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Preface

We have made substantial changes in this edition of Introduction to Mathematical
Statistics. Some of these changes help students appreciate the connection between
statistical theory and statistical practice while other changes enhance the develop-
ment and discussion of the statistical theory presented in this book.

Many of the changes in this edition reflect comments made by our readers. One
of these comments concerned the small number of real data sets in the previous
editions. In this edition, we have included more real data sets, using them to
illustrate statistical methods or to compare methods. Further, we have made these
data sets accessible to students by including them in the free R package hmcpkg.
They can also be individually downloaded in an R session at the url listed below.
In general, the R code for the analyses on these data sets is given in the text.

We have also expanded the use of the statistical software R. We selected R
because it is a powerful statistical language that is free and runs on all three main
platforms (Windows, Mac, and Linux). Instructors, though, can select another
statistical package. We have also expanded our use of R functions to compute
analyses and simulation studies, including several games. We have kept the level of
coding for these functions straightforward. Our goal is to show students that with
a few simple lines of code they can perform significant computations. Appendix B
contains a brief R primer, which suffices for the understanding of the R used in the
text. As with the data sets, these R functions can be sourced individually at the
cited url; however, they are also included in the package hmcpkg.

We have supplemented the mathematical review material in Appendix A, placing
it in the document Mathematical Primer for Introduction to Mathematical Statistics.
It is freely available for students to download at the listed url. Besides sequences,
this supplement reviews the topics of infinite series, differentiation, and integra-
tion (univariate and bivariate). We have also expanded the discussion of iterated
integrals in the text. We have added figures to clarify discussion.

We have retained the order of elementary statistical inferences (Chapter 4) and
asymptotic theory (Chapter 5). In Chapters 5 and 6, we have written brief reviews
of the material in Chapter 4, so that Chapters 4 and 5 are essentially independent
of one another and, hence, can be interchanged. In Chapter 3, we now begin the
section on the multivariate normal distribution with a subsection on the bivariate
normal distribution. Several important topics have been added. This includes
Tukey’s multiple comparison procedure in Chapter 9 and confidence intervals for
the correlation coefficients found in Chapters 9 and 10. Chapter 7 now contains a

xi



xii Preface

discussion on standard errors for estimates obtained by bootstrapping the sample.
Several topics that were discussed in the Exercises are now discussed in the text.
Examples include quantiles, Section 1.7.1, and hazard functions, Section 3.3. In
general, we have made more use of subsections to break up some of the discussion.
Also, several more sections are now indicated by * as being optional.

Content and Course Planning

Chapters 1 and 2 develop probability models for univariate and multivariate vari-
ables while Chapter 3 discusses many of the most widely used probability models.
Chapter 4 discusses statistical theory for much of the inference found in a stan-
dard statistical methods course. Chapter 5 presents asymptotic theory, concluding
with the Central Limit Theorem. Chapter 6 provides a complete inference (esti-
mation and testing) based on maximum likelihood theory. The EM algorithm is
also discussed. Chapters 7-8 contain optimal estimation procedures and tests of
statistical hypotheses. The final three chapters provide theory for three important
topics in statistics. Chapter 9 contains inference for normal theory methods for
basic analysis of variance, univariate regression, and correlation models. Chapter
10 presents nonparametric methods (estimation and testing) for location and uni-
variate regression models. It also includes discussion on the robust concepts of
efficiency, influence, and breakdown. Chapter 11 offers an introduction to Bayesian
methods. This includes traditional Bayesian procedures as well as Markov Chain
Monte Carlo techniques.

Several courses can be designed using our book. The basic two-semester course
in mathematical statistics covers most of the material in Chapters 1-8 with topics
selected from the remaining chapters. For such a course, the instructor would have
the option of interchanging the order of Chapters 4 and 5, thus beginning the second
semester with an introduction to statistical theory (Chapter 4). A one-semester
course could consist of Chapters 1-4 with a selection of topics from Chapter 5.
Under this option, the student sees much of the statistical theory for the methods
discussed in a non-theoretical course in methods. On the other hand, as with the
two-semester sequence, after covering Chapters 1-3, the instructor can elect to cover
Chapter 5 and finish the course with a selection of topics from Chapter 4.

The data sets and R functions used in this book and the R package hmcpkg can
be downloaded at the site:
https://media.pearsoncmg.com/cmg/pmmg_mml_shared/mathstatsresources
/home/index.html


https://media.pearsoncmg.com/cmg/pmmg_mml_shared/mathstatsresources/home/index.html
https://media.pearsoncmg.com/cmg/pmmg_mml_shared/mathstatsresources/home/index.html
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Chapter 1

Probability and Distributions

1.1 Introduction

In this section, we intuitively discuss the concepts of a probability model which we
formalize in Secton 1.3 Many kinds of investigations may be characterized in part
by the fact that repeated experimentation, under essentially the same conditions,
is more or less standard procedure. For instance, in medical research, interest may
center on the effect of a drug that is to be administered; or an economist may be
concerned with the prices of three specified commodities at various time intervals; or
an agronomist may wish to study the effect that a chemical fertilizer has on the yield
of a cereal grain. The only way in which an investigator can elicit information about
any such phenomenon is to perform the experiment. Each experiment terminates
with an outcome. But it is characteristic of these experiments that the outcome
cannot be predicted with certainty prior to the experiment.

Suppose that we have such an experiment, but the experiment is of such a nature
that a collection of every possible outcome can be described prior to its performance.
If this kind of experiment can be repeated under the same conditions, it is called
a random experiment, and the collection of every possible outcome is called the
experimental space or the sample space. We denote the sample space by C.

Example 1.1.1. In the toss of a coin, let the outcome tails be denoted by 1" and let
the outcome heads be denoted by H. If we assume that the coin may be repeatedly
tossed under the same conditions, then the toss of this coin is an example of a
random experiment in which the outcome is one of the two symbols T or H; that
is, the sample space is the collection of these two symbols. For this example, then,
C={H T} =m

Example 1.1.2. In the cast of one red die and one white die, let the outcome be the
ordered pair (number of spots up on the red die, number of spots up on the white
die). If we assume that these two dice may be repeatedly cast under the same con-
ditions, then the cast of this pair of dice is a random experiment. The sample space
consists of the 36 ordered pairs: C = {(1,1),...,(1,6),(2,1),...,(2,6),...,(6,6)}.
]



2 Probability and Distributions

We generally use small Roman letters for the elements of C such as a,b, or
c. Often for an experiment, we are interested in the chances of certain subsets of
elements of the sample space occurring. Subsets of C are often called events and are
generally denoted by capitol Roman letters such as A, B,or C. If the experiment
results in an element in an event A, we say the event A has occurred. We are
interested in the chances that an event occurs. For instance, in Example 1.1.1 we
may be interested in the chances of getting heads; i.e., the chances of the event
A = {H} occurring. In the second example, we may be interested in the occurrence
of the sum of the upfaces of the dice being “7” or “11;” that is, in the occurrence of
the event A = {(1,6),(2,5), (3,4), (4, 3), (5,2),(6,1),(5,6), (6,5)}.

Now conceive of our having made N repeated performances of the random ex-
periment. Then we can count the number f of times (the frequency) that the
event A actually occurred throughout the N performances. The ratio f/N is called
the relative frequency of the event A in these N experiments. A relative fre-
quency is usually quite erratic for small values of N, as you can discover by tossing
a coin. But as N increases, experience indicates that we associate with the event A
a number, say p, that is equal or approximately equal to that number about which
the relative frequency seems to stabilize. If we do this, then the number p can be
interpreted as that number which, in future performances of the experiment, the
relative frequency of the event A will either equal or approximate. Thus, although
we cannot predict the outcome of a random experiment, we can, for a large value
of N, predict approximately the relative frequency with which the outcome will be
in A. The number p associated with the event A is given various names. Some-
times it is called the probability that the outcome of the random experiment is in
A; sometimes it is called the probability of the event A; and sometimes it is called
the probability measure of A. The context usually suggests an appropriate choice of
terminology.

Example 1.1.3. Let C denote the sample space of Example 1.1.2 and let B be
the collection of every ordered pair of C for which the sum of the pair is equal to
seven. Thus B = {(1,6),(2,5),(3,4), (4,3), (5,2)(6,1)}. Suppose that the dice are
cast N = 400 times and let f denote the frequency of a sum of seven. Suppose that
400 casts result in f = 60. Then the relative frequency with which the outcome
was in B is f/N = 3% = 0.15. Thus we might associate with B a number p that is

400
close to 0.15, and p would be called the probability of the event B. m

Remark 1.1.1. The preceding interpretation of probability is sometimes referred
to as the relative frequency approach, and it obviously depends upon the fact that an
experiment can be repeated under essentially identical conditions. However, many
persons extend probability to other situations by treating it as a rational measure
of belief. For example, the statement p = % for an event A would mean to them
that their personal or subjective probability of the event A is equal to % Hence,
if they are not opposed to gambling, this could be interpreted as a willingness on
their part to bet on the outcome of A so that the two possible payoffs are in the
ratio p/(1 — p) = %/% = % Moreover, if they truly believe that p = % is correct,
they would be willing to accept either side of the bet: (a) win 3 units if A occurs

and lose 2 if it does not occur, or (b) win 2 units if A does not occur and lose 3 if
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it does. However, since the mathematical properties of probability given in Section
1.3 are consistent with either of these interpretations, the subsequent mathematical
development does not depend upon which approach is used. m

The primary purpose of having a mathematical theory of statistics is to provide
mathematical models for random experiments. Once a model for such an experi-
ment has been provided and the theory worked out in detail, the statistician may,
within this framework, make inferences (that is, draw conclusions) about the ran-
dom experiment. The construction of such a model requires a theory of probability.
One of the more logically satisfying theories of probability is that based on the
concepts of sets and functions of sets. These concepts are introduced in Section 1.2.

1.2 Sets

The concept of a set or a collection of objects is usually left undefined. However,
a particular set can be described so that there is no misunderstanding as to what
collection of objects is under consideration. For example, the set of the first 10
positive integers is sufficiently well described to make clear that the numbers % and
14 are not in the set, while the number 3 is in the set. If an object belongs to a
set, it is said to be an element of the set. For example, if C' denotes the set of real
numbers = for which 0 < z < 1, then % is an element of the set C'. The fact that
% is an element of the set C' is indicated by writing % € C. More generally, ¢ € C
means that ¢ is an element of the set C.

The sets that concern us are frequently sets of numbers. However, the language
of sets of points proves somewhat more convenient than that of sets of numbers.
Accordingly, we briefly indicate how we use this terminology. In analytic geometry
considerable emphasis is placed on the fact that to each point on a line (on which
an origin and a unit point have been selected) there corresponds one and only one
number, say z; and that to each number x there corresponds one and only one point
on the line. This one-to-one correspondence between the numbers and points on a
line enables us to speak, without misunderstanding, of the “point x” instead of the
“number x.” Furthermore, with a plane rectangular coordinate system and with x
and y numbers, to each symbol (x, y) there corresponds one and only one point in the
plane; and to each point in the plane there corresponds but one such symbol. Here
again, we may speak of the “point (x,y),” meaning the “ordered number pair x and
y.” This convenient language can be used when we have a rectangular coordinate
system in a space of three or more dimensions. Thus the “point (z1,x2,...,2,)”
means the numbers x1, xo, . . ., x,, in the order stated. Accordingly, in describing our
sets, we frequently speak of a set of points (a set whose elements are points), being
careful, of course, to describe the set so as to avoid any ambiguity. The notation
C={x:0<z <1} isread “C is the one-dimensional set of points x for which
0 <z < 1.7 Similarly, C = {(z,y) : 0 < 2 < 1,0 <y < 1} can be read “C' is the
two-dimensional set of points (z,y) that are interior to, or on the boundary of, a
square with opposite vertices at (0,0) and (1,1).”

We say a set C' is countable if C is finite or has as many elements as there are
positive integers. For example, the sets C; = {1,2,...,100} and Cy = {1,3,5,7,...}
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are countable sets. The interval of real numbers (0, 1], though, is not countable.

1.2.1 Review of Set Theory

As in Section 1.1, let C denote the sample space for the experiment. Recall that
events are subsets of C. We use the words event and subset interchangeably in this
section. An elementary algebra of sets will prove quite useful for our purposes. We
now review this algebra below along with illustrative examples. For illustration, we
also make use of Venn diagrams. Consider the collection of Venn diagrams in
Figure 1.2.1. The interior of the rectangle in each plot represents the sample space
C. The shaded region in Panel (a) represents the event A.

Panel (a) Panel (b)
@ B
A
A AcB
Panel (c) Panel (d)
A B A B
AUB ANB

Figure 1.2.1: A series of Venn diagrams. The sample space C is represented by
the interior of the rectangle in each plot. Panel (a) depicts the event A; Panel (b)
depicts A C B; Panel (c) depicts AU B; and Panel (d) depicts AN B.

We first define the complement of an event A.

Definition 1.2.1. The complement of an event A is the set of all elements in C
which are not in A. We denote the complement of A by A°. That is, A°={xz €C:

x ¢ A}.



1.2. Sets 5

The complement of A is represented by the white space in the Venn diagram in
Panel (a) of Figure 1.2.1.

The empty set is the event with no elements in it. It is denoted by ¢. Note
that C¢ = ¢ and ¢¢ = C. The next definition defines when one event is a subset of
another.

Definition 1.2.2. If each element of a set A is also an element of set B, the set A
1s called a subset of the set B. This is indicated by writing A C B. If A C B and
also B C A, the two sets have the same elements, and this is indicated by writing
A= B.

Panel (b) of Figure 1.2.1 depicts A C B.
The event A or B is defined as follows:

Definition 1.2.3. Let A and B be events. Then the union of A and B is the set
of all elements that are in A or in B or in both A and B. The union of A and B
is denoted by AU B

Panel (c) of Figure 1.2.1 shows AU B.
The event that both A and B occur is defined by,

Definition 1.2.4. Let A and B be events. Then the intersection of A and B is
the set of all elements that are in both A and B. The intersection of A and B is
denoted by AN B

Panel (d) of Figure 1.2.1 illustrates A N B.
Two events are disjoint if they have no elements in common. More formally we
define

Definition 1.2.5. Let A and B be events. Then A and B are disjoint if ANB = ¢

If A and B are disjoint, then we say AU B forms a disjoint union. The next two
examples illustrate these concepts.

Example 1.2.1. Suppose we have a spinner with the numbers 1 through 10 on
it. The experiment is to spin the spinner and record the number spun. Then
C =1{1,2,...,10}. Define the events A, B, and C by A = {1,2}, B ={2,3,4}, and
C =1{3,4,5,6}, respectively.

A°={3,4,...,10}; AUB=1{1,2,3,4}; ANB={2}

ANnC=¢; BNC=1{3,4}; BNnCCB; BnCccC

Au(BNC)=A{1,2}U{3,4} ={1,2,3,4} 2.1)

(AUB)N(AUC) ={1,2,3,4}n{1,2,3,4,5,6} ={1,2,3,4} (1.2.2)
The reader should verify these results. m

Example 1.2.2. For this example, suppose the experiment is to select a real number
in the open interval (0,5); hence, the sample space is C = (0,5). Let A = (1,3),
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B = (2,4), and C = [3,4.5).
AuB=(1,4); AnB=(2,3); BNC=13,4)
AN(BUC)=(1,3)N(2,4.5) = (2,3) (1.2.3)
(ANB)U(ANC)=(2,3)U¢=(2,3)

A sketch of the real number line between 0 and 5 helps to verify these results. m

Expressions (1.2.1)—(1.2.2) and (1.2.3)—(1.2.4) are illustrations of general dis-
tributive laws. For any sets A, B, and C,

AN(BUC) = (ANB)U(ANCQC)
AUu(BNC) = (AuB)N(AUCQC). (1.2.5)

These follow directly from set theory. To verify each identity, sketch Venn diagrams
of both sides.

The next two identities are collectively known as DeMorgan’s Laws. For any
sets A and B,

(ANB)® = A°UBC (1.2.6)
(AUB)® = A°N B (1.2.7)

For instance, in Example 1.2.1,
(AUB) ={1,2,3,4}°={5,6,...,10} = {3,4,...,10}n{{1,5,6,...,10} = A°“NB%;
while, from Example 1.2.2,

(ANB)°=(2,3)=(0,2]U[3,5) =[(0,1] U[3,5)]U[(0,2] U [4,5)] = A°U B°.

As the last expression suggests, it is easy to extend unions and intersections to more

than two sets. If Ay, As, ..., A, are any sets, we define
AjUAsU---UA, = {z:2€A;, forsomei=1,2,...,n} (1.2.8)
AiNnAsn---NA, = {z:x2€A;, foralli=1,2,...,n}.

We often abbreviative these by Ul A; and Nj_, A;, respectively. Expressions for
countable unions and intersections follow directly; that is, if A1, As,..., A, ... IS a
sequence of sets then
AUA U = {z:z€A,, forsomen=1,2,...} =U2 A4, (1.2.10)
AinAsn-- = {z:x€A,, foraln=1,2,..} =N, A4,. (1.2.11)

The next two examples illustrate these ideas.
Example 1.2.3. Suppose C = {1,2,3,...}. If A, ={1,3,...,2n — 1} and B, =
{n,n+1,...}, forn=1,2,3,..., then
U, A, =1{1,3,5,...}; N, A, = {1} (1.2.12)
U, B, =C, N, B,=¢. m (1.2.13)



1.2. Sets 7

Example 1.2.4. Suppose C is the interval of real numbers (0,5). Suppose C,, =
(1-n"t2+nY)and D,=(n"13-n"1), forn=1,23,.... Then

U, Cp = (0,3); N2,Cp = [1,2] (1.2.14)
U, D, =(0,3); N, D,=(1,2). m (1.2.15)

We occassionally have sequences of sets that are monotone. They are of two
types. We say a sequence of sets {A,} is nondecreasing, (nested upward), if

A, C Apyqr forn=1,2,3,.... For such a sequence, we define
lim A, =U;2 Ay (1.2.16)

The sequence of sets A,, = {1,3,...,2n — 1} of Example 1.2.3 is such a sequence.
So in this case, we write lim,, . A, = {1,3,5,...}. The sequence of sets {D,,} of
Example 1.2.4 is also a nondecreasing suquence of sets.

The second type of monotone sets consists of the nonincreasing, (nested
downward) sequences. A sequence of sets {A,,} is nonincreasing, if A, D A,
forn =1,2,3,.... In this case, we define

lim A, =N;2,A,. (1.2.17)
n—oo
The sequences of sets {B,,} and {C),} of Examples 1.2.3 and 1.2.4, respectively, are
examples of nonincreasing sequences of sets.

1.2.2 Set Functions

Many of the functions used in calculus and in this book are functions that map real
numbers into real numbers. We are concerned also with functions that map sets
into real numbers. Such functions are naturally called functions of a set or, more
simply, set functions. Next we give some examples of set functions and evaluate
them for certain simple sets.

Example 1.2.5. Let C = R, the set of real numbers. For a subset A in C, let Q(A)
be equal to the number of points in A that correspond to positive integers. Then
Q(A) is a set function of the set A. Thus, if A = {z:0 < x <5}, then Q(A) = 4;
if A={-2,—1}, then Q(A) =0; and if A={x: —0c0o <2 <6}, then Q(4) =5. m

Example 1.2.6. Let C = R?. For a subset A of C, let Q(A) be the area of A
if A has a finite area; otherwise, let Q(A) be undefined. Thus, if A = {(z,y) :
22 + 9% < 1}, then Q(A) = 7; if A = {(0,0),(1,1),(0,1)}, then Q(A4) = 0; and if

A={(z,y):0<2,0<y,x+y <1}, then Q(A) = 5. m

—

Often our set functions are defined in terms of sums or integrals.! With this in
mind, we introduce the following notation. The symbol

/Af(as) dx

IPlease see Chapters 2 and 3 of Mathematical Comments, at site noted in the Preface, for a
review of sums and integrals
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means the ordinary (Riemann) integral of f(x) over a prescribed one-dimensional

set A and the symbol
//g(lny) dxdy
A

means the Riemann integral of g(z,y) over a prescribed two-dimensional set A.
This notation can be extended to integrals over n dimensions. To be sure, unless
these sets A and these functions f(z) and g(x,y) are chosen with care, the integrals
frequently fail to exist. Similarly, the symbol

> @)
A
means the sum extended over all x € A and the symbol

> glz.y)
A

means the sum extended over all (z,y) € A. As with integration, this notation
extends to sums over n dimensions.

The first example is for a set function defined on sums involving a geometric
series. As pointed out in Example 2.3.1 of Mathematical Comments,? if |a| < 1,
then the following series converges to 1/(1 — a):

- 1
;a" = ifla <1 (1.2.18)

Example 1.2.7. Let C be the set of all nonnegative integers and let A be a subset
of C. Define the set function @) by

QA =>" @)n (1.2.19)

neA

It follows from (1.2.18) that Q(C) = 3. If A = {1, 2,3} then Q(A) = 38/27. Suppose
B ={1,3,5,...} is the set of all odd positive integers. The computation of Q(B) is
given next. This derivation consists of rewriting the series so that (1.2.18) can be
applied. Frequently, we perform such derivations in this book.

oo - Z()-20)

neB n=0
23 [/2\2]" 2 1 6
- 3;[(3)] “5 a5 "

In the next example, the set function is defined in terms of an integral involving
the exponential function f(x) =e™*.

2Downloadable at site noted in the Preface
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Example 1.2.8. Let C be the interval of positive real numbers, i.e., C = (0,00).
Let A be a subset of C. Define the set function @ by

Q(A) :/Aefmdx, (1.2.20)

provided the integral exists. The reader should work through the following integra-
tions:

3
=e ' —e320.318
1

3
Q[(1,3)] = /1 e Ydr=—e"

= e7°=0.007
5

3
Q[(5,00)] = /1 e dr=—e"

5 3 5
Q[(I,S)U[3,5)}:/1 e*mdx:/l efdﬁ/g e~ dz = Q[(1,3)] + Q(3.5)]
Q(C)—/O e Pdr=1 m

Our final example, involves an n dimensional integral.

Example 1.2.9. Let C = R™. For A in C define the set function

Q(A) :/~-~/dx1dx2-~-dxn,
A

provided the integral exists. For example, if A = {(x1,22,...,2,) : 0 < 21 <
29,0 < x; <1, for 1 =3,4,...,n}, then upon expressing the multiple integral as
an iterated integral® we obtain

QA) = /01 Uom dxl}d@.ﬁ[/ol dxl}

1=3
211
T2l g1- L
2, 2

If B={(x1,22,...,2,) : 0 <y <9 <--- <, <1}, then

/01 Uow Uow UO dm] dm} ._.dmn_l] dzy,

1
57

Q(B)

where n! =n(n—-1)---3-2-1. m

3For a discussion of multiple integrals in terms of iterated integrals, see Chapter 3 of Mathe-
matical Comments.
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EXERCISES

1.2.1. Find the union Cy U (5 and the intersection C7 N Cy of the two sets C and
C5, where

(a) Oy ={0,1,2,}, Cy = {2,3,4}.

(b) Cir={z:0<z<2},Co={z:1<z<3}

(c) Ci={(z,y): 0<z<2,1<y<2},Co={(z,y): 1 <z <3, 1<y<3}.
1.2.2. Find the complement C° of the set C' with respect to the space C if
(@) C={z:0<a<1},C={z:3<z<1}

(b) C={(z,y,2): 2 + 9>+ 22 <1}, C = {(z,y,2) : 2% +y? + 22 = 1}.

(€) C={(z,9): lal + 1yl <2}, C = {(wy) : 2* + 42 < 2}.

1.2.3. List all possible arrangements of the four letters m,a,r, and y. Let Cy be
the collection of the arrangements in which y is in the last position. Let Cs be the
collection of the arrangements in which m is in the first position. Find the union
and the intersection of C; and Cs.

1.2.4. Concerning DeMorgan’s Laws (1.2.6) and (1.2.7):

(a) Use Venn diagrams to verify the laws.

(b) Show that the laws are true.

(c) Generalize the laws to countable unions and intersections.

1.2.5. By the use of Venn diagrams, in which the space C is the set of points
enclosed by a rectangle containing the circles C, Cs, and Cs, compare the following
sets. These laws are called the distributive laws.

(a) Cl N (Cg U 03) and (Cl N 02) U (Cl N Cg)
(b) Cl U (CQ N Cg) and (Cl U CQ) N (Cl U 03)

1.2.6. Show that the following sequences of sets, {C}}, are nondecreasing, (1.2.16),
then find limy_ o Ck.

(a) Ch={a:1/k<x<3-1/k}, k=1,2,3,....
) Co={(z,y): 1/k<a?+y*<4-1/k}, k=1,2,3,....

1.2.7. Show that the following sequences of sets, {C} }, are nonincreasing, (1.2.17),
then find limy_ o Ck.

(@) Cr={x:2—-1/k<ax<2},k=1,2,3,....
) Cr={x:2<2x<24+1/k},k=1,2,3,....
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(c) Ch ={(z,9): 0< 2?2+ 9> <1/k}, k=1,2,3,....

1.2.8. For every one-dimensional set C, define the function Q(C) = > . f(z),
where f(z) = (%)(%)’5, x=0,1,2,..., zero elsewhere. If C; = {z : 2z = 0,1,2,3}
and Co = {z:2=0,1,2,...}, find Q(Cy) and Q(C3).

Hint: Recall that S,, = a+ar+ -+ ar"* = a(l —r")/(1 — r) and, hence, it

follows that lim,, . S, = a/(1 — r) provided that |r| < 1.

1.2.9. For every one-dimensional set C' for which the integral exists, let Q(C) =
Jo f(z) dx, where f(z) = 62(1 —x), 0 < 2 < 1, zero elsewhere; otherwise, let Q(C)
be undeﬁned. O ={z:1<az<3}, Co={i}, and C3 = {z: 0 <z < 10}, find
Q(C1), Q(Cy), and Q(Cs).

1.2.10. For every two- dimensional set C contained in R? for which the integral
exists, let Q(C) = [ [ (z* +y?) dady. If C1 = {(x, y) -1<x<1,-1<y <1},
Cy = {(x,y) —1 <z=y<1} and C3 = {(z,y) : 22 +y? < 1}, find Q(C1), Q(C2),
and Q(C3).

1.2.11. Let C denote the set of points that are interior to, or on the boundary of, a
square with opposite vertices at the points (0,0) and (1, 1) Let Q(C) = [ [, dydzx.

(a) If C C Cis the set {(z,y): 0 <z <y < 1}, compute Q(C).
(b) If C C Cis the set {(z,y) : 0 < 2 =y < 1}, compute Q(C).
(¢) It C C Cis theset {(z,y): 0 < 2/2 <y <3x/2 <1}, compute Q(C).

1.2.12. Let C be the set of points interior to or on the boundary of a cube with
edge of length 1. Moreover, say that the cube is in the first octant with one vertex
at the point (0,0,0) and an opposite vertex at the point (1,1,1). Let Q(C) =
I I o drdydz.

(a) If C C Cistheset {(z,y,2): 0 <z <y < z< 1}, compute Q(C).
(b) If C is the subset {(x,y,2) : 0 <z =y =z < 1}, compute Q(C).

1.2.13. Let C denote the set {(z,y, 2) : * + y* 4+ 2? < 1}. Using spherical coordi-

nates, evaluate
C) = /// Va2 +y? + 22 dadydz.
C

1.2.14. To join a certain club, a person must be either a statistician or a math-
ematician or both. Of the 25 members in this club, 19 are statisticians and 16
are mathematicians. How many persons in the club are both a statistician and a
mathematician?

1.2.15. After a hard-fought football game, it was reported that, of the 11 starting
players, 8 hurt a hip, 6 hurt an arm, 5 hurt a knee, 3 hurt both a hip and an arm,
2 hurt both a hip and a knee, 1 hurt both an arm and a knee, and no one hurt all
three. Comment on the accuracy of the report.



12 Probability and Distributions

1.3 The Probability Set Function

Given an experiment, let C denote the sample space of all possible outcomes. As
discussed in Section 1.1, we are interested in assigning probabilities to events, i.e.,
subsets of C. What should be our collection of events? If C is a finite set, then we
could take the set of all subsets as this collection. For infinite sample spaces, though,
with assignment of probabilities in mind, this poses mathematical technicalities that
are better left to a course in probability theory. We assume that in all cases, the
collection of events is sufficiently rich to include all possible events of interest and is
closed under complements and countable unions of these events. Using DeMorgan’s
Laws, (1.2.6)—(1.2.7), the collection is then also closed under countable intersections.
We denote this collection of events by B. Technically, such a collection of events is
called a o-field of subsets.

Now that we have a sample space, C, and our collection of events, I3, we can define
the third component in our probability space, namely a probability set function. In
order to motivate its definition, we consider the relative frequency approach to
probability.

Remark 1.3.1. The definition of probability consists of three axioms which we
motivate by the following three intuitive properties of relative frequency. Let C be
a sample space and let A C C. Suppose we repeat the experiment N times. Then
the relative frequency of A is fa = #{A}/N, where #{A} denotes the number of
times A occurred in the N repetitions. Note that f4 > 0 and fe¢ = 1. These are
the first two properties. For the third, suppose that A; and As are disjoint events.
Then fa,ua, = fa, + fa,. These three properties of relative frequencies form the
axioms of a probability, except that the third axiom is in terms of countable unions.
As with the axioms of probability, the readers should check that the theorems we
prove below about probabilities agree with their intuition of relative frequency. m

Definition 1.3.1 (Probability). Let C be a sample space and let B be the set of
events. Let P be a real-valued function defined on B. Then P is a probability set
function if P satisfies the following three conditions:

1. P(A) >0, for all A € B.
2. P(C) = 1.

3. If {A,} is a sequence of events in B and A, N A, = ¢ for all m # n, then
P (U An> =Y P(4,).
n=1 n=1

A collection of events whose members are pairwise disjoint, as in (3), is said to
be a mutually exclusive collection and its union is often referred to as a disjoint
union. The collection is further said to be exhaustive if the union of its events is
the sample space, in which case Y.~ P(A,) = 1. We often say that a mutually
exclusive and exhaustive collection of events forms a partition of C.
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A probability set function tells us how the probability is distributed over the set
of events, B. In this sense we speak of a distribution of probability. We often drop
the word “set” and refer to P as a probability function.

The following theorems give us some other properties of a probability set func-
tion. In the statement of each of these theorems, P(A) is taken, tacitly, to be a
probability set function defined on the collection of events B of a sample space C.

Theorem 1.3.1. For each event A € B, P(A) =1 — P(A°).

Proof: We have C = AU A° and AN A° = ¢. Thus, from (2) and (3) of Definition
1.3.1, it follows that
1=P(A)+ P(A°),

which is the desired result. m

Theorem 1.3.2. The probability of the null set is zero; that is, P(¢) = 0.

Proof: In Theorem 1.3.1, take A = ¢ so that A° = C. Accordingly, we have
P¢)=1-P(C)=1-1=0

and the theorem is proved. m

Theorem 1.3.3. If A and B are events such that A C B, then P(A) < P(B).

Proof: Now B =AU (A°NB) and AN (A°N B) = ¢. Hence, from (3) of Definition
1.3.1,
P(B) = P(A)+ P(A°N B).

From (1) of Definition 1.3.1, P(A°N B) > 0. Hence, P(B) > P(A). m

Theorem 1.3.4. For each A€ B, 0< P(A) <1.
Proof: Since ¢ C A C C, we have by Theorem 1.3.3 that

P(¢) < P(A)<P(C) or 0<P(A) <1,
the desired result. m

Part (3) of the definition of probability says that P(AU B) = P(A)+ P(B) if A
and B are disjoint, i.e., AN B = ¢ . The next theorem gives the rule for any two
events regardless if they are disjoint or not.

Theorem 1.3.5. If A and B are events in C, then
P(AUB)=P(A)+ P(B)— P(ANB).

Proof: Each of the sets AU B and B can be represented, respectively, as a union of
nonintersecting sets as follows:

AUB=AU(A°NB) and B=(ANB)U(A°NB). (1.3.1)
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That these identities hold for all sets A and B follows from set theory. Also, the
Venn diagrams of Figure 1.3.1 offer a verification of them.
Thus, from (3) of Definition 1.3.1,

P(AUB) = P(A) + P(A°N B)

and
P(B)=P(ANB)+ P(A°N B).

If the second of these equations is solved for P(A°N B) and this result is substituted
in the first equation, we obtain

P(AUB)=P(A)+ P(B)— P(ANB).

This completes the proof. m

Panel (a) Panel (b)
A B A B
AUB=AU(A°NB) A=(ANB°)JU(ANB)

Figure 1.3.1: Venn diagrams depicting the two disjoint unions given in expression
(1.3.1). Panel (a) depicts the first disjoint union while Panel (b) shows the second
disjoint union.

Example 1.3.1. Let C denote the sample space of Example 1.1.2. Let the proba-
bility set function assign a probability of % to each of the 36 points in C; that is, the
dice are fair. IfC’l ={(1,1), ( 1),(3,1),(4,1), (5 1)} and Gy = {(1,2),(2,2),(3,2)},
then P(Cl) 36’ (Cg) = 367 (Cl U CQ) 367 and P(Cl n Cg) =0.m

Example 1.3.2. Two coins are to be tossed and the outcome is the ordered pair
(face on the first coin, face on the second coin). Thus the sample space may be
represented as C = {(H, H), (H,T),(T,H),(T,T)}. Let the probability set function
assign a probability of 1 to each element of C. Let Cy = {(H,H),(H,T)} and
Cy = {(H,H),(T,H)}. Then P(Cy) = P(C2) = 3, P(Ci N Cs) = 1, and, in
accordance with Theorem 1.3.5, P(C;UCy) =3 +3—1=3.m
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For a finite sample space, we can generate probabilities as follows. Let C =
{x1,z2,..., 2, } be a finite set of m elements. Let p1,pa,...,pm be fractions such
that

0<p;<lfori=1,2,...,mand > " p =1 (1.3.2)

Suppose we define P by

P(A) = Z pi, for all subsets A of C. (1.3.3)
;€A

Then P(A) > 0 and P(C) = 1. Further, it follows that P(AU B) = P(A) + P(B)
when AN B = ¢. Therefore, P is a probability on C. For illustration, each of the
following four assignments forms a probability on C = {1,2,...,6}. For each, we
also compute P(A) for the event A = {1,6}.

1 1
P1=p2='"=p6=; P(A):§- (1.3.4)
p1=p2=0.1,p3=ps =ps =ps =0.2; P(A)=0.3.
i 7
;= — ,=1,2,...,6; = —,
pl 217 Z 727 767 P(A) 21

3 3 3
pr=—,p2=1——,p3=ps=ps =ps =0.0; P(A)=—.
v v v

Note that the individual probabilities for the first probability set function,
(1.3.4), are the same. This is an example of the equilikely case which we now
formally define.

Definition 1.3.2 (Equilikely Case). Let C = {x1,za,...,2m} be a finite sample
space. Let p; = 1/m for all i =1,2,...,m and for all subsets A of C define

Pa)=y =D

m
;€A

where #(A) denotes the number of elements in A. Then P is a probability on C and
it is refereed to as the equilikely case. m

Equilikely cases are frequently probability models of interest. Examples include:
the flip of a fair coin; five cards drawn from a well shuffled deck of 52 cards; a spin of
a fair spinner with the numbers 1 through 36 on it; and the upfaces of the roll of a
pair of balanced dice. For each of these experiments, as stated in the definition, we
only need to know the number of elements in an event to compute the probability
of that event. For example, a card player may be interested in the probability of
getting a pair (two of a kind) in a hand of five cards dealt from a well shuffled deck
of 52 cards. To compute this probability, we need to know the number of five card
hands and the number of such hands which contain a pair. Because the equilikely
case is often of interest, we next develop some counting rules which can be used to
compute the probabilities of events of interest.
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1.3.1 Counting Rules

We discuss three counting rules that are usually discussed in an elementary algebra
course.

The first rule is called the mn-rule (m times n-rule), which is also called the
multiplication rule. Let A = {x1,z2,...,2,,} be a set of m elements and let
B = {y1,y2,...,yn} be a set of n elements. Then there are mn ordered pairs,
(i,y5), i =1,2,...,mand j = 1,2,...,n, of elements, the first from A and the
second from B. Informally, we often speak of ways, here. For example there are five
roads (ways) between cities I and II and there are ten roads (ways) between cities
IT and III. Hence, there are 5 % 10 = 50 ways to get from city I to city III by going
from city I to city II and then from city II to city III. This rule extends immediately
to more than two sets. For instance, suppose in a certain state that driver license
plates have the pattern of three letters followed by three numbers. Then there are
26 x 103 possible license plates in this state.

Next, let A be a set with n elements. Suppose we are interested in k-tuples
whose components are elements of A. Then by the extended mn rule, there are
n-n---n =nF such k-tuples whose components are elements of A. Next, suppose
k < n and we are interested in k-tuples whose components are distinct (no repeats)
elements of A. There are n elements from which to choose for the first component,
n—1 for the second component, ..., n— (k—1) for the kth. Hence, by the mn rule,
there are n(n — 1)---(n — (k — 1)) such k-tuples with distinct elements. We call
each such k-tuple a permutation and use the symbol P} to denote the number of
k permutations taken from a set of n elements. This number of permutations, P}’
is our second counting rule. We can rewrite it as

n!

P,?:n(nfl)u-(nf(kfl)):m.

(1.3.5)

Example 1.3.3 (Birthday Problem). Suppose there are n people in a room. As-
sume that n < 365 and that the people are unrelated in any way. Find the proba-
bility of the event A that at least 2 people have the same birthday. For convenience,
assign the numbers 1 though n to the people in the room. Then use n-tuples to
denote the birthdays of the first person through the nth person in the room. Using
the mn-rule, there are 365" possible birthday n-tuples for these n people. This
is the number of elements in the sample space. Now assume that birthdays are
equilikely to occur on any of the 365 days. Hence, each of these n-tuples has prob-
ability 365~". Notice that the complement of A is the event that all the birthdays
in the room are distinct; that is, the number of n-tuples in A€ is P35°. Thus, the
probability of A is

P36

3657

For instance, if n = 2 then P(A) = 1 — (365 % 364)/(365%) = 0.0027. This formula
is not easy to compute by hand. The following R function* computes the P(A) for
the input n and it can be downloaded at the sites mentioned in the Preface.

P(A) =1

4An R primer for the course is found in Appendix B.
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bday = function(n){ bday = 1; nm1 = n - 1
for(j in 1:nmi1){bday = bday*((365-j)/365)}
bday <- 1 - bday; return(bday)}

Assuming that the file bday.R contains this function, here is the R segment com-
puting P(A) for n = 10:

> source("bday.R")

> bday (10)

[1] 0.1169482

For our last counting rule, as with permutations, we are drawing from a set A
of n elements. Now, suppose order is not important, so instead of counting the
number of permutations we want to count the number of subsets of k elements
taken from A. We use the symbol (Z) to denote the total number of these subsets.
Consider a subset of k elements from A. By the permutation rule it generates
PF = k(k —1)---1 = k! permutations. Furthermore, all these permutations are
distinct from the permutations generated by other subsets of k elements from A.
Finally, each permutation of k distinct elements drawn from A must be generated
by one of these subsets. Hence, we have shown that P> = (Z)k:!; that is,

n n!
) = 1.3.
(1) = m (1.3.6)

We often use the terminology combinations instead of subsets. So we say that there
are (Z) combinations of k things taken from a set of n things. Another common
symbol for (Z) is Cp.

It is interesting to note that if we expand the binomial series,
(a+0)" =(a+b)(a+b)- (a+b),

we get

(a+w"=§i<zyﬁm*g (1.3.7)

k=0

because we can select the k factors from which to take a in (:) ways. S0 (2) is also
referred to as a binomial coefficient.

Example 1.3.4 (Poker Hands). Let a card be drawn at random from an ordinary
deck of 52 playing cards that has been well shuffled. The sample space C consists of
52 elements, each element represents one and only one of the 52 cards. Because the
deck has been well shuffled, it is reasonable to assume that each of these outcomes
has the same probability 51—2 Accordingly, if F; is the set of outcomes that are
spades, P(E;) = é—g = i because there are 13 spades in the deck; that is, i is the
probability of drawing a card that is a spade. If E5 is the set of outcomes that
are kings, P(Fs) = % = % because there are 4 kings in the deck; that is, 1—13 is
the probability of drawing a card that is a king. These computations are very easy
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because there are no difficulties in the determination of the number of elements in
each event.

However, instead of drawing only one card, suppose that five cards are taken,
at random and without replacement, from this deck; i.e, a five card poker hand. In
this instance, order is not important. So a hand is a subset of five elements drawn
from a set of 52 elements. Hence, by (1.3.6) there are (552) poker hands. If the
deck is well shuffled, each hand should be equilikely; i.e., each hand has probability
1/ (552). We can now compute the probabilities of some interesting poker hands. Let
FE1 be the event of a flush, all five cards of the same suit. There are (‘1*) = 4 suits
to choose for the flush and in each suit there are (153) possible hands; hence, using
the multiplication rule, the probability of getting a flush is

D) 41287

|
P(Er) = 1(552) ~ 2598960

= 0.00198.

Real poker players note that this includes the probability of obtaining a straight
flush.

Next, consider the probability of the event Fs of getting exactly three of a kind,
(the other two cards are distinct and are of different kinds). Choose the kind for
the three, in (113) ways; choose the three, in (g) ways; choose the other two kinds,
in (12) ways; and choose one card from each of these last two kinds, in (‘11) (411) ways.

2
Hence the probability of exactly three of a kind is

13\ (4 (12 (4)2
P(EQ) — (1)(3)5(22)(1) = 0.0211.
(5)
Now suppose that Fs is the set of outcomes in which exactly three cards are
kings and exactly two cards are queens. Select the kings, in (4) ways, and select

3
the queens, in (;L) ways. Hence, the probability of Ej3 is

P(Es) = <§> <;1> / (552> — 0.0000093.

The event E3 is an example of a full house: three of one kind and two of another
kind. Exercise 1.3.19 asks for the determination of the probability of a full house.
]

1.3.2 Additional Properties of Probability

We end this section with several additional properties of probability which prove
useful in the sequel. Recall in Exercise 1.2.6 we said that a sequence of events
{C,} is a nondecreasing sequence if C,, C Cy,41, for all n, in which case we wrote
lim,, o Cp, = U2, Cy,. Consider lim,, . P(Cy). The question is: can we legiti-
mately interchange the limit and P? As the following theorem shows, the answer
is yes. The result also holds for a decreasing sequence of events. Because of this
interchange, this theorem is sometimes referred to as the continuity theorem of
probability.
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Theorem 1.3.6. Let {C,} be a nondecreasing sequence of events. Then
nh_)n;<> P(C,) = P(nli_{glo Cn)=P (G Cn> . (1.3.8)
n=1
Let {Cy,} be a decreasing sequence of events. Then
nh_)n;<> P(C,) = P(nli_{glo Cn)=P (ﬁ Cn> . (1.3.9)
n=1

Proof. We prove the result (1.3.8) and leave the second result as Exercise 1.3.20.
Define the sets, called rings, as Ry = C; and, forn > 1, R, = C,, N CS_;. It
follows that |J;—, C, = U,—; R, and that R, N R, = ¢, for m # n. Also,
P(R,) = P(C,) — P(Cy,—1). Applying the third axiom of probability yields the
following string of equalities:

P [nlin;o cn} - P (L_Jl cn> - P (L_Jl Rn> - Z_:IP(R”) - nleréoZlP(Rj)

n

= lim ¢ P(Ch)+ Y _[P(Cj) — P(Cj_1)] = lim P(C,). (1.3.10)

n—oo n—oo

j=2
This is the desired result. m

Another useful result for arbitrary unions is given by

Theorem 1.3.7 (Boole’s Inequality). Let {C,} be an arbitrary sequence of events.

Then . .
P (U cn> <> P(Cy). (1.3.11)

Proof: Let D,, = J;-, C;. Then {D,} is an increasing sequence of events that go
up to |J,2, Cy. Also, for all j, D; = D;_1 UC}. Hence, by Theorem 1.3.5,

P(Dj) < P(Dj-1) + P(Cj),

that is,
P(Dj) — P(Dj-1) < P(C}).

In this case, the C;s are replaced by the D;s in expression (1.3.10). Hence, using
the above inequality in this expression and the fact that P(Cy) = P(D;), we have

(Ge)

n—0o0

P (fj Dn> ~ i | PD) + P, — P(D; )]

n=1 j=2

IN

nlLII;OZP(Cj)Z P(C,). =



20 Probability and Distributions

Theorem 1.3.5 gave a general additive law of probability for the union of two
events. As the next remark shows, this can be extended to an additive law for an
arbitrary union.

Remark 1.3.2 (Inclusion Exclusion Formula). It is easy to show (Exercise 1.3.9)
that
P(C1UC;UCs) = p1 —p2 +ps,

where
p1 = P(C1)+ P(Cs)+ P(Cs)
P2 = P(Cl ﬂCQ)—l-P(Cl 003) +P(02 003)
ps = P(CiNC2NCs). (1.3.12)

This can be generalized to the inclusion exclusion formula:

P(CyUCRU---UC,) =p1 —p2+p3— -+ (—=1)"py, (1.3.13)
where p; equals the sum of the probabilities of all possible intersections involving ¢
Sets\'Nhen k = 3, it follows that p; > ps > p3, but more generally p; > p2 > -+ > pg.
As shown in Theorem 1.3.7,

p1=P(C1)+P(Cy)+ -+ P(Cy) > P(CLUC,U---UCYy).
For k = 2, we have
1> P(CLUCy) = P(Cy) + P(Cy) — P(Cy NCY),

which gives Bonferroni’s inequality,

P(Cl n 02) > P(Cl) + P(CQ) -1, (1314)

that is only useful when P(C}) and P(Cs) are large. The inclusion exclusion formula
provides other inequalities that are useful, such as

p1 > P(CLUCU---UCy) > p1 —po
and
p1—p2+p3>P(C1UCU---UCL) >p1 —p2+p3—psa. W
EXERCISES

1.3.1. A positive integer from one to six is to be chosen by casting a die. Thus the
elements ¢ of the sample space C are 1,2,3,4,5,6. Suppose C; = {1,2,3,4} and
Cy ={3,4,5,6}. If the probability set function P assigns a probability of % to each
of the elements of C, compute P(C}), P(Cz), P(Cy NCy), and P(Cy UCy).
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1.3.2. A random experiment consists of drawing a card from an ordinary deck of
52 playing cards. Let the probability set function P assign a probability of % to
each of the 52 possible outcomes. Let C denote the collection of the 13 hearts and
let Cy denote the collection of the 4 kings. Compute P(Cy), P(Cs), P(C1 N Cy),
and P(Cl U 02)

1.3.3. A coin is to be tossed as many times as necessary to turn up one head.
Thus the elements ¢ of the sample space C are H, TH, TTH, TTTH, and so
forth. Let the probability set function P assign to these elements the respec-
tive probabilities %, %, %, %, and so forth. Show that P(C) = 1. Let C; = {c:
cis HyTH,TTH,TTTH, or TTTTH}. Compute P(Cy). Next, suppose that Cy =
{c:cisTTTTH or TTTTTH?}. Compute P(C3), P(C1 N Cy), and P(Cy U Cs).

1.3.4. If the sample space is C = C1 UCy and if P(C}) = 0.8 and P(C3) = 0.5, find
P(Cl n 02)

1.3.5. Let the sample space be C = {¢: 0 < ¢ < co}. Let C' C C be defined by
C ={c:4 < c < oo} and take P(C) = [, e *dz. Show that P(C) = 1. Evaluate
P(C), P(C€), and P(C'UC®).

1.3.6. If the sample space is C = {c¢: —00 < ¢ < oo} and if C' C C is a set for which
the integral f c e~ 1%l dz exists, show that this set function is not a probability set
function. What constant do we multiply the integrand by to make it a probability
set function?

1.3.7. If C; and Cy are subsets of the sample space C, show that
P(CiNCy) <P(C1) < P(C1UCy) < P(Ch) + P(Cy).

1.3.8. Let Cq, C5, and C3 be three mutually disjoint subsets of the sample space
C. Find P[(Cl U CQ) n 03} and P(Clc U 020)

1.3.9. Consider Remark 1.3.2.
(a) If Cy, Cs, and C5 are subsets of C, show that

P(ClLJCQUCg) = P(Cl)+P(CQ)+P(C3)7P(01002)
—P(CiNC5) —P(CanCs) + P(CrNCyNChy).

(b) Now prove the general inclusion exclusion formula given by the expression
(1.3.13).

Remark 1.3.3. In order to solve Exercises (1.3.10)—(1.3.19), certain reasonable
assumptions must be made. m

1.3.10. A bowl contains 16 chips, of which 6 are red, 7 are white, and 3 are blue. If
four chips are taken at random and without replacement, find the probability that:
(a) each of the four chips is red; (b) none of the four chips is red; (c) there is at
least one chip of each color.
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1.3.11. A person has purchased 10 of 1000 tickets sold in a certain raffle. To
determine the five prize winners, five tickets are to be drawn at random and without
replacement. Compute the probability that this person wins at least one prize.
Hint: First compute the probability that the person does not win a prize.

1.3.12. Compute the probability of being dealt at random and without replacement
a 13-card bridge hand consisting of: (a) 6 spades, 4 hearts, 2 diamonds, and 1 club;
(b) 13 cards of the same suit.

1.3.13. Three distinct integers are chosen at random from the first 20 positive
integers. Compute the probability that: (a) their sum is even; (b) their product is
even.

1.3.14. There are five red chips and three blue chips in a bowl. The red chips
are numbered 1, 2, 3, 4, 5, respectively, and the blue chips are numbered 1, 2, 3,
respectively. If two chips are to be drawn at random and without replacement, find
the probability that these chips have either the same number or the same color.

1.3.15. In a lot of 50 light bulbs, there are 2 bad bulbs. An inspector examines
five bulbs, which are selected at random and without replacement.

(a) Find the probability of at least one defective bulb among the five.

(b) How many bulbs should be examined so that the probability of finding at least
one bad bulb exceeds %?

1.3.16. For the birthday problem, Example 1.3.3, use the given R function bday to
determine the value of n so that p(n) > 0.5 and p(n — 1) < 0.5, where p(n) is the
probability that at least two people in the room of n people have the same birthday.

1.3.17. If C1,...,Cy are k events in the sample space C, show that the probability
that at least one of the events occurs is one minus the probability that none of them
occur; i.e.,

P(CiU---UCE)=1=P(C{N---NCY). (1.3.15)

1.3.18. A secretary types three letters and the three corresponding envelopes. In
a hurry, he places at random one letter in each envelope. What is the probability
that at least one letter is in the correct envelope? Hint: Let C; be the event that
the ith letter is in the correct envelope. Expand P(Cy U Cy U C3) to determine the
probability.

1.3.19. Consider poker hands drawn from a well-shuffled deck as described in Ex-
ample 1.3.4. Determine the probability of a full house, i.e, three of one kind and
two of another.

1.3.20. Prove expression (1.3.9).

1.3.21. Suppose the experiment is to choose a real number at random in the in-
terval (0,1). For any subinterval (a,b) C (0,1), it seems reasonable to assign the
probability P[(a,b)] = b—a; i.e., the probability of selecting the point from a subin-
terval is directly proportional to the length of the subinterval. If this is the case,
choose an appropriate sequence of subintervals and use expression (1.3.9) to show
that P[{a}] =0, for all a € (0,1).
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1.3.22. Consider the events Cy, Csy, C3.

(a) Suppose C1,Cs, Cs are mutually exclusive events. If P(C;) = p;, i = 1,2,3,
what is the restriction on the sum p; + ps + p3?

(b) In the notation of part (a), if py = 4/10, po = 3/10, and p3s = 5/10, are
C1, 5, C5 mutually exclusive?

For the last two exercises it is assumed that the reader is familiar with o-fields.

1.3.23. Suppose D is a nonempty collection of subsets of C. Consider the collection
of events
B=n{€ : DC¢&and¢ is a o-field}.

Note that ¢ € B because it is in each o-field, and, hence, in particular, it is in each
o-field £ D D. Continue in this way to show that B is a o-field.

1.3.24. Let C = R, where R is the set of all real numbers. Let Z be the set of all
open intervals in R. The Borel o-field on the real line is given by

Bo=n{€ : T C & and £ is a o-field}.

By definition, By contains the open intervals. Because [a,c0) = (—00,a)¢ and By
is closed under complements, it contains all intervals of the form [a, 00), for a € R.
Continue in this way and show that By contains all the closed and half-open intervals
of real numbers.

1.4 Conditional Probability and Independence

In some random experiments, we are interested only in those outcomes that are
elements of a subset A of the sample space C. This means, for our purposes, that
the sample space is effectively the subset A. We are now confronted with the
problem of defining a probability set function with A as the “new” sample space.

Let the probability set function P(A) be defined on the sample space C and let
A be a subset of C such that P(A) > 0. We agree to consider only those outcomes
of the random experiment that are elements of A; in essence, then, we take A
to be a sample space. Let B be another subset of C. How, relative to the new
sample space A, do we want to define the probability of the event B? Once defined,
this probability is called the conditional probability of the event B, relative to the
hypothesis of the event A, or, more briefly, the conditional probability of B, given
A. Such a conditional probability is denoted by the symbol P(B|A). The “|” in this
symbol is usually read as “given.” We now return to the question that was raised
about the definition of this symbol. Since A is now the sample space, the only
elements of B that concern us are those, if any, that are also elements of A, that
is, the elements of AN B. It seems desirable, then, to define the symbol P(B|A) in
such a way that

P(AJA) =1 and P(BJA) = P(AN B|A).
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Moreover, from a relative frequency point of view, it would seem logically incon-
sistent if we did not require that the ratio of the probabilities of the events A N B
and A, relative to the space A, be the same as the ratio of the probabilities of these
events relative to the space C; that is, we should have

P(ANB|A) P(ANB)

P(AlA) — P(4)

These three desirable conditions imply that the relation conditional probability is
reasonably defined as

Definition 1.4.1 (Conditional Probability). Let B and A be events with P(A) > 0.
Then we defined the conditional probability of B given A as

(AN B)

P(B|A) = PP(A) (1.4.1)

Moreover, we have

1. P(BJ|A) > 0.

2. P(AJA) =1.

3. P(U3L B,|A) = >0 | P(By|A), provided that By, Bs,... are mutually ex-
clusive events.

Properties (1) and (2) are evident. For Property (3), suppose the sequence of
events By, Ba, ... is mutually exclusive. It follows that also (B,NA)N (B, NA) = ¢,
n # m. Using this and the first of the distributive laws (1.2.5) for countable unions,
we have

PlURZ (BN A)]
P(A)

== P[B,Nn4]
-2 P(A)

P(U;:o::an|A) =

n=1

= Y P[B.A]
n=1

Properties (1)—(3) are precisely the conditions that a probability set function must
satisfy. Accordingly, P(B|A) is a probability set function, defined for subsets of A.
It may be called the conditional probability set function, relative to the hypothesis
A, or the conditional probability set function, given A. It should be noted that
this conditional probability set function, given A, is defined at this time only when
P(A) > 0.

Example 1.4.1. A hand of five cards is to be dealt at random without replacement
from an ordinary deck of 52 playing cards. The conditional probability of an all-
spade hand (B), relative to the hypothesis that there are at least four spades in the
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hand (A), is, since AN B = B,
) (3)/(2)
PEN=3@ = 00 +01/@

(5)
(D) +(5)

= 0.0441.

Note that this is not the same as drawing for a spade to complete a flush in draw
poker; see Exercise 1.4.3. m

From the definition of the conditional probability set function, we observe that
P(ANnB) = P(A)P(B|A).

This relation is frequently called the multiplication rule for probabilities. Some-
times, after considering the nature of the random experiment, it is possible to make
reasonable assumptions so that both P(A) and P(B|A) can be assigned. Then
P(A N B) can be computed under these assumptions. This is illustrated in Exam-
ples 1.4.2 and 1.4.3.

Example 1.4.2. A bowl contains eight chips. Three of the chips are red and
the remaining five are blue. Two chips are to be drawn successively, at random
and without replacement. We want to compute the probability that the first draw
results in a red chip (A4) and that the second draw results in a blue chip (B). It is
reasonable to assign the following probabilities:

P(A)=2 and P(B|A)=2.

Thus, under these assignments, we have P(AN B) = (3)(3) = 12 = 0.2679. m

Example 1.4.3. From an ordinary deck of playing cards, cards are to be drawn
successively, at random and without replacement. The probability that the third
spade appears on the sixth draw is computed as follows. Let A be the event of two
spades in the first five draws and let B be the event of a spade on the sixth draw.
Thus the probability that we wish to compute is P(AN B). It is reasonable to take

11
=0.2743 and  P(B|A) = - = 02340,

#)
The desired probability P(AN B) is then the product of these two numbers, which

to four places is 0.0642. m

The multiplication rule can be extended to three or more events. In the case of
three events, we have, by using the multiplication rule for two events,

P(ANBNC) = Pl[(ANnB)NC]
= P(ANB)P(C|ANB).
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But P(AN B) = P(A)P(B|A). Hence, provided P(AN B) > 0,
P(ANnBNC)=P(A)P(B|A)P(C|AN B).
This procedure can be used to extend the multiplication rule to four or more
events. The general formula for k£ events can be proved by mathematical induction.

Example 1.4.4. Four cards are to be dealt successively, at random and without
replacement, from an ordinary deck of playing cards. The probability of receiving a

spade, a heart, a diamond, and a club, in that order, is (13)(£3)(32)(}3) = 0.0044.

This follows from the extension of the multiplication rule. m

Consider k& mutually exclusive and exhaustive events Aj, Ao, ..., A such that
P(4;) >0,i=1,2,...,k;ie., A, Aa,..., A form a partition of C. Here the events
Ay, Ay, ..., A do not need to be equally likely. Let B be another event such that
P(B) > 0. Thus B occurs with one and only one of the events Ay, As, ..., Ag; that
is,

B = BN(Ai1UAU---Ag)
(BNA)U(BNAy)U---U(BNAg).
Since BN A;,i=1,2,...,k, are mutually exclusive, we have
P(BNA)+P(BNAy)+---+ P(BNAy).
P(A;))P(B|4;),i=1,2,...,k; so
P(A1)P(B|Ay) + P(A3)P(B|A) + - + P(Ay) P(B|Ay)

zk: P(B|A). (1.4.2)

P(B) =
However, P(BN A;) =
P(B)

This result is sometimes called the law of total probability and it leads to the
following important theorem.

Theorem 1.4.1 (Bayes). Let Ay, As, ..., A be events such that P(A;) > 0, i =
1,2,..., k. Assume further that Ay, Ao, ..., Ag form a partition of the sample space
C. Let B be any event. Then

P(A;)P(B|4;)
>y P(A)P(B|A;)
Proof: Based on the definition of conditional probability, we have
P(BNA;) _ P(A;)P(B|A))
P(B) PB)
The result then follows by the law of total probability, (1.4.2). m
This theorem is the well-known Bayes’ Theorem. This permits us to calculate
the conditional probability of A;, given B, from the probabilities of A, Ag, ..., Ag

and the conditional probabilities of B, given A;, i = 1,2,...,k. The next three
examples illustrate the usefulness of Bayes Theorem to determine probabilities.

P(4;|B) =

(1.4.3)

P(A|B) =
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Example 1.4.5. Say it is known that bowl A; contains three red and seven blue
chips and bowl Ay contains eight red and two blue chips. All chips are identical
in size and shape. A die is cast and bowl A; is selected if five or six spots show
on the side that is up; otherwise, bowl A, is selected. For this situation, it seems
reasonable to assign P(A1) = 2 and P(A3) = 3. The selected bowl is handed to
another person and one chip is taken at random. Say that this chip is red, an event
which we denote by B. By considering the contents of the bowls, it is reasonable
to assign the conditional probabilities P(B|A;) = ;% and P(B|Az) = . Thus the
conditional probability of bowl Ay, given that a red chip is drawn, is

- P(A;)P(B|A;)
P(A1|B) = (Al)P(B|A11)+P(A12)P(B\A2)
_ (5)(i5) _ 3

(&)%) + @) () 19

In a similar manner, we have P(A3|B) = 13. m

In Example 1.4.5, the probabilities P(41) = 2 and P(Az) = & are called prior
probabilities of A; and As, respectively, becaube they are known to be due to the
random mechanism used to select the bowls. After the chip is taken and is observed
to be red, the conditional probabilities P(A1|B) = 5 and P(Ay|B) = 15 are called
posterior probabilities. Since A, has a larger proportlon of red ChlpS than does
Ay, it appeals to one’s intuition that P(Az|B) should be larger than P(As) and,
of course, P(A1|B) should be smaller than P(A;). That is, intuitively the chances
of having bowl As are better once that a red chip is observed than before a chip
is taken. Bayes’ theorem provides a method of determining exactly what those
probabilities are.

Example 1.4.6. Three plants, Ay, As, and Az, produce respectively, 10%, 50%,
and 40% of a company’s output. Although plant A; is a small plant, its manager
believes in high quality and only 1% of its products are defective. The other two, A
and As, are worse and produce items that are 3% and 4% defective, respectively.
All products are sent to a central warehouse. One item is selected at random
and observed to be defective, say event B. The conditional probability that it
comes from plant A; is found as follows. It is natural to assign the respective prior
probabilities of getting an item from the plants as P(A4;) = 0.1, P(A2) = 0.5, and
P(A3) = 0.4, while the conditional probabilities of defective items are P(B|A;) =
0.01, P(B|Az) = 0.03, and P(B|A3) = 0.04. Thus the posterior probability of A;,
given a defective, is

P(AiNB) (0.10)(0.01) 1
P(B)  (0.1)(0.01) + (0.5)(0.03) + (0.4)(0.04) ~ 32°

P(A4|B) =

This is much smaller than the prior probability P(A;) = {;. This is as it should be
because the fact that the item is defective decreases the chances that it comes from
the high-quality plant A;. m
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Example 1.4.7. Suppose we want to investigate the percentage of abused children
in a certain population. The events of interest are: a child is abused (A) and its
complement a child is not abused (N = A¢). For the purposes of this example, we
assume that P(A) = 0.01 and, hence, P(N) = 0.99. The classification as to whether
a child is abused or not is based upon a doctor’s examination. Because doctors are
not perfect, they sometimes classify an abused child (A) as one that is not abused
(Np, where Np means classified as not abused by a doctor). On the other hand,
doctors sometimes classify a nonabused child (N) as abused (Ap). Suppose these
error rates of misclassification are P(Np|A) = 0.04 and P(Ap|N) = 0.05; thus
the probabilities of correct decisions are P(Ap|A) = 0.96 and P(Np|N) = 0.95.
Let us compute the probability that a child taken at random is classified as abused
by a doctor. Because this can happen in two ways, AN Ap or N N Ap, we have

P(Ap) = P(Ap | A)P(A)+ P(Ap | N)P(N) = (0.96)(0.01) 4 (0.05)(0.99) = 0.0591,

which is quite high relative to the probability of an abused child, 0.01. Further, the
probability that a child is abused when the doctor classified the child as abused is
P(AnAp)  (0.96)(0.01)
P(A|Ap) = = = 0.1624,
(414p) P(Ap) 0.0591

which is quite low. In the same way, the probability that a child is not abused
when the doctor classified the child as abused is 0.8376, which is quite high. The
reason that these probabilities are so poor at recording the true situation is that the
doctors’ error rates are so high relative to the fraction 0.01 of the population that
is abused. An investigation such as this would, hopefully, lead to better training of
doctors for classifying abused children. See also Exercise 1.4.17. m

1.4.1 Independence

Sometimes it happens that the occurrence of event A does not change the probability
of event B; that is, when P(A) > 0,

P(B|A) = P(B).

In this case, we say that the events A and B are independent. Moreover, the
multiplication rule becomes

P(AN B) = P(A)P(B|A) = P(A)P(B). (1.4.4)
This, in turn, implies, when P(B) > 0, that
P(A|B) = P(]f(;;% - P(ﬁ)(ggB) — P(A).

Note that if P(A) > 0 and P(B) > 0, then by the above discussion, independence
is equivalent to

P(ANnB) = P(A)P(B). (1.4.5)
What if either P(A) =0 or P(B) = 07 In either case, the right side of (1.4.5) is 0.

However, the left side is 0 also because AN B C A and AN B C B. Hence, we take
Equation (1.4.5) as our formal definition of independence; that is,
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Definition 1.4.2. Let A and B be two events. We say that A and B are inde-
pendent if P(ANB) = P(A)P(B). m

Suppose A and B are independent events. Then the following three pairs of
events are independent: A° and B, A and B¢, and A° and B°. We show the first
and leave the other two to the exercises; see Exercise 1.4.11. Using the disjoint
union, B = (A°N B) U (AN B), we have

P(A°NB) = P(B)-P(ANB) = P(B)—P(A)P(B) = [1-P(A)|P(B) = P(A°)P(B).
(1.4.6)
Hence, A° and B are also independent.

Remark 1.4.1. Events that are independent are sometimes called statistically in-
dependent, stochastically independent, or independent in a probability sense. In
most instances, we use independent without a modifier if there is no possibility of
misunderstanding. m

Example 1.4.8. A red die and a white die are cast in such a way that the numbers
of spots on the two sides that are up are independent events. If A represents a

four on the red die and B represents a three on the white die, with an equally

likely assumption for each side, we assign P(A) = & and P(B) = . Thus, from

independence, the probability of the ordered pair (red = 4, white = 3) is
P[(4,3)] = (5)(5) = -
The probability that the sum of the up spots of the two dice equals seven is
P[(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)]
~EE+FEE+EE+EE+E G +E) 6 =%
In a similar manner, it is easy to show that the probabilities of the sums of the
upfaces 2,3,4,5,6,7,8,9,10,11, 12 are, respectively,
36736736’ 36’36 36° 36’ 367 367 36’ 36
Suppose now that we have three events, Ay, Az, and A3. We say that they are
mutually independent if and only if they are pairwise independent:
P(A1NAs) = P(A1)P(As), P(A1NAy) =P(A;)P(As),
P(A2 N A3) = P(AZ)P(A3)>
and
P(A1NAyNAsg) = P(A1)P(A2)P(A3).

More generally, the n events Ay, Ao, ..., A, are mutually independent if and only
if for every collection of k of these events, 2 < k < n, and for every permutation
dl,dg,...7dk Of1,27...,]€,

P(Adl ﬂAdz - ﬂAdk) = P(Adl)P(Ad2)~-~P(Adk).
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In particular, if Ay, Ao, ..., A, are mutually independent, then
P(Al N A, ﬂ“-ﬂAn) = P(Al)P(AQ)P(An)

Also, as with two sets, many combinations of these events and their complements
are independent, such as

1. The events A{ and Ay U A§ U A4 are independent,
2. The events A; U A5 , AS and A4 N AE are mutually independent.

If there is no possibility of misunderstanding, independent is often used without the
modifier mutually when considering more than two events.

Example 1.4.9. Pairwise independence does not imply mutual independence. As
an example, suppose we twice spin a fair spinner with the numbers 1, 2, 3, and 4.
Let Ay be the event that the sum of the numbers spun is 5, let A be the event that
the first number spun is a 1, and let A3 be the event that the second number spun
is a 4. Then P(A;) = 1/4,i=1,2,3, and for ¢ # j, P(A; N A;) = 1/16. So the
three events are pairwise independent. But A; N As N A3 is the event that (1,4) is
spun, which has probability 1/16 # 1/64 = P(A;)P(A3)P(A3). Hence the events
Aq, As, and A3 are not mutually independent. m

We often perform a sequence of random experiments in such a way that the
events associated with one of them are independent of the events associated with
the others. For convenience, we refer to these events as as outcomes of independent
experiments, meaning that the respective events are independent. Thus we often
refer to independent flips of a coin or independent casts of a die or, more generally,
independent trials of some given random experiment.

Example 1.4.10. A coin is flipped independently several times. Let the event A;
represent a head (H) on the ith toss; thus AS represents a tail (T). Assume that A;
and A§ are equally likely; that is, P(A4;) = P(A$) = 1. Thus the probability of an
ordered sequence like HHTH is, from independence,

P(A1 N Ay N AN Ag) = P(A1)P(A2)P(AS)P(Ag) = ()% = &

Similarly, the probability of observing the first head on the third flip is

P(AS N AS N Ag) = P(AS)P(AS)P(A3) = (4)? = L.

Also, the probability of getting at least one head on four flips is

P(AJUAyUAsUAy) = 1—P[(AUAyUAsU Ay
= 1— P(AS N AS N AS N AS)
4
= 1-(3) =%

See Exercise 1.4.13 to justify this last probability. m
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Example 1.4.11. A computer system is built so that if component K; fails, it is
bypassed and K> is used. If K> fails, then K3 is used. Suppose that the probability
that K, fails is 0.01, that K fails is 0.03, and that K3 fails is 0.08. Moreover, we
can assume that the failures are mutually independent events. Then the probability
of failure of the system is

(0.01)(0.03)(0.08) = 0.000024,

as all three components would have to fail. Hence, the probability that the system
does not fail is 1 — 0.000024 = 0.999976. m

1.4.2 Simulations

Many of the exercises at the end of this section are designed to aid the reader in
his/her understanding of the concepts of conditional probability and independence.
With diligence and patience, the reader will derive the exact answer. Many real
life problems, though, are too complicated to allow for exact derivation. In such
cases, scientists often turn to computer simulations to estimate the answer. As an
example, suppose for an experiment, we want to obtain P(A) for some event A.
A program is written that performs one trial (one simulation) of the experiment
and it records whether or not A occurs. We then obtain n independent simulations
(runs) of the program. Denote by p,, the proportion of these n simulations in which
A occurred. Then p,, is our estimate of the P(A). Besides the estimation of P(A),
we also obtain an error of estimation given by 1.96 % \/p, (1 — pp,)/n. As we discuss
theoretically in Chapter 4, we are 95% confident that P(A) lies in the interval

An 1 - An
b 1.96\/1‘%. (1.4.7)

In Chapter 4, we call this interval a 95% confidence interval for P(A). For now,
we make use of this confidence interval for our simulations.

Example 1.4.12. As an example, consider the game:

Person A tosses a coin and then person B rolls a die. This is repeated
independently until a head or one of the numbers 1, 2, 3,4 appears, at
which time the game is stopped. Person A wins with the head and B
wins with one of the numbers 1,2,3,4. Compute the probability P(A)
that person A wins the game.

For an exact derivation, notice that it is implicit in the statement A wins the game
that the game is completed. Using abbreviated notation, the game is completed if
H or T{1,...,4} occurs. Using independence, the probability that A wins is thus
the conditional probability (1/2)/[(1/2) + (1/2)(4/6)] = 3/5.

The following R function, abgame, simulates the problem. This function can be
downloaded and sourced at the site discussed in the Preface. The first line of the
program sets up the draws for persons A and B, respectively. The second line sets
up a flag for the while loop and the returning values, Awin and Bwin are initialized
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at 0. The command sample(rngA,1,pr=pA) draws a sample of size 1 from rngA
with pmf pA. Each execution of the while loop returns one complete game. Further,
the executions are independent of one another.

abgame <- function(){
rngh <- c(0,1); pA <- rep(1/2,2); rngB <- 1:6; pB <- rep(1/6,6)
ic <= 0; Awin <- O0; Bwin <- 0
while(ic == 0){
x <- sample(rngA,1,pr=pA)
if (x==1){
ic <- 1; Awin <- 1
} else {
y <- sample(rngB,1,pr=pB)
if(y <= 4){ic <- 1; Bwin <- 1}
}
}
return(c(Awin,Bwin))

3

Notice that one and only one of Awin or Bwin receives the value 1 depending on
whether or not A or B wins. The next R segment simulates the game 10,000 times
and computes the estimate that A wins along with the error of estimation.

ind <- 0; nsims <- 10000
for(i in 1:nsims){
seeA <- abgame ()
if(seeA[1] == 1){ind <- ind + 1}
}
estpA <- ind/nsims
err <- 1.96%sqrt(estpA*(l-estpA)/nsims)
estpA; err

An execution of this code resulted in estpA = 0.6001 and err = 0.0096. As noted
above the probability that A wins is 0.6 which is in the interval 0.6001 £ 0.0096. As

discussed in Chapter 4, we expect this to occur 95% of the time when using such a
confidence interval. m

EXERCISES

1.4.1. If P(A;) > 0 and if As, A3, Ay, ... are mutually disjoint sets, show that
P(AyUA3U---|Ay) = P(A2]A1) + P(As|A1) + -+ .

1.4.2. Assume that P(A; N A2 N A3) > 0. Prove that

P(Ay N Ay N A3 N Ay) = P(A1)P(As| A1) P(As| A1 N A)P(A4| AL N Az N As).
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1.4.3. Suppose we are playing draw poker. We are dealt (from a well-shuffled deck)
five cards, which contain four spades and another card of a different suit. We decide
to discard the card of a different suit and draw one card from the remaining cards
to complete a flush in spades (all five cards spades). Determine the probability of
completing the flush.

1.4.4. From a well-shuffled deck of ordinary playing cards, four cards are turned
over one at a time without replacement. What is the probability that the spades
and red cards alternate?

1.4.5. A hand of 13 cards is to be dealt at random and without replacement from
an ordinary deck of playing cards. Find the conditional probability that there are
at least three kings in the hand given that the hand contains at least two kings.

1.4.6. A drawer contains eight different pairs of socks. If six socks are taken at
random and without replacement, compute the probability that there is at least one
matching pair among these six socks. Hint: Compute the probability that there is
not a matching pair.

1.4.7. A pair of dice is cast until either the sum of seven or eight appears.
(a) Show that the probability of a seven before an eight is 6/11.

(b) Next, this pair of dice is cast until a seven appears twice or until each of a
six and eight has appeared at least once. Show that the probability of the six
and eight occurring before two sevens is 0.546.

1.4.8. In a certain factory, machines I, II, and III are all producing springs of the
same length. Machines I, II, and III produce 1%, 4%, and 2% defective springs,
respectively. Of the total production of springs in the factory, Machine I produces
30%, Machine II produces 25%, and Machine III produces 45%.

(a) If one spring is selected at random from the total springs produced in a given
day, determine the probability that it is defective.

(b) Given that the selected spring is defective, find the conditional probability
that it was produced by Machine II.

1.4.9. Bowl I contains six red chips and four blue chips. Five of these 10 chips
are selected at random and without replacement and put in bowl II, which was
originally empty. One chip is then drawn at random from bowl II. Given that this
chip is blue, find the conditional probability that two red chips and three blue chips
are transferred from bowl I to bowl II.

1.4.10. In an office there are two boxes of thumb drives: Box A; contains seven 100
GB drives and three 500 GB drives, and box As contains two 100 GB drives and

eight 500 GB drives. A person is handed a box at random with prior probabilities
P(A;) = 2 and P(Az) = §, possibly due to the boxes’ respective locations. A drive
is then selected at random and the event B occurs if it is a 500 GB drive. Using an
equally likely assumption for each drive in the selected box, compute P(A4;|B) and

P(A2|B).
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1.4.11. Suppose A and B are independent events. In expression (1.4.6) we showed
that A¢ and B are independent events. Show similarly that the following pairs of
events are also independent: (a) A and B¢ and (b) A¢ and B€.

1.4.12. Let Cy and Cy be independent events with P(C7) = 0.6 and P(Csy) = 0.3.
Compute (a) P(Cy; N Cy), (b) P(CyUCy), and (¢) P(Cy UCS).

1.4.13. Generalize Exercise 1.2.5 to obtain
(CLUCU---UCL) =CinCsn---NC.

Say that Cy,Cs,...,C) are independent events that have respective probabilities
P1,D2,---,Pk- Argue that the probability of at least one of Cy,Co, ..., Cy is equal
to

L= (1 =p1)(I—p2)-(1—px)

1.4.14. Each of four persons fires one shot at a target. Let C} denote the event that
the target is hit by person k, k = 1,2,3,4. If Cy,Cs,Cs5,Cy are independent and
it P(Cy) = P(Cy) = 0.7, P(C3) = 0.9, and P(C4) = 0.4, compute the probability
that (a) all of them hit the target; (b) exactly one hits the target; (¢) no one hits
the target; (d) at least one hits the target.

1.4.15. A bowl contains three red (R) balls and seven white (W) balls of exactly
the same size and shape. Select balls successively at random and with replacement
so that the events of white on the first trial, white on the second, and so on, can be
assumed to be independent. In four trials, make certain assumptions and compute
the probabilities of the following ordered sequences: (a) WWRW; (b) RWWW; (c)
WWWR; and (d) WRWW. Compute the probability of exactly one red ball in the
four trials.

1.4.16. A coin is tossed two independent times, each resulting in a tail (T) or a head
(H). The sample space counsists of four ordered pairs: TT, TH, HT, HH. Making
certain assumptions, compute the probability of each of these ordered pairs. What
is the probability of at least one head?

1.4.17. For Example 1.4.7, obtain the following probabilities. Explain what they
mean in terms of the problem.

D)-

(a) P(N
(b) P(N|Ap).
(

(

(c) P(A[Np).
(d) P(N|Np).

1.4.18. A die is cast independently until the first 6 appears. If the casting stops
on an odd number of times, Bob wins; otherwise, Joe wins.

(a) Assuming the die is fair, what is the probability that Bob wins?
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(b) Let p denote the probability of a 6. Show that the game favors Bob, for all p,
0<p<l.

1.4.19. Cards are drawn at random and with replacement from an ordinary deck
of 52 cards until a spade appears.

(a) What is the probability that at least four draws are necessary?
(b) Same as part (a), except the cards are drawn without replacement.

1.4.20. A person answers each of two multiple choice questions at random. If there
are four possible choices on each question, what is the conditional probability that
both answers are correct given that at least one is correct?

1.4.21. Suppose a fair 6-sided die is rolled six independent times. A match occurs
if side i is observed on the ith trial, ¢ = 1,...,6.

(a) What is the probability of at least one match on the six rolls? Hint: Let C;
be the event of a match on the ith trial and use Exercise 1.4.13 to determine
the desired probability.

(b) Extend part (a) to a fair n-sided die with n independent rolls. Then determine
the limit of the probability as n — oco.

1.4.22. Players A and B play a sequence of independent games. Player A throws
a die first and wins on a “six.” If he fails, B throws and wins on a “five” or “six.”
If he fails, A throws and wins on a “four,” “five,” or “six.” And so on. Find the
probability of each player winning the sequence.

1.4.23. Let C7, Cs, C5 be independent events with probabilities %, %, i, respec-
tively. Compute P(C; U Cy U C3).

1.4.24. From a bowl containing five red, three white, and seven blue chips, select
four at random and without replacement. Compute the conditional probability of
one red, zero white, and three blue chips, given that there are at least three blue
chips in this sample of four chips.

1.4.25. Let the three mutually independent events Cy, Cs, and C3 be such that

1.4.26. Each bag in a large box contains 25 tulip bulbs. It is known that 60% of
the bags contain bulbs for 5 red and 20 yellow tulips, while the remaining 40% of
the bags contain bulbs for 15 red and 10 yellow tulips. A bag is selected at random
and a bulb taken at random from this bag is planted.

(a) What is the probability that it will be a yellow tulip?

(b) Given that it is yellow, what is the conditional probability it comes from a
bag that contained 5 red and 20 yellow bulbs?
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1.4.27. The following game is played. The player randomly draws from the set of
integers {1,2,...,20}. Let « denote the number drawn. Next the player draws at
random from the set {x,...,25}. If on this second draw, he draws a number greater
than 21 he wins; otherwise, he loses.

(a) Determine the sum that gives the probability that the player wins.

(b) Write and run a line of R code that computes the probability that the player
wins.

(c) Write an R function that simulates the game and returns whether or not the
player wins.

o 10, simulations of your program in Part (c). tain the estimate an

d) Do 10,000 simulati f gram in P Obtain the esti d
confidence interval, (1.4.7), for the probability that the player wins. Does
your interval trap the true probability?

1.4.28. A bowl contains 10 chips numbered 1,2, ..., 10, respectively. Five chips are
drawn at random, one at a time, and without replacement. What is the probability
that two even-numbered chips are drawn and they occur on even-numbered draws?

1.4.29. A person bets 1 dollar to b dollars that he can draw two cards from an
ordinary deck of cards without replacement and that they will be of the same suit.
Find b so that the bet is fair.

1.4.30 (Monte Hall Problem). Suppose there are three curtains. Behind one curtain
there is a nice prize, while behind the other two there are worthless prizes. A
contestant selects one curtain at random, and then Monte Hall opens one of the
other two curtains to reveal a worthless prize. Hall then expresses the willingness
to trade the curtain that the contestant has chosen for the other curtain that has
not been opened. Should the contestant switch curtains or stick with the one that
she has? To answer the question, determine the probability that she wins the prize
if she switches.

1.4.31. A French nobleman, Chevalier de Méré, had asked a famous mathematician,
Pascal, to explain why the following two probabilities were different (the difference
had been noted from playing the game many times): (1) at least one six in four
independent casts of a six-sided die; (2) at least a pair of sixes in 24 independent
casts of a pair of dice. From proportions it seemed to de Méré that the probabilities
should be the same. Compute the probabilities of (1) and (2).

1.4.32. Hunters A and B shoot at a target; the probabilities of hitting the target
are p; and po, respectively. Assuming independence, can p; and ps be selected so
that

P(zero hits) = P(one hit) = P(two hits)?

1.4.33. At the beginning of a study of individuals, 15% were classified as heavy
smokers, 30% were classified as light smokers, and 55% were classified as nonsmok-
ers. In the five-year study, it was determined that the death rates of the heavy and
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light smokers were five and three times that of the nonsmokers, respectively. A ran-
domly selected participant died over the five-year period: calculate the probability
that the participant was a nonsmoker.

1.4.34. A chemist wishes to detect an impurity in a certain compound that she is
making. There is a test that detects an impurity with probability 0.90; however,
this test indicates that an impurity is there when it is not about 5% of the time.
The chemist produces compounds with the impurity about 20% of the time. A
compound is selected at random from the chemist’s output. The test indicates that
an impurity is present. What is the conditional probability that the compound
actually has the impurity?

1.5 Random Variables

The reader perceives that a sample space C may be tedious to describe if the elements
of C are not numbers. We now discuss how we may formulate a rule, or a set of
rules, by which the elements ¢ of C may be represented by numbers. We begin the
discussion with a very simple example. Let the random experiment be the toss of
a coin and let the sample space associated with the experiment be C = {H,T'},
where H and T represent heads and tails, respectively. Let X be a function such
that X(T) = 0 and X(H) = 1. Thus X is a real-valued function defined on the
sample space C which takes us from the sample space C to a space of real numbers
D = {0,1}. We now formulate the definition of a random variable and its space.

Definition 1.5.1. Consider a random experiment with a sample space C. A func-
tion X, which assigns to each element ¢ € C one and only one number X (c) = z, is
called a random variable. The space or range of X is the set of real numbers
D={z:2=X(c),ceC}. m

In this text, D generally is a countable set or an interval of real numbers. We call
random variables of the first type discrete random variables, while we call those of
the second type continuous random variables. In this section, we present examples
of discrete and continuous random variables and then in the next two sections we
discuss them separately.

Given a random variable X, its range D becomes the sample space of interest.
Besides inducing the sample space D, X also induces a probability which we call
the distribution of X.

Consider first the case where X is a discrete random variable with a finite space
D ={d,...,dn}. The only events of interest in the new sample space D are subsets
of D. The induced probability distribution of X is also clear. Define the function
px(d;) on D by

px(d;) = P[{c: X(¢) =d;}], fori=1,...,m. (1.5.1)

In the next section, we formally define px(d;) as the probability mass function
(pmf) of X. Then the induced probability distribution, Px(-), of X is

Px(D) = Z px(di), DCD.
d;eD
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As Exercise 1.5.11 shows, Px (D) is a probability on D. An example is helpful here.

Example 1.5.1 (First Roll in the Game of Craps). Let X be the sum of the
upfaces on a roll of a pair of fair 6-sided dice, each with the numbers 1 through 6
on it. The sample space is C = {(4,7) : 1 < 4,5 < 6}. Because the dice are fair,
P[{(i,5)}] = 1/36. The random variable X is X (4,j) = i + j. The space of X is
D ={2,...,12}. By enumeration, the pmf of X is given by

‘Range value =z 2 3 4 5 6 718 9 | 10 | 11 | 12

‘Probability px(z) | & | 2| 2|22 |8 5413 2| 1

36 36 36 36 36 36 36 36 36 36 36

To illustrate the computation of probabilities concerning X, suppose B; = {x : x =
7,11} and By = {2 : x = 2,3,12}. Then, using the values of px(z) given in the
table,

6 2 8
PX(Bl) = pr(ﬂf)z%‘f'%:%
zeB;
1 2 1 4
PB - = — —_— _— = —
x(B2) ;pxm 36 736 36 36 ™
z€B>

The second case is when X is a continuous random variable. In this case, D
is an interval of real numbers. In practice, continuous random variables are often
measurements. For example, the weight of an adult is modeled by a continuous
random variable. Here we would not be interested in the probability that a person
weighs exactly 200 pounds, but we may be interested in the probability that a
person weighs over 200 pounds. Generally, for the continuous random variables,
the simple events of interest are intervals. We can usually determine a nonnegative
function fx(x) such that for any interval of real numbers (a,b) € D, the induced
probability distribution of X, Px(-), is defined as

b
Px[(a,b)] =P[{ceC:a< X(c) <b}] = / fx(x)dx; (1.5.2)

that is, the probability that X falls between a and b is the area under the curve
y = fx(z) between a and b. Besides fx(x) > 0, we also require that Px (D) =
Jp fx(x)dx =1 (total area under the curve over the sample space of X is 1). There
are some technical issues in defining events in general for the space D; however, it
can be shown that Px (D) is a probability on D; see Exercise 1.5.11. The function
fx is formally defined as the probability density function (pdf) of X in Section
1.7. An example is in order.

Example 1.5.2. For an example of a continuous random variable, consider the
following simple experiment: choose a real number at random from the interval
(0,1). Let X be the number chosen. In this case the space of X is D = (0,1). It is
not obvious as it was in the last example what the induced probability Px is. But
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there are some intuitive probabilities. For instance, because the number is chosen
at random, it is reasonable to assign

Px[(a,b)]=b—a,for0<a<b< 1. (1.5.3)
It follows that the pdf of X is

1 O0<z<1
fx(x) = { 0 elsewhere. (1.5.4)

For example, the probability that X is less than an eighth or greater than seven

eighths is
1
1 7 E ! 1
Plix<-lulxst :/Sdac+/ do = —.
8 8 0 % 4

Notice that a discrete probability model is not a possibility for this experiment. For
any point a, 0 < a < 1, we can choose ng so large such that 0 < a — nal <a<
a+ngt <1, ie., {a} C(a—ny*,a+ny). Hence,

1 1 2
P(X-a)ﬁP(a—<X<a+—)—, for all n > ny. (1.5.5)
n n n

Since 2/n — 0 as n — oo and a is arbitrary, we conclude that P(X = a) = 0 for
all a € (0,1). Hence, the reasonable pdf, (1.5.4), for this model excludes a discrete
probability model. m

Remark 1.5.1. In equations (1.5.1) and (1.5.2), the subscript X on px and fx
identifies the pmf and pdf, respectively, with the random variable. We often use
this notation, especially when there are several random variables in the discussion.
On the other hand, if the identity of the random variable is clear, then we often
suppress the subscripts. m

The pmf of a discrete random variable and the pdf of a continuous random
variable are quite different entities. The distribution function, though, uniquely
determines the probability distribution of a random variable. It is defined by:

Definition 1.5.2 (Cumulative Distribution Function). Let X be a random variable.
Then its camulative distribution function (cdf) is defined by Fx (x), where

Fx(z) = Px((—o0,z]) = P{ce C: X(c) <z}). (1.5.6)

As above, we shorten P({c € C : X(¢) < z}) to P(X < x). Also, Fx(x) is
often called simply the distribution function (df). However, in this text, we use the
modifier cumulative as Fx (x) accumulates the probabilities less than or equal to x.

The next example discusses a cdf for a discrete random variable.

Example 1.5.3. Suppose we roll a fair die with the numbers 1 through 6 on it.
Let X be the upface of the roll. Then the space of X is {1,2,...,6} and its pmf
is px (i) = 1/6, for i = 1,2,...,6. If < 1, then Fx(x) = 0. If 1 < 2z < 2, then
Fx(xz) = 1/6. Continuing this way, we see that the cdf of X is an increasing step
function which steps up by px (i) at each i in the space of X. The graph of Fx is
given by Figure 1.5.1. Note that if we are given the cdf, then we can determine the
pmfof X. m
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F(x)
1.0+ b
B —)
R ——
0.5+ —
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Figure 1.5.1: Distribution function for Example 1.5.3.

The following example discusses the cdf for the continuous random variable
discussed in Example 1.5.2.

Example 1.5.4 (Continuation of Example 1.5.2). Recall that X denotes a real
number chosen at random between 0 and 1. We now obtain the cdf of X. First, if
x <0, then P(X <z)=0. Next, if > 1, then P(X <z)=1. Finally, if 0 < z <
1, it follows from expression (1.5.3) that P(X <z)=P0< X <z)=2—-0= 2.
Hence the cdf of X is

0 ifx<O
Fx(z)=< =z if0<z<1 (1.5.7)
1 ifx>1.

A sketch of the cdf of X is given in Figure 1.5.2. Note, however, the connection
between Fly () and the pdf for this experiment fx (), given in Example 1.5.2, is

Fx(x) = / fx()dt, forall z € R,

and L Fx (z) = fx(z), for all 2 € R, except forz =0 and 2 = 1. m

Let X and Y be two random variables. We say that X and Y are equal in

distribution and write X 2V if and only if Fx(z) = Fy(z), for all z € R. It
is important to note while X and Y may be equal in distribution, they may be
quite different. For instance, in the last example define the random variable Y as
Y =1—X. Then Y # X. But the space of Y is the interval (0,1), the same as X.
Further, the cdf of Y is 0 for y < 0; 1 for y > 1; and for 0 < y < 1, it is

Fy(y) =PY <y)=P1l-X<y)=PX>1-y)=1-(1-y)=y.

Hence, Y has the same cdf as X, i.e., Y L X, but Y # X.
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F(x)

1+

0,0 1

Figure 1.5.2: Distribution function for Example 1.5.4.

The cdfs displayed in Figures 1.5.1 and 1.5.2 show increasing functions with lower
limits 0 and upper limits 1. In both figures, the cdfs are at least right continuous.
As the next theorem proves, these properties are true in general for cdfs.

Theorem 1.5.1. Let X be a random variable with cumulative distribution function
F(z). Then

(a) For all a and b, if a < b, then F(a) < F(b) (F is nondecreasing).
(b) lim,_,_ oo F(x) =0 (the lower limit of F is 0).

(c) limg, oo F(x) =1 (the upper limit of F is 1).

(d) lim,, ! zoF (@) = F(xzg) (F is right continuous).

Proof: We prove parts (a) and (d) and leave parts (b) and (c) for Exercise 1.5.10.
Part (a): Because a < b, we have {X < a} C {X < b}. The result then follows
from the monotonicity of P; see Theorem 1.3.3.

Part (d): Let {x,} be any sequence of real numbers such that =, | xg9. Let C,, =
{X < x,}. Then the sequence of sets {C},} is decreasing and N2, C,, = {X < z¢}.
Hence, by Theorem 1.3.6,

lim F(z,)=P (m Cn> = F(x0),
n=1
which is the desired result. m

The next theorem is helpful in evaluating probabilities using cdfs.

Theorem 1.5.2. Let X be a random variable with the cdf Fx. Then for a < b,
Pla < X <b] = Fx(b) — Fx(a).
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Proof: Note that
{—oo< X <bp={-00< X <a}U{a <X <b}.

The proof of the result follows immediately because the union on the right side of
this equation is a disjoint union. m

Example 1.5.5. Let X be the lifetime in years of a mechanical part. Assume that

X has the cdf
0 x <0

FX(w):{ 1—e™™ 0< 2.
The pdf of X, L Fy(z), is

e ? O<axr<oo
fx() = { 0 elsewhere.

Actually the derivative does not exist at & = 0, but in the continuous case the next
theorem (1.5.3) shows that P(X = 0) = 0 and we can assign fx(0) = 0 without
changing the probabilities concerning X. The probability that a part has a lifetime
between one and three years is given by

3
P < X <3) = Fx(3) — Fx(1) = / =7 da.
1
That is, the probability can be found by Fx (3) — Fx(1) or evaluating the integral.

In either case, it equals e™! —e™3 = 0.318. m

Theorem 1.5.1 shows that cdfs are right continuous and monotone. Such func-
tions can be shown to have only a countable number of discontinuities. As the next
theorem shows, the discontinuities of a cdf have mass; that is, if x is a point of
discontinuity of Fx, then we have P(X = z) > 0.

Theorem 1.5.3. For any random variable,
P[X =z] = Fx(z) — Fx(x—), (1.5.8)
for all x € R, where Fx(z—) = lim.q, Fx(2).
Proof: For any x € R, we have
{z} = ﬁ (sc—l x]
n=1 "

that is, {«} is the limit of a decreasing sequence of sets. Hence, by Theorem 1.3.6,

(e b <x=d)]

n=1

P[X=2] = P

= lim P{x—l<X§m]

n— 00 n

= lim [Fx(z) — Fx(z — (1/n))]

n—0o0

= Fx(.’L‘) — Fx(.’L‘—),
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which is the desired result. m

Example 1.5.6. Let X have the discontinuous cdf

0 <0
Fx(z)=¢ z/2 0<z<1
1 1<z
Then 1 )
P(-1< X <1/2)=Fx(1/2)— Fx(-1) = 1 -0= 1
and L1
The value 1/2 equals the value of the step of Fixy at z =1. m

Since the total probability associated with a random variable X of the discrete
type with pmf px (z) or of the continuous type with pdf fx(z) is 1, then it must be
true that

erp px(r) =1 and jD fx(z)dx =1,
where D is the space of X. As the next two examples show, we can use this

property to determine the pmf or pdf if we know the pmf or pdf down to a constant
of proportionality.

Example 1.5.7. Suppose X has the pmf

() = cx r=12,...,10
PXII =9 0 elsewhere,
for an appropriate constant ¢. Then

10 10
r=1

r=1
and, hence, ¢ = 1/55. m
Example 1.5.8. Suppose X has the pdf

crd 0<x<?2
0 elsewhere,

fx(z) =

for a constant ¢. Then

2 472
1:/ cx?’dx—c{x} = 4c,
0 4 1o

and, hence, ¢ = 1/4. For illustration of the computation of a probability involving
X, we have

1 L3 255
Pl-<X<1)= T odr = 222~ 0.06226.
<4 < ) /1/4 1 = 1096 -
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EXERCISES

1.5.1. Let a card be selected from an ordinary deck of playing cards. The outcome
¢ is one of these 52 cards. Let X (c) = 4 if ¢ is an ace, let X(¢) = 3 if ¢ is a king,
let X(c) =2 if cis a queen, let X(c) =1 if ¢ is a jack, and let X (¢) = 0 otherwise.
Suppose that P assigns a probability of % to each outcome c. Describe the induced
probability Px (D) on the space D = {0, 1,2, 3,4} of the random variable X.

1.5.2. For each of the following, find the constant ¢ so that p(x) satisfies the con-
dition of being a pmf of one random variable X.

(a) p(z) =c(3)", 2 =1,2,3,..., zero elsewhere.
(b) p(x) =cx, z =1,2,3,4,5,6, zero elsewhere.

1.5.3. Let px(z) = x/15, x = 1,2,3,4,5, zero elsewhere, be the pmf of X. Find
P(X=1or2), P( <X <2),and P(1 <X <2).

1.5.4. Let px(z) be the pmf of a random variable X. Find the cdf F(x) of X and
sketch its graph along with that of px (z) if:
(a) px(x) =1, x =0, zero elsewhere.

(b) px(x) = %, xz = —1,0,1, zero elsewhere.

(c) px(z) =x/15, © =1,2,3,4,5, zero elsewhere.

1.5.5. Let us select five cards at random and without replacement from an ordinary
deck of playing cards.

(a) Find the pmf of X, the number of hearts in the five cards.
(b) Determine P(X < 1).

1.5.6. Let the probability set function of the random variable X be Px(D) =
Ip f(x)dz, where f(x) = 2x/9, for x € D = {x : 0 < z < 3}. Define the events
Dy ={z:0<xz <1} and Dy = {z:2 <z < 3}. Compute Px(D;), Px(D3), and
Px(Dl U Dg)

1.5.7. Let the space of the random variable X be D = {z : 0 < =z < 1}. If
Di={z:0<z<i}and Dy ={z:3 <z <1}, find Px(D.) if Px(D;) = 1.

1.5.8. Suppose the random variable X has the cdf

0 r<—1
Flz)=¢ &2 -1<z<1
1 1<z

Write an R function to sketch the graph of F(z). Use your graph to obtain the
probabilities: (a) P(—3 < X < 1); (b) P(X =0); (c) P(X =1); (d) P(2 < X < 3).
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1.5.9. Consider an urn that contains slips of paper each with one of the num-
bers 1,2,...,100 on it. Suppose there are ¢ slips with the number ¢ on it for
1=1,2,...,100. For example, there are 25 slips of paper with the number 25. As-
sume that the slips are identical except for the numbers. Suppose one slip is drawn
at random. Let X be the number on the slip.

(a) Show that X has the pmf p(z) = /5050, z = 1,2,3,...,100, zero elsewhere.
(b) Compute P(X < 50).

(c) Show that the cdf of X is F(x) = [z]([z] + 1)/10100, for 1 < 2 < 100, where
[x] is the greatest integer in z.

1.5.10. Prove parts (b) and (c¢) of Theorem 1.5.1.

1.5.11. Let X be a random variable with space D. For D C D, recall that the
probability induced by X is Px (D) = P[{c: X(¢) € D}]. Show that Px(D) is a
probability by showing the following:

(a) Px(D)=1.

(b) Px(D) = 0.

(c) For a sequence of sets {D,,} in D, show that

{c: X(c) e U,Dp} =Up{c: X(c) € D,}.

(d) Use part (c¢) to show that if {D,} is sequence of mutually exclusive events,
then

Px (UpZ1Dn) = Z Px (Dy).
n=1

Remark 1.5.2. In a probability theory course, we would show that the o-field
(collection of events) for D is the smallest o-field which contains all the open intervals
of real numbers; see Exercise 1.3.24. Such a collection of events is sufficiently rich
for discrete and continuous random variables. m

1.6 Discrete Random Variables

The first example of a random variable encountered in the last section was an
example of a discrete random variable, which is defined next.

Definition 1.6.1 (Discrete Random Variable). We say a random variable is a
discrete random variable if its space is either finite or countable.

Example 1.6.1. Consider a sequence of independent flips of a coin, each resulting
in a head (H) or a tail (T). Moreover, on each flip, we assume that H and T are
equally likely; that is, P(H) = P(T) = i. The sample space C consists of sequences
like TTHTHHT: - -. Let the random variable X equal the number of flips needed
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to obtain the first head. Hence, X (TTHTHHT---) = 3. Clearly, the space of X is
D ={1,2,3,4,...}. We see that X = 1 when the sequence begins with an H and
thus P(X =1) = % Likewise, X = 2 when the sequence begins with TH, which
has probability P(X = 2) = (3)(3) = % from the independence. More generally,
if X =z, where x = 1,2,3,4,..., there must be a string of z — 1 tails followed
by a head; that is, TT---TH, where there are x — 1 tails in TT---T. Thus, from

independence, we have a geometric sequence of probabilities, namely,

P(X =x)= (;)“ @) = (;)m r=1,2,3,..., (1.6.1)

the space of which is countable. An interesting event is that the first head appears
on an odd number of flips; i.e., X € {1,3,5,...}. The probability of this event is

rive =5 (1) S () e

r=1

As the last example suggests, probabilities concerning a discrete random vari-
able can be obtained in terms of the probabilities P(X = x), for € D. These
probabilities determine an important function, which we define as

Definition 1.6.2 (Probability Mass Function (pmf)). Let X be a discrete random
variable with space D. The probability mass function (pmf) of X is given by

px(z) = P[X =x], forxzeD. (1.6.2)
Note that pmfs satisfy the following two properties:
(i) 0<px(x) <1,z €D, and (ii) ) ppx(z) = 1. (1.6.3)

In a more advanced class it can be shown that if a function satisfies properties (i)
and (ii) for a discrete set D, then this function uniquely determines the distribution
of a random variable.

Let X be a discrete random variable with space D. As Theorem 1.5.3 shows,
discontinuities of F'y (z) define a mass; that is, if « is a point of discontinuity of Fly,
then P(X = z) > 0. We now make a distinction between the space of a discrete
random variable and these points of positive probability. We define the support of
a discrete random variable X to be the points in the space of X which have positive
probability. We often use S to denote the support of X. Note that S C D, but it
may be that S = D.

Also, we can use Theorem 1.5.3 to obtain a relationship between the pmf and
cdf of a discrete random variable. If 2 € S, then px(x) is equal to the size of the
discontinuity of Fx at x. If z ¢ S then P[X = z] = 0 and, hence, Fx is continuous
at this z.

Example 1.6.2. A lot, consisting of 100 fuses, is inspected by the following proce