (ω) = ω. Show that

the proportion of 1’s, in the expansion of X to base 2, equals 1
2 almost surely. This is sometimes

called ‘Borel’s normal number theorem’.

(c) Deduce that, for any continuous random variable Y taking values in [0, 1), the proportion of 1’s

in its binary expansion to n places converges a.s. to 1
2 as n → ∞.

(d) Let {X i : i ≥ 1} be a sequence of independent Bernoulli random variables with parameter p 6= 1
2 .

and set Z =
∑∞

i=1 X i 2
−i . Is Z a random variable? Is it continuous, or discrete, or what?

15. Let g : R → R be periodic with period 1, and uniformly continuous and integrable over [0, 1].
Define Zn = g

(
X + (n − 1)α

)
, n ≥ 1, where X is uniform on [0, 1] and α is irrational. Show that,

as n → ∞,

1

n

n∑

j=1

Z j →
∫ 1

0
g(u) du a.s.

16. Let X = {X (t) : t ≥ 0} be a non-decreasing random process such that:

(a) X (0) = 0, X takes values in the non-negative integers,

(b) X has stationary independent increments,

(c) the sample paths {X (t, ω) : t ≥ 0} have only jump discontinuities of unit magnitude.

Show that X is a Poisson process.

17. Let X be a continuous-time process. Show that:

(a) if X has stationary increments and m(t) = E(X (t)) is a continuous function of t , then there exist
α and β such that m(t) = α + βt ,

(b) if X has stationary independent increments and v(t) = var(X (t)− X (0)) is a continuous function

of t then there exists σ 2 such that var(X (s + t)− X (s)) = σ 2t for all s.

18. A Wiener process W is called standard if W (0) = 0 and W (1) has unit variance. Let W be a
standard Wiener process, and let α be a positive constant. Show that:

(a) αW (t/α2) is a standard Wiener process,

(b) W (t + α)− W (α) is a standard Wiener process,

(c) the process V , given by V (t) = tW (1/t) for t > 0, V (0) = 0, is a standard Wiener process,

(d) the process W (1)− W (1 − t) is a standard Wiener process on [0, 1].

19. Let W be a standard Wiener process. Show that the stochastic integrals

X (t) =
∫ t

0
dW (u), Y (t) =

∫ t

0
e−(t−u) dW (u), t ≥ 0,

are well defined, and prove that X (t) = W (t), and that Y has autocovariance function cov(Y (s), Y (t)) =
1
2 (e

−|s−t | − e−s−t), s < t .

20. Let W be a standard Wiener process. Find the means of the following three processes, and the
autocovariance functions in cases (b) and (c):

(a) X (t) = |W (t)|,
(b) Y (t) = eW (t),

(c) Z(t) =
∫ t

0 W (u) du.

(d) Which of X , Y , Z are Gaussian processes? Which of these are Markov processes?

(e) Find E(Z(t)n) for n ≥ 0.
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21. Let W be a standard Wiener process. Find the conditional joint density function of W (t2) and
W (t3) given that W (t1) = W (t4) = 0, where t1 < t2 < t3 < t4.

Show that the conditional correlation of W (t2) and W (t3) is

ρ =

√
(t4 − t3)(t2 − t1)

(t4 − t2)(t3 − t1)
.

22. Empirical distribution function. Let U1,U2, . . . be independent random variables with the
uniform distribution on [0, 1]. Let Ij (x) be the indicator function of the event {Uj ≤ x}, and define

Fn(x) =
1

n

n∑

j=1

Ij (x), 0 ≤ x ≤ 1.

The function Fn is called the ‘empirical distribution function’ of the Uj .

(a) Find the mean and variance of Fn(x), and prove that
√

n(Fn(x)− x)
D−→ Y (x) as n → ∞, where

Y (x) is normally distributed.

(b) What is the (multivariate) limit distribution of a collection of random variables of the form
{
√

n(Fn(xi )− xi ) : 1 ≤ i ≤ k}, where 0 ≤ x1 < x2 < · · · < xk ≤ 1?

(c) Show that the autocovariance function of the asymptotic finite-dimensional distributions of√
n(Fn(x)− x), in the limit as n → ∞, is the same as that of the process Z(t) = W (t)− tW (1),

0 ≤ t ≤ 1, where W is a standard Wiener process. The process Z is called a ‘Brownian bridge’
or ‘tied-down Brownian motion’.

23. Pólya’s urn revisited. An urn contains initially one red ball and one green ball. At later stages,
a ball is picked from the urn uniformly at random, and is returned to the urn together with a fresh ball
of the same colour. Assume the usual independence. Let Xk be the indicator function of the event
that the kth ball picked is red.

(a) Show that, for xi ∈ {0, 1},

P(X1 = x1, X2 = x2, . . . , Xn = xn) =
r ! (n − r)!

(n + 1)!
, x1, x2, . . . , xn ∈ {0, 1}, r =

n∑

k=1

xk .

(b) Show that X1, X2, . . . is a stationary sequence, and that n−1∑n
k=1 Xk converges a.s. as n → ∞

to some random variable R.

(c) Find the distribution of R.
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Renewals

In the absence of indications to the contrary, {Xn : n ≥ 1} denotes the sequence of interarrival times

of either a renewal process N or a delayed renewal process Nd. In either case, Fd and F are the

distribution functions of X1 and X2 respectively, though Fd 6= F only if the renewal process is

delayed. We write µ = E(X2), and shall usually assume that 0 < µ < ∞. The functions m and md

denote the renewal functions of N and Nd. We write Tn =
∑n

i=1 X i , the time of the nth arrival.

10.1 Exercises. The renewal equation

1. Prove that E(eθN(t)) < ∞ for some strictly positive θ whenever E(X1) > 0. [Hint: Consider
the renewal process with interarrival times X ′

k = ǫ I{Xk ≥ǫ} for some suitable ǫ.]

2. Let N be a renewal process and let W be the waiting time until the length of some interarrival
time has exceeded s. That is, W = inf{t : C(t) > s}, where C(t) is the time which has elapsed (at
time t) since the last arrival. Show that

FW (x) =
{

0 if x < s,

1 − F(s)+
∫ s

0 FW (x − u) d F(u) if x ≥ s,

where F is the distribution function of an interarrival time. If N is a Poisson process with intensity λ,
show that

E(eθW ) =
λ− θ

λ− θe(λ−θ)s
for θ < λ,

and E(W ) = (eλs − 1)/λ. You may find it useful to rewrite the above integral equation in the form of
a renewal-type equation.

3. Find an expression for the mass function of N(t) in a renewal process whose interarrival times
are: (a) Poisson distributed with parameter λ, (b) gamma distributed, Ŵ(λ, b).

4. Let the times between the events of a renewal process N be uniformly distributed on (0, 1). Find
the mean and variance of N(t) for 0 ≤ t ≤ 1.

5. Let N be the renewal process with interarrival times X1, X2, . . . . Show that, for t > 0, the
interarrival time X N(t)+1 is stochastically larger than X1.

6. Suppose the interarrival times X i of a renewal process have a density function f with ordinary

Laplace transform f̂ (θ) =
∫∞

0 e−θx f (x) dx . Show that the renewal function m has Laplace transform

m̂(θ) =
f̂ (θ)

θ − θ f̂ (θ)
, θ > 0.

7. Let r(y) be the ruin function of the insurance problem (8.10.7). In the notation of that problem,
show that the Laplace–Stieltjes transforms r∗(θ) and F∗(θ) are related by λF∗ = r∗(θ − λ+ λF∗).



[10.2.1]–[10.3.5] Exercises Renewals

10.2 Exercises. Limit theorems

1. Planes land at Heathrow airport at the times of a renewal process with interarrival time distribution
function F . Each plane contains a random number of people with a given common distribution and
finite mean. Assuming as much independence as usual, find an expression for the rate of arrival of
passengers over a long time period.

2. Let Z1, Z2, . . . be independent identically distributed random variables with mean 0 and finite

variance σ 2, and let Tn =
∑n

i=1 Zi . Let M be a finite stopping time with respect to the Zi such that

E(M) < ∞. Show that var(TM ) = E(M)σ 2.

3. Show that E(TN(t)+k) = µ(m(t)+k) for all k ≥ 1, but that it is not generally true that E(TN(t)) =
µm(t).

4. Show that, using the usual notation, the family {N(t)/t : 0 ≤ t < ∞} is uniformly integrable.
How might one make use of this observation?

5. Consider a renewal process N having interarrival times with moment generating function M , and

let T be a positive random variable which is independent of N . Find E(s N(T )) when:

(a) T is exponentially distributed with parameter ν,

(b) N is a Poisson process with intensity λ, in terms of the moment generating function of T . What
is the distribution of N(T ) in this case, if T has the gamma distribution Ŵ(ν, b)?

10.3 Exercises. Excess life

1. Suppose that the distribution of the excess lifetime E(t) does not depend on t . Show that the
renewal process is a Poisson process.

2. Show that the current and excess lifetime processes, C(t) and E(t), are Markov processes.

3. Suppose that X1 is non-arithmetic with finite mean µ.

(a) Show that E(t) converges in distribution as t → ∞, the limit distribution function being

H(x) =
∫ x

0

1

µ
[1 − F(y)] dy.

(b) Show that the r th moment of this limit distribution is given by

∫ ∞

0
xr d H(x) =

E(Xr+1
1 )

µ(r + 1)
,

assuming that this is finite.

(c) Show that

E(E(t)r ) = E
(
{(X1 − t)+}r

)
+
∫ t

0
h(t − x) dm(x)

for some suitable function h to be found, and deduce by the key renewal theorem that E(E(t)r ) →
E(Xr+1

1 )/{µ(r + 1)} as t → ∞, assuming this limit is finite.

4. Find an expression for the mean value of the excess lifetime E(t) conditional on the event that
the current lifetime C(t) equals x .

5. Let M(t) = N(t) + 1, and suppose that X1 has finite non-zero variance σ 2.

(a) Show that var(TM(t) − µM(t)) = σ 2(m(t)+ 1).

(b) In the non-arithmetic case, show that var(M(t))/t → σ 2/µ3 as t → ∞.
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Renewal–reward processes Exercises [10.4.1]–[10.5.3]

10.4 Exercises. Applications

1. Find the distribution of the excess lifetime for a renewal process each of whose interarrival times is
the sum of two independent exponentially distributed random variables having respective parameters
λ and µ. Show that the excess lifetime has mean

1

µ
+
λe−(λ+µ)t + µ

λ(λ+ µ)
.

2. Stationary renewal and size-biasing. Let f be the density function and F the distribution
function of the interarrival times {X i : i ≥ 2} of a stationary renewal process, and µ their common
mean. Let C , D, E be the current, total, and excess lifetimes in equilibrium.

(a) Show that C has density function h(x) = (1 − F(x))/µ for x > 0.

(b) Show that D has the size-biased (or length-biased) density function g(y) = (y/µ) f (y).

(c) Let U be uniformly distributed on (0, 1) and independent of D. Show that U D has the same
distribution as both C and E . Explain why this should be so.

3. Let m be the renewal function of an ordinary renewal process N whose interarrival times have
finite mean.

(a) Show that the mean number of renewals in the interval (a, b] is no larger than 1 + m(b − a).

(b) Show that there exists A > 0 such that m(t) ≤ A(1 + t) for t ≥ 0.

(c) Suppose the interarrival times Xr are non-arithmetic with finite variance and mean µ. Show that

m(t)−
t

µ
→

σ 2 − µ2

2µ2
as t → ∞.

[Hint: Use coupling and Blackwell’s renewal theorem (10.2.5).]

10.5 Exercises. Renewal–reward processes

1. If X (t) is an irreducible positive recurrent Markov chain, and u(·) is a bounded function on the
integers, show that

1

t

∫ t

0
u(X (s)) ds

a.s.−→
∑

i∈S

πi u(i ),

where π is the stationary distribution of X (t).

2. Let M(t) be an alternating renewal process, with interarrival pairs {Xr ,Yr : r ≥ 1}. Show that

1

t

∫ t

0
I{M(s) is even} ds

a.s.−→
EX1

EX1 + EY1
as t → ∞.

Is this limit valid for an arbitrary joint distribution of independent pairs (X i ,Yi )?

3. Let C(s) be the current lifetime (or age) of a renewal process N(t) with a typical interarrival time
X . Show that

1

t

∫ t

0
C(s) ds

a.s.−→
E(X2)

2E(X)
as t → ∞.

Find the corresponding limit for the excess lifetime.
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[10.5.4]–[10.6.3] Exercises Renewals

4. Let j and k be distinct states of an irreducible discrete-time Markov chain X with stationary
distribution π . Show that

P(Tj < Tk | X0 = k) =
1/πk

E(Tj | X0 = k) + E(Tk | X0 = j)

where Ti = min{n ≥ 1 : Xn = i } is the first passage time to the state i . [Hint: Consider the times of
return to j having made an intermediate visit to k.]

5. Total life. Use the result of Exercise (10.5.2) to show that the limiting distribution function as
t → ∞ of the total life D(t) of a renewal process is

FD(y) =
∫ y

0

1

µ
x f (x) dx,

where f is the density function of a typical interarrival time X , andµ = E(X). The integrand is called
the size-biased (or length-biased) density for X .

6. (a) Let X be exponentially distributed with parameter λ. Show that

E(min{X, d}) =
1

λ
(1 − e−λd), d ≥ 0.

(b) John’s garage offers him the choice of two tyre replacement plans.

1. The garage undertakes to replace all the tyres of his car at the normal price whenever one of the
tyres requires replacing.

2. The garage undertakes to replace all the tyres of his car at 5% of the normal price two years after
they have last been replaced. However, if any tyre needs replacing earlier, the garage will then
replace all the tyres at a price that is 5% higher than the normal price.

Assuming that a new tyre has an exponentially distributed lifetime with mean 8 years, determine the
long run average cost per year under the two options. Which option should John choose if his car is
new?

7. Uptime. A machine M is repaired at time t = 0, and its uptime after any repair is exponentially
distributed with parameter λ, at which point it breaks down (assume the usual independence). Fol-
lowing any repair at time T , say, it is inspected at times T , T + m, T + 2m, . . . , and instantly repaired
if found to be broken (the inspection schedule is then restarted). Show that the long run proportion of

time that M is working (the ‘uptime ratio’) is m−1
∫ m

0 e−λx dx .

10.6 Problems

1. (a) Show that P(N(t) → ∞ as t → ∞) = 1.

(b) Show that m(t) < ∞ if µ 6= 0.

(c) More generally show that, for all k > 0, E(N(t)k ) < ∞ if µ 6= 0.

2. Let v(t) = E(N(t)2). Show that

v(t) = m(t)+ 2

∫ t

0
m(t − s) dm(s).

Find v(t) when N is a Poisson process.

3. Suppose that σ 2 = var(X1) > 0. Show that the renewal process N satisfies

N(t) − (t/µ)√
tσ 2/µ3

D−→ N(0, 1), as t → ∞.
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Problems Exercises [10.6.4]–[10.6.12]

4. Find the asymptotic distribution of the current life C(t) of N as t → ∞ when X1 is not arithmetic.

5. Let N be a Poisson process with intensity λ. Show that the total life D(t) at time t has distribution

function P(D(t) ≤ x) = 1 − (1 +λmin{t, x})e−λx for x ≥ 0. Deduce that E(D(t)) = (2 − e−λt )/λ.

6. A Type 1 counter records the arrivals of radioactive particles. Suppose that the arrival process
is Poisson with intensity λ, and that the counter is locked for a dead period of fixed length T after

each detected arrival. Show that the detection process Ñ is a renewal process with interarrival time

distribution F̃(x) = 1 − e−λ(x−T ) if x ≥ T . Find an expression for P(Ñ (t) ≥ k).

7. Particles arrive at a Type 1 counter in the manner of a renewal process N ; each detected arrival
locks the counter for a dead period of random positive length. Show that

P(X̃1 ≤ x) =
∫ x

0
[1 − F(x − y)]FL(y) dm(y)

where FL is the distribution function of a typical dead period.

8. (a) Show that m(t) = 1
2λt − 1

4 (1 − e−2λt) if the interarrival times have the gamma distribution
Ŵ(λ, 2).

(b) Radioactive particles arrive like a Poisson process, intensity λ, at a counter. The counter fails to
register the nth arrival whenever n is odd but suffers no dead periods. Find the renewal function

m̃ of the detection process Ñ .

9. Show that Poisson processes are the only renewal processes with non-arithmetic interarrival times
having the property that the excess lifetime E(t) and the current lifetime C(t) are independent for
each choice of t .

10. Let N1 be a Poisson process, and let N2 be a renewal process which is independent of N1 with
non-arithmetic interarrival times having finite mean. Show that N(t) = N1(t) + N2(t) is a renewal
process if and only if N2 is a Poisson process.

11. Let N be a renewal process, and suppose that F is non-arithmetic and that σ 2 = var(X1) < ∞.
Use the properties of the moment generating function F∗(−θ) of X1 to deduce the formal expansion

m∗(θ) =
1

θµ
+
σ 2 − µ2

2µ2
+ o(1) as θ → 0.

Invert this Laplace–Stieltjes transform formally to obtain

m(t) =
t

µ
+
σ 2 − µ2

2µ2
+ o(1) as t → ∞.

Prove this rigorously by showing that

m(t) =
t

µ
− FE (t)+

∫ t

0
[1 − FE (t − x)] dm(x),

where FE is the asymptotic distribution function of the excess lifetime (see Exercise (10.3.3)), and
applying the key renewal theorem. Compare the result with the renewal theorems.

12. Show that the renewal function md of a delayed renewal process satisfies

md(t) = Fd(t)+
∫ t

0
md(t − x) d F(x).

Show that vd(t) = E(Nd(t)2) satisfies

vd(t) = md(t)+ 2

∫ t

0
md(t − x) dm(x)

where m is the renewal function of the renewal process with interarrival times X2, X3, . . . .
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[10.6.13]–[10.6.19] Exercises Renewals

13. Let m(t) be the mean number of living individuals at time t in an age-dependent branching process

with exponential lifetimes, parameter λ, and mean family size ν (> 1). Prove that m(t) = I e(ν−1)λt

where I is the number of initial members.

14. Alternating renewal process. The interarrival times of this process are Z0,Y1, Z1,Y2, . . . ,
where the Yi and Z j are independent with respective common moment generating functions MY and
MZ . Let p(t) be the probability that the epoch t of time lies in an interval of type Z . Show that the
Laplace–Stieltjes transform p∗ of p satisfies

p∗(θ) =
1 − MZ (−θ)

1 − MY (−θ)MZ (−θ)
.

15. Type 2 counters. Particles are detected by a Type 2 counter of the following sort. The incoming
particles constitute a Poisson process with intensity λ. The j th particle locks the counter for a length
Yj of time, and annuls any after-effect of its predecessors. Suppose that Y1,Y2, . . . are independent of
each other and of the Poisson process, each having distribution function G . The counter is unlocked
at time 0.

Let L be the (maximal) length of the first interval of time during which the counter is locked.
Show that H(t) = P(L > t) satisfies

H(t) = e−λt [1 − G(t)] +
∫ t

0
H(t − x)[1 − G(x)]λe−λx dx .

Solve for H in terms of G , and evaluate the ensuing expression in the case G(x) = 1 − e−µx where
µ > 0.

16. Thinning. Consider a renewal process N , and suppose that each arrival is ‘overlooked’ with
probability q, independently of all other arrivals. Let M(t) be the number of arrivals which are
detected up to time t/p where p = 1 − q.

(a) Show that M is a renewal process whose interarrival time distribution function Fp is given by

Fp(x) =
∑∞

r=1 pqr−1 Fr (x/p), where Fn is the distribution function of the time of the nth
arrival in the original process N .

(b) Find the characteristic function of Fp in terms of that of F , and use the continuity theorem to

show that, as p ↓ 0, Fp(s) → 1−e−s/µ for s > 0, so long as the interarrival times in the original
process have finite mean µ. Interpret!

(c) Suppose that p < 1, and M and N are processes with the same fdds. Show that N is a Poisson
process.

17. (a) A PC keyboard has 100 different keys and a monkey is tapping them (uniformly) at random.
Assuming no power failure, use the elementary renewal theorem to find the expected number of
keys tapped until the first appearance of the sequence of fourteen characters ‘W. Shakespeare’.

Answer the same question for the sequence ‘omo’.

(b) A coin comes up heads with probability p on each toss. Find the mean number of tosses until the
first appearances of the sequences (i) HHH, and (ii) HTH.

18. Let N be a stationary renewal process. Let s be a fixed positive real number, and define X (t) =
N(s + t)− N(t) for t ≥ 0. Show that X is a strongly stationary process.

19. Bears arrive in a village at the instants of a renewal process; they are captured and confined at a
cost of $c per unit time per bear. When a given number B bears have been captured, an expedition
(costing $d) is organized to remove and release them a long way away. What is the long-run average
cost of this policy?
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Problems Exercises [10.6.20]–[10.6.21]

20. Let X = {Xn : n ≥ 0} be an ergodic Markov chain on a finite state space S, with stationary
distribution π . Let k ∈ S, and let T be a strictly positive stopping time with finite mean such that
XT = k. For j ∈ S, let Vj (k) be the number of visits to j by the chain started in k and stopped at
time T (set Vk(k) = 1). Use the renewal–reward theorem to show that E(Vj (k)) = πj Ek(T ).

21. Car trading. For a given type of car, costing c new, the number of years between its manufacture
and being broken up for scrap is X (≥ 1), where X is a random variable with distribution function F .

In its kth year after manufacture (with k ≥ 1), depreciation has reduced its resale value to cλk , and in

that year it costs rµk−1 in repairs and maintenance, where µ 6= 1. (Usually, λ < 1 and µ > 1.)

You buy a new car immediately your old car either is scrapped or reaches the age of m years,
whichever is the sooner. Show that, if you continue the policy indefinitely, in the long run you minimize
your expected average cost by choosing m such that

1

E(Y )

{
c +

r

1 − µ
− cG(λ)−

r

1 − µ
G(µ)

}

is as small as possible, where G(s) = E(sY ) and Y = min{m, X}.
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11

Queues

11.2 Exercises. M/M/1

1. Consider a random walk on the non-negative integers with a reflecting barrier at 0, and which
moves rightwards or leftwards with respective probabilities ρ/(1 + ρ) and 1/(1 + ρ); when at 0, the
particle moves to 1 at the next step. Show that the walk has a stationary distribution if and only if

ρ < 1, and in this case the unique such distribution π is given by π0 = 1
2 (1−ρ), πn = 1

2 (1−ρ2)ρn−1

for n ≥ 1.

2. Suppose now that the random walker of Exercise (11.2.1) delays its steps in the following way.
When at the point n, it waits a random length of time having the exponential distribution with parameter
θn before moving to its next position; different ‘holding times’ are independent of each other and of
further information concerning the steps of the walk. Show that, subject to reasonable assumptions
on the θn , the ensuing continuous-time process settles into an equilibrium distribution ν given by
νn = Cπn/θn for some appropriate constant C .

By applying this result to the case when θ0 = λ, θn = λ+µ for n ≥ 1, deduce that the equilibrium
distribution of the M(λ)/M(µ)/1 queue is νn = (1 − ρ)ρn , n ≥ 0, where ρ = λ/µ < 1.

3. Waiting time. Consider a M(λ)/M(µ)/1 queue with ρ = λ/µ satisfying ρ < 1, and suppose that
the number Q(0) of people in the queue at time 0 has the stationary distribution πn = (1 − ρ)ρn,
n ≥ 0. Let W be the time spent by a typical new arrival before he begins his service. Show that the

distribution of W is given by P(W ≤ x) = 1−ρe−x(µ−λ) for x ≥ 0, and note that P(W = 0) = 1−ρ.

4. A box contains i red balls and j lemon balls, and they are drawn at random without replacement.
Each time a red (respectively lemon) ball is drawn, a particle doing a walk on {0, 1, 2, . . . } moves
one step to the right (respectively left); the origin is a retaining barrier, so that leftwards steps from
the origin are suppressed. Let π(n; i, j) be the probability that the particle ends at position n, having
started at the origin. Write down a set of difference equations for the π(n; i, j), and deduce that

π(n; i, j) = A(n; i, j)− A(n + 1; i, j) for i ≤ j + n

where A(n; i, j) =
(i

n

)/( j+n
n

)
.

5. Let Q be a M(λ)/M(µ)/1 queue with Q(0) = 0. Show that pn(t) = P(Q(t) = n) satisfies

pn(t) =
∑

i, j≥0

π(n; i, j)

(
(λt)i e−λt

i !

)(
(µt) j e−µt

j !

)

where the π(n; i, j) are given in Exercise (11.2.4).

6. Let Q(t) be the length of an M(λ)/M(µ)/1 queue at time t , and let Z = {Zn} be the jump chain
of Q. Explain how the stationary distribution of Q may be derived from that of Z , and vice versa.



G/M/1 Exercises [11.2.7]–[11.4.3]

7. Tandem queues. Two queues have one server each, and all service times are independent and
exponentially distributed, with parameter µi for queue i . Customers arrive at the first queue at the
instants of a Poisson process of rate λ (< min{µ1, µ2}), and on completing service immediately enter
the second queue. The queues are in equilibrium. Show that:

(a) the output of the first queue is a Poisson process with intensity λ, and that its departures before
time t are independent of the length of this queue at time t (this is known as Burke’s theorem),

(b) the waiting times of a given customer in the two queues are not independent.

11.3 Exercises. M/G/1

1. Consider M(λ)/D(d)/1 where ρ = λd < 1. Show that the mean queue length at moments of

departure in equilibrium is 1
2ρ(2 − ρ)/(1 − ρ).

2. Consider M(λ)/M(µ)/1, and show that the moment generating function of a typical busy period
is given by

MB(s) =
(λ+ µ− s)−

√
(λ+ µ− s)2 − 4λµ

2λ

for all sufficiently small but positive values of s.

3. (a) Show that, for a M/G/1 queue, the sequence of times at which the server passes from being
busy to being free constitutes a renewal process.

(b) When the above queue is in equilibrium, what is the moment generating function of the total time
that an arriving customer spends in the queue including service?

4. Loss system. Consider the M(λ)/G/1 queue with no waiting room. Customers who arrive while

the server is busy are lost. Show that the long run proportion of arrivals lost is 1/(1 + ρ−1) where
ρ = λE(S) is the traffic intensity.

11.4 Exercises. G/M/1

1. Consider G/M(µ)/1, and let αj = E((µX) j e−µX/j !) where X is a typical interarrival time.
Suppose the traffic intensity ρ is less than 1. Show that the equilibrium distribution π of the imbedded
chain at moments of arrivals satisfies

πn =
∞∑

i=0

αiπn+i−1 for n ≥ 1.

Look for a solution of the form πn = θn for some θ , and deduce that the unique stationary distribution

is given by πj = (1 − η)η j for j ≥ 0, where η is the smallest positive root of the equation s =
MX (µ(s − 1)).

2. Consider a G/M(µ)/1 queue in equilibrium. Let η be the smallest positive root of the equation
x = MX (µ(x − 1)) where MX is the moment generating function of an interarrival time. Show that

the mean number of customers ahead of a new arrival is η(1 − η)−1, and the mean waiting time is

η{µ(1 − η)}−1.

3. Consider D(1)/M(µ)/1 where µ > 1. Show that the continuous-time queue length Q(t) does not
converge in distribution as t → ∞, even though the imbedded chain at the times of arrivals is ergodic.
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[11.5.1]–[11.7.4] Exercises Queues

11.5 Exercises. G/G/1

1. Show that, for a G/G/1 queue, the starting times of the busy periods of the server constitute a
renewal process.

2. Consider a G/M(µ)/1 queue in equilibrium, together with the dual (unstable) M(µ)/G/1 queue.
Show that the idle periods of the latter queue are exponentially distributed. Use the theory of duality
of queues to deduce for the former queue that: (a) the waiting-time distribution is a mixture of an
exponential distribution and an atom at zero, and (b) the equilibrium queue length is geometric.

3. Consider G/M(µ)/1, and let G be the distribution function of S − X where S and X are typical
(independent) service and interarrival times. Show that the Wiener–Hopf equation

F(x) =
∫ x

−∞
F(x − y) dG(y), x ≥ 0,

for the limiting waiting-time distribution F is satisfied by F(x) = 1 − ηe−µ(1−η)x , x ≥ 0. Here, η
is the smallest positive root of the equation x = MX (µ(x − 1)), where MX is the moment generating
function of X .

11.6 Exercise. Heavy traffic

1. Consider the M(λ)/M(µ)/1 queue with ρ = λ/µ < 1. Let Qρ be a random variable with the
equilibrium queue distribution, and show that (1 − ρ)Qρ converges in distribution as ρ ↑ 1, the limit
distribution being exponential with parameter 1.

11.7 Exercises. Networks of queues

1. Consider an open migration process with c stations, in which individuals arrive at station j at
rate νj , individuals move from i to j at rate λi jφi (ni ), and individuals depart from i at rate µiφi (ni ),
where ni denotes the number of individuals currently at station i . Show when φi (ni ) = ni for all i

that the system behaves as though the customers move independently through the network. Identify
the explicit form of the stationary distribution, subject to an assumption of irreducibility, and explain
a connection with the Bartlett theorem of Problem (8.10.6).

2. Let Q be an M(λ)/M(µ)/s queue where λ < sµ, and assume Q is in equilibrium. Show that
the process of departures is a Poisson process with intensity λ, and that departures up to time t are
independent of the value of Q(t).

3. Customers arrive in the manner of a Poisson process with intensity λ in a shop having two servers.
The service times of these servers are independent and exponentially distributed with respective
parameters µ1 and µ2. Arriving customers form a single queue, and the person at the head of the
queue moves to the first free server. When both servers are free, the next arrival is allocated a server
chosen according to one of the following rules:

(a) each server is equally likely to be chosen,

(b) the server who has been free longer is chosen.

Assume that λ < µ1 + µ2, and the process is in equilibrium. Show in each case that the process of
departures from the shop is a Poisson process, and that departures prior to time t are independent of
the number of people in the shop at time t .

4. Difficult customers. Consider an M(λ)/M(µ)/1 queue modified so that on completion of service
the customer leaves with probability δ, or rejoins the queue with probability 1−δ. Find the distribution
of the total time a customer spends being served. Hence show that equilibrium is possible if λ < δµ,
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Problems Exercises [11.7.5]–[11.8.6]

and find the stationary distribution. Show that, in equilibrium, the departure process is Poisson, but if
the rejoining customer goes to the end of the queue, the composite arrival process is not Poisson.

5. Consider an open migration process in equilibrium. If there is no path by which an individual
at station k can reach station j , show that the stream of individuals moving directly from station j to
station k forms a Poisson process.

6. Show that an open migration process is non-explosive.

7. Let X be an irreducible, continuous-time Markov chain with generator G on the state space
T = S ∪{∞}, where S is countable and non-empty. Show that a distribution π on T satisfies πG = 0

if and only if, for j ∈ S,
∑

i∈T πi gi j = 0.

11.8 Problems

1. Finite waiting room. Consider M(λ)/M(µ)/k with the constraint that arriving customers who
see N customers in the line ahead of them leave and never return. Find the stationary distribution of
queue length for the cases k = 1 and k = 2.

2. Baulking. Consider M(λ)/M(µ)/1 with the constraint that if an arriving customer sees n customers
in the line ahead of him, he joins the queue with probability p(n) and otherwise leaves in disgust.

(a) Find the stationary distribution of queue length if p(n) = (n + 1)−1.

(b) Find the stationary distribution π of queue length if p(n) = 2−n , and show that the probability
that an arriving customer joins the queue (in equilibrium) is µ(1 − π0)/λ.

3. Series. In a Moscow supermarket customers queue at the cash desk to pay for the goods they want;
then they proceed to a second line where they wait for the goods in question. If customers arrive in the
shop like a Poisson process with parameter λ and all service times are independent and exponentially
distributed, parameter µ1 at the first desk and µ2 at the second, find the stationary distributions of
queue lengths, when they exist, and show that, at any given time, the two queue lengths are independent
in equilibrium.

4. Batch (or bulk) service. Consider M/G/1, with the modification that the server may serve up to m

customers simultaneously. If the queue length is less than m at the beginning of a service period then she
serves everybody waiting at that time. Find a formula which is satisfied by the probability generating
function of the stationary distribution of queue length at the times of departures, and evaluate this
generating function explicitly in the case when m = 2 and service times are exponentially distributed.

5. Consider M(λ)/M(µ)/1 where λ < µ. Find the moment generating function of the length B of a

typical busy period, and show that E(B) = (µ− λ)−1 and var(B) = (λ+ µ)/(µ− λ)3. Show that
the density function of B is

f B(x) =
√
µ/λ

x
e−(λ+µ)x I1

(
2x
√
λµ
)

for x > 0

where I1 is a modified Bessel function.

6. Consider M(λ)/G/1 in equilibrium. Obtain an expression for the mean queue length at departure

times. Show that the mean waiting time in equilibrium of an arriving customer is 1
2λE(S2)/(1 − ρ)

where S is a typical service time and ρ = λE(S).

Amongst all possible service-time distributions with given mean, find the one for which the mean
waiting time is a minimum.
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[11.8.7]–[11.8.12] Exercises Queues

7. Let Wt be the time which a customer would have to wait in a M(λ)/G/1 queue if he were to arrive
at time t . Show that the distribution function F(x; t) = P(Wt ≤ x) satisfies

∂F

∂t
=
∂F

∂x
− λF + λP(Wt + S ≤ x)

where S is a typical service time, independent of Wt .

Suppose that F(x, t) → H(x) for all x as t → ∞, where H is a distribution function satisfying
0 = h − λH + λP(U + S ≤ x) for x > 0, where U is independent of S with distribution function H ,
and h is the density function of H on (0,∞). Show that the moment generating function MU of U

satisfies

MU (θ) =
(1 − ρ)θ

λ+ θ − λMS(θ)

where ρ is the traffic intensity. You may assume that P(S = 0) = 0.

8. Consider a G/G/1 queue in which the service times are constantly equal to 2, whilst the interarrival

times take either of the values 1 and 4 with equal probability 1
2 . Find the limiting waiting time

distribution.

9. Consider an extremely idealized model of a telephone exchange having infinitely many channels
available. Calls arrive in the manner of a Poisson process with intensity λ, and each requires one
channel for a length of time having the exponential distribution with parameter µ, independently of
the arrival process and of the duration of other calls. Let Q(t) be the number of calls being handled
at time t , and suppose that Q(0) = I .

Determine the probability generating function of Q(t), and deduce E(Q(t)), P(Q(t) = 0), and
the limiting distribution of Q(t) as t → ∞.

Assuming the queue is in equilibrium, find the proportion of time that no channels are occupied,

and the mean length of an idle period. Deduce that the mean length of a busy period is (eλ/µ − 1)/λ.

10. Customers arrive in a shop in the manner of a Poisson process with intensity λ, where 0 < λ < 1.
They are served one by one in the order of their arrival, and each requires a service time of unit length.
Let Q(t) be the number in the queue at time t . By comparing Q(t) with Q(t + 1), determine the
limiting distribution of Q(t) as t → ∞ (you may assume that the quantities in question converge).

Hence show that the mean queue length in equilibrium is λ(1 − 1
2λ)/(1 − λ).

Let W be the waiting time of a newly arrived customer when the queue is in equilibrium. Deduce

from the results above that E(W ) = 1
2λ/(1 − λ).

11. Consider M(λ)/D(1)/1, and suppose that the queue is empty at time 0. Let T be the earliest time
at which a customer departs leaving the queue empty. Show that the moment generating function MT

of T satisfies

log
(

1 −
s

λ

)
+ log MT (s) = (s − λ)

(
1 − MT (s)

)
,

and deduce the mean value of T , distinguishing between the cases λ < 1 and λ ≥ 1.

12. Suppose λ < µ, and consider a M(λ)/M(µ)/1 queue Q in equilibrium.

(a) Show that Q is a reversible Markov chain.

(b) Deduce the equilibrium distributions of queue length and waiting time.

(c) Show that the times of departures of customers form a Poisson process, and that Q(t) is indepen-
dent of the times of departures prior to t .

(d) Consider a sequence of K single-server queues such that customers arrive at the first in the manner
of a Poisson process, and (for each j ) on completing service in the j th queue each customer moves
to the ( j + 1)th. Service times in the j th queue are exponentially distributed with parameter µj ,
with as much independence as usual. Determine the (joint) equilibrium distribution of the queue
lengths, when λ < µj for all j .
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13. Consider the queue M(λ)/M(µ)/k, where k ≥ 1. Show that a stationary distribution π exists if
and only if λ < kµ, and calculate it in this case.

Suppose that the cost of operating this system in equilibrium is

Ak + B

∞∑

n=k

(n − k + 1)πn,

the positive constants A and B representing respectively the costs of employing a server and of the
dissatisfaction of delayed customers.

Show that, for fixed µ, there is a unique value λ∗ in the interval (0, µ) such that it is cheaper to
have k = 1 than k = 2 if and only if λ < λ∗.

14. Customers arrive in a shop in the manner of a Poisson process with intensity λ. They form a
single queue. There are two servers, labelled 1 and 2, server i requiring an exponentially distributed
time with parameter µi to serve any given customer. The customer at the head of the queue is served
by the first idle server; when both are idle, an arriving customer is equally likely to choose either.

(a) Show that the queue length settles into equilibrium if and only if λ < µ1 + µ2.

(b) Show that, when in equilibrium, the queue length is a time-reversible Markov chain.

(c) Deduce the equilibrium distribution of queue length.

(d) Generalize your conclusions to queues with many servers.

15. Consider the D(1)/M(µ)/1 queue where µ > 1, and let Qn be the number of people in the
queue just before the nth arrival. Let Qµ be a random variable having as distribution the stationary

distribution of the Markov chain {Qn}. Show that (1 − µ−1)Qµ converges in distribution as µ ↓ 1,
the limit distribution being exponential with parameter 2.

16. Kendall’s taxicabs. Taxis arrive at a stand in the manner of a Poisson process with intensity τ ,
and passengers arrive in the manner of an (independent) Poisson process with intensity π . If there are
no waiting passengers, the taxis wait until passengers arrive, and then move off with the passengers,
one to each taxi. If there is no taxi, passengers wait until they arrive. Suppose that initially there are
neither taxis nor passengers at the stand. Show that the probability that n passengers are waiting at time

t is (π/τ)
1
2 n

e−(π+τ )t In(2t
√
πτ), where In(x) is the modified Bessel function, i.e. the coefficient of

zn in the power series expansion of exp{ 1
2 x(z + z−1)}.

17. Machines arrive for repair as a Poisson process with intensity λ. Each repair involves two stages,
the i th machine to arrive being under repair for a time X i + Yi , where the pairs (X i ,Yi ), i = 1, 2, . . . ,
are independent with a common joint distribution. Let U(t) and V (t) be the numbers of machines in
the X-stage and Y -stage of repair at time t . Show that U(t) and V (t) are independent Poisson random
variables.

18. Ruin. An insurance company pays independent and identically distributed claims {Kn : n ≥ 1}
at the instants of a Poisson process with intensity λ, where λE(K1) < 1. Premiums are received at
constant rate 1. Show that the maximum deficit M the company will ever accumulate has moment
generating function

E(eθM ) =
(1 − ρ)θ

λ+ θ − λE(eθK )
.

19. (a) Erlang’s loss formula. Consider M(λ)/M(µ)/s with baulking, in which a customer departs
immediately if, on arrival, he sees all the servers occupied ahead of him. Show that, in equilibrium,
the probability that all servers are occupied is

πs =
ρs/s!∑s

j=0 ρ
j/j !

, where ρ = λ/µ.
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[11.8.20]–[11.8.21] Exercises Queues

(b) Consider an M(λ)/M(µ)/∞ queue with channels (servers) numbered 1, 2, . . . . On arrival, a
customer will choose the lowest numbered channel that is free, and be served by that channel. Show
in the notation of part (a) that the fraction pc of time that channel c is busy is pc = ρ(πc−1 − πc) for
c ≥ 2, and p1 = π1.

20. For an M(λ)/M(µ)/1 queue with λ < µ, when in equilibrium, show that the expected time until

the queue is first empty is λ(µ− λ)−2.

21. Consider an M(λ)/G/∞ queue. Use the renewal–reward theorem to show that the expected
duration of a busy period is (eρ − 1)/λ where ρ = λE(S).
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12

Martingales

12.1 Exercises. Introduction

1. (a) If (Y,F) is a martingale, show that E(Yn) = E(Y0) for all n.

(b) If (Y,F) is a submartingale (respectively supermartingale) with finite means, show that E(Yn) ≥
E(Y0) (respectively E(Yn) ≤ E(Y0)).

2. Let (Y,F) be a martingale, and show that E(Yn+m | Fn) = Yn for all n,m ≥ 0.

3. Let Zn be the size of the nth generation of a branching process with Z0 = 1, having mean family

size µ and extinction probability η. Show that Znµ
−n and ηZn define martingales.

4. Let {Sn : n ≥ 0} be a simple symmetric random walk on the integers with S0 = k. Show that Sn

and S2
n −n are martingales. Making assumptions similar to those of de Moivre (see Example (12.1.4)),

find the probability of ruin and the expected duration of the game for the gambler’s ruin problem.

5. Let (Y,F) be a martingale with the property that E(Y 2
n ) < ∞ for all n. Show that, for i ≤ j ≤ k,

E{(Yk − Yj )Yi } = 0, and E{(Yk − Yj )
2 | Fi } = E(Y 2

k | Fi ) − E(Y 2
j | Fi ). Suppose there exists K

such that E(Y 2
n ) ≤ K for all n. Show that the sequence {Yn} converges in mean square as n → ∞.

6. Let Y be a martingale and let u be a convex function mapping R to R. Show that {u(Yn) : n ≥ 0}
is a submartingale provided that E(u(Yn)

+) < ∞ for all n.

Show that |Yn |, Y 2
n , and Y +

n constitute submartingales whenever the appropriate moment condi-
tions are satisfied.

7. Let Y be a submartingale and let u be a convex non-decreasing function mapping R to R. Show
that {u(Yn) : n ≥ 0} is a submartingale provided that E(u(Yn)

+) < ∞ for all n.

Show that (subject to a moment condition) Y +
n constitutes a submartingale, but that |Yn | and Y 2

n
need not constitute submartingales.

8. Let X be a discrete-time Markov chain with countable state space S and transition matrix P.
Suppose that ψ : S → R is bounded and satisfies

∑
j∈S pi jψ( j) ≤ λψ(i ) for some λ > 0 and all

i ∈ S. Show that λ−nψ(Xn) constitutes a supermartingale.

9. Let Gn(s) be the probability generating function of the size Zn of the nth generation of a branching
process, where Z0 = 1 and var(Z1) > 0. Let Hn be the inverse function of the function Gn , viewed

as a function on the interval [0, 1], and show that Mn = {Hn(s)}Zn defines a martingale with respect
to the sequence Z .



[12.2.1]–[12.3.2] Exercises Martingales

12.2 Exercises. Martingale differences and Hoeffding’s inequality

1. Knapsack problem. It is required to pack a knapsack to maximum benefit. Suppose you have n

objects, the i th object having volume Vi and worth Wi , where V1, V2, . . . , Vn , W1,W2, . . . ,Wn are
independent non-negative random variables with finite means, and Wi ≤ M for all i and some fixed
M . Your knapsack has volume c, and you wish to maximize the total worth of the objects packed in
it. That is, you wish to find the vector z1, z2, . . . , zn of 0’s and 1’s such that

∑n
1 zi Vi ≤ c and which

maximizes
∑n

1 zi Wi . Let Z be the maximal possible worth of the knapsack’s contents, and show that

P(|Z − EZ | ≥ x) ≤ 2 exp{−x2/(2nM2)} for x > 0.

2. Graph colouring. Given n vertices v1, v2, . . . , vn , for each 1 ≤ i < j ≤ n we place an edge
between vi and vj with probability p; different pairs are joined independently of each other. We call
vi and vj neighbours if they are joined by an edge. The chromatic number χ of the ensuing graph is
the minimal number of pencils of different colours which are required in order that each vertex may

be coloured differently from each of its neighbours. Show that P(|χ − Eχ | ≥ x) ≤ 2 exp{− 1
2 x2/n}

for x > 0.

3. Maurer’s inequality.

(a) Let X and Y be random variables such that X ≤ b < ∞ a.s., E(X | Y ) = 0, and E(X2 | Y ) ≤
σ 2 < ∞. Show that

E(eθX | Y ) ≤ exp
{

1
2 θ

2(b2 + σ 2)
}
, θ ≥ 0.

(b) Let (M,F) be a martingale with M0 = 0, having differences Dr = Mr − Mr−1, and suppose

that Dn ≤ bn < ∞ a.s., and E(D2
n | Mn−1) ≤ σ 2

n < ∞ for n ≥ 1. Show that

P(Mn ≥ t) ≤ exp

{
−

t2

2
∑n

r=1(b
2
r + σ 2

r )

}
, t ≥ 0.

4. Quadratic variation. Let (M,F) be a martingale with M0 = 0, having differences Dr =
Mr − Mr−1. The process given by Qn =

∑n
r=1 D2

r is called the optional quadratic variation of

M , while Vn =
∑n

r=1 E(D2
r | Fr−1) is called the predictable quadratic variation of M . Show that

Xn = M2
n − Qn and Yn = M2

n − Vn define martingales with respect to F.

12.3 Exercises. Crossings and convergence

1. Give a reasonable definition of a downcrossing of the interval [a, b] by the random sequence
Y0,Y1, . . . .

(a) Show that the number of downcrossings differs from the number of upcrossings by at most 1.

(b) If (Y,F) is a submartingale, show that the number Dn(a, b; Y ) of downcrossings of [a, b] by Y

up to time n satisfies

EDn(a, b; Y ) ≤
E{(Yn − b)+}

b − a
.

2. Let (Y,F) be a supermartingale with finite means, and let Un(a, b; Y ) be the number of upcross-
ings of the interval [a, b] up to time n. Show that

EUn(a, b; Y ) ≤
E{(Yn − a)−}

b − a
.
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Stopping times Exercises [12.3.3]–[12.4.4]

Deduce that EUn(a, b; Y ) ≤ a/(b − a) if Y is non-negative and a ≥ 0.

3. Let X be a Markov chain with countable state space S and transition matrix P. Suppose that X is
irreducible and recurrent, and thatψ : S → S is a bounded function satisfying

∑
j∈S pi jψ( j) ≤ ψ(i )

for i ∈ S. Show that ψ is a constant function.

4. Let Z1, Z2, . . . be independent random variables such that:

Zn =





an with probability 1
2 n−2,

0 with probability 1 − n−2,

−an with probability 1
2 n−2,

where a1 = 2 and an = 4
∑n−1

j=1 aj . Show that Yn =
∑n

j=1 Z j defines a martingale. Show that

Y = lim Yn exists almost surely, but that there exists no M such that E|Yn | ≤ M for all n.

5. Random adding martingale. Let x1, x2, . . . , xr ∈ R, and let the sequence {Xn : n ≥ 1} of
random variables be given as follows. We set

Xn =
{

xn if 1 ≤ n ≤ r,

XU (n) + XV (n) if n > r,

where U(n) and V (n) are uniformly distributed on {1, 2, . . . , n − 1}, and the random variables
{U(n), V (n) : n > r} are independent.

Show that

Mn =
1

n(n + 1)

n∑

k=1

Xk , n = r, r + 1. . . . ,

is a martingale with respect to the sequence {Xn}.
Enthusiasts seeking a challenge are invited to show that the M converges almost surely and in

mean square to a non-degenerate limit.

6. Pólya’s urn revisited. Let Rn and Bn be the numbers of red and blue balls, respectively, in an
urn at the nth stage, and assume R0 = B0 = 1. At each stage, a ball is drawn and returned together
with a fresh ball of the other colour. Show that Mn = (Bn − Rn)(Bn + Rn − 1) defines a martingale.
Does it converge almost surely?

12.4 Exercises. Stopping times

1. If T1 and T2 are stopping times with respect to a filtration F, show that T1 + T2, max{T1, T2},
and min{T1, T2} are stopping times also.

2. Let X1, X2, . . . be a sequence of non-negative independent random variables and let N(t) =
max{n : X1 + X2 + · · · + Xn ≤ t}. Show that N(t) + 1 is a stopping time with respect to a suitable
filtration to be specified.

3. Let (Y,F) be a submartingale and x > 0. Show that

P

(
max

0≤m≤n
Ym ≥ x

)
≤

1

x
E(Y +

n ).

4. Let (Y,F) be a non-negative supermartingale and x > 0. Show that

P

(
max

0≤m≤n
Ym ≥ x

)
≤

1

x
E(Y0).
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[12.4.5]–[12.5.6] Exercises Martingales

5. Let (Y,F) be a submartingale and let S and T be stopping times satisfying 0 ≤ S ≤ T ≤ N for
some deterministic N . Show that EY0 ≤ EYS ≤ EYT ≤ EYN .

6. Let {Sn} be a simple random walk with S0 = 0 such that 0 < p = P(S1 = 1) < 1
2 . Use de

Moivre’s martingale to show that E(supm Sm) ≤ p/(1 − 2p). Show further that this inequality may
be replaced by an equality.

7. Let F be a filtration. For any stopping time T with respect to F, denote by FT the collection of
all events A such that, for all n, A ∩ {T ≤ n} ∈ Fn . Let S and T be stopping times.

(a) Show that FT is a σ -field, and that T is measurable with respect to this σ -field.

(b) If A ∈ FS , show that A ∩ {S ≤ T } ∈ FT .

(c) Let S and T satisfy S ≤ T . Show that FS ⊆ FT .

8. Stopping an exchangeable sequence.

(a) Let T be a stopping time for an exchangeable sequence X1, X2, . . . , Xn . Show that, if P(T ≤
n − r) = 1, then the random vector (XT +1, XT +2, . . . , XT +r ) has the same distribution as
(X1, X2, . . . , Xr ).

(b) An urn contains v violet balls andw white balls, which are drawn at random without replacement.
Let m < w, and let T be the number of the draw at which the mth white ball is drawn. What is
the probability that the next ball is white?

12.5 Exercises. Optional stopping

1. Let (Y,F) be a martingale and T a stopping time such that P(T < ∞) = 1. Show that E(YT ) =
E(Y0) if either of the following holds:

(a) E(supn |YT ∧n |) < ∞, (b) E(|YT ∧n|1+δ) ≤ c for some c, δ > 0 and all n.

2. Let (Y,F) be a martingale. Show that (YT ∧n,Fn) is a uniformly integrable martingale for any
finite stopping time T such that either:

(a) E|YT | < ∞ and E(|Yn |I{T>n}) → 0 as n → ∞, or

(b) {Yn} is uniformly integrable.

3. Let (Y,F) be a uniformly integrable martingale, and let S and T be finite stopping times satisfying
S ≤ T . Prove that YT = E(Y∞ | FT ) and that YS = E(YT | FS), where Y∞ is the almost sure limit
as n → ∞ of Yn .

4. Let {Sn : n ≥ 0} be a simple symmetric random walk with 0 < S0 < N and with absorbing
barriers at 0 and N . Use the optional stopping theorem to show that the mean time until absorption is
E{S0(N − S0)}.

5. Let {Sn : n ≥ 0} be a simple symmetric random walk with S0 = 0. Show that

Yn =
cos{λ[Sn − 1

2 (b − a)]}
(cos λ)n

constitutes a martingale if cos λ 6= 0.

Let a and b be positive integers. Show that the time T until absorption at one of two absorbing
barriers at −a and b satisfies

E
(
{cos λ}−T

)
=

cos{ 1
2λ(b − a)}

cos{ 1
2λ(b + a)}

, 0 < λ <
π

b + a
.

6. Let {Sn : n ≥ 0} be a simple symmetric random walk on the positive and negative integers, with
S0 = 0. For each of the three following random variables, determine whether or not it is a stopping
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Backward martingales and continuous-time martingales Exercises [12.5.7]–[12.7.3]

time and find its mean:

U = min{n ≥ 5 : Sn = Sn−5 + 5}, V = U − 5, W = min{n : Sn = 1}.

7. Let Sn = a+
∑n

r=1 Xr be a simple symmetric random walk. The walk stops at the earliest time T

when it reaches either of the two positions 0 or K where 0 < a < K . Show that Mn =
∑n

r=0 Sr − 1
3 S3

n

is a martingale and deduce that E
(∑T

r=0 Sr

)
= 1

3 (K
2 − a2)a + a.

8. Gambler’s ruin. Let X i be independent random variables each equally likely to take the values
±1, and let T = min{n : Sn ∈ {−a, b}}. Verify the conditions of the optional stopping theorem

(12.5.1) for the martingale S2
n − n and the stopping time T .

9. Family planning, Problem (3.11.30) revisited. Children are either female or male. Their
sexes are independent random variables, being female with probability q or male with probability
p = 1 − q. A woman ceases childbearing at stage T , and we write Gn and Bn for the numbers of
girls and boys born to her up to and including stage n. Assume that T is a finite stopping time for
the sequence {(Gn, Bn) : n ≥ 1}. Show that, no matter the stopping rule that yields T , we have
E(GT )/E(BT ) = q/p. What can be said about E(GT /BT )?

10. Let X = {Xn : n ≥ 0} be a Markov chain with state space {0, 1, . . . , b}, such that i → 0, b for
i ∈ {1, 2, . . . , b − 1}. If X is also a martingale, show that 0 and b are absorbing, and that, given X0,
the probability of absorption at b is X0/b.

12.6 Exercise. The maximal inequality

1. Martingale laws of large numbers. Let Mn =
∑n

r=1 Dr be a zero-mean martingale with

difference sequence {Dr : r ≥ 1}, such that σ 2
r = var(Dr ) < ∞. Show the following.

(a) We have that E(Dr Ds) = 0 for r 6= s.

(b) If n−2∑n
r=1 σ

2
r → 0 as n → ∞, then D satisfies the weak law of large numbers in that

n−1Mn
P→ 0.

(c) If
∑

r σ
2
r /r2 < ∞, then D satisfies the strong law of large numbers in that n−1Mn

a.s.−−→ 0.

12.7 Exercises. Backward martingales and continuous-time martingales

1. Let X be a continuous-time Markov chain with finite state space S and generator G. Let η =
{η(i ) : i ∈ S} be a root of the equation Gη′ = 0. Show that η(X (t)) constitutes a martingale with
respect to Ft = σ({X (u) : u ≤ t}).

2. Let N be a Poisson process with intensity λ and N(0) = 0, and let Ta = min{t : N(t) = a},
where a is a positive integer. Assuming that E{exp(ψTa)} < ∞ for sufficiently small positive ψ , use

the optional stopping theorem to show that var(Ta) = aλ−2. Show further that Ta has characteristic
function φa(s) = [λ/(λ − i s)]a .

3. Let Sm =
∑m

r=1 Xr , m ≤ n, where the Xr are independent and identically distributed with finite
mean. Denote by U1,U2, . . . ,Un the order statistics of n independent variables which are uniformly
distributed on (0, t), and set Un+1 = t . Show that Rm = Sm/Um+1, 0 ≤ m ≤ n, is a backward
martingale with respect to a suitable sequence of σ -fields, and deduce that

P
(

Rm ≥ 1 for some m ≤ n
∣∣ Sn = y

)
≤ min{y/t, 1}.
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[12.7.4]–[12.9.2] Exercises Martingales

4. (a) Let W be a standard Wiener process. Show that the following are martingales:

(i) W (t), (ii) W (t)2 − t, (iii) W (t)3 − 3tW (t), (iv) W (t)4 − 6tW (t)2 + 3t2.

(b) Let T be the earliest time at which W exits the interval (−a, a). Show that E(T n) < ∞ for

n ≥ 1. Use the above martingales to show that E(T 2) = 5
3 a4. [You may use appropriate optional

stopping theorems and the dominated convergence theorem.]

5. Let X and Y be independent standard Wiener processes. Show that

M(t) = Y (t)X (t)2 −
∫ t

0
Y (u) du

defines a martingale with respect to the natural filtration Ft = σ({Xv,Yv : v ≤ t}).

6. Brownian motion in a disc. Let Z(t) = z + X (t) + iY (t), where X and Y are independent
standard Wiener processes and |z| < 1. Show that the first passage time T to the unit circle has

expected value E(T ) = 1
2 (1 − |z|2).

7. Kendall’s taxicabs, Problem (11.8.16) revisited. Let X and Y be independent Poisson processes
with rate λ, and let Q(t) = X (t)− Y (t). For positive integers m, n, find:

(a) the probability that Q hits n before −m,

(b) the expected time for Q to hit either −m or n.

8. Quadratic variation. Let N be a Poisson process with rate λ. Show the following.

(a) The predictable quadratic variation of N over the interval [0, t] equals λt , which is to say that

n−1∑

r=0

E
([

N((r + 1)t/n)− N(r t/n)
]2 ∣∣Frt/n

)
→ λt as n → ∞,

where Fu = σ({N(s) : s ≤ u}).
(b) The optional quadratic variation of N(s)− λs over [0, t] equals N(t). (See Exercise (12.2.4).)

(c) M(t) = (N(t) − λt)2 − N(t) defines a martingale.

12.9 Problems

1. Let Zn be the size of the nth generation of a branching process with immigration in which the
mean family size is µ (6= 1) and the mean number of immigrants per generation is m. Show that

Yn = µ−n

{
Zn − m

1 − µn

1 − µ

}

defines a martingale.

2. In an age-dependent branching process, each individual gives birth to a random number of off-
spring at random times. At time 0, there exists a single progenitor who has N children at the subsequent
times B1 ≤ B2 ≤ · · · ≤ BN ; his family may be described by the vector (N, B1, B2, . . . , BN ). Each
subsequent member x of the population has a family described similarly by a vector (N (x), B1(x), . . . ,

BN(x)(x)) having the same distribution as (N, B1, . . . , BN ) and independent of all other individuals’
families. The number N(x) is the number of his offspring, and Bi(x) is the time between the births
of the parent and the i th offspring. Let {Bn,r : r ≥ 1} be the times of births of individuals in the nth

generation. Let Mn(θ) =
∑

r e−θBn,r , and show that Yn = Mn(θ)/E(M1(θ))
n defines a martingale

with respect to Fn = σ({Bm,r : m ≤ n, r ≥ 1}), for any value of θ such that EM1(θ) < ∞.
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Problems Exercises [12.9.3]–[12.9.9]

3. Let (Y,F) be a martingale with EYn = 0 and E(Y 2
n ) < ∞ for all n. Show that

P

(
max

1≤k≤n
Yk > x

)
≤

E(Y 2
n )

E(Y 2
n )+ x2

, x > 0.

4. Let (Y,F) be a non-negative submartingale with Y0 = 0, and let {cn} be a non-increasing sequence
of positive numbers. Show that

P

(
max

1≤k≤n
ckYk ≥ x

)
≤

1

x

n∑

k=1

ckE(Yk − Yk−1), x > 0.

Such an inequality is sometimes named after subsets of Hájek, Rényi, and Chow. Deduce Kol-
mogorov’s inequality for the sum of independent random variables. [Hint: Work with the martingale
Zn = cnYn −

∑n
k=1 ckE(Xk | Fk−1)+

∑n
k=1(ck−1 − ck)Yk−1 where Xk = Yk − Yk−1 .]

5. Suppose that the sequence {Xn : n ≥ 1} of random variables satisfies E(Xn | X1, X2, . . . , Xn−1)

= 0 for all n, and also
∑∞

k=1 E(|Xk |r )/kr < ∞ for some r ∈ [1, 2]. Let Sn =
∑n

i=1 Zi where
Zi = X i/ i , and show that

P

(
max

1≤k≤n
|Sm+k − Sm | ≥ x

)
≤

1

xr
E
(
|Sm+n − Sm|r

)
, x > 0.

Deduce that Sn converges a.s. as n → ∞, and hence that n−1∑n
1 Xk

a.s.−−→ 0. [Hint: In the case

1 < r ≤ 2, prove and use the fact that h(u) = |u|r satisfies h(v)−h(u) ≤ (v−u)h′(u)+2h((v−u)/2).
Kronecker’s lemma is useful for the last part.]

6. Let X1, X2, . . . be independent random variables with

Xn =





1 with probability (2n)−1,

0 with probability 1 − n−1,

−1 with probability (2n)−1.

Let Y1 = X1 and for n ≥ 2

Yn =
{

Xn if Yn−1 = 0,

nYn−1|Xn | if Yn−1 6= 0.

Show that Yn is a martingale with respect to Fn = σ(Y1,Y2, . . . ,Yn). Show that Yn does not converge
almost surely. Does Yn converge in any way? Why does the martingale convergence theorem not
apply?

7. Let X1, X2, . . . be independent identically distributed random variables and suppose that M(t) =
E(et X1) satisfies M(t) = 1 for some t > 0. Show that P(Sk ≥ x for some k) ≤ e−t x for x > 0 and
such a value of t , where Sk = X1 + X2 + · · · + Xk .

8. Let Zn be the size of the nth generation of a branching process with family-size probability
generating function G(s), and assume Z0 = 1. Let ξ be the smallest positive root of G(s) = s.
Use the martingale convergence theorem to show that, if 0 < ξ < 1, then P(Zn → 0) = ξ and
P(Zn → ∞) = 1 − ξ .

9. Let (Y,F) be a non-negative martingale, and let Y ∗
n = max{Yk : 0 ≤ k ≤ n}. Show that

E(Y ∗
n ) ≤

e

e − 1

{
1 + E

(
Yn(log Yn)

+)}.

[Hint: a log+ b ≤ a log+ a + b/e if a, b ≥ 0, where log+ x = max{0, log x}.]
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[12.9.10]–[12.9.14] Exercises Martingales

10. Let X = {X (t) : t ≥ 0} be a birth–death process with parameters λi , µi , where λi = 0 if and
only if i = 0. Define h(0) = 0, h(1) = 1, and

h( j) = 1 +
j−1∑

i=1

µ1µ2 · · ·µi

λ1λ2 · · ·λi
, j ≥ 2.

Show that h(X (t)) constitutes a martingale with respect to the filtration Ft = σ({X (u) : 0 ≤ u ≤ t}),
whenever Eh(X (t)) < ∞ for all t . (You may assume that the forward equations are satisfied.)

Fix n, and let m < n; let π(m) be the probability that the process is absorbed at 0 before it reaches
size n, having started at size m. Show that π(m) = 1 − {h(m)/h(n)}.

11. Let (Y,F) be a submartingale such that E(Y +
n ) ≤ M for some M and all n.

(a) Show that Mn = limm→∞ E(Y +
n+m | Fn) exists (almost surely) and defines a martingale with

respect to F.

(b) Show that Yn may be expressed in the form Yn = Xn − Zn where (X,F) is a non-negative
martingale, and (Z,F) is a non-negative supermartingale. This representation of Y is sometimes
termed the ‘Krickeberg decomposition’.

(c) Let (Y,F) be a martingale such that E|Yn| ≤ M for some M and all n. Show that Y may be
expressed as the difference of two non-negative martingales.

12. Let £Yn be the assets of an insurance company after n years of trading. During each year it
receives a total (fixed) income of £P in premiums. During the nth year it pays out a total of £Cn in

claims. Thus Yn+1 = Yn + P − Cn+1. Suppose that C1,C2, . . . are independent N(µ, σ 2) variables
and show that the probability of ultimate bankruptcy satisfies

P
(
Yn ≤ 0 for some n

)
≤ exp

{
−

2(P − µ)Y0

σ 2

}
.

13. Pólya’s urn. A bag contains red and blue balls, with initially r red and b blue where rb > 0. A
ball is drawn from the bag, its colour noted, and then it is returned to the bag together with a new ball
of the same colour. Let Rn be the number of red balls after n such operations.

(a) Show that Yn = Rn/(n + r + b) is a martingale which converges almost surely and in mean.

(b) Let T be the number of balls drawn until the first blue ball appears, and suppose that r = b = 1.

Show that E{(T + 2)−1} = 1
4 .

(c) Suppose r = b = 1, and show that P(Yn ≥ 3
4 for some n) ≤ 2

3 .

14. Here is a modification of the last problem. Let {An : n ≥ 1} be a sequence of random variables,
each being a non-negative integer. We are provided with the bag of Problem (12.9.13), and we add
balls according to the following rules. At each stage a ball is drawn from the bag, and its colour noted;
we assume that the distribution of this colour depends only on the current contents of the bag and not
on any further information concerning the An . We return this ball together with An new balls of the
same colour. Write Rn and Bn for the numbers of red and blue balls in the urn after n operations, and
let Fn = σ({Rk , Bk : 0 ≤ k ≤ n}). Show that Yn = Rn/(Rn + Bn) defines a martingale. Suppose
R0 = B0 = 1, let T be the number of balls drawn until the first blue ball appears, and show that

E

(
1 + AT

2 +
∑T

i=1 Ai

)
=

1

2
,

so long as
∑

n

(
2 +

∑n
i=1 Ai

)−1 = ∞ a.s.
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Problems Exercises [12.9.15]–[12.9.19]

15. Labouchere system. Here is a gambling system for playing a fair game. Choose a sequence
x1, x2, . . . , xn of positive numbers.

Wager the sum of the first and last numbers on an evens bet. If you win, delete those two numbers;
if you lose, append their sum as an extra term xn+1 (= x1 + xn) at the right-hand end of the sequence.

You play iteratively according to the above rule. If the sequence ever contains one term only, you
wager that amount on an evens bet. If you win, you delete the term, and if you lose you append it to
the sequence to obtain two terms.

Show that, with probability 1, the game terminates with a profit of
∑n

1 xi , and that the time until
termination has finite mean.

This looks like another clever strategy. Show that the mean size of your maximum deficit is
infinite. (When Henry Labouchere was sent down from Trinity College, Cambridge, in 1852, his
gambling debts exceeded £6000.)

16. Here is a martingale approach to the question of determining the mean number of tosses of a coin
before the first appearance of the sequence HHH. A large casino contains infinitely many gamblers
G1,G2, . . . , each with an initial fortune of $1. A croupier tosses a coin repeatedly. For each n,
gambler Gn bets as follows. Just before the nth toss he stakes his $1 on the event that the nth toss

shows heads. The game is assumed fair, so that he receives a total of $p−1 if he wins, where p is the
probability of heads. If he wins this gamble, then he repeatedly stakes his entire current fortune on
heads, at the same odds as his first gamble. At the first subsequent tail he loses his fortune and leaves
the casino, penniless. Let Sn be the casino’s profit (losses count negative) after the nth toss. Show
that Sn is a martingale. Let N be the number of tosses before the first appearance of HHH; show that
N is a stopping time and hence find E(N).

Now adapt this scheme to calculate the mean time to the first appearance of the sequence HTH.

17. Let {(Xk ,Yk ) : k ≥ 1} be a sequence of independent identically distributed random vectors such
that each Xk and Yk takes values in the set {−1, 0, 1, 2, . . . }. Suppose that E(X1) = E(Y1) = 0
and E(X1Y1) = c, and furthermore X1 and Y1 have finite non-zero variances. Let U0 and V0
be positive integers, and define (Un+1, Vn+1) = (Un , Vn) + (Xn+1,Yn+1) for each n ≥ 0. Let

T = min{n : Un Vn = 0} be the first hitting time by the random walk (Un, Vn) of the axes of R2.
Show that E(T ) < ∞ if and only if c < 0, and that E(T ) = −E(U0V0)/c in this case. [Hint: You
might show that Un Vn − cn is a martingale.]

18. The game ‘Red Now’ may be played by a single player with a well shuffled conventional pack of
52 playing cards. At times n = 1, 2, . . . , 52 the player turns over a new card and observes its colour.
Just once in the game he must say, just before exposing a card, “Red Now”. He wins the game if the
next exposed card is red. Let Rn be the number of red cards remaining face down after the nth card
has been turned over. Show that Xn = Rn/(52 − n), 0 ≤ n < 52, defines a martingale. Show that

there is no strategy for the player which results in a probability of winning different from 1
2 .

19. A businessman has a redundant piece of equipment which he advertises for sale, inviting “offers
over £1000”. He anticipates that, each week for the foreseeable future, he will be approached by
one prospective purchaser, the offers made in week 0, 1, . . . being £1000X0,£1000X1, . . . , where
X0, X1, . . . are independent random variables with a common density function f and finite mean.
Storage of the equipment costs £1000c per week and the prevailing rate of interest is α (> 0) per
week. Explain why a sensible strategy for the businessman is to sell in the week T , where T is a
stopping time chosen so as to maximize

µ(T ) = E

{
(1 + α)−T XT −

T∑

n=1

(1 + α)−nc

}
.

Show that this problem is equivalent to maximizing E{(1 + α)−T ZT } where Zn = Xn + c/α.
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[12.9.20]–[12.9.26] Exercises Martingales

Show that there exists a unique positive real number γ with the property that

αγ =
∫ ∞

γ
P(Zn > y) dy,

and that, for this value of γ , the sequence Vn = (1 +α)−n max{Zn, γ } constitutes a supermartingale.
Deduce that the optimal strategy for the businessman is to set a target price τ (which you should
specify in terms of γ ) and sell the first time he is offered at least this price.

In the case when f (x) = 2x−3 for x ≥ 1, and c = α = 1
90 , find his target price and the expected

number of weeks he will have to wait before selling.

20. Let Z be a branching process satisfying Z0 = 1, E(Z1) < 1, and P(Z1 ≥ 2) > 0. Show that
E(supn Zn) ≤ η/(η−1), where η is the largest root of the equation x = G(x) and G is the probability
generating function of Z1.

21. Matching. In a cloakroom there are K coats belonging to K people who make an attempt to
leave by picking a coat at random. Those who pick their own coat leave, the rest return the coats and
try again at random. Let N be the number of rounds of attempts until everyone has left. Show that
EN = K and var(N) ≤ K .

22. Let W be a standard Wiener process, and define

M(t) =
∫ t

0
W (u) du − 1

3 W (t)3.

Show that M(t) is a martingale, and deduce that the expected area under the path of W until it first

reaches one of the levels a (> 0) or b (< 0) is − 1
3 ab(a + b).

23. Let W = (W1,W2, . . . ,Wd) be a d-dimensional Wiener process, the Wi being independent

one-dimensional Wiener processes with Wi (0) = 0 and variance parameter σ 2 = d−1. Let R(t)2 =
W1(t)

2 + W2(t)
2 + · · · + Wd(t)

2 , and show that R(t)2 − t is a martingale. Deduce that the mean

time to hit the sphere of Rd with radius a is a2.

24. Let W be a standard one-dimensional Wiener process, and let a, b > 0. Let T be the earliest
time at which W visits either of the two points −a, b. Show that P(W (T ) = b) = a/(a + b) and

E(T ) = ab. In the case a = b, find E(e−sT ) for s > 0.

25. Let (an) be a real sequence satisfying an ∈ (0, 1), and let {Un : n ≥ 1} be independent random
variables with the uniform distribution on (0, 1). Define

Xn+1 =
{
(1 − an)Xn + an if Xn > Un+1,

(1 − an)Xn otherwise,

where X0 = ρ ∈ (0, 1).

(a) Show that the sequence X = {Xn : n ≥ 0} is a martingale with respect to the filtration Fn =
σ(X0, X1, . . . , Xn), and that Xn converges a.s. and in mean square to some X∞.

(b) Show that the infinite sum
∑∞

n=1 E{(Xn+1 − Xn)
2 | Fn} converges a.s. and in mean to some

random variable A with E(A) = E(X2
∞)− ρ2.

(c) Hence prove that S =
∑∞

n=0 a2
n Xn(1 − Xn) is a.s. finite.

(d) Deduce that, if
∑

n a2
n = ∞, then X∞ takes only the values 0 and 1. In this case, what is

P(X∞ = 1)?

26. Exponential inequality for Wiener process. Let W be a standard Wiener process, and show
that

P

(
sup

0≤t≤T

W (t) ≥ x

)
≤ exp

{
− 1

2 x2/T
}
, x > 0.
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You may assume a version of Doob’s maximal inequality (12.6.1) for continuous parameter submartin-
gales.

27. Insurance, Problem (8.10.7) revisited. An insurance company receives premiums (net of costs)
at rate ρ per unit time. Claims X1, X2, . . . are independent random variables with the exponential
distribution with parameter µ, and they arrive at the times of a Poisson process of rate λ (assume the
usual independence, as well as λ,µ, ρ > 0). Let Y (t) be the assets of the company at time t where
Y (0) = y > 0. Show that

P
(
Y (t) ≤ 0 for some t > 0

)
=





(
1 −

θ

µ

)
e−θy if θ > 0,

1 otherwise,

where θ = µ− (λ/ρ).
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13

Diffusion processes

13.2 Exercise. Brownian motion

1. Total variation. Show that the total variation of a standard Wiener process over any non-trivial
interval does not exist.

[The total variation Va,b( f ) of a function f : R → R over the bounded interval [a, b] is defined as

Va,b( f ) = sup
∑

| f (sr+1)− f (sr )|,

where the supremum is taken over all increasing sequences s0 = a, s1, s2, . . . , sn = b. You may find
it useful that the quadratic variation of the Wiener process exists and is non-zero almost surely.]

13.3 Exercises. Diffusion processes

1. Let X = {X (t) : t ≥ 0} be a simple birth–death process with parameters λn = nλ and µn = nµ.
Suggest a diffusion approximation to X .

2. Bartlett’s equation. Let D be a diffusion with instantaneous mean and variance a(t, x) and

b(t, x), and let M(t, θ) = E(eθD(t)), the moment generating function of D(t). Use the forward
diffusion equation to derive Bartlett’s equation:

∂M

∂t
= θa

(
t,
∂

∂θ

)
M +

1

2
θ2b

(
t,
∂

∂θ

)
M

where we interpret

g

(
t,
∂

∂θ

)
M =

∑

n

γn(t)
∂n M

∂θn

if g(t, x) =
∑∞

n=0 γn(t)x
n .

3. Write down Bartlett’s equation in the case of the Wiener process D having drift m and instanta-
neous variance 1, and solve it subject to the boundary condition D(0) = 0.

4. Write down Bartlett’s equation in the case of an Ornstein–Uhlenbeck process D having instan-
taneous mean a(t, x) = −x and variance b(t, x) = 1, and solve it subject to the boundary condition
D(0) = 0.

5. Bessel process. Let W1(t),W2(t),W3(t) be independent Wiener processes. The positive R =
R(t) such that R2 = W 2

1 + W 2
2 + W 2

3 is the three-dimensional Bessel process. Show that R is a
Markov process. Is this result true in a general number n of dimensions?



First passage times Exercises [13.3.6]–[13.4.6]

6. Show that the transition density for the Bessel process defined in Exercise (13.3.5) is

f (t, y | s, x) =
∂

∂y
P
(

R(t) ≤ y
∣∣ R(s) = x

)

=
y/x

√
2π(t − s)

{
exp

(
−
(y − x)2

2(t − s)

)
− exp

(
−
(y + x)2

2(t − s)

)}
.

7. If W is a Wiener process and the function g : R → R is continuous and strictly monotone, show
that g(W ) is a continuous Markov process.

8. Let W be a Wiener process. Which of the following define martingales?

(a) eσW (t), (b) cW (t/c2), (c) tW (t)−
∫ t

0 W (s) ds.

9. Exponential martingale, geometric Brownian motion. Let W be a standard Wiener process

and define S(t) = eat+bW (t). Show that:

(a) S is a Markov process,

(b) S is a martingale (with respect to the filtration generated by W ) if and only if a + 1
2 b2 = 0, and

in this case E(S(t)) = 1.

10. Find the transition density for the Markov process of Exercise (13.3.9a).

11. Verify that the transition density (13.3.4) of the standard Wiener process satisfies the Chapman–
Kolmogorov equations in continuous time.

13.4 Exercises. First passage times

1. Let W be a standard Wiener process and let X (t) = exp{iθW (t)+ 1
2 θ

2t} where i =
√

−1. Show
that X is a martingale with respect to the filtration given by Ft = σ({W (u) : u ≤ t}).

2. Let T be the (random) time at which a standard Wiener process W hits the ‘barrier’ in space–time
given by y = at + b where a ≤ 0 and b > 0; that is, T = inf{t : W (t) = at + b}. Use the result of
Exercise (13.4.1) to show that the density function of T has Laplace transform given by

E(e−ψT ) = exp
{
|a|b − b

√
a2 + 2ψ

}
, ψ ≥ 0.

You may assume that the conditions of the optional stopping theorem are satisfied.

3. Let W be a standard Wiener process, and let T be the time of the last zero of W prior to time t .

Show that P(T ≤ u) = (2/π) sin−1 √
u/t for 0 ≤ u ≤ t .

4. Let X and Y be independent standard Wiener processes, so that (X, Y ) is a planar Wiener process.
Show that the value of Y at the time of the first passage of X to the level x > 0 has the Cauchy

distribution with density f (y) = x/[π(x2 + y2)].

5. Inverse Gaussian density. Let D(t) = W (t) − at where W is a standard Wiener process and
a ≤ 0 is a drift parameter. Use the result of Exercise (13.4.2) to show that the density function of the
first passage time by D to the point b > 0 is

f (x) =
b

√
2πx3

exp

{
−
(ax + b)2

2x

}
, x > 0.

6. Show that the standard Wiener process W (t) and its maximum process M(t) = sup{W (s) : 0 ≤
s ≤ t} satisfy

P
(

M(t) ≥ m, W (t) ≤ w
)

= 1 −8
(
(2m −w)/

√
t
)
, m ≥ 0, 0 ≤ w ≤ m,
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[13.4.7]–[13.6.5] Exercises Diffusion processes

where 8 is the N(0, 1) distribution function.

7. Find the density function of
√

T (x) where T (x) is the first passage time of a standard Wiener
process to the point x . Show that it is the same as that of 1/|Z | for a suitable normally distributed
random variable Z .

8. Continuation. Show that T (x) has the same distribution as T (1)x2, and deduce that the process
{T (x) : x ≥ 0} is self-similar. Hence or otherwise, show that T (x) has a stable distribution with

exponent 1
2 . [See Feller 1971, p. 174.]

9. Feller’s diffusion approximation to the branching process, Example (13.3.12) revisited.

Let X = {X (t) : t ≥ 0} be the diffusion model of Example (13.3.12) with X (0) = x > 0, and with

instantaneous mean and variance ax and bx where a < 0 and b > 0. Let Y =
∫ T

0 X (u) du be the
integrated size of the accumulated population up to the extinction time T = inf{t ≥ 0 : X (t) = 0}.
Show that the moment generating function m(x, ψ) = Ex (e

−ψY ) satisfies

1

2
b

d2m

dx2
+ a

dm

dx
− ψm = 0, ψ ≥ 0.

Deduce that Y has a ‘first-passage’ distribution of the type of Exercise (13.4.2), and specify which.

13.5 Exercises. Barriers

1. Let D be a standard Wiener process with drift m starting from D(0) = d > 0, and suppose that
there is a reflecting barrier at the origin. Show that the density function f r(t, y) of D(t) satisfies

f r(t, y) → 0 as t → ∞ if m ≥ 0, whereas f r(t, y)→ 2|m|e−2|m|y for y > 0, as t → ∞ if m < 0.

2. Conditioned Wiener process. Let W be a standard Wiener process started at W (0) = x ∈ (0, a),
with absorbing barriers at 0 and a. Let C be the process W conditioned on the event that W is absorbed
at a. Show that the instantaneous mean and variance of C , when C(t) = c ∈ (0, a), are 1/c and 1,
respectively.

3. Continuation. Let T be the first passage time by C to the point a. Show that Ex (T ) = 1
3 (a

2 −x2)

for x ∈ (0, a).

13.6 Exercises. Excursions and the Brownian bridge

1. Brownian meander. Let W be a standard Wiener process. Show that the conditional density

function of W (t), given that W (u) > 0 for 0 < u < t , is g(x) = (x/t)e−x2/(2t), x > 0.

2. Show that the autocovariance function of the Brownian bridge is c(s, t) = min{s, t} − st , 0 ≤
s, t ≤ 1.

3. Let W be a standard Wiener process, and let Ŵ (t) = W (t)−tW (1). Show that {Ŵ (t) : 0 ≤ t ≤ 1}
is a Brownian bridge.

4. If W is a Wiener process with W (0) = 0, show that W̃ (t) = (1 − t)W (t/(1 − t)) for 0 ≤ t < 1,

W̃ (1) = 0, defines a Brownian bridge.

Deduce, with help from Corollary (13.4.14), that the probability of the Brownian bridge ever

rising above the height m > 0 is e−2m2
.

5. Let 0 < s < t < 1. Show that the probability that the Brownian bridge has no zeros in the

interval (s, t) is (2/π) cos−1 √
(t − s)/[t (1 − s)].
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The Itô integral Exercises [13.7.1]–[13.8.4]

13.7 Exercises. Stochastic calculus

1. Doob’s L2 inequality. Let W be a standard Wiener process, and show that

E
(

max
0≤s≤t

|Ws |2
)

≤ 4E(W 2
t ).

2. Let W be a standard Wiener process. Fix t > 0, n ≥ 1, and let δ = t/n. Show that Zn =∑n−1
j=0 (W( j+1)δ − Wjδ)

2 satisfies Zn → t in mean square as n → ∞.

3. Let W be a standard Wiener process. Fix t > 0, n ≥ 1, and let δ = t/n. Let Vj = Wjδ and
1j = Vj+1 − Vj . Evaluate the limits of the following as n → ∞:

(a) I1(n) =
∑

j Vj1j ,

(b) I2(n) =
∑

j Vj+11j ,

(c) I3(n) =
∑

j
1
2 (Vj+1 + Vj )1j ,

(d) I4(n) =
∑

j W
( j+ 1

2 )δ
1j .

4. Let W be a standard Wiener process. Show that U(t) = e−βt W (e2βt) defines a stationary
Ornstein–Uhlenbeck process.

5. Let W be a standard Wiener process. Show that Ut = Wt − β
∫ t

0 e−β(t−s)Ws ds defines an
Ornstein–Uhlenbeck process.

13.8 Exercises. The Itô integral

In the absence of any contrary indication, W denotes a standard Wiener process, and Ft is the smallest
σ -field containing all null events with respect to which every member of {Wu : 0 ≤ u ≤ t} is
measurable.

1. (a) Verify directly that

∫ t

0
s dWs = tWt −

∫ t

0
Ws ds.

(b) Verify directly that

∫ t

0
W 2

s dWs = 1
3 W 3

t −
∫ t

0
Ws ds.

(c) Show that E

([∫ t

0
Ws dWs

]2)
=
∫ t

0
E(W 2

s ) ds.

2. Let X t =
∫ t

0 Ws ds. Show that X is a Gaussian process, and find its autocovariance and autocor-
relation function.

3. Let (�,F,P) be a probability space, and suppose that Xn
m.s.−→ X as n → ∞. If G ⊆ F, show

that E(Xn | G)
m.s.−→ E(X | G).

4. Let ψ1 and ψ2 be predictable step functions, and show that

E
{

I (ψ1)I (ψ2)
}

= E

(∫ ∞

0
ψ1(t)ψ2(t) dt

)
,

whenever both sides exist.
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5. Assuming that Gaussian white noise G t = dWt/dt exists in sufficiently many senses to appear
as an integrand, show by integrating the stochastic differential equation d X t = −βX t dt + dWt that

X t = Wt − β

∫ t

0
e−β(t−s)Ws ds,

if X0 = 0.

6. Let ψ be an adapted process with ‖ψ‖ < ∞. Show that ‖I (ψ)‖2 = ‖ψ‖.

13.9 Exercises. Itô’s formula

In the absence of any contrary indication, W denotes a standard Wiener process, and Ft is the smallest
σ -field containing all null events with respect to which every member of {Wu : 0 ≤ u ≤ t} is
measurable.

1. Let X and Y be independent standard Wiener processes. Show that, with R2
t = X2

t + Y 2
t ,

Zt =
∫ t

0

Xs

Rs
d Xs +

∫ t

0

Ys

Rs
dYs

is a Wiener process. [Hint: Use Theorem (13.8.11) and Example (12.7.10).] Hence show that the

squared process R2, called the squared Bessel process, satisfies

R2
t = 2

∫ t

0
Rs dWs + 2t.

Generalize this conclusion to n dimensions.

2. Write down the SDE obtained via Itô’s formula for the process Yt = W 4
t , and deduce that

E(W 4
t ) = 3t2.

3. Show that Yt = tWt is an Itô process, and write down the corresponding SDE.

4. Wiener process on a circle. Let Yt = eiWt . Show that Y = X1 + i X2 is a process on the unit
circle satisfying

d X1 = − 1
2 X1 dt − X2 dW, d X2 = − 1

2 X2 dt + X1 dW.

5. Find the SDEs satisfied by the processes:

(a) X t = Wt/(1 + t),

(b) X t = sin Wt ,

(c) [Wiener process on an ellipse] X t = a cos Wt , Yt = b sin Wt , where ab 6= 0.

6. Find a random function X (t) satisfying

d X (t) =
(

1
2 X +

√
1 + X2

)
dt +

√
1 + X2 dW (t),

with X (0) = 0.
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13.10 Exercises. Option pricing

In the absence of any contrary indication, W denotes a standard Wiener process, and Ft is the smallest
σ -field containing all null events with respect to which every member of {Wu : 0 ≤ u ≤ t} is

measurable. The process St = exp((µ− 1
2σ

2)t + σWt ) is a geometric Brownian motion, and r ≥ 0
is the interest rate.

1. (a) Let Z have the N(γ, τ2) distribution. Show that

E
(
(aeZ − K )+

)
= ae

γ+ 1
2
τ2
8

(
log(a/K ) + γ

τ
+ τ

)
− K8

(
log(a/K ) + γ

τ

)

where 8 is the N(0, 1) distribution function.

(b) Let Q be a probability measure under which σW is a Wiener process with drift r − µ and

instantaneous variance σ 2. Show for 0 ≤ t ≤ T that

EQ

(
(ST − K )+

∣∣Ft

)
= St e

r(T−t)8(d1(t, St ))− K8(d2(t, St))

where

d1(t, x) =
log(x/K )+ (r + 1

2σ
2)(T − t)

σ
√

T − t
, d2(t, x) = d1(t, x)− σ

√
T − t .

2. Consider a portfolio which, at time t , holds ξ(t, S) units of stock and ψ(t, S) units of bond, and
assume these quantities depend only on the values of Su for 0 ≤ u ≤ t . Find the function ψ such that
the portfolio is self-financing in the three cases:

(a) ξ(t, S) = 1 for all t , S,

(b) ξ(t, S) = St ,

(c) ξ(t, S) =
∫ t

0
Sv dv.

3. Suppose the stock price St is itself a Wiener process and the interest rate r equals 0, so that a
unit of bond has unit value for all time. In the notation of Exercise (13.10.2), which of the following
define self-financing portfolios?

(a) ξ(t, S) = ψ(t, S) = 1 for all t , S,

(b) ξ(t, S) = 2St , ψ(t, S) = −S2
t − t ,

(c) ξ(t, S) = −t , ψ(t, S) =
∫ t

0 Ss ds,

(d) ξ(t, S) =
∫ t

0 Ss ds, ψ(t, S) = −
∫ t

0 S2
s ds.

4. An ‘American call option’ differs from a European call option in that it may be exercised by the
buyer at any time up to the expiry date. Show that the value of the American call option is the same
as that of the corresponding European call option, and that there is no advantage to the holder of such
an option to exercise it strictly before its expiry date.

5. Show that the Black–Scholes value at time 0 of the European call option is an increasing function
of the initial stock price, the exercise date, the interest rate, and the volatility, and is a decreasing
function of the strike price.
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13.11 Exercises. Passage probabilities and potentials

1. Let G be the closed sphere with radius ǫ and centre at the origin of Rd where d ≥ 3. Let W be a
d-dimensional Wiener process starting from W(0) = w /∈ G . Show that the probability that W visits

G is (ǫ/r)d−2, where r = |w|.

2. Let G be an infinite connected graph with finite vertex degrees. Let 1n be the set of vertices x

which are distance n from 0 (that is, the shortest path from x to 0 contains n edges), and let Nn be
the total number of edges joining pairs x, y of vertices with x ∈ 1n , y ∈ 1n+1. Show that a random

walk on G is recurrent if
∑

i N−1
i = ∞.

3. Let G be a connected graph with finite vertex degrees, and let H be a connected subgraph of G .
Show that a random walk on H is recurrent if a random walk on G is recurrent, but that the converse
is not generally true.

13.12 Problems

1. Let W be a standard Wiener process, that is, a process with independent increments and continuous
sample paths such that W (s + t)− W (s) is N(0, t) for t > 0. Let α be a positive constant. Show that:

(a) αW (t/α2) is a standard Wiener process,

(b) W (t + α)− W (α) is a standard Wiener process,

(c) the process V , given by V (t) = tW (1/t) for t > 0, V (0) = 0, is a standard Wiener process.

2. Let X = {X (t) : t ≥ 0} be a Gaussian process with continuous sample paths, zero means, and
autocovariance function c(s, t) = u(s)v(t) for s ≤ t where u and v are continuous functions. Suppose

that the ratio r(t) = u(t)/v(t) is continuous and strictly increasing with inverse function r−1. Show

that W (t) = X (r−1(t))/v(r−1(t)) is a standard Wiener process on a suitable interval of time.

If c(s, t) = s(1 − t) for s ≤ t < 1, express X in terms of W .

3. Let β > 0, and show that U(t) = e−βt W (e2βt − 1) is an Ornstein–Uhlenbeck process if W is a
standard Wiener process.

4. Let V = {V (t) : t ≥ 0} be an Ornstein–Uhlenbeck process with instantaneous mean a(t, x) =
−βx where β > 0, with instantaneous variance b(t, x) = σ 2, and with U(0) = u. Show that V (t) is

N(ue−βt , σ 2(1 − e−2βt )/(2β)). Deduce that V (t) is asymptotically N(0, 1
2σ

2/β) as t → ∞, and

show that V is strongly stationary if V (0) is N(0, 1
2σ

2/β).

Show that such a process is the only stationary Gaussian Markov process with continuous auto-
covariance function, and find its spectral density function.

5. Feller’s diffusion approximation to the branching process. Let D = {D(t) : t ≥ 0} be a
diffusion process with instantaneous mean a(t, x) = αx and instantaneous variance b(t, x) = βx

where α and β are positive constants. Let D(0) = d . Show that the moment generating function of
D(t) is

M(t, θ) = exp

{
2αdθeαt

βθ(1 − eαt)+ 2α

}
.

Find the mean and variance of D(t), and show that P(D(t) = 0) → e−2dα/β as t → ∞.

6. Let D be an Ornstein–Uhlenbeck process with D(0) = 0, and place reflecting barriers at −c and
d where c, d > 0. Find the limiting distribution of D as t → ∞.

7. Let X0, X1, . . . be independent N(0, 1) variables, and show that

W (t) =
t

√
π

X0 +
√

2

π

∞∑

k=1

sin(kt)

k
Xk
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defines a standard Wiener process on [0, π ].

8. Let W be a standard Wiener process with W (0) = 0. Place absorbing barriers at −b and b, where
b > 0, and let W a be W absorbed at these barriers. Show that W a(t) has density function

f a(y, t) =
1

√
2π t

∞∑

k=−∞
(−1)k exp

{
−
(y − 2kb)2

2t

}
, −b < y < b,

which may also be expressed as

f a(y, t) =
∞∑

n=1

ane−λn t sin

(
nπ(y + b)

2b

)
, −b < y < b,

where an = b−1 sin( 1
2 nπ) and λn = n2π2/(8b2).

Hence calculate P(sup0≤s≤t |W (s)| > b) for the unrestricted process W.

9. Let D be a Wiener process with drift m, and suppose that D(0) = 0. Place absorbing barriers at
the points x = −a and x = b where a and b are positive real numbers. Show that the probability pa

that the process is absorbed at −a is given by

pa =
e2mb − 1

e2m(a+b) − 1
.

10. Let W be a standard Wiener process and let F(u, v) be the event that W has no zero in the interval
(u, v).

(a) If ab > 0, show that P
(

F(0, t)
∣∣W (0) = a,W (t) = b

)
= 1 − e−2ab/t .

(b) If W (0) = 0 and 0 < t0 ≤ t1 ≤ t2, show that

P
(

F(t0, t2)
∣∣ F(t0, t1)

)
=

sin−1 √
t0/t2

sin−1 √
t0/t1

.

(c) Deduce that, if W (0) = 0 and 0 < t1 ≤ t2, then P(F(0, t2) | F(0, t1)) =
√

t1/t2.

11. Let W be a standard Wiener process. Show that

P

(
sup

0≤s≤t

|W (s)| ≥ w

)
≤ 2P(|W (t)| ≥ w) ≤

2t

w2
for w > 0.

Set t = 2n and w = 22n/3 and use the Borel–Cantelli lemma to show that t−1W (t) → 0 a.s. as
t → ∞.

12. Let W be a two-dimensional Wiener process with W(0) = w, and let F be the unit circle. What
is the probability that W visits the upper semicircle G of F before it visits the lower semicircle H?

13. Let W1 and W2 be independent standard Wiener processes; the pair W(t) = (W1(t),W2(t))

represents the position of a particle which is experiencing Brownian motion in the plane. Let l be

some straight line in R2, and let P be the point on l which is closest to the origin O. Draw a diagram.
Show that

(a) the particle visits l , with probability one,
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(b) if the particle hits l for the first time at the point R, then the distance PR (measured as positive or

negative as appropriate) has the Cauchy density function f (x) = d/{π(d2+x2)}, −∞ < x < ∞,
where d is the distance OP,

(c) the angle P̂OR is uniformly distributed on [− 1
2π,

1
2π ].

14. Lévy’s conformal invariance property. Let φ(x + i y) = u(x, y) + iv(x, y) be an analytic
function on the complex plane with real part u(x, y) and imaginary part v(x, y), and assume that

(
∂u

∂x

)2

+
(
∂u

∂y

)2

= 1.

Let (W1,W2)be the planar Wiener process of Problem (13.12.13) above. Show that the pair u(W1,W2),
v(W1,W2) is also a planar Wiener process.

15. Let M(t) = max0≤s≤t W (s), where W is a standard Wiener process. Show that M(t) − W (t)

has the same distribution as M(t).

16. Let W be a standard Wiener process, u ∈ R, and let Z = {t : W (t) = u}. Show that Z is a null
set (i.e. has Lebesgue measure zero) with probability one.

17. Let M(t) = max0≤s≤t W (s), where W is a standard Wiener process. Show that M(t) is attained
at exactly one point in [0, t], with probability one.

18. Sparre Andersen theorem. Let s0 = 0 and sm =
∑m

j=1 xj , where (xj : 1 ≤ j ≤ n) is a given

sequence of real numbers. Of the n! permutations of (xj : 1 ≤ j ≤ n), let Ar be the number of
permutations in which exactly r values of (sm : 0 ≤ m ≤ n) are strictly positive, and let Br be the
number of permutations in which the maximum of (sm : 0 ≤ m ≤ n) first occurs at the r th place.
Show that Ar = Br for 0 ≤ r ≤ n. [Hint: Use induction on n.]

19. Arc sine laws. For the standard Wiener process W , let A be the amount of time u during the
time interval [0, t] for which W (u) > 0; let L be the time of the last visit to the origin before t ;
and let R be the time when W attains its maximum in [0, t]. Show that A, L , and R have the same

distribution function F(x) = (2/π) sin−1 √
x/t for 0 ≤ x ≤ t . [Hint: Use the results of Problems

(13.12.15)–(13.12.18).]

20. Let W be a standard Wiener process, and let Ux be the amount of time spent below the level x

(≥ 0) during the time interval (0, 1), that is, Ux =
∫ 1

0 I{W (t)<x} dt . Show that Ux has density function

fUx (u) =
1

π
√

u(1 − u)
exp

(
−

x2

2u

)
, 0 < u < 1.

Show also that

Vx =
{

sup{t ≤ 1 : Wt = x} if this set is non-empty,

1 otherwise,

has the same distribution as Ux .

21. Tanaka’s example. Let sign(x) = 1 if x > 0 and sign(x) = −1 otherwise.

(a) Show that Vt =
∫ t

0 sign(Ws) dWs defines a standard Wiener process, where W is itself such a
process.

(b) Deduce that V is the solution of the SDE d X = sign(X t ) dW with W (0) = 0.

(c) Use the result of Problem (13.12.16) with u = 0 to show that −V is also a solution of this SDE.

(d) Use the results of Example (12.7.10) and Theorem (13.8.11) to deduce that any solution of the
SDE has the fdds of the Wiener process. [You have shown that solutions of the SDE are not
unique in a pathwise sense, but do have unique fdds.]
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22. After the level of an industrial process has been set at its desired value, it wanders in a random
fashion. To counteract this the process is periodically reset to this desired value, at times 0, T, 2T, . . . .
If Wt is the deviation from the desired level, t units of time after a reset, then {Wt : 0 ≤ t < T } can
be modelled by a standard Wiener process. The behaviour of the process after a reset is independent
of its behaviour before the reset. While Wt is outside the range (−a, a) the output from the process
is unsatisfactory and a cost is incurred at rate C per unit time. The cost of each reset is R. Show that
the period T which minimises the long-run average cost per unit time is T ∗, where

R = C

∫ T ∗

0

a
√
(2π t)

exp

(
−

a2

2t

)
dt.

23. An economy is governed by the Black–Scholes model in which the stock price behaves as a
geometric Brownian motion with volatility σ , and there is a constant interest rate r . An investor likes
to have a constant proportion γ (∈ (0, 1)) of the current value of her self-financing portfolio in stock

and the remainder in the bond. Show that the value function of her portfolio has the form Vt = f (t)S
γ
t

where f (t) = c exp
{
(1 − γ )( 1

2 γσ
2 + r)t

}
for some constant c depending on her initial wealth.

24. Let u(t, x) be twice continuously differentiable in x and once in t , for x ∈ R and t ∈ [0, T ]. Let
W be the standard Wiener process. Show that u is a solution of the heat equation

∂u

∂t
=

1

2

∂2u

∂x2

if and only if the process Ut = u(T − t,Wt ), 0 ≤ t ≤ T , has zero drift.

25. Walk on spheres.

(a) Let W be the standard Wiener process in d = 3 dimensions starting at the origin 0, and let T be
its first passage time to the sphere with radius r and centre at 0. Show that W (T ) is independent
of T .

(b) Let C be an open convex region containing 0, with smooth boundary B. For x ∈ C , let M(x)

be the largest sphere with centre x that is inscribable in B ∪ C , with radius r(x). Define the
process {Rn : n ≥ 0} thus. We set R0 = 0; given R1, R2, . . . , Rn for n ≥ 0, Rn+1 is uniformly
distributed on the sphere Mn := M(Rn). Now define the increasing sequence {Tn : n ≥ 0} by:
T0 = 0, T1 is the first passage time of W to M(0); T2 is the first subsequent time at which W hits
M1, and so on.

(i) Show that the sequences (Rn) and (W (Tn)) have the same distributions.

(ii) Deduce that R∞ = limn→∞ Rn has the same distribution as W (TB), where TB is the first
passage time of W to B.

(iii) Let d be the diameter of the smallest sphere that contains B ∪ C . For 0 < a < d/2, let
S(a) = inf{n : r(Rn) ≤ a} be the least n at which Rn is within distance a of the boundary
B. Show that S(a) is a.s. finite, and moreover that E(S(a)) ≤ d/a.

179





1

Events and their probabilities

1.2 Solutions. Events as sets

1. (a) Let a ∈ (
⋃

Ai )
c. Then a /∈

⋃
Ai , so that a ∈ Ac

i for all i . Hence (
⋃

Ai )
c ⊆

⋂
Ac

i .

Conversely, if a ∈
⋂

Ac
i , then a /∈ Ai for every i . Hence a /∈

⋃
Ai , and so

⋂
Ac

i ⊆ (
⋃

Ai )
c. The

first De Morgan law follows.

(b) Applying part (a) to the family {Ac
i : i ∈ I }, we obtain that

(⋃
i Ac

i

)c =
⋂

i (A
c
i )

c =
⋂

i Ai .
Taking the complement of each side yields the second law.

2. Clearly

(i) A ∩ B = (Ac ∪ Bc)c,

(ii) A \ B = A ∩ Bc = (Ac ∪ B)c,

(iii) A △ B = (A \ B) ∪ (B \ A) = (Ac ∪ B)c ∪ (A ∪ Bc)c.

Now F is closed under the operations of countable unions and complements, and therefore each of
these sets lies in F.

3. Let us number the players 1, 2, . . . , 2n in the order in which they appear in the initial table of draws.
The set of victors in the first round is a point in the space Vn = {1, 2} × {3, 4} × · · · × {2n − 1, 2n}.
Renumbering these victors in the same way as done for the initial draw, the set of second-round
victors can be thought of as a point in the space Vn−1, and so on. The sample space of all possible
outcomes of the tournament may therefore be taken to be Vn × Vn−1 × · · · × V1, a set containing

22n−1
22n−2 · · · 21 = 22n−1 points.

Should we be interested in the ultimate winner only, we may take as sample space the set
{1, 2, . . . , 2n} of all possible winners.

4. We must check that G satisfies the definition of a σ -field:

(a) ∅ ∈ F, and therefore ∅ = ∅ ∩ B ∈ G,

(b) if A1, A2, . . . ∈ F, then
⋃

i (Ai ∩ B) =
(⋃

i Ai

)
∩ B ∈ G,

(c) if A ∈ F, then Ac ∈ F so that B \ (A ∩ B) = Ac ∩ B ∈ G.

Note that G is a σ -field of subsets of B but not a σ -field of subsets of �, since C ∈ G does not imply
that Cc = � \ C ∈ G.

5. (a), (b), and (d) are identically true; (c) is true if and only if A ⊆ C .

1.3 Solutions. Probability

1. (i) We have (using the fact that P is a non-decreasing set function) that

P(A ∩ B) = P(A) + P(B)− P(A ∪ B) ≥ P(A) + P(B)− 1 = 1
12 .
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Also, since A ∩ B ⊆ A and A ∩ B ⊆ B, P(A ∩ B) ≤ min{P(A), P(B)} = 1
3 .

These bounds are attained in the following example. Pick a number at random from {1, 2, . . . , 12}.
Taking A = {1, 2, . . . , 9} and B = {9, 10, 11, 12}, we find that A ∩ B = {9}, and so P(A) = 3

4 ,

P(B) = 1
3 , P(A ∩ B) = 1

12 . To attain the upper bound for P(A ∩ B), take A = {1, 2, . . . , 9} and
B = {1, 2, 3, 4}.
(ii) Likewise we have in this case P(A ∪ B) ≤ min{P(A) + P(B), 1} = 1, and P(A ∪ B) ≥
max{P(A), P(B)} = 3

4 . These bounds are attained in the examples above.

2. (i) We have (using the continuity property of P) that

P(no head ever) = lim
n→∞

P(no head in first n tosses) = lim
n→∞

2−n = 0,

so that P(some head turns up) = 1 − P(no head ever) = 1.

(ii) Given a fixed sequence s of heads and tails of length k, we consider the sequence of tosses arranged

in disjoint groups of consecutive outcomes, each group being of length k. There is probability 2−k

that any given one of these is s, independently of the others. The event {one of the first n such groups
is s} is a subset of the event {s occurs in the first nk tosses}. Hence (using the general properties of
probability measures) we have that

P(s turns up eventually) = lim
n→∞

P(s occurs in the first nk tosses)

≥ lim
n→∞

P(s occurs as one of the first n groups)

= 1 − lim
n→∞

P(none of the first n groups is s)

= 1 − lim
n→∞

(1 − 2−k )
n = 1.

3. Lay out the saucers in order, say as RRWWSS. The cups may be arranged in 6! ways, but since

each pair of a given colour may be switched without changing the appearance, there are 6!÷(2!)3 = 90
distinct arrangements. By assumption these are equally likely. In how many such arrangements is
no cup on a saucer of the same colour? The only acceptable arrangements in which cups of the
same colour are paired off are WWSSRR and SSRRWW; by inspection, there are a further eight
arrangements in which the first pair of cups is either SW or WS, the second pair is either RS or SR,

and the third either RW or WR. Hence the required probability is 10/90 = 1
9 .

4. We prove this by induction on n, considering first the case n = 2. Certainly B = (A∩ B)∪(B \ A)

is a union of disjoint sets, so that P(B) = P(A ∩ B)+ P(B \ A). Similarly A ∪ B = A ∪ (B \ A), and
so

P(A ∪ B) = P(A)+ P(B \ A) = P(A) +
{

P(B)− P(A ∩ B)
}
.

Hence the result is true for n = 2. Let m ≥ 2 and suppose that the result is true for n ≤ m. Then it is
true for pairs of events, so that

P

(m+1⋃

1

Ai

)
= P

( m⋃

1

Ai

)
+ P(Am+1)− P

{( m⋃

1

Ai

)
∩ Am+1

}

= P

( m⋃

1

Ai

)
+ P(Am+1)− P

{ m⋃

1

(Ai ∩ Am+1)

}
.

Using the induction hypothesis, we may expand the two relevant terms on the right-hand side to obtain
the result.
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Conditional probability Solutions [1.3.5]–[1.4.1]

Let A1, A2, and A3 be the respective events that you fail to obtain the ultimate, penultimate, and
ante-penultimate Vice-Chancellors. Then the required probability is, by symmetry,

1 − P

( 3⋃

1

Ai

)
= 1 − 3P(A1)+ 3P(A1 ∩ A2)− P(A1 ∩ A2 ∩ A3)

= 1 − 3( 4
5 )

6 + 3( 3
5 )

6 − ( 2
5 )

6.

5. By the continuity of P, Exercise (1.2.1), and Problem (1.8.11),

P

( ∞⋂

r=1

Ar

)
= lim

n→∞
P

( n⋂

r=1

Ar

)
= lim

n→∞

[
1 − P

(( n⋂

r=1

Ar

)c)]

= 1 − lim
n→∞

P

( n⋃

r=1

Ac
r

)
≥ 1 − lim

n→∞

n∑

r=1

P(Ac
r ) = 1.

6. We have that 1 = P

( n⋃

1

Ar

)
=
∑

r

P(Ar ) −
∑

r<s

P(Ar ∩ As ) = np − 1
2 n(n − 1)q. Hence

p ≥ n−1, and 1
2 n(n − 1)q = np − 1 ≤ n − 1.

7. Since at least one of the Ar occurs,

1 = P

( n⋃

1

Ar

)
=
∑

r

P(Ar )−
∑

r<s

P(Ar ∩ As)+
∑

r<s<t

P(Ar ∩ As ∩ At )

= np −
(

n

2

)
q +

(
n

3

)
x .

Since at least two of the events occur with probability 1
2 ,

1
2 = P

(⋃

r<s

(Ar ∩ As)

)
=
∑

r<s

P(Ar ∩ As)− 1
2

∑

r<s
t<u

(r,s) 6=(t,u)

P(Ar ∩ As ∩ At ∩ Au)+ · · · .

By a careful consideration of the first three terms in the latter series, we find that

1

2
=
(

n

2

)
q − 3

(
n

3

)
x +

(
n

3

)
x .

Hence 3
2 = np −

(n
3

)
x , so that p ≥ 3/(2n). Also,

(n
2

)
q = 2np − 5

2 , whence q ≤ 4/n.

1.4 Solutions. Conditional probability

1. By the definition of conditional probability,

P(A | B) =
P(A ∩ B)

P(B)
=

P(B ∩ A)

P(A)

P(A)

P(B)
= P(B | A)

P(A)

P(B)
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[1.4.2]–[1.4.5] Solutions Events and their probabilities

if P(A)P(B) 6= 0. Hence
P(A | B)

P(A)
=

P(B | A)

P(B)
,

whence the last part is immediate.

2. Set A0 = � for notational convenience. Expand each term on the right-hand side to obtain

n∏

r=1

P

(
Ar

∣∣∣∣
r−1⋂

k=1

Ak

)
=

n∏

r=1

P(
⋂r

1 Ak )

P(
⋂r−1

1 Ak )
= P

( n⋂

1

Ak

)
.

3. Let M be the event that the first coin is double-headed, R the event that it is double-tailed, and
N the event that it is normal. Let H i

l be the event that the lower face is a head on the i th toss, T i
u the

event that the upper face is a tail on the i th toss, and so on. Then, using conditional probability ad

nauseam, we find:

P(H1
l ) = 2

5 P(H1
l | M)+ 1

5 P(H1
l | R)+ 2

5 P(H1
l | N) = 2

5 + 0 + 2
5 · 1

2 = 3
5 .(i)

P(H1
l | H1

u ) =
P(H1

l ∩ H1
u )

P(H1
u )

=
P(M)

P(H1
l )

= 2
5

/
3
5 = 2

3 .(ii)

P(H2
l | H1

u ) = 1 · P(M | H1
u )+ 1

2 P(N | H1
u )(iii)

= P(H1
l | H1

u )+ 1
2

(
1 − P(H1

l | H1
u )
)

= 2
3 + 1

2 · 1
3 = 5

6 .

P(H2
l | H1

u ∩ H2
u ) =

P(H2
l ∩ H1

u ∩ H2
u )

P(H1
u ∩ H2

u )
=

P(M)

1 · P(M)+ 1
4 · P(N)

=
2
5

2
5 + 1

10

=
4

5
.

(iv)

(v) From (iv), the probability that he discards a double-headed coin is 4
5 , the probability that he

discards a normal coin is 1
5 . (There is of course no chance of it being double-tailed.) Hence, by

conditioning on the discard,

P(H3
u ) = 4

5 P(H3
u | M)+ 1

5 P(H3
u | N) = 4

5

(
1
4 + 1

2 · 1
2

)
+ 1

5

(
1
2 + 1

2 · 1
4

)
= 21

40 .

4. The final calculation of 2
3 refers not to a single draw of one ball from an urn containing three, but

rather to a composite experiment comprising more than one stage (in this case, two stages). While it
is true that {two black, one white} is the only fixed collection of balls for which a random choice is

black with probability 2
3 , the composition of the urn is not determined prior to the final draw.

After all, if Carroll’s argument were correct then it would apply also in the situation when the urn

originally contains just one ball, either black or white. The final probability is now 3
4 , implying that

the original ball was one half black and one half white! Carroll was himself aware of the fallacy in
this argument.

5. (a) One cannot compute probabilities without knowing the rules governing the conditional prob-
abilities. We assume that each of the 6 orderings of the car and goats are equally likely. Let Ci be the
event that the i th door conceals the car, G the event that you see a goat, and B the event that you see
Bill.

(i) We have that

P(C3 | G) =
P(C3 ∩ G | C1)P(C1)+ P(C3 ∩ G | Cc

1)P(C
c
1)

P(G | C1)P(C1)+ P(G | Cc
1)P(C

c
1)

=
0 · 1

3 + 1 · 2
3

1 · 1
3 + 1 · 2

3

=
2

3
.
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Independence Solutions [1.4.6]–[1.5.2]

(ii) Use a similar formula, and note that P(C3 ∩ B | Cc
1) = P(B | Cc

1) = 1
2 .

(iii) This time, P(C3 ∩ G | Cc
1) = P(G | Cc

1) = 1
2 .

(b) Let α ∈ [ 1
2 ,

2
3 ], and suppose the presenter possesses a coin which falls with heads upwards with

probability β = 6α − 3. He flips the coin before the show, and adopts strategy (i) if and only if the

coin shows heads, and otherwise strategy (iii). The probability in question is now 2
3β+ 1

2 (1−β) = α.
You never lose by swapping, but whether you gain depends on the presenter’s protocol.

(c) Let D denote the first door chosen, and consider the following protocols:

(iv) If D conceals a goat, open it. Otherwise open one of the other two doors at random. In this
case p = 0.

(v) If D conceals the car, open it. Otherwise open the unique remaining door which conceals a
goat. In this case p = 1.

As in part (b), a randomized algorithm provides the protocol necessary for the last part.

6. This is immediate by the definition of conditional probability.

7. Let Ci be the colour of the i th ball picked, and use the obvious notation.

(a) Since each urn contains the same number n − 1 of balls, the second ball picked is equally likely to

be any of the n(n − 1) available. One half of these balls are magenta, whence P(C2 = M) = 1
2 .

(b) By conditioning on the choice of urn,

P(C2 = M | C1 = M) =
P(C1,C2 = M)

P(C1 = M)
=

n∑

r=1

(n − r)(n − r − 1)

n(n − 1)(n − 2)

/
1

2
=

2

3
.

8. With R denoting red-haired and S not red-haired, in the obvious notation,

P(BB | at least one BR) =
P(BRBR ∪ BRBS ∪ BSBR)

P(BRBR ∪ BRBS ∪ BSBR ∪ GBR ∪ BRG)

=
1
4r2 + 1

2r(1 − r)

1
4r2 + 1

2r(1 − r)+ 1
2r

=
2 − r

4 − r
.

Assuming children have no preference for day of the week, and sex and weekday are independent,

the answer is the above with r = 1
7 .

1.5 Solutions. Independence

1. Clearly

P(Ac ∩ B) = P(B \ {A ∩ B}) = P(B)− P(A ∩ B)

= P(B)− P(A)P(B) = P(Ac)P(B).

For the final part, apply the first part to the pair B, Ac.

2. Suppose i < j and m < n. If j < m, then Ai j and Amn are determined by distinct independent
rolls, and are therefore independent. For the case j = m we have that

P(Ai j ∩ Aj n) = P(i th, j th, and nth rolls show same number)

=
6∑

r=1

1
6 P
(

j th and nth rolls both show r
∣∣ i th shows r

)
= 1

36 = P(Ai j )P(Aj n),
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[1.5.3]–[1.7.1] Solutions Events and their probabilities

as required. However, if i 6= j 6= k, P(Ai j ∩ Aj k ∩ Aik ) = 1
36 6= 1

216 = P(Ai j )P(Aj k)P(Aik ).

3. That (a) implies (b) is trivial. Suppose then that (b) holds. Consider the outcomes numbered
i1, i2, . . . , im , and let u j ∈ {H,T} for 1 ≤ j ≤ m. Let Sj be the set of all sequences of length M =
max{i j : 1 ≤ j ≤ m} showing u j in the i j th position. Clearly |Sj | = 2M−1 and

∣∣⋂
j Sj

∣∣ = 2M−m .

Therefore,

P(Sj ) =
2M−1

2M
=

1

2
, P

(⋂

j

Sj

)
=

2M−m

2M
=

1

2m
,

so that P
(⋂

j Sj

)
=
∏

j P(Sj ).

4. Suppose |A| = a, |B| = b, |A ∩ B| = c, and A and B are independent. Then P(A ∩ B) =
P(A)P(B), which is to say that c/p = (a/p) · (b/p), and hence ab = pc. If ab 6= 0 then p | ab

(i.e. p divides ab). However, p is prime, and hence either p | a or p | b. Therefore, either A = � or
B = � (or both).

5. (a) Flip two coins; let A be the event that the first shows H, let B be the event that the second
shows H, and let C be the event that they show the same. Then A and B are independent, but not
conditionally independent given C .

(b) Roll two dice; let A be the event that the smaller is 3, let B be the event that the larger is 6, and let
C be the event that the smaller score is no more than 3, and the larger is 4 or more. Then A and B are
conditionally independent given C , but not independent.

(c) The definitions are equivalent if P(C) = 1.

6. ( 9
10 )

7 < 1
2 .

7. (a) P(A ∩ B) = 1
8 = 1

4 · 1
2 = P(A)P(B), and P(B ∩ C) = 3

8 = 1
2 · 3

4 = P(B)P(C).

(b) P(A ∩ C) = 0 6= P(A)P(C).

(c) Only in the trivial cases when children are either almost surely boys or almost surely girls.

(d) No.

8. No. P(all alike) = 1
4 .

9. P(1st shows r and sum is 7) = 1
36 = 1

6 · 1
6 = P(1st shows r)P(sum is 7).

10. We have P(A1) = 1
9 and P(A2) = P(A3) = 1

2 . Furthermore,

P(A1 ∩ A2 ∩ A3) = P(X = 3, Y = 6) = 1
36 ,

and the equality follows. The events are not independent since they are not pairwise independent, for
example,

P(A2 ∩ A3) = 1
6 6= 1

4 = P(A2)P(A3).

1.7 Solutions. Worked examples

1. Write EF for the event that there is an open road from E to F, and EFc for the complement of
this event; write E ↔ F if there is an open route from E to F, and E /↔ F if there is none. Now
{A ↔ C} = AB ∩ BC, so that

P(AB | A /↔ C) =
P(AB,A /↔ C)

P(A /↔ C)
=

P(AB,B /↔ C)

1 − P(A ↔ C)
=

(1 − p2)p2

1 − (1 − p2)2
.
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Problems Solutions [1.7.2]–[1.8.1]

By a similar calculation (or otherwise) in the second case, one obtains the same answer:

P(AB | A /↔ C) =
(1 − p2)p3

1 − (1 − p2)2 p − (1 − p)
=

(1 − p2)p2

1 − (1 − p2)2
.

2. Let A be the event of exactly one ace, and KK be the event of exactly two kings. Then P(A |
KK) = P(A ∩ KK)/P(KK). Now, by counting acceptable combinations,

P(A ∩ KK) =
(

4

1

)(
4

2

)(
44

10

)/(
52

13

)
, P(KK) =

(
4

2

)(
48

11

)/(
52

13

)
,

so the required probability is

(
4

1

)(
4

2

)(
44

10

)/(
4

2

)(
48

11

)
=

7 · 11 · 37

3 · 46 · 47
≃ 0.44.

3. First method: Suppose that the coin is being tossed by a special machine which is not switched
off when the walker is absorbed. If the machine ever produces N heads in succession, then either the
game finishes at this point or it is already over. From Exercise (1.3.2), such a sequence of N heads
must (with probability one) occur sooner or later.

Alternative method: Write down the difference equations for pk , the probability the game finishes at
0 having started at k, and for p̂k , the corresponding probability that the game finishes at N ; actually
these two difference equations are the same, but the respective boundary conditions are different.
Solve these equations and add their solutions to obtain the total 1.

4. It is a tricky question. One of the present authors is in agreement, since if P(A | C) > P(B | C)

and P(A | Cc) > P(B | Cc) then

P(A) = P(A | C)P(C)+ P(A | Cc)P(Cc)

> P(B | C)P(C)+ P(B | Cc)P(Cc) = P(B).

The other author is more suspicious of the question, and points out that there is a difficulty arising
from the use of the word ‘you’. In Example (1.7.10), Simpson’s paradox, whilst drug I is preferable
to drug II for both males and females, it is drug II that wins overall.

5. Let Lk be the label of the kth card. Then, using symmetry,

P
(
Lk = m

∣∣ Lk > Lr for 1 ≤ r < k
)

=
P(Lk = m)

P(Lk > Lr for 1 ≤ r < k)
=

1

m

/
1

k
= k/m.

6. There are
(2b

m

)
equally likely ways of assigning the men to the pairs. The number of assignations

with no male pair is 2m
(b

m

)
. The answer is 2m

(b
m

)/(2b
m

)
.

1.8 Solutions to problems

1. (a) Method I: There are 36 equally likely outcomes, and just 10 of these contain exactly one six.

The answer is therefore 10
36 = 5

18 .

Method II: Since the throws have independent outcomes,

P(first is 6, second is not 6) = P(first is 6)P(second is not 6) = 1
6 · 5

6 = 5
36 .
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[1.8.2]–[1.8.4] Solutions Events and their probabilities

There is an equal probability of the event {first is not 6, second is 6}.
(b) A die shows an odd number with probability 1

2 ; by independence, P(both odd) = 1
2 · 1

2 = 1
4 .

(c) Write S for the sum, and {i, j} for the event that the first is i and the second j . Then P(S = 4) =
P(1, 3)+ P(2, 2)+ P(3, 1) = 3

36 .

(d) Similarly

P(S divisible by 3) = P(S = 3)+ P(S = 6)+ P(S = 9)+ P(S = 12)

= {P(1, 2)+ P(2, 1)}
+ {P(1, 5)+ P(2, 4)+ P(3, 3)+ P(4, 2)+ P(5, 1)}
+ {P(3, 6)+ P(4, 5)+ P(5, 4)+ P(6, 3)} + P(6, 6)

= 12
36 = 1

3 .

2. (a) By independence, P(n − 1 tails, followed by a head) = 2−n .

(b) If n is odd, P(# heads = # tails) = 0; # A denotes the cardinality of the set A. If n is even, there

are
( n

n/2

)
sequences of outcomes with 1

2 n heads and 1
2 n tails. Any given sequence of heads and tails

has probability 2−n ; therefore P(# heads = # tails) = 2−n
( n

n/2

)
.

(c) There are
(n

2

)
sequences containing 2 heads and n − 2 tails. Each sequence has probability 2−n ,

and therefore P(exactly two heads) =
(n

2

)
2−n .

(d) Clearly

P(at least 2 heads) = 1 − P(no heads)− P(exactly one head) = 1 − 2−n −
(

n

1

)
2−n .

3. (a) Recall De Morgan’s Law (Exercise (1.2.1)):
⋂

i Ai =
(⋃

i Ac
i

)c
, which lies in F since it is

the complement of a countable union of complements of sets in F.

(b) H is a σ -field because:

(i) ∅ ∈ F and ∅ ∈ G; therefore ∅ ∈ H .

(ii) If A1, A2, . . . is a sequence of sets belonging to both F and G, then their union lies in both F and
G, which is to say that H is closed under the operation of taking countable unions.

(iii) Likewise Ac is in H if A is in both F and G.

(c) We display an example. Let

� = {a, b, c}, F =
{
{a}, {b, c},∅,�

}
, G =

{
{a, b}, {c},∅, �

}
.

Then H = F ∪ G is given by H =
{
{a}, {c}, {a, b}, {b, c},∅, �

}
. Note that {a} ∈ H and {c} ∈ H ,

but the union {a, c} is not in H , which is therefore not a σ -field.

4. In each case F may be taken to be the set of all subsets of �, and the probability of any member
of F is the sum of the probabilities of the elements therein.

(a) � = {H,T}3, the set of all triples of heads (H) and tails (T). With the usual assumption of

independence, the probability of any given triple containing h heads and t = 3− h tails is ph(1− p)t ,
where p is the probability of heads on each throw.

(b) In the obvious notation, � = {U,V}2 = {UU,VV,UV,VU}. Also P(UU) = P(VV) = 2
4 · 1

3 and

P(UV) = P(VU) = 2
4 · 2

3 .

(c)� is the set of finite sequences of tails followed by a head, {TnH : n ≥ 0}, together with the infinite
sequence T∞ of tails. Now, P(TnH) = (1 − p)n p, and P(T∞) = limn→∞(1 − p)n = 0 if p 6= 0.
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Problems Solutions [1.8.5]–[1.8.11]

5. As usual, P(A △ B) = P
(
(A ∪ B) \ P(A ∩ B)

)
= P(A ∪ B)− P(A ∩ B).

6. Clearly, by Exercise (1.4.2),

P(A ∪ B ∪ C) = P
(
(Ac ∩ Bc ∩ Cc)c

)
= 1 − P(Ac ∩ Bc ∩ Cc)

= 1 − P(Ac | Bc ∩ Cc)P(Bc | Cc)P(Cc).

7. (a) If A is independent of itself, then P(A) = P(A ∩ A) = P(A)2, so that P(A) = 0 or 1.

(b) If P(A) = 0 then 0 = P(A ∩ B) = P(A)P(B) for all B. If P(A) = 1 then P(A ∩ B) = P(B), so
that P(A ∩ B) = P(A)P(B).

8. �∪ ∅ = � and�∩ ∅ = ∅, and therefore 1 = P(�∪ ∅) = P(�)+ P(∅) = 1 + P(∅), implying
that P(∅) = 0.

9. (i) Q(∅) = P(∅ | B) = 0. Also Q(�) = P(� | B) = P(B)/P(B) = 1.
(ii) Let A1, A2, . . . be disjoint members of F. Then {Ai ∩ B : i ≥ 1} are disjoint members of F,
implying that

Q

(∞⋃

1

Ai

)
= P

(∞⋃

1

Ai

∣∣∣∣ B

)
=

P
(⋃∞

1 (Ai ∩ B)
)

P(B)
=

∞∑

1

P(Ai ∩ B)

P(B)
=

∞∑

1

Q(Ai ).

Finally, since Q is a probability measure,

Q(A | C) =
Q(A ∩ C)

Q(C)
=

P(A ∩ C | B)

P(C | B)
=

P(A ∩ B ∩ C)

P(B ∩ C)
= P(A | B ∩ C).

The order of the conditioning (C before B, or vice versa) is thus irrelevant.

10. As usual,

P(A) = P

(∞⋃

1

(A ∩ Bj )

)
=

∞∑

1

P(A ∩ Bj ) =
∞∑

1

P(A | Bj )P(Bj ).

11. The first inequality is trivially true if n = 1. Let m ≥ 1 and assume that the inequality holds for
n ≤ m. Then

P

(m+1⋃

1

Ai

)
= P

( m⋃

1

Ai

)
+ P(Am+1)− P

( m⋃

1

(Ai ∩ Am+1)

)

≤ P

( m⋃

1

Ai

)
+ P(Am+1) ≤

m+1∑

1

P(Ai ),

by the hypothesis. The result follows by induction. Secondly, by the first part,

P

( n⋂

1

Ai

)
= P

(( n⋃

1

Ac
i

)c)
= 1 − P

( n⋃

1

Ac
i

)
≥ 1 −

n∑

1

P(Ac
i ).
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[1.8.12]–[1.8.15] Solutions Events and their probabilities

12. We have that

P

( n⋂

1

Ai

)
= P

(( n⋃

1

Ac
i

)c)
= 1 − P

( n⋃

1

Ac
i

)

= 1 −
∑

i

P(Ac
i )+

∑

i< j

P(Ac
i ∩ Ac

j )− · · · + (−1)nP

( n⋂

1

Ac
i

)
by Exercise (1.3.4)

= 1 − n +
∑

i

P(Ai )+
(

n

2

)
−
∑

i< j

P(Ai ∪ Aj )−
(

n

3

)
+ · · ·

+ (−1)n

(
n

n

)
− (−1)nP

( n⋃

1

Ai

)
using De Morgan’s laws again

= (1 − 1)n +
∑

i

P(Ai )− · · · − (−1)nP

( n⋃

1

Ai

)
by the binomial theorem.

13. Clearly,

P(Nk ) =
∑

S⊆{1,2,...,n}
|S|=k

P

(⋂

i∈S

Ai

⋂

j /∈S

Ac
j

)
.

For any such given S, we write AS =
⋂

i∈S Ai . Then

P

(⋂

i∈S

Ai

⋂

j /∈S

Ac
j

)
= P(AS)−

∑

j /∈S

P(AS∪{ j })+
∑

j<k
j,k /∈S

P(AS∪{ j,k})− · · ·

by Exercise (1.3.4). Hence

P(Nk ) =
∑

|S|=k

P(AS)−
∑

|S|=k+1

(
k + 1

k

)
P(AS)+ · · · + (−1)n−k

(
n

k

)
P(A1 ∩ · · · ∩ An)

where a typical summation is over all subsets S of {1, 2, . . . , n} having the required cardinality.

Let Ai be the event that a copy of the i th bust is obtained. Then, by symmetry,

P(N3) =
(

5

3

)
α3 −

(
5

4

)(
4

3

)
α4 +

(
5

3

)
α5

where αj is the probability that the j most recent Vice-Chancellors are obtained. Now α3 is given in
Exercise (1.3.4), and α4 and α5 may be calculated similarly.

14. Assuming the conditional probabilities are defined,

P(Aj | B) =
P(Aj ∩ B)

P(B)
=

P(B | Aj )P(Aj )

P
(

B ∩
(⋃n

1 Ai

)) =
P(B | Aj )P(Aj )∑n

i=1 P(B | Ai )P(Ai )
.

15. (a) We have that

P(N = 2 | S = 4) =
P({N = 2} ∩ {S = 4})

P(S = 4)
=

P(S = 4 | N = 2)P(N = 2)∑
i P(S = 4 | N = i )P(N = i )

=
1

12 · 1
4

1
6 · 1

2 + 1
12 · 1

4 + 3
216 · 1

8 + 1
64 · 1

16

.
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(b) Secondly,

P(S = 4 | N even) =
P(S = 4 | N = 2) 1

4 + P(S = 4 | N = 4) 1
16

P(N even)

=
1
12 · 1

4 + 1
64 · 1

16

1
4 + 1

16 + · · ·
=

4233 + 1

4433
.

(c) Writing D for the number shown by the first die,

P(N = 2 | S = 4, D = 1) =
P(N = 2, S = 4, D = 1)

P(S = 4, D = 1)
=

1
6 · 1

6 · 1
4

1
6 · 1

6 · 1
4 + 1

6 · 2
36 · 1

8 + 1
64 · 1

16

.

(d) Writing M for the maximum number shown, if 1 ≤ r ≤ 6,

P(M ≤ r) =
∞∑

j=1

P(M ≤ r | N = j)2− j =
∞∑

j=1

( r

6

) j 1

2 j
=

r

12

(
1 −

r

12

)−1
=

r

12 − r
.

Finally, P(M = r) = P(M ≤ r)− P(M ≤ r − 1).

16. (a) ω ∈ B if and only if, for all n, ω ∈
⋃∞

i=n Ai , which is to say that ω belongs to infinitely many
of the An .

(b) ω ∈ C if and only if, for some n, ω ∈
⋂∞

i=n Ai , which is to say that ω belongs to all but a finite
number of the An .

(c) It suffices to note that B is a countable intersection of countable unions of events, and is therefore
an event.

(d) We have that

Cn =
∞⋂

i=n

Ai ⊆ An ⊆
∞⋃

i=n

Ai = Bn,

and therefore P(Cn) ≤ P(An) ≤ P(Bn). By the continuity of probability measures (1.3.5), if Cn → C

then P(Cn) → P(C), and if Bn → B then P(Bn) → P(B). If B = C = A then

P(A) = P(C) ≤ lim
n→∞

P(An) ≤ P(C) = P(A).

17. If Bn and Cn are independent for all n then, using the fact that Cn ⊆ Bn ,

P(Bn)P(Cn) = P(Bn ∩ Cn) = P(Cn) → P(C) as n → ∞,

and also P(Bn)P(Cn) → P(B)P(C) as n → ∞, so that P(C) = P(B)P(C), whence either P(C) = 0
or P(B) = 1 or both. In any case P(B ∩ C) = P(B)P(C).

If An → A then A = B = C so that P(A) equals 0 or 1.

18. It is standard (Theorem (1.3.5)) that P is continuous if it is countably additive. Suppose then
that P is finitely additive and continuous. Let A1, A2, . . . be disjoint events. Then

⋃∞
1 Ai =

limn→∞
⋃n

1 Ai , so that, by continuity and finite-additivity,

P

(∞⋃

1

Ai

)
= lim

n→∞
P

( n⋃

1

Ai

)
= lim

n→∞

n∑

1

P(Ai ) =
∞∑

1

P(Ai ).
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19. The network of friendship is best represented as a square with diagonals, with the corners labelled
A, B, C, and D. Draw a diagram. Each link of the network is absent with probability p. We write EF
for the event that a typical link EF is present, and EFc for its complement. We write A ↔ D for the
event that A is connected to D by present links.

P(A ↔ D | ADc) = P(A ↔ D | ADc ∩ BCc)p + P(A ↔ D | ADc ∩ BC)(1 − p)(d)

=
{

1 − (1 − (1 − p)2)2
}

p + (1 − p2)2(1 − p).

P(A ↔ D | BCc) = P(A ↔ D | ADc ∩ BCc)p + P(A ↔ D | BCc ∩ AD)(1 − p)(c)

=
{

1 − (1 − (1 − p)2)2
}

p + (1 − p).

P(A ↔ D | ABc) = P(A ↔ D | ABc ∩ ADc)p + P(A ↔ D | ABc ∩ AD)(1 − p)(b)

= (1 − p)
{

1 − p(1 − (1 − p)2)
}

p + (1 − p).

P(A ↔ D) = P(A ↔ D | ADc)p + P(A ↔ D | AD)(1 − p)(a)

=
{

1 − (1 − (1 − p)2)2
}

p2 + (1 − p2)2 p(1 − p)+ (1 − p).

20. We condition on the result of the first toss. If this is a head, then we require an odd number of
heads in the next n − 1 tosses. Similarly, if the first toss is a tail, we require an even number of heads
in the next n − 1 tosses. Hence

pn = p(1 − pn−1)+ (1 − p)pn−1 = (1 − 2p)pn−1 + p

with p0 = 1. As an alternative to induction, we may seek a solution of the form pn = A + Bλn.
Substitute this into the above equation to obtain

A + Bλn = (1 − 2p)A + (1 − 2p)Bλn−1 + p

and A + B = 1. Hence A = 1
2 , B = 1

2 , λ = 1 − 2p.

21. Let A = {run of r heads precedes run of s tails}, B = {first toss is a head}, and C = {first s tosses
are tails}. Then

P(A | Bc) = P(A | Bc ∩ C)P(C | Bc)+ P(A | Bc ∩ Cc)P(Cc | Bc) = 0 + P(A | B)(1 − qs−1),

where p = 1 − q is the probability of heads on any single toss. Similarly P(A | B) = pr−1 + P(A |
Bc)(1− pr−1). We solve for P(A | B) and P(A | Bc), and use the fact that P(A) = P(A | B)p+P(A |
Bc)q, to obtain

P(A) =
pr−1(1 − qs)

pr−1 + qs−1 − pr−1qs−1
.

22. (a) (i) Since every cherry has the same chance to be this cherry, notwithstanding the fact that five

are now in the pig, the probability that the cherry in question contains a stone is 5
20 = 1

4 .

(ii) Think about it the other way round. First a random stone is removed, and then the pig chooses
his fruit. This does not change the relevant probabilities. Let C be the event that the removed cherry
contains a stone, and let P be the event that the pig gets at least one stone. Then P(P | C) is the
probability that out of 19 cherries, 15 of which are stoned, the pig gets a stone. Therefore

P(P | C) = 1 − P
(
pig chooses only stoned cherries

∣∣C
)

= 1 − 15
19 · 14

18 · 13
17 · 12

16 · 11
15 .

(b) Yes, by symmetry, so long as the ‘inadvertently’ withheld tickets were withheld independently of
their numbers.
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23. Label the seats 1, 2, . . . , 2n clockwise. For the sake of definiteness, we dictate that seat 1 be
occupied by a woman; this determines the sex of the occupant of every other seat. For 1 ≤ k ≤ 2n,
let Ak be the event that seats k, k + 1 are occupied by one of the couples (we identify seat 2n + 1 with
seat 1). The required probability is

P

(2n⋂

1

Ac
i

)
= 1 − P

(2n⋃

1

Ai

)
= 1 −

∑

i

P(Ai )+
∑

i< j

P(Ai ∩ Aj )− · · · .

Now, P(Ai ) = n(n − 1)!2/n!2, since there are n couples who may occupy seats i and i + 1, (n − 1)!
ways of distributing the remaining n −1 women, and (n −1)! ways of distributing the remaining n −1
men. Similarly, if 1 ≤ i < j ≤ 2n, then

P(Ai ∩ Aj ) =





n(n − 1)
(n − 2)!2

n!2
if |i − j | 6= 1

0 if |i − j | = 1,

subject to P(A1 ∩ A2n) = 0. In general,

P(Ai1
∩ Ai2

∩ · · · ∩ Aik
) =

n!

(n − k)!

(n − k)!2

n!2
=
(n − k)!

n!

if i1 < i2 < · · · < ik and i j+1 − i j ≥ 2 for 1 ≤ j < k, and 2n + i1 − ik ≥ 2; otherwise this
probability is 0. Hence

P

(2n⋂

1

Ac
i

)
=

n∑

k=0

(−1)k
(n − k)!

n!
Sk,n

where Sk,n is the number of ways of choosing k non-overlapping pairs of adjacent seats.

Finally, we calculate Sk,n . Consider first the number Nk,m of ways of picking k non-overlapping
pairs of adjacent seats from a line (rather than a circle) of m seats labelled 1, 2, . . . ,m. There is a one–
one correspondence between the set of such arrangements and the set of (m − k)–vectors containing
k 1’s and (m − 2k) 0’s. To see this, take such an arrangement of seats, and count 0 for an unchosen
seat and 1 for a chosen pair of seats; the result is such a vector. Conversely take such a vector, read its
elements in order, and construct the arrangement of seats in which each 0 corresponds to an unchosen

seat and each 1 corresponds to a chosen pair. It follows that Nk,m =
(m−k

k

)
.

Turning to Sk,n , either the pair 2n, 1 is chosen or it is not. If it is chosen, we require another
k − 1 pairs out of a line of 2n − 2 seats. If it is not chosen, we require k pairs out of a line of 2n seats.
Therefore

Sk,n = Nk−1,2n−2 + Nk,2n =
(

2n − k − 1

k − 1

)
+
(

2n − k

k

)
=
(

2n − k

k

)
2n

2n − k
.

24. Think about the experiment as laying down the b + r balls from left to right in a random order.

The number of possible orderings equals the number of ways of placing the blue balls, namely
(b+r

b

)
.

The number of ways of placing the balls so that the first k are blue, and the next red, is the number of
ways of placing the red balls so that the first is in position k + 1 and the remainder are amongst the

r + b − k − 1 places to the right, namely
(r+b−k−1

r−1

)
. The required result follows.

The probability that the last ball is red is r/(r + b), the same as the chance of being red for the
ball in any other given position in the ordering.

25. We argue by induction on the total number of balls in the urn. Let pac be the probability that the

last ball is azure, and suppose that pac = 1
2 whenever a, c ≥ 1, a + c ≤ k. Let α and σ be such that
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α, σ ≥ 1, α + σ = k + 1. Let Ai be the event that i azure balls are drawn before the first carmine
ball, and let Cj be the event that j carmine balls are drawn before the first azure ball. We have, by
taking conditional probabilities and using the induction hypothesis, that

pασ =
α∑

i=1

pα−i,σ P(Ai )+
σ∑

j=1

pα,σ− j P(Cj )

= p0,σP(Aα)+ pα,0P(Cσ )+ 1
2

α−1∑

i=1

P(Ai )+ 1
2

σ−1∑

j=1

P(Cj ).

Now p0,σ = 0 and pα,0 = 1. Also, by an easy calculation,

P(Aα) =
α

α + σ
·

α − 1

α + σ − 1
· · ·

1

σ + 1
=

α!σ !

(α + σ)!
= P(Cσ ).

It follows from the above two equations that

pασ = 1
2

( α∑

i=1

P(Ai )+
σ∑

j=1

P(Cj )

)
+ 1

2

(
P(Cσ )− P(Aα)

)
= 1

2 .

26. (a) If she says the ace of hearts is present, then this imparts no information about the other card,
which is equally likely to be any of the three other possibilities.

(b) In the given protocol, interchange hearts and diamonds.

27. Writing A if A tells the truth, and Ac otherwise, etc., the only outcomes consistent with D telling

the truth are ABCD, ABcCcD, AcBCcD, and AcBcCD, with a total probability of 13
81 . Likewise, the

only outcomes consistent with D lying are AcBcCcDc, AcBCDc, ABcCDc, and ABCcDc, with a total

probability of 28
81 . Writing S for the given statement, we have that

P(D | S) =
P(D ∩ S)

P(D ∩ S)+ P(Dc ∩ S)
=

13
81

13
81 + 28

81

=
13

41
.

Eddington himself thought the answer to be 25
71 ; hence the ‘controversy’. He argued that a truthful

denial leaves things unresolved, so that if, for example, B truthfully denies that C contradicts D, then
we cannot deduce that C supports D. He deduced that the only sequences which are inconsistent with
the given statement are ABcCD and ABcCcDc, and therefore

P(D | S) =
25
81

25
81 + 46

81

=
25

71
.

Which side are you on?

28. Let Br be the event that the r th vertex of a randomly selected cube is blue, and note that P(Br ) =
1

10 . By Boole’s inequality,

P

( 8⋃

r=1

Br

)
≤

8∑

r=1

P(Br ) = 8
10 < 1,

so at least 20 per cent of such cubes have only red vertices.
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29. (a) P(B | A) = P(A ∩ B)/P(A) = P(A | B)P(B)/P(A) > P(B).

(b) P(A | Bc) = P(A ∩ Bc)/P(Bc) = {P(A) − P(A ∩ B)}/P(Bc) < P(A).

(c) No. Consider the case A ∩ C = ∅.

30. (a) The number of possible combinations of birthdays of m people is 365m ; the number of
combinations of different birthdays is 365!/(365 − m)!. Use your calculator for the final part.

(b) The answer is

p1 = 365

(
364

n − 2

)
m!

2

1

365m
.

(c) In the same manner as on Earth,

p0 =
M

M
·

M − 1

M
· · ·

M − m + 1

M
,

so that, as M → ∞,

log p0 =
m−1∑

k=1

log

(
1 −

k

M

)

= −
m−1∑

k=1

k

M
+ O(M−2) = −

m(m − 1)

2M
+ O(M−2).

31. (a)

(
n − r + 1

r

)/(
n

r

)
.

(b) (r − 1)

(
n − r + 1

r − 1

)/(
n

r

)
.

(c)
1

r !
.

(d) 1

/(
n

r

)
.

(e)

(
r

k

)(
n − r

r − k

)/(
n

r

)
.

32. In the obvious notation, P(wS, xH, yD, zC) =
(13
w

)(13
x

)(13
y

)(13
z

)/(52
13

)
. Now use your calcula-

tor. Turning to the ‘shape vector’ (w, x, y, z) with w ≥ x ≥ y ≥ z,

P(w, x, y, z) =
{

4P(wS, xH, yD, zC) if w 6= x = y = z,

12P(wS, xH, yD, zC) if w = x 6= y 6= z,

on counting the disjoint ways of obtaining the shapes in question.

33. Use your calculator, and divide each of the following by
(52

5

)
.

(
13

1

)(
4

3

)(
12

3

)(
4

1

)3

,

(
13

2

)(
4

2

)2(
11

1

)(
4

1

)
,

(
13

1

)(
4

3

)(
12

2

)(
4

1

)2

,

10

(
4

1

)5

− 10

(
4

1

)
,

(
4

1

)(
13

5

)
,

(
13

1

)(
4

3

)(
12

1

)(
4

2

)
,

(
13

1

)(
4

4

)(
12

1

)(
4

1

)
, 10

(
4

1

)
.
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34. Divide each of the following by 65.

6! 5!

3! (2!)2
,

6! 5!

3! (2!)3
,

6! 5!

2! (3!)2
,

6!,
6! 5!

4! 3! 2!
,

6! 5!

(4!)2
,

6! 5!

(5!)2
.

35. Let Sr denote the event that you receive r similar answers, and T the event that they are correct.
Denote the event that your interlocutor is a tourist by V . Then T ∩ V c = ∅, and

P(T | Sr ) =
P(T ∩ V ∩ Sr)

P(Sr)
=

P(T ∩ Sr | V )P(V )

P(Sr )
.

Hence:

(a) P(T | S1) = 3
4 × 2

3/1 = 1
2 .

(b) P(T | S2) = ( 3
4 )

2 · 2
3

/[{
( 3

4 )
2 + ( 1

4 )
2
}

2
3 + 1

3

]
= 1

2 .

(c) P(T | S3) = ( 3
4 )

3 · 2
3

/[{
( 3

4 )
3 + ( 1

4 )
3
}

2
3 + 1

3

]
= 9

20 .

(d) P(T | S4) = ( 3
4 )

4 · 2
3

/[{
( 3

4 )
4 + ( 1

4 )
4
}

2
3 + 1

3

]
= 27

70 .

(e) If the last answer differs, then the speaker is surely a tourist, so the required probability is

( 3
4 )

3 · 1
4

( 3
4 )

3 × 1
4 + ( 1

4 )
3. 34

= 9
10 .

36. Let E (respectively W) denote the event that the answer East (respectively West) is given.

(a) Using conditional probability,

P(East correct | E) =
ǫP(E | East correct)

P(E)
=

ǫ · 2
3 .

3
4

1
2 ǫ + ( 2

3 .
1
4 + 1

3 )(1 + ǫ)
= ǫ,

P(East correct | W) =
ǫ( 2

3 .
1
4 + 1

3 )

ǫ( 1
6 + 1

3 )+ 2
3 .

3
4 (1 − ǫ)

= ǫ.

(b) Likewise, one obtains for the answer EE,

ǫ · 2
3 (

3
4 )

2

ǫ · 2
3 (

3
4 )

2 + (1 − ǫ)
(

2
3 (

1
4 )

2 + 1
3

) = ǫ,

and for the answer WW,

ǫ
(

2
3 (

1
4 )

2 + 1
3

)

ǫ · 3
8 + (1 − ǫ) 3

8

= ǫ.

(c) Similarly for EEE,

ǫ( 2
3 )(

3
4 )

2({ǫ( 2
3 )(

3
4 )

3 + (1 − ǫ)
(

2
3 (

1
4 )3 + 1

3

)}
=

9ǫ

11 − 2ǫ
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and for WWW,

ǫ
{
( 2

3 )(
1
4 )

3 + 1
3

}

ǫ
[
( 2

3 )(
1
4 )

3 + 1
3

]
+ (1 − ǫ) 2

3 (
3
4 )

3
=

11ǫ

9 + 2ǫ
.

Then for ǫ = 9
20 , the first is 81

202 ; the second is 1
2 , as you would expect if you look at Problem (1.8.35).

37. Use induction. The inductive step employs Boole’s inequality and the fact that

P

(n+1⋃

r=1

Ar

)
= P(An+1)+ P

( n⋃

r=1

Ar

)
− P

( n⋃

r=1

(Ar ∩ An+1)

)
.

38. We propose to prove by induction that

P

( n⋃

r=1

Ar

)
≤

n∑

r=1

P(Ar )−
∑

2≤r≤n

P(Ar ∩ A1).

There is nothing special about the choice of A1 in this inequality, which will therefore hold with any
suffix k playing the role of the suffix 1. Kounias’s inequality is then implied.

The above inequality holds trivially when n = 1. Assume that it holds for some value of n (≥ 1).
We have that

P

(n+1⋃

r=1

Ar

)
= P

( n⋃

r=1

Ar

)
+ P(An+1)− P

(
An+1 ∩

n⋃

r=1

Ar

)

≤
n∑

r=1

P(Ar )−
∑

2≤r≤n

P(Ar ∩ A1)+ P(An+1)− P

(
An+1 ∩

n⋃

r=1

Ar

)

≤
n+1∑

r=1

P(Ar )−
∑

2≤r≤n+1

P(Ar ∩ A1)

since P(An+1 ∩ A1) ≤ P
(

An+1 ∩
⋃n

r=1 Ar

)
.

39. Let n ≥ 2. We label the passengers 1, 2, . . . , n in order, and we label the seats in such a
way that the seat assignment of passenger i is also labelled i . Write F for the event that the last
passenger finds his or her assigned seat to be free. Let K (≥ 2) be the seat taken by passenger 1,

so that P(F) = (n − 1)−1∑n
k=2 αk where αk = P(F | K = k). Note that αn = 0. Passengers

2, 3, . . . , K − 1 occupy their correct seats. Passenger K either occupies seat 1, in which case all
subsequent passengers take their correct seats, or s/he occupies some seat L satisfying L > K . In the
latter case, passengers K + 1, K + 2, . . . , L − 1 are correctly seated. We obtain thus that

αk =
1

n − k + 1
(1 + αk+1 + αk+2 + · · · + αn), 2 ≤ k < n.

Therefore αk = 1
2 for 2 ≤ k < n, by induction, and so P(F) = 1

2 (n − 2)/(n − 1).

If passenger 1 sits in seat K where K is chosen uniformly at random from {1, 2, . . . , n}, then

P(F) =
1

n

n∑

k=1

αk =
1

n
+

n − 1

n
·

n − 2

2(n − 1)
=

1

2
.

Here is the smart solution to the last part. When the nth passenger chooses a seat, there is only
one available, and this must be either seat 1 or seat n (since seat k ∈ {2, 3, . . . , n − 1}, if free, would
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have been claimed earlier by passenger k). Each of these two possibilities 1, n has probability 1
2 , since

no earlier decision has recognised any difference between them.

40. Placing a ship uniformly at random amounts to picking a great circle at random and then randomly
selecting the centre of one of the two corresponding hemispheres as the location of the ship. Let Ri

be the i th of the n2 − n + 2 regions of the hint, and let Ai be the event that Ri is controlled by no
ship. Since Ri must lie in the uncontrolled hemisphere of every ship, we have P(Ai ) = 2−n . Now, for
i 6= j , there exists a great circle that separates Ri and Rj , so that the events Ai are disjoint. Therefore,

P

(⋃

i

Ai

)
= (n2 − n + 2)2−n ,

and the claim follows.

41. (a) Given X = k, you belong to A with probability k/n. Therefore, the probability that your team
is A and has size k is (k/n)/(n − 1), whence the answer is 2k/[(n(n − 1)].

(b) Let Tk be the event that your team has size k, and C the event that you are its captain. Since there
are two captains, P(C) = 2/n. Then,

P(Tk | C) =
P(Tk ∩ C)

P(C)
=

1

k
·

2k

n(n − 1)

1

P(C)
=

1

n − 1
,

the uniform distribution on {1, 2, . . . , n − 1}.

42. Let n be odd (a similar argument applies if n is even). For A to win on the nth toss, her series

of 1
2 (n + 1) flips must end in a head, preceded by a (possibly empty) run of tails of some length in

{1, 2, . . . , 1
2 (n −1)}, preceded by a (possibly empty) run of heads. There are 1

2 (n −1) such sequences

each with probability ( 1
2 )
(n+1)/2. In addition, B needs not to win before the nth toss, which happens

if and only if he obtained a run of tails, followed by a run of heads (either run may be empty). There

are 1
2 (n + 1) such sequences, each with probability ( 1

2 )
(n−1)/2. The answer is the product, namely

(n − 1)(n + 1)( 1
2 )

n+2.

Set n = 2k + 1. The chance that A wins overall is

∞∑

k=1

2k(2k + 2)( 1
2 )

2k+3 = 1
8

∞∑

k=1

k(k + 1)( 1
4 )

k−1 = 16
27 .

You may find it useful that, for |z| < 1,

∞∑

k=1

k(k + 1)zk−1 =
d2

dz2

(
z2

1 − z

)
.

43. Let Nm denote the event in question, and let Bm be the event that the mth flip completes an earliest

run of length k. Then, P(Bm) = (1 − p)pk P(Nm−k−1) for m ≥ k + 1. Since Nm−1 is the disjoint
union Nm−1 = Nm ∪ Bm ,

P(Nm−1) = P(Nm )+ P(Bm),

and the result follows.

Set k = 2. The auxiliary equation is x3 − x2 + p2q = 0 where p + q = 1. It has x − p as a
factor, and hence the roots are x = p, x−, x+ where

x± = 1
2

(
q ±

√
q2 + 4pq

)
.
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Problems Solutions [1.8.43]–[1.8.43]

By the boundary conditions ρ0 = ρ1 = 1, ρ2 = 1 − p2, we have ρm = A + Bxm
− + Cxm

+ where

A = 0, B =
1 − x+

x− − x+
, C =

1 − x−
x+ − x−

.

In particular, if p = 1
2 , we have x± = 1

4 (1 ±
√

5), and

ρm = 1
10 (5 − 3

√
5)xm

− + 1
10 (5 + 3

√
5)xm

+ , m ≥ 1.
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2

Random variables and their distributions

2.1 Solutions. Random variables

1. (a) If a > 0, x ∈ R, then {ω : aX (ω) ≤ x} = {ω : X (ω) ≤ x/a} ∈ F since X is a random
variable. If a < 0,

{ω : aX (ω) ≤ x} = {ω : X (ω) ≥ x/a} =
{⋃

n≥1

{
ω : X (ω) ≤

x

a
−

1

n

}}c

which lies in F since it is the complement of a countable union of members of F. If a = 0,

{ω : aX (ω) ≤ x} =
{

∅ if x < 0,

� if x ≥ 0;

in either case, the event lies in F.

(b) For ω ∈ �, X (ω) − X (ω) = 0, so that X − X is the zero random variable (that this is a random
variable follows from part (i) with a = 0). Similarly X (ω)+ X (ω) = 2X (ω).

2. Set Y = aX + b. We have that

P(Y ≤ y) =
{

P
(

X ≤ (y − b)/a
)

= F
(
(y − b)/a

)
if a > 0,

P
(

X ≥ (y − b)/a
)

= 1 − limx↑(y−b)/a F(x) if a < 0.

Finally, if a = 0, then Y = b, so that P(Y ≤ y) equals 0 if b > y and 1 if b ≤ y.

3. Assume that any specified sequence of heads and tails with length n has probability 2−n . There
are exactly

(n
k

)
such sequences with k heads.

If heads occurs with probability p then, assuming the independence of outcomes, the probability of

any given sequence of k heads and n−k tails is pk (1−p)n−k . The answer is therefore
(n

k

)
pk(1−p)n−k .

4. Write H = λF + (1 − λ)G . Then limx→−∞ H(x) = 0, limx→∞ H(x) = 1, and clearly H is
non-decreasing and right-continuous. Therefore H is a distribution function.

5. The function g(F(x)) is a distribution function whenever g is continuous and non-decreasing on
[0, 1], with g(0) = 0, g(1) = 1. This is easy to check in each special case.

6. Let U be uniform on the finite set S, and let ∅ 6= R ⊆ S. For u ∈ R, we have

P(U = u | U ∈ R) =
P(U = s)

P(U ∈ R)
=

1/s

r/s
=

1

r
,

where r = |R| and s = |S|.



Worked examples Solutions [2.2.1]–[2.4.1]

2.2 Solutions. The law of averages

1. Let p be the potentially embarrassed fraction of the population, and suppose that each sampled
individual would truthfully answer “yes” with probability p independently of all other individuals.

In the modified procedure, the chance that someone says yes is p + 1
2 (1 − p) = 1

2 (1 + p). If the
proportion of yes’s is now φ, then 2φ − 1 is a decent estimate of p.

The advantage of the given procedure is that it allows individuals to answer “yes” without their
being identified with certainty as having the embarrassing property.

2. Clearly Hn + Tn = n, so that (Hn − Tn)/n = (2Hn/n)− 1. Therefore

P

(
2p − 1 − ǫ ≤

1

n
(Hn − Tn) ≤ 2p − 1 + ǫ

)
= P

(∣∣∣∣
1

n
Hn − p

∣∣∣∣ ≤
ǫ

2

)
→ 1

as n → ∞, by the law of large numbers (2.2.1).

3. Let In(x)be the indicator function of the event {Xn ≤ x}. By the law of averages, n−1∑n
r=1 Ir (x)

converges in the sense of (2.2.1) and (2.2.6) to P(Xn ≤ x) = F(x).

2.3 Solutions. Discrete and continuous variables

1. With δ = supm |am − am−1|, we have that

|F(x)− G(x)| ≤ |F(am)− F(am−1)| ≤ |F(x + δ)− F(x − δ)|

for x ∈ [am−1, am). Hence G(x) approaches F(x) for any x at which F is continuous.

2. For y lying in the range of g, {Y ≤ y} = {X ≤ g−1(y)} ∈ F.

3. Certainly Y is a random variable, using the result of the previous Exercise (2.3.2). Also

P(Y ≤ y) = P
(

F−1(X) ≤ y
)

= P
(

X ≤ F(y)
)

= F(y)

as required. If F is discontinuous then F−1(x) is not defined for all x , so that Y is not well defined.

If F is non-decreasing and continuous, but not strictly increasing, then F−1(x) is not always defined

uniquely. Such difficulties may be circumvented by defining F−1(x) = inf{y : F(y) ≥ x}.

4. The functionλ f +(1−λ)g is non-negative and integrable over R to 1. Finally, f g is not necessarily
a density, though it may be: e.g., if f = g = 1, 0 ≤ x ≤ 1 then f (x)g(x) = 1, 0 ≤ x ≤ 1.

5. (a) If d > 1, then
∫∞

1 cx−d dx = c/(d − 1). Therefore f is a density function if c = d − 1, and

F(x) = 1 − x−(d−1) when this holds. If d ≤ 1, then f has infinite integral and cannot therefore be a
density function.

(b) By differentiating F(x) = ex/(1 + ex ), we see that F is the distribution function, and c = 1.

2.4 Solutions. Worked examples

1. (a) If y ≥ 0,

P(X2 ≤ y) = P(X ≤
√

y)− P(X < −
√

y) = F(
√

y)− F(−
√

y).

(b) We must assume that X ≥ 0. If y ≥ 0,

P(
√

X ≤ y) = P(0 ≤ X ≤ y2) = F(y2).
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[2.4.2]–[2.5.6] Solutions Random variables and their distributions

(c) If −1 ≤ y ≤ 1,

P(sin X ≤ y) =
∞∑

n=−∞
P
(
(2n + 1)π − sin−1 y ≤ X ≤ (2n + 2)π + sin−1 y

)

=
∞∑

n=−∞

{
F
(
(2n + 2)π + sin−1 y

)
− F

(
(2n + 1)π − sin−1 y

)}
.

(d) P(G−1(X) ≤ y) = P(X ≤ G(y)) = F(G(y)).

(e) If 0 ≤ y ≤ 1, then P(F(X) ≤ y) = P(X ≤ F−1(y)) = F(F−1(y)) = y. There is a small

difficulty if F is not strictly increasing, but this is overcome by defining F−1(y) = sup{x : F(x) = y}.
(f) P(G−1(F(X)) ≤ y) = P(F(X) ≤ G(y)) = G(y).

2. It is the case that, for x ∈ R, FY (x) and FZ (x) approach F(x) as a → −∞, b → ∞.

2.5 Solutions. Random vectors

1. Write fxw = P(X = x,W = w). Then f00 = f21 = 1
4 , f10 = 1

2 , and fxw = 0 for other pairs
x, w.

2. (a) We have that

f X,Y (x, y) =





p if (x, y) = (1, 0),

1 − p if (x, y) = (0, 1),

0 otherwise.

(b) Secondly,

fX,Z (x, z) =





1 − p if (x, z) = (0, 0),

p if (x, z) = (1, 0),

0 otherwise.

3. Differentiating gives fX,Y (x, y) = e−x/{π(1 + y2)}, x ≥ 0, y ∈ R.

4. Let A = {X ≤ b, c < Y ≤ d}, B = {a < X ≤ b, Y ≤ d}. Clearly

P(A) = F(b, d)− F(b, c), P(B) = F(b, d)− F(a, d), P(A ∪ B) = F(b, d)− F(a, c);

now P(A ∩ B) = P(A)+ P(B)− P(A ∪ B), which gives the answer. Draw a map of R2 and plot the
regions of values of (X,Y ) involved.

5. The given expression equals

P(X = x, Y ≤ y)− P(X = x, Y ≤ y − 1) = P(X = x, Y = y).

Secondly, for 1 ≤ x ≤ y ≤ 6,

f (x, y) =





(
y − x + 1

6

)r

− 2

(
y − x

6

)r

+
(

y − x − 1

6

)r

if x < y,

(
1

6

)r

if x = y.

6. No, because F is twice differentiable with ∂2 F/∂x∂y < 0.
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Problems Solutions [2.7.1]–[2.7.6]

2.7 Solutions to problems

1. By the independence of the tosses,

P(X > m) = P(first m tosses are tails) = (1 − p)m .

Hence

P(X ≤ x) =
{

1 − (1 − p)⌊x⌋ if x ≥ 0,

0 if x < 0.

Remember that ⌊x⌋ denotes the integer part of x .

2. (a) If X takes values {xi : i ≥ 1} then X =
∑∞

i=1 xi IAi
where Ai = {X = xi }.

(b) Partition the real line into intervals of the form [k2−m , (k + 1)2−m
)
, −∞ < k < ∞, and

define Xm =
∑∞

k=−∞ k2−m Ik,m where Ik,m is the indicator function of the event {k2−m ≤ X <

(k + 1)2−m }. Clearly Xm is a random variable, and Xm(ω) ↑ X (ω) as m → ∞ for all ω.

(c) Suppose {Xm} is a sequence of random variables such that Xm(ω) ↑ X (ω) for all ω. Then
{X ≤ x} =

⋂
m{Xm ≤ x}, which is a countable intersection of events and therefore lies in F.

3. (a) We have that

{X + Y ≤ x} =
∞⋂

n=1

⋃

r∈Q+

(
{X ≤ r} ∩ {Y ≤ x − r + n−1}

)

where Q+ is the set of positive rationals.

In the second case, if XY is a positive function, then XY = exp{log X + log Y }; now use Exercise
(2.3.2) and the above. For the general case, note first that |Z | is a random variable whenever Z is
a random variable, since {|Z | ≤ a} = {Z ≤ a} \ {Z < −a} for a ≥ 0. Now, if a ≥ 0, then
{XY ≤ a} = {XY < 0} ∪ {|XY | ≤ a} and

{XY < 0} =
(
{X < 0} ∩ {Y > 0}

)
∪
(
{X > 0} ∩ {Y < 0}

)
.

Similar relations are valid if a < 0.

Finally {min{X,Y } > x} = {X > x} ∩ {Y > y}, the intersection of events.

(b) It is enough to check that αX + βY is a random variable whenever α, β ∈ R and X,Y are random
variables. This follows from the argument above.

If � is finite, we may take as basis the set {IA : A ∈ F} of all indicator functions of events.

4. (a) F( 3
2 )− F( 1

2 ) = 1
2 .

(b) F(2)− F(1) = 1
2 .

(c) P(X2 ≤ X) = P(X ≤ 1) = 1
2 .

(d) P(X ≤ 2X2) = P(X ≥ 1
2 ) = 3

4 .

(e) P(X + X2 ≤ 3
4 ) = P(X ≤ 1

2 ) = 1
4 .

(f) P(
√

X ≤ z) = P(X ≤ z2) = 1
2 z2 if 0 ≤ z ≤

√
2.

5. P(X = −1) = 1 − p, P(X = 0) = 0, P(X ≥ 1) = 1
2 p.

6. There are 6 intervals of 5 minutes, preceding the arrival times of buses. Each such interval has

probability 5
60 = 1

12 , so the answer is 6 · 1
12 = 1

2 .
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[2.7.7]–[2.7.12] Solutions Random variables and their distributions

7. Let T and B be the numbers of people on given typical flights of EasyPeasy Airlines and Rye-Loaf
Airways. From Exercise (2.1.3),

P(T = k) =
(

10

k

)(
9

10

)k ( 1

10

)10−k

, P(B = k) =
(

20

k

)(
9

10

)k ( 1

10

)20−k

.

Now

P(EPA overbooked) = P(T = 10) = ( 9
10 )

10,

P(RLA overbooked) = P(B ≥ 19) = 20( 9
10 )

19( 1
10 )+ ( 9

10 )
20,

of which the latter is the larger.

8. Assuming the coins are fair, the chance of getting at least five heads is ( 1
2 )

6 + 6( 1
2 )

6 = 7
64 .

9. (a) We have that

P(X+ ≤ x) =
{

0 if x < 0,

F(x) if x ≥ 0.

(b) Secondly,

P(X− ≤ x) =
{

0 if x < 0,

1 − limy↑−x F(y) if x ≥ 0.

(c) P(|X | ≤ x) = P(−x ≤ X ≤ x) if x ≥ 0. Therefore

P(|X | ≤ x) =
{

0 if x < 0,

F(x)− limy↑−x F(y) if x ≥ 0.

(d) P(−X ≤ x) = 1 − limy↑−x F(y).

10. By the continuity of probability measures (1.3.5),

P(X = x0) = lim
y↑x0

P(y < X ≤ x0) = F(x0)− lim
y↑x0

F(y) = F(x0)− F(x0−),

using general properties of F . The result follows.

11. (a) Define m = sup{x : F(x) < 1
2 }. Then F(y) < 1

2 for y < m, and F(m) ≥ 1
2 (if F(m) < 1

2

then F(m′) < 1
2 for some m′ > m, by the right-continuity of F , a contradiction). Hence m is a

median, and is smallest with this property.

A similar argument may be used to show that M = sup{x : F(x) ≤ 1
2 } is a median, and is largest

with this property. The set of medians is then the closed interval [m,M].

(b) Since F is continuous, limy↑m F(y) = F(m) ≤ 1
2 ≤ F(m).

12. (a) Let the dice show X and Y . Write S = X + Y and fi = P(X = i ), gi = P(Y = i ). Assume

that P(S = 2) = P(S = 7) = P(S = 12) = 1
11 . Now

P(S = 2) = P(X = 1)P(Y = 1) = f1g1,

P(S = 12) = P(X = 6)P(Y = 6) = f6g6,

P(S = 7) ≥ P(X = 1)P(Y = 6)+ P(X = 6)P(Y = 1) = f1g6 + f6g1.

It follows that f1g1 = f6g6, and also

1

11
= P(S = 7) ≥ f1g1

(
g6

g1
+

f6

f1

)
=

1

11

(
x +

1

x

)
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Problems Solutions [2.7.13]–[2.7.14]

where x = g6/g1. However x + x−1 > 1 for all x > 0, a contradiction.

(b) Let F and L be the two numbers shown, and check that P(F + L = k mod 6 | L = l) = 1
6 for

1 ≤ l, k ≤ 6.

13. (a) Clearly dL satisfies (i). As for (ii), suppose that dL(F,G) = 0. Then

F(x) ≤ lim
ǫ↓0

{G(x + ǫ)+ ǫ} = G(x)

and

F(y) ≥ lim
ǫ↓0

{G(y − ǫ)− ǫ} = G(y−).

Now G(y−) ≥ G(x) if y > x ; taking the limit as y ↓ x we obtain

F(x) ≥ lim
y↓x

G(y−) ≥ G(x),

implying that F(x) = G(x) for all x .

Finally, if F(x) ≤ G(x + ǫ) + ǫ and G(x) ≤ H(x + δ) + δ for all x and some ǫ, δ > 0, then
F(x) ≤ H(x + δ + ǫ) + ǫ + δ for all x . A similar lower bound for F(x) is valid, implying that
dL(F, H) ≤ dL(F,G)+ dL(G, H).

(b) Clearly dTV satisfies (i), and dTV(X, Y ) = 0 if and only if P(X = Y ) = 1. By the usual triangle
inequality,

∣∣P(X = k) − P(Z = k)
∣∣ ≤

∣∣P(X = k) − P(Y = k)
∣∣ +

∣∣P(Y = k) − P(Z = k)
∣∣,

and (iii) follows by summing over k.

We have that

2
∣∣P(X ∈ A)− P(Y ∈ A)

∣∣ =
∣∣(P(X ∈ A) − P(Y ∈ A)

)
−
(
P(X ∈ Ac)− P(Y ∈ Ac)

)∣∣

=
∣∣∣∣
∑

k

(
P(X = k) − P(Y = k)

)
JA(k)

∣∣∣∣

where JA(k) equals 1 if k ∈ A and equals −1 if k ∈ Ac. Therefore,

2
∣∣P(X ∈ A) − P(Y ∈ A)

∣∣ ≤
∑

k

∣∣P(X = k)− P(Y = k)
∣∣ · |JA(k)| = dTV(X,Y ).

Equality holds if A = {k : P(X = k) > P(Y = k)}.

14. (a) Note that

∂2 F

∂x∂y
= −e−x−y < 0, x, y > 0,

so that F is not a joint distribution function.

(b) In this case

∂2 F

∂x∂y
=
{

e−y if 0 ≤ x ≤ y,

0 if 0 ≤ y ≤ x,

and in addition ∫ ∞

0

∫ ∞

0

∂2 F

∂x∂y
dx dy = 1.
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[2.7.15]–[2.7.20] Solutions Random variables and their distributions

Hence F is a joint distribution function, and easy substitutions reveal the marginals:

FX (x) = lim
y→∞

F(x, y) = 1 − e−x , x ≥ 0,

FY (y) = lim
x→∞

F(x, y) = 1 − e−y − ye−y, y ≥ 0.

15. Suppose that, for some i 6= j , we have pi < pj and Bi is to the left of Bj . Write m for the
position of Bi and r for the position of Bj , and consider the effect of interchanging Bi and Bj . For
k ≤ m and k > r , P(T ≥ k) is unchanged by the move. For m < k ≤ r , P(T ≥ k) is decreased by an
amount pj − pi , since this is the increased probability that the search is successful at the mth position.
Therefore the interchange of Bi and Bj is desirable.

It follows that the only ordering in which P(T ≥ k) can be reduced for no k is that ordering in
which the books appear in decreasing order of probability. In the event of ties, it is of no importance
how the tied books are placed.

16. Intuitively, it may seem better to go first since the first person has greater choice. This conclusion
is in fact false. Denote the coins by C1,C2,C3 in order, and suppose you go second. If your opponent

chooses C1 then you choose C3, because P(C3 beats C1) = 2
5 + 2

5 · 3
5 = 16

25 > 1
2 . Likewise

P(C1 beats C2) = P(C2 beats C3) = 3
5 >

1
2 . Whichever coin your opponent picks, you can arrange

to have a better than evens chance of winning.

17. Various difficulties arise in sequential decision theory, even in simple problems such as this one.
The following simple argument yields the optimal policy. Suppose that you have made a unsuccessful
searches “ahead” and b unsuccessful searches “behind” (if any of these searches were successful, then
there is no further problem). Let A be the event that the correct direction is ahead. Then

P(A | current knowledge) =
P(current knowledge | A)P(A)

P(current knowledge)

=
(1 − p)aα

(1 − p)aα + (1 − p)b(1 − α)
,

which exceeds 1
2 if and only if (1 − p)aα > (1 − p)b(1 − α). The optimal policy is to compare

(1 − p)aα with (1 − p)b(1 − α). You search ahead if the former is larger and behind otherwise; in
the event of a tie, do either.

18. (a) There are
(64

8

)
possible layouts, of which 8+8+2 are linear. The answer is 18/

(64
8

)
.

(b) Each row and column must contain exactly one pawn. There are 8 possible positions in the first
row. Having chosen which of these is occupied, there are 7 positions in the second row which are

admissible, 6 in the third, and so one. The answer is 8!/
(64

8

)
.

19. (a) The density function is f (x) = F ′(x) = 2xe−x2
, x ≥ 0.

(b) The density function is f (x) = F ′(x) = x2e−1/x , x > 0.

(c) The density function is f (x) = F ′(x) = 2(ex + e−x )−2, x ∈ R.

(d) This is not a distribution function because F ′(1) < 0.

20. We have that

P(U = V ) =
∫

{(u,v):u=v}
fU,V (u, v) du dv = 0.

The random variables X , Y are continuous but not jointly continuous: there exists no integrable

function f : [0, 1]2 → R such that

P(X ≤ x, Y ≤ y) =
∫ x

u=0

∫ y

v=0
f (u, v) du dv, 0 ≤ x, y ≤ 1.
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Problems Solutions [2.7.21]–[2.7.23]

21. We have that

P(Y1 = u, Y2 = v) = P

(
X ≤

1

u + 1
v+1

)
− P

(
X ≤

1

u + 1
v

)
=

v + 1

u(v + 1)+ 1
−

v

uv + 1
.

Likewise, P(Y1 = u) =
1

u(u + 1)
.

22. (a) Let v ∈ V , and a ∈ F with a 6= 0. Then

P(v + aX i = y) = P
(

X i = (y − v)/a
)

=
1

|V |
=

1

qn
,

the uniform distribution on V . The claim follows.

(b) Let Nm be the event that X1, X2, . . . , Xm are linearly dependent. Then

P(Nm ) = P
(
a1 X1 + · · · + am Xm = 0 for some (a1, . . . , am) 6= 0

)

≤
∑

a 6=0

P

( m∑

i=1

ai X i = 0

)
=
∑

a 6=0

1

qn
=

qm − 1

qn
< q−(n−m).

Let Sm be the linear span of X1, . . . , Xm . By conditional probability,

P(Nm ) = P(Nm−1)+ P(Xm ∈ Sm−1 | Nc
m−1)P(N

c
m−1).

Off the event Nm−1, |Sm−1| = qm−1, so that

P(Nm ) = P(Nm−1)+
qm−1

qn
(1 − P(Nm−1)) ≥

qm−1

qn
.

23. (a, b) A convex function u satisfies: u is absolutely continuous on closed intervals; its right
and left derivatives exist everywhere and are equal except on a countable set; those derivatives are
non-decreasing wherever they exist, and the left derivative is no greater than the right derivative
everywhere,

(c) Check the definition.
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3

Discrete random variables

3.1 Solutions. Probability mass functions

1. (a) C−1 =
∑∞

1 2−k = 1.

(b) C−1 =
∑∞

1 2−k/k = log 2.

(c) C−1 =
∑∞

1 k−2 = π2/6.

(d) C−1 =
∑∞

1 2k/k! = e2 − 1.

2. (i) 1
2 ; 1 − (2 log 2)−1; 1 − 6π−2; (e2 − 3)/(e2 − 1).

(ii) 1; 1; 1; 1 and 2.

(iii) It is the case that P(X even) =
∑∞

k=1 P(X = 2k), and the answers are therefore

(a) 1
3 , (b) 1 − (log 3)/(log 4), (c) 1

4 . (d) We have that

∞∑

k=1

22k

(2k)!
=

∞∑

i=0

2i + (−2)i

2(i !)
− 1 = 1

2 (e
2 + e−2)− 1,

so the answer is 1
2 (1 − e−2).

3. The number X of heads on the second round is the same as if we toss all the coins twice and count
the number which show heads on both occasions. Each coin shows heads twice with probability p2,

so P(X = k) =
(n

k

)
p2k(1 − p2)n−k .

4. Let Dk be the number of digits (to base 10) in the integer k. Then

P(N = k) = P(N = k | T = Dk)P(T = Dk) =
1

|SDk
|
2−Dk .

5. (a) The assertion follows for the binomial distribution because k(n − k) ≤ (n − k + 1)(k + 1).
The Poisson case is trivial.

(b) This follows from the fact that k8 ≥ (k2 − 1)4.

(c) The geometric mass function f (k) = qpk , k ≥ 0.

3.2 Solutions. Independence

1. We have that

P(X = 1, Z = 1) = P(X = 1, Y = 1) = 1
4 = P(X = 1)P(Z = 1).



Independence Solutions [3.2.2]–[3.2.3]

This, together with three similar equations, shows that X and Z are independent. Likewise, Y and Z

are independent. However

P(X = 1,Y = 1, Z = −1) = 0 6= 1
8 = P(X = 1)P(Y = 1)P(Z = −1),

so that X , Y , and Z are not independent.

2. (a) If x ≥ 1,

P
(

min{X,Y } ≤ x
)

= 1 − P(X > x,Y > x) = 1 − P(X > x)P(Y > x)

= 1 − 2−x · 2−x = 1 − 4−x .

(b) P(Y > X) = P(Y < X) by symmetry. Also

P(Y > X)+ P(Y < X)+ P(Y = X) = 1.

Since
P(Y = X) =

∑

x

P(Y = X = x) =
∑

x

2−x · 2−x = 1
3 ,

we have that P(Y > X) = 1
3 .

(c) 1
3 by part (b).

P(X ≥ kY ) =
∞∑

y=1

P
(

X ≥ kY, Y = y
)

(d)

=
∞∑

y=1

P
(

X ≥ ky, Y = y
)

=
∞∑

y=1

P
(

X ≥ ky)P(Y = y)

=
∞∑

y=1

∞∑

x=0

2−ky−x 2−y =
2

2k+1 − 1
.

P(X divides Y ) =
∞∑

k=1

P(Y = kX) =
∞∑

k=1

∞∑

x=1

P(Y = kx, X = x)(e)

=
∞∑

k=1

∞∑

x=1

2−kx 2−x =
∞∑

k=1

1

2k+1 − 1
.

(f) Let r = m/n where m and n are coprime. Then

P(X = rY ) =
∞∑

k=1

P(X = km, Y = kn) =
∞∑

k=1

2−km 2−kn =
1

2m+n − 1
.

3. (a) We have that

P(X1 < X2 < X3) =
∑

i< j<k

(1 − p1)(1 − p2)(1 − p3)p
i−1
1 p

j−1
2 pk−1

3

=
∑

i< j

(1 − p1)(1 − p2)p
i−1
1 p

j−1
2 p

j
3

=
∑

i

(1 − p1)(1 − p2)p
i−1
1 (p2 p3)

i p3

1 − p2 p3

=
(1 − p1)(1 − p2)p2 p2

3

(1 − p2 p3)(1 − p1 p2 p3)
.
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[3.2.4]–[3.2.5] Solutions Discrete random variables

P(X1 ≤ X2 ≤ X3) =
∑

i≤ j≤k

(1 − p1)(1 − p2)(1 − p3)p
i−1
1 p

j−1
2 pk−1

3(b)

=
(1 − p1)(1 − p2)

(1 − p2 p3)(1 − p1 p2 p3)
.

4. (a) Either substitute p1 = p2 = p3 = 5
6 in the result of Exercise (3.2.3b), or argue as follows,

with the obvious notation. The event {A < B < C} occurs only if one of the following occurs on the
first round:

(i) A and B both rolled 6,

(ii) A rolled 6, B and C did not,

(iii) none rolled 6.

Hence, using conditional probabilities,

P(A < B < C) =
(

1
6

)2 + 1
6

(
5
6

)2
P(B < C)+

(
5
6

)3
P(A < B < C),

In calculating P(B < C) we may ignore A’s rolls, and an argument similar to the above tells us that

P(B < C) =
(

5
6

)2
P(B < C)+ 1

6 .

Hence P(B < C) = 6
11 , yielding P(A < B < C) = 216

1001 .

(b) One may argue as above. Alternatively, let N be the total number of rolls before the first 6 appears.
The probability that A rolls the first 6 is

P
(

N ∈ {1, 4, 7, . . . }
)

=
∑

k=1,4,7,...

(
5
6

)k−1 1
6 = 36

91 .

Once A has thrown the first 6, the game restarts with the players rolling in order BCABCA. . . . Hence

the probability that B rolls the next 6 is 36
91 also, and similarly for the probability that C throws the

third 6. The answer is therefore
(

36
91

)3
.

5. The vector (−Xr : 1 ≤ r ≤ n) has the same joint distribution as (Xr : 1 ≤ r ≤ n), and the claim
follows.

Let X + 2 and Y + 2 have joint mass function f , where fi, j is the (i, j)th entry in the matrix




1
6

1
12

1
12

0 1
6

1
6

1
6

1
12

1
12


 , 1 ≤ i, j ≤ 3.

Then

P(X = −1) = P(X = 1) = P(Y = −1) = P(Y = 1) = 1
3 , P(X = 0) = P(Y = 0) = 1

3 ,

P(X + Y = −2) = 1
6 6= 1

12 = P(X + Y = 2).
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Expectation Solutions [3.3.1]–[3.3.3]

3.3 Solutions. Expectation

1. (a) No!

(b) Let X have mass function: f (−1) = 1
9 , f

(
1
2

)
= 4

9 , f (2) = 4
9 . Then

E(X) = − 1
9 + 2

9 + 8
9 = 1 = − 1

9 + 8
9 + 2

9 = E(1/X).

2. (a) If you have already j distinct types of object, the probability that the next packet contains
a different type is (c − j)/c, and the probability that it does not is j/c. Hence the number of days
required has the geometric distribution with parameter (c− j)/c; this distribution has mean c/(c− j).

(b) The time required to collect all the types is the sum of the successive times to collect each new
type. The mean is therefore

c−1∑

j=0

c

c − j
= c

c∑

k=1

1

k
.

3. (a) Let Ii j be the indicator function of the event that players i and j throw the same number. Then

E(Ii j ) = P(Ii j = 1) =
6∑

i=1

(
1
6

)2 = 1
6 , i 6= j.

The total score of the group is S =
∑

i< j Ii j , so

E(S) =
∑

i< j

E(Ii j ) =
1

6

(
n

2

)
.

We claim that the family {Ii j : i < j} is pairwise independent. The crucial calculation for this is
as follows: if i < j < k then

E(Ii j Ij k) = P(i , j , and k throw same number) =
6∑

r=1

(
1
6

)3 = 1
36 = E(Ii j )E(Ij k).

Hence

var(S) = var

(∑

i< j

Ii j

)
=
∑

i< j

var(Ii j ) =
(

n

2

)
var(I12)

by symmetry. But var(I12) = 1
6

(
1 − 1

6

)
.

(b) Let X i j be the common score of players i and j , so that X i j = 0 if their scores are different. This

time the total score is S =
∑

i< j X i j , and

E(S) =
(

n

2

)
E(X12) =

(
n

2

)
1

6
·

7

2
=

7

12

(
n

2

)
.

The X i j are not pairwise independent, and you have to slog it out thus:

var(S) = E





(∑

i< j

X i j

)2


− E(S)2

=
(

n

2

)
E(X2

12)+ 6

(
n

3

)
E (X12 X23)+





(
n

2

)2

−
(

n

2

)
− 6

(
n

3

)
E (X12)

2 −
(

7

12

)2
(

n

2

)2

=
35

16

(
n

2

)
+

35

72

(
n

3

)
.
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[3.3.4]–[3.3.10] Solutions Discrete random variables

4. The expected reward is
∑∞

k=1 2−k ·2k = ∞. If your utility function is u, then your ‘fair’ entrance

fee is
∑∞

k=1 2−k u(2k ). For example, if u(k) = c(1 − k−α) for k ≥ 1, where c, α > 0, then the fair
fee is

c

∞∑

k=1

2−k(1 − 2−αk) = c

(
1 −

1

2α+1 − 1

)
.

This fee is certainly not ‘fair’ for the person offering the wager, unless possibly he is a noted philan-
thropist.

5. We have that E(Xα) =
∑∞

x=1 xα/{x(x + 1)}, which is finite if and only if α < 1.

6. Clearly

var(a + X) = E
({
(a + X)− E(a + X)

}2) = E
(
{X − E(X)}2) = var(X).

7. For each r , bet {1 + π(r)}−1 on horse r . If the r th horse wins, your payoff is {π(r) + 1}{1 +
π(r)}−1 = 1, which is in excess of your total stake

∑
k{π(k) + 1}−1.

8. We may assume that: (a) after any given roll of the die, your decision whether or not to stop
depends only on the value V of the current roll; (b) if it is optimal to stop for V = r , then it is also
optimal to stop when V > r .

Consider the strategy: stop the first time that the die shows r or greater. Let S(r) be the expected
score achieved by following this stategy. By elementary calculations,

S(6) = 6 · P(6 appears before 1)+ 1 · P(1 appears before 6) = 7
2 ,

and similarly S(5) = 4, S(4) = 4, S(3) = 19
5 , S(2) = 7

2 . The optimal strategy is therefore to stop at

the first throw showing 4, 5, or 6. Similar arguments may be used to show that ‘stop at 5 or 6’ is the
rule to maximize the expected squared score.

9. Proceeding as in Exercise (3.3.8), we find the expected returns for the same strategies to be:

S(6) = 7
2 − 3c, S(5) = 4 − 2c, S(4) = 4 − 3

2 c, S(3) = 19
5 − 6

5 c, S(2) = 7
2 − c.

If c = 1
3 , it is best to stop when the score is at least 4; if c = 1, you should stop when the score is at

least 3. The respective expected scores are 7
2 and 13

5 .

10. (a) Evidently,

EdY =
1

m

∑

v

dv =
2|E |

m
,

and

P(Z = z) =
∑

v∼z

P(Y = v)
1

dv
=

1

m

∑

v∼z

1

dv

where the sum is over all neighbours v of z. Therefore,

EdZ =
1

m

∑′

〈v,z〉∈E

dz

dv
=

1

m

∑′′

〈v,z〉∈E

1

2

(
dz

dv
+

dv

dz

)
,

where
∑′ (respectively,

∑′′) denotes the sum over unordered pairs v, z (respectively, ordered pairs

v, z). The result follows by the fact that, for a > 0, we have a + a−1 ≥ 2.

(b) You should expect your friends to have more friends than you, on average.
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Indicators and matching Solutions [3.3.11]–[3.4.1]

11. Possible values of G are x , −x + y, −x − y + z, −x − y − z, with respective probabilities 1
2 , 1

4 ,
1
8 , 1

8 . Therefore, EG = 0, var(G) = x2 + 1
2 y2 + 1

4 z2, and P(G < 0) = 1
2 .

Suppose Savage orders his stakes according to the permutation abc of xyz. Then

P(G < 0) = 1
4 I (−a + b < 0)+ 1

8 I (−a − b + c < 0)+ 1
8 ,

where I (Z) is the indicator function of Z . We see that P(G < 0) can only be a minimum if b > a,
which we assume henceforth. There are now three possibilities:

abc = zyx, var(G) = z2 + 1
2 y2 + 1

4 x2, −a − b + c = x − y − z, P(G < 0) ≤ 1
4 ,

abc = zxy, var(G) = z2 + 1
2 x2 + 1

4 y2, −a − b + c = y − x − z < 0, P(G < 0) = 1
4 ,

abc = yxz, var(G) = y2 + 1
2 x2 + 1

4 z2, −a − b + c = z − x − y < 0, P(G < 0) = 1
4 .

The variance is a minimum in the first case, which is also the only case for which it is possible

(depending on the values of x , y, z) that P(G < 0) < 1
4 . The answer is abc = zyx : ‘least first,

greatest last’.

12. (a) Letw be Rth in the lexicographic ordering of the n words, so that R is uniform on {1, 2, . . . , n}.
Then

cn = n − 1 + E(cR−1 + cn−R) = n − 1 +
2

n

n−1∑

j=1

cj .

By subtracting successive equations,

cn+1

n + 2
=

2n

(n + 1)(n + 2)
+

cn

n + 1
,

so that

cn+1 = 2(n + 2)

n∑

j=1

j

( j + 1)( j + 2)
.

(b) Express the summand using partial fractions, and use the fact that
∑n

r=1 r−1 = log n+γ+O(n−1)

as n → ∞.

(c) Since
∑

n P(N = n) = 1, we have A = 4. Now, by part (a),

E(cN ) = A

∞∑

n=2

2(n + 1)

(n − 1)n(n + 1)

n−1∑

j=1

j

( j + 1)( j + 2)
.

We interchange the order of summation, calculate the inner sum over n, and then the sum over j , to
find E(cN ) = A = 4.

3.4 Solutions. Indicators and matching

1. (a) Let Ij be the indicator function of the event that the outcome of the ( j + 1)th toss is different

from the outcome of the j th toss. The number R of distinct runs is given by R = 1+
∑n−1

j=1 Ij . Hence

E(R) = 1 + (n − 1)E(I1) = 1 + (n − 1)2pq,
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[3.4.2]–[3.4.2] Solutions Discrete random variables

where q = 1 − p. Now remark that Ij and Ik are independent if | j − k| > 1, so that

E{(R − 1)2} = E

{( n−1∑

j=1

Ij

)2}
= (n − 1)E(I1)+ 2(n − 2)E(I1 I2)

+
{
(n − 1)2 − (n − 1)− 2(n − 2)

}
E(I1)

2.

Now E(I1) = 2pq and E(I1 I2) = p2q + pq2 = pq, and therefore

var(R) = var(R − 1) = (n − 1)E(I1)+ 2(n − 2)E(I1 I2)−
{
(n − 1)+ 2(n − 2)

}
E(I1)

2

= 2pq
(
2n − 3 − 2pq(3n − 5)

)
.

(b) Let Ir be the indicator function of the event that a run of heads begins at the r th position. Then

EIr = P(Ir = 1) =





h

h + t
if r = 1,

ht

(h + t)(h + t − 1)
if r > 1.

Hence, the number R of head runs has mean

ER =
h+t∑

r=1

EIr =
h

h + t
+

h+t∑

r=2

ht

(h + t)(h + t − 1)
=

h(t + 1)

h + t
.

The computation of variance is slightly complex but the answer is fairly sweet. Since Ir Ir+1 = 0,
we have

E(R2) = E







h+t∑

r=1

Ir




2

 = ER +

∑

|i− j |≥2

E(Ii Ij ).

Now, if |i − j | ≥ 2,

E(Ii Ij ) =





h

h + t
·

t

h + t − 1
·

h − 1

h + t − 2
if min{i, j} = 1,

h

h + t
·

t

h + t − 1
·

h − 1

h + t − 2
·

t − 1

h + t − 3
otherwise.

It follows after a calculation that

var(R) =
ht (h − 1)(t + 1)

(h + t)2(h + t − 1)
.

2. The required total is T =
∑k

i=1 X i , where X i is the number shown on the i th ball. Hence

E(T ) = kE(X1) = 1
2 k(n + 1). Now calculate, boringly,

E

{( k∑

i=1

X i

)2}
= kE(X2

1)+ k(k − 1)E(X1 X2)

=
k

n

n∑

1

j2 +
k(k − 1)

n(n − 1)
2
∑

i> j

i j

=
k

n

{
1
3 n(n + 1)(n + 2)− 1

2 n(n + 1)
}

+
k(k − 1)

n(n − 1)

n∑

j=1

j
{

n(n + 1)− j ( j + 1)
}

= 1
6 k(n + 1)(2n + 1)+ 1

12 k(k − 1)(3n + 2)(n + 1).

214



Indicators and matching Solutions [3.4.3]–[3.4.7]

2 t

1 3

5 6

4s

Figure 3.1. The network with source s and sink t .

Hence

var(T ) = k(n + 1)
{

1
6 (2n + 1)+ 1

12 (k − 1)(3n + 2)− 1
4 k(n + 1)

}
= 1

12 (n + 1)k(n − k).

3. Each couple survives with probability

(
2n − 2

m

)/(
2n

m

)
=
(

1 −
m

2n

)(
1 −

m

2n − 1

)
,

so the required mean is

n
(

1 −
m

2n

)(
1 −

m

2n − 1

)
.

4. Any given red ball is in urn R after stage k if and only if it has been selected an even number of
times. The probability of this is

∑

m even

(
k

m

)( 1

n

)m(
1 −

1

n

)k−m
=

1

2

{[(
1 −

1

n

)
+

1

n

]k

+
[(

1 −
1

n

)
−

1

n

]k
}

=
1

2

{
1 +

(
1 −

2

n

)k
}
,

and the mean number of such red balls is n times this probability.

5. Label the edges and vertices as in Figure 3.1. The structure function is

ζ(X) = X5 + (1 − X5)

{
(1 − X1)X4

[
X3 + (1 − X3)X2 X6

]

+X1

[
X2 + (1 − X2)

(
X3

〈
X6 + X4(1 − X6)

〉)]}
.

For the reliability, see Problem (1.8.19a).

6. The structure function is I{S≥k}, the indicator function of {S ≥ k} where S =
∑n

c=1 Xc. The

reliability is therefore
∑n

i=k

(n
i

)
pi (1 − p)n−i .

7. Independently colour each vertex livid or bronze with probability 1
2 each, and let L be the random

set of livid vertices. Then ENL = 1
2 |E |. There must exist one or more possible values of NL which

are at least as large as its mean.
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[3.4.8]–[3.4.10] Solutions Discrete random variables

8. Let Ir be the indicator function that the r th pair have opposite polarity, so that X = 1+
∑n−1

r=1 Ir .

We have that P(Ir = 1) = 1
2 and P(Ir = Ir+1 = 1) = 1

4 , whence EX = 1
2 (n + 1) and var X =

1
4 (n − 1).

9. (a) Let Ai be the event that the integer i remains in the i th position. Then

P

( n⋃

r=1

Ar

)
=
∑

r

P(Ar )−
∑

r<s

P(Ar ∩ As)+ · · · + (−1)n−1P

(⋂

r

Ar

)

= n ·
1

n
−
(

n

2

)
1

n(n − 1)
+ · · · + (−1)n−1 1

n!
.

Therefore the number M of matches satisfies

P(M = 0) =
1

2!
−

1

3!
+ · · · + (−1)n

1

n!
.

Now

P(M = r) =
(

n

r

)
P
(
r given numbers match, and the remaining n − r are deranged

)

=
n!

r !(n − r)!

(n − r)!

n!

(
1

2!
−

1

3!
+ · · · + (−1)n−r 1

(n − r)!

)
.

(b) We have that

dn+1 =
n+1∑

r=2

#{derangements with 1 in the r th place}

= n
[
#{derangements which swap 1 with 2}
+ #{derangements in which 1 is in the 2nd place and 2 is not in the 1st place}

]

= ndn−1 + ndn,

where # A denotes the cardinality of the set A. By rearrangement, dn+1 −(n+1)dn = −(dn −ndn−1).
Set un = dn − ndn−1 and note that u2 = 1, to obtain un = (−1)n , n ≥ 2, and hence

dn =
n!

2!
−

n!

3!
+ · · · + (−1)n

n!

n!
.

Now divide by n! to obtain the results above.

(c) The answer is m/n by symmetry.

10. Let Ir,s be the indicator function of the event that students r and s share the same birthday. Then

EB = E
∑

r

∑

s>r

Ir,s =
(

n

2

)
1

365
.

Furthermore,

var(B) = E(B2)− E(B)2 =
(

n

2

)
E(I 2

1,2)+ n(n + 1)E(I1,2 I2,3)

+
{(

n

2

)2

−
(

n

2

)
− n(n + 1)

}
E(I1,2 I3,4)−

(
n

2

)2
1

3652

=
(

n

2

)
364

3652
.
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Indicators and matching Solutions [3.4.11]–[3.4.14]

11. Choose the array A such that each disk touches its 6 neighbouring disks. Now cast A onto the
plane randomly, and let U be the event that the origin 0 is not covered by a disk. By an easy calculation,

P(U) =

√
3

4 − π
8√

3
4

= 1 − 1
2π/

√
3 ≃ 0.093,

the proportion of the plane not covered by the disks. Hence, the probability that one or more of ten
chosen points is not covered is no greater than

10∑

r=1

P(U) ≃ 0.93.

The result follows since this is strictly less than 1.

12. By conditioning on the weather on day n,

wn+1 = pwn + (1 − p)(1 −wn).

Hence wn = 1
2 + 1

2 (2p − 1)n for n ≥ 0. The mean number of wet days in the next week is
∑7

r=1 wr .

13. Let Ii be the indicator function that the i th ball chosen is green. Then EIi = g/b and E(I1 I2) =
g(g − 1)/[b(b − 1)]. Therefore, the number G of green balls in the sample satisfies

EG = nEI1 = ng/b, E(G2) = E



[

n∑

i=1

Ii

]2

 = nEI1 + n(n − 1)E(I1 I2),

whence

var G = E(G2)− E(G)2 =
ng(b − n)(b − g)

b2(b − 1)
.

14. Let Ir be the indicator function that the r th couple sits together. First, we seat the men at random
in the odd-numbered chairs. Since each man has two empty adjacent chairs, EIr = P(Ir = 1) = 2/n.
We have for r 6= s that

P(Ir = Is = 1) = P(Is = 1 | Ir = 1)P(Ir = 1) =
(

1

n − 1
·

1

n − 1
+

n − 2

n − 1
·

2

n − 1

)
2

n

=
2n − 3

(n − 1)2
·

2

n
.

Now, EX = nEI1 = 2, and

var X = E



[

n∑

r=1

Ir

]2

− 4

=
n∑

r=1

P(Ir = 1)+
∑

r 6=s

P(Ir = Is = 1)− 4 = 2 −
2

n − 1
.
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[3.5.1]–[3.6.1] Solutions Discrete random variables

3.5 Solutions. Examples of discrete variables

1. There are n!/(n1! n2! · · · nt !) sequences of outcomes in which the i th possible outcome occurs

ni times for each i . The probability of any such sequence is p
n1
1 p

n2
2 · · · p

nt
t , and the result follows.

2. The total number H of heads satisfies

P(H = x) =
∞∑

n=x

P(H = x | N = n)P(N = n) =
∞∑

n=x

(
n

x

)
px (1 − p)n−x λ

ne−λ

n!

=
(λp)x e−λp

x!

∞∑

n=x

{λ(1 − p)}n−x e−λ(1−p)

(n − x)!
.

The last summation equals 1, since it is the sum of the values of the Poisson mass function with
parameter λ(1 − p).

3. dpn/dλ = pn−1 − pn where p−1 = 0. Hence (d/dλ)P(X ≤ n) = pn(λ).

4. The probability of a marked animal in the nth place is a/b. Conditional on this event, the chance
of n − 1 preceding places containing m − 1 marked and n − m unmarked animals is

(
a − 1

m − 1

)(
b − a

n − m

)/(
b − 1

n − 1

)
,

as required. Now let X j be the number of unmarked animals between the j − 1th and j th marked
animals, if all were caught. By symmetry, EX j = (b − a)/(a + 1), whence EX = m(EX1 + 1) =
m(b + 1)/(a + 1).

5. By conditional probabilities, integration by parts, and Exercise (3.5.3),

P(Y ≤ n) =
n∑

r=0

∫ ∞

0
pr (λ) f (λ) dλ

=
n∑

r=0

[
pr (λ)F(λ)

]∞
0

−
∫ ∞

0

(
d

dλ
P(Y ≤ n)

)
F(λ) dλ

= 0 +
∫ ∞

0
pn(λ)F(λ) dλ.

The second part is similar.

3.6 Solutions. Dependence

1. Remembering Problem (2.7.3b), it suffices to show that var(aX + bY ) < ∞ if a, b ∈ R and
var(X), var(Y ) < ∞. Now,

var(aX + bY ) = E
({

aX + bY − E(aX + bY )
}2
)

= a2 var(X)+ 2ab cov(X,Y )+ b2 var(Y )

≤ a2 var(X)+ 2ab
√

var(X) var(Y )+ b2 var(Y )

=
(

a
√

var(X)+ b
√

var(Y )
)2

where we have used the Cauchy–Schwarz inequality (3.6.9) applied to X − E(X), Y − E(Y ).
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Dependence Solutions [3.6.2]–[3.6.8]

2. Let Ni be the number of times the i th outcome occurs. Then Ni has the binomial distribution
with parameters n and pi .

3. For x = 1, 2, . . . ,

P(X = x) =
∞∑

y=1

P(X = x,Y = y)

=
∞∑

y=1

C

2

{
1

(x + y − 1)(x + y)
−

1

(x + y)(x + y + 1)

}

=
C

2x(x + 1)
=

C

2

(
1

x
−

1

x + 1

)
,

and hence C = 2. Clearly Y has the same mass function. Finally E(X) =
∑∞

x=1(x + 1)−1 = ∞, so
the covariance does not exist.

4. Max{u, v} = 1
2 (u + v)+ 1

2 |u − v|, and therefore

E
(

max{X2,Y 2}
)

= 1
2 E(X2 + Y 2)+ 1

2 E
∣∣(X − Y )(X + Y )

∣∣

≤ 1 + 1
2

√
E
(
(X − Y )2

)
E
(
(X + Y )2

)

= 1 + 1
2

√
(2 − 2ρ)(2 + 2ρ) = 1 +

√
1 − ρ2,

where we have used the Cauchy–Schwarz inequality.

5. (a) log y ≤ y − 1 with equality if and only if y = 1. Therefore,

E

(
log

fY (X)

f X (X)

)
≤ E

[
fY (X)

f X (X)
− 1

]
= 0,

with equality if and only if fY = fX .

(b) This holds likewise, with equality if and only if f (x, y) = fX (x) fY (y) for all x, y, which is to
say that X and Y are independent.

6. (a) a + b + c = E{I{X>Y } + I{Y>Z} + I{Z>X}} ≤ 2, whence min{a, b, c} ≤ 2
3 . Equality is

attained, for example, if the vector (X,Y, Z) takes only three values with probabilities f (2, 1, 3) =
f (3, 2, 1) = f (1, 3, 2) = 1

3 .

(b) P(X < Y ) = P(Y < X), etc.

(c) We have that c = a = p and b = 1 − p2. Also sup min{p, (1 − p2)} = 1
2 (

√
5 − 1).

7. We have for 1 ≤ x ≤ 9 that

fX (x) =
9∑

y=0

log

(
1 +

1

10x + y

)
= log

9∏

y=0

(
1 +

1

10x + y

)
= log

(
1 +

1

x

)
.

By calculation, EX ≃ 3.44.

8. (i) fX ( j) = c

∞∑

k=0

{
j

j !
a j ak

k!
+

k

k!
ak a j

j !

}
= c

ea( j + a)a j

j !
.

(ii) 1 =
∑

j

f X ( j) = 2ace2a , whence c = e−2a/(2a).
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[3.6.9]–[3.7.2] Solutions Discrete random variables

(iii) fX+Y (r) =
r∑

j=0

crar

j ! (r − j)!
=

crar 2r

r !
, r ≥ 0.

(iv) E(X + Y − 1) =
∞∑

r=1

cr(r − 1)(2a)r

r !
= 2a. Now E(X) = E(Y ), and therefore E(X) = a + 1

2 .

9. We have that cov(U, V ) = var Y > 0 and cov(V ,W ) = var Z > 0. However, cov(U,W ) =
− var X < 0.

10. Let (U, V ) and (X,Y ) be independent, identically distributed random vectors. By independence
and the given identity,

E(V 2)E(X2)+ E(U2)E(Y 2)− 2E(U V )E(XY ) ≥ 0,

with equality if and only if P(V X = UY ) = 1. Hence, E(X2)E(Y 2) ≥ E(XY )2 with equality if and
only if P(aX = bY ) = 1 for some real a, b, not both being zero.

11. Without loss of generality let EX = 0. The fundamental inequality is t − X ≤ (t − X)I{X<t},
where IA is the indicator function of A (just check the two cases X < t and X ≥ t). Take expectations
and use the Cauchy–Schwarz inequality to obtain

t = E(t − X) ≤ E
[
(t − X)I{X<t}

]
≤
√

E
(
(t − X)2

)
P(X < t).

If t > 0, then

t2 ≤ E
(
(t − X)2

)
P(X < t) = (t2 + var X)P(X < t).

3.7 Solutions. Conditional distributions and conditional expectation

1. (a) We have that

E(aY + bZ | X = x) =
∑

y,z

(ay + bz)P(Y = y, Z = z | X = x)

= a
∑

y,z

yP(Y = y, Z = z | X = x)+ b
∑

y,z

zP(Y = y, Z = z | X = x)

= a
∑

y

yP(Y = y | X = x)+ b
∑

z

zP(Z = z | X = x).

Parts (b)–(e) are verified by similar trivial calculations. Turning to (f),

E
{

E(Y | X, Z)
∣∣ X = x

}
=
∑

z




∑

y

yP(Y = y | X = x, Z = z)P(X = x, Z = z | X = x)





=
∑

z

∑

y

y
P(Y = y, X = x, Z = z)

P(X = x, Z = z)
·

P(X = x, Z = z)

P(X = x)

=
∑

y

yP(Y = y | X = x) = E(Y | X = x)

= E
{

E(Y | X)

∣∣∣ X = x, Z = z
}
, by part (e).

2. If φ and ψ are two such functions then E
(
(φ(X)−ψ(X))g(X)

)
= 0 for any suitable g. Setting

g(X) = I{X=x} for any x ∈ R such that P(X = x) > 0, we obtain φ(x) = ψ(x). Therefore
P(φ(X) = ψ(X)) = 1.
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Conditional distributions and conditional expectation Solutions [3.7.3]–[3.7.8]

3. We do not seriously expect you to want to do this one. However, if you insist, the method is to
check in each case that both sides satisfy the appropriate definition, and then to appeal to uniqueness,
deducing that the sides are almost surely equal (see Williams 1991, p. 88).

4. The natural definition is given by

var(Y | X = x) = E
({

Y − E(Y | X = x)
}2 ∣∣ X = x

)
.

Now,

var(Y ) = E({Y − EY }2) = E
[
E
({

Y − E(Y | X)+ E(Y | X)− EY
}2 ∣∣ X

)]

= E
(
var(Y | X)

)
+ var

(
E(Y | X)

)

since the mean of E(Y | X) is EY , and the cross product is, by Exercise (3.7.1e),

2E
[
E
({

Y − E(Y | X)
}{

E(Y | X)− EY
} ∣∣ X

)]

= 2E
[{

E(Y | X)− EY
}

E
{

Y − E(Y | X)
∣∣ X
}]

= 0

since E
{

Y − E(Y | X)
∣∣ X
}

= E(Y | X)− E(Y | X) = 0.

5. We have that

E(T − t | T > t) =
∞∑

r=0

P(T > t + r | T > t) =
∞∑

r=0

P(T > t + r)

P(T > t)
.

E(T − t | T > t) =
N−t∑

r=0

N − t − r

N − t
= 1

2 (N − t + 1).(a)

E(T − t | T > t) =
∞∑

r=0

2−(t+r)

2−t
= 2.(b)

6. Clearly

E(S | N = n) = E

( n∑

i=1

X i

)
= µn,

and hence E(S | N) = µN . It follows that E(S) = E{E(S | N)} = E(µN).

By Exercise (3.7.4),

var S = E(var(S | N)) + var(E(S | N)) = E(Nσ 2)+ var(µN) = σ 2EN + µ2 var N .

7. A robot passed is in fact faulty with probability π = {φ(1 − δ)}/(1 − φδ). Thus the number of
faulty passed robots, given Y , is bin(n − Y, π), with mean (n − Y ){φ(1 − δ)}/(1 − φδ). Hence

E(X | Y ) = Y +
(n − Y )φ(1 − δ)

1 − φδ
.

8. (a) Let m be the family size, φr the indicator that the r th child is female, and µr the indicator of
a male. The numbers G , B of girls and boys satisfy

G =
m∑

r=1

φr , B =
m∑

r=1

µr , E(G) = 1
2 m = E(B).
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[3.7.9]–[3.7.13] Solutions Discrete random variables

(It will be shown later that the result remains true for random m under reasonable conditions.) We
have not used the property of independence.

(b) With M the event that the selected child is male,

E(G | M) = E

(m−1∑

r=1

φr

)
= 1

2 (m − 1) = E(B).

The independence is necessary for this argument.

9. Conditional expectation is defined in terms of the conditional distribution, so the first step is not
justified. Even if this step were accepted, the second equality is generally false.

10. By conditioning on Xn−1,

EXn = E
[
E(Xn | Xn−1)

]
= E

[
p(Xn−1 + 1)+ (1 − p)(Xn−1 + 1 + X̂n)

]

where X̂n has the same distribution as Xn . Hence EXn = (1 + EXn−1)/p. Solve this subject to

EX1 = p−1.

11. In the jointly discrete case,

cov(X, Y | Z) = E
((

X − E(X | Z)
)(

Y − E(Y | Z)
) ∣∣∣ Z

)

=
∑

x,y

(
x − E(X | Z)

)(
y − E(Y | Z)

)
fX,Y |Z (x, y | Z),

where fX,Y |Z is the conditional joint mass function of X , Y given Z . For the next part, write down
cov(X,Y ), and use conditional expectation and the pull-through property of Exercise (3.7.1e), to
obtain the claim.

12. Let B be the event that the first ball drawn is blue, and suppose B occurs. Between two consec-
utively chosen blue balls, and after the last blue ball, there is a run of red balls. Since there are r red
balls in all, by symmetry, the first red run has mean length r/b, making 2 + (r/b) when including the
first two blue balls. Writing D for the mean number required, we have shown that

E(D | B) =
r

b
+ 2, E(D | Bc) =

b

r
+ 2,

so that, by conditional probability, ED = E(D | B)P(B)+ E(D | Bc)P(Bc) = 3.

13. (a) By symmetry, EX = 1
2 n. Furthermore,

E(X (X − 1)) =
1

n + 1

n∑

k=1

k(k − 1)

=
1

n + 1
·

1

3

n∑

k=1

{
(k + 1)k(k − 1)− k(k − 1)(k − 2)

}
=

1

3
n(n − 1).

Therefore, var(X) = 1
3 n(n − 1)+ 1

2 n − 1
4 n2 = 1

12 n2 + 1
6 n.

(b) Since Y has a conditional binomial distribution bin(n, X/n), we have EY = E(E(Y | X)) = EX =
1
2 n. Similarly,

E(Y 2) = E(E(Y 2 | X))

= E

(
n

X

n

(
1 −

X

n

)
+ X2

)
= EX +

n − 1

n
E(X2) =

1

6
(2n2 + 2n − 1).
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Sums of random variables Solutions [3.7.14]–[3.8.2]

and the formula for var Y follows in the usual way.

We have E(X + Y ) = EX + EY = n. Now,

E(XY ) = E
(
E(XY | X)

)
= E

(
XE(Y | X)

)
= E(X2),

so that

E
(
(X + Y )2

)
= 3E(X2)+ E(Y 2) = 1

6 (8n2 + 5n − 1),

whence var(X + Y ) = E((X + Y )2)− n2 = 1
6 (2n2 + 5n − 1).

14. This is just summation. First,

P(X = x) =
∞∑

y=x

λye−2λ

x! (y − x)!
=
λx e−2λ

x!

∞∑

y=x

λy−x

(y − x)!
=
λx

x!
e−λ,

P(Y = y) =
y∑

x=0

λye−2λ

x! (y − x)!
=
λye−2λ

y!

y∑

x=0

(
y

x

)
=
(2λ)y

y!
e−2λ.

The conditional mass function is

fX |Y (x | y) =
f (x, y)

fY (y)
=
(

y

x

)(
1

2

)y

, x = 0, 1, 2, . . . , y,

the bin(y, 1
2 ) distribution.

3.8 Solutions. Sums of random variables

1. By the convolution theorem,

P(X + Y = z) =
∑

k

P(X = k)P(Y = z − k)

=





k + 1

(m + 1)(n + 1)
if 0 ≤ z ≤ m ∧ n,

(m ∧ n)+ 1

(m + 1)(n + 1)
if m ∧ n < z < m ∨ n,

m + n + 1 − k

(m + 1)(n + 1)
if m ∨ n ≤ z ≤ m + n,

where m ∧ n = min{m, n} and m ∨ n = max{m, n}.

2. If z ≥ 2,

P(X + Y = z) =
∞∑

k=1

P(X = k, Y = z − k) =
C

z(z + 1)
.

223



[3.8.3]–[3.8.6] Solutions Discrete random variables

Also, if z ≥ 0,

P(X − Y = z) =
∞∑

k=1

P(X = k + z,Y = k)

= C

∞∑

k=1

1

(2k + z − 1)(2k + z)(2k + z + 1)

= 1
2 C

∞∑

k=1

{
1

(2k + z − 1)(2k + z)
−

1

(2k + z)(2k + z + 1)

}

= 1
2 C

∞∑

r=1

(−1)r+1

(r + z)(r + z + 1)
.

By symmetry, if z ≤ 0, P(X − Y = z) = P(X − Y = −z) = P(X − Y = |z|).

3.

z−1∑

r=1

α(1 − α)r−1β(1 − β)z−r−1 =
αβ
{
(1 − β)z−1 − (1 − α)z−1

}

α − β
.

4. Repeatedly flip a coin that shows heads with probability p. Let Xr be the number of flips after
the r − 1th head up to, and including, the r th. Then Xr is geometric with parameter p. The number
of flips Z to obtain n heads is negative binomial, and Z =

∑n
r=1 Xr by construction.

5. Sam. Let Xn be the number of sixes shown by 6n dice, so that Xn+1 = Xn + Y where Y has the
same distribution as X1 and is independent of Xn . Then,

P(Xn+1 ≥ n + 1) =
6∑

r=0

P(Xn ≥ n + 1 − r)P(Y = r)

= P(Xn ≥ n)+
6∑

r=0

[
P(Xn ≥ n + 1 − r)− P(Xn ≥ n)

]
P(Y = r).

We set g(k) = P(Xn = k) and use the fact, easily proved, that g(n) ≥ g(n − 1) ≥ · · · ≥ g(n − 5) to
find that the last sum is no bigger than

g(n)

6∑

r=0

(r − 1)P(Y = r) = g(n)
(
E(Y )− 1

)
.

The claim follows since E(Y ) = 1.

6. (i) LHS =
∞∑

n=0

ng(n)e−λλn/n! = λ

∞∑

n=1

g(n)e−λ

(n − 1)!
λn−1 = RHS.

(ii) Conditioning on N and X N ,

LHS = E
(
E(Sg(S) | N)

)
= E

{
NE
(

X N g(S)
∣∣ N
)}

=
∞∑

n=0

e−λλn

n!
n

∞∑

x=0

xE

(
g

(n−1∑

r=1

Xr + x

))
P(X0 = x)

= λ

∞∑

x=0

xE
(
g(S + x)

)
P(X0 = x) = RHS.
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Simple random walk Solutions [3.8.7]–[3.9.2]

7. See Exercise (3.7.6).

8. By conditional probability,

P(X + Y = n + 1, X = k) = P(X + Y = n + 1 | X = k)P(X = k)

=
pλµn

q

(
q

µ

)k

, 1 ≤ k ≤ n.

Therefore,

P(X + Y = n + 1) =
n∑

k=1

P(X + Y = n + 1, X = k) = pλ
µn − qn

µ− q
, n ≥ 1,

P(X = k | X + Y = n + 1) =
(µ− q)qk−1µn−k

µn − qn
, 1 ≤ k ≤ n.

When q = µ, either recompute (using the fact that the result of the first calculation does not depend
on k), or use L’Hôpital’s rule. The outcome is that, conditional on X + Y = n + 1, X is uniform on

{1, 2, . . . , n}, and moreover P(X + Y = n + 1) = np2qn−1 for n ≥ 1.

3.9 Solutions. Simple random walk

1. (a) Consider an infinite sequence of tosses of a coin, any one of which turns up heads with
probability p. With probability one there will appear a run of N heads sooner or later. If the coin
tosses are ‘driving’ the random walk, then absorption occurs no later than this run, so that ultimate
absorption is (almost surely) certain. Let S be the number of tosses before the first run of N heads.

Certainly P(S > Nr) ≤ (1 − pN )r , since Nr tosses may be divided into r blocks of N tosses, each

of which is such a run with probability pN . Hence P(S = s) ≤ (1 − pN )⌊s/N⌋, and in particular

E(Sk) < ∞ for all k ≥ 1. By the above argument, E(T k) < ∞ also.

2. If S0 = k then the first step X1 satisfies

P(X1 = 1 | W ) =
P(X1 = 1)P(W | X1 = 1)

P(W )
=

ppk+1

pk
.

Let T be the duration of the walk. Then

Jk = E(T | S0 = k,W )

= E(T | S0 = k,W, X1 = 1)P(X1 = 1 | S0 = k,W )

+ E(T | S0 = k,W, X1 = −1)P(X1 = −1 | S0 = k,W )

=
(
1 + Jk+1

) pk+1 p

pk
+
(
1 + Jk−1

)(
1 −

pk+1 p

pk

)

= 1 +
ppk+1 Jk+1

pk
+
(

pk − ppk+1

)
Jk−1

pk
,

as required.

Certainly J0 = 0. If p = 1
2 then pk = 1 − (k/N), so the difference equation becomes

(N − k − 1)Jk+1 − 2(N − k)Jk + (N − k + 1)Jk−1 = 2(k − N)

for 1 ≤ k ≤ N − 1 (where JN is interpreted as 0). Setting uk = (N − k)Jk , we obtain

uk+1 − 2uk + uk−1 = 2(k − N),
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[3.9.3]–[3.9.7] Solutions Discrete random variables

with general solution uk = A + Bk − 1
3 (N − k)3 for constants A and B. Now u0 = uN = 0, and

therefore A = 1
3 N3, B = − 1

3 N2, implying that Jk = 1
3 {N2 − (N − k)2}, 0 ≤ k < N .

3. The recurrence relation may be established as in Exercise (3.9.2). Set uk = (ρk − ρN )Jk and

use the fact that pk = (ρk − ρN )/(1 − ρN ) where ρ = q/p, to obtain

puk+1 − (1 − r)uk + quk−1 = ρN − ρk .

The solution is

uk = A + Bρk +
k(ρk + ρN )

p − q
,

for constants A and B. The boundary conditions, u0 = uN = 0, yield the answer.

4. Conditioning in the obvious way on the result of the first toss, we obtain

pmn = ppm−1,n + (1 − p)pm,n−1, if m, n ≥ 1.

The boundary conditions are pm0 = 0, p0n = 1, if m, n ≥ 1.

5. Let Y be the number of negative steps of the walk up to absorption. Then E(X + Y ) = Dk and

X − Y =
{

N − k if the walk is absorbed at N ,

−k if the walk is absorbed at 0.

Hence E(X − Y ) = (N − k)(1 − pk)− kpk , and solving for EX gives the result.

6. (a) As in Example (3.9.6), mk := EDk satisfies mk = k(a − k). By conditioning on the first step,
vk := var Dk satisfies

vk = 1
2 E
({

Dk+1 − mk+1 + mk+1 − mk + 1
}2
)

+ 1
2 E
({

Dk−1 − mk−1 + mk−1 − mk + 1
}2
)

= 1
2vk+1 + 1

2vk−1 + 2(2k − a)2,

when 0 < k < a, by expanding and simplifying. Either solve this difference equation subject to
the boundary conditions v0 = va = 0, or insert the given solutions into the equation and check the
boundary conditions.

(b) Let p < 1
2 . The non-zero steps of the walk execute a symmetric walk, whose duration dk has

mean and variance given in part (a). The blocks of consecutive zero-steps have independent lengths,
which are independent of the symmetric walk. Each block length has a geometric distribution with

mean 1/(2p) and variance (1 − 2p)/(2p)2 . The result now follows by Exercise (3.8.7).

7. Condition on the first step and use the result of Example (1.7.4) to find that

rk =
1

2
·

a − k − 1

a − k
+

1

2
·

k − 1

k
= 1 −

a

2k(a − k)
.

The number Rk of returns to k before absorption is geometrically distributed on {0, 1, 2, . . . } with
mean rk/(1 − rk) = [2k(a − k)/a] − 1. Let x < k. The mean number of visits to x is the probability
of ever visiting x multiplied by 1 + Rx , that is,

a − k

a − x

{
1 +

2x(a − x)

a
− 1

}
=

2x(a − k)

a
.

The case x > k follows by symmetry. Curiously, if the barrier at a is reflecting,

vx =
{

2x if x ≤ k,

2k if x ≥ k.
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3.10 Solutions. Random walk: counting sample paths

1. Conditioning on the first step X1,

P(T = 2n) = 1
2 P(T = 2n | X1 = 1)+ 1

2 P(T = 2n | X1 = −1)

= 1
2 f−1(2n − 1)+ 1

2 f1(2n − 1)

where fb(m) is the probability that the first passage to b of a symmetric walk, starting from 0, takes
place at time m. From the hitting time theorem (3.10.14),

f1(2n − 1) = f−1(2n − 1) =
1

2n − 1
P(S2n−1 = 1) =

1

2n − 1

(
2n − 1

n

)
2−(2n−1),

which therefore is the value of P(T = 2n).

For the last part, note first that
∑∞

1 P(T = 2n) = 1, which is to say that P(T < ∞) = 1; either
appeal to your favourite method in order to see this, or observe that P(T = 2n) is the coefficient of

s2n in the expansion of F(s) = 1 −
√

1 − s2. The required result is easily obtained by expanding the
binomial coefficient using Stirling’s formula.

2. By equation (3.10.13) of PRP, for r ≥ 0,

P(Mn = r) = P(Mn ≥ r)− P(Mn ≥ r + 1)

= 2P(Sn ≥ r + 1)+ P(Sn = r)− 2P(Sn ≥ r + 2)− P(Sn = r + 1)

= P(Sn = r)+ P(Sn = r + 1)

= max
{

P(Sn = r),P(Sn = r + 1)
}

since only one of these two terms is non-zero.

3. By considering the random walk reversed, we see that the probability of a first visit to S2n at time
2k is the same as the probability of a last visit to S0 at time 2n − 2k. The result is then immediate
from the arc sine law (3.10.19) for the last visit to the origin.

4. Let A±a be the event that the walk is absorbed at ±a, and Tt the event that absorption takes place
at time t . A path is absorbed at a at time t if and only (i) if it does not visit −a and (ii) it comprises
1
2 (t − a) leftward steps and 1

2 (t + a) rightward steps. Reversing the directions of all steps gives a
path that is absorbed at −a at time t . By summing over such paths,

P(Aa ∩ Tt )

P(A−a ∩ Tt )
=
(

p

q

)a

,

where p + q = 1. Therefore,

P(Aa | Tt ) =
(p/q)a

1 + (p/q)a
,

which is independent of t .

5. Write Pk for P conditioned on S0 = k. We claim that, for n ≥ 1,

(*) Pk(T = n) =
k

n
Pk(Sn = 0), k ≥ 0,

and we prove this by induction on n. The equality is evidently true when k = 0, for all n ≥ 1. When
n = 1, both sides equal 0 when k 6= 1, and both sides equal P(X1 = −1)when k = 1. Thus (*) holds
when n = 1.
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Let n ≥ 2, and suppose (*) holds for n − 1. Let k ≥ 1. For s ≥ −1,

Pk(T = n | X1 = s) = Pk+s(T = n − 1) =
k + s

n − 1
Pk+s(Sn−1 = 0),

by the induction hypothesis, whence

Pk(T = n) =
∞∑

s=−1

k + s

n − 1
Pk+s(Sn−1 = 0)P(X1 = s).

Since P(A | B)P(B) = P(B | A)P(A),

∞∑

s=−1

(k + s)Pk+s(Sn−1 = 0)P(X1 = s) =
∞∑

s=−1

(k + s)Pk(X1 = s | Sn = 0)Pk (Sn = 0)

= P(Sn = 0)

∞∑

s=−1

(k + s)Pk(X1 = s | Sn = 0)

= P(Sn = 0)
[
k + Ek(X1 | Sn = 0)

]
.

By symmetry, Ek(X1 | Sn = 0) = −k/n, so that

Pk(T = n) =
k

n
P(Sn = 0)

as required. [See also Theorem (5.3.7). This proof is due to van der Hofstad and Keane 2008, who
explain also that the hitting time theorem is equivalent to the ballot theorem (3.10.6).]

3.11 Solutions to problems

1. (a) Clearly, for all a, b ∈ R,

P
(
g(X) = a, h(Y ) = b

)
=

∑

x,y:
g(x)=a,h(y)=b

P(X = x,Y = y)

=
∑

x,y:
g(x)=a,h(y)=b

P(X = x)P(Y = y)

=
∑

x :g(x)=a

P(X = x)
∑

y:h(y)=b

P(Y = y)

= P(g(X) = a)P(h(Y ) = b).

(b) See the definition (3.2.1) of independence.

(c) The only remaining part which requires proof is that X and Y are independent if f X,Y (x, y) =
g(x)h(y) for all x, y ∈ R. Suppose then that this holds. Then

fX (x) =
∑

y

f X,Y (x, y) = g(x)
∑

y

h(y), fY (y) =
∑

x

fX,Y (x, y) = h(y)
∑

x

g(x).

Now
1 =

∑

x

fX (x) =
∑

x

g(x)
∑

y

h(y),
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so that
fX (x) fY (y) = g(x)h(y)

∑

x

g(x)
∑

y

h(y) = g(x)h(y) = f X,Y (x, y).

2. If E(X2) =
∑

x x2P(X = x) = 0 then P(X = x) = 0 for x 6= 0. Hence P(X = 0) = 1.
Therefore, if var(X) = 0, it follows that P(X − EX = 0) = 1.

3. (a)

E
(
g(X)

)
=
∑

y

yP
(
g(X) = y

)
=
∑

y

∑

x :g(x)=y

yP(X = x) =
∑

x

g(x)P(X = x)

as required.

E
(
g(X)h(Y )

)
=
∑

x,y

g(x)h(y) fX,Y (x, y) by Lemma(3.6.6)(b)

=
∑

x,y

g(x)h(y) fX (x) fY (y) by independence

=
∑

x

g(x) fX (x)
∑

y

h(y) fY (y) = E(g(X))E(h(Y )).

4. (a) Clearly fX (i ) = fY (i ) = 1
3 for i = 1, 2, 3.

(b) (X +Y )(ω1) = 3, (X +Y )(ω2) = 5, (X +Y )(ω3) = 4, and therefore fX+Y (i ) = 1
3 for i = 3, 4, 5.

(c) (XY )(ω1) = 2, (XY )(ω2) = 6, (XY )(ω3) = 3, and therefore fXY (i ) = 1
3 for i = 2, 3, 6.

(d) Similarly fX/Y (i ) = 1
3 for i = 1

2 ,
2
3 , 3.

(e) fY |Z (2 | 2) =
P(Y = 2, Z = 2)

P(Z = 2)
=

P(ω1)

P(ω1 ∪ ω2)
=

1

2
,

and similarly fY |Z (3 | 2) = 1
2 , fY |Z (1 | 1) = 1, and other values are 0.

(f) Likewise fZ |Y (2 | 2) = fZ |Y (2 | 3) = f Z |Y (1 | 1) = 1.

5. (a)

∞∑

n=1

k

n(n + 1)
= k

∞∑

n=1

{
1

n
−

1

n + 1

}
= k, and therefore k = 1.

(b)
∑∞

n=1 knα = kζ(−α) where ζ is the Riemann zeta function, and we require α < −1 for the sum

to converge. In this case k = ζ(−α)−1.

6. (a) We have that

P(X + Y = n) =
n∑

k=0

P(X = n − k)P(Y = k) =
n∑

k=0

e−λλn−k

(n − k)!
·

e−µµk

k!

=
e−λ−µ

n!

n∑

k=0

(
n

k

)
λn−kµk =

e−λ−µ(λ+ µ)n

n!
.

P(X = k | X + Y = n) =
P(X = k, X + Y = n)

P(X + Y = n)
(b)

=
P(X = k)P(Y = n − k)

P(X + Y = n)
=
(

n

k

)
λkµn−k

(λ + µ)n
.
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Hence the conditional distribution is bin(n, λ/(λ + µ)).

7. (i) We have that

P(X = n + k | X > n) =
P(X = n + k, X > n)

P(X > n)

=
p(1 − p)n+k−1

∑∞
j=n+1 p(1 − p) j−1

= p(1 − p)k−1 = P(X = k).

(ii) Many random variables of interest are ‘waiting times’, i.e. the time one must wait before the
occurrence of some event A of interest. If such a time is geometric, the lack-of-memory property
states that, given that A has not occurred by time n, the time to wait for A starting from n has the same
distribution as it did to start with. With sufficient imagination this can be interpreted as a failure of
memory by the process giving rise to A.

(iii) No. This is because, by the above, any such process satisfies G(k + n) = G(k)G(n) where

G(n) = P(X > n). Hence G(k + 1) = G(1)k+1 and X is geometric.

8. Clearly,

P(X + Y = k) =
k∑

j=0

P(X = k − j,Y = j)

=
k∑

j=0

(
m

k − j

)
pk− j qm−k+ j

(
n

j

)
p j qn− j

= pkqm+n−k
k∑

j=0

(
m

k − j

)(
n

j

)
= pkqm+n−k

(
m + n

k

)

which is bin(m + n, p).

9. Turning immediately to the second request, by the binomial theorem,

1
2 (x + y)n + 1

2 (y − x)n = 1
2

∑

k

(
n

k

)
yn−k

{
xk + (−x)k

}
=
∑

k even

(
n

k

)
xk yn−k

as required. Now,

P(N even) =
∑

k even

(
n

k

)
pk (1 − p)n−k

= 1
2

{
(p + 1 − p)n + (1 − p − p)n

}
= 1

2 {1 + (1 − 2p)n}

in agreement with Problem (1.8.20).
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10. There are
(b

k

)
ways of choosing k blue balls, and

(N−b
n−k

)
ways of choosing n − k red balls. The

total number of ways of choosing n balls is
(N

n

)
, and the claim follows. Finally,

P(B = k) =
(

n

k

)
b!

(b − k)!
·

(N − b)!

(N − b − n + k)!
·
(N − n)!

N !

=
(

n

k

){
b

N
·

b − 1

N
· · ·

b − k + 1

N

}

×
{

N − b

N
· · ·

N − b − n + k + 1

N

}{
N

N
· · ·

N − n + 1

N

}−1

→
(

n

k

)
pk(1 − p)n−k as N → ∞.

11. Using the result of Problem (3.11.8),

P(X = k | X + Y = N) =
P(X = k)P(Y = N − k)

P(X + Y = N)

=
(n

k

)
pkqn−k

( n
N−k

)
pN−k qn−N+k

(2n
N

)
pN q2n−N

=
(n

k

)( n
N−k

)
(2n

N

) .

12. (a) E(X) = c + d , E(Y ) = b + d , and E(XY ) = d , so cov(X,Y ) = d − (c + d)(b + d), and X

and Y are uncorrelated if and only if this equals 0.

(b) For independence, we require f (i, j) = P(X = i )P(Y = j) for all i, j , which is to say that

a = (a + b)(a + c), b = (a + b)(b + d), c = (c + d)(a + c), d = (b + d)(c + d).

Now a + b + c + d = 1, and with a little work one sees that any one of these relations implies the
other three. Therefore X and Y are independent if and only if d = (b + d)(c + d), the same condition
as for uncorrelatedness.

13. (a) We have that

E(X) =
∞∑

m=0

mP(X = m) =
∞∑

m=0

m−1∑

n=0

P(X = m) =
∞∑

n=0

∞∑

m=n+1

P(X = m) =
∞∑

n=0

P(X > n).

(b) First method. Let N be the number of balls drawn. Then, by (a),

E(N) =
r∑

n=0

P(N > n) =
r∑

n=0

P(first n balls are red)

=
r∑

n=0

r

b + r

r − 1

b + r − 1
· · ·

r − n + 1

b + r − n + 1
=

r∑

n=0

r !

(b + r)!

(b + r − n)!

(r − n)!

=
r ! b!

(b + r)!

r∑

n=0

(
n + b

b

)
=

b + r + 1

b + 1
,

where we have used the combinatorial identity
∑r

n=0

(n+b
b

)
=
(r+b+1

b+1

)
. To see this, either use

the simple identity
( x

r−1

)
+
(x

r

)
=
(x+1

r

)
repeatedly, or argue as follows. Changing the order of
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summation, we find that

∞∑

r=0

xr
r∑

n=0

(
n + b

b

)
=

1

1 − x

∞∑

n=0

xn

(
n + b

b

)

= (1 − x)−(b+2) =
∞∑

r=0

xr

(
b + r + 1

b + 1

)

by the (negative) binomial theorem. Equating coefficients of xr , we obtain the required identity.

Second method. Writing m(b, r) for the mean in question, and conditioning on the colour of the first
ball, we find that

m(b, r) =
b

b + r
+
{

1 + m(b, r − 1)
} r

b + r
.

With appropriate boundary conditions and a little effort, one may obtain the result.

Third method. Withdraw all the balls, and let Ni be the number of red balls drawn between the i th and
(i + 1)th blue ball (N0 = N , and Nb is defined analogously). Think of a possible ‘colour sequence’
as comprising r reds, split by b blues into b + 1 red sequences. There is a one–one correspondence
between the set of such sequences with N0 = i , Nm = j (for given i, j,m) and the set of such
sequences with N0 = j , Nm = i ; just interchange the ‘0th’ red run with the mth red run. In particular
E(N0) = E(Nm ) for all m. Now N0 + N1 + · · · + Nb = r , so that E(Nm ) = r/(b + 1), whence the
claim is immediate.

(c) We use the notation just introduced. In addition, let Br be the number of blue balls remaining after
the removal of the last red ball. The length of the last ‘colour run’ is Nb + Br , only one of which is
non-zero. The answer is therefore r/(b + 1)+ b/(r + 1), by the argument of the third solution to part
(b).

(d) The first equation follows by part (a) with P(U ≥ r) = P(X ≥ r)P(Y ≥ r), and the second since
P(V ≥ r) = P({X ≥ r} ∪ {Y ≥ r}), the probability of an independent union. The third holds by the
fact that U V = XY .

(e) We have that

∞∑

r=0

2rP(X > r) = E

( ∞∑

r=1

2r I{X>r}

)
= E

(X−1∑

r=1

2r

)
= E(X (X − 1)).

Similarly,
∞∑

r=1

3r(r + 1)P(X > r) = E(X (X2 − 1)).

14. We have that E(Xk) = pk and var(Xk) = pk(1 − pk), and the claims follow in the usual way,
the first by the linearity of E and the second by the independence of the Xk ; see Theorems (3.3.8) and
(3.3.11).

Let s =
∑

k pk , and let Z be a random variable taking each of the values p1, p2, . . . , pn with

equal probability n−1. Now E(Z2)− E(Z)2 = var(Z) ≥ 0, so that

∑

k

1

n
p2

k ≥
(∑

k

1

n
pk

)2

=
s2

n2

with equality if and only if Z is (almost surely) constant, which is to say that p1 = p2 = · · · = pn .
Hence

var(Y ) =
∑

k

pk −
∑

k

p2
k ≤ s −

s2

n
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with equality if and only if p1 = p2 = · · · = pn . Essentially the same route may be followed using
a Lagrange multiplier.

This conclusion is not contrary to informed intuition, but experience shows it to be contrary to
much uninformed intuition.

15. A matrix V has zero determinant if and only if it is singular, which is to say if and only if there
is a non-zero vector x such that xVx′ = 0. However,

xV(X)x′ = E

{(∑

k

xk(Xk − EXk)

)2
}
.

Hence, by the result of Problem (3.11.2),
∑

k xk(Xk − EXk) is constant with probability one, and the
result follows.

16. The random variables X + Y and |X − Y | are uncorrelated since

cov
(

X + Y, |X − Y |
)

= E
{
(X + Y )|X − Y |

}
− E(X + Y )E(|X − Y |)

= 1
4 + 1

4 − 1 · 1
2 = 0.

However,

1
4 = P(X + Y = 0, |X − Y | = 0) 6= P(X + Y = 0)P(|X − Y | = 0) = 1

4 · 1
2 = 1

8 ,

so that X + Y and |X − Y | are dependent.

17. Let Ik be the indicator function of the event that there is a match in the kth place. Then P(Ik =
1) = n−1, and for k 6= j ,

P(Ik = 1, Ij = 1) = P(Ij = 1 | Ik = 1)P(Ik = 1) =
1

n(n − 1)
.

Now X =
∑n

k=1 Ik , so that E(X) =
∑n

k=1 n−1 = 1 and

var(X) = E(X2)− (EX)2 = E

( n∑

1

Ik

)2

− 1

=
n∑

1

E(Ik)
2 +

∑

j 6=k

E(Ij Ik)− 1 = 1 + 2

(
n

2

)
1

n(n − 1)
− 1 = 1.

We have by the usual (mis)matching argument of Example (3.4.3) that

P(X = r) =
1

r !

n−r∑

i=0

(−1)i

i !
, 0 ≤ r ≤ n − 2,

which tends to e−1/r ! as n → ∞.

18. (a) Let Y1,Y2, . . . ,Yn be Bernoulli with parameter p2 , and Z1, Z2, . . . , Zn Bernoulli with param-
eter p1/p2, and suppose the usual independence. Define Ai = Yi Zi , a Bernoulli random variable that
has parameter P(Ai = 1) = P(Yi = 1)P(Zi = 1) = p1. Now (A1, A2, . . . , An) ≤ (Y1,Y2, . . . ,Yn)

so that f (A) ≤ f (Y). Hence e(p1) = E( f (A)) ≤ E( f (Y)) = e(p2).

(b) Suppose first that n = 1, and let X and X ′ be independent Bernoulli variables with parameter p.
We claim that {

f (X)− f (X ′)
}{

g(X)− g(X ′)
}

≥ 0;
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to see this consider the three cases X = X ′, X < X ′, X > X ′ separately, using the fact that f and g

are increasing. Taking expectations, we obtain

E
(
{ f (X) − f (X ′)}{g(X) − g(X ′)}

)
≥ 0,

which may be expanded to find that

0 ≤ E
(

f (X)g(X)
)

− E
(

f (X ′)g(X)
)

− E
(

f (X)g(X ′)
)

+ E
(

f (X ′)g(X ′)
)

= 2
{

E
(

f (X)g(X)
)

− E( f (X))E(g(X))
}

by the properties of X and X ′.
Suppose that the result is valid for all n satisfying n < k where k ≥ 2. Now

(∗) E
(

f (X)g(X)
)

= E
{

E
(

f (X)g(X)
∣∣ X1, X2, . . ., Xk−1

)}
;

here, the conditional expectation given X1, X2, . . . , Xk−1 is defined in very much the same way as in
Definition (3.7.3), with broadly similar properties, in particular Theorem (3.7.4); see also Exercises
(3.7.1, 3). If X1, X2, . . . , Xk−1 are given, then f (X) and g(X) may be thought of as increasing
functions of the single remaining variable Xk , and therefore

E
(

f (X)g(X)
∣∣ X1, X2, . . . , Xk−1

)
≥ E

(
f (X)

∣∣ X1, X2, . . . , Xk−1

)
E
(
g(X)

∣∣ X1, X2, . . . , Xk−1

)

by the induction hypothesis. Furthermore

f ′(X) = E
(

f (X)
∣∣ X1, X2, . . . , Xk−1

)
, g′(X) = E

(
g(X)

∣∣ X1, X2, . . . , Xk−1

)
,

are increasing functions of the k−1 variables X1 , X2, . . . , Xk−1, implying by the induction hypothesis
that E( f ′(X)g′(X)) ≥ E( f ′(X))E(g′(X)). We substitute this into (∗) to obtain

E
(

f (X)g(X)
)

≥ E( f ′(X))E(g′(X)) = E( f (X))E(g(X))

by the definition of f ′ and g′.

19. Certainly R(p) = E(IA) =
∑
ω IA(ω)P(ω) and P(ω) = pN(ω)qm−N(ω) where p + q = 1.

Differentiating, we obtain

R′(p) =
∑

ω

IA(ω)p
N(ω)qm−N(ω)

(
N(ω)

p
−

m − N(ω)

q

)

=
1

pq

∑

ω

IA(ω)P(ω)
(

N(ω)− mp
)

=
1

pq
E
(
IA(N − mp)

)
=

1

pq

{
E(IA N)− E(IA)E(N)

}
=

1

pq
cov(IA, N).

Applying the Cauchy–Schwarz inequality (3.6.9) to the latter covariance, we find that R′(p) ≤
(pq)−1

√
var(IA) var(N). However IA is Bernoulli with parameter R(p), so that var(IA) = R(p)(1−

R(p)), and finally N is bin(m, p) so that var(N) = mp(1 − p), whence the upper bound for R′(p)
follows.

As for the lower bound, use the general fact that cov(X+Y, Z) = cov(X, Z)+cov(Y, Z) to deduce
that cov(IA, N) = cov(IA, IA)+ cov(IA, N − IA). Now IA and N − IA are increasing functions of
ω, in the sense of Problem (3.11.18); you should check this. Hence cov(IA, N) ≥ var(IA)+ 0 by the
result of that problem. The lower bound for R′(p) follows.
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20. (a) Let each edge be blue with probability p1 and yellow with probability p2; assume these two
events are independent of each other and of the colourings of all other edges. Call an edge green if it
is both blue and yellow, so that each edge is green with probability p1 p2. If there is a working green

connection from source to sink, then there is also a blue connection and a yellow connection. Thus

P(green connection) ≤ P(blue connection, and yellow connection)

= P(blue connection)P(yellow connection)

so that R(p1 p2) ≤ R(p1)R(p2).

(b) This is somewhat harder, and may be proved by induction on the number n of edges of G . If n = 1
then a consideration of the two possible cases yields that either R(p) = 1 for all p, or R(p) = p for
all p. In either case the required inequality holds.

Suppose then that the inequality is valid whenever n < k where k ≥ 2, and consider the case
when G has k edges. Let e be an edge of G and write ω(e) for the state of e; ω(e) = 1 if e is working,
and ω(e) = 0 otherwise. Writing A for the event that there is a working connection from source to
sink, we have that

R(pγ ) = Ppγ (A | ω(e) = 1)pγ + Ppγ (A | ω(e) = 0)(1 − pγ )

≤ Pp(A | ω(e) = 1)γ pγ + Pp(A | ω(e) = 0)γ (1 − pγ )

where Pα is the appropriate probability measure when each edge is working with probability α. The
inequality here is valid since, if ω(e) is given, then the network G is effectively reduced in size by one
edge; the induction hypothesis is then utilized for the case n = k − 1. It is a minor chore to check that

xγ pγ + yγ (1 − p)γ ≤ {xp + y(1 − p)}γ if x ≥ y ≥ 0;

to see this, check that equality holds when x = y ≥ 0 and that the derivative of the left-hand side with
respect to x is at most the corresponding derivative of the right-hand side when x, y ≥ 0. Apply the
latter inequality with x = Pp(A | ω(e) = 1) and y = Pp(A | ω(e) = 0) to obtain

R(pγ ) ≤
{

Pp(A | ω(e) = 1)p + Pp(A | ω(e) = 0)(1 − p)
}γ = R(p)γ .

21. (a) The number X of such extraordinary individuals has the bin(107, 10−7) distribution. Hence
EX = 1 and

P(X > 1 | X ≥ 1) =
P(X > 1)

P(X > 0)
=

1 − P(X = 0) − P(X = 1)

1 − P(X = 0)

=
1 − (1 − 10−7)107 − 107 · 10−7(1 − 10−7)107−1

1 − (1 − 10−7)107

≃
1 − 2e−1

1 − e−1
≃ 0.4.

(Shades of (3.5.4) here: X is approximately Poisson distributed with parameter 1.)

(b) Likewise

P(X > 2 | X ≥ 2) ≃
1 − 2e−1 − 1

2 e−1

1 − 2e−1
≃ 0.3.

(c) Provided m ≪ N = 107,

P(X = m) =
N !

m! (N − m)!

(
1

N

)m (
1 −

1

N

)N−m

≃
e−1

m!
,

235
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the Poisson distribution. Assume that “reasonably confident that n is all" means that P(X > n | X ≥
n) ≤ r for some suitable small number r . Assuming the Poisson approximation, P(X > n) ≤ rP(X ≥
n) if and only if

e−1
∞∑

k=n+1

1

k!
≤ re−1

∞∑

k=n

1

k!
.

For any given r , the smallest acceptable value of n may be determined numerically. If r is small, then
very roughly n ≃ 1/r will do (e.g., if r = 0.05 then n ≃ 20).

(d) No level p of improbability is sufficiently small for one to be sure that the person is specified

uniquely. If p = 10−7α, then X is bin(107, 10−7α), which is approximately Poisson with parameter
α. Therefore, in this case,

P(X > 1 | X ≥ 1) ≃
1 − e−α − αe−α

1 − e−α = ρ, say.

An acceptable value of ρ for a very petty offence might be ρ ≃ 0.05, in which case α ≃ 0.1 and so

p = 10−8 might be an acceptable level of improbability. For a capital offence, one would normally
require a much smaller value of ρ. We note that the rules of evidence do not allow an overt discussion
along these lines in a court of law in the United Kingdom.

22. The number G of girls has the binomial distribution bin(2n, p). Hence

P(G ≥ 2n − G) = P(G ≥ n) =
2n∑

k=n

(
2n

k

)
pk q2n−k

≤
(

2n

n

) ∞∑

k=n

pkq2n−k =
(

2n

n

)
pnqn q

q − p
,

where we have used the fact that
(2n

k

)
≤
(2n

n

)
for all k.

With p = 0.485 and n = 104, we have using Stirling’s formula (Exercise (3.10.1)) that

(
2n

n

)
pnqn q

q − p
≤

1
√
(nπ)

{
(1 − 0.03)(1 + 0.03)

}n 0.515

0.03

=
0.515

3
√
π

(
1 −

9

104

)104

≤ 1.23 × 10−5.

It follows that the probability that boys outnumber girls for 82 successive years is at least (1 − 1.23 ×
10−5)82 ≥ 0.99899.

23. Let M be the number of such visits. If k 6= 0, then M ≥ 1 if and only if the particle hits 0 before

it hits N , an event with probability 1 − kN−1 by equation (1.7.7). Having hit 0, the chance of another

visit to 0 before hitting N is 1 − N−1, since the particle at 0 moves immediately to 1 whence there is

probability 1 − N−1 of another visit to 0 before visiting N . Hence

P(M ≥ r | S0 = k) =
(

1 −
k

N

)(
1 −

1

N

)r−1

, r ≥ 1,

so that

P(M = j | S0 = k) = P(M ≥ j | S0 = k) − P(M ≥ j + 1 | S0 = 0)

=
(

1 −
k

N

)(
1 −

1

N

) j−1 1

N
, j ≥ 1.
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24. Either read the solution to Exercise (3.9.4), or the following two related solutions neither of which
uses difference equations.

First method. Let Tk be the event that A wins and exactly k tails appear. Then k < n so that

P(A wins) =
∑n−1

k=0 P(Tk ). However P(Tk) is the probability that m + k tosses yield m heads, k tails,
and the last toss is heads. Hence

P(Tk ) =
(

m + k − 1

m − 1

)
pmqk ,

whence the result follows.

Second method. Suppose the coin is tossed m + n − 1 times. If the number of heads is m or more,
then A must have won; conversely if the number of heads is m − 1 or less, then the number of tails is
n or more, so that B has won. The number of heads is bin(m + n − 1, p) so that

P(A wins) =
m+n−1∑

k=m

(
m + n − 1

k

)
pkqm+n−1−k .

25. The chance of winning, having started from k, is

1 − (q/p)k

1 − (q/p)N
which may be written as

1 − (q/p)
1
2 k

1 − (q/p)
1
2

N
·

1 + (q/p)
1
2 k

1 + (q/p)
1
2

N
;

see Example (3.9.6). If k and N are even, doubling the stake is equivalent to playing the original game

with initial fortune 1
2 k and the price of the Jaguar set at 1

2 N . The probability of winning is now

1 − (q/p)
1
2 k

1 − (q/p)
1
2 N
,

which is larger than before, since the final term in the above display is greater than 1 (when p < 1
2 ).

If p = 1
2 , doubling the stake makes no difference to the chance of winning. If p > 1

2 , it is better
to decrease the stake.

26. This is equivalent to taking the limit as N → ∞ in the previous Problem (3.11.25). In the limit

when p 6= 1
2 , the probability of ultimate bankruptcy is

lim
N→∞

(q/p)k − (q/p)N

1 − (q/p)N
=
{
(q/p)k if p > 1

2 ,

1 if p < 1
2 ,

where p + q = 1. If p = 1
2 , the corresponding limit is limN→∞(1 − k/N) = 1.

27. Using the technique of reversal, we have that

P(Rn = Rn−1 + 1) = P(Sn−1 6= Sn, Sn−2 6= Sn, . . . , S0 6= Sn)

= P(Xn 6= 0, Xn−1 + Xn 6= 0, . . . , X1 + · · · + Xn 6= 0)

= P(X1 6= 0, X2 + X1 6= 0, . . . , Xn + · · · + X1 6= 0)

= P(S1 6= 0, S2 6= 0, . . . , Sn 6= 0) = P(S1S2 · · · Sn 6= 0).

It follows that E(Rn) = E(Rn−1)+ P(S1S2 · · · Sn 6= 0) for n ≥ 1, whence

1

n
E(Rn) =

1

n

{
1 +

n∑

m=1

P(S1S2 · · · Sm 6= 0)

}
→ P(Sk 6= 0 for all k ≥ 1)
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since P(S1S2 · · · Sm 6= 0) ↓ P(Sk 6= 0 for all k ≥ 1) as m → ∞.

There are various ways of showing that the last probability equals |p − q|, and here is one.
Suppose p > q. If X1 = 1, the probability of never subsequently hitting the origin equals 1 − (q/p),
by the calculation in the solution to Problem (3.11.26) above. If X1 = −1, the probability of staying
away from the origin subsequently is 0. Hence the answer is p(1 − (q/p)) + q · 0 = p − q.

If q > p, the same argument yields q − p, and if p = q = 1
2 the answer is 0.

28. Consider first the event that M2n is first attained at time 2k. This event occurs if and only if: (i)
the walk makes a first passage to S2k (> 0) at time 2k, and (ii) the walk thereafter does not exceed
S2k . These two events are independent. The chance of (i) is, by reversal and symmetry,

P(S2k−1 < S2k, S2k−2 < S2k, . . . , S0 < S2k)

= P(X2k > 0, X2k−1 + X2k > 0, . . . , X1 + · · · + X2k > 0)

= P(X1 > 0, X1 + X2 > 0, . . . , X1 + · · · + X2k > 0)

= P(Si > 0 for 1 ≤ i ≤ 2k) = 1
2 P(Si 6= 0 for 1 ≤ i ≤ 2k)

= 1
2 P(S2k = 0) by equation (3.10.23).

As for the second event, we may translate S2k to the origin to obtain the probability of (ii):

P(S2k+1 ≤ S2k, . . . , S2n ≤ S2k) = P(M2n−2k = 0) = P(S2n−2k = 0),

where we have used the result of Exercise (3.10.2). The answer is therefore as given.

The probabilities of (i) and (ii) are unchanged in the case i = 2k + 1; the basic reason for this is
that S2r is even, and S2r+1 odd, for all r .

29. Let uk = P(Sk = 0), fk = P(Sk = 0, Si 6= 0 for 1 ≤ i < k), and use conditional probability (or
recall from equation (3.10.25)) to obtain

(∗) u2n =
n∑

k=1

u2n−2k f2k .

Now N1 = 2, and therefore it suffices to prove that E(Nn) = E(Nn−1) for n ≥ 2. Let N ′
n−1 be

the number of points visited by the walk S1, S2, . . . , Sn exactly once (we have removed S0). Then

Nn =





N ′
n−1 + 1 if Sk 6= S0 for 1 ≤ k ≤ n,

N ′
n−1 − 1 if Sk = S0 for exactly one k in {1, 2, . . . , n},

N ′
n−1 otherwise.

Hence, writing αn = P(Sk 6= 0 for 1 ≤ k ≤ n),

E(Nn) = E(N ′
n−1)+ αn − P(Sk = S0 exactly once)

= E(Nn−1)+ αn −
{

f2αn−2 + f4αn−4 + · · · + f2⌊n/2⌋
}

where ⌊x⌋ is the integer part of x . Now α2m = α2m+1 = u2m by equation (3.10.23). If n = 2k is
even, then

E(N2k )− E(N2k−1) = u2k − { f2u2k−2 + · · · + f2k} = 0 by (∗).

If n = 2k + 1 is odd, then

E(N2k+1)− E(N2k ) = u2k −
{

f2u2k−2 + · · · + f2k

}
= 0 by (∗).
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In either case the claim is proved.

30. (a) Not much.

(b) The rhyme may be interpreted in any of several ways. Interpreting it as meaning that families stop

at their first son, we may represent the sample space of a typical family as {B,GB,G2B, . . . }, with

P(GnB) = 2−(n+1). The mean number of girls is
∑∞

n=1 nP(GnB) =
∑∞

n=1 n2−(n+1) = 1; there is
exactly one boy.

The empirical sex ratio for large populations will be near to 1:1, by the law of large numbers.
However the variance of the number of girls in a typical family is var(#girls) = 2, whilst var(#boys) =
0; # A denotes the cardinality of A. Considerable variation from 1:1 is therefore possible in smaller
populations, but in either direction. In a large number of small populations, the number of large
predominantly female families would be balanced by a large number of male singletons.

31. Any positive integer m has a unique factorization in the form m =
∏

i p
m(i)
i for non-negative

integers m(1),m(2), . . . . Hence,

P(M = m) =
∏

i

P
(

N(i ) = m(i )
)

=
∏

i

(
1 −

1

p
β
i

)
1

p
βm(i)
i

= C

(∏

i

p
−m(i)
i

)β
=

C

mβ

where C =
∏

i (1 − p
−β
i ). Now

∑
m P(M = m) = 1, so that C−1 =

∑
m m−β .

32. Number the plates 0, 1, 2, . . . , N where 0 is the starting plate, fix k satisfying 0 < k ≤ N , and
let Ak be the event that plate number k is the last to be visited. In order to calculate P(Ak ), we cut
the table open at k, and bend its outside edge into a line segment, along which the plate numbers read
k, k + 1, . . . , N, 0, 1, . . . , k in order. It is convenient to relabel the plates as −(N + 1 − k),−(N −
k), . . . ,−1, 0, 1, . . . , k. Now Ak occurs if and only if a symmetric random walk, starting from 0,
visits both −(N − k) and k − 1 before it visits either −(N + 1 − k) or k. Suppose it visits −(N − k)

before it visits k − 1. The (conditional) probability that it subsequently visits k − 1 before visiting
−(N + 1 − k) is the same as the probability that a symmetric random walk, starting from 1, hits N

before it hits 0, a probability of N−1 by (1.7.7). The same argument applies if the cake visits k − 1

before it visits −(N − k). Therefore P(Ak ) = N−1.

33. With j denoting the j th best vertex, the walk has transition probabilities pj k = ( j − 1)−1 for
1 ≤ k < j . By conditional expectation,

r j = 1 +
1

j − 1

j−1∑

k=1

rk , r1 = 0.

Induction now supplies the result. Since r j ∼ log j for large j , the worst-case expectation is about

log
(n

m

)
.

34. Let pn denote the required probability. If (mr ,mr+1) is first pair to make a dimer, then m1
is ultimately uncombined with probability pr−1. By conditioning on the first pair, we find that
pn = (p1 + p2 + · · · + pn−2)/(n − 1), giving n(pn+1 − pn) = −(pn − pn−1). Therefore,

n!(pn+1 − pn) = (−1)n−1(p2 − p1) = (−1)n , and the claim follows by summing.

Finally,

EUn =
n∑

r=1

P(mr is uncombined) = pn + p1 pn−1 + · · · + pn−1 p1 + pn,

since the r th molecule may be thought of as an end molecule of two sequences of length r and n−r +1.

Now pn → e−1 as n → ∞, and it is an easy exercise of analysis to obtain that n−1EUn → e−2.
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35. First,

λk =
(∑

i

pi

)k

=
∑

r1,r2,... ,rk

pr1 pr2 · · · prk
≥ k!

∑

{r1,... ,rk }
pr1 pr2 · · · prk

,

where the last summation is over all subsets {r1, . . . , rk} of k distinct elements of {1, 2, . . . , n}.
Secondly,

λk ≤ k!
∑

{r1,...,rk }
pr1 pr2 · · · prk

+
(

k

2

)∑

i

p2
i

∑

r1,...,rk−2

pr1 pr2 · · · prk−2

≤ k!
∑

r1,... ,rk

pr1 pr2 · · · prk
+
(

k

2

)
max

i
pi

(∑

j

pj

)k−1

.

Hence

(∗)
∑

{r1,...,rk }
pr1 pr2 · · · prk

=
λk

k!

{
1 + O

(
k2

λ
max

i
pi

)}
.

By Taylor’s theorem applied to the function log(1−x), there exist θr satisfying 0 < θr < {2(1−c)2)}−1

such that

(∗∗)
n∏

r=1

(1 − pr ) =
∏

r

exp{−pr − θr p2
r } = exp

{
−λ− λO

(
max

i
pi

)}
.

Finally,

P(X = k) =
(∏

r

(1 − pr )

) ∑

{r1,...,rk }

pr1 · · · prk

(1 − pr1 ) · · · (1 − prk
)
.

The claim follows from (∗) and (∗∗).

36. It is elementary that

E(Y ) =
1

n

N∑

r=1

E(Xr ) =
1

n

N∑

r=1

xr ·
n

N
= µ.

We write Y − E(Y ) as the mixture of indicator variables thus:

Y − E(Y ) =
N∑

r=1

xr

n

(
Ir −

n

N

)
.

It follows from the fact

E(Ii Ij ) =
n

N
·

n − 1

N − 1
, i 6= j,
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γ

1 − γ

C

C

c

1 − c

a

1 − a

H ∩ C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

H ∩ C

H ∩ C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a

1 − a

H ∩ C . . . . . . . .





γ p

(1 − γ )a

H ∩ C

H ∩ C

Figure 3.2. The tree of possibility and probability in Problem (3.11.37). The presence of the

disease is denoted by C, and hospitalization by H ; their negations are denoted by C and H .

that

var(Y ) =
N∑

r=1

x2
r

n2
E

{(
Ir −

n

N

)2
}

+
∑

i 6= j

xi xj

n2
E
{(

Ii −
n

N

)(
Ij −

n

N

)}

=
N∑

r=1

x2
r

n2

n

N

(
1 −

n

N

)
+
∑

i 6= j

xi xj

n2

{
n

N

n − 1

N − 1
−

n2

N2

}

=
N∑

r=1

x2
r

N − n

N2n
−
∑

i 6= j

xi xj
N − n

n(N − 1)N2

=
N − n

Nn(N − 1)





N∑

r=1

x2
r −

1

N

N∑

r=1

x2
r −

1

N

∑

i 6= j

xi xj





=
N − n

n(N − 1)

1

N





N∑

r=1

x2
r − N x2



 =

N − n

n(N − 1)

1

N

N∑

r=1

(xr − x)2.

37. The tree in Figure 3.2 illustrates the possibilities and probabilities. If G contains n individuals,
X is bin(n, γ p + (1 − γ )a) and Y is bin(n, γ p). It is not difficult to see that cov(X,Y ) = nγ p(1 − ν)
where ν = γ p + (1−γ )a. Also, var(Y ) = nγ p(1−γ p) and var(X) = nk(1− ν). The result follows
from the definition of correlation.

38. (a) This is an extension of Exercise (3.5.2). With Pn denoting the probability measure conditional
on N = n, we have that

Pn(X i = ri for 1 ≤ i ≤ k) =
n!

r1! r2! · · · rk ! s!
f (1)r1 f (2)r2 · · · f (k)rk (1 − F(k))s ,
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where s = n −
∑k

i=1 ri . Therefore,

P(X i = ri for 1 ≤ i ≤ k) =
∞∑

n=0

Pn(X i = ri for 1 ≤ i ≤ k)P(N = n)

=
k∏

i=1

{
νri f (i )ri e−ν f (i)

ri !

} ∞∑

s=0

νs(1 − F(k))s

s!
e−ν(1−F(k)).

The final sum is a Poisson sum, and equals 1.

(b) We use an argument relevant to Wald’s equation. The event {T ≤ n−1} depends only on the random
variables X1, X2, . . . , Xn−1, and these are independent of Xn . It follows that Xn is independent of
the event {T ≥ n} = {T ≤ n − 1}c. Hence,

E(S) =
∞∑

i=1

E
(

X i I{T ≥i}
)

=
∞∑

i=1

E(X i )E(I{T ≥i}) =
∞∑

i=1

E(X i )P(T ≥ i )

=
∞∑

i=1

ν f (i )

∞∑

t=i

P(T = t) = ν

∞∑

t=1

P(T = t)

t∑

i=1

f (i )

= ν

∞∑

t=1

P(T = t)F(t) = E(F(T )).

39. (a) Place an absorbing barrier at a + 1, and let pa be the probability that the particle is absorbed
at 0. By conditioning on the first step, we obtain that

pn =
1

n + 2
(p0 + p1 + p2 + · · · + pn+1), 1 ≤ n ≤ a.

The boundary conditions are p0 = 1, pa+1 = 0. It follows that pn+1 − pn = (n + 1)(pn − pn−1)

for 2 ≤ n ≤ a, and in addition p2 − p1 = p1 − 1. By iteration,

pn+1 − pn = 1
2 (n + 1)! (p2 − p1) = 1

2 (n + 1)! (p1 − 1).

Setting n = a we obtain that −pa = 1
2 (a + 1)! (p1 − 1). By summing over 2 ≤ n < a,

pa − p1 = (p1 − 1)+ 1
2 (p1 − 1)

a∑

j=3

j !,

and we eliminate p1 to conclude that

pa =
(a + 1)!

4 + 3! + 4! + · · · + (a + 1)!
.

It is now easy to see that, for given r , pr = pr (a) → 1 as a → ∞, so that ultimate absorption
at 0 is (almost) certain, irrespective of the starting point. The limit is justified by the continuity of
probability measures, Theorem (1.3.5).

(b) Let λr be the probability that the last step is from 1 to 0, having started at r . Then

λ1 = 1
3 (1 + λ1 + λ2),(∗)

(r + 2)λr = λ1 + λ2 + · · · + λr+1, r ≥ 2.(∗∗)
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It follows that

λr − λr−1 =
1

r + 1
(λr+1 − λr ), r ≥ 3,

whence

λr − λr−1 =
1

(r + 1)(r + 2) · · · (m + 1)
(λm+1 − λm), 3 ≤ r < m.

Letting m → ∞, we deduce that λr = λr−1 for r ≥ 3, so that λr = λ2 for r ≥ 2. From (**) with

r = 2, we have λ2 = 1
2λ1, and, from (*), λ1 = 2

3 .

(c) There are a couple of ways of doing this, of which one follows. As in part (a), we introduce a
second absorbing barrier at a + 1, and shall later allow a → ∞. Let νr = νr (a) be the mean duration
having started at r ∈ {1, 2, . . . , a}. The recurrence relation is

(*) νr = 1 +
1

r + 2
(ν1 + ν2 + · · · + νr+1), 1 ≤ r ≤ a,

with boundary condition νa+1 = 0. Arguing as above, dr+1 := (νr+1 − νr )/(r + 1)! satisfies

dr+1 − dr = −
1

(r + 1)!
, 2 ≤ r ≤ a,

which we sum to obtain

dk+1 − d2 = −
k+1∑

r=3

1

r !
, 2 ≤ k ≤ a,

and again to obtain

0 − ν2 =
a∑

k=2

(k + 1)!


d2 −

k+1∑

r=3

1

r !


 .

By (*) with r = 1, we have ν2 = 2ν1 − 3 and d2 = 1
2 (ν1 − 3), which we substitute into the above

equation and solve for ν1 = ν1(a), thus obtaining

ν1(a) =
3 + 3

2

∑
k(k + 1)! +

∑
k(k + 1)! ek

2 + 1
2

∑
k(k + 1)!

,

where
∑

k is over 2 ≤ k ≤ a and

ek =
k+1∑

r=3

1

r !
→ e −

5

2
as k → ∞.

Divide through by
∑

k(k + 1)! and let a → ∞ to deduce (via a little real analysis) that ν1(a) →
3 + 2e − 5 = 2(e − 1), which is the required answer.

The final limit may be justified using the monotone convergence theorem of Section 5.6. A shorter
and more satisfying solution using the theory of Markov chains may be found at Exercise (6.4.16).

40. We label the vertices 1, 2, . . . , n, and we let π be a random permutation of this set. Let K be the
set of vertices v with the property that π(w) > π(v) for all neighbours w of v. It is not difficult to
see that K is an independent set, whence α(G) ≥ |K |. Therefore, α(G) ≥ E|K | =

∑
v P(v ∈ K ).

For any vertex v, a random permutation π is equally likely to assign any given ordering to the set
comprising v and its neighbours. Also, v ∈ K if and only if v is the earliest element in this ordering,
whence P(v ∈ K ) = 1/(dv + 1). The result follows.
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[3.11.41]–[3.11.43] Solutions Discrete random variables

41. If she bets S, the gain is −cS + (1 + r)I S − S, where I is the indicator function of a win.
The mean gain is therefore (−c + p(1 + r) − 1)S = gS. With S = f F , we have the new fortune
F ′ = F + (−c + (1 + r)I − 1) f F with mean EF ′ = F(1 + g f ).

Under the given conditions, we have 0 < g < 1. In part (a), the mean return is largest when f is
a maximum, which is to say fa = 1. In part (b), she seeks to maximize

E
{

log
[
1 + f ((1 + r)I − (1 + c))

]}
= p log

(
1 + f (r − c)

)
+ q log

(
1 − f (1 + c)

)
.

The minimum is achieved when the derivative is zero, which occurs at

fb =
g

(r − c)(1 + c)
< 1.

This gives a slower rate of growth than fa = 1 but with a diminished risk of bankruptcy.

42. By conditional expectation, mn := E(Xn) satisfies

mn+1 =
2

n

n∑

r=1

mr , n ≥ r,

which implies by subtraction that nmn+1 − (n − 1)mn = 2mn . Therefore,

mn =
n

n − 1
mn−1 =

n

n − 1
·

n − 1

n − 2
· · ·

r + 2

r + 1
mr+1 =

2n

r(r + 1)

r∑

k=1

xk .

43. It is immediate that X1 = 1, X2 = 0, and X3 takes values in {−1, 0, 1} with respective probabil-

ities 1
4 ,

1
2 ,

1
4 . By symmetry, EXn = 0 for n ≥ 2, and indeed

E(Xn | X1, X2, . . . , Xn−1) = 0, n ≥ 2.

With

an = E

(( n∑

r=1

Xr

)2
)
, vn = E(X2

n),

we have a1 = a2 = 1 and v1 = 1, v2 = 0, v3 = 1
2 . Since Xn+1 = XU − XV in the obvious notation,

we have by conditional expectation given X1, X2, . . . , Xn that

(*) vn+1 = E(X2
U )+ E(X2

V )− 2E(XU XV ) =
2

n

n∑

r=1

vr −
2

n2
an, n ≥ 1.

Also, by iteration at the last step,

an+1 = E(X2
n+1)+ 2E

(
Xn+1

n∑

r=1

Xr

)
+ an = vn+1 + 0 + an =

n+1∑

r=1

vr , n ≥ 1.

On eliminating an in (*) and subtracting successive equations, we obtain

n2

2(n − 1)
vn+1 −

(n − 1)2

2(n − 2)
vn = vn, n ≥ 3,
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Problems Solutions [3.11.44]–[3.11.46]

which yields, on iteration,

vn+1 = (n − 1)

(
1 −

3

n2

)
· · ·
(

1 −
3

32

)
v3 = −(n − 1)

n∏

k=1

(
1 −

3

k2

)
, n ≥ 3.

Hence,

1

n
var(Xn) → −

∞∏

k=1

(
1 −

3

k2

)
.

Further details of random adding may be found in Clifford and Stirzaker 2019. See also Exercise
(12.3.5).

44. Assume ‘at random’ means uniformly at random. Given that the ring is in box j , the mean number
of boxes opened is 1 + Bj/n where

Bj =
{
(bn−1 + · · · + bn− j+1)+ (bj + · · · + bn−1) if 1 < j < n,

b1 + b2 + · · · + bn−1 if j = 1, n.

which we average over j to obtain

bn = 1 +
2

n2

n−1∑

k=1

kbk , n ≥ 1.

Therefore, xk = kbk satisfies nxn = n2 + 2
∑n−1

k=1 xk , whence

nxn − (n − 1)xn−1 = 2n − 1 + 2xn−1, n ≥ 1,

where x0 = 0. Set yn = xn/(n + 1) to find that

yn − yn−1 = −
1

n
+

3

n + 1
, n ≥ 1.

Iterate this, and substitute back for bn to obtain

bn =
3

n
−

3(n + 1)

n
+

2(n + 1)

n

n∑

k=1

1

k
∼ 2 log n as n → ∞.

45. This time, sr := b2r satisfies

sr = 1 +
(

1 −
1

n

)
sr−1

with solution

sr =
r2r

2r − 1
− 1, r ≥ 1.

The answer is asymptotic to log n/ log 2: ‘bisecting search’ is more efficient on average than ‘random
search’.

46. (a) Let Bi be the event that the word is in box i . Given Bi , the mean number of attempts before
success is 1/ci , so that the unconditional mean is µ(c) =

∑
i pi/ci . Using a Lagrange multiplier,

µ(c) is a minimum for given (pi ) if ci ∝ √
pi , and the minimal mean is

(∑
i
√

pi

)2
.
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[3.11.47]–[3.11.49] Solutions Discrete random variables

(b) Rank the pi in decreasing order as p(i) (thus, p(1) is the largest and p(n) the smallest), and search

the boxes in that order. The mean number of days taken is
∑

i i p(i). This may be seen to be a minimum
by considering the effect of interchanging the order of any two boxes.

(c) On every search, inspect a box having probability p(1). The mean is 1/p(1). Any other strategy
has larger mean.

47. Let Gr (respectively, Js) be the event that Gwen wins r games (respectively, John wins s games),
and let G (respectively, J ) be the event that Gwen (respectively, John) wins the match. Then, for
r ≥ 1,

P(Gr ∩ J ) = P
(
Gwen wins r of first n + r games, John wins the (n + r + 1)th game)

= γ r δn+1

(
n + r

r

)
=
[
γ r−1δn+1

(
n + r − 1

r − 1

)]
×
(
γ (n + r)

r

)

= P(Gr−1 ∩ J )×
(
γ (n + r)

r

)
,

whence r fr = (n + r)γ fr−1.

With N denoting the total number of games played, and gr = P(G ∩ Jr),

Tn = E(N | G)P(G)+ E(N | J )P(J )(*)

= Pn

n∑

r=0

(n + r + 1)gr + Qn

n∑

r=0

(n + r + 1) fr .

Now,

µ f :=
n∑

r=1

r fr =
n∑

r=1

(n + r)γ fr−1

=
n∑

j=0

γ j f j − γ n fn + γ (n + 1)(1 − fn)

= γµ f + γ (n + 1)− γ (2n + 1) fn,

with a similar expression for µg . Plug these expressions into (*) and hold your breath to obtain the
answer. For the last part you will need the more refined form of Stirling’s formula:

n! ∼ n
n+ 1

2 e−n+O(n−1/2)
√

2π.

48. Both sides count the number of possible colourings, the left according to the colours of the

individual components, and the right according to the colour classes. Multiply through by e−1/c! and
sum over c to obtain

e−1
∞∑

c=0

cn

c!
= e−1

∞∑

c=0

n∑

k=1

S(n, k)
1

(c − k)!

= e−1
n∑

k=1

S(n, k)

∞∑

s=0

1

s!
=

n∑

k=1

S(n, k).

49. For any of the rules, at the point when the winner is decided (that is, either Bertha or Harold have
won n games exactly), Bertha will have served no more than n games, and Harold no more than n − 1
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Problems Solutions [3.11.50]–[3.11.52]

games. One may now allow them to continue to play and accrue points until Bertha and Harold have
served exactly n and n − 1 games, respectively. The order of the additional games is immaterial, and
they do not change the winner. Therefore, the probability of Bertha winning is the same as before.

50. (a) The entropy H(X) depends only on the values taken by fX (·).
(b) Take logarithms and then expectations of

fX (x)

f X |Y (x | y)
=

fX (x) fY (y)

fX,Y (x, y)
.

(c) Use the fact that fX,Y (x, y) = fX (x) fY (y).

(d) A Bernoulli variable with parameter p has entropy H := −p log p − (1 − p) log(1 − p) > 0,
whence the bin(n, p) distribution has entropy n H , which increases with n.

(e) The required entropy is

H(p) = −
∞∑

k=0

p(1 − p)k
{

log p + k log(1 − p)
}

= log p −
1 − p

p
log(1 − p).

The derivative is negative.

51. (a) This follows by the definition of entropy.

(b) Use the result of Problem (3.11.51b). Strict monotonicity follows by the fact (see Exercise (3.6.5))
that I (N; K ) ≥ 0, with equality if and only if N and K are independent (which they clearly are not).

52. (a) Let p1, p2, . . . , pr be distinct primes. An integer n is divisible by every pi if and only if it is
divisible by the product π := p1 p2 · · · pr . Therefore,

P

( r⋂

i=1

Epi

)
=

∞∑

n=1

(nπ)−β

ζ(β)
= π−β =

r∏

i=1

(pi )
−β =

r∏

i=1

P(Epi
).

(b) Every integer except 1 is divisible by some prime. Therefore,

P(X = 1) = P

( ⋂

p∈5
Ec

p

)
=
∏

p∈5

(
1 −

1

pβ

)
,

where 5 denotes the primes. However, P(X = 1) = 1/ζ(β). There was surreptitious use of the
continuity of probability measures here, see Theorem (1.3.5).

(c) By a similar argument to the above, the events Ep2 = {p2 | X} are independent, and P(Ep2 ) =
p−2β . The probability that X is square-free is

P

( ⋂

p∈5
Ec

p2

)
=
∏

p∈5

(
1 −

1

p2

)
.

(d) We have H = m if and only if X = mx and Y = my for some coprime x , y. Therefore,

P(H = m) =
∑

gcd{x,y}=1

(mx)−β

ζ(β)
·
(my)−β

ζ(β)
= m−2βP(H = 1).

By summing over m, we obtain P(H = 1) = 1/ζ(m2β), and the claim follows.

247
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53. We have P(S ≥ 3) = 1 and, for 3 ≤ r ≤ n,

P(S ≥ r + 1 | S ≥ r) =
n − r + 1

n − 1
.

Therefore,

P(S ≥ r + 1) =
(n − 1)!

(n − r)! (n − 1)r−1
, r ≥ 3.

The first two moments satisfy, as n → ∞,

E(S) =
∞∑

r=0

P(S > r) ∼
√
πn/2, E(S2) = 2

∞∑

r=1

rP(S ≥ r)+ E(S) ∼ 2n.

54. (a) For a given card, let pr be the probability it is in its correct place after r shuffles. If it is, then

it remains there after one transposition with probability
(n−1

2

)/(n
2

)
= (n − 2)/n; if it is not, then it

returns there with probability 1
/(n

2

)
. Therefore,

pr =
n − 2

n
pr−1 +

2

n(n − 1)
(1 − pr−1), r ≥ 1,

whence

pr =
1

n
+

n − 1

n

(
n − 3

n − 1

)r

, r ≥ 1,

noting that p0 = 1.

(b) The required expectation is

E(Cr ) = npr = 1 + (n − 1)

(
n − 3

n − 1

)r

, r ≥ 1.

(c) This is approximately 2 if

(n − 1)

(
n − 3

n − 1

)r

≈ 1.

The left side may be approximated by ne−2r/n , which is roughly 1 if r ≈ 1
2 n log n.

55. Let Sj be the set of vertices at distance j from 0. Let m j be the mean number of steps to pass
from a given vertex in Sj to 0. By conditioning on the first step, we have

m j = 1 +
j

d
m j−1 +

d − j

d
m j+1, 1 ≤ j < d,

md = 1 + md−1,

subject to m0 = 0. This recurrence relation may be expressed in the form

(
d − 1

j

)
(m j+1 − m j )−

(
d − 1

j − 1

)
(m j − m j−1) = −

(
d

j

)
,

which, on summing, yields

(
d − 1

j

)
(m j+1 − m j ) = m1 −

j∑

r=1

(
d

r

)
.
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Set j = d − 1 and use the fact that md − md−1 = 1 to find that

m1 = 1 +
d−1∑

r=1

(
d

r

)
= 2d − 1.

Hence,

m j+1 − m j =





d∑

r= j+1

(
d

r

)


/(
d − 1

j

)
= 2d P(S > j)

/(
d − 1

j

)
,

where S has the bin(d, 1
2 ) distribution. Therefore, md = m1 +6d where

0 ≤ 6d =
d−1∑

j=1

(m j+1 − m j ) ≤ 2d
d−1∑

j=1

P(S > j)

/(
d − 1

j

)
.

Split the sum into three terms: (i) j = 1, (ii) 2 ≤ j ≤ 3
4 d , (iii) j > 3

4 d . The first term is no larger

than 2d/(d −1). The second term is no larger than 2d d/
(d−1

2

)
. The third is (by Bernstein’s inequality

(2.2.4) or similar) no larger than 2d e−αd for some α > 0. In conclusion, md = (1 + o(1))2d .
Improved asymptotics can be calculated.

56. (a) Let m ≥ 2, and βk = P(m is hit | X0 = k). By conditioning on the first step,

(k) βk =
1

n − k + 1

(
βk+1 + βk+2 + · · · + βm−1 + 1

)
, 1 ≤ k < m.

Setting k = m − 1, we obtain βm−1 = 1/(n − m + 2). On subtracting (k) from (k + 1), we obtain
βk+1 = βk for 1 ≤ k < m − 1, so that β1 = βm−1 = 1/(n − m + 2) as required. The case m = 1
follows by the fact that absorption occurs at either 1 or n.

(b) We use the notation in the solution to Problem (1.8.39). Set X0 = 1. Passenger 1 selects some seat
X1. If X1 = 1 then all passengers sit in their assigned seats. If X1 > 1, passengers 2, 3, . . . , X1 − 1
occupy their correct seats, and passenger X1 sits in some seat X2 satisfying either X2 = 1 or X2 > X1.
This process is iterated, and the resulting sequence X = (Xr : r ≥ 0) is a walk of the type studied in
part (a). Passenger m ≥ 2 finds his/her seat occupied if and only if m is hit by X , and this occurs with
probability 1/(n − m + 2).

Here is the quick solution to part (b). When passenger m chooses a seat, seats 2, 3, . . . ,m − 1
are already taken (since, if seat r ∈ {2, 3, . . . ,m − 1} were free, it would have been claimed earlier by
passenger r , which is a contradiction), and one further seat also. The choices made so far include no
information about the label of this further seat which, by symmetry, is equally likely to be any of the
n − m + 2 seats labelled 1,m,m + 1, . . . , n. Therefore, it is seat m with probability 1/(n − m + 2).

57. (a) Let I be the indicator function of the event {X > aE(X)}, where a ∈ [0, 1]. Then,

E(X) = E(X I )+ E(X (1 − I )) ≤ E(X I )+ aE(X)

≤
√

E(X2)E(I )+ aE(X),

by the Cauchy–Schwarz inequality at the second step. The claim follows by rearrangement.

(b) Set a = 0 to obtain

P(X = 0) = 1 − P(X > 0) ≤ 1 −
(EX)2

E(X2)
=

var(X)

E(X2)
.

Recall that var(X) = E(X2)− (EX)2 ≥ 0.
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[3.11.57]–[3.11.57] Solutions Discrete random variables

(c) We have that EX =
∑n

r=1 P(Ar ), so that

var(X) = E(X2)− E(X)2

=
n∑

r=1

P(Ar )+
∑∗

P(Ar ∩ As)+
∑+

P(Ar ∩ As)− E(X)2

≤ EX +
∑∗

P(Ar ∩ As),

where
∑+ is the sum over unordered pairs r , s for which Ar and As are independent.
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4

Continuous random variables

4.1 Solutions. Probability density functions

1. (a) {x(1 − x)}−
1
2 is the derivative of sin−1(2x − 1), and therefore C = π−1.

(b) C = 1, since ∫ ∞

−∞
exp(−x − e−x ) dx = lim

K→∞

[
exp(−e−x )

]K

−K
= 1.

(c) Substitute v = (1 + x2)−1 to obtain

∫ ∞

−∞

dx

(1 + x2)m
=
∫ 1

0
v

m− 3
2 (1 − v)

− 1
2 dv = B( 1

2 ,m − 1
2 )

where B(·, ·) is a beta function; see paragraph (4.4.8) and Exercise (4.4.2). Hence, if m > 1
2 ,

C−1 = B( 1
2 ,m − 1

2 ) =
Ŵ( 1

2 )Ŵ(m − 1
2 )

Ŵ(m)
.

2. (i) The distribution function FY of Y is

FY (y) = P(Y ≤ y) = P(aX ≤ y) = P(X ≤ y/a) = FX (y/a).

So, differentiating, fY (y) = a−1 fX (y/a).

(ii) Certainly
F−X (x) = P(−X ≤ x) = P(X ≥ −x) = 1 − P(X ≤ −x)

since P(X = −x) = 0. Hence f−X (x) = fX (−x). If X and −X have the same distribution function
then f−X (x) = f X (x), whence the claim follows. Conversely, if f X (−x) = fX (x) for all x , then,
by substituting u = −x ,

P(−X ≤ y) = P(X ≥ −y) =
∫ ∞

−y
fX (x) dx =

∫ y

−∞
fX (−u) du =

∫ y

−∞
f X (u) du = P(X ≤ y),

whence X and −X have the same distribution function.

3. Since α ≥ 0, f ≥ 0, and g ≥ 0, it follows that α f + (1 − α)g ≥ 0. Also

∫

R

{
α f + (1 − α)g

}
dx = α

∫

R

f dx + (1 − α)

∫

R

g dx = α + 1 − α = 1.



[4.1.4]–[4.2.4] Solutions Continuous random variables

If X is a random variable with density f , and Y a random variable with density g, thenα f +(1−α)g
is the density of a random variable Z which takes the value X with probability α and Y otherwise.

Some minor technicalities are necessary in order to find an appropriate probability space for such
a Z . If X and Y are defined on the probability space (�,F,P), it is necessary to define the product
space (�,F,P) × (6,G,Q) where 6 = {0, 1}, G is the set of all subsets of 6, and Q(0) = α,
Q(1) = 1 − α. For ω × σ ∈ �×6, we define

Z(ω × σ) =
{

X (ω) if σ = 0,

Y (ω) if σ = 1.

4. (a) By definition, r(x) = lim
h↓0

1

h

F(x + h)− F(x)

1 − F(x)
=

f (x)

1 − F(x)
.

(b) We have that

d

dx

{
H(x)

x

}
=

d

dx

{
1

x

∫ x

0
r(y) dy

}
=

r(x)

x
−

1

x2

∫ x

0
r(y) dy =

1

x2

∫ x

0
[r(x)− r(y)] dy,

which is non-negative if r is non-increasing.

(c) H(x)/x is non-decreasing if and only if, for 0 ≤ α ≤ 1,

1

αx
H(αx) ≤

1

x
H(x) for all x ≥ 0,

which is to say that −α−1 log[1 − F(αx)] ≤ − log[1 − F(x)]. We exponentiate to obtain the claim.

(d) Likewise, if H(x)/x is non-decreasing then H(αt) ≤ αH(t) for 0 ≤ α ≤ 1 and t ≥ 0, whence
H(αt)+ H(t − αt) ≤ H(t) as required.

4.2 Solutions. Independence

1. Let N be the required number. Then P(N = n) = F(K )n−1[1− F(K )] for n ≥ 1, the geometric

distribution with mean [1 − F(K )]−1.

2. (i) Max{X,Y } ≤ v if and only if X ≤ v and Y ≤ v. Hence, by independence,

P
(
max{X,Y } ≤ v

)
= P(X ≤ v,Y ≤ v) = P(X ≤ v)P(Y ≤ v) = F(v)2 .

Differentiate to obtain the density function of V = max{X,Y }.
(ii) Similarly min{X,Y } > u if and only if X > u and Y > u. Hence

P(U ≤ u) = 1 − P(U > u) = 1 − P(X > u)P(Y > u) = 1 − [1 − F(u)]2,

giving fU (u) = 2 f (u)[1 − F(u)].

3. The 24 permutations of the order statistics are equally likely by symmetry, and thus have equal

probability. Hence P(X1 < X2 < X3 < X4) = 1
24 , and P(X1 > X2 < X3 < X4) = 3

24 , by
enumerating the possibilities.

4. P(Y (y) > k) = F(y)k for k ≥ 1. Hence EY (y) = F(y)/[1 − F(y)] → ∞ as y → ∞.
Therefore,

P
(
Y (y) > EY (y)

)
=
{

1 − [1 − F(y)]
}⌊F(y)/[1−F(y)]⌋

∼ exp

{
1 − [1 − F(y)]

⌊
F(y)

1 − F(y)

⌋}
→ e−1 as y → ∞.

252



Expectation Solutions [4.2.5]–[4.3.2]

5. By independence, for i 6= r ,

P
(
{X i ≤ Xr } ∪ {Yi ≤ Yr }

)
= 1 − P

(
{X i > Xr } ∩ {Yi > Yr }

)
= 1 − 1

2 · 1
2 = 3

4 .

Therefore, P(Pi is peripheral) = ( 3
4 )

n−1. The number of peripheral points is
∑n

i=1 Ii where Ii is the

indicator function that Pi is peripheral. The answer is nE(I1) = n( 3
4 )

n−1.

6. (a) The required probability is the area of the region of [0, 1]2, in the u/v-plane, lying below the

curve v = u2 and above the line v = x . Draw a picture.

(b) By part (a) with x = 0, we have P(V < U2) = 1
3 , whence

P(V > x | U2 > V ) =
P(x < V < U2)

P(V < U2)
= 1 − 3x + 2x3/2.

The required conditional density function is

f (x) =
d

dx

(
1 − P(V > x | U2 > V )

)
= 3(1 − x1/2), x ∈ (0, 1).

(c) The quadratic has two distinct real roots if and only if its discriminant is strictly positive, which is

to say that U2 − V > 0. As above, this has probability 1
3 .

(d) The roots are R± = −U ±
√

U2 − V . When U2 − V > 0, we have R± < 1. Furthermore,
R+ > R− > −1 if and only if V > 2U − 1. Therefore, the required probability is P(V > 2U − 1 |
U2 − V > 0). The area of the region {(u, v) : v > 2u − 1, u2 − v > 0} ∩ [0, 1]2 is 1

12 , and the final

answer is 1
12/

1
3 = 1

4 .

7. (a) Consider the points taken in clockwise order. There are n choices for the point to be regarded

as ‘first’, and for each choice the required probability is ( 1
2 )

n−1. By the partition theorem, the answer

is n( 1
2 )

n−1.

(b) This is a variant of Flash’s Problem (1.8.40). In the language of that problem, the key extra
observation is that n spaceships fail to control the entire surface of the sphere if and only if they lie
within some open hemisphere.

Argue as follows to see the last claim. A hemisphere H has an equator, and there is a corre-
sponding pole S not lying in H (S is the centre of the complement of H ). If the ships lie within some
open hemisphere H , then some neighbourhood of the pole S is uncontrolled. Conversely, if some
neighbourhood of a point P is uncontrolled, then the ships lie in the open hemisphere H with pole P.

4.3 Solutions. Expectation

1. (a) E(Xα) =
∫∞

0 xαe−x dx < ∞ if and only if α > −1.

(b) In this case

E(|X |α) =
∫ ∞

−∞

C |x |α

(1 + x2)m
dx < ∞

if and only if −1 < α < 2m − 1.

2. We have that

1 = E

(∑n
1 X i

Sn

)
=

n∑

i=1

E(X i/Sn).
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[4.3.3]–[4.3.5] Solutions Continuous random variables

By symmetry, E(X i/Sn) = E(X1/Sn) for all i , and hence 1 = nE(X1/Sn). Therefore

E(Sm/Sn) =
m∑

i=1

E(X i/Sn) = mE(X1/Sn) = m/n.

3. Either integrate by parts or use Fubini’s theorem:

r

∫ ∞

0
xr−1P(X > x) dx = r

∫ ∞

0
xr−1

{∫ ∞

y=x
f (y) dy

}
dx

=
∫ ∞

y=0
f (y)

{∫ y

x=0
r xr−1 dx

}
dy =

∫ ∞

0
yr f (y) dy.

An alternative proof is as follows. Let Ix be the indicator of the event that X > x , so that∫∞
0 Ix dx = X . Taking expectations, and taking a minor liberty with the integral which may be made

rigorous, we obtain EX =
∫∞

0 E(Ix ) dx . A similar argument may be used for the more general case.

4. We may suppose without loss of generality that µ = 0 and σ = 1. Assume further that m > 1.

In this case, at least half the probability mass lies to the right of 1, whence E(X I{X≥m}) ≥ 1
2 . Now

0 = E(X) = E{X[I{X≥m} + I{X<m}]}, implying that E(X I{X<m}) ≤ − 1
2 . Likewise,

E(X2 I{X≥m}) ≥ 1
2 , E(X2 I{X<m}) ≤ 1

2 .

By the definition of the median, and the fact that X is continuous,

E(X | X < m) ≤ −1, E(X2 | X < m) ≤ 1.

It follows that var(X | X < m) ≤ 0, which implies in turn that, conditional on {X < m}, X is almost
surely concentrated at a single value. This contradicts the continuity of X , and we deduce that m ≤ 1.
The possibility m < −1 may be ruled out similarly, or by considering the random variable −X .

5. (a) It is a standard to write X = X+ − X− where X+ = max{X, 0} and X− = − min{X, 0}.
Now X+ and X− are non-negative, and so, by Lemma (4.3.4),

µ = E(X) = E(X+)− E(X−) =
∫ ∞

0
P(X > x) dx −

∫ ∞

0
P(X < −x) dx

=
∫ ∞

0
[1 − F(x)] dx −

∫ ∞

0
F(−x) dx =

∫ ∞

0
[1 − F(x)] dx −

∫ 0

−∞
F(x) dx .

It is a triviality that

µ =
∫ µ

0
F(x) dx +

∫ µ

0
[1 − F(x)] dx

and the equation follows with a = µ. It is easy to see that it cannot hold with any other value of a,
since both sides are monotonic functions of a.

(b) We have that

E|X − a| =
∫ ∞

a
P(X > x) dx +

∫ a

−∞
P(X < x) dx,

so that
d

da
E|X − a| = P(X < a)− P(X > a).

This is strictly positive when a is greater than all medians, negative when a is less than all medians,
and zero otherwise.
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Expectation Solutions [4.3.6]–[4.3.10]

6. Let x ∈ R, and let Ij be the indicator function that X j > x . Then Ij Ik is the indicator function
that min{X j , Xk} > x , and similarly for other products of the Ij . Now,

I
(
max X j > x

)
= 1 −

n∏

j=1

(1 − Ij )

=
∑

j

Ij −
∑

j<k

I
(
min{X j , Xk} > x

)
+ · · · + (−1)n+1 I

(
min X j > x

)
.

Integrate over x to obtain the result.

7. Let X = X+ − X− where X+ = max{X, 0} and X− = − min{X, 0}. Since E(Xr ) < ∞, we
have 0 ≤ E((Xr )+),E((Xr )−) < ∞. Note that

(Xr )+ =
{
(X+)r if r is odd,

|X |r if r is even.

Let r be odd (a similar argument holds if r is even). By Exercise (4.3.3),

E
(
(Xr )+

)
=
∫ ∞

0
r xr−1P(X > x) dx < ∞.

For the second part, since X has a density function f , X+ has density function f on (0,∞) together
with an atom at 0. Therefore, for K > 0, Y = (Xr )+ satisfies

E(Y ) =
∫ ∞

0
xr f (x) dx

=
∫ K

0
xr f (x) dx +

∫ ∞

K
xr f (x) dx ≥

∫ K

0
xr f (x) dx + K r

∫ ∞

K
f (x) dx

=
∫ K

0
xr f (x) dx + K r P(X > K ).

Let K → ∞ and use the fact that E(Y ) < ∞.

8. For the first part, take g(x) = x and h(x) = f (x)/b. For the second, take g(x) = xn .

9. Use the expansion

E
[
(X − a)2

]
= E

[(
(X − EX)+ (EX − a)

)2] = var(X) + [EX − a]2.

10. There is probability (r2)n that all n arrows hit within the circle with radius r , whence

fR(r) =
d

dr
r2n = 2nr2n−1, r ∈ [0, 1].

The mean area of the circle in question is

E(π R2) = π

∫ 1

0
r22nr2n−1 dr =

πn

n + 1
.

Conditional on R, the other n − 1 arrows are distributed on a disk with radius R. By the above,

the area A in question has conditional expectation E(A | R) = R2π(n − 1)/n, so that

E(A) = E(E(A | R)) =
n − 1

n
E(π R2) =

π(n − 1)

n + 1
.
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11. Suppose first that M = 0. In the notation of Khinchin’s representation, we have EX = 1
2 EY , and

σ 2 = E(U2)E(Y 2)− (EUEY )2 = 1
3 E(Y 2)− 1

4 E(Y )2.

On eliminating EY , we obtain E(X)2 + var(Y ) = 3σ 2. The result follows on considering the random
variable X − M . Equality holds in the given inequality if and only if Y is almost surely constant, so
X is uniform.

Finally, noting Exercise (4.3.4), we have by the triangle inequality that |M − m| < (1 +
√

3)σ ,

though in fact it can be shown that |M − m| ≤ σ
√

3 and this bound is sharp.

12. We use the Khinchin representation of unimodality from Exercise (4.3.11). We may think of the
velocity V as comprising two independent elements: a speed |V |, and a random direction. Let W

be the distance to the endpoint of the interval in the direction of travel, and note that W is uniformly
distributed on [0, 1], and is independent of |V |. Now, T = W/|V |, and the claim follows by Khinchin’s
representation.

13. (a) As in the solution to Exercise (4.3.12), and after a change of variables, the relationship between
the density function f of T and the density function g of the speed is found to be

(*) f (t) =
∫ 1/t

0
xg(x) dx, t > 0.

(b) With g as given, we have that f (t) = 1 − (1 + 1/t)e−1/t for t > 0.

4.4 Solutions. Examples of continuous variables

1. (i) Integrating by parts,

Ŵ(t) =
∫ ∞

0
x t−1e−x dx = (t − 1)

∫ ∞

0
x t−2e−x dx = (t − 1)Ŵ(t − 1).

If n is an integer, then it follows that Ŵ(n) = (n − 1)Ŵ(n − 1) = · · · = (n − 1)!Ŵ(1) where Ŵ(1) = 1.

(ii) We have, using the substitution u2 = x , that

Ŵ( 1
2 )

2 =
{∫ ∞

0
x
− 1

2 e−x dx

}2

=
{∫ ∞

0
2e−u2

du

}2

= 4

∫ ∞

0
e−u2

du

∫ ∞

0
e−v2

dv = 4

∫ ∞

r=0

∫ π/2

θ=0
e−r2

r dr dθ = π

as required. For integral n,

Ŵ(n + 1
2 ) = (n − 1

2 )Ŵ(n − 1
2 ) = · · · = (n − 1

2 )(n − 3
2 ) · · ·

1
2Ŵ(

1
2 ) =

(2n)!

4nn!

√
π.

2. By the definition of the gamma function,

Ŵ(a)Ŵ(b) =
∫ ∞

0
xa−1e−x dx

∫ ∞

0
yb−1e−y dy =

∫ ∞

0

∫ ∞

0
e−(x+y)xa−1yb−1 dx dy.

Now set u = x + y, v = x/(x + y), obtaining

∫ ∞

u=0

∫ 1

v=0
e−uua+b−1va−1(1 − v)b−1 dv du

=
∫ ∞

0
ua+b−1e−u du

∫ 1

0
va−1(1 − v)b−1 dv = Ŵ(a + b)B(a, b).
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Examples of continuous variables Solutions [4.4.3]–[4.4.8]

3. If g is strictly decreasing then P(g(X) ≤ y) = P(X ≥ g−1(y)) = 1 − g−1(y) so long as

0 ≤ g−1(y) ≤ 1. Therefore P(g(X) ≤ y) = 1 − e−y , y ≥ 0, if and only if g−1(y) = e−y , which is
to say that g(x) = − log x for 0 < x < 1.

4. We have that

P(X ≤ x) =
∫ x

−∞

1

π(1 + u2)
du =

1

2
+

1

π
tan−1 x .

Also,

E(|X |α) =
∫ ∞

−∞

|x |α

π(1 + x2)
dx

is finite if and only if |α| < 1.

5. Writing 8 for the N(0, 1) distribution function, P(Y ≤ y) = P(X ≤ log y) = 8(log y). Hence

fY (y) =
1

y
fX (log y) =

1

y
√

2π
e
− 1

2
(log y)2

, 0 < y < ∞.

6. Integrating by parts,

LHS =
∫ ∞

−∞
g(x)

{
(x − µ)

1

σ
φ

(
x − µ

σ

)}
dx

= −
[

g(x)σφ

(
x − µ

σ

)]∞

−∞
+
∫ ∞

−∞
g′(x)σφ

(
x − µ

σ

)
dx = RHS.

7. (a) r(x) = αβxβ−1.

(b) r(x) = λ.

(c) r(x) =
λαe−λx + µ(1 − α)e−µx

αe−λx + (1 − α)e−µx
, which approaches min{λ,µ} as x → ∞.

8. (a) Clearly φ′ = −xφ. Using this identity and integrating by parts repeatedly,

1 −8(x) =
∫ ∞

x
φ(u) du = −

∫ ∞

x

φ′(u)

u
du =

φ(x)

x
+
∫ ∞

x

φ′(u)

u3
du

=
φ(x)

x
−
φ(x)

x3
−
∫ ∞

x

3φ′(u)

u5
du =

φ(x)

x
−
φ(x)

x3
+

3φ(x)

x5
−
∫ ∞

x

15φ(u)

u6
du.

(b) Let c ∈ R, d = (c − µ)/σ , and also x ∈ R, Z = (X − µ)/σ , z = (x − µ)/σ . Then,

P(X > x | X > c) = P(Z > z | Z > d),

so that the conditional density function of X given that X > c is

g(x) =
1

σ
·

φ(z)

1 −8(d)
, x > c.

Therefore,

E(X | X > c) =
∫ ∞

c
xg(x) dx =

∫ ∞

c

xφ(z)

σ (1 −8(d))
dx =

∫ ∞

d

(zσ + µ)φ(z)

σ (1 −8(d))
σdz,

by the substitution x = zσ + µ. Hence,

E(X | X > c) =
σ

1 −8(d)

∫ ∞

d
zφ(z) dz + µ,
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[4.4.9]–[4.4.12] Solutions Continuous random variables

and the answer follows by integration. The second formula follows similarly.

9. We have that

P(U ≤ V ≤ W ) =
∫ ∞

0
λe−λuP(u ≤ V ≤ W ) du =

∫ ∞

0
λe−λu

∫ ∞

u
µe−µvP(v ≤ W ) dv du,

where P(v ≤ W ) = e−νv . Insert and integrate.

10. By the tail integral formula,

E
(
min{U, X}

)
=
∫ ∞

0
P(min{U, X} > t) dt =

∫ 1

0
(1 − t)e−λt dt =

1

λ
e−λ −

1

λ2
(1 − e−λ).

11. (a) We have

FY (y) = P(aX ≤ y − y X) = P

(
X ≤

y

a + y

)
=

y

a + y
, y > 0.

(b) By the definition of S,

P(S ≥ s) = (1 − FY (s))
n =

(
a

a + s

)n

, s > 0,

and the Pareto density follows on differentiating. The mean is

ES =
∫ ∞

0
P(S > s) ds =

a

n − 1
.

(c) In the usual way,

P(T ≤ t) = P(Y1 ≤ t)n =
(

y

a + y

)n

, t > 0.

12. The Cauchy distribution function is

F(x) =
1

2
+

1

π
tan−1 x, x ∈ R.

For y ∈ (0, 1),

P(Y ≤ y) = P

(
1 + X2 ≥

1

y

)
= 2P

(
X ≥

√
1 − y

y

)

= 2
(

1 − F
(√

(1 − y)/y
))

= 1 −
2

π
tan−1

√
1 − y

y

= 1 −
2

π
cos−1 √

y =
2

π
sin−1 √

y.
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Examples of continuous variables Solutions [4.4.13]–[4.4.15]

13. (a) The answers are (c − b)n/(2c)n and (c + b)n/(2c)n , respectively.

(b) We have that

P(Z ≤ z) =
2n+1∑

i=1

P(Z ≤ z, Z = X i ) = (2n + 1)P(Z ≤ z, Z = X1)

= (2n + 1)

∫ z

−c
fX (x)P

(
n of the X i are less than x , and n are greater

)
dx

= (2n + 1)

∫ z

−c

1

2c

(
2n

n

)
(c2 − x2)n

(2c)2n
dx .

Differentiate to obtain the answer.

(c) Since fZ is a density function,

cn :=
∫ c

−c
(c2 − z2)n dz =

(n!)2

(2n + 1)!
(2c)2n+1.

(d) Since Z and −Z have the same distribution, EZ = 0. Therefore,

var(Z) = E(Z2) =
∫ c

−c
z2 fZ (z) dz

=
1

cn

{
c2
∫ c

−c
(c2 − z2)n dz −

∫ c

−c
(c2 − z2)n+1 dz

}

=
1

cn
(c2cn − cn+1) =

c2

2n + 3
.

14. We have for y > 0 that

FY (y) = P(Y ≤ y) = P

(
X ≤

y

1 + y

)
= FX (y/(1 + y)).

Differentiate to get the density function fY . By the definition of Y ,

E(Y n) =
1

B(a, b)

∫ ∞

0

(
x

1 − x

)n

xa−1(1 − x)b−1 dx =
B(a + n, b − n)

B(a, b)
,

as required.

15. With f denoting the density function of Z ,

E|Z − t | =
∫ ∞

0
|z − t | f (z) dz =

∫ t

0
−(z − t) f (z) dz +

∫ ∞

t
(z − t) f (z) dz

=
∫ ∞

0
(z − t) f (z) dz − 2

∫ t

0
(z − t) f (z) dz.

The penultimate integral equals 0 since EZ = t . The other term is

−2

∫ t

0

zt e−z

Ŵ(t)
dz + 2

∫ t

0

t zt−1e−z

Ŵ(t)
dz = 2

t t e−t

Ŵ(t)
,

on integrating the first by parts.
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4.5 Solutions. Dependence

1. (i) As the product of non-negative continuous functions, f is non- negative and continuous. Also

g(x) = 1
2 e−|x |

∫ ∞

−∞

1
√

2πx−2
e
− 1

2
x2 y2

dy = 1
2 e−|x |

if x 6= 0, since the integrand is the N(0, x−2) density function. It is easily seen that g(0) = 0, so that
g is discontinuous, while ∫ ∞

−∞
g(x) dx =

∫ ∞

−∞
1
2 e−|x | dx = 1.

(ii) Clearly fQ ≥ 0 and

∫ ∞

−∞

∫ ∞

−∞
fQ(x, y) dx dy =

∞∑

n=1

(
1
2

)n
· 1 = 1.

Also fQ is the uniform limit of continuous functions on any subset of R2 of the form [−M,M] × R;
hence fQ is continuous. Hence fQ is a continuous density function. On the other hand

∫ ∞

−∞
fQ(x, y) dy =

∞∑

n=1

(
1
2

)n
g(x − qn),

where g is discontinuous at 0.

(iii) Take Q to be the set of the rationals, in some order.

2. We may assume that the centre of the rod is uniformly positioned in a square of size a × b, while

the acute angle between the rod and a line of the first grid is uniform on [0, 1
2π ]. If the latter angle is

θ then, with the aid of a diagram, one finds that there is no intersection if and only if the centre of the
rod lies within a certain inner rectangle of size (a − r cos θ)× (b − r sin θ). Hence the probability of
an intersection is

2

πab

∫ π/2

0

{
ab − (a − r cos θ)(b − r sin θ)

}
dθ =

2r

πab
(a + b − 1

2r).

3. (a) Let I be the indicator of the event that the first needle intersects a line, and let J be the indicator
that the second needle intersects a line. By the result of Exercise (4.5.2), E(I ) = E(J ) = 2/π ; hence

Z = I + J satisfies E( 1
2 Z) = 2/π .

We have that

var( 1
2 Z) = 1

4

{
E(I 2)+ E(J 2)+ 2E(I J )

}
− E( 1

2 Z)2

= 1
4

{
E(I )+ E(J )+ 2E(I J )

}
−

4

π2
=

1

π
−

4

π2
+

1

2
E(I J ).

In the notation of (4.5.8), if 0 < θ < 1
2π , then two intersections occur if z < 1

2 min{sin θ, cos θ}
or 1 − z < 1

2 min{sin θ, cos θ}. With a similar component when 1
2π ≤ θ < π , we find that

E(I J ) = P(two intersections) =
4

π

∫∫

R
dz dθ

=
4

π

∫ π/2

0

1
2 min{sin θ, cos θ} dθ =

4

π

∫ π/4

0
sin θ dθ =

4

π

(
1 −

1
√

2

)
,
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Dependence Solutions [4.5.4]–[4.5.6]

where
R =

{
(z, θ) : 0 < z < 1

2 min{sin θ, cos θ}, 0 < θ < 1
2π
}
.

Hence,

var( 1
2 Z) =

1

π
−

4

π2
+

1

π
(2 −

√
2) =

3 −
√

2

π
−

4

π2
.

(b) For Buffon’s needle, the variance of the number of intersections is (2/π)− (2/π)2 which exceeds

var( 1
2 Z). You should therefore use Buffon’s cross.

(c) Let G be the number of intersections of the unit needle with the two orthogonal unit grids. Trigono-
metric calculations similar to those of part (a) yield P(G = 2) = 1/π and P(G = 1) = 2/π . Hence

the estimator 1
2 G has mean 2/π and variance 3/(2π) − 4/π2, which is less than that for Buffon’s

cross thrown onto parallel lines. You would prefer to use the needle on the orthogonal grids.

4. (i) FU (u) = 1−(1−u)(1−u) if 0 < u < 1, and so E(U) =
∫ 1

0 2u(1−u) du = 1
3 . (Alternatively,

place three points independently at random on the circumference of a circle of circumference 1.
Measure the distances X and Y from the first point to the other two, along the circumference clockwise.
Clearly X and Y are independent and uniform on [0, 1]. Hence by circular symmetry, E(U) =
E(V − U) = E(1 − V ) = 1

3 .)

(ii) Clearly U V = XY , so that E(U V ) = E(X)E(Y ) = 1
4 . Hence

cov(U, V ) = E(U V )− E(U)E(V ) = 1
4 − 1

3 (1 − 1
3 ) = 1

36 ,

since E(V ) = 1 − E(U) by ‘symmetry’.

5. (a) If X and Y are independent then, by (4.5.6) and independence,

E(g(X)h(Y )) =
∫∫

g(x)h(y) fX,Y (x, y) dx dy

=
∫

g(x) fX (x) dx

∫
h(y) fY (y) dy = E(g(X))E(h(Y )).

By independence

E(e
1
2 (X+Y )

) = E(e
1
2 X
)2 =

{∫ ∞

0
e

1
2 x

e−x dx

}2

= 4.

(b) We may assume that X and Y have zero mean. Since they are independent,

E
(
(X − Y )2

)
= E(X2)− 2E(XY )+ E(Y 2) = 2E(X2) = 2 var(X).

6. If O is the centre of the circle, take the radius OA as origin of coordinates. That is, A = (1, 0),
B = (1, 2), C = (1, 8), in polar coordinates, where we choose the labels in such a way that

0 ≤ 2 ≤ 8. The pair 2,8 has joint density function f (θ, φ) = (2π2)−1 for 0 < θ < φ < 2π .

The three angles of ABC are 1
22, 1

2 (8−2), π − 1
28. You should plot in the θ /φ-plane the set

of pairs (θ, φ) such that 0 < θ < φ < 2π and such that at least one of the three angles exceeds xπ .
Then integrate f over this region to obtain the result. The shape of the region depends on whether or

not x < 1
2 . The density function g of the largest angle is given by differentiation:

g(x) =
{

6(3x − 1) if 1
3 ≤ x ≤ 1

2 ,

6(1 − x) if 1
2 ≤ x ≤ 1.

The expectation is found to be 11
18π .
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[4.5.7]–[4.5.12] Solutions Continuous random variables

7. We have that E(X) = µ, and therefore E(Xr − X) = 0. Furthermore,

E
{

X(Xr − X)
}

=
1

n
E

(∑

s

Xr Xs

)
− E(X

2
) =

1

n
{σ 2 + nµ2} −

(
var(X)+ E(X)2

)

=
1

n
{σ 2 + nµ2} −

(
σ 2

n
+ µ2

)
= 0.

8. The condition is that E(Y ) var(X)+ E(X) var(Y ) = 0.

9. If X and Y are positive, then S positive entails T positive, which displays the dependence. Finally,

S2 = X and T 2 = Y .

10. By symmetry, P(X > Y ) = P(Y > X), and by continuity, P(X = Y ) = 0. Therefore,

P(X > Y ) = 1
2 .

For any three unequal numbers a, b, c, there are six distinct orderings by size, and for the

continuous random variables X , Y , Z , by symmetry each has probability 1
6 . There are three such

orderings consistent with X > Y , namely, Z XY , X ZY , XY Z ; of these, two are consistent with

Z > Y , namely, Z XY , X ZY . Therefore, P(Z > Y | X > Y ) = 2
3 .

11. Multiply up and take expectations. It follows that

2 cov(X,Y ) = E

∫∫ {
I (U ≤ x)− I (X ≤ x)

}{
I (V ≤ y)− I (Y ≤ y)

}
dx dy

=
∫∫

2
{

F(x, y)− FX (x)FY (y)
}

dx dy,

where we have used Fubini’s theorem to pass the expectation into the integral. The above integral
representation, which may not be totally obvious, is seen by examining the range of values of x and
y where the integrand is non-zero.

12. Let F and f denote the joint distribution and density functions of X , Y . Then Z = max{X,Y }
has distribution function F(z, z), with expectation

EZ =
∫ ∞

−∞
z
{

Fx (z, z)+ Fy(z, z)
}

dz,

where (with a similar expression for Fy(x, y))

Fx (x, y) :=
∂F(x, y)

∂x
=
∫ y

−∞
f (x, v) dv

=
∫ y

−∞

1

2π
√

1 − ρ2
exp

{
−

1

2(1 − ρ2)

[
(1 − ρ2)x2 + (v − ρx)2

]}
dv

= φ(x)8

(
y − ρx√
1 − ρ2

)
,

and φ, 8 are the N(0, 1) density and distribution functions. By integration by parts,

EZ = 2

∫ ∞

−∞
zφ(z)8

(
z(1 − ρ)√

1 − ρ2

)
dz

=
√

2/π

∫ ∞

−∞
e
− 1

2
z2

√
1 − ρ

1 + ρ
φ

(
z

√
1 − ρ

1 + ρ

)
dz =

√
1 − ρ

π
.
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Dependence Solutions [4.5.13]–[4.5.16]

13. For n ∈ {0, 1, 2 . . . } and y ∈ (0, 1),

P
(
{N = n} ∩ {M < y}

)
= P(n < X < n + y) = e−λn − e−λ(n+y) = e−λn(1 − e−λy).

Since this factorizes, M and N are independent with

P(N = n) = e−λn(1 − e−λ), fM (y) =
λe−λy

1 − e−λ .

14. The expectation equals

I :=
1

2π

∫∫
exp

{
− 1

2

[
(1 − 2a)x2 − 4bxy + (1 − 2c)y2]} dx dy.

Recalling the bivariate normal density function of Example (4.5.9), we see that I = στ
√

1 − ρ2

where

σ 2(1 − ρ2) =
1

1 − 2a
, τ2(1 − ρ2) =

1

1 − 2c
, σ τ(1 − ρ2) =

ρ

2b
.

Hence

ρ2 =
4b2

(1 − 2a)(1 − 2c)
, σ τ

√
1 − ρ2 =

1√
(1 − 2a)(1 − 2c)− 4b2

.

15. Without loss of generality, we may consider the standard bivariate normal density function, and
we calculate

1 + φ2 =
1

2π(1 − ρ2)

∫∫
exp

{
1

2
x2 +

1

2
y2 −

1

1 − ρ2
(x2 − 2ρxy + y2)

}
dx dy

=
1

1 − ρ2
,

either by considering the bivariate normal density with σ 2 = τ2 = (1 + ρ2)/(1 − ρ2), having

correlation 2ρ/(1 + ρ2), or by routine integration.

For the second part,

I = E log

{
f (X,Y )

g(x)h(y)

}

= −
1

2
log(1 − ρ2)+ E

{
X2

2σ 2
+

Y 2

2τ2
−

1

2(1 − ρ2)

(
X2

σ 2
−

2ρXY

στ
+

Y 2

2τ2

)}

= − 1
2 log(1 − ρ2).

Note that

I =
{

0 if ρ = 0,

∞ if ρ = 1.

16. By symmetry, E(cos(nπ X)) = 0 for n ≥ 1. Furthermore,

E
{

cos(mπ X) cos(nπ X)
}

= 1
2 E
{

cos((m + n)π X)+ cos((m − n)π X)
}

= 0,

for m 6= n. Therefore, they are uncorrelated. On the other hand, cos(2π X) = 2 cos2(π X) − 1, so
that

P
({

| cos(π X)| < 1/
√

2
}

∩
{

cos(2π X) > 0
})

= 0,
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[4.5.17]–[4.5.19] Solutions Continuous random variables

whereas
P
({

| cos(π X)| < 1/
√

2
})

P
({

cos(2π X) > 0
})

6= 0.

17. Using indicator functions,

1
2 E|X − Y | = 1

2 E
{
(X − Y )I (X > Y )+ (Y − X)I (X < Y )

}

= E
{
(Y − X)I (X < Y )

}
by symmetry

= E

∫ Y

X∧Y
dy = E

∫ ∞

0
I (y < Y ) dy − E

∫ ∞

0
I (y < X)I (y < Y ) dy

=
∫ ∞

0
(1 − F(y)) dy −

∫ ∞

0
(1 − F(y))2 dy by independence

= EX −
∫ ∞

0
(1 − F(y))2 dy,

where x ∧ y = min{x, y}. The above uses the non-negativity of X , Y . The second form for the MAD
follows by making the change of variables u = F(x), v = F(y) in the expression

E|X − Y | =
∫∫

R2
|x − y| d F(x) d F(y).

Routine integrations yield the required MADs: (a) 1
3 , (b) λ, (c) 2a/[(a − 1)(2a − 1)]. For (d),

note that X − Y is N(0, 2), so that E|X − Y | =
√

2/π .

18. By symmetry in x = y = 0, the joint density function of |X |, |Y | is

f (x, y) =
2

π
e
− 1

2 (x
2+y2)

, x, y > 0,

and by symmetry in the line x = y, that of U , V is

g(u, v) =
4

π
e
− 1

2
(u2+v2)

, 0 < u < v < ∞.

Therefore, using polar coordinates,

E(U/V ) =
4

π

∫∫

0<u<v<∞

u

v
e
− 1

2 (u
2+v2)

du dv

=
4

π

∫ ∞

0
re

− 1
2 r2

dr

∫ π/2

π/4
cot θ dθ =

4

π
· 1 · log

√
2.

19. Three lengths can form a triangle if and only if the sum of any two is no greater than the third.
The triangle1 is defined by the inequalities x + y ≥ 1 and x, y ≤ 1, and any such pair (x, y) satisfies
the given condition.

For (x, y) ∈ 1, the angle θ = ÂBC is given by the cosine formula by

cos θ =
x2 + (2 − x − y)2 − y2

2x(2 − x − y)
,

and θ is obtuse if and only if this is strictly negative. This occurs if and only if f (x) < y where

f (x) =
x2 − 2x + 2

2 − x
.
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Conditional distributions and conditional expectation Solutions [4.5.20]–[4.6.4]

By drawing a picture, or otherwise, we see that

P( f (X) < Y ) = 2

∫ 1

0
[1 − f (x)] dx = 3 − 4 log 2.

20. Since f cannot be factorized as a function of x multiplied by a function of y, X and Y are not
independent. Alternatively, you may calculate the marginal density functions by integration. By

routine integrations, EX = EY = 1
2 and E(XY ) = 1

4 . Therefore, cov(X, Y ) = 0.

4.6 Solutions. Conditional distributions and conditional expectation

1. The point is picked according to the uniform distribution on the surface of the unit sphere, which
is to say that, for any suitable subset C of the surface, the probability the point lies in C is the surface

integral
∫

C (4π)
−1 d S. Changing to polar coordinates, x = cos θ cos φ, y = sin θ cos φ, z = sin φ,

subject to x2 + y2 + z2 = 1, this surface integral becomes (4π)−1
∫

C | cosφ| dθ dφ, whence the joint
density function of 2 and 8 is

f (θ, φ) =
1

4π
| cosφ|, |φ| ≤ 1

2π, 0 ≤ θ < 2π.

The marginals are then f2(θ) = (2π)−1, f8(φ) = 1
2 | cos φ|, and the conditional density functions

are

f2|8(θ | φ) =
1

2π
, f8|2(φ | θ) = 1

2 | cosφ|,

for appropriate θ and φ. Thus2 and8 are independent. The fact that the conditional density functions
are different from each other is sometimes referred to as ‘Borel’s paradox’.

2. We have that

ψ(x) =
∫ ∞

−∞
y

fX,Y (x, y)

fX (x)
dy

and therefore

E
(
ψ(X)g(X)

)
=
∫ ∞

−∞

∫ ∞

−∞
y

f X,Y (x, y)

fX (x)
g(x) fX (x) dx dy

=
∫ ∞

−∞

∫ ∞

−∞
{y g(x)} fX,Y (x, y) dx dy = E(Yg(X)).

3. Take Y to be a random variable with mean ∞, say fY (y) = y−2 for 1 ≤ y < ∞, and let X = Y .
Then E(Y | X) = X which is (almost surely) finite.

4. (a) We have that

fX (x) =
∫ ∞

x
λ2e−λy dy = λe−λx , 0 ≤ x < ∞,

so that fY |X (y | x) = λeλ(x−y), for 0 ≤ x ≤ y < ∞.

(b) Similarly,

fX (x) =
∫ ∞

0
xe−x(y+1) dy = e−x , 0 ≤ x < ∞,

so that fY |X (y | x) = xe−xy , for 0 ≤ y < ∞.
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[4.6.5]–[4.6.8] Solutions Continuous random variables

5. We have that

P(Y = k) =
∫ 1

0
P(Y = k | X = x) fX (x) dx =

∫ 1

0

(
n

k

)
xk(1 − x)n−k xa−1(1 − x)b−1

B(a, b)
dx

=
(

n

k

)
B(a + k, n − k + b)

B(a, b)
.

In the special case a = b = 1, this yields

P(Y = k) =
(

n

k

)
Ŵ(k + 1)Ŵ(n − k + 1)

Ŵ(n + 2)
=

1

n + 1
, 0 ≤ k ≤ n,

whence Y is uniformly distributed.

We have in general that

E(Y ) =
∫ 1

0
E(Y | X = x) fX (x) dx =

na

a + b
,

and, by a similar computation of E(Y 2),

var(Y ) =
nab(a + b + n)

(a + b)2(a + b + 1)
.

6. By conditioning on X1,

Gn(x) = P(N > n) =
∫ x

0
Gn−1(x − u) du =

∫ x

0
Gn−1(v) dv.

Now G0(v) = 1 for all v ∈ (0, 1], and the result follows by induction. Now,

EN =
∞∑

n=0

P(N > n) = ex .

More generally,

G N (s) =
∞∑

n=1

snP(N = n) =
∞∑

n=1

sn

(
xn−1

(n − 1)!
−

xn

n!

)
= (s − 1)esx + 1,

whence var(N) = G ′′
N (1)+ G ′

N (1)− G ′
N (1)

2 = 2xex + ex − e2x .

7. We may assume without loss of generality that EX = EY = 0. By the Cauchy–Schwarz
inequality,

E(XY )2 = E
(

XE(Y | X)
)2 ≤ E(X2)E

(
E(Y | X)2

)
.

Hence,

E
(
var(Y | X)

)
= E(Y 2)− E

(
E(Y | X)2

)
≤ EY 2 −

E(XY )2

E(X2)
= (1 − ρ2) var(Y ).

8. One way, as essentially followed in the solution to Exercise (4.4.9), is to evaluate

∫ ∞

0

∫ ∞

x

∫ ∞

y
λµνe−λx−µy−νz dx dy dz.
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Conditional distributions and conditional expectation Solutions [4.6.9]–[4.6.12]

Another way is to observe that min{Y, Z} is exponentially distributed with parameter µ+ ν, whence
P(X < min{Y, Z}) = λ/(λ + µ+ ν). Similarly, P(Y < Z) = µ/(µ + ν), and the product of these
two terms is the required answer.

9. By integration, for x, y > 0,

fY (y) =
∫ y

0
f (x, y) dx = 1

6 cy3e−y, f X (x) =
∫ ∞

x
f (x, y) dy = cxe−x ,

whence c = 1. It is simple to check the values of fX |Y (x | y) = f (x, y)/ fY (y) and fY |X (y | x),

and then deduce by integration that E(X | Y = y) = 1
2 Y and E(Y | X = x) = x + 2.

10. We have that N > n if and only if X0 is largest of {X0, X1, . . . , Xn}, an event having probability
1/(n + 1). Therefore, P(N = n) = 1/{n(n + 1)} for n ≥ 1. Next, on the event {N = n}, Xn is the
largest, whence

P(X N ≤ x) =
∞∑

n=1

F(x)n+1

n(n + 1)
=

∞∑

n=1

F(x)n+1

n
−

∞∑

n=1

F(x)n+1

n + 1
+ F(x),

as required. Finally,

P(M = m) = P(X0 ≥ X1 ≥ · · · ≥ Xm−1)− P(X0 ≥ X1 ≥ · · · ≥ Xm) =
1

m!
−

1

(m + 1)!
.

11. We argue naively.

(a) The joint density function of U and X is uniform on the region x ∈ [0, 1], x − u ∈ [0, 1], and U

has a triangular distribution in that fU (u) = 1 − |u| for u ∈ [−1, 1]. Therefore,

f (x | D) =
fU,X (u, x)

fU (u)

∣∣∣∣
u=0

= 1.

(b) The joint density function of V and X is fV ,X (v, x) = x on the region x ∈ [0, 1], xv ∈ [0, 1], and

fV (v) =





1

2
if 0 ≤ v ≤ 1,

1

2v2
if v ≥ 1.

Therefore,

f (x | D) =
fV ,X (v, x)

fV (v)

∣∣∣∣
v=1

= 2x .

(c) This is an example of Borel’s paradox: when conditioning on an event of probability 0, the answer
depends on how the conditioning is done.

12. (a) By conditional probability,

P(X < Y ) =
∫ ∞

−∞
P(X < Y | Y = y) fY (y) dy =

∫ ∞

−∞
FX (y) fY (y) dy.

(b) Suppose A changes their number if and only if UA < a, and B likewise when UB < b, for
predetermined values a, b. (The optimal strategies are in fact of this form.) The new numbers VA,
VB have densities

f A(v) =
{

a if 0 < v < a,

1 + a if a ≤ v < 1,
f B(v) =

{
b if 0 < v < b,

1 + b if b ≤ v < 1.
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[4.6.13]–[4.6.15] Solutions Continuous random variables

By part (a), assuming a ≤ b,

P(B wins) =
∫ a

0
bau du +

∫ b

a
b
(
a2 + (u − a)(1 + a)

)
du +

∫ 1

b
(1 + b)

(
a2 + (u − a)(1 + a)

)
du

= 1
2 + 1

2 (a − b)(b + ab − 1).

If A chooses a = 1
2 (

√
5 − 1), then

P(B wins)

{
< 1

2 if b > a,

= 1
2 if b = a.

A similar calculation and conclusion holds when b ≤ a. Player B calculates likewise.

13. (a) For r ≥ 2, by symmetry each element in {X1 , X2, . . . , Xr } is equally likely to be the maximum
of the set. Therefore, P(Ar ) = 1/r . Conditional on Ar , the relative ordering of X1, X2, . . . , Xr−1
has the same distribution as before, and the independence follows.

(b) By independence,

var(Rn) = var

(
n∑

r=1

IAr

)
=

n∑

r=1

var(IAr ) =
n∑

r=1

1

r

(
1 −

1

r

)
.

(c) The index T of the first record time after 1 satisfies

P(T > n) = P(X1 > Xr for r = 2, 3, . . . , n) =
1

n
,

whence ET = ∞.

14. Let X be the length of the shorter piece of the first break, so f X (x) = 2 for x ∈ [0, 1
2 ]. The other

two pieces have lengths U(1 − X) and (1 − U)(1 − X) where U is uniformly distributed on [0, 1].
These three lengths can form a triangle (as in Exercise (4.6.19)) if and only if

U(1 − X) ≤ X + (1 − U)(1 − X), (1 − U)(1 − X) ≤ X + U(1 − X),

noting that we have already that X < 1 − X . Conditional on X = x , the above occurs if and only if
1 − 2x ≤ 2U(1 − x) ≤ 1, which has probability

P

(
1 − 2x

2(1 − x)
≤ U ≤

1

2(1 − x)

)
=

1

2(1 − x)
−

1 − 2x

2(1 − x)
=

x

1 − x
.

The unconditional probability is

∫ 1
2

0

x

1 − x
f X (x) dx =

∫ 1
2

0

2x

1 − x
dx = 2 log 2 − 1.

15. We have that

E(U(1)) =
∫ 1

0
P(U(1) > x) dx =

∫ 1

0
(1 − x)n dx =

1

n + 1
.

By symmetry, E(U(n)) = 1 − E(U(1)). Conditional on U1,U2, . . . ,Un , the given event occurs with
probability 1 − (U(n) − U(1)), so that the unconditional probability is

1 − E(U(n))+ E(U(1)) =
2

n + 1
.
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Functions of random variables Solutions [4.7.1]–[4.7.5]

4.7 Solutions. Functions of random variables

1. We observe that, if 0 ≤ u ≤ 1,

P(XY ≤ u) = P(XY ≤ u, Y ≤ u)+ P(XY ≤ u,Y > u) = P(Y ≤ u)+ P(X ≤ u/Y, Y > u)

= u +
∫ 1

u

u

y
dy = u(1 − log u).

By the independence of XY and Z ,

P(XY ≤ u, Z2 ≤ v) = P(XY ≤ u)P(Z ≤
√
v) = u

√
v(1 − log u), 0 < u, v < 1.

Differentiate to obtain the joint density function

g(u, v) =
log(1/u)

2
√
v

, 0 ≤ u, v ≤ 1.

Hence

P(XY ≤ Z2) =
∫∫

0≤u≤v≤1

log(1/u)

2
√
v

du dv = 5
9 .

Arguing more directly,

P(XY ≤ Z2) =
∫∫∫

0≤x,y,z≤1

xy≤z2

dx dy dz = 5
9 .

2. The transformation x = uv, y = u − uv has Jacobian

J =
∣∣∣∣
v u

1 − v −u

∣∣∣∣ = −u.

Hence |J | = |u|, and therefore fU,V (u, v) = ue−u , for 0 ≤ u < ∞, 0 ≤ v ≤ 1. Hence U and V are
independent, and fV (v) = 1 on [0, 1] as required.

3. Arguing directly,

P(sin X ≤ y) = P(X ≤ sin−1 y) =
2

π
sin−1 y, 0 ≤ y ≤ 1,

so that fY (y) = 2
/(
π
√

1 − y2
)
, for 0 ≤ y ≤ 1. Alternatively, make a one-dimensional change of

variables.

4. (a) P(sin−1 X ≤ y) = P(X ≤ sin y) = sin y, for 0 ≤ y ≤ 1
2π . Hence fY (y) = cos y, for

0 ≤ y ≤ 1
2π .

(b) Similarly, P(sin−1 X ≤ y) = 1
2 (1 + sin y), for − 1

2π ≤ y ≤ 1
2π , so that fY (y) = 1

2 cos y, for

− 1
2π ≤ y ≤ 1

2π .

5. Consider the mappingw = x , z = (y −ρx)/
√

1 − ρ2 with inverse x = w, y = ρw+ z
√

1 − ρ2

and Jacobian

J =
∣∣∣∣

1 0
ρ

√
1 − ρ2

∣∣∣∣ =
√

1 − ρ2.
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[4.7.6]–[4.7.7] Solutions Continuous random variables

The mapping is one–one, and therefore W (= X) and Z satisfy

fW,Z (w, z) =
√

1 − ρ2

2π
√

1 − ρ2
exp

{
−

1

2(1 − ρ2)
(1 − ρ2)(w2 + z2)

}
=

1

2π
e
− 1

2
(w2+z2)

,

implying that W and Z are independent N(0, 1) variables. Now

{X > 0, Y > 0} =
{

W > 0, Z > −Wρ

/√
1 − ρ2

}
,

and therefore, moving to polar coordinates,

P(X > 0, Y > 0) =
∫ 1

2
π

θ=α

∫ ∞

r=0

1

2π
e
− 1

2 r2
r dr dθ =

∫ 1
2
π

α

1

2π
dθ

where α = − tan−1
(
ρ/
√

1 − ρ2
)

= − sin−1 ρ.

6. We confine ourselves to the more interesting case when ρ 6= 1. Writing X = U , Y = ρU +√
1 − ρ2V , we have that U and V are independent N(0, 1) variables. It is easy to check that Y > X

if and only if (1 − ρ)U <
√

1 − ρ2V . Turning to polar coordinates,

E(max{X,Y }) =
∫ ∞

0

re
− 1

2 r2

2π

[∫ ψ+π

ψ

{
ρr cos θ + r

√
1 − ρ2 sin θ

}
dθ +

∫ ψ

ψ−π
r cos θ dθ

]
dr

where tanψ =
√
(1 − ρ)/(1 + ρ). Some algebra yields the result. For the second part,

E(max{X,Y }2) = E(X2 I{X>Y })+ E(Y 2 I{Y>X}) = E(X2 I{X<Y })+ E(Y 2 I{Y<X}),

by the symmetry of the marginals of X and Y . Adding, we obtain 2E(max{X,Y }2) = E(X2) +
E(Y 2) = 2.

7. We have that

P(X < Y, Z > z) = P(z < X < Y ) =
λ

λ+ µ
e−(λ+µ)z = P(X < Y )P(Z > z).

(a) P(X = Z) = P(X < Y ) =
λ

λ+ µ
.

(b) By conditioning on Y ,

P
(
(X − Y )+ = 0

)
= P(X ≤ Y ) =

λ

λ+ µ
, P

(
(X − Y )+ > w

)
=

µ

λ+ µ
e−λw for w > 0.

By conditioning on X ,

P(V > v) = P(|X − Y | > v) =
∫ ∞

0
P(Y > v + x) fX (x) dx +

∫ ∞

v
P(Y < x − v) fX (x) dx

=
µe−λv + λe−µv

λ+ µ
, v > 0.

(c) By conditioning on X , the required probability is found to be

∫ t

0
λe−λx

∫ ∞

t−x
µe−µy dy dx =

λ

µ− λ
{e−λt − e−µt }.
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Functions of random variables Solutions [4.7.8]–[4.7.13]

8. Either make a change of variables and find the Jacobian, or argue directly. With the convention

that
√

r2 − u2 = 0 when r2 − u2 < 0, we have that

F(r, x) = P(R ≤ r, X ≤ x) =
2

π

∫ x

−r

√
r2 − u2 du,

f (r, x) =
∂2 F

∂r∂x
=

2r

π
√

r2 − x2
, |x | < r < 1.

9. As in the previous exercise,

P(R ≤ r, Z ≤ z) =
3

4π

∫ z

−r
π(r2 − w2) dw.

Hence f (r, z) = 3
2r for |z| < r < 1. This question may be solved in spherical polars also.

10. The transformation s = x + y, r = x/(x + y), has inverse x = rs, y = (1 − r)s and Jacobian
J = s. Therefore,

fR(r) =
∫ ∞

0
fR,S(r, s) ds =

∫ ∞

0
f X,Y

(
rs, (1 − r)s

)
s ds

=
∫ ∞

0
λe−λrsµe−µ(1−r)ss ds =

λµ

{λr + µ(1 − r)}2
, 0 ≤ r ≤ 1.

11. We have that

P(Y ≤ y) = P

(
X2 ≥

a

y
− 1

)
= 2P

(
X ≤ −

√
a

y
− 1

)
,

whence

fY (y) = 2 fX

(
−
√
(a/y)− 1

)
=

1

π
√

y(a − y)
, 0 ≤ y ≤ a.

12. Using the result of Example (4.6.7), and integrating by parts, we obtain

P(X > a, Y > b) =
∫ ∞

a
φ(x)

{
1 −8

(
b − ρx√

1 − ρ2

)}
dx

= [1 −8(a)][1 −8(c)] +
∫ ∞

a
[1 −8(x)]φ

(
b − ρx√

1 − ρ2

)
ρ√

1 − ρ2
dx .

Since [1 −8(x)]/φ(x) is decreasing, the last term on the right is no greater than

1 −8(a)

φ(a)

∫ ∞

a
φ(x)φ

(
b − ρx√

1 − ρ2

)
ρ√

1 − ρ2
dx,

which yields the upper bound after an integration.

13. The random variable Y is symmetric and, for a > 0,

P(Y > a) = P(0 < X < a−1) =
∫ a−1

0

du

π(1 + u2)
=
∫ a

∞

−v−2 dv

π(1 + v−2)
,
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[4.7.14]–[4.7.17] Solutions Continuous random variables

by the transformation v = 1/u. For another example, consider the density function

f (x) =
{

1
2 x−2 if x > 1,

1
2 if 0 ≤ x ≤ 1.

14. (a) The transformation w = x + y, z = x/(x + y) is one–one from (0,∞)2 to (0,∞)× (0, 1),
with inverse x = wz, y = (1 − z)w, and Jacobian J = w, whence

f (w, z) = w ·
λ(λwz)α−1e−λwz

Ŵ(α)
·
λ(λ(1 − z)w)β−1e−λ(1−z)w

Ŵ(β)

=
λ(λw)α+β−1e−λw

Ŵ(α + β)
·

zα−1(1 − z)β−1

B(α, β)
, w > 0, 0 < z < 1.

Hence W and Z are independent, and Z is beta distributed with parameters α and β.

(b) We have R = Z/(1 − Z), so that

P(R ≤ r) = P

(
Z ≤

r

r + 1

)
, fR(r) = fZ

(
r/(r + 1)

) d

dr

(
r

r + 1

)
,

and the claim follows.

15. Differentiate the given equation to obtain

fY (y)(1 − FX (y)) = λ fX (y)(1 − FY (y)).

As in Exercise (4.6.12),

P(X > Y ) =
∫ ∞

0
fY (y)(1 − FX (y)) dy, P(Y > X) =

∫ ∞

0
fX (y)(1 − FY (y)) dy.

16. Let U = Y , V = XY , and consider the invertible transformation u = y, v = xy, acting on
(0,∞)× (−1, 1). Its inverse has Jacobian J = 1/u, whence

fU,V (u, v) =
1

π
·

ue
− 1

2
u2

√
u2 − v2

, u > 0, |v| < u.

Thus,

fV (v) =
∫ ∞

|v|
fU,V (u, v) du =

1
√

2π
e
− 1

2 v
2
.

You may care to review (4.4.4) and Problem (4.14.1).

17. (a) This follows from the fact that, for measurable A ⊆ S,

P(U ∈ A | U ∈ S) =
P(U ∈ A)

P(U ∈ S)
=

|A|
|S|
.

(b) Since U is uniformly distributed, P(Ur = 1) = 1
2 . Let s > r . By part (a), P(Us = 1 | Ur = 1) =

1
2 , whence

P(Ur = 1, Us = 1) = 1
2 · 1

2 = P(Ur = 1)P(Us = 1).
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Functions of random variables Solutions [4.7.18]–[4.7.21]

Now, V has distribution function P(V ≤ v) = v2 for v ∈ [0, 1]. Therefore,

P(V1 = 1) = P(V > 1
2 ) = 3

4 ,

P(V2 = 1) = P
(
V ∈ ( 1

4 ,
1
2 ) ∪ (

3
4 , 1)

)
= 5

8 ,

P(V1 = 1, V2 = 1) = P
(
V ∈ ( 3

4 , 1)
)

= 7
16 ,

whence cov(V1, V2) = 7
16 − 5

8 · 3
4 = − 1

32 . Finally, as n → ∞,

P(Vn = 1) =
2n−1∑

k=1

P

(
2k − 1

2n
<

√
U <

2k

2n

)
=

2n−1∑

k=1

4k − 1

22n
=

2n + 1

2n+1
→

1

2
.

18. (a) The joint density function of (X,Y ) is (2π)−1e
− 1

2 (x
2+y2), which has spherical symmetry.

Therefore, 2 = tan−1(Y/X) is uniformly distributed on (0, 2π), and the claim follows. See also
Problem (4.14.16).

(b) Let U , V be independent N(0, 1) variables, and let

X = U, Y = ρU +
√

1 − ρ2V ,

as in Example (4.7.12). Then Y/X = ρ +
√

1 − ρ2(V/U) has, by part (a), the rescaled and shifted
Cauchy density function given in the question.

19. Represent X and Y in terms of the independent N(0, 1) variables U , V of the last solution. Then,

E(Y | X > x) = ρE(U | U > x) = ρ ·
1

8(−x)

∫ ∞

x
uφ(u) du =

ρφ(x)

8(−x)
.

20. Once again, we represent X , Y in terms of the independent N(0, 1) variables U , V of the solution

to Exercise (4.7.18). The Jacobian of the corresponding transformation (u, v) 7→ (x, y) is
√

1 − ρ2,
and

P
(

X2 + Y 2 − 2ρXY ≤ c
)

= P

(
U2 + V 2 ≤

c

1 − ρ2

)
= 1 − exp

{
−

1

2

c

1 − ρ2

}
, c > 0,

after changing to polar coordinates. Using the same transformation, the area of the ellipse x2 + y2 −
2ρxy ≤ c is found to be

A =
∫∫

Rc

√
1 − ρ2 du dv =

πc√
1 − ρ2

,

where Rc =
{
(u, v) : u2 + v2 ≤ c/(1 − ρ2)

}
.

21. The closest integer C is odd if, for some n ≥ 0, we have 1
2 (4n + 1) < R < 1

2 (4n + 3), which is

to say that (X,Y ) ∈ T where T :=
⋃

n Tn and

Tn =
{
(x, y) : (4n + 1)y < 2x < (4n + 3)y

}
∩ [0, 1]2.

Draw a picture of the regions Tn , and note that T2, T3, . . . are triangles. The required probability is
the sum of the areas of the Tn , namely,

1
2 (

1
2 + 1

3 )+ 1
2 (

2
5 − 2

7 )+
1
2 (

2
9 − 2

11 )+ · · · = − 1
4 +

[
1 − 1

3 + 1
5 − 1

7 + 1
9 − 1

11 + · · ·
]
,
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[4.7.22]–[4.7.24] Solutions Continuous random variables

which is well known to equal 1
4 (π − 1).

22. For 0 ≤ c ≤ ζ and C = −2 log(c/ζ ),

P
(

f (X,Y ) ≤ c
)

= P

(
X2 +

(Y − ρX)2

1 − ρ2
≥ C

)
= P

(
U2 + V 2 ≥ C

)

where U , V are independent N(0, 1) variables (recall Exercise (4.7.18)). The last equals

∫

Rc

1

2π
e
− 1

2 (u
2+v2)

du dv =
∫ ∞
√

C
re

− 1
2 r2

dr = e
− 1

2 C =
c

ζ
,

where Rc = {(u, v) : u2 + v2 ≥ C}.

23. Let Ti be the time of arrival of person i , so that the Ti are independent and uniformly distributed on
[0, 1]. Let T(k) be the kth of the Ti written in increasing order; the sequence T = (T(1), T(2), . . . , T(n))

is the sequence of ‘order statistics’ of the Ti . Since the Ti are continuous, the vector T has a joint
density function fT having as support the subset S of [0, 1]n containing all increasing sequences. It
is left as an exercise (see Problem (4.14.21)) to show that

(*) fT(t) = n!, t ∈ S.

We note for future use that

(**) P
(
0 < T(1) < T(2) < · · · < T(n) < a

)
= an, a ∈ (0, 1),

since this is the probability that every Ti is less than a.

Let 0 < δ < 1/(n − 1), and let R be the set of increasing sequences t = (t1, t2, . . . , tn) ∈ S such
that 0 < t1 < t2 − δ < t3 − 2δ < · · · < tn − (n − 1)δ. We are asked to find the probability P(T ∈ R).
Towards this end, we perform a change of variables.

Define the map h : S → hS by h(t) = u where uk = tk − (k − 1)δ for k = 1, 2, . . . , n and
t = (t1, t2, . . . , tn) ∈ S. The mapping h is invertible on its range hS, but we must take care over this
range. We shall not need to specify hS entirely; it will suffice to note that R′ ⊆ hS where R′ is the
subset of S containing all increasing sequences u satisfying 0 < u1 < u2 < · · · < un < 1− (n −1)δ.

Note that R = h−1 R′.

The random vector U = (U1,U2, . . . ,Un) = h(T) has a density function fU that may be obtained
from fT by the Jacobian formula. By the definition of h, the Jacobian satisfies J = 1, and it follows

that fU(u) = fT(h
−1(u)) = n! for u ∈ hS, by (*).

By integrating fU over R′, and using the fact that R = h−1 R′, we deduce that

P(T ∈ R) = P(U ∈ R′) =
∫

R′
n! du

= P
(
0 < T(1) < T(2) < · · · < T(n) < 1 − (n − 1)δ

)

=
(
1 − (n − 1)δ

)n
by (**).

24. The mapping T : (x, y) 7→ (w, z) given by w = xy, z = y/x is invertible, and its inverse has
Jacobian J = 1/(2z). Therefore,

fW,Z (w, z) =
1

2z
, (w, z) ∈ T

(
[0, 1]2).
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Functions of random variables Solutions [4.7.25]–[4.7.26]

After some thought, one sees that the domain T
(
[0, 1]2

)
of fW,Z is the set of (w, z) such that z ≥ 0

and w ≤ min{z, 1/z}. Hence, W has density

fW (w) =
∫ 1/w

w

1

2z
dz = − logw, 0 < w < 1,

and likewise integrating out w gives

fZ (z) =





1

2
if 0 < z < 1,

1

2z2
if z > 1.

25. (a) By making the change of variable Y = (X − µ)/σ , we may assume that µ = 0 and σ = 1.
The N(0, 1) density function φ satisfies φ′(x) = −xφ(x). Integrate by parts to obtain

E
{

Xg(X)
}

=
∫ ∞

−∞
g(x)[xφ(x)] dx =

∫ ∞

−∞
g′(x)φ(x) dx = E(g′(X)).

(b) We may assume that X , Y have the standard bivariate normal distribution with correlation ρ.
Express X , Y in terms of the independent N(0, 1) variables U , V as in the solution to Exercise
(4.7.18). Then

E(Yg(X)) = ρE(Ug(U)), E(g′(X))cov(X,Y ) = ρE(g′(U)),

and the result follows by part (a) applied to U .

(c) Let h be a bounded function. Solve the differential equation g′(x) − xg(x) = h(x), using an
integrating factor, to find that

g(x) = e
1
2 x2

∫ x

−∞
h(y)e

− 1
2 y2

dy.

Let y ∈ R and let h(x) = I{x≤y}−8(y)where8 is the N(0, 1) distribution function. By assumption,
with g given above,

0 = E
(
g′(X)− Xg(X)

)
= E(h(X)) = P(X ≤ y)−8(y), y ∈ R.

26. The Cauchy–Schwarz inequality for integrable functions f, g : [0, K ] → R states that

[∫ K

0
f (x)g(x) dx

]2

≤
∫ K

0
f (x)2 dx

∫ K

0
g(x)2 dx .

You can derive this from the more familiar Cauchy–Schwarz inequality of (4.5.12).

By Exercise (4.3.9) and the above inequality applied to g and f ≡ 1,

var G(X) ≤ E
{(

G(X)− G(0)
)2
}

= E

{(∫ X

0
g(y) dy

)2
}

≤ E

{∫ X

0
1 dy

∫ X

0
g(y)2 dy

}
= E

{
X

∫ X

0
g(y)2 dy

}

= −
∫ 0

y=−∞

∫ y

x=−∞
g(y)2xφ(x) dx dy +

∫ ∞

y=0

∫ ∞

x=y
g(y)2xφ(x) dx dy,
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[4.7.27]–[4.8.3] Solutions Continuous random variables

by Fubini’s theorem, where φ is the N(0, 1) density function. Substituting for φ and integrating over

x , we obtain
∫∞
−∞ g(y)2φ(y) dy = E(g(X)2).

For the lower bound, with µ = EG(X),

var G(X) = E
{(

G(X)− µ
)2
}

= E(X2)E
{(

G(X)− µ
)2}

since E(X2) = 1

≥
{

E
(

X (G(X) − µ)
)}2

by the Cauchy–Schwarz inequality

=
{

Eg(X)
}2
,

by Stein’s identity of Exercise (4.7.25).

27. Let u = x , v = x + y, whose inverse map has Jacobian 1, whence

fU,V (u, v) = 2
3ve−u, 0 < u < v < u + 1.

Finally,

fV (v) =
∫ v

max{0,v−1}
2
3ve−u du =

{
2
3ve−v(e − 1) if v ≥ 1,

2
3v(1 − e−v) if v < 1.

4.8 Solutions. Sums of random variables

1. By the convolution formula (4.8.2), Z = X + Y has density function

f Z (z) =
∫ z

0
λµe−λx e−µ(z−x) dx =

λµ

µ− λ

(
e−λz − e−µz

)
, z ≥ 0,

if λ 6= µ. What happens if λ = µ? (Z has a gamma distribution in this case.)

2. Using the convolution formula (4.8.2), W = αX + βY has density function

fW (w) =
∫ ∞

−∞

1

πα
(
1 + (x/α)2

) ·
1

πβ
(
1 + {(w − x)/β}2

) dx,

which equals the limit of a complex integral:

lim
R→∞

∫

D

αβ

π2
·

1

z2 + α2
·

1

(z − w)2 + β2
dz

where D is the semicircle in the upper complex plane with diameter [−R, R] on the real axis. Evalu-
ating the residues at z = iα and z = w + iβ yields

fW (w) =
αβ2π i

π2

{
1

2iα
·

1

(iα −w)2 + β2
+

1

2iβ
·

1

(w + iβ)2 + α2

}

=
1

π(α + β)
·

1

1 + {w/(α + β)}2
, −∞ < w < ∞

after some manipulation. Hence W has a Cauchy distribution also.

3. Using the convolution formula (4.8.2),

fZ (z) =
∫ z

0

1
2 ze−z dy = 1

2 z2e−z, z ≥ 0.
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Sums of random variables Solutions [4.8.4]–[4.8.6]

4. Let fn be the density function of Sn. By convolution,

f2(x) = λ1e−λ1x ·
λ2

λ2 − λ1
+ λ2e−λ2x ·

λ1

λ1 − λ2
=

2∑

r=1

λr e−λr x
n∏

s=1
s 6=r

λs

λs − λr
.

This leads to the guess that

(∗) fn(x) =
n∑

r=1

λr e−λr x
n∏

s=1
s 6=r

λs

λs − λr
, n ≥ 2,

which may be proved by induction as follows. Assume that (∗) holds for n ≤ N . Then

fN+1(x) =
∫ x

0

N∑

r=1

λr e−λr (x−y)λN+1e−λN+1 y
N∏

s=1
s 6=r

λs

λs − λr
dy

=
N∑

r=1

λr e−λr x
N+1∏

s=1
s 6=r

λs

λs − λr
+ Ae−λN+1x ,

for some constant A. We integrate over x to find that

1 =
N∑

r=1

N+1∏

s=1
s 6=r

λs

λs − λr
+

A

λN+1
,

and (∗) follows with n = N + 1 on solving for A.

5. (a) The density function of X + Y is, by convolution,

f2(x) =
{

x if 0 ≤ x ≤ 1,

2 − x if 1 ≤ x ≤ 2.

Therefore, for 1 ≤ x ≤ 2,

f3(x) =
∫ 1

0
f2(x − y)dy =

∫ 1

x−1
(x − y) dy +

∫ x−1

0
(2 − x + y) dy = 3

4 − (x − 3
2 )

2.

Likewise,

f3(x) =
{

1
2 x2 if 0 ≤ x ≤ 1,

1
2 (3 − x)2 if 2 ≤ x ≤ 3.

(b) This holds by a simple induction.

(c) The vector X fails to form a polygon if and only if there exists j ∈ {1, 2, . . . , n} such that
X j > Sn − X j . Since X j and 1 − X j have the same distribution, the last inequality has the same

probability pj as that of the event Sn < 1. By part (b), P(Sn < 1) =
∫ 1

0 fn(x) dx = 1/n!. Therefore,
the answer is 1 − npj = 1 − 1/(n − 1)!.

6. The covariance satisfies cov(U, V ) = E(X2 − Y 2) = 0, as required. If X and Y are symmetric
random variables taking values ±1, then

P(U = 2, V = 2) = 0 but P(U = 2)P(V = 2) > 0.
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[4.8.7]–[4.8.10] Solutions Continuous random variables

If X and Y are independent N(0, 1) variables, fU,V (u, v) = (4π)−1e
− 1

4
(u2+v2), which factorizes as

a function of u multiplied by a function of v.

7. From the representation X = σρU + σ
√

1 − ρ2V , Y = τU , where U and V are independent
N(0, 1), we learn that

E(X | Y = y) = E(σρU | U = y/τ) =
σρy

τ
.

Similarly,

E(X2 | Y = y) = E
(
(σρU)2 + σ 2(1 − ρ2)V 2

∣∣U = y/τ
)

=
(σρy

τ

)2
+ σ 2(1 − ρ2)

whence var(X | Y ) = σ 2(1 − ρ2). For parts (c) and (d), simply calculate that cov(X, X + Y ) =
σ 2 + ρστ , var(X + Y ) = σ 2 + 2ρστ + τ2, and

1 − ρ(X, X + Y )2 =
τ2(1 − ρ2)

σ 2 + 2ρστ + τ2
.

8. First recall that P(|X | ≤ y) = 28(y) − 1. We shall use the fact that U = (X + Y )/
√

2,

V = (X − Y )/
√

2 are independent and N(0, 1) distributed. Let1 be the triangle of R2 with vertices
(0, 0), (0, Z), (Z, 0). Then

P(Z ≤ z | X > 0, Y > 0) = 4P
(
(X,Y ) ∈ 1

)
= P

(
|U | ≤ z/

√
2, |V | ≤ z/

√
2
)

by symmetry

= 2
{

28
(
z/

√
2
)

− 1
}2
,

whence the conditional density function is

f (z) = 2
√

2
{

28
(
z/

√
2
)

− 1
}
φ
(
z/

√
2
)
.

Finally,

E(Z | X > 0, Y > 0) = 2E(X | X > 0, Y > 0)

= 2E(X | X > 0) = 4E(X I{X>0}) = 4

∫ ∞

0

x
√

2π
e
− 1

2
x2

dx .

9. By a simple application of the Jacobian method, the joint density function of U , V is

fU,V (u, v) =
1

2π(a2 + b2)
exp

{
−

1

2

u2 + v2

a2 + b2

}
,

whence U and V are independent with the N(0, a2 + b2) distribution.

10. For a > 0 and a random variable Z , define

Za =





a if Z > a,

Z if |Z | ≤ a,

−a if Z < −a.

Now, Xa + Ya = (Xa + Ya)
+ − (Xa + Ya)

−, and (Xa + Ya)
± → (X + Y )± as a → ∞, where the

convergence is monotone in each case. Hence,

EXa + EYa = E(Xa + Ya) = E
(
(Xa + Ya)

+)− E
(
(Xa + Ya)

−)

→ E(X + Y ) as a → ∞,
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whenever the last expectation exists. Finally, note that the limit of the left side, above, depends on
the marginal distribution functions only. [This potentially baffling question is of interest because of
examples that show the falseness of the equivalent statement for sums of three random variables.]

11. (a) By the result of Exercise (3.7.4) and symmetry,

E
(
var(U | S)

)
= var(U) − var

(
E(U | S)

)
= 1

12 − var( 1
3 S) = 1

12 − 1
9 · 3

12 = 1
18 .

(b) This is an unpleasant calculation using the result of Exercise (4.8.5a), above, and the details are
left to the assiduous reader. There are three cases, depending on whether s < 1, 1 < s < 2, or s > 2.

4.9 Solutions. Multivariate normal distribution

1. Since V is symmetric, there exists a non-singular matrix M such that M′ = M−1 and V =
M3M−1, where 3 is the diagonal matrix with diagonal entries the eigenvalues λ1, λ2, . . . , λn of V.

Let 3
1
2 be the diagonal matrix with diagonal entries

√
λ1,

√
λ2, . . . ,

√
λn ; 3

1
2 is well defined since

V is non-negative definite. Writing W = M3
1
2 M′, we have that W = W′ and also

W2 = (M3
1
2 M−1)(M3

1
2 M−1) = M3M−1 = V

as required. Clearly W is non-singular if and only if 3
1
2 is non-singular. This happens if and only if

λi > 0 for all i , which is to say that V is positive definite.

2. By Theorem (4.9.6), Y has the multivariate normal distribution with mean vector 0 and covariance
matrix

W−1VW−1 = W−1(W2)W−1 = I.

3. Clearly Y = (X − µµµ)a′ + µµµa′ where a = (a1, a2, . . . , an). Using Theorem (4.9.6) as in the
previous solution, (X −µµµ)a′ is univariate normal with mean 0 and variance aVa′. Hence Y is normal
with mean µµµa′ and variance aVa′.

4. Make the transformation u = x + y, v = x − y, with inverse x = 1
2 (u + v), y = 1

2 (u − v), so

that |J | = 1
2 . The exponent of the bivariate normal density function is

−
1

2(1 − ρ2)
(x2 − 2ρxy + y2) = −

1

4(1 − ρ2)

{
u2(1 − ρ)+ v2(1 + ρ)

}
,

and therefore U = X + Y , V = X − Y have joint density

f (u, v) =
1

4π
√

1 − ρ2
exp

{
−

u2

4(1 + ρ)
−

v2

4(1 − ρ)

}
,

whence U and V are independent with respective distributions N(0, 2(1 + ρ)) and N(0, 2(1 − ρ)).

5. That Y is N(0, 1) follows by showing that P(Y ≤ y) = P(X ≤ y) for each of the cases y ≤ −a,
|y| < a, y ≥ a.

Secondly,

ρ(a) = E(XY ) =
∫ a

−a
x2φ(x) dx −

∫ −a

−∞
x2φ(x) dx −

∫ ∞

a
x2φ(x) dx = 1 − 4

∫ ∞

a
x2φ(x) dx .
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The answer to the final part is no; X and Y are N(0, 1) variables, but the pair (X,Y ) is not bivariate
normal. One way of seeing this is as follows. There exists a root a of the equation ρ(a) = 0. With
this value of a, if the pair X,Y is bivariate normal, then X and Y are independent. This conclusion is
manifestly false: in particular, we have that P(X > a, Y > a) 6= P(X > a)P(Y > a).

6. Recall from Exercise (4.8.7) that for any pair of centred normal random variables

E(X | Y ) =
cov(X,Y )

var Y
Y, var(X | Y ) = {1 − ρ(X,Y )2} var X.

The first claim follows immediately. Likewise,

var(X j | Xk) = {1 − ρ(X j , Xk)
2} var X j =



1 −

∑
r cj r ckr√∑

r c2
j r

∑
r c2

kr




∑

r

c2
j r .

7. As in the above exercise, we calculate a = E(X1 |
∑n

1 Xr ) and b = var(X1 |
∑n

1 Xr ) using the

facts that var X1 = v11, var
(∑n

1 X i

)
=
∑

i j vi j , and cov
(

X1,
∑n

1 Xr

)
=
∑

r v1r .

8. Let p = P(X > 0, Y > 0, Z > 0) = P(X < 0, Y < 0, Z < 0). Then

1 − p = P
(
{X > 0} ∪ {Y > 0} ∪ {Z > 0}

)

= P(X > 0)+ P(Y > 0)+ P(Z > 0) + p

− P(X > 0, Y > 0) − P(Y > 0, Z > 0)− P(X > 0, Z > 0)

=
3

2
+ p −

[
3

4
+

1

2π
{sin−1 ρ1 + sin−1 ρ2 + sin−1 ρ3}

]
.

9. Let U, V ,W be independent N(0, 1) variables, and represent X , Y , Z as X = U , Y = ρ1U +√
1 − ρ2

1 V ,

Z = ρ3U +
ρ2 − ρ1ρ3√

1 − ρ2
1

V +

√√√√1 − ρ2
1 − ρ2

2 − ρ2
3 + 2ρ1ρ2ρ3

(1 − ρ2
1)

W.

We have that U = X , V = (Y − ρ1 X)/

√
1 − ρ2

1 , and E(Z | X,Y ) follows immediately, as does the

conditional variance.

10. Yes. Since U , V have a bivariate normal distribution, they are independent if and only if they are
uncorrelated. Now, E(U) = E(V ) = 0 and

E(U V ) = 2(cos2 θ − sin2 θ)E(XY ) = 2ρ cos(2θ),

which equals zero if and only if θ = 1
4π,

3
4π .

11. The vector (X,Y ) takes values in the set L+ ∪ L− where L+ (respectively, L−) is the line y = x

(respectively, y = −x). Since this has zero Lebesgue measure, the vector has a singular distribution.
If (X,Y ) has a singular bivariate normal distribution then all linear combinations are jointly normal.

However, X + Y has an atom of size 1
2 at zero, and otherwise is continuously distributed.
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4.10 Solutions. Distributions arising from the normal distribution

1. First method. We have from paragraph (4.4.6) that the χ2(m) density function is

fm(x) =
1

Ŵ(m/2)
2−m/2x

1
2 m−1

e
− 1

2 x
, x ≥ 0.

The density function of Z = X1 + X2 is, by the convolution formula,

g(z) = c

∫ z

0
x

1
2 m−1

e
− 1

2 x
(z − x)

1
2 n−1

e
− 1

2 (z−x)
dx

= cz
1
2 (m+n)−1

e
− 1

2 z
∫ 1

0
u

1
2 m−1

(1 − u)
1
2 n−1

du

by the substitution u = x/z, where c is a constant. Hence g(z) = c′z
1
2
(m+n)−1

e
− 1

2
z for z ≥ 0, for

an appropriate constant c′, as required.

Second method. If m and n are integral, the following argument is neat. Let Z1, Z2, . . . , Zm+n be

independent N(0, 1) variables. Then X1 has the same distribution as Z2
1 + Z2

2 + · · · + Z2
m , and X2

the same distribution as Z2
m+1 + Z2

m+2 + · · · + Z2
m+n (see Problem (4.14.12)). Hence X1 + X2 has

the same distribution as Z2
1 + · · · + Z2

m+n , i.e. the χ2(m + n) distribution.

2. (i) The t (r) distribution is symmetric with finite mean, and hence this mean is 0.

(ii) Here is one way. Let U and V be independent χ2(r) and χ2(s) variables (respectively). Then

E

(
U/r

V/s

)
=

s

r
E(U)E(V −1)

by independence. Now U is Ŵ( 1
2 ,

1
2r) and V is Ŵ( 1

2 ,
1
2 s), so that E(U) = r and

E(V −1) =
∫ ∞

0

1

v

2−s/2

Ŵ( 1
2 s)

v
1
2 s−1

e
− 1

2 v dv =
Ŵ( 1

2 s − 1)

2Ŵ( 1
2 s)

∫ ∞

0

2− 1
2
(s−2)

Ŵ( 1
2 s − 1)

v
1
2 s−2

e
− 1

2 v dv =
1

s − 2

if s > 2, since the integrand is a density function. Hence

E

(
U/r

V/s

)
=

s

s − 2
if s > 2.

(iii) If s ≤ 2 then E(V −1) = ∞.

3. Substitute r = 1 into the t (r) density function.

4. First method. Find the density function of X/Y , using a change of variables. The answer is
F(2, 2).

Second method. X and Y are independent χ2(2) variables (just check the density functions), and
hence X/Y is F(2, 2).

5. (i) The vector (X , X1 − X, X2 − X, . . . , Xn − X) has, by Theorem (4.9.6), a multivariate normal

distribution. We have as in Exercise (4.5.7) that cov(X , Xr − X) = 0 for all r , which implies that X

is independent of each Xr . Using the form of the multivariate normal density function, it follows that

X is independent of the family {Xr − X : 1 ≤ r ≤ n}, and hence of any function of these variables.

Now S2 = (n − 1)−1∑
r (Xr − X)2 is such a function.
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(ii) The key fact is that two random variables U , V with a bivariate normal distribution are independent

if and only if cov(U, V ) = 0. First consider the case n = 2, for which X = 1
2 (X1 + X2) and

S2 = 1
2 (X1 − X2)

2. Since cov(X1 + X2, X1 − X2) = 0, and X1 + X2, X1 − X2 have a bivariate

normal distribution, they are independent. Therefore, X and S2 are independent when n = 2. Suppose
the claim holds for n ≤ N where N ≥ 2, and let n = N + 1. It may be checked that, in the natural
notation,

(*) X N+1 =
1

N + 1
(X N+1 + N X N ), N S2

N+1 = (N − 1)S2
N +

N

N + 1
(X N+1 − X N )

2.

Since X N and X N+1 − X N have a bivariate normal distribution with zero covariance, they are
independent. The induction step follows by (*).

The same approach may be used to prove Theorem (4.10.1).

6. The choice of fixed vector is immaterial, since the joint distribution of the X j is spherically
symmetric, and we therefore take this vector to be (0, 0, . . . , 0, 1). We make the change of variables

U2 = Q2 + X2
n , tan9 = Q/Xn , where Q2 =

∑n−1
r=1 X2

r and Q ≥ 0. Since Q has the χ2(n − 1)
distribution, and is independent of Xn , the pair Q, Xn has joint density function

f (q, x) =
e
− 1

2 x2

√
2π

·
1
2 (

1
2 q)

1
2 (n−3)

e
− 1

2 x

Ŵ( 1
2 (n − 1))

, x ∈ R, q > 0.

The theory is now slightly easier than the practice. We solve for U , 9, find the Jacobian, and deduce
the joint density function fU,9 (u, ψ) of U , 9. We now integrate over u, and choose the constant so
that the total integral is 1.

Here is a second solution (for a third see Exercise (4.10.7)). Recall that X2
n has the χ2(1)

distribution, and Q2 the χ2(n − 1) distribution. The conditional density function of S := X2
n given

T + S := Q2 + X2
n = 1 is proportional to

g(s) = s
− 1

2 (1 − s)
1
2 (n−1)−1

e
− 1

2 s
e
− 1

2 (1−s) = s
− 1

2 (1 − s)
1
2 (n−3)

.

Since this is a beta density, the constant of proportionality is C = 1/B( 1
2 ,

1
2 (n − 1)), as in Example

(4.4.8). As above, Xn = cos9. By the change of variable formula, the conditional density function

of 9, given Q2 + X2
n = 1, is

Cg(cos2 ψ) cosψ sinψ =
C

cosψ
(sin2 ψ)

1
2
(n−3) cosψ sinψ

= C(sinψ)n−2, ψ ∈ [0, π ].

It is a minor complication that the mapping (cosψ)2 7→ x2 is two-to-one from [0, π ] to [0,∞), and
this accounts for the dis/appearance of a factor 2 in the calculation.

7. The joint density function of Y = (Y1,Y2, . . . ,Yn) has spherical symmetry on its support, the
(n − 1)-sphere Sn−1. Therefore, Y is uniformly distributed on Sn−1. This uniform density may be

expressed in spherical polar coordinates as (sin φ1)
n−2(sin φ2)

n−3 · · · sin φn−2. We integrate out all
variables except the polar angle φ1, thereby obtaining that the density function of 9, as in Exercise

(4.10.6), is proportional to (sin φ)n−2. The constant of proportionality may be obtained by direct
integration.
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4.11 Solutions. Sampling from a distribution

1. Uniform on the set {1, 2, . . . , n}.

2. The result holds trivially when n = 2, and more generally by induction on n.

3. We may assume without loss of generality that λ = 1 (since Z/λ is Ŵ(λ, t) if Z isŴ(1, t)). Let U ,
V be independent random variables which are uniformly distributed on [0, 1]. We set X = −t log V

and note that X has the exponential distribution with parameter 1/t . It is easy to check that

1

Ŵ(t)
x t−1e−x ≤ c fX (x) for x > 0,

where c = t t e−t+1/Ŵ(t). Also, conditional on the event A that

U ≤
X t−1e−t

Ŵ(t)
te−X/t ,

X has the required gamma distribution. This observation may be used as a basis for sampling using
the rejection method. We note that A =

{
log U ≤ (n − 1)

(
log(X/n)− (X/n)+ 1

)}
. We have that

P(A) = 1/c, and therefore there is a mean number c of attempts before a sample of size 1 is obtained.

4. Use your answer to Exercise (4.11.3) to sample X from Ŵ(1, α) and Y from Ŵ(1, β). By Exercise
(4.7.14), Z = X/(X + Y ) has the required distribution.

5. (a) This is the beta distribution with parameters 2, 2. Use the result of Exercise (4.11.4).

(b) The requiredŴ(1, 2) variables may be more easily obtained and used by forming X = − log(U1U2)

and Y − log(U3U4) where {Ui : 1 ≤ i ≤ 4} are independent and uniform on [0, 1].

(c) Let U1,U2,U3 be as in (b) above, and let Z be the second order statistic U(2). That is, Z is the
middle of the three values taken by the Ui ; see Problem (4.14.21). The random variable Z has the
required distribution.

(d) As a slight variant, take Z = max{U1,U2} conditional on the event {Z ≤ U3}.
(e) Finally, let X =

√
U1/

(√
U1 +

√
U2

)
, Y =

√
U1 +

√
U2. The distribution of X , conditional on

the event {Y ≤ 1}, is as required.

6. We use induction. The result is obvious when n = 2. Let n ≥ 3 and let p = (p1, p2, . . . , pn) be
a probability vector. Since p sums to 1, its minimum entry p(1) and maximum entry p(n) must satisfy

p(1) ≤
1

n
<

1

n − 1
, p(1) + p(n) ≥ p(1) +

1 − p(1)

n − 1
=

1 + (n − 2)p(1)

n − 1
≥

1

n − 1
.

We relabel the entries of the vector p such that p1 = p(1) and p2 = p(n), and set v1 =
(
(n −1)p1, 1−

(n − 1)p1, 0, . . . , 0
)
. Then

p =
1

n − 1
v1 +

n − 2

n − 1
pn−1 where pn−1 =

n − 1

n − 2

(
0, p1 + p2 −

1

n − 1
, p3, . . . , pn

)
,

is a probability vector with at most n − 1 non-zero entries. The induction step is complete.

It is a consequence that sampling from a discrete distribution may be achieved by sampling from
a collection of Bernoulli random variables.

7. It is an elementary exercise to show that P(R2 ≤ 1) = 1
4π , and that, conditional on this event, the

vector (T1, T2) is uniformly distributed on the unit disk. Assume henceforth that R2 ≤ 1, and write
(R, 2) for the point (T1, T2) expressed in polar coordinates. We have that R and 2 are independent
with joint density function f R,2(r, θ) = r/π , 0 ≤ r ≤ 1, 0 ≤ θ < 2π . Let (Q, 9) be the polar
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coordinates of (X,Y ), and note that 9 = 2 and e
− 1

2
Q2

= R2. The random variables Q and 9 are

independent, and, by a change of variables, Q has density function fQ(q) = qe
− 1

2 q2
, q > 0. We

recognize the distribution of (Q, 9) as that of the polar coordinates of (X,Y ) where X and Y are
independent N(0, 1) variables. [Alternatively, the last step may be achieved by a two-dimensional
change of variables.]

8. We have that

P(X = k) = P

(⌊
log U

log q

⌋
= k − 1

)
= P(qk < U ≤ qk−1) = qk−1(1 − q), k ≥ 1.

9. The polar coordinates (R, 2) of (X,Y ) have joint density function

fR,2(r, θ) =
2r

π
, 0 ≤ r ≤ 1, − 1

2π ≤ θ ≤ 1
2π.

Make a change of variables to find that Y/X = tan2 has the Cauchy distribution.

10. By the definition of Z ,

P(Z = m) = h(m)

m−1∏

r=0

(
1 − h(r)

)

= P(X > 0)P(X > 1 | X > 0) · · · P(X = m | X > m − 1) = P(X = m).

11. Suppose g is increasing, so that h(x) = −g(1 − x) is increasing also. By the FKG inequality of
Problem (3.11.18b), κ = cov(g(U),−g(1 − U)) ≥ 0, yielding the result.

Estimating I by the average (2n)−1∑2n
r=1 g(Ur ) of 2n random vectors Ur requires a sample

of size 2n and yields an estimate having some variance 2nσ 2. If we estimate I by the average

(2n)−1
{∑n

r=1 g(Ur ) + g(1 − Ur )
}

, we require a sample of size only n, and we obtain an estimate

with the smaller variance 2n(σ 2 − κ).

12. (a) By the law of the unconscious statistician,

E

[
g(Y ) fX (Y )

fY (Y )

]
=
∫

g(y) f X (y)

fY (y)
fY (y) dy = I .

(b) This is immediate from the fact that the variance of a sum of independent variables is the sum of
their variances; see Theorem (3.3.11b).

This an application of the strong law of large numbers, Theorem (7.5.1).

13. (a) If U is uniform on [0, 1], then X = sin( 1
2πU) has the required distribution. This is an example

of the inverse transform method.

(b) If U is uniform on [0, 1], then 1 − U2 has density function g(x) =
{

2
√

1 − x
}−1

, 0 ≤ x ≤ 1.
Now g(x) ≥ (π/4) f (x), which fact may be used as a basis for the rejection method.

14. A random vector (A, B,C) is uniform on the unit sphere if: (i) C is uniform on [−1, 1] (recall
Archimedes’s cylinder theorem), and (ii) given C = c, (A, B) is uniform on the circle with radius√

1 − c2. We may write (X,Y ) = (R cos2, R sin2) where R, 2 are independent, 1 − 2R2 is
uniform on [−1, 1], and (r cos2, r sin2) is uniform on the circle of radius r . Choose r such that

r2 = 1 − (1 − 2R2)2, to find that

(U, V ,W ) =
(

2R cos2
√

1 − R2, 2R sin2
√

1 − R2, 1 − 2R2
)

=
(√

1 − (1 − 2R2)2 cos2,

√
1 − (1 − 2R2)2 sin2, 1 − 2R2

)
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is uniformly distributed on the unit sphere in R3.

15. With A the event that U < f1(Y )/ fY (Y ), and

I =
∫ ∞

−∞
f2(x) dx = 1 −

∫ ∞

−∞
f1(x) dx,

we have

P(Z ≤ z) = P(Y ≤ z, A) + P(Ac)

∫ z

−∞

1

I
f2(x) dx

=
∫ z

−∞

f1(y)

fY (y)
· fY (y) dy +

∫ ∞

−∞

(
1 −

f1(y)

fY (y)

)
fY (y) dy

∫ z

−∞

1

I
f2(x) dx

=
∫ z

−∞

(
f1(x)+ f2(x)

)
dx .

16. (a) We have P(G(U) ≤ x) = P(U ≤ G−1(x)) = G−1(x), and the required quantile function is

the inverse of G−1.

(b) By Theorem (4.11.1), F−1(U) has the same distribution as X , so that, for v ∈ (0, 1),

HX (v) = E
(

X
∣∣ F(X) > v

)
= E

(
X
∣∣ X > F−1(v)

)

=
1

1 − v

∫ ∞

F−1(v)
x f (x) dx since P(F(X) > v) = 1 − v

=
1

1 − v

∫ ∞

v
F−1(w) dw on substituting w = F(x).

[The Hardy–Littlewood transform is of interest as being the random variable that is least in stochastic
order among all random variables that are greater than X in stop-loss order; see Exercise (4.12.7).]

17. Certainly G(x, u) is non-decreasing in x and u, and for any y ∈ (0, 1) there exists (xy , uy) such
that G(xy , uy) = y. Hence,

P(G(X,U) ≤ y) = P
(
{X < xy} ∪

(
{X = xy} ∩ {U ≤ uy}

))

= P(X < xy)+ uyP(X = xy)

= G(xy , uy) = y,

as required for the uniformity of G(X,U). Finally, F(X−) ≤ W ≤ F(X), and X = F−1(W ) follows

by the definition F−1(w) = inf{x : F(x) ≥ w},

18. Let Ui = Fi (X i ), and let G be the joint distribution function of (U1,U2, . . . ,Un). Then

P(X i ≤ xi , i = 1, 2, . . . , n) = P
(

Fi (X i ) ≤ Fi (xi ), i = 1, 2, . . . , n
)

= G(F1(x1), F2(x2), , . . . , Fn(xn)).
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4.12 Solutions. Coupling and Poisson approximation

1. Suppose that E(u(X)) ≥ E(u(Y )) for all increasing functions u. Let c ∈ R and set u = Ic where

Ic(x) =
{

1 if x > c,

0 if x ≤ c,

to find that P(X > c) = E(Ic(X)) ≥ E(Ic(Y )) = P(Y > c).

Conversely, suppose that X ≥st Y . We may assume by Theorem (4.12.3) that X and Y are
defined on the same sample space, and that P(X ≥ Y ) = 1. Let u be an increasing function. Then
P(u(X) ≥ u(Y )) ≥ P(X ≥ Y ) = 1, whence E(u(X) − u(Y )) ≥ 0 whenever this expectation exists.

2. Let α = µ/λ, and let {Ir : r ≥ 1} be independent Bernoulli random variables with parameter α.

Then Z =
∑X

r=1 Ir has the Poisson distribution with parameter λα = µ, and Z ≤ X .

3. Use the argument in the solution to Problem (2.7.13).

4. For any A ⊆ R,

P(X 6= Y ) ≥ P(X ∈ A, Y ∈ Ac) = P(X ∈ A)− P(X ∈ A, Y ∈ A)

≥ P(X ∈ A)− P(Y ∈ A),

and similarly with X and Y interchanged. Hence,

P(X 6= Y ) ≥ sup
A⊆R

∣∣P(X ∈ A)− P(Y ∈ A)
∣∣ = 1

2 dTV(X,Y ).

5. For any positive x and y, we have that (y − x)+ + x ∧ y = y, where x ∧ y = min{x, y}. It
follows that

∑

k

{ fX (k) − fY (k)}+ =
∑

k

{ fY (k) − fX (k)}+ = 1 −
∑

k

f X (k) ∧ fY (k),

and by the definition of dTV(X,Y ) that the common value in this display equals 1
2 dTV(X,Y ) = δ.

Let U be a Bernoulli variable with parameter 1 − δ, and let V , W , Z be independent integer-valued
variables with

P(V = k) = { fX (k) − fY (k)}+/δ,
P(W = k) = { fY (k) − fX (k)}+/δ,
P(Z = k) = fX (k) ∧ fY (k)/(1 − δ).

Then X ′ = U Z + (1 − U)V and Y ′ = U Z + (1 − U)W have the required marginals, and P(X ′ =
Y ′) = P(U = 1) = 1 − δ. See also Problem (7.11.16d).

6. Evidently dTV(X,Y ) = |p − q|, and we may assume without loss of generality that p ≥ q. We
have from Exercise (4.12.4) that P(X = Y ) ≤ 1 − (p − q). Let U and Z be independent Bernoulli
variables with respective parameters 1−p+q and q/(1−p+q). The pair X ′ = U(Z−1)+1, Y ′ = U Z

has the same marginal distributions as the pair X , Y , and P(X ′ = Y ′) = P(U = 1) = 1 − p + q as
required.

In order to achieve the minimum, we set X ′′ = 1 − X ′ and Y ′′ = Y ′, so that P(X ′′ = Y ′′) =
1 − P(X ′ = Y ′) = p − q.

7. Choosing u(x) = (x − a)+ shows that increasing convex order (see the next exercise) implies
increasing stop-loss order. Conversely, suppose X ≤sl Y . Let c be an increasing, convex function that
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Geometrical probability Solutions [4.12.8]–[4.13.2]

is bounded from below, with right derivative c′ and left limit c(−∞) = limu→−∞ c(u). Such convex
functions on R are quite well behaved: (i) they are continuous, (ii) differentiable except possibly on
some countable set, (iii) twice differentiable almost everywhere with non-decreasing second derivative,
and (iv) |u|c′(u) → 0 as u → −∞. We assume for simplicity that c is twice differentiable on R. By
integration by parts,

∫ ∞

−∞
(x − s)+ dc′(s) = c(x)− c(−∞), x ∈ R.

Therefore, by Fubini’s theorem,

E(c(X)) =
∫ ∞

−∞
c(x) d FX (x)

=
∫ ∞

−∞

[
c(−∞)+

∫ ∞

−∞
(x − s)+ dc′(s)

]
d FX (x)

= c(−∞)+
∫ ∞

−∞

[∫ ∞

−∞
(x − s)+ d FX (x)

]
dc′(s)

≤ c(−∞)+
∫ ∞

−∞

[∫ ∞

−∞
(x − s)+ d FY (x)

]
dc′(s) = E(c(Y )),

where we have used the assumption X ≤sl Y at the last stage.†

8. (a) Let X ≤cx Y , and choose u1(x) = x , u2(x) = −x , and u3(x) = (x − EX)2.

(b) The ‘only if’ holds by part (a), and choosing u(x) = (x − a)+ . Assume that EX = EY and
X ≤sl Y , and let u be a convex function. Since u is convex, it can be expressed as u = c + d

where c (respectively, d) is convex and increasing (respectively, decreasing). By Exercise (4.12.7),
E(c(X)) ≤ E(c(Y )), and thus it suffices to show that E(d(X)) ≤ E(d(Y )). This is implied (as in
Exercise (4.11.7) applied to −X and −Y ) by E((a − X)+) ≤ E((a − Y )+) for a ∈ R, which we prove
next.

We have X − a = (X − a)+ − (X − a)−, so that E((a − X)+) = E((X − a)+)+ a − EX . Now,
EX = EY and X ≤sl Y , whence E((a − X)+) ≤ E((a − Y )+) as required.

4.13 Solutions. Geometrical probability

1. The angular coordinates 9 and 6 of A and B have joint density f (ψ, σ ) = (2π)−2. We make

the change of variables from (p, θ) 7→ (ψ, σ ) by p = cos{ 1
2 (σ − ψ)}, θ = 1

2 (π + σ + ψ), with
inverse

ψ = θ − 1
2π − cos−1 p, σ = θ − 1

2π + cos−1 p,

and Jacobian |J | = 2/
√

1 − p2.

2. Let A be the left shaded region and B the right shaded region in the figure. Writing λ for the
random line, by Example (4.13.2),

P(λ meets both S1 and S2) = P(λ meets both A and B)

= P(λ meets A)+ P(λ meets B)− P(λ meets either A or B)

∝ b(A) + b(B)− b(H) = b(X)− b(H),

whence P(λ meets S2 | λ meets S1) = [b(X)− b(H)]/b(S1).

†Think of d FX as fX (x) dx if you are unfamiliar with this form of integral, to be defined in Section 5.6.
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[4.13.3]–[4.13.7] Solutions Continuous random variables

The case when S2 ⊆ S1 is treated in Example (4.13.2). When S1 ∩ S2 6= ∅ and S1 △ S2 6= ∅,
the argument above shows the answer to be [b(S1)+ b(S2)− b(H)]/b(S1).

3. With |I | the length of the intercept I of λ1 with S2, we have that P(λ2 meets I ) = 2|I |/b(S1),
by the Buffon needle calculation (4.13.2). The required probability is

1

2

∫ 2π

0

∫ ∞

−∞

2|I |
b(S1)

·
dp dθ

b(S1)
=
∫ 2π

0

|S2|
b(S1)

2
dθ =

2π |S2|
b(S1)

2
.

4. If the two points are denoted P = (X1,Y1), and Q = (X2,Y2), then

E(Z2) = E(|PQ|2) = 2E
(
(X1 − X2)

2
)

= 4 var(X1) =
8

πa2

∫ a

−a
x2
√

a2 − x2 dx = a2.

We use Crofton’s method in order to calculate E(Z). Consider a disc D of radius x surrounded by an
annulus A of width h. We set λ(x) = E(Z | P,Q ∈ D), and find that

λ(x + h) = λ(x)

(
1 −

4h

x
− o(h)

)
+ 2E(Z | P ∈ D, Q ∈ A)

(
2h

x
+ o(h)

)
.

Now

E(Z | P ∈ D, Q ∈ A) =
2

πx2

∫ 1
2π

0

∫ 2x cos θ

0
r2 dr dθ + o(1) =

32x

9π
,

whence
dλ

dx
= −

4λ

x
+

128

9π
,

which is easily integrated subject to λ(0) = 0 to give the result.

5. (i) We may assume without loss of generality that the sphere has radius 1. The length X = |AO|
has density function f (x) = 3x2 for 0 ≤ x ≤ 1. The triangle includes an obtuse angle if B lies either

in the hemisphere opposite to A, or in the sphere with centre 1
2 X and radius 1

2 X , or in the segment
cut off by the plane through A perpendicular to AO. Hence,

P(obtuse) = 1
2 + E

(
( 1

2 X)3
)

+ ( 4
3π)

−1E

(∫ 1

X
π(1 − y2) dy

)

= 1
2 + 1

16 + ( 4
3 )

−1E( 2
3 − X + 1

3 X3) = 5
8 .

(ii) In the case of the circle, X has density function 2x for 0 ≤ x ≤ 1, and similar calculations yield

P(obtuse) =
1

2
+

1

8
+

1

π
E
(
cos−1 X − X

√
1 − X2

)
=

3

4
.

6. Choose the x-axis along AB. With P = (X,Y ) and G = (γ1, γ2),

E|ABP| = 1
2 |AB| E(Y ) = 1

2 |AB|γ2 = |ABG|.

7. We use Exercise (4.13.6). First fix P, and then Q, to find that

E|APQ| = E
[
E
(
|APQ|

∣∣P
)]

= E|APG2| = |AG1G2|.
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With b = |AB| and h the height of the triangle ABC on the base AB, we have that |G1G2| = 1
3 b and

the height of the triangle AG1G2 is 2
3 h. Hence,

E|APQ| = 1
2 · 1

3 b · 2
3 h = 2

9 |ABC|.

8. Let the scale factor for the random triangle be X , where X ∈ (0, 1). For a triangle with scale

factor x , any given vertex can lie anywhere in a certain triangle having area (1 − x)2|ABC|. Picking
one at random from all possible such triangles amounts to supposing that X has density function

f (x) = 3(1 − x)2, 0 ≤ x ≤ 1. Hence the mean area is

|ABC| E(X2) = |ABC|
∫ 1

0
3x2(1 − x)2 dx = 1

10 |ABC|.

9. We have by conditioning that, for 0 ≤ z ≤ a,

F(z, a + da) = F(z, a)

(
a

a + da

)2

+ P(X ≥ a − z) ·
2a da

(a + da)2
+ o(da)

= F(z, a)

(
1 −

2 da

a

)
+

z

a
·

2da

a
+ o(da),

and the equation follows by taking the limit as da ↓ 0. The boundary condition may be taken to be
F(a, a) = 1, and we deduce that

F(z, a) =
2z

a
−
( z

a

)2
, 0 ≤ z ≤ a.

Likewise, by use of conditional expectation,

mr (a + da) = mr (a)

(
1 −

2 da

a

)
+ E

(
(a − X)r

)
·

2 da

a
+ o(da).

Now, E((a−X)r ) = ar/(r +1), yielding the required equation. The boundary condition is mr (0) = 0,
and therefore

mr (a) =
2ar

(r + 1)(r + 2)
.

10. If n great circles meet each other, not more than two at any given point, then there are 2
(n

2

)

intersections. It follows that there are 4
(n

2

)
segments between vertices, and Euler’s formula gives the

number of regions as n(n − 1) + 2. We may think of the plane as obtained by taking the limit as
R → ∞ and ‘stretching out’ the sphere. Each segment is a side of two polygons, so the average
number of sides satisfies

4n(n − 1)

2 + n(n − 1)
→ 4 as n → ∞.

11. By making an affine transformation, we may without loss of generality assume the triangle has
vertices A = (0, 1), B = (0, 0), C = (1, 0). With P = (X,Y ), we have that

L =
(

X

1 − Y
, 0

)
, M =

(
X

X + Y
,

Y

X + Y

)
, N =

(
0,

Y

1 − X

)
.

Hence,

E|BLN| = 2

∫

ABC

xy

2(1 − x)(1 − y)
dx dy =

∫ 1

0

(
−x −

x

1 − x
log x

)
dx =

π2

6
−

3

2
,

289
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and likewise E|CLM| = E|ANM| = 1
6π

2 − 3
2 . It follows that

E|LMN| = 1
2 (10 − π2) = (10 − π2)|ABC|.

12. Let the points be P, Q, R, S. By Example (4.13.6),

P
(
one lies inside the triangle formed by the other three

)
= 4P(S ∈ PQR) = 4 · 1

12 .

13. We use Crofton’s method. Let m(a) be the mean area, and condition on whether points do or do
not fall in the annulus with internal and external radii a, a + h. Then

m(a + h) = m(a)

(
a

a + h

)6

+
[

6h

a
+ o(h)

]
m̂(a),

where m̂(a) is the mean area of a triangle having one vertex P on the boundary of the circle. Using
polar coordinates with P as origin,

π2a4m̂(a) =
1

2

∫ π

0

∫ π

0

∫ 2a cos θ

0

∫ 2a cosψ

0
r2

1r2
2 dr1 dr2 sin |θ − ψ | dθ dψ

=
32a6

9

∫ π

0

∫ π

0
sin3 θ sin3 ψ sin |θ − ψ | dθ dψ =

35a6π

36
.

Letting h ↓ 0 above, we obtain

dm

da
= −

6m

a
+

6

a
·

35a2

36π
,

whence m(a) = (35a2)/(48π).

14. Let a be the radius of C , and let R be the distance of A from the centre. Conditional on R, the

required probability is (a − R)2/a2, whence the answer is E((a − R)2/a2) =
∫ 1

0 (1 − r)22r dr = 1
6 .

15. Let a be the radius of C , and let R be the distance of A from the centre. As in Exercise (4.13.14),

the answer is E((a − R)3/a3) =
∫ 1

0 (1 − r)33r2 dr = 1
20 .

16. We assume without loss of generality that one of the points is at the north pole. If the other is

at (X,Y, Z), then D2 = X2 + Y 2 + (1 − Z)2 = 2 − 2Z . By Archimedes’s cylinder theorem, Z is
uniformly distributed on [−1, 1]. Therefore, for d ∈ (0, 1),

P(D ≤ d) = P(D2 ≤ d2) = P(Z ≥ 1 − 1
2 d2) = 1

4 d2.

17. The length of the diameter is 2, and of the semicircle π . Therefore,

P(D) = 2 ·
2π

(2 + π)2
, P(N) =

(
π

2 + π

)2

.

Let2 be the angle between a given radius and the point on the semicircle, and let Y be the distance
from the centre to the point on the diameter. The joint density function of the pair 2, Y is

f (θ, y) =
1

2π
, θ ∈ (0, π), y ∈ (−1, 1).

The area of the triangle is A = 1
2 |Y | sin2, so that

E(A | D) =
1

2π

∫ π

θ=0
dθ

∫ 1

y=−1

1

2
|y| sin θ dy =

1

2π
·

1

2

[
− cos θ

]π
0 =

1

2π
.
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Conditional on N , the chord between the radii to the chosen points subtends an angle 2 at the centre

with density function g(θ) = 2(π − θ)/π2, for θ ∈ (0, π). (You should check this.) Therefore,

E(A | N) =
∫ π

0

1

2
sin θ ·

2(π − θ)

π2
dθ =

1

π
.

In conclusion,

E(A) = E(A | D)P(D)+ E(A | N)P(N) =
1

2 + π
.

18. Rotating the wheel clockwise from an arbitrary marked point, let P1, P2, . . . , Pn be the initial
points, in order, of the inspected arcs. Let Ai be the arc of length x starting at Pi , let Ii be the event
that Pk /∈ Ai for all k 6= i , and let N be the number of events Ii that occur. The required probability
is P(N = 0).

By the rotation-invariance of the distribution of the set {Pi : i = 1, 2, . . . , n}, we have that

P(Ii ) = (1 − x)n−1. Likewise, P(Ii ∩ Ij ) = (1 − 2x)n−2 for i 6= j , and so on. By the inclusion–
exclusion formula (3.4.2),

P(N = 0) = 1 − P(N ≥ 1) = 1 −
(

n

1

)
(1 − x)n−1 +

(
n

2

)
(1 − 2x)n−1 − · · · .

where the series terminates as stated.

4.14 Solutions to problems

1. (a) We have that

∫∫

R2
e−(x2+y2) dx dy =

∫∫

R2
e−r2

r dr dθ = π.

Secondly, f ≥ 0, and it is easily seen that
∫∞
−∞ f (x) dx = 1 using the substitution y = (x −

µ)/(σ
√

2). Alternatively, note that the first integral is the volume generated by the surface of revolution

from z = e−t2
, which equals

∫ 1

0
π t (z)2 dz = −

∫ 1

0
π log z dz = π.

(b) The mean is
∫∞
−∞ x(2π)−

1
2 e

− 1
2 x2

dx , which equals 0 since xe
− 1

2 x2
is an odd integrable function.

The variance is
∫∞
−∞ x2(2π)−

1
2 e

− 1
2

x2
dx , easily integrated by parts to obtain 1.

(c) Note that

d

dy

{
y−1e

− 1
2 y2
}

= −(1 + y−2)e
− 1

2 y2
,

d

dy

{
(y−1 − y−3)e

− 1
2

y2
}

= −(1 − 3y−4)e
− 1

2
y2
,

and also 1 − 3y−4 < 1 < 1 + y−2. Multiply throughout these inequalities by e
− 1

2
y2
/
√

2π , and
integrate over [x,∞), to obtain the required inequalities. More extensive inequalities may be found
in Exercise (4.4.8).
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(d) The required probability is α(x) = [1 −8(x + a/x)]/[1 −8(x)]. By (c),

α(x) = (1 + o(1))
e
− 1

2
(x+a/x)2

e
− 1

2 x2
→ e−a as x → ∞.

2. Clearly f ≥ 0 if and only if 0 ≤ α < β ≤ 1. Also

C−1 =
∫ β

α
(x − x2) dx = 1

2 (β
2 − α2)− 1

3 (β
3 − α3).

3. The Ai partition the sample space, and i − 1 ≤ X (ω) < i if ω ∈ Ai . Taking expectations and
using the fact that E(Ii ) = P(Ai ), we find that S ≤ E(X) ≤ 1 + S where

S =
∞∑

i=2

(i − 1)P(Ai ) =
∞∑

i=2

i−1∑

j=1

1 · P(Ai ) =
∞∑

j=1

∞∑

i= j+1

P(Ai ) =
∞∑

j=1

P(X ≥ j).

4. (a) (i) Let F−1(y) = sup{x : F(x) = y}, so that

P(F(X) ≤ y) = P(X ≤ F−1(y)) = F(F−1(y)) = y, 0 ≤ y ≤ 1.

(ii) P(− log F(X) ≤ y) = P(F(X) ≥ e−y) = 1 − e−y if y ≥ 0.

(b) Draw a picture. With D = PR,

P(D ≤ d) = P(tan P̂QR ≤ d) = P(P̂QR ≤ tan−1 d) =
1

π

(π
2

+ tan−1 d
)
.

Differentiate to obtain the result.

(c) By symmetry,

P(X + Y > 0 | X = x) = P(Y > −x) = P(Y < x) = F(x),

so that P(X + Y > 0 | X) = F(X), which is uniformly distributed on (0, 1), with mean 1
2 .

5. (a) Suppose that g is monotone and satisfies g(s + t) = g(s)g(t) for s, t ≥ 0. For an integer
m, g(m) = g(1)g(m − 1) = · · · = g(1)m . For rational x = m/n, g(x)n = g(m) = g(1)m so
that g(x) = g(1)x ; all such powers are interpreted as exp{x log g(1)}. Finally, if x is irrational, and
g is monotone non-increasing (say), then g(u) ≤ g(x) ≤ g(v) for all rationals u and v satisfying
v ≤ x ≤ u. Hence g(1)u ≤ g(x) ≤ g(1)v . Take the limits as u ↓ x and v ↑ x through the rationals
to obtain g(x) = eµx where µ = log g(1).

(b) Clearly

P(X > s + x | X > s) =
P(X > s + x)

P(X > s)
=

e−λ(s+x)

e−λs
= e−λx

if x, s ≥ 0, where λ is the parameter of the distribution.

Suppose that the non-negative random variable X has the lack-of-memory property. Then G(x) =
P(X > x) is monotone and satisfies G(s + x) = G(s)G(x) for s, x ≥ 0. Hence G(s) = e−λs for
some λ; certainly λ > 0 since G(s) ≤ 1 for all s.

(c) The total cost is

C =
{

h if M ≤ h,

h + a + b(M − h) if M > h.
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By the lack-of-memory property of the exponential distribution, E(M − h | M > h) = 1, whence

EC = hP(M ≤ h)+ (h + a + b)P(M > h) = h + (a + b)e−h .

This is a minimum at h = log(a + b) when a + b ≥ 1, and at h = 0 when a + b < 1. The latter is
evidence against building the barrier when a + b < 1.

6. If X and Y are independent, we may take g = fX and h = fY . Suppose conversely that
f (x, y) = g(x)h(y). Then

fX (x) = g(x)

∫ ∞

−∞
h(y) dy, fY (y) = h(y)

∫ ∞

−∞
g(x) dx

and

1 =
∫ ∞

−∞
fY (y) dy =

∫ ∞

−∞
g(x) dx

∫ ∞

−∞
h(y) dy.

Hence f X (x) fY (y) = g(x)h(y) = f (x, y), so that X and Y are independent.

The given f cannot be factorized as a product since the domain depends on whether or not x < y.

7. They are not independent since P(Y < 1, X > 1) = 0 whereas P(Y < 1) > 0 and P(X > 1) > 0.
As for the marginals,

fX (x) =
∫ ∞

x
2e−x−y dy = 2e−2x , fY (y) =

∫ y

0
2e−x−y dx = 2e−y(1 − e−y),

for x, y ≥ 0. Finally,

E(XY ) =
∫ ∞

x=0

∫ ∞

y=x
xy2e−x−y dx dy = 1

and E(X) = 1
2 , E(Y ) = 3

2 , implying that cov(X, Y ) = 1
4 .

8. As in Example (4.13.1), the desired property holds if and only if the length X of the chord satisfies

X ≤
√

3. Writing R for the distance from P to the centre O, and2 for the acute angle between the chord

and the line OP, we have that X = 2
√

1 − R2 sin2 2, and therefore P(X ≤
√

3) = P(R sin2 ≥ 1
2 ).

The answer is therefore

P

(
R ≥

1

2 sin2

)
=

2

π

∫ 1
2π

0
P

(
R ≥

1

2 sin θ

)
dθ,

which equals 2
3 −

√
3/(2π) in case (a) and 2

3 + π−1 log tan(π/12) in case (b).

9. Evidently,

E(U) = P(Y ≤ g(X)) =
∫∫

0≤x,y≤1
y≤g(x)

dx dy =
∫ 1

0
g(x) dx,

E(V ) = E(g(X)) =
∫ 1

0
g(x) dx,

E(W ) = 1
2

∫ 1

0

{
g(x)+ g(1 − x)

}
dx =

∫ 1

0
g(x) dx .
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Secondly,

E(U2) = E(U) = J, E(V 2) =
∫ 1

0
g(x)2 dx ≤ J since g ≤ 1,

E(W 2) = 1
4

{
2

∫ 1

0
g(x)2 dx + 2

∫ 1

0
g(x)g(1 − x) dx

}

= E(V 2)− 1
2

∫ 1

0
g(x)

{
g(x)− g(1 − x)

}
dx

= E(V 2)− 1
4

∫ 1

0

{
g(x)− g(1 − x)

}2
dx ≤ E(V 2).

Hence var(W ) ≤ var(V ) ≤ var(U).

10. Clearly the claim is true for n = 1, since the Ŵ(λ, 1) distribution is the exponential distribution.
Suppose it is true for n ≤ k where k ≥ 1, and consider the case n = k + 1. Writing fn for the density
function of Sn, we have by the convolution formula (4.8.2) that

fk+1(x) =
∫ x

0
fk(y) f1(x − y) dy =

∫ x

0

λk

Ŵ(k)
yk−1e−λyλe−λ(x−y) dy =

λk+1e−λx

Ŵ(k)

∫ x

0
yk−1 dy,

which is easily seen to be the Ŵ(λ, k + 1) density function.

11. (a) Let Z1, Z2, . . . , Zm+n be independent exponential variables with parameter λ. Then, by
Problem (4.14.10), X ′ = Z1 + · · · + Zm is Ŵ(λ,m), Y ′ = Zm+1 + · · · + Zm+n is Ŵ(λ, n), and
X ′ + Y ′ is Ŵ(λ,m + n). The pair (X,Y ) has the same joint distribution as the pair (X ′,Y ′), and
therefore X + Y has the same distribution as X ′ + Y ′, i.e. Ŵ(λ,m + n).

(b) Using the transformation u = x + y, v = x/(x + y), with inverse x = uv, y = u(1 − v), and
Jacobian

J =
∣∣∣∣
v u

1 − v −u

∣∣∣∣ = −u,

we find that U = X + Y , V = X/(X + Y ) have joint density function

fU,V (u, v) = f X,Y

(
uv, u(1 − v)

)
|u| =

λm+n

Ŵ(m)Ŵ(n)
(uv)m−1{u(1 − v)}n−1e−λuu

=
{

λm+n

Ŵ(m + n)
um+n−1e−λu

}{
vm−1(1 − v)n−1

B(m, n)

}

for u ≥ 0, 0 ≤ v ≤ 1. Hence U and V are independent, U being Ŵ(λ,m + n), and V having the beta
distribution with parameters m and n.

(c) Integrating by parts,

P(X > t) =
∫ ∞

t

λm

(m − 1)!
xm−1e−λx dx

=
[
−

λm−1

(m − 1)!
xm−1e−λx

]∞

t

+
∫ ∞

t

λm−1

(m − 2)!
xm−2e−λx dx

= e−λt (λt)m−1

(m − 1)!
+ P(X ′ > t)

where X ′ is Ŵ(λ,m − 1). Hence, by induction,

P(X > t) =
m−1∑

k=0

e−λt (λt)k

k!
= P(Z < m).
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(d) This may be achieved by the usual change of variables technique. Alternatively, reflect that, using
the notation and result of part (b), the invertible mapping u = x + y, v = x/(x + y) maps a pair
X,Y of independent (Ŵ(λ,m) and Ŵ(λ, n)) variables to a pair U, V of independent (Ŵ(λ,m + n) and
B(m, n)) variables. Now U V = X , so that (figuratively)

“Ŵ(λ,m + n)× B(m, n) = Ŵ(λ,m)”.

Replace n by n − m to obtain the required conclusion.

12. (a) Z = X2
1 satisfies

fZ (z) =
d

dz
P(X2

1 ≤ z) =
d

dz

{
2

∫ √
z

0

1
√

2π
e
− 1

2 u2
du

}
=

1
√

2π
z
− 1

2 e
− 1

2 z
, z ≥ 0,

the Ŵ( 1
2 ,

1
2 ) or χ2(1) density function.

(b) If z ≥ 0, Z = X2
1 + X2

2 satisfies

P(Z ≤ z) = P(X2
1 + X2

2 ≤ z) =
∫∫

x2+y2≤z

1

2π
e
− 1

2 (x
2+y2)

dx dy

=
∫ √

z

r=0

∫ 2π

θ=0

1

2π
e
− 1

2 r2
r dr dθ = 1 − e

− 1
2 z
,

the χ2(2) distribution function.

(c) One way is to work in n-dimensional polar coordinates! Alternatively use induction. It suffices

to show that if X and Y are independent, X being χ2(n) and Y being χ2(2) where n ≥ 1 , then

Z = X + Y is χ2(n + 2). However, by the convolution formula (4.8.2),

fZ (z) =
∫ z

0

{
2−n/2

Ŵ(n/2)
x

1
2 n−1

e
− 1

2 x

}{
1
2 e

− 1
2 (z−x)

}
dx = ce

− 1
2 z

z
1
2 n
, z ≥ 0,

for some constant c. This is the χ2(n + 2) density function as required.

13. Concentrate on where x occurs in fX |Y (x | y); any multiplicative constant can be sorted out later:

f X |Y (x | y) =
fX,Y (x, y)

fY (y)
= c1(y) exp

{
−

1

2(1 − ρ2)

(
x2

σ 2
1

−
2xµ1

σ 2
1

−
2ρx(y − µ2)

σ1σ2

)}

by Example (4.5.9), where c1(y) depends on y only. Hence

fX |Y (x | y) = c2(y) exp

{
−
[
x − µ1 − ρσ1(y − µ2)/σ2

]2

2(1 − ρ2)σ 2
1

}
, x ∈ R,

for some c2(y). This is the normal density function with mean µ1 + ρσ1(y − µ2)/σ2 and variance

σ 2
1 (1 − ρ2). See also Exercise (4.8.7).

14. Set u = y/x , v = x , with inverse x = v, y = uv, and |J | = |v|. Hence the pair U = Y/X ,
V = X has joint density fU,V (u, v) = fX,Y (v, uv)|v| for −∞ < u, v < ∞. Therefore fU (u) =∫∞
−∞ f (v, uv)|v| dv.

15. By the result of Problem (4.14.14), U = Y/X has density function

fU (u) =
∫ ∞

−∞
f (y) f (uy)|y| dy,
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and therefore it suffices to show that U has the Cauchy distribution if and only if Z = tan−1 U is

uniform on (− 1
2π,

1
2π). Clearly

P(Z ≤ θ) = P(U ≤ tan θ), − 1
2π < θ < 1

2π,

whence fZ (θ) = fU (tan θ) sec2 θ . Therefore f Z (θ) = π−1 (for |θ | < 1
2π ) if and only if

fU (u) =
1

π(1 + u2)
, −∞ < u < ∞.

When f is the N(0, 1) density,

∫ ∞

−∞
f (x) f (xy)|x | dx = 2

∫ ∞

0

1

2π
e
− 1

2 x2(1+y2)
x dx,

which is easily integrated directly to obtain the Cauchy density. In the second case, we have the
following integral: ∫ ∞

−∞

a2|x |
(1 + x4)(1 + x4y4)

dx .

In this case, make the substitution z = x2 and expand as partial fractions.

16. The transformation x = r cos θ , y = r sin θ has Jacobian J = r , so that

f R,2(r, θ) =
1

2π
re

− 1
2 r2
, r > 0, 0 ≤ θ < 2π.

Therefore R and2 are independent,2 being uniform on [0, 2π), and R2 having distribution function

P(R2 ≤ a) =
∫ √

a

0
re

− 1
2 r2

dr = 1 − e
− 1

2 a;

this is the exponential distribution with parameter 1
2 (otherwise known as Ŵ( 1

2 , 1) or χ2(2)). The

density function of R is fR(r) = re
− 1

2 r2
for r > 0.

Now, by symmetry,

E

(
X2

R2

)
=

1

2
E

(
X2 + Y 2

R2

)
=

1

2
.

In the first octant, i.e. in {(x, y) : 0 ≤ y ≤ x}, we have min{x, y} = y, max{x, y} = x . The joint
density fX,Y is invariant under rotations, and hence the expectation in question is

8

∫

0≤y≤x

y

x
f X,Y (x, y) dx dy = 8

∫ π/4

θ=0

∫ ∞

r=0

tan θ

2π
re

− 1
2

r2
dr dθ =

2

π
log 2.

17. (i) Using independence,

P(U ≤ u) = 1 − P(X > u, Y > u) = 1 −
(
1 − FX (u)

)(
1 − FY (u)

)
.

Similarly
P(V ≤ v) = P(X ≤ v,Y ≤ v) = FX (v)FY (v).

(ii) (a) By (i), P(U ≤ u) = 1 − e−2u for u ≥ 0.
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(b) Also, Z = X + 1
2 Y satisfies

P(Z > v) =
∫ ∞

0
P
(
Y > 2(v − x)

)
f X (x) dx =

∫ v

0
e−2(v−x)e−x dx +

∫ ∞

v
e−x dx

= e−2v(ev − 1)+ e−v = 1 − (1 − e−v)2 = P(V > v).

Therefore E(V ) = E(X)+ 1
2 E(Y ) = 3

2 , and var(V ) = var(X)+ 1
4 var(Y ) = 5

4 by independence.

18. (a) We have that

P(X ≤ Y ) =
∫ ∞

0
P(X ≤ y)µe−µy dy =

∫ ∞

0
(1 − e−λy)µe−µy dy =

λ

µ+ λ
.

(b) Clearly, for w > 0,

P(U ≤ u,W > w) = P(U ≤ u,W > w, X ≤ Y )+ P(U ≤ u,W > w, X > Y ).

Now

P(U ≤ u,W > w, X ≤ Y ) = P(X ≤ u,Y > X +w) =
∫ u

0
λe−λxe−µ(x+w) dx

=
λ

λ+ µ
e−µw(1 − e−(λ+µ)u)

and similarly

P(U ≤ u,W > w, X > Y ) =
µ

λ+ µ
e−λw(1 − e−(λ+µ)u).

Hence, for 0 ≤ u ≤ u + w < ∞,

P(U ≤ u,W > w) = (1 − e−(λ+µ)u)
(

λ

λ+ µ
e−µw +

µ

λ+ µ
e−λw

)
,

an expression which factorizes into the product of a function of u with a function of w. Hence U and
W are independent.

19. U = X + Y , V = X have joint density function fY (u − v) fX (v), 0 ≤ v ≤ u. Hence

fV |U (v | u) =
fU,V (u, v)

fU (u)
=

fY (u − v) fX (v)∫ u
0 fY (u − y) f X (y) dy

.

(a) We are given that fV |U (v | u) = u−1 for 0 ≤ v ≤ u; then

fY (u − v) fX (v) =
1

u

∫ u

0
fY (u − y) f X (y) dy

is a function of u alone, implying that

fY (u − v) fX (v) = fY (u) fX (0) by setting v = 0

= fY (0) fX (u) by setting v = u.

In particular fY (u) and f X (u) differ only by a multiplicative constant; they are both density functions,
implying that this constant is 1, and f X = fY . Substituting this throughout the above display, we
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find that g(x) = fX (x)/ fX (0) satisfies g(0) = 1, g is continuous, and g(u − v)g(v) = g(u) for

0 ≤ v ≤ u. From the hint, g(x) = e−λx for x ≥ 0 for some λ > 0 (remember that g is integrable).

(b) Arguing similarly, we find that

fY (u − v) fX (v) =
c

uα+β−1
vα−1(u − v)β−1

∫ u

0
fY (u − y) f X (y) dy

for 0 ≤ v ≤ u and some constant c. Setting fX (v) = χ(v)vα−1, fY (y) = η(y)yβ−1, we obtain
η(u − v)χ(v) = h(u) for 0 ≤ v ≤ u, and for some function h. Arguing as before, we find that η and
χ are proportional to negative exponential functions, so that X and Y have gamma distributions.

20. We are given that U is uniform on [0, 1], so that 0 ≤ X,Y ≤ 1
2 almost surely. For 0 < ǫ < 1

4 ,

ǫ = P(X + Y < ǫ) ≤ P(X < ǫ, Y < ǫ) = P(X < ǫ)2,

and similarly

ǫ = P(X + Y > 1 − ǫ) ≤ P(X > 1
2 − ǫ, Y > 1

2 − ǫ) = P(X > 1
2 − ǫ)2,

implying that P(X < ǫ) ≥
√
ǫ and P(X > 1

2 − ǫ) ≥
√
ǫ. Now

2ǫ = P
(

1
2 − ǫ < X + Y < 1

2 + ǫ
)

≥ P
(

X > 1
2 − ǫ, Y < ǫ

)
+ P

(
X < ǫ, Y > 1

2 − ǫ
)

= 2P(X > 1
2 − ǫ)P(X < ǫ) ≥ 2(

√
ǫ)2.

Therefore all the above inequalities are in fact equalities, implying that P(X < ǫ) = P(X > 1
2 − ǫ) =

√
ǫ if 0 < ǫ < 1

4 . Hence a contradiction:

1
8 = P(X + Y < 1

8 ) = P(X,Y < 1
8 )− P(X,Y < 1

8 , X + Y ≥ 1
8 ) < P(X < 1

8 ,Y < 1
8 ) = 1

8 .

21. Evidently

P(X(1) ≤ y1, . . . , X(n) ≤ yn) =
∑

π

P
(

Xπ1 ≤ y1, . . . , Xπn ≤ yn, Xπ1 < · · · < Xπn

)

where the sum is over all permutations π = (π1, π2, . . . , πn) of (1, 2, . . . , n). By symmetry, each
term in the sum is equal, whence the sum equals

n! P(X1 ≤ y1, . . . , Xn ≤ yn, X1 < X2 < · · · < Xn).

The integral form is then immediate. The joint density function is, by its definition, the integrand.

22. (a) In the notation of Problem (4.14.21), the joint density function of X(2), . . . , X(n) is

g2(y2, . . . , yn) =
∫ y2

−∞
g(y1, . . . , yn) dy1

= n! L(y2, . . . , yn)F(y2) f (y2) f (y3) · · · f (yn)

where F is the common distribution function of the X i . Similarly X(3), . . . , X(n) have joint density

g3(y3, . . . , yn) = 1
2 n! L(y3, . . . , yn)F(y3)

2 f (y3) · · · f (yn),

298



Problems Solutions [4.14.23]–[4.14.25]

and by iteration, X(k), . . . , X(n) have joint density

gk(yk , . . . , yn) =
n!

(k − 1)!
L(yk , . . . , yn)F(yk)

k−1 f (yk) · · · f (yn).

We now integrate over yn , yn−1, . . . , yk+1 in turn, arriving at

fX(k)
(yk) =

n!

(k − 1)! (n − k)!
F(yk)

k−1{1 − F(yk)}n−k f (yk).

(b) It is neater to argue directly. Fix x , and let Ir be the indicator function of the event {Xr ≤ x}, and
let S = I1 + I2 + · · · + In . Then S is distributed as bin(n, F(x)), and

P(X(k) ≤ x) = P(S ≥ k) =
n∑

l=k

(
n

l

)
F(x)l(1 − F(x))n−l .

Differentiate to obtain, with F = F(x),

fX(k)
(x) =

n∑

l=k

(
n

l

)
f (x)

{
l F l−1(1 − F)n−l − (n − l)F l (1 − F)n−l−1

}

= k

(
n

k

)
f (x)Fk−1(1 − F)n−k

by successive cancellation of the terms in the series.

23. Using the result of Problem (4.14.21), the joint density function is g(y) = n! L(y)T −n for
0 ≤ yi ≤ T , 1 ≤ i ≤ n, where y = (y1, y2, . . . , yn).

24. (a) We make use of Problems (4.14.22)–(4.14.23). The density function of X(k) is fk(x) =
k
(n

k

)
xk−1(1 − x)n−k for 0 ≤ x ≤ 1, so that the density function of n X(k) is

1

n
fk(x/n) =

k

k!

n(n − 1) · · · (n − k + 1)

nk
xk−1

(
1 −

x

n

)n−k
→

1

(k − 1)!
xk−1e−x

as n → ∞. The limit is the Ŵ(1, k) density function.

(b) For an increasing sequence x(1), x(2), . . . , x(n) in [0, 1], we define the sequence un = −n log x(n),
uk = −k log(x(k)/x(k+1)) for 1 ≤ k < n. This mapping has inverse

x(n) = e−un/n, x(k) = x(k+1)e
−uk/k = exp

{
−

n∑

i=k

i−1ui

}
,

with Jacobian J = (−1)ne−u1−u2−···−un /n!. Applying the mapping to the sequence X(1), X(2), . . . ,

X(n) we obtain a family U1,U2, . . . ,Un of random variables with joint density g(u1, u2, . . . , un) =
e−u1−u2−···−un for ui ≥ 0, 1 ≤ i ≤ n, yielding that the Ui are independent and exponentially

distributed, with parameter 1. Finally log X(k) = −
∑n

i=k i−1Ui .

(c) In the notation of part (b), Zk = exp(−Uk) for 1 ≤ k ≤ n, a collection of independent variables.
Finally, Uk is exponential with parameter 1, and therefore

P(Zk ≤ z) = P(Uk ≥ − log z) = elog z = z, 0 < z ≤ 1.

25. (i) (X1, X2, X3) is uniformly distributed over the unit cube of R3, and the answer is therefore the
volume of that set of points (x1, x2, x3) of the cube which allow a triangle to be formed. A triangle
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is impossible if x1 ≥ x2 + x3, or x2 ≥ x1 + x3, or x3 ≥ x1 + x2. This defines three regions of
the cube which overlap only at the origin. Each of these regions is a tetrahedron; for example, the
region x3 ≥ x1 + x2 is an isosceles tetrahedron with vertices (0, 0, 0), (1, 0, 1), (0, 1, 1), (0, 0, 1),

with volume 1
6 . Hence the required probability is 1 − 3 · 1

6 = 1
2 .

(ii) The rods of length x1, x2, . . . , xn fail to form a polygon if either x1 ≥ x2 + x3 +· · ·+ xn or any of
the other n −1 corresponding inequalities hold. We therefore require the volume of the n-dimensional
hypercube with n corners removed. The inequality x1 ≥ x2 + x3 +· · ·+ xn corresponds to the convex
hull of the points (0, 0, . . . , 0), (1, 0, . . . , 0), (1, 1, 0, . . . , 0), (1, 0, 1, 0, . . . , 0), . . . , (1, 0, . . . , 0, 1).
Mapping x1 7→ 1 − x1, we see that this has the same volume Vn as has the convex hull of the origin

0 together with the n unit vectors e1, e2, . . . , en . Clearly V2 = 1
2 , and we claim that Vn = 1/n!.

Suppose this holds for n < k, and consider the case n = k. Then

Vk =
∫ 1

0
dx1 Vk−1(0, x1e2, . . . , x1ek)

where Vk−1(0, x1e2, . . . , x1ek) is the (k − 1)-dimensional volume of the convex hull of 0, x1e2, . . . ,

x1ek . Now

Vk−1(0, x1e2, . . . , x1ek) = xk−1
1 Vk−1 =

xk−1
1

(k − 1)!
,

so that

Vk =
∫ 1

0

xk−1
1

(k − 1)!
dx1 =

1

k!
.

The required probability is therefore 1 − n/(n!) = 1 − {(n − 1)!}−1.

26. (i) The lengths of the pieces are U = min{X1, X2}, V = |X1 − X2|, W = 1 − U − V , and we
require that U < V + W , etc, as in the solution to Problem (4.14.25). In terms of the X i we require

either : X1 <
1
2 , |X1 − X2| < 1

2 , 1 − X2 <
1
2 ,

or : X2 <
1
2 , |X1 − X2| < 1

2 , 1 − X1 <
1
2 .

Plot the corresponding region of R2. One then sees that the area of the region is 1
4 , which is therefore

the probability in question.

(ii) The pieces may form a polygon if no piece is as long as the sum of the lengths of the others. Since

the total length is 1, this requires that each piece has length less than 1
2 . Neglecting certain null events,

this fails to occur if and only if the disjoint union of events A0 ∪ A1 ∪ · · · ∪ An occurs, where

A0 =
{

no break in (0, 1
2 ]
}
, Ak =

{
no break in (Xk , Xk + 1

2 ]
}

for 1 ≤ k ≤ n;

remember that there is a permanent break at 1. Now P(A0) = ( 1
2 )

n , and for k ≥ 1,

P(Ak ) =
∫ 1

0
P(Ak | Xk = x) dx =

∫ 1
2

0
( 1

2 )
n−1 dx = ( 1

2 )
n;

Hence P(A0 ∪ A1 ∪ · · · ∪ An) = (n + 1)2−n whence the required probability is 1 − (n + 1)2−n .

27. (a) The function g(t) = (t p/p)+ (t−q/q), for t > 0, has a unique minimum at t = 1, and hence

g(t) ≥ g(1) = 1 for t > 0. Substitute t = x1/q y−1/p where

x =
|X |

{E|X p|}1/p
, y =

|Y |
{E|Y q |}1/q

,
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(we may as well suppose that P(XY = 0) 6= 1) to find that

|X |p

pE|X p|
+

|Y |q

qE|Y q |
≥

|XY |
{E|X p|}1/p{E|Y q |}1/q

.

Hölder’s inequality follows by taking expectations.

(b) We have, with Z = |X + Y |,

E(Z p) = E(Z · Z p−1) ≤ E(|X |Z p−1)+ E(|Y |Z p−1)

≤ {E|X p|}1/p{E(Z p)}1/q + {E|Y p|}1/p{E(Z p)}1/q

by Hölder’s inequality, where p−1 + q−1 = 1. Divide by {E(Z p)}1/q to get the result.

28. Apply the Cauchy–Schwarz inequality to |Z |
1
2 (b−a) and |Z |

1
2 (b+a), where 0 ≤ a ≤ b, to obtain

{E|Zb|}2 ≤ E|Zb−a| E|Zb+a|. Now take logarithms: 2g(b) ≤ g(b − a)+ g(b + a) for 0 ≤ a ≤ b.
Also g(p) → g(0) = 1 as p ↓ 0 (by dominated convergence). These two properties of g imply that
g is convex on intervals of the form [0, M) if it is finite on this interval. The reference to dominated
convergence may be avoided by using Hölder instead of Cauchy–Schwarz.

By convexity, g(x)/x is non-decreasing in x , and therefore g(r)/r ≥ g(s)/s if 0 < s ≤ r .

For the second part, let

λ =
∫

· · ·
∫ { n∏

k=1

|xrk
k | −

n∏

k=1

|xs
k |
}

d F(x1) d F(x2) · · · d F(xn).

The integral† is unchanged by any permutation of the variables x1, x2, . . . , xn , and therefore it may
replaced by its arithmetic mean over all such permutations, denoted 〈·〉. That is

λ =
∫

· · ·
∫ {〈

|xr1
1 |, . . . , |xrn

n |
〉

−
n∏

k=1

|xs
k |
}

d F(x1) d F(x2) · · · d F(xn).

We now replace the arithmetic mean by the geometric mean, namely
{
|x1| · · · |xn |

}s
, to obtain the

given inequality by the arithmetic/geometric mean inequality,

29. Assume that X,Y, Z are jointly continuously distributed with joint density function f . Then

E(X | Y = y, Z = z) =
∫

x fX |Y,Z (x | y, z) dx =
∫

x
f (x, y, z)

fY,Z (y, z)
dx .

Hence

E
{

E(X | Y, Z)
∣∣Y = y

}
=
∫

E(X | Y = y, Z = z) fZ |Y (z | y) dz

=
∫∫

x
f (x, y, z)

fY,Z (y, z)

fY,Z (y, z)

fY (y)
dx dz

=
∫∫

x
f (x, y, z)

fY (y)
dx dz = E(X | Y = y).

Alternatively, use the general properties of conditional expectation as laid down in Section 4.6.

†Think of d FX as fX (x) dx if you are unfamiliar with this form of integral, to be defined in Section 5.6.
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[4.14.30]–[4.14.32] Solutions Continuous random variables

30. The first car to arrive in a car park of length x + 1 effectively divides it into two disjoint parks
of length Y and x − Y , where Y is the position of the car’s leftmost point. Now Y is uniform on
[0, x], and the formula follows by conditioning on Y . Laplace transforms are the key to exploring the
asymptotic behaviour of m(x)/x as x → ∞.

31. (a) If the needle were of length d , the answer would be 2/π as before. Think about the new needle
as being obtained from a needle of length d by dividing it into two parts, an ‘active’ part of length L ,
and a ‘passive’ part of length d − L , and then counting only intersections involving the active part.
The chance of an ‘active intersection’ is now (2/π)(L/d) = 2L/(πd).

(b) As in part (a), the angle between the line and the needle is independent of the distance between
the line and the needle’s centre, each having the same distribution as before. The answer is therefore
unchanged.

(c) The following argument lacks a little rigour, which may be supplied as a consequence of the
statement that S has finite length. For ǫ > 0, let x1, x2, . . . , xn be points on S, taken in order along
S, such that x0 and xn are the endpoints of S, and |xi+1 − xi | < ǫ for 0 ≤ i < n; |x − y| denotes
the Euclidean distance from x to y. Let Ji be the straight line segment joining xi to xi+1, and let Ii

be the indicator function of {Ji ∩ λ 6= ∅}. If ǫ is sufficiently small, the total number of intersections
between J0 ∪ J1 ∪ · · · ∪ Jn−1 and S has mean

n−1∑

i=0

E(Ii ) =
2

πd

n−1∑

i=0

|xi+1 − xi |

by part (b). In the limit as ǫ ↓ 0, we have that
∑

i E(Ii ) approaches the required mean, while

2

πd

n−1∑

i=0

|xi+1 − xi | →
2L(S)

πd
.

32. (i) Fix Cartesian axes within the gut in question. Taking one end of the needle as the origin,

the other end is uniformly distributed on the unit sphere of R3. With the X-ray plate parallel to the

x/y-plane, the projected length V of the needle satisfies V ≥ v if and only if |Z | ≤
√

1 − v2, where
Z is the (random) z-coordinate of the ‘loose’ end of the needle. Hence, for 0 ≤ v ≤ 1,

P(V ≥ v) = P
(
−
√

1 − v2 ≤ Z ≤
√

1 − v2
)

=
4π
√

1 − v2

4π
=
√

1 − v2,

since 4π
√

1 − v2 is the surface area of that part of the unit sphere satisfying |z| ≤
√

1 − v2 (use
Archimedes’s theorem of the circumscribing cylinder, or calculus). Therefore V has density function

fV (v) = v
/√

1 − v2 for 0 ≤ v ≤ 1.

(ii) Draw a picture, if you can. The lengths of the projections are determined by the angle 2 between
the plane of the cross and the X-ray plate, together with the angle 9 of rotation of the cross about an

axis normal to its arms. Assume that 2 and 9 are independent and uniform on [0, 1
2π ]. If the axis

system has been chosen with enough care, we find that the lengths A, B of the projections of the arms
are given by

A =
√

cos2 9 + sin2 9 cos2 2, B =
√

sin2 9 + cos2 9 cos2 2,

with inverse

2 = cos−1
√

A2 + B2 − 1, 9 = tan−1

√
1 − A2

1 − B2
.
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Problems Solutions [4.14.33]–[4.14.35]

Some slog is now required to calculate the Jacobian J of this mapping, and the answer will be

f A,B (a, b) = 4|J |π−2 for 0 < a, b < 1, a2 + b2 > 1.

33. The order statistics of the X i have joint density function

h(x1, x2, . . . , xn) = λnn! exp

(
−

n∑

i=1

xi

)

on the set I of increasing sequences of positive reals. Define the one–one mapping from I onto
(0,∞)n by

y1 = nx1, yr = (n + 1 − r)(xr − xr−1) for 1 < r ≤ n,

with inverse xr =
∑r

k=1 yk/(n − k + 1) for r ≥ 1. The Jacobian is (n!)−1, whence the joint density
function of Y1,Y2, . . . ,Yn is

1

n!
λnn! exp

(
−

n∑

i=1

xi (y)

)
= λn exp

(
−

n∑

k=1

yk

)
.

34. Recall Problem (4.14.4). First, Zi = F(X i ), 1 ≤ i ≤ n, is a sequence of independent variables
with the uniform distribution on [0, 1]. Secondly, a variable U has the latter distribution if and only
if − log U has the exponential distribution with parameter 1.

It follows that L i = − log F(X i ), 1 ≤ i ≤ n, is a sequence of independent variables with the expo-
nential distribution. The order statistics L(1), . . . , L(n) are in order − log F(X(n)), . . . ,− log F(X(1)),
since the function − log F(·) is non-increasing. Applying the result of Problem (4.14.33), E1 =
−n log F(X(n)) and

Er = −(n + 1 − r)
{

log F(X(n+1−r )− log F(X(n+2−r))
}
, 1 < r ≤ n,

are independent with the exponential distribution. Therefore exp(−Er ), 1 ≤ r ≤ n, are independent
with the uniform distribution.

35. One may be said to be in state j if the first j − 1 prizes have been rejected and the j th prize has
just been viewed, and it is the best so far. There are two possible decisions at this stage: either accept
the j th prize, or reject it and continue. The mean return of the first decision equals the probability
j/n that the overall best prize lies in the first j , and the mean return of the second is the maximal
probability f ( j) that one may obtain the best prize having rejected the first j . Thus the maximal mean
return V ( j) in state j satisfies

V ( j) = max{ j/n, f ( j)}.
Now j/n increases with j , and f ( j) decreases with j (since a possible stategy is to reject the ( j +1)th
prize also). Therefore there exists J such that j/n ≤ f ( j) if and only if j ≤ J . This confirms the
optimal stategy as having the following form: reject the first J prizes out of hand, and accept the
subsequent prize which is the best of those viewed so far. If there is no such prize, we pick the last
prize presented.

Let5J be the probability of achieving the best prize by following the above strategy. Let Ak be
the event that you pick the kth prize, and B the event that the prize picked is the best. Then,

5J =
n∑

k=J+1

P(B | Ak )P(Ak ) =
n∑

k=J+1

(
k

n

)(
J

k − 1
·

1

k

)
=

J

n

n∑

k=J+1

1

k − 1
,

and we choose the integer J which maximizes this expresion.

When n is large, we have the asymptotic relation 5J ≃ (J/n) log(n/J ). The maximum of the
function hn(x) = (x/n) log(n/x) occurs at x = n/e, and we deduce that J ≃ n/e. [A version of this
problem was posed by Cayley (1875). Our solution is due to Lindley (1961).]
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[4.14.36]–[4.14.38] Solutions Continuous random variables

36. The joint density function of (X,Y, Z) is

f (x, y, z) =
1

(2πσ 2)3/2
exp
{
− 1

2 (r
2 − 2λx − 2µy − 2νz + λ2 + µ2 + ν2)

}

where r2 = x2 + y2 + z2. The conditional density of X,Y, Z given R = r is therefore proportional
to exp{λx +µy + νz}. Now choosing spherical polar coordinates with axis in the direction (λ, µ, ν),

we obtain a density function proportional to exp(a cos θ) sin θ , where a = r
√
λ2 + µ2 + ν2. The

constant is chosen in such a way that the total probability is unity.

37. (a) φ′(x) = −xφ(x), so H1(x) = x . Differentiate the equation for Hn to obtain Hn+1(x) =
x Hn(x) − H ′

n(x), and use induction to deduce that Hn is a polynomial of degree n as required.
Integrating by parts gives, when m ≤ n,

∫ ∞

−∞
Hm(x)Hn(x)φ(x) dx = (−1)n

∫ ∞

−∞
Hm(x)φ

(n)(x) dx

= (−1)n−1
∫ ∞

−∞
H ′

m(x)φ
(n−1)(x) dx

= · · · = (−1)n−m

∫ ∞

−∞
H (m)

m (x)φ(n−m)(x) dx,

and the claim follows by the fact that H
(m)
m (x) = m!.

(b) By Taylor’s theorem and the first part,

φ(x)

∞∑

n=0

tn

n!
Hn(x) =

∞∑

n=0

(−t)n

n!
φ(n)(x) = φ(x − t),

whence
∞∑

n=0

tn

n!
Hn(x) = exp

{
− 1

2 (x − t)2 + 1
2 x2

}
= exp(xt − 1

2 t2).

38. The polynomials of Problem (4.14.37) are orthogonal, and there are unique expansions (subject
to mild conditions) of the form u(x) =

∑∞
r=0 ar Hr (x) and v(x) =

∑∞
r=0 br Hr (x). Without loss of

generality, we may assume that E(U) = E(V ) = 0, whence, by Problem (4.14.37a), a0 = b0 = 0.
By (4.14.37a) again,

var(U) = E(u(X)2) =
∞∑

r=1

a2
r r !, var(V ) =

∞∑

r=1

b2
r r !.

By (4.14.37b) above,

E

( ∞∑

m=0

Hm(X)s
m

m!

∞∑

n=0

Hn(Y )t
n

n!

)
= E

(
exp{s X − 1

2 s2 + tY − 1
2 t2}

)
= estρ .

By considering the coefficient of sm tn ,

E
(

Hm(X)Hn(Y )
)

=
{
ρnn! if m = n,

0 if m 6= n,
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Problems Solutions [4.14.39]–[4.14.41]

and so

cov(U, V ) = E

( ∞∑

m=1

am Hm(X)

∞∑

n=1

bn Hn(Y )

)
=

∞∑

n=1

anbnρ
nn!,

|ρ(U, V )| =
|ρ|
∣∣∑∞

n=1 anbnρ
n−1n!

∣∣
√∑∞

n=1 a2
nn!

∑∞
n=1 b2

nn!
≤ |ρ|

∑∞
n=1 |anbn |n!√∑∞

n=1 a2
nn!

∑∞
n=1 b2

nn!
≤ |ρ|,

where we have used the Cauchy–Schwarz inequality at the last stage.

39. (a) Let Yr = X(r) − X(r−1) with the convention that X(0) = 0 and X(n+1) = 1. By Problem
(4.14.21) and a change of variables, we may see that Y1,Y2, . . . ,Yn+1 have the distribution of a point
chosen uniformly at random in the simplex of non-negative vectors y = (y1, y2, . . . , yn+1) with sum
1. [This may also be derived using a Poisson process representation and Theorem (6.12.7).] Conse-
quently, the Yj are identically distributed, and their joint distribution is invariant under permutations

of the indices of the Yj . Now
∑n+1

r=1 Yr = 1 and, by taking expectations, (n + 1)E(Y1) = 1, whence
E(X(r)) = rE(Y1) = r/(n + 1).

(b) We have that

E(Y 2
1 ) =

∫ 1

0
x2n(1 − x)n−1 dx =

2

(n + 1)(n + 2)
,

1 = E

[(n+1∑

r=1

Yr

)2]
= (n + 1)E(Y 2

1 )+ n(n + 1)E(Y1Y2),

implying that

E(Y1Y2) =
1

(n + 1)(n + 2)
,

and also

E(X(r)X(s)) = rE(Y 2
1 )+ r(s − 1)E(Y1Y2) =

r(s + 1)

(n + 1)(n + 2)
.

The required covariance follows.

40. (a) By paragraph (4.4.6), X2 is Ŵ( 1
2 ,

1
2 ) and Y 2 + Z2 is Ŵ( 1

2 , 1). Now use the results of Exercise
(4.7.14).

(b) Since the distribution of X2/R2 is independent of the value of R2 = X2 + Y 2 + Z2, it is valid
also if the three points are picked independently and uniformly within the sphere.

41. (a) By symmetry, φ(x) = φ(−x) and 8(x) = 1 − 8(−x). Therefore, g(x) = φ(x) +
φ(x)

(
8(λx) − 8(−λx)

)
. The second term is an odd function since 8(λx) − 8(−λx) is odd,

and it therefore integrates to 0 over R. Since g ≥ 0, g is a density function.

Both |X | and |Y | have density function 2φ(x) for x > 0. The joint density of X , |Y |, when

independent, is 2φ(x)φ(y), for x ∈ R, y ∈ (0,∞). Set u = (x + λ|y|)/
√

1 + λ2, v = |y|, whose

inverse has Jacobian J =
√

1 + λ2, to obtain

fU,V (u, v) =
2
√

1 + λ2

2π
exp

{
− 1

2

(
u
√

1 + λ2 − λv
)2 − 1

2v
2
}
, u ∈ R, v ∈ (0,∞).

Integrate out v, and make a change of variables, to obtain fU (u) = 2φ(u)8(λu) = g(u).

(b) Part (i) is as above. Alternatively, since X1 and λX2 are independent and symmetric,

1
2 = P(X1 < λX2) =

∫ ∞

−∞
F1(λy) f2(y) dy =

∫ ∞

−∞
1
2 g2(y) dy,
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[4.14.42]–[4.14.46] Solutions Continuous random variables

wth a similar argument for g1. Finally,

P(X2 < z | X1 < λX2) = 2P(X2 < z, X1 < λX2)

= 2

∫ z

−∞
F1(λy) f2(y) dy =

∫ z

−∞
g2(y) dy.

42. The required probability equals

P
(
{X3 − 1

2 (X1 + X2)}2 + {Y3 − 1
2 (Y1 + Y2)}2 ≤ 1

4 (X1 − X2)
2 + 1

4 (Y1 − Y2)
2
)

= P(U2
1 + U2

2 ≤ V 2
1 + V 2

2 )

where U1,U2 are N(0, 3
2 ), V1, V2 are N(0, 1

2 ), and U1,U2, V1, V2 are independent. The answer is
therefore

p = P
(

3
2 (N

2
1 + N2

2 ) ≤ 1
2 (N

2
3 + N2

4 )
)

where the Ni are independent N(0, 1)

= P(K1 ≤ 1
3 K2) where the Ki are independent chi-squared χ2(2)

= P

(
K1

K1 + K2
≤

1

4

)
= P(B ≤ 1

4 ) = 1
4

where we have used the result of Exercise (4.7.14), and B is a beta-distributed random variable with
parameters 1, 1.

43. The argument of Problem (4.14.42) leads to the expression

P
(
U2

1 + U2
2 + U2

3 ≤ V 2
1 + V 2

2 + V 2
3

)
= P(K1 ≤ 1

3 K2) where the Ki are χ2(3)

= P(B ≤ 1
4 ) =

1

3
−

√
3

4π
,

where B is beta-distributed with parameters 3
2 , 3

2 .

44. (a) Simply expand thus: E[(X − µ)3] = E[X3 − 3X2µ+ 3Xµ2 − µ3] where µ = E(X).

(b) var(Sn) = nσ 2 and E[(Sn − nµ)3] = nE[(X1 − µ)3] plus terms which equal zero because
E(X1 − µ) = 0.

(c) If Y is Bernoulli with parameter p, then skw(Y ) = (1 − 2p)/
√

pq , and the claim follows by (b).

(d) m1 = λ, m2 = λ+ λ2, m3 = λ3 + 3λ2 + λ, and the claim follows by (a).

(e) SinceλX isŴ(1, t), we may as well assume thatλ = 1. It is immediate that E(Xn ) = Ŵ(t+n)/Ŵ(t),
whence

skw(X) =
t (t + 1)(t + 2)− 3t · t (t + 1)+ 2t3

t3/2
=

2
√

t
.

45. We find as above that kur(X) = (m4 − 4m3m1 + 6m2m2
1 − 3m4

1)/σ
4 where mk = E(Xk ).

(a) m4 = 3σ 4 for the N(0, σ 2) distribution, whence kur(X) = 3σ 4/σ 4.

(b) mr = r !/λr , and the result follows.

(c) In this case, m4 = λ4 + 6λ3 + 7λ2 + λ, m3 = λ3 + 3λ2 + λ, m2 = λ2 + λ, and m1 = λ.

(d) (var Sn)
2 = n2σ 4 and E[(Sn − nm1)

4] = nE[(X1 − m1)
4] + 3n(n − 1)σ 4.

46. We have as n → ∞ that

P(X(n) ≤ x + log n) = {1 − e−(x+log n)}n =
(

1 −
e−x

n

)n

→ e−e−x
, −∞ < x < ∞.
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Problems Solutions [4.14.47]–[4.14.50]

Write Yn = X(n)− log n. By Lemma (4.3.4) and a non-rigorous interchange of a limit and an integral
sign,

E(Yn) = E(Y +
n )− E(Y −

n ) =
∫ ∞

0
P(Yn > x) dx −

∫ ∞

0
P(Yn < −x) dx

→
∫ ∞

0
{1 − e−e−x

− e−ex
} dx .

On the other hand, by the lack-of-memory property, E(X(1)) = n−1, E(X(2)) = n−1 + (n − 1)−1,
and so on, whence

E(Yn) = E(X(n) − log n) =
1

n
+

1

n − 1
+ · · · + 1 − log n → γ.

47. By the argument presented in Section 4.11, conditional on acceptance, X has density function
fS . You might use this method when fS is itself particularly tiresome or expensive to calculate. If
a(x) and b(x) are easy to calculate and are close to fS , much computational effort may be saved.

48. M = max{U1,U2, . . . ,UY } satisfies

P(M ≤ t) = E(tY ) =
et − 1

e − 1
.

Thus,

P(Z ≥ z) = P(X ≥ ⌊z⌋ + 2)+ P
(

X = ⌊z⌋ + 1, Y ≤ ⌊z⌋ + 1 − z
)

=
(e − 1)e−⌊z⌋−2

1 − e−1
+ (e − 1)e−⌊z⌋−1 ·

e⌊z⌋+1−z − 1

e − 1
= e−z .

49. (a) Y has density function e−y for y > 0, and X has density function fX (x) = αe−αx for x > 0.

Now Y ≥ 1
2 (X − α)2 if and only if

Vαe−αX e
1
2α

2

α

√
2

π
≤
√

2

π
e
− 1

2
X2
,

which is to say that aV fX (X) ≤ f (X), where a = α−1e
1
2
α2√

2/π . Recalling the argument of
Example (4.11.5), we conclude that, conditional on this event occurring, X has density function f .

(b) The number of rejections is geometrically distributed with mean a−1, so the optimal value of α is

that which minimizes αe
− 1

2α
2√
π/2, that is, α = 1.

(c) Setting

Z =
{

+X with probability 1
2

−X with probability 1
2

}
conditional on Y > 1

2 (X − α)2,

we obtain a random variable Z with the N(0, 1) distribution.

50. (a) E(X) =
∫ 1

0

√
1 − u2 du = π/4.

(b) E(Y ) =
2

π

∫ 1
2π

0
sin θ dθ = 2/π .
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[4.14.51]–[4.14.53] Solutions Continuous random variables

51. You are asked to calculate the mean distance of a randomly chosen pebble from the nearest
collection point. Running through the cases, where we suppose the circle has radius a and we write
P for the position of the pebble,

E|OP| =
1

πa2

∫ 2π

0

∫ a

0
r2 dr dθ =

2a

3
.(i)

E|AP| =
2

πa2

∫ 1
2π

0

∫ 2a cos θ

0
r2 dr dθ =

32a

9π
.(ii)

E(|AP| ∧ |BP|) =
4

πa2

[∫ 1
4π

0

∫ a sec θ

0
r2 dr dθ +

∫ 1
2π

1
4
π

∫ 2a cos θ

0
r2 dr dθ

]
(iii)

=
4a

3π

{
16

3
−

17

6

√
2 +

1

2
log(1 +

√
2)

}
≃

2a

3
× 1.13.

E(|AP| ∧ |BP| ∧ |CP|) =
6

πa2

{∫ 1
3
π

0

∫ x

0
r2 dr dθ +

∫ 1
2
π

1
3
π

∫ 2a cos θ

0
r2 dr dθ

}
(iv)

where x = a sin( 1
3π) cosec( 2

3π − θ)

=
2a

π

{∫ 1
3π

0

1

8
3
√

3 cosec3
(π

3
+ θ

)
dθ +

∫ 1
2π

1
3
π

8 cos3 θ dθ

}

=
2a

π

{
16

3
−

11

4

√
3 +

3
√

3

16
log

3

2

}
≃

2a

3
× 0.67.

52. By Problem (4.14.4), the displacement of R relative to P is the sum of two independent Cauchy
random variables. By Exercise (4.8.2), this sum has also a Cauchy distribution, and inverting the
transformation shows that 2 is uniformly distributed.

53. We may assume without loss of generality that R has length 1. Note that 1 occurs if and only if
the sum of any two parts exceeds the length of the third part.

(a) If the breaks are at X , Y , where 0 < X < Y < 1, then 1 occurs if and only if 2Y > 1, and

2(Y − X) < 1 and 2X < 1. These inequalities are satisfied with probability 1
4 .

(b) The length X of the shorter piece has density function fX (x) = 2 for 0 ≤ x ≤ 1
2 . The other pieces

are of length (1 − X)Y and (1 − X)(1 − Y ), where Y is uniform on (0, 1). The event1 occurs if and

only if 2Y < 2XY + 1 and X + Y − XY > 1
2 , and this has probability

2

∫ 1
2

0

{
1

2(1 − x)
−

1 − 2x

2(1 − x)

}
dx = log(4/e).

(c) The three lengths are X , 1
2 (1 − X), 1

2 (1 − X), where X is uniform on (0, 1). The event 1 occurs

if and only if X < 1
2 .

(d) This triangle is obtuse if and only if

X/2

(1 − X)
>

1
√

2
,

which is to say that X >
√

2 − 1. Hence,

P(obtuse | 1) =
P
(√

2 − 1 < X < 1
2

)

P(X < 1
2 )

= 3 − 2
√

2.
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Problems Solutions [4.14.54]–[4.14.58]

54. The shorter piece has density function fX (x) = 2 for 0 ≤ x ≤ 1
2 . Hence,

P(R ≤ r) = P

(
X

1 − X
≤ r

)
=

2r

1 + r
,

with density function f R(r) = 2/(1 − r)2 for 0 ≤ r ≤ 1. Therefore,

E(R) =
∫ 1

0
P(R > r) dr =

∫ 1

0

1 − r

1 + r
dr = 2 log 2 − 1,

E(R2) =
∫ 1

0
2rP(R > r) dr =

∫ 1

0

2r(1 − r)

1 + r
dr = 3 − 4 log 2,

and var(R) = 2 − (2 log 2)2.

55. With an obvious notation,

E(R2) = E[(X1 − X2)
2] + E[(Y1 − Y2)

2] = 4E(X2
1)− 4{E(X1)}2 = 4 · 1

3 a2 − 4( 1
2 a)2 = 1

3 a2.

By a natural re-scaling, we may assume that a = 1. Now, X1 − X2 and Y1 − Y2 have the

same triangular density symmetric on (−1, 1), whence (X1 − X2)
2 and (Y1 − Y2)

2 have distribution

function F(z) = 2
√

z − z and density function fZ (z) = z
− 1

2 − 1, for 0 ≤ z ≤ 1. Therefore R2 has
the density f given by

f (r) =





∫ r

0

(
1

√
z

− 1

)(
1

√
r − z

− 1

)
dz if 0 ≤ r ≤ 1,

∫ 1

r−1

(
1

√
z

− 1

)(
1

√
r − z

− 1

)
dz if 1 ≤ r ≤ 2.

The claim follows since

∫ b

a

1
√

z

1
√

r − z
dz = 2

(
sin−1

√
b

r
− sin−1

√
a

r

)
for 0 ≤ a ≤ b ≤ 1.

56. We use an argument similar to that used for Buffon’s needle. Dropping the paper at random
amounts to dropping the lattice at random on the paper. The mean number of points of the lattice in a
small element of area d A is d A. By the additivity of expectations, the mean number of points on the
paper is A. There must therefore exist a position for the paper in which it covers at least ⌈A⌉ points.

57. Consider a small element of surface d S. Positioning the rock at random amounts to shining light
at this element from a randomly chosen direction. On averaging over all possible directions, we see
that the mean area of the shadow cast by d S is proportional to the area of d S. We now integrate over
the surface of the rock, and use the additivity of expectation, to deduce that the area A of the random
shadow satisfies E(A) = cS for some constant c which is independent of the shape of the rock. By

considering the special case of the sphere, we find c = 1
4 . It follows that at least one orientation of

the rock gives a shadow of area at least 1
4 S.

58. (a) We have from Problem (4.14.11b) that Yr = Xr/(X1 + · · · + Xr ) is independent of X1 +
· · · + Xr , and therefore of the variables Xr+1, Xr+2, · · · , Xk+1, X1 + · · · + Xk+1. Therefore Yr is
independent of {Yr+s : s ≥ 1}, and the claim follows.
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[4.14.59]–[4.14.60] Solutions Continuous random variables

(b) Let S = X1 + · · · + Xk+1. The inverse transformation x1 = z1s, x2 = z2s, . . . , xk = zks,
xk+1 = s − z1s − z2s − · · · − zk s has Jacobian

J =

∣∣∣∣∣∣∣∣∣∣

s 0 0 · · · z1
0 s 0 · · · z2
...

...
...

. . .
...

0 0 0 · · · zk

−s −s −s · · · 1 − z1 − · · · − zk

∣∣∣∣∣∣∣∣∣∣

= sk .

The joint density function of X1, X2, . . . , Xk , S is therefore (with σ =
∑k+1

r=1 βr ),





k∏

r=1

λβr (zr s)βr −1e−λzr s

Ŵ(βr )



 ·

λβk+1 {s(1 − z1 − · · · − zk)}βk+1−1e−λs(1−z1−···−zk )

Ŵ(βk+1)

= f (λ,β, s)

( k∏

r=1

z
βr −1
r

)
(1 − z1 − · · · − zk)

βk+1−1,

where f is a function of the given variables. The result follows by integrating over s.

59. Let C = (crs) be an orthogonal n × n matrix with cni = 1/
√

n for 1 ≤ i ≤ n. Let Yir =∑n
s=1 X is crs , and note that the vectors Yr = (Y1r ,Y2r , . . . ,Ynr ), 1 ≤ r ≤ n, are multivariate

normal. Clearly EYir = 0, and

E(Yir Yj s) =
∑

t,u

crt csuE(X it X j u) =
∑

t,u

crt csuδtuvi j =
∑

t

crt cstvi j = δrsvi j ,

where δtu is the Kronecker delta, since C is orthogonal. It follows that the set of vectors Yr has the
same joint distribution as the set of Xr . Since C is orthogonal, X ir =

∑n
s=1 csr Yis , and therefore

Si j =
∑

r,s,t

csr ctr Yis Yj t −
1

n

∑

r

X ir

∑

r

X j r =
∑

s,t

δstYis Yj t −
1

√
n

∑

r

X ir
1

√
n

∑

r

X j r

=
∑

s

Yis Yj s − Yin Yj n =
n−1∑

s=1

Yis Yj s .

This has the same distribution as Ti j because the Yr and the Xr are identically distributed.

60. We sketch this. Let E|PQR| = m(a), and use Crofton’s method. A point randomly dropped in
S(a + da) lies in S(a) with probability

(
a

a + da

)2

= 1 −
2da

a
+ o(da).

Hence
dm

da
= −

6m

a
+

6mb

a
,

where mb(a) is the conditional mean of |PQR| given that P is constrained to lie on the boundary of
S(a). Let b(x) be the conditional mean of |PQR| given that P lies a distance x down one vertical
edge.
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Problems Solutions [4.14.61]–[4.14.63]

x

P

R1
T1

T2

R2

By conditioning on whether Q and R lie above or beneath P we find, in an obvious notation, that

b(x) =
( x

a

)2
m R1

+
(

a − x

a

)2

m R2
+

2x(a − x)

a2
m R1,R2

.

By Exercise (4.13.6) (see also Exercise (4.13.7)), m R1,R2
= 1

2 (
1
2 a)( 1

2 a) = 1
8 a2. In order to find

m R1
, we condition on whether Q and R lie in the triangles T1 or T2, and use an obvious notation.

Recalling Example (4.13.6), we have that mT1
= mT2

= 4
27 · 1

2 ax . Next, arguing as we did in
that example,

mT1,T2
= 1

2 · 4
9

{
ax − 1

4 ax − 1
4 ax − 1

8 ax
}
.

Hence, by conditional expectation,

m R1
= 1

4 · 4
27 · 1

2 ax + 1
4 · 4

27 · 1
2 ax + 1

2 · 4
9 · 3

8 ax = 13
108 ax .

We replace x by a − x to find m R2
, whence in total

b(x) =
( x

a

)2 13ax

108
+
(

a − x

a

)2 13a(a − x)

108
+

2x(a − x)

a2
·

a2

8
=

13

108
a2 −

12ax

108
+

12x2

108
.

Since the height of P is uniformly distributed on [0, a], we have that

mb(a) =
1

a

∫ a

0
b(x) dx =

11a2

108
.

We substitute this into the differential equation to obtain the solution m(a) = 11
144 a2.

Turning to the last part, by making an affine transformation, we may without loss of generality
take the parallelogram to be a square. The points form a convex quadrilateral when no point lies

inside the triangle formed by the other three, and the required probability is therefore 1−4m(a)/a2 =
1 − 44

144 = 25
36 .

61. Choose four points P, Q, R, S uniformly at random inside C , and let T be the event that their
convex hull is a triangle. By considering which of the four points lies in the interior of the convex
hull of the other three, we see that P(T ) = 4P(S ∈ PQR) = 4E|PQR|/|C |. Having chosen P, Q, R,
the four points form a triangle if and only if S lies in either the triangle PQR or the shaded region A.
Thus, P(T ) = {|A| + E|PQR|}/|C |, and the claim follows on solving for P(T ).

62. Since X has zero means and covariance matrix I, we have that E(Z) = µ + E(X)L = µ, and the
covariance matrix of Z is E(L′X′XL) = L′IL = V.

63. Let D = (di j ) = AB − C. The claim is trivial if D = 0, and so we assume the converse. Choose

i , k such that dik 6= 0, and write yi =
∑n

j=1 di j xj = S + dik xk . Now P(yi = 0) = E
(
P(xk =

−S/dik | S)
)
. For any given S, there is probability at least 1

2 that xk 6= −S/dik , and the second claim
follows.
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[4.14.64]–[4.14.64] Solutions Continuous random variables

Let x1, x2, . . . , xm be independent random vectors with the given distribution. If D 6= 0, the

probability that Dxs = 0 for 1 ≤ s ≤ m is at most ( 1
2 )

m , which may be made as small as required by
choosing m sufficiently large.

64. (a) Let Ni be the number of packets opened until the appearance of the first object of type i .

Then Ni has a geometric distribution with parameter 1/n, so that ENi = 1 and E(N2
i ) = 2n2 − n.

Furthermore, for i 6= j , min{Ni , Nj } is geometric with parameter 2/n, so

(*) E
(
min{Ni , Nj }

)
=

n

2
, E

(
min{Ni , Nj }2) = 2

(n

2

)2
−

n

2
,

and more generally. By the result of Exercise (4.3.6),

E(Tn) =
n∑

i=1

E(Ni )−
∑

i< j

E
(
min{Ni , Nj }

)
+ · · ·

=
(

n

1

)
· n −

(
n

2

)
·

n

2
+
(

n

3

)
·

n

3
− · · · + (−1)n+1

(
n

n

)
n

n

= n

n∑

i=1

(−1)i+1

i

(
n

i

)
.

Another way of regarding Tn is as
∑n

i=1 Ri , where Ri is the number of packets sampled to
obtain the i th new type after previously obtaining the (i − 1)th new type. The Ri are independent and
geometric, and Ri has mean n/(n − i + 1). Therefore,

E(Tn) =
n∑

i=1

n

n − i + 1
= n

n∑

r=1

1

r
.

(b) We have that

n∑

r=1

(−1)r+1

r

(
n

r

)
=

n∑

r=1

(−1)r+1

(
n

r

)∫ 1

0
xr−1 dx = −

∫ 1

0

1

x

{
(1 − x)n − 1

}
dx .

Denote this sum as Sn, and note that

Sn − Sn−1 =
∫ 1

0
(1 − x)n−1 dx =

1

n
,

and S1 = 1. The identity follows.

(c) We have T 2
n = maxi {N2

i }. By repeating the above calculations,

E(T 2
n ) =

(
n

1

)
· (2n2 − n)−

(
n

2

)(
2
(n

2

)2
−

n

2

)
+ · · · + (−1)n+1

(
n

n

)(
2
(n

n

)2
−

n

n

)

= 2n3
n∑

r=1

(−1)r+1

r2

(
n

r

)
− n2

n∑

r=1

(−1)r+1

r

(
n

r

)
.

However,

E

{( n∑

r=1

Rr

)2
}

=
n∑

r=1

var(Rr )+ n2
( n∑

r=1

1

r

)2

=
n∑

r=1

n(n − r)

r2
+ n2

( n∑

r=1

1

r

)
.

312



Problems Solutions [4.14.65]–[4.14.66]

The result follows from the above.

65. Let α (respectively, β, γ ) be the event that A (respectively, B, C) is a vertex of the random
triangle T . By the remark preceding Example (4.13.6), this ratio of means is invariant under affine
transformations of the plane. By taking ABC to be equilateral, we have by symmetry that

E

(
|T |

|ABC|

)
= E

(
|T |

|ABC|

∣∣∣∣ δ
)
, δ = α, β, γ,

where |Z | denotes the area of Z .

Now take ABC to be a right-angle isosceles triangle with short sides of length 1, with A the
right-angled vertex, and condition on the event α. Consider the event E(x, y) = {X < x, Y < y},
where X (respectively, Y ) is the distance between A and the point of intersection of PQ with the line

AB (respectively, AC), and let D(x, y) be the subset of R4 generated by P = (u, v) and Q = (w, z)

(in the Cartesian plane with A as origin) on which the event E(x, y) occurs. Let T : (u, v, w, z) →
(u′, v′, w′, z′) be the linear transformation of R4 that takes D(x, y) to D(1, 1). Then, for some
constant c,

P(E(x, y)) = c

∫∫

D(x,y)
du dv dw dz = cx2y2

∫∫

D(1,1)
du′ dv′ dw′ dz′ = x2 y2P(E(1, 1)).

Now,

P(E(x, y) | α) = P
(

E(x, y)
∣∣ E(1, 1)

)
=

P(E(x, y))

P(E(1, 1))
= x2 y2, 0 < x, y,< 1.

Therefore,

E

(
|T |

|ABC|

∣∣∣∣ α
)

= E

(
XY/2

1/2

∣∣∣∣ α
)

= E(XY | α)

=
∫∫

(0,1)2
xy · 4xy dx dy =

4

9
,

and the result follows.

66. Let
d(u, v) = |u + v| − |u − v| = 2 min

{
|u|, |v|

}
sign(uv), u, v ∈ R.

By Lemma (4.3.4),

E|X + Y | − E|X − Y | = Ed(X,Y ) =
∫ ∞

0
J (t) dt,

where

J (t) = I
(
min

{
|X |, |Y |

}
sign(XY ) > t

)
.

We have d(X,Y ) = 0 when XY = 0. By considering the four disjoint events arising from the signs
of non-zero X and Y , we have

Ed(X,Y ) = 2E

∫ ∞

0

{
I (X > t, Y > t)+ I (X < −t, Y < −t)− I (X > t, Y < −t)

− I (X < −t, Y > t)
}

dt

= 2

∫ ∞

0

{
P(X > t)− P(X < −t)

}{
P(Y > t)− P(Y < −t)

}
dt

= 2

∫ ∞

0

{
P(X > t)− P(X < −t)

}2
dt ≥ 0.
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[4.14.67]–[4.14.69] Solutions Continuous random variables

Equality holds if and only F(t) = 1 − F(−t) for all > 0. Arguably, d(X,Y ) is a better measure
of departure from symmetry (for zero-mean distributions) than the ‘skewness’ of Problem (4.14.44),
which can be zero for asymmetric distributions.

67. We have that

P(X1 ≤ x) = P(U1 ≤ xn) = xn = P(U(n) ≤ x), x ∈ (0, 1),

in agreement with the density of the order statistics U(1),U(2), . . . ,U(n). See Problems (4.14.21, 23).
We proceed by observing the U(k) as k decreases, and the Xl as l increases. Conditional on Uj =
U(n) = u, the remaining variables U1,U2, . . . ,Uj−1,Uj+1, . . . ,Un are independent and uniformly

distributed on [0, u], whence U(n−1) has the conditional distribution function F(x) = (x/u)n−1,
0 ≤ x ≤ u. On the other hand, conditional on X1 = u, X2 has distribution function F . Therefore,
(X1, X2) has the same (unconditional distribution) as (U(n),U(n−1). The full claim follows similarly.

In the change-of-variables method, we set x1 = u
1/n
1 , and so on. The Jacobian of this transforma-

tion is the determinant of a triangular matrix, which turns out to be 1/n! after a calculation. Therefore,
the Jacobian of the inverse transformation is n!. It follows that the vector X has joint density function
n! on the set of increasing n-sequences from [0, 1].

68. With f the density function of X ,

V =
∫ ∞

a
(x − a) f (x) dx

=
∫ ∞

a

x − µ

σ
√

2π
exp

{
−
(x − µ)2

2σ 2

}
dx +

∫ ∞

a

µ− a

σ
√

2π
exp

{
−
(x − µ)2

2σ 2

}
dx,

and the formula for V follows after integration. Note that V = σφ(y)[1 − y M(y)], where M(y) is
Mills’s ratio of Exercise (4.4.8).

The asymptotic for V follows from the fact that 1 − y M(y) ∼ y−2 as y → ∞.

69. (a) This holds since

4
27 y3 − (y − x)x2 = 4

27 (y + 3x)(y − 3
2 x)2 ≥ 0, x, y ≥ 0.

(b) We have for 0 < x < y that, with y as given in the question,

P(X > x) = (y − x)g(x) ≤
4g(x)

9x2

∫ y

0
v2 dv.

Now, by the definition of y and the monotonicity of g,

g(x)

∫ y

0
v2 dv = g(x)

∫ x

0
v2 dv +

∫ y

x

(
g(x)− g(v)

)
v2 dv +

∫ y

x
g(v)v2 dv

≤
∫ x

0
g(v)v2 dv + y2

∫ y

x

(
g(x)− g(v)

)
dv +

∫ y

x
g(v)v2 dv

=
∫ y

0
g(v)v2 dv + y2

(
(y − x)g(x)−

∫ y

x
g(v) dv

)

=
∫ y

0
g(v)v2 dv + y2

∫ ∞

y
g(v) dv ≤ E(X2).

The definition of y is used at the last step.
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Problems Solutions [4.14.70]–[4.14.71]

(c) Let X have density function f with a unique mode at 0. The density function of Y = |X | is
g(y) = f (y)+ f (−y) for y ≥ 0, having a unique mode at 0. Apply part (b) to Y . [This proof is due
to H. Cramér.]

70. (a) Set

Gk(s) = E
(
s Ik+1+Ik+2+···+In

)
=

n∏

i=k+1

(qi + pi s),

and calculate G ′
k(0) = P(Ik+1 + · · · + In = 1).

(b) We have that

σk+1 − σk = (Rk+2 − qk+1 Rk+1)

n∏

k+2

qi

= (pk+1 Rk+2 − qk+1rk+1)

n∏

k+2

qi

{
> 0 if Rk+2 > 1,

< 0 if Rk+2 < 1,

since qk+1rk+1 = pk+1 and
∏

i qi > 0. The sequence Rk is strictly decreasing in k, whence σk has

a mode at s = max
{

1,max{k : Rk+1 ≥ 1}
}

. If Rs+1 = 1, there is a modal interval of length 2.

(c) The rule ‘stop at the first success (strictly) after time k’ succeeds if and only if Ik+1 +· · ·+ In = 1,
which occurs with probability σk . This is a maximum at k = τ , which is to say that we stop at time
τ or later, with τ as given. By the independence of the trials, this conclusion is optimal amongst the
class of rules of the form ‘stop at the first success after time T ’ for a stopping time T . The optimal
stopping rule is therefore as claimed.

(d) Let L = max{i : pi = 1}, so that rL = ∞ and τ ≥ L . If we continue beyond time τ , there
is strictly positive probability of failure, whereas if we stop at L , we succeed with probability one.
Therefore, the optimal strategy is to stop at time τ .

(e) This follows by the above.

(f) We adopt the language of Problem (4.14.35). Let Ii be the indicator function of the event that the
i th prize is the best prize so far. By symmetry, given Ii+1 = 1, the indicators I1, I2, . . . , Ii have the
same distribution as their unconditional distribution. Therefore, Ii+1 and the vector (I1, I2, . . . , Ii )

are independent for every i . It follows that the Ii are independent. We apply Bruss’s odds rule, with
pi = 1/ i and odds ratio rk = 1/(k − 1) for k ≥ 2, to find that the optimal stopping rule is to inspect
the first τ prizes and to take the next best thereafter, where τ is the greatest k such that

Rk =
1

k − 1
+

1

k
+ · · · +

1

n
≥ 1.

The success probability is στ = (τ − 1)Rτ /n. We have as n → ∞ that τ/n → e−1, Rτ ↓ 1, so that

στ → e−1.

71. Let Sr be the supremum of E(XT ) over all stopping strategies T that do not stop before examining
Xr , and let

Mr = max{Xr , Sr+1} = Sr+1 + (Xr − Sr+1)
+, 1 ≤ r ≤ n.

Then Sn+1 = 0, and Sr = E(Mr ) for 0 ≤ r ≤ n. Now, S0 ≥ S1 ≥ · · · ≥ Sn ≥ Sn+1 = 0, and hence

Mr ≤ S1 + (Xr − Sr+1)
+. Therefore,

max{Xr : 0 ≤ r ≤ n} ≤ max{Mr : 0 ≤ r ≤ n} ≤ S1 +
n∑

r=0

(Xr − Sr+1)
+,

so that

E
(
max{Xr : 0 ≤ r ≤ n}

)
≤ S1 +

n∑

r=0

(Sr − Sr+1) = S1 + S0 ≤ 2S0.
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[4.14.72]–[4.14.73] Solutions Continuous random variables

72. Identify the stick with the interval [0, s], and let B the largest position of n + 1 breaks. Then

B has density function f B(x) = (n + 1)xn/sn+1 for x ∈ (0, s), and pn+1(s, y) = 0 if B > s − y.
Conditional on B = x , the other n breaks are independent and uniformly distributed on (0, x).
Therefore,

pn+1(s, y) =
∫ s−y

0
pn(x, y) f B(x) dx .

(i) Note that p0(s, y) = I (y < s), and p1(s, y) = (s − 2y)+/s. The formula holds by induction on
n.

(ii) We have

ES1 =
1

sn

∫ s/(n+1)

0

{
(s − (n + 1)y)+

}n
dy =

s

(n + 1)2
=

s(Hn+1 − Hn)

n + 1
,

in the notation of part (iii).

(iii) Given S1 = s1, the remaining n lengths can be written as Sr = s1 + Tr , where T1 < T2 <

· · · < Tn are the order statistics of the lengths of fragments obtained by breaking a stick of length
L = s − (n + 1)s1 into n parts. Now,

EL = s − (n + 1)ES1 =
ns

n + 1
,

and so, by the argument so far,

ET1 =
1

n2
·

ns

n + 1
=

s

n(n + 1)
,

and

ES2 =
s

(n + 1)2
+

s

n(n + 1)
=

s(Hn+1 − Hn−1)

n + 1
.

The general result follows by iteration.

73. (a) Since f integrates to 1, we have c = 2 + α. The joint distribution function is

F(x, y) =
∫ x

u=1−y

∫ y

v=1−u
cuα dv du =

2 + α

1 + α
(y − 1)x1+α + x2+α +

(1 − y)2+α

1 + α
,

for x, y ∈ (0, 1).

(b) Such a triangle exists if and only if all of the following hold,

X + Y > 2 − X − Y, X + 2 − X − Y > Y, Y + 2 − X − Y > X,

and this is seen immediately to occur with probability 1.

(c) The angle 2 opposite Y satisfies, by the cosine rule,

cos2 =
X2 + (2 − X − Y )2 − Y 2

2X (2 − X − Y )
,

which is negative if and only if

Y > g(X) :=
X2 − 2X + 2

2 − X
.
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Problems Solutions [4.14.74]–[4.14.74]

Now, 1 − X ≤ g(X) ≤ 1, so

P(2 is obtuse) = P(Y > g(X)) =
∫ 1

x=0

∫ 1

y=g(x)
f (x, y) dy dx = c

∫ 1

0

x(1 − x)

2 − x
xα dx .

When α = 0, this equals 3 − 4 log 2.

74. (a) The rate at which you pass (or are passed by) vehicles with speed x is proportional to |x − v|,
the absolute difference of speeds. Thus, by so-called size-biasing, the density π of the speeds of such
vehicles satisfies

π(x) ∝ |x − v| f (x),

where the constant of proportionality is chosen such that π integrates to 1. The required expected
value is the mean of this distribution. Size-bias will be discussed later, and here is a preview. Imagine
the overtaking traffic as being distributed on the freeway behind your vehicle. In the next unit of time,
a vehicle travelling at speed x will pass you if and only if it is within distance x − v. Thus the rate at
which you are passed by vehicles at speed x is proportional to x − v. This is the size-biasing effect
that accounts for the factor |x − v| in π above.

(b) Letµ−a < v < µ < µ+b, and let f be symmetric aboutµ in its interval of support [µ−a, µ+a].
Then m(v)− µ = E

{
(X − µ)|X − v|

}
/E|X − v|, and

E
{
(X − µ)|X − v|

}
=
∫ v

µ−a
(x − µ)(v − x) f (x) dx +

∫ µ

v
(x − µ)(x − v) f (x) dx

+
∫ µ

µ−a
(µ− x)(2µ − x − v) f (x) dx

= 2

∫ v

µ−a
(µ− x)(µ− v) f (x) dx + 2

∫ µ

v
(µ− x)2 f (x) dx > 0,

since the integrands are positive. In summary, m(v)−µ is continuous and positive on [0, µ], it equals

0 at v = µ, and m(0) = E(X2)/E(X) ≥ E(X) > 0. Therefore, m(v) − µ is maximized at some
vmax ∈ [0, µ).

(c) By the same argument, m(v)− µ < 0 for v > µ.

(d) This is left to the reader.
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5

Generating functions and their applications

5.1 Solutions. Generating functions

1. (a) If |s| < (1 − p)−1,

G(s) =
∞∑

m=0

sm

(
n + m − 1

m

)
pn(1 − p)m =

{
p

1 − s(1 − p)

}n

.

Therefore the mean is G ′(1) = n(1 − p)/p. The variance is G ′′(1)+G ′(1)−G ′(1)2 = n(1 − p)/p2.

(b) If |s| < 1,

G(s) =
∞∑

m=1

sm

(
1

m
−

1

m + 1

)
= 1 +

(
1 − s

s

)
log(1 − s).

Therefore G ′(1) = ∞, and there exist no moments of order 1 or greater.

(c) If p < |s| < p−1,

G(s) =
∞∑

m=−∞
sm

(
1 − p

1 + p

)
p|m| =

1 − p

1 + p

{
1 +

sp

1 − sp
+

p/s

1 − (p/s)

}
.

The mean is G ′(1) = 0, and the variance is G ′′(1) = 2p(1 − p)−2 .

2. (i) Either hack it out, or use indicator functions IA thus:

T (s) =
∞∑

n=0

snP(X > n) = E

( ∞∑

n=0

sn I{n<X}

)
= E

(X−1∑

n=0

sn

)
= E

(
1 − s X

1 − s

)
=

1 − G(s)

1 − s
.

(ii) It follows that

T (1) = lim
s↑1

{
1 − G(s)

1 − s

}
= lim

s↑1

G ′(s)

1
= G ′(1) = E(X)

by L’Hôpital’s rule. Also,

T ′(1) = lim
s↑1

{
−(1 − s)G ′(s)+ 1 − G(s)

(1 − s)2

}

= 1
2 G ′′(1) = 1

2

{
var(X)− G ′(1)+ G ′(1)2

}



Generating functions Solutions [5.1.3]–[5.1.5]

whence the claim is immediate.

3. (i) We have that G X,Y (s, t) = E(s X tY ), whence G X,Y (s, 1) = G X (s) and G X,Y (1, t) = GY (t).

(ii) If E|XY | < ∞ then

E(XY ) = E
(

XY s X−1tY−1
) ∣∣∣

s=t=1
=

∂2

∂s ∂t
G X,Y (s, t)

∣∣∣∣∣
s=t=1

.

4. We write G(s, t) for the joint generating function.

G(s, t) =
∞∑

j=0

j∑

k=0

s j tk(1 − α)(β − α)α jβk− j−1(a)

=
∞∑

j=0

(
αs

β

) j (1 − α)(β − α)

β
·

1 − (βt) j+1

1 − βt
if β|t | < 1

=
(1 − α)(β − α)

(1 − βt)β

{
1

1 − (αs/β)
−

βt

1 − αst

}
if
α

β
|s| < 1

=
(1 − α)(β − α)

(1 − αst)(β − αs)

(the condition α|st | < 1 is implied by the other two conditions on s and t). The marginal generating
functions are

G(s, 1) =
(1 − α)(β − α)

(1 − αs)(β − αs)
, G(1, t) =

1 − α

1 − αt
,

and the covariance is easily calculated by the conclusion of Exercise (5.1.3) as α(1 − α)−2.

(b) Arguing similarly, we obtain G(s, t) = (e − 1)/{e(1 − tes−2)} if |t |es−2 < 1, with marginals

G(s, 1) =
1 − e−1

1 − es−2
, G(1, t) =

1 − e−1

1 − te−1
,

and covariance e(e − 1)−2.

(c) Once again,

G(s, t) =
log
{

1 − tp(1 − p + sp)
}

log(1 − p)
if |tp(1 − p + sp)| < 1.

The marginal generating functions are

G(s, 1) =
log
{

1 − p + p2(1 − s)
}

log(1 − p)
, G(1, t) =

log(1 − tp)

log(1 − p)
,

and the covariance is

−
p2{p + log(1 − p)}
(1 − p)2{log(1 − p)}2

.

5. (i) We have that

E(x H yT ) =
n∑

k=0

xk yn−k

(
n

k

)
pk (1 − p)n−k = (px + qy)n
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[5.1.6]–[5.1.10] Solutions Generating functions and their applications

where p + q = 1.

(ii) More generally, if each toss results in one of t possible outcomes, the i th of which has probability
pi , then the corresponding quantity is a function of t variables, x1, x2, . . . , xt , and is found to be
(p1x1 + p2x2 + · · · + pt xt )

n .

6. We have that

E(s X ) = E{E(s X | U)} =
∫ 1

0
{1 + u(s − 1)}n du =

1

n + 1
·

1 − sn+1

1 − s
,

the probability generating function of the uniform distribution. See also Exercise (4.6.5).

Here is a less direct but curious solution. Let U, V1, V2, . . . , Vn be independent random vari-
ables with the uniform distribution on [0, 1]. Conditional on U , the variables Ii = I (Vi ≤ U) are
independent Bernoulli variables with parameter U , with sum S which has the bin(n,U) distribution.
Now,

S =
n∑

i=1

I (V(i) ≤ u),

where the V(i) are the order statistics of the Vi . Set V(0) = 0 and V(n+1) = 1. Then S = k if and only
if V(k) ≤ U < V(k+1), which has probability E(V(k+1) − V(k)) = 1/(n + 1).

7. We have that

G X,Y,Z (x, y, z) = G(x, y, z, 1) = 1
8 (xyz + xy + yz + zx + x + y + z + 1)

= 1
2 (x + 1) 1

2 (y + 1) 1
2 (z + 1) = G X (x)GY (y)G Z (z),

whence X,Y, Z are independent. The same conclusion holds for any other set of exactly three random
variables. However, G(x, y, z,w) 6= G X (x)GY (y)G Z (z)GW (w).

8. (a) We have by differentiating that E(X2n) = 0, whence P(X = 0) = 1. This is not a moment
generating function.

(b) This is a moment generating function if and only if
∑

r pr = 1, in which case it is that of a random
variable X with P(X = ar ) = pr .

9. The coefficients of sn in both combinations of G1, G2 are non-negative and sum to 1. They are
therefore probability generating functions, as is G(αs)/G(α) for the same reasons.

10. Since Z is discrete and M continuous, one needs to be careful over the interpretation of certain
notation. Given Z = z, M has distribution function P(M ≤ m) = F(m)z and density function

fM |Z (m | z) = zF ′(m)F(m)z−1.

Therefore,

fM (m) =
∞∑

z=1

zF ′(m)F(m)z−1P(Z = z) = F ′(m)G ′(F(m)).

Now,

E(Z | M = m) =
∞∑

z=1

z
P(Z = z) fM |Z (m | z)

fM (m)

=
1

F ′(m)G ′(F(m))

∞∑

z=1

z2 F ′(m)F(m)z−1P(Z = z)

=
F(m)G ′′(F(m))+ G ′(F(m))

G ′(F(m))
.
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Some applications Solutions [5.1.11]–[5.2.1]

11. We have

E(sY ) =
∞∑

x=1

pqx−1sx∧n =
n∑

x=1

pqx−1sx +
∞∑

x=n+1

pqx−1sn =
ps + (1 − s)(qs)n

1 − qs
,

where a ∧ b = min{a, b}. Find the mean by differentiating at s = 1.

12. (a) We have that π =
∑

r ur P(X i = r) = G X (u).

(b) The required probability is
∑

n π
nP(N = n) = G N (π). On the other hand, it is also GT (u)

where T is the total number of balls. Therefore, GT (u) = G N (G X (u)).

(c) By differentiating at u = 1,

E(T ) = G ′
T (1) = G ′

N (1)G
′
X (1) = E(N)E(X),

var(T ) = G ′′
T (1)+ G ′

T (1)− G ′
T (1)

2 = var(N)E(X)2 + E(N) var(X),

after a calculation. This is perhaps a little less elegant than using conditional expectation.

(d) The indicator function that a ball is unmarked has probability generating function G B(s) =
1 − u + us. By differentiating GU (s) = G N (G X (G B(s))), we find that

E(U) = uE(N)E(X),

var(U) = u2 var(N)E(X)2 + E(N)
(
u2 var(X)+ u(1 − u)EX

)
.

5.2 Solutions. Some applications

1. Let G(s) = E(s X ) and G S(s) =
∑n

j=0 s j Sj . By the result of Exercise (5.1.2),

T (s) =
∞∑

m=0

smP(X ≥ m) = 1 + s

∞∑

k=0

skP(X > k) = 1 +
s(1 − G(s))

1 − s
=

1 − sG(s)

1 − s
.

Now,

G S(s) =
n∑

m=0

smE

(
X

m

)
= E

{
n∑

m=0

sm

(
X

m

)}
= E{(1 + s)X } = G(1 + s)

so that
T (s)− T (0)

s
=

G S(s − 1)− G S(0)

s − 1

where we have used the fact that T (0) = G S(0) = 1. Therefore

n∑

i=1

s i−1P(X ≥ i ) =
n∑

j=1

(s − 1) j−1Sj .

Equating coefficients of s i−1, we obtain as required that

P(X ≥ i ) =
n∑

j=i

Sj

(
j − 1

i − 1

)
(−1) j−i , 1 ≤ i ≤ n.

Similarly,
G S(s)− G S(0)

s
=

T (1 + s)− T (0)

1 + s
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[5.2.2]–[5.2.4] Solutions Generating functions and their applications

whence the second formula follows.

2. Let Ai be the event that the i th person is chosen by nobody, and let X be the number of events
A1, A2, . . . , An which occur. Clearly

P(Ai1
∩ Ai2

∩ · · · ∩ Aij
) =

(
n − j

n − 1

) j (n − j − 1

n − 1

)n− j

if i1 6= i2 6= · · · 6= i j , since this event requires each of i1, . . . , i j to choose from a set of n − j people,
and each of the others to choose from a set of size n − j − 1. Using Waring’s Theorem (Problem
(1.8.13) or equation (5.2.14)),

P(X = k) =
n∑

j=k

(−1) j−k

(
j

k

)
Sj

where

Sj =
(

n

j

)(
n − j

n − 1

) j (n − j − 1

n − 1

)n− j

.

Using the result of Exercise (5.2.1),

P(X ≥ k) =
n∑

j=k

(−1) j−k

(
j − 1

k − 1

)
Sj , 1 ≤ k ≤ n,

while P(X ≥ 0) = 1.

3. (a)

E(x X+Y ) = E
{

E(x X+Y | Y )
}

= E
{

xY eY (x−1)} = E
{
(xex−1)Y

}
= exp

{
µ(xex−1 − 1)

}
.

(b) The probability generating function of X1 is

G(s) =
∞∑

k=1

{s(1 − p)}k

k log(1/p)
=

log{1 − s(1 − p)}
log p

.

Using the ‘compounding theorem’ (5.1.25),

GY (s) = G N (G(s)) = eµ(G(s)−1) =
(

p

1 − s(1 − p)

)−µ/ log p

.

4. Clearly,

E

(
1

1 + X

)
= E

(∫ 1

0
t X dt

)
=
∫ 1

0
E(t X ) dt =

∫ 1

0
(q + pt)n dt =

1 − qn+1

p(n + 1)

where q = 1 − p. In the limit,

E

(
1

1 + X

)
=

1 − (1 − λ/n)n+1

λ(n + 1)/n
+ o(1) →

1 − e−λ

λ
,

the corresponding moment of the Poisson distribution with parameter λ.
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Some applications Solutions [5.2.5]–[5.2.10]

5. Conditioning on the outcome of the first toss, we obtain hn = qhn−1 + p(1 − hn−1) for n ≥ 1,
where q = 1 − p and h0 = 1. Multiply throughout by sn and sum to find that H(s) =

∑∞
n=0 snhn

satisfies H(s)− 1 = (q − p)s H(s)+ ps/(1 − s), and so

H(s) =
1 − qs

(1 − s){1 − (q − p)s}
=

1

2

{
1

1 − s
+

1

1 − (q − p)s

}
.

6. By considering the event that HTH does not appear in n tosses and then appears in the next three,

we find that P(X > n)p2q = P(X = n + 1)pq + P(X = n + 3). We multiply by sn+3 and sum over
n to obtain

1 − E(s X )

1 − s
p2qs3 = pqs2E(s X )+ E(s X ),

which may be solved as required. Let Z be the time at which THT first appears, so Y = min{X, Z}.
By a similar argument,

P(Y > n)p2q = P(X = Y = n + 1)pq + P(X = Y = n + 3)+ P(Z = Y = n + 2)p,

P(Y > n)q2 p = P(Z = Y = n + 1)pq + P(Z = Y = n + 3)+ P(X = Y = n + 2)q.

We multipy by sn+1, sum over n, and use the fact that P(Y = n) = P(X = Y = n)+ P(Z = Y = n).

7. Suppose there are n + 1 matching letter/envelope pairs, numbered accordingly. Imagine the
envelopes lined up in order, and the letters dropped at random onto these envelopes. Assume that
exactly j + 1 letters land on their correct envelopes. The removal of any one of these j + 1 letters,
together with the corresponding envelope, results after re-ordering in a sequence of length n in which
exactly j letters are correctly placed. It is not difficult to see that, for each resulting sequence of length
n, there are exactly j + 1 originating sequences of length n + 1. The first result follows. We multiply

by s j and sum over j to obtain the second. It is evident that G1(s) = s. Either use induction, or
integrate repeatedly, to find that Gn(s) =

∑n
r=0(s − 1)r/r !.

8. We have for |s| < µ+ 1 that

E(s X ) = E{E(s X | 3)} = E(e3(s−1)) =
µ

µ− (s − 1)
=

µ

µ+ 1

∞∑

k=0

(
s

µ+ 1

)k

.

9. Since the waiting times for new objects are geometric and independent,

E(sT ) = s

(
3s

4 − s

)(
s

2 − s

)(
s

4 − 3s

)
.

Using partial fractions, the coefficient of sk is 3
32

{
1
2 (

1
4 )

k−4 − 4( 1
2 )

k−4 + 9
2 (

3
4 )

k−4
}

, for k ≥ 4.

10. Given B = b, R has the bin(b, r) distribution, so that

G R(s) = E(s R) = E
[
(1 − r + rs)B

]
= (1 − pr + prs)m,

whence R has the bin(m, pr) distribution. Then A = R + N , so that

G A(s) = E
[
s R(1 − α + αs)m−R

]
= (1 − α + αs)m

(
1 − pr +

prs

1 − α + αs

)m

=
{
(1 − pr)(1 − α)+ (α + (1 − α)pr)s

}m
,

so that A has the bin(m, α + (1 − α)pr) distribution.
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[5.2.11]–[5.3.1] Solutions Generating functions and their applications

The above operation maps the bin(m, p0) distribution to the bin(m, p1) distribution where p1 =
α + (1 − α)r p0. Iteration of the process gives a sequence (pn) satisfying pn → p∞ where p∞ =
α + (1 − α)r p∞, that is, p∞ = α/[1 − r(1 − α)] ∈ (0, 1).

11. The solution of Exercise (5.2.7) gives the probability generating function of the number Xn of
matches as Gn(s) =

∑n
r=0(s−1)r /r !. If each match is discarded with probability 1−t , the remaining

number Yn has probability generating function Gn(1 − t + ts), and the answer follows. The second
part holds by the exponential power series.

12. The proof is by induction on the number n of values taken by X with strictly positive probability.
Suppose x1 < x2 < · · · < xn , and the random variable X is such that P(X = xi ) = pi > 0 for
i = 1, 2, . . . , n and

∑
i pi = 1. If n = 1, we take Y = x1. Assume the claim holds for n ≤ N and

let n = N + 1. Let Z be a a weighted sum of independent Bernoulli variables B2, . . . , BN+1 with
mass function

P(Z = xk) =
pk

1 − p1
, k = 2, 3, . . . , N + 1.

Let B1 be Bernoulli with parameter 1 − p1, independent of Z , and let

Y =
{

x1 if B1 = 0,

Z if B1 = 1.

13. (a) We have B(z) = (1+z+z2+· · ·+zm)A(z), and the coefficient of zm is am +am−1 +· · ·+a0.

(b) By inspecting (5.2.14), the question is equivalent to the assertion that, for j ≥ i ,

n∑

r= j

(−1)r− j

(
r

r − i

)
Sr ≥ 0.

On substituting from (5.2.13), this is equivalent to

n∑

r= j

(−1)r− j

(
r

r − i

)
n∑

s=r

(
s

r

)
P(X = s) ≥ 0.

The coefficient of P(X = s) is

s∑

r= j

(−1)r− j

(
r

r − i

)(
s

r

)
=
(

s

i

){(
s − i

s − j

)
−
(

s − i

s − j + 1

)
+ · · · + (−1)s− j

(
s − i

0

)}
,

which is the coefficient of zs− j in (1− z)s−i−1(1− zs− j+1)
(s

i

)
(−1)s− j . This is positive as required.

We used part (a) to get the last equality. [The authors hope that the readers can follow the above better
than the former can.]

5.3 Solutions. Random walk

1. Let Ak be the event that the walk ever reaches the point k. Then Ak ⊇ Ak+1 if k ≥ 0, so that

P(M ≥ r) = P(Ar ) = P(A0)

r−1∏

k=0

P(Ak+1 | Ak) = (p/q)r , r ≥ 0,

since P(Ak+1 | Ak ) = P(A1 | A0) = p/q for k ≥ 0 by Corollary (5.3.6).
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Random walk Solutions [5.3.2]–[5.3.4]

2. (a) We have by Theorem (5.3.1c) that

∞∑

k=1

s2k2k f0(2k) = s F ′
0(s) =

s2

√
1 − s2

= s2P0(s) =
∞∑

k=1

s2k p0(2k − 2),

and the claim follows by equating the coefficients of s2k .

(b) It is the case that αn = P(S1S2 · · · S2n 6= 0) satisfies

αn =
∞∑

k=2n+2
k even

f0(k),

with the convention that α0 = 1. We have used the fact that ultimate return to 0 occurs with probability
1. This sequence has generating function given by

∞∑

n=0

s2n
∞∑

k=2n+2
k even

f0(k) =
∞∑

k=2
k even

f0(k)

1
2 k−1∑

n=0

s2n

=
1 − F0(s)

1 − s2
=

1√
1 − s2

by Theorem (5.3.1c)

= P0(s) =
∞∑

n=0

s2nP(S2n = 0).

Now equate the coefficients of s2n . (Alternatively, use Exercise (5.1.2) to obtain the generating
function of the αn directly.)

3. Draw a diagram of the square with the letters ABCD in clockwise order. Clearly pAA(m) = 0 if
m is odd. The walk is at A after 2n steps if and only if the numbers of leftward and rightward steps are
equal and the numbers of upward and downward steps are equal. The number of ways of choosing

2k horizontal steps out of 2n is
(2n

2k

)
. Hence

pAA(2n) =
n∑

k=0

(
2n

2k

)
α2kβ2n−2k = 1

2

{
(α + β)2n + (α − β)2n

}
= 1

2

{
1 + (α − β)2n

}

with generating function

GA(s) =
∞∑

n=0

s2n pAA(2n) =
1

2

{
1

1 − s2
+

1

1 − {s(α − β)}2

}
.

Writing FA(s) for the probability generating function of the time T of first return, we use the
argument which leads to Theorem (5.3.1a) to find that GA(s) = 1 + FA(s)GA(s), and therefore

FA(s) = 1 − GA(s)
−1.

4. Write (Xn,Yn) for the position of the particle at time n. It is an elementary calculation to show
that the relations Un = Xn + Yn , Vn = Xn − Yn define independent simple symmetric random walks

U and V . Now T = min{n : Un = m}, and therefore GT (s) =
{

s−1
(
1 −

√
1 − s2

)}m
for |s| ≤ 1

by Theorem (5.3.5).
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Now X − Y = VT , so that

G X−Y (s) = E{E(sVT | T )} = E





(
s + s−1

2

)T


 = GT

(
1
2 (s + s−1)

)

where we have used the independence of U and V . This converges if and only if | 1
2 (s + s−1)| ≤ 1,

which is to say that s = ±1. Note that GT (s) converges in a non-trivial region of the complex plane.

5. Let T be the time of the first return of the walk S to its starting point 0. During the time-interval
(0, T ), the walk is equally likely to be to the left or to the right of 0, and therefore

L2n =
{

T R + L ′ if T ≤ 2n,

2n R if T > 2n,

where R is Bernoulli with parameter 1
2 , L ′ has the distribution of L2n−T , and R and L ′ are independent.

It follows that G2n(s) = E(s L2n ) satisfies

G2n(s) =
n∑

k=1

1
2 (1 + s2k)G2n−2k(s) f (2k) +

∑

k>n

1
2 (1 + s2n) f (2k)

where f (2k) = P(T = 2k). (Remember that L2n and T are even numbers.) Let H(s, t) =∑∞
n=0 t2nG2n(s). Multiply through the above equation by t2n and sum over n, to find that

H(s, t) = 1
2 H(s, t) {F(t)+ F(st)} + 1

2 {J (t)+ J (st)}

where F(x) =
∑∞

k=0 x2k f (2k) and

J (x) =
∞∑

n=0

x2n
∑

k>n

f (2k) =
1√

1 − x2
, |x | < 1,

by the calculation in the solution to Exercise (5.3.2). Using the fact that F(x) = 1 −
√

1 − x2, we

deduce that H(s, t) = 1/
√
(1 − t2)(1 − s2t2). The coefficient of s2k t2n is

P(L2n = 2k) =
(

− 1
2

n − k

)
(−1)n−k ·

(
− 1

2

k

)
(−1)k

=
(

2k

k

)(
2n − 2k

n − k

)(
1

2

)2n

= P(S2k = 0)P(S2n−2k = 0).

6. We show that all three terms have the same generating function, using various results established
for simple symmetric random walk. First, in the usual notation,

∞∑

m=0

4mP(S2m = 0)s2m = 2s P ′
0(s) =

2s2

(1 − s2)3/2
.

Secondly, by Exercise (5.3.2),

E(T ∧ 2m) = 2mP(T > 2m)+
m∑

k=1

2k f0(2k) = 2mP(S2m = 0) +
m∑

k=1

P(S2k−2 = 0).
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Hence,
∞∑

m=0

s2mE(T ∧ 2m) =
s2 P0(s)

1 − s2
+ s P ′

0(s) =
2s2

(1 − s2)3/2
.

Finally, using the hitting time theorem (3.10.14), (5.3.7), and some algebra at the last stage,

∞∑

m=0

s2m2E|S2m| = 4

∞∑

m=0

s2m
m∑

k=1

2kP(S2m = 2k) = 4

∞∑

m=0

s2m
m∑

k=1

2m f2k(2m)

= 4s
d

ds

∞∑

m=0

s2m
m∑

k=1

f2k(2m) = 4s
d

ds

F1(s)
2

1 − F1(s)
2

=
2s2

(1 − s2)3/2
.

7. Let In be the indicator of the event {Sn = 0}, so that Sn+1 = Sn + Xn+1 + In . In equilibrium,
E(S0) = E(S0) + E(X1) + E(I0), which implies that P(S0 = 0) = E(I0) = −E(X1) and entails
E(X1) ≤ 0. Furthermore, it is impossible that P(S0 = 0) = 0 since this entails P(S0 = a) = 0 for all
a < ∞. Hence E(X1) < 0 if S is in equilibrium. Next, in equilibrium,

E(zS0) = E(zSn+1) = E
(
zSn+Xn+1+In {(1 − In)+ In}

)
.

Now,

E
{

zSn+Xn+1+In (1 − In)
}

= E(zSn | Sn > 0)E(z X1 )P(Sn > 0)

E(zSn+Xn+1+In In) = zE(z X1)P(Sn = 0).

Hence
E(zS0) = E(z X1 )

[
{E(zS0)− P(S0 = 0)} + zP(S0 = 0)

]

which yields the appropriate choice for E(zS0).

8. The hitting time theorem (3.10.14), (5.3.7), states that P(T0b = n) = (|b|/n)P(Sn = b), whence

E(T0b | T0b < ∞) =
b

P(T0b < ∞)

∑

n

P(Sn = b).

The walk is transient if and only if p 6= 1
2 , and therefore E(T0b | T0b < ∞) < ∞ if and only if

p 6= 1
2 . Suppose henceforth that p 6= 1

2 .

The required conditional mean may be found by conditioning on the first step, or alternatively

as follows. Assume first that p < q, so that P(T0b < ∞) = (p/q)b by Corollary (5.3.6). Then∑
n P(Sn = b) is the mean of the number N of visits of the walk to b. Now

P(N = r) =
(

p

q

)b

ρr−1(1 − ρ), r ≥ 1,

where ρ = P(Sn = 0 for some n ≥ 1) = 1 − |p − q|. Therefore E(N) = (p/q)b/|p − q| and

E(T0b | T0b < ∞) =
b

(p/q)b
·
(p/q)b

|p − q|
.

We have when p > q that P(T0b < ∞) = 1, and E(T01) = (p − q)−1. The result follows from
the fact that E(T0b) = bE(T01).
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9. By Corollary (5.3.6), adapted to the current setting, P1(H) = min{1, q/p} = q/p, where Pi

denotes probability conditional on starting at i . By the Markov property, Pi (H) = (q/p)i for i ≥ 1.
Therefore, for i ≥ 1,

Pi (X1 = 1 | H) =
Pi (H | X1 = 1)P(X1 = 1)

Pi (H)
=
(q/p)i+1 p

(q/p)i
= q.

By iteration, the walk behaves like a walk with p and q interchanged until H occurs.

5.4 Solutions. Branching processes

1. Clearly E(Zn | Zm) = Zmµ
n−m since, given Zm , Zn is the sum of the numbers of (n − m)th

generation descendants of Zm progenitors. Hence E(Zm Zn | Zm) = Z2
mµ

n−m and E(Zm Zn) =
E{E(Zm Zn | Zm)} = E(Z2

m)µ
n−m . Hence

cov(Zm , Zn) = µn−m E(Z2
m)− E(Zm)E(Zn) = µn−m var(Zm),

and, by Lemma (5.4.2),

ρ(Zm , Zn) = µn−m

√
var Zm

var Zn
=
{ √

µn−m(1 − µm)/(1 − µn) if µ 6= 1,
√

m/n if µ = 1.

2. Suppose 0 ≤ r ≤ n, and let Ci be the set of members of the nth generation that are descendants
of the i th member of the r generation. Pick a (uniform) random element of the nth generation.
Conditional on Z1, Z2, . . . , Zn , it belongs to Ci with probability 5i = |Ci |/Zn . By symmetry or

otherwise, E(5i | Zr ) does not depend on i . Since
∑

i E(5i | Zr ) = 1, we have E(5i | Zr ) = Z−1
r .

By a similar argument, conditional on Zr , the chance that two independently chosen individuals

from the nth generation have the same r th generation ancestor is
∑

i E(52
i | Zr ). By the Cauchy–

Schwarz inequality, this is at least
∑

i E(5i | Zr )
2 = Z−1

r , with equality (when r 6= 0) if and only if
the process is deterministic.

In conclusion,

P(L ≥ r) ≥ E(Z−1
r ).

If 0 < P(Z1 = 0) < 1, then almost the same argument proves that P(L ≥ r | Zn > 0) ≥
E(Z−1

r | Zn > 0).

3. The number Zn of nth generation decendants satisfies

P(Zn = 0) = Gn(0) =





n

n + 1
if p = q,

q(pn − qn)

pn+1 − qn+1
if p 6= q,

whence, for n ≥ 1,

P(T = n) = P(Zn = 0) − P(Zn−1 = 0) =





1

n(n + 1)
if p = q,

pn−1qn(p − q)2

(pn − qn)(pn+1 − qn+1)
if p 6= q.

It follows that E(T ) < ∞ if and only if p < q.

328



Branching processes Solutions [5.4.4]–[5.4.7]

4. (a) As usual,

G2(s) = G(G(s)) = 1 − α{α(1 − s)β}β = 1 − α1+β(1 − s)β
2
.

This suggests that Gn(s) = 1 − α1+β+···+βn−1
(1 − s)β

n
for n ≥ 1; this formula may be proved

easily by induction, using the fact that Gn(s) = G(Gn−1(s)).

(b) As in the above part (a),

G2(s) = f −1(P( f ( f −1(P( f (s)))))) = f −1(P(P( f (s)))) = f −1(P2( f (s)))

where P2(s) = P(P(s)). Similarly Gn(s) = f −1(Pn( f (s))) for n ≥ 1, where Pn(s) = P(Pn−1(s)).

(c) With P(s) = αs/{1 − (1 − α)s} where α = γ−1, it is an easy exercise to prove, by induction, that
Pn(s) = αns/

{
1 − (1 − αn)s

}
for n ≥ 1, implying that

Gn(s) = Pn(s
m)1/m =

{
αnsm

1 − (1 − αn)sm

}1/m

.

5. Let Zn be the number of members of the nth generation. The (n + 1)th generation has size
Cn+1 + In+1 where Cn+1 is the number of natural offspring of the previous generation, and In+1 is
the number of immigrants. Therefore by the independence,

E(s Zn+1 | Zn) = E(sCn+1 | Zn)H(s) = G(s)Zn H(s),

whence
Gn+1(s) = E(s Zn+1) = E{G(s)Zn }H(s) = Gn(G(s))H(s).

6. By Example (5.4.3),

E(s Zn ) =
n − (n − 1)s

n + 1 − ns
=

n − 1

n
+

1

n2(1 + n−1 − s)
, n ≥ 0.

Differentiate and set s = 0 to find that

E(V1) =
∞∑

n=0

P(Zn = 1) =
∞∑

n=0

1

(n + 1)2
= 1

6π
2.

Similarly,

E(V2) =
∞∑

n=0

n

(n + 1)3
=

∞∑

n=0

1

(n + 1)2
−

∞∑

n=0

1

(n + 1)3
= 1

6π
2 −

∞∑

n=0

1

(n + 1)3
,

E(V3) =
∞∑

n=0

n2

(n + 1)4
=

∞∑

n=0

(n + 1)2 − 2(n + 1)+ 1

(n + 1)4
= 1

6π
2 + 1

90π
4 − 2

∞∑

n=0

1

(n + 1)3
.

The conclusion is obtained by eliminating
∑

n(n + 1)−3.

7. The family-size generating function is G(s) = (q + ps)2, and the extinction probability η is the

smallest non-negative root of s = G(s), that is, η = min{1, (q/p)2}. By an easy calculation,

P(X1 = 1 | T < ∞) = 2pq,

P(X1 = 2 | T < ∞) =
{

q2 if q < p,

p2 if q ≥ p,
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whence

P(X1 = 0 | T < ∞) =
{

q2 if q < p,

p2 if q ≥ p.

Using conditional expectation, µ = E(T | T < ∞) satisfies

µ = 1 + 2pqµ +
{

2q2µ if q < p,

2p2µ if q ≥ p.

The result follows. By the above, the conditional generating function is

{
(p + qs)2 if q < p,

(q + ps)2 if q ≥ p.

8. This follows by the Paley–Zygmund inequality of Problem (3.11.56b), with Lemma (5.4.2).

5.5 Solutions. Age-dependent branching processes

1. (i) The usual renewal argument shows as in Theorem (5.5.1) that

G t (s) =
∫ t

0
G(G t−u(s)) fT (u) du +

∫ ∞

t
s fT (u) du.

Differentiate with respect to t , to obtain

∂

∂t
G t (s) = G(G0(s)) fT (t)+

∫ t

0

∂

∂t
{G(G t−u(s))} fT (u) du − s fT (t).

Now G0(s) = s, and
∂

∂t
{G(G t−u(s))} = −

∂

∂u
{G(G t−u(s))} ,

so that, using the fact that fT (u) = λe−λu if u ≥ 0,

∫ t

0

∂

∂t
{G(G t−u(s))} fT (u) du = −

[
G(G t−u(s)) fT (u)

]t

0
− λ

∫ t

0
G(G t−u(s)) fT (u) du,

having integrated by parts. Hence

∂

∂t
G t (s) = G(s)λe−λt +

{
−G(s)λe−λt + λG(G t(s))

}
− λ

{
G t (s)−

∫ ∞

t
s fT (u) du

}
− sλe−λt

= λ {G(G t (s))− G t (s)} .

(ii) Substitute G(s) = s2 into the last equation to obtain

∂G t

∂t
= λ(G2

t − G t )

with boundary condition G0(s) = s. Integrate to obtain λt + c(s) = log{1 − G−1
t } for some function

c(s). Using the boundary condition at t = 0, we find that c(s) = log{1 − G−1
0 } = log{1 − s−1}, and

hence G t (s) = se−λt/{1 − s(1 − e−λt)}. Expand in powers of s to find that Z(t) has the geometric

distribution P(Z(t) = k) = (1 − e−λt)k−1e−λt for k ≥ 1.
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2. The equation becomes
∂G t

∂t
= 1

2 (1 + G2
t )− G t

with boundary condition G0(s) = s. This differential equation is easily solved with the result

G t (s) =
2s + t (1 − s)

2 + t (1 − s)
=

4/t

2 + t (1 − s)
−

2 − t

t
.

We pick out the coefficient of sn to obtain

P(Z(t) = n) =
4

t (2 + t)

(
t

2 + t

)n

, n ≥ 1,

and therefore

P(Z(t) ≥ k) =
∞∑

n=k

4

t (2 + t)

(
t

2 + t

)n

=
2

t

(
t

2 + t

)k

, k ≥ 1.

It follows that, for x > 0 and in the limit as t → ∞,

P(Z(t) ≥ xt | Z(t) > 0) =
P(Z(t) ≥ xt)

P(Z(t) ≥ 1)
=
(

t

2 + t

)⌈xt⌉−1

=
(

1 +
2

t

)1−⌈xt⌉
→ e−2x .

5.6 Solutions. Expectation revisited

1. (a) (i) Set a = E(X) to find that u(X) ≥ u(EX)+λ(X −EX) for some fixed λ. Take expectations
to obtain the result.

(ii) Let u be strictly convex. If equality holds, then u(X) = u(EX) + λ(X − EX) a.s. Since u is
strictly convex, it must be the case that P(X = EX) = 1.

(b) Let g be a density function with the given first two moments, and let f be the N(µ, σ 2) density
function. The key step is the fact that

∫

R

g(x) log f (x) dx =
∫

R

f (x) log f (x) dx,

which holds since the left and right sides are the same linear function of the respective variances of g

and f . Therefore,

H(g)− H( f ) = −
∫

R

g(x) log g(x) dx +
∫

R

f (x) log f (x) dx

= −
∫

R

g(x) log g(x) dx +
∫

R

g(x) log f (x) dx

=
∫

R

g(x) log
(

f (x)/g(x)
)

dx ≤ log

(∫

R

g(x)
(

f (x)/g(x)
)

dx

)
= 0,

where we used Jensen’s inequality at the last stage with the convex function u(x) = − log x . Since u

is strictly convex on (0,∞), equality holds if and only if f (x)/g(x) = c for some constant c, which
necessarily equals 1.
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2. Certainly Zn =
∑n

i=1 X i and Z =
∑∞

i=1 |X i | are such that |Zn | ≤ Z , and the result follows by
dominated convergence.

3. Apply Fatou’s lemma to the sequence {−Xn : n ≥ 1} to find that

E
(

lim sup
n→∞

Xn

)
= −E

(
lim inf
n→∞

−Xn

)
≥ − lim inf

n→∞
E(−Xn) = lim sup

n→∞
E(Xn).

4. Suppose that E|Xr | < ∞ where r > 0. We have that, if x > 0,

xr P(|X | ≥ x) ≤
∫

[x,∞)
ur d F(u) → 0 as x → ∞,

where F is the distribution function of |X |.
Conversely suppose that xr P(|X | ≥ x) → 0 where r ≥ 0, and let 0 ≤ s < r . Now E|Xs | =

limM→∞
∫ M

0 us d F(u) and, by integration by parts,

∫ M

0
us d F(u) =

[
−us

(
1 − F(u)

)]M

0
+
∫ M

0
sus−1(1 − F(u)

)
du.

The first term on the right-hand side is negative. The integrand in the second term satisfies sus−1P(|X | >
u) ≤ sus−1 · u−r for all large u. Therefore the integral is bounded uniformly in M , as required.

5. Suppose first that, for all ǫ > 0, there exists δ = δ(ǫ) > 0, such that E(|X |IA) < ǫ for all A

satisfying P(A) < δ. Fix ǫ > 0, and find x (> 0) such that P(|X | > x) < δ(ǫ). Then, for y > x ,

∫ y

−y
|u| d FX (u) ≤

∫ x

−x
|u| d FX (u) + E

(
|X |I{|X |>x}

)
≤
∫ x

−x
|u| d FX (u)+ ǫ.

Hence
∫ y
−y |u| d FX (u) converges as y → ∞, whence E|X | < ∞.

Conversely suppose that E|X | < ∞. It follows that E
(
|X |I{|X |>y}

)
→ 0 as y → ∞. Let ǫ > 0,

and find y such that E
(
|X |I{|X |>y}

)
< 1

2 ǫ. For any event A, IA ≤ IA∩Bc + IB where B = {|X | > y}.
Hence

E(|X |IA) ≤ E (|X |IA∩Bc )+ E (|X |IB) ≤ yP(A)+ 1
2 ǫ.

Writing δ = ǫ/(2y), we have that E(|X |IA) < ǫ if P(A) < δ.

6. Let S = min{X,Y }, so that X+Y = M+S. Then (X+Y )2 = (M+S)2 and (X−Y )2 = (M−S)2.
Take expectations and add to obtain

E(X2)+ E(Y 2) = E(M2)+ E(S2).

Also, X + Y = M + S and |X − Y | = M − S. Take expectations, square, and add:

E(M)2 + E(S)2 = E(X)E(Y )+ 1
2 E(X)2 + 1

2 E(Y )2 + 1
2 (E|X − Y |)2

≥ E(X)E(Y )+ 1
2 E(X)2 + 1

2 E(Y )2 + 1
2 (EX − EY )2 by Jensen’s inequality

= E(X)2 + E(Y )2.

Hence var(M)+ var(S) ≤ var(X)+ var(Y ).
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7. Let R = 1/S when S > 0, and R = 0 otherwise. Then

P(S > 0) = E(RS) =
n∑

r=1

E(RIr )

=
n∑

r=1

{
E(RIr | Ir = 1)P(Ir = 1)+ E(RIr | Ir = 0)P(Ir = 0)

}

≥
n∑

r=1

E(S−1 | Ir = 1)P(Ir = 1)

≥
n∑

r=1

P(Ir = 1)

E(S | Ir = 1)
,

by Jensen’s inequality applied with the convex function u(x) = 1/x for x > 0.

5.7 Solutions. Characteristic functions

1. Let X have the Cauchy distribution, with characteristic function φ(s) = e−|s|. Setting Y = X ,

we have that φX+Y (t) = φ(2t) = e−2|t | = φX (t)φY (t). However, X and Y are certainly dependent.

2. (i) It is the case that Re{φ(t)} = E(cos t X), so that, in the obvious notation,

Re{1 − φ(2t)} =
∫ ∞

−∞
{1 − cos(2t x)} d F(x) = 2

∫ ∞

−∞
{1 − cos(t x)}{1 + cos(t x)} d F(x)

≤ 4

∫ ∞

−∞
{1 − cos(t x)} d F(x) = 4 Re{1 − φ(t)}.

(ii) Note first that, if X and Y are independent with common characteristic function φ, then X − Y

has characteristic function

ψ(t) = E(eit X )E(e−itY ) = φ(t)φ(−t) = φ(t)φ(t) = |φ(t)|2.

Apply the result of part (i) to the function ψ to obtain that 1 − |φ(2t)|2 ≤ 4(1 − |φ(t)|2). However
|φ(t)| ≤ 1, so that

1 − |φ(2t)| ≤ 1 − |φ(2t)|2 ≤ 4(1 − |φ(t)|2) ≤ 8(1 − |φ(t)|).

3. (a) With mk = E(Xk), we have that

E(eθX ) = 1 +
∞∑

k=1

1

k!
mkθ

k = 1 + S(θ),

say, and therefore, for sufficiently small values of θ ,

K X (θ) =
∞∑

r=1

(−1)r+1

r
S(θ)r .

Expand S(θ)r in powers of θ , and equate the coefficients of θ , θ2, θ3, in turn, to find that k1(X) = m1,

k2(X) = m2 − m2
1, k3(X) = m3 − 3m1m2 + 2m3

1.
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(b) If X and Y are independent, K X+Y (θ) = log{E(eθX )E(eθY )} = K X (θ) + KY (θ), whence the
claim is immediate.

4. The N(0, 1) variable X has moment generating function E(eθX ) = e
1
2 θ

2
, so that K X (θ) = 1

2 θ
2.

5. (a) Suppose X takes values in L(a, b). Then

|φX (2π/b)| =
∣∣∣∣
∑

x

e2π ix/bP(X = x)

∣∣∣∣ = |e2π ia/b|
∣∣∣∣
∑

m

e2π imP(X = a + bm)

∣∣∣∣ = 1

since only numbers of the form x = a + bm make non-zero contributions to the sum.

Suppose in addition that X has span b, and that |φX (T )| = 1 for some T ∈ (0, 2π/b). Then

φX (T ) = eic for some c ∈ R. Now

E
(
cos(T X − c)

)
= 1

2 E
(
eiT X−ic + e−iT X+ic

)
= 1,

using the fact that E(e−iT X ) = φX (T ) = e−ic . However cos x ≤ 1 for all x , with equality if and
only if x is a multiple of 2π . It follows that T X − c is a multiple of 2π , with probability 1, and hence
that X takes values in the set L(c/T, 2π/T ). However 2π/T > b, which contradicts the maximality
of the span b. We deduce that no such T exists.

(b) This follows by the argument above.

6. This is a form of the ‘Riemann–Lebesgue lemma’. It is a standard result of analysis that, for ǫ > 0,

there exists a step function gǫ such that
∫∞
−∞ | f (x)− gǫ(x)| dx < ǫ. Let φǫ(t) =

∫∞
−∞ eit x gǫ(x) dx .

Then

|φX (t)− φǫ(t)| =
∣∣∣∣
∫ ∞

−∞
eit x

(
f (x)− gǫ(x)

)
dx

∣∣∣∣ ≤
∫ ∞

−∞
| f (x)− gǫ(x)| dx < ǫ.

If we can prove that, for each ǫ, |φǫ(t)| → 0 as t → ±∞, then it will follow that |φX (t)| < 2ǫ for all
large t , and the claim then follows.

Now gǫ(x) is a finite linear combination of functions of the form cIA(x) for reals c and intervals

A, that is gǫ(x) =
∑K

k=1 ck IAk
(x); elementary integration yields

φǫ(t) =
K∑

k=1

ck
eitbk − eitak

i t

where ak and bk are the endpoints of Ak . Therefore

|φǫ(t)| ≤
2

t

K∑

k=1

ck → 0, as t → ±∞.

7. If X is N(µ, 1), then the moment generating function of X2 is

MX2 (s) = E(es X2
) =

∫ ∞

−∞
esx2 1

√
2π

e
− 1

2 (x−µ)2
dx =

1
√

1 − 2s
exp

(
µ2s

1 − 2s

)
,

if s < 1
2 , by completing the square in the exponent. It follows that

MY (s) =
n∏

j=1

{
1

√
1 − 2s

exp

(
µ2

j s

1 − 2s

)}
=

1

(1 − 2s)n/2
exp

(
sθ

1 − 2s

)
.
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Characteristic functions Solutions [5.7.8]–[5.7.13]

It is tempting to substitute s = i t to obtain the answer. This procedure may be justified in this case
using the theory of analytic continuation.

8. (a) T 2 = X2/(Y/n), where X2 is χ2(1;µ2) by Exercise (5.7.7), and Y is χ2(n). Hence T 2 is

F(1, n;µ2).

(b) F has the same distribution function as

Z =
(A2 + B)/m

V/n

where A, B,V are independent, A being N(
√
θ, 1), B beingχ2(m−1), and V beingχ2(n). Therefore

E(Z) =
1

m

{
E(A2)E

( n

V

)
+ (m − 1)E

(
B/(m − 1)

V/n

)}

=
1

m

{
(1 + θ)

n

n − 2
+ (m − 1)

n

n − 2

}
=

n(m + θ)

m(n − 2)
,

where we have used the fact (see Exercise (4.10.2)) that the F(r, s) distribution has mean s/(s − 2)
if s > 2.

9. Let X̃ be independent of X with the same distribution. Then |φ|2 is the characteristic function of

X − X̃ and, by the inversion theorem,

1

2π

∫ ∞

−∞
|φ(t)|2e−it x dt = f

X−X̃
(x) =

∫ ∞

−∞
f (y) f (x + y) dy.

Now set x = 0. We require that the density function of X − X̃ be differentiable at 0.

10. By definition,

e−it yφX (y) =
∫ ∞

−∞
eiy(x−t) fX (x) dx .

Now multiply by fY (y), integrate over y ∈ R, and change the order of integration with an appeal to
Fubini’s theorem.

11. (a) We adopt the usual convention that integrals of the form
∫ v

u g(y) d F(y) include any atom of
the distribution function F at the upper endpoint v but not at the lower endpoint u. It is a consequence
that Fτ is right-continuous, and it is immediate that Fτ increases from 0 to 1. Therefore Fτ is a
distribution function. The corresponding moment generating function is

Mτ (t) =
∫ ∞

−∞
et x d Fτ (x) =

1

M(t)

∫ ∞

−∞
et x+τ x d F(x) =

M(t + τ)

M(t)
.

(b) The required moment generating function is

MX+Y (t + τ)

MX+Y (t)
=

MX (t + τ)MY (t + τ)

MX (t)MY (t)
,

the product of the moment generating functions of the individual tilted distributions.

12. Change variables to polar coordinates and integrate over θ ∈ [0, 2π ] to obtain the desired marginal
density function.

13. (a) We have

E(es X+tY ) =
∫ ∞

x=0

∫ ∞

y=x
2e−(1−s)xe−(1−t)y dx dy

= 2

∫ ∞

0
e−(1−s)x ·

e−(1−t)x

1 − t
dx =

2

(1 − t)(2 − s − t)
, s, t < 1.
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[5.8.1]–[5.8.2] Solutions Generating functions and their applications

The coefficients of s, t , and st in the series expansion of this yield

cov(X,Y ) = E(XY )− E(X)E(Y ) = 1 − 1
2 · 3

2 = 1
4 .

(b) This time,

E(es X+tY ) =
e

1
2 (s

2+t2)

2π(2 + c2)

∫∫

R2
(c2 + x2 + y2) exp

{
− 1

2 (x − s)2 − 1
2 (y − t)2

}
dx dy

=
e

1
2 (s

2+t2)

2π(2 + c2)

∫ ∞

−∞
e
− 1

2 (x−s)2
{
(c2 + x2)

√
2π + (1 + t2)

√
2π
}

dx

=
e

1
2 (s

2+t2)

2 + c2

{
c2 + 1 + s2 + 1 + t2}.

The coefficients of s, t , and st are zero, so cov(X, Y ) = 0. However, the joint moment generating
function does not factorize, so X and Y are not independent.

5.8 Solutions. Examples of characteristic functions

1. (i) We have that φ(t) = E(eit X ) = E(e−it X ) = φ−X (t).

(ii) If X1 and X2 are independent random variables with common characteristic function φ, then

φX1+X2
(t) = φX1

(t)φX2
(t) = φ(t)2 .

(iii) Similarly, φX1−X2
(t) = φX1

(t)φ−X2
(t) = φ(t)φ(t) = |φ(t)|2.

(iv) Let X have characteristic function φ, and let Z be equal to X with probability 1
2 and to −X

otherwise. The characteristic function of Z is given by

φZ (t) = 1
2

(
E(eit X )+ E(e−it X )

)
= 1

2

(
φ(t)+ φ(t)

)
= Re(φ)(t),

where we have used the argument of part (i) above.

(v) If X is Bernoulli with parameter 1
3 , then its characteristic function is φ(t) = 2

3 + 1
3 eit . Suppose Y

is a random variable with characteristic function ψ(t) = |φ(t)|. Then ψ(t)2 = φ(t)φ(−t). Written
in terms of random variables this asserts that Y1 + Y2 has the same distribution as X1 − X2, where
the Yi are independent with characteristic function ψ , and the X i are independent with characteristic

function φ. Now X j ∈ {0, 1}, so that X1 − X2 ∈ {−1, 0, 1}, and therefore Yj ∈ {− 1
2 ,

1
2 }. Write

α = P(Yj = 1
2 ). Then

P(Y1 + Y2 = 1) = α2 = P(X1 − X2 = 1) = 2
9 ,

P(Y1 + Y2 = −1) = (1 − α)2 = P(X1 − X2 = −1) = 2
9 ,

implying that α2 = (1 − α)2 so that α = 1
2 , contradicting the fact that α2 = 2

9 . We deduce that no
such variable Y exists.

2. For t ≥ 0,

P(X ≥ x) = P(et X ≥ et x) ≤ e−t xE(et X ).

Now minimize over t ≥ 0. When X is N(0, 1) and x > 0, we have M(t) = e
1
2 t2

, and the infimum in
the first part is achieved when t = x .
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Examples of characteristic functions Solutions [5.8.3]–[5.8.5]

3. The moment generating function of Z is

MZ (t) = E
{

E(et XY | Y )
}

= E{MX (tY )} = E

{(
λ

λ− tY

)m}

=
∫ 1

0

(
λ

λ− t y

)m yn−1(1 − y)m−n−1

B(n,m − n)
dy.

Substitute v = 1/y and integrate by parts to obtain that

Imn =
∫ ∞

1

(v − 1)m−n−1

(λv − t)m
dv

satisfies

Imn =
[
−

1

λ(m − 1)

(v − 1)m−n−1

(λv − t)m−1

]∞

1

+
m − n − 1

λ(m − 1)
Im−1,n = c(m, n, λ)Im−1,n

for some c(m, n, λ). We iterate this to obtain

Imn = c′ In+1,n = c′
∫ ∞

1

dv

(λv − t)n+1
=

c′

nλ
·

1

(λ− t)n

for some c′ depending on m, n, λ. Therefore MZ (t) = c′′(λ− t)−n for some c′′ depending on m, n, λ.
However MZ (0) = 1, and hence c′′ = λn , giving that Z is Ŵ(λ, n). Throughout these calculations
we have assumed that t is sufficiently small and positive. Alternatively, we could have set t = i s and
used characteristic functions. See also Problem (4.14.12).

4. We have that

E
(
eit X2)

=
∫ ∞

−∞
eit x2 1

√
2πσ 2

exp

(
−
(x − µ)2

2σ 2

)
dx

=
∫ ∞

−∞

1
√

2πσ 2
exp


−

[
x − µ(1 − 2σ 2i t)−1

]2

2σ 2(1 − 2σ 2i t)−1


 exp

(
i tµ2

1 − 2σ 2i t

)
dx

=
1√

1 − 2σ 2i t
exp

(
i tµ2

1 − 2σ 2i t

)
.

The integral is evaluated by using Cauchy’s theorem when integrating around a sector in the complex
plane. It is highly suggestive to observe that the integrand differs only by a multiplicative constant

from a hypothetical normal density function with (complex) mean µ(1 − 2σ 2i t)−1 and (complex)

variance σ 2(1 − 2σ 2i t)−1.

5. (a) Use the result of Exercise (5.8.4) with µ = 0 and σ 2 = 1: φ
X2

1
(t) = (1 − 2i t)

− 1
2 , the

characteristic function of the χ2(1) distribution.

(b) From (a), the sum S has characteristic function φS(t) = (1 − 2i t)
− 1

2 n , the characteristic function

of the χ2(n) distribution.

(c) We have that

E(eit X1/X2 ) = E
{

E(eit X1/X2 | X2)
}

= E
(
φX1

(t/X2)
)

= E
(
exp
{
− 1

2 t2/X2
2

})
.

337



[5.8.6]–[5.8.6] Solutions Generating functions and their applications

Now

E
(
exp
{
− 1

2 t2/X2
2

})
=
∫ ∞

−∞

1
√

2π
exp

(
−

t2

2x2
−

x2

2

)
dx .

There are various ways of evaluating this integral. Using the result of Problem (5.12.18c), we find

that the answer is e−|t |, whence X1/X2 has the Cauchy distribution.

(d) We have that

E(eit X1 X2 ) = E
{

E(eit X1 X2 | X2)
}

= E
(
φX1

(t X2)
)

= E
(
e
− 1

2 t2 X2
2
)

=
∫ ∞

−∞

1
√

2π
exp
{
− 1

2 x2(1 + t2)
}

dx =
1√

1 + t2
,

on observing that the integrand differs from the N(0, (1 + t2)
− 1

2 ) density function only by a multi-
plicative constant. Now, examination of a standard work of reference, such as Abramowitz and Stegun
(1965, Section 9.6.21), reveals that

∫ ∞

0

cos(xt)√
1 + t2

dt = K0(x),

where K0(x) is the second kind of modified Bessel function. Hence the required density, by the
inversion theorem, is f (x) = K0(|x |)/π . Note that, for small x , K0(x) ∼ − log x , and for large
positive x , K0(x) ∼ e−x√

πx/2.

As a matter of interest, note that we may also invert the more general characteristic function

φ(t) = (1 − i t)−α(1 + i t)−β . Setting 1 − i t = −z/x in the integral gives

f (x) =
1

2π

∫ ∞

−∞

e−it x

(1 − i t)α(1 + i t)β
dt =

e−x xα−1

2β2π i

∫ −x+ix∞

−x−ix∞

e−z dz

(−z)α (1 + z/(2x))β

=
ex (2x)

1
2
(β−α)

Ŵ(α)
W 1

2
(α−β), 1

2
(1−α−β)(2x)

where W is a confluent hypergeometric function. When α = β this becomes

f (x) =
(x/2)α− 1

2

Ŵ(α)
√
π

K
α− 1

2
(x)

where K is a Bessel function of the second kind.

(e) Using (d), we find that the required characteristic function is φX1 X2
(t)φX3 X4

(t) = (1 + t2)−1.

In order to invert this, either use the inversion theorem for the Cauchy distribution to find the required

density to be f (x) = 1
2 e−|x | for −∞ < x < ∞, or alternatively express (1 + t2)−1 as partial

fractions, (1 + t2)−1 = 1
2 {(1 − i t)−1 + (1 + i t)−1}, and recall that (1 − i t)−1 is the characteristic

function of an exponential distribution.

6. The joint characteristic function of X = (X1, X2, . . . , Xn) satisfies φX(t) = E(eitX′
) = E(eiY )

where t = (t1, t2, . . . , tn) ∈ Rn and Y = tX′ = t1 X1 + · · · + tn Xn . Now Y is normal with mean and
variance

E(Y ) =
n∑

j=1

tj E(X j ) = tµµµ′, var(Y ) =
n∑

j,k=1

tj tkcov(X j , Xk) = tVt′,

where µµµ is the mean vector of X, and V is the covariance matrix of X. Therefore φX(t) = φY (1) =
exp(i tµ′ − 1

2 tVt′) by paragraph (5.8.5).

338



Examples of characteristic functions Solutions [5.8.7]–[5.8.12]

Let Z = X −µµµ. It is easy to check that the vector Z has joint characteristic function φZ(t) =
e
− 1

2
tVt′ , which we recognize by (5.8.6) as being that of the N(0,V) distribution.

7. We have that E(Z) = 0, E(Z2) = 1, and E(et Z ) = E
{

E(et Z | U, V )
}

= E(e
1
2 t2
) = e

1
2 t2

.
If X and Y have the bivariate normal distribution with correlation ρ, then the random variable Z =
(U X + V Y )/

√
U2 + 2ρU V + V 2 is N(0, 1).

8. By definition, E(eit X ) = E(cos(t X)) + iE(sin(t X)). By integrating by parts,

∫ ∞

0
cos(t x)λe−λx dx =

λ2

λ2 + t2
,

∫ ∞

0
sin(t x)λe−λx dx =

λt

λ2 + t2
,

and
λ2 + iλt

λ2 + t2
=

λ

λ− i t
.

9. (a) We have that e−|x | = e−x I{x≥0} + ex I{x<0}, whence the required characteristic function is

φ(t) =
1

2

(
1

1 − i t
+

1

1 + i t

)
=

1

1 + t2
.

(b) By a similar argument applied to the Ŵ(1, 2) distribution, we have in this case that

φ(t) =
1

2

(
1

(1 − i t)2
+

1

(1 + i t)2

)
=

1 − t2

(1 + t2)2
.

10. Suppose X has moment generating function M(t). The proposed equation gives

M(t) =
∫ 1

0
M(ut)2 du =

1

t

∫ t

0
M(v)2 dv.

Differentiate to obtain t M ′ + M = M2, with solution M(t) = λ/(λ + t). Thus the exponential
distribution has the stated property.

11. We have that
φX,Y (s, t) = E(eis X+itY ) = φs X+tY (1).

Now s X + tY is N(0, s2σ 2 + 2stστρ + τ2) where σ 2 = var(X), τ2 = var(Y ), ρ = corr(X,Y ), and
therefore

φX,Y (s, t) = exp
{
− 1

2 (s
2σ 2 + 2stστρ + t2τ2)

}
.

The fact that φX,Y may be expressed in terms of the characteristic function of a single normal variable
is sometimes referred to as the Cramér–Wold device.

12. By writing Yi = (X i − µ)/σ , we may assume without loss of generality (if we like) that µ = 0
and σ = 1. The first part is proved as in the solution to Exercise (4.10.5).

The second displayed equation is by expansion. The two terms on the left side are independent,

and the squared normals have χ2 distributions. Taking characteristic functions, the characteristic

function of T = (n − 1)S2/σ 2 satisfies

φT (t) ·
1

(1 − 2i t)1/2
=

1

(1 − 2i t)n/2
,

and hence T has the χ2(n − 1) distribution.
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[5.8.13]–[5.8.16] Solutions Generating functions and their applications

13. The linear combination Y = θ1 X1 + θ2 X2 + · · · + θn Xn has a zero-mean normal distribution,
and so

∞∑

r=0

i r

r !
E(Y r ) = E(eiY ) = e

− 1
2

E(Y 2) =
∞∑

k=0

(−1)k

2k k!
E(Y 2)k .

The coefficient of θ1θ2 · · · θn in E(Y r ) is n! E(X1 X2 · · · Xn) when n = r , and 0 otherwise; while the

coefficient of θ1θ2 · · · θ2m in E(Y 2)m is 2mm!
∑

r

∏
ir< jr

E(X ir X jr ). Now equate these.

Thus, for example, E(X1 X2 X3) = 0, while

E(X1 X2 X3 X4) = E(X1 X2)E(X3 X4)+ E(X1 X3)E(X2 X4)+ E(X1 X4)E(X2 X3).

14. The moment generating function of S is

MS(t) =
n∏

r=1

MXr (t) =
n∏

r=1

λr

λr − t
,

by the independence of the Xr .

If the λr are distinct, this may be expanded thus using partial fractions:

MS(t) =
n∑

r=1

λr

λr − t

n∏

s=1
s 6=r

λs

λs − λr
.

By inverting this, we find that the density function of S is a weighted sum of the functions e−λr x .

Setting t = 0 in the above yields the first identity. Differentiating and setting t = 0 yields the
second.

15. This is essentially Stein’s equation of Exercise (4.7.25). By the change of variables x = y + θ ,
with φ the N(0, 1) density function,

E(eθX f (X)) =
∫

eθx f (x)φ(x) dx =
∫

eθ(y+θ) f (y + θ)φ(y + θ) dy

=
1

√
2π

∫
exp
{
θ y + θ2 − 1

2 (y + θ)2
}

f (y + θ) dy

= e
1
2 θ

2
∫

f (y + θ)φ(y) dy.

Assuming we may differentiate through the integral sign, do so with respect to θ and set θ = 0 for the
second part.

16. Write eit x = cos(t x)+ i sin(t x), and use the fact that sine is an odd function, to find that

φ(t) =
1

√
2π

∫ ∞

−∞
cos(t x)e

− 1
2

x2
dx .

Differentiate through the integral sign, and integrate by parts, to obtain

√
2πφ′(t) = −

∫ ∞

−∞
sin(t x)xe

− 1
2 x2

dx

= −
∫ ∞

−∞
t cos(t x)e

− 1
2 x2

dx = −t
√

2πφ(t).
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Inversion and continuity theorems Solutions [5.8.17]–[5.9.4]

The interchange of integral and derivative may be justified by the fact that e
− 1

2
x2

is bounded and
integrable. Now solve the differential equation φ′(t) = −tφ(t) subject to φ(0) = 1.

17. (a) We have

φY (t) =
∫ ∞

0

xeit x

µ
d FX (x) =

1

i

d

dt

∫ ∞

0

eit x

µ
d FX (x) =

1

iµ
φ′

X (t),

where (for enthusiasts) the integral and derivative may be interchanged by appeal to the dominated
convergence theorem.

(b) Set φX (t) =
(
λ/(λ− i t)

)r
and use part (a).

(c) The given Poisson distribution has characteristic function φX (t) = exp(−λ + λeit ), and µ = λ.

Therefore, φ′
X (t)/(iµ) = eitφX (t). Conversely, if Y is distributed as X + 1, we have iµeitφX (t) =

φ′
X (t), which we solve subject to φX (0) = 1.

Finally, if X has the bin(n, p) distribution, then Y − 1 has the bin(n − 1, p) distribution.

5.9 Solutions. Inversion and continuity theorems

1. Clearly, for 0 ≤ y ≤ 1, P(Xn ≤ ny) = n−1⌊ny⌋ → y as n → ∞.

2. (a) The derivative of Fn is fn(x) = 1 − cos(2nπx), for 0 ≤ x ≤ 1. It is easy to see that fn is

non-negative and
∫ 1

0 fn(x) dx = 1. Therefore Fn is a distribution function with density function fn .

(b) As n → ∞, ∣∣∣∣
sin(2nπx)

2nπ

∣∣∣∣ ≤
1

2nπ
→ 0,

and so Fn(x) → x for 0 ≤ x ≤ 1. On the other hand, cos(2nπx) does not converge unless x ∈ {0, 1},
and therefore fn(x) does not converge on (0, 1).

3. We may express N as the sum N = T1 + T2 + · · · + Tk of independent variables each having the

geometric distribution P(Tj = r) = pqr−1 for r ≥ 1, where p + q = 1. Therefore

φN (t) = φT1
(t)k =

{
peit

1 − qeit

}k

,

implying that Z = 2N p has characteristic function

φZ (t) = φN (2pt) =
{

pe2pit

1 − (1 − p)e2pit

}k

=
{

p(1 + 2pi t + o(p))

p(1 − 2i t + o(1))

}k

→ (1 − 2i t)−k

as p ↓ 0, the characteristic function of the Ŵ( 1
2 , k) distribution. The result follows by the continuity

theorem (5.9.5).

4. All you need to know is the fact, easily proved, that ψm(t) = eitm satisfies

∫ π

−π
ψj (t)ψk (t) dt =

{
2π if j + k = 0,

0 if j + k 6= 0,

for integers j and k.

Now, φ(t) =
∑∞

j=−∞ eit j P(X = j), so that

1

2π

∫ π

−π
e−itkφ(t) dt =

1

2π

∞∑

j=−∞
P(X = j)

∫ π

−π
ψj (t)ψ−k (t) dt =

1

2π
· P(X = k) · 2π.
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If X is arithmetic with span λ, then X/λ is integer valued, whence

P(X = kλ) =
λ

2π

∫ π/λ

−π/λ
e−itkλφX (t) dt.

5. Let X be uniformly distributed on [−a, a], Y be uniformly distributed on [−b, b], and let X and
Y be independent. Then X has characteristic function sin(at)/(at), and Y has characteristic function
sin(bt)/(bt). We apply the inversion theorem (5.9.1) to the characteristic function of X + Y to find
that

1

2π

∫ ∞

−∞
φX+Y (t) dt =

1

2π

∫ ∞

−∞

sin(at) sin(bt)

abt2
dt = fX+Y (0) =

a ∧ b

2ab
.

6. It is elementary that

∫ ∞

0
exp{ fn(x)} dx =

∫ ∞

0
xne−x dx = Ŵ(n + 1) = n!.

In addition, a = n, f ′′
n (a) = −n−1, and

∫ ∞

0
exp
{

fn(a)+ 1
2 (x − a)2 f ′′

n (a)
}

dx = nne−n

∫ ∞

0
exp

{
−
(x − n)2

2n

}
dx ∼ nne−n

√
2πn,

and Stirling’s formula follows.

7. The vector X has joint characteristic function φ(t) = exp(− 1
2 tVt′). By the multidimensional

version of the inversion theorem (5.9.1), the joint density function of X is

f (x) =
1

(2π)n

∫

Rn
exp
(
−i tx′ − 1

2 tVt′
)

dt.

Therefore, if i 6= j ,

∂ f

∂vi j
=

1

(2π)n

∫

Rn
ti tj exp

(
−i tx′ − 1

2 tVt′
)

dt =
∂2 f

∂xi∂xj
,

and similarly when i = j . When i 6= j ,

∂

∂vi j
P
(
max

k
Xk ≤ u

)
=
∫

Q

∂ f

∂vi j
dx where Q =

{
x : xk ≤ u for k = 1, 2, . . . , n

}

=
∫

Q

∂2 f

∂xi∂xj
dx =

∫ ′
f

∣∣∣
xi=x j =u

xi=x j =−∞
dx′ ≥ 0,

where
∫ ′ · dx′ is an integral over the variables xk for k 6= i, j .

Therefore, P(maxk Xk ≤ u) increases in every parameter vi j , and is therefore greater than its

value when vi j = 0 for i 6= j , namely
∏

k P(Xk ≤ u).

8. By a two-dimensional version of the inversion theorem (5.9.1) applied to E(eitX′
), t = (t1, t2),

∂

∂ρ
P(X1 > 0, X2 > 0) =

∂

∂ρ

∫ ∞

0

∫ ∞

0

{
1

4π2

∫∫

R2
exp
(
−i tx′ − 1

2 tVt′
)

dt

}
dx

=
∂

∂ρ

1

4π2

∫∫

R2

exp(− 1
2 tVt′)

(i t1)(i t2)
dt

=
1

4π2

∫∫

R2
exp(− 1

2 tVt′) dt =
2π
√

|V−1|
4π2

=
1

2π
√

1 − ρ2
.
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We integrate with respect to ρ to find that, in agreement with Exercise (4.7.5),

P(X1 > 0, X2 > 0) =
1

4
+

1

2π
sin−1 ρ.

9. (a) We have that

E(eitYn ) = φ(t/(cn))n =
{

1 −
|t |
n

+ o(1/n)

}n

→ e−|t | as n → ∞,

and the Cauchy limit holds by the continuity theorem.

(b) In the usual way,

E(eit/U ) =
1

2

∫ 1

−1
eit/u du =

1

2

∫ 1

0
(e−it/u + eit/u) dx =

∫ 1

0
cos(t/u) du

=
∫ ∞

|t |

|t | cos x

x2
dx by the transformation x = t/u,

= 1 − |t |
∫ ∞

|t |

1 − cos x

x2
dx

= 1 −
1

2
π |t | + |t |

∫ |t |

0

1 − cos x

x2
dx = 1 − c|t | + o(t),

where c = π/2. We have used the fact that
∫∞

0 x−2(1 − cos x) dx = π/2, which may be proved
in a number of ways including by a contour integral in the complex plane. By part (a), the limiting
distribution of Yn is Cauchy.

5.10 Solutions. Two limit theorems

1. (a) Let {X i : i ≥ 1} be a collection of independent Bernoulli random variables with parameter 1
2 .

Then Sn =
∑n

1 X i is binomially distributed as bin(n, 1
2 ). Hence, by the central limit theorem,

2−n
∑

k:
|k− 1

2
n|≤ 1

2
x
√

n

(
n

k

)
= P

(
|Sn − 1

2 n|
1
2

√
n

≤ x

)
→ 8(x)−8(−x) =

∫ x

−x

1
√

2π
e
− 1

2
y2

dy,

where 8 is the N(0, 1) distribution function.

(b) Let {X i : i ≥ 1} be a collection of independent Poisson random variables, each with parameter 1.
Then Sn =

∑n
1 X i is Poisson with parameter n, and by the central limit theorem

e−n
∑

k:
|k−n|≤x

√
n

nk

k!
= P

(
|Sn − n|

√
n

≤ x

)
→ 8(x)−8(−x), as above.

2. A superficially plausible argument asserts that, if all babies look the same, then the number X of

correct answers in n trials is a random variable with the bin(n, 1
2 ) distribution. Then, for large n,

P

(
X − 1

2 n

1
2

√
n

> 3

)
≃ 1 −8(3) ≃ 1

1000
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by the central limit theorem. For the given values of n and X ,

X − 1
2 n

1
2

√
n

=
910 − 750

5
√

15
≃ 8.

Now we might say that the event {X − 1
2 n > 3

2

√
n} is sufficiently unlikely that its occurrence casts

doubt on the original supposition that babies look the same.

A statistician would level a good many objections at drawing such a clear cut decision from such
murky data, but this is beyond our scope to elaborate.

3. Clearly

φY (t) = E
{

E(eitY | X)
}

= E
{

exp
(

X (eit − 1)
)}

=
(

1

1 − (eit − 1)

)s

=
(

1

2 − eit

)s

.

It follows that

E(Y ) =
1

i
φ′

Y (0) = s, E(Y 2) = −φ′′
Y (0) = s2 + 2s,

whence var(Y ) = 2s. Therefore the characteristic function of the normalized variable Z = (Y −
EY )/

√
var(Y ) is

φZ (t) = e−it
√

s/2φY

(
t/

√
2s
)
.

Now,

log
{
φY

(
t/

√
2s
)}

= −s log
(
2 − eit/

√
2s
)

= s
(
eit/

√
2s − 1

)
+ 1

2 s
(
eit/

√
2s − 1

)2 + o(1)

= i t

√
1
2 s − 1

4 t2 − 1
4 t2 + o(1),

where the o(1) terms are as s → ∞. Hence log{φZ (t)} → − 1
2 t2 as s → ∞, and the result follows

by the continuity theorem (5.9.5).

Let P1, P2, . . . be an infinite sequence of independent Poisson variables with parameter 1. Then
Sn = P1 + P2 + · · · + Pn is Poisson with parameter n. Now Y has the Poisson distribution with
parameter X , and so Y is distributed as SX . Also, X has the same distribution as the sum of s

independent exponential variables, implying that X → ∞ as s → ∞, with probability 1. This
suggests by the central limit theorem that SX (and hence Y also) is approximately normal in the limit
as s → ∞. We have neglected the facts that s and X are not generally integer valued.

4. Since X1 is non-arithmetic, there exist integers n1, n2, . . . , nk with greatest common divisor 1
and such that P(X1 = ni ) > 0 for 1 ≤ i ≤ k. There exists N such that, for all n ≥ N , there exist non-
negative integers α1, α2, . . . , αk such that n = α1n1 +· · ·+αknk . If x is a non-negative integer, write
N = β1n1 +· · ·+βknk , N + x = γ1n1 +· · ·+γknk for non-negative integers β1, . . . , βk , γ1 . . . , γk .
Now Sn = X1 + · · · + Xn is such that

P(SB = N) ≥ P
(

X j = ni for Bi−1 < j ≤ Bi , 1 ≤ i ≤ k
)

=
k∏

i=1

P(X1 = ni )
βi > 0

where B0 = 0, Bi = β1 + β2 + · · · + βi , B = Bk . Similarly P(SG = N + x) > 0 where
G = γ1 + γ2 + · · · + γk . Therefore

P(SG − SG,B+G = x) ≥ P(SG = N + x)P(SB = N) > 0

where SG,B+G =
∑B+G

i=G+1 X i . Also, P(SB − SB,B+G = −x) > 0 as required.
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5. Let X1, X2, . . . be independent integer-valued random variables with mean 0, variance 1, span 1,

and common characteristic function φ. We are required to prove that
√

nP(Un = x) → e
− 1

2
x2
/
√

2π
as n → ∞ where

Un =
1

√
n

Sn =
X1 + X2 + · · · + Xn√

n

and x is any number of the form k/
√

n for integral k. The case of general µ and σ 2 is easily derived
from this.

By the result of Exercise (5.9.4), for any such x ,

P(Un = x) =
1

2π
√

n

∫ π
√

n

−π
√

n
e−it xφUn (t) dt,

since Un is arithmetic. Arguing as in the proof of the local limit theorem (6),

2π
∣∣√nP(Un = x)− f (x)

∣∣ ≤ In + Jn

where f is the N(0, 1) density function, and

In =
∫ π

√
n

−π
√

n

∣∣e−it x
(
φUn (t)− e

− 1
2 t2)∣∣ dt, Jn =

∫

|t |>π
√

n
|e−it x e

− 1
2 t2

| dt.

Now Jn = 2
√

2π
(
1 −8

(
π

√
n
))

→ 0 as n → ∞, where 8 is the N(0, 1) distribution function. As
for In , pick δ ∈ (0, π). Then

In ≤
∫ δ

√
n

−δ
√

n

∣∣φ(t/
√

n)n − e
− 1

2
t2 ∣∣ dt +

∫

δ
√

n<|t |<π
√

n

{∣∣φ
(
t/

√
n
)n∣∣+ e

− 1
2

t2}
dt.

The final term involving e
− 1

2
t2

is dealt with as was Jn. By Exercise (5.7.5a), there exists λ ∈ (0, 1)
such that |φ(t)| < λ if δ ≤ |t | ≤ π . This implies that

∫

δ
√

n<|t |<π
√

n

∣∣φ
(
t/

√
n
)n∣∣ dt ≤ (π − δ)λn√

n → 0,

and it remains only to show that

∫ δ
√

n

−δ
√

n

∣∣φ
(
t/

√
n
)n − e

− 1
2 t2 ∣∣ dt → 0 as n → ∞.

The proof of this is considerably simpler if we make the extra (though unnecessary) assumption

that m3 = E|X3
1| < ∞, and we assume this henceforth. It is a consequence of Taylor’s theorem (see

Theorem (5.7.4)) that φ(t) = 1− 1
2 t2 − 1

6 i t3m3 +o(t3) as t → 0. It follows that φ(t) = e
− 1

2 t2+t3θ(t)

for some finite θ(t). Now |ex − 1| ≤ |x |e|x |, and therefore

∣∣φ
(
t/

√
n
)n − e

− 1
2 t2 ∣∣ = e

− 1
2 t2 ∣∣exp

(
t3n

− 1
2 θ(tn

− 1
2 )
)

− 1
∣∣

≤
|t3θ(tn

− 1
2 )|

√
n

exp


 |t3θ(tn

− 1
2 )|

√
n

−
1

2
t2


 .
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Let Kδ = sup{|θ(u)| : |u| ≤ δ}, noting that Kδ < ∞, and pick δ sufficiently small that 0 < δ < π

and δKδ <
1
4 . For |t | < δ

√
n,

∣∣φ
(
t/

√
n
)n − e

− 1
2 t2 ∣∣ ≤ Kδ

|t |3
√

n
exp
(
t2δKδ − 1

2 t2) ≤ Kδ
|t |3
√

n
e
− 1

4 t2
,

and therefore

∫ δ
√

n

−δ
√

n

∣∣φ
(
t/

√
n
)n − e

− 1
2 t2 ∣∣ dt ≤

Kδ√
n

∫ δ
√

n

−δ
√

n
|t |3e

− 1
4 t2

dt → 0 as n → ∞

as required.

6. The second moment of the X i is

2

∫ e−1

0

x2

2x(log x)2
dx =

∫ −1

−∞

e2u

u2
du

(substitute x = eu), a finite integral. Therefore the X’s have finite mean and variance. The density
function is symmetric about 0, and so the mean is 0.

By the convolution formula, if 0 < x < e−1,

f2(x) =
∫ e−1

−e−1
f (y) f (x − y) dy ≥

∫ x

0
f (y) f (x − y) dy ≥ f (x)

∫ x

0
f (y) dy,

since f (x − y), viewed as a function of y, is increasing on [0, x]. Hence

f2(x) ≥
f (x)

2 log |x |
=

1

4|x |(log |x |)3

for 0 < x < e−1. Continuing this procedure, we obtain

fn(x) ≥
kn

|x |(log |x |)n+1
, 0 < x < e−1,

for some positive constant kn . Therefore fn(x) → ∞ as x → 0, and in particular the density function
of (X1 + · · · + Xn)/

√
n does not converge to the appropriate normal density at the origin.

7. We have for s > 0 that

φ(i s) =
1

√
2π

∫ ∞

0
exp
(
−(2x)−1 − xs

)
x−3/2 dx

=
1

√
2π

∫ ∞

0
exp
(
− 1

2 y2 − sy−2)2 dy by substituting x = y−2

= exp(−
√

2s),

by the result of Problem (5.12.18c), or by consulting a table of integrals. The required conclusion
follows by analytic continuation in the upper half-plane. See Moran (1968, p. 271).

8. (a) The sum Sn =
∑n

r=1 Xr has characteristic function E(eit Sn ) = φ(t)n = φ(tn2), whence

Un = Sn/n has characteristic function φ(tn) = E(eitnX1 ). Therefore,

P(Sn < c) = P(n X1 < c) = P
(

X1 <
c

n

)
→ 0 as n → ∞.
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(b) E(eitTn ) = φ(t) = E(eit X1 ).

9. (a) Yes, because Xn is the sum of independent identically distributed random variables with
non-zero variance.

(b) It cannot in general obey what we have called the central limit theorem, because var(Xn) =
(n2 − n) var(2) + nE(2)(1 − E(2)) and n var(X1) = nE(2)(1 − E(2)) are different whenever
var(2) 6= 0. Indeed the right ‘normalization’ involves dividing by n rather than

√
n. It may be shown

when var(2) 6= 0 that the distribution of Xn/n converges to that of the random variable 2.

10. Denote the r th vote by Br and let the lead of A over B when c votes have been counted be

Dc =
∑c

r=1 Br . Let Ev = Dλv/
√
λv and Fv = Dv/

√
v. By a suitable central limit theorem, the

pair (Ev, Fv) converges in distribution to the standard bivariate normal distribution with correlation

ρ = cov(Ev, Fv) =
1

v
√
λ

E(DλvDv) =
1

v
√
λ

E(D2
λv) =

√
λ.

The probability that A leads after λv and again after v votes is

P(Dλv > 0, Dv > 0) = P(Ev > 0, Fv > 0) →
1

4
+

1

2π
sin−1

√
λ as v → ∞,

by the result of Exercise (4.7.5). Adding the same probability for B gives the result.

11. Let X1, X2, . . . be independent random variables with the Poisson distribution with parameter 1,
so that Sn = X1 +· · ·+ Xn has the Poisson distribution with parameter n. In particular, (Sn − n)/

√
n

converges to the N(0, 1) distribution as n → ∞. By the local central limit theorem (5.10.9),

√
nP(Sn = n) →

1
√

2π
as n → ∞.

and the claim follows since P(Sn = n) = nne−n/n!.

12. Let Nk be the number of households of size k. The probability a random individual is in a
household of size x is

s(x) =
x Nx∑
k kNk

=
xg(x)∑
k kg(k)

where g(x) = Nx /
∑

k Nk is the proportion of households of size x . If the Nk are large, then
g(x) ≈ f (x), and

∑
k kg(k) ≈ µ.

13. The density function of L satisfies, for small dz,

fL (z)dz = P
(
L ∈ (z, z + dz)

)
+ o(dz)

=
n∑

r=1

P

(
L ∈ (z, z + dz),

Sr−1

Sn
≤ U ≤

Sr

Sn

)
+ o(dz)

=
n∑

r=1

P

(
Xr

Sn
∈ (z, z + dz),

Sr−1

Sn
≤ U ≤

Sr

Sn

)
+ o(dz)

=
n∑

r=1

P

(
Xr

Sn
∈ (z, z + dz)

)(
z + O(dz)

)
by conditioning

=
n∑

r=1

z fZ (z)dz + o(dz) = nz fZ (z)dz + o(dz),

whence fL(z) = nz fZ (z) = (z/EZ) fZ (z).
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14. We have An = Xn + 2Xn−1 +· · ·+ n X1, so that An is N(0, σ (n)2)where σ(n)2 =
∑n

j=1 j2 ∼
Cn3. Therefore, with B distributed as N(0, 1),

P(−1 < An < 1) = P

(
−

1

σ(n)
< B <

1

σ(n)

)
≤

C ′

n3/2
,

for some C ′ < ∞. This is summable, and the result follows by the forthcoming Borel–Cantelli
Lemma (7.3.10a).

15. Chance guessing corresponds to random variables X H and XS , respectively, with the binomial
distributions with respective means µH ≈ 4898, µS ≈ 4258, and standard deviations σH ≈ 50,
σS ≈ 46. Thus, YH = (X H − µH )/σH ≈ 6.4 and YS = (XS − µS)/σS ≈ 16.4 are realizations

of approximately N(0, 1) variables. With Z a standard normal variable, P(Z ≥ 6.4) ≈ 10−9 and

P(Z ≥ 16.4) ≈ e−128. These “astronomically” small numbers are beyond our practical experience.
Indeed the error in the binomial/normal approximation may be more significant.

5.11 Solutions. Large deviations

1. We may write Sn =
∑n

1 X i where the X i have moment generating function M(t) = 1
2 (e

t +e−t ).

Applying the large deviation theorem (5.11.4), we obtain that, for 0 < a < 1, P(Sn > an)1/n →
inf t>0{g(t)} where g(t) = e−at M(t). Now g has a minimum when et =

√
(1 + a)/(1 − a), where

it takes the value 1/
√
(1 + a)1+a(1 − a)1−a as required. If a ≥ 1, then P(Sn > an) = 0 for all n.

2. (i) Let Yn have the binomial distribution with parameters n and 1
2 . Then 2Yn − n has the same

distribution as the random variable Sn in Exercise (5.11.1). Therefore, if 0 < a < 1,

P(Yn − 1
2 n > 1

2 an)1/n = P(Sn > an)1/n →
1√

(1 + a)1+a(1 − a)1−a
,

and similarly for P(Yn − 1
2 n < − 1

2 an), by symmetry. Hence

T
1/n
n =

{
2nP

(
|Yn − 1

2 n| > 1
2 an

)}1/n →
4√

(1 + a)1+a(1 − a)1−a
.

(ii) This time let Sn = X1+· · ·+Xn , the sum of independent Poisson variables with parameter 1. Then
Tn = enP(Sn > n(1 + a)). The moment generating function of X1 − 1 is M(t) = exp(et − 1 − t),

and the large deviation theorem gives that T
1/n
n → e inf t>0{g(t)} where g(t) = e−at M(t). Now

g′(t) = (et − a − 1) exp(et − at − t − 1) whence g has a minimum at t = log(a + 1). Therefore

T
1/n
n → eg(log(1 + a)) = {e/(a + 1)}a+1.

3. Suppose that M(t) = E(et X ) is finite on the interval [−δ, δ]. Now, for a > 0, M(δ) ≥ eδaP(X >

a), so that P(X > a) ≤ M(δ)e−δa . Similarly, P(X < −a) ≤ M(−δ)e−δa .

Suppose conversely that such λ,µ exist. Then

M(t) ≤ E(e|t X |) =
∫

[0,∞)
e|t |x d F(x)

where F is the distribution function of |X |. Integrate by parts to obtain

M(t) ≤ 1 +
[
−e|t |x [1 − F(x)]

]∞
0 +

∫ ∞

0
|t |e|t |x [1 − F(x)] dx
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(the term ‘1’ takes care of possible atoms at 0). However 1 − F(x) ≤ µe−λx , so that M(t) < ∞ if
|t | is sufficiently small.

4. The characteristic function of Sn/n is {e−|t/n|}n = e−|t |, and hence Sn/n is Cauchy. Hence

P(Sn > an) =
∫ ∞

a

dx

π(1 + x2)
=

1

π

(π
2

− tan−1 a
)
.

5. We have
E(et Xr ) = 1 + pr (e

t − 1) ≤ exp{pr (e
t − 1)} for t > 0.

By Markov’s inequality, for t ≥ 0,

P
(
S > (1 + ǫ)µ

)
= P

(
et S > et (1+ǫ)µ)

≤
E(et S)

et (1+ǫ)µ ≤ exp

{
n∑

r=1

pr

[
(et − 1)− t (1 + ǫ)

]
}
.

The right side is minimized over t > 0 by choosing t = log(1 + ǫ), giving the required result.

5.12 Solutions to problems

1. The probability generating function of the sum is

{
1

6

6∑

i=1

s i

}10

=
(

1

6
s

)10
{

1 − s6

1 − s

}10

=
(

1

6
s

)10

(1 − 10s6 + · · · )(1 + 10s + · · · ).

The coefficient of s27 is

(
1

6

)10
{(

10

2

)(
14

5

)
−
(

10

1

)(
20

11

)
+
(

26

17

)}
.

2. (a) The initial sequences T, HT, HHT, HHH induce a partition of the sample space. By conditioning

on this initial sequence, we obtain f (k) = q f (k − 1) + pq f (k − 2) + p2q f (k − 3) for k > 3,

where p + q = 1. Also f (1) = f (2) = 0, f (3) = p3. In principle, this difference equation
may be solved in the usual way (see Appendix I). An alternative is to use generating functions.

Set G(s) =
∑∞

k=1 sk f (k), multiply throughout the difference equation by sk and sum, to find that

G(s) = p3s3/{1 − qs − pqs2 − p2qs3}. To find the coefficient of sk , factorize the denominator,
expand in partial fractions, and use the binomial series.

Another equation for f (k) is obtained by observing that X = k if and only if X > k − 4 and the
last four tosses were THHH. Hence

f (k) = qp3
(

1 −
k−4∑

i=1

f (i )

)
, k > 3.

Applying the first argument to the mean, we find that µ = E(X) satisfies µ = q(1+µ)+ pq(2+
µ)+ p2q(3 + µ)+ 3p3 and hence µ = (1 + p + p2)/p3.

As for HTH, consider the event that HTH does not occur in n tosses, and in addition the next
three tosses give HTH. The number Y until the first occurrence of HTH satisfies

P(Y > n)p2q = P(Y = n + 1)pq + P(Y = n + 3), n ≥ 2.
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[5.12.3]–[5.12.5] Solutions Generating functions and their applications

Sum over n to obtain E(Y ) = (pq + 1)/(p2q).

(b) G N (s) = (q + ps)n , in the obvious notation.

(i) P(2 divides N) = 1
2 {G N (1) + G N (−1)}, since only the coefficients of the even powers of s

contribute to this probability.

(ii) Let ω be a complex cube root of unity. Then the coefficient of P(X = k) in 1
3 {G N (1)+ G N (ω)+

G N (ω
2)} is

1
3 {1 + ω3 + ω6} = 1, if k = 3r,

1
3 {1 + ω + ω2} = 0, if k = 3r + 1,

1
3 {1 + ω2 + ω4} = 0, if k = 3r + 2,

for integers r . Hence 1
3 {G N (1) + G N (ω)+ G N (ω

2)} =
∑⌊ 1

3 n⌋
r=0 P(N = 3r), the probability that N

is a multiple of 3. Generalize this conclusion.

3. We have that T = k if no run of n heads appears in the first k − n − 1 throws, then there is a
tail, and then a run of n heads. Therefore P(T = k) = P(T > k − n − 1)qpn for k ≥ n + 1 where

p + q = 1. Finally P(T = n) = pn . Multiply by sk and sum to obtain a formula for the probability
generating function G of T :

G(s)− pnsn = qpn
∞∑

k=n+1

sk
∑

j>k−n−1

P(T = j) = qpn
∞∑

j=1

P(T = j)

n+ j∑

k=n+1

sk

=
qpnsn+1

1 − s

∞∑

j=1

P(T = j)(1 − s j ) =
qpnsn+1

1 − s
(1 − G(s)).

Therefore

G(s) =
pnsn − pn+1sn+1

1 − s + qpnsn+1
.

4. The required generating function is

G(s) =
∞∑

k=r

sk

(
k − 1

r − 1

)
pr (1 − p)k−r =

(
ps

1 − qs

)r

where p + q = 1. The mean is G ′(1) = r/p and the variance is G ′′(1)+ G ′(1)−{G ′(1)}2 = rq/p2.

5. It is standard, see equation (5.3.3), that p0(2n) =
(2n

n

)
(pq)n . Using Stirling’s formula,

p0(2n) ∼
(2n)

2n+ 1
2 e−2n

√
2π

{nn+ 1
2 e−n

√
2π}2

(pq)n =
(4pq)n
√
πn

.

The generating function F0(s) for the first return time is given by F0(s) = 1 − P0(s)
−1 where

P0(s) =
∑

n s2n p0(2n). Therefore the probability of ultimate return is F0(1) = 1 − λ−1 where, by
Abel’s theorem,

λ =
∑

n

p0(2n)

{
= ∞ if p = q = 1

2 ,

< ∞ if p 6= q.

Hence F0(1) = 1 if and only if p = 1
2 .
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6. (a) Rn = X2
n + Y 2

n satisfies

E(Rn+1 − Rn) = E
{
(X2

n+1 − X2
n)+ (Y 2

n+1 − Y 2
n )
}

= 2E(X2
n+1 − X2

n) = 2E
{

E(X2
n+1 − X2

n | Xn)
}

= 2E
{

1
4 [(Xn + 1)2 − X2

n] + 1
4 [(Xn − 1)2 − X2

n]
}

= 1.

Hence Rn = n + R0 = n.

(b) The quick way is to argue as in the solution to Exercise (5.3.4). Let Un = Xn +Yn , Vn = Xn −Yn .
Then U and V are simple symmetric random walks, and furthermore they are independent. Therefore

p0(2n) = P(U2n = 0, V2n = 0) = P(U2n = 0)P(V2n = 0) =
{(

1

2

)2n
(

2n

n

)}2

,

by (5.3.3). Using Stirling’s formula, p0(2n) ∼ (nπ)−1, and therefore
∑

n p0(2n) = ∞, implying
that the chance of eventual return is 1.

A longer method is as follows. The walk is at the origin at time 0 if and only if it has taken equal
numbers of leftward and rightward steps, and also equal numbers of upward and downward steps.
Therefore

p0(2n) =
(

1

4

)2n n∑

m=0

(2n)!

(m!)2{(n − m)!}2
=
(

1

2

)4n
(

2n

n

)2

.

7. (a) Let ei j be the probability the walk ever reaches j having started from i . Clearly ea0 =
ea,a−1ea−1,a−2 · · · e10, since a passage to 0 from a requires a passage to a − 1, then a passage to
a − 2, and so on. By homogeneity, ea0 = (e10)

a .

By conditioning on the value of the first step, we find that e10 = pe30 + qe00 = pe3
10 + q. The

cubic equation x = px3 + q has roots x = 1, c, d , where

c =
−p −

√
p2 + 4pq

2p
, d =

−p +
√

p2 + 4pq

2p
.

Now |c| > 1, and |d| ≥ 1 if and only if p2 + 4pq ≥ 9p2 which is to say that p ≤ 1
3 . It follows that

e10 = 1 if p ≤ 1
3 , so that ea0 = 1 if p ≤ 1

3 .

When p > 1
3 , we have that d < 1, and it is actually the case that e10 = d , and hence

ea0 =
(

−p +
√

p2 + 4pq

2p

)a

if p > 1
3 .

In order to prove this, it suffices to prove that ea0 < 1 for all large a; this is a minor but necessary
chore. Write Tn = Sn − S0 =

∑n
i=1 X i , where X i is the value of the i th step. Then

ea0 = P(Tn ≤ −a for some n ≥ 1) = P(nµ− Tn ≥ nµ+ a for some n ≥ 1)

≤
∞∑

n=1

P(nµ− Tn ≥ nµ+ a)

where µ = E(X1) = 2p − q > 0. As in the theory of large deviations, for t > 0,

P(nµ− Tn ≥ nµ+ a) ≤ e−t (nµ+a)
{

E(et (µ−X))
}n
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[5.12.8]–[5.12.8] Solutions Generating functions and their applications

where X is a typical step. Now E(et (µ−X)) = 1 + o(t) as t ↓ 0, and therefore we may pick t > 0

such that θ(t) = e−tµE(et (µ−X)) < 1. It follows that ea0 ≤
∑∞

n=1 e−taθ(t)n which is less than 1
for all large a, as required.

(b) Let vr be the probability of ever visiting r ≥ 1, having started at 0. By conditioning on the first
step,

vn =





qv2 + pe10 if n = 1,

p + qv3 if n = 2,

qvn+1 + pvn−2 if n ≥ 3,

where e10 is given in the first part of the solution. Solving the recursion vn = qvn+1 + pvn−2, we

obtain the auxiliary cubic qx3 − x2 + p = 0, with roots x = 1, r, s where

r =
p −

√
p2 + 4pq

2q
, s =

p +
√

p2 + 4pq

2q
.

Note that |r | < 1 and

s





> 1 for p > 1
3 ,

= 1 for p = 1
3 ,

∈ (0, 1) for p < 1
3 .

Suppose p > 1
3 . We have vn = A+ Brn for n ≥ 1 (since the n ≥ 3 recursion includes v1, v2, . . . ,

and the vn are bounded)). The boundary conditions become

A + Br = q(A + Br2)+ pe10, A + Br2 = p + q(A + Br3),

whence, on eliminating B,

A =
re10 − 1

r − 1
.

Now,

1

n
An =

1

n

n∑

r=1

(1 − vr ) → 1 − A,

so that

a = 1 − A =
r(1 − e10)

r − 1
.

When p = 1
2 , r = − 1

2 (
√

5 − 1) and e10 = 1
2 (

√
5 − 1), so that A = (5 −

√
5)/(1 +

√
5) and

a = 1
2 (7 − 3

√
5).

8. We have that

E(s X tY | X + Y = n) =
n∑

k=0

sk tn−k

(
n

k

)
pkqn−k = (ps + qt)n,

where p + q = 1. Hence G X,Y (s, t) = G(ps + qt) where G is the probability generating function
of X + Y . Now X and Y are independent, so that

G(ps + qt) = G X (s)GY (t) = G X,Y (s, 1)G X,Y (1, t) = G(ps + q)G(p + qt).

Write f (u) = G(1 + u), x = s − 1, y = t − 1, to obtain f (px + qy) = f (px) f (qy), a functional
equation valid at least when −2 < x, y ≤ 0. Now f is continuous within its disc of convergence,

and also f (0) = 1; the usual argument (see Problem (4.14.5)) implies that f (x) = eλx for some
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λ, and therefore G(s) = f (s − 1) = eλ(s−1). Therefore X + Y has the Poisson distribution with

parameter λ. Furthermore, G X (s) = G(ps + q) = eλp(s−1), whence X has the Poisson distribution
with parameter λp. Similarly Y has the Poisson distribution with parameter λq.

9. In the usual notation, Gn+1(s) = Gn(G(s)). It follows that G ′′
n+1(1) = G ′′

n(1)G
′(1)2 +

G ′
n(1)G

′′(1) so that, after some work, var(Zn+1) = µ2 var(Zn)+ µnσ 2. Iterate to obtain

var(Zn+1) = σ 2(µn + µn+1 + · · · + µ2n) =
σ 2µn(1 − µn+1)

1 − µ
, n ≥ 0,

for the case µ 6= 1. If µ = 1, then var(Zn+1) = σ 2(n + 1).

10. (a) Since the coin is unbiased, we may assume that each player, having won a round, continues
to back the same face (heads or tails) until losing. The duration D of the game equals k if and only
if k is the first time at which there has been either a run of r − 1 heads or a run of r − 1 tails; the
probability of this may be evaluated in a routine way. Alternatively, argue as follows. We record S

(for ‘same’) each time a coin shows the same face as its predecessor, and we record C (for ‘change’)
otherwise; start with a C . It is easy to see that each symbol in the resulting sequence is independent
of earlier symbols and is equally likely to be S or C . Now D = k if and only if the first run of r − 2
S’s is completed at time k. It is immediate from the result of Problem (5.12.3) that

G D(s) =
( 1

2 s)r−2(1 − 1
2 s)

1 − s + ( 1
2 s)r−1

.

(b) The probability that Ak wins is

πk =
∞∑

n=1

P
(

D = n(r − 1)+ k − 1
)
.

Let ω be a complex (r − 1)th root of unity, and set

Wk(s) =
1

r − 1

{
G D(s)+

1

ωk−1
G D(ωs)+

1

ω2(k−1)
G D(ω

2s)

+ · · · +
1

ω(r−2)(k−1)
G D(ω

r−2s)

}
.

It may be seen (as for Problem (5.12.2)) that the coefficient of s i in Wk(s) is P(D = i ) if i is of the
form n(r − 1)+ (k − 1) for some n, and is 0 otherwise. Therefore P(Ak wins) = Wk(1).

(c) The pool contains £D when it is won. The required mean is therefore

E(D | Ak wins) =
E
(

DI{Ak wins}
)

P(Ak wins)
=

W ′
k(1)

Wk(1)
.

(d) Using the result of Exercise (5.1.2), the generating function of the sequence P(D > k), k ≥ 0, is
T (s) = (1 − G D(s))/(1 − s). The required probability is the coefficient of sn in T (s).

11. (a) Let Tn be the total number of people in the first n generations. By considering the size Z1 of
the first generation, we see that

Tn = 1 +
Z1∑

i=1

Tn−1(i )
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[5.12.12]–[5.12.12] Solutions Generating functions and their applications

where Tn−1(1), Tn−1(2), . . . are independent random variables, each being distributed as Tn−1. Using
the compounding formula (5.1.25), Hn(s) = sG(Hn−1(s)).

(b) Let n → ∞ in part (a), and use continuity and monotonicity. (i) Send s ↑ 1 in the functional
equation to find that q = Q(1) satisfies q = G(q), whence q = 1 (since µ = G ′(1) < 1). (ii)
Differentiate and let s ↑ 1 to obtain Q′(1) = 1 + G ′(1)Q′(1), so that ET = 1 + µET . (iii)
Differentiate a second time.

(c) Solving q Q2 − Q + ps = for a probability generating function yields

Q(s) =
1 −

√
1 − 4pqs

2q
.

It is easy to see that

Q(1) =
{

p/q if p < q,

1 if p ≥ q.

Therefore, Q generates an improper distribution if p < q, and a proper distribution otherwise.

(d) Using the recursion of part (a), we have

H0(s) = s, H1(s) =
ps

1 − qs
, H2(s) =

(1 − qs)ps

1 − qs − pqs
,

and so on. Set Hn = yn/xn to obtain

yn

xn
=

ps

1 − qyn−1/xn−1
=

psxn−1

xn−1 − qyn−1
,

so that
yn = psxn−1, xn = xn−1 − qyn−1, n ≥ 1.

Therefore,
xn = xn−1 − pqsxn−1, subject to x0 = 1, x1 = 1 − qs.

The solution is

xn = A

(
1 + α

2

)n

+ B

(
1 − α

2

)2

, n ≥ 0,

where

α =
√

1 − 4pqs, A =
α + 1 − 2qs

2α
, B =

α − 1 + 2qs

2α
.

Finally,

Q(s) = lim
n→∞

yn(s)

xn(s)
=

2ps

1 +
√

1 − 4pqs
,

in agreement with part (c).

12. We have that

P(Zn > N | Zm = 0) =
P(Zn > N, Zm = 0)

P(Zm = 0)

=
∞∑

r=1

P(Zm = 0 | Zn = N + r)P(Zn = N + r)

P(Zm = 0)

=
∞∑

r=1

P(Zm−n = 0)N+r P(Zn = N + r)

P(Zm = 0)

≤
P(Zm = 0)N+1

P(Zm = 0)

∞∑

r=1

P(Zn = N + r) ≤ P(Zm = 0)N = Gm(0)
N .
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13. (a) We have that GW (s) = G N (G(s)) = eλ(G(s)−1). Also, GW (s)
1/n = eλ((G(s)−1)/n, the

same probability generating function as GW but with λ replaced by λ/n.

(b) We can suppose that H(0) < 1, since if H(0) = 1 then H(s) = 1 for all s, and we may take λ = 0
and G(s) = 1. We may suppose also that H(0) > 0. To see this, suppose instead that H(0) = 0

so that H(s) = sr
∑∞

j=0 s j h j+r for some sequence (hk) and some r ≥ 1 such that hr > 0. Find a

positive integer n such that r/n is non-integral; then H(s)1/n is not a power series, which contradicts
the assumption that H is infinitely divisible.

Thus we take 0 < H(0) < 1, and so 0 < 1 − H(s) < 1 for 0 ≤ s < 1. Therefore

log H(s) = log
(
1 − {1 − H(s)}

)
= λ

(
−1 + A(s)

)

where λ = − log H(0) and A(s) is a power series with A(0) = 0, A(1) = 1. Writing A(s) =∑∞
j=1 aj s j , we have that

d j

ds j
{H(s)eλ}1/n

∣∣∣∣∣
s=0

=
λ

n
j ! aj + o(n−1)

as n → ∞. Now H(s)1/n is a probability generating function, so that each such expression is non-
negative. Therefore aj ≥ 0 for all j , implying that A(s) is a probability generating function, as
required.

(c) Suppose e−λ(1−G) = e−µ(1−s) for some λ,µ > 0 and some probability generating function G .
Then G(s) = 1 − ρ(1 − s) where ρ = µ/λ. This is the situation when each Wi is 0 with probability
1 − ρ, and 1 otherwise.

14. It is clear from the definition of infinite divisibility that a distribution has this property if and only
if, for each n, there exists a characteristic function ψn such that φ(t) = ψn(t)

n for all t .

(a) The characteristic functions in question are

N(µ, σ 2) : φ(t) = e
itµ− 1

2
σ2t2

Poisson (λ) : φ(t) = eλ(e
it −1)

Ŵ(λ,µ) : φ(t) =
(

λ

λ− i t

)µ
.

In these respective cases, the ‘nth root’ ψn of φ is the characteristic function of the N(µ/n, σ 2/n),
Poisson (λ/n), and Ŵ(λ,µ/n) distributions.

(b) Suppose that φ is the characteristic function of an infinitely divisible distribution, and let ψn be a
characteristic function such that φ(t) = ψn(t)

n . Now |φ(t)| ≤ 1 for all t , so that

|ψn(t)| = |φ(t)|1/n →
{

1 if |φ(t)| 6= 0,

0 if |φ(t)| = 0.

For any value of t such that φ(t) 6= 0, it is the case that ψn(t) → 1 as n → ∞. To see this, suppose

instead that there exists θ satisfying 0 < θ < 2π such that ψn(t) → eiθ along some subsequence.
Then ψn(t)

n does not converge along this subsequence, a contradiction. It follows that

(∗) ψ(t) = lim
n→∞

ψn(t) =
{

1 if φ(t) 6= 0,

0 if φ(t) = 0.

Now φ is a characteristic function, so that φ(t) 6= 0 on some neighbourhood of the origin. Hence
ψ(t) = 1 on some neighbourhood of the origin, so that ψ is continuous at the origin. Applying the
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continuity theorem (5.9.5), we deduce that ψ is itself a characteristic function. In particular, ψ is
continuous, and hence ψ(t) = 1 for all t , by (∗). We deduce that φ(t) 6= 0 for all t .

15. We have that

P(N = n | S = N) =
P(S = n | N = n)P(N = n)∑
k P(S = k | N = k)P(N = k)

=
pnP(N = n)∑∞

k=1 pkP(N = k)
.

Hence E(x N | S = N) = G(px)/G(p).

If N is Poisson with parameter λ, then

E(x N | S = N) =
eλ(px−1)

eλ(p−1)
= eλp(x−1) = G(x)p .

Conversely, suppose that E(x N | S = N) = G(x)p . Then G(px) = G(p)G(x)p , valid for |x | ≤ 1,
0 < p < 1. Therefore f (x) = log G(x) satisfies f (px) = f (p) + p f (x), and in addition f has a
power series expansion which is convergent at least for 0 < x ≤ 1. Substituting this expansion into the

above functional equation for f , and equating coefficients of pi x j , we obtain that f (x) = −λ(1 − x)

for some λ ≥ 0. It follows that N has a Poisson distribution.

16. Certainly

G X (s) = G X,Y (s, 1) =
(

1 − (p1 + p2)

1 − p2 − p1s

)n

, GY (t) = G X,Y (1, t) =
(

1 − (p1 + p2)

1 − p1 − p2t

)n

,

G X+Y (s) = G X,Y (s, s) =
(

1 − (p1 + p2)

1 − (p1 + p2)s

)n

,

giving that X,Y , and X + Y have distributions similar to the negative binomial distribution. More
specifically,

P(X = k) =
(

n + k − 1

k

)
αk(1 − α)n, P(Y = k) =

(
n + k − 1

k

)
βk (1 − β)n,

P(X + Y = k) =
(

n + k − 1

k

)
γ k (1 − γ )n,

for k ≥ 0, where α = p1/(1 − p2), β = p2/(1 − p1), γ = p1 + p2.

Now

E(s X | Y = y) =
E(s X I{Y=y})

P(Y = y)
=

A

B

where A is the coefficient of t y in G X,Y (s, t) and B is the coefficient of t y in GY (t). Therefore

E(s X | Y = y) =
(

1 − p1 − p2

1 − p1s

)n ( p2

1 − p1s

)y/{(
1 − p1 − p2

1 − p1

)n ( p2

1 − p1

)y}

=
(

1 − p1

1 − p1s

)n+y

.

17. As in the previous solution,

G X (s) = e(α+γ )(s−1), GY (s) = e(β+γ )(t−1), G X+Y (s) = e(α+β)(s−1)eγ (s
2−1).
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18. (a) Substitute u = y/a to obtain

I (a, b) =
∫ ∞

0
exp(−y2 − a2b2 y−2)a−1 dy = a−1 I (1, ab).

(b) Differentiating through the integral sign,

∂ I

∂b
=
∫ ∞

0

{
−

2b

u2
exp(−a2u2 − b2u−2)

}
du

= −
∫ ∞

0
2 exp(−a2b2 y−2 − y2) dy = −2I (1, ab),

by the substitution u = b/y.

(c) Hence ∂ I/∂b = −2aI , whence I = c(a)e−2ab where

c(a) = I (a, 0) =
∫ ∞

0
e−a2u2

du =
√
π

2a
.

(d) We have that

E(e−t X ) =
∫ ∞

0
e−t x d

√
x

e−c/x−gx dx = 2d I
(√

g + t,
√

c
)

by the substitution x = y2.

(e) Similarly

E(e−t X ) =
∫ ∞

0
e−t x 1

√
2πx3

e−1/(2x) dx =
√

2

π
I

(
1

√
2
,
√

t

)

by substituting x = y−2.

19. (a) We have that

E(eitU ) = E
{

E(eit X/Y ) | Y )
}

= E{φX (t/Y )} = E{e− 1
2 t2/Y 2

}

=
∫ ∞

−∞
e
− 1

2 t2/y2 1
√

2π
e
− 1

2 y2
dy =

√
2

π
I

(
1

√
2
,

|t |
√

2

)
= e−|t |

in the notation of Problem (5.12.18). Hence U has the Cauchy distribution.

(b) Similarly

E(e−t V ) =
∫ ∞

−∞
e−t x−2 1

√
2π

e
− 1

2 x2
dx =

√
2

π
I

(
1

√
2
,
√

t

)
= e−

√
2t

for t > 0. Using the result of Problem (5.12.18e), V has density function

f (x) =
1

√
2πx3

e−1/(2x), x > 0.

(c) We have that W −2 = X−2 + Y −2 + Z−2. Therefore, using (b),

E(e−t W−2
) = e−3

√
2t = e−

√
18t = E(e−9V t )
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for t > 0. It follows that W −2 has the same distribution as 9V = 9X−2, and so W 2 has the same

distribution as 1
9 X2. Therefore, using the fact that both X and W are symmetric random variables, W

has the same distribution as 1
3 X , that is N(0, 1

9 ).

20. It follows from the inversion theorem that

F(x + h)− F(x)

h
=

1

2π
lim

N→∞

∫ N

−N

1 − e−ith

i t
e−it xφ(t) dt.

Since |φ| is integrable, we may use the dominated convergence theorem to take the limit as h ↓ 0
within the integral:

f (x) =
1

2π
lim

N→∞

∫ N

−N
e−it xφ(t) dt.

The condition that φ be absolutely integrable is stronger than necessary; note that the characteristic
function of the exponential distribution fails this condition, in reflection of the fact that its density
function has a discontinuity at the origin.

21. Let Gn denote the probability generating function of Zn . The (conditional) characteristic function
of Zn/µ

n is

E
(
eit Zn/µ

n ∣∣ Zn > 0
)

=
Gn(e

it/µn
)− Gn(0)

1 − Gn(0)
.

It is a standard exercise (or see Example (5.4.3)) that

Gn(s) =
µn − 1 − µs(µn−1 − 1)

µn+1 − 1 − µs(µn − 1)
,

whence by an elementary calculation

E
(
eit Zn/µ

n ∣∣ Zn > 0
)

→
µ− 1

µ− 1 − µi t
as n → ∞,

the characteristic function of the exponential distribution with parameter 1 − µ−1.

22. The imaginary part of φX (t) satisfies

1
2

{
φX (t)− φX (t)

}
= 1

2

{
φX (t)− φX (−t)

}
= 1

2

{
E(eit X )− E(e−it X )

}
= 0

for all t , if and only if X and −X have the same characteristic function, or equivalently the same
distribution.

23. (a) U = X + Y and V = X − Y are independent, so that φU+V = φUφV , which is to say that
φ2X = φX+Y φX−Y , or

φ(2t) =
{
φ(t)2

}{
φ(t)φ(−t)

}
= φ(t)3φ(−t).

Write ψ(t) = φ(t)/φ(−t). Then

ψ(2t) =
φ(2t)

φ(−2t)
=
φ(t)3φ(−t)

φ(−t)3φ(t)
= ψ(t)2.

Therefore

ψ(t) = ψ( 1
2 t)2 = ψ( 1

4 t)4 = · · · = ψ(t/2n)2
n

for n ≥ 0.
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However, as h → 0,

ψ(h) =
φ(h)

φ(−h)
=

1 − 1
2 h2 + o(h2)

1 − 1
2 h2 + o(h2)

= 1 + o(h2),

so that ψ(t) =
{

1 + o(t2/22n)
}2n

→ 1 as n → ∞, whence ψ(t) = 1 for all t , giving that
φ(−t) = φ(t). It follows that

φ(t) = φ( 1
2 t)3φ(− 1

2 t) = φ( 1
2 t)4 = φ(t/2n)2

2n
for n ≥ 1

=
{

1 −
1

2
·

t2

22n
+ o(t2/22n)

}22n

→ e
− 1

2 t2
as n → ∞,

so that X and Y are N(0, 1).

(b) With U = X + Y and V = X − Y , we have that ψ(s, t) = E(eisU+it V ) satisfies

(∗) ψ(s, t) = E(ei(s+t)X+i(s−t)Y ) = φ(s + t)φ(s − t).

Using what is given,

∂2ψ

∂t2

∣∣∣∣∣
t=0

= −E(V 2eisU ) = −E
{

eisU E(V 2 | U)
}

= −E(2eisU ) = −2φ(s)2.

However, by (∗),

∂2ψ

∂t2

∣∣∣∣∣
t=0

= 2
{
φ′′(s)φ(s)− φ′(s)2

}
,

yielding the required differential equation, which may be written as

d

ds
(φ′/φ) = −1.

Hence logφ(s) = a + bs − 1
2 s2 for constants a, b, whence φ(s) = e

− 1
2

s2
.

24. (a) Using characteristic functions, φZ (t) = φX (t/n)n = e−|t |.
(b) E|X i | = ∞.

25. (a) See the solution to Problem (5.12.24).

(b) This is much longer. Having established the hint, the rest follows thus:

fX+Y (y) =
∫ ∞

−∞
f (x) f (y − x) dx

=
1

π(4 + y2)

∫ ∞

−∞

{
f (x)+ f (y − x)

}
dx + J g(y) =

2

π(4 + y2)
+ J g(y)

where

J =
∫ ∞

−∞

{
x f (x)+ (y − x) f (y − x)

}
dx

= lim
M,N→∞

[
1

2π

{
log(1 + x2)− log

(
1 + (y − x)2

)}]N

−M

= 0.
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Finally,

fZ (z) = 2 fX+Y (2z) =
1

π(1 + z2)
.

26. (a) X1 + X2 + · · · + Xn .

(b) X1 − X ′
1, where X1 and X ′

1 are independent and identically distributed.

(c) X N , where N is a random variable with P(N = j) = pj for 1 ≤ j ≤ n, independent of
X1, X2, . . . , Xn .

(d)
∑M

j=1 Z j where Z1, Z2, . . . are independent and distributed as X1, and M is independent of the

Z j with P(M = m) = ( 1
2 )

m+1 for m ≥ 0.

(e) Y X1, where Y is independent of X1 with the exponential distribution parameter 1.

27. (a) (i) We require

φ(t) =
∫ ∞

−∞

2eit x

eπx + e−πx
dx .

First method. Consider the contour integral

IK =
∫

C

2eit z

eπz + e−πz
dz

where C is a rectangular contour with vertices at ±K , ±K + i . The integrand has a simple pole at

z = 1
2 i , with residue e

− 1
2 t
/(iπ). Hence, by Cauchy’s theorem,

IK →
2e

− 1
2 t

1 + e−t
=

1

cosh( 1
2 t)

as K → ∞.

Second method. Expand the denominator to obtain

1

cosh(πx)
=

∞∑

k=0

(−1)k exp
{
−(2k + 1)π |x |

}
.

Multiply by eit x and integrate term by term.

(ii) Define φ(t) = 1 − |t | for |t | ≤ 1, and φ(t) = 0 otherwise. Then

1

2π

∫ ∞

−∞
e−it xφ(t) dt =

1

2π

∫ 1

−1
e−it x (1 − |t |) dt

=
1

π

∫ 1

0
(1 − t) cos(t x) dt =

1

πx2
(1 − cos x).

Using the inversion theorem, φ is the required characteristic function.

(iii) In this case, ∫ ∞

−∞
eit x e−x−e−x

dx =
∫ ∞

0
y−it e−y dy = Ŵ(1 − i t)

where Ŵ is the gamma function.

(iv) Similarly,

∫ ∞

−∞
1
2 eit x e−|x | dx = 1

2

{∫ ∞

0
eit x e−x dx +

∫ ∞

0
e−it x e−x dx

}

=
1

2

{
1

1 − i t
+

1

1 + i t

}
=

1

1 + t2
.
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(v) We have that E(X) = −iφ′(0) = −Ŵ′(1). Now, Euler’s product for the gamma function states
that

Ŵ(z) = lim
n→∞

n! nz

z(z + 1) · · · (z + n)

where the convergence is uniform on a neighbourhood of the point z = 1. By differentiation,

Ŵ′(1) = lim
n→∞

{
n

n + 1

(
log n − 1 −

1

2
− · · · −

1

n + 1

)}
= −γ.

(b) By part (a)(ii), this is the characteristic function of Y/π where fY (y) = (1 − cos y)/(π y2).

The characteristic function of the given distribution is

φ(t) =
∞∑

n=−∞
eint f (n) =

1

2
+

4

π2

∞∑

k=0

cos{(2k + 1)t}
(2k + 1)2

.

Following the usual integrations, this may be seen to be the Fourier cosine series representation of
the given function ψ(t). The function ψ is even, and the result follows by the inversion theorem.
[We have used standard results of Fourier transform theory, in particular, that a continuous, piecewise
continuously differentiable function on R with period 2π is the sum of its Fourier series.]

28. (a) See Problem (5.12.27b).

(b) Suppose φ is the characteristic function of X . Since φ′(0) = φ′′(0) = φ′′′(0) = 0, we have that
E(X) = var(X) = 0, so that P(X = 0) = 1, and hence φ(t) = 1, a contradiction. Hence φ is not a
characteristic function.

(c) As for (b).

(d) We have that cos t = 1
2 (e

it + e−it ), whence φ is the characteristic function of a random variable

taking values ±1 each with probability 1
2 .

(e) By the same working as in the solution to Problem (5.12.27b), φ is the characteristic function of
the density function

f (x) =
{

1 − |x | if |x | < 1,

0 otherwise.

29. We have that

|1 − φ(t)| ≤ E|1 − eit X | = E
√
(1 − eit X )(1 − e−it X )

= E
√

2{1 − cos(t X)} ≤ E|t X |

since 2(1 − cos x) ≤ x2 for all x .

30. This is a consequence of Taylor’s theorem for functions of two variables:

φ(s, t) =
∑

m≤M
n≤N

sm tn

m! n!
φmn(0, 0)+ RM N (s, t)

where φmn is the derivative of φ in question, and RM N is the remainder. However, subject to appro-
priate conditions,

φ(s, t) =
∑

m≤M
n≤N

(i s)m(i t)n

m! n!
E(XmY n)+ o(s M t N )
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[5.12.31]–[5.12.33] Solutions Generating functions and their applications

whence the claim follows.

31. (a) We have that

x2

3
≤

x2

2!
−

x4

4!
≤ 1 − cos x

if |x | ≤ 1, and hence

∫

[−t−1,t−1]
(t x)2 d F(x) ≤

∫

[−t−1,t−1]
3{1 − cos(t x)} d F(x)

≤ 3

∫ ∞

−∞
{1 − cos(t x)} d F(x) = 3{1 − Re φ(t)}.

(b) Using Fubini’s theorem,

1

t

∫ t

0
{1 − Re φ(v)} dv =

∫ ∞

x=−∞

1

t

∫ t

v=0
{1 − cos(vx)} dv d F(x)

=
∫ ∞

−∞

(
1 −

sin(t x)

t x

)
d F(x)

≥
∫

x :
|t x |≥1

(
1 −

sin(t x)

t x

)
d F(x)

since 1 − (t x)−1 sin(t x) ≥ 0 if |t x | < 1. Also, sin(t x) ≤ (t x) sin 1 for |t x | ≥ 1, whence the last
integral is at least ∫

x :
|t x |≥1

(1 − sin 1) d F(x) ≥ 1
7 P(|X | ≥ t−1).

32. It is easily seen that, if y > 0 and n is large,

P
(
n(1 − Mn) > y

)
= P

(
Mn < 1 −

y

n

)
=

n∏

i=1

P
(

X i < 1 −
y

n

)
=
(

1 −
y

n

)n
→ e−y .

33. (a) The characteristic function of Yλ is

ψλ(t) = E
{

exp
(
i t (X − λ)/

√
λ
)}

= exp
{
λ(eit/

√
λ − 1)− i t

√
λ
}

= exp
{
− 1

2 t2 + o(1)
}

as λ → ∞. Now use the continuity theorem.

(b) In this case,

ψλ(t) = e−it
√
λ

(
1 −

i t
√
λ

)−λ
,

so that, as λ → ∞,

logψλ(t) = −i t
√
λ− λ log

(
1 −

i t
√
λ

)
= −i t

√
λ+ λ

(
i t
√
λ

−
t2

2λ
+ o(λ−1)

)
→ − 1

2 t2.

(c) Let Zn be Poisson with parameter n. By part (a),

P

(
Zn − n

√
n

≤ 0

)
→ 8(0) = 1

2
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Problems Solutions [5.12.34]–[5.12.36]

where8 is the N(0, 1) distribution function. The left hand side equals P(Zn ≤ n) =
∑n

k=0 e−nnk/k!.

34. If you are in possession of r − 1 different types, the waiting time for the acquisition of the next
new type is geometric with probability generating function

Gr (s) =
(n − r + 1)s

n − (r − 1)s
.

Therefore the characteristic function of Un = (Tn − n log n)/n is

ψn(t) = e−it log n
n∏

r=1

Gr (e
it/n) = n−it

n∏

r=1

{
(n − r + 1)eit/n

n − (r − 1)eit/n

}
=

n−it n!
∏n−1

r=0 (ne−it/n − r)
.

The denominator satisfies

n−1∏

r=0

(ne−it/n − r) = (1 + o(1))

n−1∏

r=0

(n − i t − r)

as n → ∞, by expanding the exponential function, and hence

lim
n→∞

ψn(t) = lim
n→∞

n−it n!
∏n−1

r=0 (n − i t − r)
= Ŵ(1 − i t),

where we have used Euler’s product for the gamma function:

n! nz

∏n
r=0(z + r)

→ Ŵ(z) as n → ∞

the convergence being uniform on any region of the complex plane containing no singularity of Ŵ.
The claim now follows by the result of part (iii) of Problem (5.12.27a).

35. Let Xn be uniform on [−n, n], with characteristic function

φn(t) =
∫ n

−n

1

2n
eit x dx =





sin(nt)

nt
if t 6= 0,

1 if t = 0.

It follows that, as n → ∞, φn(t) → δ0t , the Kronecker delta. The limit function is discontinuous at
t = 0 and is therefore not itself a characteristic function.

36. (a) Let G i (s) be the probability generating function of the number shown by the i th die, and
suppose that

G1(s)G2(s) =
12∑

k=2

1
11 sk =

s2(1 − s11)

11(1 − s)
,

so that 1 − s11 = 11(1 − s)H1(s)H2(s) where Hi (s) = s−1G i (s) is a real polynomial of degree 5.
However

1 − s11 = (1 − s)

5∏

k=1

(ωk − s)(ωk − s)

where ω1, ω1, . . . , ω5, ω5 are the ten complex eleventh roots of unity. The ωk come in conjugate

pairs, and therefore no five of the ten terms in
∏5

k=1(ωk − s)(ωk − s) have a product which is a real
polynomial. This is a contradiction.

363



[5.12.37]–[5.12.38] Solutions Generating functions and their applications

(b) The sum of the scores on two standard dice has generating function

G(s) = 1
36 s2(1 + s + s2 + s3 + s4 + s5)2

= 1
36 s2(1 + s)2(1 − s + s2)2(1 + s + s2)2

=
[

1
6 s(1 + s)(1 + s + s2)

]
·
[

1
6 s(1 + s)(1 − s + s2)2(1 + s + s2)

]

=
[

1
6 (s + 2s2 + 2s3 + s4)

]
·
[

1
6 (s + s3 + s4 + s5 + s6 + s8)

]
.

Therefore, two dice labelled 1, 2, 2, 3, 3, 4 and 1, 3, 4, 5, 6, 8, respectively, will generate a random
sum with the original distribution.

37. (a) Let H and T be the numbers of heads and tails. The joint probability generating function of
H and T is

G H,T (s, t) = E(s H tT ) = E(s H t N−H ) = E
{

E
(
(s/t)H t N

∣∣ N
)}

= E

{
t N
(

q +
ps

t

)N
}

where p = 1 − q is the probability of heads on each throw. Hence

G H,T (s, t) = G N (qt + ps) = exp {λ(qt + ps − 1)} .

It follows that

G H (s) = G H,T (s, 1) = eλp(s−1), GT (t) = G H,T (1, t) = eλq(s−1),

so that G H,T (s, t) = G H (s)GT (t), whence H and T are independent.

(b) Suppose conversely that H and T are independent, and write G for the probability generating
function of N . From the above calculation, G H,T (s, t) = G(qt + ps), whence G H (s) = G(q + ps)

and GT (t) = G(qt + p), so that G(qt + ps) = G(q + ps)G(qt + p) for all appropriate s, t . Write
f (x) = G(1 − x) to obtain f (x + y) = f (x) f (y), valid at least for all 0 ≤ x, y ≤ min{p, q}.
The only continuous solutions to this functional equation which satisfy f (0) = 1 are of the form

f (x) = eµx for some µ, whence it is immediate that G(x) = eλ(x−1) where λ = −µ.

38. The number of such paths π containing exactly n nodes is 2n−1, and each such π satisfies
P(B(π) ≥ k) = P(Sn ≥ k) where Sn = Y1 + Y2 + · · · + Yn is the sum of n independent Bernoulli

variables having parameter p (= 1 − q). Therefore E{Xn(k)} = 2n−1P(Sn ≥ k). We set k = nβ,
and need to estimate P(Sn ≥ nβ) as a function of β. By the large deviation theorem (5.11.4), for
p ≤ β < 1,

P(Sn ≥ nβ)1/n → inf
t>0

{
e−tβM(t)

}

where M(t) = E(etY1) = (q + pet ). With the aid of a little calculus, we find that

P(Sn ≥ nβ)1/n →
(

p

β

)β (1 − p

1 − β

)1−β
, p ≤ β < 1.

Hence

E{Xn(βn)} →
{

0 if γ (β) < 1,

∞ if γ (β) > 1,

where

γ (β) = 2

(
p

β

)β (1 − p

1 − β

)1−β
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Problems Solutions [5.12.39]–[5.12.41]

is a decreasing function of β. If p < 1
2 , there is a unique βc ∈ [p, 1) such that γ (βc) = 1; if p ≥ 1

2
then γ (β) > 1 for all β ∈ [p, 1) so that we may take βc = 1.

Turning to the final part,

P
(

Xn(βn) ≥ 1
)

≤ E{Xn(βn)} → 0 if β > βc.

It remains to show that P(Xn(βn) ≥ 1) → 1 if β < βc , and here we use some theory of branching
processes.

Let 0 < β < βc , so that γ (β) > 1. Since 2P(Sn ≥ nβ)1/n → γ (β) > 1, we may fix m ≥ 1 such

that 2P(Sm ≥ mβ)1/m > 1. From the binary tree T we construct a branching process B as follows.
The 0th generation of B contains the root ρ of T . The children of ρ are defined to be those vertices
x in the mth generation of T such that there are at least mβ black vertices on the unique path of T

from ρ to x . Thus the mean family-size in B is µ := 2mP(Sm ≥ mβ) > 1. Subsequent generations
are defined similarly. This branching process is supercritical since µ > 1, and therefore it survives to
infinity with some probability σ > 0. Therefore, P(Xkm(βkm) ≥ 1) ≥ σ for k ≥ 1.

Some tidying up is now needed. Write B
y
max(n) for the maximum number of black vertices on

paths of length n starting at y, and abbreviate B
ρ
max = Bmax. Note that Xn(k) ≥ 1 if and only if

Bmax(n) ≥ k.

With probability one, there exists K < ∞, and a vertex x at depth K m of T , such that the
branching process started at x continues forever. Since the path from the root to x has fixed length
K m,

Bmax(km) ≥ Bx
max((k − K )m) for k ≥ K .

For n ≥ K m, choose k such that km < n ≤ (k + 1)m, so that

Bmax(n) ≥ Bx
max((k − K )m).

Therefore, for β′ < β,

lim inf
n→∞

(
1

n
Bmax(n)

)
≥ lim inf

k→∞

(
1

(k + 1)m
Bx

max((k − K )m)

)
≥ β′

almost surely. The claim follows.

39. (a) The characteristic function of Xn satisfies

E
(
eit Xn

)
=
(

1 −
λ

n
+
λ

n
eit

)n

=
(

1 +
λ

n
[eit − 1]

)n

→ exp
(
λ[eit − 1]

)
,

the characteristic function of the Poisson distribution.

(b) Similarly,

E(eitYn/n) =
peit/n

1 − (1 − p)eit/n
→

λ

λ− i t

as n → ∞, the limit being the characteristic function of the exponential distribution.

40. If you cannot follow the hints, take a look at one or more of the following: Moran (1968, p. 389),
Breiman (1968, p. 186), Loève (1977, p. 287), Laha and Rohatgi (1979, p. 288).

41. With Yk = kXk , we have that E(Yk ) = 0, var(Yk ) = k2, E|Y 3
k | = k3 . Note that Sn =

Y1 + Y2 + · · · + Yn is such that

1

{var(Sn)}3/2

n∑

k=1

E|Y 3
k | ∼ c

n4

n9/2
→ 0
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as n → ∞, where c is a positive constant. Applying the central limit theorem ((5.10.5) or Problem
(5.12.40)), we find that

Sn√
var Sn

D−→ N(0, 1), as n → ∞,

where var Sn =
∑n

k=1 k2 ∼ 1
3 n3 as n → ∞.

42. We may suppose that µ = 0 and σ = 1; if this is not so, then replace X i by Yi = (X i − µ)/σ .

Let t = (t0, t1, t2, . . . , tn) ∈ Rn+1, and set t = n−1∑n
j=1 tj . The joint characteristic function of the

n + 1 variables X, Z1, Z2, . . . , Zn is

φ(t) = E

{
exp

(
i t0 X +

n∑

j=1

i tj Z j

)}
= E

{ n∏

j=1

exp

(
i

[
t0

n
+ tj − t

]
X j

)}

=
n∏

j=1

exp

(
−

1

2

[
t0

n
+ tj − t

]2
)

by independence. Hence

φ(t) = exp

(
−

1

2

n∑

j=1

[
t0

n
+ (tj − t)

]2)
= exp

{
−

t2
0

2n
−

1

2

n∑

j=1

(tj − t)2
}

where we have used the fact that
∑n

j=1(tj − t) = 0. Therefore

φ(t) = E
(
eit0 X

)
E

(
exp

{
i

n∑

1

(tj − t)X j

})
= E

(
eit0 X

)
E

(
exp

{
i

n∑

1

tj Z j

})
,

whence X is independent of the collection Z1, Z2, . . . , Zn . It follows that X is independent of

S2 = (n − 1)−1∑n
j=1 Z2

j . Compare with Exercise (4.10.5).

43. (i) Clearly, P(Y ≤ y) = P(X ≤ log y) = 8(log y) for y > 0, where8 is the N(0, 1) distribution
function. The density function of Y follows by differentiating.

(ii) We have that fa(x) ≥ 0 if |a| ≤ 1, and

∫ ∞

0
a sin(2π log x)

1

x
√

2π
e
− 1

2 (log x)2
dx =

∫ ∞

−∞

1
√

2π
a sin(2πy)e

− 1
2 y2

dy = 0

since sine is an odd function. Therefore
∫∞
−∞ fa(x) dx = 1, so that each such fa is a density function.

For any positive integer k, the kth moment of fa is
∫∞
−∞ xk f (x) dx + Ia(k) where

Ia(k) =
∫ ∞

−∞

1
√

2π
a sin(2πy)e

ky− 1
2 y2

dy = 0

since the integrand is an odd function of y − k. It follows that each fa has the same moments as f .

44. Here is one way of proving this. Let X1, X2, . . . be the steps of the walk, and let Sn be the
position of the walk after the nth step. Suppose µ = E(X1) satisfies µ < 0, and let em = P(Sn =
0 for some n ≥ 1 | S0 = −m) where m > 0. Then em ≤

∑∞
n=1 P(Tn > m) where Tn = X1 + X2 +

· · · + Xn = Sn − S0. Now, for t > 0,

P(Tn > m) = P(Tn − nµ > m − nµ) ≤ e−t (m−nµ)E(et (Tn−nµ)) = e−tm
{

etµM(t)
}n
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where M(t) = E(et (X1−µ)). Now M(t) = 1+O(t2) as t → 0, and therefore there exists t (> 0) such
that θ(t) = etµM(t) < 1 (remember that µ < 0). With this choice of t , em ≤

∑∞
n=1 e−tmθ(t)n → 0

as m → ∞, whence there exists K such that em < 1
2 for m ≥ K .

Finally, there exist δ, ǫ > 0 such that P(X1 < −δ) > ǫ, implying that P(SN < −K | S0 = 0) >

ǫN where N = ⌈K/δ⌉, and therefore

P(Sn 6= 0 for all n ≥ 1 | S0 = 0) ≥ (1 − eK )ǫ
N ≥ 1

2ǫ
N ;

therefore the walk is transient. This proof may be shortened by using the Borel–Cantelli lemma.

45. Obviously,

L =
{

a if X1 > a,

X1 + L̃ if X1 ≤ a,

where L̃ has the same distribution as L . Therefore,

E(s L) = saP(X1 > a)+
a∑

r=1

sr E(s L)P(X1 = r).

46. We have that

Wn =
{

Wn−1 + 1 with probability p,

Wn−1 + 1 + W̃n with probability q,

where W̃n is independent of Wn−1 and has the same distribution as Wn . Hence Gn(s) = psGn−1(s)+
qsGn−1(s)Gn(s). Now G0(s) = 1, and the recurrence relation may be solved by induction. (Alter-
natively use Problem (5.12.45) with appropriate X i .)

47. Let Wr be the number of flips until you first see r consecutive heads, so that P(Ln < r) =
P(Wr > n). Hence,

1 +
∞∑

n=1

snP(Ln < r) =
∞∑

n=0

snP(W > n) =
1 − E(sWr )

1 − s
,

where E(sWr ) = Gr (s) is given in Problem (5.12.46).

48. We have that

Xn+1 =
{

1
2 Xn with probability 1

2 ,

1
2 Xn + Yn with probability 1

2 .

Hence the characteristic functions satisfy

φn+1(t) = E(eit Xn+1) = 1
2φn(

1
2 t)+ 1

2φn(
1
2 t)

λ

λ − i t

= φn(
1
2 t)

λ− 1
2 i t

λ− i t
= φn−1(

1
4 t)

λ − 1
4 i t

λ− i t
= · · · = φ1(t2

−n)
λ− i t2−n

λ− i t
→

λ

λ− i t

as n → ∞. The limiting distribution is exponential with parameter λ.

49. We have that

∫ 1

0
G(s) ds = E

(∫ 1

0
s X ds

)
= E


 s X+1

X + 1

∣∣∣∣∣

1

0


 = E

(
1

X + 1

)
.
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[5.12.50]–[5.12.53] Solutions Generating functions and their applications

(a) (1−e−λ)/λ, (b)−(p/q2)(q+log p), (c) (1−qn+1)/[(n+1)p], (d)−[1+(p/q) log p]/ log p.

(e) Not if P(X + 1 > 0) = 1, by Jensen’s inequality (see Exercise (5.6.1)) and the strict concavity
of the function f (x) = 1/x . If Y = X + 1 is permitted to be negative, consider the case when

P(Y = 1) = p, P(Y = −2) = P(Y = − 1
2 ) = 1

2 (1 − p) for suitable p.

50. By compounding, as in Theorem (5.1.25), the sum has characteristic function

G N (φX (t)) =
pφX (t)

1 − qφX (t)
=

λp

λp − i t
,

whence the sum is exponentially distributed with parameter λp.

51. Consider the function G(x) = {E(X2)}−1
∫ x
−∞ y2 d F(y). This function is right-continuous and

increases from 0 to 1, and is therefore a distribution function. Its characteristic function is

∫ ∞

−∞

eit x

E(X2)
x2 d F(x) = −

1

E(X2)

d2

dt2
φ(t).

52. By integration, fX (x) = fY (y) = 1
2 , |x | < 1, |y| < 1. Since f (x, y) 6= f X (x) fY (y), X and Y

are not independent. Now,

fX+Y (z) =
∫ 1

−1
f (x, z − x) dx =

{
1
4 (z + 2) if − 2 < z < 0,

1
4 (2 − z) if 0 < z < 2,

the ‘triangular’ density function on (−2, 2). This is the density function of the sum of two independent
random variables uniform on (−1, 1).

53. By conditioning on X1,

m(x) = 1 +
∫ 1

0
m(x − u) du.

Differentiate (with retrospective justification) to obtain

m′(x) =
∫ 1

0
m′(x − u) du = m(x)− m(x − 1).

Now multiply through by e−sx and integrate over [0,∞), noting that limx↓0 m(x) = 1, to find that

−1 + sm∗(s) = m∗(s)− e−sm∗(s),

which yields the given m∗.

By swapping the integral and the summation twice, the given summation has Laplace transform

∫ ∞

0

( ⌊x⌋∑

r=0

(−1)r

r !
(x − r)r ex−r

)
e−sx dx =

∞∑

r=0

(−1)r

r !

∫ ∞

0
yreye−s(y+r) dy

=
∫ ∞

0
ey(1−s) exp{−ye−s} dy

=
1

e−s + s − 1
, s 6= 0,

where we substituted y = x − r in the intermediate step. This equals m∗(s), and the result follows
by the Laplace inversion theorem. Note that m is differentiable except on the integers.
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54. (a) This holds since, given Xr ≤ 1
2 (respectively, Xr >

1
2 ), we have that Xr is uniform on (0, 1

2 )

(respectively, on ( 1
2 , 1)).

(b, c) We have that {Sn} − Rn = k if and only if − 1
2 + k < Sn − Rn < k + 1

2 (neglecting events
of probability zero), which, by (a), has the same probability as P(2k − 1 < Yn < 2k + 1), where Yn

is the sum
∑n

r=1 Zr of independent random variables with the uniform distribution on (−1, 1). This
equals ∫ 2k+1

2k−1
fn(z) dz = 2 fn+1(2k),

where we have used the fact that Yn+1 = Yn + Zn+1. The characteristic function of fn+1 is

(t−1 sin t)n+1, so by Fourier inversion,

P
(
{Sn} − Rn = k

)
=

1

π

∫ ∞

−∞
cos(2kt)

(
sin t

t

)n+1

dt,

whence the result of (b) on setting k = 0.

55. (a) For a given set of Cartesian coordinates, consider the rotation U = (V1 + V2)/
√

2, W =
(V1 − V2)/

√
2, with V3 unchanged. By assumption, V1 and V2 are independent random variables

with equal variances. By Problem (5.12.23), V1 and V2 are normally distributed. By a similar rotation
in the x/z-plane, V3 is normal also.

By Problem (4.14.12), Z = V 2 has the χ2(3) distribution, with density function fZ (z) =
√

ze
− 1

2 z
/
√

2π for z > 0. By a change of variables, |V | has the Maxwell density f (v) =
√

2/πv2e
− 1

2 v
2

for v > 0.

(b) Let U be uniformly distributed on [0, 1] and independent of V , and let the first coordinate of R3 be
perpendicular to the planes. The required probability p(t) = P

(
U + tV1 ∈ [0, 1]

)
is the probability

that an N(0, t2) random variable lies in [−U, 1 − U ], that is,

p(t) =
∫ 1

0
du

∫ 1−u

−u

1

t
√

2π
e
− 1

2
x2/t2

dx

=
1

t
√

2π

{∫ 1

−1
e
− 1

2 x2/t2
dx −

∫ 1

0

(∫ −u

−1
e
− 1

2 x2/t2
dx +

∫ 1

1−u
e
− 1

2 x2/t2
dx

)
du

}
.

This gives the required answer on changing the order of integration in the double integrals.

(c) Finally, fT (t) = −dp/dt . The neater way to answer (b) and (c) is to use Exercise (4.3.12), to obtain
that T has the distribution of W/|V |, where V has the N(0, 1) distribution, and W is independent and
uniformly distributed on [0, 1].

56. Since the joint distribution function F(x, y) of the pair (X,Y ) depends only on r2 = x2 + y2,
the distribution of R is invariant with respect to θ .

(a) By independence and the assumption of rotation invariance, X cos θ and Y sin θ are independent,
whence the characteristic functions satisfy

φR(t) = E(eit X cos θ )E(eitY sin θ ) = φX (t cos θ)φY (t sin θ).

(b) Set θ = 0, 1
2π,π .

(c) Since X and −X have, by (b), the same distribution,

φX (t) = 1
2

∫ ∞

−∞
(eit x + e−it x ) d FX (x) =

∫ ∞

−∞
cos(t x) d FX (x),
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[5.12.56]–[5.12.56] Solutions Generating functions and their applications

which is a function of t2, say ψ(t2). The function ψ is continuous because φ is continuous.

(d) By part (a), ψ(t2) = ψ((t cos θ)2)ψ((t sin θ)2). Therefore, ψ is a continuous function satisfying

ψ(at2)ψ(bt2) = ψ((a + b)t2) for a, b > 0. By the result of Problem (4.14.5) or otherwise,

φX (t) = ψ(t2) = ect2
for some c ∈ R. It follows that X is N(0, σ 2) for some σ 2 ≥ 0.
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6

Markov chains

6.1 Solutions. Markov processes

1. The sequence X1, X2, . . . of independent random variables satisfies

P(Xn+1 = j | X1 = i1, . . . , Xn = in) = P(Xn+1 = j),

whence the sequence is a Markov chain. The chain is homogeneous if the X i are identically distributed.

2. (a) With Yn the outcome of the nth throw, Xn+1 = max{Xn,Yn+1}, so that

pi j =





0 if j < i

1
6 i if j = i

1
6 if j > i,

for 1 ≤ i, j ≤ 6. Similarly,

pi j (n) =
{

0 if j < i

( 1
6 i )n if j = i.

If j > i , then pi j (n) = P(Zn = j), where Zn = max{Y1,Y2, . . . ,Yn}, and an elementary calculation
yields

pi j (n) =
(

j

6

)n

−
(

j − 1

6

)n

, i < j ≤ 6.

(b) Nn+1 − Nn is independent of N1, N2, . . . , Nn , so that N is Markovian with

pi j =





1
6 if j = i + 1,

5
6 if j = i,

0 otherwise.

(c) The evolution of C is given by

Cr+1 =
{

0 if the die shows 6,

Cr + 1 otherwise,

whence C is Markovian with

pi j =





1
6 if j = 0,

5
6 if j = i + 1,

0 otherwise.



[6.1.3]–[6.1.4] Solutions Markov chains

(d) This time,

Br+1 =
{

Br − 1 if Br > 0,

Yr if Br = 0,

where Yr is a geometrically distributed random variable with parameter 1
6 , independent of the sequence

B0, B2, · · · , Br . Hence B is Markovian with

pi j =
{

1 if j = i − 1 ≥ 0,

( 5
6 )

j−1 1
6 if i = 0, j ≥ 1.

3. (i) If Xn = i , then Xn+1 ∈ {i − 1, i + 1}. Now, for i ≥ 1,

P(Xn+1 = i + 1 | Xn = i, B) = P(Xn+1 = i + 1 | Sn = i, B)P(Sn = i | Xn = i, B)

(∗)

+ P(Xn+1 = i + 1 | Sn = −i, B)P(Sn = −i | Xn = i, B)

where B = {Xr = ir for 0 ≤ r < n} and i0, i1, . . . , in−1 are integers. Clearly

P(Xn+1 = i + 1 | Sn = i, B) = p, P(Xn+1 = i + 1 | Sn = −i, B) = q,

where p (= 1 − q) is the chance of a rightward step. Let l be the time of the last visit to 0 prior to
the time n, l = max{r : ir = 0}. During the time-interval (l, n], the path lies entirely in either the
positive integers or the negative integers. If the former, it is required to follow the route prescribed by
the event B ∩ {Sn = i }, and if the latter by the event B ∩ {Sn = −i }. The absolute probabilities of
these two routes are

π1 = p
1
2 (n−l+i)

q
1
2 (n−l−i)

, π2 = p
1
2 (n−l−i)

q
1
2 (n−l+i)

,

whence

P(Sn = i | Xn = i, B) =
π1

π1 + π2
=

pi

pi + qi
= 1 − P(Sn = −i | Xn = i, B).

Substitute into (∗) to obtain

P(Xn+1 = i + 1 | Xn = i, B) =
pi+1 + qi+1

pi + qi
= 1 − P(Xn+1 = i − 1 | Xn = i, B).

Finally P(Xn+1 = 1 | Xn = 0, B) = 1.

(ii) If Yn > 0, then Yn − Yn+1 equals the (n + 1)th step, a random variable which is independent of
the past history of the process. If Yn = 0 then Sn = Mn , so that Yn+1 takes the values 0 and 1 with
respective probabilities p and q, independently of the past history. Therefore Y is a Markov chain
with transition probabilities

for i > 0, pi j =
{

p if j = i − 1

q if j = i + 1,
p0 j =

{
p if j = 0

q if j = 1.

The sequence Y is a random walk with a retaining barrier at 0.

4. For any sequence i0, i1, . . . of states,

P(Yk+1 = ik+1 | Yr = ir for 0 ≤ r ≤ k) =
P(Xns = is for 0 ≤ s ≤ k + 1)

P(Xns = is for 0 ≤ s ≤ k)

=
∏k

s=0 pis ,is+1
(ns+1 − ns)

∏k−1
s=0 pis ,is+1

(ns+1 − ns)

= pik ,ik+1
(nk+1 − nk) = P(Yk+1 = ik+1 | Yk = ik),
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where pi j (n) denotes the appropriate n-step transition probability of X .

(a) With the usual notation, the transition matrix of Y is

πi j =





p2 if j = i + 2,

2pq if j = i,

q2 if j = i − 2.

(b) With the usual notation, the transition probability πi j is the coefficient of s j in G(G(s))i .

5. Writing X = (X1, X2, . . . , Xn), we have that

P
(

F
∣∣ I (X) = 1, Xn = i

)
=

P
(

F, I (X) = 1, Xn = i
)

P
(
I (X) = 1, Xn = i

)

where F is any event defined in terms of Xn, Xn+1, . . . . Let A be the set of all sequences x =
(x1, x2, . . . , xn−1, i ) of states such that I (x) = 1. Then

P
(
F, I (X) = 1, Xn = i

)
=
∑

x∈A

P(F,X = x) = P(F | Xn = i )
∑

x∈A

P(X = x)

by the Markov property. Divide through by the final summation to obtain P
(

F
∣∣ I (X) = 1, Xn =

i
)

= P(F | Xn = i ).

6. Let Hn = {Xk = xk for 0 ≤ k < n, Xn = i }. The required probability may be written as

P(XT +m = j, HT )

P(HT )
=
∑

n P(XT +m = j, HT , T = n)

P(HT )
.

Now P(XT +m = j | HT , T = n) = P(Xn+m = j | Hn, T = n). Let I be the indicator function of
the event Hn ∩ {T = n}, an event which depends only upon the values of X1, X2, . . . , Xn . Using the
result of Exercise (6.1.5),

P(Xn+m = j | Hn, T = n) = P(Xn+m = j | Xn = i ) = pi j (m).

Hence

P(XT +m = j | HT ) =
pi j (m)

∑
n P(Hn, T = n)

P(HT )
= pi j (m).

7. Clearly

P(Yn+1 = j | Yr = ir for 0 ≤ r ≤ n) = P(Xn+1 = b | Xr = ar for 0 ≤ r ≤ n)

where b = h−1( j), ar = h−1(ir ); the claim follows by the Markov property of X .

It is easy to find an example in which h is not one-one, for which X is a Markov chain but Y is
not. The first part of Exercise (6.1.3) describes such a case if S0 6= 0.

8. (a) Not necessarily! Take as example the chains S and Y of Exercise (6.1.3). The sum is
Sn + Yn = Mn , which is not a Markov chain.

(b) Still not necessarily! Let X and Y be independent chains (defined on the same probability space)
with respective transition matrices

PX =
(

a 1 − a

1 − b b

)
, PY =

(
p 1 − p

1 − q q

)
,
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and state spaces {−1, 1} and {0, 2}. For general values of a, b, p, q,

P(Zn+1 = 1 | Zn = 1, Zn−1 = 3) 6= P(Zn+1 = 1 | Zn = 1, Zn−1 = −1).

(c) Since Z has independent increments, it is a Markov chain.

9. All of them. (a) Using the Markov property of X ,

P(Xm+r = k | Xm = im, . . . , Xm+r−1 = im+r−1) = P(Xm+r = k | Xm+r−1 = im+r−1).

(b) Let {even} = {X2r = i2r for 0 ≤ r ≤ m} and {odd} = {X2r+1 = i2r+1 for 0 ≤ r ≤ m − 1}.
Then,

P(X2m+2 = k | even) =
∑ ′ P(X2m+2 = k, X2m+1 = i2m+1, even, odd)

P(even)

=
∑ ′ P(X2m+2 = k, X2m+1 = i2m+1 | X2m = i2m)P(even, odd)

P(even)

= P(X2m+2 = k | X2m = i2m),

where the sum is taken over all possible values of is for odd s.

(c) With Yn = (Xn, Xn+1),

P
(
Yn+1 = (k, l)

∣∣Y0 = (i0, i1), . . . ,Yn = (in, k)
)

= P
(
Yn+1 = (k, l)

∣∣ Xn+1 = k
)

= P
(
Yn+1 = (k, l)

∣∣ Yn = (in, k)
)
,

by the Markov property of X .

10. We have by Lemma (6.1.8) that, with µ
(i)
j = P(X i = j),

LHS =
µ
(1)
x1

px1x2 · · · pxr−1,k
pk,xr+1

· · · pxn−1xn

µ
(1)
x1

· · · pxr−1xr+1 (2) · · · pxn−1xn

=
µ
(r−1)
xr−1

pxr−1,k
pk,xr+1

µ
(r−1)
xr−1

pxr−1xr+1 (2)
= RHS.

11. (a) Since Sn+1 = Sn + Xn+1, a sum of independent random variables, S is a Markov chain.

(b) We have that

P(Yn+1 = k | Yi = xi + xi−1 for 1 ≤ i ≤ n) = P(Yn+1 = k | Xn = xn)

by the Markov property of X . However, conditioning on Xn is not generally equivalent to conditioning
on Yn = Xn + Xn−1, so Y does not generally constitute a Markov chain.

(c) Zn = n X1 + (n − 1)X2 + · · · + Xn, so Zn+1 is the sum of Xn+1 and a certain linear combination
of Z1, Z2, . . . , Zn , and so cannot be Markovian.

(d) Since Sn+1 = Sn + Xn+1, Zn+1 = Zn + Sn + Xn+1, and Xn+1 is independent of X1, . . . , Xn ,
this is a Markov chain.

12. With 1 a row vector of 1’s, a matrix P is stochastic (respectively, doubly stochastic, sub-stochastic)
if P1′ = 1 (respectively, 1P = 1, P1′ ≤ 1, with inequalities interpreted coordinatewise). By recursion,
P satisfies any of these equations if and only if Pn satisfies the same equation.

13. Assume X is C-lumpable. For a, b ∈ J , the probability Pi (Yn = Cb) does not depend on the
choice of i ∈ Ca . Conversely, if the condition holds, then Pi (Yn+1 = Cn+1 | Yn = Cn, . . . ,Y1 = C1)

is independent of i , so Y is a Markov chain.
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6.2 Solutions. Classification of states

1. Let Ak be the event that the last visit to i , prior to n, took place at time k. Suppose that X0 = i ,
so that A0, A1, . . . , An−1 form a partition of the sample space. It follows, by conditioning on the Ai ,
that

pi j (n) =
n−1∑

k=0

pii (k)li j (n − k)

for i 6= j . Multiply by sn and sum over n (≥ 1) to obtain Pi j (s) = Pii (s)L i j (s) for i 6= j . Now
Pi j (s) = Fi j (s)Pj j (s) if i 6= j , so that Fi j (s) = L i j (s) whenever Pii (s) = Pj j (s).

As examples of chains for which Pii (s) does not depend on i , consider a simple random walk on
the integers, or a symmetric random walk on a complete graph.

2. Let i (6= s) be a state of the chain, and define ni = min{n : pis(n) > 0}. If X0 = i and Xni
= s

then, with probability one, X makes no visit to i during the intervening period [1, ni − 1]; this follows
from the minimality of ni . Now s is absorbing, and hence

P(no return to i | X0 = i ) ≥ P(Xni
= s | X0 = i ) > 0.

3. Let Ik be the indicator function of the event {Xk = i }, so that N =
∑∞

k=0 Ik is the number of
visits to i . Then

E(N) =
∞∑

k=0

E(Ik) =
∞∑

k=0

pii (k)

which diverges if and only if i is recurrent. There is another argument which we shall encounter in
some detail when solving Problem (6.15.5).

4. We write Pi (·) = P(· | X0 = i ). One way is as follows, another is via the calculation of Problem
(6.15.5). Note that Pi (Vj ≥ 1) = Pi (Tj < ∞).

(a) We have that

Pi (Vi ≥ 2) = Pi (Vi ≥ 2 | Vi ≥ 1)Pi (Vi ≥ 1) = Pi (Vi ≥ 1)2

by the strong Markov property (Exercise (6.1.6)) applied at the stopping time Ti . By iteration, Pi (Vi ≥
n) = Pi (Vi ≥ 1)n , and allowing n → ∞ gives the result.

(b) Suppose i 6= j . For m ≥ 1,

Pi (Vj ≥ m) = Pi (Vj ≥ m | Tj < ∞)Pi (Tj < ∞) = Pj (Vj ≥ m − 1)Pi (Tj < ∞)

by the strong Markov property. Now let m → ∞, and use the result of (a).

5. Let θ = P(Tj < Ti | X0 = i ) = P(Ti < Tj | X0 = j), and let N be the number of visits to j

before visiting i . Then

P(N ≥ 1 | X0 = i ) = P(Tj < Ti | X0 = i ) = θ.

Likewise, P(N ≥ k | X0 = i ) = θ(1 − θ)k−1 for k ≥ 1, whence

E(N | X0 = i ) =
∞∑

k=1

θ(1 − θ)k−1 = 1.

6. Let i 6= j and s ∈ (0, 1). The mean number of visits to j before T is
∑

n pi j (n)s
n = Pi j (s).

On the other hand, the chain visits j before T if and only if T > Tj , where Tj is the time of the first
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visit to j . The probability of this is P(T > Tj ) =
∑

n fi j sn = Fi j (s). If T > Tj , the chain visits j

before T a number of times with mean
∑

n pj j (n)s
n = Pj j (s). Therefore, Pi j (s) = Fi j (s)Pj j (s), as

required. The argument is similar when i = j , on remembering to count the initial state.

7. In the obvious notation, G = G(a, b,¬c; s) satisfies

E(sTab ) = Fab = E
(
sTab I (Tab < Tac)

)
+ E

(
sTab I (Tab > Tac)

)

= G + E
(
sTac I (Tab > Tac)

)
Fcb,

and similarly,

E(sTac) = Fac = E
(
sTac I (Tab > Tac)

)
+ G Fbc.

Now eliminate the brackets and solve for G .

The required probability G(a, b,¬c; 1) is obtained from the formula by L’Hôpital’s rule.

6.3 Solutions. Classification of chains

1. If r = 1, then state i is absorbing for i ≥ 1; also, 0 is transient unless a0 = 1.

Assume r < 1 and let J = sup{ j : aj > 0}. The states 0, 1, . . . , J form an irreducible recurrent
class; they are aperiodic if r > 0. All other states are transient. For 0 ≤ i ≤ J , the recurrence time
Ti of i satisfies P(Ti = 1) = r . If Ti > 1 then Ti may be expressed as the sum of

T
(1)
i := time to reach 0, given that the first step is leftwards,

T
(2)
i := time spent in excursions from 0 not reaching i ,

T
(3)
i := time taken to reach i in final excursion.

It is easy to see that E(T (1)i ) = 1 + (i − 1)/(1 − r) if i ≥ 1, since the waiting time at each

intermediate point has mean (1 − r)−1. The number N of such ‘small’ excursions has mass function
P(N = n) = αi (1 − αi )

n , n ≥ 0, where αi =
∑∞

j=i aj ; hence E(N) = (1 −αi )/αi . Each such small

excursion has mean duration

i−1∑

j=0

(
j

1 − r
+ 1

)
aj

1 − αi
= 1 +

i−1∑

j=0

jaj

(1 − αi )(1 − r)

and therefore

E
(
T
(2)
i

)
=

1

αi

{
(1 − αi )+

i−1∑

j=0

jaj

1 − r

}
.

By a similar argument,

E
(
T
(3)
i

)
=

1

αi

∞∑

j=i

(
1 +

j − i

1 − r

)
aj .

Combining this information, we obtain that

E(Ti ) = r + (1 − r)E
(
T
(1)
i + T

(2)
i + T

(3)
i

)
=

1

αi

(
1 − r +

∞∑

j=0

jaj

)
, i ≥ 1,

and a similar argument yields E(T0) = 1+
∑

j jaj/(1−r). The apparent simplicity of these formulae

suggests the possibility of an easier derivation; see Exercise (6.4.2). Clearly E(Ti ) < ∞ for i ≤ J

whenever
∑

j jaj < ∞, a condition which certainly holds if J < ∞.
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2. Assume that 0 < p < 1. The mean jump-size is 3p − 1, whence the chain is recurrent if and

only if p = 1
3 ; see Theorem (5.10.17).

3. (a) All states are absorbing if p = 0. Assume henceforth that p 6= 0. Diagonalize P to obtain

P = B3B−1 where

B =




1 1 1
1 0 −1
1 −1 1


 , B−1 =




1
4

1
2

1
4

1
2 0 − 1

2
1
4 − 1

2
1
4


 ,

3 =




1 0 0
0 1 − 2p 0
0 0 1 − 4p


 .

Therefore

Pn = B3nB−1 = B




1 0 0
0 (1 − 2p)n 0
0 0 (1 − 4p)n


B−1

whence pi j (n) is easily found.

In particular,

p11(n) = 1
4 + 1

2 (1 − 2p)n + 1
4 (1 − 4p)n , p22(n) = 1

2 + 1
2 (1 − 4p)n ,

and p33(n) = p11(n) by symmetry.

Now Fii (s) = 1 − Pii (s)
−1, where

P11(s) = P33(s) =
1

4(1 − s)
+

1

2{1 − s(1 − 2p)}
+

1

4{1 − s(1 − 4p)}
,

P22(s) =
1

2(1 − s)
+

1

2{1 − s(1 − 4p)}
.

After a little work one obtains the mean recurrence times µi = F ′
ii (1): µ1 = µ3 = 4, µ2 = 2.

(b) The chain has period 2 (if p 6= 0), and all states are positive and recurrent. By symmetry, the
mean recurrence times µi are equal. One way of calculating their common value (we shall encounter
an easier way in Section 6.4) is to observe that the sequence of visits to any given state j is a renewal
process (see Example (5.2.15)). Suppose for simplicity that p 6= 0. The times between successive
visits to j must be even, and therefore we work on a new time-scale in which one new unit equals two
old units. Using the renewal theorem (5.2.24), we obtain

pi j (2n) →
2

µj
if | j − i | is even, pi j (2n + 1) →

2

µj
if | j − i | is odd;

note that the mean recurrence time of j in the new time-scale is 1
2µj . Now

∑
j pi j (m) = 1 for all m,

and so, letting m = 2n → ∞, we find that 4/µ = 1 where µ is a typical mean recurrence time.

There is insufficient space here to calculate pi j (n). One way is to diagonalize the transition
matrix. Another is to write down a family of difference equations of the form p12(n) = p · p22(n −
1)+ (1 − p) · p42(n − 1), and solve them.

4. (a) By symmetry, all states have the same mean-recurrence time. Using the renewal-process
argument of the last solution, the common value equals 8, being the number of vertices of the cube.
Hence µv = 8.
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Alternatively, let s be a neighbour of v, and let t be a neighbour of s other than v. In the obvious
notation, by symmetry,

µv = 1 + 3
4µsv, µsv = 1 + 1

4µsv + 1
2µtv,

µtv = 1 + 1
2µsv + 1

4µtv + 1
4µwv, µwv = 1 + 1

4µwv + 3
4µtv,

a system of equations which may be solved to obtain µv = 8.

(b) Using the above equations, µwv = 40
3 , whence µvw = 40

3 by symmetry.

(c) The required number X satisfies P(X = n) = θn−1(1 − θ)2 for n ≥ 1, where θ is the probability
that the first return of the walk to its starting point precedes its first visit to the diametrically opposed
vertex. Therefore

E(X) =
∞∑

n=1

nθn−1(1 − θ)2 = 1.

5. (a) Let Pi (·) = P(· | X0 = i ). Since i is recurrent,

1 = Pi (Vi = ∞) = Pi (Vj = 0, Vi = ∞)+ Pi (Vj > 0, Vi = ∞)

≤ Pi (Vj = 0)+ Pi (Tj < ∞, Vi = ∞)

≤ 1 − Pi (Tj < ∞)+ Pi (Tj < ∞)Pj (Vi = ∞),

by the strong Markov property. Since i → j , we have that Pj (Vi = ∞) ≥ 1, which implies ηj i = 1.
Also, Pi (Tj < ∞) = 1, and hence j → i and j is recurrent. This implies ηi j = 1.

(b) This is an immediate consequence of Exercise (6.2.4b).

6. Let Pi (·) = P(· | X0 = i ). It is trivial that ηj = 1 for j ∈ A. For j 6∈ A, condition on the first
step and use the Markov property to obtain

ηj =
∑

k∈S

pj kP(TA < ∞ | X1 = k) =
∑

k

pj kηk .

If x = (xj : j ∈ S) is any non-negative solution of these equations, then xj = 1 ≥ ηj for j ∈ A. For
j 6∈ A,

xj =
∑

k∈S

pj k xk =
∑

k∈A

pj k +
∑

k 6∈A

pj k xk = Pj (TA = 1)+
∑

k 6∈A

pj k xk

= Pj (TA = 1)+
∑

k 6∈A

pj k

{∑

i∈A

pki +
∑

i 6∈A

pki xi

}
= Pj (TA ≤ 2)+

∑

k 6∈A

pj k

∑

i 6∈A

pki xi .

We obtain by iteration that, for j /∈ A,

xj = Pj (TA ≤ n)+
∑

pj k1
pk1k2

· · · pkn−1,kn xkn ≥ P(TA ≤ n),

where the sum is over all k1, k2, . . . , kn /∈ A. We let n → ∞ to find that xj ≥ Pj (TA < ∞) = ηj .

7. The first part follows as in Exercise (6.3.6). Suppose x = (xj : j ∈ S) is a non-negative solution
to the equations. As above, for j 6∈ A,

xj = 1 +
∑

k

pj k xk = Pj (TA ≥ 1)+
∑

k 6∈A

pj k

(
1 +

∑

i 6∈A

pki xi

)

= Pj (TA ≥ 1)+ Pj (TA ≥ 2)+ · · · + Pj (TA ≥ n)+
∑

pj k1
pk1k2

· · · pkk−1 kn xkn

≥
n∑

m=1

P(TA ≥ m),
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where the penultimate sum is over all paths of length n that do not visit A. We let n → ∞ to obtain
that xj ≥ Ej (TA) = ρj .

8. Yes, because the Sr and Tr are stopping times whenever they are finite. Whether or not the exit
times are stopping times depends on their exact definition. The times Ur = min{k > Ur−1 : XUr ∈
A, XUr +1 /∈ A} are not stopping times, but the times Ur + 1 are stopping times.

9. (a) Using the aperiodicity of j , there exist integers r1, r2, . . . , rs having highest common factor
1 and such that pj j (rk ) > 0 for 1 ≤ k ≤ s. There exists a positive integer M such that, if r ≥ M , then

r =
∑s

k=1 akrk for some sequence a1, a2, . . . , as of non-negative integers. Now, by the Chapman–
Kolmogorov equations,

pj j (r) ≥
s∏

k=1

pj j (rk)
ak > 0,

so that pj j (r) > 0 for all r ≥ M .

Finally, find m such that pi j (m) > 0. Then

pi j (r + m) ≥ pi j (m)pj j (r) > 0 if r ≥ M.

(b) Since there are only finitely many pairs i, j , the maximum R(P) = max{N(i, j) : i, j ∈ S} is
finite. Now R(P) depends only on the positions of the non-negative entries in the transition matrix P.
There are only finitely many subsets of entries of P, and so there exists f (n) such that R(P) ≤ f (n)

for all relevant n × n transition matrices P.

(c) Consider the two chains with diagrams in the figure beneath. In the case on the left, we have that
p11(5) = 0, and in the case on the right, we may apply the postage stamp lemma with a = n and
b = n − 1.

2

3

4

1

2

3 4

1

n

10. Let Xn be the number of green balls after n steps. Let ej be the probability that Xn is ever zero
when X0 = j . By conditioning on the first removal,

ej =
j + 2

2( j + 1)
ej+1 +

j

2( j + 1)
ej−1, j ≥ 1,

with e0 = 1. Solving recursively gives

(∗) ej = 1 − (1 − e1)

{
1 +

q1

p1
+ · · · +

q1q2 · · · qj−1

p1 p2 · · · pj−1

}
,

where

pj =
j + 2

2( j + 1)
, qj =

j

2( j + 1)
.

It is easy to see that

j−1∑

r=0

q1q2 · · · qj−1

p1 p2 · · · pj−1
= 2 −

2

j + 1
→ 2 as j → ∞.
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By the result of Exercise (6.3.6), we seek the minimal non-negative solution (ej ) to (∗), which is

attained when 2(1 − e1) = 1, that is, e1 = 1
2 . Hence

ej = 1 −
1

2

j−1∑

r=0

q1q2 · · · qj−1

p1 p2 · · · pj−1
=

1

j + 1
.

For the second part, let dj be the expected time until j − 1 green balls remain, having started with j

green balls and j + 2 red. We condition as above to obtain

dj = 1 +
j

2( j + 1)
{dj+1 + dj }.

We set ej = dj − (2 j + 1) to find that ( j + 2)ej = jej+1, whence ej = 1
2 j ( j + 1)e1. The expected

time to remove all the green balls is

n∑

j=1

dj =
n∑

j=1

{
ej + 2( j − 1)

}
= n(n + 2)+ e1

n∑

j=1

1
2 j ( j + 1).

The minimal non-negative solution is found by setting e1 = 0, and the conclusion follows by Exercise
(6.3.7).

6.4 Solutions. Stationary distributions and the limit theorem

1. Let Yn be the number of new errors introduced at the nth stage, and let G be the common probability
generating function of the Yn . Now Xn+1 = Sn + Yn+1 where Sn has the binomial distribution with
parameters Xn and q (= 1 − p). Thus the probability generating function Gn of Xn satisfies

Gn+1(s) = G(s)E(sSn ) = G(s)E{E(sSn | Xn)} = G(s)E{(p + qs)Xn }
= G(s)Gn(p + qs) = G(s)Gn

(
1 − q(1 − s)

)
.

Therefore, for s < 1,

Gn(s) = G(s)G
(
1 − q(1 − s)

)
Gn−2(1 − q2(1 − s)) = · · ·

= G0

(
1 − qn(1 − s)

) n−1∏

r=0

G
(
1 − qr (1 − s)

)
→

∞∏

r=0

G
(
1 − qr (1 − s)

)

as n → ∞, assuming q < 1. This infinite product is therefore the probability generating function of

the stationary distribution whenever this exists. If G(s) = eλ(s−1), then

∞∏

r=0

G
(
1 − qr (1 − s)

)
= exp

{
λ(s − 1)

∞∑

r=0

qr

}
= eλ(s−1)/p,

so that the stationary distribution is Poisson with parameter λ/p.

2. (6.3.1): Assume for simplicity that sup{ j : aj > 0} = ∞. The chain is irreducible if r < 1.
Look for a stationary distribution πππ with probability generating function G . We have that

π0 = a0π0 + (1 − r)π1, πi = aiπ0 + rπi + (1 − r)πi+1 for i ≥ 1.
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Hence
sG(s) = π0s A(s)+ rs(G(s)− π0)+ (1 − r)(G(s)− π0)

where A(s) =
∑∞

j=0 aj s j , and therefore

G(s) = π0

(
s A(s)− (1 − r + sr)

(1 − r)(s − 1)

)
.

Taking the limit as s ↑ 1, we obtain by L’Hôpital’s rule that

G(1) = π0

(
A′(1)+ 1 − r

1 − r

)
.

There exists a stationary distribution if and only if r < 1 and A′(1) < ∞, in which case

G(s) =
s A(s)− (1 − r + sr)

(s − 1)(A′(1)+ 1 − r)
.

Hence the chain is positive recurrent if and only if r < 1 and A′(1) < ∞. The mean recurrence time
µi is found by expanding G and setting µi = 1/πi .

(6.3.2): Assume that 0 < p < 1, and suppose first that p 6= 1
3 . Look for a solution {yj : j 6= 0} of

the equations

(∗) yi =
∑

j 6=0

pi j yj , i 6= 0,

as in (6.4.10). Away from the origin, this equation is yi = qyi−1 + pyi+2 where p + q = 1, with

auxiliary equation pθ3 − θ + q = 0. Now pθ3 − θ + q = p(θ − 1)(θ − α)(θ − β) where

α =
−p −

√
p2 + 4pq

2p
< −1, β =

−p +
√

p2 + 4pq

2p
> 0.

Note that 0 < β < 1 if p > 1
3 , while β > 1 if p < 1

3 .

For p > 1
3 , set

yi =
{

A + Bβi if i ≥ 1,

C + Dαi if i ≤ −1,

the constants A, B,C, D being chosen in such a manner as to ‘patch over’ the omission of 0 in the
equations (∗):

(∗∗) y−2 = qy−3, y−1 = qy−2 + py1, y1 = py3.

The result is a bounded non-zero solution {yj } to (∗), and it follows that the chain is transient.

For p < 1
3 , follow the same route with

yi =
{

0 if i ≥ 1,

C + Dαi + Eβi if i ≤ −1,

the constants being chosen such that y−2 = qy−3, y−1 = qy−2.

Finally suppose that p = 1
3 , so that α = −2 and β = 1. The general solution to (∗) is

yi =
{

A + Bi + Cαi if i ≥ 1,

D + Ei + Fαi if i ≤ −1,
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subject to (∗∗). Any bounded solution has B = E = C = 0, and (∗∗) implies that A = D = F = 0.
Therefore the only bounded solution to (∗) is the zero solution, whence the chain is recurrent. The
equation x = xP is satisfied by the vector x of 1’s; by an appeal to (6.4.6), the walk is null.

(6.3.3): (a) Solve the equation πππ = πππP to find a stationary distribution πππ = ( 1
4 ,

1
2 ,

1
4 ) when p 6= 0.

Hence the chain is positive and recurrent, with µ1 = π
−1
1 = 4, and similarly µ2 = 2, µ3 = 4.

(b) Similarly, πππ = ( 1
4 ,

1
4 ,

1
4 ,

1
4 ) is a stationary distribution, and µi = π−1

i = 4.

(6.3.4): (a) The stationary distribution may be found to be πi = 1
8 for all i , so that µv = 8.

3. The quantities X1, X2, . . . , Xn depend only on the initial contents of the reservoir and the rainfalls
Y0,Y1, . . . ,Yn−1. The contents on day n + 1 depend only on the value Xn of the previous contents
and the rainfall Yn . Since Yn is independent of all earlier rainfalls, the process X is a Markov chain.
Its state space is S = {0, 1, 2, . . . , K − 1} and it has transition matrix

P =




g0 + g1 g2 g3 · · · gK−1 G K

g0 g1 g2 · · · gK−2 G K−1
0 g0 g1 · · · gK−3 G K−2
..
.

..

.
..
.

. . .
..
.

..

.

0 0 0 · · · g0 G1




where gi = P(Y1 = i ) and G i =
∑∞

j=i gj . The equation πππ = πππP is as follows:

π0 = π0(g0 + g1)+ π1g0,

πr = π0gr+1 + π1gr + · · · + πr+1g0, 0 < r < K − 1,

πK−1 = π0G K + π1G K−1 + · · · + πK−1G1.

The final equation is a consequence of the previous ones, since
∑K−1

i=0 πi = 1. Suppose then that
ννν = (ν1, ν2, . . .) is an infinite vector satisfying

ν0 = ν0(g0 + g1)+ ν1g0, νr = ν0gr+1 + ν1gr + · · · + νr+1g0 for r > 0.

Multiply through the equation for νr by sr+1, and sum over r to find (after a little work) that

N(s) =
∞∑

i=0

νi s i , G(s) =
∞∑

i=0

gi s
i

satisfy s N(s) = N(s)G(s)+ ν0g0(s − 1), and hence

1

ν0
N(s) =

g0(s − 1)

s − G(s)
.

The probability generating function of the πi is therefore a constant multiplied by the coefficients of

s0, s1, . . . , s K−1 in g0(s −1)/(s −G(s)), the constant being chosen in such a way that
∑K−1

i=0 πi = 1.

When G(s) = p(1 − qs)−1, then g0 = p and

g0(s − 1)

s − G(s)
=

p(1 − qs)

p − qs
= p +

q

1 − (qs/p)
.

The coefficient of s0 is 1, and of s i is qi+1/pi if i ≥ 1. The stationary distribution is therefore given

by πi = qπ0(q/p)i for i ≥ 1, where

π0 =
1

1 +
∑K−1

1 q(q/p)i
=

p − q

p − q + q2
(
1 − (q/p)K−1

)

382



Stationary distributions and the limit theorem Solutions [6.4.4]–[6.4.9]

if p 6= q, and π0 = 2/(K + 1) if p = q = 1
2 .

4. The transition matrices

P1 =
(

1 0
0 1

)
, P2 =




1
2

1
2 0 0

1
2

1
2 0 0

0 0 1
2

1
2

0 0 1
2

1
2




have respective stationary distributions πππ1 = (p, 1 − p) and πππ2 =
(

1
2 p, 1

2 p, 1
2 (1 − p), 1

2 (1 − p)
)

for any 0 ≤ p ≤ 1.

5. (a) Set i = 1, and find an increasing sequence n1(1), n1(2), . . . along which x1(n) converges.
Now set i = 2, and find a subsequence of (n1( j) : j ≥ 1) along which x2(n) converges; denote
this subsequence by n2(1), n2(2), . . . . Continue inductively to obtain, for each i , a sequence ni =
(ni ( j) : j ≥ 1), noting that:

(i) ni+1 is a subsequence of ni , and

(ii) limr→∞ xi (ni (r)) exists for all i .

Finally, define mk = nk(k). For each i ≥ 1, the sequence mi ,mi+1, . . . is a subsequence of ni , and
therefore limr→∞ xi (mr ) exists.

(b) Let S be the state space of the irreducible Markov chain X . There are countably many pairs i , j

of states, and part (a) may be applied to show that there exists a sequence (nr : r ≥ 1) and a family
(αi j : i, j ∈ S), not all zero, such that pi j (nr ) → αi j as r → ∞.

Now X is recurrent, since otherwise pi j (n) → 0 for all i, j . The coupling argument in the
proof of the limit theorem (6.4.20) is valid, so that pa j (n) − pbj (n) → 0 as n → ∞, implying that
αa j = αbj for all a, b, j .

6. Just check that π satisfies π = πP and
∑
v πv = 1.

7. Let Xn be the Markov chain which takes the value r if the walk is at any of the 2r nodes at level

r . Then Xn executes a simple random walk with retaining barrier having p = 1 − q = 2
3 , and it is

thus transient by Example (6.4.18).

8. Assume that Xn includes particles present just after the entry of the fresh batch Yn . We may write

Xn+1 =
Xn∑

i=1

Bi,n + Yn

where the Bi,n are independent Bernoulli variables with parameter 1 − p. Therefore X is a Markov
chain. It follows also that

Gn+1(s) = E(s Xn+1) = Gn(p + qs)eλ(s−1).

In equilibrium, Gn+1 = Gn = G , where G(s) = G(p + qs)eλ(s−1). There is a unique stationary

distribution, and it is easy to see that G(s) = eλ(s−1)/p must therefore be the solution. The answer is
the Poisson distribution with parameter λ/p.

9. The Markov chain X has a uniform transition distribution pj k = 1/( j + 2), 0 ≤ k ≤ j + 1.
Therefore,

E(Xn) = E
(
E(Xn | Xn−1)

)
= 1

2

(
1 + E(Xn−1)

)
= · · ·

= 1 − ( 1
2 )

n + ( 1
2 )

n X0.
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[6.4.10]–[6.4.11] Solutions Markov chains

The equilibrium probability generating function satisfies

G(s) = E(s Xn ) = E
(
E(s Xn | Xn−1)

)
= E

{
1 − s Xn+2

(1 − s)(Xn + 2)

}
,

whence
d

ds

{
(1 − s)G(s)

}
= −sG(s),

subject to G(1) = 1. The solution is G(s) = es−1, which is the probability generating function of
the Poisson distribution with parameter 1.

10. This is the claim of Theorem (6.4.13). Without loss of generality we may take s = 0 and the yj to
be non-negative (since if the yj solve the equations, then so do yj + c for any constant c). Let T be the

matrix obtained from P by deleting the row and column labelled 0, and write Tn = (ti j (n) : i, j 6= 0).

Then Tn includes all the n-step probabilities of paths that never visit zero.

We claim first that, for all i, j it is the case that ti j (n) → 0 as n → ∞. The quantity ti j (n) may
be thought of as the n-step transition probability from i to j in an altered chain in which s has been
made absorbing. Since the original chain is assumed irreducible, all states communicate with s, and
therefore all states other than s are transient in the altered chain, implying by the summability of ti j (n)

(Corollary (6.2.4)) that ti j (n) → 0 as required.

Iterating the inequality y ≥ Ty yields y ≥ Tny, which is to say that

yi ≥
∞∑

j=1

ti j (n)yj ≥ min
s≥1

{yr+s}
∞∑

j=r+1

ti j (n), i ≥ 1.

Let An = {Xk 6= 0 for k ≤ n}. For i ≥ 1,

P(A∞ | X0 = i ) = lim
n→∞

P(An | X0 = i ) =
∞∑

j=1

ti j (n)

≤ lim
n→∞





r∑

j=1

ti j (n)+
yi

mins≥1{yr+s}



 .

Let ǫ > 0, and pick R such that
yi

mins≥1{yR+s}
< ǫ.

Take r = R and let n → ∞, implying that P(A∞ | X0 = i ) = 0. It follows that 0 is recurrent, and
by irreducibility that all states are recurrent.

11. By Exercise (6.4.6), the stationary distribution is πA = πB = πD = πE = 1
6 , πC = 1

3 .

(a) By Theorem (6.4.3), the answer is µA = 1/πA = 6.

(b) By the argument around Lemma (6.4.5), the answer is ρD(A) = πDµA = πD/πA = 1.

(c) Using the same argument, the answer is ρC(A) = πC/πA = 2.

(d) Let Pi (·) = P(· | X0 = i ), let Tj be the time of the first passage to state j , and let νi = Pi (TA < TE).
By conditioning on the first step,

νB = 1
2 + 1

2νC, νC = 1
4 + 1

4νB + 1
4νD, νA = 1

2νB + 1
2νC, νD = 1

2νC,

with solution νA = 5
8 , νB = 3

4 , νC = 1
2 , νD = 1

4 .
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Stationary distributions and the limit theorem Solutions [6.4.12]–[6.4.14]

A typical conditional transition probability τi j = Pi (X1 = j | TA < TE) is calculated as follows:

τAB = PA(X1 = B | TA < TE) =
PA(X1 = B)PB(TA < TE)

PA(TA < TE)
=

νB

2νA
=

3

5
,

and similarly,

τAC = 2
5 , τBA = 2

3 , τBC = 1
3 , τCA = 1

2 , τCB = 3
8 , τCD = 1

8 , τDC = 1.

We now compute the conditional expectations µ̃i = Ei (TA | TA < TE) by conditioning on the first

step of the conditioned process. This yields equations of the form µ̃A = 1 + 3
5 µ̃B + 2

5 µ̃C, whose

solution gives µ̃A = 14
5 .

(e) Either use the stationary distribution of the conditional transition matrix τ , or condition on the first
step as follows. With N the number of visits to D, and ηi = Ei (N | TA < TE), we obtain

ηA = 3
5ηB + 2

5ηC, ηB = 0 + 1
3ηC, ηC = 0 + 3

8ηB + 1
8 (1 + ηD), ηD = ηC,

whence in particular ηA = 1
10 .

12. By Exercise (6.4.6), the stationary distribution has πA = 1
14 , πB = 1

7 . Using the argument
around Lemma (6.4.5), the answer is ρB(A) = πBµA = πB/πA = 2.

13. The bottom card B moves upwards one step at a time, at each occasion that the then top card is
repositioned beneath the current position of B. When at position j ≥ 2 (counting from the top), it
moves up one step with probability 1− ( j − 1)/52 on any given round, so that the mean time before it
arrives at position j − 1 is ej = 52(52 − j + 1). The mean time ET to reach the top from the bottom
is

ET =
52∑

j=2

ej = 52

51∑

r=1

1

r
≤ 52(1 + log 52),

and the answer is 1 + ET .

At any given time, the cards below B are in a uniformly random order. When B is at the top,
there are 51! equally likely orders for the other cards. On subsequent reinsertion of B, each of the 52!
orders have equal probability.

14. While this may be done as in the previous exercise, it is more interesting to use a coupling
argument, as follows. The state space may be taken as the set5 of permutations of {1, 2, . . . , 52}, and
it is easily checked that the Markov chain on 5 is irreducible with invariant distribution the uniform
distribution π on 5.

Consider now two packs of cards, denoted X and Y , such that X is initially in increasing order
from top to bottom, and Y has a random order chosen according to π . We perform the following
‘experiment’. At each stage, select I ∈ {1, 2, . . . , 52} uniformly at random (and independently of
earlier choices); take card labelled I from each pack and place it on the top of its pack. Each pack
evolves thus according to the random-to-top rules, and pack Y retains its distribution π . Furthermore,
once the card labelled k has been selected, it is forevermore in the same positions in the two packs.

There comes a moment at which every card has been selected at least once. After this moment,
the two packs are in identical orders, and that of Y is uniformly distributed. Therefore, the ordering
of X is also uniformly distributed on 5.

The required time T may be viewed as the collection time in the coupon collector’s problem

(3.3.2). We have that E(T ) = n
∑n

r=1 r−1.
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[6.4.15]–[6.4.16] Solutions Markov chains

p p p

p
0 1 − p 1 − p1 2 N − 1

N
1 − p/r

p/r

Figure 6.1. A map of the Markov chain of Exercise (6.4.15).

15. (a) The transition probabilities are mapped in Figure 6.1.

(b) Solve for the invariant distribution:

πj = (1 − p)πj−1 = (1 − p) jπ0, 1 ≤ j ≤ N − 1,

πN = (1 − p)πN−1 +
(

1 −
p

r

)
πN .

Therefore,
p

r
πN = (1 − p)πN−1 = (1 − p)Nπ0,

and

1 =
N∑

j=0

πj = π0





N−1∑

j=0

(1 − p) j +
r

p
(1 − p)N



 ,

whence

π0 =
p

1 + (r − 1)(1 − p)N
, πN =

r(1 − p)N

1 + (r − 1)(1 − p)N
.

The long run probability of inspection is

1

r
πN + (1 − πN ) =

1

1 + (r − 1)(1 − p)N
.

(c) The long run probability of being defective and not inspected is

pπN

(
1 −

1

r

)
=

p(r − 1)(1 − p)N

1 + (r − 1)(1 − p)N
.

16. Let Xn be the position after n steps. Then X = (Xn) is a Markov chain because different jumps
are independent. It is evidently irreducible, and is aperiodic since Pk(X1 = k) > 0. A stationary
distribution π is a root of the equations

πi =
∞∑

j=i−1

πj

j + 2
, i ≥ 0,

with the convention that π−1 = 0. One can scratch one’s head over these equations, but the solution
is simple, namely πi = A/ i ! for i ≥ 0 where, by summation, a = 1/e.

The mean recurrence time µ0 of 0 satisfies

µ0 =
1

π0
= 1 +

1

2
µ,
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Reversibility Solutions [6.4.17]–[6.5.2]

whence µ = 2(e − 1).

17. Let xP = x and xk = 1 = ρk(k). Then, for j ∈ S such that j 6= k,

xj =
∑

i1∈S

xi1
pi1, j = xk pkj +

∑

i1 6=k

xi1
pi1, j

= pkj +
∑

i1 6=k

pk,i1
pi1, j +

∑

i1,i2 6=k

xi2
pi2,i1

pi1, j ,

which we iterate to obtain

xj ≥
m∑

n=1

Pk(Tj = n, Tk > n) → ρj (k) as m → ∞.

If the chain is recurrent, ρ(k) is stationary, so that y = x − ρ(k) is a non-negative stationary measure
with yk = 0. By Lemma (6.4.7c), y = 0 as claimed.

6.5 Solutions. Reversibility

1. Look for a solution to the equations πi pi j = πj pj i . The only non-trivial cases of interest are
those with j = i + 1, and therefore λiπi = µi+1πi+1 for 0 ≤ i < b, with solution

πi = π0
λ0λ1 · · · λi−1

µ1µ2 · · ·µi
, 0 ≤ i ≤ b,

an empty product being interpreted as 1. The constant π0 is chosen in order that the πi sum to 1, and
the chain is therefore time-reversible.

2. (a) Let π be the stationary distribution of X , and suppose X is reversible. We have that πi pi j =
pj iπj for all i, j , and furthermore πi > 0 for all i . Hence

πi pi j pj k pki = pj iπj pj k pki = pj i pkjπk pki = pj i pkj pikπi

as required when n = 3. A similar calculation is valid when n > 3.

Suppose conversely that the given display holds for all finite sequences of states. Sum over all
values of the subsequence j2, . . . , jn−1 to deduce that pi j (n − 1)pj i = pi j pj i (n − 1), where i = j1,
j = jn. Take the limit as n → ∞ to obtain πj pj i = pi jπi as required for time-reversibility.

(b) By (a), the condition on triples is necessary for reversibility. Suppose, conversely, that it holds, and
let c ∈ S be as given. For A > 0 and i ∈ S, define qi = Apci/pic , noting that qc = A. The constant
A is chosen such that

∑
i qi = 1. Now qi pic = qc pci for i ∈ S. Also, by the triple condition,

qi pi j = A
pci

pic
pi j = A

pci pi j pj c

pic pj c
= A

pcj pj i pic

pic pj c
= qj pj i .

In conclusion, q = (qi ) is a distribution that satisfies the detailed balance equations. Therefore, X is
reversible in equilibrium, and π = q.

(c) These are counts of the numbers of cyclic subsets of given size chosen from the state space S. If
one of these cycles fails to satisfy the criterion, no more need be tested. One can sometimes do better
than this: if the graph of the state space is planar, it suffices to check the condition for all cycles in
some base of the cycle vector space of the graph.

(d) Since trees have no cycles, any edge traversed by a closed walk is traversed an equal number of
times in each direction. The equation of part (a) follows.
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[6.5.3]–[6.5.8] Solutions Markov chains

3. With πππ the stationary distribution of X , look for a stationary distribution ννν of Y of the form

νi =
{

cβπi if i 6∈ C,

cπi if i ∈ C.

There are four cases.

(a) i ∈ C , j 6∈ C : νi qi j = cπiβpi j = cβπj pj i = νj qj i ,

(b) i, j ∈ C : νi qi j = cπi pi j = cπj pj i = νj qj i ,

(c) i 6∈ C , j ∈ C : νi qi j = cβπi pi j = cβπj pj i = νj qj i ,

(d) i, j 6∈ C : νi qi j = cβπi pi j = cβπj pj i = νj qj i .

Hence the modified chain is reversible in equilibrium with stationary distribution ννν, when

c

{
β
∑

i 6∈C

πi +
∑

i∈C

πi

}
= 1.

In the limit as β ↓ 0, the chain Y never leaves the set C once it has arrived in it.

4. Only if the period is 2, because of the detailed balance equations.

5. With Yn = Xn − 1
2 m,

E(Yn) = E(Yn−1)+ E(Xn − Xn−1)

= E(Yn−1)+ E

{(
1 −

Xn−1

m

)
−

Xn−1

m

}
= E(Yn−1)−

2

m
E(Yn−1).

Now iterate.

6. (a) The distribution π1 = β/(α + β), π2 = α/(α + β) satisfies the detailed balance equations,
so this chain is reversible.

(b) By symmetry, the stationary distribution is π = ( 1
3 ,

1
3 ,

1
3 ), which satisfies the detailed balance

equations if and only if p = 1
2 .

(c) This chain is reversible if and only if p = 1
2 .

7. A simple random walk which moves rightwards with probability p has a stationary measure
πn = A(p/q)n , in the sense that π is a vector satisfying π = πP. It is not necessarily the case that
this π has finite sum. It may then be checked that the recipe given in the solution to Exercise (6.5.3)

yields π(i, j) = ρ i
1ρ

j
2

/∑
(r,s)∈C ρ

r
1ρ

s
2 as stationary distribution for the given process, where C is the

relevant region of the plane, and ρi = pi/qi and pi (= 1 − qi ) is the chance that the i th walk moves
rightwards on any given step.

8. Since the chain is irreducible with a finite state space, we have that πi > 0 for all i . Assume the
chain is reversible. The balance equations πi pi j = πj pj i give pi j = πj pj i/πi . Let D be the matrix
with entries 1/πi on the diagonal, and S the matrix (πj pj i ), and check that P = DS.

Conversely, if P = DS, then d−1
i pi j = d−1

j pj i , whenceπi = d−1
i

/∑
k d−1

k satisfies the detailed

balance equations.

Note that

pi j =
1

√
πi

√
πi

πj
pi j

√
πj .

If the chain is reversible in equilibrium, the matrix M =
(√

πi/πj pi j

)
is symmetric, and therefore M,

and, by the above, P, has real eigenvalues. An example of the failure of the converse is the transition
matrix

P =




0 1 0
3
4 0 1

4
1 0 0


 ,
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Chains with finitely many states Solutions [6.5.9]–[6.6.2]

which has real eigenvalues 1, and − 1
2 (twice), and stationary distribution π = ( 4

9 ,
4
9 ,

1
9 ). However,

π1 p13 = 0 6= 1
9 = π3 p31, so that such a chain is not reversible.

9. Simply check the detailed balance equations πi pi j = πj pj i .

10. Try solving the detailed balance equations πi pi,i+1 = πi+1 pi+1,i . You will find that πi =
c/[i (i + 2)] where c is determined by

1 =
∞∑

i=1

πi =
c

2

∞∑

i=1

(
1

i
−

1

i + 2

)
=

c

2

(
1 +

1

2

)
,

so that c = 4
3 . The chain is positive recurrent with µi = π

−1
i = 3

4 i (i + 2).

11. We have pic > 0 for i 6= c. It is enough to check Kelly’s reversibility condition of Exercise
(6.5.2b) for the four cycles cne, ces, csw, and cwn, and hence the chain is reversible in equilibrium.

Using the detailed balance equations πi pic = πc pci , the stationary distribution π satisfies

πi = πc pci/pic for i 6= c. By summing the πi , we find πc = 2
11 . The result follows by the

Theorem (6.4.3).

12. (a) First check that L = (li j ) is a stochastic matrix: it has non-negative entries with row-sums 1.

It is irreducible since li j (n) ≥ an pi j (n), and aperiodic since lii ≥ 1 − a > 0 for i ∈ S.

(b) We have that πi pi j = πj pj i for i, j ∈ S. Therefore,

πi li j = aπi pi j + (1 − a)πi δi j = aπj pj i + (1 − a)πj δi j = πj lj i ,

where δi j is the Kronecker delta. The chain is called lazy because it hangs around a lot.

6.6 Solutions. Chains with finitely many states

1. Let P = (pi j : 1 ≤ i, j ≤ n) be a stochastic matrix and let C be the subset of Rn containing

all vectors x = (x1, x2, . . . , xn) satisfying xi ≥ 0 for all i and
∑n

i=1 xi = 1; for x ∈ C , let
‖x‖ = maxj {xj }. Define the linear mapping T : C → Rn by T (x) = xP. Let us check that T is a
continuous function from C into C . First,

‖T (x)‖ = max
j

{∑

i

xi pi j

}
≤ α‖x‖

where

α = max
j

{∑

i

pi j

}
;

hence ‖T (x) − T (y)‖ ≤ α‖x − y‖. Secondly, T (x)j ≥ 0 for all j , and

∑

j

T (x)j =
∑

j

∑

i

xi pi j =
∑

i

xi

∑

j

pi j = 1.

Applying the given theorem, there exists a point πππ in C such that T (πππ) = πππ , which is to say that
πππ = πππP.

2. Let P be a stochastic m × m matrix and let T be the m × (m + 1) matrix with (i, j)th entry

ti j =
{

pi j − δi j if j ≤ m,

1 if j = m + 1,
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[6.6.3]–[6.6.4] Solutions Markov chains

where δi j is the Kronecker delta. Let v = (0, 0, . . . , 0, 1) ∈ Rm+1. If statement (ii) of the question
is valid, there exists y = (y1, y2, . . . , ym+1) such that

ym+1 < 0,

m∑

j=1

(pi j − δi j )yj + ym+1 ≥ 0 for 1 ≤ i ≤ m;

this implies that
m∑

j=1

pi j yj ≥ yi − ym+1 > yi for all i,

and hence the impossibility that
∑m

j=1 pi j yj > maxi {yi }. It follows that statement (i) holds, which

is to say that there exists a non-negative vector x = (x1, x2, . . . , xm) such that x(P − I) = 0 and∑m
i=1 xi = 1; such an x is the required eigenvector.

3. Thinking of xn+1 as the amount you may be sure of winning, you seek a betting scheme x such
that xn+1 is maximized subject to the inequalities

xn+1 ≤
n∑

i=1

xi ti j for 1 ≤ j ≤ m.

Writing ai j = −ti j for 1 ≤ i ≤ n and an+1, j = 1, we obtain the linear program:

maximize xn+1 subject to

n+1∑

i=1

xi ai j ≤ 0 for 1 ≤ j ≤ m.

The dual linear program is:

minimize 0 subject to

m∑

j=1

ai j yj = 0 for 1 ≤ i ≤ n,

m∑

j=1

an+1, j yj = 1, yj ≥ 0 for 1 ≤ j ≤ m.

Re-expressing the ai j in terms of the ti j as above, the dual program takes the form:

minimize 0 subject to

m∑

j=1

ti j pj = 0 for 1 ≤ i ≤ n,

m∑

j=1

pj = 1, pj ≥ 0 for 1 ≤ j ≤ m.

The vector x = 0 is a feasible solution of the primal program. The dual program has a feasible
solution if and only if statement (a) holds. Therefore, if (a) holds, the dual program has minimal value
0, whence by the duality theorem of linear programming, the maximal value of the primal program is
0, in contradiction of statement (b). On the other hand, if (a) does not hold, the dual has no feasible
solution, and therefore the primal program has no optimal solution. That is, the objective function of
the primal is unbounded, and therefore (b) holds. [This was proved by De Finetti in 1937.]

4. Use induction, the claim being evidently true when n = 1. Suppose it is true for n = m. Certainly

Pm+1 is of the correct form, and the equation Pm+1x′ = P(Pmx′) with x = (1, ω, ω2) yields in its
first row

a1,m+1 + a2,m+1ω + a3,m+1ω
2 = (1 − p + pω)m(Px′)1 = (1 − p + pω)m+1
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Chains with finitely many states Solutions [6.6.5]–[6.6.10]

as required.

5. The first part follows from the fact that π1′ = 1 if and only if πU = 1. The second part follows
from the fact that πi > 0 for all i if P is finite and irreducible, since this implies the invertibility of
I − P + U.

6. The chessboard corresponds to a graph with 8 × 8 = 64 vertices, pairs of which are connected
by edges when the corresponding move is legitimate for the piece in question. By Exercises (6.4.6),
(6.5.9), we need only check that the graph is connected, and to calculate the degree of a corner vertex.

(a) For the king there are 4 vertices of degree 3, 24 of degree 5, 36 of degree 8. Hence, the number of
edges is 210 and the degree of a corner is 3. Therefore µ(king) = 420/3 = 140.

(b) µ(queen) = (28 × 21 + 20 × 23 + 12 × 25 + 4 × 27)/21 = 208/3.

(c) We restrict ourselves to the set of 32 vertices accessible from a given corner. Then µ(bishop) =
(14 × 7 + 10 × 9 + 6 × 11 + 2 × 13)/7 = 40.

(d) µ(knight) = (4 × 2 + 8 × 3 + 20 × 4 + 16 × 6 + 16 × 8)/2 = 168.

(e) µ(rook) = 64 × 14/14 = 64.

7. They are walking on a product space of 8 × 16 vertices. Of these, 6 × 16 have degree 6 × 3 and
16 × 2 have degree 6 × 5. Hence

µ(C) = (6 × 16 × 6 × 3 + 16 × 2 × 6 × 5)/18 = 448/3.

8. |P − λI | = (λ− 1)(λ + 1
2 )(λ+ 1

6 ). Tedious computation yields the eigenvectors, and thus

Pn = 1
3




1 1 1
1 1 1
1 1 1


+ 1

12 (−
1
2 )

n




8 −4 −4
2 −1 −1

−10 5 5


+ 1

4 (−
1
6 )

n




0 0 0
−2 3 −1
2 −3 1


 .

9. (a) By construction,

pi j =





bli j

di
+

1 − b

n
if di 6= 0,

1

n
=

b

n
+

1 − b

n
if di = 0.

(b) Since the state space is finite and irreducible, the chain possesses a unique stationary distribution
π , which satisfies

(*) π = πP = πbQ + πv′e.

Here,

πv′ =
1 − b

n

∑

i

πi =
1 − b

n
,

whence π = {(1 − b)/n}e(I − bQ)−1, where the inverse exists for b < 1.

(c) This is because πi measures the long run relative frequency with which the web-surfer in question
visits site i .

10. Since π is an eigenvector, it is not the vector of zeros. Let A = {i : πi ≥ 0} and B = {i : πi < 0}.
Since πP = π ,

0 =
∑

j∈B

(∑

i∈A

πi pi, j +
∑

i∈B

πi pi, j − πj

)

=
∑

i∈A

πi

∑

j∈B

pi, j +
∑

i∈B

πi

(∑

j∈B

pi, j − 1

)

=
∑

i∈A

πi

∑

j∈B

pi, j −
∑

i∈B

πi

∑

j∈A

pi, j .
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[6.7.1]–[6.7.4] Solutions Markov chains

Since both double sums are non-negative, they are both zero. Therefore, pi, j = 0 for i ∈ B, j ∈ A,
and by a similar argument pi, j = 0 when πi > 0 and πj ≤ 0. This contradicts irreducibility unless
either all elements of π are strictly positive or all are strictly negative. In either case, there must exist
a stationary distribution π with strictly positive entries.

If there exist two distinct stationary distributions π , ν, then π − ν is a left eigenvector of P with
both positive and negative components, which is impossible by the above. Therefore, π = ν.

6.7 Solutions. Branching processes revisited

1. We have (using Example (5.4.3), or the fact that Gn+1(s) = G(Gn(s))) that the probability
generating function of Zn is

Gn(s) =
n − (n − 1)s

n + 1 − ns
,

so that

P(Zn = k) =
(

n

n + 1

)k+1

−
(

n − 1

n + 1

)(
n

n + 1

)k−1

=
nk−1

(n + 1)k+1

for k ≥ 1. Therefore, for y > 0, as n → ∞,

P(Zn ≤ 2yn | Zn > 0) =
1

1 − Gn(0)

⌊2yn⌋∑

k=1

nk−1

(n + 1)k+1
= 1 −

(
1 +

1

n

)−⌊2yn⌋
→ 1 − e−2y .

2. Using the independence of different lines of descent,

E(s Zn | extinction) =
∞∑

k=0

skP(Zn = k, extinction)

P(extinction)
=

∞∑

k=0

skP(Zn = k)ηk

η
=

1

η
Gn(sη),

where Gn is the probability generating function of Zn .

3. We have that η = G(η). In this case G(s) = q(1 − ps)−1, and therefore η = q/p. Hence

1

η
Gn(sη) =

p

q
·

q{pn − qn − p(sq/p)(pn−1 − qn−1)}
pn+1 − qn+1 − p(sq/p)(pn − qn)

=
p{qn − pn − qs(qn−1 − pn−1)}

qn+1 − pn+1 − qs(qn − pn)
,

which is Gn(s) with p and q interchanged.

4. (a) Using the fact that var(X | X > 0) ≥ 0,

E(X2) = E(X2 | X > 0)P(X > 0) ≥ E(X | X > 0)2P(X > 0) = E(X)E(X | X > 0).

(b) Hence

E(Zn/µ
n | Zn > 0) ≤

E(Z2
n)

µnE(Zn)
= E(W 2

n )

where Wn = Zn/E(Zn). By an easy calculation (see Lemma (5.4.2)),

E(W 2
n ) =

σ 2(1 − µ−n)

µ2 − µ
+ 1 ≤

σ 2

µ2 − µ
+ 1 =

2p

p − q

392



Birth processes and the Poisson process Solutions [6.8.1]–[6.8.3]

where σ 2 = var(Z1) = p/q2.

(c) Doing the calculation exactly,

E(Zn/µ
n | Zn > 0) =

E(Zn/µ
n)

P(Zn > 0)
=

1

1 − Gn(0)
→

1

1 − η

where η = P(ultimate extinction) = q/p.

6.8 Solutions. Birth processes and the Poisson process

1. Let F and W be the incoming Poisson processes, and let N(t) = F(t)+W (t). Certainly N(0) = 0
and N is non-decreasing. Arrivals of flies during [0, s] are independent of arrivals during (s, t], if
s < t ; similarly for wasps. Therefore the aggregated arrival process during [0, s] is independent of
the aggregated process during (s, t]. Now

P
(

N(t + h) = n + 1
∣∣ N(t) = n

)
= P(A △ B)

where

A =
{

one fly arrives during (t, t + h]
}
, B =

{
one wasp arrives during (t, t + h]

}
.

We have that

P(A △ B) = P(A) + P(B)− P(A ∩ B)

= λh + µh − (λh)(µh)+ o(h) = (λ + µ)h + o(h).

Finally

P
(

N(t + h) > n + 1
∣∣ N(t) = n

)
≤ P(A ∩ B)+ P(C ∪ D),

where C = {two or more flies arrive in (t, t + h]} and D = {two or more wasps arrive in (t, t + h]}.
This probability is no greater than (λh)(µh)+ o(h) = o(h).

2. Let I be the incoming Poisson process, and let G be the process of arrivals of green insects.
Matters of independence are dealt with as above. Finally,

P
(
G(t + h) = n + 1

∣∣G(t) = n
)

= pP
(

I (t + h) = n + 1
∣∣ I (t) = n

)
+ o(h) = pλh + o(h),

P
(
G(t + h) > n + 1

∣∣G(t) = n
)

≤ P
(

I (t + h) > n + 1
∣∣ I (t) = n

)
= o(h).

3. Conditioning on T1 and using the time-homogeneity of the process,

P
(

E(t) > x
∣∣ T1 = u

)
=





P
(

E(t − u) > x
)

if u ≤ t,

0 if t < u ≤ t + x,

1 if u > t + x,

(draw a diagram to help you see this). Therefore

P
(
E(t) > x

)
=
∫ ∞

0
P
(

E(t) > x | T1 = u
)
λe−λu du

=
∫ t

0
P
(

E(t − u) > x
)
λe−λu du +

∫ ∞

t+x
λe−λu du.
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You may solve the integral equation using Laplace transforms. Alternately you may guess the

answer and then check that it works. The answer is P(E(t) ≤ x) = 1 − e−λx , the exponential
distribution. Actually this answer is obvious since E(t) > x if and only if there is no arrival in

[t, t + x], an event having probability e−λx .

4. The forward equation is

p′
i j (t) = λ( j − 1)pi, j−1(t)− λ j pi j (t), i ≤ j,

with boundary conditions pi j (0) = δi j , the Kronecker delta. We write G i (s, t) =
∑

j s j pi j (t), the

probability generating function of B(t) conditional on B(0) = i . Multiply through the differential

equation by s j and sum over j :

∂G i

∂t
= λs2 ∂G i

∂s
− λs

∂G i

∂s
,

a partial differential equation with boundary condition G i (s, 0) = s i . This may be solved in the usual

way to obtain G i (s, t) = g(eλt (1 − s−1)) for some function g. Using the boundary condition, we

find that g(1 − s−1) = s i and so g(u) = (1 − u)−i , yielding

G i (s, t) =
1

{1 − eλt(1 − s−1)}i
=

(se−λt)i

{1 − s(1 − e−λt )}i
.

The coefficient of s j is, by the binomial series,

(∗) pi j (t) = e−iλt

(
j − 1

i − 1

)
(1 − e−λt) j−i , j ≥ i,

as required.

Alternatively use induction. Set j = i to obtain p′
ii (t) = −λi pii (t) (remember pi,i−1(t) = 0),

and therefore pii (t) = e−λit . Rewrite the differential equation as

d

dt

(
pi j (t)e

λ j t
)

= λ( j − 1)pi, j−1(t)e
λ j t .

Set j = i + 1 and solve to obtain pi,i+1(t) = i e−λit
(

1 − e−λt
)

. Hence (∗) holds, by induction.

The mean is

E(B(t)) =
∂

∂s
G I (s, t)

∣∣∣∣
s=1

= I eλt ,

by an easy calculation. Similarly var(B(t)) = A + E(B(t))− E(B(t))2 where

A =
∂2

∂s2
G I (s, t)

∣∣∣∣∣
s=1

.

Alternatively, note that B(t) has the negative binomial distribution with parameters e−λt and I .

5. The forward equations are

p′
n(t) = λn−1 pn−1(t)− λn pn(t), n ≥ 0,
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where λi = iλ+ ν. The process is honest, and therefore m(t) =
∑

n npn(t) satisfies

m′(t) =
∞∑

n=1

n
[
(n − 1)λ + ν

]
pn−1(t)−

∞∑

n=0

n(nλ+ ν)pn(t)

=
∞∑

n=0

{
λ[(n + 1)n − n2] + ν[(n + 1)− n]

}
pn(t)

=
∞∑

n=0

(λn + ν)pn(t) = λm(t)+ ν.

Solve subject to m(0) = 0 to obtain m(t) = ν(eλt − 1)/λ.

6. Using the fact that the time to the nth arrival is the sum of exponential interarrival times (or using
equation (6.8.15)), we have that

p̂n(θ) =
∫ ∞

0
e−θ t pn(t) dt

is given by

p̂n(θ) =
1

λn

n∏

i=0

λi

λi + θ

which may be expressed, using partial fractions, as

p̂n(θ) =
1

λn

n∑

i=0

aiλi

λi + θ

where

ai =
n∏

j=0
j 6=i

λj

λj − λi

so long as λi 6= λj whenever i 6= j . The Laplace transform p̂n may now be inverted as

pn(t) =
1

λn

n∑

i=0

aiλi e
−λi t .

See also Exercise (4.8.4).

7. Let Tn be the time of the nth arrival, and let T = limn→∞ Tn = sup{t : N(t) < ∞}. Now, as in
Exercise (6.8.6),

λn p̂n(θ) =
n∏

i=0

λi

λi + θ
= E(e−θTn )

since Tn = X0 + X1 +· · ·+ Xn where Xk is the (k +1)th interarrival time, a random variable which is

exponentially distributed with parameter λk . Using the continuity theorem, E(e−θTn ) → E(e−θT ) as

n → ∞, whence λn p̂n(θ) → E(e−θT ) as n → ∞, which may be inverted to obtain λn pn(t) → f (t)

as n → ∞ where f is the density function of T . Now

E
(

N(t)
∣∣ N(t) < ∞

)
=
∑∞

n=0 npn(t)∑∞
n=0 pn(t)
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which converges or diverges according to whether or not
∑

n npn(t) converges. However pn(t) ∼
λ−1

n f (t) as n → ∞, so that
∑

n npn(t) < ∞ if and only if
∑

n nλ−1
n < ∞.

When λn = (n + 1
2 )

2, we have that

E(e−θT ) =
∞∏

n=0

{
1 +

θ

(n + 1
2 )

2

}−1

= sech
(
π

√
θ
)
.

Inverting the Laplace transform (or consulting a table of such transforms) we find that

f (t) = −
1

π2

∂

∂ν
θ1

(
1
2ν

∣∣∣ t/π2)
∣∣∣∣
ν=0

where θ1 is the first Jacobi theta function.

8. Let N be the number of events in the intervals (0, x). The light is green at time x if and only if N is

even, which occurs with probability pe(x) = 1
2 (1 + e−2λx). If N is odd, then by the lack-of-memory

property W (x) is exponentially distributed with parameter λ. Therefore,

P(W (x) ≤ w) =
{

pe(x) if w = 0,

(1 − pe(x))(1 − e−λw) if w > 0.

9. Let the birth times be T1, T2, . . . and the interbirth times W1 = T1, W2 = T2 − T1, . . . . The
Wr are independent, and Wr has the exponential distribution with parameter rλ. The joint density
function g = g(t1, t2, . . . , tb) of T1, T2, . . . , Tb conditional on Tb < t < Tb+1 satisfies

log g = C1 −
b∑

r=1

λr(tr − tr−1)− λ(b + 1)(t − tb)

= C2 +
b∑

r=1

λtr = C3 +
b∑

r=1

log f (tr ).

for 0 = t0 < t1 < t2 < · · · < tb < t and some Ci = Ci (b, t). The claim follows by consideration of
the order-statistic density function.

10. Let EA (respectively, EF ) denote expectation conditional on an ascent (respectively, fall) at time
0. Let X be the time of the first subsequent occurrence (either fall or ascent), and IF (respectively,
IA) the indicator function that it is a fall (respectively, ascent). By conditioning on the next event, the
time T to the first coincidence satisfies

EA(T ) =
[
EA(X IF I (X < c))+ EA(T IF I (X > c))

]
+ EA(T IA)

= E(X IF )+ EF (T )E(IF I (X > c))+ EA(T IA)

=
1

ν
+ EF (T )

∫ ∞

c
λe−νx dx +

µ

ν
EA(T )

=
1

ν
+ EF (T )

λ

ν
e−νc +

µ

ν
EA(T ),

where ν = λ+ µ is the rate of the aggregate Poisson process of events. Likewise,

EF (T ) =
1

ν
+ EA(T )

µ

ν
e−νc +

λ

ν
EF (T ).
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We solve to obtain

µ

ν
EA(T ) =

µ+ λe−νc

λν(1 − e−2νc)
,

λ

ν
EF (T ) =

λ+ µe−νc

µν(1 − e−2νc)
,

which we insert into

E(T ) = E(X)+
µ

ν
EA(T )+

λ

ν
EF (T )

to obtain the result. By expanding the answer in powers of c, the last line follows.

The idea of the direct proof is to declare a coincidence if some fall occurs in (t, t + dt) with

an ascent in the interval (t − c, t + c). The probability of this is (λdt + O(dt2))(1 − e−2µc) =
2λµcdt + O(c2)+ O(dt2).

11. By independence and stationarity,

P(s < S1 ≤ t < S2) = P
(

N(t) − N(s) = 1, N(s) = 0
)

= P(N(s) = 0)P(N(t − s) = 1,

= e−λsλ(t − s)e−λ(t−s),

which we differentiate with respect to s and t to obtain the joint density function

f (s, t) = λ2e−λt , 0 < s < t < ∞.

12. By conditioning on the instant U of the first commission, the probability r(S) of ultimate bank-
ruptcy satisfies

r(S) = e−λS +
∫ S

0
r(R + S − u)λe−λu du.

Substitute y = u − S and differentiate with respect to S to obtain r ′(S)+ λr(S) = λr(R + S). We

have r(0) = 1, and r(S) ≤ 1 for all S > 0. Look for a solution of the form r(S) = e−λθS with θ ≥ 0.

The equation and the boundary conditions are satisfied when e−λθR = 1 − θ , which has one root at
θ = 0 when λR ≤ 1, and an additional root at some ψ ∈ (0, 1) when λR > 1. The general solution
subject to r(0) = 1 is

r(S) =
{

1 if λR ≤ 1,

1 − A + Ae−λψS if λR > 1.

It is the case that A = 1 when λR > 1, and here is an explanation of that. The process is composed of
cycles comprising a period of time during which costs accrue linearly, followed by a sale. The mean
profit per cycle is µ := R − (1/λ). If µ > 0 then, by the law of large numbers, the mean aggregate
profit increases linearly with time. As the initial capital S becomes larger, the chance of bankruptcy
diminishes to 0. Therefore, A = 1 in this case. The details are omitted.

In either case, we have r(S) = e−λψS = (1−ψ)S/R whereψ is the largest root of e−λθR = 1−θ ,
and the given solution follows with a = 1 − ψ . Another approach to this problem may be found in
Problem (12.9.27).

6.9 Solutions. Continuous-time Markov chains

1. (a) We have that

p′
11 = −µp11 + λp12, p′

22 = −λp22 + µp21,
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[6.9.2]–[6.9.4] Solutions Markov chains

where p12 = 1 − p11, p21 = 1 − p22. Solve these subject to pi j (t) = δi j , the Kronecker delta, to
obtain that the matrix Pt = (pi j (t)) is given by

Pt =
1

λ+ µ

(
λ+ µe−(λ+µ)t µ− µe−(λ+µ)t

λ− λe−(λ+µ)t µ+ λe−(λ+µ)t

)
.

(b) There are many ways of calculating Gn ; let us use generating functions. Note first that G0 = I,
the identity matrix. Write

Gn =
(

an bn

cn dn

)
, n ≥ 0,

and use the equation Gn+1 = G · Gn to find that

an+1 = −µan + µcn, cn+1 = λan − λcn .

Hence an+1 = −(µ/λ)cn+1 for n ≥ 0, and the first difference equation becomes an+1 = −(λ+µ)an ,

n ≥ 1, which, subject to a1 = −µ, has solution an = (−1)nµ(λ + µ)n−1 , n ≥ 1. Therefore

cn = (−1)n+1λ(λ + µ)n−1 for n ≥ 1, and one may see similarly that bn = −an , dn = −cn for
n ≥ 1. Using the facts that a0 = d0 = 1 and b0 = c0 = 0, we deduce that

∑∞
n=0(t

n/n!)Gn = Pt

where Pt is given in part (a).

(c) With πππ = (π1, π2), we have that −µπ1 + λπ2 = 0 and µπ1 − λπ2 = 0, whence π1 = (λ/µ)π2.
In addition, π1 + π2 = 1 if π1 = λ/(λ+ µ) = 1 − π2.

2. (a) The required probability is

P
(

X (t) = 2, X (3t) = 1 | X (0) = 1
)

P
(

X (3t) = 1 | X (0) = 1
) =

p12(t)p21(2t)

p11(3t)

using the Markov property and the homogeneity of the process.

(b) Likewise, the required probability is

p12(t)p21(2t)p11(t)

p11(3t)p11(t)
,

the same as in part (a).

3. The interarrival times and runtimes are independent and exponentially distributed. It is the lack-
of-memory property which guarantees that X has the Markov property.

The state space is S = {0, 1, 2, . . . } and the generator is

G =




−λ λ 0 0 . . .

µ −(λ+ µ) λ 0 . . .

0 µ −(λ+ µ) λ . . .
...

...
...

...
. . .


 .

Solutions of the equation πππG = 0 satisfy

−λπ0 + µπ1 = 0, λπj−1 − (λ + µ)πj + µπj+1 = 0 for j ≥ 1,

with solution πi = π0(λ/µ)
i . We have in addition that

∑
i πi = 1 if λ < µ and π0 = 1 − (λ/µ).

4. One may use the strong Markov property. Alternatively, by the Markov property,

P(Yn+1 = j | Yn = i, Tn = t, B) = P(Yn+1 = j | Yn = i, Tn = t)
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for any event B defined in terms of {X (s) : s ≤ Tn}. Hence

P(Yn+1 = j | Yn = i, B) =
∫ ∞

0
P(Yn+1 = j | Yn = i, Tn = t) fTn (t) dt

= P(Yn+1 = j | Yn = i ),

so that Y is a Markov chain. Now qi j = P(Yn+1 = j | Yn = i ) is given by

qi j =
∫ ∞

0
pi j (t)λe−λt dt,

by conditioning on the (n +1)th interarrival time of N ; here, as usual, pi j (t) is a transition probability
of X . Now

∑

i

πi qi j =
∫ ∞

0

(∑

i

πi pi j (t)

)
λe−λt dt =

∫ ∞

0
πjλe−λt dt = πj .

5. The jump chain Z = {Zn : n ≥ 0} has transition probabilities hi j = gi j /gi , i 6= j . The chance

that Z ever reaches A from j is also ηj , and ηj =
∑

k h j kηk for j /∈ A, by Exercise (6.3.6). Hence

gjηj =
∑

k 6= j gj kηk , as required.

6. Let T1 = inf{t : X (t) 6= X (0)}, and more generally let Tm be the time of the mth change in value
of X . For j /∈ A,

µj = Ej (T1)+
∑

k 6= j

h j kµk ,

where Ej denotes expectation conditional on X0 = j . Now Ej (T1) = g−1
j , and the given equations

follow. Suppose next that (ak : k ∈ S) is another non-negative solution of these equations. With
Ui = Ti+1 − Ti and R = min{n ≥ 1 : Zn ∈ A}, we have for j /∈ A that

aj =
1

gj
+
∑

k /∈A

h j kak =
1

gj
+
∑

k /∈A

h j k

{
1

gk
+
∑

m /∈A

hkmam

}

= Ej (U0)+ Ej (U1 I{R>1})+ Ej (U2 I{R>2})+ · · · + Ej (Un I{R>n})+6,

where 6 is a sum of non-negative terms. It follows that

aj ≥ Ej (U0)+ Ej (U1 I{R>1})+ · · · + Ej (Un I{R>n})

= Ej

( n∑

r=0

Ur I{R>r}

)
= Ej

(
min{Tn, HA}

)
→ Ej (HA)

as n → ∞, by monotone convergence. Therefore, µ is the minimal non-negative solution.

7. First note that i is recurrent if and only if it is also a recurrent state in the jump chain Z . The
integrand being positive, we can write

∫ ∞

0
pii (t) dt = E

[∫ ∞

0
I{X (t)=i} dt

∣∣∣∣ X (0) = i

]
= E

[ ∞∑

n=0

(Tn+1 − Tn)I{Yn=i}

∣∣∣∣Y0 = i

]

where {Tn : n ≥ 1} are the times of the jumps of X . The right side equals

∞∑

n=0

E(T1 | X (0) = i )hii (n) =
1

gi

∞∑

n=0

hii (n)
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where H = (hi j ) is the transition matrix of Z . The sum diverges if and only if i is recurrent for Z .

8. Since the imbedded jump walk is recurrent, so is X . The probability of visiting m during an

excursion is α = (2m)−1, since such a visit requires an initial step to the right, followed by a visit to
m before 0, cf. Example (3.9.6). Having arrived at m, the chance of returning to m before visiting 0
is 1 − α, by the same argument with 0 and m interchanged. In this way one sees that the number N

of visits to m during an excursion from 0 has distribution given by P(N ≥ k) = α(1 − α)k−1, k ≥ 1.

The ‘total jump rate’ from any state is λ, whence T may be expressed as
∑N

i=0 Vi where the Vi are
exponential with parameter λ. Therefore,

E(eθT ) = G N

(
λ

λ− θ

)
= (1 − α)+ α

αλ

αλ− θ
.

The distribution of T is a mixture of an atom at 0 and the exponential distribution with parameter αλ.

9. The number N of sojourns in i has a geometric distribution P(N = k) = f k−1(1 − f ), k ≥ 1,
for some f < 1. The length of each of these sojourns has the exponential distribution with some
parameter gi . By the independence of these lengths, the total time T in state i has moment generating
function

E(eθT ) =
∞∑

k=1

f k−1(1 − f )

(
gi

gi − θ

)k

=
gi (1 − f )

gi (1 − f )− θ
.

The distribution of T is exponential with parameter gi (1 − f ).

10. The jump chain is the simple random walk with probabilities λ/(λ+µ) and µ/(λ+µ), and with
p01 = 1. By Corollary (5.3.6), the chance of ever hitting 0 having started at 1 is µ/λ, whence the
probability of returning to 0 having started there is f = µ/λ. By the result of Exercise (6.9.9),

E(eθV0) =
λ− µ

λ− µ− θ
,

as required. Having started at 0, the walk visits the state r ≥ 1 with probability 1. The probability of
returning to r having started there is

fr =
µ

λ+ µ
+

λ

λ+ µ
·
µ

λ
=

2µ

λ+ µ
,

and each sojourn is exponentially distributed with parameter gr = λ+µ. Now gr (1 − fr ) = λ−µ,
whence, as above,

E(eθVr ) =
λ− µ

λ− µ− θ
.

The probability of ever reaching 0 from X (0) is (µ/λ)X (0), and the time spent there subsequently
is exponential with parameter λ− µ. Therefore, the mean total time spent at 0 is

E

(
(µ/λ)X (0)

λ− µ

)
=

G(µ/λ)

λ− µ
.

11. Using the usual notation,

pii (h) ≥ Pi (U0 > h) = e−gi h = 1 − gi h + o(h),

and, for i 6= j ,

pi j (h) ≥ Pi

(
U0 < h < U0 + U1, X (U0) = j

)

≥ (1 − e−gi h)yi j e
−gj h = gi hyi j (1 − gj h)+ o(h)

= gi j h + o(h).
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Adding the above equations and recalling gii = −gi , we obtain

1 =
∑

j∈S

pi j (h) = 1 + h
∑

j∈S

gi j + o(h) = 1 + o(h).

Since the last holds with equality, each of the previous equations holds with equality.

12. The jump chain is a symmetric random walk on the integers, and every state is recurrent. By
Theorem (6.9.17c), the original chain does not explode.

13. The jump chain has transition probabilities p01 = 1 and

pn,n+1 =
n + 1

n + 2
, pn,0 =

1

n + 2
, n ≥ 1.

The probability that the jump chain, started from 0, first returns to 0 at time m is

f00(m) = 1 ·
2

3
· · ·

m − 1

m
·

1

m + 1
=

2

m(m + 1)
, m ≥ 2.

Therefore, the time T of the first return to 0 by the jump chain satisfies

P0(T < ∞) =
∞∑

m=1

f00(m) = 1, E0(T ) =
∞∑

m=1

m f00(m) = ∞,

so that the jump chain is null recurrent. Hence the original chain is recurrent. Since gn ≤ 1 for all n,
the mean return time m0 of 0 in the original chain is at least E0(T )− 1 = ∞.

14. Let X (0) = Z0 = i and assume to avoid triviality that gi > 0. If i is recurrent for Z , then a.s.
Z visits i infinitely often, whence i is recurrent for X . Conversely, if i is recurrent for X , there exists
a.s. an unbounded, increasing sequence (Tm ) of times at which X hits i , such that Tm+1 − Tm > h.
For given m, let kh < Tm ≤ (k + 1)h. Conditional on Tm , the probability that Z(k+1)h = i is at least

Pi (U0 > h) = e−gi h > 0. Hence, Z visits i infinitely often a.s., whence i is recurrent for Z .

Evidently X is irreducible if Z is irreducible. Assume X is irreducible, and to avoid triviality that
there exist two or more states. For states i , j , find t > 0 such that pi j (t) > 0, and let kh < t ≤ (k+1)h.

As above, Pi (Z(k+1)h = j) ≥ pi j (t)e
−gj h

> 0.

6.10 Solutions. Kolmogorov equations and the limit theorem

1. (a) These inequalities hold since, for any column vector x,

|(Q1 + Q2)x| ≤ |Q1x| + |Q2x| ≤
(
|Q1| + |Q2|

)
|x|,

|Q1Q2x| ≤ |Q1| · |Q2x| ≤ |Q1| · |Q2| · |x|.

(b) Note first that |Q| ≤ N maxi, j |qi j | < ∞. For each pair i , j of indices,

∣∣(En − Em)i j

∣∣ ≤

∣∣∣∣∣∣

n∑

m+1

Qk

k!

∣∣∣∣∣∣
≤

n∑

m+1

|Q|k

k!
→ 0 as m, n → ∞.

Therefore, each given entry of En forms a Cauchy sequence, and hence converges. The limit matrix

E(Q) := eQ is then well defined. Furthermore,

|E(Q)− En | ≤
∞∑

k=n+1

|Q|k

k!
→ ∞ as n → ∞.
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[6.10.2]–[6.10.5] Solutions Markov chains

(c) Let Q1, Q2 ∈ Q be a commuting pair. Then

eQ1+Q2 =
∞∑

k=0

(Q1 + Q2)
k

k!
=

∞∑

k=0

1

k!

k∑

r=0

(
k

r

)
Qr

1 Qk−r
2

=
∞∑

r=0

Qr
1

r !

∞∑

k=r

Qk−r
2

(k − r)!
= eQ1eQ2 .

2. Define the generator G by gii = −νi , gi j = νi yi j , so that the imbedded chain has transition

matrix Y. A root of the equation πππG = 0 satisfies

0 =
∑

i

πi gi j = −πjνj +
∑

i:i 6= j

(πiνi )hi j

whence the vector ζζζ = (πjνj : j ∈ S) satisfies ζζζ = ζζζY. Therefore ζζζ = αννν, which is to say that

πjνj = ανj , for some constant α. Now νj > 0 for all j , so that πj = α, which implies that
∑

j πj 6= 1.

Therefore the continuous-time chain X with generator G has no stationary distribution.

3. The jump chain Y is a simple symmetric random walk on Z. Since transience and recurrence are
equivalent for the jump and the continuous-time chain, X is recurrent, and hence non-explosive. The
(non-probability) measure µi ≡ 1 is invariant for the jump chain, whence λi := µi/gi is invariant for

X . Now λi = (i 2 + 1)−1 is summable over i ∈ Z. Therefore, X has an invariant distribution and is
non-explosive, and hence positive recurrent.

4. The jump chain Y is a biased random walk on Z with pi,i+1 = 2
3 = 1 − pi,i−1 . Since Y is

transient, so is X . The easiest way to find an invariant distribution is to use the theory of reversibility
for continuous-time chains; see Problem (6.15.16). By the results of that problem, since X is a birth–
death chain on Z, it has an invariant distribution if and only if it is reversible, or equivalently if there
exists a distribution satisfying the detailed balance equations πi gi j = πj gj i . Therefore,

πi =





(
2
3

)i
π0 if i ≥ 0,

(
1
6

)−i
π0 if i < 0,

and we choose π0 such that π is a probability distribution. Despite transience, the chain has an
invariant distribution, whence the chain must explode. See also Example (6.10.21).

5. Since G is a generator, it has row sums 0, so that

G f (i ) =
∑

j∈S

gi j f ( j) =
∑

j∈S

gi j

(
f ( j)− f (i )

)
.

The interchanges of limits and summations are justified in the following since S is assumed finite.
Let P = (Pt : t ≥ 0) be the transition semigroup associated with G. Then

Ei f (X t )− f (i ) =
∑

j∈S

pi j (t)
(

f ( j)− f (i )
)
.

On letting t → 0, by Exercise (6.9.11),

lim
t→0

1

t

[
Ei f (X t )− f (i )

]
=
∑

j∈S

gi j

(
f ( j)− f (i )

)
= G f (i ).
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For the final part, let ψ(s) = Ei f (Xs). It suffices to show that ψ ′(s) = E(G f (Xs)), and the
claim follows from this by integrating over the interval [0, t]. We have that

ψ ′(s) = lim
u→0

(
1

u

[
Ei f (Xs+u)− Ei f (Xs)

])

= lim
u→0

(∑

j∈S

pi j (s)
1

u

[
Ei

(
f (Xs+u)

∣∣ Xs = j
)

− f ( j)
])

=
∑

j∈S

pi j (s) lim
u→0

(
1

u

[
Ej f (Xu)− f ( j)

])
=
∑

j∈S

pi j (s)G f ( j) = Ei (G f (Xs)).

6.11 Solutions. Birth–death processes and imbedding

1. The jump chain is a walk {Zn} on the set S = {0, 1, 2, . . . } satisfying, for i ≥ 1,

P(Zn+1 = j | Zn = i ) =
{

pi if j = i + 1,

1 − pi if j = i − 1,

where pi = λi/(λi + µi ). Also P(Zn+1 = 1 | Zn = 0) = 1.

2. The transition matrix H = (hi j ) of Z is given by

hi j =





iµ

λ+ iµ
if j = i − 1,

λ

λ+ iµ
if j = i + 1.

To find the stationary distribution of Y , either solve the equation πππ = πππQ, or look for a solution of
the detailed balance equations πi hi,i+1 = πi+1hi+1,i . Following the latter route, we have that

πi = π0
h01h12 · · · hi−1,i

hi,i−1 · · · h21h10
, i ≥ 1,

whence πi = π0ρ
i(1 + i/ρ)/ i ! for i ≥ 1. Choosing π0 accordingly, we obtain the result.

It is a standard calculation that X has stationary distribution ννν given by νi = ρ ie−ρ/ i ! for i ≥ 0.
The difference between πππ and ννν arises from the fact that the holding-times of X have distributions
which depend on the current state.

3. We have, by conditioning on X (h), that

η(t + h) = E
{

P
(

X (t + h) = 0
∣∣ X (h)

)}

= µh · 1 + (1 − λh − µh)η(t)+ λhξ(t)+ o(h)

where ξ(t) = P(X (t) = 0 | X (0) = 2). The process X may be thought of as a collection of particles
each of which dies at rate µ and divides at rate λ, different particles enjoying a certain independence;

this is a consequence of the linearity of λn and µn . Hence ξ(t) = η(t)2, since each of the initial pair
is required to have no descendants at time t . Therefore

η′(t) = µ− (λ+ µ)η(t)+ λη(t)2

subject to η(0) = 0.
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Rewrite the equation as
η′

(1 − η)(µ− λη)
= 1

and solve using partial fractions to obtain

η(t) =





λt

λt + 1
if λ = µ,

µ(1 − et (µ−λ))

λ− µet (µ−λ) if λ 6= µ.

Finally, if 0 < t < u,

P
(

X (t) = 0
∣∣ X (u) = 0

)
= P

(
X (u) = 0

∣∣ X (t) = 0
) P(X (t) = 0)

P(X (u) = 0)
=
η(t)

η(u)
.

4. The random variable X (t) has generating function

G(s, t) =
µ(1 − s)− (µ− λs)e−t (λ−µ)

λ(1 − s)− (µ− λs)e−t (λ−µ)

as usual. The generating function of X (t), conditional on {X (t) > 0}, is therefore

∞∑

n=1

sn P(X (t) = n)

P(X (t) > 0)
=

G(s, t)− G(0, t)

1 − G(0, t)
.

Substitute for G and take the limit as t → ∞ to obtain as limit

H(s) =
(µ− λ)s

µ− λs
=

∞∑

n=1

sn pn

where, with ρ = λ/µ, we have that pn = ρn−1(1 − ρ) for n ≥ 1.

5. Extinction is certain if λ < µ, and in this case, by Theorem (6.11.16),

E(T ) =
∫ ∞

0
P(T > t) dt =

∫ ∞

0

{
1 − E(s X (t))

∣∣
s=0

}
dt

=
∫ ∞

0

(µ− λ)e(λ−µ)t

µ− λe(λ−µ)t
dt =

1

λ
log

(
µ

µ− λ

)
.

If λ > µ then P(T < ∞) = µ/λ, so

E(T | T < ∞) =
∫ ∞

0

{
1 −

λ

µ
E(s X (t))

∣∣
s=0

}
dt =

∫ ∞

0

(λ− µ)e(µ−λ)t

λ− µe(µ−λ)t dt =
1

µ
log

(
λ

λ− µ

)
.

In the case λ = µ, P(T < ∞) = 1 and E(T ) = ∞.

6. By considering the imbedded random walk, we find that the probability of ever returning to 1
is max{λ,µ}/(λ + µ), so that the number of visits is geometric with parameter min{λ,µ}/(λ + µ).
Each visit has an exponentially distributed duration with parameter λ + µ, and a short calculation
using moment generating functions shows that V1(∞) is exponential with parameter min{λ,µ}.
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Birth–death processes and imbedding Solutions [6.11.7]–[6.11.9]

Next, by a change of variables, Theorem (6.11.16), and some calculation,

∑

r

sr E(Vr (t)) = E

(∑

r

∫ t

0
sr I{X (u)=r} du

)
= E

(∫ t

0
s X (u) du

)

=
∫ t

0
E(s X (u)) du =

µt

λ
−

1

λ
log

{
λ(1 − s)− (µ− λs)e−(λ−µ)t

λ− µ

}

= −
1

λ
log

{
1 −

λs(eρt − 1)

µeρt − λ

}
+ terms not involving s,

where ρ = µ− λ. We take the limit as t → ∞ and we pick out the coefficient of sr .

7. If λ = µ then, by Theorem (6.11.16),

E(s X (t)) =
λt (1 − s)+ s

λt (1 − s)+ 1
= 1 −

1 − s

λt (1 − s)+ 1
,

and
∫ t

0
E(s X (u)) du = t −

1

λ
log{λt (1 − s)+ 1}

= −
1

λ
log

{
1 −

λts

1 + λt

}
+ terms not involving s.

Letting t → ∞ and picking out the coefficient of sr gives E(Vr (∞)) = (rλ)−1. An alternative
method utilizes the imbedded simple random walk and the exponentiality of the sojourn times.

8. (a) By conditioning on the holding time at n,

dn =
µn

λn + µn
·

1

λn + µn
+

λn

λn + µn

{
1

λn + µn
+ dn+1 + dn

}
.

(b) Similarly,

Mn(θ) =
µn

λn + µn
M(θ)+

λn

λn + µn
M(θ)Mn+1(θ)Mn(θ),

where

M(θ) =
λn + µn

λn + µn − θ
, θ < λ,

is the moment generating function of the holding time at n.

9. When X (0) = i , denote by di the mean time until X takes the value i − 1. By Exercise (6.11.8),

di+1 =
µ

λ(n − i )
di −

1

λi (n − i )
, i ≥ 1.

By iteration, subject to the boundary condition dn = 1/(nµ), we find that

dn =
1

nµ
=
(µ
λ

)n−1 d1

(n − 1)!
−

µn−2

λn−1(n − 1)!
−

µn−3

λn−22 (n − 2)!
−· · ·−

µ

λ2(n − 2) 2!
−

1

λ(n − 1)
.

Thus, for example, d1 ≥ (λ/µ)n(n − 1)! /(nλ), implying that extinction takes a very long time on
average if the number of niches is large. This is essentially an epidemic without immunity.

Another way to study the process is to allow transitions from 0 to strictly positive states. The
ensuing process is irreducible, and the mean passage times may be calculated from knowledge of its
invariant distribution.
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6.12 Solutions. Special processes

1. The jump chain is simple random walk with step probabilities λ/(λ + µ) and µ/(λ + µ). The
expected time µ10 to pass from 1 to 0 satisfies

µ10 = 1 +
λ

λ+ µ
(µ21 + µ10) = 1 +

2λ

λ+ µ
µ10,

whence µ10 = (µ + λ)/(µ − λ). Since each sojourn is exponentially distributed with parameter
µ+ λ, the result follows by an easy calculation. See also Theorem (11.3.17).

2. We apply the method of Theorem (6.12.7) with

G N (s, u) =
se−λu

1 − s + se−λu
,

the probability generating function of the population size at time u in a simple birth generating function
of the ensuing population size at time v is

H(s, v) = exp

(
ν

∫ v

0
[G N (s, u)− 1] du

)
=
{

s + (1 − s)eλv
}−ν/λ

.

The individuals alive at time t arose subsequent to the most recent disaster at time t − D, where D

has density function δe−δx , x > 0. Therefore,

E(s X (t)) = E(H(s, D)) =
∫ t

0

δe−δx e−νt dx

(1 − s + se−λt)ν/δ
+ e−δt e−νt

(1 − s + se−λt)ν/δ
.

3. The mean number of descendants after time t of a single progenitor at time 0 is e(λ−µ)t . The
expected number due to the arrival of a single individual at a uniformly distributed time in the interval
on [0, x] is therefore

1

x

∫ x

0
e(λ−µ)u du =

e(λ−µ)x − 1

(λ− µ)x
.

The aggregate effect at time x of N earlier arrivals is the same, by Theorem (6.8.11), as that of N

arrivals at independent times which are uniformly distributed on [0, x]. Since E(N) = νx , the mean

population size at time x is ν[e(λ−µ)x − 1]/(λ−µ). The most recent disaster occurred at time t − D,

where D has density function δe−δx , x > 0, and it follows that

E(X (t)) =
∫ t

0
δe−δx ν

λ− µ
[e(λ−µ)x − 1] dx +

ν

λ− µ
e−δx [e(λ−µ)t − 1].

This is bounded as t → ∞ if and only if δ > λ− µ.

4. Let N be the number of clients who arrive during the interval [0, t]. Conditional on the event
{N = n}, the arrival times have, by Theorem (6.8.11), the same joint distribution as n independent
variables chosen uniformly from [0, t]. The probability that an arrival at a uniform time in [0, t] is

still in service at time t is β =
∫ t

0 [1 − G(t − x)]t−1 dx , whence, conditional on {N = n}, the total
number M still in service is bin(n, β). Therefore,

E(eθM ) = E
(
E(eθM | N)

)
= E

(
(βeθ + 1 − β)N

)
= G N (βeθ + 1 − β) = eλβt (eθ−1),

whence M has the Poisson distribution with parameter λβt = λ
∫ t

0 [1 − G(x)] dx . The last part holds

since
∫ t

0 [1 − G(x)] dx → E(S) as t → ∞.
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6.13 Solutions. Spatial Poisson processes

1. It is easy to check from the axioms that the combined process N(t) = B(t)+ G(t) is a Poisson
process with intensity β + γ .

(a) The time S (respectively, T ) until the arrival of the first brown (respectively, grizzly) bear is
exponentially distributed with parameter β (respectively, γ ), and these times are independent. Now,

P(S < T ) =
∫ ∞

0
βe−βse−γ s ds =

β

β + γ
.

(b) Using (a), and the lack-of-memory of the process, the required probability is

(
γ

β + γ

)r β

β + γ
.

(c) Using Theorem (6.12.7),

E
(
min{S, T }

∣∣ B(1) = 1
)

= E

{
1

G(1)+ 2

}
=
γ − 1 + e−γ

γ 2
.

2. (a) Let Br be the ball with centre 0 and radius r , and let Nr = |5 ∩ Br |. We have by Theorem
(6.13.11) that Sr =

∑
x∈5∩Br

g(x) satisfies

E(Sr | Nr ) = Nr

∫

Br

g(x)
λ(x)

3(Br )
dx,

where 3(B) =
∫

y∈B λ(y) dy. Therefore, E(Sr ) =
∫

Br
g(x)λ(x) dx, implying by monotone conver-

gence that E(S) =
∫

Rd g(x)λ(x) dx. Similarly,

E(S2
r | Nr ) = E








∑

x∈5∩Br

g(x)





2



= E


 ∑

x∈5∩Br

g(x)2


+ E




∑

x 6=y
x,y∈5∩Br

g(x)g(y)




= Nr

∫

Br

g(x)2
λ(x)

3(Br )
dx + Nr (Nr − 1)

∫∫

x,y∈Br

g(x)g(y)
λ(x)λ(y)

3(Br )2
dx dy,

whence

E(S2
r ) =

∫

Br

g(x)2λ(x) dx +
(∫

Br

g(x)λ(x) dx

)2

.

By monotone convergence,

E(S2) =
∫

Rd
g(x)2λ(x) dx + E(S)2,

and the formula for the variance follows.
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(b) Let t > 0. Given that Nr = n, by the conditional property, Theorem (6.13.11),

E(e−t Sr ) = E
(
E(e−t Sr | Nr )

)
= E

({∫

Br

e−tg(x) λ(x)

3(Br)
dx

}Nr
)

= exp

{
−
∫

Br

(1 − e−tg(x))λ(x) dx

}
,

if 3(Br ) > 0. Since Sr → S as r → ∞,

(*) E(e−t S) = lim
r→∞

E(e−t Sr ) = exp

{
−
∫

Rd
(1 − e−tg(x))λ(x) dx

}
, t > 0.

Now 1−e−x ≤ min{1, x} for x ∈ R. By monotone convergence, E(e−t S) → 1 as t ↓ 0 if the integral
condition holds. The claim follows.

(c) Subject to the integral condition, we have P(0 ≤ S < ∞) = 1. The two sides of (*) are analytic
in t ∈ C on the region Re(t) ≥ 0, and part (c) follows with Re(t) ∈ R.

3. If B1, B2, . . . , Bn are disjoint regions of the disc, then the numbers of projected points therein
are Poisson-distributed and independent, since they originate from disjoint regions of the sphere. By

elementary coordinate geometry, the intensity function in plane polar coordinates is 2λ/
√

1 − r2,
0 ≤ r ≤ 1, 0 ≤ θ < 2π .

4. The same argument is valid with resulting intensity function 2λ
√

1 − r2.

5. The Mercator projection represents the spherical coordinates (θ, φ) as Cartesian coordinates in
the range 0 ≤ φ < 2π , 0 ≤ θ ≤ π . (Recall that θ is the angle made with the axis through the north
pole.) Therefore a uniform intensity on the globe corresponds to an intensity function λ sin θ on the
map. Likewise, a uniform intensity on the map corresponds to an intensity λ/ sin θ on the globe.

6. Let the Xr have characteristic function φ. Conditional on the value of N(t), the corresponding
arrival times have the same distribution as N(t) independent variables with the uniform distribution,
whence

E(eiθS(t)) = E
{

E(eiθS(t) | N(t))
}

= E
{

E(eiθXe−αU
)N(t)

}

= exp
{
λt
(
E(eiθXe−αU

)− 1
)}

= exp

{
λ

∫ t

0

{
φ(θe−αu)− 1

}
du

}
,

where U is uniformly distributed on [0, t]. By differentiation,

E(S(t)) = −iφ′
S(t)(0) =

λ

α
E(X)(1 − e−αt ),

E(S(t)2) = −φ′′
S(t)(0) = E(S(t))2 +

λE(X2)

2α
(1 − e−2αt).

Now, for s < t , S(t) = S(s)e−α(t−s)+ Ŝ(t − s)where Ŝ(t − s) is independent of S(s)with the same
distribution as S(t − s). Hence, for s < t ,

cov
(
S(s), S(t)

)
= var(S(s))e−α(t−s) =

λE(X2)

2α
(1 − e−2αs)e−α(t−s) →

λE(X2)

2α
e−αv

as s → ∞ with v = t − s fixed. Therefore, ρ(S(s), S(s + v)) → e−αv as s → ∞.

7. The first two arrival times T1, T2 satisfy

P(T1 ≤ x, T2 − T1 > y) =
∫ x

0
λ(u)e−3(u)e−(3(u+y)−3(u)) du =

∫ x

0
λ(u)e−3(u+y) du.
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Spatial Poisson processes Solutions [6.13.8]–[6.13.10]

Differentiate with respect to x and y to obtain the joint density function λ(x)λ(x + y)e−3(x+y),
x, y ≥ 0. Since this does not generally factorize as the product of a function of x and a function of y,
T1 and T2 are dependent in general.

8. Let X i be the time of the first arrival in the process Ni . Then

P(I = 1, T ≥ t) = P
(
t ≤ X1 < inf{X2, X3, . . . }

)

=
∫ ∞

t
P
(
inf{X2, X3, . . . } > x

)
λ1e−λ1x dx =

λ1

λ
e−λt .

9. (a) For given (p, θ), the line L passing through P = (p cos θ, p sin θ) perpendicular to O P has
equation x cos θ + y sin θ = p, whence

p =
1√

u2 + v2
, tan θ =

v

u
.

We call (p, θ) the coordinates of the line L .

(b) A ‘uniform’ line process is one that corresponds to a uniform Poisson process on S⊥. Since the
Jacobian of the mapping (p, θ) 7→ (u, v) has modulus

|J | =
1

(u2 + v2)3/2
,

the claim follows.

(c) Consider first a translation of L that shifts the origin to the point (a, b). This maps the coordinates
(p, θ) of the line L to (p − a cos θ − b sin θ, θ). The Jacobian of this mapping is 1, so it is area-
preserving, and the image Poisson process is uniform also. Consider next a rotation Tα through

an angle α around the origin. This maps (p, θ) to ((−1)k p, θ + α − kπ) where k is such that
0 ≤ θ + α − kπ < π . For given α, the integer k takes no more than 2 values, so that any set can be
partitioned as two sets each of which is rotated by Tα . Thus Tα preserves area, and the claim holds as
before.

10. A lorry of mass M parked at position x exerts a force M sign(x)/x2 on the pedestrian. Note

that g(x) = 1/x2 is integrable over R. By the Campbell–Hardy theorem (see Exercise (6.13.2c) and
Theorem (6.13.23)) or by direct computation,

φG(t) = exp

{
−
∫ 0

−∞

[
1 − E

(
exp

{
−i t M

x2

})]
dx −

∫ ∞

0

[
1 − E

(
exp

{
i t M

x2

})]
dx

}

= exp

{
−2

∫ ∞

0

[
1 − E

(
cos

(
|t |M
x2

))]
dx

}
,

since cosine is an even function, and sine is odd. Take the expectation outside the integral, and make

the substitution y = |t |M/x2 to find that φG(t) = exp(−c|t |1/2) where

c = E
√

M

∫ ∞

0

1

y3/2
(1 − cos y) dy = E

√
2πM .

In calculating the integral, it may be useful to know that
∫∞

0 sin2 ψ dψ = 1
2

√
π/2. Thus c = ∞ if

and only if E
√

M = ∞. [See also Problems (6.15.56), (6.15.57), and (8.10.9).]
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6.14 Solutions. Markov chain Monte Carlo

1. If P is reversible then

RHS =
∑

i

(∑

j

pi j xj

)
yiπi =

∑

i, j

πi pi j xj yi =
∑

i, j

πj pj i yi xj =
∑

j

πj xj

(∑

i

pj i yi

)
= LHS.

Suppose conversely that 〈x,Py〉 = 〈Px, y〉 for all x, y ∈ l2(π). Choose x, y to be unit vectors with 1
in the i th and j th place respectively, to obtain the detailed balance equations πi pi j = πj pj i .

2. Just check that 0 ≤ bi j ≤ 1 and that the pi j = gi j bi j satisfy the detailed balance equations
(6.14.3).

3. It is immediate that pj k = |Aj k |, the Lebesgue measure of Aj k . This is a method for simulating
a Markov chain with a given transition matrix.

4. (a) Note first from equation (4.12.7) that d(U) = 1
2 supi 6= j dTV(ui·, u j ·), where ui· is the mass

function uit , t ∈ T . The required inequality may be hacked out, but instead we will use the maximal
coupling of Exercises (4.12.4, 5); see also Problem (7.11.16). Thus requires a little notation. For
i, j ∈ S, i 6= j , we find a pair (X i , X j ) of random variables taking values in T according to the

marginal mass functions ui·, u j ·, and such that P(X i 6= X j ) = 1
2 dTV(ui·, u j ·). The existence of

such a pair was proved in Exercise (4.12.5). Note that the value of X i depends on j , but this fact
has been suppressed from the notation for ease of reading. Having found (X i , X j ), we find a pair
(Y (X i ), Y (X j )) taking values in U according to the marginal mass functions vXi ·, vX j ·, and such that

P(Y (X i ) 6= Y (X j ) | X i , X j ) = 1
2 dTV(vXi ·, vX j ·). Now, taking a further liberty with the notation,

P
(
Y (X i ) 6= Y (X j )

)
=
∑

r,s∈S
r 6=s

P(X i = r, X j = s)P
(
Y (r) 6= Y (s)

)

=
∑

r,s∈S
r 6=s

P(X i = r, X j = s) 1
2 dTV(vr ·, vs·)

≤
{

1
2 sup

r 6=s

dTV(vr ·, vs·)
}

P(X i 6= X j ),

whence

d(UV) = sup
i 6= j

P
(
Y (X i ) 6= Y (X j )

)
≤
{

1
2 sup

r 6=s

dTV(vr ·, vs·)
}{

sup
i, j

P(X i 6= X j )
}

and the claim follows.

(b) Write S = {1, 2, . . . ,m}, and take

U =
(

P(X0 = 1) P(X0 = 2) · · · P(X0 = m)

P(Y0 = 1) P(Y0 = 2) · · · P(Y0 = m)

)
.

The claim follows by repeated application of the result of part (a).

It may be shown with the aid of a little matrix theory that the second largest eigenvalue of a finite
stochastic matrix P is no larger in modulus that d(P); cf. the equation prior to Theorem (6.14.9).

5. (a) The Markov chains beginning at distinct i, j ∈ 2 evolve independently until they meet,
and after meeting they stick together. Since the state space is finite, and the chain is aperiodic and
irreducible, they meet a.s. in finite time. This holds for all pairs of starting states, and the claim follows.

410



Problems Solutions [6.14.6]–[6.15.1]

(b) In the first example, let W be a random permutation of2. This requires P to be doubly stochastic,
and so the stationary distribution is the constant vector. In the second example, take2 = {1, 2, 3} and

P =




0 1
2

1
2

1 0 0
1 0 0


 .

It is immediate that the chains starting at 2 and 3 coalesce in one step, but the chain starting at 1 never
meets either. The chain is periodic with period 2, and this weakness is fixed by considering the minor

‘lazy’ variant of Exercise (6.5.12) with transition matrix 1
2 P + 1

2 I where I is the identity matrix.

6. In the notation of Example (6.14.2), let

α(θ) =
∑

v∼w
θvθw, θ ∈ 2,

and let us prove that

(*) α(θ ∨ ψ)− α(θ) ≥ α(ψ)− α(θ ∧ ψ), θ, ψ ∈ 2,

from which the FKG lattice condition (6.14.20) follows by exponentiation. Let θ,ψ ∈ 2, and
D = {v ∈ V : θv 6= ψv}. Evidently (*) holds when D = ∅, and we show first that (*) holds when
|D| = 1. Suppose D = {v}, and assume without loss of generality that θv = −1 and ψv = +1.

Let d be the degree of v (that is, the number of edges touching v) in the graph G . Let N+(θ)
(respectively, N−(θ)) be the number of neighbours w of v with θw = +1 (respectively, θw = −1).
Since θ and ψ disagree only at v, and θ ∧ ψ ≤ ψ , it must be the case that (θ ∧ ψ)v = −1. Since
ψv = +1, we have that

(**) α(ψ)− α(θ ∧ ψ) =
(

N+(ψ)− N−(ψ)
)

−
(

N−(ψ)− N+(ψ)
)

= 4N+(ψ)− 2d,

and (*) may be written as N+(θ ∨ ψ) ≥ N+(ψ), which holds trivially since θ ∨ ψ ≥ ψ .

One may either deduce the case of general D from the above by an induction, or argue directly
as follows. Let Nv+(θ) be given as above with the role of v ∈ V highlighted. As in (**),

α(ψ)− α(θ ∧ ψ) = 4
∑

v∈D

(
Nv+(ψ)− Nv+(θ ∧ ψ)

)
.

Inequality (*) follows on noting that

Nv+(θ ∨ ψ)− Nv+(θ) ≥ Nv+(ψ)− Nv+(θ ∧ ψ), v ∈ D.

This is best seen by considering each neighbour w of v in turn.

6.15 Solutions to problems

1. (a) The state 4 is absorbing. The state 3 communicates with 4, and is therefore transient. The set

{1, 2} is finite, closed, and aperiodic, and hence ergodic. We have that f34(n) = ( 1
4 )

n−1 1
2 , so that

f34 =
∑

n f34(n) = 2
3 .

(b) The chain is irreducible with period 2. All states are positive recurrent. Solve the equation

πππ = πππP to find the stationary distribution πππ =
(

3
8 ,

3
16 ,

5
16 ,

1
8

)
whence the mean recurrence times are

8
3 ,

16
3 ,

16
5 , 8, in order.
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2. (a) Let P be the transition matrix, assumed to be doubly stochastic. Then

∑

i

pi j (n) =
∑

i

∑

k

pik (n − 1)pkj =
∑

k

(∑

i

pik (n − 1)

)
pkj

whence, by induction, the n-step transition matrix Pn is doubly stochastic for all n ≥ 1.

If j is not positive recurrent, then pi j (n) → 0 as n → ∞, for all i , implying that
∑

i pi j (n) → 0,
a contradiction. Therefore all states are positive recurrent.

If in addition the chain is irreducible and aperiodic then pi j (n) → πj , where πππ is the unique

stationary distribution. However, it is easy to check that πππ = (N−1, N−1, . . . , N−1) is a stationary
distribution if P is doubly stochastic.

(b) Suppose the chain is recurrent. In this case there exists a positive root of the equation x = xP, this
root being unique up to a multiplicative constant (see Theorem (6.4.6) and the forthcoming Problem
(6.15.7)). Since the transition matrix is doubly stochastic, we may take x = 1, the vector of 1’s. By
the above uniqueness of x, there can exist no stationary distribution, and therefore the chain is null.
We deduce that the chain cannot be positive recurrent.

3. By the Chapman–Kolmogorov equations,

pii (m + r + n) ≥ pi j (m)pj j (r)pj i (n), m, r, n ≥ 0.

Choose two states i and j , and pick m and n such that α = pi j (m)pj i (n) > 0. Then

pii (m + r + n) ≥ αpj j (r).

Set r = 0 to find that pii (m + n) > 0, and so d(i ) | (m + n). If d(i ) ∤ r then pii (m + r + n) = 0, so
that pj j (r) = 0; therefore d(i ) | d( j). Similarly d( j) | d(i ), giving that d(i ) = d( j).

4. (a) See the solution to Exercise (6.3.9a).

(b) Let i, j, r, s ∈ S, and choose N(i, r) and N( j, s) according to part (a). Then

P
(

Zn = (r, s)
∣∣ Z0 = (i, j)

)
= pir (n)pj s(n) > 0

if n ≥ max{N(i, r), N( j, s)}, so that the chain is irreducible and aperiodic.

(c) Suppose S = {1, 2} and

P =
(

0 1
1 0

)
.

In this case
{
{1, 1}, {2, 2}

}
and

{
{1, 2}, {2, 1}

}
are closed sets of states for the bivariate chain.

5. Clearly P(N = 0) = 1 − fi j , while, by conditioning on the time of the nth visit to j , we
have that P(N ≥ n + 1 | N ≥ n) = f j j for n ≥ 1, whence the answer is immediate. Now

P(N = ∞) = 1 −
∑∞

n=0 P(N = n) which equals 1 if and only if fi j = f j j = 1.

6. Fix i 6= j and let m = min{n : pi j (n) > 0}. If X0 = i and Xm = j then there can be no
intermediate visit to i (with probability one), since such a visit would contradict the minimality of m.

Suppose X0 = i , and note that (1 − f j i)pi j (m) ≤ 1 − fii , since if the chain visits j at time m

and subsequently does not return to i , then no return to i takes place at all. However fii = 1 if i is
recurrent, so that f j i = 1.

7. (a) We may take S = {0, 1, 2, . . . }. Note that qi j (n) ≥ 0, and

∑

j

qi j (n) = 1, qi j (n + 1) =
∞∑

l=0

qil (1)ql j (n),

412



Problems Solutions [6.15.8]–[6.15.8]

whence Q = (qi j (1)) is the transition matrix of a Markov chain, and Qn = (qi j (n)). This chain is
recurrent since ∑

n

qii (n) =
∑

n

pii (n) = ∞ for all i,

and irreducible since i communicates with j in the new chain whenever j communicates with i in the
original chain.

That

(∗) gi j (n) =
xj

xi
lj i (n), i 6= j, n ≥ 1,

is evident when n = 1 since both sides are qi j (1). Suppose it is true for n = m where m ≥ 1. Now

lj i (m + 1) =
∑

k:k 6= j

lj k(m)pki , i 6= j,

so that
xj

xi
lj i (m + 1) =

∑

k:k 6= j

gkj (m)qik (1), i 6= j,

which equals gi j (m + 1) as required.

(b) Sum (∗) over n to obtain that

(∗∗) 1 =
xj

xi
ρi ( j), i 6= j,

where ρi ( j) is the mean number of visits to i between two visits to j ; we have used the fact that∑
n gi j (n) = 1, since the chain is recurrent (see Problem (6.15.6)). It follows that xi = x0ρi (0) for

all i , and therefore x is unique up to scalar multiplication.

(c) The claim is trivial when i = j , and we assume therefore that i 6= j . Let Ni ( j) be the number
of visits to i before reaching j for the first time, and write Pk and Ek for probability and expectation

conditional on X0 = k. Clearly, Pj (Ni ( j) ≥ r) = h j i(1 − hi j )
r−1 for r ≥ 1, whence

ρi ( j) = Ej (Ni ( j)) =
∞∑

r=1

Pj (Ni ( j) ≥ r) =
h j i

hi j
.

The claim follows by (∗∗).

8. (a) If such a Markov chain exists, then

un =
n∑

i=1

fi un−i , n ≥ 1,

where fi is the probability that the first return of X to its recurrent starting point s takes place at time
i . Certainly u0 = 1.

Conversely, suppose u is a renewal sequence with respect to the collection ( fm : m ≥ 1). Let X

be a Markov chain on the state space S = {0, 1, 2, . . . } with transition matrix

pi j =
{

P(T ≥ i + 2 | T ≥ i + 1) if j = i + 1,

1 − P(T ≥ i + 2 | T ≥ i + 1) if j = 0,
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[6.15.9]–[6.15.10] Solutions Markov chains

where T is a random variable having mass function fm = P(T = m). With X0 = 0, the chance that
the first return to 0 takes place at time n is

P

(
Xn = 0,

n−1∏

1

X i 6= 0

∣∣∣∣ X0 = 0

)
= p01 p12 · · · pn−2,n−1 pn−1,0

=
(

1 −
G(n + 1)

G(n)

) n−1∏

i=1

G(i + 1)

G(i )

= G(n)− G(n + 1) = fn

where G(m) = P(T ≥ m) =
∑∞

n=m fn . Now vn = P(Xn = 0 | X0 = 0) satisfies

v0 = 1, vn =
n∑

i=1

fivn−i for n ≥ 1,

whence vn = un for all n.

(b) Let X and Y be the two Markov chains which are associated (respectively) with u and v in the
above sense. We shall assume that X and Y are independent. The product (unvn : n ≥ 1) is now the
renewal sequence associated with the bivariate Markov chain (Xn,Yn).

9. Of the first 2n steps, let there be i rightwards, j upwards, and k inwards. Now X2n = 0 if
and only if there are also i leftwards, j downwards, and k outwards. The number of such possible

combinations is (2n)!/{(i ! j ! k!)2}, and each such combination has probability ( 1
6 )

2(i+ j+k) = ( 1
6 )

2n .

The first equality follows, and the second is immediate.

Now

(∗) P(X2n = 0) ≤
(

1

2

)2n
(

2n

n

)
M

∑

i+ j+k=n

n!

3ni ! j ! k!

where

M = max

{
n!

3ni ! j ! k!
: i, j, k ≥ 0, i + j + k = n

}
.

It is not difficult to see that the maximum M is attained when i , j , and k are all closest to 1
3 n, so that

M ≤
n!

3n(⌊ 1
3 n⌋!)3

.

Furthermore the summation in (∗) equals 1, since the summand is the probability that, in allocating n

balls randomly to three urns, the urns contain respectively i , j , and k balls. It follows that

P(X2n = 0) ≤
(2n)!

12nn! (⌊ 1
3 n⌋!)3

which, by an application of Stirling’s formula, is no bigger than Cn
− 3

2 for some constant C . Hence∑
n P(X2n = 0) < ∞, so that the origin is transient.

10. No. The line of ancestors of any cell-state is a random walk in three dimensions. The difference
between two such lines of ancestors is also a type of random walk, which in three dimensions is
transient.
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11. There are one or two absorbing states according as whether one or both of α and β equal zero. If
αβ 6= 0, the chain is irreducible and recurrent. It is periodic if and only if α = β = 1, in which case
it has period 2.

If 0 < αβ < 1 then

πππ =
(

β

α + β
,

α

α + β

)

is the stationary distribution. There are various ways of calculating Pn ; see Exercise (6.3.3) for
example. In this case the answer is given by

(α + β)Pn = (1 − α − β)n
(
α −α

−β β

)
+
(
β α

β α

)
;

proof by induction. Hence

(α + β)Pn →
(
β α

β α

)
as n → ∞.

The chain is reversible in equilibrium if and only if π1 p12 = π2 p21, which is to say that αβ = βα !

12. The transition matrix is given by

pi j =





(
N − i

N

)2

if j = i + 1,

1 −
(

i

N

)2

−
(

N − i

N

)2

if j = i,

(
i

N

)2

if j = i − 1,

for 0 ≤ i ≤ N . This process is a birth–death process in discrete time, and by Exercise (6.5.1) is
reversible in equilibrium. Its stationary distribution satisfies the detailed balance equation πi pi,i+1 =
πi+1 pi+1,i for 0 ≤ i < N , whence πi = π0

(N
i

)2
for 0 ≤ i ≤ N , where

1

π0
=

N∑

i=0

(
N

i

)2

=
(

2N

N

)
.

13. (a) The chain X is irreducible; all states are therefore of the same type. The state 0 is aperiodic,
and so therefore is every other state. Suppose that X0 = 0, and let T be the time of the first return to
0. Then P(T > n) = a0a1 · · · an−1 = bn for n ≥ 1, so that 0 is recurrent if and only if bn → 0 as
n → ∞.

(b) The mean of T is

E(T ) =
∞∑

n=0

P(T > n) =
∞∑

n=0

bn .

The stationary distribution πππ satisfies

π0 =
∞∑

k=0

πk(1 − ak), πn = πn−1an−1 for n ≥ 1.

Hence πn = π0bn and π−1
0 =

∑∞
n=0 bn if this sum is finite.
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(c) Suppose ai has the stated form for i ≥ I . Then

bn = bI

n−1∏

i=I

(1 − Ai−β), n ≥ I .

Hence bn → 0 if and only if
∑

i Ai−β = ∞, which is to say that β ≤ 1. The chain is therefore
recurrent if and only if β ≤ 1.

(d) We have that 1 − x ≤ e−x for x ≥ 0, and therefore

∞∑

n=I

bn ≤ bI

∞∑

n=I

exp

{
−A

n−1∑

i=I

i−β
}

≤ bI

∞∑

n=I

exp
{
−An · n−β

}
< ∞ if β < 1.

(e) If β = 1 and A > 1, there is a constant cI such that

∞∑

n=I

bn ≤ bI

∞∑

n=I

exp

{
−A

n−1∑

i=I

1

i

}
≤ cI

∞∑

n=I

exp {−A log n} = cI

∞∑

n=I

n−A < ∞,

giving that the chain is positive.

(f) If β = 1 and A ≤ 1,

bn = bI

n−1∏

i=I

(
1 −

A

i

)
≥ bI

n−1∏

i=I

(
i − 1

i

)
= bI

(
I − 1

n − 1

)
.

Therefore
∑

n bn = ∞, and the chain is null.

14. By Lemma (6.10.23), the transition probabilities pi j (t) are uniformly continuous in t . Now
log x is continuous for 0 < x ≤ 1, and therefore g is continuous. Certainly g(0) = 0. In addition
pii (s + t) ≥ pii (s)pii (t) for s, t ≥ 0, whence g(s + t) ≤ g(s)+ g(t), s, t ≥ 0.

For the last part

1

t

(
pii (t)− 1

)
=

g(t)

t
·

pii (t) − 1

− log{1 − (1 − pii (t))}
→ −λ

as t ↓ 0, since x/log(1 − x) → −1 as x ↓ 0.

15. We may assume that the generator is such that gi > 0 for all i , since otherwise the claim is
trivial. By Theorem (6.9.20), the continuous-time chain X is irreducible if and only if its jump chain
Y is irreducible. Now Y is irreducible if and only if, for distinct i, j ∈ S, there exists a sequence
i, k1, k2, . . . , kn , j of distinct states such that the transition matrix Y = (yuv : u, v ∈ S) satisfies
yi,k1

yk1,k2
· · · ykn , j > 0. By (6.9.7), yuv = guv/gu , and the claim follows.

16. Note that πi > 0 for i ∈ S, by Lemma (6.10.15).

(a) (i) The given Ĝ is a generator, since it has non-negative off-diagonal entries, and row sums

∑

i

ĝj i =
∑

i

πi

πj
gi j =

1

πj

∑

i

πi gi j = 0,

since πG = 0. Let 0 = t0 < t1 < t2 < · · · < tn = T and i0, i1, . . . , in ∈ S. Then,

P
(
Y (t0) = i0,Y (t1) = i1, . . . ,Y (tn) = in

)

= P
(

X (T ) = i0, X (T − t1) = i1, . . . , X (0) = in

)

= πin pin ,in−1
(sn)pin−1,in−2

(sn−1) · · · pi1,i0
(s1)

= πi0
p̂i0,i1

(s1) p̂i1,i2
(s2) · · · p̂in−1,in

(sn),
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where si = ti − ti−1 and

p̂uv(s) =
πv

πu
pvu(s).

Since X is right-continuous, Y is left-continuous, and this needs fixing for Y to be a Markov chain.

The family (P̂t ) is the stochastic semigroup of the chain Y , which inherits its irreducibility and

non-explosivity from X . It therefore satisfies the Kolmogorov backward equation with generator P̂′
0,

which is easily checked to equal Ĝ.

(ii) Let X be reversible, so that X and Y have the same distributions. Then Ĝ = G, whence the
detailed balance equations hold.

Conversely, if Ĝ = G, then X and Y have the same generator and the same initial distribution.
Therefore, they have the same joint distributions, so that X is reversible.

(iii) If ν satisfies the detailed balance equations, then
∑

i νi gi j =
∑

i νj gj i = νj
∑

i gj i = 0.

(b) (i) Let X be non-explosive with stationary distribution π , and let X (0) have distribution π . The
process X is reversible if and only if the detailed balance equations hold, which implies by iteration
that

πk1
gk1,k2

gk2,k3
· · · gkn ,k1

= gk2,k1
gk3,k2

· · · gk1,knπk1
,

for any k1, k2, . . . , kn ∈ S. The required equation follows on dividing by πk1
.

Conversely, suppose the given equation holds. Fix a reference state i0. For i ∈ S, by irreducibility
and Problem (6.15.15), there exists a sequence i, in, in−1, . . . , i1, i0 of states (not necessarily distinct)
such that gi,in gin ,in−1

· · · gi1,i0
> 0, and we call such a sequence a walk from i to i0. Define

νi =
gi0,i1

gi1,i2
· · · gin ,i

gi,in gin ,in−1
· · · gi1,i0

.

Note that νj does not depend on the choice of walk from i to i0, since if i, i ′m, i
′
m−1 . . . , i

′
1, i0 is another

such walk, then
gi0,i1

gi1,i2
· · · gin ,i

gi,in gin ,in−1
· · · gi1,i0

=
gi0,i

′
1

gi′1,i
′
2

· · · gi′m ,i

gi,i′m gi′m ,i′m−1
· · · gi′1,i0

by the given condition. We show next that the νi satisfy the detailed balance equations

(*) νj gj i = νi gi j for i 6= j.

Certainly (*) holds if gi j = gj i = 0. Assume gj i > 0. We can express νj as

νj =
gi0,i1

gi1,i2
· · · gin ,i gi j

gj i gi,in gin ,in−1
· · · gi1,i0

= (gi j /gj i)νi ,

as required.

Since ν satisfies the detailed balance equations, it satisfies νG = 0. By Theorem (6.10.15), π is
the unique measure satisfying this equation. Therefore, ν and π differ by a scalar multiple, implying
that π satisfies the detailed balance equations as required.

(ii) It is left to the reader to adapt the solution of Exercise (6.5.2b).

(c) Let S = {1, 2} and

G =
(

−α α

β −β

)

where αβ > 0. The chain is non-explosive with stationary distribution

πππ =
(

β

α + β
,

α

α + β

)
,
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and therefore π1g12 = π2g21.

(d) Let X be a non-explosive birth–death process with birth rates λi and death rates µi . The stationary
distribution πππ satisfies

π1µ1 − π0λ0 = 0, πk+1µk+1 − πkλk = πkµk − πk−1λk−1 for k ≥ 1.

Therefore πk+1µk+1 = πkλk for k ≥ 0, the detailed balance conditions.

17. Consider the continuous-time chain with generator

G =
(

−β β

γ −γ

)
.

It is a standard calculation (Exercise (6.9.1)) that the associated semigroup satisfies

(β + γ )Pt =
(
γ + βh(t) β(1 − h(t))

γ (1 − h(t)) β + γ h(t)

)

where h(t) = e−t (β+γ ). Now P1 = P if and only if γ + βh(1) = β + γ h(1) = α(β + γ ), which is

to say that β = γ = − 1
2 log(2α − 1), a solution which requires that α > 1

2 .

18. The forward equations for pn(t) = P(X (t) = n) are

p′
0(t) = µp1 − λp0,

p′
n(t) = λpn−1 − (λ + nµ)pn + µ(n + 1)pn+1, n ≥ 1.

In the usual way,
∂G

∂t
= (s − 1)

(
λG − µ

∂G

∂s

)

with boundary condition G(s, 0) = s I . The characteristics are given by

dt =
ds

µ(s − 1)
=

dG

λ(s − 1)G
,

and therefore G = eρ(s−1) f
(
(s−1)e−µt

)
, for some function f , determined by the boundary condition

to satisfy eρ(s−1) f (s − 1) = s I . The claim follows.

As t → ∞, G(s, t) → eρ(s−1), the generating function of the Poisson distribution, parameter ρ.

19. (a) The forward equations are

∂

∂t
pii (s, t) = −λ(t)pii (s, t),

∂

∂t
pi j (s, t) = −λ(t)pi j (s, t)+ λ(t)pi, j−1(t), i < j.

Assume N(s) = i and s < t . In the usual way,

G(s, t; x) =
∞∑

j=i

x j P
(

N(t) = j
∣∣ N(s) = i

)

satisfies
∂G

∂t
= λ(t)(x − 1)G.
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We integrate subject to the boundary condition to obtain

G(s, t; x) = x i exp

{
(x − 1)

∫ t

s
λ(u) du

}
,

whence pi j (t) is found to be the probability that A = j − i where A has the Poisson distribution with

parameter
∫ t

s λ(u) du.

The backward equations are

∂

∂s
pi j (s, t) = λ(s)pi+1, j (s, t)− λ(s)pi j (s, t);

using the fact that pi+1, j (t) = pi, j−1(t), we are led to

−
∂G

∂s
= λ(s)(x − 1)G.

The solution is the same as above.

(b) We have that

P(T > t) = p00(t) = exp

{
−
∫ t

0
λ(u) du

}
,

so that

fT (t) = λ(t) exp

{
−
∫ t

0
λ(u) du

}
, t ≥ 0.

In the case λ(t) = c/(1 + t),

E(T ) =
∫ ∞

0
P(T > t) dt =

∫ ∞

0

du

(1 + u)c

which is finite if and only if c > 1.

20. Let s > 0. Each offer has probability 1 − F(s) of exceeding s, and therefore the first offer

exceeding s is the M th offer overall, where P(M = m) = F(s)m−1[1 − F(s)], m ≥ 1. Conditional
on {M = m}, the value of X M is independent of the values of X1, X2, . . . , X M−1, with

P(X M > u | M = m) =
1 − F(u)

1 − F(s)
, 0 < s ≤ u,

and X1, X2, . . . , X M−1 have shared (conditional) distribution function

G(u | s) =
F(u)

F(s)
, 0 ≤ u ≤ s.

For any event B defined in terms of X1, X2, . . . , X M−1, we have that

P(X M > u, B) =
∞∑

m=1

P(X M > u, B | M = m)P(M = m)

=
∞∑

m=1

P(X M > u | M = m)P(B | M = m)P(M = m)

= P(X M > u)

∞∑

m=1

P(B | M = m)P(M = m)

= P(X M > u)P(B), 0 < s ≤ u,
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where we have used the fact that P(X M > u | M = m) is independent of m. It follows that the first
record value exceeding s is independent of all record values not exceeding s. By a similar argument
(or an iteration of the above) all record values exceeding s are independent of all record values not
exceeding s.

The chance of a record value in (s, s + h] is

P(s < X M ≤ s + h) =
F(s + h)− F(s)

1 − F(s)
=

f (s)h

1 − F(s)
+ o(h).

A very similar argument works for the runners-up. Let X M1
, X M2

, . . . be the values, in order,
of offers exceeding s. It may be seen that this sequence is independent of the sequence of offers
not exceeding s, whence it follows that the sequence of runners-up is a non-homogeneous Poisson
process. There is a runner-up in (s, s + h] if (neglecting terms of order o(h)) the first offer exceeding
s is larger than s + h, and the second is in (s, s + h]. The probability of this is

(
1 − F(s + h)

1 − F(s)

)(
F(s + h)− F(s)

1 − F(s)

)
+ o(h) =

f (s)h

1 − F(s)
+ o(h).

21. Let Ft (x) = P(N∗(t) ≤ x), and let A be the event that N has a arrival during (t, t + h). Then

Ft+h(x) = λhP
(
N∗(t + h) ≤ x

∣∣ A
)

+ (1 − λh)Ft (x)+ o(h)

where

P
(

N∗(t + h) ≤ x
∣∣ A
)

=
∫ ∞

−∞
Ft (x − y) f (y) dy.

Hence
∂

∂t
Ft (x) = −λFt (x)+ λ

∫ ∞

−∞
Ft (x − y) f (y) dy.

Take Fourier transforms to find that φt (θ) = E(eiθN∗(t)) satisfies

∂φt

∂t
= −λφt + λφtφ,

an equation which may be solved subject to φ0(θ) = 1 to obtain φt (θ) = eλt (φ(θ)−1).

Alternatively, using conditional expectation,

φt (θ) = E
{

E
(
eiθN∗(t) ∣∣ N(t)

)}
= E

{
φ(θ)N(t)

}

where N(t) is Poisson with parameter λt .

22. (a) We have that

E(s N(t)) = E
{

E(s N(t) | 3)
}

= 1
2 {eλ1t (s−1) + eλ2t (s−1)},

whence E(N(t)) = 1
2 (λ1 + λ2)t and var(N(t)) = 1

2 (λ1 + λ2)t + 1
4 (λ1 − λ2)

2t2.

(b) In the notation of (a), G N(t)(s) = E(e3t (s−1)) = M3(t (s − 1)). Therefore,

var(N(t)) = t2 M ′′
3(0)+ t M ′

3(0) − t2 M ′
3(0)

2 = t2 var(3)+ E(N(t)).

(c) Since the interarrival times of M∗ are not exponentially distributed, M∗ is not a Poisson process.

Let It be the indicator function that M(t) is odd. Then M∗ = 1
2 (M − I ), so that E(M∗(t)) ∼ 1

2 t and

var(M∗(t)) ∼ 1
4 t as t → ∞. This violates the inequality of part (b) for large t .
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23. Conditional on {X (t) = i }, the next arrival in the birth process takes place at rate λi .

24. The forward equations for pn(t) = P(X (t) = n) are

p′
n(t) =

1 + µ(n − 1)

1 + µt
pn−1(t)−

1 + µn

1 + µt
pn(t), n ≥ 0,

with the convention that p−1(t) = 0. Multiply by sn and sum to deduce that

(1 + µt)
∂G

∂t
= sG + µs2 ∂G

∂s
− G − µs

∂G

∂s

as required.

Differentiate with respect to s and take the limit as s ↑ 1. If E(X (t)2) < ∞, then

m(t) = E(X (t)) =
∂G

∂s

∣∣∣∣
s=1

satisfies (1 + µt)m′(t) = 1 + µm(t) subject to m(0) = I . Solving this in the usual way, we obtain
m(t) = I + (1 + µI )t .

Differentiate again to find that

n(t) = E
(

X (t)(X (t) − 1)
)

=
∂2G

∂s2

∣∣∣∣∣
s=1

satisfies (1 + µt)n′(t) = 2
(
m(t)+ µm(t)+ µn(t)

)
subject to n(0) = I (I − 1). The solution is

n(t) = I (I − 1)+ 2I (1 + µI )t + (1 + µI )(1 + µ+ µI )t2.

The variance of X (t) is n(t)+ m(t)− m(t)2.

25. (a) Condition on the value of the first step:

ηj =
λj

λj + µj
· ηj+1 +

µj

λj + µj
· ηj−1, j ≥ 1,

as required. Set xi = ηi+1 − ηi to obtain λj xj = µj xj−1 for j ≥ 1, so that

xj = x0

j∏

i=1

µi

λi
, j ≥ 1.

It follows that

ηj+1 = η0 +
j∑

k=0

xk = 1 + (η1 − 1)

j∑

k=0

ek .

The ηj are probabilities, and lie in [0, 1]. If
∑∞

1 ek = ∞ then we must have η1 = 1, which implies
that ηj = 1 for all j .

(b) By conditioning on the first step, the probability ηj , of visiting 0 having started from j , satisfies

ηj =
( j + 1)2ηj+1 + j2ηj−1

j2 + ( j + 1)2
.
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Hence, ( j + 1)2(ηj+1 − ηj ) = j2(ηj − ηj−1), giving ( j + 1)2(ηj+1 − ηj ) = η1 − η0. Therefore,

1 − ηj+1 = (1 − η1)

j∑

k=0

1

(k + 1)2
→ (1 − η1)

1
6π

2 as j → ∞.

By Exercise (6.3.6), we seek the minimal non-negative solution, which is achieved when η1 = 1 −
(6/π2).

26. We may suppose that X (0) = 0. Let Tn = inf{t : X (t) = n}. Suppose Tn = T , and let
Y = Tn+1 − T . Condition on all possible occurrences during the interval (T, T + h) to find that

E(Y ) = (λnh)h + µnh(h + E(Y ′))+ (1 − λnh − µnh)(h + E(Y )) + o(h),

where Y ′ is the mean time which elapses before reaching n + 1 from n − 1. Set mn = E(Tn+1 − Tn)

to obtain that
mn = µnh(mn−1 + mn)+ mn + h{1 − (λn + µn)mn} + o(h).

Divide by h and take the limit as h ↓ 0 to find that λnmn = 1 + µnmn−1, n ≥ 1. Therefore

mn =
1

λn
+
µn

λn
mn−1 = · · · =

1

λn
+

µn

λnλn−1
+ · · · +

µnµn−1 · · ·µ1

λnλn−1 · · · λ0
,

since m0 = λ
−1
0 . The process is dishonest if

∑∞
n=0 mn < ∞, since in this case T∞ = lim Tn has

finite mean, so that P(T∞ < ∞) = 1.

On the other hand, the process grows no faster than a birth process with birth rates λi , which is
honest if

∑∞
n=0 1/λn = ∞. Can you find a better condition?

27. We know that, conditional on X (0) = I , X (t) has generating function

G(s, t) =
(
λt (1 − s)+ s

λt (1 − s)+ 1

)I

,

so that

P(T ≤ x | X (0) = I ) = P(X (x) = 0 | X (0) = I ) = G(0, x) =
(

λx

λx + 1

)I

.

It follows that, in the limit as x → ∞,

P(T ≤ x) =
∞∑

I=0

(
λx

λx + 1

)I

P(X (0) = I ) = G X (0)

(
λx

λx + 1

)
→ 1.

For the final part, the required probability is {x I/(x I + 1)}I = {1 + (x I )−1}−I , which tends to

e−1/x as I → ∞.

28. Let Y be an immigration–death process without disasters, with Y (0) = 0. We have from Problem
(6.15.18) that Y (t) has generating function G(s, t) = exp{ρ(s − 1)(1 − e−µt )} where ρ = λ/µ. As
seen earlier, and as easily verified by taking the limit as t → ∞, Y has a stationary distribution.

From the process Y we may generate the process X in the following way. At the epoch of each
disaster, we paint every member of the population grey. At any given time, the unpainted individuals
constitute X , and the aggregate population constitutes Y . When constructed in this way, it is the case
that Y (t) ≤ X (t), so that Y is a Markov chain which is dominated by a chain having a stationary
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distribution. It follows that X has a stationary distribution πππ (the state 0 is recurrent for X , and
therefore recurrent for Y also).

Suppose X is in equilibrium. The times of disasters form a Poisson process with intensity δ. At
any given time t , the elapsed time T since the last disaster is exponentially distributed with parameter
δ. At the time of this disaster, the value of X (t) is reduced to 0 whatever its previous value.

It follows by averaging over the value of T that the generating function H(s) =
∑∞

n=0 snπn of
X (t) is given by

H(s) =
∫ ∞

0
δe−δuG(s, u) du =

δ

µ
eρ(s−1)

∫ 1

0
x (δ/µ)−1e−ρ(s−1)x dx

by the substitution x = e−µu . The mean of X (t) is

H ′(1) =
∫ ∞

0
δe−δuE(Y (u)) du =

∫ ∞

0
δe−δuρ(1 − e−µu) du =

ρµ

δ + µ
=

λ

δ + µ
.

29. Let G(|B|, s) be the generating function of X (B). If B ∩C = ∅, then X (B ∪C) = X (B)+ X (C),
so that G(α+β, s) = G(α, s)G(β, s) for |s| ≤ 1, α, β ≥ 0. The only solutions to this equation which

are monotone in α are of the form G(α, s) = eαλ(s) for |s| ≤ 1, and for some function λ(s). Now any
interval may be divided into n equal sub-intervals, and therefore G(α, s) is the generating function of
an infinitely divisible distribution. Using the result of Problem (5.12.13b), λ(s)may be written in the

form λ(s) = (A(s)− 1)λ for some λ and some probability generating function A(s) =
∑∞

0 ai s
i . We

now use (iii): if |B| = α,

P(X (B) ≥ 1)

P(X (B) = 1)
=

1 − eαλ(a0−1)

αλa1eαλ(a0−1)
→ 1

as α ↓ 0. Therefore a0 + a1 = 1, and hence A(s) = a0 + (1 − a0)s, and X (B) has a Poisson
distribution with parameter proportional to |B|.

30. (a) Let M(r, s) be the number of points of the resulting process on R+ lying in the interval (r, s].
Since disjoint intervals correspond to disjoint annuli of the plane, the process M has independent
increments in the sense that M(r1, s1),M(r2, s2), . . . ,M(rn, sn) are independent whenever r1 <

s1 < r2 < · · · < rn < sn . Furthermore, for r < s and k ≥ 0,

P
(

M(r, s) = k
)

= P
(

N has k points in the corresponding annulus
)

=
{λπ(s − r)}ke−λπ(s−r)

k!
.

(b) We have similarly that

P(R(k) ≤ x) = P(N has least k points in circle of radius x) =
∞∑

r=k

(λπx2)r e−λπx2

r !
,

and the claim follows by differentiating, and utilizing the successive cancellation.

31. The number X (S) of points within the sphere with volume S and centre at the origin has the

Poisson distribution with parameter λS. Hence P(X (S) = 0) = e−λS , implying that the volume V of
the largest such empty ball has the exponential distribution with parameter λ.

It follows that P(R > r) = P(V > crn) = e−λcrn
for r ≥ 0, where c is the volume of the unit

ball in n dimensions. Therefore

fR(r) = λncrn−1e−λcrn
, r ≥ 0.

Finally, E(R) =
∫∞

0 e−λcrn
dr , and we set v = λcrn .
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32. The time between the kth and (k + 1)th infection has mean λ−1
k , whence

E(T ) =
N∑

k=1

1

λk
.

Now

N∑

k=1

1

k(N + 1 − k)
=

1

N + 1

{ N∑

k=1

1

k
+

N∑

k=1

1

N + 1 − k

}

=
2

N + 1

N∑

k=1

1

k
=

2

N + 1

{
log N + γ + O(N−1)

}
.

It may be shown with more work (as in the solution to Problem (5.12.34)) that the moment

generating function of λ(N + 1)T − 2 log N converges as N → ∞, the limit being {Ŵ(1 − θ)}2.

33. (a) The forward equations for pn(t) = P(V (t) = n + 1
2 ) are

p′
n(t) = (n + 1)pn+1(t)− (2n + 1)pn(t)+ npn−1(t), n ≥ 0,

with the convention that p−1(t) = 0. It follows as usual that

∂G

∂t
=
∂G

∂s
−
(

2s
∂G

∂s
+ G

)
+
(

s2 ∂G

∂s
+ sG

)

as required. The general solution is

G(s, t) =
1

1 − s
f

(
t +

1

1 − s

)

for some function f . The boundary condition is G(s, 0) = 1, and the solution is as given.

(b) Clearly

mn(T ) = E

(∫ T

0
Int dt

)
=
∫ T

0
E(Int ) dt

by Fubini’s theorem, where Int is the indicator function of the event that V (t) = n + 1
2 .

As for the second part,

∞∑

n=0

snmn(T ) =
∫ T

0
G(s, t) dt =

log[1 + (1 − s)T ]

1 − s
,

so that, in the limit as T → ∞,

∞∑

n=0

sn
(
mn(T )− log T

)
=

1

1 − s
log

(
1 + (1 − s)T

T

)
→

log(1 − s)

1 − s
= −

∞∑

n=1

snan

if |s| < 1, where an =
∑n

i=1 i−1, as required.

(c) The mean velocity at time t is
1

2
+
∂G

∂s

∣∣∣∣
s=1

= t +
1

2
.

424



Problems Solutions [6.15.34]–[6.15.35]

34. (a) No, since

P
(

Xn+1 = 1
∣∣ Xn = 1, Xn−1 = a

)
=
{

1 if a = 0.

0 if a = 1.

(b) Make a map of the state space, with transitions and probabilities as indicated below. Started at
Y1 = (0, 1), the sequence Xn visits 0 before 3 if and only if Y makes some number m, say, of traversals

of the triangle labelled ∗, before heading for the pair (1, 0). Each such traversal has probability 1
8 , so

that

P(3 before 0) = 1 − 1
2

∞∑

m=0

(
1
8

)m
= 3

7 .

(1, 0) 1 (0, 1)

1
2 1

(1, 1)
1
2

1
2∗

(1, 2) (2, 1)
1
2

(2, 3) (3, 2)

1
2

1
2

(3, 1) (1, 3)

(c) Let the hitting probability of (1, 1) be λ from (1, 2) and µ from (2, 1). The diagram below (1, 1)
has a self-similar structure, so that, by conditioning on the first step,

λ = 1
2µ+ 1

2λ
2, µ = 1

2 + 1
2λµ.

Solving for λ, we find λ3 − 4λ2 + 4λ− 1 = 0, with roots λ = 1, 1
2 (3 ±

√
5). The only roots that can

be probabilities are λ = 1, 1
2 (3−

√
5), and the value λ = 1 is eliminated as follows. Consider the map

from the state (1, 1) downwards. Every step downwards corresponds to an addition, and every step
rightwards or upwards to a subtraction. Let D be the set of states reached from (1, 1) by sequences
of moves ending in an addition. The imbedded process on D is a transient random walk. Therefore,
Y is transient. On the other hand, if λ = 1, then µ = 1, and the chain is recurrent, a contradiction.

35. We write A, 1, 2, 3, 4, 5 for the vertices of the hexagon in clockwise order. Let Ti = min{n ≥
1 : Xn = i } and Pi (·) = P(· | X0 = i ).

(a) By symmetry, the probabilities pi = Pi (TA < TC) satisfy

pA = 2
3 p1, p1 = 1

3 + 1
3 p2, p2 = 1

3 p1 + 1
3 p3, p3 = 2

3 p2,

whence pA = 7
27 .

(b) By Exercise (6.4.6), the stationary distribution is πC = 1
4 , πi = 1

8 for i 6= C, whence µA =
π−1

A = 8.

(c) By the argument leading to Lemma (6.4.7), this equals µAπC = 2.

(d) We condition on the event E = {TA < TC}. The probabilities bi = Pi (E) satisfy

b1 = 1
3 + 1

3 b2, b2 = 1
3 b1 + 1

3 b3, b3 = 2
3 b2,
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yielding b1 = 7
18 , b2 = 1

6 , b3 = 1
9 . The transition probabilities conditional on E are now found by

equations of the form

τ12 =
P2(E)p12

P1(E)
=

b2

3b1
=

1

7
,

and similarly τ21 = 7
9 , τ23 = 2

9 , τ32 = 1
2 , τ1A = 6

7 . Hence, with the obvious notation,

µ2A = 1 + 7
9µ1A + 2

9µ3A, µ3A = 1 + µ2A, µ1A = 1 + 1
7µ2A,

giving µ1A = 10
7 , and the required answer is 1 + µ1A = 1 + 10

7 = 17
7 .

36. (a) We have that

pi,i+1 =
β(m − i )2

m2
, pi+1,i =

α(i + 1)2

m2
.

Look for a solution to the detailed balance equations

πi
β(m − i )2

m2
= πi+1

α(i + 1)2

m2

to find the stationary distribution

πi =
(

m

i

)2

(β/α)iπ0, where π0 =





m∑

i=0

(
m

i

)2

(β/α)i





−1

.

(b) In this case,

pi,i+1 =
β(m − i )

m
, pi+1,i =

α(i + 1)

m
.

Look for a solution to the detailed balance equations

πi
β(m − i )

m
= πi+1

α(i + 1)

m
,

yielding the stationary distribution

πi = (β/α)i

(
m

i

)
π0, where π0 =

{
m∑

i=0

(
m

i

)
(β/α)i

}−1

=
(

α

α + β

)m

.

37. We have that

d(s + t) =
∑

k

πkc

(
ak(s + t)

πk

)

=
∑

k

πkc


∑

j

aj (s)pj k(t)

πj

πj

πk


 by the Chapman–Kolmogorov equations

≥
∑

k

πk

∑

j

πj pj k(t)

πk
c

(
aj (s)

πj

)
by the concavity of c

=
∑

j

πj c

(
aj (s)

πj

)
= d(s),
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where we have used the fact that
∑

j πj pj k(t) = πk . Now aj (s) → πj as s → ∞, and therefore

d(t) → c(1).

We apply the first part with c(x) = −x log x for x ∈ (0, 1] to find that

−D(a(t); π) = −
∑

j

πj

aj (t)

πj
log

aj (t)

πj
↑ 0 as t → ∞.

38. By the Chapman–Kolmogorov equations and the reversibility,

u0(2t) =
∑

j

P
(

X (2t) = 0
∣∣ X (t) = j

)
P
(

X (t) = j
∣∣ X (0) = 0

)

=
∑

j

π0

πj
P
(

X (2t) = j
∣∣ X (t) = 0

)
u j (t) = π0

∑

j

πj

(
u j (t)

πj

)2

.

The function c(x) = −x2 is concave, and the claim follows by the result of the previous problem.

39. This may be done in a variety of ways, by breaking up the distribution of a typical displacement and
using the superposition theorem (6.13.5), by the colouring theorem (6.13.14), or by Rényi’s theorem

(6.13.17) as follows. Let B be a closed bounded region of Rd . We colour a point of 5 at x ∈ Rd

black with probability P(x + X ∈ B), where X is a typical displacement. By the colouring theorem,
the number of black points has a Poisson distribution with parameter

∫

Rd
λP(x + X ∈ B) dx = λ

∫

y∈B
dy

∫

x∈Rd
P(X ∈ dy − x)

= λ

∫

y∈B
dy

∫

v∈Rd
P(X ∈ dv) = λ|B|,

by the change of variables v = y − x. Therefore the probability that no displaced point lies in B is

e−λ|B|, and the claim follows by Rényi’s theorem.

40. Conditional on the number N(s) of points originally in the interval (0, s), the positions of these
points are jointly distributed as uniform random variables, so the mean number of these points which
lie in (−∞, a) after the perturbation satisfies

λs

∫ s

0

1

s
P(X + u ≤ a) du → λ

∫ ∞

0
FX (a − u) du = E(RL) as s → ∞,

where X is a typical displacement. Likewise, E(LR) = λ
∫∞

0 [1 − FX (a + u)] du. Equality is valid
if and only if ∫ ∞

a
[1 − FX (v)] dv =

∫ a

−∞
FX (v) dv,

which is equivalent to a = E(X), by Exercise (4.3.5).

The last part follows immediately on setting Xr = Vr t , where Vr is the velocity of the r th car.

41. Conditional on the number N(t) of arrivals by time t , the arrival times of these ants are distributed
as independent random variables with the uniform distribution. Let U be a typical arrival time, so
that U is uniformly distributed on (0, t). The arriving ant is in the pantry at time t with probability
π = P(U + X > t), or in the sink with probability ρ = P(U + X < t < U + X + Y ), or departed
with probability 1 − ρ − π . Thus,

E(x A(t)y B(t)) = E
{

E
(
x A(t)y B(t)

∣∣ N(t)
)}

= E
{
(πx + ρy + 1 − π − ρ)N(t)

}
= eλπ t (x−1)eλρt (y−1).
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Thus A(t) and B(t) are independent Poisson-distributed random variables.

Set x = y to see that the number of ants in the kitchen at time t has the Poisson distribution with
parameter t (π + ρ) = tP(X + Y + U > t). Now,

tP(X + Y + U > t) =
∫ t

0
[1 − FZ (t − u)] du where Z = X + Y,

=
∫ t

0
[1 − FZ (v)] dv

→ EZ = E(X + Y ) as t → ∞.

This limit is finite if and only if the number of ants has a limiting distribution.

If the ants arrive in pairs and then separate,

E
(
x A(t)y B(t)

∣∣ N(t)
)

=
{
π2x2 + 2πρxy + ρ2y2 + 2γπx + 2γρy + γ 2}N(t)

where γ = 1 − π − ρ. Hence,

E(x A(t)y B(t)) = exp
{
λ{(πx + ρy + γ )2 − 1}

}
,

whence A(t) and B(t) are not independent in this case.

42. The sequence {Xr } generates a Poisson process N(t) = max{n : Sn ≤ t}. The statement that
Sn = t is equivalent to saying that there are n − 1 arrivals in (0, t), and in addition an arrival at t . By
Theorem (6.12.7) or Theorem (6.13.11), the first n − 1 arrival times have the required distribution.

Part (b) follows similarly, on noting that fU(u) depends on u = (u1, u2, . . . , un) only through
the constraints on the ur .

43. Let Y be a Markov chain independent of X , having the same transition matrix and such that Y0
has the stationary distribution π . Let T = min{n ≥ 1 : Xn = Yn} and suppose X0 = i . As in the
proof of Theorem (6.4.17),

|pi j (n)− πj | =
∣∣∣∣
∑

k

πk

(
pi j (n)− pkj (n)

)∣∣∣∣ ≤
∑

k

πkP(T > n) = P(T > n).

Now,

P(T > r + 1 | T > r) ≤ 1 − ǫ2 for r ≥ 0,

where ǫ = mini j {pi j } > 0. The claim follows with λ = 1 − ǫ2.

44. Let Ik(n) be the indicator function of a visit to k at time n, so that E(Ik(n)) = P(Xn = k) = ak (n),
say. By Problem (6.15.43), |ak(n)− πk | ≤ λn . Now,

E

(∣∣∣∣
1

n
Vi (n)− πi

∣∣∣∣
2
)

=
1

n2
E



[n−1∑

r=0

{Ii (r)− πi }
]2



=
1

n2

∑

r

∑

m

E
{
(Ii (r)− πi )(Ii (m)− πi )

}
.
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Let s = min{m, r} and t = |m − r |. The last summation equals

1

n2

∑

r

∑

m

{
ai (s)pii (t)− ai (r)πi − ai (m)πi + π2

i

}

=
1

n2

∑

r

∑

m

{
(ai (s)− πi )(pii (t)− πi )+ πi (pii (t)− πi )

+ πi (ai (s)− πi )− πi (ai (r)− πi )− πi (ai (m)− πi )
}

≤
1

n2

∑

r

∑

m

(λs+t + λt + λs + λr + λm)

≤
An

n2
→ 0 as n → ∞,

where 0 < A < ∞. For the last part, use the fact that
∑n−1

r=0 f (Xr ) =
∑

i∈S f (i )Vi (n). The result
is obtained by Minkowski’s inequality (Problem (4.14.27b)) and the first part.

45. We have by the Markov property that f (Xn+1 | Xn, Xn−1, . . . , X0) = f (Xn+1 | Xn), whence

E
(
log f (Xn+1 | Xn, Xn−1, . . . , X0)

∣∣ Xn, . . . , X0

)
= E

(
log f (Xn+1 | Xn)

∣∣ Xn

)
.

Taking the expectation of each side gives the result. Furthermore,

H(Xn+1 | Xn) = −
∑

i, j

(pi j log pi j )P(Xn = i ).

Now X has a unique stationary distribution π , so that P(Xn = i ) → πi as n → ∞. The state space
is finite, and the claim follows.

46. Let T = inf{t : X t = Yt }. Since X and Y are recurrent, and since each process moves by distance
1 at continuously distributed times, it is the case that P(T < ∞) = 1. We define

Zt =
{

X t if t < T,

Yt if t ≥ T,

noting that the processes X and Z have the same distributions.

(a) By the above remarks,

|P(X t = k) − P(Yt = k)| = |P(Zt = k) − P(Yt = k)|
≤
∣∣P(Zt = k, T ≤ t)+ P(Zt = k, T > t)− P(Yt = k, T ≤ t)− P(Yt = k, T > t)

∣∣
≤ P(X t = k, T > t)+ P(Yt = k, T > t).

We sum over k ∈ A, and let t → ∞.

(b) We have in this case that Zt ≤ Yt for all t . The claim follows from the fact that X and Z are
processes with the same distributions.

47. We reformulate the problem in the following way. Suppose there are two containers, W and N ,
containing n particles in all. During the time interval (t, t + dt), any particle in W moves to N with
probability µdt +o(dt), and any particle in N moves to W with probability λdt +o(dt). The particles
move independently of one another. The number Z(t) of particles in W has the same rules of evolution
as the process X in the original problem. Now, Z(t)may be expressed as the sum of two independent
random variables U and V , where U is bin(r, θt ), V is bin(n − r,ψt ), and θt is the probability that a
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particle starting in W is in W at time t , ψt is the probability that a particle starting in N at 0 is in W

at t . By considering the two-state Markov chain of Exercise (6.9.1),

θt =
λ+ µe−(λ+µ)t

λ+ µ
, ψt =

λ− λe−(λ+µ)t

λ+ µ
,

and therefore

E(s X (t)) = E(sU )E(sV ) = (sθt + 1 − s)r (sψt + 1 − s)n−r .

Also, E(X (t)) = rθt + (n − r)ψt and var(X (t)) = rθt (1 − θt )+ (n − r)ψt (1 − ψt ). In the limit as
n → ∞, the distribution of X (t) approaches the bin(n, λ/(λ+ µ)) distribution.

48. Solving the equations

π0 = q1π1 + p2π2, π1 = q2π2 + p0π0,
∑

i

πi = 1,

gives the first claim. We have that γ =
∑

i (pi − qi )πi , and the formula for γ follows.

Considering the three walks in order, we have that:

A. πi = 1
3 for each i , and γA = −2a < 0.

B. Substitution in the formula for γB gives the numerator as 3
{
− 49

40 a+o(a)
}

, which is negative
for small a whereas the denominator is positive.

C. The transition probabilities are the averages of those for A and B, namely, p0 = 1
2 (

1
10 −

a)+ 1
2 (

1
2 − a) = 3

10 − a, and so on. The numerator in the formula for γC equals 9
160 + o(1),

which is positive for small a.

49. Call a car green if it satisfies the given condition. The chance that a green car arrives on the scene
during the time interval (u, u + h) is λhP(V < x/(t − u)) for u < t . Therefore, the arrival process
of green cars is an non-homogeneous Poisson process with rate function

λ(u) =
{
λP
(
V < x/(t − u)

)
if u < t,

0 if u ≥ t.

Hence the required number has the Poisson distribution with mean

λ

∫ t

0
P

(
V <

x

t − u

)
du = λ

∫ t

0
P
(

V <
x

u

)
du

= λ

∫ t

0
E(I{V u<x}) du = λE

(
V −1 min{x, V t}

)
.

50. The answer is the probability of exactly one arrival in the interval (s, t), which equals g(s) =
λ(t − s)e−λ(t−s). By differentiation, g has its maximum at s = max{0, t − λ−1}, and g(s) = e−1

when t ≥ λ−1.

51. We measure money in millions and time in hours. The number of available houses has the
Poisson distribution with parameter 30λ, whence the number A of affordable houses has the Poisson

distribution with parameter 1
6 ·30λ = 5λ (cf. Exercise (3.5.2)). Since each viewing time T has moment

generating function E(eθT ) = (e2θ − eθ )/θ , the answer is

G A

(
E(eθT )

)
= exp

{
5λ(e2θ − eθ − θ)/θ

}
.
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52. Let P be the transition matrix of X , and let µi j = Ei (min{n ≥ 1 : Xn = j}), the mean first
passage time from i to j . By the Markov chain limit theorem, µii = 1/πi . By conditioning on the
first step, the mean first passage time from i to Z is E(µi Z ) = 1 +

∑
j pi j K j . Alternatively,

E(µi Z ) = µiiπi +
∑

j 6=i

hi jπj = 1 + Ki ,

whence Ki =
∑

j pi j K j . That is, K = (Ki : i ∈ S) is a right eigenvector of P corresponding to

the eigenvalue 1. Therefore, K has constant entries, as required. [For an ergodic Markov chain on an
infinite state space, the same equation holds, and the same result follows by the maximum principle
of potential theory.]

53. (a) The process is a Markov chain because the occasions of rain are independent with constant
density. The transition matrix is obtained case by case as

pi j =





1 if i = 0, j = r,

1 − p if i + j = r, i > 0,

p if i + j = r + 1,

0 otherwise.

(b) Look for a solution π to the detailed balance equations, to find that πi = πj for 1 ≤ i, j ≤ r and
π0 = (1 − p)πr , Therefore, rπr + (1 − p)πr = 1, whence π is as given. The long run probability
of getting wet is pπ0.

(c) Let ei be the mean number of walks until the first wet one, starting with i ∈ {0, 1} umbrellas. Then

e0 = p · 1 + (1 − p)[1 + e1] = 1 + (1 − p)e1,

e1 = p[1 + e1] + (1 − p)[1 + e0] = 1 + pe1 + (1 − p)e0.

Therefore, e1 = (2 − p)/[p(1 − p)].

54. Let X be the time of the first flush. Then

T =
{

h if X ≥ h,

X + T ′ if X < h,
N =

{
0 if X ≥ h,

1 + N ′ if X < h,

where T ′ and N ′ have the same distribution as T and N , respectively, and are independent of X . By

conditional expectation, G = G(θ, s) = E(e−θT s N ) satisfies

G = E
(
E(e−θT s N | X)

)

= e−θhe−λh + sG

∫ h

0
e−θxλe−λx dx

= e−(λ+θ)h +
λsG

λ+ θ

(
1 − e−(λ+θ)h),

as required. Denoting the coefficient of sn in G by cn(θ),

H(θ) := E(e−θT | N = n) =
cn(θ)

cn(0)
= e−θh

{
λ(1 − e−(λ+θ)h)

(λ+ θ)(1 − e−λh)

}n

,

and E(T | N = n) = −H ′(0).
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55. Since π = πP and P is a stochastic matrix,

πi

∑

j∈A

pi j + πi

∑

j /∈A

pi j = πi =
∑

j∈A

πj pj i +
∑

j /∈A

πj pj i .

Sum over i ∈ A and note that the first term on the left cancels with that on the right. The remaining
terms are as required.

56. This is the two-dimensional version of Exercise (6.13.10), but with a twist. A boulder at position x

is weighted by its gravitational attraction g(x), but this function behaves like 1/r2 and is not integrable

over R2. It follows as in (6.13.2b) that the total gravitational attraction on the hiker is not absolutely
convergent. By restricting the question to the limit of regions with increasing radii, the divergences
cancel.

We shall adapt the Campbell–Hardy method to polar coordinates in two dimensions. Note first
that the characteristic function φG R

(t) is symmetric, and that

(*) eic + e−ic = 2 cos c = 2 cos |c|, c ∈ R.

As in the solution to (6.13.10), and by the preceding remarks,

φG R
(t) = exp

{
−
∫ R

r=0

∫ 2π

θ=0

[
1 − E

(
exp

{
i t M cos θ

r2

})]
r dr dθ

}

= exp

{
−E

∫ R

r=0

∫ 2π

θ=0

[
1 − cos

(
|t cos θ |M

r2

)]
r dr dθ

}
.

Make the substitution y = |t cos θ |M/r2 to find that

φG R
(t) = exp

{
−|t |E(M)

(∫ 2π

θ=0

∫ ∞

y=|t cos θ |M/R2

(
1

2y2
(1 − cos y)

)
| cos θ | dy dθ

)}

→ exp
{
−c|t |

}
as R → ∞,

where

c = 2E(M)

∫ ∞

0

1

y2
(1 − cos y) dy = πE(M).

It may help to know that
∫∞

0 ψ−1 sinψ dψ = 1
2π .

57. Follow the same strategy as in Problem (6.15.56) to find, using spherical polar coordinates, that

φG R
(t) = exp

{
−E

∫∫∫ [
1 − cos

(
M|t sin θ cosφ|

r2

)]
r2 sin θ dr dθ dφ

}
,

where the triple integral is over the ball with radius R and centre at the origin. Substitute y =
M|t sin θ cos φ|/r2 and pass to the limit as R → ∞, to obtain that φG R

(t) → exp
{
−c|t |3/2

}
where

c =
1

2
E(M3/2)

(∫ ∞

0

1

y5/2
(1 − cos y) dy

)(∫ π

0
sin5/2 θ dθ

)(∫ 2π

0
| cos φ|3/2 dφ

)

=
4

15
E
[
(2πM)3/2

]
.

The reader may care to check that the above three integrals are equal to (2/3)
√

2π , 23/2 B( 7
4 ,

7
4 ),

and [2/(3
√

2π)]Ŵ( 1
4 )

2, respectively, where B(a, b) is the beta function of paragraph (4.4.8). An
alternative approach to this and similar problems may be found in Problem (8.10.9).
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7

Convergence of random variables

7.1 Solutions. Introduction

1. (a) E|(cX)r | = |c|r · {‖X‖r }r .

(b) This is Minkowski’s inequality.

(c) Let ǫ > 0. Certainly |X | ≥ Iǫ where Iǫ is the indicator function of the event {|X | > ǫ}. Hence
E|Xr | ≥ E|I r

ǫ | = P(|X | > ǫ), implying that P(|X | > ǫ) = 0 for all ǫ > 0. The converse is trivial.

2. (a) E({aX + bY }Z) = aE(X Z) + bE(Y Z).

(b) E({X + Y }2)+ E({X − Y }2) = 2E(X2)+ 2E(Y 2).

(c) Clearly

E

({ n∑

i=1

X i

}2
)

=
n∑

i=1

E(X2
i )+ 2

∑

i< j

E(X i X j ).

3. Let f (u) = 2
3 ǫ, g(u) = 0, h(u) = − 2

3 ǫ, for all u. Then dǫ( f, g) + dǫ(g, h) = 0 whereas
dǫ( f, h) = 1.

4. Either argue directly, or as follows. With any distribution function F , we may associate a graph

F̃ obtained by adding to the graph of F vertical line segments connecting the two endpoints at each

discontinuity of F . By drawing a picture, you may see that
√

2 d(F,G) equals the maximum distance

between F̃ and G̃ measured along lines of slope −1. It is now clear that d(F,G) = 0 if and only if
F = G , and that d(F,G) = d(G, F). Finally, by the triangle inequality for real numbers, we have
that d(F, H) ≤ d(F,G)+ d(G, H).

5. Take X to be any random variable satisfying E(X2) = ∞, and define Xn = X for all n.

7.2 Solutions. Modes of convergence

1. (a) By Minkowski’s inequality,

{
E|Xr |

}1/r ≤
{

E(|Xn − X |r )
}1/r +

{
E|Xr

n|
}1/r ;

let n → ∞ to obtain lim infn→∞ E|Xr
n| ≥ E|Xr |. By another application of Minkowski’s inequality,

{
E|Xr

n|
}1/r ≤

{
E(|Xn − X |r )

}1/r +
{

E|Xr |
}1/r

,

whence lim supn→∞ E|Xr
n| ≤ E|Xr |.
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(b) We have that
|E(Xn)− E(X)| = |E(Xn − X)| ≤ E|Xn − X | → 0

as n → ∞. The converse is clearly false. If each Xn takes the values ±1, each with probability 1
2 ,

then E(Xn) = 0, but E|Xn − 0| = 1.

(c) By part (a), E(X2
n) → E(X2). Now Xn

1−→ X by Theorem (7.2.3), and therefore E(Xn) → E(X)

by part (b). Therefore var(Xn) = E(X2
n)− E(Xn)

2 → var(X).

2. Assume that Xn
P−→ X . Since |Xn| ≤ Z for all n, it is the case that |X | ≤ Z a.s. Therefore

Zn = |Xn − X | satisfies Zn ≤ 2Z a.s. In addition, if ǫ > 0,

E|Zn| = E
(

Zn I{Zn≤ǫ}
)

+ E
(

Zn I{Zn>ǫ}
)

≤ ǫ + 2E
(

Z I{Zn>ǫ}
)
.

As n → ∞, P (|Zn| > ǫ) → 0, and therefore the last term tends to 0; to see this, use the fact that
E(Z) < ∞, together with the result of Exercise (5.6.5). Now let ǫ ↓ 0 to obtain that E|Zn| → 0 as
n → ∞.

3. (a) We have that X − n−1 ≤ Xn ≤ X , so that E(Xn) → E(X), and similarly E(Yn) → E(Y ).
By the independence of Xn and Yn ,

E(XnYn) = E(Xn)E(Yn) → E(X)E(Y ).

Finally, (X − n−1)(Y − n−1) ≤ XnYn ≤ XY , and

E

{(
X −

1

n

)(
Y −

1

n

)}
= E(XY )−

E(X)+ E(Y )

n
+

1

n2
→ E(XY )

as n → ∞, so that E(XnYn) → E(XY ).

(b) Take X = Y = 1/
√

U where U is uniformly distributed on (0, 1).

4. Let F1, F2, . . . be distribution functions. As in Section 5.9, we write Fn → F if Fn(x) → F(x)

for all x at which F is continuous. We are required to prove that Fn → F if and only if d(Fn, F) → 0.

Suppose that d(Fn, F) → 0. Then, for ǫ > 0, there exists N such that

F(x − ǫ)− ǫ ≤ Fn(x) ≤ F(x + ǫ)+ ǫ for all x .

Take the limits as n → ∞ and ǫ → 0 in that order, to find that Fn(x) → F(x) whenever F is
continuous at x .

Suppose that Fn → F . Let ǫ > 0, and find real numbers a = x1 < x2 < · · · < xn = b, each
being points of continuity of F , such that

(i) Fi (a) < ǫ for all i , F(b) > 1 − ǫ,

(ii) |xi+1 − xi | < ǫ for 1 ≤ i < n.

In order to pick a such that Fi (a) < ǫ for all i , first choose a′ such that F(a′) < 1
2 ǫ and F is

continuous at a′, then find M such that |Fm(a
′)− F(a′)| < 1

2 ǫ for m ≥ M , and lastly find a continuity

point a of F such that a ≤ a′ and Fm(a) < ǫ for 1 ≤ m < M .

There are finitely many points xi , and therefore there exists N such that |Fm(xi ) − F(xi )| < ǫ

for all i and m ≥ N . Now, if m ≥ N and xi ≤ x < xi+1,

Fm(x) ≤ Fm(xi+1) < F(xi+1)+ ǫ ≤ F(x + ǫ) + ǫ,

and similarly
Fm(x) ≥ Fm(xi ) > F(xi )− ǫ ≥ F(x − ǫ)− ǫ.
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Modes of convergence Solutions [7.2.5]–[7.2.7]

Similar inequalities hold if x ≤ a or x ≥ b, and it follows that d(Fm , F) < ǫ if m ≥ N . Therefore
d(Fm , F) → 0 as m → ∞.

5. (a) Suppose c > 0 and pick δ such that 0 < δ < c. Find N such that P(|Yn − c| > δ) < δ for
n ≥ N . Now, for x ≥ 0,

P(XnYn ≤ x) ≤ P
(

XnYn ≤ x, |Yn − c| ≤ δ
)

+ P
(
|Yn − c| > δ

)
≤ P

(
Xn ≤

x

c − δ

)
+ δ,

and similarly

P(XnYn > x) ≤ P
(

XnYn > x, |Yn − c| ≤ δ
)

+ δ ≤ P

(
Xn >

x

c + δ

)
+ δ.

Taking the limits as n → ∞ and δ ↓ 0, we find that P(XnYn ≤ x) → P(X ≤ x/c) if x/c is a point
of continuity of the distribution function of X . A similar argument holds if x < 0, and we conclude

that XnYn
D−→ cX if c > 0. No extra difficulty arises if c < 0, and the case c = 0 is similar.

For the second part, it suffices to prove that Y −1
n

P−→ c−1 if Yn
P−→ c (6= 0). This is immediate

from the fact that |Y −1
n − c−1| < ǫ/{|c|(|c| − ǫ)} if |Yn − c| < ǫ (< |c|).

(b) By a standard argument of analysis, g is uniformly continuous on any closed bounded subset of

R2. Let ǫ > 0 and N < ∞. By uniform continuity, there exists δ > 0 such that

|g(Xn,Yn)− g(0, Y )| < ǫ

if |Xn | ≤ δ, |Yn − Y | ≤ δ, and |Y | ≤ N . It follows that

P
(
|g(Xn,Yn)− g(0,Y )| ≥ ǫ

)
≤ P(|Xn| > δ)+ P

(
|Yn − Y | > δ

)
+ P(|Y | > N)

→ P(|Y | ≥ N) as n → ∞
→ 0 as N → ∞.

Therefore, g(Xn,Yn)
P−→ g(0, Y ) as n → ∞.

6. The subset A of the sample space � may be expressed thus:

A =
∞⋂

k=1

∞⋃

n=1

∞⋂

m=1

{
|Xn+m − Xn | < k−1},

a countable sequence of intersections and unions of events.

For the last part, define

X (ω) =
{

limn→∞ Xn(ω) if ω ∈ A

0 if ω /∈ A.

The function X is F-measurable since A ∈ F.

7. (a) If Xn(ω) → X (ω) then cn Xn(ω) → cX (ω).

(b) We have by Minkowski’s inequality that, as n → ∞,

E
(
|cn Xn − cX |r

)
≤ |cn|r E

(
|Xn − X |r

)
+ |cn − c|r E|Xr | → 0.

435



[7.2.8]–[7.2.11] Solutions Convergence of random variables

(c) If c = 0, the claim is nearly obvious. Otherwise c 6= 0, and we may assume that c > 0. For
0 < ǫ < c, there exists N such that |cn − c| < ǫ whenever n ≥ N . By the triangle inequality,
|cn Xn − cX | ≤ |cn(Xn − X)| + |(cn − c)X |, so that, for n ≥ N ,

P
(
|cn Xn − cX | > ǫ

)
≤ P

(
cn|Xn − X | > 1

2 ǫ
)

+ P
(
|cn − c| · |X | > 1

2ǫ
)

≤ P

(
|Xn − X | >

ǫ

2(c + ǫ)

)
+ P

(
|X | >

ǫ

2|cn − c|

)

→ 0 as n → ∞.

(d) A neat way is to use the Skorokhod representation (7.2.14). If Xn
D−→ X , find random variables

Yn ,Y with the same distributions such that Yn
a.s.−−→ Y . Then cnYn

a.s.−−→ cY , so that cnYn
D−→ cY ,

implying the same conclusion for the X’s.

8. If X is not a.s. constant, there exist real numbers c and ǫ such that 0 < ǫ < 1
2 and P(X < c) > 2ǫ,

P(X > c + ǫ) > 2ǫ. Since Xn
P−→ X , there exists N such that

P(Xn < c) > ǫ, P(Xn > c + ǫ) > ǫ, if n ≥ N .

Also, by the triangle inequality, |Xr − Xs | ≤ |Xr − X | + |Xs − X |; therefore there exists M such

that P
(
|Xr − Xs | > ǫ

)
< ǫ3 for r, s ≥ M . Assume now that the Xn are independent. Then, for

r, s ≥ max{M, N}, r 6= s,

ǫ3 > P
(
|Xr − Xs | > ǫ

)
≥ P

(
Xr < c, Xs > c + ǫ

)
= P(Xr < c)P(Xs > c + ǫ) > ǫ2,

a contradiction.

9. Either use the fact (Exercise (4.12.3)) that convergence in total variation implies convergence in
distribution, together with Theorem (7.2.19), or argue directly thus. Since |u(·)| ≤ K < ∞,

∣∣E(u(Xn))− E(u(X))
∣∣ =

∣∣∣∣
∑

k

u(k){ fn (k) − f (k)}
∣∣∣∣ ≤ K

∑

k

| fn(k) − f (k)| → 0.

10. The partial sum Sn =
∑n

r=1 Xr is Poisson-distributed with parameter σn =
∑n

r=1 λr . For fixed
x , the event {Sn ≤ x} is decreasing in n, whence by Theorem (1.3.5), if σn → σ < ∞ and x is a
non-negative integer,

P

( ∞∑

r=1

Xr ≤ x

)
= lim

n→∞
P(Sn ≤ x) =

x∑

j=0

e−σσ j

j !
.

Hence if σ < ∞,
∑∞

r=1 Xr converges to a Poisson random variable. On the other hand, if σn → ∞,

then e−σn
∑x

j=0 σ
j

n / j ! → 0, giving that P
(∑∞

r=1 Xr > x
)

= 1 for all x , and therefore the sum

diverges with probability 1, as required.

11. We have that

P(Im > x
√

m) =
⌊x

√
m⌋∏

r=2

(
1 −

r − 1

m

)
, 0 < x <

√
m.

Now, log(1 − y) = −y + O(y2) as y ↓ 0, whence

log P(Im > x
√

m) = O(m−1/2)−
⌊x

√
m⌋−1∑

r=1

r

m

= O(m−1/2)−
x
√

m(x
√

m − 1)

2m
→ − 1

2 x2 as m → ∞.
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Some ancillary results Solutions [7.2.12]–[7.3.1]

Exponentiating and differentiating yields the Rayleigh density function.

12. (a) For x > 0 and a non-negative integer n, by Markov’s inequality,

P(X ≥ 2x) ≤
E(Xn)

(2x)n
.

With x = 1,
∞∑

n=0

1

E(Xn)
≤

∞∑

n=0

1

2nP(X ≥ 2)
< ∞.

(b) We have

E(x M ) =
∞∑

m=0

xmP(M = m) =
∞∑

m=0

xm

cE(Xm)

≤
∞∑

m=0

1

c2mP(X ≥ 2x)
< ∞, x > 0.

On the other hand,

E(X M ) =
∞∑

m=0

E(Xm)P(M = m) =
∞∑

m=0

1

c
= ∞.

7.3 Solutions. Some ancillary results

1. (a) If |Xn − Xm | > ǫ then either |Xn − X | > 1
2 ǫ or |Xm − X | > 1

2 ǫ, so that

P
(
|Xn − Xm | > ǫ

)
≤ P

(
|Xn − X | > 1

2 ǫ
)

+ P
(
|Xm − X | > 1

2 ǫ
)

→ 0

as n,m → ∞, for ǫ > 0.

Conversely, suppose that {Xn} is Cauchy convergent in probability. For each positive integer k,
there exists nk such that

P
(
|Xn − Xm | ≥ 2−k

)
< 2−k for n,m ≥ nk .

The sequence (nk)may not be increasing, and we work instead with the sequence defined by N1 = n1,
Nk+1 = max{Nk + 1, nk+1}. We have that

∑

k

P
(
|X Nk+1

− X Nk
| ≥ 2−k

)
< ∞,

whence, by the first Borel–Cantelli lemma, a.s. only finitely many of the events {|X Nk+1
− X Nk

| ≥
2−k } occur. Therefore, the expression

X = X N1
+

∞∑

k=1

(X Nk+1
− X Nk

)

converges absolutely on an event C having probability one. Define X (ω) accordingly for ω ∈ C , and

X (ω) = 0 for ω /∈ C . We have, by the definition of X , that X Nk

a.s.−−→ X as k → ∞. Finally, we ‘fill

in the gaps’. As before, for ǫ > 0,

P
(
|Xn − X | > ǫ

)
≤ P

(
|Xn − X Nk

| > 1
2 ǫ
)

+ P
(
|X Nk

− X | > 1
2 ǫ
)

→ 0
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[7.3.2]–[7.3.4] Solutions Convergence of random variables

as n, k → ∞, where we are using the assumption that {Xn} is Cauchy convergent in probability.

(b) Since Xn
P−→ X , the sequence {Xn} is Cauchy convergent in probability. Hence

P
(
|Yn − Ym | > ǫ

)
= P

(
|Xn − Xm | > ǫ

)
→ 0 as n,m → ∞,

for ǫ > 0. Therefore {Yn} is Cauchy convergent also, and the sequence converges in probability to

some limit Y . Finally, Xn
D−→ X and Yn

D−→ X , so that X and Y have the same distribution.

2. Since An ⊆
⋃∞

m=n Am , we have that

lim sup
n→∞

P(An) ≤ lim
n→∞

P

( ∞⋃

m=n

Am

)
= P

(
lim

n→∞

∞⋃

m=n

Am

)
= P(An i.o.),

where we have used the continuity of P. Alternatively, apply Fatou’s lemma to the sequence IAc
n

of

indicator functions.

3. (a) Suppose X2n = 1, X2n+1 = −1, for n ≥ 1. Then {Sn = 0 i.o.} occurs if X1 = −1, and not
if X1 = 1. The event is therefore not in the tail σ -field of the X’s.

(b) Here is a way. As usual, P(S2n = 0) =
(2n

n

)
{p(1 − p)}n , so that

∑

n

P(S2n = 0) < ∞ if p 6= 1
2 ,

implying by the first Borel–Cantelli lemma that P(Sn = 0 i.o.) = 0.

(c) Changing the values of any finite collection of the steps has no effect on I = lim inf Tn and J =
lim sup Tn , since such changes are extinguished in the limit by the denominator ‘

√
n’. Hence I and J

are tail functions, and are measurable with respect to the tail σ -field. In particular, {I ≤ −x}∩{J ≥ x}
lies in the σ -field.

Take x = 1, say. Then, P(I ≤ −1) = P(J ≥ 1) by symmetry; using Exercise (7.3.2) and the
central limit theorem,

P(J ≥ 1) ≥ P(Sn ≥
√

n i.o.) ≥ lim sup
n→∞

P(Sn ≥
√

n) = 1 −8(1) > 0,

where8 is the N(0, 1) distribution function. Since {J ≥ 1} is a tail event of an independent sequence,
it has probability either 0 or 1, and therefore P(I ≤ −1) = P(J ≥ 1) = 1, and also P(I ≤ −1, J ≥
1) = 1. That is, on an event having probability one, each visit of the walk to the left of −

√
n is

followed by a visit of the walk to the right of
√

n, and vice versa. It follows that the walk visits 0
infinitely often, with probability one.

4. Let A be exchangeable. Since A is defined in terms of the X i , it follows by a standard result of
measure theory that, for each n, there exists an event An ∈ σ(X1, X2, . . . , Xn), such that P(A△An ) →
0 as n → ∞. We may express An and A in the form

An = {Xn ∈ Bn}, A = {X ∈ B},

where Xn = (X1, X2, . . . , Xn), and Bn and B are appropriate subsets of Rn and R∞. Let

A′
n = {X′

n ∈ Bn}, A′ = {X′ ∈ B},

where X′
n = (Xn+1, Xn+2, . . . , X2n) and X′ = (Xn+1, Xn+2, . . . , X2n, X1, X2, . . . , Xn, X2n+1,

X2n+2, . . . ).
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Some ancillary results Solutions [7.3.5]–[7.3.8]

Now P(An ∩ A′
n) = P(An)P(A′

n), by independence. Also, P(An) = P(A′
n), and therefore

(∗) P(An ∩ A′
n) = P(An)

2 → P(A)2 as n → ∞.

By the exchangeability of A, we have that P(A △ A′
n) = P(A′ △ A′

n), which in turn equals
P(A △ An), using the fact that the X i are independent and identically distributed. Therefore,

|P(An ∩ A′
n)− P(A)| ≤ P(A △ An)+ P(A △ A′

n) → 0 as n → ∞.

Combining this with (∗), we obtain that P(A) = P(A)2, and hence P(A) equals 0 or 1.

5. The value of Sn does not depend on the order of the first n steps, but only on their sum. If Sn = 0
i.o., then S′

n = 0 i.o. for all walks {S′
n} obtained from {Sn} by permutations of finitely many steps.

6. Since f is continuous on a closed interval, it is bounded: | f (y)| ≤ c for all y ∈ [0, 1] for some c.
Furthermore f is uniformly continuous on [0, 1], which is to say that, if ǫ > 0, there exists δ (> 0),
such that | f (y)− f (z)| < ǫ if |y − z| ≤ δ. With this choice of ǫ, δ, we have that |E(Z IAc )| < ǫ, and

|E(Z IA)| ≤ 2cP(A) ≤ 2c ·
x(1 − x)

nδ2

by Chebyshov’s inequality. Therefore

|E(Z)| < ǫ +
2c

nδ2
,

which is less than 2ǫ for values of n exceeding 2c/(ǫδ2).

7. If {Xn} converges completely to X then, by the first Borel–Cantelli lemma, |Xn − X | > ǫ only

finitely often with probability one, for all ǫ > 0. This implies that Xn
a.s.−−→ X ; see Theorem (7.2.4c).

Suppose conversely that {Xn} is a sequence of independent variables which converges almost
surely to X . By Exercise (7.2.8), X is almost surely constant, and we may therefore suppose that

Xn
a.s.−−→ c where c ∈ R. It follows that, for ǫ > 0, only finitely many of the (independent) events

{|Xn − c| > ǫ} occur, with probability one. Using the second Borel–Cantelli lemma,

∑

n

P
(
|Xn − c| > ǫ

)
< ∞.

8. Of the various ways of doing this, here is one. We have that

(
n

2

)−1 ∑

1≤i< j≤n

X i X j =
n

n − 1

(
1

n

n∑

i=1

X i

)2

−
1

n(n − 1)

n∑

i=1

X2
i .

Now n−1∑n
1 X i

D−→ µ, by the law of large numbers (5.10.2); hence n−1∑n
1 X i

P−→ µ (use Theorem

(7.2.4a)). It follows that (n−1∑n
1 X i )

2 P−→ µ2; to see this, either argue directly or use Problem
(7.11.3). Now use Exercise (7.2.7) to find that

n

n − 1

(
1

n

n∑

i=1

X i

)2
P−→ µ2.

Arguing similarly,

1

n(n − 1)

n∑

i=1

X2
i

P−→ 0,
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[7.3.9]–[7.3.14] Solutions Convergence of random variables

and the result follows by the fact (Theorem (7.3.9)) that the sum of these two expressions converges
in probability to the sum of their limits.

9. Evidently,

P

(
Xn

log n
≥ 1 + ǫ

)
=

1

n1+ǫ , for |ǫ| < 1.

By the Borel–Cantelli lemmas, the events An = {Xn/ log n ≥ 1 + ǫ} occur a.s. infinitely often for
−1 < ǫ ≤ 0, and a.s. only finitely often for ǫ > 0.

10. (a) Mills’s ratio (Exercise (4.4.8) or Problem (4.14.1c)) informs us that 1 −8(x) ∼ x−1φ(x) as
x → ∞. Therefore,

P
(
|Xn | ≥

√
2 log n(1 + ǫ)

)
∼

1
√

2π log n(1 + ǫ)n(1+ǫ)2
.

The sum over n of these terms converges if and only if ǫ > 0, and the Borel–Cantelli lemmas imply
the claim.

(b) This is an easy implication of the Borel–Cantelli lemmas.

11. Let X be uniformly distributed on the interval [−1, 1], and define Xn = I (X ≤ (−1)n/n).
The distribution of Xn approaches the Bernoulli distribution which takes the values ±1 with equal

probabilities 1
2 . The median of Xn is 1 if n is even and 0 if n is odd.

12. (i) We have that

∞∑

r=1

P

(
Xr

r
≥ x

)
=

∞∑

r=1

P

(
Xr

x
≥ r

)
=

E(Xr )

x
= ∞

for x > 0. The result follows by the second Borel–Cantelli lemma.

(ii) (a) The stationary distribution π is found in the usual way to satisfy

πk =
k − 1

k + 1
πk−1 = · · · =

2

k(k + 1)
π1, k ≥ 2.

Hence πk = {k(k + 1)}−1 for k ≥ 1, a distribution with mean
∑∞

k=1(k + 1)−1 = ∞.

(b) By construction, P(Xn ≤ X0 + n) = 1 for all n, whence

P

(
lim sup
n→∞

Xn

n
≤ 1

)
= 1.

It may in fact be shown that P
(
lim supn→∞ Xn/n = 0

)
= 1.

13. We divide the numerator and denominator by
√

nσ . By the central limit theorem, the former
converges in distribution to the N(0, 1) distribution. We expand the new denominator, squared, as

1

nσ 2

n∑

r=1

(Xr − µ)2 −
2

nσ 2
(X − µ)

n∑

r=1

(Xr − µ)+
1

σ 2
(X − µ)2.

By the weak law of large numbers (Theorem (5.10.2), combined with Theorem (7.2.3)), the first term
converges in probability to 1, and the other terms to 0. Their sum converges to 1, by Theorem (7.3.9),
and the result follows by Slutsky’s theorem, Exercise (7.2.5).

14. For t > 0,

P(|X | > t) = P(X2 + a > t2 + a) ≤
E(X4)+ 2aσ 2 + a2

(t2 + a)2
, a ∈ R,
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Laws of large numbers Solutions [7.4.1]–[7.4.4]

by Markov’s inequality. We choose a to minimize this, namely,

a =
E(X4)− σ 2t2

t2 − σ 2
, t 6= σ.

On substituting into the above,

P(|X | > t) ≤
(E(X4)− σ 4)(E(X4)− 2σ 2t2 + t4)

(E(X4)− 2σ 2t2 + t4)2
, t 6= σ,

which gives the inequality when t 6= σ , on noting that E(X4)− 2σ 2t2 + t4 > (σ 2 − t2)2 6= 0. The
inequality with t = σ holds by the continuity in t of the right side.

7.4 Solutions. Laws of large numbers

1. Let Sn = X1 + X2 + · · · + Xn . Then

E(S2
n) =

n∑

i=2

i

log i
≤

n2

log n

and therefore Sn/n
m.s.−−→ 0. On the other hand,

∑
i P(|X i | ≥ i ) = 1, so that |X i | ≥ i i.o., with

probability one, by the second Borel–Cantelli lemma. For such a value of i , we have that |Si − Si−1| ≥
i , implying that Sn/n does not converge, with probability one.

2. Let the Xn satisfy

P(Xn = −n) = 1 −
1

n2
, P(Xn = n3 − n) =

1

n2
,

whence they have zero mean. However,

∑

n

P

(
Xn

n
6= −1

)
=
∑

n

1

n2
< ∞,

implying by the first Borel–Cantelli lemma that P(Xn/n → −1) = 1. It is an elementary result of

real analysis that n−1∑n
r=1 xn → −1 if xn → −1, and the claim follows.

3. The random variable N(S) has mean and variance λ|S| = crd , where c is a constant depending
only on d . By Chebyshov’s inequality,

P

(∣∣∣∣
N(S)

|S|
− λ

∣∣∣∣ ≥ ǫ

)
≤

λ

ǫ2|S|
=
(
λ

ǫ

)2 1

crd
.

By the first Borel–Cantelli lemma,
∣∣|Sk |−1 N(Sk) − λ

∣∣ ≥ ǫ for only finitely many integers k, a.s.,

where Sk is the sphere of radius k. It follows that N(Sk)/|Sk |
a.s.−→ λ as k → ∞. The same conclusion

holds as k → ∞ through the reals, since N(S) isd non-decreasing in the radius of S.

4. Let Xn be a sequence of independent random variables each taking the values 1.3 and 0.75 with

equal probabilities 1
2 . The gambler’s fortune Wn after n bets satisfies

E(Wn) = E

(
W0

n∏

r=1

Xr

)
= E(W0)

{
1
2 (1.3 + 0.75)

}n → ∞ as n → ∞.
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[7.4.5]–[7.5.1] Solutions Convergence of random variables

On the other hand,

log Wn = log W0 +
n∑

r=1

log Xr ,

so that
1

n
log Wn

a.s.−−→ E(log X1) ≃ −0.01 as n → ∞.

Therefore, Wn
a.s.−−→ 0.

5. (a) This holds since

P(B) = P(B ∩ Ac)+ P(B ∩ A) ≤ P(B)+ P(B | A).

(b) The event Ac occurs if and only if, for some j = 1, 2, . . . , n, we have |X j | > δn. Now use the
union bound.

(c) On the event A, Sn equals the sum of the Yj . By Chebyshov’s inequality,

P(B | A) ≤
n var(Y1)

(nǫ)2
≤

E(Y 2
1 )

nǫ2
.

Suppose η := E|X1| < ∞, and note that

(*) P(B | A) ≤
δnE(Y1)

nǫ2
=
δη

ǫ2
.

Since η < ∞, we have thatµn := E(Y1) satisfiesµn → µ as n → ∞. Pick N such that |µn −µ| ≤ ǫ

for n ≥ N . With Tn =
∑n

j=1 Yj and n ≥ N ,

P
(
|Sn/n − µ| ≥ 2ǫ

)
≤ P(B) for n ≥ N .

By (a)–(c) and (*),

P
(
|Sn/n − µ| ≥ 2ǫ

)
≤ nP(|X1| > δn)+

δη

ǫ2
→

δη

ǫ2
as n → ∞,

by Exercise (5.6.4). Since δ > 0 is arbitrary, we may take the limit as δ ↓ 0.

7.5 Solutions. The strong law

1. Let Ii j be the indicator function of the event that X j lies in the i th interval. Then

log Rm =
n∑

i=1

Zm(i ) log pi =
n∑

i=1

m∑

j=1

Ii j log pi =
m∑

j=1

Yj

where, for 1 ≤ j ≤ m, Yj =
∑n

i=1 Ii j log pi is the sum of independent identically distributed
variables with mean

E(Yj ) =
n∑

i=1

pi log pi = −h.

By the strong law, m−1 log Rm
a.s.−−→ −h.
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Martingales Solutions [7.5.2]–[7.7.3]

2. The following two observations are clear:

(a) N(t) < n if and only if Tn > t ,

(b) TN(t) ≤ t < TN(t)+1.

If E(X1) < ∞, then E(Tn) < ∞, so that P(Tn > t) → 0 as t → ∞. Therefore, by (a),

P(N(t) < n) = P(Tn > t) → 0 as t → ∞,

implying that N(t)
a.s.−−→ ∞ as t → ∞.

Secondly, by (b),
TN(t)

N(t)
≤

t

N(t)
<

TN(t)+1

N(t) + 1
· (1 + N(t)−1).

Take the limit as t → ∞, using the fact that Tn/n
a.s.−−→ E(X1) by the strong law, to deduce that

t/N(t)
a.s.−−→ E(X1).

3. By the strong law, Sn/n
a.s.−−→ E(X1) 6= 0. In particular, with probability 1, Sn = 0 only finitely

often.

7.6 Solution. The law of the iterated logarithm

1. The sum Sn is approximately N(0, n), so that

P
(
Sn >

√
αn log n

)
= 1 −8

(√
α log n

)
<

n
− 1

2
α

√
α log n

for all large n, by the tail estimate of Exercise (4.4.8) or Problem (4.14.1c) for the normal distribution.
This is summable if α > 2, and the claim follows by an application of the first Borel–Cantelli lemma.

7.7 Solutions. Martingales

1. Suppose i < j . Then

E(X j X i ) = E
{

E
[
(Sj − Sj−1)X i | S0, S1, . . . , Sj−1

]}

= E
{

X i

[
E(Sj | S0, S1, . . . , Sj−1)− Sj−1

]}
= 0

by the martingale property.

2. Clearly E|Sn| < ∞ for all n. Also, for n ≥ 0,

E(Sn+1 | Z0, Z1, . . . , Zn) =
1

µn+1

{
E(Zn+1 | Z0, . . . , Zn)− m

(
1 − µn+1

1 − µ

)}

=
1

µn+1

{
m + µZn − m

(
1 − µn+1

1 − µ

)}
= Sn .

3. Certainly E|Sn| < ∞ for all n. Secondly, for n ≥ 1,

E(Sn+1 | X0, X1, . . . , Xn) = αE(Xn+1 | X0, . . . , Xn)+ Xn

= (αa + 1)Xn + αbXn−1,

443



[7.7.4]–[7.8.2] Solutions Convergence of random variables

which equals Sn if α = (1 − a)−1.

4. The gambler stakes Zi = fi−1(X1, . . . , X i−1) on the i th play, at a return of X i per unit. Therefore
Si = Si−1 + X i Zi for i ≥ 2, with S1 = X1Y . Secondly,

E(Sn+1 − Sn | X1, . . . , Xn) = Zn+1E(Xn+1 | X1, . . . , Xn) = 0,

where we have used the fact that Zn+1 depends only on X1, X2, . . . , Xn .

5. Insert n uniformly at random into (π1, π2, . . . , πn−1) to obtain a random permutation of the
sequence (1, 2, . . . , n). In Rn−1 of the n possible placements, n falls to the right of an existing run,
and then Rn = Rn−1. Otherwise, it splits an existing run to yield Rn = Rn−1 + 1. Hence,

E(Mn | M1, . . . ,Mn−1) = n Rn−1 ·
Rn−1

n
+ n(Rn−1 + 1)

(
1 −

Rn−1

n

)
− 1

2 n(n + 1)

= (n − 1)Rn−1 − 1
2 n(n − 1) = Mn−1,

as required. We have that E(Mn) = E(M1) = 0, so that E(Rn) = 1
2 (n + 1). Finally,

E(R2
n | M1, . . . ,Mn−1) = R2

n−1 ·
Rn−1

n
+ (Rn−1 + 1)2

(
1 −

Rn−1

n

)

= R2
n−1

(
1 −

2

n

)
+ 1 + Rn−1

(
2 −

1

n

)
.

Take expectations to find that rn = E(R2
n) satisfies

rn = rn−1

(
1 −

2

n

)
+ n + 1

2 , n ≥ 2.

In particular, r2 = 5
2 (the term r1 = 1 does not feature in these difference equations). The solution is

rn = 1
12 (3n + 4)(n + 1) for n ≥ 2.

7.8 Solutions. Martingale convergence theorem

1. It is easily checked that Sn defines a martingale with respect to itself, and the claim follows from
the Doob–Kolmogorov inequality, using the fact that

E(S2
n) =

n∑

j=1

var(X j ).

2. It would be easy but somewhat perverse to use the martingale convergence theorem, and so we
give a direct proof based on Kolmogorov’s inequality of Exercise (7.8.1). Applying this inequality to
the sequence Zm, Zm+1, . . . where Zi = (X i − EX i )/ i , we obtain that Sn = Z1 + Z2 + · · · + Zn

satisfies, for ǫ > 0,

P

(
max

m≤n≤r
|Sn − Sm | > ǫ

)
≤

1

ǫ2

r∑

n=m+1

var(Zn).

We take the limit as r → ∞, using the continuity of P, to obtain

P

(
sup
n≥m

|Sn − Sm| > ǫ

)
≤

1

ǫ2

∞∑

n=m+1

1

n2
var(Xn).
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Prediction and conditional expectation Solutions [7.8.3]–[7.9.4]

Now let m → ∞ to obtain (after a small step)

P

(
lim

m→∞
sup
n≥m

|Sn − Sm| ≤ ǫ

)
= 1 for all ǫ > 0.

Any real sequence (xn) satisfying

lim
m→∞

sup
n≥m

|xn − xm | ≤ ǫ for all ǫ > 0,

is Cauchy convergent, and hence convergent. It follows that Sn converges a.s. to some limit Y .

The last part is an immediate consequence, using Kronecker’s lemma.

3. By the martingale convergence theorem, S = limn→∞ Sn exists a.s., and Sn
m.s.−−→ S. Using

Exercise (7.2.1c), var(Sn) → var(S), and therefore var(S) = 0.

7.9 Solutions. Prediction and conditional expectation

1. (a) Clearly the best predictors are E(X | Y ) = Y 2, E(Y | X) = 0.

(b) We have, after expansion, that

E
{
(X − aY − b)2

}
= var(Y 2)+ a2E(Y 2)+ {b − E(Y 2)}2,

since E(Y ) = E(Y 3) = 0. This is a minimum when b = E(Y 2) = 1
3 , and a = 0. The best linear

predictor of X given Y is therefore 1
3 .

Note that E(Y | X) = 0 is a linear function of X ; it is therefore the best linear predictor of Y

given X .

2. (a) By the result of Problem (4.14.13), E(Y | X) = µ2 +ρσ2(X −µ1)/σ1, in the natural notation.

(b) We have µ1 = µ2 = 0 and

ρ =
∑

i ai bi

σ1σ2
, σ 2

1 =
∑

i

a2
i , σ 2

2 =
∑

i

b2
i .

3. Write

g(a) =
n∑

i=1

ai X i = aX′,

and
v(a) = E

{
(Y − g(a))2

}
= E(Y 2)− 2aE(Y X′)+ aVa′.

Let â be a vector satisfying Vâ′ = E(Y X′). Then

v(a) − v(â) = aVa′ − 2aE(Y X′)+ 2âE(Y X′)− âVâ′

= aVa′ − 2aVâ′ + âVâ′ = (a − â)V(a − â)′ ≥ 0,

since V is non-negative definite. Hence v(a) is a minimum when a = â, and the answer is g(â). If V

is non-singular, â = E(Y X)V−1.

4. Recall that Z = E(Y | G) is the (‘almost’) unique G-measurable random variable with finite
mean and satisfying E{(Y − Z)IG} = 0 for all G ∈ G.

(a) � ∈ G, and hence E{E(Y | G)I�} = E(Z I�) = E(Y I�).
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[7.9.5]–[7.9.6] Solutions Convergence of random variables

(b) U = αE(Y | G)+ βE(Z | G) satisfies

E(U IG) = αE
{

E(Y | G)IG

}
+ βE

{
E(Z | G)IG

}

= αE(Y IG)+ βE(Z IG) = E
{
(αY + βZ)IG

}
, G ∈ G.

Also, U is G-measurable.

(c) Suppose there exists m (> 0) such that G = {E(Y | G) < −m} has strictly positive probability.
Then G ∈ G, and so E(Y IG) = E{E(Y | G)IG}. However Y IG ≥ 0, whereas E(Y | G)IG < −m.
We obtain a contradiction on taking expectations.

(d) Just check the definition of conditional expectation.

(e) If Y is independent of G, then E(Y IG) = E(Y )P(G) for G ∈ G. Hence E{(Y − E(Y ))IG } = 0 for
G ∈ G, as required.

(f) If g is convex then, for all a ∈ R, there exists λ(a) such that

g(y) ≥ g(a) + (y − a)λ(a);

furthermore λ may be chosen to be a measurable function of a. Set a = E(Y | G) and y = Y , to
obtain

g(Y ) ≥ g{E(Y | G)} +
{

Y − E(Y | G)
}
λ{E(Y | G)}.

Take expectations conditional on G, and use the fact that E(Y | G) is G-measurable.

(g) We have that ∣∣E(Yn | G)− E(Y | G)
∣∣ ≤ E

{
|Yn − Y |

∣∣G
}

≤ Vn

where Vn = E
{

supm≥n |Ym − Y |
∣∣G
}

. Now {Vn : n ≥ 1} is non-increasing and bounded below.
Hence V = limn→∞ Vn exists and satisfies V ≥ 0. Also

E(V ) ≤ E(Vn) = E

{
sup
m≥n

|Ym − Y |
}
,

which tends to 0 as m → ∞, by the dominated convergence theorem. Therefore E(V ) = 0, and hence
P(V = 0) = 1. The claim follows.

5. E(Y | X) = X .

6. (a) Let {Xn : n ≥ 1} be a sequence of members of H which is Cauchy convergent in mean

square, that is, E{|Xn − Xm |2} → 0 as m, n → ∞. By Chebyshov’s inequality, {Xn : n ≥ 1} is
Cauchy convergent in probability, and therefore converges in probability to some limit X (see Exercise
(7.3.1)). It follows that there exists a subsequence {Xnk

: k ≥ 1} which converges to X almost surely.

Since each Xnk
is G-measurable, we may assume that X is G-measurable. Now, as n → ∞,

E{|Xn − X |2} = E

{
lim inf
k→∞

|Xn − Xnk
|2
}

≤ lim inf
k→∞

E{|Xn − Xnk
|2} → 0,

where we have used Fatou’s lemma and Cauchy convergence in mean square. Therefore Xn
m.s.−−→ X .

That E(X2) < ∞ is a consequence of Exercise (7.2.1a).

(b) That (i) implies (ii) is obvious, since IG ∈ H . Suppose that (ii) holds. Any Z (∈ H ) may be
written as the limit, as n → ∞, of random variables of the form

Zn =
m(n)∑

i=1

ai (n)IGi (n)
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Prediction and conditional expectation Solutions [7.9.7]–[7.9.7]

for reals ai (n) and events G i (n) in G; furthermore we may assume that |Zn| ≤ |Z |. It is easy to see

that E
{
(Y − M)Zn

}
= 0 for all n. By dominated convergence, E{(Y − M)Zn} → E{(Y − M)Z},

and the claim follows.

7. (a) Suppose m(X,Y ) = 0. Let f (x) = I (x ≤ u), g(y) = I (y ≤ v), and apply the bound
m(X,Y ) = 0 to the pairs ( f, g) and (1− f, g), to deduce that P(X ≤ u,Y ≤ v) = P(X ≤ u)P(Y ≤ v),
whence. X and Y are independent. The converse is elementary.

(b, c) Without loss of generality, we consider functions f (X) and g(Y ) with mean 0 and variance 1.
By the Cauchy–Schwarz inequality, with Z = E(g(Y ) | X),

(*) E( f (X)g(Y )) = E( f (X)Z) ≤
√

E( f (X)2)E(Z2) =
√

E(Z2),

with equality if and only if there exists c ∈ R such that P( f (X) = cZ) = 1. Let f̂ , ĝ be the extremal

functions f , g in the definition of m. By (*), m(X,Y )2 = supg var(Z).

Now, with Ẑ = E(ĝ(Y ) | X),

m(X,Y ) = E( f̂ (X)ĝ(Y )) = E( f̂ (X)Ẑ ) =
1

c
E( f̂ (X)2) =

1

c
,

whence c = 1/m(X,Y ), so that m f̂ (X) = Ẑ a.s.

(d) By the above with f and g interchanged, mĝ(Y ) = E( f̂ (X) | Y ) a.s. Take conditional expectation
given X to obtain

m2 f̂ (X) = mE(ĝ(Y ) | X) = E
(
E( f̂ (X) | Y )

∣∣ X
)
,

with a similar expression with f and g interchanged.

(e) Suppose X and Z are conditionally independent given Y . For arbitrary g(X) and h(Z), assumed

to have means 0 and variances 1 and σ 2, respectively,

ρ(g(X), h(Z)) =
1

σ
E
(
E(g(X)h(Z) | Y )

)

=
1

σ
E
(
E(g(X) | Y )E(h(Z) | Y )

)

≤
√

E
(
E(g(X) | Y )2

)
E
(
E(h(Z) | Y )2/σ 2

)

≤ m(X,Y )m(Y, Z),

by the conditional independence, the Cauchy–Schwarz inequality, and part (b). If (X,Y ) and (Z, Y )

have the same distribution,

m(X, Z) ≥ cov(g(X), g(Z)) = cov
(
E(g(X) | Y ),E(g(Z) | Y )

)

= var
(
E(g(X) | Y )

)
by symmetry.

It follows by (b) that

m(X, Z) ≥ m(X,Y )2 = m(X,Y )m(Y, Z),

which combines with the above to imply equality.

(f) Write m(ρ) = m(U, V ), and let ρ1, ρ2 ∈ (−1, 1). Let A, B, C be independent N(0, 1) random
variables, and define

X = A, Y = Xρ1 + B

√
1 − ρ2

1 , Z = Yρ2 + C

√
1 − ρ2

2 .

Note that, given Y , the random variables X and Z are independent, so that X,Y, Z is a Markov chain.
By part (e), m(ρ1ρ2) ≤ m(ρ1)m(ρ2), and hence m(ρ) ≤ m(ρ ′) if |ρ| ≤ |ρ ′|.
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[7.9.8]–[7.10.2] Solutions Convergence of random variables

8. Suppose ρmon(X,Y ) = 0, and let f (x) = I (x ≤ u), g(y) = I (y ≤ v), where u, v ∈ R. If either
ρ( f (X), g(Y )) > 0 or ρ( f (X),−g(X)) > 0, then we cannot have ρmon(X,Y ) = 0. Therefore,
ρ( f (X), g(Y )) = 0, and hence P(X ≤ u, Y ≤ v) = P(X ≤ u)P(Y ≤ v) for u, v ∈ R. It follows that
X and Y are independent. The converse is elementary, as are the final inequalities.

9. (a) The MMSE predictor is E(X | Y = y). The conditional density function of X given Y = y is

fX |Y (x | y) =
f (x, y)

fY (y)
=

2e−(x+y)

2e−y(1 − e−y)
=

e−x

1 − e−y
, 0 < x < y,

which has mean

E(X | Y = y) =
1 − e−y − ye−y

1 − e−y
.

(b) The best linear predictor of X given Y = y is

L(y) = E(X)+
cov(X,Y )

var(Y )
(y − E(Y )) =

1

5
(1 + y).

You may find the solution to Problem (4.14.7) to be useful in your calculation.

(c) The linear predictor is not bad for small y, but is very poor for large y.

7.10 Solutions. Uniform integrability

1. It is easily checked by considering whether |x | ≤ a or |y| ≤ a that, for a > 0,

|x + y|I{|x+y|≥2a} ≤ 2
(
|x |I{|x |≥a} + |y|I{|y|≥a}

)
.

Now substitute x = Xn and y = Yn , and take expectations.

2. (a) Let ǫ > 0. There exists N such that E(|Xn − X |r ) < ǫ if n > N . Now E|Xr | < ∞, by
Exercise (7.2.1a), and therefore there exists δ (> 0) such that

E(|X |r IA) < ǫ, E(|Xn |r IA) < ǫ for 1 ≤ n ≤ N,

for all events A such that P(A) < δ. By Minkowski’s inequality,

{
E(|Xn|r IA)

}1/r ≤
{

E(|Xn − X |r IA)
}1/r +

{
E(|X |r IA)

}1/r ≤ 2ǫ1/r if n > N

if P(A) < δ. Therefore {|Xn |r : n ≥ 1} is uniformly integrable.

If r is an integer then {Xr
n : n ≥ 1} is uniformly integrable also. Also Xr

n
P−→ Xr since Xn

P−→ X

(use the result of Problem (7.11.3)). Therefore E(Xr
n) → E(Xr ) as required.

(b) Suppose now that the collection {|Xn|r : n ≥ 1} is uniformly integrable and Xn
P−→ X . We show

first that E|Xr | < ∞, as follows. There exists a subsequence {Xnk
: k ≥ 1} which converges to X

almost surely. By Fatou’s lemma,

E|Xr | = E

(
lim inf
k→∞

|Xnk
|r
)

≤ lim inf
k→∞

E|Xr
nk

| ≤ sup
n

E|Xr
n| < ∞.

If ǫ > 0, there exists δ (> 0) such that

E(|Xr |IA) < ǫ, E(|Xr
n |IA) < ǫ for all n,
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Problems Solutions [7.10.3]–[7.11.1]

whenever A is such that P(A) < δ. There exists N such that Bn(ǫ) = {|Xn − X | > ǫ} satisfies
P(Bn(ǫ)) < δ for n > N . Consequently

E(|Xn − X |r ) ≤ ǫr + E
(
|Xn − X |r IBn(ǫ)

)
, n > N,

of which the final term satisfies

{
E
(
|Xn − X |r IBn(ǫ)

)}1/r ≤
{

E
(
|Xr

n |IBn(ǫ)

)}1/r +
{

E
(
|Xr |IBn(ǫ)

)}1/r ≤ 2ǫ1/r .

Therefore, Xn
r−→ X .

3. Fix ǫ > 0, and find a real number a such that g(x) > x/ǫ if x > a. If b ≥ a,

E
(
|Xn|I{|Xn |>b}

)
< ǫE{g(|Xn |)} ≤ ǫ sup

n
E{g(|Xn|)},

whence the left side approaches 0, uniformly in n, as b → ∞.

4. Here is a quick way. Extinction is (almost) certain for such a branching process, so that Zn
a.s.−−→ 0,

and hence Zn
P−→ 0. If {Zn : n ≥ 0} were uniformly integrable, it would follow that E(Zn) → 0 as

n → ∞; however E(Zn) = 1 for all n.

5. We may suppose that Xn , Yn , and Zn have finite means, for all n. We have that 0 ≤ Yn − Xn ≤
Zn − Xn where, by Theorem (7.3.9c), Zn − Xn

P−→ Z − X . Also

E|Zn − Xn | = E(Zn − Xn) → E(Z − X) = E|Z − X |,

so that {Zn − Xn : n ≥ 1} is uniformly integrable, by Theorem (7.10.3). It follows that {Yn − Xn :

n ≥ 1} is uniformly integrable. Also Yn − Xn
P−→ Y − X , and therefore by Theorem (7.10.3),

E|Yn − Xn | → E|Y − X |, which is to say that E(Yn)−E(Xn) → E(Y )−E(X); hence E(Yn) → E(Y ).

It is not necessary to use uniform integrability; try doing it using the ‘more primitive’ Fatou’s
lemma.

6. For any event A, E(|Xn|IA) ≤ E(Z IA) where Z = supn |Xn|. The uniform integrability follows
by the assumption that E(Z) < ∞.

7. Let {An : n ≥ 1} and {Bn : n ≥ 1} be independent sequences of independent random variables
taking non-negative values such that: (i) E(An) → 0 as n → ∞, but An does not converge to
0 a.s., and (ii) E(Bn) = 1 and, for each elementary event ω there exists N = N(ω) such that
Bn(ω) = 0 for n ≥ N . Set Xn = An Bn and let G be the σ -field generated by the Am . Then
E(Xn | G) = AnE(Bn) = An , whereas Xn = 0 for n ≥ N .

7.11 Solutions to problems

1. E|Xr
n| = ∞ for r ≥ 1, so there is no convergence in any mean. However, if ǫ > 0,

P(|Xn | > ǫ) = 1 −
2

π
tan−1(nǫ) → 0 as n → ∞,

so that Xn
P−→ 0.

You have insufficient information to decide whether or not Xn converges almost surely:

(a) Let X be Cauchy, and let Xn = X/n. Then Xn has the required density function, and Xn
a.s.−−→ 0.

449



[7.11.2]–[7.11.3] Solutions Convergence of random variables

(b) Let the Xn be independent with the specified density functions. For ǫ > 0,

P(|Xn| > ǫ) =
2

π
sin−1

(
1√

1 + n2ǫ2

)
∼

2

πnǫ
,

so that
∑

n P(|Xn| > ǫ) = ∞. By the second Borel–Cantelli lemma, |Xn | > ǫ i.o. with probability
one, implying that Xn does not converge a.s. to 0.

2. Assume all the random variables are defined on the same probability space; otherwise it is mean-
ingless to add or multiply them.

(i) (a) Clearly Xn(ω) + Yn(ω) → X (ω) + Y (ω) whenever Xn(ω) → X (ω) and Yn(ω) → Y (ω).
Therefore {

Xn + Yn 9 X + Y
}

⊆ {Xn 9 X} ∪ {Yn 9 Y },
a union of events having zero probability.

(b) Use Minkowski’s inequality to obtain that

{
E
(
|Xn + Yn − X − Y |r

)}1/r ≤
{

E(|Xn − X |r )
}1/r +

{
E(|Yn − Y |r )

}1/r
.

(c) If ǫ > 0, we have that

{
|Xn + Yn − X − Y | > ǫ

}
⊆
{
|Xn − X | > 1

2 ǫ
}

∪
{
|Yn − Y | > 1

2 ǫ
}
,

and the probability of the right side tends to 0 as n → ∞.

(d) If Xn
D−→ X and the Xn are symmetric, then −Xn

D−→ X . However Xn + (−Xn)
D−→ 0, which

generally differs from 2X in distribution.

(ii) (e) Almost-sure convergence follows as in (a) above.

(f) The corresponding statement for convergence in r th mean is false in general. Find a random

variable Z such that E|Zr | < ∞ but E|Z2r | = ∞, and define Xn = Yn = Z for all n.

(g) Suppose Xn
P−→ X and Yn

P−→ Y . Let ǫ > 0. Then

P
(
|XnYn − XY | > ǫ

)
= P

(∣∣(Xn − X)(Yn − Y )+ (Xn − X)Y + X (Yn − Y )
∣∣ > ǫ

)

≤ P
(
|Xn − X | · |Yn − Y | > 1

3ǫ
)

+ P
(
|Xn − X | · |Y | > 1

3ǫ
)

+ P
(
|X | · |Yn − Y | > 1

3ǫ
)
.

Now, for δ > 0,

P
(
|Xn − X | · |Y | > 1

3 ǫ
)

≤ P
(
|Xn − X | > ǫ/(3δ)

)
+ P

(
|Y | > δ

)
,

which tends to 0 in the limit as n → ∞ and δ → ∞ in that order. Together with two similar facts, we

obtain that XnYn
P−→ XY .

(h) The example of (d) above indicates that the corresponding statement is false for convergence in
distribution.

3. Let ǫ > 0. We may pick M such that P(|X | ≥ M) ≤ ǫ. The continuous function g is uniformly
continuous on the bounded interval [−M, M]. There exists δ > 0 such that

|g(x)− g(y)| ≤ ǫ if |x − y| ≤ δ and |x | ≤ M.

If |g(Xn)− g(X)| > ǫ, then either |Xn − X | > δ or |X | ≥ M . Therefore

P
(
|g(Xn)− g(X)| > ǫ

)
≤ P

(
|Xn − X | > δ

)
+ P

(
|X | ≥ M

)
→ P

(
|X | ≥ M

)
≤ ǫ,
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in the limit as n → ∞. It follows that g(Xn)
P−→ g(X).

4. Clearly

E(eit Xn ) =
n∏

j=1

E(eitYj /10 j
) =

n∏

j=1

{
1

10
·

1 − eit/10 j−1

1 − eit/10 j

}

=
1 − eit

10n(1 − eit/10n
)

→
eit − 1

i t

as n → ∞. The limit is the characteristic function of the uniform distribution on [0, 1].

Now Xn ≤ Xn+1 ≤ 1 for all n, so that Y (ω) = limn→∞ Xn(ω) exists for all ω. Therefore

Xn
a.s.−−→ Y ; hence Xn

D−→ Y , whence Y has the uniform distribution.

5. (a) Suppose s < t . Then

E
(

N(s)N(t)
)

= E(N(s)2)+ E
{

N(s)(N(t) − N(s))
}

= E(N(s)2)+ E(N(s))E
(

N(t) − N(s)
)
,

since N has independent increments. Therefore

cov(N(s), N(t)) = E
(

N(s)N(t)
)

− E(N(s))E(N(t))

= (λs)2 + λs + λs{λ(t − s)} − (λs)(λt) = λs.

In general, cov(N(s), N(t)) = λmin{s, t}.
(b) N(t + h)− N(t) has the same distribution as N(h), if h > 0. Hence

E
({

N(t + h)− N(t)
}2
)

= E(N(h)2) = (λh)2 + λh

which tends to 0 as h → 0.

(c) By Markov’s inequality,

P
(
|N(t + h)− N(t)| > ǫ

)
≤

1

ǫ2
E
({

N(t + h)− N(t)
}2
)
,

which tends to 0 as h → 0, if ǫ > 0.

(d) Let ǫ > 0. For 0 < h < ǫ−1,

P

(∣∣∣∣
N(t + h)− N(t)

h

∣∣∣∣ > ǫ

)
= P

(
N(t + h)− N(t) ≥ 1

)
= λh + o(h),

which tends to 0 as h → 0.

On the other hand,

E

({
N(t + h)− N(t)

h

}2
)

=
1

h2

{
(λh)2 + λh

}

which tends to ∞ as h ↓ 0.

6. By Markov’s inequality, Sn =
∑n

i=1 X i satisfies

P (|Sn| > nǫ) ≤
E(S4

n)

(nǫ)4
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for ǫ > 0. Using the properties of the X’s,

E(S4
n) = nE(X4

1)+ 4

(
n

2

)
E(X3

1 X2)+
(

4

2

)(
n

2

)
E(X2

1 X2
2)

+ 3

(
4

2

)(
n

3

)
E(X2

1 X2 X3)+ 4!

(
n

4

)
E(X1 X2 X3 X4)

= nE(X4
1)+

(
4

2

)(
n

2

)
E(X2

1 X2
2),

since E(X i ) = 0 for all i . Therefore there exists a constant C such that

∑

n

P
(
|n−1Sn| > ǫ

)
≤
∑

n

C

n2
< ∞,

implying (via the first Borel–Cantelli lemma) that n−1Sn
a.s.−−→ 0.

7. We have by Markov’s inequality that

∑

n

P
(
|Xn − X | > ǫ

)
≤
∑

n

E
{
|Xn − X |r

}

ǫr
< ∞

for ǫ > 0, so that Xn
a.s.−−→ X (via the first Borel–Cantelli lemma).

8. Either use the Skorokhod representation or characteristic functions. Following the latter route,
the characteristic function of aXn + b is

E(eit (a Xn+b)) = eitbφn(at) → eitbφX (at) = E(eit (a X+b))

where φn is the characteristic function of Xn . The result follows by the continuity theorem.

9. (a) For any positive reals c, t ,

P(X ≥ t) = P(X + c ≥ t + c) ≤
E{(X + c)2}
(t + c)2

.

Set c = σ 2/t to obtain the required inequality. See also Exercise (3.6.11).

(b) Set t = σ + ǫ > σ to find P(X −µ ≥ σ + ǫ) < 1
2 . Likewise, P(X −µ ≤ −σ − ǫ) < 1

2 , and the
result follows.

(c) We have

|µ− m| = |E(X − m)| ≤ E|X − m| by Jensen’s inequality

≤ E|X − µ| since a = µ minimizes E|X − a|

≤
√

E[(X − µ)2] = σ by the Cauchy–Schwarz inequality.

10. Note that g(u) = u/(1 + u) is an increasing function on [0,∞). Therefore, for ǫ > 0,

P(|Xn| > ǫ) = P

(
|Xn |

1 + |Xn |
>

ǫ

1 + ǫ

)
≤

1 + ǫ

ǫ
· E

(
|Xn |

1 + |Xn|

)
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by Markov’s inequality. If this expectation tends to 0 then Xn
P−→ 0.

Suppose conversely that Xn
P−→ 0. Then

E

(
|Xn|

1 + |Xn|

)
≤

ǫ

1 + ǫ
· P(|Xn | ≤ ǫ)+ 1 · P(|Xn| > ǫ) →

ǫ

1 + ǫ

as n → ∞, for ǫ > 0. However ǫ is arbitrary, and hence the expectation has limit 0.

11. (i) The argument of the solution to Exercise (7.9.6a) shows that {Xn} converges in mean square

if it is mean-square Cauchy convergent. Conversely, suppose that Xn
m.s.−−→ X . By Minkowski’s

inequality,

{
E
(
(Xm − Xn)

2)}1/2 ≤
{

E
(
(Xm − X)2

)}1/2 +
{

E
(
(Xn − X)2

)}1/2 → 0

as m, n → ∞, so that {Xn} is mean-square Cauchy convergent.

(ii) The corresponding result is valid for convergence almost surely, in r th mean, and in probability. For
a.s. convergence, it is self-evident by the properties of Cauchy-convergent sequences of real numbers.
For convergence in probability, see Exercise (7.3.1). For convergence in r th mean (r ≥ 1), just adapt
the argument of (i) above.

12. If var(X i ) ≤ M for all i , the variance of n−1∑n
i=1 X i is

1

n2

n∑

i=1

var(X i ) ≤
M

n
→ 0 as n → ∞.

13. (a) We have that

P(Mn ≤ an x) = F(an x)n → H(x) as n → ∞.

If x ≤ 0 then F(an x)n → 0, so that H(x) = 0. Suppose that x > 0. Then

− log H(x) = − lim
n→∞

{
n log

[
1 − (1 − F(an x))

]}
= lim

n→∞
{

n(1 − F(an x))
}

since −y−1 log(1 − y) → 1 as y ↓ 0. Setting x = 1, we obtain n(1 − F(an)) → − log H(1), and
the second limit follows.

(b) This is immediate from the fact that it is valid for all sequences {an}.
(c) We have that

1 − F(tex+y)

1 − F(t)
=

1 − F(tex+y)

1 − F(tex )
·

1 − F(tex )

1 − F(t)
→

log H(ey)

log H(1)
·

log H(ex )

log H(1)

as t → ∞. Therefore g(x + y) = g(x)g(y). Now g is non-increasing with g(0) = 1. Therefore

g(x) = e−βx for some β, and hence H(u) = exp(−αu−β) for u > 0, where α = − log H(1).

14. Either use the result of Problem (7.11.13) or do the calculations directly thus. We have that

P
(

Mn ≤ xn/π
)

=
{

1

2
+

1

π
tan−1

( xn

π

)}n

=
{

1 −
1

π
tan−1

( π
xn

)}n

if x > 0, by elementary trigonometry. Now tan−1 y = y + o(y) as y → 0, and therefore

P
(

Mn ≤ xn/π
)

=
(

1 −
1

xn
+ o(n−1)

)n

→ e−1/x as n → ∞.
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15. The characteristic function of the average satisfies

φ(t/n)n =
(

1 +
iµt

n
+ o(n−1)

)n

→ eiµt as n → ∞.

By the continuity theorem, the average converges in distribution to the constant µ, and hence in
probability also.

16. (a) With un = u(xn), we have that

∣∣E(u(X)) − E(u(Y ))
∣∣ ≤

∑

n

|un | · | fn − gn| ≤
∑

n

| fn − gn |

if ‖u‖∞ ≤ 1. There is equality if un equals the sign of fn − gn . The second equality holds as in
Problem (2.7.13) and Exercise (4.12.3).

(b) Similarly, if ‖u‖∞ ≤ 1,

∣∣E(u(X)) − E(u(Y ))
∣∣ ≤

∫ ∞

−∞
|u(x)| · | f (x)− g(x)| dx ≤

∫ ∞

−∞
| f (x)− g(x)| dx

with equality if u(x) is the sign of f (x)− g(x). Secondly, we have that

∣∣P(X ∈ A)− P(Y ∈ A)
∣∣ = 1

2

∣∣E(u(X)) − E(u(Y ))
∣∣ ≤ 1

2 dTV(X,Y ),

where

u(x) =
{

1 if x ∈ A,

−1 if x /∈ A.

Equality holds when A = {x ∈ R : f (x) ≥ g(x)}.
(c) Suppose dTV(Xn, X) → 0. Fix a ∈ R, and let u be the indicator function of the interval (−∞, a].
Then |E(u(Xn))− E(u(X))| = |P(Xn ≤ a)− P(X ≤ a)|, and the claim follows.

On the other hand, if Xn = n−1 with probability one, then Xn
D−→ 0. However, by part (a),

dTV(Xn, 0) = 2 for all n.

(d) This is tricky without a knowledge of Radon–Nikodým derivatives, and we therefore restrict
ourselves to the case when X and Y are discrete. (The continuous case is analogous.) As in the

solution to Exercise (4.12.4), P(X 6= Y ) ≥ 1
2 dTV(X,Y ). That equality is possible was proved for

Exercise (4.12.5), and we rephrase that solution here. Let µn = min{ fn, gn} and µ =
∑

n µn , and
note that

dTV(X,Y ) =
∑

n

| fn − gn| =
∑

n

{ fn + gn − 2µn} = 2(1 − µ).

It is easy to see that

1
2 dTV(X,Y ) = P(X 6= Y ) =

{
1 if µ = 0,

0 if µ = 1,

and therefore we may assume that 0 < µ < 1. Let U , V , W be random variables with mass functions

P(U = xn) =
µn

µ
, P(V = xn) =

max{ fn − gn, 0}
1 − µ

, P(W = xn) =
− min{ fn − gn, 0}

1 − µ
,

and let Z be a Bernoulli variable with parameter µ, independent of (U, V ,W ). We now choose the
pair X ′, Y ′ by

(X ′,Y ′) =
{
(U,U) if Z = 1,

(V ,W ) if Z = 0.
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It may be checked that X ′ and Y ′ have the same distributions as X and Y , and furthermore that

P(X ′ 6= Y ′) = P(Z = 0) = 1 − µ = 1
2 dTV(X,Y ).

(e) By part (d), we may find independent pairs (X ′
i ,Y ′

i ), 1 ≤ i ≤ n, having the same marginals as

(X i ,Yi ), respectively, and such that P(X ′
i 6= Y ′

i ) = 1
2 dTV(X i ,Yi ). Now,

dTV

( n∑

i=1

X i ,

n∑

i=1

Yi

)
= dTV

( n∑

i=1

X ′
i ,

n∑

i=1

Y ′
i

)

≤ 2P

( n∑

i=1

X ′
i 6=

n∑

i=1

Y ′
i

)
≤ 2

n∑

i=1

P(X ′
i 6= Y ′

i ) =
n∑

i=1

dTV(X i ,Yi ).

17. If X1, X2, . . . are independent variables having the Poisson distribution with parameter λ, then

Sn = X1 + X2 + · · · + Xn has the Poisson distribution with parameter λn. Now n−1Sn
D−→ λ, so that

E(g(n−1Sn)) → g(λ) for all bounded continuous g. The result follows.

18. The characteristic function ψmn of

Umn =
(Xn − n)− (Ym − m)

√
m + n

satisfies

logψmn(t) = n
(
eit/

√
m+n − 1

)
+ m

(
e−it/

√
m+n − 1

)
+
(m − n)i t
√

m + n
→ − 1

2 t2

as m, n → ∞, implying by the continuity theorem that Umn
D−→ N(0, 1). Now Xn + Ym is Poisson-

distributed with parameter m + n, and therefore

Vmn =

√
Xn + Ym

m + n

P−→ 1 as m, n → ∞

by the law of large numbers and Problem (7.11.3). It follows by Slutsky’s theorem (7.2.5a) that

Umn/Vmn
D−→ N(0, 1) as required.

19. (a) The characteristic function of Xn is φn(t) = exp{iµn t − 1
2σ

2
n t2} where µn and σ 2

n are

the mean and variance of Xn . Now, limn→∞ φn(1) exists. However φn(1) has modulus e
− 1

2
σ2

n ,

and therefore σ 2 = limn→∞ σ 2
n exists. The remaining component eiµn t of φn(t) converges as

n → ∞, say eiµn t → θ(t) as n → ∞ where θ(t) lies on the unit circle of the complex plane. Now

φn(t) → θ(t)e
− 1

2
σ2t2

, which is required to be a characteristic function; therefore θ is a continuous

function of t . Of the various ways of showing that θ(t) = eiµt for some µ, here is one. The sequence

ψn(t) = eiµn t is a sequence of characteristic functions whose limit θ(t) is continuous at t = 0.
Therefore θ is a characteristic function. However ψn is the characteristic function of the constant µn ,
which must converge in distribution as n → ∞; it follows that the real sequence {µn} converges to

some limit µ, and θ(t) = eiµt as required.

This proves that φn(t) → exp{iµt − 1
2σ

2t2}, and therefore the limit X is N(µ, σ 2).

(b) Each linear combination s Xn + tYn converges in probability, and hence in distribution, to s X + tY .
Now s Xn + tYn has a normal distribution, implying by part (a) that s X + tY is normal. Therefore the
joint characteristic function of X and Y satisfies

φX,Y (s, t) = φs X+tY (1) = exp
{

iE(s X + tY )− 1
2 var(s X + tY )

}

= exp
{

i (sµX + tµY )− 1
2 (s

2σ 2
X + 2stρXY σXσY + t2σ 2

Y )
}
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in the natural notation. Viewed as a function of s and t , this is the joint characteristic function of a
bivariate normal distribution.

When working in such a context, the technique of using linear combinations of Xn and Yn is
sometimes called the ‘Cramér–Wold device’.

20. (i) Write Yi = X i − E(X i ) and Tn =
∑n

i=1 Yi . It suffices to show that n−1Tn
m.s.−−→ 0. Now, as

n → ∞,

E(T 2
n /n2) =

1

n2

n∑

i=1

var(X i )+
2

n2

∑

1≤i< j≤n

cov(X i , X j ) ≤
nc

n2
→ 0.

(ii) Let ǫ > 0. There exists I such that |ρ(X i , X j )| ≤ ǫ if |i − j | ≥ I . Now

n∑

i, j=1

cov(X i , X j ) ≤
∑

|i− j |≤I
1≤i, j≤n

cov(X i , X j )+
∑

|i− j |>I
1≤i, j≤n

cov(X i , X j ) ≤ 2nI c + n2ǫc,

since cov(X i , X j ) ≤ |ρ(X i , X j )|
√

var(X i ) · var(X j ). Therefore,

E(T 2
n /n2) ≤

2I c

n
+ ǫc → ǫc as n → ∞.

This is valid for all positive ǫ, and the result follows.

21. The integral ∫ ∞

2

c

x log |x |
dx

diverges, and therefore E(X1) does not exist.

The characteristic function φ of X1 may be expressed as

φ(t) = 2c

∫ ∞

2

cos(t x)

x2 log x
dx

whence
φ(t)− φ(0)

2c
= −

∫ ∞

2

1 − cos(t x)

x2 log x
dx .

Now 0 ≤ 1 − cos θ ≤ min{2, θ2}, and therefore

∣∣∣∣
φ(t)− φ(0)

2c

∣∣∣∣ ≤
∫ 1/t

2

t2

log x
dx +

∫ ∞

1/t

2

x2 log x
dx, if t > 0.

Now
1

u

∫ u

2

dx

log x
→ 0 as u → ∞,

and ∫ ∞

u

2

x2 log x
dx ≤

1

log u

∫ ∞

u

2

x2
dx =

2

u log u
, u > 1.

Therefore ∣∣∣∣
φ(t)− φ(0)

2c

∣∣∣∣ = o(t) as t ↓ 0.

Now φ is an even function, and hence φ′(0) exists and equals 0. Use the result of Problem (7.11.15)

to deduce that n−1∑n
1 X i converges in distribution to 0, and therefore in probability also, since 0 is

constant. The X i do not obey the strong law since they have no mean.
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22. If the two points are U and V then

E{(U1 − V1)
2} =

∫ 1

0

∫ 1

0
(u − v)2 du dv = 1

6 ,

and therefore
1

n
X2

n =
1

n

n∑

i=1

(Ui − Vi )
2 P−→

1

6
as n → ∞,

by the independence of the components. It follows that Xn/
√

n
P−→ 1/

√
6 either by the result of

Problem (7.11.3) or by the fact that

∣∣∣∣∣
X2

n

n
−

1

6

∣∣∣∣∣ =
∣∣∣∣

Xn√
n

−
1

√
6

∣∣∣∣ ·
∣∣∣∣

Xn√
n

+
1

√
6

∣∣∣∣ ≥
1

√
6

∣∣∣∣
Xn√

n
−

1
√

6

∣∣∣∣ .

23. The characteristic function of Yj = X−1
j is

φ(t) = 1
2

∫ 1

0
(eit/x + e−it/x ) dx =

∫ 1

0
cos(t/x) dx = |t |

∫ ∞

|t |

cos y

y2
dy

by the substitution x = |t |/y. Therefore

φ(t) = 1 − |t |
∫ ∞

|t |

1 − cos y

y2
dy = 1 − I |t | + o(|t |) as t → 0,

where, integrating by parts,

I =
∫ ∞

0

1 − cos y

y2
dy =

∫ ∞

0

sin u

u
du =

π

2
.

It follows that Tn = n−1∑n
j=1 X−1

j has characteristic function

φ(t/n)n =
(

1 −
π |t |
2n

+ o(n−1)

)n

→ e
− 1

2π |t |

as t → ∞, whence 2Tn/π is asymptotically Cauchy-distributed. In particular,

P
(
|2Tn/π | > 1

)
→

2

π

∫ ∞

1

du

1 + u2
=

1

2
as t → ∞.

24. Let mn be a non-decreasing sequence of integers satisfying 1 ≤ mn < n, mn → ∞, and define

Ynk =
{

Xk if |Xk | ≤ mn

sign(Xk ) if |Xk | > mn,

noting that Ynk takes the value ±1 each with probability 1
2 whenever mn < k ≤ n. Let Zn =∑n

k=1 Ynk . Then

P(Un 6= Zn) ≤
n∑

k=1

P(|Xk | ≥ mn) ≤
n∑

k=mn

1

k2
→ 0 as n → ∞,
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from which it follows that Un/
√

n
D−→ N(0, 1) if and only if Zn/

√
n

D−→ N(0, 1). Now

Zn =
mn∑

k=1

Ynk + Bn−mn

where Bn−mn is the sum of n − mn independent summands each of which takes the values ±1, each

possibility having probability 1
2 . Furthermore

∣∣∣∣
1

√
n

mn∑

k=1

Ynk

∣∣∣∣ ≤
m2

n√
n

which tends to 0 if mn is chosen to be mn = ⌊n1/5⌋; with this choice for mn , we have that

n−1 Bn−mn

D−→ N(0, 1), and the result follows.

Finally,

var(Un) =
n∑

k=1

(
2 −

1

k2

)

so that

var
(
Un/

√
n
)

= 2 −
1

n

n∑

k=1

1

k2
→ 2.

25. (i) Let φn and φ be the characteristic functions of Xn and X . The characteristic function ψk of
X Nk

is

ψk(t) =
∞∑

j=1

φj (t)P(Nk = j)

whence

|ψk(t)− φ(t)| ≤
∞∑

j=1

|φj (t) − φ(t)|P(Nk = j).

Let ǫ > 0. We have thatφj (t) → φ(t) as j → ∞, and hence for any T > 0, there exists J (T ) such that
|φj (t)− φ(t)| < ǫ if j ≥ J (T ) and |t | ≤ T . Finally, there exists K (T ) such that P(Nk ≤ J (T )) ≤ ǫ

if k ≥ K (T ). It follows that

|ψk(t)− φ(t)| ≤ 2P
(

Nk ≤ J (T )
)

+ ǫP
(

Nk > J (T )
)

≤ 3ǫ

if |t | ≤ T and k ≥ K (T ); therefore ψk(t) → φ(t) as k → ∞.

(ii) Let Yn = supm≥n |Xm − X |. For ǫ > 0, n ≥ 1,

P
(
|X Nk

− X | > ǫ
)

≤ P(Nk ≤ n)+ P
(
|X Nk

− X | > ǫ, Nk > n
)

≤ P(Nk ≤ n)+ P(Yn > ǫ) → P(Yn > ǫ) as k → ∞.

Now take the limit as n → ∞ and use the fact that Yn
a.s.−−→ 0.

26. (a) We have that

a(n − k, n)

a(n + 1, n)
=

k∏

i=0

(
1 −

i

n

)
≤ exp

(
−

k∑

i=0

i

n

)
.
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Problems Solutions [7.11.27]–[7.11.28]

(b) The expectation is

En =
∑

j

g

(
j − n
√

n

)
n j e−n

j !

where the sum is over all j satisfying n − M
√

n ≤ j ≤ n. For such a value of j ,

g

(
j − n
√

n

)
n j e−n

j !
=

e−n

√
n

(
n j+1

j !
−

n j

( j − 1)!

)
,

whence En has the form given.

(c) Now g is continuous on the interval [−M, 0], and it follows by the central limit theorem that

En →
∫ 0

−M
g(x)

1
√

2π
e
− 1

2
x2

dx =
∫ M

0

x
√

2π
e
− 1

2
x2

dx =
1 − e

− 1
2 M2

√
2π

.

Also,

En ≤
e−n

√
n

a(n + 1, n) ≤ En +
e−n

√
n

a(n − k, n) ≤ En +
e−n−k2/(2n)

√
n

a(n + 1, n)

where k = ⌊M
√

n⌋. Take the limits as n → ∞ and M → ∞ in that order to obtain

1
√

2π
≤ lim

n→∞





n
n+ 1

2 e−n

n!



 ≤

1
√

2π
.

27. Clearly

E(Rn+1 | R0, R1, . . . , Rn) = Rn +
Rn

n + 2

since a red ball is added with probability Rn/(n + 2). Hence

E(Sn+1 | R0, R1, . . . , Rn) = Sn,

and also 0 ≤ Sn ≤ 1. Using the martingale convergence theorem, S = limn→∞ Sn exists almost
surely and in mean square.

28. Let 0 < ǫ < 1
3 , and let

k(t) = ⌊θ t⌋, m(t) = ⌈(1 − ǫ3)k(t)⌉, n(t) = ⌊(1 + ǫ3)k(t)⌋

and let Imn(t) be the indicator function of the event {m(t) ≤ M(t) < n(t)}. Since M(t)/t
P−→ θ , we

may find T such that E(Imn(t)) > 1 − ǫ for t ≥ T .

We may approximate SM(t) by the random variable Sk(t) as follows. With Aj =
{
|Sj − Sk(t)| >

ǫ
√

k(t)
}

,

P
(

AM(t)

)
≤ P

(
AM(t), Imn(t) = 1

)
+ P

(
AM(t), Imn(t) = 0

)

≤ P

(k(t)−1⋃

j=m(t)

Aj

)
+ P

(n(t)−1⋃

j=k(t)

Aj

)
+ P

(
Imn(t) = 0

)

≤
{

k(t) − m(t)
}
σ 2

ǫ2k(t)
+
{

n(t)− k(t)
}
σ 2

ǫ2k(t)
+ ǫ

≤ ǫ(1 + 2σ 2), if t ≥ T,
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[7.11.29]–[7.11.32] Solutions Convergence of random variables

by Kolmogorov’s inequality (Exercise (7.8.1) and Problem (7.11.29)). Send t → ∞ to find that

Dt =
SM(t) − Sk(t)√

k(t)

P−→ 0 as t → ∞.

Now Sk(t)

/√
k(t)

D−→ N(0, σ 2) as t → ∞, by the usual central limit theorem. Therefore

SM(t)√
k(t)

= Dt −
Sk(t)√

k(t)

D−→ N(0, σ 2),

which implies the first claim, since k(t)/(θ t) → 1 (see Exercise (7.2.7)). The second part follows by
Slutsky’s theorem (7.2.5a).

29. We have that Sn = Sk + (Sn − Sk), and so, for n ≥ k,

E(S2
n IAk

) = E(S2
k IAk

)+ 2E
{

Sk(Sn − Sk)IAk

}
+ E

{
(Sn − Sk)

2 IAk

}
.

Now S2
k IAk

≥ c2 IAk
; the second term on the right side is 0, by the independence of the X’s, and the

third term is non-negative. The first inequality of the question follows. Summing over k, we obtain

E(S2
n) ≥ c2P(Mn > c) as required.

30. (i) With Sn =
∑n

i=1 X i , we have by Kolmogorov’s inequality that

P

(
max

1≤k≤n
|Sm+k − Sm| > ǫ

)
≤

1

ǫ2

m+n∑

k=m

E(X2
k )

for ǫ > 0. Take the limit as m, n → ∞ to obtain in the usual way that {Sr : r ≥ 0} is a.s. Cauchy

convergent, and therefore a.s. convergent, if
∑∞

1 E(X2
k ) < ∞. It is shorter to use the martingale

convergence theorem, noting that Sn is a martingale with uniformly bounded second moments.

(ii) Apply part (i) to the sequence Yk = Xk/bk to deduce that
∑∞

k=1 Xk/bk converges a.s. The claim
now follows by Kronecker’s lemma (see Exercise (7.8.2)).

31. (a) This is immediate by the observation that

eλ(P) = fX0

∏

i, j

p
Ni j

i j .

(b) Clearly
∑

j pi j = 1 for each i , and we introduce Lagrange multipliers {µi : i ∈ S} and write

V = λ(P)+
∑

i µi

∑
j pi j . Differentiating V with respect to each pi j yields a stationary (maximum)

value when (Ni j /pi j )+ µi = 0. Hence
∑

k Nik = −µk , and

p̂i j = −
Ni j

µi
=

Ni j∑
k Nik

.

(c) We have that Ni j =
∑∑

k Nik
r=1 Ir where Ir is the indicator function of the event that the r th transition

out of i is to j . By the Markov property, the Ir are independent with constant mean pi j . Using the

strong law of large numbers and the fact that
∑

k Nik
a.s.−→ ∞ as n → ∞, p̂i j

a.s.−→ E(I1) = pi j .

32. (a) If X is transient then Vi (n) < ∞ a.s., and µi = ∞, whence Vi (n)/n
a.s.−→ 0 = µ−1

i . If X is
recurrent, then without loss of generality we may assume X0 = i . Let T (r) be the duration of the r th
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Problems Solutions [7.11.33]–[7.11.34]

excursion from i . By the strong Markov property, the T (r) are independent and identically distributed
with mean µi . Furthermore,

1

Vi (n)

Vi (n)−1∑

r=1

T (r) ≤
n

Vi (n)
≤

1

Vi (n)

Vi (n)∑

r=1

T (r).

By the strong law of large numbers and the fact that Vi (n)
a.s.−→ ∞ as n → ∞, the two outer terms

sandwich the central term, and the result follows.

(b) Note that
∑n−1

r=0 f (Xr ) =
∑

i∈S f (i )Vi (n). With Q a finite subset of S, and πi = µ−1
i , the

unique stationary distribution,

∣∣∣∣∣∣

n−1∑

r=0

f (Xr )

n
−
∑

i

f (i )

µi

∣∣∣∣∣∣
=

∣∣∣∣∣
∑

i

(
Vi (n)

n
−

1

µi

)
f (i )

∣∣∣∣∣

≤
{∑

i∈Q

∣∣∣∣
Vi (n)

n
−

1

µi

∣∣∣∣+
∑

i /∈Q

(
Vi (n)

n
+

1

µi

)}
‖ f ‖∞,

where ‖ f ‖∞ = sup{| f (i )| : i ∈ S}. The sum over i ∈ Q converges a.s. to 0 as n → ∞, by part (a).
The other sum satisfies

∑

i /∈Q

(
Vi (n)

n
+

1

µi

)
= 2 −

∑

i∈Q

(
Vi (n)

n
+ πi

)

which approaches 0 a.s., in the limits as n → ∞ and Q ↑ S.

33. (a) Since the chain is recurrent, we may assume without loss of generality that X0 = j . Define
the times R1, R2, . . . of return to j , the sojourn lengths S1, S2, . . . in j , and the times V1, V2, . . .

between visits to j . By the Markov property and the strong law of large numbers,

1

n

n∑

r=1

Sr
a.s.−→

1

gj
,

1

n
Rn =

1

n

n∑

r=1

Vr
a.s.−→ m j .

Also, Rn/Rn+1
a.s.−→ 1, since m j = E(R1) < ∞. If Rn < t < Rn+1, then

Rn

Rn+1
·
∑n

r=1 Sr∑n
r=1 Vr

≤
1

t

∫ t

0
I{X (s)= j } ds ≤

Rn+1

Rn
·
∑n+1

r=1 Sr∑n+1
r=1 Vr

.

Let n → ∞ to obtain the result.

(b) Note by Theorem (6.10.22) that pi j (t) → πj as t → ∞. We take expectations of the integral in
part (a), and the claim follows as in Corollary (6.4.25).

(c) Use the fact that ∫ t

0
f (X (s)) ds =

∑

j∈S

∫ t

0
I{X (s)= j } ds

together with the method of solution of Problem (7.11.32b).

34. (a) By the first Borel–Cantelli lemma, Xn = Yn for all but finitely many values of n, almost
surely. Off an event of probability zero, the sequences are identical for all large n.

(b) This follows immediately from part (a), since Xn − Yn = 0 for all large n, almost surely.

(c) By the above, a−1
n

∑∞
r=1(Xr − Yr )

a.s.−→ 0, which implies the claim.
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[7.11.35]–[7.11.38] Solutions Convergence of random variables

35. Let Yn = Xn I{|Xn |≤a}. Then,

∑

n

P(Xn 6= Yn) =
∑

n

P(|Xn | > a) < ∞

by assumption (a), whence {Xn} and {Yn} are tail-equivalent (see Problem (7.11.34)). By assumption

(b) and the martingale convergence theorem (7.8.1) applied to the partial sums
∑N

n=1(Yn − E(Yn)),

the infinite sum
∑∞

n=1(Yn − E(Yn)) converges almost surely. Finally,
∑∞

n=1 E(Yn) converges by

assumption (c), and therefore
∑∞

n=1 Yn , and hence
∑∞

n=1 Xn , converges a.s.

36. (a) Let n1 < n2 < · · · < nr = n. Since the Ik take only two values, it suffices to show that

P(Ins = 1 for 1 ≤ s ≤ r) =
r∏

s=1

P(Ins = 1).

Since F is continuous, the X i take distinct values with probability 1, and furthermore the ranking of
X1, X2, . . . , Xn is equally likely to be any of the n! available. Let x1, x2, . . . , xn be distinct reals,
and write A = {X i = xi for 1 ≤ i ≤ n}. Now,

P(Ins = 1 for 1 ≤ s ≤ r | A)

=
1

n!

{(
n − 1

ns−1

)
(n − 1 − ns−1)!

}{(
ns−1 − 1

ns−2

)
(ns−1 − 1 − ns−2)!

}
· · · (n1 − 1)!

=
1

ns
·

1

ns−1
· · ·

1

n1
,

and the claim follows on averaging over the xi .

(b) We have that E(Ik ) = P(Ik = 1) = k−1 and var(Ik) = k−1(1−k−1), whence
∑

k var(Ik/ log k) <

∞. By the independence of the Ik and the martingale convergence theorem (7.8.1),
∑∞

k=1(Ik −
k−1)/ log k converges a.s. Therefore, by Kronecker’s lemma (see Exercise (7.8.2)),

1

log n

n∑

j=1

(
Ij −

1

j

)
a.s.−→ 0 as n → ∞.

The result follows on recalling that
∑n

j=1 j−1 ∼ log n as n → ∞.

37. By an application of the three series theorem of Problem (7.11.35), the series converges almost
surely.

38. We have fX (x) = xs−1e−x/Ŵ(s) for x > 0, so that, by a change of variable,

fY (y) =
1

Ŵ(s)
fX

(
y
√

s + s
)√

s, y > −
√

s.

Since fY integrates to 1,

Ŵ(s)es√s

ss
=
∫ ∞

−
√

s

(
y
√

s + s

s

)s−1

e−y
√

s dy =
∫ ∞

−
√

s
e−u(y) dy,

where u(y) = y
√

s − (s − 1) log
(
1 + y/

√
s
)
. Now log(1 + z) = z − 1

2 z2 + O(z3) as z → 0, so

that e−u(y) → e
− 1

2 y2
uniformly on any bounded interval [−c, c], as s → ∞. We shall use the hint

to control the other parts of the integral from −
√

s to ∞.
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Problems Solutions [7.11.39]–[7.11.41]

Now,

u′(y) =
√

s −
s − 1

y +
√

s
=

y
√

s + 1

y +
√

s

is positive and increasing in y ∈ (c,∞), and tends to y as s → ∞. By the hint,

∫ ∞

c
e−u(y) dy ≤

1

u′(c)

[
−e−u(y)

]∞
c

=
1

u′(c)
e−u(c) →

1

c
e
− 1

2
c2

as s → ∞.

The integral
∫−c
−

√
s

e−u(y) dy is treated likewise, so that, as s → ∞,

Ŵ(s)es√s

ss
→
∫ ∞

−∞
e
− 1

2
y2

dy =
√

2π,

which is Stirling’s formula for the gamma function. [This proof is due to P. Diaconis and D. Freedman.
The presence of probability theory in the argument is illusory.]

39. (a) The characteristic function of Sn/Dn is

φn(t) =
n∏

r=1

1
2

(
eitcr /Dn + e−itcr /Dn

)
=

n∏

r=1

cos(tcr /Dn).

By the hint,

−
2

3
t4 Bn

D4
n

≤
1

2
t2 + log φn(t) ≤ −

1

12
t4 Bn

D4
n

.

If Bn/D4
n → 0, then φn(t) → e

− 1
2

t2
as n → ∞, and the claim follows by the continuity theorem.

Conversely, if φn(t) → e
− 1

2 t2
, then, by the above inequalities, we must have Bn/D4

n → 0.

(b) Use binary expansions to see that the answer is uniform on (0, 1).

40. The inequality is elementary by Markov’s inequality when ρ = 0, so we assume ρ 6= 0. Let
R = {(x, y) : |x | ∨ |y| > ǫ}, and |t | ≤ 1. By the properties of g, the required probability satisfies

∫∫

R
fX,Y (x, y) dx dy ≤

∫∫

R
g(x, y) f X,Y (x, y) dx dy

≤ E(g(X,Y )) =
2(1 − tρ)

ǫ2(1 − t2)
.

The last is minimized by choosing t =
(
1 −

√
1 − ρ2

)
/ρ ≤ 1, and this choice of t yields the given

inequality.

41. (a) By Markov’s inequality, for θ ≥ 0,

P(X ≥ t) = P(eθX ≥ eθ t ) ≤
E(eθX )

eθ t
= exp

{
−1 + eθ − θ t

}
,

which is minimized by setting θ = log t .

(b) We use the fact that P(Mn < t) =
(
1 − P(X ≥ t)

)n
. Set t = (1 + a) log n/ log log n with a > 0

to obtain, by part (a),

P(Mn < t) ≥
(

1 −
et−1

t t

)n

=
(

1 − n−(1+a)(1+o(1))
)n

→ 1 as n → ∞.
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[7.11.41]–[7.11.41] Solutions Convergence of random variables

With t given similarly (and assumed for simplicity to be an integer) and −1 < a < 0,

P(Mn < t) ≤
(
1 − P(X = t)

)n =
(

1 −
1

e t!

)n

=
(

1 − n−(1+a)(1+o(1))
)n

≤ exp
(
−n−a(1+o(1))) → 0 as n → ∞.

We have used the fact that 1 − x ≤ e−x for x > 0, at the last stage.
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8

Random processes

8.2 Solutions. Stationary processes

1. With ai (n) = P(Xn = i ), we have that

cov(Xm , Xm+n) = P(Xm+n = 1 | Xm = 1)P(Xm = 1)− P(Xm+n = 1)P(Xm = 1)

= a1(m)p11(n)− a1(m)a1(m + n),

and therefore,

ρ(Xm, Xm+n) =
a1(m)p11(n)− a1(m)a1(m + n)

√
a1(m)(1 − a1(m))a1(m + n)(1 − a1(m + n))

.

Now, a1(m) → α/(α + β) as m → ∞, and

p11(n) =
α

α + β
+

β

α + β
(1 − α − β)n ,

whence ρ(Xm , Xm+n) → (1 − α − β)n as m → ∞. Finally,

lim
n→∞

1

n

n∑

r=1

P(Xr = 1) =
α

α + β
.

The process is strictly stationary if and only if X0 has the stationary distribution.

2. We have that E(T (t)) = 0 and var(T (t)) = var(T0) = 1. Hence:

(a) ρ(T (s), T (s + t)) = E(T (s)T (s + t)) = E
[
(−1)N(t+s)−N(s)

]
= e−2λt .

(b) Evidently, E(X (t)) = 0, and

E[X (t)2] = E

(∫ t

0

∫ t

0
T (u)T (v) du dv

)

= 2

∫

0<u<v<t
E
(
T (u)T (v)

)
du dv = 2

∫ t

v=0

∫ v

u=0
e−2λ(v−u) du dv

=
1

λ

(
t −

1

2λ
+

1

2λ
e−2λt

)
∼

t

λ
as t → ∞.

3. We show first the existence of the limit λ = limt↓0 g(t)/t , where g(t) = P(N(t) > 0). Clearly,

g(x + y) = P
(

N(x + y) > 0
)

= P
(

N(x) > 0
)

+ P
(

N(x) = 0 and N(x + y)− N(x) > 0
)

≤ g(x)+ g(y) for x, y ≥ 0.



[8.2.4]–[8.3.4] Solutions Random processes

Such a function g is called subadditive, and the existence of λ follows by the subadditive limit theorem

discussed in Problem (6.15.14). Note that λ = ∞ is a possibility.

Next, we partition the interval (0, 1] into n equal sub-intervals, and let In(r) be the indicator
function of the event that at least one arrival lies in

(
(r − 1)/n, r/n

]
, 1 ≤ r ≤ n. Then

∑n
r=1 In(r) ↑

N(1) as n → ∞, with probability 1. By stationarity and monotone convergence,

E(N(1)) = E

(
lim

n→∞

n∑

r=1

In(r)

)
= lim

n→∞
E

( n∑

r=1

In(r)

)
= lim

n→∞
ng(n−1) = λ.

4. We use the fact that, when X0 has the stationary distribution π , the vectors (X0, X1, . . . , Xn−1)

and (X1, X2, . . . , Xn) have the same distributions. For n ≥ 1, we have that

P(TA = n) = P(X1 /∈ A, . . . , Xn−1 /∈ A, Xn ∈ A)

= P(X1 /∈ A, . . . , Xn−1 /∈ A)− P(X1 /∈ A, . . . , Xn−1 /∈ A, Xn /∈ A)

= P(X1 /∈ A, . . . , Xn−1 /∈ A)− P(X0 /∈ A, . . . , Xn−2 /∈ A, Xn−1 /∈ A)

= P(X0 ∈ A, X1 /∈ A, . . . , Xn−1 /∈ A)

= π(A)P(TA ≥ n | X0 ∈ A).

Now sum over n. A version of this formula holds more generally for suitable stationary processes that
need not be Markovian.

8.3 Solutions. Renewal processes

1. See Problem (6.15.8).

2. With X a certain inter-event time, independent of the chain so far,

Bn+1 =
{

X − 1 if Bn = 0,

Bn − 1 if Bn > 0.

Therefore, B is a Markov chain with transition probabilities pi,i−1 = 1 for i > 0, and p0 j = f j+1
for j ≥ 0, where fn = P(X = n). The stationary distribution satisfies πj = πj+1 + π0 f j+1, j ≥ 0,
with solution πj = P(X > j)/E(X), provided E(X) is finite.

The transition probabilities of B when reversed in equilibrium are

p̃i,i+1 =
πi+1

πi
=

P(X > i + 1)

P(X > i )
, p̃i0 =

fi+1

P(X > i )
, for i ≥ 0.

These are the transition probabilities of the chain U of Exercise (8.3.1) with the f j as given.

3. We have that ρnun =
∑n

r=1 ρ
n−kun−kρ

k fk , whence vn = ρnun defines a renewal sequence
provided ρ > 0 and

∑
n ρ

n fn = 1. By Exercise (8.3.1), there exists a Markov chain U and a state s

such that vn = P(Un = s) → πs , as n → ∞, as required.

4. Noting that N(0) = 0,

∞∑

r=0

E(N(r))sr =
∞∑

r=1

r∑

k=1

uksr =
∞∑

k=1

uk

∞∑

r=k

sr

=
∞∑

k=1

uksk

1 − s
=

U(s)− 1

1 − s
=

F(s)U(s)

1 − s
.
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Queues Solutions [8.3.5]–[8.4.3]

Let Sm =
∑m

k=1 Xk and S0 = 0. Then P(N(r) = n) = P(Sn ≤ r)− P(Sn+1 ≤ r), and

∞∑

t=0

s t E

[(
N(t) + k

k

)]
=

∞∑

t=0

s t
∞∑

n=0

(
n + k

k

)
(
P(Sn ≤ t)− P(Sn+1 ≤ t)

)

=
∞∑

t=0

s t

[
1 +

∞∑

n=1

(
n + k − 1

k − 1

)
P(Sn ≤ t)

]
.

Now,
∞∑

t=0

s t P(Sn ≤ t) =
∞∑

t=0

s t
t∑

i=0

P(Sn = i ) =
∞∑

i=0

P(Sn = i )

∞∑

t=i

s t =
F(s)n

1 − s
,

whence, by the negative binomial theorem,

∞∑

t=0

s t E

[(
N(t) + k

k

)]
=

1

(1 − s)(1 − F(s))k
=

U(s)k

1 − s
.

5. This is an immediate consequence of the fact that the interarrival times of a Poisson process are
exponentially distributed, since this specifies the distribution of the process.

8.4 Solutions. Queues

1. We use the lack-of-memory property repeatedly, together with the fact that, if X and Y are
independent exponential variables with respective parameters λ and µ, then P(X < Y ) = λ/(λ+µ).

(a) In this case,

p =
1

2

{
λ

λ+ µ
·

µ

λ+ µ
+

µ

λ+ µ

}
+

1

2

{
µ

λ+ µ
·

λ

λ+ µ
+

λ

λ+ µ

}
=

1

2
+

2λµ

(λ + µ)2
.

(b) If λ < µ, and you pick the quicker server, p = 1 −
(

µ

λ+ µ

)2

.

(c) And finally, p =
2λµ

(λ+ µ)2
.

2. The given event occurs if the time X to the next arrival is less than t , and also less than the time
Y of service of the customer present. Now,

P(X ≤ t, X ≤ Y ) =
∫ t

0
λe−λx e−µx dx =

λ

λ+ µ
(1 − e−(λ+µ)t).

3. By conditioning on the time of passage of the first vehicle,

E(T ) =
∫ a

0

(
x + E(T )

)
λe−λx dx + ae−λa,

and the result follows. If it takes a time b to cross the other lane, and so a + b to cross both, then, with
an obvious notation,

E(Ta)+ E(Tb) =
eaλ − 1

λ
+

ebµ − 1

µ
,(a)

E(Ta+b) =
e(a+b)(λ+µ) − 1

λ+ µ
.(b)
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[8.4.4]–[8.5.2] Solutions Random processes

The latter must be the greater, by a consideration of the problem, or by turgid calculation.

4. Look for a solution of the detailed balance equations

µπn+1 =
λ(n + 1)

n + 2
πn, n ≥ 0.

to find thatπn = ρnπ0/(n+1) is a stationary distribution ifρ < 1, in which caseπ0 = −ρ/ log(1−ρ).
Hence

∑
n nπn = λπ0/(µ−λ), and by the lack-of-memory property the mean time spent waiting for

service is ρπ0/(µ− λ). An arriving customer joins the queue with probability

∞∑

n=0

n + 1

n + 2
πn =

ρ + log(1 − ρ)

ρ log(1 − ρ)
.

5. By considering possible transitions during the interval (t, t +h), the probability pi (t) that exactly
i demonstrators are busy at time t satisfies:

p2(t + h) = p1(t)2h + p2(t)(1 − 2h)+ o(h),

p1(t + h) = p0(t)2h + p1(t)(1 − h)(1 − 2h)+ p2(t)2h + o(h),

p0(t + h) = p0(t)(1 − 2h)+ p1(t)h + o(h).

Hence,

p′
2(t) = 2p1(t)− 2p2(t), p′

1(t) = 2p0(t)− 3p1(t)+ 2p2(t), p′
0(t) = −2p0(t)+ p1(t),

and therefore p2(t) = a + be−2t + ce−5t for some constants a, b, c. By considering the values of p2
and its derivatives at t = 0, the boundary conditions are found to be a + b + c = 0, −2b − 5c = 0,
4b + 25c = 4, and the claim follows.

8.5 Solutions. The Wiener process

1. We might as well assume that W is standard, in that σ 2 = 1. Because the joint distribution is
multivariate normal, we may use Exercise (4.7.5) for the first part, and Exercise (4.9.8) for the second,
giving the answer

1

8
+

1

4π

{
sin−1

√
s

t
+ sin−1

√
s

u
+ sin−1

√
t

u

}
.

2. Writing W (s) =
√

s X , W (t) =
√

t Z , and W (u) =
√

uY , we obtain random variables X ,
Y , Z with the standard trivariate normal distribution, with correlations ρ1 =

√
s/u, ρ2 =

√
t/u,

ρ3 =
√

s/t . By the solution to Exercise (4.9.9),

var(Z | X,Y ) =
(u − t)(t − s)

t (u − s)
,

yielding var(W (t) | W (s),W (u)) as required. Also,

E
(
W (t)W (u)

∣∣W (s),W (v)
)

= E

{[
(u − t)W (s)+ (t − s)W (u)

u − s

]
W (u)

∣∣∣∣W (s),W (v)

}
,

which yields the conditional correlation after some algebra.
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The Wiener process Solutions [8.5.3]–[8.5.8]

3. Whenever a2 + b2 = 1.

4. We may take σ = 1, without loss of generality. Let 1j (n) = W (( j + 1)t/n) − W ( j t/n). By
the independence of these increments,

E

(n−1∑

j=0

1j (n)
2 − t

)2

=
n−1∑

j=0

E

(
1j (n)

2 −
t

n

)2

because E(1j (n)
2) =

t

n

=
n−1∑

j=0

(
3t2

n2
−

2t2

n2
+

t2

n2

)
because E(1j (n)

4) =
3t2

n2

=
2t2

n
→ 0 as n → ∞.

The same proof may be used to show the more general fact that the above holds with 1j (n) =
W (tj+1) − W (tj ), where 0 = t0 < t1 < · · · < tn = t is a partition of [0, t] with mesh size
ǫ = maxj |tj+1 − tj | satisfying ǫ → 0. Further discussion of quadratic variation may be found in, for
example, Mörters and Peres 2010.

5. They all have mean zero and variance t , but only (a) has independent normally distributed incre-
ments.

6. A linear combination of normal variables is normal, and with mean 0 if the summands have mean
0. Furthermore, by considering characteristic functions, the property of being normal is preserved

under distributional limits. Therefore, by passing to limits,
∫ t
ǫ [W (u)/u] du is normally distributed

with mean 0. It therefore has a normally distributed limit as ǫ ↓ 0, and it remains to compute the
variance of the limit. Now,

E

(∫ t

ǫ

W (u)

u
du

∫ t

ǫ

W (v)

v
dv

)
=
∫ t

ǫ

∫ t

ǫ

u ∧ v
uv

dv du by Lemma (8.5.1)

= 2

∫ t

ǫ
du

∫ u

ǫ

v

uv
dv → 2t as ǫ ↓ 0.

The answer is N(0, 2t).

7. Clearly, AW (0) = 0, and AW inherits the property of independent increments from W . One
may complete the argument using the rotation invariance of the n-dimensional normal distribution, but
instead we will use characteristic functions. We have that AW (t)− AW (s) has characteristic function

E
(

exp
{

iθ A
(
W (t)− W (s)

)})
= E

(
exp
{

i (θ A)
(
W (t)− W (s)

)})

= exp
{
− 1

2 (t − s)|θ A|2
}

= exp
{
− 1

2 (t − s)|θ |2
}

= E
(

exp
{

iθ
(
W (t)− W (s)

)})
,

where θ is a row vector, and since W is a Wiener process and A is orthonormal.

8. Since W (t)− W (s) is distributed as N(0, |t − s|),

E
(
|W (t)− W (s)|p

)
=

1
√

2π |t − s|

∫

R

|x |p exp

{
−

|x |2

2|t − s|

}
dx, s 6= t.

Make the change of variables y = x/
√

|t − s| to obtain

E
(
|W (t)− W (s)|p

)
=

|t − s|p/2

√
2π

∫

R

|y|p exp

{
−

|y|2

2

}
dy = cp|t − s|p/2.
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[8.6.1]–[8.6.5] Solutions Random processes

8.6 Solutions. Lévy processes and subordinators

1. For 0 ≤ s < t < ∞,

|φ(t, θ)− φ(s, θ)| =
∣∣E
{

eiθX (s)(eiθD − 1)
}∣∣ ≤ |EeiθX (s)| · E|eiθD − 1|,

where D = X (t) − X (s) has the same distribution as X (t − s), and we have used the independence
of increments. Let δ > 0. The last term satisfies

E|eiθD − 1| ≤ E
{
|eiθD − 1| · I (|D| > δ)

}
+ E

{
|eiθD − 1| · I (|D| ≤ δ)

}

≤ 2P(|D| > δ)+ sup
|y|≤δ

|eiθy − 1|.

Let ǫ > 0 and choose δ > 0 such that |eiθy −1| ≤ 1
3 ǫ for |y| ≤ δ, and with this choice of δ we choose

τ such that P(|D| > δ) ≤ 1
3ǫ for 0 < t − s < τ . (We have used the fact that X (u)

P→ 0 as u → 0
here.) In conclusion,

E|eiθD − 1| ≤ ǫ for 0 ≤ t − s ≤ τ,

and the claim follows.

2. By the result of Problem (6.15.21), the characteristic function of the compound Poisson process
X (t) is φ(t, θ) = exp{λt (ψ(θ) − 1)

}
where ψ is the characteristic function of the summands. The

Lévy symbol is thus λ(ψ(θ)− 1).

3. We have that

log Mu(θ) = −u log(1 + θ) = −u

∫ θ

0

dx

1 + x
= −u

∫ θ

0
dx

∫ ∞

0
e−y(1+x) dy

= −u

∫ ∞

y=0
e−y

∫ θ

x=0
e−yx dx dy = −u

∫ ∞

0
(1 − e−θy)

1

y
e−y dy.

4. Let Y (t) = X (T (t)) where X is a Lévy process and T is an independent subordinator. Since
X and T are continuous in probability, so is Y . Let 0 ≤ s1 < t1 ≤ s2 < t2 ≤ · · · ≤ sn < tn , and
consider the joint characteristic function of the increments Ir = Y (tr )− Y (sr ):

E

(
exp

{
i

n∑

r=1

θr Ir

})

= E

[
E

(
exp

{
i

n∑

r=1

θr
(

X (T (tr ))− X (T (sr ))
)
∣∣∣∣∣ T (s1), T (t1), . . . , T (tn)

})]

=
n∏

r=1

E
(

exp
{

iθr X
(
T (tr )− T (sr )

)})
=

n∏

r=1

E
(

exp
{

iθr Y (tr − sr )
})
,

where we have used the fact that X and T have stationary independent increments. The final factor-
ization indicates that Y also has stationary independent increments.

5. Let Y (t) = N(T (t)) be a subordinated Poisson process with time-change T (t) having the given
gamma density. In the notation of the question, for s < 2,

E(sY ) =
∞∑

n=0

sn

∫ ∞

0

e−x xn

n!
·

e−x x t−1

Ŵ(t)
dx =

∫ ∞

0

1

Ŵ(t)
x t−1e−(2−s)x dx =

1

(2 − s)t
,
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Self-similarity and stability Solutions [8.6.6]–[8.7.2]

since we recognise the integrand, when multiplied by the correct factor, as the density function of the
Ŵ(2 − s, t) distribution.

6. (a) With Ft = σ(X (s) : s ≤ t), for s < t ,

E(X (t) | Fs) = E(X (t)− X (s) | Fs)+ E(X (s) | Fs) = E(X (t) − X (s)) + X (s),

where we have used the independence of X (t) − X (s) and Fs .

(b) Similarly, by the properties of increments,

E(Z(t)2 | Fs) = Z(s)2 + E
(
(Z(t) − Z(s))2

∣∣Fs

)
+ 2E

(
(Z(t)− Z(s))Z(s)

∣∣Fs)

= Z(s)2 + f (s, t),

for some deterministic function f . On taking expectations, we find that f (s, t) = E(Z(t)2) −
E(Z(s)2), and the proof is complete.

(c) Fix θ and write M(t) = eiθX (t)/φ(t, θ). For s < t , by the properties of increments,

E(M(t) | Fs) =
1

φ(t, θ)
eiθX (s)E

(
eiθ(X (t)−X (s))

∣∣Fs

)

=
1

φ(t, θ)
eiθX (s)E

(
eiθ(X (t)−X (s))

)

=
φ(t − s, θ)

φ(t, θ)
eiθX (s) =

1

φ(s, θ)
eiθX (s) = M(s),

since φ(t, θ) = φ(s, θ)φ(t − s, θ).

7. Let Ft = σ(Y (s) : s ≤ t). By conditioning, for s < t ,

E(Y (t) | Fs) = E
(

E
(

X (T (t))
∣∣ {T (u) : u ≤ s}, Fs

) ∣∣∣Fs

)

= E
(

X (T (s))
∣∣Fs

)
= Y (s).

Since by assumption E|Y (t)| < ∞, Y is a martingale with respect to the filtration (Ft ). If X is positive,
then E|Y (t)| = E(X (T (t))) = E(X (0)) < ∞ since X is a martingale.

8.7 Solutions. Self-similarity and stability

1. We prove this by induction on n. It is trivially true when n = 1. Assume it holds for n = N ≥ 1.
By the induction hypothesis,

N+1∑

r=1

Xr = BN X + X N+1 + AN ,

where X is independent of X N+1. The claim follows by the definition of stability.

2. By self-similarity, X (t)
D= t H X (1). Therefore, var(X (t)) = t2H var(X (1)). Also, for s < t ,

E(X (s)X (t)) = 1
2

[
E(X (t)2)+ E(X (s)2)− E

(
(X (t) − X (s))2

)]

= 1
2

[
t2H E(X (1)2)+ s2H E(X (1)2)− E(X (t − s)2)

]

= 1
2

(
t2H + s2H − (t − s)2H

)
E(X (1)2),
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[8.7.3]–[8.8.3] Solutions Random processes

by the stationarity of increments and self-similarity.

3. Let F be the distribution function of a stable law, and let n ≥ 2. By the definition of stability, or
by Exercise (8.7.1), for independent random variables X1, X2, . . . , Xn with distribution function F ,
there exist Bn > 0 and Cn such that

∑n
r=1 Yr has distribution function F , where Yr = (Xr −Cn)/Bn .

Therefore, F is infinitely divisible (see Problem (5.12.14)).

4. Let X be a self-similar Lévy process with var(X (1)) < ∞. By self-similarity, var(X (2)) =
22H var(X (1)), and by the property of independent stationary increments, var(X (2)) = 2 var(X (1).

Therefore, H = 1
2 , and X is the Wiener process.

5. Since φ is real-valued, the distribution is symmetric (use either the inversion theorem or Problem

(5.12.22)). For strict α-stability, we need that X1 + X2 + · · · + Xm
D= m1/αX1 for m ≥ 1. The

characteristic function of the sum satisfies

φ(θ)m = e−m|θ |α = φ(m1/αθ),

as required.

6. By conditioning on Y ,

φZ (t) = E
(
E(eit XY 1/α

| Y )
)

= E
(
φX (tY

1/a)
)

= E
(
e−Y |t |α) = exp

(
−k|t |αβ

)
,

which is the characteristic function of a symmetric, stable random variable with exponent αβ.

We have that U is symmetric and stable with exponent α = 2, and, by the result of Problem

(5.12.19b), Y = 1/V 2 is positive and stable with exponent β = 1
2 . Therefore, Z = U/|V | = UY 1/2

is symmetric and stable with exponent αβ = 1, and hence Z has the Cauchy distribution. By an
argument using symmetry, U/V has the Cauchy distribution also.

Note further that, if X is normally distributed, and Y is positive and 1
2α-stable, then X

√
Y is

symmetric and α-stable. This may be viewed as a representation of a symmetric, stable distribution
in terms of the N(0, 1) distribution.

8.8 Solutions. Time changes

1. For t0 < t1 < · · · < tn < t and s > 0,

P
(

X (t + s) = k
∣∣ X (t0), X (t1), . . . , X (tn), X (t)

)

= E
(

P
(

X (t + s) = k
∣∣ Z(T (t0)), . . . , Z(T (tn)), Z(T (t))

) ∣∣ T (t)
)

= E
(

P
(

X (t + s) = k
∣∣ Z(T (t)

) ∣∣∣ T (t)
)

by the Markov property for X

= P
(

X (t + s) = k
∣∣ X (t)

)
.

2. Since N is an independent subordinator, X is a Markov chain as in Exercise (8.8.1). The transition
probability pi j (t) is an elementary computation by conditioning on the value of N(t).

3. Since W and T are Lévy processes, so is Y . By conditioning on T (t),

E(eiθY (t)) = E
{

E
(
eiθW (T (t))

∣∣ T (t)
)}

= E
(
e
− 1

2
θ2T (t))

= exp
{
−t
(

1
2 θ

2
)a/2

}
= exp

{
−t2−a/2|θ |a

}
,

which is the characteristic function of a symmetric Lévy process.
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Problems Solutions [8.8.4]–[8.10.2]

4. This is an important technicality. Let F = (Ft ) be the natural filtration, and recall that F is
right-continuous.

(a) Let s ≥ 0. Given that X (s) > 0, we have X (s + t) = X (s)+ (t − s); given that X (s) = 0, X (t)

has the same distribution as the unconditional distribution of X (t − s). (The last holds since V has
the lack-of-memory property.) Therefore, X is a Markov process.

(b) The random variable V is a stopping time since {V > t} ∈
⋂

s>t Fs = Ft .

(c) It is clear, by definition of X and V , that X1(0) = X2(0) = 0. On the other hand,

P(X1(1) = 0) = P(V ≥ 1) > 0, P(X2(1) = 0) = 0.

This is an example of a process X that has the arguably undesirable feature of satisfying the
Markov property but not the strong Markov property. It is usual to introduce a further property, called
the Feller property, that implies the strong Markov property. The Feller property requires that the
distribution of X (t) varies continuously with the starting state X (0).

8.10 Solutions to problems

1. E(Yn) = 0, and cov(Ym ,Ym+n) =
∑r

i=0 αiαn+i for m, n ≥ 0, with the convention that αk = 0
for k > r . The covariance does not depend on m, and therefore the sequence is stationary.

2. We have, by iteration, that Yn = Sn(m)+ αm+1Yn−m−1 where Sn(m) =
∑m

j=0 α
j Zn− j . There

are various ways of showing that the sequence {Sn(m) : m ≥ 1} converges in mean square and almost

surely, and the shortest is as follows. We have that αm+1Yn−m−1 → 0 in m.s. and a.s. as m → ∞;

to see this, use the facts that var(αm+1Yn−m−1) = α2(m+1) var(Y0), and

∑

m

P(αm+1Yn−m−1 > ǫ) ≤
∑

m

α2(m+1)E(Y 2
0 )

ǫ2
< ∞, ǫ > 0.

It follows that Sn(m) = Yn − αm+1Yn−m−1 converges in m.s. and a.s. as m → ∞. A longer route to
the same conclusion is as follows. For r < s,

E
(
|Sn(s)− Sn(r)|2

)
= E





( s∑

j=r+1

α j Zn− j

)2


 =

s∑

j=r+1

α2 j ≤
α2r

1 − α2
,

whence {Sn(m) : m ≥ 1} is Cauchy convergent in mean square, and therefore converges in mean
square. In order to show the almost sure convergence of Sn(m), one may argue as follows. Certainly

E

( m∑

j=0

|α j Zn− j |
)

=
m∑

j=0

E|α j Zn− j | →
∞∑

j=0

|α| j E|Zn− j | ≤
∞∑

j=0

|α| j < ∞,

whence
∑∞

j=0 α
j Zn− j is a.s. absolutely convergent, and therefore a.s. convergent also. We may

express limm→∞ Sn(m) as
∑∞

j=0 α
j Zn− j . Also, αm+1Yn−m−1 → 0 in mean square and a.s. as

m → ∞, and we may therefore express Yn as

Yn =
∞∑

j=0

α j Zn− j a.s.

It follows that E(Yn) = limm→∞ E(Sn(m)) = 0. Finally, for r > 0, the autocovariance function
is given by

c(r) = cov(Yn ,Yn−r ) = E
{
(αYn−1 + Zn)Yn−r

}
= αc(r − 1),
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[8.10.3]–[8.10.7] Solutions Random processes

whence

c(r) = α|r |c(0) =
α|r |

1 − α2
, r = . . . ,−1, 0, 1, . . . ,

since c(0) = var(Yn).

3. If t is a non-negative integer, N(t) is the number of 0’s and 1’s preceding the (t +1)th 1. Therefore
N(t) + 1 has the negative binomial distribution with mass function

f (k) =
(

k − 1

t

)
pt+1(1 − p)k−1−t , k ≥ t + 1.

If t is not an integer, then N(t) = N(⌊t⌋).

4. We have that

P
(

Q(t + h) = j
∣∣ Q(t) = i

)
=





λh + o(h) if j = i + 1,

µih + o(h) if j = i − 1,

1 − (λ+ µi )h + o(h) if j = i,

an immigration–death process with constant birth rate λ and death rates µi = iµ.

Either calculate the stationary distribution in the usual way, or use the fact that birth–death
processes are reversible in equilibrium. Hence λπi = µ(i + 1)πi+1 for i ≥ 0, whence

πi =
1

i !

(
λ

µ

)i

e−λ/µ, i ≥ 0.

5. We have that X̃(t) = R cos(9) cos(θ t) − R sin(9) sin(θ t). Consider the transformation u =
r cosψ , v = −r sinψ , which maps [0,∞)× [0, 2π) to R2. The Jacobian is

∣∣∣∣∣∣∣

∂u

∂r

∂u

∂ψ
∂v

∂r

∂v

∂ψ

∣∣∣∣∣∣∣
= −r,

whence U = R cos9, V = −R sin9 have joint density function satisfying

r fU,V (r cosψ,−r sinψ) = fR,9 (r, ψ).

Substitute fU,V (u, v) = e
− 1

2 (u
2+v2)

/(2π), to obtain

f R,9 (r, ψ) =
1

2π
re

− 1
2 r2
, r > 0, 0 ≤ ψ < 2π.

Thus R and 9 are independent, the latter being uniform on [0, 2π).

6. A customer arriving at time u is designated green if he is in state A at time t , an event having
probability p(u, t −u). By the colouring theorem (6.13.14), the arrival times of green customers form
a non-homogeneous Poisson process with intensity function λ(u)p(u, t − u), and the claim follows.

7. By conditioning on the Poissonian events in the interval (0, h),

r(y) = λhE
(
r(y + h − X1)

)
+ (1 − λh)r(y + h)+ o(h)

= λh

{∫ y+h

0
r(y + h − x) d F(x)+ P(X1 > y + h)

}
+ (1 − λh)r(y + h)+ o(h),
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Problems Solutions [8.10.8]–[8.10.9]

whence, on subtracting r(y), dividing by h and letting h ↓ 0.

r ′(y) = λr(y)− λP(X1 > y)− λ

∫ y

0
r(y + h) d F(x).

This may be solved using Lebesgue-Stieltjes transforms as in Exercise (10.1.7), or using martingale
theory as in Problem (12.9.27).

8. (a) The normality holds since fBM is Gaussian. By the result of Exercise (8.7.2),

E
(
|X (t)− X (s)|2

)
= t2H + s2H − (t2H + s2H − |t − s|2H ) = |t − s|2H .

(b) By part (a), for s 6= t ,

E
(
|X (t) − X (s)|r

)
=

1

|t − s|H
√

2π

∫ ∞

−∞
|x |r exp

{
−

x2

2|t − s|2H

}
dx

= |t − s|r H ·
1

√
2π

∫ ∞

−∞
|y|re

− 1
2 y2

dy,

by the substitution x = y|t − s|H . It is easily seen that C = (2k)!/(k! 2k) when r = 2k is even.

(c) The distribution of a zero-mean Gaussian process is specified by its covariance function. For the
standard Wiener process, the covariance function is c(s, t) = min{s, t}, which agrees with part (a) if

and only if H = 1
2 .

9. (a) By the superposition theorem (6.13.5), the union of two independent Poisson processes is a
Poisson process with the sum of the intensities. Their combined gravitational force is the sum of the
two separate forces.

(b) Changing the intensity of a Poisson process from 1 to λ amounts to changing the length scale from

1 to 1/λ1/3. This changes the scale of the force from 1 to λ2/3.

(c) It is tempting to argue as follows. For a, b > 0, we have by the above that aG ′
1 + bG ′′

1
D= cG1

where c = (a3/2 + b3/2)2/3. Therefore, G1 is strictly α-stable with α = 2
3 . However, as in the

solution to Problems (6.15.56)–(6.15.57), the aggregate gravitational attraction at the origin is not
absolutely convergent. We may instead follow Holtsmark in restricting space to the R-ball centred at
the origin, and passing to the limit R → ∞, thereby allowing the divergences to cancel. The weak
limit is then α-stable.

[See Problem (6.15.57) for an alternative approach. The above argument of Feller (1974, p. 174) is
applicable in other dimensions with adjusted exponents.]
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9

Stationary processes

9.1 Solutions. Introduction

1. We examine sequences Wn of the form

(∗) Wn =
∞∑

k=0

ak Zn−k

for the real sequence {ak : k ≥ 0}. Substitute, to obtain a0 = 1, a1 = α, ar = αar−1 +βar−2, r ≥ 2,
with solution

ar =





(1 + r)λr
1 if α2 + 4β = 0,

λ
r+1
1 − λ

r+1
2

λ1 − λ2
otherwise,

where λ1 and λ2 are the (possibly complex) roots of the quadratic x2 − αx − β = 0 (these roots are

distinct if and only if α2 + 4β 6= 0).

Using the method in the solution to Problem (8.10.2), the sum in (∗) converges in mean square
and almost surely if |λ1| < 1 and |λ2| < 1. Assuming this holds, we have from (∗) that E(Wn) = 0
and the autocovariance function is

c(m) = E(WnWn−m) = αc(m − 1)+ βc(m − 2), m ≥ 1,

by the independence of the Zn . Therefore W is weakly stationary, and the autocovariance function
may be expressed in terms of α and β.

2. We adopt the convention that, if the binary expansion of U is non-unique, then we take the
(unique) non-terminating such expansion. It is clear that X i takes values in {0, 1}, and

P
(

Xn+1 = 1
∣∣ X i = xi for 1 ≤ i ≤ n

)
= 1

2

for all x1, x2, . . . , xn ; therefore the X’s are independent Bernoulli random variables. For any se-
quence k1 < k2 < · · · < kr , the joint distribution of Vk1

, Vk2
, . . . , Vkr depends only on that of

Xk1+1, Xk1+2, . . . . Since this distribution is the same as the distribution of X1, X2, . . . , we have that
(Vk1

, Vk2
, . . . , Vkr ) has the same distribution as (V0, Vk2−k1

, . . . , Vkr −k1
). Therefore V is strongly

stationary.

Clearly E(Vn) = E(V0) = 1
2 , and, by the independence of the X i ,

cov(V0, Vn) =
∞∑

i=1

2−2i−n var(X i ) = 1
12 (

1
2 )

n .



Introduction Solutions [9.1.3]–[9.1.6]

3. (i) For mean-square convergence, we show that Sk =
∑k

n=0 an Xn is mean-square Cauchy con-
vergent as k → ∞. We have that, for r < s,

E
{
(Ss − Sr )

2} =
s∑

i, j=r+1

ai aj c(i − j) ≤ c(0)

{ s∑

i=r+1

|ai |
}2

since |c(m)| ≤ c(0) for all m, by the Cauchy–Schwarz inequality. The last sum tends to 0 as r, s → ∞
if
∑

i |ai | < ∞. Hence Sk converges in mean square as k → ∞.

Secondly,

E

( n∑

k=1

|ak Xk |
)

≤
n∑

k=1

|ak | · E|Xk | ≤
√

E(X2
0)

n∑

k=1

|ak |

which converges as n → ∞ if the |ak | are summable. It follows that
∑n

k=1 |ak Xk | converges

absolutely (almost surely), and hence
∑n

k=1 ak Xk converges a.s.

(ii) Each sum converges a.s. and in mean square, by part (i). Now

cY (m) =
∞∑

j,k=0

aj ak c(m + k − j)

whence
∑

m

|cY (m)| ≤ c(0)

{ ∞∑

j=0

|aj |
}2

< ∞.

4. Clearly Xn has distribution πππ for all n, so that { f (Xn) : n ≥ m} has fdds which do not depend
on the value of m. Therefore the sequence is strongly stationary.

5. The covariance is

cov(U, V ) = E(U V ) = E
(
(W Y + X Z)− i (XY − W Z)

)
= 0.

If U , V are independent, then the vectors (W, X), (Y, Z) are independent. However, cov(W, Z) = −1,
a contradiction.

Example (4.5.9) is concerned with real-valued random variables, and U , V are complex-valued.
They have neither univariate distributions nor univariate density functions.

6. Since cosine has period 2π and U is uniformly distributed on (−π, π), we have that E(Xn) = 0.
The autocovariance function is

c(m,m + n) = E(Xm Xm+n) = E
(
cos(mS + U) cos((m + n)S + U)

)

= 1
2 E
(
cos((2m + n)S + 2U) + cos(nS)

)

= 0 + 1
2 E
(
cos(nS)

)
= 1

2

∫ π

−π
g(s) cos(ns) ds,

as before. Thus c(m,m + n) depends on n only, and X is weakly stationary. The autocorrelation
function ρX is given by

(*) ρX (m,m + n) =
c(m,m + n)

c(m,m)
=
∫ π

−π
g(s) cos(ns) ds.

The autocorrelation function of Y is easily seen to be

ρY (m,m + n) =





1 if n = 0,
a

1 + a2
if n = 1,

0 if n ≥ 2.
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[9.2.1]–[9.2.2] Solutions Stationary processes

It is natural to try setting g to be a linear combination of a constant and the cosine function, say
g(s) = α+β cos s. Since g is a density function on (−π,π), we must have α = 1/(2π). By (*) with
this choice for g,

ρX (m,m + n) =





1 if n = 0,

πβ if n = 1,

0 if n ≥ 2,

so that ρX = ρY if

g(s) =
1

2π
+

a cos s

π(1 + a2)
, s ∈ (−π, π).

9.2 Solutions. Linear prediction

1. (i) We have that

(∗) E
{
(Xn+1 − αXn)

2} = (1 + α2)c(0) − 2αc(1),

which is minimized by setting α = c(1)/c(0). Hence X̂n+1 = c(1)Xn/c(0).

(ii) Similarly

(∗∗) E
{
(Xn+1 − βXn − γ Xn−1)

2
}

= (1 + β2 + γ 2)c(0) + 2β(γ − 1)c(1)− 2γ c(2),

an expression which is minimized by the choice

β =
c(1)

(
c(0)− c(2)

)

c(0)2 − c(1)2
, γ =

c(0)c(2) − c(1)2

c(0)2 − c(1)2
;

X̃n+1 is given accordingly.

(iii) Substitute α, β, γ into (∗) and (∗∗), and subtract to obtain, after some manipulation,

D =
{c(1)2 − c(0)c(2)}2

c(0){c(0)2 − c(1)2}
.

(a) In this case c(0) = 1
2 , and c(1) = c(2) = 0. Therefore X̂n+1 = X̃n+1 = 0, and D = 0.

(b) In this case D = 0 also.

In both (a) and (b), little of substance is gained by using X̃n+1 in place of X̂n+1.

2. Let {Zn : n = . . . ,−1, 0, 1, . . . } be independent random variables with zero means and unit
variances, and define the moving-average process

(∗) Xn =
Zn + aZn−1√

1 + a2
.

It is easily checked that X has the required autocovariance function.

By the projection theorem, Xn − X̂n is orthogonal to the collection {Xn−r : r ≥ 1}, so that

E{(Xn − X̂n)Xn−r } = 0, r ≥ 1. Set X̂n =
∑∞

s=1 bs Xn−s to obtain that

α = b1 + b2α, 0 = bs−1α + bs + bs+1α for s ≥ 2,
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Autocovariances and spectra Solutions [9.3.1]–[9.3.4]

where α = a/(1 + a2). The unique bounded solution to the above difference equation is bs =
(−1)s+1as , and therefore

X̂n =
∞∑

s=1

(−1)s+1as Xn−s .

The mean squared error of prediction is

E
{
(Xn − X̂n)

2} = E

{( ∞∑

s=0

(−a)s Xn−s

)2
}

=
1

1 + a2
E(Z2

n) =
1

1 + a2
.

Clearly E(X̂n) = 0 and

cov(X̂n, X̂n−m) =
∞∑

r,s=1

br bsc(m + r − s), m ≥ 0,

so that X̂ is weakly stationary.

9.3 Solutions. Autocovariances and spectra

1. It is clear that E(Xn) = 0 and var(Xn) = 1. Also

cov(Xm , Xm+n) = cos(mλ) cos{(m + n)λ} + sin(mλ) sin{(m + n)λ} = cos(nλ),

so that X is stationary, and the spectrum of X is the singleton {λ}.

2. Certainly φU (t) = (eitπ − e−itπ )/(2π i t), so that E(Xn) = φU (1)φV (n) = 0. Also

cov(Xm , Xm+n) = E(Xm Xm+n) = E
(
ei{U−V m−U+V (m+n)}) = φV (n),

whence X is stationary. Finally, the autocovariance function is

c(n) = φV (n) =
∫

einλ d F(λ),

whence F is the spectral distribution function.

3. The characteristic functions of these distributions are

ρ(t) = e
− 1

2 t2
,(i)

ρ(t) =
1

2

(
1

1 − i t
+

1

1 + i t

)
=

1

1 + t2
.(ii)

4. (i) We have that

var

(
1

n

n∑

j=1

X j

)
=

1

n2

n∑

j,k=1

cov(X j , Xk) =
c(0)

n2

∫

(−π,π]

( n∑

j,k=1

ei( j−k)λ

)
d F(λ).

The integrand is

∣∣∣∣
n∑

j=1

ei jλ

∣∣∣∣
2

=
(

einλ − 1

eiλ − 1

)(
e−inλ − 1

e−iλ − 1

)
=

1 − cos(nλ)

1 − cos λ
,

479



[9.3.5]–[9.3.5] Solutions Stationary processes

whence

var

(
1

n

n∑

j=1

X j

)
= c(0)

∫

(−π,π]

(
sin(nλ/2)

n sin(λ/2)

)2

d F(λ).

It is easily seen that | sin θ | ≤ |θ |, and therefore the integrand is no larger than

(
λ/2

sin(λ/2)

)2

≤ ( 1
2π)

2.

As n → ∞, the integrand converges to the function which is zero everywhere except at the origin,
where (by continuity) we may assign it the value 1. It may be seen, using the dominated convergence
theorem, that the integral converges to F(0)− F(0−), the size of the discontinuity of F at the origin,
and therefore the variance tends to 0 if and only if F(0)− F(0−) = 0.

Using a similar argument,

1

n

n−1∑

j=0

c( j) =
c(0)

n

∫

(−π,π]

(n−1∑

j=0

ei jλ

)
d F(λ) = c(0)

∫

(−π,π]
gn(λ) d F(λ)

where

gn(λ) =





1 if λ = 0,

einλ − 1

n(eiλ − 1)
if λ 6= 0,

is a bounded sequence of functions which converges as before to the Kronecker delta function δλ0.
Therefore

1

n

n−1∑

j=0

c( j) → c(0)
(

F(0) − F(0−)
)

as n → ∞.

5. (a) By iteration, for k ≥ 0,

Xn = Zn +
k∑

r=1

φr−1(θ + φ)Zn−r + φkθ Zn−k−1 + φk+1 Xn−k−1.

We require |φ| < 1 for convergence as k → ∞. Assume |φ| < 1, so that

(*) Xn = Zn + (θ + φ)

∞∑

r=1

φr−1 Zn−r ,

implying by its form that X is stationary with zero mean. The value of θ is immaterial.

(b) We have Zn = −θ Zn−1 − Xn − φXn−1. Subject to the change of signs, this is as before with θ
and φ interchanged, We therefore require that |θ | < 1.

(c) Square (*) and apply E, to find that

E(X2
n) = 1 +

∞∑

r=1

φ2(r−1)(θ + φ)2 =
1 + θ2 + 2θφ

1 − φ2
.

Similarly,

c(n, n + 1) = E(Xn Xn+1) =
(θ + φ)(1 + θφ)

1 − φ2
,
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Autocovariances and spectra Solutions [9.3.6]–[9.3.7]

and, more generally,

c(m,m + n) = E(Xm Xm+n) = φc(m,m + n − 1), n ≥ 2.

The autocorrelation function of X is symmetric and given by

ρ(n) =
c(m,m + n)

c(0, 0)
=





1 if n = 0,

(θ + φ)(1 + θφ)

1 + θ2 + 2θφ
if n = 1,

φn−1ρ(1) if n ≥ 2.

The spectral density function is

f (λ) =
1

2π
+

1

π
ρ(1) cos λ+

1

π

∞∑

n=2

ρ(1)φn−1(einλ + e−inλ)

=
1

2π
+

1

π
ρ(1) cos λ+

ρ(1)

π

{
φe2iλ

1 − φeiλ
+

φe−2iλ

1 − φe−iλ

}
, λ ∈ (−π, π ].

6. Substitute the sum into the recurrence and equate coefficients of the Zr to obtain

d0 = 1, d1 = φd0, dk = φdk−1 + θdk−2 for k ≥ 2.

Hence dk = a1rk
2 + a2rk

2 where the ri are the roots of the quadratic x2 − φx − θ = 0. Therefore,

d0 = 1 = a1 + a2, d1 = φ = a1r1 + a2r2.

Suppose |r1|, |r2| < 1. Since the Zr are uncorrelated,

E(X2
n) =

∞∑

k=0

d2
k =

a2
1

1 − r2
1

+
2a1a2

1 − r1r2
+

a2
2

1 − r2
1

,

on summing the geometric series. The given answer follows after a calculation using the properties
of the ri .

7. As in Example (9.2.5), we have var(Xn+1 − X̂n+1) = 1. By Example (9.3.23), the given
exponential equals

exp

{
1

2π

∫ π

−π
− log

(
1 − αeiλ − αe−iλ + α2) dλ

}
= 1.

To check this, write the logarithm as

log
[
(1 − αeiλ)(1 − αe−iλ)

]
= log(1 − αeiλ)+ log(1 − αe−iλ)

=
∞∑

r=1

αr eirλ

r
+

∞∑

r=1

αr e−irλ

r
,

and integrate term-by-term over (−π,π) to obtain the answer 0.
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[9.4.1]–[9.5.2] Solutions Stationary processes

9.4 Solutions. Stochastic integration and the spectral representation

1. Let HX be the space of all linear combinations of the X i , and let H X be the closure of this space,
that is, HX together with the limits of all mean-square Cauchy-convergent sequences in HX . All

members of HX have zero mean, and therefore all members of H X also. Now S(λ) ∈ H X for all λ,
whence E(S(λ)− S(µ)) = 0 for all λ and µ.

2. First, each Ym lies in the space H X containing all linear combinations of the Xn and all limits of
mean-square Cauchy-convergent sequences of the same form. As in the solution to Exercise (9.4.1),

all members of H X have zero mean, and therefore E(Ym) = 0 for all m. Secondly,

E(YmY n) =
∫

(−π,π]

eimλe−inλ

2π f (λ)
f (λ) dλ = δmn .

As for the last part,

∞∑

j=−∞
aj Yn− j =

∫

(−π,π]

(∑

j

aj e−i jλ

)
einλ

√
2π f (λ)

d S(λ) =
∫

(−π,π]
einλ d S(λ) = Xn .

This proves that such a sequence Xn may be expressed as a moving average of an orthonormal
sequence.

3. Let H X be the space of all linear combinations of the Xn , together with all limits of (mean-
square) Cauchy-convergent sequences of such combinations. Using the result of Problem (7.11.19),

all elements in H X are normally distributed. In particular, all increments of the spectral process are

normal. Similarly, all pairs in H X are jointly normally distributed, and therefore two members of

H X are independent if and only if they are uncorrelated. Increments of the spectral process have
zero means (by Exercise (9.4.1)) and are orthogonal. Therefore they are uncorrelated, and hence
independent.

9.5 Solutions. The ergodic theorem

1. With the usual shift operator τ , it is obvious that τ−1∅ = ∅, so that ∅ ∈ I. Secondly, if A ∈ I,

then τ−1(Ac) = (τ−1 A)c = Ac, whence Ac ∈ I. Thirdly, suppose A1, A2, . . . ∈ I. Then

τ−1
( ∞⋃

i=1

Ai

)
=

∞⋃

i=1

τ−1 Ai =
∞⋃

i=1

Ai ,

so that
⋃∞

1 Ai ∈ I.

2. The left-hand side is the sum of covariances, c(0) appearing n times, and c(i ) appearing 2(n − i )

times for 0 < i < n, in agreement with the right-hand side.

Let ǫ > 0. If c( j) = j−1∑ j−1
i=0 c(i ) → σ 2 as j → ∞, there exists J such that |c( j)− σ 2| < ǫ

when j ≥ J . Now

2

n2

n∑

j=1

jc( j) ≤
2

n2

{ J∑

j=1

jc( j)+
n∑

j=J+1

j (σ 2 + ǫ)

}
→ σ 2 + ǫ

as n → ∞. A related lower bound is proved similarly, and the claim follows since ǫ (> 0) is arbitrary.
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Gaussian processes Solutions [9.5.3]–[9.6.3]

3. It is easily seen that Sm =
∑m

i=0 αi Xn+i constitutes a martingale with respect to the X’s, and

E(S2
m) =

m∑

i=0

α2
i E(X2

n+i ) ≤
∞∑

i=0

α2
i ,

whence Sm converges a.s. and in mean square as m → ∞.

Since the Xn are independent and identically distributed, the sequence Yn is strongly stationary;

also E(Yn) = 0, and so n−1∑n
i=1 Yi → Z a.s. and in mean, for some random variable Z with mean

zero. For any fixed m (≥ 1), the contribution of X1, X2, . . . , Xm towards
∑n

i=1 Yi is, for large n, no
larger than

Cm =
∣∣∣∣

m∑

j=1

(α0 + α1 + · · · + αj−1)X j

∣∣∣∣.

Now n−1Cm → 0 as n → ∞, so that Z is defined in terms of the subsequence Xm+1, Xm+2, . . .

for all m, which is to say that Z is a tail function of a sequence of independent random variables.
Therefore Z is a.s. constant, and so Z = 0 a.s.

9.6 Solutions. Gaussian processes

1. The quick way is to observe that c is the autocovariance function of a Poisson process with
intensity 1. Alternatively, argue as follows. The sum is unchanged by taking complex conjugates, and
hence is real. Therefore it equals

n∑

j=1

tj

(
|z j |2 + z j

n∑

k= j+1

zk + z j

n∑

k= j+1

zk

)
=

n∑

j=1

tj



∣∣∣∣

n∑

k= j

zk

∣∣∣∣
2

−
∣∣∣∣

n∑

k= j+1

zk

∣∣∣∣
2



=
n∑

j=1

(tj − tj−1)

∣∣∣∣
n∑

k= j

zk

∣∣∣∣
2

where t0 = 0.

2. For s, t ≥ 0, X (s) and X (s + t) have a bivariate normal distribution with zero means, unit
variances, and covariance c(t). It is standard (see Problem (4.14.13)) that E(X (s + t) | X (s)) =
c(t)X (s). Now

c(s + t) = E
(

X (0)X (s + t)
)

= E
{

E
(

X (0)X (s + t)
∣∣ X (0), X (s)

)}

= E
(

X (0)c(t)X (s)
)

= c(s)c(t)

by the Markov property. Therefore c satisfies c(s + t) = c(s)c(t), c(0) = 1, whence c(s) = c(1)|s| =
ρ|s|. Using the inversion formula, the spectral density function is

f (λ) =
1

2π

∞∑

s=−∞
c(s)e−isλ =

1 − ρ2

2π |1 − ρeiλ|2
, |λ| ≤ π.

Note that X has the same autocovariance function as a certain autoregressive process. Indeed,
stationary Gaussian Markov processes have such a representation.

3. If X is Gaussian and strongly stationary, then it is weakly stationary since it has a finite variance.
Conversely suppose X is Gaussian and weakly stationary. Then c(s, t) = cov(X (s), X (t)) depends
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on t − s only. The joint distribution of X (t1), X (t2), . . . , X (tn) depends only on the common mean
and the covariances c(ti , tj ). Now c(ti , tj ) depends on tj − ti only, whence X (t1), X (t2), . . . , X (tn)

have the same joint distribution as X (s + t1), X (s + t2), . . . , X (s + tn). Therefore X is strongly
stationary.

4. (a) If s, t > 0, we have from Problem (4.14.13) that

E
(

X (s + t)2
∣∣ X (s)

)
= X (s)2c(t)2 + 1 − c(t)2,

whence

cov
(

X (s)2, X (s + t)2
)

= E
(

X (s)2 X (s + t)2
)

− 1

= E
{

X (s)2E
(

X (s + t)2 | X (s)
)}

− 1

= c(t)2E(X (s)4)+ (1 − c(t)2)E(X (s)2)− 1 = 2c(t)2

by an elementary calculation.

(b) Likewise cov(X (s)3, X (s + t)3) = 3(3 + 2c(t)2)c(t).

5. (a) Certainly, X (0) = W (0) = 0, and X is Gaussian because it has independent normally-
distributed increments. Furthermore,

φX (t)(θ) = exp
{
− 1

2 θ
2T (t)

}
,

and
c(s, t) = E

(
X (s)X (t)

)
= min{T (s), T (t)}.

(b) As in Exercise (8.6.4), X is a Lévy process. By Theorem (8.7.18), it suffices for stability that

E(eiθX (t)) = E
(
E(eiθX (t) | T (t))

)
= E

(
e

1
2 θ

22T (t)) = e−t |θ |2α .

6. Express Y (R)2 in terms of the X (·, ·) and use the covariance function of the Wiener process to
obtain

E(Y (R)2) = (u − s)(v − t) = |R|,
the area of R. Likewise, for R ∩ R′ = ∅, we calculate term-by-term to find that E(Y (R)Y (R′)) = 0.
Since Y (R) and Y (R′) are bivariate normally distributed with zero covariance, they are independent.

9.7 Solutions to problems

1. It is easily seen that Yn = Xn + (α − β)Xn−1 + βYn−1 , whence the autocovariance function c

of Y is given by

c(k) =





1 + α2 − β2

1 − β2
if k = 0,

β|k|−1

{
α(1 + αβ − β2)

1 − β2

}
if k 6= 0.

Set Ŷn+1 =
∑∞

i=0 ai Yn−i and find the ai for which it is the case that E{(Yn+1 − Ŷn+1)Yn−k } = 0
for k ≥ 0. These equations yield

c(k + 1) =
∞∑

i=0

ai c(k − i ), k ≥ 0,
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which have solution ai = α(β − α)i for i ≥ 0.

2. The autocorrelation functions of X and Y satisfy

σ 2
XρX (n) = σ 2

Y

r∑

j,k=0

aj akρY (n + k − j).

Therefore

σ 2
X fX (λ) =

σ 2
Y

2π

∞∑

n=−∞
e−inλ

r∑

j,k=0

aj akρY (n + k − j)

=
σ 2

Y

2π

r∑

j,k=0

aj akei(k− j )λ
∞∑

n=−∞
e−i(n+k− j )λρY (n + k − j)

= σ 2
Y |Ga(e

iλ)|2 fY (λ).

In the case of exponential smoothing, Ga(e
iλ) = (1 − µ)/(1 − µeiλ), so that

fX (λ) =
c(1 − µ)2 fY (λ)

1 − 2µ cos λ+ µ2
, |λ| < π,

where c = σ 2
Y /σ

2
X is a constant chosen to make this a density function.

3. Consider the sequence {Xn} defined by

Xn = Yn − Ŷn = Yn − αYn−1 − βYn−2.

Now Xn is orthogonal to {Yn−k : k ≥ 1}, so that the Xn are uncorrelated random variables with

spectral density function f X (λ) = (2π)−1, λ ∈ (−π,π). By the result of Problem (9.7.2),

σ 2
X fX (λ) = σ 2

Y |1 − αeiλ − βe2iλ|2 fY (λ),

whence

fY (λ) =
σ 2

X/σ
2
Y

2π |1 − αeiλ − βe2iλ|2
, −π < λ < π.

4. Let {X ′
n : n ≥ 1} be the interarrival times of such a process counted from a time at which a

meteorite falls. Then X ′
1, X ′

2, . . . are independent and distributed as X2. Let Y ′
n be the indicator

function of the event {X ′
m = n for some m}. Then

E(YmYm+n) = P(Ym = 1,Ym+n = 1)

= P(Ym+n = 1 | Ym = 1)P(Ym = 1) = P(Y ′
n = 1)α

where α = P(Ym = 1). The autocovariance function of Y is therefore c(n) = α{P(Y ′
n = 1) − α},

n ≥ 0, and Y is stationary.

The spectral density function of Y satisfies

fY (λ) =
1

2π

∞∑

n=−∞
e−inλ c(n)

α(1 − α)
= Re

{
1

πα(1 − α)

∞∑

n=0

einλc(n)−
1

2π

}
.
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Now
∞∑

n=0

einλY ′
n =

∞∑

n=0

eiλT ′
n

where T ′
n = X ′

1 + X ′
2 + · · · + X ′

n ; just check the non-zero terms. Therefore

∞∑

n=0

einλc(n) = αE

{ ∞∑

n=0

eiλT ′
n

}
−

α2

1 − eiλ
=

α

1 − φ(λ)
−

α2

1 − eiλ

when eiλ 6= 1, where φ is the characteristic function of X2. It follows that

fY (λ) =
1

π(1 − α)
Re

{
1

1 − φ(λ)
−

α

1 − eiλ

}
−

1

2π
, |λ| < π.

5. We have that

E
(
cos(nU)

)
=
∫ π

−π

1

2π
cos(nu) du = 0, E

(
cos2(nU)

)
=
∫ π

−π

1

2π
cos2(nu) du = 1

2 ,

for n ≥ 1. Also

E
(
cos(mU) cos(nU)

)
= E

{
1
2

(
cos[(m + n)U ] + cos[(m − n)U ]

)}
= 0

if m 6= n. Hence X is stationary with autocorrelation function ρ(k) = δk0, and spectral density

function f (λ) = (2π)−1 for |λ| < π . Finally

E
{

cos(mU) cos(nU) cos(rU)
}

= 1
2 E
{(

cos[(m + n)U ] + cos[(m − n)U ]
)

cos(rU)
}

= 1
4

{
ρ(m + n − r)+ ρ(m − n − r)

}

which takes different values in the two cases (m, n, r) = (1, 2, 3), (2, 3, 4).

6. (a) The increments of N during any collection of intervals {(ui , vi ) : 1 ≤ i ≤ n} have the same
fdds if all the intervals are shifted by the same constant. Therefore X is strongly stationary. Certainly
E(X (t)) = λα for all t , and the autocovariance function is

c(t) = cov
(

X (0), X (t)
)

=
{

0 if t > α,

λ(α − t) if 0 ≤ t ≤ α.

Therefore the autocorrelation function is

ρ(t) =
{

0 if |t | > α,
1 − |t/α| if |t | ≤ α,

which we recognize as the characteristic function of the spectral density f (λ) = {1−cos(αλ)}/(απλ2);
see Problems (5.12.27b, 28a).

(b) We have that E(X (t)) = 0; furthermore, for s ≤ t , the correlation of X (s) and X (t) is

1

σ 2
cov
(

X (s), X (t)
)

=
1

σ 2
cov
(
W (s)− W (s − 1),W (t)− W (t − 1)

)

= s − min{s, t − 1} − (s − 1)+ (s − 1)

=
{

1 if s ≤ t − 1,

s − t + 1 if t − 1 < s ≤ t.
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This depends on t − s only, and therefore X is stationary; X is Gaussian and therefore strongly
stationary also.

The autocorrelation function is

ρ(h) =
{

0 if |h| ≥ 1,

1 − |h| if |h| < 1,

which we recognize as the characteristic function of the density function f (λ) = (1 − cos λ)/(πλ2).

7. We have from Problem (8.10.1) that the general moving-average process of part (b) is stationary
with autocovariance function c(k) =

∑r
j=0 αjαk+ j , k ≥ 0, with the convention that αs = 0 if s < 0

or s > r .

(a) In this case, the autocorrelation function is

ρ(k) =





1 if k = 0,
α

1 + α2
if |k| = 1,

0 if |k| > 1,

whence the spectral density function is

f (λ) =
1

2π

(
ρ(0) + eiλρ(1)+ e−iλρ(−1)

)
=

1

2π

(
1 +

2α cos λ

1 + α2

)
, |λ| < π.

(b) We have that

f (λ) =
1

2π

∞∑

k=−∞
e−ikλρ(k) =

1

2πc(0)

∑

j

αj ei jλ
∑

k

αk+ j e−i(k+ j )λ =
|A(eiλ)|2

2πc(0)

where c(0) =
∑

j α
2
j and A(z) =

∑
j αj z j . See Problem (9.7.2) also.

8. The spectral density function f is given by the inversion theorem (5.9.1) as

f (x) =
1

2π

∫ ∞

−∞
e−it xρ(t) dt

under the condition
∫∞

0 |ρ(t)| dt < ∞; see Problem (5.12.20). Now

| f (x)| ≤
1

2π

∫ ∞

−∞
|ρ(t)| dt

and

| f (x + h)− f (x)| ≤
1

2π

∫ ∞

−∞
|eith − 1| · |ρ(t)| dt.

The integrand is dominated by the integrable function 2|ρ(t)|. Using the dominated convergence
theorem, we deduce that | f (x + h)− f (x)| → 0 as h → 0, uniformly in x .

9. By Exercise (9.5.2), var
(
n−1∑n

j=1 X j

)
→ σ 2 if Cn = n−1∑n

j=1 cov(X1, X j ) → σ 2. If

cov(X1, Xn) → 0 then Cn → 0, and the result follows.

10. Let X1, X2, . . . be independent identically distributed random variables with mean µ. The se-

quence X is stationary, and it is a consequence of the ergodic theorem that n−1∑n
j=1 X j → Z a.s.
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and in mean, where Z is a tail function of X1, X2, . . . with mean µ. Using the zero–one law, Z is a.s.
constant, and therefore P(Z = µ) = 1.

11. We have from the ergodic theorem that n−1∑n
i=1 Yi → E(Y | I) a.s. and in mean, where I is

the σ -field of invariant events. The condition of the question is therefore

(∗) E(Y | I) = E(Y ) a.s., for all appropriate Y.

Suppose (∗) holds. Pick A ∈ I, and set Y = IA to obtain IA = Q(A) a.s. Now IA takes the values 0
and 1, so that Q(A) equals 0 or 1, implying that Q is ergodic. Conversely, suppose Q is ergodic. Then
E(Y | I) is measurable on a trivial σ -field, and therefore equals E(Y ) a.s.

12. Suppose Q is strongly mixing. If A is an invariant event then A = τ−n A. Therefore Q(A) =
Q(A ∩ τ−n A) → Q(A)2 as n → ∞, implying that Q(A) equals 0 or 1, and therefore Q is ergodic.

13. The vector X = (X1, X2, . . .) induces a probability measure Q on (RT ,BT ). Since T is measure-

preserving, Q is stationary. Let Y : RT → R be given by Y (x) = x1 for x = (x1, x2, . . .), and define

Yi (x) = Y (τ i−1(x)) where τ is the usual shift operator on RT . The vector Y = (Y1,Y2, . . .) has the

same distributions as the vector X. By the ergodic theorem for Y, n−1∑n
i=1 Yi → E(Y | J) a.s. and

in mean, where J is the invariant σ -field of τ . It follows that the limit

(∗) Z = lim
n→∞

1

n

n∑

i=1

X i

exists a.s. and in mean. Now U = lim supn→∞
(
n−1∑n

1 X i

)
is invariant, since

1

n

{ n∑

i=1

(
X i (ω)− X i (Tω)

)}
=

1

n

{
X (ω)− X (T nω)

}
→ 0 a.s.,

implying that U(ω) = U(Tω) a.s. It follows that U is I-measurable, and it is the case that Z = U

a.s. Take conditional expectations of (∗), given I, to obtain U = E(X | I) a.s.

If T is ergodic, then I is trivial, so that E(X | I) is a.s. constant; therefore E(X | I) = E(X) a.s.

14. (a) For (a, b) ⊆ [0, 1), we have T −1(a, b) = ( 1
2 a, 1

2 b) ∪ ( 1
2 + 1

2 a, 1
2 + 1

2 b), and therefore T is
measurable. Secondly,

P
(
T −1(a, b)

)
= 2( 1

2 b − 1
2 a) = b − a = P

(
(a, b)

)
,

so that T −1 preserves the measure of intervals. The intervals generate B, and it is then standard that

T −1 preserves the measures of all events.

(b) Let A be invariant, in that A = T −1 A. Let 0 ≤ ω < 1
2 ; it is easily seen that T (ω) = T (ω + 1

2 ).

Therefore ω ∈ A if and only if ω + 1
2 ∈ A, implying that A ∩ [ 1

2 , 1) = 1
2 +

{
A ∩ [0, 1

2 )
}

; hence

P(A ∩ E) = 1
2 P(A) = P(A)P(E) for E = [0, 1

2 ), [ 1
2 , 1).

This proves that A is independent of both [0, 1
2 ) and [ 1

2 , 1). A similar proof gives that A is independent

of any set E which is, for some n, the union of intervals of the form [k2−n , (k+1)2−n ) for 0 ≤ k < 2n .
It is a fundamental result of measure theory that there exists a sequence E1, E2, . . . of events such that

(i) En is of the above form, for each n,

(ii) P(A △ En) → 0 as n → ∞.
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Choosing the En accordingly, it follows that

P(A ∩ En) = P(A)P(En) → P(A)2 by independence,

|P(A ∩ En)− P(A)| ≤ P(A △ En) → 0.

Therefore P(A) = P(A)2 so that P(A) equals 0 or 1.

For ω ∈ �, expand ω in base 2, ω = 0.ω1ω2 · · · , and define Y (ω) = ω1. It is easily seen that

Y (T n−1ω) = ωn , whence the ergodic theorem (Problem (9.7.13)) yields that n−1∑n
i=1 ωi → 1

2 as
n → ∞ for all ω in some event of probability 1.

(c) By part (b), the set N of numbers in (0, 1) with the given property (the set of ‘normal numbers’)
has Lebesgue measure 1. The random variable Y ′ = Y · I (Y ∈ N) has the same distribution as Y ,
and a.s. takes values in N .

(d) One may check from the definition that Z is a random variable. It cannot be continuous since, by
the law of large numbers, it does not satisfy (c) above. It cannot be discrete, since there is no countable
set in which it takes values with probability 1. There is a general result due to Lebesgue that every
distribution function can be expressed as a convex combination of three distribution functions, one
continuous, one discrete, and one ‘singular’. By the above, Z has a distribution with a non-trivial
singular component.

The random variable Z is in fact purely singular, in that P(Z = z) = 0 for z ∈ [0, 1], and there
exists an uncountable set Np with Lebesgue measure 0 such that P(Z ∈ Np) = 1. The first claim
is elementary. For the second, the argument is simple. For π ∈ [0, 1], let Sπ be the set of binary
sequences such that the average of the first n terms converges to π as n → ∞, and let Nπ be the
corresponding subset of [0, 1]. By part (b), N1/2 has Lebesgue measure 1. By the strong law of large
numbers, we have P(Z ∈ Np) = 1. However, Np ∩ N1/2 = ∅, whence Np has Lebesgue measure 0.

15. We may as well assume that 0 < α < 1. Let T : [0, 1) → [0, 1) be given by T (x) = x + α

(mod 1). It is easily seen that T is invertible and measure-preserving. Furthermore T (X) is uniform
on [0, 1], and it follows that the sequence Z1, Z2, . . . has the same fdds as Z2, Z3, . . . , which is to
say that Z is stationary. It therefore suffices to prove that T is an ergodic shift, since this will imply
by the ergodic theorem that

1

n

n∑

j=1

Z j → E(Z1) =
∫ 1

0
g(u) du.

We use Fourier analysis. Let A be an invariant subset of [0, 1). The indicator function of A has
a Fourier series:

(∗) IA(x) ∼
∞∑

n=−∞
anen(x)

where en(x) = e2π inx and

an =
1

2π

∫ 1

0
IA(x)e−n(x) dx =

1

2π

∫

A
e−n(x) dx .

Similarly the indicator function of T −1 A has a Fourier series,

IT −1 A(x) ∼
∑

n

bnen(x)

where, using the substitution y = T (x),

bn =
1

2π

∫ 1

0
I
T −1 A

(x)e−n(x) dx =
1

2π

∫ 1

0
IA(y)e−n(T

−1(y)) dy = ane−2π inα ,
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since em(y − α) = e−2π imαem(y). Therefore IT −1 A has Fourier series

IT −1 A(x) ∼
∑

n

e−2π inαanen(x).

Now IA = IT −1 A since A is invariant. We compare the previous formula with that of (∗), and deduce

that an = e−2π inαan for all n. Since α is irrational, it follows that an = 0 if n 6= 0, and therefore IA

has Fourier series a0, a constant. Therefore IA is a.s. constant, which is to say that either P(A) = 0
or P(A) = 1.

16. Let G t (z) = E(z X (t)), the probability generating function of X (t). Since X has stationary
independent increments, for any n (≥ 1), X (t) may be expressed as the sum

X (t) =
n∑

i=1

{
X (i t/n)− X ((i − 1)t/n)

}

of independent identically distributed variables. Hence X (t) is infinitely divisible. By Problem
(5.12.13), we may write

(∗) G t (z) = e−λ(t)(1−A(z))

for some probability generating function A, and some λ(t).

Similarly, X (s + t) = X (s)+{X (s + t)− X (s)}, whence Gs+t(z) = Gs(z)G t (z), implying that

G t (z) = eµ(z)t for some µ(z); we have used a little monotonicity here. Combining this with (∗), we

obtain that G t (z) = e−λt (1−A(z)) for some λ.

Finally, X (t) has jumps of unit magnitude only, whence the probability generating function A is
given by A(z) = z.

17. (a) We have that

(∗) X (t) − X (0) =
{

X (s)− X (0)
}

+
{

X (t)− X (s)
}
, 0 ≤ s ≤ t,

whence, by stationarity,

{
m(t)− m(0)

}
=
{

m(s)− m(0)
}

+
{

m(t − s)− m(0)
}
.

Now m is continuous, so that m(t)− m(0) = βt , t ≥ 0, for some β; see Problem (4.14.5).

(b) Take variances of (∗) to obtain v(t) = v(s)+ v(t − s), 0 ≤ s ≤ t , whence v(t) = σ 2t for some

σ 2.

18. In the context of this chapter, a process Z is a standard Wiener process if it is Gaussian with
Z(0) = 0, with zero means, and autocovariance function c(s, t) = min{s, t}.
(a) Z(t) = αW (t/α2) satisfies Z(0) = 0, E(Z(t)) = 0, and

cov
(

Z(s), Z(t)
)

= α2 min{s/α2, t/α2} = min{s, t}.

(b) The only calculation of any interest here is

cov
(
W (s + α)−W (α),W (t + α)− W (α)

)

= c(s + α, t + α)− c(α, t + α)− c(s + α, α)+ c(α, α)

= (s + α)− α − α + α = s, s ≤ t.
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(c) V (0) = 0, and E(V (t)) = 0. Finally, if s, t > 0,

cov
(
V (s), V (t)

)
= stcov

(
W (1/s),W (1/t)

)
= st min{1/s, 1/t} = min{t, s}.

(d) Z(t) = W (1)− W (1 − t) satisfies Z(0) = 0, E(Z(t)) = 0. Also Z is Gaussian, and

cov
(

Z(s), Z(t)
)

= 1 − (1 − s)− (1 − t)+ min{1 − s, 1 − t}
= min{s, t}, 0 ≤ s, t ≤ 1.

19. The process W has stationary independent increments, and G(t) = E(|W (t)|2) satisfies G(t) =
t → 0 as t → 0; hence

∫∞
0 φ(u) dW (u) is well defined for any φ satisfying

∫ ∞

0
|φ(u)|2 dG(u) =

∫ ∞

0
φ(u)2 du < ∞.

It is obvious that φ(u) = I[0,t ](u) and φ(u) = e−(t−u)I[0,t ](u) are such functions.

Now X (t) is the limit (in mean-square) of the sequence

Sn(t) =
n−1∑

j=0

{
W (( j + 1)t/n)− W ( j t/n)

}
, n ≥ 1.

However Sn(t) = W (t) for all n, and therefore Sn(t)
m.s.−−→ W (t) as n → ∞.

Finally, Y (s) is the limit (in mean-square) of a sequence of normal random variables with mean
0, and therefore is Gaussian with mean 0. If s < t ,

cov
(
Y (s),Y (t)

)
=
∫ ∞

0

(
e−(s−u) I[0,s](u)

)(
e−(t−u) I[0,t ](u)

)
dG(u)

=
∫ s

0
e2u−s−t du = 1

2 (e
s−t − e−s−t ).

Y is an Ornstein–Uhlenbeck process.

20. (a) W (t) is N(0, t), so that

E|W (t)| =
∫ ∞

−∞

|u|
√

2π t
e
− 1

2 (u
2/t)

du =
√

2t/π,

var(|W (t)|) = E(W (t)2)−
2t

π
= t

(
1 −

2

π

)
.

The process X is never negative, and therefore it is not Gaussian. It is Markov since, if s < t and
B is an event defined in terms of {X (u) : u ≤ s}, then the conditional distribution function of X (t)

satisfies

P
(

X (t) ≤ y
∣∣ X (s) = x, B

)
= P

(
X (t) ≤ y

∣∣W (s) = x, B
)
P
(
W (s) = x

∣∣ X (s) = x, B
)

+ P
(

X (t) ≤ y
∣∣W (s) = −x, B

)
P
(
W (s) = −x

∣∣ X (s) = x, B
)

= 1
2

{
P
(

X (t) ≤ y
∣∣W (s) = x

)
+ P

(
X (t) ≤ y

∣∣W (s) = −x
)}
,

which does not depend on B.
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(b) Certainly,

E(Y (t)) =
∫ ∞

−∞

eu

√
2π t

e
− 1

2
(u2/t)

du = e
1
2

t
.

Secondly, W (s)+ W (t) = 2W (s)+ {W (t)− W (s)} is N(0, 3s + t) if s < t , implying that

E
(
Y (s)Y (t)

)
= E

(
eW (s)+W (t)

)
= e

1
2 (3s+t)

,

and therefore

cov
(
Y (s),Y (t)

)
= e

1
2
(3s+t) − e

1
2
(s+t)

, s < t.

W (1) is N(0, 1), and therefore Y (1) has the log-normal distribution. Therefore Y is not Gaussian.
It is Markov since W is Markov, and Y (t) is a one–one function of W (t).

(c) We shall assume that the random function W is a.s. continuous, a point to which we return in
Chapter 13. Certainly,

E(Z(t)) =
∫ t

0
E(W (u)) du = 0,

E
(

Z(s)Z(t)
)

=
∫∫

0≤u≤s
0≤v≤t

E
(
W (u)W (v)

)
du dv

=
∫ s

u=0

{∫ u

v=0
v dv +

∫ t

v=u
u dv

}
du = 1

6 s2(3t − s), s < t,

since E(W (u)W (v)) = min{u, v}.
(d) The process Z is Gaussian, as the following argument indicates. The single random variable Z(t)

may be expressed as a limit of the form

(∗) lim
n→∞

n∑

i=1

(
t

n

)
W (i t/n),

each such summation being normal. The limit of normal variables is normal (see Problem (7.11.19)),
and therefore Z(t) is normal. The limit in (∗) exists a.s., and hence in probability. By an appeal to
(7.11.19b), pairs (Z(s), Z(t)) are bivariate normal, and a similar argument is valid for all n-tuples of
the Z(u). See the related Exercise (8.6.6).

On the other hand, Z is not Markov. An increment Z(t) − Z(s) depends very much on W (s),
and the collection {Z(u) : u ≤ s} contains much information about W (s) in excess of the information
contained in the single value Z(s).

(e) Since Z(t) is normal with zero mean, its odd moments are zero. For n = 2,

E(Z(t)2) = E

(∫ t

0
W (x) dx

∫ t

0
W (y) dy

)
=
∫∫

(0,t)2
E(W (x)W (y)) dx dy

=
∫∫

(0,t)2
min{x, y}dx dy = 2

∫ t

0
dx

∫ x

0
y dy = 1

3 t3.

Hence E(eθ Z(t)) = exp
(

1
6θ

2t3
)
, and the coefficient of θ2r is the (2r)th moment, namely

E(Z(t)2r ) = (2r − 1)(2r − 3) · · · 1 · ( 1
3 t3)r =

(2r)!

2r r !
· ( 1

3 t3)r .
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21. Let Ui = X (ti ). The random variables A = U1, B = U2 − U1, C = U3 − U2, D = U4 − U3
are independent and normal with zero means and respective variances t1, t2 − t1, t3 − t2, t4 − t3. The
Jacobian of the transformation is 1, and it follows that U1,U2,U3,U4 have joint density function

fU(u) =
e
− 1

2
Q

(2π)2
√

t1(t2 − t1)(t3 − t2)(t4 − t3)

where

Q =
u2

1

t1
+
(u2 − u1)

2

t2 − t1
+
(u3 − u2)

2

t3 − t2
+
(u4 − u3)

2

t4 − t3
.

Likewise U1 and U4 have joint density function

e
− 1

2 R

2π
√

t1(t4 − t1)
where R =

u2
1

t1
+
(u4 − u1)

2

t4 − t1
.

Hence the joint density function of U2 and U3, given U1 = U4 = 0, is

g(u2, u3) =
e
− 1

2 S

2π

√
t4 − t1

(t2 − t1)(t3 − t2)(t4 − t3)

where

S =
u2

2

t2 − t1
+
(u3 − u2)

2

t3 − t2
+

u2
3

t4 − t3
.

Now g is the density function of a bivariate normal distribution with zero means, marginal variances

σ 2
1 =

(t2 − t1)(t3 − t2)

t3 − t1
, σ 2

2 =
(t4 − t3)(t3 − t2)

t4 − t2

and correlation

ρ =
σ1σ2

t3 − t2
=

√
(t4 − t3)(t2 − t1)

(t4 − t2)(t3 − t1)
.

See also Exercise (8.5.2).

22. (a) The random variables {Ij (x) : 1 ≤ j ≤ n} are independent, so that

E(Fn(x)) = x, var(Fn(x)) =
1

n
var(I1(x)) =

x(1 − x)

n
.

By the central limit theorem,
√

n{Fn(x)− x} D−→ Y (x), where Y (x) is N(0, x(1 − x)).

(b) The limit distribution is multivariate normal. There are general methods for showing this, and
here is a sketch. If 0 ≤ x1 < x2 ≤ 1, then the number M2 (= nF(x2)) of the Ij not greater than
x2 is approximately N(nx2, nx2(1 − x2)). Conditional on {M2 = m}, the number M1 = nF(x1)

is approximately N(mu,mu(1 − u)) where u = x1/x2. It is now a small exercise to see that the
pair (M1, M2) is approximately bivariate normal with means nx1, nx2, with variances nx1(1 − x1),
nx2(1 − x2), and such that

E(M1 M2) = E
{

M2E(M1 | M2)
}

= E(M2
2 x1/x2) ∼ nx1(1 − x2)+ n2x1x2,

whence cov(M1,M2) ∼ nx1(1 − x2). It follows similarly that the limit of the general collection is
multivariate normal with mean 0, variances xi (1 − xi ), and covariances ci j = xi (1 − xj ).
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[9.7.23]–[9.7.23] Solutions Stationary processes

(c) The autocovariance function of the limit distribution is c(s, t) = min{s, t} − st , whereas, for
0 ≤ s ≤ t ≤ 1, we have that cov(Z(s), Z(t)) = s − ts − st + st = min{s, t} − st . It may be shown
that the limit of the process

{√
n
(

Fn(x)− x
)

: n ≥ 1
}

exists as n → ∞, in a certain sense, the limit
being a Brownian bridge; such a limit theorem for processes is called a ‘functional limit theorem’.

23. (a) The claim holds evidently when n = 1 and r = 0, 1. Suppose it holds for n = N − 1 and
r = 0, 1, 2, . . . , N − 1. Then, with Ar = {Xr = xr },

P(A1 ∩ · · · ∩ AN ) = P(AN | A1 ∩ · · · ∩ AN−1)P(A1 ∩ · · · ∩ AN−1)

= pN,s (xN ) ·
s! (N − 1 − s)!

N !
,

where s =
∑N−1

k=1 Xk , and

pN,s (x) =





N − s

N + 1
if x = 0,

s + 1

N + 1
if x = 1,

as required.

(b) Since the answer in (a) depends only on r and N , the sequence X1, X2, . . . , X N is exchangeable .
(See Exercise (7.3.4) for a definition of an exchangeable event; a sequence is said to be exchangeable

if its joint distribution is invariant under permutations of the indices.) It is then automatic that the
sequence X is stationary, and the convergence follows by the ergodic theorem, on noting that the X i

are bounded.

To see that exchangeability implies stationarity, one argues as follows. Stationarity is equivalent
to: for n ≥ 1, the distribution of (X1, X2, . . . , Xn) is the same as that of (X2, X3, . . . , Xn+1). This
is a consequence of exchangeability by an evident permutation of the indices 1, 2, . . . , n + 1.

(c) By the result of (a), Sn =
∑n

r=1 Xr satisfies

P(Sn = m) =
(

n

m

)
·

m! (n − m)!

(n + 1)!
=

1

n + 1
,

so that R = limn→∞ Sn/n is uniformly distributed on (0, 1).
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10

Renewals

10.1 Solutions. The renewal equation

1. Since E(X1) > 0, there exists ǫ (> 0) such that P(X1 ≥ ǫ) > ǫ. Let X ′
k = ǫ I{Xk≥ǫ}, and denote

by N ′ the related renewal process. Now N(t) ≤ N ′(t), so that E(eθN(t)) ≤ E(eθN ′(t)), for θ > 0.
Let Zm be the number of renewals (in N ′) between the times at which N ′ reaches the values (m − 1)ǫ
and mǫ. The Z’s are independent with

E(eθ Zm ) =
ǫeθ

1 − (1 − ǫ)eθ
, if (1 − ǫ)eθ < 1,

whence E(eθN ′(t)) ≤
(
ǫeθ
{

1 − (1 − ǫ)eθ
}−1)t/ǫ

for sufficiently small positive θ .

2. Let X1 be the time of the first arrival. If X1 > s, then W = s. On the other hand if X1 < s, then
the process starts off afresh at the new starting time X1. Therefore, by conditioning on the value of
X1,

FW (x) =
∫ ∞

0
P(W ≤ x | X1 = u) d F(u) =

∫ s

0
P(W ≤ x − u) d F(u)+

∫ ∞

s
1 · d F(u)

=
∫ s

0
P(W ≤ x − u) d F(u)+ {1 − F(s)}

if x ≥ s. It is clear that FW (x) = 0 if x < s. This integral equation for FW may be written in the
standard form

FW (x) = H(x)+
∫ x

0
FW (x − u) d F̂(u)

where H and F̂ are given by

H(x) =
{

0 if x < s,

1 − F(s) if x ≥ s,
F̂(x) =

{
F(x) if x < s,

F(s) if x ≥ s.

This renewal-type equation may be solved in the usual way by the method of Laplace–Stieltjes trans-

forms. We have that F∗
W = H∗ + F∗

W F̂∗, whence F∗
W = H∗/(1 − F̂∗). If N is a Poisson process

then F(x) = 1 − e−λx . In this case

H∗(θ) =
∫ ∞

0
e−θx d H(x) = e−(λ+θ)s,

since H is constant apart from a jump at x = s. Similarly

F̂∗(θ) =
∫ s

0
e−θx d F(x) =

λ

λ+ θ

(
1 − e−(λ+θ)s),



[10.1.3]–[10.1.7] Solutions Renewals

so that

F∗
W (θ) =

(λ+ θ)e−(λ+θ)s

θ + λe−(λ+θ)s .

Finally, replace θ with −θ , and differentiate to find the mean.

3. We have as usual that P(N(t) = n) = P(Sn ≤ t)− P(Sn+1 ≤ t). In the respective cases,

P(N(t) = n) =
⌊t⌋∑

r=0

1

r !

{
e−λn(λn)r − e−λ(n+1)[λ(n + 1)]r

}
,(a)

P(N(t) = n) =
∫ t

0

{
λnbxnb−1

Ŵ(nb)
−
λ(n+1)bx (n+1)b−1

Ŵ((n + 1)b)

}
e−λx dx .(b)

4. By conditioning on X1, m(t) = E(N(t)) satisfies

m(t) =
∫ t

0

(
1 + m(t − x)

)
dx = t +

∫ t

0
m(x) dx, 0 ≤ t ≤ 1.

Hence m′ = 1 + m, with solution m(t) = et − 1, for 0 ≤ t ≤ 1. (For larger values of t , m(t) =
1 +

∫ 1
0 m(t − x) dx , and a tiresome iteration is in principle possible.)

With v(t) = E(N(t)2),

v(t) =
∫ t

0

[
v(t − x)+ 2m(t − x)+ 1

]
dx = t + 2(et − t − 1)+

∫ t

0
v(x) dx, 0 ≤ t ≤ 1.

Hence v′ = v + 2et − 1, with solution v(t) = 1 − et + 2tet for 0 ≤ t ≤ 1.

5. By conditioning on the last arrival time,

P(X N+1 > x | SN = t − y) =





1 if y ≥ x,

P(X1 > x | X1 > y) =
1 − F(x)

1 − F(y)
if y ≤ x,

where N = N(t). Thus,

P(X N+1 > x) ≥ 1 − F(x) = P(X1 > x), x ≥ 0.

6. We have m(t) =
∑∞

k=1 Fk (t), where Fk is the distribution function of the kth arrival time Sk .
Now,

F̂k(θ) =
∫ ∞

0
e−θ t Fk(t) dt =

1

θ

∫ ∞

0
e−θ t fSk

(t) dt =
1

θ
f̂ (θ)k ,

so that

m̂(θ) =
∞∑

k=0

F̂k(θ) =
1

θ

∞∑

k=1

f̂ (θ)k ,

with the given sum for θ > 0.

7. This follows by taking Laplace–Stieltjes transforms of the equation for r , and recalling the basic
properties of such transforms (see Appendix I).
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Limit theorems Solutions [10.2.1]–[10.2.4]

10.2 Solutions. Limit theorems

1. Let Zi be the number of passengers in the i th plane, and assume that the Zi are independent
of each other and of the arrival process. The number of passengers who have arrived by time t is

S(t) =
∑N(t)

i=1 Zi . Now

1

t
S(t) =

N(t)

t
·

S(t)

N(t)
→

E(Z1)

µ
a.s.

by the law of the large numbers, since N(t)/t → 1/µ a.s., and N(t) → ∞ a.s.

2. We have that

E(T 2
M ) = E

{( ∞∑

i=1

Zi I{M≥i}

)2
}

=
∞∑

i=1

E
(

Z2
i I{M≥i}

)
+ 2

∑

1≤i< j<∞
E
(

Zi Z j I{M≥ j }
)

since I{M≥i} I{M≥ j } = I{M≥i∨ j }, where i ∨ j = max{i, j}. Now

E
(

Z2
i I{M≥i}

)
= E

(
Z2

i I{M≤i−1}c
)

= E(Z2
i )P(M ≥ i ),

since {M ≤ i − 1} is defined in terms of Z1, Z2, . . . , Zi−1, and is therefore independent of Zi .
Similarly E(Zi Z j I{M≥ j }) = E(Z j )E(Zi I{M≥ j }) = 0 if i < j . It follows that

E(T 2
M ) =

∞∑

i=1

E(Z2
i )P(M ≥ i ) = σ 2

∞∑

i=1

P(M ≥ i ) = σ 2E(M).

3. (i) The shortest way is to observe that N(t) + k is a stopping time if k ≥ 1. Alternatively, we
have by Wald’s equation that E(TN(t)+1) = µ(m(t) + 1). Also

E(X N(t)+k ) = E
{

E
(

X N(t)+k

∣∣ N(t)
)}

= µ, k ≥ 2,

and therefore, for k ≥ 1,

E(TN(t)+k ) = E(TN(t)+1)+
k∑

j=2

E(X N(t)+ j ) = µ
(
m(t)+ k

)
.

(ii) Suppose p 6= 1 and

P(X1 = a) =
{

p if a = 1,

1 − p if a = 2.

Then µ = 2 − p 6= 1. Also

E(TN(1)) = (1 − p)E(T0 | N(1) = 0)+ pE(T1 | N(1) = 1) = p,

whereas m(1) = p. Therefore E(TN(1)) 6= µm(1).

4. Let V (t) = N(t) + 1, and let W1,W2, . . . be defined inductively as follows. W1 = V (1), W2 is
obtained similarly to W1 but relative to the renewal process starting at the V (1)th renewal, i.e. at time
TN(1)+1, and Wn is obtained similarly:

Wn = N(TXn−1
+ 1)− N(TXn−1

)+ 1, n ≥ 2,
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[10.2.5]–[10.3.2] Solutions Renewals

where Xm = W1+W2+· · ·+Wm . For each n, Wn is independent of the sequence W1,W2, . . . ,Wn−1,
and therefore the Wn are independent copies of V (1). It is easily seen, by measuring the time-intervals

covered, that V (t) ≤
∑⌈t⌉

i=1 Wi , and hence

1

t
V (t) ≤

1

t

⌈t⌉∑

i=1

Wi → E(V (1)) a.s. and in mean, as t → ∞.

It follows that the family
{

m−1∑m
i=1 Wi : m ≥ 1

}
is uniformly integrable (see Theorem (7.10.3)).

Now N(t) ≤ V (t), and so {N(t)/t : t ≥ 0} is uniformly integrable also.

Since N(t)/t
a.s.−−→ µ−1, it follows by uniform integrability that there is also convergence in mean.

5. (a) Using the fact that P(N(t) = k) = P(Sk ≤ t)− P(Sk+1 ≤ t), we find that

E(s N(T )) =
∫ ∞

0

( ∞∑

k=0

skP
(

N(t) = k
))
νe−νt dt

=
∞∑

k=0

sk

{∫ ∞

0

[
P(Sk ≤ t)− P(Sk+1 ≤ t)

]
νe−νt dt

}
.

By integration by parts,
∫∞

0 P(Sk ≤ t)νe−νt dt = M(−ν)k for k ≥ 0. Therefore,

E(s N(T )) =
∞∑

k=0

sk
{

M(−ν)k − M(−ν)k+1
}

=
1 − M(−ν)
1 − s M(−ν)

.

(b) In this case, E(s N(T )) = E(eλT (s−1)) = MT (λ(s−1)). When T has the given gamma distribution,

MT (θ) = {ν/(ν − θ)}b, and

E(s N(T )) =
(

ν

ν + λ

)b (
1 −

λs

ν + λ

)b

.

The coefficient of sk may be found by use of the binomial theorem.

10.3 Solutions. Excess life

1. Let g(y) = P(E(t) > y), assumed not to depend on t . By the integral equation for the distribution
of E(t),

g(y) = 1 − F(t + y)+ g(y)

∫ t

0
d F(x).

Write h(x) = 1 − F(x) to obtain g(y)h(t) = h(t + y), for y, t ≥ 0. With t = 0, we have that
g(y)h(0) = h(y), whence g(y) = h(y)/h(0) satisfies g(t + y) = g(t)g(y), for y, t ≥ 0. Now g is

left-continuous, and we deduce as usual that g(t) = e−λt for some λ. Hence F(t) = 1 − e−λt , and
the renewal process is a Poisson process.

2. (a) Examine a sample path of E . If E(t) = x , then the sample path decreases (with slope −1)
until it reaches the value 0, at which point it jumps to a height X , where X is the next interarrival time.
Since X is independent of all previous interarrival times, the process is Markovian.

(b) In contrast, C has sample paths which increase (with slope 1) until a renewal occurs, at which they
drop to 0. If C(s) = x and, in addition, we know the entire history of the process up to time s, the
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time of the next renewal depends only on the length of the spent period (i.e. x) of the interarrival time
in process. Hence C is Markovian.

3. (a) We have that

(∗) P
(

E(t) ≤ y
)

= F(t + y)−
∫ t

0
G(t + y − x) dm(x)

where G(u) = 1− F(u). Check the conditions of the key renewal theorem (10.2.7): g(t) = G(t + y)

satisfies:

(i) g(t) ≥ 0,

(ii)
∫∞

0 g(t) dt ≤
∫∞

0 [1 − F(u)] du = E(X1) < ∞,

(iii) g is non-increasing.

We conclude, by that theorem, that

lim
t→∞

P
(

E(t) ≤ y
)

= 1 −
1

µ

∫ ∞

0
g(x) dx =

∫ y

0

1

µ
[1 − F(x)] dx .

(b) Integrating by parts,

∫ ∞

0

xr

µ
[1 − F(x)] dx =

1

µ

∫ ∞

0

xr+1

r + 1
d F(x) =

E(Xr+1
1 )

µ(r + 1)
.

See Exercise (4.3.3).

(c) As in Exercise (4.3.3), we have that E(E(t)r ) =
∫∞

0 r yr−1P(E(t) > y) dy, implying by (∗) that

E(E(t)r ) = E
(
{(X1 − t)+}r

)
+
∫ ∞

y=0

∫ t

x=0
r yr−1P(X1 > t + y − x) dm(x) dy,

whence the given integral equation is valid with

h(u) =
∫ ∞

0
r yr−1P(X1 > u + y) dy = E

(
{(X1 − u)+}r

)
.

Now h satisfies the conditions of the key renewal theorem, whence

lim
t→∞

E(E(t)r ) =
1

µ

∫ ∞

0
h(u) du =

1

µ

∫∫

0<u,y<∞
yrd F(u + y) du

=
1

µ

∫ ∞

0
yr P(X1 > y) dy =

E(Xr+1
1 )

µ(r + 1)
.

4. We have that

P
(
E(t) > y

∣∣C(t) = x
)

= P(X1 > y + x | X1 > x) =
1 − F(y + x)

1 − F(x)
,

whence

E
(

E(t)
∣∣C(t) = x

)
=
∫ ∞

0

1 − F(y + x)

1 − F(x)
dy =

E{(X1 − x)+}
1 − F(x)

.

5. (a) Apply Exercise (10.2.2) to the sequence X i −µ, 1 ≤ i < ∞, to obtain var(TM(t)−µM(t)) =
σ 2E(M(t)).
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(b) Clearly TM(t) = t + E(t), where E is excess lifetime, and hence µM(t) = (t + E(t))− (TM(t)−
µM(t)), implying in turn that

(∗) µ2 var(M(t)) = var(E(t)) + var(SM(t))− 2cov
(

E(t), SM(t)

)
,

where SM(t) = TM(t) − µM(t). Now

var(E(t)) ≤ E(E(t)2) →
E(X3

1)

3µ
as t → ∞

if E(X3
1) < ∞ (see Exercise (10.3.3c)), implying that

(∗∗)
1

t
var(E(t)) → 0 as t → ∞.

This is valid under the weaker assumption that E(X2
1) < ∞, as the following argument shows. By

Exercise (10.3.3c),

E(E(t)2) = α(t)+
∫ t

0
α(t − u) dm(u),

where α(u) = E({(X1 − u)+}2). Now use the key renewal theorem together with the fact that

α(t) ≤ E(X2
1 I{X1>t}) → 0 as t → ∞.

Using the Cauchy–Schwarz inequality,

1

t

∣∣cov
(

E(t), SM(t)

)∣∣ ≤ 1

t

√
var(E(t)) var(SM(t)) → 0

as t → ∞, by part (a) and (∗∗). Returning to (∗), we have that

µ2

t
var(M(t)) → lim

t→∞

{
σ 2

t

(
m(t)+ 1

)
}

=
σ 2

µ
.

10.4 Solutions. Applications

1. Visualize a renewal as arriving after two stages, type 1 stages being exponential parameter λ and
type 2 stages being exponential parameter µ. The ‘stage’ process is the flip–flop two-state Markov
process of Exercise (6.9.1). With an obvious notation,

p11(t) =
λ

λ+ µ
e−(λ+µ)t +

µ

λ+ µ
.

Hence the excess lifetime distribution is a mixture of the exponential distribution with parameter µ,
and the distribution of the sum of two exponential random variables, thus,

fE(t)(x) = p11(t)g(x)+ (1 − p11(t))µe−µx ,

where g(x) is the density function of a typical interarrival time. By Wald’s equation,

E(t + E(t)) = E(SN(t)+1) = E(X1)E(N(t) + 1) =
(

1

λ
+

1

µ

)
(m(t) + 1).
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Applications Solutions [10.4.2]–[10.4.3]

We substitute

E(E(t)) = p11(t)

(
1

λ
+

1

µ

)
+ (1 − p11(t))

1

µ
=

1

µ
+

p11(t)

λ

to obtain the required expression.

2. (a) Note that the process is stationary, and E(t) ≤ x if and only if C(t + x) < x . By Theorem
(10.4.17), E has density function h, so that C and E have the same densities.

(b) The total life D and current life C satisfy

P(D ≥ y | C = x) = P(X ≥ y | X ≥ x) =
1 − F(y)

1 − F(x)
, y ≥ x .

The conditional density function of D follows by differentiation. By (a), the unconditional density
function is

fD(y) =
∫ y

0

f (y)

1 − F(x)
·

1 − F(x)

µ
dx =

y

µ
f (y), y > 0.

(c) We have that

P(U D > x) =
∫ 1

0
P(D > x/u) du =

∫ 1

0

(∫ ∞

x/u

w

µ
f (w) dw

)
du

=
1

µ

∫ ∞

x

(∫ 1

x/w
du

)
w f (w) dw =

1

µ

∫ ∞

x
(w − x) f (w) dw,

and differentiation gives the density as (1 − F(x))/µ as required.

We expect an interarrival interval to include the time t with probability proportional to its length,
so that fD(y) ∝ y f (y), and we expect t to be uniformly distributed over the interval in which it lies.

3. (a) Let T be the time of the earliest renewal in the interval (a, b], with T = ∞ if there is no
arrival in the interval. Since there is no arrival during (a, T ), we have that

N(b) − N(a) ≤
{

1 + N(b + T )− N(a + T ) if T < ∞,

1 if T = ∞.

Now take expectations.

(b) This holds since m(t) < ∞, and limt→∞ m(t)/t is finite.

(c) We couple two renewal processes N and N ′ with renewal functions m and m′. The first process has
interarrival times X1, X2, . . . and the second is a stationary renewal process with interarrival times
Y, X1, X2, . . . where Y has density function g(y) = (1 − F(y))/µ for y > 0. Thus, N ′ is obtained
from N by introducing a renewal at time Y , and then shifting the renewals of N by a time Y . By
Theorem (10.4.17), N ′ is stationary, whence m′(t) = t/µ.

By considering the above coupling of N and N ′, and taking account the two possibilities Y ≤ t

and Y > t , we find that

N ′(t) = N(t) − N
(
t − (Y ∧ t), t

]
+ I (Y ≤ t),

where N(a, b] is the number of renewals of N in the interval (a, b]. Take expectations to obtain

(*) m(t)−
t

µ
= E

(
N(t − Y ∧ t, t]

)
− P(Y ≤ t).

By Blackwell’s renewal theorem (10.2.5),

E
(

N(t − Y ∧ t, t]
∣∣ Y
) a.s.−−→

Y

µ
as t → ∞.
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By part (a),
E
(

N(t − Y ∧ t, t]
∣∣ Y
)

≤ 1 + Z,

where Z = E(N(Y ) | Y ) has mean satisfying E(Z) ≤ A(1 + E(Y )) < ∞ by part (b). We may
therefore apply the dominated convergence theorem to obtain

E
(

N(t − Y ∧ t, t]
)

→
E(Y )

µ
as t → ∞,

and the claim follows from (*) on noting that

E(Y ) =
∫ ∞

0

1

µ
y(1 − F(y) dy =

E(X2
1)

2µ
=
σ 2 + µ2

2µ
.

We note that, in certain other works, the limit in part (c) is stated with σ 2 + µ2 (rather than

σ 2 −µ2) in the numerator. The difference arises because of different conventions over whether t = 0
is counted as a renewal of the process. The reader is reminded that t = 0 is not considered a renewal
in the current work.

10.5 Solutions. Renewal–reward processes

1. Suppose, at time s, you are paid a reward at rate u(X (s)). By Theorem (10.5.10), equation
(10.5.7), and Theorem (6.10.15b),

(∗)
1

t

∫ t

0
I{X (s)= j } ds

a.s.−→
1

µj gj
= πj .

Suppose |u(i )| ≤ K < ∞ for all i ∈ S, and let F be a finite subset of the state space. Then

∣∣∣∣
1

t

∫ t

0
u(X (s)) ds −

∑

i

πi u(i )

∣∣∣∣ =
∣∣∣∣
∑

i

u(i )

(
1

t

∫ t

0
I{X (s)=i} ds − πi

)∣∣∣∣

≤ K
∑

i∈F

∣∣∣∣
1

t

∫ t

0
I{X (s)=i} ds − πi

∣∣∣∣+ K

(
t − Tt (F)

t

)
+ K

∑

i 6∈F

πi ,

where Tt (F) is the total time spent in F up to time t . Take the limit as t → ∞ using (∗), and then as
F ↑ S, to obtain the required result.

2. Suppose you are paid a reward at unit rate during every interarrival time of type X , i.e. at all times
t at which M(t) is even. By the renewal–reward theorem (10.5.1),

1

t

∫ t

0
I{M(s) is even} ds

a.s.−→
E(reward during interarrival time)

E(length of interarrival time)
=

EX1

EX1 + EY1
.

The answer to the question is yes, by the renewal–reward theorem.

3. Suppose, at time t , you are paid a reward at rate C(t). The expected reward during an interval

(cycle) of length X is
∫ X

0 s ds = 1
2 X2, since the age C is the same at the time s into the interval. The

result follows by the renewal–reward theorem (10.5.1) and equation (10.5.7). The same conclusion is

valid for the excess lifetime E(s), the integral in this case being
∫ X

0 (X − s) ds = 1
2 X2.

4. Suppose X0 = j . Let V1 = min{n ≥ 1 : Xn = j, Xm = k for some 1 ≤ m < n}, the first visit
to j subsequent to a visit to k, and let Vr+1 = min{n ≥ Vr : Xn = j, Xm = k for some Vr + 1 ≤
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Renewal–reward processes Solutions [10.5.5]–[10.5.7]

m < n}. The Vr are the times of a renewal process. Suppose a reward of one ecu is paid at every visit
to k. By the renewal–reward theorem and equation (10.5.7),

(∗) πk =
1

E(V1 | X0 = j)
E

(V1−1∑

m=1

I{Xm=k}

)
.

By considering the time of the first visit to k,

E(V1 | X0 = j) = E(Tk | X0 = j)+ E(Tj | X0 = k).

The latter expectation in (∗) is the mean of a random variable N having the geometric distribution

P(N = n) = p(1 − p)n−1 for n ≥ 1, where p = P(Tj < Tk | X0 = k). Since E(N) = p−1, we
deduce as required that

πk =
1/P(Tj < Tk | X0 = k)

E(Tk | X0 = j)+ E(Tj | X0 = k)
.

5. Let the process accumulate a reward 1 each time the current life is no bigger than y, and 0 otherwise.

The expected reward per cycle is
∫ y

0 x f (x) dx , and the expected cycle-length is µ. Therefore,

FD(y) = lim
n→∞

1

n
E

(
n∑

i=1

I (X i ≤ y)

)
=

1

µ

∫ y

0
x f (x) dx .

See the related Exercise (10.4.2b).

6. (a) The required mean is

∫ ∞

0
P(X ∧ d > x) dx =

∫ d

0
e−λx dx =

1

λ
(1 − e−λd).

(b) Let c be the normal cost of a tyre replacement. Under the first option, and assuming four wheels,
and that tyres fail independently of one another, by the Poisson superposition theorem the process of

failures is Poisson with rate 1
2 . The mean long-run cost per unit time is (4c)/2 = 2c.

Under the second option, a new cycle starts at time T = min{X, 2}, where X is the time of the

first failure. By part (a), E(T ) = 2(1 − e−1). The cost is (4c)/20 at time 2 with probability e−1, or

4c(1 + (1/20)) at X < 2 with probability 1 − e−1. The mean long-run cost per unit time is, by the
renewal–reward theorem, (

(1 − e−1)4 + (1/5)

2(1 − e−1)

)
c > 2c,

so choose option 1.

7. By the lack-of-memory property of the exponential distribution, we may take the cycles for
the renewal–reward theorem to be (0,m), (m, 2m), . . . . The proportion of a cycle spent working is
(X ∧ m)/m, where X is exponentially distributed. The uptime-ratio is therefore

E

(
X ∧ m

m

)
=

1

m

∫ m

0
e−λx dx .

One may alternatively take the repair times as regeneration points for cycles. The inter-repair time has

mean m/(1−e−λm), and the mean uptime per cycle is 1/λ, so that the uptime ratio is (1−e−λm)/(λm).
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10.6 Solutions to problems

1. (a) For any n, P(N(t) < n) ≤ P(Tn > t) → 0 as t → ∞.

(b) Either use Exercise (10.1.1), or argue as follows. Since µ > 0, there exists ǫ (> 0) such that
P(X1 > ǫ) > 0. For all n,

P(Tn ≤ nǫ) = 1 − P(Tn > nǫ) ≤ 1 − P(X1 > ǫ)n < 1,

so that, if t > 0, there exists n = n(t) such that P(Tn ≤ t) < 1.

Fix t and let n be chosen accordingly. Any positive integer k may be expressed in the form
k = αn + β where 0 ≤ β < n. Now P(Tk ≤ t) ≤ P(Tn ≤ t)α for αn ≤ k < (α + 1)n, and hence

m(t) =
∞∑

k=1

P(Tk ≤ t) ≤
∞∑

α=0

nP(Tn ≤ t)α < ∞.

(c) It is easiest to use Exercise (10.1.1), which implies the stronger conclusion that the moment
generating function of N(t) is finite in a neighbourhood of the origin.

2. (i) Condition on X1 to obtain

v(t) =
∫ t

0
E
{(

N(t − u)+ 1
)2}

d F(u) =
∫ t

0

{
v(t − u)+ 2m(t − u)+ 1

}
d F(u).

Take Laplace–Stieltjes transforms to find that v∗ = (v∗ + 2m∗ + 1)F∗, where m∗ = F∗ + m∗F∗ as
usual. Therefore v∗ = m∗(1 + 2m∗), which may be inverted to obtain the required integral equation.

(ii) If N is a Poisson process with intensity λ, then m(t) = λt , and therefore v(t) = (λt)2 + λt .

3. Fix x ∈ R. Then

P

(
N(t) − (t/µ)√

tσ 2/µ3
≥ x

)
= P

(
N(t) ≥ (t/µ) + x

√
tσ 2/µ3

)
= P(Ta(t) ≤ t)

where a(t) =
⌊
(t/µ)+ x

√
tσ 2/µ3

⌋
. Now,

P(Ta(t) ≤ t) = P

(
Ta(t) − µa(t)

σ
√

a(t)
≤

t − µa(t)

σ
√

a(t)

)
.

However a(t) ∼ t/µ as t → ∞, and therefore

t − µa(t)

σ
√

a(t)
→ −x as t → ∞,

implying by the usual central limit theorem that

P

(
N(t) − (t/µ)√

tσ 2/µ3
≥ x

)
→ 8(−x) as t → ∞

where 8 is the N(0, 1) distribution function.

An alternative proof makes use of Anscombe’s theorem (7.11.28).

4. We have that, for y ≤ t ,

P
(
C(t) ≥ y

)
= P

(
E(t − y) > y

)
→ lim

u→∞
P
(
E(u) > y

)
as t → ∞

=
∫ ∞

y

1

µ
[1 − F(x)] dx
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by Exercise (10.3.3a). The current and excess lifetimes have the same asymptotic distributions.

5. Using the lack-of-memory property of the Poisson process, the current lifetime C(t) is independent
of the excess lifetime E(t), the latter being exponentially distributed with parameter λ. To derive the
density function of C(t) either solve (without difficulty in this case) the relevant integral equation, or
argue as follows. Looking backwards in time from t , the arrival process looks like a Poisson process
up to distance t (at the origin) where it stops. Therefore C(t)may be expressed as min{Z, t} where Z

is exponential with parameter λ; hence

fC(t)(s) =
{
λe−λs if s ≤ t,

0 if s > t,

and P(C(t) = t) = e−λt . Now D(t) = C(t) + E(t), whose distribution is easily found (by the
convolution formula) to be as given.

6. The i th interarrival time may be expressed in the form T + Zi where Zi is exponential with
parameter λ. In addition, Z1, Z2, . . . are independent, by the lack-of-memory property. Now

1 − F̃(x) = P(T + Z1 > x) = P(Z1 > x − T ) = e−λ(x−T ), x ≥ T .

Taking into account the (conventional) dead period beginning at time 0, we have that

P
(

Ñ (t) ≥ k
)

= P

(
kT +

k∑

i=1

Zi ≤ t

)
= P

(
N(t − kT ) ≥ k

)
, t ≥ kT,

where N is a Poisson process.

7. We have that X̃1 = L + E(L) where L is the length of the dead period beginning at 0, and E(L)

is the excess lifetime at L . Therefore, conditioning on L ,

P(X̃1 ≤ x) =
∫ x

0
P
(

E(l) ≤ x − l
)

d FL (l).

We have that

P
(

E(t) ≤ y
)

= F(t + y)−
∫ t

0

{
1 − F(t + y − x)

}
dm(x).

By the renewal equation,

m(t + y) = F(t + y)+
∫ t+y

0
F(t + y − x) dm(x),

whence, by subtraction,

P
(

E(t) ≤ y
)

=
∫ t+y

t

{
1 − F(t + y − x)

}
dm(x).

It follows that

P
(

X̃1 ≤ x
)

=
∫ x

l=0

∫ x

y=l

{
1 − F(x − y)

}
dm(y) d FL (l)

=
[

FL (l)

∫ x

l

{
1 − F(x − y)

}
dm(y)

]x

l=0
+
∫ x

0
FL (l)

{
1 − F(x − l)

}
dm(l)
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using integration by parts. The term in square brackets equals 0.

8. (a) Each interarrival time has the same distribution as the sum of two independent random variables

with the exponential distribution. Therefore N(t) has the same distribution as ⌊ 1
2 M(t)⌋ where M is a

Poisson process with intensity λ. Therefore m(t) = 1
2 E(M(t))− 1

2 P(M(t) is odd). Now E(M(t)) =
λt , and

P
(
M(t) is odd

)
=

∞∑

n=0

(λt)2n+1e−λt

(2n + 1)!
= 1

2 e−λt (eλt − e−λt ).

With more work, one may establish the probability generating function of N(t).

(b) Doing part (a) as above, one may see that m̃(t) = m(t).

9. Clearly C(t) and E(t) are independent if the process N is a Poisson process. Conversely, suppose
that C(t) and E(t) are independent, for each fixed choice of t . The event {C(t) ≥ y} ∩ {E(t) ≥ x}
occurs if and only if E(t − y) ≥ x + y. Therefore

P
(
C(t) ≥ y

)
P
(

E(t) ≥ x
)

= P
(

E(t − y) ≥ x + y
)
.

Take the limit as t → ∞, remembering Exercise (10.3.3) and Problem (10.6.4), to obtain that
G(y)G(x) = G(x + y) if x, y ≥ 0, where

G(u) =
∫ ∞

u

1

µ
[1 − F(v)] dv.

Now 1 − G is a distribution function, and hence has the lack-of-memory property (Problem (4.14.5)),

implying that G(u) = e−λu for some λ. This implies in turn that [1 − F(u)]/µ = −G ′(u) = λe−λu ,

whence µ = 1/λ and F(u) = 1 − e−λu .

10. Clearly N is a renewal process if N2 is Poisson. Suppose that N is a renewal process, and write
λ for the intensity of N1, and F2 for the interarrival time distribution of N2. By considering the time
X1 to the first arrival of N ,

(∗) 1 − F(x) = P
(

N1(x) = N2(x) = 0
)

= e−λx
(
1 − F2(x)

)
.

Writing E , Ei for the excess lifetimes of N , Ni , we have that

P
(

E(t) > x
)

= P
(

E1(t) > x, E2(t) > x
)

= e−λxP
(

E2(t) > x
)
.

Take the limit as t → ∞, using Exercise (10.3.3), to find that

∫ ∞

x

1

µ
[1 − F(u)] du = e−λx

∫ ∞

x

1

µ2
[1 − F2(u)] du,

where µ2 is the mean of F2. Differentiate, and use (∗), to obtain

1

µ
e−λx [1 − F2(x)] = λe−λx

∫ ∞

x

1

µ2
[1 − F2(u)] du +

e−λx

µ2
[1 − F2(x)],

which simplifies to give 1 − F2(x) = c
∫∞

x [1 − F2(u)] du where c = λµ/(µ2 − µ); this integral

equation has solution F2(x) = 1 − e−cx .

11. (i) Taking transforms of the renewal equation in the usual way, we find that

m∗(θ) =
F∗(θ)

1 − F∗(θ)
=

1

1 − F∗(θ)
− 1
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where

F∗(θ) = E(e−θX1 ) = 1 − θµ+ 1
2 θ

2(µ2 + σ 2)+ o(θ2)

as θ → 0. Substitute this into the above expression to obtain

m∗(θ) =
1

θµ{1 − 1
2θ(µ+ σ 2/µ)+ o(θ)}

− 1

and expand to obtain the given expression. A formal inversion yields the expression for m.

(ii) The transform of the right-hand side of the integral equation is

(∗)
1

µθ
− F∗

E (θ)+ m∗(θ)− F∗
E (θ)m

∗(θ).

By Exercise (10.3.3), F∗
E (θ) = [1 − F∗(θ)]/(µθ), and (∗) simplifies to m∗(θ) − (m∗ − m∗F∗ −

F∗)/(µθ), which equals m∗(θ) since the quotient is 0 (by the renewal equation).

Using the key renewal theorem, as t → ∞,

∫ t

0
[1 − FE (t − x)] dm(x) →

1

µ

∫ ∞

0
[1 − FE (u)] du =

E(X2
1)

2µ2
=
σ 2 + µ2

2µ2

by Exercise (10.3.3b). Therefore,

m(t)−
t

µ
→ −1 +

σ 2 + µ2

2µ2
=
σ 2 − µ2

2µ2
.

12. (i) Conditioning on X1, we obtain

md(t) = Fd(t)+
∫ t

0
m(t − x) d Fd(x).

Therefore md∗ = Fd∗ + m∗Fd∗. Also m∗ = F∗ + m∗F∗, so that

(∗) md∗ = Fd∗
(

1 +
F∗

1 − F∗

)
,

whence md∗ = Fd∗ + md∗F∗, the transform of the given integral equation.

(ii) Arguing as in Problem (10.6.2), vd∗ = Fd∗+2m∗Fd∗+v∗Fd∗ where v∗ = F∗(1+2m∗)/(1−F∗)
is the corresponding object in the ordinary renewal process. We eliminate v∗ to find that

vd∗ =
Fd∗(1 + 2m∗)

1 − F∗ = md∗(1 + 2m∗)

by (∗). Now invert.

13. Taking into account the structure of the process, it suffices to deal with the case I = 1. Refer
to Example (10.4.22) for the basic notation and analysis. It is easily seen that β = (ν − 1)λ. Now

F̃(t) = 1 − e−νλt . Solve the renewal equation (10.4.24) to obtain

g(t) = h(t)+
∫ t

0
h(t − x) dm̃(x)
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where m̃(x) = νλx is the renewal function associated with the interarrival time distribution F̃ .

Therefore g(t) = 1, and m(t) = eβt .

14. We have from Lemma (10.4.5) that p∗ = 1 − F∗
Z + p∗F∗, where F∗ = F∗

Y F∗
Z . Solve to obtain

p∗ =
1 − F∗

Z

1 − F∗
Y F∗

Z

.

15. The first locked period begins at the time of arrival of the first particle. Since all future events
may be timed relative to this arrival time, we may take this time to be 0. We shall therefore assume
that a particle arrives at 0; call this the 0th particle, with locking time Y0.

We shall condition on the time X1 of the arrival of the next particle. Now

P(L > t | X1 = u) =
{

P(Y0 > t) if u > t,

P(Y0 > u)P(L ′ > t − u) if u ≤ t,

where L ′ has the same distribution as L ; the second part is a consequence of the fact that the process
‘restarts’ at each arrival. Therefore

P(L > t) =
(
1 − G(t)

)
P(X1 > t)+

∫ t

0
P(L > t − u)

(
1 − G(u)

)
fX1

(u) du,

the required integral equation.

If G(x) = 1 − e−µx , the solution is P(L > t) = e−µt , so that L has the same distribution as
the locking times of individual particles. This striking fact may be attributed to the lack-of-memory
property of the exponential distribution.

16. (a) It is clear that M(tp) is a renewal process whose interarrival times are distributed as X1 +
X2 + · · · + X R where P(R = r) = pqr−1 for r ≥ 1. It follows that M(t) is a renewal process whose
first interarrival time

X (p) = inf{t : M(t) = 1} = p inf{t : M(tp) = 1}

has distribution function

P
(

X (p) ≤ x
)

=
∞∑

r=1

P(R = r)Fr (x/p).

(b) The characteristic function φp of Fp is given by

φp(t) =
∞∑

r=1

pqr−1
∫ ∞

−∞
eixt d Fr (t/p) =

∞∑

r=1

pqr−1φ(pt)r =
pφ(pt)

1 − qφ(pt)

where φ is the characteristic function of F . Now φ(pt) = 1 + iµpt + o(p) as p ↓ 0, so that

φp(t) =
1 + iµpt + o(p)

1 − iµt + o(1)
=

1 + o(1)

1 − iµt

as p ↓ 0. The limit is the characteristic function of the exponential distribution with mean µ, and the
continuity theorem tells us that the process M converges in distribution as p ↓ 0 to a Poisson process
with intensity 1/µ (in the sense that the interarrival time distribution converges to the appropriate
limit).

(c) If M and N have the same fdds, then φp(t) = φ(t), which implies that φ(pt) = φ(t)/(p + qφ(t)).

Henceψ(t) = φ(t)−1 satisfiesψ(pt) = q + pψ(t) for t ∈ R. Nowψ is continuous, and it follows as
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in the solution to Problem (5.12.15) thatψ has the formψ(t) = 1+βt , implying thatφ(t) = (1+βt)−1

for some β ∈ C. The only characteristic function of this form is that of an exponential distribution,
and the claim follows.

17. (a) Let N(t) be the number of times the sequence has been typed up to the t th keystroke. Then N is

a renewal process whose interarrival times have the required meanµ; we have that E(N(t))/t → µ−1

as t → ∞. Now each epoch of time marks the completion of such a sequence with probability

( 1
100 )

14, so that

1

t
E(N(t)) =

1

t

t∑

n=14

(
1

100

)14

→
(

1

100

)14

as t → ∞,

implying that µ = 1028.

The problem with ‘omo’ is ‘omomo’ (i.e. appearances may overlap). Let us call an epoch
of time a ‘renewal point’ if it marks the completion of the word ‘omo’, disjoint from the words
completed at previous renewal points. In each appearance of ‘omo’, either the first ‘o’ or the second
‘o’ (but not both) is a renewal point. Therefore the probability un , that n is a renewal point, satisfies

( 1
100 )

3 = un + un−2(
1

100 )
2. Average this over n to obtain

(
1

100

)3

= lim
n→∞

1

t

t∑

n=1

{
un + un−2

(
1

100

)2
}

=
1

µ
+

1

µ

(
1

100

)2

,

and therefore µ = 106 + 102.

(b) (i) Arguing as for ‘omo’, we obtain p3 = un + pun−1 + p2un−2, whence p3 = (1 + p + p2)/µ.

(ii) Similarly, p2q = un + pqun−2, so that µ = (1 + pq)/(p2q).

18. The fdds of {N(u) − N(t) : u ≥ t} depend on the distributions of E(t) and of the interarrival
times. In a stationary renewal process, the distribution of E(t) does not depend on the value of t ,
whence {N(u) − N(t) : u ≥ t} has the same fdds as {N(u) : u ≥ 0}, implying that X is strongly
stationary.

19. We use the renewal–reward theorem. The mean time between expeditions is Bµ, and this is
the mean length of a cycle of the process. The mean cost of keeping the bears during a cycle is
1
2 B(B − 1)cµ, whence the long-run average cost is {d + B(B − 1)cµ/2}/(Bµ).

20. Consider a renewal process with interevent times distributed as T . By the renewal–reward theo-
rem, the time Wn spent in state j up to time n satisfies

lim
n→∞

1

n
Ek(Wn) =

E(Vj (k))

Ek(T )
.

By the limit theorem (6.4.20) for Markov chains (and comments (b), (d) following), the left side equals
πj . See the related equation (6.4.5).

21. Since cars are independent and their properties are identically distributed, the times of purchases
may be taken as regeneration points of cycles in a renewal process. Let Ci be the total cost of owning
the i th car, and C(t) the total cost of car ownership up to time t . By the renewal–reward theorem,

(*) lim
t→∞

E(C(t))

t
=

E(C1)

E(Y )
.

Now,

E(C1) = E


c − cλY +

Y∑

k=1

rµk−1


 = c − cG(λ)+ rE

(
1 − µY

1 − µ

)
,

Insert this into the right side of (*) and choose m to minimize it.
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11

Queues

11.2 Solutions. M/M/1

1. The stationary distribution satisfies πππ = πππP when it exists, where P is the transition matrix. The
equations

π0 =
π1

1 + ρ
, π1 = π0 +

π2

1 + ρ
, πn =

ρπn−1

1 + ρ
+
πn+1

1 + ρ
for n ≥ 2,

with
∑∞

i=0 πi = 1, have the given solution. If ρ ≥ 1, no such solution exists. It is slightly shorter to
use the fact that such a walk is reversible in equilibrium, from which it follows that πππ satisfies

(∗) π0 =
π1

1 + ρ
,

ρπn

1 + ρ
=
πn+1

1 + ρ
for n ≥ 1.

2. (i) This continuous-time walk is a Markov chain with generator given by g01 = θ0, gn,n+1 =
θnρ/(1 + ρ) and gn,n−1 = θn/(1 + ρ) for n ≥ 1, other off-diagonal terms being 0. Such a process
is reversible in equilibrium (see Problem (6.15.16)), and its stationary distribution ννν must satisfy
νn gn,n+1 = νn+1gn+1,n . These equations may be written as

ν0θ0 =
ν1θ1

1 + ρ
,

νnθnρ

1 + ρ
=
νn+1θn+1

1 + ρ
for n ≥ 1.

These are identical to the equations labelled (∗) in the previous solution, with πn replaced by νnθn . It
follows that νn = Cπn/θn for some positive constant C .

(ii) If θ0 = λ, θn = λ+ µ for n ≥ 1, we have that

1 =
∑

n

νn = C

{
π0

λ
+

1 − π0

µ+ λ

}
=

C

2λ
,

whence C = 2λ and the result follows.

3. Let Q be the number of people ahead of the arriving customer at the time of his arrival. Using the
lack-of-memory property of the exponential distribution, the customer in service has residual service-
time with the exponential distribution, parameterµ, whence W may be expressed as S1+S2+· · ·+SQ ,
the sum of independent exponential variables, parameter µ. The characteristic function of W is

φW (t) = E
{

E(eit W | Q)
}

= E

{(
µ

µ− i t

)Q
}

=
1 − ρ

1 − ρµ/(µ− i t)
= (1 − ρ)+ ρ

(
µ− λ

µ− λ− i t

)
.



M/M/1 Solutions [11.2.4]–[11.2.7]

This is the characteristic function of the given distribution. The atom at 0 corresponds to the possibility
that Q = 0.

4. We prove this by induction on the value of i + j . If i + j = 0 then i = j = 0, and it is easy to
check that π(0; 0, 0) = 1 and A(0; 0, 0) = 1, A(n; 0, 0) = 0 for n ≥ 1. Suppose then that K ≥ 1,
and that the claim is valid for all pairs (i, j) satisfying i + j = K . Let i and j satisfy i + j = K + 1.
The last ball picked has probability i/(i + j) of being red; conditioning on the colour of the last ball,
we have that

π(n; i, j) =
i

i + j
π(n − 1; i − 1, j)+

j

i + j
π(n + 1; i, j − 1).

Now (i − 1)+ j = K = i + ( j − 1). Applying the induction hypothesis, we find that

π(n; i, j) =
i

i + j

{
A(n − 1; i − 1, j)− A(n; i − 1, j)

}

+
j

i + j

{
A(n + 1; i, j − 1)− A(n + 2; i, j − 1)

}
.

Substitute to obtain the required answer, after a little cancellation and collection of terms. Can you
see a more natural way?

5. Let A and B be independent Poisson process with intensitiesλ andµ respectively. These processes
generate a queue-process as follows. At each arrival time of A, a customer arrives in the shop. At
each arrival-time of B, the customer being served completes his service and leaves; if the queue
is empty at this moment, then nothing happens. It is not difficult to see that this queue-process is
M(λ)/M(µ)/1. Suppose that A(t) = i and B(t) = j . During the time-interval [0, t], the order of
arrivals and departures follows the schedule of Exercise (11.2.4), arrivals being marked as red balls
and departures as lemon balls. The imbedded chain has the same distributions as the random walk
of that exercise, and it follows that P

(
Q(t) = n | A(t) = i, B(t) = j

)
= π(n; i, j). Therefore

pn(t) =
∑

i, j π(n; i, j)P(A(t) = i )P(B(t) = j).

6. With ρ = λ/µ, the stationary distribution of the imbedded chain is, as in Exercise (11.2.1),

π̂n =
{

1
2 (1 − ρ) if n = 0,

1
2 (1 − ρ2)ρn−1 if n ≥ 1.

In the usual notation of continuous-time Markov chains, g0 = λ and gn = λ+ µ for n ≥ 1, whence,
by Exercise (6.10.11), there exists a constant c such that

π0 =
c

2λ
(1 − ρ), πn =

c

2(λ + µ)
(1 − ρ2)ρn−1 for n ≥ 1.

Now
∑

i πi = 1, and therefore c = 2λ and πn = (1 − ρ)ρn as required. The working is reversible.

7. (a) Let Qi (t) be the number of people in the i th queue at time t , including any currently in service.
The process Q1 is reversible in equilibrium, and departures in the original process correspond to arrivals
in the reversed process. It follows that the departure process of the first queue is a Poisson process
with intensity λ, and that the departure process of Q1 is independent of the current value of Q1.

(b) We have from part (a) that, for any given t , the random variables Q1(t), Q2(t) are independent.
Consider an arriving customer when the queues are in equilibrium, and let Wi be his waiting time
(before service) in the i th queue. With T the time of arrival, and recalling Exercise (11.2.3),

P(W1 = 0, W2 = 0) > P(Qi (T ) = 0 for i = 1, 2) = P(Q1(T ) = 0)P(Q2(T ) = 0)

= (1 − ρ1)(1 − ρ2) = P(W1 = 0)P(W2 = 0).

Therefore W1 and W2 are not independent. There is a slight complication arising from the fact that T

is a random variable. However, T is independent of everybody who has gone before, and in particular
of the earlier values of the queue processes Qi .
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[11.3.1]–[11.4.1] Solutions Queues

11.3 Solutions. M/G/1

1. In equilibrium, the queue-length Qn just after the nth departure satisfies

(∗) Qn+1 = An + Qn − h(Qn)

where An is the number of arrivals during the (n + 1)th service period, and h(m) = 1 − δm0. Now
Qn and Qn+1 have the same distribution. Take expectations to obtain

(∗∗) 0 = E(An)− P(Qn > 0),

where E(An) = λd , the mean number of arrivals in an interval of length d . Next, square (∗) and take
expectations:

0 = E(A2
n)+ E

(
h(Qn)

2)+ 2
{

E(An Qn)− E
(

Anh(Qn)
)

− E
(
Qnh(Qn)

)}
.

Use the facts that An is independent of Qn , and that Qnh(Qn) = Qn , to find that

0 = {(λd)2 + λd} + P(Qn > 0)+ 2
{
(λd − 1)E(Qn)− λdP(Qn > 0)

}

and therefore, by (∗∗),

E(Qn) =
2ρ − ρ2

2(1 − ρ)
.

2. From the standard theory, MB satisfies MB(s) = MS(s − λ + λMB(s)), where MS(θ) =
µ/(µ− θ). Substitute to find that x = MB(s) is a root of the quadratic λx2 − x(λ+µ− s)+µ = 0.
For some small positive s, MB(s) is smooth and non-decreasing. Therefore MB(s) is the root given.

3. (a) Let Tn be the instant of time at which the server is freed for the nth time. By the lack-of-
memory property of the exponential distribution, the time of the first arrival after Tn is independent of
all arrivals prior to Tn , whence Tn is a ‘regeneration point’ of the queue (so to say). It follows that the
times which elapse between such regeneration points are independent, and it is easily seen that they
have the same distribution.

(b) The total time T is the sum of the waiting time W and the service time S. Since these are
independent, T has moment generating function MS(s)MW (s) where MW is given by Theorem
(11.3.16).

4. Since all frustrated customers leave immediately, the queue is empty at the end of every service
period. Consider, in the sense of the renewal–reward theorem, time partitioned into cycles where a
cycle comprises a consecutive idle and service period of the server. During a typical cycle, the mean
number of arrivals is 1 + λE(S), and the mean number lost is λE(S). Therefore, the proportion of
arrivals lost is λE(S)/(1 + λE(S)).

11.4 Solutions. G/M/1

1. The transition matrix of the imbedded chain obtained by observing queue-lengths just before
arrivals is

PA =




1 − α0 α0 0 0 . . .

1 − α0 − α1 α1 α0 0 . . .

1 − α0 − α1 − α2 α2 α1 α0 . . .
...

...
...

...
. . .


 .
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G/G/1 Solutions [11.4.2]–[11.5.2]

The equation πππ = πππPA may be written as

π0 =
∞∑

i=0

πi

(
1 −

i∑

j=0

αj

)
, πn =

∞∑

i=0

αiπn+i−1 for n ≥ 1.

It is easily seen, by adding, that the first equation is a consequence of the remaining equations, taken
in conjunction with

∑∞
0 πi = 1. Therefore πππ is specified by the equation for πn , n ≥ 1.

The indicated substitution gives

θn = θn−1
∞∑

i=0

αiθ
i

which is satisfied whenever θ satisfies

θ =
∞∑

i=0

αiθ
i =

∞∑

i=0

E

{
(µXθ)i e−µX

i !

}
= E(e−µX eµXθ ) = MX

(
µ(θ − 1)

)
.

It is easily seen that A(θ) = MX (µ(θ − 1)) is convex and non-decreasing on [0, 1], and satisfies

A(0) > 0, A(1) = 1. Now A′(1) = µE(X) = ρ−1 > 1, implying that there is a unique η ∈ (0, 1)

such that A(η) = η. With this value of η, the vector πππ given by πj = (1 − η)η j , j ≥ 0, is a
stationary distribution of the imbedded chain. Thisπππ is the unique such distribution because the chain
is irreducible.

2. (i) The equilibrium distribution is πn = (1−η)ηn for n ≥ 0, with mean
∑∞

n=0 nπn = η/(1−η).
(ii) Using the lack-of-memory property of the service time in progress at the time of the arrival, we
see that the waiting time may be expressed as W = S1 + S2 + · · · + SQ where Q has distribution πππ ,
given above, and the Sn are service times independent of Q. Therefore

E(W ) = E(S1)E(Q) =
η/µ

(1 − η)
.

3. We have that Q(n+) = 1+ Q(n−) a.s. for each integer n, whence limt→∞ P(Q(t) = m) cannot
exist.

Since the traffic intensity is less than 1, the imbedded chain is ergodic with stationary distribution
as in Exercise (11.4.1).

11.5 Solutions. G/G/1

1. Let Tn be the starting time of the nth busy period. Then Tn is an arrival time, and also the
beginning of a service period. Conditional on the value of Tn , the future evolution of the queue is
independent of the past, whence the random variables {Tn+1 − Tn : n ≥ 1} are independent. It is
easily seen that they are identically distributed.

2. If the server is freed at time T , the time I until the next arrival has the exponential distribution
with parameter µ (since arrivals form a Poisson process).

By the duality theory of queues, the waiting time in question has moment generating function
MW (s) = (1 − ζ )/(1 − ζMI (s)) where MI (s) = µ/(µ − s) and ζ = P(W > 0). Therefore,

MW (s) =
ζµ(1 − ζ )

µ(1 − ζ )− s
+ (1 − ζ ),
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[11.5.3]–[11.7.1] Solutions Queues

the moment generating function of a mixture of an atom at 0 and an exponential distribution with
parameter µ(1 − ζ ).

If G is the probability generating function of the equilibrium queue-length, then, using the lack-
of-memory property of the exponential distribution, we have that MW (s) = G(µ/(µ− s)), since W is
the sum of the (residual) service times of the customers already present. Set u = µ/(µ−s) to find that

G(u) = (1 − ζ )/(1 − ζu), the generating function of the mass function f (k) = (1 − ζ )ζ k for k ≥ 0.
It may of course be shown that ζ is the smallest positive root of the equation x = MX

(
µ(x − 1)

)
,

where X is a typical interarrival time.

3. We have that

1 − G(y) = P(S − X > y) =
∫ ∞

0
P(S > u + y) d FX (u), y ∈ R,

where S and X are typical (independent) service and interarrival times. Hence, formally,

dG(y) = −
∫ ∞

0
dP(S > u + y) d FX (u) = dy

∫ ∞

−y
µe−µ(u+y) d FX (u),

since fS(u + y) = e−µ(u+y) if u > −y, and is 0 otherwise.

With F as given,

∫ x

−∞
F(x − y) dG(y) =

∫∫

−∞<y≤x
−y<u<∞

{
1 − ηe−µ(1−η)(x−y)

}
µe−µ(u+y) d FX (u) dy.

First integrate over y, then over u (noting that FX (u) = 0 for u < 0), and the double integral collapses
to F(x), when x ≥ 0.

11.6 Solution. Heavy traffic

1. Qρ has characteristic function

φρ(t) =
∞∑

n=0

eitnρn(1 − ρ) =
1 − ρ

1 − ρeit
.

Therefore the characteristic function of (1 − ρ)Qρ satisfies

φρ
(
(1 − ρ)t

)
=

1 − ρ

1 − ρei(1−ρ)t →
1

1 − i t
as ρ ↑ 1.

The limit characteristic function is that of the exponential distribution, and the result follows by the
continuity theorem.

11.7 Solutions. Networks of queues

1. The first observation follows as in Example (11.7.4). The equilibrium distribution is given as in
Theorem (11.7.14) by

π(n) =
c∏

i=1

α
ni
i e−αi

ni !
, for n = (n1, n2, . . . , nc) ∈ Zc,
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Networks of queues Solutions [11.7.2]–[11.7.7]

the product of Poisson distributions. This is related to Bartlett’s theorem (see Problem (8.7.6)) by
defining the state A as ‘being in station i at some given time’.

2. The number of customers in the queue is a birth–death process, and is therefore reversible in
equilibrium. The claims follow in the same manner as was argued in the solution to Exercise (11.2.7).

3. (a) We may take as state space the set {0, 1′, 1′′, 2, 3, . . . }, where i ∈ {0, 2, 3, . . . } is the state
of having i people in the system including any currently in service, and 1′ (respectively 1′′) is the
state of having exactly one person in the system, this person being served by the first (respectively
second) server. It is straightforward to check that this process is reversible in equilibrium, whence the
departure process is as stated, by the argument used in Exercise (11.2.7).

(b) This time, we take as state space the set {0′, 0′′, 1′, 1′′, 2, 3, . . . } having the same states as in part
(a) with the difference that 0′ (respectively 0′′) is the state in which there are no customers present and
the first (respectively second) server has been free for the shorter time. It is easily seen that transition
from 0′ to 1′′ has strictly positive probability whereas transition from 1′′ to 0′ has zero probability,
implying that the process is not reversible. By drawing a diagram of the state space, or otherwise, it
may be seen that the time-reversal of the process has the same structure as the original, with the unique
change that states 0′ are 0′′ are interchanged. Since departures in the original process correspond to
arrivals in the time-reversal, the required properties follow in the same manner as in Exercise (11.2.7).

4. The total time spent by a given customer in service may be expressed as the sum of geometrically
distributed number of exponential random variables, and this is easily shown to be exponential with
parameter δµ. The queue is therefore in effect a M(λ)/M(δµ)/1 system, and the stationary distribution
is the geometric distribution with parameter ρ = λ/(δµ), provided ρ < 1. As in Exercise (11.2.7),
the process of departures is Poisson.

Assume that rejoining customers go to the end of the queue, and note that the number of customers
present constitutes a Markov chain. However, the composite process of arrivals is not Poisson, since
increments are no longer independent. This may be seen as follows. In equilibrium, the probability of
an arrival of either kind during the time interval (t, t +h) is λh +ρµ(1−δ)h +o(h) = (λ/δ)h +o(h).
If there were an arrival of either kind during (t − h, t), then (with conditional probability 1 − O(h))
the queue is non-empty at time t , whence the conditional probability of an arrival of either kind during
(t, t + h) is λh +µ(1 − δ)h + o(h); this is of a larger order of magnitude than the earlier probability
(λ/δ)h + o(h).

5. For stations r , s, we write r → s if an individual at r visits s at a later time with a strictly positive
probability. Let C comprise the station j together with all stations i such that i → j . The process
restricted to C is an open migration process in equilibrium. By Theorem (11.7.20), the restricted
process is reversible, whence the process of departures from C via j is a Poisson process with some
intensity ζ . Individuals departing C via j proceed directly to k with probability

λj kφj (n j )

µjφj (n j )+
∑

r /∈C λj rφj (n j )
=

λj k

µj +
∑

r /∈C λj r
,

independently of the number n j of individuals currently at j . Such a thinned Poisson process is a
Poisson process also (cf. Exercise (6.8.2)), and the claim follows.

6. The number of individuals in the system at time t is no larger than the total number of arrivals,
which grows in the manner of a birth process with parameter V =

∑
j νj < ∞. The result follows

by Theorem (6.8.17).

7. Let π satisfy
∑

i∈T πi gi j = 0 for j 6= ∞. Since G has zero row-sums,

∑

i∈T

πi gi∞ =
∑

i∈T

πi

(
−
∑

j 6=∞
gi j

)
= −

∑

j 6=∞

(∑

i∈T

πi gi j

)
= 0.
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[11.8.1]–[11.8.3] Solutions Queues

11.8 Solutions to problems

1. Although the two cases may be done together, we choose to do them separately. When k = 1,
the equilibrium distribution πππ satisfies:

µπ1 − λπ0 = 0,

µπn+1 − (λ + µ)πn + λπn−1 = 0, 1 ≤ n < N,

−µπN + λπN−1 = 0,

a system of equations with solution πn = π0(λ/µ)
n for 0 ≤ n ≤ N , where (if λ 6= µ)

π−1
0 =

N∑

n=0

(λ/µ)n =
1 − (λ/µ)N+1

1 − (λ/µ)
.

Now let k = 2. The queue is a birth–death process with rates

λi =
{
λ if i < N,

0 if i ≥ N,
µi =

{
µ if i = 1,

2µ if i ≥ 2.

It is reversible in equilibrium, and its stationary distribution satisfies λiπi = µi+1πi+1. We deduce

that πi = 2ρ iπ0 for 1 ≤ i ≤ N , where ρ = λ/(2µ) and

π−1
0 = 1 +

N∑

i=1

2ρ i .

2. The answer is obtainable in either case by following the usual method. It is shorter to use the fact
that such processes are reversible in equilibrium.

(a) The stationary distributionπππ satisfies πnλp(n) = πn+1µ for n ≥ 0, whence πn = π0ρ
n/n! where

ρ = λ/µ. Therefore πn = ρne−ρ/n!.

(b) Similarly,

πn = π0ρ
n

n−1∏

m=0

p(m) = π0ρ
n2− 1

2
n(n−1)

, n ≥ 0,

where

π−1
0 =

∞∑

n=0

ρn
(

1
2

) 1
2 n(n−1)

.

At the instant of arrival of a potential customer, the probability q that she joins the queue is
obtained by conditioning on its length:

q =
∞∑

n=0

p(n)πn = π0

∞∑

n=0

ρn2−n− 1
2

n(n−1) = π0

∞∑

n=0

ρn2− 1
2

n(n+1) = π0
1

ρ
{π−1

0 − 1}.

3. First method. Let (Q1, Q2) be the queue-lengths, and suppose they are in equilibrium. Since

Q1 is a birth–death process, it is reversible, and we write Q̂1(t) = Q1(−t). The sample paths of
Q1 have increasing jumps of size 1 at times of a Poisson process with intensity λ; these jumps mark

arrivals at the cash desk. By reversibility, Q̂1 has the same property; such increasing jumps for Q̂1
are decreasing jumps for Q1, and therefore the times of departures from the cash desk form a Poisson
process with intensity λ. Using the same argument, the quantity Q1(t) together with the departures
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Problems Solutions [11.8.4]–[11.8.4]

prior to t have the same joint distribution as the quantity Q̂1(−t) together with all arrivals after −t .

However Q̂1(−t) is independent of its subsequent arrivals, and therefore Q1(t) is independent of its
earlier departures.

It follows that arrivals at the second desk are in the manner of a Poisson process with intensity
λ, and that Q2(t) is independent of Q1(t). Departures from the second desk form a Poisson process
also.

Hence, in equilibrium, Q1 is M(λ)/M(µ1)/1 and Q2 is M(λ)/M(µ2)/1, and they are independent
at any given time. Therefore their joint stationary distribution is

πmn = P
(

Q1(t) = m, Q2(t) = n
)

= (1 − ρ1)(1 − ρ2)ρ
m
1 ρ

n
2

where ρi = λ/µi .

Second method. The pair (Q1(t), Q2(t)) is a bivariate Markov chain. A stationary distribution
(πmn : m, n ≥ 0) satisfies

(λ+ µ1 + µ2)πmn = λπm−1,n + µ1πm+1,n−1 + µ2πm,n+1, m, n ≥ 1,

together with other equations when m = 0 or n = 0. It is easily checked that these equations have the
solution given above, when ρi < 1 for i = 1, 2.

4. Let Dn be the time of the nth departure, and let Qn = Q(Dn+)be the number of waiting customers
immediately after Dn . We have in the usual way that Qn+1 = An + Qn − h(Qn), where An is the

number of arrivals during the (n + 1)th service time, and h(x) = min{x,m}. Let G(s) =
∑∞

i=0 πi s i

be the equilibrium probability generating function of the Qn . Then, since Qn is independent of An ,

G(s) = E(s An )E(s Qn−h(Qn))

where

E(s An ) =
∫ ∞

0
eλu(s−1) fS(u) du = MS

(
λ(s − 1)

)
,

MS being the moment generating function of a service time, and

E(s Qn−h(Qn)) =
m∑

i=0

πi +
∞∑

i=m+1

s i−mπi = s−m

{
G(s)+

m∑

i=0

(sm − s i)πi

}
.

Combining these relations, we obtain that G satisfies

smG(s) = MS

(
λ(s − 1)

){
G(s)+

m∑

i=0

(sm − s i )πi

}
,

whenever it exists.

Finally suppose that m = 2 and MS(θ) = µ/(µ− θ). In this case,

G(s) =
µ{π0(s + 1)+ π1s}
µ(s + 1)− λs2

.

Now G(1) = 1, whence µ(2π0 + π1) = 2µ − λ; this implies in particular that 2µ − λ > 0. Also
G(s) converges for |s| ≤ 1. Therefore any zero of the denominator in the interval [−1, 1] is also a
zero of the numerator. There exists exactly one such zero, since the denominator is a quadratic which
takes the value −λ at s = −1 and the value 2µ− λ at s = 1. The zero in question is at

s0 =
µ−

√
µ2 + 4λµ

2λ
,
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[11.8.5]–[11.8.7] Solutions Queues

and it follows that π0 + (π0 + π1)s0 = 0. Solving for π0 and π1, we obtain

G(s) =
1 − α

1 − αs
,

where α = 2λ/{µ+
√
µ2 + 4λµ}.

5. Recalling standard M/G/1 theory, the moment generating function MB satisfies

(∗) MB(s) = MS

(
s − λ+ λMB(s)

)
=

µ

µ− {s − λ+ λMB(s)}

whence MB(s) is one of

(λ+ µ− s)±
√
(λ + µ− s)2 − 4λµ

2λ
.

Now MB(s) is non-decreasing in s, and therefore it is the value with the minus sign. The density
function of B may be found by inverting the moment generating function; see Feller (1971, p. 482),
who has also an alternative derivation of MB .

As for the mean and variance, either differentiate MB , or differentiate (∗). Following the latter
route, we obtain the following relations involving M (= MB):

2λM M ′ + M + (s − λ− µ)M ′ = 0,

2λM M ′′ + 2λ(M ′)2 + 2M ′ + (s − λ− µ)M ′′ = 0.

Set s = 0 to obtain M ′(0) = (µ−λ)−1 and M ′′(0) = 2µ(µ−λ)−3 , whence the claims are immediate.

6. (i) This question is closely related to Exercise (11.3.1). With the same notation as in that solution,
we have that

(∗) Qn+1 = An + Qn − h(Qn)

where h(x) = min{1, x}. Taking expectations, we obtain P(Qn > 0) = E(An) where

E(An) =
∫ ∞

0
E(An | S = s) d FS(s) = λE(S) = ρ,

and S is a typical service time. Square (∗) and take expectations to obtain

E(Qn) =
ρ(1 − 2ρ)+ E(A2

n+1)

2(1 − ρ)
,

where E(A2
n) is found (as above) to equal ρ + λ2E(S2).

(ii) If a customer waits for time W and is served for time S, he leaves behind him a queue-length
which is Poisson with parameter λ(W + S). In equilibrium, its mean satisfies λE(W + S) = E(Qn),
whence E(W ) is given as claimed.

(iii) E(W ) is a minimum when E(S2) is minimized, which occurs when S is concentrated at its mean.
Deterministic service times minimize mean waiting time.

7. Condition on arrivals in (t, t+h). If there are no arrivals, then Wt+h ≤ x if and only if Wt ≤ x+h.
If there is an arrival, and his service time is S, then Wt+h ≤ x if and only if Wt ≤ x +h − S. Therefore

F(x; t + h) = (1 − λh)F(x + h; t)+ λh

∫ x+h

0
F(x + h − s; t) d FS(s)+ o(h).
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Problems Solutions [11.8.8]–[11.8.9]

Subtract F(x; t), divide by h, and take the limit as h ↓ 0, to obtain the differential equation.

We take Laplace–Stieltjes transforms. Integrating by parts, for θ ≤ 0,

∫

(0,∞)
eθx dh(x) = −h(0)− θ{MU (θ)− H(0)},

∫

(0,∞)
eθx d H(x) = MU (θ)− H(0),

∫

(0,∞)
eθx dP(U + S ≤ x) = MU (θ)MS(θ),

and therefore

0 = −h(0)− θ{MU (θ)− H(0)} + λH(0)+ λMU (θ){MS(θ)− 1}.

Set θ = 0 to obtain that h(0) = λH(0), and therefore

H(0) = −
1

θ
MU (θ)

{
λ
(

MS(θ)− 1
)

− θ
}
.

Take the limit as θ → 0, using L’Hôpital’s rule, to obtain H(0) = 1 − λE(S) = 1 − ρ. The moment
generating function of U is given accordingly. Note that MU is the same as the moment generating
function of the equilibrium distribution of actual waiting time. That is to say, virtual and actual

waiting times have the same equilibrium distributions in this case.

8. In this case U takes the values 1 and −2 each with probability 1
2 (as usual, U = S − X where S

and X are typical (independent) service and interarrival times). The integral equation for the limiting
waiting time distribution function F becomes

F(0) = 1
2 F(2), F(x) = 1

2

{
F(x − 1)+ F(x + 2)

}
for x = 1, 2, . . . .

The auxiliary equation is θ3 − 2θ + 1 = 0, with roots 1 and − 1
2 (1 ±

√
5). Only roots lying in [−1, 1]

can contribute, whence

F(x) = A + B

(
−1 +

√
5

2

)x

for some constants A and B. Now F(x) → 1 as x → ∞, since the queue is stable, and therefore

A = 1. Using the equation for F(0), we find that B = 1
2 (1 −

√
5).

9. Q is a M(λ)/M(µ)/∞ queue, otherwise known as an immigration–death process (see Exercise
(6.11.2) and Problem (6.15.18)). As found in (6.15.18), Q(t) has probability generating function

G(s, t) =
{

1 + (s − 1)e−µt
}I

exp
{
ρ(s − 1)(1 − e−µt )

}

where ρ = λ/µ. Hence

E(Q(t)) = I e−µt + ρ(1 − e−µt ),

P(Q(t) = 0) = (1 − e−µt )I exp
{
−ρ(1 − e−µt )

}
,

P(Q(t) = n) →
1

n!
ρne−ρ as t → ∞.

If E(I ) and E(B) denote the mean lengths of an idle period and a busy period in equilib-
rium, we have that the proportion of time spent idle is E(I )/{E(I ) + E(B)}. This in turn equals
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[11.8.10]–[11.8.12] Solutions Queues

limt→∞ P(Q(t) = 0) = e−ρ . Now E(I ) = λ−1, by the lack-of-memory property of the arrival
process, so that E(B) = (eρ − 1)/λ.

10. We have in the usual way that

(∗) Q(t + 1) = At + Q(t)− min{1, Q(t)}

where At has the Poisson distribution with parameter λ. When the queue is in equilibrium, E(Q(t)) =
E(Q(t + 1)), and hence

P(Q(t) > 0) = E
(
min{1, Q(t)}

)
= E(At ) = λ.

We have from (∗) that the probability generating function G(s) of the equilibrium distribution of
Q(t) (≡ Q) is

G(s) = E(s At )E(s Q−min{1,Q}) = eλ(s−1){E(s Q−1I{Q≥1})+ P(Q = 0)
}
.

Also,

G(s) = E(s Q I{Q≥1})+ P(Q = 0),

and hence

G(s) = eλ(s−1)
{

1

s
G(s)+

(
1 −

1

s

)
(1 − λ)

}

whence

G(s) =
(1 − s)(1 − λ)

1 − se−λ(s−1)
.

The mean queue length is G ′(1) = 1
2λ(2 − λ)/(1 − λ). Since service times are of unit length,

and arrivals form a Poisson process, the mean residual service time of the customer in service at an

arrival time is 1
2 , so long as the queue is non-empty. Hence

E(W ) = E(Q)− 1
2 P(Q > 0) =

λ

2(1 − λ)
.

11. The length B of a typical busy period has moment generating function satisfying MB(s) =
exp{s − λ+ λMB(s)}; this fact may be deduced from the standard theory of M/G/1, or alternatively
by a random-walk approach. Now T may be expressed as T = I + B where I is the length of the
first idle period, a random variable with the exponential distribution, parameter λ. It follows that
MT (s) = λMB(s)/(λ − s). Therefore, as required,

(∗) (λ− s)MT (s) = λ exp
{

s − λ+ (λ− s)MT (s)
}
.

If λ ≥ 1, the queue-length at moments of departure is either null recurrent or transient, and it

follows that E(T ) = ∞. If λ < 1, we differentiate (∗) and set s = 0 to obtain λE(T )− 1 = λ2E(T ),
whence E(T ) = {λ(1 − λ)}−1.

12. (a) Q is a birth–death process with parameters λi = λ, µi = µ, and is therefore reversible in
equilibrium; see Problems (6.15.16) and (11.8.3).

(b) The equilibrium distribution satisfies λπi = µπi+1 for i ≥ 0, whence πi = (1 − ρ)ρ i where
ρ = λ/µ. A typical waiting time W is the sum of Q independent service times, so that

MW (s) = G Q

(
MS(s)

)
=

1 − ρ

1 − ρµ/(µ− s)
=
(1 − ρ)(µ− s)

µ(1 − ρ)− s
.
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Problems Solutions [11.8.13]–[11.8.14]

(c) See the solution to Problem (11.8.3).

(d) Follow the solution to Problem (11.8.3) (either method) to find that, at any time t in equilibrium,
the queue lengths are independent, the j th having the equilibrium distribution of M(λ)/M(µj )/1. The
joint mass function is therefore

f (x1, x2, . . . , xK ) =
K∏

j=1

(1 − ρj )ρ
x j

j

where ρj = λ/µj .

13. The size of the queue is a birth–death process with rates λi = λ, µi = µmin{i, k}. Either solve
the equilibrium equations in order to find a stationary distribution πππ , or argue as follows. The process
is reversible in equilibrium (see Problem (6.15.16)), and therefore λiπi = µi+1πi+1 for all i . These
‘balance equations’ become

λπi =
{
µ(i + 1)πi+1 if 0 ≤ i < k,

µkπi+1 if i ≥ k.

These are easily solved iteratively to obtain

πi =
{
π0α

i/ i ! if 0 ≤ i ≤ k,

π0(α/k)i kk/k! if i ≥ k

where α = λ/µ. Therefore there exists a stationary distribution if and only if λ < kµ, and it is given
accordingly, with

π
−1
0 =

k−1∑

i=0

αi

i !
+

kk

k!

∞∑

i=k

(α/k)i .

The cost of having k servers is

Ck = Ak + Bπ0

∞∑

i=k

(i − k + 1)
(α/k)i kk

k!

where π0 = π0(k). One finds, after a little computation, that

C1 = A +
Bα

1 − α
, C2 = 2A +

2Bα2

4 − α2
.

Therefore

C2 − C1 =
α3(A − B)+ α2(2B − A)− 4α(A + B)+ 4A

(1 − α)(4 − α2)
.

Viewed as a function of α, the numerator is a cubic taking the value 4A at α = 0 and the value −3B

at α = 1. This cubic has a unique zero at some α∗ ∈ (0, 1), and C1 < C2 if and only if 0 < α < α∗.

14. The state of the system is the number Q(t) of customers within it at time t . The state 1 may be
divided into two sub-states, being σ1 and σ2, where σi is the state in which server i is occupied but
the other server is not. The state space is therefore S = {0, σ1, σ2, 2, 3, . . . }.

The usual way of finding the stationary distribution, when it exists, is to solve the equilibrium
equations. An alternative is to argue as follows. If there exists a stationary distribution, then the
process is reversible in equilibrium if and only if

(∗) gi1,i2
gi2,i3

· · · gik ,i1
= gi1,ik

gik ,ik−1
· · · gi2,i1

521



[11.8.15]–[11.8.16] Solutions Queues

for all sequences i1, i2, . . . , ik of states, where G = (guv)u,v∈S is the generator of the process (this
may be shown in very much the same way as was the corresponding claim for discrete-time chains
in Exercise (6.5.2a); see also Problem (6.15.16)). It is clear that (∗) is satisfied by this process for all
sequences of states which do not include both σ1 and σ2; this holds since the terms guv are exactly
those of a birth–death process in such a case. In order to see that (∗) holds for a sequence containing
both σ1 and σ2, it suffices to perform the following calculation:

g0,σ1
gσ1,2

g2,σ2
gσ2,0

= ( 1
2λ)λµ2µ1 = g0,σ2

gσ2,2
g2,σ1

gσ1,0
.

Since the process is reversible in equilibrium, the stationary distribution πππ satisfies πu guv =
πvgvu for all u, v ∈ S, u 6= v. Therefore

πuλ = πu+1(µ1 + µ2), u ≥ 2,

1
2π0λ = πσ1µ1 = πσ2µ2, πσ1λ = π2µ2, πσ2λ = π2µ1,

and hence

πσ1 =
λ

2µ1
π0, πσ2 =

λ

2µ2
π0, πu =

λ2

2µ1µ2

(
λ

µ1 + µ2

)u−2

π0 for u ≥ 2.

This gives a stationary distribution if and only if λ < µ1 + µ2, under which assumption π0 is easily
calculated.

A similar analysis is valid if there are s servers and an arriving customer is equally likely to go
to any free server, otherwise waiting in turn. This process also is reversible in equilibrium, and the
stationary distribution is similar to that given above.

15. We have from the standard theory that Qµ has as mass function πj = (1 − η)η j , j ≥ 0, where

η is the smallest positive root of the equation x = eµ(x−1). The moment generating function of

(1 − µ−1)Qµ is

Mµ(θ) = E
(
exp
{
θ(1 − µ−1)Qµ

})
=

1 − η

1 − ηeθ(1−µ−1)
.

Writing µ = 1 + ǫ, we have by expanding eµ(η−1) as a Taylor series that η = η(ǫ) = 1 − 2ǫ + o(ǫ)
as ǫ ↓ 0. This gives

Mµ(θ) =
2ǫ + o(ǫ)

1 − (1 − 2ǫ)(1 + θǫ)+ o(ǫ)
=

2ǫ + o(ǫ)

(2 − θ)ǫ + o(ǫ)
→

2

2 − θ

as ǫ ↓ 0, implying the result, by the continuity theorem.

16. The numbers P (of passengers) and T (of taxis) up to time t have the Poisson distribution with
respective parameters π t and τ t . The required probabilities pn = P(P = T + n) have generating
function

∞∑

n=−∞
pnzn =

∞∑

n=−∞

∞∑

m=0

P(P = m + n)P(T = m)zn

=
∞∑

m=0

P(T = m)z−m G P(z)

= GT (z
−1)G P (z) = e−(π+τ )te(πz+τ z−1)t ,

in which the coefficient of zn is easily found to be that given.
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Problems Solutions [11.8.17]–[11.8.20]

17. Let N(t) be the number of machines which have arrived by time t . Given that N(t) = n, the times
T1, T2, . . . , Tn of their arrivals may be thought of as the order statistics of a family of independent
uniform variables on [0, t], say U1,U2, . . . ,Un ; see Theorem (6.8.11). The machine which arrived
at time Ui is, at time t ,

in the X-stage
in the Y -stage

repaired



 with probability




α(t)

β(t)

1 − α(t)− β(t)

where α(t) = P(U + X > t) and β(t) = P(U + X ≤ t < U + X + Y ), where U is uniform on [0, t],
and (X,Y ) is a typical repair pair, independent of U . Therefore

P
(
U(t) = j,V (t) = k

∣∣ N(t) = n
)

=
n!α(t) jβ(t)k (1 − α(t)− β(t))n−k− j

j ! k! (n − j − k)!
,

implying that

P
(
U(t) = j, V (t) = k

)
=

∞∑

n=0

e−λt (λt)n

n!
P
(
U(t) = j,V (t) = k

∣∣ N(t) = n
)

=
{λtα(t)} j e−λtα(t)

j !
·
{λtβ(t)}k e−λtβ(t)

k!
.

18. The maximum deficit Mn seen up to and including the time of the nth claim satisfies

Mn = max

{
Mn−1,

n∑

j=1

(K j − X j )

}
= max

{
0,U1,U1 + U2, . . . ,U1 + U2 + · · · + Un

}
,

where the X j are the inter-claim times, and Uj = K j − X j . We have as in the analysis of G/G/1 that
Mn has the same distribution as Vn = max{0,Un,Un + Un−1, . . . ,Un + Un−1 + · · · + U1}, whence
Mn has the same distribution as the (n + 1)th waiting time in a M(λ)/G/1 queue with service times
K j and interarrival times X j . The result follows by Theorem (11.3.16).

19. (a) Look for a solution to the detailed balance equations λπi = (i + 1)µπi+1 , 0 ≤ i < s, to find

that the stationary distribution is given by πi = (ρ i/ i !)π0.

(b) Let pc be the required fraction. We have by Little’s theorem (10.5.18) that

pc =
λ(πc−1 − πc)

µ
= ρ(πc−1 − πc), c ≥ 2,

and p1 = π1, where πs is the probability that channels 1, 2, . . . , s are busy in a queue M/M/s having
the property that further calls are lost when all s servers are occupied.

20. The equilibrium distribution is πn = ρn(1 − ρ), where ρ = λ/µ. Let T be the time until the
queue is first empty. In particular, T = 0 with probability π0. While the queue is non-empty, its length
evolves in the manner of a random walk on the non-negative integers that steps one step rightwards

with probability p = λ/(λ + µ) = ρ/(1 + ρ) < 1
2 and one step leftwards otherwise. Each step

occupies a holding time with mean 1/(λ+ µ).

Let K be the number of jumps to pass from position 1 to position 0. By conditioning on the first
step, we have that E(K ) = 1 + 2pE(K ), whence E(K ) = 1/(1 − 2p). Therefore, the mean number
of steps to pass from position n ≥ 0 to position 0 is nE(K ) = n/(1 − 2p). Hence,

E(T ) =
1

λ+ µ

∞∑

n=1

nπn

1 − 2p
=

λ

(µ− λ)2
.
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[11.8.21]–[11.8.21] Solutions Queues

21. Since busy periods are equidistributed for this queue as for the queue in equilibrium, we may
assume the queue is in equilibrium. By Exercise (6.12.4), the number of customers being served at
any fixed time has the Poisson distribution with mean ρ. In particular, the probability that the queue
is empty is e−ρ .

Let a cycle commence at the end of every busy period, so that a cycle comprises an idle period
I plus a busy period B, and the reward of a cycle is taken as the length of the idle period. Note
that E(I ) = 1/λ. By the lack-of-memory property of the exponential distribution, we may apply the

renewal–reward theorem to find that the density of idle periods is λ−1/(E(B)+ λ−1). Using the first
observation above,

e−ρ =
λ−1

E(B)+ λ−1
,

and the given expression for E(B) follows.

524



12

Martingales

12.1 Solutions. Introduction

1. (i) We have that E(Ym) = E{E(Ym+1 | Fm)} = E(Ym+1), and the result follows by induction.

(ii) For a submartingale, E(Ym) ≤ E{E(Ym+1 | Fm)} = E(Ym+1), and the result for supermartingales
follows similarly.

2. We have that

E(Yn+m | Fn) = E
{

E(Yn+m | Fn+m−1)
∣∣Fn

}
= E(Yn+m−1 | Fn)

if m ≥ 1, since Fn ⊆ Fn+m−1. Iterate to obtain E(Yn+m | Fn) = E(Yn | Fn) = Yn .

3. (i) Znµ
−n has mean 1, and

E
(

Zn+1µ
−(n+1)

∣∣Fn

)
= µ−(n+1)E(Zn+1 | Fn) = µ−n Zn,

where Fn = σ(Z1, Z2, . . . , Zn).

(ii) Certainly ηZn ≤ 1, and therefore it has finite mean. Also,

E
(
ηZn+1

∣∣Fn

)
= E

(
η
∑Zn

1 Xi

∣∣∣∣ Fn

)
= G(η)Zn

where the X i are independent family sizes with probability generating function G . Now G(η) = η,
and the claim follows.

4. (i) With Xn denoting the size of the nth jump,

E(Sn+1 | Fn) = Sn + E(Xn+1 | Fn) = Sn

where Fn = σ(X1, X2, . . . , Xn). Also E|Sn| ≤ n, so that {Sn} is a martingale.

(ii) Similarly E(S2
n) = var(Sn) = n, and

E
(
S2

n+1 − (n + 1)
∣∣Fn

)
= S2

n + E(X2
n+1)+ 2SnE(Xn+1)− (n + 1) = S2

n − n.

(iii) Suppose the walk starts at k, and there are absorbing barriers at 0 and N (≥ k). Let T be the time

at which the walk is absorbed, and make the assumptions that E(ST ) = S0, E(S2
T − T ) = S2

0 . Then
the probability pk of ultimate ruin satisfies

0 · pk + N · (1 − pk) = k, 0 · pk + N2 · (1 − pk)− E(T ) = k2,



[12.1.5]–[12.1.9] Solutions Martingales

and therefore pk = 1 − (k/N) and E(T ) = k(N − k).

5. (i) By Exercise (12.1.2), for r ≥ i ,

E(Yr Yi ) = E
{

E(Yr Yi | Fi )
}

= E
{

Yi E(Yr | Fi )
}

= E(Y 2
i ),

an answer which is independent of r . Therefore

E
{
(Yk − Yj )Yi

}
= E(Yk Yi )− E(Yj Yi ) = 0 if i ≤ j ≤ k.

(ii) We have that

E
{
(Yk − Yj )

2
∣∣Fi

}
= E(Y 2

k | Fi )− 2E(Yk Yj | Fi )+ E(Y 2
j | Fi ).

Now E(Yk Yj | Fi ) = E
{

E(Yk Yj | Fj )
∣∣Fi

}
= E(Y 2

j | Fi ), and the claim follows.

(iii) Taking expectations of the last conclusion,

(∗) 0 ≤ E
{
(Yk − Yj )

2} = E(Y 2
k )− E(Y 2

j ), j ≤ k.

Now
{

E(Y 2
n ) : n ≥ 1

}
is non-decreasing and bounded, and therefore converges. Therefore, by (∗),{

Yn : n ≥ 1
}

is Cauchy convergent in mean square, and therefore convergent in mean square, by
Problem (7.11.11).

6. (i) Using Jensen’s inequality (Exercise (7.9.4)),

E
(
u(Yn+1)

∣∣Fn

)
≥ u

(
E(Yn+1 | Fn)

)
= u(Yn).

(ii) It suffices to note that |x |, x2, and x+ are convex functions of x ; draw pictures if you are in doubt
about these functions.

7. (i) This follows just as in Exercise (12.1.6), using the fact that u{E(Yn+1 | Fn)} ≥ u(Yn) in this
case.

(ii) The function x+ is convex and non-decreasing. Finally, let {Sn : n ≥ 0} be a simple random walk

whose steps are +1 with probability p (= 1 − q > 1
2 ) and −1 otherwise. If Sn < 0, then

E
(
|Sn+1|

∣∣Fn

)
= p(|Sn| − 1)+ q(|Sn | + 1) = |Sn| − (p − q) < |Sn|;

note that P(Sn < 0) > 0 if n ≥ 1. The same example suffices in the remaining case.

8. Clearly E|λ−nψ(Xn)| ≤ λ−n sup{|ψ( j)| : j ∈ S}. Also,

E
(
ψ(Xn+1)

∣∣Fn

)
=
∑

j∈S

pXn , jψ( j) ≤ λψ(Xn)

where Fn = σ(X1, X2, . . . , Xn). Divide by λn+1 to obtain that the given sequence is a supermartin-
gale.

9. Since var(Z1) > 0, the function G , and hence also Gn , is a strictly increasing function on [0, 1].
Since s = Gn+1(Hn+1(s)) = Gn(G(Hn+1(s))) and Gn(Hn(s)) = s, we have that G(Hn+1(s)) =
Hn(s). With Fm = σ(Zk : 0 ≤ k ≤ m),

E
(

Hn+1(s)
Zn+1

∣∣Fn

)
= G(Hn+1(s))

Zn = Hn(s)
Zn .
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Martingale differences and Hoeffding’s inequality Solutions [12.2.1]–[12.2.4]

12.2 Solutions. Martingale differences and Hoeffding’s inequality

1. Let Fi = σ({Vj ,Wj : 1 ≤ j ≤ i }) and Yi = E(Z | Fi ). With Z( j) the maximal worth attainable
without using the j th object, we have that

E
(

Z( j)
∣∣Fj

)
= E

(
Z( j)

∣∣Fj−1

)
, Z( j) ≤ Z ≤ Z( j)+ M.

Take conditional expectations of the second inequality, given Fj and given Fj−1, and deduce that
|Yj − Yj−1| ≤ M . Therefore Y is a martingale with bounded differences, and Hoeffding’s inequality
yields the result.

2. Let Fi be the σ -field generated by the (random) edges joining pairs (va, vb) with 1 ≤ a, b ≤ i ,
and let χi = E(χ | Fi ). We write χ( j) for the minimal number of colours required in order to colour
each vertex in the graph obtained by deleting vj . The argument now follows that of the last exercise,
using the fact that χ( j) ≤ χ ≤ χ( j)+ 1.

3. (a) We shall use the inequalities e−x ≤ 1 − x + 1
2 x2 for x ≥ 0, and 1 + x ≤ ex for x ∈ R. For

θ ≥ 0,

E(eθX | Y ) = ebθE(e−θ(b−X) | Y )

≤ ebθ
[
1 − θE(b − X | Y )+ 1

2 θ
2E((b − X)2 | Y )

]

≤ ebθ exp
{
−bθ + θE(X | Y )+ 1

2θ
2E((b − X)2 | Y )

}

≤ exp
{

1
2 θ

2(b2 + σ 2)
}
.

(b) One may extend the proof of Hoeffding’s inequality, Theorem (12.2.3). Alternatively, one may
use induction on n. For t, θ ≥ 0, by part (a),

(*) P(M1 ≥ t) ≤ e−θ t E(eθD1) ≤ e−θ t exp
{

1
2θ

2(b2
1 + σ 2

1 )
}
,

which is minimized by the choice θ = t/(b2
1 + σ 2

1 ).

Let θ ≥ 0. We shall prove by induction that, for n ≥ 1,

Hn : E(eθMn ) ≤ exp

{
1
2θ

2
n∑

r=1

(b2
r + σ 2

r )

}
.

Trivially, H0 holds. Assume that Hn holds for some n ≥ 0. Then

E(eθMn+1 | Mn) = eθMn E(eθDn+1 | Mn),

so that

E(eθMn+1) ≤ exp

{
1
2 θ

2
n∑

r=1

(b2
r + σ 2

r )

}
exp
{

1
2θ

2(b2
n+1 + σ 2

n+1)
}
,

by Hn and part (a). Hn+1 follows. The argument is completed as in (*).

4. Note that, for r < s,

E(Dr Ds) = E
(
E(Dr Ds | Fs−1)

)
= E

(
Dr E(Ds | Fs−1)

)
= 0,

by the pull-through property and the definition of a martingale. Therefore,

Xn = M2
n − Qn = 2

∑

1≤r<s≤n

Dr Ds

has zero mean and satisfies E(Xn | Fn−1) = Xn−1, as required. The martingale property follows
likewise for (Yn) on noting that

E
(
E(D2

r | Fr−1)
∣∣Fn−1

)
= E(D2

r | Fr−1) if r < n.
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12.3 Solutions. Crossings and convergence

1. Let T1 = min{n : Yn ≥ b}, T2 = min{n > T1 : Yn ≤ a}, and define Tk inductively by

T2k−1 = min{n > T2k−2 : Yn ≥ b}, T2k = min{n > T2k−1 : Yn ≤ a}.

The number of downcrossings by time n is Dn(a, b; Y ) = max{k : T2k ≤ n}.
(a) Between each pair of upcrossings of [a, b], there must be a downcrossing, and vice versa. Hence
|Dn(a, b; Y )− Un(a, b; Y )| ≤ 1.

(b) Let Ii be the indicator function of the event that i ∈ (T2k−1, T2k ] for some k, and let

Zn =
n∑

i=1

Ii (Yi − Yi−1), n ≥ 0.

It is easily seen that

Zn ≤ −(b − a)Dn(a, b; Y )+ (Yn − b)+,

whence

(∗) (b − a)EDn(a, b; Y ) ≤ E
{
(Yn − b)+

}
− E(Zn).

Now Ii is Fi−1-measurable, since

{Ii = 1} =
⋃

k

(
{T2k−1 ≤ i − 1} \ {T2k ≤ i − 1}

)
.

Therefore,

E(Zn − Zn−1) = E
{

E
(

In(Yn − Yn−1)
∣∣Fn−1

)}
= E

{
In

(
E(Yn | Fn−1)− Yn−1

)}
≥ 0

since In ≥ 0 and Y is a submartingale. It follows that E(Zn) ≥ E(Zn−1) ≥ · · · ≥ E(Z0) = 0, and
the final inequality follows from (∗).

2. If Y is a supermartingale, then −Y is a submartingale. Upcrossings of [a, b] by Y correspond to
downcrossings of [−b,−a] by −Y , so that

EUn(a, b; Y ) = EDn(−b,−a; −Y ) ≤
E{(−Yn + a)+}

b − a
=

E{(Yn − a)−}
b − a

,

by Exercise (12.3.1). If a, Yn ≥ 0 then (Yn − a)− ≤ a.

3. The random sequence {ψ(Xn) : n ≥ 1} is a bounded supermartingale, which converges a.s. to
some limit Y . The chain is irreducible and recurrent, so that each state is visited infinitely often a.s.;
it follows that limn→∞ ψ(Xn) cannot exist (a.s.) unless ψ is a constant function.

4. The sequence Y is a martingale since Yn is the sum of independent variables with zero means.

Also
∑∞

1 P(Zn 6= 0) =
∑∞

1 n−2 < ∞, implying by the Borel–Cantelli lemma that Zn = 0 except
for finitely many values of n (a.s.); therefore the partial sum Yn converges a.s. as n → ∞ to some
finite limit.

It is easily seen that an = 5an−1 and therefore an = 8 ·5n−2, if n ≥ 3. It follows that |Yn | ≥ 1
2 an

if and only if |Zn | = an . Therefore

E|Yn| ≥ 1
2 anP(|Yn | ≥ 1

2 an) = 1
2 anP(|Zn | = an) =

an

2n2
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which tends to infinity as n → ∞.

5. Take Fn = σ(X1, X2, . . . , Xn). For n ≥ r ,

E(Mn+1 | Fn) =
1

(n + 1)(n + 2)
E(Sn + Xn+1 | Fn)

=
1

(n + 1)(n + 2)

[
Sn +

2

n
(X1 + · · · + Xn)

]
=

Sn

n(n + 1)
= Mn,

and

E(Mn) = E(Mr ) =
1

r(r + 1)
(x1 + x2 + · · · + xr ).

Further details of random adding may be found in Problem (3.11.42), and in Clifford and Stirzaker
2019.

6. Clearly, E|Mn| < ∞. Furthermore, with Fn = σ(Bm, Rm : m ≤ n),

E(Mn+1 | Fn) =
Bn

Bn + Rn
(Bn − Rn − 1)(Bn + Rn)+

Rn

Bn + Rn
(Bn − Rn + 1)(Bn + Rn)

= Mn .

Now Bn + Rn − 1 = n → ∞, and Bn − Rn 6= 0 infinitely often by construction, so almost-sure
convergence is impossible.

12.4 Solutions. Stopping times

1. We have that

{T1 + T2 = n} =
n⋃

k=0

(
{T1 = k} ∩ {T2 = n − k}

)
,

{
max{T1, T2} ≤ n

}
= {T1 ≤ n} ∩ {T2 ≤ n},

{
min{T1, T2} ≤ n

}
= {T1 ≤ n} ∪ {T2 ≤ n}.

Each event on the right-hand side lies in Fn .

2. Let Fn = σ(X1, X2, . . . , Xn) and Sn = X1 + X2 + · · · + Xn . Now

{N(t) + 1 = n} = {Sn−1 ≤ t} ∩ {Sn > t} ∈ Fn .

3. (Y +,FFF) is a submartingale, and T = min{k : Yk ≥ x} is a stopping time. Now 0 ≤ T ∧ n ≤ n,

so that E(Y +
0 ) ≤ E(Y +

T ∧n) ≤ E(Y +
n ), whence

E(Y +
n ) ≥ E

(
Y +

T ∧n I{T ≤n}
)

≥ xP(T ≤ n).

4. We may suppose that E(Y0) < ∞. With the notation of the previous solution, we have that

E(Y0) ≥ E
(
YT ∧n

)
≥ E

(
YT ∧n I{T ≤n}

)
≥ xP(T ≤ n).

5. It suffices to prove that EYS ≤ EYT , since the other inequalities are of the same form but with
different choices of pairs of stopping times. Let Im be the indicator function of the event {S < m ≤ T },
and define

Zn =
n∑

m=1

Im(Ym − Ym−1), 0 ≤ n ≤ N .

529
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Note that Im is Fm−1-measurable, so that

E(Zn − Zn−1) = E
{

InE(Yn − Yn−1 | Fn−1)
}

≥ 0,

since Y is a submartingale. Therefore E(ZN ) ≥ E(ZN−1) ≥ · · · ≥ E(Z0) = 0. On the other hand,
ZN = YT − YS , and therefore E(YT ) ≥ E(YS).

6. De Moivre’s martingale is Yn = (q/p)Sn , where q = 1 − p. Now Yn ≥ 0, and E(Y0) = 1, and
the maximal inequality gives that

P

(
max

0≤m≤n
Sm ≥ x

)
= P

(
max

0≤m≤n
Ym ≥ (q/p)x

)
≤ (p/q)x .

Take the limit as n → ∞ to find that S∞ = supm Sm satisfies

(∗) E(S∞) =
∞∑

x=1

P(S∞ ≥ x) ≤
p

q − p
.

We can calculate E(S∞) exactly as follows. It is the case that S∞ ≥ x if and only if the walk
ever visits the point x , an event with probability f x for x ≥ 0, where f = p/q (see Exercise (5.3.1)).
The inequality of (∗) may be replaced by equality.

7. (a) First, ∅ ∩ {T ≤ n} = ∅ ∈ Fn . Secondly, if A ∩ {T ≤ n} ∈ Fn then

Ac ∩ {T ≤ n} = {T ≤ n} \
(

A ∩ {T ≤ n}
)

∈ Fn .

Thirdly, if A1, A2, . . . satisfy Ai ∩ {T ≤ n} ∈ Fn for each i , then

(⋃

i

Ai

)
∩ {T ≤ n} =

⋃

i

(
Ai ∩ {T ≤ n}

)
∈ Fn .

Therefore FT is a σ -field.

For each integer m, it is the case that

{T ≤ m} ∩ {T ≤ n} =
{

{T ≤ n} if m > n,

{T ≤ m} if m ≤ n,

an event lying in Fn . Therefore {T ≤ m} ∈ FT for all m.

(b) Let A ∈ FS . Then, for any n,

(
A ∩ {S ≤ T }

)
∩ {T ≤ n} =

n⋃

m=0

(
A ∩ {S ≤ m}

)
∩ {T = m},

the union of events in Fn , which therefore lies in Fn . Hence A ∩ {S ≤ T } ∈ FT .

(c) We have {S ≤ T } = �, and (b) implies that A ∈ FT whenever A ∈ FS .

8. (a) For any vector x ∈ Rr ,

P
(
(XT +1, . . . , XT +r ) = x

)
=

n−r∑

t=1

P
(
{T = t} ∩

{
(XT +1, . . . , XT +r ) = x

})

=
n−r∑

t=1

P
(
{T = t} ∩

{
(Xn−r+1, . . . , Xn) = x

})

= P
(
(Xn−r+1, . . . , Xn) = x

)

= P
(
(X1, . . . , Xr ) = x

)
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Optional stopping Solutions [12.5.1]–[12.5.4]

where we used exchangeability twice and the fact P(T ≤ n − r) = 1.

(b) The sequence I1, I2, . . . , Iv+w of indicators of whiteness of the drawn ball is exchangeable, and
T is a stopping time. Therefore, by part (a),

P(IT +1 = 1) = P(I1 = 1) =
w

v + w
.

12.5 Solutions. Optional stopping

1. Under the conditions of (a) or (b), the family {YT ∧n : n ≥ 0} is uniformly integrable. Now
T ∧ n → T as n → ∞, so that YT ∧n → YT a.s. Using uniform integrability, E(YT ∧n) → E(YT ),
and the claim follows by the fact that E(YT ∧n) = E(Y0).

2. It suffices to prove that {YT ∧n : n ≥ 0} is uniformly integrable. Recall that {Xn : n ≥ 0} is
uniformly integrable if

lim
a→∞

{
sup

n
E
(
|Xn |I{|Xn |≥a}

)}
→ 0 as a → ∞.

(a) Now,

E
(
|YT ∧n|I{|YT ∧n |≥a}

)
= E

(
|YT |I{T ≤n,|YT |≥a}

)
+ E

(
|Yn |I{T>n,|Yn |≥a}

)

≤ E
(
|YT |I{|YT |≥a}

)
+ E

(
|Yn |I{T>n}

)
= g(a)+ h(n),

say. We have that g(a) → 0 as a → ∞, since E|YT | < ∞. Also h(n) → 0 as n → ∞,
so that supn≥N h(n) may be made arbitrarily small by suitable choice of N . On the other hand,

E
(
|Yn |I{|Yn |≥a}

)
→ 0 as a → ∞ uniformly in n ∈ {0, 1, . . . , N}, and the claim follows.

(b) Since Y +
n defines a submartingale, we have that supn E(Y +

T ∧n) ≤ supn E(Y +
n ) < ∞, the second

inequality following by the uniform integrability of {Yn}. Using the martingale convergence theorem,
YT ∧n → YT a.s. where E|YT | < ∞. Now

E|YT ∧n − YT | = E
(
|Yn − YT |I{T>n}

)
≤ E

(
|Yn |I{T>n}

)
+ E

(
|YT |I{T>n}

)
.

Also P(T > n) → 0 as n → ∞, so that the final two terms tend to 0 (by the uniform integrability of

the Yi and the finiteness of E|YT | respectively). Therefore YT ∧n
1−→ YT , and the claim follows by the

standard theorem (7.10.3).

3. By uniform integrability, Y∞ = limn→∞ Yn exists a.s. and in mean, and Yn = E(Y∞ | Fn).

(a) On the event {T = n} it is the case that YT = Yn and E(Y∞ | FT ) = E(Y∞ | Fn); for the
latter statement, use the definition of conditional expectation. It follows that YT = E(Y∞ | FT ),
irrespective of the value of T .

(b) We have from Exercise (12.4.7) that FS ⊆ FT . Now YS = E(Y∞ | FS) = E{E(Y∞ | FT ) |
FS) = E(YT | FS).

4. Let T be the time until absorption, and note that {Sn} is a bounded, and therefore uniformly
integrable, martingale. Also P(T < ∞) = 1 since T is no larger than the waiting time for N

consecutive steps in the same direction. It follows that E(S0) = E(ST ) = NP(ST = N), so that

P(ST = N) = E(S0)/N . Secondly, {S2
n − n : n ≥ 0} is a martingale (see Exercise (12.1.4)), and the

optional stopping theorem (if it may be applied) gives that

E(S2
0) = E(S2

T − T ) = N2P(ST = N) − E(T ),
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and hence E(T ) = NE(S0)− E(S2
0) as required.

It remains to check the conditions of the optional stopping theorem. Certainly P(T < ∞) = 1,

and in addition E(T 2) < ∞ by the argument above. We have that E|S2
T − T | ≤ N2 + E(T ) < ∞.

Finally,

E
{
(S2

n − n)I{T>n}
}

≤ (N2 + n)P(T > n) → 0

as n → ∞, since E(T 2) < ∞.

5. Let Fn = σ(S1, S2, . . . , Sn). It is immediate from the identity cos(A + λ) + cos(A − λ) =
2 cos A cosλ that

E(Yn+1 | Fn) =
cos[λ(Sn + 1 − 1

2 (b − a))] + cos[λ(Sn − 1 − 1
2 (b − a))]

2(cos λ)n+1
= Yn,

and therefore Y is a martingale (it is easy to see that E|Yn | < ∞ for all n).

Suppose that 0 < λ < π/(a + b), and note that 0 ≤ |λ{Sn − 1
2 (b − a)}| < 1

2λ(a + b) < 1
2π for

n ≤ T . Now YT ∧n constitutes a martingale which satisfies

(∗)
cos{ 1

2λ(a + b)}
(cos λ)T ∧n

≤ YT ∧n ≤
1

(cos λ)T
.

If we can prove that E{(cos λ)−T } < ∞, it will follow that {YT ∧n} is uniformly integrable. This will
imply in turn that E(YT ) = limn→∞ E(YT ∧n) = E(Y0), and therefore

cos{ 1
2λ(a + b)}E{(cos λ)−T } = cos{ 1

2λ(b − a)}

as required. We have from (∗) that

E(Y0) = E(YT ∧n) ≥ cos{ 1
2λ(a + b)}E{(cos λ)−T ∧n}.

Now T ∧ n → T as n → ∞, implying by Fatou’s lemma that

E{(cos λ)−T } ≤
E(Y0)

cos{ 1
2λ(a + b)}

=
cos{ 1

2λ(a − b)}
cos{ 1

2λ(a + b)}
.

6. (a) The occurrence of the event {U = n} depends on S1, S2, . . . , Sn only, and therefore U is a
stopping time. Think of U as the time until the first sequence of five consecutive heads in a sequence
of coins tosses. Using the renewal-theory argument of Problem (10.6.17), we find that E(U) = 62.

(b) Knowledge of S1, S2, . . . , Sn is insufficient to determine whether or not V = n, and therefore V

is not a stopping time. Now E(V ) = E(U) − 5 = 57.

(c) W is a stopping time, since it is a first-passage time. Also E(W ) = ∞ since the walk is null

recurrent.

7. With the usual notation,

E(Mm+n | Fm) = E

( m∑

r=0

Sr +
m+n∑

r=m+1

Sr − 1
3 (Sm+n − Sm + Sm)

3

∣∣∣∣Fm

)

= Mm + nSm − SmE{(Sm+n − Sm)
2}

= Mm + nSm − nSmE(X2
1) = Mm .
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Thus {Mn : n ≥ 0} is a martingale, and evidently T is a stopping time. The conditions of the optional
stopping theorem (12.5.1) hold, and therefore, by a result of Example (3.9.6),

a − 1
3 a3 = M0 = E(MT ) = E

( T∑

r=0

Sr

)
− 1

3 K 3 ·
a

K
.

8. We partition the sequence into consecutive batches of a + b flips. If any such batch contains only

1’s, then the game is over. Hence P(T > n(a + b)) ≤ {1 − ( 1
2 )

a+b}n → 0 as n → ∞. Therefore,

E|S2
T − T | ≤ E(S2

T )+ E(T ) ≤ (a + b)2 + E(T ) < ∞,

and

E
[
(S2

T − T )I{T>n}
]

≤ (a + b)2P(T > n)+ E(T I{T>n}) → 0 as n → ∞.

9. The sequence Gn − nq is a martingale, and real-world constraints entail E(T ) < ∞. By the
optional stopping theorem, E(GT ) = qE(T ), and likewise E(BT ) = pE(T ).

We cannot know E(GT /BT ) without further knowledge of the definition of T . Contrast “stop at
the first boy”, for which E(GT /BT ) = q/p, with “stop at the first girl”, for which E(GT /BT ) = ∞.

10. By the martingale property, p00 = 1, since otherwise E(Xn+1 | Xn = 0) > Xn . Likewise,
pbb = 1. Since Xn is uniformly bounded, it converges a.s. to some X , so that Xn = X for all but
finitely many values of n. By the given communication property, X ∈ {0, b}. By the optional stopping
theorem with T the time of absorption, X0 = E(XT ) = bP(XT = b)+ 0.

12.6 Solution. The maximal inequality

1. (a) For r < s,

E(Dr Ds) = E
(
E(Dr Ds | Fs−1)

)
= E

(
Dr E(Ds | Fs−1)

)
= 0.

(b) By the Doob–Kolmogorov inequality (7.8.2), for ǫ > 0,

P

(
max

1≤r≤n
|Mr | > nǫ

)
≤

1

n2ǫ2
E(M2

n ) =
1

n2ǫ2

n∑

r=1

σ 2
r → 0 as n → ∞,

by the assumption and part (a).

(c) This is the martingale version of Exercise (7.8.2). The sequence Zn =
∑n

r=1 Dr/r is a zero-mean
martingale with variance satisfying

E(Z2
n) =

n∑

r=1

1

r2
σ 2

r →
∞∑

r=1

1

r2
σ 2

r < ∞ as n → ∞,

by the assumption and part (a). By the martingale convergence theorem (12.3.1) (see also Theo-

rem (7.8.1)), the limit Zn
a.s.−−→ Z exists as n → ∞, and it follows by Kronecker’s lemma that

n−1∑n
r=1 Dr = n−1Mn

a.s.−−→ 0.
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12.7 Solutions. Backward martingales and continuous-time martingales

1. Let s ≤ t . We have that E(η(X (t)) | Fs , Xs = i ) =
∑

j pi j (t − s)η( j). Hence

d

dt
E
(
η(X (t))

∣∣Fs, Xs = i
)

=
(
Pt−sGηηη′)

i
= 0,

so that E(η(X (t)) | Fs, Xs = i ) = η(i ), which is to say that E(η(X (t)) | Fs) = η(X (s)).

2. Let W (t) = exp{−θN(t) + λt (1 − e−θ )} where θ ≥ 0. It may be seen that W (t ∧ Ta), t ≥ 0,
constitutes a martingale. Furthermore

|W (t ∧ Ta)| ≤ exp
{
λ(t ∧ Ta)(1 − e−θ )

}
↑ exp

{
λTa(1 − e−θ )

}
as t → ∞,

where, by assumption, the limit has finite expectation for sufficiently small positive θ (this fact may be
checked easily). In this case, {W (t ∧ Ta) : t ≥ 0} is uniformly integrable. Now W (t ∧ Ta) → W (Ta)

a.s. as t → ∞, and it follows by the optional stopping theorem that

1 = E(W (0)) = E
(
W (t ∧ Ta)

)
→ E(W (Ta)) = e−θaE{eλTa(1−e−θ )}.

Write s = e−θ to obtain s−a = E{eλTa(1−s)}. Differentiate at s = 1 to find that a = λE(Ta) and

a(a + 1) = λ2E(T 2
a ), whence the claim is immediate.

The last part is elementary since Ta is the sum of a independent random variables with the

exponential distribution with parameter λ. Another way is to make the change of variables eθ =
λ/(λ− i s) in the above martingale. Then check the conditions of the optional stopping theorem, and
apply that theorem to obtain the answer.

3. Let Gm be the σ -field generated by the two sequences of random variables Sm, Sm+1 . . . , Sn and
Um+1,Um+2, . . . ,Un . It is a straightforward exercise in conditional density functions to see that

E(Sm | Gm+1) =
m

m + 1
Sm+1, E(U−1

m+1 | Gm+1) =
∫ Um+2

0

(m + 1)xm−1

(Um+2)
m+1

dx =
m + 1

mUm+2
,

whence E(Rm | Gm+1) = Rm+1 as required. [The integrability condition is elementary.]

Let T = max{m : Rm ≥ 1} with the convention that T = 1 if Rm < 1 for all m. As in the closely
related Example (12.7.6), T is a stopping time. We apply the optional stopping theorem (12.7.5) to
the backward martingale R to obtain that E(RT | Gn) = Rn = Sn/t . Now, RT ≥ 1 on the event
{Rm ≥ 1 for some m ≤ n}, whence

y

t
= E(RT | Sn = y) ≥ P

(
Rm ≥ 1 for some m ≤ n

∣∣ Sn = y
)
.

[Equality may be shown to hold. See Karlin and Taylor (1981, pp. 110–113), and Example (12.7.6).]

4. (a) Use the facts that:

W (t) =
[
W (t + s)− W (s)

]
+ W (s),

W (t)2 − t =
[
2W (s)(W (t)− W (s))+ (W (t)− W (s))2 − (t − s)

]
+ W (s)2 − s,

and likewise for cases (iii) and (iv). Now take conditional expectation given Fs to obtain the martingale
property. It is elementary that each has finite expectation.

(b) Find s such that P(|W (s)| ≥ a) ≥ 1
2 . Then P(T > ks) ≤ ( 1

2 )
k , so that E(T n) < ∞. By the

optional stopping theorem applied to the martingale W (t)2 − t with bounded stopping time T ∧ t , we
have that

0 = E
(
W (T ∧ t)2

)
− E(T ∧ t) → a2 − E(T ) as t → ∞,
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where we have applied the bounded convergence theorem to the first term, and the monotone conver-

gence theorem to the second. Hence, E(T ) = a2. By the same argument applied to the martingale of

case (iv), we obtain a4 − 6a2E(T ) = −3E(T 2). The formula E(T 2) = 5
3 a4 follows.

5. It is elementary that E|M(t)| < ∞. By independence, for s < t ,

E
(
Y (t)X (t)2

∣∣Fs

)
= E(Y (t) | Fs)E(X (t)

2 | Fs) = Y (s)
[
X (s)2 + t − s

]
,

since Y (t) and X (t)2 − t are martingales. (See Exercise (12.7.4a).) Also, for s < t ,

E

(∫ t

0
Y (u) du

∣∣∣∣ Fs

)
=
∫ s

0
Y (u) du +

∫ t

s
Y (s) du =

∫ s

0
Y (u) du + (t − s)Y (s),

and the result follows.

6. Let
M(t) = |X (t) + iY (t)|2 − 2t = X (t)2 + Y (t)2 − 2t.

As in Example (12.7.4a), M is a martingale with respect to the natural filtration Ft = σ(X (s), Y (s) :
s ≤ t). The random variable T is a stopping time, and is a.s. finite since

P(T > t) ≤ P(|X (t)| < 1) → 0 as t → ∞.

For fixed t > 0, M is uniformly bounded on the interval [0, T ∧ t], so that

E(M(T ∧ t)) = E(X (T ∧ t)2)+ E(Y (T ∧ t)2)− 2E(T ∧ t))

= E(M(0)) = |z|2.
Take the limit as t → ∞, and use the dominated and monotone convergence theorems where appro-
priate, to find that

1 = E
(

X (T )2 + Y (T )2
)

= |z|2 + 2E(T ).

7. (a) It is easy to check that Q is a martingale. Let T = inf
{

t > 0 : Q(t) ∈ {−m, n}
}

, so that Q

is uniformly bounded on the time interval [0, T ]. By the optional stopping theorem, with the obvious
notation, p−m + pn = 1 and

−mp−m + npn = 0, whence pn =
m

m + n
= 1 − p−m .

(b) One may check that the process Q(t)2 − 2λt is also a martingale. By optional stopping again,

2λE(T ) = E(Q(T )2) =
m2n

m + n
+

n2m

m + n
= mn,

whence E(T ) = mn/(2λ). These results may also be obtained using the imbedded random walk.

8. (a) The increment N((r +1)t/n)− N(r t/n) is independent of Frt/n with the Poisson distribution

with second moment (λt/n)+ (λt/n)2.

(b) One may define the optional quadratic variation of a continuous-time martingale very much as
in the discrete case of Exercise (12.2.4). With probability 1, N(t) − λt is finite, and the path of the
process over the interval [0, t] is continuous except for N(t) distinct unit jumps upwards. Therefore,
for a partition 0 = s0 < s1 < · · · < sn = t of [0, t] with ǫ = max{si+1 − si : i = 0, 1, . . . , n − 1}
and ǫ > 0 sufficiently small,

n−1∑

i=0

[
N(si+1)− N(si )− λ(si+1 − si )

]2 = N(t) + o(ǫ).

(c) By Example (12.7.9), (N(t) − λt)2 − λt and N(t) − λt are martingales with respect to the same
natural filtration. Therefore, their difference M(t) is also a martingale.
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[12.9.1]–[12.9.5] Solutions Martingales

12.9 Solutions to problems

1. Clearly E(Zn) ≤ (µ + m)n , and hence E|Yn | < ∞. Secondly, Zn+1 may be expressed as∑Zn
i=1 X i + A, where X1, X2, . . . are the family sizes of the members of the nth generation, and A is

the number of immigrants to the (n + 1)th generation. Therefore E(Zn+1 | Zn) = µZn + m, whence

E(Yn+1 | Zn) =
1

µn+1

{
µZn + m

(
1 −

1 − µn+1

1 − µ

)}
= Yn .

2. Each birth in the (n +1)th generation is to an individual, say the sth, in the nth generation. Hence,
for each r , B(n+1),r may be expressed in the form B(n+1),r = Bn,s + B ′

j (s), where B ′
j (s) is the age

of the parent when its j th child is born. Therefore

E

{∑

r

e−θB(n+1),r

∣∣∣∣Fn

}
= E

{∑

s, j

e
−θ(Bn,s+B′

j (s))
∣∣∣∣Fn

}
=
∑

s

e−θBn,s M1(θ),

which gives that E(Yn+1 | Fn) = Yn . Finally, E(Y1(θ)) = 1, and hence E(Yn(θ)) = 1.

3. If x, c > 0, then

(∗) P

(
max

1≤k≤n
Yk > x

)
≤ P

(
max

1≤k≤n
(Yk + c)2 > (x + c)2

)
.

Now (Yk + c)2 is a convex function of Yk , and therefore defines a submartingale (Exercise (12.1.7)).

Applying the maximal inequality to this submartingale, we obtain an upper bound of E{(Yn +c)2}/(x+
c)2 for the right-hand side of (∗). We set c = E(Y 2

n )/x to obtain the result.

4. (a) Note that Zn = Zn−1 + cn{Xn − E(Xn | Fn−1)}, so that (Z,FFF) is a martingale. Let T be
the stopping time T = min{k : ckYk ≥ x}. Then E(ZT ∧n) = E(Z0) = 0, so that

0 ≥ E

{
cT ∧nYT ∧n −

T ∧n∑

k=1

ckE(Xk | Fk−1)

}

since the final term in the definition of Zn is non-negative. Therefore

xP(T ≤ n) ≤ E{cT ∧nYT ∧n} ≤
n∑

k=1

ckE
{

E(Xk | Fk−1)
}
,

where we have used the facts that Yn ≥ 0 and E(Xk | Fk−1) ≥ 0. The claim follows.

(b) Let X1, X2, . . . be independent random variables, with zero means and finite variances, and let

Yj =
∑ j

i=1 X i . Then Y 2
j defines a non-negative submartingale, whence

P

(
max

1≤k≤n
|Yk | ≥ x

)
= P

(
max

1≤k≤n
Y 2

k ≥ x2

)
≤

1

x2

n∑

k=1

E(Y 2
k − Y 2

k−1) =
1

x2

n∑

k=1

E(X2
k ).

5. The function h(u) = |u|r is convex, and therefore Yi (m) = |Si − Sm|r , i ≥ m, defines a
submartingale with respect to the filtration Fi = σ

(
{X j : 1 ≤ j ≤ i }

)
. Apply the HRC inequality of

Problem (12.9.4), with ck = 1, to obtain the required inequality.
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If r = 1, we have that

(∗) E
(
|Sm+n − Sm |

)
≤

m+n∑

k=m+1

E|Zk |

by the triangle inequality. Let m, n → ∞ to find, in the usual way, that the sequence {Sn} converges
a.s.; Kronecker’s lemma (see Exercise (7.8.2)) then yields the final claim.

Suppose 1 < r ≤ 2, in which case a little more work is required. The function h is differentiable,
and therefore

h(v)− h(u) = (v − u)h′(u)+
∫ v−u

0

{
h′(u + x)− h′(u)

}
dx .

Now h′(y) = r |y|r−1sign(y) has a derivative decreasing in |y|. It follows (draw a picture) that

h′(u + x)−h′(u) ≤ 2h′( 1
2 x) if x ≥ 0, and therefore the above integral is no larger than 2h( 1

2 (v−u)).
Apply this with v = Sm+k+1 − Sm and u = Sm+k − Sm , to obtain

E
(
|Sm+k+1 − Sm|r

)
− E

(
|Sm+k − Sm |r

)
≤ E

(
Zm+k+1h′(Sm+k − Sm)

)
+ 2E

(
| 1

2 Zm+k+1|r
)
.

Sum over k and use the fact that

E
(

Zm+k+1h′(Sm+k − Sm)
)

= E
{

h′(Sm+k − Sm)E(Zm+k+1 | Fm+k)
}

= 0,

to deduce that

E
(
|Sm+n − Sm|r

)
≤ 22−r

m+n∑

k=m+1

E
(
|Zk |r

)
.

The argument is completed as after (∗).

6. With Ik = I{Yk=0}, we have that

E(Yn | Fn−1) = E
(

Xn In−1 + nYn−1|Xn |(1 − In−1)

∣∣∣Fn−1

)

= In−1E(Xn)+ nYn−1(1 − In−1)E|Xn| = Yn−1

since E(Xn) = 0, E|Xn| = n−1. Also E|Yn | ≤ E
{
|Xn|(1 + n|Yn−1|)

}
and E|Y1| < ∞, whence

E|Yn | < ∞. Therefore (Y,FFF) is a martingale.

Now Yn = 0 if and only if Xn = 0. Therefore P(Yn = 0) = P(Xn = 0) = 1 − n−1 → 1

as n → ∞, implying that Yn
P−→ 0. On the other hand,

∑
n P(Xn 6= 0) = ∞, and therefore

P(Yn 6= 0 i.o.) = 1 by the second Borel–Cantelli lemma. However, Yn takes only integer values, and
therefore Yn does not converge to 0 a.s. The martingale convergence theorem is inapplicable since
supn E|Yn| = ∞.

7. Assume that t > 0 and M(t) = 1. Then Yn = et Sn defines a positive martingale (with mean 1)
with respect to Fn = σ(X1, X2, . . . , Xn). By the maximal inequality,

P

(
max

1≤k≤n
Sk ≥ x

)
= P

(
max

1≤k≤n
Yk ≥ et x

)
≤ e−t xE(Yn),

and the result follows by taking the limit as n → ∞.

8. The sequence Yn = ξ Zn defines a martingale; this may be seen easily, as in Example (7.7.5).
Now {Yn} is uniformly bounded, and therefore Y∞ = limn→∞ Yn exists a.s. and satisfies E(Y∞) =
E(Y0) = ξ .
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[12.9.9]–[12.9.12] Solutions Martingales

Suppose 0 < ξ < 1. In this case Z1 is not a.s. zero, so that Zn cannot converge a.s. to a constant
c unless c ∈ {0,∞}. Therefore the a.s. convergence of Yn entails the a.s. convergence of Zn to a limit
random variable taking values 0 and ∞. In this case, E(Y∞) = 1 · P(Zn → 0) + 0 · P(Zn → ∞),
implying that P(Zn → 0) = ξ , and therefore P(Zn → ∞) = 1 − ξ .

9. It is a consequence of the maximal inequality that P(Y ∗
n ≥ x) ≤ x−1E(Yn I{Y ∗

n ≥x}) for x > 0.

Therefore

E(Y ∗
n ) =

∫ ∞

0
P(Y ∗

n ≥ x) dx ≤ 1 +
∫ ∞

1
P(Y ∗

n ≥ x) dx

≤ 1 + E

{
Yn

∫ ∞

1
x−1 I(1,Y ∗

n ](x) dx

}

= 1 + E(Yn log+ Y ∗
n ) ≤ 1 + E(Yn log+ Yn)+ E(Y ∗

n )/e.

10. (a) We have, as in Exercise (12.7.1), that

(∗) E
(
h(X (t))

∣∣ B, X (s) = i
)

=
∑

j

pi j (t)h( j) for s < t,

for any event B defined in terms of {X (u) : u ≤ s}. The derivative of this expression, with respect to
t , is (Pt Gh′)i , where Pt is the transition semigroup, G is the generator, and h = (h( j) : j ≥ 0). In
this case,

(Gh′)j =
∑

k

gj kh(k) = λj

{
h( j + 1)− h( j)

}
− µj

{
h( j)− h( j − 1)

}
= 0

for all j . Therefore the left side of (∗) is constant for t ≥ s, and is equal to its value at time s, i.e.
X (s). Hence h(X (t)) defines a martingale.

(b) We apply the optional stopping theorem with T = min{t : X (t) ∈ {0, n}} to obtain E(h(X (T ))) =
E(h(X (0))), and therefore (1 − π(m))h(n) = h(m) as required. It is necessary but not difficult to
check the conditions of the optional stopping theorem.

11. (a) Since Y is a submartingale, so is Y + (see Exercise (12.1.6)). Now

E(Y +
n+m+1 | Fn) = E

{
E(Y +

n+m+1 | Fn+1)
∣∣Fn

}
≥ E(Y +

n+m | Fn).

Therefore {E(Y +
n+m | Fn) : m ≥ 0} is (a.s.) non-decreasing, and therefore converges (a.s.) to a limit

Mn . Also, by monotone convergence of conditional expectation,

E(Mn+1 | Fn) = lim
m→∞

E
{

E(Y +
n+m+1 | Fn+1)

∣∣Fn

}
= lim

m→∞
E(Y +

n+m+1 | Fn) = Mn,

and furthermore E(Mn) = limm→∞ E(Y +
m+n) ≤ M . It is the case that Mn is Fn-measurable, and

therefore it is a martingale.

(b) We have that Zn = Mn −Yn is the difference of a martingale and a submartingale, and is therefore
a supermartingale. Also Mn ≥ Y +

n ≥ 0, and the decomposition for Yn follows.

(c) In this case Zn is a martingale, being the difference of two martingales. Also Mn ≥ E(Y +
n | Fn) =

Y +
n ≥ Yn a.s., and the claim follows.

12. We may as well assume that µ < P since the inequality is trivial otherwise. The moment

generating function of P − C1 is M(t) = e
t (P−µ)+ 1

2σ
2t2

, and we choose t such that M(t) = 1,

i.e. t = −2(P − µ)/σ 2. Now define Zn = min{etYn , 1} and Fn = σ(C1,C2, . . . ,Cn). Certainly
E|Zn| < ∞; also

E(Zn+1 | Fn) ≤ E(etYn+1 | Fn) = etYn M(t) = etYn
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Problems Solutions [12.9.13]–[12.9.15]

and E(Zn+1 | Fn) ≤ 1, implying that E(Zn+1 | Fn) ≤ Zn . Therefore (Zn,Fn) is a positive
supermartingale. Let T = inf{n : Yn ≤ 0} = inf{n : Zn = 1}. Then T ∧ m is a bounded stopping
time, whence E(Z0) ≥ E(ZT ∧m) ≥ P(T ≤ m). Let m → ∞ to obtain the result.

13. Let Fn = σ(R1, R2, . . . , Rn).

(a) 0 ≤ Yn ≤ 1, and Yn is Fn-measurable. Also

E(Rn+1 | Rn) = Rn +
Rn

n + r + b
,

whence Yn satisfies E(Yn+1 | Fn) = Yn . Therefore {Yn : n ≥ 0} is a uniformly integrable martingale,
and therefore converges a.s. and in mean.

(b) In order to apply the optional stopping theorem, it suffices that P(T < ∞) = 1 (since Y is

uniformly integrable). However P(T > n) = 1
2 · 2

3 · · · n
n+1 = (n + 1)−1 → 0. Using that theorem,

E(YT ) = E(Y0), which is to say that E{T/(T + 2)} = 1
2 , and the result follows.

(c) Apply the maximal inequality.

14. As in the previous solution, with Gn the σ -field generated by A1, A2, . . . and Fn ,

E(Yn+1 | Gn) =
(

Rn + An

Rn + Bn + An

)(
Rn

Rn + Bn

)
+
(

Rn

Rn + Bn + An

)(
Bn

Rn + Bn

)

=
Rn

Rn + Bn
= Yn,

so that E(Yn+1 | Fn) = E
{

E(Yn+1 | Gn)
∣∣Fn

}
= Yn . Also |Yn | ≤ 1, and therefore Yn is a martingale.

We need to show that P(T < ∞) = 1. Let In be the indicator function of the event {T > n}. We
have by conditioning on the An that

E(In | A) =
n−1∏

j=0

(
1 −

1

2 + Sj

)
→

∞∏

j=0

(
1 −

1

2 + Sj

)

as n → ∞, where Sj =
∑ j

i=1 Ai . The infinite product equals 0 a.s. if and only if
∑

j (2+ Sj )
−1 = ∞

a.s. By monotone convergence, P(T < ∞) = 1 under this condition. If this holds, we may apply the
optional stopping theorem to obtain that E(YT ) = E(Y0), which is to say that

E

(
1 −

1 + AT

2 + ST

)
=

1

2
.

15. At each stage k, let Lk be the length of the sequence ‘in play’, and let Yk be the sum of its
entries, so that L0 = n, Y0 =

∑n
i=1 xi . If you lose the (k + 1)th gamble, then Lk+1 = Lk + 1 and

Yk+1 = Yk + Zk where Zk is the stake on that play, whereas if you win, then Lk+1 = Lk − 2 and
Yk+1 = Yk − Zk ; we have assumed that Lk ≥ 2, similar relations being valid if Lk = 1. Note that
Lk is a random walk with mean step size −1, implying that the first-passage time T to 0 is a.s. finite,
and has all moments finite. Your profits at time k amount to Y0 − Yk , whence your profit at time T is
Y0, since YT = 0.

Since the games are fair, Yk constitutes a martingale. Therefore E(YT ∧m) = E(Y0) 6= 0 for
all m. However T ∧ m → T a.s. as m → ∞, so that YT ∧m → YT a.s. Now E(YT ) = 0 6=
limm→∞ E(YT ∧m), and it follows that {YT ∧m : m ≥ 1} is not uniformly integrable. Therefore
E(supm YT ∧m) = ∞; see Exercise (7.10.6).

Further results for the Labouchere system may be found in Han and Wang 2019.
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[12.9.16]–[12.9.19] Solutions Martingales

16. Since the game is fair, E(Sn+1 | Sn) = Sn. Also |Sn| ≤ 1 + 2 + · · · + n < ∞. Therefore Sn is
a martingale. The occurrence of the event {N = n} depends only on the outcomes of the coin-tosses
up to and including the nth; therefore N is a stopping time.

A tail appeared at time N − 3, followed by three heads. Therefore the gamblers G1,G2, . . . ,

G N−3 have forfeited their initial capital by time N , while G N−i has had i + 1 successful rounds for

0 ≤ i ≤ 2. Therefore SN = N − (p−1 + p−2 + p−3), after a little calculation. It is easy to check that
N satisfies the conditions of the optional stopping theorem, and it follows that E(SN ) = E(S0) = 0,

which is to say that E(N) = p−1 + p−2 + p−3.

In order to deal with HTH, the gamblers are re-programmed to act as follows. If they win
on their first bet, they bet their current fortune on tails, returning to heads thereafter. In this case,

SN = N − (p−1 + p−2q−1) where q = 1 − p (remember that the game is fair), and therefore

E(N) = p−1 + p−2q−1.

17. Let Fn = σ
(
{X i ,Yi : 1 ≤ i ≤ n}

)
, and note that T is a stopping time with respect to this

filtration. Furthermore P(T < ∞) = 1 since T is no larger than the first-passage time to 0 of either
of the two single-coordinate random walks, each of which has mean 0 and is therefore recurrent.

Let σ 2
1 = var(X1) and σ 2

2 = var(Y1). We have that Un − U0 and Vn − V0 are sums of

independent summands with means 0 and variances σ 2
1 and σ 2

2 respectively. It follows by considering

the martingales (Un −U0)
2−nσ 2

1 and (Vn −V0)
2−nσ 2

2 (see equation (12.5.14) and Exercise (10.2.2))
that

E{(UT − U0)
2} = σ 2

1 E(T ), E{(VT − V0)
2} = σ 2

2 E(T ).

Applying the same argument to (Un + Vn)− (U0 + V0), we obtain

E
{
(UT + VT − U0 − V0)

2
}

= E(T )E{(X1 + Y1)
2} = E(T )(σ 2

1 + 2c + σ 2
2 ).

Subtract the two earlier equations to obtain

(∗) E
{
(UT − U0)(VT − V0)

}
= cE(T )

if E(T ) < ∞. Now UT VT = 0, and in addition E(UT ) = U0, E(VT ) = V0, by Wald’s equation and
the fact that E(X1) = E(Y1) = 0. It follows that −E(U0V0) = cE(T ) if E(T ) < ∞, in which case
c < 0.

Suppose conversely that c < 0. Then (∗) is valid with T replaced throughout by the bounded
stopping time T ∧ m, and hence

0 ≤ E(UT ∧m VT ∧m) = E(U0V0)+ cE(T ∧ m).

Therefore E(T ∧ m) ≤ E(U0V0)/(2|c|) for all m, implying that E(T ) = limm→∞ E(T ∧ m) < ∞,
and so E(T ) = −E(U0V0)/c as before.

18. Certainly 0 ≤ Xn ≤ 1, and in addition Xn is measurable with respect to the σ -field Fn =
σ(R1, R2, . . . , Rn). Also E(Rn+1 | Rn) = Rn − Rn/(52 − n), whence E(Xn+1 | Fn) = Xn .
Therefore Xn is a martingale.

A strategy corresponds to a stopping time. If the player decides to call at the stopping time T , he

wins with (conditional) probability XT , and therefore P(wins) = E(XT ), which equals E(X0) (= 1
2 )

by the optional stopping theorem.

Here is a trivial solution to the problem. It may be seen that the chance of winning is the same
for a player who, after calling “Red Now”, picks the card placed at the bottom of the pack rather than

that at the top. The bottom card is red with probability 1
2 , irrespective of the strategy of the player.

19. (a) A sum s of money in week t is equivalent to a sum s/(1+α)t in week 0, since the latter sum may

be invested now to yield s in week t . If he sells in week t , his discounted costs are
∑t

n=1 c/(1 + α)n
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and his discounted profit is X t/(1 + α)t . He wishes to find a stopping time for which his mean
discounted gain is a maximum.

Now

−
T∑

n=1

(1 + α)−nc =
c

α

{
(1 + α)−T − 1

}
,

so that µ(T ) = E
{
(1 + α)−T ZT

}
− (c/α).

(b) The function h(γ ) = αγ −
∫∞
γ P(Zn > y) dy is continuous and strictly increasing on [0,∞),

with h(0) = −E(Zn) < 0 and h(γ ) → ∞ as γ → ∞. Therefore there exists a unique γ (> 0) such
that h(γ ) = 0, and we choose γ accordingly.

(c) Let Fn = σ(Z1, Z2, . . . , Zn). We have that

E
(
max{Zn, γ }

)
= γ +

∫ ∞

γ
[1 − G(y)] dy = (1 + α)γ

where G(y) = P(Zn ≤ y). Therefore E(Vn+1 | Fn) = (1 + α)−nγ ≤ Vn , so that (Vn,Fn) is a
non-negative supermartingale.

Let µ(τ) be the mean gain of following the strategy ‘accept the first offer exceeding τ − (c/α)’.
The corresponding stopping time T satisfies P(T = n) = G(τ )n(1 − G(τ )), and therefore

µ(τ)+ (c/α) =
∞∑

n=0

E
{
(1 + α)−T ZT I{T =n}

}

=
∞∑

n=0

(1 + α)−nG(τ )n(1 − G(τ ))E(Z1 | Z1 > τ)

=
1 + α

1 + α − G(τ )

{
τ(1 − G(τ ))+

∫ ∞

τ
(1 − G(y)) dy

}
.

Differentiate with care to find that the only value of τ lying in the support of Z1 such that µ′(τ ) = 0
is the value τ = γ . Furthermore this value gives a maximum for µ(τ). Therefore, amongst strategies
of the above sort, the best is that with τ = γ . Note that µ(γ ) = γ (1 + α)− (c/α).

Consider now a general strategy with corresponding stopping time T , where P(T < ∞) = 1. For
any positive integer m, T ∧m is a bounded stopping time, whence E(VT∧m) ≤ E(V0) = γ (1+α). Now
|VT ∧m | ≤

∑∞
i=0 |Vi |, and

∑∞
i=0 E|Vi | < ∞. Therefore {VT ∧m : m ≥ 0} is uniformly integrable.

Also VT ∧m → VT a.s. as m → ∞, and it follows that E(VT ∧m) → E(VT ). We conclude that
µ(T ) = E(VT )− (c/α) ≤ γ (1 + α)− (c/α) = µ(γ ). Therefore the strategy given above is optimal.

(d) In the special case, P(Z1 > y) = (y − 1)−2 for y ≥ 2, whence γ = 10. The target price is
therefore 9, and the mean number of weeks before selling is G(γ )/(1 − G(γ )) = 80.

20. Since G is convex on [0,∞)wherever it is finite, and since G(1) = 1 and G ′(1) < 1, there exists

a unique value of η (> 1) such that G(η) = η. Furthermore, Yn = ηZn defines a martingale with
mean E(Y0) = η. Using the maximal inequality (12.6.6),

P
(
sup

n
Zn ≥ k

)
= P

(
sup

n
Yn ≥ ηk

)
≤

1

ηk−1

for positive integers k. Therefore

E
(
sup

n
Zn

)
≤

∞∑

k=1

1

η − 1
.
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21. Let Mn be the number present after the nth round, so M0 = K , and Mn+1 = Mn − Xn+1, n ≥ 1,
where Xn is the number of matches in the nth round. By the result of Problem (3.11.17), EXn = 1
for all n, whence

E(Mn+1 + n + 1 | Fn) = Mn + n,

where Fn is the σ -field generated by M0,M1, . . . ,Mn . Thus the sequence {Mn + n} is a martingale.
Now, N is clearly a stopping time, and therefore K = M0 + 0 = E(MN + N) = EN .

We have that

E
{
(Mn+1 + n + 1)2 + Mn+1

∣∣Fn

}

= (Mn + n)2 − 2(Mn + n)E(Xn+1 − 1)+ Mn + E
{
(Xn+1 − 1)2 − Xn+1

∣∣Fn

}

≤ (Mn + n)2 + Mn,

where we have used the fact that

var(Xn+1 | Fn) =
{

1 if Mn > 1,

0 if Mn = 1.

Hence the sequence {(Mn + n)2 + Mn} is a supermartingale. By an optional stopping theorem for
supermartingales,

K 2 + K = M2
0 + M0 ≥ E

{
(MN + N)2 + MN

}
= E(N2),

and therefore var(N) ≤ K .

22. In the usual notation,

E
(

M(s + t)
∣∣Fs

)
= E

(∫ s

0
W (u) du +

∫ s+t

s
W (u) du − 1

3

{
W (s + t)− W (s)+ W (s)

}3
∣∣∣∣Fs

)

= M(s)+ tW (s)− W (s)E
(
[W (s + t)− W (s)]2

∣∣Fs

)
= M(s)

as required. We apply the optional stopping theorem (12.7.12) with the stopping time T = inf
{

u :

W (u) ∈ {a, b}
}

. The hypotheses of the theorem follow easily from the boundedness of the process
for t ∈ [0, T ], and it follows that

E

(∫ T

0
W (u) du − 1

3 W (T )3
)

= 0.

Hence the required area A has mean

E(A) = E

(∫ T

0
W (u) du

)
=

1

3
E(W (T )3) =

1

3
a3

(
−b

a − b

)
+

1

3
b3

(
a

a − b

)
.

[We have used the optional stopping theorem twice actually, in that E(W (T )) = 0 and therefore
P(W (T ) = a) = −b/(a − b).]

23. With Fs = σ(W (u) : 0 ≤ u ≤ s), we have for s < t that

E(R(t)2 | Fs) = E
(
|W (s)|2 + |W (t)− W (s)|2 + 2W (s) · (W (t)− W (s))

∣∣Fs

)
= R(s)2 + (t − s),

and the first claim follows. We apply the optional stopping theorem (12.7.12) with T = inf{u :

|W (u)| = a}, as in Problem (12.9.22), to find that 0 = E(R(T )2 − T ) = a2 − E(T ).
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Problems Solutions [12.9.24]–[12.9.25]

24. We apply the optional stopping theorem to the martingale W (t) with the stopping time T to find
that E(W (T )) = −a(1 − pb) + bpb = 0, where pb = P(W (T ) = b). By Example (12.7.10),

W (t)2 − t is a martingale, and therefore, by the optional stopping theorem again,

E
(
(W (T )2 − T

)
= a2(1 − pb)+ b2 pb − E(T ) = 0,

whence E(T ) = ab. For the final part, we take a = b and apply the optional stopping theorem to the

martingale exp[θW (t)− 1
2θ

2t] to obtain

E
(
exp[θW (T )− 1

2 θ
2T ]
)

=
{

e−bθ (1 − pb)+ ebθ pb

}
E(e− 1

2
θ2T

) = 1,

on noting that the conditional distribution of T given W (T ) = b is the same as that given W (T ) = −b.

Therefore, E(e− 1
2
θ2T

) = 1/ cosh(bθ), and the answer follows by substituting s = 1
2θ

2.

25. (a) Note that 0 < Xn < 1 for all n. Now,

P(Xn > Un+1 | Fn) = Xn = 1 − P(Xn < Un+1 | Fn),

so that

E(Xn+1 | Fn) = [(1 − an)Xn + an]Xn + (1 − an)Xn(1 − Xn) = Xn .

Thus X is a uniformly bounded martingale, which therefore converges a.s. and in mean square to some

X∞. By mean square convergence, we have E(X2
n) → E(X2

∞).

(b) By the Doob decomposition (12.1.10), the bounded submartingale X2
n may be expressed in the

form X2
n = Mn + An , where (M,F) is a bounded martingale and An is an increasing bounded

sequence of Fn-measurable random variables. Furthermore,

An+1 − An = E(X2
n+1 | Fn)− X2

n = E
(
(Xn+1 − Xn)

2
∣∣Fn

)
,

whence

A := lim
n→∞

An satisfies A = X2
0 +

∞∑

n=0

E
(
(Xn+1 − Xn)

2
∣∣Fn

)
.

Finally,

E(A) = lim
n→∞

(
E(X2

n)− E(Mn)
)

= E(X2
∞)− E(M0)

where M0 = X2
0 = ρ2 by the Doob decomposition.

(c) By a calculation as in part (a),

E
(
(Xn+1 − Xn)

2
∣∣Fn

)
= a2

n Xn(1 − Xn), n ≥ 1.

By part (b), P(S = A < ∞) = 1.

(d) On taking expectations,

E(A) = ρ2 +
∞∑

n=0

a2
nE
(

Xn(1 − Xn)
)
,

and, in addition, E(Xn(1 − Xn)) → E(X∞(1 − X∞)) as n → ∞. If
∑

n a2
n = ∞, it must be the

case that E(X∞(1 − X∞)) = 0, whence X∞ takes values 0, 1 only. Now, E(X∞) = E(X0) = ρ, so
that P(X∞ = 1) = ρ.
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[12.9.26]–[12.9.27] Solutions Martingales

26. Let x, θ > 0. By Jensen’s inequality, X (t) = eθW (t) is a submartingale. By the maximal
inequality,

P

(
sup

0≤t≤T

W (t) ≥ x

)
= P

(
sup

0≤t≤T

eθW (t) ≥ eθx

)

≤ e−θxE(eθW (T )) = e−θx e
1
2 θ

2T = e
− 1

2 x2/T
,

on setting θ = x/T .

27. Let Zn denote the elapsed time between the (n − 1) and nth claim. The accumulated loss at the
moment of the nth claim is Sn =

∑n
r=1(Xr − ρZr ), and the ruin probability is

r = P(Sn > y for some n).

Now, Sn is the sum of random variables with mean E(X −ρZ) = −θ/(λµρ)where θ = µ−(λ/ρ). In

particular, if θ < 0, then Sn
P→ ∞ by the law of large numbers, whence r = 1. The same conclusion

holds by the central limit theorem when θ = 0. We shall therefore concentrate on the case θ > 0,
which we assume henceforth.

For K > 0, let

T = inf{n ≥ 1 : Sn > y}, T (K ) = inf
{

n ≥ 1 : either Sn ≥ y or Sn ≤ −K
}
,

noting that T (K ) < ∞ a.s., and T (K ) ↑ T ≤ ∞ as K → ∞.

Observe that, with θ = µ− (λ/ρ),

E(eθS1) = E
(
eθX e−ρθ Z

)
=

µ

µ− θ
·

λ

λ+ ρθ
= 1.

By Wald’s identity (12.5.19),

1 = E(eθST (K ))

= E(eθST (K ) | ST (K ) ≥ y)P(ST (K ) ≥ y)+ E(eθST (K ) | ST (K ) ≤ −K )P(ST (K ) ≤ −K ).

Since θ > 0,

E(eθST (K ) | ST (K ) ≤ −K )P(ST (K ) ≤ −K ) ≤ e−θK → 0 as K → ∞.

In addition, by conditioning on T (K ), ST (K )−1, and the event ST (K ) > y, we obtain by the lack-
of-memory property of the exponential distribution that the excess, ST (K ) − y, has the exponential
distribution with parameter µ. Therefore, r = limK→∞ P(ST (K ) ≥ y) satisfies

1 = eθy µ

µ− θ
· r,

as required.
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13

Diffusion processes

13.2 Solution. Brownian motion

1. Let s0 = a, s1, . . . , sn = b be a partition of [a, b]. The associated quadratic variation Qa,b

satisfies

Qa,b =
n−1∑

r=0

[W (sr+1)− W (sr )]
2 ≤

{
max

0≤r<n
|W (sr+1)− W (sr )|

} n−1∑

r=0

|W (sr+1)− W (sr )|.

Since W has continuous sample paths which are uniformly continuous on bounded intervals, the above
maximum converges to 0 as the partition is progressively refined. If the total variation exists, then
the quadratic variation of W is 0 on bounded intervals, which contradicts the fact that Qa,b = b − a

(recall Exercise (8.5.4)).

In a more direct approach, one may use the fact that the increments W (sr+1) − W (sr ) are
independent and normally distributed as N(0, sr+1 − sr ). The ensuing calculation is easiest when
sr+1 − sr = (b − a)/n.

13.3 Solutions. Diffusion processes

1. It is easily seen that

E
{

X (t + h)− X (t)
∣∣ X (t)

}
= (λ− µ)X (t)h + o(h),

E
({

X (t + h)− X (t)
}2 ∣∣ X (t)

)
= (λ+ µ)X (t)h + o(h),

which suggest a diffusion approximation with instantaneous mean a(t, x) = (λ − µ)x and instanta-
neous variance b(t, x) = (λ + µ)x .

2. The following method is not entirely rigorous (it is an argument of the following well-known
type: it is valid when it works, and not otherwise). We have that

∂M

∂t
=
∫ ∞

−∞
eθy ∂ f

∂t
dy =

∫ ∞

−∞

{
θa(t, y)+ 1

2 θ
2b(t, y)

}
eθy f dy,

by using the forward equation and integrating by parts. Assume that a(t, y) =
∑

n αn(t)y
n , b(t, y) =∑

n βn(t)y
n . The required expression follows from the ‘fact’ that

∫ ∞

−∞
eθy yn f dy =

∂n

∂θn

∫ ∞

−∞
eθy f dy =

∂n M

∂θn
.



[13.3.3]–[13.3.8] Solutions Diffusion processes

3. Using Exercise (13.3.2) or otherwise, we obtain the equation

∂M

∂t
= θm M + 1

2θ
2 M

with boundary condition M(0, θ) = 1. The solution is M(t) = exp{ 1
2 θ(2m + θ)t}.

4. Using Exercise (13.3.2) or otherwise, we obtain the equation

∂M

∂t
= −θ

∂M

∂θ
+ 1

2 θ
2M

with boundary condition M(0, θ) = 1. The characteristics of the equation are given by

dt

1
=

dθ

θ
=

2 d M

θ2M
,

with solution M(t, θ) = e
1
4
θ2

g(θe−t ) where g is a function satisfying 1 = e
1
4
θ2

g(θ). Therefore

M = exp{ 1
4 θ

2(1 − e−2t )}.

5. Fix t > 0. Suppose we are given W1(s), W2(s), W3(s), for 0 ≤ s ≤ t . By Pythagoras’s theorem,

R(t + u)2 = X2
1 + X2

2 + X2
3 where the X i are independent N(Wi (t), u) variables. Using the result of

Exercise (5.7.7), the conditional distribution of R(t + u)2 (and hence of R(t + u) also) depends only

on the value of the non-centrality parameter θ = R(t)2 of the relevant non-central χ2 distribution.
It follows that R satisfies the Markov property. This argument is valid for the n-dimensional Bessel
process.

6. By the spherical symmetry of the process, the conditional distribution of R(s +a) given R(s) = x

is the same as that given W (s) = (x, 0, 0). Therefore, recalling the solution to Exercise (13.3.5),

P
(

R(s + a) ≤ y
∣∣ R(s) = x

)

=
∫

(u,v,w):

u2+v2+w2≤y2

1

(2πa)3/2
exp

{
−
(u − x)2 + v2 +w2

2a

}
du dv dw

=
∫ y

ρ=0

∫ 2π

φ=0

∫ π

θ=0

1

(2πa)3/2
exp

{
−
ρ2 − 2ρx cos θ + x2

2a

}
ρ2 sin θ dθ dφ dρ

=
∫ y

0

ρ/x
√

2πa

{
exp

(
−
(ρ − x)2

2a

)
− exp

(
−
(ρ + x)2

2a

)}
dρ,

and the result follows by differentiating with respect to y.

7. Continuous functions of continuous functions are continuous. The Markov property is preserved
because g(·) is single-valued with a unique inverse.

8. (a) Since E(eσW (t)) = e
1
2 σ

2t , this is not a martingale.

(b) This is a Wiener process (see Problem (13.12.1)), and is certainly a martingale.

(c) With Ft = σ(W (s) : 0 ≤ s ≤ t) and t, u > 0,

E

{
(t + u)W (t + u)−

∫ t+u

0
W (s) ds

∣∣∣∣Ft

}
= (t + u)W (t)−

∫ t

0
W (s) ds −

∫ t+u

t
W (t) ds

= tW (t)−
∫ t

0
W (s) ds,
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First passage times Solutions [13.3.9]–[13.4.4]

whence this is a martingale. [The integrability condition is easily verified.]

9. (a) With s < t , S(t) = S(s) exp{a(t − s)+ b(W (t)− W (s))}. Now W (t)− W (s) is independent
of {W (u) : 0 ≤ u ≤ s}, and the claim follows.

(b) S(t) is clearly integrable and adapted to the filtration F = (Ft ) so that, for s < t ,

E
(
S(t)

∣∣Fs

)
= S(s)E

(
exp{a(t − s)+ b(W (t)− W (s))}

∣∣Fs

)
= S(s) exp{a(t − s)+ 1

2 b2(t − s)},

which equals S(s) if and only if a + 1
2 b2 = 0. In this case, E(S(t)) = E(S(0)) = 1.

10. Either find the instantaneous mean and variance, and solve the forward equation, or argue directly
as follows. With s < t ,

P
(
S(t) ≤ y

∣∣ S(s) = x
)

= P
(
bW (t) ≤ −at + log y

∣∣ bW (s) = −as + log x
)
.

Now b(W (t)− W (s)) is independent of W (s) and is distributed as N(0, b2(t − s)), and we obtain on
differentiating with respect to y that

f (t, y | s, x) =
1

y
√

2πb2(t − s)
exp

(
−
(log(y/x)− a(t − s))2

2b2(t − s)

)
, x, y > 0.

11. One needs to check that the functions fxy(t) = f (t, y | 0, x) satisfy

fxy(s + t) =
∫

R

fxz(s) fzy(t) dz, x, y ∈ R, s, t ≥ 0.

13.4 Solutions. First passage times

1. Certainly X has continuous sample paths, and in addition E|X (t)| < ∞. Also, if s < t ,

E
(

X (t)
∣∣Fs

)
= X (s)e

1
2 θ

2(t−s)E
(
eiθ{W (t)−W (s)} ∣∣Fs

)
= X (s)e

1
2 θ

2(t−s)
e
− 1

2 θ
2(t−s) = X (s)

as required, where we have used the fact that W (t)− W (s) is N(0, t − s) and is independent of Fs .

2. Apply the optional stopping theorem to the martingale X of Exercise (13.4.1), with the stopping

time T , to obtain E(X (T )) = 1. Now W (T ) = aT + b, and therefore E(e−ψT +iθb) = 1 where

−ψ = iaθ + 1
2 θ

2. Solve to find that

E(e−ψT ) = e−iθb = exp

{
|a|b − b

√
a2 + 2ψ

}

is the solution which gives the Laplace transform of a density function.

3. We have that T ≤ u if and only if there is no zero in (u, t], an event with probability 1 −
(2/π) cos−1

{√
u/t
}

, and the claim follows on drawing a triangle.

4. By Theorem (13.4.5) and using conditional probability, the required density function is

∫ ∞

0

1
√

2π t
exp

(
−

y2

2t

)
·

x
√

2π t3
exp

(
−

x2

2t

)
dt =

x

π(x2 + y2)
.
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[13.4.5]–[13.4.9] Solutions Diffusion processes

5. This agrees with Theorem (13.4.6) when a = 0. When a < 0, it suffices to show, by the result of
Problem (5.12.18c) or otherwise, that the given density function f has the Laplace transform obtained

in Exercise (13.4.2). One makes the change of variables x = v−2 to obtain

∫ ∞

0
f (x)e−ψx dx =

b
√

2π

∫ ∞

0
2 exp

{
−
ψ

v2
−

a2

2v2
− ab −

1

2
b2v2

}
dv

= e|a|b exp

{
−b

√
a2 + 2ψ

}
.

The logarithm of the Laplace transform is L(ψ) := |a|b − b
√

a2 + 2ψ , with inverse ψ(L) =
−|a|L/b + 1

2 (L/b)
2, which is the cumulant generating function of a normal variable, whence the

name.

6. As in the proof of Theorem (13.4.6), for 0 ≤ w ≤ m,

P
(

M(t) ≥ m, W (t) ≤ w
)

= P
(

M(t) ≥ m, W (t)− W (T (m)) ≤ w − m
)

= P
(

M(t) ≥ m, W (t)− W (T (m)) ≥ m − w
)

= P(W (t) ≥ 2m −w),

where T (m) is the first passage time to m. The claim follows since W (t) has the N(0, t) distribution.

7. The first passage time T (x) has density function as in Theorem (13.4.5). Make the change of

variables y =
√

t , with Jacobian 2y, to deduce that the density function of Y =
√

T (x) is

fY (y) =
2|x |

y2
√

2π
exp

(
−

x2

2y2

)
, y > 0.

Let Z be an N(0, σ 2) variable, and U = 1/|Z |. The density function of U is found by making the

change of variable u = 1/|z| in the N(0, σ 2) density function. The inverse map z 7→ u is two-to-one,
whence

fU (u) =
1

σ
√

2π
·

2

u2
exp

(
−

1

2σ 2u2

)
, u > 0.

Thus fY = fU when σ = 1/|x |.

8. By Theorem (13.4.5) and a change of variables, T (x)
D= x2T (1). Self-similarity holds since, for

a > 0,

T (ax)
D= (ax)2T (1)

D= a2T (x).

By Exercise (13.4.2) with a = 0 and b = x ≥ 0,

E(e−ψT (x)) = e−x
√

2ψ , ψ ≥ 0.

This equation determines the distribution of T (x) as the Lévy first passage density (recall Exercise

(5.10.7)), and furthermore this distribution is 1
2 -stable, by Theorem (8.7.16).

9. Let F denote the natural filtration. With 1 = X (h) − X (0), we have E(1) = axh + o(h) and

E(12) = bxh + o(h). We derive a backward equation for m by conditioning on events in the interval
[0, h] thus:

m(x) = Ex

[
Ex

(
exp

{
−ψ

∫ T

h
X (u) du

)
exp

{
−ψ

∫ h

0
X (u) du

} ∣∣∣∣Fh

)]

= Ex

[
m(x +1)

(
1 − ψxh + o(h)

)]

= Ex [m(x +1)]
(
1 − ψxh + o(h)

)

=
{

m(x)+ E(1)m′(x)+ 1
2 E(12)m′′(x)+ o(h)

}(
1 − ψxh + o(h)

)

= m(x)+ hx
[

1
2 bm′′(x)+ am′(x)− ψm(x)

]
+ o(h),
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Barriers Solutions [13.5.1]–[13.5.3]

where we have taken some liberties over rigour, and, for conciseness, we have subsumed the argument
ψ of the function m. Cancel where possible, divide by h and take the limit as h → 0.

Subject to the boundary conditions m(0, ψ) = 1 and limx→∞ m(x, ψ) = 0 for ψ > 0, the
solution to this second-order equation is

m(x, ψ) = exp

{
−

ax

b
−

x

b

√
a2 + 2bψ

}
.

This may be seen to be the Laplace transform of the first-passage density of Exercise (13.4.2), where

the target line has equation u
√

b = av + x .

13.5 Solutions. Barriers

1. Solving the forward equation subject to the appropriate boundary conditions, we obtain as usual
that

f r(t, y) = g(t, y | d)+ e−2md g(t, y | −d)−
∫ −d

−∞
2me2mx g(t, y | x) dx

where g(t, y | x) = (2π t)
− 1

2 exp
{
−(y − x − mt)2/(2t)

}
. The first two terms tend to 0 as t → ∞,

regardless of the sign of m. As for the integral, make the substitution u = (x − y − mt)/
√

t to obtain,
as t → ∞,

−
∫ −(d+y+mt)/

√
t

−∞
2me2my e

− 1
2 u2

√
2π

du →
{

2|m|e−2|m|y if m < 0,

0 if m ≥ 0.

2. Let A be the event that W is absorbed at a. By the result of Problem (12.9.24), we have Px (A) =
x/a where Px denotes the probability measure conditional on W (0) = x . The transition probability
densities f (y, t | x) := f (y, t | x, 0) of W and C satisfy

fC (y, t | x) dy = Px

(
W (t) ∈ (y, y + dy)

∣∣ A
)

+ o(dy)

=
1

Px (A)
Px

(
W (t) ∈ (y, y + dy)

)
Px (A | W (t) = y)+ o(dy)

=
Py(A)

Px (A)
fW (y, t | x) dy + o(dy),

so that fC (y, t | x) = (y/x) fW (y, t | x). The ‘increment’ 1 = C(t + h)− C(t), given C(t) = c ∈
(0, a), satisfies

Ec(1) =
∫ a

0

y

c
· (y − c) fW (y, h | c) dy + o(h),

whence, by equation (13.3.4), Ec(1)/h → 1/c as h ↓ 0. We have used the facts that W has
instantaneous mean 0 and variance 1. Likewise,

Ec(1
2) =

∫ a

0

y

c
· (y − c)2 fW (y, h | c) dy + o(h) = h + o(h),

since W has instantaneous third moment 0.

3. We shall bravely use Taylor’s theorem without worrying about the analytical details. By condi-
tioning on the increment 1 = C(h)− C(0), the function m(x) = Ex (T ) satisfies

m(x) = h + Ex+1(T ) = h + Em(x +1)

= h + E

{
m(x)+1m′(x)+

1

2
12m′′(x)+ O(13)

}

= h + m(x)+
h

x
m′(x)+

1

2
hm′′(x)+ o(h).
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[13.6.1]–[13.6.2] Solutions Diffusion processes

Divide by h and let h ↓ 0 to obtain

1

2
m′′(x)+

1

x
m′(x)+ 1 = 0,

which we integrate, subject to m(a) = 0 and m(x) < ∞ for x ∈ (0, 1), to obtain the result. The
inequality m(x) < ∞ holds since C has a rightward drift, so its mean passage time to 1 is dominated
by that of a standard Wiener process (see Theorem (12.4.5)).

[A discrete version of this question appeared at Exercise (3.9.2).]

13.6 Solutions. Excursions and the Brownian bridge

1. Let f (t, x) = (2π t)
− 1

2 e−x2/(2t). It may be seen that

P
(
W (t) > x

∣∣ Z,W (0) = 0
)

= lim
w↓0

P
(
W (t) > x

∣∣ Z,W (0) = w
)

where Z = {no zeros in (0, t]}; the small missing step here may be filled by conditioning instead on
the event {W (ǫ) = w, no zeros in (ǫ, t]}, and taking the limit as ǫ ↓ 0. Now, if w > 0,

P
(
W (t) > x, Z

∣∣W (0) = w
)

=
∫ ∞

x

{
f (t, y −w)− f (t, y + w)

}
dy

by the reflection principle, and

P
(

Z
∣∣W (0) = w

)
= 1 − 2

∫ ∞

w
f (t, y) dy =

∫ w

−w
f (t, y) dy

by a consideration of the minimum value of W on (0, t]. It follows that the density function of W (t),
conditional on Z ∩ {W (0) = w}, where w > 0, is

hw(x) =
f (t, x − w)− f (t, x +w)∫ w

−w f (t, y) dy
, x > 0.

Divide top and bottom by 2w, and take the limit as w ↓ 0:

lim
w↓0

hw(x) = −
1

f (t, 0)

∂ f

∂x
=

x

t
e−x2/(2t), x > 0.

2. It is a standard exercise that, for a Wiener process W ,

E
{

W (t)
∣∣W (s) = a,W (1) = 0

}
= a

(
1 − t

1 − s

)
,

E
{

W (s)2
∣∣W (0) = W (1) = 0

}
= s(1 − s),

if 0 ≤ s ≤ t ≤ 1. Therefore the Brownian bridge B satisfies, for 0 ≤ s ≤ t ≤ 1,

E
(

B(s)B(t)
)

= E
{

B(s)E
(

B(t)
∣∣ B(s)

)}
=

1 − t

1 − s
E(B(s)2) = s(1 − t)

as required. Certainly E(B(s)) = 0 for all s, by symmetry.
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Stochastic calculus Solutions [13.6.3]–[13.7.1]

3. Ŵ is a zero-mean Gaussian process on [0, 1] with continuous sample paths, and also Ŵ (0) =
Ŵ (1) = 0. Therefore Ŵ is a Brownian bridge if it has the same autocovariance function as the
Brownian bridge, that is, c(s, t) = min{s, t} − st . For s < t ,

cov
(
Ŵ (s), Ŵ (t)

)
= cov

(
W (s)− sW (1),W (t)− tW (1)

)
= s − ts − st + st = s − st

since cov(W (u),W (v)) = min{u, v}. The claim follows.

4. Either calculate the instantaneous mean and variance of W̃ , or repeat the argument in the solution

to Exercise (13.6.3). The only complication in this case is the necessity to show that W̃ (t) is a.s.

continuous at t = 1, i.e. that u−1W (u − 1) → 0 a.s. as u → ∞. There are various ways to show this.
Certainly it is true in the limit as u → ∞ through the integers, since, for integral u, W (u − 1)may be
expressed as the sum of u−1 independent N(0, 1) variables (use the strong law). It remains to fill in the
gaps. Let n be a positive integer, let x > 0, and write Mn = max

{
|W (u)− W (n)| : n ≤ u ≤ n + 1

}
.

We have by the stationarity of the increments that

∞∑

n=0

P (Mn ≥ nx) =
∞∑

n=0

P(M1 ≥ nx) ≤ 1 +
E(M1)

x
< ∞,

implying by the Borel–Cantelli lemma that n−1Mn ≤ x for all but finitely many values of n, a.s.

Therefore n−1Mn → 0 a.s. as n → ∞, implying that

lim
u→∞

1

u + 1
|W (u)| ≤ lim

n→∞
1

n

{
|W (n)| + Mn

}
→ 0 a.s.

We have that

{
sup

0≤t≤1
W̃ (t) > m

}
=
{

sup
0≤t≤1

(1 − t)W

(
t

1 − t

)
> m

}

=
{

sup
0≤s<∞

W (s) > m(1 + s)

}
on setting s =

t

1 − t

=
{

sup
0≤s<∞

D−m(s) > m

}
,

where D−m is the Wiener process with drift −m. The result follows by Corollary (13.4.14).

5. In the notation of Exercise (13.6.4), we are asked to calculate the probability that W has no zeros
in the time interval between s/(1 − s) and t/(1 − t). By Theorem (13.4.8), this equals

1 −
2

π
cos−1

√
s(1 − t)

t (1 − s)
=

2

π
cos−1

√
t − s

t (1 − s)
.

13.7 Solutions. Stochastic calculus

1. Let Fs = σ(Wu : 0 ≤ u ≤ s). Fix n ≥ 1 and define Xn(k) = |Wkt/2n | for 0 ≤ k ≤ 2n .

By Jensen’s inequality, the sequence {Xn(k) : 0 ≤ k ≤ 2n} is a non-negative submartingale with
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[13.7.2]–[13.7.5] Solutions Diffusion processes

respect to the filtration Fkt/2n , with finite variance. Hence, by Exercise (4.3.3) and equation (12.6.2),

X∗
n = max{Xn(k) : 0 ≤ k ≤ 2n} satisfies

E(X∗2
n ) = 2

∫ ∞

0
xP(X∗

n > x) dx ≤ 2

∫ ∞

0
E(W +

t I{X∗
n≥x}) dx = 2E

{
W +

t

∫ X∗
n

0
dx

}

= 2E(W +
t X∗

n) ≤ 2

√
E(W 2

t )E(X
∗2
n ) by the Cauchy–Schwarz inequality.

Hence E(X∗2
n ) ≤ 4E(W 2

t ). Now X∗2
n is monotone increasing in n, and W has continuous sample

paths. By monotone convergence,

E
(

max
s≤t

|Ws |2
)

= lim
n→∞

E(X∗2
n ) ≤ 4E(W 2

t ).

2. See the solution to Exercise (8.5.4).

3. (a) We have that

I1(n) = 1
2

{n−1∑

j=0

(V 2
j+1 − V 2

j )−
n−1∑

j=0

(Vj+1 − Vj )
2

}
.

The first summation equals W 2
t , by successive concellation, and the mean-square limit of the second

summation is t , by Exercise (8.5.4). Hence limn→∞ I1(n) = 1
2 W 2

t − 1
2 t in mean square.

Likewise, we obtain the mean-square limits:

lim
n→∞

I2(n) = 1
2 W 2

t + 1
2 t, lim

n→∞
I3(n) = lim

n→∞
I4(n) = 1

2 W 2
t .

4. Clearly E(U(t)) = 0. The process U is Gaussian with autocovariance function

E
(
U(s)U(s + t)

)
= E

(
E
(
U(s)U(s + t)

∣∣Fs

))
= e−βse−β(s+t)E

[
W (e2βs)2

]
= e−βt .

Thus U is a stationary Gaussian Markov process, namely the Ornstein–Uhlenbeck process. [See
Example (9.6.10).]

5. Clearly E(Ut ) = 0. For s < t ,

E(UsUs+t ) = E(Ws Wt )+ β2E

(∫ s

u=0

∫ t

v=0
e−β(s−u)Wue−β(t−v)Wv du dv

)

− E

(
Wtβ

∫ s

0
e−β(s−u)Wu du

)
− E

(
Ws

∫ t

0
e−β(t−v)Wv dv

)

= s + β2e−β(s+t)

∫ s

u=0

∫ t

v=0
eβ(u+v)min{u, v} du dv

− β

∫ s

0
e−β(s−u)min{u, t} du −

∫ t

0
e−β(t−v)min{s, v} dv

=
e2βs − 1

2β
e−β(s+t)

after prolonged integration. By the linearity of the definition of U , it is a Gaussian process. From the

calculation above, it has autocovariance function c(s, s + t) = (e−β(t−s)−e−β(t+s))/(2β). From this
we may calculate the instantaneous mean and variance, and thus we recognize an Ornstein–Uhlenbeck
process. See also Exercise (13.3.4) and Problem (13.12.4).
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The Itô integral Solutions [13.8.1]–[13.8.1]

13.8 Solutions. The Itô integral

1. (a) Fix t > 0 and let n ≥ 1 and δ = t/n. We write tj = j t/n and Vj = Wtj . By the absence of

correlation of Wiener increments, and the Cauchy–Schwarz inequality,

E

(∣∣∣∣
∫ t

0
Ws ds −

n−1∑

j=0

Vj+1(tj+1 − tj )

∣∣∣∣
2)

= E

(∣∣∣∣
n−1∑

j=0

∫ tj+1

tj

(Vj+1 − Ws) ds

∣∣∣∣
2)

=
n−1∑

j=0

E

(∣∣∣∣
∫ tj+1

tj

(Vj+1 − Ws) ds

∣∣∣∣
2)

≤
n−1∑

j=0

{
(tj+1 − tj )

∫ tj+1

tj

E(|Vj+1 − Ws |2) ds

}

=
n−1∑

j=0

1

2
(tj+1 − tj )

3 =
n−1∑

j=0

1

2

(
t

n

)3

→ 0 as n → ∞.

Therefore,

∫ t

0
s dWs = lim

n→∞

n−1∑

j=0

tj (Vj+1 − Vj ) = lim
n→∞

n−1∑

j=0

(
tj+1Vj+1 − tj Vj − (tj+1 − tj )Vj+1

)

= lim
n→∞

(
tWt −

n−1∑

j=0

Vj+1(tj+1 − tj )

)
= tWt −

∫ t

0
Ws ds.

(b) As n → ∞,

n−1∑

j=0

V 2
j (Vj+1 − Vj ) = 1

3

n−1∑

j=0

{
V 3

j+1 − V 3
j − 3Vj (Vj+1 − Vj )

2 − (Vj+1 − Vj )
3}

= 1
3 W 3

t −
n−1∑

j=0

[
Vj (tj+1 − tj )+ Vj

{
(Vj+1 − Vj )

2 − (tj+1 − tj )
}]

− 1
3

n−1∑

j=0

(Vj+1 − Vj )
3

→ 1
3 W 3

t −
∫ t

0
W (s) ds + 0 + 0.

The fact that the last two terms tend to 0 in mean square may be verified in the usual way. For example,

E

(∣∣∣∣
n−1∑

j=0

(Vj+1 − Vj )
3

∣∣∣∣
2)

=
n−1∑

j=0

E
[
(Vj+1 − Vj )

6]

= 6

n−1∑

j=0

(tj+1 − tj )
3 = 6

n−1∑

j=0

(
t

n

)3

→ 0 as n → ∞.

(c) It was shown in Exercise (13.7.3a) that
∫ t

0 Ws dWs = 1
2 W 2

t − 1
2 t . Hence,

E

([∫ t

0
Ws dWs

]2)
= 1

4

{
E(W 4

t )− 2tE(W 2
t )+ t2} = 1

2 t2,
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[13.8.2]–[13.9.1] Solutions Diffusion processes

and the result follows because E(W 2
t ) = t .

2. Fix t > 0 and n ≥ 1, and let δ = t/n. We set Vj = Wj t/n. It is the case that X t =
limn→∞

∑
j Vj (tj+1 − tj ). Each term in the sum is normally distributed, and all partial sums are

multivariate normal for all δ > 0, and hence also in the limit as δ → 0. Obviously E(X t ) = 0. For
s ≤ t ,

E(Xs X t ) =
∫ t

0

∫ s

0
E(WuWv) du dv =

∫ t

0

∫ s

0
min{u, v} du dv

=
∫ s

0

1
2 u2 du +

∫ s

0
u(t − u) du = s2

(
t

2
−

s

6

)
.

Hence var(X t ) = 1
3 t3, and the autocovariance function is

ρ(Xs, X t ) = 3

√
s

t

(
1

2
−

s

6t

)
.

3. By the Cauchy–Schwarz inequality, as n → ∞,

E
[{

E(Xn | G)− E(X | G)
}2] ≤ E

[
E
{
(Xn − X)2

∣∣G
}]

= E[(Xn − X)2] → 0.

4. We square the equation ‖I (ψ1 +ψ2)‖2 = ‖ψ1 +ψ2‖ and use the fact that ‖I (ψi )‖2 = ‖ψi ‖ for
i = 1, 2, to deduce the result.

5. The question permits us to use the integrating factor eβt to give, formally,

eβt X t =
∫ t

0
eβs dWs

ds
ds = eβt Wt − β

∫ t

0
eβs Ws ds

on integrating by parts. This is the required result, and substitution verifies that it satisfies the given
equation.

6. Find a sequence φ = (φ(n)) of predictable step functions such that ‖φ(n) −ψ‖ → 0 as n → ∞.

By the argument before equation (13.8.9), I (φ(n))
m.s.−→ I (ψ) as n → ∞. By Lemma (13.8.4),

‖I (φ(n))‖2 = ‖φ(n)‖, and the claim follows.

13.9 Solutions. Itô’s formula

1. The process Z is continuous and adapted with Z0 = 0. We have by Theorem (13.8.11) that
E(Zt − Zs | Fs) = 0, and by Exercise (13.8.6) that

E
(
[Zt − Zs ]2

∣∣Fs

)
= E

(∫ t

s

X2
u + Y 2

u

R2
u

du

)
= t − s.

The first claim follows by the Lévy characterization of a Wiener process (12.7.10).

We have in n dimensions that R2 = X2
1 + X2

2 + · · · + X2
n , and the same argument yields that

Zt =
∑

i

∫ t
0 (X i/R) d X i is a Wiener process. By Example (13.9.7) and the above,

d(R2) = 2

n∑

i=1

X i d X i + n dt = 2R

n∑

i=1

X i

R
d X i + n dt = 2R dW + n dt.
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Option pricing Solutions [13.9.2]–[13.10.2]

2. Applying Itô’s formula (13.9.4) to Yt = W 4
t we obtain dYt = 4W 3

t dWt + 6W 2
t dt . Hence,

E(Yt ) = E

(∫ t

0
4W 3

s dWs

)
+ E

(∫ t

0
6W 2

s ds

)
= 6

∫ t

0
s ds = 3t2.

3. Apply Itô’s formula (13.9.4) to obtain dYt = (Yt/t) dt + t dWt . Cf. Exercise (13.8.1).

4. Note that X1 = cos W and X2 = sin W . By Itô’s formula (13.9.4),

dY = d(X1 + i X2) = d X1 + i d X2 = d(cos W )+ i d(sin W )

= − sin W dW − 1
2 cos W dt + i cos W dW − 1

2 sin W dt.

5. We apply Itô’s formula to obtain:

(a) (1 + t) d X = −X dt + dW ,

(b) d X = − 1
2 X dt +

√
1 − X2 dW ,

(c) d

(
X

Y

)
= −

1

2

(
X

Y

)
dt +

(
0 −a/b

b/a 0

)(
X

Y

)
dW .

6. Use Itô’s simple formula (13.9.4) with f (t, w) = sinh(t +w).

13.10 Solutions. Option pricing

1. (a) We have that

E
(
(aeZ − K )+

)
=
∫ ∞

log(K/a)
(aez − K )

1
√

2πτ2
exp

(
−
(z − γ )2

2τ2

)
dz

=
∫ ∞

α
(aeγ+τ y − K )

e
− 1

2 y2

√
2π

dy where y =
z − γ

τ
, α =

log(K/a) − γ

τ

= ae
γ+ 1

2
τ2
∫ ∞

α

e
− 1

2 (y−τ )2

√
2π

dy − K8(−α)

= ae
γ+ 1

2 τ
2
8(τ − α)− K8(−α).

(b) We have that ST = aeZ where a = St and, under the relevant conditional Q-distribution, Z is

normal with mean γ = (r − 1
2σ

2)(T − t) and variance τ2 = σ 2(T − t). The claim now follows by
the result of part (a).

2. (a) Set ξ(t, S) = ξ(t, St ) andψ(t, S) = ψ(t, St ), in the natural notation. By Theorem (13.10.15),
we have ψx = ψt = 0, whence ψ(t, x) = c for all t , x , and some constant c.

(b) Recall that d S = µS dt + σ S dW . Now,

d(ξ S + ψert ) = d(S2 + ψert ) = (σ S)2 dt + 2S d S + ert dψ + ψrert dt,

by Example (13.9.7). By equation (13.10.4), the portfolio is self-financing if this equals S d S +
ψrert dt , and thus we arrive at the SDE ert dψ = −S d S − σ 2S2 dt , whence

ψ(t, S) = −
∫ t

0
e−ru Su d Su − σ 2

∫ t

0
e−ru S2

u du.
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[13.10.3]–[13.11.1] Solutions Diffusion processes

(c) Note first that Zt =
∫ t

0 Su du satisfies d Zt = St dt . By Example (13.9.8), d(St Zt ) = Zt d St +
S2

t dt , whence

d(ξ S + ψert ) = Zt d St + S2
t dt + ert dψ + rert dt.

Using equation (13.10.4), the portfolio is self-financing if this equals Zt d St +ψrert dt , and thus we

require that ert dψ = −S2
t dt , which is to say that

ψ(t, S) = −
∫ t

0
e−ru S2

u du.

3. We need to check equation (13.10.4) remembering that d Mt = 0. Each of these portfolios is
self-financing.

(a) This case is obvious.

(b) d(ξ S + ψ) = d(2S2 − S2 − t) = 2S d S + dt − dt = ξ d S.

(c) d(ξ S + ψ) = −S − t d S + S = ξ d S.

(d) Recalling Example (13.9.8), we have that

d(ξ S + ψ) = d

(
St

∫ t

0
Ss ds −

∫ t

0
S2

s ds

)
= S2

t dt + d St

∫ t

0
Ss ds − S2

t dt = ξ d St .

4. The time of exercise of an American call option must be a stopping time for the filtration (Ft ).
The value of the option, if exercised at the stopping time τ , is Vτ = (Sτ − K )+, and it follows by
the usual argument that the value at time 0 of the option exercised at τ is EQ(e

−rτ Vτ ). Thus the

value at time 0 of the American option is supτ {EQ(e
−rτVτ )}, where the supremum is taken over all

stopping times τ satisfying P(τ ≤ T ) = 1. Under the probability measure Q, the process e−rt Vt is
a martingale, whence, by the optional stopping theorem, EQ(e

−rτ Vτ ) = V0 for all stopping times τ .
The claim follows.

5. We rewrite the value at time 0 of the European call option, possibly with the aid of Exercise
(13.10.1), as

e−rT E
((

S0 exp
{

r T − 1
2σ

2T +σ
√

T N
}

− K
)+) = E

((
S0 exp

{
− 1

2σ
2T +σ

√
T N
}

− K e−rT
)+)

,

where N is an N(0, 1) random variable. It is immediate that this is increasing in S0 and r and is
decreasing in K . To show monotonicity in T , we argue as follows. Let T1 < T2 and consider the
European option with exercise date T2. In the corresponding American option we are allowed to
exercise the option at the earlier time T1. By Exercise (13.10.4), it is never better to stop earlier than
T2, and the claim follows.

Monotonicity in σ may be shown by differentiation.

13.11 Solutions. Passage probabilities and potentials

1. Let H be a closed sphere with radius R (> |w|), and define pR(r) = P
(
G before H

∣∣ |W (0)| = r
)
.

Then pR satisfies Laplace’s equation in Rd , and hence

d

dr

(
rd−1 dpR

dr

)
= 0

since pR is spherically symmetric. Solve subject to the boundary equations pR(ǫ) = 1, pR(R) = 0,
to obtain

pR(r) =
r2−d − R2−d

ǫ2−d − R2−d
→ (ǫ/r)d−2 as R → ∞.
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Problems Solutions [13.11.2]–[13.12.3]

2. The electrical resistance Rn between 0 and the set 1n is no smaller than the resistance obtained
by, for every i = 1, 2, . . . , ‘shorting out’ all vertices in the set 1i . This new network amounts to a
linear chain of resistances in series, points labelled 1i and 1i+1 being joined by a resistance if size

N−1
i . It follows that

R(G) = lim
n→∞

Rn ≥
∞∑

i=0

1

Ni
.

By Theorem (13.11.18), the walk is recurrent if
∑

i N−1
i = ∞.

3. Thinking of G as an electrical network, one may obtain the network H by replacing the resistance
of every edge e lying in G but not in H by ∞. Let 0 be a vertex of H . By a well known fact in the
theory of electrical networks, R(H) ≥ R(G), and the result follows by Theorem (13.11.18).

13.12 Solutions to problems

1. (a) T (t) = αW (t/α2) has continuous sample paths with stationary independent increments, since

W has these properties. Also T (t)/α is N(0, t/α2), whence T (t) is N(0, t).

(b) As for part (a).

(c) Certainly V has continuous sample paths on (0,∞). For continuity at 0 it suffices to prove that

tW (t−1) → 0 a.s. as t ↓ 0; this was done in the solution to Exercise (13.6.4).

If (u, v), (s, t) are disjoint time-intervals, then so are (v−1, u−1), (t−1, s−1); since W has
independent increments, so has V . Finally,

V (s + t)− V (s) = tW ((s + t)−1)− s
{

W (s−1)− W ((s + t)−1)
}

is N(0, β) if s, t > 0, where

β =
t2

s + t
+ s2

(
1

s
−

1

s + t

)
= t.

2. Certainly W is Gaussian with continuous sample paths and zero means, and it is therefore sufficient
to prove that cov(W (s),W (t)) = min{s, t}. Now, if s ≤ t ,

cov
(
W (s),W (t)

)
=

cov(X (r−1(s)), X (r−1(t)))

v(r−1(s))v(r−1(t))
=

u(r−1(s))v(r−1(t))

v(r−1(s))v(r−1(t))
= r(r−1(s)) = s

as required.

If u(s) = s, v(t) = 1 − t , then r(t) = t/(1 − t), and r−1(w) = w/(1 +w) for 0 ≤ w < ∞. In
this case X (t) = (1 − t)W (t/(1 − t)).

3. Certainly U is Gaussian with zero means, and U(0) = 0. Now, with st = e2βt − 1,

E
{

U(t + h)
∣∣U(t) = u

}
= e−β(t+h)E

{
W (st+h)

∣∣W (st ) = ueβt
}

= ue−β(t+h)eβt = u − βuh + o(h),

whence the instantaneous mean of U is a(t, u) = −βu. Secondly, st+h = st + 2βe2βt h + o(h), and
therefore

E
{

U(t + h)2
∣∣U(t) = u

}
= e−2β(t+h)E

{
W (st+h)

2
∣∣W (st ) = ueβt

}

= e−2β(t+h)
(
u2e2βt + 2βe2βt h + o(h)

)

= u2 − 2βh(u2 − 1)+ o(h).
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It follows that

E
{
|U(t + h)− U(t)|2

∣∣U(t) = u
}

= u2 − 2βh(u2 − 1)− 2u(u − βuh)+ u2 + o(h)

= 2βh + o(h),

and the instantaneous variance is b(t, u) = 2β.

4. Bartlett’s equation (see Exercise (13.3.4)) for M(t, θ) = E(eθV (t)) is

∂M

∂t
= −βθ

∂M

∂θ
+ 1

2σ
2θ2M

with boundary condition M(θ, 0) = eθu . Solve this equation (as in the exercise given) to obtain

M(t, θ) = exp

{
θue−βt +

1

2
θ2 ·

σ 2

2β
(1 − e−2βt)

}
,

the moment generating function of the given normal distribution. Now M(t, θ) → exp{ 1
2 θ

2σ 2/(2β)}
as t → ∞, whence by the continuity theorem V (t) converges in distribution to the N(0, 1

2σ
2/β)

distribution.

If V (0) has this limit distribution, then so does V (t) for all t . Therefore the sequence (V (t1), . . . ,
V (tn)) has the same joint distribution as (V (t1 + h), . . . , V (tn + h)) for all h, t1, . . . , tn , whenever
V (0) has this normal distribution.

In the stationary case, E(V (t)) = 0 and, for s ≤ t ,

cov
(
V (s), V (t)

)
= E

{
V (s)E

(
V (t)

∣∣ V (s)
)}

= E
{

V (s)2e−β(t−s)
}

= c(0)e−β|t−s|

where c(0) = var(V (s)); we have used the first part here. This is the autocovariance function
of a stationary Gaussian Markov process (see Example (9.6.10)). Since all such processes have
autocovariance functions of this form (i.e. for some choice of β), all such processes are stationary
Ornstein–Uhlenbeck processes.

The autocorrelation function is ρ(s) = e−β|s|, which is the characteristic function of the Cauchy
density function

f (x) =
1

βπ{1 + (x/β)2}
, x ∈ R.

This observation is due to J. L. Doob.

5. Bartlett’s equation (see Exercise (13.3.2)) for M is

∂M

∂t
= αθ

∂M

∂θ
+ 1

2βθ
2 ∂M

∂θ
,

subject to M(0, θ) = eθd . The characteristics satisfy

d M

0
=

dt

1
= −

2 dθ

2αθ + βθ2
.

The solution is M = g(θeαt/(α + 1
2βθ)) where g is a function satisfying g(θ/(α + 1

2βθ)) = eθd .
The solution follows as given.

By elementary calculations,

E(D(t)) =
∂M

∂θ

∣∣∣∣
θ=0

= deαt ,

E(D(t)2) =
∂2 M

∂θ2

∣∣∣∣∣
θ=0

=
βd

α
eαt (eαt − 1)+ d2e2αt ,
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whence var(D(t)) = (βd/α)eαt (eαt − 1). Finally

P(D(t) = 0) = lim
θ→−∞

M(t, θ) = exp

{
2αdeαt

β(1 − eαt)

}

which converges to e−2αd/β as t → ∞.

6. The equilibrium density function g(y) satisfies the (reduced) forward equation

(∗) −
d

dy
(ag)+

1

2

d2

dy2
(bg) = 0

where a(y) = −βy and b(y) = σ 2 are the instantaneous mean and variance. The boundary conditions
are

βyg + 1
2σ

2 dg

dy
= 0, y = −c, d.

Integrate (∗) from −c to y, using the boundary conditions, to obtain

βyg + 1
2σ

2 dg

dy
= 0, −c ≤ y ≤ d.

Integrate again to obtain g(y) = Ae−βy2/σ2
. The constant A is given by the fact that

∫ d
−c g(y) dy = 1.

7. First we show that the series converges uniformly (along a subsequence), implying that the limit
exists and is a continuous function of t . Set

Zmn(t) =
n−1∑

k=m

sin(kt)

k
Xk , Mmn = sup

{
|Zmn(t)| : 0 ≤ t ≤ π

}
.

We have that

(∗) M2
mn ≤ sup

0≤t≤π

∣∣∣∣
n−1∑

k=m

eikt

k
Xk

∣∣∣∣
2

≤
n−1∑

k=m

X2
k

k2
+ 2

n−m−1∑

l=1

∣∣∣∣
n−l−1∑

j=m

X j X j+l

j ( j + l)

∣∣∣∣.

The mean value of the final term is, by the Cauchy–Schwarz inequality, no larger than

2

n−m−1∑

l=1

√√√√√E



∣∣∣∣
n−l−1∑

j=m

X j X j+l

j ( j + l)

∣∣∣∣
2

 = 2

n−m−1∑

l=1

√√√√√
n−l−1∑

j=m

1

j2( j + l)2
≤ 2(n − m)

√
n − m

m4
.

Combine this with (∗) to obtain

E(Mm,2m)
2 ≤ E(M2

m,2m) ≤
3

√
m
.

It follows that

E

( ∞∑

n=1

M2n−1,2n

)
≤

∞∑

n=1

6

2n/2
< ∞,

implying that
∑∞

n=1 M2n−1,2n < ∞ a.s. Therefore the series which defines W converges uniformly

with probability 1 (along a subsequence), and hence W has (a.s.) continuous sample paths.
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Certainly W is a Gaussian process since W (t) is the sum of normal variables (see Problem
(7.11.19)). Furthermore E(W (t)) = 0, and

cov
(
W (s),W (t)

)
=

st

π
+

2

π

∞∑

k=1

sin(ks) sin(kt)

k2

since the X i are independent with zero means and unit variances. It is an exercise in Fourier analysis
to deduce that cov(W (s),W (t)) = min{s, t}.

8. We wish to find a solution g(t, y) to the equation

(∗)
∂g

∂t
=

1

2

∂2g

∂y2
, |y| < b,

satisfying the boundary conditions

g(0, y) = δy0 if |y| ≤ b, g(t, y) = 0 if |y| = b.

Let g(t, y | d) be the N(d, t) density function, and note that g(·, · | d) satisfies (∗) for any
‘source’ d . Let

g(t, y) =
∞∑

k=−∞
(−1)k g(t, y | 2kb),

a series which converges absolutely and is differentiable term by term. Since each summand satisfies
(∗), so does the sum. Now g(0, y) is a combination of Dirac delta functions, one at each multiple of 2b.
Only one such multiple lies in [−b, b], and hence g(y, 0) = δd0. Also, setting y = b, the contributions
from the sources at −2(k − 1)b and 2kb cancel, so that g(t, b) = 0. Similarly g(t,−b) = 0, and
therefore g is the required solution.

Here is an alternative method. Look for the solution to (∗) of the form e−λn t sin{ 1
2 nπ(y + b)/b};

such a sine function vanishes when |y| = b. Substitute into (∗) to obtain λn = n2π2/(8b2). A linear
combination of such functions has the form

g(t, y) =
∞∑

n=1

ane−λn t sin

(
nπ(y + b)

2b

)
.

We choose the constants an such that g(0, y) = δy0 for |y| < b. With the aid of a little Fourier

analysis, one finds that an = b−1 sin( 1
2 nπ).

Finally, the required probability equals the probability that W a has been absorbed by time t , a

probability expressible as 1 −
∫ b
−b f a(t, y) dy. Using the second expression for f a, this yields

4

π

∞∑

n=1

1

n
e−λn t sin3( 1

2 nπ).

9. Recall that U(t) = e−2m D(t) is a martingale. Let T be the time of absorption, and assume that
the conditions of the optional stopping theorem are satisfied. Then E(U(0)) = E(U(T )), which is to

say that 1 = e2ma pa + e−2mb(1 − pa).

10. (a) We may assume that a, b > 0. With

pt (b) = P
(
W (t) > b, F(0, t)

∣∣W (0) = a
)
,
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we have by the reflection principle that

pt (b) = P
(
W (t) > b

∣∣W (0) = a
)

− P
(
W (t) < −b

∣∣W (0) = a
)

= P
(
b − a < W (t) < b + a

∣∣W (0) = 0
)
,

giving that
∂pt (b)

∂b
= f (t, b + a)− f (t, b − a)

where f (t, x) is the N(0, t) density function. Now, using conditional probabilities,

P
(

F(0, t)
∣∣W (0) = a,W (t) = b

)
= −

1

f (t, b − a)

∂pt (b)

∂b
= 1 − e−2ab/t .

(b) We know that

P(F(s, t)) = 1 −
2

π
cos−1

{√
s/t
}

=
2

π
sin−1

{√
s/t
}

if 0 < s < t . The claim follows since F(t0, t2) ⊆ F(t0, t1).

(c) Remember that sin x = x + o(x) as x ↓ 0. Take the limit in part (b) as t0 ↓ 0 to obtain
√

t1/t2.

11. Let M(t) = sup{W (s) : 0 ≤ s ≤ t} and recall that M(t) has the same distribution as |W (t)|. By
symmetry,

P
(

sup
0≤s≤t

|W (s)| ≥ w
)

≤ 2P
(

M(t) ≥ w
)

= 2P
(
|W (t)| ≥ w

)
.

By Chebyshov’s inequality,

P
(
|W (t)| ≥ w

)
≤

E(W (t)2)

w2
=

t

w2
.

Fix ǫ > 0, and let

An(ǫ) =
{
|W (s)|/s > ǫ for some s satisfying 2n−1 < s ≤ 2n

}
.

Note that

An(ǫ) ⊆
{

sup
2n−1<s≤2n

|W (s)| ≥ 22n/3

}
⊆
{

sup
0≤s≤2n

|W (s)| ≥ 22n/3

}

for all large n, and also

∞∑

n=1

P

(
sup

0≤s≤2n
|W (s)| ≥ 22n/3

)
≤

∞∑

n=1

2n+1

24n/3
< ∞.

Therefore
∑

n P(An(ǫ)) < ∞, implying by the Borel–Cantelli lemma that (a.s.) only finitely many of

the An(ǫ) occur. Therefore t−1W (t) → 0 a.s. as t → ∞. Compare with the solution to the relevant
part of Exercise (13.6.4).

12. We require the solution to Laplace’s equation ∇2 p = 0, subject to the boundary condition

p(w) =
{

0 if w ∈ H,

1 if w ∈ G.
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[13.12.13]–[13.12.14] Solutions Diffusion processes

Look for a solution in polar coordinates of the form

p(r, θ) =
∞∑

n=0

rn
{

an sin(nθ)+ bn cos(nθ)
}
.

Certainly combinations having this form satisfy Laplace’s equation, and the boundary condition gives
that

(∗) H(θ) = b0 +
∞∑

n=1

{
an sin(nθ)+ bn cos(nθ)

}
, |θ | < π,

where

H(θ) =
{

0 if − π < θ < 0,

1 if 0 < θ < π.

The collection {sin(mθ), cos(mθ) : m ≥ 0} are orthogonal over (−π,π). Multiply through (∗) by

sin(mθ) and integrate over (−π,π) to obtain πam = {1 − cos(πm)}/m, and similarly b0 = 1
2 and

bm = 0 for m ≥ 1.

13. The joint density function of two independent N(0, t) random variables is (2π t)−1 exp{−(x2 +
y2)/(2t)}. Since this function is unchanged by rotations of the plane, it follows that the two coordi-
nates of the particle’s position are independent Wiener processes, regardless of the orientation of the
coordinate system. We may thus assume that l is the line x = d for some fixed positive d .

The particle is bound to visit the line l sooner or later, since P(W1(t) < d for all t) = 0. The
first-passage time T has density function

fT (t) =
d

√
2π t3

e−d2/(2t), t > 0.

Conditional on {T = t}, D = W2(T ) is N(0, t). Therefore the density function of D is

f D(u) =
∫ ∞

0
fD|T (u | t) fT (t) dt =

∫ ∞

0

d

2π t2
e−(u2+d2)/(2t) dt =

d

π(u2 + d2)
, u ∈ R,

giving that D/d has the Cauchy distribution.

The angle 2 = P̂OR satisfies θ = tan−1(D/d), whence

P(2 ≤ θ) = P(D ≤ d tan θ) =
1

2
+
θ

π
, |θ | < 1

2π.

14. By an extension of Itô’s formula to functions of two Wiener processes, U = u(W1,W2) and
V = v(W1,W2) satisfy

dU = ux dW1 + uy dW2 + 1
2 (ux x + uyy) dt,

dV = vx dW1 + vy dW2 + 1
2 (vx x + vyy) dt,

where ux , vyy , etc, denote partial derivatives of u and v. Since φ is analytic, u and v satisfy the
Cauchy–Riemann equations ux = vy , uy = −vx , whence u and v are harmonic in that ux x + uyy =
vx x + vyy = 0. Therefore,

dU = ux dW1 + uy dW2, dV = −uy dW1 + ux dW2.
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The matrix

(
ux uy

−uy ux

)
is an orthogonal rotation of R2 when u2

x +u2
y = 1. Since the joint distribution

of the pair (W1,W2) is invariant under such rotations, the claim follows.

15. One method of solution uses the fact that the reversed Wiener process {W (t −s)−W (t) : 0 ≤ s ≤
t} has the same distribution as {W (s) : 0 ≤ s ≤ t}. Thus M(t)−W (t) = max0≤s≤t{W (s)−W (t)} has
the same distribution as max0≤u≤t{W (u)− W (0)} = M(t). Alternatively, by the reflection principle,

P
(

M(t) ≥ x, W (t) ≤ y
)

= P(W (t) ≥ 2x − y) for x ≥ max{0, y}.

By differentiation, the pair M(t), W (t) has joint density function −2φ′(2x − y) for y ≤ x , x ≥ 0,
where φ is the density function of the N(0, t) distribution. Hence M(t) and M(t) − W (t) have the
joint density function −2φ′(x + y). Since this function is symmetric in its arguments, M(t) and
M(t) − W (t) have the same marginal distribution.

16. The Lebesgue measure 3(Z) is given by

3(Z) =
∫ ∞

0
I{W (t)=u} du,

whence by Fubini’s theorem (cf. equation (5.6.13)),

E(3(Z)) =
∫ ∞

0
P
(
W (t) = u

)
dt = 0.

17. Let 0 < a < b < c < d , and let M(x, y) = maxx≤s≤y W (s). Then

M(c, d)− M(a, b) = max
c≤s≤d

{
W (s)− W (c)

}
+
{

W (c)− W (b)
}

− max
a≤s≤b

{
W (s)− W (b)

}
.

Since the three terms on the right are independent and continuous random variables, it follows that
P
(
(M(c, d) = M(a, b)

)
= 0. Since there are only countably many rationals, we deduce that

P
(
(M(c, d) = M(a, b) for all rationals a < b < c < d

)
= 1, and the result follows.

18. The result is easily seen by exhaustion to be true when n = 1. Suppose it is true for all m ≤ n − 1
where n ≥ 2.

(i) If sn ≤ 0, then (whatever the final term of the permutation) the number of positive partial sums and
the position of the first maximum depend only on the remaining n − 1 terms. Equality follows by the
induction hypothesis.

(ii) If sn > 0, then

Ar =
n∑

k=1

Ar−1(k),

where Ar−1(k) is the number of permutations with xk in the final place, for which exactly r − 1 of the
first n − 1 terms are strictly positive. Consider a permutation π = (xi1

, xi2
, . . . , xin−1

, xk) with xk in

the final place, and move the position of xk to obtain the new permutationπ ′ = (xk , xi1
, xi2

, . . . , xin−1
).

The first appearance of the maximum in π ′ is at its r th place if and only if the first maximum of the
reduced permutation (xi1

, xi2
, . . . , xin−1

) is at its (r − 1)th place. [Note that r = 0 is impossible

since sn > 0.] It follows that

Br =
n∑

k=1

Br−1(k),

where Br−1(k) is the number of permutations with xk in the final place, for which the first appearance
of the maximum is at the (r − 1)th place.
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By the induction hypothesis, Ar−1(k) = Br−1(k), since these quantities depend on the n − 1
terms excluding xk . The result follows.

19. Suppose that Sm =
∑m

j=1 X j , 0 ≤ m ≤ n, are the partial sums of n independent identically

distributed random variables X j . Let An be the number of strictly positive partial sums, and Rn the
index of the first appearance of the value of the maximal partial sum. Each of the n! permutations
of (X1, X2, . . . , Xn) has the same joint distribution. Consider the kth permutation, and let Ik be
the indicator function of the event that exactly r partial sums are positive, and let Jk be the indicator
function that the first appearance of the maximum is at the r th place. Then, using Problem (13.12.18),

P(An = r) =
1

n!

n!∑

k=1

E(Ik) =
1

n!

n!∑

k=1

E(Jk) = P(Rn = r).

We apply this with X j = W ( j t/n) − W (( j − 1)t/n), so that Sm = W (mt/n). Thus An =∑
j I{W ( j t/n)>0} has the same distribution as

Rn = min
{

k ≥ 0 : W (kt/n) = max
0≤ j≤n

W ( j t/n)
}
.

By Problem (13.12.17), Rn
a.s.−→ R as n → ∞. By Problem (13.12.16), the time spent by W at zero

is a.s. a null set, whence An
a.s.−→ A. Hence A and R have the same distribution. We argue as follows

to obtain that that L and R have the same distribution. Making repeated use of Theorem (13.4.6) and
the symmetry of W ,

P(L < x) = P
(

sup
x≤s≤t

W (s) < 0
)

+ P
(

inf
x≤s≤t

W (s) > 0
)

= 2P
(

sup
x≤s≤t

{W (s)− W (x)} < −W (x)
)

= 2P
(
|W (t)− W (x)| < W (x)

)

= P
(
|W (t)− W (x)| < |W (x)|

)

= P
(

sup
x≤s≤t

{W (s)− W (x)} < sup
0≤s≤x

{W (s)− W (x)}
)

= P(R ≤ x).

Finally, by Problem (13.12.15) and the circular symmetry of the joint density distribution of two
independent N(0, 1) variables U, V ,

P
(
|W (t)− W (x)| < |W (x)|

)
= P

(
(t − x)V 2 ≤ xU2) = P

(
V 2

U2 + V 2
≤

x

t

)
=

2

π
sin−1

√
x

t
.

20. Let

Tx =
{

inf{t ≤ 1 : W (t) = x} if this set is non-empty,

1 otherwise,

and similarly Vx = sup{t ≤ 1 : W (t) = x}, with Vx = 1 if W (t) 6= x for all t ∈ [0, 1]. Recall that
U0 and V0 have an arc sine distribution as in Problem (13.12.19). On the event {Ux < 1}, we may
write (using the re-scaling property of W )

Ux = Tx + (1 − Tx )Ũ0, Vx = Tx + (1 − Tx )Ṽ0,

where Ũ0 and Ṽ0 are independent of Ux and Vx , and have the above arc sine distribution. Hence Ux

and Vx have the same distribution. Now Tx has the first passage distribution of Theorem (13.4.5),
whence

f
Tx ,Ũ0

(τ, φ) =
{

x
√

2πτ3
exp

(
−

x2

2τ

)}{
1

π
√
φ(1 − φ)

}
.
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Therefore,

fTx ,Ux (t, u) = f
Tx ,Ũ0

(
t,

u − t

1 − t

)
·

1

1 − t
,

and

fUx (u) =
∫ u

0
fTx ,Ux (t, u) du =

1

π
√

u(1 − u)
exp

(
−

x2

2u

)
, 0 < x < 1.

21. (a) Note that V is a martingale, by Theorem (13.8.11). Fix t and let ψs = sign(Ws), 0 ≤ s ≤ t .

We have that ‖ψ‖ =
√

t , implying by Exercise (13.8.6) that E(V 2
t ) = ‖I (ψ)‖2

2 = t . By a similar

calculation, E(V 2
t | Fs) = V 2

s + t − s for 0 ≤ s ≤ t . That is to say, V 2
t − t defines a martingale, and

the result follows by the Lévy characterization theorem of Example (12.7.10).

(b) By part (a), the process B(t) =
∫ t

0 sign V dV =
∫ t

0 (sign V )−1dV is a Wiener process, and writing
the outer terms in differential form gives dV = sign V d B, which is to say that V is a solution of the
given SDE.

(c) By Problem (13.12.16), −sign V d B = sign(−V ) d B except on a null set, so −V also solves the
given SDE.

(d) By a slightly extended version of Theorem (13.8.11) (with left-continuous predictable integrand)

any solution X of the SDE is a continuous martingale, and since (sign X)2 = 1, its quadratic variation
is t . Hence, by Lévy’s characterization theorem (12.7.10), it is a Wiener process.

22. The mean cost per unit time is

µ(T ) =
1

T

{
R + C

∫ T

0
P
(
|W (t)| ≥ a

)
dt

}
=

1

T

{
R + 2C

∫ T

0

(
1 −8(a/

√
t)
)

dt

}
.

Differentiate to obtain that µ′(T ) = 0 if

R = 2C

{∫ T

0
8(a/

√
t) dt − T8(a/

√
T )

}
= aC

∫ T

0
t−1φ(a/

√
t) dt,

where we have integrated by parts.

23. Consider the portfolio with ξ(t, St ) units of stock and ψ(t, St ) units of bond, having total value
w(t, St) = xξ(t, x)+ ertψ(t, St). By assumption,

(∗) (1 − γ )xξ(t, x) = γ ertψ(t, x).

Differentiate this equation with respect to x and substitute from equation (13.10.16) to obtain the

differential equation (1 − γ )ξ + xξx = 0, with solution ξ(t, x) = h(t)xγ−1, for some function h(t).
We substitute this, together with (∗), into equation (13.10.17) to obtain that

h′ − h(1 − γ )( 1
2γσ

2 + r) = 0.

It follows that h(t) = A exp{(1 − γ )( 1
2γσ

2 + r)t}, where A is an absolute constant to be determined

according to the size of the initial investment. Finally, w(t, x) = γ−1xξ(t, x) = γ−1h(t)xγ .

24. Using Itô’s formula (13.9.4), the drift term in the SDE for Ut is

(
−u1(T − t,W )+ 1

2 u22(T − t,W )
)

dt,

where u1 and u22 denote partial derivatives of u. The drift function is identically zero if and only if

u1 = 1
2 u22.
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[13.12.25]–[13.12.25] Solutions Diffusion processes

25. (a) Setting the proof down in its detail is unlikely to be edifying, and so we resort to an informal
explanation. The distribution of the process W is invariant under rotations of space around the origin.
Therefore, the conditional distribution of the hitting position on the sphere is independent of the value
of the hitting time.

(b) (i) By induction on n and part (a), (R0, R1, . . . , Rn) and (W (T0),W (T1), . . . ,W (Tn)) have the
same distribution for n ≥ 0.

(ii) The first-passage time TB to the boundary B is a.s. finite. Therefore, the sequence (Tn) is increasing
and a.s. bounded, and hence converges to some a.s. finite limit T∞. By the continuity of the sample
paths of the Wiener process, the sequence (Rn) converges a.s. to some random point R∞ ∈ B ∪ C .
It must be the case that R∞ ∈ B since otherwise the iterative process would not have terminated.
Therefore, T∞ = TB a.s., and the claim follows.

(iii) Since Rn → R∞ ∈ B a.s., we have r(Rn) → 0 a.s., so that S(a) is a.s. finite for a > 0. For the
last part, let the smallest sphere that circumscribes C have diameter d , and note that d < ∞.

Let B(a) be the set of points in B ∪ C that are within distance a of B. Let x ∈ C , and let
b ∈ M(x) ∩ B(a). The intersection M(x) ∩ B(a) contains a cap T of M(x) containing b. The
area of this cap is a minimum when the part of B containing b is locally a tangent plane to M(x).
(We omit the proof of this, but drawing a picture will help). Given that Rm = x , the probability
p(x) = P(Rm+1 ∈ B(a)) satisfies

p(x) ≥
|T |

4πr2
≥

2πra

4πr2
=

a

2r
>

a

d
,

where |T | is the area of T and r is the radius of M(x). We have used the circumscribing cylinder
theorem to bound |T |.

It follows that the number of steps until hitting B(a) is stochastically smaller than a geometrically
distributed random variable with mean d/a, and hence the result.
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Abbreviations used in this index: c.f. characteristic function; distn distribution; eqn equation;

fn function; ineq. inequality; m.g.f. moment generating function; p.g.f. probability generating

function; pr. process; r.v. random variable; r.w. random walk; s.r.w. simple random walk; thm
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A
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3.9.1–2, 5–7, 3.10.4, 3.11.23,
25–26, 5.3.9, 12.5.4–5,
7; Wiener pr. 12.9.22–3,
13.5.2–3, 13.12.8–9, 25

absorbing state 6.2.1

adapted process 13.8.6

affine transformation 4.13.11;
4.14.60

age-dependent branching pr.
5.5.1–2; conditional 5.1.2;
honest martingale 12.9.2; mean
10.6.13

age, see current life

airlines 1.8.39, 2.7.7, 3.11.56

alarm clock 6.15.21

algorithm 3.11.33, 4.14.63, 6.14.2

aliasing method 4.11.6

alternating renewal pr. 10.5.2,
10.6.14

American call option 13.10.4

analytic fn 13.12.14

ancestors in common 5.4.2

annihilation 6.9.13

anomalous numbers 3.6.7

Anscombe’s theorem 7.11.28

antithetic variable 4.11.11

ants 6.15.41

arbitrage 3.3.7, 6.6.3

Arbuthnot, J. 3.11.22

arc sine distn 4.11.13; sample
from 4.11.13

arc sine law density 4.1.1, 4.4.12,
4.7.16, 4.11.13

arc sine laws for r.w.: maxima
3.11.28; sojourns 5.3.5; visits
3.10.3

arc sine laws for Wiener pr.
13.4.3, 13.12.10, 13.12.19

archery 4.3.10

Archimedes’s thm 4.11.14

area process: for r.w. 5.10.14; for
Wiener pr. 12.9.22

arriving customers: 8.4.4,
11.4.1–3, 11.8.15; allocated
11.7.3; lost 11.3.4

arithmetic r.v. 5.9.4

attraction 1.8.29

autocorrelation function 9.1.6,
9.3.3, 9.7.5, 8, 13.8.28

autocovariance function 8.10.1–2,
9.1.2–3, 9.2.1–2, 9.5.2, 9.6.4,
9.7.6, 19–20, 22

autoregressive sequence 8.10.2,
9.1.1, 9.2.1, 9.3.6–7, 9.7.3

average: Cauchy 5.12.24; see
moving average, and Pasta

B

babies 5.10.2

backward martingale 12.7.3

bagged balls 7.11.27, 12.9.13–14

balance equations 6.5.16, 11.7.3

balking, see baulking

balls in bins 7.11.41

Bandrika 1.8.35–36, 4.2.3

bank 8.4.1

bankruptcy 3.11.25–26, 6.8.12,
12.9.12, 15-16; see gambler’s
ruin, and ruin

Barker’s algorithm 6.14.2

barriers 13.5; moving 13.4.2;
see absorbing barrier, and
reflecting barrier

Bartlett: eqn 13.3.2–4; thm
8.10.6, 11.7.1

batch service 11.8.4

baulking 8.4.4, 11.8.2, 19

Bayes’s formula 1.8.14, 1.8.36

bears 6.13.1, 10.6.19

beetle 6.5.11

Bell numbers 3.11.48

Benford’s distn 3.6.7

Berge’s ineq. 7.11.40

Berkson’s fallacy 3.11.37

Bernoulli: Daniel 3.3.4, 3.4.3–4;
Nicholas 3.3.4

Bernoulli: model 6.15.36;
renewal 8.10.3; shift 9.17.14;
sum of r.v.s 3.11.14, 35

Bertrand’s paradox 4.14.8

Bessel: fn 5.7.12, 5.8.5, 11.8.5,
11.8.16; B. pr. 12.9.23,
13.3.5–6, 13.9.1

best predictor 7.9.1; linear 7.9.3,
9.2.1–2, 9.7.1, 3

bet 3.11.41, 6.6.3, 6.15.50, 7.7.4

beta fn 4.4.2, 4.10.6

beta distn 4.7.14, 4.14.11, 19,
40, 5.8.3; beta-binomial 4.6.5;
sample from 4.11.4–5; second
kind 4.4.14, 4.7.14

betting scheme 3.11.41, 6.6.3,
7.4.4, 7.7.4
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bicycle 4.13.18

Bilbo 3.11.44–45

binary: expansion 4.7.17, 9.1.2,
9.7.14; fission 5.5.1

binary tree 5.12.38; r.w. on 6.4.7

binomial: entropy 3.11.50; r.v.
2.1.3; sum of 3.11.8, 11

binormal: see bivariate normal

biofilm 6.11.9

birth process 6.8.6; conditional
property 6.8.9, dishonest
6.8.7; forward eqns 6.8.4;
divergent 6.8.7; general
6.8.6–7, with immigration
6.8.5; non-homogeneous
6.15.24; see also simple birth

birth–death process: conditioned
6.11.4–5, 6.15.27, coupled
6.15.46; extinction 6.11.3–8,
6.15.25, 12.9.10; honest
6.15.26; immigration–death
6.11.3, 6.13.18, 28; jump chain
6.11.1; martingale 12.9.10;
queue 8.10.7; reversible 6.5.1,
6.15.16; symmetric 6.15.27;
total time 6.11.6; see also
simple birth–death

birthdays 1.8.30, 3.4.10

bivariate: Markov chain 6.15.4;
negative binomial distn
5.12.16; p.g.f. 5.1.3

bivariate normal distn 4.7.5–6,
12, 18–22, 25, 4.8.7, 4.9.4–5,
10–11, 4.14.13, 16, 38, 5.8.7,
5.9.8, 7.11.19; c.f. 5.8.11;
positive part 4.7.5, 4.8.8, 5.9.8

Black–Scholes: model 13.12.23;
value 13.10.5

Blackwell’s renewal theorem
10.4.3

Bonferroni’s ineq. 1.8.37; general
5.2.13

bookmaker 3.3.7, 6.6.3

books 2.7.15, 5.2.10, 6.4.1

Boole’s inequalities 1.8.11

Boolean function 3.4.5

Borel: normal number theorem
9.7.14; paradox 4.6.1, 11

Borel–Cantelli lemmas 7.6.1,
13.12.11

boulders 6.8.10, 6.15.56

bound away from zero 3.11.56,
5.6.7

bounded convergence 12.1.5

boys and girls 1.4.8, 1.5.7, 3.7.8,
3.11.22, 30, 12.5.9

bow tie 6.4.11

Box–Muller normals 4.11.7

branching process: age-dependent
5.5.1–2, 10.6.13, 12.9.2;
ancestors 5.4.2; conditioned
5.12.21, 6.7.1–4; convergence,
12.9.8; correlation 5.4.1;
critical 7.10.1; extinction 5.4.3;
Feller diffusion approximation
13.4.9, 13.12.5; geometric
5.4.3, 5.4.6; imbedded in
queue 11.3.2, 11.7.5, 11; with
immigration 5.4.5, 7.7.2; ineq.
5.12.12; martingale 12.1.3,
9, 12.9.1–2, 8; maximum of
12.9.20; moments 5.4.1; p.g.f.
5.4.4; supercritical 6.7.2; total
population 5.12.11; variance
5.12.9; visits 5.4.6

bridge 1.7.6, 1.8.32; see
Brownian bridge

Brownian bridge 9.7.22, 13.6.2–5;
autocovariance 9.7.22, 13.6.2;
maximum 13.6.4; zeros of
13.6.5

Brownian motion: in disk
12.7.6; fractional 8.10.8;
geometric 13.3.9; tied-down,
see Brownian bridge; total
variation 13.2.1

Bruss’s odds rule 4.14.70

Buffon: cross 4.5.3; needle 4.5.2,
4.14.31–32; noodle 4.14.31

Burke’s theorem 11.2.7

buses 2.7.6

businessman 12.9.19

busts 1.3.4, 1.8.13

busy period 6.12.1; in G/G/1
11.5.1; in M/G/1 11.3.3; in
M/M/1 11.3.2, 11.8.5; in
M/M/∞ 11.8.9, 11.8.21

C
cake, hot 3.11.32

call option: American 13.10.4;
European 13.10.4–5

Cambridge 1.3.4, 1.8.27, 4.14.50,
6.15.51, 12.9.15

Campbell–Hardy theorem 6.13.2,
10, 6.15.56–57

Cantelli ineq. 3.6.11, 7.11.9

capture–recapture 3.5.4

cards 1.7.2, 5, 1.8.26, 33, 3.11.54,
6.4.13–14, 12.9.18

Carroll, Lewis 1.4.4

cars: parking 4.14.30; Poisson
6.15.40, 49; trading 10.6.21

casino 3.9.6, 7.7.4, 12.9.16

catastrophes 7.5.2

Cauchy convergence 7.3.1; in
m.s. 7.11.11

Cauchy distn 4.4.4, 12, 4.7.11,
13, 18, 4.14.4, 5.9.9, 5.11.4,
6.15.56, 8.7.6, 13.4.4;
maximum 7.11.14; moments
4.4.4; reciprocal 4.7.13;
sample from 4.11.9; sum 4.8.2,
5.11.4, 5.12.24–25

Cauchy–Schwarz ineq. 3.6.10,
4.14.27

central limit theorem 5.10.1, 3, 9,
5.12.33, 40, 7.11.26, 10.6.3

characteristic function
5.12.26–31; bivariate
normal 5.8.11; coincident
5.12.27; continuity theorem
5.12.39; exponential distn
5.8.8; extreme-value distn
5.12.27; first passage distn
5.10.7–8; joint 5.12.30; law
of large numbers 7.11.15;
(multi)normal distn 5.8.6,
5.8.16; tails 5.7.6; weak law
7.11.15

Chebyshov’s ineq., one-sided
3.6.11, 7.11.9

checking 6.4.1, 15

Chernoff: ineq. 5.11.5;
C.–Cacoullos ineq. 4.7.26

cherries 1.8.22

chess 2.7.18, 6.6.6–7

chicks 3.11.51

chimeras 3.11.36

chi-squared distn: non-central
5.7.7; sum 4.10.1, 4.14.12

Cholesky decomposition 4.14.62

chromatic number 12.2.2

circular: r.w. 3.11.32; symmetry
5.12.56

coalescence 6.14.5

coffee house 4.7.23

coincidence 6.8.10, 7.2.11

coincident c.f.s 5.12.27

coins: double 1.4.3; fair 1.3.2,
1.8.42–43, 2.1.3; first head
1.3.2, 1.8.2, 2.7.1; long run
2.2.2; patterns 1.3.2, 5.2.6,
5.12.2, 10.6.17, 12.9.16;
transitive 2.7.16; see Poisson
flips

collective marks 5.1.12, 6.2.6

colouring: graph 12.2.2; sphere
1.8.28; theorem 6.15.39

compass 6.5.1

competition lemma 6.13.8

complete convergence 7.3.7

complex-valued: process 9.3.2,
9.7.8; random vector 9.1.5
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compound: Poisson pr. 6.15.21;
Poisson distn 3.5.5, 3.8.6,
5.12.13

compounding 5.1.6, 5.2.3, 8

computer queue 6.9.3

concave fn 6.15.37

conditional: birth–death pr.
6.11.4–5, 6.15.27; branching
pr. 5.12.21, 6.7.1–4;
convergence 13.8.3; correlation
9.7.21; covariance 3.7.11;
entropy 6.15.45; expectation
3.7.2–3, 4.6.2, 4.14.13, 7.9.4;
independence 1.5.5; probability
1.8.9; property of birth pr.
6.8.9; s.r.w. 3.9.2–3, 5.3.8–9;
variance 3.7.4, 4.6.7; Wiener
pr. 8.5.2, 9.7.21, 13-5-2–3,
13.6.1; see also regression

Condorcet 3.6.6

conformal invariance 13.12.14

constrained first passage 6.2.7

contingency coefficient 4.5.15

continued fractions 2.7.21

continuity of: distn fns 2.7.10;
marginals 4.5.1; probability
measures 1.8.16, 1.8.18;
transition probabilities 6.15.14

continuity theorem 5.12.35, 39

continuous r.v.: independence
4.5.5, 4.14.6; limits of discrete
r.v.s 2.3.1

convergence: bounded 12.1.5;
Cauchy 7.3.1, 7.11.11;
complete 7.3.7; conditional
13.8.3; in distn 7.2.4, 7.11.8,
16, 24; dominated 5.6.3, 7.2.2;
event of 7.2.6; martingale
7.8.3, 12.1.5, 12.9.6; Poisson
pr. 7.11.5; in probability 7.2.8,
7.11.15; subsequence 7.11.25;
in total variation 7.2.9

convex: fn 5.6.1, 12.1.6–7;
log-convex 3.1.5; order 4.12.8;
polygon 6.4.9; quadrilateral
4.14.60; region 4.14.61,
13.12.25; rock 4.14.57; shape
4.13.2–3, 4.14.61

copula 4.11.18

corkscrew 8.4.5

Corn Flakes 1.3.4, 1.8.13

correlation: non-transitive 3.6.9;
maximal 7.9.7; monotone
7.9.8; see correlation
coefficient

countable additivity 1.8.18

counters 10.6.6–8, 15

coupling: birth–death pr. 6.15.46;
from the past 6.14.5; maximal

4.12.4–6, 7.11.16; renewal
10.4.3

coupons 3.3.2, 4.14.64, 5.2.9,
5.12.34

covariance: matrix 3.11.15, 7.9.3;
of Poisson pr. 7.11.5

Cox process 6.15.22

Cramér–Wold device 7.11.19,
5.8.11

criterion: irreducibility 6.15.15;
Kelly’s 6.5.2; Kolmogorov’s
6.5.2, 6.15.16; for recurrence
6.4.10

Crofton’s method 4.13.9

crudely stationary 8.2.3

cube: d-cube 3.11.55; inscribed
1.8.28; n-cube 7.11.22; r.w. on
6.3.4

cumulants 5.7.3–4

cups and saucers 1.3.3

current life 10.3.2, 4, 10.5.4; and
excess 10.6.9; limit 10.6.4;
Markov 10.3.2; Poisson 10.6.9

curse 3.11.46

D
dam 6.4.3

dead period 10.6.6–8

death–immigration pr. 6.11.3

decay 5.12.48, 6.4.8; exponential
5.11.3

decimal expansion 3.1.4, 7.11.4

decomposition: Cholesky 4.14.62;
Krickeberg 12.9.11

deficit 11.8.18

degrees of freedom 5.7.7–8

delayed: customers 11.8.13;
renewal pr. 10.6.12

de Moivre: martingale 12.1.4,
12.4.6; trial 3.5.1

De Morgan laws 1.2.1

density: arc sine 4.11.13; arc
sine law 4.1.1; beta 4.11.4,
4.14.11, 19, 5.8.3; bivariate
normal 4.7.5–6, 12, 4.9.4–5,
4.14.13, 16, 7.9.2, 7.11.19;
Cauchy 4.4.4, 4.8.2, 4.10.3,
4.14.4, 16, 5.7.1, 5.11.4,
5.12.19, 24–25, 7.11.14;
chi-squared 4.10.1, 4.14.12,
5.7.7; Dirichlet 4.14.58;
exponential 4.4.3, 4.5.5, 4.7.2,
4.8.1, 4.10.4, 4.14.4–5, 17–19,
24, 33, 5.12.32, 39, 6.7.1;
extreme-value 4.1.1, 4.14.46,
7.11.13; F(r, s) 4.10.2, 4,
5.7.8; first passage 5.10.7–8,
5.12.18–19; Fisher’s spherical
4.14.36; gamma 4.14.10–12,

5.8.3, 5.9.3, 5.10.3, 5.12.14,
33; hypoexponential 4.8.4;
inverse Gaussian 13.4.5;
Laplace 4.3.13; Lévy 5.10.7–8;
log-normal 4.4.5, 5.12.43;
Maxwell 5.12.55; multinormal
4.9.2, 5.8.6; normal 4.9.3, 5,
4.14.1, 5.8.4–6, 5.12.23, 42,
7.11.19; Rayleigh 4.7.16,
4.14.16, 7.2.11; spectral
9.3.3; standard normal 4.7.5;
Student’s t 4.10.2–3, 5.7.8;
uniform 4.4.3, 4.5.4, 4.6.6,
4.7.1, 3, 4, 4.8.5, 4.11.1, 8,
4.14.4, 15, 19, 20, 23–26,
5.12.32, 7.11.4, 9.1.2, 9.7.5;
Weibull 4.4.7, 7.11.13

departure pr. 11.2.7, 11.3.1,
11.7.2–4, 11.8.4, 6, 12

derangement 3.4.9

detailed balance eqns 6.15.16

diagonal selection 6.4.5

dice 1.5.2, 1.5.9, 1.8.1, 15, 3.2.4,
3.3.3, 6.1.2; weighted/loaded
2.7.12, 5.12.36

difference eqns 1.8.20, 3.4.9,
3.9.4, 5.2.5, 5.12.2. 6.8.5,
11.2.4

difficult customers 11.7.4

diffusion: absorbing barrier
13.12.8–9; Bessel pr. 12.9.23,
13.3.5–6, 13.9.1; Ehrenfest
model 6.5.5, 36; first passage
13.4.2; Itô pr. 13.9.3; models
3.4.4, 6.5.5, 6.15.12, 36;
Ornstein–Uhlenbeck pr.
13.3.4, 13.7.4–5, 13.12.3–4,
6; osmosis 6.15.36; reflecting
barrier 13.5.1, 13.12.6; Wiener
pr. 12.7.22–23; zeros 13.4.1,
13.12.10; Chapter 13 passim

diffusion approximation to
birth–death pr. 13.3.1

dimer problem 3.11.34

Dirichlet: density 4.14.58; distn
3.11.31, 52; multivariate
4.15.58

disasters 6.12.2–3, 6.15.28

discontinuous marginal 4.5.1

dishonest birth pr. 6.8.7

distance, see total variation

distribution: see also density;
arc sine 4.11.13; arithmetic
5.9.4; Benford 3.6.7; Bernoulli
3.11.14, 35; beta 4.11.4;
beta–binomial 4.6.5; binomial
2.1.3, 3.11.8, 11, 5.12.39;
bivariate normal 4.7.5–6, 12;
Cauchy 4.4.4; chi-squared
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4.10.1; compound 5.2.3;
compound Poisson 5.12.13;
convergence 7.2.4; Dirichlet
3.11.31, 4.14.58; empirical
9.7.22; exponential 4.4.3,
5.12.39; F(r, s) 4.10.2–4;
extreme-value 4.1.1, 4.14.46,
7.11.13; first passage
5.10.7–8. 5.12.18–19; gamma
4.14.10–12; Gaussian, see
normal; geometric 3.1.1, 3.2.2,
3.7.5, 3.11.7, 5.12.34, 39,
6.11.4; Holtsmark 6.15.57,
8.10.9; hypergeometric
3.11.10–11; hypoexponential
4.8.4; infinitely divisible
5.12.13–14; inverse Gaussian
13.4.5; inverse square 3.1.1;
joint 2.5.4; Laplace 4.3.13;
lattice 5.7.5; Lévy 5.10.7–8;
logarithmic 3.1.1, 5.2.3;
log-normal 4.4.5, 5.12.43;
maximum 4.2.2, 4.14.17;
Maxwell 5.12.55; median
2.7.11, 4.3.4, 7.3.11; mixed
2.1.4, 2.3.4, 4.1.3; modified
Poisson 3.1.1; moments 5.11.3;
multinomial 3.5.1, 3.6.2;
multinormal 4.9.2; negative
binomial 3.8.4, 5.2.3, 5.12.4,
16; negative hypergeometric
3.5.4; non-central 5.7.7–8;
normal 4.4.6, 8, 4.9.3–5;
Pareto 4.4.11, 4.5.17; Poisson
3.1.1, 3.5.2–3, 3.11.6, 4.14.11,
5.2.3, 5.10.3, 5.12.8, 14, 17,
33, 37, 39, 7.11.18; Rayleigh
4.7.16, 4.14.16, 7.2.11;
spectral 9.3.2, 4; standard
normal 4.7.5; stationary
6.9.11; Student’s t 4.10.2–3,
5.7.8; symmetric 3.2.5; tails
5.1.2, 5.6.4, 5.11.3; tilted
5.7.11; trapezoidal 3.8.1;
trinormal 4.9.8–9; uniform
2.1.6, 2.7.20, 3.7.5, 3.8.1,
5.1.6, 9.7.5; Weibull 4.4.7,
7.11.13; zeta/Zipf 3.11.5

divergent birth pr. 6.8.7

divine providence 3.11.22

DNA 3.11.21

Dobinski’s formula 3.11.48

Dobrushin’s bound and ergodic
coefficient 6.14.4

dog–flea model 6.5.5, 6.15.36

dominated convergence 5.6.3,
7.2.2, 12.7.4

Doob: L2 ineq. 13.7.1; maximal
ineq. 12.9.26

Doob–Kolmogorov ineq. 7.8.1–2

doubly stochastic: matrix 6.1.12,
6.15.2; Poisson pr. 6.15.22–23

downcrossings ineq. 12.3.1

drift 13.3.3, 13.4.5, 13.5.1, 13.8.9,
13.10.1, 13.12.9, 13.12.24

dual queue 11.5.2

duration of play 3.11.47, 12.1.4

E
Eddington’s controversy 1.8.27

editors 6.4.1

eggs 5.12.13

Ehrenfest model 6.5.5, 6.15.36

eigenvector 6.6.1–2, 6.15.7

election 3.6.6, 5.10.10

embarrassment 2.2.1

empires 6.15.10

empirical distn 9.7.22

entrance fee 3.3.4

entropy 3.11.50–51, 7.5.1;
conditional 3.11.50, 6.15.45;
joint 3.11.50; mutual 3.6.5;
relative 6.13.57

epidemic 6.15.32

equilibrium, see stationary

equivalence class 7.1.1

ergodic: coefficient 6.14.4; Kac’s
formula 8.2.4; measure 9.7.11;
stationary measure 9.7.11

ergodic theorem: Markov chain
6.15.44, 7.11.32; Markov pr.
7.11.33, 10.5.1; stationary pr.
9.7.10–11, 13

Erlang’s loss formula 11.8.19

error 3.7.9; of prediction 9.2.2

estimation 2.2.3, 4.5.3, 4.14.9,
7.11.31

Euler: constant 3.3.12, 4.14.46,
5.12.27, 6.15.32; formula
3.11.52; product 5.12.34; sine
formula 3.11.43

European call option 13.10.4–5

event: of convergence 7.2.6;
exchangeable 7.3.4–5; invariant
9.5.1; sequence 1.8.16; tail
7.3.3

excess life 10.4.1–2, 10.5.4;
conditional 10.3.4, 10.5.3; and
current 10.6.9; limit 10.3.3;
Markov 8.3.2, 10.3.2; moments
10.3.3; Poisson 6.8.3, 10.3.1,
10.6.9; renewal 10.6.11;
reversed 8.3.2; stationary
10.3.3

exchangeability 7.3.4–5, 12.4.8

expectation: conditional
3.7.2–3, 4.6.2, 4.14.12,
7.9.4; independent r.v.s 7.2.3;
linearity 5.6.2; of sum 4.8.10;

tail integral 4.3.3, 5; tail sum
3.11.13, 4.14.3

explosion 6.9.12, 6.9.12, 6.10.21

exponential distn: c.f. 5.8.8;
holding time 11.2.2; of
occupation times 6.9.9–10;
in Poisson pr. 6.8.3;
lack-of-memory property
4.14.5; limit in branching pr.
5.6.2, 5.12.21, 6.7.1; limit of
geometric distn 5.12.39; heavy
traffic limit 11.6.1; distn of
maximum 4.14.18; in Markov
pr. 6.8.3, 6.9.9; order statistics
4.14.33; sample from 4.14.48;
sum 4.8.1, 4, 4.14.10, 5.12.50,
6.15.42

exponential ineq. for Wiener pr.
12.9.26

exponential martingale 13.3.9

exponential smoothing 9.7.2

extinction: biofilm 6.11.9; of
birth–death pr. 6.11.3, 6.15.25,
27, 12.9.10; of branching pr.
5.4.8, 6.7.2–3

extreme-value distn 4.1.1,
4.14.46, 5.12.34, 7.11.13; c.f.
and mean 5.12.27

F
F(r, s) distn 4.10.2, 4;

non-central 5.7.8

fair fee 3.3.4

fairies 3.11.46

families 1.5.7, 3.7.8

family, planning 3.11.30, 12.5.59

Farkas’s thm 6.6.2

Feller: diffusion 13.4.9, 13.12.5;
property 8.8.4

filter 9.7.2

filtration 12.4.1–2, 7

fingerprinting 3.11.21

finite: Markov chain 6.5.8, 6.6.5,
6.15.43-44; stopping time
12.4.5; waiting room 11.8.1

first exit, by Wiener pr. 13.12.8

first passage: c.f. 5.10.7–8;
constrained 6.2.7; diffusion
pr. 13.4.2; distn 5.10.7–8,
5.12.18–19; Markov chain
6.2.1, 6.3.6; Markov pr.
6.9.5–6; mean 6.3.7; m.g.f.
5.12.18; s.r.w. 5.3.8; Wiener
pr. 13.4.2

first visit: by s.r.w. 3.10.1, 3

Fisher: spherical distn 4.14.36;
F.–Tippett–Gumbel distn
4.14.46
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FKG ineq. 3.11.18, 4.11.11,
6.14.6

Flash 1.8.40

flip–flop 8.2.1

flow 6.4.3, 6.15.55

football 4.3.12–13

forest 6.15.30

formula: Bayes 1.8.14;
conditional variance 3.7.4;
Dobinski 3.11.48; Erlang
11.8.19; Euler 3.11.52;
inclusion–exclusion 1.3.4,
1.8.12; Itô 13.9 passim; Kac
8.2.4; Kolmogorov–Szegő
9.3.7; see Stirling’s formula

Fourier: inversion thm 5.9.5;
series 9.7.15, 13.12.7

fourth moment: ineq. 7.3.14;
strong law 7.11.6

fractional: Brownian motion
8.10.8; moments 3.3.5, 4.3.1,
4.4.4

frailty 4.7.15

freeway 4.14.74

friends 1.8.19, 3.3.10, 4.7.23

function, upper-class 7.6.1

functional eqn 4.14.5, 19

G
Galton’s paradox 1.5.8

gambler’s ruin 3.9.6, 3.11.25–26,
7.7.4, 12.1.4, 12.5.8, 12.9.16

gambling: advice 3.9.4; systems
7.7.4

gamma distn 4.4.15, 4.7.4,
4.14.10–12, 5.8.3, 5.9.3,
5.10.3, 5.12.14, 33; g. and
Poisson 4.14.11; sample from
4.11.3; sum 4.14.11

gamma fn 4.4.1, 5.12.34, 7.11.38

gaps: Poisson 8.4.3, 10.1.2;
recurrent events 5.12.45;
renewal 10.1.2

garage 10.5.6

Gauss’s ineq. 4.14.69

Gaussian distn, see normal distn

Gaussian pr. 9.6.2–4, 13.8.2,
13.12.2; Markov 9.6.2;
stationary 9.4.3, 9.6.3;
two-parameter 9.6.6; white
noise 13.8.5

generator 6.9.1, 3, 5, 11, 13,
6.10.3–5, 6.15.15–16, 7.11.33,
12.7.1

generalized inverse transform
4.11.17

geometric: branching 5.4.3,
6; Brownian motion 13.3.9,
13.12.33

geometric distn 3.1.1, 3.2.2,
3.7.5, 3.11.7, 5.2.8, 5.12.34,
39; conditioned 3.8.8,
3.11.7; entropy 3.11.50;
lack-of-memory property
3.11.7; as limit 5.12.39, 6.11.4,
11.5.2; sample from 4.11.8;
sum 3.8.3–4; truncated 5.1.11

gig economy 6.8.12

goat 1.4.5

Goldstein–Kac pr. 8.2.2

Gollum 3.11.44

graph: colouring 12.2.2; r.w.
6.4.6, 9, 6.6.9, 13.11.2–3

gravity 6.13.10, 6.15.56–7, 8.10.9

H
Hájek–Rényi–Chow (HRC) ineq.

12.9.4–5

Hall, Monty 1.4.5

Hardy–Littlewood transform
4.11.16

harmonic series, random 7.11.37

Hastings algorithm 6.14.2

Hawaii 2.7.17

hazard rate 4.1.4, 4.4.7; technique
4.11.10

heat eqn 13.12.24

Heathrow 10.2.1

heavy traffic 11.6.1, 11.7.16

hen, see eggs and chicks

Hewitt–Savage zero–one law
7.3.4–5

hexagon 6.15.35

hiking 6.15.56

hitting time 6.9.5–6; axes 12.9.17;
football 4.3.12–13; mean 6.3.7,
6.8.6, 6.15.52; probabilities
6.3.6, 6.8.5; thm 3.10.1, 5,
5.3.8

Hoeffding’s: identity 4.5.11; ineq.
12.2.1–2

Holtsmark distn 6.15.57, 8.10.9

Hölder’s ineq. 4.14.27

holding time 11.2.2

homogeneous Markov chain 6.1.1

honest birth–death pr. 6.15.26

hot cake 3.11.32

Hotelling’s theorem 4.14.59

house 4.2.1, 6.15.20, 51

Hurst exponent 8.7.2, 8.10.8

hypergeometric distn 3.11.10–11;
negative 3.5.4

hypoexponential distn 4.8.4,
5.8.14

I
idle period 11.5.2, 11.8.9

imbedding: jump chain 6.9.11;
Markov chain 6.1.4, 6.3.8,
6.9.12, 6.15.17, 8.8.2; queues:
D/M/1 11.7.16; G/M/1 11.4.1,
3; M/G/1 11.3.1, 11.7.4;
unsuccessful 6.15.17

immigration: birth–i. 6.8.5;
branching 5.4.5, 7.7.2, 12.9.1;
i.–death 6.11.2, 6.15.18; with
disasters 6.12.2–3, 6.15.28

immoral stimulus 1.2.1

importance sampling 4.11.12

Inaba’s thm 3.4.11

inclusion–exclusion principle
1.3.4, 1.8.12

increasing sequence: of events
1.8.16; of r.v.s 2.7.2

increments: independent 9.7.6,
16–17; orthogonal 7.7.1;
spectral 9.4.1, 3; stationary
9.7.17; of Wiener pr. 9.7.6

independence and symmetry 1.5.3

independent: conditionally 1.5.5;
continuous r.v.s 4.5.5, 4.14.6;
current and excess life 10.6.9;
customers 11.7.1; discrete
r.v.s 3.11.1, 3; events 1.5.1;
increments 9.7.17; mean,
variance of normal sample
4.10.5, 5.12.42; normal distn
4.7.5; pairwise 1.5.2, 3.2.1,
5.1.7; set 3.11.40; triplewise
5.1.7

indicators and matching 3.11.17

inequality: Berge 7.11.40;
bivariate normal 4.7.12;
Bonferroni 1.8.37; Boole
1.8.11; Cantelli 3.6.11, 7.11.9;
Cauchy–Schwarz 4.14.27;
Chebyshov 7.11.9; Chernoff
5.11.5; Chernoff–Cacoullos
4.7.26; Dobrushin 6.14.4;
Doob–Kolmogorov
7.8.1; Doob L2 13.7.1;
Doob maximal 12.9.26;
downcrossings 12.3.1;
exponential 12.9.26; FKG
3.11.18; Gauss 4.14.69;
Hájek–Rényi–Chow 12.9.4–5;
Hoeffding 12.2.1–2; Hölder
4.14.27; integral 4.3.8; Jensen
5.6.1, 7.9.4; Johnson–Rogers
4.3.11; Kolmogorov 7.8.1–2,
7.11.29–30; Kounias 1.8.38;
Lyapunov 4.14.28; Mallows
4.3.4; Maurer 12.2.3; maximal
12.4.3–4, 12.9.3, 5, 9; m.g.f.
5.8.2, 12.9.7; Minkowski
4.14.27; Paley–Zygmund
3.11.57; prophet 4.14.71;
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triangle 7.1.1, 3; upcrossings
12.3.2

infinite divisibility 5.12.13–14

information: mutual 3.6.5,
3.11.50–51, 4.5.15

inner product 6.14.1, 7.1.2

insects 6.8.1–2

inspection paradox 10.6.5

insurance 8.10.7, 10.1.7, 11.8.18,
12.9.12, 27

integral: ineq. 4.3.8; Monte
Carlo 4.14.9; normal 4.14.1;
stochastic 9.7.19, 13.8.1–2

invariant event 9.5.1, 9.7.11, 13

invariant measure, see stationary

inverse Mills’s ratio 4.7.19

inverse: square distn 3.1.1; square
law 8.10.9

inverse transform: technique
2.3.3; generalized 4.11.17

inversion theorem 5.9.5; c.f.
5.12.20

investor 3.11.41, 13.12.23

irreducible Markov pr. 6.15.15

Ising model 6.14.6

Isserlis’s thm 5.8.13

iterated logarithm 7.6.1

Itô: formula 13.9.2; process
13.9.3

J
Jaguar 3.11.25

Jeffreys’s bicycle 4.13.18

Jensen’s ineq. 5.6.1, 7.9.4

jobs 6.9.3

Johnson–Rogers ineq. 4.3.11

joint: c.f. 5.12.30; density
2.7.20; distn 2.5.4; mass fn
2.5.5; m.g.f. 5.7.13; moments
5.12.30; p.g.f. 5.1.3-5

jump chain 6.9.5–8, 6.10.2,
6.11.1, 6.12.1; of M/M/1
11.2.6

K
Kac’s ergodic formula 8.2.4

Kelly: betting 3.11.41; condition
6.5.2, 11

Kemeny’s constant 6.15.52

Kendall’s taxicabs´ 11.8.16,
12.7.7

key renewal theorem 10.3.3, 5,
10.6.11

Keynes, J. M. 3.9.6

Khinchin’s representation
4.3.11–13

knapsack problem 12.2.1

Kolmogorov: criterion 6.5.2,
6.15.16; ineq. 7.8.1–2,
7.11.29–30, 12.9.4

Kolmogorov–Sze̋go formula 9.3.7

Korolyuk–Khinchin theorem 8.2.3

Kounias’s ineq. 1.8.38

Krickeberg decomposition 12.9.11

Kronecker’s lemma 7.8.2,
7.11.30, 12.9.5

Kullback–Leibler divergence
6.15.37

kurtosis 4.14.45

L
L2 ineq. 13.7.1

Labouchere system 12.9.15

lack of anticipation 6.9.4

lack-of-memory property:
exponential distn 4.14.5;
geometric distn 3.11.7

ladders, see records

Lancaster’s theorem 4.14.38

Laplace: distn 4.3.13; exponent
8.6.3; steepest descent 5.9.6;
L.–Stieltjes transform 10.1.7,
10.6.11, 14; transform 5.12.19,
53, 6.8.7, 8.7.6, 10.1.6, 13.4.2

large deviations 5.11.1–3, 12.9.7

last: exits 6.2.1, 6.15.7; zero of
Wiener pr. 13.4.3

lattice: distn 5.7.5; FKG
condition 6.14.6; square
4.14.56; triangular 3.4.11

law: anomalous numbers 3.6.7;
arc sine 3.10.3, 3.11.28,
5.3.5; De Morgan 1.2.1;
inverse square 8.10.9; iterated
logarithm 7.6.1; large numbers
2.2.2; Murphy’s 1.3.2; strong
7.4.1, 7.8.2, 7.11.6, 9.7.10;
unconscious statistician 3.11.3;
weak 7.4.1, 7.11.15, 20–21;
zero–one 7.3.4–5

lazy Markov chain 6.5.12

Lebesgue measure 6.15.29,
13.12.16

left-continuous: fn 10.3.1; r.w.
5.3.7, 5.12.7

length-bias, see size-bias

level sets of Wiener pr. 13.12.16

Lévy: conformal invariance
13.12.14; distn 5.10.7–8, see
first-passage distn; metric
2.7.13, 7.1.4, 7.2.4; process
8.6.1–2, 3-4,6, 8.7.4, 8.8.3,
9.6.5; symbol 8.6.2

library 2.7.15, 5.2.10

limit: binomial 3.11.10;
binomial–Poisson 5.12.39;

branching 12.9.8; central
limit theorem 5.10.1, 3, 9,
5.12.33, 40, 7.11.26, 10.6.3;
diffusion 13.3.1; distns 2.3.1;
events 1.8.16; gamma 5.9.3;
geometric–exponential 5.12.39;
lim inf 1.8.16; lim sup 1.8.16,
5.6.3, 7.3.2, 9–10, 12; local
5.9.2, 5.10.5–6; martingale
7.8.3; normal 5.12.41, 7.11.19;
Poisson 3.11.17; probability
1.8.16–18; r.v. 2.7.2; uniform
5.9.1

line process 6.13.9

linear dependence 2.7.22, 3.11.15

linear fn of normal r.v.s 4.9.3–4,
7.9.2

linear prediction 9.7.1, 3

local central limit theorem 5.9.2,
5.10.5–6

logarithmic distn 3.1.1, 5.2.3,
5.12.49

log-convex 3.1.5

log-likelihood 7.11.31

log-normal r.v. 4.4.5, 5.12.43

longest run 5.12.47

lorries 6.13.10

loss: formula 11.8.19; system
11.3.4

lost boarding pass 1.8.39, 3.11.56

lottery 1.8.31

lumping 6.1.13

Lyapunov’s ineq. 4.14.28

M
machine 3.7.5, 5.10.15, 10.5.7,

11.8.17

magnets 3.4.8

Magrathea 1.8.30

Mallows’s ineq. 4.3.4

Malmquist’s thm 4.14.67

marginal: copula 4.11.8; coupling
4.12.5, 7.11.16; discontinuous
4.5.1; multinomial 3.6.2; order
statistics 4.14.22

Markov but not strong Markov
8.8.4

Markov chain in continuous time:
ergodic theorem 7.11.33,
10.5.1; explosion 6.9.12,
6.10.4, 6.10.21; first passage
6.9.5–6; generator 6.9.1, 3,
5, 11, 13, 6.10.3–5, 6.15-16;
irreducible 6.15.15; jump chain
6.9.11; martingale 12.7.1;
mean first passage 6.9.6;
mean recurrence time 6.9.11;
occupation time 6.9.9–10;
renewal pr. 8.3.5; reversible
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6.15.16, 38; stationary distn
6.9.11; two-state 6.9.1–2,
6.15.17; visits 6.9.9

Markov chain in discrete time:
absorbing state 6.2.2; bivariate
6.15.4; convergence 6.15.43;
dice 6.1.2; ergodic theorem
7.11.32; finite 6.5.8, 6.15.43;
first passages 6.2.1, 6.3.6;
homogeneous 6.1.1; imbedded
6.9.11, 6.15.17, 11.4.1; last
exits 6.2.1, 6.15.7; lazy
6.5.12; lumpable 6.1.13;
martingale 12.1.8, 12.3.3;
mean first passage 6.3.7;
mean recurrence time 6.9.11;
PageRank 6.6.9; recurrent
6.4.10; renewal 10.3.2;
reversible 6.14.1; sampled
6.1.4, 6.3.8; simulation of
6.14.3; stationary distn 6.9.11;
sum 6.1.8; two-state 6.15.11,
17, 8.2.1; visits 6.2.3–5, 6.3.5,
6.15.5, 44

Markov–Kakutani theorem 6.6.1

Markov process: Gaussian 9.6.2;
reversible 6.15.16

Markov property 6.1.5, 10; strong
6.1.6; weak but not strong
8.8.4

Markov renewal, see Poisson pr.

Markov time, see stopping time

Markovian queue, see M/M/1

marriage problem 3.4.3, 4.14.35,
70

martingale: backward 12.7.3;
birth–death 12.9.10; branching
pr. 12.1.3, 9, 12.9.1–2, 8,
20; casino 7.7.4; continuous
parameter 12.7.1–2;
convergence 7.8.3, 12.1.5,
12.9.6; de Moivre 12.1.4,
12.4.6; exponential 13.3.9;
finite stopping time 12.4.5;
gambling 12.1.4, 12.5.8; law
large nos 12.6.1; Markov
chain 12.1.8, 12.3.3, 12.7.1;
optional stopping 12.5.1–8;
orthogonal increments 7.7.1;
partial sum 12.7.3; patterns
12.9.16; Poisson pr. 12.7.2;
reversed 12.7.3; simple r.w.
12.1.4, 12.4.6, 12.5.4–7;
stopping time 12.4.1, 5, 7; urn
7.11.27, 12.9.13–14; Wiener
pr. 12.9.22–23

mass function, joint 2.5.5

matching 3.4.9, 3.11.17, 5.2.7, 11,
12.9.21

matrix: covariance 3.11.15;
definite 4.9.1; doubly
stochastic 6.1.12, 6.15.2;
multiplication 4.14.63; power
series 6.10.1; square root
4.9.1; stochastic 6.1.12,
6.14.1; sub-stochastic 6.1.12;
transition 7.11.31; tridiagonal
6.5.1, 6.15.16

Maurer’s inequality 12.2.3

maximal: correlation coefficient
7.9.7; coupling 4.12.4–6,
7.11.16; ineq. 12.4.3–4, 12.9.3,
5, 9

maximum of: bivariate normal
4.5.12; branching pr. 12.9.20;
Brownian bridge 13.6.4;
multinormal 5.9.7; r.v.s
4.2.2; r.w. 3.10.2, 3.11.28,
5.3.1, 6.1.3, 12.4.6; uniforms
5.12.32; Wiener pr. 13.4.6,
13.12.8, 11, 15, 17, 19

maximum: deficit 11.8.18;
entropy 5.6.1; r.v. 4.2.2, 4.5.4,
4.14.17–18, 5.1.10, 5.12.32,
7.11.14

Maxwell’s density and molecules
5.12.55

mean: aboslute difference (MAD)
4.5.17; extreme-value 5.12.27;
first passage 6.3.7, 6.9.6;
hitting time 6.3.7, 6.9.6;
negative binomial 5.12.4;
normal 4.4.6; recurrence time
6.9.11; waiting time 11.4.2,
11.8.6, 10

measure: ergodic 9.7.11–12;
Lebesgue 6.15.29, 13.12.16;
stationary 9.7.11–12; strongly
mixing 9.7.12

median 2.7.11, 4.3.4, 7.3.1

meander, Brownian 13.6.11

median 2.7.11, 4.3.4–5, 11, 13,
7.3.11, 7.11.9

ménages 1.8.23, 3.4.14

Mercator projection 6.13.5

meteorites 9.7.4

metric 2.7.13, 7.1.4; Lévy 2.7.13,
7.1.4, 7.2.4; total variation
2.7.13

m.g.f. ineq. 5.8.2, 12.9.7

migration pr., open 11.7.1, 5, 6

millionaires 3.9.4

Mills’s ratio 4.4.8, 4.14.1, 68;
inverse 4.7.19

minimal, solution 6.3.6–7, 6.9.6

minimum of r.v.s 4.2.2

Minkowski’s ineq. 4.14.27

misprints 6.4.1

mixing, strong 9.7.12

mixture 2.1.4, 2.3.4, 4.1.3, 5.1.9

mode 2.7.23, 4.3.11, 4.14.69

modified renewal 10.6.12

moments 7.2.12; and cumulants
5.7.3; branching pr. 5.4.1;
fractional 3.3.5, 4.3.1;
generating fn 5.1.8, 5.8.2,
5.11.3; joint 5.12.30; problem
5.12.43; renewal pr. 10.1.1; tail
integral 4.3.3, 7, 5.11.3

Mongo 1.8.40

monkey 10.6.17

monotone correlation 7.9.8

Monte Carlo 4.14.9

Monty Hall 1.4.5

Moran’s gamma pr. 8.6.3

Moscow 11.8.3

mountaineers 6.8.10

moving average 8.10.1, 9.1.3,
9.4.2, 9.5.3, 9.7.1–2, 7;
spectral density 9.7.7

multinomial distn 3.5.1; marginals
3.6.2; p.g.f. 5.1.5

multinormal distn 4.9.2, 9.1.5; c.f.
5.8.6; conditioned 4.9.6–7;
covariance matrix 4.9.2;
Hotelling’s thm 5.8.13;
maximum 5.9.7; sampling
from 4.14.62; standard 4.9.2;
transformed 4.9.3, 4.14.62;
Wiener pr. 8.5.7

Murphy’s law 1.3.2

mutual information 3.6.5

N
needle, Buffon’s 4.5.2,

4.14.31–32

negative binomial distn 3.8.4,
5.2.3; bivariate 5.12.16; limit
of 5.9.3; moments 5.12.4;
p.g.f. 5.1.1, 5.12.4

negative hypergeometric distn
3.5.4

network: queueing 8.10.6,
Section 11.7 passim; reliability
3.4.5, 3.11.19–20; social 3.3.10

Newton, I. 3.8.5

non-arithmetic 5.10.4, 10.3.3, 5,
10.4.3, 10.6.4, 9–11

non-central distn 5.7.7–8

non-explosive 6.15.16, 11.7.6

non-homogeneous: birth pr.
6.15.24; Poisson pr. 6.13.7,
6.15.19–20, 22, 8.10.6

non-transitive 3.6.9

noodle, Buffon’s 4.14.31
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norm 7.1.1, 7.9.6; equivalence
class 7.1.1; mean square 7.9.6;
r th mean 7.1.1

normal: integral 4.14.1; orthant
probability 4.7.5; sample
5.8.12, 5.12.42

normal distn 4.4.6; bivariate
4.7.5–6, 12; central limit
theory 5.10.1, 3, 9, 5.12.23,
40; c.f. 5.8.16; characterization
of 5.12.23; cumulants
5.7.4; entropy 5.6.1; inverse
13.4.5; limit 7.11.19; linear
transfomations 4.9.3–4; Mills’s
ratio 4.4.8, 4.14.1; moments
4.4.6, 4.14.1; multivariate
4.9.2, 5.8.6; reciprocal 13.4.7;
regression 4.8.7, 4.9.6, 4.14.13,
7.9.2; sample 4.10.5, 5.12.42;
simulation of 4.11.7, 4.14.49;
square 4.14.12; standard 4.7.5;
sum 4.9.3; sum of squares
4.14.12; trivariate 4.9.8–9;
uncorrelated 4.8.6

normal number theorem 9.7.14

now 6.15.50

O
occupation time: for Markov

pr. 6.9.9–10; for Wiener pr.
13.12.20

Old Slaughter’s 4.7.23

open migration 11.7.1, 5–6

optimal: magic 3.11.46; packing
12.2.1; price 12.9.19; rejection
4.14.49; reset time 13.12.22;
serving 11.8.13

optimal stopping: Bruss’s
4.14.70; dice 3.3.8–9; marriage
3.4.3, 4.14.35, 70

optional quadratic variation
12.2.4, 12.7.8

optional stopping 12.5.1–8,
12.9.19; diffusion 13.4.2;
Poisson 12.7.2

order: convex 4.12.8; stochastic
4.12.1–2; stop-loss 4.12.7

order statistics 4.14.21–22; births
6.8.9; broken stick 4.14.72;
exponential 4.14.33; general
4.14.21; marginals 4.14.22;
simulated 4.14.67; uniform
4.14.23–24, 39, 67, 6.15.42,
12.7.3

ordered exponentials 4.4.9, 4.6.8

Ornstein–Uhlenbeck pr. 9.7.19,
13.3.4, 13.7.4–5, 13.12.3–4, 6;
reflected 13.12.6

orthogonal: increments 7.7.1;
polynomials 4.14.37

osmosis 6.15.36

outguessing 5.10.15

Oxford 6.15.51; secret 3.11.53

P
PageRank 6.6.9

pairwise independent: events
1.5.2; r.v.s 3.2.1, 3.3.3, 5.1.7

Paley–Zygmund ineq. 3.11.57,
5.4.8

paradox: Bertrand 4.14.8; Borel
4.6.1, 11; Carroll 1.4.4; Galton
1.5.8; inspection 10.6.5;
Parrondo 6.15.48; Simpson
1.7.4; St Petersburg 3.3.4;
voter 3.6.6

parallel lines 4.14.52

parallelogram 4.14.60; property
7.1.2;

Pareto distn 4.4.11, 4.5.17

parking 4.14.30

Parrondo’s paradox 6.15.48

particle 6.4.8, 6.15.33, 10.6.6–8,
15

partition of sample space 1.8.10

Pasta property 6.9.4

patterns 1.3.2, 5.2.6, 5.12.2,
10.6.17, 12.9.16

pawns 2.7.18

Pepys’s problem 3.8.5

periodic state 6.5.4, 6.15.3–4

peripheral points 4.2.5

permutation 3.4.9, 4.11.2, 7.3.4,
7.7.5, 13.12.18

persistent, see recurrent

Petersburg, see St Petersburg

pig 1.8.22

planets 1.8.30, 40

points, problem of 3.9.4, 3.11.24

Poisson: approximation 3.11.35;
coupling 4.12.2; flips 3.5.2,
5.12.37; sampling 6.9.4; tail
3.5.3, 7.11.41

Poisson distn 3.5.3;
characterization 5.8.17, 5.12.8,
15, 37; and central limit thm
5.10.3, 5.12.33; competition
lemma 6.13.8; compound
3.5.5, 3.8.6, 5.2.3, 8, 5.12.13;
entropy 3.11.51; errors 6.4.1;
and gamma distn 4.14.11;
infinitely divisible 5.12.14; as
limit 3.11.17, 5.2.11; limit of
binomial 5.12.39; modified
3.1.1; moments 3.11.48,
4.11.44–45; particles 6.4.8;
reciprocal 5.12.49; Stein–Chen
3.8.6; sum 3.11.6, 5.10.11,

7.2.10; tail 7.11.41; thinned
3.5.2

Poisson pr. 6.15.29; age 10.5.4;
arrivals 6.9.4, 8.10.4, 10.6.8;
autocovariance 7.11.5, 9.6.1; in
ball 6.13.4; characterization
6.15.29, 9.7.16, 10.6.10;
coincidences 6.8.10; colouring
theorem 6.15.39; compound
8.6.2, 6.15.21; conditional
property 6.13.6; continuity
in m.s. 7.11.5; covariance
7.11.5; departures 11.7.2–5,
11.8.12; differentiability
7.11.5; doubly stochastic
6.15.22–23; excess life 6.8.3,
10.3.1; forest 6.15.30; gaps
10.1.2; line process 6.13.9;
Markov renewal pr. 8.3.5,
10.6.9; martingales 12.7.2;
non-homogeneous 6.13.7,
6.15.19–20; optional stopping
12.7.2; perturbed 6.15.39–40;
quadratic variation 12.7.8;
renewal 8.3.5, 10.6.9–10;
Rényi’s theorem 6.15.39;
repairs 11.7.18; sampling
6.9.4; spatial 6.15.30–31,
7.4.3; spectral density
9.7.6; sphere 6.13.3–4;
stationary increments 9.7.6,
16; superposed 6.8.1; thinned
6.8.2; total life 10.6.5; traffic:
6.13.10, 6.15.40, 49, 8.4.3;
light 6.8.8

poker 1.8.33; dice 1.8.34

policy, see strategy

Pólya’s urn 12.9.13–14

portfolio 13.12.23; self-financing
13.10.2–3

positive definite 4.9.1, 9.6.1

postage stamp lemma 6.3.9

potential theory 13.11.1–3

power series approximation
7.11.17

Prague 8.10.10

Pratt’s lemma 7.10.5

predictable: quadratic variation
12.2.4, 12.8.8; step fn 13.8.4

prediction 7.9.1, 7.9.9

predictor: best 7.9.1; linear 7.9.3,
9.2.1–2, 9.7.1, 3

probabilistic method 1.8.28, 3.4.7,
11, 4.14.63

probability: continuity 1.8.16,
1.8.18; flow 6.15.55; p.g.f.
5.12.4, 13; vector 4.11.6

problem: matching 3.4.9, 3.11.17,
5.2.7, 12.9.21; ménages 1.8.23;
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Pepys 3.8.5; of points 3.9.4,
3.11.24; Waldegrave 5.12.10

professor 3.11.41, 7.4.4

program, dual, linear, and primal
6.6.3

projected r.w. 5.12.6

projection theorem 9.2.10

proof-reading 6.4.1

prophet inequality 4.14.71

proportion, see empirical ratio

proportional: hazard 4.7.15;
investor 3.11.41, 7.4.4,
13.12.23

prosecutor’s fallacy 1.4.6

protocol 1.4.5, 1.8.26

pull-through property 3.7.1

Q
quadratic variation 8.5.4, 12.2.4,

12.7.8, 13.7.2

quality control 6.4.15

quantile fn 4.11.16–17

queue: batch 11.8.4; Bartlett’s
thm 8.10.6; baulking 8.4.4,
11.8.2, 19; Burke’s thm 11.2.7;
busy period 6.12.1, 11.3.2–3,
11.5.1, 11.8.5, 9; costs
11.8.13; departure pr. 11.2.7,
11.7.2–4, 11.8.12; difficult
customer 11.7.4; D/M/1 11.4.3,
11.8.15; dual 11.5.2; Erlang’s
loss fn 11.8.19; finite waiting
room 11.8.1; G/G/1 11.5.1,
11.8.8; G/M/1 11.4.1–2,
11.5.2–3; heavy traffic 11.6.1,
11.8.15; idle period 11.5.2,
11.8.9; imbedded branching
11.3.2, 11.8.5, 11; imbedded
Markov pr. 11.2.6, 11.4.1,
3, 11.4.1; imbedded renewal
11.3.3, 11.5.1; imbedded
r.w. 11.2.2, 5; loss system
11.3.4; Markov, see M/M/1;
M/D/1 11.3.1, 11.8.10–11;
M/G/1 11.3.3–4, 11.8.6–7;
M/G/∞ 6.12.4, 11.8.9, 21;
migration system 11.7.1,
5–6; M/M/1 6.9.3, 6.12.1,
11.2.2–3, 5–6, 11.3.2, 11.6.1,
11.8.5, 12, 20; M/M/k 11.7.2,
11.8.13; M/M/∞ 8.7.4; series
11.8.3, 12; supermarket 11.8.3;
tandem 11.2.7, 11.8.3; taxicabs
11.8.16; telephone exchange
11.8.9; two servers 8.4.1, 5,
11.7.3, 11.8.14; virtual waiting
11.8.7; waiting time 11.2.3,
11.5.2–3, 11.8.6, 8, 10

Quicksort 3.3.12

quotient 3.3.1, 4.7.2, 10, 13–14,
4.10.4, 4.11.10, 4.14.11, 14,
16, 40, 5.2.4, 5.12.49, 6.15.42

R
radioactivity 10.6.6–8

random: bias 5.10.9; binomial
coefficient 5.2.1; chord
4.13.1; dead period 10.6.7;
harmonic series 7.11.37;
integers 6.15.34; line 4.13.1–3,
4.14.52; paper 4.14.56;
parameter 4.6.5, 5.1.6,
5.2.3, 5.2.8; particles 6.4.8;
pebbles 4.14.51; permutation
4.11.2; perpendicular 4.14.50;
polygons 4.13.10, 6.4.9; rock
4.14.57; rods 4.14.25–26,
53–54; sample 4.14.21;
subsequence 7.11.25; sum
3.7.6, 3.8.6, 5.2.3, 5.12.50,
10.2.2; telegraph 8.2.2; triangle
4.5.6, 4.13.6–8, 11, 13;
velocity 6.15.33, 40

random adding 3.11.42;
martingale 12.3.5

random sample: normal 4.10.5;
ordered 4.12.21

random subtracting 3.11.43

random to rising 4.11.2

random variable: see also density
and distribution; arc sine
4.11.13; arithmetic 5.9.4;
Bernoulli 3.11.14, 35; beta
4.11.4; beta–binomial 4.6.5;
binomial 2.1.3, 3.11.8, 11,
5.12.39; bivariate normal
4.7.5–6, 12; boulders 6.8.10,
6.15.56; Cauchy 4.4.4; c.f.
5.12.26–31; chi-squared
4.10.1; compounding 5.2.3;
continuous 2.3.1; Dirichlet
3.11.31, 4.14.58; expectation
5.6.2, 7.2.3; exponential
4.4.3, 5.12.39; extreme-value
4.1.1, 4.14.46; F(r, s) 4.10.2,
4, 5.7.8; gamma 4.11.3,
4.14.10–12; geometric 3.1.1,
3.11.7; hemispheres 4.2.7;
hypergeometric 3.11.10–11;
independent 3.11.1, 3, 4.5.5,
7.2.3; indicator 3.11.17;
infinitely divisible 5.12.13–14;
logarithmic 3.1.1, 5.2.3;
log-normal 4.4.5; median
2.7.11, 4.3.4; m.g.f. 5.1.8,
5.8.2, 5.11.3; multinomial
3.5.1; multinormal 4.9.2;
negative binomial 3.8.4;
normal 4.4.6, 4.7.5–6, 12;
orthogonal 7.7.1; permutation

4.11.2, 7.7.5; p.g.f. 5.12.4,
13; Poisson 3.5.3; quadratic
4.2.6; series 7.11.39, 9.1.3,
9.3.6, 9.7.1–2, 13.12.7;
standard normal 4.7.5; stars
6.15.57, 8.10.9; Student’s t
4.10.2–3, 5.7.8; sum 3.7.6,
3.8.6–7, 5.2.3, 5.12.50,
10.2.2; symmetric 3.2.5,
4.1.2, 5.12.22; tails 3.11.13,
4.3.3, 5, 4.14.3, 5.1.2, 5.6.4,
5.11.3; tilted 5.1.9, 5.7.11;
triangle 4.5.19, 4.13.6–8,
11, 13; trigonometric series
8.10.5, 9.1.6, 9.2.1, 9.3.1,
9.7.5; trivial 3.11.2; truncated
2.4.2; uncorrelated 3.11.12, 16,
4.5.7–8, 4.8.6; uniform 3.8.1,
4.8.4, 4.11.1, 9.7.5; velocity
4.3.12–3, 4.14.74, 5.12.55,
6.15.49; waiting time, see
queue; Weibull 4.4.7; zeta or
Zipf 3.11.5

random walk: absorbed 1.7.3,
3.9.1–2, 5–7, 3.10.4, 3.11.23,
25–26, 39, 5.3.9, 12.5.4–5,
7; arc sine laws 3.10.3,
3.11.28, 5.3.5; area pr. 5.10.14;
on binary tree 6.4.7; on
chessboard 6.6.6–7; circular
3.11.32; on compass 6.5.11;
conditional 3.9.2–3, 5.3.8–9;
continuous-time 6.9.8, 10,
11.2.2; on cube 3.11.55,
6.3.4; first passage 5.3.8;
first return 3.9.7, 3.10.1; first
visit 3.10.3; on graph 6.4.6,
9, 6.5.9, 6.6.9, 13.11.2–3; on
hexagon 6.15.35; hitting time
3.10.5; imbedded in queue
11.2.2, 5; left-continuous 5.3.7,
5.12.7; martingale 12.1.4,
12.4.6, 12.5.4–5; maximum
3.10.2, 3.11.28, 5.3.1, 6.1.3,
12.4.6; modulus of s.r.w.
6.1.3; non-negative 3.11.39;
potentials 13.11.2–3; projected
5.12.6; range of 3.11.27;
recurrent 5.12.5–6, 6.3.2,
6.5.20; reflected 11.2.1–2;
retaining barrier 11.2.4;
returns to origin 3.10.1,
5.3.2, 6; reversible 6.5.1–2;
Samuels’s thm 3.10.4; simple
3.9.1–3, 5, 3.10.1–3, 7.3.3,
5, 12.5.4–7; singular 4.9.11,
9.7.14; on square 5.3.3; stable
8.7.1, 3, 4–5, 8.8.3, 8.10.9;
symmetric 1.7.3, 3.11.23;
three dimensional 6.15.9–10;
transient 5.12.44, 6.15.9, 7.5.3;
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on tree 6.4.7, 6.5.2; truncated
6.5.7; two dimensional 5.3.4,
5.12.6, 6.5.7, 12.9.17; visits
3.11.23, 29, 5.12.7, 6.9.8,
10; zero mean 7.5.3; zeros of
3.10.1, 5.3.2, 5.12.5–6

range of r.w. 3.11.27

rate of convergence 6.15.43

ratios 4.3.2; Mills’s 4.4.8; sex
3.11.22

Rayleigh distn 4.7.16, 4.14.16,
7.2.11

reciprocal: Cauchy 4.7.13,
normal 13.4.7

record: times 4.2.1, 4, 4.6.6, 10,
13; values 6.15.20, 7.11.36

recurrence, see difference

recurrence time 6.9.11

recurrent: chain 6.4.10, 6.15.6;
event 5.12.45, 7.5.2, 9.7.4; r.w.
5.12.5–6, 6.3.2, 6.9.8, 7.3.3,
13.11.2; state 6.2.3-4, 6.9.7

red now 12.9.18

reflecting barrier: r.w. 3.11.21,
23, 5.3.7, 11.2.1–2, 4;
Ornstein–Uhlenbeck pr.
12.7.22–23, 13.12.6; Wiener
pr. 13.5.1

reflection principle 13.4.6

regeneration 11.3.3

regression 4.8.7, 4.9.6, 4.14.13,
7.9.2

rejection method 4.11.3–4, 13

reliability 3.4.5–6, 3.11.18–20,

renewal: age, see current life;
alternating 10.5.2, 10.6.14;
asymptotics 10.6.11; Bernoulli
8.10.3; central limit thm
10.6.3; counters 10.6.6–8,
15; current life 10.3.2, 10.5.4,
10.6.4; delayed 10.6.12; excess
life 8.3.2, 10.3.1–4, 10.5.4;
r. function 10.6.11; gaps
10.1.2; key r. theorem 10.3.3,
5, 10.6.11; Markov 8.3.5;
m.g.f. 10.1.1; moments 10.1.1;
Poisson 8.3.5, 10.6.9–10;
r. fn 10.1.6, 10.6.11; r.
process 8.3.4; r.–reward
10.5.1–4; r. sequence 6.15.8,
8.3.1, 3; stationary 10.4.2,
10.6.18; stopping time 12.4.2;
sum/superposed 10.6.10;
thinning 10.6.16; r.-type eqn
10.1.2

Rényi’s: parking problem
4.14.30; thm 6.15.39

repairman 11.7.18

repulsion 1.8.29

reservoir 6.4.3

resources 6.15.47

retaining barrier 11.2.4

reversibility condition: eigenvalue
6.5.8; inner product 6.14.1;
Kelly 6.5.2; Kolmogorov 6.5.2,
6.15.16

reversible: birth–death pr.
6.15.16; bivariate chain 6.5.7;
chain 6.14.1; continuous-time
chain 6.15.16; flip-flop chain
6.15.11, 16; Markov pr.
6.15.16, 38; modified chain
6.5.3; queue 11.7.2–3, 11.8.12,
14; r.w. 6.5.1–2, 10

Riemann–Lebesgue lemma 5.7.6

robots 3.7.7, 5.10.15

rock: convex 4.14.57

rods 4.14.25–26,

rotated normals 4.8.10

round game 3.2.4, 5.12.10

rounding error 5.12.54

ruin 8.10.7, 11.8.18, 12.9.12, 27;
see also bankruptcy, gambler’s
ruin

runs 1.8.21, 43, 3.4.1, 3.7.10,
5.12.3, 46–47, 7.7.5; longest
5.12.47

S
σ -field 1.2.2, 4, 1.8.3, 9.5.1,

9.7.13; increasing sequence of
12.4.7; invariant 9.5.1, 9.7.11,
13

St John’s College 4.14.51

St Petersburg paradox 3.3.4

sample: normal 4.10.5, 5.8.12,
5.12.42; ordered 4.12.21

sampling 3.11.36; Poisson 6.9.4;
with/without replacement
3.11.10

sampling from distn: arc sine
4.11.13; beta 4.11.4–5;
Cauchy 4.11.9; discrete r.v.
5.2.12; exponential 4.14.48;
gamma 4.11.3; geometric
4.11.8; Markov chain 6.14.3;
multinormal 4.14.62; normal
4.11.7, 4.14.49; s.r.w. 4.11.6;
uniform 4.11.1

Samuels’s thm 3.10.4

second moment ineq. 3.11.56

secretary problem 3.11.17,
4.14.35, 70

self-financing portfolio 13.10.2–3

self-independence 1.8.7, 17

semi: s.-invariant 5.7.3–4;
s.-moment 4.14.48

sequence: of c.f.s 5.12.35; of
distns 2.3.1; of events 1.8.16;
of heads and tails, see pattern;
renewal 6.15.8, 8.3.1, 3; of
r.v.s 2.7.2

series; expansion of Wiener pr.
13.12.7; of queues 11.8.3, 12

server advantage? 3.11.49

Shakespeare 10.6.17

shift operator 9.7.11–12

shuffle: random to rising 4.11.2;
random to top 6.4.14; top to
random 6.4.13; transposition
3.11.54

shocks 6.13.6

shorting 13.11.2

Sicherman dice 5.12.36

simple birth pr. 6.8.4–5, 6.15.23

simple birth–death pr.:
conditioned 6.11.4–5; diffusion
approximation 13.3.1;
extinction 6.11.3, 6.15.27;
visits 6.11.6–7

simple immigration–death pr.
6.11.2, 6.15.18

simple: process 8.2.3; r.v. 5.2.12;
r.w. 3.9.1–3, 5, 3.10.1–3,
3.11.23, 27–29, 5.12.5, 6.1.3,
6.9.8, 10, 7.3.3, 5, 11.2.1,
12.1.4, 12.4.6, 12.5.4–7

simplex 6.15.42; algorithm
3.11.33

simulation, see sampling

singular: distn 4.9.11, 9.7.14;
matrix 3.11.15, 4.9.1–2

sixes 3.2.4

size-bias 4.14.74, 5.8.17,
5.10.12–13, 10.4.2, 10.5.5

skeleton 6.10.14

skew distn 4.14.41

skewness 4.14.44

sleuth 3.11.21

Slutsky’s theorem 7.2.5

snow 1.7.1

smoothing 9.7.2

social network 3.3.10

sojourns 5.3.5, 6.9.9

soup 6.8.2

space, vector 2.7.3, 3.6.1

span of r.v. 5.7.5, 5.9.4

Sparre Andersen theorem
13.12.18

spectral: density 9.3.3, 5, 7,
9.6.1, 9.7.2–8, 13.12.4; distn
9.3.2, 4, 9.7.2–7; increments
9.4.1, 3; pr. 9.4.1–3

spectrum 9.3.1
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Index

sphere(s) 1.8.28, 4.6.1, 6.13.3–4,
12.9.23, 13.11.1; empty
6.15.31; walk on 13.12.25

spider 6.15.54

squared Bessel process 13.9.1

squeezing 4.14.47

stable distn, r.v. 8.7.1, 3–5, 8.8.3,
8.10.9

standard: bivariate normal
4.7.5; multinormal 4.9.2;
normal 4.7.5; Wiener pr. 9.6.1,
9.7.18–21, 13.12.1–3

stars 1.3.3, 6.15.57, 8.10.9

state: absorbing 6.2.2; periodic
6.5.4, 6.15.3–4; recurrent
6.2.3–4; symmetric 6.2.5;
transient 6.2.4

stationary distn 6.9.1, 3–4, 11–12;
6.11.2; birth–death pr. 6.11.4;
current life 10.6.4; excess
life 10.3.3; imbedded chain
11.4.1, 3; jumo chain 6.10.2,
6.11.2, 11.2.6; Markov chain
9.1.4; open migration 11.7.1,
5; queue length 8.4.4, 8.7.4,
11.2.1–2, 6, 11.4.1, 11.5.2,
Section 11.8 passim; r.w.
11.2.1–2; waiting time 11.2.3,
11.5.2–3, 11.8.8

stationary excess life 10.3.3

stationary increments 9.7.17,
10.6.18

stationary measure 9.7.11–12

stationary renewal pr. 1.4.2,
10.6.18

Steffensen’s ineq. 4.3.8

Stein–Chen eqn 3.8.6

Stein’s identity 4.4.6, 4.7.25

Stevens’s soln 4.13.18

stick breaking 4.6.14, 4.14.26, 72

Stirling’s formula 3.10.1, 3.11.22,
5.9.6, 5.10.11, 5.12.5, 6.15.9,
7.11.21, 386

Stirling numbers 3.11.48

stochastic: integral 9.7.19,
13.8.1–2; matrix 6.1.12,
6.14.1, 6.15.2; ordering
4.12.1–2, 7–8, 10.1.5

stop-loss order 4.12.7

stopping time 4.14.71, 6.1.6,
8.8.4, 10.2.2, 10.6.20,
12.4.1–2, 5, 7, 12.9.19;
martingale 12.4.1–2, 5–8,
12.5.1–2, 8–9, 12.9.16; for
renewal pr. 12.4.2

strategy 3.3.8–9, 3.11.25, 4.6.13,
4.14.35, 71, 6.15.50, 12.9.15,

18–19; as policy 2.7.17,
3.11.30, 46, 10.6.19, 21

strict Oxford secret 3.11.53

strong law of large numbers
7.4.1, 7.5.1–3, 7.8.2, 7.11.6,
9.7.10

strong Markov property 6.1.6,
8.8.4

strong mixing 9.7.12

Student’s t distn 4.10.2–3;
non-central 5.7.8

subadditive fn 6.15.14, 8.3.3

subgraph 13.11.3

submartingale 12.1.1, 6–7, 12.3.1,
12.4.3, 5, 12.9.4, 11, 26

subordinator 8.6.4, 7, 8.8.1, 3,
9.6.5

sum of independent r.v.s:
Bernoulli 3.11.14, 35; binomial
3.11.8, 11; Cauchy 4.8.2,
5.11.4, 5.12.24–25; chi-squared
4.10.1, 4.14.12; exponential
4.8.1, 4, 4.14.10, 5.12.50,
6.15.42; gamma 4.14.11;
geometric 3.8.3–4, 8; normal
4.9.3; p.g.f. 5.12.1; Poisson
3.11.6, 7.2.10; random 3.7.6,
3.8.6, 5.2.3, 5.12.50, 10.2.2;
renewals 10.6.10; uniform
3.8.1, 4.6.6, 4.8.5, 5.12.53

sum of Markov chains 6.1.8

supercritical branching 6.7.2

supermartingale 12.1.1, 8, 12.3.2,
12.4.4, 12.8.11, 19

superposed: Poisson pr. 6.8.1;
renewal pr. 10.6.10

sure thing principle 1.7.4

surfer 6.6.9

surge, tidal 4.14.5

survival 3.4.3, 4.1.4

Sylvester’s problem 4.13.12,
4.14.60

symmetric: Lévy process 8.8.3,
9.6.5; matrix 3.11.15, 4.9.1–2,
4.14.62, 6.5.8; r.v. 3.2.5, 4.1.2,
5.12.22; r.w. 1.7.3, 3.2.5, 4.1.2,
4.3.12–13, 4.14.4, 41, 66, 74,
8.7.5-6, 9.1.6; state 6.2.5

symmetry and independence 1.5.3

system: betting 7.7.4; Labouchere
12.9.15; ‘k out of n’ 3.4.6;
loss 11.3.4; queueing 8.10.6;
see reliability

T
t , Student’s 4.10.2–3; non-central

5.7.8

tail: c.f. 5.7.6; equivalent 7.11.34;
event 7.3.3, 5; function 9.5.3;

generating fn 5.1.2; integral
4.3.3, 5, 7; Poisson 3.5.3,
7.11.41; sum 3.11.13, 4.14.3

tail of distn: and moments 4.3.3,
7, 5.6.4, 5.11.3; p.g.f. 5.1.2

Tanaka’s example 13.12.21

tandem queue 11.2.7, 11.8.3

taxis 11.8.16, 12.7.7

telekinesis 2.7.8

telegraph 8.2.2

telephone: exchange 11.8.9; sales
3.11.38

testimony 1.8.27

thinning 6.8.2; renewal 10.6.16

three-dimensional r.w. 6.15.10;
transience of 6.15.9,

three-dimensional Wiener pr.
13.11.1

three series theorem 7.11.35

threshold game 4.6.12

tidal surge 4.15.5

tied-down Wiener pr. 9.7.21–22,
13.6.2–5

tilted distn 5.1.9, 5.7.11

time-reversibility 6.5.1–3, 6.15.16

total: life 10.5.5, 10.6.5;
population 5.12.11

total time: in queue 11.3.3,
11.7.4; in state 6.9.9–10,
6.11.6; viewing 6.15.51

total variation: distance 2.7.13,
4.12.3–4, 7.2.9, 7.11.16; of
Wiener pr. 13.2.1

tower property 3.7.1, 4.14.29

traffic: gaps 5.12.45, 8.4.3; heavy
11.6.1, 11.8.15; intensity
11.3.4, 11.8.7; light 6.8.8;
Poisson 6.13.10, 6.15.40, 49,
8.4.3; speed 4.14.74

transform, inverse 2.3.3, 4.11.17

transient: r.w. 5.12.44, 7.5.3;
Wiener pr. 13.11.1

transition matrix 7.11.31

transitive coins 2.7.16

transposition shuffle 3.11.54

trapezoidal distn 3.8.1

tree 6.5.2; binary 5.12.38, 6.4.7

trial, de Moivre 3.5.1

triangle ineq. 7.1.1, 3

triangular distn 5.12.52

Trinity College 12.9.15

triplewise independent 1.5.10,
5.1.7

trivariate normal distn 4.9.8–9

trivial r.v. 3.11.2

truncated: geometric 5.1.11; r.v.
2.4.2, 7.4.5; r.w. 6.5.7
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Turán’s theorem 3.11.40

turning time 4.6.10

two-dimensional: r.w. 5.3.4,
5.12.6, 6.5.7, 12.9.17; Wiener
pr. 13.4.2, 4, 13.12.12–14

two server queue 8.4.1, 5, 11.7.3,
11.8.14

two-state Markov chain 6.15.11,
17, 8.2.1, see flip-flop; Markov
pr. 6.1.10, 6.15.16–17

Type: T. one counter 10.6.6–7; T.
two counter 10.6.15

tyres 10.5.6

U
U Myšáka 8.10.10

Ulam’s redistribution 5.8.10

umbrellas 6.15.53

unconscious statistician 3.11.3

uncorrelated: but independent
4.5.10; r.v. 3.11.12, 16,
4.5.7–8, 4.8.6

uniform integrability: Section
7.10 passim, 10.2.4, 12.5.1–2

uniform distn 2.1.6, 3.8.1, 4.5.4,
4.7.24, 4.8.4, 4.11.1, 9.7.5;
maximum 5.12.32; order
statistics 4.6.15, 4.14.23–24,
39, 67, 6.15.42; sample from
4.11.1, 4.14.67; sum 3.8.1,
4.6.6, 4.8.5, 11, 5.12.53

uniqueness of conditional
expectation 3.7.2

unimodal 2.7.23, 4.3.11–13,
4.14.69

upcrossings 12.3.1; ineq. 12.3.2

upper class fn 7.6.1

uptime 10.5.7

urn(s) 1.4.4, 1.8.24–25, 3.4.2, 4,
13, 3.7.12, 3.11.10, 13, 6.3.10,
6.15.12, 12.4.8; see Pólya’s
urn

V
value function 13.10.5

Van Dantzig’s collective marks
5.1.12, 6.2.6

variance: branching pr. 5.12.9;
conditional 3.7.4, 4.6.7; normal
4.4.6

vector space 2.7.3, 22, 3.6.1

velocity 4.3.12–13, 4.14.74,
5.12.55, 6.15.33, 40, 49

verifying matrix multiplication
4.14.63

Vice-Chancellor 1.3.4, 1.8.13

village 6.15.32

virtual waiting 11.8.7

visits: birth–death pr. 6.11.6–7
6.15.25; library 5.2.10; Markov
chain 6.2.3–7, 6.3.4–5, 8,
6.15.5, 34–35, 44, 7.11.32,
10.6.20; r.w. 3.9.7, 3.11.23,
29, 5.12.7, 6.2.3–4, 6.4.11–12,
6.9.8, 10

voting 5.10.10; paradox 3.6.6

W
waiting: for coincidence 6.8.10,

7.2.11; for heads 5.9.3,
5.12.46; room 11.8.1; no w.
room 11.3.4

waiting time: arriving customer
11.8.6–7, 10; dependent
11.2.7; for a gap 10.1.2; in
G/G/1 11.5.2, 11.8.8; in G/M/1
11.4.1–2, 11.5.3; in M/D/1
11.8.10; in M/G/1 11.8.6; in
M/M/1 11.2.3; stationary distn
11.2.3, 11.5.2–3; virtual 11.8.7

Wald’s eqn 10.2.2–3

Waldegrave’s problem 5.12.10

walk on spheres 13.12.25

Waring’s theorem 1.8.13, 5.2.1

wasps 6.8.1

weak law of large numbers 7.4.1,
7.11.15, 20–21; but not strong
7.4.1

weather 3.4.12

web-surfer 6.6.9

Weibull distn 4.4.7, 7.11.13

Weierstrass’s theorem 7.3.6

white noise, Gaussian 13.8.5

Wiener process: absorbing
barriers 13.13.8, 9; arc

sine laws 13.4.3, 13.12.10,
13.12.19; area 12.9.22;
Bartlett eqn 13.3.3; Bessel
pr. 13.3.5; on circle 13.9.4;
conditional 8.5.2, 9.7.21,
13.6.1, 13.5.2–3; constructed
13.12.7; d-dimensional 8.5.7,
12.9.23, 13.7.1, 13.11.1; drift
13.3.3, 13.5.1; on ellipse
13.9.5; exits an interval
13.12.8; expansion 13.12.7;
exponential ineq. 12.9.26; first
passage 13.4.2; geometric
13.3.9, 13.4.1; hits sphere
13.11.1; hitting barrier 13.4.2;
integrated 9.7.20, 12.9.22,
13.3.8, 13.8.1–2; level sets
13.12.16; limit 13.12.11;
martingales 12.9.22–23,
13.3.8–9; maximum 13.4.6,
13.12.8, 11, 15, 17, 19;
moving barrier 13.4.2;
occupation time 13.12.20;
quadratic variation 8.5.4,
13.7.2; reflected 13.5.1;
series expansion 13.12.7; sign
13.12.21; standard 9.7.18–21;
stationary increments 9.7.6;
three-dimensional 13.11.1;
tied-down, see Brownian
bridge; total variation 13.2.1;
transformed 9.7.18, 13.12.1,
3; two-dimensional 13.4.2–4,
13.12.12–14; zeros of 13.4.3,
13.12.10

Wiener–Hopf eqn 11.5.3, 11.8.8

X
X-ray 4.14.32

Y
Yule’s equation 9.3.6

Z
zero–one law, Hewitt–Savage

7.3.4–5

zeros of: Brownian bridge 13.6.5;
c.f. 5.12.24; random quadratic
4.2.6; r.w. 3.10.1, 5.3.2,
5.12.5–6; Wiener pr. 13.4.3,
13.12.10
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