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Preface

This book focuses on the practical aspects of modern and robust statistical methods. The
increased accuracy and power of modern methods, versus conventional approaches to the
analysis of variance (ANOVA) and regression, is remarkable. Through a combination of
theoretical developments, improved and more flexible statistical methods, and the power of
the computer, it is now possible to address problems with standard methods that seemed
insurmountable only a few years ago.

The most common approach when comparing two or more groups is to compare means,
assuming that observations have normal distributions. When comparing independent groups,
it is further assumed that distributions have a common variance. Conventional wisdom is that
these standard ANOVA methods are robust to violations of assumptions. This view is based in
large part on studies, published before the year 1960, showing that if groups do not differ
(meaning that they have identical distributions), then good control over the probability of a
type I error is achieved. However, if groups differ, hundreds of more recent journal articles
have described serious practical problems with standard techniques and how these problems
might be addressed. One concern is that the sample mean can have a relatively large standard
error under slight departures from normality. This in turn can mean low power. Another
problem is that probability coverage, based on conventional methods for constructing
confidence intervals, can be substantially different from the nominal level, and undesirable
power properties arise as well. In particular, power can go down as the difference between the
means gets large. The result is that important differences between groups are often missed,
and the magnitude of the difference is poorly characterized. Put another way, groups probably
differ when null hypotheses are rejected with standard methods, but in many situations,
standard methods are the least likely to find a difference, and they offer a poor summary of
how groups differ and the magnitude of the difference. Yet another fundamental concern is
that the population mean and variance are not robust, roughly mean that under arbitrarily
small shifts from normality, their values can be substantially altered and potentially mislead.
Thus, even with arbitrarily large sample sizes, the sample mean and variance might provide
an unsatisfactory summary of the data.

When dealing with regression, the situation is even worse. That is, there are even more ways
in which analyses, based on conventional assumptions, can be misleading. The very
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Preface

foundation of standard regression methods, namely estimation via the least squares principle,
leads to practical problems, as do violations of other standard assumptions. For example, if
the error term in the standard linear model has a normal distribution, but is heteroscedastic,
the least squares estimator can be highly inefficient, and the conventional confidence interval
for the regression parameters can be extremely inaccurate.

In 1960, it was unclear how to formally develop solutions to the many problems that have
been identified. It was the theory of robustness developed by P. Huber and F. Hampel that
paved the road for finding practical solutions. Today, there are many asymptotically correct
ways of substantially improving on standard ANOVA and regression methods. That is, they
converge to the correct answer as the sample sizes get large, but simulation studies have
shown that when sample sizes are small, not all methods should be used. Moreover, for many
methods, it remains unclear how large the sample sizes must be before reasonably accurate
results are obtained. One of the goals of this book is to identify those methods that perform
well in simulation studies, as well as those that do not.

This book does not provide an encyclopedic description of all the robust methods that might
be used. Although some methods are excluded because they perform poorly relative to others,
many methods have not been examined in simulation studies, so their practical value remains
unknown. Indeed, there are so many methods, a massive effort is needed to evaluate them.
Moreover, some methods are difficult to study with current computer technology. That is, they
require so much execution time that simulations remain impractical. Of course, this might
change in the near future, but what is needed now is a description of modern robust methods
that have practical value in applied work.

Although the goal is to focus on the applied aspects of robust methods, it is important to
discuss the foundations of modern methods, so this is done in Chapters 2 and 3, and to some
extent in Chapter 4. One general point is that modern methods have a solid mathematical
foundation. Another goal is to impart the general flavor and aims of robust methods. This is
important because misconceptions are rampant. For example, some individuals firmly believe
that one of the goals of modern robust methods is to find better ways of estimating µ, the
population mean. From a robust point of view, this goal is not remotely relevant, and it is
important to understand why. Another misconception is that robust methods only perform
well when distributions are symmetric. In fact, both theory and simulations indicate that
robust methods offer an advantage over standard methods when distributions are skewed.

A practical concern is applying the methods described in this book. Many of the
recommended methods have been developed in only the last few years and are not available
in standard statistical packages for the computer. To deal with this problem, easy-to-use R
functions are supplied. (With this third edition, S-PLUS functions are no longer supported.)
They can be obtained as indicated in Section 1.8 of Chapter 1. With one R command, all of
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the functions described in this book become a part of your version of R. Illustrations, using
these functions, are included.

The book assumes that the reader has had an introductory statistics course. That is, all that is
required is some knowledge about the basics of ANOVA, hypothesis testing, and regression.
The foundations of robust methods, described in Chapter 2, are written at a relatively
nontechnical level, but the exposition is much more technical than the rest of the book, and it
might be too technical for some readers. It is recommended that Chapter 2 be read or at least
skimmed, but those who are willing to accept certain results can skip to Chapter 3. One of the
main points in Chapter 2 is that the robust measures of location and scale that are used are not
arbitrary, but were chosen to satisfy specific criteria. Moreover, these criteria eliminate from
consideration the population mean, variance, and the usual correlation coefficient.

From an applied point of view, Chapters 4–11, which include methods for addressing
common problems in ANOVA and regression, form the heart of the book. Technical details
are kept to a minimum. The goal is to provide a simple description of the best methods
available, based on theoretical and simulation studies, and to provide advice on which
methods to use. Usually, no single method dominates all others, one reason being that there
are multiple criteria for judging a particular technique. Accordingly, the relative merits of the
various methods are discussed. Although no single method dominates, standard methods are
typically the least satisfactory, and many alternative methods can be eliminated.
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CHAPTER 1

Introduction

Introductory statistics courses describe methods for computing confidence intervals and
testing hypotheses about means and regression parameters based on the assumption that
observations are randomly sampled from normal distributions. When comparing independent
groups, standard methods also assume that groups have a common variance, even when the
means are unequal, and a similar homogeneity of variance assumption is made when testing
hypotheses about regression parameters. Currently, these methods form the backbone of most
applied research. There is, however, a serious practical problem: Many journal articles have
illustrated that these standard methods can be highly unsatisfactory. Often the result is a poor
understanding of how groups differ and the magnitude of the difference. Power can be
relatively low compared to recently developed methods, least squares regression can yield a
highly misleading summary of how two or more random variables are related as can the usual
correlation coefficient, the probability coverage of standard methods for computing
confidence intervals can differ substantially from the nominal value, and the usual sample
variance can give a distorted view of the amount of dispersion among a population of
participants. Even the population mean, if it could be determined exactly, can give a distorted
view of what the typical participant is like.

Although the problems just described are well known in the statistics literature, many
textbooks written for nonstatisticians still claim that standard techniques are completely
satisfactory. Consequently, it is important to review the problems that can arise and why these
problems were missed for so many years. As will become evident, several pieces of
misinformation have become part of statistical folklore resulting in a false sense of security
when using standard statistical techniques.

1.1 Problems with Assuming Normality

To begin, distributions are never normal. For some this seems obvious, hardly worth
mentioning, but an aphorism given by Cramér (1946) and attributed to the mathematician
Poincaré remains relevant: “Everyone believes in the [normal] law of errors, the
experimenters because they think it is a mathematical theorem, the mathematicians because
they think it is an experimental fact.” Granted, the normal distribution is the most important
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2 Introduction to Robust Estimation and Hypothesis Testing

distribution in all aspects of statistics. But in terms of approximating the distribution of any
continuous distribution, it can fail to the point that practical problems arise, as will become
evident at numerous points in this book. To believe in the normal distribution implies that
only two numbers are required to tell us everything about the probabilities associated with a
random variable: the population mean µ and population variance σ 2. Moreover, assuming
normality implies that distributions must be symmetric.

Of course, nonnormality is not, by itself, a disaster. Perhaps a normal distribution provides a
good approximation of most distributions that arise in practice, and there is the central limit
theorem, which tells us that under random sampling, as the sample size gets large, the limiting
distribution of the sample mean is normal. Unfortunately, even when a normal distribution
provides a good approximation to the actual distribution being studied (as measured by the
Kolmogorov distance function described later) practical problems arise. Also, empirical
investigations indicate that departures from normality, that have practical importance, are
rather common in applied work (e.g., Hill & Dixon, 1982; Micceri, 1989; Wilcox, 2009a).
Even over a century ago, Karl Pearson and other researchers were concerned about the
assumption that observations follow a normal distribution (e.g., Hand, 1998, p. 649). In
particular, distributions can be highly skewed, they can have heavy tails (tails that are thicker
than a normal distribution), and random samples often have outliers (unusually large or small
values among a sample of observations). Outliers and heavy-tailed distributions are serious
practical problems because they inflate the standard error of the sample mean, so power can
be relatively low when comparing groups. Modern robust methods provide an effective way
of dealing with this problem. Fisher (1922), for example, was aware that the sample mean
could be inefficient under slight departures from normality.

A classic way of illustrating the effects of slight departures from normality is with the
contaminated or mixed normal distribution (Tukey, 1960). Let X be a standard normal
random variable having distribution 8(x)= P(X ≤ x). Then for any constant K > 0,
8(x/K ) is a normal distribution with standard deviation K . Let ε be any constant, 0≤ ε ≤ 1.
The contaminated normal distribution is

H(x)= (1− ε)8(x)+ ε8(x/K ), (1.1)

which has mean 0 and variance 1− ε+ εK 2. (Stigler, 1973, finds that the use of the
contaminated normal dates back at least to Newcomb, 1896.) In other words, the contaminated
normal arises by sampling from a standard normal distribution with probability 1− ε;
otherwise, sampling is from a normal distribution with mean 0 and standard deviation K .

To provide a more concrete example, consider the population of all adults, and suppose that
10% of all adults are at least 70 years old. Of course, individuals at least 70 years old might
have a different distribution from the rest of the population. For instance, individuals under
the age of 70 might have a standard normal distribution, but individuals at least 70 years old
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Chapter 1 Introduction 3

might have a normal distribution with mean 0 and standard deviation 10. Then, the entire
population of adults has a contaminated normal distribution with ε = .1 and K = 10. In
symbols, the resulting distribution is

H(x)= 0.98(x)+0.18(x/10), (1.2)

which has mean 0 and variance 10.9. Moreover, Eq. (1.2) is not a normal distribution,
verification of which is left as an exercise.

To illustrate problems that arise under slight departures from normality, we first examine
Eq. (1.2) more closely. Figure 1.1 shows the standard normal and the contaminated normal
probability density function corresponding to Eq. (1.2). Notice that the tails of the
contaminated normal are above the tails of the normal, so the contaminated normal is said
to have heavy tails. It might seem that the normal distribution provides a good
approximation of the contaminated normal, but there is an important difference. The
standard normal has variance 1, but the contaminated normal has variance 10.9. The reason
for the seemingly large difference between the variances is that σ 2 is very sensitive to the
tails of a distribution. In essence, a small proportion of the population of participants can
have an inordinately large effect on its value. Put another way, even when the variance is

x
−3

0.0

0.2

0.1

0.3

0.4

−2 −1 10 2 3

Normal curve

Figure 1.1: Normal and contaminated normal distributions.
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4 Introduction to Robust Estimation and Hypothesis Testing

known, if sampling is from the contaminated normal, the length of the standard confidence
interval for the population mean, µ, will be over three times longer than it would be when
sampling from the standard normal distribution instead. What is important from a practical
point of view is that there are location estimators other than the sample mean that have
standard errors that are substantially less affected by heavy tailed distributions. By “measure
of location,” it is meant that some measure intended to represent the typical participant or
object, the two best-known examples being the mean and the median. (A more formal
definition is given in Chapter 2.) Some of these measures have relatively short confidence
intervals when distributions have a heavy tail, yet the length of the confidence interval
remains reasonably short when sampling from a normal distribution instead. Put another
way, there are methods for testing hypotheses that have good power under normality, but
that continue to have good power when distributions are nonnormal, in contrast to methods
based on means. For example, when sampling from the contaminated normal given by
Eq. (1.2), both Welch’s and Student’s method for comparing the means of two independent
groups have power approximately 0.278 when testing at the 0.05 level with equal sample
sizes of 25 and when the difference between the means is 1. In contrast, several other
methods, described in Chapter 5, have power exceeding 0.7.

In an attempt to salvage the sample mean, it might be argued that in some sense the
contaminated normal represents an extreme departure from normality. The extreme quantiles
of the two distributions do differ substantially, but based on various measures of the difference
between two distributions, they are very similar as suggested by Figure 1.1. For example, the
Kolmogorov distance between any two distributions, F and G, is the maximum value of

1(x)= |F(x)−G(x)|,

the maximum being taken over all possible values of x . (If the maximum does not exist, the
supremum or least upper bound is used.) If distributions are identical, the Kolmogorov
distance is 0, and its maximum possible value is 1, as is evident. Now consider the
Kolmogorov distance between the contaminated normal distribution, H(x), given by (1.2),
and the standard normal distribution, 8(x). It can be seen that 1(x) does not exceed 0.04 for
any x . That is, based on a Kolmogorov distance function, the two distributions are similar.
Several alternative methods are often used to measure the difference between distributions.
(Some of these are discussed by Huber and Ronchetti, 2009.) The choice among these
measures is of interest when dealing with theoretical issues, but these issues go beyond the
scope of this book. Suffice it to say that the difference between the normal and contaminated
normal is again small. Gleason (1993) discusses the difference between the normal and
contaminated normal from a different perspective and also concludes that the difference is
small.

Even if it could be concluded that the contaminated normal represents a large departure
from normality, concerns over the sample mean would persist, for reasons already given.
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In particular, there are measures of location having standard errors similar in magnitude to the
standard error of the sample mean when sampling from normal distributions, but that have
relatively small standard errors when sampling from a heavy-tailed distribution instead.
Moreover, experience with actual data indicates that the sample mean does indeed have a
relatively large standard error in some situations. In terms of testing hypotheses, there are
methods for comparing measures of location that continue to have high power in situations
where there are outliers or sampling from a heavy-tailed distribution. Other problems that
plague inferential methods based on means are also reduced when using these alternative
measures of location. For example, the more skewed a distribution happens to be, the more
difficult it is to get an accurate confidence interval for the mean, and problems arise when
testing hypotheses. Theoretical and simulation studies indicate that problems are reduced
substantially when using certain measures of location discussed in this book.

When testing hypotheses, a tempting method for reducing the effects of outliers or sampling
from a heavy-tailed distribution is to check for outliers, and if any are found, they are thrown
out and standard techniques are applied to the remaining data. This strategy cannot be
recommended, however, because it yields incorrect estimates of the standard errors, for
reasons given in Chapter 3.

Yet another problem needs to be considered. If distributions are skewed enough, doubts begin
to rise about whether the population mean is a satisfactory reflection of the typical participant
under study. Figure 1.2 shows a graph of the probability density function corresponding to a
mixture of two chi-squared distributions. The first has four degrees of freedom and the second
is again chi-squared with four degrees of freedom, only the observations are multiplied by 10.
This is similar to the mixed normal already described, only chi-squared distributions are used
instead. Observations are sampled from the first distribution with probability .9, otherwise
sampling is from the second. As indicated in Figure 1.2, the population mean is 7.6, a value
that is relatively far into the right tail. In contrast, the population median is 3.75, and this
would seem to be a better representation of the typical participant under study.

1.2 Transformations

Transforming data has practical value in a variety of situations. Emerson and Stoto (1983)
provide a fairly elementary discussion of the various reasons one might transform data and
how it can be done. The only important point here is that simple transformations can fail to
deal effectively with outliers and heavy-tailed distributions. For example, the popular strategy
of taking logarithms of all the observations does not necessarily reduce problems due to
outliers, and the same is true when using Box–Cox transformations instead (e.g., Doksum &
Wong, 1983; Rasmussen, 1989). Other concerns were expressed by Thompson and Amman
(1990). Better strategies are described in subsequent chapters.
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Figure 1.2: Mixed chi-square distribution.

Skewness can be a source of concern when using methods based on means, as will be
illustrated in subsequent chapters. Transforming data is often suggested as a way of dealing
with skewness. More precisely, the goal is to transform the data so that the resulting
distribution is approximately symmetric about some central value. There are situations where
this strategy is reasonably successful. But even after transforming data, a distribution can
remain severely skewed. In practical terms, this approach can be highly unsatisfactory, and
assuming that it performs well can result in erroneous and misleading conclusions. When
comparing two independent groups, with say a Student’s t test, the assumption is that the
same transformation applied to group 1 is satisfactory when transforming the data associated
with group 2. A seemingly better way to proceed is to use a method that deals well with
skewed distributions even when data are not transformed and when the distributions being
compared differ in the amount of skewness.

Perhaps it should be noted that when using simple transformations on skewed data, if
inferences are based on the mean of the transformed data, then attempts at making inferences
about the mean of the original data, µ, have been abandoned. That is, if the mean of the
transformed data is computed and we transform back to the original data, in general we do not
get an estimate of µ.
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1.3 The In�uence Curve

This section gives one more indication of why robust methods are of interest by introducing
the influence curve as described by Mosteller and Tukey (1977). It bears a close resemblance
to the influence function, which plays an important role in subsequent chapters, but the
influence curve is easier to understand. In general, the influence curve indicates how any
statistic is affected by an additional observation having the value x . In particular it graphs the
value of a statistic versus x .

As an illustration, let X̄ be the sample mean corresponding to the random sample X1, . . . , Xn .
Suppose we add an additional value, x , to the n values already available, so now there are
n+1 observations. Of course this additional value will in general affect the sample mean,
which is now (x+

∑
X i )/(n+1). It is evident that as x gets large, the sample mean of all

n+1 observations increases. The influence curve plots x versus

1

n+1

(
x+

∑
X i

)
, (1.3)

the idea being to illustrate how a single value can influence the value of the sample mean.
Note that for the sample mean, the graph is a straight line with slope 1/(n+1), the point
being that the curve increases without bound. Of course, as n gets large, the slope decreases,
but in practice there might be two or more unusual values that dominate the value of X̄ .

Now consider the usual sample median, M. Let X(1) ≤ · · · ≤ X(n) be the observations written
in ascending order. If n is odd, let m = (n+1)/2, in which case M = X(m), the mth largest
order statistic. If n is even, let m = n/2 in which case M = (X(m)+ X(m+1))/2. To be more
concrete, consider the values

2 4 6 7 8 10 14 19 21 28.

Then n = 10 and M = (8+10)/2= 9. Suppose an additional value, x , is added, so that now
n = 11. If x > 10, then M = 10, regardless of how large x might be. If x < 8, M = 8
regardless of how small x might be. As x increases from 8 to 10, M increases from 8 to 10 as
well. The main point is that in contrast to the sample mean, the median has a bounded
influence curve. In general, if the goal is to minimize the influence of a relatively small
number of observations on a measure of location, attention might be restricted to those
measures having a bounded influence curve. A concern with the median, however, is that its
standard error is large relative to the standard error of the mean when sampling from a
normal distribution, so there is interest in searching for other measures of location having a
bounded influence curve, but that have reasonably small standard errors when distributions
are normal.
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8 Introduction to Robust Estimation and Hypothesis Testing

Also notice that the sample variance, s2, has an unbounded influence curve, so a single
unusual value can inflate s2. This is of practical concern because the standard error of X̄ is
estimated with s/

√
n. Consequently, conventional methods for comparing means can have

low power and relatively long confidence intervals due to a single unusual value. This
problem does indeed arise in practice, as illustrated in subsequent chapters. For now the only
point is that it is desirable to search for measures of location for which the estimated standard
error has a bounded influence curve. Such measures are available that have other desirable
properties as well.

1.4 The Central Limit Theorem

When working with means or least squares regression, certainly the best-known method for
dealing with nonnormality is to appeal to the central limit theorem. Put simply, under random
sampling, if the sample size is sufficiently large, the distribution of the sample mean is
approximately normal under fairly weak assumptions. A practical concern is the description
sufficiently large. Just how large must n be to justify the assumption that X̄ has a normal
distribution? Early studies suggested that n = 40 is more than sufficient, and there was a time
when even n = 25 seemed to suffice. These claims were not based on wild speculations, but
more recent studies have found that these early investigations overlooked two crucial aspects
of the problem.

The first is that early studies looking into how quickly the sampling distribution of X̄
approaches a normal distribution focused on very light-tailed distributions where the expected
proportion of outliers is relatively low. In particular, a popular way of illustrating the central
limit theorem was to consider the distribution of X̄ when sampling from a uniform or
exponential distribution. These distributions look nothing like a normal curve, the distribution
of X̄ based on n = 40 is approximately normal, so a natural speculation is that this will
continue to be the case when sampling from other nonnormal distributions. But more recently
it has become clear that as we move toward more heavy-tailed distributions, a larger sample
size is required.

The second aspect being overlooked is that when making inferences based on Student’s t, the
distribution of T can be influenced more by nonnormality than the distribution of X̄ . In
particular, even if the distribution of X̄ is approximately normal based on a sample of n
observations, the actual distribution of T can differ substantially from a Student’s
t-distribution with n−1 degrees of freedom. Even when sampling from a relatively
light-tailed distribution, practical problems arise when using Student’s t as will be illustrated
in Section 4.1. When sampling from heavy-tailed distributions, even n = 300 might not
suffice when computing a 0.95 confidence interval via Student’s t.
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1.5 Is the ANOVA F Robust?

Practical problems with comparing means have already been described, but some additional
comments are in order. For many years, conventional wisdom held that standard analysis of
variance (ANOVA) methods are robust, and this point of view continues to dominate applied
research. In what sense is this view correct? What many early studies found was that if two
groups are identical, meaning that they have identical distributions, Student’s t test and more
generally the ANOVA F-test are robust to nonnormality in the sense that the actual
probability of a type I error would be close to the nominal level. Tan (1982) reviews the
relevant literature. Many took this to mean that the F-test is robust when groups differ. In
terms of power, some studies seemed to confirm this by focusing on standardized differences
among the means. To be more precise, consider two independent groups with means µ1 and
µ2 and variances σ 2

1 and σ 2
2 . Many studies have investigated the power of Student’s t test by

examining power as a function of

δ =
µ1−µ2

σ
,

where σ = σ1 = σ2 is the assumed common variance. What these studies failed to take into
account is that small shifts away from normality, toward a heavy-tailed distribution, lowers δ,
and this can mask power problems associated with Student’s t test. The important point is that
for a given difference between the means, µ1−µ2, modern methods can have substantially
more power.

To underscore concerns about power when using Student’s t, consider the two normal
distributions in the left panel of Figure 1.3. The difference between the means is 0.8 and both
distributions have variance 1. With a random sample of size 40 from both the groups, and
when testing at the 0.05 level, Student’s t has power approximately equal to 0.94. Now look at
the right panel. The difference between the means is again 0.8, but now power is 0.25, despite
the obvious similarity to the right panel. The reason is that the distributions are contaminated
normals, each having variance 10.9.

More recently it has been illustrated that standard confidence intervals for the difference
between means can be unsatisfactory and that the F-test has undesirable power properties.
One concern is that there are situations where, as the difference between the means increases,
power goes down, although eventually it goes up. That is, the F-test can be biased. For
example, Wilcox (1996a) describes a situation involving lognormal distributions where the
probability of rejecting is .18, when testing at the α = 0.05 level, even though the means are
equal. When the first mean is increased by 0.4 standard deviations, power drops to 0.096, but
increasing the mean by 1 standard deviation, power increases to 0.306. Cressie and Whitford
(1986) show that for unequal sample sizes, and when distributions differ in skewness,
Student’s t test is not even asymptotically correct. More specifically, the variance of the test
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Figure 1.3: Small changes in the tails of distributions can substantially lower power when using
means. In the left panel, Student’s t has power approximately equal to 0.94. But in the right
panel, power is 0.25.

statistic does not converge to one as is typically assumed, and there is the additional problem
that the null distribution is skewed. The situation improves by switching to heteroscedastic
methods, but problems remain (e.g., Algina, Oshima, & Lin, 1994). The modern methods
described in this book address these problems.

1.6 Regression

Outliers, as well skewed or heavy-tailed distributions, also affect the ordinary least squares
regression estimator. In some ways the practical problems that arise are even more serious
than those associated with the ANOVA F-test.

Consider two random variables, X and Y , and suppose

Y = β1 X +β0+λ(X)ε,

where ε is a random variable having variance σ 2, X and ε are independent, and λ(X) is any
function of X . If ε is normal and λ(X)≡ 1, standard methods can be used to compute
confidence intervals for β1 and β0. However, even when ε is normal but λ(X) varies with X ,
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probability coverage can be poor, and problems get worse under nonnormality. There is the
additional problem that under nonnormality, the usual least squares estimate of the parameters
can have relatively low efficiency, and this can result in relatively low power. In fact, low
efficiency occurs even under normality when λ varies with X . There is also the concern that a
single unusual Y value, or an usual X value, can greatly distort the least squares estimate of
the slope and intercept. Illustrations of these problems and how they can be addressed are
given in subsequent chapters.

1.7 More Remarks

Problems with means and the influence of outliers have been known since at least the 19th
century. Prior to the year 1960, methods for dealing with these problems were ad hoc
compared to the formal mathematical developments related to the analysis of variance and
least squares regression. What marked the beginning of modern robust methods, resulting in
mathematical methods for dealing with robustness issues, was a paper by Tukey (1960)
discussing the contaminated normal distribution. A few years later, a mathematical foundation
for addressing technical issues was developed by a small group of statisticians. Of particular
importance is the theory of robustness developed by Huber (1964) and Hampel (1968). These
results, plus other statistical tools developed in recent years, and the power of the computer,
provide important new methods for comparing groups and studying the association between
two or more variables.

1.8 Using the Computer: R

Most of the methods described in this book are not yet available in standard statistical
packages for the computer. Consequently, to help make these methods accessible, a library of
over 950 easy-to-use R functions has been supplied for applying them to data. The (open
source) software R (R Development Core Team, 2010) is free and can be downloaded from
www.R-project.org. Many books are now available that cover the basics of R (e.g., Crawley,
2007; Venables & Smith, 2002; Verzani, 2004; Zuur, 2009). The book by Verzani is available
on the web at http://cran.r-project.org/doc/contrib/Verzani-SimpleR.pdf. R has a built-in
manual as well.

The R functions written for this book are available in an R package, or they can be
downloaded from the author’s web page. To install the R package, created by Felix
Schönbrodt, use the R command

install.packages(“‘WRS”, repos=“http://R-Forge.R-project.org”).

Access to the functions is gained via the R command

library(WRS)
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Alternatively, go to the web page http://college.usc.edu/labs/rwilcox/home, or the web page
www-rcf.usc.edu/˜rwilcox/, and download the file Rallfun. (Currently, the most recent version
is Rallfun-v15.) Then use the R command

source(“Rallfun-v15”)

Now all of the functions written for this book are part of your version of R until you remove
them. An advantage of the R package is that it contains help files. An advantage of
downloading the functions from the author’s web page is that updates are made more
frequently. (Information about updates are available on the author’s web page; see the file
update_info.) The author’s web page also contains some of the data sets used in this book.

In case it helps, here is a list of the R packages that are utilized in this book:

• akima
• cobs
• MASS
• mgcv
• multicore
• plotrix
• pwr
• quantreg
• robust
• robustbase
• rrcov
• scatterplot3d
• stats

All of these packages can be installed with the install.packages command (assuming you are
connected to the web). For example, the R command

install.packages(“akima”)

will install the R package akima, which is used when creating three-dimensional plots.

Nearly all of the R functions written for this book have fairly low execution time. But when
the sample size is large and a bootstrap method is used in conjunction with certain
multivariate methods, execution time can be relatively high. To reduce this problem, some of
the R functions include the ability of taking advantage of a multicore processor if one is
available. More information is supplied when the need arises.

It is noted that there are books that focus on S-PLUS (e.g., Becker, Chambers, & Wilks, 1988;
Chambers, 1998; Chambers & Hastie, 1992; Fox, 2002; Krause & Olson, 2002; Venables &
Ripley, 2000), which can be useful when using R. However, many of the R functions written
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for this book now rely on R packages that are not readily accessible via S-PLUS. And because
R is free, S-PLUS versions of the functions in this book are no longer described or
updated.

1.9 Some Data Management Issues

Some of the R functions written for this book are aimed at manipulating and managing data in
a manner that might be helpful, some of which are summarized in this section. Subsequent
chapters provide more details about when and how the functions summarized here might be
used.

A common situation is where data are stored in columns with one of the columns indicating
the group to which a participant belongs and one or more other columns contain the measures
of interest. For example, the data for eight participants might be stored as

10 2 64
4 2 47
8 3 59

12 3 61
6 2 73
7 1 56
8 1 78

15 2 63

where the second column indicates to which group a participant belongs. There are three
groups because the numbers in column 2 have one of three distinct values. For illustrative
purposes, suppose that for each participant, two measures of reduced stress are recorded in
columns 1 and 3. Then two of the participants belong to group 1, on the first measure of
reduced stress their scores are 7 and 8, and on the second their scores are 56 and 78. Some of
the R functions written for this book require storing data associated with different groups
either in a matrix (with columns corresponding to groups) or in list mode. What is needed is a
simple method of sorting the observations just described into groups based on the values in
column 2. By storing the data in list mode, various R functions (to be described) can now be
used. The R function

fac2list(x,g)

is supplied for accomplishing this goal, where x is an R variable, typically the column of
some matrix or a data frame, containing the data to be analyzed, and g is an R variable
indicating the levels of the groups to be compared. For a one-way ANOVA, g is assumed to
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be a single column of values. For a two-way ANOVA, g would have two columns, and for
a three-way ANOVA it would have three columns, each column corresponding to a factor.
A maximum of four columns is allowed.

n Example

R has a built-in data set, stored in the R variable ChickWeight, which is a matrix
containing four columns of data. The �rst column contains the weight of chicks, column
4 indicates which of four diets was used, and the second column gives the number of
days since birth when the measurement was made, which were 0, 2, 4, 6, 8, 10, 12, 14,
16, 18, 20, and 21. So for each chick, measurements were taken on 12 different days.
Imagine that the goal is to sort data on weight into four groups based on the four
groups indicated in column 4 and that the results are to be stored in list mode. This is
accomplished with the R command

z=fac2list(ChickWeight[,1],ChickWeight[,4]).

The data for group 1 are stored in z[[1]], the data for group 2 are stored in z[[2]], and
so on. If the levels of the groups are indicated by numeric values, fac2list puts the levels
in ascending order. If the levels are indicated by a character string, the levels are put in
alphabetical order.

The R function

fac2Mlist(x,grp.col,lev.col,pr=T)

is like the R function fac2list; it can be useful when dealing with a multivariate analysis
of variance (MANOVA) design using the methods in Section 7.10. Roughly, it sorts data
into groups based on the data in column of x indicated by the argument grp.col. See
Sections 7.10.2 and 7.10.3 for more details. When dealing with a between-by-between
MANOVA design, the function

fac2BBMlist(x,grp.col,lev.col,pr=T)

can be used.

Now consider between-by-between or a between-by-within ANOVA design. Some of the
functions written for this book assume that the data are stored in list mode, or a matrix
with columns corresponding to groups, and that the data are arranged in a particular
order: the �rst K groups belong to the �rst level of the �rst factor, the next K group
belong to the second level of the second factor, and so on.

n
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n Example

For a 2-by-4 design, with the data stored in the R variable x , having list mode, the data
are assumed to be arranged as follows:

Factor B

Factor x[[1]] x[[2]] x[[3]] x[[4]]
A x[[5]] x[[6]] x[[7]] x[[8]]

n

n Example

Consider again the previous example dealing with the R variable ChickWeight, only now
the goal is to store the data in list mode in the order just described. The R command

z=fac2list(ChickWeight[,1],ChickWeight[,c(4,2)]).

accomplishes this goal.
n

Look closely at the argument ChickWeight[,c(4,2)] and note the use of c(4,2). The 2 comes
after the 4 because column 2 corresponds to the within group factor, which in this book
always corresponds to the second factor. If ChickWeight[,c(2,4)] had been used, functions in
this book aimed at a between-by-within design would assume that column 4 corresponds to
the within group factor, which is incorrect.

Earlier editions of this book provided another way of sorting the data into groups via the R
function selby, which is still available and has the form

selby(m,grpc,coln),

where m is any matrix having n rows and at least two columns. The argument grpc is used to
indicate which column contains the group identification numbers. The argument coln
indicates which column of data is to be analyzed.

n Example

Consider again the data

10 2 64
4 2 47
8 3 59
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12 3 61
6 2 73
7 1 56
8 1 78

15 2 63

If the data are stored in the matrix mat, the command

tdat=selby(mat,2,3)

sorts the data into three groups and stores the values in the third column of mat into
the R variable tdat$x which will have list mode. In particular, the variable tdat$x[[1]]
contains the data for the �rst group, namely the values 7 and 8. Similarly, tdat$x[[2]]
contains the values 64, 47, 73, and 63, and tdat$x[[3]] contains 59 and 61.

n

The function selby also returns the values of the group numbers that are stored in column
grpc. The values are stored in selby$grpn. In the illustration, the command
tdat=selby(mat,2,3) causes these values to be stored in the R vector tdat$grpn.

In the last example, tdat$grpn[1] contains 1 meaning that tdat$x[[1]] contains all of the data
corresponding to group 1. If the only group numbers had been 3, 6, and 8, then tdat$grpn[1]
would have the value 3, and all of the corresponding data would be stored in tdat$x[[1]].
Similarly, tdat$grpn[2] would have the value 6, and the data for this group would be stored in
tdat$x[[2]]. Finally, the data for the third group, numbered 8, would be stored in tdat$x[[3]].

An extension of the function selby, called selby2, deals with situations where there is more
than one factor. It has the form

selby2(m,grpn,coln)

where grpn is a vector of length 2 indicating the column numbers of m where the group
numbers are stored. The third argument, coln, indicates which column contains the data to be
analyzed. It accomplishes the same goal as the function fac2list. Although fac2list is more
flexible and seems a bit easier to use, selby2 is illustrated here in case some readers prefer to
use it.

Suppose the following data are stored in the R matrix m having 13 rows and 4 columns.

10 2 64 1
4 2 47 1
8 3 59 1

12 3 61 2
6 2 73 2
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7 1 56 2
8 1 78 2

15 2 63 2
9 3 71 1
2 3 81 1
4 1 68 1
5 1 53 1

21 3 49 2

The goal is to perform a 3-by-2 ANOVA, where the numbers in column 2 indicate the levels
of the first factor, and the numbers in column 4 indicate the levels of the second. Further
assume that the values to be analyzed are stored in column 1. For example, the first row of
data indicates that the value 10 belongs to level 2 of the first factor and level 1 of the second.
Similarly, the third row indicates that the value 8 belongs to the third level of the first factor
and the first level of the second. Chapter 7 describes R functions for comparing the groups.
Using these functions requires storing the data in list mode or a matrix, and the function
selby2 is supplied to help accomplish this goal with the R command

dat=selby2(m,c(2,4),1),

The output stored in dat is

$x:
$x[[1]]:
[1] 4 5

$x[[2]]:
[1] 7 8

$x[[3]]:
[1] 10 4

$x[[4]]:
[1] 6 15

$x[[5]]:
[1] 8 9 2

$x[[6]]:
[1] 12 21

$grpn:
[,1] [,2]

[1,] 1 1
[2,] 1 2
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[3,] 2 1
[4,] 2 2
[5,] 3 1
[6,] 3 2

The R variable dat$x[[1]] contains the data for level 1 of both factors. The R variable
dat$x[[2]] contains the data for level 1 of the first factor and level 2 of the second. The R
variable dat$grpn contains the group numbers found in columns 2 and 4, and the i th row
indicates which group is stored in $x[[i]]. For example, the third row of $grpn has 2 in the
first column and 1 in the second meaning that for level 2 of the first factor and level 1 of the
second, the data are stored in $x[[3]]. It is note that the data are stored in the form expected by
the ANOVA functions covered in Chapter 7. One of these functions is called t2way. In the
illustration, the command

t2way(3,2,dat$x,tr=0)

would compare means using a heteroscedastic method appropriate for a 3-by-2 ANOVA
design, where the outcome measure corresponds to the data in column 1 of the R variable m.
To perform a 3-by-2 ANOVA for the data in column 3, first enter the command

dat=selby2(m,c(2,4),3)

and then

t2way(3,2,dat$x,tr=0).

However, for the situation just described, it seems easier to use the function fac2list. And
fac2list allows the data to be stored in a data frame. In contrast, selby only accepts data stored
in a matrix. The R commands

z=fac2list(m[,3],m[,c(2,4)]) t2way(3,2,z,tr=0).

perform the same operations just illustrated. Recently, variations of some of the R functions
written for this book have been added that make it possible to avoid using both the R function
fac2list as well as selby2. They will be described in subsequent chapters.

Another goal that is sometimes encountered is splitting a matrix of data into groups based on
the values in one of the columns. For example, column 6 might indicate whether participants
are male or female, denoted by the values 0 and 1, and it is desired to store the data for
females and males in separate R variables. This can be done with the R function

matsplit(m,coln=NULL),

which sorts the data in the matrix m into separate R variables corresponding to the values
indicated by the argument coln. The function is similar to fac2list, only now two or more
columns of a matrix can be sorted into groups rather than a single column of data, as is the
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case when using fac2list. Also, matsplit returns the data stored in a matrix rather than list
mode.

The R function

mat2grp(m,coln)

also splits the data in a matrix into groups based on the values in column coln of the matrix m.
Unlike matsplit, mat2grp can handle more than two values. That is, the column of m indicated
by the argument coln can have more than two unique values. The results are stored in list
mode.

The R function

qsplit(x,y,split.val=NULL)

splits the data in x into three groups based on a range of values stored in y. The length of y is
assumed to be equal to the number of rows in the matrix x. (The argument x can be a vector
rather than a matrix.) If split.val=NULL, the function computes the lower and upper quartiles
based on the values in y. Then the corresponding rows of data in x that correspond to y values
less than or equal to the lower quartile are returned in qsplit$lower. The rows of data for
which y has a value between the lower and upper quartiles are returned in qsplit$middle, and
the rows for which y has a value greater than or equal to the upper quartile are returned in
qsplit$upper. If two values are stored in the argument split.val, they will be used in place of
the quartiles.

n Example

R has a built-in data set stored in the R variable ChickWeight (a matrix with 4 columns)
that deals with weight gain over time and based on different diets. The amount of
weight gained is stored in column 1. For illustrative purposes, imagine the goal is to
separate the data in column 1 into three groups. The �rst group is to contain those
values that are less than or equal to the lower quartile, the next is to contain the values
between the lower and upper quartiles, and the third group is to contain the values
greater than or equal to the upper quartile. The command

qsplit(ChickWeight[,1],ChickWeight[,1])

accomplishes this goal.
n

Two other functions are provided for manipulating data stored in a matrix:

• bw2list
• bbw2list.
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These two functions are useful when dealing with a between-by-within design and a
between-between-by-within design and will be described and illustrated in Chapter 8.

To illustrate the next R function, consider data reported by Potthoff and Roy (1964) dealing
with an orthodontic growth study where for each of 27 children, the distance between the
pituitary and pterygomaxillary fissure was measured at ages 8, 10, 12, and 14 years of age.
The data can be accessed via the R package nlme and are stored in the R variable Orthodont.
The first 10 rows of the data are:

Distance Age Subject Sex
1 26.0 8 M01 Male
2 25.0 10 M01 Male
3 29.0 12 M01 Male
4 31.0 14 M01 Male
5 21.5 8 M02 Male
6 22.5 10 M02 Male
7 23.0 12 M02 Male
8 26.5 14 M02 Male
9 23.0 8 M03 Male
10 22.5 10 M03 Male

It might be useful to store the data in a matrix where each row contains the outcome measure
of interest, which is distance in the example. For the orthodontic growth study, this means
storing the data in a matrix having 27 rows corresponding to the 27 participants, where each
row has four columns corresponding to the four times that measures were taken. The R
function

long2mat(x,Sid.col,dep.col)

accomplishes this goal. The argument x is assumed to be a matrix or a data frame. The
argument dep.col is assumed to have a single value that indicates which column of x contains
the data to be analyzed. The argument Sid.col indicates the column containing a participant’s
identification. So for the orthodontic growth study, the command
m=long2mat(Orthodont,3,1) would create a 27×4 matrix with the first row containing the
values 26, 25, 29, and 31, the measures associated with the first participant.

The R function

longcov2mat(x,Sid.col,dep.col)

is like the function long2mat, only the argument dep.col can have more than one value and a
matrix of covariates is stored in list mode for each of the n participants. Continuing the last
example, the command m=long2mat(Orthodont,3,1) would result in m having list mode,
m[[1]] would be a 4×1 matrix containing the values for the first participant, m[[2]] would be
the values for the second participant, and so on.

www.elsevierdirect.com



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or inprint. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

WILCOX Ch01-9780123869838 2011/10/21 16:54 Page 21 #21

Chapter 1 Introduction 21

A few other R functions that might be useful. One is

listm(x),

which stores data in list mode (having length J, say) in the J columns of a matrix. That is,
x[[1]] becomes column 1, x[[2]] becomes column 2, and so on. The R function

matl(x),

stores the data in the J columns of a matrix in list mode having length J, and

l2v(x)

converts data in list mode into a single vector of values.

Consider the following data:

1 1 1 Easy 6
1 1 2 Easy 3
1 1 3 Easy 2
1 1 4 Hard 7
1 1 5 Hard 4
1 1 6 Hard 1
1 2 1 Easy 2
1 2 2 Easy 2
1 2 3 Easy 7
1 2 4 Hard 7
1 2 5 Hard 3
1 2 6 Hard 2
2 1 1 Easy 1
2 1 2 Easy 4
2 1 3 Easy 4
2 1 4 Hard 7
2 1 5 Hard 7
2 1 6 Hard 6
2 2 1 Easy 2
2 2 2 Easy 3
2 2 3 Easy 1
2 2 4 Hard 7
2 2 5 Hard 5
2 2 6 Hard 5

Imagine that column 2 indicates a participants identification number, columns 1, 3, and 4
indicate categories, and column 5 is some outcome of interest. Further imagine it is desired to
compute some measure of location for each category indicated by the values in columns 1
and 4. This can be accomplished with the R function

M2m.loc(m, grpc, col.dat, locfun = tmean, . . .),

where the argument locfun indicates the measure of location that will be used, which defaults
to a 20% trimmed mean, grpc indicates the columns of m that indicate the category (or levels
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of a factor), and col.dat indicates the column containing the outcome measure of interest. For
the situation at hand, assuming the data are stored in the data frame x, the command
M2m.loc(x,c(1,4),5,locfun=mean) returns

V1 V4 loc
1 Easy 3.666667
1 Hard 4.000000
2 Easy 2.500000
2 Hard 6.166667

So, for example, participants who are in both category 1 and category easy, the mean is 3.67.

1.9.1 Eliminating Missing Values

From a statistical point of view, a simple strategy for handling missing values is to simply
eliminate them. There are other methods for dealing with missing values (e.g., Little and
Rubin, 2002), a few of which are covered in subsequent chapters. Here it is merely noted that
when data are stored in a matrix or a data frame, say m, the R function

na.omit(m)

will eliminate any row having missing values. (The R function elimna accomplishes the same
goal.)
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CHAPTER 2

A Foundation for Robust Methods

Measures that characterize a distribution, such as measures of location and scale, are said to
be robust if slight changes in a distribution have a relatively small effect on their value. As
indicated in Chapter 1, the population mean and standard deviation, µ and σ , as well as the
sample mean and sample standard deviation, X̄ and s2, are not robust. This chapter elaborates
on this problem by providing a relatively nontechnical description of some of the tools used to
judge the robustness of parameters and estimators. Included are some strategies for
identifying measures of location and scale that are robust. The emphasis in this chapter is on
finding robust analogs of µ and σ , but the results and criteria described here are directly
relevant to judging estimators as well, as will become evident. This chapter also introduces
some technical tools that are of use in various situations.

This chapter is more technical than the remainder of the book. When analyzing data, it helps
to have some understanding of how robustness issues are addressed, and providing a
reasonably good explanation requires some theory. Also, many applied researchers, who do
not religiously follow developments in mathematical statistics, might still have the impression
that robust methods are ad hoc procedures. Accordingly, although the main goal is to make
robust methods accessible to applied researchers, it needs to be emphasized that modern
robust methods have a solid mathematical foundation. It is stressed, however, that many
mathematical details arise that are not discussed here. The goal is to provide an indication of
how technical issues are addressed without worrying about the many relevant details. Readers
interested in mathematical issues can refer to the excellent books by Huber and Ronchetti
(2009) as well as Hampel, Ronchetti, Rousseeuw, and Stahel (1986). The monograph by
Reider (1994) is also of interest. For a book written at an intermediate level of difficulty, see
Staudte and Sheather (1990).

2.1 Basic Tools for Judging Robustness

There are three basic tools that are used to establish whether quantities such as measures of
location and scale have good properties: qualitative robustness, quantitative robustness, and
infinitesimal robustness. This section describes these tools in the context of location
measures, but they are relevant to measures of scale as will become evident. These tools not
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only provide formal methods for judging a particular measure, they can be used to help derive
measures that are robust.

Before continuing, it helps to be more formal about what is meant by a measure of location.
A quantity that characterizes a distribution, such as the population mean, is said to be a
measure of location if it satisfies four conditions, and a fifth is sometimes added. To describe
them, let X be a random variable with distribution F , and let θ(X) be some descriptive
measure of F . Then θ(X) is said to be a measure of location if for any constants a and b,

θ(X +b)= θ(X)+b (2.1)

θ(−X)=−θ(X) (2.2)

X ≥ 0 implies θ(X)≥ 0 (2.3)

θ(aX)= aθ(X). (2.4)

The first condition is called location equivariance. It simply requires that if a constant b is
added to every possible value of X , a measure of location should be increased by the same
amount. Let E(X) denote the expected value of X . From basic principles, the population
mean is location equivariant. That is, if θ(X)= E(X)=µ, then θ(X+b)= E(X+b)=µ+b.
The first three conditions, taken together, imply that a measure of location should have a value
within the range of possible values of X . The fourth condition is called scale equivariance. If
the scale by which something is measured is altered by multiplying all possible values of X
by a, a measure of location should be altered by the same amount. In essence, results should
be independent of the scale of measurement. As a simple example, if the typical height of a
man is to be compared to the typical height of a woman, it should not matter whether the
comparisons are made in inches or feet.

The fifth condition that is sometimes added was suggested by Bickel and Lehmann (1975).
Let Fx(x)= P(X ≤ x) and Fy(x)= P(Y ≤ x) be the distributions corresponding to the
random variables X and Y . Then X is said to be stochastically larger than Y if for any x ,
Fx(x)≤ Fy(x) with strict inequality for some x . If all the quantiles of X are greater than the
corresponding quantiles of Y , then X is stochastically larger than Y . Bickel and Lehmann
argue that if X is stochastically larger than Y , then it should be the case that θ(X)≥ θ(Y ) if θ
is to qualify as a measure of location. The population mean has this property.

2.1.1 Qualitative Robustness

To understand qualitative robustness, it helps to begin by considering any function f (x), not
necessarily a probability density function. Suppose it is desired to impose a restriction on this
function so that it does not change drastically with small changes in x . One way of doing this
is to insist that f (x) be continuous. If, for example, f (x)= 0 for x ≤ 1, but f (x)= 10,000
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for any x > 1, the function is not continuous, and if x = 1, an arbitrarily small increase in
x results in a large increase in f (x).

A similar idea can be used when judging a measure of location. This is accomplished by
viewing parameters as functionals. In the present context, a functional is just a rule that maps
every distribution into a real number. For example, the population mean can be written as

T (F)= E(X),

where the expected value of X depends on F . The role of F becomes more explicit if
expectation is written in integral form, in which case this last equation becomes

T (F)=
∫

xd F(x).

If X is discrete and the probability function corresponding to F(x) is f (x),

T (F)=
∑

x f (x),

where the summation is over all possible values x of X .

One advantage of viewing parameters as functionals is that the notion of continuity can be
extended to them. Thus, if the goal is to have measures of location that are relatively
unaffected by small shifts in F, a requirement that can be imposed is that when viewed as a
functional, it is continuous. Parameters with this property are said to have qualitative
robustness.

Let F̂ be the usual empirical distribution. That is, for the random sample X1, . . . , Xn , F̂(x) is
just the proportion of X i values less than or equal to x . An estimate of the functional T (F) is
obtained by replacing F with F̂ . For example, when T (F)= E(X)= µ, replacing F with F̂
yields the sample mean, X̄ . An important point is that qualitative robustness includes the idea
that if F̂ is close to F, in a sense to be made precise, then T (F̂) should be close to T (F). For
example, if the empirical distribution represents a close approximation of F, then X̄ should be
a good approximation of µ, but this is not always the case.

One more introductory remark should be made. From the technical point of view, continuity
leads to the issue of how the difference between distributions should be measured. Here, the
Kolmogorov distance is used. Other metrics play a role when addressing theoretical issues,
but they go beyond the scope of this book. Readers interested in pursuing continuity, as it
relates to robustness, can refer to Hampel (1968).

To provide at least the flavor of continuity, let F and G be any two distributions and let
D(F,G) be the Kolmogorov distance between them, which is the maximum value of
|F(x)−G(x)|, the maximum being taken over all possible values of x . If the maximum does
not exist, the supremum or least upper bound is used instead. That is, the Kolmogorov
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distance is the least upper bound on |F(x)−G(x)| over all possible values of x . More
succinctly, D(F,G)= sup|F(x)−G(x)|, where the notation sup indicates supremum. For
readers unfamiliar with the notion of a least upper bound, the Kolmogorov distance is the
smallest value of A such that |F(x)−G(x)| ≤ A. Any A satisfying |F(x)−G(x)| ≤ A is
called an upper bound on |F(x)−G(x)| and the smallest (least) upper bound is the
Kolmogorov distance. Note that |F(x)−G(x)| ≤ 1 for any x , so for any two distributions, the
maximum possible value for the Kolmogorov distance is 1. If the distributions are identical,
D(F,G)= 0.

Now consider any sequence of distributions, Gn , n = 1,2, . . . . For example, Gn might be the
empirical distribution based n observations randomly sampled from some distribution F .
Another sequence of distributions is the contaminated normal with ε = 1/n. The functional
T is said to be continuous at F if for any sequence Gn , such that D(Gn, F) approaches 0 as n
gets large, |T (Gn)−T (F)| approaches 0. In particular, the functional evaluated at
the empirical distribution, T (F̂), should approach T (F), the functional evaluated at the
distribution from which observations are being sampled. Under random sampling, the
empirical distribution approaches the true distribution as n gets large, and from standard
results the sample mean approaches the population mean as well. However, there are
sequences of distributions for which D(Gn, F) approaches 0 for any F , but the mean of the
empirical distribution, the sample mean, does not approach the mean of the true distribution,
T (F)= µ, as n gets large. Details are given by Staudte and Sheather (1990, p. 66). Thus, for
the Kolmogorov metric, T (F)= E(X) is not continuous. That is, if we require a measure of
location that has a continuous functional, the population mean, µ, is ruled out.

An example of a continuous functional, that plays a central role in this book, is the γ -trimmed
mean, 0< γ ≤ 0.5. A γ -trimmed mean is the mean of a distribution after the distribution has
been transformed in a particular way. More specifically, it is trimmed by truncating the
distribution at the γ and 1−γ quantiles. Note that if a probability density function is
trimmed, it no longer qualifies as a probability density function because the area under the
curve is no longer equal to 1, it is equal to 1−2γ . Consequently, dividing the trimmed
probability density function by 1−2γ , the resulting function is again a probability density
function. Here, two-sided trimming is assumed unless stated otherwise. (Some authors, when
referring to a γ -trimmed mean, assume one-sided trimming, but others assume two-sided
trimming instead.) In general, when referring to a trimmed distribution, this means that the
probability density function, f (x), is transformed to

1

1−2γ
f (x), xγ ≤ x ≤ x1−γ ,

where xγ and x1−γ are the γ and 1−γ quantiles. In essence, trimming results in focusing on
the middle portion of a distribution.
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As a simple example, consider a standard normal distribution after it has been trimmed 20%
(γ = 0.2) and rescaled so that the area under the curve is equal to one. The 0.2 and 0.8
quantiles of the standard normal distribution are −0.84 and 0.84, respectively. Thus, the 20%
trimmed analog of the standard normal distribution is defined for −.84≤ x ≤ .84. The
standard normal probability density function is

1
√

2π
exp(−x2/2), −∞≤ x ≤∞,

so the 20% trimmed analog of the standard normal probability density function is

f (x)=
1

0.6

1
√

2π
exp(−x2/2), −0.84≤ x ≤ 0.84. (2.5)

2.1.2 In�nitesimal Robustness

To provide a relatively simple explanation of infinitesimal robustness, it helps to again
consider the situation where f (x) is any function, not necessarily a probability density
function. Once more consider what restrictions might be imposed so that small changes in x
do not result in large changes in f (x). One such condition is that it be differentiable and that
the derivative be bounded. In symbols, if f ′(x) is the derivative, it is required that f ′(x) < B
for some constant B. The function f (x)= x2, for example, does not satisfy this condition
because its derivative, 2x , increases without bound as x gets large.

Analogs of derivatives of functionals exist and so a natural way of searching for robust
measures of location is to focus on functionals that have a bounded derivative. In the statistics
literature, the derivative of a functional, T (F), is called the influence function of T at F ,
which was introduced by Hampel (1968, 1974). Roughly, the influence function measures the
relative extent a small perturbation in F has on T (F). Put another way, it reflects the
(normed) limiting influence of adding one more observation, x , to a very large sample.

To provide a more precise description of the influence function, let 1x be a distribution where
the value x occurs with probability one. As is fairly evident, if Y has distribution 1x , then
P(Y ≤ y)= 0 if y < x , and the mean of Y is E(Y )= x .

Next, consider a mixture of two distributions where an observation is randomly sampled from
distribution F with probability 1− ε, otherwise sampling is from the distribution 1x . That is,
with probability ε, the observed value is x . The resulting distribution is

Fx,ε = (1− ε)F+ ε1x . (2.6)

It might help to notice the similarity between Fx,ε and the contaminated or mixed normal
described in Chapter 1. In the present situation, F is any distribution, including normal
distributions as a special case. Also notice the similarity with the influence curve in Chapter 1.
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Here, interest is in how the value x affects the value of some functional when x occurs with
probability ε. For example, if F has mean µ, then Fx,ε has mean (1− ε)µ+ εx , and the
difference between the mean of Fx,ε and the mean of F is ε(x−µ).

Notice that when ε is small, Fx,ε is similar to F , as measured by the Kolmogorov distance
function. To see this, first note that if the distributions are evaluated at any value, say y,

|Fx,ε(y)− F(y)| = |− ε[F(y)−1x(y)]|.

But F and 1x are distributions, so |F(y)−1x(y)| ≤ 1. Consequently, the Kolmogorov
distance between Fx,ε and F is at most ε. Moreover, Fx,ε and F can be made arbitrarily close
by choosing ε sufficiently small.

The relative influence on T (F) of having the value x occur with probability ε is

T (Fx,ε)−T (F)

ε
,

and the influence function of T at F is

I F(x)= lim
T (Fx,ε)−T (F)

ε
, (2.7)

where the limit is taken as ε approaches 0 from above. Roughly, I F(x) is the relative
influence of x on some measure that characterizes a distribution, T (F), when the probability
of observing the value x is arbitrarily close to 0. T (F) is said to be B robust, or to have
infinitesimal robustness, if I F(x) is bounded. The gross error sensitivity of T (F) is
supx |I F(x)|.

As already indicated, if T (F)= E(X), T (Fx,ε)−T (F)= ε(x−µ), so
(T (Fx,ε)−T (F))/ε = x−µ. Thus, the influence function of the population mean is

I F(x)= x−µ,

which does not depend on F . Especially important is that the influence function is unbounded
in x . That is, µ does not have infinitesimal robustness. And its gross error sensitivity is∞.

2.1.3 Quantitative Robustness

The third approach to judging some quantity that characterizes a distribution is the breakdown
point, which addresses the notion of quantitative robustness. The general idea is to describe
quantitatively the effect a small change in F has on some functional T (F).

Again consider Fx,ε = (1− ε)F+ ε1x , which has mean (1− ε)µ+ εx . Thus, for any ε > 0,
the mean goes to infinity as x gets large. In particular, even when ε is arbitrarily close to 0, in
which case the Kolmogorov distance between Fx,ε and F is small, the mean of Fx,ε can be
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made arbitrarily large by increasing x . The minimum value of ε, for which a functional goes
to infinity as x gets large, is called the breakdown point. When necessary, the minimum value
is replaced by the infimum or greatest lower bound. (This definition oversimplifies technical
issues, but it suffices for present purposes. See Huber, 1981, Section 1.4 for more details.) In
the illustration, any ε > 0 causes the mean to go to infinity, so the breakdown point is 0. In
contrast, the median of a distribution has a breakdown point of 0.5, and more generally the
γ -trimmed mean, µt , has a breakdown point of γ .

When searching for measures of dispersion, the breakdown point turns out to have
considerable practical importance. In some cases the breakdown point is more important than
the efficiency of any corresponding estimator. For the moment, it is merely noted that the
standard deviation, σ , has a breakdown point of 0, and this renders it unsatisfactory in
various situations.

2.2 Some Measures of Location and Their In�uence Function

There are many measures of location. (See Andrews et al., 1972.) This section describes some
measures that are particularly important based on what is currently known. (And a few
additional measures of location are introduced in Chapters 3 and 6.)

2.2.1 Quantiles

It is convenient to begin with quantiles. For any random variable X with distribution F , the
qth quantile, say xq , satisfies F(x)= P(X ≤ xq)= q , where 0< q < 1. For example, if X is
standard normal, the 0.8 quantile is x0.8 = 0.84 and P(X ≤ 0.84)= 0.8.

In the event that there are multiple x values such that F(x)= q, the standard convention is to
define the qth quantile as the smallest value x such that F(x)≥ q. For completeness, it is
sometimes necessary to define the qth quantile as xq = inf{x : F(x)≥ q}, where inf indicates
infimum or greatest lower bound, but this is a detail that is not important here.

The qth quantile has location and scale equivariance and it satisfies the other conditions for a
measure of location given by Eqs (2.1) through (2.4), plus the Bickel–Lehmann condition. In
so far as it is desired to have a measure of location that reflects the typical subject under study,
the median, x0.5, is a natural choice. The breakdown point of the median is 0.5, and more
generally the breakdown point of the qth quantile is 1−q (e.g., Staudte and Sheather, 1990,
p. 56).

For some distributions xq has qualitative robustness, but for others, including discrete
distributions, it does not. In fact, even if xq has qualitative robustness at F , it is not
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qualitatively robust at Fx,ε . That is, there are distributions that are arbitrarily close to F for
which xq is not qualitatively robust.

Letting f (x) represent the probability density function, and assuming f (xq) > 0 and that
f (xq) is continuous at xq , the influence function of xq is

I Fq(x)=


q−1
f (xq )

, if x < xq

0, if x = xq

q
f (xq )

, if x > xq .

(2.8)

This influence function is bounded, so xq has infinitesimal robustness.

2.2.2 The Winsorized Mean

One problem with the mean is that the tails of a distribution can dominate its value, and this is
reflected by an unbounded influence function, a breakdown point of 0, and a lack of
qualitative robustness. Put in more practical terms, if a measure of location is intended to
reflect what the typical subject is like, the mean can fail because its value can be inordinately
influenced by a very small proportion of the subjects who fall in the tails of a distribution.
One strategy for dealing with this problem is to give less weight to values in the tails and pay
more attention to those near the center. One specific strategy for implementing this idea is to
Winsorize the distribution.

Let F be any distribution, and let xγ and x1−γ be the γ and 1−γ quantiles. Then a
γ -Winsorized analog of F is the distribution

Fw(x)=


0, if x < xγ
γ, if x = xγ
F(x), if xγ < x < x1−γ

1, if x ≥ x1−γ .

In other words, the left tail is pulled in so that the probability of observing the value xγ is γ ,
and the probability of observing any value less than xγ , after Winsorization, is 0. Similarly,
the right tail is pulled in so that, after Winsorization, the probability of observing a value
greater than x1−γ is 0. The mean of the Winsorized distribution is

µw =

x1−γ∫
xγ

xd F(x)+γ (xγ + x1−γ ).

In essence, the Winsorized mean pays more attention to the central portion of a distribution by
transforming the tails. The result is that µw can be closer to the central portion of a
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Figure 2.1: Mixed chi-square Distribution.

distribution. It can be shown that µw satisfies Eqs (2.1) through (2.4), so it qualifies as a
measure of location and it also satisfies the Bickel–Lehmann condition.

For the mixed chi-square distribution described in Chapter 1, the 20% Winsorized mean is
approximately µw = 4.2, based on simulations with 10,000 replications. Figure 2.1 shows the
position of the Winsorized mean relative to the median, x0.5 = 3.75, and the mean, µ= 7.6.
As is evident, Winsorization results in a measure of location that is closer to the bulk of the
distribution. For symmetric distributions, µw = µ.

Like quantiles, there are distributions arbitrarily close to any distribution F for which the
Winsorized mean is not qualitatively robust. On the positive side, its breakdown point is γ .
This suggests choosing γ = 0.5 to achieve the highest possible breakdown point, but there are
some negative consequences if γ is too far from 0, as will become evident in Chapter 3.

Let

C = µw−
γ 2

f (xγ )
−

γ 2

f (x1−γ )
,

where again f is the probability density function corresponding to F . The influence function
of the Winsorized mean is

I Fw(x)=


xγ −

γ

f (xγ )
−C, if x < xγ

x−C, if xγ < x < x1−γ

x1−γ +
γ

f (x1−γ )
−C, if x > x1−γ .

Notice that the influence function is bounded but not smooth; it has jumps at xγ and x1−γ .
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2.2.3 The Trimmed Mean

Rather than Winsorize, another strategy for reducing the effects of the tails of a distribution is
to simply remove them, and this is the strategy employed by the trimmed mean. The
γ -trimmed mean is

µt =
1

1−2γ

x1−γ∫
xγ

xd F(x).

In words, µt is the mean of a distribution after it has been trimmed as described in Section
2.1.1. The trimmed mean is both location and scale equivariant, more generally it satisfies
Eqs. (2.1) through (2.4), and it also satisfies the Bickel–Lehmann condition for a measure of
location.

The influence function of the trimmed mean is

I Ft(x)=


1

1−2γ (xγ −µw), if x < xγ
1

1−2γ (x−µw), if xγ ≤ x ≤ x1−γ

1
1−2γ (x1−γ −µw), if x > x1−γ .

The influence function is bounded, but there are jumps at xγ and x1−γ . As already indicated,
µt is qualitatively robust when γ > 0, and its breakdown point is γ . It can be seen that
E[I F(X)]= 0.

For the mixed chi-square distribution described in Chapter 1, the 20% trimmed mean is
µt = 3.9, and its position relative to the mean, median, and 20% Winsorized mean is shown in
Figure 2.1.

It should be noted that the influence function of the trimmed mean can be derived under very
general conditions which include both symmetric and asymmetric distributions (Huber,
1981). Staudte and Sheather (1990) derive the influence function assuming distributions are
symmetric, but their results are easily extended to the asymmetric case.

2.2.4 M-Measures of Location

M-measures of location form a large class of location measures that include the population
mean, µ, as a special case. Typically, µ is viewed as E(X), the expected value of the random
variable X . However, to gain some insight into the motivation for M-measures of location, it
helps to first view µ in a different way.

When searching for a measure of location, one strategy is to use some value, say c, that is in
some sense close, on average, to all the possible values of the random variable X . One way of
quantifying how close a value c is from all possible values of X is in terms of its expected
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squared distance. In symbols, E(X − c)2 represents the expected squared distance from c. If c
is intended to characterize the typical subject or thing under study, a natural approach is to use
the value c that minimizes E(X − c)2. Viewing E(X − c)2 as a function of c, the value of c
minimizing this function is obtained by differentiating, setting the result equal to 0, and
solving for c. That is, c is given by the equation

E(X − c)= 0, (2.9)

so c = µ. In other words, µ is the closest point to all possible values of X in terms of expected
squared distance. But µ is not robust and in the present context the problem is that E(X − c)2

gives an inordinate amount of weight to values of X that are far from c. Put another way, the
function (x− c)2 increases too rapidly as x moves away from c.

The approach just described for deriving a measure of location can be improved by
considering a class of functions for measuring the distance from a point and then searching
for a function within this class that has desirable properties. To this end, let ξ(X −µm) be
some function that measures the distance from µm , and let 9 be its derivative with respect
to µm . Attention is restricted to those functions for which E[ξ(X −µm)], viewed as a
function of µm , has a derivative. As mentioned earlier, ξ(X −µm)= (X −µm)

2 and
9(X −µm)=−2(X −µm), then a measure of location that is closest to all possible values
of X , as measured by its expected distance, is the value µm that minimizes E[ξ(X −µm)].
This means that µm is determined by the equation

E[9(X −µm)]= 0. (2.10)

Typically the function 9 is assumed to be odd, meaning that 9(−x)=−9(x) for any x .
(The reason for this will become clear in Chapter 3.) The value µm that satisfies Eq. (2.10) is
called an M-measure of location. Obviously the class of odd functions is too large for
practical purposes, but this problem can be corrected, as will be seen. Huber (1981) describes
general conditions under which M-measures of location have both quantitative and qualitative
robustness.

M-measures of location are estimated with M-estimators obtained by replacing F in
Eq. (2.10) with the empirical distribution F̂ . (Details are given in Chapter 3.) It should be
remarked that many books and journal articles do not make a distinction between M-measures
and M-estimators. Ordinarily, the term M-estimator is used to cover both situations.

Of course, to make progress, criteria are needed for choosing ξ or 9. One criterion for a
robust measure of location is that its influence function be bounded. It turns out that when µm

is determined with Eq. (2.10), its influence function has a relatively simple form:

I Fm(x)=
9(x−µm)

E[9 ′(X −µm)]
,
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Table 2.1: Some Choices for ξ and 9.

Criterion ξ(x) 9(x) Range

Huber 1
2
x2 x |x | ≤ K

|x |K − 1
2

K 2 K sign(x) |x |> K

Andrews a[1− cos(x/a)] sin(x/a) |x | ≤ aπ
2a 0 |x |> aπ

Hampel 1
2
x2 x |x | ≤ a

a|x |− 1
2
a2 a sign(x) a < |x | ≤ b

a(c|x |− 1
2
x2)

c−b
−

7
6
a2 a sign(x)(c−|x |)

c−b
b < |x | ≤ c

a(b+ c−a) 0 |x |> c

Biweight x(1− x2)2
|x |< 1

0 |x | ≥ 1

where 9 ′(X −µm) is the derivative of 9. That is, the influence function is 9 rescaled by the
expected value of its derivative, E[9 ′(X −µm)]. Thus, to obtain a bounded influence
function, attention can be restricted to those 9 that are bounded. From results already given,
this rules out the choice 9(X −µm)= X −µm , which yields µm = µ.

Table 2.1 lists some choices for ξ and 9 that have been proposed. The function sign(x) in
Table 2.1 is equal to −1, 0, or 1 according to whether x is less than, equal to, or greater than 0.
The constants a, b, c, and K can be chosen so that the resulting measure of location has
desirable properties. A common strategy is to choose these constants so that when estimating
µm , the estimator has reasonably high efficiency when sampling from a normal distribution,
but continues to have high efficiency when sampling from a heavy-tailed distribution instead.
For now, these constants are left unspecified. As will be seen, further refinements can be made
that make it a relatively simple matter to choose 9 in applied work.

Figure 2.2 shows a graph of 9 for the Huber, Andrews, Hampel, and biweight given in
Table 2.1. (The biweight also goes by the name of Tukey’s bisquare.) Notice that all four
graphs are linear, or approximately so, for an interval around 0. This turns out to be desirable
when properties of estimators are considered, but the details are postponed for now. Also
notice that the biweight and Andrews’ 9 redescend to 0. That is, extreme values are given
less weight in determining µm , and x values that are extreme enough are ignored.

As a measure of location, µm , given with by Eq. (2.10), satisfies Eqs. (2.1) through (2.3), but
it does not satisfy Eq. (2.4), scale equivariance, for the more interesting choices for 9,
including those shown in Table 2.1. This problem can be corrected by incorporating a
measure of scale into Eq. (2.10), but not just any measure of scale will do. In particular, a
measure of scale with a high breakdown point is needed if the M-measure of location is to
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Figure 2.2: Possible Choices for In�uence Functions.

have a reasonably high breakdown point as well. The standard deviation, σ , has a breakdown
point of 0, so some other measure must be used. A method of dealing with scale equivariance
is described in Section 2.4.

2.2.5 R-Measures of Location

R-measures of location do not play a role in this book, but for completeness they are briefly
described here. Generally, R-measures of location are derived by inverting tests of hypotheses
based on ranks. Let J be some specified function. In functional form, an R-measure of
location, µr , satisfies ∫

J

{
1

2

[
q+1− F

(
2µr − xq

)]}
dq = 0.

A common choice for J is J (x)= x− 1
2 . This leads to the Hodges–Lehmann estimator, but

no details are given here. For symmetric distributions, the Hodges–Lehmann estimator has a
well behaved influence function, it is bounded and smooth (Staudte and Sheather, 1990).
However, for asymmetric distributions, the denominator of the influence function can be very
small (Huber, 1981, p. 65) suggesting that practical problems might arise.

Another concern was pointed by Bickel and Lehmann (1975). For any R-estimator, which
estimates an R-measure of location, there are distributions such that the asymptotic
efficiency of the R-estimator relative to X̄ is zero. Again it is skewed distributions that create
problems. For more details on R-estimators, including the Hodges–Lehmann estimator, see
Hettmansperger (1984). For a description of situations where R-estimators exhibit practical
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concerns even when sampling from a symmetric distribution, see Morgenthaler and Tukey
(1991).

2.3 Measures of Scale

This section briefly describes some measures of scale that play an important role in robust
methods, plus some popular measures of scale that are not robust. (Some additional measures
of scale are described in Chapter 3.) As with measures of location, it helps to start with a
precise definition of what constitutes a measure of scale.

Any nonnegative functional, τ(X), is said to be a measure of scale if for any constants a > 0
and b,

τ(aX)= aτ(X) (2.11)

τ(X +b)= τ(X) (2.12)

τ(X)= τ(−X) (2.13)

The first of these conditions is called scale equivariance, the second is called location
invariance, and the third is sign invariance. From basic principles, σ qualifies as a measure
of scale.

Suppose X and Y have a symmetric distribution and that the distribution of |X | is
stochastically larger than the distribution of |Y |. Bickel and Lehmann (1976) call a measure of
scale a measure of dispersion if τ(X)≥ τ(Y ). It can be seen that σ is a measure of dispersion,
but as already mentioned, σ has a breakdown point of 0, and its influence function is
unbounded.

Currently, there are two general approaches to measuring scale that are of particular
importance: L-measures and M-measures. L-measures are estimated with linear combinations
of the order statistics, and M-measures are similar to M-measures of location in the sense that
τ is defined by the equation

E[χ
( x

τ

)
]= 0,

where χ is some specified function. Typically χ is an even function, meaning that
χ(−x)= χ(x).

Mean Deviation from the Mean. A reasonable choice for a measure of scale is

τ(F)= E |X −µ|.

However, its breakdown point is 0 and its influence function is unbounded. On the positive
side, the natural estimate of this measure of scale is relatively efficient when sampling from
heavy-tailed distributions.
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Mean Deviation from the Median. Another popular choice for a measure of scale is

τ(F)= E |X − x0.5|.

It might appear that this measure of scale is robust because it uses the median, x0.5, but its
breakdown point is 0 and its influence function is unbounded.

Median Absolute Deviation. The median absolute deviation, ω, is defined by

P(|X − x0.5| ≤ ω)= 0.5.

In other words, ω is the median of the distribution associated with |X − x0.5|, the distance
between X and its median. This measure of scale is an M-measure of scale with
χ(x)= sign(|x |−1). The breakdown point is 0.5, and this makes it attractive for certain
purposes, as will be seen. Its influence function is

I Fω(x)=
sign(|x− x0.5|−ω)−

f (x0.5+ω)− f (x0.5−ω)

f (x0.5)
sign(x− x0.5)

2[ f (x0.5+ω)+ f (x0.5−ω)]
, (2.14)

where f (x) is the probability density function associated with X . Assuming f (x0.5) and
2[ f (x0.5+ω)+ f (x0.5−ω)] are not equal to 0, I Fω is defined and bounded. (Alternatives to
the median absolute deviation measure of variation were studied by Rousseeuw and Croux,
1993.)

The q-Quantile Range. The q-quantile range is an L-measure of scale given by

τ(F)= x1−q − xq , 0< q < 0.5.

A special case in common use is the interquartile range where q = 0.25, so τ is the difference
between the 0.75 and 0.25 quantiles. Its breakdown point is 0.25. Recalling that the influence
functions of x0.75 and x0.25 are given by Eq. (2.8), the influence function of the interquartile
range is I F0.75− I F0.25. Letting

C = q

{
1

f (xq)
+

1

f (x1−q)

}
,

a little algebra shows that the influence function of the q-quantile range is

I Frange =


1

f (xq )
−C, if x < xq

−C, if xq ≤ x ≤ x1−q
1

f (xq )
−C, if x > x1−q .

The Winsorized Variance. The γ -Winsorized variance is

σ 2
w =

x1−γ∫
xγ

(x−µw)
2d F(x)+γ [(xγ −µw)

2
+ (x1−γ −µw)

2].
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In other words, σ 2
w is the variance of F after it has been Winsorized. (For a standard normal

distribution, σ 2
w = 0.4129. It can be shown that σ 2

w is a measure of scale, it is also a measure
of dispersion, and it has a bounded influence function. Welsh & Morrison (1990) report the
influence function of a large class of L-measures of scale that contains the Winsorized
variance as a special case.

2.4 Scale Equivariant M-Measures of Location

M-measures of location can be made scale equivariant by incorporating a measure of scale in
the general approach described in Section 2.2.4. That is, rather than determine µm with Eq.
(2.10), use

E[9

(
X −µm

τ

)
]= 0, (2.15)

where τ is some appropriate measure of scale.

When considering which measure of scale should be used in Eq. (2.15), it helps to notice that
τ plays a role in determining whether a value for X is unusually large or small. To illustrate
this, consider Huber’s 9 which, in the present context, is given by

9

(
x−µm

τ

)
=


−K , if (x−µm)/τ <−K
x−µm
τ
, if −K ≤ (x−µm)/τ ≤ K

K , if (x−µm)/τ > K

Then according to 9, the distance between x and µm , |x−µm |, is not unusually large or small
if −K ≤ (x−µm)/τ ≤ K . In this case, the same 9 used to define the population mean, µ, is
being used. If x−µm > K τ , 9 considers the distance to be relatively large, and the influence
of x on µm is reduced. Similarly, if x−µm <−K τ , x is considered to be unusually far
from µm .

For the special case where X is normal, and τ is taken to be the standard deviation, σ , x is
considered to be unusually large or small if it is more than K standard deviations from µ. A
problem with σ is that its value is inflated by heavy-tailed distributions, and this can mask
unusually large or small x values. For example, suppose K = 1.28, the 0.9 quantile of the
standard normal distribution. Then, if X has a standard normal distribution, Kσ = 1.28, so
x = 3 is considered to be unusually large by 9. Now suppose X has the contaminated normal
distribution shown in Figure 1.1 of Chapter 1. Then x = 3 is still fairly far into the right tail, it
should be considered unusually large, but now Kσ = 1.28×3.3= 4.224, so x = 3 is not
labeled as being unusually large. What is required is a measure of scale that is relatively
insensitive to heavy-tailed distributions so that unusual values are not masked. In particular, a
measure of scale with a high breakdown point is needed. Among the measures of scale
described in Section 2.5, the median absolute deviation, ω, has a breakdown point of 0.5. This
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is the highest possible breakdown point, and it is higher than any other measure of scale
described in Section 2.5. This suggests using ω in Eq. (2.15) and this choice is typically made.
There are other considerations when choosing τ in Eq. (2.15), such as efficiency, but ω
remains a good choice. M-measures of location, defined by Eq. (2.15), satisfy the four
requirements for measures of location given by Eqs. (2.1) through (2.4).

The influence function of M-measures of location, defined by Eq. (2.15), takes on a more
complicated form versus the influence function associated with Eq. (2.10). Moreover, it
depends on the choice of scale, τ . As an illustration, suppose τ = ω is used, where ω is the
median absolute deviation measure of scale introduced in Section 2.5. Let y = (x−µm)/ω.
Then, if Eq. (2.15) is used to define a measure of location, the influence function is

I Fm(x)=
ω9(y)− I Fω(x){E[9 ′(y)y]}

E[9 ′(y)]
,

where I Fω is given by Eq. (2.14). Note that because the influence function of ω, I Fω, is
bounded, I Fm is bounded as well.

The breakdown point depends on the choice for K and the measure of scale, τ . For the
common choice τ = ω, the breakdown point does not depend on K and is equal to 0.5.
Despite this, µm can have a value that is further from the median than the 20% trimmed mean.
For example, with Huber’s 9 and the common choice of K = 1.28, µm = 4.2, approximately,
for the mixed chi-square distribution in Figure 2.1. In contrast, µt = 3.9 and the median is
x0.5 = 3.75. Lowering K to 1, µm drops to 4.0.

2.5 Winsorized Expected Values

One final tool is introduced that has practical value in various situations: Winsorized expected
values. What will be needed is a generalization of E(X) that maintains standard properties of
expected values.

Let g(X) be any function of the continuous random variable X . When working with a single
random variable, the γ -Winsorized expected value of g(X) is defined to be

Ew[g(X)]=

x1−γ∫
xγ

g(x)d F(x)+γ [g(xγ )+ g(x1−γ )].

That is, the expected value of g(X) is defined in the usual way, only with respect to the
Winsorized distribution corresponding to F . However, a generalization of Ew is needed
which provides Winsorized expected values of linear combinations of random variables.

Let X and Y be any two continuous random variables with joint distribution F and probability
density function f (x, y). What is needed is an analog of Winsorization for any bivariate
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Figure 2.3: Winsorization of a Bivariate Distribution.

distribution. Note that any point (x, y) falls in one of nine regions shown in Figure 2.3, where
the corners of the rectangle are determined by the γ and 1−γ quantiles of X and Y . That is,
the rectangle is given by the four points (xγ , yγ ), (xγ , y1−γ ), (x1−γ , yγ ), and (x1−γ , y1−γ ).
Winsorization of any bivariate distribution consists of pulling in any point outside the
rectangle formed by these four points, as indicated by the arrows in Figure 2.3. For any point
inside this rectangle, the Winsorized distribution has probability density function f (x, y). The
corners of the rectangle become discrete distributions, even when working with continuous
random variables. For example, the point (xγ , yγ ) has probability P(X ≤ xγ , Y ≤ yγ ).
Similarly, the point (xγ , y1−γ ) has probability equal to the probability that X ≤ xγ and
Y ≥ y1−γ , simultaneously. However, the sides of the rectangle, excluding the four corners,
have a continuous distribution when X and Y are continuous. Taking expected values with
respect to this Winsorized distribution provides the generalization of Ew that will be needed.

More formally, let X and Y be any two random variables with joint distribution F , and let
g(X,Y ) be any function of X and Y . Following Wilcox (1993b, 1994b), the Winsorized
expected value of g(X,Y ) is defined to be

Ew[g(X,Y )]=

x1−γ∫
xγ

y1−γ∫
yγ

g(x, y)d F(x, y)

+

xγ∫
−∞

y1−γ∫
yγ

g(xγ , y)d F(x, y)+

xγ∫
−∞

yγ∫
−∞

g(xγ , yγ )d F(x, y)
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+

xγ∫
−∞

∞∫
y1−γ

g(xγ , y1−γ )d F(x, y)+

∞∫
x1−γ

y1−γ∫
yγ

g(x1−γ , y)d F(x, y)

+

∞∫
x1−γ

yγ∫
−∞

g(x1−γ , yγ )d F(x, y)+

∞∫
x1−γ

∞∫
y1−γ

g(x1−γ , y1−γ )d F(x, y)

+

x1−γ∫
xγ

yγ∫
−∞

g(x, yγ )d F(x, y)+

x1−γ∫
xγ

∞∫
y1−γ

g(x, y1−γ )d F(x, y).

Figure 2.4 illustrates the first step when Winsorizing a bivariate distribution. The bivariate
distribution of X and Y is trimmed by removing any points outside the rectangle formed by
the four points (xγ , yγ ), (xγ , y1−γ ), (x1−γ , yγ ), and (x1−γ , y1−γ ).

It can be seen that Ew(X +Y )= Ew(X)+ Ew(Y )= µwx +µwy , the sum of the Winsorized
means. More generally, for n random variables X1, . . . , Xn , and constants c1, . . . , cn ,

Ew(
∑

ci X i )=
∑

ci Ew(X i ).
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Figure 2.4: Winsorization of a Bivariate Distribution.
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Also, if X and Y are independent, Ew(XY )= Ew(X)Ew(Y ), the Winsorized variance of
X +Y is σ 2

wx +σ
2
wy , the sum of the Winsorized variances. These results do not always

generalize to other measures of scale. A Winsorized covariance is COVw(X,Y )=
Ew[(X −µwx)(Y −µwy)], and for the situation where the X i are dependent with possibly
different distributions, the Winsorized variance of Ew(

∑
ci X i ) is∑∑

ci c j COVw(X i , X j ).

Finally, the definition of Ew makes it a simple matter to find estimates of Winsorized
parameters. For a random sample, X1, . . . , Xn , suppose

Ew[g(X1, . . . , Xn)]= ξ. (2.16)

This indicates that ξ be estimated with ξ̂w = g(W1, . . . ,Wn), where

Wi =


X(k+1), if X i ≤ X(k+1)

X i , if X(k+1) < X i < X(n−k)

X(n−k), if X i ≥ X(n−k),

X(1) ≤ · · · ≤ X(n) are the order statistics, and k = [γ n], the greatest integer less than or equal
to γ n. When Eq. (2.16) holds, ξ̂w is said to be a Winsorized unbiased estimate of ξ . For
example, W̄ =

∑
Wi/n is a Winsorized unbiased estimate of µw, and s2

w =
∑
(Wi − W̄ )2/

(n−1) is a Winsorized unbiased estimate of σ 2
w. Numerical illustrations are given in

Chapter 3.
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CHAPTER 3

Estimating Measures of
Location and Scale

This chapter describes methods of estimating the measures of location and scale introduced in
Chapter 2, and it introduces some additional measures of location and scale that have practical
importance. Also, two general approaches to estimating standard errors are described and
illustrated. One is based on estimating expressions for the standard errors of estimators, which
is perhaps the more common strategy to use, and the other is based on a so-called bootstrap
method. As will be seen, estimating standard errors is often done in a way that is neither
intuitive nor obvious based on standard statistical training. Another goal is to introduce some
outlier detection methods plus some graphical methods for summarizing data that will be used
in later chapters.

This chapter is less technical than Chapter 2, but it is important at least to touch on theory so
that readers understand why common strategies in applied research turn out to be inappropriate.
For example, why is it incorrect to discard outliers and apply standard techniques?
Although this chapter gives the reader some indication of how theoretical problems are
addressed, mathematical details are kept to a minimum. Readers interested in a more rigorous
description of mathematical issues can refer to Huber (1981) as well as Hampel et al. (1986).
For a book written at an intermediate level of difficulty, see Staudte and Sheather (1990).

3.1 A Bootstrap Estimate of a Standard Error

It is convenient to begin with a description of the most basic bootstrap method for estimating
a standard error. Let θ̂ be any estimator based on a random sample of observations,
X1, . . . , Xn . The goal is to estimate VAR(θ̂ ), the squared standard error of θ̂ . The strategy
used by the bootstrap method is based on a very simple idea. Temporarily assume that
observations are randomly sampled from some known distribution, F . Then for a given
sample size, n, the sampling distribution of θ̂ could be determined by randomly generating n
observations from F , computing θ̂ , randomly generating another set of n observations,
computing θ̂ , and repeating this process many times. Suppose this is done B times and the
resulting values for θ̂ are labeled θ̂1, . . . , θ̂B . If B is large enough, the values θ̂1, . . . , θ̂B

Introduction to Robust Estimation and Hypothesis Testing. DOI: 10.1016/B978-0-12-386983-8.00003-2
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provide a good approximation of the distribution of θ̂ . In particular, they provide an estimate
of the squared standard error of θ̂ , namely,

1

B−1

B∑
b=1

(θ̂b− θ̄ )
2,

where

θ̄ =
1

B

B∑
b=1

θ̂b.

That is, VAR(θ̂) is estimated with the sample variance of the values θ̂1, . . . , θ̂B . If, for
example, θ̂ is taken to be the sample mean, X̄ , the squared standard error would be found to
be σ 2/n, approximately, provided B is reasonably large. Of course when working with the
mean, it is known that its squared standard error is σ 2/n, so the method just described is
unnecessary. The only point is that a reasonable method for estimating the squared standard
error of θ̂ has been described.

In practice F is not known, but it can be estimated with

F̂(x)=
#{X i ≤ x}

n
,

the proportion of observations less than or equal to x , which provides a nonparametric
maximum likelihood estimate of F . The empirical distribution assigns probability 1/n to each
X i , so the estimated probability of observing the value X i is fi/n, where fi is the number of
times the value X i occurred among the n observations. All other possible values (values not
observed) have an estimated probability of zero. The bootstrap estimate of the standard error
is obtained as described in the previous paragraph, except that F̂ replaces F . In practical
terms, a bootstrap sample is obtained by resampling with replacement n observations from
X1, . . . , Xn . This is easily done with the R command

sample(x,size=length(x),replace=T)

To estimate the sampling distribution of θ̂ , generate a bootstrap sample from the observations
X1, . . . , Xn and compute θ̂ based on the obtained bootstrap sample. The result will be labeled
θ̂∗ to distinguish it from θ̂ , which is based on the observed values X1, . . . , Xn . Repeat this
process B times yielding θ̂∗1 , . . . , θ̂

∗

B . These B values provide an estimate of the sampling
distribution of θ̂ and in particular an estimate of its squared standard error given by

S2
=

1

B−1

B∑
b=1

(θ̂∗b − θ̄
∗)2,

where θ̄∗ =
∑
θ̂∗b /B.
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How many bootstrap samples should be used? That is, how should B be chosen? This
depends, of course, on the goals and criteria that are deemed important. Suppose, for example,
estimated standard errors are used to compute a confidence interval. One perspective is to
choose B so that the actual probability coverage is reasonably close to the nominal level.
Many of the methods in this book are based on this view. However, another approach is to
choose B so that if a different collection of bootstrap samples were used, the results would
change by a negligible amount. That is, choose B to be sufficiently large so that if the seed in
the random number generator is altered, essentially the same conclusions would be obtained.
Booth and Sarkar (1998) derived results on choosing B from this latter point of view, and
with the increased speed of computers in recent years, some of the newer methods in this
book take this latter view into account.

Although the bootstrap estimate of the sampling distribution of a statistic can be argued to be
reasonable, it is not immediately clear the extent to which it has practical value. The basic
bootstrap methods covered in this book are not a panacea for the many problems that confront
the applied researcher, as will become evident in subsequent chapters. But with over 1000
journal articles on the bootstrap, including both theoretical and simulation studies, all
indications are that it has great practical value, particularly when working with robust
measures of location and scale, as will be seen. Also, there are many proposed ways of
possibly improving upon the basic bootstrap methods used in this book, summaries of which
are given by Efron and Tibshirani (1993). Some of these look very promising, but the extent
to which they have practical value for the problems considered here has not been determined.
When testing hypotheses or computing confidence intervals, for some problems, a bootstrap
method is the only known method that provides reasonably accurate results.

3.1.1 R Function bootse

As explained in Section 1.7 of Chapter 1, R functions have been written for applying the
methods described in this book. The software written for this book is free, and a single
command incorporates them into your version of R. Included is the function

bootse(x,nboot=1000,est=median),

which can be used to compute a bootstrap estimate of the standard error of virtually any
estimator covered in this book. Here, x is any R variable containing the data. The argument
nboot represents B, the number of bootstrap samples, and defaults to 1000 if not specified. (As
is done with all R functions, optional arguments are indicated by an = and they default to the
value shown. Here, for example, the value of nboot is taken to be 1000 if no value is specified
by the user.) The argument est indicates the estimator for which the standard error is to be
computed. If not specified, est defaults to the median. That is, the standard error of the usual
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sample median will be estimated. So, for example, if data are stored in the R variable blob, the
command bootse(blob) will return the estimated standard error of the usual sample median.

3.2 Density Estimators

Before continuing with the main issues covered in this chapter, it helps to first touch on a
related problem that plays a role here as well as in subsequent chapters. The problem is
estimating f (x), the probability density function, based on a random sample of observations.
Such estimators play an explicit role when trying to estimate the standard error of certain
location estimators to be described. More generally, density estimators provide a useful
perspective when trying to assess how groups differ and by how much.

Generally, kernel density estimators take the form

f̂ (x)=
1

nh

n∑
i=1

K

(
x− X i

h

)
,

where K is some probability density function and h is a constant to be determined. The
constant h has been given several names including the span, the window width, the smoothing
parameter, and the bandwidth. Some explicit choices for h are discussed later in this section.
Often K is taken to be a distribution symmetric about zero, but there are exceptions. There is
a vast literature on kernel density estimators (Silverman, 1986; Scott, 1992; Wand & Jones,
1995; Simonoff, 1996) and research in this area remains active. (For some recent results, see
for example, Clements, Hurn, & Lindsay, 2003; Devroye & Lugosi, 2001; Messer &
Goldstein, 1993; Yang & Marron, 1999; cf. Liu & Brown, 1993.) Here, four types of kernel
density estimators are summarized for later reference.

3.2.1 Normal Kernel

The first of the four methods covered here simply takes K to be the standard normal density.
For reasons to be illustrated, the method can be unsatisfactory, but it is the default method
used by some software packages, so it is included merely to illustrate potential problems.
Following Silverman (1986), as well as the recommendation made by Venables and Ripley
(2002, p. 127), the span is taken to be

h = 1.06min(s, IQR/1.34)n−1/5,

where s is the usual sample standard deviation and IQR is some estimate of the interquartile
range. That is, IQR estimates the difference between the 0.75 and 0.25 quantiles.
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3.2.2 Rosenblatt’s Shifted Histogram

The second method, Rosenblatt’s shifted histogram estimator, uses results derived by Scott
(1979) and Freedman and Diaconis (1981). The computational details are as follows. Set

h =
1.2(IQR)

n1/5
.

(Here, IQR will be based on the ideal fourths described in Section 3.12.) Let A be the number
of observations less than or equal x+h. In symbols,

A = #{X i ≤ x+h},

where the notation #{X i ≤ x+h} indicates the cardinality of the set of observations satisfying
X i ≤ x+h. Similarly, let

B = #{X i < x−h},

the number of observations less than x−h. Then the estimate of f (x) is

f̂ (x)=
A− B

2nh
.

3.2.3 The Expected Frequency Curve

The next estimator, the expected frequency curve, is basically a variation of what is called the
naive density estimator, and it is related to certain regression smoothers discussed later in this
book. It also has similarities to the nearest neighbor method for estimating densities as
described in Silverman (1986). The basic idea when estimating f (x), for a given value x , is to
use the proportion of observed values among X1, . . . , Xn that are “close” to x .

The method begins by computing the median absolute deviation (MAD) statistic, which is
just the sample median of the n values |X1−M |, . . . , |Xn−M |, where M is the usual
sample median. (For relevant asymptotic results on MAD, see Hall & Welsh, 1985.) Let
MADN=MAD/z0.75, where z0.75 is the 0.75 quantile of a standard normal distribution. Then
x is said to be close to X i if |X i − x |/MADN≤ h, where h again plays the role of a span.
Typically, h = 0.8 gives good results. (As is evident, there is no particular reason here to use
MADN rather than MAD; it is done merely to follow certain conventions covered in
Section 3.6 where MAD is introduced in a more formal manner.) Let Nx be the number of
observations close to x in which case p̂i = Ni/n estimates pi , the probability that a randomly
sampled value is close to X i . An estimate of the density at x is

f̂ (x)=
Nx

2hnMADN
.

www.elsevierdirect.com



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

WILCOX 06-ch03-043-102-9780123869838 2011/12/6 17:53 Page 48 #6

48 Introduction to Robust Estimation and Hypothesis Testing

In contrast is the naive density estimator discussed by Silverman (1986, Section 2.3) where
essentially MADN is replaced by the value 1. That is, the width of the interval around each
point when determining Nx depends in no way on the data, but only on the investigators
choice for h.

On rare occasions, data are encountered where MAD is zero. In the event this occurs when
computing an expected frequency curve, here MAD is replaced by IQR (the interquartile
range) estimated via the ideal fourths, as described in Section 3.12.5, and MADN is replaced
by IQRN, which is IQR divided by z0.75− z0.25, where again z0.75 and z0.25 are the 0.75 and
0.25 quantiles, respectively, of a standard normal distribution. Now an estimate of the density
at x is taken to be

f̂ (x)=
Nx

2hnIQRN
.

A criticism of the expected frequency curve is that it can miss bimodality when the span is set
to h = 0.8. This can be corrected by lowering h to say 0.2, but a criticism of routinely using
h = 0.2 is that it often yields a rather ragged approximation of the true probability density
function. With h = 0.8 and n small, again a rather ragged plot can result, but an appealing
feature of the method is that often it improves upon the normal kernel in terms of capturing
the overall shape of the true distribution.

3.2.4 An Adaptive Kernel Estimator

With large sample sizes, the expected frequency curve typically gives a smooth approximation
of the true density, but with small sample sizes a rather ragged approximation can be had.
A possible method for smoothing the estimate is to use an adaptive kernel estimate that is
known to compete well with other estimators that have been proposed (Silverman, 1986; cf.
Politis & Romano, 1997). There are, in fact, many variations of the adaptive kernel estimator,
but only one is described here. Following Silverman (1986), let f̃ (X i ) be an initial estimate of
f (X i ). Here, f̃ (X i ) is based on the expected frequency curve. Let

log g =
1

n

∑
log f̃ (X i )

and

λi = ( f̃ (X i )/g)−a,

where a is a sensitivity parameter satisfying 0≤ a ≤ 1. Based on comments by Silverman
(1986), a = 0.5 is used unless stated otherwise. Then the adaptive kernel estimate of f is
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taken to be

f̂ (t)=
1

n

∑ 1

hλi
K {h−1λ−1

i (t− X i )},

where

K (t)=
3

4

(
1−

1

5
t2

)/
√

5, |t |<
√

5

=0, otherwise,

is the Epanechnikov kernel, and following Silverman (1986, pp. 47–48), the span is

h = 1.06
A

n1/5
,

where

A =min(s, IQR/1.34),

s is the standard deviation, and IQR is the interquartile range. Again the interquartile range is
estimated as described in Section 3.12.5 (using what are called the ideal fourths).

When using an adaptive kernel estimator, perhaps there are advantages to using some initial
estimator other than the expected frequency curve. The relative merits of this possibility have
not been explored. One reason for using the expected frequency curve as the preliminary
estimate is that it reduces problems due to a restriction in range that are known to be a
concern when using the normal kernel as described in Section 3.2.1.

3.2.5 R Functions skerd, kerden, kdplot, rdplot, akerd, and splot

It is noted that R has a built-in function called density that computes a kernel density estimate
based on various choices for K . (This function also contains various options not covered
here.) By default, K is taken to be the standard normal density. Here, the R function

skerd(x,op=T,kernel=“gaussian”)

is supplied in the event there is a desire to plot the data based on this collection of estimators.
When op=T, the function uses the default density estimator employed by R; otherwise it uses
the method recommended by Venables and Ripley (2002, p. 127). (When using R, the default
density estimator differs from the one used by S-PLUS, but with op=F, R and S-PLUS use the
same method.) To use the Epanechnikov kernel, set the argument kernel=epanechnikov.

The function

kerden(x,q=0.5,xval=0),
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written for this book, computes the kernel density estimate of f (xq) for the data stored in the
R vector x using the Rosenblatt shifted histogram method, described in Section 3.2.2. (Again,
see Section 1.7 on how to obtain the functions written for this book.) If unspecified, q defaults
to 0.5. The argument xval is ignored unless q=0, in which case the function estimates f when
x is equal to value specified by the argument xval. The function

kdplot(x,rval=15)

plots the estimate of f (x) based on the function kerden, where the argument rval indicates
how many quantiles will be used. The default value, 15, means that f (x) is estimated for
15 quantiles evenly spaced between 0.01 and 0.99, and then the function plots the estimates to
form an estimate of f (x).

The R function

rdplot(x,fr=NA,plotit=T,pts=NA,pyhat=F)

computes the expected frequency curve. The argument fr is the span, h. If not specified,
fr=0.8 is used in the univariate case, otherwise fr=0.6 is used. By default, pts=NA (for not
available) in which case a plot of the estimated density is based on the points (X i , f̂ (X i )),
i = 1, . . . ,n. If values are stored in pts, the plot is created based on these points. For
example, the command rdplot(mydat,pts=c(0,mydat)) will create a plot based on all of the
points in mydat plus the point (0, f̂ (0)). If pyhat=T, for true, the function returns the f̂
values that were computed. So rdplot(mydat,pts=0,pyhat=T) returns f̂ (0), and
rdplot(mydat,pts=c(1,2),pyhat=T) returns f̂ (1) and f̂ (2). Setting plotit=F (for false)
suppresses the plot. (The function can handle multivariate data and produces a plot in the
bivariate case; the computational details are outlined in Chapter 6.)

The R function

akerd(x,hval=NA,aval=0.5,op=1,fr=0.8,pts=NA,pyhat=F)

applies the adaptive kernel estimate as described in Section 3.2.4, where the argument hval is
the span, h, aval is a, the sensitivity parameter, and fr is the span used by the initial estimate
based on the expected frequency curve. If the argument op is set to 2, the Epanechnikov
kernel is replaced by the normal kernel. The argument hval defaults to NA meaning that if not
specified, the span h is determined as described in Section 3.2.4, otherwise h is taken to be the
value given by hval. Setting pyhat=T, the function returns the f̂ (X i ) values. If pts contains
values, the function returns f̂ for values in pts instead. (The function can be used with
multivariate data and produces a plot in the bivariate case.)

For convenience, when working with discrete data, the function

splot(x,op=T,xlab=“X”,ylab=“Rel. Freq.”)
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is supplied which plots the relative frequencies of all distinct values found in the R variable x.
With op=T, a line connecting points marking the relative frequencies is added to the plot.

n Example

Table 3.1 shows data from a study dealing with hangover symptoms for two groups of
individuals: sons of alcoholics and a control group. Note that for both groups, zero is
the most common value, and it is fairly evident that the data do not have a bell-shaped
distribution. The top two panels of Figure 3.1 show an estimate of the distributions
using the R function skerd. (The plots are based on the data for Group 1.) This
illustrates a well-known problem with certain kernel density estimators: a restriction in

Table 3.1: The Effect of Alcohol.

Group 1 0 0 0 0 0 0 0 0 2 2
3 3 6 9 11 11 11 18 32 41

Group 2 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 2 3 8 12 32
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Figure 3.1: An example comparing four plots of data. The upper left panel shows a kernel
density estimate using a normal kernel based on the Group 1 data in Table 3.1. The upper right
panel is the estimate using the Group 2 data. The bottom left panel used the same data as in
the upper left panel, only the adaptive kernel density estimator was used. The lower right panel
used the adaptive kernel density estimate with the Group 2 data.
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the range of possible values can lead to highly unsatisfactory results. This is clearly the
case here because values less than zero are impossible, in contrast to what is suggested,
particularly in the top right panel. The bottom two panels are plots of the data using the
adaptive kernel density estimator in Section 3.2.4. The method handles the restriction in
range reasonably well and provides what seems like a much more satisfactory summary
of the data.

n

n Example

Figure 3.2 shows the plots created by the R functions just described for n = 30
observations randomly sampled from a standard normal distribution. The upper left
panel was produced by the function skerd, the upper right panel shows the curve
produced by kdplot (which uses the method in Section 3.2.2), the lower left panel is the
expected frequency curve (using the function rdplot), and the lower right panel (created
by the function akerd) is based on the adaptive kernel estimator in Section 3.2.4. Plots
based on akerd are typically smoother than the plot returned by rdplot, particularly
when using small sample sizes. Generally, the expected frequency curve and the adaptive
kernel density estimator seem more likely to give a better overall sense of what the data
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Figure 3.2: Another example comparing four plots of data. The upper left panel shows a
kernel density estimate using a normal kernel based on n = 30 observations sampled from a
standard normal distribution. The upper right panel is the plot (based on the same data) using
Rosenblatt’s shifted historgram. The lower left panel is the expected frequency curve and lower
right panel is based on the adaptive kernel estimator.
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are like when sampling from a heavy-tailed distribution, but this issue has not been
studied extensively.

n

n Example

To add perspective, 500 observations were generated from the lognormal distribution
shown in Figure 3.3. This particular distribution is de�ned only for X > 0. That is,
P(X < 0)= 0. The upper left panel of Figure 3.4 shows the plot created by R using the
normal kernel as described in Section 3.2.1. The upper right panel is based on
Rosenblatt’s shifted histogram (described in method in Section 3.2.2), the lower left
panel is based on the expected frequency curve (using the function kdplot), and the
lower right panel is the plot based on the adaptive kernel estimator described in
Section 3.2.4. Notice that both rdplot and kdplot do a better job of capturing the shape
of the true density. The output from skerd is too Gaussian on the left (for x ≤ 5),
meaning that it resembles a normal curve when it should not, and it performs rather
poorly for X < 0. (A similar problem arises when sampling from an exponential
distribution.) Setting op=F when using skerd, the restriction in range associated with
the lognormal distribution is less of a problem, but the plot becomes rather ragged.
Increasing the sample size to n = 1000 and changing the seed in the R random number
generator produces results very similar to those in Figure 3.4. The R function density has
optional arguments that replace the normal kernel with other functions, several of these

x

f(
x)

151050

0.0

0.6

0.4

0.2

Figure 3.3: A lognormal distribution.
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Figure 3.4: Some kernel density estimators can perform poorly when the variable under study
is bounded, even with large sample sizes. The upper left panel is a plot based on the function
skerd and n = 500 randomly sampled observations from the lognormal distribution in
Figure 3.3. The upper right panel is Rosenblatt’s shifted histogram (using on the function
rdplot), the lower left panel shows the plot created by kdplot, and the lower right panel is
based on the adaptive kernel estimator.

were considered for the situation at hand, but similar results were obtained. So
although situations are encountered where the R function skerd produces a smoother,
more visually appealing plot versus rdplot, kdplot, and akerd, blind use of this function
can be misleading.

n

3.3 The Sample Trimmed Mean

As already indicated, the standard error of the sample mean can be relatively large when
sampling from a heavy-tailed distribution, and the sample mean estimates a nonrobust
measure of location, µ. The sample trimmed mean addresses these problems.

The sample trimmed mean, which estimates the population trimmed µt (described in
Section 2.2.3), is computed as follows. Let X1, . . . , Xn be a random sample and let
X(1) ≤ X(2) ≤ · · · ≤ X(n) be the observations written in ascending order. The value X(i) is
called the i th order statistic. Suppose the desired amount of trimming has been chosen to be
γ , 0≤ γ < 0.5. Let g = [γ n], where [γ n] is the value of γ n rounded down to the nearest
integer. For example, [10.9]= 10. The sample trimmed mean is computed by removing the g
largest and g smallest observations and averaging the values that remain. In symbols, the
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sample trimmed mean is

X̄ t =
X(g+1)+· · ·+ X(n−g)

n−2g
. (3.1)

In essence, the empirical distribution is trimmed in a manner consistent with how the
probability density function was trimmed when defining µt . As indicated in Chapter 2,
two-sided trimming is assumed unless stated otherwise.

The definition of the sample trimmed mean given by Eq. (3.1) is the one most commonly
used. However, for completeness, it is noted that the term trimmed mean sometimes refers to
a slightly different estimator (e.g., Reed, 1998; cf. Hogg, 1974), namely,

1

n(1−2γ )

 n−g∑
i=g+1

X(i)+ (g−γ n)(X(g)+ X(n−g+1)

.
Also see Patel, Mudholkar, and Fernando (1988) as well as Kim (1992a). Here, however, the
definition given by (3.1) is used exclusively.

For the trimmed mean to have any practical importance, a value for γ must be chosen. One
approach is to choose γ so that X̄ t tends to have a relatively small standard error among
commonly occurring situations, and a related restriction might be that little accuracy is lost
when sampling from a normal distribution. Based on this view, and other criteria to be
described, a good choice for general use is γ = 0.2. If γ is too small, the standard error of the
trimmed mean,

√
VAR(X̄ t), can be drastically inflated by outliers or sampling from a

heavy-tailed distribution. If γ is too large, the standard error can be relatively large compared
with the standard error of the sample mean when sampling from a normal distribution. (Some
illustrations are given in Section 3.11.) Empirical investigations based on data from actual
studies suggest that the optimal amount of trimming, in terms of minimizing the standard
error, is usually between 0 and 0.25 (e.g., Hill & Dixon, 1982; Wu, 2002). Although γ = 0.1,
for example, might be more optimal than γ = 0.2 in certain situations, one argument for using
γ = 0.2 is that it can result in a standard error that is much smaller than the standard error
associated with γ = 0.1 or γ = 0, but the reverse is generally untrue. That is, γ = 0.2 guards
against complete disaster but sacrifices relatively little in situations where γ = 0.1 and γ = 0
are more optimal. In some cases, however, more than 20% trimming might be desirable.

Another approach is to determine γ empirically according to some criterion such as the
standard error. That is, estimate the standard error of X̄ t when, for example, γ = 0, 0.1, and
0.2 and then use the value of γ corresponding to the smallest estimate. These so-called
adaptive trimmed means have been studied by Leger and Romano (1990a,b) and Leger,
Politis, and Romano (1992). Or one could determine the amount of trimming based on some
measure of skewness and heavy-tailedness. For a recent summary and comparison of such
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methods, see Reed (1998) as well as Reed and Stark (1996). The properties of this approach,
in the context of testing hypotheses and computing confidence intervals, have not been studied
to the extent where γ is chosen to be a prespecified constant. In particular, the practical utility
of adaptive trimmed means needs further investigation, so they are not discussed here, but
further investigation seems warranted. It should be remarked, however, that empirically
determining how much trimming to do is fraught with difficulties that are not always obvious.
Interested readers can read the discussions of a paper by Hogg (1974), especially the
comments by P. Huber. For some results on so-called hinge estimators, regarding control over
the probability of a type I error, see Keselman, Wilcox, Lix, Algina, and Fradette (2003).

n Example

Dana (1990) conducted a study dealing with self-awareness and self-evaluation. One
segment of his study measured the time subjects could keep a portion of an apparatus
in contact with a speci�ed target. Table 3.2 shows some data for one of the groups. The
sample mean and the sample trimmed means with γ = 0.1 and 0.2 are 448, 343, and
283, respectively. In this particular case, there is an obvious difference between the three
measures of location. However, even if they had been nearly equal, this is not necessarily
an indication that the sample mean is satisfactory because the standard error of the
trimmed mean can be substantially smaller than the standard error of the mean.

Table 3.2: Self-Awareness Data.

77 87 88 114 151 210 219 246 253 262
296 299 306 376 428 515 666 1310 2611

n

It might seem that γ = 0.2 is equivalent to randomly throwing away 40% of the data,
but this is not the case. To see why, notice that the order statistics are dependent even though
the observations X1, . . . , Xn are independent. This result is covered in basic texts on
mathematical statistics. For readers unfamiliar with this result, a brief explanation will help
shed some light on other practical problems covered in this chapter.

If the random variables X and Y are independent, then the probability function of X is not
altered given the value of Y . This means in particular that the range of possible values of X
cannot depend on the value of Y . Suppose X1, . . . , Xn is a random sample, and for the sake of
illustration, suppose the value of each random variable can be any of the integers between
1 and 10 inclusive, each value occurring with some positive probability. Then knowing that
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X2 = 3, say, tells us nothing about the probability of observing a particular value for X1.
However, suppose X(2) = 3. Then, the smallest value, X(1), cannot be 4. More generally, X(1)
cannot be any number greater than 3. In contrast, if we do not know the value of X(2), or any
of the other order statistics, X(1) could have any of the values 1,2, . . . ,10, and these values
occur with some positive probability. Thus, knowing the value of X(2) alters the probabilities
associated with X(1). That is, X(1) and X(2) are dependent and dependence occurs because
knowing the value of X(2) restricts the range of possible values for X(1). More generally, any
two order statistics, say X(i) and X( j), i 6= j , are dependent.

3.3.1 R Functions mean, tmean, and lloc

R has a built-in function that evaluates the trimmed mean. If observations are stored in the
vector x , the R command

mean(x,trim=0)

computes the γ -trimmed mean where the argument trim determines the amount of trimming.
By default, the amount of trimming is 0. For example, mean(x,0.2) returns the 20% trimmed
mean. The value 283 is returned for the data in Table 3.2, assuming the data are stored in the
R variable x. Because it is common to use 20% trimming, for convenience the R function

tmean(x,tr=0.2)

has been supplied, which computes a 20% trimmed mean by default using the data stored in
the R variable x. The amount of trimming can be altered using the argument tr. So
tmean(blob) will compute a 20% trimmed mean for the data stored in blob, and
tmean(blob,tr=0.3) will use 30% trimming instead. For convenience, the function

lloc(x,est=tmean,. . .)

is supplied for computing a trimmed mean when data are stored in list mode, in a data frame,
or a matrix. If x is a matrix or data frame, lloc computes the trimmed mean for each column.
Other measures of location can be used via the argument est. (For example, est=median will
compute the median.) The argument . . . means that an optional argument associated with est
can be used.

3.3.2 Estimating the Standard Error of the Trimmed Mean

To have practical value when making inferences about µt , properties of the sampling
distribution of X̄ t need to be determined. This subsection takes up the problem of estimating√

VAR(X̄ t), the standard error of the sample trimmed mean.
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At first glance the problem might appear to be trivial. The standard error of the sample mean
is σ/
√

n, which is estimated with s/
√

n, where

s2
=

1

n−1

∑
(X i − X̄)2

is the usual sample variance. A common mistake in applied work is to estimate the standard
error of the trimmed mean by simply computing the sample standard deviation of the
untrimmed observations, and then dividing by

√
n−2g, the square root of the number of

observations left after trimming. That is, apply the usual estimate of the standard error using
the untrimmed values. To see why this simple idea fails, let X1, . . . , Xn be any random
variables, possibly dependent with unequal variances, and let a1, . . . ,an be any n constants.
Then the variance of

∑
ai X i is

VAR
(∑

ai X i

)
=

n∑
i=1

n∑
i=1

ai a j COV(X i , X j ), (3.2)

where COV(X i , X j ) is the covariance between X i and X j . That is,

COV(X i , X j )= E{(X i −µi )(X j −µ j )},

where µi = E(X i ). When i = j , COV(X i , X j )= σ
2
i , the variance of X i . When the random

variables are independent, Eq. (3.2) reduces to

VAR
(∑

ai X i

)
=

n∑
i=1

a2
i σ

2
i . (3.3)

Under random sampling, in which case the variance of each of the n random variables has a
common value σ 2, the variance of X̄ can be seen to be σ 2/n by taking ai = 1/n, i = 1, . . . ,n,
in (3.3). The problem with the sample trimmed mean is that it is a linear combination of
dependent random variables, namely a linear combination of the order statistics, so Eq. (3.3)
does not apply, Eq. (3.2) must be used instead. For i 6= j , there are asymptotic results that can
be used to estimate COV(X(i), X( j)), the covariance between the ith and jth order statistics,
this suggests a method for estimating the standard error of a trimmed mean, but a simpler
method for estimating VAR(X̄ t) is typically used and found to give good results.

The influence function of the trimmed mean, I Ft(x), introduced in Chapter 2, provides a
convenient and useful way of dealing with the dependence among the order statistics. It can
be shown that

X̄ t = µt +
1

n

n∑
i=1

I Ft(X i ), (3.4)
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plus a remainder term that goes to zero as n gets large. Moreover, E(I Ft(X i ))= 0. In words,
the sample trimmed mean can be written as µt plus a sum of independent, identically
distributed random variables (assuming random sampling) having mean 0, plus a term that
can be ignored provided n is not too small. The central limit theorem, applied to (3.4), shows
that the distribution of X̄ t approaches a normal distribution as n→∞. Fortunately, all
indications are that the error term can be ignored even when n is as small as 10. Because
I Ft(X) has mean 0, Eq. (3.3) can be used to show that

VAR(X̄ t)=
1

n2

∑
E{(I Ft(X i ))

2
}, (3.5)

ignoring the error term. From Chapter 2,

(1−2γ )I Ft(X)=


xγ −µw, if x < xγ
X −µw, if xγ ≤ X ≤ x1−γ

x1−γ −µw, if x > x1−γ ,

where µw is the Winsorized population mean, and xγ is the γ quantile. The main point here is
that an estimate of E{(I Ft(X i ))

2
} yields an estimate of VAR(X̄ t) via Eq. (3.5). Note that

P

(
I Ft(X)=

xγ −µw
1−2γ

)
= γ

P

(
I Ft(X)=

x1−γ −µw

1−2γ

)
= γ.

The first step in estimating E{(I Ft(X i ))
2
} is estimating the population Winsorized mean, µw.

This is done by Winsorizing the empirical distribution and computing the sample mean of
what results. Winsorization of a random sample consists of setting

Wi =


X(g+1), if X i ≤ X(g+1)

X i , if X(g+1) < X i < X(n−g)

X(n−g), if X i ≥ X(n−g).
(3.6)

The Winsorized sample mean is

X̄w =
1

n

∑
Wi ,

which estimates µw, the population Winsorized mean introduced in Chapter 2. In words,
Winsorization means that the g smallest values are pulled in and set equal to X(g+1), and the g
largest values are pulled in and set equal to X(n−g). The sample mean of the resulting values is
the Winsorized sample mean. (For a detailed study of the sample Winsorized mean when
sampling from a skewed distribution, see Rivest, 1994.) Put another way, Winsorization
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Table 3.3: Winsorized Values for the Self-Awareness Data.

114 114 114 114 151 210 219 246 253 262
296 299 306 376 428 515 515 515 515

consists of estimating the γ and 1−γ quantiles with X(g+1) and X(n−g), respectively, and
estimating the population Winsorized distribution, described in Chapter 2, with the resulting
Wi values. Also, results on the Winsorized expected value provide a more formal way of
justifying X̄w as an estimate of µw. In particular, it is readily verified that Ew(X̄)= µw, so
X̄w is a Winsorized unbiased estimate of µw.

Table 3.3 shows the Winsorized values for the data in Table 3.2 when γ = 0.2, in which case
g = [0.2(19)]= 3. Thus, Winsorizing the observations in Table 3.2 consists of replacing the
three smallest observations with X(4) = 114. Similarly, because n− g = 19−3= 16, the three
largest observations are replaced by X(16) = 515. The sample mean of the values in Table 3.3
is 293, and this is equal to the 20% Winsorized sample mean for the data in Table 3.2.

The expression for the influence function of the trimmed mean involves three unknown
quantities: xγ , x1−γ , and µw. As already indicated, these three unknown quantities are
estimated with X(g+1), X(n−g), and X̄w, respectively. A little algebra shows that an estimate of
E[I Ft(X i )] is (Wi − W̄ )/(1−2γ ), so an estimate of E{(I F(X i ))

2
} is (Wi − W̄ )2/(1−2γ )2.

Referring to Eq. (3.5), the resulting estimate of VAR(X̄ t) is

1

n2(1−2γ )2
∑

(Wi − W̄ )2.

When there is no trimming, this last equation becomes

n−1

n
×

s2

n
,

but typically s2/n is used instead. Accordingly, to be consistent with how the standard error
of the sample mean is usually estimated,

1

n(n−1)(1−2γ )2
∑

(Wi − W̄ )2 (3.7)

will be used to estimate VAR(X̄ t).

The quantity

s2
w =

1

n−1

∑
(Wi − W̄ )2 (3.8)
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is called the sample Winsorized variance. A common way of writing (3.7) is in terms of the
Winsorized variance:

s2
w

(1−2γ )2n
. (3.9)

In other words, to estimate the squared standard error of the trimmed mean, compute the
Winsorized observations Wi using Eq. (3.6), compute the sample variance using the resulting
values, then divide by (1−2γ )2n. Using the notion of Winsorized expected values as
described in Chapter 2, Ew(s2)= σ 2

w, and this helps to justify s2
w as an estimate σ 2

w, the
population Winsorized variance. That is, s2

w is a Winsorized unbiased estimate of the
population Winsorized variance. It can be seen that Ew{(I F(X i ))

2
} = σ 2

w/(1−2γ )2, and this
provides another way of justifying (3.9) as an estimate of VAR(X̄ t). Consequently, the
standard error of the sample trimmed mean is estimated with√

s2
w

(1−2γ )2n
=

sw
(1−2γ )

√
n
.

Table 3.4 summarizes the calculations used to estimate the standard error of the trimmed
mean.

n Example

For the data in Table 3.3, the sample variance is 21,551.4 and this is the Winsorized
sample variance for the data in Table 3.2. Because 20% trimming was used, γ = 0.2, and
the estimated standard error of the sample trimmed mean is

√
21,551.4

[1−2(0.2)]
√

19
= 56.1

In contrast, the standard error of the sample mean is s/
√

n = 136, a value that is
approximately 2.4 times larger than the standard error of the trimmed mean.

n

Table 3.4: Summary of How to Estimate the Standard Error of the Trimmed Mean.

To estimate the standard error of the trimmed mean based on a random sample of n observations, �rst Win-
sorize the observations by transforming the ith observation, X i , to Wi using Eq. (3.6). Compute the sample
variance of the Wi values yielding s2

w, the Winsorized sample variance. The standard error of the trimmed mean
is estimated to be

sw
(1−2γ )

√
n
,

where γ is the amount of trimming chosen by the investigator.
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3.3.3 Estimating the Standard Error of the Sample Winsorized Mean

An estimate of the standard error of the sample Winsorized mean, X̄w, can be derived from
the influence function of the population Winsorized mean given in Section 2.2.2. Dixon and
Tukey (1968) suggest a simpler estimate:

n−1

n−2g−1
×

sw
√

n
,

where g = [γ n] is the number of observations Winsorized in each tail, so n−2g is the
number of observations that are not Winsorized.

3.3.4 R Functions winmean, winvar, trimse, and winse

Included in the R functions written for this book is a function called winmean that computes
the Winsorized mean. If the data are stored in the R variable x, it has the form

winmean(x,tr=0.2).

The optional argument tr is the amount of Winsorizing, which defaults to 0.2 if unspecified.
(The R function win also computes the Winsorized mean.) For example, the command
winmean(dat) computes the 20% Winsorized mean for the data in the R vector dat. The
command winmean(x,0.1) computes the 10% Winsorized mean. If there are any missing
values (stored as NA in R), the function automatically removes them.

The function winvar computes the Winsorized sample variance, s2
w. It has the form

winvar(x,tr=0.2).

Again, tr is the amount of Winsorization which defaults to 0.2 if unspecified. The function

trimse(x,tr=0.2)

estimates the standard error of the trimmed mean and

winse(x,tr=.2)

estimates the standard error of the Winsorized mean. For example, the R command
trimse(x,0.1) estimates the standard error of the 10% trimmed mean for the data stored in the
vector x , and winvar(x,0.1) computes the Winsorized sample variance using 10%
Winsorization. The R command winvar(x) computes s2

w using 20% Winsorization.

3.3.5 Estimating the Standard Error of the Sample Median, M

Trimmed means contain the usual sample median, M , as a special case where the maximum
amount of trimming is used. When using M and the goal is to estimate its standard error,
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alternatives to Eq. (3.9) should be used. Many methods have been proposed, comparisons of
which were made by Price and Bonett (2001). In terms of hypothesis testing, an effective and
fairly simple estimate appears to be one derived by McKean and Schrader (1984). To apply it,
compute

k =
n+1

2
− z0.995

√
n

4
,

where k is rounded to the nearest integer and z0.995 is the 0.995 quantile of a standard normal
distribution. Put the observed values in ascending order yielding X(1) ≤ · · · ≤ X(n). Then the
McKean–Schrader estimate of the squared standard error of M is(

X(n−k+1)− X(k)
2z0.995

)2

.

(Price & Bonett, 2001 recommend a slightly more complicated estimator, but when
computing a confidence interval for the median, currently it seems that their method offers
little or no advantage.)

3.3.6 R Function msmedse

The R function

msmedse(x)

estimates the standard error of M the square root of the last equation.

3.4 The Finite Sample Breakdown Point

Before describing additional measures of location, it helps to introduce a technical device for
judging any estimator that is being considered. This is the finite sample breakdown point of a
statistic, which refers to the smallest proportion of observations that, when altered sufficiently,
can render the statistic meaningless. More precisely, the finite sample breakdown point of an
estimator refers to the smallest proportion of observations that when altered can cause the
value of the statistic to be arbitrarily large or small. The finite sample breakdown point of an
estimator is a measure of its resistance to contamination. For example, if the i th observation
among the observations X1, . . . , Xn goes to infinity, the sample mean X̄ goes to infinity as
well. This means that the finite sample breakdown point of the sample mean is only 1/n. In
contrast, the finite sample breakdown point of the γ -trimmed mean is γ . For example, if
γ = 0.2, about 20% of the observations can be made arbitrarily large without driving the
sample trimmed mean to infinity, but it is possible to alter 21% of the observations so that X̄ t

becomes arbitrarily large. Typically, the limiting value of the finite sample breakdown point is
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equal to the breakdown point, as defined in Chapter 2, of the parameter being estimated. For
example, the breakdown point of the population mean, µ, is 0, which equals 1/n as n goes to
infinity. Similarly, the breakdown point of the trimmed mean is γ .

Two points should be stressed. First, having a high finite-sample breakdown point is certainly
a step in the right direction when trying to deal with unusual values that have an inordinate
influence, but it is no guarantee that an estimator will not be unduly influenced by even a
small number of outliers. (Examples will be given when dealing with robust regression
estimators.) Second, various refinements regarding the definition of a breakdown point have
been proposed (e.g., Genton & Lucas, 2003), but no details are given here.

3.5 Estimating Quantiles

When comparing two or more groups, the most common strategy is to use a single measure of
location, and the median or 0.5 quantile is an obvious choice. It can be highly advantageous to
compare other quantiles as well, but the motivation for doing this is best explained in
Chapter 5. For now, attention is focused on estimating quantiles and the associated standard
error.

There are many ways of estimating quantiles, comparisons of which are reported by Parrish
(1990), Sheather and Marron (1990), as well as Dielman, Lowry, and Pfaffenberger (1994).
Here, two are described and their relative merits are discussed.

For any q , 0< q < 1, let xq be the qth quantile. For a continuous random variable, or a
distribution with no flat spots, xq is defined by the equation P(X ≤ xq)= q. This definition is
satisfactory in the sense that there is only one value that qualifies as the qth quantile, so there
is no ambiguity when referring to xq . However, for discrete random variables or distributions
with flat spots, special methods must be used to avoid having multiple values that qualify as
the qth quantile. There are methods for accomplishing this goal, but they are not directly
relevant to the topics of central interest in this book, at least based on current technology, so
this issue is not discussed.1

Setting m = [qn+0.5], where [qn+0.5] is the greatest integer less than or equal to qn+0.5,
the simplest estimate of xq is

x̂q = X(m),

the mth observation after the data are put in ascending order. For example, if the goal is to
estimate the median, then q = 1/2, and if n = 11, then m = [11/2+0.5]= 6, and the estimate

1 The usual method for defining quantiles is as follows. If F is the distribution of the random variable X , then the
qth quantile is the greatest lower bound, or infimum, for the set of values {x : F(x)≥ q}. Usually this is written
as xq = inf{x : F(x)≥ q}.

www.elsevierdirect.com



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

WILCOX 06-ch03-043-102-9780123869838 2011/12/6 17:53 Page 65 #23

Chapter 3 Estimating Measures of Location and Scale 65

of x.5 is the usual sample median, M. Of course, if n is even, this estimator does not yield the
usual sample median, it is equal to what is sometimes called the upper empirical cumulative
distribution function estimator.

3.5.1 Estimating the Standard Error of the Sample Quantile

Assuming that observations are randomly sampled from a continuous distribution, and that
f (xq) > 0, the influence function of the qth quantile is

I Fq(x)=


q−1
f (xq )

, if x < xq

0, if x = xq
q

f (xq )
, if x > xq ,

(3.10)

and

x̂q = xq +
1

n

∑
I Fq(X i )

plus a remainder term that goes to zero as n gets large. That is, the situation is similar to the
trimmed mean in the sense that the estimate of the qth quantile can be written as xq , the
population parameter being estimated, plus a sum of independent identically distributed
random variables having a mean of zero, plus a term that can be ignored as the sample size
gets large. Consequently, the influence function of the qth quantile can be used to determine
the (asymptotic) standard error of x̂q . The result is

V AR(x̂q)=
q(1−q)

n[ f (xq)]2
. (3.11)

For example, when estimating the median, q = 0.5, and the variance of x̂.5 is

1

4n[ f (x.5)]2
,

so the standard error of x̂0.5 is

1

2
√

n f (x.5)
.

Moreover, for any q between 0 and 1,

2
√

n f (xq)(x̂q − xq)

approaches a standard normal distribution as n goes to infinity.

Using Eq. (3.11) to estimate the standard error of x̂q requires an estimate of f (xq), the
probability density function of X evaluated at xq , and this can be done using one of the
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methods described in Section 3.2. It is suggested that the adaptive kernel estimator be used in
most cases, but all four kernel density estimators can be used with the software provided in
case there are known reasons for preferring one kernel density estimator over another. The
advantages of using a boostrap estimate of the standard error, over the method outlined here,
have not been investigated.

n Example

The data in Table 3.2 are used to illustrate how the standard error of x̂.5 can be
estimated when using Rosenblatt’s shifted histogram estimate of f (x). There are 19
observations, so [0.25n+0.5]= 5, [0.75n+0.5]= 14, and an estimate of the
interquartile range is X(14)− X(5) = 376−151= 225, so

h =
1.2(225)

191/5
= 149.8.

The sample median is M = x̂0.5 = X(10) = 262, so x0.5+h = 411.8, and the number of
observations less than or equal to 411.8 is A = 14. The number of observations less
than x̂0.5−h = 112.2 is B = 3, so

f̂ (x̂0.5)=
14−3

2(19)(149.8)
= 0.00193.

Consequently, an estimate of the standard error of the sample median is

1

2
√

19(0.00193)
= 59.4.

n

3.5.2 R Function qse

The R function

qse(x,q=0.5,op=3)

estimates the standard error of x̂q using Eq. (3.11). As indicated, the default value for q is
0.5. The argument op determines which density estimator is used to estimate f (xq). The
choices are:

• op=1, Rosenblatt’s shifted histograms
• op=2, expected frequence curve
• op=3, adaptive kernel method.
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For example, storing the data in Table 3.2 in the R vector x , the command qse(x,op=1)
returns the value 64.3. In contrast, using op=2 and op=3, the estimates are 58.94 and 47.95,
respectively. So the choice of density estimator can make a practical difference.

3.5.3 The Maritz–Jarrett Estimate of the Standard Error of x̂q

Maritz and Jarrett (1978) derived an estimate of the standard error of sample median, which is
easily extended to the more general case involving x̂q . That is, when using a single order
statistic, its standard error can be estimated using the method outlined here. It is based on the
fact that E(x̂q) and E(x̂2

q) can be related to a beta distribution. The beta probability density
function, when a and b are positive integers, is

f (x)=
(a+b+1)!

a!b!
xa(1− x)b, 0≤ x ≤ 1. (3.12)

Details about the beta distribution are not important here. Interested readers can refer to
Johnson and Kotz (1970, Chapter 24).

As before, let m = [qn+0.5]. Let Y be a random variable having a beta distribution with
a = m−1 and b = n−m, and let

Wi = P

(
i −1

n
≤ Y ≤

i

n

)
.

Many statistical computing packages have functions that evaluate the beta distribution, so
evaluating the Wi values is relatively easy to do. In R, there is the function pbeta(x,a,b) that
computes P(Y ≤ x). Thus, Wi can be computed by setting x = i/n, y = (i −1)/n, in which
case Wi is pbeta(x,m-1,n-m) minus pbeta(y,m-1,n-m).

Let

Ck =

n∑
i=1

Wi X k
(i).

When k = 1, Ck is a linear combination of the order statistics. Linear sums of order statistics
are called L-estimators. Other examples of L-estimators are the trimmed and Winsorized
means already discussed. The point here is that Ck can be shown to estimate E(X k

(m)), the kth
moment of the mth order statistic. Consequently, the standard error of the mth order statistic,
X(m) = x̂q , is estimated with √

C2−C2
1 .

Note that when n is odd, this last equation provides an alternative to the McKean–Schrader
estimate of the standard error of M described in Section 3.3.4. Based on limited studies, it
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seems that when computing confidence intervals or testing hypotheses based on M , the
McKean–Schrader estimator is preferable.

3.5.4 R Function mjse

The R function

mjse(x,q=0.5)

computes the Maritz–Jarrett estimate of the standard error of x̂q = X(m), the mth order
statistic, where m = [qn+0.5]. If unspecified, q defaults to 0.5. The command mjse(x,0.4),
for example, estimates the standard error of x̂.4 = X(m). If the the data in Table 3.2 are stored
in the R variable xv, and if the median is estimated with X(10), the command mjse(xv) reports
that the Maritz–Jarrett estimate of the standard error is 45.8. Using instead the method in
Section 3.5.1, based on the adaptive kernel density estimator, the estimate is 43.95. Note that
both estimates are substantially less than the estimated standard error of the sample mean,
which is 136.

All indications are that the Maritz–Jarrett estimator is more accurate than the method based on
Eq. (3.11) used in conjunction with Rosenblatt’s shifted histogram described in Section 3.2.2.
There are some weak indications that the Maritz–Jarrett estimator remains more accurate
when Rosenblatt’s shifted histogram is replaced by the adaptive kernel estimator, but an
extensive study of this issue has not been conducted. Regardless, the kernel density estimator
plays a useful role when dealing with M-estimators of location or when summarizing data.
(Also, there are no simple methods for computing the beta distribution with some
programming languages.)

3.5.5 The Harrell–Davis Estimator

A concern when estimating the qth quantile with x̂q = X(m), m = [qn+ .5], is that its standard
error can be relatively high. The problem is of particular concern when sampling from a
light-tailed or normal distribution. A natural strategy for addressing this problem is to use all
of the order statistics to estimate xq , as opposed to a single order statistic, and several methods
have been proposed. One such estimator was derived by Harrell and Davis (1982). To
compute it, let Y be a random variable having a beta distribution with parameters
a = (n+1)q and b = (n+1)(1−q). That is, the probability density function of Y is

0(a+b)

0(a)0(b)
ya−1(1− y)b−1.
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(0 is the gamma function, the details of which are not important for present purposes.) Let

Wi = P

(
i −1

n
≤ Y ≤

i

n

)
.

Then the Harrell–Davis estimate of the qth quantile is

θ̂q =

n∑
i=1

Wi X(i). (3.13)

This is another example of an L-estimator. Asymptotic normality of θ̂q was established by
Yoshizawa, Sen, and Davis (1985) for q = 0.5, only.

In some cases, the Harrell–Davis estimator is much more efficient than x̂q and this can
translate into substantial gains in power when testing hypotheses, as illustrated in Chapter 5.
This is not to say, however, that the Harrell–Davis estimator always dominates x̂q in terms of
its standard error. In fact, if the tails of a distribution are heavy enough, the standard error of
x̂q can be substantially smaller than the standard error of θ̂q , as is illustrated later in this
chapter. The main advantage of θ̂q is that it guards against extremely poor efficiency under
normality, but as the sample size gets large, it seems that this becomes less of an issue
(Sheather & Marron, 1990). There are kernel density estimators of quantiles, but they are not
discussed because they seem to behave in a manner very similar to the Harrell–Davis
estimator used here. (For comparisons of various quantile estimators, see Parrish, 1990; as
well as Dielman, Lowry, and Pfaffenberger (1994). For a possible improvement on the
Harrel–Davis estimator, see Sfakianakis & Verginis, 2008.)

3.5.6 R Function hd

The R function

hd(x,q=0.5)

computes θ̂q , the Harrell–Davis estimate of the qth quantile. If any missing values (stored as
NA) are detected, they are automatically removed. The default value for q is 0.5. Storing the
data in Table 3.2 in the R vector x , the command hd(x) returns the value θ̂.5 = 271.7 as the
estimate of the median. Similarly, the estimate of the 0.4 quantile is computed with the
command hd(x,0.4), and for the data in Table 3.2 it returns the value 236.

3.5.7 A Bootstrap Estimate of the Standard Error of θ̂q

The influence function of the Harrell–Davis estimator has not been derived, and there is no
simple equation giving its standard error. However, its standard error can be obtained using
the bootstrap method in Section 3.1. That is, in Section 3.1, simply replace θ̂ with θ̂q .
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3.5.8 R Function hdseb

The R function

hdseb(x,q=0.5,nboot=100)

computes the bootstrap estimate of the standard error of the Harrell–Davis estimator for the
data stored in the vector x . Of course, the R function bootse in Section 3.1.1 could be used as
well; the function hdseb is provided merely for convenience. If, for example, the R command
bootse(x,nboot=100,est=hd) is used, this yields the same estimate of the standard error
returned by hdseb. When using hdseb, the default value for q is 0.5 and the default value for
nboot, which represents B, the number of bootstrap samples, is 100. (But the default estimate
when using bootse is nboot=1000.) For example, hdseb(x) uses B = 100 bootstrap samples
to estimate the standard error when estimating the median. For the data in Table 3.2, this
function returns the value 50.8. This is a bit smaller than the estimated standard error of the
20% trimmed mean, which is 56.1, it is a bit larger than the Maritz–Jarrett estimate of the
standard error of x̂0.5, 45.8, and it is substantially smaller than the estimated standard error of
the sample mean, 136. With B = 25, the estimated standard error of θ̂.5 drops from 50.8 to
49.4. When using the Harrell–Davis estimator to estimate the qth quantile, q 6= 0.5, an
estimate of the standard error is obtained with the command hdseb(x,q), and B = 100 will be
used. The command hdseb(x,0.3,25) uses B = 25 bootstrap samples to estimate the standard
error when estimating the 0.3 quantile.

3.6 An M-Estimator of Location

The trimmed mean is based on a predetermined amount of trimming. That is, you first specify
the amount of trimming that is desired, after which the sample trimmed mean, X̄ t , can be
computed. Another approach is to empirically determine the amount of trimming. For
example, if sampling is from a light-tailed distribution, or even a normal distribution, it might
be desirable to trim very few observations or none at all. If a distribution is skewed to the
right, a natural reaction is to trim more observations from the right versus the left tail of the
empirical distribution. In essence, this is what the M-estimator of location does. There are,
however, some practical difficulties that arise when using M-estimators of location, and in
some cases, trimmed means have important advantages. But there are also important
advantages to using M-estimators, especially in the context of regression.

Before describing how an M-estimator is computed, it helps to elaborate on the line of
reasoning leading to M-estimators (beyond what was covered in Chapter 2) and to comment
on some technical issues. Chapter 2 put µ in the context of minimizing the expected squared
difference between X and some constant c, and this was used to provide some motivation for
the general approach used to define M-measures of location. In particular, setting c = µ
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minimizes E(X − c)2. One practical concern was that if a measure of location is defined as
the value of c minimizing E(X − c)2, extreme X values can have an inordinately large effect
on the resulting value for c. For a skewed distribution, values of X that are extreme and
relatively rare can “pull” the value of µ into the tail of the distribution. A method of
addressing this concern is to replace (X − c)2 with some other function that gives less weight
to extreme values. In terms of estimators of location, a similar problem arises. The sample
mean is the value of c minimizing

∑
(X i − c)2. From basic calculus, minimizing this sum

turns out to be equivalent to choosing c such that
∑
(X i − c)= 0, and the solution is c = X̄ .

The data in Table 3.2 illustrate that the sample mean can be quite far into the tail of a
distribution. The sample mean is 448, yet 15 of the 19 observations have values less than 448.
In fact, the data suggest that 448 is somewhere near the 0.8 quantile. M-estimators of location
address this problem by replacing (X i − c)2 with some function that gives less weight to
extreme X i values (cf. Martin & Zamar, 1993).

From Chapter 2, an M-measure of location is the value µm such that

E

{
9

(
X −µm

τ

)}
= 0, (3.14)

where τ is some measure of scale and 9 is an odd function meaning that 9(−x)=−9(x).
Some choices for 9 are listed and described in Table 2.1. Once a random sample of
observations is available, the M-measure of location is estimated by replacing expected value
with summation in Eq. (3.14). That is, an M-estimator of location is the value µ̂m such that∑

9

(
X i − µ̂m

τ

)
= 0. (3.15)

If 9{(X i − µ̂m)/τ)} = (X i − µ̂m)/τ , µ̂m = X̄ .

There are three immediate problems that must be addressed if M-measures of location are to
have any practical value: Choosing an appropriate 9, choosing an appropriate measure of
scale, τ , and finding a method for estimating µm once a choice for 9 and τ has been made.

First consider the problem of choosing 9. There are many possible choices, so criteria are
needed for deciding whether a particular choice has any practical value. Depending on the
choice for 9, there can be 0, 1, or multiple solutions to Eq. (3.15), and this helps to limit the
range of functions one might use. If there are zero solutions, this approach to estimation has
little value, as is evident. If there are multiple solutions, there is the problem of choosing
which solution to use in practice. A reasonable suggestion is to use the solution closest to the
median, but estimation problems can persist. One of the more important examples of this (see
Freedman & Diaconis, 1982) arises when 9 is taken to be the so-called biweight:

9(x)=

{
x(1− x2)2, if |x |< 1
0, if |x | ≥ 1.

(3.16)
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All indications are that it is best to limit attention to those 9 that yield a single solution to
Eq. (3.14). This can be done by limiting attention to 9 that are monotonic increasing.

Insisting on a single solution to Eq. (3.15) provides a criterion for choosing 9, but obviously
more is needed. To make progress, it helps to replace Eq. (3.15) with an equivalent approach
to defining an estimator of location. First note that from basic calculus, defining a measure of
location with Eq. (3.15) is equivalent to defining µ̂m as the value minimizing∑

ξ

(
X i − µ̂m

τ

)
, (3.17)

where 9 is the derivative of ξ . Now, if sampling is from a normal distribution, the optimal
estimator, in terms of minimum variance, is the sample mean X̄ , and the sample mean can be
viewed as the value minimizing

∑
(X i − µ̂m)

2. That is, using

ξ

(
X i − µ̂m

τ

)
= (X i − µ̂m)

2 (3.18)

yields µ̂m = X̄ , which is optimal under normality. As already indicated, the problem with this
function is that it increases too rapidly as the value of X i moves away from µ̂m , and this can
cause practical problems when sampling from nonnormal distributions for which extreme
values can occur. But because this choice of ξ is optimal under normality, a natural strategy is
to search for some approximation of Eq. (3.18) that gives nearly the same results when
sampling from a normal distribution. In particular, consider functions that are identical to
Eq. (3.18) provided X i is not too extreme.

To simplify matters, temporarily consider a standard normal distribution, and take τ to be σ ,
the standard deviation, which in this case is 1. Then the optimal choice for ξ is (x− µ̂m)

2, as
already explained. Suppose instead that ξ is taken to be

ξ(x− µ̂m)=


−2K (x− µ̂m), if x <−K
(x− µ̂m)

2, if −K ≤ x ≤ K
2K (x− µ̂m), if x > K ,

(3.19)

where K is some constant to be determined. Thus, when sampling from a normal distribution,
the optimal choice for ξ is being used provided an observation is not too extreme, meaning
that its value does not exceed K or is not less than −K . If it is extreme, ξ becomes a linear
function, rather than a quadratic function, this linear function increases less rapidly than
Eq. (3.18), so extreme values are having less of an influence on µ̂m .

The strategy for choosing ξ , outlined earlier, is illustrated in the left panel of Figure 3.5 which
shows a graph of ξ(x− µ̂m)= (x− µ̂m)

2 when µ̂m = 0, and this is the optimal choice for ξ
when sampling from a standard normal distribution. Also shown is the approximation of the
optimal ξ , given by Eq. (3.19), when K = 1.28. When −1.28≤ x ≤ 1.28, the approximation
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Figure 3.5: An approximation of the optimal function.

is exact. When x <−1.28 or x > 1.28, the straight line above the curve is used to
approximate ξ . Because K = 1.28 is the 0.9 quantile of a standard normal distribution, there
is a 0.8 probability that a randomly sampled observation will have a value between −K and
K . Note how Figure 3.5 suggests that Eq. (3.19) with K = 1.28 is a reasonable approximation
of ξ(x− µ̂m)

2
= (x− µ̂m)

2.

The left panel of Figure 3.5 suggests lowering the straight lines to get a better approximation
of ξ . The right panel shows what happens when the lines are lowered by K 2/2. That is,
Eq. (3.19) is replaced by

ξ(x− µ̂m)=


−2K (x− µ̂m)−

K 2

2 , if x <−K
(x− µ̂m)

2, if −K ≤ x ≤ K

2K (x− µ̂m)−
K 2

2 , if x > K .

However, this modification yields the same equation for determining µ̂, as given by Eq. (3.22)
in the next paragraph.

Now, µ̂m is the value minimizing Eq. (3.17). Taking the derivative of this equation, with ξ
given by Eq. (3.19), and setting the result equal to zero, µ̂m is determined by

2
∑

9(X i − µ̂m)= 0, (3.20)

where

9(x)=max[−K ,min(K , x)] (3.21)
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is Huber’s 9. (For a graph of Huber’s 9, see Chapter 2.) Of course, the constant 2 in
Eq. (3.20) is not relevant to solving for µ̂m , and typically (3.20) is simplified to∑

9(X i − µ̂m)= 0. (3.22)

There remains the problem of choosing K . One strategy is to choose K so that the large
sample (asymptotic) standard error of µ̂m is reasonably close to the standard error of the
sample mean when sampling from a normal distribution, yet the standard error of µ̂m is
relatively unaffected when sampling from a heavy-tailed distribution. A common choice is
K = 1.28, the 0.9 quantile of the standard normal distribution, and this will be used unless
stated otherwise. For a more detailed discussion about choosing K , see Huber (1981). In a
given situation, some other choice might be more optimal, but K = 1.28 guards against
relatively large standard errors while sacrificing very little when sampling from a normal
distribution. A more efficacious choice might be made based on knowledge about the
distribution being sampled, but the extent to which this strategy can be recommended is
unclear.

One more technical issue must be addressed. From Chapter 2, a requirement of a measure of
location is that it be scale equivariant. In the present context, this means that if µm is the
M-measure of location associated with the random variable X , aX should have aµm as a
measure of location for any constant a. If µ̂m is estimated with Eq. (3.22), this requirement is
not met, Eq. (3.15) must be used instead. Using Eq. (3.15) means in particular that a measure
of scale, τ , must be chosen. It turns out that the measure of scale need not be efficient in order
for µ̂m to be efficient. The main concern is that it be reasonably resistant. In particular, it
should have a finite-sample breakdown point that is reasonably high. A common choice for a
measure of scale is the value of ω determined by

P(|X − x.5|< ω)=
1

2
,

where x.5 is the population median. That is, ω is the 0.5 quantile of the distribution of
|X − x.5|. If, for example, sampling is from a standard normal distribution, in which case
x.5 = 0, ω is determined by

P(−ω ≤ Z ≤ ω)= 0.5,

where Z has a standard normal distribution. That is, ω is the 0.75 quantile of the standard
normal distribution, which is approximately equal to 0.6745.

The standard estimate of ω is the median absolute deviation statistic given by

MAD=MED{|X1−M |, . . . , |Xn−M |},
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where M is the usual sample median, which is computed as described in Chapter 1. That is,
MAD is the sample median of the n values |X1−M |, . . . , |Xn−M |, and its finite sample
breakdown point is approximately 0.5. (For more details about the finite sample breakdown
point of MAD, see Gather & Hilker, 1997.)

If observations are randomly sampled from a normal distribution, MAD does not estimate σ ,
the standard deviation, it estimates z0.75σ , where z0.75 is the 0.75 quantile of the standard
normal distribution. To put MAD in a more familiar context, it is typically rescaled so that it
estimates σ when sampling from a normal distribution. In particular,

MADN=
MAD

z0.75
≈

MAD

0.6745

is used, and this convention will be followed here. Then for a random sample, Eq. (3.14) says
that an M-estimator of location is the value µ̂m satisfying

∑
9

(
X i − µ̂m

MADN

)
= 0. (3.23)

3.6.1 R Function mad

The R function

mad(x)

computes MADN. That is, R assumes that MAD is to be re-scaled to estimate σ when
sampling from a normal distribution. To use R to compute MAD, simply use the command
qnorm(0.75)*mad(x). The command qnorm(0.75) returns the 0.75 quantile of a standard
normal random variable.

3.6.2 Computing an M-estimator of Location

Solving Eq. (3.23) for µ̂m is usually accomplished with an iterative estimation procedure
known as the Newton–Raphson method. It involves the derivative of 9, which is given by

9 ′(x)=

{
1, if −K ≤ x ≤ K
0, otherwise.

(3.24)

The steps used to determine µ̂m are shown in Table 3.5. Typically, K = 1.28 is used, and this
choice is assumed henceforth unless stated otherwise.
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Table 3.5: How to Compute the M-Estimator of Location µ̂m.

Set k = 0, µ̂k = M , the sample median, and choose a value for K . A common choice is K = 1.28.

Step 1. Let

A =
∑

9

(
X i − µ̂k

MADN

)
.

Here, 9 given by Eq. (3.21) is used.

Step 2. Let

B =
∑

9 ′
(

X i − µ̂k

MADN

)
,

where 9 ′ is the derivative of 9 given by Eq. (3.24). B is just the number of observations X i satisfying
−K ≤ (X i − µ̂k)/MADN≤ K .

Step 3. Set

µ̂k+1 = µ̂k+
MADN× A

B
.

Step 4. If |µ̂k+1− µ̂k |< 0.0001, stop and set µ̂m = µ̂k+1. Otherwise, increment k by one and repeat steps 1–4.

n Example

For the data in Table 3.2, µ̂0 = M = 262 and MADN= 169. Table 3.6 shows the
resulting values of 9{(X i −µ0)/MADN} corresponding to each of the 19 values. The
sum of the values in Table 3.6 is A = 2.05. The number of 9 values between −1.28 and
1.28 is B = 15, so the �rst iteration using the steps in Table 3.5 yields

µ̂1 = 262+
169×2.05

15
= 285.1.

The iterative estimation process consists of using µ̂1 to recompute the 9 values, yielding
a new value for A and B, which in turn yields µ̂2. For the data at hand, it turns out that
there is no difference between µ̂2 and µ̂1, so the iterative process stops and µ̂m = 285.1.

Table 3.6: Values of Huber’s 9 for the Self-Awareness Data.

−1.09 −1.04 −1.04 −0.88 −0.66 −0.31 −0.25 −0.09 −0.05 0.0
0.20 0.22 0.26 0.67 0.98 1.28 1.28 1.28 1.28

www.elsevierdirect.com



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

WILCOX 06-ch03-043-102-9780123869838 2011/12/6 17:53 Page 77 #35

Chapter 3 Estimating Measures of Location and Scale 77

If there had been a difference, the 9 values would be computed again using µ̂2, and this
would continue until |µ̂k+1− µ̂k |< 0.0001.

n

When computing the M-estimator of location as described in Table 3.5, the measure of scale,
MADN, does not change when iterating. There are also M-estimators where a measure of
scale is updated. That is, a measure of scale is simultaneously determined in an iterative
fashion. (See Huber, 1981, p. 136.) Currently, it seems that this alternative estimation
procedure offers no practical advantage, so it is not discussed. In fact, if a measure of scale is
estimated simultaneously with a measure of location, using Huber’s 9, the Bickel–Lehmann
condition for a measure of location is no longer satisfied (Bickel & Lehmann, 1975).

Notice that the M-estimator in Table 3.5 empirically determines whether an observation is
unusually large or small. In the first step where µ̂0 = M , the sample median, X i is considered
unusually small if (X i −M)/MADN<−1.28, where the typical choice of K = 1.28 is being
used, and it is unusually large if (X i −M)/MADN> 1.28. This becomes clearer if the first
step in the iterative process is written in a different form. Let i1 be the number of observations
X i for which (X i −M)/MADN<−1.28, and let i2 be the number of observations such that
(X i −M)/MADN> 1.28. Some algebra shows that the value of µ̂1 in Table 3.5 is

1.28(MADN)(i2− i1)+
∑n−i2

i=i1+1 X(i)

n− i1− i2
, (3.25)

the point being that the sum in this expression is over only those values that are not too large
or too small.

To conclude this section, it is noted that there are more formal methods for motivating
Huber’s 9, but no details are given here. Readers interested in technical issues can refer to
Huber (1981).

3.6.3 R Functions mest

The R function

mest(x,bend=1.28)

performs the calculations in Table 3.5. The argument bend corresponds to K in Huber’s 9
and defaults to 1.28 if unspecified. For example, the command mest(x) computes the
M-estimator of location for the data in the vector x using K = 1.28. The command
mestx(x,1.5) uses K = 1.5. Increasing K increases efficiency when sampling from a normal
distribution, but it increases sensitivity to the tails of the distribution, and efficiency can be
lower as well when sampling from a heavy-tailed distribution. To illustrate sensitivity to the
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tail of a distribution, the mean, median, 20% trimmed mean, M-estimator, with K = 1.28, and
MOM (described in Section 3.10) are equal to 448, 262, 282.7, 258.1, and 245.4, respectively,
for the data in Table 3.2. With K = 1.2, the M-estimator is 281.6, and with K = 1, the
M-estimator is equal to 277.4. Note that MOM has a value less than the median, in contrast to
the other location estimators that were used. This illustrates a curious property about the
population value of MOM. Suppose a distribution is skewed to the right. Then the population
value of MOM can lie between the median and the mode of this distribution, in contrast to
any trimmed mean or M-estimator which typically lie to the right of the median.

3.6.4 Estimating the Standard Error of the M-estimator

This subsection describes the first of two methods for estimating the standard error of the
M-estimator of location. The method here is based on the influence function of µm and the
other uses a bootstrap.

As was the case with the trimmed mean and x̂q , the justification for the non-bootstrap estimate
of the standard error follows from the result that

µ̂m = µm+
1

n

∑
IFm(X i ),

plus a remainder term that goes to zero as n gets large. That is, an M-estimator can be written
as its population value plus a sum of independent random variables having mean zero.

The influence function of the M-measure of location has a somewhat complicated form. It
depends in part on the measure of scale that is used in 9, and here this is ωN = ω/0.6745.
The influence function of ω, which is estimated by MAD, is given in Chapter 2. The influence
function of ωN is just the influence function of ω divided by 0.6745. Let

A(x)= sign(|x− θ |−ω),

where θ is the population median and sign(x) equals −1, 0, or 1 according to whether x is
less than, equal to, or greater than 0. Let

B(x)= sign(x− θ),

and

C(x)= A(x)−
B(x)

f (θ)
{ f (θ +ω)− f (θ −ω)}.

The influence function of ωN is

I FωN (x)=
C(x)

2(0.6745){ f (θ +ω)+ f (θ −ω)}
.
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Estimating I FωN (X i ), the value of the influence function of ωN at X i , requires an estimate of
the probability density function, and this can be done as described in Section 3.2. Here, the
adaptive kernel estimator in Section 3.2.4 will be used unless stated otherwise. Denoting the
estimate of the probability density function f (x) with f̂ (x), and computing

Â(X i )= sign(|X i −M |−MAD),

B̂(X i )= sign(X i −M),

Ĉ(X i )= Â(X i )−
B̂(X i )

f̂ (M)
{ f̂ (M+MAD)− f̂ (M−MAD)},

an estimate of I FωN (X i ) is

Vi =
Ĉ(X i )

2(.6745){ f̂ (M+MAD)+ f̂ (M−MAD)}
. (3.26)

Letting y = (x−µm)/ωN , the influence function of µm is

I Fm(x)=
ωN9(y)− I FωN (x){E(9

′(y)y)}

E[9 ′(y)]
. (3.27)

Having described how to estimate I FωN (X i ), and because MADN estimates ωN , all
that remains when estimating I Fm(X i ) is estimating E[9 ′(Y )Y ] and E[9 ′(Y )], where
Y = (X −µm)/ωN . Set

Yi =
X i − µ̂m

MADN
,

and

Di =

{
1, if |Yi | ≤ K
0, otherwise.

Then E[9 ′(y)] is estimated with

D̄ =
1

n

∑
Di .

Finally, estimate E[9 ′(y)y] with

C̄ =
1

n

∑
Di Yi .

The sum in this last equation is just the sum of the Yi values satisfying |Yi | ≤ K . The value of
the influence function of µm , evaluated at X i , is estimated with

Ui = {(MADN)9(Yi )−Vi C̄}/D̄. (3.28)
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The squared standard error of µ̂m can now be estimated from the data. The estimate is

σ̂ 2
m =

1

n(n−1)

∑
U 2

i . (3.29)

Consequently, the standard error,
√

VAR(µ̂m), is estimated with σ̂m . Note that the sum in
Eq. (3.29) is divided by n(n−1), not n2 as indicated by Eq. (3.5). This is done because if no
observations are flagged as being unusually large or small by 9, µ̂m = X̄ , and Eq. (3.29)
reduces to s2/n, the estimate that is typically used.

The computations just described are straightforward but tedious, so no detailed illustration is
given. Interested readers can use the R function mestse, which is described in the next
subsection.

3.6.5 R Function mestse

The R function

mestse(x,bend=1.28,op=2)

estimates the standard error of the M-estimator using the method just described. The argument
bend corresponds to K in Huber’s 9 and defaults to 1.28 if not specified. The argument op
indicates which density estimator is used to estimate the influence function. By default
(op=2), the adaptive kernel estimator is used, otherwise Rosenblatt’s shifted histogram is
used. If the data in Table 3.2 are stored in the R variable x, the command mestse(x) returns the
value 54.1, and this is reasonably close to 56.1, the estimated standard error of the trimmed
mean. The 20% trimmed mean and M-estimator have similar influence functions, so
reasonably close agreement was expected. A difference between the two estimators is
that the M-estimator identifies the four largest values as being unusually large. That is,
(X i − µ̂m)/MADN exceeds 1.28 for the four largest values, whereas the trimmed mean trims
the three largest values only, so the expectation is that µ̂m will have a smaller standard. Also,
the M-estimator does not identify any of the lower values as being unusual, but the trimmed
mean automatically trims three values.

3.6.6 A Bootstrap Estimate of the Standard Error of µ̂m

The standard error can also be estimated using a bootstrap method. The computational details
are essentially the same as those described in Section 3.1. Begin by drawing a bootstrap
sample, X∗1, . . . , X∗n from the observed values X1, . . . , Xn . That is, randomly sample n
observations with replacement from X1, . . . , Xn . Compute the value of µ̂m using the bootstrap

www.elsevierdirect.com



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

WILCOX 06-ch03-043-102-9780123869838 2011/12/6 17:53 Page 81 #39

Chapter 3 Estimating Measures of Location and Scale 81

sample and call the result µ̂∗m . Repeat this process B times yielding µ̂∗m1, . . . , µ̂
∗

m B . Let

µ̄∗ =
1

B

B∑
b=1

µ̂∗mb,

in which case the bootstrap estimate of the squared standard error is

σ̂ 2
mboot =

1

B−1

B∑
b=1

(µ̂∗mb− µ̄
∗)2. (3.30)

Using B = 25 might suffice, whereas B = 100 appears to be more than adequate in most
situations (Efron, 1987).

A negative feature of the bootstrap is that if n is large, execution time can be high, even on a
mainframe computer, when working with various software packages designed specifically for
doing statistics. The accuracy of the bootstrap method versus the kernel density estimator
has not been examined when n is small. Early attempts at comparing the two estimators, via
simulations, were complicated by the problem that the kernel density estimator that was used
can be undefined because of division by zero. Yet another problem is that the bootstrap
method can fail when n is small because a bootstrap sample can yield MAD=0, in which case
µ̂∗m cannot be computed because of division by zero. A few checks were made with n = 20
and B = 1000 when sampling from a normal or lognormal distribution. Limited results
suggest that the bootstrap is more accurate, but a more detailed study is needed to resolve this
issue.

3.6.7 R Function mestseb

The R function

mestseb(x,nboot=1000,bend=1.28)

computes the bootstrap estimate of the standard error of µ̂m for the data stored in the R
variable x. The argument nboot is B, the number of bootstrap samples to be used, which
defaults to B = 100 if unspecified. The default value for bend, which corresponds to K in
Huber’s 9, is 1.28. For example, mestseb(x,50) will compute a bootstrap estimate of the
standard error using B = 50 bootstrap replications, whereas mestseb(x) uses B = 100. For the
data in Table 3.2, mestseb(x) returns the value 53.7, which is in reasonable agreement with
53.2, the estimated standard error using the influence function. The function mestseb sets the
seed of the random number generator in R so that results will be duplicated if mestseb is
executed a second time with the same data. Otherwise, if mestseb is invoked twice, slightly
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different results would be obtained because the bootstrap method would use a different
sequence of random numbers.

3.7 One-Step M-estimator

Typically, when computing µ̂m with the iterative method in Table 3.5, convergence is
obtained after only a few iterations. It turns out that if only a single iteration is used, the
resulting estimator has good asymptotic properties (Serfling, 1980). In particular, for large
sample sizes, it performs in a manner very similar to the fully iterated M-estimator. An
expression for the first iteration was already described, but it is repeated here for
convenience, assuming K = 1.28. Let i1 be the number of observations X i for which
(X i −M)/MADN<−1.28, and let i2 be the number of observations such that (X i −M)/
MADN> 1.28. The one-step M-estimate of location is

µ̂os =
1.28(MADN)(i2− i1)+

∑n−i2
i=i1+1 X(i)

n− i1− i2
. (3.31)

Although the one-step M-estimator is slightly easier to compute than the fully iterated
M-estimator, its influence function has a much more complicated form when distribution
are skewed (Huber, 1981, p. 140). In terms of making inferences about the corresponding
population parameter, it seems that there are no published results suggesting that the influence
function plays a useful role when testing hypotheses or computing confidence intervals.
Consequently, details about the influence function are not given here. As for estimating the
standard error of the one-step M-estimator, only the bootstrap method will be used. The basic
strategy is the same as it was when working with µ̂m or the Harrell–Davis estimator already
discussed. In particular, draw a bootstrap sample by re-sampling n observations with
replacement from the n observations available and compute µ̂os. Consistent with previous
notation, the result will be labeled µ̂∗os to distinguish it from µ̂os based on the original
observations X1, . . . , Xn . Repeat this process B times yielding µ̂∗os1, . . . , µ̂

∗

osB . Let

µ̄∗os =
1

B

B∑
b=1

µ̂∗osb,

in which case the bootstrap estimate of the squared standard error is

σ̂ 2
osboot =

1

B−1

B∑
b=1

(µ̂∗osb− µ̄
∗

os)
2. (3.32)

Again B = 25 might suffice, whereas B = 100 appears to be more than sufficient.
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3.7.1 R Function onestep

The R function

onestep(x,bend=1.28)

computes the one-step M-estimator given by Eq. (3.31).

3.8 W-estimators

W-estimators of location are closely related to M-estimators and usually they give identical
results. However, when extending M-estimators to regression, the computational method
employed by W-estimators is typically used. This method is just another way of solving
Eq. (3.23). For completeness, W-estimators are briefly introduced here.

Let

w(x)=
9(x)

x
.

In this last equation, 9 could be any of the functions associated with M-estimators, and the
generic measure of scale τ , used to define the general class of M-estimators, could be used. If
for example τ is estimated with MADN, then µ̂m is determined by solving Eq. (3.23), which
becomes

∑(
X i − µ̂m

MADN

)
w

(
X i − µ̂m

MADN

)
= 0. (3.33)

Rearranging terms in Eq. (3.33) yields

µ̂m =

∑
X iw{(X i − µ̂m)/MADN}∑
w{(X i − µ̂m)/MADN}

.

This last equation does not yield an immediate value for µ̂m because µ̂m appears on both
sides of the equation. However, it suggests an iterative method for obtaining µ̂m that has
practical value.

Set k = 0 and let µ̂0 be some initial estimate of µ̂m . For example, µ̂0 could be the sample
mean. Let

Uik =
X i − µ̂k

MADN
.
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Then the iteration formula is

µ̂k+1 =

∑
X iw(Uik)∑
w(Uik)

.

That is, given µ̂k , which is an approximate value for µ̂m that solves (3.33), an improved
approximation is µ̂k+1. One simply keeps iterating until |µ̂k+1− µ̂k | is small, say less than
0.0001.

The iterative method just described is an example of what is called iteratively re-weighted
least squares. To explain, let µ̂ be any estimate of a measure of location and recall that µ̂= X̄
is the value that minimizes

∑
(X i − µ̂)

2. In the context of regression, minimizing this sum is
based on the least squares principle taught in every introductory statistics course. Put another
way, the sample mean is the ordinary least squares (OLS) estimator. Weighted least squares,
based on fixed weights, wi , determines a measure of location by minimizing

∑
wi (X i − µ̂m)

2,
and this is done by solving

∑
wi (X i − µ̂m)= 0, which yields

µ̂=

∑
wi X i∑
wi

.

The problem in the present context is that the weights in Eq. (3.33) are not fixed, they depend
on the value of µ̂m which is not known but updated with each iteration, so this last equation
for µ̂ does not apply. Instead, the weights are recomputed according to the value of µ̂k .

3.8.1 Tau Measure of Location

A variation of the W-estimator just described plays a role in some settings. Called the tau
measure of location, it is computed as follows: Let

Wc(x)=

(
1−

( x

c

)2
)2

I (|x | ≤ c)

where the indicator function I (|x | ≤ c)= 1 if |x | ≤ c; otherwise I (|x | ≤ c)= 0. The weights
are

wi =Wc

(
X i −M

MAD

)
,

and the resulting measure of location is denoted by

µ̂τ =

∑
wi X i∑
wi

.

Following Maronna and Zamar (2002), c = 4.5 is used unless stated otherwise.
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3.8.2 R Function tauloc

The R function

tauloc(x,cval=4.5)

computes the tau measure of location.

3.8.3 Zuo’s Weighted Estimator

Yet another approach to choosing the weights when computing a W-estimator was suggested
by Zuo (2010). (It is related to a class multivariate W-estimators introduced in Section 6.3.7.)
Let

Di = 1/(1+|X i −M |/MAD).

The weights are taken to be

wi = IDi≥c+
e−k(1−D2

i /c
2)2
− e−k

(1− e−k)IDi<c
,

where the indicator function IDi≥c = 1 if Di ≥ c, otherwise IDi≥c = 0. The constant c satisfies
0≤ c ≤ 1 and k > 0. Zuo suggests using k = 3 and c = 0.2. The practical advantages of this
estimator, relative to the many other robust location estimators that have been studied
extensively, are unclear.

3.9 The Hodges–Lehmann Estimator

Chapter 2 mentioned some practical concerns about R-measures of location in general and the
Hodges and Lehmann (1963) estimator in particular. But the Hodges–Lehmann estimator
plays a fundamental role when applying standard rank-based methods (in particular, the
Wilcoxon signed-rank test), so for completeness the details of this estimator are given here.

The Walsh averages of n observations refers to all pairwise averages: (X i + X j )/2, for all
i ≤ j . The Hodges–Lehmann estimator is the median of all Walsh averages, namely,

θ̂HL =medi≤ j
X i + X j

2
.

3.10 Skipped Estimators

Skipped estimators of location refer to the natural strategy of checking the data for outliers,
removing any that are found, and averaging the values that remain. The first skipped estimator
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appears to be one proposed by Tukey (see Andrews et al., 1972) where checks for outliers
were based on a boxplot rule. (Boxplot methods for detecting outliers are described in
Section 3.13.) The one-step M-estimator given by Eq. (3.32) is almost a skipped estimator. If
we ignore the term 1.28(MADN)(i2− i1) in the numerator of Eq. (3.32), an M-estimator
removes the value X i if

|X i −M |

MADN
> 1.28

and averages the values that remain. In essence, X i is declared an outlier if it satisfies this last
equation. But based on how the M-estimator is defined, the term 1.28(MADN)(i2− i1) arises.

When testing hypotheses, a slight variation of the skipped estimator, just described, has
practical value. This modified one-step M-estimator (MOM) simply averages values not
declared outliers, but to get reasonably good efficiency under normality, the outlier detection
rule used by the one-step M-estimator is modified. Now X i is declared an outlier if

|X i −M |

MADN
> 2.24

(which is a special case of a multivariate outlier detection method derived by Rousseeuw &
van Zomeren, 1990). This last equation is known as the Hampel identifier, only Hampel used
3.5 rather than 2.24. When using 3.5, this will be called the Hampel version of MOM
(HMOM.)

3.10.1 R Functions mom and bmean

The R function

mom(x,bend=2.24)

computes the MOM estimate of location, where the argument bend is the constant used in the
Hampel identifier. The function

bmean(x,mbox=T)

computes a skipped estimator where outliers are identified by a boxplot rule covered in
Section 3.13. The default value for mbox is T, indicating that Carling’s method (described in
Section 3.13.3) is used, and mbox=F uses the boxplot rule based on the ideal fourths.

3.11 Some Comparisons of the Location Estimators

Illustrations given in the previous sections of this chapter, based on data from actual studies,
demonstrate that the estimated standard errors associated with robust estimates of location can
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be substantially smaller than the standard error of the sample mean. It has been hinted that
these robust estimators generally compete well with the sample mean when sampling from a
normal distribution, but no details have been given. There is also the concern of how
estimators compare under various nonnormal distributions, including skewed distributions as
a special case. Consequently, this section briefly compares the standard error of the robust
estimators to the standard error of the sample mean for a few distributions.

One of the nonnormal distributions considered here is the lognormal shown in Figure 3.3. The
random variable X is said to have a lognormal distribution if the distribution of Y = ln(X) is
normal. It is a skewed distribution for which standard methods for computing confidence
intervals for the mean can be unsatisfactory, even with n = 160. (Details are given in Chapters
4 and 5.) Consequently, there is a general interest in how methods based on alternative
measures of location perform when sampling from this particular distribution. The immediate
concern is whether robust estimators have relatively small standard errors for this special case.

Table 3.7 shows the variance of several estimators for a few distributions when n = 10.
(Results for MOM, HMOM, and the Harrell–Davis estimator are based on simulations with
10,000 replications.) The distribution one-wild refers to sampling from a normal distribution
and multiplying one of the observations by 10. Observations are generated from the slash
distribution by generating an observation from the standard normal distribution and dividing
by an independent uniform random variable on the interval (0, 1). Both the one-wild and slash
distributions are symmetric distributions with heavier than normal tails. The slash distribution
has an extremely heavy tail. In fact, it has infinite variance. The motivation for considering
these distributions, particularly the slash distribution, is to see how an estimator performs
under extreme conditions. It is unclear how heavy the tails of a distribution might be in
practice, so it is of interest to see how an estimator performs for a distribution that represents
an extreme departure from normality that is surely unrealistic. If an estimator performs
reasonably well under normality and continues to perform well when sampling from a slash

Table 3.7: Variances of Selected Estimators, n = 10.

Distribution

Estimator Normal Lognormal One-Wild Slash

Mean 0.1000 0.4658 1.0900 ∞

X̄ t (γ = 0.1) 0.1053 0.2238 0.1432 ∞

X̄ t (γ = 0.2) 0.1133 0.1775 0.1433 0.9649
Median 0.1383 0.1727 0.1679 0.7048
µ̂m (Huber) 0.1085 0.1976 0.1463 0.9544
θ̂.5 0.1176 0.1729 0.1482 1.4731
MOM 0.1243 0.2047 0.1409 0.7331
HMOM 0.1092 0.2405 0.1357 1.0272
µ̂τ 0.1342 0.3268 2.1610
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distribution, this suggests that it has practical value for any distribution that might arise in
practice by providing protection against complete disaster, disaster meaning standard errors
that are extremely large compared with some other estimator that might have been used.

The small-sample efficiency of the tau measure of location, which is not included in
Table 3.7, does not compete well with a 20% trimmed, MOM, and the one-step M-estimator
(Özdemir & Wilcox, 2010).

The ideal estimator would have a standard error as small or smaller than any other estimator.
None of the estimators in Table 3.7 satisfies this criterion. When sampling from a normal
distribution, the sample mean has the lowest standard error, but the improvement over the
10% trimmed mean (γ = 0.1), the 20% trimmed mean, the Harrell–Davis estimator, and the
M-estimator using Huber’s 9, µ̂m , is relatively small. Using the sample median is relatively
unsatisfactory. For heavy-tailed distributions, the sample mean performs poorly and its
performance can be made as bad as desired by making the tails of the distribution sufficiently
heavy. The two estimators that do reasonably well for all of the distributions considered are
the 20% trimmed mean and µ̂m . Note that even the standard error of the Harrell–Davis
estimator, θ̂.5, becomes relatively large when the tails of a distribution are sufficiently heavy.
Again, there is the possibility that in practice, θ̂.5 competes well with the 20% trimmed mean
and the M-estimator, but an obvious concern is that exceptions might occur. In situations
where interest is specifically directed at quantiles, and in particular the population median, the
choice between the sample median and the Harrell–Davis estimator is unclear. The
Harrell–Davis estimator has a relatively small standard error when sampling from a normal
distribution, but as the tails of a distribution get heavier, eventually the sample median
performs substantially better. Although MOM has a lower standard error than the median
under normality, all other estimators have a lower standard error than MOM for this special
case. Switching to the Hampel identifier when using MOM (HMOM), efficiency now
competes well with a 20% trimmed mean and the M-estimator based on Huber’s 9, but for
the lognormal distribution, HMOM performs rather poorly, and it is substantially worse than
MOM when sampling from the slash distribution. The tau measure of location does not
perform all that well, particularly when dealing with the slash distribution. In exploratory
studies one might consider two or more estimators, but in the context of testing hypotheses,
particularly in a confirmatory study, some might object to using multiple estimators of
location because this will inflate the probability of at least one type I error. There are methods
for adjusting the individual tests so that the probability of at least one type I error does not
exceed a specified value, but such an adjustment might lower power by a substantial amount.

If a skipped estimator is used where outliers are detected via a boxplot rule (described in
Section 3.13), good efficiency can be obtained under normality, but situations arise where
other estimators offer a distinct advantage. For the situations in Table 3.7, under normality,
the variance of this skipped estimator is 0.109 when using Carling’s modification of the
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boxplot method to detect outliers, and switching to the boxplot rule based on the ideal fourths,
nearly the same result is obtained. For the lognormal distribution, however, the variances of
the skipped estimators are 0.27 and 0.28, approximately, making them the least accurate
estimators, on average, excluding the sample mean. They perform the best for the one-wild
distribution, but for the slash, they are the least satisfactory excluding the 10% mean and
mean.

It cannot be stressed too strongly that no single measure of location always has the lowest
standard error. For the data in Table 3.2, the lowest estimated standard error was 45.8,
obtained for x̂.5 using the Maritz–Jarrett method. (A bootstrap estimate of the standard error is
42.) The appeal of the 20% trimmed mean and M-estimator of location is that they guard
against relatively large standard errors. Moreover, the potential reduction in the standard error
using other estimators is relatively small compared with the possible reduction using the 20%
trimmed mean or M-estimator instead.

Based purely on achieving a high breakdown point, the median and an M-estimator (based on
Huber’s 9) are preferable to a 20% trimmed or the Hodges–Lehmann estimator. (For an
analysis when sample sizes are very small, see Rousseeuw & Verboven, 2002.) But in terms
of achieving accurate probability coverage, methods based on a 20% trimmed mean often are
more satisfactory.

3.12 More Measures of Scale

Although measures of location are often the focus of attention versus measures of scale,
measures of scale are of interest in their own right. Some measures of scale have already been
discussed, namely ω estimated by MAD and the Winsorized variance σ 2

w. Many additional
measures of scale appear in the literature. Two additional measures are described here, which
play a role in subsequent chapters.

To begin, it helps to be precise about what is meant by a scale estimator. It is any nonnegative
function, ζ̂ , such that for any constants a and b,

ζ̂ (a+bX1, . . . ,a+bXn)= |b|ζ̂ (X1, . . . , Xn). (3.34)

From basic principles, the sample standard deviation, s, satisfies this definition. In words, a
scale estimator ignores changes in location and it responds to uniform changes in scale in a
manner consistent with what is expected based on standard results related to s. In the
terminology of Chapter 2, ζ̂ should be location-invariant and scale-equivariant.

A general class of measures of scale, that has been found to have practical value, stems from
the influence function of M-estimators of location when distributions are symmetric. For this
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special case, the influence function of µm takes on a rather simple form:

I Fm(X)=
E(92(Y ))

{E(9 ′(Y ))}2
, (3.35)

Y =
X −µm

K τ
,

where τ and 9 are as in Section 3.6. The (asymptotic) variance of
√

nµ̂m is

ζ 2
=

K 2τ 2 E(92(Y ))

{E(9 ′(Y ))}2
(3.36)

and this defines a broad class of measures of scale. (In case it is not obvious, the reason for
considering the variance of

√
nµ̂m , rather than the variance of µ̂m , is that the latter goes to 0

as n gets large, and the goal to define a measure of scale for the distribution under study, not
the sampling distribution of the M-estimator that is being used.) Included as a special case
among the possible choices for ζ is the usual population standard deviation, σ . To see this,
take 9(x)= x , K = 1, and τ = σ , in which case ζ = σ .

3.12.1 The Biweight Midvariance

There is the issue of choosing 9 when defining a measure of scale with Eq. 3.36. For reasons
to be described, there is practical interest in choosing 9 to be the biweight given by
Eq. (3.16). The derivative of the biweight is 9 ′(x)= (1− x2)(1−5x2) for |x |< 1, otherwise
it is equal to 0.

Let K be any positive constant. For reasons given later, K = 9 is a common choice. Also, let
τ be ω, which is estimated by MAD. To estimate ζ , set

Yi =
X i −M

K ×MAD
,

ai =

{
1, if |Yi |< 1
0, if |Yi | ≥ 1,

in which case the estimate of ζ is

ζ̂bi =

√
n
√∑

ai (X i −M)2(1−Y 2
i )

4

|
∑

ai (1−Y 2
i )(1−5Y 2

i )|
. (3.37)

The quantity ζ̂ 2
bi is called a biweight midvariance. It appears to have a finite sample

breakdown point of approximately 0.5 (Goldberg & Iglewicz, 1992), but a formal proof has
not been found.
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Explaining the motivation for ζ̂bi requires some comments on methods for judging estimators
of scale. A tempting approach is to compare the standard errors of any two estimators, but this
can be unsatisfactory. The reason is that if ζ̂ is a measure of scale, so is bζ̂ , a result that
follows from the definition of a measure of scale given by Eq. (3.34). But the variance of ζ̂ is
larger than the variance of bζ̂ if 0< b < 1, and in fact the variance of bζ̂ can be made
arbitrarily small by choosing b appropriately. What is needed is a measure for comparing
scale estimators that is not affected by b. A common method for dealing with this problem
(e.g., Lax, 1985; Iglewicz, 1983) is to compare two scale estimators with VAR(ln(ζ̂ )), the
variance of the natural logarithm of the estimators being considered. Note that
ln(bζ̂ )= ln(b)+ ln(ζ̂ ) for any b > 0 and scale estimator ζ̂ , so VAR(ln(bζ̂ ))= VAR(ln(ζ̂ )).
That is, the variance of the logarithm of ζ̂ is not affected by the choice of b.

Another method of comparing scale estimators is in terms of the variance of ζ̂ /ζ . Note that if
ζ̂ and ζ are replaced by bζ̂ and bζ for any b > 0, the ratio ζ̂ /ζ remains unchanged, so the
problem mentioned in the previous paragraph has been addressed.

Lax (1985) compared over 150 methods of estimating measures of scale, several of which
belong to the class of measures defined by Eq. (3.36). Comparisons were made in terms of
what is called the triefficiency of an estimator. To explain, let Vmin be the smallest known
value of VAR(ln(ζ̂ )) among all possible choices for an estimator of scale, ζ̂ . Then

E = 100×
Vmin

VAR(ln(ζ̂ ))

is a measure of efficiency. For some measures of scale, Vmin can be determined exactly for a
given distribution, while in other situations Vmin is replaced by the smallest variance obtained,
via simulations, among the many estimators of scale that are being considered. For example,
when sampling from a normal distribution with n = 20, the smallest attainable value of
VAR(ln(ζ̂ )) is 0.026 which is attained by s, the sample standard deviation. Thus, for normal
distributions, s has efficiency E = 100, the best possible value. The main point is that the
efficiency of many estimators has been determined for a variety of distributions. Moreover,
three distributions have played a major role: normal, one-wild, and slash, already described.
The smallest efficiency of an estimator, among these three distributions, is called its
triefficiency. For example, if n = 20, s has efficiency 100, 0, and 0 for these three
distributions, the smallest of these three efficiencies is 0, so its triefficiency is 0. Using K = 9
in Eq. (3.37) when defining ζ̂bi , the efficiencies corresponding to these three distributions are
86.7, 85.8, and 86.1, so the triefficiency is 85.8, and this is the highest triefficiency among the
measures of scale considered by Lax (cf. Croux, 1994).

Because the choice K = 9 in the scale estimator ζ̂ , given by Eq. (3.37), yields the highest
triefficiency of any of the estimators studied by Lax, the term biweight midvariance will
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Table 3.8: How to Compute the Biweight Midvariance, ζ̂ 2
bimid.

Set

Yi =
X i −M

9×M AD
,

ai =

{
1, if |Yi |< 1
0, if |Yi | ≥ 1,

in which case

ζ̂bimid =

√
n
√∑

ai (X i −M)2(1−Y 2
i )

4

|
∑

ai (1−Y 2
i )(1−5Y 2

i )|
, (3.38)

and the biweight midvariance is ζ̂ 2
bimid.

assume K = 9 unless stated otherwise. Table 3.8 summarizes how to compute this measure of
scale, which will be labeled ζ̂ 2

bimid.

3.12.2 R Function bivar

The R function

bivar(x)

computes the biweight midvariance as described in Table 3.8 using the data stored in the R
variable x. For the data in Table 3.2, the function bivar returns the value 25,512 as the
estimated biweight midvariance.

3.12.3 The Percentage Bend Midvariance and tau Measure of Variation

Two other measures of scale should be mentioned. The first, replaces 9, the biweight in
Eq. (3.36), with Huber’s 9. Following Shoemaker and Hettmansperger (1982), the particular
form of Huber’s 9 used here is

9(x)=max[−1,min(1, x)]. (3.39)

Also, rather than use τ = ω when defining Y in Eq. (3.36), a different measure is used instead.
Again let θ be the population median. For any β, 0< β < 0.5 define ωβ to be the measure of
scale determined by

P(|X − θ |< ωβ)= 1−β.

Thus, ωβ is the 1−β quantile of the distribution of |X − θ |. If X has a standard normal
distribution, then ωβ is the 1−β/2 quantile. For example, if β = 0.1, ω.1 = 1.645, the 0.95
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quantile. Note that when β = 0.5, ωβ is just the measure of scale ω already discussed and
estimated by MAD.

The parameter ω could be rescaled so that it estimates the population standard deviation, σ ,
when sampling from a normal distribution. That is,

ωN ,β =
ωβ

z1− β2

could be used where z1−β/2 is the 1−β/2 quantile of the standard normal distribution. When
β = 0.5, ωN ,β is just ωN which is estimated by MADN. Shoemaker and Hettmansperger
(1982) do not re-scale ω, and this convention is followed here. Shoemaker and
Hettmansperger choose β = 0.1, but here β = 0.2 is used unless stated otherwise. The
resulting measure of scale given by Eq. (3.36), with K = 1, is called the percentage bend
midvariance and labeled ζ 2

pb. When β = 0.1 and sampling is from a standard normal

distribution, ζ 2
pb = 1.03, while for β = 0.2, ζ 2

pb = 1.05. A method of estimating ζ 2
pb is shown

in Table 3.9

Table 3.9: How to Compute the Percentage Bend Midvariance, ζ̂ 2
pb.

Set m = [(1−β)n+0.5], the value of (1−β)n+0.5 rounded down to the nearest integer. For good ef�ciency,
under normality, versus the usual sample variance, β = 0.1 is a good choice, in which case m= [0.9n+0.5]. For
example, if n= 56, m = [0.9×56+0.5]= [50.9]= 50. Let Wi = |X i−M |, i = 1, . . . ,n, and let W(1) ≤ . . .≤W(n)

be the Wi values written in ascending order. But a concern with β = 0.1 is that the breakdown point is a bit
low, in which case something like β = 0.2 might be preferable. The estimate of ωβ is

ω̂β =W(m),

the mth largest of the Wi values. Put another way, W(m) is the estimate of the 1−β quantile of the distribution
of W .

Next, set

Yi =
X i −M

ω̂β

ai =

{
1, if |Yi |< 1
0, if |Yi | ≥ 1,

in which case the estimated percentage bend midvariance is

ζ̂ 2
pb =

nω̂2
β

∑
{9(Yi )}

2

(
∑

ai )2
, (3.40)

where

9(x)=max[−1,min(1, x)].
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There are two reasons for including the percentage bend midvariance in this book. First,
Bickel and Lehmann (1976) argue that if both X and Y have symmetric distributions about
zero, and if |X | is stochastically larger than |Y |, then it should be the case that a measure of
scale should be larger for X than it is for Y . That is, if ζx is some proposed measure of scale
for the random variable X , it should be the case that ζx > ζy . Bickel and Lehmann define a
measure of scale that satisfies this property to be a measure of dispersion. The biweight
midvariance is not a measure of dispersion (Shoemaker & Hettmansperger, 1982). In contrast,
if Huber’s 9 is used in Eq. (3.36) with K = 1, the resulting measure of scale, the percentage
bend midvariance, is a measure of dispersion. However, if Huber’s 9 is used with K > 1, the
resulting measure of scale is not a measure of dispersion (Shoemaker & Hettmansperger,
1982). (The Winsorized variance is also a measure of dispersion.) The second reason is that a
slight modification of the percentage bend midvariance yields a useful measure of association
(a robust analog of Pearson’s correlation coefficient) when testing for independence.

The inclusion of the biweight and percentage bend midvariance is motivated by results in
Lax (1985). Note that Lax refers to these measures of variation as A-estimators, but here,
following Shoemaker and Hettmansperger (1982), the terms biweight and percentage bend
midvariance are used. More recently, Randal (2008) compared these measures of scale to
more recently proposed estimators and again concluded that the biweight and percentage bend
midvariances perform relatively well. Two measures of scale not included in the study by
Randal are Rocke’s (1996) TBS estimator, which is introduced in Section 6.3.3 in the more
general setting of multivariate data, and the tau measure of scale described in Yohai and
Zamar (1988). Checks on the efficiency of these estimators indicate that under normality, the
percentage bend midvariance and the tau measure of variation perform relatively well. For the
one-wild distribution and the contaminated normal distribution in Section 1.1, the biweight
and percentage bend midvariances are best. But for a sufficiently heavy-tailed distribution
(the slash distribution), the tau measure of scale offers an advantage.

Finally, the other measure of variation that should be mentioned is the tau measure of
variation given by

ζ 2
τ =

MAD2

n

∑
ρc

(
X i −µtau

M AD

)
,

where ρc =min(x2, c2) and µtau is the tau measure of location introduced in Section 3.8.1.
Following Maronna and Zamar, c = 3 is used unless stated otherwise.

3.12.4 R Functions pbvar, tauvar

The R function

pbvar(x,beta=0.2)
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computes the percentage bend midvariance for the data stored in the vector x . The default
value for the argument beta, which is β in Table 3.9, is 0.2. An argument for using beta=0.1 is
that the resulting estimator is about 85% as efficient as the sample variance under normality.
With beta=0.2, it is only about 67% as efficient, but a concern about beta=0.1 is that the
breakdown point is only 0.1. For the data in Table 3.2, the function returns the value 54,422
with beta=0.1, while with beta=0.2 the estimate is 30,681, beta=0.5 the estimate is 35,568.
In contrast, the biweight midvariance is estimated to be 25,512. In terms of resistance,
beta=0.5 is preferable to beta=0.1 or .2, but for other goals discussed in subsequent chapters,
beta=0.1 or 0.2 might be preferred for general use. The R function

tauvar(x,cval=3)

computes the tau measure of variation.

3.12.5 The Interquartile Range

The population interquartile range is the difference between the 0.75 and 0.25 quantiles,
x.75− x.25; it plays a role when dealing with a variety problems to be described. As previously
noted, many quantile estimators have been proposed, so there are many ways the interquartile
range might be estimated. A simple quantile estimator, x̂q , was described in Section 3.3, this
leads to a simple estimate of the interquartile range, but for various purposes alternative
estimates of the interquartile range have been found to be useful. In particular, when checking
data for outliers, results in Frigge, Hoaglin, and Iglewicz (1989) suggest using what are called
the ideal fourths (cf. Carling, 2000; Cleveland, 1985; Hoaglin & Iglewicz, 1987; Hyndman &
Fan, 1996).

The computations are as follows. Let j = [(n/4)+ (5/12)]. That is, j is (n/4)+ (5/12)
rounded down to the nearest integer. Let

h =
n

4
+

5

12
− j.

Then the estimate of the lower quartile (the 0.25 quantile) is given by

q1 = (1−h)X( j)+h X( j+1) (3.41)

Letting k = n− j +1, the estimate of the upper quartile, is

q2 = (1−h)X(k)+h X(k−1). (3.42)

So the estimate of the interquartile range is

IQR= q2−q1.
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3.12.6 R Function idealf

The R function

idealf(x),

written for this book, computes the ideal fourths for the data stored in the R variable x.

3.13 Some Outlier Detection Methods

This section summarizes some outlier detection methods, two of which are variations of
so-called boxplot techniques. One of these methods has, in essence, already been described,
but it is convenient to include it here along with a description of relevant software.

3.13.1 Rules Based on Means and Variances

We begin with a method for detecting outliers that is known to be unsatisfactory, but it is a
natural strategy to consider, so its limitations should be made explicit. The rule is to declare
X i an outlier if

|X i − X̄ |

s
> K ,

where K is some constant. Basic properties of normal distributions suggest appropriate
choices for K . For illustrative purposes, consider K = 2.24. A concern about this rule, and
indeed any rule based on the sample mean and standard deviation, is that if suffers from
masking, meaning that the very presence of outliers masks their detection. Outliers affect the
sample means, but in a certain sense they have a bigger impact on the standard deviation.

n Example

Consider the values 2, 2, 3, 3, 3, 4, 4, 4, 100,000, 100,000. Obviously, the value
100,000 is an outlier and surely any reasonable outlier detection method would �ag the
value 100,000 as being unusual. But the method just described fails to do so.

n

3.13.2 A Method Based on the Interquartile Range

The standard boxplot approach to detecting outliers is based on the interquartile range. As
previously noted, numerous quantile estimators have been proposed, and when checking for
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outliers, a good method for estimating the quartiles appears to be the ideal fourths, q1 and q2,
described in Section 3.12. Then a commonly used rule is to declare X i an outlier if

X i < q1− k(q2−q1)or X i > q2+ k(q2−q1), (3.43)

where k = 1.5 is used unless stated otherwise.

3.13.3 Carling’s Modi�cation

One useful way of characterizing an outlier detection method is with its outside rate per
observation, pn , which refers to the expected proportion of observations declared outliers.
So if m represents the number of points declared outliers based on a sample of size n,
pn = E(m/n). A common goal is to have pn reasonably small, say approximately equal to
0.05, when sampling from a normal distribution. A criticism of the boxplot rule given by
Eq. (3.43) is that pn is somewhat unstable as a function of n; pn tends to be higher when
sample sizes are small. To address this, Carling (2000) suggests declaring X i an outlier if

X i < M− k(q2−q1)or X i > M+ k(q2−q1), (3.44)

where M is the usual sample median, q1 and q2 are given by Eqs (3.41) and (3.42),
respectively, and

k =
17.63n−23.64

7.74n−3.71
. (3.45)

3.13.4 A MAD-Median Rule

Henceforth, the MAD-median rule for detecting outliers will refer to declaring X i an outlier if

|X i −M |

MAD/0.6745
> K ,

where K is taken to be
√
χ2

0.975,1, the square root of the 0.975 quantile of a chi-squared

distribution with one degree of freedom (cf. Davies & Gather, 1993).2 (So K is approximately
2.24.)

Detecting outliers based on MAD and the median has the appeal of being able to handle a
large number of outliers because both MAD and the median have the highest possible
breakdown, 0.5. We will see, however, that for certain purposes, the choice between a boxplot
rule and a MAD-Median rule is not always straightforward.

2 This rule is a special case of a multivariate outlier detection method proposed by Rousseeuw and van Zomeren
(1990).
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3.13.5 R Functions outbox, out, and boxplot

The R function

outbox(x,mbox=F,gval=NA)

checks for outliers using one of two boxplot methods just described. As usual, the argument x
is any vector containing data. Using mbox=F (for false), results in using the method in
Section 3.13.2. Setting mbox=T results in using Carling’s modification in Section 3.13.3. The
argument gval can be used to alter the constant k. If unspecified, k = 1.5 when using the
method in Section 3.13.2, and k is given by Eq. (3.45) when using the method in
Section 3.13.3.

The R function

out(x)

checks for outliers using the MAD-Median rule in Section 3.13.4. (This function contains
additional arguments that are related to detecting outliers among multivariate data, but the
details are postponed for now.)

The built-in R function

boxplot(x)

creates the usual graphical version of the boxplot, examples of which are shown in
Figures 3.6 and 3.7. (But this function does not use the ideal fourths.) Several variations of
this method for plotting data have been proposed that were recently summarized by
Marmolejo-Ramos and Tian (2010).

5

10

15

20

Lower quartile

Upper quartile

Whisker

Median

Whisker

Figure 3.6: An example of a boxplot when there are no outliers.
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Figure 3.7: An example of a boxplot when there are outliers.

3.13.6 Skewness and the Boxplot Rule

It should be noted that the boxplot rule for detecting outliers has been criticized on the
grounds that it might declare too many points outliers when there is skewness. More precisely,
if a distribution is skewed to the right, among the larger values that are observed, too many
might be declared outliers. Hubert and Vandervieren (2008) review the literature and suggest
a modification of the boxplot rule that is based in part on a robust measure of skewness, called
the medcouple, which was introduced by Brys, Hubert, and Struyf (2004) and is given by

MC =med(h(X i , X j )), X i ≤ M ≤ X j ,

where for all X i 6= X j ,

h(X i , X j )=
(X j −M)− (M− X i )

X j − X i
.

If MC > 0, declare X i values outside the interval

[q1−1.5e−4 MC(q2−q1), q2+1.5e3 MC(q2−q1)

as potential outliers. If MC < 0, declare X i values outside the interval

[q1−1.5e−3 MC(q2−q1), q2+1.5e4 MC(q2−q1)

as potential outliers.

There is, however, a feature of this adjusted boxplot rule that should mentioned. Imagine a
distribution that is skewed to the right. Among the larger values, the adjusted boxplot rule
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might declare fewer points outliers, as intended, but among the lower values it might declare
points outliers that are not flagged as outliers by the boxplot rule.

3.13.7 R Function adjboxout

The R function

adjboxout(x),

applies the adjusted boxplot rule just described. The function returns the values flagged as
outliers. It also returns values stored in $cl and $cu, which are the lower and upper ends of the
interval used to determine whether a value is an outlier.

n Example

Consider the values

12, 33, 47, 55, 85, 87, 87, 96, 97, 99, 113, 118, 128, 138, 165, 202, 213, 218, 275,
653.

Both the boxplot rule and the adjusted boxplot rule declare the value 653 to be an
outlier, which certainly seems reasonable based on a casual inspection of the data. But
unlike the boxplot rule, the adjusted boxplot rule declares the values 12, 33, and 47
outliers as well.

n

3.14 Exercises

1. Included among the R functions written for this book is the function ghdist(n,g=0,h=0)
which generates n observations from a so-called g-and-h distribution (which is described
in more detail in Chapter 4). The command ghdist(30,0,.5) will generate 30 observations
from a symmetric, heavy-tailed distribution. Generate 30 observations in this manner,
create the density estimates using the functions skerd, kdplot, rdplot, and akerd. Repeat
this 20 times and comment on the pattern of results.

2. In the study by Dana (1990) on self-awareness, described in this chapter (in connection
with Table 3.2), a second group of subjects yielded the observations
59 106 174 207 219 237 313 365 458 497 515 529 557 615 625 645 973 1065 3215.
Compute the sample median, the Harrell–Davis estimate of the median, the M-estimate
of location (based on Huber’s 9), and the 10% and 20% trimmed means. Estimate the
standard errors for each location estimator and compare the results.
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3. For the data in Exercise 1, compute MADN, the biweight midvariance, and the
percentage bend midvariance. Compare the results to those obtained for the data in
Table 3.2. What do the results suggest about which group is more dispersed?

4. For the data in Exercise 1, estimate the deciles using the Harrell–Davis estimator. Do the
same for the data in Table 3.2. Plot the difference between the deciles as a function of
the estimated deciles for the data in Exercise 1. What do the results suggest? Estimate
the standard errors associated with each decile estimator.

5. Comment on the strategy of applying the boxplot to the data in Exercise 2, removing any
outliers, computing the sample mean for the data that remain, and then estimating the
standard error of this sample mean based on the sample variance of the data that remain.

6. Cushny and Peebles (1904) conducted a study on the effects of optical isomers of
hyoscyamine hydrobromide in producing sleep. For one of the drugs, the additional
hours of sleep for 10 patients were
0.7, −1.6, −0.2, −1.2, −0.1, 3.4, 3.7, .8, 0, and 2.
Compute the Harrell–Davis estimate of the median, the mean, the 10% and 20% trimmed
means, and the M-estimate of location. Compute the corresponding standard errors.

7. Use results on Winsorized expected values in Chapter 2 to show that if the error term in
Eq. (3.4) is ignored, X̄ t is a Winsorized unbiased estimate of µt .

8. Use results on Winsorized expected values in Chapter 2 to show that X̄w is a Winsorized
unbiased estimate of µw.

9. Set X i = i , i = 1, . . . ,20, and compute the 20% trimmed mean and the M-estimate of
location based on Huber’s 9. Next, set X20 = 200 and compute both estimates of
location. Replace X19 with 200 and again estimate the measures of location. Keep doing
this until the upper half of the data is equal to 200. Comment on the resistance of the
M-estimator versus 20% trimming.

10. Repeat the previous exercise, only this time compute the biweight midvariance, the 20%
Winsorized variance, and the percentage bend midvariance. Comment on the resistance
of these three measures of scale.

11. Set X i = i , i = 1, . . . ,20 and compute the Harrell–Davis estimate of the median. Repeat
this, but with X20 equal to 1000 and then 100,000. When X20 = 100,000, would you
expect x̂0.5 or the Harrell–Davis estimator to have the smaller standard error? Verify
your answer.

12. Argue that if 9 is taken to be the biweight, it approximates the optimal choice for 9
under normality when observations are not too extreme.

13. Verify that Eq. (3.29) reduces to s2/n if no observations are flagged as being unusually
large or small by 9.
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CHAPTER 4

Con�dence Intervals in the
One-Sample Case

A fundamental problem is testing hypotheses and computing confidence intervals for the
measures of location described in Chapters 2 and 3. As will be seen, a method that provides
accurate probability coverage for one measure of location can perform poorly with another.
That is, the recommended method for computing a confidence interval depends in part on
which the measure of location is of interest. An appeal of the methods in this chapter is that
when computing confidence intervals for robust measures of location, it is possible to get
reasonably accurate probability coverage in situations where no known method for the mean
gives good results.

4.1 Problems when Working with Means

It helps to first describe problems associated with Student’s t. When testing hypotheses or
computing confidence intervals for µ, it is assumed that

T =

√
n(X̄ −µ)

s
(4.1)

has a Student’s t-distribution with ν = n−1 degrees of freedom. This implies that E(T )= 0,
and that T has a symmetric distribution. From basic principles, this assumption is correct
when observations are randomly sampled from a normal distribution. However, at least three
practical problems can arise. First, there are problems with power and the length of the
confidence interval. As indicated in Chapters 1 and 2, the standard error of the sample mean,
σ/
√

n, becomes inflated when sampling from a heavy-tailed distribution, so power can be
poor relative to methods based on other measures of location, and the length of confidence
intervals, based on Eq. (4.1), become relatively long – even when σ is known. (For a detailed
analysis of how heavy-tailed distributions affect the probability coverage of the t-test, see
Benjamini, 1983.) Second, the actual probability of a type I error can be substantially higher
or lower than the nominal α level. When sampling from a symmetric distribution, generally
the actual level of Student’s t-test will be less than the nominal level (Efron, 1969). When
sampling from a symmetric, heavy-tailed distribution the actual probability of type I error can
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be substantially lower than the nominal α level, and this further contributes to low power and
relatively long confidence intervals. From theoretical results reported by Basu and DasGupta
(1995), problems with low power can arise even when n is large. When sampling from a
skewed distribution with relatively light tails, the actual probability coverage can be
substantially less than the nominal 1−α level resulting in inaccurate conclusions and this
problem becomes exacerbated as we move toward (skewed) heavy-tailed distributions. Third,
when sampling from a skewed distribution, T also has a skewed distribution, it is no longer
true that E(T )= 0, and the distribution of T can deviate enough from a Student’s
t-distribution so that practical problems arise. These problems can be ignored if the sample
size is sufficiently large, but given data it is difficult knowing just how large n has to be.
When sampling from a lognormal distribution, it is known that n > 160 is required
(Westfall & Young, 1993). As we move away from the lognormal distribution toward skewed
distributions where outliers are more common, n > 300 might be required. Problems with
controlling the probability of a type I error are particularly serious when testing one-sided
hypotheses. And this has practical implications when testing two-sided hypotheses because it
means that a biased hypothesis testing method is being used, as will be illustrated.

Problems with low power were illustrated in Chapter 1, so further comments are omitted. The
second problem, that probability coverage and type I error probabilities are affected by
departures from normality, is illustrated with a class of distributions obtained by transforming
a standard normal distribution in a particular way. Suppose Z has a standard normal
distribution, and for some constant h ≥ 0, let

X = Z exp

(
h Z2

2

)
.

Then X has what is called an h distribution. When h = 0, X = Z , so X is standard normal.
As h gets large, the tails of the distribution of X get heavier, and the distribution is symmetric
about 0. (More details about the h distribution are described in Section 4.2)

Suppose sampling is from an h distribution with h = 1, which has very heavy tails. Then with
n = 20 and α = 0.05, the actual probability of a type I error, when using Student’s t to test
H0 : µ= 0, is approximately .018 (based on simulations with 10,000 replications). Increasing
n to 100, the actual probability of a type I error is approximately .019. A reasonable
suggestion for dealing with this problem is to inspect the empirical distribution to determine
whether the tails are relatively light. This might be done in various ways, but there is no
known empirical rule that reliably indicates whether the type I error probability will be
substantially lower than the nominal level when attention is restricted to using Student’s t-test.

To illustrate the third problem, and provide another illustration of the second, consider what
happens when sampling from a skewed distribution with relatively light tails. In particular,
suppose X has a lognormal distribution, meaning that for some normal random variable,
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Figure 4.1: Nonnormality can seriously affect Students t. The left panel shows an approximation
of the actual distribution of Students t when sampling from a lognormal distribution and
n= 20 and the right panel is when n= 100.

Y , X = exp(Y ). This distribution is light-tailed in the sense that the expected proportion of
values declared an outlier, using the MAD-Median rule used to define the MOM estimator in
Section 3.7, is relatively small.1

For convenience, assume Y is standard normal in which case E(X)=
√

e, where
e = exp(1)≈ 2.71828, and the standard deviation is approximately σ = 2.16. Then Eq. (4.1)
assumes that T =

√
n(X̄ −

√
e)/s has a Student’s t-distribution with n−1 degrees of

freedom. The left panel of Figure 4.1 shows a (kernel density) estimate of the actual
distribution of T when n = 20; the symmetric distribution is the distribution of T under
normality. As is evident, the actual distribution is skewed to the left, and its mean is not equal
to 0. Simulations indicate that E(T )=−0.54, approximately. The right panel shows an
estimate of the probability density function when n = 100. The distribution is more
symmetric compared to n = 20, but it is clearly skewed to the left.

Let µ0 be some specified constant. The standard approach to testing H0: µ≤ µ0 is to evaluate
T with µ= µ0 and reject H0 if T > t1−α, where t1−α is the 1−α quantile of Student’s
t-distribution with ν = n−1 degrees of freedom, and α is the desired probability of a

1 Some journal articles characterize the lognormal distribution as having heavy tails, but based on the expected
proportion of points labeled outliers, it is relatively light-tailed.
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type I error. If H0: µ≤
√

e is tested when X has a lognormal distribution, H0 should not be
rejected, and the probability of a type I error should be as close as possible to the nominal
level, α. If α = 0.05 and n = 20, the actual probability of a type I error is approximately .008
(Westfall & Young, 1993, p. 40). As indicated in Figure 4.1, the reason is that T has a
distribution that is skewed to the left. In particular, the right tail is much lighter than the
assumed Student’s t-distribution, and this results in a type I error probability that is
substantially smaller than the nominal 0.05 level. Simultaneously, the left tail, below the point
−1.73, the 0.95 quantile of Student’s t-distribution with 19 degrees of freedom, is too thick.
Consequently, when testing H0: µ≥

√
e at the 0.05 level, the actual probability of rejecting is

.153. Increasing n to 160, the actual probability of a type I error is .022 and .109 for the
one-sided hypotheses being considered. And when observations are sampled from a
heavy-tailed distribution, control over the probability of a type I error deteriorates.

Generally, as we move toward a skewed distribution with heavy tails, the problems illustrated
by Figure 4.1 become exacerbated. As an example, suppose sampling is from a squared
lognormal distribution that has mean exp(2). (i.e., if X has a lognormal distribution,
E(X2)= exp(2).) Figure 4.2 shows plots of T values based on sample sizes of 20 and 100.
(Again, the symmetric distributions are the distributions of T under normality.)

Of course, the seriousness of a type I error depends on the situation. Presumably there are
instances where an investigator does not want the probability of a type I error to exceed .1,
otherwise the common choice of α = 0.05 would be replaced by α = 0.1 in order to increase
power. Thus, assuming Eq. (4.1) has a Student’s t-distribution might be unsatisfactory when

0

0
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Figure 4.2: The same as Figure 4.1, only now sampling is from a squared lognormal distribution.
This illustrates that as we move toward heavy-tailed distributions, problems with nonnormality
are exacerbated.
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testing hypotheses, and the probability coverage of the usual two-sided confidence interval,
X̄ ± t1−α/2s/

√
n might be unsatisfactory as well. Bradley (1978) argues that if a researcher

makes a distinction between α = 0.05 and α = 0.1, the actual probability of a type I error
should not exceed .075, the idea being that otherwise it is closer to .1 than .05, and he argues
that it should not drop below .025. He goes on to suggest that ideally, at least in many
situations, the actual probability of a type I error should be between .045 and .055 when
α = 0.05.

It is noted that when testing H0: µ < µ0, and when a distribution is skewed to the right,
improved control over the probability of a type I error can be achieved using a method
derived by Chen (1995). However, even for this special case, problems with controlling the
probability of a type I error remain in some situations, and power problems plague any
method based on means. (A generalization of this method to some robust measure of location
might have some practical value, but this has not been established as yet.) Banik and Kibria
(2010) compared numerous methods for computing a (two-sided) confidence interval for the
mean. In terms of probability coverage, none of the methods were completely satisfactory
when the sample size is small. For n ≥ 50, Chen’s method performed reasonably well among
the distributions considered, including situations where sampling is from a lognormal
distribution. But the lognormal distribution is relatively light-tailed. How well Chen’s method
performs when sampling from a skewed, heavy-tailed distribution, or even a symmetric,
heavy-tailed distribution (such as the contaminated normal), appears to be unknown.

4.2 The g-and-h Distribution

One of the main goals in this chapter is to recommend certain procedures for computing
confidence intervals and testing hypotheses, and to discourage the use of others. These
recommendations are based in part on simulations, some of which generate observations from
a so-called g-and-h distribution. This section is included for readers interested in the
motivation and details of such studies. Readers primarily concerned with how methods are
applied, or which methods are recommended, can skip or skim this section.

A basic problem is establishing whether a particular method for computing a confidence
interval has probability coverage reasonably close to the nominal 1−α level when the sample
size is small or even moderately large. When investigating the effect of nonnormality, there is
the issue of deciding which nonnormal distributions to consider when checking the properties
of a particular procedure via simulations. One approach, which provides a partial check on
how a method performs, is to consider four types of distributions: normal, symmetric with a
heavy tail, asymmetric with a light tail, and asymmetric with a heavy tail. But how
heavy-tailed and asymmetric should they be? A natural approach is to use distributions that
are similar to those found in applied settings. But coming to terms with what constitutes a
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reasonable range of values is difficult at best. Several papers have been published with the
goal of characterizing the range of heavy-tailedness and skewness that a researcher is likely to
encounter (e.g., Pearson & Please, 1975; Sawilowsky & Blair, 1992; Micceri, 1989; Hill &
Dixon, 1982; Wilcox, 1990a). The most striking feature of these studies is the extent to which
they differ. For example, some papers suggest that distributions are never extremely skewed,
whereas others indicate the exact opposite. In a sexual attitude study by Pedersen, Miller,
Putcha-Bhagavatula, and Yang (2002), the skewness and kurtosis, based on 105 participants,
is 15.9 and 256.3, respectively. In a related study based on 16,288 participants, the 10
variables had estimated skewness that ranged between 52.1 and 115.5, and kurtosis that
ranged between 3290 and 13,357. In a review of 440 large-sample psychological studies,
Micceri (1989) reported that 97% (35 of 36 studies) “of those distributions exhibiting kurtosis
beyond the double exponential (3.00) also showed extreme or exponential skewness.”
Moreover, 72% (36 of 50) distributions that exhibited skewness greater than two also had tail
weights that were heavier than the double exponential.

One way of attempting to span the range of skewness and heavy-tailedness that one might
encounter is to run simulations where observations are generated from a g-and-h distribution.
An observation X is generated from a g-and-h distribution by first generating Z from a
standard normal distribution and then setting

X =
exp(gZ)−1

g
exp(h Z2/2),

where g and h are nonnegative constants that can be chosen so that the distribution of X has
some characteristic of interest. When g = 0, this last equation is taken to be

X = Z exp(h Z2/2).

When g = h = 0, X = Z , so X has a standard normal distribution. When g = 0, X has a
symmetric distribution. As h increases, the tails of the distribution get heavier. As g increases,
the distribution becomes more skewed. The case g = 1 and h = 0 corresponds to a lognormal
distribution that has been shifted to have a median of zero. Note that within the class of
g-and-h distributions, the lognormal is skewed with a relatively light tail. Hoaglin (1985)
provides a detailed description of various properties of the g-and-h distribution, but only a
few properties are listed here. Table 4.1 summarizes the skewness and kurtosis values for four
selected situations that have been used in published studies and are considered at various
points in this book. In Table 4.1, skewness and kurtosis are measured with κ1 = µ[3]/µ

1.5
[2] and

κ2 = µ[4]/µ
2
[2], where µ[k] = E(X −µ)k . When g > 0 and h ≥ 1/k, µ[k] is not defined and the

corresponding entry is left blank.

A possible criticism of simulations based on the g-and-h distribution is that observations
generated on a computer have skewness and kurtosis that are not always the same as the
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Table 4.1: Some Properties of the g-and-h Distribution.

g h κ1 κ2 κ̂1 κ̂2 µ µt(20%) µm

0.0 0.0 0.00 3.00 0.0 3.00 0.0000 0.0000 0.0000
0.0 0.5 0.00 — 0.00 11,986.2 0.0000 0.0000 0.0000
0.5 0.0 1.75 8.9 1.81 9.7 0.2653 0.0541 0.1047
0.5 0.5 — — 120.10 18,393.6 0.8033 0.0600 0.0938

theoretical values listed in Table 4.1. The reason is that observations generated on a computer
come from some bounded interval on the real line, so µ[k] is finite even when in theory it is
not. For this reason, Table 4.1 also reports κ̂1 and κ̂2, the estimated skewness and kurtosis
based on 100,000 observations. (Skewness is not estimated when g = 0 because it is known
that κ1 = 0.) The last three columns of Table 4.1 show the value of µ, the 20% trimmed mean,
µt , and µm , the M-measure of location, which were determined via numerical quadrature. For
completeness, it is noted that for the lognormal distribution, κ1 = 6.2, κ2 = 114, the 20%
trimmed mean is µt = 1.111, and µm = 1.1857.

Ideally, a method for computing a confidence interval will have accurate probability coverage
when sampling from any of the four g-and-h distributions in Table 4.1. It might be argued that
when g or h equals 0.5, the corresponding distribution is unrealistically nonnormal. The point
is that if a method performs well under seemingly large departures from normality, this offers
some reassurance that it will perform well for distributions encountered in practice. Of course,
even if a method gives accurate results for the four distributions in Table 4.1, this does not
guarantee accurate probability coverage for any distribution that might arise in practice. In
most cases, there is no known method for proving that a particular technique always gives
good results.

Another possible criticism of the four g-and-h distributions in Table 4.1 is that perhaps the
skewed, light-tailed distribution (g = 0.5 and h = 0) does not represent a large enough
departure from normality. In particular, Wilcox (1990a) found that many random variables he
surveyed had estimated skewness greater than 3, but the skewness of this particular g-and-h
distribution is only 1.8, approximately. For this reason, it might also be important to consider
the lognormal distribution when studying the small-sample properties of a particular method.

Table 4.2 shows the estimated probability of a type I error (based on simulations with 10,000
replications) when using Student’s t to test H0: µ= 0 with n = 12 and α = 0.05. (The
notation t0.025 refers to the 0.025 quantile of Student’s t-distribution.) For example, when
sampling from a g-and-h distribution with g = 0.5 and h = 0, the estimated probability of a
type I error is .000+ .420= .420, which is about eight times as large as the nominal level. Put
another way, if H0: µ < 0 is tested with α = 0.025, the actual probability of rejecting when
µ= 0 is approximately 0.42, over 16 times larger than the nominal level. Note that for
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Table 4.2: One-Sided Type I Error
Probabilities when Using Student’s t,
n= 12, α = 0.025.

g h P(T > t0.975) P(T < t0.025)

0.0 0.0 .025 .025
0.0 0.5 .015 .016
0.5 0.0 .000 .420
0.5 0.5 .000 .295

fixed g, as the tails get heavier (h increases from 0 to 0.5), the probability of a type I error
decreases. This is not surprising because sampling from a heavy-tailed distribution inflates s
which in turn results in longer confidence intervals. A similar result, but to a lesser extent, is
found when using robust measures of location.

Multivariate g-and-h Distributions

It is noted that multivariate distributions having some specified correlation matrix R can be
generated as follows. Generate X where the marginal distributions are independent. Form the
Cholesky decomposition U′U= R, where U is the matrix of factor loadings of the principal
components of the square-root method of factoring a correlation matrix, and U ′ is the
transpose of U . Then XU produces a matrix of data that has population correlation matrix R.

4.2.1 R Functions ghdist and rmul

The R function

ghdist(n,g=0,h=0)

generates n observations from a g-and-h distribution. By default, observations are generated
from a standard normal distribution (g = h = 0). The R function

rmul(n,p = 2, cmat = diag(rep(1, p)), rho = NA, mar.fun = rnorm,...)

generates n vectors of observations from a p-variate distribution having correlation matrix
specified by the argument cmat and marginal distributions specified by the argument mar.fun.
By default, data are generated from a bivariate normal distribution with Pearson’s correlation
equal to 0. If the argument rho is specified, all pairs of variables will have correlation rho. The
command

rmul(30, p = 3,rho = 0.4, mar.fun = ghdist, g=1, h=0.2)

would first generate data from a trivariate distribution for which the marginal distributions are
independent with marginal g-and-h distributions, where g = 1 and h = 0.2, after which the
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data are transformed so that all pairs of variables have correlation 0.4. It should be noted that
changing the correlation via the argument rho can alter the marginal measures of location
when g > 0, in which case the marginal distributions are skewed.

4.3 Inferences About the Trimmed and Winsorized Means

When working with the trimmed mean, µt , an analog of Eq. (4.1) is

Tt =
(1−2γ )

√
n(X̄ t −µt)

sw
. (4.2)

When γ = 0, Tt = T given by Eq. (4.1). Tukey and McLaughlin (1963) suggest
approximating the distribution of Tt with a Student’s t-distribution having n−2g−1 degrees
of freedom, where, as in Chapter 3, g = [γ n] is the integer portion of γ n. Then n−2g is the
number of observations left after trimming. The resulting two-sided 1−α confidence interval
for µt is

X̄ t ± t1−α/2
sw

(1−2γ )
√

n
, (4.3)

where t1−α/2 is the 1−α/2 quantile of Student’s t-distribution with n−2g−1 degrees of
freedom. Let µ0 be some specified constant. Then under the null hypothesis H0: µt = µ0, Tt

becomes

Tt =
(1−2γ )

√
n(X̄ t −µ0)

sw
, (4.4)

and H0 is rejected if |Tt |> t1−α. One-sided tests can be performed in the usual way. In
particular, reject H0: µt ≤ µ0 if Tt > t1−α, the 1−α quantile of Student’s t-distribution with
n−2g−1 degrees of freedom. Similarly, reject H0: µt ≥ µ0 if Tt < tα.

Based on various criteria, plus a slight variation of the sample trimmed mean used here,
Patel, Mudholkar, and Fernando (1988) found the Tukey–McLaughlin approximation to be
reasonably accurate when sampling from various distributions. They also report that for
γ = 0.25, a better approximation is a Student’s t-distribution with n−2.48g−0.15 degrees of
freedom. For n < 18, they suggest a more refined approximation, but another method, to be
described, gives more satisfactory results.

Additional support for using a Student’s t-distribution with n−2g−1 degrees of freedom is
reported by Wilcox (1994a). Using a Winsorized analog of a Cornish–Fisher expansion of Tt ,
a correction term for skewness was derived and compared to the correction term used when
there is no trimming. As the amount of trimming increases, the magnitude of the correction
term decreases indicating that the probability coverage using Eq. (4.3) should be closer to the
nominal level than the probability coverage when γ = 0. Numerical results for the lognormal
distribution indicate that as γ increases, the magnitude of the correction term decreases
rapidly up to about γ = 0.2.
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Figure 4.3: The distribution of Tt with 20% trimming when sampling from a lognormal
distribution. Compare this to the distribution of T shown in Figure 4.1.

The left panel of Figure 4.3 shows the probability density function of Tt with 20% trimming
when n = 20 and sampling is from a lognormal distribution. (The symmetric distribution is
the assumed distribution of Tt when testing hypotheses.) The actual distribution is skewed to
the left, but the tail of the distribution is not as heavy as the tail of the distribution shown in
Figure 4.1. The result is that when testing H0: µt > 0, the probability of a type I error will be
greater than the nominal level, but not as much versus no trimming. For example, if
α = 0.025, the actual probability of a type I error is approximately .062 with 20% trimming
versus .132 when using the mean to test H0: µ >

√
e. The right panel of Figure 4.3 shows the

distribution of Tt when n is increased to 100. Note that the distribution is reasonably
symmetric, as is assumed when using Tt , versus the right panel of Figure 4.1 which is clearly
skewed to the left. This illustrates the general expectation that when using the 20% trimmed
mean, probability coverage will improve more rapidly as the sample size increases, versus
confidence intervals based on means. If a distribution is both skewed and sufficiently
heavy-tailed, problems with controlling the probability of a type I error can persist unless n is
fairly large. That is, as the amount of trimming increases, problems with controlling the
probability of a type I error decrease, but even with 20% trimming, not all practical problems
are eliminated using the method in this section. Increasing the amount of trimming beyond
20%, such as using a median, could be used, but at the risk of low power if indeed a
distribution is normal or relatively light-tailed. A better strategy seems to be to use a bootstrap
method described in Section 4.4.
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It was previously noted that when sampling from a symmetric, heavy-tailed distribution (an h
distribution with h = 1), the actual probability of a type I error can be as low as .018 when
testing H0: µ= 0 with Student’s t-test, n = 20, and α = 0.05. In contrast, with 20% trimming,
the probability of a type I error is approximately .033. Generally, if a symmetric distribution is
sufficiently heavy-tailed, roughly meaning that the expected proportion of values declared
outliers is relatively high, actual type I error probabilities can drop below the nominal level.
In some situations it currently seems that this problem can persist no matter which location
estimator is used.

n Example

Table 4.3 shows the average LSAT scores for the 1973 entering classes of 15 American
law schools. (LSAT is a national test for prospective lawyers.) The sample mean is
X̄ = 600.3 with an estimated standard error of 10.8. The 20% trimmed mean is
X̄ t = 596.2 with an estimated standard error of 14.92, and with 15−6−1= 8 degrees
of freedom, the 0.95 con�dence interval for µt is (561.8, 630.6). In contrast, the 0.95
con�dence interval for µ is (577.1, 623.4), assuming T given by Eq. (4.1) does indeed
have a Student’s t-distribution with 14 degrees of freedom. Note that the length of the
con�dence interval for µ is smaller, and in fact is a subset of the con�dence interval for
µt . This might seem to suggest that the sample mean is preferable to the trimmed mean
for this particular set of data, but closer examination suggests the opposite conclusion.
As already illustrated, if sampling is from a light-tailed, skewed distribution, the actual
probability coverage for the sample mean can be smaller than the nominal level. For the
situation at hand, the claim that (577.1, 623.4) is a 0.95 con�dence interval for the
mean might be misleading and overly optimistic. Figure 4.4 shows a boxplot of the data.
The sample median is 580 indicating that the central portion of the data is skewed to
the right. Moreover, there are no outliers suggesting the possibility that sampling is from
a relatively light-tailed distribution. Thus, the actual probability coverage of the
con�dence interval for the mean might be too low – a longer con�dence interval might
be needed to achieve .95 probability coverage. It is not being suggested, however, that if
there had been outliers, there is reason to believe that probability coverage is not too
low. For example, boxplots of data generated from a lognormal distribution frequently
have values �agged as outliers, and as already noted, sampling from a lognormal
distribution can result in a con�dence interval for µ that is too short.

Table 4.3: Average LSAT Scores for 15 Law Schools.

545 555 558 572 575 576 578 580
594 605 635 651 653 661 666
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Figure 4.4: A boxplot of the LSAT scores.

n

As for computing a confidence interval for the population Winsorized mean, results in Dixon
and Tukey (1968) suggest using

X̄w± t1−α/2

(
n−1

n−2g−1

)(
sw
√

n

)
,

where again the degrees of freedom are n−2g−1. It appears that the accuracy of this
confidence interval, when sampling from a skewed distribution, has not been studied.

4.3.1 R Functions trimci and winci

The R function

trimci(x, tr=.2, alpha=0.05),

written for this book, computes a 1−α confidence interval for µt using Eq. (4.3) based on the
data stored in the R vector x , where x is any R variable containing data, tr is the desired
amount of trimming (the value of γ ), and alpha is α. The default amount of trimming is
γ = 0.2 (20%), and the default value for α is 0.05. For example, the command
trimci(w,0.1,0.025) returns two values: the lower and upper end of the 0.975 confidence
interval for the 10% trimmed mean using the data stored in w. The command trimci(w)
returns a 0.95 confidence interval for the 20% trimmed mean. The R function

winci(x,tr=0.2,alpha=0.05),

computes a confidence interval for the population Winsorized mean.
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4.4 Basic Bootstrap Methods

The method used to compute a confidence interval for a trimmed mean, described in
Section 4.3, is based on the fundamental strategy developed by Laplace about two centuries
ago: When using θ̂ to estimate some parameter of interest, θ , estimate the standard error of θ̂
with say ϒ̂ , and try to approximate the distribution of

θ̂ − θ

ϒ̂
.

Laplace accomplished this by appealing to his central limit theorem which he publicly
announced in 1810. That is, assume this last equation has a standard normal distribution.

An alternative approach is to use some type of bootstrap method. There are many variations;
see Efron and Tibshirani (1993), Chernick (1999), Davison and Hinkley (1997), Hall and Hall
(1995), Lunneborg (2000), Mooney and Duval (1993), and Shao and Tu (1995). Here
attention is focused on two basic types (with some extensions described in subsequent
chapters). Alternative methods are not considered because either they currently seem to
have no practical advantage for the problems considered here, in terms of controlling the
probability of a type I error or yielding accurate probability coverage, or the practical
advantages of these alternative methods have not been adequately investigated when sample
sizes are small or moderately large.

4.4.1 The Percentile Bootstrap Method

The first basic version is the so-called percentile bootstrap. It begins by obtaining a bootstrap
sample of size n. That is, values are obtained by randomly sampling with replacement n
values from X1, . . . , Xn yielding X∗1, . . . , X∗n .

Let θ̂∗ be an estimate of θ based on this bootstrap sample. Of course, a new bootstrap sample
can be generated to yield a new bootstrap estimate of θ . Repeating this process B times yields
B bootstrap estimates: θ̂∗1 , . . . , θ̂

∗

B . Let `= αB/2, rounded to the nearest integer, and let
u = B−`. Letting θ̂∗(1) ≤ · · · ≤ θ̂

∗

(B) represent the B bootstrap estimates written in ascending
order, an approximate 1−α confidence interval for θ is(

θ̂∗(`+1), θ̂
∗

(u)

)
.

An outline of the theoretical justification of the method is as follows. Imagine that the goal is
to test

H0 : θ = θ0,

where θ0 is some given constant. Let p∗ = P(θ̂∗ < θ0). That is, p∗ is the probability that a
bootstrap estimate of θ is less than the hypothesized value, θ0. The value of p∗ is not known,
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but it is readily estimated with

p̂∗ =
A

B
,

where A is the number of bootstrap estimates among θ̂∗(1) ≤ · · · ≤ θ̂
∗

(B) that are less than θ0.
Under fairly general conditions, if the null hypothesis is true, the distribution of p̂∗

approaches a uniform distribution as n and B get large (e.g., Liu & Singh, 1997; Hall, 1988a,
1988b). This suggests rejecting H0 when p̂∗ ≤ α/2 or p̂∗ ≥ 1−α/2. A little algebra shows
that this leads to the percentile bootstrap confidence interval described in the previous
paragraph. A (generalized) p-value is 2min( p̂∗,1− p̂∗).

A practical problem is choosing B. If the goal is to control the probability of a type I error,
B = 500 suffices for some problems, even with n very small, but B = 2000 or larger might be
needed for other situations. And in some instances – such as when making inferences about
the population mean, the method performs poorly even when both B and n are fairly large.
A rough characterization is that if a location estimator has a low finite sample breakdown
point, the percentile method might be unsatisfactory, but with a relatively high finite sample
breakdown, it performs reasonably well, even with small sample sizes, and in fact appears to
be the method of choice in many situations. More details are provided as we consider various
parameters of interest. Also, when dealing with regression, we will see situations where
even with a low finite sample breakdown point, a percentile bootstrap method performs
relatively well.

4.4.2 R Function onesampb

The R function

onesampb(x,est=onestep,alpha=0.05,nboot=500,...)

can be used to compute a percentile bootstrap 1−α confidence interval when using virtually
any estimator available through R. The argument est indicates the estimator to be used, which
defaults to the one-step M-estimator. The argument ... can be used to supply values for any
additional parameters associated with the estimator indicated by the argument est. For
example, to compute a 0.9 confidence interval based on 10% trimmed means, using 1000
bootstrap samples, use the command

onesampb(x,est=mean,alpha=0.1,nboot=1000,tr=0.1).

The command

onesampb(x,est=pbvar)

computes a 0.95 confidence based on the percentage bend midvariance.
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4.4.3 Bootstrap-t Method

The main alternative to the percentile bootstrap is the bootstrap-t method, which also has
been called a percentile-t technique. When working with means, for example, the strategy is
to use the observed data to approximate the distribution of

T =

√
n(X̄ −µ)

s

by proceeding as follows:

1. Generate a bootstrap sample X∗1, . . . , X∗n .
2. Compute X̄∗, s∗ and T ∗ =

√
n(X̄∗− X̄)/s∗ based on the bootstrap sample generated in

step 1.
3. Repeat steps 1 and 2 B times yielding T ∗b , b = 1, . . . , B.

The T ∗b values provide an approximation of the distribution of T and in particular an estimate
of the α/2 and 1−α/2 quantiles.

When testing H0: µ= µ0, there are two variations of the bootstrap-t method that deserve
comment. The first is the equal-tailed method. Let T ∗(1) ≤ · · · ≤ T ∗(B) be the T ∗b values written
in ascending order, let `= αB/2, rounded to the nearest integer, and let u = B−`. Then H0

is rejected if
T ≤ T ∗(`) or T ≥ T ∗(u).

Rearranging terms, a 1−α confidence interval for µ is(
X̄ −T ∗(u)

s
√

n
, X̄ −T ∗(`)

s
√

n

)
. (4.5)

This last equation might appear to be incorrect because T ∗(u), the estimate of the 1−α/2
quantile of the distribution of T , is used to compute the lower end of the confidence interval.
Simultaneously, T ∗(`), an estimate of the α/2 quantile is used to compute the upper end of the
confidence interval. It can be seen, however, that this last equation follows from the decision
rule that rejects H0: µ= µ0 if T ≤ T ∗(`) or T ≥ T ∗(u). Also, when computing the upper end of
the confidence interval, T ∗(`) will be negative, which is why the term T ∗(`)

s
√

n
is subtracted

from X̄ .

The second variation of the bootstrap-t method, yielding a so-called symmetric confidence
interval, uses

T ∗ =

√
n|X̄∗− X̄ |

s∗
.

Let c = (1−α)B, rounded to the nearest integer. Now a 1−α confidence interval for µ is

X̄ ±T ∗(c)
s
√

n
.

www.elsevierdirect.com



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or inprint. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

WILCOX Ch04-9780123869838 2011/10/21 16:32 Page 118 #16

118 Introduction to Robust Estimation and Hypothesis Testing

Asymptotic results (Hall, 1988a, 1988b) suggest that it tends to have more accurate
probability coverage than the equal-tailed confidence interval, but some small-sample
exceptions are noted later.

An interesting theoretical property of the bootstrap-t method is that it is second-order correct.
Roughly, when using T, as the sample size increases, the discrepancy between the actual
probability coverage and the nominal level goes to zero at the rate 1/

√
n as n gets large,

meaning that the method is first-order correct. But when using the bootstrap-t method, the
discrepancy goes to zero at the rate 1/n. That is, the discrepancy goes to zero faster versus
methods that rely on the central limit theorem.

Again there is the practical issue of choosing B, the number of bootstrap samples. The default
choices for B used by the R functions in this book are based on the goal of achieving
reasonably good control over the probability of a type I error. But arguments can be made that
perhaps a larger value for B has practical value, the concern being that otherwise there might
be some loss of power. Racine and MacKinnon (2007a) discuss this issue at length and
proposed a method for choosing the number of bootstrap samples. (Also see Jöckel, 1986).
Davidson and MacKinnon (2000) proposed a pretest procedure for choosing B. Theoretical
results derived by Olive (2010) suggest using B ≥ [n log(n)].

4.4.4 Bootstrap Methods when Using a Trimmed Mean

As previously indicated, the 20% trimmed mean can be expected to provide better control
over the probability of a type I error and more accurate probability coverage, versus the mean,
in various situations. In some cases, however, even better probability coverage and control of
type I error probabilities might be desired, particularly when the sample size is small. Some
type of bootstrap method can make a substantial difference, with the choice of method
depending on how much trimming is done.

First it is noted that the bootstrap methods in Sections 4.4.1 and 4.4.2 are readily applied when
using a trimmed mean. When using the percentile bootstrap method, generate a bootstrap
sample and compute the sample trimmed mean yielding X̄∗t1. Repeat this process B times
yielding X̄∗t1, . . . , X̄∗t B . Then an approximate 1−α confidence interval for µt is given by

(
X̄∗t (`+1), X̄∗t (u)

)
,

where again ` is αB/2 rounded to the nearest integer, u = B−`, and X̄∗t (1) ≤ · · · ≤ X̄∗t (B) are
the B bootstrap trimmed means written in ascending order.

The bootstrap-t extends to trimmed means in a straightforward manner as well, and to be sure
the details are clear, they are summarized in Table 4.4. In the context of testing H0: µt = µ0
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versus H1:µt 6= µ0, reject if Tt < T ∗t (`) or Tt > T ∗t (u), where

T ∗t =
(1−2γ )

√
n(X̄∗t − X̄ t)

s∗w
, (4.6)

As for the symmetric, two-sided confidence interval, now use

T ∗t =
(1−2γ )

√
n|X̄∗t − X̄ t |

s∗w
, (4.7)

in which case a two-sided confidence interval for µt is

X̄ t ±T ∗t (c)
sw

(1−2γ )
√

n
. (4.8)

The choice between the percentile bootstrap versus the bootstrap-t, based on the criterion of
accurate probability coverage, depends on the amount of trimming. With no trimming, all
indications are that the bootstrap-t is preferable (e.g., Westfall & Young, 1993). Consequently,
early investigations based on means suggested using a bootstrap-t when making inferences
about a population trimmed mean, but more recent studies indicate that as the amount of
trimming increases, at some point the percentile bootstrap method offers an advantage.
In particular, simulation studies indicate that when the amount of trimming is 20%, the
percentile bootstrap confidence interval should be used rather then the bootstrap-t (e.g.,
Wilcox, 2001a). Perhaps with slightly less trimming the percentile bootstrap continues to
give more accurate probability coverage in general, but this issues has not been studied
extensively.

Table 4.4: Summary of the Bootstrap-t Method for a Trimmed Mean.

To apply the bootstrap-t (or percentile-t) method when working with a trimmed mean, proceed as follows:

1. Compute the sample trimmed mean, X̄ t .
2. Generate a bootstrap sample by randomly sampling with replacement n observations from X1, . . . , Xn,

yielding X ∗1, . . . , X ∗n .
3. When computing an equal-tailed con�dence interval, use the bootstrap sample to compute T ∗t given by

Eq. (4.6). When computing a symmetric con�dence interval, compute T ∗t using Eq. (4.7) instead.
4. Repeat steps 2 and 3 yielding T ∗t1, . . . ,T ∗t B . B = 599 appears to suf�ce in most situations when n ≥ 12.
5. Put the T ∗t1, . . . ,T ∗t B values in ascending order yielding T ∗t (1), . . . ,T ∗t (B).
6. Set `= αB/2, c = (1−α)B, round both ` and c to the nearest integer, and let u = B−`.

The equal-tailed 1−α con�dence interval for µt is(
X̄ t −T ∗t (u)

sw
√

n
, X̄ t −T ∗t (`)

sw
√

n

)
. (4.9)

and the symmetric con�dence interval is given by Eq. (4.9).
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One issue is whether Eq. (4.6) yields a confidence interval with reasonably accurate
probability coverage when sampling from a light-tailed, skewed distribution. To address this
issue, attention is again turned to the lognormal distribution, which has µt = 1.111. First
consider what happens when the bootstrap-t is not used. With n = 20 and α = 0.025, the
probability of rejecting H0: µt > 1.111 when using Eq. (4.4) is approximately .065, about 2.6
times as large as the nominal level. In contrast, the probability of rejecting H0: µt < 1.111 is
approximately .010. Thus, the probability of rejecting H0: µt = 1.111 when testing at the 0.05
level is approximately .065+ .010= .075. If the bootstrap-t method is used instead, with
B = 599, the one-sided type I error probabilities are now .035 and .020, so the probability of
rejecting H0: µt = 1.111 is approximately .055 when testing at the 0.05 level. (The reason for
using B = 599, rather than B = 600, stems from results in Hall, 1986, showing that B should
be chosen so that α is a multiple of (B+1)−1. On rare occasions this small adjustment
improves matters slightly, so it is used here.) As we move toward heavy-tailed distributions,
generally the actual probability of a type I error tends to decrease.

For completeness, when testing a two-sided hypothesis or computing a two-sided confidence
interval, asymptotic results reported by Hall (1988a, 1988b) suggest modifying the bootstrap-t
method by replacing T ∗t with

T ∗t =
(1−2γ )

√
n|X̄∗t − X̄ t |

s∗w
. (4.10)

Now the two-sided confidence interval for µt is

X̄ t ±T ∗t (c)
sw

(1−2γ )
√

n
, (4.11)

where c = (1−α)B, rounded to the nearest integer. This is an example of a symmetric
two-sided confidence interval. That is, the confidence interval has the form (X̄ t − ĉ, X̄ t + ĉ),
where ĉ is determined with the goal that the probability coverage be as close as possible to
1−α. In contrast, an equal-tailed two-sided confidence interval has the form (X̄ t − â, X̄ t + b̂),
where â and b̂ are determined with the goal that P(µt < X̄ t − â)≈ P(µt > X̄ t + b̂)≈ α/2.
The confidence interval given by Eq. (4.9) is equal-tailed. In terms of testing H0: µt = µ0

versus H1: µt 6= µ0, Eq. (4.11) is equivalent to rejecting if Tt <−1×T ∗t (c), or if Tt > T ∗t (c).
When Eq. (4.11) is applied to the lognormal distribution with n = 20, a simulation estimate of
the actual probability of a type I error is .0532 versus .0537 using (4.9). Thus, in terms of
type I error probabilities, there is little separating between these two methods for this
special case, but in practice, the choice between these two methods can be important, as will
be seen.
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Table 4.5: Values of α̂ Corresponding to Three Critical Values, n= 12, α = 0.025.

g h P(Tt <−t) P(Tt > t) P(Tt < T ∗t(`)) P(Tt > T ∗t(u)) P(Tt <−T ∗t(c)) P(Tt > T ∗t(c))

0.0 0.0 .031 .028 .026 .030 .020 .025
0.0 0.5 .025 .022 .024 .037 .012 .024
0.5 0.0 .047 .016 .030 .023 .036 .017
0.5 0.5 .040 .012 .037 .028 .025 .011

Table 4.5 summarizes the values of α̂, an estimate of the probability of a type I error when
performing one-sided tests with α = 0.025, and when the critical value is estimated with one
of the three methods described in this section. The first estimate of the critical value is t , the
1−α/2 quantile of Student’s t-distribution with n−2g−1 degrees of freedom. That is, reject
if Tt is less than −t or greater than t depending on the direction of the test. The second
estimate of the critical value is T ∗t (`) or T ∗t (u) (again depending on the direction of the test),
where T ∗t (`) and T ∗t (u) are determined with the equal-tailed bootstrap-t method. The final
method uses T ∗t (c) resulting from the symmetric bootstrap-t as used in Eq. (4.11). Estimated
type I error probabilities are reported for the four g-and-h distributions discussed in
Section 4.2. For example, when sampling is from a normal distribution (g = h = 0),
α = 0.025, and when H0 is rejected because Tt <−t the actual probability of rejecting is
approximately .031. In contrast, when g = 0.5 and h = 0, the probability of rejecting is
estimated to be .047, about twice as large as the nominal level. (The estimates in Table 4.5 are
based on simulations with 1000 replications when using one of the bootstrap methods, and
10,000 replications when using Student’s t.) If sampling is from a lognormal distribution, not
shown in Table 4.5, the estimate increases to 0.066, which is 2.64 times as large as the
nominal 0.025 level. For (g,h)= (0.5,0.0) and α = 0.05, the tail probabilities are
.094 and .034.

Note that the choice between Eqs (4.9) and (4.11), the equal-tailed and symmetric bootstrap
methods, is not completely clear based on the results in Table 4.5. An argument for Eq. (4.11)
is that the largest estimated probability of a type I error in Table 4.5, when performing a
two-sided test, is .036+ .017= .053, whereas when using Eq. (4.9) the largest estimate is
.037+ .028= .065. A possible objection to (4.11) is that in some cases it is too conservative –
the tail probability can be less than half the nominal .025 level. Also, if one can rule out the
possibility that sampling is from a skewed distribution with very heavy tails, Table 4.5
suggests using Eq. (4.9) over Eq. (4.11), at least based on probability coverage.

There are other bootstrap techniques that might have a practical advantage over the
bootstrap-t method, but at the moment this does not appear to be the case when γ is close to
zero. However, extensive investigations have not been made, so future investigations might
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alter this view. One approach is to use a bootstrap estimate of the actual probability coverage
when using Tt with Student’s t-distribution and then adjust the α level so that the actual
probability coverage is closer to the nominal level (Loh, 1987a, 1987b). When sampling from
a lognormal distribution with n = 20, the one-sided tests considered above now have actual
type I error probabilities approximately equal to .011 and .045, which is a bit worse than the
results with the bootstrap-t. Westfall and Young (1993) advocate yet another method that
estimates the p-value of Tt . For the situation considered here, simulations (based on 4000
replications and B = 1000) yield estimates of the type I error probabilities equal to .034 and
.017. Thus, at least for the lognormal distribution, these two alternative methods appear to
have no practical advantage when γ = 0.2, but of course a more definitive study is needed.
Another interesting possibility is the ABC method discussed by Efron and Tibshirani (1993).
The appeal of this method is that accurate confidence intervals might be possible with a
substantially smaller choice for B, but there are no small-sample results on whether this is the
case for the problem at hand. Additional calibration methods are summarized by Efron and
Tibshirani (1993).

n Example

Consider again the law data in Table 4.3 which has X̄ t = 596.2 based on 20% trimming.
The symmetric bootstrap-t con�dence interval, based on Eq. (4.11), is (541.6, 650.9),
which was computed with the R function trimcibt described in Section 4.4.6. As
previously indicated, the con�dence interval for µt , based on Student’s t-distribution
and given by Eq. (4.3), is (561.8, 630.6), which is a subset of the interval based on
Eq. (4.11). In fact, the length of this con�dence is 68.8 versus 109.3 using the
bootstrap-t method. The main point here is that the choice of method can make a
substantial difference in the length of the con�dence interval, the ratio of the lengths
being 68.8/109.3=0.63. This might seem to suggest that using Student’s t-distribution
is preferable, because the con�dence interval is shorter. However, as previously noted, it
appears that sampling is from a light-tailed, skewed distribution, and this is a situation
where using Student’s t-distribution can yield a con�dence interval that does not have
the nominal probability coverage – the interval can be too short. The 0.95 con�dence
interval for µ is (577.1, 623.4), which is even shorter and probably very inaccurate in
terms of probability coverage. If instead the equal-tailed bootstrap-t method is used,
given by (4.9), the resulting .95 con�dence interval for the 20% trimmed mean is (523.0,
626.3), which is also substantially longer than the con�dence interval based on
Student’s t-distribution. To reiterate, all indications are that trimming, versus no
trimming, generally improves probability coverage when using Eq. (4.3) and sampling is
from a skewed, light-tailed distribution, but the percentile bootstrap or bootstrap-t
method can give even better results, at least when n is small.

n
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4.4.5 Singh’s Modi�cation

Consider a random sample where say 15% of the observations are outliers. Of course, if a
20% trimmed mean is used, these outliers do not have an undue influence on the estimate as
well as the standard error. Note, however, that when generating a bootstrap sample, by chance
the number of outliers could exceed 20% which can result in a relatively long confidence
interval. Singh (1998) derived theoretical results showing that this problem can be addressed
by Winsorizing the data before taking a bootstrap sample, provided the amount of
Winsorizing does not exceed the amount of trimming. So if inferences based on a 20%
trimmed are to be made, theory allows taking bootstrap samples from the Winsorized data
provided the amount of Winsorizing does not exceed 20%. When using a percentile bootstrap
method, for example, confidence intervals are computed in the usual way. That is, the only
difference from the basic percentile bootstrap method in Section 4.4.1 is that observations are
resampled with replacement from the Winsorized data.

Although theory allows the amount of Winsorizing to be as large as the amount of trimming,
if we Winsorize as much as we trim, probability coverage can be unsatisfactory, at least with
small to moderate sample sizes (Wilcox, 2001a). However, if for example 10% Winsorizing is
done when making inferences based on a 20% trimmed mean, good probability coverage is
obtained.

Singh’s results extend to the bootstrap-t method. But all indications are that achieving
accurate probability coverage is difficult. Presumably this problem becomes negligible as the
sample size increases, but just how large the sample must be to obtain reasonably accurate
probability coverage is unknown.

4.4.6 R Functions trimpb and trimcibt

The R function trimpb (written for this book) computes a 0.95 confidence interval using the
percentile bootstrap method. It has the general form

trimpb(x,tr=0.2,alpha=0.05,nboot=2000,WIN=F,plotit=F,win=0.1,pop=1),

where x is any R vector containing data, tr again indicates the amount of trimming, alpha is α,
and nboot is B which defaults to 2000. The argument WIN controls whether Winsorizing is
done. If plotit is set to T (for true), a plot of the bootstrap trimmed means is created, and the
type of plot created is controlled by the argument pop. The choices are:

• pop=1, expected frequency curve
• pop=2, kernel density estimate (using a normal kernel)
• pop=3, boxplot
• pop=4, stem-and-leaf
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• pop=5, histogram
• pop=6, adaptive kernel density estimate

The function

trimcibt(x,tr=0.2,alpha=0.05,nboot=2000,WIN=F,plotit=F,win=0.1,op=1),

performs the bootstrap-t method. Now if plotit=T, a plot of the T ∗t1, . . . ,T ∗t B values is created
based on the adaptive kernel estimator if op=1. If op=2, an expected frequency curve is used.

4.5 Inferences About M-Estimators

A natural way of computing a confidence interval for µm , an M-measue of location, is to
estimate the standard error of µ̂m with σ̂m , as described in Chapter 3, and consider intervals
having the form (µ̂m−cσ̂m, µ̂m+cσ̂m) for some appropriate choice for c. This strategy seems
to have merit when sampling from a symmetric distribution, but for asymmetric distributions
it can be unsatisfactory (Wilcox, 1992a). If, for example, c is determined so that the
probability coverage is exactly 1−α when sampling from a normal distribution, the same c
can yield a confidence interval with probability coverage substantially different from 1−α
when sampling from asymmetric distributions instead. Moreover, it is unknown how large n
must be so that the resulting confidence interval has probability coverage reasonably close to
the nominal level.

One alternative approach is to apply a bootstrap-t method, but simulations do not support this
approach, at least when n ≤ 40. Could the bootstrap-t method be improved by using
something like the adaptive kernel density estimator when estimating the standard of µ̂m? All
indications are that probability coverage remains unsatisfactory. Currently, the most effective
method is the percentile bootstrap (but direct comparisons with the method studied by
Kuonen, 2005, have not been made).

As before, generate a bootstrap sample by randomly sampling n observations, with
replacement, from X1, . . . , Xn , yielding X∗1, . . . , X∗n . Let µ̂∗m be the M-estimator of location
based on the bootstrap sample just generated. Repeat this process B times yielding
µ̂∗m1, . . . , µ̂

∗

m B . The 1−α confidence interval for µm is

(µ̂∗m(`+1), µ̂
∗

m(u)) (4.12)

where `= αB/2, rounded to the nearest integer, and u = B−`, and µ̂∗m(1) ≤ · · · ≤ µ̂
∗

m(B) are
the B bootstrap values written in ascending order.

The percentile bootstrap method appears to give fairly accurate probability coverage when
n ≥ 20 and B = 399, but for smaller sample sizes the actual probability coverage can be less
than .925, with α = 0.05. Increasing B to 599 does not appear to improve the situation very
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Table 4.6: Values of α̂ when Using
(4.12), B = 399, α = 0.05, n= 20.

g h P(µ̂∗m(`) > 0) P(µ̂∗m(u) < 0)

0.0 0.0 .030 .034
0.0 0.5 .029 .036
0.5 0.0 .023 .044
0.5 0.5 .023 .042

much. Another problem is that the iterative method of computing µ̂m can break down when
applying the bootstrap and n is small. The reason is that if more than half of the observations
have a common value, MAD= 0 resulting in division by zero when computing µ̂m . Because
the bootstrap is based on sampling with replacement, as n gets small, the probability of
getting MAD= 0, within the bootstrap, increases. Of course, problems might also arise in
situations where some of the X i have a common value. Similar problems arise when using µ̂os

instead. This might suggest abandoning the M-estimator, but as noted in Chapter 3, there are
situations where it might be preferred over the trimmed mean.

Table 4.6 shows the estimated probability of observing µ̂∗m(`) > 0, and the probability of
µ̂∗m(u)<0, when observations are generated from a g-and-h distribution that has been shifted
so that µm = 0. For example, when sampling from a normal distribution, the probability of a
type I error, when testing H0: µm = 0, is .030+ .034= .064. If sampling is from a lognormal
distribution, the two tail probabilities are estimated to be .019 and .050, so the probability of a
type I error when testing H0: µm = 0 is .069. Increasing B to 599, the estimated probability of
a type I error is now .070. Thus, there is room for improvement, but probability coverage and
control over the probability of a type I error might be deemed adequate in some situations.

Tingley and Field (1990) suggest yet another method for computing confidence intervals
based on exponential tilting and a saddlepoint approximation of a distribution. (Also see
Gatto & Ronchetti, 1996, as well as Robinson, Ronchetti, & Young, 2003, for related results.)
They illustrate the method when dealing with M-estimators, but their results are quite general
and might have practical interest when using other measures of location. While preparing this
chapter, the authors ran a few simulations to determine how their method performs when
working with M-estimators. When sampling from a standard normal distribution, with n = 25
and simulations based on 10,000 replications, the estimated type I error probability was
α̂ = 0.078 when testing at the α = 0.05 level. In contrast, α̂ = 0.064 when using the percentile
bootstrap. Perhaps there are situations where the Tingley–Field method offers a practical
advantage, but this has not been established as yet.

From an efficiency point of view, the one-step M-estimator (with Huber’s 9) given by
Eq. (3.25) can be a bit more satisfactory than the modified one-step M-estimator (MOM) in
Section 3.10. (With sufficiently heavy tails, MOM can have better efficiency.) However, with
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very small sample sizes, it seems that reasonably accurate confidence intervals are easier to
obtain when using MOM.

4.5.1 R Functions mestci and momci

The R function onesampb can be used to compute confidence intervals based on MOM or an
M-estimator. For convenience, the R function mestci is supplied for the special case where the
goal is to compute a 1−α confidence interval for µm (an M-measure of location based on
Huber’s 9) using the percentile bootstrap method. The function has the form

mestci(x,alpha=0.05,nboot=399,bend=1.28,os=F).

The default value for alpha (α) is 0.05, nboot is the number of bootstrap samples to be used,
which defaults to 399, and bend is the bending constant used in Huber’s 9, which defaults to
1.28. (See Chapter 3.) The argument os is a logical variable that defaults to F, for false,
meaning that the fully iterated M-estimator is to be used. Setting os=T causes the one-step
M-estimator, µ̂os, to be used. The R function

momci(x,alpha=0.05,nboot=500).

is supplied for situations where there is specific interest in the modified one-step M-estimator.

n Example

If the law data in Table 4.3 are stored in the R variable x, the command mestci(x) returns
a 0.95 con�dence interval for µm equal to (573.8, 629.1). For this data, the function
also prints a warning that because the number of observations is less than 20, division
by zero might occur when computing the bootstrap M-estimators, but in this particular
case this problem does not arise. Note that the length of the con�dence interval is
shorter than the length of the con�dence interval for the trimmed mean, based on
Eq. (4.3), but with such a small sample size, and because sampling appears to be from a
light-tailed distribution, the probability coverage of both con�dence intervals might be
less than 0.95. The command mestci(x,os=T) computes a 0.95 con�dence interval
using the one-step M-estimator. This yields (573.8, 629.5), which is nearly the same as
the 0.95 con�dence interval based on µ̂m .

n

4.6 Con�dence Intervals for Quantiles

This section addresses the problem of computing a confidence interval for xq , the qth
quantile. Many strategies are available, but only a few are listed here.
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Consider the interval (X(i), X( j)). As a confidence interval for the qth quantile, the exact
probability coverage of this interval is

j−1∑
k=i

(
n
k

)
qk(1−q)n−k

(e.g., Arnold, Balakrishnan, & Nagaraja, 1992). An issue is whether alternative methods
might give shorter confidence intervals, but it seems that among the alternatives listed here,
little is known about this possibility. Imagine that a confidence interval is sought that has
probability coverage at least .95. If n is small and fixed, as q goes to zero or one, it becomes
impossible to achieve this goal. For example, if n = 30 and q = 0.05, the highest possible
probability coverage is .785. So an issue is whether other methods can be found that perform
reasonably well in this case.

Next consider techniques based on the Harrell–Davis estimator, θ̂q . A simple method that
seems to be reasonably effective, at least for α = 0.05 and n ≥ 20, is to use the percentile
bootstrap. However, another approach is used here, one that appears to be about as effective
as the percentile bootstrap, its main advantage being that it continues to give good results in
situations covered in Chapter 5, whereas the percentile bootstrap does not. (For other methods
that have been considered, see Wilcox, 1991b.)

Let σ̂hd be the bootstrap estimate of the standard error of θ̂q , which is described in Chapter 3.
Here, B = 100 bootstrap samples are used to compute σ̂hd. Temporarily assume that sampling
is from a normal distribution and suppose c is determined so that the interval

(θ̂q − cσ̂hd, θ̂q + cσ̂hd) (4.13)

has probability coverage 1−α. Then simply continue to use this interval when sampling from
nonnormal distributions. There is the practical problem that c is not known, but it is easily
estimated by running simulations on a computer. Suppose c is to be chosen with the goal of
computing a 0.95 confidence interval. For normal distributions, simulations indicate that for
n fixed, c does not vary much as a function of the quantile being estimated, provided n ≥ 11
and attention is restricted to those quantiles between 0.3 and 0.7. For convenience, c was
determined for n = 11,15,21,31,41,61,81,121, and 181, and then a regression line was
fitted to the resulting pairs of points yielding

ĉ = 0.5064n−0.25
+1.96, (4.14)

where the exponent, −0.25, was determined using the half-slope ratio of Tukey’s resistant
regression line. (See, e.g., Velleman & Hoaglin, 1981; Wilcox, 1996a.) When dealing with the
0.2 or 0.8 quantile, (4.14) gives reasonably good results for n > 21. For 11≤ n ≤ 21, use

ĉ =
−6.23

n
+5.01.
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Critical values have not been determined for n < 11. For the 0.1 and 0.9 quantiles, use

ĉ =
36.2

n
+1.31

when 11≤ n ≤ 41, otherwise use Eq. (4.14).

As a partial check on the accuracy of the method, it is noted that when observations are
generated from a lognormal distribution, the actual probability coverage when working with
the median, when n = 21 and α = 0.05, is approximately .959, based on a simulation with
10,000 replications. For the 0.1 and 0.9 quantiles it is .974 and .928, respectively. However,
with n = 30 and q = 0.05, this method performs poorly.

Another approach is to use x̂q to estimate the qth quantile as described in Section 3.5,
estimate the standard error of x̂q with σ̂mj, the Maritz–Jarrett estimator described in
Section 3.5.3, and then assume that

Z =
x̂q − xq

σ̂mj

has a standard normal distribution. Then an approximate 1−α confidence interval for the qth
quanitle is

(xq − z1−α/2σ̂mj, xq + z1−α/2σ̂mj), (4.15)

where z1−α/2 is the 1−α/2 quantile of the standard normal distribution. Table 4.7 shows α̂,
the estimate of one minus the probability coverage, for the four g-and-h distributions
discussed in Section 4.2 when q = 0.5, α = 0.05, and n = 13. The estimates are based on
simulations with 10,000 replications. When sampling from a lognormal distribution,
α̂ = 0.067.

A variation of this last method is to replace the Maritz–Jarrett estimate of the standard error
with an estimate based on Eq. (3.11), which requires an estimate of f (xq), the probability
density function evaluated at xq . If f (xq) is estimated with the adaptive kernel method in
Section 3.2.4, a relatively accurate 0.95 confidence interval can be had with n = 30 and

Table 4.7: Values of
α̂ when Using (4.15),
n= 13 and α = 0.05.

g h α̂

0.0 0.0 0.067
0.0 0.5 0.036
0.5 0.0 0.062
0.5 0.5 0.024
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q = 0.05. In fact, this is the only method known to perform reasonably well for this special
case. As we move from normality toward heavy-tailed distributions, this method continues to
perform tolerably well up to a point (a g-and-h distribution with g = h = 0.2), but eventually
it will fail. For example, with g = h = 0.5, the probability coverage is approximately .92, but
increasing n to 40, the probability coverage is approximately .95.

4.6.1 Beware of Tied Values when Using the Median

When making inferences about the median in particular (and more generally any quantile),
tied values can create serious practical problems when computing confidence intervals and
testing hypotheses. For the special case where the goal is to compute a confidence interval for
the population median, the method in the next section can be used when tied values occur. But
when comparing the median of two or more distributions, techniques based on estimates of
the standard error of M , which simultaneously assume M has a normal distribution, can be
highly unsatisfactory, even with large sample sizes. The first general problem is getting a
reasonably accurate estimate of the standard error. As noted in Section 3.3.5, all known
estimates of the standard error of the sample median can be extremely inaccurate. The second
difficulty is that the sampling distribution of M can be poorly approximated by a normal
distribution, even with a large sample size.

To underscore why tied values can cause problems when working with the median, and to
illustrate a limitation of the central limit theorem, imagine a random sample X1, . . . , Xn ,
where each X i has the binomial probability function

(
15
x

)
0.7x 0.315−x ,

So, for example, the probability that a randomly sampled participant responds with the value
13 is 0.09156. As is evident, with a sample size of n = 20, tied values are guaranteed since
there are only 16 possible responses. The left panel of Figure 4.5 shows a plot of the relative
frequencies associated with 5000 sample medians, with each sample median based on n = 20
randomly sampled observations. The plot resembles somewhat a normal curve, but note that
only five values for the sample median occur. Now look at the right panel, which was created
in the same manner as the left panel, only with a sample size of n = 100 for each sample
median. Blind reliance on the central limit theorem would suggest that the plot will look more
like a normal distribution than the left panel, but clearly this is not the case. Now only three
values for the sample median are observed. In practical terms, methods for making inferences
about the median, which assume the sample median has a normal distribution, can be
disastrous when tied values can occur.
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Figure 4.5: When tied values can occur, the sample median might not be asymptotically normal.
The left panel shows the sampling distribution of the median with n= 20. The right panel is the
sampling distribution with n= 100.

4.6.2 Alternative Method for the Median

When the goal is to compute a confidence interval for the population median, the following
method can be used even when there are tied values. Suppose W is a binomial random
variable with probability of success p = .5 and n trials. For any integer k between 0 and
[n/2], let γk = P(k ≤W ≤ n−k), the probability that the number of successes, W , is between
k and n− k, inclusive. Then a distribution-free γk confidence interval for the median is

(X(k), X(n−k+1)).

That is, the probability coverage is exactly γk under random sampling (e.g., Hettmansperger
& McKean, 1998; also see Yohai & Zamar, 2004). This is just a special case of the first
method described in the previous section.

Because the binomial distribution is discrete, it is not possible, in general, to choose k so that
the probability coverage is exactly equal to 1−α. For example, if n = 10, 0.891 and 0.978
confidence intervals can be computed, but not a 0.95 confidence interval as is often desired.
However, linear interpolation can be used along the lines suggested by Hettmansperger and
Sheather (1986) so that the probability coverage is approximately 1−α. First determine k
such that γk+1 < 1−α < γk . Next, compute

I =
γk−1−α

γk−γk+1
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and

λ=
(n− k)I

k+ (n−2k)I
.

Then an approximate 1−α confidence interval is

(λX(k+1)+ (1−λ)X(k), λX(n−k)+ (1−λ)X(n−k+1)). (4.16)

Results reported by Sheather and McKean (1987), as well as Hall and Sheather (1988),
support the use of this method.

4.6.3 R Functions qmjci, hdci, sint, sintv2, qci, and qint

The R function

qmjci(x,q=0.5,alpha=0.05,op=1),

computes a 1−α confidence interval for the qth quantile using Eq. (4.15) and the data stored
in the R vector x . The function returns the lower and upper values of the confidence interval.
The default value for q is 0.5 and the default value for alpha (α) is 0.05. (The accuracy of this
confidence interval for q 6= 0.5 and n small has not been studied.) With op=1, the
Maritz–Jarrett estimate of the standard error is used, and with op=2, the McKean–Schrader
estimate (described in Section 3.3.5) is used instead. (With op=2, only q=0.5 is allowed.)
With op=3, the function estimates the standard error via the adaptive kernel estimate of
f (xq). The function

qci(x,q=0.5,alpha=0.05)

returns the same confidence interval as qmjci with op=3 and is provided in case it is
convenient.

The R function

hdci(x,q=0.5,nboot=100)

computes a 0.95 confidence interval using the Harrell–Davis estimator. As indicated, the
default value for q is 0.5, and the default number of bootstrap samples, nboot, is 100.

Finally, the function

sint(x,alpha=0.05),

computes a confidence interval for the median using Eq. (4.16), where α is taken to be 0.05 if
not specified. (Version 6 of Minitab also has a command called sint that computes a
confidence interval for the median using (4.16)). To get a p-value when testing the hypothesis
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that the population median is equal to some specified value, use the R function

sintv2(x,alpha=0.05,nullval=0),

where the null value is specified by the argument nullval, which defaults to 0. Confidence
intervals for general q , that do not use interpolation, are computed by the function

qint(x,q=0.5,alpha=0.05).

The exact probability coverage, based on the first method in Section 4.6, is reported as well.

n Example

Staudte and Sheather (1990) illustrate the use of Eq. (4.16) with data from a study on
the lifetimes of EMT6 cells. The values are 10.4, 10.9, 8.8, 7.8, 9.5, 10.4, 8.4, 9.0, 22.2,
8.5, 9.1, 8.9, 10.5, 8.7, 10.4, 9.8, 7.7, 8.2, 10.3, and 9.1. Both the sample median, M ,
and x̂0.5 are equal to 9.1. The resulting 0.95 con�dence interval reported by sint is (8.72,
10.38). In contrast, the con�dence interval based on Eq. (4.15), as computed by the R
function qmjci, is (8.3, 9.9). The length of the con�dence intervals are about the same.
The main difference is that the con�dence interval based on (4.15) is centered about the
sample median, 9.1, while the con�dence interval based on Eq. (4.16) is not. The
Harrell–Davis estimate of the median is 9.26, and a 0.95 con�dence interval based on
Eq. (4.13), computed with the R function hdci, is (8.45, 10.08).

n

4.7 Empirical Likelihood

Empirical likelihood methods (Owen, 2001) represent another nonparametric approach for
computing a confidence interval for the population mean that should be noted. Asymptotic
results suggest that a Bartlett corrected empirical likelihood approach is superior to using
a bootstrap-t method (DiCiccio, Hall, & Romano, 1991).

The empirical likelihood method can be used to construct a confidence interval for µ, but for
simplicity it is described in terms of testing H0: µ= µ0. Consider distributions Fp,
p = (p1, . . . , pn) supported on the sample X1, . . . , Xn , where X i is assigned mass pi . For a
specified value of µ, the empirical likelihood L(µ) is defined to be the maximum value of
5pi over all such distributions that satisfy

∑
X i pi = µ. Because 5pi attains its overall

maximum when pi = n−1, it follows that the empirical likelihood is maximized when µ= X̄ .
The empirical likelihood ratio for testing H0 is

W =−2log{L(µ0)/L(X̄)}.
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When the null hypothesis is true, W has, approximately a chi-squared distribution with 1
degree of freedom. In particular, reject H0 at the α level if W ≥ c, where c is the 1−α
quantile of a chi-squared distribution with 1 degree of freedom.

4.7.1 Bartlett Corrected Empirical Likelihood

The Bartlett corrected empirical likelihood method is applied as follows. Let
µ̂ j = n−1∑(X i − X̄) j and

a =
1

2
µ̂4µ̂

−2
2 −

1

3
µ̂2

3µ̂
−3
2 .

Then the null hypothesis is rejected if W (1−an−1)≥ c.

Table 4.8 reports simulation estimates (based on 1000 replications) of the type I error
probability for the empirical likelihood (EL) method, the Bartlett corrected empirical
likelihood (BCEL), the equal-tailed bootstrap-t (BEQ) and the symmetric bootstrap-t
(BSYM). The distributions considered are normal, chi-squared with 1 degree of freedom (χ2

1 ),
a Student’s t with 5 degrees of freedom (t5), a lognormal distribution (LogN), the
contaminated normal (cnorm) shown in Figure 1.1, and some g-and-h distributions. Glenn and

Table 4.8: Estimated Type I Error Probabilities.

n Distribution EL BCEL BEQ BSYM

20 Normal .074 .064 .058 .045
χ 2

1 .117 .103 .068 .080
t5 .075 .059 .067 .036

LogN .137 .120 .099 .104
Cnorm .169 .138 .116 .010

(g,h)=(0.2,0.0) .090 .072 .083 .035
(g,h)=(0.2,0.2) .094 .080 .083 .047
(g,h)=(0.5,0.5) .270 .241 .231 .186

50 Normal .052 .050 .055 .049
χ 2

1 .074 .069 .055 .059
t5 .062 .058 .072 .048

LogN .068 .062 .058 .054
Cnorm .137 .125 .145 .011

(g,h)=(0,0.2) .061 .057 .073 .037
(g,h)=(0.2,0.2) .074 .066 .080 .050
(g,h)=(0.5,0.5) .215 .203 .207 .194

EL=empirical likelihood.
BCEL=Bartlett corrected empirical likelihood.
BEQ=bootstrap-t, equal-tailed.
BSYM=bootstrap-t, symmetric.
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Zhao (2007) derived theoretical results indicating that the empirical likelihood methods can
be unsatisfactory when sampling from contaminated normal. And the results in Table 4.8
illustrate that they can indeed be highly unsatisfactory. (Also see Wilcox, 2010g.)

Although the seriousness of a type I error depends on the situation, Bradley (1978) has
suggested that generally, at a minimum, the actual type I error probability should be between
.025 and .075 when testing at the 0.05 level. Based on this criterion, none of the methods are
satisfactory. However, for skewed distributions for which the median proportion of outliers
does not exceed 0.05, the symmetric bootstrap method gives satisfactory results. The
symmetric bootstrap method can be too conservative when sampling from a symmetric
heavy-tailed distribution, but this might be judged to be less serious than having an actual
Type I error greater than 0.075, as is the case when using the empirical likelihood methods.
Note that with n = 20, the symmetric bootstrap method has a type I error probability of .080
when sampling from a chi-squared distribution with 1 degree of freedom. Increasing the
sample size to n = 25, the estimate drops to .065, and for n = 30 it is .059.

Some additional simulations were run with n = 100 and it was found that the empirical
likelihood methods continue to perform poorly when sampling from the heavy-tailed
distributions considered here. With n = 200 they perform well when sampling from the
contaminated normal but estimates exceed .15 when sampling from the g-and-h distribution
when g = h = 0.5.

Recent results on how to improve the empirical likelihood method, when working with the
mean, are reported by Vexler, Liu, Kang, and Hutson (2009), but control over the type I error
probability remains rather poor when dealing with nonnormal distributions. Also see Glenn
(2002) as well as Glenn and Zhao (2007). For a review of empirical likelihood methods when
dealing with regression, see Chen and Van Keilegem (2009).

As for n = 50, the empirical likelihood methods compete better with the bootstrap-t methods,
but the symmetric bootstrap-t performs well in situations where the empirical likelihood
methods are unsatisfactory based on Bradley’s criterion. Again a criticism of the symmetric
bootstrap-t is that for a symmetric heavy-tailed distribution (the contaminated normal), the
type I error probability drops below .025. But the other three methods have estimates greater
than .12. So for general use, the symmetric bootstrap-t seems best.

Some additional simulations were run with n = 100 and it was found that the empirical
likelihood methods continue to perform poorly when sampling from the heavy-tailed
distributions considered here. With n = 200 they perform well when sampling from the
contaminated normal but estimates exceed .15 when sampling from the g-and-h distribution
when g = h = 0.5.
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4.8 Concluding Remarks

To summarize a general result in this chapter, there is a plethora of methods one might use to
compute confidence intervals and test hypotheses. Many methods can be eliminated based on
published studies, but several possibilities remain. As noted in Chapter 3, there are arguments
for preferring trimmed means over M-estimators, and there are arguments for preferring
M-estimators instead, so the choice between the two is not particularly obvious. In terms of
computing confidence intervals, all indications are that when working with the 20% trimmed
mean, reasonably accurate probability coverage can be obtained over a broader range of
situations versus an M-estimator or mean. As already stressed, the 20% trimmed mean can
have a relatively small standard error when sampling from a heavy-tailed distribution, but
other criteria can be used to argue for some other measure of location. If the sample size is at
least 20, M-estimators appear to be a viable option based on the criterion of accurate
probability coverage. An advantage of the modified one-step M-estimator (MOM) is that
accurate confidence intervals can be computed with small sample sizes in situations where
methods based on M-estimators are not quite satisfactory, and it is flexible about how many
observations are trimmed, in contrast to a trimmed mean. From an efficiency point of view,
M-estimators based on Huber’s 9 generally have a bit of an advantage over MOM, when
sampling from a normal distribution or a distribution where the expected proportion of
outliers is less an 0.1. However, as the expected proportion of outliers increases, MOM can
have a smaller standard error than the one-step M-estimator (Özdemir & Wilcox, 2010). And
in terms of controlling type I error probabilities, it seems that using MOM in conjunction with
a percentile bootstrap method is a bit more satisfactory than using a one-step M-estimator,
particularly when dealing with skewed, relatively light-tailed distributions. Inferences about
quantiles might appear to be rather uninteresting at this point, but they can be used to address
important issues that are ignored by other measures of location, as will be seen in Chapter 5.
Put more generally, different methods for summarizing data can reveal important and
interesting features that other methods miss.

4.9 Exercises

1. Describe situations where the confidence interval for the mean might be too long or too
short. Contrast this with confidence intervals for the 20% trimmed mean and µm .

2. Compute a 0.95 confidence interval for the mean, 10% mean, and 20% mean using the
data in Table 3.1 of Chapter 3. Examine a boxplot of the data and comment on the
accuracy of the confidence interval for the mean. Use both Eq. (4.3) and the bootstrap-t
method.
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3. Compute a 0.95 confidence interval for the mean, 10% mean, and 20% mean using the
lifetime data listed in the example of Section 4.6.3. Use both Eq. (4.3) and the
bootstrap-t method.

4. Use the R functions qmjci, hdci, and sint to compute a 0.95 confidence interval for the
median based on the LSAT data in Table 4.3. Comment on how these confidence interval
compare to one another.

5. The R function rexp generates data from an exponential distribution. Use R to estimate
the probability of getting at least one outlier, based on a boxplot, when sampling from
this distribution. Discuss the implications for computing a confidence interval for µ.

6. If the exponential distribution has variance µ[2] = σ
2, then µ[3] = 2σ 3 and µ[4] = 9σ 4.

Determine the skewness and kurtosis. What does this suggest about getting an accurate
confidence interval for the mean?

7. Do the skewness and kurtosis of the exponential distribution suggest that the bootstrap-t
method will provide a more accurate confidence interval for µt versus the confidence
interval given by Eq. (4.3)?

8. For the exponential distribution, would the sample median be expected to have a
relatively high or low standard error? Compare your answer to the estimated standard
error obtained with data generated from the exponential distribution.

9. Discuss the relative merits of using the R function sint versus qmjci and hdci.
10. Verify Eq. (4.5) using the decision rule about whether to reject H0 described in

Section 4.4.3.
11. For the LSAT data in Table 4.3, compute a 0.95 bootstrap-t confidence interval for mean

using the R function trimcibt with plotit=T. Note that a boxplot finds no outliers.
Comment on the plot created by trimcibt in terms of achieving accurate probability
coverage when using Student’s t. What does this suggest about the strategy of using
Student’s t if no outliers are found by a boxplot?

12. Generate 20 observations from a g-and-h distribution with g = h = 0.5. (This can be
done with the R function ghdist, written for this book.) Examine a boxplot of the data.
Repeat this 10 times. Comment on the strategy of examining a boxplot to determine
whether the confidence interval for the mean has probability coverage at least as high as
the nominal level.
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CHAPTER 5

Comparing Two Groups

A natural and reasonable approach to comparing two distributions is to compare robust
measures of location and scale, but first attention is focused on global comparisons of two
distributions. The motivation for global comparisons is that if two distributions differ, they
might do so in complicated and interesting ways that are not revealed by differences between
single measures of location or scale. For example, if one or both distributions are skewed, the
difference between the means might be large compared with the difference between the
trimmed means, or any other measure of location that might be used. As is evident, the reverse
can happen when the difference between the trimmed means is large and the difference
between the means is not. Of course, two or more measures of location might be compared,
but this might miss interesting differences and trends among subpopulations of participants.

To elaborate, it helps first to consider a simple but unrealistic situation. Consider two normal
distributions that have means µ1 = µ2. Then any test of the hypothesis H0: µ1 = µ2 should
not reject. But suppose the variances differ. To be concrete, suppose an experimental method
is being compared with a control group, and that the control group has variance σ 2

1 = 1,
whereas the experimental method has σ 2

2 = 0.5. Then the experimental group is effective in
the sense that low-scoring participants in the experimental group have higher scores than
low-scoring participants in the control group. Similarly, the experimental method is
detrimental in the sense that high-scoring participants in the experimental group tend to
score lower than high-scoring participants in the control group. That is, different
subpopulations of participants respond in different ways to the experimental method. Of
course, in this simple example, one could compare the variances of the two groups, but for
various reasons to be explained and illustrated, it can be useful to compare the quantiles of the
two groups instead.

As another example, consider the two distributions in Figure 5.1. The distributions differ, the
effectiveness of one method over the other depends on which quantiles are compared, yet the
distributions have identical means and variances. (The skewed distribution is chi-square with
four degrees of freedom, so the mean and variance are 4 and 8, respectively, and the
symmetric distribution is normal.)

Introduction to Robust Estimation and Hypothesis Testing. DOI: 10.1016/B978-0-12-386983-8.00005-6
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Figure 5.1: Two different distributions with equal means and variances.

In this book, an experimental method is defined to be completely effective compared with a
control group if each quantile of the experimental group is greater than the corresponding
quantile of the control group. In symbols, if xq and yq are the qth quantiles of the control and
experimental group, respectively, the experimental method is said to be completely effective if
yq > xq for any q. This implies that the experimental method is stochastically larger than the
distribution associated with the control. If xq > yq for some q, but xq < yq for others, the
experimental method is defined to be partially effective. Both of the illustrations just
described correspond to situations where an experimental method is only partially effective.
There are situations where comparing measures of location and scale can be used to establish
whether an experimental method is completely effective (e.g., Wilcox, 1990b), but this
requires assumptions that are not always met and cannot always be tested in an effective
manner, so this approach is not pursued here. Note that Student’s t-test assumes that σ1 = σ2

even when µ1 6= µ2. If this assumption is met, and distributions are normal, then µ1 > µ2

implies that the experimental method is completely effective. The practical concern is that,
when these two assumptions are not met, as is commonly the case, such a conclusion can be
highly misleading and inaccurate.

5.1 The Shift Function

There are various ways entire distributions might be compared. This section describes an
approach based on the so-called shift function. The basic idea, which was developed by
Doksum (1974, 1977) as well as Doksum and Sievers (1976), is to plot the quantiles of the
control group versus the differences between the quantiles. That is, letting X be the random
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Table 5.1: Weight Gain, in Grams, for Large Babies.

Group 1 (heartbeat)
Subject Gain Subject Gain

1 190 11 10
2 80 12 10
3 80 13 0
4 75 14 0
5 50 15 −10
6 40 16 −25
7 30 17 −30
8 20 18 −45
9 20 19 −60

10 10 20 −85
Group 2 (no heartbeat)

Subject Gain Subject Gain Subject Gain Subject Gain

1 140 11 −25 21 −50 31 −130
2 100 12 −25 22 −50 32 −155
3 100 13 −25 23 −60 33 −155
4 70 14 −30 24 −75 34 −180
5 25 15 −30 25 −75 35 −240
6 20 16 −30 26 −85 36 −290
7 10 17 −45 27 −85
8 0 18 −45 28 −100
9 −10 19 −45 29 −110

10 −10 20 −50 30 −130

variable associated with the control, plot xq versus

1(xq)= yq − xq , (5.1)

where yq is the qth quantile of the experimental method. 1(xq) is called a shift function. It
measures how much the control group must be shifted so that it is comparable with the
experimental method at the qth quantile.

The shift function is illustrated with some data from a study by Salk (1973). The goal was to
study weight gain in newborns. Table 5.1 shows the data for a portion of the study based on
infants who weighed at least 3500 g at birth. The experimental group was continuously
exposed to the sound of a mother’s heartbeat. For the moment, attention is focused on
comparing the deciles rather than all of the quantiles. For the control group (not exposed to
the sound of a heartbeat), the Harrell-Davis estimates of the deciles (the 0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, and 0.9 quantiles) are −171.7, −117.4, −83.1, −59.7, −44.4, −32.1, −18.0,
7.5, and 64.9. For the experimental group, the estimates are −55.7, −28.9, −10.1, 2.8, 12.2,
22.8, 39.0, 61.9, and 102.7, and this yields an estimate of the shift function. For example, an
estimate of 1(x0.1) is 1̂(−171.7)=−55.7− (−171.7)= 116. That is, the weight gain among
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Figure 5.2: The x-axis indicates the deciles for the �rst group and the y-axis indicates the
difference between the deciles of the second group versus the �rst.

infants at the 0.1 quantile of the experimental group is estimated to be 116 g higher than the
infants corresponding to the 0.1 quantile of the control. Figure 5.2 shows a plot of the
estimated deciles for the control group versus 1̂. Notice the apparent monotonic decreasing
relationship between xq , weight gain in the control group, versus 1. The plot suggests that
exposure to the sound of a heartbeat is most effective for infants who gain the least amount of
weight after birth. As is fairly evident, this type of detailed comparison can be important and
useful. If, for example, an experimental method is expensive or invasive, knowing how
different subpopulations compare might affect the policy or strategy one is willing to adopt
when dealing with a particular problem.

Next, attention is turned to the more general setting where the goal is to compare all of the
quantiles rather than just the deciles. Suppose the value x satisfies P(X ≤ x)= q . As noted in
Chapter 3, from a strictly technical point of view, x is not necessarily the qth quantile. If x is
the qth quantile, the difference between the two distributions at xq is measured with 1(xq)

given by Eq. (5.1). If x is not the qth quantile, as might be when sampling from a discrete
distribution, the difference between the two distributions is measured with

1(x)= yq − x .

Let X1, . . . , Xn and Y1, . . . ,Ym be random samples from a control and experimental group,
respectively. As usual, let X(1) ≤ · · · ≤ X(n) be the order statistics. Following Doksum and
Sievers (1976), 1(x) can be estimated as follows. Let q̂ = F̂(x) be the proportion of
observations in the control group that are less than or equal to x . In terms of the order
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statistics, q̂ = i/n, where i is the largest integer such that X(i) ≤ x . Note that x qualifies as a
reasonable estimate of xq , the qth quantile. Then to estimate 1(x), all that is needed is an
estimate of the qth quantile of Y . The simplest estimate is Y(`), where `= [q̂m+0.5] and as
usual the notation [q̂m+0.5] means to round q̂m+0.5 down to the nearest integer. In other
words, use the quantile estimator described in Section 3.5 of Chapter 3. Finally, estimate 1(x)
with

1̂(x)= Y(`)− x . (5.2)

One can then plot 1̂(x) versus x to get an overall sense of how the two groups compare.

n Example

As a simple illustration, suppose it is desired to estimate 1(−160) for the weight data in
Table 5.1. There are n = 36 participants in the control group, three participants have
values less than or equal to −160, so q̂ = 3/36. To estimate the 3/36 quantile of the
experimental group, note that there are m = 20 participants, so
`= [(3/36)(20)+0.5]= 2. Therefore, the estimate of y3/36 is the second smallest value
in the experimental group, which is −60. Hence, 1(−160) is estimated to be
−60− (−160)= 100 suggesting that the typical infant who would lose 160 g at birth
would lose 100 g less if exposed to the sound of a heartbeat. There are also three values
in the control group less than or equal to −180, so 1(−180) is estimated to be
1̂(−180)=−60− (−180)= 120. Note that the shift function is just a series of straight
lines with jumps at the points (X i , 1̂(X i )), i = 1, . . . ,n. (A graphical illustration is given
in Figure 5.3 which is discussed at the end of Section 5.1.4.)

There remains the problem of how to make inferences about 1(x). Three approaches
are described for comparing independent groups plus an extension of one of the
methods to the case of dependent groups. One approach is based on comparing the
deciles only, when they are estimated with the Harrell–Davis estimator, and the other
two compute a con�dence band for all quantiles. The latter two methods are based on
two versions of the Kolmogorov–Smirnov test which are summarized in the next section
of this chapter, after which attention is returned to making inferences about 1(x).

n

5.1.1 The Kolmogorov–Smirnov Test

The Kolmogorov–Smirnov test is designed to test

H0 : F(x)= G(x), all x, (5.3)
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versus H1: F(x) 6= G(x) for at least one x , where F and G are the distributions associated
with two independent groups (cf. Li, Tiwari, & Wells, 1996). The Kolmogorov–Smirnov test
is of interest in its own right, and it is of interest in the present situation because it yields a
confidence band for the shift function (cf. Fan, 1996).

Let X1, . . . , Xn , and Y1, . . . ,Ym be random samples from two independent groups. Let F̂(x)
and Ĝ(x) be the usual empirical distribution functions. Thus, F̂(x) is just the proportion of X i

values less than or equal to x , and Ĝ(x) is the proportion of Yi values less than or equal to x .
The Kolmogorov–Smirnov statistic for testing Eq. (5.3) is based on max|F̂(x)− Ĝ(x)|, the
maximum being taken over all possible values of x . That is, the test statistic is based on an
estimate of the Kolmogorov distance between the two distributions. Let Zi be the n+m
pooled observations. In symbols, Zi = X i , i = 1, . . . ,n, and Zn+i = Yi , i = 1, . . . ,m. Then
the Kolmogorov–Smirnov test statistic is

D =max|F̂(Zi )− Ĝ(Zi )|, (5.4)

the maximum being taken over all n+m values of i . That is, for each i , i = 1, . . . ,n+m,
compute |F̂(Zi )− Ĝ(Zi )| and set D equal to the largest of these values.

When sampling from continuous distributions, in which case ties occur with probability zero,
percentage points of the null distribution of D can be obtained using a recursive method
(Kim & Jennrich, 1973). Table 5.2 outlines the calculations. The method is too tedious to do
by hand, an R function is provided that computes the exact significance level, so no
illustration is given on how to perform the calculations.

Suppose the null hypothesis of identical distributions is true. If H0 is rejected when D > c,
and the algorithm in Table 5.2 indicates that P(D > c)= α, given n and m, then the
probability of a type I error is exactly α when ties are impossible. Moreover, the
Kolmogorov–Smirnov test is distribution free—the probability of a type I error is exactly α
regardless of which distributions are involved. However, if there are ties, the probability of a
type I error is less than α (Schroër & Trenkler, 1995), but an exact significance level can be
computed. Given the pooled data, Z , and letting Z(1) ≤ · · · ≤ Z(N ) be the order statistics, the
significance level of D, given Z , can be determined by proceeding as described in Table 5.2,
only C(i, j) is also set equal to 1 if i + j < N and Z(i+ j) = Z(i+ j+1) (Schroër & Trenkler,
1995). (Also see Hilton, Mehta, & Patel, 1994.)

There is another version of the Kolmogorov–Smirnov test worth considering that is based on
a weighted analog of the Kolmogorov distance between two distributions. Let N = m+n,
M = mn/N , λ= n/N , and Ĥ(x)= λF̂(x)+ (1−λ) ˆG(x). Now, the difference between any
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Table 5.2: Computing the Percentage Points of the Kolmogorov–Smirnov Statistic.

To compute P(D ≤ c), where D is the Kolmogorov–Smirnov test statistic given by (5.4), let C(i, j)= 1 if∣∣∣∣ i

n
−

j

m

∣∣∣∣≤ c, (5.5)

otherwise C(i, j)= 0, where the possible values of i and j are i = 0, . . . ,n and j = 0, . . . ,m. Note that there
are (m+1)(n+1) possible values of D based on sample sizes of m and n. Let N (i, j) be the number of paths
over the lattice

{(i, j) : i = 0, . . . ,n; j = 0, . . . ,m},

from (0,0) to (i, j), satisfying (5.5). Because the path to (i, j)must pass through either the point (i−1, j) or
(i, j −1), N (i, j) is given by the recursion relation

N (i, j)= C(i, j)[N (i, j −1)+ N (i −1, j)],

subject to the initial conditions N (i, j)= C(i, j) when i j = 0. When ties occur with probability zero, and H0:
F(x)= G(x) is true,

P(D ≤ c)=
m!n!N (m,n)

(n+m)!
,

where the binomial coef�cient, (n+m)!/(m!n!), is the number of paths from (0,0) to (n,m).

When working with the weighted version of the Kolmogorov–Smirnov test, Dw, proceed exactly as before only
set C(i, j)= 1 if √

mn

n+m

∣∣∣∣ i

n
−

j

m

∣∣∣∣ [ i + j

n+m

(
1−

i + j

n+m

)]−1/2

≤ c.

Then

P(Dw ≤ c)=
m!n!N (m,n)

(n+m)!
.

two distributions, at the value x , is estimated with

√
M |F̂(x)− Ĝ(x)|√
Ĥ(x)[1− Ĥ(x)]

. (5.6)

Then H0: F(x)= G(x) can be tested with an estimate of the largest weighted difference over
all possible values of x . (Also see Büning, 2001.) The test statistic is

Dw =max

√
M |F̂(Zi )− Ĝ(Zi )|√
Ĥ(Zi )(1− Ĥ(Zi ))

, (5.7)
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where the maximum is taken over all values of i , i = 1, . . . , N , subject to
Ĥ(Zi )[1− Ĥ(Zi )]> 0. An exact significance level can be determined as described in
Table 5.2. An argument for Dw is that it gives equal weight to each x in the sense that the
large sample (asymptotic) variance of Eq. (5.6) is independent of x . Put another way,
|F̂(x)− Ĝ(x)|, the estimate of the Kolmogorov distance at x , tends to have a larger variance
when x is in the tails of the distributions. Consequently, inferences based on the unweighted
Kolmogorov–Smirnov test statistic, D, tend to be more sensitive to differences that occur in
the middle portion of the distributions. In contrast, Eq. (5.5) is designed so that its variance
remains fairly stable as a function of x . Consequently, Dw is more sensitive than D to
differences that occur in the tails.

When using Dw, and both m and n are less than or equal to 100, an approximate 0.05 critical
value is

1

95
{0.48[max(n,m)−5]+0.44|n−m|}+2.58,

the approximation being derived from the percentage points of Dw reported by Wilcox (1989).
When using D, an approximation of the α critical value, when performing a two-sided test, is

√
−

n+m

2nm
log(α/2)

(e.g., Hollander & Wolfe, 1973). This approximate critical value is reported by the R function
ks described in the next section of this chapter.

5.1.2 R Functions ks, kssig, kswsig, and kstiesig

The R function

ks(x,y,w=F,sig=T,alpha=0.05),

ks, written for this book, performs the Kolmogorov–Smirnov test, where x and y are any R
vectors containing data. (Again, the R functions written for this book can be obtained as
described in Section 1.8.) The default value for w is F for false, indicating that the unweighted
test statistic, D, is to be used. Using w=T results in the weighted test statistic, Dw. The
default value for sig is T, meaning that the exact p-value is computed using the method in
Table 5.2. If sig=F, ks uses the approximate α critical value, where by default, α = 0.05 is
used. The function returns the value of D or Dw, the approximate α critical value if sig=F,
and the exact p-value if sig=T.
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n Example

If the weight-gain data in Table 5.1 are stored in the R vectors x and y, the command
ks(x,y,sig=F) returns the value D = 0.48 and reports that the 0.05 critical value is
approximately 0.38. (The value of D is stored in the R variable ks$test, and the
approximate critical value is stored in ks$crit.) The command ks(x,y) reports the exact
p-value, which is .0018 and stored in the R variable ks$siglevel. Thus, with α = 0.05, one
would reject the hypothesis of identical distributions. This leaves open the issue of where
the distributions differ and by how much, but this can be addressed with the con�dence
bands and con�dence intervals described in the remaining portion of this section. The
command ks(x,y,T,F) reports that Dw = 3.5 and that an approximate 0.05 critical value
is 2.81. The command ks(x,y,T) computes the p-value when using Dw, which in contrast
to D assumes there are no ties. For the weight-gain data, there are ties and the function
warns that the reported p-value is not exact.

n

For convenience, the functions kssig, kswsig, and kstiesig are also supplied, which compute
exact probabilities for the Kolmogorov–Smirnov statistics. These functions are used by the
function ks to determine significance levels, so in general they are not of direct interest when
testing H0: F(x)= G(x), but they might be useful when dealing with other issues covered in
this chapter. The function kssig has the form

kssig(n,m,c).

It returns the exact p-value level when using the critical value c, assuming there are no ties
and the sample sizes are n and m. In symbols, it determines P(D > c) when computing D
with n and m observations randomly sampled from two independent groups having identical
distributions. Continuing the illustration involving the weight-gain data, the R command

kssig(length(x),length(y),ks(x,y)$test)

computes the p-value of the unweighted Kolmogorov–Smirnov statistic assuming there are no
ties. The result is .021. Because there are ties in the pooled data, this is higher than the p-value
reported by kstiesig which takes ties into account.

If there are ties among the pooled observations, the exact p-value can be computed with the R
function kstiesig. (This is done automatically when using the function ks.) It has the general
form

kstiesig(x,y,c)

and reports the value of P(D > c|Z), where the vector Z = (Z1, . . . , Z N ) is the pooled data.
For the weight-gain data, D = 0.48, and kstiesig(x,y, and 0.48) returns the value 0.0018, the
same value returned by the function ks. If there are no ties among the observations, kstiesig
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returns the same significance level as ks(x,y,sig=T), the significance level associated with the
unweighted test statistic, D.

5.1.3 The S Band and W Band for the Shift Function

This section describes two methods for computing a simultaneous 1−α level confidence band
for 1(x). Suppose c is chosen so that P(D ≤ c)= 1−α. As usual, denote the order statistics
by X(1) ≤ · · · ≤ X(n) and Y(1) ≤ · · · ≤ Y(m). For convenience, let X0 =−∞ and X(n+1) =∞.
For any x satisfying X(i) ≤ x < X(i+1), let

k∗ =

[
m

(
i

n
−

c
√

M

)]+
,

where M = mn/(m+n) and the notation [x]+ means to round up to the nearest integer. For
example, [5.1]+ = 6. Let

k∗ =

[
m

(
i

n
+

c
√

M

)]
,

where k∗ is rounded down to the nearest integer. Then a level 1−α simultaneous,
distribution-free confidence band for 1(x) (−∞< x <∞) is

[Y(k∗)− x,Y(k∗+1)− x), (5.8)

where Y(k∗) =−∞ if k∗ < 0 and Y(k∗) =∞ if k∗ ≥ m+1 (Doksum & Sievers, 1976). That is,
with probability 1−α, Y(k∗)− x ≤1(x) < Y(k∗+1)− x for all x . The resulting confidence band
is called an S band.

n Example

Suppose a con�dence band for 1 is to be computed for the data in Table 5.1. For the
sake of illustration, consider computing the con�dence band at x = 77. Because n = 36
and m = 20, M = 12.86. Note that the value 77 is between X(33) = 70 and X(34) = 100,
so i = 33. From the previous subsection, the 0.05 critical value is approximately
c = 0.38, so

k∗ =

[
20

(
33

36
−

0.38
√

12.86

)]+
= 17.

Similarly, k∗ = 20. From Table 5.1, the 17th value in the experimental group, after
putting the values in ascending order, is Y(17) = 75, Y(20) = 190, so the interval around
1(77) is

(75−77,190−77)= (−2,113).

n
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An exact confidence band for 1, called a W band, can also be computed with the weighted
Kolmogorov–Smirnov statistic. Let c be chosen so that P(Dw ≤ c)= 1−α. This time, for
any x satisfying X(i) ≤ x < X(i+1), let u = i/n and set

h∗ =
u+{c(1−λ)(1−2λu)−

√
c2(1−λ)2+4cu(1−u)}/2

1+ c(1−λ)2
,

and

h∗ =
u+{c(1−λ)(1−2λu)+

√
c2(1−λ)2+4cu(1−u)}/2

1+ c(1−λ)2
.

Set k∗ = [h∗m]+ and k∗ = [h∗m]. In words, k∗ is the value of h∗m rounded up to the nearest
integer, where m is the number of observations in the second group (associated with Y ). The
value of k∗ is computed in a similar manner, only its value is rounded down. Then the
confidence band is again given by Eq. (5.8).

5.1.4 R Functions sband and wband

The R functions sband and wband are provided for determining confidence intervals for 1(x)
at each of the X i values in the control group, and they can be used to compute confidence
bands as well. The function sband has the general form

sband(x,y,crit=1.36((length(x)+length(y))/(length(x)*length(y))),
flag=F, plotit=T,sm=T, op=1).

As usual, x and y are any R vectors containing data. The optional argument crit is the critical
value used to compute the simultaneous confidence band, which defaults to the approximate
0.05 critical value if unspecified. The default value for flag is F, for false, meaning that the
exact probability of a type I error will not be computed. The command sband(x,y,flag=T) will
report the actual probability of a type I error using the approximate .05 critical value,
assuming there are no ties among the pooled data. The command sband(x,y,.2,T) computes
confidence intervals using the critical value 0.2, and it reports the exact probability of a type I
error when there are no ties. The argument plotit defaults to T for true meaning that a plot of
the shift function will be created. If sm=T, the plot of the shift function is smoothed using a
regression smoother called lowess when the argument op is equal to one. (Smoothers are
described in Chapter 11.) If op is not equal to one, lowess is replaced by a running interval
smoother (described in Chapter 11).

The function returns an n-by-3 matrix of numbers in the R variable sband$m. The i th row of
the matrix corresponds to the confidence band computed at 1̂(X(i)), the estimate of the shift
function at the i th largest X value. For convenience, the first column of the n-by-3 matrix
returned by sband contains q̂ = 1/n, i = 1, . . . ,n. The values in the second column are the
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lower ends of the confidence band, whereas the upper ends are reported in column 3. A value
of NA in the middle column corresponds to −∞, whereas NA in the last column means the
upper end of the confidence interval is∞. The function also returns the critical value being
used in the R variable sband$crit, the number of significant differences in sband$numsig, and
if flag=T, the exact probability coverage is indicated by sband$pc. If flag=F, the value of
sband$pc will be NA for not available. The function wband, which is used exactly like sband,
computes confidence intervals (W bands) using the weighted Kolmogorov–Smirnov statistic,
Dw, instead.

n Example

Doksum and Sievers (1976) report data from a study designed to assess the effects of
ozone on weight gain in rats. The experimental group consisted of 22 rats of 70-day old
kept in an ozone environment for 7 days. A control group of 23 rats, of the same age,
were kept in an ozone-free environment. The weight gains, in grams, are listed in
Table 5.3. Table 5.4 shows the 23-by-3 matrix reported by the R function sband. The ith
row of the matrix reports the con�dence interval for 1 at the ith largest value among
the X values. If there had been 45 observations in the �rst group, a 45 by 3 matrix
would be reported instead. The function reports that numsig=8 meaning there are eight
con�dence intervals not containing 0, and from Table 5.4 these are the intervals
extending from the second smallest to the ninth smallest value in the control group. For
example, the second smallest value in the control group is X(2) = 13.1 which
corresponds to an estimate of the q = 2/23≈ 0.09 quantile of the control group, and the
second row in Table 5.4 (labeled [2,]) indicates that the con�dence interval for 1(13.1)
is (NA,−3.0), which means that the con�dence interval is (−∞,−3.0). The interval
does not contain 0 suggesting that rats at the 0.09 quantile of the control group tend to
gain more weight compared with the rats at the 0.09 quantile of the experimental
method. The next eight con�dence intervals do not contain 0 either, but the remaining
con�dence intervals all contain 0. The function sband indicates that the default critical
value corresponds to α = 0.035. Thus, there is evidence that rats who ordinarily gain a
relatively small amount of weight will gain even less weight in an ozone environment.

Table 5.3: Weight Gain of Rats in Ozone Experiment.

Control 41.0 38.4 24.4 25.9 21.9 18.3 13.1 27.3 28.5 −16.9
Ozone 10.1 6.1 20.4 7.3 14.3 15.5 −9.9 6.8 28.2 17.9

Control 26.0 17.4 21.8 15.4 27.4 19.2 22.4 17.7 26.0 29.4
Ozone −9.0 −12.9 14.0 6.6 12.1 15.7 39.9 −15.9 54.6 −14.7

Control 21.4 26.6 22.7
Ozone 44.1 −9.0
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Table 5.4: Con�dence Intervals for 1 Using the Ozone
Data.

qhat lower upper
[1,] 0.04347826 NA 24.2
[2,] 0.08695652 NA -3.0
[3,] 0.13043478 NA -3.3
[4,] 0.17391304 NA -3.4
[5,] 0.21739130 NA -3.4
[6,] 0.26086957 NA -2.8
[7,] 0.30434783 NA -3.5
[8,] 0.34782609 NA -3.5
[9,] 0.39130435 NA -1.4
[10,] 0.43478261 -37.8 6.3
[11,] 0.47826087 -37.1 17.5
[12,] 0.52173913 -35.6 21.4
[13,] 0.56521739 -34.3 30.2
[14,] 0.60869565 -34.9 NA
[15,] 0.65217391 -35.0 NA
[16,] 0.69565217 -19.9 NA
[17,] 0.73913043 -20.0 NA
[18,] 0.78260870 -20.5 NA
[19,] 0.82608696 -20.1 NA
[20,] 0.86956522 -18.4 NA
[21,] 0.91304348 -17.3 NA
[22,] 0.95652174 -24.4 NA
[23,] 1.00000000 -26.7 NA

n

The R command sband(x,y,flag=T) reports that when using the default critical value, which is
reported to be 0.406, the actual probability coverage is 1−α = .9645 assuming there are no
ties. To find out what happens to 1−α when a critical value of 0.39 is used instead, type the
command sband(x,y,.39,T). The function reports that now, 1−α = 0.9638.

The S band suggests that there might be a more complicated relationship between weight gain
and ozone than is suggested by a single measure of location. Figure 5.3 shows the plot of
1̂(x) versus x that is created by sband. (The + along the x-axis marks the position of the
median in the first group, and the lower and upper quartiles are indicated by an o.) The solid
line, between the two dotted lines, is a graph of 1̂(x) versus x . The dotted lines form the
approximate 0.95 confidence band. As previously indicated, the actual probability coverage of
the confidence band is .9645. Notice that the bottom dotted line starts at X = 21.9. This is
because for X ≤ 21.9 the lower end of the confidence band is −∞. Also, the lower dotted line
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Figure 5.3: The shift function for the ozone data.

stops at X = 41 because X = 41 is the largest X value available. Similarly, for X > 24.4, the
upper end of the confidence band is∞, and this is why the upper dotted line in Figure 5.3
stops at X = 24.4. An interesting feature about Figure 5.3 is the suggestion that, as weight
gain increases in the control group, ozone has less of an effect. In fact, rats in the control
group who would ordinarily have a high weight gain might actually gain more weight when
exposed to ozone. However, the confidence band makes it clear that more data are needed to
resolve this issue.

5.1.5 Con�dence Band for the Deciles Only

Confidence intervals for the difference between the deciles can be computed with the
Harrell-Davis estimator such that the simultaneous probability coverage of all nine confidence
intervals is approximately 1−α. One advantage of this approach is that it might have more
power than S or W bands when sampling from normal or light-tailed distributions.

Let θ̂qx be the Harrell-Davis estimate of the qth quantile of the distribution associated with X ,
q = 0.1, . . . ,0.9. Let θ̂qy be the corresponding estimate for Y . The goal is to compute
confidence intervals for yq − xq such that the simultaneous probability coverage is 1−α. A
solution that appears to provide reasonably accurate probability coverage for a wide range of
distributions begins by computing a bootstrap estimate of the standard errors for θ̂qx and θ̂qy

as described in Section 3.5.7. Here, independent bootstrap samples are used for all 18 deciles
being estimated. In particular, bootstrap samples are used to estimate the standard error of
θ̂0.1x , the Harrell-Davis estimate of the 0.1 quantile corresponding to X , and a different

www.elsevierdirect.com



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

WILCOX 08-ch05-137-214-9780123869838 2011/12/6 18:05 Page 151 #15

Chapter 5 Comparing Two Groups 151

(independent) set of bootstrap samples is used to estimate the standard error of θ̂0.2x . Let σ̂ 2
qx

be the bootstrap estimate of the squared standard error of θ̂qx . Then a 0.95 confidence interval
for yq − xq is

(θ̂qy− θ̂qx)± c
√
σ̂ 2

qx + σ̂
2
qy, (5.9)

where, when n = m,

c =
80.1

n2
+2.73. (5.10)

The constant c was determined so that the simultaneous probability coverage of all nine
differences is approximately .95 when sampling from normal distributions. Simulations
suggest that when sampling form nonnormal distributions, the probability coverage remains
fairly close to the nominal .95 level (Wilcox, 1995a). For unequal sample sizes, the current
strategy for computing the critical value is to set n equal to the smaller of the two sample sizes
and use c given by Eq. (5.10). This approach performs reasonably well provided the
difference between the sample sizes is not too large, but if the difference is large enough, the
actual probability of a type I error can be substantially smaller than the nominal level,
especially when sampling from heavy-tailed distributions. Another approach is to use the
nine-variate Studentized maximum modulus distribution to determine c, but Wilcox found
this to be less satisfactory. Yet another approach is to use a percentile bootstrap method to
determine an appropriate confidence interval, but this is less satisfactory as well.

5.1.6 R Function shifthd

The R function shifthd, that comes with this book, computes the 0.95 simultaneous confidence
intervals for the difference between the deciles given by Eq. (5.9). The function has the form

shifthd(x,y,nboot=200,plotit=T,plotop=F).

The data corresponding to the two groups are stored in the R vectors x and y, and the default
number of bootstrap samples used to compute the standard errors is 200. Thus, the command
shifthd(x,y) will use 200 bootstrap samples when computing confidence intervals, while
shifthd(x,y,100) will use 100 instead. The function returns a 9 by 3 matrix. The i th row
corresponds to the results for the i/10 quantile. The first column contains the lower ends of
the confidence intervals, the second column contains the upper ends, and the third column
contains the estimated difference between the quantiles. With plotop=F and plotit=T, the
function creates a plot where the x-axis contains the estimated quantiles of the first groups, as
done by sband. With plotop=T, the function plots q = 0.1, . . . ,0.9 versus (θ̂qy− θ̂qx).
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n Example

For the ozone data in Table 5.3, shifthd returns

lower upper Delta.hat
[1,] -47.75411 1.918352 -22.917880
[2,] -43.63624 -6.382708 -25.009476
[3,] -36.04607 -3.237478 -19.641772
[4,] -29.70039 -0.620098 -15.160245
[5,] -24.26883 -1.273594 -12.771210
[6,] -20.71851 -1.740128 -11.229319
[7,] -24.97728 7.280896 -8.848194
[8,] -24.93361 19.790053 -2.571780
[9,] -20.89520 33.838491 6.471643

The �rst row indicates that the con�dence interval for 1(x.1) is (−47.75411,1.918352),
and that 1̂(θ̂x .1) is equal to −22.917880. The second row gives the con�dence interval
for 1 evaluated at the estimated 0.2 quantile of the control group, and so on. The
con�dence intervals indicate that the weight gain in the two groups differ at the 0.2,
0.3, 0.4, 0.5, and 0.6 quantiles of the control group. Note that in general, the third
column, which reports 1̂(x), is increasing. That is, the differences between weight gain
are getting smaller, and for the 0.9 quantile, there is the possibility that rats gain more
weight in an ozone environment. However, the length of the con�dence interval at the
0.9 quantile is too wide to be reasonably sure.

Figure 5.4 shows the plot created by shifthd for the ozone data. There are nine dots
corresponding to the points (θ̂xq , 1̂(θ̂xq)), q = 0.1, . . . ,0.9. That is, the dots are the
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Figure 5.4: The plot created by the function shifthd using the ozone data.
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estimated shift function plotted as a function of the estimated deciles corresponding to
the data in the �rst argument, x. Note that in general, the dots are monotonic
increasing, which is consistent with Figure 5.3. Above and below each dot is a +
indicating the ends of the con�dence interval.

n

5.1.7 R Functions g2plot and splotg2

To supplement the shift function, it might help to plot a density estimate for the two groups
under study. The function

g2plot(x,y,op=4,rval=15,fr=0.8,aval=0.5)

is supplied to help accomplish this goal. (The density estimate for the second group is
indicated by a dashed line.) The argument op controls the type of graph created. The choices
are

• op=1, Rosenblatt shifted histogram
• op=2, kernel density estimate based on a normal kernel
• op=3, expected frequency curve
• op=4, adaptive kernel estimator

The other arguments are relevant to the various density estimators as described in Chapter 3.

When working with discrete data, the function

splotg2(x,y,op=T,xlab=“X”,ylab=“Rel. Freq.”)

is supplied in case it is desired to plot the relative frequencies for all distinct values found in
each of two groups. With op=T, a line connecting the points corresponding to the relative
frequencies is formed.

5.2 Student’s t-test

This section reviews some practical concerns about comparing means with Student’s t-test.
From previous chapters, it is evident that Student’s t-test can have low power under slight
departures from normality toward a heavy-tailed distribution. There are some additional
issues, however, that help motivate some of the heteroscedastic methods covered in this book.

It is a bit more convenient to switch notation slightly. For two independent groups, let X i j ,
i = 1, . . . ,n j ; j = 1,2 be a random sample of n j observations from the j th group. Let µ j and
σ 2

j be the mean and variance associated with the j th group. If the variances have a common
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value, say σ 2
1 = σ

2
2 = σ

2, and if sampling is from normal distributions, then from basic results,

T =
X̄1− X̄2− (µ1−µ2)√

MSWG
(

1
n1
+

1
n2

) (5.11)

has a Student’s t-distribution with ν = n1+n2−2 degrees of freedom, where

MSWG=
(n1−1)s2

1 + (n2−1)s2
2

n1+n2−2

is the usual (means squares within groups) estimate of the assumed common variance, σ 2. If
the assumptions of normality and equal variances are met, E(T )= 0 and the variance of T
goes to one as the samples sizes get large. To quickly review, the hypothesis of equal means,
H0: µ1 = µ2, is rejected if |T |> t , the 1−α/2 quantile of Student’s t-distribution with
ν = n1+n2−2 degrees of freedom, and a 1−α confidence interval for µ1−µ2 is

(X̄1− X̄2)± t

√
MSWG

(
1

n1
+

1

n2

)
. (5.12)

Concerns about the ability of Student’s t-test to control the probability of a type I error date
back to at least Pratt (1964), who established that the level of the test is not preserved if
distributions differ in dispersion or shape. If sampling is from normal distributions, the
sample sizes are equal, but the variances are not equal, Eq. (5.12) provides reasonably
accurate probability coverage no matter how unequal the variances might be, provided the
common sample size is not too small (Ramsey, 1980). For example, if the common sample
size is 15, and α = 0.05, the actual probability coverage will not drop below .94. Put another
way, in terms of testing H0, the actual probability of a type I error will not exceed .06.
However, if the sample sizes are equal, but sampling is from nonnormal distributions,
probability coverage can be unsatisfactory, and if the sample sizes are unequal as well,
probability coverage deteriorates even further. Even under normality with unequal sample
sizes, there are problems. For example, under normality with n1 = 21, n2 = 41, σ1 = 4,
σ2 = 1, and α = 0.05, the actual probability of a type I error is approximately .15. Moreover,
Fenstad (1983) argues that σ1/σ2 = 4 is not extreme, and various empirical studies support
Fenstad’s view (e.g., Grissom, 2000; Keselman et al., 1998; Wilcox, 1987a). The illustration
just given might appear to conflict with results in Box (1954), but this is not the case. Box’s
numerical results indicate that under normality, and when 1/

√
3≤ σ1/σ2 ≤

√
3, Student’s

t-test provides reasonably good control over the probability of a type I error, but more recent
papers have shown that when σ1/σ2 >

√
3, Student’s t-test becomes unsatisfactory (e.g.,

Brown & Forsythe, 1974; Tomarken & Serlin, 1986; Wilcox, Charlin, & Thompson, 1986).
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To illustrate what can happen under nonnormality, suppose observations for the first group are
sampled from a lognormal distribution that has been shifted to have a mean of zero, whereas
the observations from second group have a normal distribution with mean 0 and standard
deviation 0.25. With n1 = n2 = 20 and α = 0.025, the probability of rejecting H0: µ1 < µ2 is
.136 (based on simulations with 10,000 replications), whereas the probability of rejecting H0:
µ1 > µ2 is .003. Moreover, Student’s t-test assumes that E(T )= 0, but E(T )=−0.52,
approximately, again based on a simulation with 10,000 replications. One implication is that,
in addition to yielding a confidence interval with inaccurate probability coverage, the
probability of rejecting H0: µ1 = µ2 with Student’s t-test has the undesirable property of not
being minimized when H0 is true. That is, Student’s t-test is biased. If, for example, 0.5 is
subtracted from each observation in the second group, the probability of rejecting H0:
µ1 < µ2 drops from .136 to .083. That is, the mean of the second group has been shifted by a
half standard deviation away from the null hypothesis, yet power is less than the probability
of rejecting when the null hypothesis is true.

When using Student’s t-test, poor power properties and inaccurate confidence intervals are to
be expected based on results in Chapter 4. To elaborate on why this is so, let
µ[k] = E(X −µ)k be the kth moment about the mean of the random variable X . The third
moment, µ[3], reflects skewness, the most common measure being κ1 = µ[3]/µ

1.5
[2] . For

symmetric distributions, κ1 = 0. It can be shown that for two independent random variables,
X and Y , having third moments µx[3] and µy[3], the third moment of X −Y is µx[3]−µy[3].
In other words, if X and Y have equal skewnesses, X −Y has a symmetric distribution. If
they have unequal skewnesses, X −Y has a skewed distribution. From Chapter 4, it is known
that when X has a skewed distribution, and when the tails of the distribution are relatively
light, the standard confidence interval for µ can have probability coverage that is substantially
lower than the nominal level. For symmetric distributions, this problem is much less severe,
although probability coverage can be too high when sampling from a heavy-tailed
distribution. Consequently, when X i1 and X i2 have identical distributions, and in particular
have equal third moments, the third moment of X i1− X i2 is zero, suggesting that probability
coverage of µ1−µ2 will not be excessively smaller than the nominal level when using
Eq. (5.12). Put another way, if two groups do not differ, X i1− X i2 has a symmetric
distribution suggesting that the probability of a type I error will not exceed the nominal level
by too much. (For results supporting this conclusion when dealing with highly discrete data,
see Rasch, Teuscher, & Guiard, 2007.) However, when distributions differ, and in particular
have different amounts of skewness, X i1− X i2 has a skewed distribution as well suggesting
that probability coverage might be too low and that T given by Eq. (5.11) does not have a
mean of zero as is commonly assumed. This in turn suggests that if groups differ, testing H0:
µ1 = µ2 with Student’s t-test might result in an undesirable power property—the probability
of rejecting might decrease as µ1−µ2 increases, as was illustrated in the previous paragraph.
In fact, if the groups differ, and have unequal variances and differ in skewness, and if the
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sample sizes differ as well, then confidence intervals based on Eq. (5.12) are not even
asymptotically correct. In particular, the variance of T does not go to one as the sample sizes
increase (Cressie & Whitford, 1986). In contrast, heteroscedastic methods are asymptotically
correct, they give reasonably accurate probability coverage over a wider range of situations
than Student’s t, so only heterosecedastic methods are considered in the remainder of this
chapter. (For a recent overview of heterosecedastic methods for means, in the two-sample
case, see Sawilowsky, 2002.)

It should be noted, however, that even if two groups have the same amount of skewness,
problems with probability coverage and control of type I error probabilities can arise when
distributions differ in scale. This occurs, for example, when sampling from an exponential
distribution. Figure 5.5 shows the probability density function of an exponential distribution,
f (x)= exp(−x). The shape of this distribution is similar to the shape of empirical
distributions found in various situations. (For an example based on psychometric data, see
Sawilowsky & Blair, 1992.) The mean of this distribution is µ= 1, the 20% trimmed mean is
µt = 0.761, and the M-measure of location (based on Huber’s 9) is µm = 0.824.

Consider two exponential distributions, shifted so that they both have a mean of 0, with the
second distribution re-scaled so that its variance is four times as large as the first. With
n1 = n2 = 20, the probability of a type I error is .133 when testing H0: µ1 = µ2 at the
α = 0.05 level. Increasing n1 to 40, the probability of a type I error is .165, while with
n1 = n2 = 40 it is .08.
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Figure 5.5: An exponential distribution.
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A natural way of trying to salvage homoscedastic methods is to test for equal variances, and if
not significant, assume the variances are equal. Even under normality, this strategy can fail
because tests for equal variances might not have enough power to detect unequal variances in
situations where the assumption should be abandoned, even when the test for equal variances
is performed at the 0.25 level (e.g., Hayes & Cai, 2007; Markowski & Markowski, 1990;
Moser, Stevens, & Watts, 1989; Wilcox, Charlin, & Thompson, 1986; Zimmerman, 2004).

5.3 Comparing Medians and Other Trimmed Means

This section considers the problem of testing

H0 : µt1 = µt2,

the hypothesis that two independent groups have equal trimmed means, plus the related goal
of computing a 1−α confidence interval for µt1−µt2. Included as a special case is a method
for comparing medians, which requires specialized techniques.

Yuen’s Method

Yuen (1974) derived a method for comparing trimmed means that is designed to allow
unequal Winsorized variances. When there is no trimming (γ = 0), Yuen’s method reduces to
Welch’s (1933) method for comparing means, which allows unequal variances.

Generalizing the notation of Chapters 3 and 4 in an obvious way, suppose the amount of
trimming is γ . For the j th group, let g j = [γ n j ] be the number of observations trimmed from
each tail, let h j = n j −2g j be the number of observations left after trimming, and let s2

w j be
the Winsorized sample variance. From Chapter 3, an estimate of the squared standard error of
X̄ t j is s2

w j/{(1−2γ )2n}. However, Yuen estimates the squared standard error with

d j =
(n j −1)s2

w j

h j (h j −1)
. (5.13)

It is left as an exercise to verify that both estimates give similar values. In terms of type I error
probabilities and probability coverage, simulations indicate that Yuen’s estimate gives slightly
better results. Yuen’s test statistic is

Ty =
X̄ t1− X̄ t2
√

d1+d2
. (5.14)
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The null distribution of Ty is approximated with a Student’s t-distribution with estimated
degrees of freedom

ν̂y =
(d1+d2)

2

d2
1

h1−1 +
d2

2
h2−1

.

The 1−α confidence interval for µt1−µt2 is

(X̄ t1− X̄ t2)± t
√

d1+d2, (5.15)

where t is the 1−α/2 quantile of Student’s t-distribution with ν̂y degrees of freedom. The
hypothesis of equal trimmed means is rejected if

|Ty| ≥ t.

As previously indicated, when two distributions differ, it can be difficult getting a confidence
interval for the difference between the means that has probability coverage reasonably close
to the nominal level. Theoretical results, supported by simulations, indicate that as the amount
of trimming increases from 0 to 20%, Yuen’s method yields confidence intervals for µt1−µt2

with probability coverage closer to the nominal level (Wilcox, 1994a). As an illustration,
suppose the first group has a normal distribution, and the second group is skewed with κ1 = 2
and n1 = n2 = 12. Wilcox (1994a) reports situations where H0: µ1 > µ2 is tested with
α = 0.025, but the actual probability of a type I error is .054. (This result is based on
simulations with 100,000 replications.) In contrast, with 20% trimming, the actual probability
of a type I error is .022. With n1 = 80 and n2 = 20, the probability of a type I error can be as
high as .093—nearly four times higher than the nominal level—when using Welch’s test,
while with 20% trimming the actual probability of type I error is approximately .042 for the
same distributions. Of course, by implication, there are some situations where Welch’s test
will be unsatisfactory when dealing with a two-sided test and α = 0.05.

n Example

As another illustration that differences in skewness can make a practical difference,
imagine that for the �rst group, 40 observations are generated from a normal, and for
the second group, 20 observations are generated from a lognormal distribution that has
been shifted so that it has a mean of zero. When testing at the 0.05 level, the actual level
of Welch’s test is approximately 0.11. And if instead observations for the second group
are generated from a g-and-h distribution with g = h = 0.5, the actual level is
approximately 0.20. Comparing 20% trimmed means instead, the actual levels for these
two situations are 0.047 and 0.042, respectively. However, Section 5.3.2 notes that even
Yuen’s method can be unsatisfactory in terms of type I errors. And an alternative
approach to comparing trimmed means is described that gives better results.

n
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Table 5.5: Estimated Power, n1 = n2 = 25, α = .05.

Distributions δ Welch Yuen (γ = 0.2) KS (exact) KS (α = 0.052)

Normal 0.6 0.536 0.464 0.384 0.464
Normal 0.8 0.780 0.721 0.608 0.700
Normal 1.0 0.931 0.890 0.814 0.872
CN1 1.0 0.278 0.784 0.688 0.780
CN2 1.0 0.133 0.771 0.698 0.772
Slash 1.0 0.054 0.274 0.235 0.308

From Randles and Wolfe (1979, p.384), the expectation is that the Kolmogorov–Smirnov test
will have lower power than Welch’s test when sampling from normal distributions with a
common variance. More generally, it might seem that when distributions differ in location
only, and are symmetric, the Kolmogorov–Smirnov test will have less power than the
Yuen–Welch test. Table 5.5 shows the estimated power of these tests for four distributions,
n1 = n2 = 25, and when δ is added to every observation in the first group. The notation KS
(exact) means that the Kolmogorov–Smirnov critical value was chosen as small as possible
with the property that the exact probability of a type I error will not exceed .05. The last
column in Table 5.5 shows the power of the Kolmogorov–Smirnov test when the critical
value is chosen so that the probability of a type I error is as close as possible to .05. For the
situation at hand, the resulting probability of a type I error is .052. The notation CN1 refers to
a contaminated normal where, in Eq. (1.1), ε = 0.1 and K = 10. The notation CN2 refers to a
contaminated normal with K = 20. As is seen, the exact test does have less power than
Welch’s test under normality, but the exact test has substantially more power when sampling
from a heavy-tailed distribution. Moreover, with α = 0.052, the Kolmogorov–Smirnov test
has about the same amount of power as Yuen’s test with 20% trimming. Another appealing
feature of the Kolmogorov–Smirnov test, versus the Yuen–Welch test, is that the
Kolmogorov–Smirnov test is sensitive to more features of the distributions. A negative
feature of the Kolmogorov–Smirnov test is that when there are tied values among the pooled
observations, its power can be relatively low.

Comparing Medians

As the amount of trimming approaches 0.5, Yuen’s method breaks down; the method for
estimating the standard error becomes highly inaccurate resulting inaccurate confidence
intervals and poor control over the probability of a Type I error. If there are no tied values in
either group, an approach that currently seems to have practical value is as follows. Let M1

and M2 be the sample medians corresponding to groups 1 and 2, respectively, and let S2
1 and

S2
2 be the corresponding McKean–Schrader estimates of the squared standard errors. Then an
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approximate 1−α confidence interval for the difference between the population medians is

(M1−M2)± c
√

S2
1 + S2

2

where c is the 1−α/2 quantile of a standard normal distribution. Alternatively, reject the
hypothesis of equal population medians if

|M1−M2|√
S2

1 + S2
2

≥ c.

But if there are tied values in either group, control over the probability of a Type I error can be
very poor. There are two practical problems, which were noted in Chapter 4. First, with tied
values, all known estimators of the standard of the sample median can be highly inaccurate.
Second, the sampling distribution of the sample median does not necessarily approach a
normal distribution as the sample size gets large. When tied values occur, the only known
method for comparing medians that performs well in simulations, in terms of controlling the
probability of a Type I error, is the percentile bootstrap method in Section 5.4.2.

5.3.1 R Function yuen

The R function

yuen(x,y,tr=0.2,alpha=0.05)

performs the Yuen–Welch method for comparing trimmed means. The default amount of
trimming (tr) is 0.2, and the default value for α is 0.05. Thus, the command yuen(x,y) returns
a 0.95 confidence interval for the difference between the 20% trimmed means using the data
stored in the R vectors x and y. The confidence interval is returned in the R variable yuen$ci.
The command yuen(x,y,0) returns a 0.95 confidence interval for the difference between the
means based on Welch’s method. The function also returns the value of the test statistic in
yuen$teststat, a two-sided significance level in yuen$siglevel, a 1−α confidence interval in
yuen$ci, the estimated degrees of freedom, the estimated difference between the trimmed
means, and the estimated standard error.

n Example

For the ozone data in Table 5.3 and 20% trimming, the R function yuen indicates that
Ty = 3.4, the p-value is .0037, and the 0.95 con�dence interval for µt1−µt2 is
(5.3,22.85). In contrast, with zero trimming (Welch’s method), Ty = 2.46, the p-value is
.019, and the 0.95 con�dence interval is (1.96,20.8). Both methods suggest that for the
typical rat, weight gain is higher for rats living in an ozone-free environment, but they
give a different picture of the extent to which this is true.

n
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5.3.2 A Bootstrap-t Method for Comparing Trimmed Means

As previously indicated, when testing hypotheses with the Yuen–Welch method, control of
type I error probabilities is generally better when using 20% trimming versus no trimming at
all. However, problems might persist when using 20% trimming, especially when performing
a one-sided test and the sample sizes are unequal. For example, if sampling is from
exponential distributions with sample sizes of 15 and 30, and if the second group has a
standard error four times as large as the first, the probability of a type I error can be twice as
large as the nominal level. With α = 0.025, P(Ty < t0.025)= 0.056, whereas with α = 0.05
the probability is .086. As in the one-sample case discussed in Chapter 4, a bootstrap-t method
(sometimes called a percentile t method) can give better results. The bootstrap method
advocated by Westfall and Young (1993) has been found to have a practical advantage over
the Yuen–Welch method (Wilcox, 1996b), but it seems to have no practical advantage over
the bootstrap-t, at least based on extant simulations, so it is not discussed here.

For the situation at hand, the general strategy of the bootstrap-t method is to estimate the
upper and lower critical values of the test statistic, Ty , by running simulations on the available
data. This is done by temporarily shifting the two empirical distributions so that they have
identical trimmed means, and then generating bootstrap samples to estimate the upper and
lower critical values for Ty that would result in a type I error probability equal to α. Once the
critical values are available, a 1−α confidence interval can be computed, as is illustrated later.

One way of describing the bootstrap-t in a more precise manner is as follows. For fixed j , let
X∗1 j , . . . , X∗n j j be a bootstrap sample from the j th group, and set C∗i j = X∗i j − X̄ t j ,
i = 1, . . . ,n j . Then C∗i j represents a sample from a distribution that has a trimmed mean of
zero. That is, the hypothesis of equal trimmed means is true for the distributions associated
with the C∗i j values. Consequently, applying the Yuen–Welch method to the C∗i j values should
not result in rejecting the hypothesis of equal trimmed means. Let T ∗y be the value of Ty based
on the C∗i j values. To estimate the distribution of Ty when the null hypothesis is true, repeat
the process just described B times, each time computing T ∗y based on the resulting C∗i j values.
Label the resulting T ∗y values T ∗yb, b = 1, . . . , B. Let T ∗y(1) ≤ · · · ≤ T ∗y(B) be the T ∗yb values
written in ascending order. Set `= αB/2, round ` to the nearest integer, and let u = B−`.
Then an estimate of the lower and upper critical values is T ∗y(`+1) and T ∗y(u). That is, reject H0:
µt1 = µt2 if Ty < T ∗y(`+1) or Ty > T ∗y(u). A little algebra shows that a 1−α confidence interval
for µt1−µt2 is (

X̄ t1− X̄ t2−T ∗y(u)
√

d1+d2, X̄ t1− X̄ t2−T ∗y(`+1)

√
d1+d2

)
, (5.16)

where d j , given by Eq. (5.13), is the estimate of the squared standard error of X̄ t j used by
Yuen. (As in Chapter 4, it might appear that T ∗y(u) should be used to compute the upper end of
the confidence interval, but this is not the case. Details are relegated to the exercises.) When
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Table 5.6: Summary of the Bootstrap-t Method for Trimmed Means.

1. Compute the sample trimmed means, X̄ t1 and X̄ t2, and Yuen’s estimate of the squared standard
errors, d1 and d2, given by Eq. (5.13).

2. For the jth group, generate a bootstrap sample by randomly sampling with replacement n j

observations from X1 j , . . . , Xnj , yielding X ∗1 j , . . . , X ∗nj .
3. Using the bootstrap samples just obtained, compute the sample trimmed means plus Yuen’s

estimate of the squared standard error, and label the results X̄ ∗t j and d∗j , respectively, for the jth
group.

4. Compute

T ∗y =
(X̄ ∗t1− X̄ ∗t2)− (X̄ t1− X̄ t2)√

d∗1 +d∗2
.

5. Repeat steps 2 through 4 B times yielding T ∗y1, . . . ,T ∗y B . B = 599 appears to suf�ce in most
situations when α = 0.05.

6. Put the T ∗y1, . . . ,T ∗y B values in ascending order yielding T ∗y(1) ≤ · · · ≤ T ∗y(B). The T ∗yb values provide an
estimate of the distribution of

(X̄ t1− X̄ t2)− (µt1−µt2)
√

d1+d2

.

7. Set `= αB/2, rounding to the nearest integer, and let u = B−`.

The equal-tailed 1−α con�dence interval for µt is

(X̄ t1− X̄ t2−T ∗y(u)
√

d1+d2, X̄ t1− X̄ t2−T ∗y(`+1)

√
d1+d2).

(T ∗y(`) will be negative, which is why it is subtracted from X̄ t1− X̄ t2.)

To get a symmetric two-sided con�dence interval, replace step 4 with

T ∗y =
|(X̄ ∗t1− X̄ ∗t2)− (X̄ t1− X̄ t2)|√

d∗1 +d∗2
.

Set a = (1−α)B, rounding to the nearest integer. The con�dence interval for µt1−µt2 is

(X̄ t1− X̄ t2)±T ∗y(a)
√

d1+d2.

α = 0.05, B = 599 appears to suffice in terms of probability coverage, and extant simulations
suggest that little is gained using B = 999. However, in terms of power, B = 999 might make
a practical difference. For α < 0.05, no recommendations about B can be made for the goal of
controlling the type I error probability.

In case it helps, Table 5.6 provides an equivalent way of describing how to apply the
bootstrap-t to the two-sample case. The summary in Table 5.6 is very similar to the summary
of the one-sample bootstrap-t method given in Table 4.4.

The confidence interval given by Eq. (5.16) is just an extension of the equal-tailed bootstrap-t
method described in Chapter 4 to the two-sample case. Chapter 4 noted that there are
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theoretical results suggesting that when computing a two-sided confidence interval, a
symmetric two-sided confidence interval should be used instead. A symmetric two-sided
confidence interval can be obtained for the situation at hand by replacing Ty given by
Eq. (5.14) with

Ty =
|X̄ t1− X̄ t2|
√

d1+d2

and letting T ∗y represent the value of Ty based on the bootstrap sample denoted by C∗i j . As
before, repeatedly generate bootstrap samples yielding T ∗y1, . . . ,T ∗1B . Now, however, set
a = (1−α)B, rounding to the nearest integer, in which case the critical value is c = T ∗y(a), and
the 1−α confidence interval is

(X̄ t1− X̄ t1− c
√

d1+d2, X̄ t1− X̄ t2+ c
√

d1+d2). (5.17)

A variation of this approach was derived by Guo and Luh (2000), which is based in part on a
transformation stemming from Hall (1992). The basic idea is to transform Yuen’s test statistic
so that it is approximated reasonably well by a Student’s t-distribution. Results reported by
Keselman, Othman, Wilcox, and Fradette (2004) indicate, however, that it is preferable to
approximate the null distribution of the test statistic used by Guo and Luh using a bootstrap-t
method. Among the situations considered by Keselman et al., a bootstrap-t method was found
to perform relatively well when the amount of trimming is set at 10% or 15%. However, with
small and unequal sample sizes, situations occur where the method is unsatisfactory when
using 10% trimming. More details are given in Section 5.4.2. In practical terms, it currently
seems that a percentile bootstrap method is a bit more satisfactory and that there can be an
advantage in using 20% trimming in terms of controlling the probability of a type I error.
Further evidence for preferring the use of a percentile bootstrap method is reported by
Özdemir, Wilcox, and Yildiztepe (2010) who report simulation results when distributions
differ in skewness. With no trimming, the bootstrap-t method studied by Keselman et al. can
be highly unsatisfactory.

5.3.3 R Functions yuenbt and yhbt

The R function

yuenbt(x,y,tr=0.2,alpha=0.05,nboot=599,side=F),

computes a 1−α confidence interval for µt1−µt2 using the bootstrap-t method, where the
default amount of trimming (tr) is 0.2, the default value for α is 0.05, and the default value for
nboot (B) is 599. So far, simulations suggest that in terms of probability coverage, there is
little or no advantage to using B > 599 when α = 0.05. However, there is no recommended
choice for B when α < 0.05 simply because little is known about how the bootstrap-t
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performs for this special case. Finally, the default value for side is F, for false, indicating that
the equal-tailed two-sided confidence interval is to be used. Using side=T results in the
symmetric two-sided confidence interval.

n Example

For the ozone data in Table 5.3, yuenbt reports that the 0.95 symmetric two-sided
con�dence interval for the difference between the trimmed means is (4.75,23.4). In
contrast, the Yuen–Welch method yields a 0.95 con�dence interval equal to (5.3,22.85).
The equal-tailed bootstrap-t method yields a 0.95 con�dence interval of (3.78,21.4).
The symmetric two-sided con�dence interval for the difference between the means is
obtained with the command yuenbt(x,y,0.,side=T), assuming the data are stored in the
R vectors x and y, and the result is (1.64,21.2). In contrast, yuenbt(x,y,0.) yields an
equal-tailed con�dence interval for the difference between the means of (1.87,21.6).
Note that the lengths of the con�dence intervals for the difference between the trimmed
means are similar to each other and the length of the con�dence interval for the
difference between the means, but the next illustration demonstrates that this is not
always the case.

n

n Example

Table 5.7 shows data from a study dealing with the effects of consuming alcohol. (The
data are from a portion of a study conducted by M. Earleywine.) Two groups of
participants reported hangover symptoms the morning after consuming equal amounts
of alcohol in a laboratory. Group 1 was a control and group 2 consisted of sons of
alcoholic fathers. Figure 5.6 shows an adaptive kernel density estimate for the two
groups. Note that the shapes are similar to an exponential distribution suggesting that
con�dence intervals for the difference between the means, with probability coverage
close to the nominal level, might be dif�cult to obtain. In fact, even using 20% trimming,
the Yuen–Welch method might yield inaccurate probability coverage, as already noted.
The main point here is that the length of the con�dence intervals based on the

Table 5.7: The Effect of Alcohol.

Group 1 0 32 9 0 2 0 41 0 0 0
6 18 3 3 0 11 11 2 0 11

Group 2 0 0 0 0 0 0 0 0 1 8
0 3 0 0 32 12 2 0 0 0
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Figure 5.6: Adaptive kernel density estimates for the two groups in the study looking at sons
of alcoholic fathers.

Yuen–Welch method can differ substantially from the length of the con�dence interval
using the bootstrap-t method. The Yuen–Welch method yields a 0.95 con�dence interval
equal to (−0.455,7.788) with a p-value of .076. In contrast, the equal-tailed bootstrap-t
yields a 0.95 con�dence interval of (−4.897,7.255). The ratio of the lengths of the
con�dence intervals is 0.678. The symmetric bootstrap-t con�dence interval is
(−1.357,8.691), and its length, divided by the length of the other bootstrap con�dence
interval, is .83

n

Although 20% trimming performs well under normality in terms of power and efficiency,
situations might be encountered where it is desired to use 10% and 15% trimming instead. If
this is the case, one strategy is to use the R function

yhbt(x, y, tr = 0.15, alpha = 0.05, nboot = 600, SEED = T,PV=F),

which uses the bootstrap-t version of the test statistic derived by Guo and Luh (2000) that was
studied by Keselman et al. (2004). By default, 15% trimming is used. The function returns a
confidence interval having probability coverage specified by the argument alpha. A p-value is
returned if the argument PV=T, but on occasion this results in a numerical error causing the
function to terminate. And even when not computing a confidence interval, situations are
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encountered where the function is unable to compute a confidence interval. The method is not
recommended when the goal is to compare means. Another possibility is to use the percentile
bootstrap method in Section 5.4.2. Limited studies suggest that even with 10% trimming,
there is little or no advantage to using yhbt rather than a percentile bootstrap method.
Moreover, the percentile bootstrap has faster execution time and computational problems do
not arise when computing a p-value or a confidence interval.

5.3.4 Measuring Effect Size: Robust Analogs of Cohen’s d

A common way of characterizing the extent two distributions differ is with the measure of
effect size

δ =
µ1−µ2

σ
,

where by assumption, σ1 = σ2 = σ . That is, homoscedasticity is assumed and the common
variance is denoted by σ 2. Cohen (1988) suggests that as a general guide, δ = 0.2, 0.5, and 0.8
correspond to small, medium, and large effect sizes, respectively, and often this suggestion is
followed.

The usual estimate of δ, popularly knows as Cohen’s d , is

d =
X̄1− X̄2

s
,

where s2
= [(n1−1)s2

1 + (n2−1)s2
2 ]/(n1+n2−2) estimates the assumed common variance.

There are fundamental concerns regarding this measure of effect size. The first is that when
dealing with heavy-tailed distributions, δ can be small even when from a graphical
perspective the difference between the two distributions appears to be relatively large. The
left panel of Figure 5.7 shows two normal distributions, both having variance 1, for which
δ = 0.8, which is often viewed as a large effect size. But now look at the right panel where
again the difference between the means is 0.8. Despite the similarity with the left panel,
δ = 0.24, which is typically considered to be small. The reason δ is substantially smaller in
the right panel is that the two distributions are contaminated normal distributions, which have
variance 10.9. And outliers can result in d, the estimate of δ, being relatively small as well.
A second general concern is that δ is based on the mean and variance, which are not robust.
Yet another concern is that it assumes equal variances.

Algina, Keselman, and Penfield (2005) suggest using a generalization of δ based on 20%
trimmed means and Winsorized variances. Their approach is homoscedastic in the sense that
the groups are assumed to have a common (population) Winsorized variance. Moreover, the
Winsorized variances are re-scaled so that under normality they estimate the variance. With
20% trimming, this means that the Winsorized variance is divided by 0.4121. That is, under
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Figure 5.7: The left panel shows two normal distributions for which the measure of effect size δ
is 0.8, which is often taken to be a large value. For the right panel, δ = 0.24, despite the similarity
to the left panel, illustrating that slight changes in the tails of the distributions can have a major
impact on the magnitude of δ.

normality, s2
w/0.4142 estimates σ 2. So now δ becomes

δt = 0.642
X̄ t1− X̄ t2

Sw
,

where

S2
W =

(n1−1)s2
w1+ (n2−1)s2

w2

n1+n2−2

is the pooled Winsorized variance. Under normality, and when the variances are equal, δ = δt .
If the Winsorized variances are not equal, Algina et al. suggest using both

δt1 = 0.642
X̄ t1− X̄ t2

sw1
,

and

δt2 = 0.642
X̄ t1− X̄ t2

sw2
.

A possible concern, however, is that δt1 might suggest a large effect size, whereas δt2 suggests
the opposite.

www.elsevierdirect.com



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

WILCOX 08-ch05-137-214-9780123869838 2011/12/6 18:05 Page 168 #32

168 Introduction to Robust Estimation and Hypothesis Testing

A robust, heteroscedastic approach to measuring effect size was suggested by Wilcox and
Tian (2011), which is based on a generalization of the notion of explanatory power
(Doksum & Samarov, 1995). From a regression perspective, if Ŷ is the predicted value of Y ,
given X , explanatory power is

ξ 2
=
σ 2(Ŷ )

σ 2(Y )
,

the variance of the predicted Y values divided by the variance of the observed Y values. (If Ŷ
is taken to be the usual least squares regression line, then ξ 2

= ρ2, where ρ is Pearson’s
correlation.) Given that an observation is randomly sampled from the j th group, take Ŷ = µ j ,
in which case

σ 2(Ŷ )=
∑

(µ j − µ̄)
2,

where µ̄= (µ1+µ2)/2. Momentarily assume that with probability 1, equal sample sizes are
used. Let σ 2(Y | j) be the variance of Y given that an observation is randomly sampled from
the j th group, and let σ 2(Y ) be the unconditional variance of Y . Based on the random sample
Yi j (i = 1, . . . ,n; j = 1, 2), σ 2(Y ) is estimated with σ̂ 2(Y ), the usual sample variance based
on these 2n (pooled) observations. So the estimate of ξ 2 is

ξ̂ 2
=
σ̂ 2(Ŷ )

σ̂ 2(Y )
.

Now consider how to estimate ξ 2 when unequal sample sizes are used. First, it is stressed that
a key component of the approach used here is defining σ 2(Y ) in terms of situations where
equal sample sizes are used with probability 1. Put another way, σ 2(Y ) is the estimand
associated with the sample variance of the pooled Yi j values when n1 = n2. Given how σ 2(Y )
is defined, the problem is finding a reasonable estimate of σ 2(Y ) when dealing with unequal
sample sizes. Kulinskaya & Staudte (2006, p. 101) conclude that a natural generalization of δ
to the heteroscedastic case does not appear to be possible without taking into account the
relative sample sizes. A simple strategy is to again estimate σ 2(Y ) with the sample variance
based on all n1+n2 Yi j values, even when n1 6= n2. But this estimation method can be shown
to be unsatisfactory: the resulting estimate of ξ 2 can be severely biased. To deal with this,
suppose the sample sizes are n1 < n2 for groups 1 and 2, respectively. If we randomly sample
(without replacement) n1 observations from the second group, we have equal sample sizes
from both groups resulting in a satisfactory estimate of ξ 2. That is, use the estimation method
for the equal sample case, where the both groups have sample size n1. To use all of the data in
the second group, repeat this process K times yielding a series of estimates for ξ 2, which are
then averaged to get a final estimate, which we label ξ̂ 2. The estimate of ξ is just

ξ̂ =

√
ξ̂ 2

and is called the explanatory measure of effect size.
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To get a robust version of ξ 2, simply replace the mean with some robust measure of location
and replace σ 2(Y ) with some robust measure of variation. Here, unless stated otherwise, a
20% trimmed mean and a 20% Winsorized variance are used, where the Winsorized variance
is re-scaled to estimate the usual variance, σ 2, when sampling from a normal distribution. For
20% Winsorization, this means that rather than compute the Winsorized variance of the
pooled Yi j values with say s2

wy , use s2
wy/0.4121. It is noted that under normality and

homoscedasticity, δ = 0.2, 0.5, and 0.8 roughly correspond to ξ = 0.15, 0.35, and 0.50,
respectively. That is, if for example δ = 0.5 is viewed as a medium effect size, as is often
done, this corresponds to ξ = 0.35.

5.3.5 R Functions akp.effect, yuenv2, and ees.ci

The R function

akp.effect(x,y,tr=0.2)

estimates the effect size δt . The function automatically re-scales the Winsorized variance so
that, based on the amount of trimming used, it estimates the usual variance under normality.
The R function

yuenv2(x,y,tr=0.2,alpha=0.05)

is exactly like the R function yuen for comparing trimmed means, only the explanatory
measure of effect size, ξ̂ , is reported. The R function

ees.ci(x,y,SEED=T,nboot=400,tr=0.2,alpha=0.05)

computes a 1−α confidence interval for |ξ |. A percentile bootstrap method is used, but
modified so that if the p-value is greater than α when testing H0 : µt1 = µt2 with Yuen’s
method, the lower end of the 1−α confidence interval is set equal to zero. (If the goal is to
compute a confidence interval for ξ rather than |ξ |, a percentile bootstrap method can be
unsatisfactory.)

n Example

A practical issue is the effect of ignoring heteroscedasticity when using δ rather than ξ to
measure effect size. That is, can the choice of method alter the extent an effect size is
deemed to be large? For illustrative purposes, we adopt the usual convention that
δ = 0.2, 0.5, and 0.8 correspond to small, medium, and large effect sizes, respectively.
As already noted, under normality and homoscedasticity, these values roughly
correspond to ξ = 0.15, 0.3, and 0.5. Note that if the group with the larger sample size
also has the larger variance, this results in a relatively small value for d. To illustrate how
d compares to ξ̂ , simulations were used to estimate both effect sizes with n1 = 80 and
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n2 = 20, where the �rst group has a normal distribution with mean 0.8 and standard
deviation 4, and the second group has a standard normal distribution. Based on 1000
replications, the median value of d was 0.22, which is typically considered to be a small
effect size. (The mean value of d was nearly identical to the median.) The median value
of ξ̂ was 0.40, which suggests a medium effect size. So even under normality, a
heteroscedastic measure of effect size can make a practical difference. If instead the �rst
group has standard deviation 1 and the second has standard deviation 4, now the
median estimates are 0.42 and 0.32. That is, in contrast to the �rst situation, the choice
between homoscedastic and heteroscedastic measures of effect size makes little
difference. If instead n1 = n2 = 20, now the median d value is 0.30, a somewhat small
effect size, and the median ξ̂ value is 0.34, which suggests a medium effect size instead.
The effect of ignoring heteroscedasticity is less of an issue with equal sample sizes,
compared with the �rst situation considered, but it has practical consequences.

n

n Example

In a study of sexual attitudes, 1327 men and 2282 women were asked how many sexual
partners they desired over the next 30 years. (The data used in this example, supplied by
Lynn Miller, are stored in the �le miller.dat and can be downloaded from the author’s
web page given in Chapter 1.) Welch’s test returns a p-value of .30, but Yuen’s test has a
p-value less than .001. Cohen’s d is estimated to be less than 0.0001. In contrast,
δ̂t = 0.48, suggesting a medium effect size and ξ̂ = 0.47 suggesting a large effect size.

n

5.3.6 Comments on Measuring Effect Size

It is not being suggested that ξ be used as the only measure of effect size. It would seem that
in various situations, multiple perspectives are needed to get a good understanding of how
groups compare. This might include graphical methods such as boxplots, plots of the
distributions returned by the R function g2plot, and the shift function. And differences in
variation might be used as well. Another potentially useful perspective is P(X < Y ), the
probability that a randomly sampled observation from the first group is smaller than a
randomly sampled observation from the second, which is discussed in Section 5.7.

5.4 Inferences Based on a Percentile Bootstrap Method

In recent years, inferences based on a percentile bootstrap method have been found to be
particularly effective when working with a wide range of robust estimators. When comparing
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two independent groups, the method is applied as follows. First, generate bootstrap samples
from each group as described in Table 5.6. Let θ̂∗j be the bootstrap estimate of θ j , where θ j is
any parameter of interest associated with the j th group ( j = 1, 2). Set

D∗ = θ̂∗1 − θ̂
∗

2 .

Repeat this process B times yielding D∗1 , . . . ,D∗B , let ` be αB/2, rounded to the nearest
integer, and let u = B−`, in which case an approximate 1−α confidence interval for
θ1− θ2 is

(D∗(`+1), D∗(u)),

where D∗(1) ≤ · · · ≤ D∗(B).

The theoretical foundation for the method is similar to the theoretical foundation in the
one-sample case described in Chapter 4. Imagine the goal is to test

H0 : θ1 = θ2.

For the bootstrap estimates θ̂∗1 and θ̂∗2 , let

p∗ = P(θ̂∗1 > θ̂
∗

2 ).

If the null hypothesis is true, then asymptotically (as both n and B get large), p∗ has a
uniform distribution. Consequently, reject H0 if p∗ ≤ α/2 or if p∗ ≥ 1−α/2. Although p∗ is
not known, it is readily estimated. Let A be the number of values among D∗1 , . . . ,D∗B that are
greater than zero. Then an estimate of p∗ is

p̂∗ =
A

B
.

For convenience, set
p̂∗m =min(p∗, 1− p∗).

Then 2 p̂∗m is an estimate of what Liu and Singh (1997) call the generalized p-value, and H0 is
rejected if

2 p̂∗m ≤ α.

This last equation leads to the confidence interval given in the previous paragraph.

5.4.1 Comparing M-Estimators

This section comments on the special case there the goal is to compare M-measures of
location. Chapter 4 noted that, based on simulations conducted so far, the best approach to
computing a confidence interval for µm , the M-measure of location, is to use a percentile
bootstrap method. When comparing M-measures of location corresponding to two
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independent groups, the percentile bootstrap again is the best method based on current results.
As in the one-sample case, there are bootstrap methods that have not been examined via
simulations when comparing M-measures of location, so it is not being suggested that all
other bootstrap techniques have no practical value for the problem at hand. A confidence
interval based on an estimate of the standard error will provide good probability coverage
when the sample sizes are sufficiently large, assuming the estimated difference is normally
distributed, but it is unknown just how large the sample sizes should be before this approach
can be recommended, particularly when distributions are skewed. If both distributions are
symmetric, confidence intervals based on estimated standard errors seem to have merit when
Student’s t-distribution is used to determine an appropriate critical value, but there is no good
decision rule, based on available empirical data, whether distributions are sufficiently
symmetric. (One could test the assumption that distributions are symmetric, but how much
power should such a test have to justify the use of a method that assumes symmetric
distributions?) A bootstrap-t method might also be advantageous in certain situations, but it is
unknown when, if ever, this approach should be used over the percentile bootstrap. When
sample sizes are small, all indications are that the percentile bootstrap is best, so it is
recommended until there is good evidence that some other method should be used instead.

5.4.2 Comparing Trimmed Means and Medians

When comparing trimmed means, and the amount of trimming is at least 20%, it currently
seems that a percentile bootstrap method is preferable to the bootstrap-t method in
Section 5.3.2. With a sufficiently small amount of trimming, a bootstrap-t method provides
more accurate results, but there is uncertainty about when this is the case. (Comments on
using 10% trimming are given at the end of this section.)

For the special case where the goal is to compare medians, a slight extension of the percentile
bootstrap method is needed in case there are tied values. Let M∗1 and M∗2 be the bootstrap
sample medians. Let

p∗ = P(M∗1 > M∗2 )+0.5P(M∗1 = M∗2 ).

So among B bootstrap samples from each group, if A is the number of times M∗1 > M∗2 , and
C is the number of times M∗1 = M∗2 , the estimate of p∗ is

p̂∗ =
A

B
+0.5

C

B
.

As usual, the p-value is
2min( p̂∗,1− p̂∗).

In terms of controlling the Type I error probability, all indications are that this method
performs very well regardless of whether tied values occur (Wilcox, 2006a). And in terms of
handling tied values, this is the only known method that performs well in simulations.
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Section 5.3.2 mentioned a bootstrap-t method (that is performed by the R function yhbt) that
is based in part on a test statistic derived by Guo and Luh (2000). As previously noted,
Keselman et al. (2004) found that it performs reasonably well in simulations when using 10%
and 15% trimming. To extend slightly their results, consider a situation where n1 = 40
observations are sampled from a standard normal distribution. And for the second group
n2 = 20 observations are sampled from a lognormal distribution shifted so that the trimmed
mean is zero, after which the scale is increased by multiplying all observations by 4. When
testing at the 0.05 level, and 10% trimming is used, the actual level of the bootstrap-t method
is approximately 0.066 compared with 0.050 when using a percentile bootstrap method (based
on a simulation with 1000 replications). Reducing the first sample size to n1 = 20 and the
second to n2 = 10, the estimates are now 0.082 and 0.074, respectively. Increasing the amount
of trimming to 0.2, again using sample sizes n1 = 20 and n2 = 10, the estimates are 0.081 and
0.063. So at least in some situations, the percentile bootstrap method has a bit of an advantage
when using 10% trimming. And increasing the amount of trimming from 10% to 20% can
improve control over the type I error probability.

5.4.3 R Functions trimpb2, pb2gen, m2ci, and medpb2

When comparing independent groups, the R function

pb2gen(x,y,alpha=0.05,nboot=2000,est=onestep,...)

can be used to compute a confidence interval for the difference between any two measures of
location or scale using the percentile bootstrap method. As usual, x and y are any R vectors
containing data. The default value for α is 0.05, the default for B (nboot) is 2000. The last
argument, est, is any R function that is of interest. The default value for est is onestep, which
is the R function described in Chapter 3 for computing a one-step M-estimator. The command
pb2gen(dat1,dat2,est=mom), for example, will compare the modified one-step M-estimators
based on the data stored in the R variables dat1 and dat2.

For convenience, a specific function for comparing robust M-estimators based on Huber’s 9
is provided. It has the general form

m2ci(x,y,nboot=1000,alpha=0.05,bend=1.28,os=F),

where the default value for B is nboot= 1000, the default value for α is 0.05, the default
value for os is F, for false, meaning that the fully iterated M-estimator is used, and the default
bending constant is 1.28.1 Setting os=T means that the one-step M-estimator is used instead.

1 An old version of this function used B = 399 which seems to suffice, in terms of probability coverage, when
computing a 0.95 confidence interval.
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If, for example, it is desired to compute a 0.95 confidence interval using the one-step
M-estimator, type the command m2ci(x,y,os=T).

n Example

For the ozone data in Table 5.3, m2ci returns a 0.95 con�dence interval of (3.67, 21.51)
for the difference between the M-measures of location. Using the one-step M-estimator
instead, the 0.95 con�dence interval is (3.64,22.26).

n

Medians can be compared with the R function pb2gen by setting the argument est=median
and trimmed means can be compared by setting est=tmean. But for convenience, the R
function

medpb2(x,y,alpha=0.05,nboot=2000)

is supplied, which is designed specifically for comparing medians. And the R function

trimpb2(x,y,alpha=0.05,nboot=2000)

defaults to comparing 20% trimmed means.

5.5 Comparing Measures of Scale

In some situations, there is interest in comparing measures of scale. Based purely on
efficiency, various robust estimators of scale have appeal. First, however, attention is focused
on comparing the variances.

5.5.1 Comparing Variances

We begin with the goal of testing
H0 : σ 2

1 = σ
2
2 ,

the hypothesis that two independent groups have equal variances. Numerous methods have
been proposed. Virtually all have been found to be unsatisfactory with small to moderate
sample sizes.

A variation of the percentile bootstrap method (Wilcox, 2002) that performs relatively well is
performed as follows. Set nm =min(n1,n2) and for the j th group ( j = 1, 2), take a bootstrap
sample of size nm . Ordinarily, we take a bootstrap sample of size n j from the j th group, but
when sampling from heavy-tailed distributions, and when the sample sizes are unequal,
control over the probability of a type I error can be extremely poor for the situation at hand.
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Next, for each group, compute the sample variance based on the bootstrap sample and set D∗

equal to the difference between these two values. Repeat this B = 599 times yielding 599
bootstrap values for D, which we label D∗1 , . . . ,D∗599. As usual, when writing these values in
ascending order, we denote this by D∗(1) ≤ · · · ≤ D∗(B). Then an approximate 0.95 confidence
interval for the difference between the population variances is

(D∗(`+1), D∗(u)), (5.18)

where for nm < 40, `= 6, and u = 593; for 40≤ nm < 80, `= 7, and u = 592; for
80≤ nm < 180, `= 10, and u = 589; for 180≤ nm < 250, `= 13, and u = 586; and for
nm ≥ 250, `= 15, and u = 584.

The method just described is based on a strategy similar to Gosset’s derivation of Student’s t :
assume normality and then make adjustments so that for small sample sizes, accurate
probability coverage is obtained. This method appears to perform reasonably well under
nonnormality, but exceptions can occur when the distributions differ in skewness and the
sample sizes are small. What appears to be more satisfactory is to use the method just
described, only with B = 1000 and a corresponding adjustment to ` and u. Using B = 999,
the actual level of the test can be substantially worse. A positive feature of this method is that
in situations where the control over the type I error probability is not quite satisfactory due to
small sample sizes, it appears to provide a reasonably good test of the hypothesis that the
median value of s2

1 is equal to the median value of s2
2 , but more research is needed to establish

the extent this is the case.

When sampling from a distribution that is not too skewed and not very heavy-tailed, the
method in Shoemaker (2003) might be used instead. Herbert et al. (2011) derived yet another
method for comparing variances. How well it performs under nonnormality, including
situations where distributions differ in skewness, needs more research. In terms of controlling
the probability of a type I error, any practical advantages the method might have over the
modified percentile bootstrap method have not been determined.

5.5.2 R Function comvar2

The R function

comvar2(x,y,nboot=1000,SEED=T)

compares variances using the bootstrap method just described. The method can only be
applied with α = 0.05; modifications based on other α values have not been derived. The
function returns a 0.95 confidence interval for σ 2

1 −σ
2
2 plus an estimate of σ 2

1 −σ
2
2 based on

the difference between the sample variances, s2
1 − s2

2 , which is labeled vardif.
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5.5.3 Comparing Biweight Midvariances

For some robust measures of scale, the percentile bootstrap method, described in Section 5.4,
has been found to perform well. In particular, Wilcox (1993a) found that it gives good results
when working with the biweight midvariance. (Other methods were considered but found to
be unsatisfactory, so they are not discussed.) There is some indirect evidence that it will give
good results when working with the percentage bend midvariance, but this needs to be
checked before it can be recommended.

5.5.4 R Function b2ci

Robust measures of scale are easily compared with the R function pb2gen in Section 5.4.3.
For convenience, the function

b2ci(x,y,alpha=0.05,nboot=2000,est=bivar)

has been supplied; it defaults to comparing the biweight midvariances. (When using pb2gen,
setting est=bivar returns the same results when using the default settings of b2ci.)

n Example

For the ozone data in Table 5.3, 0.95 con�dence interval returned by the R function b2ci
is (−538,−49) with a p-value of .012.

n

5.6 Permutation Tests

This section describes a permutation test for comparing the distributions corresponding to two
independent groups, an idea introduced by R. A. Fisher in the 1930s. The method is
somewhat similar to bootstrap techniques, but it accomplishes a different goal, as will become
evident. There are many extensions and variations of the method about to be described,
including a range of techniques aimed at multivariate data (e.g., Good, 2000; Pesarin, 2001;
Rizzo & Székely, 2010), but only the basics are included here.

The permutation test in this section can be used with virtually any measure of location or
scale, but regardless of which measure of location or scale is used, in essence the goal is to
test the hypothesis that the groups under study have identical distributions. To illustrate the
basics, the method is first described using means. The steps are as follows:

1. Compute d = X̄1− X̄2, the difference between the sample means, where the sample sizes
are n1 and n2.

2. Pool the data.
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3. Consider any permutation of the pooled data, compute the sample mean of the first n1

observations, compute the sample mean using the remaining n2 observations, and
compute the difference between these sample means.

4. Repeat the previous step for all possible permutations of the data yielding, say, L
differences: δ̂1, . . . , δ̂L .

5. Put these L differences in ascending order yielding δ̂(1) ≤ · · · ≤ δ̂(L).
6. Reject the hypothesis of identical distributions if d < δ̂(`+1) or if d > δ̂(u), where

`= αL/2, rounded to the nearest integer, and u = L−`.

Although this variation of the permutation test is based on the sample mean, it is known that it
does not provide satisfactory inferences about the population means. In particular, it does not
control the probability of a Type I error when testing H0: µ1 = µ2, and it does not yield a
satisfactory confidence interval for µ1−µ2. For example, Boik (1987) established that when
the goal is to compare means, unequal variances can affect the probability of a Type I error,
even under normality, when testing H0: µ1 = µ2. If the sample means are replaced by the
sample variances, it can be seen that differences between the population means can affect the
probability of a Type I error even when the population variances are equal. (The details are
left as an exercise.) However, the method provides an exact distribution-free method for
testing the hypothesis that the distributions are identical. For results on using a permutation
test with the mean replaced by a robust estimator, see Lambert (1985). When the goal is to
compare medians, again a permutation test can be unsatisfactory (Romano, 1990).

In practice, particularly with large sample sizes, generating all permutations of the pooled
data can be impractical. A simple method for dealing with this problem is to simply use B
random permutations instead. Now proceed as described above, only L is replaced by B.

5.6.1 R Function permg

The R function

permg(x,y,alpha=0.05,est=mean,nboot=1000)

performs the permutation test based on B random permutations of the pooled data. (The
argument nboot corresponds to B.) By default, means are used, but any measures of location
or scale can be used via the argument est.

5.7 Inferences About a Probabilistic Measure of Effect Size

There is another approach to comparing two independent groups that deserves consideration.
Let

p = P(X i1 < X i2),
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be the probability that a randomly sampled observation from the first group is smaller than the
a randomly sampled observation from the second. When there is no difference between the
groups, and the distributions are identical, p = 1/2. The value of p has a natural interest, and
some have argued that in many situations it is more interesting than the difference between
any two measures of location (e.g., Cliff, 1993). Additional arguments for comparing groups
based on p can be found in Acion, Peterson, Temple, and Arndt (2006), Kraemer and Kupfer
(2006), and Vargha and Delaney (2000). For example, in clinical trials, of interest is the
probability that method A is more effective than method B.

The best-known approach to comparing two independent groups, which is based on an
estimate of p, is the Wilcoxon–Mann–Whitney test. The method might appear to provide a
reasonable way of testing

H0 : p = 0.5,

but a fundamental concern is that when distributions differ, there are general conditions under
which the Wilcoxon–Mann–Whitney test uses the wrong standard error. More precisely, the
standard error used by the Wilcoxon–Mann–Whitney is derived under the assumption that
groups have identical distributions, and when the distributions differ, under general conditions
the derivation no longer holds. Modern (heteroscedastic) methods are based on using an
estimate of the correct standard error regardless of whether the distributions differ. Pratt
(1964) established that the Wilcoxon–Mann–Whitney test is biased and documents its
inability to control the probability of a type I error when testing H0 : p = 0.5.

Often the Wilcoxon–Mann–Whitney test is described as a method for comparing the
marginal medians, but it can be unsatisfactory in this regard (e.g., Fung, 1980;
Hettmansperger, 1984). To elaborate, let D = X −Y and let θD be the population median
associated with D and let θX and θY be the population medians associated with X and Y ,
respectively. It is left as an exercise to show that under general conditions, θD 6= θX − θY .
Although the Wilcoxon–Mann–Whitney test does not provide a direct test of the hypothesis
that X and Y have equal medians, it is based on an estimate of p, and when p = 0.5, θD = 0.

Various attempts have been made to improve on the Wilcoxon–Mann–Whitney test, but not
all of them are listed here. Interested readers can refer to Baumgartner, Weiss, and Schindler
(1998), Ryu and Agresti (2008), Zhou (2008), Fligner and Policello (1981), Newcombe
(2006a) plus the references they cite (cf. Neuhäuser, 2003).

Here, three methods are described, all of which appear to be viable options. The first method,
which assumes that ties occur with probability zero, was derived by Mee (1990) and provides
a confidence interval for p that compares well with many of the alternative methods that have
been proposed. The computational steps are summarized in Table 5.8. (The quantity U in
Table 5.8 is the Wilcoxon–Mann–Whitney statistic while p̂ is an unbiased estimate of p. In
terms of testing H0: p = 1/2, Mee’s method can maintain relatively high power when
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Table 5.8: Mee’s Con�dence Interval for p.

Set Ui j = 1 if X i1 < X j2 and Ui j = 0 if X i1 ≥ X j2. Let

U =
n1∑

i=1

n2∑
j=1

Ui j

p̂ =
U

n1n2

p̂1 =

n1∑
i=1

n2∑
j=1

n1∑
k 6=i

Ui jUk j

n1n2(n1−1)

p̂2 =

m∑
i=1

n∑
j=1

n∑
k 6= j

Ui jUik

n1n2(n2−1)

b1 =
p̂1− p̂2

p̂− p̂2

b2 =
p̂2− p̂2

p̂− p̂2

A =
(n1−1)b1+1

1−n−1
2

+
(n2−1)b2+1

1−n−1
1

N̂ =
n1n2

A

C =
z2

1−α/2

N̂

D =
√

C[ p̂(1− p̂)+0.25C],

where z1−α/2 is the 1−α/2 quantile of the standard normal distribution. The end points of the 1−α con�dence
interval for p are given by

p̂+ .5C±D

1+C
.

distributions are heavy-tailed. There are situations, however, where testing H0 : p = 1/2 can
result in low power compared with the Yuen–Welch method, the details of which are left as an
exercise.

5.7.1 R Function mee

The R function

mee(x,y,alpha=0.05).

performs the calculations in Table 5.8. As usual, the default value for α is 0.05, and x and y
are any R vectors containing data. The function returns p̂, an estimate of p, plus a 1−α
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confidence interval for p. (The function checks for tied values and prints a warning if any are
found.)

n Example

For the ozone data in Table 5.3, the R function Mee reports that the estimate of p is
p̂ = 0.239, and the 0.95 con�dence interval is (0.116,0.429). Thus, H0: p = 1/2 would
be rejected, and the data suggest that the weight gain for a typical rat in an ozone
environment will be less than the weight gain for a typical rat in the control group.

n

5.7.2 The Cliff and Bruner–Munzel Methods: Handling Tied Values

This section describes two additional methods for testing H0: p = .5. The first was derived by
Cliff (1996), and the other was derived by Brunner and Munzel (2000). Both allow
heteroscedasticity and are designed to perform well when tied values can occur. And when
there are no tied values, it currently seems that they compete well with Mee’s method.

Mee’s method, which assumes tied values do not occur, is aimed at making inferences about
p = P(X i1 < X i2). With tied values, a different formulation is required. Let

p1 = P(X i1 > X i2),

p2 = P(X i1 = X i2),

and
p3 = P(X i1 < X i2).

For convenience, set P = p3+ .5p2 = p+ .5p2. The usual generalization to tied values
replaces H0: p = .5 with

H0 : P = .5.

(So when tied values occur with probability zero, this hypothesis becomes H0: p = .5.)

Cliff ’s Method

Cliff prefers a slightly different perspective, namely, testing

H0 : δ = p1− p3 = 0.

It is readily verified that δ = 1−2P .

For the i th observation in group 1 and the hth observation in group 2, let

dih =


−1 if X i1 < Xh2

0 if X i1 = Xh2

1 if X i1 > Xh2.
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An estimate of δ = P(X i1 > X i2)− P(X i1 < X i2) is

δ̂ =
1

n1n2

n1∑
i=1

n2∑
h=1

dih, (5.19)

the average of the dih values. Let

d̄ i. =
1

n2

∑
h

dih,

d̄ .h =
1

n1

∑
i

dih,

s2
1 =

1

n1−1

n1∑
i=1

(d̄ i.− δ̂)
2,

s2
2 =

1

n2−1

n2∑
h=1

(d̄ .h− δ̂)
2,

σ̃ 2
=

1

n1n2

∑∑
(dih− δ̂)

2.

Then

σ̂ 2
=
(n1−1)s2

1 + (n2−1)s2
2 + σ̃

2

n1n2

estimates the squared standard error of δ̂. Let z be the 1−α/2 quantile of a standard normal
distribution. Rather than use the more obvious confidence interval for δ, Cliff (1996, p. 140)
recommends

δ̂− δ̂3
± zσ̂

√
(1− δ̂2)2+ z2σ̂ 2

1− δ̂2+ z2σ̂ 2
.

Cliff’s confidence interval for δ is readily modified to give a confidence for P . Letting

C` =
δ̂− δ̂3

− zσ̂
√
(1− δ̂2)2+ z2σ̂ 2

1− δ̂2+ z2σ̂ 2

and

Cu =
δ̂− δ̂3

+ zσ̂
√
(1− δ̂2)2+ z2σ̂ 2

1− δ̂2+ z2σ̂ 2
,

a 1−α confidence interval for P is (
1−Cu

2
,

1−C`
2

)
. (5.20)
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Brunner–Munzel Method

To describe the Brunner–Munzel method, we begin by providing a formal definition of a
midrank. Let

c−(x)=

{
0, x ≤ 0,
1, x > 0,

c+(x)=

{
0, x < 0,
1, x ≥ 0,

and
c(x)=

1

2
(c+(x)+ c−(x)).

The midrank associated with X i is

1

2

n∑
j=1

c(X i − X j ).

In essence, midranks are the same as ranks when there are no tied values. If tied values occur,
the ranks of tied values are averaged.

n Example

Consider the values

7, 7.5, 7.5, 8, 8, 8.5, 9, 11, 11, 11.

If there were no tied values, their ranks would be 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10. The
midranks are easily determined as follows. Because there are two values equal to 7.5,
their ranks are averaged yielding a rank of 2.5 for each. There are two values equal to 8,
their original ranks were 4 and 5, so their midranks are both 4.5. There are three values
equal to 11, their original ranks are 8, 9, and 10, the average of these ranks is 9, so their
midranks are all equal to 9. The midranks corresponding to all ten of the original
values are:

1, 2.5, 2.5, 4.5, 4.5, 6, 7, 9, 9, 9.
n

To apply the Brunner–Munzel method, first pool the data and compute midranks. Let
N = n1+n2 represent the total sample size (the number of observations among the pooled
data), and let Ri j be the midrank associated with X i j (the i th observation in the j th group)
based on the pooled data. Let

R̄ j =
1

n j

n j∑
i=1

Ri j .

www.elsevierdirect.com



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

WILCOX 08-ch05-137-214-9780123869838 2011/12/6 18:05 Page 183 #47

Chapter 5 Comparing Two Groups 183

Compute the midranks for the data in group 1, ignoring group two, and label the results
V11, . . .Vn11. Do the same for group two (ignoring group one) and label the midranks
V12, . . .Vn22. The remaining calculations for testing H0: P = 0.5, or for computing a
confidence interval for P , are shown in Table 5.9.

Table 5.9: The Brunner–Munzel Method for Two Independent Groups.

Compute

S2
j =

1

n j −1

n j∑
i=1

(
Ri j −Vi j − R̄ j +

n j +1

2

)2

,

s2
j =

S2
j

(N −n j )2

se =
√

N

√
s2

1

n1

+
s2

2

n2

,

U1 =

(
S2

1

N −n1

+
S2

2

N −n2

)2

and

U2 =
1

n1−1

(
S2

1

N −n1

)2

+
1

n2−1

(
S2

2

N −n2

)2

.

The test statistic is

W =
R̄2− R̄1
√

Nse

,

and the degrees of freedom are

ν̂ =
U1

U2

.

Decision Rule: Reject H0: P = .5 if |W | ≥ t , where t is the 1− α/2 quantile of a Student’s
t-distribution with ν̂ degrees of freedom. An estimate of P is

P̂ =
1

N
(R̄2− R̄1)+

1

2
.

The estimate of δ = p1− p3 is

δ̂ = 1−2P̂.

An approximate 1−α con�dence interval for P is

P̂± tse.
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In the second edition of this book, it was noted that situations can be constructed where, with
many tied values, Cliff’s method seems to be a bit better than the Brunner–Munzel method in
terms of guaranteeing an actual Type I error probability less than the nominal α level. When
testing at the 0.05 level, Cliff’s method seems to do an excellent job of avoiding actual Type I
error probabilities less than 0.04. In contrast, the Brunner–Munzel method can have an actual
Type I error rate close to 0.07 when tied values are common and sample sizes are small. More
recently, Neuhäuser, Lösch, and Jöckel (2007) provide a more comprehensive comparison of
the Cliff and Brunner–Munzel methods in terms of their ability to control the probability of a
Type I error. Again, with small sample sizes, it seems that Cliff’s method has a bit of an
advantage, and that generally there is little separating the two methods. Evidently, there are no
published results on how Cliff’s method compares to Mee’s method when there are no tied
values. With large sample sizes, the Brunner–Munzel method can have a lower execution
time, especially when computing a p-value.

5.7.3 R Functions cid, cidv2, bmp, and wmwloc

The R function

cid(x,y,alpha=0.05,plotit=F,pop=0,fr=0.8,rval=15,xlab=“”,ylab=“”)

performs Cliff’s method for making inferences about δ = P(X i1 > X i2)− P(X i1 < X i2). The
function also reports a confidence interval for P = p3+0.5p2, which is labeled ci.p. The
estimate of P is labeled phat. To get a p-value, use the function

cidv2(x,y,plotit=F,xlab=“”,ylab=“”).

The function

bmp(x,y,alpha=0.05,plotit=T,pop=0,fr=0.8,rval=15,xlab=“”,ylab=“”)

performs the Brunner–Munzel method. It returns the p-value when testing H0: P = .5, plus an
estimate of P labeled phat, and a confidence interval for P labeled ci.p (An estimate of
δ = p1− p3, labeled d.hat, is returned as well.)

When plotit=T, these R functions create plots based on the n1n2 differences,
Dih = X i1− Xh2, i = 1, . . . ,n1 and h = 1, . . . ,n2. For reasons previously mentioned, these R
functions can be viewed as methods aimed at testing the hypothesis that the distribution of
D = X −Y has a median of zero. With plotit=T, the function plots an estimate of the
distribution of D, which should be symmetric about zero if the two distributions being
compared are identical.

The argument pop determines the type of plot that will be created. The choices are:

• pop=0, adaptive kernel density estimate
• pop=1, expected frequency curve
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• pop=2, Rosenblatt’s shifted histogram
• pop=3, boxplot
• pop=4, stem-and-leaf
• pop=5, histogram
• pop=6, kernel density using a normal kernel.

The argument fr is the span when using a kernel density estimator, and rval indicates how
many points are used by Rosenblatt’s shifted histogram when creating the plot. (See
Section 3.2.5.) Labels can be added to the x-axis and y-axis via the arguments xlab and ylab,
respectively.

The R function

wmwloc(x,y,alpha=0.05,na.rm=T)

computes the median of the distribution of D = X −Y .

n Example

For the data in Table 5.7, the Brunner–Munzel method has a p-value of .042, and its
0.95 con�dence interval for P is (.167, .494), so H0: P = .5 is rejected. Cliff ’s method
also rejects at the 0.05 level, the 0.95 con�dence interval for P being (0.198, 0.490).

n

n Example

Measures of location provide some sense of how much groups differ, robust measures
can provide more power versus methods based on means, and rank-based methods
provide yet another perspective. But sometimes more might be needed to understand
the nature and extent two groups differ, as illustrated here with data dealing with
measures of self-regulation for children in grades in grades 6–7. The �rst group
consisted of families with both parents, and the second group consisted of children
from families with a single parent. (The sample sizes are 245 and 230, respectively.)
Testing at the 0.05 level, no difference between the groups is found based on Student’s
t-test, Welch’s heteroscedastic method for means, Yuen’s method for trimmed means
(in Section 5.3), the bootstrap methods for M-estimators and trimmed means covered
in this chapter, and the rank-based methods as well. But is it possible that these
methods are missing some true difference? That is, perhaps the distributions differ, but
the hypothesis testing methods just listed are insensitive to this difference. The upper
left panel of Figure 5.8 shows the shift function for these two groups. The function
sband indicates that from about the 0.2–0.3 quantiles, the groups differ, and the 0.47
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Figure 5.8: Four graphs summarizing how two groups differ based on a measure of
self-regulation.

and 0.48 quantiles differ as well. To add perspective, the upper right plot shows the
adaptive kernel density estimates created by the function g2plot. The lower left panel
shows a boxplot of the data, and the lower right panel is a Rosenblatt shifted histogram
created by the function cid (which performs Cliff ’s heteroscedastic analog of the
Wilcoxon–Mann–Whitney test).

n

5.8 Comparing Two Independent Binomials

Many methods have been proposed for comparing two independent binomial distributions.
Two methods described here were chosen based on results in Storer & Kim (1990) and Beal
(1987) where comparisons of several methods were made. It is noted, however, that
competing methods have been proposed that apparently have not been compared directly with
the methods covered here (e.g., Berger, 1996; Coe & Tamhane, 1993). Results reported by
Reed (2009) indicate that a method derived by Agresti and Caffo (2000) performs relatively
well. More recently, Kulinskaya, Morgenthaler and Staudte (2010) derived yet another
method, which will be denoted as the KMS method, which appears to be generally superior to
the Agresti–Caffo method. It also competes well with a method derived by Newcombe
(1998), which performed well among the methods compared by Brown and Li (2005). The
best choice among the three methods covered here is not completely clear. It now appears that
KMS is a bit preferable to Beal’s method. An appeal of Beal’s method and the KMS method is
that they provide a confidence interval, whereas the Storer–Kim method does not. Situations
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arise in subsequent chapters where the Storer–Kim method has less power than Beal’s method
when comparing multiple groups of individuals. But when comparing two groups only, we
find situations where the Storer–Kim method rejects and Beal’s method does not. In terms of
controlling the probability of a type I error when testing the hypothesis that the two binomial
distributions have the same probability of success, all three methods appear to ensure that the
actual level will be less than or equal to the nominal level. Limited comparisons indicate that
typically the level of the Storer–Kim method is closest to the nominal level, when testing at
the 0.05 level, suggesting that in general it will have the highest power.

Reiczigel, Abonyi-Tóth, and Singer (2008) generalized results derived by Sterne (1954) that
yields a minimum volume confidence region for the two probabilities of success. Their
method can be used, among other things, to compute a p-value when testing the hypothesis
that two probabilities are equal. However, the Storer–Kim method appears to have a slight
edge in terms of power, at least when testing at the 0.05 level. A more systematic study is
needed to resolve this issue. The involved computational details are not described, but an R
function for computing the confidence region derived by Reiczigel et al. is provided in
Section 5.8.4.

5.8.1 Storer–Kim Method

Let p j ( j = 1, 2) be the probability of success associated with the j th group and let r j be the
number of successes among n j trials. The goal is to test H0 : p1 = p2. Note that the possible
number of successes in the first group is any integer, x , between 0 and n1, and for the second
group it is any integer, y, between 0 and n2. For any x and y, set

axy = 1

if ∣∣∣∣ x

n1
−

y

n2

∣∣∣∣≥ ∣∣∣∣ r1

n1
−

r2

n2

∣∣∣∣ ;
otherwise

axy = 0.

Let
p̂ =

r1+ r2

n1+n2
.

The test statistic is

T =
n1∑

x=0

n2∑
y=0

axyb(x, n1, p̂)b(y, n2, p̂),

where

b(x, n1, p̂)=

(
n1

x

)
p̂x(1− p̂)n1−x ,
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and b(y, n2, p̂) is defined in an analogous fashion. You reject if

T ≤ α.

That is, T is the p-value. The Storer–Kim method does not provide a confidence interval, but
it currently seems that typically it offers the most power among the methods that are available.

Note that the Storer–Kim method can be extended to comparing two multinomials by using a
bootstrap method to determine a p-value. One possibility is to measure the overall difference
between the two distributions using the sum of squared differences between the estimated cell
probabilities as a test statistic. Next, estimate the assumed common probabilities as done here.
Then generate bootstrap samples from a multinomial distribution having these cell
probabilities, which can be used to compute a p-value. Put another way, one can perform a
global test that for all possible x values P(X = x)= P(Y = x), where X and Y are
independent random variables. (More details can be found in Wilcox and Vigen (2011). Also
see Alba-Fernández and Jiménez-Gamero, 2009.)

5.8.2 Beal’s Method

Let p̂1 = r1/n1, p̂2 = r2/n2 and let c = z2
1−α/2 where z1−α/2 is the 1−α quantile of a standard

normal distribution. (So c is the 1−α quantile of a chi-squared distribution with one degree
of freedom.) Compute

a = p̂1+ p̂2

b = p̂1− p̂2

u =
1

4

(
1

n1
+

1

n2

)

v =
1

4

(
1

n1
−

1

n2

)
V = u{(2−a)a−b2

}+2v(1−a)b

A =
√

c{V + cu2(2−a)a+ cv2(1−a)2}

B =
b+ cv(1−a)

1+ cu
.

The 1−α confidence interval for p1− p2 is

B±
A

1+ cu
.
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5.8.3 KMS Method

The confidence interval for p1− p2, derived by Kulinskaya, Morgenthaler, and Staudte
(2010) is

ŵ

u
sin

(
arcsin

[
u1̂+ v̂

ŵ

]
± z1−α/2

√
u

2n1n2/N

)
−
v̂

u
,

where z1−α/2 is the 1−α/2 quantile of a standard normal distribution, again r1 and r2 are the
observed number of successes, 0≤ A ≤ 1 is chosen by the user, u = 2((1− A)2 n2

N + A2 n1
N ),

1̂= (r1+0.5)/(n1+1)− (r2+0.5)/(n2+1), ψ̂ = A(r1+0.5)/(n1+1)+

(1− A)(r2+0.5)/(n2+1), v̂ = (1−2ψ̂)(A− n2
N ), and ŵ =

√
2uψ̂(1− ψ̂)+ v̂2. Here,

following the suggestion made by Kulinskaya et al., A = 0.5 is used.

5.8.4 R Functions twobinom, twobici, bi2KMS, bi2KMSv2, and bi2CR

The R function

twobinom(r1 = sum(x), n1 = length(x), r2 = sum(y), n2 = length(y), x = NA, y = NA)

tests H0 : p1 = p2 using the Storer–Kim method. The function can be used either by
specifying the number of successes in each group (arguments r1 and r2) and the sample sizes
(arguments n1 and n2), or the data can be in the form of two vectors containing 1s and 0s, in
which case you use the arguments x and y.

Beal’s method can be applied with the function

twobici(r1 = sum(x), n1 = length(x), r2 = sum(y), n2 = length(y), x = NA,
y = NA, alpha = 0.05)

The R function

bi2KMS(r1 = sum(x), n1 = length(x), r2 = sum(y), n2 = length(y), x =NA, y = NA,
alpha = 0.05)

performs method KMS. The R function

bi2KMSv2(r1=sum(x), n1=length(x), r2=sum(y), n2=length(y), x=NA, y=NA)

is the same as the R function bi2KMS, only it returns a p-value. The R function

bi2CR(r1, n1, r2, n2, alpha=0.05, xlab=“p1”, ylab=“p2”)

plots the 1−α confidence region for (p1, p2) based on the method derived by Reiczigel et al.
(2008).
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n Example

If for the �rst group we have 7 successes among 12 observations, for the second group
we have 22 successes among 25 observations, the command twobinom(7,12,22,25)
returns a p-value of .044, this is less than .05, so we would reject with α = .05. The .95
con�dence interval for p1− p2 returned by the command twobici(7,12,22,25) is (−0.61,
0.048), this interval contains zero, so in contrast to the Storer-Kim method we do not
reject the hypothesis H0: p1 = p2, the only point being that different conclusions might
be reached depending on which method is used. The con�dence interval returned by
bi2KMS is (−0.60, 0.025).

n

5.8.5 Comparing Discrete Distributions: R Functions binband and disc2com

When dealing with two discrete distributions, where the sample space is small, it might be
desired to test

H0 : P(X = x)= P(Y = x)

for each value x in the sample space. This can be done with the R function

binband(x,y,KMS=F).

By default, the individual probabilities are compared using the Storer–Kim method.
Otherwise method KMS is used. The R function

disc2com(x,y,alpha=0.05,nboot=500,SEED=TRUE)

performs a global test using a bootstrap extension of the Storer–Kim method assuming the R
package mc2d has been installed.

5.9 Comparing Dependent Groups

There are many ways two dependent groups might be compared, but as usual, no attempt is
made to list all the possibilities. Rather, the goal is to describe methods similar in spirit to the
methods for independent groups covered in this chapter.

5.9.1 A Shift Function for Dependent Groups

Lombard (2005) derived an extension of the shift function, described in Section 5.1, to
dependent groups (cf. Wilcox, 2006f). Let (X1, Y1), . . . , (Xn, Yn) be a random sample of
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n pairs of observations from some bivariate distribution. Let X(1) ≤ · · · ≤ X(n) be the X i

values written in ascending order (i = 1, . . . ,n). Let

F̂(x)=
1

n

∑
I (X i ≤ x)

be the estimate of F(x), the marginal distribution of X , where the indicator function
I (X i ≤ x)= 1 if X i ≤ x , otherwise I (X i ≤ x)= 0. The estimate of the marginal distribution
Y , Ĝ(x), is defined in a similar manner. Denote the combined set {X1, . . . Xn,Y1, . . .Yn},
written in ascending order, by {Z(1) ≤ . . .≤ Z(2n)}. Lombard’s (2005) method for computing
confidence intervals for the difference between each quantile stems from the test statistic

K = (n/2)1/2max|F̂(Zi )− Ĝ(Zi )|,

which can be used to test
H0 : F(x)= G(x), for all x,

versus
H1 : F(x) 6= G(x), for at least one x .

If x > 0, let
ψy(x)= (2πx3)−1/2 yexp(−y2/2x),

otherwise, ψy(x)= 0. Let Ri be the rank of X i values among the X values and let Si be the
rank of Yi among the Y values. Let fi be the frequency of occurrence of the value i among the
values max{R1, S1}, . . . ,max{Rn, Sn}. Then the α level critical value used by Lombard is the
value c solving

1

n

n∑
i=1

fi ×ψc(i − f1−· · ·− fi )= α. (5.21)

Here, the Nelder and Mead (1965) algorithm is used to determine c.

Let [z] denote the integer portion of z, and for k ≥ 0, let Y(−k) = X(−k) =−∞ and
Y(n+1+k) = X(n+1+k) =∞. The quantile matching function q is given by G(q(x))= F(x). It
specifies the functional relationship between the marginal distributions and reflects the
difference between quantiles. Lombard’s confidence interval for q(X( j)), the quantile
matching function evaluated at X( j), is

(Y( j−[(2n)1/2c]), Y( j+[(2n)1/2c])),

which is designed to have, approximately, simultaneous probability coverage 1−α. So when
the marginal distributions are identical, the interval

(Y( j−[(2n)1/2c])− X( j), Y( j+[(2n)1/2c])− X( j)), (5.22)

should contain zero for any j .
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5.9.2 R Function lband

The R function

lband(x,y=NA,alpha=0.05,plotit=T,sm=T,ylab=“delta”, xlab=“x (first group)”)

computes Lombard’s shift function for dependent groups. If the argument y=NA, the function
assumes the argument x is a matrix with two columns or it has list mode. By default, the shift
function is plotted. To avoid the plot, set the argument plotit=F. If the argument
sm=T, a plot of shift function is smoothed using lowess.

5.9.3 Comparing Deciles

This section describes a method for comparing the deciles of two dependent groups, the idea
being to capture the spirit of the shift function. The method is similar to the approach used to
compare two independent groups based on the Harrell–Davis estimator, but certain details are
different.

Let (X11, X12), . . . , (Xn1, Xn2) be a random sample of n pairs of observations from some
bivariate distribution. Let θ̂ jq be the Harrell–Davis estimate of the qth quantile associated
with the j th marginal distribution, q = 0.1(0.1)0.9. Then d̂q = θ̂1q − θ̂2q estimates the
difference between the qth quantiles. For the problem at hand, bootstrap samples are obtained
by re-sampling with replacement n pairs of points. That is, n rows of data are sampled, with
replacement, from the n by 2 matrix X11, X12

...

Xn1, Xn2

 .
This is in contrast to the case of independent groups where bootstrap samples are obtained by
re-sampling from X11, . . . , Xn1, and separate (independent) bootstrap samples are obtained by
re-sampling from X12, . . . , Xn2.

Let (X∗11, X∗12), . . . , (X
∗

n1, X∗n2) be the bootstrap sample obtained by re-sampling n pairs of
points, let θ̂∗jq be the Harrell–Davis estimate of x jq , the qth quantile of the j th group, based

on the values X∗1 j , . . . , X∗nj , and let d̂∗q = θ̂
∗

1q − θ̂
∗

2q . Repeat this bootstrap process B times

yielding d̂∗q1, . . . , d̂
∗

q B . Then an estimate of the squared standard error of d̂q is

σ̂ 2
dq =

1

B−1

B∑
b=1

(d̂∗qb− d̄q)
2,
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where

d̄q =
1

B

B∑
b=1

d̂∗qb.

Setting

c =
37

n1.4
+2.75,

(θ̂1q − θ̂2q)± cσ̂dq (5.23)

yields a confidence interval for x1q − x2q , where c was determined so that the simultaneous
probability coverage is approximately .95.

Notice that the method uses only one set of B bootstrap samples for all nine quantiles being
compared. That is, the same bootstrap samples are used to compute σ̂ 2

dq for each
q = 0.1, . . . ,0.9. In contrast, when comparing independent groups, 18 sets of B bootstrap
samples are used, one for each of the 18 quantiles being estimated, so execution time on a
computer will be faster when working with dependent groups. The original motivation for
using 18 sets of bootstrap values was to approximate the critical value using a nine-variate
Studentized maximum modulus distribution. However, the approximation proved to be rather
unsatisfactory when sample sizes are small. When working with independent groups, it might
be possible to get accurate confidence intervals using only one set of B bootstrap samples, but
this has not been investigated.

5.9.4 R Function shiftdhd

The R function

shiftdhd(x,y,nboot=200,plotit=T).

computes a confidence interval for the difference between the quantiles, when comparing two
dependent random variables, using the method described in the previous subsection. The
confidence intervals are designed so that the simultaneous probability coverage is
approximately .95. As with shifthd, the default number of bootstrap samples (nboot) is
B = 200 which appears to suffice in terms of controlling the probability of a Type I error.
Simulations indicate that this has a practical advantage over B = 100 (Wilcox, 1995b). The
last argument, plotit, defaults to T, for true, meaning that a plot of the shift function is created.
The command shifthd(x,y,plotit=F) avoids the plot.
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n Example

An illustration in Section 5.3.3 is based on data from a study on the effects of
consuming alcohol. Another portion of the study compared the effects of drinking
alcohol for the same participants measured at three different times. Table 5.10 shows
the data for the control group measured at times 1 and 3. No differences are found
between the means or trimmed means, but this leaves open the possibility that one or
more quantiles are signi�cantly different. Comparing the deciles with shiftdhd, no
signi�cant differences are found with α = 0.05. Figure 5.9 shows the results when using
shiftdhd. The dots represent θ̂1q , the Harrell–Davis estimate of the qth quantile based
on the data stored in the R variable x, versus d̂q = θ̂1q − θ̂2q , the estimated difference
between the qth quantiles, where θ̂2q is the estimate based on the data in the R variable
y. Below and above each dot is a + marking the ends of the con�dence interval for dq .

Table 5.10: The Effect of Alcohol in the Control Group.

Time 1 0 32 9 0 2 0 41 0 0 0
6 18 3 3 0 11 11 2 0 11

Time 3 0 25 10 11 2 0 17 0 3 6
16 9 1 4 0 14 7 5 11 14
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Figure 5.9: Plot created by the function shifthd using a portion of the alcohol data.
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5.9.5 Comparing Trimmed Means

When comparing dependent groups, under general conditions, the difference between the
marginal population medians does not equal the population median of the difference scores.
This result generalizes to the γ-trimmed means, γ > 0. That is, if Di = X i1− X i2, under
general conditions µtd 6= µt1−µt2, where µtd is the population trimmed mean corresponding
to D. Note that inferences about µtd are readily made using results in Chapter 4. For example,
if pairs of observations are stored in the R variables time1 and time2, a confidence interval for
µtd , based on 20% trimming, can be computed with the R command trimci(time1–time2), and
trimpb(time1–time2) will use a percentile bootstrap method instead. Alternatively, one can
use the command onesampb(time1–time2,est=tmean). Of course, in some situations, there is
little or no difference between comparing the trimmed means of the marginal distributions
versus making inferences about a trimmed mean associated with difference scores. However,
situations arise, particularly when comparing multiple groups, where the choice between the
two strategies can make a considerable difference, as will be illustrated.

The remainder of this section focuses on a (nonbootstrap) method for comparing the trimmed
means associated with the marginal distributions. Suppose (X11, X12), . . . , (Xn1, Xn2) is a
random sample of n pairs of observations from some bivariate distribution. The goal is to
compute a confidence interval for µt1−µt2, the difference between the trimmed means. A
simple approach is to estimate the squared standard error of X̄ t1− X̄ t2 and then use Student’s
t-distribution with appropriate degrees of freedom to get a confidence interval or test the
hypothesis that the trimmed means are equal. This can be done using a simple generalization
of Yuen’s method.

Before continuing, it is remarked that for the special case where the goal is to compare the
marginal medians, if there are tied values, only one method is known to perform well: a
percentile bootstrap method. The R function dmedpb, described in Section 8.3.3 can be used
to accomplish this goal. And even with no tied values, the method in this section should not
be used because it is based on an unsatisfactory estimate of the standard error.

The process begins by Winsorizing the marginal distributions. In symbols, fix j and let
X(1) j ≤ X(2) j ≤ · · · ≤ X(n) j be the n values in the j th group written in ascending order. Next,
set

Yi j =


X(g+1) j if X i j ≤ X(g+1) j

X i j if X(g+1) j < X i j < X(n−g) j

X(n−g) j if X i j ≥ X(n−g) j ,

where, as usual, g is the number of observations trimmed or Winsorized from each end of the
distribution corresponding to the j th group. With 20% trimming, g = [0.2n], where [0.2n]
means to round 0.2n down to the nearest integer. The expression for Yi j says that Yi j = X i j if
X i j has a value between X(g+1) j and X(n−g) j . If X i j is less than or equal to X(g+1) j , set
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Yi j = X(g+1) j , and if X i j is greater than or equal to X(n−g) j , set Yi j = X(n−g) j . Put another
way, the observations are Winsorized with the dependent random variables remaining paired
together, and this is consistent with the Winsorization of a bivariate distribution described in
Chapter 2.

As an illustration, consider the eight pairs of observations

X i1: 18 6 2 12 14 12 8 9
X i2: 11 15 9 12 9 6 7 10

With 20% Winsorization, g = 1, so the smallest observation in each group is pulled up to the
next smallest value. Thus, for the first row of data, the value 2 is Winsorized by replacing it
with 6. Similarly, the largest value, 18, is replaced by the value 14. For the second row of
data, 6 becomes 7 and 15 becomes 12. This yields

Yi1: 14 6 6 12 14 12 8 9
Yi2: 11 12 9 12 9 7 7 10

The population Winsorized covariance between X i1 and X i2 is, by definition, σw12 =

Ew[(X i1−µw)(X i2−µw2)], where Ew indicates the Winsorized expected value as defined in
Chapter 2, and µw j is the population Winsorized mean of the j th group. It follows from the
influence function of the trimmed mean that the squared standard error of X̄ t1− X̄ t2 is

1

(1−2γ )2n
{σ 2
w1+σ

2
w2−2σw12},

which reduces to a standard result when there is no trimming (γ = 0). The Winsorized
covariance is estimated with the sample covariance between the Yi1 and Yi2 values:

1

n−1

∑
(Yi1− Ȳ1)(Yi2− Ȳ2),

where Ȳ j is the Winsorized mean associated with the j th random variable. Generalizing
Yuen’s approach in an obvious way, the squared standard error of X̄ t1− X̄ t2 can be estimated
with

1

h(h−1)

{∑
(Yi1− Ȳ1)

2
+

∑
(Yi2− Ȳ2)

2
−2

∑
(Yi1− Ȳ2)(Yi2− Ȳ2)

}
,

where h = n−2g is the effective sample size. Letting

d j =
1

h(h−1)

∑
(Yi j − Ȳ j )

2,

and

d12 =
1

h(h−1)

∑
(Yi1− Ȳ1)(Yi2− Ȳ2),
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H0: µt1 = µt2 can be tested with

Ty =
X̄ t1− X̄ t2

√
d1+d2−2d12

, (5.24)

which is rejected if |Ty|> t , the 1−α quantile of Student’s t-distribution with h−1 degrees
of freedom. A 1−α confidence interval for µt1−µt2 is

(X̄ t1− X̄ t2)± t
√

d1+d2−2d12.

5.9.6 R Functions yuend and yuendv2

The R function yuend computes the confidence interval for µt1−µt2, the difference between
the trimmed means corresponding to two dependent groups, using the method described in the
previous subsection of this chapter. The function has the form

yuend(x,y,tr=0.2,alpha=0.05).

As usual, the default amount of trimming is tr= 0.2, and alpha defaults to 0.05. The resulting
confidence interval is returned in the R variable yuend$ci, the p-value level in yuend$siglevel,
the estimated difference between the trimmed means in yuend$dif, the estimated standard
error in yuend$se, the test statistic in yuend$teststat, and the degrees of freedom in yuend$df.

There are several ways the difference between two dependent groups might be characterized.
One possibility is to use the explanatory measure of effect size as described in Section 5.3.4.
The function

yuendv2(x,y,tr=.2,alpha=.05).

is exactly like the function yuen, only it also reports the explanatory measure of effect size.

n Example

As a simple illustration, suppose the cholesterol levels of participants are measured
before and after some treatment is administered yielding

Before: 190, 210, 300, 240, 280, 170, 280, 250, 240, 220
After: 210, 210, 340, 190, 260, 180, 200, 220, 230, 200.

Storing the before scores in the R vector x, and the after scores in y, the command
yuend(x,y) returns

$ci: [1] -8.29182 64.95849

$siglevel: [1] 0.1034335
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$dif: [1] 28.33333

$se: [1] 14.24781

$teststat: [1] 1.98861

$df: [1] 5

Thus, the 0.95 con�dence interval for µt1−µt2 is (−8.3,64.96), and the estimated
difference between the trimmed means is 28.3. The test statistic is equal to 1.99,
approximately, with a p-value of .103, the estimated standard error of the difference
between the sample trimmed means is 14.2, and the degrees of freedom are 5.

n

5.9.7 A Bootstrap-t Method for Marginal Trimmed Means

A bootstrap-t method can be used to compute a 1−α confidence interval for µt1−µt2.
(Again, when using difference scores, simply proceed as in Chapter 4.) Begin by generating a
bootstrap sample. That is, n pairs of observations are obtained by randomly sampling with
replacement pairs of observations from the observed data. As usual, label the results
(X∗i1, X∗i2), i = 1, . . . ,n. Now proceed along the lines in Section 5.3.2. More precisely, set
C∗i j = X∗i j − X̄ t j . Let T ∗y be the value of Ty , given by (5.24), based on the C∗i j values just
computed. Repeat this process B times yielding T ∗yb, b = 1, . . . , B. Let T ∗y(1) ≤ · · · ≤ T ∗y(B) be
the T ∗yb values written in ascending order. Set `= αB/2 and u = (1−α/2)B, rounding both
to the nearest integer. Then an estimate of the lower and upper critical values is T ∗y(`+1) and
T ∗y(u). An equal-tailed 1−α confidence interval for µt1−µt2 is

(X̄ t1− X̄ t2+T ∗y(u)
√

d1+d2−2d12, X̄ t1− X̄ t2+T ∗y(`)
√

d1+d2−2d12). (5.25)

To get a symmetric confidence interval, replace T ∗yb by its absolute value, set a = (1−α)B,
rounding to the nearest integer, in which case the (1−α) confidence interval for (µt1−µt2) is

(X̄ t1− X̄ t2)±T ∗y(a)
√

d1+d2−2d12.

5.9.8 R Function ydbt

The R function ydbt is supplied for computing a bootstrap-t confidence interval for µt1−µt2

when dealing with paired data. It has the form

ydbt(x,y,tr=0.2,alpha=0.05,nboot=599,side=F,plotit=F,op=1).

As usual, the default amount of trimming is tr=0.2, and α defaults to alpha=0.05. The
number of bootstrap samples defaults to nboot = 599. Using side=F, for false, results in an
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equal-tailed confidence interval, while side = T returns a symmetric confidence interval
instead. Setting the argument plotit to T creates a plot of the bootstrap values, where the type
of plot is controlled via the argument op. The possible values for op are 1, 2, and 3 which
correspond to the an adaptive kernel estimator, the expected frequency curve, and a boxplot,
respectively.

5.9.9 Inferences about the Distribution of Difference Scores

There is another perspective on comparing dependent groups that should be mentioned. For
convenience, the focus is momentarily on trimmed means, but it is evident that some of the
general remarks made here are relevant to any robust measure of location. As already noted,
except for the special case of the sample mean, the trimmed mean of the pairwise differences
can differ from the difference between the marginal trimmed means. That is, for n randomly
sampled pairs of observations X i j (i = 1, . . . ,n; j = 1, 2) if

Di = X i1− X i2,

the trimmed mean based on the Di values is not necessarily equal to X̄ t1− X̄ t2, the difference
between the marginal trimmed means. Moreover, under general conditions, µtd 6= µt1−µt2,
where µtd is the population trimmed mean corresponding to D. Note that yet another way of
characterizing how the two groups differ is in terms of the distribution of D = X1− X2. That
is, now compute the n2 differences

Dik = X i1− Xk2

for all i and k (i = 1, . . . ,n; k = 1, . . . ,n). A way of comparing the two groups is to use some
measure of location based on the Dik values.

Let MD denote the sample median based on all n2 Dik values. Of course, some other measure
of location could be used, but in terms of efficiency, MD compares well to smaller amounts of
trimming, even under normality (Wilcox, 2006d). Moreover, letting θD be the population
median associated with MD, a basic percentile bootstrap method has been found to perform
well, in terms of controlling the probability of a Type I error, when testing

H0 : θD = 0.

That is, randomly sample with replacement n pairs of observation, compute M∗D based on this
bootstrap sample, and repeat this process B times. Note that when comparing independent
groups, this hypothesis corresponds to H0: p = .5, where p is the probabilistic measure of
effect size discussed in Section 5.7.

To illustrate the different measures of location in more concrete terms, imagine a study based
on randomly sample married couples where the goal is to compare cholesterol levels. One
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strategy is to compute the median of difference scores, which tells us something about the
typical difference for a randomly sampled couple. A second approach is to compute the
median of the marginal distributions, which provides information about how the typical
cholesterol level of the males compares to the typical level for all females. A third approach is
to compute the difference between cholesterol levels for each man and woman, not just men
and women who are married. This provides information about the typical difference between
any man and any woman.

5.9.10 R Functions loc2dif and l2drmci

The R function

loc2dif((x, y = NULL, est = median, na.rm = T, plotit = F, xlab = “ ”, ylab = “ ”, ...)

computes MD for the data stored in x (time 1 for example) and y (time 2). If y is not specified,
it is assumed x is a matrix with two columns. The argument na.rm=T means that the function
will eliminate any pair where one or both values are missing. If it is desired to use all of the
available data, set na.rm=F. If the argument plotit=T, the function plots an estimate of the
distribution of D. The R function

l2drmci(x,y=NA,est=median,alpha=0.05,na.rm=T)

tests H0: θD = 0. The argument na.rm is used as was done with loc2dif.

n Example

Rao (1948) reports data on cork boring weights taken from 28 trees, which are
reproduced in Table 6.5. The borings were taken from the north, east, west, and south
sides of each tree. Here the south and east sides of the trees are compared. The function
loc2dif returns 1. That is, among all trees, the median difference between south and east
sides is estimated to be 1. In contrast, the median difference for a randomly sampled
tree, meaning the median of the difference scores associated with the 28 trees, is 3. So
now we have information on how the two sides of the same tree compare, which is not
the same as the difference among all the trees. Finally, the difference between the
marginal medians is 1.5. This tells us something about how the typical weight for the
south side of a tree compares to the typical weight of the east side. But it does not
provide any direct information regarding the typical difference among all of the trees.
The R function l2drmci returns a p-value of .336. So based on the differences among all
pairs of trees, fail to reject the hypothesis H0: θD = 0 at the 0.10 level. However, if the
n = 28 difference scores are used, the R function sintv2 returns a p-value of .088. Now
(at the 0.10 level), reject and conclude that for a randomly sampled tree, the median
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difference between the two weights differ from 0, the only point being that different
perspectives can alter the p-value substantially.

n

5.9.11 Percentile Bootstrap: Comparing Medians, M-Estimators and Other Measures
of Location and Scale

The percentile bootstrap method in Chapter 4 is readily extended to comparing various
parameters associated with the marginal distributions of two dependent variables. When X i1

and X i2 are dependent, bootstrap samples are obtained by randomly sampling pairs of
observations with replacement. That is, proceed as described in Section 5.9.7 yielding the
pairs of bootstrap samples

(X∗11, X∗12)
...

(X∗n1, X∗n2).

Let θ j be any parameter of interest associated with the j th marginal distribution. Let θ̂∗j be the

bootstrap estimate of θ j based on X∗1 j , . . . , X∗nj and let d∗ = θ̂∗1 − θ̂
∗

2 . Repeat this process B
times yielding d∗1 , . . . ,d

∗

B , write these B values in ascending order yielding d∗(1) ≤ · · · ≤ d∗(B),
in which case a 1−α confidence interval for θ1− θ2 is

(d∗(`+1),d
∗

(u)),

where `= αB/2, rounded to the nearest integer, and u = B−`,

A (generalized) p-value can be computed as well. Let p∗ be the probability that, based on a
bootstrap sample, θ∗1 > θ

∗

2 . This probability will be estimated with p̂∗, the proportion of
bootstrap samples, among all B bootstrap samples, for which θ∗1 > θ

∗

2 . For a two-sided
hypothesis, now reject if p̂∗ ≤ α/2 or if p̂∗ ≥ 1−α/2. The estimate of the (generalized)
p-value is

2min( p̂∗, 1− p̂∗).

The percentile bootstrap method just described can be unsatisfactory when the goal is to make
inferences about means and variances, but it appears to be reasonably effective when working
with M-estimators, the Harrell-Davis estimate of the median, as well as the biweight
midvariance (Wilcox, 1996a). By this is meant that the actual probability of a type I error will
not be much larger than the nominal level. However, a concern is that with small sample sizes,
the actual probability of a type I error can drop well below the nominal level when working
with M-estimators or the modified M-estimator described in Chapter 3. For example, there are
situations where, when testing at the 0.05 level, the actual probability of a type I error can be
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less than .01. Wilcox and Keselman (2002) found a method that reduces this problem in
simulations. Note that if based on the original data, θ̂1 = θ̂2, it should be the case that
p̂∗ = 0.5, but situations arise where this is not case. The idea is to shift the data so that
θ̂1 = θ̂2, compute p̂∗ based on the shifted data, and then correct the bootstrap p-value given
above. More precisely, let q̂∗ be the value of p̂∗ based on the shifted data. A so-called
bias-adjusted p-value is

2min( p̂∗a, 1− p̂∗a),

where p̂∗a = p̂∗−0.1(q̂∗−0.5). As the sample size increases, q̂∗−0.5→ 0 and the
adjustment becomes negligible.

Note that the pairs of bootstrap values (θ̂∗1b,, θ̂
∗

2b), b = 1, . . . B, provide an approximate 1−α
confidence region for (θ1, θ2). The bootstrap method aimed at comparing the measures of
location associated with the marginal distributions essentially checks to see how deeply a line
through the origin, having slope one, is nested within the cloud of bootstrap values. Here, the
depth of this line is measured by how many bootstrap points lie above it, which corresponds
to how often θ̂∗1b < θ̂

∗

2b among the B bootstrap pairs of points.

5.9.12 R Function bootdpci

The R function

bootdpci(x,y,est=onestep,nboot=NA,alpha=0.05,plotit=T,dif=T,BA=F, . . .)

performs a percentile bootstrap method using any estimator available through R. The
argument est indicates the estimator that will be used and defaults to the one-step M-estimator
(based on Huber’s 9). The default value for nboot is NA, which in effect causes B = 1000 to
be used. The argument dif controls whether inferences are made on difference scores; by
default differences scores are used. To compare measures of location associated with the
marginal distributions, set dif=F. If dif=F and BA=T, the bias adjusted p-value is computed.

n Example

If the data in Table 5.10 are stored in the R variables t1 and t2, the command
bootdpci(t1,t2,est=tmean) computes a 0.95 con�dence interval for the 20% trimmed
mean associated with the difference scores. The (generalized) p-value is .369. The left
panel of Figure 5.10 shows the resulting plot of the bootstrap values. The p-value
re�ects the proportion of points below the horizontal line at zero. The command
bootdpci(x,y,est=tmean,dif=F) compares the marginal distributions instead. Now the
(generalized) p-value is .063. The right panel of Figure 5.10 shows the resulting plot. The
p-value re�ects the proportion of points below the line having slope one and

www.elsevierdirect.com



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

WILCOX 08-ch05-137-214-9780123869838 2011/12/6 18:05 Page 203 #67

Chapter 5 Comparing Two Groups 203

E
st

. 
di

ffe
re

nc
e

Group 1

G
ro

up
 2

0 200 400 600 800 1000

−4

−2

0

2

8 10 120 2 4 6

0

2

4

6

8

10

12

Figure 5.10: Plot of the bootstrap values used by the function bootdpci when analyzing the
data in Table 5.10. The left panel is for dif=T, meaning that difference scores were analyzed.
The right panel is for dif=F, meaning that marginal measures of location are compared.

intercept zero. The command bootdpci(x,y,est=tmean,dif=F,BA=T) again compares
the marginal 20% trimmed means, but the bias-adjusted p-value is reported instead; it is
.051, so now we nearly reject at the 0.05 level.

n

The command bootdpci(x,y,est=winvar,dif=F) would compute a 0.95 confidence interval for
the difference between the 20% Winsorized variances. The command bootdpci(x,y) would
attempt to compute a 0.95 confidence interval based on a one-step M-estimator, but for the
data used here, eventually this results in an error in the R function hpsi. The reason, which
was already discussed in Chapter 4, is that with small sample sizes, there is a good chance that
an M-estimator based on a bootstrap sample cannot be computed due to division by zero.

5.9.13 Handling Missing Values

Numerous methods have been proposed for handling missing values when dealing with
means, none of which are completely satisfactory. A simple approach is the so-called
complete case method where any pair of observations is eliminated if one of the values is
missing, after which methods previously described are applied to the data that remain. This
section describes three methods for handling missing values when using a robust measure of
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location that use all of the available data, assuming missing values occur in a manner that
does not alter the marginal measures of location. For example, it might be the case that values
are missing completely at random (MCAR), meaning that the process resulting in missing
values is independent of both the observed and the missing values. A weaker assumption, that
allows the analysis to be performed without taking into account the mechanism that creates
missing values, is called missing at random (MAR). Missing at random (MAR) is taken to
mean that, given the observed data, the missingness mechanism does not depend on the
unobserved data. (For a description of other mechanisms leading to missing values, see Little
& Rubin, 2002.) At the end of this section, comments are made about the relative merits of
the methods about to be described.

Method M1

The first method is based on a straightforward generalization of the method in Lin and Stivers
(1974), assuming that the goal is to compare the marginal trimmed means, as opposed to the
trimmed mean of the difference scores. It is assumed than n pairs of observations are
randomly sampled where both values are available, which is denoted by (X1,Y1), . . . ,

(Xn,Yn). The corresponding (marginal) γ -trimmed means are denoted by X̄ t and Ȳt . For the
first marginal distribution, an additional n1 observations are sampled for which the
corresponding Y value is not observed. These observations are denoted by Xn+1, . . . , Xn+n1

and the trimmed mean of these n1 observations is denoted by X̃ t . Similarly, n2 observations
are sampled for which the corresponding value for the first marginal distribution is not
observed and the trimmed mean is denoted by Ỹt . Let h j = [γ n j ] ( j = 1, 2), and let
λ j = h/(h+h j ), where h = [γ n]. Then an estimate of the difference between the marginal
trimmed means, 1t = µt1−µt2, is

µ̂t D = λ1 X̄ t D−λ2Ȳt D+ (1−λ1)X̃ t D− (1−λ2)Ỹt D,

a linear combination of three independent random variables. The squared standard of
λ1 X̄ −λ2Ȳ is

σ 2
0 =

1

(1−2γ )2n
(λ2

1σ
2
wx +λ2σ

2
wy−2λ1λ2σwxy), (5.26)

where σwxy is the population Winsorized covariance between X and Y . The squared standard
error of (1−λ1)X̃ is

σ 2
1 =

(1−λ1)
2σ 2
wx

(1−2γ )2(n+n1)
(5.27)
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and the squared standard error of (1−λ2)Ỹ is

σ 2
2 =

(1−λ2)
2σ 2
wy

(1−2γ )2(n+n2)
. (5.28)

So the squared standard error of µ̂t D is

τ 2
= σ 2

0 +σ
2
1 +σ

2
2 .

For convenience, let N1 = n+n1 and g1 = [γ N1]. The Winsorized values corresponding to
X1, . . . , X N1 are

Wxi =


X(g1+1) if X i ≤ X(g1+1)

X i if X(g1+1) < X i < X(N1−g1)

X(N1−g1) if X i ≥ X(N1−g1).

The (sample) Winsorized mean is

W̄x =
1

N1

N1∑
i=1

Wxi ,

an estimate of the Winsorized variance, σ 2
wx , is

s2
wx =

1

N1−1

∑
(Wxi − W̄x)

2,

and an estimate of σ 2
wy is obtained in a similar fashion. The Winsorized covariance between X

and Y is estimated with

swxy =
1

n−1

n∑
i−1

(Wxi − W̃x)(Wyi − W̃y),

where

X̃w =
1

n

n∑
i=1

Wxi

and Ỹw is defined in a similar manner.

The sample Winsorized variances yield estimates of σ 2
0 , σ 2

1 and σ 2
2 , say σ̂ 2

0 , σ̂ 2
1 and σ̂ 2

2 , in
which case an estimate of the squared standard error of µ̂t D is

τ̂ 2
= σ̂ 2

0 + σ̂
2
1 + σ̂

2
2 .

So a reasonable test statistic for testing the hypothesis of equal (marginal) trimmed means is

T =
µ̂t D

τ̂
. (5.29)
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There remains the problem of approximating the null distribution of T and here a basic
bootstrap-t method is used. To make sure the details are clear, the method begins by
randomly sampling with replacement N = n+n1+n2 pairs of observations from
(X1,Y2), . . . , (X N ,YN ) yielding (X∗1,Y

∗

2 ), . . . , (X
∗

N ,Y
∗

N ). Based on this bootstrap sample,
compute the absolute value of the test statistic as just described and label the result T ∗. Repeat
this process B times and put the resulting T ∗ values in ascending order yielding
T ∗(1) ≤ · · · ≤ T ∗(B). Then an approximate 1−α confidence interval for 1t is

1̂t ±T ∗(c)τ̂

where c = (1−α)B rounded to the nearest integer.

Method M2

Method M2 is based on the usual percentile bootstrap method. For the situation at hand,
generate a bootstrap sample using all N pairs of observations and let D̃∗t = X̃∗t − Ỹ ∗t , where
X̃∗t is the trimmed mean based on all of the X∗i values not missing and Ỹ ∗t is computed in a
similar manner. Repeat this B times, put the resulting D̃∗t values in ascending order, and label
the results D̃∗t (1) ≤ · · · ≤ D̃∗t (B). Then an approximate 1−α confidence interval for µt D is

(D̃∗t (`+1), D̃∗t (u)),

where `= αB/2, rounded to the nearest integer, and u = B−`. A p-value is computed in the
usual manner. That is, estimate p = P(µ̂∗t D > 0) with p̂, the proportion of D̃∗t values greater
than 0. Then a (generalized) p-value is

P = 2min( p̂,1− p̂).

Method M3

Method M3 is based on θD , the median of the distribution of D = X −Y . The method begins
by forming all pairwise differences among all of the observed X and Y values. That is,
compute Di j = X i −Y j (i = 1, . . . , N1; j = 1, . . . , N2) resulting in N1× N2 Di j values. Then
an estimate of θD is obtained by computing the sample median of the Di j values.

Again a basic percentile bootstrap method is used to make inferences about θD . Generate a
bootstrap sample as done in Method M2 and let θ̂∗D be the resulting estimate of θD . Repeat this
process B times yielding θ̂∗Db, b = 1, . . . , B. Next, put these B values in ascending order
yielding θ̂∗D(1) ≤ · · · ≤ θ̂D(B) and let ` and u be defined as before. Then a 1−α confidence
interval for θD is

(θ̂∗D(`+1), θ̂
∗

D(u)).
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This method can be applied with the R function l2drmci in Section 5.9.10 by setting the
argument na.rm=F, meaning that any row of data that has a missing value is not removed.

Comments on Choosing a Method

Based on results in Wilcox (in press a), method M3, as well as method M2 coupled with a
20% trimmed mean, perform reasonably well in terms of controlling the probability of a
type I error, with M2 having perhaps a slight advantage. Method M1 tends to have an actual
type error probability less than the nominal level, again using a 20% trimmed mean,
sometimes substantially so. However, as the amount of trimming decreases, at some point a
percentile bootstrap method (method M2) will not perform well, suggesting that eventually,
method M1 will be more satisfactory than method M2. But at what point this is the case has
not been determined. Not surprisingly, method M1 can be highly unsatisfactory when
working with means.

5.9.14 R Functions rm2miss and rmmismcp

The R function

rmmismcp(x,y = NA, alpha = 0.05, con = 0, est = tmean, plotit = T, grp = NA, nboot =
500, SEED = T, xlab = “Group 1”, ylab = “Group 2”, pr = F, ...),

has been supplied for dealing with missing values when the goal is to test the hypothesis H0:
µt1 = µt2 using method M2 described in the previous section. In particular, rather than using
the complete case analysis strategy, it uses all of the available data to compare the marginal
trimmed means, assuming any missing values occur at random. With 20% trimming or more,
it appears to be one of the better methods for general use when there are missing values. By
default, a 20% trimmed mean is used, but other measures of location can be used via the
argument est. For example, rmmismcp(x,y,est=onestep) would compare the groups with a
one-step M-estimator. The function returns a confidence interval for the difference between
the marginal measures of location. If the argument y=NA, it is assumed that the argument x is
a matrix with columns corresponding to groups. (The function can handle more than two
groups; see Section 8.1.5 for more details.) When there are two groups and the argument
plotit=T, a plot of the bootstrap estimates is created.

The R function

rm2miss(x,y,tr=0)

also tests H0: µt1 = µt2 using method M1.
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5.9.15 Comparing Variances

For the special case where the goal is to compare the variances of dependent groups, a
variation of the basic percentile bootstrap method is required that represents an analog of the
so-called Morgan–Pitman test. Formally, the goal is to test

H0 : σ 2
1 = σ

2
2 . (5.30)

Set
Ui = X i1− X i2

and
Vi = X i1+ X i2,

(i = 1, . . . ,n), and let ρuv be the (population) value of Pearson’s correlation between the U
and V. It can be shown that if H0 is true, then ρuv = 0, so a test the hypothesis of equal
variances is obtained by testing

H0 : ρuv = 0.

One approach to testing H0: ρuv = 0, is to use a modified percentile bootstrap method, which
allows heteroscedasticity. That is, take a bootstrap sample of n pairs of the U and V values,
compute the correlation between these values, repeat this 599 times, label the results
r∗1 , . . . , r

∗

599, in which case a 0.95 confidence interval for ρuv is

(r∗(`+1), r∗(u)),

where for n < 40, `= 6 and u = 593; for 40≤ n < 80, `= 7 and u = 592; for 80≤ n < 180,
`= 10 and u = 589; for 180≤ n < 250, `= 13 and u = 586; and for n ≥ 250, `= 15 and
u = 584. Another option is to use an adaptation of the method in Section 10.1.1, called the
HC4 method, which also allows heteroscedasticity. Currently, it seems that there is little
separating the two methods in terms of controlling the probability of a type I error. An appeal
of the HC4 method is that it is not limited to α = 0.05 and it provides a p-value.

The R functions pcorb and pcorhc4, described in a Section 9.3.14, have been supplied for
testing the hypothesis that Pearson’s correlation is zero. These function can be used to
compare the variances of dependent groups using the method just described. If, for example,
the data are stored in the R variables t1 and t2, the command pcorb(t1-t1,t1+t2) accomplishes
this goal.

5.9.16 The Sign Test and Inferences about the Binomial Distribution

For completeness, one can also compare two dependent groups with the sign test. Let
p = P(X i1 < X i2). Then p is the probability that for a randomly sampled pair of
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observations, the first observation is less than the second. Letting Wi = 1 if X i1 < X i2,
w =

∑
Wi has a binomial distribution with probability of success p. Standard asymptotic

theory can be used to compute a confidence interval for p, but various improvements have
appeared in the literature, some of which are described here.

The goal is to determine cL and cU such that

P(cL ≤ p ≤ cU )= 1−α.

For the special cases where w is equal to 0, 1, n−1, or n, results in Blyth (1986) can be used.
In particular,

• If w = 0,

cU = 1−α1/n

cL = 0.

• If w = 1,

cL = 1−
(

1−
α

2

)1/n

cU = 1−
(α

2

)1/n
.

• If w = n−1,

cL =

(α
2

)1/n

cU =

(
1−

α

2

)1/n
.

• If w = n,

cL = α
1/n,

and

cU = 1.

n Example

If n = 8 and w = 0,
cU = 1− (0.05)1/8 = 0.312,

and a 0.95 one-sided con�dence interval for p is (0.,0.312). If w = 1 and n = 8, a
two-sided 0.95 con�dence interval would be (0.003, 0.37).
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Table 5.11: Pratt’s Approximate Con�dence Interval for p.

You observew successes among n trials, and the goal is to compute a 1−α con�dence
interval for p.

Let c be the 1−α/2 quantile of a standard normal distribution.

To determine cU , the upper end of the con�dence interval, compute

A =

(
w+1

n−w

)2

B = 81(w+1)(n−w)−9n−8

C =−3c
√

9(w+1)(n−w)(9n+5− c2)+n+1

D = 81(w+1)2
−9(w+1)(2+ c2)+1

E = 1+ A

(
B+C

D

)3

in which case

cU =
1

E
.

To get the lower end of the con�dence interval, compute

A =

(
w

n−w−1

)2

B = 81(w)(n−w−1)−9n−8

C = 3c
√

9x(n−w−1)(9n+5− c2)+n+1

D = 81w2
−9w(2+ c2)+1

E = 1+ A

(
B+C

D

)3

in which case

cL =
1

E
.

For situations where the observed number of successes is not 0, 1, n−1, or n, Pratt’s
(1968) approximation can be used, which is recommended by Blyth (1986) (cf. Chen,
1990). The computational details are given in Table 5.11.

n

For completeness, other methods for computing a confidence interval for the probability of
success were compared by Brown, Cai, and DasGupta (2002), and they concluded that the
Agresti–Coull method, which is a simple generalization of method derived by Agresti and
Coull (1998), performs relatively well.

Let X represent the total number of successes among n observations, in which case

p̂ =
X

n
,

www.elsevierdirect.com



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

WILCOX 08-ch05-137-214-9780123869838 2011/12/6 18:05 Page 211 #75

Chapter 5 Comparing Two Groups 211

the proportion of successes among the n observations. As before, let c be the 1−α/2 quantile
of a standard normal distribution. Compute

ñ = n+ c2,

X̃ = X +
c2

2
,

and

p̃ =
X̃

ñ
.

Then the Agresti–Coull 1−α confidence interval for the probability of success, p, is

p̃± c

√
p̃(1− p̃)

ñ
.

5.9.17 R Functions binomci and acbinomci

The R function

binomci(x = sum(y), nn = length(y), y = NA, n = NA, alpha = 0.05),

which comes with this book, computes a 1−α confidence interval for p using Pratt’s method
described in the previous section. When the number of successes is 0, 1, n−1, or n, Blyth’s
method is used instead. Here, x is the observed number of successes, nn is the number of
observations, and alpha is α. The function can handle data stored as a vector of 1s and 0s via
the argument y. If data are stored in y, and no values are specified by the arguments x and nn,
the function takes x to be the number of successes in y and nn is taken to be the length of y.
The R function

acbinomci(x = sum(y), nn = length(y), y = NA, n = NA, alpha = 0.05),

computes the Agresti–Coull confidence interval.

n Example

Suppose there is 1 success in 80 trials. Then binomci(1,80) reports that the 0.95
con�dence interval for p is (0.00032,0.0451). If mydat contains 0, 1, 1, 1, 0, 0, 1, 1, 0, 1,
then the command binomci(y=mydat) returns an estimate (phat) of p equal to 0.6 and
a 0.95 con�dence interval equal to (0.33, 0.88). The Agresti–Coull 0.95 con�dence
interval is (0.31, 0.83).

n
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5.10 Exercises

1. Compare the two groups of data in Table 5.1 using the weighted Kolmogorov–Smirnov
test. Plot the shift function and its 0.95 confidence band. Compare the results with the
unweighted test.

2. Compare the two groups of data in Table 5.3 using the weighted Kolmogorov–Smirnov
test. Plot the shift function and its 0.95 confidence band. Compare the results with the
unweighted test.

3. Summarize the relative merits of using the weighted versus unweighted
Kolmogorov–Smirnov test. Also discuss the merits of the Kolmogorov–Smirnov test
relative to comparing measures of location.

4. Consider two independent groups having identical distributions. Suppose four
observations are randomly sampled from the first and three from the second. Determine
P(D = 1) and P(D = 0.75), where D is given by Eq. (5.4). Verify your results with the
R function kssig.

5. Compare the deciles only, using the Harrell–Davis estimator, using the data in Table 5.1.
6. Verify that if X and Y are independent, the third moment about the mean of X −Y is

µx[3]−µy[3].
7. Apply the Yuen–Welch method to the data in Table 5.1 where the amount of trimming is

0, 0.05, 0.1, and 0.2. Compare the estimated standard errors of the difference between
the trimmed means.

8. Describe a situation where testing H0: p = 1/2 with Mee’s method can have lower
power than the Yuen–Welch procedure.

9. Comment on the relative merits of testing H0: p = 1/2 with Mee’s method versus
comparing two independent groups with the Kolmogorov–Smirnov test.

10. Compute a confidence interval for p using the data in Table 5.1.
11. The example at the end of Section 5.3.3 examined some data from an experiment on the

effects of drinking alcohol. Another portion of the study consisted of measuring the
effects of alcohol over 3 days of drinking. The scores for the control group, for the first 2
days of drinking, are 4, 47, 35, 4, 4, 0, 58, 0, 12, 4, 26, 19, 6, 10, 1, 22, 54, 15, 4, and 22.
The experimental group had scores 2, 0, 7, 0, 4, 2, 9, 0, 2, 22, 0, 3, 0, 0, 47, 26, 2, 0, 7,
and 2. Verify that the hypothesis of equal 20% trimmed means is rejected with α = 0.05.
Next, verify that this hypothesis is not rejected when using the equal-tailed bootstrap-t
method, but that it is rejected when using the symmetric percentile t procedure instead.
Comment on these results.

12. Section 5.9.6 used some hypothetical data to illustrate the R function yuend with 20%
trimming. Use the function to compare the means. Verify that the estimated standard
error of the difference between the sample means is smaller than the standard error of
the difference between the 20% trimmed means. Despite this, the p-value is smaller
when comparing trimmed means versus means. Why? Make general comments on this

www.elsevierdirect.com



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

WILCOX 08-ch05-137-214-9780123869838 2011/12/6 18:05 Page 213 #77

Chapter 5 Comparing Two Groups 213

result. Next, compute the 20% trimmed mean of the difference scores. That is, set
Di = X i1− X i2 and compute the trimmed mean using the Di values. Compare this to the
difference between the trimmed means of the marginal distributions, and make
additional comments about comparing dependent groups.

13. The file pyge.dat (see Section 1.8) contains pretest reasoning IQ scores for students in
grades 1 and 2 who were assigned to one of three ability tracks. (The data are from
Elashoff & Snow, 1970, and originally collected by R. Rosenthal.) The file pygc.dat
contain data for a control group. The experimental group consisted of children for whom
positive expectancies had been suggested to teachers. Compare the 20% trimmed means
of the control group to the experimental group using the function yuen and verify that
the 0.95 confidence interval is (−7.12,27.96). Thus, you would not reject the hypothesis
of equal trimmed means. What reasons can be given for not concluding that the two
groups have comparable IQ scores?

14. Continuing the last exercise, examine a boxplot of the data. What would you expect to
happen if the 0.95 confidence interval is computed using a bootstrap-t method? Verify
your answer using the R function yuenbt.

15. The file tumor.dat contains data on the number of days to occurrence of a mammary
tumor in 48 rats injected with a carcinogen and subsequently randomized to receive
either the treatment or the control. The data were collected by Gail, Santner, and Brown
(1980) and represent only a portion of the results they reported. (Here, the data are the
number of days to the first tumor. Most rats developed multiple tumors, but these results
are not considered here.) Compare the means of the two groups with Welch’s method for
means and verify that you reject with α = 0.05. Examine a boxplot and comment on
what this suggests about the accuracy of the confidence interval for µ1−µ2. Verify that
you also reject when comparing M-measures of location. What happens when
comparing 20% trimmed means or when using the Kolmogorov–Smirnov test?

16. Let D = X −Y , let θD be the population median associated with D, and let θX and θY be
the population medians associated with X and Y , respectively. Verify that under general
conditions, θD 6= θX − θY .

17. Using R, generate 30 observations from a standard normal distribution and store the
values in x. Generate 20 observations from a chi-squared distribution with one degree of
freedom and store them in z. Compute y=4(z-1), so x and y contain data sampled from
distributions having identical means. Apply the permutation test based on means with
the function permg. Repeat this 200 times an determine how often the function rejects.
What do the results indicate about controlling the probability of a type I error with the
permutation test when testing the hypothesis of equal means? What does this suggest
about computing a confidence interval for the difference between the means based on
the permutation test?

www.elsevierdirect.com



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

WILCOX 09-ch06-215-290-9780123869838 2011/12/6 18:29 Page 215 #1

CHAPTER 6

Some Multivariate Methods

The goal in this chapter is to discuss some basic problems and issues related to multivariate
data and how they might be addressed. Then some inferential methods, based on the concepts
introduced in this chapter, are described. This area has grown tremendously in recent years
and, as usual, no attempt is made to provide an encyclopedic coverage of all techniques.
Indeed, for some problems, many strategies are now available, for some purposes there are
reasons for preferring certain ones over others, but the reality is that more needs to be done in
terms of understanding the relative merits of these methods, and it seems that no single
technique can be expected to be satisfactory among all situations encountered in practice.

6.1 Generalized Variance

It helps to begin with a brief review of a basic concept from standard multivariate statistical
methods. Consider a random sample of n observations from some p-variate distribution and
let

s jk =
1

n−1

n∑
i=1

(X i j − X̄ j )(X ik− X̄k)

be the usual sample covariance between the j th and kth variables, where X̄ j =
∑

i X i j/n is
the sample mean of the j th variable. Letting S represent the corresponding sample covariance
matrix, the generalized sample variance is

G = |S|,

the determinant of the covariance matrix. The property of G that will be exploited here is that
it is sensitive to outliers. Said another way, to get a value for G that is relatively small requires
that all points be tightly clustered together. If even a single point is moved farther away from
the others, G will increase.

Although not used directly, it is noted that an R function

gvar(m)
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has been supplied to compute the generalized variance based on the data in m, where m can
be any R matrix having n rows and p columns.

6.2 Depth

A general problem that has taken on increased relevance in applied work is measuring or
characterizing how deeply a point is located within a cloud of data. Many strategies exist, but
the focus here is on methods that have been found to have practical value when estimating
location or testing hypotheses. (For a formal description and discussion of properties measures
of depth should have, see Zuo & Serfling, 2000a; cf., Zuo & Serfling, 2000b. For a general
theoretical perspective, see Mizera, 2002.) This is not to suggest that all alternative methods
for measuring depth should be eliminated from consideration, but more research is needed to
understand their relative merits when dealing with the problems covered in this book.

6.2.1 Mahalanobis Depth

Certainly the best-known approach to measuring depth is based on Mahalanobis distance. The
squared Mahalanobis distance between a point x (a column vector having length p) and the
sample mean, X̄= (X̄1, . . . , X̄ p)

′, is

d2
= (x− X̄)′S−1(x− X̄). (6.1)

A convention is that the deepest points in a cloud of data should have the largest numerical
depth. Following Liu and Singh (1997), Mahalanobis depth is taken to be

MD(x)= [1+ (x− X̄)′S−1(x− X̄)]−1. (6.2)

So the closer a point happens to be to the mean, as measured by Mahalanobis distance, the
larger is its Mahalanobis depth.

Mahalanobis distance is not robust and is known to be unsatisfactory for certain purposes to
be described. Despite this, it has been found to have value for a wide range of hypothesis
testing problems and has the advantage of being fast and easy to compute with existing
software.

6.2.2 Halfspace Depth

Another preliminary that is relevant to this chapter is the notion of halfspace depth, an idea
originally developed by Tukey (1975); it reflects a generalization of the notion of ranks to
multivariate data. In contrast to other strategies, halfspace depth does not use a covariance
matrix.
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The idea is, perhaps, best conveyed by first focusing on the univariate case, p = 1. Given
some number x , consider any partitioning of all real numbers into two components: those
values below x and those above. All values less than or equal to x form a closed halfspace,
and all points strictly less than x is an open halfspace. In a similar manner, all points greater
than or equal to x is a closed halfspace, and all points greater than x is an open halfspace. In
statistical terms, F(x)= P(X ≤ x) is the probability associated with a closed halfspace
formed by all points less than or equal to x . The notation

F(x−)= P(X < x)

represents the probability associated with an open halfspace. Tukey’s halfspace depth
associated with the value x is intended to reflect how deeply x is nested within the distribution
F(x). Its formal definition is

TD(x)=min[F(x), 1− F(x−)]. (6.3)

That is, the depth of x is the smallest probability associated with the two closed halfspaces
formed by x . The estimate of TD(x) is obtained simply by replacing F with its usual estimate,
F̂(x), the proportion of X i values less than or equal to x , in which case 1− F̂(x−) is the
proportion of X i values greater than or equal to x . So for p = 1, Tukey’s halfspace depth is
estimated to be the smaller of two proportions: the proportion of observed values less than or
equal to x , and the proportion greater than or equal to x . When F is a continuous distribution,
the maximum possible depth associated with any point is 0.5 and corresponds to the
population median. However, the maximum possible depth in a sample of observations can
exceed 0.5.

n Example

Consider the values 2, 5, 9, 14, 19, 21, and 33. The proportion of values less than or
equal to 2 is 1/7 and the proportion greater than or equal to 2 is 7/7, so the halfspace
depth of 2 is 1/7. The halfspace depth of 14 is 4/7. Note that 14 is the usual sample
median, which can be viewed as the average of the points having the largest halfspace
depth.

n

n Example

For the values 2, 5, 9, 14, 19, and 21, both the values 9 and 14 have the highest
halfspace depth among the six observations, which is 0.5, and the average of these two
points is the usual sample median. The value 1, relative to the samples 2, 5, 9, 14, 19,
and 21, has a halfspace depth of zero.

n

www.elsevierdirect.com



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

WILCOX 09-ch06-215-290-9780123869838 2011/12/6 18:29 Page 218 #4

218 Introduction to Robust Estimation and Hypothesis Testing

Now we generalize to the bivariate case, p = 2. For any line, the points on or above this line
form a closed halfspace, as do the points on or below the line. Note that for any bivariate
distribution, there is a probability associated with the two closed halfspaces formed by any
line. For p = 3, any plane forms two closed halfspaces: those points on or above the plane, as
well as the points on or below the plane, and the notion of a halfspace generalizes in an
obvious way for any p.

For the general p-variate case, consider any point x, where again x is a column vector having
length p, let H be any closed halfspace containing the point x, and let P(H) be the
probability associated with H. That is, P(H) is the probability that an observation occurs in
the halfspace H. Then roughly, the halfspace depth of the point x is the smallest value of
P(H) among all halfspaces H containing x. More formally, Tukey’s halfspace depth is

TD = infH[P(H) :H is a closed halfspace containing x]. (6.4)

For p > 1, halfspace depth can be defined instead as the least depth of any one-dimensional
projection of the data (Donoho & Gasko, 1992). To elaborate, consider any point x and any
p-dimensional (column) vector u having unit norm. That is, the Euclidean norm of u is

‖u‖ =
√

u2
1+· · ·+u2

p = 1. Then a one-dimensional projection of x is u′x (where u′ is the

transpose of u). For any projection, meaning any choice for u, depth is defined by Eq. (6.3).
In the p-variate case, the depth of a point is defined to be its minimum depth among all
possible projections, u′X. Obviously, from a practical point of view, this does not immediately
yield a viable algorithm for computing halfspace depth based on a sample of n observations,
but it suggests an approximation that has been found to be relatively effective.

A data set is said to be in general position if there are no ties, no more than two points are on
any line, no more than three points are in any plane, and so forth. It should be noted that the
maximum halfspace depth varies from one situation to the next and in general does not equal
0.5. If the data are in general position, the maximum depth lies roughly between 1/(p+1)
and 0.5 (Donoho & Gasko, 1992).

Halfspace depth is metric free in the following sense. Let A be any nonsingular p-by-p matrix
and let X be any n-by-p matrix of n points. Then the halfspace depths of these n points are
unaltered under the transformation XA. More formally, halfspace depth is affine invariant.

6.2.3 Computing Halfspace Depth

For p = 2 and 3, halfspace depth, relative to X1, . . . ,Xn , can be computed exactly
(Rousseeuw & Ruts, 1996; Rousseeuw & Struyf, 1998). For p > 3, currently an
approximation must be used and three are provided here. (For more details about the
first two approximations, see Wilcox, 2003a. For yet another approximation of the point
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having the greatest depth, see Struyf & Rousseeuw, 2000.) Cuesta-Albertos and Nieto-Reyes
(2008) suggest a method for determining Tukey’s halfspace depth based on randomly chosen
projections of the data, but it is unknown whether this has any practical advantage over the
methods covered here, which are not based on random projections of the data.

Approximation A1 The first approximation is based on the one-dimensional projection
definition of depth. First, an informal description is given after which the computational
details are provided. The method begins by computing some multivariate measure of location,
say θ̂ . There are many reasonable choices, and for present purposes it seems desirable that it
be robust. A simple choice is to use the marginal medians, but a possible objection is that they
do not satisfy a criterion discussed in Section 6.3. (The marginal medians are not affine
equivariant.) To satisfy this criterion, the MCD estimator in Section 6.3.2 is used with the
understanding that the practical advantages of using some other estimator has received
virtually no attention. Given an estimate of the center of the data, consider the line formed by
the i th observation, Xi , and the center. For convenience, call this line L. Now, (orthogonally)
project all points onto the line L. That is, for every point X j , j = 1, . . . ,n, draw a line through
it that is perpendicular to the line L. Where this line intersects L is the projection of the point.
Figure 6.1 illustrates the process where the point marked by a circle indicates the center of the
data, the line going through the center is line L, and the arrow indicates the projection of the
point. That is, the arrow points to the point on the line L that corresponds to the projection.
Next, repeat this process for each i , i = 1, . . . ,n. So for each projected point X j , we have a
depth based on the ith line formed by Xi and θ̂ . Call this depth di j . For fixed j , the halfspace
depth of X j is approximated by the minimum value among d1 j , . . . ,dnj .
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Figure 6.1: An illustration of projecting a point onto a line.
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Now a more precise description of the calculations is given. For any i , i = 1, . . . ,n, let

Ui = Xi − θ̂ ,

Bi = Ui U′i

=

p∑
k=1

U 2
ik

and for any j ( j = 1, . . . ,n) let

Wi j =

p∑
k=1

UikU jk,

and

Ti j =
Wi j

Bi
(Ui1, . . . ,Ui p). (6.5)

The distance between θ̂ and the projection of X j (when projecting onto the line connecting Xi

and θ̂ ) is

Di j = sign(Wi j )‖Ti j‖,

where ‖Ti j‖ is the Euclidean norm associated with the vector Ti j . Let di j be the depth of X j

when projecting points onto the line connecting Xi and θ̂ . That is, for fixed i and j , the depth
of the projected value of X j is

di j =min[#(Di j ≤ Dik), #(Di j ≥ Dik)],

where #{Di j ≤ Dik} indicates how many Dik (k = 1, . . . ,n) values satisfy Di j ≤ Dik . Then
the depth of X j is taken to be

L j =min di j ,

the minimum being taken over all i = 1, . . . ,n.

Approximation A2 The second approximation of halfspace depth does not use a measure of
location, rather, it uses all projections between any two points. That is, method A1 forms n
lines, namely the lines passing through the center of the scatterplot and each of the n points.
Method A2 uses (n2

−n)/2 lines, namely all lines formed by any two (distinct) points. An
advantage of method A2 is that, in situations where the exact depth can be determined, it has
been found to be more accurate on average than method A1 or the method recommended by
Rousseeuw and Struyf (1998); see Wilcox (2003a). Another disadvantage of method A1 is
that in some situations to be described, the MCD estimate of location that it uses cannot be
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computed because the covariance matrix of the data is singular. (Switching to the MVE
estimator described in Section 6.3.1 does not correct this problem.) A possible appeal of
method A2 is that depth can still be computed in these situations. A negative feature of A2 is
that with n large, execution time can be relatively high.

Although A2 is a more accurate approximation of halfspace depth than A1, perhaps in applied
work this is not a concern. That is, we can think of A1 as a method of defining the depth of a
point in a scatterplot, and for practical purposes, maybe any discrepancies between the exact
halfspace depth and the depth of a point based on A1 have no negative consequences. This
issue has received virtually no attention.

Approximation A3 A third approximation was derived by Rousseeuw and Struyf (1998), but
no attempt is made to describe the involved details. A positive feature is that it has low
execution time even for fairly large data sets, but it currently seems to be less accurate than
the two previous approximations covered in this section. The practical consequences of using
method A3 over A2 and A1, when dealing with inferential methods, have not been studied.

6.2.4 R Functions depth2, depth, fdepth, fdepthv2, and unidepth

The R function

unidepth(x,pts=NA)

is designed for univariate data only and computes the depth of the values in pts relative to the
data stored in x. If pts is not specified, the function computes the depth of each value in x
relative to all the values.

The function

depth(U,V,m)

handles bivariate data only and computes the exact halfspace depth of the point (U,V) within
the data contained in the matrix m. For example, depth(0,0,m) returns the halfspace depth of
(0,0). The function

depth2(m,pts=NA)

also handles bivariate data only, but unlike depth, it computes the depth of all the points
stored in the matrix pts. If pts is not specified, the exact depths of all the points stored in m are
determined. (The function depth is supplied mainly for convenience when computing the
halfspace depth of a single point.)

For p-variate data, p ≥ 1, the function

fdepth(m,pts=NA,plotit = T,cop = 2)
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computes the approximate halfspace depth of all the points in pts relative to the data in m
using method A1. (For p = 1, the exact halfspace depth is computed by calling the function
unidepth.) If pts is not specified, the function returns the halfspace depth of all points in m.
The argument cop indicates the location estimator, θ̂ , that will be used by method A1. By
default, the MCD estimate is used. Setting cop=3 results in using the marginal medians,
cop=4 uses the MVE estimator (discussed in Section 6.3.1). If simultaneously pts is not
specified, m contains two columns of data (so bivariate data are being analyzed), and
plotit=T, a scatterplot of the data is created that marks the center of the data corresponding to
the location estimator specified by the argument cop, and it creates what Liu, Parelius, and
Singh (1999, p. 789) call, the 0.5 depth contour. It is a polygon (a convex hull) containing the
central half of the data as measured by the depth of the points. The function

fdepthv2(m,pts=NA,plotit = T)

uses method A2 to approximate halfspace depth.

6.2.5 Projection Depth

The approximation of halfspace depth, represented by method A1 in Section 6.2.3, suggests
another measure of depth that has been found to have practical value when testing hypotheses.
Roughly, for each of the n projections used in method A1, compute the distance between the
estimated center (θ̂ ) and the i th point. The projection distance associated with the j th point,
X j , is taken to be the largest distance among all n projections after the distances are
standardized by dividing by some measure of scale. This can be converted to a measure of
projection depth using the same strategy applied to the Mahalanobis distance.

More precisely, compute Ti j as given by Eq. (6.5) and let

Di j = ‖Ti j ‖ .

So for the projection of the data onto the line connecting Xi and θ̂ , Di j is the distance between
X j and θ̂ . Now let

di j =
Di j

q2−q1
, (6.6)

where for fixed i , q2 and q1 are the ideal fourths based on the values Di1, . . .Din . The
projection distance associated with X j , say pd(X j ), is the maximum value of di j , the
maximum being taken over i = 1, . . . ,n. To convert to a measure of depth, we simply use

PD(X j )=
1

1+ pd(X j )
. (6.7)
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A variation of the notion of projected distance is discussed by Donoho and Gasko (1992). The
main difference is that they use MAD as a measure of scale for the D values in Eq. (6.6)
rather than the interquartile range, q2−q1. Here we take this to mean that Eq. (6.6) becomes

di j =
0.6745Di j

MAD
, (6.8)

where for fixed i , MAD is based on the values Di1, . . .Din . An obvious advantage of MAD
over the interquartile range is that MAD has a higher breakdown point. However, based on
other criteria (to be described), the use of the interquartile range has been found to have
practical value.

6.2.6 R functions pdis and pdisMC

The R function

pdis(m,MM=F,cop=3,dop=1,center=NA)

computes projection distances, pd , for the data stored in the matrix m. If MM=F is used,
distances are scaled using the interquartile range, and MM=T uses MAD. The argument cop
indicates which measure of location will be used. The choices, some of which are described in
Section 6.3, are:

• cop=1, Donoho–Gasko median
• cop=2, MCD estimate of location
• cop=3, marginal medians
• cop=4, MVE estimate of location
• cop=5, OP (skipped) estimator

If a value is supplied for the argument center (a vector having length p), this value is used as a
measure of location and the argument cop is ignored. (The argument dop is relevant when
using the Donoho–Gasko analog of the trimmed mean. See Section 6.3.5.) If a multi-core
processor is available, execution time can be reduced by using the R function

pdisMC(m,MM=F,cop=3,dop=1,center=NA)

instead of the function pdis.

6.2.7 Other Measures of Depth

For completeness, some additional measures of depth are mentioned. Two measures that are
similar in spirit to halfspace depth are simplicial depth (Liu, 1990) and majority depth
proposed by Singh. (See Liu & Singh, 1997, p. 268.) Both methods are geometric in nature
and do not rely on some measure of multivariate scatter. (For some possible concerns about
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simplicial depth, see Zuo & Serfling, 2000a; cf., Zuo & Serfling, 2000b.) Both are nontrivial
to compute and any practical advantages they might enjoy over halfspace depth have not been
discovered as yet, so further details are omitted. Another approach is to use Mahalanobis
distance but with the mean and usual covariance matrix replaced by robust estimators. Some
possibilities are mentioned later in this chapter.

Zuo (2003) studied a notion of projection-based depth that is a broader generalization of other
projection-based approaches. Again let u be any p-dimensional (column) vector having unit
norm and let

O(x; F)= sup
|u′x− θ(Fu)|

σ(Fu)
,

be some measure of outlyingness of the point x, with respect to the distribution F , where Fu

is the distribution of u′x, θ(Fu) is some (univariate) measure of location and σ(Fu) is some
measure of scale associated with Fu , and the supremum is taken over all possible choices for
u such that ‖u‖ = 1. Then the projection depth of the point x is taken to be

PD(x)=
1

1+O(x)
.

Inferential methods based on this notion of depth have not been studied as yet.

6.2.8 R Function zdepth

The R function

zdepth(m,pts=m,zloc=median,zscale=mad)

computes Zuo’s notion of projection distance, O(x; F), for each point stored in the matrix pts,
relative to the data stored in the matrix m. The arguments zloc and zscale correspond to θ(Fu)

and σ(Fu), respectively.

6.3 Some Af�ne Equivariant Estimators

One of the most difficult problems in robust statistics has been the estimation of multivariate
shape and location. Many such estimators have been proposed (e.g., Davies, 1987; Donoho,
1982; Kent & Tyler, 1996; Lopuhaä , 1991; Maronna & Zamar, 2002; Rousseeuw’s, 1984,
1985; Stahel, 1981; Tamura & Boos, 1986; Tyler, 1994; Wang & Raftery, 2002; Rocke &
Woodruff, 1996.) A concern about early attempts, such as multivariate M-estimators as
described in Huber (1981), is that when working with p-variate data, typically they have a
breakdown point of at most 1/(p+1). So in high dimensions, a very small fraction of outliers
can result in very bad estimates. Several estimators have been proposed that enjoy a high
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breakdown point. But simultaneously achieving relatively high accuracy, versus the vector of
means when sampling from a multivariate normal distribution, has proven to be a very
difficult problem.

In Section 2.1, a basic requirement for θ to qualify as a measure of location was that it be both
scale and location equivariant. Moreover, a location estimator should satisfy this property as
well. That is, if T (X1, . . . , Xn) is to qualify as a location estimator, it should be the case that
for constants a and b,

T (aX1+b, . . . ,aXn+b)= aT (X1, . . . , Xn)+b.

So, for example, when transforming from feet to centimeters, the typical value in feet is
transformed to the appropriate value in centimeters. In the multivariate case, a generalization
of this requirement, called affine equivariance, is that for a p-by-p nonsingular matrix A and
vector b having length p,

T (X1A+b, . . . ,XnA+b)= T (X1, . . . ,Xn)A+b, (6.9)

where now X1, . . . ,Xn is a sample from a p-variate distribution and each Xi is a (row) vector
having length p. So in particular, the estimate is transformed properly under rotations of the
data as well as changes in location and scale. The sample means of the marginal distributions
are affine equivariant, but typically, when applying any of the univariate estimators in
Chapter 3 to the marginal distributions, an affine equivariant estimator is not obtained.

A measure of scatter, say V(X), is said to be affine equivariant if

V(AX+b)= AV(X)A′. (6.10)

The usual sample covariance matrix is affine equivariant but not robust.

From Donoho and Gasko (1992, p. 1811), no affine equivariant estimator can have a
breakdown point greater than

n− p+1

2n− p+1
. (6.11)

(Also see Lupuhaä & Rousseeuw, 1991.)

The rest of this section describes some of the estimators that have been proposed, and a
particular variation of one of these methods is described in Section 6.5.

6.3.1 Minimum Volume Ellipsoid Estimator

One of the earliest affine equivariant estimators to achieve a breakdown point of
approximately 0.5 is the so-called minimum volume ellipsoid (MVE) estimator, a detailed
discussion of which can be found in Rousseeuw and Leroy (1987). Consider any ellipsoid
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containing half of the data. (An example in the bivariate case is shown in Figure 6.2.) The
basic idea is to search among all such ellipsoids for the one having the smallest volume. Once
this subset is found, the mean and covariance matrix of the corresponding points are taken as
the estimated measure of location and scatter, respectively. Typically the covariance matrix is
rescaled to obtain consistency at the multivariate normal model (e.g., Marazzi, 1993, p. 254).
A practical problem is that it is generally difficult to find the smallest ellipse containing half of
the data. That is, in general, the collection of all subsets containing half of the data is so large,
determining the subset that has the minimum volume is impractical, so an approximation
must be used. Let h be equal to n/2+1, rounded down to the nearest integer. An approach to
computing the MVE estimator is to randomly select h points, without replacement, from the n
points available, compute the volume of the ellipse containing these points, and then repeat
this process many times. The set of points yielding the smallest volume is taken to be the
minimum volume ellipsoid. (For relevant software, see Section 6.4.5.)

6.3.2 The Minimum Covariance Determinant Estimator

An alternative to the MVE estimator, which also has a breakdown point of approximately 0.5,
is the so-called minimum covariance determinant (MCD) estimator. Rather than search for the
subset of half the data that has the smallest volume, search for the half that has the smallest
generalized variance. (For recent results on computing the MCD estimator, see Schnys,
Haesbroeck, & Critchley, 2010.) Recall from Section 6.1 that for the determinant of the
covariance (the generalized variance) to be relatively small, it must be the case that there are
no outliers. That is, the data must be tightly clustered together. The MCD estimator searches
for the half of the data that is most tightly clustered together among all subsets containing half
of the data, as measured by the generalized variance. Like the MVE estimator, typically it is
impractical considering all subsets of half the data, so an approximate method must be used.
An algorithm for accomplishing this goal is described in Rousseeuw and van Driessen (1999);
also see Atkinson (1994). For asymptotic results, see Butler, Davies, and Jhun (1993). Once
an approximation of the subset of half of the data has been determined that minimizes the
generalized variance, compute the usual mean and covariance matrix based on this subset.
This yields the MCD estimate of location and scatter. Bernholt and Fischer (2004) indicate
that this algorithm can provide a poor approximation of the MCD estimator. Results reported
by Hawkins and Olive (2002) also raise concerns about this estimator. But as a diagnostic
tool, MCD seems to have practical value when used in conjunction with other methods
covered in this chapter. (For relevant software, see Section 6.4.5.)

Herwindiati, Djauhari, and Mashuri (2007) suggest a variation of the MCD estimator that
searches for the subset of the data that minimizes the trace of the corresponding covariance
matrix rather than the determinant, what they call the minimum variance vector (MVV)
method. It has the same breakdown point as the MCD method and is simpler to compute.

www.elsevierdirect.com



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

WILCOX 09-ch06-215-290-9780123869838 2011/12/6 18:29 Page 227 #13

Chapter 6 Some Multivariate Methods 227

Herwindiati et al. suggest that the method is applicable when dealing with large,
high-dimensional data sets. In terms of identifying outliers, limited results suggest that it
performs as well as the MCD estimator, but further study is needed.

6.3.3 S-Estimators and Constrained M-Estimators

One of the earliest treatments of S-estimators can be found in (Rousseeuw and Leroy, 1987,
p. 263). A particular variation of this method that appears to be especially interesting is the
translated biweight S-estimator (TBS) proposed by Rocke (1996). Generally, S-estimators of
multivariate location and scatter are values for θ̂ and S that minimize |S|, the determinant of
S, subject to

1

n

n∑
i=1

ξ{[(Xi − θ̂ )
′S−1(Xi − θ̂ )]

1/2
} = b0, (6.12)

where b0 is some constant, and (as in Chapter 2) ξ is a nondecreasing function. Lopuhaä
(1989) showed that S-estimators are in the class of M-estimators with standardizing
constraints. Rocke (1996) showed that S-estimators can be sensitive to outliers even if the
breakdown point is close to 0.5.

Rocke (1996) proposed a modified biweight estimator, which is essentially a constrained
M-estimator, where for values of m and c to be determined, the function ξ(d), when
m ≤ d ≤ m+ c, is

ξ(d)=
m2

2
−

m2(m4
−5m2c2

+15c4)

30c4
+d2

(
0.5+

m4

2c4
−

m2

c2

)
+d3

(
4m

3c2
−

4m3

3c4

)
+d4

(
3m2

2c4
−

1

2c2

)
−

4md5

5c4
+

d6

6c4
,

for 0≤ d < m,

ξ(d)=
d2

2
,

and for d > m+ c,

ξ(d)=
m2

2
+

c(5c+16m)

30
.

The values for m and c can be chosen to achieve the desired breakdown point and the
asymptotic rejection probability, roughly referring to the probability that a point will get zero
weight when the sample size is large. If the asymptotic rejection probability is to be γ say,
then m and c are determined by

Eχ2
p
(ξ(d))= b0,
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and

m+ c =
√
χ2

p,1−γ ,

where χ2
p,1−γ is the 1−γ quantile of a chi-squared distribution with p degrees of freedom.

6.3.4 R Function tbs

The R function

tbs(m)

computes the TBS measure of location and scatter just outlined using code supplied by David
Rocke.1

6.3.5 Donoho–Gasko Generalization of a Trimmed Mean

Another approach to computing an affine equivariant measure of location was suggested and
studied by Donoho and Gasko (1992). The basic strategy is to compute the halfspace depth
for each of the n points, remove those that are not deeply nested within the cloud of data, and
then average those points that remain. The Donoho–Gasko γ trimmed mean is the average of
all points which are at least γ deep in the sample. That is, points having depth less than γ are
trimmed and the mean of the remaining points is computed. An analog of the median, which
has been called Tukey’s median, is the average of all points having the largest depth (cf.,
Adrover & Yohai, 2002; Bai & He, 1999; Tyler, 1994). If the maximum depth of Xi ,
i = 1, . . . ,n is greater than or equal to γ , then the breakdown point of the Donoho–Gasko γ
trimmed mean is γ /(1+γ ). For symmetric distributions the breakdown point is
approximately 0.5, but because the maximum depth among a sample of n points can be
approximately 1/(1+ p), the breakdown point could be as low as 1/(p+2). If the data are in
general position, the breakdown point of Tukey’s median is greater than or equal to 1/(p+1).
(The influence function, assuming a type of symmetry for the distribution, was derived by
Chen & Tyler, 2002.)

n Example

Table 6.1. shows results from Raine, Buchsbaum, and LaCasse (1997) who were
interested in comparing EEG measures for murderers versus a control group. For the

1 S-PLUS comes with a library called robust that contains the function covRob, which computes the TBS estimate
of location and scatter. However, when checking for outliers, Rocke’s code appears to be a bit more satisfactory
(Wilcox, 2008a).
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Table 6.1: EEG Measures for Murderers and a Control Group

Control Murderers

Site 1 Site 2 Site 3 Site 4 Site 1 Site 2 Site 3 Site 4

−0.15 −0.05 −0.33 −1.08 −0.26 −2.10 1.01 −0.49
−0.22 −1.68 0.20 −1.19 0.25 −0.47 0.77 −0.27
0.07 −0.44 0.58 −1.97 0.61 −0.91 −0.68 −1.00
−0.07 −1.15 1.08 1.01 0.38 −0.15 −0.20 −1.09
0.02 −0.16 0.64 0.02 0.87 0.23 −0.37 −0.83
0.24 −1.29 1.22 −1.01 −0.12 −0.51 0.27 −1.03
−0.60 −2.49 0.39 −0.69 0.15 −1.34 1.44 0.65
−0.17 −1.07 0.48 −0.56 0.93 −0.87 1.53 −0.10
−0.33 −0.84 −0.33 −1.86 0.26 −0.41 0.78 0.92
0.23 −0.37 0.50 −0.23 0.83 −0.02 −0.41 −1.01
−0.69 0.01 0.19 −0.22 0.35 −1.12 0.26 −1.81
0.70 −1.24 1.59 −0.68 1.33 −0.57 0.04 −1.12
1.13 −0.33 −0.28 −0.93 0.89 −0.78 −0.27 −0.32
0.38 0.78 −0.12 −0.61 0.58 −0.65 −0.60 −0.94

moment, consider the �rst two columns of data only. The exact halfspace depths,
determined by the function depth2, are:

0.1428570 0.1428570 0.3571430 0.2142860 0.2142860 0.2142860 0.0714286
0.2142860 0.1428570 0.2142860 0.0714286 0.0714286 0.0714286 0.0714286

There are �ve points with depth less than 0.1. Eliminating these points and averaging the
values that remain yields the Donoho–Gasko 0.1 trimmed mean, ( −0.042, −0.783).
The halfspace median corresponds to the deepest point, which is (0.07, −0.44).

n

Another multivariate generalization of a trimmed mean was studied by Liu et al. (1999). Any
practical advantages it might have over the Donoho–Gasko γ trimmed mean have not been
discovered as yet, so for brevity, no details are given here.

6.3.6 R Functions dmean and dcov

The R function

dmean(x,tr=.2,dop=1,cop=2)

computes the Donoho–Gasko trimmed mean. When the argument tr is set equal to 0.5, it
computes Tukey’s median, namely, the average of the points having the largest halfspace
depth. The argument dop controls how the halfspace depth is approximated. With dop=1,
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method A1 in halfspace depth is approximated. With dop=1, method A1 in Section 6.2.3 is
used to approximate halfspace depth when p > 2, whereas whereas dop=2 uses method A2.
If p = 2, halfspace depth is computed exactly. When using method A1, the center of the
scatterplot is determined using the estimator indicated by the argument cop. The
choices are:

• cop=2, MCD estimator
• cop=3, marginal medians
• cop=4, MVE estimato

When n is small relative to p, the MCD and MVE estimators cannot be computed, so in these
cases, use dop=2. For small sample sizes, execution time is low.

Consider again Zuo’s notion of projection depth described in Section 6.2.7. When θ(Fu) is
taken to be the median and σ(Fu) is MAD, and if the average of the deepest points are used as
a measure of location, we get another affine equivariant generalization of the median.
Comparisons with other affine equivariant median estimators are reported by Hwang et al.
(2004) for the bivariate case. They conclude that this estimator and Tukey’s median compare
well to other estimators they considered.

6.3.7 The Stahel–Donoho W-Estimator

Stahel (1981) and Donoho (1982) proposed the first multivariate, equivariant estimator of
location and scatter that has a high breakdown point. It is a weighted mean and covariance
matrix where the weights are a function of how “outlying” a point happens to be. The more
outlying a point, the less weight it is given. The notions of Mahalanobis depth, robust analogs
of Mahalanobis depth based perhaps on the MVE or MCD estimators, and halfspace depth are
examples of how to measure the outlyingness of a point. Attaching some weight wi to Xi ,
that is, a function of how outlying the point Xi happens to be, yields a generalization of
W-estimators mentioned in Section 3.8 (cf., Hall & Presnell, 1999). Here, the estimate of
location is

θ̂ =

∑n
i=1wi Xi∑n

i=1wi
(6.13)

and the measure of scatter is

V=

∑n
i=1wi (Xi − θ̂ )(Xi − θ̂ )

′∑n
i=1wi

. (6.14)

The Donoho–Gasko trimmed mean in Section 6.3.4 is a special case where the least deep
points get a weight of zero; otherwise points get a weight of one. Other variations of this
approach are based on the multivariate outlier detection methods covered in Section 6.4.
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For general theoretical results on this approach to estimation, see Tyler (1994). Properties of
certain variations were reported by Maronna and Yohai (1995). Also see Arcones, Chen, &
Gine (1994), Bai and He (1999), He and Wang (1997), Donoho and Gasko (1992), Gather and
Hilker (1997), Zuo (2003), Zuo, Cui, and He (2004), and Zuo, Cui, and Young (2004).
Gervini (2002) derived the influence function assuming that sampling is from an elliptical
distribution. (For an extension of M-estimators to the multivariate case that has a high
breakdown point and deals with missing values, see Chen & Victoria-Feser, 2002.)

Zuo, Hengjian, and He (2004) and Zuo, Hengjian, and Young (2004) suggest a particular
variation of the Donoho–Gasko W-estimator for general use. Let Pi be the projection depth of
xi described at the end of Section 6.2.7. Let C be the median of the Pi values. If Pi < C , set

wi =
exp[−K (1− Pi/C)2]− exp(−K )

1− exp(−K )
,

otherwise wi = 1, and the measures of location and scatter are given by Eqs. (6.13) and
(6.14), respectively. From Zuo et al., setting the constant K = 3 results in good asymptotic
efficiency, relative to the sample mean, under normality.

6.3.8 R Function sdwe

The R function

sdwe(x,K=3)

computes the Stahel–Donoho W-estimator as suggested by Zuo, Hengjian, and He (2004) and
Zuo, Hengjian, and Young (2004).

6.3.9 Median Ball Algorithm

This section describes a multivariate measure of location and scatter, introduced by Olive
(2004), which is based on what he calls the reweighted median ball algorithm (RMBA). It is
an iterative algorithm that begins with two initial estimates of location and scatter. The first,
labeled (T0,1,C0,1), is taken to be the usual mean and covariance matrix. The other starting
value, (T0,2,C0,2), is the usual mean and covariance based on the cn ≈ n/2 cases that are
closest to the coordinate wise median in Euclidean distance. Compute all n Mahalanobis
distances Di (T0, j ,C0, j ) based on the j th starting value. The next iteration consists of
estimating the usual mean and covariance matrix based on the cn cases corresponding to the
smallest distances, yielding (T1, j ,C1, j ). Repeating this process, based on Di (T1, j ,C1, j ),
yields an updated measure of location and scatter, (T2, j ,C2, j ). As done by Olive, unless
stated otherwise, it is assumed five iterations are used yielding (T5, j ,C5, j ). The RMBA
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estimator of location, labeled TA, is taken to be T5,i , where i = 1 if the determinant
|C5,1| ≤ |C5,2|, otherwise i = 2. And the measure of scatter is

CRMBA =
MED[D2

i (TA,CA)]

χ2
p,0.5

CA.

The RMBA estimator is
√

n consistent. (Also see Olive & Hawkins, 2010.)

6.3.10 R Function rmba

The R function

rmba(m,csteps=5)

computes the RMBA measure of location and scatter, where the argument csteps controls the
number of iterations. (The R code was graciously supplied by David Olive.)

6.3.11 OGK Estimator

Yet another estimator that is sometimes recommended is the orthogonal Gnanadesikan–
Kettenring (OGK) estimator, derived by Maronna and Zamar (2002). In its general form,
it is applied as follows. Let σ(X) and µ(X) be any measure of dispersion and location,
respectively. The method begins with the robust covariance between any two variables, say X
and Y , which was proposed by Gnanadesikan and Kettenring (1972):

cov(X,Y )=
1

4
[σ(X +Y )2−σ(X −Y )2]. (6.15)

When σ(X) and µ(X) are the usual standard deviation and mean, respectively, the usual
covariance between X and Y results. Here, following Maronna and Zamar, σ(X) is taken to
be the tau scale of Yohai and Zamar (1988), which was introduced in Section 3.12.3. Using
this measure of scale in Eq. (6.15), the resulting measure of covariance will be denoted by
v(X,Y ).

Following the notation in Maronna and Zamar (2002), let xi be the i th row of the n-by-p
matrix X. Then Maronna and Zamar define a scatter matrix V(X) and a location vector t(X)
as follows:

1. Let D= diag[σ(X1), . . . , σ (X p)] and yi = D−1xi , i = 1, . . . ,n.
2. Compute U= (U jk) by applying v to the columns of Y. So U j j = 1 and for j 6= k,

U jk = v(Y j ,Yk).
3. Compute the eigenvalues λ j and eigenvectors e j of U and let E be the matrix whose

columns are the e j ’s. (So U= E3E′.)
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4. Let A= DE, zi = A−1xi , in which case

V(X)= A0A′

and

t(X)= Aν,

where 0 = diag(σ 2(Z1), . . . , σ
2(Z p)), ν = (µ(Z1), . . . ,µ(Z p)) and µ is taken to be the

tau measure of location in Section 3.8.1.

Maronna and Zamar (2002) note that the above procedure can be iterated and report results
suggesting that a single iteration be used. More precisely, compute V and t for Z (the matrix
corresponding to zi computed in step 4) and then express them in the original coordinate
system, namely, V2 = AV(Z)A′ and t2(X)= At(Z). Maronna and Zamar show that the
estimate can be improved by a reweighting step. Let

di =
∑

j

[
zi j −µ(Z j )

σ (Z j )

]
and wi = I (di ≤ d0), where

d0 =
χ2

p,βmed(d1, . . . ,dn)

χ2
p,.5

,

χ2
p,β is the β quantile of the chi-squared distribution with p degrees of freedom and “med”

denotes the sample median. The measure of location is now estimated to be

tw =

∑
wi xi∑
wi

,

and the measure of scatter is

Vw =

∑
wi (xi − tw)(xi − tw)′∑

wi
.

6.3.12 R Function ogk

The R function

ogk(x,sigmamu=taulc,v=gkcov,n.iter=1,beta=0.9, . . .)

computes the OGK measure of location and scale.

www.elsevierdirect.com



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

WILCOX 09-ch06-215-290-9780123869838 2011/12/6 18:29 Page 234 #20

234 Introduction to Robust Estimation and Hypothesis Testing

6.3.13 An M-Estimator

As noted at the beginning of this section, a concern about (affine equivariant) M-estimators is
that they have a breakdown point of at most 1/(p+1). Also, Devlin, Gnanadesikan, and
Kettenring (1981, p. 361) found that M-estimators could tolerate even fewer outliers than
indicated by this upper bound. Despite this, in situations where p is small, this approach
might be deemed satisfactory. For example, Zu and Yuan (2010) suggest an approach to a
mediation analysis that is based in part on an M-estimator with Huber weights, which was
derived by Maronna (1976). A slight modification of the Zu and Yuan method has been found
to perform relatively well in simulations, so for completeness, Maronna’s M-estimator is
outlined here. (Details of Zu and Yuan method for performing a mediation analysis are
outlined in Section 11.7.2.)

The computation of this estimator is accomplished via an iterative scheme that corresponds to
a multivariate version of the W-estimator in Section 3.8. Roughly, an initial estimate of the
mean and covariance matrix is computed, which here is taken to be usual mean X̄ vector and
covariance matrix S. Based on this initial estimate, squared Mahalanobis distances are
computed:

d2
i = (Xi − X̄)′S−1(Xi − X̄).

Imagine that one wants to downweight a proportion κ of the observations. Let %2 be the 1−κ
quantile of a chi-squared distribution with p degrees of freedom. Let wi = 1 if di ≤ %;
otherwise wi = %/di . Then an updated estimate of the mean and covariance matrix is given by

X̄=
∑

wi Xi/n

and

S=
1

τn

∑
w2

i (Xi − X̄)(Xi − X̄)′,

respectively, where τ is chosen so that S is an unbiased estimate of the covariance matrix
under normality. These updated estimates are used to update the squared Mahalanobis
distances, which in turn yields a new updated estimate of the mean and covariance matrix.
This process is continued until convergence is achieved.

6.3.14 R Function MARest

The R function

MARest(x,kappa=0.1)
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computes Maronna’s M-estimator of location and scatter, where the argument kappa
corresponds to κ in the previous section.

6.4 Multivariate Outlier Detection Methods

An approach to detecting outliers when working with multivariate data is to simply check for
outliers among each of the marginal distributions using one of the methods described in
Chapter 3. A concern about this approach, however, is that outliers can be missed because it
does not take into account the overall structure of the data. In particular, any multivariate
outlier detection method should be invariant under rotations of the data. Methods based on the
marginal distributions do not satisfy this criterion.

To illustrate the problem, consider the observations in the upper left panel of Figure 6.2. The
upper right panel shows a boxplot of both the X and Y values. As indicated, one Y value is
flagged as an outlier. It is the point in the upper right corner of the scatterplot. If the points are
rotated such that they maintain their relative positions, the outlier should remain an outlier,
but for some rotations this is not the case. For example, if the points are rotated 45◦, the
scatterplot now appears as shown in the lower left panel with the outlier in the upper left
corner. The lower right panel shows a boxplot of the X and Y values after the axes are rotated.
Now the boxplots do not indicate any outliers because they fail to take into account the
overall structure of the data. What is needed is a method that is invariant under rotations of
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Figure 6.2: The upper right panel shows a boxplot for the X and Y values shown in the upper
left panel. The lower right panel shows a boxplot for the X and Y values after the points in the
upper left panel are rotated to the position shown in the lower left panel. Now the boxplots �nd
no outliers, in contrast to the unrotated case.
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the data. In addition, any outlier detection method should be invariant under changes in scale.
All of the methods in this section satisfy these two criteria.

All but one of the multivariate outlier detection methods described in this section can be used
with p-variate data for any p > 1. The one exception is a method called a relplot which is
described first and is limited to bivariate data.

6.4.1 A Relplot

A relplot is a bivariate generalization of the boxplot derived by Goldberg and Iglewicz (1992).
It is based in part on a bivariate generalization of M-estimators covered in Chapter 3 which
belongs to the class of W-estimators described in Section 6.3.6. Let X i j (i = 1, . . . ,n;
j = 1,2) be a random sample from some bivariate distribution. For fixed j , the method begins
by computing M j , MAD j , and ζ̂ 2

j using the X i j values, where M j is the sample median,

MAD j is the median absolute deviation statistic, and ζ̂ 2
j is the biweight midvariance

described in Section 3.12.1. Let

Ui j =
X i j

9M AD j
,

and set ai j = 1 if |Ui j |< 1, otherwise ai j = 0. Let

T j = M j +

∑
ai j (X i j −M j )(1−U 2

i j )
2∑

ai j (1−U 2
i j )

2
.

The remaining computational steps are given in Table 6.2 which yield a bivariate measure of
location, (Tb1,Tb2), a robust measure of variance, s2

b1 and s2
b2, and a robust measure of

correlation, Rb. These measures of location and scatter can be extended to p > 2 variates, but
computational problems can arise (Huber, 1981).

The relplot consists of two ellipses. Once the computations in Table 6.2 are complete, the
inner ellipse is constructed as follows. Let

Zi j =
X i j −Tbj

sbj

and

Ei =

√
Z2

i1+ Z2
i2−2Rb Zi1 Zi2

1− R2
b

.

Let Em be the median of E1, . . . , En , and let Emax be the largest Ei value such that
E2

i < DE2
m , where D is some constant. Goldberg and Iglewicz recommend D = 7, and this

value is used here. Let R1 = Em
√
(1+ Rb)/2 and R2 = Em

√
(1− Rb)/2. For each υ between
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Table 6.2: Computing Biweight M-estimators of Location, Scale, and Correlation.

Step 1. Compute Z i j = (X i j −T j )/ζ̂ j .

Step 2. Recompute T j , and ζ̂ 2
j by replacing the X i j values with Z i j yielding Tz j , and ζ̂ 2

z j .

Step 3. Compute

E2
i =

(
Z i1−Tz1

ζ̂z1

)2

+

(
Z i2−Tz2

ζ̂z2

)2

.

Step 4. For some constant C , let

Wi =

(
1−

E2
i

C

)2

if E2
i < C , otherwise Wi = 0. Goldberg and Iglewicz (1992) recommend C = 36 unless more than half of the

Wi values are equal to zero, in which case C can be increased until a minority of the Wi values is equal to zero.

Step 5. Compute

Tbj =

∑
Wi X i j∑

Wi

S2
bj =

∑
Wi (X i j −Tbj )

2∑
Wi

Rb =

∑
Wi (X i1−Tb1)(X i2−Tb2)

Sb1 Sb2

∑
Wi

.

Step 6. Steps 4–8 are iterated. If step 4 has been performed only once, go to step 7; otherwise, let Woi be the
weights from the previous iteration, and stop if

∑
(Wi −Woi )

2/(
∑

Wi/n)2 < ε.

Step 7. Store the current weight, Wi , into Woi .

Step 8. Compute

Z i1 =

(
X i1−Tb1

Sb1

+
X i2−Tb2

Sb2

)
1

√
2(1+ Rb)

Z i2 =

(
X i1−Tb1

Sb1

−
X i2−Tb2

Sb2

)
1

√
2(1− Rb)

E2
i = Z 2

i1+ z2
i2.

Go back to step 4.

0 and 360, steps of 2 degrees, compute ϒ1 = R1cos(υ), ϒ2 = R2sin(υ), A = Tb1+

(ϒ1+ϒ2)sb1, and B = Tb2+ (ϒ1−ϒ2)sb2. The values for A and B form the inner ellipse.
The outer ellipse is obtained by repeating this process with Em replaced by Emax.
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6.4.2 R Function relplot

The R function

relplot(x,y,C=36,epsilon=0.0001,plotit=T)

performs the calculations in Table 6.2 and creates a relplot. Here, x and y are any R vectors
containing data, C is a constant that defaults to 36 (see step 4 in Table 6.2), and epsilon is ε in
step 6 of Table 6.2. (The argument epsilon is used to determine whether enough iterations
have been performed. Its default value is 0.0001.) The function returns bivariate measures of
location in relplot$mest, measures of scale in relplot$mvar, and a measure of correlation in
relplot$mrho. The last argument, plotit, defaults to T, for true, meaning that a graph of the
bivariate boxplot (the relplot) will be created. To avoid the plot, simply set the last argument,
plotit, to F for false. For example, the command relfun(x,y,plotit=F) will return the measures
of location and correlation without creating the plot.

n Example

Rousseeuw and Leroy (1987, p. 27) report the logarithm of the effective temperature at
the surface of 47 stars versus the logarithm of its light intensity. Suppose the
(Hertzsprung - Russell) star data are stored in the R variables u and v. Then the R
command relplot(u,v) creates the plot shown in Figure 6.3. The smaller ellipse contains
half of the data. Points outside the larger ellipse are considered to be outliers. The
function reports a correlation of 0.7 which is in striking contrast to Pearson’s
correlation, r =−0.21.
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Figure 6.3: A relplot for the star data.
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6.4.3 The MVE Method

A natural way of detecting outliers in p-variate data, p ≥ 2, is to use Mahalanobis distance
with the usual means and sample covariance matrix replaced by estimators that have a high
breakdown point. One of the earliest such methods is based on the MVE estimators of
location and scale (Rousseeuw & van Zomeren, 1990). Relevant theoretical results are
reported by Lopuhaä (1999). Let the column vector C, having length p, be the MVE estimate
of location, and let the p-by-p matrix M be the corresponding measure of scatter. The
distance of the point x′i = (xi1, . . . , xi p) from C is given by

Di =
√
(xi −C)′M−1(xi −C). (6.16)

If Di >
√
χ2
.975,p, the square root of the 0.975 quantile of a chi-square distribution with p

degrees of freedom, then xi is declared an outlier. Rousseeuw and van Zomeren recommend
this method when there are at least five observations per dimension, meaning that n/p > 5.
(Cook & Hawkins, 1990, illustrate that problems can arise when n/p ≤ 5.) A criticism of this
method is that it can declare too many points as being extreme (Fung, 1993).

6.4.4 The MCD Method

Rather than using the MVE measure of location and scatter to detect outliers, one could, of
course, use the MCD estimators instead. That is, in Eq. (6.16), replace M and C with the
MCD estimates of scatter and location. Cerioli (2010) derived a modification of this method
with the goal that under multivariate normality, the probability of declaring one or more
points an outlier is equal to some specified value.

6.4.5 R Functions covmve and covmcd

Both the MVE and MCD estimators can be computed with the R functions

cov.mve(m),

and

cov.mcd(m),

respectively, which are stored in the R library MASS. For convenience, the R functions

covmve(m),

and

covmcd(m)
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are supplied, which eliminate the need to use the R command library(MASS) in order to
access the R functions cov.mve and cov.mcd. Both of these functions return weights
indicating whether a point is declared an outlier using the MVE and MCD methods. (It is
noted that the S-PLUS version of the MVE and MCD outlier detection methods can give
results that differ from the R versions used here.) However, these functions do not return the
MVE and MCD estimate of location and scatter, but rather a W-estimate of location and
scatter. (See Section 6.5.) In essence, points declared outliers are removed and the mean and
covariance matrix are computed using the data that remain. R reports which subset of half of
the data was used to compute the MVE and MCD estimates of location. So it is possible to
determine the MVE and MCD estimates of location if desired.

In some situations it is convenient to have an R function that returns just the MVE measure of
location. Accordingly, the R function

mvecen(m)

is supplied to accomplish this goal. The R function

mcdcen(m)

computes the MCD measure of location.

6.4.6 R function out

The R function

out(x, cov.fun = cov.mve, plotit = T, SEED = T, xlab = “X”, ylab = “Y”, qval = 0.975,
crit = NULL, . . .)

identifies outliers using the MVE method for p-variate data using Eq. (6.15), where the
argument x is an n-by-p matrix. The function returns a vector labeled out.id that identifies
which rows of data are outliers. And another vector, labeled keep.id indicates the rows of data
that are not declared outliers. In the bivariate case it creates a scatterplot of the data and marks
outliers with an o. To avoid the plot, set the argument plotit to F, for false. Setting
cov.fun=covmcd results in replacing the MVE estimator with the MCD estimator. (Other
options for this argument are ogk, tbs, and rmba, which result in using the OGK, TBS, and
median ball algorithm, respectively, but except for tbs, it seems that these options are
relatively unsatisfactory.)

n Example

If the star data in Figure 6.3 are stored in the matrix stardat, the R command
out(stardat) returns the values 7, 9, 11, 14, 20, 30, and 34 in the R variable
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outmve$out.id. This means, for example, that row 7 of the data in the matrix stardat is
an outlier. Six of these points correspond to the outliers in Figure 6.3 that are to the left
of the outer ellipse. The seventh is the point near the upper middle portion of Figure 6.3
that lies on or slightly beyond the outer ellipse. (The point is at x = 4.26 and y = 5.57.)

n

6.4.7 The MGV Method

An appeal of both the MVE and MCD outlier detection methods is that they are based on high
breakdown estimators. That is, they provide an important step toward avoiding masking,
roughly referring to an inability to detect outliers due to their very presence. (See
Section 3.13.1.) But for certain purposes, two alternative methods for detecting outliers have
been found to have practical value, one of which is the MGV method described here. (The
other is a projection-type method described later in this chapter.)

As noted in Chapter 3, the outside rate per observation is the expected proportion of points
declared outliers. That is, if among n points, A points are declared outliers, the outside rate
per observation is pn = E(A/n). When sampling from multivariate normal distributions, for
certain purposes it is desirable to have pn reasonably close to zero; a common goal is to have
pn approximately equal to .05 (cf., Cerioli, 2010). When all variables are independent, it
appears that both the MVE and MCD methods have an outside rate per observation
approximately equal to .05. But under dependence, this is no longer true, it is higher when
using the MCD method. Although the MVE method based on the R function cov.mve appears
to have pn approximately equal to 0.05 under normality, alternative outlier detection methods
have been found to have practical advantages for situations to be described.

A multivariate outlier detection method for which pn is reasonably close to 0.05 under
normality, and which has practical value when dealing with problems to be addressed, is the
so-called minimum generalized variance (MGV) method which is applied as follows:

1. Initially, all n points are described as belonging to set A.
2. Find the p points that are most centrally located. One possibility is as follows. Let

di =

n∑
j=1

√√√√ p∑
`=1

(
X j`− X i`

MAD`

)2

, (6.17)

where MAD` is the value of MAD based on X1`, . . . , Xn`. The two most centrally located
points are taken to be the p points having the smallest di values. Another possibility, in
order to achieve affine equivariance, is to identify the p points having the largest
halfspace depth or the largest depth based on the MVE or MCD methods.
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3. Remove the p centrally located points from set A and put them into set B. At this step, the
generalized variance of the points in set B is zero.

4. If among the points remaining in set A, the i th point is put in set B, the generalized
variance of the points in set B will be changed to some value which is labeled s2

gi . That is,

associated with every point remaining in A is the value s2
gi , which is the resulting

generalized variance when it, and it only, is placed in set B. Compute s2
gi for every point

in A.
5. Among the s2

gi values computed in the previous step, permanently remove the point

associated with the smallest s2
gi value from set A and put it in set B. That is, find the point

in set A which is most tightly clustered together with the points in set B. Once this point
is identified, permanently remove it from A and leave it in B henceforth.

6. Repeat steps 4 and 5 until all points are now in set B.

The first p points removed from set A have a generalized variance of zero which is labeled
s2

g(1) = · · · = s2
g(p) = 0. When the next point is removed from A and put into B (using steps 4

and 5), the resulting generalized variance of the set B is labeled s2
g(p+1) and continuing this

process, each point has associated with it some generalized variance when it is put into set B.

Based on the process just described, the i th point has associated with it one of the generalized
variances just computed. For example, in the bivariate case, associated with the i th point
(X i , Yi ) is some value s2

g( j) indicating the generalized variance of the set B when the i th point
is removed from set A and permanently put in set B. For convenience, this generalized
variance associated with the i th point, s2

g( j), is labeled Di . The p deepest points have D
values of zero. Points located at the edges of a scatterplot have the highest D values meaning
that they are relatively far from the center of the cloud of points. Moreover, we can detect
outliers simply by applying one of the outlier detection rules in Chapter 3 to the Di values.
Note, however, that we would not declare a point an outlier if Di is small, only if Di is large.

In terms of maintaining an outside rate per observation that is stable as a function of n and p,
and approximately equal to 0.05 under normality (and when dealing with certain regression
problems to be described), a boxplot rule for detecting outliers seems best when p = 2, and
for p > 2 a slight generalization of Carling’s modification of the boxplot rule appears to
perform well. In particular, if p = 2, then declare the i th point an outlier if

Di > q2+1.5(q2−q1), (6.18)

where q1 and q2 are the ideal fourths based on the Di values. For p > 2 variables, replace
Eq. (6.18) with

Di > MD+

√
χ2
.975,p(q2−q1), (6.19)
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where
√
χ2
.975,p is the square root of the 0.975 quantile of a chi-squared distribution with p

degrees of freedom and MD is the usual median of the Di values.

A comment about detecting outliers among the Di values, using a MAD-median rule, should
be made. Using something like the Hampel identifier when detecting outliers has the appeal of
using measures of location and scale that have the highest possible breakdown point. When
p = 2, for example, this means that a point Xi is declared an outlier if

|Di −MD|

MADD/0.6745
> 2.24, (6.20)

where MADD is the value of MAD based on the D values. A concern about this approach is
that the outside rate per observation is no longer stable as a function of n. This has some
negative consequences when addressing problems in subsequent sections. Here, Eq. (6.19) is
used because it has been found to avoid these problems and because it has received the most
attention so far, but of course in situations where there are an unusually large number of
outliers, using Eq. (6.19) might cause practical problems.

6.4.8 R Function outmgv

The R function

outmgv((x, y = NULL, plotit = T, outfun = outbox, se = T, op = 1, cov.fun = rmba, xlab =
“X”, ylab = “Y”, SEED = T, . . .)

applies the MGV outlier detection method just described.2 If the second argument is not
specified, it is assumed that x is a matrix with p columns corresponding to the p variables
under study and outmgv checks for outliers for the data stored in x. If the second argument,
y, is specified, the function combines the data in x with the data in y and checks for outliers
among these p+1 variables. In particular, the data do not have to be stored in a matrix; they
can be stored in two vectors (x and y) and the function combines them into a single matrix for
you. If plotit=T is used and bivariate data are being studied, a plot of the data will be
produced with outliers marked by a circle. The argument outfun can be used to change the
outlier detection rule applied to the depths of the points (the Di values in the previous
section). By default, Eq. (6.19) is used. Setting outfun=out, Eq. (6.20) is used. The argument
se=T ensures that the results do not change with changes in scale. (The marginal distributions
are standardized when calling the R function apgdis.)

2 If columns of the input matrix are reordered, this might affect the results due to rounding error when calling the
built-in R function eigen.
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6.4.9 A Projection Method

Consider a sample of n points from some p-variate distribution and consider any projection of
the data (as described in Section 6.2.2). A projection-type method for detecting outliers among
multivariate data is based on the idea that if a point is an outlier, then it should be an outlier
for some projection of the n points. So if it were possible to consider all possible projections,
and if for some projection a point is an outlier, then the point is declared an outlier. Not all
projections can be considered, so the strategy here is to orthogonally project the data onto all
n lines formed by the center of the data cloud, as represented by ξ̂ , and each Xi . It seems
natural that ξ̂ should have a high breakdown point and that it should be affine equivariant.
Two good choices appear to be the MVE and MCD estimators in Sections 6.3.1 and 6.3.2.

The computational details are as follows. Fix i , and for the point Xi , orthogonally project all
n points onto the line connecting ξ̂ and Xi , and let Di j be the distance between ξ̂ and X j

based on this projection. More formally, let

Ai = Xi − ξ̂ ,

B j = X j − ξ̂ ,

where both Ai and B j are column vectors having length p, and let

C j =
A′i B j

B′j B j
B j ,

j = 1, . . . ,n. Then when projecting the points onto the line between Xi and ξ̂ , the distance of
the j th point from ξ̂ is

Di j = ‖C j‖,

where

‖C j‖ =

√
C2

j1+· · ·+C2
j p.

Here, an extension of Carling’s modification of the boxplot rule (similar to the modification
used by the MGV method) is used to check for outliers among Di j values. To be certain the
computational details are clear, let `= [n/4+5/12], where [.] is the greatest integer function,
and let

h =
n

4
+

5

12
−`.
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For fixed i , let Di(1) ≤ · · · ≤ Di(n) be the n distances written in ascending order. The ideal
fourths associated with the Di j values are

q1 = (1−h)Di(h)+h Di(h+1)

and

q2 = (1−h)Di(`)+h Di(`−1).

Then the j th point is declared an outlier if

Di j > MD+

√
χ2
.95,p(q2−q1), (6.21)

where MD is the usual sample median based on the Di1, . . . ,Din values and χ2
.95,p is the 0.95

quantile of a chi-squared distribution with p degrees of freedom.

The process just described is for a single projection; for fixed i , points are projected onto the
line connecting Xi to ξ̂ . Repeating this process for each i , i = 1, . . . ,n, a point is declared an
outlier if for any of these projections, it satisfies Eq. (6.21). That is, X j is declared an outlier if
for any i , Di j satisfies Eq. (6.21). Note that this outlier detection method approximates an
affine equivariant technique for detecting outliers, but it is not itself affine equivariant.
However, it is invariant under rotations of the axes.

As was the case with the MGV method, a simple and seemingly desirable modification of the
method just described is to replace the interquartile range (q2−q1) with the median absolute
deviation (MAD) measure of scale based on the values Di1, . . . ,Din . So here, MAD is the
median of the values

|Di1−MD|, . . . , |Din−MD|,

which is denoted by MADi . Then the j th point is declared an outlier if for any i

Di j > MD+

√
χ2
.95,p

MADi

0.6745
. (6.22)

Equation (6.22) represents an approximation of the method given by Eq. (1.3) in Donoho and
Gasko (1992). Again, an appealing feature of MAD is that it has a higher finite sample
breakdown point than the interquartile range. But a negative feature of Eq. (6.22) is that the
outside rate per observation appears to be less stable as a function of n. In the bivariate case,
for example, it is approximately 0.09 with n = 10 and drops below 0.02 as n increases. For
the same situations, the outside rate per observation using Eq. (6.21) ranges, approximately,
between 0.043 and 0.038.

A criticism of the projection method as just described is that changes in scale can alter
decisions about whether a point is an outlier. That is, if the first variable only is multiplied by
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some constant c 6= 0, this might alter the decision about whether the i th point is an outlier.
One possible way of dealing with this issue is to standardize the marginal distributions.
Another approach is to use the MGV method instead, which seems to perform about as well
as the projection method in terms of detecting true outliers (Wilcox, 2008a). But this comes at
the cost of higher execution, which might be an issue with large sample sizes. An advantage
of the projection method is that it can be applied even when n is small and p is large. This is
not always the case when using the MGV method.

6.4.10 R functions outpro and out3d

The R function

outpro(m,gval=NA,center=NA,plotit=T,op=T,MM=F,cop= 3,STAND=F)

checks for outliers using the projection method just described. Here, m is any R variable
containing data stored in a matrix (having n rows and p columns). The argument gval can be

used to alter the values
√
χ2
.95,p or

√
χ2
.975,p in Eqs. (6.20) and (6.21). These values are

replaced by the value stored in gval if gval is specified. Similarly, the argument center can be
used to specify the center of the data cloud, ξ̂ , that will be used. If not specified, the center is
determined by the argument cop. The choices are:

• cop=1, Donoho–Gasko median
• cop=2, MCD
• cop=3, median of the marginal distributions
• cop=4, MVE

When working with bivariate data, outpro creates a scatterplot of the data, marks outliers with
a circle, and the plot includes a contour indicating the location of the deepest half of the data
as measured by projection depth. More precisely, the depth of all points is computed, and
among the points not declared outliers, all points having a depth less than or equal to the
median depth are indicated. If op=T, the plot creates a 0.5 depth contour based on the data
excluding points declared outliers. Setting op=F, the 0.5 depth contour is based on all of the
data. If MM=T is used, the interquartile range is replaced by MAD. That is, Eq. (6.22) is used
in place of (6.21). Setting the argument STAND=T, the marginal distributions are
standardized, before checking for outliers, using the median and MAD. (The version of outpro
in Rallfun-v13 and later contains this argument. But earlier versions of the R functions written
for this book do not.)

When working with trivariate data, the R function

out3d(x, outfun = outpro, xlab = “Var 1”, ylab = “Var 2”, zlab = “Var 3”, reg.plane = F,
regfun = tsreg, COLOR = F)
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creates a three-dimensional scatterplot and marks the outliers, identified by the R function
outpro, with *. (Setting the argument COLOR=T, outliers are marked with a red circle.) An
alternative outlier detection method can be used via the argument outfun. This function also
shows a regression plane when reg.plane=T, assuming the goal is to predict the third variable
given value for the first two. (That is, column 3 of x is assumed to be the outcome variable,
typically labeled y, and columns 1 and 2 contain the predictor variables.) The regression
method used is controlled by the argument regfun, which defaults to the Theil–Sen estimator
described in Chapter 10.

6.4.11 Outlier Identi�cation in High Dimensions

Filzmoser, Maronna, and Werner (2008) noted that under normality, if the number of variables
is large, the proportion of points declared outliers by the better-known outlier detection
methods can be relatively high. This concern applies to all the methods covered here with the
projection method seemingly best at avoiding this problem. But with more than nine variables
(p > 9), it breaks down as well. Currently, it seems that one of the better ways of dealing with
this problem is to use the projection method but with Eq. (6.22) replaced by

Di j > MD+ c
MADi

0.6745
,

where c is chosen so that the outside rate per observation is approximately equal to some
specified value under normality, which is usually taken to be 0.05. Here, the constant c is
determined via simulations. That is, n points are generated from a p-variate normal
distribution, where all p variables are independent. This process is repeated say B times, and
a value c is determined so that the expected proportion of points declared outliers is equal to
the desired rate. A refinement of this strategy would be to generate data from a multivariate
normal distribution that has the same covariance matrix as the data under study. Currently,
this does not seem necessary or even desirable, but this issue is in need of further study.

A similar adjustment can be made when using the MGV method to detect outliers, which
might be preferred because the MGV method is scale invariant. Direct comparisons of the
performance of the adjusted MGV method and the adjusted projection method have not
been made.

6.4.12 R Function outproad and outmgvad

The R function

outproad(m, center = NA, plotit = T, op = T, MM = F, cop = 3, xlab = “VAR 1”, ylab =
“VAR 2”, rate = 0.05, iter = 100, ip = 6, pr = T, SEED = T, STAND = F)
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is like the R function outpro, only it uses simulations to adjust the decision rule for declaring a
point an outlier as described in the previous section. The argument rate indicates the desired
proportion of points declared outliers under normality. The R function

outmgvad(m, center = NA, plotit = T, op = 1, xlab = “VAR 1”, ylab = “VAR 2”, rate =
0.05, iter = 100, ip = 6, pr = T)

is like the R function outproad, only it is based on the MGV outlier detection technique.

6.4.13 Approaches Based on Geometric Quantiles

It is briefly noted that Chaudhuri (1996) derived a multivariate outlier detection technique that
stems from the notion of geometric quantiles. Chaouch and Goga (2010) extended
Chaudhuri’s method to survey sampling situations. Direct comparisons with the projection
method and the MGV method, based on the outside rate per observation, have not been made.

6.4.14 Comments on Choosing a Method

Choosing an outlier detection method is a nontrivial problem with no single method
dominating all others; it seems that several methods deserve serious consideration. In addition
to controlling the outside rate per observation, surely a desirable property of any outlier
detection method is that it identifies points that are truly unusual based on a model that
generated the data. Wilcox (2008a) compared several methods, and while no single method
was always best, it was found the MGV and projection methods (applied with the functions
outmgv and outpro, respectively) performed relatively well when the number of variables is
not too large, meaning that p ≤ 9. But as previously noted, with p > 9 variables, these two
methods break down, in which case the projection method in Section 6.4.11 should be used.

It is worth noting that, given some data, the choice of method can matter. To illustrate this
point, suppose both X and ε are independent standard normal variables and let Y = X + ε.
Table 6.3 shows 20 points generated in this manner. Suppose two additional points are added
at (X, Y )= (2.1, −2.4). These two points are clearly unusual compared to the model that
generated the data in Table 6.3.

Using the projection method or the MGV method, the two points at (2.1, −2.4) are flagged as
outliers, and no other outliers are reported. These two points are declared outliers using the
MVE method, but it flags two additional points as outliers. The R version of the MCD
method finds no outliers, but the S-PLUS version finds five. So when using MVE or MCD,
the choice of software can alter the results because the approximations of the MVE and
MCD measures of location and scatter differ. This problem is avoided when using the
projection-type method or the MGV method.
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Table 6.3: Data Used to
Illustrate Outlier Detection
Methods.

0.49601344 0.2293483
−1.57153483 −2.1847545
0.55633893 1.4329751
1.17870964 2.0139325
−0.51404243 0.5547278
0.63358060 1.4263721
0.76638318 0.4863436
−0.65799729 −1.7676117
−0.78952475 −1.0790300
1.30434022 1.7647849
2.66008714 2.2311363
1.16480412 0.1011259
−1.24400427 −1.8162151
0.53216346 0.1244360
−0.21301222 −1.4762834
−0.08860754 1.8208403
−0.86177016 −0.9034465
0.53223243 0.3335626
−1.64469892 −1.5643544
0.09441703 1.9093186

Gleason (1993) argues that a lognormal distribution is light-tailed. In the univariate case, with
n = 20, the MAD-median rule given by Eq. (3.45) has an outside rate per observation of
approximately 0.13, and a boxplot rule has an outside rate per observation of approximately
0.067. As another illustration that the choice of method can make a difference, consider the
case where X and Y are independent, each having a lognormal distribution. For this bivariate
case, with n = 20, all of the methods considered here have an outside rate above 0.1. The
MVE method seems to be highest, with an estimated rate of 0.17 when using S-PLUS,
whereas for the outlier projection method and the MGV method the rates are approximately
0.15 and 0.13, respectively. When using the R version of MVE, the rate exceeds 0.2.

Figure 6.4 shows the plots created by the MGV, MVE, MCD and the projection method based
on a sample of n = 50 pairs of points generated from two independent lognormal
distributions. The upper left and lower right panels are based on the projection method and the
MGV method, respectively. In this particular instance they give identical results and flag the
fewest points as outliers, relative to the other methods used. The upper right panel is the
output based on the MVE (S-PLUS) method, and the lower left panel is based on the MCD
(S-PLUS) method. Although an argument can be made that in this particular instance, the
MVE and MCD methods are less satisfactory, this must be weighed against the ability of the
MVE and MCD methods to handle a larger number of outliers. (But if a large number of
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Figure 6.4: Output from four outlier detection methods. The upper left panel used the projection
method in Section 6.4.9, the upper right used the MVE method, the lower left is based on the
MCD method, and the lower right used the MGV method.

outliers is suspected, the versions of the projection-type method and the MGV method
represented by Eqs. (6.20) and (6.19), respectively, might be used.) For more on detecting
multivariate outliers, see Kosinski (1999), Liu, Parelius, and Singh (1999), Rocke and
Woodruff (1996), Peña and Prieto (2001), Poon, Lew, and Poon (2000), Rousseeuw and
Leroy (1987), Davies (1987), Fung (1993), and Rousseeuw and van Zomeren (1990).

6.5 A Skipped Estimator of Location and Scatter

Skipped estimators of location and scatter are estimators that search for outliers, discard any
that are found, and then compute the mean and usual covariance matrix based on the data that
remain. Such estimators are special cases of the W-estimator in Section 6.3.6, where points
get a weight of 1 or 0 depending on whether they are declared outliers. Maronna and Yohai
(1995) refer to such weight functions as hard rejection weights as opposed to soft rejection
where the weights gradually descend toward zero as a function of how outlying a point
happens to be. When using the outlier projection method in Section 6.4.8, with outliers getting
a weight of zero, otherwise points get a weight of one, the corresponding W-estimator will be
called the OP-estimator. When using the MVE outlier detection method, the skipped
estimator will be called the WMVE estimator. And when using the MCD outlier detection
method, the skipped estimator will be called the WMCD estimator.

Note that the methods just describe also yield robust analogs of the usual covariance matrix. If
outliers are removed via the projection method, and the usual covariance matrix is computed
based on the remaining data, this will be called the OP-estimate of scatter.
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Table 6.4: Values of R (Accuracy), n = 40.

h ρ γ = 0.10 γ = 0.15 γ = 0.20 DGM OP M

0.0 0.0 0.73 0.62 0.50 0.45 0.92 0.81
0.5 0.0 5.99 5.92 5.40 4.11 6.25 8.48
1.0 0.0 4660.21 5764.79 5911.29 4643.16 5452.35 10820.14
0.0 0.7 0.80 0.71 0.61 0.48 0.95 0.44
0.5 0.7 4.74 4.76 4.50 3.20 4.64 5.44
1.0 0.7 1082.56 1300.44 1336.63 1005.24 1091.68 1760.98

To provide at least some sense of how the various locations estimators compare, some results
on the expected squared standard error are provided when sampling from distributions that are
symmetric about zero. More precisely, the measure of accuracy used is

R =

√
E(
∑

X̄2
j )√

E(
∑
θ̂2

j )

,

where θ̂2
j is some competing estimator associated with the j th variable, j = 1, . . . , p.

Table 6.4 reports some results for four variations of the Donoho–Gasko trimmed mean,
followed by the OP-estimator and the marginal medians. (In Table 6.4, h refers to the type of
g-and-h distribution used, as described in Section 4.2, and ρ is the common Pearson
correlation among the generated data.) Note that under normality, all four variations of the
Donoho–Gasko trimmed mean are the least satisfactory, and method OP performs best among
the robust estimators considered. As for the TBS estimator in Section 6.3.3, it performs in a
manner similar to the Donoho–Gasko trimmed mean with γ = 0.15 when sampling from a
normal distribution. That is, it is less satisfactory than other estimators that might be used. For
h = 0.5 it performs nearly as well as the skipped estimator (method OP), and for h = 1 it is a
bit more accurate. As for the WMVE skipped estimator, among the situations considered, it
seems to have about the same accuracy as the OP-estimator, with OP offering a slight
advantage.

Masse and Plante (2003) report more extensive results on the Donoho–Gasko trimmed mean,
plus other estimators not described here. Their results further support the notion that the
Donoho–Gasko trimmed mean is relatively inaccurate when sampling from light-tailed
distributions. Among the 10 estimators they considered, Masse and Plante (2003) found the
spatial median, studied by Haldane (1948) and Brown (1983), to be best. (They did not
consider the OP-estimator in their study.) The spatial median is the value θ̂ that minimizes

1

n

∑
‖θ̂ −Xi ‖ .
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It is not affine equivariant, but it is translation equivariant and orthogonally equivariant. One
way of computing the spatial median is via the Nelder and Mead (1965) algorithm for
minimizing a function. (See Olsson and Nelson, 1975, for a discussion of the relative merits
of the Nelder–Mead algorithm.)3 An alternative algorithm for computing the spatial median
can be found in Bedall and Zimmermann (1979) as well as Hössjer & Croux (1995). Ng and
Wilcox (2010b) compared eight robust estimators for a wide range of situations and
concluded that the OP-estimator generally performs best in terms of efficiency, as measured
by the generalized variance of the sampling distribution.

6.5.1 R Functions smean, wmcd, wmve, mgvmean, L1medcen, spat,
mgvcov, skip, skipcov, and dcov

The R function

smean(m,cop=3,MM=F,op=1,outfun=outogk,cov.fun=rmba,MC=F, . . .)

computes the OP-estimator of location just described using the data stored in the n-by-p
matrix m. The remaining arguments determine which outlier detection method is used. Setting
op=1 results in using the projection-type method, and op=2 uses the MGV method. The
initial measure of location used by the outlier detection method is determined by cop, the
choices being

• cop=1, Tukey (halfspace) median
• cop=2, MCD
• cop=3, marginal medians

To take advantage of a multi-core processor, with the goal of reducing execution time, set the
argument MC=T.

The R function

skipcov(m,cop=6,MM=F,op=1,mgv.op=0,outpro.cop=3)

computes the covariance matrix for the data stored in the argument m after outliers are
removed. Like the R function smean, op=1 means that a projection method is used to identify
outliers. When MM=F, Carling’s modification of the boxplot rule is applied to each
projection when checking for outliers. When MM=T, a MAD-median rule is used. Setting
op=2, the MGV method is used to detect outliers. The argument outpro.cop controls which

3 The Nelder–Mead algorithm is applied with the R function Nelder, written for this book. This code was modeled
after the FORTRAN code in Olsson (1974).
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measure of location is used to compute the projections; see the R function outpro for more
details. The R function

skip(m,cop=6,MM=F,op=1,mgv.op=0,outpro.cop=3)

returns both the skipped measure of covariance and measure of location. The R function

mgvcov(m,MM=F,op=1,cov.fun=rmba)

computes the MGV covariance matrix. For an explanation of the remaining arguments, see
the R function outmgv.

The R function

spat(m)

computes the spatial median as does

L1medcen(X, tol = 1e-08, maxit = 200, m.init = apply(X, 2, median) trace = FALSE).

The function spat uses the Nelder–Mead algorithm, whereas L1medcen uses the method
described in Hössjer and Croux (1995). These two functions can give slightly different
results. Currently it is unknown why one method might be preferred over the other.

A skipped estimator, with outliers detected via the MGV method, is called the MGV estimator
of location and can be computed with the function smean. For convenience, the R function

mgvmean(m,op=0,MM=F,outfun=outbox)

is supplied for computing this measure of location. Setting op=0 results in the MGV outlier
detection method using pairwise differences when searching for the centrally located points,
op=1 uses the MVE method, and op=2 uses MCD.

The built-in R function cov.mve is designed to compute the WMVE estimate of location and
scatter. (S-PLUS also comes with the function cov.mve that supposedly reports the WMVE
estimate of location and scatter, but checks found that in some cases, it returns a measure of
location that does not correspond to the weights it reports. The reason for this is unclear.) It
should be noted that repeatedly applying the function cov.mve to the same data, there are
instances where it gives a different estimate for both location and scatter. To get a measure of
location and scatter that gives the same result when repeatedly applied to the same data, use
the R function

wmve(m,SEED=T).

www.elsevierdirect.com



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

WILCOX 09-ch06-215-290-9780123869838 2011/12/6 18:29 Page 254 #40

254 Introduction to Robust Estimation and Hypothesis Testing

That is, cov.mve returns weights wi (i = 1, . . . ,n) that are equal to zero or one according to
whether a point is declared an outlier, and wmve uses these weights to compute measures of
location and scatter based on Eqs. (6.13) and (6.14).

n Example

For the data shown in Figure 6.3, the author got the following results based on the
S-PLUS function cov.mve:

$cov:
[,1] [,2]

[1,] 0.009856233 0.03159224
[2,] 0.031592244 0.21197126

$center:
[1] 4.422632 4.973947

Entering the command cov.mve again yielded

$cov:
[,1] [,2]

[1,] 0.01121994 0.03755037
[2,] 0.03755037 0.23498775

$center:
[1] 4.41275 4.93350

A similar problem occurs when using cov.mve using R and when using the S-PLUS
function cov.mcd. The R functions wmve always returns the same values by setting the
seed of the random number generator used by R when the argument SEED=T.

n

6.6 Robust Generalized Variance

It is noted that one approach to measuring the overall variation of a cloud of points is with the
generalized variance, where the usual covariance matrix is replaced by some robust analog.
Based on the criterion of achieving good efficiency, a particular choice for the covariance
matrix has been found to be relatively effective when distributions are normal or have
moderately heavy tails: the OP-estimator of scatter where Carling’s modification of the
boxplot rule is applied to each projection of the data. For heavy-tailed distributions, use
instead a MAD-median rule (Wilcox, 2006e).
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6.6.1 R Function gvarg

The R function

gvarg(m,var.fun=cov.mba, . . .)

a robust generalized variance for the data stored in the argument m. By default, the RMBA
covariance matrix is used because other methods to be described appear to perform
reasonably well based on this covariance matrix. The command

gvarg(x,skipcov,MM=F)

would compute the generalized variance based on the OP-estimate of scatter in conjunction
with Carling’s modification of the boxplot rule. The command

gvarg(x,skipcov,MM=T)

would use the MAD-median rule.

6.7 Inference in the One-Sample Case

This section describes two methods for making inferences about multivariate measures of
location. The first is aimed at the population analog of the OP-estimator. The second is based
on an extension of Hotelling’s T 2 method to the marginal trimmed means.

6.7.1 Inferences Based on the OP Measure of Location

The immediate goal is to compute a 1−α confidence region for the population measure of
location corresponding to the OP-estimator described in the previous section. Alternatively,
the method in this section can be used to test the hypothesis that the population measure of
location is equal to some specified value.

The basic strategy is to use a general percentile bootstrap method studied by Liu and Singh
(1997). Roughly, generate bootstrap estimates and use the central 1−α bootstrap values as an
approximate confidence region. A simple method for determining the central 1−α bootstrap
values is to use Mahalanobis distance. Despite being nonrobust, this strategy performs well
for a range of situations to be covered. Indeed, for many problems, there is no known reason
to prefer another measure of depth, in terms of probability coverage. But for the problem at
hand, Mahalanobis depth is unsatisfactory, at least with small to moderate sample sizes; the
actual probability coverage can be rather unstable among various distributions, particularly as
p gets large. That is, what is needed is a method for which the probability coverage is
reasonably close to the nominal level regardless of the distribution associated with the data.
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The method begins by generating a bootstrap sample by sampling with replacement n vectors
of observations from X1, . . . ,Xn , where again Xi is a vector having length p. Label the results
X∗1, . . . ,X

∗
n . Compute the OP-estimate of location yielding θ̂∗. Repeat this B times yielding

θ̂∗1 , . . . , θ̂
∗

B . Proceed as in Section 6.2.5, compute the projection distance of each bootstrap
estimate, θ̂∗b , relative to all B bootstrap values and label the result d∗b , b = 1, . . . , B. Put these
B distances in ascending order yielding d∗(1) ≤ · · · ≤ d∗(B). Set u = (1−α)B, rounding to the
nearest integer. A direct application of results in Liu and Singh (1997) indicates that an
approximate 1−α confidence region corresponds to the u bootstrap values having the
smallest projection distances. As for testing

H0 : θ = θ0,

θ0 given, let D0 be the projection distance of θ0. Set Ib = 1 if D0 ≤ D∗b ; otherwise Ib = 0.
Then the (generalized) p-value is estimated to be

p̂ =
1

B

B∑
b=1

Ib,

and a direct application of results in Liu and Singh (1997) indicates that H0 be rejected if
p̂ ≤ α.

However, when testing at the 0.05 level, this method can be unsatisfactory for n ≤ 120 (and
switching to Mahalanobis distance makes matters worse). A better approach is to adjust the
decision rule when n is small. In particular, reject if p̂ ≤ αa , where for n ≤ 20, αa = 0.02; for
20< n ≤ 30, αa = 0.025; for 30< n ≤ 40, αa = 0.03; for 40< n ≤ 60, αa = 0.035; for
60< n ≤ 80, αa = 0.04; for 80< n ≤ 120, αa = 0.045; and for n > 120, use αa = 0.05.
Simulations (Wilcox, 2003b) suggest that for p = 2, . . . ,8, reasonably good control over the
probability of a type I error is obtained regardless of the correlations among the p variables
under study. That is, the actual probability of a type I error will not be much larger than the
nominal level. However, for n = 20, and when sampling from a heavy-tailed distribution, the
actual probability of a type I error can drop below .01 when testing at the 0.05 level. So there
is room for improvement, but currently, only the method just described has been found to be
remotely successful for the problem at hand.

6.7.2 Extension of Hotelling’s T 2 to Trimmed Means

Hotelling’s T 2 test is a classic method for testing

H0 : µ= µ0,

where µ represents a vector of p population means and µ0 is a vector of specified constants.
The method is readily generalized to making inferences about the marginal trimmed means

www.elsevierdirect.com



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

WILCOX 09-ch06-215-290-9780123869838 2011/12/6 18:29 Page 257 #43

Chapter 6 Some Multivariate Methods 257

via the test statistic

T 2
=

h(h− p)

(n−1)p
(X̄t −µ0)S−1(X̄t −µ0)

′,

where S is the Winsorized variance–covariance matrix corresponding to the p measures under
study and X̄t is the vector of marginal trimmed means and h is the number of observations left
after trimming. When the null hypothesis is true, T 2 has, approximately, an F distribution
with degrees of freedom ν1 = p and ν2 = h− p. That is, reject at the α level if

T 2
≥ f,

where f is the 1−α quantile of an F distribution with ν1 = p and ν2 = h− p degrees of
freedom.

6.7.3 R Functions smeancrv2 and hotel1.tr

The R function

smeancrv2(m, nullv=rep(0, ncol(m)), nboot=500, plotit=T, MC=F, xlab=“VAR 1”,
ylab=“VAR 2”,STAND=F)

tests the hypothesis H0: θ = θ0, where θ is the population value of the OP-estimator. The null
value, θ0, is specified by the argument nullvec and defaults to a vector of zeros. The argument
cop determines the measure of location used by the projection outlier detection method and
MM determines the measure of scale that is used; see Section 6.4.10. If m is a matrix having
two columns and plotit=T, the function plots the bootstrap values and indicates the
approximate 0.95 confidence region. Setting the argument MC=T, a multi-core processor can
be used to compute the measure of location and the projection distances, which will help
reduce execution time. (The function smeancrv2 is the same as the function smeancr, only
smeancr does not have an option for using a multi-core processor.)

n Example

Table 6.5 shows the cork boring weights for the north, east, south and west sides of 28
trees. (The data are from Rao, 1948.) For illustrative purposes, suppose the difference
scores between the west and north sides of the trees are stored in column one of the R
matrix m, and in column two are the difference scores between the west and east sides.
Figure 6.5 shows the approximate 0.95 con�dence region for the typical difference
scores based on the OP-estimator and reported by the function smeancr. The
(generalized) p-value, when testing H0: θ = (0, 0) is .004, and the 0.05 critical p-value is
αa = 0.025, so reject at the 0.05 level.
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Table 6.5: Cork Boring Weights for the
North, East, South and West Sides of
Trees.

N E S W N E S W

72 66 76 77 91 79 100 75
60 53 66 63 56 68 47 50
56 57 64 58 79 65 70 61
41 29 36 38 81 80 68 58
32 32 35 36 78 55 67 60
30 35 34 26 46 38 37 38
39 39 31 27 39 35 34 37
42 43 31 25 32 30 30 32
37 40 31 25 60 50 67 54
33 29 27 36 35 37 48 39
32 30 34 28 39 36 39 31
63 45 74 63 50 34 37 40
54 46 60 52 43 37 39 50
47 51 52 53 48 54 57 43
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Figure 6.5: The 0.95 con�dence region based on the OP-estimate of location using the cork
data, where VAR 1 is the difference between the west and north sides and VAR 2 is the
difference between the west and east sides.

n

The R function

hotel1.tr(x,null.value=0,tr=0.2)

performs the generalization of Hotelling’s T 2 method to trimmed means. The argument
null.value can contain a single value, which is taken to mean that all p hypothesized values
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are equal to the specified value, or the argument null.value can contain p values. The
argument x is assumed to be a matrix or data frame. And as usual, tr=0.2 indicates that by
default, 20% trimming is used.

6.7.4 Inferences Based on the MGV Estimator

A natural guess is that the inferential method based on the OP-estimator can be used with the
MGV estimator as well. It appears, however, that some alternative modification of the
bootstrap method is required. For example, if n = 20 and p = 4, the modified bootstrap
method designed for the OP-estimator rejects at the 0.05 level if p̂∗ ≤ .02 and appears to
control the probability of a type I error for a wide range of distributions. However, if this
method is applied with the OP-estimator replaced by the MGV estimator, the actual
probability of a type I error exceeds .1 when sampling from a normal distribution; to achieve
an actual probability of a type I error approximately equal to .05, reject if p̂∗ ≤ .006.
Switching to Mahalanobis distance makes matters worse. A better approach is to proceed
exactly as was done with the OP-estimator, only use MGV distances when computing the
(generalized) p-value.

6.7.5 R Function smgvcr

The R function

smgvcr(m,nullvec=rep(0,ncol(m)),SEED=T,op=0,nboot=500,plotit=T)

tests the hypothesis H0: θ = θ0, where θ is the population value of the MGV estimator. The
null value, θ0, is specified by the argument nullvec and defaults to a vector of zeros. The
argument op determines how the central values are determined when using the MGV outlier
detection method; see the function mgvmean.

6.8 Two-Sample Case

The method in Section 6.6 is readily extended to the two-sample case. That is, for two
independent groups, θ j represents the value of θ (the population OP measure of location)
associated with the j th group ( j = 1, 2), and the goal is to test

H0 : θ1 = θ2.

Now, simply generate bootstrap samples from each group, compute the OP-estimator for
each, label the results θ∗1 and θ∗2 , and set d∗ = θ∗1 − θ

∗

2 . Repeat this process B times yielding
d∗1 , . . . ,d

∗

B . Then H0 is tested by determining how deeply the vector (0, . . . ,0) is nested
within the cloud of d∗b values, b = 1, . . . , B, again using the projection depth. If its depth,
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relative to all B bootstrap estimates, is low, meaning that it is relatively far from the center,
then reject. More precisely, let Db be the OP distance associated with the bth bootstrap
sample and let D0 be the distance associated with (0, . . . ,0). Set Ib = 1 if Db > D0, otherwise
Ib = 0, in which case the estimated generalized p-value is

p̂ =
1

B

B∑
b=1

Ib.

Currently, when α = 0.05, it is recommended to set n =min(n1,n2) and use αa as defined in
the one sample case in Section 6.6. (Checks on this method, when the OP-estimator is
replaced by the MGV estimator, have not been made.)

6.8.1 R Functions smean2, smean2v2, matsplit, and mat2grp

The R function

smean2v2(m1,m2,nullv=rep(0,ncol(m1)),cop=3,MM=F,SEED=NA,
nboot=500,plotit=T,MC=F)

tests the hypothesis that two multivariate distributions have the same measure of location
using the method just described. Here, the data are assumed to be stored in the matrices m1
and m2, each having p columns. The argument nullv indicates the null vector and defaults to
a vector of zeros. The arguments cop and MM control how outliers are detected when using
the projection method; see Section 6.4.10. As usual, to avoid the plot, set plotit=F. To use a
multi-core processor, set the argument MC=T. The function

smean2(m1,m2,nullv=rep(0,ncol(m1)),cop=3,MM=F,SEED=NA, nboot=500,plotit=T)

is exactly the same as smean2v2, only it does not have an option for using a multi-core
processor.

Data Management

The R function

matsplit(m,coln)

is supplied in case it helps with data management. It splits the matrix m, into two matrices
based on the values in the column of m indicated by the argument coln. This column is
assumed to have two values only. Results are returned in $m1 and $m2.

The R function

mat2grp(m,coln)

www.elsevierdirect.com



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

WILCOX 09-ch06-215-290-9780123869838 2011/12/6 18:29 Page 261 #47

Chapter 6 Some Multivariate Methods 261

also splits the data in a matrix into groups based on the values in column coln of the matrix m.
Unlike matsplit, mat2grp can handle more than two values (i.e., more than two groups), and it
stores the results in list mode.

n Example

Thomson and Randall-Maciver (1905) report four measurements for male Egyptian
skulls from �ve different time periods: 4000 B.C., 3300 B.C., 1850 B.C., 200 B.C., and 150
A.D. There are 30 skulls from each time period and four measurements: maximal
breadth, basibregmatic height, basialveolar length, and nasal height. For illustrative
purposes, assume the data are stored in the R variable skull, the four measurements are
stored in columns 1–4, and the time period is stored in column 5. Here, the �rst and last
time periods are compared, based on the OP measure of location. First, split the data
into �ve groups based on the time period using, for example, the R command

z=mat2grp(skull,5).

So z[[1]] is a matrix containing the data corresponding to the �rst time period and
z[[5]] is a matrix containing the data for the �nal (�fth) time period, 150 A.D. The
R command

smean2v2(z[[1]][,1:4],z[[5]][,1:4])

compares the two groups based on all four measures. Figure 6.6 shows the plot created
by smean2v2 when using the �rst two variables only. The polygon is an approximate
0.95 con�dence region for the difference between the measures of location. The p-value
is .002. (Using all four measures, the p-value is 0.)

V
A

R
 2

−10 −8 −6 −4 −2

2

0

4
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Figure 6.6: Using the �rst two skull measures for the �rst and last time periods, the plot
shows the 0.95 con�dence region for the difference between the OP measures of location.

n
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6.8.2 Comparing Robust Generalized Variances

Robust generalized variances can be compared as well. A percentile bootstrap appears to
avoid type I errors above the nominal level. But situations are encountered where the actual
level can be substantially smaller than the nominal level. Corrections are available in some
situations (Wilcox, 2006e), which are used by the R function described in the next section, but
no details are given here.

6.8.3 R function gvar2g

The R function

gvar2g(x, y, nboot = 100, DF = T, eop = 1, est = skipcov, alpha = 0.05, cop = 3, op = 1,
MM = F, SEED = T)

compares two independent groups based on a robust version of the generalized variance. By
default, the OP covariance matrix is used in conjunction with Carling’s modification of the
boxplot rule. Setting MM=T, a MAD-median rule is used. If DF=T, and if the sample sizes
are equal, the function reports an adjusted critical p-value, assuming that the goal is to have a
type I error probability equal to .05, the argument est=skipcov, and that other conditions are
met. Otherwise, no adjusted critical value is reported. For information about the arguments
op, cop, and eop, see the R function skipcov.

6.9 Multivariate Density Estimators

This section outlines two multivariate density estimators that will be used when plotting data.
The first is based on a simple extension of the expected frequency curve described in
Chapter 3 and the other is a multivariate analog of the adaptive kernel density estimator. An
extensive discussion of multivariate density estimation goes beyond the scope of this book,
but some indication of the method used here, when plotting data, seems warranted.

The strategy behind the expected frequency curve is to determine the proportion of points that
are close to Xi . There are various ways this might be done and here a method based on the
MVE covariance matrix is used. Extant results suggest this gives a reasonable first
approximation of the shape of a distribution in the bivariate case, but there are many
alternative methods for determining which points are close to Xi , and virtually nothing is
known about their relative merits for the problem at hand.

Here, the point Xi ′ is said to be close to Xi if√
(Xi ′−Xi )′M−1(Xi ′−Xi )≤ h,

where M is the MVE covariance matrix described in Section 6.3.1, and h is the span.
Currently, h = 0.8 seems to be a good choice for most situations. Letting Ni represent the
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number of points close to Xi , fi = Ni/n estimates the proportion of points close to Xi . In the
bivariate case, a plot of the data is created simply by plotting the points (Xi , fi ).

The expected frequency curve can be used as a first approximation when using an adaptive
kernel density estimate. Here, once the expected frequency curve has been computed, the
method described by Silverman (1986) is used based on the multivariate Epanechnikov kernel.

An outline of the method is as follows. First, rescale the p marginal distributions. More
precisely, let xi` = X i`/min(s`, IQR`/1.34), where s` and IQR` are, respectively, the standard
deviation and interquartile range based on X1`, . . . , Xn`, `= 1 . . . , p. (Here, IQR is computed
via the ideal fourths.) If x′x< 1, the multivariate Epanechnikov kernel is

Ke(x)=
(p+2)(1−x′x)

2cp
;

otherwise Ke(x)= 0. The quantity cp is the volume of the unit p-sphere: c1 = 2, c2 = π , and
for p > 2 cp = 2πcp−2/p. Similar to Section 3.2, the estimate of the density function is

f̂ (t)=
1

n

∑ 1

hλi
K [h−1λ−1

i (t− X i )],

where, following Silverman (1986, p. 86), the span is taken to be

h = A(p)n−1/(p+4),

A(1)= 1.77, A(2)= 2.78 and for p > 2,

A(p)=

[
8p(p+2)(p+4)(2

√
π)p

(2p+1)cp

]1/(p+4)

.

The quantity λi is computed as described in Section 3.2.4, only now the initial estimate of f
is based on the multivariate version of the expected frequency curve. The R functions rdplot
and akerd, described in Section 3.2.5, perform the calculations.

6.10 A Two-Sample, Projection-Type Extension of the
Wilcoxon–Mann–Whitney Test

There are various ways to generalize the Wilcoxon–Mann–Whitney test to the multivariate
case, some of which are discussed in Chapter 7. Here, a projection-type extension is described
that is based, in part, on the multivariate measures of location covered in this chapter.
Consider two independent groups with p measures associated with each. Let θ j be any
measure of location associated with the j th group ( j = 1, 2). The basic strategy is to
(orthogonally) project the data onto the line connecting the points θ1 and θ2, and then consider
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the proportion of projected points associated with the first group that are “less than” the
projected points associated with the second.

To elaborate, let L represent the line connecting the two measures of location and let d j be the
Euclidean distance of θ j from the origin. For the moment, assume θ1 6= θ2. Roughly, as we
move along L, the positive direction is taken to be the direction from θ1 toward θ2 if d1 ≤ d2;
otherwise the direction is taken to be negative. So if the projection of the point X onto L
corresponds to the point U , and the projection of the point Y corresponds to the point V , and
if moving from U to V corresponds to moving in the positive direction along L, then it is said
that X is “less than” Y .

For convenience, distances along the projected line are measured relative to the point midway
between θ1 and θ2, namely, (θ1+ θ2)/2. That is, the distance of a projected point refers to how
far it is from (θ1+ θ2)/2, where the distance is taken to be negative if a projected point lies in
the negative direction from (θ1+ θ2)/2. If Dx and Dy are the projected distances associated
with two randomly sampled observations, X and Y, then it is said that X is “less than”,
“equal to”, or “greater than” Y according to whether Dx is less than, equal to, or greater than
Dy , respectively. In symbols, it is said that X≺ Y if Dx < Dy , X' Y if Dx = Dy , and X� Y
if Dx > Dy . Extending a standard convention in rank-based methods in an obvious way, to
deal with situations where Dx = Dy can occur, let

η = P(X≺ Y)+0.5P(X' Y).

The goal is to estimate η and test

H0 : η = 0.5. (6.23)

First consider estimation. Given an estimated measure of location θ̂ j for the j th group ( j = 1,
2), the projected distances are computed as follows. Let ‖θ̂ j‖ be the Euclidean norm
associated with θ̂ j , let S = 1 if ‖θ̂1‖ ≥ ‖θ̂2‖, otherwise S =−1. Let

C= (θ̂1+ θ̂2)/2,

B= S(θ̂1− θ̂2),

A = ‖B‖2,

Ui = Xi −C,

and for any i and k = 1, . . . , p, let

Wi =

p∑
k=1

Uik Bk,

Tik =
Wi

A
Bik
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in which case the distance associated with the projection of Xi is

Dxi = sign(Wi )

√√√√ p∑
k=1

T 2
ik,

i = 1, . . . ,m. The distances associated with the Yi values are computed simply by replacing
Xi with Yi in the definition of Ui . The resulting distances are denoted by Dyi , i = 1, . . . ,n.

To estimate η, let

Vi i ′ = sign(Dxi −Dyi ′),

and

V̄ =
1

mn

m∑
i=1

n∑
i ′=1

Vi i ′ .

Then extending results in Cliff (1996) in an obvious way,

η̂ =
1− V̄

2

is an unbiased estimate of η and takes into account tied values.

When testing Eq. (6.23), Wilcox (2005a) found that a basic percentile bootstrap method is
unsatisfactory in terms of controlling the probability of a type I error but that a slight
modification of the method performs reasonably well in simulations. The method begins by
subtracting θ j from every observation in the j th group. In effect, shift the data so that null
hypothesis is true. Now, for each group, generate bootstrap samples from the shifted data and
estimate η based on the two bootstrap samples just generated. Label the result η̂∗. Repeat
this B times yielding η̂∗1, . . . , η̂

∗

B and put these B values in ascending order yielding
η̂∗(1) ≤ · · · ≤ η̂

∗

(B). Then reject H0 if η̂∗(`+1) > η̂ or if η̂∗(u) < η̂, where `= αB/2, rounded to the
nearest integer, and u = B−`. Here, B = 1000 is assumed unless stated otherwise.

6.10.1 R functions mulwmw and mulwmwv2

The R function

mulwmw(m1,m2,plotit=T,cop=3,alpha=0.05,nboot=1000,pop=4,fr=0.8,pr=F)

performs the multivariate extension of the Wilcoxon–Mann–Whitney test just described,
where the arguments m1 and m2 are any matrices (having p columns) containing the data for
the two groups. The argument pr can be used to track the progress of the bootstrap method
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used to compute a critical value. If plotit=T, a plot of the projected distances is created, the
type of plot being controlled by the argument pop. The choices are

• pop=1, dotplots
• pop=2, boxplots
• pop=3, expected frequency curve
• pop=4, adaptive kernel density estimate

The argument cop controls which measure of location is used. The choices are:

• cop=1, Donoho–Gasko Median
• cop=2, MCD estimator
• cop=3, marginal medians
• cop=4, OP-estimator

The R function

mulwmwv2(m1,m2,plotit=T,cop=3,alpha=0.05,nboot=1000,pop=4,fr=0.8,pr=F)

is the same as mulwmw, only it also reports a robust explanatory measure of effect size,
described in Section 5.3.4, based on the projected points.

n Example

Figure 6.7 shows four plots corresponding to the various choices for the argument pop
using the skull data used in Figure 6.6. The upper left panel used pop=1, the upper right
panel used pop=2, the lower left used pop=3, and the lower right used pop=4.

x
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0

5 10

10
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5 10 15 −10 −5 0 5 10 15
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Figure 6.7: An example of the four types of plots created by the function mulwmw.

n
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6.11 A Relative Depth Analog of the Wilcoxon–Mann–Whitney Test

This section describes another approach to generalizing the Wilcoxon–Mann–Whitney test to
the multivariate case. To explain the strategy, first consider the univariate case and let
D = X −Y , where X and Y are independent random variables. As explained in Section 5.7,
heteroscedastic analogs of the Wilcoxon–Mann–Whitney test are concerned with how
deeply zero is nested within the distribution of D. When tied values occur with probability
zero, the usual null hypothesis is, in essence, that the depth of zero is equal to the highest
possible depth. (That is, the hypothesis is that the median of the distribution of D is zero.)
A slightly different formulation, which is useful for present purposes, is to say that the
Wilcoxon–Mann–Whitney test is aimed at determining whether the depth of the value zero
differs from the maximum possible depth associated with a distribution. A simple way of
quantifying this difference is with Q, say, the depth of zero divided by the maximum possible
depth, in which case the goal is to test

H0 : Q = 1. (6.24)

Put a bit more formally, imagine that X and Y are independent p-variate random variables
and let D j = X j −Y j be the difference between the j th marginal distributions, j = 1, . . . , p.
Let A denote the depth of 0 (a vector having length p), relative to the joint distribution of
D= X−Y, and let B be the maximum possible depth for any point, again relative to the the
joint distribution of D. Then

Q =
A

B
.

To estimate Q, let X i j (i = 1, . . . ,n1; j = 1, . . . , p) and Yi ′ j (i ′ = 1, . . . ,n2; j = 1, . . . , p) be
random samples and for fixed i and i ′, consider the vector D formed by the p differences
X i j −Yi ′ j , j = 1, . . . , p. There are L = n1n2 such vectors, one for each i and i ′, which are
labeled D`, `= 1, . . . , L . Let P0 denote the depth of 0 relative to the these L vectors, and let
P` be the depth of the `th vector, again relative to the L vectors D`, `= 1, . . . , L . Let
Pm =max P`, the maximum taken over `= 1, . . . , L . Then an estimate of Q is

Q̂ =
P0

Pm
.

Evidently, Q̂ is not asymptotically normal when the null hypothesis is true. Note that in this
case, Q lies on the boundary of the parameter space. Bootstrap methods have been considered
for testing H0, but their small-sample properties have proven to be difficult to study via
simulations because of the high execution time required to compute the necessary depths. Let
N =min(n1, n2) and suppose α = 0.05. Currently, the only method that has performed well
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in simulations is to reject if

Q̂ ≤ c,

where for p = 2 or 3,

c =max(0.0057N +0.466, 1),

for p = 4 or 5,

c =max(0.00925N +0.430, 1),

for p = 6 or 7,

c =max(0.0264N +0.208, 1),

for p = 8,

c =max(0.0149N +0.533, 1),

and for p > 8,

c =max(0.04655p+0.463, 1).

(See Wilcox, 2003f, for more details. Critical values for other choices of α have not been
determined.)

6.11.1 R function mwmw

The R function

mwmw(m1,m2,cop=5,pr=T,plotit=T,pop=1,fr=0.8,dop=1,op=1)

performs the multivariate extension of the Wilcoxon–Mann–Whitney test just described,
where the arguments m1 and m2 are any matrices (having p columns) containing the data for
the two groups. The argument cop determines the center of the data that will be used when
computing halfspace depth. The choices are:

• cop=1, Donoho–Gasko Median
• cop=2, MCD estimator
• cop=3, marginal medians
• cop=4, MVE estimator
• cop=5, OP-estimator

Setting the argument dop=2 causes halfspace depth to be approximated using method A2 in
Section 6.2.3; by default, method A1 is used. For bivariate data a plot is created based on the
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value of the argument pop, the possible values being 1, 2, and 3, which correspond to a
scatterplot, an expected frequency curve, and an adaptive kernel density estimate. The
argument fr is the span used by the expected frequency curve. As usual, setting plotit=F
avoids the plot. The function returns an estimate of η in the variable phat.

n Example

The �rst two skull measures used in the example of Section 6.7.1 are used to illustrate
the plot created by the R function mwmw. The plot is shown in Figure 6.8. The center of
the data is marked by an o and based on the OP-estimator, and the null vector is
indicated by a +. The function reports that phat is 0.33 indicating that the estimate of
Q̂ is 0.33. This is less than the critical value 0.62, so reject.
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Figure 6.8: An example of the plot created by the function mwmw.for. The estimated center is
marked by an o, and the null center is marked with a +.

n

6.12 Comparisons Based on Depth

This section describes yet another approach to comparing two independent groups based on
multivariate data. The basic idea is that if groups do not differ, the typical depth of the points
of the first group, relative to the second, should be the same as the typical depth of the second
group, relative to the first. Roughly, the issue is the extent to which the groups are separated
as measured by some notion of depth. Here, halfspace depth is used exclusively, simply
because this special case has received the most attention from an inferential point of view.
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Here we let TD(x; F) represent Tukey’s halfspace depth of x relative to the multivariate
distribution F . As usual, let X and Y represent independent, p-variate random variables. The
corresponding distributions are denoted by F and G. Let

R(y; F)= PF [TD(X; F)≤ TD(y; F)].

That is, R(y; F) is the probability that the depth of a randomly sampled X, relative to F , is
less than or equal to the depth of some particular point, y, again relative to F . Said another
way, R(y; F) is the fraction of the F population that is less central than the value y. A quality
index proposed by Liu and Singh (1993) is

Q(F, G)= EG[R(Y; F)],

the average of all R(y; F) values with respect to the distribution G. Put another way, for a
randomly sampled X and Y,

Q(F, G)= P[D(X; F)≤ D(Y; F)]

is the probability that the depth of Y is greater than or equal to depth of X . Liu and Singh
show that the range of Q is [0, 1] and when F = G, Q(F, G)= 1/2. Moreover, when
Q < 1/2, this reflects a location shift and/or scale increase from F to G. They also develop
inferential methods based on Q where it is assumed that F is some reference distribution.
Here a variation of their method is considered where the goal is to be sensitive to shifts in
location. (For relevant asymptotic results, see Zuo & He, 2006.)

Suppose the sample sizes are m and n for the distributions F and G, respectively. Let

D̄12 =
1

m

∑
TD(Xi ;Gn)

be the average depth of the m vectors of observations sampled from F relative to the
empirical distribution Gn associated with the second group. If D̄12 is relatively small, this can
be due to a shift in location or differences in scale. But if

D̄21 =
1

n

∑
TD(Yi ; Fm)

is relatively small as well, this reflects a separation of the two empirical distributions which is
roughly associated with a difference in location. (Of course, groups can differ in scale as well
when both D̄12 and D̄21 are small.) So a test of H0: F = G that is sensitive to shifts in
location is one that rejects if D̄M =max(D̄12, D̄21) is sufficiently small.

Assuming m < n, let N = (3m+n)/4. (If m > n, N = [3n+m]/4.) The only known method
that performs well in simulations when testing at the 0.05 level, based on avoiding a type I
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error probability greater than the nominal level, is to reject if D̄M ≤ dN , where for p = 1,

dN =
−0.4578
√

N
+0.2536;

for p = 2,

dN =
−0.3
√

N
+0.1569;

for p = 3,

dN =
−0.269
√

N
+0.0861;

for p = 4,

dN =
−0.1568
√

N
+0.0540;

for p = 5

dN =
−0.0968
√

N
+0.0367;

for p = 6,

dN =
−0.0565
√

N
+0.0262;

for p = 7

dN =
−0.0916
√

N
+0.0174;

and for p > 8 dN = .013. In terms of type I errors, the main difficulty is that when sampling
from heavy-tailed distributions, the actual type I error probability can drop well below .05
when testing at the 0.05 level (Wilcox, 2003c). (For p > 8, as p increases, the actual
probability of a type I error decreases.) Determining a p-value via simulations when sampling
from a normal distribution is, perhaps, more satisfactory, at the expense of higher execution
time.

As for a method that is relatively sensitive to differences in scatter, which can be used for
p-variate data, first estimate Q(F, G) with

Q̂(F, G)=
1

n

n∑
i=1

R(Yi ; Fm). (6.25)
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(Properties of this estimator are reported by Liu & Singh, 1993.) Similarly, the estimate of
Q(G, F) is

Q̂(G, F)=
1

m

m∑
i=1

R(X i ;Gn). (6.26)

The goal is to test

H0 : Q(F, G)= Q(G, F). (6.27)

Unlike the method based on D̄12 and D̄21, a basic percentile bootstrap method performs well
in simulations. To begin, generate bootstrap samples from both groups in the usual way and
let Q̂∗(F, G) and Q̂∗(G, F) be the resulting bootstrap estimates of Q(F, G) and Q(G, F).
Set D∗ = Q̂∗(F, G)−Q∗(G, F). Repeat this process B times yielding D∗b , b = 1, . . . , B. Put
these B values in ascending order yielding D∗(1) ≤ · · · ≤ D∗(B). Then a 1−α confidence
interval for Q(F, G)−Q(G, F) is simply (D∗(`+1), D∗(u)), where `= αB/2, rounded to the
nearest integer, and u = B−`. Of course, reject H0 if this interval does not contain zero.

6.12.1 R Functions lsqs3 and depthg2

The R function

lsqs3(x,y,plotit=T,cop=2, cop=2, ap.dep=F, v2=F, pv=F, SEED=T, nboot=1000),

compares two independent groups based on the statistic D̂M described in the previous section.
For bivariate data, if plotit=T, a scatterplot of the data is produced with the points associated
with the second group indicated by a circle. Setting the argument pv=T, a p-value is
computed. The function

depthg2(x,y,alpha=0.05,nboot=500,plotit=T,op=T)

tests (6.27). If the argument op is set to T, the function prints a message when each bootstrap
step is complete.

n Example

The left panel of Figure 6.9 shows the plot created by lsqs3 based on the skull data
described in Section 6.7.1. (The same plot is created by depthg2.) The function lsqs3
rejects at the 0.05 level suggesting a shift in location, but depthg2, which is designed to
be sensitive to differences in the amount of scatter, does not reject. The right panel
shows a scatterplot where the both groups have bivariate normal distributions that
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Figure 6.9: The left panel is the plot created by the function lsqs3 using the skull data in
Section 6.8.1. The right panel is the plot based on data generated from a bivariate normal
distribution where the marginal distributions have a common mean, but their standard
deviations differ. One has a standard deviation of 1 and the other has a standard
deviation of 3.

differ in scale only; the marginal distributions of the �rst group have standard deviation
one, and for the other group the marginal distributions have standard deviation three.
(Here, m = n = 50.) Now the function lsqs3 �nds no difference between the groups, but
depthg2 does (at the 0.05 level).

n

n Example

Table 6.6 shows the data for 24 schizophrenia patients and 18 demographically
matched controls. (The data are stored in the �les schiz1.data and schiz2.data; see
Chapter 1.) PP120 is a prepulse inhibition measure taken 120 ms following the onset of
an attended stimulus, and PM120 is the prepulse inhibition measure taken 120 ms
following the onset of an ignored stimulus. Figure 6.10 shows the scatterplot created by
lsqs3; the test statistic is 0.049, the critical value is 0.089, so reject at the 0.05 level.
(In Figure 6.10, VAR 1 is PP120 and VAR 2 is PM120.) It is left as an exercise to verify
that comparing PM120 using means, trimmed means or an M-estimator, no difference
is found at the 0.05 level, but for PP120, the reverse is true. Note, however, that in
Figure 6.10, there is a sense in which PM120 (labeled VAR 2) for the control group lies
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Table 6.6: Prepulse Inhibition Measures
for Schizophrenia Patients and Controls.

Schizophrenia Patients Control

PP120 PM120 PP120 PM120

−88.82 −92.40 −100.00 −31.47
13.54 −36.70 −71.48 −15.38
−37.22 0.08 −87.01 −64.87
−43.26 −42.40 −100.00 −95.94
−43.35 −42.25 −100.00 −81.24
−31.64 −41.30 93.95 109.44
−98.73 −96.56 −59.89 −35.97
−37.35 −33.82 −79.88 −79.24
−8.48 50.59 −53.33 −38.19
−63.87 −8.80 −90.08 −42.69
26.55 32.13 −40.25 10.57
−91.05 −95.85 −33.78 −7.60
−8.07 9.82 −89.18 −61.35
−97.65 −95.80 −84.78 −58.98
−60.80 −52.63 −64.74 −39.57
−33.58 −56.36 −91.10 −82.26
−15.80 −38.51 −74.82 −66.60
−12.92 1.50 −86.52 −48.74
−77.35 −86.07
−85.09 −84.71
−33.53 −43.66
−8.67 −9.40
−89.21 −86.80
−77.76 −75.83
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 2
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100

−100
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Figure 6.10: The plot created by the function lsqs3 using the schizophrenia data in Table 6.6.
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above and to the left the points corresponding to the schizophrenia patients. Given
PP120, PM120 tends to be greater for the control group.

n

6.13 Comparing Dependent Groups Based on All Pairwise Differences

This section describes an affine invariant method for comparing J dependent groups
that is based on a simple extension of the method in Section 6.11. For any j < m, let
Di jm = X i j − X im . Let F be the joint distribution of D jm , and let P be the depth of 0 relative
to F , divided by the maximum possible depth. Then 0≤ P ≤ 1 and the goal is to test

H0 : P = 1. (6.28)

A simple estimate of P is

P̂ =
A

C
, (6.29)

where A is the halfspace depth of 0 among these n vectors and C is the maximum depth
among these n points.

An alternative approach is to determine the halfspace median, which is just the average of the
deepest points, and then use the depth of the halfspace median as an estimate of the maximum
possible depth. Provided n is not too small, this alternative approach seems to have no
practical value, but it can be useful when n is very small. For instance, if n = 5 and sampling
is from a bivariate normal distribution with a correlation of zero, it is common to have all five
depths equal to 0.05, but the depth of the halfspace median is typically close to 0.4.

It should be stressed that affine invariance refers to the Di jm values because it is the depth of
these difference scores that are used. It can be seen that the method is not affine invariant in
terms of the X i j values.

A technical problem is that generally, the MCD estimate of location cannot be computed
when working with the Di jm values because the corresponding covariance matrix is singular.
Consequently, the approximation of halfspace depth with method A1 A1 in Section 6.2.3 is
not immediately applicable. To deal with this problem, compute the MCD estimate of location
based on the original X i j values, yielding say (ξ̂1, . . . , ξ̂J ), and then approximate the
halfspace depth of the Di jm values with method A1 by taking the center of location of the
Di jm to be θ̂ jm = ξ̂ j − ξ̂m .

An alternative strategy is to use an approximation of halfspace depth that does not require that
the Di jm values have a nonsingular covariance matrix. This can be accomplished with method
A2 in Section 6.2.3.
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As was the case in Section 6.10, when the null hypothesis is true, the distribution of P̂ is not
asymptotically normal. The reason is that for this special case, P lies on the boundary of the
parameter space and so for any general situation where P̂ is a consistent estimate of P , it
must be that P̂ ≤ 1 with the probability of P̂ = 1 increasing as the sample sizes get large. For
similar reasons, based on theoretical results in Liu and Singh (1997), the expectation is that
when H0 is true, a basic percentile bootstrap method for computing a confidence interval for
P will fail, and this has been found to be the case in simulations.

Consider rejecting H0 if P̂ ≤ c. Based on results in Wilcox (2005b), when testing at the 0.05
level, the following approximations of c appear to perform well. For J = 2,

ĉ =−1.46n−0.5
+0.95.

for J = 3,

ĉ =−1.71n−0.5
+1.00,

for J = 4,

ĉ =−1.77n−0.5
+1.057,

for J = 5,

ĉ =−1.76n−0.5
+1.11,

for J = 6,

ĉ =−1.62n−0.3
+1.41,

for J = 7,

ĉ =−1.71n−0.3
+1.49,

and for J = 8,

ĉ =−1.38n−0.3
+1.39.

Note that as n→∞, c→ 1. Moreover, as J increases, c converges to 1 more quickly. So in
effect, reject if P̂ <min(ĉ, 1).

The method just described is affine invariant, roughly meaning that it is metric free. That is, if
the n-by-p matrix of data is post multiplied by a nonsingular matrix A, P̂ is not altered.
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6.13.1 R Function dfried

The R function

dfried(m,plotit=T,pop=0,fr=0.8,v2=F,op=F)

tests the hypothesis H0 : P = 1 as just described. Here, m is any R variable having matrix
mode with n rows and p columns. If p = 2 and plotit=T, a plot of the difference scores is
created with the type of plot controlled by the argument pop. The choices are:

1. pop=0, adaptive kernel density
2. pop=1, expected frequency curve
3. pop=2, kernel density estimate using normal kernel
4. pop=3, R built-in kernel density estimate
5. pop=4, boxplot

The argument fr controls the span when using the expected frequency curve. Setting v2=T
causes method A2 to be used to approximate halfspace depth, and op=T results in using the
depth of Tukey’s median as an estimate of the maximum possible halfspace depth.

6.14 Robust Principal Components Analysis

Roughly, principal components analysis (PCA) is aimed at finding p linear combinations of m
(p < m) observed variables that explains most of the variability in the data. To quickly review
the strategy underlying the classic approach, momentarily consider the situation where p = 1.
Denoting the data for the j th variable by X i j (i = 1, . . . ,n; j = 1, . . .m), the goal is to reduce
the m variables to a single variable via some linear combination of the m variables, denoted by

Ui =

m∑
j=1

h j X i j ,

with the constants h1, . . . ,hm chosen so as to maximize the variance of the Ui values subject
to
∑

h2
j = 1. Now consider the problem of reducing the p variables down to two variables

rather than just one. So for the i th participant, the goal is to compute two linear combinations
of the p variables based on two sets of weights:

Ui1 = h11 X i1+· · ·+h1p pX i p

and

Ui2 = h21 X i1+· · ·+h2p X i p

(i = 1, . . . ,n), where for fixed k,
∑

h2
jk = 1 and the variance of the Uik values is maximized

subject to the condition that Uk and U` have correlation zero, k 6= `. More generally, m linear

www.elsevierdirect.com



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

WILCOX 09-ch06-215-290-9780123869838 2011/12/6 18:29 Page 278 #64

278 Introduction to Robust Estimation and Hypothesis Testing

combinations are sought that maximize the variance of the marginal distributions with the
property that any two linear combinations have zero correlation. This goal is accomplished by
taking h1, . . .hm to be the eigenvectors of the usual covariance matrix. The columns
U1, . . . ,Um of the matrix U are called the principal components of X. (For a recent discussion
regarding the interpretation of principal components, see Anaya-Izquierdo, Critchley, & Vines,
2011.) Moreover, the variance of Uk is λk , where λ1 ≥ · · · ≥ λm , and λk is the eigenvalue
corresponding to the eigenvector hk . The Ui j are called the principal component scores.

But because the usual covariance matrix is not robust, situations are encountered where upon
closer scrutiny the resulting components explain a structure that has been created by a mere
one or two outliers (e.g., Huber, 1981, p. 199). This has led to numerous suggestions
regarding how the classic PCA method might be made more robust. A simple approach is to
replace the covariance matrix with a robust scatter matrix or a robust correlation matrix.
Devlin et al. (1981) and Campbell (1980) used an M estimator with a low breakdown point,
so a relatively small number of outliers can cause practical problems. The minimum volume
ellipsoid (MVE) estimator, as well as the (fast) minimum covariance determinant (MCD)
estimator, might be used, but concerns about these estimators have already been noted. A
method based on an S-estimator was studied by Croux and Haesbroeck (2000), and a fast and
simple method was proposed by Locantore, Marron, Simpson, Tripoli, and Zhang (1999). Li
and Chen (1985) suggest a projection pursuit approach meaning that directions are sought that
maximize or minimize some robust measure of dispersion. (One appealing feature of
projection-type methods is that they can be used when the number of variables exceeds the
sample size.) Croux and Ruiz-Gazen (2005, section 5.1) describe an algorithm for
implementing the Li and Chen method. (Also see Hubert, Rousseeuw, & Verboven, 2002;
Salibián-Barrera, Van Aelst, & Willems, 2006.) One negative feature of the Li and Chen
method is its computational complexity. Maronna (2005) extended this projection pursuit
technique in a manner that improves computational efficiency and statistical performance. Yet
another recent suggestion was made by Hubert, Rousseeuw, and Vanden Branden (2005) that
was later refined by Engelen, Hubert, and Vanden Branden (2005), which is used here.
Roughly, the first step is to compute a measure of outlyingness for each of the n points, where
n is the sample size. Then for h chosen by the investigator, the h least outlying data points are
used to compute a measure of location and scatter, which in turn are used to determine how
many components will be retained, as well as the projected data points. Following Engelen
et al. (2005), a reweighting step is added based on the orthogonal distances of the
observations with respect to the first estimated PCA subspace. It is only at the first stage of the
algorithm that the number of points eliminated must be specified via the choice for h. (For
some additional results on robust approaches to PCA, see Serneels & Verdonck, 2008; Chen,
Martin, & Montague, 2009.)

All of the methods just listed are based in part on maximizing some measure of variation
associated with the marginal distributions of the m principal components. Another approach is
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to choose linear combinations (principal components) aimed at maximizing some robust
generalized variance associated with the principal component scores (Wilcox, 2008c). That is,
take into account the overall structure of the data when measuring variation, in contrast to
maximizing the variance of the individual principal component scores. (Details are given in
Section 6.14.6.)

There is yet another generalization of PCA that should be mentioned: kernel PCA
(Schlölkopf, Smola, & Müller, 1998). Roughly, the method first maps the data into a
higher-dimensional feature space. (It generalizes regular PCA by replacing the usual inner
product with a broader class of functions.) A robust version of kernel PCA has been studied
by Debruyne, Hubert, and van Horebeek (2010).

6.14.1 R Functions prcomp and regpca

The built-in R function

prcomp(x,cor=F),

performs the classic principal component analysis. By default it uses the covariance matrix
rather than the correlation matrix. In case it is useful, the R function

regpca(x, cor = T, loadings = T, SCORES = F, scree = T, xlab = “Principal Component”,
ylab = “Proportion of Variance”),

is provided, which performs the classic principal component analysis after first removing any
rows of data for which one or more columns having missing values. Unlike prcomp, the
function regpca uses the correlation matrix by default. And it creates a scree plot when the
argument scree=T, which is a line segment that shows the fraction of the total variance
among all m components as a function of the number of components. (The scree plot is
illustrated in Section 6.14.8.)

6.14.2 Maronna’s Method

This section provides a brief outline of the method proposed by Maronna (2005), which is
based in part on an iterative algorithm. Let xi , i = 1, . . . ,n, be an m-dimensional dataset, let
q = m− p and let C be an orthonormal q×m matrix. That is, CC′ = Iq . For some q-vector
a, let

ri (C,a)= ‖Cxi −a‖2,

and let σ(r) be a scale statistic, where r= (r1, . . . , rn). The goal is to determine C and a so as
to minimize σ(r). Maronna considers two choices for σ(r): an M-scale and an L-scale. Here
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the focus is on the L-scale

σ(r)=
h∑

i=1

r(i),

where r(1) ≤ · · · ≤ r(h), h < n, primarily because it is faster and easier to compute. Following
Maronna (2005), h is taken to be the largest integer less than or equal to (n+m−q+2)/2,
where q = m− p.

6.14.3 The SPCA Method

The spherical PCA, called method SPCA procedure was derived by Locantore et al. (1999).
Let µ be the L1 median, which is computed by the R function spat, or the R function
L1medcen. Let yi = (xi −µ)/‖xi −µ‖. The procedure consists of using the eigenvectors
b1, . . . ,bm of the covariance matrix of the yi . But the eigenvalues are in general not
consistent, in which case they are replaced by

λ j = S(b′j x1, . . . ,b′j xn)
2,

where S is any robust measure of scale. Following Maronna (2005), S is taken to be the
median absolute deviation (MAD) statistic. The R package rrcov contains the function
PcaLocantore that performs SPCA.

6.14.4 Method HRVB

Hubert et al. (2005) suggest a method that combines projection pursuit ideas with robust
scatter matrix estimation. An adaptation of this method, called method HRVB was derived by
Engelen et al. (2005) and is used here. The computational details are quite involved, and so
only a brief outline of the method is provided.

The method begins by finding the h least outlying data points. The choice for h is made by the
investigator and Hubert et al. consider choices of the form h =max{[αn], [(n+ kmax+1)/2]},
where α is some value between 0.5 and 1 and kmax is the maximum number of components
that will be computed; they use α = 0.75 and kmax = 10 and the same is done here. Next,
outlyingness is measured using a maximum standardized distance among the class of all
possible projections of the data onto a unidimensional space. Not all projections can be

considered, so for n small they focus on all directions through two points, and for

(
n
2

)
> 250

they take at random 250 projections. They then focus on the mean and covariance matrix of
the h points that have the smallest distances just computed. The next step computes fast MCD
for the projected data resulting from the previous step, which is used to compute a reweighted
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mean and covariance matrix that increases statistical efficiency. A consistency factor is used
to make the estimator unbiased at normal distributions.

6.14.5 Method OP

Method OP simply removes any outliers detected by the projection approach described in
Section 6.4.9. Then the classic PCA is applied to the data that remain and the p-dimensional
representation of the data is computed in the usual way.

Croux and Ruiz-Gazen (2005) suggest an algorithm that begins with projections based in part
on the L1 median, but it is evident that their approach differs from method OP. Method OP
attempts to eliminate outliers in a manner that takes into account the overall structure of the
data. The algorithm used by Croux and Ruiz-Gazen does not do this, but rather searches for
projections that maximize a robust measure of scatter applied to the marginal distributions of
the scores. Also, Croux, Filzmoser, and Oliveira (2007, pp. 6–7) note that the Croux and
Ruiz-Gazen (2005) and Hubert et al. (2002) projection algorithms suffer from severe
downward bias. It is unknown whether method OP suffers from the same problem.

6.14.6 Method PPCA

Method PPCA is aimed at finding principal components that maximize a robust generalized
variance. Let B be any p×m matrix having the property that for any j (1≤ j ≤ p),

m∑
k=1

b2
jk = 1

and for any j 6= `

m∑
k=1

b jkb`j = 0.

Given B, the resulting p-dimensional representation of the data is

zi = B(xi − θ), (6.30)

where θ is some measure of location. (All of the methods outlined in this section use
Eq. (6.30) and differ in how they determine B and θ .) The zi (i = 1, . . . ,n) are the scores.
(Scores based on the other robust methods in this section are computed in a similar manner.)
Let 4̂ be an estimate of some robust generalized variance based on the zi values. Here the
covariance matrix based on the median ball algorithm is used unless stated otherwise and 4̂ is
taken to be the determinant of this covariance matrix that is computed with the zi values.
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The goal is to determine the matrix B that maximizes 4̂. The method used here begins with an
initial estimate of B, say B0, based on the Hubert et al. (2005) estimator (method HVRB).
Then use the Nelder and Mead (1965) algorithm to search for the matrix B that maximizes 4̂.
(The Nelder–Mead algorithm is applied with the R function nelderv2, which improves on the
random search method used by Wilcox, 2008c.)

Regarding the estimation of θ , Wilcox (2008c) considered the (fast) MCD estimator, the L1

median, Olive (2004) estimator based on the median ball algorithm, and the mean of the data
after points flagged as outliers by the projection method are removed. Simulation results
indicate that the choice of location estimator makes little difference when using a random
search for the matrix B that maximizes the generalized variance. However, when using the
Nelder–Mead algorithm, Wilcox (2010c) found that the L1 median, which is computed by the
R function spat, performed relatively well, and so it is used here.

6.14.7 R Functions outpca, robpca, robpcaS, SPCA, Ppca, and Ppca.summary

The R function

outpca(x,cor=F,SCORES=F,ADJ=F,scree=T, xlab=“Principal Component”,
ylab=“Proportion of Variance”)

eliminates outliers via the projection method and applies the classic principal component
analysis to the remaining data. Following the convention used by R, the covariance matrix is
used by default. To use the correlation matrix, set the argument cor=T. Setting SCORES=T,
the principal component scores are returned. If the argument ADJ=T, the R function outproad
is used to check for outliers rather than the R function outpro, which is recommended if the
number of variables is greater than 9. By default, the argument scree=T, meaning that a scree
plot will be created. Another rule that is sometimes used is to retain those components for
which the proportion of variance is greater than 0.1. When the proportion is less than 0.1, it
has been suggested that the corresponding principal component rarely has much interpretive
value.

The function

robpcaS(x, SCORES=F)

provides a summary of the results based on the method derived by Hubert et al. (2005),
including a scree plot based on a robust measure of variation. A more detailed analysis is
performed by the function

robpca(x, scree=T, xlab = “Principal Component”, ylab = “Proportion of Variance”),

which returns the eigenvalues and other results discussed by Hubert et al. (2005), but these
details are not discussed here.

www.elsevierdirect.com



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

WILCOX 09-ch06-215-290-9780123869838 2011/12/6 18:29 Page 283 #69

Chapter 6 Some Multivariate Methods 283

For convenience, the R function

SPCA(x, k = 0, kmax = ncol(x), delta = 0.001, na.action = na.fail, scale = FALSE,
signflip = TRUE, trace=FALSE, . . .)

is provided for applying the spherical principal components method in Section 6.14.3. This
function merely eliminates the need to issue the command library(rrcov) when calling the R
function PcaLocantore. The argument x is assumed to be an n-by-p matrix. Information about
the other arguments can be obtained via the R command ?PcaLocantor, assuming that the R
command library(rrcov) has already been issued. The R command screeplot(SPCA(x)) would
create a screeplot and summary(SPCA(x)) would return the standard deviations, the
proportion of variance and the cumulative proportions.

The R function

Ppca(x, p = ncol(x) - 1, locfun = L1medcen, loc.val = NULL, SCORES = F, gvar.fun =
cov.mba, pr = T, SEED = T, gcov = rmba, SCALE = T, . . .)

applies the method aimed at maximizing a robust generalized variance. This particular
function requires the number of principal components to be specified via the argument p,
which defaults to p−1. The argument SCALE=T means that the marginal distributions will
be standardized based on the measure of location and scale corresponding to the argument
gcv, which defaults to the median ball algorithm.

The R function

Ppca.summary(x, MC=F, SCALE=T)

is designed to deal with the issue of how many components should be used. It calls Ppca using
all possible choices for the number of components, computes the resulting generalized
standard deviations, and reports their relative size. If access to a multi-core processor is
available, setting the argument MC=T will reduce execution time. Illustrations in the next
section deal with the issue of how many components to use based on the output from the R
function Ppca.summary.

6.14.8 Comments on Choosing the Number of Components

First focus on classic PCA. Regarding the choice for p, the number of components to use, a
rule that is sometimes used is to retain those components for which the proportion of variance
is greater than 0.1. When the proportion is less than 0.1, it has been suggested that the
corresponding principal component rarely has much interpretive value. Another way of trying
to judge how many principal components to use is by visual inspection of a scree plot, the
strategy being to determine where the “elbow” of the curve occurs. This well-known strategy
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Figure 6.11: The scree plot returned by the R function regpca, where data are multivariate
normal with all Pearson correlations equal to zero.

is illustrated with data generated from a multivariate normal distribution with all correlations
equal to 0.0 and n = 200. The output from the R function regpca is

Importance of Components:
PC1 PC2 PC3 PC4

Standard Deviation 1.113 0.963 0.959 0.914
Proportion of Variance 0.316 0.236 0.235 0.213
Cumulative Proportion 0.316 0.552 0.787 1.000

Figure 6.11 shows the resulting scree plot. The bottom (solid) line shows the the variance
associated with the principal components. The upper (dashed) line is the cumulative
proportion. Note that the lower line is nearly horizontal with no steep declines, suggesting that
all four components be used to capture the variability in the data. Also, for each component,
the proportion of variance is greater than 0.1.

The output from the function Ppca.summary differs in crucial ways from the other functions
described here. To illustrate it, multivariate normal data were generated with all correlations
equal to 0.0. The output from Ppca.summary is

[,1] [,2] [,3] [,4]
Num. of Comp. 1.0000000 2.000000 3.0000000 4.0000000
Gen.Stand.Dev 1.1735029 1.210405 1.0293564 1.0110513
Relative Size 0.9695129 1.000000 0.8504234 0.8353002

The second line indicates the (robust) generalized standard deviation given the number of
components indicated by the first line. So when using two components, the generalized
standard deviation is 1.210405. Note that the generalized standard deviations are not in
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descending order. Using two components results in the largest generalized standard deviation.
But observe that all four generalized standard deviations are approximately equal, which is
what we would expect for the situation at hand. The third line of the output is obtained by
dividing each value in the second line by the maximum generalized standard deviation. Here,
reducing the number of components from four to two does not increase the generalized
standard deviation by very much, suggesting that four or maybe three components should be
used. Also observe that there is no proportion of variance used here, in contrast to classic
PCA. In classic PCA, an issue is how many components must be included to capture a
reasonably large proportion of the variance. When using the robust generalized variance, it
seems more appropriate to first look at the relative size of the generalized standard deviations
using all of the components. If the relative size is small, reduce the number of components. In
the example, the relative size using all four components is 0.835 suggesting that perhaps all
four components should be used.

Now consider data that were generated from a multivariate normal distribution where all of
the correlations are 0.9. Now the output from regpca is

Importance of Components:
PC1 PC2 PC3 PC4

Standard Deviation 1.869 0.3444 0.3044 0.2915
Proportion of Variance 0.922 0.0313 0.0244 0.0224
Cumulative Proportion 0.922 0.9531 0.9776 1.0000

Note that the first principal component has a much larger standard deviation than the other
three principal components. The proportion of variance accounted for by PC1 is 0.922,
suggesting that it is sufficient to use the first principal component only to capture the
variability in the data. Figure 6.12 shows the scree plot.

Excluding method PPCA, the robust methods summarized in this section report results
similar to the function regpca, only a robust measure of variation, associated with each
component, is used. Scree plots can be created as well. However, when using method PPCA,
the output from the R function Ppca is interpreted in a different manner. Generally, it is
suggested that one first look at the sizes of the generalized standard deviations, relative to the
largest generalized standard deviation, starting with p = m components. If the relative size is
close to 1, use all m components. If not, consider p = m−1. If the relative size is close to 1,
use p−1 components. If not, continue in this manner.

Consider again the multivariate normal data with all correlations equal to 0, which were used
to create the scree plot in Figure 6.11. The output from Ppca.summary is

[,1] [,2] [,3] [,4]
Num. of Comp. 1.0000000 2.000000 3.0000000 4.0000000
Gen.Stand.Dev 1.1735029 1.210405 1.0293564 1.0110513
Relative Size 0.9695129 1.000000 0.8504234 0.8353002
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Figure 6.12: The scree plot for multivariate normal data with all Pearson correlations equal
to 0.9.

The second line indicates the (robust) generalized standard deviation given the number of
components indicated by the first line. So when using two components, the generalized
standard deviation is 1.210405. Note that the generalized standard deviations are not in
descending order. Using two components results in the largest generalized standard deviation.
But observe that all four generalized standard deviations are approximately equal, which is
what we would expect for the situation at hand. The third line of the output is obtained by
dividing each value in the second line by the maximum generalized standard deviation. Here,
reducing the number of components from four to two does not increase the generalized
standard deviation by very much, suggesting that four or maybe three components should be
used. Also observe that there is no proportion of variance used here, in contrast to classic
PCA. In classic PCA, an issue is how many components must be included to capture a
reasonably large proportion of the variance. Here, the relative size using all four components
is 0.835 suggesting that perhaps all four components should be used.

Consider again the data used to create the scree plot in Figure 6.12. (The data have a
multivariate normal distribution with all correlations equal to 0.9) The output from
Ppca.summary is

[,1] [,2] [,3] [,4]
Num. of Comp. 1.000000 2.0000000 3.0000000 4.00000000
Gen.Stand.Dev 2.017774 0.6632588 0.2167982 0.05615346
Relative Size 1.000000 0.3287082 0.1074442 0.02782942

As indicated, a single component results in a relatively large generalized standard deviation
suggesting that a single component suffices. The relative sizes corresponding to three and four
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components are fairly small suggesting that using three or four components be ruled out. Even
with two components the relative size is fairly small.

n Example

In an unpublished study by L. Doi, a general goal was to study predictors of reading
ability. Here, the focus is on �ve predictors: two measures of phonological awareness, a
measure of speeded naming for digits, a measure of speeded naming for letters, and a
measure of the accuracy of identifying lower case letters. Using the classic principal
component analysis based on the correlation matrix, the R function regpca returns

Importance of Components:
Comp.1 Comp.2 Comp.3 Comp.4 Comp.5

Standard Deviation 1.4342 1.0360 0.9791 0.7651 0.57036
Proportion of Variance 0.4114 0.2146 0.1917 0.1170 0.06506
Cumulative Proportion 0.4114 0.6260 0.8178 0.9349 1.00000

Note that the proportion of variance exceeds 0.1 with four components or less, which
some would take to suggest that four components be used. The R function robpcaS
returns

[,1] [,2] [,3] [,4] [,5]
Number of Comp. 1.00000 2.00000 3.00000 4.00000 5.000000
Robust Stand. Dev. 2.23900 1.26512 1.21967 0.97752 0.606995
Proportion Robust var 0.53188 0.16981 0.15783 0.10138 0.039090
Cum. Proportion 0.53188 0.70169 0.85952 0.96090 1.000000

which is somewhat similar to the results based on the classic PCA.

However, Ppca.summary returns

[,1] [,2] [,3] [,4] [,5]
Num. of Comp. 1.000000 2.0000000 3.0000000 4.0000000 5.0000000
Gen.Stand.Dev 1.712513 1.5155318 0.7229315 0.4761138 0.3112773
Relative Size 1.000000 0.8849754 0.4221466 0.2780205 0.1817664

n

The second line shows the robust generalized standard deviations based on the number of
components used. Because the relative sizes using three, four, or five components are rather
small, the results suggest that two components suffice. (In fairness, it might be argued that a
scree plot stemming from classic PCA also suggests that two components be used.)

6.15 Cluster Analysis

Cluster analysis is an exploratory data analysis tool aimed at sorting different objects into
groups in a way that the degree of association between two objects is maximal if they belong
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to the same group and minimal otherwise. There are many relevant methods that go well
beyond the scope of this book (e.g., Everitt, Landau, Leese, & Stahl, 2011). Here the goal is
merely to mention a few R functions that might be useful.

6.15.1 R Functions Kmeans, kmeans.grp, TKmeans, and TKmeans.grp

R has a built-in function for performing cluster analysis called kmeans. Here the R function

Kmeans(x,k,xout=F,outfun=out)

is provided in case it helps. The argument x is a matrix or data frame containing the data and
k indicates the number of clusters to be used. The function calls the built-in R function
kmeans, but it automatically removes any rows of data that contain missing values. The R
function kmeans uses the k-means method, which partitions the points into k groups such that
the sum of squares from points to the assigned cluster centers is minimized. If the argument
xout=T, the R function Kmeans removes any points declared outliers via the function
specified by the argument out. The R function

Kmeans.grp(x,k,y,xout=F,outfun=out)

creates k groups based on the data stored in x and sorts the data in y into groups and stores the
results in an R variable having list mode. For example, if k=2 and z=Kmeans.grp(x,k), z[[1]]
will contain the data associated with the first cluster and z[[2]] will contain the data associated
with the second cluster.

The R function

TKmeans(x,k)

applies the trimmed k means method derived by Cuesta-Albertos, Gordaliza, & Matran
(1997). It removes any vectors of observations having missing values and then uses the R
function trimkmeans in the R package trimcluster. The R function

TKmeans.grp(x,k,xout=F,outfun=out)

is like the function kmeans.grp, only it uses the R function TKmeans to determine the clusters.

6.16 Exercises

1. For the EEG data in Table 6.1, compute the MVE, MCD, OP, and the Donoho–Gasko
.2 trimmed mean for group 1.

2. Repeat the last exercise using the data for group 2.
3. For the data in Table 6.1, check for outliers among the first group using the methods in

Section 6.4. Comment on why the number of outliers found differs among the methods.
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4. Repeat the last exercise using the data for group 2.
5. Repeat the last two exercises, but now use the data in Table 6.2.
6. Suppose that for each row of an n-by-p matrix, its depth is computed relative to all n

points in the matrix. What are the possible values that the depths might be?
7. Give a general description of a situation where for n = 20, the minimum depth among

all points is 3/20.
8. The average LSAT scores (X ) for the 1973 entering classes of 15 American law schools,

and the corresponding grade point averages (Y ), are as follows.

X : 576 635 558 578 666 580 555 661 651 605 653 575 545 572 594
Y : 3.39 3.30 2.81 3.03 3.44 3.07 3.00 3.43 3.36 3.13 3.12 2.74 2.76 2.88 2.96

Use a boxplot to determine whether any of the X values are outliers. Do the same for the
Y values. Comment on whether this is convincing evidence that there are no outliers.
Check for outliers using the MVE, MCD, and projection-type methods described in
Section 6.4. Comment on the different results.

9. The MVE method of detecting outliers, described in Section 6.4.3, could be modified by
replacing the MVE estimator of location with the Winsorized mean, and replacing the
covariances with the Winsorized covariances described in Section 5.9.3. Discuss how
this would be done and its relative merits.

10. The file read.dat contains data from a reading study conducted by L. Doi. Columns 4 and
5 contain measures of digit naming speed and letter naming speed. Use both the relplot
and the MVE method to identify any outliers. Compare the results and comment on any
discrepancies.

11. For the cork boring data in Table 6.5, imagine that the goal is to compare the north, east
and south sides to the west side How might this be done with the software in
Section 6.6.1? Perform the analysis and comment on the results. (The data are stored in
the file corkall.dat; see Chapter 1.)

12. For the data in Table 6.1, compare the two groups with the method in Section 6.8.
13. For the data in Table 6.1, compare the two groups with the method in Section 6.10.
14. For the data in Table 6.1, compare the two groups with the method in Section 6.11.
15. For the data in Table 6.1, compare the two groups with the method in Section 6.12.
16. Argue that when testing Eq. (6.27), this provides a metric-free method for comparing

groups based on scatter.
17. For the data in Table 6.6, compare the groups using the method in Section 6.8.
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CHAPTER 7

One-Way and Higher Designs for
Independent Groups

This chapters describes techniques for testing hypotheses in one-way and higher designs
involving independent groups. Included are random effects models plus methods for
performing multiple comparisons. This chapter makes no attempt at covering all the designs
that are encountered in practice, but it does cover many of the more common designs that are
used.

In this chapter, only heteroscedastic methods are considered. It might be hoped that as the
number of groups increases, problems associated with homoscedastic methods, described in
Chapter 5, might be reduced. In one-way designs, the exact opposite seems to be true. For
example, even under normality with equal sample sizes but unequal variances, problems
controlling the probability of a type I error can arise. With four independent groups, each
having 50 observations, the usual analysis of variance F test of

H0 : µ1 = µ2 = µ3 = µ4

can have a type I error probability approximately equal to .09 when testing at the 0.05 level
(Wilcox, Charlin, & Thompson, 1986). With unequal sample sizes, the actual probability of a
type I error can exceed .3. Under nonnormality, control over the probability of a type I error is
even worse. Practical problems with more complicated designs have been found (e.g.,
Keselman, Keselman, & Lix, 1995).

It is sometimes suggested that one test the homoscedasticity assumption, and if an appropriate
test fails to reject, use a method that assumes equal variances among the groups. However,
published papers do not support this strategy (e.g., Hayes & Cai, 2007; Markowski &
Markowski, 1990; Moser, Stevens, & Watts, 1989; Wilcox, Charlin, & Thompson, 1986;
Zimmerman, 2004). As noted at the end of Section 5.2 when dealing with the two-sample
case, the problem is that tests of the homoscedasticity assumption may not have enough
power to detect situations where a violation of the homoscedasticity assumption creates
practical problems.

Introduction to Robust Estimation and Hypothesis Testing. DOI: 10.1016/B978-0-12-386983-8.00007-X
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One might try to salvage homoscedastic methods by arguing that if the variances are unequal,
the means are unequal as well, in which case a type I error is not a concern. However, an
inability to control the probability of a type I error often reflects an undesirable power
property, the probability of rejecting the null hypothesis is not minimized when the null
hypothesis is true. (The hypothesis testing method is biased.) This problem was already
pointed out and illustrated in Chapter 5 where shifting one group by a half standard deviation
results in a situation where the probability of rejecting is less compared with the situation
where H0 is true. Here, it is merely noted that this problem persists when comparing more
than two groups (e.g., Wilcox, 1996a).

Another argument in support of the F-test is that it is reasonably good at controlling the
probability of a type I error when distributions are identical. (Tan, 1982, reviews the relevant
literature.) That is, it provides a test of the hypothesis that J groups have identical
distributions. If the F-test is significant, a reasonable argument is that the means differ.
However, if the goal is to derive a test that is exclusively sensitive to some measure of
location, the F-test is unsatisfactory. Even if this problem can be ignored, concerns about low
power, due to the low efficiency of the sample mean when distributions have heavy tails,
remains a concern.

7.1 Trimmed Means and a One-Way Design

From a technical point of view, it is a simple matter to extend the methods in Chapter 5 to
situations where the goal is to compare the trimmed means of more than two groups: simply
select a heteroscedastic method for means and then proceed along the lines used to derive the
Yuen–Welch test. In essence, replace the sample means by trimmed means, replace estimates
of the standard errors with appropriate estimates based on the amount of trimming used, and
adjust the degrees of freedom based in part on the number of observations left after trimming.
For a one-way design, however, there are many heteroscedastic methods for comparing
means, so it is not immediately obvious which to use. Two possibilities are described here,
both of which have been examined in simulation studies and found to give relatively good
control over the probability of a type I error. Other methods have been considered by Lix and
Keselman (1998) as well as Luh and Guo (1999). For a method based on trimmed means that
assumes equal variances, see Lee and Fung (1985). For the special case where the goal is to
compare means, Krishnamoorthy, Lu, and Mathew (2007) review approaches for handling
unequal variances, which are known to be unsatisfactory, and they suggest using instead a
parametric bootstrap method that assumes normality. Cribbie, Fiksenbaum, Keselman, and
Wilcox (in press) compared this parametric bootstrap method to several other techniques and
found it to be unsatisfactory. The actual type I error probability, when testing at the 0.05 level,
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can exceed .25. A method that performed reasonably well was the Welch-type method for
comparing trimmed means, which is described in the next section.

7.1.1 A Welch-Type Procedure and a Robust Measure of Effect Size

The goal is to test
H0 : µt1 = · · · = µt J , (7.1)

where µt j , j = 1, . . . , J , are the trimmed means corresponding to J independent groups.
Table 7.1 describes a method for testing this hypothesis that reduces to Welch’s (1951)
adjusted degrees of freedom method for means when there is no trimming.

Table 7.1: Computations for Comparing Trimmed Means.

The goal is to test

H0 : µt1 = · · · = µt J .

For the jth group, let

d j =
(n j −1)s2

w j

h j × (h j −1)
,

where h j is the effective sample size of the jth group (the number of observations left after trimming) and
s2
w j is the Winsorized variance. To test H0, compute

w j =
1

d j

U =
∑

w j

X̃ =
1

U

∑
w j X̄ t j

A =
1

J −1

∑
w j (X̄ t j − X̃)2

B =
2(J −2)

J 2−1

∑(
1−

w j

U

)2

h j −1

Ft =
A

1+ B
.

When the null hypothesis is true, Ft has, approximately, an F distribution with degrees of freedom

ν1 = J −1

ν2 =

[
3

J 2−1

∑ (1−w j/U )2

h j −1

]−1

.
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A Robust, Heteroscedastic Measure of Effect Size

The robust explanatory measure of effect size, described in Section 5.3.4, is readily extended
to more than two groups. For simplicity, first consider the situation where means are
compared. Again we define the measure of effect size based on a situation where equal
sample sizes are used with probability one, with the random sample being denoted by Yi j

(i = 1, . . . ,n; j = 1, . . . , J ). And then we use an appropriate estimation procedure when the
sample sizes are not equal.

For equal sample sizes, let σ 2(Y ) be the estimand corresponding to

σ̂ 2(Y )=
1

N −1

J∑
j=1

n∑
i=1

(Yi j − Ȳ )2,

where Ȳ =
∑∑

Yi j/N and N = n J is the total sample size. Adopting a regression
perspective, and given that an observation is randomly sampled from the j th group, the
predicted value is µj . Let

σ 2(Ŷ )=
1

J −1

J∑
j=1

(µ j − µ̄)
2,

where µ̄=
∑
µ j/J is the grand mean. The explanatory measure of effect size is

ξ =

√
σ 2(Ŷ )

σ 2(Y )
.

Letting

σ̂ 2(Ŷ )=
1

J −1

J∑
j=1

(Ȳ j − Ȳ )2,

an estimate of ξ is

ξ̂ =

√
σ̂ 2(Ŷ )

σ̂ 2(Y )
.

If the mean and variance are replaced by a trimmed mean and Winsorized variance (scaled to
estimate the variance under normality), the resulting estimate of ξ̂ can exceed 1 when there
are J > 2 groups and the amount of trimming is greater than 0.

For unequal sample sizes, let m denote the smallest sample size among the J groups.
Randomly sample (without replacement) m observations from each of the groups for which
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m < n j . Based on the resulting sample sizes of m observations from each group, compute ξ̂ 2

as just described. Repeat this process K times yielding a series of estimates for ξ 2, which are

then averaged to get a final estimate, which we label ξ̂ 2. The estimate of ξ is taken to be
√
ξ̂ 2.

7.1.2 R Functions t1way, t1wayv2, esmcp, fac2list, and t1wayF

The R function

t1way(x,tr=0.2,grp=NA)

performs the calculations in Table 7.1. The data can be stored in any R variable having list
mode, or it can be stored in a matrix, or a data frame. If x is a matrix or data frame, it is
assumed that the columns correspond to groups. So the data for group 1 are stored in column
one, and so on. The R function

t1wayv2(x,tr=0.2,grp=NA)

is the same as t1way, only the measure of effect size ξ is reported as well. The R function

esmcp(x,tr=0.2,grp=NA)

computes the robust explanatory effect size ξ for all pairs of groups.

Although familiarity with R is assumed, a brief description of list mode is provided for readers
who are not be familiar with it. List mode is a convenient way of storing data corresponding
to several groups under one variable name. For example, suppose two groups are to be
compared, and the data for the two groups are stored in the R vectors x and y. The command

w=list()

creates a variable, called w, that has list mode. To get the first group of data (stored in x) into
w, enter the command

w[[1]]=x.

Notice the use of the double brackets. In particular, w[[1]] is a vector of observations
corresponding to the first group of subjects. This is one way R refers to a subset of data stored
in list mode. To get the second group of data stored in w, type

w[[2]]=y.

More generally, in terms of a one-way design, w[[j]] would be where the data for the j th
group are stored. (For more details about list mode, see Becker, Chambers, & Wilks, 1988, or
consult the manual built into R.)

The second argument in t1way, tr, indicates the amount of trimming, which defaults to 0.2
(20% trimming). Thus, the command t1way(w) results in a test of the hypothesis that
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the 20% trimmed means are equal. To compare 10% trimmed means, use the command
t1way(w,tr=0.1).

The third argument in t1way, grp, can be used to specify some subset of the populations to be
compared. If not specified, all of the groups are used. If, for example, there are four groups,
but the goal is to compare groups 1, 2, and 4, ignoring group 3, the command
t1way(w,grp=c(1,2,4)) will test the hypothesis H0: µt1 = µt2 = µt4 using 20% trimmed
means. The command t1way(w,0.1,grp=c(1,4)) would compare the 10% trimmed means of
groups 1 and 4. Being able to compare some groups, while ignoring others, is useful when
using a step-down multiple comparison procedure. (See Hochberg & Tamhane, 1987; or
Wilcox, 1996a, 2003d, for a description of step-down methods plus comments on their
relative merits.)

n Example

Suppose that for three independent groups, the observations are

Group 1 1,2,3,4,5,6,7,8,9,10
Group 2 2,3,4,5,6,7,8,9,10,11
Group 3 5,6,7,8,9,10,11,12,13,14.

If the data are stored in the R variable w, in list mode, the command t1way(w,tr=0)
tests the hypothesis of equal means. The function returns

$TEST:
[1] 4.558442

$nu1:
[1] 2

$nu2:
[1] 18

$siglevel:
[1] 0.02502042

In particular, Ft = 4.56 with a p-value of .025. The command t1way(w,tr=0,c(1,3))
compares the means of groups one and three and reports a p-value of .008. The
command t1way(w,grp=c(1,3)) compares the 20% trimmed means of groups 1 and 3
and reports a p-value of .039.

n

Note that the third group has the largest sample mean, which is equal to 9.5. Increasing the
largest observation in the third group to 40, the sample mean increases to 12.1 suggesting that
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there is now more evidence that the groups differ, but the p-value increases to .17. The reason
is that the standard error of the sample mean also increases.

Data Management

It is common to have data stored in a matrix or data frame where one of the columns contains
the outcome variable of interest and another column indicates the level (group identification)
of the factor being studied. For example, data dealing with plasma retinol is available from a
website maintained by Carnegie Mellon University; it can be downloaded from

http://lib.stat.cmu.edu/datasets/Plasma_Retinol.

For illustrative purposes, it is assumed that the data have been stored in the R variable plasma
as a data frame. The variable names are:

1 AGE: Age (years)
2 SEX: Sex (1=Male, 2=Female).
3 SMOKSTAT: Smoking status (1=Never, 2=Former, 3=Current Smoker)
4 QUETELET: Quetelet (weight/(heightˆ2))
5 VITUSE: Vitamin Use (1=Yes, fairly often, 2=Yes, not often, 3=No)
6 CALORIES: Number of calories consumed per day.
7 FAT: Grams of fat consumed per day.
8 FIBER: Grams of fiber consumed per day.
9 ALCOHOL: Number of alcoholic drinks consumed per week.
10 CHOLESTEROL: Cholesterol consumed (mg per day).
11 BETADIET: Dietary beta-carotene consumed (mcg per day).
12 RETDIET: Dietary retinol consumed (mcg per day)
13 BETAPLASMA: Plasma beta-carotene (ng/ml)
14 RETPLASMA: Plasma Retinol (ng/ml)

The first few lines of the data set look like this:

64 2 2 21.48380 1 1298.8 57.0 6.3 0.0 170.3 1945 890 200 915
76 2 1 23.87631 1 1032.5 50.1 15.8 0.0 75.8 2653 451 124 727
38 2 2 20.01080 2 2372.3 83.6 19.1 14.1 257.9 6321 660 328 721
40 2 2 25.14062 3 2449.5 97.5 26.5 0.5 332.6 1061 864 153 615

Now, imagine that the goal is to compare the three groups based on smoking status, which is
indicated in column 3, in terms of of plasma beta-carotene, which is stored in column 13. To
use the R function t1way, it is necessary to sort the data in column 13 into three groups based
on the values stored in column 3. This can be done with R function

fac2list(x,g),

where the argument x is an R variable, usually some column of a matrix or column of a data
frame, containing the data to be analyzed (the dependent variable) and g is a column of data
indicating the group to which a corresponding value, stored in x, belongs. (When working
with a data frame, this latter column of data can be a factor variable.) The output from fac2list
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is an R variable having list mode. If g contains numeric data, the groups are put in ascending
order based on the values in g. If g contains character data, then the data are sorted into
groups in alphabetical order.

n Example

For the plasma retinol data, imagine the goal is to compare the trimmed means
corresponding to the three smoking-status groups. The outcome measure of interest is
plasma beta-carotene. The groups can be compared using the R commands

z=fac2list(plasma[,13],plasma[,3])
t1way(z)

The �rst command sorts the data stored in plasma[,13] into groups based on the
values stored in plasma[,3], and it stores the data in the R variable z having list mode.
The data stored in plasma[,3] has one of three values: 1, 2, and 3. So z[[1]] contains
the data for the �rst group, z[[2]] contains the data for second, and z[[3]] the data for
the third. If instead plasma[,3] contained one of three character strings, say “N”, “Q”,
and “S”, the data in z would be sorted alphabetically. So now z[[1]] would contain
plasma retinol measures for participants designated by “N”, z[[2]] would contain
plasma retinol measures for participants designated by “Q”, and z[[3]] would contain
plasma retinol measures for participants designated by “S”.

n

The R function

t1wayF(x,fac,tr=0.2,nboot=100,SEED=T)

is like the R function t1way, only x is assumed to be a column of data and fac is a factor
variable. That is, this function eliminates the need to use the function fac2list.

n Example

For the last example, the analysis could be done with the single command

t1wayF(plasma[,13],plasma[,3]).
n

7.1.3 A Generalization of Box’s Method

Again let h j be the effective sample size associated with the j th group. Motivated by results
in Box (1954) and Rubin (1983), Lix and Keselman (1998) considered testing (7.1), the
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hypothesis of equal trimmed means, with

Fb =

∑
h j (X̄ t j − X̄ t)

2∑
1− (h j/H)S2

j

,

where H =
∑

h j , X̄ t =
∑

h j X̄ t j/H and

S2
j =

(n j −1)s2
w j

h j −1
.

When the null hypothesis is true, Fb has, approximately, an F distribution with

ν̂1 =

[∑
(1− f j )S2

j

]2

(∑
S2

j f j

)2
+
∑J

j=1 S4
j (1−2 f j )

and

ν̂2 =

[∑J
j=1(1− f j )S2

j

]2

∑J
j=1 S4

j (1− f j )2/(h j −1)

degrees of freedom, where f j = h j/H . Currently, it seems that both Ft and Fb give similar
protection against type I errors, with Fb being perhaps slightly better. When there are two
groups (J = 2), these two methods give exactly the same results. In some situations, Fb has a
type I error probability that exceeds α and is higher than the type I error probability associated
with Ft , but there are situations where the reverse is true. Among the situations considered by
Lix and Keselman, Fb is less likely to result in a type I error probability exceeding .075 when
testing at the .05 level. However, Fb generally has less power.

7.1.4 R Function box1way

The R function

box1way(x,tr=0.2,grp=NA),

written for this book, performs the calculations described in the previous subsection. It is used
in exactly the same manner as t1way. Thus, the command box1way(w,.1,c(1,3)) will test the
hypothesis that the 10% trimmed means, associated with the first and third groups, are equal.
When comparing only two groups, the R functions box1way, t1way, and yuen all give
identical results.
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n Example

Suppose the data in Section 7.1.2, used to illustrate the function t1way, are stored in w.
Then the command box1way(w) tests the hypothesis of equal 20% trimmed means, and
the p-value is reported to be .077. Using t1way, the p-value is .025.

n

7.1.5 Comparing Medians

For the special case where the goal is to test the hypothesis of equal medians, the Yuen–Welch
and Box methods for trimmed means are not recommended; an alternative estimate of the
standard error is required. Here, the McKean–Schrader estimate of the standard error will be
used in conjunction with a Welch-type test. It is stressed, however, that all known estimates of
the standard error of the sample median can be highly inaccurate when tied values occur, even
with large sample sizes. Consequently, the method in this section is not recommended when
there are tied values. (Use instead the percentile bootstrap method in Section 5.4.2. The R
function medpb, described in Section 7.4.8, is designed to compare medians in a manner that
controls the probability of making one or more type I errors.)

Let M j be the sample median for the j th group and let S2
j be the McKean–Schrader estimate

of the squared standard error of M j ( j = 1, . . . , J ). Let

w j =
1

S2
j

,

U =
∑

w j ,

M̃ =
1

U

∑
w j M j ,

A =
1

J −1

∑
w j (M j − M̃)2,

B =
2(J −2)

J 2−1

∑ (1− w j

U )
2

n j −1
,

Fm =
A

1+ B
. (7.2)

The hypothesis of equal population medians is rejected if Fm ≥ f , the 1−α quantile of an F
distribution with ν1 = J −1 and ν2 =∞ degrees of freedom.
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7.1.6 R Function med1way

The R function

med1way(x,grp=NA)

test the hypothesis of equal population medians. The argument x can be any variable having
matrix mode or list mode. If a matrix, columns correspond to groups. The argument grp can
be used to analyze a subset of the groups if desired. By default, all J groups are compared. So
the command med1way(disdat,grp=c(1,3,5)) will compare groups 1, 3, and 5 using the data
stored in the variable disdat. The function returns the value of the test statistic, Fm , and the
p-value.

7.1.7 A Bootstrap-t method

Lix and Keselman (1998) found that two other methods for comparing trimmed means
perform relatively well in terms of controlling the probability of a type I error, but with small
sample sizes and with trimming less than or equal to 20%, none of the methods they
considered, including the methods described in this chapter, always guaranteed that the actual
probability of a type I error would be less than .075 when testing at the .05 level. In some
situations, the probability of a type I error exceeds .08. It might be argued that this is
satisfactory in some situations, but they did not consider situations where distributions have
unequal skewnesses; among the nonnormal distributions in their study, they only considered
situations where groups have unequal variances. From Chapter 5, if distributions have
unequal skewnesses, the expectation is that control over the probability of a type I error will
be worse. Again, one might try to salvage the situation by arguing that if groups have unequal
variances or skewnesses, surely the trimmed means differ, so the probability of a type I error
is not an issue. But as noted in Chapter 5, problems with controlling type I error probabilities
often reflect an unsatisfactory characteristic: power can go down as the difference between the
trimmed means increases, although eventually it will go up. Put another way, the probability
of rejecting is not always minimized when the null hypothesis is true.

Chapter 5 described bootstrap methods for dealing with this problem. Provided the amount of
trimming is relatively low (say less than 20%), it currently seems that a bootstrap-t method is
relatively effective based on the criterion of controlling the probability of a type I error. In the
present context, a bootstrap-t method refers to any bootstrap technique that is based in part on
a test statistic that is a function of estimates of the standard errors of the location estimators
being used. With sufficiently large sample sizes, a bootstrap method is not required, but it
remains unclear how large the sample sizes must be. This subsection notes that a simple
extension of the two-sample bootstrap-t method can be applied to the problem at hand. The
strategy is to use the available data to estimate an appropriate critical value when using the
Yuen–Welch method to compare trimmed means. Perhaps there is some practical advantage to

www.elsevierdirect.com



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or inprint. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

WILCOX Ch07-9780123869838 2011/10/22 16:53 Page 302 #12

302 Introduction to Robust Estimation and Hypothesis Testing

replacing the Welch-type method with some other procedure, but this remains to be seen.
(In the two-sample case, with the amount of trimming less than 20%, a generalization of the
Yuen–Welch test seems to have merit; see Othman, Keselman, Wilcox, Fradette, &
Padmanabhan, 2002.)

As was done in Section 5.3.2, the method begins by obtaining a bootstrap sample from each
of the J groups: X∗1 j , . . . , X∗n j j . Next, set C∗i j = X∗i j − X̄ t j , i = 1, . . . ,n j . Then C∗1 j , . . . ,C

∗

n j j
represents a sample from a distribution that has a trimmed mean of zero, so the hypothesis of
equal trimmed means among these J distributions is true. Let F∗t be the value of Ft

(described in Table 7.1), when applied to the C∗i j values. Repeat this process B times, each
time obtaining bootstrap samples and computing Ft using the C∗i j values that result. Label the
resulting test statistics F∗t1, . . . , F∗t B . Each time this process is applied, the null hypothesis is
true, by construction, so the values F∗t1, . . . , F∗t B provide an estimate of an appropriate critical
value. Letting F∗t (1) ≤ · · · ≤ F∗t (B) be the F∗t1, . . . , F∗t B values written in ascending order, an
estimate of the α critical value is F∗t (m), where u = (1−α)B, rounded to the nearest integer.
That is, reject the null hypothesis of equal trimmed means if Ft , computed as described in
Table 7.1, is greater than or equal to F∗t (u).

7.1.8 R Functions t1waybt and btrim

The R function

t1waybt(x,tr=0.2,alpha=0.05,grp=NA,nboot=599).

tests the hypothesis of equal trimmed means using the bootstrap-t method. As with t1way and
box1way, the argument x can be any R variable that is a matrix or has list mode. If
unspecified, the amount of trimming defaults to tr=0.2, and the argument alpha,
corresponding to α, defaults to 0.05. Again the argument grp can be used to test the
hypothesis of equal trimmed means for some subgroup of interest. If unspecified, all J groups
are used. The default value for B is nboot=599 which appears to give good results, in terms
of controlling the probability of a type I error, when α = 0.05 and n j ≥ 10, j = 1, . . . , J .
Little is known about how the method performs when α < 0.05. Cribbie et al. (in press) found
that with 20% trimming, a parametric bootstrap technique performs a bit better than the
method in Section 7.1.1. Limited checks indicate that the bootstrap-t method used here is
better than the parametric bootstrap method in terms of avoiding type I error probabilities
larger than the nominal level. But extensive comparisons have not been made.

n Example

Again consider the data in Section 7.1.2. Assuming the data are stored in the variable w,
the command t1waybt(w) reports that the 0.05 critical value is 4.97. The value of the
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test statistic is 2.87, which is the same value reported by the function t1way. The 0.05
critical value used by t1way is 4.1. That is, the bootstrap-t method estimates that t1way
is using a critical value that is too small.

n

To add perspective, suppose the data in Section 7.1.2 are shifted so that the trimmed mean for
each group is zero. This yields

Group 1 −4.5 −3.5 −2.5 −1.5 −0.5 0.5 1.5 2.5 3.5 4.5
Group 2 −4.5 −3.5 −2.5 −1.5 −0.5 0.5 1.5 2.5 3.5 4.5
Group 3 −4.5 −3.5 −2.5 −1.5 −0.5 0.5 1.5 2.5 3.5 4.5

Now suppose that these values represent the actual distributions associated with the three
groups, each value within a group having the same probability of occurring. This is the
process used by the bootstrap method. In group 1, for example, there are 10 possible values,
every value occurs with equal probability, so the first value, -4.5, occurs with probability .1,
the second value, -3.5, also occurs with probability .1, and so on. As is evident, all three
distributions happen to be identical, but in general this will not be the case. By construction,
each of the three distributions has a population trimmed mean equal to zero. Consequently,
when Ft is computed using these observations, the probability of rejecting should be α. But if
n1 = 10 observations are randomly sampled from the first group, n2 = 10 are randomly
sampled from the second, and n3 = 10 from the third, the actual probability of a type I error is
.073 when α = 0.05, based on a simulation with 1000 replications. Even without running a
simulation, the expectation is that the type I error probability will be higher than .05. The
reason is that the bootstrap-t method, when applied to the data in Section 7.1.2, simply
performs simulations on the distributions being considered here, and it estimates that the .05
critical value is 4.97. But Ft uses a critical value of 4.1 (the 0.95 quantile of an F distribution
with 2 and 10 degrees of freedom), which is too small. Put another way, if the bootstrap-t
method estimates that the critical value is higher than the critical value used by Ft , in essence,
a discrete distribution has been found for which Ft can be expected to have a type I error
probability greater than the nominal level. For the situation at hand, the bootstrap-t estimates
the critical value to be 4.97, which corresponds to the 0.968 quantile of an F distribution with
2 and 10 degrees of freedom. Moreover, the discrete distributions being used are estimates of
the distributions under study, only shifted so that the null hypothesis of equal trimmed means
is true.

The R function

btrim(x,tr=0.2,grp=NA,g=NULL,dp=NULL,nboot=599).
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is an updated version of t1waybt. In addition to the results reported by t1waybt, the function
btrim reports the explanatory measure of effect size. And it has the ability to sort data into
groups based on group identification values stored in column g of x, assuming x is a matrix or
a data frame. The outcome (dependent variable) of interest is stored in the column indicated
by the argument dp. In effect, this eliminates the need to call the function fac2list. For
example, btrim(plasma,g=2,dp=4) would sort the data in column 4 of the R variable plasma
into groups based on the values stored in column 2.

7.1.9 Percentile Bootstrap Methods

Chapter 5 noted that when comparing trimmed means, and when the amount of trimming is
small, a bootstrap-t method generally performs better than a percentile bootstrap method, in
terms of controlling the probability of a type I error, but with about 20% trimming or more, a
percentile bootstrap method performs better than a bootstrap-t in simulations. When
comparing multiple independent groups, all indications are that this continues to be the case.
For a percentile bootstrap method that can be used to compare trimmed means, see
Section 7.6. For a method designed specifically for a 20% trimmed mean, see Section 7.4.8.

7.2 Two-Way Designs and Trimmed Means

This section describes methods for testing hypotheses in a two-way design when working
with trimmed means. It is assumed that the reader is familiar with the basic features and
terminology of two-way designs, which are covered in numerous books on statistics. To
briefly review, the basic goal is to compare groups, taking into account two main factors plus
interactions. For example, Steele and Aronson (1995) conducted a study on how stereotype
might affect performance on an aptitude test. They compared test scores of Black and White
subjects taking into account how the purpose of the test was presented. The test was presented
either as a diagnostic of intellectual ability, as a laboratory tool for studying problem solving,
or as both a problem-solving tool and a challenge. This is a 2-by-3 design. The first factor,
race, has two levels, whereas the second factor, type of presentation, has three. As is
commonly done, the first factor is generically called factor A, and the second is called
factor B. The term J-by-K ANOVA refers to a two-way design with factor A having J levels
and factor B having K.

The groups are assumed to be arranged as shown in Table 7.2. Thus, µt jk is the population
trimmed mean associated with the j th level of the first factor and the kth level of the second.
Extending standard notation in an obvious way, the grand trimmed mean is the average of all
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Table 7.2: Trimmed Means
Corresponding to a J-by-K Design.

Factor B
µt11 µt12 · · · µt1K µt1.

Factor µ21 µ22 · · · µ2K µ2.

A ...
... · · ·

...
...

µt J1 µt J2 · · · µt J K µt J.

µt.1 µt.2 · · · µt.K

JK trimmed means. In symbols, the grand trimmed mean is

µ̄t =
1

JK

J∑
j=1

K∑
k=1

µt jk .

The main effects for factor A are defined to be

α1 = µt1.− µ̄t , . . . , αJ = µt J.− µ̄t ,

where

µt j. =
1

K

K∑
k=1

µt jk .

The hypothesis of no main effects for factor A is

H0 : µt1. = · · · = µt J..

When the null hypothesis is true,

αt1 = · · · = αt J = 0,

so another common way of writing the null hypothesis is

H0 :
∑

α2
j = 0.

Similarly, the levels of factor B can be compared, ignoring factor A, by testing

H0 : µt.1 = µt.2 = · · · = µt.K ,

where

µt.k =
1

J

J∑
j=1

µt jk .
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The effect size associated with the kth group is written as

βk = µt.k− µ̄t ,

and often the null hypothesis is written as

H0 :
∑

β2
k = 0.

The computational steps associated with a two-way design, when testing the hypotheses just
listed, are much easier to describe in terms of matrices. Here, a generalization of results in
Johansen (1980) is used. The implementation of the method is based on a generalization of
the results in Algina and Olejnik (1984).

There are p = JK independent groups with trimmed means µt = (µt1, . . . ,µt J K )
′. The

general strategy for testing main effects and interactions is to test

H0 : Cµt = 0, (7.3)

where C, which is constructed in a manner to be described, is a k-by-p contrast matrix of rank
k, chosen to reflect the hypothesis of interest. For convenience, it is assumed that the sample
trimmed means are are arranged in a 1×9 matrix

X′ = (X̄ t11 . . . X̄ t1K . . . , X̄ t K 1 . . . X̄ t1K ),

where X′ is the transpose of X.

The construction of the contrast matrix C is accomplished as follows. For any integer m ≥ 2,
let Cm be an (m−1)-by-m matrix having the form

1 −1 0 0 . . . 0
0 1 −1 0 . . . 0

. . .

0 0 . . . 0 1 −1

 .
That is, ci i = 1 and ci,i+1 =−1, i = 1, . . . ,m−1. Let j′m be a 1-by-m vector of 1s. For
example, j′3 = (1,1,1). The matrix C for testing main effects and interactions can be
constructed with what is called the (right) Kronecker product of matrices, applied to
appropriate choices of Cm and jm . If A is any r-by-s matrix, and B is any t-by-u matrix, the
Kronecker product of A and B, written as A⊗B, isa11 B a12 B . . . a1s B

...

ar1 B ar2 B . . . ars B

 .
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Table 7.3: How to Construct
the Contrast Matrix, C, for a
Two-Way Design.

Effect C

A CJ ⊗ j′K
B j′J ⊗CK

A × B CJ ⊗CK

Table 7.3 shows how to construct the contrast matrix C for the main effects and interactions in
a two-way design. For example, when testing for main effects for factor A, use C= CJ ⊗ j′K .

Remembering that p = JK, the total number of groups, let V be a p-by-p diagonal matrix with

v j j =
(n j −1)s2

w j

h j (h j −1)
,

j = 1, . . . , p. That is, v j j is Yuen’s estimate of the squared standard error of the sample
trimmed mean corresponding to the j th group. The test statistic is

Q = X̄′C′(CVC′)−1CX̄. (7.4)

Let

R= VC′(CVC′)−1C,

and

A =
p∑

j=1

r2
j j

h j −1
,

where r j j is the j th diagonal element of R. Asymptotically, a critical value for Q is c, the
1−α quantile of a chi-square distribution with k degrees of freedom. However, for small
sample sizes, an adjusted critical value is needed, which is given by

cad = c+
c

2k

[
A

(
1+

3c

k+2

)]
.

If Q ≥ cad, reject H0.
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7.2.1 R Functions t2way

The R function

t2way(J,K,x,grp=c(1:p),tr=0.2,alpha=0.05),

performs the tests on trimmed means described in the previous section, where J and K denote
the number of levels associated with factors A and B. When the data are stored in list mode,
the first K groups are assumed to be the data for the first level of factor A, the next K groups
are assumed to be data for the second level of factor A, and so on. In R notation, x[[1]] is
assumed to contain the data for level 1 of factors A and B, x[[2]] is assumed to contain the
data for level 1 of factor A and level 2 of factor B, and so forth. If, for example, a 2-by-4
design is being used, the data are stored as follows:

Factor B

Factor x[[1]] x[[2]] x[[3]] x[[4]]

A x[[5]] x[[6]] x[[7]] x[[8]]

For instance, x[[5]] contains the data for the second level of factor A and the first level of
factor B.

If the data are not stored in the assumed order, grp can be used to correct this problem.
Suppose, for example, the data are stored as follows:

Factor B

Factor x[[2]] x[[3]] x[[5]] x[[8]]

A x[[4]] x[[1]] x[[6]] x[[7]]

That is, the data for level 1 of factors A and B are stored in the R variable x[[2]], the data for
level 1 of A and level 2 of B is stored in x[[3]], and so forth. To use t2way, first enter the R
command

grp<-c(2,3,5,8,4,1,6,7).

Then the command t2way(2,4,x,grp=grp) tells the function how the data are ordered. In the
example, the first value stored in grp is 2, indicating that x[[2]] contains the data for level 1 of
both factors A and B, the next value is 3, indicating that x[[3]] contains the data for level 1 of
A and level 2 of B, while fifth value is 4, meaning that x[[4]] contains the data for level 2 of
factor A and level 1 of B. As usual, tr indicates the amount of trimming, which defaults to 0.2,
and alpha is α, which defaults to 0.05. The function returns the test statistic for factor A, Va ,
in the variable t2way$test.A, and the significance level is returned in t2way$sig.A. Similarly,
the test statistics for factor B, Vb, and interaction, Vab, are stored in t2way$test.B and
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t2way$test.AB, with the corresponding significance levels stored in t2way$sig.B and
t2way$sig.AB.

As a more general example, the command

t2way(2,3,z,tr=0.1,grp=c(1,3,4,2,5,6),alpha=0.1)

would perform the tests for no main effects and no interactions for a 2-by-3 design for the
data stored in the R variable z, assuming the data for level 1 of factors A and B are stored in
z[[1]], the data for level 1 of A and level 2 of B are stored in z[[3]], and so on. The analysis
would be based on 10% trimmed means and α = 0.1.

Note that the general form for t2way contains an argument p. It is used by t2way to check
whether the total number of groups being passed to the function is equal to JK. If JK is not
equal to the number of groups in x, the function prints a warning message. If, however, you
want to perform an analysis using some subset of the groups stored in x, this can be done
simply by ignoring the warning message. For example, suppose x contains data for 10 groups,
but you want to use groups 3, 5, 1, and 9 in a 2-by-2 design. That is, groups 3 and 5
correspond to level 1 of the first factor and levels 1 and 2 of the second. The command

t2way(2,2,x,grp=c(3,5,1,9))

accomplishes this goal. Note that a value for p is not passed to the function. The only reason p
is included in the list of arguments is to satisfy certain requirements of R. The details are not
important here and therefore not discussed.

n Example

Suppose participants are randomly assigned to one of two groups. The �rst group
watches a violent �lm, and the other watches a nonviolent �lm. Afterwards, suppose
aggressive affect is measured, and it is desired to compare both groups, taking gender
into account as well. Some hypothetical data are shown in Table 7.4 to illustrate how
t2way is used.

Suppose the data are stored in the R variable �lm, having list mode. In particular,
assume �lm[[1]] contains the values for males watching a violent �lm (the values 8, 7,

Table 7.4: Hypothetical Data on the Effect of Watching a Violent Film.

Film

Violent Nonviolent

Male 8, 7, 5, 6, 10, 14, 2, 3, 16 2, 4, 6, 7, 11, 12, 12, 3, 4
Female 5, 6, 8, 2, 3, 4, 5, 2 12, 40, 23, 2, 2, 2, 2, 4, 8, 10
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5, 6, 10, 14, 2, 3, and 16). The data for males watching a nonviolent �lm are stored in
�lm[[2]], the data for females watching a violent �lm are stored in �lm[[3]], and the
data for females watching a nonviolent �lm are stored in �lm[[4]]. Then the command
t2way(2,2,�lm) would perform the appropriate tests for main effects and interactions
using 20% trimmed means. If instead the data for males watching a violent �lm are
stored in �lm[[2]], and the data for males watching a nonviolent �lm are stored in
�lm[[1]], use the command t2way(2,2,�lm,grp=c(2,1,3,4)) to compare 20% means,
while t2way(2,2,�lm,tr=0,grp=c(2,1,3,4)) compares means instead.

n

7.2.2 Comparing Medians

For the special case where the goal is to compare medians, the method in Section 7.2.1 is not
recommended. One way to proceed is to test global hypotheses as described here. (Another
approach is to use the multiple comparison procedure for medians described in Section 7.4.7,
which has the advantage of handling tied values in an effective manner.) Let M jk be the
sample median for the j th level of factor A and the kth level of B, and let n jk and S2

jk be the

corresponding sample size and estimate of the squared standard error of M jk . Here S2
jk is the

McKean–Schrader estimate. To perform hypotheses dealing with main effects, compute

R j =

K∑
k=1

M jk, Wk =

J∑
j=1

M jk,

d jk = S2
jk,

ν̂ j =

(∑
k d jk

)2

∑
k d2

jk/(n jk−1)
, ω̂k =

(∑
j d jk

)2

∑
j d2

jk/(n jk−1)

r j =
1∑
k d jk

, wk =
1∑
j d jk

rs =

J∑
j=1

r j , ws =

K∑
k=1

wk,

R̂ =

∑
j r j R j

rs
, Ŵ =

∑
k wk Wk

ws

Ba =

J∑
j=1

1

ν̂ j

(
1−

r j∑
r j

)2

, Bb =

K∑
k=1

1

ω̂k

(
1−

wk∑
wk

)2

Va =

∑
j r j (R j − R̂)2

(J −1)
(

1+ 2(J−2)Ba
J 2−1

) , Vb =

∑
k wk(Wk− Ŵ )2

(K −1)
(

1+ 2(K−2)Bb
K 2−1

) .
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The degrees of freedom for Factor A are ν1 = J −1 and ν2 =∞. For Factor B, the degrees of
freedom are ν1 = K −1 and ν2 =∞. The hypothesis of no main effect for factor A is rejected
if Va ≥ f1−α, the 1−α quantile of an F distribution with the degrees of freedom for factor A.
Similarly, reject for factor B if Vb ≥ f1−α, with the degrees of freedom for factor B.

A heteroscedastic test of the hypothesis of no interactions can be performed as follows. Again
let d jk = S2

jk be the McKean–Schrader estimate of the squared standard error of M jk . Let

D jk =
1

d jk

D.k =

J∑
j=1

D jk, D j. =

K∑
k=1

D jk

D.. =

J∑
j=1

K∑
k=1

D jk

M̃ jk =

J∑
`=1

D`k M`k

D.k
+

K∑
m=1

D jm M jm

D j.
−

J∑
`=1

K∑
m=1

D`m M`m

D..

.

The test statistic is

Vab =

J∑
j=1

K∑
k=1

D jk(M jk− M̃ jk)
2.

Let c be the 1−α quantile of a chi-square distribution with ν = (J −1)(K −1) degrees of
freedom. Reject the null hypothesis if Vab ≥ c.

7.2.3 R Function med2way

The computations for comparing medians, just described, are performed by the R function

med2way(J,K,x,alpha=0.05).

7.3 Three-Way Designs and Trimmed Means

This section extends the hypothesis testing technique in Section 7.2, based on trimmed means,
to a three-way design. Again, a generalization of results in Johansen (1980) is used to test
global hypotheses. It is assumed that a J -by-K -by-L design is being used, so there are a total
of p = J K L independent groups with trimmed means µt = (µt1, . . . ,µt J K L)

′. The general
strategy for testing main effects and interactions is to test

H0 : Cµt = 0, (7.5)
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where C is constructed in a manner to be described. For convenience, it is assumed that the
sample trimmed means are

X̄′ = (X̄ t111, . . . X̄11L , X̄ t121, . . . , X̄ t12L , . . . , X̄ t1K L , . . . , X̄ t J K L).

That is, the third subscript, which corresponds to the third factor, is incrementing the fastest.
Thus, for the first level of the first factor (J = 1), the data are arranged as

X̄ t111 . . . X̄ t11L
...

...
...

X̄ t1K 1 . . . X̄ t1K L .

For the second level of the first factor (J = 2), the data are arranged as

X̄ t211 . . . X̄ t21L
...

...
...

X̄ t2K 1 . . . X̄ t2K L

and so on. (The R function fac2list, illustrated in the next section, might help when dealing
with data management.)

For any integer m ≥ 2, again let Cm be an (m−1)-by-m matrix having the form
1 −1 0 0 . . . 0
0 1 −1 0 . . . 0

. . .

0 0 . . . 0 1 −1

 .
And as in Section 7.2, j′m is a 1-by-m vector of ones. Table 7.5 shows how to construct the
contrast matrix C for the main effects and interactions in a three-way design. For example,
when testing for main effects for factor A, use C= CJ ⊗ j′K ⊗ j′L .

Table 7.5: How to Construct
the Contrast Matrix, C, for a
Three-Way Design.

Effect C

A CJ ⊗ j′K ⊗ j′L
B j′J ⊗CK ⊗ j′L
C j′J ⊗ j′K ⊗CL

A × B CJ ⊗CK ⊗ j′L
A × C CJ ⊗ j′K ⊗CL

B × C j′J ⊗CK ⊗CL

A × B × C CJ ⊗CK ⊗CL
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Remembering that p = J K L , the total number of groups, let V be a p-by-p diagonal matrix
with

v j j =
(n j −1)s2

w j

h j (h j −1)
,

j = 1, . . . , p. That is, v j j is Yuen’s estimate of the squared standard error of the sample
trimmed mean corresponding to the j th group. Then

Q = X̄′C′(CVC′)−1CX̄. (7.6)

can be used to test Eq. (7.5). Let

R= VC′(CVC′)−1C,

and

A =
p∑

j=1

r2
j j

h j −1
,

where r j j is the j th diagonal element of R. Asymptotically, a critical value for Q is c, the
1−α quantile of a chi-square distribution with k degrees of freedom. However, for small
sample sizes, an adjusted critical value is needed which is given by

cad = c+
c

2k

[
A

(
1+

3c

k+2

)]
.

If Q > cad, reject H0.

7.3.1 R Functions t3way and fac2list

The R function

t3way(J,K,L,x,tr=0.2,grp=c(1:p),alpha=0.05,p=J*K*L).

performs tests the hypotheses of no main effects and no interactions in a three-way
(J-by-K-by-L) design using the method described in the previous section. Again, x is any R
variable containing the data, which is assumed to be stored in list mode. The default amount
of trimming is tr=0.2, and the default value for alpha is α = 0.05. The data are assumed to be
arranged such that the first L groups correspond to level 1 of factors A and B (J = 1 and
K = 1) and the L levels of factor C. The next L groups correspond to the first level of
factor A, the second level of factor B, and the L levels of factor C. If, for example, a
3-by-2-by-4 design is being used, it is assumed that for J = 1 (the first level of the first
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factor), the data are stored in the R variables x[[1]],...,x[[8]] as follows:

Factor C

Factor x[[1]] x[[2]] x[[3]] x[[4]]

B x[[5]] x[[6]] x[[7]] x[[8]]

For the second level of the first factor, J = 2, it is assumed that the data are stored as

Factor C

Factor x[[9]] x[[10]] x[[11]] x[[12]]

B x[[13]] x[[14]] x[[15]] x[[16]]

If the data are not stored as assumed by t3way, grp can be used to indicate the proper ordering.
As an illustration, consider a 2-by-2-by-4 design and suppose that for J = 1, the data are
stored as follows:

Factor C

Factor x[[15]] x[[8]] x[[3]] x[[4]]

B x[[6]] x[[5]] x[[7]] x[[8]]

while for J = 2

Factor C

Factor x[[10]] x[[9]] x[[11]] x[[12]]

B x[[1]] x[[2]] x[[13]] x[[16]]

Then type the R command

grp<−c(15,8,3,4,6,5,7,8,10,9,11,12,1,2,13,16)

and the command t3way(2,2,3,x,grp=grp) will test all of the relevant hypotheses at the 0.05
level using 20% trimmed means.

The general form for t3way contains an argument p that is used to check whether p = J K L is
equal to the total number of groups contained in x, and it is also used to generate the default
value for grp. As far as applications are concerned, this argument can be ignored. (It is
necessary only to satisfy certain R requirements that are not relevant here.) If J K L is not
equal to the number of groups passed to t3way, the function prints a warning message. If,
however, you want to use some subset of the groups in a three-way design, you can do this
simply by ignoring the error message and taking care that the proper groups are used in the
analysis. In other words, proceed along the lines described in conjunction with t2way. As a
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simple illustration, if there are 10 groups, but it is desired to use only the first 8 groups in a
2-by-2-by-2 design, the command

t3way(2,2,2,x)

can be used, assuming the first two groups belong to level 1 of the first two factors and levels
1 and 2 of the third, and so on. If the groups are not in the proper order, grp can be used as
already described and illustrated.

n Example

The example in Section 7.2.1 involved a 2-by-2 design dealing with the effect of watching
a violent versus nonviolent �lm. Extending the illustration, suppose that education is
taken into account with one group having a college degree, and the other does not.
Some hypothetical data for this 2-by-2-by-2 design are shown in Table 7.6. Suppose the
data are stored in the assumed order in the R variable �lm. Thus, �lm[[1]] contains the
data for level 1 of all three factors (the values 8, 7, 5, 6, 10, 14, 2, 3, and 16), �lm[[2]]
contains the data for no degree, male subjects watching a nonviolent �lm, �lm[[4]]
contains the data for no degree, female subjects watching a nonviolent �lm, and
�lm[[6]] contains the data for male subjects, with a degree, who watch a nonviolent
�lm. Then the command t3way(2,2,2,�lm) will test all relevant hypotheses using 20%
trimmed means. If it had been the case that the data for no degree, male subjects
watching a violent �lm were stored in �lm[[2]], and the data for no degree, males
subjects watching a nonviolent �lm were in �lm[[1]], but otherwise the assumed order
is correct, the R command t3way(2,2,2,�lm,grp=c(2,1,3,4,5,6,7,8)) would perform the
correct computations.

Table 7.6: Hypothetical Data on the Effect of Watching a
Violent Film.

No Degree

Violent Nonviolent

Male 8, 7, 5, 6, 10, 14, 2, 3, 16 2, 4, 6, 7, 11, 12, 12, 3, 4
Female 5, 6, 8, 2, 3, 4, 5, 2 12, 40, 23, 2, 2, 2, 2, 4

Degree

Violent Nonviolent

Male 8, 10, 12, 14, 2, 18, 20 2, 3, 2, 4, 5, 6, 7, 3, 4
Female 4, 5, 6,7, 6, 5, 4, 7,8 12, 1, 4, 19, 20, 22, 23, 24, 30

n
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The function returns the various test statistics and corresponding critical values. The value of
the test statistic, Q, for main effects for factor A, is returned in t3way$Qa, for factor B it is
returned in t3way$Qb, and for factor C it is in t3way$Qc. The corresponding critical values
are returned in t3way$Qa.crit, t3way$Qb.crit, and t3way$Qc.crit. The tests for two-way
interactions are stored in t3way$Qab, t3way$Qac, and t3way$Qbc; the critical values are in
t3way$Qab.crit, t3way$Qac.crit, and t3way$Qbc.crit; and the test for a three-way interaction
is in t3way$Qabc, with the critical value in t3way$Qabc.crit.

If data are stored in a matrix, with some of the columns indicating the levels of the factors, it
is noted that the function fac2list, described in Section 7.1.2, can be used to store the data in
the manner required here. Suppose the data are stored in a matrix, say m, with group numbers
for the three factors stored in columns 2, 4, and 6. If, for example, a 2-by-4-by-5 design is
being examined, column 2 would contain the group identification numbers for the two levels
of the first factor. The values in column 2 might be 1 or 2, or they might be a 10 and 16. That
is, there are two distinct values only, but they can be any two numbers. If the outcome
measures are stored in column 5, the R command

dat=fac2list(m[,5],m[,c(2,4,6)])

will store the data in dat, in list mode. If, for example, it is desired to compare 20% trimmed
means, this is accomplished with the command

t3way(2,4,6,dat).

7.4 Multiple Comparisons Based on Medians and Other Trimmed Means

This section summarizes several methods for performing multiple comparisons based on
trimmed means, including medians as a special case. Included are methods for testing
hypotheses about linear contrasts associated with two-way and three-way designs, which are
described and illustrated in Section 7.4.3. The role of linear contrasts is described in many
books dealing with the analysis of variance, so for brevity, details are kept to a minimum.

A general goal is to control the probability of at least one type I error. And a related goal is
computing confidence intervals that have some specified simultaneous probability coverage.
But another goal that has received increased attention in recent years is to control the false
discovery rate. To elaborate, when testing C hypotheses, let Q be the proportion of
hypotheses that are true and rejected. That is, Q is the proportion of type I errors among the
null hypotheses that are correct. If all hypotheses are false, then Q = 0, but otherwise Q can
vary from one experiment to the next. The false discovery rate is the expected value of Q.

A common practice is to use multiple comparison procedures, such as those described in this
section, only if a global test, such as those described in Section 7.1–7.3, reject. In terms of
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controlling the probability of one or more type I errors, the methods in this section do not
require that a global test first be performed and rejected. Indeed, based on results reported by
Bernhardson (1975), the expectation is that using the multiple comparisons procedures in this
chapter, contingent on first rejecting a global hypothesis, would alter their ability to control
the probability of at least one type I error in an unintended way. More precisely, the methods
in this section are designed so that the probability of one more type I errors is α. If these
methods are used contingent on a global test rejecting at the α level, the expectation is that the
actual probability of one more type I errors will be less than α. In practical terms, a loss in
power might result if the multiple comparison procedures in this chapter are used only if a
global test rejects.

7.4.1 An Extension of Yuen’s Method to Trimmed Means

A relatively simple strategy for performing multiple comparisons and tests about linear
contrasts, when comparing trimmed means, is to use an extension of Yuen’s method for two
groups in conjunction with a simple generalization of Dunnett’s (1980) heteroscedastic T3
procedure for means.

Letting µt1, . . . ,µtJ be the trimmed means corresponding to J independent groups, a linear
contrast is

9 =

J∑
j=1

c jµt j ,

where c1, . . . , cJ are specified constants satisfying
∑

c j = 0. As a simple illustration, if
c1 = 1, c2 =−1, and c3 = · · · = cJ = 0, 9 = µt1−µt2, the difference between the first two
trimmed means. Typically, C linear contrasts are of interest, a common goal being to compare
all pairs of means. Linear contrasts also play an important role when dealing with two-way
and higher designs.

Consider testing
H0 :9 = 0. (7.7)

An extension of the Yuen–Welch method accomplishes this goal. The estimate of 9 is

9̂ =

J∑
j=1

c j X̄ t j .

An estimate of the squared standard error of 9̂ is

A =
∑

d j ,
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where

d j =
c2

j (n j −1)s2
w j

h j (h j −1)
,

h j is the effective sample size of the j th group, and s2
w j is the Winsorized variance. In other

words, estimate the squared standard error of X̄ t as is done in Yuen’s method, in which case
an estimate of the squared standard error of 9̂ is given by A. Let

D =
∑ d2

j

h j −1
,

set

ν̂ =
A2

D
,

and let t be the 1−α/2 quantile of Student’s t-distribution with ν̂ degrees of freedom. Then
an approximate 1−α confidence interval for 9 is

9̂± t
√

A.

Let 91, . . . ,9C be C linear contrasts of interest, where

9k =

J∑
j=1

c jkµt j ,

and let ν̂k be the estimated degrees of freedom associated with the kth linear contrast, which is
computed as described in the previous paragraph. As previously noted, a common goal is to
compute a confidence interval for each 9k such that the simultaneous probability coverage is
1−α. A related goal is to test H0 :9k = 0, k = 1, . . . ,C , such that the familywise error rate
(FWE), meaning the probability of at least one type I error among all C tests to be performed,
is α, and the practical problem is finding a method that adjusts the critical value to achieve
this goal. One strategy is to compute confidence intervals having the form

9̂k± tk
√

Ak,

where Ak is the estimated squared standard error of 9̂k , computed as described when testing
Eq. (7.7), and tk is the 1−α percentage point of the C-variate Studentized maximum modulus
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distribution with estimated degrees of freedom ν̂k . In terms of testing H0 :9k = 0,
k = 1, . . . ,C , reject H0 :9k = 0 if |Tk |> tk , where

Tk =
9̂k
√

Ak
.

(The R software written for this book determines tk when α = 0.05 or 0.01, and C ≤ 28 using
values computed and reported in Wilcox, 1986. For other values of α or C > 28, the function
determines tk via simulations with 10,000 replications. Bechhofer & Dunnett, 1982, report
values up to C = 32.) When there is no trimming, the method just described reduces to
Dunnett’s (1980) T3 procedure for means when all pairwise comparisons are performed.

7.4.2 R Function lincon

The R function

lincon(x,con=0,tr=0.2,alpha=0.05)

is provided for testing linear contrasts involving trimmed means. The argument x is an R
variable having list mode, tr indicates the amount of trimming, and con is a J -by-C matrix,
the kth column containing the contrast coefficients for the kth linear contrast of interest,
k = 1, . . . ,C . The argument alpha is α which defaults to 0.05. Any other value for the
argument alpha results in α = 0.01. As usual, x[[1]] contains the data for group 1, x[[2]] the
data for group 2, and so on, and the default amount of trimming is tr=0.2, 20%. (The
functions fac2list, selby, and selby2, described in Sections 1.9, can be used to store the data in
list mode when initially the data are stored in a matrix, say m, with 1 or more columns of m
containing group identification numbers.) If con is not specified, all pairwise comparisons are
performed. The function returns two matrices called test and psihat. If all pairwise
comparisons are to be performed, the first two columns of both matrices indicate which
groups are being compared. The remaining columns of the first matrix, test, report the test
statistic, the 0.95 critical value, the estimated standard error, and the degrees of freedom. If
there is interest in using α = 0.01, rather than 0.05, these results can be used to determine an
appropriate critical value by referring to the table of Studentized maximum modulus
distribution previously cited in this section. Columns 3–5 of psihat report 9̂, and the lower
and upper ends of the 0.95 confidence interval. These quantities are found in the columns
labeled psihat, ci.lower, and ci.upper, respectively. If specific contrasts are of interest
(meaning that a value for con is passed to lincon), the output is the same as just described,
only the first two columns of the matrices returned by lincon are replaced by the number of
the contrast being examined. That is, the first row of each matrix returned by lincon is
numbered 1, meaning that it contains the results for 91, and so on.
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The critical value used by lincon is determined with the goal that the probability of at least
one type I error is less than or equal to 0.05 or 0.01, depending on the argument alpha, and
that the simultaneous probability coverage of all the confidence intervals is greater than or
equal to 0.95 or 0.99. This is accomplished by storing exact percentage points of the
Studentized maximum modulus distribution in the R functions called smmcrit and smmcrit01
for C = 2, . . . ,28 and selected degrees of freedom. These exact values were determined
with the FORTRAN program in Wilcox (1986). For other degrees of freedom, linear
interpolation on inverse degrees of freedom is used to determine the 0.95 and 0.99 quantiles.
The function assumes that for ν ≥ 200, ν =∞. For C > 28, or values for α other than 0.05
and 0.01, the R function smmvalv2 is used to compute the required percentage point.

The optional argument con is a J -by-C matrix that contains the contrast coefficients to be
used. The kth column is assumed to contain the contrast coefficients c1k, . . . , cJk , which
correspond to the kth linear contrast, 9k . As previously indicated, if con is not specified, then
all pairwise comparisons are performed.

n Example

Suppose four independent groups are being compared using the data in Table 7.7. If the
data are stored in the R variable x, the command lincon(x) returns

$test
Group Group test crit se df

[1,] 1 2 0.4151210 3.120264 66.07368 11.374139
[2,] 1 3 0.2590833 3.094621 60.65340 11.900028
[3,] 1 4 0.6099785 3.372408 43.97761 7.892383
[4,] 2 3 0.1708173 3.101733 68.57785 11.749354
[5,] 2 4 0.9975252 3.464224 54.38857 7.177902
[6,] 3 4 0.8926159 3.410628 47.65732 7.578376

$psihat
Group Group psihat ci.lower ci.upper p.value

[1,] 1 2 -27.42857 -233.5959 178.7387 0.6857763
[2,] 1 3 -15.71429 -203.4136 171.9850 0.7999983
[3,] 1 4 26.82540 -121.4851 175.1358 0.5590247
[4,] 2 3 11.71429 -200.9959 224.4245 0.8672737
[5,] 2 4 54.25397 -134.1602 242.6682 0.3509425
[6,] 3 4 42.53968 -120.0017 205.0811 0.3995184

For example, when comparing groups 1 and 2 with 20% trimmed means, the third and
fourth columns stored in $test indicate that the test statistic is 0.415, and the α = 0.05
critical value is 3.12. The remaining two columns indicate the estimated standard error
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and degrees of freedom. The results in $psihat indicate that when comparing groups 2
and 3, 9̂ = 11.7, and the 0.95 con�dence interval is (−201,224). The command
lincon(x,alpha=0.01) would use α = 0.01 instead. (For convenience, the R function
mmean(x,est=tmean,...) has been provided, which computes measures of location for
all groups stored in x.)

Table 7.7: Data Used to Illustrate the R Function lincon.

Group 1 119., −53., −77., 32., 194., −34., 48., −73., −69., −95., 175.
Group 2 −25., −22., 158., 208., 245., −70., −95., −68., 161., 28., −73.
Group 3 −95., 438., −72., 290., 3., −86., 136., 43., −27., 76., −79.
Group 4 −37., −88., −23., −50., 45., −36., −79., −86., −66., −73., −11.,

16., 0., 47., 218.

n

n Example

Again consider the data in Table 7.7, only now suppose that the fourth group is a
control and it is desired to compare each of the �rst three groups to the control. That is,
the goal is to compare group 1 to group 4, group 2 to group 4, and group 3 to group 4.
Then the contrast coef�cients for the �rst linear contrast are c11 = 1, c21 = c31 = 0, and
c41 =−1, in which case

91 = 1µt1+0µt2+0µt3+ (−1)µt4

= µt1−µt4.

In a similar fashion, the contrast coef�cients for 92 = µt2−µt4 are c12 = c32 = 0,
c22 = 1, and c42 =−1. For 93 = µt3−µt4, they are c13 = c23 = 0, c33 = 1 and c43 =−1.

To use lincon, �rst store the matrix
1 0 0
0 1 0
0 0 1
−1 −1 −1


in any R variable. The �rst column contains the contrast coef�cients for the �rst linear
contrast, (1,0,0,−1). The second columns contains the contrast coef�cients for the
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second linear contrast, and the third column contains the contrast coef�cients
associated with 93. For example, the command

MAT<- matrix(c(1,0,0,-1,0,1,0,-1,0,0,1,-1),4,3)

stores the contrast coef�cients in the R variable MAT. Assuming the data for the four
groups are stored in x, the command lincon(x,con=MAT) performs the three
comparisons with α = 0.05, and the results are

$test
con.num test crit se df

[1,] 1 0.6099785 2.969545 43.97761 7.892383
[2,] 2 0.9975252 3.040172 54.38857 7.177902
[3,] 3 0.8926159 2.998945 47.65732 7.578376

$psihat
con.num psihat ci.lower ci.upper p.value

[1,] 1 26.82540 -103.7681 157.4189 0.5590247
[2,] 2 54.25397 -111.0967 219.6046 0.3509425
[3,] 3 42.53968 -100.3820 185.4614 0.3995184

$test:
con.num test crit se df

[1,] 1 0.6099785 2.969545 43.97761 7.892383
[2,] 2 0.9975252 3.040172 54.38857 7.177902
[3,] 3 0.8926159 2.998945 47.65732 7.578376

$psihat:
con.num psihat ci.lower ci.upper

[1,] 1 26.82540 -103.7681 157.4189
[2,] 2 54.25397 -111.0967 219.6046
[3,] 3 42.53968 -100.3820 185.4614

n

A difference between this output and the output of the previous example is that now, the
contrasts are numbered under the column labeled con.num. The results for the first linear
contrast, µt1−µt4, are stored in the first row of the matrices $test and $psihat. Thus, the test
statistic for H0 : µt1 = µt4 is 0.61, the critical value is 2.97, the estimate of 91 = µt1−µt4 is
26.8, and the 0.95 confidence interval is (−103.8,157.4). Note that the critical values in this
example are smaller than those in the previous example. This is because only three contrasts
are being tested now, as opposed to six contrasts before.

7.4.3 Multiple Comparisons for Two-way and Three-Way Designs

Relevant multiple comparisons in a two-way design can be tested using appropriate linear
contrasts. Consider, for example, a 3-by-3 design with the trimmed means depicted as
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follows:

Factor B

1 2 3

1 µt1 µt2 µt3

Factor A 2 µt4 µt5 µt6

3 µt7 µt8 µt9

Let
91 = µt1+µt2+µt3−µt4−µt5−µt6,

92 = µt1+µt2+µt3−µt7−µt8−µt9,

93 = µt4+µt5+µt6−µt7−µt8−µt9.

Then an approach to comparing the main effects for Factor A is to test H0: 9` = 0, for `= 1,
2, and 3. Roughly, the goal is to compare level 1 of Factor A to level 2 of Factor A, then
compare levels 1 and 3, and finally compare levels 2 and 3. Main effects for Factor B, as well
as interactions, can be examined in a similar manner. For interactions, this means that for any
two levels of Factor A, say j and j ′ ( j < j ′), and any two levels of Factor B, k and k ′ (k < k ′),
linear contrast coefficients are generated with the goal of testing

H0 : µt j −µt j ′ = µtk−µtk′ .

For convenience, an R function (described in the next section and called con2way) is
provided that generates the contrast coefficients typically used in a two-way design.
Three-way designs are handled in a similar manner by generating linear contrast coefficients
with the R function con3way, which is also described in the next section.

7.4.4 R Functions mcp2atm, mcp2med, mcp3atm, mcp3med, con2way, and con3way

The R function

mcp2atm(J,K,tr=0.2,alpha=0.05,grp=NA,op=F)

tests all of the usual pairwise comparisons associated with the levels of each factor, as well as
all interactions associated with any two rows and columns, based on trimmed means. It does
this by calling the R function

con2way(J,K),

which generates linear contrast coefficients, and then it calls the R function lincon. If op=F,
the (J 2

− J )/2 hypotheses associated with Factor A (all pairwise comparisons of the J levels)
are tested with the probability of one or more type I errors designated by the argument alpha,
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which defaults to 0.05. The same is done for Factor B and all relevant interactions. If op=T,
the function is designed so that for all comparisons associated with Factor A, Factor B, and all
interactions, the probability of one or more type I errors is alpha. So with op=T, power will
be lower because the probability of one or more type I errors is being controlled for all
hypotheses under consideration. For the special case where the goal is to compare medians,
the function

mcp2med(J,K,x,con=0,alpha=0.05,grp=NA,op=F)

is supplied, which is based in part on the McKean–Schrader estimate of the standard error of
the sample medians. As previously noted, this estimate of the standard error appears to
perform reasonably well with no tied values, but otherwise a percentile bootstrap method is
recommended for comparing medians.

n Example

Consider a 2-by-3 design. A portion of the output from the R command con2way(2,3) is

$conAB
[,1] [,2] [,3]

[1,] 1 1 0
[2,] -1 0 1
[3,] 0 -1 -1
[4,] -1 -1 0
[5,] 1 0 -1
[6,] 0 1 1

The three columns contain the linear contrast coef�cients relevant to the three
interactions associated with the six groups being compared. Assuming means are being
compared and that they are arranged as indicated in Table 7.2, the �rst column
indicates that the linear contrast of interest is

9 = µ1−µ2−µ4+µ5.

The typical goal is to test H0: 9 = 0, which of course is the same as testing

H0 : µ1−µ2 = µ4−µ5,

the hypothesis of no interaction for levels 1 and 2 of both factors. The second column
deals with the interaction associated with levels 1 and 3 of factor B. And the third
column deals with levels 2 and 3. If factor A had three levels, conAB would have nine
columns. The �rst three would deal with levels 1 and 2 of factor A, the next three would
deal with levels 1 and 3 of factor A. And the �nal three would deal with levels 2 and 3.
Again the �rst three columns of conAB would deal with the three levels of factor B,
namely, levels 1 and 2, 1 and 3, and �nally levels 2 and 3.

n
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The R function

mcp3atm(J,K,L,tr=0.2,alpha=0.05,grp=NA,op=F)

is like mcp2atm, only it is designed for a three-way design. The linear contrast coefficients are
generated by the R function

con3way(J,K,L).

So all pairwise comparisons associated with the levels of each factor are performed, as well as
all interactions associated with the levels of each Factor. For medians, use the R function

mcp3med(J,K,L,tr=0.2,alpha=0.05,grp=NA,op=F).

n Example

To illustrate the use of the R function con3way when dealing with a three-way
interaction, consider a 2-by-2-by-3 design and focus on the contrast coef�cients
returned by the command con3way(2,2,3), which are stored in the matrix conABC.
The means are assumed to be arranged as described at the beginning of Section 7.3.
The �rst set of contrast coef�cients, stored in the �rst column of conABC, deal with the
A-by-B interaction at levels 1 and 2 of factor C. The second set of contrast coef�cients
deal with the A-by-B interactions at levels 1 and 3 of factor C. The contrast coef�cients
stored in the third column of conABC deal with the A-by-B interactions at levels 2 and 3
of factor C. For a 2-by-3-by-3 design, there are nine linear contrasts associated with a
three-way interaction. The �rst three deal with the interactions associated levels 1 and 2
of factors A and B, respectively. The �rst set of linear contrast coef�cients (in column 1
of conABC) is relevant to levels 1 and 2 of factor C, the next is relevant to levels 1 and 3
of factor C, and the third is relevant to levels 2 and 3 of factor C. The next three sets of
linear contrast coef�cients repeat this pattern, only now the focus is on levels 1 and 3
factor B (and levels 1 and 2 of factor A). The �nal three sets of linear contrasts
coef�cients deal with levels 2 and 3 of factor B.

n

7.4.5 A Bootstrap-t Procedure

When comparing trimmed means, and the amount of trimming is relatively small, all
indications are that an extension of the bootstrap-t method to multiple comparisons has
practical value. So in particular, when comparing means and when the sample sizes are small,
this approach appears to perform relatively well, with the understanding that all methods
based on means can be unsatisfactory.
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Table 7.8: Bootstrap-t Con�dence Intervals for C Linear Contrasts.

The goal is to compute con�dence intervals for each of C linear contrasts, 91, . . . ,9C , such that the
simultaneous probability coverage is 1−α. The kth linear contrast has contrast coef�cients c1k, . . . , cJk .

Step 1. For each of the J groups, generate a bootstrap sample, X ∗i j , i = 1, . . . ,n j ; j = 1, . . . , J . For each of
the J bootstrap samples, compute the trimmed mean, X̄ ∗j , and d∗j , Yuen’s estimate of the squared standard
error of X̄ ∗j , j = 1, . . . , J

Step 2. For the kth linear contrast, compute

T ∗k =
|9̂∗k − 9̂k |√

A∗k
,

where 9̂∗k =
∑

c jk X̄ ∗k and A∗k =
∑

c2
jkd∗j .

Step 3. Let

T ∗m =max {T ∗1 , . . . ,T ∗C }.

In words, T ∗m is the maximum of the C values, T ∗1 , . . . ,T ∗C .

Step 4. Repeat steps 1–3 B times yielding T ∗mb, b = 1, . . . , B.
Let T ∗m(1) ≤ · · · ≤ T ∗m(B) be the T ∗mb values written in ascending order, and let a = (1− α)B, rounded to the
nearest integer. Then the con�dence interval for 9k is

9̂k±T ∗m(a)
√

Ak,

and the simultaneous probability coverage is approximately 1−α.

Table 7.8 describes a bootstrap-t method for computing confidence intervals for each of C
linear contrasts, 9k , k = 1, . . . ,C , such that the simultaneous probability coverage is
approximately 1−α. The method is essentially the same as the symmetric two-sided
confidence interval using the bootstrap-t method described in Table 5.6, only modified so that
for the C linear contrasts, the probability of at least one type I error is approximately α.

When using the Studentized maximum modulus distribution to compare all pairs of trimmed
means, it is known that probability coverage can be more satisfactory when using 20%
trimmed means versus no trimming at all. However, concerns persist when any of the sample
sizes are small. If the goal is to avoid having the probability of a type I error excessively
higher than α, the bootstrap-t method is a good choice based on extant simulation studies
when the amount of trimming is small. A criticism of the bootstrap-t is that when all of the
sample sizes are less than or equal to 15, the probability of at least one type I error can drop
below .025 when testing at the .05 level.

Table 7.9 shows estimates of α (which is one minus the simultaneous probability coverage)
when sampling from exponential or lognormal distributions with four groups, B = 599, and
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Table 7.9: Simulation Estimates of α for Some Light-Tailed Distributions.

Distribution n σ Bootstrap No Bootstrap

exponential (11,11,11,11) (1,1,1,1) 0.039 0.060
(11,11,11,11) (1,1,1,5) 0.039 0.096
(15,15,15,15) (1,1,1,1) 0.050 0.042
(15,15,15,15) (1,1,1,5) 0.050 0.083
(10,15,20,25) (1,1,1,1) 0.041 0.046
(10,15,20,25) (1,1,1,5) 0.040 0.061
(10,15,20,25) (5,1,1,1) 0.052 0.098

lognormal (11,11,11,11) (1,1,1,1) 0.015 0.030
(11,11,11,11) (1,1,1,5) 0.046 0.091
(15,15,15,15) (1,1,1,1) 0.023 0.028
(15,15,15,15) (1,1,1,5) 0.052 0.085
(10,15,20,25) (1,1,1,1) 0.030 0.033
(10,15,20,25) (1,1,1,5) 0.039 0.056
(10,15,20,25) (5,1,1,1) 0.063 0.104

various configurations of sample sizes, n, and standard deviations, σ , when using 20%
trimmed means. (Additional simulations are reported by Wilcox, 1996h.) If the sample sizes
are large enough, probability coverage will be satisfactory without using the bootstrap-t
method, but it is unknown just how large the sample sizes must be. For heavy-tailed
distributions, the bootstrap-t method offers less of an advantage, but it is difficult to tell
whether it can be safely abandoned simply by looking at the data.

7.4.6 R Functions linconb, bbtrim, and bbbtrim

The R function

linconb(x,con=0,tr=0.2,alpha=0.05,nboot=599)

is provided for applying the bootstrap-t method when testing d linear contrasts using trimmed
means. This function is used exactly like the function lincon in Section 7.4.2, the only
difference being the additional argument, nboot, which is used to specify B, the number of
bootstrap samples to be used. Again, if con is not specified, all pairwise comparisons are
performed. The default value for nboot is 599 which appears to suffice, in terms of controlling
the probability of a type I error, when α = 0.05. However, a larger choice for nboot might
result in more power. The extent to which accurate probability coverage can be obtained,
when α < 0.05, is not known.
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n Example

Again consider the data in Table 7.7, suppose it is desired to compare the �rst three
groups to the fourth, only now a bootstrap-t method is used. The results from linconb
are

$psihat
con.num psihat ci.lower ci.upper

[1,] 1 26.82540 -146.2109 199.8617
[2,] 2 54.25397 -159.7458 268.2537
[3,] 3 42.53968 -144.9750 230.0544

$test
con.num test se p.value

[1,] 1 0.6099785 43.97761 0.5525876
[2,] 2 0.9975252 54.38857 0.3439065
[3,] 3 0.8926159 47.65732 0.4140234

$crit
[1] 3.934646

The contrast matrix is also returned in linconb$con. The estimates of 9 for the three
linear contrasts of interest, plus the corresponding standard deviations, are the same as
before. However, the con�dence intervals are longer using the bootstrap method. The
critical value for all three contrasts, used by the �rst method in this section, is
approximately 3, but the bootstrap estimate of the critical value is 3.99. This was
expected because the observations in Table 7.7 were generated by �rst generating values
from an exponential distribution, shifting them so that the trimmed mean is equal to
zero, and multiplying by 100. That is, observations were generated from a skewed
distribution with a relatively light tail. If the observations were generated from a normal
distribution instead, the expectation is that there would be little difference between the
con�dence intervals.

n

For convenience, the R function

bbtrim(J,K,x,tr=0.2,alpha=0.05,nboot=599).

is supplied for performing the usual multiple comparisons associated with a J -by-K design
using a bootstrap-t method with trimmed means. The function generates the linear contrast
coefficients via the R function con2way and then uses linconb to test the relevant hypotheses.
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Multiple comparisons associated with a J -byK -by-L three-way design are performed with
the R function

bbbtrim(J,K,L,x,tr=0.2,alpha=0.05,nboot=599).

The contrast coefficients are generated via the R function

con3way(J,K,L).

7.4.7 Percentile Bootstrap Methods for Comparing Medians and Other Trimmed
Means

When the goal is to compare trimmed means, and the amount of trimming is not too small,
say at least 20%, a percentile bootstrap method appears to be a relatively effective way of
performing multiple comparisons. With 15% trimming, and even 10% trimming, a percentile
bootstrap performs reasonably well. For the special case where the goal is to compare
medians, and when tied values occur, it is the only known method that performs well in
simulations, in terms of controlling the probability of a type I error. This section describes
methods designed to control the probability of one or more type I errors when using a
percentile bootstrap method.

Rom’s Method

Imagine the goal is to test C hypotheses such that the probability of one or more type I
errors is at most α, a simple way of proceeding is to use the Bonferroni method, meaning that
each test is performed at the α/C level. However, several improvements on the Bonferroni
method have been published that are designed to ensure that the probability of at least one
type I error does not exceed some specified value, α. One that stands out is a sequentially
rejective method derived by Rom (1990), which has been found to have good power relative
to several competing techniques (e.g., Olejnik, Li, Supattathum, & Huberty, 1997; cf.
Goeman & Solari, 2010). To apply it, compute a p-value for each of the C tests to be
performed and label them P1, . . . , PC . Next, put the p-values in descending order, which are
labeled P[1] ≥ P[2] ≥ · · · ≥ P[C]. Proceed as follows:

1. Set k=1.
2. If P[k] ≤ dk , where dk is read from Table 7.10, stop and reject all C hypotheses; otherwise,

go to step 3.
3. Increment k by 1. If P[k] ≤ dk , stop and reject all hypotheses having a significance level

less than or equal dk

4. If P[k] > dk , repeat step 3.
5. Continue until you reject or all C hypotheses have been tested.
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Table 7.10: Critical Values, dk, for
Rom’s Method.

k α = 0.05 α = 0.01

1 0.05000 0.01000
2 0.02500 0.00500
3 0.01690 0.00334
4 0.01270 0.00251
5 0.01020 0.00201
6 0.00851 0.00167
7 0.00730 0.00143
8 0.00639 0.00126
9 0.00568 0.00112

10 0.00511 0.00101

Hochberg’s Method

Hochberg’s (1988) method for controlling the probability of one or more type I errors is
applied as follows. Again let p1, . . . , pC be the p-values associated with the C tests, put these
p-values in descending order, and label the results p[1] ≥ p[2] ≥ · · · ≥ p[C]. Beginning with
k = 1 (step 1), reject all hypotheses if

p[k] ≤ α/k.

That is, reject all hypotheses if the largest p-value is less than or equal to α. If p[1] > α,
proceed as follows:

1. Increment k by 1. If

p[k] ≤
α

k
,

stop and reject all hypotheses having a p-value less than or equal p[k]

2. If p[k] > α/k, repeat step 1.
3. Repeat steps 1 and 2 until you reject or all C hypotheses have been tested.

Rom’s method offers a slight advantage over Hochberg’s method in terms of power. But
Rom’s method is limited to testing at the 0.05 and 0.01 levels, and tables for performing
C > 10 hypotheses are not available. Hochberg’s method avoids these limitations.

Benjamini–Hochberg Method

Benjamini and Hochberg (1995) proposed a variation of Hochberg’s method where in step 1
of Hochberg’s method, p[k] ≤ α/k is replaced by

p[k] ≤
(C− k+1)α

C

www.elsevierdirect.com



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or inprint. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

WILCOX Ch07-9780123869838 2011/10/22 16:53 Page 331 #41

Chapter 7 One-Way and Higher Designs for Independent Groups 331

(cf. Williams, Jones, & Tukey, 1999; Peña, Habiger, & Wu, 2010). A criticism of the
Benjamini–Hochberg method is that situations can be found where some hypotheses are true,
some are false, and the probability of at least one type I error will exceed α among the
hypotheses that are true (Hommel, 1988). In contrast, Hochberg’s method does not suffer
from this problem (assuming the actual level of each individual test is equal to the nominal
level). However, when C hypotheses are tested, let Q be the proportion of hypotheses that are
true and rejected. That is, Q is the proportion of type I errors among the null hypotheses that
are correct. The false discovery rate is the expected value of Q. That is, if a study is repeated
infinitely many times, the false discovery rate is the average proportion of type I errors among
the hypotheses that are true. Benjamini and Hochberg (1995) show that their method ensures
that the false discovery rate is less than or equal to α (cf. Peña et al., 2010).

Method TPB20

An early method aimed specifically at comparing 20% trimmed means, given the goal of
performing all pairwise comparisons, was studied by Wilcox (2001a), which will be called
method TPB20. Briefly, for each pair of groups, compute a bootstrap (generalized) p-value as
described in Section 5.4. When comparing group j to group k( j < k), denote this p-value by
2 p̂∗jk . Then reject H0: µt j = µtk at the .05 level if

2 p̂∗jk ≤ 2pcrit,

where

pcrit =
.0268660714

C
− .0003321429,

and C is the number of hypotheses to be tested. (Adjustments, when testing at the .01 level,
are available as well.) The method also yields confidence intervals for each linear contrast,
which are designed so that the simultaneous probability coverage is either .05 or .01. All of the
confidence intervals have the same probability coverage, a feature that is not available when
using Rom’s method or Hochberg’s methods. A limitation of this method is that it can handle
only situations where the probability of one or more type I error is set at .05 or .01. Also,
situations can be constructed where Rom’s method and Hochberg’s method have more power.

7.4.8 R Functions tmcppb, bbmcppb, bbbmcppb, medpb, med2mcp,
med3mcp, and mcppb20

The R function

tmcppb(x,alpha = 0.05,nboot = NA,grp = NA,est = tmean,con = 0,bhop = F,...) ,
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compares trimmed means using a percentile bootstrap method. By default, the function uses a
20% trimmed mean and all pairwise comparisons are performed. Rom’s method is used to
control the probability of one or more type I errors. For C > 10 hypotheses, or when the goal
is to test at some level other than .05 and .01, Hochberg’s method is used. Setting the argument
bhop = T, the Benjamini–Hochberg method is used instead. Linear contrasts can be tested by
storing linear contrast coefficients in the argument con, which is assumed to be a matrix with
rows corresponding to groups. By default, all pairwise comparisons are performed.

For convenience, the R function

bbmcppb(J, K, x, tr = 0.2, JK = J * K, alpha = 0.05, grp = c(1:JK), nboot = 500, bhop = F,
SEED = T)

performs multiple comparisons for a two-way ANOVA design based on trimmed means. The
function creates linear contrasts via the R function con2way and then uses the function

bbmcppb.sub(J, K, x, tr = 0.2, JK = J * K, con = 0, alpha = 0.05, grp = c(1:JK),
nboot = 500, bhop = F, SEED = T, ...)

to test hypotheses based on the resulting linear contrasts. The R function

bbbmcppb(J, K, L, x, tr = 0.2, JKL = J * K * L, alpha = 0.05, grp = c(1:JKL), nboot = 500,
bhop = F, SEED = T)

performs multiple comparisons for a three-way design.

For the special case where medians are to be compared, use the R function

medpb(x, alpha = 0.05, nboot = NA, grp = NA, est = median, con = 0, bhop = F,
SEED = T).

It performs well when there are tied values, and even with no tied values, it appears to be an
excellent choice relative to competing techniques for comparing medians. The R functions

med2mcp(J, K, x, grp = c(1:p), p = J * K, tr = 0.2, nboot = NA, alpha = 0.05, SEED = T,
bhop = F)

and

med3mcp(J, K, L, data, tr = 0.2, grp = c(1:p), alpha = 0.05, p = J * K * L, nboot = NA,
SEED = T, bhop = F)

are designed to handle two-way and three-way designs, respectively.

The R function

mcppb20(x, crit = NA, con = 0, tr = 0.2, alpha = 0.05, nboot = 2000, grp = NA)

performs method TPB20.
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7.4.9 Judging Sample Sizes

Suppose that all pairs of groups are compared with the R function lincon in Section 7.4.1
and that one or more of the hypotheses are not rejected. This might occur because there is
little or no difference between the groups. But another possibility is that there is an important
difference that was missed. One way of trying to distinguish between these two possibilities is
to determine how many observations are needed so that the length of the confidence intervals
are reasonably short. This can be done with an extension of a two-stage method for means that
was developed by Hochberg (1975); see Wilcox (2004a).

Imagine that for all j < k, the goal is to compute a confidence interval for µt j −µtk such that
the simultaneous probability coverage is 1−α and the length of each confidence interval is
2m, some value specified by the researcher. Let h be the 1−α quantile of the range of J
independent Student t variates having degrees of freedom h1−1, . . . ,h J −1, respectively,
where h j = n j −2g j −1 is the number of observations in the j th group left after trimming.
Table 7.11 reports the 1−α quantiles of this distribution for selected degrees of freedom,
α = 0.05 and 0.01, when h1−1= · · · = h J −1= ν, say. (For ν > 59, the quantiles can be
approximated with the quantiles of a Studentized range statistic with ν degrees of freedom.)
For unequal sample sizes, a good choice for the degrees of freedom is

ν = J

(∑ 1

h j −1

)−1

.

Let

d =
(m

h

)2
.

The total number of observations needed from the j th group is

N j =max

[
n j ,

(
s2

jw

(1−2γ )2d

)
+1

]
. (7.8)

So if N j −n j is large, and if we fail to reject any hypothesis involving µt j , it seems
unreasonable to accept the null hypothesis.

If the additional N j −n j observations can be obtained, confidence intervals are computed as
follows. Let µ̂ j t be the trimmed mean associated with the j th group based on all N j values.
For all pairwise comparisons, the confidence interval for µ j t −µkt , the difference between the
population trimmed means corresponding to groups j and k, is

(µ̂ j t − µ̂kt)±hb,
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Table 7.11: Percentage Points, h, of the Range of J Independent t Variates.

α ν = 5 ν = 6 ν = 7 ν = 8 ν = 9 ν = 14 ν = 19 ν = 24 ν = 29 ν = 39 ν = 59

J=2 Groups
0.05 3.63 3.45 3.33 3.24 3.18 3.01 2.94 2.91 2.89 2.85 2.82
0.01 5.37 4.96 4.73 4.51 4.38 4.11 3.98 3.86 3.83 3.78 3.73

J=3 Groups
0.05 4.49 4.23 4.07 3.95 3.87 3.65 3.55 3.50 3.46 3.42 3.39
0.01 6.32 5.84 5.48 5.23 5.07 4.69 5.54 4.43 4.36 4.29 4.23

J=4 Groups
0.05 5.05 4.74 4.54 4.40 4.30 4.03 3.92 3.85 3.81 3.76 3.72
0.01 7.06 6.40 6.01 5.73 5.56 5.05 4.89 4.74 4.71 4.61 4.54

J=5 Groups
0.05 5.47 5.12 4.89 4.73 4.61 4.31 4.18 4.11 4.06 4.01 3.95
0.01 7.58 6.76 6.35 6.05 5.87 5.33 5.12 5.01 4.93 4.82 4.74

J=6 Groups
0.05 5.82 5.42 5.17 4.99 4.86 4.52 4.38 4.30 4.25 4.19 4.14
0.01 8.00 7.14 6.70 6.39 6.09 5.53 5.32 5.20 5.12 4.99 4.91

J=7 Groups
0.05 6.12 5.68 5.40 5.21 5.07 4.70 4.55 4.46 4.41 4.34 4.28
0.01 8.27 7.50 6.92 6.60 6.30 5.72 5.46 5.33 5.25 5.16 5.05

J=8 Groups
0.05 6.37 5.90 5.60 5.40 5.25 4.86 4.69 4.60 4.54 4.47 4.41
0.01 8.52 7.73 7.14 6.81 6.49 5.89 5.62 5.45 5.36 5.28 5.16

J=9 Groups
0.05 6.60 6.09 5.78 5.56 5.40 4.99 4.81 4.72 4.66 4.58 4.51
0.01 8.92 7.96 7.35 6.95 6.68 6.01 5.74 5.56 5.47 5.37 5.28

J=10 Groups
0.05 6.81 6.28 5.94 5.71 5.54 5.10 4.92 4.82 4.76 4.68 4.61
0.01 9.13 8.14 7.51 7.11 6.83 6.10 5.82 5.68 5.59 5.46 5.37

Reprinted, with permission, from R. Wilcox, “A table of percentage points of the range of independent t variables”,
Technometrics, 1983, 25, 201–204.

where

b =max

(
s jw

(1−2γ )
√

N j
,

skw

(1−2γ )
√

Nk

)
.

7.4.10 R Function hochberg

The two-stage method for trimmed means, just described, is performed by the R function

hochberg(x,x2=NA,cil=NA,crit=NA,con=0,tr=0.2,alpha=0.05,iter=10,000)

The first stage data are assumed to be stored in x, and if the second stage data are available,
they are stored in x2, either in a matrix (having J columns) or in list mode. The argument cil
is 2m, the desired length of the confidence intervals. The argument crit is the 1−α quantile of
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the range of independent Student t variates, some of which are reported in Table 7.11. If crit is
not specified, the appropriate quantile is approximated via simulations with the number of
replications controlled by the argument iter. As usual, the default amount of trimming,
indicated by the argument tr, is 20%. (The function can also handle linear contrasts specified
by the argument con, which is used as described, for example, in Section 7.4.1.)

7.4.11 Explanatory Measure of Effect Size

There are various ways one might characterize the differences among groups when dealing
with a two-way ANOVA. Of course, measures of location can be used. If it is desired to use a
measure of effect size that is based in part on some measure of variation among the groups,
some extension of the explanatory measure of effect size might be used. First focus on Factor
A. A simple approach is to ignore the levels for Factor B and use the explanatory measure of
effect size previously discussed in Section 5.3.4. That is, for each level of Factor A, pool the
data over the levels of Factor B, in which case for any two levels of Factor A, the explanatory
measure of effect size can be computed. Of course, the same can be done for Factor B.

As for interactions, first focus on the simplest case: a 2-by 2 design. One possibility is to use
the explanatory measure of effect size applied to the two distributions corresponding to the
differences associated with each row. That is, for level 1 of Factor A, let F1 be the distribution
of the difference between randomly sampled observations from levels 1 and 2 of Factor B.
Define F2 for level 2 of Factor A in a similar manner. Then compute the explanatory measure
of effect size based on estimates of F1 and F2. To elaborate, let X i jk (i = 1, . . . ,n jk ; j = 1, 2,
k = 1, 2) be the i th observation corresponding to the j th level of Factor A and the kth level of
Factor B. Let Di i ′ j = X i j1− X i ′ j2, where now i = 1, . . .n j1, i ′ = 1, . . .n j2 and j = 1, 2. Then
the magnitude of the interaction can be characterized via the difference scores for Level 1 of
Factor A and Level 2 of Factor A by computing the explanatory measure of effect size based
on the two sets of data, Di i ′1 and Di i ′2 . For the general case of a J -by-K design, this measure
of effect size can be computed for levels j and j ′ of Factor A, and levels k and k ′ of Factor B,
for all j < j ′ and k < k ′.

7.4.12 R Functions ESmainMCP and esImcp

For all j and j ′ such that 1≤ j < j ′ ≤ J , the R function

ESmainMCP(J,K,x,tr=0.2,nboot=100,SEED=T)

computes the explanatory measure of effect size for levels j and j ′ for Factor A as described
in the previous section. That is, all pairwise comparisons are made among the J levels. The
same is done for Factor B. The R function

esImcp(J,K,x,tr=0.2,nboot=100,SEED=T)

www.elsevierdirect.com



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or inprint. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

WILCOX Ch07-9780123869838 2011/10/22 16:53 Page 336 #46

336 Introduction to Robust Estimation and Hypothesis Testing

computes the explanatory measure of effect size for interactions. Briefly, the function
generates all of the relevant linear contrasts via the R function con2way and then, for each
column of the resulting matrix of contrast coefficients, the corresponding explanatory
measure of effect size is estimated.

7.5 A Random Effects Model for Trimmed Means

This section describes two random effects models based on Winsorization and trimmed
means. When there is no trimming, and there is homogeneity of variance, both models reduce
to the usual model covered in a basic course on the analysis of variance. The first of the two
models is convenient when comparing trimmed means, while the other is covenient when
estimating a Winsorized analog of the intraclass correlation coefficient.

It is well known that the standard random effects model provides poor control over the
probability of a type I error when the usual assumptions of normality and homogeneous
variances are violated. For example, when testing at the α = 0.05 level with four groups and
equal sample sizes of 20 in each group, the actual probability of a type I error can exceed .3
(Wilcox, 1994b). A striking feature of the model based on 20% trimming is the extent to
which this problem is reduced. Among the various distributions considered by Wilcox
(1994b), the highest estimated probability of a type I error was .074.

It is assumed that there is a pool of treatment groups that are of interest, but not all groups
can be examined. Instead, J randomly sampled groups are used to make inferences about the
pool of treatment groups. Once the J groups are randomly sampled, it is assumed that n j

observations are randomly sampled from the j th group. Let X i j be the i th observation
randomly sampled from the j th group, and let µt j be the population trimmed mean.
Generalizing the standard random effects model in a natural way, let µ̄w = Ew(µt j ). In words,
µ̄w is the Winsorized mean for the population of trimmed means being sampled. A
generalization of the usual random effects model is

X i j = µ̄w+b j + εi j ,

where b j = µt j − µ̄w, Ew(b j )= 0, and Ew(εi j )= 0. Let the Winsorized variance of b j be
σ 2
wb, and for fixed j , let σ 2

w j be the Winsorized variance of εi j . Also let σ 2
w = Ew(σ 2

w j ), where
the Winsorized expectation is taken with respect to a randomly sampled group. When there
are no differences among the trimmed means associated with the pool of treatment groups
under investigation, σ 2

wb = 0.

Jeyaratnam and Othman (1985) derived a heteroscedastic method for comparing means in a
random effects model. It can be extended to trimmed means using Winsorized expected
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Table 7.12: Comparing Trimmed Means in a Random Effects Model.

For the jth group, Winsorize the observations by computing Yi j as described in Section 7.5.1. To test the
hypothesis of no differences among the trimmed means, H0 : σ 2

wb = 0, let h j the effective sample size of the
jth group (the number of observations left after trimming), and compute

Ȳ j =
1

n j

n j∑
i=1

Yi j ,

s2
w j =

1

n j −1

∑
(Yi j − Ȳ j )

2,

X̄ t =
1

J

∑
X̄ t j ,

BSST=
1

J −1

J∑
j=1

(X̄ t j − X̄ t)
2,

WSSW=
1

J

J∑
j=1

n j∑
i=1

(Yi j − Ȳ j )
2

h j (h j −1)
,

D =
BSST

WSSW
.

Let

q j =
(n j −1)s2

w j

J (h j )(h j −1)
.

The degrees of freedom are estimated to be

ν̂1 =
[(J −1)

∑
q j ]2

(
∑

q j )2+ (J −2)J
∑

q2
j

ν̂2 =
(
∑

q j )
2∑

q2
j /(h j −1)

.

Reject if D > f , the 1−α quantile of an F distribution with ν̂1 and ν̂2 degrees of freedom.

values (Wilcox, 1994b). The computations are summarized in Table 7.12. Advantages of
using trimmed means over means are better control over the probability of a type I error and
the potential of substantially higher power, particularly when distributions have heavier than
normal tails. However, there are situations where comparing means might mean more power
as well. For example, the variation among the means might be larger than the variation among
the trimmed means, so the Jeyaratnam and Othman method might yield more power. This
might happen, for example, when distributions are skewed. As usual, the optimal amount of
trimming will vary from one situation to the next, but to avoid poor power and undesirable
power characteristics (a biased test), 20% trimming is a good choice for general use.
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7.5.1 A Winsorized Intraclass Correlation

This subsection describes a Winsorized analog of the usual intraclass correlation. Several
estimators of this parameter have been considered (Wilcox, 1994c), one of which is
described here.

It is convenient to switch from the ANOVA model in the previous section to one that is
slightly different. As before, the model is written as

X i j = µ̄w+b j + εi j ,

but now b j = µw j − µ̄w, the difference between the Winsorized mean of the j th group and
µ̄w = Ew(µw j ), the Winsorized expected value of µw j with respect to a randomly sampled
group. It can be shown that the Winsorized covariance between any two observations in the
j th group, X i j and X i ′ j , i 6= i ′, is σ 2

wb. Also, the Winsorized variance of X i j is σ 2
wb+ σ̄

2,
where σ̄ 2

= Ew(σ 2
w j ), the Winsorized expected value of the Winsorized variance associated

with a randomly sampled group. Then a heteroscedastic, Winsorized analog of the usual
intraclass correlation is

ρW I =
σ 2
wb

σ 2
wb+ σ̄

2
.

From a technical point of view, Winsorization is a convenient way to proceed because
there is a relatively simple way of dealing with estimation problems. To briefly review a result
mentioned in Chapter 2, if g(X1, . . . , Xn) is any function of the random sample X1, . . . , Xn ,
and

Ew{g(X1, . . . , Xn)} = ξ,

then g(Y1, . . .Yn) estimates ξ , where

Yi =


X(g+1), X i ≤ X(g+1)

X i , X(g+1) < X i < X(n−g)

X(n−g), X i ≥ X(n−g)

For the i th observation in the j th group, let

Yi j =


X(g+1) j , X i j ≤ X(g+1) j

X i j , X(g+1) j < X i j < X(n−g) j

X(n−g) j , X i j ≥ X(n−g) j .

That is, Winsorize the observations in the j th group. Let s2
w j be the Winsorized sample

variance for the j th group, let m = [γ J ], where as usual, γ is the amount of Winsorization, let
s2
w(1) ≤ · · · ≤ s2

w(J ) be the Winsorized sample variances written in ascending order, let

SW= (m+1)s2
w(m+1)+ s2

w(m+2)+· · ·+ s2
w(J−m−1)+ (m+1)s2

w(J−m),
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and

s̄2
w =

SW

J
.

Results in Rao, Kaplan, & Cochran (1981) suggest estimating ρWI with

ρ̂WI =
σ̂ 2
wb

σ̂ 2
wb+ s̄2

w

,

where

σ̂ 2
wb =

1

J

∑
` j (Ȳ j − Ỹ )2,

` j =
n j

n j +1

and

Ỹ =

∑
` j Ȳ j∑
` j

.

Wilcox (1994c) compared the bias and mean squared error of ρ̂WI to two alternative estimators
and recommended ρ̂WI. When ρWI is close to zero, some type of bias reduction method
might have practical value, but this issue needs further study before a recommendation can
be made.

7.5.2 R Function rananova

The R function

rananova(x,tr=0.2,grp=NA)

performs the computations for the random effects ANOVA, where x is any R variable that is a
data frame, or matrix, or has list mode, tr is the amount of trimming, which defaults to 0.2,
and grp can be used to specify some subset of the groups if desired. If grp is not specified, all
groups stored in x are used. The function returns the value of the test statistic, D, which is
stored in rananova$teststat, the significance level is stored in rananova$siglevel, and an
estimate of the Winsorized intraclass correlation, which is computed as described in the
previous subsection of this chapter, is returned in the R variable rananova$rho.

n Example

Assuming the data in Table 7.7 are stored in the R variable data, the command
rananova(data) returns.

$teststat:
[1] 0.33194
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$df:
[1] 2.520394 18.693590

$siglevel:
[1] 0.7687909

$rho:
[1] 0.0576178

n

7.6 Global Tests Based on M-Measures of Location

This section describes two bootstrap methods for comparing J independent groups that
appear to perform relatively well when the goal is to test global hypotheses about robust
measures of location. Here the emphasis is on M-estimators, but the methods described here
perform well when using a one-step M-estimator and trimmed means, provided the amount of
trimming is not too small. An exception is situations where the goal is to compare medians
and there are tied values. (Non-bootstrap methods, based in part on some estimate of the
standard error of an M-estimator, can perform poorly when dealing with skewed distributions.
But some bootstrap methods that use estimates of standard errors seem to have practical
value.) In more formal terms, the goal is to test

H0 : θ1 = · · · = θJ , (7.9)

there θ j represents a (population) M-measure of location associated with the j th group.

The first method is based on a test statistic mentioned by Schrader and Hettmansperger
(1980), and studied by He, Simpson, and Portnoy (1990). The test statistic is

H =
1

N

∑
n j (θ̂ j − θ̄ )

2,

where N =
∑

n j , and

θ̄ =
1

J

∑
θ̂ j .

To determine the critical value, shift the empirical distributions of each group so that the
estimated measure of location is zero, generate bootstrap samples from each group in the
usual way from each of the shifted distributions, and compute the test statistic based on the
bootstrap samples yielding H∗, say. Repeat this B times resulting in H∗1 , . . . ,H∗B , and put
these B values in order yielding H∗(1) ≤ · · · ≤ H∗(B). Then an estimate of an appropriate critical
value is H∗(u), where u = (1−α)B, rounded to the nearest integer, and H0 is rejected if
H > H∗(u). (For simulation results on how this method performs, see Wilcox, 1993d.) This
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method appears to give reasonably good results when using an M-estimator (with Huber’s 9),
as well as the Harrell–Davis estimate of the median, but it is not recommended when
comparing means or even trimmed means.

The second bootstrap method described here is based on a slight variation of a general
approach described by Liu and Singh (1997). Currently, it appears to be the better of the two
methods described in this section when working with the modified one step M-estimator
(MOM), described in Section 3.10 (Keselman, Wilcox, Othman, and Fradette, 2002), and it
appears to perform reasonably well when using M-estimators (with Huber’s 9) and even
trimmed means if the amount of trimming is sufficiently high. Let

δ jk = θ j − θk,

where for convenience it is assumed that j < k. That is, the δ jk values represent all pairwise
differences among the J groups. When working with means, for example, δ12 is the difference
between the means of groups 1 and 2, and δ35 is the difference for groups 3 and 5. If all J
groups have a common measure of location (i.e., θ1 = · · · = θJ ), then in particular

H0 : δ12 = δ13 = · · · = δJ−1,J = 0 (7.10)

is true. The total number of δ’s in Eq. (7.10) is L = (J 2
− J )/2.

For each group, generate bootstrap samples from the original values. That is, the observations
are not centered as was done in the previous method. Instead bootstrap samples are generated
from the X i j values. For each group, compute the measure of location of interest based on a
bootstrap sample and repeat this B times. The resulting estimates of location are represented
by θ̂∗jb ( j = 1, . . . , J ;b = 1, . . . , B) and the corresponding estimates of δ are denoted by δ̂∗jkb.

(That is, δ̂∗jkb = θ̂
∗

jb− θ̂
∗

kb.) The general strategy is to determine how deeply 0= (0, . . . ,0) is

nested within the bootstrap values δ̂∗jkb (where 0 is a vector having length L). For the special
case where only two groups are being compared, this is tantamount to determining the
proportion of times θ̂∗1b > θ̂

∗

2b, among all B bootstrap samples, which is how we proceeded in
Chapter 5. But here we need special techniques for comparing more than two groups.

There remains the problem of measuring how deeply 0 is nested within the bootstrap values.
Several strategies were described in Chapter 6, but in terms of type I error probabilities and
power, all indications are that, for the situation at hand, the choice of method is irrelevant.
However, from a computational point of view, the choice of method can matter, for reasons
indicated at the end of this section. For the moment, the focus is on using Mahalanobis
distance.

Let δ̂ jk = θ̂ j − θ̂k be the estimate of δ jk based on the original data and let δ̂∗jkb = θ̂
∗

jb− θ̂
∗

kb
based on the bth bootstrap sample (b = 1, . . . , B). (It is assumed that j < k.) For notational
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convenience, we rewrite the L = (J 2
− J )/2 differences δ̂ jk as 1̂1, . . . , 1̂L and the

corresponding bootstrap values are denoted by 1̂∗`b (`= 1, . . . , L). Let

1̄∗` =
1

B

B∑
b=1

1̂∗`b,

Y`b = 1̂
∗

`b− 1̄
∗

`+ 1̂`,

(so the Y`b values are the bootstrap values shifted to have mean 1̂`) and let

S`m =
1

B−1

B∑
b=1

(Y`b− Ȳ`)(Ymb− Ȳm),

where

Ȳ` =
1

B

B∑
b=1

Y`b.

(Note that in the bootstrap world, the bootstrap population mean of 1̄∗` is known and is equal
to 1̂`.) Next, compute

Db = (1̂
∗

b− 1̂)S
−1(1̂

∗

b− 1̂)
′,

where 1̂
∗

b = (1̂
∗

1b, . . . , 1̂
∗

Lb) and 1̂= (1̂1, . . . , 1̂L). Db measures how closely 1̂
∗

b is located
to 1̂. If 0 (the null vector) is relatively far from 1̂, reject. In particular, put the Db values in
ascending order yielding D(1) ≤ · · · ≤ D(B) and let u = (1−α)B, rounded to the nearest
integer. Then reject H0 if

T ≥ D(u),

where

T = (0− 1̂)S−1(0− 1̂)′.

A p-value can be computed as well and is given by

1

B

B∑
b=1

Ib,

where the indicator function Ib = 1 if T < Db; otherwise Ib = 0.
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Notice that with three groups (J = 3), θ1 = θ2 = θ3 can be true if and only if θ1 = θ2 and
θ2 = θ3. So in terms of type I errors, it suffices to test

H0 : θ1− θ2 = θ2− θ3 = 0

as opposed to testing

H0 : θ1− θ2 = θ2− θ3 = θ1− θ3 = 0,

the hypothesis that all pairwise differences are zero. However, if groups differ, then
rearranging the groups could alter the conclusions reached if the first of these hypotheses is
tested. For example, if the groups have means 6, 4, and 2, then the difference between groups
one and two, as well as two and three, is 2. But the difference between groups one and three
is 4, so comparing groups one and three could mean more power. That is, we might not reject
when comparing group one to two and two to three, but we might reject if instead we compare
one to three and two to three. To help avoid different conclusions depending on how the
groups are arranged, all pairwise differences among the groups were used. However, a
consequence of using all pairwise differences is that situations are encountered where the
covariance matrix, used when computing Mahalanobis distance, is singular. This problem can
be avoided by replacing Mahalanobis distance with the projection distance described in
Section 6.2.5.

7.6.1 R Functions b1way and pbadepth

The R function b1way performs the first of the percentile bootstrap methods described in the
previous subsection. It has the general form

b1way(x,est=onestep,alpha=0.05,nboot=599)

where x is any R variable that is a matrix (with J columns) or has list mode, alpha defaults to
0.05, and nboot, the value of B, defaults to 599. The argument est is any R function that
computes a measure of location. It defaults to onestep, the one-step M-estimator with
Huber’s 9.

The function

pbadepth(x,est=onestep,con=0,alpha=0.05,nboot=2000,grp=NA,op=1,allp=T,
MM=F,MC=F,cop=3,SEED=T,na.rm=F,...)

performs the other percentile bootstrap method and uses the one-step M-estimator by default.
As usual, the argument ... can be used to reset default settings associated with the estimator
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being used. The argument allp indicates how the null hypothesis is defined. Setting allp=T, all
pairwise differences are used. Setting allp=F, the function tests

H0 : θ1− θ2 = θ2− θ3 = · · · = θJ−1− θJ = 0.

The argument op determines how the depth of a point is measured within a bootstrap cloud.
The choices are:

• op=1, Mahalanobis depth.
• op=2, Mahalanobis depth but with the usual covariance matrix replaced by the MCD

estimate.
• op=3, projection depth computed via the function pdis (That is, use the measure of depth

described in Section 6.2.5.)

The default is op=1 to reduce execution time. Using op=3 avoids a computational error that
can occur when the argument allp = T: in some situations, S−1 (as described in the previous
section) cannot be computed. This event appears to be rare with J ≤ 4, but it can occur. This
problem might be avoided by setting allp=F, but in terms of power, this has practical
concerns already described. With op=3, a measure of depth is used that does not require
inverting a matrix. Given the speed of modern computers, perhaps using op=3 routinely is
reasonable. If access to a multicore processor is available, setting the argument MC=T will
reduce execution time. (Another option is to use the multiple comparison procedure in
Section 7.6.2, which again does not require inverting a matrix.)

n Example

The command b1way(x,est=hd) would test the hypothesis of equal medians using the
Harrell–Davis estimator. For the data in Table 7.7, it reports a test statistic of H = 329
and a critical value of 3627. The command b1way(x) would compare M-measures of
location instead.

n

7.6.2 M-estimators and Multiple Comparisons

This section describes two bootstrap methods for performing multiple comparisons that
perform relatively well when comparing M-estimators. The first is based in part on a variation
of bootstrap-t method that uses bootstrap estimates of the standard errors. (For relevant
simulation results, see Wilcox, 1993d.) The other does not use estimated standard errors but
rather relies on a variation of the percentile bootstrap method.
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Variation of a Bootstrap-t Method

For the j th group, generate a bootstrap sample in the usual way and compute µ̂∗mj , the
M-estimate of location. Repeat this B times yielding µ̂∗mjb, b = 1, . . . B. Let

τ̂ 2
j =

1

B−1

B∑
b=1

(µ̂∗mjb− µ̄
∗)2,

where µ̄∗ =
∑

b µ̂
∗

mjb/B. Let

H∗jkb =
|µ̂∗mjb− µ̂

∗

mkb− (µ̂mj − µ̂mk)|√
τ̂ 2

j + τ̂
2
k

,

and

H∗b =max H∗jkb,

where the maximum is taken over all j < k. Put the H∗b values in order yielding
H∗(1) ≤ · · · ≤ H∗(B). Let u = (1−α)B, rounded to the nearest integer. Then a confidence
interval for µmj −µmk is

(µ̂mj − µ̂mk)±H∗(u)

√
τ̂ 2

j + τ̂
2
k ,

and the simultaneous probability coverage is approximately 1−α. With α = 0.05, it seems
that B = 399 gives fairly good probability coverage when all of the sample sizes are greater
than or equal to 21.

The same method appears to perform well when using the Harrell–Davis estimate of the
median. The extent to which it performs well when estimating other quantiles has not been
determined.

Linear contrasts can be examined using a simple extension of the method for performing all
pairwise comparisons. Let

9k =

J∑
j=1

c jkµmj ,

k = 1, . . . ,C , be C linear combinations of the M-measures of location. As in Section 7.4,
the constants c jk are chosen to reflect linear contrasts that are of interest, and for fixed k,∑

c jk = 0. Included as a special case is the situation where all pairwise comparisons are to be
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performed. As before, generate bootstrap samples yielding µ̂∗mjb, b = 1, . . . , B, and τ̂ 2
j ,

j = 1, . . . , J . Let

9̂k =

J∑
j=1

c jkµ̂mj ,

9̂∗kb =

J∑
j=1

c jkµ̂
∗

mjb,

and

H∗kb =
|9̂∗kb− 9̂k |∑

c2
jk τ̂

2
j

.

Let
H∗b =max H∗kb,

where the maximum is taken over all k, k = 1, . . . ,C . Then a confidence interval for 9k is

9̂k±H∗(u)

√∑
c2

jk τ̂
2
k ,

where again u = (1−α)B, rounded to the nearest integer.

A Percentile Bootstrap Method: Method SR

When comparing modified one-step M-estimators, or M-estimators, if the sample sizes are
small, an alternative bootstrap method appears to compete well with the method just
described. Imagine that hypotheses for each of C linear contrasts are to be tested. For the cth
hypothesis, let 2 p̂∗c be the usual percentile bootstrap estimate of the p-value. Put the p̂∗c values
in descending order yielding p̂∗[1] ≥ p̂∗[2] ≥ · · · ≥ p̂∗[C]. Decisions about the individual
hypotheses are made as follows. If p̂∗[1] ≤ α1, where α1 is read from Table 7.13, reject all C of
the hypotheses. Put another way, if the largest estimated p-value, 2 p̂∗[1], is less than or equal to
α, reject all C hypotheses. If p̂∗[1] > α1, but p̂∗[2] ≤ α2, fail to reject the hypothesis associated
with p̂∗[1], but the remaining hypotheses are rejected. If p̂∗[1] > α1 and p̂∗[2] > α2, but p̂∗[3] ≤ α3,
fail to reject the hypotheses associated with p̂∗[1] and p̂∗[2], but reject the remaining hypotheses.
In general, if p̂∗[c] ≤ αc, reject the corresponding hypothesis and all other hypotheses having
smaller p̂∗m values. For other values of α (assuming c > 1) or for c > 10, use

αc =
α

c

(which corresponds to a slight modification of a sequentially rejective method derived by
Hochberg, 1988.) This will be called Method SR.
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Table 7.13: Values of αc for
α = 0.05 and 0.01.

c α = 0.05 α = 0.01

1 0.02500 0.00500
2 0.02500 0.00500
3 0.01690 0.00334
4 0.01270 0.00251
5 0.01020 0.00201
6 0.00851 0.00167
7 0.00730 0.00143
8 0.00639 0.00126
9 0.00568 0.00112

10 0.00511 0.00101

Method SR, just described, has the advantage of providing type I error probabilities close to
the nominal level for a fairly wide range of distributions. It is not recommended, however,
when the sample sizes are reasonably large, say greater than about 80. Method SR does not
conform to any known multiple comparison procedure; it represents a slight modification of a
method derived by Rom (1990) that was designed for small sample sizes. But as the sample
sizes get large, the actual familywise error rate (FWE), appears to converge to a value greater
than the nominal level. Consequently, if any sample size is greater than 80, use the first of the
two methods outlined here, or a percentile bootstrap with Hochberg’s method, or perhaps the
Benjamini–Hochberg method, which are described in Section 7.4.7.

7.6.3 R Functions linconm and pbmcp

The R function

linconm(x,con=0,est=mest,alpha=0.05,nboot=399,...)

computes confidence intervals for measures of location using the first of the methods
described in the previous subsection. As usual, x is any R variable that is a matrix or has list
mode, and con is a J -by-C matrix containing the contrast coefficients of interest. If con is not
specified, all pairwise comparisons are performed. The argument est is any estimator which
defaults to the one-step M-estimator if unspecified. Again alpha is α and defaults to 0.05, and
nboot is B which defaults to 399. The final argument, . . . , can be any additional arguments
required by the argument est. For example, linconm(w) will use the data stored in the R
variable w to compute confidence intervals for all pairwise differences between M-measures
of location. The command linconm(w,est=hd) will compute confidence intervals for medians
based on the Harrell–Davis estimator, while linconm(w,est=hd,q=0.7) computes confidence
intervals for the difference between the 0.7 quantiles, again using the Harrell–Davis estimator.
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The command linconm(w,bend=1.1) would use an M-estimator, but the default value for the
bending constant in Huber’s 9 would be replaced by 1.1.

The function

pbmcp(x, alpha = 0.05, nboot = NA, grp = NA, est = mom, con = 0,bhop = F, ...)

performs multiple comparisons using method SR described in the previous section. (Method
SR should not be used when comparing trimmed means.) By default, all pairwise comparisons
are performed, but a collection of linear contrasts can be specified via the argument con which
is used as illustrated in Section 7.4.1. With bhop=F, method SR is used, and setting bhop=T,
the Benjamini–Hochberg method is applied instead, which is described in Section 7.4.7.

7.6.4 M-Estimators and the Random Effects Model

Little has been done to generalize the usual random effects model to M-estimators. The
approach based on the Winsorized expected value does not readily extend to M-estimators
unless restrictive assumptions are made. Bansal and Bhandry (1994) consider M-estimation of
the intraclass correlation coefficient, but they assume sampling is from an elliptical and
permutationally symmetric probability density function.

7.6.5 Other Methods for One-Way Designs

The methods described in this section are far from exhaustive. For completeness, it is noted
that Keselman, Wilcox, Othman, and Fradette (2002) compared 56 methods based on means,
trimmed means with various amount of trimming, and even asymmetric trimming, and two
methods based on MOM. Some of the more successful methods, as measured by the ability to
control the probability of a type I error, were based on trimmed means used in conjunction
with transformations studied by Hall (1992) and Johnson (1978). More results supporting the
use of these transformation can be found in Guo and Luh (2000) and Luh and Guo (1999).

7.7 M-Measures of Location and a Two-Way Design

As was the case when dealing with one-way designs, comparing M-measures of location
in a two-way design requires, at the moment, some type of bootstrap method to control the
probability of a type I error, at least when the sample sizes are small. (There are no results on
how large the sample sizes must be to avoid the bootstrap.) The method described here was
initially used with M-measures of location, but it can be applied when comparing any measure
of location, including trimmed means and the modified one-step M-estimator (MOM).
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Let θ be any measure of location and let

ϒ1 =
1

K
(θ11+ θ12+· · ·+ θ1K ),

ϒ2 =
1

K
(θ21+ θ22+· · ·+ θ2K ),

...

ϒJ =
1

K
(θJ1+ θJ2+· · ·+ θJK).

So ϒ j is the average of the K measures of location associated with the j th level of Factor A.
The hypothesis of no main effects for Factor A is

H0 : ϒ1 = ϒ2 = · · · = ϒJ .

and one variation of the percentile bootstrap method is to test this hypothesis using a slight
modification of the method in Section 7.6. For example, one possibility is to test

H0 :11 = · · · =1J−1 = 0, (7.11)

where

1 j = ϒ j −ϒ j+1,

j = 1, . . . , J −1. Briefly, generate bootstrap samples in the usual manner yielding 1̂∗j , a
bootstrap estimate of 1 j . Then proceed as described in Section 7.6. That is, determine how
deeply 0= (0, . . . ,0) is nested within the bootstrap samples. If 0 is relatively far from the
center of the bootstrap samples, reject.

For reasons previously indicated, the method just described is satisfactory when dealing
with the probability of a type I error, but when the groups differ, this approach might be
unsatisfactory in terms of power depending on the pattern of differences among the ϒ j

values. One way of dealing with this issue is to compare all pairs of the ϒ j instead. That is,
for every j < j ′, let

1 j j ′ = ϒ j −ϒ j ′,

and then test

H0 :112 =113 = · · · =1J−1,J = 0. (7.12)

Of course, a similar method can be used when dealing with Factor B.
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Now a test of the hypothesis of no interaction is described. For convenience, label the JK
measures of location as follows:

Factor B

θ1 θ2 · · · θK

Factor θK+1 θK+2 · · · θ2K

A ...
... · · ·

...

θ(J−1)K+1 θ(J−1)K+2 · · · θJ K

Let CJ be a (J −1)-by-J matrix having the form


1 −1 0 0 . . . 0
0 1 −1 0 . . . 0

...

0 0 . . . 0 1 −1

 .

That is, ci i = 1 and ci,i+1 =−1; i = 1, . . . , J −1 and CK is defined in a similar fashion. One
approach to testing the hypothesis of no interactions is to test

H0 :91 = · · · =9(J−1)(K−1) = 0,

where

9L =
∑

cL`θ`,

L = 1, . . . , (J −1)(K −1), `= 1, . . . , JK, and cL` is the entry in the Lth row and `th
column of CJ ⊗CK . So in effect we have a situation similar to that in Section 7.6. That is,
generate bootstrap samples yielding 9̂∗L values, do this B times, and then determine how
deeply 0= (0, . . . ,0) is nested within these bootstrap samples.

A criticism of this approach is that when groups differ, not all relevant differences are being
tested which might affect power. A strategy for dealing with this problem is for every j < j ′

and k < k ′, set

9 j j ′kk′ = θ jk− θ jk′+ θ j ′k− θ j ′k′

and then test

H0 :91212 = · · · =9J−1,J,K−1,K = 0. (7.13)
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7.7.1 R Functions pbad2way and mcp2a

The R function

pbad2way(J,K,x,est=mom,conall=T,alpha=0.05,nboot=2000,grp=NA,...)

performs the percentile bootstrap method just described, where J and K indicate the number
of levels associated with Factors A and B. The argument conall=T indicates that all possible
pairs are to be tested, as described, for example, by Eq. (7.13), and conall=F means that the
hypotheses having the form given by Eq. (7.11) will be used instead. The remaining
arguments are the same as those used in the function pbadepth described in Section 7.6.1.

n Example

The data in Exercise 12, at the end of this chapter, are used to illustrate the R function
pbad2way. The study involves a 2-by-2 design with weight gain among rats the outcome
of interest. The factors are source of protein (beef vs. cereal) and amount of protein
(high vs. low). Storing the data in the R variable weight, the command

pbad2way(2,2,weight,est=median)

tests all relevant hypotheses using medians. It is left as an exercise to verify that when
using R, the p-values for Factors A and B are .39 and .056, respectively. The test for no
interaction has a p-value of .16.

n

For convenience, when working with a two-way design, the function

mcp2a(J,K,x,est=mom,con=0,alpha=0.05,nboot=NA, grp=NA,...)

is supplied for performing all pairwise comparisons for both factors and all interactions. The
arguments are generally the same as those used by pbad2way. One difference is that the
number of bootstrap samples is determined by the function unless a value for nboot is
specified. Another is that if con=0, all pairwise differences, and all tetrad differences when
dealing with interactions, are tested. If a particular set of C linear contrasts is of interest, they
can be specified by con, a JK-by-C matrix.

7.8 Ranked-Based Methods for a One-Way Design

This section describes some rank-based methods for a one-way design. The classic method
is the Kruskall–Wallis test, which is satisfactory, in terms of controlling the probability of a
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type I error, when comparing groups having identical distributions. But when the distributions
differ, under general conditions an incorrect estimate of the standard errors is being used,
which might adversely affect power. A method aimed at improving the Kruskall–Wallis test
was derived by Rust and Fligner (1984), assuming that tied values occur with probability
zero. The explicit goal stated by Rust and Fligner is to test the hypothesis that J groups have a
common median, but under general conditions it fails to do this in a satisfactory manner.
Letting p jk = P(X i j < X ik), their technique is appropriate for testing the hypothesis that for
all J groups, p jk = .5. However, their method is based on the assumption that the
distributions of the J groups differ in location only. If this assumption is violated, in essence
the Rust–Fligner method is testing the hypothesis that the groups have identical distributions.
A possible appeal of their method is that it is asymptotically distribution free under weaker
conditions than the Kruskall–Wallis test.

A rank-based method that can handle tied values was derived by Brunner, Dette, and Munk
(1997). Extensive comparisons with the Rust–Fligner method, when ties occur with
probability zero, have not been made. With small sample sizes, the choice of method might
make a practical difference, but a detailed study of when this is the case has yet to be
performed. Here it is merely remarked that situations can be constructed where, with a
common sample size of 50, the choice of method makes a practical difference. For example,
the Rust–Fligner method can reject at the .05 level, even though the Brunner et al. method has
a p-value equal to .188. Even for normal distributions with unequal variances, the p-values
resulting from these two methods can differ substantially.

7.8.1 The Rust–Fligner Method

The basic idea is that if for any x ,

H0 : F1(x)= · · · = FJ (x),

is true, meaning that all J groups have identical distributions, and if ranks are assigned based
on the pooled data, then the average ranks among the groups should not differ by too much.
Table 7.14 describes how to calculate the test statistic, Q. This method can have relatively
good power when sampling from heavy-tailed distributions. Because hypothesis testing
methods based on robust measures of location are sensitive to different situations, compared
with a method based on the average ranks, the Rust–Fligner method can have more power
than methods based on robust measures of location, but there are situations where the reverse
is true. That is, in terms of maximizing power, the choice of method depends on how the
groups differ, which is not known.
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Table 7.14: How to Compute the Rust–Fligner Test Statistic.

Let V (x)= 1 if x ≥ 0, otherwise V (x)= 0. Let

Ri j =

J∑
`=1

n∑̀
m=1

V (X i j − Xm`)

be the rank of X i j among the pooled observations. Let

R̄. j =

∑
i

Ri j/n j , U j =
n j

N (N +1)
(R̄. j − R̄),

where R̄ is the average of all the ranks. Let

Pi j` =

n∑̀
m=1

V (X i j − Xm`), Ti j =

J∑
`, 6̀= j

Pi j`,

where the notation
∑

`,` 6= j means summation over all values of ` not equal to j . Let N =
∑

n j be the total
number of observations. Compute the matrix A= (a jk), where

N 3a j j =

n j∑
m=1

(Tmj − T̄. j )
2
+

∑
`,` 6= j

n∑̀
m=1

(Pm`j − P̄.`j )
2,

and for j 6= k

N 3a jk =

∑
`, j 6= 6̀=k

∑
m

(Pm`j − P̄.`j )(Pm`k− P̄.`k)

−

∑
m

(Pmjk− P̄. jk)(Tmj − T̄. j )−
∑

m

(Pmkj − P̄.k j )(Tmk− T̄.k),

where P̄. j` =
∑

i Pi j`/n j , and T̄. j =
∑

i Ti j/n j . Letting U= (U1, . . . ,UJ ), the test statistic is

Q = N

(
J∏

j=1

n j −1

n j

)
UA−U′,

where A− is any generalized inverse of A. (See e.g., Graybill, 1983, for information about the generalized
inverse of a matrix.) When the null hypothesis is true, Q has, approximately, a chi-square distribution with
J −1 degrees of freedom. That is, reject H0 if Q exceeds the 1−α quantile of a chi-square distribution having
J −1 degrees of freedom.

7.8.2 R Function rfanova

The R function

rfanova(x,grp)
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performs the calculations in Table 7.14, where x is any R variable that is a matrix (with J
columns), or a data frame, or x has list mode. The argument grp indicates which groups are to
be used. If grp is unspecified, all J groups are used. (If tied values are detected, the function
prints a warning message.) The function returns the value of the test statistic, Q, and the
p-value.

n Example

Table 7.6 contains data for eight groups of participants. If the data for the �rst group
are stored in the R variable �lm[[1]], the data for the second group in �lm[[2]], and so
on, the function rfanova reports that the test statistic is Q = 10.04 and the p-value is
.19. The command rfanova(�lm,grp=c(1,3,4)) would compare groups 1, 3, and
4 only.

n

7.8.3 A Heteroscedastic Rank-Based Method that Allows Tied Values

Brunner, Dette, and Munk (1997) derived a heteroscedastic analog of the Kruskal–Wallis test
that allows tied values. Like the Rust–Fligner method, the basic idea is that if

H0 : F1(x)= · · · = FJ (x),

is true, then the average ranks among the groups should not differ by too much. Again, pool
the data and assign ranks. In the event there are tied values, midranks are used. Let Ri j be the
resulting rank of X i j . The remaining calculations are relegated to Table 7.15.

7.8.4 R Function bdm

The R function

bdm(x)

performs the BDM rank-based ANOVA described in Table 7.15. Here, x can have list mode
or it can be a matrix with columns corresponding to groups. The function returns the value of
the test statistic, the degrees of freedom, the vector of relative effects, which is labeled q.hat,
and the p-value.
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Table 7.15: How to Perform the Brunner–Dette–Munk Test.

Let

R̄ j =
1

n j

n j∑
i=1

Ri j .

Q=
1

N

(
R̄1−

1

2
, . . . , R̄J −

1

2

)
.

The vector Q contains what are called the relative effects. For the jth group, compute

s2
j =

1

N 2(n j −1)

n j∑
i=1

(Ri j − R̄ j )
2,

and let

V= Ndiag

{
s2

1

n1

, . . . ,
s2

J

n J

}
.

Let I be a J -by-J identity matrix, let J be a J -by-J matrix of 1s, and set M= I− 1
J
J. (The diagonal entries in

M have a common value, a property required to satisfy certain theoretical restrictions.) The test statistic is

F =
N

tr(M2
11V)

QMQ′, (7.14)

where tr indicates trace and Q′ is the transpose of the matrix Q. The null hypothesis is rejected if F ≥ f , where
f is the 1−α quantile of an F distribution with

ν1 =
M11[tr(V)]2

tr(MVMV)
,

and

ν2 =
[tr(V)]2

tr(V23)
,

degrees of freedom and 3= diag{(n1−1)−1, . . . , (n J −1)−1
}.

n Example

In schizophrenia research, an issue that has received some attention is whether groups
of individuals differ in terms of skin resistance (measured in Ohms). In one such
study, the groups of interest were no schizophrenic spectrum disorder, schizotypal or
paranoid personality disorder, schizophrenia, predominantly negative symptoms, and
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schizophrenia, predominantly positive symptoms. For a portion of this study, the
following results were obtained (after measures were transformed):

(No Schiz.) (Schizotypal) (Schiz. Neg.) (Schiz. Pos.)

0.49959 0.24792 0.25089 0.37667
0.23457 0.00000 0.00000 0.43561
0.26505 0.00000 0.00000 0.72968
0.27910 0.39062 0.00000 0.26285
0.00000 0.34841 0.11459 0.22526
0.00000 0.00000 0.79480 0.34903
0.00000 0.20690 0.17655 0.24482
0.14109 0.44428 0.00000 0.41096
0.00000 0.00000 0.15860 0.08679
1.34099 0.31802 0.00000 0.87532

The function bdm returns a p-value of .040. The relative effect sizes (the Q values) are
reported as

$output$q.hat:
[,1]

[1,] 0.4725
[2,] 0.4725
[3,] 0.3550
[4,] 0.7000

So the average of the ranks in group 3 is smallest, and the average is highest for group 4.
n

7.8.5 Inferences about a Probabilistic Measure of Effect Size

Method CHMCP

Consider J independent groups. For groups j and k (1≤ J < k ≤ J ), let

p jk = P(X i j < X ik)+ .5P(X i j = X ik).

As noted in Section 5.7.2, Cliff’s method can be used to

H0 : p jk = .5 (7.15)

and to compute a confidence interval for p jk . But imagine that it is desired to test Eq. (7.15)
for all j < k, with the goal that the probability of one or more type I errors is α. A simple
method, that seems to be relatively effective, is to compute p-values for each test and use
Hochberg’s method, described in Section 7.4.7, to control the probability of one or more type
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I errors. This will be called method CHMCP. It has been found to be generally preferable to
using a Studentized maximum modulus distribution as suggested in Wilcox (2003); see
Wilcox (2010d).

Method WMWAOV

It is briefly noted how one might test

H0 : p12 = p13 = · · · = pJ−1,J = .5. (7.16)

Wilcox (2010d) examined several methods for accomplishing this goal, but only the method
that performed well in simulations is described here. A limitation of the method is that it
assumes tied values never occur; it can perform poorly, in terms of controlling the probability
of a type I error, when this is not the case.

For the j th and kth groups, let D jk be the distribution of X j − Xk . Recall from Section 5.7.2
that p jk = .5 corresponds to θ jk = 0, where θ jk is the (population) median of D jk . (As
pointed out in Section 5.7.2, under general conditions, θ jk 6= θ j − θk .) So testing Eq. (7.16) is
tantamount to testing

H0 : θ12 = θ13 = · · · = θJ−1,J = 0. (7.17)

Let X i j (i = 1, . . . ,n j ; j = 1, . . . , J ) be a random sample of size n j from the j th group.
Generate a bootstrap sample from j th group by randomly sampling with replacement n j

observations from X1 j , . . . , Xn j j , which will be labeled X∗1 j , . . . , X∗n j j . Let M∗jk , j < k, be the
the usual sample median based on the n j nk differences X∗i j − X∗`k (i = 1, . . . ,n j ;
`= 1, . . . ,nk). Repeat this process B times yielding M∗jkb, b = 1, . . . , B. So M∗jkb represents

B vectors, each having length (J 2
− J )/2. From Liu and Singh (1997), a p-value for testing

Eq. (7.17) can be obtained by measuring how deeply 0= (0, . . . ,0) is nested within the
bootstrap cloud of points. More precisely, let G0 be the depth of the null vector (0, . . . ,0)
based on the notion of projection distance as described in Section 6.2.5. The projection
distance of M∗b = (M

∗

12b, . . .M
∗

J−1,K b) from the center of the bootstrap data cloud is denoted
by Gb. Then a p-value is

1

B

∑
Ib,

where the indicator function Ib = 1 if G0 < Gb; otherwise Ib = 0. This will be called method
WMWAOV. Though seemingly rare, it is possible for method WMWAOV to correctly reject
even though method CHMCP finds no differences.

Method DBH

When performing all pairwise comparisons, there is a variation of method WMWAOV that
should be mentioned. For each pair of groups, apply method WMWAOV and control the
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probability of one or more type I errors using Hochberg’s method. This will be called method
DBH. Note that with only two groups, a p-value can be computed as described, for example,
in Section 4.4.1. (If p̂∗ is the proportion of M∗12b values less than 0, the p-value is
2min( p̂∗,1− p̂∗).) Simulation results indicate that the actual probability of one or more type I
errors will be closer to the nominal level compared with method CHMCP (Wilcox, 2010d).
Moreover, method DBH might provide a bit more power. But DBH is not recommended when
tied values can occur.

7.8.6 R Functions cidmulv2, wmwaov and cidM

The R function

cidmulv2(x,alpha=0.05,g=NULL,dp=NULL,CI.FWE=F)

tests Eq. (7.15). The output includes a column headed by p.crit, which indicates how small
the p-value must be to reject using Hochberg’s method. If the argument CI.FWE=F, the
function returns confidence intervals for each p jk having probability coverage 1−α. If
CI.FWE=T, the probability coverage corresponds to the “critical” p-value used to make
decisions about rejecting Eq. (7.15) based on Hochberg’s method. For example, if the goal is
to have the probability of one or more type I errors equal to .05, and if the second largest
p-value is less than or equal to .025, Hochberg’s method rejects. The confidence interval
returned by cidmulv2, for the two groups corresponding to the situation having the second
largest p-value, will have probability coverage 1− .025= .975. For the next largest p-value,
the probability coverage will be 1− .05/3, and so on. If the argument g is specified, it is
assumed that x is a matrix with the dependent variable stored in column dp and the levels of
the factors stored in column g.

The R function

wmwaov(x,nboot=500,MC=F,SEED=T,pro.dis=T,MM=F)

performs the WMWAOV method. Setting the argument MC=T, the function takes advantage
of a multicore processor, assuming one is available.

Finally, the R function

cidM(x,nboot=1000,alpha=0.05,MC=F,SEED=T,g=NULL,dp=NULL)

performs method DBH. (Both wmwaov and cidM check for tied values and print a warning
message if any are found.)
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7.9 A Rank-Based Method for a Two-Way Design

This section describes a rank-based method for a two-way design derived by Akritas, Arnold,
and Brunner (1997). The basic idea stems from Akritas and Arnold (1994) and is based on the
following point of view. For any value x , let

F̄ j.(x)=
1

K

K∑
k=1

F jk(x)

be the average of the distributions among the K levels of Factor B corresponding to the j th
level of Factor A. The hypothesis of no main effects for Factor A is

H0 : F̄1.(x)= F̄2.(x)= · · · = F̄J.(x).

for any x . Letting

F̄.k(x)=
1

J

J∑
j=1

F jk(x)

be the average of the distributions for the kth level of Factor B, the hypothesis of no main
effects for Factor B is

H0 : F̄.1(x)= F̄.2(x)= · · · = F̄.K (x).

As for interactions, first consider a 2-by-2 design. Then no interaction is taken to mean that
for any x ,

F11(x)− F12(x)= F21(x)− F22(x),

which has a certain similarity to how no interaction based on means is defined. Here, no
interaction in a J -by-K design means that for any two rows and any two columns, there is no
interaction as just described. From a technical point of view, a convenient way of stating the
hypothesis of no interactions among all JK groups is with

H0 : F jk(x)− F̄ j.(x)− F̄.k(x)+ F̄..(x)= 0,

for any x , all j ( j = 1, . . . , J ) and all k (k = 1, . . . ,K ), where

F̄..(x)=
1

J K

J∑
j=1

K∑
k=1

F jk(x).

The computations begin by pooling all of the data and assigning ranks. For convenience, let
L = JK and let Ri` be the ranks of the `th group (`= 1, . . . , L), where the first K groups
correspond to the first level of the first factor, the next K correspond to the second level of the
first factor, and so on. Let

R̄` =
1

n`

∑
Ri`
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and

s2
` =

1

N 2(n`−1)

∑
(Ri`− R̄`)

2,

where N =
∑

n` is the total sample size. Set

V= Ndiag

{
s2

1

n1
, . . . ,

s2
L

nL

}
.

Let IJ be a J-by-J identity matrix, let HJ be a J-by-J matrix of ones, and let

PJ = IJ −
1

J
HJ , MA = PJ ⊗

1

K
HK ,

MB =
1

J
HJ ⊗PK , MAB = PJ ⊗PK .

(The notation ⊗ refers to the right Kronecker product.)

The remaining calculations are summarized in Table 7.16.

Table 7.16: Two-Way, Heteroscedastic, Rank-Based ANOVA.

Let

Q=
1

N

(
R̄1−

1

2
, . . . , R̄L −

1

2

)
be the relative effects. The test statistics are as follows:

FA =
N

tr(MA11V)
QMAQ′, FB =

N

tr(MB11V)
QMBQ′,

FAB =
N

tr(MAB11V)
QMABQ′.

For Factor A, reject if FA ≥ f , where f is the 1−α quantile of an F distribution with degrees of freedom

ν1 =
M2

A11[tr(V)]2

tr(MAVMAV)
, ν2 =

[tr(V)]2

tr(V23)
,

where 3 = diag{(n1 − 1)−1, . . . , (nL − 1)−1
}. Here MA11 is the �rst diagonal element of the matrix MA. (By

design, all of the diagonal elements of MA have a common value.) For Factor B, reject if FB ≥ f , where

ν1 =
M2

B11[tr(V)]2

tr(MBVMBV)
.

(The value for ν2 remains the same.) As for the hypothesis of no interactions, reject if FAB ≥ f , where now

ν1 =
M2

AB11[tr(V)]2

tr(MABVMABV)
.

and ν2 is the same value used to test for main effects.
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7.9.1 R Function bdm2way

The R function

bdm2way(J, K, x)

performs the two-way ANOVA method described in Table 7.16.

7.9.2 The Patel–Hoel Approach to Interactions

Patel and Hoel (1973) proposed an alternative approach to interactions in a 2-by-2 design that
can be extended to a multiple comparisons method for a J -by-K design, even when there are
tied values. First consider a 2-by-2 design where X i jk is the i th observation randomly
sampled from the j th level of Factor A and the the kth level of Factor B. Temporarily assume
ties occur with probability zero and let

p11,12 = P(X i11 < X i12).

Note that ignoring level two of Factor A, levels one and two of Factor B can be compared by
testing H0: p11,12 = 0 as described in Sections 5.7. The Patel–Hoel definition of no interaction
is that p11,12 = p21,22. That is, the probability of an observation being smaller under level one
of Factor B, versus level two, is the same for both levels of Factor A. In the event ties can
occur, let

p11,12 = P(X i11 ≤ X i12)+
1

2
P(X i11 = X i12),

p21,22 = P(X i21 ≤ X i22)+
1

2
P(X i21 = X i22),

in which case the hypothesis of no interaction is

H0 : p11,12 = p21,22.

Again, temporarily ignore level two of Factor A and note that the two independent groups
corresponding to the two levels of Factor B can be compared in terms of δ as described in
Section 5.7.2. Let δ1 represent δ when focusing on level one of Factor A with level two
ignored and let δ̂1 be the estimate of δ as given by Eq. (5.19). An estimate of the squared
standard error of δ̂1, σ̂ 2

1 , is described in Section 5.7.2 as well. Similarly, let δ2 be the estimate
of δ2 when focusing on level two of Factor A ,with level one ignored, and denote its estimate
with δ̂2. The estimated squared standard error of δ̂2 is denoted by σ̂ 2

2 . It can be seen that the
null hypothesis of no interaction just defined corresponds to

H0 :1=
δ2− δ1

2
= 0.
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An estimate of p11,12− p21,22 is

1̂=
δ̂2− δ̂1

2
,

and the estimated squared standard error of 1̂ is

S2
=

1

4

(
σ̂ 2

1 + σ̂
2
2

)
,

and a 1−α confidence interval for 1 is

1̂± z1−α/2S,

where z1−α/2 is the 1−α/2 quantile of a standard normal distribution. The hypothesis of no
interaction is rejected if this confidence interval does not contain zero.

For the more general case of a J -by-K design, an analog of Dunnett’s T3 method is used to
control FWE. When working with levels j and j ′ of Factor A and levels k and k ′ of Factor B,
we represent the parameter 1 by 1 j j ′kk′ , its estimate is labeled 1̂ j j ′kk′ , and the estimated
squared standard error is denoted by S2

j j ′kk′ . For every j < j ′ and k < k ′, the goal is to test

H0 :1 j j ′kk′ = 0.

The total number of hypotheses to be tested is

C =
J 2
− J

2
×

K 2
−K

2
.

The critical value, c, is the 1−α quantile of the C-variate Studentized maximum modulus
distribution with degrees of freedom ν =∞. The confidence interval for 1 j j ′kk′ is

1̂ j j ′kk′± cS j j ′kk′,

and the hypothesis of no interaction, corresponding to levels j and j ′ of Factor A and levels k
and k ′ of Factor B, is rejected if this confidence interval does not contain zero.

7.9.3 R Function rimul

The R function

rimul(J,K,x,p=J*K,grp=c(1:p),plotit=T,op=4)

performs the test for interactions just described. (The argument, p=J*K, is not important in
applied work; it is used to deal with certain conventions in R.) The groups are assumed to be
arranged as in Section 7.2.1, and the argument grp is explained in Section 7.2.1 as well. If
J = K = 2 and plotit=T, the function plots an estimate of the distribution of Di1 =

X i11− X i12 and Di2 = X i21− X i12 via the function g2plot in Section 5.1.7. The argument op
is relevant to g2plot and controls the type of plot that is created.
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7.10 MANOVA Based on Trimmed Means

Multivariate analysis of variance, also known as MANOVA, deals with a generalization of
ANOVA to situations where two or more measures are taken on each participant. More
formally, consider J independent groups where, for each participant, p measures are taken.
For the j th group, denote the p trimmed means by µ j = (µt j1, . . . ,µt j p). The goal is to test

H0 : µ1 = · · · = µJ . (7.18)

Johansen (1980) derived a method for means that allows the covariances associated with the
J groups to differ, in contrast to classic methods that assume the J groups have a common
covariance matrix. The method represents a heteroscedastic approach to what is called the
general linear model. Johansen assumed normality, but the method can be extended to
trimmed means as described here. For the two-sample case, comparisons with a method
derived by Kim (1992b) as well as several other methods, are reported by Wilcox (1995f).
Lix, Keselman, & Hinds (2005) compared several methods based on both means and a 20%
trimmed mean, again for the two-sample case. No single method dominated and it is unclear
the extent the generalization of Johansen’s method used here competes well with the methods
compared by Lix et al.

The version of Johansen’s method used here, extended to trimmed means, is applied as
follows. For the j th group, there are n j randomly sampled vectors of observations denoted by
(X i j1, . . . X i j p), i = 1, . . . ,n j . Let X̄ j = (X̄ t j1, . . . , X̄ t j p) denote the vector of trimmed means
and let V j be the Winsorized covariance matrix. Compute

R̃ j =
n j −1

(n j −2g j )(n j −2g j −1)
V j ,

where g j = γ n j , rounded down to the nearest integer, and γ is the amount of trimming,

W j = R̃−1
j ,

W=
∑

W j

and

A =
1

2

J∑
j=1

[{tr(I−W−1W j )}
2
+ tr{(I−W−1W j )

2
}]/ f j ,

where f j = n j −2g j −1. The estimate of the population trimmed means, assuming H0 is
true, is

µ̂t =W−1
∑

W j X̄ j .
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The test statistic is

F =
J∑

j=1

p∑
k=1

p∑
m=1

wmkj (X̄mj − µ̂m)(X̄k j − µ̂k), (7.19)

where wmkj is the mkth element of W j , X̄mj is the mth element of X̄ j , and µ̂m is the mth
element of µ̂t . Reject the null hypothesis if

F ≥ c+
c

2p(J −1)

{
A+

3cA

p(J −1)+2

}
,

where c is the 1−α quantile of a chi-squared distribution with p(J −1) degrees of freedom.

Note that the MANOVA method based on trimmed means uses a measure of location that
does not take into account the overall structure of the data. Todorov and Filzmoser (2010)
derived a MANOVA method based on the MCD estimator, which does take into account the
overall structure, but their method assumes that groups differ in location only.

For the special case where the goal is to compare two groups only, Yanagihara and Yuan
(2005) derived a method for comparing means that compares well to several other
heteroscedastic methods, in terms of controlling the probability of a type I error, when
sampling from multivariate normal distributions. Currently, there are no published papers
comparing the small-sample properties of the extended Yanagihara and Yuan method to the
extension of Johansen’s method. (A few simulations were run by the author using a 20%
trimmed mean. Situations were found where the extended Yanagihara and Yuan method
provides more satisfactory control over the probability of a type I error, no situation has been
found where the reverse is true, but a more comprehensive study is needed.)

Let

T = (X̄1− X̄2)
′(R̃1+ R̃2)

−1(X̄1− X̄2),

V̄=
n2

n
V1+

n1

n
V2,

where n = n1+n2,

P1 =
n2

2(n−2)

n2(n1−1)
{tr(V1V̄−1)}2+

n2
1(n−2)

n2(n2−1)
{tr(V2V̄−1)}2,

P2 =
n2

2(n−2)

n2(n1−1)
tr(V1V̄−1V1V̄−1)+

n2
1(n−2)

n2(n2−1)
tr(V2V̄−1V2V̄−1),
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and

ν̂ =
(h−2− P1)

2

(h−2)P2− P1
,

where h = h1+h2 and h j = n j −2g j ( j = 1, 2). The test statistic, based on an extension of
the Yanagihara–Yuan method to trimmed means, is

T f =
n−2− P1

(n−2)p
T,

which has, approximately, an F distribution with p and ν̂ degrees of freedom when the null
hypothesis is true. When p = 1, this method reduces to Yuen’s method described in
Section 5.3.

7.10.1 R Functions MULtr.anova, MULAOVp, bw2list, and YYmanova

The R function

MULtr.anova(x, J = NULL, p = NULL, tr = 0.2, alpha = 0.05)

performs the robust MANOVA method based on the extension of Johansen’s method to
trimmed means. The argument J defaults to NULL, meaning that x is assumed to have list
mode with length J , where x[[j]] contains a matrix with n j rows and p columns,
j = 1, . . . , J . If the arguments J and p are specified, the data can be stored in list mode or a
matrix. If stored in list mode, it is assumed that x[[1]] - x[[p]] contain p measures associated
with the first group, x[[p+1]] - x[[2p]] contain the p measures for the next group, and so on. If
the data are stored in a matrix or data frame, it is assumed the first p columns of x contain the
p measures associated with the first group, the next p columns contain the p measures
associated with the second groups, and so forth.

The R function

MULAOVp(x, J = NULL, p = NULL, tr = 0.2)

performs the same robust MANOVA method as the R function MULtr.anova, only it returns a
p-value.

The R function

bw2list(x, grp.col, lev.col)

is provided to help with data management issues. If the data are stored in a matrix or data
frame, the argument grp.col indicates which column contains the group identification
information. The argument lev.col indicates the columns that contain the p measures that are
to be compared.
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n Example

Imagine that two independent groups are to be compared based on measures taken at
three different times. One way of comparing the groups is with a robust MANOVA
method. If the data for the �rst group are stored in the R variable m1, a matrix having 3
columns, and if the data for the second group are stored in m2, also having 3 columns,
the analysis can be performed as follows:

x=list()
x[[1]]=m1
x[[2]]=m2

MULtr.anova(x).

The function returns the test statistic and a critical value.
n

n Example

The web page http://stat.cmu.edu/DASL/allsubjects.html, maintained by Carnegie
Mellon University, includes a �le called scents. The �rst �ve columns of the data, for the
�rst row of the data, look like this:

ID Sex Smoker Opinion Age Order
1 M N pos 23 1

The next six columns for the �rst row look like this:

U.Trial.1 U.Trial.2 U.Trial.3 S.Trial.1 S.Trial.2 S.Trial.3
38.4 27.7 25.7 53.1 30.6 30.2.

These last six columns contain the time participants required to complete a pencil and
paper maze test when they were smelling a �oral scent and when they were not. The
columns headed by U.Trial.1 U.Trial.2 U.Trial.3 are the times for no scent, which were
taken on three different occasions. Here we compare smokers (Y) and nonsmokers (N)
based on all three of the no scent measures. So in the notation used here, J = 2 and
p = 3. The �rst task is storing the data in a manner that can used by the R functions
MULtr.anova and MULAOVp. Assuming the data have been stored in the R variable
called scent, in a data frame or a matrix, this can be accomplished with the
R command

z=bw2list(scent,3,c(7:9)).
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Then the R command

MULAOVp(z,2,3)

would compare the 20% trimmed means of smokers to nonsmokers. The p-value is .143.
n

The R function

YYmanova(x1, x2, tr=0.2)

performs the extension of the Yanagihara–Yuan MANOVA method to trimmed means, which
is limited to J = 2 groups. The data for the first group are stored in the argument x1, which is
assumed to be a matrix with p columns, as is the argument x2, which is assumed to be the
data for group 2.

7.10.2 Linear Contrasts

Consider again J independent groups where for each participant, p measures are taken. This
section deals with the goal of testing a set of linear contrasts in the context of multivariate
data. There are two variations. The first uses some marginal measure of location, such as a
trimmed or M-estimator, and the other uses some multivariate measure of location that takes
into account the overall structure of the data such as those summarized in Section 6.3.

For convenience only, attention is focused on the marginal trimmed means with the
understanding that any measure of location can be used. So now we let

9 =
∑

c jµt ,

where µt is a vector of p trimmed means and the goal is to test

H0 :9 = 0.

With 20% trimming, currently a relatively good approach aimed at achieving this goal is to
use a percentile bootstrap method. Generate a bootstrap sample by sampling with replacement
n j rows from p-variate data associated with the j th group. Compute the marginal trimmed
means and label the result X∗t , followed by

9̂∗ =
∑

c j X̄∗t .

Repeat B times yielding 9∗1 , . . . ,9
∗

B . Next, compute the Mahalanobis distance of each 9∗b
(b = 0, . . . , B), say d∗b , where d∗0 is the distance of the null vector. The center of the bootstrap
data cloud is taken to be 9̂, the estimate of 9 based on the observed data. And the covariance
matrix when computing the Mahalanobis distances is just the sample covariance matrix based
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on the 9∗b (b = 0, . . . , B) values. Let P∗ be the proportion of db values (b = 0, . . . , B) such
that d0 ≥ db. Then a p-value is 1− P∗.

This method is not recommended when using means. It appears to perform well when using a
reasonably robust measure of location, but if the breakdown point is close to zero, it can be
highly inaccurate.

Limited comparisons suggest that when comparing two groups, the bootstrap method
described here performs about as well as the extension of Johansen’s method when working
with 20% trimmed means in terms of controlling the probability of a type error and when
sampling from normal distributions. However, the p-values can differ substantially. In
simulations, for example, when sampling from normal distributions, Johansen’s method can
have a substantially larger p-value, but situations where the reverse is true are encountered
even though the ability of the two methods to control the type I error probability is similar. In
practical terms, even under normality, the choice of method is not academic in terms of
deciding whether to reject the null hypothesis.

Now consider a situation where p = 3, J = 2, n1 = 20, n2 = 40, the first group has a
multivariate normal distribution with common correlation ρ = 0, but the other groups is
generated from a g-and-h distribution with g = 0.5 and h = 0 (a skewed distribution with
relatively light tails) and ρ = 0.6. Further imagine that for the second group, the marginal
distributions are shifted so that they have a trimmed mean of zero. Then the probability of a
type I error when testing at the 0.05 level, and using the bootstrap method described here, is
.014 (based on 1000 replications). In contrast, the actual levels using the Yanagihara–Yuan
and Johansen methods are 0.053 and 0.045, respectively. A similar result is obtained when the
second group now has g = 0 and h = 0.5 (a symmetric distribution with relatively heavy
tails). Of course, this is not convincing evidence that the Yanagihara–Yuan and Johansen
methods are generally preferable to the bootstrap method. The only point is that there are
situations where indeed they have a practical advantage.

n Example

For the EEG data in Table 6.1, MULAOVp returns a p-value equal to .083. But using the
percentile bootstrap method described here, the p-value is .789. Situations are
encountered, however, where the percentile bootstrap method has a substantially
smaller p-value.

n

Note that for J > 2 groups, the Yanagihara–Yuan method can be used to perform all pairwise
comparisons with the probability of at least one type I error controlled by Rom’s method.
Limited simulations suggest that this approach performs relatively well in terms of type I
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errors and power, even with small sample sizes. However, the percentile bootstrap method can
be used with any robust estimator. Moreover, situations are encountered where both
Johansen’s method and the Yanagihara–Yuan method cannot be applied because the
Winsorized covariance matrix is singular. Because the percentile bootstrap method does not
use any covariance matrix, this problem is avoided.

7.10.3 R Functions linconMpb, linconSpb, YYmcp, fac2Mlist, and fac2BBMlist

The R function

linconMpb(x, alpha = 0.05, nboot = 1000, grp = NA, est = tmean, con = 0, bhop = F,
SEED = T, PDIS = F, J = NULL, p = NULL,...)

tests hypotheses, based on linear contrasts, using the percentile bootstrap method described in
the previous section, assuming that for each group, some marginal measure of location is
used. The argument x is assumed to have list mode, where x[[1]] is a matrix with p columns
associated with group 1, x[[2]] is a matrix with p columns associated with group 2, and so on.
If x does not have list mode, but rather is a matrix or data frame with the first p columns
corresponding group 1, the next p columns corresponding to group 2, and so forth, then
specify how many groups there are via the argument J, or how specify how many variables
there via the argument p. By default, all pairwise comparisons are performed based on the
marginal 20% trimmed means, but M-estimators, for example, could be used by setting the
argument est=onestep. The probability of at least one type I error is set via the argument
alpha and is controlled using Rom’s method. As usual, contrast coefficients can be specified
via the argument con. Setting the argument PDIS=T, projection distances will be used the
depth of the null vector in the bootstrap cloud of points.

For each group, it might be desired to use a multivariate measure of location that takes into
account the overall structure of the data. That is, use one of the measures of location in
Section 6.3. This can be done with a percentile bootstrap method via the R function

linconSpb(x, alpha = 0.05, nboot = 1000, grp = NA, est = smean, con = 0, bhop = F, SEED
= T, PDIS = F, J = NULL, p = NULL,...)

By default, the OP estimator of location is used, but this might result in relatively high
execution time. (For an alternative approach based on an S-estimator or MM-estimator, see
Van Aelst and Willems, 2011.)

The R function

YYmcp(x, alpha = 0.05, grp = NA, tr = 0.2, bhop = F, J = NULL, p = NULL, ...)

performs all pairwise comparisons via the extension of the Yanagihara–Yuan technique used
in conjunction with Rom’s method for controlling FWE. Setting the argument bhop=T, the
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Benjamini–Hochberg method is used instead. The arguments J and p are used in the same
manner as described in conjunction with the R function linconMpb.

Data Management

The following two R functions might help with data management. The R function

fac2Mlist(x,grp.col,lev.col,pr=T)

sorts p-variate data stored in the matrix (or data frame) x into groups based on the values
stored in the column of x indicated by the argument grp.col. The results are stored in list mode
in a manner that can be used by linconMpb and linconSpb. For example, the command

z=fac2Mlist(plasma,2,c(7:8))

will create groups based on the data in column 2. The result is that z[[1]] will contain the data
for the first group stored as a matrix. The first column of this matrix corresponds to data
stored in column 7 of the R variable plasma and the second column corresponds to data stored
in column 8. Similarly, z[[2]] will contain the data for group 2, and so on. So the command

linconSpb(z)

would perform all pairwise comparisons.

The R function

fac2BBMlist(x,grp.col,lev.col,pr=T)

is like the function fac2Mlist, only it is designed to handle a between-by-between design.
Now the argument grp.col is assumed to contain two values indicating the columns of x that
contain the levels of the two factors. The multivariate data are stored in the columns indicated
by the argument lev.col. For a J -by-K design, the result is an R variable having list mode
with length JK.

n Example

The command

z=fac2BBMlist(plasma,c(2,3),c(7,8))

will create groups based on the values in columns 2 and 3 of the R variable plasma. In
this particular case, there are two levels for the �rst factor (meaning that column 2 of
plasma has two unique values only) and three for the second. The result will be that
z[[1]], ...., z[[6]] will each contain a matrix having two columns stemming from the
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bivariate data in columns 7 and 8 of plasma. Then the commands

con=con2way(2,3)

linconMpb(z,con=con$conAB)

would test all hypotheses based on the linear contrast coef�cients typically used when
dealing with interactions.

n

7.11 Nested Designs

Briefly, a two-way nested design refers to a situation where there is a hierarchy among the
levels of two factors under study. This is in contrast to a completely crossed design as
considered in Section 7.2. For example, a goal might be to compare the efficacy of two
medical procedures. The first method is used in K randomly sampled hospitals, with n
participants used within each hospital, and the same is done for another K randomly sampled
hospitals for the second method. For various reasons, the efficacy of a method might depend
on the hospital where it is used. Here, the factor hospital is nested within the two levels
corresponding to the medical procedures. (There is no interaction term.) Similarly, the
effectiveness of methods for teaching mathematics might depend on the school where they are
used. If the goal is to compare J teaching strategies, this might be done based on K randomly
sampled schools with n students within each school being taught based on a particular
method. So the factor school is nested within the levels of J methods.

A simple way of dealing with nested designs, in a robust manner that allows
heteroscedasticity, is to use the trimmed means from each level of factor B, which is nested
within the levels of factor A. For the teaching strategies example, methods would be
compared based on the trimmed means resulting from each school, where each trimmed mean
is based on n participants within each school. For the special case where means are used,
formal statements of this approach are given in Khuri (1992) where heteroscedastic methods
are studied. (For the situation where the K levels of the nested factor are fixed, see Guo,
Billard, & Luh, 2011.)

The goal when dealing with a nested design can be stated in a slightly more formal manner as
follows. For the j th level of factor A, it is assumed that there are K randomly sampled levels
of the nested factor. For j fixed, let µt jk be the population trimmed mean corresponding to
level k of the nested factor B ( j = 1, . . . , J ; k = 1, . . . ,K ). Moreover, with j still fixed, µt jk

is assumed to have some unknown distribution having a trimmed mean denoted by µt j and
variance σ 2

j . There are two goals. The first is to test

H0 : µt1 = · · · = µt J . (7.20)
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The second is to perform all pairwise comparisons in a manner that controls the probability of
at least one type I error. That is, the goal is to test

H0 : µt j = µt j ′ (7.21)

for each j < j ′, such that the probability of at least one type I error is approximately
equal to α.

Let X i jk be the i th randomly sampled observation from kth randomly sampled level of
factor B. For fixed j and k, let

X(1) jk ≤ . . .≤ X(n) jk

be the n observations written in ascending order. For some γ (0≤ γ < .5), let g = [γ n],
where [γ n] is the value of γ n rounded down to the nearest integer. Then the γ sample
trimmed mean is

X̄ jk =

n−g∑
g+1

X(i) jk .

In essence, the unit of analysis becomes the X̄ t jk values when applying methods for trimmed
means already covered. To elaborate, let X̄ j be the trimmed mean of the values X̄ j1, . . . , X̄ j K

and let

W jk =


X̄(g+1) jk, if X̄ jk ≤ X̄(g+1) jk

X̄ jk, if X̄(g+1) jk < X̄ jk < X̄(n−g) jk

X̄(n−g) jk, if X̄ jk ≥ X̄(n−g) jk .

The Winsorized sample mean corresponding to X̄ j1, . . . , X̄ j K ( j fixed) is

X̄w j =
1

K

K∑
k=1

W jk

and the Winsorized variance is

s2
w j =

1

K −1

∑
(W jk− X̄w j )

2.

Let

d j =
(K −1)s2

w j

h j × (h j −1)
,
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where h j = K −2G, G = [γ K ],

w j =
1

d j

U =
∑

w j

X̃ =
1

U

∑
w j X̄ j

A =
1

J −1

∑
w j (X̄ j − X̃)2

B =
2(J −2)

J 2−1

∑ (1− w j

U )
2

h j −1
.

For J = 2, a test of Eq. (7.20) can be performed using an analog of Yuen’s (1974) method.
The test statistic is

Ty =
X̄1− X̄2
√

d1+d2
. (7.22)

When the null hypothesis is true, Ty has, approximately, a Student’s t-distribution with
degrees of freedom

ν̂y =
(d1+d2)

2

d2
1

h1−1 +
d2

2
h2−1

.

For J ≥ 2, the test statistic

Ft =
A

1+ B

can be used to test (7.20). When the null hypothesis is true, Ft has, approximately, an F
distribution with degrees of freedom

ν1 = J −1

ν2 =

[
3

J 2−1

∑ (1−w j/U )2

h j −1

]−1

.

Finally, there is goal of testing Eq. (7.21) such that the probability of at least one type I error
is approximately equal to α. When comparing groups j and j ′, reject if |Ty| ≥ c, where c is
the 1−α quantile of a Studentized maximum modulus distribution having degrees of
freedom

ν̂y =
(d j +d j ′)

2

d2
j

h j−1 +
d2

j ′

h j ′−1

.
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Khuri (1992) derived another approach based on means that compares the means of factor A
based in part on Hotelling’s T 2. It is unknown whether an extension of the method to trimmed
means, along the lines in Section 6.7.2, has any practical value.

Compared with the method for testing Eq. (7.20), the method aimed at testing Eq. (7.21) has
been found to perform well in simulations for a broader range of situations in terms of
controlling the probability of a type I error (Wilcox, 2011). When K = 5 or 6, the method for
testing Eq. (7.20) can have an actual type I error probability exceeding .08 when testing at the
0.05 level. Extant results indicate that with K > 6, the actual type I error probability will not
exceed .075. In contrast, when the method for testing Eq. (7.21) was used, the probability of
at least one type I error never exceeded .064. If the distribution of the µt jk ( j fixed) is
heavy-tailed, both methods can have type I error probabilities less than .025.

7.11.1 R Functions anova.nestA, mcp.nestA, and anova.nestAP

The R function

anova.nestA(x,tr=0.2)

tests the hypothesis given by Eq. (7.20) and the R function

mcp.nestA(x,tr=0.2)

tests the hypothesis given by Eq. (7.21). Both of these functions assume the argument x has
list mode with length J . Moreover, x[[j]] ( j = 1, . . . J ) is assumed to contain a matrix with n
rows and K columns.

The R function

anova.nestAP(x,tr=0.2)

compares the J levels of factor A after pooling the observations over the levels of the nested
factor. The hypothesis that the J levels of factor A have a common trimmed mean is tested
using the method in Section 7.1.1. Multiple comparisons, based on the pooled data, are
performed by the function The R function

mcp.nestAP(x,tr=0.2)

7.12 Exercises

1. Describe how M-measures of location might be compared in a two-way design with a
percentile bootstrap method. What practical problem might arise when using the
bootstrap and sample sizes are small?

www.elsevierdirect.com



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or inprint. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

WILCOX Ch07-9780123869838 2011/10/22 16:53 Page 375 #85

Chapter 7 One-Way and Higher Designs for Independent Groups 375

2. If data are generated from exponential distributions, what problems would you expect
in terms of probability coverage when computing confidence intervals? What problems
with power might arise?

3. From well-known results on the random effects model (e.g., Graybill, 1976;
Jeyaratnam and Othman, 1985), it follows that

BSSW=
∑ (Ȳ j − Ȳ )2

J −1

estimates

σ 2
wb+

∑ σ 2
w j

Jn j
,

and

WSSW=
∑∑ (Yi j − Ȳ j )

2

Jn j (n j −1)

estimates

∑ σ 2
w j

Jn j
.

Use these result to derive an alternative estimate of ρWI.
4. Some psychologists have suggested that teachers’ expectancies influence intellectual

functioning. The file VIQ.dat contains pretest verbal IQ scores for students in grades 1
and 2 who were assigned to one of three ability tracks. (The data are from Elashoff and
Snow, 1970, and originally collected by R. Rosenthal. See Section 1.8 on how to obtain
this data.) The experimental group consisted of children for whom positive
expectancies had been suggested to teachers. Compare the trimmed means of the
control group with the experimental group taking into account grade and tracking
ability. When examining tracking ability, combine ability levels 2 and 3 into one
category, so a 2-by-2-by-2 design is being used.

5. Using the data in the previous exercise, use the function lincon to compare the
experimental group with the control group taking into account grade and the two
tracking abilities. (Again, tracking abilities 2 and 3 are combined.) Comment on
whether the results support the conclusion that the experimental and control group have
similar trimmed means.

6. Using the data from the previous two exercises, compare the 20% trimmed means of
the experimental group to the control taking into account grade. Also test for no
interactions using lincon and linconb. Is there reason to suspect that the confidence
interval returned by linconb will be longer than the confidence interval returned by
lincon?
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7. Suppose three different drugs are being considered for treating some disorder, and it is
desired to check for side effects related to liver damage. Further suppose that the
following data are collected on 28 participants.

ID Damage ID Damage ID Damage

1 92 2 88 3 110
1 91 2 83 3 112
1 84 2 82 3 101
1 78 2 68 3 119
1 82 2 83 3 89
1 90 2 86 3 99
1 84 2 92 3 108

11 91 2 101 3 107
1 78 2 89
1 95 3 99

The values under the columns headed by ID indicate which of the three drugs a subject
received. Store this data in an R variable having matrix mode with 28 rows and 2
columns with the first column containing the subjects’ ID number, and the second
column containing the resulting measure of liver damage. For example, the first subject
received the first drug and liver damage was rated as 92. Use the function selby to put
the data in the second column into an R variable having list mode, then compare the
groups using t1way.

8. For the data in the previous exercise, compare the groups using both the Rust–Fligner
and Brunner–Dette–Munk methods.

9. For the data in the previous two exercises, perform all pairwise comparisons using the
Harrell–Davis estimate of the median.

10. Snedecor and Cochran (1967) report weight gains for rats randomly assigned to one of
four diets that varied in the amount and source of protein. The results were as follows:

Beef Beef Cereal Cereal
Low High Low High

90 73 107 98
76 102 95 75
90 118 97 56
64 104 80 111
86 81 98 95
51 107 74 88
72 100 74 82
90 87 67 77
95 117 89 86
78 111 58 92
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Verify the results based on the R function pba2way mentioned in the example of
Section 7.7.1.

11. Generate data for a 2-by-3 design and use the function pbad2way. Note the contrast
coefficients for interactions. If you again use pbad2way, but with conall=F, what will
happen to these contrast coefficients? Describe the relative merits of using conall=T.

12. For the schizophrenia data in Section 7.8.4, compare the groups with t1way and
pbadepth.
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CHAPTER 8

Comparing Multiple Dependent Groups

This chapter covers basic methods for comparing dependent groups, including both a
between-by-within and a within-by-within design. Three-way designs are covered as well
where one or more factors involve dependent groups.

As noted in Chapter 5, when comparing dependent groups based on some measure of location,
there are three general approaches that might be used. The first is to compare measures of
location associated with the marginal distributions. The second is to make inferences based on
a measure of location associated with the difference scores. And the third focuses on measures
of location associated with the distribution of the difference between two dependent random
variables. When comparing means, it makes no difference which view is adopted, but when
using robust measures of location, this is no longer the case. Methods relevant to all three
approaches are described and comments on their relative merits are provided.

Note that when comparing measures of location associated with the marginal distributions,
there are two types of estimators that might be used. The first estimates a measure of location
for each marginal distribution, ignoring the other variables under study. That is, for p-variate
data X i j (i = 1, . . . ,n; j = 1, . . . , p), compute the trimmed mean or some other measure of
location using the n values associated with each j . This is in contrast to using a location
estimator that takes into account the overall structure of the data when dealing with outliers,
such as the OP-estimator in Section 6.5. The bulk of the methods in this chapter are based on
the former type of estimator. A multiple comparison procedure that deals with the latter type
of estimator is described at the end of Section 8.2.7.

8.1 Comparing Trimmed Means

This section focuses on nonbootstrap methods for testing hypotheses about trimmed means.
Methods that use other estimators based on the marginal distributions, such as robust
M-estimators, are described in Section 8.2.

Introduction to Robust Estimation and Hypothesis Testing. DOI: 10.1016/B978-0-12-386983-8.00008-1
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8.1.1 Omnibus Test Based on the Trimmed Means of the Marginal Distributions

For J dependent groups, let µt j be the population trimmed mean associated with the j th
group. That is, µt j is the trimmed mean associated with the j th marginal distribution. The
goal in this section is to test

H0 : µt1 = · · · = µt J ,

the hypothesis that the trimmed means of J dependent groups are equal. The method used
here is based on a generalization of the Huynh–Feldt method for means which is designed to
handle violations of the sphericity assumption associated with the standard F-test. (See Kirk,
1995, for details about sphericity. For simulation results on how the test for trimmed means
performs, see Wilcox, 1993c.) The method begins by Winsorizing the values in essentially the
same manner described in Section 5.9.3. That is, fix j , let X(1) j ≤ X(2) j ≤ · · · ≤ X(n) j be the n
values in the j th group written in ascending order, and let

Yi j =


X(g+1) j if X i j ≤ X(g+1) j

X i j if X(g+1) j < X i j < X(n−g) j

X(n−g) j if X i j ≥ X(n−g) j ,

where g is the number of observations trimmed or Winsorized from each end of the
distribution corresponding to the j th group. The test statistic, F , is computed as described in
Table 8.1, and Table 8.2 describes how to compute the degrees of freedom.

8.1.2 R Function rmanova

The R function

rmanova(x,tr=.2,grp=c(1:length(x))

tests the hypothesis of equal population trimmed means among J dependent groups using the
calculations in Tables 8.1 and 8.2. The data are stored in any variable x, which can be either
an n-by-J matrix, the j th column containing the data for the j th group, or an R variable
having list mode. In the latter case, x[[1]] contains the data for group 1, x[[2]] contains the
data for group 2, and so on. As usual, tr indicates the amount of trimming which defaults to
0.2, and grp can be used to compare a subset of the groups. If the argument grp is not
specified, the trimmed means of all J groups are compared. If, for example, there are five
groups, but the goal is to test H0 : µt2 = µt4 = µt5, the command rmanova(x,grp=c(2,4,5))
accomplishes this goal using 20% trimming.

n Example

Section 8.6.2 reports measures of hangover symptoms for participants belonging to one
of two groups, with each participant consuming alcohol on three different occasions.
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Table 8.1: Test Statistic for Comparing the Trimmed Means of Dependent Groups.

Winsorize the observations in the jth group, as described in this section, yielding Yi j . Let h = n− 2g be the
effective sample size, where g = [γ n], and γ is the amount of trimming. Compute

X̄ t =
1

J

∑
X̄ t j

Qc = (n−2g)
J∑

j=1

(X̄ t j − X̄ t)
2

Qe =

J∑
j=1

n∑
i=1

(Yi j − Ȳ. j − Ȳi.+ Ȳ..)
2,

where

Ȳ. j =
1

n

n∑
i=1

Yi j

Ȳi. =
1

J

J∑
j=1

Yi j

Ȳ.. =
1

n J

J∑
j=1

n∑
i=1

Yi j .

The test statistic is

F =
Rc

Re

,

where

Rc =
Qc

J −1

Re =
Qe

(h−1)(J −1)
.

For present purposes, focus on group 1 (the control group) with the goal of comparing
the responses on the three different occasions. The function rmanova reports a p-value
of .09.

n

8.1.3 Pairwise Comparisons and Linear Contrasts Based on Trimmed Means

Suppose that for J dependent groups, it is desired to compute a 1−α confidence interval for

µt j −µtk,
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Table 8.2: How to Compute Degrees of Freedom when Comparing Trimmed Means?

Let

v jk =
1

n−1

n∑
i=1

(Yi j − Ȳ. j )(Yik− Ȳ.k)

for j = 1, . . . , J and k = 1, . . . , J , where Yi j is the Winsorized observation corresponding X i j . When j = k,
v jk = s2

w j , the Winsorized sample variance for the jth group, and when j 6= k, v jk is a Winsorized analog of
the sample covariance.

Let

v̄.. =
1

J 2

J∑
j=1

J∑
k=1

v jk

v̄d =
1

J

J∑
j=1

v j j

v̄ j. =
1

J

J∑
k=1

v jk

A =
J 2(v̄d − v̄..)

2

J −1

B =
J∑

j=1

J∑
k=1

v2
jk−2J

J∑
j=1

v̄2
j.+ J 2v̄2

..

ε̂ =
A

B

ε̃ =
n(J −1)ε̂−2

(J −1)[n−1− (J −1)ε̂]
.

The degrees of freedom are

ν1 = (J −1)ε̃

ν2 = (J −1)(h−1)ε̃,

where h is the effective sample size for each group.

for all j < k. That is, the goal is to compare all pairs of trimmed means. One possibility is to
compare the j th trimmed mean to the kth trimmed mean using the R function yuend in
Chapter 5, and control the familywise error (FWE) rate, (the probability of at least one type I
error) with the Bonferroni inequality. That is, if C tests are to be performed, perform each test
at the α/C level. A practical concern with this approach is that the actual probability of at
least one type I error can be considerably less than the nominal level. For example, if J = 4,
α = 0.05, and sampling is from independent normal distributions, the actual probability of at
least one type I error is approximately .019 when comparing 20% trimmed means with
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n = 15. If each pair of random variables has correlation 0.1, the probability of at least one
type I error drops to .014, and it drops even more as the correlations are increased. Part of the
problem is that the individual tests for equal trimmed means tends to have type I error
probabilities less than the nominal level, so performing each test at the α/C level makes
matters worse. In fact, even when sampling from heavy-tailed distributions, power can be low
compared to using means, even though the sample mean has a much larger standard error
(Wilcox, 1997a). One way of improving on this approach is to use results in Rom (1990) to
control FWE.

Momentarily consider a single linear contrast

9 =

J∑
j=1

c jµ j ,

where
∑

c j = 0 and the goal is to test

H0 :9 = 0.

Let Yi j (i = 1, . . . ,n; j = 1, . . . , J ) be the Winsorized values which are computed as
described in Section 8.1.1. Let

A =
J∑

j=1

J∑
k=1

c j ckd jk,

where

d jk =
1

h(h−1)

n∑
i=1

(Yi j − Ȳ j )(Yik− Ȳk),

and h = n−2g is the number of observations left in each group after trimming. Let

9̂ =

J∑
j=1

c j X̄ t j .

The test statistic is

T =
9̂
√

A

and the null hypothesis is rejected if |T | ≥ t , where t is the 1−α/2 quantile of a Student’s
t-distribution with ν = h−1 degrees of freedom.

When testing C hypotheses, the following method, motivated by results in Rom (1990),
appears to be relatively effective at controlling FWE. Let pk be the p-value associated with the
kth hypothesis and put these C p-values in descending order yielding p[1] ≥ · · · ≥ p[C]. Then
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Table 8.3: Critical
Values, dk, for Rom’s
Method.

k α = 0.05 α = 0.01

1 0.05000 0.01000
2 0.02500 0.00500
3 0.01690 0.00334
4 0.01270 0.00251
5 0.01020 0.00201
6 0.00851 0.00167
7 0.00730 0.00143
8 0.00639 0.00126
9 0.00568 0.00112

10 0.00511 0.00101

1. Set k=1.
2. If p[k] ≤ dk , where dk is read from Table 8.3, stop and reject all C hypotheses; otherwise,

go to step 3. (When k > 10, then dk = α/k.)
3. Increment k by 1. If p[k] ≤ dk , stop and reject all hypotheses having p-values less than or

equal to dk

4. If P[k] > dk , repeat step 3.
5. Continue until you reject or all C hypotheses have been tested.

Note that Table 8.3 is limited to k ≤ 10. If k > 10, here FWE is controlled with Hochberg’s
(1988) method. That is, proceed as just indicated, but rather than use dk read from Table 8.3,
use dk = α/k.

8.1.4 Linear Contrasts Based on the Marginal Random Variables

The method just described is readily extended to a situation that contains comparisons based
on difference scores as a special case. Let

Dik =

J∑
j=1

c jk X i j ,

where for any k (k = 1, . . . ,C),
∑

c jk = 0, and let µtk be the population trimmed mean of the
distribution from which the random sample D1k, . . . ,Dnk was obtained. For example, if
c11 = 1, c21 =−1, and c31 = · · · = cJ1 = 0, then

Di1 = X i1− X i2,
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the difference scores for groups 1 and 2, and µt1 is the (population) trimmed mean associated
with this difference. Similarly, if c22 = 1, c32 =−1, and c12 = c41 = · · · = cJ1 = 0, then

Di2 = X i2− X i3

and µt2 is the corresponding (population) trimmed mean. The goal is to test

H0 : µtk = 0

for each k = 1, . . . ,C such that FWE is approximately α. Each hypothesis can be tested using
results in Chapter 4, but there is the added goal of controlling FWE. Here, Rom’s method,
described in Section 8.1.3, is used to accomplish this goal.

It should be noted that the multiple comparison procedures in this chapter are designed to
control the probability of one or more type I errors. As was the case in Chapter 7, the
expectation is that the actual probability of one more type I error will be reduced if the
multiple comparison procedures in this chapter are used contingent on a global test rejecting
at the α level. That is, power might be adversely affected (cf. Bernhardson, 1975).

Section 5.3.4 described ξ , a robust, heteroscedastic measure of effect size based on the notion
of explanatory power. One way of characterizing the difference between two dependent
groups is to again use this measure of effect size, which can be done for all pairs of groups via
the R function esmcp in Section 7.1.2.

8.1.5 R Function rmmcp and rmmismcp

The R function

rmmcp(x,con = 0, tr = 0.2, alpha = 0.05, dif=T)

performs multiple comparisons among dependent groups using trimmed means and Rom’s
method for controlling FWE. By default, difference scores are used. Setting dif=F results in
comparing the marginal trimmed means. When α differs from both 0.05 and 0.01, FWE is
controlled with Hochberg’s (1988) method. That is, proceed as indicated in Section 8.1.3 but
rather than use dk from Table 8.3, use dk = α/k.

When there are values missing at random, method M2 in Section 5.9.13 can be used to
perform multiple comparisons via the R function

rmmismcp(x,y = NA, alpha = 0.05, con = 0, est = tmean, plotit = T, grp = NA, nboot =
500, SEED = T, xlab = “Group 1”, ylab = “Group 2”, pr = F, . . .),

which was introduced in Section 5.9.14 and controls the probability of one or more type I
errors using Hochberg’s method. By default, 20% trimmed means are used, but other robust
estimators can be used via the argument est.
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8.1.6 Judging the Sample Size

Let Di jk = X i j − X ik and let µt jk be a trimmed mean corresponding to Di jk . If when testing
H0 : µt jk = 0 for any j < k, a non-significant result is obtained, this might be because the null
hypothesis is true, or of course, a type II error might have been committed due to a sample
size that is too small. To help determine whether the latter explanation is reasonable, an
extension of Stein’s (1945) two-stage method for means might be used. Suppose it is desired
to have all-pairs power greater than or equal to 1−β when for any j < k, µt jk = δ. That is,
the probability of rejecting H0 for all j < k for which µt jk = δ is to be at least 1−β. The goal
here is to determine whether the sample size used, namely n, is large enough to accomplish
this goal, and if not, the goal is to determine how many more observations are needed. The
following method performs well in simulations (Wilcox, 2004b).

Let C = (J 2
− J )/2 and

d =

(
δ

tβ − t1−α/(2C)

)2

,

where tβ is the β quantile of Student’s t distribution with ν = n−2g−1 degrees of freedom,
and g is the number of observations trimmed from each tail. (So n−2g is the number of
observations not trimmed.) Let

N jk =max(n,

[
s2
w jk

(1−2γ )2d

]
+1)

where s2
w jk is the Winsorized variance of the Di jk values. Then the required sample size in the

second stage is

N =max N jk,

the maximum being taken over all j < k. So if N = n, the sample size used is judged to be
adequate for the specified power requirement.

In the event the additional N −n vectors of observations can be obtained, familiarity with
Stein’s (1945) original method suggests how H0 should be tested, but in simulations, a slight
modification performs a bit better in terms of power. Let Sw jk be the Winsorized variance
based on all N of the observations, where the amount of Winsorizing is equal to the amount of
trimming. Let µ̂t jk be the trimmed mean based on all N Di jk differences and let

T jk =

√
N (1−2γ )µ̂t jk

Sw jk
.

Then reject H0 : µt jk = 0 if |T jk | ≥ t1−α/(2C). So as would be expected based on Stein’s
method, the degrees of freedom depend on the initial sample size, n, not the ultimate sample
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size, N . But contrary to what is expected based on Stein’s method, the Winsorized variance
when computing T jk is based on all N observations. (All indications are that no adjustment
for β is needed when computing d when multiple tests are performed and the goal is to have
all-pairs power greater than or equal to 1−β. Also, a variation of the method aimed at
comparing the marginal trimmed means has not been investigated.)

8.1.7 R Functions stein1.tr and stein2.tr

Using the method just described, the R function

stein1.tr(x,del,alpha=0.05,pow=0.8,tr=0.2)

determines the required sample size needed to achieve all-pairs power equal to the value
indicated by the argument pow for a difference specified by the argument del which
corresponds to δ. In the event additional data are needed to achieve the desired amount of
power, and if these additional observations can be acquired,

stein2.tr(x,y,alpha=0.05,tr=0.2)

tests all pairwise differences. Here the first-stage data are stored in x (which is a vector or a
matrix with J columns) and y contains the second-stage data.

8.2 Bootstrap Methods Based on Marginal Distributions

This section focuses on bootstrap methods aimed at making inferences about measures of
location associated with the marginal distributions. (Section 8.3 takes up measures of location
associated with difference scores.) As in previous chapters, two general types of bootstrap
methods appear to deserve serious consideration in applied work. (As usual, this is not
intended to suggest that all other variations of the bootstrap have no practical value for the
problems considered here, only that based on extant studies, the methods covered here seem
to perform relatively well.) The first type uses estimated standard errors and reflects
extensions of the bootstrap-t methods in Chapter 5; they are useful when comparing trimmed
means. The other is an extension of the percentile bootstrap method where estimated standard
errors do not play a direct role. When comparing robust M-measures of location, this latter
approach is the only known way of controlling the probability of a type I error for a fairly
wide range of distributions.

8.2.1 Comparing Trimmed Means

Let µt j be the population trimmed mean associated with the j th marginal distribution and
consider the goal of testing

H0 : µt1 = · · · = µt J ,
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An extension of the bootstrap-t method to this problem is straightforward. Set

Ci j = X i j − X̄ t j

with the goal of estimating an appropriate critical value, based on the test statistic F in
Table 8.1, when the null hypothesis is true. The remaining steps are as follows:

1. Generate a bootstrap sample by randomly sampling, with replacement, n rows of data
from the matrix C11, . . . ,C1J

...

Cn1, . . . ,Cn J


yielding C∗11, . . . ,C

∗

1J
...

C∗n1, . . . ,C
∗

n J

 .
2. Compute the test statistic F in Table 8.1 based on the C∗i j values generated in step 1, and

label the result F∗.
3. Repeat steps 1 and 2 B times and label the results F∗1 , . . . , F∗B .
4. Put these B values in ascending order and label the results F∗(1) ≤ · · · ≤ F∗(B).

The critical value is estimated to be F∗(u), where u = (1−α)B rounded to the nearest integer.
That is, reject the hypothesis of equal trimmed means if

F ≥ F∗(u),

where F is the statistic given in Table 8.1 based on the X i j values.

8.2.2 R Function rmanovab

The R function

rmanovab(x, tr = 0.2, alpha = 0.05, grp = 0, nboot = 599)

performs the bootstrap-t method just described.

8.2.3 Multiple Comparisons Based on Trimmed Means

This section describes bootstrap methods for performing multiple comparisons based on
trimmed means. First consider the goal of performing all pairwise comparisons. That is, the
goal is to test

H0 : µt j = µtk

www.elsevierdirect.com



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

WILCOX 11-ch08-379-440-9780123869838 2011/12/6 18:36 Page 389 #11

Chapter 8 Comparing Multiple Dependent Groups 389

for all j < k. A bootstrap-t method is applied as follows. Generate bootstrap samples as was
done in Section 8.2.1 yielding C∗11, . . . ,C

∗

1J
...

C∗n1, . . . ,C
∗

n J

 .
For every j < k, compute the test statistic Ty , given by Eq. (5.24), using the values in the j th
and kth columns of the matrix just computed. That is, perform the test for trimmed means
corresponding to two dependent groups using the data C∗1 j , . . . ,C

∗

nj and C∗1k, . . . ,C
∗

nk . Label
the resulting test statistic T ∗y jk . Repeat this process B times yielding T ∗y jk1, . . . ,T ∗y jk B . Because
these test statistics are based on data generated from a distribution for which the trimmed
means are equal, they can be used to estimate an appropriate critical value. In particular, for
each b, set

T ∗b =max|T ∗y jkb|,

the maximum being taken over all j < k. Let T ∗(1) ≤ · · · ≤ T ∗(B) be the T ∗b values written in
ascending order and let u = (1−α)B, rounded to the nearest integer. Then H0 : µt j = µtk is
rejected if Ty jk > T ∗(u). That is, for the j th and kth groups, test the hypothesis of equal
trimmed means using the method in Section 5.9.5, only the critical value is T ∗(u), which was
determined so that the probability of a least one type I error is approximately equal to α.
Alternatively, the confidence interval for µt j −µtk is

(X̄ t j − X̄ tk)±T ∗(u)
√

d j +dk−2d jk,

where
√

d j +dk−2d jk is the estimate of the standard error of X̄ t j − X̄ tk , which is computed
as described in Section 5.9.5. The simultaneous probability coverage is approximately 1−α.
Probability coverage appears to be reasonably good with n as small as 15 when using 20%
trimming with J = 4, α = 0.05, B = 599 (Wilcox, 1997a). When there is no trimming,
probability coverage can be poor, and no method can be recommended. Also, the power of the
bootstrap method, with 20% trimmed means, compares well to an approach based on means
and the Bonferroni inequality.

The method is easily extended to situations where the goal is to test C linear contrasts,
91, . . . ,9C , where

9k =
∑

c jkµt j ,

and c jk ( j = 1, . . . , J and k = 1, . . . ,C) are constants chosen to reflect some hypothesis of
interest. As before, 9k is estimated with 9̂k =

∑
c jk X̄ t j , but now the squared standard error

is estimated with

Ak =

J∑
j=1

J∑
`=1

c jkc`kd j`,
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where

d jk =
1

h(h−1)

∑
(Yi j − Ȳ j )(Yik− Ȳk),

and Yi j are the Winsorized observations for the j th group. (When j = k, d jk = d2
j .)

To compute a 1−α confidence interval for 9k , generate a bootstrap sample yielding C∗i j and
let

T ∗yk =
9̂∗k√

A∗k
,

where 9̂∗k and A∗k are computed with the bootstrap observations. Repeat this bootstrap process
B times yielding T ∗ykb, b = 1, . . . B. For each b, let T ∗b =max|T ∗ykb|, the maximum being taken
over k = 1, . . . ,C . Put the T ∗b values in order yielding T ∗(1) ≤ · · · ≤ T ∗(B), in which case an
appropriate critical value is estimated to be T ∗(u), where u = (1−α)B, rounded to the nearest
integer. Then an approximate 1−α confidence interval for 9k is

9̂k±T ∗(u)
√

Ak .

8.2.4 R Functions pairdepb and bptd

The R function

pairdepb(x,tr=0.2,alpha=0.05,grp=0,nboot=599)

performs all pairwise comparisons among J dependent groups using the bootstrap method
just described. The argument x can be an n-by-J matrix of data, or it can be an R variable
having list mode. In the latter case, x[[1]] contains the data for group 1, x[[2]] contains the
data for group 2, and so on. The argument tr indicates the amount of trimming, which, if
unspecified, defaults to 0.2. The value for α defaults to alpha=0.05, and B defaults to
nboot=599. The argument grp can be used to test the hypothesis of equal trimmed means
using a subset of the groups. If missing values are detected, they are eliminated via the
function elimna described in Section 1.9.1.

n Example

For the alcohol data reported in Section 8.6.2, suppose it is desired to perform all
pairwise comparisons using the time 1, time 2, and time 3 data for the control group.
The R function pairdepb returns
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$test:
Group Group test se

[1,] 1 2 -2.115985 1.693459
[2,] 1 3 -2.021208 1.484261
[3,] 2 3 0.327121 1.783234

$psihat:
Group Group psihat ci.lower ci.upper

[1,] 1 2 -3.5833333 -7.194598 0.02793158
[2,] 1 3 -3.0000000 -6.165155 0.16515457
[3,] 2 3 0.5833333 -3.219376 4.38604218

$crit:
[1] 2.132479

Thus, none of the pairwise differences is signi�cantly different at the 0.05 level.
n

Assuming the data are stored in the R variable dat, the command pairdepb(dat,grp=c(1,3))
would compare groups 1 and 3, ignoring group 2. It is left as an exercise to show that if the
data are stored in list mode, the command ydbt(dat[[1]],dat[[3]]) returns the same confidence
interval.

The function

bptd(x,tr=0,alpha=0.05,con=0,nboot=599)

computes confidence intervals for each of C linear contrasts, 9k , k = 1, . . . ,C , such that the
simultaneous probability coverage is approximately 1−α. The only difference between bptd
and pairedpb is that bptd can handle a set of specified linear contrasts via the argument con.
The argument con is a J -by-C matrix containing the contrast coefficients. The kth column of
con contains the contrast coefficients corresponding to 9k . If con is not specified, all pairwise
comparisons are performed. So for this special case, pairdepb and bptd always produce the
same results.

n Example

If there are three dependent groups, and con is a 3-by-1 matrix with the values 1, −1,
and 0, and if the data are stored in the R variable xv, the command bptd(xv,con=con)
will compute a con�dence interval for 9 = µt1−µt2, the difference between the 20%
trimmed means corresponding to the �rst two groups. If xv has list mode, the command
ydbt(xv[[1]],xv[[2]]) returns the same con�dence interval. (The function ydbt was
described in Section 5.9.8.)

n
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8.2.5 Percentile Bootstrap Methods

This section describes two types of percentile bootstrap methods that can be used to compare
J dependent groups based on any measures of location, θ , associated with the marginal
distributions. Included as special cases are M-measures of location and trimmed means. The
goal is to test

H0 : θ1 = · · · = θJ . (8.1)

Method RMPB3

The first method uses the test statistic

Q =
∑

(θ̂ j − θ̄ )
2,

where θ̄ =
∑
θ̂ j/J . An appropriate critical value is estimated using an approach similar to the

bootstrap-t technique. First, set Ci j = X i j − θ̂ j . That is, shift the empirical distributions so that
the null hypothesis is true. Next a bootstrap sample is obtained by resampling, with
replacement, as described in step 1 of Section 8.2.1. As usual, label the resultsC∗11, . . . ,C

∗

1J
...

C∗n1, . . . ,C
∗

n J

 .
For the j th column of the bootstrap data just generated, compute the measure of location that
is of interest and label it θ̂∗j . Compute

Q∗ =
∑

(θ̂∗j − θ̄
∗)2,

where θ̄∗ =
∑
θ̂∗j /J , and repeat this process B times yielding Q∗1, . . . ,Q∗B . Put these B values

in ascending order yielding Q∗(1) ≤ · · · ≤ Q∗(B). Then reject the hypothesis of equal measures
of location if Q > Q∗(u), where again u = (1−α)B rounded to the nearest integer.

Method RMPB4

If the null hypothesis is true, then all J groups have a common measure of location, θ . The
next method estimates this common measure of location and then checks to see how deeply it
is nested within the bootstrap values obtained when resampling from the original values. That
is, in contrast to method RMPB3, the data are not centered, and bootstrap samples are
obtained by resampling rows of data fromX11, . . . , X1J

...

Xn1, . . . , Xn J
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yielding X∗11, . . . , X∗1J
...

X∗n1, . . . , X∗n J

 .
For the j th group (or column of bootstrap values) compute θ̂∗j . Repeating this process B times

yields θ̂∗jb, ( j = 1, . . . , J ;b = 1, . . . , B). The remaining calculations are performed as
outlined in Table 8.4.

Table 8.4: Repeated Measures ANOVA Based on the Depth of the Grand Mean.

Goal: Test the hypothesis

H0 : θ1 = · · · = θJ .

1. Compute

S jk =
1

B−1

B∑
b=1

(θ̂ ∗jb− θ̄
∗

j )(θ̂
∗

kb− θ̄
∗

k ),

where

θ̄ ∗j =
1

B

B∑
b=1

θ̂ ∗jb.

(The quantity S jk is the sample covariance of the bootstrap values corresponding to the jth and kth
groups.)

2. Let

θ̂ ∗b = (θ̂
∗

1b, . . . , θ̂
∗

Jb)

and compute

db = (θ̂
∗

b − θ̂ )S
−1(θ̂ ∗b − θ̂ )

′,

where S is the matrix corresponding to S jk , θ̂ = (θ̂1, . . . , θ̂J ), θ̂ j is the estimate of θ based on the
original data for the jth group (the X i j values, i = 1, . . . ,n), and θ̂b = (θ̂1b, . . . , θ̂Jb). The value of db

measures how far away the bth bootstrap vector of location estimators is from θ̂ , which is roughly
the center of all B bootstrap values.

3. Put the db values in ascending order: d(1) ≤ · · · ≤ d(B).
4. Let θ̂G = (θ̄ , . . . , θ̄ ), where θ̄ =

∑
θ̂ j/J , and compute

D = (θ̂G − θ̂ )S−1(θ̂G − θ̂ )
′.

D measures how far away the estimated common value is from the observed measures of location
(based on the original data).

5. Reject if D ≥ d(u), where u = (1−α)B, rounded to the nearest integer.
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For completeness, yet another approach to comparing dependent groups is to use a mixed
linear model in conjunction with the regression MM-estimator introduced in Chapter 10.
Heritier, Cantoni, Copt, and Victoria-Feser (2009, Section 4.5) summarize the relevant details
and computations. The mixed linear model has the form

Y = Xα+
∑

Z jβ j + ε,

where Y is a vector of N measurements, X is an n×q design matrix for the fixed effects, Z j

is an N ×q j design matrix for the random effects β j , and ε is an N -vector of independent
residual errors. Evidently it is unknown what advantages this approach might have, in terms
of type I errors and power, over the other methods covered in this chapter. (Some concerns
about the regression MM-estimator are described in Chapter 10.) Copt and Heritier (2007)
derived a (nonbootstrap) method for testing hypotheses that is based in part on an appropriate
estimate of the standard errors. However, a general pattern regarding M-estimators seems to
be that nonbootstrap methods that use a test statistic based on an estimate of the standard error
can perform poorly in terms of type I errors and probability coverage when dealing with
skewed distributions. Perhaps the MM-estimator, in the context of the mixed linear model, is
an exception, but this has not been investigated.

8.2.6 R Functions bd1way and ddep

The R functions

bd1way(x, est = onestep, nboot = 599, alpha = 0.05)

and

ddep(x, alpha = 0.05,est = onestep, grp = NA, nboot = 500)

perform the percentile bootstrap methods just described. The first function performs method
RMPB3; it uses by default the one-step M-estimator of location (based on Huber’s 9), but
any other estimator can be used via the argument est. As usual, x is any R variable that is a
matrix or has list mode, nboot is B, the number of bootstrap samples to be used, and grp can
be used to analyze a subset of the groups, with the other groups ignored. (That is, grp is used
as illustrated in Section 8.1.2.) The function ddep performs method RMPB4 described in
Table 8.4.

When there are values missing at random, method M2 in Section 5.9.13 can be used to
perform multiple comparisons via the R function

rmmismcp(x,y = NA, alpha = 0.05, con = 0, est = tmean, plotit = T, grp = NA, nboot =
500, SEED = T, xlab = “Group 1”, ylab = “Group 2”, pr = F, . . .).

www.elsevierdirect.com



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

WILCOX 11-ch08-379-440-9780123869838 2011/12/6 18:36 Page 395 #17

Chapter 8 Comparing Multiple Dependent Groups 395

By default, 20% trimmed means are used, but other robust estimators can be used via the
argument est.

n Example

Table 6.5 shows the weight of cork borings taken from north, east, south, and west
sides of the 28 trees. Assuming the data are stored in the R matrix cork, the command
bd1way(cork) returns:

$test:
17.08

$crit:
34.09

So comparing one-step M-estimators, we fail to reject the hypothesis that the typical
weight of a cork boring is the same for all four sides of a tree. If we compare groups
using MOM in conjunction with method RMPB4, the p-value is .385. (Compare this
result to the Example in Section 8.2.8.)

n

n Example

Again consider the hangover data used to illustrate rmanova in Section 8.1.2. (The data
are listed in Section 8.6.2.) Comparing M-measures of location results in an error
because there are too many tied values resulting in MAD=0 within the bootstrap.
Assuming the data are stored in x, the command bd1way(x,est=hd) compares medians
based on the Harrell–Davis estimator. The function reports that Q = 9.96 with a 0.05
critical value of 6.3, so the null hypothesis is rejected at the 0.05 level.

n

8.2.7 Multiple Comparisons Using M-estimators or Skipped Estimators

Next consider C linear contrasts involving M-measures of location where the kth linear
contrast is

9k =

J∑
j=1

c jkµmj ,

and, as usual, the c jk values are constants that reflect linear combinations of the M-measures
of location that are of interest and for fixed k,

∑
c jk = 0. The goal is to compute a confidence

interval for 9k , k = 1, . . . ,C , such that the simultaneous probability coverage is
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approximately 1−α. Alternatively, test H0 :9k = 0 with the goal that the probability of at
least one type I error is α.

First, set Ci j = X i j − µ̂mj . Next, obtain a bootstrap sample by sampling, with replacement, n
rows of data from the matrix Ci j . Label the bootstrap values C∗i j . Use the n values in the j th
column of C∗i j to compute µ̂∗mj , j = 1, . . . , J . Repeat this process B times yielding µ̂∗mjb,
b = 1, . . . , B. Next, compute the J -by-J covariance matrix associated with the µ̂∗mjb values.
That is, compute

τ̂ jk =
1

B−1

B∑
b=1

(µ̂∗mjb− µ̄
∗

j )(µ̂
∗

mkb− µ̄
∗

k),

where µ̄∗j =
∑
µ̂∗mjb/B. Let

9̂k =

J∑
j=1

c jkµ̂mj ,

9̂∗kb =

J∑
j=1

c jkµ̂
∗

mjb,

S2
k =

∑
j

∑
`

c jkc`k τ̂ j`,

T ∗kb =
9̂∗kb

Sk
,

and

T ∗b =max|T ∗kb|,

the maximum being taken over k = 1, . . . ,C . Then a confidence interval for 9k is

9̂k±T ∗(u)Sk,

where as usual u = (1−α)B, rounded to the nearest integer, and T ∗(1) ≤ · · · ≤ T ∗(B) are the T ∗b
values written in ascending order. The simultaneous probability coverage is approximately
1−α, but for n ≤ 21 and B = 399, the actual probability coverage might be unsatisfactory.
Under normality, for example, there are situations where the probability of at least one type I
error exceeds .08 with J = 4, α = 0.05, and n = 21, and where all pairwise comparisons are
performed. Increasing B = 599 does not correct this problem. It seems that n > 30 is required
if the probability of at least one type I error is not to exceed .075 when testing at the 0.05
level (Wilcox, 1997a).

An alternative approach, which appears to have some practical advantages over the method
just described, is to use a simple extension of the percentile bootstrap method in
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Section 5.9.11. Let p̂∗k be the proportion of times 9̂∗kb > 0 among the B bootstrap samples.
Then a (generalized) p-value for H0: 9k = 0 is 2min( p̂∗k , 1− p̂∗k ). When using M-estimators
or MOM, however, a bias adjusted estimate of the p-value appears to be beneficial; see
Section 5.9.11. (With trimmed means, this bias adjustment appears to be unnecessary; see
Wilcox & Keselman, 2002). FWE can be controlled with method SR outlined in
Section 7.6.2. Again, for large sample sizes, say greater than 80, Hochberg’s method
(mentioned in Section 8.1.3) appears to be preferable.

Note that all of the methods described so far are based on measures of location that do not
take into account the overall structure of the data when dealing with outliers. The skipped
estimators in Section 6.5 do take the overall structure of the data into account and situations
might be encountered where this makes a practical difference. A basic percentile bootstrap
method can be used to test H0: 9k = 0 and appears to control the probability of a type I error
reasonably well when using the OP estimator in Section 6.5.

8.2.8 R Functions lindm and mcpOV

Using the first method described in the Section 8.2.7, the R function lindm computes
confidence intervals for C linear contrasts involving M-measures of location corresponding to
J dependent groups. (The second method is performed by the R function in Section 8.3.3.)
The function has the form

lindm(x,con=0,est=onestep,grp=0,alpha=0.05,nboot=399, . . .).

The argument x contains the data and can be any n-by-J matrix, or it can have list mode. In the
latter case, x[[1]] contains the data for group 1, x[[2]] the data for group 2, and so on. The
optional argument con is a J -by-C matrix containing the contrast coefficients. If not specified,
all pairwise comparisons are performed. The argument est is any statistic of interest. If
unspecified, a one-step M-estimator is used. The argument grp can be used to select a subset of
the groups for analysis. As usual, alpha is α and defaults to 0.05, and nboot is B which defaults
to 399. The argument . . . is any additional arguments that are relevant to the function est.

n Example

Again consider the hangover data (reported in Section 8.6.2) where two groups of
participants are measured at three different times. Suppose the �rst row of data is
stored in DAT[[1]], the second row in DAT[[2]], the third in DAT[[3]], and so forth,
but it is desired to perform all pairwise comparisons using only the group 1 data at
times 1, 2, and 3. Then the command lindm(DAT,grp=c(1:3)) attempts to perform the
comparisons, but eventually the function terminates with the error message “missing
values in x not allowed.” This error arises because there are so many tied values,
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bootstrap samples yield MAD= 0 which in turn makes it impossible to compute µ̂∗.
This error can also arise when there are no tied values but one or more of the sample
sizes are smaller than 20.

n

The command lindm(DAT,est=hd,gpr=c(1:3)) compares medians instead, using the
Harrell–Davis estimator, and returns

con.num psihat ci.lower ci.upper se
[1,] 1 -3.90507026 -7.880827 0.07068639 2.001571
[2,] 2 -3.82383677 -9.730700 2.08302610 2.973775
[3,] 3 0.08123349 -6.239784 6.40225079 3.182279

$crit:
[1] 1.986318

$con:
[,1] [,2] [,3]

[1,] 1 1 0
[2,] -1 0 1
[3,] 0 -1 -1

Because the argument con was not specified, the function creates its own set of linear
contrasts assuming all pairwise comparisons are to be performed. The resulting contrast
coefficients are returned in the R variable $con. Thus, the first column, containing the values
1, −1, and 0, indicates that the first contrast corresponds to the difference between the
medians for times 1 and 2. The results in the first row of $con.num indicate that the estimated
difference between these medians is −3.91, and the confidence interval is (−7.9,0.07). In a
similar fashion, the estimated difference between the medians at times 1 and 3 is −3.82, and
for time 2 versus time 3 the estimate is 0.08. The command
lindm(DAT,est=hd,gpr=c(1:3),q=.4) would compare 0.4 quantiles.

The R function

mcpOV(x,alpha=0.05,nboot=NA,grp=NA,est=smean,con=0,bhop=F,SEED=T, . . .).

is like the R function the function lindm, only it is designed to handle skipped estimators that
take into account the overall structure of the data when checking for outliers. By default it
uses the OP-estimator, which is based on the projection method for detecting outliers.

8.3 Bootstrap Methods Based on Difference Scores

The following method, based on difference scores, has been found to have practical value,
particularly in terms of controlling type I error probabilities when sample sizes are very small.
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First consider the goal of testing the hypothesis that a measure of location associated with the
difference scores Di j = X i j − X i, j+1 has the value zero. That is, use the difference between
the i th observation in group j and the i th observation in group j +1, j = 1, . . . , J −1. Let θ j

be any measure of location associated with the Di j values. So, for example, θ1 might be an
M-measure of location corresponding to the difference scores between groups 1 and 2, and θ2

might be the M-measure of location associated with difference scores between groups 2 and 3.
A simple alternative to Eq. (8.1) is to test

H0 : θ1 = · · · = θJ−1 = 0, (8.2)

the hypothesis that the typical difference scores do not differ and are all equal to zero.
However, a criticism of this approach is that the outcome can depend on how we order the
groups. That is, rather than take differences between groups 1 and 2, we could just as easily
take differences between groups 1 and 3, which might alter our conclusions about whether to
reject. We can avoid this problem by instead taking differences among all pairs of groups.
There are a total of

L =
J 2
− J

2

such differences which are labeled Di`, i = 1, . . . ,n; `= 1, . . . , L .

n Example

For four groups (J = 4), there are L = 6 differences given by

Di1 = X i1− X i2,

Di2 = X i1− X i3,

Di3 = X i1− X i4,

Di4 = X i2− X i3,

Di5 = X i2− X i4,

Di6 = X i3− X i4.

n

The goal is to test

H0 : θ1 = · · · = θL = 0, (8.3)

where θ` is the population measure of location associated with the `th set of difference scores,
Di` (i = 1, . . . ,n). To test H0 given by Eq. (8.3), resample vectors of D values, but unlike the
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bootstrap-t, observations are not centered. That is, a bootstrap sample now consists of
resampling with replacement n rows from the matrixD11, . . . ,D1L

...

Dn1, . . . ,DnL

 .
yielding D∗11, . . . ,D∗1L

...

D∗n1, . . . ,D∗nL

 .
For each of the L columns of the D∗ matrix, compute whatever measure of location is of
interest, and for the `th column label the result θ̂∗` (`= 1, . . . , L). Next, repeat this B times
yielding θ̂∗`b, b = 1, . . . , B and then determine how deeply the vector 0= (0, . . . ,0), having
length L , is nested within the bootstrap values θ̂∗`b. For two groups, this is tantamount to
determining how many bootstrap values are greater than zero, which leads to the (generalized)
p-value described in Section 5.4. The computational details when dealing with more than two
groups are relegated to Table 8.5.

8.3.1 R Function rmdzero

The R function

rmdzero(x,est = mom, grp = NA, nboot = NA, . . .)

performs the test on difference scores outlined in Table 8.5.

n Example

For the cork data in Table 6.5, rmdzero returns a p-value of .044, so in particular reject
with α = 0.05. That is, conclude that the typical difference score is not equal to zero for
all pairs of groups. This result is in sharp contrast to comparing marginal measures of
location based on a robust M-estimator or MOM and the method in Table 8.4; see the
Example in Section 8.2.6.

n

8.3.2 Multiple Comparisons

Multiple comparisons based on a percentile bootstrap method and difference scores can be
addressed as follows. First generate a bootstrap sample as described at the beginning of this
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Table 8.5: Repeated Measures ANOVA Based on Difference Scores

Goal: Test the hypothesis given by Eq. (8.3).
1. Let θ̂` be the estimate of θ`. Compute bootstrap estimates as described in Section 8.3 and label

them θ̂ ∗`b, `= 1, . . . , L; b = 1, . . . , B.
2. Compute the L-by-L matrix

S``′ =
1

B−1

B∑
b=1

(θ̂ ∗`b− θ̂`)(θ̂
∗

`′b− θ̂`′).

Readers familiar with multivariate statistical methods might notice that S``′ uses θ̂` (the estimate of
θ` based on the original difference values) rather than the seemingly more natural θ̄ ∗` , where

θ̄ ∗` =
1

B

B∑
b=1

θ̂ ∗`b.

If θ̄ ∗` is used, unsatisfactory control over the probability of a type I error can result.
3. Let θ̂ = (θ̂1, . . . , θ̂L), θ̂ ∗b = (θ̂

∗

1b, . . . , θ̂
∗

Lb) and compute

db = (θ̂
∗

b − θ̂ )S
−1(θ̂ ∗b − θ̂ )

′,

where S is the matrix corresponding to S``′ .
4. Put the db values in ascending order: d(1) ≤ · · · ≤ d(B).
5. Let

0= (0, . . . ,0)

having length L.
6. Compute

D = (0− θ̂ )S−1(0− θ̂ )′.

D measures how far away the null hypothesis is from the observed measures of location (based on
the original data). In effect, D measures how deeply 0 is nested within the cloud of bootstrap values.

7. Reject if D ≥ d(u), where u = (1−α)B, rounded to the nearest integer.

section yielding D∗i`, `= 1, . . . , L . When all pairwise differences are to be tested,
L = (J 2

− J )/2, `= 1 corresponds to comparing group 1 to group 2, `= 2 is comparing
group 1 to group 3, and so on. Let p̂∗` be the proportion of times among B bootstrap resamples
that D∗i` > 0. As usual, let

p̂∗m` =min( p̂∗` , 1− p̂∗` ),

in which case 2 p̂∗m` is the estimated (generalized) p-value for the `th comparison.

One approach to controlling FWE is to put the p-values in descending order and to make
decisions about which hypotheses are to be rejected using method SR outlined in

www.elsevierdirect.com



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

WILCOX 11-ch08-379-440-9780123869838 2011/12/6 18:36 Page 402 #24

402 Introduction to Robust Estimation and Hypothesis Testing

Section 7.6.2. That is, once the p̂∗mc are computed, reject the hypothesis corresponding to p̂∗mc

if p̂∗mc ≤ αc, where αc is read from Table 7.13.

As for linear contrasts, consider any specific linear contrast with contrast coefficients
c1, . . . , cJ , set

Di =
∑

c j X i j ,

and let θd be some (population) measure of location associated with this sum. Then
H0 : θd = 0 can be tested by generating a bootstrap sample from the Di values, repeating this
B times, computing p̂∗, the proportion of bootstrap estimates that are greater than zero, in
which case 2min( p̂∗, 1− p̂∗) is the estimated significance level. Then FWE can by controlled
in the manner just outlined.

When comparing groups using MOM or M-estimators, at the moment it seems that the method
based on difference scores often provides the best power versus testing hypotheses based on
measures of location associated with the marginal distributions. Both approaches do an
excellent job of avoiding type I error probabilities greater than the nominal α level. But when
testing hypotheses about measures of location associated with the marginal distributions, the
actual type I error probability can drop well below the nominal level in situations where the
method based on difference scores avoids this problem. This suggests that the method based
on difference scores will have more power, and indeed, there are situations where this is the
case even when the two methods have comparable type I error probabilities. It is stressed,
however, that a comparison of these methods, in terms of power, needs further study. Also the
bias adjusted critical value mentioned in Section 5.9.7 appears to help increase power.

While comparing marginal measures of location based on MOM or an M-estimator seems to
result in relatively low power, there is weak evidence that comparing marginal measures of
location based on the OP-estimator, via a percentile bootstrap method as mentioned at the end
of Section 8.2.7, performs relatively well. But the extent this is true needs additional study.

When dealing with trimmed means, again the percentile bootstrap method just described can
be used and appears to be relatively good choice provided the amount of trimming is not too
small. With a small amount of trimming, use a bootstrap-t method instead. Controlling the
probability of at least one type I error can be done with Hochberg’s method.

8.3.3 R Functions rmmcppb, wmcppb, dmedpb, and lindepbt

The R function

rmmcppb(x,y = NA, alpha = 0.05, con = 0, est = mom, plotit = T, dif = T, grp = NA, nboot
= NA, BA=F,hoch=F, . . .)
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performs multiple comparisons among dependent groups using the percentile bootstrap
methods just described. The argument dif defaults to T (for true) indicating that difference
scores will be used, in which case Hochberg’s method is used to control FWE. If dif=F,
measures of location associated with the marginal distributions are used instead. If dif=F and
BA=T, the bias adjusted estimate of the generalized p-value (described in Section 5.9.7) is
applied; using BA=T (when dif=F) is recommended when comparing groups with
M-estimators and MOM, but it is not necessary when comparing 20% trimmed means
(Wilcox & Keselman, 2002). If hoch=F, then FWE is controlled using method SR in
Section 7.6.2 if the sample size is less than 80, otherwise Hochberg’s method is used as
described in Section 8.1.3. If hoch=T, Hochberg’s method is used regardless of the sample
size. If no value for con is specified, then all pairwise differences will be tested. As usual, if
the goal is to test hypotheses other than all pairwise comparisons, con can be used to specify
the linear contrast coefficients.

When comparing trimmed means, it appears that Hochberg’s method is preferable to method
SR in terms of controlling the probability of at least one type I error. For convenience, the R
function

wmcppb(x, alpha = 0.05, con = 0, est = tmean, plotit = T, dif = T, grp = NA, nboot = NA,
BA=F,hoch=T, . . .)

is supplied. It is the same as the R function rmmcppb, only it defaults to comparing 20%
trimmed means, and by default it uses Hochberg’s method rather than method SR. (The R
function dtrimpb is the same as the function wmmcppb.)

The R function

dmedpb(x,y=NA,alpha=0.05,con=0,est=median,plotit=T,dif=F,grp=NA,
hoch=T,nboot=NA,xlab=“Group 1”,ylab=“Group 2”,pr=T,SEED=T,BA=F, . . .)

is similar to the R function rmmcppb, only it defaults to comparing medians and it is designed
to handle tied values. Hochberg’s method is used to control FWE. With a small sample size,
say less than 30, setting the argument BA=T seems advisable, meaning that the p-value is
adjusted as described in 5.9.11 (Wilcox, 2006b).

The R function

lindepbt(x, con = NULL, tr = 0.2, alpha = 0.05,nboot=599,dif=T,SEED=T)

performs multiple comparisons based on trimmed means using a bootstrap-t method. When
the amount of trimming is small, a bootstrap-t method is preferable to a percentile bootstrap
method, but it is unclear at what point this will be case. The function reports critical p-values
based on Rom’s method for controlling the probability of one or more type I errors. The
function returns confidence intervals, but they are not adjusted so that the simultaneously
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probability coverage is 1−α. Rather, each confidence interval is designed to have probability
coverage 1−α.

n Example

For the cork boring data in Table 6.5, the R function wmcppb (with the argument dif=F
as well as dif=T) �nds no signi�cant results when the probability of at least one type I
error is taken to be .05. But the R function mcpOV (in Section 8.2.8), which compares
marginal measures of location via the OP-estimator, �nds three signi�cant results, the
only point being that the choice of method can make a practical difference. Again it is
stressed that little is known about the extent the OP-estimator might have higher power
compared to the many other methods that might be used to compare dependent
groups.

n

8.4 Comments on which Method to Use

No single method in this chapter dominates based on various criteria used to compare
hypothesis testing techniques. However, a few comments can be made about their relative
merits that might be useful. First, the expectation is that in many situations where groups
differ, all methods based on means perform poorly, in terms of power, relative to approaches
based on some robust measure of location such as MOM or a 20% trimmed mean. Currently,
with a sample size as small as 21, the bootstrap-t method in Section 8.2.2, which is performed
by the R function rmanovab, appears to provide excellent control over the probability of a
type I error when used in conjunction with 20% trimmed means. Its power compares
reasonably well to most other methods that could be used, but as noted in previous chapters,
different methods are sensitive to different features of the data and arguments for some other
measure of location, such as an M-estimator, have been made.

The percentile bootstrap methods in Section 8.2.5 also do an excellent job of avoiding type I
errors greater than the nominal level, but there are indications that when using method
RMPB3, and the sample size is small, the actual probability of a type I error can be
substantially less than α suggesting that some other method might provide better power.
Nevertheless, if there is specific interest in comparing M-estimators associated with the
marginal distributions, it is suggested that method RMPB3 be used when the sample size is
greater than 20. Also, it can be used to compare groups based on MOM, but with very small
sample sizes power might be inadequate relative to other techniques that could be used. Given
the goal of testing some omnibus hypothesis, currently, among the techniques covered in this
chapter, it seems that the two best methods for controlling type I error probabilities and

www.elsevierdirect.com



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

WILCOX 11-ch08-379-440-9780123869838 2011/12/6 18:36 Page 405 #27

Chapter 8 Comparing Multiple Dependent Groups 405

simultaneously providing relatively high power are the bootstrap-t method based on 20%
trimmed means and the percentile bootstrap method in Table 8.5, which is based in part on
difference scores; the computations are performed by the R function rmdzero. (But also
consider the multiple comparison procedure in Section 8.1.4.) With near certainty, situations
arise where some other technique is more optimal, but typically the improvement is small. But
again, comparing groups with MOM is not the same as comparing means, trimmed means or
M-estimators and certainly there will be situations where some other estimator has higher
power than any method based on MOM or a 20% trimmed mean. If the goal is to maximize
power, several methods are contenders for routine use. With sufficiently large sample sizes,
trimmed means can be compared without resorting to the bootstrap-t method, but it remains
unclear just how large the sample size must be. Roughly, as the amount of trimming increases
from 0% to 20%, the smaller the sample size must be to control the probability of a type I
error without resorting to a bootstrap technique. But if too much trimming is done, power
might be relatively low. When comparing medians, a percentile bootstrap method is
recommended when dealing with tied values.

As for the issue of whether to use difference scores rather than robust measures of location
based on the marginal distributions, each approach provides a different perspective on how
groups differ and they can give different results regarding whether groups are significantly
different. There is some evidence that difference scores typically provide more power and
better control over the probability of a type I error, but situations are encountered where the
reverse is true. A more detailed study is needed to resolve this issue.

As previously mentioned, method RMPB4 performed by the R function ddep in Section 8.2.6
is very conservative in terms of type I errors, meaning that when testing at the 0.05 level, say,
often the actual probability of a type I error will be less than or equal to α and typically
smaller than any other method described in this chapter. So a concern is that power might be
low relative to the many other methods that might be used.

Regarding methods designed for performing multiple comparisons in a manner that controls
the probability of at least one type I error, currently it seems that using the R function
wmcppb, which compares groups based on trimmed means, is a good choice, particularly in
terms of maximizing power. But again, there are exceptions. Perhaps the method in
Section 8.2.7, which is based on the OP-estimator and performed by the R function mcpOV,
generally competes well with the R function wmcppb, but little is known about the extent to
which this is true. In general, no single method is always best. As in previous chapters, in
terms of controlling the probability of at least one type I error, the method used by wmcppb
and mcpOV does not assume or require that one first test and reject the global hypothesis that
all groups have identical population trimmed means. It is not necessary, for example, that the
function rmanovab (described in Section 8.2.2) returns a significant result before using the
function wmcppb.
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8.5 Some Rank-Based Methods

This section describes two rank-based methods for testing

H0 : F1(x)= · · · = FJ (x),

the hypothesis that J dependent groups have identical marginal distributions. Friedman’s test
is the best-known test of this hypothesis, but no details are given here. The first of the two
methods was derived by Agresti and Pendergast (1986) and has higher power than Friedman’s
test when sampling from normal distributions, and their test can be expected to have good
power when sampling from heavy-tailed distributions, so it is included here. The other method
stems from Brunner, Domhof, and Langer (2002, Section 7.2.2), which appears to have an
advantage over the Agresti–Pendergast method in terms of power (Tian & Wilcox, 2007).

Method AP

The calculations for the Agresti–Pendergast method are shown in Table 8.6.

Method BPRM

Let Ri j be defined as in Table 8.6 and let Ri = (Ri1, . . . , Ri J )
′ be the vector of ranks for the

i th participant, where (Ri1, . . . , Ri J )
′ is the transpose of (Ri1, . . . , Ri J ). Let

R̄=
1

n

n∑
i=1

Ri

be the vector of ranked means, let

R̄. j =
1

n

n∑
i=1

Ri j

denote the mean of the ranks for group j and let

V=
1

N 2(n−1)

n∑
i=1

(Ri − R̄)(Ri − R̄)′.

The test statistic is

F =
n

N 2tr(PV)

J∑
j=1

(
R̄. j −

N +1

2

)2

, (8.4)

where

P= I−
1

J
J,

J is a J × J matrix of all ones, and I is the identity matrix.
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Table 8.6: Computing the Agresti–Pendergast Test Statistic.

Pool all the observations and assign ranks. Let Ri j be the resulting rank of the ith observation in the jth group.
Compute

R̄ j =
1

n

n∑
i=1

Ri j

s jk =
1

n− J +1

n∑
i=1

(Ri j − R̄ j )(Rik− R̄k).

Let the vector R′ be de�ned by

R′ = (R̄1, . . . , R̄J ),

and let C be the (J −1)-by-J matrix given by
1 −1 0 . . . 0 0

0 1 −1 . . . 0 0

. . . . . .

0 0 0 . . . 1 −1

 .

The test statistic is

F =
n

J −1
(CR)′(CSC′)

−1CR,

where

S= (s jk).

The degrees of freedom are ν1 = J −1 and ν2 = (J −1)(n−1), and you reject if F > f1−α, the 1−α quantile
of an F distribution with ν1 and ν2 degrees of freedom.

Decision Rule

Reject the hypothesis of identical distributions if

F ≥ f,

where f is the 1−α quantile of an F distribution with degrees of freedom

ν1 =
[tr(PV)]2

tr(PVPV)

and ν2 =∞. Note that based on the test statistic, a crude description of method BPRM is that
it is designed to be sensitive to differences among the average ranks.
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8.5.1 R Functions apanova and bprm

The R function

apanova(x,grp=0)

performs the Agresti–Pendergast test of equal marginal distributions using the calculations in
Table 8.6. As usual, x can have list mode, or x can be an n-by-J matrix, and the argument grp
can be used to specify some subset of the groups. If grp is unspecified, all J groups are used.
The function returns the value of the test statistic, the degrees of freedom, and the p-value. For
example, the command apanova(dat,grp=c(1,2,4)) would compare groups 1, 2, and 4 using
the data in the R variable dat.

The R function

bprm(x)

performs method BPRM; it returns a p-value.

8.6 Between-by-Within and Within-by-Within Designs

This section describes some methods for testing hypotheses in a between-by-within (or
split-plot) design. That is, a J-by-K ANOVA design is being considered where the J levels of
the first factor correspond to independent groups (between subjects), and the K levels of the
second factor are dependent (within subjects). Within-by-within designs are covered as well.

8.6.1 Analyzing a Between-by-Within Design Based on Trimmed Means

We begin with a between-by-within design. For the j th level of factor A, let 6 j be the K-by-K
population Winsorized covariance matrix for the K dependent random variables associated
with the second factor. The better-known methods for analyzing a split-plot design are based
on the assumption that 61 = · · · =6J , but violating this assumption can result in problems
controlling the probability of a type I error. Keselman, Keselman, and Lix (1995) found that a
method derived by Johansen (1980), that does not assume there is a common covariance
matrix, gives better results, so a generalization of Johansen’s method, to trimmed means, is
described here. (For related results, see Keselman, Algina, Kowalchuk, & Wolfinger, 1999;
Keselman, Carriere, & Lix, 1993; Livavcic-Rojas, Vallejo, & Fernández, 2010.)

As in the case of a two-way design for independent groups, it is easier to describe the method
in terms of matrices. Main effects and interactions are examined by testing

H0 : Cµt = 0,
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where C is a k-by-JK contrast matrix having rank k that reflects the null hypothesis of interest.
Let Cm and j′ be defined as in Section 7.3. Then for factor A, C= CJ ⊗ j′K , and k = J −1.
For factor B, C= j′J ⊗CK and k = K −1, and the test for no interactions uses C= CJ ⊗CK .

For every level of factor A, there are K dependent random variables, and each pair of these
dependent random variables has a Winsorized covariance that must be estimated. In symbols,
let X i jk be the i th observation randomly sampled from the j th level of factor A and the kth
level of factor B. For fixed j , the Winsorized covariance between the mth and `th levels of
factor B is estimated with

s jm` =
1

n j −1

n j∑
i=1

(Yi jm− Ȳ. jm)(Yi j`− Ȳ. j`),

where

Yi jk =


X(g+1), jk if X i jk ≤ X(g+1), jk

X i jk if X(g+1), jk < X i j < X(n−g), jk

X(n−g), jk if X i jk ≥ X(n−g), jk ,

and

Ȳ. jm =
1

n

n∑
i=1

Yi jm .

For fixed j , let S j = (s jm`). That is, S j estimates 6 j , the K -by-K Winsorized covariance
matrix for the j th level of factor A. Let

V j =
(n j −1)S j

h j (h j −1)
, j = 1, . . . , J,

and let V= diag(V1, . . . ,VJ ) be a block diagonal matrix. The test statistic is

Q = X̄′C′(CVC′)−1CX̄, (8.5)

where X̄′ = (X̄ t11, . . . , X̄ t J K ). Let IK×K be a K -by-K identity matrix, let Q j be a J K by J K
block diagonal matrix (consisting of J blocks, each block being a K -by-K matrix), where the
t th block (t = 1, . . . , J ) along the diagonal of Q j is IK×K if t = j , and all other elements are
zero. (For example, if J = 3 and K = 4, then Q1 is a 12-by-12 matrix block diagonal matrix
where the first block is a 4-by-4 identity matrix, and all other elements are zero. As for Q2, the
second block is an identity matrix, and all other elements are zero.) Compute

A =
1

2

J∑
j

{tr[(VC′(CVC′)−1CQ j )
2]+ [tr(VC′(CVC′)−1CQ j )]

2
}/(h j −1).
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where tr indicates trace, and let

c = k+2A−
6A

k+2
.

When the null hypothesis is true, Q/c has, approximately, an F distribution with ν1 = k and
ν2 = k(k+2)/(3A) degrees of freedom, so reject if Q/c > f1−α, the 1−α quantile. Recent
simulation results reported by Livavcic-Rojas et al. (2010) indicate that this method performs
relatively well, in terms of controlling the probability of a type I error, when comparing
means. However, their results do not consider the effect of having different amounts of
skewness.

n Example

Consider a 2-by-3 design where for the �rst level of factor A, observations are generated
from a multivariate normal distribution with all correlations equal to zero. For the
second level of factor A, the marginal distributions are lognormal that have been shifted
to have mean zero. Further suppose that the covariance matrix for the second level is
three times larger that the covariance matrix for the �rst level. If the sample sizes are
n1 = n2 = 30 and the hypothesis of no main effects for factor A, based on means, is
tested at the 0.05 level, the actual level is approximately 0.088. If the sample sizes are
n1 = 40 and n2 = 70 and for the �rst level of factor A the marginal distributions are
g-and-h distributions with g = h = 0.5, the probability of a type I error, again testing at
the 0.05 level, is approximately .188. Comparing 20% trimmed means instead, the
actual type I error probability is approximately .035.

n

8.6.2 R Functions bwtrim and tsplit

The R function

bwtrim(J,K,x,tr=.2,grp=c(1:p),p=J*K)

tests the hypotheses of no main effects and no interactions in a between-by-within (split-plot)
design, where J is the number of independent groups, K is the number of dependent groups,
and the argument x contains the data stored in list mode, or a matrix, or a data frame. The
optional argument, tr, indicates the amount of trimming, which defaults to 0.2 if unspecified.

The groups are assumed to be ordered as described in Section 7.2.1. If the data are not stored
in the proper order, grp can be used to indicate how they are stored. For example, if a 2-by-2
design is being used, the R command

bwtrim(2,2,x,grp=c(3,1,2,4))
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indicates that the data for the first level of both factors are stored in x[[3]], the data for level 1
of Factor A and level 2 of Factor B are in x[[1]], and so forth. If x is a matrix or a data frame,
the first K columns correspond to the first level of Factor A and the K levels of Factor B, the
next K columns correspond to the second level of Factor A, and so on.

The R function tsplit, which is described in earlier editions of this book, performs the same
analysis. The function bwtrim was added to match naming conventions used by other
functions to be described.

n Example

In a study on the effect of consuming alcohol, hangover symptoms were measured for
two independent groups, with each subject consuming alcohol and being measured on
three different occasions. One group (group 2) consisted of sons of alcoholics and the
other was a control group. Here, J = 2 and K = 3. The results were as follows.

Group 1, Time 1 0 32 9 0 2 0 41 0 0 0 6 18 3 3 0 11 11 2 0 11
Group 1, Time 2 4 15 26 4 2 0 17 0 12 4 20 1 3 7 1 11 43 13 4 11
Group 1, Time 3 0 25 10 11 2 0 17 0 3 6 16 9 1 4 0 14 7 5 11 14
Group 2, Time 1 0 0 0 0 0 0 0 0 1 8 0 3 0 0 32 12 2 0 0 0
Group 2, Time 2 2 0 7 0 4 2 9 0 1 14 0 0 0 0 15 14 0 0 7 2
Group 2, Time 3 1 0 3 0 3 0 15 0 6 10 1 1 0 2 24 42 0 0 0 2

Suppose the �rst row of data is stored in DAT[[1]], the second row in DAT[[2]], the
third in DAT[[3]], the fourth in DAT[[4]], the �fth in DAT[[5]], and the sixth in
DAT[[6]]. That is, the data are stored as assumed by the function bwtrim. Then the
command bwtrim(2,3,DAT,tr=0) will compare the means and returns

$Qa:
[1] 3.277001

$Qa.siglevel:
[1] 0.149074

$Qb:
[1] 0.7692129

$Qb.siglevel:
[1] 0.5228961

$Qab:
[1] 0.917579

$Qab.siglevel:
[1] 0.4714423
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The test statistic for factor A is Qa = 3.28, and the corresponding p-value is .159. For
factor B the p-value is .52, and for the interaction it is .47.

n

This section described one way of comparing independent groups in a between-by-within
subjects design. Another approach is simply to compare the J independent groups for each
level of Factor B. That is, do not sum or average the data over the levels of Factor B as was
done here. So the goal is to test

H0 : µt1k = · · ·µt Jk

for each k = 1, . . . ,K . The next example illustrates that in applied work, the choice between
these two methods can make a practical difference. (Yet another strategy for comparing the
levels of Factor A is to apply the robust MANOVA method in Section 7.10.)

n Example

Section 7.8.4 reported data from a study comparing schizophrenics to a control group
based on a measure taken at two different times. Analyzing the data with the function
tsplit, no main effects for Factor A are found, the p-value being .245. So no difference
between the schizophrenics and the control group was detected at the 0.05 level. But if
the groups are compared using the �rst measurement only, using the function yuen
(described in Chapter 5), the p-value is .012. For the second measurement, ignoring the
�rst, the p-value is .89. (Recall that in Chapter 6, using some multivariate methods,
again a difference between the schizophrenics and the control group was found.)

n

8.6.3 Data Management: R Function bw2list

Imagine a situation where data are stored in a matrix or a data frame, say x, with one column
indicating the levels of the between factor, but the K levels of the within group factor are
stored in K columns of the matrix x. In order to use the R function bwtrim, it is necessary to
store the data in the format that is allowed. The R function

bw2list(x, grp.col, lev.col)

is provided to help accomplish this goal. The argument grp.col indicates the column
containing information about the levels of the independent groups. The values in this column
can be numeric or character data. And the argument lev.col indicates the K columns where
the within group data are stored. The function returns the data stored in list mode, which can
then be used by bwtrim as well as other functions aimed at dealing with a between-by-within
design. The function will store the data sorted in ascending (or alphabetical) order based on
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the values found in the column of x indicated by the argument grp.col. The next example
illustrates this feature.

n Example

Imagine that three medications are being investigated regarding their effectiveness to
lower cholesterol and that column 3 of the matrix m indicates which medication a
participant received. Moreover, columns 5 and 8 contain the participants’ cholesterol
level at times 1 and 2, respectively. The R command

z=bw2list(m,3,c(5,8))

will store the data in z in list mode. If column 3 contains the character values “P”, “CH”,
and “BN”, then z[[1]] and z[[2]] will contain the data for times 1 and 2, respectively,
corresponding to level “BN” of Factor A, z[[3]] and z[[4]] will contain the data for level
“CH”, and z[[5]] and z[[6]] will contain the data for level “P”. The R command

bwtrim(3,2,z)

will compare the groups based on 20% trimmed means.
n

8.6.4 Bootstrap-t Method for a Between-by-Within Design

To apply a bootstrap-t method, when working with trimmed means and dealing with a
between-by-within design, first center the data in the usual way. In the present context, this
means you compute

Ci jk = X i jk− X̄ t jk,

i = 1, . . . ,n j ; j = 1, . . . , J ; and k = 1, . . . ,K . That is, for the group corresponding to the j th
level of factor A and the kth level of factor B, subtract the corresponding trimmed mean from
each of the observations. Next, for each j , generate a bootstrap sample based on the Ci jk

values by resampling with replacement n j vectors of observations from the n j rows of data
corresponding to level j of factor A. That is, for each level of factor A, you have an n j -by-K
matrix of data, and you generate a bootstrap sample from this matrix of data as described in
Section 8.2.5 where for fixed j , resampling is based on the Ci jk values. Label the resulting
bootstrap samples C∗i jk . Compute the test statistic Q, based on the C∗i jk values as described in
Section 8.6.1 and label the result Q∗. Repeat this B times yielding Q∗1, . . . ,Q∗B and then put
these B values in ascending order yielding Q∗(1) ≤ · · · ≤ Q∗(B). Next, compute Q using the
original data (the X i jk values) and reject if Q ≥ Q∗(c), where c = (1−α) rounded to the
nearest integer.

A crude rule that seems to apply to a wide variety of situations is: the more the distributions
(associated with groups) differ, the more beneficial it is to use some type of bootstrap method,
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at least when sample sizes are small. Keselman et al. (2000) compared the bootstrap method
just described to the nonbootstrap method for a split-plot design covered in Section 8.6.1. For
the situations they examined, this rule did not apply; it was found that the bootstrap offered
little or no advantage. Their study included situations where the correlations (or covariances)
among the dependent groups differ across the independent groups being compared. However,
the more complicated the design, the more difficult it becomes to consider all the factors that
might influence the operating characteristics of a particular method. One limitation of their
study was that the differences among the covariances were taken to be relatively small.
Another issue that has not been addressed is how the bootstrap method performs when
distributions differ in skewness. Having differences in skewness is known to be important
when dealing with the simple problem of comparing two groups only. There is no reason to
assume that this problem diminishes as the number of groups increases, and indeed there are
reasons to suspect that it becomes a more serious problem. So currently, it seems that if
groups do not differ in any manner, or the distributions differ slightly, it makes little
difference whether you use a bootstrap versus a nonbootstrap method for comparing trimmed
means. However, if distributions differ in shape, there is indirect evidence that a bootstrap
method might offer an advantage when using a split-plot design, but the extent to which this is
true is not well understood.

8.6.5 R Functions bwtrimbt and tsplitbt

The R function

tsplitbt(J,K,x,tr=0.2,alpha=0.05,JK=J*K,grp=c(1:JK),nboot=599)

performs a bootstrap-t method for a split-plot design as just described. The data are assumed
to be arranged as indicated in conjunction with the R function tsplit (as described in
Section 8.6.2), and the arguments J, K, tr, and alpha have the same meaning as before. The
argument JK can be ignored, and grp can be used to rearrange the data if they are not stored as
expected by the function. (For an R function that might help when dealing with organizing the
data in a manner that is accepted by tsplitbt, see Section 8.6.3.)

The R function

bwtrimbt(J,K,x,tr=0.2,JK=J*K,grp=c(1:JK),nboot=599)

is the same as tsplitbt, only bwtrimbt reports p-values rather than α level critical values.

8.6.6 Percentile Bootstrap Methods for a Between-by-Within Design

Comparing groups based on MOMs, medians, and M-estimators in a between-by-within
design is possible using extensions of percentile bootstrap methods already described. And
they provide yet another way of comparing trimmed means.
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Again consider a two-way design where factor A consists of J independent groups and Factor
B corresponds to K dependent groups. First consider the dependent groups. One approach to
comparing these K groups, ignoring Factor A, is to simply form difference scores and then
apply the method in Section 8.3. More precisely, imagine you observe X i jk (i = 1, . . . ,n j ;

j = 1, . . . , J ; k = 1, . . . ,K ). That is, X i jk is the i th observation in level j of Factor A and
level k of Factor B. Note that if we ignore the levels of Factor A, we can write the data as Yik ,
i = 1, . . . , N ; k = 1, . . . ,K , where N =

∑
n j . Now consider levels k and k ′ of Factor B

(k < k ′) and set

Dikk′ = Yik−Yik′,

and let θkk′ be some measure of location associated with Dikk′ . Then the levels of Factor B can
be compared, ignoring Factor A, by testing

θ12 = · · · = θk−1,k = 0 (8.6)

using the method in Section 8.3. In words, the null hypothesis is that the typical difference
score between any two levels of Factor B, ignoring Factor A, is zero.

As for Factor A, ignoring Factor B, one approach is as follows. Momentarily focus on the first
level of Factor B and note that the levels of Factor A can be described as in Chapter 7. That is,
the null hypothesis of no differences among the levels of Factor A is

H0 : θ11 = θ21 = · · · = θJ1,

where of course these J groups are independent, and a percentile bootstrap method can be
used. More generally, for any level of Factor B, say the kth, the hypothesis of no main
effects is

H0 : θ1k = θ2k = · · · = θJk,

(k = 1, . . . ,K ), and the goal is to determine whether these K hypotheses are simultaneously
true. Here we take this to mean that we want to test

H0 : θ11− θ21 = · · · θJ−1,1− θJ1 = · · · = θJ−1,K − θJ K = 0. (8.7)

In this last equation, there are C = K (J 2
− J )/2 differences, all of which are hypothesized to

be equal to zero. Proceeding along the lines in Chapter 7, for each level of Factor A, generate
bootstrap samples as is appropriate for K dependent groups and then test Eq. (8.7). Label the
C differences based on the observed data as δ1, . . . , δC and then denote bootstrap estimates by
δ̂∗c (c = 1, . . . ,C). For example, δ̂∗1 = θ

∗

11− θ
∗

21. Then we test Eq. (8.5) by determining how
deeply the vector (0, . . . ,0), having length C , is nested within the B bootstrap values, which
is done as described in Table 8.5. However, a criticism of this method is that control over the
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probability of a type I error can be unsatisfactory it can (exceed .075 when testing at the 0.05
level) when the sample size is small.

For Factor A, an alternative approach, which seems more satisfactory in terms of type I errors,
is to base the analysis on the average measures of location across the K levels of Factor B. In
symbols, let

θ̄ j. =
1

K

K∑
k=1

θ jk,

in which case the goal is to test

H0 : θ̄1. = · · · = θ̄J..

Again for each level of Factor A, generate B samples for the K dependent groups as described
in Section 8.2.5 in conjunction with method RMPB4. Let θ̄∗j. be the bootstrap estimate for the

j th level of Factor A. For levels j and j ′ of Factor A, j < j ′, set δ∗j j ′ = θ̄
∗

j.− θ̄
∗

j ′., Then you

determine how deeply 0, having length (J 2
− J )/2, is nested within the B bootstrap values

for δ∗j j ′ using the method described in Table 8.5. When dealing with Factor A, this approach
seems to be more satisfactory than the strategy described in the previous paragraph.

As for interactions, again there are several approaches one might adopt. Here an approach
based on difference scores among the dependent groups is used. To explain, first consider a
2-by-2 design, and for the first level of Factor A let Di1 = X i11− X i12, i = 1, . . . ,n1.
Similarly, for level 2 of Factor A let Di2 = X i21− X i22, i = 1, . . . ,n2, and let θd1 and θd2 be
the population measure of location corresponding to the Di1 and Di1 values, respectively.
Then the hypothesis of no interaction is taken to be

H0 : θd1 = θd2,

which of course is the same as

H0 : θd1− θd2 = 0. (8.8)

Again the basic strategy for testing hypotheses is generating bootstrap estimates and
determining how deeply 0 is embedded in the B values that result. For the more general case
of a J -by-K design, there are a total of

C =
J 2
− J

2
×

K 2
−K

2

equalities, one for each pairwise difference among the levels of Factor B and any two levels
of Factor A.
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8.6.7 R Functions sppba, sppbb, and sppbi

The R function

sppba(J,K,x,est=onestep,grp = c(1:JK),avg=T,nboot=500,MC=F,MDIS=T, . . .)

argument avg to T (for true) indicates that the averages of the measures of location (the θ̄ j.

values) will be used. That is, H0 : θ̄1. = · · · = θ̄J. is tested. Otherwise, the hypothesis given by
Eq. (8.6) is tested. By default, the argument MDIS=T, meaning that the depths of the points
in the bootstrap cloud are based on Mahalanobis distance. Otherwise a projection distance is
used, which was described in Section 6.2.5. If MDIS=F and MC=T, a multi-core processor
will be used if one is available. The remaining arguments have their usual meaning.

The R function

sppbb(J,K,x,est=onestep,grp = c(1:JK),nboot=500, . . .)

tests the hypothesis of no main effects for Factor B (as described in the previous section) and

sppbi(J,K,x,est=onestep,grp = c(1:JK),nboot=500, . . .)

tests the hypothesis of no interactions.

n Example

We examine once more the EEG measures for murderers versus a control group
reported in Table 6.1, only now we use the data for all four sites in the brain where
measures were taken. If we label the typical measures for the control group as
θ11, . . . , θ14, and the typical measures for the murderers as θ21, . . . , θ24, we have a 2-by-4,
between-by-within design and a possible approach to comparing the groups is testing

H0 : θ11− θ21 = θ12− θ22 = θ13− θ23 = θ14− θ24 = 0.

This can be done with the R function sppba with the argument avg set to F. If the data
are stored in a matrix called eeg having eight columns, with the �rst four corresponding
to the control group, then the command sppba(2,4,eeg,est=mom) performs the
calculations based on the MOM measure of location and returns a signi�cance level of
0.098. An alternative approach is to average the value of MOM over the four brain sites
for each group, and then compare these averages. That is, test H0 : θ̄1. = θ̄2., where
θ̄ j. =

∑
θ jk/4. This can be done with the command sppba(2,4,eeg,avg=T). Now the

p-value is .5 illustrating that the p-value can vary tremendously depending on how
groups are compared.

n
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8.6.8 Multiple Comparisons

When dealing with multiple comparisons associated with a between-by-within design, there
are several approaches that might be taken that answer different questions. This section
outlines some of the possibilities.

Method BWMCP

Focusing on trimmed means, multiple comparisons, when dealing with a between-by-within
design, can be tested using linear contrasts, which are created in the same manner as outlined
in Section 7.4.3. Consider any linear contrast 9, with the understanding that multiple linear
contrasts are generally of interest. As usual, the goal is to test

H0 :9 = 0,

and among the C linear contrasts of interest, often it is desired to have the probability of one
or more type I errors equal to some specified value, α. Two methods for accomplishing this
goal seem to be relatively effective: a bootstrap-t method and a percentile bootstrap method.

For convenience, we write the L = J K trimmed means as X̄ t1, . . . , X̄ t L . The estimate of

9 =
∑

c`µt`

is
9̂ =

∑
c` X̄ t`,

where c1, . . . cL are the linear contrast coefficients.

To test hypotheses using a bootstrap-t method, first note that the variances and covariances
among the sample trimmed means can be estimated using results in Section 5.9.5. (Of course,
when two sample trimmed means are independent, their covariance is taken to be zero.) Let S
denote this L-by-L covariance matrix. (So the diagonal elements are the estimated squared
standard errors.) Let C be a column matrix having length L that contains the contrast
coefficients. Then the squared standard error of 9̂ is estimated with

s2
9̂
= C′SC

and an appropriate test statistic is

W =
|9̂|

s9̂
.

A bootstrap-t method is used to estimate the null distribution of W . First, compute

Yi jk = X i jk− X̄ t jk,
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where X̄ t jk is the trimmed mean corresponding to level j of Factor A and level k of Factor B.
Next, take bootstrap samples based on the Yi jk values. So for level j of Factor A, n j rows of
data are sampled with replacement. Based on this bootstrap sample, compute the test statistic
W , which is labeled W ∗. Repeat this process B times yielding W ∗1 , . . . ,W ∗B . Let c= (1−α)B,
rounded to the nearest integer. Then a 1−α confidence interval for 9 is

9̂±W ∗(c)
s9̂
√

n
.

Alternatively, reject the null hypothesis if W ≥W ∗(c).

Section 4.4.3 made a distinction between a symmetric bootstrap-t confidence interval and an
equal-tailed confidence interval. Here, a symmetric confidence interval is used. For the
situation at hand, there are no results on whether an equal-tailed confidence interval ever
offers a practical advantage.

A percentile bootstrap method can be applied as well. As usual, no standard errors are used.
For each hypothesis to be tested, corresponding to some linear contrast, a p-value can be
computed as indicated at the end of Section 8.2.7.

Method BWAMCP: Comparing Levels of Factor A for Each Level of Factor B

To provide more detail about how groups differ, another strategy is to focus on a particular
level of Factor B and perform all pairwise comparisons among the levels of Factor A. Of
course, this can be done for each level of Factor B.

n Example

Consider again a 3-by-2 design where the means are arranged as follows:

Factor B
1 2

1 µ1 µ2

Factor A 2 µ3 µ4

3 µ5 µ6

For level 1 of Factor B, method BWAMCP would test H0: µ1 = µ3, H0: µ1 = µ5 and H0:
µ3 = µ5. For level 2 of Factor B, the goal is to test H0: µ2 = µ4, H0: µ2 = µ6 and H0:
µ4 = µ6. These hypotheses can be tested by creating the appropriate linear contrasts
and using the R function lincon, which can be done with the R function bwamcp
described in the next section.

n
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Method BWBMCP: Dealing with Factor B

When dealing with Factor B, there are four variations of method BWMCP that might be used,
which are described here under the appellation method BWBMCP. The first two variations
ignore the levels of Factor A and test hypotheses based on the trimmed means. The first
variation uses difference scores and the second uses the marginal trimmed means. Both of
these variations begin by pooling the data over the levels of Factor A. In essence, Factor A is
ignored. The other two variations do not pool the data over the levels of Factor A, but rather
perform an analysis based on difference scores or the marginal trimmed means for each level
of Factor A. In more formal terms, consider the j th level of Factor A. Then there are
(K 2
−K )/2 pairs of groups that can be compared. If for each of the J levels of Factor A, all

pairwise comparisons are performed, the total number of comparisons is J (K 2
−K )/2.

n Example

Consider a 2-by-2 design where the �rst level of Factor A has 10 pairs of observations
and the second has 15. So we have a total of 25 pairs of observations with the �rst 10
corresponding to level 1 of Factor A. When analyzing Factor B, pooling the data means
the goal is to compare either the difference scores corresponding to all 25 pairs of
observations, or to compare the marginal trimmed means, again based on all 25
observations. Not pooling means that for level 1 of Factor A either test hypotheses
based on difference scores or compare the marginal trimmed means. And the same
could be done for level 2 of Factor A.

n

Method BWIMCP: Interactions

As for interactions, we focus on a 2-by-2 design with the understanding that the same analysis
can be done for any two levels of Factor A and any two levels of Factor B. Rather than define
interactions as done when using Method BWMCP, difference scores might be used instead. To
elaborate, consider the first level of Factor A. There are n1 pairs of observations
corresponding to the two levels of Factor B. Form the difference scores, which for level j of
Factor A are denoted by

Di j ,

(i = 1, . . . ,n j ) and let µt j be the population trimmed means associated with these difference
scores. Then one way of stating the hypothesis of no interaction is

H0 : µt1 = µt2.

In words, the hypothesis of no interaction corresponds to the trimmed means of the difference
scores associated with level 1 of Factor A being equal to the trimmed means of the difference
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scores associated with level 2 of Factor A. When either factor has more than two levels, a
possible goal is to test all similar hypotheses (associated with any two levels of Factor A and
Factor B) in a manner that controls FWE, which might be done using Rom’s method or
Hochberg’s method.

Methods SPMCPA, SPMCPB, and SPMCPI

If it is desired to compare groups based on using a percentile bootstrap method, which appears
to be the best method when comparing groups based on an M-estimator or MOM, analogs of
methods BWAMCP, BWBMCP, and BWIMCP can be used, which are called methods
SPMCPA, SPMCPB, and SPMCPI, respectively.

8.6.9 R Functions bwmcp, bwamcp, bwbmcp, bwimcp, spmcpa, spmcpb, and spmcpi

The R function

bwmcp(J, K, x, tr = 0.2, alpha = 0.05,con=0, nboot=599)

performs method BWMCP described in the previous section. By default, it creates all relevant
linear contrasts for main effects and interactions by calling the R function con2way.

The R function

bwamcp(J, K, x, tr = 0.2, alpha = 0.05)

performs multiple comparisons associated with Factor A using the (bootstrap-t) method
BWAMCP, described in the previous section. The function creates the appropriate set of linear
contrasts and calls the R function lincon. The function returns three sets of results
corresponding to Factor A, Factor B, and all interactions. The critical value reported for each
of the three set of tests in designed to control the probability of at least one type I error.

The R function

spmcpa(J,K,x,est=tmean,JK=J*K,grp=c(1:JK),con=0,avg=F,alpha=.05,
nboot=NA,pr=T, . . .)

is like the R function bwamcp, only a percentile bootstrap method is used.

The R function

bwbmcp(J, K, x, tr = 0.2, con = 0, alpha = 0.05, dif = T,pool=F)

uses method BWBMCP to compare the levels of Factor B. If the argument pool=T, the
function pools the data for you and then calls the function rmmcp. If the argument dif=F, the
marginal trimmed means are compared instead. By default, pool=F meaning that

H0 : µt jk = µt jk′
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is tested for all k < k ′ and j = 1, . . . , J . For each level of Factor A, the function simply
selects data associated with the levels of Factor B and tests hypotheses via the R function
rmmcp. “Critical p-values” are reported in the column headed by p.crit. That is, p.crit
indicates how small the p-value must be in order to reject, given the goal that FWE be equal
to some specified α value. The R function

spmcpb(J,K,x,est=tmean,JK=J*K,grp=c(1:JK),dif=T,alpha=0.05, nboot=NA,pr=T, . . .)

is like bwbmcp, only a percentile bootstrap method is used.

As for interactions, the R function

bwimcp(J, K, x, tr = 0.2, alpha = 0.05)

compares trimmed means using a nonbootstrap method. The R function

spmcpi(J,K,x,est=tmean,JK=J*K,grp=c(1:JK),alpha=0.05,nboot=NA, SEED=T,pr=T, . . .)

uses a percentile bootstrap technique instead.

The R function

bwmcppb(J, K, x, tr = 0.2, alpha = 0.05, nboot = 500, bhop = F)

simultaneously performs all multiple comparisons related to all main effects and interactions
using a percentile bootstrap method. Unlike spmcpa, spmcpb, and spmcpi, the function
bwmcppb is designed for trimmed means only and has an option for using the
Benjamini–Hochberg method via the argument bhop.

The R function

bwmcppb(J, K, x, tr = 0.2, alpha = 0.05, nboot = 500, bhop = F)

tests the same hypotheses as done by the R function bwmcp, only a percentile bootstrap
method used. Unlike spmcpa, spmcpb, and spmcpi, the function bwmcppb is designed for
trimmed means only and has an option for using the Benjamini–Hochberg method via the
argument bhop.

8.6.10 Within-by-Within Designs

The methods for dealing with a between-by-within design are readily extended to a
within-by-within design. That is, all J K groups being compared are dependent. For example,
the method in Section 8.6.1 can be modified to handle this situation by taking V in Eq. (8.5) to
be the Winsorized variance–covariance of all J K variables under study. (That is, for a
between-by-within design, V was a block diagonal matrix, but for the situation at hand,
generally this is no longer the case.) A similar extension can be used when dealing with linear
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contrasts. Note that when dealing with linear contrasts, again there are two basic goals that
might be of interest. The first is to test hypotheses about linear contrasts stated in terms of the
measures of location associated with the marginal distributions. Section 8.1.3 provides explicit
details when dealing with trimmed means that can be used to analyze a within-by-within
design. The second strategy is to use an extension of methods based on difference scores. That
is, now the hypotheses of interest take the form described in Section 8.1.4. R functions
specifically designed for within-by-within design are described in the next section.

8.6.11 R Functions wwtrim, wwtrimbt, wwmcppb, and wwmcpbt

The R function

wwtrim(J, K, x, grp = c(1:p), p = J * K, tr = 0.2)

tests for main effects and interactions in a within-by-within design using a modification of the
method for trimmed means described in Section 8.6.1. (The modification simply takes into
account the possibility that all J K variables might be dependent.) The R function

wwtrimbt(J, K, x, tr = 0.2, JKL = J * K, grp = c(1:JK), nboot = 599, SEED = T, . . .)

is the same as the R function wwtrim, only a bootstrap-t method is used. The R function

wwmcp(J,K,x,tr=0.2,alpha=0.05,dif=T)

performs multiple comparisons relevant to both main effects and interactions. (The function
creates the appropriate linear contrasts and then uses the R function rmmcp.) By default,
linear contrasts are created along the lines described in Section 8.1.4. To use linear contrasts
based on the marginal trimmed means, set the argument dif=F. The R function

wwmcppb(J,K,x, alpha = 0.05, con = 0,est=tmean, plotit = F, dif = T, grp = NA, nboot =
NA, BA = T, hoch = T, xlab = “Group 1”, ylab = “Group 2”, pr = T, SEED = T, . . .)

is like the R function wwmcp, only a percentile bootstrap method is used. It defaults to using
a 20% trimmed mean, but other measures of location can be used via the argument est. (When
using an M-estimator, setting the argument hoch=F is suggested.) This function (using
default settings) appears to be a relatively good choice, particularly when dealing with a small
sample size. When the amount of trimming is small, use the R function

wwmcpbt(J,K,x, tr=0.2, alpha = 0.05, nboot = 599),

which uses a bootstrap-t method.

8.6.12 A Rank-Based Approach

This section describes a rank-based approach to a split-plot (or between-by-within subjects)
design taken from Brunner et al. (2002, Chapter 8). There are other rank-based approaches
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(e.g., Beasley, 2000; Beasley & Zumbo, 2003), but it seems that the practical merits of these
competing methods, versus the method described here, have not been explored.

Main effects for Factor A are expressed in terms of

F̄ j.(x)=
1

K

K∑
k=1

F jk(x),

the average of the distributions among the K levels of Factor B corresponding to the j th level
of Factor A. The hypothesis of no main effects for Factor A is

H0 : F̄1.(x)= F̄2.(x)= · · · = F̄J.(x).

for any x . Letting

F̄.k(x)=
1

J

J∑
j=1

F jk(x)

be the average of the distributions for the kth level of Factor B, the hypothesis of no main
effects for Factor B is

H0 : F̄.1(x)= F̄.2(x)= · · · = F̄.K (x).

As for interactions, first consider a 2-by-2 design. Then no interaction is taken to mean that
for any x ,

F11(x)− F12(x)= F21(x)− F22(x).

More generally, the hypothesis of no interactions among all J K groups is

H0 : F jk(x)− F̄ j.(x)− F̄.k(x)+ F̄..(x)= 0,

for any x , all j ( j = 1, . . . , J ) and all k (k = 1, . . . ,K ), where

F̄..(x)=
1

J K

J∑
j=1

K∑
k=1

F jk(x).

As usual, let X i jk represent the i th observation for level j of Factor A and level k of Factor B.
Here, i = 1, . . . ,n j . That is, the j th level of Factor A has n j vectors of observations, each
vector containing K values. So for the j th level of Factor A there are a total of n j K
observations, and among all the groups, the total number of observations is denoted by N . So
the total number of vectors among the J groups is n =

∑
n j , and the total number of

observations is N = K
∑

n j = K n.
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Pool all N observations and assign ranks. As usual, midranks are used if there are tied values.
Let Ri jk represent the rank associated with X i jk . Let

R̄. jk =
1

n j

n j∑
i=1

Ri jk,

R̄. j. =
1

K

K∑
k=1

R̄. jk,

R̄i j. =
1

K

K∑
k=1

Ri jk,

σ̂ 2
j =

1

n j −1

n j∑
i=1

(R̄i j.− R̄. j.)
2,

S =
J∑

j=1

σ̂ 2
j

n j
,

U =
J∑

j=1

(
σ̂ 2

j

n j

)2

,

D =
J∑

j=1

1

n j −1

(
σ̂ 2

j

n j

)2

.

Factor A: The test statistic is

FA =
J

(J −1)S

J∑
j=1

(R̄. j.− R̄...)
2,

where R̄... =
∑

R̄. j./J . The degrees of freedom are

ν1 =
(J −1)2

1+ J (J −2)U/S2
,

and

ν2 =
S2

D
.

Reject if FA ≥ f , where f is the 1−α quantile of an F distribution with ν1 and ν2 degrees of
freedom.
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Factor B: Let

Ri j = (Ri j1, . . . , Ri j K )
′,

R̄. j =
1

n j

n j∑
i=1

Ri j , R̄.. =
1

J

J∑
j=1

R̄. j ,

n =
∑

n j (so N = nK ),

V j =
n

N 2n j (n j −1)

n j∑
i=1

(Ri j − R̄. j )(Ri j − R̄. j )
′.

So V j is a K -by-K matrix of covariances based on the ranks. Let

S=
1

J 2

J∑
j=1

V j

and let PK be defined as in Section 7.9. The test statistic is

FB =
n

N 2tr(PK S)

K∑
k=1

(R̄..k− R̄...)
2.

The degrees of freedom are

ν1 =
(tr(PK S))2

tr(PK SPK S)
, ν2 =∞,

and H0 is rejected if FB ≥ f , where f is the 1−α quantile of an F distribution with ν1 and ν2

degrees of freedom.

Interactions: Let V be the block diagonal matrix based on the matrices V j , j = 1, . . . , J .
Letting MAB be defined as in Section 7.9, the test statistic is

FAB =
n

N 2tr(MABV)

J∑
j=1

K∑
k=1

(R̄. jk− R̄. j.− R̄..k+ R̄...)
2.

The degrees of freedom are

ν1 =
(tr(MABV))2

tr(MABVMABV)
, ν2 =∞.

Reject if FA ≥ f (or if FAB ≥ f ), where f is the 1−α quantile of an F distribution with ν1

and ν2 degrees of freedom.
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8.6.13 R Function bwrank

The R function

bwrank(J,K,x)

performs a between-by-within ANOVA based on ranks using the method just described. In
addition to testing hypotheses as just indicated, the function returns the average ranks (R̄. jk)
associated with all J K groups as well as the relative effects, (R̄. jk−0.5)/N .

n Example

Lumley (1996) reports data on shoulder pain after surgery; the data are from a study by
Jorgensen, Gilles, Hunt, Caplehorn, and Lumley (1995). Table 8.7 shows a portion of

Table 8.7: Shoulder Pain Data (1=low, 5=high).

Active Treatment No Active Treatment

Time 1 Time 2 Time 3 Time 1 Time 2 Time 3

1 1 1 5 2 3
3 2 1 1 5 3
3 2 2 4 4 4
1 1 1 4 4 4
1 1 1 2 3 4
1 2 1 3 4 3
3 2 1 3 3 4
2 2 1 1 1 1
1 1 1 1 1 1
3 1 1 1 5 5
1 1 1 1 3 2
2 1 1 2 2 3
1 2 2 2 2 1
3 1 1 1 1 1
2 1 1 1 1 1
1 1 1 5 5 5
1 1 1 3 3 3
2 1 1 5 4 4
4 4 2 1 3 3
4 4 4
1 1 1
1 1 1
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the results where two treatment methods are used and measures of pain are taken at
three different times. The output from bwrank is

$test.A:
[1] 12.87017

$sig.A:
[1] 0.001043705

$test.B:
[1] 0.4604075

$sig.B:
[1] 0.5759393

$test.AB:
[1] 8.621151

$sig.AB:
[1] 0.0007548441

$avg.ranks:
[,1] [,2] [,3]

[1,] 58.29545 48.40909 39.45455
[2,] 66.70455 82.36364 83.04545

$rel.effects:
[,1] [,2] [,3]

[1,] 0.4698817 0.3895048 0.3167036
[2,] 0.5382483 0.6655580 0.6711013

So at approximately the 0.001 level, treatment methods are signi�cantly different and
there is a signi�cant interaction, but no signi�cant difference is found over time. Note
that the average ranks and relative effects suggest that a disordinal interaction might
exist. In particular, for group 1 (the active treatment group), time 1 has higher average
ranks versus time 2, and the reverse is true for the second group. However, the Wilcoxon
signed rank test fails to reject at the 0.05 level when comparing time 1 to time 2 for both
groups. When comparing time 1 versus time 3 for the �rst group, again using the
Wilcoxon signed rank test, we reject at the 0.05 level, but a nonsigni�cant result is
obtained for group 2. So again a disordinal interaction appears to be a possibility, but
the empirical evidence is not compelling.

n

n Example

Section 6.11 illustrated a method for comparing multivariate data corresponding to two
independent groups based on the extent that points from one group are nested within
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the other. For the data in Table 6.6, it was found that schizophrenics differed from the
control group; also see Figure 6.10. If the two groups are compared based on the OP
estimator (using the function smean2), again the two groups are found to differ.
Comparing the groups with the method for means and trimmed means described in this
section, no difference between the schizophrenics and control group is found at the
0.05 level. Using the rank-based method in this section, again no difference is found.
(The p-value is .11.) The only point is that how we compare groups can make a practical
difference about the conclusions reached.

n

8.6.14 Rank-Based Multiple Comparisons

Multiple comparisons based on the rank-based methods covered here can be performed using
simple combinations of methods already considered. When dealing with Factor A, for
example, one can simply compare level j to level j ′, ignoring the other levels. When
comparing all pairs of groups, FWE can be controlled with Rom’s method or the
Benjamini–Hochberg technique. Factor B and the collection of all interactions (corresponding
to any two rows and any two columns) can be handled in a similar manner.

8.6.15 R Function bwrmcp

The R function

bwrmcp(J,K,x,grp=NA,alpha=0.05,bhop=F)

performs all pairwise multiple comparisons using the method of Section 8.6.14 with the FWE
(familywise error) rate controlled using Rom’s method of the Benjamini–Hochberg method.
For example, when dealing with Factor A, the function simply compares level j to level j ′

ignoring the other levels. All pairwise comparisons among the J levels of Factor A are
performed and the same is done for Factor B and all relevant interactions.

8.6.16 Multiple Comparisons when Using a Patel–Hoel Approach to Interactions

Rather than compare distributions when dealing with a between-by-within design, one could
use a simple analog of the Patel–Hoel approach instead. First consider a 2-by-2 design and
focus on level one of Factor A. Then the two levels of Factor B are dependent and can be
compared with the sign test. In essence, inferences are being made about p1, the probability
that for a randomly sampled pair of observations, the observation from level one of Factor B
is less than the corresponding observation from level two. Of course, for level two of Factor
A, we can again compare levels one and two of Factor B with the sign test. Now we let p2 be
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the probability that for a randomly sampled pair of observations, the observation from level
one of Factor B is less than the corresponding observation from level two. Then no interaction
can be defined as p1 = p2.

The hypothesis of no interaction,

H0 : p1 = p2,

is just the hypothesis that two independent binomials have equal probabilities of success,
which can be tested using one of the methods described in Section 5.8. Here, Beal’s method is
used rather than the Storer–Kim method because it currently seems that Beal’s method
provides more accurate control over FWE for the problem at hand, execution time can be
much lower when sample sizes are large, and unlike the Storer–Kim procedure, Beal’s method
provides confidence intervals. Method KMS in Section 5.8.3 might be used as well, but there
are no published results on how it performs for the situation at hand.

There are various ways FWE might be controlled. Among a collection of techniques
considered by Wilcox (2001c), the following method was found to be relatively effective. Let
q be the 1−α quantile of a C-variate Studentized maximum modulus distribution with
degrees of freedom ν =∞, where C is the total number of hypotheses to be tested. Assuming
that all pairs of rows and columns are to be considered when testing the hypothesis of no
interactions,

C =
J 2
− J

2
×

K 2
−K

2
.

(For a formal definition of a Studentized maximum modulus distribution, see Miller, 1966,
p. 71. Some quantiles are reported in Wilcox, 2003a.) Let Z be a standard normal random
variable. Then if FWE is to be α, test each of the C hypotheses at the αa level where

• If (J, K )= (5, 2), then αa = 2[1− P(Z ≤ q)].
• If (J, K )= (3,2), (4, 2) or (2, 3), then αa = 3[1− P(Z ≤ q)].
• For all other J and K values, αa = 4[1− P(Z ≤ q)].

These adjusted α values appear to work well when the goal is to achieve FWE less than or
equal to 0.05. Whether this remains the case with FWE equal to 0.01 is unknown. For C > 28
and FWE equal to 0.05, use

q = 2.383904C1/10
−0.202.

(Of course, for C = 1, no adjustment is necessary; simply use Beal’s method.)

Tied values are handled in the same manner as with the signed rank test: pairs of observations
with identical values are simply discarded. So among the remaining observations, for every
pair of observations, the observation from level one of Factor B, for example, is either less
than or greater than the corresponding value from level two.
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A criticism of this method is that power can be relatively low. However, it directly addresses
an issue that might be deemed interesting and useful that is not directly addressed by other
methods in this chapter.

A variation of the approach in this section is where, for level one of Factor B, p1 is the
probability that an observation from level one of Factor A is less than an observation from
level 2. Similarly, p2 is now defined in terms of the two levels of Factor A when working with
level two of Factor B. However, the details of how to implement this approach have not been
studied.

8.6.17 R Function sisplit

The method just described for interactions can be applied with the R function

sisplit(J,K,x)

This function assumes α = 0.05; other values are not allowed. As usual, x is any R variable
containing the data that is an n-by-JK matrix or has list mode.

8.7 Some Rank-Based Multivariate Methods

This section describes two rank-based methods for comparing J independent groups with K
measures associated with each group.

8.7.1 The Munzel–Brunner Method

The first method was derived by Munzel and Brunner (2000). (For recent results regarding
how the Munzel–Brunner method compares to several techniques not covered here, see
Bathke, Solomon, & Madden, 2008. A variation of the Munzel–Brunner method can be used
in place of the Agresti–Pendergast method, but the relative merits of these two techniques
have not been explored.) Let n j represent the number of randomly sampled vectors from the
j th group, each vector containing K measures. Let F jk(x) be the distribution associated with
the j th group and kth measure. So for example, F32(6) is the probability that for the third
group, the second variable will be less than or equal to 6 for a randomly sampled individual.
For the kth measure, the goal is to test the hypothesis that all J groups have identical
distributions. And the more general goal is to test the hypothesis that simultaneously, all
groups have identical distributions for each of the K measures under consideration. That is,
the goal is to test

H0 : F1k(x)= · · · = FJk(x) for all k = 1, . . . ,K . (8.9)
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To apply the method, begin with the first of the K measures, pool all the observations among
the J groups and assign ranks. Ties are handled in the manner described in Section 5.7.2.
Repeat this process for all K measures and label the results Ri jk . That is, Ri jk is the rank of
the i th observation in the j th group and for the kth measure. Let

R̄ jk =
1

n j

n j∑
i=1

Ri jk,

be the average rank for the j th group corresponding to the kth measure. Set

Q̂ jk =
R̄ jk−0.5

n
,

where n =
∑

n j is the total number of randomly sampled vectors among the J groups. The
remaining calculations are summarized in Table 8.8. The Q̂ values are called the relative
effects and reflect the ordering of the average ranks. If, for example, Q̂11 < Q̂21, the typical
rank for variable one in group one is less than the typical rank for variable one in group two.
More generally, if Q̂ jk < Q̂ j ′k , then based on the kth measure, the typical rank (or observed
value) for group j is less than the typical rank for group j ′.

Table 8.8: The Munzel–Brunner One-Way Multivariate Method.

Let

Q̂= (Q̂11, Q̂12, . . . , Q̂1K , Q̂21, . . . , Q̂ J K )
′,

Ri j = (Ri j1, . . . , Ri j K )
′, R̄ j = (R̄ j1, . . . , R̄ j K )

′,

V j =
1

nn j (n j −1)
=

n j∑
i=1

(Ri j − R̄ j )(Ri j − R̄ j )
′,

n =
∑

n j and let

V= diag {V1, . . . ,VJ } .

Compute the matrix MA as described in Section 7.9. The test statistic is

F =
n

tr(MAV)
Q̂′MAQ̂.

Decision Rule: Reject if F ≥ f , where f is the 1−α quantile of an F distribution with

ν1 =
(tr(MAV))2

tr(MAVMAV)
,

and ν2 =∞ degrees of freedom.
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8.7.2 R Function mulrank

The R function

mulrank(J, K, x)

performs the one-way multivariate method in Table 8.8. The data are stored in x which can be
a matrix or have list mode. If x is a matrix, the first K columns correspond to the K measures
for group 1, the second K correspond to group 2, and so forth. If stored in list mode,
x[[1]], . . . , x[[K]] contain the data for group 1, x[[K+1]], . . ., x[[2K]] contain the data for
group 2, and so on.

n Example

Table 8.9 summarizes data (reported by Munzel & Brunner, 2000) from a psychiatric
clinical trial where three methods are compared for treating individuals with panic
disorder. The three methods are exercise, clomipramine and a placebo. The two
measures of effectiveness were a clinical global impression (CGI) and the patient’s
global impression (PGI). The test statistic is F = 12.7 with ν1 = 2.83 and a signi�cance
level less than 0.001. The relative effects are:

$q.hat:
[,1] [,2]

[1,] 0.5074074 0.5096296
[2,] 0.2859259 0.2837037
[3,] 0.7066667 0.7066667

Table 8.9: CGI and PGI Scores After
Four Weeks of Treatment.

Exercise Clomipramine Placebo

CGI PGI CGI PGI CGI PGI

4 3 1 2 5 4
1 1 1 1 5 5
2 2 2 0 5 6
2 3 2 1 5 4
2 3 2 3 2 6
1 2 2 3 4 6
3 3 3 4 1 1
2 3 1 4 4 5
5 5 1 1 2 1
2 2 2 0 4 4
5 5 2 3 5 5
2 4 1 0 4 4
2 1 1 1 5 4
2 4 1 1 5 4
6 5 2 1 3 4
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So among the three groups, the second group, clomipramine, has the lowest relative
effects. That is, the typical ranks were lowest for this group, and the placebo group had
the highest ranks on average.

n

8.7.3 The Choi–Marden Multivariate Rank Test

This section describes a multivariate analog of the Kruskal–Wallis test derived by Choi and
Marden (1997). There are actually many variations of the approach they considered, but here
attention is restricted to the version they focused on. As with the method in Section 8.7.1, we
have K measures for each individual and there are J independent groups. For the j th group
and any vector of constants x= (x1, . . . , xK ), let

F j (x)= P(X j1 ≤ x1, . . . , X j K ≤ xK ).

So for example, F1(x) is the probability that for the first group, the first of the K measures is
less than or equal to x1, the second of the K measures is less than or equal to x2, and so forth.
The null hypothesis is that for any x,

H0 : F1(x)= · · · = FJ (x), (8.10)

which is sometimes called the multivariate hypothesis to distinguish it from Eq. (8.8), which
is called the marginal hypothesis. The multivariate hypothesis is a stronger hypothesis in the
sense that if it is true, then by implication the marginal hypothesis is true as well. For
example, if the marginal distributions for both groups are standard normal distributions, the
marginal hypothesis is true, but if the groups have different correlations, the multivariate
hypothesis is false.

The Choi–Marden method represents an extension of a technique derived by Möttönen & Oja
(1995) and is based on a generalization of the notion of a rank to multivariate data which was
also used by Chaudhuri (1996, Section 4). First consider a random sample of n observations
with K measures for each individual or thing and denote the i th vector of observations by

Xi = (X i1, . . . , X i K ).

Let

Ai i ′ =

√√√√ K∑
k=1

(X ik− X i ′,k)2,
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Table 8.10: The Choi–Marden Method.

Pool the data from all J groups and compute rank vectors as just described in the text. The resulting rank
vectors are denoted by R1, . . . ,Rn, where n =

∑
n j is the total number of vectors among the J groups. For

each of the J groups, average the rank vectors and denote the average of these vectors for the jth group
by R̄ j .

Next, assign ranks to the vectors in the jth group, ignoring all other groups. We let Vi j (a column vector
of length K ) represent the rank vector corresponding to the ith vector of the jth group (i = 1, . . . ,n j ; j =
1, . . . , J ) to make a clear distinction with the ranks based on the pooled data. Compute

S=
1

n− J

J∑
j=1

n j∑
i=1

Vi j V′i j ,

where V′i j is the transpose of Vi j (so S is a K -by-K matrix). The test statistic is

H =
J∑

j=1

n j R̄′j S
−1R̄ j . (8.11)

(For K = 1, H does not quite reduce to the Kruskal–Wallis test statistic. In fact, H avoids a certain technical
problem that is not addressed by the Kruskal–Wallis method.)

Decisions Rule: Reject if H ≥ c, where c is the 1−α quantile of a chi-squared distribution with degrees of
freedom K (J −1).

Here, the “rank” of the i th vector is itself a vector (having length K ) given by

Ri =
1

n

n∑
i ′=1

Xi −Xi ′

Ai i ′
,

where

Xi −Xi ′ = (X i1− X i ′1, . . . , X i K − X i ′K ).

The remaining calculations are summarized in Table 8.10. All indications are that this method
provides good control over the probability of a type I error when ties never occur. There are
no known problems when there are tied values, but this issue is in need of more research.

8.7.4 R Function cmanova

The R function

cmanova(J,K,x)

performs the Choi–Marden method just described. The data are assumed to be stored in x as
described in Section 8.6.2.
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8.8 Three-Way Designs

Generally, two-way designs can be extended to a three-way design where one or more factors
involve dependent groups. This section outlines some of the methods that might be used. It is
stressed, however, that simulation studies reporting the relative merits of the methods
considered are extremely limited.

8.8.1 Global Tests Based on Trimmed Means

The method in Section 8.6.1 is readily extended to a three-way design. Note that the matrix V
used in Eq. (8.4) reflects the variances and covariances among the trimmed means where the
covariances are taken to be zero if the groups are independent. Here, V is computed in a
similar manner. That is, for a J -by-K -by-L design, V is a JKL square matrix that contains the
squared standard errors and covariances among the sample trimmed means, with independent
trimmed means having a covariance of zero. Once V is available, compute the test statistic Q
given by Eq. (8.4), where now the matrix C is computed as described in Table 7.5.

When dealing with situations where one or more factors involve dependent groups, comments
should be made regarding the approximation of the null distribution using an F distribution.
Unlike the method in Section 8.6.1 where the second degree of freedom, ν2, is estimated
based on the data, the strategy here is to simply set ν2 = 999. The reason is that even with
ν2 = 999, the actual level of the method can drop well below the nominal level when the
sample size is small and 20% trimmed means are used. For example, when dealing with a
between-by-between-by-within design, under normality with all correlations equal to zero
and J = 2, K = L = 3, and n = 25, the actual type I error probability is approximately .003
when dealing with the A-by-C interaction and testing at the 0.05 level. Increasing n to 50,
now the actual level is approximately 0.013, for n = 100 it is 0.037, and for n = 900 it is
0.04. For the main effect associated with factor A, the estimated level is 0.050 with n = 25
and 0.052 with n = 900. A bootstrap-t method appears to suffer from the same problem, but
an extensive study of this issue has not been conducted. A similar problem occurs when
dealing with a between-by-within-by-within design. Again ν2 = 999 is used, but even with
n = 100, the actual level can drop as low as 0.025 under normality. Using instead a
bootstrap-t method (via the R function bbwtrimbt), with n = 25, the actual level was
estimated to be 0.067.

Evidently there are no published studies comparing methods, in terms of type I errors, when
dealing with three-way designs with one or more within group factors. Very limited results
suggest that perhaps a better approach, compared to the methods described here, is to use the
R functions in Section 8.8.6. They test hypotheses about all of the usual linear contrasts
associated with a three-way design using a percentile bootstrap method in conjunction with a
trimmed mean. In terms of controlling the probability of one or more type I errors, performing
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one of the global tests described here is not required when using the percentile bootstrap
methods via the R functions in Section 8.8.6. Moreover, limited results suggest that control
over the type I error probability is more satisfactory when the amount of trimming is 20%. For
the situation considered here, where n = 25 and the actual type I error is approximately .003,
the probability of one or more type I errors was estimated to be .039 when using a percentile
bootstrap method via the R function bbwmcppb, based on a simulation with 1000 replications.
(And execution time can be substantially less when using a percentile bootstrap method rather
than the bootstrap-t method.) Using instead the R function bwwmcppb, the probability of one
or more type I errors was estimated to be .049. But again, a more comprehensive study is
needed.

8.8.2 R Functions bbwtrim, bwwtrim, wwwtrim, bbwtrimbt, bwwtrimbt, and
wwwtrimbt

The R function

bbwtrim(J,K,L,x,grp=c(1:p),tr=0.2)

tests all omnibus main effects and interactions associated with a
between-by-between-by-within design. The data are assumed to be stored as described in
Section 7.3.1. For a between-by-within-by-within design use

bwwtrim(J,K,L,x,grp=c(1:p),tr=0.2).

And for a within-by-within-by-within design use

wwwtrim(J,K,L,x,grp=c(1:p),tr=0.2).

The R functions

bbwtrimbt(J,K,L,x,grp=c(1:p),tr=0.2, nboot = 599, SEED = T)

bwwtrim(J,K,L,x,grp=c(1:p),tr=0.2, nboot = 599, SEED = T).

and

wwwtrimbt(J,K,L,x,grp=c(1:p),tr=0.2, nboot = 599, SEED = T).

are the same as the functions bbwtrim, bwwtrim, and wwwtrim, respectively, only a
bootstrap-t method is used.

8.8.3 Data Management: R Functions bw2list and bbw2list

For a between-by-within-by-within design, the R function

bw2list(x, grp.col, lev.col),
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which was introduced in Section 8.6.3, can be used when dealing with data that are stored in a
matrix or a data frame with one column indicating the levels of the independent groups and
other columns containing data corresponding to within group levels. For example, setting the
argument grp.col=c(5) would indicate that the levels for Factor A are stored in column 5 and
lev.col=c(3,9,10,12) indicates that the within levels data are stored in columns 3, 9, 10, and
12. Note that it must be the case that KL is equal to the number of values stored in lev.col. So
lev.col=c(3,9,10,12) would be appropriate if the within factors have two levels each, with the
data for two levels of Factor C being stored in columns 10 and 12.

The R function

bbw2list(x, grp.col, lev.col),

deals with a between-by-between-by-within design and assumes that the argument grp.col
contains two values that indicate the columns of x that indicate the levels of Factors A and B.
Now the argument lev.col indicates the columns containing the within data.

n Example

Imagine that for a between-by-between-by-within design, column 14 of the R variable
dis contains values indicating the levels of Factor A, column 10 has values that contain
the levels of Factor B, and columns 2, 4, and 9 contain the outcomes values at times 1,
2, and 3, respectively. Then

z=bbw2list(dis, grp.col=c(14,10), lev.col=c(2,4,9))

would store the data in list mode in z, after which the command

bbwtrim(3,4,3,z)

would test the usual hypotheses, assuming that Factors A and B have 3 and 4 levels,
respectively. The values in column 14 and 10 would be sorted in ascending order, or in
alphabetical order if the values in these columns are character data.

n

8.8.4 Multiple Comparisons

Multiple comparisons in a three-way design can be performed using a straightforward
extension of methods described in previous sections. The R function con3way, described in
Section 7.4.4, can be used to generate the linear contrast coefficients that are often used. Here,
when computing A in Section 8.1.3, we set d jk = 0 whenever j and k correspond to
independent groups. Otherwise, this term is computed as described in Section 8.1.3. The next
two sections summarize some R functions aimed at facilitating the analysis.
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8.8.5 R Function rm3mcp

When dealing with a within-by-within-by-within design, a nonbootstrap method can be used
to test the hypotheses associated with all of the linear contrasts generated by the R function
con3way. This can be done with the R function

rm3mcp(J, K, L, x, tr = 0.2, alpha = 0.05, dif = T, grp = NA).

(That is, it uses the R function con3way to generate the linear contrast coefficients and then it
tests the corresponding hypotheses.) When dealing with designs where there are both between
and within factors, use a bootstrap method via one of the R functions described in the next
section. Another approach is to use the R function rmmcp in Section 8.1.5 in conjunction with
the R function con3way. (For an illustration of how to interpret three-way interactions based
on the contrast coefficients returned by con3way, see the example at the end of Section 7.4.4.)

8.8.6 R Functions bbwmcp, bwwmcp, bbwmcppb, bwwmcppb, and wwwmcppb

Bootstrap-t Methods

The R function

bbwmcp(J, K, L, x, tr = 0.2, JKL = J * K * L, con = 0, alpha = 0.05, grp = c(1:JKL), nboot
= 599, SEED = T, . . .)

performs all multiple comparisons associated with main effects and interactions using a
bootstrap-t method in conjunction with trimmed means when analyzing a
between-by-between-by-within design. The function uses con3way to generate all of the
relevant linear contrasts and then uses the function lindep to test the hypotheses. The critical
value is designed to control the probability of at least one type I error among all the linear
contrasts associated with factor A. The same is done for factor B and factor C.

The R function

bwwmcp(J, K, L, x, tr = 0.2, JKL = J * K * L, con = 0, alpha = 0.05, grp = c(1:JKL),
nboot = 599, SEED = T, . . .)

handles a between-by-within-by-within design.

Percentile Bootstrap Methods

For a between-by-between-by-within design, the R function

bbwmcppb(J, K, L, x, tr = 0.2, JKL = J * K * L, con = 0, alpha = 0.05, grp = c(1:JKL),
nboot = 599, SEED = T, . . .)
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tests hypotheses using a percentile bootstrap method. As for a between-by-within-by-within
and within-by-within-by-within design, use the functions

bwwmcppb(J, K, L, x, tr = 0.2, JKL = J * K * L, con = 0, alpha = 0.05, grp = c(1:JKL),
nboot = 599, SEED = T, . . .)

and

wwwmcppb(J, K, L, x, tr = 0.2, JKL = J * K * L, con = 0, alpha = 0.05, grp = c(1:JKL),
nboot = 599, SEED = T, . . .),

respectively.

8.9 Exercises

1. Section 8.6.2 reports data on hangover symptoms. For group 2, use the R function
rmanova to compare the trimmed means corresponding to times 1, 2, and 3.

2. For the data used in Exercise 1, compute confidence intervals for all pairs of trimmed
means using the R function pairdepb.

3. Analyze the data for the control group reported in Table 6.1 using the methods in
Sections 8.1 and 8.2. Compare and contrast the results.

4. Repeat Exercise 3 using the rank-based method in Section 8.5. How do the results
compare to using a measure of location?

5. Repeat Exercises 3 and 4 using the data for the murderers in Table 6.1.
6. Analyze the data in Table 6.1 using the methods in Sections 8.6.1 and 8.6.4.
7. Repeat Exercise 6, only now use the rank-based method in Section 8.6.12.
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CHAPTER 9

Correlation and Tests of Independence

There are many approaches to finding robust measures of correlation and covariance (e.g.,
Ammann, 1993; Davies, 1987; Devlin et al., 1981; Goldberg & Iglewicz, 1992; Hampel et al.,
1986, Chapter 5; Huber, 1981, Chapter 8; Li & Chen, 1985; Lupuhaä, 1989; Maronna, 1976;
Mosteller & Tukey, 1977, p. 211; Wang & Raftery, 2002; Wilcox, 1993b), but no attempt is
made to give a detailed description of all the strategies that have been proposed. Some of
these measures are difficult to compute, others are not always equal to zero under
independence, and from a technical point of view, some do not have all the properties one
might want. One of the main goals in this chapter is to describe some tests of zero correlation
that have practical value relative to the standard test based on the usual product moment
correlation, r . Some alternative methods for testing the hypothesis of independence, that are
not based on some type of correlation coefficient, are described as well. (For a collection of
alternative methods for detecting dependence, see Kallenberg & Ledwina, 1999.)

9.1 Problems with the Product Moment Correlation

The most common measure of covariance between any two random variables, X and Y , is

COV(X,Y )= σxy

= E[(X −µx)(Y −µy)],

and the corresponding (Pearson) measure of correlation is

ρ =
σxy

σxσy
.

A practical concern with ρ is that it is not robust. If one of the marginal distributions is altered
slightly, as measured by Kolmogorov distance, but the other marginal distribution is left
unaltered, the magnitude of ρ can be changed substantially. More formally, the influence
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Figure 9.1: Pearson’s correlation for the bivariate normal distribution shown on the left panel is
0.8. In the right panel, x has a contaminated normal distribution and Pearson’s correlation is 0.2.

function of Pearson’s correlation is

I F(x, y)= xy−

(
x2
+ y2

2

)
ρ,

which is unbounded (Devlin et al., 1981). That is, Pearson’s correlation does not have
infinitesimal robustness.

The left panel of Figure 9.1 shows a bivariate normal distribution with ρ = 0.8. Suppose the
marginal distribution of X is replaced by a contaminated normal given by Eq. (1.1) with
ε = 0.9 and K = 10. The right panel of Figure 9.1 shows the resulting joint distribution. As is
evident, there is little visible difference between these two distributions, but in the right panel
of Figure 9.1, ρ = 0.2. Put another way, even with an infinitely large sample size, the usual
estimate of ρ, given by r in the next paragraph, can be misleading.

Let (X1,Y1), . . . , (Xn,Yn) be a random sample from some bivariate distribution. The usual
estimate of ρ is

r =

∑
(X i − X̄)(Yi − Ȳ )√∑
(X i − X̄)2

∑
(Yi − Ȳ )2

.

A practical concern with r is that it is not resistant—a single unusual point can dominate its
value.

n Example

Figure 9.2 shows a scatterplot of data on the logarithm of the effective temperature at
the surface of 47 stars versus the logarithm of its light intensity. (The data are reported
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Figure 9.2: Scatterplot of the star data.

in Rousseeuw & Leroy, 1987, p. 27.) The scatterplot suggests that in general, there is a
positive relationship between temperature and light, yet r =−0.21. The reason is that
the four points in the upper left corner of Figure 9.2 (which are giant red stars) are
outliers that dominate the value of r . (Two additional points are �agged as outliers by
the R function out.)

n

From basic principles, if X and Y are independent, then ρ = 0. The best-known test of

H0 : ρ = 0 (9.1)

is based on the test statistic

T = r

√
n−2

1− r2
. (9.2)

If H0 is true, T has a Student’s t-distribution with ν = n−2 degrees of freedom if at least one
of the marginal distributions is normal (e.g., Muirhead, 1982, p. 146). In particular, reject
H0 : ρ = 0 if |T |> t1−α/2, the 1−α/2 quantile of Student’s t-distribution with n−2 degrees
of freedom. When X and Y are independent, there are general conditions under which
E(r)= 0 and E(r2)= 1/(n−1) (Huber, 1981, p. 204). (All that is required is that the
distribution of X or Y be invariant under permutations of the components.) This suggests that
the test of independence, based on T , will be reasonably robust in terms of type I errors, and
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this seems to be the case for a variety of situations (Kowalski, 1972; Srivastava & Awan,
1984). However, problems arise in at least three situations: when ρ = 0 but X and Y are
dependent (e.g., Edgell & Noon, 1984), when performing one-sided tests (Blair & Lawson,
1982), and when considering the more general goal of testing for independence among all
pairs of p random variables. There is also the problem of computing a confidence interval for
ρ. Many methods have been proposed, but simulations do not support their use, at least for
small to moderate sample sizes, and it is unknown just how large of a sample size is needed
before any particular method can be expected to give good probability coverage (Wilcox,
1991a). A modified percentile bootstrap method appears to perform reasonably well in terms
of probability coverage provided ρ is reasonably close to zero. But as ρ gets close to one it
begins to break down (Wilcox & Muska, 2001). Many books recommend Fisher’s r-to-Z
transformation when computing confidence intervals, but under general conditions, it is not
even asymptotically correct when sampling from nonnormal distributions (Duncan & Layard,
1973).

9.1.1 Features of Data that Affect r and T

There are several features of data that affect the magnitude of Pearsons’s correlation, as well
as the magnitude of T , given by Eq. (9.2). These features are important when interpreting
robust correlation coefficients, so they are described here.

Five features of data that affect r are as follows:

1. Outliers
2. The magnitude of the slope around which points are clustered (e.g., Barrett, 1974;

Loh, 1987b). Put another way, rotating points can raise or lower r
3. Curvature
4. The magnitude of the residuals
5. Restriction of range

The effects of outliers have already been illustrated. The effect of curvature seems fairly
evident, as does the magnitude of the residuals. It is well known that restricting the range of X
or Y can lower r , and the star data in Figure 9.2 illustrate that a restriction in range can
increase r as well. The effect of rotating points is illustrated by Figure 9.3. Thirty points were
generated for X from a standard normal distribution, ε was taken to have a normal
distribution with mean zero and standard deviation 0.25, and then Y = X + ε was computed.
The least squares estimate of the slope is 1.00 and it was found that r = 0.964. Then the
points were rotated clockwise by 35◦. The rotated points are indicated by the o’s in Figure 9.3.
Now the least squares estimate of the slope is 0.19 and r = 0.81. Rotating the points by 40◦,
instead, r = 0.61. Continuing to rotate the points in the same direction, the correlation will
decrease until both r and the least squares estimate of the slope are zero.
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Figure 9.3: An illustration that rotating points can alter Pearson’s correlation. The dots have
correlation r = 0.964. The points marked by an o are the dots rotated by 35 degrees; these
rotated points have r = 0.81.

9.1.2 Heteroscedasticity and the Classic Test that ρ = 0

Now consider the test of H0: ρ = 0 based on the test statistic T given Eq. (9.2). As just
pointed out, five features of data affect the magnitude of r , and hence T . There is,
in fact, a sixth feature that affects T even when ρ = 0: heteroscedasticity. In regression,
homoscedasticity refers to a situation where the conditional variance of Y , given X , does not
depend on X . That is, VAR(Y |X)= σ 2. Heteroscedasticity refers to a situation where the
conditional variance of Y varies with X . Independence implies homoscedasticity, but ρ = 0
does not necessarily mean there is homoscedasticity. The reason heteroscedasticity is relevant
to the test of H0 based on (9.2) is that the derivation of the test statistic, T , is based on the
assumption that X and Y are independent. Even if ρ = 0, but there is heteroscedasticity, the
wrong standard error is being used by T .

To illustrate what can happen, imagine that both X and Y have normal distributions with both
means equal to zero. Further assume that both X and Y have variance 1 unless |X |> 0.5, in
which case Y has standard deviation |X |. So there is dependence, but ρ = 0. With n = 20 and
testing at the α = 0.05 level with T , the actual probability of a type I error is .098. With
n = 40, it is 0.125 and for n = 200 it is 0.159. Even though ρ = 0, the probability of rejecting
is increasing as n gets large because the wrong standard error is being used. So when H0 is
rejected, it is reasonable to conclude dependence, but the nature of the dependence (the reason
why H0 was rejected) is unclear. (Section 9.3.13 describes two methods aimed at dealing with
this problem.)
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9.2 Two Types of Robust Correlations

Here, robust analogs of Pearson’s correlation are classified into one of two types: those that
protect against outliers among the marginal distributions without taking into account the
overall structure of the data, and those that take into account the overall structure of the data
when dealing with outliers. In terms of developing tests of the hypothesis of independence
between two random variables, it is a bit easier working with the first type. Recently,
however, some progress has been made when working with the second. For convenience, the
first type will be called a type M correlation and the second will be called type O.

9.3 Some Type M-Measures of Correlation

This section describes four type M correlations and how they can be used to test the
hypothesis of independence.

9.3.1 The Percentage Bend Correlation

The first type M correlation that has proven to be relatively successful, in terms of controlling
type I error probabilities when testing the hypothesis of independence, is the so-called
percentage bend correlation. It is estimated with rpb using the computations described in
Table 9.1. Table 9.2 describes how the population parameter corresponding to rpb, ρpb, is
defined. When X and Y are independent, ρpb = 0. Under normality, ρ and ρpb have very
similar values, but ρpb is more robust, and their population values can differ substantially,
even when there is little apparent difference between the bivariate distributions (Wilcox,
1994d).

Perhaps it should be emphasized that rpb is not intended as an estimate of ρ. Rather, the goal
is to estimate a measure of correlation, ρpb, that is not overly sensitive to slight changes in the
distributions. There might be situations where ρ is of interest despite its lack of robustness, in
which case rpb has little or no value. The situation is similar to finding a robust measure of
location. If there is direct interest in the population mean µ, the 20% sample trimmed mean
does not estimate µ when distributions are skewed and would not be used. The problem is
that µ is not robust, in which case some other measure of location might be of interest, such
as a 20% trimmed mean. In a similar fashion, ρpb provides a robust measure of the linear
association between two random variables that is designed so that its value is not overly
sensitive to a relatively small proportion of the population under study.

Note that the definition of ρpb depends in part on a measure of scale, ωx , which is a
generalization of MAD. A technical point of some interest is that ωx is a measure of
dispersion. (See Section 2.3.) If in the definition of ρpb, 9(x)=max[−1,min(1, x)] is
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Table 9.1: Computing the Percentage Bend Correlation.

The goal is to estimate the percentage bend correlation, ρpb, based on the random sample
(X1,Y1), . . . , (Xn,Yn). For the observations X1, . . . , Xn, let Mx be the sample median. Select a value for
β, 0≤ β ≤ 0.5. Compute

Wi = |X i −Mx |,

m = [(1−β)n].

Note that [(1−β)n] is (1−β)n rounded down to the nearest integer. Let W(1) ≤ · · · ≤W(n) be the Wi values
written in ascending order. Set

ω̂x =W(m).

For example, if the observations are 4, 2, 7, 9, and 13, then the sample median is Mx = 7, so W1= |4−7| = 3,
W2= |2−7| = 5, W3= |7−7| = 0, W4= 2, and W5= 6; so W(1)= 0, W(2)= 2, W(3)= 3, W(4)= 5, and W(5)= 6.
If β = 0.1, m = [0.9(5)]= 4, and ω̂ =W(4) = 5.

Let i1 be the number of X i values such that (X i−Mx)/ω̂x <−1. Let i2 be the number of X i values such that
(X i −Mx)/ω̂x > 1. Compute

Sx =

n−i2∑
i=i1+1

X (i)

φ̂x =
ω̂x(i2− i1)+ Sx

n− i1− i2

.

Set Ui = (X i − φ̂x)/ω̂x . Repeat these computations for the Yi values yielding Vi = (Yi − φ̂y)/ω̂y . Let

9(x)=max[−1, min(1, x)].

Set Ai =9(Ui ) and Bi =9(Vi ). The percentage bend correlation between X and Y is estimated to be

rpb =

∑
Ai Bi√∑

A2
i

∑
B2

i

.

replaced by 9(x)=max[−K ,min(K , x)] for some K > 1, ωx is no longer a measure of
dispersion (Shoemaker & Hettmansperger, 1982).

9.3.2 A Test of Independence Based on ρpb

When X and Y are independent, ρpb = 0. To test the hypothesis H0: ρpb = 0, assuming
independence, compute

Tpb = rpb

√
n−2

1− r2
pb

, (9.3)
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Table 9.2: De�nition of the Population Percentage Bend Correlation.

Let

9(x)=max[−1,min(1, x)],

which is a special case of Huber’s9. Let θx and θy be the population medians corresponding to the random
variables X and Y , let ωx be de�ned by the equation

P(|X − θx |< ωx)= 1−β.

Shoemaker and Hettmansperger (1982) use β = 0.1, but the resulting breakdown point might be too low
in some cases. The percentage bend measure of location, corresponding to X , is the quantity φpbx such that

E[9(U )]= 0,

where

U =
X −φpbx

ωx

.

In terms of Chapter 2, φpbx is an M-measure of location for the particular form of Huber’s 9 being used
here. Let

V =
Y −φpby

ωy

.

Then the percentage bend correlation between X and Y is

ρpb =
E[9(U )9(V )]√

E[92(U )]E[92(V )]
.

Under independence, ρpb = 0, and −1≤ ρpb ≤ 1.

and reject H0 if |Tpb|> t1−α, the 1−α quantile of Student’s t-distribution with ν = n−2
degrees of freedom. All indications are that this test provides reasonably good control over
the probability of a type I error for a broader range of situations than the test based on r
(Wilcox, 1994d).

The breakdown point of the percentage bend correlation is at most β. However, if β = 0.5 is
used, the power of the test for independence, based on Tpb, can be substantially less than the
test based on r when sampling from a bivariate normal distribution (as will be illustrated by
results in Table 9.5.) Here, the default value for β is 0.2. In exploratory studies, several values
might be considered.

Like the conventional T test of H0: ρ = 0, the method just described for testing H0: ρpb = 0 is
sensitive to heteroscedasticity. That is, even when H0: ρpb = 0 is true, if there is
heteroscedasticity, the wrong standard error is being used and the probability of rejecting can
increase with the sample size. For a test of H0: ρpb = 0 that is designed to be insensitive to
heteroscedasticity, see Section 9.3.13.
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9.3.3 R Function pbcor

The R function

pbcor(x,y,beta=0.2),

written for this book, estimates the percentage bend correlation for the data stored in any two
vectors. If unspecified, the argument beta, the value for β when computing the measure of
scale W(m), defaults to 0.2. The function returns the value of rpb in pbcor$cor, the value of the
test statistic, Tpb, in pbcor$test, and the p-value in pbcor$siglevel. It is noted that the function
pbcor automatically removes any pair of observations for which one or both values are
missing. (This is done via the function elimna mentioned in Section 1.9.)

n Example

The example in Section 8.6.2 of Chapter 8 reports the results of drinking alcohol for two
groups of subjects measured at three different times. Consider the measures at times 1
and 2 for the control group. Then r = 0.37, and H0: ρ = 0 is not rejected with α = 0.05.
However, with β = 0.1, rpb = 0.5, and H0: ρpb = 0 is rejected, the p-value being .024.

n

n Example

Consider the star data in Figure 9.2. As previously noted, r =−0.21. In contrast,
rpb = 0.06 with β = 0.1. Increasing β to 0.2, rpb = 0.26, and the p-value is .07. For
β = 0.3, rpb = 0.3 with a p-value of .04, and for β = 0.5, rpb = 0.328.

n

9.3.4 A Test of Zero Correlation among p Random Variables

Consider a random sample of n vectors from some p-variate distribution, X i1, . . . , X i p,
i = 1, . . . ,n. Let ρpb jk be the percentage bend correlation between the jth and kth random
variables, 1≤ j < k ≤ p. This section considers the problem of testing

H0 : ρpb jk = 0, for all j < k.

Put another way, the hypothesis is that the matrix of percentage bend correlations among all p
random variables is equal to the identity matrix.
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Currently, the best method for testing this hypothesis, in terms of controlling the probability
of a type I error under independence, begins by computing

c jk =

√√√√(n−2.5)× ln

(
1+

T 2
pb jk

n−2

)
,

where Tpb jk is the statistic given by Eq. (9.3) for testing independence between the j th and
kth random variables, and ln indicates the natural logarithm. Let

z jk = c jk+
c3

jk+3c jk

b
−

4c7
jk+33c5

jk+240c3
jk+855c jk

10b2+8bc4
jk+1000b

.

When H0 is true,

H =
∑
j<k

z2
jk

has, approximately, a chi-squared distribution with p(p−1)/2 degrees of freedom.
Consequently, reject H0 if H > χ2

1−α, the 1−α quantile.

When the percentage bend correlation is replaced by r in the hypothesis testing procedure just
described, the resulting test statistic will be labeled Hr . Gupta and Rathie (1983) suggest yet
another test of the hypothesis that all pairs of random variables have zero correlations, again
using r . Table 9.3 reports the estimated probability of a type I error for p = 4 and 10, and
various g-and-h distributions, when using H , Hr , or the Gupta–Rathie (GR) method, and
when n = 10 and 20. For p = 10 and n ≤ 20, the GR method cannot always be computed, and
the corresponding entry in Table 9.3 is left blank. As is evident, the test based on the

Table 9.3: Estimated Type I Error Probabilities, α = 0.05.

p = 4 p = 10

g h n Hr GR H Hr GR H

0.0 0.0 10 0.050 0.070 0.053 0.054 — 0.056
20 0.049 0.022 0.053 0.048 — 0.046

0.5 0.0 10 0.055 0.076 0.050 0.062 — 0.055
20 0.058 0.025 0.053 0.059 — 0.051

1.0 0.0 10 0.092 0.111 0.054 0.126 — 0.062
20 0.091 0.055 0.054 0.126 — 0.055

0.0 0.5 10 0.082 0.106 0.050 0.124 — 0.052
20 0.099 0.062 0.050 0.152 — 0.054

0.5 0.5 10 0.097 0.118 0.051 0.157 — 0.053
20 0.097 0.118 0.051 0.185 — 0.053

1.0 0.5 10 0.130 0.158 0.053 0.244 — 0.059
20 0.135 0.105 0.053 0.269 — 0.055
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percentage bend correlation is easily the most satisfactory, with the estimated probability of a
type I error (based on simulations with 10,000 replications) ranging between .046 and .062.
If the usual correlation, r , is used instead, the probability of type I error can exceed .2, and
when using method GR, it exceeds .15.

9.3.5 R Function pball

The R function

pball(m,beta=0.2),

computes the percentage bend correlation for all pairs of random variables, and it tests the
hypothesis that all of the correlations are equal to zero. Here, m is an n-by-p matrix of data. If
the data are not stored in a matrix, the function prints an error message and terminates. (Use
the R command matrix to store the data in the proper way. See Becker, Chambers, & Wilks,
1988, for details.) Again beta, which is β in Table 9.2, defaults to 0.2. The function returns a
p-by-p matrix of correlations in pball$pbcorm, another matrix indicating the p-values for the
hypotheses that each correlation is zero, plus the test statistic H and its corresponding p-value.

n Example

Again consider the alcohol data in Section 8.6.2 where measures of the effect of
drinking alcohol are taken at three different times. If the data for the control group are
stored in the R matrix amat, the command pball(amat) returns

$pbcorm:
[,1] [,2] [,3]

[1,] 1.0000000 0.5028002 0.7152667
[2,] 0.5028002 1.0000000 0.5946712
[3,] 0.7152667 0.5946712 1.0000000

$siglevel:
[,1] [,2] [,3]

[1,] NA 0.023847557 0.0003925285
[2,] 0.0238475571 NA 0.0056840954
[3,] 0.0003925285 0.005684095 NA

$H:
[1] 5.478301e+192

$H.siglevel:
[1] 0

For example, the correlation between variables 1 and 2 is 0.5, between 1 and 3 it is 0.72,
and between 2 and 3 it is 0.59. The corresponding p-values are .024, .0004, and .0057.
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The test statistic, H , for testing the hypothesis that all three correlations are equal to
zero, has a p-value approximately equal to 0. To use β = 0.1 instead, type the command
pball(amat,0.1).

n

9.3.6 The Winsorized Correlation

Another (type M) robust analog of ρ is the Winsorized correlation. The population
Winsorized correlation between two random variables, X1 and X2, is given by

ρw =
Ew[(X1−µw1)(X2−µw2)]

σw1σw2
,

where σw j is the population Winsorized standard deviation of X j , and Ew(X) is the
Winsorized expected value of X , as defined in Section 2.5 of Chapter 2. The numerator of ρw
is the population Winsorized covariance which is written simply as σw12 when convenient.
When X1 and X2 are independent, ρw = 0, and −1≤ ρw ≤ 1.

To estimate ρw, based on the random sample (X11, X12), . . . , (Xn1, Xn2), first Winsorize the
observations by computing the Yi j values as described in Section 8.1.1. Then ρw is estimated
by computing the Pearson’s correlation with the Yi j values. That is, estimate ρw with

rw =

∑
(Yi1− Ȳ1)(Yi2− Ȳ2)√∑
(Yi1− Ȳ1)2

∑
(Yi2− Ȳ2)2

.

Here, 20% Winsorization is assumed unless stated otherwise.

To test H0: ρw = 0, compute

Tw = rw

√
n−2

1− r2
w

,

and reject if |Tw|> t1−α/2, the 1−α/2 quantile of Student’s t-distribution with ν = h−2
degrees of freedom, where h, the effective sample size, is the number of pairs of observations
not Winsorized. (Equivalently, h = n−2g, g = [γ n], is the number of observations left after
trimming.) Unless stated otherwise, γ = 0.2 is assumed. In terms of type I error probabilities
when testing the hypothesis of zero correlation, the Winsorized correlation appears to
compete well with the test based on r under independence, but the percentage bend
correlation is better still, at least when β = 0.1. Like all of the hypothesis testing methods in
this section, Tw is sensitive to heteroscedasticity. As for power, the best method depends in
part on the values of ρ, ρw, and ρpb, which are unknown. Perhaps there are situations where
using ρw will result in more power. This depends in part on how much ρw differs from ρpb.
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Table 9.4: Estimated Type I Error Probabilities, α = 0.05.

Tpb.1 Tpb.5 T Tw

g h n = 10 n = 20 n = 10 n = 20 n = 10 n = 20 n = 10 n = 20

0.0 0.0 .050 .050 .053 .049 .049 .049 .040 .045
0.0 0.2 .050 .049 .054 .049 .054 .052 .043 .045
0.0 0.5 .047 .048 .053 .049 .062 .067 .038 .044
0.5 0.0 .050 .049 .053 .050 .039 .050 .037 .043
0.5 0.2 .048 .048 .053 .050 .055 .053 .044 .044
0.5 0.5 .047 .047 .053 .049 .064 .065 .037 .043
1.0 0.0 .045 .048 .053 .050 .054 .055 .037 .043
1.0 0.2 .046 .047 .053 .050 .062 .053 .041 .058
1.0 0.5 .045 .046 .053 .050 .070 .065 .035 .044
1.0 1.0 .044 .045 .052 .050 .081 .071 .034 .043

Table 9.4 compares type I error probabilities when testing for independence using T , Tw, and
Tpb. The notation Tpb.1 means that β = 0.1 is used, and Tpb.5 means β = 0.5. (The first two
columns in Table 9.4 indicate the g-and-h distribution associated with the marginal
distributions.) As can be seen, the test based on r is the least stable in terms of type I errors.

9.3.7 R Functions wincor and winall

The R function

wincor(x,y,tr=0.2)

estimates the Winsorized correlation between two random variables. As usual, x and y can be
any R variables containing data. The default amount of Winsorization, tr, is 0.2. The function
returns the Winsorized correlation, rw, the Winsorized covariance, plus the test statistic Tw,
and the corresponding p-value.

The function

winall(m,tr=0.2)

estimates the correlation for all pairs of p random variables, assuming the data are stored in
an n-by-p matrix. If m is not a matrix, the function prints an error message and terminates.
The function returns the Winsorized correlations in winall$wcor, the covariances in
winall$wcov, and the p-values associated with each correlation is returned in winall$siglevel.

Section 9.3.4 described a method for testing the hypothesis that all percentage bend
correlations, among all pairs of random variables, are equal to zero. The method is easily
extended to test the hypothesis that all Winsorized correlations are equal to zero, but there are
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no simulation results on how well this approach performs in terms of type I errors, so it is not
recommended at this time.

n Example

For the alcohol data in Section 8.6.2 used to illustrate the R function pball, winall
returns

$wcor:
[,1] [,2] [,3]

[1,] 1.0000000 0.5134198 0.6957740
[2,] 0.5134198 1.0000000 0.6267765
[3,] 0.6957740 0.6267765 1.0000000

$wcov:
[,1] [,2] [,3]

[1,] 44.77895 24.12632 27.68421
[2,] 24.12632 49.31316 26.17105
[3,] 27.68421 26.17105 35.35526

$siglevel:
[,1] [,2] [,3]

[1,] NA 0.023645294 0.001061593
[2,] 0.023645294 NA 0.004205145
[3,] 0.001061593 0.004205145 NA

Thus, the estimated correlation between variables 1 and 2 is 0.51, the covariance is
24.1, and the p-value, when testing the hypothesis that the Winsorized correlation is
zero, is 0.024. In this particular case, the results are very similar to those obtained with
the percentage bend correlation.

n

9.3.8 The Biweight Midcovariance

It should be noted that the percentage bend covariance and correlation are a special case of a
larger family of measures of association. Let 9 be any odd function, such as those
summarized in Section 2.2.4. Let µx be any measure of location for the random variable X ,
let τx be some measure of scale, let K be some constant, and let U = (X −µx)/(K τx) and
V = (Y −µy)/(K τy). Then a measure of covariance between X and Y is

γxy =
nK 2τxτy E[9(U )9(V )]

E[9 ′(U )9 ′(V )]

and a measure of correlation is γxy/
√
γxxγyy . If µx and µy are measures of location such that

E[9(U )]= E[9(V )]= 0, then γxy = 0 when X and Y are independent.
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Among the many choices for 9 and K , the so-called biweight midcovariance has played a
role in a regression method covered in Chapter 10, so for completeness an estimate of this
parameter is described here. It is based on K = 9 and the biweight function described in
Table 2.1 of Chapter 2. Let (X1, Y1), . . . , (Xn, Yn) be a random sample from some bivariate
distribution. Let

Ui =
X i −Mx

9×MADx
,

where Mx and MADx are the median and the value of MAD for the X values. Similarly, let

Vi =
Yi −My

9×MADy
.

Set ai = 1 if −1≤Ui ≤ 1, otherwise ai = 0. Similarly, set bi = 1 if −1≤ Vi ≤ 1, otherwise
bi = 0. The sample biweight midcovariance between X and Y is

sbxy =
n
∑

ai (X i −Mx)(1−U 2
i )

2bi (Yi −My)(1−V 2
i )

2

[
∑

ai (1−U 2
i )(1−5U 2

i )][
∑

bi (1−V 2
i )(1−5V 2

i )].

The statistic sbxx is the biweight midcovariance mentioned in Chapter 3, and

rb =
sbxy

√
sbxx sbyy

is an estimate of what is called the biweight midcorrelation between X and Y . The main
reasons for considering this measure of covariance are that it is relatively easy to compute,
and it appears to have a breakdown point of 0.5, but a formal proof has not been found.

9.3.9 R Functions bicov and bicovm

The R function

bicov(x,y).

computes the biweight midcovariance between two random variables. The function bicovm
computes the biweight midcovariance and midcorrelation for all pairs of p random variables
stored in some R variable, m, which can be either an n-by-p matrix or a variable having list
mode. It has the form

bicovm(m).

n Example

For the star data in Figure 9.2, bicovm reports that the biweight midcorrelation is 0.6.
In contrast, the highest percentage bend correlation, among the choices 0.1, 0.2, 0.3,
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0.4, and 0.5 for β, is 0.33, and a similar result is obtained when Winsorizing instead.
As previously noted, these data have several outliers. The main point here is that rpb and
rw offer more resistance than r , but they can differ substantially from other resistant
estimators.

n

9.3.10 Kendall’s tau

A well-known type M correlation is Kendall’s tau. For completeness, it is briefly described
here.

Consider two pairs of observations, (X1, Y1) and (X2, Y2). For convenience, assume tied
values never occur and that X1 < X2. Then these two pairs of observations are said to be
concordant if Y1 < Y2; otherwise they are discordant. For n pairs of points, let Ki j = 1 if the
i th and j th points are concordant, and if they are discordant, Ki j =−1. Then Kendall’s tau is
given by

τ̂ =
2

n(n−1)

∑
i< j

Ki j (9.4)

Under independence, the population value of τ̂ , τ , is zero. The usual test of H0: τ = 0 is to
reject if

|Z | ≥ z1− α2
,

where

Z =
τ̂

στ
,

and

σ 2
τ =

2(2n+5)

9n(n−1)
.

It is left as an exercise to show that heteroscedasticity affects the probability of rejecting when
H0 is true.

If X and Y have the bivariate distribution H , the influence function of Kendall’s tau is

I F(x, y)= 2(2PH [(X − x)(Y − y) > 0]−1− τ)

(Croux & Dehon, 2010). So a positive feature of Kendall’s tau is that it has infinitesimal
robustness. (It’s influence function is bounded.) However, although Kendall’s tau provides
protection against outliers among the X values ignoring Y , or among the Y values ignoring X ,
it can be seen that outliers can substantially alter its value. (Details are relegated to the
exercises.)
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9.3.11 Spearman’s rho

Assign ranks to the X values, ignoring Y , and assign ranks to the Y values ignoring X . Then
Spearman’s rho, rs , is just Pearson’s correlation based on the resulting ranks. Like all of the
correlations in this section it provides protection against outliers among the X values,
ignoring Y , as well as outliers among the Y values, ignoring X , but outliers properly placed
can alter its value substantially. Letting ρs be the population value of Spearman’s rho, the
influence function of ρs is

I F(x, y)=−3ρs−9+12{F(x)G(y)+ E[F(X)I (Y ≥ y)]+ E[G(Y )I (X ≥ x)]},

where F and G are the marginal distributions of X and Y , respectively, and I is the indicator
function (Croux & Dehon, 2010). In terms of asymptotic efficiency and other robustness
considerations, results in Croux and Dehon (2010) indicate that Kendall’s tau is preferable to
Spearman’s rho.

When X and Y are independent, ρs = 0. The usual test of H0: ρs = 0 is to reject if |T | ≥ t ,
where t is the 1−α/2 quantile of Student’s t-distribution with ν = n−2 degrees of freedom,
and

T =
rs
√

n−2√
1− r2

s

.

Like all of the hypothesis testing methods in this section, heteroscedasticity affects the
probability of rejecting, even when H0 is true.

Table 9.5 shows estimated power when testing the hypothesis of a zero correlation and
ρ = 0.5. Included is the power of the test based on Kendall’s tau, under the column headed
Kend., and Spearman’s rho under the column Spear. The main point is that different methods
can have more or less power than other methods, one reason being that the parameters being
estimated can differ, so it is difficult to select a single method for general use based on the
criterion of high power.

9.3.12 R Functions tau, spear, cor, and taureg

The function

tau(x,y,alpha=0.05)

computes Kendall’s tau, and

spear(x,y)
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Table 9.5: Estimated Power, n = 20, ρ = .5.

g h Tw T Tpb.1 T pb.5 Kend. Spear.

0.0 0.0 0.562 0.637 .620 .473 0.551 0.568

0.0 0.2 0.589 0.633 .638 .512 0.594 0.597

0.0 0.5 0.614 0.603 .658 .552 0.644 0.626

0.0 1.0 0.617 0.573 .658 .588 0.692 0.659

0.5 0.0 0.588 0.620 .629 .499 0.602 0.602

0.5 0.2 0.602 0.608 .643 .525 0.624 0.615

0.5 0.5 0.614 0.591 .653 .558 0.656 0.638

0.5 1.0 0.611 0.565 .608 .591 0.698 0.664

1.0 0.0 0.621 0.597 .650 .537 0.668 0.641

1.0 0.2 0.620 0.585 .652 .550 0.667 0.644

1.0 0.5 0.619 0.571 .652 .569 0.683 0.652

1.0 1.0 0.611 0.559 .653 .595 0.709 0.669

computes Spearman’s rho. The built-in R function

cor(x, y = NULL, use = “everything”, method = c(“pearson”, “kendall”, “spearman”))

can be used to compute Kendall’s by setting the argument method=“kendall” and Spearman’s
rho by setting method=“spearman”. The R functions tau and spear automatically test the
hypothesis of a zero correlation. The R function cor does not. For convenience, the function

taureg(m,y,corfun=tau)

computes the p correlations between every variable in the matrix m, having p columns,
and the variable y. The argument corfun can be any function that computes a correlation
between two variables only and returns the value in corfun$cor along with the p-value in
corfun$siglevel. By default, Kendall’s tau is used.

9.3.13 Heteroscedastic Tests of Zero Correlation

The tests of the independence based on type M correlations, including Pearson’s correlation,
are sensitive to heteroscedasticity. That is, even when these correlations are equal to zero, if
there is heteroscedasticity, the probability of rejecting can increase as the sample size gets
large. So when rejecting, it is reasonable to conclude that the variables under study are
dependent, but the reason for rejecting might be due more to heteroscedasticity than to the
correlation differing from zero. To test the hypothesis that a (type M) correlation is equal to
zero in a manner that is insensitive to heteroscedasticity, a percentile bootstrap method can be
used.
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When using robust correlations, all indications are that a basic percentile bootstrap performs
well in terms of controlling the probability of a type I error. For a random sample
(X1, Y1), . . . (Xn, Yn), generate a bootstrap sample by resampling with replacement n pairs of
points yielding (X∗1, Y ∗1 ), . . . (X

∗
n, Y ∗n ). Compute any of the robust estimators described in this

section and label the result r∗. Repeat this B times yielding r∗1 , . . . , r
∗

B . Let `= αB/2,
rounded to the nearest integer, and let u = B−`. Then reject the hypothesis of a zero
correlation if r∗(`+1) > 0 or r∗(u) < 0, where r∗(1) ≤ · · · ≤ r∗(B) are the values r∗1 , . . . , r

∗

B written in
ascending order.

For the special case where r is Pearson’s correlation, a modified percentile bootstrap method
is required. When B = 599, an approximate a 0.95 confidence interval for ρ is

(r∗(a), r∗(c))

where again for n < 40, a = 7, and c = 593; for 40≤ n < 80, a = 8, and c = 592; for
80≤ n < 180, a = 11, and c = 588; for 180≤ n < 250, a = 14, and c = 585; while for
n ≥ 250, a = 15, and c = 584. As usual, if this interval does not contain zero, reject
H0 : ρ = 0.

Section 10.1.1 describes a heteroscedastic method for computing confidence intervals for the
usual least squares regression slopes based on what is called the HC4 estimator of the
standard errors. Here it is noted that the method is readily adapted to the problem of
computing a confidence interval for Pearson’s correlation, ρ, which can be applied with the
R function pcorhc4 described in the next section. Limited studies suggest that it performs
about as well as the modified percentile bootstrap method described here. Possible reasons for
preferring the HC4 method is that it can be used when testing at any α value and a p-value is
readily determined.

9.3.14 R Functions corb, pcorb, and pcorhc4

The R function

corb(x,y,corfun=pbcor,nboot=599,...)

tests the hypothesis of a zero correlation using the heteroscedastic bootstrap method just
described. By default, it uses the percentage bend correlation, but any correlation
can be specified by the argument corfun. For example, the command
corb(x,y,corfun=wincor,tr=0.25) will use a 25% Winsorized correlation.

When working with Pearson’s correlation, use the function

pcorb(x,y),
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which applies the modified percentile bootstrap method described in the previous section. The
R function

pcorhc4(x,y,alpha=0.05)

applies the HC4 method.

9.4 Some Type O Correlations

Type M correlations have the property that two properly placed outliers can substantially alter
their value. (Illustrations are relegated to the exercises at the end of this chapter.) Type O
correlations are an attempt to correct this problem. Section 6.2 described various measures
that reflect how deeply a point is nested within a cloud of data, where the measures of depth
take into account the overall structure of the data. Roughly, type O correlations are
correlations that possibly downweight or eliminate one or more points that have low measures
of depth. In essence, they are simple extensions of W-estimators described in Section 6.3.6.
Included among this class of correlations coefficients are so-called skipped correlations,
which remove any points flagged as outliers and then compute some correlation coefficient
with the data that remain.

9.4.1 MVE and MCD Correlations

An example of a type O correlation has, in essence, already been described in connection with
the MCD and MVE estimators of scatter described in Section 6.3. These measures search for
the central half of the data and then use this half of the data to estimate location and scatter.
As is evident, the covariance associated with this central half of the data readily yields a
correlation coefficient. For example, simply compute Pearson’s correlation based on the
central half of the data.

9.4.2 Skipped Measures of Correlation

Skipped correlations are obtained by checking for any outliers using one of the methods
described in Section 6.4, removing them, and applying some correlation coefficient to the
remaining data. An example is to remove outliers using the MVE or MCD methods and
compute Pearson’s correlation after outliers are removed. It is noted that when using the R
functions cov.mve and cov.mcd, already described, setting the optional argument cor to T (for
true) causes this correlation to be reported. For example, when using cov.mve, the command

cov.mve(m,cor=T)

accomplishes this goal.
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9.4.3 The OP Correlation

The so-called OP correlation coefficient begins by eliminating any outliers using the
projection method in Section 6.4.9. Then it merely computes some correlation coefficient with
the data that remain. Pearson’s correlation is assumed unless stated otherwise.

Imagine that data are randomly sampled from some bivariate normal distribution. If the goal
is to use a skipped correlation coefficient that gives a reasonably accurate estimate of
Pearson’s correlation, ρ, relative to r , then the OP estimator is the only skipped estimator
known to be reasonably satisfactory.

Let rp represent the skipped correlation coefficient and let m be the number of pairs of points
left after outliers are removed. A seemingly simple method for testing the hypothesis of
independence is to apply the usual T test for Pearson’s correlation but with r replaced by rp

and n replaced by m. But this simple solution fails because it does not take into account the
dependence among the points remaining after outliers are removed. If this problem is ignored,
unsatisfactory control over the probability of a type I error results (Wilcox, 2010f).
However, let

Tp = rp

√
n−2

1− r2
p

and suppose the hypothesis of independence is rejected at the α = 0.05 level if |Tp| ≥ c, where

c =
6.947

n
+2.3197.

The critical value c was determined via simulations under normality by determining an
appropriate critical value for n ranging between 10 and 200, and then a least squares
regression line was fit to the data. For nonnormal distributions, all indications are that this
hypothesis testing method has an actual type I error probability reasonably close to the
nominal 0.05 level.

9.4.4 Inferences Based on Multiple Skipped Correlations

The hypothesis testing method just described has been extended to the problem of testing the
hypothesis that p ≥ 2 random variables are independent. However, rather than use Pearson’s
correlation after outliers are removed, Spearman’s rho is used. When using Pearson’s
correlation, no method has been found that adequately controls the probability of a type I
error. But switching to Spearman’s rho corrects this problem among extant simulations
(Wilcox, 2003e).
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Let τ̂cjk be Spearman’s correlation between variables j and k after points flagged as outliers
by the projection method are removed. For convenience, it is assumed that

H0 : τcjk = 0 (9.5)

is to be tested for all j < k. Let

T jk = τ̂cjk

√
n−2

1− τ̂ 2
cjk

,

and let

Tmax =max|T jk |, (9.6)

where the maximum is taken overall j < k. The strategy used here to control FWE is to
approximate, via simulations, the distribution of Tmax under normality when all correlations
are zero and p < 4, determine the 0.95 quantile, say q, for n = 10, 20, 30, 40, 60, 100, and
200, And then reject H0 : τcjk = 0 if |T jk | ≥ q. For p ≥ 4, normal distributions were replaced
by a g-and-h distribution with (g, h)= (0, 0.5). The reason is that for p ≥ 4, the probability
of at least one type I error was found to be largest for this special case among the situations
considered in Wilcox (2003e). That is, the strategy for choosing an appropriate critical value
was to determine q for a distribution that appears to maximize the probability of a type I error
with the goal that FWE should not exceed .05 for any distribution that might be encountered
in practice. Based on this strategy, the following approximations of q were determined:

p = 2, q̂ = 5.333n−1
+2.374,

p = 3, q̂ = 8.800n−1
+2.780,

p = 4, q̂ = 25.67n−1.2
+3.030,

p = 5, q̂ = 32.83−1.2
+3.208,

p = 6, q̂ = 51.53n−1.3
+3.372,

p = 7, q̂ = 75.02n−1.4
+3.502,

p = 8, q̂ = 111.34n−1.5
+3.722,

p = 9, q̂ = 123.16n−1.5
+3.825,

p = 10, q̂ = 126.72n−1.5
+3.943.

Rather than test the hypothesis of a zero correlation among all pairs of random variables, the
goal might be to test

H0 : τc1k = 0, (9.7)
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for each k, k = 2, . . . , p. Now the approximate critical values are:

p = 2, q̂ = 5.333n−1.0
+2.374,

p = 3, q̂ = 8.811n−1.0
+2.540,

p = 4, q̂ = 14.89n−1.2
+2.666,

p = 5, q̂ = 20.59n−1.2
+2.920,

p = 6, q̂ = 51.01n−1.5
+2.999,

p = 7, q̂ = 52.15n−1.5
+3.097,

p = 8, q̂ = 59.13n−1.5
+3.258,

p = 9, q̂ = 64.93n−1.5
+3.286,

p = 10, q̂ = 58.50n−1.5
+3.414.

Again, these approximate critical values are designed so that FWE is approximately 0.05.

9.4.5 R Functions scor and mscor

The R function

scor(x,y=NA,corfun=pcor,gval=NA,plotit=T,cop=1,op=T)

computes the skipped correlation for the data in the variables x and y. If y is not specified, it is
assumed that x is an n-by-p matrix in which case the skipped correlation is computed for each
pair of variables. The argument corfun controls which correlation is computed after outliers
are removed; by default, Pearson’s correlation is used. The arguments gval, cop, and op are
relevant to the projection outlier detection method; see Section 6.4.10.

The function

mscor(m,corfun=spear,cop=1,gval=NA,ap=T,pw=T)

also computes a skipped correlation coefficient, but it defaults to using Spearman’s
correlation, and when testing the hypotheses corresponding to Eq. (9.5) or Eq. (9.7), it
controls FWE (the familywise error rate) using the approximations of an appropriate critical
value outlined in the previous subsection, assuming FWE is to be 0.05. If ap=T, the
hypothesis of a zero correlation for each pair of variables is tested. If ap=F, the hypotheses
corresponding to Eq. (9.7) are tested instead.
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9.5 A Test of Independence Sensitive to Curvature

Let (X1, Y1), . . ., (Xn , Yn) be a random sample of n pairs of points where X is a vector having
length p. The goal in this section is to test the hypothesis that X and Y are independent in a
manner that is sensitive to curvature as well as any linear association that might exist.

Method INDT

The first method described here stems from general theoretical results derived by Stute,
Gonzalez Manteiga, and Presedo Quindimil (1998). It does not assume or require
homoscedasticity and is based in part on what is called a wild bootstrap method. Stute et al.
establish that other types of bootstrap methods are not suitable when using the test statistic to
be described. Essentially, the method in this section is designed to test the hypothesis that the
regression surface for predicting Y , given X, is a horizontal plane. Let E(Y |X) represent the
conditional mean of Y given X. The goal is to test

H0 : E(Y |X)= µy .

That is, the conditional mean of Y , given X, does not depend on X.

The test statistic is computed as follows. Let Ȳ be the mean based on Y1, . . . ,Yn . (Using a
trimmed mean or some other robust estimator can result in poor control over the probability of
a Type I error when Y has a sufficiently skewed distribution.) Fix j and set Ii = 1 if Xi ≤ X j ,
otherwise Ii = 0. The notation Xi ≤ X j means that for every k, k = 1, . . . , p, X ik ≤ X jk . Let

R j =
1
√

n

∑
Ii (Yi − Ȳ )

=
1
√

n

∑
Iiri ,

(9.8)

where

ri = Yi − Ȳ .

The test statistic is the maximum absolute value of all the R j values. That is, the test
statistic is

D =max|R j |. (9.9)

An appropriate critical value is estimated with the wild bootstrap method as follows. Generate
U1, . . . ,Un from a uniform distribution and set

Vi =
√

12(Ui −0.5),

r∗i = ri Vi ,
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and

Y ∗i = Ȳt + r∗i .

Then based on the n pairs of points (X1, Y ∗1 ), . . ., (Xn , Y ∗n ), compute the test statistic as
described in the previous paragraph and label it D∗. Repeat this process B times and label the
resulting (bootstrap) test statistics D∗1 , . . . ,D∗B . Finally, put these B values in ascending order,
which we label D∗(1) ≤ · · · ≤ D∗(B). Then the critical value is D∗(u), where u = (1−α)B
rounded to the nearest integer. That is, reject if

D ≥ D∗(u).

An alternative test statistic has been studied where D is replaced by

W =
1

n
(R2

1+· · ·+ R2
n). (9.10)

The critical value is determined in a similar manner as before. First, generate a wild bootstrap
sample and compute W yielding W ∗. Repeating this B times and reject if

W ≥W ∗(u),

where again u = (1−α)B rounded to the nearest integer, and W ∗(1) ≤ · · · ≤W ∗(B) are the B W ∗

values written in ascending order. The test statistic D is called the Kolmogorov-Smirnov test
statistic, and W is called the Cramér-von Mises test statistic. The choice between these two
test statistics is not clear cut. For p = 1, currently it seems that there is little separating them
in terms of controlling type I errors. The extent to which this remains true when p > 1
appears to have received little or no attention.

Method MEDIND

A seemingly natural way of generalizing the method to a robust measure of location is to
replace Ȳ with say the median or 20% trimmed mean. But when the distribution of Y is
sufficiently skewed, control over the probability of a type I error can be highly unsatisfactory.
There is, however, an alternative method that can be used with the median, which is based on
a modification of a method derived by He and Zhu (2003); see Wilcox (2008e) for details.

Let x be the n× (p+1) matrix with the first column containing all ones and the remaining
p columns are the columns of X. Following He and Zhu (2003), it is assumed that the design
has been normalized so that n−1∑x j x′j − I = o(1). Let ri = Yi − Ŷγ , where Ŷγ is some
estimate of the γ th quantile of Y . Currently, simulation results on how well the method
controls the probability of a type I error are limited to the quartiles. For the 0.5 quantile, Ŷ0.5
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is taken to be the usual sample median. Here the lower and upper quartiles are estimated via
the ideal fourths. Let

Wi = n−1/2
n∑

k=1

ψ(rk)xk I (xk ≤ xi ),

where ψ(r)= γ I (r > 0)+ (γ −1)I (r < 0). For fixed j , let Ui j be the ranks of the n values
in the j th column of x, j = 2, . . . ,q. Let Fi =maxUi j , the maximum being taken over
j = 2, . . . ,q. If xk ≤ xi , then Fk ≤ Fi . The test statistic is Dn , the largest eigenvalue of

Z=
1

n

∑
Wi W′i .

The strategy for determining an appropriate critical value is to temporarily assume normality,
use simulations to approximate the 1−α quantile of the null distribution, say c, and then
reject the null hypothesis if Tn ≥ c even when sampling from a nonnormal distribution.

An advantage of the methods just described is that they are sensitive to a variety of ways two
or more variables might be dependent. But a limitation is that when they reject, it is unclear
why. That is, these tests do not provide any information about the nature of the association.

9.5.1 R Functions indt, indtall, and medind

The R function

indt(x,y,nboot=500,alpha=0.05,flag=1)

tests the hypothesis of independence using method INDT. As usual, x and y are R variables
containing data, tr indicates the amount of trimming used when computing the Cramér–von
Mises test statistic, and nboot is B. Here, x can be a single variable or a matrix having n rows
and p columns. The argument flag indicates which test statistic will be used:

• flag=1 means the Kolmogorov–Smirnov test statistic, D, is used.
• flag=2 means the Cramér–von Mises test statistic, W , is used.
• flag=3 means both test statistics are computed.

n Example

Sockett, Daneman, Carlson, and Ehrich (1987) report data from a study dealing with
diabetes in children. One of the variables was the age of a child at diagnosis and another
was a measure called base de�cit. Using the conventional (Student’s t) test of H0 : ρ = 0
based on Pearson’s correlation, we fail to reject at the 0.05 level. (The p-value is .135.)
We again fail to reject with a skipped correlation, a 20% Winsorized correlation, and a
percentage bend correlation. Using the bootstrap methods for Pearson’s correlation or
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the percentage bend correlation, again no association is detected. But using the
function indt, we reject at the 0.05 level. A possible explanation is that (based on
methods covered in Chapter 11), the regression line between these two variables
appears to have some curvature which might mask a true association when attention is
restricted to one of the correlation coef�cients covered in this chapter.

n

The function

indtall(x,y=NULL,nboot=500,alpha=0.05)

performs all pairwise tests of independence for the variables in the matrix x if y=NA. If
data are found in y, then the function performs p tests of independence between each of the
p variables in x and y. The current version computes only the Kolmogorov–Smirnov test
statistic. Each test is performed at the level indicated by the argument alpha.

The function

medind(x, y, qval = 0.5, nboot = 1000, SEED = T, alpha = 0.05, pr = T, xout = F,
outfun = out, ...)

tests the hypothesis of independence using method MEDIND. The function contains critical
values for a range of situations. If a critical value is not available, one is determined via
simulations, with the number of replications determined by the argument nboot.

9.6 Comparing Correlations: Independent Case

This section deals with comparing correlations associated with two independent groups.

9.6.1 Comparing Pearson Correlations

Numerous methods have been proposed for testing the hypothesis that two Pearson
correlations are equal. More formally, the goal is to test

ρ1 = ρ2, (9.11)

where r1 and r2, the estimates of ρ1 and ρ2, respectively, are independent. A comparison of
various methods (Wilcox, 2009d) indicates that a modified percentile bootstrap method tends
to be best in terms of controlling the probability of a type I error. Let N = n1+n2 be the total
number of pairs of observations. For the j th group, generate a bootstrap sample of n j pairs of
observations. Let r∗1 and r∗2 represent the resulting correlation coefficients and set

D∗ = r∗1 − r∗2 .
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Repeat this process 599 times yielding D∗1 , . . . ,D∗599. Then a 0.95 confidence interval for the
difference between the population correlation coefficients (ρ1−ρ2) is

(D∗(`), D∗(u)),

where for `= 7 and u = 593 if N < 40; `= 8 and u = 592 if 40≤ N < 80; `= 11 and
u = 588 if 80≤ N < 180; `= 14 and u = 585 if 180≤ N < 250; `= 15 and u = 584
if N ≥ 250.

9.6.2 Comparing Robust Correlations

When comparing robust correlations, all indications are that a basic percentile bootstrap
method performs reasonably well. That is, no modification, as described in the previous
section, is necessary.

9.6.3 R Functions twopcor and twocor

The R function

twopcor(x1, y1, x2, y2, SEED = T)

computes a confidence interval for ρ1−ρ2 using the modified bootstrap method just
described. The R function

twocor(x1, y1, x2, y2, corfun = pbcor, nboot = 599, alpha = 0.05, SEED = T, ...)

tests the hypothesis that two robust correlation coefficients are equal. The choice of
correlation is determined by the argument corfun, which defaults to the percentage bend
correlation. The function returns a 1−α confidence interval and a p-value.

9.7 Exercises

1. Generate 20 observations from a standard normal distribution and store them in the
R variable ep. Repeat this and store the values in x. Compute y=x+ep and compute
Kendall’s tau. Generally, what happens if two pairs of points are added at (2.1, −2.4)?
Does this have a large impact on tau? What would you expect to happen to the p-value
when testing H0: τ = 0?

2. Repeat Exercise 1 with Spearman’s rho, the percentage bend correlation, and the
Winsorized correlation.

3. Demonstrate that heteroscedasticity affects the probability of a type I error when testing
the hypothesis of a zero correlation based on any type M correlation and nonbootstrap
method covered in this chapter.
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4. Use the function cov.mve(m,cor=T) to compute the MVE correlation for the star data in
Figure 9.2. Compare the results with the Winsorized, percentage bend, skipped, and
biweight correlations, as well the M-estimate of correlation returned by the R function
relfun.

5. Using the Group 1 alcohol data in Section 8.6.2, compute the MVE estimate of
correlation and compare the results with the biweight midcorrelation, the percentage
bend correlation using β = 0.1, 0.2, 0.3, 0.4, and 0.5, Winsorized correlation using
γ = 0.1 and 0.2, and the skipped correlation.

6. Repeat the previous problem using the data for Group 2.
7. The method of detecting outliers, described in Section 6.4.3, could be modified by

replacing the MVE estimator with the Winsorized mean and covariance matrix. Discuss
how this would be done and its relative merits.

8. Using the data in the file read.dat, test for independence using the data in columns 2, 3,
and 10 and the R function pball. Try β = 0.1, 0.3, and 0.5. Comment on any
discrepancies.

9. Examine the variables in the last exercise using the R functions mscor.
10. For the data used in the last two exercises, test the hypothesis of independence using the

function indt. Why might indt find an association not detected by any of the correlations
covered in this chapter?

11. For the data in the file read.dat, test for independence using the data in columns 4 and 5
and β = 0.1.

12. The definition of the percentage bend correlation coefficient, ρpb, involves a
measure of scale, ωx , that is estimated with ω̂ =W(m), where Wi = |X i −Mx | and
m = [(1−β)n], and 0≤ β ≤ 0.5. Note that this measure of scale is defined even when
0.5< β < 1 provided that m > 0. Argue that the finite sample breakdown point of this
estimator is maximized when β = 0.5.

13. If in the definition of the biweight midcovariance, the median is replaced by the
biweight measure of location, the biweight midcovariance is equal to zero under
independence. Describe some negative consequences of replacing the median with the
biweight measure of location.

14. Let X be a standard normal random variable, and suppose Y is contaminated
normal with probability density function given by Eq. (1.1) of Chapter 1. Let
Q = ρX +

√
1−ρ2Y , −1≤ ρ ≤ 1. Verify that the correlation between X and Q is

ρ√
ρ2+ (1−ρ2)(1− ε+ εK 2)

.

Examine how the correlation changes as K gets large with ε = 0.1. What does this
illustrate about the robustness of ρ?
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CHAPTER 10

Robust Regression

Suppose (yi , xi1, . . . , xi p), i = 1, . . . ,n, are n vectors of observations randomly sampled from
some p+1-variate distribution, where (xi1, . . . , xi p) is a vector of predictor values.1 In some
situations the predictors are fixed, known constants, but this distinction is not particularly
relevant for most of the results reported here. (Exceptions are noted when necessary.) A
general goal is understanding how y is related to the p predictors, which includes finding a
method of estimating a conditional measure of location associated with y given (xi1, . . . , xi p),
and there is now a vast arsenal of regression methods that might be used. Even when attention
is restricted to robust methods, all relevant techniques would easily take up an entire book. In
order to reduce the number of techniques to a reasonable size, attention is focused on
estimation and hypothesis testing methods that perform reasonably well in simulation studies,
in terms of efficiency and probability coverage, particularly when there is a heteroscedastic
error term. For more information about robust regression, beyond the topics covered in the
final two chapters of this book, see Belsley, Kuh, and Welsch (1980), Birkes and Dodge
(1993), Carroll and Ruppert (1988), Cook and Weisberg (1992), Fox (1999), Hampel et al.
(1986), Hettmansperger (1984), Hettmansperger and McKean (1998), Huber (1981), Li
(1985), Maronna, Martin, and Yohai (2006), Montgomery and Peck (1992), Rousseeuw and
Leroy (1987), and Staudte and Sheather (1990). Robust methods that have practical value
when the error term is homoscedastic, but are unsatisfactory when the error term is
heteroscedastic, are not described or only briefly mentioned. A reasonable suggestion for
trying to salvage homoscedastic methods is to test the hypothesis that there is, indeed,
homoscedasticity. But under what circumstances would such a test have enough power to
detect situations where heteroscedasticity is a practical issue? There is no known way of
adequately answering this question, so here attention is focused on heteroscedastic methods
that appear to perform about as well as homoscedastic methods in the event there is
homoscedasticity.

In regression, the most common assumption is that

yi = β0+β1xi1+· · ·+βpxi p+ εi , (10.1)

1 When dealing with regression, the remaining two chapters write random variables as lowercase Roman letters.
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where β0, . . . , βp are unknown parameters, i = 1, . . . ,n, the εi are independent random
variables with E(εi )= 0, VAR(εi )= σ

2, and εi is independent of xik for each k, k = 1, . . . , p.
This model implies that the conditional mean of yi , given (xi1, . . . , xi p), is β0+

∑
βk xik , a

linear combination of the predictors. Equation (10.1) is a homoscedastic model, meaning that
the εi have a common variance. If the error term, εi , has variance σ 2

i , and σ 2
i 6= σ

2
j , for some

i 6= j , the model is said to be heteroscedastic. Even when ε has a normal distribution,
heteroscedasticity can result in relatively low efficiency when using the conventional
(ordinary least squares) estimator, meaning that the estimator of β can have a relatively large
standard error. Also, probability coverage can be poor when computing confidence intervals,
as will be illustrated. Dealing with these two problems is one of the major goals in this
chapter. Other general goals are dealing with outliers and achieving high efficiency when
sampling from heavy-tailed distributions.

Before continuing, some comments about notation might be useful. At times, standard vector
and matrix notation will be used. In particular, let

xi = (xi1, . . . , xi p)

and

β = (β1, . . . , βp)
′

=

β1
...

βp

 .
Then

xiβ = β1xi1+· · ·+βpxi p

and Eq. (10.1) becomes

yi = β0+xiβ+ εi .

This chapter begins with a summary of practical problems associated with least squares
regression. Then various robust estimators are described and some comments are made about
their relative merits. Inferential techniques, based on the robust regression estimators
introduced in this chapter, are described and illustrated in Chapter 11.

10.1 Problems with Ordinary Least Squares

Let b j be any estimate of β j , j = 0,1, . . . , p, and let

ŷi = b0+b1xi1+· · ·+bpxi p.
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From basic principles, the ordinary least squares (OLS) estimator arises without making any
distributional assumptions. The estimates are the b j values that minimize∑

(yi − ŷi )
2,

the sum of squared residuals. In order to test hypotheses or compute confidence intervals,
typically the homoscedastic model given by Eq. (10.1) is assumed with the additional
assumption that ε has a normal distribution with mean zero. Even when ε is normal, but
heteroscedastic, problems with computing confidence intervals arise.

Consider, for example, simple regression where there is only one predictor (p = 1). Then the
OLS estimate of the slope is

β̂1 =

∑
(xi1− x̄1)(yi − ȳ)∑
(xi1− x̄1)2

,

where x̄1 =
∑

xi1/n and ȳ =
∑

yi/n, and the OLS estimate of β0 is

β̂0 = ȳ− β̂1 x̄1.

Suppose

yi = β0+β1xi1+λ(xi1)εi , (10.2)

where VAR(εi )= σ
2 and λ is some unknown function of xi1 used to model heteroscedasticity.

That is, the error term is now λ(xi1)εi , and its variance varies with xi1, so it is heteroscedastic.
The usual homoscedastic model corresponds to λ(xi1)= 1. To illustrate the effect of
heterogeneity when computing confidence intervals, suppose both xi1 and εi are standard
normal, β1 = 1, β0 = 0, and λ(xi1)=

√
|xi1|. Thus, the error term, λ(xi1)εi , has a relatively

small variance when xi1 is close to zero, and the variance increases as xi1 moves away from
zero. The standard 1−α confidence interval for the slope, β1, is

β̂1± t1−α/2

√
σ̂ 2∑

(xi1− x̄1)2
,

where t1−α/2 is the 1−α/2 quantile of a Student’s t-distribution with n−2 degrees of
freedom,

σ̂ 2
=

∑ r2
i

n−2
,

and ri = yi − β̂1xi1− β̂0 are the residuals. When the error term is homoscedastic and normal,
the probability coverage is exactly 1−α.
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Let α̂ be a simulation estimate of one minus the probability coverage when computing a 1−α
confidence interval for β1. When using the conventional confidence interval for β1, with
n = 20, λ(xi1)=

√
|xi1|, and α = 0.05, α̂ = 0.135 based on a simulation with 1000

replications. If λ(xi1)= |xi1|, the estimate increases to 0.214. If instead xi1 has a g-and-h
distribution (described in Section 4.2) with g = 0 and h = 0.5 (a symmetric, heavy-tailed
distribution) α̂ increases to 0.52. Put another way, when testing H0: β1 = 1 with α = 0.05, the
actual probability of a type I error can be more than 10 times the nominal level. A similar
problem arises when testing H0: β0 = 0. A natural strategy is to test the assumptions of
normality and homogeneity, but as already noted, such tests might not have enough power to
detect a situation where these assumptions yield poor probability coverage. Just how large the
sample size should be, before standard assumptions can be adequately tested, is unknown.
Currently, a better approach is simply to abandon it in favor of a method that performs
relatively well under heteroscedasticity, and which competes well with the standard method
when in fact the error term is homoscedastic.

Another problem with OLS is that it can be highly inefficient, and this can result in relatively
low power. As will be illustrated, this problem arises even when εi is normal but λ(xi1) is not
equal to one. That is, the error term has a normal distribution but is heteroscedastic. Low
efficiency also arises when the error term is homoscedastic but has a heavy-tailed distribution.
As an illustration, again consider simple regression. When the error term is homoscedastic,
β̂1, the OLS estimate of β1, has variance

σ 2∑
(xi1− x̄1)2

.

But from results described and illustrated in Chapters 1–3, σ 2, the variance of the error term,
becomes inflated if sampling is from a heavy-tailed distribution. That is, slight departures
from normality, as measured by the Kolmogorov distance function, result in large increases in
the standard error of β̂1. (This problem is well known and discussed by Hampel, 1973;
He et al., 1990; Schrader & Hettmansperger, 1980, among others.) Note, however, that if the
xi1 are sampled from a heavy-tailed distribution, this inflates the expected value of∑
(xi1− x̄1)

2, relative to sampling from a normal distribution, in which case the standard
error of β̂1 tends to be smaller versus the situation where xi1 is normal. In fact, a single outlier
among the xi1 values inflates

∑
(xi1− x̄1)

2, causing the estimate of the squared standard error
to decrease. Consequently, there is interest in searching for methods that have good efficiency
when ε has a heavy-tailed distribution, and maintains relatively high efficiency when the xi

values are randomly sampled from a heavy-tailed distribution as well.

One strategy is to check for outliers, remove any that are found, and proceed with standard
OLS methods using the data that remain. As was the case when dealing with measures of
location, a problem with this approach is that the estimated standard error may not converge
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to the correct value as the sample size gets large (He & Portnoy, 1992). A bootstrap estimate
of the standard error could be used instead, but little is known about the effectiveness of this
approach. Also, simply removing outliers does not always deal effectively with low efficiency
due to a heteroscedastic error term.

Yet another practical problem is that OLS has a breakdown point of only 1/n. That is, a single
point, properly placed, can cause the OLS estimator to have virtually any value. Not only do
unusual y values cause problems, outlying x values, called leverage points, can have an
inordinate influence on the estimated slopes and intercept.

It should be noted that two types of leverage points play a role in regression: good and bad.
Roughly, leverage points are good or bad depending on whether they are reasonably consistent
with the true regression line. A regression outlier is a point with a relatively large residual. A
bad leverage point is a leverage point that is also a regression outlier. A good leverage point is
a leverage point that is not a regression outlier. Leverage points can reduce the standard error
of the OLS estimator, but a bad leverage point can result in a poor fit to the bulk of the data.

10.1.1 Computing Con�dence Intervals under Heteroscedasticity

When using the OLS estimator, various methods have been proposed for computing
confidence intervals for regression parameters when the error term is heteroscedastic. One
strategy when dealing with heteroscedasticity is to transform the data (e.g., Carroll &
Ruppert, 1988). The focus here is on methods that appear to perform well without relying on
any transformation. Perhaps situations arise where transformations have practical value
relative to the methods described here, but it seems that this issue has not been investigated.
The methods described here compete well with homoscedastic methods when indeed the error
term is homoscedastic. Attention is restricted to the seemingly better methods followed by
comments regarding their relative merits.

Wilcox (1996c) found that for the special case p = 1 (one predictor only), only one method
performed well among the situations he considered. For p > 1 a slight modification is
recommended (Wilcox, 2003f) when the goal is to have simultaneous probability coverage
equal to 1−α for all p slope parameters. The method begins by sampling, with replacement,
n vectors of observations from (yi ,xi ), i = 1, . . . ,n. Put another way, a bootstrap sample is
obtained by randomly sampling, with replacement, n rows of data from the n-by-(p+1)
matrix 

y1, x11, . . . , x1p

y2, x21, . . . , x2p
...

yn, xn1, . . . , xnp

 .
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The resulting n vectors of observations are labeled

(y∗1 , x∗11, . . . , x∗1p), . . . , (y
∗

n , x∗n1, . . . , x∗np).

Let β̂∗j be the OLS estimate of β j , the j th slope parameter, j = 1, . . . , p, based on the
bootstrap sample just obtained. Repeat this bootstrap process B times yielding
β̂∗j1, β̂

∗

j2, . . . , β̂
∗

j B . Let β̂∗j (1) ≤ β̂
∗

j (2) ≤ · · · ≤ β̂
∗

j (B) be the B bootstrap estimates written in
ascending order.

For the special case p = 1, a slight modification of the standard percentile bootstrap method is
used. When B = 599, the 0.95 confidence interval for β1 is

(β̂∗1(a+1), β̂
∗

1(c)),

where for n < 40, a = 6 and c = 593; for 40≤ n < 80, a = 7 and c = 592; for 80≤ n < 180,
a = 10 and c= 589; for 180≤ n < 250, a = 13 and c= 586; whereas for n ≥ 250, a = 15 and
c = 584. Note that this method becomes the standard percentile bootstrap procedure when
n ≥ 250. If, for example, n = 20, the lower end of the 0.95 confidence interval is given by
β̂∗1(7). A confidence interval for the intercept is computed in the same manner, but currently it
seems best to use a = 15 and c = 584 for any n. That is, use the usual percentile bootstrap
confidence interval. From results described in Chapter 4, there are situations where the
confidence interval for the intercept can be expected to have unsatisfactory probability
coverage. In essence, the situation reduces to computing a percentile bootstrap confidence
interval for the mean when the slope parameters are all equal to zero. A criticism of this
method is that it is limited to α = 0.05.

As for p > 1, if the goal is to achieve simultaneous probability coverage equal to 1−α, it
currently appears that the best approach is to use a standard percentile bootstrap method in
conjunction with the Bonferroni inequality (Wilcox, 2003f). So, set

`=
αB

2p
,

round ` to the nearest integer, let u = B−`, in which case the confidence interval for the j th
predictor ( j = 1, . . . , p) is

(β̂∗j (`+1), β̂
∗

j (u)).

For p = 1, the bootstrap confidence interval just described is based on the strategy of finding
a method that gives good results under normality and homoscedasticity, and then using this
method when there is heteroscedasticity or sampling is from a nonnormal distribution.
Simulations were then used to see whether the method continues to perform well when
sampling from nonnormal distributions, or when there is heteroscedasticity. Relative to other
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methods that have been proposed, the modified bootstrap procedure has a clear advantage.
This result is somewhat unexpected because in general, when working with nonrobust
measures of location and scale, this strategy performs rather poorly. If, for example, the
percentile bootstrap method is adjusted so that the resulting confidence interval for the mean
has probability coverage close to the nominal level when sampling from a normal distribution,
probability coverage can be poor when sampling from nonnormal distributions instead.

Another strategy is to obtain bootstrap samples by resampling residuals, as opposed to vectors
of observations as is done here. When dealing with heteroscedasticity, theoretical results do
not support this approach (Wu, 1986), and simulations indicate that unsatisfactory probability
coverage can result. Of course, one could check for homoscedasticity in an attempt to justify
resampling residuals, but there is no known way of being reasonably certain that the error
term is sufficiently homoscedastic. Again, any test of the assumption of homoscedasticity
might not have enough power to detect heteroscedasticity in situations where the assumption
should be discarded.

Nanayakkara and Cressie (1991) derived another method for computing a confidence interval
for the regression parameters when the error term is heteroscedastic. When the xi1 values are
fixed and evenly spaced, their method appears to give good probability coverage, but
otherwise probability coverage can be unsatisfactory.

Long and Ervin (2000) compared several nonbootstrap methods for dealing with
heteroscedasticity and recommended one particular method for general use, which is based on
what is called the HC3 estimate of the standard errors. The HC3 estimator is

HC3= (X′X)−1X′diag

[
r2

i

(1−hi i )2

]
X(X′X)−1,

where ri , i = 1, . . . ,n are the usual residuals,

hi i = xi (X′X)−1x′i ,

and

X=


1 x11 · · · x1p

1 x21 · · · x2p
...

...
...

1 xn1 · · · xnp


and xi is the i th row of Xi (e.g., MacKinnon & White, 1985). If b0, . . . ,bp are the least
squares estimates of the p+1 parameters, the diagonal elements of the matrix HC3 represent
the estimated squared standard errors. So if S2

j ( j = 0, . . . , p) is the j th diagonal element
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HC3, the 1−α confidence interval for β j is taken to be

b j ± t S j ,

where t is the 1−α/2 quantile of a Student’s t-distribution with ν = n− p−1 degrees of
freedom. But it is unknown how large n must be to ensure reasonably accurate confidence
intervals. For a single predictor, it is known that n = 60 might not suffice (Wilcox, 2001b).

More recently, an alternative to the HC3 estimator has been studied that appears to be better
for general use (Godfrey, 2006). Let hi i be defined as done when using the HC3 estimator. Let
h̄ =

∑
hi i/n, ei i = hi i/h̄, and di i =min(4, ei i ). The HC4 estimator is

S = (X′X)−1X′diag

[
r2

i

(1−hii)dii

]
X(X′X)−1.

The diagonal elements of the matrix S, which we denote by S2
0 , S2

1 , . . . , S2
p, are the estimated

squared standard errors of b0,b1, . . .bp, respectively. Following Ng and Wilcox (2009), the
1−α confidence interval for β j is taken to be

b j ± t S j ,

where t is the 1−α/2 quantile of a Student’s t-distribution with ν = n− p−1 degrees of
freedom. (Cribari-Neto, Souza, & Vasconcellos, 2007, suggest an alternative to the HC4
estimator, but for the situation at hand it seems to offer no practical advantage; see Ng,
2009b.)

Wald-Type Statistics Used in Conjunction with a Wild Bootstrap

Method HC4WB-D

Two wild bootstrap methods should be mentioned, both of which are based in part on what is
called a Wald-type statistic. The first, which is labeled the HC4WB-D is performed as
follows:

1. Again let b j be the ordinary least squares estimate of β j , compute S j , the HC4 estimate of
the standard error.

2. Compute the Wald test statistic

W = (b j −0)S−1
j (b j −0).

3. Generate D1, . . . ,Dn from a two-point (lattice) distribution. That is,

Di =

{
−1 with probability .5

1 with probability .5.
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A bootstrap sample (y∗i ,xi ), assuming the null hypothesis is true, is given by
y∗i = ȳ+Diri , i = 1, . . .n, where β̂ = (β̂1, . . . , β̂p)

′ are the ordinary least squares
estimate under the assumption that the null hypothesis is true.

4. Compute the ordinary least squares estimate (b∗j ) based on this bootstrap sample as well
as the HC4 estimate of the standard error (S∗j ). Compute the Wald test statistic

W ∗ = (b∗j −0)S∗−1(b∗j −0).

based on the bootstrap sample.
5. Repeat steps 2 – 4 B times yielding W ∗b , b = 1, . . . , B.
6. A p-value for H0: β j = 0 is given by

p =
#{W ∗b ≥W }

B
.

Reject H0 if p ≤ α.

Method HC4WB-C

Method HC4WB-C is exactly like method HC4WB-D, only now

Di =
√

12(Ui − .5),

where U has a uniform distribution over the unit interval.

In contrast to Godfrey (2006), the more extensive simulations by Ng and Wilcox (2009)
indicate that the wild bootstrap methods do not have a striking advantage over the
nonbootstrap HC4 method in terms of achieving a type I error probability reasonably close to
the nominal level. However, in terms of minimizing the variability of the type I error
probabilities among the situations that were considered, HC4WB-C was found to be best
when testing at the 0.05 level. Although the methods based on the HC4 estimator perform
relatively well, there are situations where all methods based on the HC4 estimator fail to
control the type I error probability reasonably accurate manner, even with n = 100.

10.1.2 An Omnibus Test

Rather than test hypotheses about the individual parameters, a common goal is to test

H0 : β1 = · · · = βp = 0,

the hypothesis that all p slope parameters are zero. When using the OLS estimator and p > 1,
it seems that no method has been found to be effective, in terms of controlling the probability
of a type I error, when there is heteroscedasticity, nonnormality, or both. Mammen (1993)
studied a method based in part on a so-called wild bootstrap technique. While preparing this
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chapter, the author ran some simulations as a partial check on this approach and found that it
generally performed reasonable well with n = 30 and p = 4. However, a situation was found
where, with a heteroscedastic error term, the actual probability of a type I error was estimated
to be .29 when testing at the 0.05 level. In fairness, perhaps for nearly all practical situations,
the method performs reasonably well, but resolving this issue is difficult at best.

With the understanding that, when dealing with least squares regression, no single method is
always satisfactory in terms of controlling the probability of a type I error, two methods
currently seem best for general use. Both are based on a more general form of the HC4
estimate of the standard error, which was derived by Cribari-Neto (2004).

Let V be the HC4 estimate of the variances and covariances of b= (b1, . . . ,bp)
′, the least

squares estimate of the slope parameters. A test statistic for testing the hypothesis that all
slopes are zero is

W = nb′Vb,

which has, approximately, a chi-squared distribution with p degrees of freedom. However, for
p > 1, this method is unsatisfactory in terms of controlling the probability of a type I error.

A better approach is to use a wild bootstrap method. That is, generate wild bootstrap values
y∗i as was done in conjunction with the HC4WB-C or the HC4WB-D methods. Based on this
bootstrap sample, compute the test statistic W yielding W ∗. Repeat this B times yielding
W ∗1 , . . . ,W ∗B . A p-value is given by

1

B

∑
Ii ,

where the indicator function Ii = 1 if Wi ≤W ; otherwise Ii = 0.

10.1.3 R Functions ls�tNci, ls�tci, olshc4, hc4test, and hc4wtest

The R function

lsfitci(x,y,nboot=599)

is supplied for computing 0.95 confidence intervals for regression parameters, based on the
OLS estimator, using the percentile bootstrap method described in Section 10.1.1. As usual, x
is an n-by-p matrix of predictors. This function is designed for α = 0.05 only.

For large sample sizes, the bootstrap can be avoided by using the estimate of the squared
standard errors given by HC3. The computations are performed by the function

lsfitNci(x,y,alpha=0.05).
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But again, it is unclear how large the sample size must be in order for this approach to achieve
the same control over the type I error probability achieved by the percentile bootstrap method
described here.

With the understanding that no single estimator is always best, it appears that using the HC4
estimator is preferable to the HC3 estimator. HC4 does not dominate HC3, but it is difficult to
know when HC3 gives more accurate results. The R function

olshc4(x,y,alpha=0.05,xout=F,outfun=out)

computes 1−α confidence intervals using the HC4 estimator, and p-values are returned as
well. By default, 0.95 confidence intervals are returned. Setting the argument alpha equal to
0.1, for example, will result in 0.9 confidence intervals. Leverage points are removed if the
argument xout=T using the R function specified by the argument outfun, which defaults to
the MVE method.

The function

hc4test(x,y,xout=F,outfun=out)

tests the hypothesis that all slope parameters are equal to zero. With a sufficiently large
sample size, this method will perform well in terms of controlling the probability of a type I
error. But it is unclear just how large the sample size needs to be. With a small to moderate
sample size all indications are that it is safer to use the R function

hc4wtest(x, y, nboot = 500, SEED = T, RAD = T),

which uses a wild bootstrap method. When the argument RAD=T, method HC4WB-D is
used. Otherwise METHOD HC4WB-C is used.

n Example

Assuming both x and ε have standard normal distributions, 30 pairs of observations
were generated according to the model y = (|x |+1)ε. The standard F-test for
H0 : β1 = 0 was applied and this process was repeated 1000 times. Testing at the 0.05
level, the proportion of type I errors was .144. So the standard F-test correctly detects
an association about 14% of the time, but simultaneously provides an inaccurate
assessment of β1. This again illustrates that under heteroscedasticity, the standard F
test does not control the probability of a type I error. Using instead the R function
olshc4, the proportion of rejections was 0.06, which is reasonably close to the nominal
0.05 level.

n

www.elsevierdirect.com



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

WILCOX 13-ch10-471-532-9780123869838 2011/12/6 18:23 Page 482 #12

482 Introduction to Robust Estimation and Hypothesis Testing

•••

•

••
•
•

•

•
•

•

•
•

•

•

•

•

•

•

•

••

••

••

••
•

•
•
••

•

•

•
•

••

•

••

••

•

•

••
•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
••

•

•

•
•

•

Number of pairs

H
ou

rs

•

•

•

•

•

••

•

•

•
•

•

••

•

•
•

•

•

•

•

•

•

•

•

••

•

••

•

••

•

•

• •

•

•

•

•

•
•

Age

Lo
g 

C
-p

ep
tid

e

0 1000 3000 5000

0

5

10

15

5 10 15

3

4

5

6

Figure 10.1: Scatterplots of two real data sets that appear to be heteroscedastic.

n Example

Cohen, Dalal, and Tukey (1993) report data on the number of hours, y, needed to
splice x pairs of wires for a particular type of telephone cable. The left panel of
Figure 10.1 shows a scatterplot of the data. (The data are stored in the �le splice.dat,
which can be obtained as described in Section 1.8 of Chapter 1.) Note that the data
appear to be heteroscedastic. The usual 0.95 con�dence interval (multiplied by 1000 for
convenience), based on the assumption of normality and homogeneity, is (1.68, 2.44).
If the y values are stored in the R vector yvec, and the x values are stored in the R
variable splice, the command ls�tci(splice,y) reports that the 0.95 bootstrap con�dence
interval is (1.64, 2.57). The ratio of the lengths is (2.44−1.68)/(2.57−1.64)= 0.82. It
might be argued that the lengths are reasonably similar. However, the probability
coverage of the usual method can be less than the nominal level, it is unclear whether
this problem can be ignored for the data being examined, and all indications are that
the bootstrap method provides better probability coverage under heteroscedasticity.
Consequently, using the bootstrap con�dence interval seems more satisfactory.

n

n Example

Sockett et al. (1987) collected data with the goal of understanding how various factors
are related to the patterns of residual insulin secretion in children. (The data can be
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found in the �le diabetes.dat.) One of the response measurements is the logarithm of
C-peptide concentration (pmol/ml) at diagnosis, and one of the predictors considered
is age. The right panel of Figure 10.1 shows a scatterplot of the data. The scatterplot
suggests that the error term is heteroscedastic, with the smallest variance near age 7.
(Results in Chapter 11 lend support for this speculation.) The 0.95 con�dence interval
for the slope, using the standard OLS method, is (0.0042,0.0263), the estimate of the
slope being 0.015. In contrast, ls�tci returns a 0.95 con�dence interval of (−0.00098,
0.029), and the ratio of the lengths is (0.0263−0.0042)/(0.029+0.00098)= 0.74. Again
there is concern that the standard con�dence interval is too short and that its actual
probability coverage is less than the nominal level. Note that the standard con�dence
interval rejects H0 : β1 = 0, but ls�tci does not.

n

10.1.4 Comments on Comparing Means via Dummy Coding

A well-known approach to comparing the means of multiple groups is via least squares
regression coupled with dummy coding (e.g., Montgomery & Peck, 1992). Yet another way of
dealing with heteroscedasticity when comparing means, beyond the methods in Chapter 7, is
to use dummy coding in conjunction with the HC4 estimator. But results in Ng (2009b) do not
support this approach. Control over the probability of a type I error can be unsatisfactory.

10.1.5 Comments on Trying to Salvage the Homoscedasticity Assumption

One strategy for trying to salvage the homoscedasticity assumption, when using classic
inferential methods associated with the least squares regression estimator, is to simply test the
hypothesis that there is homoscedasticity. Most methods for testing this hypothesis have been
found to be unsatisfactory in terms of controlling the probability of a type I error. That is,
there is a high probability of rejecting the hypothesis that there is homoscedasticity when
indeed there is homoscedasticity. Two methods that have been found to perform well in
simulations are described in Section 11.4. However, imagine that the classic homoscedastic
methods are used if these methods fail to reject the hypothesis that the error term is
homoscedastic. A basic issue is whether these methods have enough power to detect
situations where there is heteroscedasticity that invalidates the homoscedastic methods that
are typically used. With n ≤ 100, Ng and Wilcox (2011) found that the answer is no. The
usual homoscedastic methods can still have actual type I error probabilities well above the
nominal level. To the extent it is desired to make inferences about the regression parameters,
without being sensitive to heteroscedasticity, all indications are that it is best to abandon
homoscedastic methods and always use one of the heteroscedastic methods in this section.
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10.2 Theil–Sen Estimator

This section describes an estimator first proposed by Theil (1950) and later extended by Sen
(1968) that is restricted to the case of a single predictor (p = 1). Then various extensions to
p > 1 are discussed.

Temporarily focusing on p = 1, one view of the Theil–Sen estimator is that it attempts to find
a value for the slope that makes Kendall’s correlation tau, between yi −bxi and xi ,
(approximately) equal to zero. This can be seen to be tantamount to the following method. For
any i < i ′, for which xi 6= xi ′ , let

Si i ′ =
yi − yi ′

xi − xi ′
.

The Theil–Sen estimate of the slope is b1ts, the median of all the slopes represented by Si i ′ .
The intercept is estimated with

My−b1 Mx ,

where My and Mx are the usual sample medians of the y and x values, respectively. Sen
(1968) derived the asymptotic standard error of the slope estimator, but it plays no role here
and therefore is not reported. Dietz (1987) showed that the Theil–Sen estimator has an
asymptotic breakdown point of 0.293. For results on its small-sample efficiency, see Dietz
(1989), Talwar (1991) and Wilcox (1998a, 1998b). Sievers (1978) and Scholz (1978)
proposed a generalization of the Theil–Sen estimator by attaching weights to the pairwise
slopes, Si i ′ , but in terms of efficiency it seems to offer little or no advantage, and in some
cases its bias is considerably larger, so it is not described here. For results when the median of
the slopes is replaced by a trimmed mean, see Luh and Guo (2000).

It is noted that the Theil–Sen estimator has close similarities to a regression estimator studied
by Maronna and Yohai (1993, Section 3.3). This alternative estimator belongs to what are
called projection estimators; see Section 10.13.11. Martin, Yohai, and Zamar (1989) proved
that this alternative estimate of the slope is minimax in the class of all regression equivariant
estimates if the error term has a symmetric and unimodal distribution.

There are at least three general ways the Theil–Sen estimator might be extended to two or
more predictors (cf. Hussain & Sprent, 1983). The first, which will be called method TS, is to
apply the back-fitting, Gauss–Seidel method as described in Hastie and Tibshirani (1990,
pp. 106–108). (For a general description of the Gauss–Seidel method and its properties, see
e.g., Dahlquist & Björck, 1974; Golub & van Loan, 1983.) For the problem at hand, the
method is applied as follows:

1. Set k = 0 and choose an initial estimate for β j , say b(0)j , j = 0, . . . , p. Here, the initial
estimate is taken to be the Theil–Sen estimate of the slope based on the j th regressor
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only. That is, simply ignore the other predictors to obtain an initial estimate of β j . The
initial estimate of β0 is the median of

yi −

p∑
j=1

b(0)j xi j , i = 1, . . . ,n.

2. Increment k and take the kth estimate of β j ( j = 1, . . . , p) to be b(k)j , the Theil-Sen
estimate of the slope based on the regression estimate of xi j with

ri = yi −b(k−1)
0 −

p∑
`=1, 6̀= j

b(k−1)
` xi`.

The updated estimate of the intercept, b(k)0 , is the median of

yi −

p∑
j=1

b(k)j xi j , i = 1, . . . ,n.

3. Repeat step 2 until convergence.

The second general approach toward extending the Theil–Sen estimator to multiple predictors
is based on so-called elemental subsets, an idea that appears to have been first suggested in
unpublished work by Oja and Niimimaa; see Rousseeuw and Leroy (1987, p. 146, cf.
Hawkins & Olive, 2002). In a regression data set, an elemental subset consists of the
minimum number of cases required to estimate the unknown parameters of a regression
model. With p regressors, the Oja and Niimimaa extension is to use all N = n!/
[(p+1)!(n− p−1)!] elemental subsets. That is, for each elemental subset, estimate the slope
parameters using OLS. At this point, a simple strategy is to use the median of the N resulting
estimates. That is, letting β̂ j i be the estimate of β j based on the i th elemental subset,
i = 1, . . . , N , the final estimate of β j would be the median of these N values. One practical
problem is that the number of elemental subsets increases rapidly with n and p. For example,
with n = 100 and p = 4, the number of elemental subsets is 106,657,320. Also note that
intuitively, some elemental subsets will yield a highly inaccurate estimate of the slopes. An
alternative strategy is to use (n2

−n)/2 randomly sampled elemental subsets, the same
number of elemental subsets used when p = 1. In terms of efficiency, results in Wilcox
(1998b) support this approach over using all N elemental subsets instead. For convenience,
this method is labeled TSG. Note that the back-fitting, Gauss–Seidel method eliminates the
random component associated with the method just described, and Gauss-Seidel also offers
faster execution time.

Let τ̂ j be Kendall’s tau between the j th predictor, x j , and y−b1x1−· · ·−bpx p. A third
approach, when generalizing the Theil–Sen estimator to p > 1 predictors, is to determine
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b1, . . . ,bp so that
∑
|τ̂ j | is approximately equal to zero. Note that this approach can be used

to generalize the Theil–Sen estimator by replacing Kendall’s tau with any reasonable
correlation coefficient. The relative merits of this third way of extending the Theil–Sen
estimator to multiple predictors have not been explored.

Results regarding the small-sample efficiency of the Gauss–Seidel method, versus using
randomly sampled elemental subsets, are reported in Wilcox (2004d). The choice of method
can make a practical difference, but currently there is no compelling reason to prefer one
method over the other based solely on efficiency.

A criticism of method TSG is that as p increases, its finite sample breakdown point decreases
(Rousseeuw & Leroy, 1987, p. 148). Another possible concern is that the marginal medians
are location equivariant but not affine equivariant. (See Eq. (6.9) for a definition of affine
equivariance when referring to a multivariate location estimator.) A regression estimator T is
affine equivariant if for any nonsingular matrix A,

T (xiA, yi; i = 1, . . . ,n)= A−1T(xi, yi; i = 1, . . . ,n).

Because the marginal medians are not affine equivariant, TSG is not affine equivariant either.
Yet one more criticism is that with only (n2

−n)/2 randomly sampled elemental subsets, if n
is small, rather unstable results can be obtained, meaning that if a different set of (n2

−n)/2
elemental subsets is used, the estimates can change substantially. If, for example, n = 20 and
p = 2, only 190 resamples are used from among the 1140 elemental subsets. (Of course, when
n is small, it is a simple matter to increase the number of sampled elemental subsets, but just
how many additional samples should be taken has not been investigated.)

A regression estimator T is regression equivariant if for any vector v,

T (xi, yi+xiv; i = 1, . . . ,n)= T(xi, yi; i = 1, . . . ,n)+v.

And T is said to be scale equivariant if

T (xi, cyi; i = 1, . . . ,n)= cT(xi, yi; i = 1, . . . ,n).

It is noted that method TS also fails to achieve affine equivariance, but it does achieve
regression equivariance and scale equivariance.

10.2.1 R Functions tsreg, correg, and regplot

The R function

tsreg(x,y,iter=10)
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computes the TS regression estimator just described. When p > 1, the default maximum
number of iterations when using the Gauss–Seidel method, indicated by the argument iter,
is 10.

The function

correg(x,y,corfun=tau)

computes the Theil–Sen estimate by determining b1, . . . ,bp so that
∑
|τ̂ j | is approximately

equal to zero, where τ̂ j is Kendall’s tau between the j th predictor, x j , and
y−b1x1−· · ·−bpx p. It generalizes the function tsreg by allowing Kendall’s tau to be
replaced by some other correlation. For example, correg(x,y,corfun=pbcor) would use the
percentage bend correlation coefficient.

When dealing with a single predictor, only two R commands are needed to create a scatterplot
that includes a regression line. (The two R functions are plot and abline.) To make this task
even easier, the R function

regplot(x,y,regfun=tsreg,xlab=“X”,ylab=“Y”)

is supplied, which by default plots the Theil–Sen regression line. Other regression lines can be
specified via the argument regfun, which assumes that the estimated slope and intercept,
returned by the R function specified, are stored in $coef.

10.3 Least Median of Squares

The least median of squares (LMS) regression estimator appears to have been first proposed
by Hampel (1975) and further developed by Rousseeuw’s (1984). That is, the regression
estimates are taken to be the values that minimize

MED(r2
1 , . . . , r

2
n ),

the median of the squared residuals. (Also see Davies, 1993; Hawkins & Simonoff, 1993;
Rousseeuw & Leroy, 1987.) It was the first equivariant estimator to attain a breakdown point
of approximately 0.5, but its efficiency relative to the ordinary least squares estimator is 0.
(And its rate of convergence is n−1/3 rather than the usual rate of n−1/2.) Despite these
negative properties, the LMS estimator is often suggested as a diagnostic tool or as
preliminary fit to data.

10.3.1 R Function lmsreg

The R function

lmsreg(x,y)
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computes the least median of squares regression estimator. To gain access to this function,
first enter the command library(lqs).

10.4 Least Trimmed Squares Estimator

Rousseeuw’s (1984) least trimmed squares (LTS) estimator is based on minimizing

h∑
i=1

r2
(i),

where r2
(1) ≤ · · · ≤ r2

(h) are the squared residuals written in ascending order. With
h = [n/2]+1, the same breakdown point as LMS is achieved. However, h = [n/2]+
[(p+1)/2] is often used to maintain regression equivariance. LTS has a relatively low
asymptotic efficiency (Croux, Rousseeuw, & Hössjer, 1994), but it seems to have practical
value. For example, it plays a role in the asymptotically efficient M-estimator described in
Section 10.9.

10.4.1 R Functions ltsreg and ltsgreg

The R function

ltsreg(x,y)

computes the LTS regression estimate. Access to this function is obtained via the command
library(lqs). The function

ltsgreg(x,y,tr=0.2,h=NA),

written for this book, also computes the LTS estimate but allows you to set the amount of
trimming via the argument tr. (The parameters are estimated with the Nelder–Mead method.)
If no value for h is specified, the value for h is taken to be n−[tr(n)], where tr defaults to .2.

10.5 Least Trimmed Absolute Value Estimator

A close variation of the LTS estimator is the least trimmed absolute (LTA) value estimator.
Now the strategy is to choose the intercept and slope so as to minimize

h∑
i=1

|r |(i), (10.3)

where |r |(i) is the i th smallest absolute residual and h is defined as in Section 10.4. (For recent
results on the LTA estimator, see Hawkins & Olive, 1999. For asymptotic results, see
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Tableman, 1994. For asymptotic results when h = n and the error term is homoscedastic, see
Knight, 1998.) Like LTS, the LTA estimator can have a much smaller standard error than the
least squares estimator, but its improvement over the LTS estimator seems to be marginal at
best, at least based on what is currently known (Wilcox, 2001b.)

10.5.1 R Function ltareg

The R function

ltareg(x,y,tr=0.2,h=NA)

computes the LTA estimate using the Nelder–Mead method for minimizing a function (which
was mentioned in Chapter 6 in connection with the spatial median). If no value for h is
specified, the value for h is taken to be n−[tr(n)], where tr defaults to .2.

10.6 M-Estimators

Regression M-estimators represent a generalization of the location M-estimator described in
Chapter 3. There are, in fact, many variations of M-estimators when dealing with regression,
some of which appear to be particularly important in applied work. We begin, however, with
some of the early and fairly simple methods. They represent an important improvement on
ordinary least squares, but by today’s standards they are relatively unsatisfactory.
Nevertheless, some of these early methods have become fairly well known, so they are
included here for completeness.

Generally, M-estimators of location can be extended to regression estimators by choosing a
function ξ and then estimating β j , ( j = 0, . . . , p) with the b j values that minimize∑

ξ(ri ).

Typically, ξ is some symmetric function chosen so that it has desirable properties plus a
unique minimum at zero. Table 2.1 lists some choices.

As explained in Chapter 2, a measure of scale needs to be used with M-estimators of location
so that they are scale equivariant, and a measure of scale is needed for the more general
situation considered here. In the present context, this means that if the y values are multiplied
by some constant, c, the estimated slope parameters should be multiplied by the same value.
For example, if the estimated slope is 0.304, and if y1, . . . , yn are multiplied by 10, then the
estimated slope should become 3.04.

Letting τ be any measure of scale, M-estimators minimize∑
ξ
(ri

τ

)
.
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Following Hill and Holland (1977), τ is estimated with

τ̂ =
median of the largest n− p−1 of the |ri |

0.6745
. (10.4)

Note that τ̂ is resistant, which is needed so that the M-estimator is resistant against unusual y
values.

Let 9 be the derivative of ξ , some of which are given in Table 2.1. Here the focus of attention
is on Huber’s 9 given by

9(x)=max[−K ,min(K , x)].

For the problem at hand, K = 2
√
(p+1)/n is used following the suggestion of Belsley et al.

(1980). M-estimators solve the system of p+1 equations

n∑
i=1

xi jwiri = 0, j = 0, . . . , p, (10.5)

where xi0 = 1 and

wi =

{
9(ri/τ̂ )

ri/τ̂
, if yi 6= ŷi

1, if yi = ŷi

As was the case when dealing with M-estimators of location, there is no explicit equation that
gives the estimate of the regression parameters, an iterative estimation method must be used
instead.

Equation (10.5) represents a problem in weighted least squares. That is, Eq. (10.5) is
equivalent to estimating the parameters by minimizing∑

wir
2
i .

As with W-estimators of location, described in Chapter 3, a technical problem here is that the
weights, wi , depend on unknown parameters. The iterative method used with the W-estimator
suggests an iterative estimation procedure for the problem at hand, but the details are
postponed until Section 10.8.

10.7 The Hat Matrix

The M-estimator described in Section 10.6 provides resistance against unusual or outlying y
values, but a criticism is that it is not resistant against leverage points. In fact the breakdown
point is only 1/n. That is, a single unusual point can completely dominate the estimate of the
parameters. Moreover, its influence function is unbounded. An early approach to these
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problems is based in part on the so-called hat matrix, which is described here. As will become
evident, the hat matrix yields an M-estimator that has certain practical advantages – it
competes very well with OLS in terms of efficiency and computing accurate confidence
intervals under heteroscedasticity and nonnormality – but there are situations where it is not as
resistant as one might want. In particular, its breakdown point is only 2/n, meaning that it can
handle a single outlier, but two outliers might destroy it. But methods based on the hat matrix
have become increasingly well known, so a description of some of them seems in order.

It is a bit easier to convey the idea of the hat matrix in terms of simple regression, so this is
done first, after which attention is turned to the more general case where the number of
predictors is p ≥ 1. One strategy for determining whether the point (yi , xi ) is having an
inordinate effect on β̂1 and β̂0, the OLS estimates of the slope and intercept, is to consider
how much the estimates change when this point is eliminated. It turns out that this strategy
provides a method for judging whether xi is a leverage point.

Let

h j =
1

n
+

(x j − x̄)2∑
(xi − x̄)2

, (10.6)

j = 1, . . . ,n. Let β̂1(i), read beta hat sub 1 not i, be the OLS estimate of the slope when the
i th pair of observations is removed from the data. Let

ŷi = β̂0+ β̂1xi ,

A j =

∑
x2

i

n
∑
(xi − x̄)2

−
x j x̄∑
(xi − x̄)2

,

and

B j =
x j − x̄∑
(xi − x̄)2

.

Then the change from β̂1 which is based on all of the data, versus the situation where the i th
pair of values is removed, can be shown to be

β̂1− β̂1(i)= Bi
ri

1−hi
,

the change in the intercept is

β̂0− β̂0(i)= Ai
ri

1−hi
,

and the change in the predicted value of yi , based on xi , is

ŷi − ŷi (i)=
hi

1−hi
ri .
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In particular, the bigger hi happens to be, the more impact there is on the slope, the intercept,
and the predicted value of y. Moreover, the change in ŷi depends only on the residual, ri , and
hi . But hi reflects the amount xi differs from the typical predictor value, x̄ , because the
numerator of the second fraction in Eq. (10.6) is (xi − x̄)2. That is, hi provides a measure of
how much xi influences the estimated regression equation, which is related to how far xi is
from x̄ , so hi provides a method for judging whether xi is unusually large or small relative to
all the predictor values being used.

The result just described can be extended to the more general case where p ≥ 1. Let

X=


1 x11 · · · x1p

1 x21 · · · x2p
...

...
...

1 xn1 · · · xnp

 .
Let β̂ be the vector of OLS estimates, and let β̂(i) be the estimate when (yi ,xi ) is removed.
Then the change in the estimates is

β̂− β̂(i)= (X′X)−1x′i
ri

1−hi i
,

where hi i is the i th diagonal element of

H= X(X′X)−1X′.

The matrix H is called the hat matrix because the vector of predicted y values is given by

ŷ=Hy.

In particular,

ŷi =

n∑
j=1

hi j yi .

In words, the predicted value of y, based on xi , is obtained by multiplying each element in the
i th row of the hat matrix by yi and adding the results. Furthermore, when (yi ,xi ) is removed,
the vector of predicted values, ŷ, is changed by

ŷ− ŷ(i)= X(X′X)−1(1, xi1, . . . , xi p)
′

ri

1−hi i
,

and the change in the i th predicted value, ŷi , is

ŷi − ŷi (i)=
hi i

1−hi i
ri .
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The main point here is that the bigger hi i happens to be, the more impact it has on the OLS
estimator and the predicted values. In terms of identifying leverage points, Hoaglin and
Welsch (1978) suggest regarding hi i as being large if it exceeds 2(p+1)/n. (For more
information regarding the hat matrix, and the derivation of relevant results, see Belsley et al.,
1980; Cook & Weisberg, 1992; Huber, 1981; Li, 1985; and Staudte and Sheather, 1990. The R
function hat computes hi i , i = 1, . . . ,n.)

n Example

Consider the observations

x 1 2 3 3 4 4 15 5 6 7
y 21 19 23 20 25 30 40 35 30 26.

The hi values are 0.214, 0.164, 0.129, 0.129, 0.107, 0.107, 0.814, 0.100, 0.107, and
0.129, and 2(p+1)/n = 2(1+1)/10= 0.4. Because h7 = 0.814> 0.4, x7 = 15 would be
�agged as a leverage point. The OLS estimate of the slope is 1.43, but if the seventh
point is eliminated, the estimate increases to 1.88.

n

There is an interesting connection between the hat matrix and the conditions under which the
OLS estimator is asymptotically normal. In particular, a necessary condition for asymptotic
normality is that hi i → 0 as n→∞ (Huber, 1981). A related result turns out to be relevant in
the search for an appropriate M-estimator.

10.8 Generalized M-Estimators

This section takes up the problem of finding a regression estimator that guards against
leverage points. A natural strategy is to attach some weight, wi , to xi with the idea that the
more outlying or unusual xi happens to be, relative to all the xi values available, the less
weight it is given. In general, it is natural to look for some function of the predictor values
that reflects in some sense the extent to which the point xi influences the OLS estimator. From
the previous section, the leverage point, hi i , is one way to measure how unusual xi happens to
be. Its value satisfies 0< hi i ≤ 1. If hi i > h j j , this suggests that xi is having a larger impact
on the OLS estimator versus x j .

However, there is a concern. Consider, for example, the simple regression model where
hi i = 1/n+ (xi − x̄)2/

∑
(xi − x̄)2. The problem is that (xi − x̄)2 is not a robust measure of
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the extent to which xi is an outlier. Practical problems do indeed arise, but there are some
advantages to incorporating the leverage points in an estimation procedure, as will be seen.

One way of attaching a weight to xi is with wi =
√

1−hi i , which satisfies the requirement
that if hi i > h j j , wi <w j . In other words, high leverage points get a relatively low weight.
One specific possibility is to estimate the regression parameters as those values solving the
p+1 equations

n∑
i=1

wi9(ri/τ̂ )xi j = 0, (10.7)

where again xi0 = 1 and j = 0, . . . , p. Equation (10.7) is generally referred to as an
M-estimator using Mallows weights which derives its name from Mallows (1975).

Schweppe (see Hill, 1977) took this one step further with the goal of getting a more efficient
estimator. The basic idea is to give more weight to the residual ri if xi has a relatively small
weight, wi . (Recall that outlying x values reduce the standard error of the OLS estimator.) Put
another way, Mallows weights can result in a loss of efficiency if there are any outlying x
values, and Schweppe’s approach is an attempt at dealing with this problem by dividing ri by
wi (Krasker & Welsch, 1982). The resulting M-estimator is now the solution to p+1
equations

n∑
i=1

wi9(ri/(wi τ̂ ))xi j = 0. (10.8)

j = 0, . . . , p. (For some technical details related to the choice of 9 and wi , see Hampel,
1968; Krasker, 1980; Krasker & Welsch, 1982.) Hill (1977) compared the efficiency of the
Mallows and Schweppe estimators to several others and found that they dominate, with the
Schweppe method having an advantage. Solving Eq. (10.8), which includes a choice for the
measure of scale, τ , is based on a simple iterative procedure described in Table 10.1. For
convenience, the estimator will be labeled β̂m .

An even more general framework is to consider wi = u(xi ), where u(xi ) is some function of
xi , chosen to supply some desirable property such as high efficiency. Two choices for u(xi ),
discussed by Markatou and Hettmansperger (1990), are

√
1−hi and (1−hi )/

√
hi . The first

choice, already mentioned, is due to Schweppe and was introduced in Handschin, Schweppe,
Kohlas, and Fiechter (1975). The second choice is due to Welsch (1980).

In the context of testing hypotheses, and assuming ε has a symmetric distribution, Markatou
and Hettmansperger (1990) recommend wi = (1−hi )/

√
hi . However, when ε has an

asymmetric distribution, results in Carroll and Welsh (1988) indicate using wi =
√

1−hi or
Mallows weights. The reason is that otherwise, under general conditions, the estimate of β is
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Table 10.1: Iteratively Reweighted Least Squares for M Regression, β̂m.

To compute an M regression estimator with Schweppe weights, begin by setting k = 0 and computing the
OLS estimate of the intercept and slope parameters, β̂0k, . . . , β̂pk . Proceed as follows:
1. Compute the residuals, ri,k = yi− β̂0k− β̂1k xi1−· · ·− β̂pk xi p, let Mk be equal to the median of the largest

n− p of the |ri,k |, τ̂k = 1.48Mk , and let ei,k = ri,k/τ̂k

2. Form weights,

wi,k =

√
1−hi i

ei,k

9

(
ei,k

√
1−hi i

)
,

where

9(x)=max[−K ,min(K , x)]

is Huber’s 9 with K = 2
√
(p+1)/n.

3. Compute the residuals, ri,k = yi− β̂0k− β̂1k xi1− . . .− β̂pk xi p, let Mk be equal to the median of the largest
n− p of the |ri,k |, τ̂k = 1.48Mk , and let ei,k = ri,k/τ̂k

4. Form weights,

wi,k =

√
1−hi i

ei,k

9

(
ei,k

√
1−hi i

)
,

where

9(x)=max[−K ,min(K , x)]

is Huber’s 9 with K = 2
√
(p+1)/n.

5. Use these weights to obtain a weighted least squares estimates, β̂0,k+1, . . . , β̂p,k+1. Increase k by 1.
6. Repeat steps 1–3 until convergence. That is, iterate until the change in the estimated parameters is

small.

not consistent, meaning that it does not converge to the correct value as the sample size gets
large. In particular, if Eq. (10.8) is written in the more general form

∑
wi9(ri/(u(xi )τ̂ ))xi j = 0,

Carroll and Welsh (1988) show that if u(xi )= 1, which corresponds to using Mallows
weights, the estimate is consistent, but it is not if u(xi ) 6= 1. Thus, this suggests using
wi =

√
1−hi versus wi = (1−hi )/

√
hi because for almost all random sequences, hi → 0 as

n→∞, for any i . In the one-predictor case, it is easy to see that hi → 0 if the xi are bounded.
In fact, as previously indicated, hi → 0 is a necessary condition for the least squares estimator
to be asymptotically normal. (An example where hi does not converge to zero is xi = 2i , as
noted by Staudte & Sheather, 1990.) For completeness, it is pointed out that there are also
Mallows type estimators where weights are given by the leverage points. In particular,
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perform weighted least squares with weights

wi =min

[
1,

(
b

hi

) j/2
]
,

where b = h(mn), h(r) is the r th ordered leverage value, and j and m are specified; see
Hamilton (1992) as well as McKean, Sheather, and Hettmansperger (1993). The choices
j = 1, 2, and 4 are sometimes labeled GMM1, GMM2, and GMM4 estimators. Little or
nothing is known about how these estimators perform under heteroscedasticity, so they are not
discussed further.

To provide at least some indication of the efficiency of β̂m , the M-estimator with Schweppe
weights, suppose n = 20 observations are randomly sampled from the model yi = xi +λ(xi )εi

where both xi and εi have standard normal distributions. First consider λ(xi )= 1, which
corresponds to the usual homoscedastic model, and suppose efficiency is measured with R,
the estimated standard error of the OLS estimator divided by the estimated standard error of
the M-estimator. Then R < 1 indicates that OLS is more efficient, and R > 1 indicates that the
reverse is true. For the situation at hand, a simulation estimate of R, based on 1000
replications, is 0.89, so OLS gives better results. If instead λ(x)= |x |, meaning that the
variance of y increases as x moves away from its mean, zero, R = 1.09. For λ(x)= x2,
R = 1.9, and for λ(x)= 1+2/(|x |+1), R = 910, meaning that the OLS estimator is highly
unsatisfactory. In the latter case, the variance of y, given x , is relatively large when x is close
to its mean.

Suppose instead ε has a symmetric heavy-tailed distribution (a g-and-h distribution with
g = 0 and h = 0.5). Then the estimated efficiency, R, for the four λ functions considered here,
are 3.02, 3.87, 6.0, and 226. Thus, for these four situations, OLS performs poorly, particularly
for the last situation considered.

It should be noted that in some instances, R can be relatively large. Wilcox (1996d) reports
additional values of R, again based on 1000 replications, but using a different set of random
numbers (a different seed in the random number generator) yielding R = 721 versus 226 for
λ(x)= 1+2/(|x |+1), and the distributions considered in the previous paragraph. Even if the
expected value of R is 10, surely OLS is unsatisfactory. In particular, a large value for R
reflects that OLS can yield a wildly inaccurate estimate of the slope when there is a
heteroscedastic error term. For example, among the 1000 replications reported in Wilcox
(1996d), where β1 = 1 and R = 721, there is one case where the OLS estimate of the slope is
−3,140.

If x has a heavy-tailed distribution, this will favor OLS if ε is normal and homoscedastic, but
when ε is heteroscedastic, OLS can be less efficient than β̂m . Suppose for example that x has
a g-and-h distribution with g = 0 and h = 0.5. Then estimates of R, for the four choices for λ
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considered here, are 0.89, 1.45, 5.48, and 36. Evidently, there are situations where OLS is
slightly more efficient than β̂m , but there are situations where β̂m is substantially more
efficient than OLS, so β̂m appears to have considerable practical value.

10.8.1 R Function bmreg

The R function

bmreg(x,y,iter=20,bend=2*sqrt((ncol(x)+1)/nrow(x))).

computes the bounded influence M regression with Huber’s 9 and Schweppe weights using
the iterative estimation procedure described in Table 10.1. The argument x is any n-by-p
matrix of predictors. If there is only one predictor, x can be stored in an R vector as opposed
to an R variable having matrix mode. The argument iter controls the maximum number of
iterations allowed, which defaults to 20 if unspecified. The argument bend is K in Huber’s 9
which defaults to 2

√
(p+1)/n. The estimate of the regression parameters is returned in

bmreg$coef. The function also returns the residuals in bmreg$residuals, and the final weights
(the wi values) are returned in bmreg$w.

n Example

The �le read.dat, which accompanies the R functions written for this book, contains
data from a reading study conducted by L. Doi. (See Section 1.8 for instructions on how
to obtain this data.) One of the goals was to predict WWISST2, a word identi�cation
score (stored in column 8 of the �le read.dat). One of the predictors is TAAST1, a
measure of phonological awareness (stored in column 2). The OLS estimates of the
slope and intercept are 1.72 and 73.56, respectively. The corresponding estimates
returned by bmreg are 1.38 and 80.28.

n

n Example

Although β̂m offers more resistance than OLS, it is important to keep in mind that β̂m

might not be resistant enough. The star data in Figure 6.3 illustrate that problems might
arise. The OLS estimates are β̂1 =−0.41 and β̂0 = 6.79. In contrast, if the data are
stored in the R variables x and y, bmreg(x,y) returns β̂1 =−0.1 and β̂0 = 5.53. As is
evident from Figure 6.3, β̂m does a poor job of capturing the relationship among the
majority of points, although it is less in�uenced by the outliers than is OLS. As noted in
Chapter 6, there are several outliers, and there is the practical problem that more than
one outlier can cause β̂m to be misleading.

n
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10.9 The Coakley–Hettmansperger and Yohai Estimators

The M-estimator β̂m , described in the previous section, has a bounded influence function, but
a criticism is that its finite sample breakdown point is only 2/n. That is, it can handle one
outlier, but two outliers might destroy it. Coakley and Hettmansperger (1993) derived an
M-estimator that has a breakdown point nearly equal to 0.5, a bounded influence function, and
high asymptotic efficiency for the normal model. Their strategy is to start with the LTS
estimator and then adjust it, the adjustment being a function of empirically determined
weights. More formally, letting β̂0 (a vector having length p+1) be the LTS estimator, their
estimator is

β̂ch = β̂0+ (X′BX)−1X′W9(ri/(wi τ̂ ))τ̂ ,

where W= diag(wi ),

B= diag(9 ′(ri/τ̂wi )),

X is the n-by-(p+1) design matrix (described in Section 10.7), and 9 ′(x) is the derivative of
Huber’s 9. They suggest using K = 1.345 in Huber’s 9 if uncertain about which value to
use, so this value is assumed here unless stated otherwise. As an estimate of scale, they use
τ̂ = 1.4826(1+5/(n− p))×med{|ri |}. The weight given to xi, the i th row of predictor
values, is

wi =min{1, [b/(xi−mx)
′C−1(xi−mx)]

a/2
},

where the quantities mx and C are the minimum volume ellipsoid (MVE) estimators of
location and covariance associated with the predictors. (See Section 6.3.1.) These estimators
have a breakdown point approximately equal to 0.5. When computing wi , Coakley and
Hettmansperger suggest setting b equal to the 0.95 quantile of a chi-squared distribution with
p degrees of freedom and using a = 2.

The Coakley–Hettmansperger regression method has high asymptotic efficiency when the
error term, ε, has a normal distribution. That is, as the sample size gets large, the standard
error of the OLS estimator will not be substantially smaller than the standard error of β̂ch. To
provide some indication of how the standard error of β̂ch compares to the standard error of
OLS when n is small, consider p = 1, a = 2, K = 1.345, and suppose both x and ε have
standard normal distributions. When there is homoscedasticity, R, the standard error of OLS
divided by the standard error of β̂ch, is 0.63 based on a simulation with 1000 replications. If x
has a symmetric, heavy-tailed distribution instead (a g-and-h distribution with g = 0 and
h = 0.5), then R = 0.31. In contrast, if β̂m is used, which is computed as described in
Table 10.1, the ratio is 0.89 for both of the situations considered here. Of course, the lower
efficiency of β̂ch must be weighed against the lower breakdown point of β̂m . Moreover, if x
has a light-tailed distribution, and the distribution of ε is heavy-tailed, β̂ch offers an advantage
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over OLS. For example, if x is standard normal, but ε has a g-and-h distribution with g = 0
and h = 0.5, R = 1.71. However, replacing β̂ch with β̂m, R = 3.

It might be thought that the choice for the bending constant in Huber’s 9, K = 1.345, is
partly responsible for the low efficiency of β̂ch. If β̂ch is modified by increasing the bending
constant to K = 2, R = 0.62 when both x and ε are standard normal. If x has the symmetric,
heavy-tailed distribution considered in the previous paragraph, again R = 0.31. It appears that
β̂ch is inefficient because of its reliance on LTS regression, and because it does not take
sufficient advantage of good leverage points.

10.9.1 MM-Estimator

Yet another robust regression estimator that should be mentioned is the MM-estimator derived
by Yohai (1987), which has certain similarities to the generalized M-estimators in
Section 10.8. It has the highest possible breakdown point, 0.5, and high efficiency under
normality. The parameters are estimated by solving an equation similar to Eq. (10.8), with 9
taken to be some redescending function. A popular choice is Tukey’s biweight, given in
Table 2.1, which will be used here unless stated otherwise. That is, the regression parameters
are estimated by determining the solution to p+1 equations

n∑
i=1

9(ri/τ̂ )xi j = 0. (10.9)

j = 0, . . . , p, where again τ̂ is a robust measure of variation based on the residuals and

9(ri ; c)=
ri

τ̂

[( ri

cτ̂

)2
−1

]2

, if |ri/τ̂ | ≤ c;

otherwise 9(ri ; c)= 0. The choice c = 4.685 leads to an MM-estimator with 95% efficiency
compared to the least squares estimator and is the default value used here. The ratio p/n is
relevant to the efficiency of this estimator; see Maronna and Yohai (2010) for details. In
addition to having excellent theoretical properties, the small-sample efficiency of the
MM-estimator appears to compare well with other robust estimators, but like several other
robust estimators it can be sensitive to what is called contamination bias, as described in
Section 10.14.1. Also, situations are encountered where the iterative estimation scheme used
to compute the MM-estimator does not converge. For an extension of this estimator, in the
context of ridge regression, see Maronna (2011).

The R function lmrob, which can be accessed via the R package robustbase, can be used to
compute confidence intervals and test hypotheses when using the MM-estimator. The function
computes estimates of the standard errors and assumes the null distribution of the test
statistics has, approximately, a Student’s t-distribution with n− p−1 degrees of freedom.
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However, even under normality and homoscedasticity, control over the probability of a type I
error is poor when n is small. When testing at the 0.05 level, the actual level exceeds 0.05 by
a substantial amount. With n = 100 it performs reasonably well, still assuming normality and
homoscedasticity. Evidently there are no results regarding how well the method performs
under nonnormality and heteroscedasticity. (For a recent extension of this estimator, see
Koller & Stahel, 2011.) If there is interest in testing hypotheses based on the MM-estimator,
currently the best approach appears to be to use the percentile bootstrap methods in
Sections 11.1.1 and 11.1.3.

For completeness, it is noted that there are additional M regression methods not covered in
this chapter (e.g., Jureckova & Portnoy, 1987).

10.9.2 R Functions chreg and MMreg

The R function

chreg(x,y,bend=1.345).

computes the Coakley–Hettmansperger regression estimator. As will all regression functions,
the argument x can be a vector or an n-by-p matrix of predictor values. The argument bend is
the value of K used in Huber’s 9.

The R function

MMreg(x,y)

computes Yohai’s MM-estimator, assuming that the R package robustbase has been installed.

n Example

If the star data in Figure 6.3 are stored in the R variables starx and stary, the command

chreg(starx,stary)

returns an estimate of the slope equal to 4.0. The R function MMreg estimates the slope
to be 2.25. In contrast, the OLS estimate is −0.41, and the M-regression estimate,
based on the method in Table 10.1, yields β̂m =−0.1.

n

10.10 Skipped Estimators

Skipped regression estimators generally refer to the strategy of checking for outliers using one
of the multivariate outlier detection methods in Chapter 6, discarding any that are found, and
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applying some estimator to the data that remain. A natural issue is whether the ordinary least
squares estimator might be used after outliers are removed, but checks on this approach by the
author found that the small-sample efficiency of this method is rather poor, compared to other
estimators, when the error term is normal and homoscedastic.

Consider the goal of achieving good small-sample efficiency, relative to OLS, when the error
term is both normal and homoscedastic, and x′i is multivariate normal, while simultaneously
providing protection against outliers. Then a relatively effective method is to first check for
outliers among the (p+1)-variate data (x′i , yi ) (i = 1, . . . ,n) using the MGV or projection
method (described in Sections 6.4.7 and 6.4.9), remove any outliers that are found, and then
apply the Theil–Sen estimator to the data that remain. Replacing the Theil–Sen estimator with
one of the M-estimators previously described has been found to be rather unsatisfactory.
(Checks on using the MM-estimator have not been made.) Generally, when using the MGV
outlier detection in conjunction with any regression estimator, this will be called an MGV
estimator. Here, it is assumed that the Theil–Sen estimator is used unless stated otherwise.
When using the projection method for detecting outliers, this will be called an OP estimator,
and again the Theil–Sen estimator is assumed.

10.10.1 R Functions mgvreg and opreg

The R function

mgvreg(x,y,regfun=tsreg,outfun=outbox)

computes a skipped regression estimator where outliers are identified and removed using the
MGV outlier detection method in Section 6.4.7. The argument outfun controls the decision
rule used when checking for outliers. The default is a boxplot rule based on Eq. (6.18). Setting
outfun=out results in using the MAD-median rule corresponding to Eq. (6.20). Once outliers
are eliminated, the regression estimator indicated by the argument regfun is applied and
defaults to the Theil–Sen estimator.

The R function

opreg(x,y,regfun=tsreg,cop=3,MC=F)

is like mgvreg, only the OP outlier detection method in Section 6.4.9 is used. The argument
cop determines the measure of location used when checking for outliers using the projection
method in Section 6.4.9. (See Section 6.4.10 for details about the argument cop.) Unlike
mgvreg, opreg can take advantage of a multi-core processor by setting the argument MC=T.
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10.11 Deepest Regression Line

Rousseeuw and Hubert (1999) derived a method of fitting a line to data that searches for the
deepest line embedded within a scatterplot. First consider simple regression. Let b1 and b0 be
any choice for the slope and intercept, respectively, and let ri (i = 1, . . . ,n) be the
corresponding residuals. The candidate fit, (b0, b1), is called a nonfit if a partition of the x
values can be found such that all of the residuals for the lower x values are negative
(positive), but for all of the higher x values the residuals are positive (negative). So, for
example, if all of the points lie above a particular straight line, in which case all of the
residuals are positive, this line is called a nonfit. More formally, a candidate fit is called a
nonfit if and only if a value for v can be found such that

ri < 0 for all xi < v

and

ri > 0 for all xi > v

or

ri > 0 for all xi < v

and

ri < 0 for all xi > v.

The regression depth of a fit (b1,b0), relative to (x1, y1), . . . , (xn, yn), is the smallest number
of observations that need to be removed to make (b1,b0) a nonfit. The deepest regression
estimator corresponds to the values of b1 and b0 that maximize regression depth. Bai and He
(1999) derived the limiting distribution of this estimator. When the xi are distinct, the
breakdown point is approximately 0.33.

The idea can be extended to multiple predictors. Let ri (b0, . . . ,bp) be the i th residual based
on the candidate fit b0, . . . ,bp. This candidate fit is called a nonfit if there exists a hyperplane
V in x space, such that no xi belongs to V and such that ri (b0, . . . ,bp) > 0 for all xi in one of
the open halfspaces corresponding to V and ri (b0, . . . ,bp) < 0 in the other open halfspace.
Regression depth is defined as in the p = 1 case.

10.11.1 R Function mdepreg

The R function

mdepreg(x,y)

computes the deepest regression line. For p > 1 predictors it uses an approximation of the
depth of a hyperplane.
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10.12 A Criticism of Methods with a High Breakdown Point

It seems that no single method is free from criticism, and regression methods that have a high
breakdown point are no exception. A potential problem with these methods is that standard
diagnostic tools for detecting curvature, by examining the residuals, might fail (Cook,
Hawkins, & Weisberg, 1992; McKean et al., 1993). Thus, it is recommended that if a
regression method with a high breakdown point is used, possible problems with curvature be
examined using some alternative technique. Some possible ways of checking for curvature,
beyond the standard methods covered in an introductory regression course, are described in
Chapter 11.

10.13 Some Additional Estimators

Some additional regression estimators should be outlined. Although some of these estimators
have theoretical properties that do not compete well with some of the estimators already
described, they might have practical value. For instance, some of the estimators listed here
have been suggested as an initial estimate that is refined in some manner or is used as a
preliminary screening device for detecting regression outliers. Graphical checks suggest that
these estimators sometimes provide a more reasonable summary of the data versus other
estimators covered in the previous section. Also, it is not being suggested that by listing an
estimator in this section, it necessarily should be excluded from consideration in applied
work. In some cases, certain comparisons with estimators already covered, such as efficiency
under heteroscedasticity, have not been explored. (For an extension to the so-called general
linear model, see Cantoni & Ronchetti, 2001.)

10.13.1 S-Estimators and τ -Estimators

S-estimators of regression parameters, proposed by Rousseeuw and Yohai (1984), search for
the slope and intercept values that minimize some measure of scale associated with the
residuals. Least squares, for example, minimizes the variance of the residuals and is a special
case of S-estimators. The hope is that by replacing the variance with some measure of scale
that is relatively insensitive to outliers, we will obtain estimates of the slope and intercept that
are relatively insensitive to outliers as well. As noted in Chapter 3, there are many measures
of scale. The main point is that if, for example, we use the percentage bend midvariance
(described in Section 3.12.3), situations arise where the resulting estimate of the slope and
intercept has advantages over other regression estimators we might use. This is not to say that
other measures of scale never provide a more satisfactory estimate of the regression
parameters. But for general use, it currently seems that the percentage bend midvariance is a
good choice. For relevant asymptotic results, see Davies (1990). Hössjer (1992) showed that
S-estimators cannot achieve simultaneously both a high breakdown point and a high
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efficiency under the normal model. Also, Davies (1993) reports results on the inherit
instability of S-estimators. Despite this, it may have practical value as preliminary fit to data;
see Section 10.13.3.

Here a simple approximation of the S-estimator is used. (There are other ways of computing
S-estimators, e.g., Croux et al., 1994; Ferretti, Kelmansky, Yohai, & Zamar, 1999, perhaps
they have practical advantages, but it seems that this possibility has not been explored.) Let

Ri = yi −b1x1i −· · ·bpxi p,

and use the Nelder–Mead method (mentioned in Chapter 6) to find the values b1, . . . ,bp that
minimize S, some measure of scale based on the values R1, . . . , Rn . The intercept is taken
to be

b0 = My−b1 M1 · · ·−bp Mp,

where M j and My are the medians of the xi j (i = 1, . . . ,n) and y values, respectively. This
will be called method SNM. (Again, for details motivating the Nelder–Mead method, see
Olsson & Nelson, 1975.)

A related approach in the one-predictor case, called the STS estimator, is to compute the slope
between points j and j ′, S j j ′ and take the estimate of the slope to be the value of S j j ′ that
minimizes some measure of scale applied to the values Y1− S j j ′X1, . . . ,Yn− S j j ′Xn values.
Here, the back-fitting method is used to handle multiple predictors.

For completeness, τ -estimators proposed by Yohai and Zamar (1988) generalize S-estimators
by using a broader class of scale estimates. Gervini and Yohai (2002, p. 584) note that tuning
these estimators for high efficiency will result in an increase in bias. An extension of
τ -estimators is the class of generalized τ -estimators proposed by Ferretti et al. (1999). Briefly,
residuals are weighted, with high leverage values resulting small weights, and a measure of
scale based on these weighted residuals is used to judge a fit to data. For recent results on
computing τ -estimators, see Flores (2010).

10.13.2 R Functions snmreg and stsreg

The R function

snmreg(x,y)

computes the SNM estimate as just described. The measure of scale, S, is taken to be the
percentage bend midvariance. (When using the Nelder–Mead method, the initial estimate of
the parameters is based on the Coakley–Hettmansperger estimator.) The R function

stsreg(x,y,sc=pbvar)
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computes the STS estimator, where sc is the measure of scale to be used. By default, the
percentage bend midvariance is used.

10.13.3 E-Type Skipped Estimators

Skipped estimators remove any outliers among the cloud of data (xi1, . . . , xi p, yi ), i = 1, . . .n,
and then fit a regression line to the data that remain. E-type skipped estimators (where E
stands for error term) look for outliers among the residuals based on some preliminary fit,
remove (or downweight) the corresponding points, and then compute a new fit to the data.
Rousseeuw and Leroy (1987) suggested using least median of squares (LMS) to obtain an
initial fit, remove any points for which the corresponding standardized residuals are large, and
then apply least squares to the data that remain. But He and Portnoy (1992) showed that the
asymptotic efficiency is 0.

Another E-type skipped estimator is to apply one of the outlier detection methods in
Chapter 3 to the residuals. For example, first fit a line to the data using the the STS estimator
described in Section 10.13.1. Let ri (i = 1, . . . ,n) be the usual residuals. Let Mr be the
median of the residuals and let MADr be the median of the values |r1−Mr |, . . . , |rn−Mr |.
Then the i th point (xi , yi ) is declared a regression outlier if

|ri −Mr |>
2(MADr )

0.6745
. (10.10)

The final estimate of the slope and intercept is obtained by applying the Theil–Sen estimator
to those points not declared regression outliers. When there are p predictors, again compute
the residuals based on STS and use Eq. (10.10) to eliminate any points with large residuals.
This will be called method TSTS.

Another variation, called an adjusted M-estimator, is to proceed as in Table 10.1, but in step
2, set wi,k = 0 if (yi , xi ) is a regression outlier based, for example, on the regression outlier
detection method in Rousseeuw and van Zomeren (1990); see Section 10.15. This estimator
will be labeled β̂ad.

Gervini and Yohai (2002) used an alternative approach for determining whether any residuals
are outliers and they derived some general theoretical results for this class of estimators. In
particular, they describe conditions under which the asymptotic breakdown point is not less
than the initial estimator, and they find that good efficiency is obtained under normality and
homoscedasticity.

The method begins by obtaining an initial fit to the data; Gervini and Yohai focus on LMS and
S-estimators to obtain this initial fit. Then the absolute value of the residuals are checked for
outliers, any such points are eliminated, and the least squares estimator is applied to the
remaining data. But unlike other estimators in this section, an adaptive method for detecting
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outliers, which is based on the empirical distribution of the residuals, is used to detect outliers.
An interesting result is that under general conditions, if the errors are normally distributed, the
estimator has full asymptotic efficiency.

To outline the details, let Ri be the residuals based on an initial estimator, and let

ri =
Ri

S

be the standardized residuals, where S is some measure of scale applied to the Ri values.
Following Gervini and Yohai, S is taken to be MADN (MAD divided by 0.6745). Let
|r |(1) ≤ · · · ≤ |r |(n) be the absolute values of the standardized residuals written in ascending
order and let i0 =max{|r |(i) < η} for some constant η; Gervini and Yohai use η = 2.5. Let

dn =max

{
8(|r |(i))−

i −1

n

}
,

where the maximum is taken over all i > i0, and where 8 is the cumulative standard normal
distribution. In the event dn < 0, set dn = 0, and let in = n− [dn], where [dn] is the greatest
integer less than or equal to dn . The point corresponding to |r |(i) is eliminated (is given zero
weight) if i > in , and the least squares estimator is applied to the data that remain.

For the situations in Table 10.2, the Gervini–Yohai estimator does not compete well in terms
of efficiency when using LMS regression as the initial estimate when checking for regression
outliers. Switching to the LTS estimator as the initial estimator does not improve efficiency
for the situations considered. (Also see Section 10.14.)

10.13.4 R Functions mbmreg, tstsreg, and gyreg

The function

tstsreg(x,y,sc=pbvar,...)

computes the E-type estimator described in Section 10.13.3. The argument sc indicates which
measure of scale will be used when method STS is employed to detect regression outliers, and
the default measure of scale is the percentage bend midvariance. The function

mbmreg(x,y,iter = 20, bend = (2 * sqrt(ncol(x) + 1))/nrow(x)))

computes the so-called adjusted M-estimator. Finally, the function

gyreg(x,y,rinit = lmsreg, K = 2.5)

computes the Gervini–Yohai estimator where the argument rinit indicates which initial
estimator will be used to detect regression outliers. By default, the LMS estimator is used.
The argument K corresponds to η.
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10.13.5 Methods Based on Robust Covariances

A general approach to regression, briefly discussed by Huber (1981), is based on estimating a
robust measure of covariance which in turn can be used to estimate the parameters of the
model. For the one-predictor case, the slope of the OLS regression line is

β1 =
σxy

σ 2
x
,

where σxy is the usual covariance between x and y. This suggests estimating the slope with

β̂1 =
τ̂xy

τ̂ 2
x
,

where τ̂xy estimates τxy , some measure of covariance chosen to have good robustness
properties, and τ̂ 2

x is an estimate of some measure of scale. The intercept can be estimated with

β̂0 = θ̂y− β̂1θ̂x

for some appropriate estimate of location, θ . As noted in Chapter 9, there are many measures
of covariance. Here, the biweight midcovariance is employed, which is described in
Section 9.3.8 of Chapter 9 and is motivated in part by results in Lax (1985) who found that
the biweight midvariance is relatively efficient.

For the more general case where p ≥ 1, let

A= (sbyx1, . . . , sbyx p)
′

be the vector of sample biweight midcovariances between y and the p predictors. The
quantity sbyx j estimates the biweight midcovariance between y and the j th predictor, x j . Let

C= (sbx j xk )

be the p-by-p matrix of estimated biweight midcovariances among the p predictors. By
analogy with OLS, the regression parameters (β1, . . . , βp)

′ are estimated with

(β̂1, . . . , β̂p)
′
= C−1A, (10.11)

and an estimate of the intercept is

β̂0 = µ̂my− β̂1µ̂m1−· · ·− β̂pµ̂mp, (10.12)

where µ̂my is taken to be the one-step M-estimator based on the y values, and µ̂mj is the
one-step M-estimator based on the n values corresponding to the j th predictor.

The estimation procedure just described performs reasonably well when there is a
homoscedastic error term, but it can give poor results when the error term is heteroscedastic.
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For example, Wilcox (1996e) reports a situation where the error term is heteroscedastic,
β1 = 1, yet with n = 100,000, the estimated slope is approximately equal to 0.5. Apparently
the simple estimation procedure described in the previous paragraph is not even consistent
when the error term is heteroscedastic. However, a simple iterative procedure corrects this
problem.

Set k = 0, let β̂k be the p+1 vector of estimated slopes and intercept using Eqs (10.10) and
(10.11), and let rki be the resulting residuals. Let δ̂k be the p+1 vector of estimated slopes
and intercept when using x to predict the residuals. That is, replace yi with rki and compute
the regression slopes and intercepts using Eqs (10.10) and (10.11). Then an updated estimate
of β is

β̂k+1 = β̂k+ δ̂k, (10.13)

and this process can be repeated until convergence. That is, compute a new set of residuals
using the estimates just computed, increase k by 1, and use Eqs (10.10) and (10.11) to get a
new adjustment, δ̂k . The iterations stop when all of the p+1 values in δ̂k are close to zero, say
within .0001. The final estimate of the regression parameters is denoted by β̂mid.

It is noted that for certain measures of scatter, this iteration scheme does not appear to be
necessary. For example, Zu and Yuan (2010) used the multivariate measure of scatter derived
by Maronna (1976), and checks on this approach indicate that when there is
heteroscedasticity, using Eqs (10.10) and (10.11) suffices.

A concern about some robust covariances is that they do not take into account the overall
structure of the data and so might be influenced by properly placed outliers. One could use the
skipped correlations described in Chapter 6 for the situation at hand, but there are no results
regarding the small-sample properties of this approach.

Another approach to estimating regression parameters is to replace the biweight
midcovariance with the Winsorized covariance in the biweight midregression method. This
will be called Winsorized regression. An argument for this approach is that the goal is to
estimate the Winsorized mean of y, given x , and the Winsorized mean satisfies the
Bickel–Lehmann condition described in Chapter 2. In terms of probability coverage, it seems
that there is little or no reason to prefer Winsorized regression over the biweight
midregression procedure.

It should be noted that Srivastava, Pan, Sarkar, and Mudholkar (2010) report results on what
they call Winsorized regression where all variables are Winsorized as described in
Section 9.3.6, after which they apply the usual least squares estimator using the Winsorized
values. They demonstrate via simulations that the resulting estimator can be more efficient
than least squares. Evidently there are no results on how the efficiency of this estimator
compares to other robust estimators in this chapter. And no results were reported regarding
the effects of heteroscedasticity.
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Table 10.2: Estimates of R Using Covariance Methods, n= 20.

x and ε normal x normal, ε heavy-tailed x heavy-tailed, ε normal
VP bmid γ = 0.1 γ = 0.2 bmid γ = 0.1 γ = 0.2 bmid γ = 0.1 γ = 0.2

1 0.94 0.92 0.81 1.10 2.55 2.64 0.61 0.78 0.57
2 1.80 1.69 2.17 2.28 4.49 6.46 24.41 9.08 19.58
3 18.25 13.82 10.26 13.79 9.62 9.64 13.20 2.83 3.57

To provide some indication of how the efficiency of the biweight midregression and
Winsorized regression methods compare to OLS regression, Table 10.2 shows estimates of R,
the standard error of OLS regression divided by the standard error of the competing method.
The columns headed by γ = 0.1 are the values when 10% Winsorization is used, and γ = 0.2
is 20%. These estimates correspond to three types of error terms: λ(x)= 1, λ(x)= x2, and
λ(x)= 1/|x |. For convenience, these three choices are labeled VP1, VP2, and VP3. In
general, the biweight and Winsorized regression methods compare well to OLS, and in some
cases they offer a substantial advantage. Note, however, that when x has a heavy-tailed
distribution, and ε is normal, OLS offers better efficiency when the error term is
homoscedastic. In some cases, β̂mid has better efficiency versus β̂ad, but in other situations the
reverse is true.

10.13.6 R Functions bireg, winreg, and COVreg

The R function

bireg(x,y,iter=20,bend=1.28)

is supplied for performing the biweight midregression method just described. As usual, x can
be a vector when dealing with simple regression (p = 1), or it is an n-by-p matrix for the
more general case where there are p ≥ 1 predictors. The argument iter indicates the maximum
number of iterations allowed. It defaults to 20 which is more than sufficient for most practical
situations. If convergence is not achieved, the function prints a warning message. The
argument bend is the bending constant, K , used in Huber’s 9 when computing the one-step
M-estimator. If unspecified, K = 1.28 is used. The function returns estimates of the
coefficients in bireg$coef, and the residuals are returned in bireg$resid.

The R function

winreg(x,y,iter=20,tr=0.2)

performs Winsorized regression where tr indicates the amount of Winsorizing, which defaults
to 20%. Again, iter is the maximum number of iterations allowed, which defaults to 20.
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The R function

COVreg(x,y,cov.fun=MARest,loc.fun=MARest,xout=F,outfun=out,...)

estimates the slopes and intercept via Eqs (10.11) and (10.12) without iterations and defaults
to using Marrona’s M-estimator in Section 6.3.13.

n Example

For the star data shown in Figure 6.3 of Chapter 6, bireg estimates the slope and
intercept to be 2.66 and −6.7, respectively. The OLS estimates are −0.41 and 6.79. The
function winreg estimates the slope to be 0.31 using 10% Winsorization (tr=0.1), and
this is considerably smaller than the estimate of 2.66 returned by bireg. Also, winreg
reports a warning message that convergence was not obtained in 20 iterations. This
problem seems to be very rare. Increasing iter to 50, convergence is obtained, and again
the slope is estimated to be 0.31, but the estimate of the intercept drops from 3.62 to
3.61. Using the default 20% Winsorization (tr=0.2), the slope is now estimated to be
2.1 and convergence problems are eliminated.

n

10.13.7 L-Estimators

A reasonable approach to regression is to compute some initial estimate of the parameters,
compute the residuals, and then re-estimate the parameters based in part on the trimmed
residuals. This strategy was employed by Welsh (1987a,b) and expanded upon by De Jongh,
De Wet, and Welsh (1988). The small-sample efficiency of this approach does not compare
well with other estimators such as β̂m or M regression with Schweppe weights (Wilcox,
1996d). In terms of achieving high efficiency when there is heteroscedasticity, comparisons
with the better estimators in this chapter have not been made. So, even though the details of
the method are not described here, it is not being suggested that Welsh’s estimator be
abandoned.

10.13.8 L1 and Quantile Regression

Yet another approach is to estimate the regression parameters by minimizing
∑
|ri |, the

so-called L1 norm, which is just the sum of the absolute values of the residuals. This approach
predates OLS by 50 years. This is, of course, a special case of the LTA estimator in
Section 10.5. The potential advantage of L1 (or least absolute value) regression over OLS, in
terms of efficiency, was known by Laplace (1818). The L1 approach reduces the influence of
outliers, but the breakdown point is still 1/n. More precisely, L1 regression protects against
unusual y values, but not leverage points, which can have a large influence on the fit to data.
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Another concern is that a relatively large weight is being given to observations with the
smallest residuals (Mosteller & Tukey, 1977, p. 366). For these reasons, further details are
omitted. (For a review of L1 regression, see Narula, 1987, as well as Dielman & Pfaffenberger,
1982.) Hypothesis testing procedures are described by Birkes and Dodge (1993), but no results
are given on how the method performs when the error term is heteroscedastic.

An interesting generalization of the L1 estimator was proposed by Koenker and Bassett
(1978), which is aimed at estimating the qth quantile of y given x . Let

ρq(u)= u(q− Iu<0),

where I is the indicator function. Then the regression line is determined by minimizing∑
ρq(ri ).

So q = 0.5 corresponds to the least absolute value (or L1) estimator and yields an estimate of
the median of y, given x .

A (rank inversion) method for testing hypotheses about the individual parameters was studied
by Koenker (1994) and can be applied via the R package quantreg. (Also see Koenker &
Xiao, 2002.) The method is limited to testing at the α = 0.05 level. The R function rqfit,
described in the next section, applies the method. When the goal is to test at some other level,
or if an omnibus test is to be performed, see Section 11.1.6.

10.13.9 R Functions qreg and rq�t

The R function

qreg(x,y,qval=0.5)

computes the Koenker–Bassett quantile regression estimator. The argument qval determines
the quantile to be used.

The R function

rqfit(x,y,qval=0.5,alpha=0.05,xout=F,outfun=out,res=T,...)

tests hypotheses about the individual parameters. As usual, setting the argument xout=T
eliminates leverage points. If the argument alpha is not equal to 0.05, an error message is
printed indicating that the R function qregci (described in Section 11.1.6) should be used.

10.13.10 Methods Based on Estimates of the Optimal Weights

It is well known that when using weighted least squares, the optimal (most efficient) method
of estimating regression parameters, when there is heteroscedasticity, is to use weights
wi = 1/σ 2

i , where σ 2
i is the variance of εi . Several estimation procedures have been designed
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to handle heteroscedastic error terms based on this result. One such procedure was proposed
by Cohen et al. (1993). The general strategy is to start with some robust estimator and then
use the residuals to estimate appropriate weights based on an estimate of how the variance of
εi varies with the predictor. Only a single predictor has been considered so far. The method
can have high efficiency compared to OLS, and efficiency is very close to OLS when both x
and ε have standard normal distributions. It remains unclear, in terms of efficiency, whether
the method ever offers a practical advantage over various alternative estimators covered here.
The method might be particularly effective when the predictor values are fixed and evenly
spaced. Also, unlike many robust estimators, the percentile bootstrap method does not provide
reasonably accurate confidence intervals for the parameters when n is small (Wilcox, 1996d).
Because the practical value of the method needs more research, the lengthy computational
details are not given here.

Wilcox (1996d) suggests a method of estimating σ 2
i using a running interval smoother.

(Smoothers are described in Chapter 11.) The efficiency of the resulting estimator compares
well to OLS, and in various situations it offers a substantial advantage. At the moment, there
seems to be little practical advantage to using this approach over other robust estimators that
have good efficiency under heteroscedasticity.

Robinson (1987) suggests yet another estimator that uses a smoother to estimate σ 2
i . All

indications are that it offers little advantage over OLS (Wilcox, 1996d), so no details are
given. For a method based on the assumption that σi is given by some known function
depending of x , β1 and perhaps some additional unknown parameters, see Carroll and
Ruppert (1982). For results on how the method performs when the function is incorrectly
specified, see Mak (1992).

10.13.11 Projection Estimators

Maronna and Yohai (1993) derived yet another regression estimator called projection
regression. Let T (x,y) be any estimating functional through the origin that is scale and affine
equivariant. Let s(λ′x) be a measure of scale based on the projection λ′x. For any vectors β
and λ having length p, let

A(β, λ)= |T (λ′x, y−βλ′)|s(λ′x).

C(β)= sup A(β, λ),

where the supremum is taken over all λ satisfying ‖λ‖ = 1. The projection estimate is the
vector β that minimizes C(β). Several variations of this estimator are considered by Maronna
and Yohai. The variation given by their Eq. (3.11) was considered here but found to have
relatively unsatisfactory efficiency under heteroscedasticity. Other variations have not been
considered.
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10.13.12 Methods Based on Ranks

Naranjo and Hettmansperger (1994) suggest estimating regression coefficients by minimizing∑
i< j

ci j |ri − r j |,

where the ci j are (Mallows) weights given by ci j = h(xi )h(x j ),

h(xi )=min{1, [c/(xi−mx)
′C−1(xi−mx)]

a/2
}.

Letting di = (xi−mx)
′C−1(xi−mx), they suggest using c =med{di }+3MAD{di }, where

MAD{di } means that MAD is computed using the di values, and med is the median. They
report that a = 2 is effective in uncovering outliers. The quantities mx and C are the minimum
volume ellipsoid estimators of location and scale described in Chapter 6. When ci j ≡ 1, their
method reduces to Jaeckel’s (1972) method, which minimizes a sum that is a function of the
ranks of the residuals. For the one-predictor case they replace the minimum volume ellipsoid
estimators mx and C with Mx =med{xi } and C = (1.483MAD{xi })

2, where MAD{xi } is the
median of |x1−Mx |, . . . |xn−Mx |, and Mx is the median of the xi values. The resulting
breakdown point appears to be at least 0.15. Evidently, this method can be used to get good
control over the probability of a type I error when testing hypotheses about the regression
parameters, even when the error term is heteroscedastic, but its power can be poor (Wilcox,
1995e). For rank-based diagnostic tools, see McKean, Sheather, and Hettmansperger (1990).
For other results and methods based on ranks, see Cliff (1994), Dixon and McKean (1996),
Hettmansperger (1984), Hettmansperger and McKean (1977), and Tableman (1990). (For
results on a multivariate linear model, see Davis & McKean, 1993.)

The method derived by Hettmansperger and McKean (1977) does not protect against leverage
points, but their method can be of interest when trying to detect curvature (McKean et al.,
1990, 1993). Consequently, a brief discussion of their method seems warranted. Let
R(yi −x′iβ) be the rank associated with the ith residual. They determine β by minimizing
Jaeckel’s (1972) dispersion function given by

D(β)=
∑

a(R(yi −x′iβ))R(yi −x′iβ),

where

a(i)= φ(i/(n+1))

for a nondecreasing function φ defined on (0,1) such that
∫
φ(u)du = 0 and

∫
φ2(u)du = 1.

Two common choices for φ are φ(u)=
√

12(u−0.5) and φ(u)= sign(u−0.5). The slope
parameters can be estimated by minimizing D(β), but the intercept cannot. One approach to
estimating the intercept, which can be used when the error term has a skewed distribution, is
to use the median of the residuals after the slope parameters have been estimated.
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Another approach is to estimate β to be the vector of values that minimizes

1

n

∑
a(R(yi −x′iβ))|ri |

(Hössjer, 1994). Hössjer shows that this estimator can be chosen with a breakdown point of
0.5, and he establishes asymptotic normality. However, Hössjer notes that poor efficiency can
result with a breakdown point of 0.5 and suggests designing the method so that its breakdown
point is between 0.2 and 0.3, but under normality, the asymptotic relative efficiency is only
0.56. Despite this, the method might have a practical advantage when the error term is
heteroscedastic, but this has not been determined. Yet another rank-based method was derived
by Chang, McKean, Naranjo, and Sheather (1999). It can have a breakdown point of 0.5, but
direct comparisons with some of the better estimators in this chapter have not been made. (For
some results on R estimators, see McKean & Sheather, 1991).

10.14 Comments About Various Estimators

A few additional comments about the various regression estimators in this chapter might help.
We have seen illustrations that certain estimators can have high efficiency versus OLS when
the error term is heteroscedastic. Here, some additional results relevant to this issue are
summarized. Let R be the standard error of the OLS estimator divided by the standard error of
some competing estimator. So if R is less than one, least squares tends to be more accurate,
while R > 1 indicates the opposite. Suppose observations are generated according to the
model y = x+λ(x)ε, where the function λ(x) reflects heteroscedasticity. Setting λ(x)= 1
corresponds to the homoscedastic case. Table 10.3 shows estimates of R (based on
simulations with 5000 replications) for the estimators TS, MGV (described in Section 10.10),
the deepest regression line estimator (T ∗), TSTS (in Section 10.13.3) and the MM-estimator,
where VP1 corresponds to λ(X)= 1, VP2 is where λ(x)= x2, and VP3 is λ(x)= 1/|x |. So
for VP2, the error term has more variance corresponding to extreme x values and VP3 is a
situation where the opposite is true. The results are limited to situations where the distribution
for x is symmetric, but very similar results are obtained when x has an asymmetric
distribution instead. In Table 10.3, the distributions for ε are taken to be normal (N),
a g-and-h distribution with (g, h)= (0, 0.5), which is symmetric and heavy-tailed (SH), a
g-and-h distribution with (g, h)= (0.5, 0), which is asymmetric and relatively light-tailed
(AL), and a g-and-h distribution with (g, h)= (0.5, 0.5), which is asymmetric and relatively
heavy-tailed (AH). Note that all five estimators in Table 10.3 generally compete well with the
OLS estimator, the main exception being a situation in which x has a symmetric, heavy-tailed
distribution and ε has a normal distribution. The MMreg estimator is a popular choice among
some statisticians and it performs relatively well for the situations considered in Table 10.3.
But some caution is needed when using this estimator for reasons described in
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Table 10.3: Estimated Ratios of Standard Errors, x Distribution
Symmetric, n= 20.

x ε VP TS MGV T ∗ TSTS MMreg

N N 1 0.91 0.91 0.76 0.88 0.98
2 2.64 2.62 3.11 2.36 1.95
3 96.53 77.70 67.72 100.86 116.27

N SH 1 4.28 4.27 4.42 3.51 1.13
2 10.67 10.94 11.03 8.66 1.97
3 70.96 65.20 57.84 82.019 83.61

N AL 1 1.13 1.13 0.92 1.05 0.95
2 3.21 3.21 3.69 2.84 1.96
3 96.52 77.69 67.72 100.86 116.26

N AH 1 8.89 8.85 16.41 7.05 1.18
2 26.66 27.07 25.81 20.89 1.94
3 70.96 65.20 57.84 82.01 83.61

SH N 1 0.81 0.80 0.61 0.76 0.95
2 40.57 42.30 55.47 27.91 7.28
3 106.50 49.79 58.82 106.28 151.61

SH SH 1 3.09 2.78 2.88 2.41 1.12
2 78.43 83.56 90.84 47.64 5.94
3 106.50 49.79 58.82 106.28 151.61

SH AL 1 0.99 0.87 0.73 0.90 1.20
2 46.77 49.18 63.60 31.46 2.54
3 106.50 49.79 58.82 106.28 151.61

SH AH 1 6.34 5.64 6.75 4.62 1.19
2 138.53 146.76 108.86 78.35 2.47
3 81.95 42.27 53.54 92.65 107.26

N=normal; SH=symmetric, heavy-tailed
AL=asymmetric, light-tailed, AH=asymmetric, heavy-tailed.

Section 10.14.1. The OP estimator, described in Section 10.10, is not included in Table 10.3,
but it is noted that it performs in a manner very similar to the MGV estimator.

It is not being suggested that if there is heteroscedasticity, it necessarily follows that the
robust regression estimators considered here will have a substantially smaller standard error
than the least squares estimator. In some situations these robust estimators offer little or no
advantage in terms of efficiency. Also, there is a connection between the types of
heteroscedasticity considered here and regression outliers. Variance pattern VP3, for example,
has a tendency to generate regression outliers, which can have a relatively large effect on the
standard error of the least squares estimator.

10.14.1 Contamination Bias

Clearly, one goal underlying robust regression is to avoid situations where a small number of
points can completely dominate an estimator. In particular, a goal is to avoid getting a poor fit
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to the bulk of the points. An approach toward achieving this goal is to require that an
estimator have a reasonably high finite sample breakdown point. But there are some
regression estimators that, despite having a breakdown point reasonably close to 0.5, can be
greatly influenced by a few outliers.

n Example

Twenty points were generated where both x and ε have a standard normal distribution,
and y = x+ ε was computed, so the true slope is one. Then two aberrant points were
added to the data at (x, y)= (2.1, −2.4). Figure 10.2 shows a scatterplot of the points
plus the LTS regression line which has an estimated slope of −0.94. So in this case, LTS
is a complete disaster in terms of detecting how the majority of the points were
generated. The least squares estimate is −0.63. The Coakley–Hettmansperger estimator
relies on LTS as an initial estimate of the slope, and despite its high breakdown point,
the estimate of the slope is −0.65. The MM-estimator, described in Section 10.9.1,
estimates the slope to be −0.12. In contrast, the MGV estimate of the slope is 0.97 and
the OP estimate is 0.89. The deepest regression line estimate is 0.66, and the STS
estimator (described in Section 10.13.1) performs poorly in this particular case, the
estimate being −0.98. The LMS estimate of the slope is 1.7, so it performs poorly as well
in this instance. The TSTS estimator, which is an E-type estimator described in
Section 10.13.3, yields an estimate of −0.05, and the Gervini–Yohai estimator, described
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Figure 10.2: Scatterplot of 20 points, where y = x+ ε, with x and ε having independent,
standard normal distributions, plus two outliers at (2.1, −2.4). The straight line is the LTS
regression line, which poorly estimates the slope used to generate the majority of the points.
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in the same section, estimates the slope to be 1.49. The main point is that the choice of
robust estimator is not an academic issue, but this one example is not intended as an
argument that the estimators that perform poorly in this particular case should be
excluded from consideration. Rather, the point is that despite the robust properties they
enjoy, they can perform poorly in some situations where other methods do well. Also,
although both the OP and MGV estimators do very well here, this is not to suggest that
they be used to the exclusion of all other methods.

n

To add perspective, the process used to generate the data in Figure 10.2 was repeated 500
times, and estimates of the slope were computed using least squares, the M-estimator with
Schweppe weights (using the R function bmreg), the Coakley–Hettmansperger estimator
(chreg), the Theil–Sen estimator (tsreg), and the deepest regression line (depreg). Boxplots of
the results are shown in Figure 10.3. Notice that the median of all these estimators differs
from one, the value being estimated. This illustrates that these estimators can be sensitive to a
type of contamination bias. That is, despite having a reasonably high finite sample breakdown
point, it is possible for a few unusual points to result in a poor fit to the bulk of the
observations. So these estimators, plus many other robust estimators, can provide substantial
advantages versus least squares, but they do not eliminate all practical concerns.

Figure 10.4 shows the results when using the LTS, LTA, MGV, and OP estimators (with
default settings). The LTA estimator gives results similar to LTS, and the OP estimator gives

−1.0
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1.5

2.0

Figure 10.3: Boxplots of 500 estimates of the slope when data are generated as in Figure 10.2.
From left to right, the boxplots are based on the ordinary least squares estimator, an
M-estimator with Schweppe weights, the Coakley–Hettmansperger estimator, Theil–Sen, and the
deepest regression line. All �ve estimators suffer from contamination bias.
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Figure 10.4: Boxplots of 500 estimates of the slope. From left to right, the boxplots are based
on the LTS estimator, the LTA estimator, the OP estimator, and the MGV estimator. In contrast
to the estimators used in Figure 10.3, all four estimators avoid the contamination bias problem;
each is an approximately median unbiased estimator of the slope.

results similar to MGV. In contrast to the estimators in Figure 10.3, the median of all the
estimators is approximately 1. So in this particular situation, these estimators do a better job
of avoiding contamination bias. Note that there is considerably more variation among the LTS
estimates based on a breakdown point of 0.5.

There is some evidence that generally the STS estimator gives a better fit to the majority of
points versus LTS and LMS. In particular, it seems common to encounter situations where
STS is less affected by a few aberrant points. However, exceptions occur, as is illustrated
next, so again it seems that multiple methods should be considered.

n Example

Figure 10.5 shows 20 points that were generated in the same manner as in Figure 10.2.
So the two aberrant points located at (x, y)= (2.1, −2.4) are positioned relatively far
from the true regression line which again has a slope of one and an intercept of zero.
Also shown in Figure 10.5 are the STS, LMS, and MGV estimates of the regression line.
In this particular case, STS performs poorly; the estimated slope is −0.23. The LMS
estimate of the slope is 1.3 and the estimated slope and intercept based on the MGV
estimator are 0.96 and −0.03, respectively, which are closer to the true values versus the
other estimates considered here. The OP estimates are 1.26 and −0.34. The estimated
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Figure 10.5: Scatterplot of 20 points where y = x+ ε, with x and ε having independent,
standard normal distributions, plus two outliers at (2.1, −2.4). This illustrates that only two
outliers can have a substantial impact on the STS estimator. The LMS estimate of the slope is
1.3 and MGV estimate is 0.96.

slope based on the TSTS estimator is 0.58 and least squares returns an estimate of 0.4.
So once again we see that the choice of which robust estimator to use can make a
substantial difference in how the association between x and y is summarized.

n

It is stressed, however, that while several estimators compete well with least squares, it seems
to be easy to find fault with any estimator that has been proposed. For example, both the
MGV and OP estimators have several practical advantages over many other estimators that
might be used. But using software written exclusively in R, the execution time required for
both of these estimators can be relatively high when using a bootstrap method to test
hypotheses. But access to a multi-core processor can substantially reduce execution time.

It should be noted that in the theoretical literature, the term contamination bias is used in a
different manner. To begin with a simple case, first focus on location estimators. Let T be any
functional as described in Chapter 2 and let T (F)= θ . The contamination bias associated
with T is

sup|T ((1− ε)F+ εG)− θ |,
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where 0≤ ε ≤ 1, and the supremum is taken overall all distributions G. Huber (1964)
established results on the contamination bias of the median and various extension have
appeared in the literature (e.g., He & Simpson, 1993).

The idea can be extended to regression estimators. Following, for example, Maronna and
Yohai (1993), let V be any affine equivariant scatter matrix associated with F , let
H = (1−ε)F+εG, and let T (F)= β be the vector of regression parameters. The bias at G is

[(T (H)−β)′V−1(T (H)−β)]1/2.

Maronna and Yohai (1993) derive results related to the maximum bias of the projection
estimator. Variations on this approach are described, for example, by He and Simpson (1993).

10.15 Outlier Detection Based on a Robust Fit

It should be mentioned that several outlier detection methods have been proposed that are
based in part on first fitting a robust regression model assuming that Eq. (10.1) is true.
Typically these methods assume a homoscedastic error term. Given the issue of contamination
bias, it would seem that they should be used with caution. And the issue of how to deal with a
heteroscedastic error term seems to warrant consideration. Billor and Kiral (2008) compare
several techniques. No single method dominates and the most effective method depends to
some extent on where the outliers occur.

10.15.1 Detecting Regression Outliers

Rousseeuw and van Zomeren (1990) suggest using the LMS estimator to detect what are
called regression outliers. Roughly, these are points that deviate substantially from the linear
pattern for the bulk of the points under study. Their method begins by computing the residuals
associated with LMS regression, r1, . . . , rn . Next, let Mr be the median of r2

1 , . . . , r
2
n , the

squared residuals, and let

τ̂ = 1.4826

(
1+

5

n− p−1

)√
Mr .

The point (yi , xi1, . . . , xi p) is labeled a regression outlier if the corresponding standardized
residual is large. In particular, Rousseeuw and van Zomeren label the i th vector of
observations a regression outlier if |ri |/τ̂ > 2.5.

www.elsevierdirect.com



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

WILCOX 13-ch10-471-532-9780123869838 2011/12/6 18:23 Page 521 #51

Chapter 10 Robust Regression 521

10.15.2 R Function reglev

The R function

reglev(x,y,plotit=T).

is provided for detecting regression outliers and leverage points using the method described in
the previous section. If the i th vector of observations is a regression outlier, the function
stores the value of i in the R variable reglev$regout. If xi is an outlier based on the method in
Section 6.4.3, it is declared a leverage point and the function stores the value of i in
reglev$levpoints. The plot created by this function can be suppressed by setting plotit=F.

n Example

If the reading data in the �rst example of Section 10.8.1 are stored in the R variables x
and y, the command reglev(x,y) returns

$levpoints:
[1] 8

$regout:
[1] 12 44 46 48 59 80

This says that x8 is �agged as a leverage point (it is an outlier among the x values), and
the points (y12, x12), (y44, x44), (y46, x46), (y48, x48), (y59, x59), and (y80, x80) are
regression outliers. Note that even though x8 is an outlier, the point (y8, x8) is not a
regression outlier. For this reason, x8 is called a good leverage point. (Recall that extreme
x values can lower the standard error of an estimator.) If (y8, x8) had been a regression
outlier, x8 would be called a bad leverage point. Regression outliers, for which x is not a
leverage point, are called vertical outliers. In the illustration all of the regression outliers
are vertical outliers as well.

n

n Example

The reading data used in the last example is considered again, only the predictor is now
taken to be the data in column 3 of the �le read.dat, which is another measure of
phonological awareness called sound blending. The plot created by reglev is shown in
Figure 10.6. Points below the horizontal line that intersects the y-axis at −2.24 are
declared regression outliers, as are points above the horizontal line that intersects the
y-axis at 2.24. There are three points that lie to the right of the vertical line that

intersects the x-axis at
√
χ2
.975,p = 2.24; theses points are �agged as leverage points.
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Figure 10.6: The plot created by the function reglev based on the reading data. Points to the
right of the vertical line located at 2.24 on the x-axis are declared leverage points. Points
outside the two horizontal lines are declared regression outliers.

These three points are not �agged as regression outliers, so they are deemed to be good
leverage points.

n

10.16 Logistic Regression and the General Linear Model

A common situation is where the outcome variable y is binary. In the context of regression, a
general approach is to assume that

P(y = 1|X= x)= F(x′β), (10.14)

where F is some strictly increasing cumulative distribution function and β is a vector of
unknown parameters. The best-known choice for F is

F(t)=
exp(t)

1+ exp(t)
,

which yields what is generally known as the logistic regression model. That is, assume that

P(y = 1|X= x)=
exp(β0+β1x1+· · ·+βpx p)

1+ exp(β0+β1x1+· · ·+βpx p)
. (10.15)
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The maximum likelihood estimator of β = (β0, . . . , βp) is the vector b= (b0, . . . ,bp) that
minimizes ∑

D(yi ,x′i b),

where

D(yi ,x′i b)=−yi ln(F(x′i b))− (1− yi ) ln(1− F(x′i b)).

This maximum likelihood estimator is routinely used, but it is not robust. Roughly, leverage
points can have an inordinate influence on the estimates. Croux, Flandre, and Haesbroeck
(2002) discuss its breakdown point. Here the focus is on a variation of a robust estimator
derived by Bianco and Yohai (1996), which is motivated by results in Croux and Haesbroeck
(2000). Also see Bianco and Martı́nez (2009). The robust estimate is the value of b that
minimizes ∑

wiφ(yi ,xi b), (10.16)

where

φ(y, t)= yρ(− ln(F(t)))+ (1− y)ρ(− ln(1− F(t)))+G(F(t))+G(1− F(t))−G(1),

G(t)=

t∫
0

ψ(− ln u)du,

ψ(t)= ρ ′(t), and

ρ(t)=

{
te−
√

c, if t ≤ c
−2e−

√
c(1+

√
t)+ e−

√
c(2(1+

√
c)+ c), if t > c,

and c is a constant. Following the suggestion by Croux and Haesbroeck, c = 0.5 is used here.
(Croux and Haesbroeck also provide an analytic form for G(t).) For additional results related
to robust estimators for the logistic regression model, some of which are derived in the more
general framework of the general linear model outlined in Section 10.16.2, see Bondell (2005,
2008), Carroll and Pedersen (1993), Christmann (1994), Künsch, Stefanski, and Carroll
(1989), Morgenthaler (1992), Pregibon (1987), Rousseeuw and Christmann (2003), and
Stefanski, Carroll, and Ruppert (1986). When computing confidence intervals for the
parameters in this model, the percentile bootstrap method in Section 11.1.3 is recommended.
The R function wlogregci in Section 11.1.4 performs the calculations.

10.16.1 R Functions glm, logreg, wlogreg, and logreg.plot

The built-in R function glm can be used to compute the maximum likelihood estimate of the
parameters in the logistic regression model. And the R function summary tests hypotheses. If,
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for example, the data are stored in the R variables x and y, use the commands

fit=glm(formula=y˜x,family=binomial)
summary(fit)

For convenience, the R function

logreg(x, y, xout = F, outfun = outpro, plotit = F)

is provided, which performs both of the R commands glm and summary. The function also
removes any leverage points if the argument xout=T; it will use the outlier detection method
indicated by the argument outfun. By default, the projection method in Section 6.4.9 is used.
For a single predictor, if the argument plotit = T, the regression line will be plotted.

The Bianco–Yohai estimator is applied with the R function

wlogreg(x, y)

The function wlogreg returns estimates of the standard errors, but using them to compute
confidence intervals and test hypotheses is not recommended. (Use the R function wlogregci,
which is described in Chapter 11.) Finally, the R function

logreg.plot(x, y, MLE = F, ROB = T, xlab = “X”, ylab = “P(X)”)

plots the robust estimate of the regression line, assuming p = 1 predictor. To plot the usual
(maximum likelihood) estimate simultaneously, set the argument MLE=T. If ROB=F, the
robust regression line is not plotted.

Note that there are two ways of dealing with leverage points. Use the R function logreg with
xout=T, or use the Bianco–Yohai estimator via the R function wlogreg. In terms of achieving
a relatively small standard error, all indications are that the Bianco–Yohai estimator is
preferable to using the R function logreg with xout=T. However, each method reacts
differently to outliers and it is not completely clear which is preferable for general use in
terms of achieving relatively high power and short confidence intervals.

10.16.2 The General Linear Model

Briefly, the general linear model model consists of three components. The first is the
assumption that an outcome variable y has a distribution that belongs to the exponential
family. This family of distributions includes the normal, binomial, Poisson, and gamma
distributions as special cases. (In practice, one specifies which of these distributions will be
assumed.) It is further assumed that the independent random variables y1, . . . , yn have the
same distribution. In the context of regression, typically homoscedasticity is assumed. (But
some generalized linear models are designed to allow heteroscedasticity.) The second
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component is a set of p predictors x and associated parameters β. And the third component is
a monotone link function g that satisfies

g(µ)= xβ.

If the link function is taken to be the identity function, we get the usual linear model given by
Eq. (10.1). A class of M-estimators for the generalized linear model has been derived, a
summary of which can be found in Heritier et al. (2009, Section 5.3). For results on testing
hypotheses, see Cantoni and Ronchetti (2001). Here it is noted that the generalized linear
model provides yet another approach to logistic regression, and it has the advantage of being
able to handle discrete data assuming that y has a Poisson distribution.

10.16.3 R Function glmrob

Robust estimation and hypothesis testing can be performed via the generalized linear model
just described using the R function

glmrob(formula, family, data),

which belongs to the R package robustbase. (Hypothesis testing is accomplished with the R
function summary.) Mallows or Huber type robust estimators, as described in Cantoni and
Ronchetti (2001), are used. In principle, this class of M-estimators can handle continuous
outcomes, but currently the R function glmrob only allows discrete outcomes where y has a
binomial or Poisson distribution. That is, the argument family can be equal to “binomial” or
“poisson”. (When dealing with continuous outcomes, methods for testing hypotheses that
perform well when there is heteroscedasticity are described in Chapter 11.)

10.17 Multivariate Regression

Consider a regression problem where there are p predictors x′ = (x1, . . . , x p) and q responses
y= (y1, . . . , yq). The usual multivariate regression model is

y= B′x+a+ ε, (10.17)

where B is a (p×q) slope matrix, a is a q-dimensional intercept vector, and the errors
ε = (ε1, . . . , εq) are independent and identically distributed with mean 0 and covariance
matrix 6ε , a positive definite matrix of size q . Let µ be some measure of location associated
with the joint distribution of (x,y) and let 6 be some measure of scatter. Partitioning (x,y)
and 6 in an obvious way yields

µ=

(
µx

µy

)
and 6 =

(
6xx 6xy

6yx 6yy

)
.
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In practice, Eq. (10.17) is typically assumed and the most common choice for µ is the
population mean, which is estimated with the usual sample mean, say µ̂, and the estimate of
6 is typically taken to be the usual covariance matrix, say 6̂. The resulting estimates of B and
a are

B̂= 6̂−1
xx 6̂xy (10.18)

and
â= µ̂y− B̂′µ̂x , (10.19)

respectively. The estimate of the covariance matrix associated with the error term, ε, is

6̂ε = 6̂yy− B̂′6̂xx B̂ (10.20)

It is well known, however, that this classic estimator is extremely sensitive to outliers.
Another concern is that when q = 1, it is known that the efficiency of the least squares
estimator can be poor relative to other estimators that might be used.

Another point worth mentioning is that the estimator just described does not take into account
the overall structure of the y values. Indeed, it is tantamount to simply computing the least
squares regression line for each of the q response variables y1, . . . , yq (e.g., Jhun & Choi,
2009).

10.17.1 The RADA Estimator

Let z= (x,y) represent the joint (x,y) variables and let zi (i = 1, . . . ,n) be a random sample
of size n. Rousseeuw, Van Aelst, Van Driessen, & Agulló (2004) proposed three robust
alternatives to Eqs (10.18) and (10.19), and they recommended one for general use based on
simulation estimates of its efficiency. They begin by computing the MCD estimate based on zi

(i = 1, . . . ,n). Recall that the MCD estimator searches for a subset {zi1, . . . , zih } of size h
whose covariance matrix has the smallest determinant, where

⌈
n/2

⌉
≤ h ≤ n. Let

γ = (n−h)/n, so 0≤ γ ≤ 0.5. The estimated center is

θ̂ =

h∑
j=1

zi j /h,

and the estimated scatter is

4̂= cncγ
1

h

h∑
j=1

(zi j − θ̂ )(zi j − θ̂ )
′,

where cn is a small-sample correction factor and cγ is a consistency factor (Pison et al., 2002).
For the problem at hand, Rousseeuw et al. found that h ≈ 3n/4 provides relatively good
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efficiency and this choice is used here unless stated otherwise. Once the MCD estimates of
location and scatter, based on z, are available, their values are used in Eqs (10.18) and (10.19)
to get estimates of the slopes and intercept. But efficiency can be relatively low.

Rousseeuw et al. consider two strategies for improving efficiency. Briefly, their first strategy
uses weighted measures of location and scatter, with the weights computed as follows. Let
d(z)= [(zi − θ̂ )

′4̂−1(zi − θ̂ )]1/2 and wi = I (d2(z)≤ q), where q is the 0.975 quantile of a
chi-squared distribution with p+q degrees of freedom. Then the weighted measure of
location and scatter (omitting a consistency factor) are

θ̂1 =

∑
wi zi∑
wi

, (10.21)

and

4̂1 =

∑
wi (zi − θ̂1)(zi − θ̂1)

′∑
wi

, (10.22)

respectively. Their second and recommended method uses updated weights based on the
residuals associated with Eqs (10.21) and (10.22). Let ri be the residuals. Then the weights
are taken to be wi = (r′i 6̂εri )

1/2. One appealing feature of this reweighting scheme is that
good leverage points (outliers among the x values for which the corresponding residual is not
an outlier) are not downweighted. This will be called the RADA estimator henceforth.

Wilcox (2009b) compared the RADA estimator to several other estimators, which included
situations where the error term is heteroscedastic. The RADA estimator did not dominate, but
it performed reasonably well, particularly when there is dependence among the y values.

10.17.2 The Least Distance Estimator

Bai, Chen, Miao, and Rao (1990) proposed another estimator that takes into account the
dependence among the outcome variables, y. Called the least distance estimator, the
regression parameters are estimated with the matrix B that minimizes

n∑
i=1

‖yi −B′xi‖, (10.23)

where now the design matrix x is assumed to have a column of 1’s when the model includes
an intercept term. The least distance estimator generalizes the spatial median estimator of
multivariate location. Jhun and Choi (2009) confirm that the efficiency of the least distance
estimator compares well to the least absolute estimator, meaning that the univariate least
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absolute regression estimator is applied for each of the q outcome variables. In particular, the
efficiency of the least distance estimator, relative to the least absolute regression estimator,
improves under normality as the correlation among the outcome variables, y, increases.

There is some indication that the least distance estimator competes well with the RADA
estimator, in terms of mean squared error, when the error term is homoscedastic. When the
error term is heteroscedastic, the reverse might be true. A negative feature of the least
distance estimator is that it can be a bit biased with n = 40, while bias is negligible when
using RADA. It is stressed, however, that a systematic comparison of these two estimators has
not been made.

10.17.3 R Functions mlrreg and Mreglde

The R function

mlrreg(x,y,cov.fun=cov.mcd)

computes the RADA multivariate regression estimator. By default, it uses the MCD estimator,
but some other covariance matrix can be used via the argument cov.fun. The function assumes
the argument y is a matrix with two or more columns. The R function

Mreglde(x,y,xout=F,eout=F,outfun=outpro)

computes the least distance estimator. If the argument eout=T, the function combines the
columns of data in the arguments x and y into a single matrix and then removes all outliers
detected by the method indicated by the argument outfun. If xout=T, the function removes
any row of data from both x and y for which the row in x is declared an outlier. By default the
projection-type outlier detection method is used.

n Example

A practical issue is whether situations are encountered where the choice of a robust
multivariate regression estimator can result in estimates that appear to differ
substantially. This can indeed occur as illustrated here using the reading data mentioned
in Section 10.8.1. Consider the �rst two predictors (stored in columns 2 and 3) and the
�rst two outcome variables of interest stored in columns 8 and 9. The estimates
returned by the R function mlrreg (the RADA estimator) are

Y1 Y2
Intercept 66.000739 68.2289879
V2 1.027754 0.6587633
V3 2.587086 2.1111645
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The estimates returned by Mreglde (the least distance estimator) are

Y Y
INTER 95.444444 89.987654
SLOPE 7.344828 3.444856
SLOPE 7.045528 6.303742

n

10.17.4 Multivariate Least Trimmed Squares Estimator

Agulló, Croux, and Van Aelst (2008) suggest another approach to multivariate regression
based on what they call the least trimmed squares estimators. For the usual least squares
estimate of B, say B̂LS, let

6̂LS =
1

n− p
(Y−XB̂LS)

′(Y−XB̂LS).

Consider any subset of the zi vectors (defined as in Section 10.17.1) having cardinality h. For
this subset of the data, and some choice for B, let ri = yi−B′xi be the matrix of residuals and

cov(B)=
1

h

∑
(ri − r̄)(ri − r̄)′,

where r̄=
∑

ri/h. Their strategy is to first search for the subset of the data that minimizes
|6̂LS|. Their multivariate least trimmed squares (MLTS) estimator, B̂MLTS is the least squares
estimate based on this subset of the data. They establish that this is tantamount to choosing B
so as to minimize the determinant of the MCD scatter matrix estimate based on the residuals
from B.

A criticism is that the efficiency of this estimator can be relatively low. Agulló et al. deal with
this issue by using a one-step reweighted estimator. Let

6̂MLTS =
1

n− p
(Y−XB̂MLTS)

′(Y−XB̂MLTS).

Let J = [ j : d2
j (B̂MLTS, 6̂MLTS)≤ qδ], where

d2
j (B,6)= r′i6

−1ri .
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Agulló et al. take δ = 0.01 and cδ equal to the 1− δ quantile of a chi-squared distribution with
q degrees of freedom. The reweighted estimate is taken to be B̂RMLTS, the least squares
estimate based on the vectors of observations corresponding to the set J .

10.17.5 R Function MULTtsreg

The R function

MULtsreg(x, y, tr = 0.2, RMLTS = T)

computes the multivariate least trimmed squares estimator. The argument RMLTS=T means
the reweighted estimator is returned; otherwise the MLTS estimator is returned.

10.17.6 Other Robust Estimators

Not all multivariate regression estimators, which have been proposed, are listed here. But in
case it helps, two others are mentioned. The first uses Eqs (10.18) and (10.19) to estimate the
slopes and intercept but with the usual mean and covariance matrices replaced by some robust
analog. Zhou (2008) has studied this approach when using the projection estimate of location
and scatter in Section 6.3.7. (The form of the Stahel–Donoho W-estimator suggested by Zuo,
Hengjian, & He, 2004; Zuo, Hengjian, & Young, 2004, was used.) Currently, execution time
can be an issue and little is known about how this approach compares to the estimators in
Sections 10.17.1 and 10.17.2. Yet another approach was derived by Ben, Martı́nez, and Yohai
(2006). The regression coefficients and the covariance matrix of the errors are estimated
simultaneously by minimizing the determinant of the covariance matrix, subject to a
constraint on a robust scale of the Mahalanobis norms of the residuals. They use a τ -estimate
of scale. Ben et al. report simulation results indicating that their estimator compares favorably
to S-estimates.

10.18 Exercises

1. The average LSAT scores (x) for the 1973 entering classes of 15 American law schools,
and the corresponding grade point averages (y), are as follows.

x: 576 635 558 578 666 580 555 661 651 605 653 575 545 572 594
y: 3.39 3.30 2.81 3.03 3.44 3.07 3.00 3.43 3.36 3.13 3.12 2.74 2.76 2.88 2.96

Using the R function lsfitci, verify that the 0.95 confidence interval for the slope, based
on the least squares regression line, is (0.0022,0.0062).

2. Discuss the relative merits of β̂ch.
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3. Using the data in Exercise 1, show that the estimate of the slope given by β̂ch is 0.0057.
In contrast, the OLS estimate is 0.0045, and β̂m = 0.0042. Comment on the difference
among the three estimates.

4. Let T be any regression estimator that is affine equivariant. Let A be any nonsingular
square matrix. Argue that the predicted y values, ŷi , remain unchanged when xi is
replaced by xi A.

5. For the data in Exercise 1, use the R function reglev to comment on the advisability of
using M regression with Schweppe weights.

6. Compute the hat matrix for the data in Exercise 1. Which x values are identified as
leverage points? Relate the result to the previous exercise.

7. The example in Section 6.6.1 reports the results of drinking alcohol for two groups of
subjects measured at three different times. Using the group 1 data, compute an OLS
estimate of the regression parameters for predicting the time 1 data using the data based
on times 2 and 3. Compare the results to the estimates given by β̂m and β̂ch.

8. For the data used in the previous exercise, compute 0.95 confidence intervals for the
parameters using OLS as well as M regression with Schweppe weights.

9. Referring to Exercise 6, how do the results compare to the results obtained with the R
function reglev?

10. For the data in Exercise 6, verify that the 0.95 confidence interval for the regression
parameters, using the R function regci with M regression and Schweppe weights, are
(−0.2357,0.3761) and (−0.0231,1.2454). Also verify that if regci is used with OLS,
the confidence intervals are (−0.4041,0.6378) and (0.2966,1.7367). How do the results
compare to the confidence intervals returned by lsfitci? What might be wrong with
confidence intervals based on regci when the OLS estimator is used?

11. The file read.dat contains reading data collected by L. Doi. Of interest is predicting
WWISST2, a word identification score (stored in column 8), using TAAST1, a measure
of phonological awareness stored in column 2, and SBT1 (stored in column 3), another
measure of phonological awareness. Compare the OLS estimates to the estimates given
by β̂m , β̂ad, and β̂mid.

12. For the data used in Exercise 11, compute the hat matrix and identify any leverage
points. Also check for leverage points with the R function reglev. How do the results
compare?

13. For the data used in Exercise 11, RAN1T1 and RAN2T1 (stored in columns 4 and 5) are
measures of digit naming speed and letter naming speed. Use M regression with
Schweppe weights to estimate the regression parameters when predicting WWISST2.
Use the function elimna, described in Chapter 1, to remove missing values. Compare the
results with the OLS estimates and β̂ch.

14. For the data in Exercise 13, identify any leverage points using the hat matrix. Next,
identify leverage points with the function reglev. How do the results compare?
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15. Graphically illustrate the difference between a regression outlier and a good leverage
point. That is, plot some points for which y = β1x+β0, and then add some points that
represent regression outliers and good leverage points.

16. Describe the relative merits of the OP and MGV estimators in Section 10.10.
17. For the star data in Figure 6.3, which are stored in the file star.dat, eliminate the four

outliers in the upper left corner of the plot by restricting the range of the x values. Then
using the remaining data, estimate the standard error of the least squares estimator, the
M-estimator with Schweppe weights, as well as the OP and MGV estimators. Comment
on the results.
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CHAPTER 11

More Regression Methods

This final chapter describes some additional robust regression methods that have been found
to have practical value, including some inferential techniques that perform well in simulation
studies even when the error term is heteroscedastic. Also covered are methods for testing the
hypothesis that two or more of the regression parameters are equal to zero, a method for
comparing the slope parameters of independent groups, measures of association based on a
given fit to the data, methods for dealing with curvilinear relationships, and methods for
performing an analysis of covariance.

11.1 Inferences About Robust Regression Parameters

This section deals with testing hypotheses about the parameters in the regression model

yi = β0+β1xi1+· · ·+βpxi p+ εi ,

where the error term might be heteroscedastic and some robust regression estimator is used.
(Section 10.1 described methods designed specifically for the situation where the least squares
estimator is used.) A special case that is commonly of interest is testing

H0 : β1 = · · · = βp = 0, (11.1)

the hypothesis that all of the slope parameters are equal to zero, but the methods described
here can also be used to test

H0 : β1 = · · · = βq = 0,

the hypothesis that q < p of the parameters are equal to zero. A more general goal is to test
the hypothesis that q parameters are equal to some specified value, and the method described
here accomplishes this goal as well. And there is the goal of computing confidence intervals
for the individual parameters.

Introduction to Robust Estimation and Hypothesis Testing. DOI: 10.1016/B978-0-12-386983-8.00011-1
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11.1.1 Omnibus Tests for Regression Parameters

Currently, the best methods for testing hypotheses based on robust regression estimators are
based on some type of bootstrap method. This section begins with testing Eq. (11.1) and then
the goal of computing confidence intervals for the individual parameters is addressed.

When working with robust regression, three strategies for testing hypotheses have received
attention in the statistical literature and should be mentioned. The first is based on the
so-called Wald scores, the second is a likelihood ratio test, and the third is based on a measure
of drop in dispersion. Details about these methods can be found in Markatou, Stahel, and
Ronchetti (1991), as well as Heritier and Ronchetti (1994). Coakley and Hettmansperger
(1993) suggest using a Wald scores test in conjunction with their estimation procedure,
assuming that the error term is homoscedastic. The method estimates the standard error of
their estimator which can be used to get an appropriate test statistic for which the null
distribution is chi-square. When both x and ε are normal, and the error term is homoscedastic,
the method provides reasonably good control over the probability of a type I error when
n = 50. However, if ε is nonnormal, the actual probability of a type I error can exceed .1
when testing at the α = 0.05 level, even with n = 100 (Wilcox, 1994e). Consequently, details
about the method are not described. Birkes and Dodge (1993) describe drop-in-dispersion
methods when working with M regression methods that do not protect against leverage
points. Little is known about how this approach performs under heteroscedasticity, so it is not
discussed either. Instead, attention is focused on a method that has been found to perform well
when there is a heteroscedastic error term. It is not being suggested that the method described
here outperforms all other methods that might be used, only that it gives good results over a
relatively wide range of situations, and based on extant simulation studies, it is the best
method available.

The basic strategy is to generate B bootstrap estimates of the parameters and then determine
whether the vector of values specified by the null hypothesis is far enough away from the
bootstrap samples to warrant rejecting H0. This strategy is illustrated with the tree data in the
Minitab handbook (Ryan, Joiner, & Ryan, 1985), p. 329). The data consist of tree volume (V ),
tree diameter (d), and tree height (h). If the trees are cylindrical or cone shaped, then a
reasonable model for the data is y = β1x1+β2x2+β0, where y = ln(V ), x1 = ln(d),
x2 = ln(h) with β1 = 2 and β2 = 1 (Fairley, 1986). The OLS estimate of the intercept is
β̂0 =−6.632, β̂1 = 1.98, and β̂2 = 1.12. Using M regression with Schweppe weights (the R
function bmreg), the estimates are −6.59, 1.97, and 1.11, respectively.

Suppose bootstrap samples are generated as described in Section 10.1.1 (cf. Salibian-Barrera
& Zamar, 2002). That is, rows of data are sampled with replacement. Figure 11.1 shows a
scatterplot of 300 bootstrap estimates, using M regression with Schweppe weights, of the
intercept, β0, and β2, the slope associated with log height. The square marks the hypothesized
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Figure 11.1: Scatterplot of bootstrap estimates using the tree data. The square marks the null
values.

values, (β0, β2)= (−7.5,1). These bootstrap values provide an estimate of a confidence
region for (β0, β2) that is centered at the estimated values β̂0 =−6.59 and β̂2 = 1.11.
Figure 11.1 suggests that the hypothesized values might not be reasonable. That is, the point
(−7.5,1) might be far enough away from the bootstrap values to suggest that it is unlikely
that β0 and β2 simultaneously have the values −7.5 and 1, respectively. The problem is
measuring the distance between the hypothesized values and the estimated values, and then
finding a decision rule that rejects the null hypothesis with probability α when H0 is true.

For convenience, temporarily assume the goal is to test the hypothesis given by Eq. (11.1).
A simple modification of the method in Section 8.2.5 can be used where bootstrap samples
are obtained by resampling with replacement rows fromy1, x11, . . . , x1J

...

yn, xn1, . . . , xn J


yielding y∗1 , x∗11, . . . , x∗1J

...

y∗n , x∗n1, . . . , x∗n J

 .
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Let β̂∗jb, j = 1, . . . , p; b = 1, . . . , B be an estimate of the j th parameter based on the bth
bootstrap sample and any robust estimator described in Chapter 10. Then an estimate of the
covariance between β̂ j and β̂k is

v jk =
1

B−1

B∑
b=1

(β̂∗jb− β̄
∗

j )(β̂
∗

kb− β̄
∗

k ),

where β̄∗j =
∑
β̂∗jb/B. Here β̂ j can be any estimator of interest. Now the distance between the

bth bootstrap estimate of the parameters, and the estimate based on the original observations,
can be measured with

d2
b = (β̂

∗

1b− β̂1, . . . , β̂
∗

pb− β̂p)V−1(β̂∗1b− β̂1, . . . , β̂
∗

pb− β̂p)
′,

where V is the p-by-p covariance matrix with the element in the j th row and kth column
equal to v jk . That is, V= (v jk) is the sample covariance matrix based on the bootstrap
estimates of the parameters. The square root of d2

b , db, represents a simple generalization of
the Mahalonobis distance. If the point corresponding to the vector of hypothesized values is
sufficiently far from the estimated values, relative to the distances db, reject H0. This strategy
is implemented by sorting the db values yielding d(1) ≤ · · · ≤ d(B), setting M = [(1−α)B],
and letting m be the value of M rounded to the nearest integer. The null hypothesis is
rejected if

D > d(m), (11.2)

where

D =
√
(β̂1, . . . , β̂p)V−1(β̂1, . . . , β̂p)′.

The method just described is easily generalized to testing

H0 : β1 = β10, β2 = β20, . . . , βq = βq0,

the hypothesis that q of the p+1 parameters are equal to specified constants, β10, . . . , βq0.
Proceed as before, only now

db =

√
(β̂∗1b− β̂1, . . . , β̂

∗

qb− β̂q)V−1(β̂∗1b− β̂1, · · · , β̂
∗

qb− β̂q)′,

and V is a q-by-q matrix of estimated covariances based on the B bootstrap estimates of the q
parameters being tested. The critical value, d(m), is computed as before, and the test statistic is

D =
√
(β̂1−β10, . . . , β̂q −βq0)V−1(β̂1−β10, . . . , β̂q −βq0)′.
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The (generalized) p-value is

p̂∗ =
1

B

∑
I (D ≤ db),

where I (D ≤ db)= 1 if D ≤ db, and I (D ≤ db)= 0 if D > db.

The hypothesis testing method just described can be used with any regression estimator.
When using the OLS estimator, it has advantages over the conventional F-test, but problems
remain. This is illustrated in Table 11.1, which shows the estimated probability of a type I
error for various situations when testing H0 : β1 = β2 = 0, α = 0.05, and where

y = β1x1+β2x2+λ(x1, x2)ε. (11.3)

(For recent results on testing hypotheses when the function λ is known, see Zhao & Wang,
2009.) In Table 11.1, VP1 corresponds to λ(x1, x2)= 1 (a homoscedastic error term), VP2 is
λ(x1, x2)= |x1|, and VP3 is λ(x1, x2)= 1/(|x1|+1). Both x1 and x2 have identical g-and-h
distributions, with the g and h values specified by the first two columns. In some cases the
conventional F-test performs well, but it performs poorly for VP2. The bootstrap method
improves matters considerably, but the probability of a type I error exceeds .075 in various
situations. In practical terms, when testing hypotheses using OLS, use the methods in
Section 10.1.1 rather than the bootstrap method described here.

Table 11.2 shows α̂, the estimated probability of a type I error when using β̂mid, the biweight
midregression estimator with n = 20, and the goal is to test H0 : β1 = β2 = 0 with α = 0.05.

Table 11.1: Estimated Type I Error Probabilities Using OLS, α = 0.05, n = 20.

x ε VP1 VP2 VP3
g h g h Boot F Boot F Boot F

0.0 0.0 0.0 0.0 .072 .050 .097 .181 .009 .015
0.0 0.0 0.0 0.5 .028 .047 .046 .135 .004 .018
0.0 0.0 0.5 0.0 .052 .049 .084 .174 .009 .018
0.0 0.0 0.5 0.5 .028 .043 .042 .129 .005 .019
0.0 0.5 0.0 0.0 .022 .055 .078 .464 .003 .033
0.0 0.5 0.0 0.5 .014 .074 .042 .371 .002 .038
0.0 0.5 0.5 0.0 .017 .048 .072 .456 .005 .032
0.0 0.5 0.5 0.5 .011 .070 .039 .372 .005 .040
0.5 0.0 0.0 0.0 .054 .044 .100 .300 .013 .032
0.5 0.0 0.0 0.5 .024 .057 .049 .236 .010 .038
0.5 0.0 0.5 0.0 .039 .048 .080 .286 .010 .033
0.5 0.0 0.5 0.5 .017 .058 .046 .217 .010 .040
0.5 0.5 0.0 0.0 .013 .054 .083 .513 .006 .040
0.5 0.5 0.0 0.5 .009 .073 .043 .416 .002 .048
0.5 0.5 0.5 0.0 .013 .053 .079 .505 .005 .043
0.5 0.5 0.5 0.5 .006 .067 .036 .414 .005 .050
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Table 11.2: Values of α̂ Using Biweight Midregression,
α = 0.05, n = 20

X ε

g h g h VP1 VP2 VP3

0.0 0.0 0.0 0.0 .047 .039 .015
0.0 0.0 0.0 0.5 .018 .024 .008
0.0 0.0 0.5 0.0 .038 .037 .011
0.0 0.0 0.5 0.5 .021 .025 .003
0.0 0.5 0.0 0.0 .016 .018 .002
0.0 0.5 0.0 0.5 .009 .018 .002
0.0 0.5 0.5 0.0 .015 .016 .002
0.0 0.5 0.5 0.5 .009 .012 .003
0.5 0.0 0.0 0.0 .033 .037 .012
0.5 0.0 0.0 0.5 .020 .020 .006
0.5 0.0 0.5 0.0 .024 .031 .009
0.5 0.0 0.5 0.5 .015 .021 .005
0.5 0.5 0.0 0.0 .015 .021 .002
0.5 0.5 0.0 0.5 .008 .011 .002
0.5 0.5 0.5 0.0 .014 .017 .002
0.5 0.5 0.5 0.5 .006 .007 .002

Now the probability of a type I error is less than or equal to the nominal level, but in some
cases it is too low, particularly for VP3 where it drops as low as .002. Perhaps better results
are obtained when using some other robust regression method, but this has not been
determined. (For more details about the simulations used to create Tables 11.1 and 11.2, see
Wilcox, 1996f.)

11.1.2 R Function regtest

The R function

regtest(x,y,regfun=tsreg,nboot=600,alpha=0.05,plotit=T,grp=c(1:ncol(x)), nullvec =
c(rep(0, length(grp))))

tests hypotheses with the bootstrap method described in the previous section. As usual, x is
an n-by-p matrix containing the predictors. The argument regfun is any R function that
estimates regression coefficients and returns the estimates in the vector regfun$coef. If
unspecified, regfun defaults to tsreg which computes the Theil–Sen estimate. The assumption
is that the first element of regfun$coef contains the estimated intercept, the second contains
the estimate of β1, and so on. The arguments nboot and alpha are B, the number of bootstrap
samples to be used, and α, respectively. The default values are B = 599 and α = 0.05. The
argument grp indicates which parameters are to be tested. By default, the null hypothesis is
that all p slope parameters are equal to zero (the hypothesis given by Eq. 9.1). If, for example,
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the goal is to test H0 : β2 = β4 = 0, type the R command grp=c(2,4) in which case the
command regtest(x,y,regfun=bmreg,grp=grp) would test H0 for the data in x and y using M
regression with Schweppe weights. That is, grp is a vector containing the subscripts of the
parameters to be tested. Alternatively, use the command regtest(x,y,grp=c(2,4)). To test
H0 : β0 = β4 = 0, the hypothesis that the intercept and fourth slope parameter are equal to
zero, use the command regtest(x,y,grp=c(0,4)). The optional argument nullvec contains the
null values. If unspecified, nullvec defaults to a vector of zeros. The vectors nullvec and grp
must have the same length. If they do not, the function returns an error message and
terminates.

n Example

For the tree data used to create Figure 11.1, suppose there is reason to believe that
β0 =−7.5 and β2 = 1. If the logarithm of the predictor values are stored in mtree, and
the logarithm of the volume (the y values) are stored in ytree, then the command

regtest(mtree,ytree,regfun=bmreg,grp=c(0,2),nullvec=c(−7.5,1))

will test the hypothesis that H0 : β0 =−7.5 and β2 = 1 using the R function bmreg to
estimate the parameters. The function regtest reports a test statistic of 97.24, with a
0.05 critical value of 7.98, so H0 is rejected. Using the Theil–Sen estimator, the test
statistic is 93.8, the 0.05 critical value is 7.06, and the (generalized) p-value is 0.

n

11.1.3 Inferences About Individual Parameters

When the goal is to compute a confidence interval for the individual parameters in a
regression model, a simple percentile bootstrap method appears to perform well, in terms of
probability coverage, with most robust regression estimators. Essentially, proceed as in
Section 10.1.1, but with the least squares estimator replaced by any robust estimator, and
when applying the percentile bootstrap method, no adjustment is made when the sample size
is small. That is, bootstrap samples are obtained by randomly sampling n vectors of
observations, with replacement, which is in contrast to bootstrap methods that resample
residuals. Let β̂∗j be any robust estimate of β j based on the bootstrap sample just obtained.

Repeat this process B times yielding β̂∗j1, . . . β̂
∗

j B . Then for fixed j , the 1−α confidence
interval for β j is

(β̂∗j (`+1), β̂
∗

j (u)), (11.4)

where `= αB/2, rounded to the nearest integer, u = B−`, and β̂∗j (1) ≤ · · · ≤ β̂
∗

j (B) are
the B bootstrap estimates of β j written in ascending order. In other words, use the standard
percentile bootstrap method, as opposed to the modified method used when working
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with OLS. A (generalized) p-value can be computed in the usual way. Let p̂∗ be the
proportion of bootstrap estimates greater than zero. Then the p-value is

p̂∗m = 2min( p̂∗, 1− p̂∗).

(Under certain circumstances, when there is one predictor only, an alternative approach to
computing a confidence interval for the slope that might have practical value is described by
Adrover & Salibian-Barrera, 2010.)

To provide some indication of how well the method performs when using the M-estimator β̂m ,
Table 11.3 shows values of α̂, simulation estimates of one minus the actual probability
coverage, when n = 20 and α = 0.05. The notation VP1 indicates a homoscedastic error term
(λ(x)= 1 in Eq. (10.2), VP2 is a heteroscedastic error term where the variance of the error
term increases as x moves away from its median value (λ(x)= x2), and VP3 is where the
variance decreases as x moves away from its median (λ(x)= 1+2/(|x |+1)). The α̂ values
never exceed .075, but for VP2 they can exceed .070. (For results when using the Theil–Sen
estimator, see Wilcox, 1998a,b. For results related to the OP-estimator in Section 10.10, see
Wilcox, 2004d.)

To provide a bit more perspective, Table 11.4 shows simulation estimates of the probability of
a type I error when using the Theil–Sen estimator with p = 2. Under VP1, the first entry is the
estimated probability of a type I error using Eq. (11.2), and the second entry is the probability
of at least one type I error when using Eq. (11.4). The same is true for the columns headed by
VP2 and VP3. For brevity, only results where x has a symmetric distribution are shown. So

Table 11.3: Values of α̂ Using β̂m, α = 0.05, n= 20.

x ε

g h g h VP1 VP2 VP3

0.0 0.0 0.0 0.0 .054 .065 .050
0.0 0.0 0.0 0.5 .051 .064 .051
0.0 0.0 0.5 0.0 .057 .066 .066
0.0 0.0 0.5 0.5 .055 .065 .049
0.0 0.5 0.0 0.0 .058 .070 .034
0.0 0.5 0.0 0.5 .057 .067 .035
0.0 0.5 0.5 0.0 .058 .069 .036
0.0 0.5 0.5 0.5 .059 .069 .037
0.5 0.0 0.0 0.0 .049 .071 .051
0.5 0.0 0.0 0.5 .049 .064 .047
0.5 0.0 0.5 0.0 .051 .068 .053
0.5 0.0 0.5 0.5 .050 .065 .050
0.5 0.5 0.0 0.0 .054 .072 .043
0.5 0.5 0.0 0.5 .054 .071 .047
0.5 0.5 0.5 0.0 .056 .071 .044
0.5 0.5 0.5 0.5 .056 .071 .044
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Table 11.4: Values of α̂ Using Eqs. (11.2), (11.4) and the Theil–Sen Estimator,
α = 0.05, n = 20.

x ε VP1 VP2 VP3
h g h (11.2) (11.4) (11.2) (11.4) (11.2) (11.4)

0.0 0.0 0.0 .036 .033 .037 .043 .017 .030
0.0 0.0 0.0 .010 .031 .013 .038 .007 .029
0.0 0.0 0.5 .020 .033 .034 .041 .013 .030
0.0 0.0 0.5 .008 .032 .010 .037 .001 .031
0.5 0.0 0.0 .015 .033 .036 .039 .007 .026
0.5 0.0 0.0 .008 .032 .029 .036 .004 .032
0.5 0.0 0.5 .008 .035 .029 .036 .004 .032
0.5 0.0 0.5 .004 .031 .013 .039 .002 .032

for n small, using Eq. (11.2) can result in type I error probabilities considerably smaller than
the nominal level.

11.1.4 R Functions regci and wlogregci

The R function

regci(x,y,regfun=tsreg,nboot=599,alpha=0.05)

is supplied for computing confidence intervals for regression parameters with the percentile
bootstrap method just described. Here, x can be a vector or a matrix having n rows and p
columns. The optional argument regfun can be any R function that estimates regression
parameters and returns the results in regfun$coef. The first element of regfun$coef is assumed
to be the estimated intercept, the second element is the estimate of β1, and so on. Regression
methods that come with R follow this convention, as do all of the R regression functions
written for this book. For example, bmreg returns the estimated values in bmreg$coef. If
unspecified, regfun is tsreg which is the Theil–Sen estimator. The default value for nboot,
which is the number of bootstrap samples to be used, B, is 599.

n Example

As a simple illustration, consider the data

x -80 79 -90 11 137 141 116 -54 92 -58 -9 -96 -27 -135
76 -56 19 -93 -19 -158

y 7 56 -84 -69 88 103 -102 -82 25 84 -69 -78 -127 50
210 -51 120 -212 174 -72
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The 0.95 con�dence interval for β1, returned by the command regci(x,y), is (−0.0225,
1.21). If the function ls�tci is used instead, the 0.95 con�dence interval is (−0.0147,
1.08). Note that this interval is shorter than the interval based on regci. This was
expected because both x and ε were generated from normal distributions with β1 = 1.

n

The command regci(x,y,regfun=lsfit) would return a confidence interval based on the OLS
estimator, using the standard percentile bootstrap method, but this is not recommended for
reasons already explained. However, regci appears to give good results when working with
nearly all of the robust regression methods described in this chapter. (Exceptions are noted in
Sections 11.1.5 and 11.1.7)

n Example

For the star data in Figure 6.3, the 0.95 con�dence interval for the slope returned by the
R function regci, using the default estimator, is (−0.78, 5.03). If the bounded in�uence
M regression method is used instead, β̂m , the 0.95 con�dence interval for the slope is
(−1.076, 2.436). So even among robust estimators, the estimator used can make a
practical difference when computing con�dence intervals.

n

n Example

For the tree data used in the last example of Section 11.1.2, the hypothesis H0:
(β0, β2)= (−7.5, 1) was rejected using M regression with Schweppe weights. The 0.95
con�dence intervals for these two parameters returned by regci, again using M
regression with Schweppe weights (i.e., setting regfun=bmreg when using regci) are
(−9.1,−4.9) and (0.65, 1.76), respectively, suggesting that the hypothesized values for
β0 and β2 are reasonable. This illustrates the well-known result that con�dence intervals
can fail to reject when an omnibus test rejects. (The reason is that the con�dence region
used by the omnibus test is an ellipse, versus a rectangular con�dence region when
computing con�dence intervals for the individual parameters. See Fairley, 1986, for
more details.)

n

For the special case where y is binary and the robust estimator given by Eq. (10.16) is used,
the R function

wlogregci(x,y,nboot=400,alpha=0.05,SEED=T,MC=F, xout=F,outfun=out, . . .)

can be used.

www.elsevierdirect.com



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

WILCOX 14-ch11-533-630-9780123869838 2011/12/6 18:35 Page 543 #11

Chapter 11 More Regression Methods 543

11.1.5 Methods Based on the Quantile Regression Estimator

Section 10.13.8 described a nonbootstrap R function for making inferences about the
parameters associated with a quantile regression estimator. Two limitations of the method are
that it can be used only when testing at the α = 0.05 level, and it does not provide a way of
testing the omnibus hypothesis that two or more parameters are equal to zero. Switching to a
percentile bootstrap method, simulations indicate that type I error probabilities greater than
the nominal level are avoided. But the actual level can drop well below the nominal level
when the sample size is small. A slightly better approach appears to be one based in part on a
bootstrap estimate of the standard errors, but again the actual level can be lower than
intended. Here, an adjustment is made for dealing with this problem that was suggested by
Wilcox and Costa (2009).

Generate B bootstrap estimates of the slope yielding b∗1, . . . ,b
∗

B . Then an estimate of the
squared standard error of b1 is

S2
=

1

B−1

B∑
b=1

(b∗b− b̄)2,

where b̄ =
∑

b∗b/B. So an approximate 1−α confidence interval for β1 is

b1± z1−α/2S,

where z1−α/2 is the 1−α/2 quantile of a standard normal distribution.

To avoid type I error probabilities well below the nominal level when the sample sizes are
small, Wilcox and Costa found that the following adjusted critical values perform reasonably
well in simulations:

1. if α = 0.1, za = 1.645−1.19/
√
(n)

2. if α = 0.05, za <−1.96−1.37/
√
(n)

3. if α = 0.025, za = 2.24−1.18/
√
(n)

4. if α = 0.01, za = 2.58−1.69/
√
(n).

That is, an approximate 1−α confidence interval for β1 is taken to be

b1± za S.

This approximation appears to work well when estimating the γ th quantile regression line
when 0.2≤ γ ≤ 0.8.

As for testing the global hypothesis given by Eq. (11.1), that all slope parameters are equal to
zero, take a bootstrap sample in the usual manner and label the resulting estimate of the slopes
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b∗k , k = 1, . . . , p. Repeat this process B times yielding b∗1k, . . .b
∗

Bk . An estimate of the
variances and covariances associated with b1, . . . ,bp is

S=
1

B−1

B∑
c=1

(b∗c − b̄)2,

where b∗c =(b
∗

c1, . . . ,b
∗
cp), b̄= (b̄∗1, . . . , b̄

∗
p) and b̄∗k =

∑
b∗bk/B. A reasonable test statistic is

T 2
= nb̄′S−1b̄. (11.5)

And from basic principles, a natural strategy is to reject if

T 2
≥

n−1

n− p
f p,n−p,

where f p,n−p is the 1−α quantile of an F distribution with p and n− p degrees of freedom.
All indications are that the actual probability of type I error is less than the nominal level
when the sample size is small, particularly as the number of predictors increases. For
example, when γ = 0.5, p = 2, n = 20, α = 0.05, and x1 and x2 have a bivariate normal
distribution with correlation ρ = 0, the actual type I error probability is approximately .026.
Increasing p to 6, the estimate is now .001. But with n = 60, the actual probability of a type I
error has been found to be reasonably close to .05 (Wilcox, 2007). Adjusted critical values,
when n < 60 and α = 0.1, 0.05, 0.025 and 0.01 are reported by the R function rqtest described
in the next section.

It is briefly noted that He and Zhu (2003) derived a method for testing the hypothesis that a
specified family of quantile regression models fits the data. In particular, one can test the
hypothesis that for some choice for β0, . . . , βp, the γ quantile of y, given x1, . . . , x p, is
given by

y = β0+β1x1+· · ·+βpx p.

A simple variation of their method has been found to reduce execution time considerably
(Wilcox, 2008b). The details are omitted, but an R function (called qrchk) is supplied for
performing the analysis.

11.1.6 R Functions rqtest, qregci, and qrchk

The R function

rqtest(x,y,qval=0.5,nboot=200,alpha=0.05,SEED=T,xout=F,outfun=out, . . .)

tests the hypothesis that p slope parameters are equal to zero, assuming the parameters are
estimated via the quantile regression method. Reject if the reported p-value is less than or
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equal to the value stored in adjusted.alpha. For situations where an adjusted critical value
cannot be computed, or when n > 60, the function sets adjusted.alpha equal to alpha.

The R function

qregci(x,y,qval=0.5,nboot=200,alpha=0.05,SEED=T,xout=F,outfun=out, . . .)

computes confidence intervals for the individual parameters.

The R function

qrchk(x, y, qval = 0.5, nboot = 1000, com.pval = F, SEED = T, alpha = 0.05, pr = T,
xout = F, outfun = out, . . .)

tests the hypothesis that for some β0, . . . , βp, the γ quantile of y, given x1, . . . , x p, is given by

y = β0+β1x1+· · ·+βpx p.

The function contains appropriate critical values when testing at the 0.1, 0.05, 0.025, and 0.01
levels. A p-value can be computed by setting the argument com.pval=T, which will increase
execution time considerably. Reject the null hypothesis if the test statistic exceeds the critical
value.

11.1.7 Inferences Based on the OP-Estimator

When using the skipped estimators in Section 10.10 and when p > 1, the bootstrap methods
in Sections 11.1.1 and 11.1.3 tend to be too conservative in terms of type I errors when the
sample size is small. That is, when testing at the 0.05 level, the actual probability of a type I
error tends to be considerably less than 0.05 when the sample size is less than 60 (Wilcox,
2004d). Accordingly, the following modifications are suggested when using the OP-estimator.
When testing (11.1), the hypothesis that all slope parameters are zero, let p̂∗ be the bootstrap
estimate of the p-value given in Section 11.1.1. Let na = n if 20≤ n ≤ 60. If n < 20, na = 20,
and if n > 60, na = 60. Then the adjusted p-value used here is

p̂∗a =
p̂∗

2
+

(
na−20

40

)
p̂∗

2
,

and the null hypothesis is rejected if p̂∗a ≤ α.

As for testing hypotheses about the individual slope parameters, let

C = 1−
60−na

80
,

and let p̂∗m be computed as in Section 11.1.3. Then the adjusted p-value is

p̂∗a = C p̂∗m .
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To control FWE (the probability of at least one type I error), Hochberg’s (1988) method is
used. For convenience, let Q j be the adjusted p-value associated with the bootstrap test of H0:
β j = 0. Put the Q j values in descending order yielding Q[1] ≥ Q[2] ≥ · · · ≥ Q[p]. Beginning
with k = 1, reject all hypotheses if

Q[k] ≤ α/k.

That is, reject all hypotheses if the largest p-value is less than or equal to α. If Q[1] > α,
proceed as follows:

1. Increment k by 1. If

Q[k] ≤
α

k
,

stop and reject all hypotheses having a p-value less than or equal Q[k].

2. If Q[k] > α/k, repeat step 1.
3. Repeat steps 1 and 2 until a significant result is obtained or all p hypotheses have been

tested.

Table 11.5 shows simulation estimates of the actual probability of a type I error using the
adjusted p-values just described, where BD indicates the omnibus test using the bootstrap
depth method, H indicates Hochberg’s method as just described, and n = 20.

n Example

Suppose x1, x2, and ε are independent and have standard normal distributions, and
that the goal is to test H0: β2 = 0 at the 0.05 level with n = 20 assuming that
y = x1+ x2+ ε. Further imagine that unknown to us, y = x1+ x1x2+ ε. Using the
conventional Student’s t-test of H0: β2 = 0, the actual probability of rejecting is
approximately .16 (based on a simulation with 1000 replications using the built-in R
functions lm and summary). Increasing n to 100, the actual probability of rejecting is
again approximately .16. Using instead the R function opregpb (described in the next
section), with n = 20, the probability of rejecting is approximately .049.

n

11.1.8 R Functions opregpb and opregpbMC

The R function

opregpb(x,y,nboot=1000,alpha=0.05,om=T,ADJ=T,nullvec=rep(0, ncol(x) + 1), plotit=T,
gval = sqrt(qchisq(0.95,ncol(x) + 1)))
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Table 11.5: Values of α̂ Using the Method in Section 11.1.5.

x ε α̂ x ε α̂

g h g h VP BD H g h g h VP BD H

0.0 0.0 0.0 0.0 1 .039 .027 0.5 0.0 0.0 0.0 1 .037 .023
0.0 0.0 0.0 0.0 2 .035 .024 0.5 0.0 0.0 0.0 2 .021 .021
0.0 0.0 0.0 0.0 3 .043 .027 0.5 0.0 0.0 0.0 3 .033 .022
0.0 0.0 0.0 0.5 1 .026 .024 0.5 0.0 0.0 0.5 1 .023 .018
0.0 0.0 0.0 0.5 2 .024 .016 0.5 0.0 0.0 0.5 2 .022 .018
0.0 0.0 0.0 0.5 3 .025 .025 0.5 0.0 0.0 0.5 3 .021 .020
0.0 0.0 0.5 0.0 1 .026 .024 0.5 0.0 0.5 0.0 1 .026 .018
0.0 0.0 0.5 0.0 2 .031 .019 0.5 0.0 0.5 0.0 2 .022 .022
0.0 0.0 0.5 0.0 3 .029 .014 0.5 0.0 0.5 0.0 3 .023 .017
0.0 0.0 0.5 0.5 1 .014 .017 0.5 0.0 0.5 0.5 1 .018 .017
0.0 0.0 0.5 0.5 2 .020 .020 0.5 0.0 0.5 0.5 2 .021 .018
0.0 0.0 0.5 0.5 3 .019 .020 0.5 0.0 0.5 0.5 3 .019 .016
0.0 0.5 0.0 0.0 1 .024 .023 0.5 0.5 0.0 0.0 1 .019 .019
0.0 0.5 0.0 0.0 2 .017 .014 0.5 0.5 0.0 0.0 2 .024 .014
0.0 0.5 0.0 0.0 3 .021 .020 0.5 0.5 0.0 0.0 3 .018 .020
0.0 0.5 0.0 0.5 1 .015 .017 0.5 0.5 0.0 0.5 1 .012 .019
0.0 0.5 0.0 0.5 2 .017 .013 0.5 0.5 0.0 0.5 2 .015 .013
0.0 0.5 0.0 0.5 3 .015 .018 0.5 0.5 0.0 0.5 3 .013 .017
0.0 0.5 0.5 0.0 1 .019 .021 0.5 0.5 0.5 0.0 1 .018 .017
0.0 0.5 0.5 0.0 2 .020 .017 0.5 0.5 0.5 0.0 2 .021 .018
0.0 0.5 0.5 0.0 3 .010 .016 0.5 0.5 0.5 0.0 3 .019 .016
0.0 0.5 0.5 0.5 1 .010 .012 0.5 0.5 0.5 0.5 1 .006 .013
0.0 0.5 0.5 0.5 2 .022 .012 0.5 0.5 0.5 0.5 2 .018 .015
0.0 0.5 0.5 0.5 3 .010 .013 0.5 0.5 0.5 0.5 3 .006 .016

tests hypotheses based on the OP-estimator and modified bootstrap method just described.
Both an omnibus test and confidence intervals for the individual parameters are reported. To
avoid the omnibus test, set om=F. The argument gval is the critical value used by the
projection-type outlier detection method. Setting ADJ=F, the adjustments of the p-values,
described in Section 11.1.5, are not made. The function

opregpbMC(x,y,nboot=1000,alpha=0.05,om=T,ADJ=T,nullvec=rep(0, ncol(x) + 1),
plotit=T, gval = sqrt(qchisq(0.95,ncol(x) + 1)))

is the same as opregpb, only it uses a multi-core processor, assuming one is available and that
the R package multicore has been installed.

11.1.9 Hypothesis Testing when Using the Multivariate Regression Estimator RADA

Consider again the multivariate regression model in Section 10.17.1 where

y= B′x+a+ ε, (11.6)
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B is a (p×q) slope matrix, a is a q-dimensional intercept vector, and the errors
ε = (ε1, . . . , εq) are independent and identically distributed with mean 0 and covariance
matrix 6ε , a positive definite matrix of size q. (That is, for any nonzero vector x, x′6εx> 0.)
When using the multivariate regression estimator RADA, in Section 10.17.1, consider the
issue of testing

H0 : B= 0.

A natural guess is to proceed along the lines in Section 11.1.1 and use a simple modification
of the R function regtest. But checks on this method have found it to be unsatisfactory in
simulations. A percentile bootstrap method appears to avoid type I error probabilities above
the nominal level. However, the actual level can be substantially smaller than the nominal
level suggesting that power might be relatively poor. Imagine, for example, that with n = 40,
p = 2, and q = 3, that a p-value is computed in the usual way. Under normality, an actual
type I error probability of .05 is achieved if the null hypothesis is rejected when the estimated
p-value is less than or equal to .16.

Currently, only one method has been found that performs reasonably well in terms of
controlling the type I error probability, including situations where there is heteroscedasticity.
Briefly, let C be a row vector of length pq containing the pq slope estimates. Let 6̂, a
pq-by-pq matrix, be a bootstrap estimate of the variances and covariances associated with C.
The test statistic is

1

pq
C6̂−1C′,

with the null distribution taken to be an F distribution with ν1 = pq−1 and ν2 = n− pq
degrees of freedom.

11.1.10 R Function mlrGtest

The R function

mlrGtest(x,y,regfun=mlrreg,nboot=300,SEED=T)

tests the hypothesis

H0 : B= 0,

using the method just described. By default, the RADA estimator is used. Any multivariate
regression estimator could be used via the argument regfun. Currently, however, simulation
results regarding the ability of the method to control the probability of a type I error are
limited to the RADA estimator.
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11.1.11 Robust ANOVA via Dummy Coding

As noted in Section 10.1.4, a well-known approach to comparing the means of multiple
groups is via least squares regression coupled with dummy coding (e.g., Montgomery & Peck,
1992). An issue of interest is whether this approach might be generalized by replacing the
least squares regression estimator with one of the robust estimators described in Chapter 10.
When using the Theil–Sen estimator, simulations do not support this strategy: control over the
type I error probability can be poor (Ng, 2009b). Whether a similar problem occurs when
using some other robust regression estimator has not been investigated.

11.2 Comparing the Parameters of Two Independent Groups

For two independent groups, let (yi j ,xi j ) be the i th vector of observations in the j th group,
i = 1, . . . ,n j . Suppose

yi j = β0 j +x′i jβ j +λ j (x j )εi j ,

where β j = (β1 j , . . . , βpj )
′ is a vector of slope parameters for the j th group, λ j (x j ) is some

unknown function of x j , and εi j has variance σ 2
j . This section considers the problem of

computing a 1−α confidence interval for βk1−βk2, k = 1, . . . , p, the difference between the
slope parameters associated with the kth predictor. It is not assumed that εi1 and εi2 have a
common variance. Moreover, the goal is to get an accurate confidence interval without
specifying what λ might be. That is, for each group, the error term can be heteroscedastic, and
nothing is assumed about how the variance of the error terms, corresponding to each group,
are related. The conventional method for comparing slope parameters (e.g., Huitema, 1980)
performs poorly when standard assumptions are violated. Conerly and Mansfield (1988)
provide references to other solutions. Included is Chow’s (1960) likelihood ratio test, which is
also known to fail. (For results related to the method described here, see Wilcox, 1997c.)

When using any robust estimator with a reasonably high breakdown point, the percentile
bootstrap technique appears to give reasonably accurate confidence intervals for a fairly broad
range of nonnormal distributions and heteroscedastic error terms. This suggests a method for
addressing the goal considered here, and simulations support its use. Briefly, the procedure
begins by generating a bootstrap sample from the j th group as described, for example, in
Section 11.1.1 That is, for the j th group, randomly sample n j vectors of observations, with
replacement, from (y1 j ,x1 j ), . . . , (yn j j ,xn j j ). Let d∗k = β̂

∗

k1− β̂
∗

k2 be the difference between
the resulting estimates of the kth predictor, k = 1, . . . , p. Repeat this process B times yielding
d∗k1, . . . ,d

∗

k B . Put these B values in ascending order yielding d∗k(1) ≤ · · · ≤ d∗k(B). Let
`= αB/2, u = (1−α/2)B, rounded to the nearest integer, in which case an approximate
1−α confidence interval for βk1−βk2 is (d∗k(`+1),d

∗

k(u)).
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To provide some indication of how well the method performs when computing a 0.95
confidence interval, Tables 11.6 and 11.7 show α̂, an estimate of one minus the probability
coverage, when n = 20, p = 1, and M regression with Schweppe weights is used. In these
tables, VP refers to three types of error terms: λ(x)= 1, λ(x)= x2, and λ(x)=
1+2/(|x |+1). For convenience, these three variance patterns are labeled VP1, VP2, and
VP3, respectively. The situation VP2 corresponds to large error variances when the value of x
is in the tails of its distribution, and VP3 is the reverse. Three additional conditions are
considered as well. The first, called C1, is where xi1 and xi2, as well as εi1 and εi2, have
identical distributions. The second condition, C2, is the same as the first condition only
εi2 = 4εi1. The third condition, C3, is where for the first group, both xi1 and εi1 have standard
normal distributions, but for the second group, both xi2 and εi2 have a g-and-h distribution.

Notice that α̂ never exceeds .06, and in general it is less than .05. There is room for
improvement, however, because in some situations α̂ drops below .020. This happens when ε
has a heavy-tailed distribution, as would be expected based on results in Chapters 4 and 5.

Table 11.6: Values of α̂, Using the Method in Section 11.2
when x has a Symmetric Distribution, n = 20.

x ε Condition
g h g h VP C1 C2 C3

0.0 0.0 0.0 0.0 1 .029 .040 .040
2 .042 .045 .045
3 .028 .039 .039

0.0 0.0 0.0 0.5 1 .029 .036 .036
2 .045 .039 .039
3 .025 .037 .037

0.0 0.0 0.5 0.0 1 .026 .040 .041
2 .043 .043 .043
3 .029 .040 .040

0.0 0.0 0.5 0.5 1 .028 .036 .036
2 .042 .040 .040
3 .023 .037 .037

0.0 0.5 0.0 0.0 1 .024 .035 .040
2 .051 .058 .046
3 .014 .023 .039

0.0 0.5 0.0 0.5 1 .023 .035 .036
2 .049 .054 .039
3 .013 .020 .037

0.0 0.5 0.5 0.0 1 .022 .039 .040
2 .050 .039 .043
3 .014 .022 .040

0.0 0.5 0.5 0.5 1 .024 .037 .036
2 .052 .058 .040
3 .013 .020 .037
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Table 11.7: Values of α̂, x has an Asymmetric
Distribution, n = 20.

X ε Condition
g h g h VP C1 C2 C3

0.5 0.0 0.0 0.0 1 .026 .040 .040
2 .044 .048 .046
3 .032 .037 .039

0.5 0.0 0.0 0.5 1 .028 .039 .036
2 .041 .047 .039
3 .030 .031 .037

0.5 0.0 0.5 0.0 1 .025 .040 .040
2 .046 .052 .040
3 .032 .038 .043

0.5 0.0 0.5 0.5 1 .024 .038 .036
2 .041 .045 .040
3 .031 .034 .037

0.5 0.5 0.0 0.0 1 .018 .032 .040
2 .049 .050 .046
3 .019 .020 .039

0.5 0.5 0.0 0.5 1 .019 .031 .036
2 .045 .049 .039
3 .015 .018 .037

0.5 0.5 0.5 0.0 1 .019 .031 .040
2 .050 .050 .043
3 .014 .020 .040

0.5 0.5 0.5 0.5 1 .022 .027 .036
2 .046 .051 .040
3 .016 .019 .037

Also, VP3, which corresponds to large error variances when x is near the center of its
distribution, plays a role. Despite this, all indications are that, in terms of probability
coverage, the bootstrap method in conjunction with β̂m (M regression with Schweppe
weights) performs reasonably well over a broader range of situations than any other method
that has been proposed, and using M regression offers the additional advantage of a relatively
efficient estimator for the situations considered. It appears that when using other robust
estimators such as Theil–Sen, good probability coverage is again obtained, but extensive
simulations have not yet been performed.

11.2.1 R Function reg2ci

The R function reg2ci

reg2ci(x1,y1,x2,y2,regfun=tsreg,nboot=599,alpha=0.05,plotit=T)
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computes a 0.95 confidence interval for the difference between regression slope parameters
corresponding to two independent groups. The first two arguments contain the data for the
first group, and the data for group 2 are contained in x2 and y2. The optional argument regfun
indicates the regression method to be used. If not specified, tsreg, the Theil–Sen estimator, is
used. Setting regfun=bmreg results in using β̂m , M regression with Schweppe weights. The
default number of bootstrap samples, nboot, is B = 599, and alpha, which is α, defaults to
0.05 if unspecified. When the argument plotit equals T (for true), the function also creates a
scatterplot that includes the regression lines for both groups.

n Example

A controversial issue is whether teachers’ expectancies in�uence intellectual functioning.
A generic title for studies that address this issue is Pygmalion in the classroom.
Rosenthal and Jacobson (1968) argue that teachers’ expectancies in�uence intellectual
functioning, and others argue that it does not. A brief summary of some of the
counterarguments can be found in Snow (1995). Snow illustrates his concerns with data
collected by Rosenthal where children in grades 1 and 2 were used. Here, other issues
are examined using robust regression methods.

n

One of the analyses performed by Rosenthal involved comparing an experimental group of
children, for whom positive expectancies had been suggested to teachers, to a control group
for whom no expectancies had been suggested. One measure was a reasoning IQ pretest score,
and a second was a reasoning IQ posttest score. The data are given in Elashoff and Snow
(1970) and they are stored in the files pyge.dat and pygc.dat. (The file pyge.dat contains the
results for the experimental group, and pgyc.dat contains data for the control.) If the posttest
scores are compared using Yuen’s method for trimmed means, the 0.95 confidence interval for
the difference between the 20% trimmed means is (−30.76,−5.04) with a p-value of .009.
Comparing means instead, the p-value is .013.

Suppose that the control data are stored in pygcx and pygcy, and the data for the experimental
group are stored in pygex and pygey. The command

reg2ci(pygcx,pygcy,pygex,pygey,regfun=bmreg)

indicates that a 0.95 confidence interval for the difference between the slopes, using M
regression with Schweppe weights, is (−1.5,0.40). That is, there might be little or no
difference between the slopes. The 0.95 confidence interval for the difference between the
intercepts is (−47.4,97.8) suggesting that there might be little or no difference between the
groups when the pretest scores are taken into account. Switching to the (default) Theil–Sen
estimator, the 0.95 confidence interval for the difference between the slopes is (−1.34, 0.35).
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There are many concerns about this data that go beyond the scope of this book, some of which
deal with psychometric issues, so it is not being suggested that the analysis just presented
resolves the controversy associated with this topic. The only goal is to illustrate the method
for comparing slopes and intercepts, and to demonstrate that a different perspective can result
compared to ignoring the pretest scores.

11.3 Detecting Heteroscedasticity

Yet another way of establishing dependence between some outcome variable y and some
predictor x is to test the hypothesis that the (conditional) variation of y, given x , does not vary
with x . Among the many methods that have been proposed, most do not perform well in
simulations. Two that do perform well are described in this section.

The better-known regression models, which are routinely used, assume homoscedasticity.
It is not being suggested that the methods in this section be used to justify homoscedastic
techniques. That is, if a test of the assumption of homoscedasticity fails to reject, it is not
recommended that a homoscedastic regression model would then be used. The reason is that
it is unclear when the power of the methods in this section will be high enough to detect a
departure from the usual homoscedastic regression model that is important. Rather, the
methods in this section are intended as a method for establishing that a certain type of
dependence is present. Situations are encountered where the methods in this section reject,
yet methods aimed at testing the hypothesis that the slope parameters are equal to zero
fail to reject. And methods for testing the hypothesis of a zero correlation can fail to reject
as well.

11.3.1 A Quantile Regression Approach

Let

yγ = αγ +βγ x

be the regression line for predicting the γ th quantile of y, given x . The goal is to test

H0 : β.2 = β.8

which represents a type of homoscedasticity. Of course, other quantiles might be used. The
strategy is to choose quantiles different enough to help achieve relatively high power. But if
the quantiles are too close to 0 and 1, controlling the type I error probability can be difficult.
Wilcox and Keselman (2006b) considered several methods and found the following to be best
among those that were considered.
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Compute a bootstrap estimate of the standard error of d = b0.2−b0.8 and label the result s∗d .
Here, B = 100 is used. Then an appropriate test statistic is

T =
d

s∗d
.

Assuming that this test statistic has approximately a standard normal distribution, the actual
type I error probability was found to be less than the nominal level among the situations
considered by Wilcox and Keselman (2006b). But even for n = 100, the actual level can drop
well below the nominal level. (The same problem occurs when using a percentile bootstrap
method.) When testing at the 0.05 level, Wilcox and Keselman suggest using an approximate
critical value given by

q =8−1
(
−0.104
√

n
+0.975

)
,

where 8−1 is the inverse of the cumulative standard normal distribution. That is, reject if
|T | ≥ q .

11.3.2 Koenker’s Method

In terms of controlling the probability of a type I error when testing the hypothesis of
homoscedasticity, Koenker’s (1981) method has been found to perform well in simulations by
Lyon and Tsai (1996) as well as Wilcox and Keselman (2006b). The method begins by fitting
an ordinary least squares regression line. Let ri be the usual residuals (i = 1, . . . ,n). If the
null hypothesis is true, then

σ̂ 2
=

1

n

∑
r2

i

provides an estimate of the common variance. Let A =
∑
(r2

i − σ̂
2)2/n and Ỹ =

∑
Ŷi/n. The

test statistic is

V =

{∑
r2

i (Ŷi − Ỹ )
}2

A
∑
(Ŷi − Ỹ )2

,

which has, approximately, a chi-squared distribution with 1 degree of freedom when the null
hypothesis is true.
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11.3.3 R Functions qhomt and khomreg

The R function

qhomt(x, y, nboot = 100, alpha = 0.05, qval = c(0.2, 0.8), plotit = T, SEED = T, xlab = “X”,
ylab = “Y”)

tests the hypothesis

H0 : β0.2 = β0.8.

The quantiles that are used can be altered via the argument qval. For example, qval=c(0.25,
0.75) would test H0: β0.25 = β0.75. The R function

khomreg(x, y)

performs Koenker’s test.

11.4 Curvature and Half-Slope Ratios

This section describes an approach to dealing with curvature where the strategy is to attempt
to straighten a regression line by replacing the x values with xa for some a to be determined.
Here, the so-called half-slope ratio is used to help suggest an appropriate choice for a.
Another general approach when dealing with curvature is to use some type of nonparametric
regression method described in Section 11.5.

Temporarily consider the situation where there is only one predictor (p = 1), and let m = n/2,
rounded down to the nearest integer. Suppose the x values are divided into two groups: xL ,
the m smallest x values, and xR , the n−m largest. Let yL and yR be the corresponding y
values. For example, if the (x, y) points are (1,6), (8,4), (12,9), (2,23), (11,33), and
(10,24), then the (xL , yL) values are (1,6), (2,23), and (8,4); and the (xR, yR) values are
(10,24), (11,33), and (12,9). That is, the x values are sorted into two groups containing the
lowest half and the highest half of the values, and the y values are carried along.

Suppose some regression method is used to estimate the slope using the (xL , yL) values
yielding say β̂L . Similarly, let β̂R be the slope corresponding to the other half of the data. The
half-slope ratio is H = β̂R/β̂L . If the regression line is straight, then H should have a value
reasonably close to 1. In principle, the method can be extended to p ≥ 1 predictors. But the
practical utility of the method is unclear. One simply chooses a particular predictor, say the
kth, and then divides the vectors of observations into two groups, the first containing the
lowest m values of the kth predictor, and the second containing the n−m highest.
Simultaneously the y values and all of the remaining predictor values are carried along.
That is, rows of data are sorted according to the values of the predictor being considered.
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Next, estimate the p slope parameters for the first group, yielding β̂Lk1, . . . , β̂Lkp, where the
second subscript, k, indicates that the data are divided into two groups based on the kth
predictor. Do the same for the second group of observations yielding β̂Rk1, . . . , β̂Rkp, and the
half-slope ratios are

Hk` = β̂Rk`/β̂Lk`,

k = 1, . . . , p and `= 1, . . . , p. That is, Hk` is the ratio of the estimated regression slopes for
the `th predictor when the data are split using the kth predictor.

It is stressed that the half-slope ratio is an exploratory tool that should be used in conjunction
with other techniques such as the smoothers described in Section 11.5. A practical advantage
is that it might suggest a method of straightening the regression line. In simple regression
(p = 1), it can suggest a choice for a such that the regression line y = β1xa

+β0 gives a better
fit to data, as will be illustrated. However, even when the half-slope ratio appears to be
substantially different from 1, replacing x with xa might have little practical advantage, as
will be seen. Also, the half-slope ratio can be highly misleading when, for example, the usual
linear model is correct but the slope parameters are close to zero.

11.4.1 R Function hratio

The R function

hratio(x,y,regfun=bmreg)

computes the half-slope ratios as just described. As usual, x is an n-by-p matrix containing
the predictors. The optional argument regfun can be any R regression function that returns
the estimated coefficients in regfun$coef. If regfun is not specified, bmreg (the bounded
influence M regression estimator with Schweppe weights) is used.

The function returns a p-by-p matrix. The first row reports the half-slope ratios when the
data are divided into two groups using the first predictor. The first column is the half-slope
ratio for the first predictor, the second column is the half-slope ratio for the second predictor,
and so forth. The second row contains the half-slope ratios when the data are divided into two
groups using the second predictor, and so on.

n Example

Table 11.8 shows some data on the rate of breast cancer per 100,000 women and the
amount of solar radiation received (in calories per square centimeter) within the
indicated city. (These data are also stored in the �le cancer.dat. See Section 1.8.) The
half-slope ratio is estimated to be 0.64 using the default regression function, bmreg.
The estimates of the slope and intercept, based on all of the data, are −0.030 and 35.3.
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Table 11.8: Breast Cancer Rate Versus Solar Radiation

Daily Daily
City Rate Calories City Rate Calories

New York 32.75 300 Chicago 30.75 275
Pittsburgh 28.00 280 Seattle 27.25 270
Boston 30.75 305 Cleveland 31.00 335
Columbus 29.00 340 Indianapolis 26.50 342
New Orleans 27.00 348 Nashville 23.50 354
Washington, DC 31.20 357 Salt Lake City 22.70 394
Omaha 27.00 380 San Diego 25.80 383
Atlanta 27.00 397 Los Angeles 27.80 450
Miami 23.50 453 Fort Worth 21.50 446
Tampa 21.00 456 Albuquerque 22.50 513
Las Vegas 21.50 510 Honolulu 20.60 520
El Paso 22.80 535 Phoenix 21.00 520

n

When the half-slope ratio is between 0 and 1, it might be possible to straighten the regression
line by replacing x with xa , where 0< a < 1, but there is no explicit equation for determining
what a should be. However, it is a simple matter to try a few values and see what effect they
have on the half-slope ratio. When the half-slope ratio is greater than one, try a > 1. If a < 0,
often it is impossible to find an a that gives a better fit to the data (e.g., Velleman and Hoaglin,
1981). In the illustration, the half-slope ratio is less than one, so try a = 0.5. Replacing x with
xa , the half-slope ratio increases to 0.8, and a = 0.2 increases it to 0.9. In this latter case, the
slope and intercept are now estimated to be −1.142 and 46.3. However, a check of the
residuals indicates that using a = 0.2, rather than a = 1, offers little advantage for the data at
hand. This is not surprising, based on a cursory examination of a scatterplot of the data, and
the smoothers in the Section 11.5 also suggest that a = 1 will provide a reasonable fit to the
data. However, in some situations, this process proves to be valuable.

n Example

L. Doi conducted a study on variables that predict reading ability. Two predictors of
interest were TAAST1, a measure of phonological awareness (auditory analysis), and
SBT1, another measure of phonological awareness (sound blending). (The data are
stored in the �le read.dat in columns 2 and 3.) One goal is to predict an individual’s
score on a word identi�cation test, WWISST2 (column 8 in the �le read.dat), and more
generally to understand the association among the three variables. Published papers
typically assume that y = β1x1+β2x2+ ε. The function hratio returns

[,1] [,2]
[1,] -0.03739762 0.8340422
[2,] 0.34679647 -0.9352855
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That is, dividing the data into two groups using the �rst predictor, the half-slope ratio
for the �rst predictor is estimated to be −0.037, and the second predictor has an
estimated half-slope ratio of 0.83. Dividing the data into two groups using the second
predictor, the estimates are 0.35 and −0.93. This suggests that a regression plane might
be an unsatisfactory representation of how the variables are related. (A method for
testing the hypothesis that the regression surface is a plane is described in
Section 11.6.1.)

n

11.5 Curvature and Nonparametric Regression

Roughly, nonparametric regression deals with the problem of estimating a conditional
measure of location associated with y, given the p predictors x1, . . . , x p, assuming only that
this conditional measure of location is given by some unknown function m(x1, . . . , x p). The
problem, then, is estimating the function m. This is in contrast to specifying m in terms of
unknown parameters, where the best-known approach assumes

yi = β0+β1xi1+· · ·+βpxi p+ εi .

There is now a vast literature on estimating m nonparametrically with most methods assuming
that the measure of location of interest is the mean (e.g.. Efromovich, 1999; Eubank, 1999;
Fan & Gijbels, 1996; Fox, 2001; Green & Silverman, 1993; Györfi, Kohler, Krzyzk, & Walk,
2002; Härdle, 1990; Hastie & Tibshirani, 1990). For p = 1 and 2, these techniques provide
useful graphical methods for studying curvature. Complete details about all methods cannot
be covered here. Instead the focus is on a few methods that appear to have considerable
practical value when the focus is on robust measures of location.

11.5.1 Smoothers

Methods for estimating the unknown function m are generally based on what are called
smoothing techniques. The basic idea is that if m(x1, . . . , x p) is a smooth function, then
among n observations, those points near (x1, . . . , x p) should contain information about the
value of m at (x1, . . . , x p). So a crude description of smoothing techniques is that they
identify which points, among n vectors of observations, are close to (x1, . . . , x p), and then
some measure of location is computed based on the corresponding y values. The result is
m̂(x1, . . . , x p), an estimate of the measure of location associated with y at the point
(x1, . . . , x p). The estimator m̂ is called a smoother, and the outcome of a smoothing procedure
is called a smooth (Tukey, 1977). A slightly more precise description of smoothers is that they
are weighted averages of the y values with the weights a function of how close the vector of
predictor values is to the point of interest.

www.elsevierdirect.com



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

WILCOX 14-ch11-533-630-9780123869838 2011/12/6 18:35 Page 559 #27

Chapter 11 More Regression Methods 559

11.5.2 Kernel Estimators and Cleveland’s LOWESS

To elaborate, first consider the case of a single predictor (p = 1) and suppose it is desired to
estimate some measure of location for y given x . Let wi be some measure of how close xi is
to x . Then generally, the estimate of m(x) is taken to be

m̂(x)=
∑

wi yi , (11.7)

and the goal is to choose the wi in some reasonable manner.

Kernel Smoothing

Although many methods aimed at estimating the conditional mean of y, given x , cannot be
covered here, a brief description of a few of these methods might help. The first is called
kernel smoothing. Let the kernel K (u) be a continuous, bounded, and symmetric real function
such that ∫

K (u)du = 1.

An example is the Epanechnikov kernel in Section 3.2.4. Then an estimate of m(x) is given
by Eq. (11.7) where

wi =
1

Ws
K

(
x− xi

h

)
,

Ws =
∑

K

(
x− xi

h

)
,

and h is the span described in Section 3.2.4. Even within the class of kernel smoothers, many
variations are possible. In case it is useful, one of these variations is outlined here; it
represents a very slight modification of the kernel regression estimator in Fan (1993). (In
essence, the description given by Bjerve & Doksum, 1993, is used, but with the span taken to
be min {s, IQR/1.34}.)

Again let K (u) be the Epanechnikov kernel given in Section 3.2.4 and let

h =min(s, IQR/1.34).

Then given x , m(x) is estimated with m̂(x)= b0+b1x , where b0 and b1 are estimated via
weighted least squares with weights wi = K [(xi − x)/h]. A smooth can be created by taking
x to be a grid of points and plotting the results. (The method can be extended to multiple
predictors using the multivariate extension of the Epanechnikov kernel described at the end of
Section 6.9, but often the smooth seems to be a bit lumpy. Altering the span might improve
matters, but this has not been investigated.)
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Cleveland’s LOWESS

Another approach to smoothing was developed by Cleveland (1979) and is generally known
as locally weighted scatter plot smoothing (LOWESS). Briefly, let

δi = |xi − x |.

Next, sort the δi values and retain the f n pairs of points that have the smallest δi values,
where f is a number between 0 and 1 and plays the role of a span. Let δm be the largest δi

value among the retained points. Let

Qi =
|x− xi |

δm
,

and if 0≤ Qi < 1, set

wi = (1−Q3
i )

3,

otherwise set

wi = 0.

Next, use weighted least squares to predict y using wi as weights (cf. Fan, 1993). That is,
determine the values b1 and b0 that minimize∑

wi (yi −b0−b1xi )
2

and estimate the mean of y corresponding to x to be ŷ = b0+b1x . Because the weights (the
wi values) change with x , generally a different regression estimate of y is used when x is
altered. Finally, let ŷi be the estimated mean of y given that x = xi based on the method just
described. Then an estimate of the regression line is obtained by the line connecting the points
(xi , ŷi ) (i = 1, . . . ,n). (For some interesting comments relevant to lowess versus kernel
regression methods, see Hastie & Loader, 1993.)

Cleveland (1979) also discussed a robust version of this method. In effect, extreme y values
get little or no weight, the result being that multiple outliers among the y values have little or
no impact on the smooth. R provides access to a function, called lowess, that performs the
computations. (An outline of the computations can be found in Härdle, 1990, p. 192.) For a
smoothing method that is based in part on L1 regression, see Wang and Scott (1994). (Related
results are given by Fan & Hall, 1994.) For a method based in part on M-estimators, see
Verboon (1993).
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11.5.3 R Functions lplot and kerreg

It is a fairly simple matter to create a plot of the smooth returned by the built-in R function
lowess, which applies Cleveland’s method described in the previous section. But to facilitate
the use of lowess, a function is supplied that creates the plot automatically. It has the form

lplot(x, y, span=0.75, pyhat=F, eout=F, xout=F, outfun=out, plotit=T, expand=0.5,
low.span=2/3, varfun=pbvar, cor.op=F, cor.fun=pbcor, pr=T, scale=F, xlab=“X”,

ylab=“Y”, zlab=“”, theta=50, phi=25, family=“gaussian”, duplicate=“error”,
pc=“*”,ticktype=“simple”),

where the argument span is f. (More than one predictor can be handled using a method
outlined in Section 11.5.13. With two predictors, setting the argument ticktype=“detailed”
will create ticks as done when using a two-dimensional plot.) If the argument pyhat=T and
the number or predictors is less than or equal to 4, the function returns the m̂(xi ) values,
i = 1, . . . ,n. If eout=T, the function first eliminates any outliers among the (xi , yi ) values
using the outlier detection method specified by the argument outfun. If xout=T instead, the
function removes outliers (leverage points) among the xi values only. To suppress the plot, set
plotit=F. (The argument family is relevant only when p = 2; see Section 11.5.13.) The
arguments theta and phi can be used to rotate a three-dimensional plot. The arguments xlab,
ylab, and zlab indicate labels for the x-axis, y-axis, and z-axis, respectively. The argument
varfun is explained in Section 11.9. When dealing with a single predictor, the argument pc
controls how points will be represented in the scatterplot. By default, an * is used. But with
large n , this can make it difficult seeing the regression line, in which case pc=“.” might be
more satisfactory.

The function

kerreg(x,y,pyhat=F,pts=NA,plotit=T,theta=50,phi=25,expand=0.5,
scale=F,zscale=F,eout=F,xout=F,outfun=out,np=100,xlab=“X”,ylab=“Y”,zlab=“Z”,

varfun=pbvar,e.pow=T,pr=T,ticktype=“simple”)

creates a smooth using a slight modification of the method derived by Fan (1993). The
arguments are the same as those used by the function lplot, except the argument np, which
determines how many x values are used when creating the smooth. (Details about the
argument np can be found in the R function locreg.)

11.5.4 The Running Interval Smoother

Now we consider how smoothers might be generalized to robust measures of location. To
help fix ideas, we momentarily focus on the single predictor case (p = 1). One approach to
estimating m and exploring curvilinearity is with the so-called running interval smoother. To
be concrete, suppose the goal is to use the data in Table 11.8 to estimate the 20% trimmed
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mean of the breast cancer rate, given that solar radiation is 390. The strategy behind the
running interval smoother is to compute the 20% trimmed mean using all of the yi values for
which the corresponding xi values are close to the x value of interest, 390. The immediate
problem is finding a rule for determining which y values satisfy this criterion.

Let f be some constant that is chosen in a manner to be described and illustrated. Then the
point x is said to be close to xi if

|xi − x | ≤ f ×MADN,

where MADN is computed using x1, . . . , xn . So for normal distributions, x is close to xi if x
is within f standard deviations of xi . Let

N (xi )= { j : |x j − xi | ≤ f ×MADN}.

That is, N (xi ) indexes the set of all x j values that are close to xi . Let θ̂i be an estimate of
some parameter of interest, based on the y j values such that j ∈ N (xi ). That is, use all of the
y j values for which x j is close to xi . For example, if x3, x8, x12, x19, and x21 are the only
values close to x = 390, then the 20% trimmed mean of y, given that x = 390, is estimated by
computing the 20% sample trimmed mean using the corresponding y values y3, y8, y12, y19,
and y21. To get a graphical representation of the regression line, compute θ̂i , the estimated
value of y given that x = xi , i = 1, . . . ,n, and then plot the points (x1, θ̂1), . . . , (xn, θ̂n) to gain
some indication of how x and y are related. This process will be called a running interval
smoother. (For an alternative approach for creating smooths using M-estimators and trimmed
means based on generalizations of kernel smoothers for means, see Härdle, 1990, Chapter 6.
Also see Hall & Jones, 1990.)

A practical problem is choosing f . If there are no ties among the x values, and if f is chosen
small enough, the running interval smoother produces a scatterplot of the points. If f is too
large, the horizontal line ŷ = θ̂ is obtained where θ̂ is the estimate of θ using all n of the y
values. The problem, then, is to choose f large enough so that the resulting plot is reasonably
smooth, but not too large so as to mask any nonlinear relationship between x and y. Often the
choice f = 1 gives good results, but both larger and smaller values might be better,
particularly when n is small. As with all smoothers, a good method is to try some values
within an interactive-graphics environment, the general strategy being to find the smallest f
so that the plot of points is reasonably smooth.

The smoother is first illustrated with some data generated from a known model, to
demonstrate how well it performs, and then some additional illustrations are given using data
from actual studies. For convenience, it is again assumed that the goal is to predict the 20%
trimmed mean of y given x . First consider the situation where both x and ε are standard
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Figure 11.2: Various smoothers, n = 20, f = 1. The straight line is based on a spline method and
gives the best results in this instance. But in other situations, alternative smoothers give superior
results.

normal, and β1 = β0 = 0. Then the correct regression line is y = 0. Figure 11.2 shows the
running interval smoother, plus several other smoothers for n = 20 points, where both x and ε
were generated from standard normal distributions. The solid line (labeled rl trim) is the
running interval smoother. Note that the running interval smoother does a relatively good job
of capturing the true regression line. The additional smoothers that come with R include a
kernel smoother, a super smoother (labeled supsmu), Cleveland’s method described in
Section 11.5.2, and a smoothing spline. (Super smoothers and smoothing splines are discussed
in manuals, but the details go beyond the scope of this book.) Of course, this one example is
not convincing evidence that the running interval smoother has practical value.

A challenge for any smoother is correctly identifying a straight line when in fact the
regression line is straight and n is small. Figure 11.3 illustrates some of the problems that can
arise using both the running interval smoother and lowess, described in Section 11.5.2. The
upper left panel of Figure 11.3 is based on the same data used in Figure 11.2, but only lowess
and the running interval smoother are shown. The upper right panel of Figure 11.3 is the same
as the upper left, but two of the y values were altered so that they are now outliers. Note that
lowess suggests a curved regression line, although the curvature is small enough that it might
be discounted. The lower left panel of Figure 11.3 shows the same data as in the upper right
panel, only the furthest point to the right is moved to (x, y)= (−2.5,−2.5). That is, both x
and y are outliers. The curvature in lowess is more pronounced, but even the running interval
smoother suggests that there is curvature. This is because the largest x value is so far removed
from the other x values, the corresponding trimmed mean of y is based on only one value,
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Figure 11.3: A comparison of a running interval smooth versus some smoothers for means,
n = 20. The upper left panel shows the running interval smooth versus lowess. The upper right
panel is the same as the upper left, but with two of the y values increased so that they are
outliers. The lower left panel is the same as the upper right, but now with three outliers and one
leverage point. The lower right panel shows the same points as the lower left with lowess
replaced by a kernel smooth.

y =−2.5. One obvious way of dealing with this problem is to check for any outlying or
isolated x values, remove them, and see what effect this has on the smoother. The lower right
panel of Figure 11.3 shows what happens when lowess is replaced with a kernel smoother
used by R.

The left panel of Figure 11.4 shows a running interval smooth, with f = 0.75, based on
n = 20 points generated from the model y = x2

+ε, with both x and ε having standard normal
distributions. (Using the default f = 1 is a bit less satisfactory.) The right panel is based on
n = 40 and f = 1. The dashed line in both panels is the true regression line, y = x2. The
solid, ragged line is the estimate of the regression line using the running interval smoother.
(For more about the running interval smoother, see Wilcox, 1995f.)

Figure 11.5 shows the results of applying the smoother to various data sets. The first
scatterplot is based on data from a study of diabetes in children (Sockett et al., 1987). The
upper left panel of Figure 11.5 shows the age in months versus the logarithm of serum
C-peptide. Also shown is the smoother resulting from the lowess command in R. As is
evident, they give similar results. One interesting feature of the data is that the half-slope ratio
is approximately zero, so a regression model of the form ŷ = β1xa

+β0, for some
appropriately chosen a, is not very satisfactory.

The upper right panel of Figure 11.5 shows data from a reading study where one of the goals
is to consider how well a measure of phonological awareness (sound blending as measured by

www.elsevierdirect.com



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

WILCOX 14-ch11-533-630-9780123869838 2011/12/6 18:35 Page 565 #33

Chapter 11 More Regression Methods 565

x

y

x

y

-1.5 -1.0 -2 -1 0 1 2-0.5 0.0 0.5 1.0 1.5

-1 -2

0

1

2

0

2

4

Figure 11.4: Two smooths where data were generated according to the model y = x2 + ε. The
left panel is with a span of f = 0.75 and the right is with f = 1.
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Figure 11.5: The upper left panel is a smooth for predicting the logarithm of C-peptide with age.
The upper right panel is a smooth for predicting WWISST2 with SBT1. The lower left panel is a
smooth of a Gesell score with age. And the lower right panel is a smooth of the standard
deviation of log(C-peptide) versus age.

the variable SBT1 in the data file read.dat) predicts a word identification score (WWISST2). It
appears that a straight line does a reasonably good job of capturing the relationship between
the two random variables being investigated.
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The lower-left panel of Figure 11.5 shows a scatterplot of data reported by Mickey, Dunn, and
Clark (1967) for n = 21 children where the goal is to predict a child’s Gesell adaptive score
based on age in months when a child utters its first word. There is a suggestion that the
regression line decreases sharply for older children, but there are too few observations to be
sure. Clearly the two largest x values are outliers. If the outliers are eliminated, the running
interval smoother returns a nearly flat line for children 12 months old and younger, but for
older children a decreasing regression line appears again. (The details are left as an exercise.)
Of course, with only 19 observations left, most of which correspond to children under the age
of 12 months, more data are needed to resolve this issue.

An appeal of the running interval smoother is its versatility. Consider the diabetes data in the
upper left panel of Figure 11.5. The lower right panel of Figure 11.5 shows a running interval
smoother where the goal is to predict the standard deviation of the log C-peptide values based
on the child’s age. Note that the standard deviation drops dramatically, until about the age
of 7, and then increases rapidly. Based on results in Chapter 10, this suggests that even if the
error term has a normal distribution, OLS regression might be relatively inefficient compared
to various robust estimators.

In some situations, particularly when the sample size is small, the running interval smooth can
be somewhat ragged compared to other smoothers. An approach that might be used to help
correct this problem is a bootstrap method called bagging (e.g., Breiman, 1996a,b; Bühlmann
& Yu, 2002; Davison et al., 2003). In the present context, the method begins by applying the
running interval smoother yielding, say, m(x |dn), where dn = (xi , yi ),
i = 1, . . . ,n. That is, m(x |dn) is some measure of location for y, given x , that is based on the
n pairs of observations that are available. Generate a bootstrap sample by randomly sampling,
with replacement, n pairs of points from dn . Label the results d∗. Repeat this B times yielding
d∗1 , . . . ,d

∗

B . Then the bagged estimate of m(x) is

m̂(x |d)=
1

B

B∑
b=1

m(x |d∗b ).

That is, use the average of the bootstrap estimates of m(x).

11.5.5 R Functions runmean, rungen, runmbo, and runhat

Four R functions are supplied for applying the running interval smoother. The first has the
form

runmean(x, y, fr=1, tr=.2, pyhat=F, eout=F, outfun=out, xout=F, xlab=“x”, ylab=“y”)

and is designed to estimate the trimmed mean of y corresponding to xi , i = 1, . . . ,n. The
argument fr is f which, if unspecified, defaults to 1, and the argument tr is the amount of
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trimming which defaults to 0.2. (Also see the R function rplot in Section 11.5.12.) The
function automatically creates a scatterplot of the data plus a smooth using the running
interval method. If you want to use something other than the default value for f , which is
used to determine which of the xi values is close to a given point, set fr to the desired value.
For example, the R command runmean(x,y,fr=0.75) would use f = 0.75 when creating the
running interval smoother. If unsure, first try fr=1, and if the line seems smooth and straight,
try fr= 0.75 to see what happens. Similarly, the command runmean(x,y,tr=0.1) would cause
the running interval smoother to use the 10% trimmed mean. The command runmean
(x,y,tr=0.1,plotit=F) would suppress the plot of the smooth. Most of the smooths in
Figures 11.1–11.4 were created in this manner. If the argument pyhat is set to T (for true), the
function returns the n values m̂(xi ), i = 1, . . . ,n. If eout=T is used, the function first
eliminates outliers among the (xi , yi ) values using the outlier detecting method specified by
the argument outfun, and then a smooth is created based on the data that remain. If xout=T,
the function checks for outliers among the x values only.

n Example

Figure 11.6 shows the plot created by runmean using f = 1 with the experimental group
of the Pygmalion study described in Section 11.2.1. Notice that the regression line is
fairly straight for the bulk of the data, but the left end of the line curves up. It is evident
that this is due to the two lowest x values. Because there are so few x values in this
region, the smooth might be misleading for x ≤ 50. It is left as an exercise to try
f = 0.75.
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Figure 11.6: A smooth of the pygmalion data for the experimental group.
n
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The function rungen is supplied in case it is desired to estimate some other measure of
location associated with y. It has the form

rungen(x,y,est=onestep,fr=1,plotit=T,scat=T,pyhat=F,eout=F,xout=F, outfun=out, . . .).

The argument est can be any R function. If unspecified, it defaults to the modified one-step
M-estimator. For example, to use the Harrell–Davis estimate of the median, use the command
rungen(x,y,est=hd), while the command rungen(x,y) would use the one-step M-estimator
instead. Again, the argument fr is the span f which defaults to 1. The last argument, . . . , can
be any additional arguments required by the function est. For example, the command
rungen(x,y,est=hd,q=0.25) would result in a running interval smoother that predicts the 0.25
quantile of y given x . The command rungen(x,y,est=mean,tr=0.2) would result in a running
interval smoother based on the 20% trimmed mean. That is, rungen can create the smooth
produced by runmean. The function runmean is supplied merely for convenience. The
function creates a scatterplot of the data plus a smooth unless plotit=F is used. The argument
scat defaults to T for true, meaning that a scatterplot of the data will be created. This adds
perspective. To avoid the scatterplot, use scat=F. This might be done, for example, when the
goal is to see how a measure of scale associated with y varies with x. Care must be taken
because scat=F means that a plot of the smoothed values versus x is created, and this might
affect one’s perspective on the degree of curvature. (See Exercise 14 at the end of this
chapter.)

A smoother does not provide an explicit equation for predicting y given x . The functions
runmean and rungen can be used to compute m̂(xi ), but they do not report values of m̂(x) for
some x 6= xi , for all i = 1, . . . ,n. So the function

runhat(x,y,pts=x,est=onestep,fr=1, . . .)

is provided for computing m̂(x) for each of the values stored in the vector pts. The argument
est defaults to the function onestep, which computes the one-step M-estimator. If, for
example, it is desired to compute m̂(x) for x = 1 and 3, using a 20% trimmed mean, the
command runhat(x,y,pts=c(1,3),mean,tr=0.2) accomplishes this goal.

The function

runmbo(x,y,fr=1,est=tmean,pyhat=F,eout=F,outfun=out,plotit=T,xout=F,
nboot=40,SEED=T, . . .)

can be used to produce a bagged version of the running interval smooth. For small sample
sizes, this version of the running interval smooth seems preferable to using the function
runmean.
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11.5.6 Skipped Smoothers

Consider any smooth derived with the goal of estimating the conditional mean of y given x .
Of course, another approach to robust smoothing is simply to eliminate any outliers and then
apply this smooth to the data that remain. One variation is to search for outliers among the x
values only, eliminate any point (xi , yi ) where xi is flagged an outlier, and then compute a
smooth with the data that remain. Another approach is to eliminate any point that is an outlier
based on one of the multivariate outlier detection methods in Section 6.4. That is, search for
outliers among the points (xi , yi ), i = 1, . . . ,n, in contrast to searching for outliers among the
xi values only. The functions lplot and kerreg, in Section 11.5.3, contain both approaches.
Setting the argument xout to T (for true), these functions eliminate any points where xi is
flagged an outlier. Setting eout=T, now the function searches for points (xi , yi ) that are
outliers.

11.5.7 Smoothers for Estimating Quantiles via Splines

Another approach to nonparametric regression is based on what are called splines. They are a
compromise between polynomial regression, which has been criticized due to the global
nature of its fit, and other smoothers that have an explicit local nature. Regression splines
compromise by employing a piecewise polynomial. The region that defines the pieces are
separated by a sequence of knots or breakpoints. (For a summary of data-driven methods for
choosing the knots, see for example Hastie & Tibshirani, 1990, Chapter 9.) A common goal is
to force the piecewise polynomials to join smoothly at the knots. One popular choice consists
of piecewise cubic polynomials constrained to be continuous and to have continuous first and
second derivatives at the knots. Informal comparisons with other smoothers suggest that
certain variations of methods based on splines are not quite as satisfactory as other smoothers
that might be used (Härdle, 1990). However, some variations seem to have practical value.
One such variation, called constrained B-spline smoothing (COBS), provides a way of
dealing with quantiles (e.g., He & Ng, 1999; Koenker & Ng, 2005; Ng, 1996). A brief outline
of the strategy behind COBS is provided here. Readers interested in the many computation
details are referred to Koenker and Ng (2005); see in particular Section 4 of their paper. (For
other approaches when estimating quantiles, see for example Doksum & Koo, 2000.) The
Koenker–Ng method improves on a computational method studied by He and Ng (1999) and
builds upon results in Koenker (1994).

Let ρτ (u)= u(τ − I (u < 0), where the indicator function I (u < 0)= 1 if u < 0; otherwise
I (u < 0)= 0. The goal is to estimate the τ quantile of y given x by finding a function g(x)
that minimizes ∑

ρτ (yi − g(xi ))+λ

∫
|g′′|dx
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based on the random sample (x1, y1), . . . , (xn, yn), where λ is a scalar that controls
smoothness. By default, COBS uses λ= 0 with quadratic B-splines and the number of knots
chosen via a Schwartz-type information criterion. B-splines refer to a particular class of basis
functions that offer numerical advantages. For general results on B-splines, see for example
de Boor (1978).

11.5.8 R Function qsmcobs

The R package COBS performs the computations associated with the smoother just described.
In case it helps, the R function

qsmcobs(x, y, qval = 0.5, xlab = “X”, ylab = “Y”, FIT = T, pc = “.”, plotit = T, xout = F,
outfun = out, . . .)

is provided that plots the smooth (assuming that the R package cobs has been installed). The
argument qval determines the quantile that will be used and defaults to the median. There are
two options regarding how the plot is created. The default approach, when FIT=T, is to
estimate the quantiles of y, given x , using the predict command associated with the R
command cobs. The second, when the argument FIT=F, estimates the quantile of y for each
observed xi and plots the results.

It is noted that when the goal is to predict some quantile of y, rather than use qsmcobs,
another possibility is to use the R functions rplot or rplotsm, which are described in
Section 11.5.12. The relative merits of using these two functions, rather than qsmcobs, have
not been studied. Yet another option when dealing with p > 1 predictors, when dealing with
quantiles, is to use the R function runpd, which is described in Section 11.5.12 as well.

11.5.9 Special Methods for Binary Outcomes

When y is binary, now m(x) is taken to be the (conditional) probability that y = 1 given x .
Smoothers based on means can again be used, but some smoothers cannot be recommended.
Examples are Cleveland’s LOWESS estimator and the kernel estimator in Section 11.5.2.
Both of these estimators can yield an estimate of m(x) that is substantially smaller than 0 or
larger than 1. However, there are estimators that deal explicitly with binary outcomes that
guarantee that 0≤ m(x)≤ 1. One relevant study is by Copas (1983). Hosmer & Lemeshow
(1989, p. 85) suggest using an estimator that is motivated in part by general results in Kay and
Little (1987). Here, a slight modification of the Hosmer–Lemeshow estimator is used. The
estimate of m(x) is taken to be

m̂(x)=

∑
wi yi∑
wi

, (11.8)
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where

wi = Ihe−(xi−x)2,

and Ih = 1 if |xi − x |< h, otherwise Ih = 0. Also, unless stated otherwise, it is assumed that
the x values have been standardized by subtracting the median and dividing by MADN. That
is, if the observed predictors are X1, . . . , Xn , use xi = (X i −M)/MADN. If the predictors are
not standardized, a change in scale can have a major impact on m̂ yielding highly inaccurate
and misleading results. The choice h = 1.2 appears to perform relatively well. Yet another
approach is to use the running interval smoother in Section 11.5.4 with the amount of
trimming set equal to zero.

Other variations have been studied by Signorini and Jones (2004) that are based in part on
kernel density estimators. Let f (x) be the probability density function of x , given that y = 1,
and let g(x) be the density given that y = 0. One of the estimators they studied has the form

m̂(x)=
n1 f (x)

n1 f̂ (x)+n0ĝ(x)
, (11.9)

where n j is the number of times y = j , j = 0, 1. (So, for example, n1 is the observed number
of successes.) Here, f̂ (x) and ĝ(x) are taken to be adaptive kernel estimators described in
Section 3.2.4.

A limitation of Eq. (11.8) is that it can handle only a single predictor. A slight variation of this
estimator, which can handle more than one predictor, is to take

wi = Ihe−di, (11.10)

where di is the squared Mahalanobis distance between xi and x, but with the usual covariance
matrix replaced by the MVE estimator. That is,

di = (xi −x)′S−1(xi −x),

where S is the MVE measure of scatter. When using Eq. (11.10), now h = 2 appears to be
good choice for general use. Of course, the MVE estimator could be replaced by some other
robust measure of scatter, but the practical advantages of doing so are unknown.

None of the estimators listed in this section dominate in terms of mean squared error and bias,
but the estimator given by Eq. (11.10) appears to perform relatively well with the running
interval another good choice (Wilcox, 2010e).
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11.5.10 R Functions logrsm bkreg, logSM, and rplot.bin

The R functions in this section are designed with the explicit goal of creating a smooth when
the outcome variable y is binary. The function

logrsm(x, y, fr = 1.2, plotit = T, pyhat = F,xlab=“X”,ylab=“Y”,STAND=T,
xout=F,outfun=outpro, . . .)

computes the smooth given by Eq. (11.8), where the argument fr is h. The argument STAND
defaults to T for true, meaning that x will be standardized by subtracting the median and then
dividing my MADN.

The R function

bkreg(x, y, kerfun = akerd, pyhat = F, plotit = T, xlab =“X”, ylab = “Y”, zlab = “Z”,
xout = F, outfun = outpro, pr = T, theta = 50, phi = 25, duplicate = “error”, expand = 0.5,

scale = F, . . .)

uses a variation of the estimator given by Eq. (11.9). By default, the adaptive kernel density
estimator is used, but other kernel density estimators can be used via the argument kerfun.
Unlike logrsm, bkreg can be used with more than one predictor. Limited results suggest that
bkreg offers little advantage over other estimators in terms of mean squared error and bias,
and situations arise where the reverse is true. With more than one predictor, the function

logSM(x,y,pyhat=F,plotit=T,xlab=“X”,ylab=“Y”,
zlab=“Z”,xout=F,outfun=outpro,pr=T,theta=50,phi=25,duplicate=“error”,

expand=0.5,scale=F,fr=2, . . .)

applies the method based on Eq. (11.10) and appears to be a relatively good choice when y is
binary. The argument fr corresponds to h in Eq. (11.10).

Finally, the R function

rplot.bin(x, y, est = mean, scat = T, fr = 1.2, plotit = T, pyhat = F, efr = 0.5, theta = 50,
phi = 25, scale = F, expand = 0.5, SEED = T, nmin = 0, xout = F, outfun = out, eout = F,

xlab = “X”, ylab = “Y”, zlab =“ ”, pr = T, duplicate = “error”, zscale = T, . . .)

uses the running interval smoother. It is essentially the same as the R function rplot, but for
convenience it is designed specifically for situations where y is binary.
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11.5.11 Smoothing with More than One Predictor

The running interval smoother can be generalized to more than one predictor by replacing
MADN with the minimum volume ellipsoid estimate of scatter, M, introduced in Chapter 6,
and by measuring the distance between xi and x j with

Di j =

√
(xi −x j )′M−1(xi −x j ).

When trying to predict y, given xi , simply compute the trimmed mean of all y j values such
that x j is close to xi . More formally, compute the trimmed mean of all the y j values for which
the subscript j satisfies Di j ≤ f . The choice f = 1 or 0.8 often gives good results. When
there are only two predictors, adjustments can be made as in the previous subsection. That is,
start with f = 1, generate a graph of the three-dimensional smooth, and try other choices
for f to see how the graph is affected. (For p = 2 and when estimating quantiles, also see He,
Ng, & Portnoy, 1998.)

To provide some indication of how well the method performs, first suppose y = x1+ x2+ ε.
The left panel of Figure 11.7 shows a smooth based on f = 1 and n = 20 observations, where
x1, x2, and ε all have a standard normal distribution. As can be seen, the shape of the
regression plane is captured reasonably well. The right panel of Figure 11.7 shows a smooth
when y = x2

1 + x2+ ε, otherwise the situation is the same as before. Again the shape of the
regression surface is captured. Of course, it is not being suggested that the correct surface is
always reflected with only 20 points. Even with only one predictor, a smooth might suggest
there is some curvature when data are generated from a straight line. Also, any smooth might
be unreliable for extreme x1 and x2 values simply because there might be few points available
for estimating the trimmed mean of y.

A possible concern with using Di j , a robust analog of Mahalanobis distance, is that an
ellipsoid is being used to identify the points close to xi . This might suffice, but a more flexible
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Figure 11.7: Illustrations of how runm3d performs under normality with a small sample size.
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approach is to use projection distances instead. That is, use Approximation A1 in
Section 6.2.3.

A criticism of the running interval smoother is that with a small sample size, the regression
surface can be relatively ragged when it should be smooth. One way of improving the method
is to apply the bootstrap bagging method as described at the end of Section 11.5.4.

11.5.12 R Functions runm3d, run3hat, rung3d, run3bo, rung3hat, rplot,
rplotsm, and runpd

R functions are supplied for applying the running interval smoother when there is more than
one predictor. The R function designed for trimmed means has the form

runm3d(x,y,theta=50,phi=25,fr=0.8,tr=0.2,plotit=T,pyhat=F,nmin=0,
scale=F,xout=F,outfun=out,ticktype=“simple”).

Again, fr is the value of the span, which defaults to 1, and tr is the amount of trimming which
defaults to 0.2. For a three-dimensional plot, setting the argument ticktype=“detailed” will
create ticks as done when creating a two-dimensional plot. The function returns the estimated
trimmed mean of y for each of the n vectors of predictors stored in the n-by-p matrix, x. If the
data are not stored in an R variable having matrix mode, the function prints an error message
and terminates. When x is an n-by-2 matrix, the function automatically plots the estimated
regression surface. To avoid the plot, set the argument plotit=F.

The argument nmin can be used to modify how the regression surface is estimated. By
default, nmin is 0 meaning that the regression surface is estimated using all n rows of x. If, for
example, nmin=2, the regression surface is estimated using only those points xi for which the
number of points close to xi is greater than 2. Put another way, the regression surface is
estimated using only those points for which the sample trimmed mean of y is based on more
than nmin values. Setting the argument xout=T eliminates outliers among the x values before
creating the plot, and eout=T causes outliers among the (x, y) to be removed.

When there is no association, and the regression surface is a flat, horizontal plane, using the
default scale=F typically gives the best visual representation. But when there is an
association, often scale=T provides a better perspective. The arguments theta and phi control
the orientation of the plot. The argument theta controls the azimuthal direction and phi the
colatitude. The left graph in Figure 11.8 shows a plot of y = x1+ x2 using the default values
for theta and phi. The right panel is the same plot but with theta=20. (Changing the argument
phi tilts the plot forward or backwards.)
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Figure 11.8: An illustration of what happens when the argument theta is altered in the R function
runm3d.

Like runmean, runm3d can return m(xi ), i = 1, . . . ,n, but it is not set up to return m(x) for
some x 6= xi , for all i = 1, . . . ,n. To evaluate m(x) for any x, the function

run3hat(x,y,pts,fr=0.8,tr=0.2)

is provided. The arguments are the same as those used by runm3d except for the argument pts
which indicates the x values for which m(x) is to be computed; pts is a matrix having p
columns. So if pts contains ` rows, ` predicted values are returned in the R variable $rmd.
The number of values used to estimate y is stored in $nval. That is, when predicting y given
x, $nval is the number of y j values for which the corresponding x j value satisfies
D j =

√
(x−x j )′M−1(x−x j )≤ f .

The R function

rung3d(x, y, est = onestep, fr = 1, plotit = T, theta = 50, phi = 25, pyhat = F, expand = 0.5,
scale = F, zscale = T, nmin = 0, xout = F, outfun = out, SEED = T, xlab = “X”, ylab = “Y”,

zlab = “ ”, pr = T, duplicate = “error”, ticktype = “simple”, . . .).

applies the running interval smoother using any location estimator specified by the argument
est. If unspecified, it defaults to the one-step M-estimator using Huber’s 9. The arguments x,
y, fr, plotit, and nmin are the same as those in runm3d. The final argument, . . ., can be any
additional arguments required by est. For example, the command rung3d(x,y,est=hd,q=.4)
would use the Harrell–Davis estimate of the 0.4 quantile.

The function rung3hat can be used to estimate some measure of location associated with y,
given x, when there is interest in some measure of location other than the trimmed mean.
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It has the form

rung3hat(x,y,est=onestep,pts,fr=1, . . .).

The arguments are the same as those used by run3hat except for the argument est, which
indicates the measure of location to be used, and the argument . . ., which can be any additional
arguments required by est. Like run3hat, est defaults to the modified one-step M-estimator.

n Example

If tp is a 2-by-3 matrix with the �rst row equal to zero and the second equal to 1, the
command run3hat(x,y,est=onstep,pts=tp) returns two values in $rmd: the predicted
one-step M-estimate of y given that x is equal to (0,0,0), and the predicted value when x
is equal to (1,1,1). The function also returns, in the R variable $nval, the number of y
values used to compute the measure of location. The �rst value in $nval is the number of
predictors that are close to (0,0,0), and the second value is the number of predictors
close to (1,1,1). For example, if the �rst value in nval is 8, there were eight points close
to (0,0,0), which in turn means that the predicted value of y is based on eight values as
well.

n

The function

run3bo(x, y, fr = 1, est = tmean, theta = 50, phi = 25, nmin = 0, pyhat = F, eout = F,
outfun = out, plotit = T, xout = F, nboot = 40, SEED = T, expand = 0.5, scale = F,

xlab = “X”, ylab = “Y”, zlab = “”, ticktype = “simple”, . . .)

can be used to create a bagged version of the running interval smoother; see the end of
Section 11.5.4. This function can give substantially better results, compared to runm3d, when
the sample size is relatively small.

The functions just described assume p > 1. For convenience, the functions

rplot(x, y, est = tmean, scat = T, fr = NA, plotit = T, pyhat = F, efr = 0.5, theta = 50,
phi = 25, scale = F, expand = 0.5, SEED = T, varfun = pbvar, nmin = 0, xout = F,

outfun = out, eout = F, xlab = “X”, ylab = “Y”, zlab = “ ” pr = T, duplicate = “error”,
ticktype=“simple”, . . .)

and

rplotsm(x, y, est = tmean, fr = 1, plotit = T, pyhat = F, nboot = 40, atr = 0, nmin = 0,
outfun = out, eout = F, xlab = “X”, ylab = “Y”, scat = T, SEED = T, expand = 0.5,

scale = F, varfun = pbvar, pr = T, ticktype=“simple”, . . .)
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are supplied to handle the general case p ≥ 1. The function rplot calls rungen if p = 1 or
rung3d otherwise. The arguments for rplot are the same as rungen or rung3d. The function
rplotsm also handles p ≥ 1, but it computes a bagged version of the smooth by calling
runmbo when p = 1 and run3bo otherwise. The only difference from the separate functions is
that both rplot and rplotsm use a 20% trimmed mean by default. (That is, the argument
est=tmean is used.) To use a one-step M-estimator, for example, set est=onestep.

n Example

This example illustrates that a smooth, based on bagging, can make a practical
difference. Using R, 50 values were generated from a standard normal distribution for
both x and ε and y = x+ ε was computed. Then a smooth of the conditional variance
of y, given x , was created with the command rplot(x,y,est=var,scat=F). The result is
shown in the left panel of Figure 11.9. Then a bagged version of the smooth was created
with the command rplotsm(x,y,est=var,scat=F) and the result is shown in the right
panel of Figure 11.9. As is evident, the bagged version gives a much more accurate
indication of the conditional variance of y given x .
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Figure 11.9: The left panel shows a smooth of y, given x, where the conditional variance of y,
given any x, is one. The right panel shows a bagged version of the smooth created by the
function rplotsm.
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When dealing with p > 1 predictors, the R functions previously described in this section
determine which points are close to some specified x using a robust analog of Mahalanobis
distance based on the MVE covariance matrix. So the closest points to x are based on
ellipsoids. As noted in the previous section, a more flexible approach to identifying the closest
points is to use projection distances instead. This is done by the R function

runpd(x, y, pts = x, est = tmean, fr = 0.8, plotit = T, pyhat = F, nmin = 0, scale = F,
expand = 0.5, xout = F, outfun = out, pr = T, xlab = “X1”, ylab = “X2”, zlab = “ ”,

theta = 50, phi = 25, duplicate = “error”, MC = F, . . .).

The function runpd uses the R function

pdclose(x, pts = x, fr = 1, MM = F, MC = F)

to determine which points stored in x are close to the points stored in the argument pts.

It was noted in Section 11.5.8 that an alternative to COBS, when the goal is to predict some
quantile of y, given x , can be accomplished with the R functions rplot and rplotsm. For
instance, setting the argument est=hd would use the Harrel–Davis estimator, or est=qest
would use a single order statistic to estimate the quantile of interest. For example, the
command

rplot(x,y,est=hd,q=.25)

would plot the smooth for estimating the 0.25 quantile of y given x . Note that these two
functions are capable of handling situations where there are p > 1 predictors, in contrast to
COBS, which is limited to p = 1.

11.5.13 LOESS

There is an extension of the smoother lowess (described in Section 11.5.2) to multiple
predictors that was derived by Cleveland and Devlin (1988); it can be applied with the
function loess which comes with R. The R function lplot, described in Section 11.5.3, uses
loess to create a plot when p = 2. Like lowess, the goal is to estimate the conditional mean of
y, but unlike lowess (which handles p = 1 only), when using the default settings of the
function, a single outlier can grossly distort the estimate of the regression surface and
nonnormality can greatly influence the plot. One way of addressing this problem is to set the
argument family=“symmetric” when using the function lplot. Another possibility is to
eliminate all outliers by setting the argument eout=T and use the default value for the
argument family.
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Figure 11.10: An illustration of how nonnormality might affect smooths created by lowess. The
left panel shows a smooth using the default settings of the function lplot. The right panel is a plot
of the same data, but with outliers removed by setting the argument eout=T.

n Example

As an illustration, n = 100 points were generated from the model y = x1+ x2+ ε, where
x1 and x2 are independent standard normal random variables and ε has a g-and-h
distribution with g = h = 0.5. The left panel of Figure 11.10 shows the plot created by
lplot using the default settings, and the right panel is the plot with eout=T, which
eliminates all outliers before creating the plot.

n

n Example

Using the reading data, with the two independent variables taken to be TAAST1 and
SBT1 (which are measures of phonological awareness and stored in columns 2 and 3
of the �le read.dat), and the dependent variable taken to be OCT2 (a measure of
orthographic ability and stored in column 10), Figure 11.11 shows an estimate of the
regression surface using four different smoothers. The upper left graph was created by
lplot using the default values for the arguments. The upper right graph was created by
runm3d, again using the default values. The lower left graph was created by lplot but
with eout=T so that outliers are eliminated before creating the smooth. The lower right
graph was created by runm3d but with fr=1.1, to get a smoother estimate, and xout=T
to eliminate any outliers among the independent variables.

n
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Figure 11.11: Four different smooths based on the reading data.

n Example

To illustrate run3hat, again using the reading data, suppose it is desired to estimate
WWISST2 (a word identi�cation score stored in column 8) when TASST1 is 15 and
SBT1 is 8. Then there is `= 1 point of interest, so store the values 15 and 8 in any
1-by-2 matrix. For example, the R command val=matrix(c(15,8),1,2) could be used.
Assuming the values of the predictors are stored in the R variable x, and the WWISST2
values are stored in y, the command run3hat(x,y,val) returns the value 106.2 in the R
variable $rmd. That is, the estimated 20% trimmed mean of WWISST2, given that
TASST1 is 15 and SBT1 is 8, is equal to 106.2. If instead it is desired to compute ŷ for
the points (15, 8) and (15, 9), enter the command val=matrix(c(15,8,15,9),2,2,
byrow=T). Then the �rst row of the matrix val contains (15, 8), the second row
contains (15, 9), and the command runm3hat(x,y,val) returns the values 106.2 and
114.0, which are stored in the R variable $rmd.

n

n Example

Kyphosis is a postoperative spinal deformity. R has built-in data, stored in the R variable
kyphosis, reporting the presence or absence of kyphosis versus the age of the patient, in
months, the number of vertebrae involved in the spinal operation, and a variable called
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Figure 11.12: Four smooths based on the kyphosis data.

start, which is the beginning of the range of vertebrae involved. Suppose it is desired to
estimate the probability of kyphosis based on age and the number of vertebrae involved.
The function runm3d accomplishes this goal by setting the argument tr equal to zero, or
the function rplot.bin could be used. The top two graphs in Figure 11.12 show the
resulting estimate of the regression surface using runm3d (with tr=0) and lplot (shown
on the right). The bottom two graphs were again created by runm3d and lplot, but both
functions used xout=T to eliminate any outliers among the independent variables.
(Three outliers were found using the MVE method.) Also, runm3d used fr=1.1 to
smooth the plot. (Standard logistic regression is typically used when y is binary. See
Section 10.16 for some robust alternatives.)

n

11.5.14 Other Approaches

Yet another approach when dealing with two or more predictors is to use what is called a
generalized additive model. That is, assume that

y = β0+

p∑
j=1

g j (x j )+ ε (11.11)
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where g1(x1), . . . , gp(x p) are unknown functions to be estimated based on the available data.
This is in contrast to assuming

y = g(x1, . . . , x p)+ ε. (11.12)

A concern about the more general model given by Eq. (11.12) is that, when using various
kernel smoothers to estimate the (conditional) mean of y, the so-called curse of
dimensionality comes into play: neighborhoods with a fixed number of points become less
local as the dimensions increase (Bellman, 1961). Regardless of the extent Eq. (11.12)
improves upon Eq. (11.11), the additive model provides an interesting generalization of the
usual linear model yi = β0+β1xi1+ . . .+βpxi p+ εi , when testing hypotheses and trying to
gain insight into any associations that might exist. (Illustrations are given in Section 11.6.)

When dealing with robust measures of location, the generalized additive model given by
Eq. (11.11) can be fit to data using the running interval smoother in conjunction with the
so-called backfitting algorithm (e.g., Friedman & Stuetzle, 1981). More generally, virtually
any smoother can be used, including the many smoothers designed specifically for means.
The backfitting algorithm is applied as follows. Set k = 0 and let g0

j be some initial estimate

of g j . Here, g0
j = S j (y|x j ), where S j (y|x j ) is the running interval smooth based on the j th

predictor, ignoring the other p−1 predictors that are available. Next, iterate as follows.

1. Increment k by 1.
2. For each j , j = 1, . . . , p, let

gk
j = S j (y−

∑
`6= j

gk−1
` |x j ).

3. Repeat steps 1 and 2 until convergence.

(For general theoretical results on the backfitting algorithm, see Buja, Hastie, & Tibshirani,
1989.)

Finally, estimate β0 with

b0 = m(y−
∑

gk
j ),

where m indicates the measure of location used when computing the smooths. R contains
functions that estimate the generalized additive model given by Eq. (11.11) when the goal is
to estimate the mean of y. Again, when the goal is to get a more robust version of these
methods, a simple approach is to remove any outliers before using these R functions.

Methods have been derived that are blend of both a parametric model and a nonparametric
smoother (e.g., Ruppert, Wand, & Carroll, 2003). For recent results on how this approach
might be implemented in a robust manner, see Boente and Rodriguez (2010).
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11.5.15 R Function adrun, adrunl, gamplot, and gamplotINT

The R function

adrun(x, y, est = tmean, iter = 10, pyhat = F, plotit = T, fr = 1, xlab = “X’, ylab = “Y,
zlab = “ ”, theta = 50, phi = 25, expand = 0.5, scale = F, zscale = T, xout = F,

eout = xout, outfun = out, ticktype = “simple”, . . .),

fits the additive model given by Eq. (11.11) in conjunction with the running interval smoother.
As usual, the arguments theta and phi control the orientation of the plot; see Section 11.5.12.
(At each iteration, the individual smooths are obtained by calling the function rungen in
Section 11.5.5.) The measure of location is specified by the argument est and defaults to a
20% trimmed mean. The command adrun(x,y,est=mean,tr=0.1), for example, would result in
a smooth based on a 10% trimmed mean instead. Setting the argument pyhat=T causes the
function to return the estimates of y for each design point, and fr specifies the span. For
bivariate data, the function plots the smooth if plotit=T (for true). To avoid the plot, set
plotit=F. As p, the number of predictors, gets large, caution must be exercised. Situations can
arise where the fit to data is wildly inaccurate due to the span being too small. So at a
minimum it is suggested to check the output with pyhat=T to make sure the function is
returning reasonable results. The function

adrunl(x, y, est = tmean, iter = 10, pyhat = F, plotit = T, fr = 0.8, xlab = “x1”, ylab = “x2”,
zlab =“ ”, theta = 50, phi = 25, expand = 0.5, scale = F, zscale = T, xout = F, outfun = out,

ticktype = “simple”, . . .)

is like the function adrun, only the the running interval smoother is replaced by lowess.

The R function

gamplot(x,y,pyhat=F,sop=T,plotit=T,theta=50,phi=25,scale=F,eout=F,
outfun=out,ticktype=“simple”,)

creates a plot based on an additive fit for means that is computed via a call to the built-in
R function gam. (Splines are used to create the smooth. With the argument sop=F, the usual
linear model is used.) The R function gam has many more options for modeling the regression
surface than are used by the function gamplot. For two predictors, the function gamplot is
intended as way of graphing the regression surface assuming that Eq. (11.11) holds.1 The
current version is limited to p = 4. The other arguments are the same as those described in

1 The R function gam differs in fundamental ways from the S-PLUS function gam.
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Section 11.5.12 in conjunction with runm3d. (When y is binary, the function logadr fits a
generalized additive model in conjunction with Copas’s method previously described.) The R
function

gamplotINT(x, y, pyhat = F, plotit = T, theta = 50, phi = 25, expand = 0.5, scale = F,
zscale = T, eout = F, outfun = out, ticktype = “simple”,)

is like gamplot, only it is limited to p = 2 predictors and is based on the model
y = g1(x1)+ g2(x2)+ g3(x1, x2)+ ε rather than y = g1(x1)+ g2(x2)+ ε. This is useful when
checking for interactions as described in Section 11.7.

11.6 Checking the Speci�cation of a Regression Model

Typically, when testing hypotheses, a particular parametric form for a regression model is
specified and inferences are made about the parameters assuming that the model is correct.
A practical concern is that the assumed parametric form might be wrong, which in turn can
lead to erroneous conclusions. As a simple example, values for x were generated by the
author from a bivariate normal distribution with ρ = 0, the marginal distributions as well as ε
had a standard normal distribution, n = 20, and the error term was homoscedastic. Now
imagine we assume that y = β0+β1x1+β2x2+ ε and the goal is to test H0: β2 = 0.
Furthermore, based on how the data were generated, power is approximately 0.26 when
testing at the 0.05 level. Is it reasonable to conclude that the model is a good approximation of
how the data were generated and that indeed, β2 6= 0? Here, such a conclusion would be
erroneous; the data were generated using the model y = β1x1+β2x2

2 + ε. So an issue is
whether it is reasonable to assume that for some β0, β1 and β2, y = β0+β1x1+β2x2+ ε. Of
course, exploratory graphical methods, already covered, help address this issue. Here the goal
is to describe some additional tools for dealing this problem.

There are, in fact, many methods for testing the hypothesis that a regression equation has a
particular parametric form. Typically these methods are based on estimates of the conditional
mean of y given x. Included are methods that begin with a kernel-type smooth and then
compare the fitted y values to those obtained by an assumed parametric model. Miles and
Mora (2003) summarize and compare a variety of these methods assuming normality. More
generally, there is the problem of testing the hypothesis that a regression surface belongs to
some particular family of models. For example, can we rule out the possibility that a
generalized additive model generated the data? Samarov (1993) provides an interesting
overview of various models and how they might be investigated. It seems that few results are
available on how extensions of these methods to robust estimators perform.
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11.6.1 Testing the Hypothesis of a Linear Association

Given p predictors, x1, . . . , x p, letM be the family of all regression equations having the
form y = β0+β1x1+· · ·+βpx p+ ε, where the error term may be heteroscedastic. This
section describes a test of the hypothesis

H0 : m(x) ∈M (11.13)

where as usual, m(x) represents some conditional measure of location given x. That is, the
null hypothesis is that the data are generated from the model y = β0+β1x1+· · ·+βpx p+ ε.
If, for example, y = β0+β1x2

1 + ε, the null hypothesis is false. The method described here
stems from Stute, Gonzalez Manteiga, and Presedo-Quindimil (1998).

Let ŷ be some regression estimate of y. Least squares could be used, but it has been shown
that this can lead to problems in terms of controlling the probability of a type I error (Wilcox,
1999), so it is suggested that some robust estimator be used instead. For fixed j (1≤ j ≤ n),
set Ii = 1 if xi ≤ x j , otherwise Ii = 0, and let

R j =
1
√

n

∑
Ii (yi − ŷi )

=
1
√

n

∑
Iiri ,

(11.14)

where ri = yi − ŷi are the usual residuals. The (Kolmogorov) test statistic is the maximum
absolute value of all the R j values. That is, the test statistic is

D =max|R j |, (11.15)

where max means that D is equal to the largest of the |R j | values. As in Section 9.5, a
Cramér–von Mises test statistic can be used instead, where now

D =
1

n

∑
R2

j . (11.16)

A critical value is determined using the wild bootstrap method. Generate n observations from
a uniform distribution and label the results U1, . . . ,Un . Next, for i = 1, . . . ,n, set

Vi =
√

12(Ui −0.5),

r∗i = ri Vi ,

and

y∗i = ŷi + r∗i .
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Then based on the n pairs of points (x1, y∗1 ), . . . , (xn, y∗n ), compute the test statistic and label
it D∗. Repeat this process B times and label the resulting test statistics D∗1 , . . . ,D∗B . Finally,
put these B values in ascending order yielding D∗(1) ≤ · · · ≤ D∗(B). The critical value is D∗(u),
where u = (1−α)B rounded to the nearest integer. That is, reject if

D ≥ D∗(u).

(Wang & Qu, 2007, propose another approach, but it is unknown how it compares to the
method covered here. For a method aimed specifically at L1 regression, see Horowitz &
Spokoiny, 2002. For yet another method dealing with quantile regression, see He & Zhu,
2003.)

11.6.2 R Function lintest

The R function

lintest(x,y,regfun=tsreg,nboot=500,alpha=0.05)

tests the hypothesis that a regression surface is a plane (more generally that the regression
surface corresponds to a linear model) using the method just described. (Execution time is
fairly fast with one predictor, but on some computers it might be slow when there are multiple
predictors. This problem can be greatly reduced by using regfun=chreg, which uses the
Coakley–Hettmansperger M-estimator.) When reading the output, the Kolmogorov test
statistic is labeled dstat and its critical value is labeled critd. The Cramér–von Mises test
statistic is labeled wstat. The default regression method (indicated by the argument regfun) is
Theil–Sen.

n Example

For the diabetes data shown in Figure 11.5, suppose the goal is to test the hypothesis
that there is a linear association between the logarithm of the C-peptide values and age.
That is, the hypothesis is that for some β0 and β1, y = β0+β1x+ ε, where x is age. The
Kolmogorov test statistic returned by the R version of lintest is D = 0.179, it reports a
0.05 critical value of 0.269, so fail to reject. If both predictors (age and base de�cit) are
used, again we fail to reject at the 0.05 level.

n

11.6.3 Testing the Hypothesis of a Generalized Additive Model

This section describes a variation and extension of the test of linearity given in Section 11.6.1.
Here, rather than test the hypothesis of a linear association, the goal is to test the hypothesis
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that the data were generated from a generalized additive model. More formally, given p
predictors, x1, . . . , x p, now letM be the family of all regression equations having the form
given by Eq. (11.11). The goal is to test the hypothesis

H0 : m(x) ∈M (11.17)

where as usual, m(x) represents some conditional measure of location given x. There are
various ways this problem might be addressed. For example, some obvious extension of the
method in Dette (1999) might be used, but so far no such variation has been found that
performs well in simulations. Another approach is suggested by results in Samarov (1993),
but again there are no simulation results supporting this strategy. Another possibility is to fit
the additive model and test the hypothesis that the regression surface for the residuals, versus
x, is a horizontal plane, which can be done along the lines in Section 9.5, or one might
compare the fit of the additive model to the fit obtained by the method in Section 11.5.11.
Wild bootstrap methods based on these last two strategies have, so far, proven to be rather
unsatisfactory in simulations.

Currently, the only method that performs well in simulations, when the sample size is small, is
applied exactly as in Section 11.6.1, only rather than compute ŷ based on some robust
regression estimator, use ŷ = m̂(x) based on the additive fit described in Section 11.5.14
(Wilcox, 2003e). Here it is assumed that the additive fit is obtained using the 20% trimmed
mean. The method does not perform well when using means and nothing is known about how
it performs when using an M-estimator.

There is, however, a practical concern about the choice of the span when applying the running
interval smoother to get the additive fit. If p = 2 and the span is too large, the actual type I
error probability can drop well below the nominal level. For this special case, and when
testing at the 0.05 level, approximations of a good choice for the span corresponding to the
sample sizes 20, 30, 50, 80, and 150 are .4, .36, .18, .15, and .09, respectively. It is suggested
that when 20≤ n ≤ 150, interpolation based on these values be used, and for n > 150 simply
use a span equal to .09. So for n sufficiently large, perhaps the actual type I error probability
might be well below the nominal level, but exactly how the span should be modified when
n > 150 is an issue that is in need of further investigation. For p = 3, the choice of the span
seems less sensitive to the sample size, with a span of f = 0.8 being a reasonable choice for
n < 100. What happens when p > 3 has not been investigated.

11.6.4 R Function adtest

The R function

adtest(x,y,est=tmean,nboot=100,alpha=0.05,fr=NA,xout=F,outfun=out,SEED=T, . . .)
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tests the hypothesis given by Eq. (11.17). If xout=T, outliers among the x values are first
identified and (yi , xi ) is eliminated if xi is flagged an outlier.

11.6.5 Inferences About the Components of a Generalized Additive Model

Inferences about the components of a generalized additive model, based on the running
interval smoother, can be made as follows. For convenience, assume the goal is to test

H0 : g1(x1)= 0.

Fit the generalized additive model yielding

ŷi = b0+ ĝ2(xi2)+· · ·+ ĝp(xi p).

Let ri = yi − ŷi , i = 1, . . . ,n. The strategy is to test the hypothesis that the association
between the residuals and x1 is a straight horizontal line, and this can be done with the wild
bootstrap method in Section 9.5 (cf. Härdle & Korostelev, 1996).

When using the running interval smoother, the choice of the span can be crucial in terms of
controlling the probability of a type I error (Wilcox, 2006a). Letting f be the span used in
Section 11.5.4. The choice for f when using means or a 20% trimmed mean are as follows:

n 20% trimming Mean
20 1.20 0.80
40 1.0 0.70
60 0.85 0.55
80 0.75 0.50

120 0.65 0.50
160 0.65 0.50

So, for example, if n = 60 and a generalized additive model based on the running interval
smoother and a 20% trimmed mean is to be used to test H0, choose the span to be f = 0.85.

In principle, the method is readily extended to situations where something other than the
running interval smoother is used to fit the generalized additive model, but currently there are
no results on the resulting probability of a type I error.

11.6.6 R Function adcom

The R function

adcom(x, y, est = mean, tr = 0, nboot = 600, alpha = 0.05, fr = NA, jv = NA, . . .)

tests hypotheses about the components of a generalized additive model using the method just
described. With the argument fr=NA, the function chooses the appropriate span, as a function
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of the sample size, using linear interpolation where necessary. By default, all components are
tested. The argument jv can be used to limit which components are tested. For example, jv=2
would test only H0: g2(x2)= 0.

11.7 Regression Interactions and Moderator Analysis

As an application of the method in Section 11.6.3, note that it provides a flexible approach to
the so-called regression interaction problem. Consider the two predictor case and let c1 and c2

be two distinct values for the second predictor, x2. Roughly, no interaction refers to a situation
where the regression line between y and x1, given that x2 = c1, is parallel to regression line
between y and x1, given that x2 = c2. An early approach to modeling interactions assumes that

y = β0+β1x1+β2x2+β3x1x2+ ε, (11.18)

where an interaction is said to exist if β3 6= 0 (e.g., Saunders, 1956). This model often plays a
role in what is called a moderator analysis, roughly meaning that the goal is to determine the
extent to which knowing the value of one variable, x2 here, alters the association between y
and x1. Note that Eq. (11.18) can be written as

y = (β0+β2x2)+ (β1+β3x2)x1+ ε,

so the slope for x1 changes as a linear function of x2. (An R function, called ols.plot.inter,
described in Section 11.7.1, plots the regression surface when using the least squares estimate
of the parameters.) Currently, a commonly used method for testing the hypothesis of no
interaction is to test H0: β3 = 0, meaning that the slope for x1 does not depend on x2.

A more general approach to testing the hypothesis of no interaction is to use a variation of the
method in Section 11.5.1 to test the hypothesis that for some functions g1 and g2,
y = g1(x1)+ g2(x2)+ ε. This can be done with the function adtest in Section 11.5.4. Another
way of stating the problem is described, for example, by Barry (1993) who uses an
ANOVA-type decomposition. Essentially, write

m(x1, x2)= β0+ g1(x1)+ g2(x2)+ g3(x1, x2)+ ε,

in which case the hypothesis of no interaction is

H0 : g3(x1, x2)≡ 0.

Barry (1993) derived a Bayesian-type test of this hypothesis assuming the mean of y is to be
estimated and that prior distributions for g1, g2, and g3 can be specified. Another approach is
outlined by Samarov (1993), but when dealing with robust measures of location, the details
have not been investigated. Note that this last hypothesis can be tested with the function
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adcom in Section 11.6.6. How this approach compares to using the function adtest is
unknown.

Now we describe graphical methods that might be useful when studying interactions. The first
simply plots a smooth of y versus x1 given a particular value for x2. So if there is no
interaction, and this plot is created at say x2 = c1 and x2 = c2, c1 6= c2, the regression lines
should be parallel. Here, creating this plot is tackled using a simple extension of the kernel
estimator (the modification of Fan’s method) described in Section 11.5.2. (Many alternative
versions are possible and might have practical value.)

Momentarily consider a single predictor x . In Section 11.5.2, an estimate of the conditional
mean of y at x is obtained using weighted least squares with weights K [(x− xi )/h]. One
possibility for extending this method to estimating m(x1), given that x2 = c, which is used
here, begins with a bivariate Epanechnikov kernel, where, if 1− x2

1 − x2
2 < 1,

K (x1, x2)=
2

π
(1− x2

1 − x2
2),

otherwise K (x1, x2)= 0. An estimate of the bivariate density f (x), based on (xi1, xi2),
i = 1, . . . ,n, is

f̂ (x)=
1

nh2

n∑
i=1

K

[
1

h
(x−xi )

]
,

where as usual, h is the span. For the j th predictor, let u j =min(s j , IQR j/1.34), where s j

and IQR j are the sample standard deviation and interquartile range (estimated with the ideal
fourths) based on x1 j , . . . , xnj . Here the span is taken to be

h = 1.77n−1/6
√

u2
1+u2

2.

(See Silverman, 1986, pp. 86–87.) Then an estimate of m(xi1), given that xi2 = c, is obtained
via weighted least squares applied to (yi , xi1), i = 1, . . . ,n, with weights

wi =
K (xi1, xi2 = c)

K2(xi2 = c)
,

where K2 is the Epanechnikov kernel used to estimate the probability density function of x2.

Let ŷi be the estimate of y based on (xi1, xi2) and the generalized additive model given by
Eq. (11.11). Another approach to gaining insight regarding any interaction is to plot (xi1, xi2)

versus the residuals yi − ŷi , i = 1, . . . ,n.

Yet one more possibility is to split the data into two groups according to whether xi2 is less
than some constant. For example, one might let M2 be the median of the xi2 values, then take
the first group to be the (xi1, yi ) values for which xi2 < M2, and the second group would be
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the (xi1, yi ) values for which xi2 ≥ M2, and then a smooth for both groups could be created.
If there is no interaction, the two smooths should be reasonably parallel.

11.7.1 R Functions kercon, riplot, runsm2g, ols.plot.inter, and reg.plot.inter

The R functions in Section 11.5.14 can be used to get some graphical information about how
regression surfaces compare when no interaction is assumed versus situations where an
interaction term is included. This section summarizes some additional R functions that might
be useful.

The R function

ols.plot.inter(x, y, pyhat = F, eout = F, xout = F, outfun = out, plotit = T, expand = 0.5, scale
= F, xlab = “X”, ylab = “Y”, zlab = “ ”, theta = 50, phi = 25, family = “gaussian”,

duplicate = “error”, ticktype = “simple”,)

plots the regression surface assuming that Eq. (11.18) is true and that the least squares
estimates of the parameters are used. Because this model is often used, an issue of interest is
how the estimated regression surface compares to other plots that are based on a more flexible
nonparametric estimator.

The R function

reg.plot.inter(x, y, regfun=tsreg, pyhat = F, eout = F, xout = F, outfun = out, plotit = T,
expand = 0.5, scale = F, xlab = “X”, ylab = “Y”, zlab = “ ”, theta = 50, phi = 25, family =

“gaussian”, duplicate = “error”, ticktype = “simple”,)

is exactly like the function ols.plot.inter, only it can be used with any regression estimator that
returns the residuals in $residuals. By default, the Theil–Sen estimator is used.

n Example

A portion of a study conducted by Shelley Tom and David Schwartz dealt with the
association between a Totagg score and two predictors: grade point average (GPA) and
a measure of academic engagement. The Totagg score was a sum of peer nomination
items that were based on an inventory that included descriptors focusing on
adolescents’ behaviors and social standing. (The peer nomination items were obtained
by giving children a roster sheet and asking them to nominate a certain amount of peers
who �t particular behavioral descriptors.) The sample size is n = 336. The left panel of
Figure 11.13 shows the plot of the regression surface created with the R function
ols.plot.inter. Compare this to the right panel, which is an estimate of the regression
surface using LOESS and created by the R function lplot. This suggests that using the
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Figure 11.13: Plots of the estimated regression surface based on the peer nomination data.
The left panel shows the plot created by ols.plot.inter, which assumes that an interaction can
be modeled with y = β0 +β1x1 +β2x2 +β3x1x2 + ε and where the least squares estimate of
the parameters is used. The right panel shows an approximation of the regression surface
based on the R function lplot.

usual interaction model is unsatisfactory for the situation at hand. Testing H0: β3 = 0,
assuming Eq. (11.18) is true and using ordinary least squares, the resulting p-value
returned by the R function olshc4 is .64. The R function adtest returns a p-value less
than .01 indicating that an interaction exists.

n

The R function

kercon(x,y,cval=NA,eout=F,xout=F, outfun=out,xlab=“X”,ylab=“Y”)

creates a plot using the first of the two methods described in the previous section. It assumes
there are two predictors and terminates with an error message if this is not the case. For
convenience, let x1 and x2 represent the data in columns one and two of the R variable x. The
function estimates the quartiles of the data stored in x2 using the ideal fourths, and then
creates three smooths between y and x1. By default, the smooths correspond to the regression
lines between y and x1 given that x2 is equal to the estimated lower quartile, the median, and
the upper quartile. If it is desired to use other values for x2, this can be done via the argument
cval. The arguments are used in the same manner as described, for example, in Section 11.5.8.

The R function

riplot(x,y,adfun=adrun,plotfun=lplot,eout=T,xout=T)

fits a model to data using the function specified by the argument adfun, which defaults to the
generalized additive model given by Eq. (11.11). It then computes the residuals and plots
them versus the data in x. Again, x must be a matrix with two columns of data.
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The R function

runsm2g(x1,y1,x2,val=median(x2),est=tmean,sm=F, . . .)

splits the x1 and y1 values into two groups according to whether x2 is less than the value
stored in the argument val. By default, val is the median of the values stored in x2. It then
creates a smooth for both groups (via the function rungen in Section 11.5.5). Setting the
argument sm=T results in a bagged version of the smooths. With small sample sizes, setting
sm=T can be beneficial.

n Example

Two hundred values were generated for x1, x2, and ε, where x1, x2, and ε are
independent and have standard normal distributions. The left panel of Figure 11.14
shows the output from kercon when y = x1+ x2+ ε. The solid line is the smooth for y
and x1 given that x2 is equal to the estimate of its lower quartile. The middle line is the
smooth given that x2 is equal to its estimated median, and the upper line is the smooth
for the upper quartile. The right panel shows the output where now y = x1+ x2+

x1x2+ ε.
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Figure 11.14: An illustration of the plot created by the function kercon.
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11.7.2 Mediation Analysis

This section provides some very brief comments about what is generally known as mediation
analysis. (For a book dedicated to this topic, see MacKinnon, 2008.) Mediation analysis is
similar to a moderator analysis in the sense that the goal is to understand how the association
between two variables is related to a third (mediating) variable. (Blends of the two methods,
yielding what are called moderated-mediation analyses, have been proposed as well. See, e.g.,
Preacher et al., 2007.) In the parlance of researchers working on this problem, an indirect
effect, also known as a mediation effect, refers to a situation where two variables of interest
are associated via a third variable. For example, stress and obesity are believed to be
associated through cortisol secretion (Rosmond, Dallman, & Björntorp, 1998). The strategy
behind a mediation analysis is to assume that the three variables of interest satisfy three linear
models. The first is that two primary variables of interest x and y (e.g., stress and obesity) are
related via the usual linear model

y = β01+β11x+ ε1. (11.19)

The second assumption is that the mediating variable (cortisol in the example), which here is
labeled xm , is related to x via

xm = β02+β12x+ ε2. (11.20)

And finally, it is assumed that

y = β03+β13x+β23xm+ ε3. (11.21)

Roughly, if β13 = 0, this is said to constitute full mediation (Judd & Kenny, 1981a, 1981b). If
the strength of the association between x and y is reduced when the mediator is included, in
the sense that β13 < β11, there is said to be partial mediation.

Various strategies have been proposed for assessing whether xm mediates the association
between y and x . (For recent discussion of the issues and strategies when dealing with
mediation analyses, see Zhao, 2010.) One is to focus on testing H0: β11 = β13. Another is to
focus on the product β12β23, which has been called the mediated effect or indirect effect. This
latter approach arises by noting that if Eq. (11.20) is substituted into Eq. (11.21), the
total effect represented by the slope in Eq. (11.19) satisfies β11 = β12β23+β13. (See
MacKinnon et al., 1995, for more details.) Consequently, a common goal is testing

H0 : β12β23 = 0. (11.22)

Under normality and homoscedasticity, a bootstrap method for testing this hypothesis, using
the least squares estimator, has been found to perform reasonably well in simulations. But
under nonnormality, or when there is heteroscedasticity, this is no longer the case (Ng,
2009a). Replacing the least squares estimator with the Theil–Sen estimator, Ng (2009a) found
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that a percentile bootstrap method performs well in simulations when β12 = β23 = 0. But
otherwise, control over the probability of a type I error can be unsatisfactory in some
situations. Biesanz, Falk, and Savalei (2010) compared several alternative methods. But the
results relevant to nonnormality were limited to a single nonnormal distribution that is skewed
with a relatively light tail. No results on the effects of heteroscedasticity were reported.

Another approach when performing a mediation analysis is to compute a confidence interval
for β11−β13 using some robust regression estimator and a percentile bootstrap method.
Briefly, take a bootstrap sample in the usual way assuming Eq. (11.21) is true, which yields a
bootstrap estimate of β13, say b∗13. Using this same bootstrap sample, compute a bootstrap
estimate of β11 assuming that Eq. (11.19) is true, yielding b∗11. Let d∗ = b∗11−b∗13. Repeat this
process B times yields a confidence interval for β11−β13, and a p-value when testing H0:
β11 = β13, by proceeding along the lines in Section 11.2. Limited simulation studies suggest
that when testing at the 0.05 level, the actual level can drop well below 0.05 when the sample
size is less than or equal to 40. With n = 80, this does not seem to be an issue.

Zu and Yuan (2010) derived an approach to testing Eq. (11.22) based on a Huber-type
M-estimator that is used in conjunction with a percentile bootstrap method. Briefly, their
method begins by computing the multivariate measure of location and scatter derived by
Maronna (1976) based on (xi , xmi , yi ), i = 1, . . . ,n, yielding say µ̂ and 6̂. They then estimate
the regression parameters via the method in Section 10.13.5. Finally, Eq. (11.22) is tested via
a percentile bootstrap method. (Zu and Yuan also consider hypothesis testing techniques
based on an estimate of the standard errors.) The percentile bootstrap method appears to
perform relatively well in terms of controlling the probability of a type I error, but situations
are encountered where it can be unsatisfactory. For example, under normality with n = 40,
β23 = 0.5 and β12 = 0, if there is heteroscedasticity in the form where the error term is
ε3/(|x |+1), the actual level of the test is approximately .09 when testing at the 0.05 level.
Increasing n to 60, the actual level drops to about .056. But with n = 60 and a homoscedastic
error term, if two additional points are added at (x, xm, y)= (3,−2,−3), the actual level is
again approximately .09. Using instead the Theil-sen estimator in conjunction with a
percentile bootstrap method for testing H0: β11 = β13, the actual level is approximately .025.
But a criticism of this latter approach is that in various situations, the actual level can drop
well below the nominal level. Currently, the best method for dealing with these problems is to
modify slightly the Zu and Yuan method. In particular, use their method after excluding any
(xi , xmi , yi ) for which xi is an outlier among the values x1, . . . , xn . Another seemingly natural
strategy is to instead eliminate any (xi , xmi , yi ) for which (xi , xmi ) is an outlier. But this can
result in poor control over the probability of a type I error.

It should be noted that Green, Ha, and Bullock (2010) argue that mediation analyses have
been based on regression models that rest on naive assumptions. The stated goal in the
abstract of their paper is “to puncture the widely held view that it is a relatively simple matter
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to establish the mechanism by which causality is transmitted. This means puncturing the faith
that has been placed in commonly used statistical methods of establishing mediation.”

11.7.3 R functions ZYmediate, regmed2, and regmediate

The R function

ZYmediate(x, y, nboot = 2000, alpha = 0.05, kappa = 0.05, SEED = T, xout = F,
outfun = out)

tests the hypothesis given by Eq. (11.22) using the method derived by Zu and Yuan (2010),
which was outlined in the previous section. By default, the functions eliminate any point for
which xi is an outlier. This improves control over the probability of a type I error when there
is heteroscedasticity. Currently, it seems to be one of the better methods when the sample size
is small.

In case it helps, the R function

regmed2(x, y, regfun = tsreg, nboot = 400, alpha = 0.05, xout = F, outfun = out, MC = F,
SEED = T, pr = T, . . .)

tests the two hypotheses H0: β12 = 0 and H0: β22 = 0, which are relevant to a mediation
analysis as explained in the previous section. By default the Theil–Sen estimator is used, but
other regression estimators can be used via the argument regfun. As usual, setting the
argument xout=T results in leverage points being removed.

The R function

regmediate(x,y,regfun=tsreg,nboot=400,alpha=0.05,xout=F,outfun=out,MC=F,
SEED=T, . . .)

computes a confidence interval for β11−β13, and a p-value when testing H0: β11 = β13 is
returned as well. Again by default, the Theil–sen estimator is used.

11.8 Comparing Parametric, Additive, and Nonparametric Fits

One way of comparing two different fits to data is to simply compute m(xi ), i = 1, . . . ,n
using both methods and then plot the results. That is, if ŷi1 is m(xi ) based on the fit using the
first method, and ŷi2 is m(xi ) based on the second fit, plot ŷi1 versus ŷi2. So, for example, if
data are generated according to a generalized additive model, then a plot of ŷi1 obtained by a
method that assumes a generalized additive model generated the data, versus ŷi2 obtained by
the running interval smooth in Section 11.5.11, should consist of points that are reasonably
close to a line having slope one and intercept zero.
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11.8.1 R Functions adpchk and pmodchk

The R function

adpchk(x,y,adfun=adrun,gfun=runm3d,xout=T,outfun=out, . . .)

computes the ŷi1 values using the method specified by the argument adfun, which defaults to
the generalized additive model given by Eq. (11.11) in Section 11.5.14. It then computes ŷi2

using the method specified by the argument gfun, which defaults to the running interval
smoother. It then plots ŷi1 versus ŷi2. So if the two methods agree, the plotted points should
be centered around a line having slope one and intercept zero. Here, p > 2 is allowed.

The R function

pmodchk(x,y,regun=tsreg,gfun=runm3d,op=1,xout=F,eout=F)

is like adpchk, only the third argument is now regfun, which is assumed to be some
parametric fit. The default method is the Theil–Sen estimator.

n Example

Values for x1, x2, and ε were generated from a g-and-h distribution with x1, x2, and ε
independent and g = h = 0.5. The upper two panels of Figure 11.15 show the plots
created by adpchk and pmodchk when y = x1+ x2+ ε. (The graph created by adpchk is
in the left panel.) In this case the model assumed by the third argument (adfun and
tsreg) is correct and all points are tightly clustered around the line having slope 1. The
lower panels show the plots where now y = x1+ x1x2

2 + ε. So now the models, assumed
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Figure 11.15: Illustration of the plots created by the functions adpchk and pmodchk.
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by the third argument, are wrong, and the graphs indicate that in some instances, there
are relatively large discrepancies between the assumed models and the more general
model indicated by the fourth argument, gfun.

n

11.9 Measuring the Strength of an Association Given a Fit to the Data

The measures of association, covered in Chapter 9, are not based on any particular regression
model or fit to the data. Pearson’s correlation has a well-known connection to the least squares
regression line, but for the bulk of the robust correlations, there is no explicit connection to
any of the robust regression methods covered in Chapter 10. This section is aimed at filling
this gap. There are, in fact, various ways one might proceed. The immediate goal is to
describe how this might be done based on simple generalizations of the notion of explanatory
power, which was studied in a general context by Doksum and Samarov (1995).

Let ŷ be some predicted value of y, given the values of p predictors x1, . . . , x p. Explanatory
power is

σ 2(ŷ)

σ 2(y)
,

the usual variance of the predicted values divided by the variance of the observed y values. If
ŷ is based on the usual least squares regression line, and when there is p = 1 predictor,
explanatory power reduces to ρ2, the coefficient of determination. To see this, note that from
basic principles, the least squares regression line can be written as

ŷ = β0+ρ
σy

σx
x .

So σ 2(ŷ)= ρ2(σ 2
y /σ

2
x )σ

2
x = ρ

2σ 2
y . Dividing this last quantity by σ 2

y yields ρ2.

A robust generalization of explanatory power consists of simply replacing the usual variance
with some robust analog and taking ŷ to be the predicted value of y based on any regression
estimator or smoother. In symbols, let τ 2(y) be any measure of variation. Then a robust
analog of explanatory power is

η2
=
τ 2(ŷ)

τ 2(y)
. (11.23)

The explanatory strength of the association is the (positive) square root of explanatory power,
η. From Chapter 3, there are several reasonable choices for τ 2. Here, unless stated otherwise,
τ 2 is taken to be the percentage bend midvariance, which is computed as described in
Table 3.9. Perhaps other robust measures of variation offer a practical advantage when
measuring the strength of association, but this has not been explored. R functions previously
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described that report the explanatory strength of association include lplot (lowess) and tsreg
(the Theil–sen estimator).

In principle, explanatory power can be estimated when using any regression method or
smoother. First, compute the percentage bend midvariance based on predicted y values, say
τ̂ 2(ŷ), compute the percentage bend midvariance based on the observed y values, τ̂ 2(y), in
which case the estimate of η2 is

η̂2
=
τ̂ 2(ŷ)

τ̂ 2(y)
. (11.24)

But a fundamental issue is whether the choice of method for obtaining the predicted y values
make a practical difference when estimating η2. For small to moderate sample sizes, it has
been found that it does (e.g., Wilcox, 2010b). Two regression estimators that seem to
perform relatively well, given the goal of estimating η2, are the Theil–Sen estimator when
the regression surface is a plane, and Cleveland’s smoother (LOWESS), described in
Section 11.5.2, when there is curvature.

Section 11.5.3 described an R function, lplot, for plotting Cleveland’s nonparametric
regression line (LOESS). One of the arguments is varfun, which can now be explained. It
indicates the measure of variation used when estimating explanatory power and defaults to the
percentage bend midvariance. The R function tsreg, which computes the Theil–Sen estimator,
also contains the argument varfun, which again indicates how explanatory power is computed.

Renaud and Victoria-Feser (2010) compared several other robust analogs of R2, the
coefficient of determination, which are based in part on a fit to the data obtained via the
MM-estimator in Section 10.9.1. Their approach represents a generalization of a measure of
association suggested by Maronna, Martin, and Yohai (2006, p. 171). For yet another
approach to getting a robust version of R2, see Croux and Dehon (2003).

Let 9(ri ; c) be defined as in Section 10.9.1. In principle, some other choice for 9, associated
with some M-estimator, could be used, but the focus here is on the choice used by the
MM-estimator. The measure of association proposed by Maronna et al. (2006) is

R2
M M = 1−

∑
9
( ri
τ̂

)
∑
9
(

yi−µ̂

τ̂

) ,
where µ̂ is some robust measures of location, taken here to be the M-measure of location
associated with 9.

For convenience, write wi =9(ri ; c). The generalization of R2
M M , suggested by Renaud and

Victoria-Feser is

R2
w =

∑
wi (ŷ− ỹ)2∑

wi (ŷi − ỹ)2+a
∑
wi (yi − ŷ)2

,
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where a is a correction factor for achieving consistency, ỹ = (1/
∑
wi )

∑
wi ŷi and ŷi are the

predicted y values produced by the MM-estimator. The motivation for this generalization is
that it reduces the bias associated with R2

M M . Following Renaud and Victoria-Feser,
a = 1.2067 is used.

11.9.1 R Function RobRsq

The R function

RobRsq(x,y)

computes R2
w, the measure of association derived by Renaud and Victoria-Feser (2010).

11.9.2 Comparing Two Independent Groups via Explanatory Power

For two independent groups, let η2
j be the explanatory power associated with the j th group

( j = 1, 2). This section describes a modified percentile bootstrap method for testing

H0 : η2
1 = η

2
2. (11.25)

A simple strategy is to use a percentile bootstrap method. That is, generate bootstrap samples
from the j th group, estimate η2

j yielding say η̃2
j , repeat this B times yielding η̃2

jb
(b = 1, . . . , B), in which case a p-value is p = 2min(P,1− P), where P is the proportion of
times η̃2

1 > η̃
2
2. Imagine that the goal is to test at the α = 0.05 level, in which case H0 is

rejected if p ≤ .05. Then the actual level of the percentile bootstrap method just described is
very close to 0.05 with sample sizes n1 = n2 = 200 (Wilcox, 2009c). But for smaller sample
sizes the actual level is substantially smaller than 0.05, particularly when both sample sizes
are less than 100. However, Wilcox (2009c) found that the actual level of the test was fairly
stable among the nonnormal distributions that were considered, which suggests a simple
modification: determine an adjusted level αa with the goal of achieving a .05 type I error
probability if the null hypothesis is rejected when p ≤ αa . First consider n1 = n2 = n. For
standard normal distributions it was found that for n = 30, 50, and 100, αa = .3, .21, and .08,
respectively. For other sample sizes, simple linear interpolation is suggested. More precisely,
if 30< n < 50, use linear interpolation based on n and the αa values .3 and .21. For
50< n < 100 interpolate using the αa values .21 and .08, and for 100< n < 200 use the
values .08 and .05. As for n1 6= n2, let α1 and α2 be the values of αa corresponding to n1 and
n2, respectively. Then the adjusted level is taken to be (n2α1+n1α2)/(n1+n2). For example,
with n1 = 30 and n2 = 100, this yields, αa = .249, which is nearly equal to the estimate of αa

based on simulations, namely .24. And the simulation estimate of the actual type I error
probability remains .05. For n1 = 30 and n2 = 50, this yields .266, the simulation estimate is
.26, and the level of the test using .266 is again 0.05.
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A related goal is testing
H0 : η1 = η2, (11.26)

which generalizes methods for testing the hypothesis that two independent groups have equal
Pearson correlations. When there is curvature, an obvious way of attaching a sign to the
square root of η̂2 is to use the positive square root if the association is monotonic increasing,
otherwise use the negative square root. If the regression line is not monotonic, a possibility
is to attach a sign indicating whether in general the regression line is increasing. For
convenience, assume x1 ≤ · · · ≤ xn , let

S =
n∑

i=2

sign(ŷi − ŷi−1),

and let I=1 if S ≥ 0, otherwise I=−1. Then use I η̂ as the measure of association. (Choosing
the sign in this manner has similarities to Kendall’s tau.)

As for testing Eq. (11.26), a slight modification of the method for testing Eq. (11.25) is needed
to avoid type I error probabilities well above the nominal level when the sample size is small.
For n ≥ 50, determine αa exactly as done when testing (11.25). But for n < 50, extrapolate
using the αa values .21 and .08, which correspond to the sample sizes 50 and 100,
respectively.

11.9.3 R Functions smcorcom and smstrcom

The R function

smcorcom(x1, y1, x2, y2, nboot = 200, pts = NA, plotit = T, SEED = T, varfun = pbvar)

tests Eq. (11.25). If the argument plotit=T, the two regression lines are plotted (by calling the
R function lplot2g in Section 11.11.2). The R function

smstrcom(x1, y1, x2, y2, nboot = 200, plotit = T, SEED = T, varfun = pbvar, xout=F,
outfun=out, . . .)

tests the hypothesis given by Eq. (11.26).

11.10 Comparing Predictors

When dealing with two or more predictors, an issue that has received considerable attention is
determining which predictors, or which collection of predictors, is best. Numerous methods
have been proposed, many of which are known to be unsatisfactory. Relatively well-known
methods that have proven to be unsatisfactory include stepwise regression (e.g., Montgomery
& Peck, 1992, Section 7.2.3; Derksen & Keselman, 1992), a related (forward selection)
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method (see Kuo & Mallick, 1998; Huberty, 1989; Chatterjee & Hadi, 1988; cf. Miller,
1990), methods based on R2 (the squared multiple correlation), and the classic F statistic that
tests the hypothesis that all slopes are zero. A homoscedastic approach based on

C p =
1

σ̂ 2

∑
(Yi − Ŷi )

2
−n+2p,

called Mallows (1973) C p criterion, cannot be recommended either (Miller, 1990). Another
approach is based on what is called ridge regression, but it suffers from problems listed by
Breiman (1995). Briefly, ridge regression is not scale invariant. If the scale of the predictors is
changed, the ridge coefficients do not change inversely proportional to the changes in the
variable scale. An approach to this criticism is to standardize each predictor so that they each
have mean 0 and variance 1. Breiman notes, for example, that if the interquartile range were
used instead of the usual variance to normalize the predictors, this would give different
regression predictors (cf. Smith & Cambell, 1980). Three alternative approaches, versions of
which are described later in this section, are cross-validation, bootstrap methods, namely the
.632 estimator used here, and the so-called nonnegative garrote technique derived by Breiman
(1995). Efron and Tibshirani (1993) provide additional details regarding the .632 estimator.

11.10.1 Comparing Pearson Correlations

This section describes a method for comparing predictors via Pearson’s correlation. As
previously stressed, Pearson’s correlation is not robust, but perhaps there are situations where
comparing Pearson correlations has practical value. Many such methods have been derived,
comparisons of which are reported in Wilcox (2009d). The method described here combines a
method derived by Zou (2007) with the HC4 method for computing a confidence interval for
ρ, which was described in Section 9.3.14.

For notational convenience, let ρ jk be the correlation between x j and xk , j = 1,2,3;
k = 1,2,3. The goal is to compute a confidence interval for ρ12−ρ13. In a regression context,
x1 corresponds to the the outcome variable y. Let (l1, u1) and (l2, u2) be 1−α confidence
intervals for ρ12 and ρ13, respectively, which are based on the HC4 method. Then a 1−α
confidence interval for ρ12−ρ13 is

(L , U ),

where

L = r12− r13−
√
(r12− l1)2+ (u2− r13)2−2ĉorr(r12, r13)(r12− l1)(u2− r13),

U = r12− r23+
√
(u1− r12)2+ (r23− l2)2−2ĉorr(r12, r13)(u1− r12)(r23− l2),
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and

ĉorr(r12, r13)=
(r23− .5r12r23)(1− r2

12− r2
13− r2

23)+ r2
23

(1− r2
12)(1− r13)2

.

11.10.2 Methods Based on Estimating Prediction Error

This section describes two methods for comparing predictors based on the notion of
prediction error. The first approach is called the .632 bootstrap method, which allows
heteroscedasticity. The other uses a leave-one-out cross-validation method.

Imagine that the n pairs of values (x1, y1), . . . , (xn, yn) are used to determine the regression
line ŷ = b0+b1x . Now imagine that a new x value is observed, which is labeled x0, in which
case the predicted value of y, based on the original n pairs of points, is ŷ0 = b0+b1x0.
Prediction error refers to the discrepancy between the predicted value of y, ŷ0, and the actual
value of y, y0, if it could be observed. One way of measuring the typical amount of prediction
error is with

E[(y0− ŷ0)
2],

the expected squared difference between the observed and predicted value of Y . And another
possibility is

E[|y0− ŷ0|],

the expected absolute error. As is evident, the notion of prediction error is easily generalized
to multiple predictors. The basic idea is that via some method we get a predicted value for y,
which we label ŷ, and the goal is to measure the discrepancy between ŷ0 (the predicted value
of y based on a future collection of x values) and the actual value of y, y0, if it could be
observed.

A simple estimate of prediction error is the so-called apparent error rate, which is just the
average error when predicting the observed y values with ŷ. More formally, let Q(y, ŷ) be
some measure of the discrepancy between an observation, y, and its predicted value, ŷ. So
squared error corresponds to

Q(y, ŷ)= (y− ŷ)2.

The goal is to estimate the typical amount of error for future observations. In symbols, the
goal is to estimate

η = E[Q(y0, ŷ0)],
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the expected error between a predicted value for y, based on a future value of x , and the
actual value of y, y0, if it could be observed. A simple estimate of η is the apparent error:

η̂ap =
1

n

∑
Q(yi , ŷi ).

So for squared error, the apparent error is

η̂ap =
1

n

∑
(yi − ŷi )

2,

the average of the squared residuals. (For results on estimating prediction error when using
the MM-estimator, see Khan, van Aelst, & Zamar, 2010.)

A practical concern is that the apparent error is biased downward because the data used to
come up with a prediction rule (ŷ) are also being used to estimate error (Efron & Tibshirani,
1993). That is, it tends to underestimate the true error rate, η. The so-called .632 bootstrap
estimator is designed to address this problem and currently seems to be a relatively good
choice for identifying the best predictors.

The .632 Estimator

The .632 estimator is applied as follows. Generate a bootstrap sample, only rather than sample
n vectors of observations with replacement, as is typically done, sample m < n vectors of
observations instead. (Setting m = n, Shao, 1996, shows that the probability of selecting the
correct model may not converge to one as n gets large.) Here, m = 5log(n) is used, which was
derived from results reported by Shao (1996). Let ŷ∗i be the estimate of yi based on the
bootstrap sample, i = 1, . . . ,n. Repeat this process B times yielding ŷ∗ib, b = 1, . . . , B. Then
an estimate of η is

η̂Boot =
1

nB

B∑
b=1

n∑
i=1

Q(yi , ŷ∗ib).

A refinement of η̂Boot is to take into account whether a yi value is contained in the bootstrap
sample used to compute ŷ∗ib. Let

ε̂0 =
1

n

n∑
i=1

1

Bi

∑
b∈Ci

Q(yi , ŷ∗ib),

where Ci is the set of indices of the bth bootstrap sample not containing yi and Bi is the
number of such bootstrap samples. Then the .632 estimate of the prediction error is

η̂.632 = .368η̂ap+ .632ε̂0. (11.27)

This estimator arises in part from a theoretical argument showing that .632 is approximately
the probability that a given observation appears in a bootstrap sample of size n.
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The Leave-One-Out Cross-Validation Method.

Prediction error using the leave-one-out cross-validation method is applied as follows.
Momentarily omit the i th point (xi , yi ) and fit a regression model to the data. Based on this fit,
let ŷ−i be the estimate of y using xi . Let ei = yi − ŷ−i . Then prediction error is measured via
some measure of variation applied to the ei values (i = 1, . . . ,n). Here the percentage bend
midvariance is used unless stated otherwise, but this is not to suggest that alternative
measures of variation should be ruled out.

A practical issue is how this leave-one-out cross-validation method compares to the .632
estimator. This issue has not been explored as yet.

11.10.3 R Functions TWOpov, regpre, and regpreCV

The R function

TWOpov(x, y, alpha = 0.05)

computes a confidence interval for the difference between Pearson correlations,
corresponding to two predictors, using the method in Section 11.10.1. The argument x is
assumed to be a matrix with two columns corresponding to two predictors.

The R function

regpre(x, y, regfun=lsfit, error=absfun, nboot=100, adz=T, mval=round(5*log(length(y))),
model=NULL, locfun=mean, pr=T, xout F, outfun=out, plotit=T, xlab=“Model Number”,

ylab=“Prediction Error”, SEED=T, . . .)

estimates prediction error using the .632 bootstrap method. By default, least squares
regression is used, but results in Wilcox (2008d) indicate that the Theil–Sen estimator is better
for general use. This can be done by setting the argument regfun=tsreg. With adz=T, the
function includes an estimate of prediction error based on using only the measure of location
indicated by the argument locfun. That is, no predictors are used. The argument mval is m, the
number of observations sampled when generating bootstrap samples. The argument
error=absfun means that absolute error is used by default. Setting error=sqfun would use
squared error. Other robust measures of variation might be used as well. For example,
error=winvar would use the 20% Winsorized variance.

The R function

regpreCV(x, y, regfun=tsreg, varfun=pbvar, adz=T, model=NULL, locfun=mean, xout=F,
outfun=out, plotit=T, xlab=“Model Number”, ylab = “Prediction Error”, . . .)

performs the leave-one-out cross-validation estimate of prediction error.
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n Example

The R function regpre is illustrated with the reading data described in the �rst example
of Section 10.8.1. Here we consider how well the �rst three predictors, stored in
columns 2–4, compare when predicting a word identi�cation score (stored in column 8
of the �le read.dat). Assuming the data are stored in the R variable read, the command
regpre(read[,2:4],read[,8],regfun=tsreg,locfun=median) returns

$estimates
apparent.error boot.est err.632 var.used rank

[1,] 12.48052 13.36920 13.25599 1 4
[2,] 11.99610 12.74614 12.70693 2 2
[3,] 14.87278 16.12612 16.08528 3 8
[4,] 11.47575 12.51257 12.55914 12 1
[5,] 12.76048 14.33530 14.27367 13 6
[6,] 11.90024 13.24456 13.28122 23 5
[7,] 11.30447 13.30425 13.21919 123 3
[8,] NA NA 14.30223 0 7

The column headed by var.used indicates the predictors used in the model. The entry 12
means that both predictors 1 and 2 were used, ignoring predictor 3. The entry 123 is the
case where all three predictors are used. The last column provides an easy way of
identifying which combination of predictors produced the lowest prediction error. Here,
using both predictors 1 and 2 performed best. The worst model was using predictor 3,
ignoring the other predictors. The last row is for the case where all predictors are
ignored. So here, using predictor 3 is worse than using no predictors at all, meaning that
one simply uses the median of the y values to predict future observations. Using instead
the R function regpreCV, the results are:

apparent.error boot.est err.632 var.used rank
[1,] 12.54924 13.05253 13.06939 1 5
[2,] 11.56878 12.23330 12.23345 2 1
[3,] 14.13608 15.15757 15.15858 3 8
[4,] 11.51583 12.24795 12.32174 12 2
[5,] 12.56508 13.63793 13.65641 13 6
[6,] 11.56411 12.75894 12.77784 23 4
[7,] 11.45809 12.63197 12.72554 123 3
[8,] NA NA 14.27227 0 7

n

The R functions automatically generate all possible combinations of predictors, assuming the
number of predictors is at most 5. The argument model, which is assumed to have list mode,
can be used to analyze only models that are of specific interest. For example, setting
model[[1]]=1 and model[[2]]=c(1,2,3), and then setting the argument model=model,
prediction error would be estimated when using predictor 1, as well as using predictors 1, 2,
and 3 simultaneously, but no other models would be considered.
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11.10.4 R Function larsR

Another method for identifying the best predictors that is based on what is called the lasso
(Tibshirani, 1996). And a related approach is least angle regression; see Efron, Hastie,
Johnstone, and Tibshirani (2004). Also see Wang and Leng (2007), Owen (2006), as well as
Radchenko and James (2011).

Both the lasso and least angle regression can be applied with the R function

larsR(x,y,type=“lasso”,xout=F,outfun=outpro).

By default, the lasso method is used. To use least angle regression, set the argument
type=“lar”. To eliminate leverage points via the function indicated by the argument outfun,
set the argument xout=T. The function returns estimates of which estimates are best, in
descending order. Unlike the R functions regpre and regpreCV, larsR does not provide
information about which subsets of variables are best. That is, it does not indicate, for
example, whether predictors 1 and 2, taken together, are better in some sense than using
predictor 1 only.

11.10.5 Comparing Predictors via Explanatory Power and a Robust Fit

Method BTS

Yet another approach to comparing predictors is to estimate the strength of the association
based on the Theil–Sen estimator and then use a percentile bootstrap method to test

H0 : η2
1 = η

2
2,

where now η2
j is explanatory power when using predictor x j . But as the correlation between

x1 and x2 increases, the actual level of this method can drop well below the nominal level,
even with a sample size of n = 100. Taking independent bootstrap samples, the first from
(xi1, yi ) and the second from (xi2, yi ), has been found to improve matters (Wilcox, in press
b). Imagine that this is done yielding D∗ = η̃2

1− η̃
2
2, the difference between the two estimates

of η2. Repeating this process B times yields D∗1 , . . . ,D∗B , which can be used to estimate
P = P(D < 0) in the manner already described, which in turn yields the generalized p-value.
But again, control over the probability of a type I error has been found to be not quite
satisfactory: when testing at the 0.05 level, the actual level can be substantially smaller than
0.05. Some improvement is obtained if rather than estimate P = P(D < 0) with the bootstrap
samples in the usual way, a kernel density estimate is used instead, a strategy motivated by
results in Racine and MacKinnon (2007b). Here the adaptive kernel estimator in Section 3.2.4
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is used, in which case the distribution of D is estimated with

f̂ (d)=
1

nh

B∑
i=1

K

(
d−Di

h

)
,

where K is taken to be the Epanechnikov kernel and h is the span. An estimate of P(D < 0) is

P̂(D < 0)=
1

nh

n∑
i=1

∫ 0

`

K

(
t−Di

h

)
dt.

The method just described performs well in simulations when ρ12 = 0, but again the actual
level can drop well below the nominal level when ρ12 6= 0. Let ρk12 be Kendall’s tau for x1

and x2. Compute a 0.95 confidence interval ρk12 using the method in Section 9.3.14. If this
interval contains 0, let p̃ = 0; otherwise

p̃ = .352|rk12|+ .049. (11.28)

For n ≤ 100, reject at the 0.05 level if the p-value is less than or equal to p̃. For n > 100, use
the p-value in the usual manner.

Method SM

Method BTS can be extended to the situation where explanatory power is estimated via
LOWESS, described in Section 11.5.2, when testing at the 0.05 level. Let

p̌ = .25|rk12|+ .05+ (100−n)/10000, (11.29)

p̆ =max(.05, p̌), and reject if p ≤ p̆. For n > 200, p̆ is taken to be .05.

11.10.6 R Functions ts2str and sm2strv7

The R function

ts2str(x, y, nboot = 400, SEED = T)

performs method BTS and the function

sm2strv7(x, y, nboot = 100, SEED = T, xout = F, outfun = outpro, . . .)

performs method SM.
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11.11 ANCOVA

A common problem is comparing two independent groups of participants in terms of some
measure of location while taking into account a covariate. More generally, a common goal is
to compare the regression curves corresponding to two or more groups. The Pygmalion data
in Section 11.2.1 provides an illustration. If the experimental and control groups are compared
using post IQ reasoning scores, the 20% trimmed means are found to be significantly different
at the α = 0.05 level. A general issue is whether there continues to be a difference when the
pretest IQ scores are taken into account. Section 11.2 describes one approach to this problem
where the slopes of the regression lines are compared.

Before continuing, it is noted that there is a vast literature on the analysis of covariance
(ANCOVA) where the goal is to compare groups in terms of some measure of location,
usually means, while taking into account some covariate. For an entire book devoted to the
subject, see Huitema (1980). For a review of some recent developments, see Rutherford
(1992) and Harwell (2003). (For some recent results when using means, see Ceyhan and
Goad, 2009.) Obviously all relevant methods cannot be described here. Rather, attention is
restricted to situations where comparisons are to be made using some robust measure of
location.

For the j th group, let m j (x) be some population measure of location associated with y given
x . Given x , the problem is determining how the typical value of y in the first group compares
to the typical value in the second. In the Pygmalion study, for example, the goal might be to
determine how the 20% trimmed mean of the experimental group compares to the trimmed
mean of the control group, given that a student’s IQ reasoning pretest score is x = 90. Of
course, a more general goal is to determine how the trimmed means compare as x varies. The
most common strategy is to assume that a straight regression line can be used to predict y
given x . That is, assume that for the j th group, m j (x)= β1 j x1 j +β0 j , j = 1,2. Next, estimate
the slope and intercept for each group, and use the estimates to compute a confidence interval
for m1(x)−m2(x). Based on results covered in this chapter, as well as Chapter 5, a reasonable
speculation is that a percentile bootstrap procedure will provide fairly accurate probability
coverage when working with some robust regression method. However, simulations do not
support this approach. In fact, probability coverage can be poor, at least when n ≤ 50.

Another strategy is to assume that the regression slopes are parallel, as is done using a
standard ANCOVA method for means. If this assumption is true, then the groups can be
compared simply by comparing the intercepts. However, this approach is not very satisfying.
The assumption of parallel regression lines can be tested using the method in Section 11.2, but
how much power should this test have in order to be reasonably certain that the slopes are, for
all practical purposes, sufficiently parallel? Also, if the slopes are not parallel what should be
done instead? There is a solution based on means and the assumption that the error term
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within each group is homoscedastic (Wilcox, 1987b), but one of the goals here is to allow the
error term to be heteroscedastic. Yet another problem is determining what to do if the
regression line is curvilinear. In some cases it might help to replace x with xa , for some
constant a, but as already noted, this method of straightening a regression is not always
effective, and even if a good choice for a could be found, there remains the problem of
finding an effective method for computing a confidence interval for m1(x)−m2(x).

In recent years, a number of nonparametric methods have been proposed for testing

H0 : m1(x)= m2(x),

for any x (e.g., Bowman & Young, 1996; Delgado, 1993; Dette & Neumeyer, 2001; Ferreira
& Stute, 2004; Härdle & Marron, 1990; Hall & Hart, 1990; Hall, Huber, & Speckman, 1997;
King, Hart, & Wherly, 1991; Kulasekera, 1995; Kulasekera & Wang, 1997; Munk & Dette,
1998; Neumeyer & Dette, 2003; Srihera & Stute, 2010; Young & Bowman, 1995; Zou et al.,
2010). Typically they are based on kernel-type regression estimators where m(x) is the
conditional mean of y given x . Many of these methods make rather restrictive assumptions,
such as homoscedasticity or equal design points, but recent efforts have yielded methods that
remove these restrictions (e.g., Dette & Neumeyer, 2001; Neumeyer & Dette, 2003). The
method derived by Srihera and Stute (2010) allows heteroscedasticity, but it is unknown how
well it performs under nonnormality. There are various ways these methods might be
extended to robust measures of location, so far simulations do not support their use, but many
variations have yet to be investigated.

11.11.1 Methods Based on Speci�c Design Points

This section describes a method for computing a 1−α confidence interval for m1(x)−m2(x)
that makes no parametric assumption about how y is related to x . In particular, a straight
regression line is not assumed. Furthermore, complete heteroscedasticity is allowed, meaning
that the error term for each group can be heteroscedastic, and nothing is assumed about how
the variance of the error term in the first group is related to the second. There are many
variations of the method that might prove to be useful, as will become evident. The technique
used here is one of the few methods that has been found to perform well in simulations under
nonnormality and heteroscedasticity. The goal is to impart the general flavor of the method
with the understanding that some researchers might want to make modifications depending on
the situation. In principle, m j (x) could be any measure of location or scale, but for now
attention is focused on the 20% trimmed mean.

The general strategy is to approximate the regression lines with a running interval smoother
and then use the components of the smoother to make comparisons at appropriate design
points. To explain, first assume that an x has been chosen with the goal of computing a
confidence interval for m1(x)−m2(x). For the j th group, let xi j , i = 1, . . . ,n j be values of
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the predictors that are available. As previously indicated, m j (x) is estimated with the trimmed
mean of the yi j values such that i is an element of the set

N j (x)= {i : |xi j − x | ≤ f j ×MADN j }.

That is, for fixed j , estimate m j (x) using the yi j values corresponding to the xi j values that
are close to x . As already noted, the choice f j = 0.8 or f j = 1 generally gives good results,
but some other value might be desirable. Let M j (x) be the cardinality of the set N j (x). That
is, M j (x) is the number of points in the j th group that are close to x , which in turn is the
number of yi j values used to estimate m j (x). When m j (x) is the 20% trimmed mean of y,
given x , the two regression lines are defined to be comparable at x if M1(x)≥ 12 and
M2(x)≥ 12. The idea is that if the sample sizes used to estimate m1(x) and m2(x) are
sufficiently large, then a reasonably accurate confidence interval for m1(x)−m2(x) can be
computed using the methods in Chapter 5. Yuen’s method often gives satisfactory results, and
the the bootstrap-t is even better, albeit more costly in terms of computer time.

When comparing the regression lines at more than one design point, confidence intervals for
m1(x)−m2(x), having simultaneous probability coverage approximately equal to 1−α, can
be computed as described in Chapter 7. When this is done for the problem at hand, the value
for f that is used is related to how close the actual simultaneous probability coverage is to the
nominal level.

To illustrate what can happen, suppose it is desired to compare the regression lines at five x
values: z1, z2, z3, z4, and z5. Of course, in practice, an investigator might have some
substantive reason for picking certain design points, but this process is difficult to study via
simulations. For illustrative purposes, suppose the design points are chosen using the
following process. First, for notational convenience, assume that for fixed j , the xi j values are
in ascending order. That is, x1 j ≤ · · · ≤ xn j j . Suppose z1 is taken to be the smallest xi1 value
for which the regression lines are comparable. That is, search the first group for the smallest
xi1 such that M1(xi1)≥ 12. If M2(xi1)≥ 12, in which case the two regression lines are
comparable at xi1, set z1 = xi1. If M2(xi1) < 12, consider the next largest xi1 value and
continue until it is simultaneously true that M1(xi1)≥ 12 and M2(xi1)≥ 12. Let i1 be the
value of i . That is, i1 is the smallest integer such that M1(xi11)≥ 12 and M2(xi11)≥ 12.
Similarly, let z5 be the largest x value in the first group for which the regression lines are
comparable. That is, z5 is the largest xi1 value such that M1(xi1)≥ 12 and M2(xi1)≥ 12. Let
i5 be the corresponding value of i . Let i3 = (i1+ i5)/2, i2 = (i1+ i3)/2, and i4 = (i3+ i5)/2.
Round i2, i3, and i4 down to the nearest integer and set z2 = xi21, z3 = xi31, and z4 = xi41.
Finally, consider computing confidence intervals for m1(zq)−m2(zq), q = 1, . . . ,5 by
applying the methods for trimmed means described in Chapter 5. In particular, perform
Yuen’s test using the y values for which the corresponding x values are close to the design
point zq , and control the probability of at least one type I error among the five tests by using
the critical value given by the five-variate Studentized maximum modulus distribution.
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Table 11.9: Estimated Type I Error Probabilities, α = 0.05.

Y = X Y = X2 Y = X2 Y = X2 Y = X2

X ε n = 30 n = 40 n = 30 n = 40 n = 40
g h g h f = 1 f = 1 f = 0.75 f = 0.75 f = 0.5

0 0 0 0 .046 .049 .045 .045 .039
0 0 0 0.5 .024 .034 .030 .027 .023
0 0 0.5 0 .034 .055 .045 .043 .037
0 0 0.5 0.5 .022 .038 .032 .031 .024
0 0.5 0 0 .042 .065 .045 .059 .041
0 0.5 0 0.5 .027 .049 .030 .037 .031
0 0.5 0.5 0 .041 .073 .043 .052 .031
0 0.5 0.5 0.5 .027 .041 .035 .026 .021

0.5 0 0 0 .042 .071 .029 .059 .039
0.5 0 0 0.5 .027 .046 .021 .037 .031
0.5 0 0.5 0 .041 .066 .026 .052 .035
0.5 0 0.5 0.5 .026 .043 .018 .026 .021
0.5 0.5 0 0 .044 .082 .039 .060 .044
0.5 0.5 0 0.5 .033 .056 .024 .036 .033
0.5 0.5 0.5 0 .045 .078 .041 .057 .035
0.5 0.5 0.5 0.5 .032 .053 .028 .031 .023

Table 11.9 shows some simulation results when x and ε are generated from various g-and-h
distributions. Column five shows a simulation estimate of the actual probability of at least one
type I error, α̂, when α = 0.05, y = x+ ε, n = 30, and f = 1. The control over the probability
of a type I error is reasonably good, the main problem being that the actual probability of a
type I error can drop slightly below .025 when ε has a heavy-tailed distribution. Simulations
are not reported for n = 20 because situations arise where five design points cannot always be
found for which the the regression lines are comparable.

Column six shows the results when y = x2
+ ε, n = 40, and f = 1. When x is highly skewed

and heavy tailed (g = h = 0.5), α̂ can exceed .075, the highest estimate being equal to .082.
With n = 30, not shown in Table 11.9, the estimate goes as high as .089. There is the
additional problem that f = 1 might not be sufficiently small, as previously illustrated. If
f = 0.75 is used, α̂ never exceeds .05, but in a few cases it drops below .025, the lowest
estimate being equal to .018. Increasing n to 40, the lowest estimate is .026. Results in
Chapter 5 suggest that even better probability coverage can be obtained using a bootstrap
method, but the extent to which the probability coverage is improved for the problem at hand
has not been determined. (For more details about the simulations, see Wilcox, 1997b.)

Another positive feature of the method described here is that its power compares well with the
conventional approach to ANCOVA when the standard assumptions of normality,
homogeneity of variance, and parallel regression lines are true. For example, if both groups
have sample sizes of 40, yi1 = xi1+ εi1, but yi2 = xi2+ εi2+1, the conventional approach to
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ANCOVA has power approximately equal to .867 when testing at the 0.05 level. The method
described here has power .828, where power is the probability that the null hypothesis is
rejected for at least one of the empirically chosen design points, z1, . . . , z5. If the error terms
have heavy-tailed distributions, the traditional approach has relatively low power, as is
evident from results described in previous chapters. Even under normality, standard
ANCOVA can have relatively low power. For example, if yi1 = xi1+ εi1, but
yi2 = .5xi2+ εi2, standard ANCOVA has power .039 versus .225 for the method based on
trimmed means, again with sample sizes of 40. Even when ANCOVA has relatively good
power, an advantage of using trimmed means with a running interval smoother is that the goal
is to determine where the regression lines differ and by how much, and this is done without
assuming that the regression lines are straight.

Bootstrap Bagging

A possible way of increasing power is to combine the running interval smoother with
bootstrap bagging. In terms of hypothesis testing, a percentile bootstrap method is currently
the only known method that performs well in simulations (Wilcox, 2009a). So in effect, a
nested bootstrap method is used where for each bootstrap sample, bootstrap bagging is
applied. Let D = m̂∗1(x)− m̂∗2(x), where m̂∗1(x) and m̂∗2(x) are estimates of m1(x) and m2(x),
respectively, based on bootstrap bagging. Repeat this process B times yielding D1, . . . ,DB .
Then a (generalized) p-value when testing H0: m1(x)= m2(x) is

P =
1

B

B∑
b=1

(IDb<0+ .5IDb=0), (11.30)

where the indicator function IDb<0 = 1 if Db < 0; otherwise IDb<0 = 0.

11.11.2 R Functions ancova, ancpb, runmean2g, lplot2g, ancboot,
ancbbpb, and cobs2g

Several R functions are supplied with the hope that one of them matches the needs of the
reader when dealing with ANCOVA. The first is

ancova(x1,y1,x2,y2,fr1=1,fr2=1,tr=0.2,alpha=0.05,plotit=T,
pts=NA,sm=F,xout=F,outfun=out, . . .)

which compares trimmed means. The data for group 1 are stored in x1 and y1, and for group
two they are stored in x2 and y2. The arguments fr1 and fr2 are the values of f (the span) for
the first and second group, used by the running interval smoother, which default to 1 if
unspecified, and tr is the amount of trimming which defaults to 0.2. The default value for
alpha (α), the probability of at least one type I error, is .05. If the argument pts=NA, five
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design points are chosen as described in the previous section. The results are returned in the
matrix ancova$output, as illustrated in the next example. If values are stored in pts, the
function compares groups at the values specified. So if pts contains the values, 5, 8, and 12,
the function will test H0: m1(x)= m2(x) at x = 5, 8, and 12, and it controls the probability of
a type I error by determining a critical value based on the Studentized maximum modulus
distribution (as described in Chapter 7). When plotit=T, the function creates a scatterplot and
smooth for both groups by calling the function

runmean2g(x1,y1,x2,y2,fr=0.8,est=tmean,xlab=“x”,ylab=“y”,
sm=F,nboot=40,SEED=T,eout=F,xout=F,outfun=out, . . .),

which creates a separate smooth for each group. Setting the argument sm=T results in using a
bagged version of the smooth, which can be useful when the sample size is small. If the
argument xout=T, leverage points are removed when plotting the regression lines.

n Example

The Pygmalion data in Section 11.2.1 is used to illustrate the function ancova. The goal
is to compare posttest scores taking into account pretest scores. Suppose the data for
the experimental group are stored in the R variables conx1 and cony1, and the control
data are in x2 and y2. The command ancova(conx1,cony1,x2,y2) returns

$output
X n1 n2 DIF TEST se ci.low ci.hi p.value

[1,] 72 12 63 13.39103 1.848819 7.243016 -9.015851 35.79790 0.09387996
[2,] 82 16 68 14.79524 1.926801 7.678655 -8.211174 37.80165 0.07732813
[3,] 101 14 59 22.43243 1.431114 15.674806 -26.244186 71.10905 0.18315241
[4,] 111 12 47 23.78879 1.321946 17.995286 -35.644021 83.22161 0.22452259
[5,] 114 12 43 21.59722 1.198906 18.014112 -37.832791 81.02724 0.26640590

crit.val
[1,] 3.093584
[2,] 2.996151
[3,] 3.105405
[4,] 3.302688
[5,] 3.299081

The �rst column of the matrix $output indicates the x values at which the two groups
are compared, and the next two columns indicate the sample sizes being used [the
values of M1(x) and M2(x)]. For example, the �rst row has 72 under the column headed
X, 12 under the column headed by n1, and 63 under the column headed n2. This means
that a con�dence interval for m1(72)−m2(72) is being computed based on sample sizes
of 12 and 63. That is, subjects in the experimental group, with an IQ reasoning pretest
score of 72, are being compared to subjects in the control group who also have an IQ
reasoning pretest score of 72. The estimated difference between the 20% trimmed

www.elsevierdirect.com



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

WILCOX 14-ch11-533-630-9780123869838 2011/12/6 18:35 Page 615 #83

Chapter 11 More Regression Methods 615

x

y

0 20 40 60 80 100 120

200

150

100

50

•

•

•

•

•

•

•

•

•

•

•

••
•

• •

•

•

•

+

+

+

+

++

+

+

+
+

+
+

+

+

+

+

+

+

+

+
+

+
+

+
+

+
+

+

+

+

+

+

+
+

+

+

+

+

+
+

+

+

++

+

+
+

+

++
+

+
+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+
+
+

+

+
+

+

+

+

+

+

+

+

++

+
+
+

+

+

+

+

+

Figure 11.16: The plot created by ancova based on the Pygmalion data.

means is in the column headed by DIF, the test statistic for testing H0 : m1(x)= m2(x) is
in the column headed by TEST, and the estimated standard error of DIF is in the column
se. The �nal two columns give the lower and upper ends of the 0.95 con�dence interval.
The critical value used by all �ve tests is stored in the R variable ancova$crit and is
approximately equal to 3.3. For H0 : m1(72)= m2(72), the test statistic is 1.84, this is
less than the critical value, so do not reject. Figure 11.16 shows the plot created by the
function ancova.

n

If both fr1 and fr2 are decreased to 0.75, all five comparisons are done at x = 90 because no
other design points can be found for which the regression lines are comparable. If fewer than
five design points are found for which the regression lines are comparable, the critical value is
adjusted appropriately.

It should be noted that the critical values are designed so that the probability of one or more
type I errors is approximately α. The confidence intervals are not adjusted accordingly. Each
confidence is designed to have probability coverage 1−α.

n Example

Again consider the Pygmalion data, only suppose it is desired to compare the groups at
x = 70, 80, and 90. Then the command

ancova(conx1,cony1,x2,y2,pts=c(70,80,90))

www.elsevierdirect.com



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

WILCOX 14-ch11-533-630-9780123869838 2011/12/6 18:35 Page 616 #84

616 Introduction to Robust Estimation and Hypothesis Testing

returns

X n1 n2 DIF TEST se ci.low ci.hi p.value crit.val
[1,] 70 12 58 16.41667 2.316398 7.087152 -3.926717 36.76005 0.04486589 2.870460
[2,] 80 16 68 15.74762 2.052538 7.672266 -5.270017 36.76525 0.06200997 2.739430
[3,] 90 15 62 14.32456 1.866934 7.672774 -6.846733 35.49586 0.08721893 2.759275

That is, the output is the same as before, but the critical value is computed based on the
number of tests being performed, which in this case is three.

n

The function

ancpb(x1,y1,x2,y2,est=mom,pts=NA,nboot=599,plotit=T, . . .)

is like the function ancova, only any measure of location can be used, which is specified by
the argument est, and a percentile bootstrap method is used to compute confidence intervals.
The arguments are the same as before, only the argument nboot is added to indicate B, how
many bootstrap samples to use.

The function

ancboot(x1,y1,x2,y2,fr1=1,fr2=1,tr=0.2,nboot=599,pts=NA,plotit=T).

is exactly like the function ancova, only a bootstrap-t method is used to compute confidence
intervals and test hypotheses based on trimmed means.

n Example

For the Pygmalion data, ancboot (using the default values for fr1, fr2, and tr) returns

$output:
X n1 n2 DIF TEST ci.low ci.hi

[1,] 72 12 63 13.39103 1.848819 -11.58043 38.36248
[2,] 82 16 68 14.79524 1.926801 -11.67815 41.26863
[3,] 101 14 59 22.43243 1.431114 -31.60897 76.47384
[4,] 111 12 47 23.78879 1.321946 -38.25284 85.83043
[5,] 114 12 43 21.59722 1.198906 -40.50931 83.70376

$crit:
[1] 3.44766

n
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n Example

Consider the data used to illustrate anctgen, only bootstrap con�dence intervals are
computed instead with ancbootg. The function returns

$output:
X n1 n2 DIF TEST se ci.low ci.hi

[1,] 70 12 58 16.41667 2.316398 7.087152 -4.323841 37.15717
[2,] 80 16 68 15.74762 2.052538 7.672266 -6.705222 38.20046
[3,] 90 15 62 14.32456 1.866934 7.672774 -8.129766 36.77889

$crit:
[1] 2.926494

The critical value is slightly larger using the bootstrap method, compared to the critical
value used by anctgen, and this results in slightly longer con�dence intervals.

n

The R function

ancbbpb(x1, y1, x2, y2, fr1 = 1, fr2 = 1, nboot = 200, pts = NA, plotit = T, SEED = T,
alpha = 0.05, RNA = T)

is like the R function ancova, only bootstrap bagging is used. So it has the potential of more
power at the cost of higher execution time.

n Example

The �rst example in this section, based on the default settings of the R function ancova
and applied to the the Pygmalion data, found no differences between the groups. Using
instead the R function ancbbpb, the result are

$output
X n1 n2 DIF ci.low ci.hi p.value

[1,] 72 12 63 12.03672 -2.7430218 22.37841 0.16528926
[2,] 82 16 68 16.24183 0.8489948 24.69427 0.03007519
[3,] 101 14 59 28.32713 3.5099184 48.23010 0.01398601
[4,] 111 12 47 31.94660 8.9667976 70.64249 0.01273885
[5,] 114 12 43 34.23546 7.4661331 71.24803 0.01149425

So now differences are found at four of the �ve design points when testing at the 0.05
level.

n
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The R function

lplot2g(x1,y1,x2,y2,fr=0.8,est=tmean,xlab=”X”,ylab=”Y”,xout=F,eout=F,outfun=out, . . .)

is like runmean2g, only it plots the regression lines corresponding to two groups using
Cleveland’s smoother instead. The R function

cobs2g(x1,y1,x2,y2,xlab=“X”,ylab=“Y”,qval=0.5,xout=F,outfun=out, . . .)

plots two regression lines using the quantile the regression estimator COBS in Section 11.5.7.

11.11.3 Multiple Covariates

There are various ways the method described in Section 11.11.1 might be extended to the case
of multiple covariates. Consider any point among the covariates. Momentarily focus on the
i th value of the covariate in the first group, xi1. Then proceeding along the lines in
Section 11.5.11, it is a simple matter to determine the set N1(xi1)= { j : D1i j ≤ f }, where

D1i j =

√
(xi1−x j1)′M−1(xi1−x j1),

where as before, M is some measure of covariance. The set N1 identifies all x j1 values such
that x j1 is close to xi1. The same can be done for the second group. That is,
N2(xi1)= { j : D2i j ≤ f }, where

D2i j =

√
(xi1−x j2)′M−1(xi1−x j2),

Then the y j1 values, such that j ∈ N1, can be compared to the y j2 values, j ∈ N2, using some
measure of location. If there is interest in some particular xi1, this approach is readily
implemented, but otherwise, how should xi1 be chosen? One possibility is to take xi1 to be the
point having the largest halfspace depth. Another possibility is to pool the xi1 and xi2 and
replace xi1 in the method just described with the point having the largest halfspace depth
among the pooled data. Of course, multiple choices for xi1 might be used. For example, in
addition to the deepest point, one might consider those points whose depth is equal to the
median depth among all points in the first group, or among the pooled values. That is, for each
point that lies on the 0.5 depth contour, compare group 1 and group 2 as just described.

Notice that the method for handling multiple covariates is readily extended to comparing
more than two groups. Again pick design points for each of the J groups to be compared,
determine observed covariate values that are close to the chosen design points, then use
methods in Chapter 7 to test hypotheses about the corresponding y values.
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11.11.4 R Functions ancdes, ancovamp, ancmppb, and ancmg

The R function

ancovamp(x1,y1,x2,y2,fr1=1,fr2=1,tr=0.2,alpha=0.05,pts=NA)

compares two groups based on trimmed means and takes into account multiple covariates
using the method outlined in Section 11.11.3. The arguments are the same as ancova in
Section 11.11.2. By default, pts=NA meaning that the points among the covariates at which
the groups will be compared are determined by the function; it finds a point among the x1
values that has the deepest halfspace depth, plus the points on the 0.5 depth contour, and the
groups are compared at these points provided that the corresponding sample sizes are at least
10. Should one want to pool the data and then find the deepest point, plus the points on the 0.5
depth contour, this can be done as indicated by an Example later in this section. The function
controls the familywise error rate by determining a critical value via the Studentized
maximum modulus distribution (as described in Chapter 7).

The function

ancmppb(x1,y1,x2,y2,fr1=1,fr2=1,tr=0.2,alpha=0.05,pts=NA,est=tmean,
nboot=NA,bhop=F, . . .)

is like ancovamp, only a percentile bootstrap method is used and any measure of location can
be employed. By default, a 20% trimmed mean is used. In essence, the function determines
groups as before, then it compares the corresponding y values by calling the function pbmcp
in Section 7.6.3, where the argument bhop is explained. (It determines the approach used to
control the probability of at least one type I error among the tests performed.)

It is noted that both of the functions just described determine the points among the covariates
that will be used by calling the function

ancdes(x,depfun=fdepth).

This function determines the halfspace depth of the points in x, where the depth of points is
determined using the function indicated by the argument depfun (see Chapter 6), and then
ancdes determines a point having the maximum depth plus those points on the 0.5 depth
contour. So if one wanted to use ancmppb, but pool the data in x1 and x2 when determining
the points among the covariates when deciding where the groups are to be compared, the
command

ancmppb(x1,y1,x2,y2,pts=ancdes(rbind(x1,x2)))

would accomplish this goal.
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The R function

ancmg(x, y, pool = T, jcen = 1, fr = 1, depfun = fdepth, nmin = 8, op = 3, tr = 0.2,
pts = NA, SEED = T, pr = T, cop = 3, con = 0, nboot = NA, alpha = 0.05, bhop = F)

can be used to compare multiple groups when there are multiple covariates. The argument op
determines how the groups are compared. The default op=3 means that multiple comparisons
are performed based on trimmed means via the R function pbmcp. This is done for each value
of the covariates that is of interest. To perform a global test instead, set op=1, which means
the R function t1way will be used. The choices op=2 and 4 result in comparing medians,
where op=4 performs multiple comparisons by calling by calling medpb. If there are tied
values, op=2 is not recommended; use op=4 to compare medians.

One way of storing the data, when using ancmg, is in list mode. Imagine that three groups are
to be compared based on two covariates. Then x[[1]] would contain a matrix of data with n1

rows and p = 2 columns, x[[2]] would contain a matrix of data with n2 rows and p = 2
columns, x[[3]] would contain a matrix of data with n3 rows and p = 2 columns, and y[[1]],
y[[2]] and y[[3]] would contain the outcome measures to be compared. Another option is to
store the covariate data in a matrix with J p columns, assuming all J groups have the same
sample size. And y could be a matrix with J columns.

11.11.5 Some Global Tests

The methods in the previous section are aimed at comparing groups at specific design points.
This section describes some methods where the goal is to test the hypothesis that the groups
do not differ for any design point.

Method TG

Method TG is a global test based on trimmed means and is limited to a single covariate. It is
assumed that x has been standardized based on some robust measure of location and scale.
Unless stated otherwise, the median and median absolute deviation are used. That is, if we
begin with the covariate z, we work with

x =
z−M

MADN
.

The goal is to test
H0 : m1(x)= m2(x) ∀x . (11.31)

The method is based in part on a simple generalization of the notion of regression depth.
Recall from Section 10.11 that when estimating the slope and intercept of the usual linear
model, a candidate fit, (b0, b1), is called a nonfit if a partition of the x values can be found
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such that all of the residuals for the lower x values are negative (positive), but for all of the
higher x values the residuals are positive (negative). For the random sample
(x1, y1), . . . , (xn, yn), and letting ri = yi −b0−b1xi , a candidate fit is called a nonfit if and
only if a value for v can be found such that

ri < 0 for all xi < v

and

ri > 0 for all xi > v

or

ri > 0 for all xi < v

and

ri < 0 for all xi > v.

Rousseeuw and Hubert define the regression depth of a fit (b1,b0), relative to
(x1, y1), . . . , (xn, yn), as the smallest number of observations that need to be removed to make
(b1,b0) a nonfit. Their deepest regression line estimator corresponds to the values of b1 and
b0 that maximize regression depth.

Now consider any fit ŷi = m(xi ), which might be obtained via any of the nonparametric
regression methods previously described. Given a fit, the depth of the fit can be measured
using a simple extension of the Rousseeuw and Hubert approach because their notion of depth
is based entirely on the residuals and the values of the covariate. In particular, it does not
require that the regression line be straight. That is, now ri = yi − ŷi , and given x1, . . . , xn ,
depth is defined as before.

Using a simple modification of the computational algorithm in Rousseeuw and Hubert (1999),
the depth of a nonparametric regression line can be computed as follows. First, reorder the
covariate values so that x1 ≤ · · · ≤ xn . Then the regression depth of m(x) is

D = min
1≤i≤n

(min{L+(xi )+ R−(xi ), R+(xi )+ L−(xi )}),

where

L+(v)= #{ j; x j ≤ v and r j ≥ 0},

R−(v)= #{ j; x j > v and r j ≤ 0},

and L− and R+ are defined accordingly. Note that regression depth is scale invariant. From
Theorem 1 in Rousseeuw and Hubert, it follows that the maximum possible value for D is
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greater than or equal to n/3 and less than or equal to n, where the ceiling z is the smallest
integer ≥ z.

Let (yi j , xi j ) be a random sample from the j th group (i = 1, . . . ,n j ), and imagine that a
nonparametric regression line is fitted to the data in the first group. Then in general, this fit
can be used to estimate y given any value for x simply by computing the trimmed mean of the
yi1 values for which the corresponding xi1 values are close to x . In particular, an estimate can
be computed for the covariate values corresponding to the second group: xi2, i = 1, . . . ,n2.
This assumes, of course, that given xi2, there are one or more xi1 values that are close to xi2;
otherwise an estimate is not defined and is ignored. Let

ŷi jk = m j (xik; x1 j , . . . , xn j j )

be the predicted value of y corresponding to the i th observation in the kth group using the fit
obtained from the j th group. That is, ŷi jk is the 20% trimmed mean of the yi j values for
which xi j is close to xik . Let ri jk = yi jk− ŷi jk , and let D jk be the resulting regression depth.
So D11, for example, is the depth of the first smooth relative to the points in the first group,
and D12 is the depth of the first smooth relative to the second group. If H0 is true, it should
be the case that D11−D21, as well as D12−D22, are relatively small, suggesting the test
statistic

T = D11−D21+D12−D22. (11.32)

Because regression depth is scale invariant, T is scale invariant as well. If H0 is rejected when
T ≥ t , the problem is determining t so as to control the probability of a type I error. Note that
T has a discrete distribution, so in general choosing t so that the type I error probability is
exactly α cannot be accomplished in most cases.

Momentarily assume the running interval smoother is used. The only known method that has
been found to perform well in simulations begins by pooling the data from both groups and
using bootstrap samples to estimate the null distribution of T (Wilcox, 2010a). Note that if the
null hypothesis is true, the individual smooths estimate the same regression line estimated by
the pooled estimate. Let N = n1+n2 and generate a bootstrap sample by sampling with
replacement N pairs of points from the pooled data. Based on this bootstrap sample, use the
first n1 pairs of points to compute the depths D11 and D21, and label the results D∗11 and D∗21.
In a similar manner, the remaining n2 points are used to compute D12 and D22 and the results
are labeled D∗12 and D∗22. Let

T ∗ = D∗11−D∗21+D∗12−D∗22.
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Repeat this process B times yielding T ∗1 , . . . ,T ∗B and let

P =
1

B

∑
IT>T ∗,

where IT>T ∗ = 1 if T > T ∗; otherwise IT>T ∗ = 0. Then a (generalized) p-value is

p = 1− P.

If H0 is rejected when p ≤ .05, simulations indicate that, generally, the actual level is
reasonably close to 0.05 when the span is f = 1 and both sample sizes are between 40 and
150. However, for smaller or larger sample sizes, an alternative choice for f is required. If the
smallest sample size is greater than 150, f = 0.2 was found to give good results with sample
sizes as large as 800. If max(n1,n2) < 35, use f= 0.5. For sample sizes between 150 and 180,
both f = 0.2 and f = 1 perform well. But for min(n1,n2) > 200, f = 0.2 should be used.

The choice of smoother is important. It is unknown, for example, how to control type I errors
reasonably well, in simulations, when the running interval smoother is replaced by LOWESS.
However, simulations do indicate that when using the quantile smoother COBS, the
probability of a type I error will not exceed the nominal level when using sample sizes of at
least 30. But when testing at the 0.05 level, the actual level can be as low as 0.01 in some
situations. The choice between COBS and the running interval smoother can make a
substantial difference in terms of power.

Also, it might seem that regression depth could be used to determine a nonparametric
regression line, but this strategy is unsatisfactory. Note that if xi 6= x j for all i 6= j , then the
maximum possible depth, D = n, is achieved by taking m(xi )= yi . The point here is that
given a nonparametric fit, based on some appropriate choice for the span, its regression depth
can be computed, which in turn can be used to test the hypothesis given by Eq. (11.31).

There is a feature of the global tests in this section that should be stressed, which is relevant to
the classic ANCOVA method as well. Imagine that for the first group, the range of the
covariate values, x , is 0–10, and for the second group the range is 30–40. Classic ANCOVA
would assume that the regression lines are parallel and compare the intercepts. If the usual
linear model holds, the methods in this section are aimed at testing the hypothesis that the
slopes, as well as the intercepts, are equal. More generally, the methods in this section ignore
the fact that the two groups do not have any covariate values in common. But based on the
ANCOVA methods in Section 11.11.1, comparisons would not be made. For instance, it might
be of interest to determine whether the groups differ when the covariate x = 5. Because data
are not available for the second group when x = 5, comparisons cannot be made based on the
methods in Section 11.11.1. Perhaps comparisons should not be made by imposing
assumptions such as those made by the classic ANCOVA model.
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11.11.6 R Functions ancsm and Qancsm

The R function

ancsm(x1, y1, x2, y2, nboot = 200, SEED = T, est = tmean, fr = NULL, plotit = T, sm = F,
tr = 0.2, xout=F, outfun=out, . . .)

applies method TG using the running interval smoother. By default, a 20% trimmed mean is
used. Setting sm=T, the plots of the regression lines will be based on bootstrap bagging. (But
the test of the null hypothesis of identical regression lines is based on the running interval
smoother without bootstrap bagging.) The function

Qancsm(x1,y1,x2,y2,crit.mat=NULL,nboot=200,SEED=T,REP.CRIT=F,
qval=.5,xlab=“X”,ylab=“Y”,plotit=T,pr=T,xout=F,outfun=out, . . .)

is like ancsm only COBS is used to estimate the quantile regression lines. The argument qval
determines the quantile that is used and defaults to 0.5, the median.

11.12 Marginal Longitudinal Data Analysis: Comments on Comparing
Groups

There is a vast literature on what is generally known as longitudinal data analysis (e.g.,
Diggle, Heagerty, Liang, & Zeger, 2002; Molenberghs & Verbeke, 2005). Roughly, the goal is
to deal with situations where measures are taken over time. As a concrete example, consider
again the data in Section 1.9 dealing with an orthodontic growth study. The measure of
interest is the distance between the pituitary and pterygomaxillary fissure, which was
measured at 8, 10, 12, and 14 years of age. As noted in Section 1.9, the first 10 rows of the
data are:

Distance Age Subject Sex
1 26.0 8 M01 Male
2 25.0 10 M01 Male
3 29.0 12 M01 Male
4 31.0 14 M01 Male
5 21.5 8 M02 Male
6 22.5 10 M02 Male
7 23.0 12 M02 Male
8 26.5 14 M02 Male
9 23.0 8 M03 Male
10 22.5 10 M03 Male

There are 16 males and 11 females.
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Many goals arise when dealing with longitudinal data. And often one of three models is used.
The first is a marginal regression model where the goal is to understand the typical outcome
(distance in the example) given the value of some explanatory variable, which here is age.
The other two models are a random effects model and a transitional model where the
covariate effects and the within-subject association are modeled through a single equation.
Transitional models go beyond the scope of this book and are not discussed. Indeed, only a
few comments are made about a narrow range of problems that are relevant to longitudinal
data. From a robustness point of view, progress has been made, but more research in this area
is needed for reasons outlined at the end of this section.

A common approach to longitudinal data is to fit some type of linear regression model that
takes into account in some manner the time at which measures were taken. A simple example
is to assume

yi j = β0+β1t j + εi j ,

where t j is some measure taken at the j th time point. In the orthodontic example, t1, . . . , t4
correspond to ages 8, 10, 12 and 14, respectively. So a single slope and intercept are used to
characterize the association between y and t for the population of individuals under study.
A semiparametric regression model for longitudinal data was studied by Chen and Zhong
(2010) where an empirical likelihood method is used to test hypotheses. Their simulations
indicate that the method performs well under normality, but it seems that a robust version of
this approach has not been derived. Recall from Section 4.7 that in the one-sample case, the
empirical likelihood method can be relatively unsatisfactory when dealing with heavy-tailed
distributions.

A variation of this approach fits a regression line for each individual. Diggle et al. (2002)
describe a number of situations where this approach appears to be reasonable. For example,
for each participant in the orthodontic growth data, the strategy would be to fit a regression
model that relates distance to the age of the child. In more formal terms, assume that for the
i th participant

yi j = β0i +β1i ti j + εi j .

So each individual is characterized by a slope and intercept, with the slopes and intercepts
possibly varying among the population of participants.

Imagine that the goal is to compare males and females. One approach is to use the
between-by-within ANOVA method described in Section 8.6. Another approach is to compare
the groups using a multivariate measure of location as described, for example, in Sections 6.8,
6.9, or 6.11. In terms of the orthodontic data, we have four measures for each individual, and
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so the groups could be compared, for example, based on the multivariate OP measure of
location. For the kth group, let (θ0k, θ1k) represent some measure of location associated with
(β01k, β11k), . . . , (β0nkk, β1nkk) where β0ik and β1ik are the intercept and slope, respectively,
associated with the kth group (k = 1, 2). For example, θ1k might be the median of the slopes
associated with group k. Yet another approach is to test

H0 : (θ01, θ11)= (θ02, θ12). (11.33)

So the p-variate data has been reduced to two variables, and these two variables could be
compared, for example, using the methods in Sections 6.8 or 6.9.

A broader, more involved approach toward longitudinal data, based on a marginal model and
the MM-estimator in Section 10.9.1, is summarized by Heritier et al. (2009, Section 6.2).
Included is an inferential technique that is based in part on appropriate estimates of the
standard errors; the test statistic is assumed to be approximately standard normal. Evidently,
there are no results on the ability of this approach to control type I errors when dealing with
skewed distributions or heteroscedasticity. In simpler situations, skewness is a serious concern
when using M-estimators and a hypothesis testing method is based on a (nonbootstrap)
technique that is a function of estimated standard errors. So caution seems warranted for the
situation at hand. For robust methods based on a random effects model, see Mills, Field, and
Dupuis (2002), Sinha (2004), and Noh and Lee (2007). The basic strategy is to estimate
parameters assuming observations are randomly sampled from a class of distributions that
includes normal distributions as a special case. For example, Mills et al. assume that sampling
is from a mixture of normal and t distributions, which results in a bounded influence function.
Certainly these methods are an improvement on methods that assume normality. Again, what
is unclear is the extent skewness and heteroscedasticity affect efficiency and type I error
probabilities. How well do these methods handle contamination bias as described in
Section 10.14.1? If practical problems are found, perhaps some bootstrap methods can
provide more satisfactory results, but this remains to be determined.

11.12.1 R Functions long2g, longreg, longreg.plot, and xyplot

The R function

long2g(x, x.col, y.col, s.id, grp.id, regfun = tsreg, MAR = T, tr = 0.2)

compares two groups based on estimates of the slope and intercept for each participant. The
data are assumed to be stored in a matrix or data frame as illustrated by the orthodontic data in
the previous section. The arguments x.col and y.col indicate the columns of x where the
covariate and outcome variables are stored, respectively. The argument s.id is the column
containing the subject’s identification and grp.id is the column indicating group membership,
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which is assumed to have two possible values only. The regression line for each participant is
fitted with the regression estimator indicated by the argument regfun, which defaults to tsreg,
the Theil–Sen estimator. If MAR=T, the slopes and intercepts are compared using Yuen’s
method for trimmed means, which is described in Section 5.3. If MAR=F, the OP-estimator is
used via the method in Section 6.8.

The R function

longreg(x, x.col, y.col, s.id, regfun = tsreg, est = tmean)

computes the slope and intercept for each participant, using the regression estimator indicated
by the argument regfun, and returns the results in a matrix labeled S.est. The typical slope and
intercept are returned as well, which is based on the estimator indicated by the argument est.
The R function

longreg.plot((x,x.col,y.col,s.id,regfun=tsreg,scat=T,xlab=“X”, ylab=“Y”)

plots the regression lines based on the R function longreg. A scatterplot of the points can be
created with the R function xyplot, which is in the R package lattice. If the orthodontic data
are stored in the R variable x, the R command library(lattice) followed by

xyplot(x[,1]˜x[,2],group=x[,3])

accomplishes this goal. To add line segments connecting the responses for each participant,
include the argument type=“b”. The command

long2g(x,2,1,3,4)

would compare the slopes and intercepts using Yuen’s method.

11.13 Exercises

1. For the data in Exercise 1 of Chapter 10, the 0.95 confidence interval for the slope, based
on the least squares regression line, is (0.0022,0.0062). Using R, the 0.95 confidence
interval for the slope returned by lsfitci is (0.003,0.006). The 0.95 confidence interval
returned by the R function regci (using the Theil–Sen estimator) is (0.003,0.006).
Verify this result.

2. Section 8.6.2 reports data on the effects of consuming alcohol on three different
occasions. Using the data for group 1, suppose it is desired to predict the response at
time 1 using the responses at times 2 and 3. Test H0 : β1 = β2 = 0 using the R function
regtest and β̂m .
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3. For the data in Exercise 1, test H0 : β1 = 0 with the functions regci and regtest.
Comment on the results.

4. Use the function winreg to estimate the slope and intercept of the star data using 20%
Winsorization. (The data are stored in the file star.dat. See Section 1.8 on how to obtain
the data.)

5. For the Pygmalion data in Section 11.2.1, use the function reglev to determine which
points, if any, are regression outliers. (The data for the control group are stored in
pygc.dat, and the data for the experimental group are stored in pyge.dat.)

6. Use rplot to plot a smooth of the Pygmalion data using f = 0.75 and 20% trimmed
means. Create a plot for both the control and experimental groups when the goal is to
predict post IQ scores with pretest scores. Comment on how the results compare to using
f = 1.

7. Based on the results of Exercise 6, speculate about what a nonrobust smoother might
look like. Check your answer with the smoother lowess using the R lplot.

8. Use the function ancova and the Pygmalion data to compare the control group to the
experimental group using means. What might be affecting power?

9. For the reading data in file read.dat, let x be the data in column 2 (TAAST1), and
suppose it is desired to predict y, the data in column 8 (WWISST2). Speculate on
whether there are situations where it would be beneficial to use x2 to predict y taking
into account the value stored in column 3 (SBT1). Use the functions in this chapter to
address this issue.

10. For the reading data in the file read.dat, use the R function rplot to investigate the shape
of the regression surface when predicting the 20% trimmed mean of WWISST2 (the
data in column 8) with RAN1T1 and RAN2T1 (the data in columns 4 and 5).

11. The data in the lower left panel of Figure 11.5 are stored in the file agegesell.dat.
Remove the two pairs of points having the largest x value and create a running interval
smoother using the data that remain.

12. Using the Pygmalion data, compare the slope of the regression line of the experimental
group to the control group using the biweight midregression estimator.

13. For the reading data in the upper right panel of Figure 11.5, recreate the smooth. If you
wanted to find a parametric regression equation, what might be tried? Examine how well
your suggestions perform.

14. For the experimental group of the Pygmalion data in Section 11.2.1, create a plot of the
smooth using f = 1 and the function rplot. Recreate the plot, but this time omit the
scatterplot of the points by setting the argument scat to F for false. What does this
illustrate?

15. Generate 25 observations from a standard normal distribution and store the results in the
R variable x. Generate 25 more observations and store them in y. Use rungen to plot a
smooth based on the Harrell–Davis estimator of the median. Also create a smooth with
the argument scat=F. Comment on how the two smooths differ.
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16. Generate 25 pairs of observations from a bivariate normal distribution having correlation
zero and store them in x. (The R function rmul, written for this book, can be used.)
Generate 25 more observations and store them in y. Create a smooth using rplot using
scale=T and compare it to the smooth when scale=F.

17. Generate data from a bivariate normal distribution with the R command x=rmul(200).
Then enter the R command y=x[,1]+x[,2]+x[,1]*x[,2]+rnorm(200) and examine the
plot returned by the R command gamplot(x,y,scale=T). Compare this to the plot
returned by R command gamplotINT(x,y,scale=T).
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Hössjer, O. (1992). On the optimality of S-estimators. Statistics and Probability Letters, 14,
413–419.
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Hubert, M., & Vandervieren, E. (2008). An adjusted boxplot for skewed distributions.
Computational statistics & data analysis, 52, 5186–5201.

Hubert, M., Rousseeuw, P. J. & Vanden Branden, K. (2005). ROBPCA: A new approach to
robust principal component analysis. Technometrics, 47, 64–79.

Hubert, M., Rousseeuw, P. J., & Verboven, S. (2002). A fast method for robust principal
components with applications to chemometrics. Chemometrics and Intelligent Laboratory
Systems, 60, 101–111.

Huberty, C. J. (1989). Problems with stepwise methods—better alternatives. Advances in
Social Science Methodology, 1, 43–70.

Huitema, B. E. (1980). The analysis of covariance and alternatives. New York, NY: Wiley.

Hussain, S. S., & Sprent, P. (1983). Non-parametric regression. Journal of the Royal
Statistical Society, 146, 182–191.

Hwang, J., Jorn, H., & Kim, J. (2004). On the performance of bivariate robust location
estimators under contamination. Computational Statistics & Data Analysis, 44, 587–601.

Hyndman, R. J., & Fan, Y. (1996). Sample quantiles in statistical packages. The American
Statistician, 50, 361–365.

www.elsevierdirect.com



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

WILCOX 15-ref-631-686-9780123869838 2011/12/6 16:49 Page 654 #24

654 References

Iglewicz, B. (1983). Robust scale estimators and confidence intervals for location. In
D. Hoaglin, F. Mosteller, & J. Tukey (Eds.), Understanding robust and exploratory data
analysis (pp. 404–431). New York, NY: Wiley

Jaeckel, L. A. (1972). Estimating regression coefficients by minimizing the dispersion of
residuals. Annals of Mathematical Statistics, 43, 1449–1458.

Jeyaratnam, S., & Othman, A. R. (1985). Test of hypothesis in one-way random effects model
with unequal error variances. Journal of Statistical Computation and Simulation, 21,
51–57.

Jhun, M., & Choi, I. (2009). Bootstrapping least distance estimator in the multivariate
regression model. Computational Statistics & Data Analysis, 53, 4221–4227.

Jöckel, K.-H. (1986). Finite sample properties and asymptotic efficiency of Monte Carlo tests.
Annals of Statistics, 14, 336–347.

Johansen, S. (1980). The Welch-James approximation of the distribution of the residual sum
of squares in weighted linear regression. Biometrika, 67, 85–92.

Johansen, S. (1982). Amendments and corrections: The Welch-James approximation to the
distribution of the residual sum of squares in a weighted linear regression. Biometrika, 69,
491.

Johnson, N. J. (1978). Modified t tests and confidence intervals for asymmetrical populations.
Journal of the American Statistical Association, 73, 536–544.

Johnson, N. L., & Kotz, S. (1970). Distributions in statistics: Continuous univariate
distributions-2. New York, NY: Wiley.

Johnstone, I. M., & Velleman, P. F. (1985). The resistant line and related regression methods.
Journal of the American Statistical Association, 80, 1041–1054.

Jorgensen, J. O., Gilles, R. B., Hunt, D. R., Caplehorn, J. R. M., & Lumley, T. (1995). A
simple and effective way to reduce postoperative pain after laparoscopic
cholecystectomy. Australian and New Zealand Jouranl of Surgery, 65, 466–469.

Judd, C. M., & Kenny, D. A. (1981a). Estimating the effects of social interventions.
New York, NY: Cambridge University Press.

Judd, C. M., & Kenny, D. A. (1981b). Process analysis: Estimating mediation in treatment
evaluations. Evaluation Review, 5, 602–619.

Jureckova, J., & Portnoy, S. (1987). Asymptotics for one-step M-estimators with application
to combining efficiency and high breakdown point. Communications in Statistics–Theory
and Methods, 16, 2187–2199.

www.elsevierdirect.com



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

WILCOX 15-ref-631-686-9780123869838 2011/12/6 16:49 Page 655 #25

References 655

Kallenberg, W. C., & Ledwina, T. (1999). Data-driven rank tests for independence. Journal of
the American Statistical Association, 94, 285–310.

Kay, R., & Little, S. (1987). Transformation of the explanatory variables in the logistic
regression model for binary data. Biometrika, 74, 495–501.

Kent, J. T., & Tyler, D. E. (1996). Constrained M-estimation for multivariate location and
scatter. Annals of Statistics, 24, 1346–1370.

Keppel, G. (1991). Design and analysis: A researcher’s handbook. Englewood Cliffs, NJ:
Prentice Hall.

Keselman, H. J., Algina, J., Kowalchuk, R. K., & Wolfinger, R. D. (1999). A comparison of
recent approaches to the analysis of repeated measurements. British Journal of
Mathematical and Statistical Psychology, 52, 62–78.

Keselman, H. J., Algina, J., Wilcox, R. R., & Kowalchuk, R. K. (2000). Testing repeated
measures hypotheses when covariance matrices are heterogeneous: Revisiting the
robustness of the Welch-James test again. Educational and Psychological Measurement,
60, 925–938.

Keselman, H. J., Carriere, K. C., & Lix, L. M. (1993). Testing repeated measures hypotheses
when covariance matrices are heterogeneous. Journal of Educational Statistics, 18,
305–319.

Keselman, H. C., Keselman, J. C., & Lix, L. M. (1995). The analysis of repeated
measurements: Univariate tests, multivariate tests, or both? British Journal of
Mathematical and Statistical Psychology, 48, 319–338.

Keselman, H. C., Huberty, C. J., Lix, L. M., Olejnik, S., Cribbie, R. A., Donahue, B., . . .
Levin, J. R. (1998). Statistical practices of educational researchers: An analysis of their
ANOVA, MANOVA and ANCOVA analyses. Review of Educational Research, 68,
350–386.

Keselman, H. J., Othman, A. R., Wilcox, R. R., & Fradette, K. (2004). The new and improved
two-sample t test. Psychological Science, 15, 47–51.

Keselman, H. C., Wilcox, R. R., Lix, L. M., Algina, J., & Fradette, K. (2003). Adaptive robust
estimation and testing. Unpublished technical report, Department of Psychology,
University of Manitoba.

Keselman, H. C., Wilcox, R. R., Othman, A. R., & Fradette, K. (2002). Trimming,
transforming statistics, and bootstrapping: Circumventing the biasing effects of
heteroscedasticity and nonnormality. Journal of Modern Applied Statistical Methods, 1,
288–309.

www.elsevierdirect.com



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

WILCOX 15-ref-631-686-9780123869838 2011/12/6 16:49 Page 656 #26

656 References

Khan, J. A., van Aelst, S., & Zamar, R. (2010). Fast robust estimation of prediction error
based on resampling. Computational Statistics and Data Analysis, 54, 3121–3130.

Khuri, A. I. (1992). Tests concerning a nested mixed model with heteroscedastic random
effects. Journal of Statistical Planning and Inference, 30, 33–44.

Kim, J., & Hwang, J. (2001). Asymptotic properties of location estimators based on
projection depth. Statistics and Probability Letters, 49, 293–299.

Kim, P. J., & Jennrich, R. I. (1973). Tables of the exact sampling distribution of the
two-sample Kolmogorov-Smirnov criterion, Dmn , m ≤ n. In H. L. Harter & D. B. Owen
(Eds.), Selected tables in mathematical statistics (Vol. 1, pp. 79–170). Providence, Rhode
Island: American Mathematical Society.

Kim, S.-J. (1992a). A practical solution to the multivariate Behrens-Fisher problem.
Biometrika, 79, 171–176.

Kim, S.-J. (1992b). The metrically trimmed mean as a robust estimator of location. Annals of
Statistics, 20, 1534–1547.

King, E. C., Hart, J. D., & Wherly, T. E. (1991). Testing the equality of two regression curves
using linear smoothers. Statistics and Probability Letters, 12, 239–247.

Kirk, R. E. (1995). Experimental design. Pacific Grove, CA: Brooks/Cole.

Knight, K. (1998). Limiting distributions for L1 regression estimators under general
conditions. Annals of Statistics, 26, 755–770.

Koenker, R. (1981). A note on studentizing a test for heteroscedasticity Journal of
Econometrics, 17, 107–112.

Koenker, R. (1994). Confidence intervals for regression quantiles. In P. Mandl & M. Huskova
(Eds.), Asymptotic statistics. Proceedings of the fifth prague symposium (pp. 349–359).
Heidelberg: Physica-Verlag.

Koenker, R., & Bassett, G. (1978). Regression quantiles. Econometrika, 46, 33–50.

Koenker, R., & Ng, P. (2005). Inequality constrained quantile regression. Sankhya, The Indian
Journal of Statistics, 67, 418–440.

Koenker, R., Ng, P., & Portnoy, S. (1994). Quantile smoothing splines. Biometrika, 81, 673–680.

Koenker, R., & Xiao, Z. J. (2002). Inference on the quantile regression process.
Econometrica, 70, 1583–1612.

Koller, M., & Stahel, W. A. (2011). Sharpening Wald-type inference in robust regression for
small samples. Computational Statistics and Data Analysis, 55, 2504–2515.

Kosinski, A. (1999). A procedure for the detection of multivariate outliers. Computational
Statistics & Data Analysis, 29, 145–161.

www.elsevierdirect.com



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher
and is confidential until formal publication.

WILCOX 15-ref-631-686-9780123869838 2011/12/6 16:49 Page 657 #27

References 657

Kowalski, C. J. (1972). On the effects of non-normality on the distribution of the sample
product-moment correlation coefficient. Applied Statistics, 21, 1–12.

Kraemer, H. C., & Kupfer, D. J. (2006). Size of treatment effects and their importance to
clinical research and practice. Biological Psychiatry, 59, 990–996.

Krasker, W. S. (1980). Estimation in linear regression models with disparate data points.
Econometrika, 48, 1333–1346.

Krasker, W. S., & Welsch, R. E. (1982). Efficient bounded influence regression estimation.
Journal of the American Statistical, 77, 595–604.

Krause, A., & Olson, M. (2002). The basics of S-PLUS. New York, NY: Springer-Verlag.

Krishnamoorthy, K., Lu, F., & Mathew, T. (2007). A parametric bootstrap approach for
ANOVA with unequal variances: Fixed and random models. Computational Statistics and
Data Analysis, 51, 5731–5742.

Kulasekera, K. B. (1995). Comparison of regression curves using quasi-residuals. Journal of
the American Statistical Association, 90, 1085–1093.

Kulasekera, K. B., & Wang, J. (1997). Smoothing parameter selection for power optimality in
testing of regression curves. Journal of the American Statistical, 92, 500–511.

Kulinskaya, E., & Staudte, R. G. (2006). Interval estimates of weighted effect sizes in the
one-way heteroscedastic ANOVA. British Journal of Mathematical and Statistical
Psychology, 59, 97–111.

Kulinskaya, E., Morgenthaler, S., & Staudte, R. G. (2010). Variance stabilizing the difference
of two binomial proportions. American Statistician, 64, 350–356.
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Özdemir, A. F., & Wilcox, R. R. (2010). New results on the small-sample properties of some
robust estimators. Technical Report, Department of Statistics, Dokuz Eylul University,
Izmir, Turkey.
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.632 bootstrap, 603, 604

A
A-estimators, 94
affine equivariance, 225
affine equivariant, 486
affine invariance, 218
Agresti-Coull method, 211
ANCOVA

method TG, 620
apparent error, 604

B
B robust, 28
backfitting algorithm, 582
bad leverage point, 475
bagging, 566
Bartlett correction, 133
Benjamini–Hochberg Method, 330
bias

contamination, 517
binomial

Agresti-Coull confidence
interval, 211

Pratt’s confidence interval, 210
biweight midvariance, 90
Bonferroni, 329
bootstrap

equal-tailed, 117
p-value, 116
parametric, 292
percentile-t, 117
sample, 115
symmetric confidence interval,

117
bootstrap sample, 44
bootstrap-t, 117

boxplot rule, 97
breakdown point, 28

defined, 29
BWBMCP, 420

C
CHMCP, 357
Cohen’s d, 166
completely effective, 138
contaminated normal, 2
correlation

and explanatory power, 598
skipped, 460
type M, 446
type O, 446, 460

cross-validation, 603
curse of dimensionality, 582

D
data management

bbw2list, 438
bw2list, 412, 438
fac2list, 297

dispersion
measures of, 36, 94

drop in dispersion, 534

E
effect size, 166

dependent groups, 385
explanatory, 168, 294

efficiency, 91
Empirical likelihood, 132
Euclidean norm, 218
expected frequency curve, 47

explanatory power, 598
exponential tilting, 125

F
false discovery rate, 316, 331
familywise error rate, 318
finite sample breakdown point, 63
FWE, 318

G
general linear model, 363, 524
generalized additive model, 581
generalized variance

robust, 254
good leverage point, 475
gross error sensitivity, 28

H
h distribution, 104
half-slope ratio, 555
Hampel identifier, 86
hat matrix, 492
HC4 estimator, 478
Hochberg

multiple comparisons, 330
Hodges–Lehmann estimator, 85
Hodges-Lehmann estimator, 35
Hotelling’s T 2, 256

I
indirect effect, 594
infinitesimal robustness, 28
influence curve, 7
influence function, 7, 27

defined, 28
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interaction
three-way, 325
two-way, 324

interactions, 584, 589

J
kernel smoothing, 559

L
L-estimators, 67
least distance estimator, 527
least squares

iteratively reweighted, 84
least upper bound, 26
leverage points, 475
likelihood ratio test, 534
location

tau, 84
location equivariance, 24
location invariance, 36
LOESS, 599
logistic regression model, 522
longitudinal data, 624

M
M-measure of location, 33
MAD, 37, 47
Mahalanobis depth, 216
Mallow’s C p, 602
MANOVA, 363
masking, 96
MCAR, 204
MCD estimator, 226
Mean Deviation from the Mean, 36
Mean Deviation from the Median,

37
medcouple, 99
median

tied values, 129, 160
Tukey, 228

Median Absolute Deviation, 37
median absolute deviation, 47
mediated effect, 594
mediation analysis, 594
mediation effect, 594
Method TPB20, 331
MGV estimator, 501
minimum variance vector, 226
mixed linear model, 394

mixed normal, 2
MM-estimator, 599
moderator analysis, 589
modified one-step M-estimator, 86
MOM, 86
multinomial, 188
multivariate analysis of variance,

363
MVV, 226

N
nonnegative garrote, 602
normal distribution

contaminated, 2
mixed, 2

O
one-wild distribution, 87
OP estimator, 501
OP-estimator, 250
OP-estimator:scatters, 250
order statistic, 54
outside rate per observation, 97,

241

P
p-value

generalized, 116
parametric bootstrap, 292
partially effective, 138
PCA, 277
percentage bend midvariance, 93
Pratt’s method, 210
prediction error, 603
principal component

scores, 281
principal component scores, 278
principal components, 278

HRVB, 280
OP, 281
PPCA, 281
SPCA, 280
spherical, 280

principal components analysis, 277
projection distance, 222

Q
q-quantile range, 37
qualitative robustness, 25

quality index, 270
quantile smoother, 578

R
R

adcom, 588
adpchk, 597
adrunl, 583
adtest, 587
akp.effect, 169
ancdes, 619
ancmg, 620
ancmppb, 619
ancova, 613
ancovamp, 619
ancsm, 624
apanova, 408
b1way, 343
bbbmcppb, 332
bbbtrim, 329
bbmcppb, 332
bbmcppb.sub, 332
bbtrim, 328
bbw2list, 438
bbwmcp, 439
bbwmcppb, 439
bbwtrim, 437
bbwtrimbt, 437
bd1way, 394
bdm, 354
bdm2way, 361
binband, 190
bkreg, 572
bmp, 184
box1way, 299
boxplot, 98
bprm, 408
btrim, 303
bw2list, 365, 412, 437
bwamcp, 421
bwbmcp, 421
bwimcp, 422
bwmcp, 421
bwmcppb, 422
bwtrim, 410
bwtrimbt, 414
bwwmcp, 439
bwwmcppb, 440
bwwtrim, 437
bwwtrimbt, 437
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cid, 184
cidM, 358
cidmulv2, 358
cidv2, 184
cobs2g, 618
con2way, 323
con3way, 325, 329
correg, 487
ddep, 394
disc2com, 190
dmedpb, 403
dried, 277
dtrimpb, 403
esmcp, 295
fac2BBMlist, 14, 370
fac2list, 13, 14, 297, 316
fac2Mlist, 14, 370
gamplot, 583
gamplotINT, 584
glmrob, 525
gvar, 215
gvarg, 255
hc4test, 481
hc4wtest, 481
hdci, 131
hochberg, 334
hotel1.tr, 258
hratio, 556
kercon, 592
kerreg, 561
Kmeans, 288
kmeans.grp, 288
l2drmci, 200
l2v, 21
larsR, 607
lincon, 319
linconb, 327
linconm, 347
linconMpb, 369
lindepbt, 403
lindm, 397
lintest, 586
listm, 21
lmrob, 499
loc2dif, 200
logadr, 584
logrsm, 572
logSM, 572
long2mat, 20
longcov2mat, 20

lplot, 561
lplot, explanatory power, 599
lplot2g, 618
M2m.loc, 21
mat2grp, 19
matl, 21
matsplit, 18, 260
mcp2atm, 323
mcp2med, 324
mcp3atm, 325
mcp3med, 325
mcpOV, 398
mcppb20, 332
med1way, 301
med2way, 311
medpb, 332
mestci, 126
mlrGtest, 548
momci, 126
MULAOVp, 365
MULtr.anova, 365
na.omit, 22
ols.plot.inter, 591
olshc4, 481
onesampb, 116
opregpb, 546, 547
out, 98, 240
outbox, 98
outpca, 282
package for this book, 11
package WRS, 11
pairdepb, 390
pbad2way, 351
pdclose, 578
pmodchk, 597
Ppca, 283
Ppca.summary, 283
prcomp, 279
Qancsm, 624
qci, 131
qint, 132
qmjci, 131
qrchk, 545
qregci, 545
qsplit, 19
rananova, 339
reg.plot.inter, 591
reg2ci, 551
regci, 541
regpca, 279

regplot, 487
regpre, 605
regpreCV, 605
regtest, 538
rfanova, 353
rimul, 362
riplot, 592
rm2miss, 207
rm3mcp, 439
rmanova, 380
rmanovab, 388
rmdzero, 400
rmmcp, 385
rmmcppb, 402
rmmismcp, 207, 385, 394
robpca, 282
robpcaS, 282
RobRsq, 600
rplot, 576
rplotsm, 576
rqfit, 511
rqtest, 544
run3bo, 576
run3hat, 575
rungen, 568
runm3d, 574
runmean, 566
runmean2g, 614
runpd, 578
runsm2g, 593
selby, 15
selby2, 16
shiftdhd, 193
sint, 131
sintv2, 132
smcorcom, 601
smean, 260
smean2v2, 260
smeancr, 257
smeancrv2, 257
smmcrit, 320
smmcrit01, 320
spat, 253
SPCA, 283
sppba, 417
sppbb, 417
sppbi, 417
stein1.tr, 387
stein2.tr, 387
t1way, 295
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R (continued)
t1waybt, 302
t1wayF, 298
t1wayv2, 295
t2way, 18, 308
t3way, 313
tauloc, 85
TKmeans, 288
Tkmeans.grp, 288
tmcppb, 331
trimci, 114
trimcibt, 124
trimpb, 123
tsplit, 411
tsplitbt, 414
tsreg, 486
tsreg, explanatory power, 599
TWOpov, 605
winci, 114
wlogregci, 542
wmcppb, 403
wmwanova, 358
wmwloc, 185
wwmcppb, 423
wwwmcppb, 440
wwwtrim, 437
wwwtrimbt, 437
YYmanova, 367
YYmcp, 369

Rallfun, 12
regression

HC4, 478

interactions, 584
least median of squares, 487
least-trimmed squares, 488
logistic model, 522
outliers, 520

regression outlier, 475
resistance, 63
ridge regression, 602
RMBA estimator, 232
robust, 23
Rom’s Method, 329
running-interval smoother, 562

S
S-estimators, 227
saddlepoint approximation, 125
scale

measures of, 36
scale equivariance, 24, 36
scale estimator, 89
sequentially rejective, 329
shift function, 139
sign invariance, 36
slash distribution, 87
smooth, 558
smoother, 558
SNM method, 504
spherical PCA, 280
splines, 563, 569
SR, 346
strength of association

explanatory, 598

STS, 504
sup, 26
supremum, 26

T
tau measure of location, 84
tau measure of variation, 94
TBS estimator, 227
triefficiency, 91
Tukey’s median, 228

V
varfun, 599

W
Wald scores, 534
Wald statistic, 478
Walsh averages, 85
Winsorize, 30
Winsorized expected values, 39
Winsorized regression, 508
Winsorized sample mean, 59
Winsorized Variance, 37
Winsorized variance, 61
Winsorizing, 59
within-by-within-by-within

multiple comparisons, 439
WMCD estimator, 250
WMVE estimator, 250
WMWAOV, 357

www.elsevierdirect.com


	Introduction to Robust Estimation and Hypothesis Testing
	Copyright
	Preface
	1 Introduction
	1.1 Problems with Assuming Normality
	1.2 Transformations
	1.3 The Influence Curve
	1.4 The Central Limit Theorem
	1.5 Is the ANOVA F Robust?
	1.6 Regression
	1.7 More Remarks
	1.8 Using the Computer: R
	1.9 Some Data Management Issues
	1.9.1 Eliminating Missing Values


	2 A Foundation for Robust Methods
	2.1 Basic Tools for Judging Robustness
	2.1.1 Qualitative Robustness
	2.1.2 Infinitesimal Robustness
	2.1.3 Quantitative Robustness

	2.2 Some Measures of Location and Their Influence Function
	2.2.1 Quantiles
	2.2.2 The Winsorized Mean
	2.2.3 The Trimmed Mean
	2.2.4 M-Measures of Location
	2.2.5 R-Measures of Location

	2.3 Measures of Scale
	2.4 Scale Equivariant M-Measures of Location
	2.5 Winsorized Expected Values

	3 Estimating Measures of Location and Scale
	3.1 A Bootstrap Estimate of a Standard Error
	3.1.1 R Function bootse

	3.2 Density Estimators
	3.2.1 Normal Kernel
	3.2.2 Rosenblatt's Shifted Histogram
	3.2.3 The Expected Frequency Curve
	3.2.4 An Adaptive Kernel Estimator
	3.2.5 R Functions skerd, kerden, kdplot, rdplot, akerd, and splot

	3.3 The Sample Trimmed Mean
	3.3.1 R Functions mean, tmean, and lloc
	3.3.2 Estimating the Standard Error of the Trimmed Mean
	3.3.3 Estimating the Standard Error of the Sample Winsorized Mean
	3.3.4 R Functions winmean, winvar, trimse, and winse
	3.3.5 Estimating the Standard Error of the Sample Median, M
	3.3.6 R Function msmedse

	3.4 The Finite Sample Breakdown Point
	3.5 Estimating Quantiles
	3.5.1 Estimating the Standard Error of the Sample Quantile
	3.5.2 R Function qse
	3.5.3 The Maritz–Jarrett Estimate of the Standard Error of x?q
	3.5.4 R Function mjse
	3.5.5 The Harrell–Davis Estimator
	3.5.6 R Function hd
	3.5.7 A Bootstrap Estimate of the Standard Error of θ?q
	3.5.8 R Function hdseb

	3.6 An M-Estimator of Location
	3.6.1 R Function mad
	3.6.2 Computing an M-estimator of Location
	3.6.3 R Functions mest
	3.6.4 Estimating the Standard Error of the M-estimator
	3.6.5 R Function mestse
	3.6.6 A Bootstrap Estimate of the Standard Error of μ?m
	3.6.7 R Function mestseb

	3.7 One-Step M-estimator
	3.7.1 R Function onestep

	3.8 W-estimators
	3.8.1 Tau Measure of Location
	3.8.2 R Function tauloc
	3.8.3 Zuo's Weighted Estimator

	3.9 The Hodges–Lehmann Estimator
	3.10 Skipped Estimators
	3.10.1 R Functions mom and bmean

	3.11 Some Comparisons of the Location Estimators
	3.12 More Measures of Scale
	3.12.1 The Biweight Midvariance
	3.12.2 R Function bivar
	3.12.3 The Percentage Bend Midvariance and tau Measure of Variation
	3.12.4 R Functions pbvar, tauvar
	3.12.5 The Interquartile Range
	3.12.6 R Function idealf

	3.13 Some Outlier Detection Methods
	3.13.1 Rules Based on Means and Variances
	3.13.2 A Method Based on the Interquartile Range
	3.13.3 Carling's Modification
	3.13.4 A MAD-Median Rule
	3.13.5 R Functions outbox, out, and boxplot
	3.13.6 Skewness and the Boxplot Rule
	3.13.7 R Function adjboxout

	3.14 Exercises

	4 Confidence Intervals in the One-Sample Case
	4.1 Problems when Working with Means
	4.2 The g-and-h Distribution
	4.2.1 R Functions ghdist and rmul

	4.3 Inferences About the Trimmed and Winsorized Means
	4.3.1 R Functions trimci and winci

	4.4 Basic Bootstrap Methods
	4.4.1 The Percentile Bootstrap Method
	4.4.2 R Function onesampb
	4.4.3 Bootstrap-t Method
	4.4.4 Bootstrap Methods when Using a Trimmed Mean
	4.4.5 Singh's Modification
	4.4.6 R Functions trimpb and trimcibt

	4.5 Inferences About M-Estimators
	4.5.1 R Functions mestci and momci

	4.6 Confidence Intervals for Quantiles
	4.6.1 Beware of Tied Values when Using the Median
	4.6.2 Alternative Method for the Median
	4.6.3 R Functions qmjci, hdci, sint, sintv2, qci, and qint

	4.7 Empirical Likelihood
	4.7.1 Bartlett Corrected Empirical Likelihood

	4.8 Concluding Remarks
	4.9 Exercises

	5 Comparing Two Groups
	5.1 The Shift Function
	5.1.1 The Kolmogorov–Smirnov Test
	5.1.2 R Functions ks, kssig, kswsig, and kstiesig
	5.1.3 The S Band and W Band for the Shift Function
	5.1.4 R Functions sband and wband
	5.1.5 Confidence Band for the Deciles Only
	5.1.6 R Function shifthd
	5.1.7 R Functions g2plot and splotg2

	5.2 Student's t-test
	5.3 Comparing Medians and Other Trimmed Means
	5.3.1 R Function yuen
	5.3.2 A Bootstrap-t Method for Comparing Trimmed Means
	5.3.3 R Functions yuenbt and yhbt
	5.3.4 Measuring Effect Size: Robust Analogs of Cohen's d
	5.3.5 R Functions akp.effect, yuenv2, and ees.ci
	5.3.6 Comments on Measuring Effect Size

	5.4 Inferences Based on a Percentile Bootstrap Method
	5.4.1 Comparing M-Estimators
	5.4.2 Comparing Trimmed Means and Medians
	5.4.3 R Functions trimpb2, pb2gen, m2ci, and medpb2

	5.5 Comparing Measures of Scale
	5.5.1 Comparing Variances
	5.5.2 R Function comvar2
	5.5.3 Comparing Biweight Midvariances
	5.5.4 R Function b2ci

	5.6 Permutation Tests
	5.6.1 R Function permg

	5.7 Inferences About a Probabilistic Measure of Effect Size
	5.7.1 R Function mee
	5.7.2 The Cliff and Bruner–Munzel Methods: Handling Tied Values
	5.7.3 R Functions cid, cidv2, bmp, and wmwloc

	5.8 Comparing Two Independent Binomials
	5.8.1 Storer–Kim Method
	5.8.2 Beal's Method
	5.8.3 KMS Method
	5.8.4 R Functions twobinom, twobici, bi2KMS, bi2KMSv2, and bi2CR
	5.8.5 Comparing Discrete Distributions: R Functions binband and disc2com

	5.9 Comparing Dependent Groups
	5.9.1 A Shift Function for Dependent Groups
	5.9.2 R Function lband
	5.9.3 Comparing Deciles
	5.9.4 R Function shiftdhd
	5.9.5 Comparing Trimmed Means
	5.9.6 R Functions yuend and yuendv2
	5.9.7 A Bootstrap-t Method for Marginal Trimmed Means
	5.9.8 R Function ydbt
	5.9.9 Inferences about the Distribution of Difference Scores
	5.9.10 R Functions loc2dif and l2drmci
	5.9.11 Percentile Bootstrap: Comparing Medians, M-Estimators and Other Measures of Location and Scale
	5.9.12 R Function bootdpci
	5.9.13 Handling Missing Values
	Method M1
	Method M2
	Method M3
	Comments on Choosing a Method

	5.9.14 R Functions rm2miss and rmmismcp
	5.9.15 Comparing Variances
	5.9.16 The Sign Test and Inferences about the Binomial Distribution
	5.9.17 R Functions binomci and acbinomci

	5.10 Exercises

	6 Some Multivariate Methods
	6.1 Generalized Variance
	6.2 Depth
	6.2.1 Mahalanobis Depth
	6.2.2 Halfspace Depth
	6.2.3 Computing Halfspace Depth
	6.2.4 R Functions depth2, depth, fdepth, fdepthv2, and unidepth
	6.2.5 Projection Depth
	6.2.6 R functions pdis and pdisMC
	6.2.7 Other Measures of Depth
	6.2.8 R Function zdepth

	6.3 Some Affine Equivariant Estimators
	6.3.1 Minimum Volume Ellipsoid Estimator
	6.3.2 The Minimum Covariance Determinant Estimator
	6.3.3 S-Estimators and Constrained M-Estimators
	6.3.4 R Function tbs
	6.3.5 Donoho–Gasko Generalization of a Trimmed Mean
	6.3.6 R Functions dmean and dcov
	6.3.7 The Stahel–Donoho W-Estimator
	6.3.8 R Function sdwe
	6.3.9 Median Ball Algorithm
	6.3.10 R Function rmba
	6.3.11 OGK Estimator
	6.3.12 R Function ogk
	6.3.13 An M-Estimator
	6.3.14 R Function MARest

	6.4 Multivariate Outlier Detection Methods
	6.4.1 A Relplot
	6.4.2 R Function relplot
	6.4.3 The MVE Method
	6.4.4 The MCD Method
	6.4.5 R Functions covmve and covmcd
	6.4.6 R function out
	6.4.7 The MGV Method
	6.4.8 R Function outmgv
	6.4.9 A Projection Method
	6.4.10 R functions outpro and out3d
	6.4.11 Outlier Identification in High Dimensions
	6.4.12 R Function outproad and outmgvad
	6.4.13 Approaches Based on Geometric Quantiles
	6.4.14 Comments on Choosing a Method

	6.5 A Skipped Estimator of Location and Scatter
	6.5.1 R Functions smean, wmcd, wmve, mgvmean, L1medcen, spat,mgvcov, skip, skipcov, and dcov

	6.6 Robust Generalized Variance
	6.6.1 R Function gvarg

	6.7 Inference in the One-Sample Case
	6.7.1 Inferences Based on the OP Measure of Location
	6.7.2 Extension of Hotelling's T2 to Trimmed Means
	6.7.3 R Functions smeancrv2 and hotel1.tr
	6.7.4 Inferences Based on the MGV Estimator
	6.7.5 R Function smgvcr

	6.8 Two-Sample Case
	6.8.1 R Functions smean2, smean2v2, matsplit, and mat2grp
	Data Management

	6.8.2 Comparing Robust Generalized Variances
	6.8.3 R function gvar2g

	6.9 Multivariate Density Estimators
	6.10 A Two-Sample, Projection-Type Extension of the Wilcoxon–Mann–Whitney Test
	6.10.1 R functions mulwmw and mulwmwv2

	6.11 A Relative Depth Analog of the Wilcoxon–Mann–Whitney Test
	6.11.1 R function mwmw

	6.12 Comparisons Based on Depth
	6.12.1 R Functions lsqs3 and depthg2

	6.13 Comparing Dependent Groups Based on All Pairwise Differences
	6.13.1 R Function dfried

	6.14 Robust Principal Components Analysis
	6.14.1 R Functions prcomp and regpca
	6.14.2 Maronna's Method
	6.14.3 The SPCA Method
	6.14.4 Method HRVB
	6.14.5 Method OP
	6.14.6 Method PPCA
	6.14.7 R Functions outpca, robpca, robpcaS, SPCA, Ppca, and Ppca.summary
	6.14.8 Comments on Choosing the Number of Components

	6.15 Cluster Analysis
	6.15.1 R Functions Kmeans, kmeans.grp, TKmeans, and TKmeans.grp

	6.16 Exercises

	7 One-Way and Higher Designs for Independent Groups
	7.1 Trimmed Means and a One-Way Design
	7.1.1 A Welch-Type Procedure and a Robust Measure of Effect Size
	A Robust, Heteroscedastic Measure of Effect Size
	7.1.2 R Functions t1way, t1wayv2, esmcp, fac2list, and t1wayF
	Data Management
	7.1.3 A Generalization of Box's Method
	7.1.4 R Function box1way
	7.1.5 Comparing Medians
	7.1.6 R Function med1way
	7.1.7 A Bootstrap-t method
	7.1.8 R Functions t1waybt and btrim
	7.1.9 Percentile Bootstrap Methods

	7.2 Two-Way Designs and Trimmed Means
	7.2.1 R Functions t2way
	7.2.2 Comparing Medians
	7.2.3 R Function med2way

	7.3 Three-Way Designs and Trimmed Means
	7.3.1 R Functions t3way and fac2list

	7.4 Multiple Comparisons Based on Medians and Other Trimmed Means
	7.4.1 An Extension of Yuen's Method to Trimmed Means
	7.4.2 R Function lincon
	7.4.3 Multiple Comparisons for Two-way and Three-Way Designs
	7.4.4 R Functions mcp2atm, mcp2med, mcp3atm, mcp3med, con2way, and con3way
	7.4.5 A Bootstrap-t Procedure
	7.4.6 R Functions linconb, bbtrim, and bbbtrim
	7.4.7 Percentile Bootstrap Methods for Comparing Medians and Other Trimmed Means
	Rom’s Method
	Hochberg’s Method
	Benjamini–Hochberg Method
	Method TPB20

	7.4.8 R Functions tmcppb, bbmcppb, bbbmcppb, medpb, med2mcp,med3mcp, and mcppb20
	7.4.9 Judging Sample Sizes
	7.4.10 R Function hochberg
	7.4.11 Explanatory Measure of Effect Size
	7.4.12 R Functions ESmainMCP and esImcp

	7.5 A Random Effects Model for Trimmed Means
	7.5.1 A Winsorized Intraclass Correlation
	7.5.2 R Function rananova

	7.6 Global Tests Based on M-Measures of Location
	7.6.1 R Functions b1way and pbadepth
	7.6.2 M-estimators and Multiple Comparisons
	Variation of a Bootstrap-t Method
	A Percentile Bootstrap Method: Method SR

	7.6.3 R Functions linconm and pbmcp
	7.6.4 M-Estimators and the Random Effects Model
	7.6.5 Other Methods for One-Way Designs

	7.7 M-Measures of Location and a Two-Way Design
	7.7.1 R Functions pbad2way and mcp2a

	7.8 Ranked-Based Methods for a One-Way Design
	7.8.1 The Rust–Fligner Method
	7.8.2 R Function rfanova
	7.8.3 A Heteroscedastic Rank-Based Method that Allows Tied Values
	7.8.4 R Function bdm
	7.8.5 Inferences about a Probabilistic Measure of Effect Size
	7.8.6 R Functions cidmulv2, wmwaov and cidM

	7.9 A Rank-Based Method for a Two-Way Design
	7.9.1 R Function bdm2way
	7.9.2 The Patel–Hoel Approach to Interactions
	7.9.3 R Function rimul

	7.10 MANOVA Based on Trimmed Means
	7.10.1 R Functions MULtr.anova, MULAOVp, bw2list, and YYmanova
	7.10.2 Linear Contrasts
	7.10.3 R Functions linconMpb, linconSpb, YYmcp, fac2Mlist, and fac2BBMlist
	Data Management

	7.11 Nested Designs
	7.11.1 R Functions anova.nestA, mcp.nestA, and anova.nestAP

	7.12 Exercises

	8 Comparing Multiple Dependent Groups
	8.1 Comparing Trimmed Means
	8.1.1 Omnibus Test Based on the Trimmed Means of the Marginal Distributions
	8.1.2 R Function rmanova
	8.1.3 Pairwise Comparisons and Linear Contrasts Based on Trimmed Means
	8.1.4 Linear Contrasts Based on the Marginal Random Variables
	8.1.5 R Function rmmcp and rmmismcp
	8.1.6 Judging the Sample Size
	8.1.7 R Functions stein1.tr and stein2.tr

	8.2 Bootstrap Methods Based on Marginal Distributions
	8.2.1 Comparing Trimmed Means
	8.2.2 R Function rmanovab
	8.2.3 Multiple Comparisons Based on Trimmed Means
	8.2.4 R Functions pairdepb and bptd
	8.2.5 Percentile Bootstrap Methods
	8.2.6 R Functions bd1way and ddep
	8.2.7 Multiple Comparisons Using M-estimators or Skipped Estimators
	8.2.8 R Functions lindm and mcpOV

	8.3 Bootstrap Methods Based on Difference Scores
	8.3.1 R Function rmdzero
	8.3.2 Multiple Comparisons
	8.3.3 R Functions rmmcppb, wmcppb, dmedpb, and lindepbt

	8.4 Comments on which Method to Use
	8.5 Some Rank-Based Methods
	8.5.1 R Functions apanova and bprm

	8.6 Between-by-Within and Within-by-Within Designs
	8.6.1 Analyzing a Between-by-Within Design Based on Trimmed Means
	8.6.2 R Functions bwtrim and tsplit
	8.6.3 Data Management: R Function bw2list
	8.6.4 Bootstrap-t Method for a Between-by-Within Design
	8.6.5 R Functions bwtrimbt and tsplitbt
	8.6.6 Percentile Bootstrap Methods for a Between-by-Within Design
	8.6.7 R Functions sppba, sppbb, and sppbi
	8.6.8 Multiple Comparisons
	8.6.9 R Functions bwmcp, bwamcp, bwbmcp, bwimcp, spmcpa, spmcpb, and spmcpi
	8.6.10 Within-by-Within Designs
	8.6.11 R Functions wwtrim, wwtrimbt, wwmcppb, and wwmcpbt
	8.6.12 A Rank-Based Approach
	8.6.13 R Function bwrank
	8.6.14 Rank-Based Multiple Comparisons
	8.6.15 R Function bwrmcp
	8.6.16 Multiple Comparisons when Using a Patel–Hoel Approach to Interactions
	8.6.17 R Function sisplit

	8.7 Some Rank-Based Multivariate Methods
	8.7.1 The Munzel–Brunner Method
	8.7.2 R Function mulrank
	8.7.3 The Choi–Marden Multivariate Rank Test
	8.7.4 R Function cmanova

	8.8 Three-Way Designs
	8.8.1 Global Tests Based on Trimmed Means
	8.8.2 R Functions bbwtrim, bwwtrim, wwwtrim, bbwtrimbt, bwwtrimbt, and wwwtrimbt
	8.8.3 Data Management: R Functions bw2list and bbw2list
	8.8.4 Multiple Comparisons
	8.8.5 R Function rm3mcp
	8.8.6 R Functions bbwmcp, bwwmcp, bbwmcppb, bwwmcppb, and wwwmcppb

	8.9 Exercises

	9 Correlation and Tests of Independence
	9.1 Problems with the Product Moment Correlation
	9.1.1 Features of Data that Affect r and T
	9.1.2 Heteroscedasticity and the Classic Test that ρ=0

	9.2 Two Types of Robust Correlations
	9.3 Some Type M-Measures of Correlation
	9.3.1 The Percentage Bend Correlation
	9.3.2 A Test of Independence Based on ρpb
	9.3.3 R Function pbcor
	9.3.4 A Test of Zero Correlation among p Random Variables
	9.3.5 R Function pball
	9.3.6 The Winsorized Correlation
	9.3.7 R Functions wincor and winall
	9.3.8 The Biweight Midcovariance
	9.3.9 R Functions bicov and bicovm
	9.3.10 Kendall's tau
	9.3.11 Spearman's rho
	9.3.12 R Functions tau, spear, cor, and taureg
	9.3.13 Heteroscedastic Tests of Zero Correlation
	9.3.14 R Functions corb, pcorb, and pcorhc4

	9.4 Some Type O Correlations
	9.4.1 MVE and MCD Correlations
	9.4.2 Skipped Measures of Correlation
	9.4.3 The OP Correlation
	9.4.4 Inferences Based on Multiple Skipped Correlations
	9.4.5 R Functions scor and mscor

	9.5 A Test of Independence Sensitive to Curvature
	9.5.1 R Functions indt, indtall, and medind

	9.6 Comparing Correlations: Independent Case
	9.6.1 Comparing Pearson Correlations
	9.6.2 Comparing Robust Correlations
	9.6.3 R Functions twopcor and twocor

	9.7 Exercises

	10 Robust Regression
	10.1 Problems with Ordinary Least Squares
	10.1.1 Computing Confidence Intervals under Heteroscedasticity
	10.1.2 An Omnibus Test
	10.1.3 R Functions lsfitNci, lsfitci, olshc4, hc4test, and hc4wtest
	10.1.4 Comments on Comparing Means via Dummy Coding
	10.1.5 Comments on Trying to Salvage the Homoscedasticity Assumption

	10.2 Theil–Sen Estimator
	10.2.1 R Functions tsreg, correg, and regplot

	10.3 Least Median of Squares
	10.3.1 R Function lmsreg

	10.4 Least Trimmed Squares Estimator
	10.4.1 R Functions ltsreg and ltsgreg

	10.5 Least Trimmed Absolute Value Estimator
	10.5.1 R Function ltareg

	10.6 M-Estimators
	10.7 The Hat Matrix
	10.8 Generalized M-Estimators
	10.8.1 R Function bmreg

	10.9 The Coakley–Hettmansperger and Yohai Estimators
	10.9.1 MM-Estimator
	10.9.2 R Functions chreg and MMreg

	10.10 Skipped Estimators
	10.10.1 R Functions mgvreg and opreg

	10.11 Deepest Regression Line
	10.11.1 R Function mdepreg

	10.12 A Criticism of Methods with a High Breakdown Point
	10.13 Some Additional Estimators
	10.13.1 S-Estimators and τ-Estimators
	10.13.2 R Functions snmreg and stsreg
	10.13.3 E-Type Skipped Estimators
	10.13.4 R Functions mbmreg, tstsreg, and gyreg
	10.13.5 Methods Based on Robust Covariances
	10.13.6 R Functions bireg, winreg, and COVreg
	10.13.7 L-Estimators
	10.13.8 L1 and Quantile Regression
	10.13.9 R Functions qreg and rqfit
	10.13.10 Methods Based on Estimates of the Optimal Weights
	10.13.11 Projection Estimators
	10.13.12 Methods Based on Ranks

	10.14 Comments About Various Estimators
	10.14.1 Contamination Bias

	10.15 Outlier Detection Based on a Robust Fit
	10.15.1 Detecting Regression Outliers
	10.15.2 R Function reglev

	10.16 Logistic Regression and the General Linear Model
	10.16.1 R Functions glm, logreg, wlogreg, and logreg.plot
	10.16.2 The General Linear Model
	10.16.3 R Function glmrob

	10.17 Multivariate Regression
	10.17.1 The RADA Estimator
	10.17.2 The Least Distance Estimator
	10.17.3 R Functions mlrreg and Mreglde
	10.17.4 Multivariate Least Trimmed Squares Estimator
	10.17.5 R Function MULTtsreg
	10.17.6 Other Robust Estimators

	10.18 Exercises

	11 More Regression Methods
	11.1 Inferences About Robust Regression Parameters
	11.1.1 Omnibus Tests for Regression Parameters
	11.1.2 R Function regtest
	11.1.3 Inferences About Individual Parameters
	11.1.4 R Functions regci and wlogregci
	11.1.5 Methods Based on the Quantile Regression Estimator
	11.1.6 R Functions rqtest, qregci, and qrchk
	11.1.7 Inferences Based on the OP-Estimator
	11.1.8 R Functions opregpb and opregpbMC
	11.1.9 Hypothesis Testing when Using the Multivariate Regression Estimator RADA
	11.1.10 R Function mlrGtest
	11.1.11 Robust ANOVA via Dummy Coding

	11.2 Comparing the Parameters of Two Independent Groups
	11.2.1 R Function reg2ci

	11.3 Detecting Heteroscedasticity
	11.3.1 A Quantile Regression Approach
	11.3.2 Koenker's Method
	11.3.3 R Functions qhomt and khomreg

	11.4 Curvature and Half-Slope Ratios
	11.4.1 R Function hratio

	11.5 Curvature and Nonparametric Regression
	11.5.1 Smoothers
	11.5.2 Kernel Estimators and Cleveland's LOWESS
	11.5.3 R Functions lplot and kerreg
	11.5.4 The Running Interval Smoother
	11.5.5 R Functions runmean, rungen, runmbo, and runhat
	11.5.6 Skipped Smoothers
	11.5.7 Smoothers for Estimating Quantiles via Splines
	11.5.8 R Function qsmcobs
	11.5.9 Special Methods for Binary Outcomes
	11.5.10 R Functions logrsm bkreg, logSM, and rplot.bin
	11.5.11 Smoothing with More than One Predictor
	11.5.12 R Functions runm3d, run3hat, rung3d, run3bo, rung3hat, rplot, rplotsm, and runpd
	11.5.13 LOESS
	11.5.14 Other Approaches
	11.5.15 R Function adrun, adrunl, gamplot, and gamplotINT

	11.6 Checking the Specification of a Regression Model
	11.6.1 Testing the Hypothesis of a Linear Association
	11.6.2 R Function lintest
	11.6.3 Testing the Hypothesis of a Generalized Additive Model
	11.6.4 R Function adtest
	11.6.5 Inferences About the Components of a Generalized Additive Model
	11.6.6 R Function adcom

	11.7 Regression Interactions and Moderator Analysis
	11.7.1 R Functions kercon, riplot, runsm2g, ols.plot.inter, and reg.plot.inter
	11.7.2 Mediation Analysis
	11.7.3 R functions ZYmediate, regmed2, and regmediate

	11.8 Comparing Parametric, Additive, and Nonparametric Fits
	11.8.1 R Functions adpchk and pmodchk

	11.9 Measuring the Strength of an Association Given a Fit to the Data
	11.9.1 R Function RobRsq
	11.9.2 Comparing Two Independent Groups via Explanatory Power
	11.9.3 R Functions smcorcom and smstrcom

	11.10  Comparing Predictors
	11.10.1 Comparing Pearson Correlations
	11.10.2 Methods Based on Estimating Prediction Error
	11.10.3 R Functions TWOpov, regpre, and regpreCV
	11.10.4 R Function larsR
	11.10.5 Comparing Predictors via Explanatory Power and a Robust Fit
	11.10.6 R Functions ts2str and sm2strv7

	11.11 ANCOVA
	11.11.1 Methods Based on Specific Design Points
	11.11.2 R Functions ancova, ancpb, runmean2g, lplot2g, ancboot,ancbbpb, and cobs2g
	11.11.3 Multiple Covariates
	11.11.4 R Functions ancdes, ancovamp, ancmppb, and ancmg
	11.11.5 Some Global Tests
	11.11.6 R Functions ancsm and Qancsm

	11.12 Marginal Longitudinal Data Analysis: Comments on Comparing Groups
	11.12.1 R Functions long2g, longreg, longreg.plot, and xyplot

	11.13 Exercises

	References
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	V
	W


